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Preface

This book is the totally revised and extended edition of Correspondence Analy-
sis in Practice, first published in 1993. In the first edition I wrote the following
in the Preface, which is still relevant today:

Correspondence analysis is a statistical technique which is useful to all students, Extract from Preface of
First Edition of Corre-
spondence Analysis in
Practice

researchers and professionals who collect categorical data, for example data col-
lected in social surveys. The method is particularly helpful in analysing cross-
tabular data in the form of numerical frequencies, and results in an elegant but
simple graphical display which permits more rapid interpretation and under-
standing of the data. Although the theoretical origins of the technique can be
traced back over 50 years, the real impetus to the modern application of corre-
spondence analysis was given by the French linguist and data analyst Jean-Paul
Benzécri and his colleagues and students, working initially at the University of
Rennes in the early 1960s and subsequently at the Jussieu campus of the Univer-
sity of Paris. Parallel developments of correspondence analysis have taken place
in the Netherlands and Japan, centred around such pioneering researchers as Jan
de Leeuw and Chikio Hayashi. My own involvement with correspondence anal-
ysis commenced in 1973 when I started my doctorate in Benzécri’s Laboratory
of Data Analysis in Paris. The publication of my first book Theory and Appli-
cations of Correspondence Analysis in 1984 coincided with the beginning of a
wider dissemination of correspondence analysis outside of France. At that time
I expressed the hope that my book would serve as a springboard for a much
wider and more routine application of correspondence analysis in the future. The
subsequent evolution and growing popularity of the method could not have been
more gratifying, as hundreds of researchers were introduced to the method and
became familiar with its ability to communicate complex tables of numerical
data to non-specialists throught the medium of graphics. Researchers with whom
I have communicated come from such varying backgrounds as sociology, ecology,
paleontology, archeology, geology, education, medicine, biochemistry, microbiol-
ogy, linguistics, marketing research, advertising, religious studies, philosophy, art
and music. ... In 1989 I was invited by Jay Magidson of Statistical Innovations
Inc. to collaborate with Leo Goodman and Clifford Clogg in the presentation of a
two-day short course in New York, entitled “Correspondence Analysis and Asso-
ciation Models: Geometric Representation and Beyond”. The participants were
mostly marketing professionals from major American companies. For this course
I prepared a set of notes which reinforced the practical, user-oriented approach to
correspondence analysis. ... The positive reaction of the audience was infectious
and inspired me subsequently to present short courses on correspondence analysis
in South Africa, England and Germany. It is from the notes prepared from these
courses that this book has grown.

In 1991 Prof. Walter Kristof of Hamburg University proposed that we organize The Cologne and
Barcelona conferencesa conference on correspondence analysis, with the assistance of Jörg Blasius

of the Zentralarchiv für Empirische Sozialforschung (Central Archive for Em-
pirical Social Research) at the University of Cologne. This conference was the

ix
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x Preface

first international one of its kind and drew a large audience to Cologne from
Germany and neighbouring European countries. This initial meeting devel-
oped into a series of quadrennial conferences, repeated in 1995 and 1999 in
Cologne, in 2003 at the Pompeu Fabra University in Barcelona and due to
take place in 2007 at the Erasmus University in Rotterdam. The 1991 confer-
ence led to the publication of the book Correspondence Analysis in the Social
Sciences , while the 1995 conference gave birth to another book Visualization
of Categorical Data, both of which received excellent reviews. For the 1999
conference on Large Scale Data Analysis participants had to present analy-
ses of data from the multinational International Social Survey Programme
(ISSP). This interdisciplinary meeting included presentations not only on the
latest methodological developments in survey data analysis, but also topics
as diverse as religion, the environment and social inequality. In 2003 we re-
turned to the original theme for the Barcelona conference, which was baptized
with the Catalan girl’s name CARME (Correspondence Analysis and Related
MEthods); hence the formation of the CARME network (www.carme-n.org).
This led to Jörg Blasius and myself editing a third book, Multiple Correspon-
dence Analysis and Related Methods , which was published by Chapman &
Hall in June 2006. As with the two previous volumes, our idea was to produce
a multi-authored book, inviting experts in the field to contribute, with our
task being to write the introductory and linking material, unifying the no-
tation and compiling a common reference list and index. These books mark,
in some sense, the pace of development of the subject, at least in the social
sciences, and are highly recommended to anyone interested in deepening their
knowledge on correspondence analysis and methods related to it.

I have been very gratified to rewrite Correspondence Analysis in Practice,New material in
Second Edition having accumulated considerably more experience in social and environmental

research in the 13 years since the publication of the first edition. I have given
more short courses across the world, including Spain, Italy, Belgium, Brazil,
Canada and Australia, and also courses on multivariate analysis for environ-
mental biologists in Norway, Iceland and Spain, with correspondence analysis
as one of the major topics. The experience of giving these courses has pro-
vided new applications and new ideas for this new edition, so that I have been
able to bring the material right up to date. Apart from completely revising
the original chapters and changing several examples, five new chapters have
been added, on “Transition and Regression Relationships” (showing how the
results and the data are linked by linear functions), “Stacked Tables” (show-
ing how several cross-tables can be analysed jointly), “Subset Correspondence
Analysis” (a simple but highly effective variation of the correspondence anal-
ysis algorithm to analyse selected parts of a data set), “Analysis of Square
Tables” (showing how square tables — e.g., social mobility tables, brand-
switching matrices — can be decomposed into parts that can be visualized
separately using correspondence analysis), and “Canonical Correspondence
Analysis” (showing how to take into account relationships to external predic-
tor variables, an extension of correspondence analysis that is very popular in
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Preface xi

ecology). All in all, I can say that this second edition contains almost all my
practical knowledge of the subject, after 33 years working in this area.

At a conference I attended in the 1980s, I was given this lapel button with its Comparison of first
and second editionsnicely ambiguous maxim, which could well be the motto of correspondence

analysts all over the world:

To illustrate the more obvious meaning of this motto, and to give a simple
example of correspondence analysis, I counted how many tables and figures
there were in each of the chapters of the first edition and in their counterpart
chapters in the second edition. For a valid comparison between the two editions
I expressed these relative to the total number of pages in each chapter and then
performed a variation of the technique called “subset correspondence analysis”
(described in Chapter 21), using the standard biplot presentation (described
in Chapter 13), leading to the data map shown on the following page (you
will understand these ideas after you read the book, but for the moment think
of this example as a type of scatterplot). The two vectors Figures and Tables
point to the right, so chapters to the right have higher than average percentage
of figures and tables. For example, Chapters 9 and 11 in the second edition
have the highest percentage of figures and tables, respectively. In fact, about
three quarters of the second edition’s chapters represented in the map are to
the right of the centre of the map (the centre represents the average), with
only one quarter of the first edition’s chapters to the right, demonstrating the
substantial increase in figures and tables in the second edition. In fact, the
information content and applications component of the book have increased
substantially compared to the first edition, which had a main body (excluding
appendices) of 177 pages — in the second edition this has increased to 200
pages, an increase of 13%, while there has been an increase of 25% in chapters
and topics, 18% in data sets, 44% in figures and 63% in tables.

This book has some innovations that deserve mentioning. Like the first edition, Format of second
editionit is intended to be didactic, but this edition is even more so. I wanted each

chapter to represent a fixed amount to read or teach, and there was no better
way to do that than to limit the length of each chapter — each chapter is
exactly eight pages in length. This was one of the most interesting aspects of
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the project and evolved naturally as I was writing it. One of my colleagues
remarked that it was like writing 14-line sonnets with strict rules for rhyming,
which was certainly true in my case: the format definitely contributed to the
creative process. Another innovation was the extensive use of marginal notes.
Every paragraph of the book has a heading which is placed in the margin.
Then to summarize each chapter, these paragraph headings are all gathered
into a “Contents” section on the first page of every chapter. All figure and
table captions are also placed in the margins, so that the captions are often
much longer and more informative than conventional captions that tend to be
one-liners. Finally, each chapter ends with a summary in the form of a list.

As in the first edition, the book’s main thrust is still toward the practice ofTheoretical appendix
correspondence analysis, so most technical issues and mathematical aspects
are gathered in an Appendix at the end of the book. This theoretical appendix
is more extensive than that of the first edition, including additional theory on
the new topics in the book such as canonical correspondence analysis.

One of the main features of this edition which distinguishes it from the originalComputational
appendix one, and which clearly marks the present digital era, is the lengthy compu-

tational appendix, using the freely available R program, which has become
the de facto standard in statistical computing. Almost all the analyses in the
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Preface xiii

book are referred to in this appendix and the R commands are given to obtain
the corresponding results. In addition, I describe three different technologies
that I used to create the graphical displays in the book. As simple as the data
maps might seem, constructing them is by no means a trivial exercise.

No references at all are given in the 25 chapters, and a relatively brief bib- Bibliographical
appendix, glossary and
epilogue

liographical appendix is given to point readers toward further readings that
include much more complete literature guides. A glossary of the most impor-
tant terms and an epilogue with some final thoughts conclude the book.

The first edition of this book was written in South Africa, and the present Acknowledgements
edition in Catalonia, Spain. Many people and institutions have contributed
in one way or another to this project. First and foremost, I would like to
thank Rafael Pardo, director of the Fundación BBVA in Madrid — without
the support of this foundation and its director, both in encouragement and in
financial support to enable me to take six months’ leave from my teaching, I
can honestly say that this book would not be in your hands now. In addition,
the BBVA Foundation plans to publish the Spanish translation of this book.
Then there is the Universitat Pompeu Fabra in Barcelona, where I have been
working since 1994 — I express my thanks to the director Xavier Calsamiglia
and the whole department for giving me the liberty to devote so much of my
time to this project.

I would like to thank all my friends and colleagues in many countries for
moral and intellectual support, especially Zerrin Aşan, Jörg Blasius, John
Gower, Carles Cuadras, Trevor Hastie, Michael Browne, Victor Thiessen, Karl
Jöreskog, Lesley Andres, John Aitchison, Paul Lewi, Patrick Groenen, Pieter
Kroonenberg, Ludovic Lebart, Michael Friendly, Antoine de Falguerolles, Salve
Dahle, Stig Falk-Petersen, Raul Primicerio, Johs Hjellbrekke, Tom Backer
Johnsen, Tor Korneliussen, Ümit Senesen, Brian Monteith, Ken Reed, Gillian
Heller, Antonella Curci, Gianna Mastrorilli, Paola Bordandini, Walter Zuc-
chini, Oleg Nenadić, Thierry Fahmy, Tamara Djermanovic, Volker Hooyberg,
Gurdeep Stephens, Rita Lugli, Danilo Guaitoli and the whole community of
Gréixer — you have all played a part in this story! Particular thanks go to Jörg
Blasius for a thorough proofreading of the manuscript, and to Oleg Nenadić
for his collaboration in preparing the ca package in R. Like the first edition, I
have dedicated this book to my three daughters, who never cease to amaze me
by their joy, sense of humour and diversity. Finally, I thank Waseem Andrabi
and Shashi Kumar of International Typesetting and Composition in India,
who helped in the design of the LATEX style file that I used to typeset the
book, and commissioning editor Rob Calver, production coordinator Marsha
Pronin and project editor Mimi Williams of Chapman & Hall/CRC Press for
placing their trust in me and for their constant cooperation in making this
second edition become a reality.

Michael Greenacre
Barcelona
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1Scatterplots and Maps

Correspondence analysis is a method of data analysis for representing tabu-
lar data graphically. Correspondence analysis is a generalization of a simple
graphical concept with which we are all familiar, namely the scatterplot. The
scatterplot is the representation of data as a set of points with respect to
two perpendicular coordinate axes: the horizontal axis often referred to as
the x-axis and the vertical one as the y-axis. As a gentle introduction to the
subject of correspondence analysis, it is convenient to reflect for a short time
on our perception of scatterplots and how we interpret them in relation to the
data they represent graphically. Particular emphasis will be placed on how we
interpret distances between points in a scatterplot and when scatterplots can
be seen as a spatial map of the data.

Contents

Data set 1: My travels in 2005 . . . . . . . . . . . . . . . . . . . . . . . 1
Continuous variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Expressing data in relative amounts . . . . . . . . . . . . . . . . . . . . 2
Categorical variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Ordering of categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Distances between categories . . . . . . . . . . . . . . . . . . . . . . . . 3
Distance interpretation of scatterplots . . . . . . . . . . . . . . . . . . . 3
Scatterplots as maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Calibration of a direction in the map . . . . . . . . . . . . . . . . . . . . 4
Information-transforming nature of the display . . . . . . . . . . . . . . 4
Nominal and ordinal variables . . . . . . . . . . . . . . . . . . . . . . . . 5
Plotting more than one set of data . . . . . . . . . . . . . . . . . . . . . 5
Interpreting absolute or relative frequencies . . . . . . . . . . . . . . . . 6
Describing and interpreting data, vs. modelling and statistical inference 7
Large data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
SUMMARY: Scatterplots and Maps . . . . . . . . . . . . . . . . . . . . 8

Data set 1: My
travels in 2005

As I started writing this book at the end of 2005, I was thinking about the
journeys I had made during the year to three of my favourite countries: Nor-
way, Canada and Greece. According to my diary I spent 18 days in Norway,
15 days in Canada and 29 days in Greece. Apart from these trips I also made
several short trips to France and Germany, totalling 24 days. This numerical
description of my time spent in foreign countries can be represented graph-
ically as in the graphs given in Exhibit 1.1. This seemingly trivial example
conceals several issues which are relevant to our perception of graphs of this
type that represent data with respect to two coordinate axes, and which will

1
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2 Scatterplots and Maps
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eventually help us to understand correspondence analysis. Let me highlight
these issues one at a time.

Continuous
variables

The left-hand vertical axis labelled Days represents the scale of a numeric piece
of information often referred to as a continuous variable. The scale on this axis
is the number of days spent in some foreign country, and the ordering from zero
days at the bottom end of the scale to 30 days at the top end is clearly defined.
In the more common bar-chart form of this display, given in the right-hand
graph of Exhibit 1.1, bars are drawn with lengths proportional to the values
of the variable. Of course, the number of days is a rounded approximation of
the time actually spent in each country, but we call this variable continuous
because the underlying time variable is indeed truly continuous.

Expressing
data in relative

amounts

The right-hand vertical axis of each plot in Exhibit 1.1 can be used to read the
corresponding percentage of days relative to the total of 86 days. For example,
the 18 days in Norway account for 21% of the total time. The total of 86 is
often called the base relative to which the data are expressed. In this case
there is only one set of data and therefore just one base, so in these plots the
original absolute scale on the left and the relative scale on the right can be
depicted on the same graph.

Categorical
variables

In contrast to the vertical y-axis, the horizontal x-axis is clearly not a nu-
meric variable. The four points along this axis are just positions where we
have placed labels denoting the countries visited. The horizontal scale rep-
resents what is called a categorical variable. There are two features of this
horizontal axis that have no substantive meaning in the graph: the ordering
of the categories and the distances between them.
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Ordering of categories 3

Ordering of
categories

Firstly, there is no strong reason why Norway has been placed first, Canada
second and Greece third, except perhaps that I visited these countries in that
order. Because the France/Germany label refers to a collection of shorter trips
scattered throughout the year, it was placed after the others. By the way, in
this type of representation where order is essentially irrelevant, it is usually
a good idea to re-order the categories in a way that has some substantive
meaning, for example in terms of the values of the variable. In this example
we could order the countries in descending order of days, in which case we
would position the countries in the order Greece, France/Germany, Norway
and Canada, from most visited to least. This simple re-arrangement assists
in the interpretation of data, especially if the data set is much larger: for
example, if I had visited 20 different countries, then the order would contain
relevant information that is not quickly deduced from the data in their original
ordering.

Distances between
categories

Secondly, there is no reason why the four points are at equal intervals apart
on the axis. There is also no reason to put them at different intervals apart, so
it is purely for convenience and aesthetics that they have been equally spaced.
Using correspondence analysis we will show that there are substantively in-
teresting ways to define intervals between the categories of a variable such as
this one. In fact, correspondence analysis will be shown to yield quantified
values for the categories where both the distances between the categories and
their ordering have substantive meaning.

Distance
interpretation of
scatterplots

Since the ordering of the countries is arbitrary on the horizontal axis of Ex-
hibit 1.1, as well as the distances between them, there would be no sense
in measuring and interpreting distances between the displayed points in the
left-hand graph. The only distance measurement that has meaning is in the
strictly vertical direction, because of the numerical nature of the vertical axis
that indicates frequency (or relative frequency).

Scatterplots as
maps

In some special cases, the two variables that define the axes of the scatterplot
are of the same numeric nature and have comparable scales. For example,
suppose that 20 students have written a mathematics examination consisting
of two parts, algebra and geometry, each part counting 50% towards the final
grade. The 20 students can be plotted according to their pair of grades, shown
in Exhibit 1.2. It is important that the two axes representing the respective
grades have scales with unit intervals of identical lengths. Because of the simi-
lar nature of the two variables and their scales, it is possible to judge distances
in any direction of the display, not only horizontally or vertically. Two points
that are close to each other will have similar results in the examination, just
like two neighbouring towns having a small distance between them. Thus, one
can comment here on the shape of the scatter of points and the fact that there
is a small cluster of four students with high grades and a single student with
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4 Scatterplots and Maps
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very high grades. Exhibit 1.2 can be regarded as a map, because the position
of each student can be regarded as a two-dimensional position, almost like a
geographical location in a region defined by latitude and longitude.

Calibration of a
direction in the

map

Maps have interesting geometric properties. For example, in Exhibit 1.2 the
45◦ dashed line actually defines an axis for the final grades of the students,
combining the algebra and geometry grades. If this line is calibrated from 0
(bottom left) to 100 (top right), then each student’s final grade can be read
from the map by projecting each point perpendicularly onto this line. An
example is shown of a student who received 12 out of 50 and 18 out of 50
for the two sections, respectively, and whose position projects onto the line at
coordinates 15 and 15, corresponding to a total grade of 30.

Information-
transforming
nature of the

display

The scatterplots in Exhibit 1.1 and Exhibit 1.2 are different ways of expressing
in graphical form the numerical information in the two tables of travel and
examination data respectively. In each case there is no loss of information
between the data and the graph. Given the graph it is easy to recover the data
exactly. We say that the scatterplot or map is an “information-transforming
instrument” — it does not process the data at all; it simply expresses the data
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Nominal and ordinal variables 5

in a visual format that communicates the same information in an alternative
way.

Nominal and
ordinal variables

In my travel example, the categorical variable “country” has four categories,
and, since there is no inherent ordering of the categories, we refer to this vari-
able more specifically as a nominal variable. If the categories are ordered, the
categorical variable is called an ordinal variable. For example, a day could be
classified into three categories according to how much time is spent working:
(i) less than one hour (which I would call a “holiday”), (ii) more than one
but less than six hours (a “half day”, say) and (iii) more than six hours (a
“full day”). These categories, which are based on a continuous variable “time
spent daily working” divided up into intervals, are ordered and this ordering
is usually taken into account in any graphical display of the categories. In
many social surveys, questions are answered on an ordinal scale of response,
for example, an ordinal scale of importance: “not important”/“somewhat
important”/“very important”. Another typical example is a scale of agree-
ment/disagreement: “strongly agree”/“somewhat agree”/“neither agree nor
disagree”/“somewhat disagree”/“strongly disagree”. Here the ordinal position
of the category “neither agree nor disagree” might not lie between “somewhat
agree” and “somewhat disagree”; for example, it might be a category used
by some respondents instead of a “don’t know” response when they do not
understand the question or when they are confused by it. We shall treat this
topic later in this book (Chapter 21) once we have developed the tools that
allow us to study patterns of responses in multivariate questionnaire data.

Exhibit 1.3:
Frequencies of
different types of
day in four sets of
trips

COUNTRY Holidays Half Days Full Days TOTAL

Norway 6 1 11 18
Canada 1 3 11 15
Greece 4 25 0 29
France/Germany 2 2 20 24
TOTAL 13 31 42 86

Plotting more than
one set of data

Let us suppose now that the 86 days of my foreign trips were classified into
one of the three categories holidays, half days and full day . The cross-tabulation
of country by type of day is given in Exhibit 1.3. This table can be considered
in two different ways: as a set of rows or a set of columns. For example, each
column is a set of frequencies characterizing the respective type of day, while
each row characterizes the respective country. Exhibit 1.4(a) shows the latter
way, namely a plot of the frequencies for each country (row), where the hori-
zontal axis now represents the type of day (column). Notice that, because the
categories of the variable “type of day” are ordered, it makes sense to connect
the categories by lines. Clearly, if we want to make a substantive comparison
between the countries, then we should take into account the fact that differ-
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6 Scatterplots and Maps

ent numbers of days in total were spent in each country. Each country total
forms a base for the re-expression of the corresponding row in Exhibit 1.3 as
a set of percentages (Exhibit 1.5). These percentages are visualized in Exhibit
1.4(b) in a plot which expresses better the different compositions of days in
the respective trips.
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Exhibit 1.4:
Plots of (a)

frequencies in
Exhibit 1.3 and (b)
relative frequencies

in each row
expressed as
percentages.

Exhibit 1.5:
Percentages of types

of day in each
country, as well as

the percentages
overall for all

countries combined;
rows add up to

100%.

COUNTRY Holidays Half Days Full Days

Norway 33% 6% 61%
Canada 7% 20% 73%
Greece 14% 86% 0%
France/Germany 8% 8% 83%
Overall 15% 36% 49%

Interpreting
absolute or relative

frequencies

There is a lesson to be learnt from these displays that is fundamental to the
analysis of frequency data. Each trip has involved a different number of days
and so corresponds to a different base as far as the frequencies of the types
of days is concerned. The 6 holidays in Norway, compared to the 4 in Greece,
can be judged only in relation to the total number of days spent in these
respective countries. As percentages they turn out to be quite different: 6 out
of 18 is 33%, while 4 out of 29 is 14%. It is the visualization of the relative
frequencies in Exhibit 1.4(b) that gives a more accurate comparison of how I
spent my time in the different countries. The “marginal” frequencies (18, 15,
29, 24 for the countries, and 13, 31, 42 for the day types) are also interpreted
relative to their respective totals — for example, the last row of Exhibit 1.5
shows the percentages of day types for all countries combined, and could also
be plotted in Exhibit 1.4(b).
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Describing and interpreting data, vs. modelling and statistical inference 7

Describing and
interpreting data,
vs. modelling and
statistical inference

Any conclusion drawn from the points positions in Exhibit 1.4(b) is purely
an interpretation of the data and not a statement of the statistical signifi-
cance of the observed feature. In this book we shall address the statistical
aspects of graphical displays only at the end of the book (Chapter 25); for the
most part we shall be concerned only with the question of data description
and interpretation. The deduction that I had proportionally more holidays in
Norway than in the other countries is certainly true in the data and can be
seen strikingly in Exhibit 1.4(b). It is an entirely different question whether
this phenomenon is statistically compatible with a model or hypothesis of my
behaviour that postulates that the proportion of holidays was the same across
all trips. Most of statistical methodology concentrates on problems where data
are fitted and compared to a theoretical model or preconceived hypothesis,
with little attention being paid to enlightening ways for describing data, in-
terpreting data and generating hypotheses. A typical example in the social
sciences is the use of the ubiquitous chi-square statistic to test for association
in a cross-tabulation. Often statistically significant association is found but
there are no simple tools for detecting which parts of the table are responsible
for this association. Correspondence analysis is one tool that can fill this gap,
allowing the data analyst to see the pattern of association in the data and
to generate hypotheses that can be tested in a subsequent stage of research.
In most situations data description, interpretation and modelling can work
hand-in-hand with each other. But there are situations where data descrip-
tion and interpretation assume supreme importance, for example when the
data represent the whole population of interest.

Large data setsAs data tables increase in size, it becomes more difficult to make simple graph-
ical displays such as Exhibit 1.4, owing to the overabundance of points. For
example, suppose I had visited 20 countries during the year and had a break-
down of time spent in each one of them, leading to a table with many more
rows. I could also have recorded other data about each day in order to study
possible relationships with the type of day I had; for example, the weather
on each day — “fair weather”, “partly cloudy”, or “rainy”. So the table of
data might have many more columns as well as rows. In this case, to draw
graphs such as Exhibit 1.4, involving many more categories and with 20 sets
of points traversing the plot, would result in such a confusion of points and
symbols that it would be difficult to see any patterns at all. It would then
become clear that the descriptive instrument being used, the scatterplot, is
inadequate in bringing out the essential features of the data. This is a conve-
nient point to introduce the basic concepts of correspondence analysis, which
is also a method for graphically describing tabular data graphically, but which
can easily accommodate larger data sets.
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SUMMARY:
Scatterplots and

Maps

1. Scatterplots involve plotting two variables, with respect to a horizontal axis
and a vertical axis, often called the “x-axis” and “y-axis” respectively.

2. Usually the x variable is a completely different entity to the y variable. We
can often interpret distances along at least one of the axes in the specific
sense of measuring the distance according to the scale that is calibrated on
the axis. It is usually meaningless to measure or interpret oblique distances
in the plot.

3. In some cases the x and y variables are similar entities with comparable
scales, in which case interpoint distances can be interpreted as a measure
of difference, or dissimilarity, between the plotted points. In this special
case we call the scatterplot a map.

4. When plotting positive quantities (usually frequencies in our context), both
the absolute and relative values of these quantities are of interest.

5. The more complex the data are, the less convenient it is to represent these
data in a scatterplot.

6. This book is concerned with describing and interpreting complex informa-
tion, rather than modelling it.
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2Profiles and the Profile Space

The concept of a set of relative frequencies, or a profile, is fundamental to cor-
respondence analysis (referred to from now on by its abbreviation CA). Such
sets, or vectors, of relative frequencies have special geometric features because
the elements of each set add up to 1 (or 100%). In analysing a frequency table
we can look at the relative frequencies for rows or for columns, called row or
column profiles respectively. In this chapter we shall show how profiles can
be depicted as points in a profile space, illustrating the concept in the special
case when the profile consists of only three elements.

Contents
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ProfilesLet us look again at the data in Exhibit 1.3, a table of frequencies with four
rows (the countries) and three columns (the type of day). The first and most
basic concept in CA is that of a profile, which is a set of frequencies divided
by their total. Exhibit 2.1 shows the row profiles for these data: for example,
the profile of Norway is [0.33 0.06 0.61], where 0.33 = 6/18, 0.06 = 1/18, 0.61
= 11/18. We say that this is the “profile of Norway across the types of day”.
The profile may also be expressed in percentage form, i.e. [33% 6% 61%] in
this case, as in Exhibit 1.5. In a similar fashion the profile of Canada across
the day types is [0.07 0.20 0.73], concentrated in the full day category, as
is Norway. In contrast, Greece has a profile of [0.14 0.86 0.00], concentrated
in the half day category, and so on. These are the values plotted in Exhibit
1.4(b) on page 6.

9
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10 Profiles and the Profile Space

Exhibit 2.1:
Row (country)

profiles: relative
frequencies of types
of day in each set of

trips, and average
profile showing

relative frequencies
in all trips

COUNTRY Holidays Half Days Full Days

Norway 0.33 0.06 0.61
Canada 0.07 0.20 0.73
Greece 0.14 0.86 0.00
France/Germany 0.08 0.08 0.83
Average 0.15 0.36 0.49

Average profile In addition to the four country profiles, there is an additional row in Exhibit
2.1 labelled Average. This is the profile of the final row [13 31 42] of Ex-
hibit 1.3, which contains the column sums of the table; in other words this is
the profile of all the trips put together. In Chapter 3 we shall explain more
specifically why this is called the average profile. For the moment, it is only
necessary to realize that, out of the total of 86 days travelled, irrespective
of country visited, 15% were holidays, 36% were half days and 49% were full
days of work. When comparing profiles we can compare one country’s profile
with another, or we can compare a country’s profile with the average profile.
For example, eyeballing the figures in Exhibit 2.1, we can see that of all the
countries, the profiles of Canada and France/Germany are the most similar.
Compared to the average profile, these two profiles have a higher percentage
of full days and are below average on holidays and half days.

Row profiles
and column

profiles

In the above we looked at the row profiles in order to compare the different
countries. We could also consider Exhibit 1.3 as a set of columns and compare
how the different types of days are distributed across the countries. Exhibit 2.2
shows the column profiles as well as the average column profile. For example,
of the 13 holidays 46% were in Norway, 8% in Canada, 31% in Greece and 15%
in France/Germany, and so on for the other columns. Since I spent different
numbers of days in each country, these figures should be checked against those
of the average column profile to see whether they are lower or higher than
the average pattern. For example, 46% of all holidays were spent in Norway,
whereas the number of days spent in Norway was just 21% of the total of 86 –
in this sense there is a high number of holidays there compared to the average.

Exhibit 2.2:
Profiles of types of

day across the
countries, and

average column
profile

COUNTRY Holiday Half Day Full Day Average

Norway 0.46 0.03 0.26 0.21
Canada 0.08 0.10 0.26 0.17
Greece 0.31 0.81 0.00 0.34
France/Germany 0.15 0.07 0.48 0.28
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Symmetric treatment of rows and columns 11

Symmetric
treatment of rows
and columns

Looking again at the proportion 0.46 (= 6/13) of holidays spent in Norway
(Exhibit 2.2) and comparing it to the proportion 0.21 (= 18/86) of all days
spent in that country, we could calculate the ratio 0.46/0.21 = 2.2, and con-
clude that holidays in Norway were just over twice the average. We come to
exactly the same conclusion if we make a similar calculation on the row pro-
files. In Exhibit 2.1 the proportion of holidays in Norway was 0.33 (= 6/18)
whereas for all countries the proportion was 0.15 (= 13/86). Thus, there are
0.33/0.15 = 2.2 times as many compared to the average, the same ratio as
we obtained when arguing from the point of view of the column profiles (this
ratio is called the contingency ratio and will re-appear in future chapters).
Whether we argue via the row profiles or column profiles we arrive at the
same conclusion. In Chapter 8 it will be shown that CA treats the rows and
columns of a table in an equivalent fashion or, as we say, in a symmetric way.

Asymmetric
consideration of
the data table

Nevertheless, it is true in practice that a table of data is often thought of
and interpreted in a non-symmetric, or asymmetric, fashion, either as a set
of rows or as a set of columns. For example, since each row of Exhibit 1.3
constitutes a different journey, it might be more natural to think of the table
row-wise, as in Exhibit 2.1. Deciding which way is more appropriate depends
on the nature of the data and the researcher’s objective, and the decision is
often not a conscious one. One concrete manifestation of the actual choice is
whether the researcher refers to row or column percentages when interpreting
the data. Whatever the decision, the results of CA will be invariant to this
choice.

Plotting the
profiles in the
profile space

Let us consider the four row profiles and average profile in Exhibit 2.1 and
a completely different way to plot them. Rather than the display of Exhibit
1.4(b), where the horizontal axis serves only as labels for the type of day and
the vertical axis represents the percentages, we now propose using three axes
corresponding to the three types of day, like a scatterplot in three dimensions.
To imagine three perpendicular axes is not difficult: merely look down into
an empty corner of the room you are sitting in and you will see three axes
as shown in Exhibit 2.3. Each of the three edges of the room serves as an
axis for plotting the three elements of the profile. These three values are
now considered to be coordinates of a single point that represents the whole
profile — this is quite different from the graph in Exhibit 1.4(b) where there
is a point for each of the three profile elements. The three axes are labelled
holidays, half days and full days, and are calibrated in fractional profile units
from 0 to 1. To plot the four profiles is now a simple exercise. Norway’s profile
of [0.33 0.06 0.61] (see Exhibit 2.1) is 0.33 of a unit along axis holidays, 0.06
along axis half days and 0.61 along full days. To take another example, Greece’s
profile of [0.14 0.86 0.00] has a zero coordinate in the full days direction, so
its position is on the “wall”, as it were, on the left-hand side of the display,
with coordinates 0.14 and 0.86 on the two axes holidays and half days defining
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12 Profiles and the Profile Space
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Exhibit 2.3:
Positions of the four

row profiles (•) of
Exhibit 2.1 as well

as their average
profile (∗)in

three-dimensional
space, depicted as

the corner of a room
with “floor tiles”.

For example,
Norway is 0.06 along

the half days axis,
0.61 along the full

days axis and 0.33 in
a vertical direction
along the holidays

axis. The unit
(vertex) points are

also shown, as
empty circles on

each axis.

the “wall”. All other row profile points in this example, including the average
row profile [0.15 0.36 0.49], can be plotted in this three-dimensional space.

Vertex points
define the

extremes of the
profile space

With a bit of imagination it might not be surprising to discover that the
profile points in Exhibit 2.3 all lie exactly in the plane defined by the triangle
that joins the extreme unit points [1 0 0], [0 1 0] and [0 0 1] on the three
respective axes, as shown in Exhibit 2.4. This triangle is equilateral and its
three corners are called vertex points or vertices . The vertices coincide with
extreme profiles that are totally concentrated into one of the day types. For
example, the vertex point [1 0 0] corresponds to a trip to a country consisting
only of holidays (fictional in my case, unfortunately). Likewise, the vertex point
[0 0 1] corresponds to a trip consisting only of full days of work.

Triangular (or
ternary)

coordinate system

Having realized that all profile points in three-dimensional space actually lie
exactly on a flat (two-dimensional) triangle, it is possible to lay this triangle
flat, as in Exhibit 2.5. Looking at the profile points in a flat space is clearly
better than trying to imagine their three-dimensional positions in the corner of
a room! This particular type of display is often referred to as the triangular (or
ternary) coordinate system and may be used in any situation where we have
sets of data consisting of three elements that add up to 1, as in the case of the
row profiles in this example. Such data are common in geology and chemistry,
for example where samples are decomposed into three constituents, by weight
or by volume. A particular sample is characterized by the three proportions
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Exhibit 2.4:
The profile points in
Exhibit 2.3 lie
exactly on an
equilateral triangle
joining the vertex
points of the profile
space. Thus the
three-dimensional
profiles are actually
two-dimensional.
The profile of
Greece lies on the
edge of the triangle
because it has zero
full days.

half days

holidays

full days

•NORWAY

GREECE

CANADA
FRANCE/GERMANY•

• •
*

average

Exhibit 2.5:
The triangle in
Exhibit 2.4 that
contains the row
(country) profiles.
The three corners,
or vertices, of the
triangle represent
the columns (day
types).
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Exhibit 2.6:
Norway’s profile

[0.33 0.06 0.61] is
positioned using

triangular
coordinates as

shown, using the
sides of the triangle
as axes. Each side is
calibrated in profile

units from 0 to 1.

of the constituents and can thus be displayed as a single point with respect
to triangular (or ternary) coordinates.

Positioning a
point in a
triangular

coordinate system

Given a blank equal-sided triangle and the profile values, how can we find the
position of a profile point in the triangle, without passing via the underlying
three-dimensional space of Exhibits 2.3 and 2.4? In the triangular coordinate
system the sides of the triangle define three axes. Each side is considered to
have a length of 1 and can be calibrated accordingly on a linear scale from 0
to 1. In order to position a profile in the triangle, its three values on these axes
determine three lines drawn from these values parallel to the respective sides
of the triangle. For example, to position Norway, as illustrated in Exhibit 2.5,
we take a value of 0.33 on the holidays axis, 0.06 on the half days axis and
0.61 on the full days axis. Lines from these coordinate values drawn parallel
to the sides of the triangle all meet at the point representing Norway. In fact,
any two of the three profile coordinates are sufficient to situate a profile in
this way, and the remaining coordinate is always superfluous, which is another
way of demonstrating that the profiles are inherently two-dimensional.

Geometry of
profiles with more

than three
elements

The triangular coordinate system may be used only for profiles with three
elements. But the idea can easily be generalized to profiles with any number
of elements, in which case the coordinate system is known as the barycen-
tric coordinate system (“barycentre” is synonymous with “weighted average”,
to be explained in the next chapter, page 19). The dimensionality of this
coordinate system is always one less than the number of elements in the
profile. For example, we have just seen that three-element profiles are con-
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tained exactly in a two-dimensional triangular profile space. For profiles with
four elements the dimensionality is three and the profiles lie in a four-pointed
tetrahedron in three-dimensional space. The two-dimensional triangle and the
three-dimensional tetrahedron are examples of what is known in mathematics
as a regular simplex. R code for visualizing an example in three dimensions is
given in the Computing Appendix, pages 215–216, so you can get a feeling for
three-dimensional profile space. For higher-dimensional profiles some strong
imagination would be needed to be able to “see” the profile points spaces of
dimension greater than three, but fortunately CA will be of great help to us
in visualizing such multidimensional profiles.

Data on a ratio
scale

We have illustrated the concept of a profile using frequency data, which is
the prime example of data suitable for CA. But CA is applicable to a much
wider class of data types; in fact it can be used whenever it makes sense to
express the data in relative amounts, i.e., data on a so-called ratio scale. For
example, suppose we have data on monetary amounts invested by countries in
different areas of research — the relative amounts would be of interest, e.g.,
the percentage invested in environmental research, biomedecine, etc. Another
example is of morphometric measurements on a living organism, for example
measurements in centimeters on a fish, its length and width, length of fins, etc.
Again all these measurements can be expressed relative to the total, where
the total is a surrogate measure for the size of the fish, so that we would be
analyzing and comparing the shapes of different fish in the form of profiles
rather than the original values.

Data on a common
scale

A necessary condition of the data for CA is that all observations are on the
same scale: for example, counts of particular individuals in a frequency table,
a common monetary unit in the table of research investments, centimeters
in the morphometric study. It would make no sense in CA to analyze data
with mixed scales of measurement, unless a pre-transformation is conducted
to homogenize the scales of the whole table. Most of the data sets in this book
are frequency data, but in Chapter 23 we shall look at a wide variety of other
types of data and ways of recoding them to be suitable for CA.

© 2007 by Taylor & Francis Group, LLC



16 Profiles and the Profile Space

SUMMARY:
Profiles and the

Profile Space

1. The profile of a set of frequencies (or any other amounts that are positive or
zero) is the set of frequencies divided by their total, i.e., the set of relative
frequencies.

2. In the case of a cross-tabulation, the rows or columns define sets of fre-
quencies which can be expressed relative to their respective totals to give
row profiles or column profiles.

3. The marginal frequencies of the cross-tabulation can also be expressed
relative to their common total (i.e., the grand total of the table) to give
the average row profile and average column profile.

4. Comparing row profiles to their average leads to the same conclusions as
comparing column profiles to their average.

5. Profiles consisting of m elements can be plotted as points in an m -dimen-
sional space. Because their m elements add up to 1, these profile points oc-
cupy a restricted region of this space. This region is an (m –1)-dimensional
subspace known as a simplex. This simplex is enclosed within the edges
joining all pairs of the m unit vectors on the m perpendicular axes. These
unit points are also called the vertices of the simplex or profile space. The
coordinate system within this simplex is known as the barycentric coordi-
nate system.

6. A special case that is easy to visualize is when the profiles have three ele-
ments, so that the simplex is simply a triangle that joins up three vertices.
This special case of the barycentric coordinate system is known as the
triangular (or ternary) coordinate system.

7. The idea of a profile can be extended to data on a ratio scale where it is
of interest to study relative values. In this case the set of numbers being
profiled should all have the same scale of measurement.
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3Masses and Centroids

There is an equivalent way of thinking about the positions of the profile points
in the profile space, and this will be useful to our eventual understanding and
interpretation of CA. This is based on the notion of a weighted average, or cen-
troid, of a set of points. In the calculation of an ordinary (unweighted) average,
each point receives equal weight, whereas a weighted average allows different
weights to be associated with each point. When the points are weighted dif-
ferently, then the centroid does not lie exactly at the “geographical” centre
of the cloud of points, but tends to lie in a position closer to the points with
higher weight.
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Data set 2:
Readership and
education groups

We now use a typical set of data in social science research, a cross-tabulation
(or “cross-classification”) of two variables from a survey. The table, given in
Exhibit 3.1, concerns 312 readers of a certain newspaper, in particular their
level of thoroughness in reading the newspaper. Based on data collected in the
survey, each respondent was classified into one of three groups: glance readers,
fairly thorough readers and very thorough readers. These reading classes have
been cross-tabulated against education, an ordinal variable with five categories
ranging from some primary education to some tertiary education. Exhibit 3.1
shows the raw frequencies and the education group profiles in parentheses,
i.e., the row profiles. The triangular coordinate plot of the row profiles, in the
style described in Chapter 2, is given in Exhibit 3.2. In this display the corner
points, or vertices, of the triangle represent the three readership groups —
remember that each vertex is at the position of a “pure” row profile totally
concentrated into that category; for example, the very thorough vertex C3
is representing a fictitious row profile of [0 0 1] that contains 100% very
thorough readers.

17
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18 Masses and Centroids

Exhibit 3.1:
Cross-tabulation of
education group by

readership class,
showing row profiles

and average row
profile in

parentheses, and the
row masses (relative
values of row totals).

Fairly Very
EDUCATION Glance thorough thorough Row
GROUP C1 C2 C3 Total masses

Some primary 5 7 2 14 0.045
E1 (0.357) (0.500) (0.143)

Primary completed 18 46 20 84 0.269
E2 (0.214) (0.548) (0.238)

Some secondary 19 29 39 87 0.279
E3 (0.218) (0.333) (0.448)

Secondary completed 12 40 49 101 0.324
E4 (0.119) (0.396) (0.485)

Some tertiary 3 7 16 26 0.083
E5 (0.115) (0.269) (0.615)

Total 57 129 126 312
Average row profile (0.183) (0.413) (0.404)

C2

              C3

C1

•
E4

E3

E2

E1

•

•

•
*average

•

E5

Exhibit 3.2:
Row profiles

(education groups)
of Exhibit 3.1

depicted in
triangular

coordinates, also
showing the position

of the average row
profile (last row of

Exhibit 3.1).

Points as
weighted averages

Another way to think of the positions of the education groups in the triangle
is as weighted averages. Assigning weights to the values of a variable is a well-
known concept in statistics. For example, in a class of 26 students, suppose
that the average grade turns out to be 7.5, calculated by summing the 26
grades and dividing by 26. In fact, three students obtain the grade of 9, seven
students obtain an 8, and sixteen students obtain a 7, so that the average
grade can be determined equivalently by assigning weights of 3/26 to the
grade of 9, 7/26 to the grade of 8 and 16/26 to the grade of 7 and then
calculating the weighted average. Here the weights are the relative frequencies
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Profile values are weights assigned to the vertices 19

of each grade, and because the grade of 7 has more weight than the others,
the weighted average of 7.5 is “closer” to this grade, whereas the ordinary
arithmetic average of the three values 7, 8 and 9 is clearly 8.

Profile values are
weights assigned to
the vertices

Looking at the last row of data in Exhibit 3.1, for education group E5 (some
tertiary education), we see the same frequencies of 3, 7 and 16 for the three re-
spective readership groups, and associated relative frequencies of 0.115, 0.269
and 0.615. The idea now is to imagine 3 cases situated at the glance vertex C1
of the triangle, 7 cases at the fairly thorough vertex C2 and 16 cases at the very
thorough vertex C3 , and then consider what would be the average position for
these 26 cases. In other words, we do not associate the weights with values
of a variable but with positions in the profile space, in this case the positions
of the vertex points. There are more cases at the very thorough corner, so we
would expect the average position of E5 to be closer to this vertex, as is indeed
the case. For the same reason, row profile E1 lies far from the very thorough
corner C3 because it has a very low weight (2 out of 14, or 0.143) on this
category. Hence each row profile point is positioned within the triangle as an
average point, where the profile values, i.e., relative frequencies, serve as the
weights allocated to the vertices. Thus, we can think of the profile values not
only as coordinates in a multidimensional space, but also as weights assigned
to the vertices of a simplex. This idea can be extended to higher-dimensional
profiles: for example, a profile with four elements is also at an average position
with respect to the four corners of a three-dimensional tetrahedron, weighted
by the respective profile elements.

Each profile point
is a weighted
average, or
centroid, of the
vertices

Alternative terms for weighted average are centroid or barycentre. Some par-
ticular examples of weighted averages in the profile space are given in Exhibit
3.3. For example, the profile point [1/3 1/3 1/3], which gives equal weight to
the three corners, is positioned exactly at the centre of the triangle, equidis-
tant from the corners, in other words at the ordinary average position of the
three vertices. The profile [1/2 1/2 0] is at a position midway between the
first and second vertices, since it has equal weight on these two vertices and
zero weight on the third vertex. In general, we can write a verbal formula for
the position of a profile as a centroid of the three vertices as follows, for a
profile [a b c] where a + b + c = 1:

centroid position = (a × vertex 1) + (b × vertex 2) + (c × vertex 3)

For example, the position of education group E5 in Exhibit 3.2 is obtained as
follows :

E5 = (0.115 × glance) + (0.269 × fairly thorough) + (0.615 × very thorough)

Similarly, the position of the average profile is also a weighted average of the
vertex points:

average = (0.183× glance)+ (0.413× fairly thorough)+ (0.404× very thorough)
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20 Masses and Centroids

C2

              C3

C1

•
[1/3,1/3,1/3]

[1/2,1/2,0]
•• [0,1,0] 

•[0,1/5,4/5]

•[1/5,1/5,3/5]

[7/15,1/5,1/3]•

[0,0,1] 

[1,0,0] 

Exhibit 3.3:
Examples of some

centroids (weighted
averages) of the

vertices in triangular
coordinate space:

the three values are
the weights assigned

to vertices
(C1,C2,C3).

The average is further from the glance corner since there is less weight on
the glance vertex than on the other two, which have approximately the same
weights (see Exhibit 3.2).

Average profile
is also a weighted

average of the
profiles themselves

The average profile is a rather special point – not only is it a centroid of
the three vertices as we have just shown, just like any profile point, but it is
also a centroid of the five row profiles themselves, where different weights are
assigned to the profiles. Looking again at Exhibit 3.1, we notice that the row
totals are different: education group E1 (some primary education) includes only
14 respondents whereas education group E4 (secondary education completed)
has 101 respondents. In the last column of Exhibit 3.1, headed “row masses”,
we have these marginal row frequencies expressed relative to the total sample
size 312. Just as we thought of row profiles as weighted averages of the vertices,
we can think of each of the five row profile points in Exhibit 3.2 being assigned
weights according to their marginal frequencies, as if there were 14 respondents
(proportion 0.045 of the sample) at the position E1, 84 respondents (0.269 of
the sample) at the position E2, and so on. With these weights assigned to
the five profile points, the weighted average position is exactly at the average
profile point:

Average row profile = (0.045 × E1) + (0.269 × E2) + (0.279× E3)

+ (0.324× E4) + (0.083 × E5)

This average row profile is at a central position amongst the row profiles but
more attracted to the profiles observed with higher frequency.

Row and
column masses

The weights assigned to the profiles are so important in CA that they are given
a specific name: masses. The last column of Exhibit 3.1 shows the row masses:
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0.045, 0.269, 0.279, 0.324 and 0.083. The word “mass” is the preferred term in
CA although it is entirely equivalent for our purpose to the term “weight”. An
alternative term is convenient here to differentiate this geometric concept of
weighting from other forms of weighting that occur in practice, such as weights
assigned to population subgroups in a sample survey. All that has been said
about row profiles and row masses can be repeated in a similar fashion for the
columns. Exhibit 3.4 shows the same contingency table as Exhibit 3.1 from
the column point of view. That is, the three columns have been expressed in

Exhibit 3.4:
Cross-tabulation of
education group by
readership cluster,
showing column
profiles and average
column profile in
parentheses, and the
column masses

Fairly Very Average
EDUCATION Glance thorough thorough column
GROUP C1 C2 C3 Total profile

Some primary 5 7 2 14 (0.045)
E1 (0.088) (0.054) (0.016)

Primary completed 18 46 20 84 (0.269)
E2 (0.316) (0.357) (0.159)

Some secondary 19 29 39 87 (0.279)
E3 (0.333) (0.225) (0.310)

Secondary completed 12 40 49 101 (0.324)
E4 (0.211) (0.310) (0.389)

Some tertiary 3 7 16 26 (0.083)
E5 (0.053) (0.054) (0.127)

Total 57 129 126 312
Column masses 0.183 0.413 0.404

relative frequencies with respect to their column totals, giving three profiles
with five values each. The column totals relative to the grand total are now
column masses assigned to the column profiles, and the average column profile
is the set of row totals divided by the grand total. Again, we could write the
average column profile as a weighted average of the three column profiles C1 ,
C2 and C3 :

Average column profile = (0.183 × C1) + (0.413 × C2) + (0.404× C3)

Notice how the row and column masses play two different roles, as weights
and as averages: in Exhibit 3.4 the average column profile is the set of row
masses in Exhibit 3.1, and the column masses here are the elements of what
was previously the average row profile.

Interpretation in
the profile space

At this point, even though the final key concepts in CA still remain to be
explained, it is possible to make a brief interpretation of Exhibit 3.2. The ver-
tices of the triangle represent the “pure profiles” of readership categories C1 ,
C2 and C3 , whereas the education groups are “mixtures” of these readership
categories and find their positions within the triangle in terms of their respec-
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22 Masses and Centroids

tive proportions of each of the three categories. Notice the following aspects
of the display:
• The degree of spread of the profile points within the triangle gives an

idea of how much variation there is the contingency table. The closer
the profile points lie to the centroid, the less variation there is, and the
more they deviate from the centroid, the more variation. The profile space
is bounded and the most extreme profiles will lie near the sides of the
triangle, or in the most extreme case at one of the vertices (for example,
an illiterate group would lie on the vertex C1). In tables of social science
data such as this one, profiles usually occupy a small region of the profile
space close to the average because the variation in profile values for a
particular category will be relatively small. For example, the range in the
first element (i.e., readership category C1) across the profiles is only from
0.115 to 0.357 (Exhibit 3.1), in a potential range from 0 to 1. In contrast,
for data in ecological research, as we shall see later, the range of profile
values is much higher, usually because of many zero frequencies in the
table, and the profiles spread out more inside the profile space (see the
second example in Chapter 10).

• The profile points are stretched out in what is called a “direction of spread”
more or less from the bottom to the top of the display. Looking from
the bottom upwards the five education group profiles lie in their natural
order (E1 to E5) in order of increasing educational qualifications. At the
top, group E5 lies closest to the vertex C3, which represents the highest
readership category of very thorough reading — we have already seen that
this group has the highest proportion (0.615) of these readers. At the
bottom, the lower educational group is not far from the edge of the triangle
which we know displays profiles with zero C3 readers (for example, see the
point [1/2 1/2 0] in Exhibit 3.3 as an illustration of a point on the edge).
The interpretation of this pattern will be that as we move up from the
bottom of this display to the top, the profiles are generally changing with
respect to their relative frequency of type C3 as opposed to that of C1 and
C2 combined, while there is no particular tendency towards either C1 or
C2 .

Merging rows
or columns

Suppose we wanted to combine the two categories of primary education, E1
and E2, into a new row of Exhibit 3.1 denoted by E1&2. There are two ways
of thinking about this. First, add the two rows together to obtain the row
of frequencies [23 53 22] with total 98 and profile [.235 .541 .224]. Second,
the profile of E1&2 is the weighted average of of the profiles E1 and E2:

[.235 .541 .224] = .045

.314
× [.357 .500 .143] + .269

.314
× [.214 .548 .238]

where the masses of E1 and E2 are .045 and .269, with sum .314 (notice that
the weights in this weighted average are identical to 14/98 and 84/98, where
14 and 84 are the totals of rows E1 and E2). Geometrically, E1&2’s profile
lies on a line between E1 and E2, but closer to E2 as shown in Exhibit 3.5.
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E2

E1•

•
E1&2o

E2

Exhibit 3.5:
Enlargement of
positions of E1 and
E2 in Exhibit 3.2,
showing the position
of the point E1&2
which merges the
two categories; E2
has 6 times the mass
of E1, hence E1&2
lies closer to E2 at a
point which splits
the line between the
points in the ratio
84:14 = 6:1.

The distances from E1 to E1&2 and E2 to E1&2 are in the same proportion
as the totals 84 and 14, respectively; i.e., 6 to 1. E1&2 can be thought of as
the balancing point of the two masses situated at E1 and E2, with the heavier
mass at E2.

Distributionally
equivalent rows or
columns

Suppose that we had an additional row of data in Exhibit 3.1, a category of
“no formal education” denoted by E0, with frequencies [ 10 14 4 ] across the
reading categories. The profile of E0 is identical to E1’s profile, because the
frequencies in E0 are simply twice those of E1. The two sets of frequencies are
said to be distributionally equivalent. Thus the profiles of E0 and E1 are at
exactly the same point in the profile space, and can be merged into one point
with mass equal to the combined masses of the two profiles, i.e., a single point
with frequencies [ 15 21 6 ].

Changing the
masses

The row and column masses are proportional to the marginal sums of the
table. If the masses need to be modified for a substantive reason, this can be
achieved by a simple transformation of the table. For example, suppose that we
require the five education groups of Exhibit 3.1 to have masses proportional to
their population sizes rather than their sample sizes. Then the table is rescaled
by multiplying each education group profile by its respective population size.
The row profiles of this new table are identical to the original row profiles, but
the row masses are now proportional to the population sizes. Alternatively,
suppose that the education groups are required to be weighted equally, rather
than differentially as described up to now. If we regard the table of row profiles
(or, equivalently, of row percentages) as the original table, then this table has
row sums equal to 1 (or 100%), so that each education group is weighted
equally.
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24 Masses and Centroids

SUMMARY:
Masses and

Centroids

1. We assume that we are concerned with the row problem, i.e., where the row
profiles are plotted in the simplex space defined by the column vertices.
Then each vertex point represents a column category in the sense that a
row profile that is entirely concentrated in that category would lie exactly
at that vertex point.

2. Each profile can be interpreted as the centroid (or weighted average) of the
vertex points, where the weights are the individual elements of the profile.
Thus a profile will tend to lie closer to vertices for which it has higher
values.

3. Each row profile in turn has a unique weight associated with it, called
a mass , which is proportional to the row sum in the original table. The
average row profile is then the centroid of the row profiles, where each
profile is weighted by its mass in the averaging process.

4. Everything described above for row profiles applies equally to the columns
of the table. In fact, the best way to make the jump from rows to columns
is to rewrite the table in its transposed form, where columns are rows, and
vice versa, then everything applies exactly as before.

5. Rows (or columns) that are combined by aggregating their frequencies have
a profile equal to the weighted averages of the profiles of the component
rows (or columns).

6. Rows (or columns) that have the same profile are said to be distributionally
equivalent and can be combined into a single point.

7. Row (or column) masses can be modified to be proportional to prescribed
values by a simple rescaling of the rows (or columns).
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4Chi-square Distance and Inertia

In CA the way distance is measured between profiles is a bit more complicated
than the one that was used implicitly when we drew and interpreted the profile
plots in Chapters 2 and 3. Distance in CA is measured using the so-called chi-
square distance and this distance is the key to the many favourable properties
of CA. There are several ways to justify the chi-square distance: some are
more technical and beyond the scope of this book, while other explanations
are more intuitive. In this chapter we choose the latter approach, starting with
a geometric explanation of the well-known chi-square statistic computed on a
contingency table. All the ideas embodied in the chi-square statistic carry over
to the chi-square distance in CA as well as to the related concept of inertia,
which is the way CA measures variation in a data table.
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Hypothesis of
independence or
homogeneity for a
contingency table

Consider the data in Exhibit 3.1 again. Notice that, of the sample of 312 peo-
ple, 57 (or 18.3%) are in readership category C1 , 129 (41.3%) in C2 and
126 (40.4%) in C3 ; i.e., the average row profile is the set of proportions
[0.183 0.413 0.404]. If there were no difference between the education groups
as far as readership is concerned, we would expect that the profile of each
row is more or less the same as the average profile, and would differ from it
only because of random sampling fluctuations. Assuming no difference, or in
other words assuming that the education groups are homogeneous with re-
spect to their reading habits, what would we have expected the frequencies in
row E5, for example, to be? There are 26 people in the E5 education group,
and we would thus have expected 18.3% of them to be in category C1 ; i.e.,
26 × 0.183 = 4.76 (although it is ridiculous to talk of 0.76 of a person, it is
necessary to maintain such fractions in these calculations). Likewise, we would

25
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26 Chi-square Distance and Inertia

Exhibit 4.1:
Observed

frequencies, as given
in Table 3.1, along

with expected
frequencies (in

parentheses)
calculated assuming

the homogeneity
assumption to be

true.

Fairly Very
EDUCATION Glance thorough thorough Row
GROUP C1 C2 C3 Total masses

Some primary 5 7 2 14 0.045
E1 (2.56) (5.78) (5.66)

Primary completed 18 46 20 84 0.269
E2 (15.37) (34.69) (33.94)

Some secondary 19 29 39 87 0.279
E3 (15.92) (35.93) (35.15)

Secondary completed 12 40 49 101 0.324
E4 (18.48) (41.71) (40.80)

Some tertiary 3 7 16 26 0.083
E5 (4.76) (10.74) (10.50)

Total 57 129 126 312
Average row profile 0.183 0.413 0.404

have expected 26×0.413 = 10.74 of the E5 subjects to be in category C2 , and
26 × 0.404 = 10.50 in category C3. There are various names in the literature
given to this “assumption of no difference” between the rows of a contingency
table (or, similarly, between the columns) — the “hypothesis of independence”
is one of them, or perhaps more aptly for our purpose here, the “homogeneity
assumption”. Under the homogeneity assumption, we would therefore have
expected the row of frequencies for E5 to be [4.76 10.74 10.50], but in reality
it is observed to be [3 7 16]. In a similar fashion we can compute what each
row of frequencies would be if the assumption of homogeneity were exactly
true. Exhibit 4.1 shows the expected values in each row underneath their
corresponding observed values. Notice that exactly the same expected fre-
quencies are calculated if we argue from the point of view of column profiles,
i.e., assuming homogeneity of the readership groups.

Chi-square
statistic (χ2) to

test homogeneity
hypothesis

It is clear that the observed frequencies are always going to be different from
the expected frequencies. The question statisticians now ask is whether these
differences are large enough to contradict the assumed hypothesis that the
rows are homogeneous, in other words whether the discrepancies between ob-
served and expected frequencies are so large that it is unlikely they could have
arisen by chance alone. This question is answered by computing a measure
of discrepancy between all the observed and expected frequencies, as follows.
Each difference between an observed and expected frequency is computed,
then this difference is squared and finally divided by the expected frequency.
This calculation is repeated for all pairs of observed and expected frequencies
and the results are accumulated into a single figure — the chi-square statistic,
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denoted by χ2:

χ2 =
∑ (observed− expected)2

expected

Calculating χ2Because there are 15 cells in this 5-by-3 (or 5×3) table, there will be 15 terms
in this computation. For purposes of illustration we show only the first three
and last three terms corresponding to rows E1 and E5:

χ2 = (5 − 2.56)2

2.56
+ (7 − 5.78)2

5.78
+ (2 − 5.66)2

5.66
+ · · ·

+ (3 − 4.76)2

4.76
+ (7 − 10.74)2

10.74
+ (16 − 10.50)2

10.50
(4.1)

The grand total of the 15 terms in this calculation turns out to be equal to
26.0. The larger this value, the more discrepant the observed and expected
frequencies are, i.e., the less convinced we are that the assumption of homo-
geneity is correct. In order to judge whether this value of 26.0 is large or small
we use tables of the chi-square distribution, corresponding to the so-called
“degrees of freedom” associated with the statistic. For a 5 × 3 table, the de-
grees of freedom are 4 × 2 = 8 (one less than the number of rows multiplied
by one less than the number of columns), and the P -value associated with the
value 26.0 of the χ2 statistic with 8 degrees of freedom is 0.001. This result
tells us that there is an extremely small probability — one in a thousand —
that the observed frequencies in Exhibit 4.1 can be reconciled with the homo-
geneity assumption. In other words, we reject the homogeneity of the table
and conclude that it is highly likely that real differences exist between the
education groups in terms of their readership profiles.

Alternative
expression of the
χ2 statistic in
terms of profiles
and masses

We are less interested for the moment in the statistical test of homogeneity
described above than in the ability of the χ2 statistic to measure discrepancy
from homogeneity, in other words to measure heterogeneity of the profiles.
We shall now re-express the χ2 statistic in a different form by dividing the
numerator and denominator of each set of three terms for a particular row by
the square of the corresponding row total. For example, looking just at the last
three terms of the χ2 calculation given in (4.1) above, we divide numerator
and denominator of each term by the square of E5’s total, i.e., 262, in order to
obtain observed and expected profiles rather than the original raw frequencies:

χ2 = 12 similar terms · · · +
(

3
26 − 4.76

26

)2

4.76
262

+

(
7
26 − 10.74

26

)2

10.74
262

+

(
16
26 − 10.50

26

)2

10.50
262

= 12 similar terms · · ·
+ 26 × (0.115 − 0.183)2

0.183
+ 26 × (0.269 − 0.413)2

0.413
+ 26 × (0.615 − 0.404)2

0.404
(4.2)

Notice that one of the factors of 26 in the denominator has been taken out
of each of these three terms, leaving all other quantities in the form of profile
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values. Each of the 15 terms in this calculation is thus of the form:

row total × (observed row profile− expected row profile)2

expected row profile

(Total) inertia
is the χ2 statistic
divided by sample

size

We now make one more modification of the χ2 calculation above to bring it
into line with the CA concepts introduced so far: we divide both sides of the
equation (4.2) by the total sample size so that each term involves an initial
multiplying factor equal to the row mass rather than the row total:

χ2

312
= 12 similar terms · · ·

+ 0.083× (0.115−0.183)2

0.183
+ 0.083× (0.269−0.413)2

0.413
+ 0.083× (0.615−0.404)2

0.404
(4.3)

where 0.083 = 26/312 is the mass of row E5 (see Exhibit 4.1). The quantity
χ2/n on the left-hand side, where n is the grand total of the table, is called
the total inertia in CA, or simply the inertia. It is a measure of how much
variance there is in the table and does not depend on the sample size. In statis-
tics this quantity has alternative names such as the mean-square contingency
coefficient, and its square root is known as the phi coefficient (φ); hence we
can denote the inertia by φ2. If we gather together terms in (4.3) in groups of
three corresponding to a particular row, we obtain the following form for the
inertia:

χ2

312
= φ2 = 4 similar groups of terms · · ·

+ 0.083×
[

(0.115 − 0.183)2

0.183
+ (0.269 − 0.413)2

0.413
+ (0.615 − 0.404)2

0.404

]
(4.4)

Each of the five groups of terms in this formula, one for each row of the table,
is the row mass (e.g., 0.083 for row E5) multiplied by a quantity in square
brackets which looks like a distance measure (or, to be precise, the square of
a distance).

Euclidean, or
Pythagorian,

distance

In (4.4) above, if it were not for the fact that each squared difference between
observed and expected row profile elements is divided by the expected ele-
ment, then the quantity in square brackets would be exactly the square of the
“straight-line” regular distance between the row profile E5 and the average
profile in three-dimensional physical space. This distance is also called the
Euclidean distance or the Pythagorian distance. Let us state this in another
way so that it is fully understood. Suppose we plot the two profile points
[0.115 0.269 0.615] and [0.183 0.413 0.404] with respect to three perpen-
dicular axes. Then the distance between them would be the square root of the
sum of squared differences between the coordinates, as follows:

Euclidean distance =
√

(0.115−0.183)2 + (0.269−0.413)2 + (0.615−0.404)2

(4.5)
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This familiar distance, whose value is calculated as 0.264, is exactly the dis-
tance between the points E5 and their average in Exhibit 3.2.

Chi-square
distance: an
example of a
weighted
Euclidean distance

However, the distance function in (4.4) is not the Euclidean distance — it
involves an extra factor in the denominator of each squared term. Because this
factor rescales or reweights each squared difference term, this variant of the
Euclidean distance function is referred to in general as a weighted Euclidean
distance. In this particular case where the scaling factors in the denominators
are the expected profile elements, the distance is called the chi-square distance,
or χ2-distance for short. For example the χ2-distance between row E5 and the
centroid is:

χ2-distance =

√
(0.115 − 0.183)2

0.183
+ (0.269 − 0.413)2

0.413
+ (0.615 − 0.404)2

0.404
(4.6)

and has value 0.431, higher than the Euclidean distance in (4.5) because each
term under the square root sign has been increased in value. In the next
chapter we will show how χ2-distances can be visualized.

Geometric
interpretation of
inertia

From (4.4) and (4.6) we can write the inertia in the following form:

inertia=
∑

i

(i-th mass)×(χ2-distance from i-th profile to centroid)2 (4.7)

where the sum is over the five rows of the table. Since the masses add up
to 1, we can also express (4.7) in words by saying that the inertia is the
weighted average of the squared χ2-distances between the row profiles and
their average profile. So the inertia will be high when the row profiles have
large deviations from their average, and will be low when they are close to
the average. Exhibit 4.2 shows a sequence of four small data matrices, each
with five rows and three columns, as well as the display of the row profiles in
triangular coordinates, going from low to high total inertia. The examples have
been chosen especially to illustrate inertias in increasing order of magnitude.
This sequence of maps also illustrates the concept of row–column association,
or row–column correlation. When the inertia is low, the row profiles are not
dispersed very much and lie close to their average profile. In this case we say
that there is low association, or correlation, between the rows and columns.
The higher the inertia, the more the row profiles lie closer to the column
vertices, i.e., the higher is the row–column association. Later, in Chapter 8,
we shall describe a correlation coefficient between the rows and columns which
links up more formally to the inertia concept.

Minimum and
maximum inertia

If all the profiles are identical and thus lie at the same point (their average), all
chi-square distances are zero and the total inertia is zero. On the other hand,
maximum inertia is attained when all the profiles lie exactly at the vertices of
the profile space, in which case the maximum possible inertia is equal to the
dimensionality of the space (in the triangular examples of Exhibit 4.2, this
maximum would be equal to 2).
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30 Chi-square Distance and Inertia

Exhibit 4.2:
A series of data

tables with
increasing total

inertia. The higher
the total inertia, the

greater is the
association between

the rows and
columns, displayed

by the higher
dispersion of the

profile points in the
profile space. The

values in these
tables have been

chosen specifically
so that the column
sums are all equal,

so the weights in the
χ2-distance

formulation are the
same, and hence

distances we observe
in these maps are
true χ2-distances.
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Inertia of rows
is equal to inertia

of columns

So far we have explained the concepts of profile, mass, χ2-distance and inertia
in terms of the rows of a data table. As we said in Chapter 3, everything
described so far applies in an equivalent way to the columns of the table
(see the column profiles, average profile and column masses in Exhibit 3.4).
In particular, the calculation of inertia in (4.7) gives an identical result if it
is calculated on the column profiles; i.e., the total inertia of a table is the
weighted average of the squared χ2-distance between the column profiles and
their average profile, where the weights are now the column masses.

Some notation This section is not essential to the understanding of the practical aspects
of correspondence analysis and may be skipped. But for those who do want
to understand the literature on correspondence analysis and its theory, this
section will be useful (for example, we shall use these definitions in Chapter
14). We introduce some standard notation for the entitities defined so far,
using the data in Exhibit 3.1 as illustrations (the data are repeated in Exhibit
4.1).
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• nij — the element of the cross-tabulation (or contingency table) in the
i-th row and j-th column, e.g., n21 = 18.

• ni+ — the total of the i-th row, e.g., n3+ = 87 (the + in the subscript
indicates summation over the corresponding index).

• n+j — the total of the j-th column, e.g., n+2 = 129.

• n++, or simply n, the grand total of the table, e.g., n = 312.

• pij — the nij divided by the grand total of the table, e.g., p21 = n21/n =
18/312 = 0.0577.

• ri — the mass of the i-th row, i.e., ri = ni+/n (which is the same as pi+, the
sum of the i-th row of relative frequencies pij); e.g., r3 = 87/312 = 0.279;
the vector of row masses is denoted by r.

• cj — the mass of the j-th column, i.e., cj = n+j/n (which is the same
as p+j , the sum of the j-th column of relative frequencies pij); e.g., c2 =
129/312 = 0.414; the vector of column masses is denoted by c.

• aij — the j-th element of the profile of row i, i.e., aij = nij/ni+; e.g.,
a21 = 18/84 = 0.214; the profile is denoted by the vector ai.

• bij — the i-th element of the profile of column j, i.e., bij = nij/n+j; e.g.,
b21 = 18/57 = 0.316; the profile is denoted by the vector bj .

•
√∑

j(aij − ai′j)2/cj — the χ2-distance between the i-th and i′-th row
profiles, denoted by ‖ai − ai′‖c; e.g., from Exhibit 3.1

‖a1 − a2‖c =
√

(0.357−0.214)2

0.183 + (0.500−0.548)2

0.413 + (0.143−0.238)2

0.404 = 0.374.

