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Preface

All men by nature desire knowledge

ARISTOTLE

Metaphysics, Book I

Knowledge, however meager, is usable
if we know the amount of

uncertainty in it

CR Rao

Statistics has become an integral part of scientific investigations in virtually all disci-
plines and is used extensively in industry and government organizations. Probability
& Statistics with R for Engineers and Scientists offers a comprehensive introduction
to the most commonly used statistical ideas and methods.

This book evolved from lecture notes for a one-semester course aimed mainly
at undergraduate students in engineering and the natural sciences, as well as mathe-
matics education majors and graduate students from various disciplines. The choice
of examples, exercises, and data sets reflects the diversity of this audience.

The mathematical level has been kept relatively modest. Students who have
completed one semester of differential and integral calculus should find almost all
the exposition accessible. In particular, substantial use of calculus is made only in
Chapters 3 and 4 and the third section of Chapter 6. Matrix algebra is used only in
Chapter 12, which is usually not taught in a one-semester course.

THE R SOFTWARE PACKAGE
The widespread use of statistics is supported by a number of statistical software
packages. Thus, modern courses on statistical methodology familiarize students with
reading and interpreting software output. In sharp contrast to other books with
the same intended audience, this book emphasizes not only the interpretation of
software output, but also the generation of this output.

I decided to emphasize the software R (launched in 1984), which is spon-
sored by the Free Software Foundation. R is now used by the vast majority
of statistics graduate students for thesis research, is a leader in new software
development,1 and is increasingly accepted in industry.2 Moreover, R can be
downloaded for free so students do not have to go to computer labs for their assign-
ments. (To download R, go to the site http://www.R-project.org/ and follow the
instructions.)

1 See, e.g., http://www.r-bloggers.com/r-and-the-journal-of-computational-and-graphical-statistics.
2 See the New York Times article “Data Analysts Captivated by R’s Power,” by Ashlee Vance, January 6, 2009.

ix

http://www.R-project.org/
http://www.r-bloggers.com/r-and-the-journal-of-computational-and-graphical-statistics
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TEACHING INNOVATIONS AND CHAPTER CONTENT
In addition to the use of a software package as an integral part of teaching
probability and statistics, this book contains a number of other innovative
approaches, reflecting the teaching philosophy that: (a) students should be
intellectually challenged and (b) major concepts should be introduced as early as
possible.

This text’s major innovations occur in Chapters 1 and 4. Chapter 1 covers most
of the important statistical concepts including sampling concepts, random variables,
the population mean and variance for finite populations, the corresponding sam-
ple statistics, and basic graphics (histograms, stem and leaf plots, scatterplots, matrix
scatterplots, pie charts and bar graphs). It goes on to introduce the notions of sta-
tistical experiments, comparative studies, and corresponding comparative graphics.
The concepts and ideas underlying comparative studies, including main effects and
interactions, are interesting in themselves, and their early introduction helps engage
students in “statistical thinking.”

Chapter 4, which deals with joint (mainly bivariate) distributions, covers the
standard topics (marginal and conditional distributions, and independence of ran-
dom variables), but also introduces the important concepts of covariance and
correlation, along with the notion of a regression function. The simple linear regres-
sion model is discussed extensively, as it arises in the hierarchical model approach
for defining the bivariate normal distribution.

Additional innovations are scattered throughout the rest of the chapters.
Chapter 2 is devoted to the definition and basic calculus of probability. Except for
the use of R to illustrate some concepts and the early introduction of probabil-
ity mass function, this material is fairly standard. Chapter 3 gives a more general
definition of the mean value and variance of a random variable and connects it to
the simple definition given in Chapter 1. The common probability models for dis-
crete and continuous random variables are discussed. Additional models commonly
used in reliability studies are presented in the exercises. Chapter 5 discusses the
distribution of sums and the Central Limit Theorem. The method of least squares,
method of moments, and method of maximum likelihood are discussed in Chapter
6. Chapters 7 and 8 cover interval estimation and hypothesis testing, respectively,
for the mean, median, and variance as well as the parameters of the simple lin-
ear regression model. Chapters 9 and 10 cover inference procedures for two and
k > 2 samples, respectively, including paired data and randomized block designs.
Nonparametric, or rank-based, inference is discussed alongside traditional meth-
ods of inference in Chapters 7 through 10. Chapter 11 is devoted to the analysis
of two-factor, three-factor, and fractional factorial designs. Polynomial and multiple
regression, and related topics such as weighted least squares, variable selection, mul-
ticollinearity, and logistic regression are presented in Chapter 12. The final chapter,
Chapter 13, develops procedures used in statistical process control.

DATA SETS
This book contains both real life data sets, with identified sources, and simulated
data sets. They can all be found at

www.pearsonhighered.com/akritas

Clicking on the name of a particular data set links to the corresponding data file.
Importing data sets into R from the URL is easy when using the read.table command.
As an example, you can import the data set BearsData.txt into the R data frame br
by copying and pasting its URL into a read.table command:

http://www.pearsonhighered.com/akritas
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br=read.table(”http://media.pearsoncmg.com/cmg/pmmg_mml_shared/
mathstatsresources/Akritas/BearsData.txt”, header=T)

The data sets can also be downloaded to your computer and then imported into R
from there.

Throughout the book, the read.table command will include only the name of the
particular data set to be imported into R. For example, the command for importing
the bear data into R will be given as

br=read.table(”BearsData.txt”, header=T)

SUGGESTED COVERAGE
This book has enough material for a year-long course, but can also be adapted for
courses of one semester or two quarters. In a one-semester course, meeting three
times a week, I cover selected topics from Chapters 1 through 10 and, recalling
briefly the concepts of main effects and interaction (first introduced in Chapter 1),
I finish the course by explaining the R commands and output for two-way anal-
ysis of variance. I typically deemphasize joint continuous distributions in Chapter
4 and may skip one or more of the following topics: multinomial distribution
(Section 4.6.4), the method of maximum likelihood (Section 6.3.2), sign confidence
intervals for the median (Section 7.3.4), the comparison of two variances (Section
9.4), the paired T test for proportions (Section 9.5.3), the Wilcoxon signed-rank test
(Section 9.5.4), and the chi-square test for proportions (Section 10.2.3). It is possible
to include material from Chapter 13 on statistical process control (for example after
Chapter 8) by omitting additional material. One suggestion is to omit the section
on comparing estimators (Section 6.4), confidence intervals and tests for a normal
variance (Sections 7.3.5 and 8.3.6), and randomized block designs (Section 10.4).

ACKNOWLEDGMENTS
I greatly appreciate the support of the Department of Statistics at Penn State
University and express my sincere thanks to colleagues, instructors, and graduate
students who used various editions of the lecture notes and provided many sugges-
tions for improvement over the years. I also thank all the people at Pearson for a
highly professional and cordial collaboration through the various stages of produc-
tion of the book. Special thanks go to Mary Sanger who supervised the last stages of
production with an exceptionally high level of care and professionalism.

I am very grateful for numerous edits and substantive suggestions I received
by the following reviewers: Keith Friedman, University of Texas at Austin; Steven
T. Garren, James Madison University; Songfeng Zheng, Missouri State University;
Roger Johnson, South Dakota School of Mines & Technology; Subhash Kochar,
Portland State University; Michael Levine, Purdue University; Karin Reinhold,
SUNY at Albany; Kingsley A. Reeves, Jr., University of South Florida; Katarina
Jegdic, University of Houston Downtown; Lianming Wang, University of South
Carolina; Lynne Butler, Haverford College; John Callister, Cornell University.
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Chapte r

1Basic Statistical Concepts

1.1 Why Statistics?
Statistics deals with collecting, processing, summarizing, analyzing, and interpreting
data. On the other hand, scientists and engineers deal with such diverse issues as the
development of new products, effective use of materials and labor, solving produc-
tion problems, quality improvement and reliability, and, of course, basic research.
The usefulness of statistics as a tool for dealing with the above problems is best seen
through some specific case studies mentioned in the following example.

Example
1.1-1

Examples of specific case studies arising in the sciences and engineering include

1. estimating the coefficient of thermal expansion of a metal;
2. comparing two methods of cloud seeding for hail and fog suppression at

international airports;
3. comparing two or more methods of cement preparation in terms of compres-

sive strength;
4. comparing the effectiveness of three cleaning products in removing four

different types of stains;
5. predicting the failure time of a beam on the basis of stress applied;
6. assessing the effectiveness of a new traffic regulatory measure in reducing the

weekly rate of accidents;
7. testing a manufacturer’s claim regarding the quality of its product;
8. studying the relation between salary increases and employee productivity in a

large corporation;
9. estimating the proportion of US citizens age 18 and over who are in favor of

expanding solar energy sources; and
10. determining whether the content of lead in the water of a certain lake is within

the safety limit.

The reason why tasks like the above require statistics is variability. Thus, if
all cement prepared according to the same method had the same compressive
strength, the task of comparing the different methods in case study 3 would not
require statistics; it would suffice to compare the compressive strength of one cement
specimen prepared from each method. However, the strength of different cement

1
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specimens prepared by the same method will, in general, differ. Figure 1-1 shows
the histogram for 32 compressive strength measurements.1 (See Section 1.5 for a
discussion about histograms.) Similarly, if all beams fail at the same time under a
given stress level, the prediction problem in case study 5 would not require statistics.
A similar comment applies to all the case studies mentioned in Example 1.1-1.

An appreciation of the complications caused by variability begins by realizing
that the problem of case study 3, as stated, is ambiguous. Indeed, if the hardness
differs among preparations of the same cement mixture, then what does it mean to
compare the hardness of different cement mixtures? A more precise statement of
the problem would be to compare the average (or mean) hardness of the different
cement mixtures. Similarly, the estimation problem in case study 1 is stated more
precisely by referring to the average (or mean) thermal expansion.

It should also be mentioned that, due to variability, the familiar words average
and mean have a technical meaning in statistics that can be made clear through the
concepts of population and sample. These concepts are discussed in the next section.

1.2 Populations and Samples
As the examples of case studies mentioned in Example 1.1-1 indicate, statistics
becomes relevant whenever the study involves the investigation of certain charac-
teristic(s) of members (objects or subjects) in a certain population or populations.
In statistics the word population is used to denote the set of all objects or subjects
relevant to the particular study that are exposed to the same treatment or method.
The members of a population are called population units.

Example
1.2-1

(a) In Example 1.1-1, case study 1, the characteristic under investigation is the
thermal expansion of a metal in the population of all specimens of the
particular metal.

(b) In Example 1.1-1, case study 3, we have two or more populations, one for
each type of cement mixture, and the characteristic under investigation is
compressive strength. Population units are the cement preparations.

(c) In Example 1.1-1, case study 5, the characteristic of interest is time to failure
of a beam under a given stress level. Each stress level used in the study

1 Compressive strength, in MPa (megapascal units), of test cylinders 6 in. in diameter by 12 in. high, using
water/cement ratio of 0.4, measured on the 28th day after they were made.
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corresponds to a separate population that consists of all beams that will be
exposed to that stress level.

(d) In Example 1.1-1, case study 8, we have two characteristics, salary increase
and productivity, for each subject in the population of employees of a large
corporation.

In Example 1.2-1, part (c), we see that all populations consist of the same type of
beams but are distinguished by the fact that beams of different populations will be
exposed to different stress levels. Similarly, in Example 1.1-1, case study 2, the two
populations consist of the same type of clouds distinguished by the fact that they will
be seeded by different methods.

As mentioned in the previous section, the characteristic of interest varies
among members of the same population. This is called the inherent or intrinsic
variability of a population. A consequence of intrinsic variability is that complete,
or population-level, understanding of characteristic(s) of interest requires a census,
that is, examination of all members of the population. For example, full understand-
ing of the relation between salary and productivity, as it applies to the population of
employees of a large corporation (Example 1.1-1, case study 8), requires obtain-
ing information on these two characteristics for all employees of the particular
large corporation. Typically, however, census is not conducted due to cost and time
considerations.

Example
1.2-2

(a) Cost and time considerations make it impractical to conduct a census of all US
citizens age 18 and over in order to determine the proportion of these citizens
who are in favor of expanding solar energy sources.

(b) Cost and time considerations make it impractical to analyze all the water in a
lake in order to determine the lake’s content of lead.

Moreover, census is often not feasible because the population is hypothetical
or conceptual, in the sense that not all members of the population are available for
examination.

Example
1.2-3

(a) If the objective is to study the quality of a product (as in Example 1.1-1, case
studies 7 and 4), the relevant population consists not only of the available sup-
ply of this product, but also that which will be produced in the future. Thus, the
relevant population is hypothetical.

(b) In a study aimed at reducing the weekly rate of accidents (Example 1.1-1, case
study 6) the relevant population consists not only of the one-week time periods
on which records have been kept, but also of future one-week periods. Thus,
the relevant population is hypothetical.

In studies where it is either impractical or infeasible to conduct a census (which
is the vast majority of cases), answers to questions regarding population-level prop-
erties/attributes of characteristic(s) under investigation are obtained by sampling the
population. Sampling refers to the process of selecting a number of population units
and recording their characteristic(s). For example, determination of the proportion
of US citizens age 18 and over who are in favor of expanding solar energy sources
is based on a sample of such citizens. Similarly, the determination of whether or not
the content of lead in the water of a certain lake is within the safety limit must be
based on water samples. The good news is that if the sample is suitably drawn from
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the population, then the sample properties/attributes of the characteristic of interest
resemble (though they are not identical to) the population properties/attributes.

Example
1.2-4

(a) A sample proportion (i.e., the proportion in a chosen sample) of US citizens
who favor expanding the use of solar energy approximates (but is, in gen-
eral, different from) the population proportion. (Precise definitions of sample
proportion and population proportion are given in Section 1.6.1.)

(b) The average concentration of lead in water samples (sample average) approx-
imates (but is, in general, different from) the average concentration in the
entire lake (population average). (Precise definitions of sample average and
population average are given in Section 1.6.2.)

(c) The relation between salary and productivity manifested in a sample of
employees approximates (but is, in general, different from) the relation in the
entire population of employees of a large corporation.

Example
1.2-5

The easier-to-measure chest girth of bears is often used to estimate the harder-to-
measure weight. Chest girth and weight measurements for 50 bears residing in a
given forested area are marked with “x” in Figure 1-2. The colored circles indicate
the chest girth and weight measurements of the bears in a sample of size 10.2 The
black line captures the roughly linear relationship between chest girth and weight
in the population of 50 black bears, while the colored line does the same for the
sample.3 It is seen that the relationship between chest girth and weight suggested by
the sample is similar but not identical to that of the population.

Sample properties of the characteristic of interest also differ from sample to
sample. This is another consequence of the intrinsic variability of the population
from which samples are drawn. For example, the number of US citizens, in a sample
of size 20, who favor expanding solar energy will (most likely) be different from the
corresponding number in a different sample of 20 US citizens. (See also the examples
in Section 1.6.2.) The term sampling variability is used to describe such differences
in the characteristic of interest from sample to sample.
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Figure 1-2 Population and
sample relationships
between chest girth (in)
and weight (lb) of black
bears.

2 The sample was obtained by the method of simple random sampling described in Section 1.3.
3 The lines were fitted by the method of least squares described in Chapter 6.
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Figure 1-3 Variability in
the relationships between
chest girth and weight of
black bears suggested by
two different samples of
size 10.

Example
1.2-6

As an illustration of sampling variability, a second sample of size 10 was taken from
the population of 50 black bears described in Example 1.2-5. Figure 1-3 shows the
chest girth and weight measurements for the original sample in colored dots while
those for the second sample are shown in black dots. The sampling variability is
demonstrated by the colored and black lines, which suggest somewhat different
relationships between chest girth and weight, although both lines approximate the
population relationship.

One must never lose sight of the fact that all scientific investigations aim
at discovering the population-level properties/attributes of the characteristic(s) of
interest. In particular, the problems in all the case studies mentioned in Example
1.1-1 refer to population-level properties. Thus, the technical meaning of the famil-
iar word average (or mean), which was alluded to at the end of Section 1.1, is that of
the population average (or mean); see Section 1.6.2 for a precise definition.

Population-level properties/attributes of characteristic(s) are called population
parameters. Examples include the population mean (or average) and the popula-
tion proportion that were referred to in Example 1.2-4. These and some additional
examples of population parameters are defined in Sections 1.6 and 1.7. Further
examples of population parameters, to be discussed in later chapters, include the
correlation coefficient between two characteristics, e.g., between salary increase and
productivity or between chest girth and weight. The corresponding sample proper-
ties/attributes of characteristics are called statistics, which is a familiar term because
of its use in sports statistics. The sample mean (or average), sample proportion, and
some additional statistics are defined in Sections 1.6 and 1.7, while further statistics
are introduced in later chapters.

A sample can be thought of as a window that provides a glimpse into the
population. However, due to sampling variability, a sample cannot yield accurate
information regarding the population properties/attributes of interest. Using the
new terminology introduced in the previous paragraph, this can be restated as: statis-
tics approximate corresponding population parameters but are, in general, not equal
to them.

Because only sample information is available, population parameters remain
unknown. Statistical inference is the branch of statistics dealing with the uncertainty
issues that arise in extrapolating to the population the information contained in the
sample. Statistical inference helps decision makers choose actions in the absence of
accurate knowledge about the population by
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• assessing the accuracy with which statistics approximate corresponding
population parameters; and

• providing an appraisal of the probability of making the wrong decision, or
incorrect prediction.

For example, city officials might want to know whether a new industrial plant
is pushing the average air pollution beyond the acceptable limits. Air samples are
taken and the air pollution is measured in each sample. The sample average, or
sample mean, of the air pollution measurements must then be used to decide if
the overall (i.e., population-level) average air pollution is elevated enough to jus-
tify taking corrective action. In the absence of accurate knowledge, there is a risk
that city officials might decide that the average air pollution exceeds the acceptable
limit, when in fact it does not, or, conversely, that the average air pollution does not
exceed the acceptable limit, when in fact it does.

As we will see in later chapters, statistical inference mainly takes the form
of estimation (both point and, the more useful, interval estimation) of the pop-
ulation parameter(s) of interest, and of testing various hypotheses regarding the
value of the population parameter(s) of interest. For example, estimation would
be used in the task of estimating the average coefficient of thermal expansion of
a metal (Example 1.1-1, case study 1), while the task of testing a manufacturer’s
claim regarding the quality of its product (Example 1.1-1, case study 7) involves
hypothesis testing. Finally, the principles of statistical inference are also used in the
problem of prediction, which arises, for example, if we would like to predict the fail-
ure time of a particular beam on the basis of the stress to which it will be exposed
(Example 1.1-1, case study 5). The majority of the statistical methods presented in
this book fall under the umbrella of statistical inference.

Exercises

1. A car manufacturer wants to assess customer satisfac-
tion for cars sold during the previous year.
(a) Describe the population involved.
(b) Is the population involved hypothetical or not?

2. A field experiment is conducted to compare the yield
of three varieties of corn used for biofuel. Each variety
will be planted on 10 randomly selected plots and the
yield will be measured at the time of harvest.
(a) Describe the population(s) involved.
(b) What is the characteristic of interest?
(c) Describe the sample(s).

3. An automobile assembly line is manned by two shifts
a day. The first shift accounts for two-thirds of the overall
production. Quality control engineers want to compare
the average number of nonconformances per car in each
of the two shifts.
(a) Describe the population(s) involved.
(b) Is (are) the population(s) involved hypothetical or

not?
(c) What is the characteristic of interest?

4. A consumer magazine article titled “How Safe Is the
Air in Airplanes” reports that the air quality, as quantified
by the degree of staleness, was measured on 175 domestic
flights.

(a) Identify the population of interest.
(b) Identify the sample.
(c) What is the characteristic of interest?

5. In an effort to determine the didactic benefits of com-
puter activities when used as an integral part of a statistics
course for engineers, one section is taught using the tra-
ditional method, while another is taught with computer
activities. At the end of the semester, each student’s
score on the same test is recorded. To eliminate unnec-
essary variability, both sections were taught by the same
professor.

(a) Is there one or two populations involved in the
study?

(b) Describe the population(s) involved.
(c) Is (are) the population(s) involved hypothetical or

not?
(d) What is (are) the sample(s) in this study?
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1.3 Some Sampling Concepts
1.3.1 REPRESENTATIVE SAMPLES

Proper extrapolation of sample information to the population, that is, valid statis-
tical inference, requires that the sample be representative of the population. For
example, extrapolation of the information from a sample that consists of those who
work in the oil industry to the population of US citizens will unavoidably lead to
wrong conclusions about the prevailing public opinion regarding the use of solar
energy.

A famous (or infamous) example that demonstrates what can go wrong when a
non-representative sample is used is the Literary Digest poll of 1936. The magazine
Literary Digest had been extremely successful in predicting the results in US presi-
dential elections, but in 1936 it predicted a 3-to-2 victory for Republican Alf Landon
over the Democratic incumbent Franklin Delano Roosevelt. The blunder was due to
the use of a non-representative sample, which is discussed further in Section 1.3.4. It
is worth mentioning that the prediction of the Literary Digest magazine was wrong
even though it was based on 2.3 million responses (out of 10 million questionnaires
sent). On the other hand, Gallup correctly predicted the outcome of that election by
surveying only 50,000 people.

The notion of representativeness of a sample, though intuitive, is hard to pin
down because there is no way to tell just by looking at a sample whether or not
it is representative. Thus we adopt an indirect definition and say that a sample is
representative if it leads to valid statistical inference. The only assurance that the
sample will be representative comes from the method used to select the sample.
Some of these sampling methods are discussed below.

1.3.2 SIMPLE RANDOM SAMPLING AND STRATIFIED SAMPLING

The most straightforward method for obtaining a representative sample is called
simple random sampling. A sample of size n, selected from some population, is a
simple random sample if the selection process ensures that every sample of size n
has an equal chance of being selected. In particular, every member of the population
has the same chance of being included in the sample.

A common way to select a simple random sample of size n from a finite pop-
ulation consisting of N units is to number the population units from 1, . . . , N, use
a random number generator to randomly select n of these numbers, and form the
sample from the units that correspond to the n selected numbers. A random num-
ber generator for selecting a simple random sample simulates the process of writing
each number from 1, . . . , N on slips of paper, putting the slips in a box, mixing them
thoroughly, selecting one slip at random, and recording the number on the slip. The
process is repeated (without replacing the selected slips in the box) until n distinct
numbers from 1, . . . , N have been selected.

Example
1.3-1

Sixty KitchenAid professional grade mixers are manufactured per day. Prior to ship-
ping, a simple random sample of 12 must be selected from each day’s production and
carefully rechecked for possible defects.

(a) Describe a procedure for obtaining a simple random sample of 12 mixers from
a day’s production of 60 mixers.

(b) Use R to implement the procedure described in part (a).
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Solution
As a first step we identify each mixer with a number from 1 to 60. Next, we write
each number from 1 to 60 on separate, identical slips of paper, put all 60 slips of
paper in a box, and mix them thoroughly. Finally, we select 12 slips from the box,
one at a time and without replacement. The 12 numbers selected specify the desired
sample of size n = 12 mixers from a day’s production of 60. This process can be
implemented in R with the command

Simple Random Sampling in R

y=sample(seq(1,60), size=12) (1.3.1)

The command without the y = , that is, sample(seq(1, 60), size = 12), will result in the
12 random numbers being typed in the R console; with the command as stated the
random numbers are stored in the object y and can be seen by typing the letter “y.”
A set of 12 numbers thus obtained is 6, 8, 57, 53, 31, 35, 2, 4, 16, 7, 49, 41.

Clearly, the above technique cannot be used with hypothetical/infinite popula-
tions. However, measurements taken according to a set of well-defined instructions
can assure that the essential properties of simple random sampling hold. For exam-
ple, in comparing the compressive strength of cement mixtures, guidelines can be
established for the mixture preparations and the measurement process to assure that
the sample of measurements taken is representative.

As already mentioned, simple random sampling guarantees that every popula-
tion unit has the same chance of being included in the sample. However, the mere
fact that every population unit has the same chance of being included in the sample
does not guarantee that the sampling process is simple random. This is illustrated in
the following example.

Example
1.3-2

In order to select a representative sample of 10 from a group of 100 undergradu-
ate students consisting of 50 male and 50 female students, the following sampling
method is implemented: (a) assign numbers 1–50 to the male students and use a ran-
dom number generator to select five of them; (b) repeat the same for the female
students. Does this method yield a simple random sample of 10 students?

Solution
First note that the sampling method described guarantees that every student has the
same chance (1 out of 10) of being selected. However, this sampling excludes all
samples with unequal numbers of male and female students. For example, samples
consisting of 4 male and 6 female students are excluded, that is, have zero chance of
being selected. Hence, the condition for simple random sampling, namely, that each
sample of size 10 has equal chance of being selected, is violated. It follows that the
method described does not yield a simple random sample.

The sampling method of Example 1.3-2 is an example of what is called strati-
fied sampling. Stratified sampling can be used whenever the population of interest
consists of well-defined subgroups, or sub-populations, which are called strata.
Examples of strata are ethnic groups, types of cars, age of equipment, differ-
ent labs where water samples are sent for analysis, and so forth. Essentially, a
stratified sample consists of simple random samples from each of the strata. A
common method of choosing the within-strata sample sizes is to make the sample
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representation of each stratum equal to its population representation. This method
of proportionate allocation is used in Example 1.3-2. Stratified samples are also rep-
resentative, that is, they allow for valid statistical inference. In fact, if population
units belonging to the same stratum tend to be more homogenous (i.e., similar) than
population units belonging in different strata, then stratified sampling provides more
accurate information regarding the entire population, and thus it is preferable.

1.3.3 SAMPLING WITH AND WITHOUT REPLACEMENT

In sampling from a finite population, one can choose to do the sampling with replace-
ment or without replacement. Sampling with replacement means that after a unit is
selected and its characteristic is recorded, it is replaced back into the population and
may therefore be selected again. Tossing a fair coin can be thought of as sampling
with replacement from the population {Heads, Tails}. In sampling without replace-
ment, each unit can be included only once in the sample. Hence, simple random
sampling is sampling without replacement.

It is easier to analyze the properties of a sample drawn with replacement because
each selected unit is drawn from the same (the original) population of N units.
(Whereas, in sampling without replacement, the second selection is drawn from a
reduced population of N − 1 units, the third is drawn from a further reduced popu-
lation of N − 2 units, and so forth.) On the other hand, including population unit(s)
more than once (which is possible when sampling with replacement) clearly does not
enhance the representativeness of the sample. Hence, the conceptual convenience
of sampling with replacement comes with a cost, and, for this reason, it is typically
avoided (but see the next paragraph). However, the cost is negligible when the pop-
ulation size is much larger than the sample size. This is because the likelihood of
a unit being included twice in the sample is negligible, so that sampling with and
without replacement are essentially equivalent. In such cases, we can pretend that
a sample obtained by simple random sampling (i.e., without replacement) has the
same properties as a sample obtained with replacement.

A major application of sampling with replacement occurs in the statistical
method known by the name of bootstrap. Typically, however, this useful and widely
used tool for statistical inference is not included in introductory textbooks.

1.3.4 NON-REPRESENTATIVE SAMPLING

Non-representative samples arise whenever the sampling plan is such that a part,
or parts, of the population of interest are either excluded from, or systematically
under-represented in, the sample.

Typical non-representative samples are the so-called self-selected and conve-
nience samples. As an example of a self-selected sample, consider a magazine that
conducts a reply-card survey of its readers, then uses information from cards that
were returned to make statements like “80% of readers have purchased cellphones
with digital camera capabilities.” In this case, readers who like to update and try
new technology are more likely to respond indicating their purchases. Thus, the pro-
portion of purchasers of cellphones with digital camera capabilities in the sample of
returned cards will likely be much higher than it is amongst all readers. As an exam-
ple of a convenience sample, consider using the students in your statistics class as a
sample of students at your university. Note that this sampling plan excludes students
from majors that do not require a statistics course. Moreover, most students take
statistics in their sophomore or junior year and thus freshmen and seniors will be
under-represented.
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Perhaps the most famous historical example of a sampling blunder is the 1936
pre-election poll by the Literary Digest magazine. For its poll, the Literary Digest
used a sample of 10 million people selected mainly from magazine subscribers, car
owners, and telephone directories. In 1936, those who owned telephones or cars,
or subscribed to magazines, were more likely to be wealthy individuals who were
not happy with the Democratic incumbent. Thus, it was a convenience sample that
excluded (or severely under-represented) parts of the population. Moveover, only
2.3 million responses were returned from the 10 million questionnaires that were
sent. Obviously, those who felt strongly about the election were more likely to
respond, and a majority of them wanted change. Thus, the Literary Digest sample
was self-selected, in addition to being a sample of convenience. (The Literary Digest
went bankrupt, while Gallup survived to make another blunder another day [in the
1948 Dewey-Truman contest].)

The term selection bias refers to the systematic exclusion or under-
representation of some part(s) of the population of interest. Selection bias, which
is inherent in self-selected and convenience samples, is the typical cause of non-
representative samples. Simple random sampling and stratified sampling avoid
selection bias. Other sampling methods that avoid selection bias do exist, and in
some situations they can be less costly or easier to implement. But in this book we
will mainly assume that the samples are simple random samples, with occasional
passing reference to stratified sampling.

Exercises

1. The person designing the study of Exercise 5 in
Section 1.2, aimed at determining the didactic benefits
of computer activities, can make one of the two choices:
(i) make sure that the students know which of the two
sections will be taught with computer activities, so they
can make an informed choice, or (ii) not make available
any information regarding the teaching method of the two
sections. Which of these two choices provides a closer
approximation to simple random sampling?

2. A type of universal remote for home theater systems
is manufactured in three distinct locations. Twenty per-
cent of the remotes are manufactured in location A, 50%
in location B, and 30% in location C. The quality con-
trol team (QCT) wants to inspect a simple random sample
(SRS) of 100 remotes to see if a recently reported prob-
lem with the menu feature has been corrected. The QCT
requests that each location send to the QC Inspection
Facility a SRS of remotes from their recent production as
follows: 20 from location A, 50 from B, and 30 from C.
(a) Does the sampling scheme described produce a sim-

ple random sample of size 100 from the recent pro-
duction of remotes?

(b) Justify your answer in part (a). If you answer no, then
what kind of sampling is it?

3. A civil engineering student, working on his thesis,
plans a survey to determine the proportion of all current
drivers in his university town that regularly use their seat
belt. He decides to interview his classmates in the three
classes he is currently enrolled.

(a) What is the population of interest?
(b) Do the student’s classmates constitute a simple ran-

dom sample from the population of interest?
(c) What name have we given to the sample that the

student collected?
(d) Do you think that this sample proportion is likely to

overestimate or underestimate the true proportion of
all drivers who regularly use their seat belt?

4. In the Macworld Conference Expo Keynote Address
on January 9, 2007, Steve Jobs announced a new prod-
uct, the iPhone. A technology consultant for a consumer
magazine wants to select 15 devices from the pilot lot
of 70 iPhones to inspect feature coordination. Describe
a method for obtaining a simple random sample of 15
from the lot of 70 iPhones. Use R to select a sam-
ple of 15. Give the R commands and the sample you
obtained.

5. A distributor has just received a shipment of 90 drain
pipes from a major manufacturer of such pipes. The dis-
tributor wishes to select a sample of size 5 to carefully
inspect for defects. Describe a method for obtaining a
simple random sample of 5 pipes from the shipment of
90 pipes. Use R to implement the method. Give the R
commands and the sample you obtained.

6. A service agency wishes to assess its clients’ views on
quality of service over the past year. Computer records
identify 1000 clients over the past 12 months, and a
decision is made to select 100 clients to survey.
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(a) Describe a procedure for selecting a simple random
sample of 100 clients from last year’s population of
1000 clients.

(b) The population of 1000 clients consists of 800
Caucasian-Americans, 150 African-Americans and
50 Hispanic-Americans. Describe an alternative pro-
cedure for selecting a representative random sam-
ple of size 100 from the population of 1000
clients.

(c) Give the R commands for implementing the sampling
procedures described in parts (a) and (b).

7. A car manufacturer wants information about customer
satisfaction for cars sold during the previous year. The
particular manufacturer makes three different types of
cars. Describe and discuss two different random sampling
methods that might be employed.

8. A particular product is manufactured in two facilities,
A and B. Facility B is more modern and accounts for 70%

of the total production. A quality control engineer wishes
to obtain a simple random sample of 50 from the entire
production during the past hour. A coin is flipped and
each time the flip results in heads, the engineer selects
an item at random from those produced in facility A, and
each time the flip results in tails, the engineer selects an
item at random from those produced in facility B. Does
this sampling scheme result in simple random sampling?
Explain your answer.

9. An automobile assembly line operates for two shifts
a day. The first shift accounts for two-thirds of the over-
all production. The task of quality control engineers is to
monitor the number of nonconformances per car. Each
day a simple random sample of 6 cars from the first shift,
and a simple random sample of 3 cars from the second
shift is taken, and the number of nonconformances per
car is recorded. Does this sampling scheme produce a sim-
ple random sample of size 9 from the day’s production?
Justify your answer.

1.4 Random Variables and Statistical Populations
The characteristics of interest in all study examples given in Section 1.1 can be
quantitative in the sense that they can be measured and thus can be expressed as
numbers. Though quantitative characteristics are more common, categorical, includ-
ing qualitative, characteristics also arise. Two examples of qualitative characteristics
are gender and type of car, while strength of opinion is (ordinal) categorical. Since
statistical procedures are applied on numerical data sets, numbers are assigned for
expressing categorical characteristics. For example, −1 can be used to denote that a
subject is male, and +1 to denote a female subject.

A characteristic of any type expressed as a number is called a variable.
Categorical variables are a particular kind of discrete variables. Quantitative vari-
ables can also be discrete. For example, all variables expressing counts, such as
the number in favor of a certain proposition, are discrete. Quantitative variables
expressing measurements on a continuous scale, such as measurements of length,
strength, weight, or time to failure, are examples of continuous variables. Finally,
variables can be univariate, bivariate, or multivariate depending on whether one or
two or more characteristics are measured, or recorded, on each population unit.

Example
1.4-1

(a) In a study aimed at determining the relation between productivity and salary
increase, two characteristics are recorded on each population unit (productiv-
ity and salary increase), resulting in a bivariate variable.

(b) Consider the study that surveys US citizens age 18 and over regarding their
opinion on solar energy. If an additional objective of the study is to deter-
mine how this opinion varies among different age groups, then the age of
each individual in the sample is also recorded, resulting in a bivariate variable.
If, in addition, the study aims to investigate how this opinion varies between
genders, then the gender of each individual in the sample is also recorded,
resulting in a multivariate variable.

(c) Consider the environmental study that measures the content of lead in water
samples from a lake in order to determine if the concentration of lead exceeds
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the safe limits. If other contaminants are also of concern, then the content of
these other contaminants is also measured in each water sample, resulting in a
multivariate variable.

Due to the intrinsic variability, the value of the (possibly multivariate) variable
varies among population units. It follows that when a population unit is randomly
sampled from a population, its value is not known a priori. The value of the variable
of a population unit that will be randomly sampled will be denoted by a capital letter,
such as X. The fact that X is not known a priori justifies the term random variable
for X.

A random variable, X, denotes the value of the variable of a population unit
that will be sampled.

The population from which a random variable was drawn will be called the
underlying population of the random variable. Such terminology is particularly help-
ful in studies involving several populations, as are all studies that compare the
performance of two or more methods or products; see, for example, case study 3
of Example 1.1-1.

Finally, we need a term for the entire collection of values that the variable
under investigation takes among the units in the population. Stated differently,
suppose that each unit in the population is labeled by the value of the variable under
investigation, and the values in all labels are collected. This collection of values is
called the statistical population. Note that if two (or more) population units have
the same value of the variable, then this value appears two (or more) times in the
statistical population.

Example
1.4-2

Consider the study that surveys US citizens age 18 and over regarding their opin-
ion on solar energy. Suppose that the opinion is rated on the scale 0, 1, . . . , 10, and
imagine each member of the population labeled by the value of their opinion. The
statistical population contains as many 0’s as there are people with opinion rated 0,
as many 1’s as there are people whose opinion is rated 1, and so forth.

The word “population” will be used to refer either to the population of units or to
the statistical population. The context, or an explanation, will make clear which is
the case.

In the above discussion, a random variable was introduced as the numerical
outcome of random sampling from a (statistical) population. More generally, the
concept of a random variable applies to the outcome of any action or process that
generates a random numerical outcome. For example, the process of taking the arith-
metic average of a simple random sample (see Section 1.6 for details) generates a
random numerical outcome which, therefore, is a random variable.

Exercises

1. In a population of 500 tin plates, the number of plates
with 0, 1, and 2 scratches is N0 = 190, N1 = 160, and
N2 = 150.
(a) Identify the variable of interest and the statistical

population.
(b) Is the variable of interest quantitative or qualitative?

(c) Is the variable of interest univariate, bivariate, or
multivariate?

2. Consider the following examples of populations,
together with the variable/characteristic measured on
each population unit.
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(a) All undergraduate students currently enrolled at PSU.
Variable: major.

(b) All campus restaurants. Variable: seating capacity.
(c) All books in Penn State libraries. Variable: frequency

of check-out.
(d) All steel cylinders made in a given month. Variable:

diameter.

For each of the above examples, describe the statistical
population, state whether the variable of interest is quan-
titative or qualitative, and specify another variable that
could be measured on the population units.

3. At the final assembly point of BMW cars in Graz,
Austria, the car’s engine and transmission arrive from
Germany and France, respectively. A quality control
inspector, visiting for the day, selects a simple random
sample of n cars from the N cars available for inspection,
and records the total number of engine and transmission
nonconformances for each of the n cars.
(a) Is the variable of interest univariate, bivariate or

multivariate?
(b) Is the variable of interest quantitative or qualitative?
(c) Describe the statistical population.

(d) Suppose the number of nonconformances in the
engine and transmission are recorded separately for
each car. Is the new variable univariate, bivariate, or
multivariate?

4. In Exercise 4 in Section 1.2, a consumer magazine
article reports that the air quality, as quantified by
the degree of staleness, was measured on 175 domestic
flights.
(a) Identify the variable of interest and the statistical

population.
(b) Is the variable of interest quantitative or qualitative?
(c) Is the variable of interest univariate or multivariate?

5. A car manufacturing company that makes three dif-
ferent types of cars wants information about customer
satisfaction for cars sold during the previous year. Each
customer is asked for the type of car he or she bought last
year and to rate his or her level of satisfaction on a scale
from 1–6.
(a) Identify the variable recorded and the statistical

population.
(b) Is the variable of interest univariate?
(c) Is the variable of interest quantitative or categorical?

1.5 Basic Graphics for Data Visualization
This section describes some of the most common graphics for data presentation and
visualization. Additional graphics are introduced throughout this book.

1.5.1 HISTOGRAMS AND STEM AND LEAF PLOTS

Histograms and stem and leaf plots offer ways of organizing and displaying data.
Histograms consist of dividing the range of the data into consecutive intervals, or
bins, and constructing a box, or vertical bar, above each bin. The height of each box
represents the bin’s frequency, which is the number of observations that fall in the
bin. Alternatively, the heights can be adjusted so the histogram’s area (i.e., the total
area defined by the boxes) equals one.

R will automatically choose the number of bins but it also allows user-specified
intervals. Moreover, R offers the option of constructing a smooth histogram.
Figure 1-4 shows a histogram (with area adjusted to one) of the Old Faithful geyser’s
eruption durations with a smooth histogram superimposed. (The data are from the
R data frame faithful.)

Stem and leaf plots offer a somewhat different way for organizing and display-
ing data. They retain more information about the original data than histograms but
do not offer as much flexibility in selecting the bins. The basic idea is to think of
each observation as the stem, which consists of the beginning digit(s), and the leaf,
which consists of the first of the remaining digits. In spite of different grouping of
the observations, the stem and leaf display of the Old Faithful geyser’s eruption
durations shown in Figure 1-5 reveals a similar bimodal (i.e., having two modes or
peaks) shape.
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Eruption Durations of the Old Faithful Geyser
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Figure 1-4 Histogram and
smooth histogram for 272
eruption durations (min).

Figure 1-5 Stem and leaf
plot for the 272 eruption
durations.

16 | 070355555588
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28 | 080
30 | 7
32 | 2337
34 | 250077
36 | 0000823577
38 | 2333335582225577
40 | 0000003357788888002233555577778
42 | 03335555778800233333555577778
44 | 02222335557780000000023333357778888
46 | 0000233357700000023578
48 | 00000022335800333
50 | 0370

With the R object x containing the data (e.g., x = faithful$eruptions), the R
commands for histograms and the stem and leaf plot are [# is the comment character]

R Commands for Histograms, Smooth Histograms, and Stem
and Leaf Plots

hist(x) # basic frequency histogram

hist(x, freq=FALSE) # histogram area = 1

plot(density(x)) # basic smooth histogram

hist(x, freq=F); lines(density(x)) # superimposes
the two

stem(x) # basic stem and leaf plot

stem(x, scale=1) # equivalent to the above

(1.5.1)
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REMARK 1.5-1

1. The main label of a figure and the labels for the axes are controlled by
main = ” ”, xlab = ” ”, ylab = ” ”, respectively; leaving a blank space
between the quotes results in no labels. The color can also be specified. For
example, the commands used for Figure 1-4 are x = faithful$eruptions; hist(x,
freq = F, main = ”Eruption Durations of the Old Faithful Geyser”, xlab = ” ”,
col = ”grey”); lines(density(x), col = ”red”).

2. To override the automatic selection of bins one can either specify the number of
bins (for example breaks = 6), or specify explicitly the break points of the bins.
Try hist(faithful$eruptions, breaks = seq(1.2, 5.3, 0.41)).

3. For additional control parameters type ?hist, ?density, or ?stem on the R
console. ▹

As an illustration of the role of the scale parameter in the stem command
(whose default value is 1), consider the data on US beer production (in millions of
barrels)

3 | 566699
4 | 11122444444
4 | 6678899
5 | 022334
5 | 5

for different quarters during the period 1975–1982. Entering the data in the R object
x through x = c(35, 36, 36, 36, 39, 39, 41, 41, 41, 42, 42, 44, 44, 44, 44, 44, 44, 46, 46,
47, 48, 48, 49, 49, 50, 52, 52, 53, 53, 54, 55), the command stem(x, scale = 0.5) results
in the above stem and leaf display. Note that leaves within each stem have been split
into the low half (integers from 0 through 4) and the upper half (integers from 5
through 9).

1.5.2 SCATTERPLOTS

Scatterplots are useful for exploring the relationship between two and three vari-
ables. For example, Figures 1-2 and 1-3 show such scatterplots for the variables bear
chest girth and bear weight for a population of black bears and a sample drawn
from that population. These scatterplots suggested a fairly strong positive associa-
tion between chest girth and weight (i.e., bigger chest girth suggests a heavier bear),
so that chest girth can be used for predicting a bear’s weight. In this section we will
see some enhanced versions of the basic scatterplot and a three-dimensional (3D)
scatterplot.

Scatterplots with Subclass Identification The scatterplot in Figure 1-6 is similar to
the scatterplot of Figure 1-2 but uses colors to distinguish between male and female
bears. The additional insight gained from Figure 1-6 is that the relationship between
the variables chest girth and weight is similar for both genders in that population of
black bears.

Scatterplot Matrix As the name suggests, a scatterplot matrix is a matrix of scatter-
plots for all pairs of variables in a data set. In fact, two scatterplots are produced for
every pair of variables, with each variable being plotted once on the x-axis and once
on the y-axis. Figure 1-7 gives the matrix of all pairwise scatterplots between the
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Figure 1-6 Bear weight vs
chest girth scatterplot.
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Figure 1-7 Scatterplot
matrix for bear
measurements.

different measurements taken on the black bears. The scatterplot in location (2,1),
that is, in row 2 and column 1, has Head.L (head length) on the x-axis and Head.W
(head width) on the y-axis, while the scatterplot in location (1,2) has Head.W on the
x-axis and Head.L on the y-axis.

Scatterplot matrices are useful for identifying which variable serves as the
best predictor for another variable. For example, Figure 1-7 suggests that a
bear’s chest girth and neck girth are the two best single predictors for a bear’s
weight.
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With the data read into data frame br (for example by br = read.
table(”BearsData.txt”, header = T)), the R commands that generated Figures 1-6 and
1-7 are:4

R Commands for Figures 1-6 and 1-7

attach(br) # so variables can be referred to by name

plot(Chest.G, Weight, pch=21, bg=c(”red”,
”green”)[unclass(Sex)]) # Figure 1-6

legend( x=22, y=400, pch=c(21, 21), col=c(”red”,
”green”), legend=c(”Female”, ”Male”)) # add legend in
Figure 1-6

pairs(br[4:8], pch=21,bg=c(”red”, ”green”)[unclass(Sex)]) #
Figure 1-7

Scatterplots with Marginal Histograms This enhancement of the basic scatterplot
shows individual histograms for the two variables used in the scatterplot. Figure 1-8
shows such an enhancement for the scatterplot of Figure 1-6.5 The term marginal,
which is justified by the fact the histograms appear on the margins of the scatterplot,
is commonly used to refer to the statistical population of individual variables in a
multivariate data set; see also Chapter 4.
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Figure 1-8 Scatterplot of
bear weight vs chest girth
showing the marginal
histograms.

4 Attempts to estimate a bear’s weight from its chest girth measurements go back to Neil F. Payne (1976).
Estimating live weight of black bears from chest girth measurements, The Journal of Wildlife Management, 40(1):
167–169. The data used in Figure 1-7 is a subset of a data set contributed to Minitab by Dr. Gary Alt.
5 The R commands that generated Figure 1-8 are given at http://www.stat.psu.edu/∼mga/401/fig/ScatterHist.txt;
they are a variation of the commands given in an example on http://www.r-bloggers.com/example-8-41-
scatterplot-with-marginal-histograms.

http://www.stat.psu.edu/~mga/401/fig/ScatterHist.txt
http://www.r-bloggers.com/example-8-41-scatterplot-with-marginal-histograms
http://www.r-bloggers.com/example-8-41-scatterplot-with-marginal-histograms
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Figure 1-9 3D scatterplot
for temperature,
production, and electricity.

3D Scatterplot Figure 1-9 pertains to data on electricity consumed in an industrial
plant in 30 consecutive 30-day periods, together with the average temperature and
amount (in tons) of production. This figure gives a three dimensional view of the
joint effect of temperature and production volume on electricity consumed.

With the data read into data frame el, for example, by el = read.
table(”ElectrProdTemp.txt”, header = T), the R commands used to generate this
figure are:

R Commands for Figure 1-9

attach(el) # so variables can be referred to by name

install.packages(”scatterplot3d”); library(scatterplot3d) #
needed for the next command

scatterplot3d(Temperature, Production, Electricity,
angle=35, col.axis=”blue”, col.grid=”lightblue”,
color=”red”, main=” ”, pch=21, box=T) # for
Figure 1-9

1.5.3 PIE CHARTS AND BAR GRAPHS

Pie charts and bar graphs are used with count data that describe the prevalence of
each of a number of categories in the sample. Alternatively, they can display the per-
centage or proportion (see Section 1.6.1 for the precise definition and notation) of
each category in the sample. Examples include the counts (or percentages or pro-
portions) of different ethnic or education or income categories, the market share of
different car companies at a given point in time, the popularity of different car col-
ors, and so on. When the heights of the bars are arranged in a decreasing order, the
bar graph is also called a Pareto chart. The Pareto chart is a key tool in improvement
programs, where it is often used to represent the most common sources of defects in
a manufacturing process, or the most frequent reasons for customer complaints, and
so on.

The pie chart is perhaps the most widely used statistical chart in the busi-
ness world and is particularly popular in the mass media. It is a circular chart,
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Figure 1-10 Pie chart of
light vehicle market share
data.

where the sample or the population is represented by a circle (pie) that is divided
into sectors (slices) whose sizes represent proportions. The pie chart in Figure 1-
10 displays information on the November 2011 light vehicle market share of car
companies.6

It has been pointed out, however, that it is difficult to compare different sections
of a given pie chart, or to compare data across different pie charts such as the light
vehicle market share of car companies at two different time points. According to
Stevens’ power law,7 length is a better scale to use than area. The bar graph achieves
improved visual perception by using bars of height proportional to the proportion it
represents. In that sense, a bar graph is similar to a histogram with area adjusted to
one. The bar graph for the aforementioned light vehicle market share data is shown
in Figure 1-11.
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Figure 1-11 Bar graph of
light vehicle market share
data.

6 http://wardsauto.com/datasheet/us-light-vehicle-sales-and-market-share-company-2004–2013
7 S. S. Stevens (1957). On psychophysical law. Psychological Review. 64(3): 153–181.

http://wardsauto.com/datasheet/us-light-vehicle-sales-and-market-share-company-2004%E2%80%932013
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With the data read into the data frame lv, [e.g., by lv = read.table
(”MarketShareLightVeh.txt”, header = T)], the R commands used to generate these
figures (using rainbow colors) are:

R Commands for Figures 1-10 and 1-11

attach(lv) # so variables can be referred to by name

pie(Percent, labels=Company, col=rainbow(length(Percent)))
# for Figure 1-10

barplot(Percent, names.arg=Company, col=rainbow(length
(Percent)), las=2) # for Figure 1-11

REMARK 1.5-2 Bar graphs can also be displayed horizontally. Try barplot(Percent,
names.arg = Company, col = rainbow(length(Percent)), horiz = T, las = 1) for a hori-
zontal version of Figure 1-11. See also Exercise 17 below for a variation of the Pareto
chart. ▹

Exercises

1. Use cs = read.table(”Concr.Strength.1s.Data.txt”,
header = T) to read into the R object cs data on
28-day compressive-strength measurements of con-
crete cylinders using water/cement ratio 0.4.8 Then
use the commands attach(cs); hist(Str, freq = FALSE);
lines(density(Str)); stem(Str) to produce a histogram with
the smooth histogram superimposed, and a stem and leaf
plot.

2. Use the commands attach(faithful); hist(waiting);
stem(waiting) to produce a basic histogram of the Old
Faithful data on waiting times before eruptions, and
the corresponding stem and leaf plot. Is the shape
of the stem and leaf plot similar to that of the his-
togram? Next, use commands similar to those given in
Remark 1.5-1 to color the histogram, to superimpose
a colored smooth histogram, and to add a histogram
title.

3. Use the commands attach(faithful); plot(waiting, erup-
tions) to produce a scatterplot of the Old Faithful data
on eruption duration against waiting time before erup-
tion. Comment on the relationship between waiting time
before eruption and eruption duration.

4. The data in Temp.Long.Lat.txt give the average
(over the years 1931 to 1960) daily minimum January

temperature in degrees Fahrenheit with the latitude and
longitude of 56 US cities.9

(a) Construct a scatterplot matrix of the data. Does lon-
gitude or latitude appear to be the better predictor of
a city’s temperature? Explain in terms of this plot.

(b) Construct a 3D scatterplot of the data. Does longitude
or latitude appear to be the better predictor of a city’s
temperature? Explain in terms of this plot.

5. Import the bear measurements data into the R data
frame br as described in Section 1.5.2, and use the com-
mand

scatterplot3d(br[6:8], pch=21,
bg=c(”red”,”green”)[unclass(br$Sex)])

for a 3D scatterplot of neck girth, chest girth, and weight
with gender identification.10

6. Studies of the relationship between a vehicle’s speed
and the braking distance have led to changes in speed-
ing laws and car design. The R data set cars has braking
distances for cars traveling at different speeds recorded
in the 1920s. Use the commands attach(cars); plot(speed,
dist) to produce a basic scatterplot of the braking distance
against speed. Comment on the relationship between
speed and breaking distance.

8 V. K. Alilou and M. Teshnehlab (2010). Prediction of 28-day compressive strength of concrete on the third day
using artificial neural networks, International Journal of Engineering (IJE), 3(6).
9 J. L. Peixoto (1990). A property of well-formulated polynomial regression models. American Statistician,
44: 26–30.
10 Braking distance is the distance required for a vehicle to come to a complete stop after its brakes have
been activated.
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7. Read the data on the average stopping times (on a
level, dry stretch of highway, free from loose material) of
cars and trucks at various speeds into the data frame bd by
bd = read.table(”SpeedStopCarTruck.txt”, header = T).
Then, use commands similar to those for Figure 1-6,
given in Section 1.5.2, to plot the data using colors to
differentiate between cars and trucks. Add a legend to
the plot.

8. Determining the age of trees is of interest to both
individual land owners and to the Forest Service of the
US Department of Agriculture. The simplest (though
not the most reliable) way of determining the age
of a tree is to use the relationship between a tree’s
diameter at breast height (4–5 ft) and age. Read the
data on the average age of three types of trees at
different diameter values into the data frame ad by
ad = read.table(”TreeDiamAAge3Stk.txt”, header = T).
Then, use the commands attach(ad); plot(diam, age,
pch = 21, bg = c(”red”, ”green”, ”blue”)[unclass(tree)]);
legend( x = 35, y = 250, pch = c(21, 21, 21), col
= c(”red”, ”green”, ”blue”), legend = c(”SMaple”,
”ShHickory”, ”WOak”)) to plot the data and add a leg-
end. Comment on any difference in the growth patterns
of the three different trees.