• √∑
i(bij − bij′ )2/ri — the χ2-distance between the j-th and j′-th column

profiles, denoted by ‖bj − bj′‖r; e.g., from Exhibit 3.4

‖b1 − b2‖r =
√

(0.088−0.054)2

0.045 + (0.316−0.357)2

0.269 + . . . etc. = 0.323

where 0.088 = 5/57, 0.054 = 7/129, 0.045 = 14/312, etc.

•
√∑

j(aij − cj)2/cj — the χ2-distance between the i-th row profile ai and
the average row profile c (the vector of column masses), denoted by
‖ai − c‖c; e.g., from Exhibit 3.1

‖a1 − c‖c =
√

(0.357−0.183)2

0.183 + (0.500−0.413)2

0.413 + (0.143−0.404)2

0.404 = 0.594.

• √∑
i(bij − ri)2/ri — the χ2-distance between the j-th column profile bj

and the average column profile r (the vector of row masses), denoted by
‖bj − r‖r; e.g., from Exhibit 3.4

‖b1 − r‖r =
√

(0.088−0.045)2

0.045 + (0.316−0.269)2

0.269 + . . . etc. = 0.332.
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32 Chi-square Distance and Inertia

With this notation, the formula (4.7) for the total inertia is

φ2 =
χ2

n
=

∑
i

ri‖ai − c‖2
c (for the rows)

=
∑

i

ri

∑
j

(
pij

ri
− cj

)2

/cj (4.8)

=
∑

j

cj‖bi − r‖2
r (for the columns)

=
∑

j

cj

∑
i

(
pij

cj
− ri

)2

/ri (4.9)

and has the value 0.0833, hence χ2 = 0.0833× 312 = 26.0.

SUMMARY:
Chi-square

Distance and
Inertia

1. The chi-square (χ2) statistic is an overall measure of the difference between
the observed frequencies in a contingency table and the expected frequen-
cies calculated under a hypothesis of homogeneity of the row profiles (or
of the column profiles).

2. The (total) inertia of a contingency table is the χ2 statistic divided by the
total of the table.

3. Geometrically, the inertia measures how “far” the row profiles (or the col-
umn profiles) are from their average profile. The average profile can be
considered to represent the hypothesis of homogeneity (i.e., equality) of
profiles.

4. Distances between profiles are measured using the chi-square distance (χ2-
distance). This distance is similar in formulation to the Euclidean (or
Pythagorian) distance between points in physical space, except that each
squared difference between coordinates is divided by the corresponding
element of the average profile.

5. The inertia can be rewritten in a form which can be interpreted as the
weighted average of squared χ2-distances between the row profiles and their
average profile (similarly, between the column profiles and their average).
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5Plotting Chi-square Distances

In Chapter 3 we interpreted the positions of two-dimensional profile points
in a triangular coordinate system where distances were Euclidean distances.
In Chapter 4 the chi-square distance (χ2-distance) between profile points was
defined, as well as its connection with the chi-square statistic and the inertia
of a data matrix. The χ2-distance is a weighted Euclidean distance, where
each squared term corresponding to a coordinate is weighted inversely by the
average profile value corresponding to that coordinate. So far we have not
actually visualized the χ2-distances between profiles, apart from Exhibit 4.2,
where the average profile values were equal, so that the χ2-distances were also
Euclidean in that case. In this chapter we show that by a simple transforma-
tion of the profile space, the distances that we observe in our graphical display
are actual χ2-distances.

Contents

Difference between χ2-distance and ordinary Euclidean distance . . . . 33
Transforming the coordinates before plotting . . . . . . . . . . . . . . . 34
Effect of the transformation in practice . . . . . . . . . . . . . . . . . . 34
Alternative interpretation in terms of recalibrated coordinates axes . . . 36
Geometric interpretation of the inertia and χ2 statistic . . . . . . . . . . 36
Principle of distributional equivalence . . . . . . . . . . . . . . . . . . . 37
χ2-distances make the contributions of categories more similar . . . . . 38
Weighted Euclidean distance . . . . . . . . . . . . . . . . . . . . . . . . 39
Theoretical justification of χ2-distance . . . . . . . . . . . . . . . . . . . 39
SUMMARY: Plotting Chi-square Distances . . . . . . . . . . . . . . . . 40

Difference between
χ2-distance and
ordinary Euclidean
distance

Exhibit 5.1 shows the row profiles of Exhibit 3.1 plotted according to perpen-
dicular coordinate axes in the usual three-dimensional physical space. Here the
distances between the profiles are not χ2-distances, but rather (unweighted)
Euclidean distances — see the calculation in formula (4.5). In such a space
distances between two profiles with elements xj and yj respectively (where
j = 1, . . . , J) are calculated by summing the squared differences between co-
ordinates, of the form (xj − yj)2, over all dimensions j and then taking the
square root of the resultant sum. This is the usual “straight-line” Euclidean
distance of physical space with which we are familiar. As we have seen, the
χ2-distance differs from this distance function by the division of each squared
difference by the corresponding element of the average profile; i.e., each term
is of the form (xj − yj)2/cj, where cj is the corresponding element of the
average profile. Since we can interpret and compare distances only in our fa-
miliar physical space, we need to be able to organize the points in the map

33
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•
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Exhibit 5.1:
The profile space

showing the profiles
of the education

groups on the
equilateral triangle

in three-dimensional
space; the distances
here are Euclidean

distances.

in such a way that familiar “straight-line” distances turn out to be the χ2-
distances. Luckily, this is possible thanks to a straightforward transformation
of the profiles.

Transforming
the coordinates
before plotting

In the calculation of the χ2-distance every term of the form (xj − yj)2/cj can
be rewritten as (xj/

√
cj − yj/

√
cj)2. This equivalent way of expressing the

general term in the distance formula is identical in form to that of the ordinary
Euclidean distance function; i.e., it is in the form of a squared difference. The
only change is that the coordinates are not the original xj and yj values
but the transformed xj/

√
cj and yj/

√
cj ones. This suggests that, instead

of using the elements of the profiles as coordinates, we should rather use
these elements divided by the square roots of the corresponding elements of
the average profile. In that case the usual Euclidean distance between these
transformed coordinates gives the χ2-distance that we require.

Effect of the
transformation in

practice

The values of cj are elements of the average profile and thus all less than 1.
So the transformation of the profile elements by dividing by √

cj will result
in an increase in the values of all coordinates, but some will be increased
more than others. If a particular cj is relatively small compared to the others
(i.e., the j-th column category has a relatively low frequency), then the cor-
responding coordinates xj/

√
cj and yj/

√
cj will be increased by a relatively

large amount. Conversely, a large cj corresponding to a more frequent cate-
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Effect of the transformation in practice 35

gory will lead to a relatively smaller increase in the transformed coordinates.
Thus the effect of the transformation is to increase the values corresponding
to low-frequency categories relatively more than the coordinates correspond-
ing to high-frequency categories. In the untransformed space of Exhibit 5.1
the vertex points lie at one physical unit of measurement from the origin
(i.e., zero point) of the three coordinates axes. The first vertex, with coordi-
nates [1 0 0], is transformed to the position [1/

√
c1 0 0]; i.e., its position

on the first axis is stretched out to be 1/
√

0.183 = 2.34. Similarly, the second
and third vertices are stretched out to values 1/

√
c2 = 1/

√
0.413 = 1.56 and

1/
√

c3 = 1/
√

0.404 = 1.57, respectively. These values are indicated at the
vertices on the three axes in Exhibit 5.2. The profiles are plotted according to
their transformed values and find new positions in the space, but are still in
the triangle joining the transformed vertex points. Notice that the stretching
is relatively more in the direction of C1 , the category with the lowest marginal
frequency.

1.57
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E4

average

E1

E5

 o

 o

 o

•

•

•

•

*

C3

E3

•

1.56

2.34

E2

Exhibit 5.2:
The profile space
showing the axes
stretched by
different amounts so
that distances
between profiles are
χ2-distances.
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36 Plotting Chi-square Distances

Alternative
interpretation in

terms of
recalibrated

coordinates axes

There is an equivalent way of thinking of this situation geometrically. In the
untransformed coordinate systems of Exhibits 2.4 and 5.1, the tic marks indi-
cating the scales (for example, the values 0.1, 0.2, 0.3, etc.) along the three axes
were at equal intervals apart. The effect of the transformation is to stretch out
the three vertices as shown in Exhibit 5.2. But we can still think of the three
vertex points as being one profile unit from the origin, but then the scales are
different on the three axes. On the C1 axis, an interval of 0.1 between two
tic marks would be a physical length of 0.234, while on the C2 and C3 axes
these intervals would be 0.156 and 0.157, respectively. Hence a unit interval on
the C1 axis is approximately 50% longer than the same interval on the other
two axes. Along these recalibrated axes we would still use the original profile
elements to situate a profile in three-dimensional space. Whichever way you
prefer to think about the transformation, either as a transformation of the
profile values or as a stretching and recalibrating of the axes, the outcome is
the same: the profile points now lie in the stretched triangular space shown in
Exhibit 5.2. In Exhibit 5.3 the stretched triangle has been laid flat and it is
clear that vertex C1 , corresponding to the rarest category of glance reading,
has been stretched the most.

Exhibit 5.3:
The triangular space
of the profiles in the

stretched space of
Exhibit 5.2 laid

“flat” (compare with
Exhibit 3.2). The
triangle has been
stretched most in

the direction of C1 ,
the category with

the lowest frequency.
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Geometric
interpretation of

the inertia and χ2

statistic

Now that the observed straight-line distances in the transformed space are
actual χ2-distances, the profile points may be joined to the average point to
show the χ2-distances between the profiles and their average — see Exhibit
5.4. In the case of row profiles, if we associate each row mass with its respective
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Principle of distributional equivalence 37

profile, we know from formula (4.7) that the weighted sum of these squared
distances is identical to the inertia of the table. If we associate the total
row frequencies with the profiles rather than the masses (where the total row
frequency is n times the row mass, n being the grand total of the whole table),
then the weighted sum of these squared distances is equal to the χ2 statistic.
Equivalent results hold for the column profiles relative to their average point.
Thus the inertia and χ2 statistic may be interpreted geometrically as the
degree of dispersion of the set of profile points (rows or columns) about their
average, where the points are weighted proportional to their relative frequency.

Exhibit 5.4:
The “stretched”
profile space
showing the
χ2-distances from
the profiles to their
centroid; the inertia
is the weighted
average of the sum
of squares of these
distances, and the
χ2 statistic is the
inertia multiplied by
the sample size
(n = 312 in this
example).
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Principle of
distributional
equivalence

To explain this principle, consider Exhibit 3.1 again and suppose that we
could distinguish two types of fairly thorough readers, those that concentrated
more on the political content of the newspaper and those that concentrated
more on the cultural and sports sections; these categories are denoted by
C2a and C2b, respectively. Suppose further that in both these new columns,
the relative frequencies of education groups were the same; in other words,
suppose that there was no difference between these two subdivisions of the
fairly thorough reading group as far as education is concerned. In Chapter 3
we called such columns distributionally equivalent, since they have the same
profiles. The subdivision of column C2 into C2a and C2b brings no extra
information about the differences between the education groups; hence any
analysis of these data should give the same results whether C2 is subdivided
or left as a single category. An analysis that satisfies this property is said to
obey the principle of distributional equivalence. If we used ordinary Euclidean
distances between the education group profiles, this principle would not be
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38 Plotting Chi-square Distances

obeyed because different results would be obtained if such a subdivision were
made. The χ2-distance, on the other hand, does obey the principle, remaining
unaffected by such a partitioning of a category of the data matrix: if two
distributionally equivalent columns are merged, the χ2-distance between the
rows does not change. In practice, this means that columns that have similar
profiles can be aggregated without affecting the geometry of the rows, and vice
versa. This gives the researcher a certain assurance that introducing many
categories into the analysis adds only substantive value and is not affected by
some technical quirk that depends on the number of categories.

χ2-distances
make the

contributions of
categories more

similar

We know now how to organize the display in order to observe χ2-distances,
but why do we need to go to all this trouble to visualize χ2-distances rather
than Euclidean distances? There are many ways to defend the use of the χ2-
distance, some more technical than others, and the reason is more profound
than simply being able to visualize the χ2 statistic. There are inherent dispar-
ities in the variances of sets of frequencies. For example, in Exhibit 3.1 one can
see that the range of profile values in the less frequent column C1 (from 0.115
to 0.357) is less than the range in the more frequent column C3 (from 0.143 to
0.615). This is a general rule for frequency data, namely that a set of smaller
frequencies has less dispersion than a set of larger frequencies. The effect of
this disparity on the spread of the profile values can be seen by measuring the
contributions of each category to the distance function. For example, let us
compare the squared values of the Euclidean distances and the χ2-distances
between the education group profiles and their centroid (average profile) in
the data set of Exhibit 3.1. For example, for the fifth education group E5, the
squared Euclidean distance between its profile and the centroid is:

Euclidean distance2 = (0.115 − 0.183)2 + (0.269 − 0.413)2 + (0.615 − 0.404)2

= 0.00453 + 0.02080 + 0.04475
= 0.07008

while the squared χ2-distance is:

χ2-distance2 = (0.115 − 0.183)2

0.183
+ (0.269 − 0.413)2

0.413
+ (0.615 − 0.404)2

0.404

= 0.02480 + 0.05031 + 0.11081
= 0.18592

(see (4.5) and (4.6) on pages 28–29). Each of these squared distances is the sum
of three values, one term for each column category, and can be expressed as
percentages of the total to assess the contributions of each category of reader-
ship. For example, in the squared Euclidean distance category C1 contributes
0.00453 out of 0.07008, which is 6.5%, whereas in the squared χ2-distance its
contribution is 0.02480 out of 0.18592, i.e., 13.3% (see the row E5 in Exhibit
5.5). If all the terms for C1 are summed over the five education groups and
expressed as a percentage of the sum of squared distances we get the overall
percentage contribution of 17.0% for the Euclidean distance, and 31.3% for
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Weighted Euclidean distance 39

the χ2-distance, given in the last row of Exhibit 5.5. This exercise illustrates
the phenomenon that the lowest frequency category C1 generally contributes
less to the Euclidean distance compared to C3 , for example, whereas in the
χ2-distance its contribution is boosted owing to the division by the average
frequency.

Exhibit 5.5:
Percentage
contributions of
each column
category to the
squared Euclidean
and squared
χ2-distances from
the row profiles to
their centroid (data
of Exhibit 3.1).

Euclidean χ2

Row C1 C2 C3 C1 C2 C3

E1 28.7 7.1 64.2 47.1 5.1 47.7
E2 2.1 38.7 59.1 4.7 37.2 58.1
E3 13.2 66.4 20.4 25.5 56.7 17.8
E4 37.1 2.8 60.1 56.6 1.9 41.5
E5 6.5 29.7 63.9 13.3 27.1 59.6
Overall 17.0 21.8 61.2 31.3 17.7 51.0

Weighted
Euclidean distance

As described in Chapter 4, the χ2-distance is an example of a weighted Eu-
clidean distance, whose general definition is as follows:

weighted Euclidean distance =

√√√√
p∑

j=1

wj(xj − yj)2 (5.1)

where wj are nonnegative weights and xj , j = 1, . . . , p and yj , j = 1, . . . , p are
two points in p-dimensional space. In principal component analysis (PCA),
a method closely related to CA, the p dimensions are defined by continuous
variables, often on different measurement scales. It is necessary to remove the
effect of scale in some way, and this is usually done by dividing the data by the
standard deviations sj of the respective variables; i.e., observations xj and yj

for variable j are replaced by xj/sj and yj/sj. This operation can be thought
of as using a weighted Euclidean distance with weights wj = 1/s2

j , the inverse
of the variances. In the definition of the χ2-distance between profiles, the
weights are equal to wj = 1/cj, i.e., the inverse of the mean profile elements.

Theoretical
justification of
χ2-distance

Although the profiles are on the same relative frequency scale, there is still a
need to compensate for different variances, similar to the situation in PCA.
The phenomenon that sets of frequencies with higher average have higher vari-
ance than those with a lower average is embodied in the Poisson distribution
— one of the standard statistical distributions for variables that are counts. A
property of the Poisson distribution is that its variance is equal to its mean.
Hence transforming the frequencies by dividing by the square roots of the
expected (mean) frequencies is one way of standardizing the data because the
square root of the mean is a surrogate for the standard deviation. But it is not
the only way to standardize, so why is the χ2-distance so special? There are
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40 Plotting Chi-square Distances

many advantages of the χ2-distance, apart from its obeying the principle of
distributional equivalence and giving CA the property of symmetry between
the treatment of rows and columns. A more technical reason for using the
χ2-distance can be found in the properties of a multivariate statistical distri-
bution for count data, called the multinomial distribution. This subject will
be discussed in more detail in the Theoretical Appendix.

SUMMARY:
Plotting

Chi-square
Distances

1. χ2-distances between profiles can be observed in ordinary physical (or Eu-
clidean) space by transforming the profiles before plotting. This transfor-
mation consists of dividing each element of the profile by the square root
of the corresponding element of the average profile.

2. Another way of thinking about χ2-distances is not to transform the profile
elements but to stretch the plotting axes by different amounts, so that a
unit on each axis has a physical length inversely proportional to the square
root of the corresponding element of the average profile.

3. The χ2-distance is a special case of a weighted Euclidean distance where
the weights are the inverses of the corresponding average profile values.

4. Assuming that we are plotting row profiles, the rescaling of the coordinates
(or, equivalently, the stretching of the axes) can be regarded as a way of
standardizing the columns of the table. This makes visual comparisons
between the row profiles more equitable across the different columns.

5. The χ2-distance obeys the principle of distributional equivalence, which
guarantees stability in the distances between rows, say, when columns are
partitioned into similar components, or when similar columns are merged.
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6Reduction of Dimensionality

Up to now, small data sets (Exhibits 2.1 and 3.1) were used specifically because
they were low-dimensional and hence easy to visualize exactly. These tables
with three columns involve three-dimensional profiles, which are actually two-
dimensional, as we saw in Chapter 2, and can thus be laid flat for inspection
in a triangular coordinate system. In most applications, however, the table of
interest has many more rows and columns and the profiles lie in a space of
much higher dimensionality. Since we cannot easily observe or even imagine
points in a space with more than three dimensions, it becomes necessary to
reduce the dimensionality of the points. This dimension-reducing step is the
crucial analytical aspect of CA and can be performed only with a certain loss
of information, but the objective is to restrict this loss to a minimum so that
a maximum amount of information is retained.
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Data set 3:
Spanish National
Health Survey

An example of a table of higher dimensionality is given in Exhibit 6.1, a cross-
tabulation generated from the database of the Spanish National Health Survey
(Encuesta Nacional de la Salud) in 1997. One of the questions in this survey
concerns the opinion that respondents have of their own health, which they can
judge to be “very good” (muy bueno in the original survey), “good” (bueno),
“regular” (regular), “bad” (malo) or “very bad” (muy malo). The table cross-
tabulates these responses with the age groups of the respondents. There are
seven age groups (rows of Exhibit 6.1) and five health categories (columns).
A total of 6371 respondents are cross-tabulated and give a representative
snapshot of how the Spanish nation views its own health at this point in
time. But what is that view, and how does it change with age? Using CA

41
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42 Reduction of Dimensionality

Exhibit 6.1:
Cross-tabulation of

age group with
self-perceived health

category. Data
source: Spanish
National Health

Survey (Encuesta
Nacional de la
Salud), 1997.

Very Very
AGE GROUP good Good Regular Bad bad Sum

16–24 243 789 167 18 6 1223
25–34 220 809 164 35 6 1234
35–44 147 658 181 41 8 1035
45–54 90 469 236 50 16 861
55–64 53 414 306 106 30 909
65–74 44 267 284 98 20 713
75+ 20 136 157 66 17 396
Sum 817 3542 1495 414 103 6371

Exhibit 6.2:
Profiles of age

groups across the
health categories,

expressed as
percentages.

Very Very
AGE GROUP good Good Regular Bad bad Sum

16–24 19.9 64.5 13.7 1.5 0.5 100.0
25–34 17.8 65.6 13.3 2.8 0.5 100.0
35–44 14.2 63.6 17.5 4.0 0.8 100.0
45–54 10.5 54.5 27.4 5.8 1.9 100.0
55–64 5.8 45.5 33.7 11.7 3.3 100.0
65–74 6.2 37.4 39.8 13.7 2.8 100.0
75+ 5.1 34.3 39.6 16.7 4.3 100.0
Average 12.8 55.6 23.5 6.5 1.6 100.0

we will be able to understand very quickly the relationship between age and
self-perception of health.

Comparison of
age group (row)

profiles

Let us suppose for the moment that we are interested in the profiles of the age
groups across the health categories, i.e., the row profiles. The row profiles are
given in percentage form in Exhibit 6.2. The last row is the average row profile,
or the profile across the health categories for the sample as a whole, without
distinguishing between age groups. Thus we can see, for example, that of the
total of 6371 Spaniards sampled in this study, 12.8% regarded themselves as
in very good health, 55.6% in good health, and so on. Looking at specific
age groups we see that there are the differences that one would expect; for
example, the youngest age group has higher percentages of these categories
(19.9% very good and 64.5% good) whereas the oldest group has lower per-
centages (5.1% and 34.3%, respectively). Perusing this table we quickly come
to the conclusion that self-perceived health becomes worse with age, which is
no surprise at all. It is not so easy, however, to see in the numbers how fast or
slow this change is occurring; for example, where the changes in self-perceived
health from one age group to the next are bigger or smaller.
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Exhibit 6.3:
Optimal
one-dimensional
map of the age
group profiles.

scale

0.1

••••••• 16-24

25-34

35-4445-5455-6465-7475+

Identifying
lower-dimensional
subspaces

CA visualizes the age groups and gives us more insight into the data. The
problem in this example is that one cannot visualize the age group profiles
exactly, since they are points situated in a five-dimensional space. Actually,
as we saw in the previous three-dimensional examples, the five-element age
group profiles lie in a space of one less dimension because the elements of each
profile add to 1, but even direct visualization in four-dimensional space is im-
possible. We might be able to visualize the profiles approximately, however,
hoping that they do not “fill” the whole four-dimensional space but rather
lie approximately in some low-dimensional subspace of one, two or three di-
mensions. This is the essence of CA, the identification of a low-dimensional
subspace which approximately contains the profiles. Putting this the opposite
way, CA identifies dimensions along which there is very little dispersion of
the profile points and eliminates these low-information directions of spread,
thereby reducing the dimensionality of the cloud of points so that we can more
easily visualize their relative positions.

Projecting profiles
onto subspaces

In this example it turns out that the profiles actually lie very close to a line, so
that the points can be imagined as forming an elongated cigar-shaped cloud of
points in the four-dimensional profile space. If we now identify the line which
comes “closest” to the points (we define the measure of closeness soon), we can
drop (or project) the points perpendicularly onto this line, take the line out
of the multidimensional space and lay it from left to right on a display which
is now much easier to interpret. In Exhibit 6.3 we see this one-dimensional
representation of the age group profiles, with the age groups lying in their
inherent order from oldest on the left to youngest on the right, even though
the method has no knowledge of the ordering of the categories. In this display
we can see immediately that there are smaller differences amongst the younger
age groups, and bigger differences in the middle-age groups.

Measuring quality
of display

Since the lower-dimensional projections of the profiles are no longer at their
true positions, we need to know how large a discrepancy there is between their
exact positions and their approximate ones. To do this we use the total inertia
of the profiles as a measure of the total variation, or geometric dispersion, of
the points in their true four-dimensional positions. Both quality of display
and its counterpart, the loss, or error of display, are measured in the form of
percentages of the total inertia, and they add up to 100%: the lower the loss,
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44 Reduction of Dimensionality

the higher the quality, and the higher the loss the lower the quality. In the
present example the loss incurred by projecting the points onto the straight
line of Exhibit 6.3 turns out to be only 2.7%; in other words the quality of the
unidimensional approximation of the profiles is equal to 97.3%. This is a very
favourable result — we started with a 7×5 table of numbers with an inherent
dimensionality of 4 and, by sacrificing only 2.7% of the dispersion of the points
in three dimensions of the space, the remaining 97.3% is represented by a
scatter of points along a single dimension! This percentage can be interpreted
exactly as in regression as a “percentage of explained variance”: the single
dimension showing the seven projected profile points in Exhibit 6.3 explains
97.3% of the inertia of the true profiles (or 97.3% of the total inertia of the
table in Exhibit 6.1).

Exhibit 6.4:
Observed interpoint
distances measured

in Exhibit 6.3
between all pairs of

points, plotted
against the true

χ2-distances
between the row

profiles of Exhibit
6.3.
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Approximation
of interprofile

distances

The distances between the projected profiles in Exhibit 6.3 are approximations
of the true χ2-distances between the row profiles in their full four-dimensional
space. Exact χ2-distances, computed directly from Exhibit 6.2, can be com-
pared with those displayed in Exhibit 6.3, and this comparison is made graph-
ically in Exhibit 6.4. Because there are 7 points there are 1

2 × 7× 6 = 21 pairs
of interpoint distances. Clearly the agreement is excellent, which was expected
because of the relatively small loss in accuracy of 2.7% incurred in reducing
the profiles to a one-dimensional display. Notice in Exhibit 6.4 that the ob-
served distances are always less than or equal to the true distances — we
say that the distances are approximated “from below”. This is because the
square of the true distance is the sum of a set of squared components, one
for each dimension of the profile space, whereas the square of the observed
distance is the sum of a reduced number of these components, which in this
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unidimensional example is just a single component. The “unexplained” part
of the distances is shown by the deviations of the points from the 45◦ line in
Exhibit 6.4.

Display of the
projected vertex
points

In the space of the seven age group profiles, there are five vertex points rep-
resenting the health categories. Recall once more that each of these extreme
profile points represents a fictitious profile totally concentrated into one health
category; for example, the vertex point [1 0 0 0 0] represents a group which
has only very good self-perceived health. These vertex points can also be pro-
jected onto the dimension in Exhibit 6.3 which best explains the age group
profiles — see Exhibit 6.5. Notice the change in scale compared to Exhibit
6.3 — the age group profiles are in exactly the same positions in both these
maps. The vertices are much more spread out than the profiles because they
are the most extreme profiles obtainable.

Exhibit 6.5:
Optimal map of
Exhibit 6.3, showing
the projected
vertices of the
health categories.scale
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25-34
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bad
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Joint
interpretation of
profiles and
vertices

Notice how in the joint display of Exhibit 6.5 the health categories are also
spread out in their inherent order, with the very bad health category on the
extreme left and the very good on the extreme right. The positions of these
reference points along the dimension gives us the key to the interpretation
of the association between the rows (age groups) and columns (health cate-
gories), with the youngest age group furthest towards good health and the
oldest group furthest towards bad health. The origin (or zero point, indicated
by a + in Exhibits 6.3 and 6.5) represents the average profile; thus we can de-
duce that the age groups up to 44 years are on the “good” side of average, and
those from 45 years up on the “bad” side. The fact that very bad is so far away
from the age group profiles shows that no age group is close to this extreme —
indeed in Exhibit 6.2 we can see percentage values of 0.5–4.3% and an average
of 1.6% (the average value is at the origin). The category bad is almost at the
same position, but with a range of 1.5–16.7% and an average of 6.5% at the
origin (more details about the joint interpretation will be given in Chapters
8 and 13). The relationship between the row profiles and column vertices in
this one-dimensional projection is the same as we described for the triangular
space in Chapters 2 and 3 — each age group profile is at the weighted average
of the health category vertices, using the profile elements as weights. Hence
the youngest age group 16–24 is at the rightmost position of the age groups
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Exhibit 6.6:
Profile points in a
multidimensional
space and a plane

cutting through the
space; the

best-fitting plane in
the sense of least

squares must pass
through the centroid

of the points.

because it has the highest profile values on the health categories very good
and good on the right.

Definition of
closeness of points

to a subspace

The present example is simpler than usual because a single dimension ade-
quately summarizes the data. In most cases we shall look for at least a two-
dimensional plane that comes “closest to”, or “best fits”, the high-dimensional
cloud of profiles. The profiles are then projected onto this plane, and the ex-
treme vertices of the profile space as well. Exhibit 6.6 shows several profile
points in an imaginary high-dimensional space, and their projections onto a
plane cutting through the space. Whether we project the profiles onto a best-
fitting line (a one-dimensional subspace), a plane (two-dimensional subspace)
or even a subspace of higher dimensionality, we need to define what we mean
by “closeness” of the points to that subspace. Imagine any straight line in
the multidimensional space of the profiles. The shortest distance from each
profile to the line can be computed (by distance in this context we implicitly
mean the χ2-distance). To arrive at a single measure of closeness of all points
to the line, an intuitively obvious choice would be to add the distances from
all profiles to the imaginary line. Then our task would be to find the line
for which this sum-of-distances is the smallest. In principle there is nothing
stopping us from doing exactly this, but the mathematics involved in mini-
mizing such a sum-of-distances is quite complicated. As in many other areas
of statistics the problem simplifies greatly if one defines a criterion in terms
of sum of squared distances, rather than the distances alone, leading to what
is called a least-squares problem. In the present case, we also have a mass
associated with each profile which quantifies the importance of the profile in
the analysis. The criterion used in correspondence analysis is thus a weighted
sum of squared distances criterion.
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Formal definition
of criterion
optimized in CA

Suppose that we have I profile points in a multidimensional space and that a
candidate low-dimensional subspace is denoted by S. For the i-th profile point,
with mass mi, we compute the χ2-distance between the point and S, denoted
by di(S). The closeness of this profile to the subspace is then mi[di(S)]2; i.e.,
the squared distance weighted by the mass. The closeness of all the profiles
to S is the sum of these quantities:

closeness to S =
∑

i

mi[di(S)]2 (6.1)

The objective of CA is to discover the subspace S which minimizes this cri-
terion. It can be shown that the subspace S being sought necessarily passes
through the centroid of the points, as depicted in Exhibit 6.6, so we need to
consider only subspaces that contain the centroid.

Singular value
decomposition
(SVD)

It is not necessary here to enter into the mathematical operations involved in
this minimization. It suffices to say here that the most elegant way to define
the theory of CA as well as to compute the solution to the above minimization
problem is to use what is known in mathematics as the singular value decom-
position, or SVD for short. The SVD is one of the most useful results in matrix
theory, and has special relevance to all the methods of dimension reduction
in statistics. It is to rectangular matrices what the eigenvalue–eigenvector de-
composition is to square matrices, namely a way to break down a matrix into
components, from the most to least important. The algebraic notion of rank
of a matrix is equivalent to our geometric notion of dimension, and the SVD
provides a straightforward mechanism of approximating a rectangular matrix
with another matrix of lower rank by least squares. These results transfer
directly into the theory of CA, and all the entities we need, the coordinates,
principal inertias, etc., are obtained directly from the SVD. Since the SVD
is available in many computing languages, the analytical part of CA is easily
obtained. In the Computational Appendix we shall show how compactly CA
can be programmed using the SVD function in the computing language R —
see pages 219–220.

Finding the
optimal subspace
is not regression

We have been describing the search for low-dimensional subspaces, for exam-
ple, lines and planes, by least squares, and this sounds just like the objective
of regression analysis, which also fits lines and planes to data points which can
be imagined in multidimensional space. But there is a major difference be-
tween regression and what we are doing here. In regression one of the variables
is regarded as a response variable and the distances that are minimized are
parallel to the response variable axis. In our situation here, by contrast, there
is no response variable, and fitting is done by minimizing the distances per-
pendicular to the subspace being fitted (see Exhibit 6.6 where the projections
are perpendicular onto the plane, that is the shortest distances between the
points and the plane). Sometimes fitting low-dimensional subspaces to points
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is referred to as “orthogonal regression”, where the discovered dimensions are
regarded as explanatory variables explaining the data points.

SUMMARY:
Reduction of

Dimensionality

1. Profiles consisting of m elements are situated exactly in spaces of dimen-
sionality m – 1. Hence, profiles with more than four elements are situated
in spaces of dimensionality greater than three, which we cannot observe
directly.

2. If we can identify a subspace of lower dimensionality, preferably not more
than two or three dimensions, which lies close to all the profile points,
then we can project the profiles onto such a subspace and look at the
profiles’ projected positions in this subspace as an approximation to their
true higher-dimensional positions.

3. What is lost in this process of dimensionality reduction is the knowledge
of how far and in what direction the profiles lie “off” this subspace. What
is gained is a view of the profiles that would not be possible otherwise.

4. The accuracy of display is measured by a quantity called the percentage of
inertia. For example, if 85% of the inertia of the profiles is represented in
the subspace, then the residual inertia, or error, which lies external to the
subspace, is 15%.

5. The vertices, or unit profiles, can also be projected onto the optimal sub-
space. The object is not to represent the vertices accurately but to use
them as reference points for interpreting the displayed profiles.

6. The actual computation of the low-dimensional subspace relies on measur-
ing the closeness between a set of points and a subspace as the weighted-
sum-of-squared χ2-distances between the points and the subspace, where
the points are weighted by their respective masses.
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So far CA has been presented as a geometric method of data analysis, stress-
ing the three basic concepts of profile, mass and χ2-distance, and the four
derived concepts of centroid (weighted average), inertia, subspace and projec-
tion. Profiles are multidimensional points, weighted by masses, and distances
between profiles are measured using the χ2-distance. The profiles are visu-
alized by projecting them onto a subspace of low dimensionality which best
fits the profiles, and then projecting the vertex profiles onto the subspace as
reference points for the interpretation. There are, however, numerous other
ways to define and interpret CA and this is why the same underlying method-
ology has been rediscovered many times in different contexts. One of these
alternative interpretations is called optimal scaling and a discussion of this
approach at this point will provide additional insight into the properties of
CA.
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Quantifying a set
of categories

We refer again to the example in Exhibit 6.1, the cross-tabulation of age
groups by self-perceived health categories. Both the row and column variables
are categorical variables and are stored in a computer data file using codes
1 to 7 for age, and 1 to 5 for health. If we wanted to calculate statistics
on the health variable such as mean and variance, or to use self-perceived
health as a variable in a statistical analysis such as regression, it would be
necessary to have values for each health category. It may not be true that
each of the health categories is exactly one unit apart on such a scale, as
is implicitly assumed if we use the values 1 to 5. The health categories are
ordered (i.e., self-perceived health is an ordinal categorical variable), which

49
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50 Optimal Scaling

indeed gives some minimal justification for using the values 1 to 5, but what
if the variable were nominal, such as the country variable in Chapter 1 (see
Exhibit 1.3) or a variable such as marital status?∗ The age group variable is
also ordinal, established by defining intervals on the original age scale, so we
could use the midpoints of each age interval as reasonable scale values, but it
is not obvious what value to assign to age group 7, which is open-ended (75+
years). Failing any alternative, when categories are ordered as in this case,
the integer values (1 to 7 and 1 to 5 here) are often used as default values in
calculations. Optimal scaling provides a way of obtaining quantitative scale
values for a categorical variable, subject to a specified criterion of optimality.

Computation of
overall mean using

integer scale

Initially we will use the default integer values in some simple calculations,
but let us first reverse the coding of the health categories so that the higher
value corresponds to better health — hence 5 indicates very good health,
down to 1 indicating very bad health. In the data set as a whole, there are
817 respondents with very good health (code 5), 3542 with good health (code
4), and so on, out of a total sample of 6371 respondents. Using these integer
codes as scale values for the health categories, the average health category in
this sample can be calculated as follows:

[(817 × 5) + (3542 × 4) + ... + (103 × 1)]/6371 = 3.72

i.e.
(0.128 × 5) + (0.556 × 4) + ... + (0.016 × 1) = 3.72 (7.1)

where 817/6371 = 0.128, 3542/6371 = 0.556, etc. are the elements of the
average row profile (see the last row of Exhibit 6.2). Therefore, this average
across all the respondents is simply the weighted average of the scale values
where the weights are the elements of the average profile.

Computation of
group means using

integer scale

Considering a particular age group now, say 16–24 years, we see from the
first row of data in Exhibit 6.1 that there are 243 respondents with very good
health, 789 with good , and so on, out of a total of 1223 in this young age
group. Again, using the integer scale values 5 to 1 for the health categories,
the average health for the 16–24 group is:

[(243 × 5) + (789 × 4) + ... + (6 × 1)]/1223 = 4.02

i.e.
(0.199 × 5) + (0.645 × 4) + ... + (0.005 × 7) = 4.02 (7.2)

where the second line again shows the profile values (for age group 16–24)
being used as weights: 243/1223 = 0.199, 789/1223 = 0.645, etc. Thus we
could say that the youngest age group has an average self-perceived health
higher than the average: 4.02 compared to the average of 3.72. We could

∗ In my experience as a statistical consultant I once did see a survey with a variable “Re-
ligious Affiliation: 0=none, 1=Catholic, 2=Protestant, etc.” and the researcher seriously
calculated an “average religion” for the sample!
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repeat the above calculation for the other six age groups and obtain averages
as follows:

16–24 25–34 35–44 45–54 55–64 65–74 75+ Overall
4.02 3.97 3.86 3.66 3.39 3.30 3.19 3.72

Computation of
variance using
integer scale

Now that we have calculated health category means for the age groups using
the integer scale values, we can compute the health category variance across
the age groups. This is similar to the inertia calculation of Chapter 4 because
each age group will be weighted proportional to its sample size. Alternatively
you can think of all 6371 respondents being assigned the value corresponding
to their respective age group, followed by the usual calculation of variance.
The variance is calculated as (see Exhibit 6.1 for row totals):
1223

6371
(4.02 − 3.72)2 + 1234

6371
(3.97 − 3.72)2 + · · · + 396

6371
(3.19 − 3.72)2 = 0.0857

with standard deviation
√

0.0857 = 0.293.

Calculating scores
with unknown
scale values

The above calculations all depend on the initial use of the integer scale for the
health categories, an arbitrary choice which is, admittedly, difficult to justify,
especially after seeing the results of Chapter 6. The question is whether there
are more justifiable, or at least more interesting, scale values. Answering this
question depends on what is meant by “more interesting” and we now consider
one possible criterion which leads to scale values related directly to CA. Let
us suppose that the scale values for the health categories are denoted by the
unknown quantities v1, v2, v3, v4 and v5, to be determined. Then the average
for all respondents would be, in terms of these unknowns, as in (7.1):

average health overall = (0.128× v1)+ (0.556× v2)+ · · ·+(0.016× v5) (7.3)

while the average for age group 16–24, for example, would be, as in (7.2):

average health 16–24 years = (0.199 × v1) + (0.645 × v2) + · · · + (0.005 × v5)
(7.4)

The averages computed in this way are known as scores, so that (7.3) is the
average score and (7.4) is the score, denoted by s1, for the first age group. For
each of the age groups, the score can be formulated in terms of the unknown
scale values in the same way, leading to seven scores s1, s2, . . ., s7. Since each
of the 6371 respondents is allocated to one of the age groups, each one can
be associated with a corresponding score on the health scale. For example, all
1223 respondents in the 16–24 years age group would receive the score given
by (7.4), so we can again imagine all 6371 respondents piling up at the seven
different scores on the health scale, whatever these scores may be.

Maximizing
variance gives
optimal scale

Now in order to determine the scale values, we can propose a property which
we would like these 6371 scores to have. A desirable property is that the scores
should be well separated so that the age groups be as distinct from one another
as possible. Putting this the opposite way, it would be highly undesirable if
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the scores were so close to one another that it was difficult to distinguish
between the different age groups in terms of their health categories. One way
of phrasing this requirement more precisely is that we require the variance of
the scores across all 6371 respondents to be a maximum. In numerical terms,
we have 1223 respondents associated in the first age group (see first row of
Exhibit 6.1) receiving score s1, 1234 in the second age group receiving score
s2, and so on, and the variance is computed over all 6371 scores, just as we
did on the previous page. Scale values v1, v2, . . ., v5 which lead to scores s1,
s2, . . ., s7 with maximum variance will define what we call an optimal scale.

Optimal scale
values from the

best-fitting
dimension of CA

Fortunately, it turns out that the positions of the health categories along
the best-fitting CA dimension solve this optimal scaling problem exactly: the
maximum variance is equal to the inertia on this optimal CA dimension,
the coordinate values of the vertices in Exhibit 6.5 provide the optimal scale
values, v1 to v5, and the coordinate values of the profiles provide the corre-
sponding scores, s1 to s7. The actual coordinate values are given in Exhibit
7.1. We already know from Chapter 3 that an age group lies at the centroid
of the five health category vertices, and this property carries over to any pro-
jection of the points onto a subspace. For example, if the profile of age group
16–24 (Exhibit 6.2) is used to weight the positions of the vertices of the five
health categories (Exhibit 7.1), the following score is obtained:

(0.199 × 1.144) + (0.645 × 0.537) + . . . + (0.005 ×−2.076) = 0.371

which agrees with the coordinate of the profile 16–24 in Exhibit 7.1.

Exhibit 7.1:
Coordinate values of

the points in
Exhibit 6.5, i.e. the
coordinates of the

column vertices and
the row profiles on
the dimension that

best fits the row
profiles.

HEALTH Vertex
CATEGORY coordinate

Very good 1.144
Good 0.537
Regular –1.188
Bad –2.043
Very bad –2.076

AGE Profile
GROUP coordinate

16–24 0.371
25–34 0.330
35–44 0.199
45–54 –0.071
55–64 –0.396
65–74 –0.541
75+ –0.658

The optimal scaling problem can be turned around by making a similar search
for scale values for the age groups which maximize the variance of the health
categories. The solution is given by the vertex coordinates for the age groups,
and the scores for the health categories are their profile coordinates. The
symmetry in the row and column problems is discussed further in the next
chapter. This symmetry, or duality, of the scaling problems has led to calling
the method dual scaling.
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Interpretation of
optimal scale

The optimal scale does not position the five health categories at equal dis-
tances from one another, like the original integer scale. Exhibit 6.5 showed
that there is a big difference between good and regular and a very small dif-
ference between bad and very bad . These scale values lead to average health
scores for the age groups that are the most separated in terms of the vari-
ance criterion, in other words we have the maximum discrimination between
the age groups using the optimal scale for the health categories. In Exhibit
6.3, which displays only the age group scores, we can see that there are small
changes in self-perceived health up to the age group 34-45 years, followed by
large changes in the middle age categories, especially from 45–54 to 55–64
years, and then slower changes in the older groups. Checking back to the
profile data in Exhibit 6.2, we can verify that from the 45–54 to 55–64 age
group there is an approximate 50% drop in the very good category and a more
than doubling of the bad category, which accounts for this large change in the
scores.

Identification
conditions for an
optimal scale

The optimal health category scale values obtained are 1.144, 0.537, −1.188,
−2.043 and −2.076 respectively (Exhibit 7.1). These numbers are calculated
under certain restrictions which are required in order that a unique solution
can be found. These restrictions are that the average on the health scale is 0
and the variance is 1 when applied to all 6371 respondents:

(0.128× 1.144) + (0.556× 0.537)+ . . . + (0.016×−2.076) = 0 (mean 0)

and

(0.128×1.1442)+(0.556×0.5372)+. . .+(0.016×−2.0762) = 1 (variance 1)

These prerequisites for the scale values are known as identification conditions
or constraints in the jargon of mathematical optimization theory. The first
condition is necessary since it is possible for two different sets of scale values to
have different means but the same variance, so that it would be impossible to
fix (or identify) a solution without specifying the mean. The second condition
is required because if we arbitrarily multiplied the scale values by any large
number, the variance of the eventual scores would be greatly increased as
well — this would make no sense at all since we are trying to maximize the
variance. Hence, it is necessary to look for a solution amongst scale values
which have a fixed mean and fixed range of variation. The “mean 0, variance
1” condition is a conventional choice in such a situation, and conveniently
leads to the vertex coordinates in CA, which satisfy the same conditions.

Any linear
transformation of
the scale is still
optimal

To determine the optimal scale, the two identification conditions described
above are simply technical devices to ensure a unique mathematical solution
to our problem. Having obtained the scale values, however, we are at liberty
to transform them to a more convenient scale, as long as we remember that
the mean and variance of the transformed scale are chosen for convenience
and have no substantive or statistical relevance. The redefinition of this scale
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is usually performed by fixing the endpoints at some substantively meaningful
values: for example, in the present case we could fix the very bad health cate-
gory at 0 and the very good one at 100. So we need to make a transformation
that takes the value of −2.076 to 0 and the 1.144 to 100. We can first add
2.076 to all five scale values, so that the lowest value is zero. The scale now
ranges from 0 to 1.144 + 2.076 = 3.220. In order to have the highest value
equal to 100, we then multiply all values by 100/3.220. So the formula in this
particular case for computing a new scale value from the old one is simply

new = (old + 2.076)× 100
3.220

or, in the general case:

new =
[
(old − old lower limit) × new range

old range

]
+ new lower limit (7.5)

(in our example the new lower limit is zero). Applying this formula to all five
optimal scale values results in the following transformed values:

Exhibit 7.2:
Optimal scale values

from CA and the
values transformed

to lie between 0 and
100.

HEALTH Optimal Transformed
CATEGORY scale value scale value

Very good 1.144 100.0
Good 0.537 81.1
Regular –1.188 27.6
Bad –2.043 1.0
Very bad –2.076 0.0

The previous 5-to-1 scale with four equal intervals between the scale points
would have values 100, 75, 50, 25, 0 on the scale with range 100 (remember that
we have reversed the scale so that very good is 100). The optimal transformed
values show that regular is not at the midpoint (50) of the scale, but much
closer to the “bad” end of the scale.

Optimal scale
is not unique

We should stress that the optimal scale depends on the criterion laid down
for its determination as well as the chosen identification conditions. Apart
from these purely technical issues, it clearly also depends on the particular
cross-tabulation on which it is based. If we had a table which cross-tabulates
health with another demographic variable, say education group, we would
obtain a difference set of optimal scale values for the health categories, since
they would now be optimally discriminating between the education groups.

A criterion
based on

row-to-column
distances

Finally, in contrast to the maximization criterion described above for optimal
scaling, we present a minimization criterion for finding scale values which
also leads to the CA solution, based on the distances from each row to each
column — in the present example these will be distances between the health
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categories and age groups. First, imagine the health categories on any scale,
for example the 1-to-5 integer scale from very bad to very good health, shown
in Exhibit 7.3 on the next page. Then the objective is to find the positions of
the age groups on the same scale so that they come as “close” as possible to
the health categories in the sense that an age group that has higher frequency
of a particular health category tends to be closer on the scale to that category.
Suppose the health category values are h1, h2,...,h5 (in this initial example,
the values 1 to 5) and the age group values a1, a2,...,a7. The distance between
an age group and a health category is the absolute difference |ai −hj |, but we
will prefer to use the squared distance (ai − hj)2 as a measure of closeness†.
To make distances count more depending on the frequency of occurrence in
the cross-tabulation we will weight each squared distance by pij , the relative
frequency as defined in Chapter 4, page 31, i.e., Exhibit 6.1 divided by its
grand total 6371 (hence all the pij ’s sum to 1). Our objective would then be
to minimize the following function:∑

i

∑
j

pijd
2
ij =

∑
i

pij(ai − hj)2 (7.6)

showing that it pays more to make distances shorter when pij is higher. It
is straightforward to show that, for any fixed set of health category points
hj , the minimum of (7.6) is achieved by the weighted averages for each age
group. For the 1-to-5 scale values these weighted averages are just the set of
scores we calculated before (see formula (7.2) and the set of scores shortly
afterwards) which have also been depicted in Exhibit 7.3. But the positions

Exhibit 7.3:
The 1-to-5 scale of
the health
categories, and the
weighted averages of
the age groups.

+ ••••••• 16-24
25-34

35-44
45-54

55-64
65-74

75+
◦ ◦ ◦ ◦ ◦

very goodgoodregularbadvery bad

of the two sets of points in Exhibit 7.3 minimize (7.6) given the fixed set
of health categories, so the question is what the minimum would be over
all possible configurations of scale values for the health categories. Again we
need identification conditions for this question to make sense; otherwise the
solution would simply put all health categories at the same point. If we add
the same identification conditions that we had before, namely mean 0 and
variance 1 for the scale values of the health categories, then the minimum is
achieved by the optimal CA dimension once again. Comparing Exhibit 7.3
with the optimal positions in Exhibit 6.5, it is clear that the spread is higher
in Exhibit 6.5, which in the unfolding interpretation means that all age group

† Again, as before, it is always easier to work with squared distances than distances — the
square root in the Euclidean distance function causes many difficulties in optimization,
and these disappear when we consider least-squares optimization.
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points are closest to the health category points in terms of criterion (7.6).
The value of the minimum achieved in Exhibit 6.5 is equal to 1 minus the
(maximized) variance on the optimal CA dimension, and is sometimes referred
to as the loss of homogeneity — we will return to this concept in Chapter 20
when discussing homogeneity analysis. Notice that the criterion (7.6) is easily
generalized to two dimensions or more, say K dimensions, simply by replacing
ai and hj by vectors of K elements and the squared differences (ai − hj)2 by
squared Euclidean distances in K-dimensional space.

SUMMARY:
Optimal Scaling

1. Optimal scaling is concerned with assigning scale values to the categories
(or attributes) of a categorical variable to optimize some criterion which
separates, or discriminates between, groups of cases, where these groups
have been cross-tabulated with that variable.

2. The positions of the categories as vertex points on the optimal dimension
of a CA provide optimal scale values in terms of a criterion that maximizes
the variance between groups. The scores for the groups are the projections
of their profiles on this dimension and the maximum variance is equal to
the inertia of these projected profiles.

3. The coordinate positions of the projected categories on the optimal dimen-
sion are standardized in a certain way that is particular to the geometry
of CA. For purposes of optimal scaling the mean and variance of the scale
can be redefined; hence the scale values may be recentred and rescaled to
conform to any scale convenient to the user, for example 0-to-1, or 0-to-100.

4. The optimal scale also satisfies a criterion based on the distances from each
row point to each column point: that is, where the objective is to place the
row and column points in a map such that the row-to-column distances,
weighted by the frequencies in the contingency table, are minimized. This
minimum is equal to 1 minus the maximum variance achieved in optimal
scaling.
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In all the examples and analyses presented so far, we have dealt with the anal-
ysis of the rows of a table, visualizing the row profiles and using the columns
as reference points for the interpretation: let’s call this the “row analysis”. All
this can be applied in a completely symmetric way to the columns of the same
table. This can be thought of as transposing the table, making the columns the
rows and vice versa, and then repeating all the procedures described in Chap-
ters 2 to 7. In this chapter we shall show that the row analysis and column
analysis are intimately connected. In fact, if a row analysis is performed, then
the column analysis is actually being performed as well, and vice versa. CA
can thus be regarded as the simultaneous analysis of the rows and columns.

Contents

Summary of row analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 57
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Summary of row
analysis

Let us again consider the data in Exhibit 6.1 on self-perception of health. In
Chapter 6 we performed the row analysis of these data since the object was
to display the profiles of the age groups across the health categories. These
seven profiles are contained in a four-dimensional space bounded by the five
vertices which represent the extreme unit profiles corresponding to each health
category. Then we diagnosed that most of the spatial variation of the profiles
was along a straight line (Exhibit 6.3). The profiles were projected onto that
line and the relative positions of these projections were interpreted as well as
the projections of the five vertices (Exhibit 6.5).

57
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Exhibit 8.1:
Column profiles of

health categories
across the age

groups, expressed as
percentages.

AGE Very Very
GROUP good Good Regular Bad bad Average

16–24 29.7 22.3 11.2 4.3 5.8 19.2
25–34 26.9 22.8 11.0 8.5 5.8 19.4
35–44 18.0 18.6 12.1 9.9 7.8 16.2
45–54 11.0 13.2 15.8 12.1 15.5 13.5
55–64 6.5 11.7 20.5 25.6 29.1 14.3
65–74 5.4 7.5 19.0 23.7 19.4 11.2
75+ 2.4 3.8 10.5 15.9 16.5 6.2
Sum 100 100 100 100 100 100

Column
analysis — profile

values have
symmetric

interpretation

We now consider the alternative problem of displaying the column profiles of
Exhibit 6.1, i.e. the profiles of the health categories across the size classes,
shown in Exhibit 8.1. The column profiles give, for each health category, the
percentages of respondents across the age groups: for example, in the bad
health category, 4.3% are 16–24 years, 8.5% 25–34 years, and so on. Although
this table of column profiles looks completely different to the row profiles in
Exhibit 6.2, when we look at specific values and compare them to their aver-
ages we can see that they contain the same information (we already noticed
this in Chapter 2, for the travel data set). For example, consider the value
in the bad column for the age group 65–74 years: 23.7%. Compare this value
with the average percentage of bad in the whole sample, given in the last col-
umn: 11.2%. Thus we conclude that in the 65–74 age group there are just over
twice as many respondents saying their health is bad compared to the overall
average — in fact, the ratio is 23.7/11.2 = 2.1. If we look at the same cell of
Exhibit 6.2, we see that, of the 65–74 year olds, 13.7% assess their health as
bad , while the proportion of 65–74 year olds in the sample is 6.5% (last row of
Exhibit 6.2). Hence again, just over twice as many compared to the average,
say their health is bad and in fact the ratio is identical: 13.7/6.5 = 2.1.

Column
analysis — same

total inertia

In Chapter 4 it was shown that the total inertia of the column profiles is
equal to the total inertia of the row profiles — the two calculations are just
alternative ways of writing the same formula, the χ2 statistic divided by the
sample size. For the health perception data, the total inertia is equal to 0.1404.

Column
analysis — same

dimensionality

The column profiles define a cloud of five points, each with seven components,
which should then lie in a space of dimension six, using the same argument
as before because the components add up to 1. It turns out, however, that
five points do not even fill all six dimensions of this space, but only four
of the dimensions. One way to grasp this fact intuitively is to realize that
two points lie exactly on a one-dimensional line, three points lie in a two-
dimensional plane, four points lie in a three-dimensional space, and so five
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points lie in a four-dimensional space. Hence, although the row profiles and
column profiles lie in different spaces, the dimensionality of these two clouds
of points is identical, in this case it is equal to four. This is the first geometric
way in which the analyses of the row and of the column profiles are the same.
Many more similarities will soon become apparent.

Column analysis
— same
low-dimensional
approximation

Still considering the five health category profiles in four-dimensional space,
we now ask the same question as before: Can these points be approximately
displayed in a lower-dimensional subspace and what is the quality of this
approximation? By performing an analogous set of mathematical calculations
as was required in Chapter 6, it turns out that the column profiles are well
approximated by a one-dimensional line, and the quality of the approximation
is 97.3%, exactly the same percentage that was obtained in the case of the
row profiles. This is the second geometric property which is identical in the
two analyses.

Exhibit 8.2:
Optimal
one-dimensional
map of the health
category profiles.

scale

0.1

•••••
very
goodgoodregular

bad

very
bad

Column analysis
— same coordinate
values, rescaled

The projections of the column profiles onto the best-fitting line are shown
in Exhibit 8.2. Here we see that the health categories lie in an order which
concurs exactly with the positions of the vertices in Exhibit 6.5. The actual
values of their coordinate positions are not the same but the relative posi-
tions are identical. According to the scale of Exhibit 8.2 and comparing the
positions of the health categories in Exhibit 6.5, it appears that the coordi-
nates of the profiles are a contracted, or shrunken, version of the vertices. A
specific interpretation of this “contraction factor” will be given soon. Further-
more, in Exhibit 8.3 the projections onto this line of the seven outer vertices,
representing the age groups, are displayed. Comparing the positions of the

Exhibit 8.3:
Same map as
Exhibit 8.2, showing
the projected
positions of the age
group vertices.scale

0.1

•••••
very
goodgoodregular

bad

very
bad ◦◦◦◦◦◦◦

16-24

25-34

35-4445-5455-6465-7475+
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vertices here with those of the age group profiles in Exhibit 6.5 (or Exhibit
6.3 where the scale is larger) reveals exactly the same result for the rows —
the positions of the row profiles with respect to their best-fitting line in Ex-
hibit 6.5 are a contracted version of the positions of the age group vertices
projected onto the best-fitting line of the health category profiles in Exhibit
8.2. Putting this the opposite way, the positions of the row vertices in the
column analysis are a simple expansion of the positions of the row profiles in
the row analysis. This is the third and most important way in which the two
analyses are related geometrically.

Principal axes
and principal

inertias

The best-fitting line in each analysis is called a principal axis . More specifically
it is referred to as the “first principal axis”, since there are other principal axes,
as we shall see in the following chapters. We have seen that in both row and
column analyses the total inertia is equal to 0.1404 and that the percentage of
inertia accounted for by the first axis is 97.3%. The specific part of inertia that
is accounted for by the first axis is equal to 0.1366 in both cases, which gives
the percentage explained as 100×0.1366/0.1404 = 97.3%. The inertia amount
(0.1366) accounted for by a principal axis is called a principal inertia, in this
case the first principal inertia because it refers to the first principal axis. It is
also often called an eigenvalue because of the way it can be calculated, as an
eigenvalue of a square symmetric matrix.

Scaling factor
is the square root

of the principal
inertia

It seems, then, that we have to do only one analysis — either the row analysis
or the column analysis. The results of the one can be obtained from those of
the other. But what is the exact connection between the two; in other words
what is the scaling factor which can be used to pass from vertex positions in
one analysis to profile positions in the other? This scaling factor turns out to
be equal to the square root of the principal inertia itself; e.g., in this example
it is

√
0.1366 = 0.3696. Thus to pass from the row vertices in Exhibit 8.3

to the row profiles in Exhibits 6.3 or 6.5, we simply multiply the coordinate
values by 0.3696, i.e., just over one-third. Conversely, to pass from the column
profiles in Exhibit 8.3 to the column vertices in Exhibit 6.5, we multiply the
coordinate values by the inverse, namely 1/0.3696 = 2.706. The numerical
values of all the profile and vertex coordinates are given in Exhibits 7.1 and
8.4, and the following simple relationship for both rows and columns can easily
be verified comparing these two exhibits:

profile coordinate = vertex coordinate×
√

principal inertia

Notice in Exhibits 6.5 and 8.2 that the profile points are more bunched up
than the vertex points. The scaling factor is a direct measure of how bunched
up the “inner” profiles are compared to the “outer” vertices. In this case,
the scaling factor of 0.3696 implies that the spread of the profiles is about
one third that of the vertices. At the end of Chapter 4 the total inertia was
interpreted as the amount of dispersion in a set of profiles relative to the
outer vertices (see Exhibit 4.1). The principal inertias (or their square roots
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Exhibit 8.4:
Coordinate values of
the points in
Exhibit 8.2, i.e. the
coordinates of the
column profiles and
the row vertices on
the first principal
axis of the column
profiles (cf. Exhibit
7.1).

HEALTH Profile
CATEGORY coordinate

Very good 0.423
Good 0.198
Regular –0.439
Bad –0.755
Very bad –0.767

AGE Vertex
GROUP coordinate

16–24 1.004
25–34 0.893
35–44 0.538
45–54 –0.192
55–64 –1.070
65–74 –1.463
75+ –1.782

which we are considering here) are also measures of dispersion but refer to
individual principal axes rather than to the whole profile space. The higher the
principal inertia is, and thus the higher the scaling factor is, the more spread
out the profiles are relative to the vertices, along the respective principal axis.
It should now be obvious that a principal inertia can not be greater than 1
— the profiles must be in positions “interior” to their corresponding vertices.

Correlation
interpretation of
the principal
inertia

The square root of the principal inertia, which as we already pointed out is al-
ways less than 1, has an alternative interpretation as a correlation coefficient.
A correlation coefficient is usually calculated between pairs of measurements,
for example the correlation between income and age. In the present exam-
ple there are two observations on each respondent — age group and health
category — but these are categorical observations, not measurements. A cor-
relation coefficient between these two variables can be computed using the
default integer codes of 1 to 7 for the age groups and 1 to 5 for the health
categories. The correlation is then computed to be 0.3456. Using any other
set of scale values would give a different correlation, so the following ques-
tion arises: Which scale values can we assign to the age groups and health
categories such that the correlation is the highest? The maximum correlation
found in this way is sometimes called the canonical correlation. In the present
example, the canonical correlation turns out to be 0.3696, exactly the square
root of the principal inertia, i.e., the scaling factor linking the row and col-
umn analyses. The scale values for the age groups and the health categories
that yield this maximum correlation are just the coordinate values of the age
groups and size classes on the first CA principal axis, given in Exhibits 7.1
and 8.3 and displayed in Exhibits, 6.3, 6.5, 8.2 and 8.3. We can use profile or
vertex coordinates, since correlation is unaffected by recentring or rescaling
the scale values. It is conventional to use standardized scale values, with mean
0 and variance 1, to identify the solution uniquely.

Graph of the
correlation

A correlation between two variables is usually illustrated graphically by a
scatterplot of the cases, e.g., age group (y-axis) by health category (x-axis).
Although we have 6371 cases in the scatterplot, there are only 7 values along
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Exhibit 8.5:
Scatterplot

according to the
scale values which

maximize the
correlation between
health category and
age group; squares
are shown at each

combination of
values, with area

proportional to the
number of

respondents. The
correlation is equal

to 0.3456.
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the y axis and 5 values along the x axis, thus only 7 × 5 = 35 possible points
in this scatterplot (Exhibit 8.5). At a specific point corresponding to a health
category and age group lie all the cases in the respective cell of the original
cross-table (Exhibit 6.1), displayed here in the form of a square with an area
proportional to the cell frequency. The canonical correlation is then the usual
Pearson correlation of all 6371 cases in this scatterplot. The optimal property
of the canonical correlation means that there is no other way of scaling the
row and column categories which would yield a higher correlation coefficient in
such a scatterplot. A canonical correlation of 1 would be attained if all points
were lying on a straight line, which means that each age group is associated
with only one health category (i.e., the profiles are all unit profiles, or vertex
points).

Principal
coordinates and

standard
coordinates

It is convenient to introduce some terminology at this stage to avoid constant
repetition of the phrases “coordinate positions of the vertices” and “coordinate
positions of the profiles”. Since the former coordinates are standardized to
have mean 0 and variance 1, we call them standard coordinates. Since the latter
coordinates refer to the profiles with respect to principal axes, we call them
principal coordinates. For example, the first column of numerical results in
Table 8.2 contains the principal coordinates of the health categories (columns),
while the second column contains the standard coordinates of the age groups.
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In both cases these are coordinates on the first principal axis of the CA; in
future chapters we shall usually have more than one principal axis.

Maximizing
squared correlation
with the average

Another way of thinking about the correlation definition of CA is that each
of the 6371 individuals in the health survey example can be assigned a pair of
scale values, one (ai, say) for age group and one (hj) for health category. As
before, these scale values are unknown but we define a criterion to optimize in
order to determine them. Each individual has a score equal to the sum of these
two scale values, ai + hj ; for example, someone in the 25–34 age group with
very good health (second age group and first health category) would have a
score of a2+h1. Suppose that the correlation of the pairs of values {ai, ai+hj}
is denoted by cor(a, a+h), where a and h denote the 6371 scale values for the
whole sample; similarly, the correlation for the pairs {hj , ai + hj} is denoted
by cor(h, a+h). A criterion to optimize would be to find the scale values that
optimize these two correlations in some way. It can be shown that the first
dimension of the CA solution gives scale values which are optimal in the sense
that they maximize the average of the squares of these correlations:

average squared correlation = 1

2
[cor2(a, a + h) + cor2(h, a + h)] (8.1)

Since cor(X, X + Y ) = 1
2 [1 + cor(X, Y )] for any two variables X and Y , the

average squared correlation in (8.1) is equal to:

average squared correlation = 1

4
[1 + cor2(a, h)]2 (8.2)

Therefore, when the CA solution maximizes cor(a, h), i.e., the canonical cor-
relation, it also maximizes (8.2), equivalently (8.1). This result will be useful
later because it can easily be generalized to more than two variables — see
Chapter 20.

Minimizing loss of
homogeneity
within variables

Yet another equivalent way of expressing the optimality of the CA solution is
as follows, using the notation of the previous section. Instead of sums of scale
values, calculate an average for each person: 1

2 (ai + hj). Then calculate the
differences between each person’s age value and health value and the average:
ai − 1

2 (ai + hj) and hj − 1
2 (ai + hj). A measure of how similar the age values

are to the health values is the sum of squares of these two differences, which
we average as well, leading to a measure of variance of the two values ai and
hj):

variance (for one case) = 1

2

(
[ai − 1

2
(ai + hj)]2 + [hj − 1

2
(ai + hj)]2

)
(8.3)

The term homogeneity is used in this context because if the scale values ai

and hj are the same, their variance would be zero; hence an individual with
this combination of categories is called homogeneous . An alternative term for
homogeneity is internal consistency. Averaging the values (8.3) for the whole
sample, we obtain an amount which is called the loss of homogeneity (see page
56, where this term is used in the same sense). If all the age values coincided
with the health values, the loss of homogeneity would be zero, that is the
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sample would be completely homogeneous (or internally consistent). The aim
is to find scale values which minimize this loss, and once more the solution
coincides with the coordinates of the age and health points on the first CA
dimension. Again it is clear that this definition is easily extended to more
than two variables, as we will do in Chapter 20.

SUMMARY:
Symmetry of Row

and Column
Analyses

1. Everything we did in the row analysis can be applied in a completely
symmetric fashion to the columns, as if the table were transposed and all
operations repeated.

2. The column analysis thus leads to the visualization of the column profiles
in their optimal subspace of display, along with the display of the vertices
representing the rows.

3. The best-fitting line, or dimension, is called the (first) principal axis of the
profiles. The amount of inertia this dimension accounts for is called the
(first) principal inertia.

4. The coordinate positions of profiles with respect to a principal axis are
called principal coordinates and the coordinate positions of vertices with
respect to a principal axis are called standard coordinates .

5. The two analyses are equivalent in the sense that each has the same total
inertia, the same dimensionality and the same decomposition of inertia into
principal inertias along principal axes.

6. Furthermore, the profiles and vertices in the two analyses are intimately
related as follows: along a principal axis profile positions (in principal co-
ordinates) have exactly the same relative positions as the corresponding
vertices (in standard coordinates) in the other analysis, but are reduced in
scale. The scaling factor involved is exactly the square root of the principal
inertia along that axis.

7. This scaling factor can also be interpreted as a canonical correlation, espe-
cially when we are dealing with the first principal axis. It is the maximum
correlation that can be attained between the row and column variables as
a result of assigning numerical quantifications to the categories of these
variables.

© 2007 by Taylor & Francis Group, LLC



9Two-dimensional Displays

We have discussed at some length the projections of a cloud of profiles onto
a single principal axis, the best-fitting straight line. In practice you will find
that most of the reported CA displays are two-dimensional, usually with the
first principal axis displayed horizontally (the x-axis) and the second principal
axis vertically (the y-axis). In general, the projections may take place onto
any low-dimensional subspace, but the two-dimensional case is, of course,
rather special because of our two-dimensional style of displaying graphics on
computer screens or on paper. In the Computational Appendix there are also
some examples using the R programming language to do CA graphics in three
dimensions (e.g., Exhibit B.5 on page 235).

Contents

Data set 4: Smoking habits of staff groups . . . . . . . . . . . . . . . . . 65
Row analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Interpretation of row profiles and column vertices . . . . . . . . . . . . . 66
Nesting of principal axes . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Interpretation of second dimension . . . . . . . . . . . . . . . . . . . . . 68
Verifying the profile–vertex interpretation . . . . . . . . . . . . . . . . . 68
Asymmetric maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Symmetric map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Verification of interpoint chi-squared distances in symmetric map . . . . 71
Danger in interpreting row-to-column distances in a symmetric map . . 72
SUMMARY: Two-dimensional Displays . . . . . . . . . . . . . . . . . . 72

Data set 4:
Smoking habits of
staff groups

The next example, which appeared originally in my 1984 book Theory and Ap-
plications of Correspondence Analysis , has been adopted as a test example in
almost all the implementations of CA in the major commercial statistical pack-
ages. This example still serves as an excellent introduction to two-dimensional
displays and has also been referred to in several journal articles, even though
it is an artificial data set. It concerns a survey of all 193 staff members of
a company, in order to formulate a smoking policy. The staff members are
cross-tabulated according to their rank (five levels) and a categorization of
their smoking habits (four groups) — the contingency table is reproduced in
Exhibit 9.1. Because it is a 5× 4 table, its row profiles and column profiles lie
exactly in three-dimensional spaces.

65
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Exhibit 9.1:
Cross-tabulation of

staff group by
smoking category,

showing row profiles
and average row

profile in
parentheses, and the

row masses.

STAFF SMOKING CATEGORIES Row
GROUPS None Light Medium Heavy Totals Masses

Senior managers 4 2 3 2 11 0.057
SM (0.364) (0.182) (0.273) (0.182)

Junior managers 4 3 7 4 18 0.093
JM (0.222) (0.167) (0.389) (0.222)

Senior employees 25 10 12 4 51 0.279
SE (0.490) (0.196) (0.235) (0.078)

Junior employees 18 24 33 13 88 0.456
JE (0.205) (0.273) (0.375) (0.148)

Secretaries 10 6 7 2 25 0.130
SC (0.400) (0.240) (0.280) (0.080)

Total 61 45 62 25 193
Average Profile (0.316) (0.233) (0.321) (0.130)

Row analysis As before, this table may be thought of as a set of rows or a set of columns. We
assume that the row analysis is more relevant; that is, we are interested in dis-
playing for each staff group what percentage are non-smokers, what percentage
are light smokers, and so on. The row profile space is a four-pointed simplex,
a tetrahedron, in three dimensions, which is three-dimensional equivalent of
the triangular space previously (this can be seen using the three-dimensional
graphics described in the Computational Appendix). To reduce the dimen-
sionality of the profiles, they should be projected onto a best-fitting plane
(see Exhibit 6.6 on page 46). The map, shown in Exhibit 9.2, also shows the
projections of the four vertex points representing the smoking groups. No-
tice that the first principal axis customarily defines the horizontal axis of the
map, and the second principal axis the vertical axis. On the axes the respec-
tive principal inertias are given (0.07476 and 0.01002 respectively), as well as
the corresponding percentages of inertia. These values can be accumulated to
give the amount and percentage of inertia accounted for by the plane of the
two axes. Thus the inertia in the plane is 0.08478, which is 99.5% of the total
inertia of 0.08519. This means that by sacrificing one dimension we have lost
only 0.5% of the inertia of the profile points. Putting this another way, the
five row profiles lie very close to this plane of representation, so close that
we can effectively ignore their distance from the plane when exploring their
relative positions.

Interpretation
of row profiles and

column vertices

Looking only at the profiles’ positions for a moment, we can see that the
groups furthest apart are Junior Employees (JE) and Junior Managers (JM)
on the left-hand side, opposed to Senior Employees (SE) on the right-hand
side — hence the greatest differences in smoking habits are between these
extremes. Senior Managers (SM) appear to lie between Junior Managers and
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Exhibit 9.2:
Optimal
two-dimensional CA
map of the smoking
data of Table 9.1,
with rows in
principal
coordinates
(projections of
profiles) and
columns in standard
coordinates
(projections of
vertices).
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Senior Employees, while Secretaries (SC) are quite close to Senior Employees.
In order to explain the similarities and differences between the staff groups, it
is necessary to inspect the positions of the profiles relative to the vertices. Since
the three smoking categories are on the left and the non-smoking category is
on the right, the left-to-right distinction is tantamount to smokers versus non-
smokers. The groups JE and JM are different to SE because the former groups
have relatively more smokers, and SE has relatively more non-smokers. The
centre of such a display is always the average profile, so that we can also
consider the deviations of the staff groups outwards from the average profile
in different directions, the main deviations being from left to right.

Nesting of
principal axes

The two-dimensional display is such that it actually contains the best one-
dimensional display in it as well. If all the points in Exhibit 9.2 were projected
vertically onto the horizontal axis, then this unidimensional display would be
the one obtained by looking for the best one-dimensional display right from
the start. The principal axes are said to be nested , in other words an optimal
display of a certain dimensionality contains all the optimal displays of lower
dimensionality. Notice that the three smoking groups on the left will project
very close together on the first axis, a long way from the non-smoking point
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on the right. This is the greatest single feature in the data. Putting this in
the optimal scaling terminology of Chapter 7, a “smoking scale” which best
differentiates the five staff groups is not one which assumes equal intervals
between the four smoking categories, but rather one which places all three
smoking categories quite close to one another but far from the non-smoking
category, effectively a dichotomous smoking/non-smoking dichotomy.

Interpretation
of second

dimension

Continuing with the two-dimensional interpretation, we see that the second
(vertical) principal axis pulls apart the three smoking levels. The profiles do
not differ as much vertically as horizontally, as indicated by the much lower
percentage of inertia on the second axis. Nevertheless, we can conclude that
the profile of JE has relatively more light smokers than heavy smokers com-
pared to that of JM, even though both these groups have similar percentages
of smokers as seen by their similar positions on the horizontal axis. These
conclusions can be easily verified in the original data of Exhibit 9.1.

Verifying the
profile–vertex
interpretation

One way of verifying the interpretation of the positions of the profiles relative
to the vertices is to measure the profile-to-vertex distances in Exhibit 9.2 and
then compare these to the profile values. This verification should be performed
one vertex at a time, for example the five distances from the staff groups to
the vertex light. As a general rule, assuming that the display is of good quality,
which is true in this case, the closer a profile is to that vertex, the higher its
profile is for that category. For example, an interpretation which we made in
the previous paragraph is that because JE lies more towards light than JM,
JE should have relatively more light smokers than JM. The actual data are
that 24/88 or 27% of JEs are light smokers, whereas 3/18 or 17% of JMs are
light smokers, so this agrees with our interpretation. Exhibit 9.3 graphically
compares all profile-to-vertex distances to their corresponding profile values.
The abbreviation 42, for example, is used for JE-to-light (row 4, column 2)
and sf 22 for JM-to-light (row 2, column 2). Clearly the higher profile element
of 0.27 for 42 corresponds to a smaller distance than the profile of 0.17 for 22.
For each vertex, we say that the profile elements are monotonically inversely
related to the profile-to-vertex distances, which in graphical terms means that
each set of five points in Exhibit 9.3 corresponding to a particular vertex forms
a descending pattern from top left to bottom right. For example, the set of
five points corresponding to the fourth vertex point (heavy), with labels 34,
54, 44, 14 and 24, are arranged in such a descending sequence.

Asymmetric
maps

We say that the Exhibit 9.2 is an asymmetric map, or a map which is asym-
metrically scaled, because it is the joint display of profile and vertex points. In
an asymmetric map, therefore, one of the sets of points, in this case the rows,
is scaled in principal coordinates, while the other is scaled in standard coor-
dinates. If we were more interested in the column analysis, then the column
points would be in principal coordinates and the row points in standard coor-
dinates. What we said in Chapter 8 about the scaling factor between the row
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Exhibit 9.3:
The measured
profile-to-vertex
distances in Exhibit
9.2 plotted against
the corresponding
values of the row
profiles of Exhibit
9.1. Each
row-column pair is
labelled with their
respective category
numbers: for
example, row profile
3 (senior employees)
and column vertex 4
(heavy smoking) are
denoted by 34.
Notice the
descending pattern
with increasing
profile value for each
set of distances
corresponding to a
particular vertex,
with some small
exceptions.
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and column problems holds for each principal axis. Thus the two-dimensional
display of the column profiles would be a shrunken version of the positions
of the column vertices given in Exhibit 9.2, but the “shrinking factors” (i.e.,
the canonical correlations, equal to the square roots of the principal inertias)
along the two axes are not the same:

√
0.07476 = 0.273 and

√
0.01002 = 0.100

respectively. Thus along the first axis the shrinking is by a factor of 0.273
(i.e., just under four-fold) and along the second axis by a factor of 0.1 (i.e.,
ten-fold). By the same argument, to pass from the row profiles in Exhibit
9.2 to their vertex positions in the column problem we would simply expand
them nearly four-fold along the first axis and ten-fold along the second axis.
Apart from these scaling factors the relative positions of the profiles and the
vertices are the same. Exhibit 9.4 shows the other possible asymmetric map,
where the columns are represented as profiles in principal coordinates and
the rows as vertices in standard coordinates. In this map the column points
are at weighted averages of the row points using the elements of the column
profiles as weights. The asymmetric map of Exhibit 9.2 is often called the row
principal map (because row points are in principal coordinates) and Exhibit
9.4 the column principal map.
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Exhibit 9.4:
Asymmetric CA

map of the smoking
data of Table 9.1,

with columns in
principal

coordinates and
rows in standard

coordinates.
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Symmetric map Having gone to great lengths to explain the geometry of asymmetric displays,
we now introduce an alternative way of mapping the results, called the sym-
metric map. This option is by far the most popular in the CA literature,
especially amongst French researchers. In a symmetric map the separate con-
figurations of row profiles and column profiles are overlaid in a joint display,
even though they emanate, strictly speaking, from different spaces. In a sym-
metric map, therefore, both row and column points are displayed in principal
coordinates. Exhibit 9.5, for example, is the symmetric map of the smoking
data, and is thus an overlay of the two sets of “inner” points in black in
Exhibits 9.2 and 9.4. This simultaneous display of rows and columns finds
some justification in the intimate relationship between the row and column
analyses, involving a simple scaling factor between profiles and corresponding
vertices. The convenience of such a display is that, whatever the absolute level
of association might be, we always have both clouds of points equally spread
out across the plotting area, hence there is less possibility of overlapping labels
in the display. In asymmetric maps, by contrast, the profile points (which are
usually the points of primary interest) are often bunched up in the middle of
the display, far from the outer vertices and the visualization is generally less
aesthetic.
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Exhibit 9.5:
Symmetric map of
smoking data; both
rows and columns
are in principal
coordinates.
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Verification of
interpoint
chi-squared
distances in
symmetric map

Since both clouds of profiles are displayed simultaneously in Exhibit 9.5,
the plotted row-to-row distances approximate the inter-row χ2 distances and
the plotted column-to-column distances approximate the inter-column χ2-
distances. Of course, the inter-row distance interpretation applies to the points
in Exhibit 9.2 as well, since this is the identical display of the rows which is
used in Exhibit 9.5 (note the difference in scales between these two maps)
— similarly for the column points in Exhibit 9.4. The interpoint χ2-distances
can be verified by plotting the observed distances versus the true ones, as in
Exhibit 9.6. There is an excellent agreement, which was to be expected since
the quality of display of the profiles is 99.5% in both cases.

Exhibit 9.6:
Observed interpoint
row distances and
interpoint column
distances measured
in Exhibit 9.5,
plotted against the
true χ2-distances
between the row
profiles and between
the column profiles,
respectively, of
Table 9.1.
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Danger in
interpreting

row-to-column
distances in a

symmetric map

There is a price to pay for the convenience of the symmetric map which comes
in the form of a danger in interpreting row-to-column distances directly. No
such distance is defined or intended in this map. This is the aspect of CA that
is often misunderstood and has caused some confusion amongst users who
would like to make clusters of row and column points in a symmetric map
(see the Epilogue, page 267). Strictly speaking, it is not possible to deduce
from the closeness of a row and column point the fact that the corresponding
row and column necessarily have a high association. Such an interpretation is
justified to a certain extent in the case of the asymmetric map, as illustrated in
Exhibit 9.5. A golden rule in interpreting maps of this type is that interpoint
distances can be interpreted whenever the points concerned are situated in the
same space, for example row profiles along with the vertex points representing
the columns in the row profile space. When interpreting a symmetric map, the
fact that this is the overlay of two separate maps should always be borne in
mind. In Chapter 13 the row–column interpretation called the “biplot” will be
described — this is the more accurate way of thinking about the joint display
of rows and columns.

SUMMARY:
Two-dimensional

Displays

1. As the dimensionality of the subspace of display is increased, so the capacity
of the display to represent the profile points accurately is improved. There
is, however, a trade-off in the sense that the visualization of the points
becomes more and more complex beyond two dimensions. Two-dimensional
displays are usually the displays of choice.

2. The principal axes are nested ; i.e., the first principal axis found in the
one-dimensional solution is identical to the first principal axis in the two-
dimensional solution, and so on. Increasing the dimensionality of the dis-
play simply implies adding new principal axes to those already found.

3. An asymmetric map is one in which the row and column points are scaled
differently, e.g., the row points in principal coordinates (representing the
row profiles) and the column points in standard coordinates (represent-
ing the column vertices). There are thus two asymmetric plots possible,
depending on whether the row or column analysis is of chief interest.

4. In an asymmetric map where the rows, for example, are in principal co-
ordinates (i.e., the row analysis), distances between displayed row points
are approximate χ2-distances between row profiles; and distances from the
row profile points to a column vertex point are, as a general rule, inversely
related to the row profile elements for that column.

5. A more common type of display, however, is the symmetric map where
both rows and columns are scaled in principal coordinates.

6. In a symmetric map, the row-to-row and column-to-column distances are
approximate χ2-distances between the respective profiles. There is no spe-
cific row-to-column distance interpretation in a symmetric map.
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To conclude these first 10 introductory chapters to the CA of a two-way
table, we now give three additional examples: (i) a table which summarizes
the classification of scientists from ten research areas into different categories
of research funding; (ii) a table of counts of 92 marine species at a number
of sampling points on the ocean floor; (iii) a linguistic example, where the
letters of the alphabet have been counted in samples of texts by six English
authors. In the course of these examples we shall discuss some further issues
concerning two-dimensional displays, such as the interpretation of dimensions,
the difference between asymmetric and symmetric maps, and the importance
of the aspect ratio of the map.

Contents

Data set 5: Evaluation of scientific researchers . . . . . . . . . . . . . . . 73
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Data set 5:
Evaluation of
scientific
researchers

The data come from a scientific research and development organization which
has classified 796 scientific researchers into five categories for purposes of
allocating research funds (Exhibit 10.1). The researchers are cross-classified
according to their scientific discipline (the 10 rows of the table) and funding
category (the five columns of the table). The categories are labeled A, B, C, D
and E, and are in order from highest to lowest categories of funding. Actually,
A to D are the categories for researchers who are receiving research grants,
from A (most funded) to D (least funded), while E is a category assigned to
researchers whose applications were not successful (i.e., funding application
rejected).

73
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Exhibit 10.1:
Frequencies of

funding categories
for 796 researchers

who applied to a
research agency: A is
the most funded, D
is the least funded,

and E is not funded.

SCIENTIFIC FUNDING CATEGORIES
AREAS A B C D E Sum

Geology 3 19 39 14 10 85
Biochemistry 1 2 13 1 12 29
Chemistry 6 25 49 21 29 130
Zoology 3 15 41 35 26 120
Physics 10 22 47 9 26 114
Engineering 3 11 25 15 34 88
Microbiology 1 6 14 5 11 37
Botany 0 12 34 17 23 86
Statistics 2 5 11 4 7 29
Mathematics 2 11 37 8 20 78
Sum 31 128 310 129 198 796
Average Row Profile 3.9% 16.1% 38.9% 16.2% 24.9%

Decomposition
of inertia

This 10×5 table lies exactly in four-dimensional space and the decomposition
of inertia along the four principal axes are as follows:

Dimension Principal inertia Percentage of inertia
1 0.03912 47.2%
2 0.03038 36.7%

Each axis accounts for a part of the inertia, expressed as a percentage. Thus
the first two dimensions account for almost 84% of the inertia. The sum of the
principal inertias is 0.082879, so the χ2 statistic is 0.082879 × 796 = 65.97.
If one wants to perform the statistical test using the χ2 distribution with
9 × 4 = 36 degrees of freedom, this value is highly significant (P = 0.002).

Asymmetric
map of row profiles

Exhibit 10.2 shows the asymmetric map of the row profiles and the column
vertices. In this display we can see that the magnitude of the association
between the disciplines and the research categories is fairly low; in other words
the profiles do not deviate too much from the average (cf. Exhibit 4.2). This
situation is fairly typical of social science data, so the asymmetric map is
not so successful because all the profile points are bunched up in the middle
of the display — in fact, they are so close to one another that we cannot
write the full labels and have just put the first two letters of each discipline.
Nevertheless, we can interpret the space easily looking at the positions of the
vertices. The horizontal dimension lines up the four categories of funding in
their inherent ordering, from D (least funded) to A (most funded), with B and
C close together in the middle. The vertical dimension opposes category E (not
funded) against the others, so the interpretation is fairly straightforward. The
more a discipline is high up in this display the less its researchers are actually
granted funding. The more a discipline lies to the right of this display, the more
funding its funded researchers receive. Using marketing research terminology,
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Exhibit 10.2:
Asymmetric map of
the row profiles of
Table 10.1 (scientific
funding data).
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the “ideal point” is in the lower right of the map: more grant applications
accepted (low down), and those accepted receiving good classifications (to
the right). Hence, if we were doing a trend study over time, disciplines would
need to move towards the bottom right-hand side to show an improvement in
their funding status. At the moment there are no disciplines in this direction,
although Physics is the most to the right (highest percentage — 10 out of 114,
or 8.8% — of type A researchers), but is at the middle vertically since it has
a percentage of non-funded researchers close to average (26 out of 114 not
funded, or 22.8%, compared to the average of 198 out of 796, or 26.5%).

Symmetric mapExhibit 10.3 shows the symmetric map of the same data, so that the only
difference between this display and that of Exhibit 10.3 is that the column
profiles are now displayed rather than the column vertices, leading to a change
in scale which magnifies the display of the row profiles. This zooming in on
the configuration of disciplines facilitates the interpretation of their relative
positions and also gives space for fuller labels. The relative positions of the
disciplines can now be seen more easily: for example, Geology, Statistics, Math-
ematics and Biochemistry are all at a similar position on the first axis, but
widely different on the second. This means that the researchers in thse fields
whose grants have been accepted have similar positions with respect to the
funded categories A to D categories, but Geology has much fewer rejections
(11.8% of category E ) than Biochemistry (41.4%). In this symmetric display
we cannot assess graphically the overall level of association (inertia) between
the rows and the columns. This can be assessed only from the numerical
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Exhibit 10.3:
Symmetric map of

Table 10.1 (scientific
funding data).
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value of the principal inertias along the axes, or their square roots which are
the canonical correlations along each axis, namely

√
0.039117 = 0.198 and√

0.030381 = 0.174, respectively. The level of row–column association can be
judged graphically only in an asymmetric map such as Exhibit 10.2 (compare
again the different levels of association illustrated in Exhibit 4.2).

Dimensional
interpretation of

maps

Whether the joint map is produced using asymmetric or symmetric scaling,
the dimensional style of interpretation remains universally valid. This involves
interpreting one axis at a time, as we did above and as is customary in factor
analysis, using the relative positions of one set of points — the “variables”
of the table — to give a descriptive name to the axis. For example, we used
the funding category points to give a descriptive name to the axes and then
interpreted the discipline points with respect to the axes. All statements in
such an interpretation are relative and it is not possible to judge the absolute
difference in funding profiles between the disciplines unless we refer to the
original data. Putting this another way, symmetric maps similar to Exhibit
10.3 could be obtained for other data sets where there are much larger (or
smaller) levels of association between the funding profiles of the disciplines.

Data set 6:
Abundances of

marine species in
sea-bed samples

CA is used extensively to analyse ecological data, and the second example
represents a typical data set in marine biology. The data, given partially in
Exhibit 10.4, are the counts of 92 marine species identified in 13 samples
from the sea-bed in the North Sea. Most of the samples are taken close to an
oil-drilling platform where there is some pollution of the sea-bed, while two
samples, regarded as reference samples and assumed unpolluted, are taken far
from the drilling activities. These data, and biological data of this kind in
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Exhibit 10.4:
Frequencies of 92
marine species in 13
samples (the last
two are reference
samples); the species
(rows) have been
ordered in
descending order of
total abundance;
hence four most
abundant and four
least abundant are
shown here.

STATIONS (SAMPLES)
SPECIES S4 S8 S9 S12 S13 S14 S15 S18 S19 S23 S24 R40 R42

Myri.ocul. 193 79 150 72 141 302 114 136 267 271 992 5 12
Chae.seto. 34 4 247 19 52 250 331 12 125 37 12 8 3
Amph.falc. 49 58 66 47 78 92 113 38 96 76 37 0 5
Myse.bide. 30 11 36 65 35 37 21 3 20 156 12 58 43

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Eucl.sp. 0 0 0 0 1 0 0 1 1 0 0 0 0
Scal.infl. 0 1 0 0 0 1 0 0 0 0 0 0 1
Eumi.ocke. 0 0 1 0 0 1 1 0 0 0 0 0 0
Modi.modi. 0 0 0 1 1 0 0 1 0 0 0 0 0

-2 -1 0 1 2 3 4
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0.246 (31.4%)

0.204 (26.1%)

Myri.ocul.

Chae.seto.

Amph.falc..

Myse.bide.
Amph.fili.

Timo.ovat.

Sthe.limi.

Exhibit 10.5:
Asymmetric CA
map, with stations
in principal
coordinates and the
species in standard
coordinates. The
species symbols have
size proportional to
the species
abundance (mass)
— some important
species in the
analysis are labelled
with the first letter
of the label being
close to its
corresponding
triangular symbol.
Inertia explained in
map: 57.5%.

general, are characterized by high variability, which can already be seen by
simple inspection of the small part of the data given here. The total inertia
of this table is 0.7826, much higher than in the previous examples, so we can
expect the profiles to be more spread out relative to the vertices. Notice that
in this example the χ2-test is not applicable, since the data do not constitute
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a true contingency table — each individual count is not independent of the
others, since the marine organisms often occur in groups at a sampling point.

Asymmetric
CA map of species

abundance data

Exhibit 10.5 shows the asymmetric map of the sample (column) profiles and
species (row) vertices. Since there are 92 species points, it is impossible to label
each point so we have labelled only the points which have a high contribution
to the map; these are generally the most abundant ones. (The topic of how
to measure this contribution is described in the Chapter 11, for the moment
let us simply report that 10 out of the 92 species contribute over 85% to the
construction of this map, the other 82 could effectively be removed without
the map changing very much.) The stations form a curve from bottom left
(actually, the most polluted stations) to top right (the least polluted), with
the reference stations far from the drilling area at upper right. An exception is
station 24, which separates out notably from the others, mainly because of the
very high abundance of species Myri.ocul. (Myriochele oculata) which can be
seen in the first row of Exhibit 10.4. The most abundant species are labelled
and it is mainly these that determine the map. Notice that the asymmetric
map does well in this example because the inertia is so high, which is typical
of ecological data where there is high variability between the samples. The
next example is the complete opposite!

Exhibit 10.6:
Letter counts in 12

samples of texts
from books by six
different authors,

showing data for 9
out 26 letters.

BOOKS a b c d e · · · w x y z Sum

TD-Buck 550 116 147 374 1015 · · · 155 5 150 3 7144
EW-Buck 557 129 128 343 996 · · · 187 10 184 4 7479
Dr-Mich 515 109 172 311 827 · · · 156 14 137 5 6669
As-Mich 554 108 206 243 797 · · · 149 2 80 6 6510
LW-Clar 590 112 181 265 940 · · · 146 13 162 10 7100
PF-Clar 592 151 251 238 985 · · · 106 15 142 20 7505
FA-Hemi 589 72 129 339 866 · · · 225 1 155 2 6877
Is-Hemi 576 120 136 404 873 · · · 250 3 104 5 6924
SF7-Faul 541 109 136 228 763 · · · 160 11 280 1 6885
SF6-Faul 517 96 127 356 771 · · · 216 12 171 5 6971
Pe3-Holt 557 97 145 354 909 · · · 194 9 140 4 6650
Pe2-Holt 541 93 149 390 887 · · · 218 2 127 2 6933

Abbreviations:
TD (Three Daughters), EW (East Wind) -Buck (Pearl S. Buck)
Dr (Drifters), As (Asia) -Mich (James Michener)
LW (Lost World), PF (Profiles of Future) -Clar (Arthur C. Clarke)
FA (Farewell to Arms), Is (Islands) -Hemi (Ernest Hemingway)
SF7 and SF6 (Sound and Fury, chapters 7 and 6) -Faul (William Faulkner)
Pen3 and Pen2 (Bride of Pendorric, chapters 3 and 2) -Holt (Victoria Holt)

Data set 7:
Frequencies of

letters in books by
six authors

This surprising example is a data set provided in the ca package of the R
program (see Computational Appendix, pages 222–223). The data form a
12 × 26 matrix with the rows representing 12 texts which form six pairs,
each pair by the same author (Exhibit 10.6 shows a part of the matrix).
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The columns are the 26 letters of the alphabet, a to z. The data are the
counts of these letters in a sample of text from each of the books. There are
approximately 6500-7500 letter counts for each book or chapter.

Exhibit 10.7:
Asymmetric CA
map of the author
data of Table 10.6,
with row points
(texts) in principal
coordinates. The
very low inertia in
the table is seen in
the closeness of the
row profiles to the
centroid. A
“blow-up” of the
rectangle at the
centre of the map
shows the relative
positions of the row
profiles.
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One of the lowest
inertias, but with a
significant
structure

This data set has one of the lowest total inertias I have seen in my experience
with CA: the total inertia is 0.01873, which means that the data are very
close to the expected values calculated from the marginal frequencies; i.e., the
profiles are almost identical. The asymmetric map of these data is shown in
Exhibit 10.8, showing the letters in their vertex positions and the 12 texts as
a tiny blob of points around the origin, showing how little variation there is
between the texts in terms of letter distributions, which is what one would
expect. If one expands the tiny blob of points, it is surprising to see how
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much structure there is within such tiny variation. Each pair of texts by the
same author lies in the same vicinity, and the result is highly significant from
a statistical viewpoint (we discuss the permutation test for testing this in
Chapter 25).

Preserving a
unit aspect ratio in

maps

An important final remark concerns the physical plotting of two-dimensional
correspondence analysis maps. Since distances in the map are of central inter-
est, it is clear that a unit on the horizontal axis of a plot should be equal to
a unit on the vertical axis. Even though this requirement seems obvious, it is
commonly overlooked in many software packages and spreadsheet programs
that produce scatterplots of points with different scales on the axes. For ex-
ample, the points might in reality have little variation on the vertical second
axis, but the map is printed in a pre-defined rectangle which then exaggerates
the second axis. We say that the aspect ratio of the map, that is the ratio of
one unit length horizontally to one unit vertically, should be equal to 1. A
few options for producing good quality maps are discussed at the end of the
Computational Appendix.

SUMMARY:
Three More

Examples

1. When applicable, it is useful to test a contingency table for significant
association, using the χ2 test. However, statistical significance is not a
crucial requirement for justifying an inspection of the maps. CA should be
regarded as a way of re-expressing the data in pictorial form for ease of
interpretation — with this objective any table of data is worth looking at.

2. In both asymmetric and symmetric maps the dimensional style of inter-
pretation is valid. This applies to one axis at a time and consists of using
the relative positions of one set of points on a principal axis to give the
dimension a conceptual name, and then separately interpreting the relative
positions of the other set of points along this named dimension.

3. The asymmetric map functions well when total inertia is high, but it is
problematic when total inertia is small because the profile points in prin-
cipal coordinates are too close to the origin for easy labelling.

4. It is important to have plotting facilities which preserve the aspect ratio of
the display. A unit on the horizontal axis must be as close as possible to a
unit on the vertical axis of the map; otherwise distances will be distorted
if the scales are different.
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The total inertia of a cross-tabulation is a measure of how much variation
there is in the table. We have seen how this inertia is decomposed along prin-
cipal axes and also how it is decomposed amongst the rows or amongst the
columns. The inertia can be further broken down into row and column compo-
nents along individual principal axes. The investigation of these components
of inertia (analogous to an analysis of variance) plays an important support-
ing role in the interpretation of CA. They provide diagnostics which allow the
user to identify which points are the major contributors to a principal axis
and to gauge how well individual points are displayed.

Contents

Total inertia measures overall variation of the profiles . . . . . . . . . . 81
Row and column inertias . . . . . . . . . . . . . . . . . . . . . . . . . . 82
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Cell contributions to inertia . . . . . . . . . . . . . . . . . . . . . . . . . 82
Decomposition along principal axes . . . . . . . . . . . . . . . . . . . . . 83
Components of each principal inertia . . . . . . . . . . . . . . . . . . . . 83
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SUMMARY: Contributions to Inertia . . . . . . . . . . . . . . . . . . . 88

Total inertia
measures overall
variation of the
profiles

In Chapter 4, Equation (4.7), we saw that the total inertia can be interpreted
geometrically as the weighted average of squared χ2-distances between the
profiles and their average profile, and is identical for row profiles and for
column profiles. If there are only small differences between the profiles and
their average, then the inertia is close to zero; i.e., there is low variation (see
Exhibit 4.2, top left display). At the other extreme, if each profile is highly
concentrated in a few categories, and in different categories from profile to
profile, then the inertia is high (Exhibit 4.2, lower right display). The inertia
is a measure of how spread out the profiles are in the profile space.

81
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82 Contributions to Inertia

Row and
column inertias

There are various ways that the inertia can be decomposed into the sum
of positive components, and this provides a numerical “analysis of inertia”
which is helpful in interpreting the results of CA. According to Equation
(4.6), each row makes a positive contribution to the inertia in the form of
its mass times squared distance to the row centroid — we call this the row
inertia. The same applies to the columns, leading to column inertias . The
actual values of these parts of inertia are numbers that are inconvenient to
interpret and it is easier to judge them relative to the total inertia, expressed as
proportions, percentages or more conveniently as permills (i.e. thousandths,
denoted by 0/00). The following table gives the row and column inertias for
the scientific funding data of Exhibit 10.1, first in their “raw” form, and
then in their relative form expressed as permills (Exhibit 11.1). Permills are
used extensively throughout the numerical results of our R implementation
of CA (see Computational Appendix), because they enable reporting three
significant digits without using a decimal point, improving legibility of the
results.

Exhibit 11.1:
Row and column
contributions to

inertia, in raw
amounts which sum

up to the total
inertia, or expressed
relatively as permills

(0/00) which add up
to 1000.

ROWS Inertia 0/00 inertia COLUMNS Inertia 0/00 inertia

Geology 0.01135 137 A 0.01551 187
Biochemistry 0.00990 119 B 0.00911 110
Chemistry 0.00172 21 C 0.00778 94
Zoology 0.01909 230 D 0.02877 347
Physics 0.01621 196 E 0.02171 262
Engineering 0.01256 152
Microbiology 0.00083 10
Botany 0.00552 67
Statistics 0.00102 12
Mathematics 0.00466 56

Total 0.08288 1000 Total 0.08288 1000

Large and
small contributions

From the “ 0/00 inertia” columns in Exhibit 11.1 we can see at a glance that
the major contributors to inertia are the rows Zoology, Physics, Engineering,
Geology and Biochemistry, in that order, while for the columns the major
contributors are categories D and E. As a general guideline for deciding which
contributions are large and which are small, we use the average as a threshold.
For example, there are 10 rows, so on a permill scale this would be 100 on
average per row; hence we regard rows with contributions higher than 100 0/00

as major contributors. On the other hand, there are five columns, which give
an average of 2000/00, so the two columns D and E are the major contributors.

Cell
contributions to

inertia

A finer look at the inertia contributions can be made by looking at each in-
dividual cell’s contribution. As described in Chapter 4, each cell of the table
contributes a positive amount to the total inertia, which can again be ex-
pressed on a permill scale — see Exhibit 11.2. Here we can see specific cells

© 2007 by Taylor & Francis Group, LLC



Decomposition along principal axes 83

Exhibit 11.2:
Cell contributions to
inertia, expressed as
permills; the row
and column sums of
this table are
identical to the row
and column inertias
in permills given
above in Exhibit
11.1.

SCIENTIFIC FUNDING CATEGORIES
AREAS A B C D E Sum

Geology 0 32 16 0 89 137
Biochemistry 0 23 4 44 48 119
Chemistry 3 12 1 0 5 21
Zoology 9 15 11 189 8 230
Physics 106 11 2 74 3 196
Engineering 1 11 38 1 102 152
Microbiology 2 0 0 3 5 10
Botany 51 4 0 10 2 67
Statistics 10 0 0 2 0 12
Mathematics 5 3 22 26 0 56

Sum 187 110 94 347 262 1000

such as [Zoology,D] and [Physics,A], that are contributing highly to the inertia
— just these two cells together account for almost 30% of the table’s total
inertia (189 + 106 = 2950/00, i.e., 0.295 of the total inertia, or 29.5%). The cell
contributions to inertia are sometimes called chi-square contributions because
they are identical to the relative contributions of each cell to the χ2 statistic.
Adding the rows or columns of this table gives the same permill contributions
of Exhibit 11.1.

Decomposition
along principal
axes

The other major decomposition of inertia is with respect to, or along, principal
axes. On page 74 we gave the first two principal inertias for this 10× 5 table,
which has four dimensions. Exhibit 11.3 gives all the principal inertias, their
precentages and a bar chart (this type of bar chart is often called a scree plot).
We have seen that the principal inertias have an interpretation in their own
right, for example as squared canonical correlations (see Chapter 8, page 61),
but we mainly interpret their values relative to the total, usually expressed as
percentages rather than permills in this case.

Exhibit 11.3:
Principal inertias,
percentages and
cumulative
percentages for all
dimensions of the
scientific-funding
data, and a scree
plot.

Dim. Principal inertia % inertia Cumulative %

1 0.03912 47.2% 47.2%
2 0.03038 36.7% 83.9%
3 0.01087 13.1% 97.0%
4 0.00251 3.0% 100.0%

0 0.01 0.02 0.03 0.04

Components of
each principal
inertia

Each principal inertia is itself an inertia, calculated for the projections of the
row profiles (or column profiles) onto a principal axis. For example, the 10 row
profiles of the scientific funding data lie in a full space of dimensionality 4,
one less than the number of columns. Their weighted sum of squared distances
to the row centroid is equal to the total inertia, with value 0.08288. The first
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Exhibit 11.4:
Row and column

contributions to the
first principal
inertia, in raw

amounts which sum
up to the principal

inertia, or expressed
relatively as permills

(0/00).

ROWS Inertia 0/00 inertia COLUMNS Inertia 0/00 inertia

Geology 0.00062 16 A 0.00890 228
Biochemistry 0.00118 30 B 0.00260 67
Chemistry 0.00023 6 C 0.00265 68
Zoology 0.01616 413 D 0.02471 632
Physics 0.01426 365 E 0.00025 6
Engineering 0.00153 39
Microbiology 0.00001 0
Botany 0.00345 88
Statistics 0.00057 14
Mathematics 0.00112 29

Total 0.03912 1000 Total 0.03912 1000

Exhibit 11.5:
Raw components of
inertia for each row
(scientific area) over

all four principal
axes: the sums over

the axes (row totals)
are the row inertias
of Exhibit 11.1, the
sums over the rows
(column totals) are

the principal inertias
of Exhibit 11.3, and

the grand total is
the total inertia.

SCIENTIFIC PRINCIPAL AXES
AREAS Axis 1 Axis 2 Axis 3 Axis 4 Total

Geology 0.00062 0.00978 0.00082 0.00013 0.01135
Biochemistry 0.00118 0.00754 0.00084 0.00034 0.00990
Chemistry 0.00023 0.00088 0.00029 0.00032 0.00172
Zoology 0.01616 0.00158 0.00063 0.00073 0.01909
Physics 0.01426 0.00010 0.00169 0.00016 0.01621
Engineering 0.00153 0.00941 0.00127 0.00036 0.01256
Microbiology 0.00001 0.00056 0.00008 0.00019 0.00083
Botany 0.00345 0.00016 0.00180 0.00011 0.00552
Statistics 0.00057 0.00001 0.00042 0.00003 0.00102
Mathematics 0.00112 0.00037 0.00302 0.00015 0.00466

Total 0.03912 0.03038 0.01087 0.00251 0.08288

principal axis is the straight line that comes closest to the profile points in the
sense of least squares. This axis passes through the row centroid, which is at
the origin, or zero point, of the display. Suppose that all the row profiles are
projected onto this axis. The first principal inertia is then the weighted sum
of squared distances from these projections to the centroid. Hence the first
principal inertia, equal to 0.03912, is the inertia of the set of projected points
on the one-dimensional principal axis. Using the principal coordinates on the
axis we obtain the row and column components of the first principal inertia, in
Exhibit 11.4. This shows that category D is the dominant contributor to the
first axis, followed by A, while the other categories contribute very little. As
for the rows, Zoology (highly associated with D) and Physics (highly associated
with A) contribute almost 78% of the inertia on the first axis.

Complete
decomposition of

inertia over profiles
and principal axes

We can repeat the above for all the principal axes, and Exhibit 11.5 shows the
raw components of inertia of the rows for all four axes, (a similar table can
be constructed for the columns). Just as the raw inertias in Exhibit 11.4 have
been expressed in permills relative to the first principal inertia, we could do the
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same for axes 2 to 4 as well. For example, the major row contributions to axis
2 are Geology, Engineering and Biochemistry. Inspecting these contributions of
each row point (and, similarly, each column point) to the principal axes gives
numerical support to our interpretation of the map.

Components of
each profile’s
inertia

Whereas the column sums of Exhibit 11.5 give the principal inertias on re-
spective axes, the row sums give the inertias of the profiles (hence these row
sums are the same as the first column of Exhibit 11.1). We can also express
these components relative to the row inertias, again either as proportions, per-
centages or permills. These will tell us how well each row is explained by each
principal axis. This is a mini-version of the way we interpreted the principal
inertias, which quantified the percentage of the total inertia that was con-
tained on each axis — here we do the same for each point separately. Exhibit
11.6 gives these relative amounts in permills, so that each row now adds up
to 1000. For example, Geology is mostly explained by axis 2, whereas Physics

Exhibit 11.6:
Relative
contributions (in 0/00)
of each principal
axis to the inertia of
individual points;
the last row shows
the same calculation
for the principal
inertias (cf. Exhibit
11.3), which can be
regarded as average
relative
contributions.

SCIENTIFIC PRINCIPAL AXES
AREAS Axis 1 Axis 2 Axis 3 Axis 4 Total

Geology 55 861 72 11 1000
Biochemistry 119 762 85 35 1000
Chemistry 134 510 170 186 1000
Zoology 846 83 33 38 1000
Physics 880 6 104 10 1000
Engineering 121 749 101 28 1000
Microbiology 9 671 96 224 1000
Botany 625 29 326 20 1000
Statistics 554 7 410 30 1000
Mathematics 240 79 649 33 1000

Average 472 367 131 30 1000

mostly by axis 1. Mathematics, on the other hand, is not well explained by
axis 1 or axis 2; in fact, its inertia is mostly in the third dimension.

Algebra of inertia
decomposition

Exhibit 11.7 illustrates the decomposition of inertia and introduces some no-
tation at the same time. The point ai is a general profile point in multidimen-
sional space, for example the i-th row profile, with mass ri, at a distance of di

from the average row profile c. Hence, using formula (4.6), the total inertia is
equal to

∑
i rid

2
i . A general principal axis k is shown and the point’s princi-

pal coordinate on this axis is denoted by fik. Thus the inertia along this axis
(i.e., the k-th principal inertia) is

∑
i rif

2
ik, usually denoted by λk. Hence the

contribution of each point i to the principal inertia of axis k is rif
2
ik relative to

λk (these proportions are given in permills for axis 1 in Exhibit 11.4). Exhibit
11.5 is actually the table of values rif

2
ik for the 10 rows and 4 principal axes

of the scientific funding data, with column sums equal to the λk’s and the
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Exhibit 11.7:
Example of a profile

point in
multidimensional

space at a
χ2-distance di from

the centroid,
projecting onto the
k-th principal axis

at the principal
coordinate fik.
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row sums equal to the row inertias rid
2
i . Thanks to Pythagoras’ theorem, we

have d 2
i =

∑
k f2

ik, which is why the rows of Exhibit 11.5 sum up to the row
inertias: ∑

k

rif
2
ik = rid

2
i

Hence, the contribution of axis k to the inertia of point i is rif
2
ik relative to

rid
2
i (these proportions are given in Exhibit 11.6).

Relative
contributions as

squared angle
cosines

There is an alternative geometric interpretation of the relative contributions
in Exhibit 11.6. Since the proportion of inertia of point i explained by axis k
is rif

2
ik/rid

2
i = (fik/di)2, it is clear from Exhibit 11.7 that this is the square of

the angle cosine between the point and the axis. Suppose this angle is denoted
by θik, then the relative contribution is cos2(θik): for example, axis 1 has a
relative contribution of 0.880 to the point Physics; hence cos2(θ51) = 0.880,
from which we can evaluate cos(θ51) = 0.938 and the angle θ51 = 20◦. This
shows that the point Physics, which is mostly explained by axis 1, is close to
axis 1, subtending a small angle of 20◦ with it. A point like Geology, with a
relative contribution of 0.055, subtends a large angle of θ11 = 76◦ with axis
1, so is not at all close to this axis but lying along different dimensions of
the space (in fact, mostly along axis 2 as we can see by the high relative
contribution of 0.861).

Relative
contributions as

squared
correlations

There is a further interpretation of the relative contributions: angles between
vectors can be interpreted as correlation coefficients; hence the relative con-
tributions are also squared correlations. We can thus say that Physics has a
high correlation of

√
0.880 = 0.938 with axis 1, whereas Geology has a low

correlation of
√

0.055 = 0.234. If the correlation is 1, the profile point lies on
the principal axis, and if the correlation is 0 the profile is perpendicular to
the principal axis (angle of 90◦).
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Exhibit 11.8:
Quality of display
(in permills) of
individual row
profile points in two
dimensions; only
Mathematics has
less than 50% of its
inertia explained.

SCIENTIFIC FUNDING
AREAS Quality CATEGORIES Quality

Geology 916 A 587
Biochemistry 881 B 816
Chemistry 644 C 465
Zoology 929 D 968
Physics 886 E 990
Engineering 870
Microbiology 680
Botany 654
Statistics 561
Mathematics 319

Overall 839 Overall 839

Quality of display
in a subspace

Thanks to Pythagoras’ theorem, the squared cosines of the angles between a
point and each of a set of axes can be added together to give squared cosines
between the point and the subspace generated by those axes. For example, the
angle between a row profile and the principal plane can be computed from the
sum of the relative contributions along the first two principal axes. Exhibit
11.7 gives the sum of the first two columns of Exhibit 11.6, and these are
interpreted as measures of quality of individual points in the two-dimensional
maps of Chapter 10, just as the sum of the first two percentages of inertia
is interpreted as a measure of overall (or average) quality of display. Here
we can see which points are well represented in the two-dimensional display
and which are not. Putting this another way, since 83.9% of the inertia is
explained in the two-dimensional map, 16.1% of the inertia is not explained.
Some profiles will not be accurately represented because they lie more along
the third and fourth axes than along the first two. Thus Mathematics is poorly
displayed, with over two-thirds of its inertia lying off the plane. In Exhibits
10.2 and 10.3 Mathematics looks quite similar to the profile of Statistics, but
this projected position is not an accurate reflection of its true position.

Analogy with
factor analysis

This section is mainly aimed at readers with a knowledge of factor analysis
— several entities in CA have direct analogues with those in factor analysis.

• The analogue of a factor loading is the angle cosine between a point and
an axis, i.e., the square root of the squared correlation with the sign of the
point’s coordinate. For example, from Exhibits 11.1 and 11.4, the squared
correlations of the categories A to E are:

A:
0.00890
0.01551

= 0.574 B:
0.00260
0.00911

= 0.286 C:
0.00265
0.00778

= 0.341

D:
0.02471
0.02877

= 0.859 E:
0.00025
0.02171

= 0.012
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Using the signs of the column coordinates in Exhibit 10.3, the CA “factor
loadings” would be the signed square roots:

A: 0.758 B: 0.535 C: 0.584 D: − 0.927 E: − 0.108

• The analogue of a communality is the quality measure on a scale of 0 to
1. For example, in the two-dimensional solution, the CA “communalities”
of the five column categories is given by the last column of Exhibit 11.8
on the original scale: 0.587, 0.816, 0.465, 0.968 and 0.990, respectively.

• The analogue of a specificity is 1 minus the quality measure on a scale of 0
to 1. For example, in the two-dimensional solution, th e CA “specificities”
of the five column categories are 0.413, 0.184, 0.535, 0.032 and 0.010,
respectively.

SUMMARY:
Contributions to

Inertia

1. The (total) inertia of a table quantifies how much variation is present in
the set of row profiles or in the set of column profiles.

2. Each row and each column makes a contribution to the total inertia, called
a row inertia and a column inertia, respectively.

3. CA is performed with the objective of accounting for a maximum amount
of inertia along the first axis. The second axis accounts for a maximum of
the remaining inertia, and so on. Thus the total inertia is also decomposed
into components along principal axes, i.e., the principal inertias.

4. The principal inertias are themselves decomposed over the rows and the
columns. These inertia contributions are more readily expressed in relative
amounts, and there are two possibilities:
(a) express each contribution to the k-th axis relative to the corresponding

principal inertia.

(b) express each contribution to the k-th axis relative to the corresponding
point’s inertia.

5. Possibility (a) allows diagnosing which points have played a major part
in determining the orientation of the principal axes. These contributions
facilitate the interpretation of each principal axis.

6. Possibility (b) allows diagnosing the position of each point and whether a
point is well represented in the map, in which case the point is interpreted
with confidence, or poorly represented, in which case its position is inter-
preted with more caution. These quantities are squared cosines between
the points and the principal axes, also interpreted as squared correlations.

7. The sum of squared correlations for a point in a low-dimensional solution
space gives a measure of quality of representation of the point in that space.

8. The correlations of the points with the axes are the analogues of factor
loadings, and the qualities are analogues of communalities.
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It frequently happens that there are additional rows and columns of data
that are not the primary data of interest but that are useful in interpreting
features discovered in the primary data. Any additional row (or column) of a
data matrix can be positioned on an existing map, as long as the profile of this
row (or column) is meaningfully comparable to the existing row (or column)
profiles which have determined the map. These additional rows or columns
that are added to the map afterwards are called supplementary points.

Contents
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Active pointsUp to now all rows and all columns of a particular table of data have been
used to determine the principal axes and hence the map — we say that all
rows and columns are active in the analysis. One can think of each active
point having a different force of attraction for the principal axes, where this
force depends on the position of the point as well as its mass. Profiles further
from the average have more “leverage” in orienting the map towards them,
and higher mass profiles have a greater “pull” on the map.

Definition of a
supplementary
point

There are situations, however, when we wish to suppress some points from
the actual computation of the solution while still being able to inspect their
projections onto the map which best fits the active points. The simplest way to
think of such points is that they have a position but no mass at all, so that their
contribution to the inertia is zero and they have no influence on the principal
axes. Such zero mass points are called supplementary points, sometimes also
called passive points to distinguish them from the active points which have
positive mass. There are three common situations when supplementary rows
or columns can be useful, and we now illustrate each of these in the context
of the scientific funding data set of the previous chapters. Exhibit 12.1 shows

89
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Exhibit 12.1:
Frequencies of

funding categories
for 796 researchers

(Exhibit 10.1), with
additional column Y

for a new category
of “promising young

researchers”, an
additional row for

researchers at
museums, and a row

of cumulated
frequencies for
Statistics and
Mathematics,
labelled Math

Sciences.

SCIENTIFIC FUNDING CATEGORIES
AREAS A B C D E Y

Geology 3 19 39 14 10 0
Biochemistry 1 2 13 1 12 1
Chemistry 6 25 49 21 29 0
Zoology 3 15 41 35 26 0
Physics 10 22 47 9 26 1
Engineering 3 11 25 15 34 1
Microbiology 1 6 14 5 11 1
Botany 0 12 34 17 23 1
Statistics 2 5 11 4 7 0
Mathematics 2 11 37 8 20 1
Museums 4 12 11 19 7
Math Sciences 4 16 48 12 27

an expanded version of that data set where we have added:

1. an additional column, labelled Y , which is a special category of funding
for young researchers, a category which had just been introduced into the
funding system;

2. an additional row, labelled Museums, containing the frequencies of re-
searchers working at museums (as opposed to universities, in the rest of
the table);

3. another row, labelled Math Sciences , which is the sum of the rows Statistics
and Mathematics.

First case — a
point inherently

different from the
rest

The study from which these data are derived was primarily aimed at univer-
sity researchers. Researchers from museums, however, were similarly graded
and sponsored by the same funding organization, hence the frequencies of 53
museum researchers in the five funding categories. While it is necessary to
consider the museum researchers separately from those at universities, it is
still of interest to visualize the profile of museum researchers in the “space” of
the university researchers, which can be done by declaring the row Museums
to be a supplementary point. Its profile does not participate in the determi-
nation of the principal axes, but its profile can be projected onto the map.
Exhibit 12.2 shows the symmetric map, as in Exhibit 10.2, with the additional
point Museums in the lower left-hand side of the map. This point has no con-
tribution to the principal inertia, but we can still look at the contributions
of the axes to the point (i.e., the relative contributions or squared cosines or
squared correlations). It turns out that this point is quite well displayed in
the map, with over 50% of its inertia explained by it. Its position indicates
that relatively few of the museum researchers have their applications rejected,
while those that do receive funding tend towards the lower categories. Various
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Second case — an outlier of low mass 91

Exhibit 12.2:
Symmetric map of
the data of Exhibit
12.1 (cf. Exhibit
10.2), showing in
addition the profile
positions of the
supplementary
column Y and
supplementary rows
Museums and Math
Sciences.
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types of supplementary information may be added to an active data set. Such
information may be part of the same study, as in the case of Museums above,
or it may come from separate but similar studies. For example, a similar ta-
ble of frequencies may be available from a previous classification of scientific
researchers, and may be added as a set of supplementary rows in order to
trace the evolution of each discipline’s funding position over time. Another
example is when some target profiles for the disciplines are specified and we
want to judge how far away their actual positions are from the targets. This
concept of an “ideal point” is frequently used in product positioning studies
in marketing research.

Second case — an
outlier of low mass

Because the additional Y category had only just been introduced into the
funding system, very few researchers were allocated to that category, in fact
only six researchers and each one in a different discipline. This means that the

© 2007 by Taylor & Francis Group, LLC



92 Supplementary Points

Exhibit 12.3:
CA map of the

columns of Exhibit
12.1 when Y is
included as an

active point. The
axes have rotated by
about 30◦ compared

to Exhibit 12.2.
Exhibits 12.2 and

12.3 are on the same
scale to facilitate

comparison.
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profile of this column is quite unusual: six of the profile values have the value
1
6 = 0.167 and the others are 0. No other column profile has the slightest
resemblance to this one, so it is to be expected that it has a very unusual
position in the multidimensional space. As we see in Exhibit 12.2, this point
is an outlier and if it were to be included as an active point in the analysis, it
may contribute greatly to the map. This would not be a satisfactory situation
since only six people are contained in the column Y — hence, apart from the
substantive reason for making it supplementary, there is also a technical one.
In this particular case, if we do include Y as an active point, its mass is less
than 1% of the columns, but the total inertia of the table increases from 0.0829
to 0.0920, an increase of 11%. In addition, the map changes substantially, as
can be seen in Exhibit 12.3 — there appears to be an approximate 30◦ rotation
in the solution compared to the previous solution; hence the inclusion of Y
has swung the axes around. We should be on the lookout for such outlying
points with low mass that contribute highly to the inertia of the solution. In
some extreme cases outliers can start to dominate a map so much that the
more interesting contrasts between the more frequently occurring categories
are completely masked. By declaring outliers supplementary their positions
can still be approximately visualized without influencing the solution space.
Another way of dealing with rows or columns of low mass is to combine them
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with other rows or columns in a way which conforms to the data context: if we
had an additional discipline, for example “Computer Science” with very few
researchers in this category and a possibly strange profile as a result, we could
combine them with an allied field, say Mathematics or Engineering. Having
said this, it is a fact that outliers of low mass are often not such a serious
problem in CA, since influence is measured by mass times squared distance
and the low mass decreases the influence. The real problem is the fact that
they lie so far from the other points — we return to this subject in Chapter
13 when we discuss alternative scalings for the map.

Third case —
displaying groups
or partitions of
points

Supplementary points can be used to display a group of categories or to display
subdivisions of a category. For example, the additional row Math Sciences in
Exhibit 12.1 is the sum of the frequencies for Mathematics and Statistics, two
disciplines which are frequently grouped together. The profile of this new
row is the centroid of the two component rows, which are weighted by their
respective masses. Since there are 78 and 29 researchers in Mathematics and
Statistics respectively, the profile of Math Sciences would thus be:

Math Sciences profile = 78

107
× Mathematics profile + 29

107
× Statistics profile

so that the Math Sciences profile would be more like the Mathematics profile
than the Statistics one. Geometrically, this means that the point representing
the profile of Math Sciences is on a line between the Mathematics and Statis-
tics points, but closer to Mathematics (cf. Exhibit 3.5 on page 23). In order to
display the point Math Sciences, as in Exhibit 12.2, the new row is declared
to be a supplementary point. We would not make this point active along with
its two component rows, since this would mean that the 107 researchers in
these two disciplines would be counted twice in the analysis. In the same
way, subdivisions of categories may be displayed on existing CA maps. Sup-
pose that data were available for a breakdown of Engineering into its different
branches, for example mechanical, civil, electrical, etc. Then, to investigate
whether the profiles of these subgroups lie in the same general region, these
additional rows of frequencies can simply be declared supplementary. The
result described above still applies: in the map the active Engineering point
would be at the centroid of all the points representing its different branches.

Computing the
position of a
supplementary
point

In the above we have described supplementary points as additional profile
points that are projected onto a previously computed map. An alternative
way of obtaining their positions is to position them relative to the set of ver-
tex points in an asymmetric map. For example, in Chapter 3 it was shown
that the position of a row profile, say, is a weighted average of the column
vertices, where the weights are the profile elements. A supplementary point
can be positioned in exactly the same way. Once the principal axes of the row
profiles have been determined, we know the coordinate positions of the vertex
points representing the columns on each principal axis, i.e., the standard co-
ordinates of the columns. An extra row profile can now be placed on any map
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by evaluating the appropriate centroid of the vertices on each principal axis
of the map, using the elements of the new profile as weights. For example, to
calculate the position of the supplementary point Museums:

position of Museums = 4

53
× vertex A + 12

53
× vertex B + · · · etc.

i.e., calculate the weighted average of the standard coordinates of the columns
along each principal axis.

Contributions
of supplementary

points

Since supplementary points have zero mass, they also have zero inertia and
make no contribution to the principal inertias. Their relative contributions,
which relate to the angles between profiles and axes and do not involve masses,
can still be interpreted to diagnose how well they are represented. The rel-
ative contributions and qualities in the two-dimensional space of the three
supplementary points described above are as follows:

SUPPLEMENTARY Relative contributions Quality
POINTS Axis 1 Axis 2 in 2-dimns

Museums 225 331 556
Math Sciences 493 66 559
Y 4 587 641

These quantities describe how well these additional points are being displayed.
For example, the supplementary point Y subtends an angle whose squared
cosine is 0.054 with the first axis and 0.587 with the second axis. Its quality of
display in the plane is thus 0.054+0.587 = 0.641, so that 64.1% of its position
is contained in the plane, and 35.9% in the remaining dimensions. Or we can
say that Y is correlated

√
0.641 = 0.801 with the plane.

Vertices are
supplementary

points

We have already encountered supplementary points in the form of the ver-
tex points which we projected onto maps for purposes of interpretation, but
whose positions were not taken into account in computing the map itself. This
suggests an alternative way of determining the positions of the vertices: firstly,
increase the data set by a number of rows, as many as there are columns of
data, each of which consists of zeros except for a single 1, where this 1 is
in a different column of each row (Exhibit 12.4); and secondly, declare these

Exhibit 12.4:
Supplementary rows

which could be
added to the table
in Exhibit 12.1 —
their positions are

identical to the
column vertex

points.

FUNDING
CATEGORIES A B C D E

A 1 0 0 0 0
B 0 1 0 0 0
C 0 0 1 0 0
D 0 0 0 1 0
E 0 0 0 0 1
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additional rows to be supplementary points. The positions of these supple-
mentary rows are identical to those of the column vertices; in other words
their coordinates will be the standard coordinates of the columns.

Categorical
supplementary
variables and
dummy variables

The example of column Y and the vertex points in Exhibit 12.4 should not
be confused with what is called “dummy variable” coding, a subject which
we shall treat in detail when we come to multiple correspondence analysis in
later chapters. For example, suppose that we had a classification of the scien-
tific areas into “Natural Sciences” (NS) and “Biological Sciences” (BS), the
latter group including Biochemistry, Zoology, Microbiology and Botany while
the former group contains the rest. A standard way of coding this in CA is
as a pair of dummy variables, NS and BS say, zero-one variables with the
values NS = 1 and BS = 0 for Geology (a natural science), for example, and
NS = 0 and BS = 1 for Biochemistry (a biological science), and so on. One
might be tempted to add these dummy variables as columns of the table and
display them as supplementary points, but this would not be correct. This is
not a count variable like the Y variable, which happened to have had 0’s and
1’s as well; in that case the data were real counts and could have been other
integer values. The correct way to display this NS/BS information is as a pair
of rows, similar to the way we displayed Math Sciences above. That is, sum
up the frequencies for the NS rows and add an extra row called NS to the
table, and do the same for the BS rows. In this way the NS and BS points
will be weighted averages of the points representing the two sets of scientific
areas (we shall return to this subject in Chapter 18).

Continuous
supplementary
variables

Additional information in the form of continuous variables also needs special
consideration. Suppose we had some external information about each scien-
tific area, for example, the average impact factor of all papers published in
these areas in international journals. This would also be stored as a column
of data, and because these are all positive numbers one might be tempted
to represent the profile of this column in the standard supplementary point
fashion. But remember that it is the profile of the column that is represented,
not the original numbers, so the values should be nonnegative and expressing
them as proportions of the total should make sense in the context of the study.
But what if the data were changes in the average impact factors over a period
of time, so that some changes were positive and some negative? Clearly, ex-
pressing these changes relative to their sum makes no sense. In this situation
the continuous variable can be depicted in the map in a completely differ-
ent way, using regression analysis. This subject will be treated in more detail
in Chapters 13 and 14 and also in Chapter 24 on canonical correspondence
analysis, which is a combination of CA and regression — for the moment, we
merely alert the reader to the problem.
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SUMMARY:
Supplementary

Points

1. The rows and columns of a table analysed by CA are called active points.
These are the points that determine the orientation of the principal axes
and thus the construction of low-dimensional maps. The active rows and
columns are projected onto the map.

2. Supplementary (or passive) points are additional rows or columns of a table
which have meaningful profiles and which exist in the full spaces of the row
and column profiles respectively. They can also be projected onto a low-
dimensional map in order to interpret their positions relative to the active
points.

3. Since supplementary points have zero mass, all quantities involving the
mass, the point inertia and the contribution of the point to an axis, are
also zero.

4. The contribution of each principal axis to a supplementary point (i.e.,
squared cosine or squared correlation) can be computed and allows an as-
sessment of whether a supplementary point lies to a larger or lesser extent
in the subspace of the map. For example, the map might explain the sup-
plementary point quite well even though the supplementary point has not
determined the solution.

5. Be on the lookout for outliers with low mass — their presence in the anal-
ysis might have high influence on the solution. If they do, they should be
made supplementary or combined with other rows or columns in a sub-
stantively sensible way.

6. A supplementary categorical variable, for example a column, should be
used to agglomerate the rows according to its categories and then add
these categories as supplementary rows of the table.

7. Care is needed when adding an external continuous variable as a supple-
mentary point: its values have to be nonnegative and its profile must make
sense in the context of the example.
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Up to now we have drawn and interpreted CA maps in two possible ways.
In the asymmetric map, for example in the row analysis, the χ2-distances
between row profiles are displayed as accurately as possible, taking into ac-
count the masses of each profile, while the column vertices serve as references
for the interpretation. In the symmetric map, the rows and the columns are
both represented as profiles, thus the χ2-distances between row profiles and
between column profiles are approximated. The biplot is an alternative way of
interpreting a joint map of row and column points. This approach is based on
the scalar products between row vectors and column vectors, which depend
on the lengths of the vectors and the angles between them rather than their
interpoint distances. In the biplot only one of the profile sets, either the rows
or the columns, are represented in principal coordinates. In fact, asymmetric
CA maps, with one set in principal coordinates and the other in standard
coordinates, are biplots. But there are alternative choices of coordinates for
the other set of points serving as the references for the interpretation.
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Definition of a
scalar product

In Euclidean geometry a scalar product between two vectors x and y with
coordinates x1, x2, . . . and y1, y2, . . . is the sum of products of respective
elements xkyk, denoted by xTy =

∑
k xkyk (T is the notation for the transpose

of a vector or a matrix). Geometrically the scalar product is equal to the
product of the lengths of the two vectors, multiplied by the cosine of the

97
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angle between them:

xTy =
∑

k

xkyk = ‖x‖ · ‖y‖ · cos θ (13.1)

where ‖x‖, for example, denotes the length of the vector x, i.e., the distance
between the point x and the zero point. This result is illustrated in two-
dimensional space in Exhibit 13.1 (notice that two vectors in multidimensional
space can always be represented in a plane).

Exhibit 13.1:
Example of two
points x and y
whose vectors

subtend an angle of
θ with respect to an

origin (usually the
centroid of the cloud

of points). The
scalar product

between the points
is the length of the

projection of x, say,
onto y, multiplied
by the length of y.
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Relationship
between scalar

product and
projection

Another standard geometric result is that the perpendicular projection of a
vector x onto a direction defined by a vector y has a length equal to the length
of x multiplied by the cosine of the angle between x and y, i.e., the ‖x‖ · cos θ
part of the definition (13.1). Thus, the scalar product between x and y can
be thought of as the projected length of x onto y multiplied by the length of
y (illustrated in Exhibit 13.1), or, equivalently, as the projected length of y
onto x multiplied by the length of x. If the length of one of the vectors, say
y, is one, then the scalar product is simply the length of the projection of the
other vector x onto y.

For fixed
reference vector,

scalar products are
proportional to

projections

If we think of y as a fixed reference vector, and then imagine several vectors
x1,x2, . . . projecting onto y, then it is clear that

• the scalar products xT
1 y,xT

2 y, . . . have magnitudes proportional to the pro-
jections, since they are the projections multiplied by the fixed length of
y;

• the sign of a scalar product is positive if the vector x makes an acute angle
(< 90◦) with y and it is negative if the angle is obtuse (> 90◦).

These properties are the basis for the biplot interpretation of CA.
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A simple exact
biplot

The biplot is a low-dimensional display of a rectangular data matrix where
the rows and columns are represented by points, with a specific interpretation
in terms of scalar products. The idea is to recover the individual elements of
the data matrix approximately in these scalar products. As an initial example
of a biplot that recovers the data exactly, consider the following 5 × 4 table,
denoted by T:

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

8 2 2 −6

5 0 3 −4

−2 −3 3 1

2 3 −3 −1

4 6 −6 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(13.2)

and then compare it to the map in Exhibit 13.2, where we also give the
coordinates of each point. (Notice the convention in matrix algebra to denote
vectors as columns, so that a vector is transposed if it is written as a row.)

Exhibit 13.2:
Map of five row
points xi and four
column points yj .
The scalar product
between the i-th row
point and the j-th
column point gives
the (i, j)-th value tij

of the table in
(13.2). The column
points are drawn as
vectors to encourage
the interpretation of
the scalar products
as projections of the
points onto the
vectors, multiplied
by the respective
lengths of the
vectors.
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x1x2

x3

x4

x5

y1

y2

y3

y4

x1 = [ 2 2 ]T

x2 = [ 1 2 ]T

x3 = [ –1 1 ]T

x4 = [ 1 –1 ]T

x5 = [ 2 –2 ]T

y1 = [ 3 1 ]T

y2 = [ 2 –1 ]T

y3 = [ –1 2 ]T

y4 = [ –2 –1 ]T

For example, the scalar product between x1 and y1 is equal to 2×3+2×1 = 8,
the first element of T. Just to show that (13.1) can also be used, although
with much more trouble, first calculate the respective angles that x1 and y1

make with the horizontal axis, using basic trigonometry: arctan(2/2) = 45◦

and arctan(1/3) = 18.43◦, respectively; hence the angle between x1 and y1 is
45 − 18.43 = 26.57◦. Equation (13.1) thus gives the scalar product as:

xT
1y1 = ‖x1‖ · ‖y1‖ · cos θ =

√
8 ·

√
10 · cos(26.57◦) = 8.00

so this checks. The projection of x1 onto y1 is equal to
√

8 cos(26.57◦) = 2.530,
and the length of y1 is

√
10 = 3.162, the product of which is 8.00.
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Some special
patterns in biplots

The “bi” in the name biplot comes from the fact that both rows and columns
are displayed in a map, not from the bidimensionality of the map — biplots
could be of any dimensionality, but the most common case is the planar one.
The points in Exhibit 13.2 have been chosen to illustrate some other properties
of a biplot:

• x2 and y2 are at right angles, so x2 projects onto the origin; hence the
value t22 in table T is 0.

• x2 and x3 project onto y3 at the same point; hence the values t23 and t33
are equal (= 3 in this case).

• x5 is opposite x3 with respect to the origin and twice as far away, that is
x5 = −2x3; hence the fifth row of table T is twice the third row, with a
change of sign.

• x3, x4 and x5 are on a straight line (this could be any straight line, not
necessarily through the origin), so they have a linear relationship, specifi-
cally x4 = 1

3x3 + 2
3x5; this weighted average relationship carries over to the

corresponding rows of T, for example t41 = 1
3 t31+ 2

3 t51 = 1
3 (−2)+ 2

3 (4) = 2.

Rank and
dimensionality

In mathematics we would say that the rank of the matrix T in (13.2) is equal to
2, and this is why the table can be perfectly reconstructed in a two-dimensional
biplot. In our geometric approach, rank is equivalent to dimensionality.

Biplots give
optimal

approximations of
real data

In real life, a data matrix has higher dimensionality and cannot be recon-
structed exactly in a low-dimensional biplot. The idea of the biplot is to find
row points xi and column points yj such that the scalar products between the
row and column vectors approximate the corresponding elements of the data
matrix as closely as possible. So we can say that the biplot models the data
tij as the sum of a scalar product in some low-dimensional subspace (say K∗

dimensions) and a residual “error” term:

tij = xT
i yj + eij

=
K∗∑
k=1

xikyjk + eij (13.3)

This biplot “model” is fitted by minimizing the errors, usually by least squares
where

∑
i

∑
j e2

ij is minimized. This looks just like a multiple linear regression
equation, except that there are two sets of unknown parameters, the row
coordinates {xik} and the column coordinates {yjk} — we shall return to the
connection with regression analysis in Chapter 14.

The CA model To understand the link between CA and the biplot, we need to introduce a
mathematical formula which expresses the original data nij in terms of the
row and column masses and coordinates. One version of this formula, known
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as the reconstitution formula (see Theoretical Appendix, page 204), is:

pij = ricj(1 +
K∑

k=1

√
λkφikγjk) (13.4)

where

• pij are the relative proportions nij/n, n being the grand total
∑

i

∑
j nij

• ri and cj are the row and column masses

• λk is the k-th principal inertia

• φik and γjk are row and column standard coordinates, respectively.

In the summation in (13.4) there are as many terms K as there are dimensions
in the data matrix, which we have seen to be equal to one less than the number
of rows or columns, whichever is smaller. If we map the CA solution in K∗

dimensions, where K∗ is usually 2, then the fit is optimal since the terms in
(13.4) from K∗+1 onwards are minimized — these latter terms thus constitute
the “error”, or residual.

Biplot of
contingency ratios

Equation (13.4) can be slightly re-arranged so that the right-hand side is in
the form of a scalar product in a space of dimensionality K∗, plus an error
term, as in (13.3):

pij

ricj
− 1 =

K∗∑
k=1

fikγjk + eij (13.5)

where fik =
√

λkφik, the principal coordinate of the ith row on the kth axis.
This shows that the row asymmetric map, which displays row principal co-
ordinates fik and column principal coordinates γjk, is an approximate biplot
of the values on the left-hand side of (13.5). The ratios pij/(ricj) of observed
proportions to expected ones are called contingency ratios — the closer these
ratios are to 1, the closer the data are to the independence (or homogeneity)
model.

Biplot from row
profile point of
view

We can also write (13.5) from the row profile point of view as:

(
pij

ri
− cj)/cj =

K∗∑
k=1

fikγjk + eij (13.6)

which shows that the row asymmetric map is also a biplot of the deviations of
the row profiles from their average, relative to their average (see, for example,
Exhibit 10.2). As we have seen, however, the asymmetric map can be quite
unsatisfactory when inertia is small, because the row profiles (with coordinates
fik) are concentrated into a small space at the centre of the map, while the
column vertex points (with coordinates γjk) are very far out.

The standard CA
biplot

In the biplot it is the direction of each vertex point which is of interest,
since this direction defines the line onto which the row profiles are projected.
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Exhibit 13.3:
Standard CA biplot

of the scientific
researchers data of

Exhibit 10.1,
showing the rows in

principal
coordinates and the

columns in their
vertex directions but

rescaled by
multiplying the

standard
coordinates by the
square root of the

mass of each
column. The

position of A, for
example, in Exhibit

10.3 has been
multiplied by√

0.0389 = 0.197 to
obtain the position

of A in this map.
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Different variations of this biplot have been proposed to redefine the lengths
of these vectors. The most convenient of these alternatives is to rewrite (13.6)
as follows:

(
pij

ri
− cj)/c

1/2
j =

K∗∑
k=1

fik(c1/2
j γjk) + eij (13.7)

(notice that the residuals eij in (13.7) have a different definition and standard-
ization compared to (13.6), although we use the same notation in each case).
Thus we have expressed the left-hand side as a standardized deviation from
the average, and then we absorb the remaining factor c

1/2
j into the coordinate

of the column point on the right-hand side. In this way, the vertex point gets
pulled inwards by an amount equal to the square root of the mass of the cor-
responding category, so that the rarer categories are pulled in more, which is
just what we want to improve the legibility of the asymmetric map. Because
this biplot represents standardized values, it is called the standard CA biplot.
Exhibit 13.3 shows the standard CA biplot for the research funding example;
compare this map with Exhibits 10.2 and 10.3. In all these maps the positions
of the row points are the same, it is the positions of the column points that
change (compare the scales of each map).
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Interpretation of
the biplot

In Exhibit 13.3 the column points have no distance intepretation, they point
in the directions of the biplot axes, and it is the projections of the row points
onto the biplot axes which give estimates of the standardized values on the
left-hand side of (13.7). Thus we can take a fixed reference direction, such as
D, and then line up the projections of all the rows on this axis to estimate
that Zoology has the highest profile element, then Botany, Geology, and so
on, with Physics and Biochemistry having the lowest profile values on D (a
few calculations on Exhibit 10.1 show this to be correct, with some small
exceptions since this is an approximate biplot, representing 84% of the total
inertia of the table).