9. Read the data on Robot reaction times to
simulated malfunctions into the data frame t by
t = read.table(”RobotReactTime.txt”, header = T). Copy
the reaction times of Robot 1 into the vector t1 by
attach(t); t1 = Time[Robot==1]. Using the commands
given in (1.5.1) do:
(a) A basic histogram with a smooth histogram superim-

posed for the reaction times of Robot 1.
(b) A stem and leaf plot for the reaction times of Robot 1.

10. Data from an article reporting conductivity (µS/cm)
measurements of surface water (X) and water in the sed-
iment at the bank of a river (Y), taken at 10 points during
winter, can be found in ToxAssesData.txt.11 Read the data
into the data frame Cond using a command similar to that
given in Exercise 7, and construct a basic scatterplot of
Y on X using the commands given in Exercise 6. Does
it appear that the surface conductivity can be used for
predicting sediment conductivity?

11. Is rainfall volume a good predictor of runoff volume?
Data from an article considering this question can be
found in SoilRunOffData.txt.12 Read the data into the
data frame Rv using a command similar to that given in
the Exercise 7, and construct a basic scatterplot of the
data using the commands given in Exercise 6. Does it

appear that the rainfall volume is useful for predicting the
runoff volume?

12. Read the projected data on the electricity consumed
in an industrial plant in 30 consecutive 30-day periods,
together with the average temperature and amount of
production (in tons) into the data frame el using the
commands given for Figure 1-9, Section 1.5.2, and use
the commands given in the same section to construct a
scatterplot matrix for the data. Which of the variables
temperature and production is a better single predictor for
the amount of electricity consumed?

13. The R data set airquality contains daily ozone mea-
surements, temperature, wind, solar radiation, month,
and day. Use the command pairs(airquality[1:5]) to pro-
duce a scatterplot matrix for the first five variables of this
data set, and answer the following questions:
(a) Is it more likely to have higher ozone levels on hot

days?
(b) Is it more likely to have higher ozone levels on windy

days?
(c) What seems to happen to ozone levels when there is

increased solar radiation?
(d) Which month seems to have the highest ozone

levels?

14. Data from an article investigating the effect
of auxin-cytokinin interaction on the organogen-
esis of haploid geranium callus can be found in
AuxinKinetinWeight.txt.13 Read the data into the
data frame Ac using a command similar to that
given in Exercise 7, and use the commands given in
Section 1.5.2 to
(a) construct a scatterplot matrix for the data, and
(b) construct a 3D scatterplot for the data.
Comment on the usefulness of the variables auxin and
kinetin as predictors of the callus weight.

15. The R data set mtcars contains data on the weight,
displacement, and mileage of cars. Use the commands
library(scatterplot3d); attach(mtcars); scatterplot3d(wt,
disp, mpg, pch = 21, highlight.3d = T, type = ”h”, box = T,
main = ” ”) for a variation of the 3D scatterplot. Repeat
the command replacing box = T by box = F.

16. Read the projected numbers and types of accidents of
US residents age 16–24 years, found in AccidentTypes.txt,
into the frame At using a command similar to that given
in Exercise 7. Construct a bar graph and a pie chart for
this data using the commands given in Section 1.5.3.

11 M. Latif and E. Licek (2004). Toxicity assessment of wastewaters, river waters, and sediments in Austria using
cost-effective microbiotests, Environmental Toxicology, 19(4): 302–308.
12 M. E. Barrett et al. (1995). Characterization of Highway Runoff in Austin, Texas, Area. Center for Research
in Water Resourses, University of Texas at Austin, Tech. Rep.# CRWR 263.
13 M. M. El-Nil, A. C. Hildebrandt, and R. F. Evert (1976). Effect of auxin-cytokinin interaction on organogen-
esis in haploid callus of Pelargonium hortorum, In Vitro 12(8): 602–604.
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17. Read the projected percents and reasons why people
in the Boston area are late for work into the data frame lw
using the command lw = read.table(”ReasonsLateForWork.
txt”, sep = ”,”, header = T).
(a) Construct a bar graph and a pie chart for this data

using the commands given in Section 1.5.3.
(b) The bar graph constructed in part (a) above is

actually a Pareto chart, since the bar heights

are arranged in decreasing order. Use the com-
mands attach(lw); plot(c(0, 6), c(0, 100), pch = ”
”, xlab = ” ”, ylab = ” ”, xaxt = ”n”, yaxt = ”n”);
barplot(Percent, width = 0.8, names.arg = Reason,
col = rainbow(length(Percent)), las = 2, add = T);
lines(seq(0.5, 5.5, 1), cumsum(Percent), col = ”red”)
to construct a variation of the Pareto chart, which
also displays the cumulative percentages.

1.6 Proportions, Averages, and Variances
Typically scientists want to learn about certain quantifiable aspects, called param-
eters, of the variable, or statistical population, of interest. The most common
parameters are the proportion, the average, and the variance. In this section we dis-
cuss these parameters for finite populations. Sample versions of these parameters
will also be discussed.

1.6.1 POPULATION PROPORTION AND SAMPLE PROPORTION

When the variable of interest is categorical, such as Defective or Non-Defective,
Strength of Opinion, Type of Car, and so on, then interest lies in the proportion of
population (or sample) units in each of the categories. Graphical methods for visu-
alizing proportions were presented in Section 1.5.3. Here we introduce the formal
definition and notation for the population proportion and the sample proportion,
and illustrate the sampling variability of the sample proportion.

If the population has N units, and Ni units are in category i, then the population
proportion of category i is

Definition of
Population Proportion pi = #{population units in category i}

#{population units} = Ni

N
. (1.6.1)

If a sample of size n is taken from this population, and ni sample units are in
category i, then the sample proportion of category i is

Definition of
Sample Proportion p̂i = #{sample units in category i}

#{sample units} = ni

n
. (1.6.2)

Example
1.6-1

A car manufacturer receives a shipment of N = 10,000 navigation systems that are
to be installed as a standard feature in the next line of luxury cars. Of concern is
a type of satellite reception malfunction. N1 = 100 systems have this malfunction
(category 1) and N2 = 9900 do not (category 2). For quality control purposes, a sam-
ple of n = 1000 systems is taken. After examination, it is found that n1 = 8 systems
in the sample have this malfunction and n2 = 992 do not. Give the population and
sample proportions for the two categories.

Solution
According to the formula (1.6.1), the population proportions for the two
categories are
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p1 = 100
10,000

= 0.01, p2 = 9900
10,000

= 0.99.

According to the formula (1.6.2), the sample proportions for the two categories are

p̂1 = 8
1000

= 0.008, p̂2 = 992
1000

= 0.992.

As already suggested in Example 1.2-4, sample properties of the variable of
interest approximate (though, in general, will not be identical to) corresponding
population properties. In particular,

The sample proportion p̂ approximates but is, in general, different from
the population proportion p.

The next example further illustrates the quality of the approximation of p by p̂,
while also illustrating the sampling variability of p̂.

Example
1.6-2

Use R to obtain five samples of size 1,000 from the population of 10,000 naviga-
tion systems of Example 1.6-1, and to compute the sample proportions for the two
categories in each sample.

Solution
We begin by forming the statistical population, that is, by assigning the value 1 to
each of the 100 systems with reception malfunction and the number 2 to each of the
9900 systems with no reception malfunction. The R commands for defining an object
(vector) x in R representing the statistical population of 100 1’s and 9900 2’s, for
obtaining a simple random sample of 1000 from this population, and for calculating
the two sample proportions are:

x = c(rep(1, 100), rep(2, 9900)) # set the statistical
population in x (1.6.3)

y = sample(x, size=1000) # set the sample of size
1000 in y (1.6.4)

table(y)/length(y) # compute the sample proportions (1.6.5)

Repeating the set of commands (1.6.4), (1.6.5) five times gives the following pairs of
sample proportions, all of which approximate the population proportions of (0.01,
0.99): (0.013, 0.987), (0.012, 0.988), (0.008, 0.992), (0.014, 0.986), (0.01, 0.99).

1.6.2 POPULATION AVERAGE AND SAMPLE AVERAGE

Consider a population consisting of N units, and let v1, v2, . . . , vN denote the val-
ues in the statistical population corresponding to some variable of interest. Then
the population average or population mean, denoted by µ, is simply the arithmetic
average of all numerical values in the statistical population. That is,

Definition of
Population Mean µ = 1

N

N∑

i=1

vi. (1.6.6)
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If the random variable X denotes the value of the variable of a randomly
selected population unit, then a synonymous term for the population mean is
expected value of X, or mean value of X, and is denoted by µX or E(X).

If a sample of size n is randomly selected from the population, and if
x1, x2, . . . , xn denote the variable values corresponding to the sample units (note that
a different symbol is used to denote the sample values), then the sample average or
sample mean is simply

Definition of
Sample Mean x = 1

n

n∑

i=1

xi. (1.6.7)

Example
1.6-3

A company of N = 10,000 employees initiates an employee productivity study in
which the productivity of each employee is rated on a scale from 1 to 5. Suppose that
300 of the employees are rated 1, 700 are rated 2, 4000 are rated 3, 4000 are rated 4,
and 1000 are rated 5. A pilot study into the degree of employee satisfaction at work
interviews 10 randomly selected employees of this company. The productivity ratings
of the 10 selected employees are

x1 = 2, x2 = x3 = x4 = 3, x5 = x6 = x7 = x8 = 4, x9 = x10 = 5.

(a) Describe the statistical population for the variable productivity rating.
(b) Letting the random variable X denote the productivity rating of a randomly

selected employee, compute the mean (or expected) value E(X) of X.
(c) Compute the sample mean of the productivity ratings of the 10 selected

employees.

Solution

(a) The statistical population consists of 10,000 productivity ratings, v1, v2, . . . ,
v10,000, which are

vi = 1, i = 1, . . . , 300,

vi = 2, i = 301, . . . , 1000,

vi = 3, i = 1001, . . . , 5000,

vi = 4, i = 5001, . . . , 9000,

vi = 5, i = 9001, . . . , 10,000.

(b) According to the expression (1.6.6), the expected value of X (which is also the
population average rating) is

E(X) = 1
10,000

10,000∑

i=1

vi = 1
10,000

(1 × 300 + 2 × 700

+3 × 4000 + 4 × 4000 + 5 × 1000) = 3.47.

(c) Finally, according to the expression (1.6.7), the sample of 10 productivity
ratings yields a sample mean of

x = 1
10

10∑

i=1

xi = 3.7.
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Example 1.2-4 already highlights the fact that sample properties of the variable
of interest approximate (though, in general, will not be identical to) corresponding
population properties. In particular,

The sample mean x approximates but is, in general, different from the
population mean µ.

To further illustrate the quality of the approximation of µ by x and to illustrate
the sampling variability of x, we will obtain five samples of size 10 from the popula-
tion of 10,000 employees of Example 1.6-3 and for each sample we will compute the
sample mean.

Example
1.6-4

Use R to obtain five samples of size 10 from the population of 10,000 employees of
Example 1.6-3 and to compute the sample mean for each sample.

Solution
Setting

x=c(rep(1, 300), rep(2, 700), rep(3, 4000), rep(4, 4000),
rep(5, 1000))

for the statistical population given in the solution of Example 1.6-3, and repeating
the commands

y=sample(x, size=10); mean(y)

five times gives, for example the following sample means: 3.7, 3.6, 2.8, 3.4, 3.2.

Example 1.6-5 demonstrates the simple, but very important, fact that propor-
tions can be expressed as means or, in other words,

A proportion is a special case of mean.

Example
1.6-5

A certain county has 60,000 US citizens of voting age, 36,000 of whom are in favor
of expanding the use of solar energy. Of the 50 such citizens who are randomly
selected in a statewide public opinion poll, 28 are in favor of expanding the use of
solar energy.

(a) Express the proportion of citizens who are in favor of expanding solar energy,
p = 36,000/60,000 = 0.6, as the expected value of a random variable X.

(b) Express the sample proportion of citizens in the sample who are in favor of
expanding solar energy, p̂ = 28/50 = 0.56, as a sample mean.

Solution
(a) The characteristic of interest here is qualitative (in favor or not in favor), but

we can convert it to a variable by setting 0 for “not in favor” and 1 for “in
favor.” With this variable, the statistical population consists of 24,000 0’s and
36,000 1’s:

vi = 0, i = 1, . . . , 24,000; vi = 1, i = 24,001, . . . , 60,000.

Letting the random variable X denote a randomly selected value from this
statistical population, we have (according to the expression (1.6.6))
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µX = 1
60,000

60,000∑

i=1

vi = 36,000
60,000

= 0.6.

(b) Next, the sample of 50 citizens corresponds to a sample from the statistical
population with 22 0’s and 28 1’s:

xi = 0, i = 1, . . . , 22; xi = 1, i = 23, . . . , 50.

According to the expression (1.6.7), the sample mean is

x = 1
50

50∑

i=1

xi = 28
50

= 0.56.

The above exposition pertains to univariate variables. The population mean and
the sample mean for bivariate or multivariate variables is given by averaging each
coordinate separately. Moreover, the above definition of a population mean assumes
a finite population. The definition of population mean for an infinite or conceptual
population, such as that of the cement mixtures in Example 1.1-1, case study 3, will
be given in Chapter 3. The definition of sample mean remains the same regardless
of whether or not the sample has been drawn from a finite or an infinite population.

1.6.3 POPULATION VARIANCE AND SAMPLE VARIANCE

The population variance and standard deviation offer a quantification of the intrinsic
variability of the population. Quantification of the intrinsic variability is of inter-
est as a quality measure in manufacturing. Indeed, the main characteristic(s) of a
high-quality product should vary as little as possible from one unit of the product to
another (i.e., the corresponding statistical population should have as low an intrinsic
variability as possible). For example, while high average gas mileage is a desirable
characteristic of a certain car, it is also desirable that different cars of the same make
and model achieve similar gas mileage.

Consider a population consisting of N units, and let v1, v2, . . . , vN denote the val-
ues in the statistical population corresponding to some variable. Then the population
variance, denoted by σ 2, is defined as

Definition of
Population Variance σ 2 = 1

N

N∑

i=1

(vi − µ)2 (1.6.8)

where µ is the population mean. If the random variable X denotes the value of the
variable of a randomly selected population unit, then the population variance is also
called the variance of the random variable X, and we write σ 2

X , or Var(X).
The variance of a random variable X, or of its underlying population, quantifies

the extent to which the values in the statistical population differ from the population
mean. As its expression in (1.6.8) indicates, the population variance is the average
squared distance of members of the statistical population from the population mean.
As it is an average squared distance, it goes without saying that the variance of a
random variable can never be negative. Some simple algebra reveals the following
alternative expression for the population variance.
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Computational
Formula for

Population Variance
σ 2 = 1

N

N∑

i=1

v2
i − µ2 (1.6.9)

Expression (1.6.9) is more convenient for calculating the variance.
The positive square root of the population variance is called the population

standard deviation and is denoted by σ :

Definition of
Population Standard

Deviation
σ =

√
σ 2 (1.6.10)

The standard deviation of a random variable X, or of its underlying statistical
population, is expressed in the same units as the variable itself, whereas the variance
is expressed in squared units. For example, a variable measured in inches will have
a standard deviation measured in inches, but variance measured in square inches.
For this reason, the standard deviation is often a preferable measure of the intrinsic
variability.

If a sample of size n is randomly selected from the population, and if
x1, x2, . . . , xn denote the variable values corresponding to the sample units, then the
sample variance is

Definition of
Sample Variance

S2 = 1
n − 1

n∑

i=1

(xi − x)2 (1.6.11)

REMARK 1.6-1 Dividing by n−1 (instead of n) in (1.6.11) is a source of intrigue to
anyone who sees this formula for the first time. The typical explanation, offered in
textbooks and classrooms alike, is given in terms of the statistical parlance of degrees
of freedom: Because the definition of S2 involves the deviations of each observation
from the sample mean, that is, x1 −x, x2 −x, . . . , xn −x, and because these deviations
sum to zero, that is,

n∑

i=1

(xi − x) = 0, (1.6.12)

there are n−1 degrees of freedom, or independent quantities (deviations) that deter-
mine S2. This is not completely satisfactory because a relation similar to (1.6.12)
holds also at the population level (simply replace n, xi, and x by N, vi, and µ). A
more complete explanation is that if a large number of investigators each select
a random sample of size n with replacement and the sample variances that they
obtain are averaged, then this average sample variance will be almost identical to
the population variance. (See Exercise 10.) This property of S2, called unbiasedness,
requires that the sum of squared deviations be divided by n−1, not n. Unbiasedness
is a desirable property of estimators and it will be discussed in more detail in
Chapter 6. ▹

The positive square root of the sample variance is called the sample standard
deviation and is denoted by S:

Definition of
Sample Standard

Deviation
S =

√
S2 (1.6.13)
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A computational formula for S2 is

Computational
Formula for Sample

Variance
S2 = 1

n − 1

[ n∑

i=1

x2
i − 1

n

( n∑

i=1

xi

)2]
(1.6.14)

As we did with the sample mean and sample proportion, we emphasize here that

S2 and S approximate but are, in general, different from σ 2 and σ .

Example
1.6-6

(a) Find the variance and standard deviation of the statistical population

vi = 0, i = 1, . . . , 24,000; vi = 1, i = 24,001, . . . , 60,000.

corresponding to the 60,000 US citizens of voting age of Example 1.6-5.
(b) Find the sample variance and standard deviation of the sample

xi = 0, i = 1, . . . , 22; xi = 1, i = 23, . . . , 50

from the above statistical population.

Solution

(a) Using the computational formula (1.6.9), the population variance is

σ 2 = 1
N

N∑

i=1

v2
i − µ2 = 36,000

60,000
− (0.6)2 = 0.6(1 − 0.6) = 0.24.

The population standard deviation is σ =
√

0.24 = 0.49.
(b) Next, using the computational formula (1.6.14) for the sample variance, we

have

S2 = 1
n − 1

[ n∑

i=1

x2
i − 1

n

( n∑

i=1

xi

)2]
= 1

49

[
28 − 1

50
282

]
= 0.25,

and thus, the sample standard deviation is S =
√

0.25 = 0.5.

The sample variance and sample standard deviation in the above example
provide good approximations to the population variance and standard deviation,
respectively. The next example provides further insight into the quality of these
approximations and also the sampling variability of the sample variance and sample
standard deviation.

Example
1.6-7

Use R to obtain five samples of size 50 from the statistical population given in
Example 1.6-6, and to compute the sample variance for each sample.

Solution
Setting x = c(rep(0, 24,000), rep(1, 36,000)) for the statistical population, and repeat-
ing the commands

y=sample(x, size=50); var(y); sd(y)
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five times gives, for example, the following five pairs of sample variances and stan-
dard deviations: (0.2143, 0.4629), (0.2404, 0.4903), (0.2535, 0.5035), (0.2551, 0.5051),
(0.2514, 0.5014).

The definitions of the population variance and standard deviation given in this
section assume a finite population. The more general definition, applicable to any
population, will be given in Chapter 3. The definitions of the sample variance and
standard deviation remain the same regardless of whether or not the sample has
been drawn from a finite or an infinite population.

Exercises

1. A polling organization samples 1000 adults nationwide
and finds that the average duration of daily exercise is 37
minutes with a standard deviation of 18 minutes.
(a) The correct notation is for the number 37 is (choose

one): (i) x, (ii) µ.
(b) The correct notation is for the number 18 is (choose

one): (i) S, (ii) σ .
(c) Of the 1000 adults in the sample 72% favor tougher

penalties for persons convicted of drunk driving. The
correct notation for the number 0.72 is (choose one):
(i) p̂, (ii) p.

2. In its year 2000 census, the United States Census
Bureau found that the average number of children of all
married couples is 2.3 with a standard deviation of 1.6.
(a) The correct notation is for the number 2.3 is (choose

one): (i) x, (ii) µ.
(b) The correct notation is for the number 1.6 is (choose

one): (i) S, (ii) σ .
(c) According to the same census, 17% of all adults chose

not to marry. The correct notation for the number 0.17
is (choose one): (i) p̂ = 0.17, (ii) p = 0.17.

3. A data set of 14 ozone measurements (Dobson units)
taken at different times from the lower stratosphere,
between 9 and 12 miles (15 and 20 km) altitude, can
be found in OzoneData.txt. What proportion of these
measurements falls below 250? What does this sample
proportion estimate?

4. Use cs = read.table(”Concr.Strength.1s.Data.txt”,
header = T) to read into the R object cs data on 28-
day compressive-strength measurements of concrete
cylinders using water/cement ratio 0.4 (see footnote
5 in Exercise 1 in Section 1.5). Then use the com-
mands attach(cs); sum(Str <= 44)/length(Str); sum(Str
>= 47)/length(Str) to obtain the proportion of mea-
surements that are less than or equal to 44, and greater
than or equal to 47. What do these sample proportions
estimate?

5. Refer to Example 1.6-3.
(a) Use the information on the statistical population of

productivity ratings given in the example to calculate
the population variance and standard deviation.

(b) Use the sample of 10 productivity ratings given in
the example to calculate the sample variance and
standard deviation.

6. Use R commands to obtain a simple random sample
of size 50 from the statistical population of productivity
ratings given in Example 1.6-3, and calculate the sample
mean and sample variance. Repeat this for a total of five
times, and report the five pairs of (x, S2).

7. Refer to Exercise 1 in Section 1.4.
(a) For the statistical population corresponding to the

number of scratches of the 500 tin plates described in
the exercise (N0 = 190 0’s, N1 = 160 1’s and N2 =
150 2’s), find the population mean, the population
variance, and the population standard deviation.

(b) A simple random sample of n = 100 from the above
statistical population consists of n0 = 38 0’s, n1 = 33
1’s, and n2 = 29 2’s. Find the sample mean, the sample
variance, and the sample standard deviation.

8. Set the statistical population of Exercise 7 in the
R object (vector) x by x = c(rep(0, 190), rep(1, 160),
rep(2, 150)).
(a) The R commands y = sample(x, 100); table(y)/100

select a sample of size n = 100 and compute the
proportions for the three categories. Repeat these
commands a total of five times, report the results,
and give the population proportions that the sample
proportions estimate.

(b) The R commands y = sample(x, 100); mean(y); var(y);
sd(y) select a sample of size n = 100 and compute
the sample mean, sample variance, and sample stan-
dard deviation. Repeat these commands a total of five
times, report the results, and give the values of the
population parameters that are being estimated.
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9. The outcome of a roll of a die is a random variable X
that can be thought of as resulting from a simple random
selection of one number from 1, . . . , 6.
(a) Compute µX and σ 2

X , either by hand or using R.
(b) Select a sample of size 100 with replacement from

the finite population 1, . . . , 6, and compute the sam-
ple mean and sample variance. The R commands for
doing so are:

x=sample(1:6, 100, replace=T) # T for
TRUE -- capitalization is necessary

mean(x); var(x)

Comment on how well the sample mean and variance
approximates the true population parameters.

(c) Use the R command table(x)/100, where x is the
sample of size n = 100 obtained in part (b), to
obtain the sample proportions of 1, . . . , 6. Are they all
reasonably close to 1/6?

10. Setting 1 for Heads and 0 for Tails, the outcome X of
a flip of a coin can be thought of as resulting from a simple
random selection of one number from {0, 1}.
(a) Compute the variance σ 2

X of X.
(b) The possible samples of size two, taken with

replacement from the population {0, 1}, are
{0, 0}, {0, 1}, {1, 0}, {1, 1}. Compute the sample variance
for each of the possible four samples.

(c) Consider the statistical population consisting of the
four sample variances obtained in part (b), and let Y
denote the random variable resulting from a simple
random selection of one number from this statistical
population. Compute E(Y).

(d) Compare σ 2
X and E(Y). If the sample variance in

part (b) was computed according to a formula that
divides by n instead of n − 1, how would σ 2

X and E(Y)
compare?

11. A random sample of 5 cars of type A that were test
driven yielded the following gas mileage on the highway:
29.1, 29.6, 30, 30.5, 30.8. A random sample of 5 cars of
type B yielded the following gas mileage when test driven
under similar conditions: 21, 26, 30, 35, 38.
(a) For each type of car, estimate the population mean

gas mileage.
(b) For each type of car, estimate the population variance

of gas mileage.
(c) On the basis of the above analysis, rank the two types

of car in terms of quality. Justify your answer.

12. Consider a statistical population consisting of N val-
ues v1, . . . , vN , and let µv, σ 2

v , σv denote the population
mean value, variance, and standard deviation.
(a) Suppose that the vi values are coded to w1, . . . , wN ,

where wi = c1 + vi, where c1 is a known constant.

Show that the mean value, variance, and standard
deviation of the statistical population w1, . . . , wN are

µw = c1 + µv, σ 2
w = σ 2

v , σw = σv.

(Hint. The computational formula for the variance is
not very convenient for this derivation. Use instead
(1.6.8). The same is true for parts (b) and (c).)

(b) Suppose that the vi values are coded to w1, . . . , wN ,
where wi = c2vi, where c2 is a known constant. Show
that the mean value, variance, and standard deviation
of the statistical population w1, . . . , wN are

µw = c2µv, σ 2
w = c2

2σ
2
v , σw = |c2|σv.

(c) Suppose that the vi values are coded to w1, . . . , wN ,
where wi = c1 + c2vi, where c1, c2 are known
constants. Show that the mean value, variance,
and standard deviation of the statistical population
w1, . . . , wN are

µw = c1 + c2µv, σ 2
w = c2

2σ
2
v , σw = |c2|σv.

13. Consider a sample x1, . . . , xn from some statistical
population, and let x, S2

x, and Sx denote the sample mean,
sample variance, and sample standard deviation.
(a) Suppose that the xi values are coded to y1, . . . , yn,

where yi = c1+xi, where c1 is a known constant. Show
that the sample mean, sample variance, and sample
standard deviation of y1, . . . , yn are

y = c1 + x, S2
y = S2

x, Sy = Sx.

(b) Suppose that the xi values are coded to y1, . . . , yn,
where yi = c2xi, where c2 is a known constant. Show
that the sample mean, sample variance, and sample
standard deviation of y1, . . . , yn are

y = c2x, S2
y = c2

2S2
x, Sy = |c2|Sx.

(c) Suppose that the xi values are coded to y1, . . . , yn,
where yi = c1+c2xi, where c1, c2 are known constants.
Show that the sample mean, sample variance, and
sample standard deviation of the statistical population
y1, . . . , yn are

y = c1 + c2x, S2
y = c2

2S2
x, Sy = |c2|Sx.

14. The noon-time temperature of seven randomly
selected days of August in a coastal site of Spain gives
x = 31Co and S = 1.5Co. The formula for converting a
measurement in the Celsius scale to the Fahrenheit scale
is Fo = 1.8Co +32. Find the sample mean and variance of
the seven temperature measurements when expressed in
the Fahrenheit scale.

15. Consider the sample X1 = 81.3001, X2 = 81.3015,
X3 = 81.3006, X4 = 81.3011, X5 = 81.2997, X6 =
81.3005, X7 = 81.3021. Code the data by subtracting
81.2997 and multiplying by 10,000. Thus the coded data
are 4, 18, 9, 14, 0, 8, 24. It is given that the sample vari-
ance of the coded data is S2

Y = 68.33. Find the sample
variance of the original data.



Section 1.7 Medians, Percentiles, and Boxplots 31

16. The following data show the starting salaries, in $1000 per year, for a sample of 15
senior engineers:

152 169 178 179 185 188 195 196 198 203 204 209 210 212 214

(a) Assuming that the 15 senior engineers represent a simple random sample from the
population of senior engineers, estimate the population mean and variance.

(b) Give the sample mean and variance for the data on second-year salaries for the same
group of engineers if
(i) if each engineer gets a $5000 raise, and

(ii) if each engineer gets a 5% raise.

1.7 Medians, Percentiles, and Boxplots
Percentiles are used mainly for continuous variables, or discrete-valued variables if
the divisions between values are fine enough, as, for example, SAT scores. The defi-
nition of percentiles for finite populations (the only type of populations considered
in this chapter) is the same as that for sample percentiles. For this reason, only the
sample percentiles will be discussed in this section. Population percentiles for infinite
populations will be defined in Chapter 3.

Let x1, . . . , xn be a simple random sample from a continuous population distribu-
tion. Roughly speaking, the (1−α)100th sample percentile divides the sample in two
parts, the part having the (1−α)100% smaller values, and the part having the α100%
larger values. For example, the 90th sample percentile [note that 90 = (1 − 0.1)100]
separates the upper (largest) 10% from the lower 90% of values in the data set. The
50th sample percentile is also called the sample median and is denoted by x̃; it is the
value that separates the upper or largest 50% from the lower or smallest 50% of
the data. The 25th, the 50th, and the 75th sample percentiles are also called sample
quartiles, as they divide the sample into roughly four equal parts. We also refer to
the 25th and the 75th sample percentiles as the lower sample quartile (q1) and upper
sample quartile (q3), respectively. The precise (computational) definition of sample
quartiles is given in Definition 1.7-2, but for now we give the following definition of
a different measure of variability.

Definition 1.7-1
The sample interquartile range, or sample IQR, defined as

IQR = q3 − q1

is an estimator of the population IQR, which is a measure of variability.

Sample percentiles serve as estimators of corresponding population percentiles.
For a precise definition of sample percentiles we need to introduce notation for the
ordered sample values, or order statistics: The sample values x1, . . . , xn arranged in
increasing order are denoted

Notation for the
Order Statistics x(1), x(2), . . . , x(n) (1.7.1)



32 Chapter 1 Basic Statistical Concepts

Because they have been ordered in increasing order, it follows that x(1) is the smallest
observation and x(n) is the largest. In particular, x(1) ≤ x(2) ≤ · · · ≤ x(n).

We begin by identifying each x(i) as an estimator of a population percentile.
Following that, we give precise (computational) definitions of the sample median
and the upper and lower quartiles.

Definition 1.7-2
Let x(1), x(2), . . . , x(n) denote the ordered sample values in a sample of size n.

Then x(i), the ith smallest sample value, is taken to be the 100
(

i − 0.5
n

)
-th

sample percentile. Sample percentiles estimate the corresponding population
percentiles.

Example
1.7-1

A simple random sample of size 10, drawn from the statistical population of the 50
black bears’ weight measurements used in Example 1.2-5, is:

154 158 356 446 40 154 90 94 150 142

Give the order statistics, and state the population percentiles they estimate.

Solution
The R command

sort(c(154, 158, 356, 446, 40, 154, 90, 94, 150, 142))

returns the order statistics: 40, 90, 94, 142, 150, 154, 154, 158, 356, 446. These order
statistics estimate the 5th, 15th, 25th, 35th, 45th, 55th, 65th, 75th, 85th, and 95th
population percentiles, respectively. For example, x(3) = 94 is the 100(3 − 0.5)/10 =
25th percentile and estimates the corresponding population percentile.

As the above example demonstrates, it is possible that none of the order statis-
tics corresponds to a sample percentile of interest. For example, none of the order
statistics in Example 1.7-1 corresponds to the median or the 90th percentile. In gen-
eral, if the sample size is even, none of the order statistics will be the sample median,
and if the sample size is not of the form 6 + (a multiple of 4), none of the order
statistics will equal the quartiles. R uses an interpolation algorithm for evaluating
any sample percentile from a given data set. With data in the object x, the commands

R Commands for Percentiles

median(x)
quantile(x, 0.25)
quantile(x, c(0.3, 0.7, 0.9))
summary(x)

(1.7.2)

give, respectively, the median, the 25th percentile, the 30th, 70th, and 90th per-
centiles, and a five number summary of the data consisting of x(1), q1, x̃, q3,
and x(n).
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Example
1.7-2

Using the sample of 10 black bear weights given in Example 1.7-1, estimate the
population median, 70th, 80th, and 90th percentiles.

Solution
Putting the sample values in the object w as described in Example 1.7-1, the R com-
mand quantile(w, c(0.5, 0.7, 0.8, 0.9)) returns 152.0, 155.2, 197.6, 365.0 for the sample
median, 70th, 80th, and 90th percentiles, respectively.

The five number summary of the data given by the summary(x) command in
R is the basis for the boxplot, which is a simple but effective visual description of
the main features of a data set x1, . . . , xn. A boxplot displays the central 50% of
the data with a box, the lower (or left) edge of which is at q1 and the upper (or
right) edge at q3. A line inside the box represents the median. The lower 25% and
upper 25% of the data are represented by lines (or whiskers) that extend from each
edge of the box. The lower whisker extends from q1 until the smallest observation
within 1.5 interquartile ranges from q1. The upper whisker extends from q3 until
the largest observation within 1.5 interquartile ranges from q3. Observations farther
from the box than the whiskers’ ends (i.e., smaller than q1 −1.5× IQR or larger than
q3 + 1.5 × IQR) are called outliers, and are plotted individually. The construction of
a boxplot is demonstrated in the following example.

Example
1.7-3

Scientists have been monitoring the ozone hole since 1980. A data set of 14 ozone
measurements (Dobson units) taken from the lower stratosphere, between 9 and 12
miles (15 and 20 km) altitude, can be found in OzoneData.txt. Give the five number
summary of this data and construct the boxplot.

Solution
Reading this data into the R object oz, the command summary(oz) gives the five
number summary of this data as: x(1) = 211.0, q1 = 247.8, x̃ = 272.5, q3 = 292.2,
x(14) = 446.0. The interquartile range is IQR = 292.2 − 247.8 = 44.4, and q3 +
1.5 × IQR = 358.8. Thus, the two largest observations, which are the 395 and 446.0,
are outliers. The boxplot of this data, shown in Figure 1-12, was generated by the R
command

boxplot(oz, col= ”grey”).

25
0

30
0

35
0

40
0

45
0Figure 1-12 Boxplot of

ozone data.
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In what follows we give computational definitions for the sample median and
the lower and upper quartiles.

Definition 1.7-3
Let x(1), x(2), . . . , x(n) denote the order statistics. Then

1. The sample median is defined as

x̃ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x(
n+1

2

), if n is odd

x( n
2 )

+ x( n
2 +1)

2
, if n is even

2. The sample lower quartile is defined as

q1 = Median of smaller half of the data values

where, if n is even the smaller half of the values consists of the smallest n/2
values, and if n is odd the smaller half consists of the smallest (n + 1)/2
values. Similarly, the sample upper quartile is defined as

q3 = Median of larger half of the data values

where, if n is even the larger half of the values consists of the largest n/2
values, and if n is odd the larger half consists of the largest (n + 1)/2 values.

Thus, when the sample size is even, the sample median is defined by interpolat-
ing between the nearest sample percentiles. Similarly, when the sample size is not
of the form 6 + (a multiple of 4), the above definition uses interpolation to define
the sample lower and upper quartiles. This interpolation is convenient for hand
calculations but is different from the interpolation used by R. For example, the R
command summary(1:10) yields the first and third quartiles for the numbers 1, . . . , 10
as q1 = 3.25 and q3 = 7.75, while the rule of Definition 1.7-3 gives q1 = 3, q3 = 8.
However the R command summary(1:11) yields the first and third quartiles of the
numbers 1, . . . , 11 as q1 = 3.5 and q3 = 8.5, respectively, which is exactly what the
rule of Definition 1.7-3 gives.

Example
1.7-4

The sample values of a sample of size n = 8 are 9.39, 7.04, 7.17, 13.28, 7.46, 21.06,
15.19, 7.50. Find the lower and upper quartiles. Repeat the same with an additional
observation of 8.20.

Solution
Since n is even and n/2 = 4, q1 is the median of the smallest four values, which are
7.04, 7.17, 7.46, 7.50, and q3 is the median of the largest four values which are 9.39,
13.28, 15.19, 21.06. Thus q1 = (7.17 + 7.46)/2 = 7.315, and q3 = (13.28 + 15.19)/2 =
14.235. With an additional observation of 8.20, so n = 9, q1 = 7.46, q3 = 13.28.

The next example illustrates the similarities and differences between the sample
mean and the sample median.
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Example
1.7-5

Let the sample values of a sample of size n = 5, be x1 = 2.3, x2 = 3.2, x3 = 1.8, x4 =
2.5, x5 = 2.7. Find the sample mean and the sample median. Repeat the same after
changing the x2 value from 3.2 to 4.2.

Solution
The sample mean is

x = 2.3 + 3.2 + 1.8 + 2.5 + 2.7
5

= 2.5.

For the median, we first order the values from smallest to largest: 1.8, 2.3, 2.5, 2.7,
3.2. Since the sample size here is odd, and (n + 1)/2 = 3, the median is

x̃ = x(3) = 2.5,

which is the same as the mean. Changing the x2 value from 3.2 to 4.2 we get

x = 2.7, x̃ = 2.5.

This example illustrates the point that the value of x is affected by extreme
observations (outliers), where as the median is not.

Exercises

1. The following is a stem and leaf display of n = 40
solar intensity measurements (integers in watts/m2) on
different days at a location in southern Australia. The
(optional) first column of the stem and leaf plot contains
a leaf count in a cumulative fashion from the top down to
the stem that contains the median and also from the bot-
tom up to the stem that contains the median. The stem
containing the median has its own leaf count, shown in
parentheses. Thus, 18 + 4 + 18 equals the sample size.

4 67 3 3 6 7
8 68 0 2 2 8

11 69 0 1 9
18 70 0 1 4 7 7 9 9

(4) 71 5 7 7 9
18 72 0 0 2 3
14 73 0 1 2 4 4 5

8 74 0 1 3 6 6 6
2 75 0 8

(a) Obtain the sample median and the 25th and the 75th
percentiles.

(b) Obtain the sample interquartile range.
(c) What sample percentile is the 19th ordered value?

2. Read the data on robot reaction times to sim-
ulated malfunctions into the data frame t by
t = read.table(”RobotReactTime.txt”, header = T). Read
the reaction times of Robot 1 into the vector t1 by

attach(t); t1 = Time[Robot==1], and sort the data (i.e.,
arrange it from smallest to largest) by sort(t1). Using the
sorted data and hand calculations
(a) estimate the population median and the 25th and the

75th percentiles,
(b) estimate the population interquartile range, and
(c) find the percentile of the 19th ordered value.

3. The site given in Exercise 2 also gives the reaction
times of Robot 2. Use commands similar to those given
in Exercise 2 to read the reaction times of Robot 2 into
the vector t2.
(a) Use the R command summary given in (1.7.2) to

obtain the five number summary of this data set.
(b) Use the R command quantile given in (1.7.2) get the

sample 90th percentile.
(c) Use the R command “boxplot” given in Example 1.7-

3 to construct a boxplot for the data. Are there any
outliers?

4. Enter the solar intensity measurements of Exercise 1
into the R object si with si = read.table(”SolarIntensAu
Data.txt”, header = T). Use R commands to
(a) construct a boxplot of the solar intensity

measurements, and
(b) obtain the 30th, 60th, and 90th sample percentiles.
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1.8 Comparative Studies
Comparative studies aim at discerning and explaining differences between two
or more populations. In this section we introduce the basic concepts and jargon
associated with such studies.

1.8.1 BASIC CONCEPTS AND COMPARATIVE GRAPHICS

The comparison of two methods of cloud seeding for hail and fog suppression at
international airports, the comparison of two or more cement mixtures in terms
of compressive strength, and the comparison of the effectiveness of three cleaning
products in removing four different types of stains (which are mentioned as case
studies 2, 3, and 4 in Example 1.1-1) are examples of comparative studies.

Comparative studies have their own jargon. Thus, the comparison of three
cement mixtures in terms of their compressive strength is a one-factor study, the
factor being cement mixture; this factor enters the study at three levels, and the
response variable is cement strength. In one-factor studies the levels of the factor
are also called treatments. The study comparing the effectiveness of three cleaning
products in removing four different types of stains is a two-factor study where the
factor cleaning product has three levels and the factor stain has four levels; the
response variable is the degree of stain removal. In two-factor studies, treatments
correspond to the different factor-level combinations; see Figure 1-13. Thus, a
two-factor study where factor A enters with a levels and factor B enters with b levels
involves a × b treatments.

Example
1.8-1

A study will compare the level of radiation emitted by five kinds of cellphones at
each of three volume settings. State the factors involved in this study, the number
of levels for each factor, the total number of populations or treatments, and the
response variable.

Solution
The two factors involved in this study are type of cellphone (factor 1) and vol-
ume setting (factor 2). Factor 1 has five levels, and factor 2 has three levels. The
total number of populations is 5 × 3 = 15, and the response variable is level of
radiation.

Different treatments (factor levels or factor-level combinations) correspond
to different populations. The complete description of these populations, however,
also involves the experimental units, which are the units on which measurements
are made.

Example
1.8-2

(a) In the study that compares the cleaning effectiveness of cleaning products on
different types of stains, experimental units are pieces of fabric.

(b) In the study that compares the effect of temperature and humidity on the yield
of a chemical reaction, experimental units are aliquots of materials used in the
reaction.

(c) In studying the effectiveness of a new diet in reducing weight, experimental
units are the subjects participating in the study.

Figure 1-13 Treatments, or
factor-level combinations,
in a two-factor study.

Factor B

Factor A 1 2 3 4

1 Tr11 Tr12 Tr13 Tr14

2 Tr21 Tr22 Tr23 Tr24
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Comparisons of the different populations typically focus either on comparisons
of means, proportions, medians, or variances. Comparisons of means (also propor-
tions and medians) is typically based on differences, while comparisons of variances
are typically based on ratios. For example, the comparison of two different cloud
seeding methods may be based on

x1 − x2, (1.8.1)

where x1 and x2 are the sample mean rainfalls produced by methods 1 and 2,
respectively.

The difference in (1.8.1) is the simplest type of a contrast. In general, contrasts
may involve differences not only of individual means but also of certain linear com-
binations of means. The following example illustrates different contrasts that may be
of interest in one-factor studies.

Example
1.8-3

A study is aimed at comparing the mean tread life of four types of high-performance
tires designed for use at higher speeds. Specify three different types of contrasts that
may be of interest.

Solution
Let x1, . . . , x4 denote sample mean tread lives obtained from samples of size
n1, . . . , n4 from each of the four types of tires.

(a) If tire type 1 is currently manufactured, and tire types 2, 3, and 4 are
experimental, interest may lie in the contrasts

x1 − x2, x1 − x3, x1 − x4.

These types of contrasts are common in the so-called control versus treatment
studies.

(b) If tire types 1 and 2 are made by manufacturer A, while tire types 3 and 4 are
made by manufacturer B, interest may lie in the contrast

x1 + x2

2
− x3 + x4

2
,

which compares the two brands made by manufacturer A to the two brands
made by manufacturer B.

(c) An overall comparison of the four types of tires is typically based on the
contrasts

x1 − x, x2 − x, x3 − x, x4 − x,

where x = (x1 + x2 + x3 + x4)/4. The contrast xi − x of the ith sample mean to
the average of all four sample means is called the effect of level i of the factor
tire type.

The sample effects, defined in Example 1.8-3 part (c), are typically denoted by α̂i:

Sample Effect of
Level i in a

One-Factor Design
α̂i = xi − x (1.8.2)
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The sample contrasts and sample effects estimate their population counterparts.
For example, the sample effects in (1.8.2) estimate the k population effects

αi = µi − µ, where µ = 1
k

k∑

i=1

µi. (1.8.3)

For example, if the four types of high-performance tires have mean tread lives µ1 =
16, µ2 = 13, µ3 = 14, and µ4 = 17, the overall mean tread life is µ = (16 + 13 + 14 +
17)/4 = 15, and the effects of the tire types are α1 = 16−15 = 1, α2 = 13−15 = −2,
α3 = 14 − 15 = −1, and α4 = 17 − 15 = 2. Note that the tire effects sum to zero.

Additional contrasts, relevant in two-factor studies, will be given in Section 1.8.4.
The comparative boxplot and the comparative bar graph are commonly used

for visualizing population differences in one-factor studies. The comparative boxplot
consists of side-by-side individual boxplots for the data sets from each population;
it is useful for providing a visual impression of differences in the median and per-
centiles. Example 1.8-4 provides the context for Figure 1-14 and the R commands
for constructing it.

Example
1.8-4

Comparative boxplots in R. Iron concentration measurements from four ore for-
mations are given in FeData.txt. Construct a comparative boxplot and comment on
possible concentration differences.

Solution
Use fe = read.table(”FeData.txt”, header = T) to import the data into the R data
frame fe, and also the following commands:

w=stack(fe) # stacks data and assigns indices
boxplot(w$values∼w$ind, col=rainbow(4))
# constructs the boxplot

The comparative boxplot suggests that the fourth iron ore formation has higher, on
average, iron concentration than the other three. (It should always be kept in mind
that the differences at the data level, which the comparative boxplot suggest, are
only approximations to the population level differences.)

V1 V2 V3 V4

20
25

30
35

40
45Figure 1-14 Comparative

boxplot for iron
concentration data.
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The comparative bar graph generalizes the bar graph in that it plots several bars
for each category. Each bar represents the category’s proportion in one of the popu-
lations being compared; different colors are used to distinguish bars that correspond
to different populations. Example 1.8-5 provides the context for Figure 1-15 and the
R commands for constructing it.

Example
1.8-5

Comparative bar graphs in R. The light vehicle market share of car companies for
November 2010 and 2011 is given in MarketShareLightVehComp.txt.14 Construct a
comparative bar graph and comment on possible changes in the companies’ light
vehicle market share.

Solution
Use the read.table command to import the data into the R data frame lv2 (see
Example 1.8-4), and also the following commands:

m=rbind(lv2$Percent_2010, lv2$Percent_2011)
# creates a data matrix

barplot(m, names.arg=lv2$Company, ylim=c(0, 20),
col=c(”darkblue”, ”red”), legend.text= c(”2010”,”2011”),
beside=T, las=2) # constructs the bar graph

Figure 1-15 makes it easy to discern the changes in the companies’ market shares. In
particular, Chrysler had the biggest market share gain over this one-year period.

Bar graphs are also used to represent how a quantity other than a proportion
varies across certain categories. Most often the quantity represented is a count and
the category is a time period, such as how the number of visitors at Napa Valley,
or the volume of sales of a certain product, varies across the months or seasons of
the year. A stacked bar graph (also called segmented bar graph) is a visualization
technique that can also incorporate information about an additional classification

14 Data from http://wardsauto.com/datasheet/us-light-vehicle-sales-and-market-share-company-2004–2013.

http://wardsauto.com/datasheet/us-light-vehicle-sales-and-market-share-company-2004%E2%80%932013
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of the units being counted. For example, in addition to classifying visitors at Napa
Valley according to month of visit, a stacked bar graph can also display information
about the nationality breakdown of the visitors; similarly, in addition to showing
the quarterly volume of sales of a company, a stacked bar graph can also display
information about the breakdown of the quarterly volume into sales of particular
products. In general, the stacked bar graph is useful for studying two-way tables,
that is, tables where each unit is classified in two ways. Example 1.8-6 provides the
context for Figure 1-16 and the R commands for constructing it.

Example
1.8-6

Stacked bar graphs in R. The data file QsalesSphone.txt shows simulated world-
wide smart phone sales data, in thousands of units, categorized by year and quarter.
Construct a segmented bar graph and comment on its features.

Solution
Use the read.table command to import the data into the R object qs, and form a
data matrix by m = rbind(qs$Q1, qs$Q2, qs$Q3, qs$Q4). The stacked bar graph is
constructed with the command

barplot(m, names.arg=qs$Year, ylim=c(0, 40000),
col=c(”green”, ”blue”, ”yellow”, ”red”))

and the legend is added with the command

legend(”topleft”, pch=c(22, 22, 22, 22), col=c(”green”,
”blue”, ”yellow”, ”red”), legend=c(”Quarter 1”,
”Quarter 2”, ”Quarter 3”, ”Quarter 4”))

Figure 1-16 makes it apparent that more units were sold in the fourth quarter of each
year than in any other quarter. This may be due to a strategy of increased product
promotion during that quarter.

In comparative studies with two or more factors, it is of interest to also examine
how the different factors interact in influencing the response. This is discussed in
Section 1.8.4.
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Figure 1-16 Stacked bar
graph of annual smart
phone sales.
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1.8.2 LURKING VARIABLES AND SIMPSON’S PARADOX

In order to avoid comparing apples with oranges, the experimental units assigned to
different treatments must be as similar (or homogenous) as possible. For example,
if the age of the fabric is a factor that affects the response in Example 1.8-2 part
(a), then, unless the ages of the fabrics that are assigned to different treatments are
homogenous, the comparison of treatments will be distorted.

To guard against such distorting effects of other possible factors, also called
lurking variables, it is recommended that the allocation of units to treatments be
randomized. Randomization helps mitigate the distorting effects, called confound-
ing in technical parlance, by equalizing the distribution of lurking variables across
treatments.

Example
1.8-7

(a) Randomizing the allocation of fabric pieces to the different treatments (i.e.,
combinations of cleaning product and type of stain) avoids confounding the
factors of interest (cleaning product and stain) with the potentially influential
factor age of fabric.

(b) In the study of Example 1.8-2 part (b), the acidity of the materials used in the
reaction might be another factor affecting the yield. Randomizing the alloca-
tion of the experimental units, that is, the materials, to the different treatments
avoids confounding the factors of interest (temperature and humidity) with the
potentially influential factor acidity.

The distortion caused by lurking variables in the comparison of proportions is
called Simpson’s paradox. Some examples of Simpson’s paradox follow.

Example
1.8-8

1. Batting averages: The overall batting average of baseball players Derek Jeter
(New York Yankees) and David Justice (Atlanta Braves) during the years 1995
and 1996 were 0.310 and 0.270, respectively. This seems to show that Jeter is
more effective at bat than Justice. However, if we take into consideration each
year’s performance for the two players, the conclusion is not so straightforward:

1995 1996 Combined

Derek Jeter 12/48 or 0.250 183/582 or 0.314 195/630 or 0.310

David Justice 104/411 or 0.253 45/140 or 0.321 149/551 or 0.270

In both 1995 and 1996, Justice had a higher batting average than Jeter, even
though his overall batting average is lower. This appears paradoxical because
the combined or overall average is not computed by a simple average of each
year’s average.15

2. Kidney stone treatment: This is a real-life example from a medical study compar-
ing the success rates of two treatments for kidney stones.16 The first table shows
the overall success rates for Treatment A (all open procedures) and Treatment
B (percutaneous nephrolithotomy):

Treatment A Treatment B

78% (273/350) 83% (289/350)

15 The batting averages used in this example are from Ken Ross (2004). A Mathematician at the Ballpark: Odds
and Probabilities for Baseball Fans (paperback). Pi Press.
16 C. R. Charig, D. R. Webb, S. R. Payne, and O. E. Wickham (1986). Comparison of treatment of renal calculi
by operative surgery, percutaneous nephrolithotomy, and extracorporeal shock wave lithotripsy. Br Med J (Clin
Res Ed) 292(6524): 879–882.
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The table seems to show Treatment B is more effective. However, if we include
data about kidney stone size, a different picture emerges:

Treatment A Treatment B

Small Stones 93% (81/87) 87% (234/270)
Large Stones 73% (192/263) 69% (55/80)

Both 78% (273/350) 83% (289/350)

The information about stone size has reversed our conclusion about the
effectiveness of each treatment. Now Treatment A is seen to be more effective
in both cases. In this example the lurking variable (or confounding variable)
of stone size was not previously known to be important until its effects were
included.

1.8.3 CAUSATION: EXPERIMENTS AND OBSERVATIONAL STUDIES

A study is called a statistical experiment if the investigator controls the allocation
of units to treatments or factor-level combination, and this allocation is done in
a randomized fashion. Thus, the studies mentioned in Example 1.8-7 are statisti-
cal experiments. Similarly, the study on the effectiveness of a new diet in reducing
weight becomes a statistical experiment if the allocation of the participating subjects
to the control group (which is the group using the standard diet) and the treatment
group (which is the group using the new diet) is done in a randomized fashion.

Though desirable, randomization is not always possible.

Example
1.8-9

1. It is not possible to assign subjects to different levels of smoking in order to
study the effects of smoking.

2. It does not make sense to assign random salary increases in order to study the
effects of salary on productivity.

3. It may not be possible to randomly assign parents to different types of disci-
plinary actions in order to study the actions’ effects on teenage delinquency.

When the allocation of units to treatments is not controlled by the investiga-
tor, and thus the allocation is not randomized, the study is called observational.
Observational studies cannot be used for establishing causation because the lack
of randomization allows potentially influential lurking variables to be confounded
with the factors being studied.

For example, even a strong relation between salary increases and employee pro-
ductivity does not imply that salary increases cause increased productivity (it could
be vice versa). Similarly, a strong relation between spanking and anti-social behav-
ior in children does not imply that spanking causes anti-social behavior (it could be
vice versa). Causality can be established only through experimentation. This is why
experimentation plays a key role in industrial production and especially in the area
of quality improvement of products. In particular, factorial experimentation (which
is discussed in the next section) was vigorously advocated by W. Edwards Deming
(1900–1993). Having said that, one should keep in mind that observational studies
have yielded several important insights and facts. For example, studies involving the
effect of smoking on health are observational, but the link they have established
between the two is one of the most important issues of public health.
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1.8.4 FACTORIAL EXPERIMENTS: MAIN EFFECTS AND INTERACTIONS

A statistical experiment involving several factors is called a factorial experiment if all
factor-level combinations are considered. Thus, in a two-factor factorial experiment,
where factor A enters with a levels and factor B enters with b levels, a × b samples
are collected, one from each factor-level combination. For example, the two-factor
study portrayed in Figure 1-13 is a factorial experiment if all eight treatments are
included in the study.

In factorial experiments with two or more factors, it is not enough to consider
possible differences between the levels of each factor separately. Comparative box-
plots for the levels of each individual factor fail to capture possible synergistic effects
among the levels of different factors. Such synergistic effects, called interactions in
statistical parlance, may result in some factor-level combinations yielding improved
or diminished response levels far beyond what can be explained by any differences
between the levels of the individual factors.

Example
1.8-10

An experiment considers two types of corn, used for bio-fuel, and two types of
fertilizer. The table in Figure 1-17 gives the population mean yields for the four
combinations of seed type and fertilizer type. It is seen that the fertilizer factor
has different effects on the mean yields of the two seeds. For example, fertilizer II
improves the mean yield of seed A by 111 − 107 = 4, while the mean yield of seed B
is improved by 110−109 = 1. Moreover, the best yield is obtained by using fertilizer
II on seed A (synergistic effect) even though the average yield of seed A over both
fertilizers, which is µ1· = (107 + 111)/2 = 109, is lower than the average yield of
seed B which is µ2· = (109 + 110)/2 = 109.5.

Definition 1.8-1
When a change in the level of factor A has different effects on the levels of
factor B we say that there is interaction between the two factors. The absence of
interaction is called additivity.

Under additivity there is an indisputably best level for each factor and the best
factor-level combination is that of the best level of factor A with the best level of
factor B. To see this, suppose that the mean values in the fertilizer and seed exper-
iment of Example 1.8-10 are as in Figure 1-18. In this case, changing to fertilizer II
has the same effect on both seeds (an increase of 4 in the mean yield). Similarly, it
can be said that seed B is better than seed A because it results in higher yield (by
two units) regardless of the fertilizer used. Thus, there is a clear-cut better level for
factor A (seed B) and a clear-cut better level for factor B (fertilizer II), and the best
results (highest yield) is achieved by the factor-level combination that corresponds
to the two best levels (seed B and fertilizer II in this case).

Figure 1-17 A 2 × 2 design
with interaction
(non-additive design).

Fertilizer Row
Averages

Main Row
EffectsI II

Seed A µ11 = 107 µ12 = 111 µ1· = 109 α1 = −0.25

Seed B µ21 = 109 µ22 = 110 µ2· = 109.5 α2 = 0.25

Column
Averages µ·1 = 108 µ·2 = 110.5 µ·· = 109.25

Main
Column β1 = −1.25 β2 = 1.25
Effects
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Figure 1-18 A 2 × 2 design
with no interaction
(additive design).

Fertilizer Row
Averages

Main Row
EffectsI II

Seed A µ11 = 107 µ12 = 111 µ1· = 109 α1 = −1

Seed B µ21 = 109 µ22 = 113 µ2· = 111 α2 = 1

Column
Averages µ·1 = 108 µ·2 = 112 µ·· = 110

Main
Column β1 = −2 β2 = 2
Effects

Under additivity, the comparison of the levels of each factor is typically based
on the so-called main effects. The main row effects, denoted by αi, and main column
effects, denoted by βj, are defined as

Main Row and
Column Effects αi = µi· − µ··, βj = µ·j − µ·· (1.8.4)

Figures 1-17 and 1-18 show the main row and the main column effects in these
two fertilizer-seed designs.

Under additivity, the cell means µij are given in terms of their overall average,
µ·· and the main row and column effects in an additive manner:

Cell Means under
Additivity µij = µ·· + αi + βj (1.8.5)

For example, in the additive design of Figure 1-18, µ11 = 107 equals the sum of
the main effect of row 1, α1 = −1, plus the main effect of column 1, β1 = −2, plus
the overall mean, µ·· = 110; similarly, µ12 = 111 equals the sum of the main effect
of row 1, α1 = −1, plus the main effect of column 2, β2 = 2, plus the overall mean,
µ·· = 110, and so on.

When there is interaction between the two factors, the cell means are not given
by the additive relation (1.8.5). The discrepancy/difference between the left and
right-hand sides of this relation quantifies the interaction effects:

Interaction Effects γij = µij −
(
µ·· + αi + βj

)
(1.8.6)

Example
1.8-11

Compute the interaction effects in the design of Example 1.8-10.

Solution
Using the information shown in Figure 1-17, we have

γ11 = µ11 − µ·· − α1 − β1 = 107 − 109.25 + 0.25 + 1.25 = −0.75

γ12 = µ12 − µ·· − α1 − β2 = 111 − 109.25 + 0.25 − 1.25 = 0.75

γ21 = µ21 − µ·· − α2 − β1 = 109 − 109.25 − 0.25 + 1.25 = 0.75

γ22 = µ22 − µ·· − α2 − β2 = 110 − 109.25 − 0.25 − 1.25 = −0.75.
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Figure 1-19 Data notation
in a 2 × 4 factorial
experiment.

Factor B

Factor A 1 2 3 4

1 x11k, x12k, x13k, x14k,

k= 1, . . . ,n11 k= 1, . . . ,n12 k= 1, . . . , n13 k= 1, . . . , n14

2 x21k, x22k, x23k, x24k,

k= 1, . . . ,n21 k= 1, . . . ,n22 k= 1, . . . ,n23 k= 1, . . . ,n24

Data from a two-factor factorial experiment are typically denoted using three
subscripts as shown in Figure 1-19. Thus, the first two subscripts correspond to the
factor-level combination and the third subscript enumerates the observations, the
number of which may differ among the different treatments. Sample versions of the
main effects and interactions are defined similarly using the cell means

Sample Mean
of Observations in

Cell (i, j)
xij = 1

nij

nij∑

k=1

xijk, (1.8.7)

instead of the population means µij. The formulas for the sample main row effects,
α̂i, and the sample main column effects, β̂j, are

Sample Main Row
and Column Effects α̂i = xi· − x··, β̂j = x·j − x·· (1.8.8)

Also, in analogy to (1.8.6), estimates of the interaction effects, the sample interaction
effects, are obtained by

Sample Interaction
Effects γ̂ij = xij −

(
x·· + α̂i + β̂j

)
(1.8.9)

These calculations, and the relevant notation, are illustrated in Figure 1-20.
Note that x·· can be obtained either as a column average (i.e., the average of x1·,

x2· and x3·), or as a row average (i.e., the average of x·1, x·2 and x·3), or as the average
of the nine cell sample means xij, (i.e., x·· = (1/9)

∑3
i=1

∑3
j=1 xij).

The following example demonstrates the calculation of the sample main and
interaction effects with R.

Figure 1-20 Calculation of
the sample main row
effects in a 3 × 3 design.

Column Factor

Row Row Main Row
Factor 1 2 3 Averages Effects

1 x11 x12 x13 x1· α̂1= x1· − x··
2 x21 x22 x23 x2· α̂2= x2· − x··
3 x31 x32 x33 x3· α̂3= x3· − x··

Column
Averages x·1 x·2 x·3 x··

Main
Column β̂1= x·1 − x·· β̂2= x·2 − x·· β̂3= x·3 − x··
Effects
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Example
1.8-12

Cell means, main effects, and interaction effects in R. Figure 1-21 contains data on
the amount of rainfall, in inches, in select target areas of Tasmania with and without
cloud seeding during the different seasons.17,18 Use R to compute the cell means,
and the main and interaction effects for the factors seed and season.

Solution
Import the data into R using cs=read.table(”CloudSeed2w.txt”, header=T) and use
the following commands:

mcm=tapply(cs$rain, cs[,c(2, 3)], mean) # the matrix
of cell means

alphas=rowMeans(mcm)-mean(mcm) # the vector of main row effects
betas=colMeans(mcm)-mean(mcm) # the vector main column effects
gammas=t(t(mcm-mean(mcm)-alphas) -betas) # the matrix of
interaction effects

The computed interaction effects are

Season

Seeded Autumn Spring Summer Winter

no 0.0298 -0.0883 -0.1345 0.1930
yes -0.0298 0.0883 0.1345 -0.1930

The computed main effects for seeded and unseeded are -0.0352 and 0.0352, respec-
tively, while the computed main effects for Autumn, Spring, Summer, and Winter
are 0.4802, -0.0017, -0.9355, and 0.4570, respectively.

As we did in other sections of this chapter, we stress again that the sample ver-
sions of the main effects and interactions approximate but, in general, they are not
equal to their population counterparts. In particular, the sample interaction effects
will not be equal to zero even if the design is additive. The interaction plot is a
useful graphical technique for assessing whether the sample interaction effects are
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Figure 1-21 Interaction
plot for the cloud seeding
data of Example 1.8-12.

17 A. J. Miller et al. (1979). Analyzing the results of a cloud-seeding experiment in Tasmania, Communications
in Statistics—Theory & Methods, A8(10): 1017–1047.
18 See also the related article by A. E. Morrison et al. (2009). On the analysis of a cloud-seeding dataset over
Tasmania, American Meteorological Society, 48: 1267–1280.
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sufficiently different from zero to imply a non-additive design. For each level of one
factor, say factor B, the interaction plot traces the cell means along the levels of the
other factor. If the design is additive, these traces (also called profiles) should be
approximately parallel. The interaction plot for the cloud-seeding data of Example
1.8-12, shown in Figure 1-21, was generated with the commands:

R Commands for the Interaction Plot of Figure 1-21

attach(cs) # so variables can be referred to by name
interaction.plot(season, seeded, rain, col=c(2,3), lty = 1,
xlab=”Season”, ylab=”Cell Means of Rainfall”, trace.label
=”Seeding”)

The crossing of the traces (or profiles) seen in Figure 1-21 is typically indicative
of interaction.

Factor interaction is prevalent in everyday life as it is in sciences. For exam-
ple, different spices may interact with different types of food to enhance taste, and
different wines interact with different appetizers. In agriculture, different types of
fertilization may interact with different types of soil as well as different levels of
watering. The June 2008 issue of Development features research suggesting interac-
tion between two transcription factors that regulate the development and survival
of retinal ganglion cells. A quality of service (QoS) IEEE article19 considers the
impact of several factors on total throughput and average delay as measures of ser-
vice delivery. Due to interactions, the article concludes, the factors cannot be studied
in isolation. Finally, in product and industrial design it is typical to consider the
potential impact of a large number of factors and their interactions on a number
of quality characteristics of a product, or aspects of a product. In car manufacturing,
for example, quality aspects range from the car’s handling to the door’s holding abil-
ity for remaining open when the car is parked uphill. Optimization of such quality
characteristics is only possible through factorial experimentation.

Exercises

1. An experiment is conducted to determine the opti-
mal time and temperature combination for baking a cake.
The response variable of interest is taste. Four batches of
cake will be baked separately at each combination of bak-
ing times (25 and 30 minutes) and temperature settings
(275oF, 300oF, and 325oF).
(a) What are the experimental units?
(b) What are the factors in this experiment?
(c) State the levels of each factor.
(d) List all the treatments in this experiment.
(e) Is the response variable qualitative or quantitative?

2. An experiment to assess the effect of watering on the
life span of a certain type of root system incorporates
three watering regimens.
(a) How many populations involved in the study?

(b) The population(s) involved is (are) hypothetical: True
or false?

(c) The variable of interest is qualitative: True or false?
(d) What is considered a treatment in this study?
(e) Suppose the experiment will be carried out in three

different locations. It is known that specific location
characteristics (e.g., temperature and soil conditions)
also affect the life span of the root systems.
(i) Does this change the number of populations

involved in the study?
(ii) List the factors involved in this experiment and

their levels.

3. A quantification of coastal water quality converts mea-
surements on several pollutants (arsenic in oyster shells,
mercury, etc.) to a water quality index with values from
1 to 10. An investigation into the after-clean-up water

19 K. K. Vadde and Syrotiuk (2004). Factor interaction on service delivery in mobile ad hoc networks, Selected
Areas in Communications, 22: 1335–1346.
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quality of a lake analyzes water samples collected from
five areas encompassing the two beaches on the eastern
shore and the three beaches on the western shore. Let
µ1 and µ2 denote the mean water quality index for the
beaches on the eastern shore, and µ3, µ4, and µ5 be the
mean water quality index for the beaches on the western
shore.
(a) Write the contrasts that represent the effects of each

of the five areas.
(b) Write the contrast for comparing the water quality

around the two beaches on the eastern shore with that
around the three beaches on the western shore.

4. An article reports on the results of a cloud-seeding
experiment.20 The question of interest is whether cloud
seeding with silver nitrate increases rainfall. Out of 52
clouds, 26 were randomly selected for seeding, with the
remaining 26 serving as controls. The rainfall measure-
ments, in acre-feet, are given in CloudSeedingData.txt.
Use the R commands given in Example 1.8-4 to construct
a comparative boxplot and comment on possible differ-
ences in rainfall between seeded and unseeded clouds.

5. For its new generation of airplanes, a commercial air-
line is considering three new designs of the control panel
as possible alternatives to the current design with the aim
of improving the pilot’s response time to emergency dis-
plays. Letting µ1 denote the mean pilot response time to
simulated emergency conditions with the current design,
and µ2, µ3, and µ4 denote the mean response times with
the three new designs, write the control versus treatment
contrasts.

6. Rural roads with little or no evening lighting use reflec-
tive paint to mark the lanes on highways. It is suspected
that the currently used paint does not maintain its reflec-
tivity over long periods of time. Three new types of
reflective paint are now available and a study is initiated
to compare all four types of paint.
(a) How many populations are involved in the study?
(b) What is considered a treatment in this study?
(c) Letting µ1 denote the mean time the currently used

paint maintains its reflectivity, and µ2, µ3, and µ4
denote the corresponding means for the three new
types of paint, write the control versus treatment
contrasts.

7. The researcher in charge of the study described in
Exercise 6 identifies four locations of the highway, and
for each location she designates four sections of length
six feet to serve as the experimental units on which the
paints will be applied. It is known that specific aspects
of each location (e.g., traffic volume and road conditions)
also affect the duration of the reflectivity of the paints.
(a) Does this change the number of populations involved

in the study?

(b) List the factors involved in this experiment, the levels
of each factor, and the treatments.

8. The ignition times of two types of material used for
children’s clothing are measured to the nearest hundredth
of a second. The 25 measurements from material type A
and 28 measurements from material type B are given in
IgnitionTimesData.txt. Read the data into the data file ig
and use the boxplot command given in Example 1.8-4, with
ig$Time∼ig$Type instead of w$values∼w$ind, to con-
struct a comparative boxplot and comment on possible
differences in the ignition times of the two material types.

9. Wildlife conservation officials collected data on black
bear weight during the period September to November.
After sedation, the weight and gender (among other
measurements) were obtained for a sample of 50 black
bears. The data can be found in bearWeightgender.txt.21

Construct a comparative boxplot and comment on the
differences between female and male black bear sample
weights.

10. Read the projected data on reasons why people in
the Boston, MA, and Buffalo, NY, areas are late for
work, found in ReasonsLateForWork2.txt, into the data
frame lw using the read.table command given in Exercise
17 in Section 1.5. Then, use commands similar to those
in Example 1.8-5 to construct a comparative bar graph.
What are the biggest differences you notice?

11. Import the data on monthly online and cata-
log sales of a company into the R object oc using
oc = read.table(”MonthlySalesOC.txt”, header = T).
(a) Use R commands similar to those in Example 1.8-5

to construct a bar graph comparing the online and
catalog volumes of sale.

(b) Use R commands similar to those in Example 1.8-6 to
construct a stacked bar graph showing the breakdown
of the total volume of sales into online and catalog.

(c) Comment on the relative advantages of each of the
two types of plots.

12. In the context of Exercise 2 part (e), the researcher
proceeds to assign a different watering regimen to each
of the three locations. Comment on whether or not the
above allocation of treatments to units (root systems) will
avoid confounding the effect of the watering levels with
the location factor. Explain your answer and describe a
possibly better allocation of treatments to units.

13. The researcher mentioned in Exercise 7 proceeds to
randomly assign a type of paint to each of the four loca-
tions. It is known that specific aspects of each location
(e.g., traffic volume and road conditons) also affect the
duration of the reflectivity of the paints. Comment on
whether or not the above allocation of paints (treatments)
to the road segments (experimental units) will avoid
confounding with the treatment effect with the location

20 J. Simpson, A. Olsen, and J. C. Eden (1975). Technometrics, 17: 161–166.
21 The data is a subset of a data set contributed to Minitab by Dr. Gary Alt.
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factor. Explain your answer and describe a possibly better
allocation of treatments to units.

14. A study is initiated to compare the effect of two lev-
els of fertilization and two levels of watering on the yield
per bushel for a variety of corn. One hundred bushels
are to be grown under each of the four combinations of
fertilization and watering.
(a) How many populations are involved in this study?
(b) The population(s) involved is (are) hypothetical: True

or false?
(c) The variable of interest is qualitative: True or false?
(d) List the factors and their levels involved in this study.
(e) Suppose the experiment will be carried out on two

farms, one using traditional pest control practices and
one that uses organic practices. To avoid confounding
the factors in this study with the potentially influen-
tial factor of pest control practices, all fertilization and
watering levels must be applied to both farms. True or
false?

15. The 1973 admission rates of men and women apply-
ing to graduate school in different departments of the
University of California at Berkeley are as follows:

Major Men Women

Applicants % Admitted Applicants % Admitted

A 825 62% 108 82%
B 560 63% 25 68%
C 325 37% 593 34%
D 417 33% 375 35%
E 191 28% 393 24%
F 272 6% 341 7%

(a) What are the overall admission rates of men and
women applying to graduate programs at Berkeley?

(b) UC Berkeley was actually sued for bias against
women applying to graduate school on the basis of
the overall admission rates. Do you agree that the
above overall admission rates suggest gender bias in
Berkeley’s graduate admissions?

(c) Are the overall averages appropriate indicators for
gender bias in this case? Why or why not?

16. Pygmalion was a mythical king of Cyprus who
sculpted a figure of the ideal woman and then fell in love
with his own creation. The Pygmalion effect in psychol-
ogy refers to a situation where high expectations of a
supervisor translates into improved performance by sub-
ordinates. A study was conducted in an army training
camp using a company of male recruits and one of female
recruits. Each company had two platoons. One platoon in
each company was randomly selected to be the Pygmalion
platoon. At the conclusion of basic training, soldiers
took a battery of tests. The following table gives the

population mean scores for female (F) and male (M) sol-
diers. PP denotes the Pygmalion platoon and CP denotes
the control platoon.

CP PP

F µ11 = 8 µ12 = 13

M µ21 = 10 µ22 = 12

(a) Is this an additive design? Justify your answer.
(b) Compute the main gender effects and the main

Pygmalion effect.
(c) Compute the interaction effects.

17. A soil scientist is considering the effect of soil pH
level on the breakdown of a pesticide residue. Two pH
levels are considered in the study. Because pesticide
residue breakdown is affected by soil temperature, four
different temperatures are included in the study.

Temp A Temp B Temp C Temp D

pH I µ11 = 108 µ12 = 103 µ13 = 101 µ14 = 100

pH II µ21 = 111 µ22 = 104 µ23 = 100 µ24 = 98

(a) Draw the interaction plot by hand with pH being the
trace factor.

(b) Is there interaction between factors pH and tempera-
ture? Use the interaction plot to justify your answer.

(c) Compute the main pH effects and the main tempera-
ture effects.

(d) Compute the interaction effects.

18. The file SpruceMothTrap.txt contains data on the
number of moths caught in moth traps using different
lures and placed at different locations on spruce trees.22

Use R to:
(a) Compute the cell means and the main and interaction

effects for the factors location and lure.
(b) Construct an interaction plot with the levels of the

factor location being traced. Comment on the main
effects of the factors location and lure, and on their
interaction effects.

19. The data file AdLocNews.txt contains the number
of inquiries regarding ads placed in a local newspa-
per. The ads are categorized according to the day of
the week and in which section of the newspaper they
appeared. Use R to:
(a) Compute the cell means and the main and interaction

effects for the factors day and newspaper section. Is
there an overall best day to place a newspaper ad?
Is there an overall best newspaper section to place
the ad in?

(b) Construct an interaction plot with the levels of the
factor day being traced. Construct an interaction plot
with section being the trace factor. What have you
learned from these interaction plots?

22 Data based on “Two-way ANOVA?” Talk Stats, April 22, 2012, http://www.talkstats.com/showthread.php/25167-
Two-way-ANOVA

http://www.talkstats.com/showthread.php/25167-Two-way-ANOVA
http://www.talkstats.com/showthread.php/25167-Two-way-ANOVA
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1.9 The Role of Probability
The most common probability questions deal with flipping a fair coin or picking
cards from a deck.23 Flipping a fair coin once can be thought of as taking a sim-
ple random sample of size one from the population consisting of {Heads, Tails}.
By the definition of simple random sampling, there is a 50% chance of heads. The
coin-flipping paradigm leads to more complicated probability questions by simply
increasing the number of flips.

Example
1.9-1

(a) What are the chances of one heads in two flips of a fair coin? This can be
thought of as taking a sample of size two with replacement from the population
consisting of {Heads, Tails} and asking for the chances of the sample containing
the item heads only once.

(b) What are the chances of 4 heads, or of 10 heads, or of 18 heads in 20 flips of
a fair coin? Again, this can be rephrased in terms of a sample of size 20 taken
with replacement from the population {Heads, Tails}.

Other examples of probability questions, not related to games of chance, are
given in the following example.

Example
1.9-2

(a) If 75% of citizens of voting age are in favor of introducing incentives for the
use of solar energy, what are the chances that in a sample of 1000, at least 650
will be in favor of such incentives?

(b) If 5% of electrical components have a certain defect, what are the chances that
a batch of 500 such components will contain less than 20 defective ones?

(c) If 60% of all batteries last more than 1500 hours in operation, what are the
chances that a sample of 100 batteries will contain at least 80 that last more
than 1500 hours?

(d) If the highway mileage achieved by the 2011 Toyota Prius cars has population
mean and standard deviation of 51 and 1.5 miles per gallon, respectively, what
are the chances that in a sample of size 10 cars, the average highway mileage is
less than 50 miles per gallon?

The probability questions in Examples 1.9-1 and 1.9-2 highlight what is true of
all probability questions. Namely, in probability theory one assumes that all relevant
information about the population is known and seeks to assess the chances that a
sample will possess certain properties of interest. This, of course, is opposite from
statistics where one uses sample-level information to infer properties of the popu-
lation. For example, a statistical counterpart of the battery-life question in Example
1.9-2 would be: “If 80 batteries out of a sample of 100 last more than 1500 hours, can
we conclude that the corresponding population proportion is more than 60%?” The
reverse actions of probability and statistics are illustrated in Figure 1-22.

In spite of this difference, statistical inference itself would not be possible with-
out probability. That probability is such an indispensable tool for statistics is seen
by considering the meaning of the expression statistical proof. A statistical proof
is proof beyond reasonable doubt. This is the only kind of proof that statistics can
provide because the sample (on which statistical proofs are based) is only a small

23 The field of probability known today as classical probability arose from the study of games of chance.
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SamplePopulation

Probability

Statistics

Figure 1-22 The reverse
actions of probability and
statistics.

part of the population. Probability is the tool for establishing statistical proof that a
population has a certain property; for example that there is interaction between the
two factors in a factorial experiment. This is done by assuming that the population
does not have the property in question (for example that the design is additive), and
calculating the chances of obtaining the kind of sample we observed (for example
the kind of interaction plot the data produced). If the chances are small enough,
we conclude that we have statistical proof for the existence of the property in ques-
tion. This process of establishing a statistical proof is demonstrated in the following
simple example.

Example
1.9-3

In 20 flips of a coin, 18 heads result. Should the fairness of the coin be dismissed?

Solution
Since it is not impossible to have 18 heads in 20 flips of a fair coin, one can never
be sure whether the coin is fair or not. The decision in such cases is based on the
knowledge, which is provided by probability, of the likelihood of an outcome at
least as extreme as the one observed. In the present example, outcomes at least as
extreme as the one observed are 18, 19, or 20 heads in 20 flips. Since 18 or more
heads in 20 flips of a fair coin is quite unlikely (the chances are 2 in 10,000), one can
claim there is statistical proof, or proof beyond reasonable doubt, that the coin is
not fair.

1.10 Approaches to Statistical Inference
The main approaches to statistical inference can be classified into parametric, robust,
nonparametric, and Bayesian.

The parametric approach relies on modeling aspects of the mechanism underly-
ing the generation of the data.

Example
1.10-1

Predicting the failure time on the basis of stress applied hinges on the regression
model and the distribution of the intrinsic error (words in italics are technical terms
to be clarified in Chapter 4). A parametric approach might specify a linear regression
model and the normal distribution for the intrinsic error.

In the parametric approach, models are described in terms of unknown model
parameters. Hence the name parametric. In the above example, the slope and inter-
cept of the linear function that models the relation between failure time and stress
are model parameters; specification of the (intrinsic) error distribution typically
introduces further model parameters. In the parametric approach, model parameters
are assumed to coincide with population parameters, and thus they become the focus
of the statistical inference. If the assumed parametric model is a good approximation
to the data-generation mechanism, then the parametric inference is not only valid
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but can be highly efficient. However, if the approximation is not good, the results
can be distorted. It has been shown that even small deviations of the data-generation
mechanism from the specified model can lead to large biases.

The robust approach is still parametric in flavor, but its main concern is with
procedures that guard against aberrant observations such as outliers.

The nonparametric approach is concerned with procedures that are valid under
minimal modeling assumptions. Some procedures are both nonparametric and
robust, so there is overlap between these two approaches. In spite of their generality,
the efficiency of nonparametric procedures is typically very competitive compared
to parametric ones that employ correct model assumptions.

The Bayesian approach is quite different from the first three as it relies on
modeling prior beliefs/information about aspects of the population. The increase
of computational power and efficiency of algorithms have made this approach
attractive for dealing with some complex problems in different areas of application.

In this book we will develop, in a systematic way, parametric and nonparamet-
ric procedures, with passing reference to robustness issues, for the most common
(“bread-and-butter”) applications of statistics in the sciences and engineering.
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2Introduction to Probability

2.1 Overview
The field of probability known as classical probability arose from the need to quan-
tify the likelihood of occurrence of certain events associated with games of chance.
Most games of chance are related to sampling experiments. For example, rolling a
die five times is equivalent to taking a sample of size five, with replacement, from the
population {1, 2, 3, 4, 5, 6}, while dealing a hand of five cards is equivalent to taking
a simple random sample of size five from the population of 52 cards. This chapter
covers the basic ideas and tools used in classical probability. This includes an intro-
duction to combinatorial methods and to the concepts of conditional probability and
independence.

More modern branches of probability deal with modeling the randomness of
phenomena such as the number of earthquakes, the amount of rainfall, the lifetime
of a given electrical component, or the relation between education level and income.
Such models, and their use for calculating probabilities, will be discussed in Chapters
3 and 4.

2.2 Sample Spaces, Events, and Set Operations
Any action whose outcome is random, such as counting the number of heads in ten
flips of a coin or recording the number of disabled vehicles on a motorway during a
snowstorm, is a (random or probabilistic) experiment.

Definition 2.2-1
The set of all possible outcomes of an experiment is called the sample space of
the experiment and will be denoted by S.

Example
2.2-1

(a) Give the sample space of the experiment that selects two fuses and classifies
each as non-defective or defective.

(b) Give the sample space of the experiment that selects two fuses and records
how many are defective.

(c) Give the sample space of the experiment that records the number of fuses
inspected until the second defective is found.

53
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Solution

(a) The sample space of the first experiment can be represented as

S1 = {NN, ND, DN, DD},

where N denotes a non-defective fuse and D denotes a defective fuse.
(b) When only the number of defective fuses is recorded, the sample space is

S2 = {0, 1, 2}.

The outcome 0 means that none of the two examined fuses are defective, the
outcome 1 means that either the first or the second of the selected fusses
is defective (but not both), and the outcome 2 means that both fuses are
defective.

(c) For the experiment that records the number of fuses examined until the second
defective is found, the sample space is

S3 = {2, 3, . . .}.

Note that 0 and 1 are not possible outcomes because one needs to examine at
least two fuses in order to find two defective fuses.

Example
2.2-2

An undergraduate student from a particular university is selected and his/her
opinion about a proposal to expand the use of solar energy is recorded on a scale
from 1 to 10.

(a) Give the sample space of this experiment.
(b) How does the sample space differ from the statistical population?

Solution

(a) When the opinion of only one student is recorded, the sample space is S =
{1, 2, . . . , 10}.

(b) The statistical population for this sampling experiment is the collection of
opinion ratings from the entire student body of that university. The sam-
ple space is smaller in size since each of the possible outcomes is listed
only once.

Example
2.2-3

Three undergraduate students from a particular university are selected and their
opinions about a proposal to expand the use of solar energy are recorded on a scale
from 1 to 10.

(a) Describe the sample space of this experiment. What is the size of this sample
space?

(b) Describe the sample space if only the average of the three responses is
recorded. What is the size of this sample space?

Solution

(a) When the opinions of three students are recorded the set of all possible
outcomes consists of the triplets (x1, x2, x3), where x1 = 1, 2, . . . , 10 denotes
the response of the first student, x2 = 1, 2, . . . , 10 denotes the response of the
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second student, and x3 = 1, 2, . . . , 10 denotes the response of the third student.
Thus, the sample space is described as

S1 = {(x1, x2, x3) : x1 = 1, 2, . . . , 10, x2 = 1, 2, . . . , 10, x3 = 1, 2, . . . , 10}.

There are 10 × 10 × 10 = 1000 possible outcomes.
(b) The easiest way to describe the sample space, S2, when the three responses are

averaged is to say that it is the collection of distinct averages (x1 + x2 + x3)/3
formed from the 1000 triplets of S1. The word “distinct” is emphasized because
the sample space lists each individual outcome only once, whereas several
triplets might result in the same average. For example, the triplets (5, 6, 7) and
(4, 6, 8) both yield an average of 6. Determining the size of S2 can be done,
most easily, with the following R commands:

S1=expand.grid(x1=1:10, x2=1:10, x3=1:10) # lists all
triplets in S1

length(table(rowSums(S1))) # gives the number of different
sums

The last command1 gives the desired answer, which is 28.

In experiments with many possible outcomes, investigators often classify indi-
vidual outcomes into distinct categories. This is done for convenience in summarizing
and interpreting the results. For example, in the context of the experiment of
Example 2.2-2(a), the investigator may wish to classify the opinion ratings into low
(L = {0, 1, 2, 3}), medium (M = {4, 5, 6}) and high (H = {7, 8, 9, 10}). Such subsets
of the sample space (i.e., collections of individual outcomes) are called events. An
event consisting of only one outcome is called a simple event. Events consisting of
more than one outcome are called compound.

Events can be described either by listing the individual outcomes comprising
them or in a descriptive manner. For example, in selecting one card from a deck
of cards, the event A = {the card is a spade} can also be described by listing the 13
spade cards. Also, when tossing a coin five times and recording the number of heads,
the event E = {at most 3 heads} can also be described by listing the outcomes that
comprise it, which are {0, 1, 2, 3}.

We say that a particular event A has occurred if the outcome of the experiment
is a member of A. In this parlance, the sample space of an experiment is an event
which always occurs when the experiment is performed.

Because events are sets, the usual set operations are relevant for probabil-
ity theory. Venn diagram illustrations of the basic set operations are given in
Figure 2-1.

The operations of union and intersection can also be defined for any number
of events. Verbally, the union A1 ∪ · · · ∪ Ak is the event consisting of all outcomes
that make up the events A1, . . . , Ak. The union is also referred to as the event that
happens when A1 or A2 or . . . or Ak happens (the “or” is used in its nonexclusive
sense here) or as the event that happens when at least one of A1, . . . , Ak happens.
The intersection A1 ∩ · · · ∩ Ak is the event consisting of all outcomes that are com-
mon to all events A1, . . . , Ak. The intersection is also referred to as the event that

1 The R command rowMeans(S1) can be used instead of rowSums(S1).
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Union of A and B
A B

A B

Intersection of A and B
A B

A B

The Complement of A
Ac

A

The Difference Operation
A – B

A B

Figure 2-1 Venn diagram
illustrations of basic set
operations.

happens when A1 and A2 and . . . and Ak happen or as the event that happens when
all of A1, . . . , Ak happen. The complement Ac of A is the event that consists of all
outcomes that are not in A. Alternatively, Ac is the event that happens when A does
not happen. The difference A−B is the event consisting of those outcomes in A that
are not in B. Alternatively, A − B is the event that happens when A happens and B
does not happen, that is, A − B = A ∩ Bc.

Two events, A, B, are called disjoint or mutually exclusive if they have no
outcomes in common and therefore they cannot occur together. In mathematical
notation, A, B are disjoint if A ∩ B = ∅, where ∅ denotes the empty set. The empty
event can be thought of as the complement of the sample space, ∅ = Sc. Finally, we
say that an event A is a subset of an event B if all outcomes of A are also outcomes
of B. Alternatively, A is a subset of B if the occurrence of A implies the occurrence
of B. The mathematical notation indicating that A is a subset of B is A ⊆ B. Figure
2-2 illustrates disjoint A, B, and A ⊆ B.

A B B

A

Figure 2-2 Venn diagram
illustrations of A, B disjoint
(left), and A ⊆ B (right).
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The mathematical notation expressing that x is an element of an event E is x ∈ E.
The usual way of establishing that an event A is a subset of an event B is to show
that if x ∈ A then x ∈ B is also true. The usual way of establishing that events A and
B are equal is to show that A ⊆ B and B ⊆ A.

Example
2.2-4

Resistors manufactured by a machine producing 1k& resistors are unacceptable if
they are not within 50& of the nominal value. Four such resistors are tested.

(a) Describe the sample space of this experiment.
(b) Let Ei denote the event that the ith resistor tests acceptable. Are the Eis

mutually exclusive?
(c) Let A1 denote the event that all resistors test acceptable and A2 denote the

event that exactly one resistor tests unacceptable. Give verbal descriptions of
the events B1 = A1 ∪ A2 and B2 = A1 ∩ A2.

(d) Express A1 and A2 in terms of the Eis.

Solution

(a) Setting 1 when a resistor tests acceptable and 0 when it tests unacceptable, the
sample space is S = {(x1, x2, x3, x4) : xi = 0 or 1, i = 1, 2, 3, 4}.

(b) The event Ei consists of all outcomes (x1, x2, x3, x4) in S with xi = 1. For
example, E1 = {(1, x2, x3, x4) : xi = 0 or 1, i = 2, 3, 4}. It follows that the
events Ei are not disjoint. For example, the outcome (1, 1, 1, 1) is contained in
all of them.

(c) The event B1 = A1 ∪A2 happens when at most one resistor tests unacceptable.
The event B2 = A1 ∩ A2 is the empty event, since A1 and A2 are disjoint.

(d) That all resistors test acceptable means that all Ei happen. Thus, A1 = E1∩E2∩
E3∩E4 = {(1, 1, 1, 1)}. Exactly one resistor tests unacceptable means that either
the first resistor tests unacceptable and the rest test acceptable, the second
tests unacceptable and the rest test acceptable, the third tests unacceptable
and the rest test acceptable, or the fourth tests unacceptable and the rest test
acceptable. Translating the above into mathematical notation we have

A2 = F1 ∪ F2 ∪ F3 ∪ F4,

where Fi is the event that the ith resistor tests unacceptable and the others test
acceptable. For example, F1 = Ec

1 ∩ E2 ∩ E3 ∩ E4, F2 = Ec
2 ∩ E1 ∩ E3 ∩ E4, and

so forth.

Example
2.2-5

In measuring the diameter of a cylinder the sample space (in cm) is S = {x : 5.3 ≤
x ≤ 5.7}. Let E1 = {x : x > 5.4} and E2 = {x : x < 5.6}. Describe the events E1 ∪ E2,
E1 ∩ E2, and E1 − E2.

Solution
E1 ∪ E2 = S, E1 ∩ E2 = {x : 5.4 < x < 5.6}, and E1 − E2 = {x : 5.6 ≤ x ≤ 5.7}.

The event operations conform to the following laws:

Commutative Laws:

A ∪ B = B ∪ A, A ∩ B = B ∩ A.
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Associative Laws:

(A ∪ B) ∪ C = A ∪ (B ∪ C), (A ∩ B) ∩ C = A ∩ (B ∩ C).

Distributive Laws:

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C), (A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C).

De Morgan’s Laws:

(A ∪ B)c = Ac ∩ Bc, (A ∩ B)c = Ac ∪ Bc.

These laws can be demonstrated with Venn diagrams (see Exercises 6 and 7)
but can also be shown formally by showing that the event on the left side of each
equation is a subset of the event on the right side and vice versa. As an illustration
of this type of argument, we will show the first of the distributive laws. To do so note
that x ∈ (A∪B)∩C is the same as x ∈ C and x ∈ A∪B, which is the same as x ∈ C and
x ∈ A or x ∈ B, which is the same as x ∈ C and x ∈ A or x ∈ C and x ∈ B, which is the
same as x ∈ (A∩C)∪(B∩C). This shows that (A∪B)∩C ⊆ (A∩C)∪(B∩C). Since the
sequence of arguments is reversible, it also follows that (A∩C)∪(B∩C) ⊆ (A∪B)∩C
and thus (A ∩ C) ∪ (B ∩ C) = (A ∪ B) ∩ C.

Example
2.2-6

In telecommunications, a handoff or handover is when a cellphone call in progress
is redirected from its current cell (called source) to a new cell (called target). For
example, this may happen when the phone is moving away from the area covered by
the source cell and entering the area covered by the target cell. A random sample of
100 cellphone users is selected and their next phone call is categorized according to
its duration and the number of handovers it undergoes. The results are shown in the
table below.

Number of Handovers

Duration 0 1 > 1
> 3 10 20 10
< 3 40 15 5

Let A and B denote the events that a phone call undergoes one handover and a
phone call lasts less than three minutes, respectively.

(a) How many of the 100 phone calls belong in A ∪ B, and how many in A ∩ B?
(b) Describe in words the sets (A ∪ B)c and Ac ∩ Bc. Use these descriptions to

confirm the first of De Morgan’s laws.

Solution

(a) The union A∪B consists of the 80 phone calls that either undergo one handover
or last less than three minutes (or both) and so are categorized either in the
column with heading 1 or in the second row of the table. The intersection A∩B
consists of the 15 phone calls that undergo one handover and last less than
three minutes and so are categorized both in the column with heading 1 and in
the second row of the table.

(b) In words, the complement (A ∪ B)c consists of the 20 phone calls that are not
in A ∪ B, that is, the phone calls that undergo either zero or more than one
handovers and last more than three minutes. The intersection Ac ∩ Bc consists
of the phone calls that do not undergo one handover (so they undergo either
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zero or more than one handovers) and do not last less than three minutes (so
they last more than three minutes). Thus (A ∪ B)c and Ac ∩ Bc are the same, in
accordance to the first of De Morgan’s laws.

Exercises

1. Give the sample space for each of the following
experiments.
(a) A die is rolled twice and the outcomes are recorded.
(b) A die is rolled twice and the sum of the outcomes is

recorded.
(c) From a shipment of 500 iPods, 6 of which have a click

wheel problem, a simple random sample of 30 ipods is
taken and the number found to have the click wheel
problem is recorded.

(d) Fuses are inspected until the first defective fuse
is found. The number of fuses inspected is recorded.

2. In a certain community, 40% of the households sub-
scribe to a local newspaper, 30% subscribe to a newspaper
of national circulation, and 60% subscribe to at least one
of the two types of newspapers. Let E1 denote the event
that a randomly chosen household subscribes to a local
newspaper, and let E2 denote the corresponding event for
the national newspaper.
(a) Make a Venn Diagram showing events E1 and E2 and

shade the region representing the 60% of the house-
holds that subscribe to at least one of the two types of
newspapers.

(b) Make a Venn Diagram showing events E1 and E2 and
shade the event that a randomly selected household
subscribes to both types of newspapers.

(c) Make a Venn Diagram showing events E1 and E2 and
shade the event that a randomly selected household
subscribes only to a local newspaper.

3. An engineering firm is considering the possibility of
establishing a branch office in Toronto and one in Mexico
City. Let T be the event that the firm will establish a
branch office in Toronto and M be the event that the firm
will establish a branch office in Mexico City.
(a) Express each of the events described below in terms

of set operations on T and M.
(i) The firm establishes a branch office in both cities.

(ii) The firm establishes a branch office in neither of
the cities.

(iii) The firm establishes a branch office in exactly one
of the cities.

(b) For each of the three subparts of part (a), draw a Venn
diagram that shows the events T and M and shade the
event described.

4. Sketch two Venn diagrams like the one in Figure 2-3.
On the first shade the set (A − B) ∪ (B − A), and on the

second shade the event (A ∪ B) − (A ∩ B). Are they the
same?

BA

Figure 2-3 Generic Venn diagram with two events.

5. In testing the lifetime of components, the sample space
is the set S = {x:x > 0} of positive real numbers. Let A
be the event that the next component tested will last less
than 75 time units and B the event that it will last more
than 53 time units. In mathematical notation, A = {x:x <
75}, and B = {x:x > 53}. Describe each of the events (a)
Ac, (b) A ∩ B, (c) A ∪ B, and (d) (A − B) ∪ (B − A), both
in words and in mathematical notation.

6. Prove the second of De Morgan’s Laws by sketching
two Venn diagrams like the one in Figure 2-3. On the first
shade the event (A ∩ B)c, on the second shade the event
Ac ∪ Bc, and then confirm that they are the same.

7. Sketch two Venn diagrams like the one in Figure 2-4.
On the first shade the event (A∩B)∪C, and on the second
shade the event (A ∪ C) ∩ (B ∪ C). Are they the same?

A B

C

Figure 2-4 Generic Venn diagram with three events.

8. Prove that the pairs of event given in Exercises 4, 6,
and 7 are equal by means of a sequence of formal (logi-
cal) arguments showing that, in each case, each event is a
subset of the other.

9. In measuring the diameter of a cylinder to the
nearest millimeter the sample space (in cm) is S =
{5.3, 5.4, 5.5, 5.6, 5.7}. Five cylinders are randomly selected
and their diameters are measured to the nearest
millimeter.
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(a) Describe the sample space of this experiment. What is
the size of this sample space?

(b) Describe the sample space if only the average of the
five measurements is recorded, and use R commands
similar to those used in Example 2.2-3 to determine
the size of this sample space.

10. A random sample of 100 polycarbonate plastic disks
are categorized according to their hardness and shock
absorption. The results are shown in the table below.

Shock Absorption

Hardness low high

low 5 16
high 9 70

A disk is selected at random. Define the events E1 = {the
disk has low hardness}, E2 = {the disk has low shock
absorption}, E3 = {the disk has low shock absorption or
low hardness}.
(a) How many of the 100 disks belong in each of the three

events?
(b) Make two drawings of a Venn diagram showing the

events E1 and E2. On the first drawing shade the
event (E1 ∩ E2)c and on the second shade the event
Ec

1 ∪ Ec
2. Confirm the second of De Morgan’s Laws

for these events.
(c) Describe in words the events E1∩E2, E1∪E2, E1−E2,

and (E1 − E2) ∪ (E2 − E1).
(d) How many of the 100 disks belong in each of the

events in part (c)?

2.3 Experiments with Equally Likely Outcomes
2.3.1 DEFINITION AND INTERPRETATION OF PROBABILITY

In any given experiment we might be interested in assessing the likelihood, or
chance, of occurrence of an outcome or, more generally, of an event. The probability
of an event E, denoted by P(E), is used to quantify the likelihood of occurrence of
E by assigning a number from the interval [0, 1]. Higher numbers indicate that the
event is more likely to occur. A probability of 1 indicates that the event will occur
with certainty, while a probability of 0 indicates that the event will not occur.

The likelihood of occurrence of an event is also quantified as a percent, or in
terms of the odds. The expression “the odds of winning are two to one” means that
a win is twice as likely as a non-win, which means that the probability of a win is
about 0.67. The percent quantification has a more direct correspondence to prob-
ability. For example, the expression “there is a 70% chance of rain this afternoon”
means that the probability of rain this afternoon is 0.7. The use of percents is sug-
gestive of the limiting relative frequency interpretation of probability, which is based
on the conceptual model of repeated replications of the experiment under the same
conditions. For example, if we conceptualize the collection of all days with identi-
cal meteorological conditions as today, the statement that there is a 70% chance of
rain can be interpreted to mean that it would rain in 70% of the days with identical
conditions as today.

In general, if Nn(E) denotes the number of occurrences of the event E in n
repetitions of the experiment, the limiting relative frequency approach interprets
P(E) as the limiting value, as n gets larger and larger (i.e., n → ∞) of the ratio

Nn(E)
n

.

Even though the limiting relative frequency interpretation is intuitively appealing, it
cannot serve as a formal definition of probability because there is no guarantee that
the limit of Nn(E)/n exists. For example, why is it true that in a long sequence of coin
tosses, the proportion of heads tends to 1/2? For this reason, the modern approach
to probability sets forth a number of axioms that any assignment of probabilities to
events must satisfy, and from these axioms derive all properties of probability. These
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axioms are given in Section 2.4. That the limit of Nn(E)/n exists is a consequence of
the Law of Large Numbers given in Chapter 5.

Even if the existence of the limit of Nn(E)/n were to be accepted as an axiom,
the limiting relative frequency interpretation of probability is not a practical method
for assigning probabilities to events. In modern probability theory this assignment is
based on probability models deemed suitable for each experiment. The simplest such
model pertains to experiments with a finite number of equally likely outcomes, such
as those used in games of chance. The definition and assignment of probabilities for
such models is discussed next. Other probability models are discussed in Chapters 3
and 4.

For experiments that have a finite number of equally likely outcomes, including
those that take the form of simple random sampling from a finite population, the
assignment of probabilities to individual outcomes is straightforward and intuitive:
If we denote by N the finite number of outcomes of such an experiment, then the
probability of each outcome is 1/N. This is important enough to be highlighted:

Probability of Each
of N Equally Likely

Outcomes

If the sample space of an experiment consists of N outcomes that are equally
likely to occur, then the probability of each outcome is 1/N.

For example, a toss of a fair coin has two equally likely outcomes so the probability
of each outcome (heads or tails) is 1/2, the roll of a die has six equally likely outcomes
so the probability of each outcome is 1/6, and in drawing a card at random from a
deck of 52 cards each card has probability 1/52 of being drawn.

Having the probability of each individual outcome, it is straightforward to assign
probabilities to events consisting of several outcomes. If N(E) denotes the number
of outcomes that constitute the event E, then the probability of E is

Assignment of
Probabilities in the

Case of N Equally
Likely Outcomes

P(E) = N(E)
N

(2.3.1)

For example, in rolling a die, the probability of an even outcome is 3/6, and in draw-
ing a card at random from a deck of 52 cards, the probability of drawing an ace is
4/52. Two additional examples follow.

Example
2.3-1

The efficiency of laser diodes (measured at 25oC in mW per mA) varies from 2
to 4. In a shipment of 100, the numbers having efficiency 2, 2.5, 3, 3.5, and 4 are
10, 15, 50, 15, and 10, respectively. One laser diode is randomly selected. Find the
probabilities of the events E1 = {the selected laser diode has efficiency 3} and E2 =
{the selected laser diode has efficiency at least 3}.

Solution
Here there are N = 100 equally likely outcomes. Moreover, N(E1) = 50 and
N(E2) = 75. Thus, P(E1) = 0.5 and P(E2) = 0.75.

Example
2.3-2

Roll two dice separately (or one die twice). Find the probability of the event that the
sum of the two sides is seven.

Solution
When two dice are rolled, there are N = 36 equally likely outcomes. The
event A = {sum of two sides = 7} consists of the outcomes (1,6), (2,5), (3,4),
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(4,3), (5,2), and (6,1). Thus N(A) = 6 and, according to the formula (2.3.1),
P(A) = 6/36 = 1/6.

2.3.2 COUNTING TECHNIQUES

While the method of assigning probabilities to events of experiments with equally
likely outcomes is straightforward, the implementation of this method is not straight-
forward if N is large and/or the event A is complicated. For example, to find the
probability that five cards, randomly selected from a deck of 52 cards, will form a
full house (three of a kind and two of a kind) we need to be able to determine how
many 5-card hands are possible and how many of those constitute a full house. Such
determination requires specialized counting techniques, which are presented in this
section.

We begin with the most basic counting technique, from which all results
follow.

Fundamental
Principle of Counting

If a task can be completed in two stages, if stage 1 has n1 outcomes, and if stage
2 has n2 outcomes, regardless of the outcome in stage 1, then the task has n1n2
outcomes.

The task in the fundamental principle of counting can be an experiment and
the stages can be subexperiments, or the stages can be experiments in which case
the task is that of performing the two experiments in succession. For example, the
task of rolling two dice has 6 × 6 = 36 outcomes. The rolling of two dice can be
the experiment with subexperiments the rolling of each die, or each of the two
die rolls can be an experiment in which case the task is to roll the two dice in
succession.

Example
2.3-3

For each of the following tasks specify the stages, the number of outcomes of each
stage, and the number of outcomes of the task.

(a) Select a plumber and an electrician from three plumbers and two electricians
available in the yellow pages.

(b) Select two items from an assembly line, and classify each item as defective (0)
or non-defective (1).

(c) Select a first and a second place winner from a group of four finalists.

Solution

(a) Stage 1 can be the selection of a plumber and stage 2 the selection of an
electrician. Then n1 = 3, n2 = 2, and thus the task has n1n2 = 6 possible
outcomes.

(b) The outcome of stage 1 can be either 0 or 1. Similarly for stage 2. Thus, this
task has 2 × 2 = 4 outcomes.

(c) Stage 1 can be the selection of the second place winner, and stage 2 the selec-
tion of the first place winner. Then n1 = 4, n2 = 3, and thus the task has
n1n2 = 12 possible outcomes.
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The stages of all three tasks of Example 2.3-3 involve sampling. In part (a)
different sets of subjects are sampled in the two stages, in part (b) the same set
(which is {0, 1}) is sampled with replacement, and in part (c) the same set of subjects
is sampled without replacement.

The fundamental principle of counting generalizes in a straightforward manner.

Generalized
Fundamental Principle

of Counting

If a task can be completed in k stages and stage i has ni outcomes, regardless of
the outcomes of the previous stages, then the task has n1n2 · · · nk outcomes.

Example
2.3-4

For each of the following tasks specify the stages, the number of outcomes of each
stage and the number of outcomes of the task.

(a) Select a plumber, an electrician, and a remodeler from three plumbers, two
electricians, and four remodelers available in the yellow pages.

(b) Form a binary sequence of length 10 (i.e., a 10-long sequence of 0’s and 1’s).
(c) Form a string of seven characters such that the first three are letters and the

last four are numbers.
(d) Select a first, second, and third place winner from a group of four finalists.

Solution

(a) This task consists of three stages with number of outcomes n1 = 3, n2 = 2, and
n3 = 4. Thus the task has 3 × 2 × 4 = 24 outcomes.

(b) This task consists of 10 stages with each stage having two possible outcomes,
either 0 or 1. Thus, the task has 210 = 1024 outcomes.

(c) This task consists of seven stages. Each of the first three stages involves select-
ing one of the 26 letters, so n1 = n2 = n3 = 26. Each of last four stages
involves selecting one of the 10 numbers, so n4 = · · · = n7 = 10. Thus the task
has 263 × 104 = 175,760,000 outcomes.

(d) This task consists of three stages with number of outcomes n1 = 4, n2 = 3, and
n3 = 2. Thus the task has 4 × 3 × 2 = 24 outcomes.

When the stages of a task involve sampling without replacement from the same
set of units (objects or subjects), as in part (c) of Example 2.3-3 or part (d) of
Example 2.3-4, we may or may not want to distinguish between the outcomes of
the different stages. This is exemplified in the following.

Example
2.3-5

In selecting a first and second place winner from the group of four finalists con-
sisting of Niki, George, Sophia, and Martha, the outcomes (George, Sophia) and
(Sophia, George) are two of the 12 distinct outcomes mentioned in Example 2.3-
3(c). However, if both winners will receive the same prize, so there is no distinction
between the first and second place winner, the two outcomes will be counted as one
(since, in this case, George and Sophia will each receive the same prize). Similarly,
if all three winners mentioned in Example 2.3-4(d) receive the same prize there
is no need to distinguish between the outcomes of the different stages because
any arrangement of, for example, (Niki, George, Sophia) identifies the three equal
winners.
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Definition 2.3-1
If the k stages of a task involve sampling one unit each, without replacement,
from the same group of n units, then:

1. If a distinction is made between the outcomes of the stages, we say the
outcomes are ordered. Otherwise we say the outcomes are unordered.