Calibration of
biplots

Since the projections of the rows onto the biplot axes are proportional to
the values on the left-hand side of (13.7), each biplot axis can be calibrated
in profile units. For example, to estimate the standardized profile values for
category A, the projections of the row points have to be multiplied by the
length of the A vector, equal to 0.484. To unstandardize and return to the
original profile scale, multiply this length by the square root of the mass
(
√

0.0389 = 0.197) to obtain the scale factor of 0.0955. The calibration of a
biplot axis is computed by simply inverting this value: 1/0.0955 = 10.47. This
is the length of the full range of one unit on the profile scale. An interval of
1% (i.e., 0.01) on the biplot axis in Exhibit 13.4 is thus a hundredth of this
length, i.e., 0.1047. So we know all three facts necessary for calibrating the
A axis: (i) the origin of the map represents the average of 0.039 (or 3.9%)
for A); (ii) a length of 0.01 (1%) is equal to 0.1047; and (iii) the vector in
Exhibit 13.3 indicates the positive direction of the axis. Exhibit 13.4 shows
the calibrations on the A axis as well as the result of a similar calibration on
the D axis.

Overall quality of
display

Previously we thought of the overall quality of a two-dimensional correspon-
dence map as the amount of inertia accounted for by the first two principal
axes. The biplot provides another way of thinking about the map’s quality,
namely as the success of recovering the profile values in the map. The original
row profiles in the second table of Exhibit 10.2 can be approximately recov-
ered by the two-dimensional biplot in Exhibit 13.3, for example by projecting
all the row points onto the calibrated column axes. The closer the estimated
profile values are to the true ones, the higher the quality of the map. Con-
versely, the differences between the true profile elements and the estimated
ones can be accumulated to give an overall measure of error. When accumu-
lated in a chi-squared fashion, i.e., by taking squared differences divided by
the expected values, exactly the same measure of error will be obtained as
before. In this particular example, the percentage of explained inertia in the
two-dimensional map is 84%; hence the error is 16%.
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Exhibit 13.4:
Symmetric map of

Table 10.1 (scientific
funding data), with
calibrated axes for

categories A and D.
Notice that the

calibrated axes are
in the directions of

the vertex points
and do not pass

exactly through the
category profile
points (in this

example they come
very close to the

category points in
principal

coordinates because
the difference

between the inertias
on the two axes is

small).
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SUMMARY:
Correspondence
Analysis Biplots

1. A scalar product between two vectors is the product of their lengths mul-
tiplied by the cosine of the angle between them.

2. Since the perpendicular projection of a vector x onto the direction defined
by a second vector y has a length equal to the length of x multiplied by
the cosine of the angle between x and y, the scalar product can be thought
of as the product of the length of the projection of x and the length of y.

3. A biplot is a method of displaying a point for each row and column of a data
matrix in a joint map such that the scalar products between the row vectors
and the column vectors approximate the values in the corresponding cells
of the matrix as closely as possible.

4. Asymmetric maps in CA are biplots; strictly speaking, symmetric maps
are not, although in practice the directions defined by the profile point and
the corresponding vertex point are often not too different, in which case
the biplot interpretation is still valid.

5. A variation of the asymmetric map which is a convenient biplot is the one
where the position of each vertex point is pulled in towards the origin by
an amount equal to the square root of the mass associated with the vertex
category — this is the standard CA biplot.

6. Biplot axes passing through the origin of the map and the vertices (or
rescaled vertices) may be calibrated in profile units (either proportions or
percentages). This allows approximate profile values to be read directly off
the map by projecting profile points onto the calibrated biplot axes.
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CA produces a map where the rows and columns are depicted together as
points, with an interpretation that depends on the choice amongst the many
scaling options for the row and column points. Geometrically, we have seen
how the positions of the row points depend on the positions of the column
points, and vice versa. In this chapter we focus on the mathematical relation-
ships between the row and column points, known as the transition equations.
In addition, since regression analysis is a well-known method in statistics, we
show how the row and column results and the original data can be connected
through linear regression models. This chapter can be skipped without losing
the thread of the presentation of the geometric interpretation of CA.

Contents

Coordinates on first axis of scientific funding example . . . . . . . . . . 105
Regression between coordinates . . . . . . . . . . . . . . . . . . . . . . . 106
The profile–vertex relationship . . . . . . . . . . . . . . . . . . . . . . . 106
Principal coordinates are conditional means in regression . . . . . . . . 107
Simultaneous linear regressions . . . . . . . . . . . . . . . . . . . . . . . 108
Transition equations between rows and columns . . . . . . . . . . . . . . 108
Regression between coordinates using transition equations . . . . . . . . 109
Recall the CA bilinear model . . . . . . . . . . . . . . . . . . . . . . . . 109
Weighted regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Correlations in weighted regression recover the relative contributions . . 111
Reciprocal averaging and alternating least squares . . . . . . . . . . . . 111
SUMMARY: Transition and Regression Relationships . . . . . . . . . . 112

Coordinates on
first axis of
scientific funding
example

In this chapter we are interested in the relationships between all the coordi-
nates, row and column, principal and standard, that emanate from a CA, as
well as their relationships with the original data. Initially we look at the rela-
tionships that are valid for each principal axis separately. Using the scientific
funding example again, we reproduce in Exhibit 14.1 all the results for the
first principal axis. This axis has inertia λ1 = 0.03912, with

√
λ1 = 0.1978. We

have seen in Chapter 8 that this latter value, which is the scaling factor which
links the principal to the standard coordinates, can also be interpreted as a
correlation coefficient between rows and columns in terms of their coordinates
on the first dimension. Since correlation is related to regression, we first look
at the regression of row coordinates on column coordinates and vice versa.

105
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Exhibit 14.1:
Principal and

standard
coordinates of the

scientific disciplines
and research

funding categories
on the first principal

axis of the CA
(original data in

Exhibit 10.1).

SCIENTIFIC Princ. Stand. FUNDING Princ. Stand.
DISCIPLINE coord. coord. CATEGORY coord. coord.

Geology 0.076 0.386 A 0.478 2.417
Biochemistry 0.180 0.910 B 0.127 0.643
Chemistry 0.038 0.190 C 0.083 0.417
Zoology –0.327 –1.655 D –0.390 –1.974
Physics 0.316 1.595 E –0.032 –0.161
Engineering –0.117 –0.594
Microbiology 0.013 0.065
Botany –0.179 –0.904
Statistics 0.125 0.630
Mathematics 0.107 0.540

Regression
between

coordinates

In Exhibit 8.5, using the health survey data, we showed the scatterplot of
values of the row and column coordinates on the first principal axis, for each
individual constituting the contingency table. Exhibit 14.2 shows the same
type of plot for the standard coordinates of the scientific funding data. There
are 50 points in this plot, corresponding to the 50 cells in the contingency table
of Exhibit 10.1. Each box is centred on the pair of values for the respective
cell, and has area proportional to the number of individuals (scientists) at that
point. We know that the correlation, calculated for all 796 individuals which
occur at the 50 points in this plot, is equal to 0.1978. Here we are interested
in the regressions of scientific discipline on funding category, and funding
category on scientific discipline. To compute a regression analysis we can string
out all 796 scientists and assign their corresponding pair of values, for example
a geologist in the A category would have the pair of standard coordinate
values 0.386 (the y-variable, say) and 2.417 (the x-variable), according to
Exhibit 14.1. Since there are only 50 unique pairs, an alternative is list the
50 pairs of coordinate values along with their frequencies and then perform a
weighted regression with the frequencies as weights (this is illustrated in the
Computational Appendix, pages 227–228). A standard result in simple linear
regression is that the slope coefficient is equal to the correlation multiplied by
the ratio of the standard deviations of the y-variable to the x-variable. The
variances of the row and column standard coordinates are the same (= 1);
hence the slope of the regression of y on x will be the same as the correlation,
i.e. 0.1978 (Exhibit 14.2). In a symmetric way, the regression of x onto y will
also have a slope of 0.1978, but this is with respect to the x-axis as vertical
and the y-axis as horizontal — this is a slope of 1/0.1978 = 5.056 in the plot
of Exhibit 14.2 where y is the vertical axis.

The
profile–vertex

relationship

We saw as early as Chapter 3 that the row profiles are at weighted averages
of the column vertices, where the weights are the values of the row profiles.
The same relationship holds between column profiles and row vertices. These
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Exhibit 14.2:
Scatterplot based on
standard
coordinates of rows
and columns on first
CA dimension
(Exhibit 14.1).
Squares are shown
at each combination
of values, with area
proportional to the
number of
respondents. The
two regression lines,
rows on columns
and columns on
rows, have slopes of
0.1978 and 5.056,
inverses of each
other. The dots •
indicate conditional
means (weighted
averages), i.e.,
principal
coordinates.
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weighted average relationships hold in any projected space, in particular they
hold for the coordinates along the principal axes, as illustrated in Chapter 8.
In other words, along an axis k, the principal coordinates of the row points
are at weighted average positions of the standard coordinates of the column
points, and vice versa. This relationship can be illustrated for the first princi-
pal axis by calculating weighted average positions for each row according to
the standard coordinates of the columns and vice versa, shown by the dots
on the two regression lines in Exhibit 14.2. This shows that the principal
coordinates lie on the two regression lines.

Principal
coordinates are
conditional means
in regression

Regression is a model for the conditional means of the response variable with
respect to the predictor variable. The dots in Exhibit 14.2 are simply the
discrete sets of conditional means of y on x (five means on the line with slope
0.1978) and x on y (ten means on the line with slope 5.056). These means
are the principal coordinates, which thus define the two regression functions.
For example, the row of squares for Physics depicts the corresponding row of
frequencies in the data matrix of Exhibit 10.1, plotted horizontally according
to the first standard coordinates of the five column categories, that is the
vertex positions on principal axis 1. The conditional mean is just the weighted
average, shown by the black dot at the top of the diagram, which is thus
the first principal coordinate of Physics. Similarly, the column of squares for
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category A depicts the frequencies for the first column of the data matrix,
plotted vertically at the first standard coordinate (vertex) positions of the
ten rows. The conditional mean, shown by the black dot at the right, is then
the weighted average position, which is the principal coordinate of A. Thus
Exhibit 14.2 shows both the principal and standard coordinates together; for
example, to read the principal coordinates for the rows, read the values of the
ten dots on the regression line on the horizontal axis according to the scale of
the standard column coordinates, and vice versa.

Simultaneous
linear regressions

The fact that the regressions of y on x (rows on columns) and x on y (columns
on rows) turn out to be straight lines in the CA solution is one of the oldest
definitions of CA, called simultaneous linear regressions . If the row–column
correlation is high, then the two regression lines will be closer together and
the principal coordinates will have more spread; i.e., the inertia will be higher
(remember that the principal inertia is the square of the correlation). In other
words, CA could be defined as trying to achieve simultaneous linear regressions
(i.e., a scatterplot such as Exhibit 14.2) with the least possible angle between
the two regression lines, which is equivalent to maximizing the row–column
correlation.

Transition
equations between
rows and columns

Using notation defined on pages 31 and 101, we can write these weighted
average (or conditional mean) relationships between rows and columns as
follows, remembering that principal coordinates correspond to profiles and
standard coordinates to vertices:

row profile ← column vertices : fik =
∑

j

(
pij

ri

)
γjk (14.1)

column profile ← row vertices : gjk =
∑

i

(
pij

cj

)
φik (14.2)

(the ← stands for “is obtained from”, for example “row profile ← column
vertices” means that the principal coordinates of a row are obtained from the
standard coordinates of all the columns using the given relationship). Here
we use the notation f and g for the principal row and column coordinates,
γ and φ for the standard row and column coordinates, index i for rows, j
for columns and k for dimensions. In parentheses we have the weights which
are the row profiles in (14.1) and the column profiles in (14.2). The weighted
average relationships in (14.1) and (14.2) are called the transition equations.
Recall the relationships between principal and standard coordinates:

row profile ← row vertex : fik =
√

λkφik (14.3)

column profile ← column vertex : gjk =
√

λkγjk (14.4)

where λk is the principal inertia (eigenvalue) on the k-th axis. So we could
write the transition equation between row and column principal coordinates
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as:

row profile ← column profiles : fik =
1√
λk

∑
j

(
pij

ri

)
gjk (14.5)

column profile ← row profiles : gjk =
1√
λk

∑
i

(
pij

cj

)
fik (14.6)

and similarly between row and column standard coordinates:

row vertex ← column vertices : φik =
1√
λk

∑
j

(
pij

ri

)
γjk (14.7)

column vertex ← row vertices : γjk =
1√
λk

∑
i

(
pij

cj

)
φik (14.8)

Regression
between
coordinates using
transition
equations

Any of the above transition equations can be used trivially in a standard lin-
ear regression analysis, with the profiles as predictors, in order to “estimate”
a set of coordinates. As an illustration, we recover the column standard co-
ordinates in (14.1), using the 10 × 5 matrix of row profiles of Exhibit 10.1 as
five predictors and the first principal coordinates of the rows (first column of
Exhibit 14.1) as response. The regression analysis gives the following results
for the regression coefficient:

Source Coefficient

Intercept 0.000
A 2.417
B 0.643
C 0.417
D –1.974
E –0.161

R2 = 1.000

The variance explained is 100% and the regression coefficients are the column
standard coordinates on the first axis (see last column of Exhibit 14.1).

Recall the CA
bilinear model

The more interesting and relevant regression analysis is when the data are to
be predicted from the coordinates, as summarized in the CA model given in
Chapter 13. We repeat this model here in three different versions, a “symmet-
ric” version using only standard coordinates (see (13.4)), and the two asym-
metric versions using row and column principal coordinates, respectively:

pij

ricj
= 1 +

K∗∑
k=1

√
λkφikγjk + eij (14.9)

(
pij

ri

)
/cj = 1 +

K∗∑
k=1

fikγjk + eij (14.10)
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(
pij

cj

)
/ri = 1 +

K∗∑
k=1

φikgjk + eij (14.11)

This model is called bilinear because it is linear in the products of parameters.
We shall, however, fix either the row or column standard coordinates, and show
how to obtain the principal coordinates of the other set by multiple regression
analysis.

Weighted
regression

On the left-hand sides of (14.9), (14.10) and (14.11) are the contingency ratios
defined in Chapter 13, written in three equivalent ways. Taking (14.10) as an
example, and assuming that the standard coordinates γjk of the columns are
known, we have on the right-hand side a regular regression model which is
predicting the values of the rows on the left. Suppose that we are interested
in the first row (Geology) and want to perform a regression for K∗ = 2. To
fit the CA model, we have to minimize a weighted sum of squared residu-
als, where the categories (columns) are weighted by their masses. Another
way of understanding this is that in (14.10) the “predictors” γjk are normal-
ized with respect to column masses as follows:

∑
j cjγ

2
jk = 1. Furthermore,

the predictors are orthogonal as well when we weight by the column masses:∑
j cjγjkγj′k = 0 if j �= j′. Hence, to perform the regression we set up the

response vector as the 5× 1 vector of contingency ratios for Geology, and the
predictors as the 5 × 2 matrix of column standard coordinates on the first
two principal axes. The weighted regression analysis is performed with re-
gression weights equal to the column masses cj . The data (contingency ratios
p1j/(r1cj) for Geology (row 1), γ1 and γ2 denoting column standard coordi-
nates for dimensions 1 and 2 respectively, and weights cj) are as follows:

Category Geology γ1 γ2 Weight

A 0.9063 2.4175 -0.4147 0.0389
B 1.3901 0.6434 -0.9948 0.1608
C 1.1781 0.4171 -0.2858 0.3894
D 1.0163 -1.9741 -0.7991 0.1621
E 0.4730 -0.1613 1.6762 0.2487

The results of the regression are:

Source Coefficient Standardized coefficient

Intercept 1.000 —
f11 0.076 0.234
f12 -0.303 -0.928

R2 = 0.916

The coefficients are the principal coordinates f11 and f12 of Geology (see the
first one in Exhibit 14.1) while the variance explained (R2) is the quality of
Geology in the two-dimensional map (see Exhibit 11.8).
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Correlations in
weighted
regression recover
the relative
contributions

Since the predictors are standardized and orthogonal in the weighted regres-
sion, it is known that the standardized regression coefficients are also the
partial correlations between the response and the predictors. The correlation
matrix between all three variables is as follows (remember that the weights
are included in the calculation):

Variables Geology γ1 γ2

Geology 1.000 0.234 -0.928
γ1 0.234 1.000 0.000
γ2 -0.928 0.000 1.000

The two predictors are uncorrelated, as expected, and the correlations be-
tween Geology and the two predictors are exactly the standardized regression
coefficients. The squares of these correlations, 0.2342 = 0.055 and (−0.928)2 =
0.861, are the squared cosines (relative contributions) given in Exhibit 11.6.
The above series of results illustrates the property in regression that if the
predictors are uncorrelated, then the variance explained R2 is equal to the
sum of squares of the partial correlations.

Reciprocal
averaging and
alternating least
squares

The transition equations (14.1) and (14.2) are the basis of a popular algo-
rithm for finding the solution of a CA, called reciprocal averaging. The algo-
rithm starts from any set of standardized values for the columns, say, where
centring and normalizing are always with respect to weighted averages and
weighted sum of squares. Then the averaging in (14.1) is applied to obtain a set
of row values. The row values are then used in the averaging equation of (14.2)
to obtain a new set of column values. The column values are restandardized
(otherwise the sucessive averagings would just collapse the values to zero).
The above process is repeated until convergence, giving the coordinates on
the first principal axis. Finding the second set of coordinates is more com-
plicated because we have to ensure orthogonality with the first, but the idea
is the same. We have shown in different ways that the passage from column
to row coordinates and row to column coordinates can be described by a re-
gression analysis in each case, so that this flip-flop process is also known as
alternating least-squares , or alternating regressions. Numerically, it is better
to perform the computations using the SVD (see page 47 as well as the Theo-
retical and Computational Appendices), but for a fuller understanding of CA
it is illuminating to be aware of these alternative algorithms.
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SUMMARY:
Transition and

Regression
Relationships

1. For any values assigned to the row and column categories, the conditional
means (i.e., regressions) can be computed for rows on columns or columns
on rows.

2. The CA solution, using standard coordinates on a particular axis as the
two sets of values, has the following properties:
– the two regressions are linear (hence the name simultaneous linear re-

gressions);
– the angle between the two regression lines is minimized;
– the conditional means which lie on the two regression lines are the prin-

cipal coordinates.

3. The weighted average relationship between row and column coordinates,
when the weights are the elements of profiles (row or column profiles as
the case may be) are called transition equations . Successive applications of
the pair of transition equations leads to an algorithm for finding the CA
solution, called reciprocal averaging.

4. CA can be defined as a bilinear regression model, since the data can be
recovered by a model that is linear in products of the row and column co-
ordinates. This model becomes linear if either set of coordinates is regarded
as fixed, leading to an algorithm for finding the CA solution called alternat-
ing least-squares regressions (which, in fact, is identical to the reciprocal
averaging algorithm).
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Up to now we have been transforming data matrices to maps where the rows
and columns are displayed as points in a continuous space, usually a two-
dimensional plane. An alternative way of displaying structure consists in per-
forming separate cluster analyses on the row and column profiles. This ap-
proach has close connections to CA and decomposes the inertia according to
the discrete groupings of the profiles rather than along continuous axes. In the
case of a contingency table there is an interesting spin-off of this analysis in
the form of a statistical test for significant clustering of the rows or columns.

Contents

Partitioning the rows or the columns . . . . . . . . . . . . . . . . . . . . 113
Between- and within-groups inertia . . . . . . . . . . . . . . . . . . . . . 114
Calculating the inertia within a single group . . . . . . . . . . . . . . . 115
Data set 8: Age distribution in food stores . . . . . . . . . . . . . . . . . 115
Clustering algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Tree representations of the clusterings . . . . . . . . . . . . . . . . . . . 117
Decomposition of inertia (or χ2) . . . . . . . . . . . . . . . . . . . . . . 118
Deciding on the partition . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Testing hypotheses on clusters of rows or columns . . . . . . . . . . . . 118
Multiple comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Multiple comparisons for contingency tables . . . . . . . . . . . . . . . . 119
Cut-off χ2 value for significant clustering . . . . . . . . . . . . . . . . . 119
Ward clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
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Partitioning the
rows or the
columns

The idea of grouping objects together is omnipresent in data analysis. The
grouping might be a given classification, or it might be determined according
to some criterion which clusters similar objects together. We first consider
the former case, when the grouping is established according to a categorical
variable which classifies the rows or columns of a table. Taking the scientific
research funding example again, suppose that there is a pre-determined group-
ing of the scientific disciplines into four groups, according to university fac-
ulties: {Geology, Physics, Statistics, Mathematics}, {Biochemistry, Chemistry},
{Zoology, Microbiology, Botany} and {Engineering}. As we pointed out in Chap-
ter 12, when a categorical variable is defined on the rows, as in this example,
each category defines a supplementary row of the table which merges the fre-
quencies of the rows indicated by that category. Thus the ten rows of Exhibit
10.1 are condensed into four rows corresponding to the four groups, shown in
Exhibit 15.1. The CA of the original data of Exhibit 10.1 had a total inertia

113
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Exhibit 15.1:
Frequencies of

funding categories
for 796 researchers
grouped into four

categories according
to scientific
discipline.

SCIENTIFIC FUNDING CATEGORIES
GROUPS A B C D E Sum

Geol/Phys/Stat/Math 17 57 134 35 63 306
Bioc/Chem 7 27 62 22 41 159
Zool/Micr/Biol 4 33 89 57 60 243
Engi 3 11 25 15 34 88
Sum 31 128 310 129 198 796

of 0.08288, whereas if we perform the CA of Exhibit 15.1, the total inertia
turns out to be 0.04386. There is a loss of inertia when points are merged, or
putting this the other way around, there is an increase in inertia if a row or
column is split apart according to some subclassification.

Between- and
within-groups

inertia

The inertia of the merged table in Exhibit 15.1 is called the between-groups
inertia, since it measures the variation in the table between the four groups
of rows. The difference between the total inertia of 0.08288 and the between-
groups inertia of 0.04386 is called the within-groups inertia, measuring the
variation within the four groups which is lost when we merge the rows into the
groups. This decomposition of inertia is a classic result of analysis of variance,
usually applied to a single variable, but equally applicable to multivariate
data. In the CA context each row profile, denoted by ai, has a mass ri assigned
to it, and the average row profile (centroid) is the vector c of column masses.
Distances between row profiles are measured by the χ2-distance, for example
let di denote the χ2-distance between ai and c. Then the total inertia is∑

i rid
2
i (formula (4.7), page 29). Between-group inertia is a similar formula,

but applied to the merged rows as follows. Suppose āg denotes the profiles of
the merged rows, where g = 1, . . . , G is the index of the groups (here G = 4),
and the mass of the g-th group, r̄g, is the sum of the masses of the members
of the group. The profiles āg still have centroid at c and, denoting their χ2-
distances to the centroid by d̄g, the between-group inertia is

∑
g r̄g d̄

2
g . Finally,

each group g has an inertia with respect to its own centroid āg: if dig denotes
the χ2-distance from each profile i in group g to the centroid āg , then the
inertia within the g-th group is

∑
iεg rid

2
ig, where iεg means the set of rows in

group g. Summing this quantity over all the groups gives the within-groups
inertia. The decomposition of inertia is thus:

total inertia = between-groups inertia + within-groups inertia
∑

i

rid
2
i =

∑

g

r̄g d̄
2
g +

∑

g

∑

iεg

rid
2
ig (15.1)

0.08288 = 0.04386 + 0.03902
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Calculating the
inertia within a
single group

The within-groups inertia is equal to 0.03902, according to the above, but
what is the contribution from each of the four groups? One can calculate this
directly, remembering to use the same values of c in the χ2-distance in all the
calculations, but a quicker way is to apply CA to a matrix where, one at a time,
we merge the groups. For example, if we merge Geology, Physics, Statistics
and Mathematics into the first group and then analyse this merged row along
with the other (unmerged) rows (i.e., seven rows in total), the total inertia is
0.06446. Compared to the total inertia 0.08288 of the original data set, the
reduction by 0.01842 represents the within-group inertia for that group which
was lost in the merging. Then we merge Biochemistry and Chemistry and analys
e the matrix with six rows, and the inertia now drops to 0.05382, so the within-
groups inertia of that group is the difference, 0.06446−0.05382 = 0.01064 and
so on. Exhibit 15.2 gives the complete decomposition of inertia, in raw units
and percentages. Notice that the within-groups inertia of the group composed
of one row, Engineering, is 0.

Exhibit 15.2:
Decomposition of
inertia between and
within groups,
including
components of each
part and
percentages with
respect to the part
and the total. The
sum of the total of
the between-groups
inertia and the total
of the within-groups
inertia is the total
inertia 0.08288 of
the original table
(Exhibit 10.1).

Group Definition Component % of part % of total

Between-groups inertia:
Geol/Phys/Stat/Math r̄1d̄

2
1 0.01482 33.8% 17.9%

Bioc/Chem r̄2d̄
2
2 0.00099 2.3% 1.2%

Zool/Micr/Bota r̄3d̄
2
3 0.01548 35.3% 18.7%

Engi r̄4d̄
2
4 0.01256 28.6% 15.2%

Total
∑

g r̄g d̄
2
g 0.04386 100.0% 52.9%

Within-groups inertia:
Geol/Phys/Stat/Math

∑
iε1 rid

2
i1 0.01842 47.2% 22.2%

Bioc/Chem
∑

iε2 rid
2
i2 0.01064 27.3% 12.8%

Zool/Micr/Bota
∑

iε3 rid
2
i3 0.00996 25.5% 12.0%

Engi
∑

iε4 rid
2
i4 0 0% 0%

Total
∑

g

∑
iεg rid

2
ig 0.03902 100.0% 47.1%

Data set 8: Age
distribution in
food stores

In the above, the partition of the rows into groups was given by available
information, but we now consider constructing groups using a particular type
of cluster analysis. We use a small data matrix to illustrate the calculations
involved. This example is taken from an actual sample of 700 shoppers at
five different food stores. The sample has been tabulated according to store
and age group, yielding the 5 × 4 table in Exhibit 15.3. The χ2 statistic for
this table is 25.06, which corresponds to a P value of 0.015. Thus we would
conclude that there exists a significant association between age and choice
of store. Alongside the table we show the symmetric CA map. A market
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Exhibit 15.3:
Cross-tabulation of
food stores by age

groups, for 700
consumers, and

symmetric CA map
which explains

97.2% of the inertia.

FOOD AGE GROUP (years)

STORE 16-24 25-34 35-49 50+ Sum

A 37 39 45 64 185

B 13 23 33 38 107

C 33 69 67 56 225

D 16 31 34 22 103

E 8 16 21 35 80

Sum 107 178 200 215 700

+

scale

0.1◦

◦
◦◦

•

•
• •

•

16-24

25-34
35-49

50+

A

B

C D

E

Total inertia = 0.03580

0.02635 (73.6%)

0.00844 (23.6%)

researcher would be interested to know where this significant association is
concentrated; for example, which stores or group of stores have a significantly
different age profile from the others. The major contrast in the data is between
the oldest group on the left and the second youngest group on the right. Store
E is the most associated with the oldest group and stores C and D tend more
towards the younger ages. The vertical axis contrasts the youngest age group
with the others. Store A appears to separate from the others towards the
youngest age group.

Clustering
algorithm

We now construct a partition of the rows and columns using a clustering
algorithm which tries to maximize the between-groups inertia and — simul-
taneously — minimize the within-groups inertia. The clustering algorithm
is illustrated in Exhibit 15.4 for the rows. At the start of the process, each
row is separate and the between-groups inertia is just the total inertia. Any
merging will reduce the between-groups inertia, so the first step is to identify
which pair of rows (stores) can be merged to result in the least reduction in
the inertia. The two rows which are the most similar in this sense are stores
C and D. When these rows are merged to form a new row, labelled (C,D),
the inertia for the resultant 4 × 4 table is reduced by 0.00084 to 0.03496, or
on the χ2 scale by 0.59 to 25.06 (in Exhibit 15.4 we report the χ2 values,
which are always the inertia values multiplied by the sample size N = 700:
χ2 = 0.03496×700 = 25.06). In percentage terms this is a decrease of 2.3% in
χ2 or in inertia. The procedure is then repeated to find the rows in the new
table which are the most similar in this sense. These turn out to be stores B
and E, leading to a further reduction in χ2 of 1.53 (6.1%). The table now has
three rows labelled A, (B,E) and (C,D). The procedure is repeated and the
smallest reduction is found when store A joins the pair (B,E) to form a new
row labelled (A,B,E), reducing χ2 by a further 5.95 (23.8%). Finally, the two
rows (A,B,E) and (C,D) merge to form a single row, consisting of the marginal
column sums of the original table, for which the χ2 is zero. The final reduction
is thus 16.99 (67.8%), which was the inertia of the penultimate table in Ex-
hibit 15.4. The whole procedure can be repeated on the columns of the table
in an identical fashion.
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Exhibit 15.4:
Steps in the
clustering of the
rows of Exhibit 15.1:
at each step two
rows are merged,
chosen to induce the
minimum decrease
in the χ2-statistic,
or equivalently in
the between-group
inertia (to convert
the χ2 values to
inertias, divide by
the sample size
N = 700).

37 39 45 64

13 23 33 38

33 69 67 56

16 31 34 22

8 16 21 35

A

B

C

D

E χ2 = 25.06

reduction = 0.59 (2.4%)merge C and D

..........................................................................................
.....
................
.....

37 39 45 64

13 23 33 38

49 100 101 78

8 16 21 35

A

B

(C,D)

E χ2 = 24.47

reduction = 1.53 (6.1%)merge B and E

..........................................................................................
.....
................
.....

37 39 45 64

21 39 54 73

49 100 101 78

A

(B,E)

(C,D) χ2 = 22.94

reduction = 5.95 (23.7%)merge A and (B,E)

..........................................................................................
.....
................
.....

58 78 99 137

49 100 101 78

(A,B,E)

(C,D) χ2 = 16.99

reduction = 16.99 (67.8%)merge (A,B,E) and (C,D)

..........................................................................................
.....
................
.....

107 178 200 215(A,B,C,D,E) χ2 = 0

Tree
representations of
the clusterings

The successive merging of the rows, called hierarchical clustering, can be de-
picted graphically as a binary tree or dendrogram — this is shown in Exhibit
15.5 along with a similar hierarchical clustering of the columns. Notice that
the ordering of the rows and columns of the original table usually requires
modification to accommodate the tree displays, although in this particular
example only the rows need to be reordered. The fact that stores C and D are
the first to merge is apparent on the tree. The point at which this merging
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occurs is called a node, and in each case the level of the node corresponds to
the associated reduction in χ2.

Decomposition
of inertia (or χ2)

Since the original χ2 statistic is reduced to zero at the end of the clustering
process, it is clear that the set of reductions forms a decomposition of χ2:
25.06 = 16.99 + 5.95 + 1.53 + 0.59. Dividing by the sample size 700 gives
the corresponding decomposition of inertia: 0.03580 = 0.02427 + 0.00851 +
0.00218+ 0.00084. The percentage form is the same for both decompositions:
67.8%, 23.8%, 6.1% and 2.3%. The columns are merged in an identical fashion
and the values of the nodes again constitute a decomposition of inertia (or
χ2): 0.03580 = 0.02383 + 0.00938 + 0.00259, or in percentage form 66.6%,
26.2% and 7.2%.

Deciding on the
partition

In cluster analyses of this type, the trees are inspected to deduce the number
of clusters of objects. For example, looking at the row clustering we see that
there is a large difference between the two clusters of food stores (C,D) and
(A,B,E), indicated by the high value at which these clusters merge. Thanks
to the decomposition of inertia, we could say that 67.8% of the inertia is
accounted for if we condense the rows into these two clusters. If we separate
store A as a third cluster, then a further 23.7% of the inertia is accounted for,
i.e. 91.5%. Percentages of inertia associated with the nodes of such a cluster
analysis are thus interpreted in much the same way as percentages of inertia
of principal axes in CA. The decision as to what percentage is great enough
to halt the interpretation is usually an informal one, based on the sequence of
percentages and the substantive interpretation of each node or principal axis.

Testing
hypotheses on

clusters of rows or
columns

The χ2 statistic for the original contingency table was reported to be signif-
icant (P = 0.015); hence somewhere in the table there must be significant
differences amongst the profiles. To pinpoint which profiles are significantly
different in a statistical sense is not a simple question because there are many
possible groupings of the stores that we could test and the significance level
has to be adjusted if many tests are performed on the same data set. Fur-
thermore, particular groupings, for example of stores C with D and B with
E, have been suggested by the data themselves and have not been set up as
hypotheses before the data were collected.

Multiple
comparisons

Here we are treading the fine line between exploratory and confirmatory data
analysis, trying to draw statistical conclusions from data that were collected
in an exploratory fashion with no fixed a priori hypotheses. Fortunately, an
area of statistical methodology has been developed specially for this situa-
tion, called multiple comparisons. This approach is often used in the analysis
of experiments where there are several “treatments” being tested in one ex-
periment, rather than the classic single treatment versus control situation.
A multiple comparisons procedure allows any treatment (or group of treat-
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Exhibit 15.5:
The tree structures
depicting the
hierarchical
clusterings of the
rows and columns.
The clustering is in
terms of χ2, and can
be converted to
inertias by dividing
by the sample size,
700. The critical
level of 15.24 on the
χ2 scale is indicated,
for both rows and
columns.

33 69 67 56

16 31 34 22

37 39 45 64

13 23 33 38

8 16 21 35

16–24 25–34 35–49 50+

C

D

A

B

E

0

10

20

01020

15.24

ments) to be tested against any other, and statistical decisions may be made
at a prescribed significance level to protect all these tests from the so-called
“Type I Error”, i.e., finding a result which has arisen purely by chance.

Multiple
comparisons for
contingency tables

As in the case of different treatments in an experimental situation, we would
like to test the differences between any two rows, say, of the table or any two
groups of rows. If there were only one test to do, we would calculate the re-
duced table consisting of the two rows (or merged groups) and make a one-off
χ2 test in the usual way. The multiple comparisons procedure developed for
this situation allows testing for differences between any two rows (or groups
of rows). The usual χ2 statistic for the reduced table is calculated but com-
pared to different critical values for significance. In the Theoretical Appendix,
Exhibit A.1 on page 211, we give a table of critical points for this test, at
the 5% significance level, for contingency tables of different sizes. In our 5× 4
example the critical point can be read from the table as 15.24: so if the χ2

statistic is superior to 15.24, then it can be deduced that the two rows (or
groups of rows) are significantly different.

Cut-off χ2 value
for significant
clustering

The critical value for the multiple comparison test can be used for any subset
or merging of the rows or columns of the table, in particular it can be used
for our hierarchical clusterings, allowing us to separate out the statistically
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significant groups, as shown in Exhibit 15.5. The interpretation of this cut-off
point is that, amongst the age groups, it is really the contrast between the
oldest age group and the rest that is statistically significant; and, concerning
the food stores, the statistical differences lie between two groups, (A,B,E)
and (C,D). Thus the contrast observed along the second axis of Exhibit 15.3
could be due to random variation in the observed data — the separation of
the youngest age group from the others is not significant, and the distinction
between age groups 16–24 and 35–49 years along the second axis is equally
difficult to justify from a statistical point of view. This does not mean, of
course, that we are prevented from inspecting the original information in
the form of the two-dimensional map of Exhibit 15.3 — the data content is
always worth considering irrespective of the statistically significant features.
In Chapter 25 we will use these same critical values for a significance test on
the principal inertias of a contingency table.

Ward
clustering

The clustering algorithm described in this chapter is a special case of Ward
clustering. In this type of clustering, clusters are merged according to a
minimum-distance criterion which takes into account the weights of each point
being clustered. So, instead of thinking of this as a reduction in χ2 (or inertia)
at each step, the χ2-distances between the profiles could be used and the asso-
ciated masses. The “distance” between two row clusters g and h, for example,
is then

r̄g r̄h

r̄g + r̄h
‖āg − āh‖2

c (15.2)

where r̄g and r̄h are the masses of the respective clusters, and ‖āg − āh‖c is
the χ2-distance between the profiles of the groups.

SUMMARY:
Clustering the

Rows and Columns

1. Cluster analyses of the rows or columns provide an alternative way of
looking for structure in the data, by collecting together similar rows (or
columns) in discrete groups.

2. The results of the clusterings can be depicted graphically in a tree structure
(dendrogram or binary tree), where nodes indicate the successive merging
of the rows (or columns).

3. The total inertia (or equivalently the χ2 statistic) of the table is reduced
by a minimum at each successive level of merging of the rows (or columns).
This Ward clustering procedure provides a decomposition of inertia with
respect to the nodes of the tree, analogous to the decomposition of inertia
with respect to principal axes in correspondence analysis.

4. Thanks to a multiple comparisons procedure, the inertia component ac-
counted for by each node can be tested for significance, leading to statisti-
cal statements of difference between groups of rows (or groups of columns).
This test applies to valid contingency tables only.
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Up to now we have dealt exclusively with two-way tables in which the fre-
quencies of co-occurrence of two variables have been mapped. We now start
to consider situations where data are available on more than two variables
and how we can explore such data graphically. One approach is to re-express
the multiway frequency table in the form of a two-way table and to use the
usual simple CA approach.
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Introducing a third
variable in the
health assessment
data

We return to the health assessment data (data set 3) that were discussed
at length in Chapters 6 and 7, namely the representative sample of 6371
Spaniards cross-tabulated by age and self-assessment of their own health (Ex-
hibit 6.1). Several other variables are available, for example gender, education,
region of residence, and so on. We use the simplest of these, gender with two
categories, as an example of how to introduce a third variable into the CA.
Two further cross-tabulations can now be made: gender by age group and
gender by health category. While the former table might be interesting from a
demographic point of view, the latter table is more relevant to the substantive
issue of health assessment — see Exhibit 16.1. There is no need to perform a
CA of this table to see the pattern in the numbers — this 2 × 5 table is in-
herently one-dimensional and all the results are in the percentages. It is clear
that males generally have a better opinion of their health; there are higher
percentages of males in the very good and good categories, while the females
are higher in the regular , bad and very bad categories.

Interaction
between variables

We saw previously in Chapter 6 that self-perceived health deteriorated with
age. Separately, Exhibit 16.1 shows a gender-related effect, with men on av-
erage more optimistic about their health than women. The question now is
whether the gender effect is the same across all age groups or whether it

121
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Exhibit 16.1:
Cross-tabulation of

gender with
self-perceived

health, showing row
profile values as

percentages. Data
source: Spanish
National Health

Survey, 1997.

Very Very
GENDER Good Good Regular Bad Bad Sum

male 448 1789 636 177 39 3089
% 14.5 57.9 20.6 5.7 1.3
female 369 1753 859 237 64 3282
% 11.2 53.4 26.2 7.2 2.0
Sum 817 3542 1495 414 103 6371
% 12.8 55.6 23.5 6.5 1.6

changes; for example, it could be that in a particular age group the gender
effect is greater or is even reversed. This phenomenon is called an interaction,
in this case an interaction between age and gender. Absence of an interaction
would mean that the same gender difference exists across all age groups.

Interactive
coding

To be able to visualize possible interactions between gender and age, we need
to code the data in a more detailed manner. A new variable is created of all the
combinations of gender and age; in this case 2 genders and 7 age groups give
2×7 = 14 combinations in total — this process is called interactive coding. The
interactively coded variable is then cross-tabulated with the health categories
to give the contingency table of Exhibit 16.2.

CA of the
interactively coded

cross-tabulation

Exhibit 16.3 shows the symmetric map of Exhibit 16.2. Here the two-dimensional
map is given although the result is still highly one-dimensional as we saw in
Chapter 6. In this map there are two points showing male–female differences
across the age groups. Comparing the pairs of gender points for each age
group we see consistently that the female point is to the left of the male coun-
terpart, illustrating the effect in Exhibit 16.1 that females are generally less
optimistic about their health. There is no reversing of this phenomenon in any
age group; however, there are some differences in the distances between the
male and female points. At the younger ages the male–female distances are
relatively small, up to the 35-44 age group. In the 45-54 age group, where large
changes appear in self-perceived health (see Chapter 6), there is also a bigger
difference between men and women. This change is maintained in the older
age groups, and we even see that females in the 55-64 age group are more
pessimistic than males in the higher 65-74 age group. Similarly, females in
age group 65-74 are more pessimistic than males in the older group 75+. This
changing difference between men and women across the age groups is evidence
of a gender-age interaction when it comes to self-assessment of health.

Data set 9:
Opinions about
working women

As another illustration of interactive coding, we now introduce a data set
that we shall be using several times in this and following chapters. These data
are taken from the International Social Survey Programme (ISSP) survey of
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Exhibit 16.2:
Cross-tabulation of
interactively coded
gender–age variable
with self-perceived
health (m=male,
f=female, seven age
groups as in Exhibit
6.1). Each row of
Exhibit 6.1 has been
subdivided into two
rows according to
gender.

GENDER– Very Very
AGE Good Good Regular Bad Bad Sum

m16-24 145 402 84 5 3 639
m25-34 112 414 74 13 2 615
m35-44 80 331 82 24 4 521
m45-54 54 231 102 22 6 415
m55-64 30 219 119 53 12 433
m65-74 18 125 110 35 4 292
m75+ 9 67 65 25 8 174
f 16-24 98 387 83 13 3 584
f 25-34 108 395 90 22 4 619
f 35-44 67 327 99 17 4 514
f 45-54 36 238 134 28 10 446
f 55-64 23 195 187 53 18 476
f 65-74 26 142 174 63 16 421
f 75+ 11 69 92 41 9 222

Exhibit 16.3:
Symmetric CA map
of interactively
coded gender–age
variable cross-
tabulated with
health categories;
the gender–age
profiles are situated
at the positions of
the m and f labels.

m

mm
m

m
m
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f
f
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16-24

25-34

35-44
45-54

55-64

65-74

75+ Very good

Good

Regular

Bad
Very bad

0.1417 (94.5%)

0.0039 (2.6%)

Family and Changing Gender Roles in 1994, involving a total sample of 33,590
respondents and conducted in 24 countries (former East and West Germany
are still considered separately in the ISSP surveys, as are Great Britain and
Northern Ireland). For our purposes here we consider the relationships be-
tween some demographic variables and the responses to the following question
related to women’s participation in the labour market: “Considering a woman
who has a schoolchild at home, should she work full-time, work part-time, or
stay at home?” As in all such questionnaire surveys, there is an additional
response option “unsure/don’t know” to which we have also added the few
non-responses (dealing with non-responses will be discussed in more detail
in Chapter 21). In addition to the responses to this question, we have data
on several demographic variables for each respondent, of which the following
three will be of interest here: gender (2 categories), age (6 categories) and
country (24 categories). The response frequencies for each country are given
in Exhibit 16.4.
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Exhibit 16.4:
Frequencies of

response to question
on women working
when they have a

schoolchild at home,
for 24 countries

(Source: ISSP
survey on Family

and Changing
Gender Roles, 1994;

West and East
Germany are still

kept separate), with
the average profile

in percentage form.
The following

abbreviations are
used: W=work

full-time, w=work
part-time, H=stay
at home, ?=don’t

know/unsure/missing.

COUNTRIES W w H ? Sum

AUS Australia 256 1156 176 191 1779
DW West Germany 101 1394 581 248 2324
DE East Germany 278 691 62 66 1097
GB Great Britain 161 646 70 107 984
NIRL Northern Ireland 126 394 75 52 647
USA United States 482 686 107 172 1447
A Austria 84 632 202 59 977
H Hungary 285 736 447 32 1500
I Italy 171 670 167 10 1018
IRL Ireland 223 424 209 82 938
NL Netherlands 539 1205 143 81 1968
N Norway 487 1242 205 153 2087
S Sweden 295 833 39 105 1272
CZ Czechoslovakia 228 585 198 13 1024
SLO Slovenia 341 428 222 41 1032
PL Poland 431 425 589 152 1597
BG Bulgaria 270 427 335 94 1126
RUS Russia 175 1154 550 119 1998
NZ New Zealand 120 754 72 101 1047
CDN Canada 566 497 108 269 1440
RP Phillipines 243 448 484 25 1200
IL Israel 468 664 92 63 1287
J Japan 203 671 313 120 1307
E Spain 738 1012 514 230 2494
Sum 7271 17774 5960 2585 33590
% 21.6% 52.9% 17.7% 7.7%

Basic CA map
of countries by

responses

The CA map of this table is shown in Exhibit 16.5 (here we change the
graphical style of our CA maps — we shall comment on different software
options for producing the maps at the end of the Computational Appendix).
The interpretation of this map is quite clear; the contrast from left to right
is between women working (on the left) versus women staying at home (on
the right), while the vertical contrast is between women working full-time (at
the top) versus women working part-time (at the bottom). Countries such as
the Phillippines and Poland are the most traditional on this issue, whereas
countries such as Sweden, East Germany, Israel, New Zealand, Great Britain
and Canada are the most liberal. On the left, the difference between the
countries in the vertical direction separates out those like Canada who are the
most in favour of women working full-time versus New Zealand, for example,
more in favour of part-time employment. Remember that the origin of the
map represents the average profile in the last row of Exhibit 16.4, so that
all countries on the left are more liberal than average, while if two countries
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Exhibit 16.5:
Symmetric CA map
of 24 countries and
4 question response
categories (Exhibit
16.4).

are at the same position on the horizontal axis (for example, USA and Great
Britain) the country more positive on the vertical axis will be more in favour
of women working full-time than part-time.

Introducing gender
interactively

We first interactively code gender with country in order to visualize male–
female differences. Exhibit 16.6 shows the first and last rows of the 48 × 4
contingency table. The map in Exhibit 16.7 has not changed much in terms
of the positions of the reponse categories, but it is interesting to compare the
pairs of points for each country. In almost all cases the female point is more
to the left compared to the male counterpart (Bulgaria is the only exception).
Attitudes within a country are surprisingly homogeneous compared to the
large between-country differences. The countries where there is the biggest
distance between male and female opinion are mostly on the conservative
side of the map, for example the Phillippines, Japan, Northern Ireland, West
Germany and Spain, while on the left side of the map Australia shows one
of the biggest male–female differences. In this analysis the inertia must be
higher than the previous one since the splitting of the samples by gender
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Exhibit 16.6:
Frequencies of

response to question
on women working
when they have a

pre-school child at
home, for 24

countries, i.e.,
Exhibit 16.4 split by

gender (any slight
discrepancies
between the

subtotals for a
country and the
totals in Exhibit
16.4 are due to a

few missing values
for gender).

COUNTRY W w H ? Sum

AUSm 117 596 114 82 909
AUSf 138 559 60 109 866
DWm 43 675 357 123 1198
DWf 58 719 224 125 1126
DEm 146 316 29 37 528
DEf 132 375 33 29 569
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
Ilm 220 275 57 29 581
Ilf 247 387 35 34 703
Jm 85 279 171 57 592
Jf 118 392 142 63 715
Em 347 445 294 111 1197
Ef 390 566 218 118 1292

must add inertia; in fact, the total inertia in the present analysis is 0.01546,
whereas in the previous one it was 0.01456. Thus we can say that the part
due to gender difference in the present analysis is 0.00090, which is 5.8% of
the inertia. As can be seen in the map, the major differences are between
countries, not between genders.

Introducing age
group and gender

Since the sample sizes in each country are so large, we can split the samples
even further by age, that is each country-gender group is subdivided into six
age groups: up to 25 years old, 26-35, 36-45, 46-55, 56-65, and 66+ years.
Hence we code interactively three variables into one, with 24 × 2 × 6 = 288
categories in total. The CA of the resultant 288× 4 table is shown in Exhibit
16.8, and again remains remarkably stable as far as the response categories are
concerned. The 288 row points are represented by dots since it is impossible to
label each one. Some outlying points are labelled; for example, the most liberal
group lying far out at top left is the youngest group of female Canadians up
to 25 years old. Of this subsample of 168 women, 101 (60.1%) are in favour
of women with a schoolchild at home working full-time, 32 (19.0%) respond
part-time, 3 (1.8%) say women should stay at home, and 32 (19.0%) do not
respond or are missing (as we shall see in Chapter 21, there are a lot of “don’t
knows” in the Canadian sample as a whole). The most liberal male group is
the youngest East German male group. At the other extreme on the right
we have the oldest group of Hungarian and Polish males; for example, of the
76 Polish men 66 years or older, 16 (21.1%) respond full-time, 13 (17.1%)
part-time, 41 (53.9%) stay at home, with a non-response of 6 (7.9%). At the
bottom we have the oldest group of New Zealand males — these will be the
most in favour of part-time work.
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Exhibit 16.7:
Symmetric CA map
of interactively
coded data (Exhibit
16.6 ). The male
points are
consistently to the
right of their female
counterparts, with
the exception of
Bulgaria (BG),
where females have
a more conservative
attitude than males.
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Arch (“horseshoe”)
pattern in the map

Finally, notice the curve of the cloud of points in Exhibit 16.8, called the
arch effect or the horseshoe. This commonly found phenomenon is a result of
the profile space being a simplex, in the present case a tetrahedron in three
dimensions since there are four columns. Any gradient of change from one
extreme corner of the space (W — work fulltime) to another (H — stay at
home) will follow a curved path in this restricted space, rather than a straight
line. Points that lie inside the arch, such as the labelled group of Polish males
26–35 years old, will tend to be polarized in the sense of being high on the two
extreme responses. Of the 141 respondents in this group, 45 (31.9%) respond
full-time, 31 (22.0%) part-time, 45 (31.9%) stay at home, and 20 did not
respond (14.2%) — so this group does have above average responses on both
extremes.
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Exhibit 16.8:
Symmetric CA map

of three-way
interactively coded

data. The
country–gender–age

groups are
represented by dots,

and form a curved
pattern that is

encountered
frequently in CA

maps when the
profiles fall on a

gradient from one
extreme (W ) to the

other (H).

SUMMARY:
Multiway Tables

1. Two or more categorical variables can be interactively coded into a new
variable which consists of all combinations of the categories. For example,
two variables with J1 and J2 categories would be coded into a new variable
with J1J2 categories.

2. CA is applied to an interactively coded variable that is cross-tabulated
with another variable. The resulting map shows the interaction pattern
between the variables that have been interactively coded.

3. Interactive coding of multiway tables would normally not proceed beyond
three variables interactively coded, since the number of categories increases
rapidly, as well as the complexity of the map. The level of interaction
that can be investigated depends on how much data are available, because
interactive coding fragments the sample into small subsamples, and these
subsamples should not be too small.
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Survey research in the social sciences usually involves a multitude of variables.
For example, in a questionnaire survey there are many question responses as
well as many demographic characteristics which we want to relate to respon-
dents’ attitudes. The advantage of CA is the ability to visualize many vari-
ables simultaneously, but there is a limit to the number of variables that can
be interactively coded, as illustrated in the previous chapter, owing to the
large number of category combinations. When there are many variables an
alternative procedure is to code the data in the form of stacked , or concate-
nated , tables. The relationship between each demographic variable and each
attitudinal variable can then be interpreted in a joint map. In this chapter
we give examples of this approach, both when there are several demographic
characteristics and when there are responses to several questions.

Contents

Several demographic variables, one question . . . . . . . . . . . . . . . . 129
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Several
demographic
variables, one
question

We now expand the data set from Chapter 16 on attitudes toward women
working by including, in addition to country (24 categories, see Exhibit 16.4
for abbreviations), gender (2 categories, M and F) and age group (6 categories,
A1 to A6), the two variables marital status (5 categories) and education level
(7 categories), totalling five demographic variables. The definitions and ab-
breviations of the two additional variables are as follows:
— Marital status: ma (married), wi (widowed), di (divorced), se (separated),
si (single)
— Education: E1 (no formal education), E2 (incomplete primary), E3 (pri-
mary), E4 (incomplete secondary), E5 (secondary), E6 (incomplete tertiary),
E7 (tertiary)

129
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Exhibit 17.1:
Stacking of

contingency tables
which separately

cross-tabulate five
demographic

variables with the
responses to the

question on women
working

(W=full-time,
w=part-time,

H=stay at home,
?=don’t know/non-

response).

country (24)

gender (2)

age (6)

marital status (5)

education (7)

W w H ?

Question Responses

Stacking as an
alternative to

interactive coding

It is clearly not possible to code interactively all five variables: the number of
combinations would be 24×2×6×5×7 = 10, 080 combinations! As an alter-
native, we can cross-tabulate each demographic variable with the responses
and stack the contingency tables on top of one another, as depicted in Exhibit
17.1. The top table is the one in Exhibit 16.1, with countries as rows, then
the table with two rows for gender, then six rows for age group and so on,
constituting a table with 24 + 2 + 6 + 5 + 7 = 44 rows, one for each demo-
graphic category. This type of coding will not reveal interactions and should
be regarded as a type of average CA of the five individual tables.

CA of stacked
tables

Applying CA to the 44 × 4 matrix of stacked tables results in the map of
Exhibit 17.2. The relative positions of the four reponses, W , w , H and ? ,
appear almost the same as in Exhibit 16.8. Compared to Exhibits 16.5 and
16.7 the positions are slightly rotated (rotations are discussed in the Epilogue).
Each demographic category is defined by a profile of responses and finds its
position in the map relative to the four response categories. The following
features of the map are of special interest:

• The categories of an ordinal variable such as age can be connected, as
shown in the map. Age follows the curved pattern of the responses W–w–
H from liberal to traditional, as might be expected.
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Exhibit 17.2:
Symmetric CA map
of five stacked
contingency tables
shown schematically
in Exhibit 17.1;
total inertia =
0.05271, percentage
inertia in map:
91.2%.

• Education has a similar pattern, but from right to left, except for category
E1 (no formal education), which is near the average.

• Categories of marital status show si (single) on the liberal side, and wi
(widowed) on the traditional side, probably correlated with age group.

• The male and female points M and F lie opposite each other with respect
to the average, showing the overall differences between males and females
across all countries (we saw the specific differences in Exhibit 16.5).

• Of all the demographical variables, the cross-national differences are still
the most important on this issue.

• Countries such as Spain, Slovenia, Ireland and Bulgaria that lie within the
arch are polarized countries with higher than average percentages of both
W (work full-time) and H (stay at home) responses.

• The non-response point ? lies more towards the liberal side of the map;
i.e., its profile across the demographics is more similar to W than to H (in
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Chapter 21 we will see that Canada, for example, has a high percentage
of non-responses).

Limitations in
interpreting

analysis of stacked
tables

It is important to realize that Exhibit 17.2 is showing the separate associations
between the demographic variables and the question responses, and not the
relationships amongst the demographic variables. There is no information in
the stacked tables about the relationship between age, education and country;
for example, the fact that the youngest age group A1, the highest education
group E7, and the countries Canada, USA and Israel all lie on the left-hand
side does not mean that these countries have predominantly younger more
highly educated respondents. Since the variables are being related separately
to the question responses, the interpretation is that the youngest age group,
the highest education group and these countries all have a predominant, higher
than average percentage of W (work full-time) responses. To confirm any
relationships between the demographic variables, cross-tabulations between
them need to be made and analysed.

Decomposition
of inertia in

stacked tables

A very useful result here and in future chapters is the fact that when the
same individuals are cross-tabulated and stacked, as in Exhibit 17.1, the total
inertia in the stacked CA is the average of the inertias in the individual CAs.
This result is illustrated by calculating the inertias in each of the six cross-
tabulations shown in Exhibit 17.1:

Table Inertia

Country 0.14558
Gender 0.00452
Age 0.04216
Marital Status 0.02675
Education 0.04221
Average 0.05224

The total inertia of the stacked analysis is 0.05271, slightly higher than the
above figure, because there are some missing data for some of the demograph-
ics, which introduces some additional inertia into the stacked analysis. The
totals in each table vary from 30471 for education (the whole Spanish sam-
ple, for example, has education coded as “not available”) to 33590 (the full
sample) for age and country. The effect of the different totals is to increase
the total inertia in the stacked analysis, but only slightly since there are small
differences in the column totals of each table. For the above decomposition
to hold exactly each table must have the same grand total and thus exactly
the same column marginal totals. Looking at the above table of inertias also
shows how much more inertia there is between countries than between cate-
gories of the other variables; hence the relationship of the question responses
with countries must dominate the results.
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Stacking tables
row- and
columnwise

The idea of stacking can be broadened to include additional questions which
are cross-tabulated with demographics. In the ISSP survey from which these
data are taken, there were in fact four questions relating to attitudes about
women working, each with the same set of four responses: work full-time, work
part-time, stay at home and a category gathering the various non-responses.
The respondents were asked about women working or not when they were
(1) married with no children, (2) with a pre-school child at home, (3) with a
schoolchild living at home (the question we have been analysing up to now),
and (4) when all children are no longer living at home. Each of the five de-
mographic variables can be cross-tabulated with each of these four questions,
leading to 20 contingency tables which can be stacked row- and columnwise
as shown schematically in Exhibit 17.3.

Exhibit 17.3:
Stacking of
contingency tables
which separately
cross-tabulate five
demographic
variables with the
responses to the
question on women
working
(W=full-time,
w=part-time,
H=stay at home,
?=don’t know/
non-response).

country (24)

gender (2)

age (6)

marital status (5)

education (7)

W w H ? W w H ? W w H ? W w H ?

Questions on working women
1 2 3 4

CA of row- and
columnwise
stacked tables

Applying CA to the 20 tables stacked in five rows and four columns leads to
the map in Exhibit 17.4 where each category is represented by a point. The
following features of the map are of special interest:

• The 16 column categories form an even clearer arch pattern, stretching
from 2W and 3W at top left down to 3w , 4w and 2H at the bottom
and up to 4H and 1H at top right. This is a typical result in CA where
there is what ecologists call a gradient in the data, the gradient here being
the liberal to traditional spread of attitudes. More or less one can order
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the categories along this curved gradient as follows (omitting the non-
responses (? ) from the discussion for the moment):

2W–3W–2w& 4W–1W–3w–4w–2H–1w–3H–4H–1H

which shows how the categories line up from extreme liberal on the left
(women should work full-time even when they have children at home) to
extreme traditional on right (women should stay at home even though
there are no children at home).
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0.0212 (49.6%)

0.0092 (21.5%)
Exhibit 17.4:

Symmetric CA map
of 20 stacked

contingency tables
shown schematically

in Exhibit 17.3;
total inertia =

0.04273, percentage
inertia in map:

71.1%.

• Most of the demographic points lie along this curve, but there is a sub-
stantial spread along the second dimension which opposes groups with a
polarized opinion (upper part of map, especially Spain) with groups that
have a majority in the intermediate categories of the gradient (lower part
of the map, for example Austria and West Germany).

• The four non-response points are all in a small bunch just left of the aver-
age — in fact, these points are better represented on the third dimension
of this analysis; in other words they should be imagined coming out of
the page towards you, which means that the third dimension is mostly
a dimension which will line up the demographic groups in terms of their
non-response percentages over the four questions.
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Exhibit 17.5:
Inertias of 20
contingency tables
in the stacked table
analysed in Exhibit
17.4; averages of the
rows and columns
are given as well as
the overall average.

Variable Qu. 1 Qu. 2 Qu. 3 Qu. 4 Average

Country 0.15268 0.12834 0.14558 0.13410 0.14018
Gender 0.00821 0.00336 0.00452 0.00484 0.00523
Age 0.01033 0.03359 0.04216 0.01266 0.02469
Marital Status 0.00529 0.01341 0.02675 0.00869 0.01354
Education 0.02306 0.02380 0.04221 0.02430 0.02834
Average 0.03991 0.04050 0.05224 0.03692 0.04239

Partitioning of the
inertia over all
subtables

Again, the result mentioned previously about decomposition of inertia will
apply here. First, the exact result is that if every contingency table in the
stacked table is the cross-tabulation of exactly the same number of respon-
dents, then the inertia of the stacked table is the average of the inertias of the
individual contingency tables. Let us state this a little more formally, since we
will be using this result again in the next chapter. Suppose Nqs, q = 1, . . . , Q,
s = 1, . . . , S are contingency tables cross-tabulating Q categorical variables
pairwise with another set of S categorical variables for the same n individuals
(in our example, Q = 5 and S = 4). Let N be the stacked table formed by
stacking row- and column-wise the Q×S tables. Then:

inertia(N) =
1

QS

Q∑

q=1

S∑

s=1

inertia(Nqs) (17.1)

This result holds approximately if there is a loss of data in some of the contin-
gency tables owing to missing values. In the present example we have combined
the missing values for the four questions about women working with other re-
sponses such as “don’t know” in their respective ? categories, but there are
a few missing values for the demographic variables as a result of the data
collection in different countries. So we do not expect the result (17.1) to hold
exactly; in fact, the inertia of the stacked table N (left-hand side of (17.1))
will increase by a small amount ε because of differences between the marginal
frequencies, so that (17.1) becomes:

inertia(N) =
1

QS

Q∑

q=1

S∑

s=1

inertia(Nqs) + ε (17.2)

Exhibit 17.5 reports the inertias of all the contingency tables, as well as row
and column averages and overall average: as expected, the total inertia in the
stacked analysis is slightly higher (0.04273) than the average of the tables
(0.04239), which is a difference of 0.8%. Exhibit 17.6 expresses the inertias in
Exhibit 17.5 as permills of 0.04273×20 (the left-hand side of (17.2) multiplied
by QS = 20) to be able to judge the quantities more easily, just as we did when
we interpreted numerical contributions in Chapter 11. This shows that on
average the countries account for 65.6% of the inertia in the stacked analysis,
followed by education (13.3%) and age (11.6%). On question 3 the inertias
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Exhibit 17.6:
Permill

contributions of 20
tables to the inertia
of the stacked table;
the remaining 0.8%
is the extra inertia

caused by the
differing column
margins due to

missing data.

Variable Qu. 1 Qu. 2 Qu. 3 Qu. 4 Total

Country 179 150 170 157 656
Gender 10 4 5 6 24
Age 12 39 49 15 116
Marital Status 6 16 31 10 63
Education 27 28 49 28 133
Total 234 237 306 216 992

are generally higher (30.6% of total inertia) — i.e., there are more differences
between the demographic groups — while on question 4 they are generally
lower (21.6% of total inertia). The total of 992 for this table shows, as we
have already remarked above, that 0.8% of the inertia is accounted for by the
small disparities between the margins of the 20 contingency tables owing to
missing data, i.e., the contribution of ε to (17.2).

Only
“between”

associations
displayed, not

“within”

Once again we stress the limits of our interpretation of a map such as Exhibit
17.4. When it comes to the four questions, it should be remembered that we
are not analysing the associations within this set of questions, but rather the
associations between them and the demographic variables. Analysing associ-
ations within a set of variables is the subject of the next chapter on multiple
correspondence analysis.

SUMMARY:
Stacked Tables

1. An approach to analysing the responses to several questions and their
relationships to demographic variables is to concatenate all the contingency
tables that cross-tabulate the two sets of variables and to analyse this
stacked table by regular CA.

2. The interpretation of the CA map of a stacked table is always made bear-
ing in mind that the information being analysed is the set of pairwise
relationships between each question and each demographic variable. There
is no specific information being mapped about relationships amongst the
questions or amongst the demographics.

3. The analysis of a stacked table can be thought of as a consensus or average
map from all the CAs of the individual contingency tables.

4. The total inertia of the stacked table is the average of the inertias of each
subtable, when the row margins in each row of subtables and the column
margins in each column of subtables are identical (this is true when the
same number of individuals are cross-tabulated in each subtable). When
there is some loss of individuals in some subtables due to missing data, this
result is approximate and the total inertia of the subtable will be slightly
higher than the average of the inertias.
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Up to now we have analysed the association between two categorical variables
or between two sets of categorical variables where the row variables are dif-
ferent from the column variables. In this and the two following chapters we
turn our attention to the association within one set of variables, where we are
interested in how strongly and in which way these variables are interrelated.
In this chapter we will concentrate on the two classic ways to approach this
problem, called multiple correspondence analysis, or MCA for short. One way
is to think of MCA as the analysis of the whole data set coded in the form
of dummy variables, called the indicator matrix , while the other way is to
think of it as analysing all two-way cross-tabulations amongst the variables,
called the Burt matrix . These two ways are very closely connected, but suffer
from some deficiencies which we will try to correct in the following chapter,
Chapter 19, where several improved versions of MCA are presented.
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A single set of
“homogeneous”
categorical
variables

In this chapter we are concerned with s single set of (more than two) variables,
usually in the context of a single phenomenon of interest. For example, the four
variables used in Chapter 17, on whether women should work or not, could be
such a set of interest, or a set of questions about people’s attitudes to science,
or a set of categorical variables describing environmental conditions at several
terrestrial locations. The point is that the set of variables is “homogeneous”
in that the variables are of the same substantive type; that is, there is no mix
of attitudinal and demographic variables, for example.

Indicator matrixAs an example let us consider the same set of four variables analysed in
Chapter 17. The explanation is simplified by avoiding all the cross-cultural
differences seen in previous analyses, using only the data from Germany, but

137
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Exhibit 18.1:
Raw data and the
indicator (dummy

variable) coding, for
the first six

respondents out of
N = 3418.

Questions Qu. 1 Qu. 2 Qu. 3 Qu. 4
1 2 3 4 W w H ? W w H ? W w H ? W w H ?

1 3 2 2 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0
2 3 3 2 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0
4 3 3 2 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0
4 4 4 4 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
4 4 4 4 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 3 2 1 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0
...

...
...

...
...

...
...

...
. . . and so on for 3418 rows

including both the West and East German samples, totalling 3418 respon-
dents (three cases with some missing demographic information were omitted
from the original samples — see Computational Appendix, page 235). For
the moment we are focusing on the four questions about women working,
labelled 1 to 4, each of which has four categories of response, labelled as be-
fore: W (work full-time), w (work part-time), H (stay at home) and ? (don’t
know/non-response). The indicator matrix is the 3418×16 matrix which codes
all responses as dummy variables, where the 16 columns correspond to the 16
possible response categories. Exhibit 18.1 illustrates this coding for the first
six rows: for example, the first respondent has responses 1, 3, 2 and 2 to the
four questions, which are then coded as 1 0 0 0 indicating the response 1 (W )
to question 1, 0 0 1 0 indicating the response 3 (H) to question 2, and 0 1 0
0 indicating the response 2 (w) to both questions 3 and 4.

MCA definition
number 1: CA of

the indicator
matrix

The most common definition of MCA is that it is simple CA applied to this
indicator matrix. This would provide coordinates for all 3418 rows and 16
columns, but it is mainly the positions of the 16 category points that are
of interest for the moment, shown in Exhibit 18.2. The first principal axis
shows all four non-response categories together, opposing all the substantive
responses. In the previous analysis of these questions (see Exhibit 17.4) where
the responses were related to demographic variables, the non-response points
were not prominent on the first two axes. But here, because we are looking
at relationships within the four questions, this is the most important feature:
people who do not respond to one question tend to do the same for the others
— for example, amongst the first six respondents in Exhibit 18.1 there are
already two respondents who have non-responses for all four questions. On the
second axis of Exhibit 18.2, we have the line-up of substantive categories from
traditional attitudes at the bottom to liberal attitudes on top. Exhibit 18.3
shows the second and third dimensions of the map, which effectively partials
out most of the effect of the non-response points, and the positions of the
points are now strikingly similar to those in Exhibit 17.4. Notice that the fact
that the liberal side of the horizontal dimension is now on the right is of no
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Exhibit 18.2:
MCA map of four
questions on women
working; total
inertia = 3,
percentage inertia in
map: 40.2%.
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MCA map of four
questions on women
working, showing
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dimensions; total
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map: 29.3%.
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consequence to the interpretation: in fact, it is always possible to reverse an
axis (i.e., multiply all coordinates by −1).