2. The ordered outcomes are called permutations of k units. The number
of permutations of k units selected from a group of n units is denoted
by Pk,n.

3. The unordered outcomes are called combinations of k units. The number
of combinations of k units selected from a group of n units is denoted

by
(

n
k

)
.

The formula for Pk,n follows readily from the generalized fundamental principle
of counting. To see how, reason as follows: The task making an ordered selection
of k units out of a set of n units consists of k stages. Stage 1, which corresponds to
selecting the first unit, has n1 = n possible outcomes. Stage 2, which corresponds to
selecting the second unit from the remaining n−1 units (remember that the sampling
is without replacement), has n2 = n − 1 possible outcomes, and so forth until stage
k which has nk = n − k + 1 outcomes. Hence, according to the generalized principle
of counting,

Number of
Permutations of k

Units Selected from n
Pk,n = n(n − 1) · · · (n − k + 1) = n!

(n − k)! (2.3.2)

where, for a nonnegative integer m, the notation m! is read m factorial and is
defined as

m! = m(m − 1) · · · (2)(1).

For k = n, formula (2.3.2) with the convention that 0! = 1, yields the num-
ber of different permutations (or arrangements or orderings) of n units among
themselves.

Number of
Permutations of n

Units Among Themselves
Pn,n = n! (2.3.3)

Example
2.3-6

(a) The lineup or batting order is a list of the nine baseball players for a team in
the order they will bat during the game. How many lineups are possible?

(b) The Department of Tranpostation (DOT) plans to assign six civil engineers to
oversee six interstate safety design projects. How many different assignments
of civil engineers to projects are possible?

Solution

(a) There are P9,9 = 9! = 362,880 possible lineups.
(b) There are P6,6 = 6! = 720 different assignments.
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The number of combinations (unordered selections, or groups) of k units that
can be drawn from a set of n units does not follow directly from the generalized
fundamental principle of counting, but it does follow from the permutation formulas
(2.3.2) and (2.3.3). To see how, consider the specific task of selecting a group of three
out of a set of four units (e.g., a group of 3 equal winners from a group of 4 finalists).
Note now that, by (2.3.3), each group of three yields P3,3 = 3! = 6 permutations.
This means that the number of permutations will be six times the number of com-
binations. By formula (2.3.2), the number of permutations of 3 that can be obtained
from a set of 4 is P3,4 = 4!/(4 − 3)! = 4! = 24. Hence, the number of combinations
of 3 that can be obtained from a set of 4 is

(4
3
)

= P3,4/P3,3 = 24/6 = 4.
In general we have the formula

Number of
Combinations of k

Units Selected from n

(
n
k

)
= Pk,n

Pk,k
= n!

k!(n − k)! (2.3.4)

Because the numbers
(n

k

)
, k = 1, . . . , n, are used in the binomial theorem (see

Exercise 18), they are referred to as the binomial coefficients.

Example
2.3-7

Two cards will be selected from a deck of 52 cards.

(a) How many outcomes are there if the first card will be given to player 1 and the
second card will be given to player 2?

(b) How many outcomes are there if both cards will be given to player 1?

Solution

(a) In this case it makes sense to distinguish the outcome (Ace, King), meaning
that player 1 gets the ace and player 2 gets the king, from the outcome (King,
Ace). Thus, we are interested in the number of permutations of two cards
selected from 52 cards. According to (2.3.2) the number of (ordered) outcomes
is P2,52 = 52 × 51 = 2652.

(b) In this case it can be argued that the order in which the two cards are received
is not relevant, since both result in the same two-card hand. Thus, we are
interested in the number of combinations of two cards selected from 52 cards.
According to (2.3.4) the number of (unordered) outcomes is

(n
2
)

= 2652/2 =
1326.

Example
2.3-8

(a) How many binary sequences (i.e., sequences of 0’s and 1’s) of length 10 with
exactly four 1’s can be formed?

(b) If a binary sequence of length 10 is selected at random, what is the probability
that it has four 1’s?

Solution

(a) A 10-long binary sequence of four 1’s (and hence six 0’s) is determined from
the location of the four 1’s in the 10-long sequence (all other locations in the
sequence have 0’s). Thus the problem is that of selecting four out of the 10
locations in the sequence. The answer is

(10
4
)

= 210.

(b) Using also the result of Example 2.3-4(b), the probability is
(10

4
)
/210 =

210/1024 = 0.2051.
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Example
2.3-9

(a) How many binary sequences of length 10 with exactly four 1’s that are not
consecutive can be formed?

(b) If a binary sequence of length 10 having four 1’s is selected at random, what is
the probability that the four 1’s are nonconsecutive?

Solution

(a) Any binary sequence of length 10 with four nonconsecutive 1’s is formed by
selecting four of the seven spaces created by the six 0’s, which are shown below
as wedges.

∧ 0 ∧ 0 ∧ 0 ∧ 0 ∧ 0 ∧ 0 ∧

Thus, the answer is
(7

4
)

= 35.

(b) Using also the result of Example 2.3-8(a), the probability is
(7

4
)
/
(10

4
)

=
35/210 = 0.1667.

Example
2.3-10

In the game of poker each player receives five cards dealt from a deck of 52 cards.
Full house refers to a five-card hand consisting of three of a kind and two of a kind.
An example of a full house is a hand consisting of three 10’s and two 5’s. Find the
probability that a randomly dealt five-card hand is a full house.

Solution
Since the five-card hand is randomly dealt, the set of equally likely outcomes is that
of all five-card hands. To determine the probability we need to find the number of
possible outcomes and the number of outcomes that constitute a full house. First,
the number of all five-card hands is

(52
5
)

= 2,598,960. To find the number of hands
that constitute a full house, think of the task of forming a full house as consisting
of two stages. Stage 1 consists of choosing two cards of the same kind, and stage
2 consists of choosing three cards of the same kind. Stage 1 can be completed in(13

1
)(4

2
)

= (13)(6) = 78 ways. (This is because stage 1 can be thought of as consisting
of two substages: first selecting a kind from the available 13 kinds and then selecting
two from the four cards of the selected kind.) For each outcome of stage 1, the task of
stage 2 becomes that of selecting three of a kind from one of the remaining 12 kinds.
This can be completed in

(12
1
)(4

3
)

= 48 ways. Thus there are (78)(48) = 3744 possible
full houses. It follows that the probability of dealing a full house is 3744/2,598,960 =
1.4406 × 10−3.

We are often interested in dividing n units into more than two groups. The num-
ber of such divisions can be obtained through the generalized fundamental principle
of counting, and use of the formula (2.3.4). To fix ideas, suppose that eight mechan-
ical engineers will be divided into three groups of three, two, and three to work on
design projects A, B, and C, respectively. The task of assigning the eight engineers
to the three projects consists of two stages. Stage 1 selects three of the engineers to
work on project A, and stage 2 selects two of the remaining five engineers to work on
project B. (The remaining three engineers are then assigned to work on project C.)
Stage 1 has n1 =

(8
3
)

outcomes, and stage 2 has n2 =
(5

2
)

outcomes. Hence, the task
of assigning three of the eight engineers to project A, two to project B, and three to
project C has

(
8
3

)(
5
2

)
= 8!

3!5!
5!

2!3! = 8!
3!2!3! = 560 (2.3.5)
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possible outcomes. We will use the notation
( n

n1,n2,...,nr

)
for the number of ways n

units can be divided into r groups of sizes n1, n2, . . . , nr. Thus, the outcome of the
calculation in (2.3.5) can be written as

( 8
3,2,3

)
= 560.

A generalization of the line of reasoning leading to (2.3.5) yields the following
result:

Number of
Arrangements of n

Units into r Groups of
Sizes n1, n2, . . . , nr

(
n

n1, n2, . . . , nr

)
= n!

n1!n2! · · · nr!
(2.3.6)

Because the numbers
( n

n1,n2,...,nr

)
, with n1 + n2 + · · · + nr = n, are used in the

multinomial theorem (see Exercise 19), they are referred to as the multinomial
coefficients.

Example
2.3-11

The clock rate of a CPU (central processing unit) chip refers to the frequency,
measured in megahertz (MHz), at which it functions reliably. CPU manufacturers
typically categorize (bin) CPUs according to their clock rate and charge more for
CPUs that operate at higher clock rates. A chip manufacturing facility will test and
bin each of the next 10 CPUs in four clock rate categories denoted by G1, G2, G3,
and G4.

(a) How many possible outcomes of this binning process are there?
(b) How many of the outcomes have three CPUs classified as G1, two classified as

G2, two classified as G3, and three classified as G4?
(c) If the outcomes of the binning process are equally likely, what is the probability

of the event described in part (b)?

Solution

(a) The binning process consists of 10 stages, each of which has four possible out-
comes. Hence, by the generalized fundamental principle of counting, there are
410 = 1,048,576 possible outcomes.

(b) The number of possible outcomes is

(
10

3, 2, 2, 3

)
= 10!

3!2!2!3! = 25,200.

(c) The probability is 25, 200/1, 048, 576 = 0.024.

2.3.3 PROBABILITY MASS FUNCTIONS AND SIMULATIONS

In many sampling experiments, even though the units are selected with equal prob-
ability, the sample space of the random variable recorded consists of outcomes that
are not equally likely. For example, the outcomes of the experiment that records
the sum of two die rolls, that is, {2, 3, . . . , 12}, are not equally likely, since the prob-
ability of a 2 (and also of a 12) is 1/36, while the probability of a seven is six times
that, as derived in Example 2.3-2. As another example, if an undergraduate stu-
dent is randomly selected and his/her opinion regarding a proposed expansion of
the use of solar energy is rated on a scale from 1 to 10, each student has an equal
chance of being selected, but the individual outcomes of the sample space (which
are {1, 2, . . . , 10}) will not be equally likely.
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Definition 2.3-2
The probability mass function (PMF for short) of an experiment that records
the value of a discrete random variable X, or simply the PMF of X, is a list of
the probabilities p(x) for each value x of the sample space SX of X.

Example
2.3-12

A simple random sample of size n = 3 is drawn from a batch of 10 product items.
If three of the 10 items are defective, find the PMF of the random variable X =
{number of defective items in the sample}.

Solution
By the definition of simple random sampling, each of the

(10
3
)

samples are equally
likely. Thus, the probabilities for each outcome SX = {0, 1, 2, 3} can be calculated as:

P(X = 0) =

(
7
3

)

(
10
3

) , P(X = 1) =

(
3
1

)(
7
2

)

(
10
3

) ,

P(X = 2) =

(
3
2

)(
7
1

)

(
10
3

) , P(X = 3) =

(
3
3

)

(
10
3

) .

Thus, the PMF of X is:

x 0 1 2 3
p(x) 0.292 0.525 0.175 0.008

.

Figure 2-5 shows the PMF of Example 2.3-12 as a bar graph.
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Example
2.3-13

Roll two dice separately (or one die twice). Find the probability mass function of the
experiment that records the sum of the two die rolls.

Solution
This experiment records the value of the variable X = {sum of two die rolls}, whose
possible values are 2, 3, . . . , 12. Counting which of the 36 equally likely outcomes of
the two die rolls result in each of the possible values of X (see Example 2.3-2), we
obtain the following PMF of the experiment (or of X):

x 2 3 4 5 6 7 8 9 10 11 12
p(x) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

.

This can also be obtained with the following R commands:

R Commands for the PMF of the Sum of Two Die Rolls

S=expand.grid(X1=1:6, X2=1:6)

table(S$X1+S$X2)/36

Once the PMF of an experiment is obtained, it is easier to compute probabil-
ities of more complicated events using it than by counting the number of equally
likely outcomes that comprise these events. For example, it is easier to compute
the probability of the event E = {the sum of two die rolls is at least 10} by the sum
p(10) + p(11) + p(12), where p(x) is the PMF found in Example 2.3-13, than by
the formula N(E)/36. That the two are the same follows from the properties of
probability presented in Section 2.4, but can also be verified here by noting that
N(E) = N(E10) +N(E11) + N(E12), where E10, E11, and E12 denote the events that
the sum of the two die rolls is 10, 11, and 12, respectively. Hence,

P(E) = N(E)
36

= N(E10)
36

+ N(E11)
36

+ N(E12)
36

= p(10) + p(11) + p(12) = 6
36

.

Moreover, having the PMF of an experiment and access to a software package,
one can simulate the experiment. This means that one can obtain outcomes from the
sample space of the experiment without actually performing the experiment. The
following example illustrates the use of R for simulating the experiment of Example
2.3-13 ten times.

Example
2.3-14

Simulating an experiment with R. Use the PMF obtained in Example 2.3-13 to
simulate 10 repetitions of the experiment that records the sum of two die rolls.

Solution
Note first that the R command c(1:6, 5:1)/36 produces the PMF given in Example 2.3-
13. For sampling from the sample space {2, 3, . . . , 12} ten times use the R command

sample(2:12, size=10, replace=T, prob=c(1:6, 5:1)/36) (2.3.7)

If one sets the seed to 111 by set.seed(111) (setting the seed to the same value ensures
reproducibility of the results), the above command yields the 10 numbers

9 4 6 5 6 6 7 5 6 7
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These numbers represent the outcome of rolling a pair of dice ten times and
each time summing the two die rolls (without rolling any dice!). Repeating the
R command in (2.3.7) without setting the seed will give different sets of 10
numbers.

The simulation carried out in Example 2.3-14 involves random sampling, with
replacement, from the sample space of the experiment using its probability mass
function. This kind of sampling, which is random but not simple random, is called
probability sampling, or sampling from a probability mass function. When the sam-
ple space is considered as the population from which we sample with replacement,
it is called a sample space population.

Simulations can be used to gain understanding of different properties of the
system, as well as for empirical verification of certain results. For example, setting
the seed to 111 with set.seed(111), the R command

table(sample(2:12, size=10000, replace=T,
prob=c(1:6, 5:1)/36))/10000

(2.3.8)

yields the following relative frequencies for each number in the sample space

2 3 4 5 6 7 8 9 10 11 12
0.0275 0.0561 0.0833 0.1083 0.1366 0.1686 0.1367 0.1137 0.0865 0.0567 0.0260

Figure 2-6 shows the probability mass function of Example 2.3-13 (line graph
in color) and the above relative frequencies (bar graph/histogram). Since all
relative frequencies are good approximations to corresponding probabilities, we
have empirical confirmation of the limiting relative frequency interpretation of
probability.

Because of the aforementioned advantages of working with a probability mass
function, Chapter 3 presents probability models, which are classes of probability

Relative Frequencies and True Probabilities

2 4 6 8 10 12
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Figure 2-6 Histogram of
relative frequencies and
line graph of the PMF.
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mass functions, that are relevant to the sample space of the most prevalent types
of experiments used in sciences and engineering.

Exercises

1. In electronics, a wafer is a thin slice of semiconductor
material used in the fabrication of integrated circuits and
other micro-devices. They are formed of highly pure crys-
talline material, which is doped (i.e., impurity atoms are
added) to modulate its electrical properties. The doping
is either n-type or p-type. Moreover, the doping is either
light or heavy (one dopant atom per 100 million atoms,
or per ten thousand atoms, respectively). The following
table shows a batch of 10 wafers broken down into the
four categories.

Degree of Doping
Type of Doping light heavy

n-type 2 3
p-type 3 2

One wafer is selected at random. Let E1 denote the
event that the selected wafer is n-type, and E2 the event
that the wafer is heavily doped. Find the probabilities
P(E1), P(E2), P(E1 ∩ E2), P(E1 ∪ E2), P(E1 − E2), and
P((E1 − E2) ∪ (E2 − E1)).

2. Refer to Exercise 1.
(a) Select two wafers, at random and with replacement,

from the batch of 10 wafers given in the exercise.

(i) Give the sample space for the experiment that
records the doping type of the two wafers and
the probability for each outcome.

(ii) Give the sample space of the experiment that
records the number of n-type wafers among the
two selected and the corresponding probability
mass function.

(b) Select four wafers, at random and with replacement,
from the batch of 10 wafers given in the exercise.

(i) Give a verbal description of the sample space
for the experiment that records the dop-
ing type of the four wafers, find the size
of the sample space using the R commands
G=expand.grid(W1=0:1,W2=0:1,W3=0:1,W4=
0:1); length(G$W1), and give the probability
of each outcome.

(ii) Give the sample space of the experiment that
records the number of n-type wafers among
the four selected and the corresponding PMF
using the additional R commands attach(G);
table((W1+W2+W3+W4)/4)/length(W1).

(iii) Use the probability mass function to find the
probability of at most one n-type wafer among
the four selected.

3. Soil or water pH is measured on a scale of 0–14. A pH
reading below 7 is considered acidic, while a pH reading
above 7 is basic. The pH level of water provided by a type
of spray tank irrigator is equally likely to be either 6.8, 6.9,
7.0, 7.1 or 7.2. Let E1 denote the event that at the next irri-
gation the water pH level measurement is at most 7.1, and
E2 the event that the water pH level is at least 6.9. Find
the probabilities P(E1), P(E2), P(E1 ∩ E2), P(E1 ∪ E2),
P(E1 − E2), and P((E1 − E2) ∪ (E2 − E1)).

4. The following two questions pertain to the spray tank
irrigator of Exercise 3.
(a) The water pH level is measured over the next two

irrigations.
(i) Give the sample space of this experiment, and

its size, using R commands t=seq(6.8, 7.2, 0.1);
G=expand.grid(X1=t,X2=t); G; length(G$X1).

(ii) Give the sample space of the experiment that
records the average of the two pH measurements,
and the corresponding probability mass func-
tion, using the additional R commands attach(G);
table((X1+X2)/2)/length(X1).

(b) Using R commands similar to the above, give the
probability mass function of the experiment that
records the average of the pH measurements taken
over the next five irrigations.

5. The R command S=expand.grid(X1=1:6, X2=1:6) gen-
erates the sample space of two die rolls. The additional R
command attach(S); Y=(X1==6)+(X2==6) generates the
number of times a six occurs for each of the 36 outcomes
in the sample space. Finally, the additional R commands
pr=table(Y)/36; pr generates the probability mass func-
tion for the experiment that records the number of times
a six occurs in two rolls of a die.
(a) Use the PMF obtained and R commands similar to

those given in (2.3.7) to simulate 10 replications of
the experiment that records the number of times a six
occurs in two die rolls.

(b) Use the PMF obtained and R commands similar
to those given in (2.3.8), namely x= sample(0:2,
size=10000, replace=T, prob=pr); table(x)/10000, to
obtain the relative frequencies for each outcome in
the sample space of the experiment that records the
number of times a six occurs in two die rolls, based on
10,000 replications.

(c) Use the R command hist(x,seq(-0.5, 2.5, 1), freq=F);
lines(0:2, pr, type=”p”, col=”red”); lines(0:2, pr,
type=”h”, col=”red”) to construct a histogram of
the relative frequencies and line graph of the
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probability mass function. This figure provides
empirical verification of which property?

6. A test consists of five true-false questions.
(a) In how many ways can it be completed? (Hint. The

task of answering five true-false questions consists of
five stages.)

(b) A correctly answered question receives 1 point, while
an incorrectly answered question gets 0. Give the sam-
ple space for the experiment that records the test
score.

(c) A reasonable model for the answers given by a stu-
dent who has not studied assumes that each question
is marked T or F by flipping a coin. Thus, any 5-
long binary sequence of 0’s and 1’s, that is, points
received in each of the five questions, is equally
likely. Let X denote the test score of such a stu-
dent. Find the PMF of X. (Hint. The probability
that X = k is the number of binary sequences
that sum to k divided by the total number of
binary sequences, which is your answer in part (a).
This can be found, simultaneously for all k, with
the following R commands: S=expand.grid(X1=0:1,
X2=0:1, X3=0:1, X4=0:1, X5=0:1); attach(S);
table(X1+X2+X3+X4+X5)/length(X1)

7. An information technology company will assign four
electrical engineers to four different JAVA program-
ming projects (one to each project). How many different
assignments are there?

8. In many countries the license plates consist of a string
of seven characters such that the first three are letters and
the last four are numbers. If each such string of seven
characters is equally likely, what is the probability that the
string of three letters begins with a W and the string of
four numbers begins with a 4? (Hint. Assume an alphabet
of 26 letters. The number of possible such license plates is
found in Example 2.3-4(c).)

9. Twelve individuals want to form a committee of
four.
(a) How many committees are possible?
(b) The 12 individuals consist of 5 biologists, 4 chemists,

and 3 physicists. How many committees consisting of
2 biologists, 1 chemist, and 1 physicist are possible?

(c) In the setting of part (b), if all committees are equally
likely, what is the probability the committee formed
will consist of 2 biologists, 1 chemist, and 1 physicist?

10. Answer the following questions.
(a) A team of 5 starters will be selected from 10 basket-

ball players. How many selections are there?
(b) Ten basketball players will be divided into two teams

for a practice game. How many divisions of the 10
players into two teams of 5 are there?

(c) If each of 12 individuals shakes hands with everybody
else, how many handshakes take place?

11. A path going from the lower left corner of the grid in
Figure 2-7 to the upper right corner can be represented as
a binary sequence having four 0’s and four 1’s, with each 0
representing a move to the right and each 1 representing
a move upwards.

(a) How many paths going from the lower left corner to
the upper right corner of this grid are there?

(b) How many paths going from the lower left corner to
the upper right corner of this grid and passing through
the circled point are there?

(c) If a path is selected at random, what is the probability
it will pass through the circled point?

Figure 2-7 A 4×4 grid for Exercise 11.

12. A communication system consists of 13 antennas
arranged in a line. The system functions as long as no two
nonfunctioning antennas are next to each other. Suppose
five antennas stop functioning.

(a) How many different arrangements of the five non-
functioning antennas result in the system being func-
tional? (Hint. This question and the next are related
to Example 2.3-9.)

(b) If the arrangement of the five nonfunctioning anten-
nas is equally likely, what is the probability the system
is functioning?

13. Five of the 15 school buses of a particular school dis-
trict will be selected for thorough inspection. Suppose
four of the buses have developed a slight defect since
their last inspection (the steering wheel shakes when
braking).

(a) How many possible selections are there?
(b) How many selections contain exactly three buses with

the defect?
(c) If the five buses are selected by simple random sam-

pling, what is the probability the sample includes
exactly three of the buses with the defect?
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(d) If the buses are selected by simple random sampling,
what is the probability all five buses are free of the
defect?

14. A forest contains 30 moose of which six are captured,
tagged, and released. A certain time later, five of the 30
moose are captured.

(a) How many samples of size five are possible?

(b) How many samples of size five, which include two of
the six tagged moose, are possible?

(c) If the five captured moose represent a simple random
sample drawn from the 30 moose (six of which are
tagged), find the probability that (i) two of the five
captured moose are tagged and (ii) none of the five
captured moose is tagged.

15. A simple random sample of size five is selected from
52 cards. Find the probability of each of the following
events.

(a) The five-card hand contains all four 2’s.

(b) The five-card hand contains two aces and two 7’s.

(c) The five-card hand contains three kings and the other
two cards are of different denomination.

16. The information technology company mentioned
in Exercise 7 has 10 EE majors working as interns.
Two interns will be assigned to work on each of the
four programing projects, and the remaining two interns
will be assigned to another project. How many possible
assignments of the 10 interns are there?

17. After testing, asphalt shingles are classified as high,
medium, or low grade, and different grade shingles are
sold under different warranties.
(a) In how many ways can the next 15 shingles be classi-

fied into high, medium, or low grade? (Hint. Think of
a task consisting of 15 stages, with each stage having 3
outcomes.

(b) How many classifications have three, five, and seven
shingles in the high, medium, and low grade cate-
gories, respectively?

(c) If the classifications are all equally likely, what is the
probability of the event in part (b)?

18. The binomial theorem states that

(a + b)n =
n∑

k=0

(
n
k

)
akbn−k.

(a) Use the binomial theorem to show that
∑n

k=0
(n

k

)
=

2n. (Hint. 2n = (1 + 1)n.)
(b) Expand (a2 + b)4.

19. The multinomial theorem states that

(a1 + · · · + ar)n =
∑

n1+···+nr=n

(
n

n1, n2, . . . , nr

)
an1

1 an2
2 · · · anr

r ,

where
∑

n1+···+nr=n

denotes the sum over all nonnegative

integers n1, n2, . . . , nr, which sum to n. Using the multi-
nomial theorem, expand (a2

1 + 2a2 + a3)3.

2.4 Axioms and Properties of Probabilities
The previous section introduced probability in the intuitive context of experiments
having a finite number of equally likely outcomes. For more general contexts we
have the following definition.

Definition 2.4-1
For an experiment with sample space S, probability is a function that assigns a
number, denoted by P(E), to any event E so that the following axioms hold:

Axiom 1: 0 ≤ P(E) ≤ 1
Axiom 2: P(S) = 1
Axiom 3: For any sequence of disjoint events E1, E2, . . . the probability of

their union equals the sum of their probabilities, that is,

P

( ∞⋃

i=1

Ei

)

=
∞∑

i=1

P(Ei).
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Axiom 1 states that the probability that an event will occur is some number
between 0 and 1, something that is already known from the discussion in Section
2.3. Axiom 2 states that the sample space will occur with probability one, which
is intuitive since the sample space is an event that contains all possible out-
comes. Axiom 3 states that for any countable collection of disjoint events, the
probability that at least one of them will occur is the sum of their individual
probabilities.

Proposition
2.4-1

The three axioms imply the following properties of probability:

1. The empty set, ∅, satisfies P(∅) = 0.
2. For any finite collection, E1, . . . , Em, of disjoint events

P(E1 ∪ E2 ∪ · · · ∪ Em) = P(E1) + P(E2) + · · · + P(Em).

3. If A ⊆ B then P(A) ≤ P(B).
4. P(Ac) = 1 − P(A), where Ac is the complement of A. "

Part (1) of Proposition 2.4-1 is quite intuitive: Since the empty set does not con-
tain any outcomes, it will never occur and thus its probability should be zero. Part
(2) of Proposition 2.4-1 states that Axiom 2.4.3 applies also to a finite collection
of disjoint events. In addition to being intuitive, parts (1) and (2) of Proposition
2.4-1 can be derived from the axioms; an outline of these derivations is given in
Exercise 13.

Part (3) of Proposition 2.4-1 follows by noting that if A ⊆ B, then B = A∪(B−A)
and the events A, B − A are disjoint; see Figure 2-8. Hence, by part (2),

P(B) = P(A ∪ (B − A)) = P(A) + P(B − A)

and since P(B − A) ≥ 0 it follows that P(A) ≤ P(B).
Part (4) of Proposition 2.4-1 states that if we know that the probability event A

will occur is 0.6, then the probability event A will not occur must be 1−0.6 = 0.4. For
example, if the probability that a Hershey’s Kiss will land on its base when tossed is
0.6, then the probability that it will not land on its base must be 1 − 0.6 = 0.4. As an
additional example, if we know that the probability a die roll will result in 3 is 1/6,
then the probability a die roll will not result in 3 must be 1 − 1/6 = 5/6. To derive
this property in general, note that S = A ∪ Ac and that A, Ac are disjoint. Hence,
1 = P(S) = P(A) + P(Ac), or P(Ac) = 1 − P(A).

A particularly useful consequence of Axiom 2.4.3 (and/or part (2) of Proposition
2.4-1) is that the probability of an event E equals the sum of the probabilities of
each outcome included in E. For the special case where the event in question is the

A

B – A

B

Figure 2-8 Venn diagram
showing B as the disjoint
union of A and B − A.
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entire sample space, it implies that the sum of the individual probabilities of each
outcome is 1. In mathematical notation, if s1, s2, . . . denote the possible outcomes of
an experiment, we have

P(E) =
∑

all si in E
P({si}) (2.4.1)

1 =
∑

all si in S
P({si}) (2.4.2)

The use of these properties is illustrated in the next example.

Example
2.4-1

The PMF of the experiment that records the number of heads in four flips of a coin,
which can be obtained with the R commands attach(expand.grid(X1=0:1, X2=0:1,
X3=0:1, X4=0:1)); table(X1+X2+X3+X4)/length(X1), is

x 0 1 2 3 4
p(x) 0.0625 0.25 0.375 0.25 0.0625

.

Thus, if the random variable X denotes the number of heads in four flips of a coin
then the probability of, for example, two heads is P(X = 2) = p(2) = 0.375.

(a) What does relation (2.4.2) imply for the sum of the probabilities given by the
probability mass function?

(b) What is P(X ≥ 2), that is, the probability that the number of heads will be
at least 2?

Solution

(a) The probabilities in the PMF sum to one.
(b) The event [X ≥ 2] = {the number of heads is at least 2} consists of the

outcomes 2, 3, and 4. By relation (2.4.1),

P(X ≥ 2) = 0.375 + 0.25 + 0.0625 = 0.6875.

Use of the property in part (3) of Proposition 2.4-1 is key for the solution in the
next example.

Example
2.4-2

The reliability of a system is defined as the probability that a system will function
correctly under stated conditions. A system’s reliability depends on the reliability of
its components as well as the way the components are arranged. A type of commu-
nications system works if at least half of its components work. Suppose it is possible
to add a sixth component to such a system having five components. Show that the
resulting six-component system has improved reliability.

Solution
Let E5 denote the event that the five-component system works and E6 denote the
event that the system with the additional component works. Since these types of
systems work if at least half of their components work, we have
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E5 = {at least three of the five components work},
E6 = {at least three of the six components work}.

However, E6 can be written as E6 = E5 ∪ B, where

B = {two of the original five components work and the

additional component works}.

Because the events E5 and B are disjoint, part (2) of Proposition 2.4-2 implies that
P(E6) ≥ P(E5). This shows that the six-component system is at least as reliable as
the five-component system.

The point of Example 2.4-2 is not that the addition of another component will
always improve reliability; see Exercise 9.

Some additional implications of the three axioms of probability are given in the
following proposition.

Proposition
2.4-2

The three axioms imply the following properties of probability:

1. P(A ∪ B) = P(A) + P(B) − P(A ∩ B).
2. P(A ∪ B ∪ C) = P(A) + P(B) + P(C) − P(A ∩ B) − P(A ∩ C)

−P(B ∩ C) + P(A ∩ B ∩ C). "

Example
2.4-3

In a certain community, 60% of the families own a dog, 70% own a cat, and 50% own
both a dog and a cat. If a family is selected at random, calculate the probabilities of
the following events.

(a) The family owns a dog but not a cat.
(b) The family owns a cat but not a dog.
(c) The family owns at least one of the two kinds of pets.

Solution
Define the events A = {family owns a dog} and B = {family owns a cat}. The
intersection and differences of these events are shown in the Venn diagram of
Figure 2-9.

B–AA BA–B

0.1 0.5 0.2
0.2

Figure 2-9 Venn diagram
of events and probabilities
for Example 2.4-3.
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(a) This event is represented as A − B. Since a family that owns a dog will either
not own a cat or will also own a cat, the event A is the union of A − B and
A ∩ B and these two events are disjoint. Hence,

P(A) = P(A − B) + P(A ∩ B). (2.4.3)

From this it follows that P(A − B) = P(A) − P(A ∩ B) = 0.6 − 0.5 = 0.1.
(b) This event is represented as B − A. A line of reasoning similar to the above

leads to

P(B) = P(B − A) + P(A ∩ B) (2.4.4)

from which it follows that P(B − A) = P(B) − P(A ∩ B) = 0.7 − 0.5 = 0.2.
(c) This event is represented as A ∪ B. Since a family that owns at least one of the

two kinds of pets will own only a dog, only a cat, or both a dog and a cat, A∪B
is the union of A − B, B − A, and A ∩ B and these three events are disjoint.
Hence,

P(A ∪ B) = P(A − B) + P(A ∩ B) + P(B − A)

= 0.1 + 0.5 + 0.2 = 0.8. (2.4.5)

Another way of finding this probability is to apply directly part (1) of
Proposition 2.4-2:

P(A ∪ B) = P(A) + P(B) − P(A ∩ B) = 0.6 + 0.7 − 0.5 = 0.8.

The solution to the above example provides insight into the formula in part
(1) of Proposition 2.4-2. From relations (2.4.3) and (2.4.4), which hold in general,
it follows that when the probabilities of A and B are added, the probability of the
intersection is counted twice, that is,

P(A) + P(B) = P(A − B) + 2P(A ∩ B) + P(B − A).

Therefore, in order to obtain the expression for the probability of A ∪ B given
in (2.4.5), which also holds in general, the probability of the intersection must be
subtracted.

The formula in part (2) of Proposition 2.4-2 can be justified similarly: By adding
the probabilities of A, B, and C, the probabilities of the pairwise intersections have
been added twice. Therefore, the probabilities of A ∩ B, A ∩ C, and B ∩ C must
be subtracted. Now notice that the intersection A ∩ B ∩ C is included in all three
events and their pairwise intersections. Thus, its probability has been added three
times and subtracted three times and, therefore, it needs to be added back. This type
of inclusion-exclusion argument can also be used for the probability of the union of
more than three events.

Exercises

1. A person is selected at random from the population of
Verizon wireless subscribers. Let A be the event that the
chosen subscriber has friends or family added to his/her
plan, and B denote the event that the subscriber has
unlimited text messaging. Extensive records suggest that
P(A) = 0.37, P(B) = 0.23, and P(A ∪ B) = 0.47. Find
P(A ∩ B).

2. The events A1, A2, . . . , Am are said to form a partition
of the sample space of an experiment if they are disjoint
and their union equals the sample space.

(a) If all m events of such a partition are equally likely,
what is their common probability?

(b) If m = 8 find the probability of A1 ∪ A2 ∪ A3 ∪ A4.
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3. A new generation of hybrid vehicles achieves high-
way gas mileage in the range of 50 to 53 MPG. The gas
mileage of three such cars, during a pre-specified 100-mile
drive, will be rounded to the nearest integer, resulting in
the sample space S = {(x1, x2, x3) : xi = 50, 51, 52, 53},
i = 1, 2, 3.
(a) Assume that the outcomes of the sample space S are

equally likely, and use R commands similar to those
used in Example 2.4-1 to find the probability mass
function of the experiment that records the average
mileage the three cars achieve.

(b) Use the PMF obtained in part (a) to compute the
probability that the average gas mileage is at least 52
MPG.

4. The PMF of the sum of two die rolls, found in Example
2.3-13, is

x 2 3 4 5 6 7 8 9 10 11 12
p(x) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

.

(a) For each of the following events specify the outcomes
that belong to them, and use relation (2.4.1) to find
their probabilities.

(i) E1 = {the sum of the two die rolls is at least 5}.
(ii) E2 = {the sum of the two die rolls is no more

than 8}.
(iii) E3 = E1 ∪ E2, E4 = E1 − E2, and E5 = Ec

1 ∩ Ec
2.

(b) Recalculate the probability of E3 using part (1) of
Proposition 2.4-2.

(c) Recalculate the probability of E5 using De Morgan’s
first law, the probability of E3, and part (4) of
Proposition 2.4-1.

5. A telecommunications company classifies transmis-
sion calls by their duration as brief (< 3 minutes) or long
(> 3 minutes) and by their type as voice (V), data (D),
or fax (F). From an extensive data base, the company has
come up with the following probabilities for the category
of a random (e.g. the next) transmission call.

Type of Transmission Call

Duration V D F
> 3 0.25 0.10 0.07
< 3 0.30 0.15 0.13

(a) For each of the following events specify the cate-
gory outcomes that belong to them, and find their
probabilities using relation (2.4.1).

(i) E1 = the next call is a voice call.
(ii) E2 = the next call is brief.

(iii) E3 = the next call is a data call.
(iv) E4 = E1 ∪ E2, and E5 = E1 ∪ E2 ∪ E3.

(b) Recalculate the probability of E4 using part (1) of
Proposition 2.4-2.

(c) Recalculate the probability of E5 using part (2) of
Proposition 2.4-2.

6. Each of the machines A and B in an electronics fab-
rication plant produces a single batch of 50 electrical
components per hour. Let E1 denote the event that, in any
given hour, machine A produces a batch with no defective
components, and E2 denote the corresponding event for
machine B. The probabilities of E1, E2, and E1 ∩ E2 are
0.95, 0.92, and 0.88, respectively. Express each of the fol-
lowing events as set operations on E1 and E2, and find
their probabilities.
(a) In any given hour, only machine A produces a batch

with no defects.
(b) In any given hour, only machine B produces a batch

with no defects.
(c) In any given hour, exactly one machine produces a

batch with no defects.
(d) In any given hour, at least one machine produces a

batch with no defects.

7. The electronics fabrication plant in Exercise 6 has a
third machine, machine C, which is used in periods of
peak demand and is also capable of producing a batch
of 50 electrical components per hour. Let E1, E2 be as
in Exercise 6, and E3 be the corresponding event for
machine C. The probabilities of E3, E1 ∩ E3, E2 ∩ E3, and
E1 ∩ E2 ∩ E3 are 0.9, 0.87, 0.85, and 0.82, respectively.
Find the probability that at least one of the machines will
produce a batch with no defectives.

8. The monthly volume of book sales from the online site
of a bookstore is categorized as below expectations (0), in
line with expectations (1), or above expectations (2). The
monthly volume of book sales from the brick and mortar
counterpart of the bookstore is categorized similarly. The
following table gives the probabilities of the nine possi-
ble outcomes of an experiment that records the monthly
volume of sales categories.

Brick and Mortar Sales

Online Sales 0 1 2
0 0.10 0.04 0.02
1 0.08 0.30 0.06
2 0.06 0.14 0.20

(a) Find the probabilities of each of the following events.
(i) E1 = the online sales volume category is ≤ 1.

(ii) E2 = the brick and mortar sales volume category
is ≤ 1.

(iii) E3 = E1 ∩ E2.
(b) Find the probability mass function for the experiment

that records only the online monthly volume of sales
category.

9. A type of communications system works if at least half
of its components work. Suppose it is possible to add a
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fifth component to such a system having four components.
Show that the resulting five-component system is not nec-
essarily more reliable. (Hint. In the notation of Example
2.4-2, it suffices to show that E4 ⊂/ E5. Expressing E5
as the union of {at least three of the original four com-
ponents work} and {two of the original four components
work and the additional component works}, it can be
seen that the event {two of the original four components
work and the additional component does not work} is
contained in E4 but not in E5.)

10. Consider the game where two dice, die A and die B,
are rolled. We say that die A wins, and write A > B, if
the outcome of rolling A is larger than that of rolling B. If
both rolls result in the same number it is a tie.
(a) Find the probability of a tie.
(b) Find the probability that die A wins.

11. Efron’s dice. Using arbitrary numbers on the sides
of dice can have surprising consequences for the game
described in the Exercise 10. Efron’s dice are sets of dice
with the property that for each die there is another that
beats it with larger probability when the game of Exercise
10 is played. An example of a set of four Efron’s dice is as
follows:

• Die A: four 4’s and two 0’s

• Die B: six 3’s

• Die C: four 2’s and two 6’s

• Die D: three 5’s and three 1’s

(a) Specify the events A > B, B > C, C > D, D > A.
(b) Find the probabilities that A > B, B > C, C > D,

D > A.

12. Let’s make a deal. In the game Let’s Make a Deal,
the host asks a participant to choose one of three
doors. Behind one of the doors is a big prize (e.g.,
a car), while behind the other two doors are minor
prizes (e.g., a blender). After the participant selects a
door, the host opens one of the other two doors (know-
ing it is not the one having the big prize). The host
does not show the participant what is behind the door
the participant chose. The host asks the participant to
either

(a) stick with his/her original choice, or
(b) select the other of the remaining two closed doors.

Find the probability that the participant will win the big
prize for each of the strategies (a) and (b).

13. Using only the three axioms of probability, prove
parts (1) and (2) of Proposition 2.4-1. (Hint. For part (1)
apply Axiom 2.4.3 to the sequence of events E1 = S and
Ei = ∅ for i = 2, 3, . . ., the union of which is S. This results
in the equation P(S) = ∑∞

i=1 P(Ei) = P(S) + ∑∞
i=2 P(∅).

Now complete the argument. For part (2) apply Axiom
2.4.3 to the sequence of events E1, . . . , En, and Ei = ∅
for i = n + 1, n + 2, . . ., the union of which is ∪n

i=1Ei.
This results in the equation P(∪n

i=1Ei) = ∑∞
i=1 P(Ei) =

P(∪n
i=1Ei) + ∑∞

i=n+1 P(∅). Now complete the
argument.)

2.5 Conditional Probability
Conditional probability refers to the probability computed when some partial
information concerning the outcome of the experiment is available.

Example
2.5-1

A card drawn at random from a deck of 52 cards is observed to be a face card. Given
this partial information, what is the probability the card is a king?

Solution
Since four of the 12 face cards are kings, it is intuitive that the desired probability is
4/12 or 1/3.

If we let A denote the event that the card drawn is a face card and B denote
the event that the card drawn is a king, the probability obtained in Example 2.5-1 is
called the conditional probability that B occurs given that A occurred and is denoted
by P(B|A).

The intuitive derivation of the conditional probability in Example 2.5-1 rests on
the following basic principle for computing conditional probabilities in experiments
with equally likely outcomes.
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Basic Principle
for Conditional

Probabilities

Given the information that an experiment with sample space S
resulted in the event A, conditional probabilities are calculated by

• replacing the sample space S by A, and
• treating the outcomes of the new sample space A as equally likely.

(2.5.1)

Example
2.5-2

Two dice are rolled and their sum is observed to be 7. Given this information, what
is the conditional probability that one of the two die rolls was a 3?

Solution
To follow the basic principle for computing conditional probabilities, let the sam-
ple space S be the 36 equally likely outcomes of rolling two dice. The event A =
{the sum of the two die rolls is 7} consists of the outcomes (1,6), (2,5), (3,4), (4,3),
(5,2), and (6,1), which now constitute the new sample space. Because the outcomes
in this new sample space are equally likely, the conditional probability of each out-
come is 1/6. Since a die roll of 3 occurs in two of the six equally likely outcomes, it
follows that the desired conditional probability is 2/6 or 1/3.

The basic principle (2.5.1) can be used even when the number of equally likely
outcomes is not known.

Example
2.5-3

Example 2.4-3 gave the percentages of families in a certain community that own a
dog, a cat, or both as 60%, 70%, and 50%, respectively. If a randomly selected family
owns a dog, what is the probability it also owns a cat?

Solution
Let A denote the event that the family owns a dog and B the event that the family
owns a cat. In Example 2.4-3 it was found that P(A − B) = 0.1. Since A = (A – B) ∪
(A∩B) (see also Figure 2-9), it follows that among families who own a dog, the ratio
of families who also own a cat to those who do not is 5 to 1. Therefore, the conditional
probability that the family owns a cat given that it owns a dog is P(B|A) = 5/6.

The reasoning used in Example 2.5-3 generalizes to any two events A and B:
Given that the event A occurred, B will also occur if the outcome belongs in A ∩ B.
According to the basic principle (2.5.1), however, A is the new sample space and
the ratio of the probability of A ∩ B to A − B remains the same. Since A ∩ B and
A − B are complementary events relative to the new sample space, that is, given that
A occurred, then either A ∩ B or A − B must also have occurred, we arrive at the
following definition.

Definition 2.5-1
The definition of conditional probability states that for any two events A, B with
P(A) > 0,

P(B|A) = P(A ∩ B)
P(A)

.
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Example
2.5-4

The probability that the life of a product does not exceed t time units is 1 −
exp(−0.1t). Given that a product has lasted 10 time units, what is the probability
it will fail in the next 5 time units?

Solution
Let A denote the event that a product’s life exceeds 10 time units and B denote the
event that the life will not exceed 15 time units. The events A, Ac, and B are shown
in the diagram of Figure 2-10. According to Definition 2.5-1, in order to find P(B|A)
it suffices find P(A) and P(A∩B). By the formula given, the probabilities of Ac, that
is, that the life of a product does not exceed 10 time units, and of B are

P(Ac) = 1 − exp(−0.1 × 10) = 0.632 and P(B) = 1 − exp(−0.1 × 15) = 0.777.

Noting that Ac ⊂ B (see Figure 2-10), it follows that

B = (B ∩ Ac) ∪ (B ∩ A) = Ac ∪ (B ∩ A).

Hence, since Ac and (B ∩ A) are disjoint, P(B) = P(Ac) + P(B ∩ A) from which it
follows that

P(B ∩ A) = P(B) − P(Ac) = 0.777 − 0.632 = 0.145.

Hence, since P(A) = 1 − P(Ac) = 1 − 0.632 = 0.368, we have

P(B|A) = P(B ∩ A)
P(A)

= 0.145
0.368

= 0.394.

10 15

B

Ac A

Figure 2-10 Diagram
showing the events used in
Example 2.5-4.

Example
2.5-5

A supermarket has regular (manned) checkout lines and self checkout lines. Let X
take the value 0, 1, or 2 depending on whether there are no customers, between 1
and 10 customers, or more than 10 customers, respectively, in the self checkout lines
in any given five-minute period. Let Y be the corresponding variable for the regular
(manned) checkout lines. The probabilities for each of the nine possible outcomes
of the experiment that records X and Y for a five-minute period are given in the
following table.

Regular Checkout

Self Checkout 0 1 2
0 0.17 0.02 0.01
1 0.15 0.225 0.125
2 0.06 0.105 0.135
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Let A0, B0 be the events that X = 0 and Y = 0, respectively.

(a) Find the probability of A0.
(b) Find the conditional probability of B0 given A0.
(c) Find the probability mass function of the random variable X.

Solution

(a) The event A0 = [X = 0] can only occur together with one of the events B0 =
[Y = 0], B1 = [Y = 1], or B2 = [Y = 2]. In mathematical notation, we have

A0 = (A0 ∩ B0) ∪ (A0 ∩ B1) ∪ (A0 ∩ B2),

and the events (A0 ∩ B0), (A0 ∩ B1), and (A0 ∩ B2) are disjoint. Hence, by part
(2) of Proposition 2.4-1,

P(A0) = P(A0 ∩ B0) + P(A0 ∩ B1) + P(A0 ∩ B2) = 0.17 + 0.02 + 0.01 = 0.2.

(b)

P(B0|A0) = P(B0 ∩ A0)
P(A0)

= 0.17
0.2

= 0.85.

(c) In part (a) we found that P(X = 0) = 0.2. Working similarly, we find that

P(X = 1) = 0.15 + 0.225 + 0.125 = 0.5 and

P(X = 2) = 0.060 + 0.105 + 0.135 = 0.3.

Hence, the PMF of X is
x 0 1 2

p(x) 0.2 0.5 0.3
.

According to the basic principle for conditional probabilities (2.5.1), the con-
ditional probabilities given the information that an event A has occurred are
probabilities from a new experiment in which the sample space has been reduced
from the original S to A. One way of simulating outcomes from this new experiment
is to generate outcomes from the original experiment and ignore those outcomes
that are not in A. For example, given the information that the roll of a die is an even
number, the sample space shrinks from S = {1, . . . , 6} to A = {2, 4, 6}. In the absence
of a random number generator, outcomes from this reduced sample space can be
obtained by repeated die rolls and ignoring the outcomes that are not in A.

Example
2.5-6

Fair game with an unfair coin. Suppose that when a biased coin is flipped it results
in heads with probability p. A fair game with such an unfair coin can be played as
follows: Flip the coin twice. If the outcome is (H, H) or (T, T) ignore the outcome
and flip the coin two more times. Repeat until the outcome of the two flips is either
(H, T) or (T, H). Code the first of these outcomes as 1 and the second as 0. Prove
that the probability of getting a 1 equals 0.5.

Solution
Ignoring the outcomes (H, H) and (T, T) is equivalent to conditioning on the
event A = {(H, T), (T, H)}. Thus we will be done if we show that the conditional
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probability of (H, T) given A is 0.5. Using the definition of conditional probability
we have

P((H, T)|A) = P((H, T) ∩ A)
P(A)

= P((H, T))
P(A)

= p(1 − p)
p(1 − p) + (1 − p)p

= 0.5.

2.5.1 THE MULTIPLICATION RULE AND TREE DIAGRAMS

Though the axioms and properties of probability do not contain an explicit for-
mula for calculating the intersection of events, part (1) of Proposition 2.4-2 contains
implicitly the following formula

P(A ∩ B) = P(A) + P(B) − P(A ∪ B). (2.5.2)

Note that (2.5.2) requires three pieces of information, which are P(A), P(B), and
P(A ∪ B), for the calculation of P(A ∩ B). Definition 2.5-1 of conditional probability
yields the following alternative (multiplicative) formula that uses only two pieces of
information.

Multiplication Rule
for Two Events P(A ∩ B) = P(A)P(B|A) (2.5.3)

Example
2.5-7

Two consecutive traffic lights have been synchronized to make a run of green lights
more likely. In particular, if a driver finds the first light to be red, the second light
will be green with probability 0.9, and if the first light is green the second will be
green with probability 0.7. If the probability of finding the first light green is 0.6, find
the probability that a driver will find both lights green.

Solution
Let A denote the event that the first light is green and B the corresponding event for
the second light. The question concerns the probability of the intersection of A and
B. From the multiplication rule we obtain

P(A ∩ B) = P(A)P(B|A) = 0.6 × 0.7 = 0.42.

This multiplicative formula generalizes to more than two events.

Multiplication Rule
for Three Events P(A ∩ B ∩ C) = P(A)P(B|A)P(C|A ∩ B) (2.5.4)

To prove the multiplication rule for three events apply the definition of conditional
probability to its right-hand side to get

P(A)
P(A ∩ B)

P(A)
P(A ∩ B ∩ C)

P(A ∩ B)
= P(A ∩ B ∩ C).

See Exercise 13 for the extension of the multiplication rule to several events.

Example
2.5-8

Pick three cards from a deck. Find the probability that the first draw is an ace, the
second draw is a king, and the third draw is a queen.
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Solution
Let A = {first draw results in ace}, B = {second draw results in king}, and C =
{third draw results in queen}. Thus we want to calculate P(A ∩ B ∩ C). From the
multiplication rule for three events we have

P(A ∩ B ∩ C) = P(A)P(B|A)P(C|A ∩ B) = 4
52

4
51

4
50

= 0.000483.

Example
2.5-9

Of the customers entering a department store 30% are men and 70% are women.
The probability a male shopper will spend more than $50 is 0.4, and the correspond-
ing probability for a female shopper is 0.6. The probability that at least one of the
items purchased is returned is 0.1 for male shoppers and 0.15 for female shoppers.
Find the probability that the next customer to enter the department store is a woman
who will spend more than $50 on items that will not be returned.

Solution
Let W = {customer is a woman}, B = {the customer spends >$50}, and R =
{at least one of the purchased items is returned}. We want the probability of the
intersection of W, B, and Rc. By the formula in (2.5.4), this probability is given by

P(W ∩ B ∩ Rc) = P(W)P(B|W)P(Rc|W ∩ B) = 0.7 × 0.6 × 0.85 = 0.357.

The multiplication rule typically applies in situations where the events whose
intersection we wish to compute are associated with different stages of an experi-
ment. For example, the experiment in Example 2.5-9 consists of three stages, which
are (a) record customer’s gender, (b) record amount spent by customer, and (c)
record whether any of the items purchased are subsequently returned. Therefore, by
the generalized fundamental principle of counting, this experiment has 2 × 2 × 2 = 8
different outcomes. Each outcome is represented by a path going from left to right
in the tree diagram of Figure 2-11. The numbers appearing along each path are
the (conditional) probabilities of going from each outcome of a stage to the out-
comes of the next stage. The probability of each outcome of the experiment is the
product of the numbers appearing along the path that represents it. For example,
the probability found in Example 2.5-9 is that of the outcome represented by the
path that defines the bottom boundary of the tree diagram. Tree diagrams provide
additional insight into the probability structure of the experiment and facilitate the

W

> 50
R

Rc

≤ 50
R

Rc

M

> 50
R

Rc

≤ 50
Rc

R

0.7

0.3

0.4

0.6

0.6

0.4

0.85

0.1

0.15

0.9

0.85

0.1

0.15

0.9

Figure 2-11 Tree diagram
for Example 2.5-9.
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computation of probabilities. For example, the probability that a purchase will result
in at least one item being returned is found by summing the probabilities of the four
events represented by the four paths leading to an R in Figure 2-11:

0.3 × 0.4 × 0.1 + 0.3 × 0.6 × 0.1 + 0.7 × 0.4 × 0.15

+ 0.7 × 0.6 × 0.15 = 0.135. (2.5.5)

The rule for constructing tree diagrams is as follows: Start with the stage of the
experiment for which unconditional probabilities for its possible outcomes are given.
Call this stage 1. From the origin (i.e., the little circle at the very left of Figure 2-11)
draw branches to each of the possible outcomes of stage 1. Next, there are condi-
tional probabilities, given the outcome of stage 1, for the outcomes of the next stage
of the experiment. Call this stage 2. From each outcome of stage 1 draw branches to
each of the possible outcomes of stage 2, and so forth.

2.5.2 LAW OF TOTAL PROBABILITY AND BAYES’ THEOREM

The probability computed in (2.5.5) is an example of a total probability. It is called
total because it is obtained by summing the probabilities of the individual out-
comes of the experiment, that is, paths in the tree diagram, whose end result is
R = {at least one of the purchased items is returned}. Grouping the paths into those
that pass through M and those that pass through W (see Figure 2-11), the terms in
the left-hand side of (2.5.5) can be written as

0.3(0.4 × 0.1 + 0.6 × 0.1) + 0.7(0.4 × 0.15 + 0.6 × 0.15)

= P(M)P(R|M) + P(W)P(R|W) = P(R). (2.5.6)

This is a simple form of the Law of Total Probability.
In general, the Law of Total Probability is a formula for calculating the prob-

ability of an event B, when B arises in connection with events A1, . . . , Ak, which
constitute a partition of the sample space (i.e., they are disjoint and make up the
entire sample space); see Figure 2-12. If the probability of each Ai and the condi-
tional probability of B given each Ai are all known, the Law of Total Probability
expresses the probability of B as

Law of Total
Probability P(B) = P(A1)P(B|A1) + · · · + P(Ak)P(B|Ak) (2.5.7)

The events A1, . . . , Ak can also be thought of as a stratification of the population.
In the simple example of the Law of Total Probability given in (2.5.6), the events
M = {customer is a man} and W = {customer is a woman}, which play the role of
A1 and A2 (so k = 2), form a stratification of the population of customers. That M
and W form a partition of the sample space also follows from the fact that every path
in the tree diagram of Figure 2-11 passes either through M or through W.

A1 A2 A3 A4

B

Figure 2-12 An event B
arising in connection with
events A1, . . . , A4.
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To prove the Law of Total Probability use the multiplication rule, and the fact
that A1, . . . , Ak form a partition of the sample space, to write the right-hand side of
(2.5.7) as

P(B ∩ A1) + · · · + P(B ∩ Ak) = P[(B ∩ A1) ∪ · · · ∪ (B ∩ Ak)] = P(B),

where the first equality follows because the events B∩Ai are disjoint, and the second
follows because (B ∩ A1) ∪ · · · ∪ (B ∩ Ak) = B; see also Figure 2-12.

REMARK 2.5-1 The number of the events Ai in the partition may also be (count-
ably) infinite. Thus, if Ai ∩ Aj = ∅, for all i ̸= j, and ∪∞

i=1Ai = S, the Law of Total
Probability states that

P(B) =
∞∑

i=1

P(Ai)P(B|Ai)

holds for any event B. ▹

Example
2.5-10

Two friends will be dealt a card each. The two cards will be drawn from a standard
deck of 52 cards at random and without replacement. If neither gets an ace, the full
deck is reshuffled and two cards are again drawn without replacement. The game
ends when at least one of the two friends gets an ace. The ones with ace win a prize.
Is this a fair game?

Solution
The game will be fair if the probability of an ace in the second draw is 4/52, which
is the probability of an ace in the first draw. Let B denote the event that the second
draw results in an ace, let A1 denote the event that the first draw results in an ace,
and let A2 be the complement of A1. Then, according to the Law of Total Probability,

P(B) = P(A1)P(B|A1) + P(A2)P(B|A2) = 4
52

3
51

+ 48
52

4
51

= 4
52

.

Thus the game is fair.

Example
2.5-11

Use the information given in Example 2.5-7 regarding the two consecutive synchro-
nized traffic lights to complete the following.

(a) Find the probability that a driver will find the second traffic light green.
(b) Recalculate the probability of part (a) through a tree diagram for the exper-

iment that records whether or not a car stops at each of the two traffic
lights.

Solution

(a) Let A and B denote the events that a driver will find the first and the sec-
ond, respectively, traffic lights green. Because the events A and Ac constitute
a partition of the sample space, according to the Law of Total Probability

P(B) = P(A)P(B|A) + P(Ac)P(B|Ac)

= 0.6 × 0.7 + 0.4 × 0.9 = 0.42 + 0.36 = 0.78.

(b) The tree diagram is given in Figure 2-13. The experiment has two outcomes
resulting in the second light being green which are represented by the
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G

G

R

R

R

G

0.6

0.4

0.3

0.7

0.9

0.1

Figure 2-13 Tree diagram
for Example 2.5-11.

paths with the pairs of probabilities (0.6, 0.7) and (0.4, 0.9). The sum of
the probabilities of these two outcomes is 0.6 × 0.7 + 0.4 × 0.9 = 0.42
+ 0.36 = 0.78.

Bayes’ Theorem applies to the same context, and with the same information, used in
the Law of Total Probability. Thus there is a partition A1, . . . , Ak of the sample space
and an event B, as shown in Figure 2-12. The probabilities of the events Ai are given,
and so are the conditional probabilities of B given that an Ai has occurred. Bayes’
Theorem answers the question: Given that B has occurred, what is the probability
that a particular Aj has occurred? The answer is provided by the following formula.

Bayes’ Theorem
P(Aj|B) = P(Aj)P(B|Aj)

k∑

i=1

P(Ai)P(B|Ai)

(2.5.8)

A proof of the formula follows by first writing P(Aj|B) = P(Aj ∩ B)/P(B)
and then applying the multiplication rule in the numerator and the Law of Total
Probability in the denominator.

Example
2.5-12

In the setting of Example 2.5-11, find the probability that a passing car encountered
a green first light given that it encountered a green second light.

Solution
With the events A and B as defined in Example 2.5-11, we want to find P(A|B).
Using Bayes’ theorem we obtain

P(A|B) = P(A)P(B|A)
P(A)P(B|A) + P(Ac)P(B|Ac)

= 0.6 × 0.7
0.6 × 0.7 + 0.4 × 0.9

= 0.42
0.78

= 0.538.

Example
2.5-13

Suppose that 5% of all men and 0.25% of all women are color-blind. A person is
chosen at random from a community having 55% women and 45% men.

(a) What is the probability that the person is color-blind?
(b) If the chosen person is color-blind, what is the probability that the person is

male?
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Solution
Let B denote the event that the selected person is color-blind, A1 denote the event
that the person is a man, and A2 denote the event that the person is a woman.

(a) According to the Law of Total Probability,

P(B) = P(A1)P(B|A1) + P(A2)P(B|A2)

= 0.45 × 0.05 + 0.55 × 0.0025 = 0.0239.

(b) According to Bayes’ Theorem,

P(A1|B) = P(A1)P(B|A1)
2∑

i=1
P(Ai)P(B|Ai)

= 0.45 × 0.05
0.0239

= 0.9424.

Exercises

1. The probability that a phone call will last more than t
minutes is (1+ t)−2. Given that a particular phone call has
not ended in two minutes, what is the probability it will
last more than three minutes?

2. The probability that two or more of a system’s 10
components fail between consecutive inspections is 0.005,
while the probability that only one component fails is
0.1. When two or more components fail, a re-evaluation
of the system is initiated during which all failed com-
ponents, and those deemed unreliable, are replaced.
Otherwise, components are replaced upon their fail-
ure. Find the probability that a system re-evaluation
occurs before any component is individually replaced.
(Hint. Let B = {system re-evaluation occurs}, C =
{a component is individually replaced}, and consider a
new experiment with reduced sample space A = B ∪ C.
The desired probability is the probability of B in this new
experiment. See also Example 2.5-6.)

3. The moisture content of batches of a chemical sub-
stance is measured on a scale from 1 to 3, while the
impurity level is recorded as either low (1) or high (2).
Let X and Y denote the moisture content and the impu-
rity level, respectively, of a randomly selected batch. The
probabilities for each of the six possible outcomes of the
experiment that records X and Y for a randomly selected
batch are given in the following table.

Impurity Level

Moisture 1 2
1 0.132 0.068
2 0.24 0.06
3 0.33 0.17

Let A and B be the events that X = 1 and Y = 1,
respectively.
(a) Find the probability of A.
(b) Find the conditional probability of B given A.
(c) Find the probability mass function of the random

variable X.

4. Two major brands of flat screen TVs control 50% and
30% of the market, respectively. Other brands have the
remaining 20% of the market. It is known that 10% of
brand 1 TVs require warranty repair work, as do 20% of
brand 2 and 25% of different brand TVs.
(a) Find the probability that the next flat screen TV pur-

chased is a brand 1 TV which will need warranty
repair work.

(b) Make a tree diagram for the experiment that records
the brand of the next flat screen TV to be sold, and
whether or not it will require warranty repair work,
and mark the given probabilities on the different
paths of the tree diagram.

(c) Use the tree diagram to find the probability that the
next flat screen TV to be sold will need warranty
repair work.

5. An article on vehicle choice behavior2 gives the fol-
lowing information about the US car and truck market.
The ratio of cars to trucks is 36/64. Among the cars
sold 42% are made in the US, while 58% are imports.
The corresponding percentages for trucks sold are 70%
and 30%.
(a) Find the probability that the next auto consumer will

buy an imported car. (Hint. 36% of the sales are
cars.)

2 K. E. Train and C. Winston (2007). Vehicle choice behavior and the declining market share of US automakers,
International Economic Review, 48(4): 1469–1796.
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(b) It is also known that 35% of the consumers who
get an import choose to lease it, while 20% of
those getting a US-made vehicle lease. Make a
tree diagram for the experiment that records the
decisions made in the various vehicle acquisition
stages, which are (1) car or truck, (2) US made
or imported, and (3) buy or lease, and mark the
given probabilities on the different paths of the tree
diagram.

(c) Use the tree diagram to compute the probability that
the next auto consumer will choose to lease his/her
chosen vehicle.

6. A particular consumer product is being assembled on
production lines A, B, and C, and packaged in batches of
10. Each day, the quality control team selects a production
line by probability sampling with probabilities P(A) =
P(B) = 0.3 and P(C) = 0.4 and inspects a randomly
drawn batch from the selected production line. The prob-
ability that no defects are found in a batch selected from
production line A is 0.99, and the corresponding proba-
bilities for production lines B and C are 0.97 and 0.92,
respectively. A tree diagram may be used for answering
the following questions.
(a) What is the probability that a batch from production

line A is inspected and no defects are found?
(b) Answer the above question for production lines B

and C.
(c) What is the probability that no defects are found in

any given day?
(d) Given that no defects were found in a given day,

what is the probability the inspected batch came from
production line C?

7. Fifteen percent of all births involve Cesarean (C) sec-
tion. Ninety-eight percent of all babies survive delivery,
whereas when a C section is performed the baby survives
with probability 0.96.
(a) Make a tree diagram and mark the given infor-

mation on the appropriate paths of the diagram.
(Note that the probabilities for certain paths are not
given.)

(b) What is the probability that a baby will survive deliv-
ery if a C section is not performed? (Hint. Use the
tree diagram and the remaining information given to
set up an equation.)

8. Thirty percent of credit card holders carry no monthly
balance, while 70% do. Of those card holders carrying a
balance, 30% have annual income $20,000 or less, 40%
between $20,001 and $50,000, and 30% over $50,000.
Of those card holders carrying no balance, 20%, 30%,
and 50% have annual incomes in these three respective
categories.
(a) What is the probability that a randomly chosen card

holder has annual income $20,000 or less?

(b) If this card holder has an annual income that is
$20,000 or less, what is the probability that (s)he
carries a balance?

9. You ask your roommate to water a sickly plant while
you are on vacation. Without water the plant will die with
probability 0.8 and with water it will die with probability
0.1. With probability 0.85, your roommate will remember
to water the plant.
(a) What is the probability that your plant is alive when

you return? (You may use a tree diagram.)
(b) If the plant is alive when you return, what is the prob-

ability that your roommate remembered to water it?

10. A batch of 10 fuses contains three defective ones.
A sample of size two is taken at random and without
replacement.
(a) Find the probability that the sample contains no

defective fuses.
(b) Let X be the random variable denoting the number

of defective fuses in the sample. Find the probability
mass function of X.

(c) Given that X = 1, what is the probability that the
defective fuse was the first one selected?

11. A city’s police department plans to enforce speed lim-
its by using radar traps at four different locations. During
morning rush hour, the radar traps at locations L1, L2, L3,
L4 are operated with probabilities 0.4, 0.3, 0.2, and 0.3,
respectively. A person speeding to work has probabilities
of 0.2, 0.1, 0.5, and 0.2, respectively, of passing through
these locations.
(a) What is the probability the speeding person will

receive a speeding ticket?
(b) If the person received a speeding ticket while speed-

ing to work, what is the probability that he/she passed
through the radar trap at location L2?

12. Seventy percent of the light aircraft that disappear
while in flight in a certain country are subsequently dis-
covered. Of the aircraft that are discovered, 60% have
an emergency locator, whereas 10% of the aircraft not
discovered have such a locator. Suppose a light aircraft
disappears while in flight.
(a) What is the probability that it has an emergency

locator and it will not be discovered?
(b) What is the probability that it has an emergency

locator?
(c) If it has an emergency locator, what is the probability

that it will not be discovered?

13. Prove the following generalization of the multiplica-
tion rule.

P(E1 ∩ E2 ∩ · · · ∩ En) =P(E1)P(E2|E1)P(E3|E1 ∩ E2)

· · · P(En|E1 ∩ E2 ∩ · · · ∩ En−1).
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2.6 Independent Events
If a coin is flipped twice, knowing that the first flip is heads does not change the prob-
ability that the second flip will be heads. This captures the notion of independent
events. Namely, events A and B are independent if the knowledge that A occurred
does not change the probability of B occurring. In mathematical notation, this is
expressed as

P(B|A) = P(B). (2.6.1)

Primarily for reasons of symmetry, the definition of independence of two events is
given in terms of their intersection.

Definition 2.6-1
Events A and B are called independent if

P(A ∩ B) = P(A)P(B).

If events A and B are not independent, then they are dependent.

By the multiplication rule (2.5.3), P(A ∩ B) = P(A)P(B|A), provided P(A) > 0.
Thus, P(A ∩ B) = P(A)P(B) holds if and only if relation (2.6.1) holds. A similar
argument implies that, if P(B) > 0, Definition 2.6-1 is equivalent to

P(A|B) = P(A). (2.6.2)

Typically, independent events arise in connection with experiments that are per-
formed independently, or in connection with independent repetitions of the same
experiment. By independent experiments or independent repetitions of the same
experiment we mean that there is no mechanism through which the outcome of one
experiment will influence the outcome of the other. The independent repetitions of
an experiment are typically sub-experiments of an experiment, such as the individ-
ual flips of a coin in an experiment consisting of n coin flips, or the selection of each
individual unit in simple random sampling of n units from a very large/conceptual
population.

Example
2.6-1

(a) A die is rolled twice. Let A = {outcome of first roll is even} and B =
{outcome of second roll is either a 1 or a 3}. Are the events A and B
independent?

(b) Two electronic components are selected from the production line for thorough
inspection. It is known that 90% of the components have no defects. Find the
probability that the two inspected components have no defects.

Solution

(a) The two rolls of a die can realistically be assumed to be independent repeti-
tions of the same experiment. Therefore, since event A pertains to the first
roll, while event B pertains to the second roll, we may conclude that A and
B are independent. Alternatively, by Definition 2.6-1, A and B are indepen-
dent if the probability of their intersection is the product of their probabilities.
Assume that the 36 possible outcomes of the two die rolls are equally likely.
Since A ∩ B has 3 × 2 = 6 outcomes, it follows that P(A ∩ B) = 6/36 = 1/6.
Also, P(A)P(B) = (1/2)(1/3) = 1/6. Hence, A and B are independent.
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(b) The two selected components are a simple random sample of size two from
the conceptual population of such components. Let A = {the first inspected
component has no defects} and B = {the second inspected component has no
defects}. Since the sub-experiments that select each of the two components are
independent, so are the events A and B. Therefore, P(A ∩ B) = P(A)P(B) =
0.92 = 0.81.

When A and B do not arise in connection with independent experiments, their
independence can only be verified through Definition 2.6-1.

Example
2.6-2

A card is drawn at random from an ordinary deck of 52 cards. Let A and B denote
the events that the card is a five and the card is a spade, respectively. Are the events
A and B independent?

Solution
The events A and B are independent if the probability of their intersection is
the product of their probabilities. Since P(A ∩ B) = 1/52, and P(A)P(B) =
(4/52)(13/52) = 1/52, it follows that A and B are independent.

Whenever independence seems a reasonably realistic assumption, assuming
independence can facilitate the computation of probabilities.

Example
2.6-3

A laundromat’s aging washing machine and clothes dryer are being replaced. The
probability a new washing machine will require warranty service is 0.22. The cor-
responding probability for a new dryer is 0.15. What is the probability that both
machines will require warranty service?

Solution
Let experiments 1 and 2 record whether or not the washing machine and the dryer,
respectively, require warranty service. The problem statement does not provide suf-
ficient information to compute the desired probability without the assumption of
independence. Assuming that the two experiments are independent, it follows that
the events A = {the washing machine requires warranty service} and B = {the dryer
requires warranty service} are independent. Hence,

P(A ∩ B) = P(A)P(B) = (0.22)(0.15) = 0.033.

Some basic properties of independent events are given next.

Proposition
2.6-1

1. If A and B are independent, then so are Ac and B.
2. The empty set, ∅, and the sample space, S, are independent from any other set.
3. Disjoint events are not independent unless the probability of one of them is

zero. "

To see why part (1) of Proposition 2.6-1 is true, use the fact that B is the union
of the disjoint events B ∩ A and B ∩ Ac, and the independence of A and B, to write
P(B) = P(B)P(A)+P(B∩Ac). Now bring P(B)P(A) on the left side of this equation
to get P(B)[1 − P(A)] = P(B ∩ Ac). Hence, P(B)P(Ac) = P(B ∩ Ac), which implies
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their independence. The first statement of part (2) of the proposition is true because,
for any event A, A ∩ ∅ = ∅. Hence, 0 = P(A ∩ ∅) = P(∅)P(A) = 0. The second
statement of part (2) of the proposition follows from part (1), since S = ∅c. Part (3)
of the proposition follows by noting that if A and B are disjoint, then P(A ∩ B) =
P(∅) = 0. Thus, A and B cannot be independent unless P(A) = 0 or P(B) = 0.

Example
2.6-4

The proportion of female voters who strongly support the exploration of all alter-
native forms of energy production is the same as the proportion of all voters who
strongly support the exploration of all alternative forms of energy production. For
a person selected at random from the population of voters, let F and E denote the
events that the selected voter is female and the selected voter strongly supports the
exploration of all alternative forms of energy production, respectively.

(a) Are the events E and F independent?
(b) Is the proportion of male voters who strongly support the exploration of

all alternative forms of energy production the same as the corresponding
proportion of female voters?

Solution

(a) Translated into mathematical notation, the first sentence of the problem state-
ment is written as P(E|F) = P(E). According to the discussion following
Definition 2.6-1 (see relations (2.6.1) and (2.6.2)), this implies that E and F
are independent.

(b) Let M be the event that a randomly selected voter is male. Since M = Fc, the
independence of E and F shown in part (a) and part (1) of Proposition 2.6-1
imply that M and E are independent. According to relations (2.6.1) and/or
(2.6.2), this is equivalent to P(E|M) = P(E). Using the result of part (a), this
implies P(E|M) = P(E|F). Translated into words, this relationship is stated as
the proportion of male voters who strongly support the exploration of all alter-
native forms of energy production is the same as the corresponding proportion
among all female voters.

It would appear that events E1, E2, E3 are independent if E1 is independent from
E2 and E3, and E2 is independent from E3 or, in mathematical notation, if

P(E1 ∩ E2) = P(E1)P(E2),
P(E1 ∩ E3) = P(E1)P(E3),
P(E2 ∩ E3) = P(E2)P(E3).

⎫
⎬

⎭ (2.6.3)

However, this pairwise independence does not imply

P(E1 ∩ E2 ∩ E3) = P(E1)P(E2)P(E3); (2.6.4)

see Exercise 8. It is also possible that (2.6.4) holds but one of the relations in (2.6.3)
does not hold. This is demonstrated next.

Example
2.6-5

Roll a die once and record the outcome. Define the events E1 = {1, 2, 3}, E2 =
{3, 4, 5}, E3 = {1, 2, 3, 4}. Verify that

P(E1 ∩ E2 ∩ E3) = P(E1)P(E2)P(E3)

and also that E1 and E2 are not independent.
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Solution
Since P(E1 ∩ E2 ∩ E3) = P({3}) = 1/6 and P(E1)P(E2)P(E3) = (1/2)(1/2)(4/6)
= 1/6, it follows that P(E1 ∩ E2 ∩ E3) = P(E1)P(E2)P(E3). Next, P(E1 ∩ E2) =
P({3}) = 1/6, which is not equal to P(E1)P(E2) = (1/2)(1/2) = 1/4. Thus, E1 and
E2 are not independent.

The above discussion leads to the following definition for the independence of
three events.

Definition 2.6-2
Independence of three events. The events E1, E2, E3 are (mutually) independent
if all three relations in (2.6.3) hold and (2.6.4) holds.

The specification mutually serves to distinguish the concept of Definition 2.6-1
from that of pairwise independence. In this book we will use independence to mean
mutual independence.

Of course, the concept of independence extends to more than three events. The
events E1, . . . , En are said to be independent if for every subset Ei1 , . . . , Eik , k ≤ n,

P(Ei1 ∩ Ei2 ∩ · · · ∩ Eik ) = P(Ei1 )P(Ei2) · · · P(Eik).

If E1, E2, . . . , En are independent, then so are their complements. This is sim-
ilar to the corresponding property for two events (part (1) of Proposition 2.6-1).
Moreover, any one of the n independent events will be independent from events
formed from all the others. For instance, in the case of three independent events,
E1, E2, and E3, the event E1 is independent of events such as E2 ∪ E3, Ec

2 ∪ E3, etc.
See Exercise 9.

Example
2.6-6

At 25oC, 20% of a certain type of laser diodes have efficiency below 0.3 mW/mA.
For five diodes, selected by simple random sampling from a large population of such
diodes, find the probability of the following events.

(a) All five have efficiency above 0.3 at 25oC.
(b) Only the second diode selected has efficiency below 0.3 at 25oC.
(c) Exactly one of the five diodes has efficiency below 0.3 at 25oC.
(d) Exactly two of the five diodes have efficiency below 0.3 at 25oC.

Solution
Define the events Ai = {the ith diode has efficiency below 0.3}, i = 1, . . . , 5. Because
the five sub-experiments, each consisting of selecting one diode and measuring its
efficiency, are independent, so are the events A1, . . . , A5. Hence we have:

(a)

P(Ac
1 ∩ · · · ∩ Ac

5) = P(Ac
1) · · · P(Ac

5) = 0.85 = 0.328.

(b)

P(Ac
1 ∩ A2 ∩ Ac

3 ∩ Ac
4 ∩ Ac

5) = P(Ac
1)P(A2)P(Ac

3)P(Ac
4)P(Ac

5)

= (0.2)(0.84) = 0.082.
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(c) This event is the union of the disjoint events Ei = {only the ith diode has
efficiency below 0.3 at 25oC}. A calculation similar to that of part (b) yields
that P(Ei) = 0.082 for all i = 1, . . . , 5. Thus, the requested probability is

P(E1 ∪ · · · ∪ E5) = P(E1) + P(E2) + P(E3) + P(E4) + P(E5)

= 5 × 0.082 = 0.41.

(d) This event is the union of
(5

2
)

= 10 disjoint events, each of which has the same
probability as the event A = {only the first and the second have efficiency
below 0.3 at 25oC}. Thus, the requested probability is

10 × P(A) = 10 × 0.22 × 0.83 = 0.205.

2.6.1 APPLICATIONS TO SYSTEM RELIABILITY

In Example 2.4-2 it was mentioned that the reliability of a system, which is defined as
the probability that a system will function correctly under stated conditions, depends
on the reliability of its components as well as the way the components are arranged.
The two basic types of component arrangements are in series and in parallel. These
are depicted in Figure 2-14. A system (or part of a system) whose components are
arranged in series works if all its components work. For instance, the four wheels
of an automobile represent an arrangement in series since the automobile cannot
be driven with a flat tire. A system (or part of a system) whose components are
arranged in parallel works if at least one of its components works. For instance, three
photocopying machines in an office represent an arrangement in parallel since a
photocopying request can be carried out if at least one of the three machines is
working. Thus, arranging components in parallel is a way of building redundancy
into the system in order to improve its reliability.

The assumption that components fail independently is often used for calculating
the reliability of a system from the probability of failure of its components.

Example
2.6-7

The three components of the series system shown in the left panel of Figure 2-14 fail
with probabilities p1 = 0.1, p2 = 0.15, and p3 = 0.2, respectively, independently of
each other. What is the probability the system will fail?

Solution
Let A denote the event that the system fails. The probability of A is computed most
easily by computing first the probability of Ac. Since components fail independently,
and thus the events that they do not fail are also independent, we have

1 2 3

1

2

3

Figure 2-14 Components
connected in series (left)
and in parallel (right).
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P(Ac) = P(no component fails) = (1 − 0.1)(1 − 0.15)(1 − 0.2) = 0.612.

Using part (4) of Proposition 2.4-1, it follows that P(A) = 1 − P(Ac) = 0.388.

Example
2.6-8

The three components of the parallel system shown in the right panel of Figure
2-14 function with probabilities p1 = 0.9, p2 = 0.85, and p3 = 0.8, respectively,
independently of each other. What is the probability the system functions?

Solution
Let A denote the event that the system functions and Ai denote the event that com-
ponent i functions, i = 1, 2, 3. Because the components are connected in parallel,
A = A1 ∪ A2 ∪ A3. Using part (2) of Proposition 2.4-2, and the independence of the
events Ai, we have

P(A) = P(A1) + P(A2) + P(A3) − P(A1 ∩ A2) − P(A1 ∩ A3)

− P(A2 ∩ A3) + P(A1 ∩ A2 ∩ A3)

= 0.9 + 0.85 + 0.8 − 0.9 × 0.85 − 0.9 × 0.8 − 0.85 × 0.8 + 0.9 × 0.85 × 0.8

= 0.997.

An alternative way of computing the probability that the system functions is to com-
pute first the probability that the system does not function. Because it is a parallel
system, it does not function only if all three components do not function. Thus, by
the independence of the events Ai and hence of their complements,

P(Ac) = P(Ac
1)P(Ac

2)P(Ac
3) = 0.1 × 0.15 × 0.2 = 0.003,

which yields P(A) = 1 − 0.003 = 0.997, as before. This alternative method is much
more expedient for computing the reliability of parallel systems with more than
three components.

A series system has no redundancy in the sense that it functions only if all its
components function. A parallel system has the maximum possible redundancy since
it functions if at least one of its components functions. A k-out-of-n system functions
if at least k of its n components functions. For example, the engine of a V8 car may
be designed so that the car can be driven if at least four of its eight cylinders are
firing, in which case it is a 4-out-of-8 system. With this terminology, a series system
is an n-out-of-n system, while a parallel system is a 1-out-of-n system.

Example
2.6-9

Find the reliability of a 2-out-of-3 system whose three components function with
probabilities p1 = 0.9, p2 = 0.85, and p3 = 0.8, respectively, independently of each
other.

Solution
Let A denote the event that the system functions, and Ai denote the event that com-
ponent i functions, i = 1, 2, 3. Because it is a 2-out-of-3 system, it functions if only
components 1 and 2 function, or only components 1 and 3 function, or only com-
ponents 2 and 3 function, or all components function. In mathematical notation,
A = (A1 ∩ A2) ∪ (A1 ∩ A3) ∪ (A2 ∩ A3) ∪ (A1 ∩ A2 ∩ A3). Because these events are
disjoint,
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P(A) = P(A1 ∩ A2 ∩ Ac
3) + P(A1 ∩ Ac

2 ∩ A3) + P(Ac
1 ∩ A2 ∩ A3) + P(A1 ∩ A2 ∩ A3)

= 0.9 × 0.85 × 0.2 + 0.9 × 0.15 × 0.8 + 0.1 × 0.85 × 0.8 + 0.9 × 0.85 × 0.8

= 0.941,

where the second equality follows by the independence of the events Ai.

Exercises

1. In a batch of 10 laser diodes, two have efficiency
below 0.28, six have efficiency between 0.28 and 0.35,
and two have efficiency above 0.35. Two diodes are
selected at random and without replacement. Are the
events E1 = {the first diode selected has efficiency
below 0.28} and E2 = {the second diode selected
has efficiency above 0.35} independent? Justify your
answer.

2. In the context of Exercise 2.5-3, are the events [X = 1]
and [Y = 1] independent? Justify your answer.

3. A simple random sample of 10 software widgets are
chosen for installation. If 10% of this type of software
widgets have connectivity problems, find the probability
of each of the following events.
(a) None of the 10 have connectivity problems.
(b) The first widget installed has connectivity problems

but the rest do not.
(c) Exactly one of the 10 has connectivity problems.

4. An experiment consists of inspecting fuses as they
come off a production line until the first defective
fuse is found. Assume that each fuse is defective with
a probability of 0.01, independently of other fuses.
Find the probability that a total of eight fuses are
inspected.

5. Quality control engineers monitor the number of non-
conformances per car in an automobile production facil-
ity. Each day, a simple random sample of four cars from
the first assembly line and a simple random sample of
three cars from the second assembly line are inspected.
The probability that an automobile produced in the first
shift has zero nonconformances is 0.8. The corresponding
probability for the second shift is 0.9. Find the probability
of the events (a) zero nonconformances are found in the
cars from the first assembly line in any given day, (b) the
corresponding event for the second assembly line, and (c)
zero nonconformances are found in any given day. State
any assumptions you use.

6. An athlete is selected at random from the population
of student athletes in a small private high school, and
the athlete’s gender and sports preference is recorded.

Define the events M = {the student athlete is male}, F
= {the student athlete is female}, and T= {the student
athlete prefers track}. We are told that the proportion
of male athletes who prefer track is the same as the
proportion of student athletes who prefer track or, in
mathematical notation, P(T|M) = P(T). Can we con-
clude that the proportion of female athletes who prefer
track is the same as the proportion of student athletes
who prefer track, or P(T|F) = P(T)? Justify your
answer.

7. Some information regarding the composition of the
student athlete population in the high school mentioned
in Exercise 6 is given in the table below. For exam-
ple, 65% of the student athletes are male, 50% of the
student athletes play basketball, and female athletes
do not play football. For a student athlete selected at
random, the events F = {the student athlete is female}
and T= {the student athlete prefers track} are
independent.

Football Basketball Track Total

Male 0.3 0.65
Female 0

Total 0.3 0.5 0.2

(a) Fill in the remaining entries of the above table.
(b) If a randomly selected student athlete prefers basket-

ball, what is the probability that the student athlete is
female?

(c) Are the events F and B= {the student athlete prefers
basketball} independent?

8. Roll a die twice and record the two outcomes. Let
E1 = {the sum of the two outcomes is 7}, E2={the out-
come of the first roll is 3}, E3={the outcome of the second
roll is 4}. Show that E1, E2, E3 are pairwise independent
but (2.6.4) does not hold.

9. Show that if E1, E2, E3 are independent, then E1 is
independent from E2∪E3. (Hint. By the Distributive Law,
P(E1 ∩ (E2 ∪ E3)) = P((E1 ∩ E2) ∪ (E1 ∩ E3)). Using
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the formula for the probability of the union of two events
(part (1) of Proposition 2.4-2) and the independence
of E1, E2, E3, write this as P(E1)P(E2) + P(E1)P(E3) −
P(E1)P(E2 ∩ E3) and finish the proof.)

10. The system of components shown in Figure 2-15
below functions as long as components 1 and 2 both func-
tion or components 3 and 4 both function. Each of the
four components functions with probability 0.9 indepen-
dently of the others. Find the probability that the system
functions.

1 2

3 4

Figure 2-15 System of four components.

11. Find the reliability of a 3-out-of-4 system if each of its
four components functions with probability 0.9 indepen-
dently of the others.



Chapte r

3Random Variables and Their
Distributions

3.1 Introduction
The probability distribution of a random variable specifies how the total probability
of its sample space, which is 1, is distributed within the range of values of the sample
space. We say that we know the probability distribution of a random variable if
we know the probability with which its value will fall in any given interval. The
probability mass function, or PMF, which was introduced in Section 2.3.3, is a way
of describing the probability distribution of a discrete random variable. This chapter
introduces the probability density function, or PDF, as the continuous variable
version of the probability mass function, and the cumulative distribution function, or
CDF, which is another way of describing the probability distribution of a (discrete
or continuous) random variable. The PMF and PDF are used to extend the notions
of expected (or mean) value and variance to more general random variables, such as
variables with an infinite sample space, while the CDF is used to define percentiles
of continuous random variables. Finally, this chapter introduces the most common
probability models for both discrete and continuous random variables. Similar
concepts for bivariate and multivariate random variables will be discussed in the
next chapter.

3.2 Describing a Probability Distribution
3.2.1 RANDOM VARIABLES, REVISITED

The concept of a random variable was introduced in Section 1.4 as the numerical
description of a unit’s characteristic(s) when the unit has been selected at random
from a population of interest, and was generalized to the outcome of any action or
process that generates a random numerical outcome. A more formal definition of a
random variable can be given using concepts introduced in Chapter 2.

Definition 3.2-1
A random variable is a function (or rule) that associates a number with each
outcome of the sample space of a random experiment.

For example, in a sampling experiment where observations X1, . . . , Xn are collected
from a population, the sample mean, X, the sample variance, S2, and a sample

98
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proportion p̂ (such as the proportion of observations that are greater than 25) are
random variables.

The notions of discrete and continuous random variables were also introduced
in Section 1.4. More formally, we have

Definition 3.2-2
A discrete random variable is a random variable whose sample space has a finite
or at most a countably infinite number of values.

Example
3.2-1

The following three examples of discrete random variables arise in sample inspection
experiments used for product quality control.

(a) Ten laser diodes are randomly selected from the production line and the num-
ber of those with efficiency above 3 mW per mA at 25oC is recorded. The
resulting random variable is discrete with finite sample space S = {0, 1, . . . , 10}.

(b) Ten laser diodes are randomly selected from a shipment of 100 and the number
of those with efficiency above 3 mW per mA at 25oC is recorded. Assuming the
shipment contains at least 10 laser diodes with efficiency above 3, the resulting
random variable is discrete with finite sample space S = {0, 1, . . . , 10}, same as
the sample space in part (a).

(c) The efficiency of laser diodes is measured, as they come off the production
line, until 10 diodes with efficiency above 3 are found. Let X denote the total
number of diodes inspected until the tenth diode with efficiency above 3 is
found. Then X is a discrete random variable with infinite sample space SX =
{10, 11, 12, . . .}.

The following is an example of a random variable that is not discrete.

Example
3.2-2

In accelerated life testing, products are operated under harsher conditions than
those encountered in real life. Consider the experiment where one such product
is tested until failure, and let X denote the time to failure. The sample space of this
experiment, or of X, is SX = [0, ∞).

The reason why X of the above example is not discrete is because its sample
space is not countably infinite (i.e., it cannot be enumerated). As an indication that
the numbers in [0, ∞) cannot be enumerated, note that it is impossible to identify
which number comes after 0. Even finite intervals, such as [0, 1] contain uncountably
infinite many numbers.

Definition 3.2-3
A random variable X is called continuous if it can take any value within a finite
or infinite interval of the real number line (−∞, ∞).

Examples of experiments resulting in continuous variables include measure-
ments of length, weight, strength, hardness, life time, pH, or concentration of
contaminants in soil or water samples.
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REMARK 3.2-1

(a) Although a continuous variable can take any possible value in an interval,
its measured value cannot. This is because no measuring device has infinite
resolution. Thus, continuous variables do not exist in real life; they are only
ideal versions of the discretized variables that are measured. Nevertheless, the
study of continuous random variables is meaningful as it provides useful, and
quite accurate, approximations to probabilities pertaining to their discretized
versions.

(b) If the underlying population of units is finite, there is a finite number of values
that a variable can possibly take, regardless of whether it is thought of in its
ideal continuous state or in its discretized state. For example, an experiment
investigating the relation between height, weight, and cholesterol level of men
55–65 years old records these three continuous variables for a sample of the
aforementioned finite population. Even if we think of these variables as con-
tinuous (i.e., non-discretized), the number of different values that each of them
can take cannot exceed the number of existing 55–65 year old men. Even in
such cases the model of a continuous random variable offers both convenience
and accurate approximation of probability calculations. ▹

3.2.2 THE CUMULATIVE DISTRIBUTION FUNCTION

A concise description of the probability distribution of a random variable X, either
discrete or continuous, can be achieved through its cumulative distribution function.

Definition 3.2-4
The cumulative distribution function, or CDF, of a random variable X gives the
probability of events of the form [X ≤ x], for all numbers x.

The CDF of a random variable X is typically denoted by a capital letter, most
often F in this book. Thus, in mathematical notation, the CDF of X is defnined as

FX(x) = P(X ≤ x), (3.2.1)

for all numbers x of the real number line (−∞, ∞). When no confusion is possible,
the CDF of X will simply be denoted as F(x), that is, the subscript X will be omitted.

Proposition
3.2-1

The cumulative distribution function, F, of any (i.e., discrete or continuous) random
variable X satisfies the following basic properties:

1. It is non-decreasing: If a ≤ b then F(a) ≤ F(b).
2. F(−∞) = 0, F(∞) = 1.
3. If a < b then P(a < X ≤ b) = F(b) − F(a). "

To show the first property, note that if it is known that the event [X ≤ a]
occurred then the event [X ≤ b] has also occurred. Thus, [X ≤ a] ⊆ [X ≤ b] and
hence, P(X ≤ a) ≤ P(X ≤ b), which is equivalent to F(a) ≤ F(b). Property 2 fol-
lows by noting that the event [X ≤ −∞] never happens, whereas the event [X ≤ ∞]
happens always. It follows that [X ≤ −∞] = ∅ whereas [X ≤ ∞] = SX , and hence
F(−∞) = P(∅) = 0 whereas F(∞) = P(SX) = 1. Finally, property 3 follows by not-
ing that the event [X ≤ b] is the union of the disjoint events [X ≤ a] and [a < X ≤ b].
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Therefore, P(X ≤ b) = P(X ≤ a) + P(a < X ≤ b), or F(b) = F(a) + P(a < X ≤ b),
or P(a < X ≤ b) = P(X ≤ b) − P(X ≤ a).

As stated in the introduction of this chapter, the probability distribution of a
random variable X is known if the probability of events of the form [a < X ≤ b]
is known for all a < b. Thus, property 3 of Proposition 3.2-1 implies that the CDF
describes completely the probability distribution of a random variable.

Example
3.2-3

The PMF of a random variable X is

x 1 2 3 4

p(x) 0.4 0.3 0.2 0.1

Find the CDF F of X.

Solution
The given PMF implies that the sample space of X is SX = {1, 2, 3, 4}, that P(X = x)
= p(x) for x = 1, . . . , 4, and that P(X = x) = 0 for all other x values. The key to
finding the CDF is to re-express the “cumulative” probabilities P(X ≤ x) in terms
of the probabilities P(X = x) for x in the sample space. Note first that P(X ≤ 1) =
P(X = 1); this is because X does not take values < 1. Also, P(X ≤ 2) = P([X = 1]
∪ [X = 2]), which is because if X ≤ 2 then either X = 1 or X = 2. For similar
reasons, P(X ≤ 3) = P([X ≤ 2] ∪ [X = 3]) and P(X ≤ 4) = P([X ≤ 3] ∪ [X = 4]).
Using now the additivity property of probability (i.e., the probability of the union
of disjoint events equal the sum of their probabilities) and the PMF of X we can
compute F(x) for all x in SX :

F(1) = P(X ≤ 1) = P(X = 1) = 0.4, (3.2.2)

F(2) = P(X ≤ 2) = F(1) + P(X = 2) = 0.4 + 0.3 = 0.7, (3.2.3)

F(3) = P(X ≤ 3) = F(2) + P(X = 3) = 0.7 + 0.2 = 0.9, (3.2.4)

F(4) = P(X ≤ 4) = F(3) + P(X = 4) = 0.9 + 0.1 = 1. (3.2.5)

It remains to determine F(x) for x values that are not in SX . Again, the key is to re-
express the cumulative probabilities P(X ≤ x) for x not in SX in terms of cumulative
probabilities P(X ≤ x) for x in SX . The end result and brief explanations are:

F(x) = 0 for all x < 1 (because [X ≤ x] = ∅),
F(x) = F(1) = 0.4 for all 1 ≤ x < 2 (because [X ≤ x] = [X ≤ 1]),
F(x) = F(2) = 0.7 for all 2 ≤ x < 3 (because [X ≤ x] = [X ≤ 2]),
F(x) = F(3) = 0.9 for all 3 ≤ x < 4 (because [X ≤ x] = [X ≤ 3]),
F(x) = F(4) = 1 for all 4 ≤ x (because [X ≤ x] = [X ≤ 4]).

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(3.2.6)

The function F(x) is plotted in Figure 3-1. Functions with plots such as that of Figure
3-1 are called step or jump functions.

The derivation of the CDF from the PMF in Example 3.2-3 also suggests that the
PMF can be obtained from the CDF by reversing the process. This reverse process
is summarized in the table below.
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0.
0

0 1 2 3 4 5 6

0.
2

0.
4

0.
6

0.
8

1.
0Figure 3-1 The CDF of the

random variable of
Example 3.2-3.

x 1 2 3 4

F(x) 0.4 0.7 0.9 1

p(x) 0.4 0.7 − 0.4 = 0.3 0.9 − 0.7 = 0.2 1 − 0.9 = 0.1

Some of the key features of the CDF of Example 3.2-3 are true for the CDF of
any random variable X whose sample space SX is a subset of the integers (or, more
generally, SX = {x1, x2, . . .} with x1 < x2 < · · · ). In particular, the CDF F of any
such random variable is a step function with jumps occurring only at the values x
of SX , while the flat regions of F correspond to regions where X takes no values.
Moreover, the size of the jump at each x of SX equals p(x) = P(X = x). Thus, there
is a connection between the PMF and the CDF, and one can be obtained from the
other. These facts are stated formally in the following proposition.

Proposition
3.2-2

Let x1 < x2 < · · · denote the possible values of the discrete random variable X
arranged in an increasing order. Then

1. F is a step function with jumps occurring only at the values x of SX , while the
flat regions of F correspond to regions where X takes no values. The size of the
jump at each x of SX equals p(x) = P(X = x).

2. The CDF can be obtained from the PMF through the formula

F(x) =
∑

xi≤x
p(xi).

3. The PMF can be obtained from the CDF as

p(x1) = F(x1), and p(xi) = F(xi) − F(xi−1) for i = 2, 3, . . . .

4. The probability of events of the form [a < X ≤ b] is given in terms of the
PMF as

P(a < X ≤ b) =
∑

a<xi≤b

p(xi),

and in terms of the CDF as

P(a < X ≤ b) = F(b) − F(a). "

In view of part (2) of Proposition 3.2-2, the CDF property F(∞) = 1 (see property
2 of Proposition 3.2-1) can be restated as
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∑

xi∈SX

p(xi) = 1, (3.2.7)

that is, the values of the PMF sum to 1. Of course, (3.2.7) can be independently
justified in terms of Axiom 2.4.2 of probabilities.

3.2.3 THE DENSITY FUNCTION OF A CONTINUOUS DISTRIBUTION

A continuous random variable X cannot have a PMF. The reason for this is

P(X = x) = 0, for any value x. (3.2.8)

This rather counterintuitive fact can be demonstrated in terms of the continuous
random variable X that records the outcome of selecting a number at random from
the interval [0, 1]. The selection is random in the sense that any two subintervals of
[0, 1] of equal length, such as [0, 0.1] and [0.9, 1], are equally likely to contain the
selected number. This implies that

P(X in an interval of length l) = l. (3.2.9)

For example, P(0 < X < 0.5) = 0.5 follows because P(0 < X < 0.5) = P(0.5 < X < 1),
since the two intervals are of equal length, and P(0 < X < 0.5) + P(0.5 < X < 1) = 1,
since they are disjoint and their union is the entire sample space. Relation (3.2.9)
implies (3.2.8) because a single number is an interval of zero length.

The random variable used to demonstrate (3.2.8) is the simplest named contin-
uous random variable.

Definition 3.2-5
Uniform in [0, 1] random variable. Select a number from [0, 1] so that any two
subintervals of [0, 1] of equal length are equally likely to contain the selected
number, and let X denote the selected number. Then we say that X has the
uniform in [0, 1] distribution and denote this by writing X ∼ U(0, 1).

Relation (3.2.9) implies that the probability distribution of the uniform in [0, 1]
random variable is known. In fact, if X ∼ U(0, 1) its CDF is

FX(x) = P(X ≤ x) =

⎧
⎨

⎩

0 if x < 0
x if 0 ≤ x ≤ 1
1 if x > 1.

(3.2.10)

Note how the plot of this CDF, shown in Figure 3-2, differs from the CDF plot of a
discrete random variable.

In addition to the CDF, the probability distribution of a continuous random
variable can be described in terms of its probability density function.

Definition 3.2-6
The probability density function, or PDF, of a continuous random variable X
is a nonnegative function fX (thus, fX(x) ≥ 0, for all x), with the property that
P(a < X < b) equals the area under it and above the interval [a, b]. Thus,

P(a < X < b) = area under fX between a and b. (3.2.11)
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Figure 3-2 CDF of the
uniform in [0, 1] random
variable.

Some typical shapes of probability density functions are presented in Figure 3-3.
A positively skewed distribution is also called skewed to the right, and a negatively
skewed distribution is also called skewed to the left.

The area under a curve and above an interval is illustrated in Figure 3-4. Since
the area under a curve is found by integration, we have

Probability of
an Interval in

Terms of the PDF
P(a < X < b) =

∫ b

a
fX(x) dx (3.2.12)

Symmetric Bimodal

Positively skewed  Negatively skewed

Figure 3-3 Typical shapes
of PDFs.

f(x
)

P(1 < X < 2)

–3 –2 –1 0

0.
0

0.
1

0.
2

0.
3

0.
4

1 2 3

Figure 3-4 P(a < X < b)
as the area under the PDF
above the interval [a, b].
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This is basically why integration is needed in probability theory. For a nonnega-
tive function f to be a probability density function, the total area under the curve
it defines must equal 1.

Total Area Under
the Curve of a PDF

Must Equal 1

∫ ∞

−∞
f (x) dx = 1 (3.2.13)

Example
3.2-4

If X ∼ U(0, 1), show that the PDF of X is

fX(x) =

⎧
⎨

⎩

0 if x < 0
1 if 0 ≤ x ≤ 1
0 if x > 1.

Solution
We need to show that (3.2.11) holds. Since all the area under this function
corresponds to the interval [0, 1] (see also Figure 3-5), the area above any interval
(a, b] equals the area above the intersection of [a, b] with [0, 1]. Thus, it suffices to
show that (3.2.11) holds for intervals [a, b] with 0 ≤ a < b ≤ 1. For such intervals,

∫ b

a
fX(x) dx =

∫ b

a
1 dx = b − a.

By (3.2.9) it is also true that P(a < X < b) = b − a. Thus, (3.2.11) holds.

Because the area above an interval of length zero is zero for any curve, it fol-
lows that (3.2.8) is true for any continuous random variable X. Thus, we have the
following result.

Proposition
3.2-3

If X is a continuous random variable,

P(a < X < b) = P(a ≤ X ≤ b) = F(b) − F(a). "

For example, if X ∼ U(0, 1), then

P(0.2 < X < 0.6) = P(0.2 ≤ X ≤ 0.6) = 0.6 − 0.2 = 0.4

and, of course, P(0.2 < X ≤ 0.6) = P(0.2 ≤ X < 0.6) = 0.4.

P(0.2 < X < 0.6)

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 3-5 PDF of the
uniform in [0, 1] random
variable.
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REMARK 3.2-2 Proposition 3.2-3 is true only for the idealized version of a contin-
uous random variable. As we have pointed out, in real life, all continuous variables
are measured on a discrete scale. The PMF of the discretized random variable that
is actually measured is readily approximated from the formula

P(x − 'x ≤ X ≤ x + 'x) ≈ 2fX(x)'x,

where 'x denotes a small number. Thus, if Y denotes the discrete measurement of
the continuous random variable X, and if Y is measured to three decimal places with
the usual rounding, then

P(Y = 0.123) = P(0.1225 < X < 0.1235) ≈ fX(0.123)(0.001).

Moreover, breaking up the interval [a, b] into n small subintervals [xk − 'xk, xk +
'xk], k = 1, . . . , n, we have

P(a ≤ Y ≤ b) ≈
n∑

k=1

2fX(xk)'xk.

Since the summation on the right approximates the integral
∫ b

a fX(x)dx, the above
confirms the approximation

P(a ≤ X ≤ b) ≈ P(a ≤ Y ≤ b),

namely, that the distribution of the discrete random variable Y is approximated by
that of its idealized continuous version. ▹

Proposition
3.2-4

If X is a continuous random variable with PDF f and CDF F, then

(a) The CDF can be obtained from the PDF through the formula

F(x) =
∫ x

−∞
f (y) dy. (3.2.14)

(b) The PDF can be obtained from the CDF through the formula

f (x) = F ′(x) = d
dx

F(x). (3.2.15)

"
Part (a) of Proposition 3.2-4 follows from relation (3.2.12) by setting −∞ for a and
x for b. Part (b) of the proposition is a consequence of the Fundamental Theorem
of Calculus.

The reader easily can verify that the CDF and PDF of a uniform in [0, 1] random
variable, given in relation (3.2.10) and in Example 3.2-4, respectively, satisfy relation
(3.2.14) and (3.2.15) except for x = 0 or 1, where the derivative of the CDF does
not exist.

Example
3.2-5

A random variable X is said to have the uniform in [A, B] distribution, denoted by
X ∼ U(A, B), if its PDF is

f (x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x < A
1

B − A
if A ≤ x ≤ B

0 if x > B.

Find the CDF F(x).
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Solution
Note first that since f (x) = 0 for x < A, we also have F(x) = 0 for x < A. This and
relation (3.2.14) imply that for A ≤ x ≤ B,

F(x) =
∫ x

A

1
B − A

dy = x − A
B − A

.

Finally, since f (x) = 0 for x > B, it follows that F(x) = F(B) = 1 for x > B.

Example
3.2-6

If the life time T, measured in hours, of a randomly selected electrical component
has PDF fT(t) = 0 for t < 0, and fT(t) = 0.001 exp(−0.001t) for t ≥ 0, find the
probability the component will last between 900 and 1200 hours of operation.

Solution
Using (3.2.13),

P(900 < T < 1200) =
∫ 1200

900
0.001e−0.001xdx

= e−0.001(900) − e−0.001(1200) = e−0.9 − e−1.2 = 0.1054.

Alternatively, one can first find the CDF and use Proposition 3.2-3. By (3.2.14),

FT(t) =
∫ t

−∞
fT(s)ds =

∫ t

0
0.001e−0.001sds = 1 − e−0.001t, t > 0.

Thus, by Proposition 3.2-3,

P(900 < T < 1200) = FT(1200) − FT(900)

=
[

1 − e−0.001(1200)
]

−
[

1 − e−0.001(900)
]

= 0.1054.

It is often more convenient to work with the CDF. In the above example, one
can use the CDF to find any probability of the form P(a < T < b) without further
integration. An additional advantage of working with the CDF is demonstrated in
the following examples.

Example
3.2-7

In the context of Example 3.2-6, let T̃ be the life time, measured in minutes, of the
randomly selected electrical component. Find the PDF of T̃.

Solution
The easiest way to solve this type of problem is to first find the CDF of T̃ and then
use relation (3.2.15) to find the PDF from the CDF. Noting that T̃ = 60T, where T
is the life time measured in hours, we have

FT̃(x) = P(T̃ ≤ x) = P(60T ≤ x) = P
(

T ≤ x
60

)
= FT

( x
60

)
.

Hence, since F ′
T(t) = fT(t) = 0.001 exp(−0.001t), for t > 0, it follows that for x > 0,

fT̃(x) = d
dx

FT̃(x) = d
dx

FT

( x
60

)
= 1

60
fT

( x
60

)
= 0.001

60
exp

(
−0.001

60
x
)

.
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Example
3.2-8

Let X denote the amount of time a statistics reference book on a two-hour reserve
at the engineering library is checked out by a randomly selected student. Suppose
that X has density function

f (x) =

⎧
⎨

⎩

1
log(4)

1
1 + x

0 ≤ x ≤ 3

0 otherwise.

For books returned after two hours, students are charged a fine of $2.00 plus $1.00
for each additional 15-minute delay.

(a) Find the probability that a student checking out the book will be charged a
fine.

(b) Given that a student has been charged a fine, what is the probability the fine
is at least $3.00?