Inertia of
indicator matrix

The total inertia of an indicator matrix takes on a particularly simple form,
depending only on the number of questions and number of response categories
and not on the actual data. Suppose there are Q variables, and each variable q
has Jq categories, with J denoting the total number of categories: J =

∑
q Jq

(in our example, Q = 4, Jq = 4, q = 1, . . . , Q, and J = 16). The indicator
matrix, denoted by Z, with J columns, is composed of a set of subtables
Zq stacked side by side, one for each variable, and the row margins of each
subtable are the same, equal to a column of ones. Thus the result (17.1) in
Chapter 17 applies: the total inertia of the indicator matrix is equal to the
average of the inertias of the subtables. Each subtable Zq has a single one in
each row, otherwise zeros, so this is an example of a matrix where all the row
profiles lie at the vertices, the most extreme association possible between rows
and columns; hence the inertias are 1 on each principal axis of the subtable,
and the total inertia of subtable Zq is equal to its dimensionality, which is
Jq − 1. Thus the inertia of Z is the average of the inertias of its subtables:

inertia(Z) =
1
Q

∑

q

inertia(Zq) =
1
Q

∑

q

(Jq − 1) =
J − Q

Q
(18.1)

Since J − Q is the dimensionality of Z, the average inertia per dimension is
1/Q. Notice that the first three dimensions that were interpreted in Exhibits
18.2 and 18.3 have principal inertias 0.693, 0.513 and 0.365, all above the
average of 1/4 = 0.25. The value 1/Q serves as a threshold for deciding which
axes are worth interpreting in MCA (analogous to the threshold of 1 for the
eigenvalues in principal component analysis).

Burt matrix An alternative data structure for MCA is the set of of all two-way cross-
tabulations of the set of variables being analysed. The complete set of pairwise
cross-tabulations is called the Burt matrix, shown in Exhibit 18.4 for the
present example. The Burt matrix is a 4× 4 block matrix, with 16 subtables.
Each of the 12 off-diagonal subtables is a contingency table cross-tabulating
the 3418 respondents on a pair of variables. The Burt matrix is symmetric so
there are only 6 unique cross-tabulations, which are transposed on either side
of the diagonal blocks. The diagonal subtables (by which we mean the tables
on the block diagonal) are cross-tabulations of each variable with itself, which
is just a diagonal matrix with the marginal frequencies of the variable down
the diagonal. For example, the marginal frequencies for question 1 are 2501
W responses, 476 ws, 79 Hs and 362 ?s. The Burt matrix, denoted by B, is
simply related to the indicator matrix Z as follows:

B = ZTZ (18.2)
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Exhibit 18.4:
Burt matrix of all
two-way
cross-tabulations of
the four variables of
the example on
attitudes to women
working. Down the
diagonal are the the
cross-tabulations of
each variable with
itself.

1W 1w 1H 1? 2W 2w 2H 2? 3W 3w 3H 3? 4W 4w 4H 4?

2501 0 0 0 172 1107 1131 91 355 1710 345 91 1766 538 40 157

0 476 0 0 7 129 335 5 16 261 181 18 128 293 17 38

0 0 79 0 1 6 72 0 1 17 61 0 14 21 38 6

0 0 0 362 1 57 108 196 7 96 55 204 51 45 2 264

172 7 1 1 181 0 0 0 127 48 4 2 165 15 0 1

1107 129 6 57 0 1299 0 0 219 997 61 22 972 239 13 75

1131 335 72 108 0 0 1646 0 24 989 573 60 760 616 84 186

91 5 0 196 0 0 0 292 9 50 4 229 62 27 0 203

355 16 1 7 127 219 24 9 379 0 0 0 360 14 1 4

1710 261 17 96 48 997 989 50 0 2084 0 0 1348 567 23 146

345 181 61 55 4 61 573 4 0 0 642 0 202 286 73 81

91 18 0 204 2 22 60 229 0 0 0 313 49 30 0 234

1766 128 14 51 165 972 760 62 360 1348 202 49 1959 0 0 0

538 293 21 45 15 239 616 27 14 567 286 30 0 897 0 0

40 17 38 2 0 13 84 0 1 23 73 0 0 0 97 0

157 38 6 264 1 75 186 203 4 146 81 234 0 0 0 465

MCA definition
number 2: CA of
the Burt matrix

The other “classic” way of defining MCA is the application of CA to the Burt
matrix B. Since B is a symmetric matrix, the row and column solutions are
identical, so only one set of points is shown — see Exhibit 18.5. Because of the
direct relationship (18.2), it is no surprise that the solutions are related, in
fact at first glance Exhibit 18.5 looks identical to Exhibit 18.2, only the scale
has changed slightly on the two axes. This is the only difference between the
two analyses — the Burt version of MCA gives principal coordinates which
are reduced in scale compared to the indicator version, where the reduction
is relatively more on the second axis compared to the first.

Comparison of
MCA based on
indicator and Burt
matrices

The two ways of defining MCA are related as follows:

• In both analyses the standard coordinates of the category points are iden-
tical — this is a direct result of the relationship (18.2).

• Also as a result of (18.2), the principal inertias of the Burt analysis are
the squares of those of the indicator matrix.

• Since the principal inertias are less than 1, squaring them makes them
smaller in value (and the lower principal inertias relatively smaller still).
The principal coordinates are the standard coordinates multiplied by the
square roots of the principal inertias, which accounts for the reduction in
scale in Exhibit 18.5 compared to Exhibit 18.2.

• The percentages of inertia are thus always going to be higher in the Burt
analysis.

Inertia of the Burt
matrix

The subtables of the Burt matrix have the same row margins in each set of
horizontal tables and the same column margins in each set of vertical tables,
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Exhibit 18.5:

MCA map of Burt
matrix of four

questions on women
working, showing
first and second

dimensions; total
inertia = 1.145,

percentage inertia in
map: 65.0%.

so the result (17.1) applies exactly: the inertia of B will be the average of the
inertias of the subtables Bqs. Exhibit 18.6 shows the 16 individual inertias of
the Burt matrix, and their row and column averages. The overall average is
equal to the total inertia 1.145 of B. In this table the inertias of the diagonal
blocks are exactly 3; in fact their inertias have the same definition (18.1) as
the inertias of the subtables of the indicator matrix — they are Jq ×Jq tables
of dimensionality Jq − 1 with perfect row–column association, and so have
maximal inertia equal to the number of dimensions. These high values on the
diagonal of Exhibit 18.6 demonstrate why the total inertia of the Burt matrix
is so high, which is the cause of the low percentages of inertia on the axes.
We return to this topic in the next chapter.

Positioning
supplementary
variables in the

map

Suppose we wish to relate the demographic variables gender, age, etc., to the
patterns of association revealed in the MCA maps. There are two ways of doing
this, highly related, but one of these has some advantages. The first way is
to code these as additional dummy variables and add them as supplementary
columns of the indicator matrix. The second way is to cross-tabulate the
demographics with the four questions, as we did in the stacked analysis of
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Exhibit 18.6:
Inertias of each of
the 16 subtables of
the Burt matrix,
from their individual
CAs.

QUESTIONS Qu. 1 Qu. 2 Qu. 3 Qu. 4 Average

Qu. 1 3.0000 0.3657 0.4262 0.6457 1.1094
Qu. 2 0.3657 3.0000 0.8942 0.3477 1.1519
Qu. 3 0.4262 0.8942 3.0000 0.4823 1.2007
Qu. 4 0.6457 0.3477 0.4823 3.0000 1.1189

Average 1.1094 1.1519 1.2007 1.1189 1.1452

Chapter 17, and add these cross-tables as supplementary rows of the indicator
matrix or as supplementary rows (or columns) of the Burt matrix. The second
strategy is the preferred strategy because it can be used in both forms of
MCA as well as in the improved versions that we present in the next chapter.
Moreover, it gives the same positions of the supplementary points in both
MCA versions and has the same interpretation as the average positions of
those cases belonging to the particular demographic category. Exhibit 18.7
shows the positions of five of the demographic variables we used previously,
which can be superimposed on the maps of Exhibit 18.2 or 18.5.

DW

DE

M

F

A1A2
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Exhibit 18.7:
Supplementary
variables with
respect to first two
principal axes, to be
superimposed on the
maps of Exhibits
18.2 or 18.5. These
points occupy a
small area of the
map (note the
scale), but will be
more spread out in
the map of the Burt
matrix than that of
the indicator matrix.
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Interpretation
of supplementary

points

Based on the positions of the response categories on the first two dimensions
of Exhibit 18.2 (similarly, Exhibit 18.5), the farther a demographic category is
to the right, the higher will be the frequency of non-responses. The higher up
a category is, the more liberal the attitude, and the lower down it is, the more
traditional the attitude. Hence West Germany (DW) has more traditional at-
titudes and more non-responses than East Germany (DE), a pattern that is
mimicked almost identically by the male–female (M–F) contrast but not as
much as the difference between the two German regions. The age groups show
the same trend as before, from young (A1) at the top (liberal) to old (A6) at
the bottom (traditional). The lowest education groups have the highest fre-
quency of non-response and the highest education education groups tend to
have more liberal attitudes, but so do the lowest education groups E1 and
E2. Amongst the marital status groups, single (si) respondents have higher
than average non-response and liberal attitudes, opposing separated (se) re-
spondents who have the least non-response, but are otherwise average on the
liberal–traditional dimension.

SUMMARY:
Multiple

Correspondence
Analysis

1. MCA is concerned with relationships amongst (or within) a set of variables
— usually the variables are homogeneous in the sense that they revolve
around one particular issue, and often the response scales are the same.

2. The variables can be recoded as dummy variables in an indicator matrix ,
which has as many rows as cases and as many columns as categories of
response. The data in each row are 0s apart from 1s which indicate the
particular category of each variable corresponding to the individual case.

3. An alternative coding of such data is as a Burt matrix , a square symmetric
categories-by-categories matrix formed from all two-way contingency tables
of pairs of variables, including on the block diagonal the cross-tabulations
of each variable with itself.

4. The two alternative definitions of MCA, applying CA to the indicator
matrix or to the Burt matrix, are almost equivalent. Both yield identical
standard coordinates for the category points.

5. The difference between the two definitions is in the pricncipal inertias:
those of the Burt matrix are the squares of those of the indicator matrix.
As a result, the percentages of inertia in the Burt analysis are always more
optimistic than those in the indicator analysis.

6. In both approaches, however, the percentages of inertia are artificially low,
due to the coding, and underestimate the true quality of the maps as
representations of the data.
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Extending simple CA of a two-way table to many variables is not so straight-
forward. The usual strategy is to apply CA to the indicator or Burt matrices,
but we have seen that the geometry is not so clear any more — for example,
the total inertia make little sense and percentages of inertia explained are
low. The Burt matrix version of MCA shows that the problem lies in trying
to visualize the whole matrix, whereas we are really interested only in the off-
diagonal contingency tables which cross-tabulate distinct pairs of variables.
Joint correspondence analysis (JCA) concentrates on these tables, ignoring
those on the diagonal, resulting in improved measures of total inertia and
much better data representation in the maps.
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MCA gives bad fit
because the total
inertia is inflated

Exhibit 18.6 shows the inertias in each subtable of the Burt matrix, and their
average which is the total inertia of the Burt matrix. This average is inflated
by the inertias on the diagonal, which are fixed values equal to the number of
categories minus 1 of the corresponding variable (4 − 1 = 3 for each variable
in that example). Since the analysis tries to explain the inertia in the whole
table, the high inertias on the diagonal are going to seriously affect the fit to
the whole table. For example, we can evaluate from the results of the MCA
how much inertia for each subtable is explained by the two-dimensional MCA
map — see Exhibit 19.1. Although the MCA reports that 65.0% of the total
inertia is explained, we can see that the off-diagonal tables are explained much
better than that, and the tables on the diagonal much worse. By summing the
parts explained in the off-diagonal tables and expressing this sum relative to
the sum of their total inertias, we find that 83.2% of the off-diagonal tables
is explained by the MCA solution (the parts explained in each subtable can

145
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Exhibit 19.1:
Percentage of inertia
explained in each of
the 16 subtables of

the Burt matrix,
based on results of
MCA of the Burt

matrix.

QUESTIONS Qu. 1 Qu. 2 Qu. 3 Qu. 4 Per question

Qu. 1 51.9 78.4 82.5 80.4 61.2
Qu. 2 78.4 55.5 88.2 76.6 65.3
Qu. 3 82.5 88.2 59.6 86.6 69.7
Qu. 4 80.4 76.6 86.6 54.6 63.5

be recovered using the percentages in Exhibit 19.1 and the total inertias in
Exhibit 18.6). Similarly, we can calculate that 55.4% of the inertia on the
diagonal tables is explained (this is a simple average of the diagonal of Exhibit
19.1 because the total inertias for these tables are constant). So, since we are
really interested in only the off-diagonal tables, we should, at least, report a
figure such as 83.2% explained rather than 65.0%. But the fit can be made
even better than 83.2% as we shall see.

Ignoring the
diagonal blocks —

joint CA

It is clear that the inclusion of the tables on the diagonal of the Burt matrix
degrade the whole MCA solution. The method is trying to visualize these ta-
bles unnecessarily, and moreover these are tables with extremely high inertias,
in fact the highest possible inertias attainable. It is possible to improve the
calculation of explained inertia by completely ignoring the diagonal blocks in
the search for an optimal solution. To do this we need a special algorithm
to solve the problem, called joint correspondence analysis (JCA). This is an
iterative algorithm which performs CA on the Burt matrix in such a way that
attention is focused on optimizing the fit to the off-diagonal subtables only.
The method starts from the MCA solution and then replaces the diagonal
subtables with values estimated from the solution itself, using the reconstitu-
tion formula (13.4). Since there is only one set of coordinates and masses for
the rows and columns of the symmetric Burt matrix, the formula takes the
following form, for a two-dimensional solution, say:

p̂jj′ = cjcj′ (1 +
√

λ1γj1γj′1 +
√

λ2γj2γj′2) (19.1)

where p̂jj′ is the estimated value of the relative frequency in the (j, j′)-th cell
of the Burt matrix. Using this formula we replace the diagonal subtables of
the Burt matrix with these estimated values, giving a modified Burt matrix.
CA is then performed on the modified Burt matrix to get a new solution,
from which the diagonal subtables are replaced again with estimates from
the new solution to get a new modified Burt matrix. This process is repeated
several times until convergence, and at each iteration the fit to the off-diagonal
subtables is improved.

Results of JCA Applying JCA to the four-variable data set on women working leads to the
following results: 90.2% inertia explained, and percentages for individual ta-
bles as shown in Exhibit 19.2. The results are clearly much better than before;
all subtables are very well represented, the worst being the cross-tabulation
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Exhibit 19.2:
Percentage of inertia
explained in each of
the 12 off-diagonal
subtables of the
Burt matrix, based
on results of JCA of
the Burt matrix.

QUESTIONS Qu. 1 Qu. 2 Qu. 3 Qu. 4 Per question

Qu. 1 — 97.8 95.8 77.8 88.2
Qu. 2 97.8 — 87.4 97.0 91.8
Qu. 3 95.8 87.4 — 96.7 91.9
Qu. 4 77.8 97.0 96.7 — 88.5

of question 1 with question 4 where the explained inertia is 77.8%. Exhibit
19.3 shows the JCA map, where the scale is intentionally kept identical to
that of Exhibit 18.5 for purposes of comparison. It is clear that the solution is
practically identical apart from a contraction of the points in scale. In Exhibit
18.5 the principal inertias along the first two axes were 0.481 and 0.263, and
here they are 0.353 and 0.128 respectively. So once again there has been a
contraction but more of a contraction on the second axis than on the first.
This also happened when passing from the MCA of the indicator matrix in
Exhibit 18.2 to that of the Burt matrix in Exhibit 18.5, but in that case the
standard coordinates of the two analyses were identical — the JCA solution
here is different from the MCA solution, as can be seen by closer inspection
of Exhibit 19.3 and comparison with the MCA maps in Chapter 18.

1W

1w

1H

1?

2W

2w

2H

2?

3W

3w

3H

3?4W

4w

4H

4?

-3

-2

-1

0

1

2

-1 0 1 2 3

0.353 

0.128 Exhibit 19.3:
JCA map of Burt
matrix of four
questions on women
working; percentage
of inertia in map:
90.2%. The
percentage of inertia
is the sum of the
parts explained in
each subtable
(obtained from
Exhibits 19.2 and
18.6) expressed as a
percentage of the
sum of off-diagonal
inertias — see also
the Theoretical
Appendix, page
207).
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JCA results are
not nested

The principal axes in JCA are not nested as in the MCA analyses — that
is, the solution in two dimensions does not exactly contain the best one-
dimensional solution as its first axis, although in practice the nesting is ap-
proximate. This is why no percentages of inertia are reported along the axes in
Exhibit 19.3 — it is possible to report only a percentage of inertia explained
for the solution as a whole, in this case 90.2%. This will affect the reporting
of inertia contributions as well: each category point has a certain quality of
representation in the map, but we can not break this down into parts for each
axis.

Adjusting the
results of MCA to
fit the off-diagonal

tables

The similarity between the JCA solution and the MCA solution occurs in
almost all examples in our experience. This suggests that it is mainly the
scale change in the solution that distinguishes JCA from MCA; hence, as an
alternative, we can investigate simple scale changes of the MCA solution to
improve the fit. Given the standard coordinates of the MCA solution, there-
fore, how should we scale the solution (i.e., define principal coordinates) so
that we optimally reconstruct the data in the off-diagonal blocks of the Burt
matrix? This is a regression problem, again using the reconstitution formula
(19.1), but considering the scale factors (the square roots of the principal in-
ertias) as unknown regression coefficients β1 and β2 in the model (illustrated
again for a two-dimensional solution):

pjj′

cjcj′
− 1 = β1γj1γj′1 + β2γj2γj′2 + ejj′ (19.2)

The regression is performed by stringing out all the values on the left-hand
side of (19.2) in a vector, just for the cells in the off-diagonal tables, forming
the “response variable” — in our four-variable example, with six 4× 4 tables
off the diagonal, there will be 6× 16 = 96 values in this vector. As “predictor
variables” we have the corresponding products γj1γj′1 and γj2γj′2. A weighted
least-squares regression with no constant is performed with weights cjcj′ on
the respective values — in our example this gives coefficient estimates β̂1 =
0.5922 and β̂2 = 0.3532. Squaring these values gives the optimal values 0.351
and 0.125, respectively, for the “principal inertias”, for which the explained
inertia is 89.9% (this is the coefficient of determination R2 of the regression).
This is the best we can do with the MCA solution — notice how close these
are to the principal inertias in the JCA of Exhibit 19.3, which were 0.353 and
0.128. For mapping the categories, the principal coordinates are calculated as
the MCA standard coordinates on the first two axes multiplied by the scaling
factors β̂1 and β̂2. But once again the solution is not nested and depends
on the dimensionality of the solution — if we perform the same calculation
for the three-dimensional solution the first two regression coefficients will not
be exactly those obtained above. The nested property will hold only if the
“predictors” in (19.2) are uncorrelated. By simply ignoring their correlations,
we obtain a simpler (but sub-optimal) way to adjust the solution, which is
nested, as described on the following page.
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A simple
adjustment of the
MCA solution

We now describe a simpler adjustment of the principal inertias, which has the
nested property; in our experience it gives a solution that is usually very close
to optimal. It is also quite easy to compute, involving (i) a recomputation of
the total inertia, just for the off-diagonal subtables, and (ii) a simple adjust-
ment of the principal inertias emanating from MCA. Principal coordinates
are then calculated in the usual way, as are percentages of inertia.

Adjusted inertia =
average inertia in
off-diagonal blocks

In MCA of the Burt matrix B, total inertia is the average of the inertias of all
subtables, including the offensive ones on the diagonal. But now, as in JCA,
the total inertia is the average of the inertias of the off-diagonal subtables.
This is easily calculated from the total inertia of B because we know exactly
what the values are of the inertias of the diagonal subtables: Jq − 1, where Jq

is the number of categories of the q-th variable. Hence

sum of inertias of Q diagonal subtables = J − Q (19.3)

while

sum of inertias of all two-way tables = Q2 × inertia(B) (19.4)

Subtracting (19.3) from (19.4) to obtain the sum of inertias in the off-diagonal
blocks and then dividing by Q(Q − 1) to obtain the average, leads to:

average off-diagonal inertia = Q

Q − 1
×

(
inertia(B) − J − Q

Q2

)
(19.5)

Using our data on women working as an example:

average off-diagonal inertia = 4

3
×

(
1.1452− 12

16

)
= 0.5269

Another way to compute this value is by directly averaging the inertias of each
subtable, which are given in Exhibit 18.6. This needs to be done on only one
triangle of the table, since there are only 1

2Q(Q−1) = 6 pairwise cross-tables:
1

6
(0.3657 + 0.4262 + 0.6457 + 0.8942 + 0.3477 + 0.4823) = 0.5269

Adjusting each
principal inertia

Suppose that the principal inertias (eigenvalues) in the MCA of the Burt
matrix B are denoted by λk, for k = 1, 2, etc. The adjusted principal inertias
λadj

k are calculated as follows:

λadj
k =

(
Q

Q − 1

)2

×
(√

λk − 1
Q

)2

, k = 1, 2, . . . (19.6)

In our example the first two adjusted inertias are
16

9
× (0.6934 − 1

4
)2 = 0.3495 and

16

9
× (0.5132 − 1

4
)2 = 0.1232

(notice again how close these are to the optimal ones, which were given on
the previous page as 0.351 and 0.125).
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Adjusted
percentages of

inertia

The adjusted inertias are then expressed relative to the adjusted total to give
percentages of inertia along each principal axis:

100 × 0.3495

0.5269
= 66.3% and 100 × 0.1232

0.5269
= 23.4%

The percentage of inertia in the two-dimensional adjusted solution is thus
89.7%, only 0.2% less than the optimal adjustment (which is not nested) and
0.5% less than the JCA solution. It has been proved that the percentages
calculated according to these simple adjustments give an overall percentage
for the solution which is a lower bound for the optimal percentage explained
in a JCA solution, as illustrated in this example. Hence, when reporting an
MCA, the best way to express measure of fit is as above, and then the square
roots of the adjusted principal inertias should be used to scale the standard
coordinates to obtain principal coordinates for mapping. We do not give the
map here since the relative positions of the points are the same as in Exhibits
18.2 and 18.5 — just the scale is different, more like the scale of Exhibit 19.2.

Data set 10:
News interest in

Europe

As another example of JCA, and also to illustrate supplementary points, con-
sider a large data set from the Eurobarometer survey of 2005 on interest in
science. As part of this survey each respondent was asked how interested he
or she was in the following six news issues: sports news (S), politics (P), new
medical discoveries (M), environmental pollution (E), new inventions and tech-
nologies (T), and new scientific discoveries (D). The response scale was “very
interested” (++), “moderately interested” (+) and “not at all interested” (0).
Hence the response categories are depicted by, for example, E+ for “moder-
ately interested in environmental pollution”, or P0 for “not at all interested
in politics”. In order to avoid the usual phenomenon of non-responses that
strongly affect the results, as in the previous example, respondents with any
“don’t know” and missing responses have been omitted, which reduced the
sample size from 33190 to 29652, a reduction of 10.7% — we shall deal with
non-response issues specifically in Chapter 21. The adjusted MCA map of
these data is shown in Exhibit 19.4. The map shows the “no interest” points
forming a diagonal spread of their own to the right and the “interest” points
spreading from “moderately interested” at the bottom to “very interested”
top left. This is an example of a map that would benefit from a rotation of
the axes, if one wanted these two point lines of dispersion to coincide more
with the principal axes — see the remark about rotations in CA in the Epi-
logue. The first axis accounts for 67.0% of the inertia and defines a scale of
general interest in news issues. The second axis (22.0%) shows the interest in
scientific discovery and technological innovation at the extremes, indicating
high correlation between these two. The two points for interest in sports, how-
ever, are near the centre of this spread of points, which indicates that high
interest in sports (S++), for example, must be also associated with moderate
interest in the other issues, and vice versa. Remember that what is being vi-
sualized is the association of each category of a particular variable with the
categories of all the other variables.
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-0.5

0

0.5

-1 -0.5 0 0.5 1

0.0459 (67.0%)

0.1383 (22.2%) Exhibit 19.4:
Adjusted MCA map
of news interest
data. Percentage
inertia in map:
89.2%. (If the MCA
of the indicator
matrix were
performed, the
percentage of
explained inertia
would be only
41.1%.)

Supplementary
points in adjusted
MCA and JCA

Even though we do not show the positions of the 29652 cases in this data
set, they can be imagined in the map as supplementary points. That is, if we
added the huge 29652 × 18 indicator matrix to the Burt matrix as supple-
mentary rows, each respondent would have a position in the MCA map (but
notice that there are only 36 = 729 unique response patterns, so the respon-
dents would pile up at the points representing each response pattern). Since
the standard coordinates in the three different versions of MCA (indicator,
Burt and adjusted) are the same, the principal coordinate positions of the
respondents would be the same in all three. As stated in Chapter 18, the way
to show supplementary categories is to add their cross-tabulations with the
active variables as supplementary rows of the Burt matrix. For example, in
this data set there are samples from 34 European countries. Each respondent
from a particular country has a position in the map and the row of frequencies
in the cross-tabulation has a profile exactly at the average position of that
country’s respondent points. Exhibit 19.5 shows the positions of the countries,
labelled by their local names — this display should be imagined overlaid on
Exhibit 19.4. Of all the countries TURKIYE (Turkey) is the most in the “no
interest” direction — about 40% of Turkish respondents express no interest on
all issues except environmental pollution (22%); whereas KYPROS (Cyprus),
ELLADA (Greece) and MALTA seem to be the most interested — for example,
Cyprus has the highest percentages of “very interested” responses in issues
of environmental pollution (75%), medical discoveries (62%), technological
innovation (53%) and scientific discoveries (55%).
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Exhibit 19.5:
Supplementary

country points in
the MCA space of

the data set of news
interest. The

original country
names, as given in

the Eurobarometer,
are given.

SUMMARY:
Joint

Correspondence
Analysis

1. One way of defining MCA is as the CA of the Burt matrix of all two-way
cross-tabulations of a set of variables, including the cross-tables of each
variable with itself, which inflate the total inertia.

2. Joint correspondence analysis (JCA) finds a map which best explains the
cross-tabulations of all pairs of variables, ignoring those on the block diag-
onal of the Burt matrix. This requires a different iterative algorithm, and
results in an optimal solution but one that is not nested.

3. The total inertia to be explained is now the average of all the inertias in
the off-diagonal tables of the Burt matrix.

4. An intermediate solution is to condition on the standard coordinates of
the MCA solution and find the best weighted least-squares fit to the cross-
tables of interest, using regression analysis. However, this solution is again
not nested.

5. A simple solution, called adjusted MCA,which is nested and thus conserves
all the good properties of MCA while solving the low percentage of inertia
problem, is to apply certain adjustments to the MCA principal inertias and
to the total inertia.

6. Supplementary variables are represented as in all forms of MCA, namely
by cross-tabulating them with the active variables and adding them as
supplementary rows of the Burt matrix (or modified Burt matrix in JCA).
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As was shown in Chapters 7 and 8, there are several alternative definitions
of CA and different ways of thinking about the method. In this book we
have stressed Benzécri’s geometric approach leading to data visualization. In
Chapters 18 and 19 it was clear that the passage from simple two-variable CA
to the multivariate form of the analysis is not straightforward, especially if one
tries to generalize the geometric interpretation. An alternative approach to the
multivariate case, which relies on exactly the same mathematics as MCA, is
to see the method as a way of quantifying categorical data, generalizing the
optimal scaling ideas of Chapter 7. As before, there are several equivalent ways
to think about MCA as a scaling technique, and these different approaches
enrich our understanding of the method’s properties. The optimal scaling
approach to MCA is often referred to in the literature as homogeneity analysis .

Contents
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Data set 11:
Attitudes to
science and
environment

This data set is taken from the multinational ISSP survey on environment in
1993. We are going to look specifically at Q = 4 questions on attitudes towards
the role of science. Respondents were asked if they agreed or disagreed with
the following statements:

A We believe too often in science, and not enough in feelings and faith.
B Overall, modern science does more harm than good.
C Any change humans cause in nature, no matter how scientific, is likely to

make things worse.
D Modern science will solve our environmental problems with little change to

our way of life.

There were five possible response categories: 1. strongly agree, 2. somewhat
agree, 3. neither agree nor disagree, 4. somewhat disagree, 5. strongly disagree.
For simplicity we have used data for the West German sample only and have

153
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omitted cases with missing values on any one of the four questions, leaving us
with a sample of N = 871 (these data are provided with our ca package for
R — see the Computational Appendix).

Category
quantification as a

goal

In Chapter 7 CA was defined as the search for quantifications of the categories
of the column variable, say, which lead to the greatest possible differentiation,
or discrimination, between the categories of the row variable, or vice versa.
This is what we would call an “asymmetric” definition because the rows and
columns play different roles in the definition and the results reflect this too;
for example, the column solution turns out to be in standard coordinates
and the row solution in principal coordinates. In Chapter 8 CA was defined
“symmetrically” as the search for new scale values which lead to the highest
correlation between the row and column variables. Here the rows and columns
have an identical role in the definition. These scaling objectives do not include
any specific geometric concepts and, in particular, make no mention of a full
space in which the data are imagined to lie, which is an important concept in
the geometric approach for measuring total inertia and percentages of inertia
in lower-dimensional subspaces.

MCA as a
principal

component
analysis of the

indicator matrix

The asymmetric definition of optimal scaling, when applied to an indicator
matrix, resembles closely principal component analysis (PCA). PCA is usu-
ally applied to matrices of continuous-scale data, and has close theoretical and
computational links to CA — in fact, one could say that CA is a variant of
PCA for categorical data. In the PCA of a data set where the rows are cases
and the columns variables (m variables, say, x1,...,xm), coefficients α1,...,αm

(to be estimated) are assigned to the columns, leading to linear combinations
for the rows (cases) of the form α1x1 + · · · + αmxm, called scores . The co-
efficients are then calculated to maximize the variance of the row scores. As
before, identification conditions are required to solve the problem, and in PCA
this is usually that the sum of squares of the coefficients is 1:

∑
j α2

j = 1. Ap-
plying this idea to the indicator matrix, which consists of zeros and ones only,
assigning coefficients α1,...,αJ to the J dummy variables and then calculating
linear combinations for the rows, simply means adding up the α coefficients
(i.e., scale values) for each case. Then maximizing the variance for each case
sounds just like the optimal scaling procedure of Chapter 7 (maximizing dis-
crimination between the rows); in fact this is almost identical except for one
aspect, namely the identification conditions. In optimal scaling the identifica-
tion conditions would be that the weighted variance (inertia) of the coefficients
(not the simple sum of squares) be equal to 1:

∑
j cjα

2
j = 1. Here the cj ’s are

the column masses, i.e., the column sums of the indicator matrix divided by
the grand total NQ of the indicator matrix — thus each set of cj ’s for one
categorical variable adds up to 1/Q. So with this change in the identification
condition, MCA could be called the PCA of categorical data, maximizing the
variance across cases. The coefficients are the standard coordinates of the col-
umn categories, while the MCA principal coordinate of a case is the average
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of that case’s scale values, i.e., 1/Q times the sum that was called the score
before. The first dimension of MCA maximizes the variance (first principal
inertia), the second dimension maximizes the variance subject to the scores
being uncorrelated with those on the first dimension, and so on.

Maximizing
inter-item
correlation

MCA as a scaling technique, usually called homogeneity analysis , is more
commonly seen as a generalization of the correlation approach of Chapter 8.
In Equation (8.1) on page 63, an alternative way of optimizing correlation
between two categorical variables was given, which is easy to generalize to
more than two variables. Again we shall use a pragmatic notation for this
particular four-variable example but the ideas easily extend to Q variables
which have any number of categories (in our example here, Q = 4 and the
total number of categories is J = 20). Suppose that the four variables have
(unknown) scale values a1 to a5, b1 to b5, c1 to c5, and d1 to d5. Assigning
four of these values ai, bj, ck and dl to each respondent according to his or
her set of responses leads to the quantified responses for the whole sample,
which we denote by a, b, c and d (i.e., a denotes all 871 quantified responses
to question A, etc.). Each respondent has a score ai + bj + ck + dl which is
the sum of the scale values, so the scores for the whole sample are denoted
by a + b + c + d. In this context the variables are often referred to as items
and we talk of the values in a to d as item scores and those in a + b + c + d
as the summated scores. The criterion for finding optimal scale values is thus
to maximize the average squared correlation between the item scores and the
summated score:

average squared correlation = 1

4
[cor2(a, a + b + c + d) + cor2(b, a + b + c + d)

+ cor2(c, a + b + c + d) + cor2(d, a + b + c + d)] (20.1)

(cf. the two-variable case in (8.1.) on page 63). Again, identification conditions
are required, and it is convenient to use the mean 0 and variance 1 conditions
on the summated scores: mean(a + b + c + d) = 0, var(a + b + c + d) = 1. The
solution to this maximization problem is then given exactly by the standard
coordinates of the item categories on the first principal axis of MCA, and the
maximized average squared correlation of (20.1) is exactly the first principal
inertia (of the indicator matrix version of MCA).

MCA of scientific
attitudes example

Exhibit 20.1 shows the two-dimensional MCA map based on the indicator
matrix, showing again the very low percentages of inertia (the percentages
based on adjusted inertias are 44.9% and 34.2% respectively). But in this
case the percentages should be ignored, since it is the values of the principal
inertias that are of interest per se, being average squared correlations. The
maximum value of (20.1) is thus 0.457. The second principal inertia, 0.431, is
found by looking for a new set of scale values which lead to a set of scores which
are uncorrelated with those obtained previously, and which maximize (20.1)
— this maximum is the value 0.431. And so it would continue for solutions on
subsequent axes, always uncorrelated with the ones already found. Looking
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MCA map
(indicator matrix

version) of science
attitudes, showing
category points in

principal
coordinates. Since

the principal
inertias differ only
slightly (and even

less in their square
roots), the principal

coordinates are
almost the same

contraction of the
standard coordi-

nates on both axes.

at the map in Exhibit 20.1, we see that questions A, B and C follow a very
similar pattern, with strong disagreements on the left to strong agreements
on the right, in a wedge-shaped horseshoe pattern. Question D, however, has
a completely different trajectory, with the two poles of the scale very close
together. Now the first three questions were all worded negatively towards
science whereas question D was worded positively, so we would have expected
D5 to lie towards A1 , B1 and C1 , and D1 on the side of A5 , B5 and C5 .
The fact that D1 and D5 lie close together inside the horseshoe means that
they are both associated with the extremes of the other three questions —
the most likely explanation is that some respondents are misinterpreting the
change of direction of the fourth question.

Individual
squared

correlations

Knowing the values of the individual squared correlations composing (20.1)
will also be interesting information. These can be obtained directly by adding
up the individual inertia contributions to the first principal inertia for each
question. The results of a MCA usually give these expressed in proportions or
permills, so we show these as permills in Exhibit 20.2 as an illustration of how
to recover these correlations. Questions A to D thus contribute proportions
0.279, 0.317, 0.343 and 0.062 of the principal inertia of 0.457. Since 0.457 is
the average of the four squared correlations, the squared correlations and thus
the correlations are:
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Exhibit 20.2:
Permill ( 0/00)
contributions to
inertia of first
principal axis of
MCA (indicator
matrix version) of
data on science and
environment.

QUESTIONS
CATEGORIES A B C D Sum

1 “strongly agree” 115 174 203 25 518
2 “somewhat agree” 28 21 6 3 57
3 “neither–nor” 12 7 22 9 49
4 “somewhat disagree” 69 41 80 3 194
5 “strongly disagree” 55 74 32 22 182
Sum 279 317 343 62 1000

A: 0.279 × 0.457 × 4 = 0.510 correlation =
√

0.510 = 0.714
B: 0.317 × 0.457 × 4 = 0.579 correlation =

√
0.579 = 0.761

C: 0.343 × 0.457 × 4 = 0.627 correlation =
√

0.627 = 0.792
D: 0.062 × 0.457 × 4 = 0.113 correlation =

√
0.113 = 0.337

This calculation shows how much lower the correlation is of question D with
the total score. Notice that, although the MCA of the indicator matrix was the
worst from the usual CA geometric point of view of χ2-distances, total inertia,
etc., the principal inertias and the contributions to the principal inertias do
have a very interesting interpretation by themselves. In the approach called
homogeneity analysis , which is theoretically equivalent to the MCA of the
indicator matrix but which interprets the method from a scaling viewpoint,
the squared correlations 0.510, 0.579, 0.627 and 0.113 are called discrimination
measures.

Loss of
homogeneity

In homogeneity analysis the objective function (8.3) (see Chapter 8, page
63) is generalized to many variables. Using the notation above for the present
four-variable example, we would calculate the average score 1

4 (ai+bj +ck +dl)
of the item scores for each respondent and then calculate that respondent’s
measure of variance within his or her set of quantified responses:

variance (for one case) = 1

4
( [ai − 1

4
(ai + bj + ck + dl)]2

+ [bj − 1

4
(ai + bj + ck + dl)]2

+ [ck − 1

4
(ai + bj + ck + dl)]2

+ [dl − 1

4
(ai + bj + ck + dl)]2 ) (20.2)

The average of all these values over the N cases is then calculated, called
the loss of homogeneity and the objective is to minimize this loss. Again the
MCA (indicator matrix version) solves this problem and the minimized loss
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is 1 minus the first principal inertia; i.e., 1 − 0.457 = 0.543. Minimizing the
loss is equivalent to maximizing the correlation measure defined previously.

Geometry of
loss function in

homogeneity
analysis

The objective of minimizing loss has a very attractive geometric interpreta-
tion which is closely connected to the row-to-column distance definition of CA
discussed in Chapter 7. In fact, the homogeneity loss function is exactly the
weighted distance function (7.6) on page 55, applied to the indicator matrix.
Exhibit 20.3 shows the asymmetric MCA map of all N = 871 respondents (in
principal coordinates) and the J = 20 category points (in standard coordi-
nates), which means that the respondents lie at the centroids of the categories,
where the weights are the relative values in the rows of the indicator matrix.
Each respondent has a profile consisting of zeros apart from values of 1

4 in

D5

D4

D3

D2

D1

C5

C4

C3

C2

C1

B5

B4

B3

B2

B1

A5

A4

A3

A2

A1

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

0.457

0.413

#679

#521

Exhibit 20.3:
Asymmetric MCA

map (indicator
matrix version) of
science attitudes,

showing respondents
in principal

coordinates and
categories in

standard
coordinates. Each

respondent is at the
average of the four
categories given as

responses. MCA
minimizes the sum

of squared distances
between category

points and
respondents.

the positions of the four responses; hence each repondent point lies at the
ordinary average position of his or her responses. Two respondents, #679 and
#521, are labelled in Exhibit 20.3. Respondent #679 chose the categories
(A4,B5,C5,D1), disagreeing with the first three questions and agreeing to the
fourth — those categories are linked to the respondent point on the left-hand
side of the display. This is a strong and consistent position in favour of science.
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Respondent #521, however, has a mixed opinion: (A1,B4,C1,D1), strongly
agreeing that we believe too much in science and that human interference in
nature will make things worse, but at the same time strongly agreeing that
science will solve our environmental problems while disagreeing that science
does more harm than good. This shows one of the reasons why D1 has been
pulled to the middle between the two extremes of opinion. Every respondent
is at the average of the four categories in his or her set of answers. For any
configuration of category points, the respondents could be located at average
positions, but the result of Exhibit 20.3 is optimal in the sense that the lines
linking the respondents to the category points are the shortest possible (in
terms of sum of squared distances). Showing all the links between respondents
and their response categories has been called a star plot , so the objective of
MCA can be seen as obtaining the star plot with the shortest links in the
least-squares sense. The number of links between the N respondent points
and the corresponding Q category points is NQ, and the value of the loss is
actually the average of the squares of the links (for example, in (20.2) where
Q = 4 the sum of the four squares is divided by 4, and then the average over
N is calculated, so that the sum of squared values is divided by 4N). So the
average sum of squared links on the first dimension is 1 − 0.457 = 0.513, and
on the second dimension it is 1− 0.413 = 0.587; by Pythagoras’ theorem, the
average sum of squared links in the two-dimensional map of Exhibit 20.3 is
0.513 + 0.587 = 1.100.

Reliability and
Cronbach’s alpha

In the present example of the science and environment data, we saw that the
question D is not correlated highly with the others (see page 157). If we were
trying to derive an overall measure of attitude towards science in this context,
we would say that these results show us that question D has degraded the
reliability of the total score, and should preferably be removed. In reliability
theory, the Q variables, or items, are supposed to be measuring one underlying
construct. Cronbach’s alpha is a standard measure of reliability, defined in
general as:

α =
Q

Q − 1

(
1 −

∑
q s2

q

s2

)
(20.3)

where s2
q is the variance of the q-th item score, q = 1, . . . , Q (e.g., variances

of a, b, c and d) and s2 is the variance of the average score (e.g., variance of
1
4 (a + b + c + d)). Applying this definition to the first dimension of the MCA
solution, it can be shown that Cronbach’s alpha reduces to the following:

α =
Q

Q − 1

(
1 − 1

Qλ1

)
(20.4)

where λ1 is the first principal inertia of the indicator matrix. Thus the higher
the principal inertia, the higher the reliability. Using Q = 4 and λ1 = 0.4574
(four significant digits for slightly better accuracy) we obtain:

α =
4
3

(
1 − 1

4 × 0.4574

)
= 0.605
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Having seen the behaviour of question D, an option now is to remove it and re-
compute the solution with the three questions that are highly intercorrelated.
The results are not given here, apart from reporting that the first principal in-
ertia of this three-variable MCA is λ1 = 0.6018, with an increase in reliability
to α = 0.669 (use (20.4) with Q = 3). As a final remark, it is interesting to no-
tice that the average squared correlation of a set of random variables, with no
zero pairwise correlation between them, is equal to 1/Q, and this corresponds
to a Cronbach’s alpha of 0. The value 1/Q is exactly the threshold used in
(19.7) for adjustment of the principal inertias (eigenvalues), and was also the
average principal inertia in the MCA of the indicator matrix, mentioned in
Chapter 18.

SUMMARY:
Scaling Properties

of MCA

1. Optimal scaling in a two-variable context was defined as the search for
scale values for the categories of one variable which lead to the highest
separation of groups defined by the other variable. This problem is equiv-
alent to finding scale values for each set of categories which lead to the
highest possible correlation between the row and column variables.

2. In a multivariate context, optimal scaling can be generalized as the search
for scale values for the categories of all variables so as to optimize a measure
of correlation between the variables and their sum (or average). Specifically,
the average squared correlation is maximized between the scaled observa-
tions for each variable, called item scores , and their sum (or average), called
simply the score.

3. Equivalently, a minimum can be sought for the variance between item
scores within each respondent, averaged over the sample. This is the usual
definition of homogeneity analysis .

4. The scaling approach in general, exemplified by homogeneity analysis, is
a better framework for interpreting the results of MCA of an indicator
matrix. The principal inertias and their breakdown into contributions are
more readily interpreted as squared correlations, rather than quantities
with a geometric significance as in simple CA.

5. The first principal inertia in the indicator matrix version of MCA has a
monotonic functional relationship with Cronbach’s alpha measure of relia-
bility: the higher the principal inertia, the higher the reliability.

6. Since the standard coordinates are identical for the MCA of the indicator
matrix, the Burt matrix and in the adjusted form, these scaling properties
apply to all three versions of MCA.
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It is often desirable to restrict attention to part of a data matrix, leaving out
either some rows or some columns or both. For example, the columns might
subdivide naturally into groups and it would be interesting to analyse each
group separately. Or there might be categories corresponding to missing values
and one would like to exclude these from the analysis. The most obvious ap-
proach would be simply to apply CA to the submatrix of interest — however,
one or both of the margins of the submatrix would differ from those of the
original data matrix, and so the profiles, masses and distances would change
accordingly. The approach presented in this chapter, called subset correspon-
dence analysis, fixes the original margins of the whole matrix, using these
to determine the masses and χ2-distance in the analysis of any submatrix.
Subset CA has many advantages; for example, the total inertia of the original
data matrix is decomposed amongst the subsets, hence the information in a
data matrix can be partitioned and investigated separately.
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Analysing the consonants and vowels of author data set . . . . . . . . . 161
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Analysing the
consonants and
vowels of author
data set

The author data set of Exhibit 10.6 is a good example of a table with columns
that naturally divide into subsets — the 26 letters of the alphabet formed by 21
consonants and 5 vowels. We have seen in Chapter 10, page 79, that the total
inertia of this table is very low, 0.01873, but that there is a definite structure
amongst the rows (the 12 texts by the six authors). It would be interesting
to see how the results are affected if we restrict our attention to the subset of
consonants or the subset of vowels. One way of proceeding would be simply to
analyse the two submatrices, the 12× 21 matrix of consonant frequencies and
the 12× 5 matrix of vowel frequencies. But this means that the values in the
profiles of each text would be recalculated with respect to the new margins of
the submatrix being analysed. In the analysis of consonants, for example, the

161
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relative frequencies of b, c , d , f , ..., etc. would be calculated relative to the
total number of consonants in the text, not the total letters. Moreoever, the
mass of each text would be proportional to the number of consonants counted,
not the number of letters. As for the consonants, their profiles would remain
the same as before but the χ2-distances between them would be different
because they depend on the row masses, which have changed.

Subset analysis
keeps original
margins fixed

An alternative approach, which has many advantages, is to analyse the sub-
matrix but keep the original margins of the table fixed for all calculations of
mass and distance. Algorithmically, this is a very simple modification of any
CA program — all that needs to be done is to suppress the calculation of
marginal sums “local” to the submatrix selected, maintaining the calculation
of these sums using the original complete table. This method is called subset
correspondence analysis.

Subset CA of
consonants,

standard biplot

Applying subset CA to the table of consonant frequencies (see pages 242–
244), we obtain the map of Exhibit 21.1. Here the standard CA biplot is
given rather than the symmetric or asymmetric map (see Chapter 13). The
texts are in principal coordinates, so their interpoint distances are approxi-
mate χ2-distances, where the distances are based on that part of the original
χ2-distance function due only to the consonants, dropping the terms due to
the vowels. The consonants are in standard coordinates multiplied by the re-
spective square roots of the relative frequency of the consonant (i.e., relative
frequency in the set of 26 letters — remember that the marginal sums are
always those of the original table). The squared lengths of the consonant vec-
tors on each axis are proportional to their contribution to the axis, which is
why the letter y is so prominent on the second axis (more than 50% in this
case). This biplot works just as well for tables with low or high inertias and
is particularly useful in this example where the inertia is extremely small.
Comparing this map with the asymmetric map of Exhibit 10.7, we can see
that the letters are pointing in more or less the same directions and that the
configuration of the texts is quite similar. The total inertia is 0.01637, and
this value is exactly the sum of the inertias of the consonants in the full anal-
ysis. On page 79 we reported the total inertia of the full table to be 0.01873;
hence the consonants are responsible for 87.4% (0.01637 relative to 0.01873)
of the inertia. Having realized that the consonants contribute the major part
of the inertia, it is no surprise that most of the structure displayed in the full
analysis of Exhibit 10.7 and the subset analysis of Exhibit 21.1 is the same.

Subset CA of
the vowels,

standard biplot

The total inertia of the orginal table is decomposed as follows between the
consonants and the vowels:

total inertia = inertia of consonants + inertia of vowels
0.01873 = 0.01637 + 0.00236

(87.4%) (12.6%)
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Exhibit 21.1:
Subset analysis of
consonants in
author example;
standard CA row
biplot, i.e., rows
(texts) in principal
coordinates and
columns (letters) in
standard
coordinates
multiplied by the
square roots of
column masses.
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As-Mich

Pe2-Holt

The inertia in the vowels part of the table is much smaller, only 12.6% of the
original total, in spite of the fact that the vowels are relatively more frequent
(38.3% of the letters correspond to the 5 vowels, compared to 61.7% for the 21
consonants). The subset CA of the vowels, again with standard biplot scaling,
is shown in Exhibit 21.2, and the lower dispersion of the texts compared to
the vectors for the letters is immediately apparent, compared to Exhibit 21.1.
However, some pairs of texts are still lying in fairly close proximity. There is
an opposition of the letter e on the left versus the letter o on the right, with
a corresponding opposition of the texts by Buck versus those by Faulkner. Of
the six authors, the texts of Holt seem to be the most different. In Chapter 25
we shall discuss permutation tests for testing the significance of these results;
anticipating this, it turns out the pairing of the texts is highly significant in
the case of the consonants but not significant for the vowels.
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Exhibit 21.2:
Subset analysis of
vowels in author

example; standard
CA row biplot, i.e.,

rows (texts) in
principal

coordinates and
columns (letters) in

standard
coordinates

multiplied by the
square roots of
column masses.
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Subset MCA The subset idea can be applied to MCA in much the same way and provides a
very useful tool for investigating patterns in specific categories in multivariate
categorical data. In questionnaire surveys it may be interesting from a sub-
stantive point of view to focus on a particular subset of responses, for example
only the categories of agreement on a five-point agreement–disagreement scale,
or all the “middle” response categories (“neither agree nor disagree”) or the
various non-substantive response categories (“don’t know”, “no response”,
“other”, etc.). Or we might want to exclude the non-substantive response cat-
egories and focus only on substantive answers. In all these cases, the subset
analysis will allow us to see more clearly how demographic variables relate
to these particular types of responses, which otherwise might not be so clear
when all categories are analysed together. The subset option allows us to par-
tition the variation in the data into parts for different sets of categories, which
can then be visualized separately. The way to perform subset MCA is to apply
subset CA to the appropriate parts of the indicator matrix or Burt matrix,
as we illustrate now.
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Subset analysis on
an indicator
matrix

We return to the data set on working women introduced in Chapter 17 and
analysed by MCA in Chapter 18. Each of the four questions has a response
category for “don’t know” and missing responses, previously labelled by the
symbol ? in the maps. These categories were very prominent on the first prin-
cipal axis of the MCA (see Exhibit 18.2). We can perform a subset analysis
on the substantive response categories, labelled W (work full-time), w (work
part-time) and H (stay at home) for the four variables, omitting the columns of
the indicator matrix corresponding to the non-substantive response ? , main-
taining the original row and column margins of the indicator matrix. Since
the row sums of the indicator matrix are 4 in this case, the subset analysis
maintains the equal weighting for each row (respondent) and the profile values
are still zeros or 1

4 . The respondents with four substantive answers will have
four values of 1

4 in their profiles, while those with three substantive answers
will have three 1

4 s and so on. If we simply omitted these columns and per-
formed a regular CA on the indicator matrix, then there would be values of
1
3 for those with three substantive responses, 1

2 for those with two, and 1 for
those with just one substantive response. The profile of a case with four non-
substantive responses would be impossible to calculate, whereas in a subset
analysis such a case has a set of zeros as data and is represented at the origin
of the map. The total inertia of the subset of 12 categories is 2.1047. Since
the total inertia of the whole indicator matrix is 3, this shows that the inertia
is decomposed as 2.1047 (70.2%) for the substantive categories and 0.8953
(29.8%) for the non-substantive ones. The principal inertias and percentages
of inertia for the first two dimensions of this subset analysis are 0.5133 (24.4%
of the total of 2.1047) and 0.3652 (17.4%), i.e., 41.8% in the two-dimensional
solution. These percentages again suffer from the problem, as in MCA, of be-
ing artificially low. As in Chapter 19, an adjustment of the scaling factors on
the axes can be implemented, as will be demonstrated below.

Subset analysis on
a Burt matrix

As in regular MCA, the subset analysis can also be performed on the appro-
priate part of the Burt matrix. To illustrate the procedure, the Burt matrix,
given in Chapter 18 in Exhibit 18.4, can be rearranged so that all categories of
the subset are in the top left part of the table, as shown in Exhibit 21.3. So the
subset of interest is the 12×12 submatrix, itself in a block structure made up
of the four sets of three substantive responses, while the four non-substantive
categories are now the last rows and columns of the table. The analysis of the
subset gives a total inertia of 0.6358 and principal inertias and percentages of
0.2635 (41.4%) and 0.1333 (21.0%) on the first two dimensions: as in MCA,
this is an improvement over the indicator matrix version, explaining 62.4% of
the inertia compared to 41.8%. Notice that the connection between the indi-
cator and Burt versions of subset MCA is the same as in regular MCA: the
principal inertias in the Burt analysis are the squares of those in the indicator
version, for example 0.2635 = 0.51332.
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Exhibit 21.3:
Burt matrix of four
categorical variables

of Exhibit 18.4,
re-arranged so that
all non-substantive
response categories
(?) are in the last

rows and columns.
All substantive

responses (W, w and
H) are in the upper

left 12 × 12 part,
while the lower right
4× 4 corner contains
the co-occurences of
the non-substantive

responses (“don’t
know/missing”).

1W 1w 1H 2W 2w 2H 3W 3w 3H 4W 4w 4H 1? 2? 3? 4?

2501 0 0 172 1107 1131 355 1710 345 1766 538 40 0 91 91 157

0 476 0 7 129 335 16 261 181 128 293 17 0 5 18 38

0 0 79 1 6 72 1 17 61 14 21 38 0 0 0 6

172 7 1 181 0 0 127 48 4 165 15 0 1 0 2 1

1107 129 6 0 1299 0 219 997 61 972 239 13 57 0 22 75

1131 335 72 0 0 1646 24 989 573 760 616 84 108 0 60 186

355 16 1 127 219 24 379 0 0 360 14 1 7 9 0 4

1710 261 17 48 997 989 0 2084 0 1348 567 23 96 50 0 146

345 181 61 4 61 573 0 0 642 202 286 73 55 4 0 81

1766 128 14 165 972 760 360 1348 202 1959 0 0 51 62 49 0

538 293 21 15 239 616 14 567 286 0 897 0 45 27 30 0

40 17 38 0 13 84 1 23 73 0 0 97 2 0 0 0

0 0 0 1 57 108 7 96 55 51 45 2 362 196 204 264

91 5 0 0 0 0 9 50 4 62 27 0 196 292 229 203

91 18 0 2 22 60 0 0 0 49 30 0 204 229 313 234

157 38 6 1 75 186 4 146 81 0 0 0 264 203 234 465

Subset MCA
with rescaled
solution and

adjusted inertias

The problem of low inertias is the same here as in MCA: in Exhibit 21.3
there are still 3 × 3 diagonal matrices on the block diagonal of the 12 × 12
submatrix which forms the subset being analysed. As before, it is possible
to rescale the solution by regression analysis so that the off-diagonal subma-
trices are optimally fitted. This involves stringing out the elements of these
6 off-diagonal matrices, each with 9 elements each, as a vector of 54 ele-
ments, forming the “y”-variable of the regression. These elements should be
expressed as in (19.2), as contingency ratios minus 1. The two “x”-variables
(for a two-dimensional solution) are formed by the corresponding products of
the standard coordinates. The optimal values for the scale factors are then
found by weighted least-squares, as before (see Chapter 19, page 140), giving
a fit of R2 = 0.849. Unfortunately, there does not seem to be a simple short
cut in this case, as there was for MCA (see (19.5) and (19.7)). Based on the
weighted least-squares regression we obtained scaling factors of 0.3570 and
0.1636, which were then used to obtain the principal coordinates and the map
in Exhibit 21.4. The squares of these scaling factors are thus the principal
inertias, 0.1275 and 0.0268, given on the axes. The percentage of inertia ex-
plained by the adjusted two-dimensional solution, i.e., R2, is 84.9% (strictly
speaking, percentages on individual axes cannot be given because the solution
is not nested).
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0.0268 
Exhibit 21.4:
Map of subset of
response categories,
excluding the
non-substantive
categories. The
solution has been
adjusted to best fit
the off-diagonal
tables of the subset
matrix, which
improves the fit
considerably,
explaining 84.9% of
the inertia.

Supplementary
points in subset
CA

Displaying supplementary points depends on whether rows or columns have
been subsetted. In the case of the author data, for example, where the subset
of the vowels was analysed (Exhibit 21.2), the usual centring condition holds
for the rows (texts), which were not subsetted, but it does not hold for the
columns (vowels). If we wanted to project the letter Y onto the subset map
of the vowels, we use the zero-centred row coordinates φik (i.e., row vertices),
so it is not necessary to centre Y ’s profile, and the usual weighted averaging
gives the principal coordinates — see Chapter 12 and the specific transition
formula (14.2) applicable to this case (for a two-dimensional solution):

∑

i

yiφik k = 1, 2 (21.1)

where yi si the i th profile value of Y . On the other hand, to project a new
text, with profile values tj for the subset (these add up to the proportion
of vowels in that text, not 1), centring has to be performed with respect to
the original centroid values cj before performing the scalar product operation
with the standard column coordinates γjk:

∑

j

(tj − cj)γjk k = 1, 2 (21.2)

Notice that to situate a supplementary point in subset CA and in regular
CA, this type of centring can always be done, but is not necessary when the
standard coordinates satisfy

∑
i riφik = 0 and

∑
j cjγjk = 0, which is the case

when the summation is over the complete set.
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168 Subset Correspondence Analysis

Supplementary
points in subset

MCA

Every respondent (row) of the indicator matrix can be represented as a supple-
mentary point, as well as any grouping of rows into education groups, gender
groups, etc. So, as in regular MCA, the categories of supplementary variables
are displayed at the centroids of the respondent points that fall into these
groups. Exhibit 21.5 shows the positions of various demographic categories
with respect to the same principal axes as in Exhibit 12.4.

DE

M

F

A1

A2

A4

A5

A6
E1

E3

E5

E6

E7

ma

wi

di

se

si

-0.1

0

0.1

0.2

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

E4

DW

A3

Exhibit 21.5:
Positions of

supplementary
points in the map of
Exhibit 21.4. Some

abbreviations can be
found in Chapter
17, page 129; DW
and DE are West

and East Germany.

SUMMARY:
Subset

Correspondence
Analysis

1. The idea in subset CA is to visualize a subset of the rows or a subset of
the columns (or both) in subspaces of the same full space as the original
complete set. The original centroid is maintained at the centre of the map,
as well as the original masses and χ2-distance weights.

2. Because the properties of the original space are conserved in the subset
analysis, the original total inertia is decomposed exactly into parts of in-
ertia for each subset.

3. Subset CA is implemented simply by suppressing the recomputation of the
margins of the subset, and using the original margins (masses) in all the
usual CA computations.

4. This idea extends to MCA as well, allowing the selection of any subset of
categories, providing an analytic strategy that can be put to great advan-
tage in the analysis of questionnaire data. For example, missing categories
can be excluded, or the analysis can focus on one type of response cate-
gory for all questions, visualizing the dimensions of the subset without any
interference from the other categories.

5. As in regular MCA, subset MCA can be applied to the indicator matrix
or Burt matrix, and the solutions can be rescaled to optimize the fit to the
actual subtables of interest, which dramatically improves the percentages
of explained inertia.

6. Supplementary points can also be added to a subset map. In subset MCA
this facility allows demographic categories to be related to particular types
of response categories.
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22Analysis of Square Tables

In this chapter we consider the special case when the table of frequencies
is square and the rows and the columns refer to the same set of objects in
two different states. Such data are found in many situations, for example so-
cial mobility tables, confusion matrices in psychology, brand switching tables
in marketing research, cross-citations between journals, transition matrices
between behavioural states and migration tables. These tables are often char-
acterized by relatively high values down the diagonal, which is such a strong
source of association that the more subtle patterns off the diagonal are not
seen in the major principal axes. One approach to applying CA to square
tables is to split the analysis into two parts: (i) an analysis of the symmet-
ric part of the table, which absorbs the main component of inertia, including
the diagonal, and (ii) an analysis of the remaining part of the table called the
skew-symmetric part, which contains the information off the diagonal. It is the
visualization of this latter component that shows the amount and direction of
“flow” from the rows to the columns and vice versa.

Contents

Data set 12: Social mobility — occupations of fathers and sons . . . . . 169
CA of square table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
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Symmetry and skew-symmetry in a square table . . . . . . . . . . . . . 172
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CA of the skew-symmetric part . . . . . . . . . . . . . . . . . . . . . . . 173
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Visualization of the symmetric and skew-symmetric parts . . . . . . . . 174
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Data set 12: Social
mobility —
occupations of
fathers and sons

To give an immediate context to this approach, consider a classic data set
on social mobility. This is a historical data set published by Karl Pearson
more than 100 years ago on the occupations of fathers and their sons —
see Exhibit 22.1. Each father–son pair is counted in one of the cells of the
table according to the father’s and son’s respective occupations. Square tables
such as these usually have strong diagonals, since many sons follow their
fathers’ occupations, but there are some notable asymmetries in the table:
for example, in the first line of the table there are 50 fathers in the army,
while in the first column there are 84 sons in the army. The flow to the army
from other occupations has mostly been from landownership (row 7) and
commerce (row 10). Commerce, on the other hand, has had a large outflow to

169
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170 Analysis of Square Tables

other occupations, with 106 fathers in commerce but only 24 sons, the outflow
being mainly to art, divinity, literature and the army.

Exhibit 22.1:
Contingency table

between the
occupations of

fathers and sons. For
example, of the 50

fathers employed in
the army, 28 of their
sons were also in the

army, 4 went into
teaching/clerical

work/civil service,
and so on.

FATHER’S SON’S OCCUPATION

OCCUPATION i ii iii iv v vi vii viii ix x xi xii xiii xiv Sums

Army 28 0 4 0 0 0 1 3 3 0 3 1 5 2 50

Art 2 51 1 1 2 0 0 1 2 0 0 0 1 1 62

Teaching...∗ 6 5 7 0 9 1 3 6 4 2 1 1 2 7 54

Crafts 0 12 0 6 5 0 0 1 7 1 2 0 0 10 44

Divinity 5 5 2 1 54 0 0 6 9 4 12 3 1 13 115

Agriculture 0 2 3 0 3 0 0 1 4 1 4 2 1 5 26

Landownership 17 1 4 0 14 0 6 11 4 1 3 3 17 7 88

Law 3 5 6 0 6 0 2 18 13 1 1 1 8 5 69

Literature 0 1 1 0 4 0 0 1 4 0 2 1 1 4 19

Commerce 12 16 4 1 15 0 0 5 13 11 6 1 7 15 106

Medicine 0 4 2 0 1 0 0 0 3 0 20 0 5 6 41

Navy 1 3 1 0 0 0 1 0 1 1 1 6 2 1 18

Politics...† 5 0 2 0 3 0 1 8 1 2 2 3 23 1 51

Scholarship...◦ 5 3 0 2 6 0 1 3 1 0 0 1 1 9 32

Sums 84 108 37 11 122 1 15 64 69 24 57 23 74 86 775

∗Teaching, Clerical Work, Civil Service †Politics & Court ◦Scholarship & Science

CA of square
table

Because this is a contingency table, CA is an appropriate method to visu-
alize it — see Exhibit 22.2. The table has a high inertia (1.297) because of
the strong association between rows and columns, so the asymmetric map is
used, with father profiles in principal coordinates and son profiles in standard
coordinates. If the profile of a father occupation has all zeros except for the
value on the diagonal, then that occupation will lie at the vertex of that oc-
cupation. The second row for the occupation Art is almost like that, with the
highest relative value (51 out of 62, or 82%) of fathers having sons in the same
occupation, and this fact is reflected by the separating out of Art in Exhibit
22.2, hence the father-occupation Art almost reaching the son-occupation ver-
tex point ART . The row point Crafts is between the vertex points ART and
SCH (SCHOLARSHIP & SCIENCE ) because there are relatively many sons of
fathers in crafts who end up in these two occupations (see row 4 of Exhibit
22.1).

Diagonal of
table dominates

the CA

The problem with trying to visualize a square matrix such as this one is the
presence of the strong diagonal which tends to dominate the analysis. Since
CA is trying to explain as much inertia as possible, it is not surprising that the
focus is on the high source of inertia on the diagonal, to the detriment of the
rest of the table which contains the interesting flows between the occupations.
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0.4103  (31.6%)

0.2510 (19.3%) Exhibit 22.2:
Asymmetric CA
map of mobility
data in Exhibit 22.1,
row points in
principal
coordinates.
Percentage of
explained inertia:
51.0%.

To back up this assertion with some some figures, the 14 diagonal values
account for 70.9% of the total inertia, while the 182 off-diagonal values account
for 29.1% — i.e., the total inertia is decomposed as follows:

total inertia = inertia on diagonal + inertia off-diagonal
1.2974 = 0.9100 + 0.3774 (22.1)
100% = 70.9% + 29.1%

In the two-dimensional display of Exhibit 22.2, 0.6613 (51.0%) of the total
inertia is explained, and this can also be evaluated for the diagonal and off-
diagonal elements:

inertia explained = inertia explained on diagonal+inertia explained off-diagonal
0.6613 (51.0%) = 0.5483 (59.6%) + 0.1130 (29.9%)
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172 Analysis of Square Tables

The percentages in parentheses are expressed relative to the respective parts of
inertias in (22.1), showing that the off-diagonal elements are poorly explained
compared to the diagonal ones.

Symmetry and
skew-symmetry in

a square table

It is possible to separate the table into two parts, one part that contains
the symmetric component of the table, i.e., the average flow between rows
and columns, and another part that contains the so-called skew-symmetric
component quantifying the differential flow. The original table, denoted by
N, can be written as follows:

N = 1

2
(N + NT) + 1

2
(N− NT) (22.2)

= S + T

where S is the symmetric part, containing the averages of elements on opposite
sides of the diagonal, and T the skew-symmetric part, containing half of the
differences:

sij = 1

2
(nij + nji) tij = 1

2
(nij − nji) (22.3)

The following illustrates this decomposition for the top left-hand corner of
Exhibit 22.1:⎡

⎢⎢⎢⎢⎢⎣

28 0 4 0 · · ·
2 51 1 1 · · ·
6 5 7 0 · · ·
0 12 0 6 · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

28 1 5 0 · · ·
1 51 3 6.5 · · ·
5 3 7 0 · · ·
0 6.5 0 6 · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

0 −1 −1 0 · · ·
1 0 −2 −5.5 · · ·
1 2 0 0 · · ·
0 5.5 0 0 · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦

For example, the count of 1 in the second row (father–art) and fourth column
(son–crafts) and the count of 12 in the fourth row (father–crafts), second
column (son–art), is averaged in S as 6.5 in both cells, while the deviations
(±5.5) from the average appear in T. The symmetric matrix has the same
diagonal as the original table and the property of symmetry: sij = sji, while
the skew-symmetric matrix has zeros on the diagonal and the property of
skew-symmetry, namely that elements on opposite sides of the diagonal have
the same absolute value but different sign: tij = −tji.

CA of the
symmetric part

CA is now applied to the symmetric and skew-symmetric parts separately.
Exhibit 22.3 shows the analysis of the symmetric matrix, showing just one
set of profile positions because rows and column coordinates are identical.
Apart from the single point for each occupation, this map looks very similar
to Exhibit 22.2, showing the overall association between the occupations. The
first percentage on the axes refers to inertia explained relative to the original
asymmetric table, while the percentage in italics refers to inertia explained
relative to the total inertia of the symmetric part S visualized here. Notice
that the row and column margins of S are the averages of the row and column
margins of the asymmetric matrix N: if the latter’s row and column masses
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0.3887 (24.3% / 33.8%)

0.2320 (14.5% / 20.2%)
Exhibit 22.3:
CA of symmetric
part of Exhibit 22.1.
The first
percentages are
calculated with
respect to the total
inertia of 1.5991,
while percentages in
italics are with
respect to the
inertia of the
symmetric part,
1.1485.

are r and c respectively, then the masses for the rows and columns of S are
w = 1

2 (r + c).

CA of the
skew-symmetric
part

There are two problems to overcome before CA can be applied to the skew-
symmetric matrix T. First, T has positive and negative values; in fact the
sum of the elements of the matrix is zero, and it makes no sense to centre
it with respect to its margins, which is the first step in the CA algorithm.
The algorithm must be changed so that CA analyses the data without the
centring step, just the normalization step which leads to the χ2-distances.
This leads to the second problem: the sums of the rows and columns make
no sense as masses. The obvious solution is to adopt the same masses as S,
i.e., the masses in w defined above. This looks like we need a special modified
algorithm to analyse T, but fortunately there is a result which allows us to
obtain the results by a simple recoding of the data.

CA of symmetric
and skew-
symmetric parts in
one step

This neat recoding trick avoids implementing a special algorithm for calculat-
ing the results of the skew-symmetric matrix. The idea is to set up a matrix
which is four times the size of the original table N in the following format
(this is easy to do in R — see page 245 — or in a spreadsheet):[

N NT

NT N

]
(22.4)
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174 Analysis of Square Tables

That is, place the transpose of N alongside it and below it, and a copy of N
in the bottom right corner; then apply CA to this block matrix. If N is an
I × I matrix, then the block matrix is 2I × 2I and yields 2I − 1 dimensions,
I − 1 of which correspond exactly to the dimensions of the symmetric matrix
S and the remainder to the skew-symmetric matrix T. Which dimensions
correspond to which parts is easy to see, because the dimensions of the skew-
symmetric matrix always occur in pairs of equal principal inertias. In the
social mobility example, where I = 14, the 27 principal inertias (eigenvalues)
are given in Exhibit 22.4. The seven pairs of dimensions with equal principal

Exhibit 22.4:
Principal inertias of
all 27 dimensions in

the analysis of the
28 × 28 block matrix

(22.4) formed from
the social mobility

data. The principal
inertias that occur
in pairs correspond

to the skew-
symmetric part.