Solution

(a) The formula for the CDF F of X is

F(x) =
∫ x

0

1
log(4)

1
1 + t

dt = 1
log(4)

∫ 1+x

1

1
y

dy = log(1 + x)
log(4)

for 0 ≤ x ≤ 3,

F(x) = 0 for x ≤ 0, and F(x) = 1 for x ≥ 3. Hence, the desired probability is
P(X > 2) = 1 − F(2) = 1 − log(3)/ log(4) = 0.2075.

(b) The fine is at least $3.00 if X > 2.25. The desired conditional probability is

P(X > 2.25|X > 2) = P([X > 2.25] ∩ [X > 2])
P(X > 2)

= P(X > 2.25)
P(X > 2)

= 1 − F(2.25)
1 − F(2)

= 0.1498
0.2075

= 0.7218.

Example
3.2-9

Suppose that a point is selected at random from a circle centered at the origin and
having radius 6. Thus, the probability of the point lying in a region A of this circle is
proportional to the area of A. Find the PDF of the distance D of this point from the
origin.

Solution
The range of values of the random variable D is clearly [0, 6]. We will first find the
CDF FD(d) = P(D ≤ d) of D. Note that since the probability that the point lies in
the given circle of radius 6 is 1 and since the area of this circle is π62, the probability
of the point lying in a region A of this circle equals the area of A divided by π62.
Thus, since D ≤ d happens if and only if the selected point lies in a circle of radius d
centered at the origin, we have

FD(d) = πd2

π62 = d2

62

for 0 ≤ d ≤ 6. It follows that the PDF of D is

fD(d) = F ′
D(d) = d/18, 0 ≤ d ≤ 6,

and zero otherwise.
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Probability Sampling from a PDF In Section 2.3.3 we saw that it is possible to sim-
ulate the experiment of a discrete random variable by probability sampling from
its probability mass function. Simulating the experiment of a continuous random
variable is also possible. R commands for probability sampling from a probability
density function will be given separately for each class of PDFs that will be discussed
in Section 3.5. For the class of uniform PDFs, the R command is as follows:

R Command for Simulating the Uniform PDF

runif(n,A,B) # returns a random sample of size n drawn from
the uniform(A,B) distribution

For example, the R command set.seed(111); runif(4, 10, 15) returns the four num-
bers 12.96491 13.63241 11.85211 12.57462, which represent a random sample of size
4 from the uniform(10, 15) distribution. (Repeated applications of the runif(4, 10, 15)
part of the command will give different samples of size 4; using both parts of the com-
mand will always result in the same four numbers.) The default values of A and B
are 0 and 1, respectively. Thus, set.seed(200); runif(5) and set.seed(200); runif(5, 0, 1)
return the same sample of size 5 drawn from the uniform(0, 1) distribution.

Simulations are used extensively in statistics as they offer insight on properties of
samples drawn from different PDFs. In Exercise 11, simulations are used to provide
numerical evidence for the fact that a sample’s histogram approximates the PDF
from which the sample was drawn.

Exercises

1. Answer the following questions.
(a) Check whether or not each of p1(x), p2(x) is a legiti-

mate probability mass function.

x 0 1 2 3

p1(x) 0.3 0.3 0.5 −0.1

x 0 1 2 3

p2(x) 0.1 0.4 0.4 0.1

(b) Find the value of the multiplicative constant k so p(x)
given in the following table is a legitimate probability
mass function.

x 0 1 2 3

p(x) 0.2k 0.3k 0.4k 0.2k

2. A metal fabricating plant currently has five major
pieces under contract each with a deadline for comple-
tion. Let X be the number of pieces completed by their
deadlines, and suppose its PMF p(x) is given by

x 0 1 2 3 4 5

p(x) 0.05 0.10 0.15 0.25 0.35 0.10

(a) Find and plot the CDF of X.
(b) Use the CDF to find the probability that between

one and four pieces, inclusive, are completed by their
deadline.

3. Let Y denote the cost, in hundreds of dollars, incurred
to the metal fabricating plant of Exercise 2 due to missing
deadlines. Suppose the CDF of Y is

FY(y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 y < 0
0.2 0 ≤ y < 1
0.7 1 ≤ y < 2
0.9 2 ≤ y < 3
1 3 ≤ y.

(a) Plot the CDF and find the probability that the cost
from delays will be at least $200.00.

(b) Find the probability mass function of Y.

4. A simple random sample of size n = 3 is drawn from
a batch of ten product items. If three of the 10 items
are defective, find the PMF and the CDF of the ran-
dom variable X = {number of defective items in the
sample}.

5. Answer the following questions.
(a) Check whether or not each of f1(x), f2(x) is a legiti-

mate probability density function

f1(x) =
{

0.5(3x − x3) 0 < x < 2
0 otherwise.

f2(x) =
{

0.3(3x − x2) 0 < x < 2
0 otherwise.
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(b) Let X denote the resistance of a randomly chosen
resistor, and suppose that its PDF is given by

f (x) =
{

kx if 8 ≤ x ≤ 10
0 otherwise.

(i) Find k and the CDF of X, and use the CDF to
calculate P(8.6 ≤ X ≤ 9.8).

(ii) Find the conditional probability that X ≤ 9.8
given that X ≥ 8.6.

6. Let X ∼ U(0, 1). Show that Y = 3+6X ∼ U(3, 9), that
is, that it has the uniform in [3, 9] distribution defined in
Example 3.2-5. (Hint. Find the CDF of Y and show it has
the form of the CDF found in the solution of Example
3.2-5.)

7. Let X ∼ U(0, 1), and set Y = − log(X). Give the sam-
ple space of Y, and find the CDF and PDF of Y. (Hint.
FY(y) = P(Y ≤ y) = P(X ≥ exp(−y)).)

8. The cumulative distribution function of checkout dura-
tion X, measured in minutes, in a certain supermarket is

F(x) = x2

4
for x between 0 and 2,

F(x) = 0 for x ≤ 0, and F(x) = 1 for x > 2.
(a) Find the probability that the duration is between 0.5

and 1 minute.
(b) Find the probability density function f (x).
(c) Let Y denote the checkout duration measured in

seconds. Find the CDF and PDF of Y.

9. In a game of darts, a player throws the dart and wins
X = 30/D dollars, where D is the distance in inches of the
dart from the center of the dartboard. Suppose a player
throws the dart in such a way that it lands in a randomly

selected point on the 18-inch diameter dartboard. Thus,
the probability that it lands in any region of the dartboard
is proportional to the region’s area, and the probability
that it lands in the dartboard is 1.
(a) Find the probability that the player will win more than

$10.00.
(b) Find the PDF of X.

10. The time X in hours for a certain plumbing manu-
facturer to deliver a custom made fixture is a random
variable with PDF

f (x) =
{

0.02e−0.02(x−48) if x ≥ 48

0 otherwise.

An architect overseeing a renovation orders a custom
made fixture to replace the old one, which unexpectedly
broke. If the ordered fixture arrives within three days no
additional cost is incurred, but for every day beyond that
an additional cost of $200.00 is incurred.
(a) Find the probability that no additional cost is

incurred.
(b) Find the probability that the additional cost incurred

is between $400 and $800.

11. Use the R commands set.seed(111); hist(runif(100),
freq=F) to generate a sample of size 100 from the uni-
form(0, 1) distribution and to plot its histogram, and
the additional R command curve(dunif, 0, 1, add=T) to
superimpose the uniform(0, 1) PDF on the graph. Does
the histogram provide a reasonable approximation to the
uniform(0, 1) PDF? Repeat the set of commands using
samples of size 1000, 10,000 and 100,000. For what sample
size(s) would you say the histogram provides a reasonable
approximation to the PDF?

3.3 Parameters of Probability Distributions
This section introduces certain summary parameters that are useful for describ-
ing prominent features of the distribution of a random variable. The parameters
we will consider are the mean value, also referred to as the average value or
expected value, the variance, and standard deviation. These generalize the corre-
sponding quantities defined in Chapter 1. For continuous random variables, we will
also consider percentiles, such as the median, which are commonly used as addi-
tional parameters to describe the location, variability, and shape of a continuous
distribution.

3.3.1 EXPECTED VALUE

Discrete Random Variables Let X be a discrete random variable with sample space
SX , which can possibly be infinite, and let p(x) = P(X = x) denote its probability
mass function. Then, the expected value, E(X) or µX , of X is defined as
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General Definition of
Expected Value

E(X) = µX =
∑

x in SX

xp(x) (3.3.1)

The mean value of an arbitrary discrete population is the same as the expected value
of the random variable it underlies.

This definition generalizes definition (1.6.6) of Section 1.6.2 because it also
applies to random variables that are not necessarily obtained through simple ran-
dom sampling from a finite population. For example, if X denotes the number of
heads in 10 flips of a coin, X is not obtained by simple random sampling from the
numbers 0, . . . , 10, and thus its expected value cannot be computed from (1.6.6).
As another example, X can be obtained by simple random sampling from an infinite
population; see Example 3.3-2 below. Finally, (3.3.1) applies also to random variables
with infinite sample space; see Example 3.3-3 below.

Example
3.3-1

Suppose the population of interest is a batch of N = 100 units, 10 of which have
some type of defect, received by a distributor. An item is selected at random from
the batch and is inspected. Let X take the value 1 if the selected unit has the defect
and 0 otherwise. Use formula (3.3.1) to compute the expected value of X, and show
that result coincides with the expected value computed according to the definition
(1.6.6).

Solution
The sample space of X is SX = {0, 1} and its PFM is p(0) = P(X = 0) = 0.9, p(1) =
P(X = 1) = 0.1. Thus, according to (3.3.1),

µX = 0 × 0.9 + 1 × 0.1 = 0.1.

Let vi, i = 1, 2, . . . , 100, where 90 vi are 0 and 10 are 1, be the statistical population.
Then, according to (1.6.6),

µX = 1
100

100∑

i=1

vi = (90)(0) + (10)(1)
100

= 0.1.

Thus, both definitions give the same mean value for X.

The result of Example 3.3-1 is true whenever X is obtained by simple random
sampling from any finite population. To see this let v1, v2, . . . , vN denote the N values
in the underlying statistical population, and let SX = {x1, . . . , xm} be the sample
space of X. (Thus, x1, . . . , xm are the distinct values among v1, . . . , vN .) Also, let nj
denote the number of times that the distinct value xj is repeated in the statistical
population, so that the PMF of X is given by p(xj) = P(X = xj) = nj/N. In this
case, the expressions for the expected value of X according to definitions (1.6.6) and
(3.3.1) are, respectively,

µX = 1
N

N∑

i=1

vi and µX =
m∑

j=1

xjp(xj). (3.3.2)

That the two expressions in (3.3.2) are equivalent follows by noting that
∑N

i=1 vi =∑m
j=1 njxj.
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Example
3.3-2

Select a product item from the production line and let X take the value 1 or 0 as the
product item is defective or not. Let p be the proportion of defective items in the
conceptual population of this experiment. Find E(X) in terms of p.

Solution
The random variable in this experiment is similar to that of Example 3.3-1 except
for the fact that the population of all product items is infinite and conceptual. Thus,
definition (1.6.6) cannot be used. The sample space of X is SX = {0, 1} and its PMF
is p(0) = P(X = 0) = 1 − p, p(1) = P(X = 1) = p. Thus, according to (3.3.1),

E(X) =
∑

x in SX

xp(x) = 0(1 − p) + 1p = p.

Thus, for p = 0.1 the answer is similar to that of Example 3.3-1.

Example
3.3-3

Consider the experiment where product items are being inspected for the presence
of a particular defect until the first defective product item is found. Let X denote the
total number of items inspected. Suppose a product item is defective with probability
p, p > 0, independently of other product items. Find E(X) in terms of p.

Solution
The sample space of X is SX = {1, 2, 3, . . .}. Since items are defective or not
independently of each other, the PMF p(x) = P(X = x) is

p(x) = P(the first x − 1 items are not defective and the xth is defective)

= (1 − p)x−1p.

Note that the geometric series
∑∞

x=1(1 − p)x−1 = ∑∞
s=0(1 − p)s equals 1/p, so the

PMF sums to one as indeed it should. According to (3.3.1),

E(X) =
∑

x in SX

xp(x) =
∞∑

x=1

x(1 − p)x−1p

=
∞∑

x=1

(x − 1 + 1)(1 − p)x−1p (add and subtract 1)

=
∞∑

x=1

(x − 1)(1 − p)x−1p +
∞∑

x=1

(1 − p)x−1p

=
∞∑

x=1

(x − 1)(1 − p)x−1p + 1 (since the PMF sums to 1)

=
∞∑

x=0

x(1 − p)xp + 1 (change of summation index)

Since for x = 0 the term is zero, the last infinite series can start from x = 1.
Moreover, since (1 − p) is a common factor to all terms, we obtain

E(X) = (1 − p)
∞∑

x=1

x(1 − p)x−1p + 1 = (1 − p)E(X) + 1.

Solving E(X) = (1 − p)E(X) + 1 for E(X) yields E(X) = p−1.
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Even for finite populations, definition (3.3.1) is preferable to (1.6.6) for two
reasons. First, taking a weighted average of the values in the sample space is sim-
pler/easier than averaging the values of the underlying statistical population because
the sample space is often much smaller (has fewer values) than the statistical popu-
lation. Second, definition (3.3.1) affords an abstraction of the random variable in the
sense that it disassociates it from its underlying population and refers X to an equiv-
alent experiment involving probability sampling from the sample space population.
For example, when referred to their sample space populations, the random variables
X in Examples 3.3-1 and 3.3-2 correspond to identical sampling experiments. This
abstraction will be very useful in Sections 3.4 and 3.5 where we will introduce models
for probability distributions.

Continuous Random Variables The expected value or mean value of a continuous
random variable X with probability density function f (x) is defined by

Definition of
Expected Value for

Continuous X
E(X) = µX =

∫ ∞

−∞
xf (x)dx (3.3.3)

provided the integral exists. As in the discrete case, the mean value of the popula-
tion underlying X is used synonymously with the mean or expected value of X. The
approximation of integrals by sums, as we saw in Remark 3.2-2, helps connect the
definitions of expected value for discrete and continuous random variables.

Example
3.3-4

If the PDF of X is f (x) = 2x for 0 ≤ x ≤ 1 and 0 otherwise, find E(X).

Solution
According to definition (3.3.3),

E(X) =
∫ ∞

−∞
xf (x)dx =

∫ 1

0
2x2dx = 2

3
.

Example
3.3-5

Let X ∼ U(0, 1), that is, X has the uniform in [0, 1] distribution (see Example 3.2-4).
Show that E(X) = 0.5.

Solution
Using definition (3.3.3) and the PDF of a uniform in [0, 1] random variable, given in
Example 3.2-4, it follows that

E(X) =
∫ ∞

−∞
xf (x)dx =

∫ 1

0
xdx = 0.5.

Example
3.3-6

The time T, in days, required for the completion of a contracted project is a ran-
dom variable with PDF fT(t) = 0.1 exp(−0.1t) for t > 0 and 0 otherwise. Find the
expected value of T.

Solution
Using definition (3.3.3),

E(T) =
∫ ∞

−∞
tfT(t)dt =

∫ ∞

0
t 0.1e−0.1t dt

= −te−0.1t∣∣∞
0 +

∫ ∞

0
e−0.1t dt = − 1

0.1
e−0.1t∣∣∞

0 = 10.
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R can also be used for numerical integration. The commands for evaluating the
integrals

∫ 5

0

1
(x + 1)

√
x

dx,
∫ ∞

1

1
x2 dx, and

∫ ∞

−∞
e−|x|dx

are given below:

R Commands for Function Definition and Integration

f=function(x){1/((x+1)∗sqrt(x))}; integrate(f, lower=0,
upper=5)

f=function(x){1/x∗∗2}; integrate(f, lower=1, upper=Inf)

f=function(x){exp(-abs(x))}; integrate(f, lower=-Inf,
upper=Inf)

In particular the answer to Example 3.3-6 can also be found with the R command

g=function(x){x∗0.1∗exp(-0.1∗x)}; integrate(g, lower=0,
upper=Inf)

Mean Value of a Function of a Random Variable If the random variable of interest,
Y, is a function of another random variable, X, whose distribution is known, the
expected value of Y can be computed using the PMF or PDF of X without find-
ing first the PMF or PDF of Y. The formulas for doing so are given in the next
proposition.

Proposition
3.3-1

1. If X is discrete with sample space SX and h(x) is a function on SX , the mean
value of Y = h(X) can be computed using the PMF pX(x) of X as

Mean Value of a Function
of a Discrete Random

Variable X

E(h(X)) =
∑

x in SX

h(x)pX(x).

2. If X is continuous and h(x) is a function, the expected value of Y = h(X) can
be computed using the PDF fX(x) of X as

Mean Value of a Function
of a Continuous Random

Variable X
E(h(X)) =

∫ ∞

−∞
h(x)f (x)dx.

3. If the function h(x) is linear, that is, h(x) = ax + b, so Y = aX + b, then

Mean Value of a Linear
Function of a General

Random Variable X
E(h(X)) = aE(X) + b.

"

Example
3.3-7

A bookstore purchases three copies of a book at $6.00 each and sells them for $12.00
each. Unsold copies are returned for $2.00 each. Let X = {number of copies sold}
and Y = {net revenue}. If the PMF of X is



Section 3.3 Parameters of Probability Distributions 115

x 0 1 2 3

pX (x) 0.1 0.2 0.2 0.5

find the expected value of Y.

Solution
The net revenue can be expressed as a function of the number of copies sold, that is,
as Y = h(X) = 12X + 2(3 − X) − 18 = 10X − 12. For instructive purposes, E(Y) will
be computed in three ways. First, note that the PMF of Y is

y –12 –2 8 18

pY (y) 0.1 0.2 0.2 0.5

Thus, using definition (3.3.1),

E(Y) =
∑

all y values

ypY(y) = (−12)(0.1) + (−2)(0.2) + (8)(0.2) + (18)(0.5) = 9.

Alternatively, E(Y) can be computed, without first finding the PMF of Y, through
the formula in part (1) of Proposition 3.3-1:

E(Y) =
∑

all x values

h(x)pX(x) = (−12)(0.1) + (−2)(0.2) + (8)(0.2) + (18)(0.5) = 9.

Finally, since Y = 10X − 12 is a linear function of X, part (3) of Proposition 3.3-1
implies that E(Y) can be computed using only the value of E(X). Since E(X) =∑

x xpX(x) = 2.1, we have E(Y) = 10(2.1) − 12 = 9.

Example
3.3-8

Let Y ∼ U(A, B), that is, Y has the uniform in [A, B] distribution (see Example
3.2-5). Show that E(Y) = (B + A)/2.

Solution
This computation can be done using definition (3.3.3) and the PDF of a uniform
in [A, B] random variable, which is given in Example 3.2-5 (the interested reader is
encouraged to do this computation). Alternatively, E(Y) can be found through the
formula in part (3) of Proposition 3.3-1 using the fact that if X ∼ U(0, 1), then

Y = A + (B − A)X ∼ U(A, B). (3.3.4)

Relation (3.3.4) can be verified by finding the CDF of Y and showing it has the form
of the CDF found in the solution of Example 3.2-5 (see also Exercise 6 in Section
3.2). Thus,

E(Y) = A + (B − A)E(X) = A + B − A
2

= B + A
2

.

Example
3.3-9

The time T, in days, required for the completion of a contracted project is a random
variable with PDF fT(t) = 0.1 exp(−0.1t) for t > 0 and 0 otherwise. Suppose the con-
tracted project must be completed in 15 days. If T < 15 there is a cost of $5(15 − T)
and if T > 15 there is a cost of $10(T − 15). Find the expected value of the cost.
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Solution
Define the functions h(t) = 5(15 − t) if t < 15, and h(t) = 10(t − 15) if t > 15, and let
Y = h(T) denote the cost. According to part (3) of Proposition 3.3-1,

E(Y) =
∫ ∞

−∞
h(t)fT(t)dx =

∫ 15

0
5(15 − t)0.1e−0.1tdt +

∫ ∞

15
10(t − 15)0.1e−0.1tdt

= 36.1565 + 22.313 = 58.4695.

This answer can also be found by summing the outputs of the following two R
commands:

g=function(x){5∗(15-x)∗0.1∗exp(-0.1∗x)}; integrate(g, lower=0,
upper=15)

g=function(x){10∗(x-15)∗0.1∗exp(-0.1∗x)};integrate(g,lower=15,
upper=Inf)

3.3.2 VARIANCE AND STANDARD DEVIATION

The variance σ 2
X , or Var(X), of a random variable X is defined as

General Definition of
Variance of a

Random Variable X
σ 2

X = E
[
(X − µX)2

]
(3.3.5)

where µX = E(X) is the expected value of X. The variance of an arbitrary
discrete population is the same as the variance of the random variable it under-
lies. A computationally simpler formula (also called the short-cut formula) for
σ 2

X is

Short-cut Formula for
Variance of a Random

Variable X
σ 2

X = E(X2) − [E(X)]2 (3.3.6)

In terms of the PMF p(x) of X, if X is discrete with sample space SX or the PDF
f (x) of X, if X is continuous, (3.3.5) can be written, respectively, as

σ 2
X =

∑

x in SX

(x − µX)2p(x) and σ 2
X =

∫ ∞

−∞
(x − µX)2fX(x) dx. (3.3.7)

These alternative expressions for σ 2
X follow from parts (1) and (2) of Proposition

3.3-1, respectively, with h(x) = (x − µX)2. Similarly, expressing E(X2) according to
parts (1) and (2) of Proposition 3.3-1 with h(x) = x2 yields the following alterna-
tive expression for the short-cut formula (3.3.6) for discrete and continuous random
variables, respectively:

σ 2
X =

∑

x in SX

x2p(x) − µ2
X and σ 2

X =
∫ ∞

−∞
x2fX(x)dx − µ2

X . (3.3.8)

The standard deviation of X is defined to be the positive square root, σ , of σ 2:
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Definition of
Standard Deviation σX =

√
σ 2

X (3.3.9)

Example
3.3-10

Select a product from the production line and let X take the value 1 or 0 as the
product is defective or not. If p is the probability that the selected item is defective,
find Var(X) in terms of p.

Solution
In Example 3.3-2 we saw that E(X) = p, where p denotes the proportion of defective
items. Next, because X take only the values 0 or 1 it follows that X2 = X. Hence,
E(X2) = E(X) = p. Using the short-cut formula (3.3.6) we obtain

σ 2
X = E(X2) − [E(X)]2 = p − p2 = p(1 − p).

Example
3.3-11

Roll a die and let X denote the outcome. Find Var(X).

Solution
The expected value of X is µX = (1 + · · · + 6)/6 = 3.5. Using the short-cut formula
for the variance we have

σ 2
X = E(X2) − µ2

X =
6∑

j=1

x2
j pj − µ2

X = 91
6

− 3.52 = 2.917.

Example
3.3-12

Consider the experiment where product items are being inspected for the presence
of a particular defect until the first defective product item is found. Let X denote the
total number of items inspected. Suppose a product item is defective with probability
p, p > 0, independently of other product items. Find σ 2

X in terms of p.

Solution
The PMF and the mean value of X were found in Example 3.3-3 to be p(k) = P(X
= k) = (1 − p)k−1p, for k = 1, 2, . . . , and µX = 1/p. Next, setting q = 1 − p,

E(X2) =
∞∑

k=1

k2qk−1p =
∞∑

k=1

(k − 1 + 1)2qk−1p (add and subtract 1)

=
∞∑

k=1

(k − 1)2qk−1p +
∞∑

k=1

2(k − 1)qk−1p +
∞∑

k=1

qk−1p (expand the square)

=
∞∑

k=1

k2qkp + 2
∞∑

k=1

kqkp + 1 (change summation index; PDF sums to 1)

= qE(X2) + 2qE(X) + 1.

Using E(X) = 1/p and solving the equation E(X2) = qE(X2) + 2qE(X) + 1 for
E(X2) yields E(X2) = (q + 1)/p2 = (2 − p)/p2. Hence, by (3.3.6)

σ 2
X = E(X2) − [E(X)]2 = 2 − p

p2 − 1
p2 = 1 − p

p2 .
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Example
3.3-13

Let X ∼ U(0, 1), that is, X has the uniform in [0, 1] distribution (see Example 3.2-4).
Show Var(X) = 1/12.

Solution
We have E(X) =

∫ 1
0 x dx = 0.5, as was also found in Example 3.3-5. Moreover,

E(X2) =
∫ 1

0
x2 dx = 1/3,

so that, by the short-cut formula (3.3.6), σ 2
X = 1/3 − 0.52 = 1/12.

Example
3.3-14

Let X have PDF fX(x) = 0.1 exp(−0.1x) for x > 0 and 0 otherwise. Find the variance
and standard deviation of X.

Solution
From Example 3.3-6 we have E(X) =

∫ ∞
0 0.1 x e−0.1x dx = 1/0.1. Next,

E(X2) =
∫ ∞

−∞
x2fX(x) dx =

∫ ∞

0
x20.1e−0.1x dx

= −x2e−0.1x
∣∣∣
∞

0
+

∫ ∞

0
2xe−0.1x dx = 2

0.12 ,

since the last integral equals (2/0.1)E(X). Thus, by (3.3.6), we have

σ 2
X = E(X2) − [E(X)]2 = 2

0.12 − 1
0.12 = 100, and σX = 10.

Note that the standard deviation of this random variable equals its mean value.

Variance and Standard Deviation of a Linear Transformation

Proposition
3.3-2

If the variance of X is σ 2
X and Y = a + bX, then

Variance and
Standard Deviation of

a Linear Transformation
σ 2

Y = b2σ 2
X , σY = |b|σX

"

Example
3.3-15

A bookstore purchases three copies of a book at $6.00 each and sells each at $12.00
each. Unsold copies are returned for $2.00. The PMF of X = {number of copies
sold} is given in Example 3.3-7. Find the variance of X and of the net revenue Y =
10X − 12.

Solution
The mean value of X was found in Example 3.3-7 to be E(X) = 2.1. Next,

E(X2) = 02 × 0.1 + 12 × 0.2 + 22 × 0.2 + 32 × 0.5 = 5.5.

Thus, σ 2
X = 5.5 − 2.12 = 1.09. Using Proposition 3.3-2, the variance of Y is

σ 2
Y = 102σ 2

X = 109.
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Example
3.3-16

Let Y ∼ U(A, B), that is, Y has the uniform in [A, B] distribution (see Example
3.2-5). Show that Var(Y) = (B − A)2/12.

Solution
In Example 3.3-13 we found that if X ∼ U(0, 1), then Var(X) = 1/12. Using the
additional fact that Y = A + (B − A)X ∼ U(A, B), as was done in Example 3.3-8,
Proposition 3.3-2 yields

Var(Y) = (B − A)2Var(X) = (B − A)2

12
.

3.3.3 POPULATION PERCENTILES

The precise definition of a population percentile or percentile of a random variable
involves the cumulative distribution function and will be given only for continuous
random variables. While the definition of population percentiles appears quite dif-
ferent from that of sample percentiles given in Section 1.7, it should be kept in mind
that sample percentiles estimate corresponding population percentiles.

Definition 3.3-1
Let X be a continuous random variable with CDF F and α a number between 0
and 1. The 100(1−α)-th percentile (or quantile) of X is the number, denoted by
xα , with the property

F(xα) = P(X ≤ xα) = 1 − α.

In particular:

1. The 50th percentile, which corresponds to α = 0.5 and is denoted by x0.5, is
called the median and is also denoted by µ̃X . The defining property of µ̃X is

F(µ̃X) = 0.5. (3.3.10)

2. The 25th percentile, which corresponds to α = 0.75 and is denoted by x0.75,
is called the lower quartile and is also denoted by Q1. The defining property
of Q1 is

F(Q1) = 0.25. (3.3.11)

3. The 75th percentile, which corresponds to α = 0.25 and is denoted by x0.25,
is called the upper quartile and is also denoted by Q3. The defining property
of Q3 is

F(Q3) = 0.75. (3.3.12)

The defining property of each percentile also serves as the equation whose solution
determines the value of the percentile. For example, the defining property of the
median means that µ̃ is the point where the graph of F crosses the horizontal line at
0.5. This is illustrated in the left panel of Figure 3-6 using the CDF F(x) = 1 − e−x

for x ≥ 0, and F(x) = 0 for x < 0. For the cumulative distribution functions we will
consider there is only one point of contact between the horizontal line at 0.5 and the
CDF, and thus µ̃X is the unique solution of F(µ̃X) = 0.5. The median could also be
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Figure 3-6 Left: The
horizontal line y = 0.5
crosses F(x) at x = µ̃.
Right: The area under the
PDF is split into two equal
parts at µ̃.

defined as the point µ̃ which splits the area under the PDF of X into two equal parts.
This is illustrated in the right panel of Figure 3-6 for the PDF f (x) = e−x for x ≥ 0,
and f (x) = 0 for x < 0, which corresponds to the CDF used in the left panel. Similar
comments apply for the other percentiles. For example, the 95th percentile is found
as the unique solution of its defining equation, and it has the property that it splits
the area under the PDF into two parts, with the left part having area 0.95 and the
right part having area 0.05.

Example
3.3-17

Suppose X has PDF f (x) = e−x for x ≥ 0, and f (x) = 0 for x < 0. Find the median
and the 95th percentile of X.

Solution
The median of X is the unique solution of the equation

F(µ̃) = 0.5,

where F(x) = 0 for x < 0, and F(x) =
∫ x

0 e−sds = 1 − e−x for x > 0. Thus, the above
equation becomes

1 − e−µ̃ = 0.5,
or e−µ̃ = 0.5, or −µ̃ = log(0.5), or

µ̃ = − log(0.5) = 0.693.

Similarly, the 95th percentile is found by solving F(x0.05) = 0.95, or 1−e−x0.05 = 0.95,
or e−x0.05 = 0.05, or

x0.05 = − log(0.05) = 2.996.

Example
3.3-18

If X ∼ U(A, B), find the median and the 90th percentile of X.

Solution
The CDF of a uniform in [A, B] distribution was found in Example 3.2-5 to be
F(x) = 0 for x < A,

F(x) = x − A
B − A

for A ≤ x ≤ B,

and F(x) = F(B) = 1 for x > B. Thus, the median is the unique solution to the
equation
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µ̃X − A
B − A

= 0.5,

which yields µ̃X = A+0.5(B−A). Similarly, the 90th percentile is the unique solution
to the equation (x0.1 − A)/(B − A) = 0.9, which yields x0.1 = A + 0.9(B − A).

Rewriting the median of the uniform in [A, B] random variable X as µ̃X =
(A + B)/2 reveals that, for this random variable, the median equals the mean;
see Example 3.3-8. In general, it is true that for random variables having a sym-
metric distribution the median equals the mean. For random variables having a
positively skewed distribution the mean is greater than the median and for ran-
dom variables having a negatively skewed distribution, the mean is smaller than the
median.

Like the mean, percentiles are measures of location in the sense of identifying
points of interest of a continuous distribution. In addition, percentiles help define
measures of spread (or variability), which serve as alternatives to the standard devi-
ation. The most common such measure of spread is the (population) interquartile
range, whose definition is the direct analogue of the sample interquartile range
defined in Section 1.7.

Definition 3.3-2
The interquartile range, abbreviated by IQR, is the distance between the 25th
and 75th percentile:

IQR = Q3 − Q1.

Example
3.3-19

Let X have PDF f (x) = 0.001e−0.001x for x ≥ 0, and f (x) = 0 for x < 0. Find a
general expression for the 100(1 −α)-th percentile of X in terms of α, for α between
0 and 1, and use it to find the interquartile range of X.

Solution
The CDF of X is F(x) = 1 − e−0.001x for x > 0 and zero otherwise; see Example
3.2-6. Hence, according to Definition 3.3-1, the 100(1−α)-th percentile is the unique
solution to 1 − e−0.001xα = 1 − α, which is

xα = − log(α)
0.001

.

Using this formula, Q3 = x0.25 = − log(0.25)/0.001 = 1386.29, and Q1 = x0.75 =
− log(0.75)/0.001 = 287.68. Thus, the IQR = 1098.61.

Exercises

1. A simple random sample of three items is selected
from a shipment of 20 items of which four are defective.
Let X be the number of defective items in the sample.

(a) Find the PMF of X.
(b) Find the mean value and variance of X.

2. Let X have PMF

x 1 2 3 4

p(x) 0.4 0.3 0.1 0.2

(a) Calculate E(X) and E(1/X).
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(b) In a win-win game, the player will win a monetary
prize, but has to decide between the fixed price of
$1000/E(X) and the random price of $1000/X, where
the random variable X has the PMF given above.
Which choice would you recommend the player
make?

3. A customer entering an electronics store will buy a flat
screen TV with probability 0.3. Sixty percent of the cus-
tomers buying a flat screen TV will spend $750.00 and
40% will spend $400.00. Let X denote the amount spent
on flat screen TVs by two random customers entering the
store.
(a) Find the PMF of X. (Hint. SX = {0, 400, 750, 800,

1150, 1500} and P(X = 400) = 2 × 0.7 × 0.3 × 0.4.)
(b) Find the mean value and variance of X.

4. A metal fabricating plant currently has five major
pieces under contract, each with a deadline for comple-
tion. Let X be the number of pieces completed by their
deadlines. Suppose that X is a random variable with PMF
p(x) given by

x 0 1 2 3 4 5

p(x) 0.05 0.10 0.15 0.25 0.35 0.10

(a) Compute the expected value and variance of X.
(b) For each piece completed by the deadline, the plant

receives a bonus of $15,000. Find the expected value
and variance of the total bonus amount.

5. The life time X, in months, of certain equipment is
believed to have PDF

f (x) = (1/100)xe−x/10, x > 0 and f (x) = 0, x ≤ 0.

Using R commands for the needed integrations, find
E(X) and σ 2

X .

6. Consider the context of Example 3.3-9 where there is
a cost associated with either early (i.e., before 15 days)
or late (i.e., after 15 days) completion of the project. In
an effort to reduce the cost, the company plans to start
working on the project five days after the project is com-
missioned. Thus, the cost due to early or late completion
of the project is given by Ỹ = h(T̃), where T̃ = T + 5,
and the function h is h(t̃) = 5(15 − t̃) if t̃ < 15, and h(t̃) =
10(t̃−15) if t̃ > 15. The PDF of T is fT(t) = 0.1 exp(−0.1t)
for t > 0, and 0 otherwise.
(a) Find the PDF of fT̃(t̃) of T̃. (Hint. First find the CDF

FT̃(t̃) of T̃.)
(b) Use R commands similar to those given in Example

3.3-9 to find the expected cost, E(T̃). Does the com-
pany’s plan to delay the work on the project reduce
the expected cost?

7. The CDF function of the checkout duration, X, in a
certain supermarket, measured in minutes, is F(x) = 0 for
x ≤ 0, F(x) = 1 for x > 2, and

F(x) = x2

4
for x between 0 and 2 .

(a) Find the median and the interquartile range of the
checkout duration.

(b) Find E(X) and σX . You may use R commands for the
needed integrations.

8. The length of time X, in hours, that a statistics ref-
erence book on a two-hour reserve at the engineering
library is checked out by a randomly selected student
has PDF

f (x) =

⎧
⎨

⎩

1
log(4)

1
1 + x

0 ≤ x ≤ 3

0 otherwise.

For books returned after two hours, students are charged
a fine of $2.00 plus 6 cents times the number of minutes
past the two hours.

(a) Let Y = 60X be the amount of time, in minutes,
the book is checked out. Find the PDF of Y. (Hint.
First find the CDF of Y using the CDF of X found in
Example 3.2-8.)

(b) Let V be the fine amount, in cents, that a random
student checking out the book will pay. Find E(V)
and σ 2

V . You may use R commands for the needed
integrations. (Hint. V = h(Y), where h(y) = 0 for
0 ≤ y ≤ 120, and h(y) = 200 + 6(y − 120), y > 120.)

(c) Give the mean value and variance of the fine amount
expressed in dollars.

9. Plumbing suppliers typically ship packages of plumb-
ing supplies containing many different combinations of
items such as pipes, sealants, and drains. Almost invari-
ably there are one or more parts in the shipment that
are not correct: the part may be defective, missing, not
the one that was ordered, etc. In this question the ran-
dom variable of interest is the proportion P of parts in
a shipment, selected at random, that are not correct. A
family of distributions for modeling a random variable
P, where P is a proportion, has the probability density
function

fP(p) = θpθ−1, 0 < p < 1, θ > 0.

(a) Find E(P) and σ 2
P in terms of the parameter θ .

(b) Find the CDF of P in terms of the parameter θ .
(c) Find the interquartile range of P in terms of the

parameter θ .
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3.4 Models for Discrete Random Variables
Considering each random variable as being obtained by probability sampling from
its own sample space leads to a classification of sampling experiments, and the corre-
sponding variables, into classes. Random variables within each class share a common
probability mass function up to unknown parameters. These classes of probability
distributions are also called probability models. In this section we describe the four
main types of probability models for discrete random variables and the practical
contexts to which they apply.

3.4.1 THE BERNOULLI AND BINOMIAL DISTRIBUTIONS

The Bernoulli Distribution A Bernoulli trial or experiment is one whose outcome
can be classified as either a success or a failure. The Bernoulli random variable X
takes the value 1 if the outcome is a success, and the value 0 if it is a failure.

Example
3.4-1

Examples of Bernoulli random variables.

1. The prototypical Bernoulli experiment is a flip of a coin, with heads and tails
being success and failure, respectively.

2. In an experiment where a product is selected from the production line, the
Bernoulli random variable X takes the value 1 or 0 as the product is defective
(success) or not (failure).

3. In an experiment where a product undergoes accelerated life testing (see
Example 3.2-2), the Bernoulli random variable X can take the value 1 if the
product lasts more than 1500 hours in operation (success) and 0 otherwise.

4. In an experiment where two fuses are examined for the presence of a defect,
the Bernoulli random variable X can take the value 1 if none of the two fuses
have the defect and 0 otherwise.

If the probability of success is p and that of failure is 1 − p, the PMF and CDF
of X are

x 0 1

p(x) 1 − p p

F(x) 1 − p 1

The expected value and variance of a Bernoulli random variable X have already
been derived in Examples 3.3-2 and 3.3-10, before the random variable in these
examples was identified as Bernoulli. The results from these examples are summa-
rized below for convenience.

µX = p, σ 2
X = p(1 − p). (3.4.1)

Example
3.4-2

The probability that an electronic product will last more than 5500 time units is 0.1.
Let X take the value 1 if a randomly selected product lasts more than 5500 time units
and the value 0 otherwise. Find the mean value and variance of X.

Solution
Here X is Bernoulli with probability of success p = 0.1. Thus, according to (3.4.1),
µX = 0.1 and σ 2

X = 0.1 × 0.9 = 0.09.



124 Chapter 3 Random Variables and Their Distributions

The Binomial Distribution Suppose n Bernoulli experiments, each having proba-
bility of success equal to p, are performed independently. Taken together, the n
independent Bernoulli experiments constitute a binomial experiment. The binomial
random variable Y is the total number of successes in the n Bernoulli trials.

The prototypical binomial experiment consists of n flips of a coin, with the
binomial random variable Y being the total number of heads, but independent repe-
titions of the other Bernoulli trials mentioned in Example 3.4-1 also lead to binomial
experiments and corresponding binomial random variables. For example, if n prod-
ucts are randomly selected from the production line, the inspection of each of them
for the presence of a defect constitutes a Bernoulli trial and, assuming that prod-
ucts are defective or not independently of each other, the total number of defective
products among the n examined is a binomial random variable.

If Xi denotes the Bernoulli random variable associated with the ith Bernoulli
trial, that is,

Xi =
{

1 if ith experiment results in success
0 otherwise for i = 1, . . . , n,

then the binomial random variable Y equals

Y =
n∑

i=1

Xi . (3.4.2)

The binomial random variable Y takes the value 0 if all n Bernoulli trials result in
failure, and takes the value n if all Bernoulli trials result in success. The sample space
of Y is SY = {0, 1, . . . , n}. The probability distribution of a binomial random variable
is controlled by two parameters, the number of trials n and the common probability
of success in each of the n Bernoulli trials. If Y ∼ Bin(n, p), which means that Y is
a binomial random variable with parameters n and p, its PMF p(y) = P(Y = y) is
given by the formula

PMF of the
Binomial Distribution P(Y = y) =

(
n
y

)
py(1 − p)n−y, y = 0, 1, . . . , n (3.4.3)

To justify this formula note first that, by the assumption of independence,
the probability that the n Bernoulli trials result in a sequence with exactly y 1’s is
py(1 − p)n−y, and then argue that the number of such sequences is

(n
y

)
; see also

Example 2.3-8. Figure 3-7 shows three binomial PMFs for n = 20. Note that for
p = 0.5, the PMF is symmetric about 10, while those for p = 0.3 and p = 0.7 are
mirror images of each other.

There is no closed form expression for the binomial CDF P(Y ≤ y), but Table
A.1 in the appendix gives the CDF for n = 5, 10, 15, and 20 and selected values of p.
Both the PMF and the CDF of the binomial(n, p) distribution can be obtained, for
any n and p, with the following R commands:

R Commands for the Binomial PMF and CDF

dbinom(y, n, p) # gives the PMF P(Y = y) for y = 0,1,. . .,n

pbinom(y, n, p) # gives the CDF P(Y ≤ y) for y = 0,1,. . .,n
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Figure 3-7 Some binomial
PMFs.

In the above R commands, y can be a vector of integers from 0 to n. For example,

• The command dbinom(4, 10, 0.5) returns 0.2050781, which is the probability of
four heads in 10 flips of a fair coin, or P(Y = 4) for Y ∼ Bin(10, 0.5).

• The command dbinom(0:10, 10, 0.5) returns the entire PMF of Y ∼
Bin(10, 0.5). Thus, probability sampling from the Bin(10, 0.5) PMF can be
done either with the command sample that was used in Example 2.3-14, or
with the new command rbinom. For example, sample(0:10, size=5, replace=T,
prob=dbinom(0:10, 10, 0.5)) and rbinom(5, 10, 0.5) both give five numbers that
represent the number of heads in five sets of 10 coin flips.

• The commands sum(dbinom(4:7, 10, 0.5)) and pbinom(7, 10, 0.5)-
pbinom(3, 10, 0.5) both give 0.7734375, which is the probability P(3 < Y ≤ 7)
= F(7) − F(3).

The mean value and variance of a binomial X with parameters n, p are

Mean and Variance
of the Binomial

Distribution
E(X) = np, σ 2

X = np(1 − p) (3.4.4)

For n = 1 the binomial random variable is just a Bernoulli random variable, and the
above formulas reduce to the mean and variance given in (3.4.1).

Example
3.4-3

Physical traits such as eye color are determined from a pair of genes, with one gene
inherited from the mother and one from the father. Each gene can be either domi-
nant (D) or recessive (R). People with gene pairs (DD), (DR), and (RD) are alike
in that physical trait. Assume that a child is equally likely to inherit either of the two
genes from each parent. If both parents are hybrid with respect to a particular trait
(i.e., both have pairs of genes (DR) or (RD)), find the probability that three of their
four children will be like their parents with respect to this trait.
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Solution
Let X denote the number of children among the four offspring that are like their
parents in that physical trait. Each child represents a Bernoulli trial with probability
of success (meaning that the child shares the physical trait) p = P(DD) + P(RD) +
P(DR) = 0.25 + 0.25 + 0.25 = 0.75. Since it is reasonable to assume that the four
Bernoulli trials are independent, X ∼ Bin(4, 0.75). Thus, by formula (3.4.3),

P(X = 3) =
(

4
3

)
0.7530.251 ∼= 0.422.

Example
3.4-4

Suppose 70% of all purchases in a certain store are made with credit card. Let X
denote the number of credit card uses in the next 10 purchases. Find (a) the expected
value and variance of X, and (b) the probability that P(5 ≤ X ≤ 8).

Solution

(a) Each purchase represents a Bernoulli trial where success means use of
credit card. Since it is reasonable to assume that the 10 Bernoulli trials are
independent, X ∼ Bin(10, 0.7). Thus, by formula (3.4.4),

E(X) = np = 10(0.7) = 7, σ 2
X = 10(0.7)(0.3) = 2.1.

(b) Next, using property 3 of Proposition 3.2-1 and Table A.1 we have

P(5 ≤ X ≤ 8) = P(4 < X ≤ 8) = F(8) − F(4)

= 0.851 − 0.047 = 0.804.

The R command pbinom(8, 10, 0.7)-pbinom(4, 10, 0.7) returns 0.8033427.
Alternatively, this probability can be calculated as

P(5 ≤ X ≤ 8) = P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8)

=
(

10
5

)
0.750.35 +

(
10
6

)
0.760.34 +

(
10
7

)
0.770.33 +

(
10
8

)
0.780.32

= 0.103 + 0.200 + 0.267 + 0.233 = 0.803. (3.4.5)

The R command sum(dbinom(5:8, 10, 0.7)) returns the same answer as the
previous R command. In absence of a software package like R, however, the
alternative calculation (3.4.5) is more labor intensive.

Example
3.4-5

Suppose that in order for the defendant to be convicted in a jury trial, at least eight of
the 12 jurors must enter a guilty vote. Assume each juror makes the correct decision
with probability 0.7 independently of other jurors. If 40% of the defendants in such
jury trials are innocent, what is the proportion of correct verdicts?

Solution
The proportion of correct verdicts is P(B), where B = {jury renders the cor-
rect verdict}. If A = {defendant is innocent} then, according to the Law of Total
Probability,
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P(B) = P(B|A)P(A) + P(B|Ac)P(Ac) = P(B|A)0.4 + P(B|Ac)0.6.

Next, let X denote the number of jurors who reach the correct verdict in a partic-
ular trial. Here, each juror represents a Bernoulli trial where success means that
the juror reached the correct verdict. Since the Bernoulli trials are independent,
X ∼ Bin(12, 0.7). Note further that the correct verdict is “not guilty” if the defendant
is innocent and “guilty” otherwise. Thus,

P(B|A) = P(X ≥ 5) = 1 −
4∑

k=0

(
12
k

)
0.7k0.312−k = 0.9905, and

P(B|Ac) = P(X ≥ 8) =
12∑

k=8

(
12
k

)
0.7k0.312−k = 0.724.

It follows that

P(B) = P(B|A)0.4 + P(B|Ac)0.6 = 0.8306.

3.4.2 THE HYPERGEOMETRIC DISTRIBUTION

The hypergeometric model applies to situations where a simple random sample of
size n is taken from a finite population of N units of which M1 are labeled 1 and the
rest, which are M2 = N − M1, are labeled 0. The number X of units labeled 1 in the
sample is a hypergeometric random variable with parameters M1, M2, and n.

Sampling from finite populations is relevant in several contexts including
ecology; see Example 3.4-7. The prototypical engineering application of the hyper-
geometric distribution is that of quality control at the distributor level: A batch
of N product items arrives at a distributor. The distributor draws a simple ran-
dom sample of size n and inspects each for the presence of a particular defect. The
hypergeometric random variable X is the number of defective items in the sample.

In this prototypical hypergeometric experiment, each product item represents a
Bernoulli trial where success corresponds to the product item being defective. The
probability of success is the same in all Bernoulli trials and equals p = M1/N.
This follows by a generalization of the argument in Example 2.5-10 where it is
shown that the probability of success in the first and second draw are the same.
If Xi is the Bernoulli random variable corresponding to the ith product item, the
hypergeometric random variable X equals

X =
n∑

i=1

Xi, (3.4.6)

which is similar to the expression (3.4.2) for the binomial random variable. A hyper-
geometric experiment, however, differs from a binomial experiment in that the
successive Bernoulli trials are not independent. This is because the conditional prob-
ability of success in the second Bernoulli trial given success in the first is different
from their common (unconditional) probability of success.

The number of defective items in the sample cannot exceed the total number M1
of defective items, and of course it cannot exceed the sample size n. For example, if
a batch of size N = 10 product items has M1 = 5 defective items and a sample
of size n = 6 is drawn, the number of defective items in the sample cannot exceed
five. In the same example, the number of defective items in the sample of size n = 6
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cannot be zero. This is because there are only five non-defective items; hence, a
sample of size six will have at least one defective item. Thus, in general, the sample
space of hypergeometric(M1, M2, n) variable X may be a subset of {0, 1, . . . , n}. The
precise subset is typically clear from the context, but in mathematical notation it is
expressed as

SX = {max(0, n − M2), . . . , min(n, M1)}, (3.4.7)

where max(a1, a2) and min(a1, a2) denote the larger and the smaller, respectively, of
the two numbers a1 and a2.

By the definition of simple random sampling, all
(M1+M2

n

)
samples of size n are

equally likely to be selected. Since there are
(M1

x

)( M2
n−x

)
samples having exactly x

defective items, it follows that the PMF of a hypergeometric(M1, M2, n) random
variable X is (see also Example 2.3-12)

Probability Mass Function
of the Hypergeometric

Distribution
P(X = x) =

(
M1

x

)(
M2

n − x

)

(
M1 + M2

n

) (3.4.8)

As in the binomial case we have P(X = x) = 0 if x > n. In addition we now
have that P(X = x) = 0 if x > M1, since the sample cannot contain more 1’s than
the population, or if n − x > M2, since the sample cannot contain more 0’s than the
population. This can be restated equivalently as P(X = x) = 0 if x does not belong
in the sample space given in (3.4.7).

Figure 3-8 shows the hypergeometric PMF for n = 10, N = 60, and different
values of M1. Note that for M1 = 30, so p = M1/N = 0.5, the PMF is symmetric
about 5, while those for M1 = 15 and M1 = 45 are mirror images of each other.
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Figure 3-8 Some
hypergeometric PMFs.
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There is no closed form expression for the CDF of the hypergeometric random
variable. Both the PMF and the CDF of the hypergeometric(M1, M2, n) random vari-
able X can be obtained, for any values of the parameters M1, M2, and n, with the
following R commands:

R Commands for the Hypergeometric PMF and CDF

dhyper(x,M1,M2,n) # gives the PMF P(X = x)for x in SX given
in (3.4.7).

phyper(x,M1,M2,n) # gives the CDF P(X ≤ x) for x in SX given
in (3.4.7).

In the above R commands, x can be a vector of integers from SX . For example,
if Y is the hypergeometric(30, 30, 10) random variable,

• The command dhyper(4, 30, 30, 10) returns 0.2158315 for the value of
P(Y = 4).

• The command dhyper(0:10, 30, 30, 10) returns the entire PMF of Y. Thus,
probability sampling from the hypergeometric(30, 30, 10) PMF can be done
either with the command sample that was used in Example 2.3-14, or
with the new command rhyper. For example, sample(0:10, size=5, replace=T,
prob=dhyper(0:10, 30, 30, 10)) and rhyper(5, 30, 30, 10) both give five numbers
that represent a random sample from the hypergeometric(30, 30, 10) PMF.

• The commands sum(dhyper(4:7, 30, 30, 10)) and phyper(7, 30, 30, 10)-phyper(3,
30, 30, 10) both give 0.8106493, which is the probability P(3 < Y ≤ 7) =
F(7) − F(3).

The mean value and variance of a hypergeometric(M1, N − M1, n) random
variable X are

Mean and
Variance of the

Hypergeometric
Distribution

µX = n
M1

N
, σ 2

X = n
M1

N

(
1 − M1

N

)
N − n
N − 1

(3.4.9)

Example
3.4-6

Twelve refrigerators have been returned to the distributor because of a high-pitched
oscillating noise. Suppose that four of the 12 have a defective compressor and the
rest less-serious problems. Six refrigerators are selected at random for problem
identification. Let X be the number of those found with a defective compressor.
Give the sample space of X, and find P(X = 3) as well as the expected value and
variance of X.

Solution
Here N = 12, n = 6, and M1 = 4. Thus, the possible values of X are SX =
{0, 1, 2, 3, 4}. Using formula (3.4.8),

P(X = 3) =
(4

3
)(8

3
)

(12
6
) = 0.2424.
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Next, using formula (3.4.9),

E(X) = 6
4

12
= 2, Var(X) = 6

(1
3

)(2
3

)12 − 6
12 − 1

= 8
11

.

The most common method for estimating the size of wildlife populations is the
so-called capture-recapture method. It consists of taking a sample of animals (i.e.,
capturing them), then tagging and releasing them. On a later occasion, after the
tagged animals have had a chance to reintegrate into their community, a second sam-
ple is taken. The number of tagged animals in the second sample is used to estimate
the size of the wildlife population.

Example
3.4-7

The capture-recapture method. A forest contains 30 elk of which 10 are captured,
tagged, and released. A certain time later, five of the 30 elk are captured. Find the
probability that two of the five captured elk are tagged. What assumptions are you
making?

Solution
Assume that the five captured elk constitute a simple random sample from the pop-
ulation of 30 elk. In particular, it is assumed that each elk, whether tagged or not,
has the same probability of being captured. Under this assumption, the number X
of tagged elk among the five captured elk is a hypergeometric random variable with
M1 = 10, M2 = 20, and n = 5. Thus, according to formula (3.4.8),

P(X = 2) =
(10

2
)(20

3
)

(30
5
) = 0.360.