Dim. Princ. inertia Dim. Princ. inertia Dim. Princ. inertia

1 0.38868 10 0.04184 19 0.00309
2 0.23204 11 0.04184 20 0.00309
3 0.15836 12 0.02287 21 0.00166
4 0.15836 13 0.02205 22 0.00115
5 0.14391 14 0.01287 23 0.00115
6 0.12376 15 0.01287 24 0.00062
7 0.08184 16 0.01036 25 0.00038
8 0.07074 17 0.00759 26 0.00038
9 0.04984 18 0.00759 27 0.00015

inertias (shown in boldface), 3 & 4, 10 & 11, 14 & 15, 17 & 18, 19 & 20,
22 & 23, and 25 & 26, correspond to the skew-symmetric analysis, and the
other 13 dimensions correspond to the symmetric analysis. The total inertia
of the symmetric matrix is the sum of the 13 respective principal inertas:
0.3887 + 0.2320 + 0.1439 + · · · = 1.1485, which is 71.8% of the total 1.5991,
and the total inertia of the skew-symmetric matrix is the sum of the seven
pairs: 2×0.1584+2×0.0418+ · · ·= 0.4506, which is 28.2% of the total (notice
that the total inertia, 1.5991, is higher than that of the original matrix, given
as 1.2974 in (22.1), because the table is centred at the average margin w for
both rows and columns).

Visualization of
the symmetric and

skew-symmetric
parts

Dimensions 1 and 2 are thus the best two for visualizing the symmetric matrix:
they explain 0.6217 of the inertia of 1.1485, or 54.0%, as shown in Exhibit 22.3.
CA of the block matrix yields twice the sets of results for rows and columns,
simple repeats of each other, so it is necessary to use only one set of principal
coordinates to obtain the map (here we used the first set of coordinates in
Exhibit 22.6, dimensions 1 and 2 — see also the Computational Appendix,
pages 245–247). Dimensions 3 and 4 are the best for visualizing the skew-
symmetric matrix: they explain 0.3167 out of 0.4506, or 70.3% of the inertia
of the skew-symmetric part. The map of the skew-symmetric part, shown in
Exhibit 22.5, has some unusual properties. First, because of the equality of
the principal inertias, the coordinates are free to rotate in the two-dimensional
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symmetric part of
Exhibit 22.1. The
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respect to the total
inertia of 1.5991,
while percentages in
italics are with
respect to the
inertia of the
skew-symmetric
part, 0.4506.

map and are not identified with respect to principal axes — hence no axes
are drawn in the map. Second, the skew-symmetry of the matrix gives a map
where it is necessary to plot only one set of points again (these are again
repeated in the CA solution of the block matrix, but with a change of sign —
see Exhibit 22.6, where we used the second set of coordinates for dimensions
3 and 4 to make the map in Exhibit 22.5). However, the interpretation is not
a distance interpretation but an interpretation of triangular areas in the map.
For example, Commerce and Scholarship & Science subtend a large triangle
with the origin, which is interpreted as a strong differential flow between these
two occupations. The clockwise arrow indicates the direction of the flow from
fathers to sons: fathers in Commerce have sons that are going to Scholarship
& Science relatively frequently (in Exhibit 22.1, the frequency is 15, whereas
there is zero flow in the other direction). Thus, the ocupations Landownership,
Agriculture, Commerce and Crafts are experiencing outflows to Literature and
Scholarship & Science. Some pairs of occupations make very small triangular
areas with the origin, for example Army, Politics and Navy, which means that
there is no differential flows between these occupations, but they would be
experiencing inflows from Agriculture, Crafts, etc.
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Exhibit 22.6:
Some of the row

principal
coordinates of the

28 × 28 block matrix
(22.4) using the

social mobility data.
Those for the

symmetric
dimensions (first

two in this case) are
simple repeats,

while for the
skew-symmetric part
(dimensions 3 and 4

here) they are
repeated with a
change of sign.

OCCUPATION Dim. 1 Dim. 2 Dim. 3 Dim. 4 · · ·
Army -0.632 0.671 -0.011 0.416 · · ·
Art 1.521 0.520 0.089 0.423 · · ·
Teaching... -0.195 0.073 -0.331 0.141 · · ·
Crafts 0.867 -0.298 -0.847 0.092 · · ·
Divinity -0.077 -0.709 -0.189 0.305 · · ·
...

...
...

...
...

Army -0.632 0.671 0.011 -0.416 · · ·
Art 1.521 0.520 -0.089 -0.423 · · ·
Teaching... -0.195 0.073 0.331 -0.141 · · ·
Crafts 0.867 -0.298 0.847 -0.092 · · ·
Divinity -0.077 -0.709 0.189 -0.305 · · ·
...

...
...

...
... · · ·

SUMMARY:
Analysis of Square

Tables

1. Square tables with the same row and column entities are special because
their diagonal values play a major role in the analysis, often obscuring the
patterns in the table off the diagonal.

2. An alternative to a regular CA is to split the table into two parts: a sym-
metric part and a skew-symmetric part, where the latter part — usually
of lower inertia than the symmetric part — encapsulates the asymmetries
in the table.

3. The symmetric part is analysed in the usual way, while the skew-symmetric
part needs a modified CA algorithm which suppresses the centring and
normalization of the table with respect to its margins, which have no sense
as masses in this case.

4. The masses used for weighting and χ2-distances in both analyses are the
averages of the row and column masses from the original table.

5. Both analyses can be obtained neatly in one single CA of the table and its
transpose set up in a block matrix form. The dimensions corresponding to
the symmetric part have unique principal inertias and those corresponding
to the skew-symmetric part occur in equal pairs.

6. The map of the symmetric part is interpreted in the usual way, showing
the overall association between the entities.

7. The map of the skew-symmetric part has a special geometry where the
asymmetries in pairs of entities are visualized as the areas of the triangles
that they make with the origin, and the direction of the asymmetry is the
same for all pairs.
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In the 22 chapters up to now we have dealt exclusively with frequency tables,
either a single table (chapters 1–16 and 22) or in sets (chapters 17–21). In this
chapter we will look at other types of data and and how they can be recoded,
or transformed, in such a way that CA can still be applied as a method of
visualization. This strategy is particularly well developed in Benzécri’s ap-
proach to data analysis, where CA is the central technique and different data
types are preprocessed before being analysed. The types of data treated here
are ratings, preferences, paired comparisons and data on a continuous scale.
In all of these cases the original CA paradigm should be remembered: CA
analyses count data, so if we can transform other types of data to counts of
some kind, then it is likely that CA will be appropriate. A standard checklist
to perform on the recoded data will be to see if the basic concepts of profile,
mass and χ2-distance make sense in the context of the data.

Contents
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The counting paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
CA map of doubled ratings . . . . . . . . . . . . . . . . . . . . . . . . . 179
Rating scale axes have mean at origin . . . . . . . . . . . . . . . . . . . 180
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Rating scalesWe have already met a typical rating scale in Chapter 20, the five-point scale of
agreement/disagreement used in the example of science and the environment:

� � � � �
strongly somewhat neither agree somewhat strongly
agree agree nor disagree disagree disagree

Previously we treated data on this scale as a nominal categorical variable,
creating a dummy variable for each category. This was already an example of
data recoding, because CA could not be applied to the original data on a 1-to-5
scale — the notion of a profile would make no sense since a set of responses to
the four questions [ 1 1 1 1 ] (strongly agree to all four statements) and another

177
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set [ 5 5 5 5 ] (strongly disagree to all four) would have the same profile. Other
types of rating scales often found in social surveys and marketing research are:
— 9-point scale (one extra category between points on 5-point scale):

� � � � � � � � �
strongly somewhat neither agree somewhat strongly
agree agree nor disagree disagree disagree

— 4-point scale of importance:

� � � �
not fairly very extremely

important important important important

— 7-point semantic differential scale in a customer satisfaction survey

Service Service
� � � � � � �unfriendly friendly

— continuous rating scale (e.g., 0 to 10 scale)

Very Very0 ——————————————— 10dissatisfied satisfied

In this last example the respondent can choose any value between 0 and 10,
even with decimal points if desired, but we still think of the data as a rating
scale and the recoding will be similar for all the above examples. Notice that
when the number of scale points is large, it becomes unwieldy to use the
dummy variable coding of MCA.

Doubling of
ratings

The recoding scheme frequently used in CA for ratings data is called doubling.
The idea behind doubling is to redefine each rating scale as a pair of comple-
mentary scales, one labelled the “positive”, or “high”, pole of the scale and
the other the “negative”, or “low”, pole. Before performing the doubling, it is
preferable to have rating scales with a lower endpoint of zero, so 1-to-5 and
1-to-7 scales, for example, should first be converted to 0-to-4 and 0-to-6 respec-
tively, simply by subtracting 1. These values define the data assigned to the
positive pole of each scale, assuming a high value refers to the substantively
positive end of the scale (e.g., high satisfaction, high importance, high agree-
ment). The negative pole of the scale is then defined as M minus the positive
pole, where M is the maximum value of the positive pole (4, 6 or 8 for the rat-
ings scales, 10 for the 0-to-10 scale). Actually, in the agreement–disagreement
scale on the previous page, the high value refers to high disagreement, so the
labels “+” and “−” would be reversed to avoid confusion — or we could just
reverse this scale beforehand. The idea is illustrated for the agreement ratings
in the science and environment data set of Chapter 20. Exhibit 23.1 shows the
first 10 rows of data and their doubled counterparts. For example, the first
value for respondent 1 is a 2, subtracting 1 gives the value 1 and its doubled
value is 3, hence the values 1 and 3 in the doubled columns for question 1.
These columns are labelled A- and A+ because the first column quantifies how
much the respondent disagrees and agrees respectively with the first question.
Similarly, the original value of 3 for the second question becomes a 2 and a

© 2007 by Taylor & Francis Group, LLC



The counting paradigm 179

Exhibit 23.1:
Raw data for the
variables on science
and environment,
and the doubled
coding, for the first
five respondents out
of N = 871 (West
German sample).

Questions Qu. A Qu. B Qu. C Qu. D
A B C D A- A+ B- B+ C - C+ D- D+

2 3 4 3 1 3 2 2 3 1 2 2
3 4 2 3 2 2 3 1 1 3 2 2
2 3 2 4 1 3 2 2 1 3 3 1
2 2 2 2 1 3 1 3 1 3 1 3
3 3 3 3 2 2 2 2 2 2 2 2
...

...
...

...
...

...
...

...
. . . and so on for 871 rows

doubled value of 2, i.e., equal values for the disagreement and agreement poles
B- and B+, and so on.

The counting
paradigm

The doubled values can be thought of as counts in the following sense. The
doubled values 1 and 3 are counts of how many scale points are below and
above the observed value of 1. The response of 2 (“agree”) has one scale point
below it (1) and three above it (3, 4 and 5). Similarly, the “neither agree nor
disagree” response of 3 is in the middle of the scale and has two scale points
below and above it. In this way the doubled data table substitutes the original
data by measuring association between each respondent and the agreement
and disagreement poles of the rating scale. It is necessary to measure associa-
tion with both poles for the reason mentioned before: if we use the counts for
only one of the poles, then the profiles in CA will make no sense, for example
strong agreement to all four questions and strong disagreement would have
the same profiles and hence the same position in the map.

CA map of
doubled ratings

CA is applied to the doubled table on the right-hand side of Exhibit 23.1,
which has 871 rows and 8 columns. The rows all have the same sums (16 in
this example); hence the respondent (row) masses are equal, which is correct
— there should be no differential weighting of the respondents. Each of the
four pairs of columns has the same sum; that is there are four linear restrictions
on the columns and not just one as in regular CA. Hence the dimensionality
of the data matrix is 8−4 = 4. The total inertia and the decomposition along
the four principal axes are as follows:

0.3462 = 0.1517 (43.8%) + 0.0928 (26.8%) + 0.0529 (15.3%) + 0.0488 (14.1%)

Exhibit 23.2 shows the map of the column points in principal coordinates.
There are two points for each question, and the positive poles are directly
opposite their negative counterparts relative to the origin, as shown by the
dashed lines joining the pairs of poles. The fact that question D is out of line
with the other three, which we already saw in Chapter 20, is shown clearly
here. We would have expected D- on the right and D+ on the left but the
direction of this variable is practically at right angles to the others.
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0.1517 (43.8%)

0.0928 (26.8%)

5
4

3
2

1

C-

A-
B-

D-

A+

Exhibit 23.2:
CA of doubled

ratings of science
and environment

data, showing
doubled ratings

only. Percentage of
explained inertia is
70.6%. The rating

scale can be
imagined at equal

intervals along each
“axis” connecting

the poles (e.g.,
1-to-5 scale shown

for question C) and
the average for each

question is exactly
at the origin.

Rating scale
axes have mean at

origin

All four rating scale “axes” pass through the origin of the map. The dashed line
between the poles can be subdivided into four equal intervals, and labelled by
the five scale points (shown for question C, using the original 1-to-5 scale where
1 corresponded to strong agreement). The average rating for each question can
then be read at the origin on the respective calibrated axis. Thus the average
ratings on questions A and C are more to the agreement (+) side of the scale
(the actual average for question C is 2.58), while the averages for B and D
are slightly to the disagreement side. Another way of thinking about this is to
imagine the endpoints of each rating scale axis having weights proportional
to the average of the values attributed to the respective poles — thus C+ is
closer to the origin than C - because it is “heavier”.

Correlations
approximated by

angle cosines

The cosines of the angles between the four rating scale axes in Exhibit 23.2
are approximate correlations between the variables. Thus we can deduce that
variables A, B and C are positively correlated with one another, but uncorre-
lated with D. The four variables have correlation coefficients as follows:
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Questions A B C D

A 1 0.378 0.357 0.036
B 0.378 1 0.436 0.016
C 0.357 0.436 1 -0.062
D 0.036 0.016 -0.062 1

which agrees with our visual deduction. The correlations are not exactly re-
covered because this map explains only 70% of the inertia. For example, B
and C should make a smaller angle than A and B, but this would be seen
more accurately only in a three-dimensional view of the rating scale axes.

Positions of rows
and supplementary
points

Each respondent has a profile and position in the map, as in a regular CA.
But, as in MCA of survey data with large samples, the individual positions are
not of interest, but rather positions of groups of respondents as supplementary
points. For example, to represent males and females in the six different age
groups in this data set, the average ratings for these 12 groups are computed
and added as supplementary rows (doubled). Their positions are shown in
Exhibit 23.3. All the female groups are on the left-hand side of the map,
that is the disagreement side of questions A, B and C . Apart from the oldest
male group, the male groups are on the agreement side of these questions, i.e.
critical of science’s role in the environment.

F6

F5

F4

F3 F2

F1

M6

M5

M4

M3

M2

M1

-0.1

0

0.1

-0.2 -0.1 0 0.1 0.2

Exhibit 23.3:
Supplementary
points for males and
females in the six
age groups. The
females are all on
the left-hand side
(disagreement) while
the males — apart
from the oldest
group M6 — are on
the agreement side.

Preference dataFor purposes of visualizing with CA, preference data may be regarded as a
special case of ratings data. A typical study in marketing research is to ask
respondents to order a set of products from most preferred to least preferred,
or a set of product attributes from most important to least important. As an
example, suppose that there are six products, A to F, and that a respondent
orders them as follows:
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most preferred : B > E > A > C > F > D : least preferred

This ordering corresponds to the following ranks for the six products:

A B C D E F
3 1 4 6 2 5

The six ranks are just like ratings on a 6-point scale, the difference being that
the respondent has been forced to use each scale point only once. These data
can be doubled in the usual way, with the doubled columns assigned labels
where + indicates high preference and − low preference:

A– A+ B– B+ C– C+ D– D+ E– E+ F– F+
2 3 0 5 3 2 5 0 1 4 4 1

Frequently, respondents are allowed to rank order a smaller set of most-
preferred objects (e.g., first three choices), in which case the objects not ranked
are considered to be jointly in the last position which gets the value of a tied
rank. For example, if the best three out of six products are rank-ordered, then
the three omitted products obtain ranks of 5 each, the average of 4, 5 and 6.

Paired
comparisons

Paired (or pairwise) comparisons are a freer form of preference rankings. For
example, each of the 15 possible pairs of the six products A to F is presented
to the respondent, who selects the more preferred of the pair. The doubled
data for each respondent are then established as follows:

A+: number of times A is preferred to the five other products

A–: number of times the other products are preferred to A (= 5 − A+)

and so on. Then proceed as before, applying CA to the doubled data.

Data set 13:
European Union

indicators

Continuous data can also be visualized with CA after the data is suitably
recoded, and several possibilities exist. As an example, consider the data on
the left-hand side of Exhibit 23.4, five economic indicators for the 12 European
Union countries in the early 1990s. There are a mixture of measurement scales
in these data, with unemployment rate and change in personal consumption
measured in percentages.

Recoding
continuous data by
ranks and doubling

A simple recoding scheme is to convert all the observations to ranks, as shown
on the right-hand side of Exhibit 23.4. The observations are now ranked within
a variable across the countries; for example Luxemburg has the lowest unem-
ployment and so gets rank 1, then Portugal with rank 2 and so on. Tied ranks
are given average ranks; for example France and Luxemburg tie for fourth
place on the variable PCP, so they are given the average 4.5 of ranks 4 and 5.
Having transformed to ranks, the doubling can take place as before for each
variable: first 1 is subtracted from the ranks to get the negative pole of the
scale this time (the low value) and the positive pole is calculated as 11 minus
the negative pole. The CA of the doubled matrix is shown in Exhibit 23.5.
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Exhibit 23.4:
European Union
economic indicators,
and their ranks from
smallest to largest.

Original data Ranked data
COUNTRIES Unemp GDP PCH PCP RULC Unemp GDP PCH PCP RULC

Belgium 8.8 102 104.9 3.3 89.7 7 7 7 7.5 5.5

Denmark 7.6 134.4 117.1 1 92.4 5 12 11 1 8

Germany 5.4 128.1 126 3 90 3 11 12 6 7

Greece 8.5 37.7 40.5 2 105.6 6 2 2 2 12

Spain 16.5 67.1 68.7 4 86.2 12 4 4 11 3

France 9.1 112.4 110.1 2.8 89.7 8 9 9 4.5 5.5

Ireland 16.2 64 60.1 4.5 81.9 11 3 3 12 2

Italy 10.6 105.8 106 3.8 97.4 10 8 8 10 10

Luxemburg 1.7 119.5 110.7 2.8 95.9 1 10 10 4.5 9

Holland 9.6 99.6 96.7 3.3 86.6 9 6 5 7.5 4

Portugal 5.2 32.6 34.8 3.5 78.3 2 1 1 9 1

UK 6.5 95.3 99.7 2.1 98.9 4 5 6 3 11

Une=Unemployment rate (%) GDP=Gross Domestic Product/Head (index)
PCH=Personal Consumption per Head (index) PCP=Change in Personal Con-
sumption (%) RUL=Real Unit Labour Cost (index)

Exhibit 23.5:
Asymmetric CA
map of European
Union economic
indicators, recoded
as ranks. Inertia
explained is 81.0%.

BelgiumDenmark
Germany

Greece

SpainFrance
Ireland

Italy

Luxemburg

Holland

PortugalUK

Unemp+

GDPH+
PCH+

PCP+

RULC+

Unemp-

GDPH-
PCH-

PCP-

RULC-

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

0.2247 (57.2%)

0.0936 (23.8%)

Again, the opposite poles of each variable could be connected, but the dis-
tances from the origin for each variable are the same in this case because
their average ranks are identical (hence plotting just the positive pole would
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be sufficient). The map shows two sets of variables, strongly correlated within
each set but with low correlation between them. Notice that RULC (Real Unit
Labour Cost) is negatively correlated with Unemp (Unemployment Rate) and
PCP (Percentage Change in Personal Consumption) (when we talk of corre-
lations here, we mean the nonparametric Spearman rank correlations because
we use the ranks). Each country finds its position in terms of its rank orders
on the five variables. Since the ranks are analysed and not the original val-
ues, the analysis would be robust with respect to outliers and can be called a
nonparametric CA of the data.

Other recoding
schemes for

continuous data

The transformation of the continuous variables to ranks loses some informa-
tion, although in our experience the loss is minimal in terms of data visual-
ization, and the robustness of the ranks is an advantage in many situations.
However, if all the information in the continuous data is needed, other possibil-
ities exist. For example, a transformation that works well is the following: first,
convert all variables to standardized values (so-called z-scores) by subtracting
their respective means and dividing by standard deviations; then create two
doubled versions of each variable from its standardized z using the recoding:

positive value =
1 + z

2
negative value =

1 − z

2
(23.1)

Even though it has some negative values, the row and column margins are
still positive, and equal for all rows and for all doubled column pairs, so the
cases and the variables are weighted equally. CA of this doubled matrix gives
a map almost identical to that of Exhibit 23.5. To our knowledge this is the
only example of a data matrix with some negative values that can be validly
used in CA.

SUMMARY:
Data Recoding

1. Data on different measurement scales can be recoded to be suitable for
CA.

2. As long as the recoded data matrix has meaningful profiles and marginal
sums in the context of the application, CA will give valid visualizations of
the data.

3. One of the main recoding ideas is to double the variables, that is convert
each variable to a pair of variables where the sums of the paired values are
constant.

4. Doubling can be performed in the case of ratings, preferences and paired
comparisons, leading to a map where each variable is displayed by two
points directly on opposite sides of the origin. In the case of ratings data,
the origin indicates the average value of the variable on the line connecting
its extreme poles.

5. Continuous data can be recoded as doubled ranks, leading to a nonpara-
metric form of CA, or can be transformed to a continous pair of doubled
variables, using their standardized values.
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The objective of CA is to visualize a table of data in a low-dimensional sub-
space with optimal explanation of inertia. When additional external informa-
tion is available for the rows or columns, these can be displayed as supple-
mentary points that do not play any role at all in determining the solution
(see Chapter 12). By contrast, we may actually want the CA solution to be
directly related to these external variables, in an active rather than a passive
way. The context where this often occurs is in environmental research, where
information on both biological species composition and environmental param-
eters are available at the same sampling locations. Here the low-dimensional
subspace is required which best explains the biological data but with the
condition that the space is forced to be related to the environmental data.
This adaptation of CA to the situation where the dimensions are assumed to
be responses in a regression-like relationship with external variables is called
canonical correspondence analysis, or CCA for short.

Contents

Supplementary continuous variables . . . . . . . . . . . . . . . . . . . . 185
Representing explanatory variables as supplementary points . . . . . . . 186
Dimensions as functions of explanatory variables . . . . . . . . . . . . . 187
Constraining the dimensions of CA . . . . . . . . . . . . . . . . . . . . . 187
Constrained and unconstrained spaces in CCA . . . . . . . . . . . . . . 188
Decomposition of inertia in CCA . . . . . . . . . . . . . . . . . . . . . . 189
The CCA triplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Categorical explanatory variables . . . . . . . . . . . . . . . . . . . . . . 191
Weighted averages of explanatory variables for each species . . . . . . . 191
Partial CCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
SUMMARY: Canonical Correspondence Analysis . . . . . . . . . . . . . 192

Supplementary
continuous
variables

To motivate the idea behind CCA, we look again at the marine biological
data of Exhibit 10.4, page 77. In addition to the species information at each
sampling location on the sea bed, several environmental measurements were
made: metal concentrations (lead, cadmium, barium, iron, ...), sedimentary
composition (clay, sand, pelite, ...) and other chemical measurements such as
hydrocarbon and organic content. Since some of these are highly intercorre-
lated, we chose three representative variables as examples: barium and iron,
measured in parts per million, and pelite∗ as a percentage, shown in Exhibit
24.1. These variables will be used as explanatory variables in a linear regres-

∗ Pelite is sediment composed of fine clay-size or mud-size particles.

185
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Exhibit 24.1:
Environmental data
measured at the 13

sampling points (see
Exhibit 10.4); 11

sites in vicinity of
oil-drilling platform
and 2 reference sites

10km away.

STATIONS (SAMPLES)

VARIABLES S4 S8 S9 S12 S13 S14 S15 S18 S19 S23 S24 R40 R42

Barium (Ba) 1656 1373 3680 2094 2813 4493 6466 1661 3580 2247 2034 40 85

Iron (Fe) 2022 2398 2985 2535 2612 2515 3421 2381 3452 3457 2311 1804 1815

Pelite (PE) 2.9 14.9 3.8 5.3 4.1 9.1 5.3 4.1 7.4 3.1 6.5 2.5 2.0

log(Ba) 3.219 3.138 3.566 3.321 3.449 3.653 3.811 3.220 3.554 3.352 3.308 1.602 1.929

log(Fe) 3.306 3.380 3.475 3.404 3.417 3.401 3.534 3.377 3.538 3.539 3.364 3.256 3.259

log(PE) 0.462 1.173 0.580 0.724 0.623 0.959 0.724 0.613 0.869 0.491 0.813 0.398 0.301

sion model within CCA. We prefer to use their values on a logarithmic scale,
a typical transformation to convert ratio-scale measurements on a multiplica-
tive scale to an additive scale — their log-transformed values are also given in
Exhibit 24.1. This transformation not only removes the effect of the different
scales from the three variables but also reduces the influence of large values.

Representing
explanatory
variables as

supplementary
points

Before entering the world of CCA, let us first display these three variables on
the map previously shown in Exhibit 10.5. The way to obtain coordinates for
the continuous variables is to perform a weighted least-squares regression of
the variable on the two principal axes, using the column standard coordinates
γ1 and γ2 on the first two dimensions as “predictors” and the column masses
as weights, as shown in Chapter 14, page 110. For example, for the regression
of log(Ba), part of the data are as follows:

Variable log(Ba) γ1 γ2 Weight

S4 3.219 1.113 0.417 0.0601
S8 3.138 -0.226 -1.327 0.0862
S9 3.566 1.267 0.411 0.0686
...

...
...

...
...

R42 1.929 2.300 0.7862 0.0326

The results of the regression are:

Source Coefficient Standardized coefficient

Intercept 3.322 —
γ1 -0.301 -0.641
γ2 -0.229 -0.488

R2 = 0.648

The usual way of displaying the variable is to use the standardized regression
ceofficients as coordinates. As illustrated in Chapter 14, page 111, these are
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identical to the (weighted) correlation coefficients of log(Ba) with the two
sets of standard coordinates. Repeating the regressions (or, equivalently, cal-
culating the correlation coefficients) the three environmental variables can be
placed on the map of Exhibit 10.5, which we show in Exhibit 24.2, omitting
the species points. The percentage of variance explained (R2) for each variable
is the sum of the squared correlation coefficients, exactly what we called the
quality of display of a point. For log(Ba) it is quite high, 0.648 (or 64.8%) as
given above, while for log(Fe) it is 0.326 and for log(PE ) only 0.126.
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Exhibit 24.2:
Station map of
Exhibit 10.5,
showing positions of
three environmental
variables as
supplementary
points according to
their correlations
with the two
principal axes.

Dimensions as
functions of
explanatory
variables

We now turn the problem around: instead of regressing the continuous ex-
planatory variables on the dimensions, we regress the dimensions on the ex-
planatory variables, always incorporating the masses as weights in the regres-
sion. The results of the two regression analyses are given in Exhibit 24.3.
Notice that the standardized coefficients are, unfortunately, no longer the
correlations coefficients we used to display the variables in Exhibit 24.2. For
example, the correlations between log(Ba) and the two dimensions are -0.641
and -0.488, while in the regression analyses above the standardized regression
coefficients are -0.918 and -0.327, respectively.

Constraining the
dimensions of CA

The percentage of explained variance for the two dimensions (which is ac-
tually of inertia since we are weighting the variables by the station masses)
is 49.4% and 31.9%, respectively, in the two regressions (see bottom line of
Exhibit 24.3). The idea now is to increase this explained inertia by forcing
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Exhibit 24.3:
Regressions of first
two CA dimensions

on three
environmental

variables.

Response: CA dimension 1
Source Coeff. Stand. coeff.

Intercept -9.316 —
log(Ba) -1.953 -0.918
log(Fe) -4.602 0.398
log(PE ) 0.068 0.014

R2 = 0.494

Response: CA dimension 2
Source Coeff. Stand. coeff.

Intercept 14.465 —
log(Ba) -0.696 -0.327
log(Fe) -3.672 0.318
log(PE ) 0.588 0.123

R2 = 0.319

the CA solution to be a linear function of the three explanatory variables.
The regular CA solution on the marine biological data optimizes the fit to the
species profiles with no condition on the dimensions, whereas now we impose
the condition that the dimensions be linear combinations of the environmen-
tal variables. This will increase the explained inertia of the dimensions as a
function of the environmental variables to 100%, but at the same time de-
grade the explanation of the species data. The way the solution is computed
is to project the whole data set onto a subspace which is defined by the three
environmental variables, and then perform the CA in the usual way. This is
what CCA is: rather than looking for the best-fitting principal axes in the
full space of the data, it is the search for principal axes in a constrained, or
restricted, part of the space (so CCA could just as well stand for constrained
correspondence analysis). Having done the CCA (we show the full results
later), the regressions of the first two CCA dimensions on the environmental
variables are given in Exhibit 24.4. The explained variance (inertia) is now
indeed 100%, which is what was intended; by construction, the dimensions
are necessarily linear combinations of the environmental variables.

Exhibit 24.4:
Regressions of first

two CCA
dimensions on three

environmental
variables.

Response: CCA dimension 1
Source Coeff. Stand. coeff.

Intercept 2.719 —
log(Ba) -2.297 -1.080
log(Fe) 1.437 0.124
log(PE ) -0.008 -0.002

R2 = 1

Response: CCA dimension 2
Source Coeff. Stand. coeff.

Intercept 14.465 —
log(Ba) -0.877 -0.412
log(Fe) 12.217 1.058
log(PE ) -2.378 -0.497

R2 = 1

Constrained
and unconstrained

spaces in CCA

CCA restricts the search for the optimal principal axes to a part of the total
space, called the constrained space, while the rest of the space is called the
unconstrained space (also called restricted and unrestricted , or canonical and
non-canonical spaces). Within the constrained space the usual CA algorithm
proceeds to find the best dimensions to explain the species data. The search
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for the best dimensions can also take place within the unconstrained space —
this space is the one that is linearly unrelated (uncorrelated) with the envi-
ronmental variables. So if we are interested in partialling out some variables
from the analysis, we could do a CCA on these variables and then investigate
the dimensions in the unconstrained part of the space.

Decomposition of
inertia in CCA

In the present example, the total inertia of the species-by-sites table is 0.7826
(this is the total inertia of Exhibit 10.4). The inertia in the constrained and
unconstrained spaces decompose this inertia into two parts, with values 0.2798
and 0.5028, respectively, i.e., 35.8% and 64.2% of the total inertia. This is an
indication why the original CA produced dimensions that were not strongly
correlated with the environmental variables because CA tries to explain the
maximum inertia possible, and there is more inertia in the unconstrained
space than in the constrained one. The decomposition of inertia is illustrated
in Exhibit 24.5, including the decomposition along principal axes. Once we
constrain the search to the constrained space (depicted by the shaded area
in Exhibit 24.5), the first two dimensions have principal inertias of 0.1895
and 0.0615, respectively, totalling 0.2510 or 89.7% of the constrained inertia
of 0.2798. Relative to the original total inertia of 0.7826, these are explaining
32.1%, respectively (cf. Exhibit 10.5 where the two-diimensional CA explained
57.5%). On the other hand, in the unconstrained space (not shaded in Exhibit
24.5), if this space is of interest, the first two dimensions have principal inertias
0.1909 and 0.1523, totalling 0.3432 which is 68.3% of the unconstrained inertia
0f 0.5028, or 43.8% of the total inertia. Notice that if the regression of these
latter dimensions of the unconstrained space were made on the environmental
variables, there would be no relationship (regression coefficients of zero) and
explained inertia would be zero.

2-D solution:
    0.2510
   (89.7%)

 0.0488
(10.3%)

 2-D solution:
     0.3432
    (68.3%)

 0.1596
(31.7%)

CONSTRAINED SPACE

UNCONSTRAINED SPACE

Exhibit 24.5:
Schematic diagram
of the decomposition
of inertia between
the constrained
space (shaded) and
the unconstrained
space, showing the
parts of each
explained by
respective
two-dimensional
maps. The parts to
the right of the
straight lines
(inertias of 0.0488
and 0.1596) remain
unexplained by the
respective
two-dimensional
solutions.
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The CCA
triplot

The results of CCA in the constrained space involve coordinates for the usual
rows and columns, as in CA, with the same choices for joint plotting, plus the
possibility of adding point vectors for the explanatory variables — this is called
a triplot. The most problematic aspect is how to visualize the explanatory
variables: on the one hand, their correlation coefficients with the axes could be
used to define their positions, as they would be represented as supplementary
points, or their standardized regression coefficients in their relationship to the
axes. The latter choice is the preferred one since it reflects the idea that in CCA
the axes are linearly related to the explanatory variables. Exhibit 24.6 shows
one possible CCA triplot of the present example, where the environmental
variables are represented by their regression coefficients. The sites are now in
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Exhibit 24.6:
CCA triplot where
the species (rows)

and sites (columns)
are ploted as a row

asymmetric map
(i.e., sites in

standard
coordinates), and

environmental
variables are

depicted by their
coefficients in their
linear relationships
with the two axes.

The species are
shown by symbols in
size proportional to

their total
abundance in the

data set, and only a
few species’ names

are indicated for
commentary in the

text.

standard coordinates and the species in principal coordinates, so in this sense
the basic map is a row principal asymmetric map. As far as the sites and
species are concerned, the biplot interpretation holds; since the sites are in
standard coordinates they indicate biplot axes onto which each species could
be projected to read off its relative abundance at that site (relative to its
total abundance across all sites). The site positions along each axis are, by
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construction, linear combinations of their three standardized values on the
environmental variables, using the plotted coefficients. If a site has average
value on an environmental variable the contribution of that variable to its
position is zero. So the fact that the reference stations R40 and R42 are so
far on the other side of log(Ba) means that its values must be low in Barium,
which is certainly true. Likewise, S23, S19, S15 and S9 must be high in Iron
(especially S23) and S8 and S14 must be high in Pelite. This can be confirmed
by looking at the actual figures in Exhibit 24.1. The relationship between the
species and the environmental variables is through the sites that they have
in common. Species like “Para.gaud.” and “Aoni.pauc.” are associated with
the reference stations, and these reference stations have low Barium. Species
such as “Thar.sp.” and “Serp.inde.” are associated with stations that have
high Iron and/or low Pelite, while “Samy.sexc.” down below is associated
with stations that have high Pelite and/or low Iron. The reference stations
are more or less in the middle of the vertical axis; they are low in both Iron
and Pelite, and this has effectively cancelled out their vertical positions.

Categorical
explanatory
variables

If there are categorical variables such as Region (e.g., with categories North-
east/Northwest/South) or Rocky (e.g., with categories yes/no) as explanatory
variables, then these are included as dummy variables in the CCA just as they
would be included in a regression analysis, that is dropping one of the dummy
variables of each set. In the CCA solution these dummy variables are not rep-
resented by arrows; rather, the sites that are in each category are averaged
(and, as always, applying the usual weights in the averaging), so that each
category is represented by a point in the CCA map.

Weighted averages
of explanatory
variables for each
species

An alternative way of thinking about CCA is as an analysis of the weighted
averages of the explanatory variables for each species. Exhibit 24.7 shows a
small part of this set of averages, for some of the species that have been referred
to before. For example, the frequencies of Myriochele oculata (Myri.ocul.) are
given in Exhibit 10.4 as 193, 79, 150, etc., for stations S4, S8, S9, etc., and these
stations have values for log(Ba) of 3.219, 3.138, 3.566, etc. So the weighted
average for Myri.ocul. on that variable is:

193 × 3.219 + 79 × 3.138 + 150 × 3.566 + · · ·
193 + 79 + 150 + · · · = 3.393

which is the scalar product of the profile of the species with the values of the
variable. The “global (weighted) average” in the last line of Exhibit 24.7 is
the same calculation using the totals of all species. Hence we can see that
Myri.ocul. is quite close to the global average, and so does not play as im-
portant a role as it did in the CA of Exhibit 10.5. Para.gaud. and Aoni.pauc.
have low averages on log(Ba) because of their relatively high frequencies at
the reference sites R40 and R42 where Barium is very low. Sami.sexc. has a
high average on log(PE ) and the reason why Thar.sp. and Serp.inde. lie at
the top is more to do with their low Pelite averages than their high Iron ones.
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192 Canonical Correspondence Analysis

Exhibit 24.7:
Weighted averages

of the three
environmental

variables across the
sites for a selection

of species, using the
frequencies of the

species at each site
as weights.

Variables
SPECIES log(Ba) log(Fe) log(PE)

Myri.ocul. 3.393 3.416 0.747
...

...
...

...
Serp.inde. 3.053 3.437 0.559
Thar.sp. 3.422 3.477 0.651
Para.gaud. 2.491 3.352 0.534
Aoni.pauc. 2.543 3.331 0.537
Samy.sexc. 3.373 3.409 0.971

...
...

...
...

Global average 3.322 3.424 0.711

Partial CCA The idea of partialling out the variation due to some variables can be carried
a step further in a partial CCA. Suppose that the explanatory variables are
divided into two groups, labelled A and B, where the effect of A is not of
primary interest, possibly because it is well known, for example a north-south
geographical gradient. In a first step the effect of this A set of variables is
removed, and in the space not related to these variables a CCA is performed
with respect to the set of variables B. There is thus a decomposition of the
original total inertia into three parts: the part due to A which is partialled out,
and the remainder which decomposes into a part constrained to be related to
the B variables and the unconstrained part (which is unrelated to both A and
B variables).

SUMMARY:
Canonical

Correspondence
Analysis

1. In CA the dimensions are found which maximize the inertia explained in
the solution subspace.

2. In canonical correspondence analysis (CCA) the dimensions are found with
the same CA objective but with the restriction that the dimensions are
linear combinations of a set of explanatory variables.

3. CCA necessarily explains less of the total inertia than CA because it looks
for a solution in a constrained space, but it may be this constrained space
which is of more interest to the researcher.

4. Total inertia can be decomposed into two parts: the part in the constrained
space where the CCA solution is sought, and the part in the unconstrained
space which is not linearly related to the explanatory variables. In both
these spaces principal axes explaining a maximum amount of inertia can
be identified: these are the constrained and unconstrained solutions respec-
tively.

5. In partial CCA the effect of one set of variables is first partialled out before
a CCA is performed using another set of explanatory variables.
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25Aspects of Stability and Inference

Apart from the passing mention of a χ2 test and the discussion about sig-
nificant clustering in Chapter 15, this book has concentrated exclusively on
the geometric properties of CA and its interpretation. In this final chapter
we give an overview of some approaches to investigating the stability of CA
solutions and the sampling properties of statistics such as the total inertia,
principal inertias and principal coordinates. We make the distinction between
(i) stability of the solution, irrespective of the source of the data, (ii) sampling
variability, assuming the data arise out of some form of random sampling from
a wider population, and (iii) testing specific statistical hypotheses.

Contents

Information-transforming versus statistical inference . . . . . . . . . . . 193
Stability of CA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Sampling variability of the CA solution . . . . . . . . . . . . . . . . . . 194
Bootstrapping the data . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Multinomial sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Partial bootstrap of CA map, with convex hulls . . . . . . . . . . . . . . 195
Peeling the convex hull . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
The Delta method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Testing hypotheses — theoretical approach . . . . . . . . . . . . . . . . 198
Testing hypotheses — Monte Carlo simulation . . . . . . . . . . . . . . 198
Permutation tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
SUMMARY: Aspects of Stability and Inference . . . . . . . . . . . . . . 200

Information-
transforming
versus statistical
inference

Throughout this book CA has been described as a method of data descrip-
tion, as a way of re-expressing the data in a more accessible graphical format
to facilitate the exploration and interpretation of the numerical information.
Whether the features in the map are evidence of real phenomena or arise
by chance variation is a separate issue. To make statements, or so-called in-
ferences, about the population is a separate exercise which requires special
consideration, and is feasible only when the data are validly sampled from a
wider population. For the type of categorical data considered in this book,
there are many frameworks that allow hypotheses to be tested and inferences
to be made concerning the characteristics of the population from which the
data are sampled. For example, log-linear modelling allows interactions be-
tween variables to be formally tested for significance, while association mod-
elling is closely connected to CA and enables differences between category
scale values, for example, to be tested. There is, however, a certain amount
of statistical inference which can be accomplished within the CA framework,

193
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194 Aspects of Stability and Inference

as well as some interesting exploratory investigation of variability or stability
of the maps, thanks to modern high-speed computing.

Stability of CA By stability of the CA solution (the map, the inertias, the coordinates on
specific principal axes, etc.), we are referring to the particular data set at hand,
without reference to the population from which the data might come. Hence
the issue of stability is relevant in all situations, even for population data or
data obtained by convenience sampling. Here we assess how our interpretation
is affected by the particular mix of row and column points determining the
map. Would the map change dramatically (and thus our interpretation too)
if one of the points is omitted? (for example, one of the species in our marine
biology example, or one of the authors in the set of texts — see Chapter
10). This aspect of solution stability has already arisen several times when
we discussed the concept of influence and how much each point influences
the determination of the principal axes. In Chapter 11 the numerical inertia
contributions were shown to provide indicators of the influence of each point. If
a point contributes highly to an axis, then it is influential in the solution, which
might be a problem if this point has a low mass, as discussed in Chapters 11
and 12. On the other hand, some points contribute very little to the solution,
and could be removed without changing the map dramatically — that is, the
map is stable with respect to including or removing these points. The acid
test is to perform varous CAs, omitting selected points to see how the results
are affected.

Sampling
variability of the

CA solution

Now looking outward beyond the data matrix, let us suppose that the data
are collected by some sampling scheme from a wider population. For example,
in the author data set of Exhibit 10.6 we know that the data represent a
small part of the complete texts, and if the whole exercise were repeated on a
different sample of each text, the counts of each letter would not be the same.
It would be perfect, of course, if the sampling exercise could be repeated
many times, and each time a CA performed to see if the features observed in
the original map remained more or less the same or whether the books’ and
letters’ positions changed. In other words, did what we see in the map arise
by chance or was it a real feature of the 12 books being studied?

Bootstrapping
the data

Since we cannot repeat the study, we have to rely on the actual data them-
selves to help us understand the sampling variability of the matrix. The usual
way to proceed in statistics is to make assumptions about the population and
then derive results about the uncertainty in the estimated values, which in
our case are the coordinates of points in the map. A less formal way which
avoids making any assumptions is provided by the bootstrap∗. The idea of the
bootstrap is to regard the data as the population, since the data are the best

∗ The English expression “pulling yourself up by your own bootstraps” means using your
own resources to get yourself out of a difficult situation.
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Multinomial sampling 195

estimate one has of the population. New data sets are created by resampling
from the data in the same way as the data themselves were sampled. In the
author data, the sampling has been performed for each text, not for each let-
ter, so this is the way we should resample. For example, for the first book,
“Three Daughters”, 7144 letters were sampled, so we imagine — notionally,
at least — these 7144 letters strung out in a long vector, in which there are
550 a s, 116 b s, 147 c ’s, ... etc. Then we take a random sample of 7144 letters,
with replacement , from this vector — the frequencies will not be exactly the
same as those in the original table, but will reflect the variability that there is
in those frequencies. This exercise is repeated for all the other rows of Exhibit
10.6, until we have a replicated table with the same row totals. This whole
procedure can be repeated several times, usually between 100 and 1000 times,
to establish many bootstrap replicates of the original data matrix.

Multinomial
sampling

An equivalent way to think about (and execute) the resampling is to make
use of multinomial sampling. Each row profile defines a set of probabilities
that can be regarded as the probability of obtaining an a, b, c, etc., in the
respective text. Then it is a matter of sampling from a population with these
probabilities, which is an easy computational algorithm, already implemented
in R (see Computational Appendix). So we do not need to create the vector
of 7144 letters for example, we need to use only the 26 probabilities of the
letters in a multinomial sampling scheme.

Partial bootstrap
of CA map, with
convex hulls

To illustrate the procedure on the author data, we first computed 100 repli-
cates of the table by the sampling procedure described above. There are two
ways to proceed now. The more difficult way is to repeat the CA on each repli-
cate and then somehow compare the results to those obtained originally. The
easier way is demonstrated here, called the partial bootstrap. Each replicated
table can be regarded as a set of row profiles or set of column profiles, so the
100 replicated profiles are simply projected onto the CA map of the original
data as supplementary points. Exhibit 25.1 shows the partial bootstrap of the
26 letters — each letter in larger font shows its original position in principal
coordinates, with the 100 replicates in a tiny font. Usually we would not show
all the replicates, but just show the convex hull of each set of points — this
is the outer set of points connected by dotted lines in Exhibit 25.1, as if an
elastic band has been placed around them.

Peeling the convex
hull

Since the convex hull is sensitive to outlying replicates (for example, see the
point for z on the right of Exhibit 25.1), it is usually peeled ; that is, the
convex hull of points is removed. The convex hull of the remaining points can
be peeled again, and this process repeated until 5% of the outermost points
in each subcloud have been removed. The convex hull of the remaining points
is thus an estimate of a 95% confidence region for each letter. To make the
estimation of these convex regions smoother, we generated 1000 replicates of
each letter and then peeled off as close to 50 of them as possible (Exhibit 25.2),
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196 Aspects of Stability and Inference

Exhibit 25.1:
(Partial) bootstrap
of 26 letters, after
100 replications of

the data matrix.
The more frequent
the letter is in the

texts, the more
concentrated (less
variable) are the

replicates. Convex
hulls are shown

around each set of
100 replicated

profiles.
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Exhibit 25.2:
Peeled convex hulls
of points based on
1000 replicates (10
times more than in

Exhibit 25.1),
showing an

approximate 95%
confidence region for

their distribution.
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The Delta method 197

showing the convex hulls of the remaining subclouds. If two convex hulls do
not overlap then this gives some assurance that the letters are significantly
different in the texts. The actual level of significance is difficult to calculate
because of the lack of formality in the procedure and the issue of multiple
comparisons mentioned in Chapter 15. Fortunately, however, the procedure is
conservative because of the projections onto the original map. If two convex
hulls overlap in the map (for example, x and q), then it may still be possible
that they do not overlap in the full space, but we would not be able to conclude
this fact from the map. If they do not overlap in the projection (for example,
k and y), then we know they do not overlap in the full space.

The Delta methodAn alternative method for visualizing the confidence regions for each point in
a CA map is to use confidence ellipses. These can be based on the replicates
in the partial bootstrap above, or can be calculated making some theoretical
assumptions. For example, the delta method uses the partial derivatives of the
eigenvectors with respect to the multinomial proportions to calculate approxi-
mate variances and covariances of the coordinates. Then, assuming a bivariate
normal distribution in the plane, confidence ellipses can be calculated — these
enclose the true coordinates with 95% confidence, just like a confidence inter-
val for single variables. This approach relies on the assumption of independent
random sampling, which is not strictly satisfied in the author data because
the occurrence of a particular letter is not independent of the occurrence of 
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Exhibit 25.3:
Confidence ellipses
based on the Delta
method.
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198 Aspects of Stability and Inference

another (there is a similar problem in ecological sampling, where the same
type of species seems to be found in groups in the samples). Nevertheless, the
confidence ellipses for the letters in the author data are shown in Exhibit 25.3
and they bear a strong resemblance to the convex hulls in Exhibit 25.2, at
least as far as overlapping is concerned.

Testing
hypotheses —

theoretical
approach

The χ2 test has been mentioned before as a test of independence on a contin-
gency table. For example, the 5×3 table of Exhibit 4.1, which cross-tabulates
312 people on their level of readership and age group, has an inertia of 0.08326
and thus a χ2 of 312 × 0.08326 = 25.98. Using the usual approximation to
the χ2 distribution, the P -value for the test is computed as 0.0035, a highly
significant result. It is also possible to test the first principal inertia of a con-
tingency table using other statistical approximations to the true distribution
known as asymptotic distributions. The critical points for this test are ex-
actly those that were used in Chapter 15 to test for significant clustering. The
first principal inertia has value 0.07037, and its value as a χ2 component is
312 × 0.07037 = 21.96. To test this value, refer to the table in the Theoreti-
cal Appendix, page 206, where the critical point (at a 5% level) is shown as
12.68 for a 5 × 3 table. Since 21.96 is much higher than this value we can
conclude that the first dimension of the CA is significant and has not arisen
by chance. The second principal inertia is more difficult to test, especially if
we assume that the first principal inertia is significant, so we again resort to
computer-based methods.

Testing
hypotheses —
Monte Carlo

simulation

Given a hypothesis on the population, and knowing the way the data were
sampled, we can set up a so-called Monte Carlo simulation to calculate the
null distribution of the test statistic. For example, suppose we want to test
both principal inertias of the readership data for significance. The null hy-
pothesis is that there is no association between the rows and columns. The
sampling here was not done as in the author data, where the text was sam-
pled within each book — the analogy here would be that we sampled within
each education group. By contrast, 312 people were sampled and then their
education groups and readership categories were ascertained, so that the dis-
tribution of the education groups is also random, not fixed. Therefore we need
to generate repeated samples of 312 people from the multinomial distribution
which corresponds to the whole matrix, not row by row or column by column.
The expected probabilities in each of the 15 cells of the table are equal to the
product ricj of the masses. These define a vector of 15 probabilities under the
null hypothesis which will be used to generate simulated multinomial sam-
ples of size 312. Two samples are given in Exhibit 25.4 alongside the original
contingency table — in total 9999 tables were generated. For each simulated
table the CA was performed and the two principal inertias calculated; hence
along with the original observed value there are 10000 sets of values in total.
Exhibit 25.5 shows the scatterplot of all of these, indicating the pair of values
corresponding to the observed contingency table. It turns out there are only
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Permutation tests 199

Exhibit 25.4:
The original
contingency table of
Exhibit 4.1 and two
of the 9999
simulated tables
under the null
hypothesis of no
row–column
association.

EDUCATION Original data 1st Simulation 2nd Simulation . . .

GROUPS C1 C2 C3 C1 C2 C3 C1 C2 C3 . . .

E1 5 7 2 2 9 5 4 5 7 . . .

E2 18 46 20 15 40 38 23 33 37 . . .

E3 19 29 39 13 36 27 17 34 25 . . .

E4 12 40 49 11 43 40 14 43 37 . . .

E5 3 7 16 8 12 13 5 12 16 . . .

12 values out of 10000 that are larger than the observed first principal inertia;
hence its P -value is estimated as 0.00012. For the second principal inertia
there are 593 simulated values larger than the observed one, giving a P -value
of 0.0593. At the 5% level the first is significant but not the second. At the
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Exhibit 25.5:
Scatterplot of
principal inertias
from original CA
and 9999
simulations of the
5 × 3 contingency
table under the null
hypothesis of no
row–column
association (two of
the simulations are
shown in Exhibit
25.4). The actual
principal inertias are
indicated by the
larger circle and
dashed lines..

same time we calculated the total inertia in each simulation — there are 19
simulated values larger than the observed total inertia of 0.08326. Therefore
the P -value is 0.00019, which is our Monte Carlo estimate for the χ2 test, com-
pared to the P -value of 0.0035 that was based on the usual approximation to
the χ2 distribution.

Permutation testsPermutation tests (or randomization tests) are slightly different from the boot-
strap and Monte Carlo procedures described above. For example, in the “blow-
up” of the book points in Exhibit 10.7 we observed that the pairs of books by
the same author lay in the same vicinity. It does seem unlikely that this could
have occurred by chance, but what is the probability, or P -value, associated
with this result? Thanks to modern computing this question can be answered
as follows. First, calculate a measure of proximity between the pairs of books;
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200 Aspects of Stability and Inference

an obvious measure is the sum of the six distances between pairs, which is
equal to 0.4711. Then generate all possible ways of assigning the pairs of au-
thors to the 12 texts; there are exactly 11×9×7×5×3 = 10395 unique ways
to rearrange them into six groups of 2. For each of these re-assignments of
the labels to the points in the map, calculate the sum-of-distance measure. All
these values define the permutation distribution of the test statistic, which has
mean 0.8400 and standard deviation 0.1246 (in the Computational Appendix,
page 253, the histogram of this distribution is shown). It turns out that there
is no other assignment of the labels that gives a sum-of-distances smaller than
the value observed in the CA map. Hence the P -value for the assertion that
the pairs of texts are close is P < 1/10395, i.e., less than 0.0001, which is
a highly significant result! Similar permutation tests were conducted for the
subset CAs of the consonants and vowels separately (Exhibits 21.1 and 21.2),
yielding P = 0.0045 and P = 0.44 respectively. Thus the consonants are ac-
counting for the difference between the authors, not the vowels. Permutation
tests are also routinely conducted in CCA to test whether the constrained
space accounts for a significant part of the inertia. The idea is to compute
a statistic such as the ratio of the constrained inertia to the unconstrained
inertia and then perform a large number of CCAs, where in each one the rows
of the explanatory variable matrix have been randomly permuted, generating
a null distribution (see Computational Appendix, page 252–253).

SUMMARY:
Aspects of

Stability and
Inference

1. Stability concerns the data at hand and how much each row or column of
data has influenced the display. The level of internal stability can be judged
(a) by studying the row and column contributions and (b) by embarking
on various re-analyses of the data which involve omitting single points or
groups of points and seeing how the map is affected.

2. When the data are regarded as a sample of a wider population, the sampling
variability can be investigated through a bootstrap resampling procedure
to create replicates of the data table. The resampling should respect the
row or column margins if these were fixed by the original sampling design.

3. In the partial bootstrap the row and/or column profiles of the replicated
matrices are projected onto the CA solution as supplementary points. The
replicate points can be summarized by drawing convex hulls or confidence
ellipses.

4. Various theoretical approaches also exist, which rely on distributional as-
sumptions in the population, for example the delta method and asymptotic
theory based on normal approximations of the multinomial distribution.

5. Monte Carlo methods and permutations tests can be used to test specific
hypotheses, relying on generating data under the null hypothesis to sim-
ulate (or calculate exactly) the null distribution of chosen test statistics,
from which P -values can be deduced.
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ATheory of Correspondence Analysis

CA is based on fairly straightforward, classical results in matrix theory. The
central result is the singular value decomposition (SVD), which is the basis of
many multivariate methods such as principal component analysis, canonical
correlation analysis, all forms of linear biplots, discriminant analysis and met-
ric multidimensional scaling. In this appendix the theory of CA is summarized,
as well as the theory of related methods discussed in the book. Matrix–vector
notation is preferred because it is more compact, but also because it is closer
to the implementation of the method in the R computing language.

Contents

Correspondence matrix and preliminary notation . . . . . . . . . . . . . 201
Basic computational algorithm . . . . . . . . . . . . . . . . . . . . . . . 202
A note on the singular value decomposition (SVD) . . . . . . . . . . . . 203
The bilinear CA model . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Transition equations between rows and columns . . . . . . . . . . . . . . 204
Supplementary points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Total inertia and χ2-distances . . . . . . . . . . . . . . . . . . . . . . . . 204
Contributions of points to principal inertias . . . . . . . . . . . . . . . . 205
Contributions of principal axes to point inertias (squared correlations) . 205
Ward clustering of row or column profiles . . . . . . . . . . . . . . . . . 206
Stacked tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Multiple CA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Joint CA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Percentage of inertia explained in JCA . . . . . . . . . . . . . . . . . . . 207
Contributions in JCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Adjusted inertias in MCA . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Subset CA and subset MCA . . . . . . . . . . . . . . . . . . . . . . . . . 209
Analysis of square asymmetric tables . . . . . . . . . . . . . . . . . . . . 209
Canonical CA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Tables for testing for significant clustering or significant dimensions . . 211

Correspondence
matrix and
preliminary
notation

Let N denote the I × J data matrix, with positive row and column sums
(almost always N consists of nonnegative numbers, but there are some ex-
ceptions such as the one described at the end of Chapter 23). For notational
simplicity the matrix is first converted to the correspondence matrix P by
dividing N by its grand total n =

∑
i

∑
j nij = 1TN1 (the notation 1 is used

for a vector of ones of length that is appropriate to its use; hence the first 1
is I × 1 and the second is J × 1 to match the row and column lengths of N).

201
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202 Theory of Correspondence Analysis

Correspondence matrix:

P =
1
n
N (A.1)

The following notation is used:

Row and column masses:

ri =
∑J

j=1 pij

i.e., r = P1

cj =
∑I

i=1 pij

c = PT1
(A.2)

Diagonal matrices of row and column masses:

Dr = diag(r) and Dc = diag(c) (A.3)

Note that all subsequent definitions and results are given in terms of these
relative quantities P = {pij}, r = {ri} and c = {cj}, whose elements add up
to 1 in each case. Multiply these by n to recover the elements of the original
matrix N: npij = nij , nri = i-th row sum of N, ncj = j-th column sum of N.

Basic
computational

algorithm

The computational algorithm to obtain coordinates of the row and column
profiles with respect to principal axes, using the singular value decomposition
(SVD), is as follows:

CA Step 1 — Calculate the matrix S of standarized residuals:

S = D− 1
2

r (P − rcT)D− 1
2

c (A.4)

CA Step 2 — Calculate the SVD of S:

S = UDαVT where UTU = VTV = I (A.5)

where Dα is the diagonal matrix of (positive) singular values in
descending order: α1 ≥ α2 ≥ · · ·

CA Step 3 — Standard coordinates Φ of rows:

Φ = D− 1
2

r U (A.6)

CA Step 4 — Standard coordinates Γ of columns:

Γ = D− 1
2

c V (A.7)

CA Step 5 — Principal coordinates F of rows:

F = D− 1
2

r UDα = ΦDα (A.8)

CA Step 6 — Principal coordinates G of columns:

G = D− 1
2

c VDα = ΓDα (A.9)

CA Step 7 — Principal inertias λk:

λk = α2
k, k = 1, 2, . . . , K where K = min{I − 1, J − 1} (A.10)
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A note on the singular value decomposition (SVD) 203

The rows of the coordinate matrices in (A.6)–(A.9) refer to the rows or
columns, as the case may be, of the original table, while the columns of
these matrices refer to the principal axes, or dimensions, of which there are
min{I−1, J−1}, i.e., one less than the number of rows or columns, whichever
is smaller. Notice how the principal and standard coordinates are scaled:

FDrFT = GDcGT = Dλ (A.11)
ΦDrΦT = ΓDc ΓT = I (A.12)

That is, the weighted sum-of-squares of the principal coordinates on the k-th
dimension (i.e., their inertia in the direction of this dimension) is equal to
the principal inertia (or eigenvalue) λk = α2

k, the square of the k-th singular
value, whereas the standard coordinates have weighted sum-of-squares equal
to 1. All coordinate matrices have orthogonal columns, where the masses are
always used in the calculation of the (weighted) scalar products.

A note on the
singular value
decomposition
(SVD)

The SVD is the fundamental mathematical result for CA, as it is for other di-
mension reduction techniques such as principal component analysis, canonical
correlation analysis and linear discriminant analysis. This matrix decomposi-
tion expresses any rectangular matrix as a product of three matrices of simple
structure, as in (A.5) above: S = UDαVT. The columns of the matrices
U and V are the left and right singular vectors respectively, and the posi-
tive values αk down the diagonal of Dα, in descending order, are the singular
values. The SVD is related to the more well-known eigenvalue–eigenvector de-
composition (or eigendecomposition) of a square symmetric matrix as follows:
SST and STS are square symmetric matrices which have eigendecompositions
SST = UD2

αUT and STS = VD2
αVT, so the singular vectors are also eigen-

vectors of these respective matrices, and the singular values are the square
roots of their eigenvalues. The practical utility of the SVD is that if one con-
structs another I × J matrix S(m) from the the first m columns of U(m) and
V(m) and the first m singular values in Dα(m): S(m) = U(m)Dα(m)VT

(m), then
S(m) is the least-squares rank m approximation of S (this result is known
as the Eckart-Young theorem). Since the objective of finding low-dimensional
best-fitting subspaces coincides with the objective of finding low-rank matrix
approximations by least-squares, the SVD solves our problem completely and
in a very compact way. The only adaptation needed is to incorporate the
weighting of the rows and columns by the masses into the SVD so that the
approximations are by weighted least squares. If a generalized form of the
SVD were defined, where the singular vectors are normalized with weighting
by the masses, then the CA solution can be obtained in one step. For exam-
ple, the generalized SVD of the contingency ratios pij/(ricj), elements of the
matrix D−1

r PD−1
c , centred at the constant value 1, leads to the standard row

and column coordinates directly:

D−1
r PD−1

c − 11T = ΦDαΓT where ΦTDrΦ = ΓTDcΓ = I (A.13)
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204 Theory of Correspondence Analysis

The bilinear
CA model

From steps 1 to 4 of the basic algorithm, the data in P can be written as
follows (see also (13.4) on page 101 and (14.9) on page 109):

pij = ricj

(
1 +

K∑
k=1

√
λkφikγjk

)
(A.14)

(also called the reconstitution formula). In matrix notation:

P = Dr(11T + ΦD1/2
λ ΓT)Dc (A.15)

Because of the simple relations (A.8) and (A.9) between the principal and
standard coordinates, this bilinear model can be written in several alternative
ways — see also (14.10) and (14.11) on pages 109–110.

Transition
equations between
rows and columns

The left and right singular vectors are related linearly, for example by multi-
plying the SVD on the right by V: SV = UDα. Expressing such relations in
terms of the principal and standard coordinates gives the following variations
of the same theme, called transition equations (see (14.1) & (14.2) and (14.5)
& (14.6) for the equivalent scalar versions):
Principal as a function of standard (barycentric relationships):

F = D−1
r PΓ G = D−1

c PTΦ (A.16)

Principal as a function of principal:

F = D−1
r PGD−1/2

λ G = D−1
c PTFD−1/2

λ (A.17)

The equations (A.16) are those that were mentioned as early as Chapter 3,
which express the profile points as weighted averages of the vertex points,
where the weights are the profile elements. These are the equations that gov-
ern the asymmetric maps . The equations (A.17) show that the two sets of
principal coordinates, which govern the symmetric map, are also related by a
barycentric (weighted average) relationship, but with scale factors (the inverse
square roots of the principal inertias) that are different on each axis.

Supplementary
points

The transition equations are used to situate supplementary points on the map.
For example, given a supplementary column point with values in h (I × 1),
divide by its total 1Th to obtain the column profile h̃ = (1/1Th)h and then
use the profile transposed as a row vector in the second equation of (A.16),
for example, to calculate the coordinates g of the supplementary column:

g = h̃TΦ (A.18)

Total inertia
and χ2-distances

The total inertia of the data matrix is the sum of squares of the matrix S in
(A.4):

inertia = trace(SST) =
I∑

i=1

J∑
j=1

(pij − ricj)2

ricj
(A.19)
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The inertia is also the sum of squares of the singular values, i.e., the sum of
the eigenvalues:

inertia =
K∑

k=1

α2
k =

K∑
k=1

λk (A.20)

The χ2-distances between row profiles and between column profiles are:

χ2-distances between rows i and i′ :
J∑

j=1

(
pij

ri
− pi′j

ri′

)2

/cj (A.21)

χ2-distances between columns j and j′ :
I∑

i=1

(
pij

cj
− pij′

cj′

)2

/ri (A.22)

To write the full set of χ2-distances in the form of a square symmetric matrix
requires a bit more work. First, calculate the matrix A of “χ2 scalar products”
between row profiles, for example, as:

χ2 scalar products between rows : A = D−1
r PD−1

c PTD−1
r (A.23)

Then define the vector a as the elements on the diagonal of this matrix (i.e.,
the scalar products of the row profiles with themselves):

a = diag(A) (A.24)

Then the I × I matrix of squared χ2-distances is:

squared χ2-distance matrix between rows :a1T + 1aT − 2A (A.25)

To calculate the J×J matrix of squared χ2-distances between column profiles,
interchange rows with columns in (A.23), defining A as D−1

c PTD−1
r PD−1

c and
then following with (A.24) and (A.25).

Contributions of
points to principal
inertias

The contributions of the row and columns points to the inertia on the k-th
dimension are the inertia components:

for row i:
rif

2
ik

λk
= riφ

2
ik for column j:

cjg
2
jk

λk
= cjγ

2
jk (A.26)

recalling the relationship between principal and standard coordinates given
in (A.8) and (A.9): fik =

√
λkφik, gjk =

√
λkγjk (notice that the square

roots of the values in (A.26) are exactly the coordinates proposed for the
standard CA biplot of Chapter 13, which shows that the squared lengths of
these coordinates are the contributions to the principal axes).

Contributions of
principal axes to
point inertias
(squared
correlations)

The contributions of the dimensions to the inertia of the i-th row and j-th
column points (i.e., the squared cosines or squared correlations) are:

for row i:
f2

ik∑
k f2

ik

for column j:
g2

jk∑
k g2

jk

(A.27)

As shown in Chapter 11, the denominators in (A.27) are the squared χ2-
distances between the corresponding profile point and the average profile.
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Ward
clustering of row

or column profiles

The clustering of Chapter 15 is described here in terms of the rows; exactly the
same applies to the clustering of the columns. The rows are clustered at each
step of the algorithm to minimise the decrease in the χ2 statistic (equivalently,
the decrease in the inertia since inertia = χ2/n, where n is the total of the
table). This clustering criterion is equivalent to Ward clustering, where each
cluster is weighted by the total mass of its members. The measure of difference
between rows can be shown to be the weighted form of the squared chi-squared
distance between profiles. Suppose ai and ri, i = 1, . . . , I, denote the I row
profiles of the data matrix, and their masses, respectively. Then identifying
the pair that gives the least decrease in inertia is equivalent to looking for the
pair of rows (i, i′) which minimize the following measure:

riri′

ri + ri′
‖ai − ai′‖2

c (A.28)

The two rows are then merged by summing their frequencies, and the profile
and mass are recalculated. The same measure of difference as (A.28) is cal-
culated at each stage of the clustering for the row profiles at that stage (see
(15.2) on page 120 for the equivalent formula based on profiles of clusters),
and the two profiles with the least difference are merged. So (A.28) is the level
of clustering in terms of the inertia decrease, or if multiplied by n the decrease
in χ2. In the case of a contingency table the level of clustering can be tested
for significance using the tables at the end of this Appendix.

Stacked tables Suppose tables Nqs, q = 1, . . . , Q, s = 1, . . . , S are concatenated row- and/or
columnwise to make a block matrix N. If the marginal frequencies are the
same in each row and in each column (as is the case when the same individuals
are cross-tabulated separately in several tables), then the inertia of N is the
average of the separate inertias of the tables Nqs:

inertia(N) =
1

QS

Q∑
q=1

S∑
s=1

inertia(Nqs) (A.29)

Multiple CA Suppose the original matrix of categorical data is N ×Q, i.e., N cases and Q
variables. Classical multiple CA (MCA) has two forms. The first form converts
the cases-by-variables data to an indicator matrix Z where the categorical data
have been recoded as dummy variables. If the q-th variable has Jq categories,
this indicator matrix will have J =

∑
q Jq columns (see Chapter 18, Exhibit

18.1 for an example). Then the indicator version of MCA is the application
of the basic CA algorithm to the matrix Z, resulting in coordinates for the
N cases and the J categories. The second form of MCA calculates the Burt
matrix B = ZTZ of all two-way cross-tabulations of the Q variables (see
Chapter 18, Exhibit 18.4 for an example). Then the Burt version of MCA
is the application of the basic CA algorithm to the matrix B, resulting in
coordinates for the J categories (B is a symmetric matrix). The standard
coordinates of the categories are identical in the two versions of MCA, and the
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principal inertias in the Burt version are the squares of those in the indicator
version.

Joint CAJoint CA (JCA) is the fitting of the off-diagonal cross-tabulations of the Burt
matrix, ignoring the cross-tabulations on the block diagonal. The algorithm
we use is an alternating least-squares procedure which successively applies
CA to the Burt matrix which has been modified by replacing the values on
the block diagonal with estimated values from the CA of the previous iter-
ation. The algorithm itself is explained in more detail in the Computational
Appendix. On convergence of the JCA algorithm, the CA is performed on the
last modified Burt matrix, B̃, which has its diagonal blocks perfectly fitted
by construction. In other words, supposing that the solution requested is two-
dimensional, then the modified diagonal blocks satisfy (A.14) exactly using
just two terms in the bilinear CA model (or reconstitution formula).