Binomial Approximation to Hypergeometric Probabilities As mentioned in connec-
tion to relation (3.4.6), a hypergeometric random variable differs from a binomial
only in that the Bernoulli trials that comprise it are not independent. However, if
the population size N is large and the sample size n is small, the dependence of the
Bernoulli trials will be weak. For example, if N = 1000 and M1 = 100, the condi-
tional probability of success in the second trial given success in the first trial, which
is 99/999 = 0.099, is not very different from the unconditional probability of suc-
cess, which is 100/1000 = 0.1. In such cases, the hypergeometric PMF can be well
approximated by a binomial PMF with p = M1/N and the same n. Note also that
the formula for the hypergeometric mean is the same as that for the binomial mean
with p = M1/N, and the formula for the hypergeometric variance differs from that
of the binomial by the multiplicative factor N−n

N−1 , which is close to 1 if N is large and
n is small. The factor N−n

N−1 is called the finite population correction factor.
The practical usefulness of this approximation does not rest on the fact that

binomial probabilities are simpler to compute. With software packages like R, hyper-
geometric probabilities can be computed just as readily as binomial ones. Instead,
by treating a hypergeometric random variable as binomial, hypergeometric prob-
abilities can be computed, to a good approximation, without knowledge of the
population size.

To gain some insight into how the quality of the binomial approximation to
hypergeometric probabilities improves as the population size N increases relative to
the sample size n, let X be hypergeometric(M1, N−M1, n), and Y be binomial(n, p =
M1/N). Then,
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• If M1 = 5, N = 20, and n = 10, P(X = 2) =
(5

2
)(15

8
)

(20
10

) = 0.3483.

• If M1 = 25, N = 100, and n = 10, P(X = 2) =
(25

2
)(75

8
)

(100
10

) = 0.2924.

• If M1 = 250, N = 1000, and n = 10, P(X = 2) =
(250

2
)(750

8
)

(1000
10

) = 0.2826.

In all cases p = M1/N = 0.25, so P(Y = 2) = 0.2816, which provides a reasonably
good approximation to the third hypergeometric probability.

If X is a hypergeometric(M1, N − M1, n) random variable and Y is a
binomial(n, p = M1/N) random variable, the rule of thumb we will use in this book
for applying the binomial approximation to hypergeometric probabilities is

Rule of Thumb for
Using the Binomial

Approximation to
Hypergeometric

Probabilities

If
n
N

≤ 0.05, then P(X = x) ≃ P(Y = x) (3.4.10)

3.4.3 THE GEOMETRIC AND NEGATIVE BINOMIAL DISTRIBUTIONS

The Geometric Distribution A geometric experiment is one where independent
Bernoulli trials, each with the same probability p of success, are performed until
the occurrence of the first success. The geometric(p) random variable X is the total
number of trials up to and including the first success in such a geometric experiment.

The prototypical engineering application of the geometric distribution is that of
quality control at the production level: Product items are being inspected as they
come off the production line until the first one with a certain defect is found. The
geometric random variable X is the total number of items inspected.

The sample space of a geometric(p) random variable X is SX = {1, 2, . . .}. Note
that 0 is not in the sample space since at least one item must be inspected in order to
find the first defective item. On the other hand, this sample space is open-ended on
the right because the probability P(X = x) is positive for any value x; see the PMF
below. The event X = x means that the first x − 1 Bernoulli trials resulted in failure,
while the xth Bernoulli trial resulted in success. Hence, by the independence of the
Bernoulli trials, we arrive at the following formula for the PMF of the geometric(p)
distribution; see also Example 3.3-3:

PMF of the
Geometric Distribution P(X = x) = (1 − p)x−1p, x = 1, 2, 3, . . . (3.4.11)

Figure 3-9 shows the geometric PMF for different values of p. Using the formula
for the partial sums of a geometric series, which is

∑x
y=0 ay = (1 − ax+1)/(1 − a), it

follows that

F(x) =
∑

y≤x
P(Y = y) = p

x∑

y=1

(1 − p)y−1 = p
x−1∑

y=0

(1 − p)y,

where the last equality follows by a change of the summation variable. Hence the
CDF of the geometric(p) distribution is given by the following formula.
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Figure 3-9 Some
geometric PMFs.

CDF of the
Geometric Distribution F(x) = 1 − (1 − p)x, x = 1, 2, 3, . . . (3.4.12)

The mean value and variance of a geometric random variable X are derived in
Examples 3.3-3 and 3.3-12, respectively, and summarized below.

Mean and Variance
of the Geometric

Distribution
E(X) = 1

p
, σ 2 = 1 − p

p2 (3.4.13)

The Negative Binomial Distribution A negative binomial experiment is one where
independent Bernoulli trials, each with the same probability p of success, are per-
formed until the occurrence of the rth success. The negative binomial(r, p) random
variable Y is the total number of trials up to and including the rth success in such a
negative binomial experiment.

The sample space of the negative binomial(r, p) random variable Y is SY =
{r, r + 1, . . .}. For r = 1, the negative binomial(r, p) experiment reduces to the
geometric(p) experiment. In fact, if X1 is the geometric(p) random variable that
counts the number of trials until the first success, X2 is the geometric(p) random
variable that counts the additional number of trials until the second success, and so
forth, the negative binomial(r, p) random variable Y can be expressed in terms of
these geometric(p) random variables as

Y =
r∑

i=1

Xi. (3.4.14)

The PMF P(Y = y), y = r, r + 1, . . . , of the negative binomial(r, p) random
variable Y is

PMF of the Negative
Binomial Distribution P(Y = y) =

(
y − 1
r − 1

)
pr(1 − p)y−r (3.4.15)

To see how this formula is derived argue as follows: Any particular outcome
sequence has r successes and y − r failures, and thus its probability is pr(1 − p)y−r.
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Figure 3-10 Some negative
binomial PMFs.

Hence the formula follows by noting that there are
(y−1

r−1

)
binary sequences of length

y − 1 with exactly r − 1 successes. Figure 3-10 shows negative binomial(r, p) PMFs
for different values of r and p, all shifted to the origin for easier comparison.

The PMF and the CDF of the negative binomial(r, p) random variable Y can be
obtained with the following R commands:

R Commands for the Negative Binomial PMF and CDF

dnbinom(x, r, p) # gives the PMF P(Y=r+x) for x=0,1,2, . . .

pnbinom(x, r, p) # gives the CDF P(Y≤r+x) for x = 0,1,2, . . .

In the above R commands x, which represents the number of failures until the rth
success, can be a vector of integers from {0, 1, . . .}. For example, if Y is a negative
binomial(5, 0.4),

• The command dnbinom(6, 5, 0.4) returns 0.1003291 for the value of P(Y = 11).

• The command dnbinom(0:15, 5, 0.4) returns the values of P(Y = 5), . . . ,
P(Y = 20).

• The commands sum(dnbinom(0:15, 5, 0.4)) and pnbinom(15, 5, 0.4) both
return 0.949048, which is the value of P(Y ≤ 20).

Because of its infinite sample space, only the new R command rnbinom is
available for probability sampling.

R Command for Simulating Negative Binomial Experiment

r+rnbinom(k, r, p) # gives a sample of k negative
binomial(r, p) random variables

It can be shown that the mean and variance of a negative binomial(r, p) random
variable Y are
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Mean and Variance
of the Negative

Binomial Distribution
E(Y) = r

p
, σ 2

Y = r
1 − p

p2 (3.4.16)

Example
3.4-8

Items are being inspected as they come off the production line until the third defec-
tive item is found. Let X denote the number of non-defective items found. If an
item is defective with probability p = 0.1 independently of other items, find the
mean value and variance of X and P(X = 15).

Solution
The total number of items inspected until the third defective item is found, which
is given by Y = 3 + X, is a negative binomial with parameters r = 3 and p = 0.1.
By (3.4.16), E(Y) = 3/0.1 = 30 and Var(Y) = 3 × 0.9/(0.12) = 270. Hence, since
X = Y − 3, E(X) = 27 and Var(X) = 270. Next, using formula (3.4.15),

P(X = 15) = P(Y = 18) =
(

18 − 1
3 − 1

)
× 0.13 × 0.918−3 = 0.028.

The R command dnbinom(15, 3, 0.1) returns 0.02800119.

REMARK 3.4-1 As in Example 3.4-8, the outcome recorded in a negative
binomial(r, p) experiment is often the total number X of failures until the rth success.
X and Y = r + X are both referred to as negative binomial(r, p) random variables.
In particular the R command for the negative binomial PMF gives the PMF of X,
and PMFs plotted in Figure 3-10 correspond to X. ▹

Example
3.4-9

Three electrical engineers toss coins to see who pays for coffee. If all three match,
they toss another round. Otherwise the “odd person” pays for coffee.

(a) Find the probability that a round of tossing will result in a match (that is, either
three heads or three tails).

(b) Let X be the number of times they toss coins until the odd person is deter-
mined. Name the probability distribution of X, and compute the probability
P(X ≥ 3).

(c) Find the expected value and variance of X.

Solution

(a) The probability that all three match is 0.53 + 0.53 = 0.25.
(b) X has the geometric distribution with p = 0.75. Using formula (3.4.12) we

have

P(X ≥ 3) = 1 − P(X ≤ 2) = 1 −
[
1 − (1 − 0.75)2

]
= 1 − 0.9375 = 0.0625.

The R command 1-pnbinom(1, 1, 0.75) also returns 0.0625 for P(X ≥ 3).

(c) Using formula (3.4.13),

E(X) = 1
0.75

= 1.333 and σ 2
X = 1 − 0.75

0.752 = 0.444.
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Example
3.4-10

Two athletic teams, A and B, play a best-of-three series of games (i.e., the first team
to win two games is the overall winner). Suppose team A is the stronger team and
will win any game with probability 0.6, independently from other games. Find the
probability that the stronger team will be the overall winner.

Solution
Let X be the number of games needed for team A to win twice. Then X has the
negative binomial distribution with r = 2 and p = 0.6. Team A will win the series
if X = 2 or X = 3. Since these two events are disjoint, formula (3.4.15) with r = 2
gives

P(Team A wins the series) = P(X = 2) + P(X = 3)

=
(

1
1

)
0.62(1 − 0.6)2−2 +

(
2
1

)
0.62(1 − 0.6)3−2

= 0.36 + 0.288 = 0.648.

3.4.4 THE POISSON DISTRIBUTION

The Model and Its Applications A random variable X that takes values 0, 1, 2, . . . is
said to be a Poisson random variable with parameter λ, denoted by X ∼ Poisson(λ),
if its PMF is given by

PMF of the
Poisson Distribution

P(X = x) = e−λ λx

x! , x = 0, 1, 2, . . . (3.4.17)

for some λ > 0, where e = 2.71828 . . . is the base of the natural logarithm. That
p(x) = P(X = x) given above is a proper PMF (i.e., the probabilities sum to 1) is
easily seen from the fact that eλ = ∑∞

k=0(λk/k!). Figure 3-11 shows the Poisson PMF
for three different values of λ.
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Figure 3-11 Poisson PMFs
for different values of λ.
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The Poisson cumulative distribution function does not have a closed form
expression. Its value, for selected values of λ and x, is given in Table A.2. The
R commands for the Poisson(λ) PMF and CDF and for simulating a Poisson
experiment are:

R Commands for the Poisson PMF, CDF, and Simulation

dpois(x, λ) # gives the PMF P(X=x) for x integer

ppois(x, λ) # gives the CDF P(X≤x) for all x

rpois(n, λ) # gives a sample of n Poisson(λ) random variables

In the above R commands x can be a vector of integers from {0, 1, . . .}. For example,
if X is Poisson(5),

• The command dpois(6, 5) returns 0.1462228 for the value of P(X = 6).

• The command dpois(0:10, 5) returns the values of P(X = 0), . . . , P(X = 10).

• The commands sum(dpois(6:10, 5)) and ppois(10, 5)-ppois(5, 5) both return
the value of P(6 ≤ X ≤ 10), which is 0.3703441.

The Poisson distribution is used to model the probability that a number of
certain events occur in a specified period of time. The type of events whose
occurrences are thus modeled must occur at random and at a rate that does not
change with time. The Poisson distribution can also be used for the number occur-
rences of events occurring in other specified intervals such as distance, area, or
volume.

The parameter λ in (3.4.17) specifies the “average” number of occurrences in
the given interval (of time, area, or space). In particular, if X ∼ Poisson(λ) then

Mean and Variance
of the Poisson

Distribution
µX = λ, σ 2

X = λ (3.4.18)

Thus, if a random variable has the Poisson distribution, then its expected value
equals its variance.

To derive the formula for the expected value write

E(X) =
∞∑

x=0

xe−λλx

x!

= λ

∞∑

x=1

e−λλx−1

(x − 1)!

= λe−λ
∞∑

y=0

λy

y! by letting y = x − 1

= λ.

To derive the formula for the variance, first use a similar technique to get
E(X2) = λ(λ + 1), and then apply the formula Var(X) = E(X2) − [E(X)]2.
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Example
3.4-11

Let X ∼ Poisson(4). Use Table A.2 to find P(X ≤ 5), P(3 ≤ X ≤ 6), and P(X ≥ 8).

Solution
All probabilities are obtained using the cumulative probabilities listed under λ = 4.0
in Table A.2. The first probability is given directly from the table as P(X ≤ 5)
= 0.785. The second and third probabilities must first be expressed in terms of
cumulative probabilities before we can use Table A.2. Thus, the second probability
is given by

P(3 ≤ X ≤ 6) = P(2 < X ≤ 6) = P(X ≤ 6) − P(X ≤ 2) = 0.889 − 0.238 = 0.651,

and the third one is given by

P(X ≥ 8) = 1 − P(X ≤ 7) = 1 − F(7) = 1 − 0.949 = 0.051.

Example
3.4-12

Suppose that a person taking Vitamin C supplements contracts an average of three
colds per year and that this average increases to five colds per year for persons not
taking Vitamin C supplements. Suppose further that the number of colds a person
contracts in a year is a Poisson random variable.

(a) Find the probability of no more than two colds for a person taking supple-
ments and a person not taking supplements.

(b) Suppose 70% of the population takes Vitamin C supplements. Find the prob-
ability that a randomly selected person will have no more than two colds in a
given year.

(c) Suppose that a randomly selected person contracts no more than two colds in a
given year. What is the probability that person takes Vitamin C supplements?

Solution

(a) Let X1 denote the number of colds contracted by a person taking Vitamin C
supplements and X2 denote the number of colds contracted by a person not
taking supplements. We are given that X1, X2 are Poisson random variables
with mean values 3, 5, respectively. Therefore, by (3.4.18), X1 ∼ Poisson(3)
and X2 ∼ Poisson(5). Hence, from Table A.2,

P(X1 ≤ 2) = 0.423, P(X2 ≤ 2) = 0.125.

The R commands ppois(2, 3) and ppois(2, 5) return 0.4231901 and 0.1246520
for P(X1 ≤ 2) and P(X2 ≤ 2), respectively.

(b) Let X denote the number of colds contracted by a person, and let A denote
the event that this person takes Vitamin C supplements. By the Law of Total
Probability,

P(X ≤ 2) = (0.423)(0.7) + (0.125)(0.3) = 0.334.

(c) Using Bayes’ Theorem, the desired probability is calculated as

P(A|X ≤ 2) = (0.423)(0.7)
0.334

= 0.887.
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One of the earliest uses of the Poisson distribution was in modeling the number
of alpha particles emitted from a radioactive source during a given period of time.
Today it has a tremendous range of applications in such diverse areas as insurance,
tourism traffic engineering, demography, forestry, and astronomy. For example, the
Poisson random variable X can be

1. the number of fish caught by an angler in an afternoon,
2. the number of new potholes in a stretch of I80 during the winter months,
3. the number of disabled vehicles abandoned on I95 in a year,
4. the number of earthquakes (or other natural disasters) in a region of the

United States in a month,
5. the number of wrongly dialed telephone numbers in a given city in an hour,
6. the number of freak accidents, such as falls in the shower, in a given time

period,
7. the number of vehicles that pass a marker on a roadway in a given time period,
8. the number of marriages, or the number of people who reach the age of 100,
9. the distribution of trees in a forest, and

10. the distribution of galaxies in a given region of the sky.

As seen from these applications of the Poisson model, the random phenomena
that the Poisson distribution models differ from those of the previously discussed
distributions in that they are not outcomes of sampling experiments from a well-
understood population. Consequently, the Poisson PMF is derived by arguments that
are different from the ones used for deriving the PMFs of the previously discussed
distributions (which use the counting techniques of Chapter 2 and the concept of
independence). Instead, the Poisson PMF is derived as the limit of the binomial PMF
(see Proposition 3.4-1 below) and can also be obtained as a consequence of certain
postulates governing the random occurrence of events (see the following discussion
about the Poisson process).

Poisson Approximation to Binomial Probabilities The enormous range of applica-
tions of the Poisson random variable is, to a large extent, due to the following
proposition stating that it can be used as an approximation to binomial random
variables.

Proposition
3.4-1

A binomial experiment where the number of trials n is large (n ≥ 100), the proba-
bility p of success in each trial is small (p ≤ 0.01), and the product np is not large
(np ≤ 20), can be modeled (to a good approximation) by a Poisson distribution with
λ = np. In particular, if Y ∼ Bin(n, p), with n ≥ 100, p ≤ 0.01, and np ≤ 20, then the
approximation

Poisson
Approximation to

Binomial Probabilities
P(Y ≥ k) ≃ P(X ≥ k)

holds for all k = 0, 1, 2, . . . , n, where X ∼ Poisson(λ = np).

Proof of Proposition We will show that as n → ∞ and p → 0 in such a way that
np → λ, some λ > 0, then

P(Y = k) =
(

n
k

)
pk(1 − p)n−k → e−λ λk

k! , as n → ∞, (3.4.19)
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holds for all k = 0, 1, 2, . . . . The proof makes use of Stirling’s formula for
approximating n! for large n: n! ≃

√
2πn( n

e )n, or more precisely

n! =
√

2πn
(n

e

)n
eλn where

1
12n + 1

< λn <
1

12n
.

Using this, the left-hand side of (3.4.19) can be approximated by

P(Y = k) ≈
√

2πnnne−n

k!
√

2π(n − k)(n − k)n−ke−(n−k)
pk(1 − p)n−k

=
√

nnn−ke−k

k!
√

n − k(n − k)n−k
(np)k(1 − p)n−k (3.4.20)

by canceling out the
√

2π in the numerator and denominator, simplifying the expo-
nent of e, and multiplying and dividing by nk. Note now that the ratio

√
n/

√
n − k

tends to 1 as n → ∞ with k remaining fixed, that (np)k → λk as n → ∞, np → λ,
and k remains fixed, that

(1 − p)n−k =
(

1 − np
n

)n−k

=
(

1 − np
n

)n (
1 − np

n

)−k
→ e−λ · 1 = e−λ

as n → ∞, np → λ, and k remains fixed, and that
(

n
n − k

)n−k

=
(

1 + k
n − k

)n−k

→ ek

as n → ∞ and k remains fixed. Substituting these into (3.4.20) establishes
(3.4.19). "

This proposition justifies the use of the Poisson random variable for model-
ing occurrences of random events such as car accidents: Each person getting in his
or her car to drive to work each morning has a very small chance of getting into
an accident. Assuming each driver acts independently we have a large number of
Bernoulli trials with a small probability of success (i.e., accident). As a consequence
of Proposition 3.4-1, the number of accidents in a given day is modeled as a Poisson
random variable.

The same rationale can be used for modeling the number of earthquakes in a
month by dividing the month into small time intervals and thinking of each interval
as a Bernoulli trial, where success is the occurrence of an earthquake in that interval.
Since the probability of success in each interval is small and the number of intervals is
large, the number of earthquakes in a given month is modeled as a Poisson random
variable. The following discussion of the Poisson process provides the conditions
needed for giving rigorous support to this type of argument.

To illustrate the convergence of the binomial(n, p) probabilities to those of the
Poisson(λ = np) distribution as n increases and p decreases in such a way that np
remains constant, consider the binomial random variables

Y1 ∼ Bin(9, 1/3), Y2 ∼ Bin(18, 1/6),

Y3 ∼ Bin(30, 0.1), and Y4 ∼ Bin(60, 0.05).

Note that in all cases λ = np = 3. Figure 3-12 shows the PMFs of these four binomial
random variables and the PMF of the approximating Poisson(3) random variable.
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Figure 3-12 Binomial
PMFs (circles)
superimposed on the
Poisson(3) PMF
(diamonds).

For a numerical illustration of the quality of approximation, the binomial CDF at
x = 2 in each case is compared with the corresponding CDF of the Poisson(3)
distribution:

P(Y1 ≤ 2) = 0.3772, P(Y2 ≤ 2) = 0.4027,

P(Y3 ≤ 2) = 0.4114, and P(Y4 ≤ 2) = 0.4174.

The approximating Poisson(3) probability is

P(X ≤ 2) = e−3

(

1 + 3 + 32

2

)

= 0.4232,

which is reasonably close to the value of P(Y4 ≤ 2). Note, however, that the first two
conditions on n and p mentioned in Proposition 3.4-1 are not satisfied for any of the
four binomial random variables.

Example
3.4-13

Due to a serious defect, a car manufacturer issues a recall of n = 10,000 cars. Let
p = 0.0005 be the probability that a car has the defect, and let Y be the number of
defective cars. Find (a) P(Y ≥ 10) and (b) P(Y = 0).

Solution
Here each car represents a Bernoulli trial with success if the car has the defect and
failure if it does not. Thus, Y is a binomial random variable with n = 10,000, and
p = 0.0005. Note that the three conditions on n and p mentioned in Proposition 3.4-1
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for the approximation of the binomial probabilities by corresponding Poisson
probabilities are satisfied. Let X ∼ Poisson(λ = np = 5). For part (a) write

P(Y ≥ 10) ≃ P(X ≥ 10) = 1 − P(X ≤ 9) = 1 − 0.968,

where the value of the CDF in the last equality was obtained from Table A.2.
Similarly, for part (b) write

P(Y = 0) ≃ P(X = 0) = e−5 = 0.007.

Example
3.4-14

Suppose the monthly suicide rate in a certain county is 1 per 100,000 people. Give
an approximation to the probability that in a city of 500,000 in this county there will
be no more than six suicides in the next month.

Solution
Let Y denote the number of suicides in that city during the next month. We want
to approximate the probability P(Y ≤ 6). Here Y ∼ Bin(n = 500,000, p = 10−5)
so the three conditions mentioned in Proposition 3.4-1 are satisfied. Hence, letting
X ∼ Poisson(λ = np = 5), and using Table A.2, it follows that

P(Y ≤ 6) ≃ P(X ≤ 6) = 0.762.

The Poisson Process All examples of Poisson random variable pertain to the num-
ber of events occurring in a fixed time period (fish caught in an afternoon, potholes
during the winter months, etc). Often, however, events are recorded at the time they
occur as time unfolds. This requires that time itself become an integral part of the
notation describing the data records. Letting time 0 denote the start of observations
we set

X(t) = number of events occurring in the time interval (0, t]. (3.4.21)

Definition 3.4-1
Viewed as a function of time, the number of occurrences X(t), t ≥ 0, is called a
Poisson process if the following postulates are satisfied.

1. The probability of exactly one occurrence in a time period of length h is
equal to αh + o(h), for some α > 0, where the quantity o(h) satisfies
o(h)/h → 0, as h → 0.

2. The probability of more than one occurrence in a short time period of
length h is equal to o(h).

3. For any set of nonoverlapping time intervals Ai, i = 1, . . . , n, the events
Ei = [ki events occur in Ai], i = 1, . . . , n, where the ki are any integers, are
mutually independent.

The parameter α in the first postulate specifies the rate of the occurrences or,
synonymously, the average number of occurrences per unit of time. Thus, the first
postulate states that the rate at which events occur is constant in time. The second
postulate means that the events are rare, in the sense that it is highly unlikely that
two will occur simultaneously. Finally, the third postulate specifies that in disjoint
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time intervals events occur independently. When these postulates hold we have the
following proposition.

Proposition
3.4-2

If X(t), t ≥ 0, is a Poisson(α) process, then

1. For each fixed t0, the random variable X(t0), which counts the number of
occurrences in (0, t0], has the Poisson distribution with parameter λ = α × t0.
Thus,

P(X(t0) = k) = e−αt0 (αt0)k

k! , k = 0, 1, 2, . . . . (3.4.22)

2. For any two positive numbers t1 < t2 the random variable X(t2) − X(t1), which
counts the number of occurrences in (t1, t2], has the Poisson distribution with
parameter λ = α(t2 − t1). Thus, the PMF of X(t2) − X(t1) is given by (3.4.22)
with t0 replaced by (t2 − t1).

3. For any two positive numbers t1 < t2 the random variable X(t2) − X(t1) is
independent from X(s) for all s ≤ t1. "

A noteworthy implication of part (2) of this proposition is that the zero time
point of a Poisson process can be any arbitrary time point. In other words, one may
start recording the events which happen after time t1, completely ignoring anything
that happened up to that point, and still get a Poisson process with the same rate.

The proof of Proposition 3.4-2 is based on the fact that Poisson probabilities are
obtained as limits of binomial probabilities (Proposition 3.4-1). Indeed, if the postu-
lates of Definition 3.4-1 are satisfied, then by dividing an interval into a large number
of small subintervals of equal length, the total number of occurrences in that interval
can be thought of as a binomial random variable made up of the sum of Bernoulli
random variables, each of which corresponds to one of the small subintervals. Since
by Proposition 3.4-1 the Poisson probability mass function is obtained as the limit
of binomial probability mass functions, it can be argued that the total number of
occurrences is a Poisson random variable. While making this argument rigorous is
not beyond the scope of this book, such a proof adds little to the understanding of
the Poisson process and thus will not be presented.

Example
3.4-15

Continuous inspection of electrolytic tin plate yields on average 0.2 imperfections
per minute. Find each of the following:

(a) The probability of one imperfection in three minutes.
(b) The probability of at least two imperfections in five minutes.
(c) The probability of at most one imperfection in 0.25 hours.

Solution
Let X(t) denote the number of imperfections found in (0, t], where the time t is
expressed in minutes.

(a) Here α = 0.2, t = 3, so that X(3) ∼ Poisson(λ = αt = 0.6). Thus, using
Table A.2,

P(X(3) = 1) = P(X(3) ≤ 1) − P(X(3) ≤ 0) = 0.878 − 0.549 = 0.329.

(b) Here α = 0.2, t = 5, so that X(5) ∼ Poisson(λ = αt = 1.0). Thus, using
Table A.2,

P(X(5) ≥ 2) = 1 − P(X(5) ≤ 1) = 1 − 0.736 = 0.264.
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(c) Here α = 0.2, t = 15, so that X(15) ∼ Poisson(λ = αt = 3.0). Thus, using
Table A.2,

P(X(15) ≤ 1) = 0.199.

Example
3.4-16

People enter a department store according to a Poisson process with rate α per hour.
It is known that 30% of those entering the store will make a purchase of $50.00 or
more. Find the probability mass function of the number of customers who will make
purchases of $50.00 or more during the next hour.

Solution
Let X denote the number of people entering the store during the next hour and Y
the number of those who make a purchase of $50.00 or more. The information given
implies that X ∼ Poisson(α), and that the conditional distribution of Y given X = n
is binomial(n, 0.3). Thus,

P(Y = k|X = n) =
(

n
k

)
(0.3)k (0.7)n−k for n ≥ k,

and P(Y = k|X = n) = 0 for n < k, since the number of customers spending
$50.00 or more cannot exceed the number of customers entering the department
store. Thus, by the Law of Total Probability,

P(Y = k) =
∞∑

m=0

P(Y = k|X = k + m)P(X = k + m)

=
∞∑

m=0

(
k + m

k

)
(0.3)k (0.7)m e−α αk+m

(k + m)!

=
∞∑

m=0

e−0.3α (0.3α)k

k! e−0.7α (0.7α)m

m!

= e−0.3α (0.3α)k

k!
∞∑

m=0

e−0.7α (0.7α)m

m!

= e−0.3α (0.3α)k

k! , k = 0, 1, 2, . . . ,

where the last equality follows by the fact that a PMF sums to 1. Thus, Y ∼
Poisson(0.3α).

Example
3.4-17

Let X(t) be a Poisson process with rate α. It is given that X(1) = n. Show that the
conditional distribution of X(0.4) is binomial(n, 0.4). In words, if we know that n
events occurred in the interval (0, 1], then the number of events that occurred in the
interval (0, 0.4] is a binomial(n, 0.4) random variable.

Solution
For k = 0, 1, . . . , n, the events

[X(0.4) = k] ∩ [X(1) = n] and [X(0.4) = k] ∩ [X(1) − X(0.4) = n − k]
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are identical as they both express the fact that k events occurred in (0, 0.4] and n − k
events occurred in (0.4, 1]. Thus,

P(X(0.4) = k|X(1) = n)

= P([X(0.4) = k] ∩ [X(1) = n])
P(X(1) = 1)

= P([X(0.4) = k] ∩ [X(1) − X(0.4) = n − k])
P(X(1) = 1)

= P(X(0.4) = k)P(X(1) − X(0.4) = n − k)
P(X(1) = 1)

(by part (3) of Proposition 3.4-2)

= [e−0.4α(0.4α)k/k!]e−(1−0.4)α[(1 − 0.4)α]n−k/(n − k)!
e−ααn/n!

(by part (2) of Proposition 3.4-2)

= n!
k!(n − k)!0.4k(1 − 0.4)n−k,

which is the PMF of the binomial(n, 0.4) distribution.

Exercises

1. Grafting, the uniting of the stem of one plant with
the stem or root of another, is widely used commercially
to grow the stem of one variety that produces fine fruit
on the root system of another variety with a hardy root
system. For example, most sweet oranges grow on trees
grafted to the root of a sour orange variety. Suppose each
graft fails independently with probability 0.3. Five grafts
are scheduled to be performed next week. Let X denote
the number of grafts that will fail next week.

(a) The random variable X is (choose one)
(i) binomial (ii) hypergeometric (iii) negative bino-

mial (iv) Poisson.
(b) Give the sample space and PMF of X.
(c) Give the expected value and variance of X.
(d) Suppose that the cost of each failed graft is $9.00.

Find:
(i) The probability that the cost from failed grafts will

exceed $20.00.
(ii) The expected value and the variance of the cost

from failed grafts.

2. Suppose that 30% of all drivers stop at an intersection
having flashing red lights when no other cars are visible.
Of 15 randomly selected drivers coming to an intersection
under these conditions, let X denote the number of those
who stop.

(a) The random variable X is (choose one)
(i) binomial (ii) hypergeometric (iii) negative bino-

mial (iv) Poisson.

(b) Give the expected value and variance of X.
(c) Find the probabilities P(X = 6) and P(X ≥ 6). You

may use R commands.

3. A company sells small, colored binder clips in pack-
ages of 20 and offers a money-back guarantee if two or
more of the clips are defective. Suppose a clip is defective
with probability 0.01, independently of other clips. Let X
denote the number of defective clips in a package of 20.

(a) The distribution of the random variable X is (choose
one)
(i) binomial (ii) hypergeometric (iii) negative bino-

mial (iv) Poisson.
(b) Specify the value of the parameter(s) of the cho-

sen distribution and use R commands to find the
probability that a package sold will be refunded.

4. A test consists of 10 true-false questions. Suppose a
student answers the questions by flipping a coin. Let X
denote the number of correctly answered questions.

(a) Give the expected value and variance of X.
(b) Find the probability the student will answer correctly

exactly 5 of the questions.
(c) Find the probability the student will answer correctly

at most 5 of the questions. Use the CDF to answer this
question.

(d) Let Y = 10 − X. In words, what does Y represent?
(e) Use the CDF to find P(2 ≤ Y ≤ 5).
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5. The probability that a letter will be delivered within
three working days is 0.9. You send out 10 letters on
Tuesday to invite friends for dinner. Only those who
receive the invitation by Friday (i.e., within 3 working
days) will come. Let X denote the number of friends who
come to dinner.
(a) The random variable X is (choose one)

(i) binomial (ii) hypergeometric (iii) negative bino-
mial (iv) Poisson.

(b) Give the expected value and variance of X.
(c) Determine the probability that at least 7 friends will

come.
(d) A catering service charges a base fee of $100 plus

$10 for each guest coming to the party. What is the
expected value and variance of the catering cost?

6. Suppose that in order for the defendant to be con-
victed in a military court the majority of the nine
appointed judges must enter a guilty vote. Assume that
a judge enters a guilty vote with probability 0.1 or 0.9
if the defendant is innocent or guilty, respectively, inde-
pendently of other judges. Assume also that 40% of the
defendants in such trials are innocent.
(a) What proportion of all defendants is convicted?
(b) What is the proportion of correct verdicts?

7. In the grafting context of Exercise 1, suppose that
grafts are done one at a time and the process continues
until the first failed graft. Let X denote the number of
grafts up to and including the first failed graft.
(a) The random variable X is (choose one)

(i) binomial (ii) hypergeometric (iii) negative bino-
mial (iv) Poisson.

(b) Give the sample space and PMF of X.
(c) Give the expected value and variance of X.

8. In the context of quality control, a company manu-
facturing bike helmets decides that helmets be inspected
until the fifth helmet having a particular type of flaw is
found. The total number X of helmets inspected will be
used to decide whether or not the production process is
under control. Assume that each helmet has the flaw with
probability 0.05 independently of other helmets.
(a) The random variable X is (choose one)

(i) binomial (ii) hypergeometric (iii) negative bino-
mial (iv) Poisson.

(b) Give the sample space and PMF of X.
(c) Use R commands to find the probability that

X > 35.

9. Two athletic teams, A and B, play a best-of-five series
of games (i.e., the first team to win three games is the
overall winner). Suppose team A is the better team and
will win any game with probability 0.6, independently
from other games.

(a) Find the probability that the better team will be the
overall winner.

(b) A similar question was answered in Example 3.4-10
for a best-of-three series. Compare the two probabili-
ties and provide an intuitive explanation for why one
of the two probabilities is larger.

10. Average run length. To control the quality of a
manufactured product, samples of the product are
taken at specified inspection time periods and a quality
characteristic is measured for each product. If the aver-
age measurement falls below a certain predetermined
threshold, the process is declared out of control and is
interrupted. The number of inspections between succes-
sive interruptions of the process is called a run length. The
expected value of the random variable X = run length is
called the average run length. Suppose the probability that
an inspection will result in the process being interrupted
is 0.01.

(a) The random variable X is (choose one)
(i) binomial (ii) hypergeometric (iii) negative bino-

mial (iv) Poisson.
(b) Give the sample space and PMF of X.
(c) What is the average run length?

11. In the context of Exercise 10, suppose that after five
interruptions the process undergoes a major evaluation.
Suppose also that inspections happen once every week.
Let Y denote the number of weeks between successive
major evaluations.

(a) The random variable Y is (choose one)
(i) binomial (ii) hypergeometric (iii) negative bino-

mial (iv) Poisson.
(b) Find the expected value and variance of Y.

12. Suppose that six of the 15 school buses in a particular
school district have developed a slight defect since their
last inspection (the steering wheel shakes when braking).
Five buses are to be selected for thorough inspection. Let
X denote the number of buses among the five that are
inspected that have the defect.

(a) The random variable X is (choose one)
(i) binomial (ii) hypergeometric (iii) negative bino-

mial (iv) Poisson.
(b) Give the sample space and formula for the PMF of X.
(c) Use R commands to find P(2 ≤ X ≤ 4).
(d) Give the expected value and variance of X.

13. A distributor receives a new shipment of 20 iPods.
He draws a random sample of five iPods and thoroughly
inspects the click wheel of each of them. Suppose that the
shipment contains three iPods with a malfunctioning click
wheel. Let X denote the number of iPods with a defective
click wheel in the sample of five.
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(a) The random variable X is (choose one)
(i) binomial (ii) hypergeometric (iii) negative

binomial (iv) Poisson.
(b) Give the sample space and the formula for the PMF

of X.
(c) Compute P(X = 1).
(d) Find the expected value and variance of X.

14. In a study of a lake’s fish population, scientists cap-
ture fish from the lake, then tag and release them.
Suppose that over a period of five days, 200 fish of a cer-
tain type are tagged and released. As part of the same
study, 20 such fish are captured three days later. Let X
denote the number of tagged fish among the 20 captured.
Suppose it is known that the lake has 1000 fish of this
particular type.

(a) The distribution of the random variable X is (choose
one)
(i) binomial (ii) hypergeometric (iii) negative bino-

mial (iv) Poisson.
(b) Use R commands to find P(X ≤ 4).
(c) Which distribution from those listed in part (a) can be

used as an approximation to the distribution of X?
(d) Using the approximate distribution, give an approxi-

mation to the probability P(X ≤ 4), and compare it
with the exact probability found in part (b).

15. In a shipment of 10,000 of a certain type of elec-
tronic component, 300 are defective. Suppose that 50
components are selected at random for inspection, and
let X denote the number of defective components
found.

(a) The distribution of the random variable X is (choose
one)
(i) binomial (ii) hypergeometric (iii) negative bino-

mial (iv) Poisson.
(b) Use R commands to find P(X ≤ 3).
(c) Which distribution from those listed in part (a) can be

used as an approximation to the distribution of X?
(d) Using the approximate distribution, give an approxi-

mation to the probability P(X ≤ 3), and compare it
with the exact probability found in part (b).

16. A particular website generates income when people
visiting the site click on ads. The number of people visit-
ing the website is modeled as a Poisson process with rate
α = 30 per second. Of those visiting the site, 60% click on
an ad. Let Y denote the number of those who will click on
an ad over the next minute.

(a) The distribution of the random variable Y is (choose
one)
(i) binomial (ii) hypergeometric (iii) negative bino-

mial (iv) Poisson.
(Hint. See Example 3.4-16.)

(b) Give the mean and variance of Y.
(c) Use R commands to find the probability that Y >

1100.

17. Structural loads are forces applied to a structure or its
components. Loads cause stresses that can lead to struc-
tural failure. It has been suggested that the occurrence of
live (or probabilistic) structural loads over time in aging
concrete structures can be modeled by a Poisson process
with a rate of two occurrences per year. Find the proba-
bility that more than two loads will occur during the next
quarter of a year.

18. During a typical Pennsylvania winter, I80 averages
1.6 potholes per 10 miles. A certain county is responsible
for repairing potholes in a 30-mile stretch of the inter-
state. Let X denote the number of potholes the county
will have to repair at the end of next winter.
(a) The distribution of the random variable X is (choose

one)
(i) binomial (ii) hypergeometric (iii) negative bino-

mial (iv) Poisson.
(b) Give the expected value and variance of X.
(c) Find P(4 < X ≤ 9).
(d) The cost of repairing a pothole is $5000. If Y denotes

the county’s pothole repair expense for next winter,
find the mean value and variance of Y.

19. A typesetting agency used by a scientific journal
employs two typesetters. Let X1 and X2 denote the num-
ber of errors committed by typesetter 1 and 2, respec-
tively, when asked to typeset an article. Suppose that
X1 and X2 are Poisson random variables with expected
values 2.6 and 3.8, respectively.
(a) What is the variance of X1 and of X2?
(b) Suppose that typesetter 1 handles 60% of the articles.

Find the probability that the next article will have no
errors.

(c) If an article has no typesetting errors, what is the
probability it was typeset by the second typesetter?

20. An engineer at a construction firm has a subcontract
for the electrical work in the construction of a new office
building. From past experience with this electrical sub-
contractor, the engineer knows that each light switch that
is installed will be faulty with probability p = 0.002 inde-
pendent of the other switches installed. The building will
have n = 1500 light switches in it. Let X be the number
of faulty light switches in the building.
(a) The distribution of the random variable X is (choose

one)
(i) binomial (ii) hypergeometric (iii) negative bino-

mial (iv) Poisson.
(b) Use R commands to find P(4 ≤ X ≤ 8).
(c) Which distribution from those listed in part (a) can be

used as an approximation to the distribution of X?
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(d) Using the approximate distribution, give an approxi-
mation to the probability P(4 ≤ X ≤ 8), and compare
it with the exact probability found in part (b).

(e) Compute the exact and approximate probability of no
faulty switches.

21. Suppose that a simple random sample of 200 is taken
from the shipment of 10,000 electronic components of
Exercise 15, which contais 300 defective components, and
let Y denote the number of defective components in the
sample.
(a) The random variable Y has a hypergeometric(M1, M2,

n) distribution, which can be approximated by a
binomial(n, p) distribution, which can be approx-
imated by a Poisson(λ) distribution. Specify the
parameters of each distribution mentioned in the last
sentence.

(b) Use R commands to compute the exact probability
P(Y ≤ 10), as well as the two approximations to this
probability mentioned in part (a).

22. Let X be the random variable that counts the number
of events in each of the following cases.
(a) The number of fish caught by an angler in an after-

noon.
(b) The number of disabled vehicles abandoned on I95 in

a year.

(c) The number of wrongly dialed telephone numbers in
a given city in an hour.

(d) The number of people who reach the age of 100 in a
given city.

For each case explain how the Poisson approximation to
the binomial distribution can be used to justify the use of
the Poisson model for X, and discuss the assumptions that
are needed for this justification.

23. Let X(t) be a Poisson process with rate α.
(a) Use words to justify that the events

[X(t) = 1] ∩ [X(1) = 1] and

[X(t) = 1] ∩ [X(1) − X(t) = 0]

are the same
(b) Use Proposition 3.4-2 to find the probability of the

event in (a) when α = 2 and t = 0.6.
(c) It is given that X(1) = 1, that is, only one event in the

time interval [0, 1]. Let T denote the time the event
occurred, and let t be between 0 and 1.
(i) Use words to justify that the events T ≤ t and

X(t) = 1 are the same.
(ii) Show that the conditional distribution of T, given

that X(1) = 1, is uniform in [0, 1] by showing that
P(T ≤ t|X(1) = 1) = t.

3.5 Models for Continuous Random Variables
The simplest continuous distribution, which is the uniform, was introduced in
Definition 3.2-5, extended in Example 3.2-5, and further studied in Examples 3.2-4,
3.3-8, and 3.3-16. This section presents in some detail two other useful classes of
continuous distributions, the exponential and the normal. Three additional families
of distributions, commonly used in reliability theory, are briefly introduced in the
exercises.

Unlike the discrete random variables discussed in Section 3.4, where the nature
of the experiment determines the type of probability model under fairly transpar-
ent assumptions, we often have no indication as to which probability model will best
describe the true distribution of a particular continuous random variable. For exam-
ple, there may be no a priori knowledge that the probability density function of
the life time of a randomly chosen electrical component has the form assumed in
Example 3.2-6. For this reason, this section also presents a diagnostic procedure that
helps assess the goodness-of-fit of a particular probability model to a data set.

3.5.1 THE EXPONENTIAL DISTRIBUTION

A random variable X is said to be an exponential, or to have the exponential
distribution with parameter λ, denoted by X ∼ Exp(λ), if its PDF is

f (x) =
{

λe−λx if x ≥ 0
0 if x < 0.
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Figure 3-13 PDFs (left
panel) and CDFs (right
panel) of three exponential
distributions.

The exponential distribution is used in reliability theory as the simplest model
for the life time of equipment. (See Exercises 13 and 14 for generalizations of the
exponential distribution.) Moreover, as discussed below, the time until the next
event of a Poisson process follows the exponential distribution. Thus, the exponen-
tial distribution models a wide range of waiting times, such as the time for the next
customer to arrive at a service station, the time until the next bank or investment
firm failure, the time until the next outbreak of hostilities, the time until the next
earthquake, or the time until the next component of a multi-component system fails.

The PDF used in Example 3.2-6 is exponential with λ = 0.001. With an integra-
tion similar to the one used in that example, it follows that the CDF of the Exp(λ)
distribution is

F(x) =
{

1 − e−λx if x ≥ 0
0 if x < 0. (3.5.1)

Figure 3-13 presents plots of the PDF and CDF of the exponential distribution for
different values of the parameter λ.

Some R commands related to the exponential distribution are given in
Exercise 4.

Examples 3.3-6 and 3.3-14 find the mean value and variance, respectively, of an
exponential distribution with λ = 0.1, while Example 3.3-19 finds the percentiles of
an exponential distribution with λ = 0.001. The same type of calculations yield the
following formulas for a general λ:

Mean, Variance, and
Percentiles of the

Exponential
Distribution

µ = 1
λ

, σ 2 = 1
λ2 , xα = − log(α)

λ
(3.5.2)

Example
3.5-1

Suppose the useful life time, in years, of a personal computer (PC) is exponentially
distributed with parameter λ = 0.25. A student entering a four-year undergradu-
ate program inherits a two-year-old PC from his sister who just graduated. Find the
probability the useful life time of the PC the student inherited will last at least until
the student graduates.
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Solution
Let X denote the useful life time of the PC. The PC has already operated for
two years and we want the probability it will last at least four more years. In
mathematical notation this is expressed as P(X > 2 + 4|X > 2). Using the defi-
nition of conditional probability and the form of the CDF of an exponential random
variable we have

P(X > 2 + 4|X > 2) = P([X > 2 + 4] ∩ [X > 2])
P(X > 2)

= P([X > 2 + 4])
P(X > 2)

= e−0.25×(2+4)

e−0.25×2

= e−0.25×4.

Since P(X > 4) also equals e−0.25×4, it follows that the two-year-old PC has the same
probability of lasting until the student graduates as a brand new PC would.

A nonnegative random variable X is said to have the memoryless property, also
called the no-aging property, if for all s, t > 0,

Memoryless Property
of a Random Variable P(X > s + t|X > s) = P(X > t) (3.5.3)

By a calculation similar to the one done in Example 3.5-1 it follows that the
exponential random variable has the memoryless property. In fact, it can be shown
that the exponential is the only distribution with the memoryless property.

The Poisson-Exponential Connection For a Poisson process, let T1 be the time the
first event occurs, and for i = 2, 3, . . . , let Ti denote the time elapsed between the
occurrence of the (i−1)-st and the ith event. For example, T1 = 3 and T2 = 5 means
that the first occurrence of the Poisson process happened at time 3 and the second
at time 8. The times T1, T2, . . . are called interarrival times.

Proposition
3.5-1

If X(s), s ≥ 0, is a Poisson process with rate α, the interarrival times have the
exponential distribution with PDF f (t) = αe−αt, t > 0.

Proof Let T1 be the first arrival time. To find the PDF of T1 we will first find
1 − FT1 (t) = P(T1 > t). This is done by noting that event T1 > t is equivalent to
the event X(t) = 0 since both are equivalent to the statement that no event occurred
in the interval (0, t]. Thus,

P(T1 > t) = P(X(t) = 0) = e−αt.

Hence, FT1 (t) = P(T1 ≤ t) = 1 − e−αt, and upon differentiation we find that the
PDF of T1 is as specified in the proposition. To show that T2, the second inter-
arrival time, has the same distribution note that, by Proposition 3.4-2, if we start
recording the events that occur after time T1 we obtain a new Poisson process for
which time zero is set to T1 and has the same rate α. Since in this new Poisson
process T2 is the first interarrival time, it follows that T2 has the same distribu-
tion as T1. That all interarrival times have the same distribution follows by a similar
argument. "
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Example
3.5-2

User log-ons to a college’s computer network can be modeled as a Poisson process
with a rate of 10 per minute. If the system’s administrator begins tracking the number
of log-ons at 10:00 a.m., find the probability that the first log-on recorded occurs
between 10 and 20 seconds after that.

Solution
With time zero set at 10:00 a.m., let T1 denote the time, in minutes, of the first arrival.
Since by Proposition 3.5-1 T1 ∼ Exp(10), the CDF formula given in (3.5.1) yields

P
(

10
60

< T <
20
60

)
= e−10×(10/60) − e−10×(20/60) = 0.1532.

3.5.2 THE NORMAL DISTRIBUTION

A random variable is said to have the standard normal distribution if its PDF and
CDF, which are denoted (universally) by φ and ,, respectively, are

φ(z) = 1√
2π

e−z2/2 and ,(z) =
∫ z

−∞
φ(x) dx

for −∞ < z < ∞. A standard normal random variable is denoted by Z. Note that
the PDF φ is symmetric about zero; see Figure 3-14.

A random variable X is said to have the normal distribution, with parameters µ

and σ , denoted by X ∼ N(µ, σ 2), if its PDF and CDF are

f (x) = 1
σ

φ

(
x − µ

σ

)
and F(x) = ,

(
x − µ

σ

)

for −∞ < x < ∞. Thus,

f (x) = 1√
2πσ 2

exp(−[x − µ]2/[2σ 2]),

which is symmetric about µ. Thus, µ is both the mean, the median, and the mode
of X. The parameter σ is the standard deviation of X. For µ = 0 and σ = 1, X is
standard normal and is denoted by Z.

–3 –2 –1 1 2 3
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φ 
(x
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µ = 0

Figure 3-14 PDF of the
N(0, 1) distribution.



Section 3.5 Models for Continuous Random Variables 151

The normal PDF is difficult to integrate and will not be used for calculating
probabilities by integration. Moreover, the CDF does not have a closed form expres-
sion. The R commands for the normal(µ, σ 2) PDF, CDF, and percentiles and for
simulating normal samples are as follows:

R Commands for the Normal(µ,σ2) Distribution

dnorm(x,µ, σ) # gives the PDF for x in (−∞,∞)

pnorm(x,µ, σ) # gives the CDF for x in (−∞,∞)

qnorm(s,µ, σ) # gives the s100th percentile for s in (0,1)

rnorm(n,µ, σ) # gives a sample of n normal(µ, σ2) random
variables

In the above R commands both x and s can be vectors. For example, if X ∼
N(5, 16),

• dnorm(6, 5, 4) returns 0.09666703 for the value of the PDF of X at x = 6.

• pnorm(c(3, 6), 5, 4) returns the values of P(X ≤ 3) and P(X ≤ 6).

• qnorm(c(0.9, 0.99), 5, 4) returns 10.12621 and 14.30539 for the 90th and 99th
percentile of X, respectively.

The standard normal PDF ,(z) is tabulated in Table A.3 for values of z from 0 to
3.09 in increments of 0.01. For the rest of this section we will learn how to use Table
A.3 not only for finding probabilities and percentiles of the standard normal random
variable, but for any other normal random variable. The ability to use only one table,
that for the standard normal, for finding probabilities and percentiles of any normal
random variable is due to an interesting property of the normal distribution, which
is given in the following proposition.

Proposition
3.5-2

If X ∼ N(µ, σ 2) and a, b are any real numbers, then

a + bX ∼ N(a + bµ, b2σ 2). (3.5.4)

"

The new element of this proposition is that a linear transformation of a normal ran-
dom variable is also a normal random variable. That the mean value and variance of
the transformed variable, Y = a+bX, are a+bµ and b2σ 2 follows from Propositions
3.3-1 and 3.3-2, respectively, so there is nothing new in these formulas.

Finding Probabilities We first illustrate the use of Table A.3 for finding probabilities
associated with the standard normal random variable.

Example
3.5-3

Let Z ∼ N(0, 1). Find (a) P(−1 < Z < 1), (b) P(−2 <Z < 2), and (c) P(−3 < Z < 3).

Solution
In Table A.3, z-values are listed in two decimal places, with the second decimal place
identified in the top row of the table. Thus, the z-value 1 is identified by 1.0 in the
left column of the table and 0.00 in the top row of the table. The probability ,(1) =
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P(Z ≤ 1) is the number that corresponds to the row and column identified by 1.0
and 0.00, which is 0.8413. Since negative values are not listed in Table A.3, ,(−1) =
P(Z ≤ −1) is found by exploiting the fact that the standard normal distribution is
symmetric about zero. This means that the area under the N(0, 1) PDF to the left of
−1 is equal to the area under it to the right of 1; see Figure 3-14. Hence,

,(−1) = 1 − ,(1),

and the same relation holds with any positive number substituting 1. Thus, the
answer to part (a) is

P(−1 < Z < 1) = ,(1) − ,(−1) = 0.8413 − (1 − 0.8413)

= 0.8413 − 0.1587 = 0.6826.

Working similarly, we find the following answers for parts (b) and (c):

P(−2 < Z < 2) = ,(2) − ,(−2) = 0.9772 − 0.0228 = 0.9544, and

P(−3 < Z < 3) = ,(3) − ,(−3) = 0.9987 − 0.0013 = 0.9974.

Thus, approximately 68% of the values of a standard normal random variable fall
within one standard deviation from its mean, approximately 95% fall within two
standard deviations of its mean, and approximately 99.7% of its values fall within
three standard deviations of its mean. This is known as the 68-95-99.7% rule. (See
also Figure 3-15.)

The use of Table A.3 for finding probabilities associated with any normal random
variable is made possible through the following corollary to Proposition 3.5-2.

Corollary
3.5-1

If X ∼ N(µ, σ 2), then

1.
X − µ

σ
∼ N(0, 1), and

2. P(a ≤ X ≤ b) = ,
(

b−µ
σ

)
− ,

( a−µ
σ

)
.