Percentage of
inertia explained
in JCA

Hence the total inertia of B̃ includes a part ∆ for these diagonal blocks, and
so do the first two principal inertias, λ̃1 and λ̃2, which perfectly explain the
part ∆. To obtain the percentage of inertia explained by the two-dimensional
solution, the amount ∆ has to be discounted both from the total and from
the sum of the two principal inertias. The value of ∆ can be obtained via the
difference between the inertia of the original Burt matrix B (whose diagonal
inertias are known) and the modified one B̃, as follows (here we use the result
(A.29) which applies to the subtables of B, denoted by Bqs, and those of B̃),
whose off-diagonal tables are the same):

inertia(B) =
1

Q2

(∑∑
q �=s

inertia(Bqs) +
∑

q

inertia(Bqq)

)

=
1

Q2

(∑∑
q �=s

inertia(Bqs) + (J − Q)
)

inertia(B̃) =
1

Q2

(∑∑
q �=s

inertia(Bqs)
)

+ ∆

Subtracting the above leads to:

inertia(B) − inertia(B̃) =
J − Q

Q2
− ∆ (A.30)

which gives the value of ∆:

∆ =
J − Q

Q2
−
(
inertia(B) − inertia(B̃)

)
(A.31)

Discounting this amount from the total and the sum of the principal iner-
tias (assuming a two-dimensional solution) gives the percentage of inertia
explained by the JCA solution:

100 × λ̃1 + λ̃2 − ∆

inertia(B̃) − ∆
(A.32)
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Contributions
in JCA

The previous section showed how to discount the extra inertia as a result of
the modified diagonal blocks of the Burt matrix in JCA. There is an identical
situation at the level of each point. Each category point j has an additional
amount of inertia, δj , due to the modified diagonal blocks. In the case of the
original Burt matrix B we know exactly what this extra amount is due to the
diagonal matrices in the diagonal blocks: for the j-th point it is (1−Qcj)/Q2,
where cj is the j-th mass (summing these values for j = 1, . . . , J , we obtain
(J −Q)/Q2 which was the total additional amount due to the diagonal blocks
of B). Therefore, just as above, we can derive how to obtain contributions of
the two-dimensional solution to the point inertias as follows:

inertia(j-th category of B) = off-diagonal components +
1 − Qcj

Q2

inertia(j-th category of B̃) = off-diagonal components + δj

Subtracting the above (the “off-diagonal components” are the same) leads to:

inertia(jth category of B) − inertia(j-th category of B̃) =
1 − Qcj

Q2
− δj

which gives the value of δj :

δj =
1 − Qcj

Q2
−
(
inertia(j-th category of B) − inertia(j-th category of B̃)

)
(A.33)

Discounting this amount from the j-th category’s inertia and similarly from
the sum of the components of inertia in two dimensions gives the relative
contributions (qualities) with respect to the two-dimensional JCA solution:

cj g̃
2
j1 + cj g̃

2
j2 − δj

(
∑

k cj g̃2
jk) − δj

(A.34)

where g̃jk is the principal coordinate of category j on axis k in the CA of B̃
(JCA solution), and the summation in the denominator is for all the dimen-
sions. Notice that

∑
j δj = ∆ (i.e., summing (A.33) gives (A.31)).

Adjusted
inertias in MCA

The MCA solution can be adjusted to optimize the fit to the off-diagonal
tables (this could be called a JCA conditional on the MCA solution). The op-
timal adjustments can be determined by weighted least-squares, as described
in Chapter 19, but the problem is that the solution is not nested. So we prefer
slightly sub-optimal adjustments which retain the nesting property and are
very easy to compute from the MCA solution of the Burt matrix. The adjust-
ments are made as follows (see Chapter 19, pages 140–141, for an illustration):

Adjusted total inertia of Burt matrix:

adjusted total inertia = Q

Q − 1
×
(

inertia of B− J − Q

Q2

)
(A.35)
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Adjusted principal inertias (eigenvalues) of Burt matrix:

λadj
k =

(
Q

Q − 1

)2

×
(√

λk − 1
Q

)2

, k = 1, 2, . . . (A.36)

Here λk refers to the k-th principal inertia of the Burt matrix; hence
√

λk is
the k-th principal inertia of the indicator matrix. The adjustments are made
only to those dimensions for which

√
λk > 1

Q and no further dimensions are
used — hence percentages of inertia do not add up to 100%. It can be proved
that these percentages are lower bound estimates of those that are obtained
in a JCA, and in practice they are close to the JCA percentages.

Subset CA and
subset MCA

Subset CA is simply the application of the same CA algorithm to a selected
part of the standardized residual matrix S in (A.4) (not to the subset of
the original matrix). The masses of the full matrix are thus retained and all
subsequent calculations are the same, except they are applied to the subset.
Suppose that the columns are subsetted, but not the rows. Then the rows still
maintain the centring property of CA; i.e., their weighted averages are at the
origin of the map, whereas the columns are no longer centred. Subset MCA
is performed by applying subset CA on a submatrix of the indicator matrix
or the Burt matrix. In the case of the Burt matrix, a selection of categories
implies that this subset has to be specified for both the rows and columns.

Analysis of square
asymmetric tables

If the data matrix N is square asymmetric, where both rows and columns
refer to the same objects, then N can be written as the sum of symmetric and
skew-symmetric parts:

N = 1

2
(N + NT) + 1

2
(N− NT) (A.37)

= symmetric + skew-symmetric

CA is applied to each part separately, but with a slight variation for the
skew-symmetric part. The analysis of the symmetric part 1

2 (N + NT) is the
usual CA — this provides one set of coordinates, and the masses are the
averages of the row and column masses corresponding to the same object:
wi = 1

2 (ri + ci). The analysis of the skew-symmetric part 1
2 (N − NT) is the

application of the CA algorithm without centring and using the same masses
as in the symmetric analysis; i.e., the “standardized residuals” matrix of (A.4)
is rather the “standardized differences” matrix

S = D− 1
2

w [1
2
(P − PT)]D− 1

2
w (A.38)

where P is the correspondence matrix and Dw is the diagonal matrix of the
masses wi. As described in Chapter 22, both these analyses are subsumed in
the ordinary CA of the block matrix[

N NT

NT N

]
(A.39)
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210 Theory of Correspondence Analysis

If N is an I × I matrix, then the 2I − 1 dimensions which emanate from this
CA can be easily allocated to the symmetric and skew-symmetric solutions
since the symmetric dimensions have unique principal inertias while the skew-
symmetric dimensions occur in pairs with equal principal inertias. Similarly
the coordinate vectors for each dimension have two parts: for dimensions cor-
responding to the symmetric analysis these are simple repeats on each other,
while for dimensions corresponding to the skew-symmetric analysis these are
repeats with a change of sign (see Chapter 22 for an example).

Canonical CA In canonical CA (CCA) an additional matrix X of explanatory (independent)
variables is available, and the requirement is that the dimensions be linearly
related to X. The total inertia is split into two parts: a part that is linearly re-
lated to the independent variables, called the inertia in the constrained space,
and a part that is not, the inertia in the unconstrained space. CCA is neces-
sarily an “asymmetric” method since X is an additional set of either rows or
columns. The usual data structure is that the rows are sampling units and
X is an additional set of M columns, i.e., I × M . There is a regression step
in CCA which calculates the I × J constrained matrix, whose columns are
linearly related to X. The difference between P and the constrained matrix
is the unconstrained matrix, whose columns are not linearly unrelated to X.
CCA thus consists of applying CA to the constrained matrix and (optionally)
to the unconstrained matrix. In each application the original row and column
masses are maintained for all computations, and the various results such as
coordinates, principal inertias, contributions, reconstruction formula, etc., are
the same as in a regular application of CA. We assume that the columns of X
are standardized, using the row masses as weights in the calculation of means
and variances. If there are some categorical independent variables, these are
coded as dummy variables, dropping one category of each variable as in a
conventional regression analysis. The retained dummy variables are then also
standardized in the usual way.
The steps in CCA are as follows:

CCA Step 1 — Calculate the standardized residuals matrix S as in CA:

S = D− 1
2

r (P − rcT)D− 1
2

c (A.40)

CCA Step 2 — Calculate the I×I projection matrix, of rank M , which projects
onto the constrained space:

Q = D
1
2
r X(XTDrX)−1D

1
2
r (A.41)

CCA Step 3 — Project the standardized residuals to obtain the constrained
matrix:

S� = QS (A.42)

CCA Step 4 — Apply CA Steps 1–6 (page 202) to S�:

CCA Step 5 — Principal inertias λ�
k in constrained space:

λ�
k = α2

k, k = 1, 2, . . . , K where K = min{I − 1, J − 1, M} (A.43)
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CCA Step 5 (optional) — Project the standardized residuals onto the uncon-
strained space:

S⊥ = (I − Q)S = S − S� (A.44)

CCA Step 6 (optional) — Apply CA Steps 1–6 to S⊥.

As described in Chapter 24, the principal inertias in (A.43) can be expressed
as percentages of the total inertia, or as percentages of the constrained inertia,
which is the sum of squares of the elements in S�, equal to

∑
k λ�

k.

Tables for testing
for significant
clustering or
significant
dimensions

In the case of a contingency table based on a random sample, the first principal
inertia can be tested for statistical significance. This is the same test as was
used in the case of the Ward clustering of Chapter 15. In that case a critical
level for clustering, on the χ2 scale, can be determined from the tables in
Exhibit A.1 below, according to the size of the table (see page 119 for the
food store example, a 5× 4 table for which the critical point in Exhibit A.1 is
15.24). These critical points are the same for testing the first principal inertia
for significance. For example, in the same example of the food stores, given in
Exhibit 15.3, the first principal inertia was 0.02635, which if expressed as a χ2

component is 0.02635 × 700 = 18.45. Since 18.45 is greater than the critical
point 15.24, the first principal inertia is statistically significant (at the 5%
level).

Exhibit A.1:
Critical values for
multiple
comparisons test on
a I × J (or J × I)
contingency table.
The same critical
points apply to
testing the
significance of a
principal inertia.
Significance level is
5%.

J

I 3 4 5 6 7 8 9 10 11

3 8.59
4 10.74 13.11
5 12.68 15.24 17.52
6 14.49 17.21 19.63 21.85
7 16.21 19.09 21.62 23.95 26.14
8 17.88 20.88 23.53 25.96 28.23 30.40
9 19.49 22.62 25.37 27.88 30.24 32.48 34.63
10 21.06 24.31 27.15 29.75 32.18 34.50 36.70 38.84
11 22.61 25.96 28.90 31.57 34.08 36.45 38.72 40.91 43.04
12 24.12 27.58 30.60 33.35 35.93 38.36 40.69 42.93 45.10
13 25.61 29.17 32.27 35.09 37.73 40.22 42.60 44.90 47.12

Source: Pearson, E.S. & Hartley, H.O. (1972). Biometrika Tables for Statisticians,
Volume 2: Table 51. Cambridge University Press, UK.
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In this appendix the computation of CA is illustrated using the object-oriented
computing language R, which can be freely downloaded from the website:

http://www.r-project.org
We assume here that the reader has some basic knowledge of this language,
which has become the de facto standard for statistical computing. If not, the
above website gives many resources for learning it. The scripts which are given
in this appendix are available at the website of the CARME network:

http://www.carme-n.org
(CARME = Correspondence Analysis and Related MEthods). At the end of
this appendix we shall also comment on commercially available software, and
describe different graphical options for producing maps.

Contents

The R program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Entering data into R . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

R scripts for each chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 215
The ca package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Fionn Murtagh’s R programs . . . . . . . . . . . . . . . . . . . . . . . . 253
XLSTAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Graphical options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

The R programThe R program provides all the tools necessary to produce CA maps, the most
important one being the singular value decomposition (SVD). These tools are
encapsulated in R functions , and several functions and related material can
be gathered together to form an R package. An R package called ca is already
available for doing every type of CA described in this book, to be demonstrated
later in this appendix. But before that, we show step-by-step how to perform
various computations using R. The three-dimensional graphics package rgl
will also be demonstrated in the process. In the following we use a Courier
font for all R instructions and R output; for example, here we create the matrix
(13.2) on page 99, calculate its SVD and store it in an R “svd” object, and
then ask for the part of the object labelled ‘d’ (the singular values):
> table.T <- matrix(c(8,5,-2,2,4,2,0,-3,3,6,2,3,3,-3,-6,
+ -6,-4,1,-1,-2),nrow=5)

> table.SVD <- svd(table.T)

> table.SVD$d
[1] 1.412505e+01 9.822577e+00 6.351831e-16 3.592426e-33

The commands are indicated in slanted script (the prompt > is not typed),
while the results are given in regular typewriter script. A + at the start of the
line indicates continuation of the command.

213
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214 Computation of Correspondence Analysis

Entering data
into R

Entering data into R has its peculiarities, but once you have managed to do
it, the rest is easy! The read.table() function is one of the most useful ways
to input data matrices, and the easiest data sources are a text file or an Excel
file. For example, suppose we want to input the 5×3 data table on readership
given in Exhibit 3.1. Here are three options for reading it in.

1. Suppose the data are in a text file as follows:

C1 C2 C3
E1 5 7 2
E2 18 46 20
E3 19 29 39
E4 12 40 49
E5 3 7 16

and suppose the file is called reader.txt and stored in the present R
working directory. Then execute the following statement in R:
> read.table("reader.txt")

2. An easier alternative is to copy the above file into the clipboard by selecting
the contents in the text- or word-processor and copying using the pull-down
Edit menu or right-clicking the mouse (assuming Windows platform). Then
execute a similar command by reading directly from the clipboard:
> read.table("clipboard")

3. In a similar fashion, data can be read from an Excel file∗ via the clipboard,
assuming the data are in an Excel file, as displayed below:

The cells of this table have been selected and then copied. The command
> table <- read.table("clipboard")

results in the table being stored as an R “data frame” object with the name

∗ Using the R package foreign, distributed with the program, it is possible to read other
data formats, e.g., Stata, Minitab, SPSS, SAS, Systat and DBF.
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table. Notice that the success of this read.table() command relies on
the fact that the first line of the copied table contains one less entity than
the other lines — this is why there is an empty cell in the top left-hand
corner of the Excel table, similarly in the text file. If the read.table()
function finds one less entity in the first line, it realizes that the first line
consists of column labels and the subsequent lines have the column labels
in the first column. The contents of table can be seen by entering
> table

C1 C2 C3

E1 5 7 2

E2 18 46 20

E3 19 29 39

E4 12 40 49

E5 3 7 16

The object includes the row and column names, which can be accessed by
typing rownames(table) and colnames(table), for example:
> rownames(table)

[1] "E1" "E2" "E3" "E4" "E5"

R scripts for each
chapter

We now describe systematically the computations for each chapter, starting
with Chapter 2. Only basic R functions and the three-dimensional plotting
package rgl† will be used, leaving till later a demonstration of the ca package
which does the calculations in a much more compact way.

In Chapter 2 we showed some triangular plots of the travel data set. Suppose Chapter 2: Profiles
and the Profile
Space

that the profile data of Exhibit 2.1 are input as described before and stored
in the data frame profiles in R; that is, after copying the profile data:
> profiles <- read.table("clipboard")
> profiles

Holidays HalfDays FullDays

Norway 0.333 0.056 0.611

Canada 0.067 0.200 0.733

Greece 0.138 0.862 0.000

France/Germany 0.083 0.083 0.833

(notice that the column names had been originally written without blanks,
otherwise the data would not have been read correctly). We can do a three-
dimensional view of the profiles using the rgl package as follows (assuming Example of

three-dimensional
graphics using rgl
package

rgl has been installed and loaded — see the footnote below).
> rgl.lines(c(0,1.2), c(0,0), c(0,0))

> rgl.lines(c(0,0), c(0,1.2), c(0,0))

> rgl.lines(c(0,0), c(0,0), c(0,1.2))

> rgl.lines(c(0,0), c(0,1), c(1,0), size=2)

† The rgl package is not one of the packages provided as standard with R, but needs to
be installed by downloading it from the R website or www.carme-n.org.
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Exhibit B.1:
Three-dimensional

view of the country
row profiles of the

travel data set,
using the R package

rgl.

Exhibit B.2:
Rotation of the

three-dimensional
space to show the

triangle in which the
profile points lie.

> rgl.lines(c(0,1), c(1,0), c(0,0), size=2)

> rgl.lines(c(0,1), c(0,0), c(1,0), size=2)

> rgl.points(profiles[,3],profiles[,1],profiles[,2],

+ size=4)

> rgl.texts(profiles[,3],profiles[,1],profiles[,2],

+ text=row.names(profiles))
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The 3-D scatterplot from a certain viewpoint is shown in Figure B.1. Using
the mouse while pressing the left button, this figure can be rotated to give
a realistic three-dimensional feeling. Figure B.2 shows one of these rotations
where the viewpoint is flat onto the triangle that contains the profile points.
The mouse wheel allows zooming into the display.

As an illustration of the graphics in Chapter 3, we give the code to draw Chapter 3: Masses
and Centroidthe triangular coordinate plot in Exhibit 3.2 using R, which needs some trig-

nometry to calculate the (x, y) positions of each point. Assuming the table
has been read as on the bottom of page 214 into the data frame table, the
following commands in R produce the figure in Exhibit B.3. The first state-
ment calculates the row profiles in table.pro using the apply() function — apply() function
this function can operate on rows or columns; here the parameter “1” indi-
cates rows, and “sum” the operation required. R stores matrices as a string of
columns, so the division of table by the row sums does just the right thing,
dividing the first column by the row sums, then the second and so on. The two
subsequent statements calculate the x and y coordinates of the five profiles in
an equilateral triangle of side 1, using the first and third profile values (only
two out of the three are needed to situate the point).

C1 C2

C3

E1

E2

E3
E4

E5

Exhibit B.3:
Plot of five
education group
profiles in the
triangular
coordinate space.

> table.pro <- table / apply(table, 1, sum) Example of
two-dimensional
graphics

> table.x <- 1 - table.pro[,1] - table.pro[,3] / 2

> table.y <- table.pro[,3] * sqrt(3) / 2

> plot.new()

> lines(c(0,1,0.5,0), c(0,0,sqrt(3)/2,0), col="gray")

> text(c(0,1,0.5), c(0,0,sqrt(3)/2), labels=colnames(table))

> text(table.x, table.y, labels=rownames(table))
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In Chapter 4 the χ2 statistic, inertia and χ2-distances were calculated, eachChapter 4:
Chi-square

Distances and
Inertia

of which is illustrated here. The calculations are performed on the readership
data frame table used previously.
— χ2 statistic and total inertia:
> table.rowsum <- apply(table, 1, sum)

> table.colsum <- apply(table, 2, sum)

> table.sum <- sum(table)

> table.exp <- table.rowsum %o% table.colsum / table.sum

> chi2 <- sum((table - table.exp)^2 / table.exp)
> chi2

[1] 25.97724

> chi2 / table.sum

[1] 0.08326039

Notice the use of the outer product operator %o% in the fourth commandOuter product
operator %o% above; this multiplies every element in the vector to the left of the operator

with every element in the vector on the right.
— χ2-distances of row profiles to centroid:
We first show the least elegant (but most obvious) way of calculating the
square of the χ2-distance for the fifth row of the table, as shown in brackets
in (4.4). A for loop in R is used to build up the sum of the three terms:
> chidist <- 0

> for(j in 1:3) {Example of for
loop in R + chidist<-chidist+

+ (table.pro[5,j] - table.colmass[j])^2 / table.colmass[j]

+ }
> chidist

C1

0.1859165

The label C1 is given to the value of chidist probably because this is the first
column of the loop. A more elegant way is to compute all five distances in
one step. We need to subtract the row of column masses from each row of the
profile matrix, square these differences, and then divide each row again by the
column masses, finally adding up the rows. Row operations are slightly more
difficult in R because matrices are stored as column vectors, so one solution is
to transpose the profile matrix first, using the t() transpose function. ThenTranpose function

t() all the columns of the transposed object (previously rows) are summed, using
the apply() function with parameters 2,sum indicating column sums:
> apply((t(table.pro)-table.colmass)^2 / table.colmass,2,sum)

E1 E2 E3 E4 E5

0.35335967 0.11702343 0.02739229 0.03943842 0.18591649

Finally, all χ2-distances can be computed, between all profiles and in partic-
ular between the profiles and their average, using the dist() function, whichDistance function

dist() by default computes a Euclidean distance matrix between rows of a matrix.
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First, the row of column masses (average row profile) is appended to the
profile matrix using the function rbind() (row binding) to form a 6×3 profile Row binding using

rbind()matrix tablec.pro. Second, we need to divide each profile element by the
corresponding square root of the average. An alternative to having to use the
transpose operation again is to use the versatile sweep() function, which acts Versatile sweep()

functionlike apply() but has more options. In the second command below the options
of sweep are 2 (operating down the columns), sqrt(table.colmass) (the
vector used for the operation) and "/" (the operation is division):

> tablec.pro <- rbind(table.pro, table.colmass)

> rownames(tablec.pro)[6]<-"ave"
> dist(sweep(tablec.pro, 2, sqrt(table.colmass), FUN="/"))

E1 E2 E3 E4 E5

E2 0.3737004

E3 0.6352512 0.4696153

E4 0.7919425 0.5065568 0.2591401

E5 1.0008054 0.7703644 0.3703568 0.2845283

ave 0.5944406 0.3420869 0.1655062 0.1985911 0.4311803

The last line, which was labelled “ave” for the appended average profile (see
second command above), gives the χ2-distances (square roots of the squared
values calculated above). All other distances between the five row profiles are
also given, and the result of dist() is an R distance object which stores only
the triangular matrix of distances.

In Chapter 5 the χ2-distances are visualized by stretching the coordinate axes Chapter 5:
Plotting
Chi-square
Distances

by amounts inversely proportional to the square roots of the corresponding
masses. So this is a similar sequence of code to that given previously for the
three-dimensional plot of Chapter 2, except that each coordinate is divided by
sqrt(table.colmass). The trickier aspect is to decide which profile elements
go with which dimensions, to reproduce Exhibit 5.2 — we leave this as a small
exercize for the reader, but the actual script is given on the website.

Chapter 6 starts with actual CAs in that dimension-reduction is involved, so Chapter 6:
Reduction of
Dimensionality

here we shall perform our first singular value decomposition (SVD). We first
input the health self-assessment data set and call it health; then we follow
the steps given on page 202 of the Theoretical Appendix. The preparatory
steps (A.1–3) are as follows:

> health.P <- health / sum(health)

> health.r <- apply(health.P, 1, sum)

> health.c <- apply(health.P, 2, sum)

> health.Dr <- diag(health.r) Diagonal matrix
function diag()> health.Dc<-diag(health.c)

> health.Drmh <- diag(1/sqrt(health.r))

> health.Dcmh <- diag(1/sqrt(health.c))

The last two commands above create D− 1
2

r and D− 1
2

c , respectively, since we
need them repeatedly later (in the object name mh stands for “minus half”).

© 2007 by Taylor & Francis Group, LLC



220 Computation of Correspondence Analysis

In order to perform the matrix multiplication in (A.4), the data frame health.P
has to be converted to a regular matrix, and then the matrix multiplication
is performed using the operator %*%, finally the SVD in (A.5) using functionMatrix

multiplication
operator %*%

svd():
> health.P <- as.matrix(health.P)

> health.S <- health.Drmh %*% (health.P - health.r %o% health.c)

+ %*% health.Dcmh

> health.svd <- svd(health.S)Example of SVD
function svd() The principal and standard coordinates (pc and sc) are calculated as in (A.6–

9):
> health.rsc <- health.Drmh

> health.csc <- health.Dcmh

> health.rpc <- health.rsc %*% diag(health.svd$d)
> health.cpc <- health.csc %*% diag(health.svd$d)

And that’s it! The previous 14 R commands are the whole basic CA algorithm
— simply replace health with any other data frame to compute the point
coordinates.
To see the values of, for example, the principal coordinates of the rows on the
first principal axis:
> health.rpc[,1]

[1] -0.37107411 -0.32988430 -0.19895401 0.07091332 0.39551813 ...

(notice that the signs are reversed compared to the display of Exhibit 6.3 —
this can often occur using different software, but the user can reverse the signs
of all the coordinates on an axis at will).

Chapter 7 deals with optimal scaling properties of the CA solution, and thereChapter 7:
Optimal Scaling are no challenging calculations in this chapter. We illustrate the calculation of

the transformed optimal scale values in (7.5) using R functions for calculating
minimum and maximum values (again, because of the sign change in the coor-
dinates on the first axis, the scale is reversed, in other words the transformed
scale goes from 0=very good to 100=very bad; hence subtracting the results
below from 100 will give the results of Exhibit 7.2):
> health.range <- max(health.csc[,1]) - min(health.csc[,1])

> health.scale <- (health.csc[,1] - min(health.csc[,1])) * 100 /

+ health.range
> health.scale

[1] 0.00000 18.86467 72.42164 98.97005 100.00000

Chapter 8 is another chapter demonstrating properties of the solution ratherChapter 8:
Symmetry of Row

and Column
Analyses

than making new calculations. Exhibit 8.5 was not constructed using R but
was typeset directly in LATEX (see descriptions of graphical typsetting at the
end of this appendix). The maximal correlation properties of CA can be illus-
trated with some R commands, for example Equation (8.2) on page 63. The
correlation between the age and health scale values on the first dimension is
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first calculated as φTPγ where φ and γ are the standard coordinates on the
first dimension, and P is the correspondence matrix:
> health.cor <- t(health.rsc[,1]) %*% health.P %*% health.csc[,1]
> health.cor^2

[,1]

[1,] 0.1366031

Thus the square of this correlation is the first principal inertia (the above result
is given as a 1×1 matrix since it is the result of matrix-vector multiplications).
The following demonstrates the standardization in (A.12) for the rows, for
example, which justifies the above way of calculating the correlation since the
variances are 1:
> t(health.rsc[,1]) %*% health.Dr %*% health.rsc[,1]

[,1]

[1,] 1

Chapter 9 explains the geometry of two-dimensional maps and compares Chapter 9:
Two-dimensional
displays

asymmetric and symmetric maps. The smoking data set is part of the ca
package so perhaps this is a good time to make a first introduction to that
package. Once the package is installed and loaded, these data can be called
up simply by issuing the command:
> data(smoke) Initial contact with

ca packagewhich gives the data frame smoke:
> smoke

none light medium heavy

SM 4 2 3 2

JM 4 3 7 4

SE 25 10 12 4

JE 18 24 33 13

SC 10 6 7 2

One of the functions in the ca package is ca() to perform simple CA. The
CA of the smoking data is obtained easily by saying ca(smoke):
> ca(smoke)

Principal inertias (eigenvalues):

1 2 3

Value 0.074759 0.010017 0.000414

Percentage 87.76% 11.76% 0.49%

Rows:

SM JM SE JE SC

Mass 0.056995 0.093264 0.264249 0.455959 0.129534

ChiDist 0.216559 0.356921 0.380779 0.240025 0.216169

Inertia 0.002673 0.011881 0.038314 0.026269 0.006053

Dim. 1 -0.240539 0.947105 -1.391973 0.851989 -0.735456

Dim. 2 -1.935708 -2.430958 -0.106508 0.576944 0.788435
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Columns:

none light medium heavy

Mass 0.316062 0.233161 0.321244 0.129534

ChiDist 0.394490 0.173996 0.198127 0.355109

Inertia 0.049186 0.007059 0.012610 0.016335

Dim. 1 -1.438471 0.363746 0.718017 1.074445

Dim. 2 -0.304659 1.409433 0.073528 -1.975960

Several numerical results are listed which should be familiar: the principal
inertias and their percentages, and then for each row and column the mass,
χ2-distance to the centroid, the inertia, and the standard coordinates on the
first two dimensions. The features of this package will be described in much
more detail later on, but just to show now how simple the plotting is, simply
put the plot() function around ca(smoke) to get the default symmetric CA
map shown in Exhibit B.4:
> plot(ca(smoke))

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

-0
.3

-0
.2

-0
.1

0
.0

0
.1

0
.2

SM

JM

SE

JE
SC

none

light

medium

heavy

Exhibit B.4:
Symmetric map of

the data set smoke,
using the ca

package.

Notice that both principal axes have been inverted compared to the map of Ex-
hibit 9.5. To obtain the asymmetric maps, add the option map="rowprincipal"
or map="colprincipal" to the plot() function; for example, Exhibit 9.2 is
obtained with the following command:
> plot(ca(smoke), map="rowprincipal")

With this short introduction to the ca package, the analyses of Chapter 10Chapter 10: Three
More Examples will be easy to reproduce. The three data sets are available on the website

www.carme-n.org in text and Excel formats for copying and reading into
R. The author data set is also provided with the ca package so this can be
obtained, like the smoking data, with the R command data(author). To see
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the author data in a three-dimensional CA map, try this (again, assuming
you have loaded the ca package):
> data(author)

> plot3d.ca(ca(author), labels=c(2,1), sf=0.000001)

Chapter 11 involves a certain amount of new computations, all of which are Chapter 11:
Contributions to
Inertia

actually part of the ca package, but here again we choose to demonstrate
them first “by hand”. The data set for the scientific research funding is read
as described before — suppose the data frame is called fund. As in Chapter
4, the matrix of standardized residuals is calculated for this table, and then
the inertias in Exhibit 11.1 are the sums-of-squares of the rows and columns:
> fund.P <-as.matrix(fund / sum(fund))

> fund.r <-apply(fund.P, 1, sum)

> fund.c <-apply(fund.P, 2, sum)

> fund.Drmh <-diag(1 / sqrt(fund.r))

> fund.Dcmh <-diag(1 / sqrt(fund.c))

> fund.res <-fund.Drmh %*% (fund.P - fund.r %o% fund.c) %*% fund.Dcmh
> round(apply(fund.res^2, 1, sum), 5)

[1] 0.01135 0.00990 0.00172 0.01909 0.01621 0.01256 0.00083

[8] 0.00552 0.00102 0.00466

> round(apply(fund.res^2, 2, sum), 5)

[1] 0.01551 0.00911 0.00778 0.02877 0.02171

The permill contributions in Exhibit 11.2 are the squared standardized resid- Contributions of
each cell of the
table to the total
inertia

uals relative to the total:
> round(1000*fund.res^2 / sum(fund.res^2), 0)

[,1] [,2] [,3] [,4] [,5]

[1,] 0 32 16 0 89

[2,] 0 23 4 44 48

[3,] 3 12 1 0 5

[4,] 9 15 11 189 8

[5,] 106 11 2 74 3

[6,] 1 11 38 1 102

[7,] 2 0 0 3 5

[8,] 51 4 0 10 2

[9,] 10 0 0 2 0

[10,] 5 3 22 26 0

(the row and column labels have been lost because of the matrix multiplica-
tions, but can be restored again if necessary using rownames() and colnames()
functions).

The principal inertias in Exhibit 11.3 are the squares of the singular values
from the SVD of the residuals matrix:

> fund.svd <- svd(fund.res)
> fund.svd$d^2

[1] 3.911652e-02 3.038081e-02 1.086924e-02 2.512214e-03 3.793786e-33
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(five values are given, but the fifth is theoretically an exact zero).
To calculate the individual components of inertia of the row points, say, on all
four axes, we first need to calculate the principal coordinates fik (see (A.8))
and then the values of rif

2
ik:

> fund.F <- fund.Drmh %*% fund.svd$u %*% diag(fund.svd$d)
> fund.rowi <- diag(fund.r) %*% fund.F^2
> fund.rowi[,1:4]

[,1] [,2] [,3] [,4]

[1,] 6.233139e-04 9.775878e-03 8.222230e-04 1.301601e-04

[2,] 1.178980e-03 7.542243e-03 8.385857e-04 3.423076e-04

[3,] 2.314352e-04 8.787604e-04 2.931994e-04 3.211261e-04

[4,] 1.615600e-02 1.577160e-03 6.274587e-04 7.271264e-04

[5,] 1.426048e-02 1.043783e-04 1.691831e-03 1.562740e-04

[6,] 1.526183e-03 9.407586e-03 1.273528e-03 3.573707e-04

[7,] 7.575664e-06 5.589276e-04 7.980532e-05 1.868385e-04

[8,] 3.449918e-03 1.601539e-04 1.799425e-03 1.091335e-04

[9,] 5.659639e-04 7.306881e-06 4.185906e-04 3.022249e-05

[10,] 1.116674e-03 3.684113e-04 3.024590e-03 1.516545e-04

which agrees with Exhibit 11.5. Notice in the last command above that only
the first four columns are relevant (fund.rowi[,1:4]); there is a fifth column
of tiny values which are theoretically zero because the fifth singular value is
zero. Finally, to relativize these components with respect to the inertia of a
point (row sums) or inertia of an axis (column sums, i.e., principal inertias)
(see (A.27) and (A.26) respectively), and converting them to permills at the
same time:
> round(1000*(fund.rowi / apply(fund.rowi, 1, sum))[,1:4], 0)Calculating

relative
contributions

(squared cosines
or correlations)

[,1] [,2] [,3] [,4]

[1,] 55 861 72 11

[2,] 119 762 85 35

[3,] 134 510 170 186

[4,] 846 83 33 38

[5,] 880 6 104 10

[6,] 121 749 101 28

[7,] 9 671 96 224

[8,] 625 29 326 20

[9,] 554 7 410 30

[10,] 240 79 649 33

which agrees with Exhibit 11.6 (to obtain the qualities in Exhibit 11.8, add
up the first two columns of the above table). With respect to column sums,
i.e., principal inertias:
> round(1000*t(t(fund.rowi) / fund.svd$d^2)[,1:4], 0)Calculating

contributions to
each principal axis

[,1] [,2] [,3] [,4]

[1,] 16 322 76 52

[2,] 30 248 77 136

[3,] 6 29 27 128

[4,] 413 52 58 289

[5,] 365 3 156 62
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[6,] 39 310 117 142

[7,] 0 18 7 74

[8,] 88 5 166 43

[9,] 14 0 39 12

[10,] 29 12 278 60

which shows how each axis is constructed; for example, rows 4 and 5 (Physics
and Zoology) are the major contributors to the first axis.
Anticipating the fuller description of the ca package later, we point out
that the complete set of these numerical results can be obtained using the
summary() function around ca(fund) as follows:
> summary(ca(fund))

Principal inertias (eigenvalues):

dim value % cum% scree plot

1 0.039117 47.2 47.2 *************************

2 0.030381 36.7 83.9 *******************

3 0.010869 13.1 97.0 ******

4 0.002512 3.0 100.0

-------- -----

Total: 0.082879 100.0

Rows:

name mass qlt inr k=1 cor ctr k=2 cor ctr

1 | Gel | 107 916 137 | 76 55 16 | 303 861 322 |

2 | Bic | 36 881 119 | 180 119 30 | -455 762 248 |

3 | Chm | 163 644 21 | 38 134 6 | 73 510 29 |

4 | Zol | 151 929 230 | -327 846 413 | 102 83 52 |

5 | Phy | 143 886 196 | 316 880 365 | 27 6 3 |

6 | Eng | 111 870 152 | -117 121 39 | -292 749 310 |

7 | Mcr | 46 680 10 | 13 9 0 | -110 671 18 |

8 | Bot | 108 654 67 | -179 625 88 | -39 29 5 |

9 | Stt | 36 561 12 | 125 554 14 | 14 7 0 |

10 | Mth | 98 319 56 | 107 240 29 | -61 79 12 |

Columns:

name mass qlt inr k=1 cor ctr k=2 cor ctr

1 | A | 39 587 187 | 478 574 228 | 72 13 7 |

2 | B | 161 816 110 | 127 286 67 | 173 531 159 |

3 | C | 389 465 94 | 83 341 68 | 50 124 32 |

4 | D | 162 968 347 | -390 859 632 | 139 109 103 |

5 | E | 249 990 262 | -32 12 6 | -292 978 699 |

Chapter 12 shows how to add points to an existing map, using the barycentric Chapter 12:
Supplementary
Points

relationship between standard coordinates of the column points, say, and the
principal coordinates of the row points; i.e., profiles lie at weighted averages
of vertices. The example at the top of page 94 shows how to situate the
supplementary point Museums which has data [ 4 12 11 19 7 ] summing up
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to 53. Calculating the profile, say the vector m and then its scalar products
with the standard column coordinates: mTΓ gives its coordinates in the map:
> fund.m <- c(4,12,11,19,7)/53

> fund.Gamma <- fund.Dcmh%*%fund.svd$v
> t(fund.m) %*% fund.Gamma[,1:2]

[,1] [,2]

[1,] -0.3143203 0.3809511

(the sign of the second axis is reversed in this solution compared to Exhibit
12.2). It is clear that if we perform the same operation with the unit vectors
of Exhibit 12.4 as supplementary points, then multiplying these with the
standard coordinates is just the same as the standard coordinates.

In Chapter 13 the different scaling of a CA map are discussed from the pointChapter 13:
Correspondence
Analysis Biplots

of view of the biplot. In the standard CA biplot of Exhibit 13.3 the rows are
in principal coordinates while the columns are in rescaled standard coordi-
nates where each column point has been pulled in by multiplying its coordi-
nates by the square root of the column mass. Given the standard coordinates
fund.Gamma calculated above, these rescaled coordinates on the first two di-
mensions are calculated as:
> diag(sqrt(fund.c)) %*% fund.Gamma[,1:2]

[,1] [,2]

[1,] 0.47707276 0.08183444

[2,] 0.25800640 0.39890356

[3,] 0.26032157 0.17838093

[4,] -0.79472740 0.32170520

[5,] -0.08046934 -0.83598151

In the following commands, the scalar products on the right-hand side of
(13.7), for K∗ = 2, are first stored in fund.est and then estimated profiles
are calculated by multiplying by the square roots √cj and adding cj , all using
matrix algebra:
> fund.est <- fund.F[,1:2] %*% t(diag(sqrt(fund.c)) %*%
+ fund.Gamma[,1:2])

> oner <- rep(1,dim(fund)[1])
> round(fund.est %*% diag(sqrt(fund.c)) + oner %o% fund.c, 3)

A B C D E

[1,] 0.051 0.217 0.436 0.177 0.120

[2,] 0.049 0.107 0.368 0.046 0.431

[3,] 0.044 0.176 0.404 0.160 0.217

[4,] 0.010 0.143 0.348 0.280 0.219

[5,] 0.069 0.198 0.444 0.065 0.225

[6,] 0.023 0.102 0.338 0.162 0.375

[7,] 0.038 0.145 0.379 0.144 0.294

[8,] 0.021 0.136 0.356 0.214 0.272

[9,] 0.051 0.176 0.411 0.124 0.238

[10,] 0.048 0.162 0.400 0.120 0.270

This can be compared with the true profile values:
> round(fund.P/fund.r, 3)
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A B C D E

Geol 0.035 0.224 0.459 0.165 0.118

Bioc 0.034 0.069 0.448 0.034 0.414

Chem 0.046 0.192 0.377 0.162 0.223

Zool 0.025 0.125 0.342 0.292 0.217

Phys 0.088 0.193 0.412 0.079 0.228

Engi 0.034 0.125 0.284 0.170 0.386

Micr 0.027 0.162 0.378 0.135 0.297

Bota 0.000 0.140 0.395 0.198 0.267

Stat 0.069 0.172 0.379 0.138 0.241

Math 0.026 0.141 0.474 0.103 0.256

Calculating the differences between the true and estimated profile values gives
the individual errors of approximation, and the sum of squares of these differ-
ences, suitably weighted, gives the overall error in the two-dimensional CA.
Each row of squared differences has to be weighted by the corresponding row
mass ri and each column by the inverse of the expected value 1/cj. The cal-
culation is the following (this is one command, wrapped over two lines here,
a concentrated example in R programming!):
> sum(diag(fund.r) %*% (fund.est%*%diag(sqrt(fund.c))+
+ oner %o% fund.c - fund.P / fund.r)^2 %*% diag(1/fund.c))

[1] 0.01338145

To demonstrate that this is correct, add the principal inertias not on the first
two axes:
> sum(fund.svd$d[3:4]^2)

[1] 0.01338145

which confirms the previous calculation (this is the 16% unexplained inertia
reported at the bottom of page 103).
The calculation of the biplot calibrations is quite intricate since it involves a Biplot axis

calibrationlot of trigonometry. Rather than list the whole procedure here, the interested
reader is referred to the website where the script for the function biplot.ca
is given and which calculates the coordinates of the starting and ending points
of all the tic marks on the biplot axes for the columns.

In Chapter 14 various linear relationships between row and column coordi- Chapter 14:
Transition and
Regression
Relationships

nates and the data are given. Here we shall demonstrate some of these using
R’s linear modelling function lm() which allows weights to be specified in the
least-squares regression. For example, let’s perform the weighted least-squares
regression of the standard row coordinates (y-axis in Exhibit 14.2) on the col-
umn standard coordinates (x-axis). The variables of the regression have 10×5
values, and these will be vectorized in columns corresponding to the original
matrix. Thus the x variable is the vector (called fund.vecc below) where the
first column coordinate on the first dimension is repeated 10 times, then the
second coordinate 10 times and so on, whereas the y variable (fund.vecr) has
the set of first dimension’s row coordinates repeated five times in a column
(the row standard coordinates are calculated as fund.Phi below). Check the

© 2007 by Taylor & Francis Group, LLC



228 Computation of Correspondence Analysis

values of fund.vecc and fund.vecr below as you perform the computations.
The weights of the regression will be the frequencies in the original table fund
— to vectorize these, the data frame has to be first converted to a matrix and
then to a vector using as.vector():
> fund.vec <- as.vector(as.matrix(fund))Conversion of data

objects using
as.matrix() and

as.vector()

> fund.Phi <- fund.Drmh %*% fund.svd$u
> fund.vecr <- rep(fund.Phi[,1], 5)

> fund.vecc <- as.vector(oner %*% t(fund.Gamma[,1]))

The weighted least-squares regression is then performed as follows:
> lm(fund.vecr~fund.vecc, weight = fund.vec)Example of lm()

function for linear
regression, using
weights option

Call:

lm(formula = fund.vecr ~ fund.vecc, weights=fund.vec)

Coefficients:

(Intercept) fund.vecc

-4.906e-16 1.978e-01

showing that the constant is zero and the coefficient is 0.1978, the square root
of the first principal inertia.

To perform the regression described on page 110 between Geology’s contin-
gency ratios and the standard coordinates on the first two dimensions, the
response fund.y is regressed on the first two columns of the standard coordi-
nate matrix Γ in fund.Gamma, with weights c in fund.c, as follows (here the
summary() function is used around the lm command to get more results):

> fund.y <- (fund.P[1,] / fund.r[1]) / fund.c

> summary(lm(fund.y ~ fund.Gamma[,1] + fund.Gamma[,2],
+ weights=fund.c))

Call:

lm(formula = fund.y ~ fund.Gamma[, 1]+fund.Gamma[, 2], weights=fund.c)

Residuals:

A B C D E

-0.079708 0.016013 0.037308 -0.030048 -0.003764

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.00000 0.06678 14.975 0.00443 **

fund.Gamma[, 1] 0.07640 0.06678 1.144 0.37105

fund.Gamma[, 2] 0.30257 0.06678 4.531 0.04542 *

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.06678 on 2 degrees of freedom

Multiple R-Squared: 0.9161, Adjusted R-squared: 0.8322

F-statistic: 10.92 on 2 and 2 DF, p-value: 0.0839

confirming the coefficients at the bottom of page 110 (again, the second coeffi-
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cient has reversed sign because the second dimension coordinates are reversed)
and the R2 of 0.916.
The lm() function does not give standardized regression coefficients, but these
can be obtained by calculating weighted correlations using the weighted co-
variance function cov.wt() with option cor=TRUE:
> cov.wt(cbind(fund.y,fund.Gamma[,1:2]), wt=fund.c, cor=TRUE)$cor

Example of
cov.wt function to
calculate weighted
correlation

$cor

[,1] [,2] [,3]

[1,] 1.0000000 2.343286e-01 9.280040e-01

[2,] 0.2343286 1.000000e+00 2.359224e-16

[3,] 0.9280040 2.359224e-16 1.000000e+00

which agrees with the correlation matrix at the top of page 111, apart from
possible sign changes.

Chapter 15 deals with Ward clustering of the row or column profiles using Chapter 15: Clus-
tering the Rows
and Columns

Ward clustering, weighting the profiles by their masses. The R function for
performing hierarchical clustering is hclust(), which does not allow differen-
tial weights in the option for Ward clustering (see (15.2)); neither does the
function agnes() in the package cluster. The commercial statistical pack-
age XLSTAT, described later, does have this possibility. In addition, Fionn
Murtagh’s R programs also include Ward clustering with weights (see page
253).

In Chapter 16 the interactive coding of variables was described. To be able to Chapter 16: Multi-
way Tablescode the data in this way, either the multiway table is needed or the original

data. For example, in the case of the health data used in Chapter 16, the raw
data looks like this, showing the first four rows of data out of 6371):

. . . health age gender . . .

. . . 4 5 2 . . .

. . . 2 3 1 . . .

. . . 2 4 1 . . .

. . . 3 5 1 . . .

. . . . . . . . .

. . . . . . . . .

To obtain Exhibit 16.2, the seven categories of age and the two categories of
gender need to be combined into one variable age_gender with 14 categories.
This is achieved with a simple transformation such as:
> age_gender <- 7 * (gender - 1) + age Interactive coding

which will make the age groups of male (gender=1) numbered 1 to 7, and those
of female (gender=2) numbered 8 to 14. From then on, everything continues
as before, with a cross-tabulation being made of the variable age_gender
with health. Cross-tabulations in R are made with the function table(); for Cross-tabulations

with table()example,
> table(age_gender, health)

would give the cross-tabulation in Exhibit 16.2.
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Now suppose the raw data from the data set on working women is in an Excel
file as shown below: four questions from Q1 to Q4, country (C), gender (G), age
(A), marital status (M) and education (E). To input the data into R, copy the

columns to the clipboard as before, using function read.table(). But now
the table does not have row names, and so no blank in the top left-hand cell;
hence the option header=T needs to be specified (T is short for TRUE):
> women <- read.table("clipboard", header=T)

The column names of data frame women are obtained using function colnames:
> colnames(women)
[1] "Q1" "Q2" "Q3" "Q4" "C" "G" "A" "M" "E"

In order to obtain the table in Exhibit 16.4, it is convenient to use the
attach() function, which allows all the column names listed above to beExample of

attach() function available as if they were regular object names (to make these names unavail-
able the inverse operation detach() should be used):
> attach(women)

> table(C, Q3)
Q3

C 1 2 3 4

1 256 1156 176 191

2 101 1394 581 248

3 278 691 62 66

4 161 646 70 107

. . . . .

. . . . .

21 243 448 484 25

22 468 664 92 63

23 203 671 313 120

24 738 1012 514 230
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(cf. Exhibit 16.4).

To get the interactively coded row variable in Exhibit 16.6 and the table itself:
> CG <- 2 * (C - 1) + G
> table(CG, Q3)

Q3

CG 1 2 3 4

1 117 596 114 82

2 138 559 60 109

3 43 675 357 123

4 58 719 224 125

. . . . .

. . . . .

47 348 445 294 112

48 390 566 218 118

51 1 2 0 0

55 1 1 2 1

Notice that the last two rows of the table correspond to a few missing values for
gender that were coded as 9; to see frequency counts for each column, enter the
command lapply(women,table). So we should remove all the missing data
first — see page 237 how to remove cases with missing values. Alternatively,
missing values can be assigned R’s missing value code NA, for example the
missing values for gender in column 6:
> women[,6][G==9]<-NA

> attach(women)

> CG <- 2 * (C - 1) + G

(notice that data frame women has to be attached again and CG recomputed).
Assuming that all missing values have been recoded (or cases removed), the
combinations of CG and A are coded as follows in order to construct the variable
with 288 categories that interactively codes country, gender and age group
(there are no missings for age):
> CGA <- 6 * (CG - 1) + A

Chapter 17 considers the CA of several cross-tables concatenated (or juxta- Chapter 17:
Stacked Tablesposed). The two functions rbind() and cbind() provide the tools for binding

rows or columns together. For example, assuming the 33590 × 10 raw data
matrix women is available and attached as described above, then the five cross-
tabulations corresponding to Question 3 depicted in Exhibit 17.1 can be built
up as follows in a for loop:
> women.stack<-table(C, Q3)

> for(j in 6:9){
+ women.stack <- rbind(women.stack, table(women[,j], Q3))

+ }

Notice how the columns of women can be accessed by name or by column num-
ber. If you look at the contents of women.stack you will see several rows cor-
responding to missing data codes for all demographic variables except country
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and age group. These would have to be omitted before the CA is performed,
which can be done in three different ways: (i) by excluding these rows from
the matrix, e.g., if rows 38, 39, 47 and 48 correspond to missing values, then
remove as follows:
> women.stack <- women.stack[-c(38,39,47,48),]

(the negative sign before the set of row numbers indicates exclusion); (ii) by
changing the missing value codes to NAs as described on the previous page;
or (iii) by declaring the missing rows outside the subset of interest in a subset
CA as described in Chapter 21 (this is the best option, since it keeps the
sample size in each table the same).
To check the inertias in the table on page 124, we can try R’s χ2 test func-χ2 statistic using

χ2 test function
chisq.test()

tion chisq.test which has as one of its results the χ2 statistic specified by
$statistic. We make the calculation for the age variable’s cross-tabulation
with question 3, which corresponds to rows 27 to 32 of the stacked matrix
(after 24 rows for country and 2 rows for gender). Dividing the statistic by
the sample size, the total of the table, gives the inertia:
> chisq.test(women.stack[27:32,])$statistic /
+ sum(women.stack[27:32,])

X-squared

0.0421549

which agrees with the value for age in the table on page 124.
To build up the table in Exhibit 17.4, the four stacked tables (each with five
tables) for the four questions are column-bound using cbind().

The ca package At this point, before we enter the intricacies of MCA and its related methods,
we are going to leave the “by hand” R exercizes behind and start to use
the functions in the ca package routinely. The package comprises functions
for simple, multiple and joint CA with support for subset analyses and the
inclusion of supplementary variables. Furthermore, it offers functions for the
graphical display of the results in two and three dimensions. The package is
comprised of the following components:

• Simple CA:
— Computation: ca()
— Printing and summaries: print.ca() and summary.ca()

(and print.summary.ca())
— Plotting: plot.ca() and plot3d.ca()

• MCA and JCA:
— Computation: mjca()
— Printing and summaries: print.mjca() and summary.mjca()

(and print.summary.mjca())
— Plotting: plot.mjca() and plot3d.mjca()

• Data sets:
— smoke, author and wg93

© 2007 by Taylor & Francis Group, LLC



The ca package 233

The package contains further functions, such as iterate.mjca() for the up-
dating of the Burt matrix in JCA.

The function ca() computes simple CA, for example
> library(ca) #this loads ca if not already done using R menu

> data(smoke)

> ca(smoke)

ca() function

performs a simple CA on the smoke data set (see pages 221–222). A list of all
available entries that are returned by ca() is obtained with names():
> names(ca(smoke))
[1] "sv" "nd" "rownames" "rowmass" "rowdist"

[6] "rowinertia" "rowcoord" "rowsup" "colnames" "colmass"

[11] "coldist" "colinertia" "colcoord" "colsup" "call"

The output of ca() is structured as a list-object; for example, the row standard
coordinates are obtained with
> ca(smoke)$rowcoord

Optional arguments for the ca() function include an option for setting the
dimensionality of the solution (nd), options for marking selected rows and/or
columns as supplementary ones (suprow and supcol, respectively) and op-
tions for setting subset rows and/or columns (subsetrow and subsetcol,
respectively) for subset CA.

As an extension to the printing method, a summary method is also provided.
This gives a more detailed output as follows:
> summary(ca(smoke))

returns the summary of the CA:
Principal inertias (eigenvalues):

dim value % cum% scree plot

1 0.074759 87.8 87.8 *************************

2 0.010017 11.8 99.6 ***

3 0.000414 0.5 100.0

-------- -----

Total: 0.085190 100.0

Rows:

name mass qlt inr k=1 cor ctr k=2 cor ctr

1 | SM | 57 893 31 | -66 92 3 | -194 800 214 |

2 | JM | 93 991 139 | 259 526 84 | -243 465 551 |

3 | SE | 264 1000 450 | -381 999 512 | -11 1 3 |

4 | JE | 456 1000 308 | 233 942 331 | 58 58 152 |

5 | SC | 130 999 71 | -201 865 70 | 79 133 81 |

Columns:

name mass qlt inr k=1 cor ctr k=2 cor ctr

1 | non | 316 1000 577 | -393 994 654 | -30 6 29 |

2 | lgh | 233 984 83 | 99 327 31 | 141 657 463 |

3 | mdm | 321 983 148 | 196 982 166 | 7 1 2 |

4 | hvy | 130 995 192 | 294 684 150 | -198 310 506 |
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Again, eigenvalues and relative percentages of explained inertia are given for
all available dimensions. Additionally, cumulated percentages and a scree plot
are shown. The items given in Rows and Columns include the principal coor-
dinates for the first two dimensions (k=1 and k=2). Squared correlation (cor)
and contributions (ctr) for the points are displayed next to the coordinates.
The quantities in these tables are multiplied by 1000 (e.g., the coordinates and
masses), which for cor and ctr means that they are expressed in thousandths,
or permills (0/00). Quality (qlt) is given for the requested solution; i.e., in this
case it is the sum of the squared correlations for the first two dimensions. In
the case of supplementary variables, an asterisk is appended to the variable
names in the output; for example, the summary for the CA of the smoke data,
where the none category (the first column) is treated as supplementary, is:
> summary(ca(smoke, supcol=1))

In the corresponding section of the output the following is given:
...

Columns:

name mass qlt inr k=1 cor ctr k=2 cor ctr

1 | (*)non | <NA> 55 <NA> | 292 39 <NA> | -187 16 <NA> |

...

showing that masses, inertias and contributions are “not applicable”.

The graphical representation of CA and MCA solutions is commonly doneGraphical displays
in the ca package with symmetric maps, and this is with the default option in the plot() func-

tion (map="symmetric"). The complete set of map options is as follows:

—- "symmetric" Rows and columns in principal coords (default)
i.e., scaled to have inertia equal to
principal inertia (eigenvalue, or
square of singular value)

— "rowprincipal" Rows in principal and columns in standard coords
— "colprincipal" Columns in principal and rows in standard coords
— "symbiplot" Row and column coords are scaled to have

inertias equal to the singular values
— "rowgab" Rows in principal coords and columns in

standard coords times mass
(according to a proposal by Gabriel)

— "colgab" Columns in principal coords and rows in
standard coords times mass

— "rowgreen" Rows in principal coords and columns in
standard coords times square root of mass
(according to a proposal by Greenacre —
see Chapter 13)

— "colgreen" Columns in principal coords and rows in
standard coords times square root of mass

By default, supplementary variables are added to the plot with a different
symbol. The symbols can be defined with the pch option in plot.ca(). This
option takes four values in the following order: plotting point character or
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symbol for (i) active rows, (ii) supplementary rows, (iii) active columns and
(iv) supplementary columns. As a general rule, options that contain entries
for rows and for columns contain the entries for the rows first and then those
for the columns. For example, the colour of the symbols is specified with the
col option; by default it is col=c("#000000", "#FF0000") — black for rows
and red for columns. Instead of these hexadecimal codes, there is a reduced
list with names such as "black", "red", "blue", "green", "gray", etc.

The option what controls the content of the plot. It can be set to "all",
"active", "passive" or "none" for the rows and for the columns. For exam-
ple, a plot of only the active (i.e., excluding supplementary) points is created
by using what=c("active", "active").

In addition to the map scaling options, various options allow certain values
to be added to the plot as graphical attributes. The option mass selects if
the masses of rows or columns should be indicated by the size of the point.
Similarly, relative or absolute contributions can be indicated by the colour
intensity in the plot by using the contrib option.

The option dim selects which dimensions to plot, the default being dim=c(1,2),
i.e., the first two dimensions are plotted. A plot of the second and third di-
mensions, for example, is obtained by setting dim=c(2,3). Another possibil-
ity for adding the third dimension to the plot is given with the functions
plot3d.ca() and plot3d.mjca(). These two functions rely on the rgl pack-
age for three-dimensional graphics in R. Their structure is kept similar to their
counterparts for two dimensions; for example,

> plot3d(ca(smoke, nd=3))

creates a three-dimensional display of the CA, shown in Exhibit B.5.

Exhibit B.5:
Three-dimensional
display of a simple
CA (compare with
two-dimensional
map in Exhibit B.4).

This display can be rotated and also zoomed in or out using the mouse and
its buttons.
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MCA and JCA are performed with the function mjca(). The structure ofmjca() functions
in ca package the function is kept similar to its counterpart from simple CA. The two most

striking differences are the format of the input data and the restriction to
columns for the analyses. The function mjca() takes a response pattern matrix
as input.
Within the function, the response pattern matrix is converted to an indicator
matrix and a Burt matrix, depending on the type of analysis. Restricting
to columns means that only values for the columns are given in the output
and the specification of supplementary variables is limited to columns. The
“approach” to MCA is specified by the lambda option in mjca():
• lambda="indicator": Analysis based on a simple CA of the indicator

matrix
• lambda="Burt": Analysis based on an eigenvalue-decomposition of the

Burt matrix
• lambda="adjusted": Analysis based on the Burt matrix with an adjust-

ment of inertias (default)
• lambda="JCA": Joint correspondence analysis

By default, mjca() performs an adjusted analysis, i.e., lambda="adjusted".
For JCA (lambda="JCA"), the Burt matrix is updated iteratively by weighted
least squares, using the internal function iterate.mjca(). This updating
function has two convergence criteria, namely epsilon and maxit. Option
epsilon sets a convergence criterion by means of maximum absolute difference
of the Burt matrix in an iteration step compared to the Burt matrix of the
previous step. The maximum number of iterations is given by the option
maxit. The program iterates until any one of the two conditions is satisfied.
Setting one option to NA results in ignoring that criterion; for example, exactly
50 iterations without considering convergence are performed with maxit=50
and epsilon=NA.
As with simple CA, the solution is restricted by the nd option to two di-
mensions. However, eigenvalues are given for all possible dimensions, which
number (J −Q) for the “indicator” and “Burt” versions of MCA. In the case
of an adjusted analysis or a JCA, the eigenvalues are given only for those
dimensions k, where the singular values from the Burt matrix λk (i.e., the
principal inertias of the indicator matrix) satisfy the condition λk > 1/Q.

In Chapter 18 the data on working women, for West and East German sam-Chapter 18:
Multiple

Correspondence
Analysis

ples, were analysed using the indicator and Burt versions of MCA. Assuming
that the women data frame (with 33590 rows) read previously is available and
“attached”, the two German samples have country codes 2 and 3 repectively.
The part of the women corresponding to these two samples can be accessed
using a logical vector which we call germany:
> germany <- C==2 | C==3

> womenG <- women[germany,]

The first command creates a vector of length 33590 with values TRUE corre-

Example of logical
operation
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sponding to the rows of the German samples, otherwise FALSE. The second
command then passes only those rows with TRUE values to the new data frame
womenG. There are 3421 rows in womenG, whereas the matrix analysed in Chap-
ter 18 has 3418 rows — three cases that have some missing demographic data
have been eliminated (i.e., listwise deletion of missings). Variables gender,
marital status and education have missing value codes 9, except for education
where they are 98 and 99. The steps needed to eliminate the missing rows use
the same method as above to flag the rows and then eliminate them:
> missing <- G==9 | M==9 | E==98 | E==99 Listwise deletion

of missing values> womenG <- (womenG[!missing,])

(If missing values have been replaced by R’s NA code, as described on page
231, then use NA in the above.)
The indicator version of MCA for the first four columns (the four questions
on women working or staying at home) is obtained simply as follows:

> mjca(womenG[,1:4], lambda="indicator")

Eigenvalues:

1 2 3 4 5 6

Value 0.693361 0.513203 0.364697 0.307406 0.21761 0.181521

Percentage 23.11% 17.11% 12.16% 10.25% 7.25% 6.05%

7 8 9 10 11 12

Value 0.164774 0.142999 0.136322 0.113656 0.100483 0.063969

Percentage 5.49% 4.77% 4.54% 3.79% 3.35% 2.13%

Columns:

Q1.1 Q1.2 Q1.3 Q1.4 Q2.1 Q2.2

Mass 0.182929 0.034816 0.005778 0.026477 0.013239 0.095012 ...

ChiDist 0.605519 2.486096 6.501217 2.905510 4.228945 1.277206 ...

Inertia 0.067071 0.215184 0.244222 0.223523 0.236761 0.154988 ...

Dim. 1 -0.355941 -0.244454 -0.279167 2.841498 -0.696550 -0.428535 ...

Dim. 2 -0.402501 1.565682 3.971577 -0.144653 -2.116572 -0.800930 ...

and the Burt version:

> mjca(womenG[,1:4], lambda="Burt")

Eigenvalues:

1 2 3 4 5 6

Value 0.480749 0.263377 0.133004 0.094498 0.047354 0.03295

Percentage 41.98% 23% 11.61% 8.25% 4.13% 2.88%

7 8 9 10 11 12

Value 0.027151 0.020449 0.018584 0.012918 0.010097 0.004092

Percentage 2.37% 1.79% 1.62% 1.13% 0.88% 0.36%

Columns:

Q1.1 Q1.2 Q1.3 Q1.4 Q2.1 Q2.2 ...

Mass 0.182929 0.034816 0.005778 0.026477 0.013239 0.095012 ...

ChiDist 0.374189 1.356308 3.632489 2.051660 2.354042 0.721971 ...

Inertia 0.025613 0.064046 0.076244 0.111452 0.073363 0.049524 ...

Dim. 1 0.355941 0.244454 0.279167 -2.841498 0.696550 0.428535 ...
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Dim. 2 -0.402501 1.565682 3.971577 -0.144653 -2.116572 -0.800930 ...

The total inertia can be computed in the two cases as the sum of squared
singular values, as in the simple CA case:
> sum(mjca(womenG[,1:4], lambda="indicator")$sv^2)
[1] 3

> sum(mjca(womenG[,1:4], lambda="Burt")$sv^2)
[1] 1.145222

The contributions of each subtable of the Burt matrix to the total inertia is
given in the component called subinertia of the mjca object, so the sum of
these also gives the total inertia:
> sum(mjca(womenG[,1:4], lambda="Burt")$subinertia)
[1] 1.145222

Since the total inertia is the average of the 16 subtables, the inertia of indi-
vidual subtables are 16 times the values in $subinertia:
> 16*mjca(womenG[,1:4], lambda="Burt")$subinertia

[,1] [,2] [,3] [,4]

[1,] 3.0000000 0.3657367 0.4261892 0.6457493

[2,] 0.3657367 3.0000000 0.8941517 0.3476508

[3,] 0.4261892 0.8941517 3.0000000 0.4822995

[4,] 0.6457493 0.3476508 0.4822995 3.0000000

To obtain the positions of the supplementary variables:
> summary(mjca(womenG, lambda="Burt", supcol=5:9))

Principal inertias (eigenvalues):

dim value % cum% scree plot

1 0.480749 42.0 42.0 *************************

2 0.263377 23.0 65.0 **************

3 0.133004 11.6 76.6 *******

4 0.094498 8.3 84.8 *****

5 0.047354 4.1 89.0 **

6 0.032950 2.9 91.9 **

7 0.027151 2.4 94.2 *

8 0.020449 1.8 96.0 *

9 0.018584 1.6 97.6 *

10 0.012918 1.1 98.8

11 0.010097 0.9 99.6

12 0.004092 0.4 100.0

-------- -----

Total: 1.145222 100.0

Columns:

name mass qlt inr k=1 cor ctr k=2 cor ctr

1 | Q1.1 | 183 740 6 | 247 435 23 | -207 305 30 |

2 | Q1.2 | 35 367 14 | 169 16 2 | 804 351 85 |

3 | Q1.3 | 6 318 16 | 194 3 0 | 2038 315 91 |

4 | Q1.4 | 26 923 24 | -1970 922 214 | -74 1 1 |
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5 | Q2.1 | 13 255 16 | 483 42 6 | -1086 213 59 |

6 | Q2.2 | 95 494 11 | 297 169 17 | -411 324 61 |

. . . . . . . . . . .

. . . . . . . . . . .

17 | (*)C.2 | <NA> 283 <NA> | -89 48 <NA> | 195 234 <NA> |

18 | (*)C.3 | <NA> 474 <NA> | 188 81 <NA> | -413 393 <NA> |

19 | (*)G.1 | <NA> 26 <NA> | -33 5 <NA> | 67 21 <NA> |

20 | (*)G.2 | <NA> 24 <NA> | 34 5 <NA> | -68 19 <NA> |

21 | (*)A.1 | <NA> 41 <NA> | -108 12 <NA> | -170 29 <NA> |

22 | (*)A.2 | <NA> 52 <NA> | -14 0 <NA> | -172 52 <NA> |

. . . . . . . . . . .

. . . . . . . . . . .

The supplementary categories are marked by a * and have no masses, inertia
values (inr) nor contributions to the principal axes (ctr).

To obtain the JCA of the same data as in Exhibit 19.3, simply change the Chapter 19: Joint
Correspondence
Analysis

lambda option to "JCA". Here percentages of inertia are not given for indi-
vidual axes, but only for the solution space as a whole, since the axes are not
nested:
> summary(mjca(womenG[,1:4], lambda="JCA"))

Principal inertias (eigenvalues):

1 0.353452

2 0.128616

3 0.015652

4 0.003935

--------

Total: 0.520617

Diagonal inertia discounted from eigenvalues: 0.125395

Percentage explained by JCA in 2 dimensions: 90.2%

(Eigenvalues are not nested)

[Iterations in JCA: 31 , epsilon = 9.33e-05]

Columns:

name mass qlt inr k=1 cor ctr k=2 cor ctr

1 | Q1.1 | 183 969 21 | 204 693 22 | -129 276 24 |

2 | Q1.2 | 35 803 23 | 144 61 2 | 503 742 69 |

3 | Q1.3 | 6 557 32 | 163 9 0 | 1260 548 71 |

4 | Q1.4 | 26 992 137 | -1637 991 201 | -45 1 0 |

5 | Q2.1 | 13 597 31 | 394 125 6 | -764 471 60 |

6 | Q2.2 | 95 956 26 | 250 431 17 | -276 525 56 |

. . . . . . . . . . .

. . . . . . . . . . .

The squared correlations, and thus the qualities too, are all much higher in
the JCA.
Notice that in the JCA solution, the “total” inertia is the inertia of the
modified Burt matrix, which includes a part due to the modified diagonal
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blocks — this additional part is the “Diagonal inertia discounted from
eigenvalues: 0.125395” which has to be subtracted from the total to get
the total inertia due to the off-diagonal blocks. Since the solution requested is
two-dimensional and fits the diagonal blocks exactly by construction, the first
two eigenvalues also contain this additional part, which has to be discounted
as well. The proportion of (off-diagonal) inertia explained is thus:

0.3534 + 0.1286 − 0.1254

0.5206 − 0.1254
= 0.9024

i.e., the percentage of 90.2% reported above (see Theoretical Appendix, (A.32)).
The denominator above, the adjusted total 0.5206 − 0.1254 = 0.3952, can be
verified to be the same as:

inertia of B− J − Q

Q
= 1.1452− 12

16
= 0.3952

To obtain the adjusted MCA solution, that is the same standard coordinates
as in MCA but (almost) optimal scaling factors (“almost” optimal because the
nesting property is retained, whereas the optimal adjustments do not preserve
nesting), either use the lambda option "adjusted" or leave out this option
since it is the default:
> summary(mjca(womenG[,1:4]))

Principal inertias (eigenvalues):

dim value % cum% scree plot

1 0.349456 66.3 66.3 *************************

2 0.123157 23.4 89.7 *********

3 0.023387 4.4 94.1 *

4 0.005859 1.1 95.2

Adjusted total inertia: 0.526963

Columns:

name mass qlt inr k=1 cor ctr k=2 cor ctr

1 | Q1.1 | 183 996 22 | 210 687 23 | -141 309 30 |

2 | Q1.2 | 35 822 26 | 145 53 2 | 549 769 85 |

3 | Q1.3 | 6 562 38 | 165 8 0 | 1394 554 91 |

4 | Q1.4 | 26 1009 141 | -1680 1008 214 | -51 1 1 |

5 | Q2.1 | 13 505 36 | 412 119 6 | -743 387 59 |

6 | Q2.2 | 95 947 27 | 253 424 17 | -281 522 61 |

. . . . . . . . . . .

. . . . . . . . . . .

The adjusted total inertia, used to calculate the percentages above, is calcu-
lated just after (19.5) on page 149. The first two adjusted principal inertias
(eigenvalues) are calculated just after (19.6) (see also (A.35) and (A.36)).

Chapter 20 generalizes the ideas of Chapter 7, also Chapter 8, to the multi-Chapter 20:
Scaling Properties

of MCA
variate case. The data set used in this chapter is the science and environment
data available as a data set in our ca package, so all you need to do to load
this data set is to issue the command:
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> data(wg93)

The resulting data frame wg93 contains the four questions described on page
153, as well as three demographic variables: gender, age and education (the
last two have six categories each). The MCA map of Exhibit 20.1 is obtained
as follows, this time after saving the MCA results in object wg93.mca:
> wg93.mca <- mjca(wg93[,1:4], lambda="indicator")

> plot(wg93.mca, what=c("none", "all"))

The map might turn out inverted on the first or second axis, but that is —
as we have said before — of no consequence.
Exhibit 20.2 is obtained by formatting the contributions to axis 1 as a 5 × 4
matrix (first the principal coordinates wg93.F are calculated, then raw con-
tributions wg93.coli):
> wg93.F <- wg93.mca$colcoord %*% sqrt(wg93.mca$sv)
> wg93.coli <- diag(wg93.mca$colmass)%*%wg93.F^2
> matrix(round(1000*wg93.coli[,1] / wg93.mca$sv[1]^2, 0), nrow=5)

[,1] [,2] [,3] [,4]

[1,] 115 174 203 25

[2,] 28 21 6 3

[3,] 12 7 22 9

[4,] 69 41 80 3

[5,] 55 74 32 22

The following commands assign the first standard coordinates as the four item
scores for each of the 871 respondents, and the average score:
> Ascal <- wg93.mca$colcoord[1:5,1]
> Bscal <- wg93.mca$colcoord[6:10,1]
> Cscal <- wg93.mca$colcoord[11:15,1]
> Dscal <- wg93.mca$colcoord[16:20,1]
> As <- Ascal[wg93[,1]]

> Bs <- Bscal[wg93[,2]]

> Cs <- Cscal[wg93[,3]]

> Ds <- Dscal[wg93[,4]]

> AVEs <- (As+Bs+Cs+Ds)/4

All squared correlations between the item scores and the average can be calcu-
lated at once by binding them together into a matrix and using the correlation
function cor(): Correlation

function cor()> cor(cbind(As,Bs,Cs,Ds,AVEs))^2
As Bs Cs Ds AVEs

As 1.000000000 0.139602528 0.12695057 0.005908244 0.5100255

Bs 0.139602528 1.000000000 0.18681032 0.004365286 0.5793057

Cs 0.126950572 0.186810319 1.00000000 0.047979010 0.6273273

Ds 0.005908244 0.004365286 0.04797901 1.000000000 0.1128582

AVEs 0.510025458 0.579305679 0.62732732 0.112858161 1.0000000

The squared correlations (or discrimination measures in homogeneity analysis)
on page 157 are recovered in the last column (or row). Their average gives the
first principal inertia of the indicator matrix:
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> sum(cor(cbind(As,Bs,Cs,Ds,AVEs))[1:4,5]^2) / 4

[1] 0.4573792

> wg93.mca$sv[1]^2

[1] 0.4573792

Another result, not mentioned in Chapter 20, is that MCA also maximizes
the average covariance between all four item scores. First, calculate the 4× 4
covariance matrix between the scores (multiplying by (N−1)/N to obtain the
“biased” covariances, since the function cov() computes the usual “unbiased”Covariance

function cov() estimates by dividing by N − 1), and then calculate the average value of the
16 values using the function mean():
> cov(cbind(As,Bs,Cs,Ds)) * 870 / 871

As Bs Cs Ds

As 1.11510429 0.44403796 0.4406401 0.04031951

Bs 0.44403796 1.26657648 0.5696722 0.03693604

Cs 0.44064007 0.56967224 1.3715695 0.12742741

Ds 0.04031951 0.03693604 0.1274274 0.24674968

> mean(cov(cbind(As,Bs,Cs,Ds)) * 870 / 871)

[1] 0.4573792

Notice that the sum of the variances of the four item scores is equal to 4:
> sum(diag(cov(cbind(As,Bs,Cs,Ds)) * 870 / 871))

[1] 4

The individual respondents’ variance measure in (20.2) is calculated and av-
eraged over the whole sample:

> VARs <- ((As-AVEs)^2 + (Bs-AVEs)^2 +( Cs-AVEs)^2 +

+ (Ds-AVEs)^2)/4
> mean(VARs)

[1] 0.5426208

which is the loss of homogeneity, equal to 1 minus the first principal inertia.

Exhibit 20.3 can be obtained as the "rowprincipal" map, suppressing the
row labels (check the plotting options by typing help(plot.ca)):

> plot(wg93.mca, map="rowprincipal", labels=c(0,2))

Subset CA in Chapter 21 is presently implemented only in the ca() func-
tion, but since the Burt matrix is accessible from mjca() one can easily do
the subset MCA on the Burt matrix. First, an example of subset CA using

Chapter 21:
Subset

Correspondence
Analysis the author dataset, provided with the ca package. To reproduce the subset

analyses of consonants and vowels:

> data(author)

> vowels <- c(1,5,9,15,21)

> consonants <- c(1:26)[-vowels]
> summary(ca(author,subsetcol=consonants))
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Principal inertias (eigenvalues):

dim value % cum% scree plot

1 0.007607 46.5 46.5 *************************

2 0.003253 19.9 66.4 ***********

3 0.001499 9.2 75.6 *****

4 0.001234 7.5 83.1 ****

. . . . .

. . . . .

------- -----

Total: 0.01637 100.0

Rows:

name mass qlt inr k=1 cor ctr k=2 cor ctr

1 | td( | 85 59 29 | 7 8 1 | -17 50 7 |

2 | d() | 80 360 37 | -39 196 16 | -35 164 31 |

3 | lw( | 85 641 81 | -100 637 111 | 8 4 2 |

4 | ew( | 89 328 61 | 17 27 4 | 58 300 92 |

. . . . . . . . . . .

. . . . . . . . . . .

Columns:

name mass qlt inr k=1 cor ctr k=2 cor ctr

1 | b | 16 342 21 | -86 341 15 | -6 2 0 |

2 | c | 23 888 69 | -186 699 104 | -97 189 66 |

3 | d | 46 892 101 | 168 783 171 | -63 110 56 |

4 | f | 19 558 33 | -113 467 33 | -50 91 15 |

. . . . . . . . . . .

. . . . . . . . . . .

> summary(ca(author,subsetcol=vowels))

Principal inertias (eigenvalues):

dim value % cum% scree plot

1 0.001450 61.4 61.4 *************************

2 0.000422 17.9 79.2 ******

3 0.000300 12.7 91.9 ****

4 0.000103 4.4 96.3 *

5 0.000088 3.7 100.0

-------- -----

Total: 0.002364 100.0

Rows:

name mass qlt inr k=1 cor ctr k=2 cor ctr

1 | td( | 85 832 147 | 58 816 195 | 8 15 13 |

2 | d() | 80 197 44 | -12 118 9 | -10 79 20 |

3 | lw( | 85 235 33 | 14 226 12 | -3 9 2 |

4 | ew( | 89 964 109 | 31 337 60 | 42 627 382 |

. . . . . . . . . . .

. . . . . . . . . . .
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Columns:

name mass qlt inr k=1 cor ctr k=2 cor ctr

1 | a | 80 571 79 | 9 34 4 | -35 537 238 |

2 | e | 127 898 269 | 67 895 393 | 4 3 5 |

3 | i | 70 800 221 | -59 468 169 | 50 332 410 |

4 | o | 77 812 251 | -79 803 329 | -8 9 12 |

5 | u | 30 694 179 | -71 359 105 | -69 334 335 |

We now demonstrate the subset MCA that is documented on pages 165–166,
i.e., for the Burt matrix of the working women data set stored in womenG, after
elimination of missing data for the demographics (see page 237). First, the
function mjca() is used merely to obtain the Burt matrix, and then the subset
CA is applied to that square part of the Burt matrix not corresponding to the
missing data categories (see re-arranged Burt matrix in Exhibit 21.3). The
selection is performed by defining a vector of indices named subset below:
> womenG.B <- mjca(womenG)$Burt
> subset <- c(1:16)[-c(4,8,12,16)]

> summary(ca(womenG.B[1:16,1:16], subsetrow=subset,
+ subsetcol=subset))

Principal inertias (eigenvalues):

dim value % cum% scree plot

1 0.263487 41.4 41.4 *************************

2 0.133342 21.0 62.4 *************

3 0.094414 14.9 77.3 *********

4 0.047403 7.5 84.7 *****

5 0.032144 5.1 89.8 ***

6 0.026895 4.2 94.0 ***

7 0.019504 3.1 97.1 **

8 0.013096 2.1 99.1 *

9 0.005130 0.8 99.9

10 0.000231 0.0 100.0

11 0.000129 0.0 100.0

-------- -----

Total: 0.635808 100.0

Rows:

name mass qlt inr k=1 cor ctr k=2 cor ctr

1 | Q1.1 | 183 592 25 | -228 591 36 | 11 1 0 |

2 | Q1.2 | 35 434 98 | 784 345 81 | -397 88 41 |

3 | Q1.3 | 6 700 119 | 2002 306 88 | 2273 394 224 |

4 | Q2.1 | 13 535 113 | -1133 236 65 | 1276 299 162 |

5 | Q2.2 | 95 452 69 | -442 421 71 | -119 30 10 |

6 | Q2.3 | 120 693 64 | 482 688 106 | -40 5 1 |

7 | Q3.1 | 28 706 114 | -1040 412 114 | 878 294 160 |

8 | Q3.2 | 152 481 38 | -120 91 8 | -249 390 71 |

9 | Q3.3 | 47 748 106 | 990 681 175 | 312 67 34 |

10 | Q4.1 | 143 731 49 | -390 702 83 | 80 29 7 |

11 | Q4.2 | 66 583 84 | 582 414 84 | -371 168 68 |

12 | Q4.3 | 7 702 119 | 1824 312 90 | 2041 391 222 |
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The adjustments of the scale by linear regression to best fit the off-diagonal
tables of the Burt submatrix is not easily done. The code is rather lengthy,
so is not described here but rather put on the website for the moment, to be
implemented in the ca package at a later date.

As shown in Chapter 21 the CA of a square asymmetric matrix consists Chapter 22:
Analysis of Square
Tables

in splitting the table into symmetric and skew-symmetric parts and then
performing CA on the symmetric part and an uncentred CA on the skew-
symmetric part, with the same weights and χ2-distances throughout. Both
analyses are neatly subsumed in the CA of the block matrix shown in (22.4).
After reading the mobility table into a data frame named mob, the sequence
of commands to set up the block matrix and then do the CA is as follows.
Notice that mob has to be first converted to a matrix; otherwise we cannot
bind the rows and columns together properly to create the block matrix mob2.
> mob <- as.matrix(mob)

> mob2 <- rbind(cbind(mob,t(mob)), cbind(t(mob), mob))
> summary(ca(mob2))

Principal inertias (eigenvalues):

dim value % cum% scree plot

1 0.388679 24.3 24.3 *************************

2 0.232042 14.5 38.8 ***************

3 0.158364 9.9 48.7 **********

4 0.158364 9.9 58.6 **********

5 0.143915 9.0 67.6 *********

6 0.123757 7.7 75.4 ********

7 0.081838 5.1 80.5 *****

8 0.070740 4.4 84.9 *****

9 0.049838 3.1 88.0 ***

10 0.041841 2.6 90.6 ***

11 0.041841 2.6 93.3 ***

12 0.022867 1.4 94.7 *

13 0.022045 1.4 96.1 *

14 0.012873 0.8 96.9 *

15 0.012873 0.8 97.7 *

16 0.010360 0.6 98.3 *

17 0.007590 0.5 98.8 *

18 0.007590 0.5 99.3 *

19 0.003090 0.2 99.5

20 0.003090 0.2 99.7

21 0.001658 0.1 99.8

22 0.001148 0.1 99.9

23 0.001148 0.1 99.9

24 0.000620 0.0 99.9

25 0.000381 0.0 100.0

26 0.000381 0.0 100.0

27 0.000147 0.0 100.0

-------- -----

Total: 1.599080 100.0
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Rows:

name mass qlt inr k=1 cor ctr k=2 cor ctr

1 | Arm | 43 426 54 | -632 200 44 | 671 226 84 |

2 | Art | 55 886 100 | 1521 793 327 | 520 93 64 |

3 | Tcc | 29 83 10 | -195 73 3 | 73 10 1 |

4 | Cra | 18 293 32 | 867 262 34 | -298 31 7 |

. . . . . . . . . . .

. . . . . . . . . . .

15 | ARM | 43 426 54 | -632 200 44 | 671 226 84 |

16 | ART | 55 886 100 | 1521 793 327 | 520 93 64 |

17 | TCC | 29 83 10 | -195 73 3 | 73 10 1 |

18 | CRA | 18 293 32 | 867 262 34 | -298 31 7 |

. . . . . . . . . . .

. . . . . . . . . . .

Columns:

name mass qlt inr k=1 cor ctr k=2 cor ctr

1 | ARM | 43 426 54 | -632 200 44 | 671 226 84 |

2 | ART | 55 886 100 | 1521 793 327 | 520 93 64 |

3 | TCC | 29 83 10 | -195 73 3 | 73 10 1 |

4 | CRA | 18 293 32 | 867 262 34 | -298 31 7 |

. . . . . . . . . . .

. . . . . . . . . . .

15 | Arm | 43 426 54 | -632 200 44 | 671 226 84 |

16 | Art | 55 886 100 | 1521 793 327 | 520 93 64 |

17 | Tcc | 29 83 10 | -195 73 3 | 73 10 1 |

18 | Cra | 18 293 32 | 867 262 34 | -298 31 7 |

. . . . . . . . . . .

. . . . . . . . . . .

The principal inertias coincide with Exhibit 22.4, and since the first two di-
mensions correspond to the symmetric part of the matrix, each set of coordi-
nates is just a repeat of the same set of values.
Dimensions 3 and 4, with repeated eigenvalues, correspond to the skew-symmetric
part and their coordinates turn out as follows (to get more than the default two
dimensions in the summary, change the original command to summary(ca(mob2,
nd=4))):

Rows:

name k=3 cor ctr k=4 cor ctr

1 | Arm | -11 0 0 | 416 87 47 |

2 | Art | 89 3 3 | 423 61 62 |

3 | Tcc | -331 211 20 | 141 38 4 |

4 | Cra | -847 250 80 | 92 3 1 |

. . . . . . . .

. . . . . . . .

15 | ARM | 11 0 0 | -416 87 47 |

16 | ART | -89 3 3 | -423 61 62 |

17 | TCC | 331 211 20 | -141 38 4 |

18 | CRA | 847 250 80 | -92 3 1 |
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. . . . . . . .

. . . . . . . .

Columns:

name k=3 cor ctr k=4 cor ctr

1 | ARM | -416 87 47 | -11 0 0 |

2 | ART | -423 61 62 | 89 3 3 |

3 | TCC | -141 38 4 | -331 211 20 |

4 | CRA | -92 3 1 | -847 250 80 |

. . . . . . . .

. . . . . . . .

15 | Arm | 416 87 47 | 11 0 0 |

16 | Art | 423 61 62 | -89 3 3 |

17 | Tcc | 141 38 4 | 331 211 20 |

18 | Cra | 92 3 1 | 847 250 80 |

. . . . . . . .

. . . . . . . .

which shows that the skew-symmetric coordinates reverse sign within the row
and column blocks, but also swap over, with the third axis row solution equal
to the fourth axis column solution and vice versa. In any case, only one set of
coordinates is needed to plot the objects in each map, but the interpretation
of the maps is different, as explained in Chapter 22.

Chapter 23 involves mostly simple transformations of the data and then reg- Chapter 23: Data
Recodingular applications of CA. As an illustration of analyzing continuous data, we

assume that the European Union indicators data have been read into a data
frame named EU. Then the conversion to ranks (using R function rank() and Converting to

ranks with rank()
function

again the very useful apply() function to obtain EUr), and the doubling (to
obtain EUd) are performed as follows:
> EUr <- apply(EU,2,rank) - 1

> EUd <- cbind(EUr, 11-EUr)

> colnames(EUd) <- c(paste(colnames(EU), "-", sep=""),

+ paste(colnames(EU), "+", sep=""))
> EUd

Unemp- GDPH- PCH- PCP- RULC- Unemp+ GDPH+ PCH+ PCP+ RULC+

Be 6 6 6 6.5 4.5 5 5 5 4.5 6.5

De 4 11 10 0.0 7.0 7 0 1 11.0 4.0

Ge 2 10 11 5.0 6.0 9 1 0 6.0 5.0

Gr 5 1 1 1.0 11.0 6 10 10 10.0 0.0

Sp 11 3 3 10.0 2.0 0 8 8 1.0 9.0

Fr 7 8 8 3.5 4.5 4 3 3 7.5 6.5

Ir 10 2 2 11.0 1.0 1 9 9 0.0 10.0

It 9 7 7 9.0 9.0 2 4 4 2.0 2.0

Lu 0 9 9 3.5 8.0 11 2 2 7.5 3.0

Ho 8 5 4 6.5 3.0 3 6 7 4.5 8.0

Po 1 0 0 8.0 0.0 10 11 11 3.0 11.0

UK 3 4 5 2.0 10.0 8 7 6 9.0 1.0

Notice how the column names are constructed with the paste() function.
The analysis of Exhibit 23.5 is thus obtained simply as ca(EUd).
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The results of Chapter 24 cannot be obtained using the ca package, but usingChapter 24:
Canonical

Correspondence
Analysis

either the XLSTAT program (described later) or Jari Oksanen’s vegan pack-
age (see web resources in the Bibliographical Appendix), which not only does
CCA but also CA and PCA (but without many of the options we have in the
ca package). Since this package is usually used in an ecological context, like
the example in Chapter 24, we shall refer here to “sites” (samples), “species”
and (explanatory) “variables”. Using vegan is just as easy as using ca: the
main function is called cca() and can be used in either of the two following
formats:
cca(X,Y,Z)

cca(X ~ Y + condition(Z))

where X is the sites×species matrix of counts, Y is the sites×variables matrix
of explanatory data and Z is the sites×variables matrix of conditioning data
if we want to perform (optionally) a partial CCA. The second format is in
the form of a regression-type model formula, but here the first type will be
used. If only X is specified, the analysis is a CA (so try, for example, one of
the previous analyses, for example summary(cca(author)) to compare the
results with previous ones — notice that the books are referred to as “sites”
and the letters as “species”, and that the default plotting option, for exam-
ple plot(cca(author)), is what we called "colprincipal"). If X and Y are
specified, the analysis is a CCA. If X, Y and Z are specified, the analysis is a
partial CCA.
Assuming now that the biological data of Chapters 10 and 24 are read into the
data frame bio as a 13×92 table, and that the three variables Ba, Fe and PE are
read into env as a 13×3 table whose columns are log-transformed to variables
with names logBa, logFe and logPE; then the CCA can be performed simply
as follows:
> summary(cca(bio, env))

Call:

cca(X = bio, Y = env)

Partitioning of mean squared contingency coefficient:

Total 0.7826

Constrained 0.2798

Unconstrained 0.5028

Eigenvalues, and their contribution to the

mean squared contingency coefficient

CCA1 CCA2 CCA3 CA1 CA2 CA3 CA4 CA5

lambda 0.1895 0.0615 0.02879 0.1909 0.1523 0.04159 0.02784 0.02535

accounted 0.2422 0.3208 0.35755 0.2439 0.4385 0.49161 0.52719 0.55957

CA6 CA7 CA8 CA9

lambda 0.02296 0.01654 0.01461 0.01076

accounted 0.58891 0.61004 0.62871 0.64245

Scaling 2 for species and site scores

--- Species are scaled proportional to eigenvalues

--- Sites are unscaled: weighted dispersion equal on all dimensions
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Species scores

CCA1 CCA2 CCA3 CA1 CA2 CA3

Myri_ocul 0.1732392 0.245915 -0.070907 0.6359626 -0.063479 0.031990

Chae_seto 0.5747974 -0.270816 0.011814 -0.5029157 -0.674207 0.093354

Amph_falc 0.2953878 -0.114067 0.075979 -0.2224138 0.041797 -0.005020

Myse_bide -0.5271092 -0.505262 -0.103978 -0.0789909 0.176683 -0.484208

Goni_macu -0.1890403 0.122783 -0.044679 -0.1045244 0.030134 0.111827

Amph_fili -0.9989672 -0.075696 0.107184 -0.3506103 0.076968 0.004931

. . . . . . .

. . . . . . .

Site constraints (linear combinations of constraining variables)

CCA1 CCA2 CCA3

S4 -0.06973 0.75885 -2.29951

S8 -0.35758 1.47282 2.27467

S9 0.48483 -0.72459 -0.66547

S12 0.02536 0.27129 -0.14677

S13 0.30041 -0.01531 -0.80821

S14 0.79386 1.16229 0.24314

S15 0.96326 -0.88970 0.14630

S18 -0.16753 0.25048 -0.77451

S19 0.36890 -0.81800 1.50620

S23 -0.09967 -1.90159 0.06877

S24 0.05478 0.96184 -0.10635

R40 -3.71393 -0.20698 0.53031

R42 -2.96641 -0.18264 -0.67736

Biplot scores for constraining variables

CCA1 CCA2 CCA3

logBa 0.9957 -0.08413 0.03452

logFe 0.6044 -0.72088 0.33658

logPE 0.4654 0.55594 0.68710

Notice the following:

— the mean squared contingency coefficient is the total inertia;

— the principal inertias in the constrained space are headed CCA1, CCA2, etc.,
and the principal inertias in the unconstrained space CA1, CA2, etc.;

— the percentages are all expressed relative to the total inertia;

— Scaling 2 means rows (sites) in standard coordinates, and columns (species)
in principal coordinates, i.e., the "colprincipal" scaling in the plot.ca()
function;

— the Species scores are column principal coordinates;

— the Site constraints are the row standard coordinates;

— the Biplot scores for constraining variables are the weighted cor-
relation coefficients between the explanatory variables and the site coor-
dinates.
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Finally, Chapter 25 performs various bootstraps of tables to investigate theirChapter 25:
Aspects of

Stability and
Inference

variability, as well as permutation tests to test null hypotheses. For example,
the 1000 replications of the author data, shown in the partial bootstrap CA
map of Exhibit 25.1, are obtained as follows (with comments interspersed):

> data(author)

> author.ca <- ca(author)

> nsim <- 1000

> # compute row sums

> author.rowsum <- apply(author, 1, sum)

> # compute nsim simulations of first book

> author.sim <- rmultinom(nsim, author.rowsum[1], prob = author[1,])

Multinomial
random sampling

using
rmultinom()

> # compute nsim simulations of other books and column-bind

> for (i in 2:12) {
+ author.sim<-cbind(author.sim,

+ rmultinom(nsim,author.rowsum[i],

+ prob = author[i,]))

+ }
> # transpose to have same format as original matrix

> author.sim <- t(author.sim)

> author.sim2 <- matrix(rep(0,nsim*12*26), nrow=nsim*12)

> # reorganize rows so that matrices are together

> for (k in 1:nsim) {
+ for (i in 1:12) {
+ author.sim2[(k-1)*12+i,] <- author.sim[k+(i-1)*nsim,]

+ }
+ }

The coordinates are now calculated of the simulated columns using the tran-
sition formula from row standard to column principal coordinates:

> # get standard coordinates for rows

> author.rowsc <- author.ca$rowcoord[,1:2]
> # calculate pc’s of all replicates using transition formula

> author.colsim <- t(t(author.rowsc) %*% author.sim2[1:12,]) /

+ apply(author.sim2[1:12,],2,sum)

> for (k in 2:nsim) {
+ author.colsim <- rbind(author.colsim, t(t(author.rowsc) %*%
+ author.sim2[((k-1)*12+1):(k*12),])/

+ apply(author.sim2[((k-1)*12+1):(k*12),], 2, sum))

> # reorganize rows of coordinates so that letters are together

> author.colsim2 <- matrix(rep(0, nsim*26*2), nrow=nsim*26)

> for (j in 1:26) {
+ for (k in 1:nsim) {
+ author.colsim2[(j-1)*nsim+k,]<-author.colsim[j+(k-1)*26,]

+ }
+ }
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The plotting of the points and the convex hulls:

> # plot all points (use first format of coords for labelling...)

> plot(author.colsim[,1], -author.colsim[,2], xlab="dim1",

+ ylab="dim2",type="n")

> text(author.colsim[,1], -author.colsim[,2], letters, cex=0.5, col="gray")

> # plot convex hulls for each letter

> # first calculate pc’s of letters for original matrix

> author.col <- t(t(author.rowsc) %*% author) /

+ apply(author, 2, sum)

> for (j in 1:26) {
+ points <- author.colsim2[(100*(j-1)+1):(100*j),]

+ # note we are reversing second coordinate in all these plots

+ points[,2] <- -points[,2]

+ hpts <- chull(points)

+ hpts <- c(hpts,hpts[1])

+ lines(points[hpts,], lty=3)

+ text(author.col[j,1], -author.col[j,2], letters[j], font=2, cex=1.5)

+ }

Finally, peeling away the convex hulls until just under 5% of the points have
been removed from each cloud of replicates, and then plotting the convex hulls
of the remaining points:

> plot(author.colsim2[,1], -author.colsim2[,2], xlab="dim1",

+ ylab="dim2", type="n")

> for (j in 1:26) {
+ points <- author.colsim2[(100*(j-1)+1):(100*j),]

+ # note we are reversing second coordinate in all these plots

+ points[,2] <- -points[,2]

+ repeat {
+ hpts <- chull(points)

+ npts <- nrow(points[-hpts,])

+ if(npts/nsim<0.95) break

+ points <- points[-hpts,]

+ }
+ hpts <- c(hpts,hpts[1])

+ lines(points[hpts,], lty=3)

+ text(author.col[j,1], -author.col[j,2], letters[j],

+ font=2)

+ }

To plot concentration ellipses, the package ellipse needs to be downloaded
from the R website www.R-project.org. The script for plotting concentration
ellipses using the bootstrap replicates computed above is as follows:

> # confidence ellipses - needs package ’ellipse’

> plot(author.colsim2[,1],-author.colsim2[,2],xlab="dim1",

+ ylab="dim2", type="n")

> for (j in 1:26) {
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+ points <- author.colsim2[(nsim*(j-1)+1):(nsim*j),]

+ # note we are reversing second coordinate in all these plots

+ points[,2] <- -points[,2]

+ covpoints <- cov(points)

+ meanpoints <- apply(points,2,mean)

+ lines(ellipse(covpoints, centre = meanpoints))

+ text(author.col[j,1],-author.col[j,2],letters[j],

+ font=2)

+ }
To reproduce the ellipses based on the Delta method in Exhibit 25.3, the
covariance matrix of the estimated principal coordinates is needed, which is
provided in the output of the SPSS program. More details and additional R
code are given on the CARME network website www.carme-n.org.

The permutation test on the author data is performed by exhaustively list-Permutation test
ing the 11 × 9 × 7 × 5 × 3 = 10395 different ways of assigning the labels
of the texts to the points in the CA map, recalculating the sum of distance
between pairs of labels by the same author. The R script for obtaining every
unique assignment is given on the website: it consists of listing the assignments
{(1,2),(1,3),(1,4),...,(1,12)} and then for each of these 11, listing 9 other pair-
ings (e.g., for (1,2) the list would be {(3,4),(3,5),...,(3,12)}), and then for each
of these 9 a similar list of 7 formed by the remaining integers, and so on. Ex-
hibit B.6 shows the distribution of the 10395 values, with the observed value
of 0.4711 indicated. As reported in Chapter 25, there are no other pairings
of the labels in the two-dimensional CA map which give a smaller distance,
which makes the P -value associated with the result equal to 1/10395, i.e.,
P < 0.0001. A similar test conducted on the subset analyses of Exhibit 21.1
(consonants only) and 21.2 (vowels only) yielded 47 and 4533 permutations
to the left of the observed value, i.e., P -values of 47/10395 = 0.0045 and
4533/10395 = 0.44, respectively. This shows that the consonants are the ones
that are distinguishing the authors, not the vowels.

CCA looks at a part of the full space of the response variables (usually speciesPermutation tests
in CCA abundances in ecology) that is linearly related to a given set of explanatory

variables (usually environmental variables) — see Chapter 24. But what if
the responses have no relation to the explanatory variables? The inertia in
the constrained space is a measure of the relationship, so this needs to be
compared to a null distribution of constrained inertias when there is no re-
lationship. This can be generated by randomly permuting the cases (rows)
in the matrix of explanatory variables (or response variables). Having mixed
up the rows, losing their connections with the rows in the response matrix,
the CCA is repeated and the constrained inertia recalculated. Doing this 999
times, say (or however many you need to establish an accurate P -value), the
observed value is situated in the distribution to see if it is unusually high. If it
lies in the top 5% of observations, the relationship will be deemed statistically
significant, and the P -value can be estimated by counting how many values in
the permutation distribution are higher than the observed value (in this case
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Exhibit B.6:
Exact null
distribution of
sum-of-distances
statistic in the
permutation test for
testing randomness
in the positions of
pairs of texts by the
same author in the
CA map. The
observed value is the
second smallest out
of 10395 possible
values.

the value has to be high to be significant). The vegan package incorporates
this test, which can be obtained with the anova() function around the cca()
analysis:
> anova(cca(bio,env))

Permutation test for cca under reduced model

Model: cca(X = bio, Y = env)

Df Chisq F N.Perm Pr(>F)

Model 3 0.2798 1.6696 1300 0.03462 *

Residual 9 0.5028

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The statistic used is not the inertia but a “pseudo-F” statistic, as if an analysis
of variance is being performed (for more details, see the vegan documenta-
tion), but the important part of the printout is the P -value which shows that
the F-statistic for the constrained space is significantly high (P=0.03462).

Fionn Murtagh’s R
programs

In his recent book Correspondence Analysis and Data Coding with Java and
R (see Bibliographical Appendix), Fionn Murtagh gives many R scripts for
CA and especially data recoding, all of which are available on the website
www.correspondances.info. In particular, on pages 21–26 he describes a
program for hierarchical clustering by Ward’s method, with incorporation of
weights, which is exactly what we needed in Chapter 15, but which is otherwise
unavailable in R. Assuming you have been able to download the code from
his website, and have read the table of data of Exhibit 15.3 as the data frame
food, then the cluster analysis of the row profiles in Exhibit 15.5 can be
achieved using Murtagh’s hierclust() function as follows:

© 2007 by Taylor & Francis Group, LLC

http://astro.u-strasbg.fr


254 Computation of Correspondence Analysis

> food.rpro <- food /apply(food,1,sum)

> food.r <- apply(food,1,sum) / sum(food)

> food.rclust <- hierclust(food.rpro, food.r)

> plot(as.dendrogram(food.rclust))

XLSTAT One of the best commercial alternatives for performing all the analyses in
this book, and more, is the suite of Excel add-on packages called XLSTAT
(www.xlstat.com). The CA and MCA programs in XLSTAT now include the
adjustments of inertia in MCA and the subset options in both CA and MCA.
A program for CCA is also implemented, including a permutation test for
testing whether the explanatory variables are significantly related to the prin-
cipal axes of the constrained solution. Other multivariate analysis software
in XLSTAT includes principal component analysis, factor analysis, discrimi-
nant analysis, cluster analysis, partial least squares and generalized Procrustes
analysis. The programs are particularly easy to use because they function in
an Excel environment. For example, to execute the CA on the food data set
used above in the hierarchical clustering, click on the CA icon and select the
table (with row and column labels) that you want to analyze:

Exhibit B.7:
XLSTAT menu for
executing CA on a

table selected in
Excel.
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Exhibit B.8:
XLSTAT menu for
selecting graphical
options in CA.

Exhibit B.9:
Part of the output
of the CA program
in XLSTAT, which
is returned in a
separate worksheet.
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There is an “Options” menu which allows selection of supplementary points or
subsets, a “Missing data” menu for deciding what to do with missing values,
and “Outputs” menu for selecting the various numerical tables (profiles, χ2-
distances, principal coordinates, standard coordinates, contributions, squared
correlations, etc.) and a “Charts” menu which allows selection of the various
maps — see Exhibit B.8, where the symmetric map of rows and columns is
selected as well as the asymmetric map of the rows (i.e., "rowprincipal"
option in the ca package). Exhibit B.9 shows part of the output.

In the cluster analysis module of XLSTAT it is possible to assign weights
to points, so performing a Ward clustering on the profiles, weighted by their
masses, would reproduce the cluster analyses of Chapter 15.

Graphical options Producing a CA map with certain characteristics and which is ready for pub-
lication is not a trivial task. In this section we describe the three different
technologies that were used in this book to produce the graphical exhibits.

This book was typeset in LATEX. LATEX itself and various LATEX macros canLATEX graphics
produce maps directly, without passing through another graphics package.
Most of the maps produced in the first part of the book were produced us-
ing the macro package PicTEX. As an example, the following code, which
is embedded in the LATEX text of the book itself, produced Exhibit 9.2, the
asymmetric map of the smoking data:
\beginpicture

\setcoordinatesystem units <2.5cm,2.5cm>

\setplotarea x from -2.40 to 1.70, y from -1.6 to 2.25

\accountingoff

\gray

\setdashes <5pt,4pt>

\putrule from 0 0 to 1.7 0

\putrule from 0 0 to -1.4 0

\putrule from 0 0 to 0 2.25

\putrule from 0 0 to 0 -1.6

\put {+} at 0 0

\black

\small

\put {Axis 1} [Br] <-.2cm,.15cm> at 1.70 0

\put {0.0748 (87.8\%)} [tr] <-.2cm,-.15cm> at 1.70 0

\put {Axis 2} [Br] <-.1cm,-.4cm> at 0 2.25

\put {0.0100 (11.8\%)} [Bl] <.1cm,-.4cm> at 0 2.25

\setsolid

\putrule from 1.3 -1.3 to 1.4 -1.3

\putrule from 1.3 -1.32 to 1.3 -1.28

\putrule from 1.4 -1.32 to 1.4 -1.28

\put {\it scale} [b] <0cm,.25cm> at 1.35 -1.3

\put {0.1} [t] <0cm,-.2cm> at 1.35 -1.3

\multiput {$\bullet$} at

0.06577 0.19373

-0.25896 0.24330
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0.38059 0.01066

-0.23295 -0.05775

0.20109 -0.07891

/

\sf

\put {SM} [l] <.15cm,0cm> at 0.06577 0.19373

\put {JM} [r] <-.15cm,0cm> at -0.25896 0.24330

\put {SE} [bl] <.15cm,0cm> at 0.38059 0.01066

\put {JE} [r] <-.15cm,0cm> at -0.23295 -0.05775

\put {SC} [tl] <.15cm,0cm> at 0.20109 -0.07891

\gray

\multiput {$\circ$} at

1.4384 0.3046

-0.3638 -1.4094

-0.7180 -0.0735

-1.0745 1.9760

/

\sl

\put {none} [b] <0cm,.2cm> at 1.4384 0.3046

\put {light} [b] <0cm,.2cm> at -0.3638 -1.4094

\put {medium} [T] <0cm,-.3cm> at -0.7180 -0.0735

\put {heavy} [b] <0cm,.2cm> at -1.0745 1.9760

\black

\endpicture

Comparing the above code with Exhibit 9.2 itself should be enough for you
to see how each line and each character is laboriously placed in the plotting
area. One advantage of this approach, however, is that once you have set the
units on the horizontal and vertical coordinate axes to be the same (2.5cm
per unit in the example above), then you are assured that the aspect ratio of
1 is perfectly preserved in the eventual result.

Since many of the new maps produced for this second edition were made in Excel graphics
Excel using XLSTAT, many exhibits are produced in this style, for example
those in Chapters 17–19. In Excel, a certain amount of trimming of the maps
was done, redefining the maxima and minima on the axes, and also stretching
the graph window vertically or horizontally until the aspect ratio appeared
correct. The graphic was then copied as a metafile and pasted into Adobe
Illustrator, where further trimming and character redefinition was performed.
The aspect ratio becomes slightly deformed when copying into Adobe Illus-
trator, with a vertical unit appearing slightly longer than a horizontal unit,
so some resizing is necessary at this stage as well. The graphic was then saved
as an Encapsulated PostScript (EPS) file and then included in the LaTeX file
using the \includegraphics instruction, for example:
\begin{figure}[h]

\center{\includegraphics[width=10cm,keepaspectratio]{Ex18_5.eps}}

\caption{\sl MCA map of Burt matrix of four questions on women

working, showing first and second dimensions;

total inertia = 1.145, percentage inertia in map: 65.0\%.}

\end{figure}
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Finally, many maps were also produced in R, for example all the graphicsR graphics
of Chapter 25. These were also copied as metafiles and pasted into Adobe
Illustrator, fine-tuned and then saved as an EPS file for including in the text.
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The main aim of this book is to teach the reader about CA. No references
have been given in the text since this detracts from the didactic purpose.
This section is meant to highlight the main bibliographical sources so that
the reader can continue to learn about this method. We shall also point out
where historical details about the method can be obtained as well as more
complete literature reviews.

Although the theory of CA dates back to much earlier in the 20th century, Benzécri’s School of
Data AnalysisCA as presented in this book originates in the work of Jean-Paul Benzécri

and his co-workers in France in the 1960s, which was published in the two
volumes of Analyse des Données (literally, Data Analysis):

—Benzécri, J.-P. & collaborateurs (1973) Analyse des Données. Tôme 1: La
Classification. Tôme 2: L’Analyse des Correspondances. Paris: Dunod.

However, these books remain inaccessible to readers who are not initiated into
Benzécri’s particular notational style, preferred over more pragmatic matrix-
vector notation. An English translation of these books has appeared, but
with little success in communicating Benzécri’s ideas to an English-speaking
community. The following book by Le Roux & Rouanet gives a good account
of Benzécri’s approach for analyzing large data sets, which the authors have
coined as “geometric data analysis”, although they have also maintained a
complex notational style that hinders understanding of the material:

—Le Roux, B. & Rouanet, H. (2004) Geometric Data Analysis: From Corre-
spondence Analysis to Structured Data. Dordrecht: Kluwer.

One of the best publications in English for understanding Benzécri’s work
is the book by Fionn Murtagh, who was also a student of Benzécri. Not
only does he communicate much more of the Benzecrian philosophy (there is
also a foreword by Benzécri himself, with an English translation), but also
the book is innovative in approach and highly computing-oriented, providing
many interesting applications and details of R programming.

—Murtagh, F. (2005) Correspondence Analysis and Data Coding with Java
and R. London: Chapman & Hall/CRC.

One of the leading and most innovative members of Benzécri’s group, Brigitte
Escofier, has been commemorated posthumously by a collection of her most
important articles:

—Escofier, B. (2003) Analyse des Correspondances: Recherches au Coeur de
l’Analyse des Donées. Rennes, France: Presses Universitaires de Rennes.
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In 1984 two English books on CA appeared almost simultaneously, expressingThe two English books
of 1984 Benzécri’s work in a more comprehensible way, thanks to the use of more

conventional mathematical notation:

— Lebart, L., Morineau, A. & Warwick, K. (1984) Multivariate Descriptive
Statistical Analysis. Chichester, UK: Wiley.

—Greenacre, M.J. (1984) Theory and Applications of Correspondence Anal-
ysis. London: Academic Press.

Both these books are out of print, but are worth consulting if available in a
library. Lebart et al.’s book gives a less detailed description of CA itself but a
broader view of its use in the context of large-scale social surveys. Greenacre’s
book attempts to be complete account of the method’s theory and practice
at that time. Both these books serve as good literature sources for work up
to that point in time.

Under the nom-de-plume of Albert Gifi, a group in Holland, led by Jan deThe Gifi system
Leeuw, was involved with the most important development of CA outside
France, and still remains the most active group today. This group mostly
explored the use of MCA — which it called homogeneity analysis — as a
quantification technique embedded in classical multivariate analysis to achieve
nonlinear generalizations of multivariate methods. The work of the Gifi group
is amply described in the book:

—Gifi, A. (1990) Nonlinear Multivariate Analysis. Chichester, UK: Wiley.

As an excellent summary of the “Gifi system”, see:

—Michalidis, G. & de Leeuw, J. (1998) The Gifi system for descriptive mul-
tivariate analysis. Statistical Science, 13, 307–336. (This article can be
googled).

Founded by Chikio Hayashi, this group developed, in parallel to the FrenchThe Japanese school
and Dutch schools, an equivalent system of data analysis called “quantifica-
tion of qualitative data”, imbued with its own cultural aspects. Several books
by Shizuhiko Nishisato describe this approach, renamed as “dual scaling”,
concentrating more on the algebraic properties of the quantified scale values,
although the recent book by Nishisato does contain many graphical displays:

—Nishisato, S. (2006) Multivariate Nonlinear Descriptive Analysis. London:
Chapman & Hall/CRC.

Nishisato’s book contains many historical details and a very comprehensive
reference list of CA-related literature, but no details about computing.

In 1991, 1995, 1999 (at the Central Archive for Empirical Social Research,Cologne and Barcelona
books Cologne) and 2003 (at the Universitat Pompeu Fabra, Barcelona) interna-

tional conferences with CA as the central theme took place. As a product
of three of these conferences, books were collectively written by statisticians
and social scientists to reflect the development of the theoretical and practical
aspects of CA and related methods:
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— Greenacre, M.J. & Blasius, J., editors (1994) Correspondence Analysis in
the Social Sciences. London: Academic Press.

—Blasius, J. & Greenacre, M.J., editors (1998) Visualizing Categorical Data.
San Diego: Academic Press.

— Greenacre, M.J. & Blasius, J., editors (2006) Multiple Correspondence
Analysis and Related Methods. London: Chapman & Hall/CRC.

These three volumes, to which over 100 authors have contributed, are highly
recommended for further reading. The third volume is particularly oriented
to computing needs as well, and many sources of computer software are given
by the individual authors.

The aim of this second edition of Correspondence Analysis in Practice is not The R connection
only to present a didactically structured text about the method, but also to en-
able readers to compute their own analyses, mostly using the R programming
system, which has become the standard of statistical computing at the start of
the 21st century. Apart from the additional material included here compared
to the first edition, the addition of the 46-page Computational Appendix is
the most significant change. One of the many books on R programming which
we can recommend to anyone starting off, as well as an excellent introduction
to modern statistical methodology, is:

— Crawley, M. (2005). Statistics: An Introduction using R. Chichester, UK:
Wiley.

The ca package for R is discussed in more detail in the following article:

—Nenadić, O. & Greenacre, M.J. (2007). Correspondence analysis in R, with
two- and three-dimensional graphics: The ca package. Journal of Statistical
Software. Free download from http://www.jstatsoft.org.

The following (non-commercial) pages can be consulted for further informa- Web resources
tion and software about CA and related methods:

— http://www.carme-n.org

(Correspondence Analysis and Related Methods Network, with R scripts
and data from Correspondence Analysis in Practice, Second Edition)

— http://gifi.stat.ucla.edu

(Jan de Leeuw’s website for the Gifi system and R functions)

— http://www.correspondances.info

(Fionn Murtagh’s website for his book, with R scripts and data sets)

— http://www.math.yorku.ca/SCS/friendly.html

(Michael Friendly’s personal page for graphics of categorical data)

— http://www.imperial.ac.uk/bio/research/crawley/statistics

(Michael Crawley’s material from his book Statistics: an Introduction
using R)
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— http://www.gesis.org/en/za

(website of Central Archive for Empirical Social Research in Cologne,
with links to various social surveys including the those of the ISSP –
International Social Survey Program)

— http://www.r-project.org

(The R project for statistical computing)

— http://cc.oulu.fi/ jarioksa/softhelp/vegan.html

(Jari Oksanen’s website for the vegan package in R)

— http://people.few.eur.nl/groenen/mmds/datasets

(website with data sets from book Modern Multidimensional Scaling
by Ingwer Borg and Patrick Groenen)
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DGlossary of terms

In this appendix an alphabetical list of the most common terms used in this
book is given, along with a short definition of each. Words in italics refer to
terms which are contained in the glossary.

• adjusted principal inertias — a modification of the results of a multiple
correspondence analysis that gives a more realistic estimate of the inertia
accounted for in the solution.
• arch effect — the tendency for points in a CA map to form a curve, owing
to the particular geometry of CA where the profiles lie inside a simplex ; also
called the “horseshoe” effect.
• aspect ratio — the ratio between a unit length on the horizontal axis and a
unit length on the vertical axis in a spatial representation; should be equal to
1 for a CA map.
• asymmetric map — a joint display of the rows and columns where the two
clouds of points have different normalizations (also called scalings), usually one
in principal coordinates and the other in standard coordinates ; the asymmetric
map is often a biplot .
• biplot — a joint display of points representing the rows and columns of
a table such that scalar products between a row point and a column point
approximates optimally the corresponding element in the table.
• biplot axis — a line in the direction of a point vector in a biplot onto which
the other set of points can be projected in order to estimate values in the
table being analysed.
• bootstrapping — a computer-based method of investigating the variability of
a statistic, by generating a large number replicate samples from the observed
sample.
• Burt matrix — a particular matrix of stacked tables, consisting of all two-
way cross-tabulations of a set of Q categorical variables, including the cross-
tabulations of each variable with itself.
• calibration — in biplots , the process of putting a scale on a biplot axis with
specific tic-marks and values; in CA, where profiles are being mapped, this is
a scale in units of proportions or percentages.
• canonical correspondence analysis (CCA) — extension of CA to include
external explanatory variables; the CA solution is constrained to have dimen-
sions which are linearly related to these explanatory variables.
• centroid — the weighted average point.
• chi-square distance — weighted Euclidean distance measure between pro-
files , where each squared difference between profile elements is divided by the
corresponding element of the average profile.
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• chi-square statistic — the statistic used commonly for testing the indepe-
dence model for a contingency table; calculated as the sum of squared differ-
ences between observed frequencies and frequencies expected according to the
model, each squared difference being divided by the corresponding expected
frequency.

• contingency ratio — for a contingency table, the observed frequency divided
by the expected frequency according to the independence model .

• contingency table — a cross-tabulation of a set of individuals according to
two categorical variables; hence the grand total of the table is the number of
individuals.

• contribution to inertia — component of inertia accounted for by a particular
point on a particular principal axis ; these are usually expressed relative to the
corresponding principal inertia on the axis (giving a diagnostic of how the axis
is constructed) or relative to the inertia of the point (giving a measure of how
well the point is explained by the axis).

• correspondence analysis (CA) — a method of displaying the rows and
columns of a table as points in a spatial map, with a specific geometric inter-
pretation of the positions of the points as a means of interpreting the simi-
larities and differences between rows, the similarities and differences between
columns and the association between rows and columns.

• dimensionality — the number of dimensions inherent in a table needed to
reproduce its elements exactly in a CA map.

• doubling — a recoding scheme where a row (or column) is recoded as a pair
of rows (or columns) in order to map the extremes, or poles, of a scale; used
in CA to analyse ratings, preferences and paired comparisons.

• dummy variable — a variable that takes on the values 0 and 1 only; used in
one form of multiple correspondence analysis to code multivariate categorical
data.

• eigenvalue — a quantity inherent in a square matrix, part of a decomposition
of the matrix into the product of simpler matrices; in general, a square matrix
has as many eigenvalues and associated eigenvectors as its rank; in the context
of CA, eigenvalue is a synonym for principal inertia.

• Euclidean distance — distance measure between vectors where squared dif-
ferences between corresponding elements are summed, followed by taking the
square root of this sum.

• identification condition — a condition which needs to be imposed on an
optimization problem in order to obtain a unique solution.

• independence model — (also called the “homogeneity hypothesis”) a model
for the counts in a contingency table, which assumes that the rows (or columns)
are sampled randomly from the same population; i.e., the expected relative
frequencies (proportions) in each row, or in each column, are the same.

• indicator matrix — the coding of a multivariate categorical data set in the
form of dummy variables .
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• inertia — weighted sum of squared distances of a set of points to their
centroid ; in CA the points are profiles , weights are the masses of the profiles
and the distances are chi-square distances.
• interactive coding — the formation of a single categorical variable from all
the category combinations of two categorical variables.
• joint correspondence analysis (JCA) — an adaptation of multiple correspon-
dence analysis to analyse all unique two-way cross-tabulations of a set of Q
categorical variables while ignoring the cross-tabulations of each variable with
itself.
• map — a spatial representation of points (row and column profiles in CA)
with a distance or scalar product (biplot) interpretation.
• mass — the marginal total of a row or a column of a table, divided by the
grand total of the table; used as weights in CA.
• multiple correspondence analysis (MCA) — for more than two categorical
variables, the CA of the indicator matrix or Burt matrix formed from the
variables.
• optimal scale — a set of scale values assigned to the categories of several
categorical variables, which optimizes some criterion such as maximum corre-
lation (with another variable) or maximum discrimination (between a set of
groups).
• outlier — a point on the periphery of a display that is well separated from
the general scatter of points.
• partial bootstrap — in CA, the display of many replicate samples, obtained
by bootstrapping , as supplementary points in the map of the original table.
• permutation test — generation of data permutations, either all possible ones
or a large random sample, assuming a null hypothesis, in order to obtain the
null distribution of a test statistic and thus estimate the P -value associated
with the observed value of the statistic.
• principal axis — a direction of spread of points in multidimensional space
that optimizes the inertia displayed; can be thought of equivalently as an axis
which best fits the points in a weighted least-squares sense.
• principal coordinates — coordinates of a set of points projected onto a
principal axis , such that their weighted sum of squares along an axis equals
the principal inertia on that axis.
• principal inertia — the inertia displayed along a principal axis ; also referred
to as an eigenvalue.
• profile — a row or a column of a table divided by its total; the profiles are
the points visualized in CA.
• scalar product — for two point vectors, the product of their lengths mul-
tiplied by the cosine of the angle between them; directly proportional to the
projection of one point on the vector defined by the other.
• simplex — a triangle in two dimensions, a tetrahedron in three dimensions,
and generalizations of these geometric figures in higher dimensions; in CA
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J-dimensional profiles lie inside a simplex defined by J vertices in (J − 1)-
dimensional space.
• singular value decomposition (SVD) — a matrix decomposition similar to
that of eigenvalues and eigenvectors, but applicable to rectangular matrices;
the squares of the singular values are eigenvalues of particular square matrices,
and the left and right singular vectors are also eigenvectors.
• skew-symmetric matrix — a square matrix with zeros on the diagonal and
the property that the elements above the diagonal have the same absolute
value as those opposite them below the diagonal, but with opposite sign.
• stacked tables — a number of contingency tables, usually based on cross-
tabulating the same individuals, concatenated row-wise or column-wise or
both.
• standard coordinates — coordinates of a set of points such that their weighted
sum of squares along an axis equals 1.
• subset correspondence analysis — a variant of CA which allows subsets of
rows and/or columns to be analysed, while maintaining the same geometry of
the full table.
• supplementary point — a point which has a position (a profile in CA) with
mass set equal to zero; in other words a supplementary point is displayed on
the map but has not been used in the construction of the map.
• transition relationship — the relationship between the row and column co-
ordinates in a map.
• vertex — a unit profile, i.e. a profile with all elements zero except one with
value 1.
• Ward clustering — a specific hierarchical clustering algorithm which min-
imizes the within-cluster inertia at each clustering step, equivalent to maxi-
mizing the between-cluster inertia.
• weighted Euclidean distance — similar to Euclidean distance, but with a
positive weighting factor for each squared difference term.
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Correspondence analysis (CA) has been presented in this book as a versatile
method of data visualization, applicable in a wide variety of situations. This
epilogue serves to elaborate further on certain aspects of the method that
arise frequently in discussions, and to add some personal thoughts.

The symmetric
map

The interpretation of the symmetric map remains one of the method’s most
controversial aspects, even though it is the option of choice for CA maps.
This map displays both rows and columns in principal coordinates — that is,
the projections of the row profiles and the projections of the column profiles
are shown in a joint map even though they occupy different spaces. We have
seen (see, for example, Chapters 9 and 10) that the difference between the
symmetric map and the asymmetric map (where the points do lie in the
same space) is the rescaling along principal axes by the square root of the
respective principal inertias. Thus the directions indicated by the points in
principal coordinates and by their counterparts in standard coordinates are
almost the same when the square roots of the principal inertias are not too
different — this can be seen clearly in Exhibit 13.4 where the biplot axes,
which pass through the vertex points, almost coincide with the corresponding
profile points. In such a case, the biplot style of interpreting the display is
valid whether the display is symmetric or asymmetric. If the square roots of
the principal inertias are very different, however, there can be problems with
the biplot style interpretation of the symmetric map — see, for example, the
differences in the directions defined by the smoking categories in Exhibits 9.2
and 9.5. Even so, the distortion induced by using the symmetric map as if
it were a true biplot is not so great, as discussed in the following paper by
Gabriel:

—Gabriel, R. (2002). Goodness of fit of biplots and correspondence analysis.
Biometrika, 89, 423–436.

This means that the scaling debate is really an academic issue and, as far
as the practice of CA is concerned, hardly worth all the discussion that it
has generated. In my opinion, the symmetric map is still the best default
map to use, and is the default option in our ca package for R. If the data
matrix is to be interpreted asymmetrically, with the rows (say) representing
“observational units” (e.g., demographic groups in sociology such as marital
status and educational levels, or sampling locations in ecology or archeology,
or texts in linguistics, etc.) and the columns representing “variables” (e.g.,
response categories in sociology, species in ecology, artefacts in archeology,
or stylistic indicators in linguistics, etc.), then the standard CA biplot is a
good alternative, since it displays optimally the distances between the units
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and gives a valid biplot interpretation of the units projected onto the variable
directions, as well as giving a meaningful length to the variable vectors.

“You can’t
have your cake and

eat it, too!”

This English saying is unfortunately true in this case, as well as the similar
expression “You can’t get everything in life!” It would be wonderful if we
could represent optimally in a single map all three things we would like to
interpret:

i. the distances between the row profiles,

ii. the distances between the column profiles, and

iii. the scalar products between row and column points, which reconstruct the
original data (i.e., the biplot).

But the reality is that we can see at most only two of these three represented
optimally at the same time. In the symmetric map we see optimal represen-
tations of the chi-square distances for the row profiles and for the column
profiles; hence row-to-row distances and column-to-column distances can be
interpreted (i.e., (i) and (ii)). The row–column relationship is not optimally
represented, but can still be interpreted with reasonable assurance, taking into
account the remarks on the previous page. In the asymmetric map we see the
optimal representation of one set of profiles, say the row profiles, while the
column vertices give the extreme profiles as reference points and also lie on the
biplot axes for interpreting the optimal row–column relationship (i.e., (i) and
(iii)). The standard CA biplot is a variation of the asymmetric map which also
shows one set of profiles, say the row profiles, but pulls in the column vertices
by the square roots of their masses to improve the joint representation (i.e.,
(i) and (iii)). In this biplot the lengths of the column vectors on the biplot
axes can be related to their contributions on the principal axes (see Chapter
13).

“Symmetrical
normalization” in

SPSS

Apart from the free R and commercial XLSTAT options described in the Com-
putational Appendix, we have not discussed other software packages which
include CA, among which are Minitab, Stata, Statistica, SPAD, SAS and
SPSS. Because SPSS is widely used, a comment about its options is necessary
here. In SPSS’s CA program in the Categories module, an alternative biplot
is given that has not been illustrated in this book, called the “symmetrical
normalization”, which may be confused with the symmetric map described in
this book. It is not exactly the same thing, however, since it uses standard
coordinates scaled by the square roots of the singular values (i.e., fourth roots
of the principal inertias) instead of the singular values themselves: in other
words (referring to (A.8) and (A.9) on page 202), ΦD

1
2
α and ΓD

1
2
α instead of

the symmetric map’s ΦDα and ΓDα. SPSS’s “symmetrical normalization”
gives optimal representation of scalar products but non-optimal representa-
tions of distances since neither rows nor columns are represented in principal
coordinates. Hence this display gives only one of the three things we want
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(i.e., (iii) but not (i) and (ii)). Even though the difference between this dis-
play and the symmetric map is also a matter of scale factors along the two
axes, and in most cases is hardly distinguishable to an untrained eye, we would
not recommend this map in practice since it represents no benefit (in fact, a
loss) over existing options. If the principal inertias on the two axes are fairly
close, then, as before, the relative positions of points in the “symmetrical nor-
malization” is practically identical to those in the symmetric map, but the
symmetric map is definitely preferable since it shows the chi-square distances
to their true scale. For purposes of comparison, this option is provided in our
R package ca, where it is called the “symmetric biplot”, specified as follows in
the plotting: map="symbiplot" (see page 234). Curiously, the symmetric map,
one of the most popular display options of French researchers, has not been
available in previous versions of SPSS, and it is still not possible in the latest
versions to obtain a joint map of the rows and columns in principal coordi-
nates. The best one can do is to select the “principal” normalization, which
gives the row and column principal coordinates in numerical form, but the
program stubbornly refuses to make a joint map of them, preferring separate
maps. Unless the user’s raw respondent-level data are in SPSS format, the
CA program in SPSS is not recommended. However, the other optimal scal-
ing programs in Categories, for multiple correspondence analysis (called by its
synonym, homogeneity analysis, in previous versions) and nonlinear principal
component analysis (CatPCA) are very useful for social science applications.

Rare
(low-frequency)
categories

The issue of rare categories and their effect on the χ2-distance and the CA
solution is also one that has generated much discussion, especially in ecologi-
cal circles, almost entirely without justification. For example, C. R. Rao has
stated that “since the chi-square distance uses the marginal proportions in the
denominator, undue emphasis is given to the categories with low frequencies
in measuring affinities between profiles” — see page 42 of the following article:

— Rao. C.R. (1995). A review of canonical coordinates and an alternative
to correspondence analysis using Hellinger distance. Qüestiió, 19, 23–63.
Download:

www.idescat.net/sort/questiio/questiiopdf/19.1,2,3.1.radhakrishna.pdf

But the fact is that in CA each category is weighted in the analysis propor-
tional to its mass, which reduces the role played by low-frequency categories
in the analysis. It can be shown very simply by looking at the numerical con-
tributions of each category to the principal axes that rare categories generally
have low influence in the solution — i.e., the solution would be almost the
same if they were removed from the analysis entirely.

As an illustration, for the species abundance data set of Chapter 10 (see
page 77), we calculated the relative abundance for the 10 most abundant and
10 least abundant species and compared this to their respective percentage
contributions to the first two axes of the CA map in Exhibit 10.5. The results
are as follows:
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Contributions to axes
Species Relative abundance Axis 1 Axis 2

10 most abundant 74.6% 77.3% 89.3%
10 least abundant 0.4% 0.8% 0.5%

This illustrates that the rare species do not make an excessive contribution to
the two-dimensional solution — the contributions are very much in line with
the abundances in each subset of species. Only a few times, in our experience,
do low-frequency categories make an excessively large contribution to the
major principal axes, in which case they should be removed or combined with
another category. A case in point is in sociological applications, when low
frequency categories such as missing values coincide in the same subgroup of
respondents. These categories can dominate an MCA solution, often defining
the first principal axis as in Exhibits 18.2 and 18.5. This situation can be
rectified by using a subset analysis, or by combining rare response categories
with others in a sensible way. The analogous situation in ecology would be
when several rare species co-occur in the same samples, but this is not a
common situation — usually rare species occur randomly in different samples.

Low-frequency
categories are
often outliers

Having said that the rows or columns with low frequencies generally have low
influence on the solution, because of low mass, it is true that these points are
often outliers in the CA map, owing to their strange profiles. Outliers draw
attention to themselves and it is probably for this reason that the impression
is given that they may be affecting the analysis strongly. As shown in Chapter
13 and mentioned above, the standard CA biplot would solve this problem by
“pulling in” these points by the square root of their masses, which effectively
eliminates the low frequency outliers since these end up close to the origin.
This also demonstrates graphically that their influence on each principal axis
is quite low.

χ2-distance is a
Mahalanobis

distance

This section is a bit technical but will demonstrate to the statistically minded
reader that the chi-square distance, apart from being the key to all the proper-
ties of CA, can also be defended on theoretical grounds as an appropriate sta-
tistical distance measure. A bit of matrix notation is needed for the weighted
Euclidean distance function in (5.1), which can be written as:

weighted Euclidean distance =
√

(x − y)TDw(x − y) (E.1)

where x and y are vectors with elements xj and yj , j=1,. . .,J , T indicates
transposition of a vector or matrix, and Dw is the diagonal matrix of the
dimension weighting factors wj ’s. The rows, say, of a contingency table can be
assumed to be realizations of a multinomial random variable. The multinomial
distribution is a generalization of the binomial distribution, and is a model
to describe the behaviour of data sampled from a population where there are
probabilities pj , j = 1, . . . , J of observing a sampling unit in one of J groups,
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for example our three readership groups in Chapter 3 (see Exhibit 3.1 on
page 18). Under the null hypothesis that the data are sampled from the same
population, the five education groups in this data set would be multinomial
samples from a population with probabilities p1, p2, p3, where the estimates of
pj for the three groups are the elements of the average profile p̂1 = c1 = 0.183,
p̂2 = c2 = 0.413 and p̂3 = c3 = 0.404 (see last row of Exhibit 3.1). The classic
distance function for grouped multivariate data is the so-called Mahalanobis
distance, based on the inverse of the covariance matrix of the variables:

Mahalanobis distance =
√

(x − y)TΣ−1(x − y) (E.2)

which looks like the weighted Euclidean distance (E.1), except that it involves
a full square matrix of weights Σ−1, not a diagonal matrix. The covariance
matrix Σ for the multinomial distribution has a simple form, for example for
our trinomial case J = 3 (the results are similar for any number of groups):

Σ =

⎡
⎣ p1(1 − p1) −p1p2 −p1p3

−p2p1 p2(1 − p2) −p2p3

−p3p1 −p3p2 p3(1 − p3)

⎤
⎦ = Dp − ppT (E.3)

where p is the vector of the pj ’s and Dp is the corresponding diagonal matrix.
(E.3) is estimated by substituting the probabilities pj by their estimates cj .
To invert the covariance matrix Σ in the usual way is not possible since it
is a singular matrix, so we cannot find a matrix Σ−1 such that ΣΣ−1 = I.
One way to get around this is to drop one of the categories and use just
J −1 categories throughout. Whichever category is omitted, the Mahalanobis
distance will be the same. An alternative more elegant approach, which is
entirely equivalent but uses all J categories, is to use a so-called generalized
inverse, denoted by Σ−, which has the property that ΣΣ−Σ=Σ (this is also
known as the Moore-Penrose inverse). It turns out that the Moore-Penrose
generalized inverse of (E.3) is equal to:

Σ− =

⎡
⎣ 1/p1 0 0

0 1/p2 0
0 0 1/p3

⎤
⎦ = D−1

p (E.4)

which means that the Mahalanobis distance in (E.2) is estimated exactly by
the χ2-distance. The situation here is similar to that in linear discriminant
analysis: to discriminate maximally between groups, the groups are assumed
to have equal covariance matrices, which in the multinomial case translates
to our assuming the independence model, and then the data vectors are em-
bedded in Mahalanobis space, which translates to chi-square space.

Rotation of
solutions

The issue of rotations has not been treated in this book because seldom are
rotations justified or needed in CA. On the one hand, the profile space is
not unbounded real vector space but a space delimited by the unit points,
or vertices, defining a simplex in multidimensional space. The idea of lining
up the category points along specific axes at right angles does not have the
same meaning as in factor analysis where right-angledness really means zero
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correlation between variables (remember that one category point in CA is
always determined by all the others, because the elements of a profile add up
to 1). Rotations can be appropriate in some contexts in MCA and nonlinear
PCA (not treated in this book) where several variables are analyzed simul-
taneously. For example, it frequently occurs that all non-response points in
MCA lie together in a bunch owing to high association in the data set but
not coinciding with a principal axis, in which case it would be good to be able
to rotate the solution as a way to “partial out” the non-response points. But
this problem can be better solved by doing a subset analysis (Chapter 21)
which completely ignores the non-response points and focuses totally on the
substantive responses. If rotation of a solution is required, then the masses of
the category points should be taken into account in the rotation. For example,
a weighted version of the usual varimax rotation in factor analysis would be to
maximize the criterion (assuming rotation of the column points is required):∑

j

∑
k

c2
j(ỹ

2
jk − 1

J

∑
j′

ỹ2
j′k)2 (E.5)

where ỹjk is the rotated standard coordinate, that is the (j, k)-th element of
Ỹ = YQ, for Q an orthogonal rotation matrix. Notice that the mass cj is
squared because the objective function involves the fourth powers of the coor-
dinates. Since cj ỹ

2
jk = (c

1
2
j ỹjk)2, an almost identical alternative is suggested,

which is a small modification of the usual varimax criterion: perform a rotation
(unweighted) on the rescaled standard coordinates c

1
2
j yjk, which are exactly

those used in the standard CA biplot. In other words, rotate the solution to
concentrate (or reify in factor analysis terminology) the contributions of the
categories on the rotated axes.

CA and
modelling

In Chapter 13 CA in K∗ dimensions was shown to be a decomposition which
can be written as follows (see (13.4), also (A.14) in the Theoretical Appendix):

pij = ricj + ricj

(
K∗∑
k=1

√
λkφikγjk

)
+ eij i = 1, . . . , I; j = 1, . . . , J (E.6)

The CA solution is obtained by minimizing the weighted sum of squares of
the residuals eij . The first part of the decomposition, ricj, is the expected
value under the model of independence, so that the second part is explaining
the deviations from the independence model as the sum of K∗ bilinear terms
(this bilinear part has a geometric interpretation in K∗ dimensions which is
the subject of most of this book). Any other model of the user’s choice can be
substituted for the independence model. For example, in the following article,
the authors consider log-linear models for a contingency table, and then use
CA as a way of exploring the structure, if any, in the deviations from the
log-linear model:

— van der Heijden, P.G.M., de Falguerolles, A., and de Leeuw, J. (1989). A
combined approach to contingency table analysis and log-linear analysis
(with discussion). Applied Statistics , 38, 249–292.
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This strategy can be used for multiway tables as well, using a contingency
table modelling approach to account for main effects and chosen interactions
in a first step, then calculating the residuals from the model and analyzing
these by CA. But note that this is not a straightforward application of CA,
since the data have already been centred with respect to the model. The
centring step in CA must not be performed and the original margins of the
table must be used in the weighted least-squares fitting.

CA and spectral
mapping

CA has a close affinity to spectral mapping, a method developed originally
by Paul Lewi in the 1970s and used extensively in the analysis of biological
activity spectra in the development of new drugs. A more recent reference is:

— Lewi, P.J. (1998) Analysis of contingency tables. In Handbook of Chemo-
metrics and Qualimetrics: Part B (eds. B.G.M. Vandeginste, D.L. Massart,
L.M.C. Buydens, S. de Jong, P.J. Lewi, J. Smeyers-Verbeke), Chapter 32,
pp. 161–206. Amsterdam: Elsevier.

Spectral mapping operates on the logarithms of the table, but incorporates
the same weighting of rows and columns as in CA, i.e., by the row and column
masses computed on the original table. The log-transformed table is double-
centred with respect to the weighted row and column averages before applying
the SVD as in CA. If the inertia in the data is low, then spectral mapping and
CA are almost identical. The difference in the two methods is greater when the
inertia are higher. Spectral mapping involves mapping the logarithms of ratios
of the data, and has very interesting model-diagnostic properties. It also obeys
the principle of distributional equivalence (see pages 37–38) and, in addition,
has the property of subcompositional coherence, which is the property which
underpins the analysis of compositional data: since the ratios between two
data values remains the same whether or not rows or columns are excluded
from the table, subsets of rows or columns can be analyzed with impunity.
In CA on the other hand, profiles and distances are affected when analyzing
subsets; that is, CA is not subcompositionally coherent, hence the special
adaptation called subset CA described in Chapter 21. For more details and
further references, consult the following unpublished working paper:

—Greenacre, M.J. and Lewi, P.J. (2005). Distributional equivalence and sub-
compositional coherence in the analysis of contingency tables, ratio-scale
measurements and compositional data. Working Paper no. 908, Depart-
ment of Economics and Business, Universitat Pompeu Fabra, Barcelona.
Download: www.econ.upf.edu/en/research/onepaper.php?id=908

The dimensionality
of a multivariate
categorical data
set

To conclude this epilogue, here is an unsolved problem. We know that in simple
CA the dimensionality of an I ×J table is min(I − 1, J − 1). For a J ×J Burt
matrix based on Q categorical variables, the dimensionality is J − Q, but
we know that J − Q dimensions are much more than we need to reproduce
the off-diagonal tables exactly. We propose that the dimensionality of a Q-
variable data set be defined as the number of dimensions required to reproduce
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the 1
2Q(Q − 1) cross-tabulations exactly. In other words, the dimensionality

is the number of dimensions required in a joint CA to explain 100% of the
inertia. The question is: can this dimensionality be determined beforehand or
does it need to be discovered empirically? Using the rule in adjusted MCA of
considering only the K∗ dimensions for which

√
λk > 1/Q (see page 149, for

example the adjusted inertia in (19.7)), it would be convenient if this provided
the clue to the dimensionality. In empirical studies the inertia explained using
this number (K∗) of dimensions is usually very close to 100%, but this is no
proof, of course, that the dimensionality is K∗. Perhaps, by the time a third
edition of this book is published, this problem will have been solved!
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