To show how the corollary follows from Proposition 3.5-2, first apply formula
(3.5.4) with a = −µ and b = 1 to see that if X ∼ N(µ, σ 2), then



Section 3.5 Models for Continuous Random Variables 153

X − µ ∼ N(0, σ 2).

A second application of the formula (3.5.4), now on the normal random variable
X − µ with a = 0 and b = 1/σ , yields

X − µ

σ
∼ N(0, 1).

In words, part (1) of Corollary 3.5-1 means that any normal random variable,
X, can be standardized (i.e., transformed to a standard normal random variable, Z),
by subtracting from it its mean and dividing by its standard deviation. This implies
that any event of the form a ≤ X ≤ b can be expressed in terms of the standardized
variable:

[a ≤ X ≤ b] =
[

a − µ

σ
≤ X − µ

σ
≤ b − µ

σ

]
.

Thus, part (2) of Corollary 3.5-1 follows from

P(a ≤ X ≤ b) = P
(

a − µ

σ
≤ X − µ

σ
≤ b − µ

σ

)
= ,

(
b − µ

σ

)
− ,

(
a − µ

σ

)
,

where the last equality follows from the fact that (X −µ)/σ has the standard normal
distribution.

Example
3.5-4

Let X ∼ N(1.25, 0.462). Find (a) P(1 ≤ X ≤ 1.75) and (b) P(X > 2).

Solution
A direct application of part (2) of Corollary 3.5-1, yields

P(1 ≤ X ≤ 1.75) = ,

(
1.75 − 1.25

0.46

)
− ,

(
1 − 1.25

0.46

)

= ,(1.09) − ,(−0.54) = 0.8621 − 0.2946 = 0.5675.

Working similarly for the event in part (b), we have

P(X > 2) = P
(

Z >
2 − 1.25

0.46

)
= 1 − ,(1.63) = 0.0516.

Another consequence of Corollary 3.5-1 is that the 68-95-99.7% rule of the
standard normal seen in Example 3.5-3 applies for any normal random variable
X ∼ N(µ, σ 2):

P(µ − 1σ < X < µ + 1σ ) = P(−1 < Z < 1) = 0.6826,

P(µ − 2σ < X < µ + 2σ ) = P(−2 < Z < 2) = 0.9544, and

P(µ − 3σ < X < µ + 3σ ) = P(−3 < Z < 3) = 0.9974.

Finding Percentiles According to the notation introduced in Definition 3.3-1, the
(1−α)-100th percentile of Z will be denoted by zα . Thus, the area under the standard
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normal PDF to the right of zα is α, as shown in the right panel of Figure 3-16. The
left panel of this figure illustrates the defining property of zα , that is,

,(zα) = 1 − α,

which is used to find zα . Since the function , does not have a closed form expression,
we use Table A.3 to solve this equation by first locating 1−α in the body of the table
and then reading zα from the margins. If the exact value of 1−α does not exist in the
main body of the table, then an approximation is used. This process is demonstrated
in the following example.

Example
3.5-5

Find the 95th percentile of Z.

Solution
Here α = 0.05, so 1−α = 0.95. However, the exact number 0.95 does not exist in the
body of Table A.3. So we use the entry that is closest to but larger than 0.95 (which is
0.9505), as well as the entry that is closest to but smaller than 0.95 (which is 0.9495),
and approximate z0.05 by averaging the z-values that correspond to these two closest
entries: z0.05 ≃ (1.64 + 1.65)/2 = 1.645.

The use of Table A.3 for finding percentiles of any normal random variable is made
possible through the following corollary to Proposition 3.5-2.

Corollary
3.5-2

Let X ∼ N(µ, σ 2), and let xα denote the (1 − α)-100th percentile of X. Then,

xα = µ + σzα . (3.5.5)

For the proof of this corollary it must be shown that P(X ≤ µ + σzα) = 1 − α.
But this follows by an application of part (2) of Corollary 3.5-1 with a = −∞ and
b = µ + σzα :

P(X ≤ µ + σzα) = ,(zα) − ,(−∞) = 1 − α − 0 = 1 − α.
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Example
3.5-6

Let X ∼ N(1.25, 0.462). Find the 95th percentile, x0.05, of X.

Solution
From (3.5.5) we have

x0.05 = 1.25 + 0.46z0.05 = 1.25 + (0.46)(1.645) = 2.01.

The Q-Q Plot As already mentioned, most experiments resulting in the measure-
ment of a continuous random variable provide little insight as to which probability
model best describes the distribution of the measurements. Thus, several procedures
have been devised to test the goodness-of-fit of a particular model to a random
sample obtained from some population. Here we discuss a very simple graphical
procedure, called the Q-Q plot, as it applies for checking the goodness-of-fit of the
normal distribution.

The basic idea of the Q-Q plot is to plot the sample percentiles, which are the
ordered sample values, against with the corresponding percentiles of the assumed
model distribution. Since sample percentiles estimate corresponding population per-
centiles, if the assumed model distribution is a good approximation to the true
population distribution, the plotted points should fall approximately on a straight
line of angle 45o that passes through the origin.

For example, in a sample of size 10 the order statistics are the 5th, 15th, . . . ,
95th sample percentiles; see Definition 1.7-2. To check if this sample could have
come from the standard normal distribution, the sample percentiles would be plotted
against the standard normal percentiles, which can be obtained from the R command
qnorm(seq(0.05, 0.95, 0.1)). In fact, the sample percentiles would be plotted against
the standard normal percentiles even for checking if the sample could have come
from a normal(µ, σ 2), for unspecified µ and σ . This is because the normal(µ, σ 2)
percentiles, xα , are related to the normal(0, 1) percentiles, zα , through xα = µ+ σzα ,
which is a linear relationship. Thus, if the normal model is correct, the plotted points
would fall on a straight line, though not necessarily the 45o line through the origin.

In R there is a customized command for the normal Q-Q plot. With the data in
the R object x, two versions of the command are as follows:

R Commands for the Normal Q-Q Plot

qqnorm(x); qqline(x, col=2)

qqnorm(x, datax=T); qqline(x, datax=T, col=2)

The first version has the sample percentiles on the y-axis, and the second puts them
on the x-axis.

The two plots in Figure 3-17, which are based on simulated samples of size 50,
illustrate the extent to which the plotted points conform to a straight line when
the data have indeed come from a normal distribution, or do not conform to a
straight line when the data have come from an exponential distribution. The R com-
mands that generated the left panel of Figure 3-17 are set.seed(111); x=rnorm(50);
qqnorm(x, datax=T); qqline(x, datax=T, col=2), and those that generated the right
panel are x=rexp(50); qqnorm(x, datax=T); qqline(x, datax=T, col=2).
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Exercises

1. The lifespan of a car battery averages six years.
Suppose the battery lifespan follows an exponential
distribution.

(a) Find the probability that a randomly selected car
battery will last more than four years.

(b) Find the variance and the 95th percentile of the bat-
tery lifespan.

(c) Suppose a three-year-old battery is still going strong.
(i) Find the probability the battery will last an addi-

tional five years.
(ii) How much longer is this battery expected to

last?

2. The number of wrongly dialed phone calls you receive
can be modeled as a Poisson process with the rate of one
per month.
(a) Find the probability that it will take between two

and three weeks to get the first wrongly dialed phone
call.

(b) Suppose that you have not received a wrongly dialed
phone call for two weeks. Find the expected value and
variance of the additional time until the next wrongly
dialed phone call.

3. Justify that the no-aging or memoryless property of the
exponential random variable X, stated in (3.5-3), can be
equivalently restated as

P(X ≤ s + t|X ≥ s) = 1 − exp{−λt}.

4. Use the R command set.seed(111); hist(rexp(10000),
breaks=35, freq=F) to generate a sample of size 10,000
from the exponential(1) distribution and to plot its
histogram, and the additional R command curve(dexp,
0, 8, add=T) to superimpose the exponential(1) PDF
on the graph. Does the histogram provide a reasonable

approximation to the PDF? Repeat the above set of
commands with a sample size of 1000, using breaks=27.
Comment on how well this histogram approximates
the PDF.

5. The yield strength (ksi) for A36 steel is normally
distributed with µ = 43 and σ = 4.5.
(a) What is the 25th percentile of the distribution of A36

steel strength?
(b) What strength value separates the strongest 10% from

the others?
(c) What is the value of c such that the interval (43 − c,

43 + c) includes 99% of all strength values?
(d) What is the probability that at most three of 15

independently selected A36 steels have strength less
than 43?

6. The mean weight of frozen yogurt cups in an ice cream
parlor is 8 oz. Suppose the weight of each cup served
is normally distributed with standard deviation 0.5 oz,
independently of others.
(a) What is the probability of getting a cup weighing more

than 8.64 oz?
(b) What is the probability of getting a cup weighing more

than 8.64 oz three days in a row?

7. The resistance for resistors of a certain type is a
random variable X having the normal distribution with
mean 9 ohms and standard deviation 0.4 ohms. A resistor
is acceptable if its resistance is between 8.6 and 9.8 ohms.
(a) What is the probability that a randomly chosen resis-

tor is acceptable?
(b) What is the probability that out of four ran-

domly and independently selected resistors, two are
acceptable?
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8. Admission officers in Colleges A and B use SAT
scores as their admission criteria. SAT scores are nor-
mally distributed with mean 500 and standard deviation
80. College A accepts people whose scores are above 600,
and College B accepts the top 1% of people in terms of
their SAT scores.

(a) What percentage of high school seniors can get into
College A?

(b) What is the minimum score needed to get accepted by
College B ?

9. The finished inside diameter of a piston ring is nor-
mally distributed with a mean of 10 cm and a standard
deviation of 0.03 cm.

(a) Above what value of inside diameter will 85.08% of
the piston rings fall?

(b) What is the probability that the diameter of a ran-
domly selected piston will be less than 10.06?

10. A machine manufactures tires with a tread thick-
ness that is normally distributed with mean 10 millimeters
(mm) and standard deviation 2 mm. The tire has a 50,000-
mile warranty. In order to last for 50,000 miles the tread
thickness must be at least 7.9 mm. If the thickness of tread
is measured to be less than 7.9 mm, then the tire is sold as
an alternative brand with a warranty of less than 50,000
miles.

(a) Find the expected proportion of tires sold under the
alternative brand.

(b) The demand for the alternative brand of tires is such
that 30% of the total output should be sold under
the alternative brand name. What should the critical
thickness, originally 7.9 mm, be set at in order to meet
the demand?

11. Answer the following questions.

(a) Use the R command x=runif(50) to generate a simu-
lated sample of size 50 from the uniform(0, 1) distri-
bution and use commands like those given in Section
3.5.2 to construct a normal Q-Q plot. Could the
simulated sample of 50 have come from a normal
distribution? Explain.

(b) Use the R command x=rgamma(50, 1, 1) to generate
a simulated sample of size 50 from the gamma(1, 1)
distribution (see Exercise 13) and use commands like
those given in Section 3.5.2 to construct a normal Q-
Q plot. Could the simulated sample of 50 have come
from a normal distribution? Explain.

Probability Models Used in Reliability Theory

12. A random variable T is said to have the log-
normal(µln, σln) distribution if log T ∼ N(µln, σ 2

ln), where
log is the natural logarithm. The mean value and variance
of T are

µT = eµln+σ 2
ln/2, σ 2

T = e2µln+σ 2
ln

(
eσ 2

ln − 1
)

.

The log-normal(0, 1) distribution is called the standard
log-normal distribution.

(a) Show that if T has the log-normal(µln, σln) distribu-
tion, its CDF is given by

FT(t) = ,

(
log t − µln

σln

)
for t > 0,

and FT(t) = 0 for t < 0. (Hint. FT(t) = P(T ≤ t) =
P(log T ≤ log t), and log T ∼ N(µln, σ 2

ln).)
(b) Use the R commands curve(dlnorm(x, 0, 1), 0, 10,

col=1, ylab=”Log-Normal PDFs”), curve(dlnorm(x,
1, 1), 0, 10, add=T, col=2), and curve(dlnorm(x, 1.5,
1), 0, 10, add=T, col=3) to superimpose the plots
of three log-normal PDFs corresponding to different
parameter values. Superimpose the plots of the cor-
responding three log-normal CDFs by making appro-
priate changes to these commands (dlnorm changes to
plnorm, and PDFs changes to CDFs).

(c) Using the formulas given above, compute the mean
and variance of the log-normal(0, 1), log-normal(5, 1)
and log-normal(5, 2) distributions.

(d) The R command qlnorm(0.95), which is equivalent to
qlnorm(0.95, 0, 1), gives the 95th percentile of the
standard log-normal distribution. Verify that the R
commands log(qlnorm(0.95)) and qnorm(0.95) return
the same value, which is the 95th percentile of the
standard normal distribution, and provide an expla-
nation for this.

13. A random variable T has a gamma distribution with
shape parameter α > 0 and scale parameter β > 0 if its
PDF is zero for negative values and

fT(t) = 1
βα-(α)

tα−1e−t/β for t ≥ 0,

where - is the gamma function defined by -(α) =∫ ∞
0 tα−1e−tdt. The most useful properties of the gamma

function are: -(1/2) = π1/2, -(α) = (α − 1)-(α − 1),
for α > 1, and -(r) = (r − 1)! for an integer r ≥ 1.
The mean and variance of a gamma(α, β) distribution are
given by

µT = αβ, σ 2
T = αβ2.

When α = 1 we get the family of exponential distribu-
tions with λ = 1/β. Additionally, for α = r, with r integer
≥ 1, we get the family of Erlang distributions, which
models the time until the rth occurrence in a Poisson
process. Finally, the chi-square distribution with ν degrees
of freedom, where ν ≥ 1 is an integer, denoted by χ2

ν ,
corresponds to α = ν/2 and β = 2.

(a) Use the R commands curve(dgamma(x, 1, 1), 0, 7,
ylab=”Gamma PDFs”), curve(dgamma(x, 2, 1), 0,
7, add=T, col=2), and curve(dgamma(x, 4, 1), 0, 7,
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add=T, col=3) to superimpose the plots of three
gamma PDFs corresponding to different parameter
values. Superimpose the plots of the corresponding
three gamma CDFs by making appropriate changes to
these commands (dgamma changes to pgamma, and
PDFs changes to CDFs).

(b) Using the formulas given above, compute the
mean and variance of the gamma(2, 1), gamma(2, 2),
gamma(3, 1), and gamma(3, 2) distributions.

(c) Use the R command qgamma(0.95, 2, 1) to find
the 95th percentile of the gamma(2, 1) distribution.
Making appropriate changes to this command, find
the 95th percentile of the gamma(2, 2), gamma(3, 1),
and gamma(3, 2) distributions.

14. A random variable T is said to have a Weibull distri-
bution with shape parameter α > 0 and scale parameter
β > 0 if its PDF is zero for t < 0 and

fT(t) = α

βα
tα−1e−(t/β)α for t ≥ 0.

The CDF of a Weibull(α, β) distribution has the following
closed form expression:

FT(t) = 1 − e−(t/β)α .

When α = 1 the Weibull PDF reduces to the exponen-
tial PDF with λ = 1/β. The mean and variance of a
Weibull(α, β) distribution are given by

µT = β-

(
1 + 1

α

)
,

σ 2
T = β2

{

-

(
1 + 2

α

)
−

[
-

(
1 + 1

α

)]2
}

,

where - is the gamma function defined in Exercise 13.
(a) Use the R commands curve(dweibull(x, 0.5, 1), 0, 4),

curve(dweibull(x, 1, 1), 0, 4, add=T, col=”red”),
curve(dweibull(x, 1.5, 1), 0, 4, add=T, col=”blue”), and
curve(dweibull(x, 2, 1), 0, 4, add=T, col=”green”) to
superimpose four Weibull PDFs, noting that the sec-
ond corresponds to the exponential(1) distribution.

(b) One of the imbedded functions in R is the gamma
function. Use the R commands 10*gamma(1+1/0.2)
and 10**2*(gamma(1+2/0.2)-gamma(1+1/0.2)**2) to
find the mean and variance, respectively, of the
Weibull(0.2, 10) distribution.

(c) Use the formula for the Weibull CDF given above
to find P(20 ≤ T < 30), where T ∼ Weibull
(0.2, 10). Confirm your answer with the R command
pweibull(30, 0.2, 10)-pweibull(20, 0.2, 10).

(d) Find the 95th percentile of T having the
Weibull(0.2, 10) distribution by solving the equation
FT(t0.05) = 0.95, where FT is the Weibull CDF given
above with parameters α = 0.2 and β = 10. Confirm
your answer with the R command qweibull(0.95,
0.2, 10).



Chapte r

4Jointly Distributed Random
Variables

4.1 Introduction
When experiments record multivariate observations (see Section 1.4), the behavior
of each individual variable is, typically, not the primary focus of the investigation.
For example, studies of atmospheric turbulence may focus on understanding and
quantifying the degree of relationship between the components X, Y, and Z of wind
velocity; studies of automobile safety may focus on the relationship between the
velocity X and stopping distance Y under different road and weather conditions;
and understanding the relationship between the diameter at breast height X and
age of a tree can lead to an equation for predicting age from the (easier to measure)
diameter.

In this chapter we will introduce, among other things, the notion of correlation,
which serves as a quantification of the relationship between two variables, and the
notion of a regression function, which forms the basis for predicting one variable
from another. These concepts follow from the joint distribution of the random vari-
ables. Moreover, the joint distribution of the observations in a simple random sample
leads to the distribution of statistics, such as the sample average, which forms the
basis of statistical inference. Formulas for the mean and variance of sums will be
derived, while a more complete discussion of the distribution of sums will be given
in the next chapter. Finally, some of the most common probability models for joint
distributions will be presented.

4.2 Describing Joint Probability Distributions
4.2.1 THE JOINT AND MARGINAL PMF

Definition 4.2-1
The joint, or bivariate, probability mass function (PMF) of the jointly discrete
random variables X and Y is defined as

p(x, y) = P(X = x, Y = y).

159
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If S = {(x1, y1), (x2, y2), . . .} is the sample space of (X, Y), Axioms 2.4.1 and 2.4.2 of
probability imply

p(xi, yi) ≥ 0 for all i, and
∑

all (xi,yi)∈S
p(xi, yi) = 1. (4.2.1)

Moreover, by part (2) of Proposition 2.4-1,

P(a < X ≤ b, c < Y ≤ d) =
∑

i:a<xi≤b,c<yi≤d

p(xi, yi). (4.2.2)

In the context of joint distributions, the distributions of individual variables are
called marginal distributions. (Recall the marginal histograms used in Section 1.5.2.)
The marginal PMFs of X and Y are obtained as

Obtaining the
Marginal PMFs from

the Joint PMF

pX(x) =
∑

y∈SY

p(x, y), pY(y) =
∑

x∈SX

p(x, y) (4.2.3)

Example
4.2-1

Let X, Y have the joint PMF as shown in the following table.

y

p(x, y) 1 2

1 0.034 0.134

x 2 0.066 0.266

3 0.100 0.400

This PMF is illustrated in Figure 4-1.

(a) Find P(0.5 < X ≤ 2.5, 1.5 < Y ≤ 2.5) and P(0.5 < X ≤ 2.5).
(b) Find the marginal PMF of Y.

Solution

(a) By relation (4.2.2), P(0.5 < X ≤ 2.5, 1.5 < Y ≤ 2.5) is the sum of p(xi, yi) for
all (xi, yi) such that 0.5 < xi ≤ 2.5 and 1.5 < yi ≤ 2.5. These two conditions are
satisfied for the (x, y) pairs (1, 2) and (2, 2). Thus,

P(0.5 < X ≤ 2.5, 1.5 < Y ≤ 2.5) = p(1, 2) + p(2, 2) = 0.134 + 0.266 = 0.4.

0
0.1
0.2
0.3
0.4
0.5

1
2

3 1

2

Figure 4-1 3D barplot of
the bivariate PMF of
Example 4.2-1.
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Next, by (4.2.2) again, P(0.5 < X ≤ 2.5) = P(0.5 < X ≤ 2.5, −∞ < Y < ∞)
is the sum of p(xi, yi) for all (xi, yi) such that 0.5 < xi ≤ 2.5. This condition is
satisfied for the (x, y) pairs (1, 1), (1, 2), (2, 1) and (2, 2). Thus,

P(0.5 < X ≤ 2.5) = p(1, 1) + p(1, 2) + p(2, 1) + p(2, 2)

= 0.034 + 0.134 + 0.066 + 0.266 = 0.5.

(b) P(Y = 1) = pY(1) is the sum of p(xi, yi) for all (xi, yi) such that yi = 1. This
condition is satisfied for the (x, y) pairs (1, 1), (2, 1) and (3, 1). Thus,

pY(1) = 0.034 + 0.066 + 0.100 = 0.2,

which also follows by a direct application of (4.2.3). In terms of Figure 4-1,
pY(1) is the height of the block obtained by stacking the three light-colored
blocks. Similarly,

pY(2) = 0.134 + 0.266 + 0.400 = 0.8,

which is the height of the block formed by stacking the three dark-colored
blocks in Figure 4-1.

By the formula in (4.2.3), the marginal PMF of X in the above example is found
by summing the rows in the joint PMF table:

pX(1) = 0.034 + 0.134 = 0.168, pX(2) = 0.066 + 0.266 = 0.332,

pX(3) = 0.1 + 0.4 = 0.5.

The table below reproduces the joint PMF of Example 4.2-1 and has an addi-
tional column on the right to display the PMF of X as well as an additional row at
the bottom to display the PMF of Y.

y

p(x, y) 1 2 pX (x)

1 0.034 0.134 0.168

x 2 0.066 0.266 0.332

3 0.100 0.400 0.500

pY (y) 0.200 0.800 1.000

This method of displaying the marginal PMFs, that is, in the margins of the joint
PMF table, justifies their name.

If X1, X2, . . . , Xm are jointly discrete, their joint or multivariate PMF is
defined as

p(x1, x2, . . . , xn) = P(X1 = x1, X2 = x2, . . . , Xn = xn).

Example
4.2-2

In a batch of 12 laser diodes, three have efficiency below 0.28, four have efficiency
between 0.28 and 0.35, and five have efficiency above 0.35. Three diodes are selected
at random and without replacement. Let X1, X2, and X3 denote, respectively, the
number of diodes with efficiency below 0.28, between 0.28 and 0.35, and above 0.35
in the sample. Find the joint PMF of X1, X2, and X3, and the marginal PMF of X1.
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Solution
The sample space of this experiment consists of triplets (x1, x2, x3) of nonnegative
integers satisfying x1 + x2 + x3 = 3. Because all samples of size three are equally
likely, application of the Generalized Fundamental Principle of Counting yields the
following probabilities

p(0, 0, 3) =
(3

0
)(4

0
)(5

3
)

(12
3
) = 10

220
, p(0, 1, 2) =

(3
0
)(4

1
)(5

2
)

(12
3
) = 40

220

p(0, 2, 1) =
(3

0
)(4

2
)(5

1
)

(12
3
) = 30

220
, p(0, 3, 0) =

(3
0
)(4

3
)(5

0
)

(12
3
) = 4

220

p(1, 0, 2) =
(3

1
)(4

0
)(5

2
)

(12
3
) = 30

220
, p(1, 1, 1) =

(3
1
)(4

1
)(5

1
)

(12
3
) = 60

220

p(1, 2, 0) =
(3

1
)(4

2
)(5

0
)

(12
3
) = 18

220
, p(2, 0, 1) =

(3
2
)(4

0
)(5

1
)

(12
3
) = 15

220

p(2, 1, 0) =
(3

2
)(4

1
)(5

0
)

(12
3
) = 12

220
, p(3, 0, 0) =

(3
3
)(4

0
)(5

0
)

(12
3
) = 1

220
.

By analogy to the formula (4.2.3), P(X1 = 0) = pX1(0) is the sum of p(x1, x2, x3) for
all (x1, x2, x3) such that x1 = 0. This condition is satisfied for the (x1, x2, x3) triplets
(0, 0, 3), (0, 1, 2), (0, 2, 1), (0, 3, 0). Thus,

pX1 (0) = 10
220

+ 40
220

+ 30
220

+ 4
220

= 84
220

.

Similarly, we obtain

pX1 (1) = 30
220

+ 60
220

+ 18
220

= 108
220

,

pX1 (2) = 15
220

+ 12
220

= 27
220

,

pX1 (3) = 1
220

.

In the above example, the random variable X1 = {the number of diodes with effi-
ciency below 0.28} in a simple random sample of size three, taken from 12 diodes
only three of which have efficiency below 0.28, is hypergeometric(3, 9, 3). The R
command dhyper(0:3, 3, 9, 3) returns 0.381818182, 0.490909091, 0.122727273, and
0.004545455 for the PMF of X1, which confirms the PMF found in Example 4.2-2.

4.2.2 THE JOINT AND MARGINAL PDF

Definition 4.2-2
The joint or bivariate density function of the jointly continuous random vari-
ables X and Y is a nonnegative function f (x, y) with the property that the
probability that (X, Y) will take a value in a region A of the x-y plane equals
the volume under the surface defined by f (x, y) and above the region A.
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Since the volume under a surface is found by integration, we have

Volume Under the
Entire Surface Defined

by f(x, y) Is 1

∫ ∞

−∞

∫ ∞

−∞
f (x, y) dx dy = 1 (4.2.4)

and the probability that (X, Y) will take a value in a region A of the plane is

Probability that
(X, Y) Lies in the

Region A
P((X, Y) ∈ A) =

∫ ∫

A
f (x, y) dx dy (4.2.5)

Taking A to be the rectangle A = (a, b] × (c, d] = {(x, y) : a < x ≤ b, c < y ≤ d}
we obtain

Probability of (X, Y)
Lying in a Rectangle P(a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ b

a

∫ d

c
f (x, y) dy dx (4.2.6)

Finally, the marginal PDFs of X and Y are obtained from their joint PDF as

Obtaining the
Marginal PDFs from

the Joint PDF

fX(x) =
∫ ∞

−∞
f (x, y) dy,

fY(y) =
∫ ∞

−∞
f (x, y) dx

(4.2.7)

Example
4.2-3

Consider the bivariate density function

f (x, y) =
{

12
7 (x2 + xy) 0 ≤ x, y ≤ 1

0 otherwise.

(a) Find the probability that X > Y.
(b) Find the probability that X ≤ 0.6 and Y ≤ 0.4.
(c) Find the marginal PDF of X and Y.

Solution
(a) The desired probability can be found by integrating f over the region A =

{(x, y) : 0 ≤ y ≤ x ≤ 1}. Note that A is not a rectangle, so we use (4.2.5):

P(X > Y) = 12
7

∫ 1

0

∫ x

0
(x2 + xy) dy dx = 9

14
.

(b) Using (4.2.6) we have

P(X ≤ 0.6, Y ≤ 0.4) = 12
7

∫ 0.6

0

∫ 0.4

0
(x2 + xy) dy dx = 0.0741.

(c) Using (4.2.7), we have that for 0 ≤ x ≤ 1,

fX(x) =
∫ 1

0

12
7

(x2 + xy)dy = 12
7

x2 + 6
7

x,
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and fX(x) = 0 for x not in [0, 1]. Similarly, the marginal PDF of Y is given by

fY(y) =
∫ 1

0

12
7

(x2 + xy)dx = 4
7

+ 6
7

y

for 0 ≤ y ≤ 1, and fY(y) = 0 for y not in [0, 1].

The joint or multivariate probability density function of the continuous
(X1, X2, . . . , Xn) is a nonnegative function f (x1, x2, . . . , xn) such that

∫ ∞

−∞
· · ·

∫ ∞

−∞
f (x1, x2, . . . , xn) dx1 · · · dxn = 1 and

P((X1, X2, . . . , Xn) ∈ B) =
∫

· · ·
∫

B
f (x1, x2, . . . , xn) dx1 · · · dxn, (4.2.8)

where B is a region in n-dimensional space. A formula analogous to (4.2.7) exists in
the multivariate case, and its use is demonstrated in the following example.

Example
4.2-4

Let X1, X2, X3 have the joint PDF given by

f (x1, x2, x3) = e−x1 e−x2 e−x3 for x1 > 0, x2 > 0, x3 > 0,

and f (x1, x2, x3) = 0 if one or more of the xi is negative.

(a) Find an expression for P(X1 ≤ t1, X2 ≤ t2).
(b) Find FX1 (t1), the marginal CDF of X1.
(c) Find fX1(t1), the marginal PDF of X1.

Solution
(a) Because the event X1 ≤ t1 and X2 ≤ t2 is equivalent to the event 0 ≤ X1 ≤ t1,

0 ≤ X2 ≤ t2, and 0 ≤ X3 ≤ ∞, it follows that

P(X1 ≤ t1, X2 ≤ t2) =
∫ t1

0

∫ t2

0

∫ ∞

0
e−x1 e−x2 e−x3 dx3 dx2 dx1

=
∫ t1

0
e−x1 dx1

∫ t2

0
e−x2 dx2

∫ ∞

0
e−x3 dx3 = (1 − e−t1 )(1 − e−t2 ).

(b) Because the event X1 ≤ t1 is equivalent to the event 0 ≤ X1 ≤ t1, 0 ≤ X2 ≤ ∞,
and 0 ≤ X3 ≤ ∞, and FX1(t1) = P(X1 ≤ t1), it follows that

FX1 (t1) =
∫ t1

0

∫ ∞

0

∫ ∞

0
e−x1 e−x2 e−x3 dx3 dx2 dx1 = 1 − e−t1 .

(c) The marginal PDF of X1 can be obtained by differentiating its marginal CDF.
This gives fX1(t1) = e−t1 . Alternatively, by the formula analogous to (4.2.7),

fX1(x1) =
∫ ∞

0

∫ ∞

0
e−x1 e−x2 e−x3 dx3 dx2 = e−x1 .
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Exercises

1. Let X be the number of daily purchases of a luxury
item from a factory outlet location and Y be the daily
number of purchases made online. Let the values 1, 2,
and 3 denote the number of purchases less than five, at
least five but less than 15, and 15 or more, respectively.
Suppose the joint PMF of X and Y is

y

p(x, y) 1 2 3

1 0.09 0.12 0.13

x 2 0.12 0.11 0.11

3 0.13 0.10 0.09

(a) Find the probability of each of the events
(X > 1, Y > 2), (X > 1 or Y > 2), and (X > 2, Y > 2).
(Hint. List the outcomes, i.e., the (x, y)-values, that
comprise each event and sum the corresponding
probabilities.)

(b) Find the marginal PMF of X and that of Y.

2. The joint PMF of X, the amount of drug administered
to a randomly selected laboratory rat, and Y, the number
of tumors the rat develops, is

y

p(x, y) 0 1 2

0.0 0.388 0.009 0.003

x 1.0 0.485 0.010 0.005

2.0 0.090 0.006 0.004

(a) Find the marginal PMF of X and that of Y.
(b) What is the probability that a randomly selected rat

has (i) one tumor, (ii) at least one tumor?
(c) Given that a randomly selected rat has received the

1.0 mg/kg drug dosage, what is the probability that it
has (i) no tumor, (ii) at least one tumor?

3. A local diner offers entrees in three prices, $8.00,
$10.00, and $12.00. Diner customers are known to tip
either $1.50, $2.00, or $2.50 per meal. Let X denote the
price of the meal ordered, and Y denote the tip left, by a
random customer. The joint PMF of X and Y is

y

p(x, y) $1.50 $2.00 $2.50

$8.00 0.3 0.12 0

x $10.00 0.15 0.135 0.025

$12.00 0.03 0.15 0.09

(a) Find P(X ≤ 10, Y ≤ 2) and P(X ≤ 10, Y = 2).
(b) Compute the marginal PMFs of X and Y.
(c) Given that a customer has left a tip of $2.00, find the

probability that the customer ordered a meal of $10.00
or less.

4. The joint cumulative distribution function, or joint
CDF, of the random variables X and Y is defined as
F(x, y) = P(X ≤ x, Y ≤ y). Let X and Y be the random
variables of Exercise 1.
(a) Make a table for the F(x, y) at the possible (x, y)

values that (X, Y) takes.
(b) The marginal CDFs of X and Y can be obtained from

their joint CDF as FX(x) = F(x, ∞), and FY(y) =
F(∞, y). Use these formulas to find the marginal
CDFs of X and Y.

(c) It can be shown that the joint PMF can be obtained
from the joint CDF as

P(X = x, Y = y) = F(x, y) − F(x, y − 1)

−F(x − 1, y) + F(x − 1, y − 1).

(This is more complicated than the formula P(X =
x) = FX(x) − FX(x − 1) for the univariate case!) Use
this formula to compute P(X = 2, Y = 2), and con-
firm your answer from the PMF given in Exercise 1.

5. Let X1, X2, and X3 denote the number of customers
in line for self checkout, for regular checkout, and for
express (15 items of less) checkout, respectively. Let the
values 0, 1, and 2 denote zero customers, one customer,
and two or more customers, respectively. Suppose the
joint PMF, p(x1, x2, x3), of (X1, X2, X3) is given in the
table below. Find the marginal PMFs of X1, X2, and X3.

p(0, x2, x3) p(1, x2, x3) p(2, x2, x3)

x3 x3 x3

1 2 3 1 2 3 1 2 3

0 0.030 0.027 0.024 0.030 0.027 0.024 0.040 0.036 0.032

x2 1 0.033 0.042 0.039 0.033 0.042 0.039 0.044 0.056 0.052

2 0.024 0.033 0.048 0.024 0.033 0.048 0.032 0.044 0.064

6. When being tested, an integrated circuit (IC) is con-
sidered as a black box that performs certain designed
functions. Four ICs will be randomly selected from a
shipment of 15 and will be tested for static voltages,
external components associated with the IC, and dynamic
operation. Let X1, X2, and X3 be the number of ICs
in the sample that fail the first, second, and third test,
respectively, and X4 be the number of ICs in the sam-
ple that do not fail any of the tests. Suppose that, if
tested, three of the 15 ICs would fail only the first test,
two would fail only the second test, one would fail only
the third test, and nine would not fail any of the three
tests.
(a) Specify the sample space of (X1, . . . , X4).
(b) Find the joint PMF of X1, X2, and X3.
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7. Let the random variables X and Y have the joint PDF
given below:

f (x, y) = kxy2 for 0 ≤ x ≤ 2, x ≤ y ≤ 3.

(a) Find the constant k. (Hint. Use the property that
the volume under the entire surface defined by
f (x, y) is 1.)

(b) Find the joint CDF of X and Y.

8. Let the random variables X and Y have the joint PDF
given below:

f (x, y) =
{

2e−x−y 0 ≤ x ≤ y < ∞
0 otherwise.

(a) Find P(X + Y ≤ 3).
(b) Find the marginal PDFs of Y and X.

4.3 Conditional Distributions
4.3.1 CONDITIONAL PROBABILITY MASS FUNCTIONS

For jointly discrete (X, Y), the concept of a conditional PMF is an extension of the
concept of conditional probability of an event. If x is one of the possible values
that X can take, then the conditional probability that Y takes the value y given that
X = x is

P(Y = y|X = x) = P(X = x, Y = y)
P(X = x)

= p(x, y)
pX(x)

.

The above relation follows simply from the definition of conditional probability, but
when we think of it as a function of y, with y ranging in the sample space SY of Y,
while keeping x fixed, we call it the conditional PMF of Y given the information
that X = x:

Definition of
Conditional PMF
of Y given X = x

pY|X=x(y) = p(x, y)
pX(x)

, y ∈ SY (4.3.1)

for pX(x) > 0. Similarly, the conditional PMF of X given Y = y is defined as
pX|Y=y(x) = p(x, y)/pY(y), x ∈ SX , for pY(y) > 0.

If the joint PMF of (X, Y) is given in a table form, pY|X=x(y) is found by dividing
the joint probabilities in the row that corresponds to x by the marginal probability
that X = x.

Example
4.3-1

A robot performs two tasks, welding joints and tightening bolts. Let X be the number
of defective welds and Y be the number of improperly tightened bolts per car. The
joint and marginal PMFs of X and Y are given in the table below:

y

p(x, y) 0 1 2 3 pX (x)

0 0.84 0.03 0.02 0.01 0.9

x 1 0.06 0.01 0.008 0.002 0.08

2 0.01 0.005 0.004 0.001 0.02

pY (y) 0.91 0.045 0.032 0.013 1.0

Find the conditional PMF of Y given X = 0.

Solution
The conditional PMF of Y given X = 0 is obtained by dividing each joint probability
in the row that corresponds to x = 0 by the marginal probability that X = 0:
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y 0 1 2 3

pY |X=0(y) 0.9333 0.0333 0.0222 0.0111
.

The next example illustrates the computation of conditional PMFs without the
use of a table of joint probabilities.

Example
4.3-2

Let X(t) be a Poisson process with rate α. Find the conditional PMF of X(0.6) given
X(1) = n (i.e., given that there are n occurrences in the time period [0, 1]).

Solution
Because 0 ≤ X(0.6) ≤ X(1), and we are given that X(1) = n, it follows that the
possible values of X(0.6) are 0, 1, . . . , n. For m = 0, 1, . . . , n, we have

P(X(0.6) = m|X(1) = n) = P(X(0.6) = m, X(1) − X(0.6) = n − m)
P(X(1) = n)

. (4.3.2)

By the properties of Poisson processes, the events [X(0.6) = m] and [X(1)−X(0.6) =
n − m] are independent. Moreover, X(0.6) ∼ Poisson(α × 0.6) and, according to
Proposition 3.4-2, part (b), X(1)−X(0.6) ∼ Poisson(α(1−0.6)). Thus, the numerator
of (4.3.2) becomes

e−α×0.6 (α × 0.6)m

m! e−α×(1−0.6) (α × (1 − 0.6))n−m

(n − m)! = e−ααn

m!(n − m)!0.6m(1 − 0.6)n−m.

Finally, the denominator of (4.3.2) is e−ααn/n!. Hence,

P(X(0.6) = m|X(1) = n) =
(

n
m

)
0.6m(1 − 0.6)n−m,

which is the Bin(n, 0.6) PMF.

A conditional PMF is a proper PMF and, as such, it has the same basic
properties:

Basic Properties of
Conditional PMFs

pY|X=x(y) ≥ 0, y ∈ SY , and
∑

y
pY|X=x(y) = 1. (4.3.3)

Because a conditional PMF is a proper PMF, it makes sense to consider the condi-
tional expected value and the conditional variance of, say, Y when the value of X is
given.

Example
4.3-3

Let X and Y be as in Example 4.3-1. The conditional PMF of Y given X = 0 was
found there to be

y 0 1 2 3

pY |X=0(y) 0.9333 0.0333 0.0222 0.0111

Calculate the conditional expected value and variance of Y given that X = 0.
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Solution
The conditional expected value of Y given X = 0 is

E(Y|X = 0) = 0 × (0.9333) + 1 × (0.0333) + 2 × (0.0222) + 3 × (0.0222) = 0.111.

To compute the conditional variance, Var(Y|X = 0), we first compute

E(Y2|X = 0) = 0 × (0.9333) + 1 × (0.0333) + 4 × (0.0222) + 9 × (0.0222) = 0.222,

Thus, using Var(Y|X = 0) = E(Y2|X = 0) − [E(Y|X = 0)]2, we obtain

Var(Y|X = 0) = 0.222 − (0.111)2 = 0.2097.

The definition of conditional PMF is equivalent to the relation

Multiplication Rule
for Joint Probabilities p(x, y) = pY|X=x(y)pX(x) (4.3.4)

which is a direct analogue of the multiplication rule (2.5.3). Using (4.3.4), the formula
(4.2.3) for the marginal PMF of Y can be written as

Law of Total
Probability for
Marginal PMFs

pY(y) =
∑

x ∈ SX

pY|X=x(y)pX(x) (4.3.5)

which is a version of the Law of Total Probability (2.5.7).

Example
4.3-4

Let X take the value 0, 1, or 2 depending on whether there are no customers,
between 1 and 10 customers, and more than 10 customers in the regular (manned)
checkout lines of a supermarket. Let Y be the corresponding variable for the self
checkout lines. An extensive study undertaken by the management team of the
supermarket resulted in the following conditional distributions of Y given X = x,
and the marginal distribution of X:

y 0 1 2

pY |X=0(y) 0.85 0.10 0.05

pY |X=1(y) 0.30 0.45 0.25

pY |X=2(y) 0.20 0.35 0.45

x 0 1 2

pX (x) 0.20 0.50 0.30

(a) Use the Law of Total Probability to find the marginal PMF of Y.
(b) Use the multiplication rule for joint probabilities to tabulate the joint distribu-

tion of X and Y.

Solution
(a) According to formula (4.3.5), pY(y) is found by multiplying the entries in the y

column of the table by the corresponding entry in the marginal PMF of X and
summing the products. Thus, pY(0) is found by multiplying 0.85, 0.3, and 0.2 by
0.2, 0.5, and 0.3, respectively, and summing the products:

pY(0) = 0.85 × 0.2 + 0.3 × 0.5 + 0.2 × 0.3 = 0.38.
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Similarly, pY(1) = 0.1 × 0.2 + 0.45 × 0.5 + 0.35 × 0.3 = 0.35 and pY(2) =
0.05 × 0.2 + 0.25 × 0.5 + 0.45 × 0.3 = 0.27.

(b) According to formula (4.3.4), the x-row in the table of joint probabilities, that
is, p(x, y) for y = 0, 1, 2, is found by multiplying the pY|X=x(y)-row in the table
of conditional probabilities by pX(x). Thus, the pY|X=0(y)-row is multiplied by
0.2, the pY|X=1(y)-row is multiplied by 0.5 and the pY|X=2(y)-row is multiplied
by 0.3:

y

p(x, y) 0 1 2

0 0.170 0.020 0.010

x 1 0.150 0.225 0.125

2 0.060 0.105 0.135

4.3.2 CONDITIONAL PROBABILITY DENSITY FUNCTIONS

In analogy with the definition in the discrete case, if (X, Y) are continuous with the
joint PDF f , and marginal PDFs fX , fY , the conditional PDF of Y given X = x is
defined to be

Definition of the
Conditional PDF of Y

Given X = x
fY|X=x(y) = f (x, y)

fX(x)
(4.3.6)

if fX(x) > 0. Similarly, the conditional PDF of X given Y = y is defined as
fX|Y=y(x) = f (x, y)/fY(y), x ∈ SX , for fY(y) > 0.

Example
4.3-5

The joint PDF of X and Y is f (x, y) = 0 if either x or y is < 0, and

f (x, y) = e−x/ye−y

y
for x > 0, y > 0.

Find fX|Y=y(x).

Solution
The marginal PDF of Y is

fY(y) =
∫ ∞

0

1
y

e−x/ye−ydx = e−y
∫ ∞

0

1
y

e−x/ydx = e−y

for y > 0, and fY(y) = 0 otherwise. Thus, for y > 0,

fX|Y=y(x) = f (x, y)
fY(y)

= 1
y

e−x/y for x > 0,

and fX|Y=y(x) = 0 otherwise.

The conditional PDF is a proper PDF and, as such, it has the same basic
properties: fY|X=x(y) ≥ 0, and
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Conditional
Probabilities in

Terms of the
Conditional PDF

P(a < Y < b|X = x) =
∫ b

a
fY|X=x(y) dy. (4.3.7)

Thus, as in the discrete case, it makes sense to consider the conditional expected
value and the conditional variance of Y given that X = x.

A remarkable aspect of relation (4.3.7) should not go unnoticed: The definition
of conditional probabilities given in Chapter 2, namely P(B|A) = P(B ∩ A)/P(A),
requires P(A) > 0. If P(A) = 0, the definition does not apply. As we have seen, when
X is continuous, P(X = x) = 0 for any value x. Thus, the conditional probability
P(a < Y < b|X = x) cannot be evaluated according to the definition given in
Chapter 2.

Example
4.3-6

Let X, Y have the joint PDF given in Example 4.3-5.

(a) Find P(X > 1|Y = 3).
(b) Find the conditional mean and variance of X given that Y = 3.

Solution
(a) According to Example 4.3-5, fX|Y=3(x) = 3−1e−x/3 for x > 0. Thus,

P(X > 1|Y = 3) =
∫ ∞

1

1
3

e−x/3 dx = e−1/3.

Alternatively, the same answer can be obtained by recognizing fX|Y=3(x) as
the PDF of the exponential distribution with parameter λ = 1/3, and using the
formula for the exponential CDF given in (3.5.1).

(b) The conditional expected value of X given Y = 3 is

E(X|Y = 3) =
∫ ∞

−∞
xfX|Y=y(x) dx =

∫ ∞

0
x

1
3

e−x/3 dx = 3.

Alternatively, the same result can be obtained by applying directly the formula
for the mean value of the exponential distribution given in (3.5.2). The formula
for the variance of the exponential distribution given in the same relation yields
Var(X|Y = 3) = 9.

The definition of the conditional PDF is equivalent to the relation

Multiplication Rule
for Joint PDFs f (x, y) = fY|X=x(y)fX(x) (4.3.8)

which is the continuous variable version of the multiplication rule. Using (4.3.8), the
formula (4.2.7) for the marginal PDF of Y can be written as

Law of Total
Probability for
Marginal PDFs

fY(y) =
∫ ∞

−∞
fY|X=x(y)fX(x)dx (4.3.9)
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Example
4.3-7

Let X be the force (in hundreds of pounds) applied to a randomly selected beam
and Y the time to failure of the beam. Suppose that the PDF of X is

fX(x) = 1
log(6) − log(5)

1
x

for 5 ≤ x ≤ 6

and zero otherwise, and that the conditional distribution of Y, given that a force
X = x is applied, is exponential(λ = x). Thus,

fY|X=x(y) = xe−xy for y ≥ 0,

and fY|X=x(y) = 0 for y < 0. Find the joint PDF of (X, Y), and the marginal PDF
of Y.

Solution
Using the multiplication rule for joint probabilities given in (4.3.8),

f (x, y) = fY|X=x(y)fX(x) = 1
log(6) − log(5)

e−xy.

Next, using the Law of Total Probability for marginal PDFs given in (4.3.9),

fY(y) =
∫ ∞

−∞
f (x, y) dx =

∫ 6

5

1
log(6) − log(5)

e−xy dx

= 1
log(6) − log(5)

1
y

(
e−5y − e−6y

)

for y ≥ 0, and fY(y) = 0 otherwise.

4.3.3 THE REGRESSION FUNCTION

The conditional expected value of Y given that X = x,

µY|X(x) = E(Y|X = x), (4.3.10)

when considered as a function of x, is called the regression function of Y on
X. Thus, “regression function” is synonymous to conditional mean value function.
Formulas for calculating the regression function for discrete and continuous random
variables are

Regression
Function for Jointly

Discrete (X, Y)

µY|X(x) =
∑

y∈SY

ypY|X=x(y), x ∈ SX (4.3.11)

Regression
Function for Jointly
Continuous (X, Y)

µY|X(x) =
∫ ∞

−∞
yfY|X=x(y) dy, x ∈ SX (4.3.12)
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Example
4.3-8

Let X and Y be as in Example 4.3-4. Find the regression function of Y on X.

Solution
Using the conditional PMFs of Y given X = x, given in Example 4.3-4, we have

E(Y|X = 0) =
2∑

y=0

ypY|X=0(y) = 0 × 0.85 + 1 × 0.10 + 2 × 0.05 = 0.2,

E(Y|X = 1) =
2∑

y=0

ypY|X=1(y) = 0 × 0.30 + 1 × 0.45 + 2 × 0.25 = 0.95,

E(Y|X = 2) =
2∑

y=0

ypY|X=2(y) = 0 × 0.20 + 1 × 0.35 + 2 × 0.45 = 1.25.

Thus, in a table form, the regression function of Y on X is:

x 0 1 2

µY |X (x) 0.2 0.95 1.25

The information that this regression function makes visually apparent, and that was
not easily discernable from the joint probability mass function, is that if the regular
checkout lines are long, you can expect long self-checkout lines as well.

Example
4.3-9

Suppose (X, Y) have joint PDF

f (x, y) =
{

24xy 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x + y ≤ 1

0 otherwise.

Find the regression function of Y on X.

Solution
The marginal PDF of X is

fX(x) =
∫ 1−x

0
24xy dy = 12x(1 − x)2

for 0 ≤ x ≤ 1 and zero otherwise. This gives

fY|X=x(y) = f (x, y)
fX(x)

= 2
y

(1 − x)2 .

Thus, E(Y|X = x) =
∫ 1−x

0 yfY|X=x(y) dy = 2
3 (1 − x).

As a consequence of the Law of Total Probability for marginal PMFs and PDFs,
given in (4.3.5) and (4.3.9), respectively, the expected value of Y can be obtained
as the expected value of the regression function. This is called the Law of Total
Expectation.
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Law of Total
Expectation

E(Y) = E[E(Y|X)] (4.3.13)

Explicit formulas for discrete and continuous random variables are as follows:

Law of Total
Expectation for

Discrete Random
Variables

E(Y) =
∑

x ∈SX

E(Y|X = x)pX(x) (4.3.14)

Law of Total
Expectation for

Continuous Random
Variables

E(Y) =
∫ ∞

−∞
E(Y|X = x)fX(x) dx (4.3.15)

Example
4.3-10

Use the regression function of Y on X and the marginal PMF of X,

x 0 1 2
µY |X (x) 0.2 0.95 1.25

and x 0 1 2
pX (x) 0.2 0.5 0.3

which were given in Examples 4.3-8 and 4.3-4, respectively, in order to find E(Y).

Solution
Using the formula in (4.3.14), we have

E(Y) = E(Y|X = 0)pX(0) + E(Y|X = 1)pX(1) + E(Y|X = 2)pX(2)

= 0.2 × 0.2 + 0.95 × 0.5 + 1.25 × 0.3 = 0.89.

Of course, we obtain the same result using the marginal distribution of Y, which is
found in Example 4.3-4: E(Y) = 0 × 0.38 + 1 × 0.35 + 2 × 0.27 = 0.89.

Example
4.3-11

Use the regression function of Y on X, and the marginal PDF of X,

E(Y|X = x) = 2
3

(1 − x) and fX(x) = 12x(1 − x)2, 0 ≤ x ≤ 1,

which were found in Example 4.3-9, in order to find E(Y).

Solution
Using the formula in (4.3.15), we have

E(Y) =
∫ 1

0

2
3

(1 − x)12x(1 − x)2 dx = 24
3

∫ 1

0
x(1 − x)3 dx.

The R commands f=function(x){x*(1-x)**3}; integrate(f, 0, 1) give 0.05 for the value
of the above integral. Thus, E(Y) = 0.4.

The following example shows that the Law of Total Expectation, (4.3.13), can be
applied without knowledge of the marginal PMF or PDF of X, that is, without use
of (4.3.14) or (4.3.15).
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Example
4.3-12

Let Y denote the age of a tree, and let X denote the tree’s diameter at breast height.
Suppose that, for a particular type of tree, the regression function of Y on X is
µY|X(x) = 5 + 0.33x and that the average diameter of such trees in a given forested
area is 45 cm. Find the mean age of this type of tree in the given forested area.

Solution
According to the Law of Total Expectation, given in (4.3.13), and the property of
expected values given in part (3) of Proposition 3.3-1, we have

E(Y) = E[E(Y|X)] = E(5 + 0.33X) = 5 + 0.33E(X) = 5 + 0.33 × 45 = 19.85.

An interesting variation of the Law of Total Expectation occurs when Y is a
Bernoulli random variable, that is, it takes the value 1 whenever an event B happens
and zero otherwise. In this case we have E(Y) = P(B) and, similarly, E(Y|X = x) =
P(B|X = x). Hence, in this case, (4.3.14) and (4.3.15) can be written as

P(B) =
∑

x ∈SX

P(B|X = x)pX(x) and P(B) =
∫ ∞

−∞
P(B|X = x)fX(x) dx (4.3.16)

The first expression in (4.3.16) is just the Law of Total Probability; see (2.5.7).

4.3.4 INDEPENDENCE

The notion of independence of random variables is an extension of the notion of
independence of events. The random variables X and Y are independent if any event
defined in terms of X is independent of any event defined in terms of Y. In particu-
lar, X and Y are independent if the events [X ≤ x] and [Y ≤ y] are independent for
all x and y, that is, if

Definition of
Independence of Two

Random Variables
P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B) (4.3.17)

holds for any two sets (subsets of the real line) A and B.

Proposition
4.3-1

1. The jointly discrete random variables X and Y are independent if and only if

Condition for
Independence of Two

Discrete Random Variables
pX, Y(x, y) = pX(x)pY(y) (4.3.18)

holds for all x, y, where pX, Y is the joint PMF of (X, Y) and pX , pY are the
marginal PMFs of X, Y, respectively.

2. The jointly continuous random variables X and Y are independent if and only if
Condition for

Independence of Two
Continuous Random

Variables
fX, Y(x, y) = fX(x)fY(y) (4.3.19)

holds for all x, y, where fX, Y is the joint PDF of (X, Y) and fX , fY are the
marginal PDFs of X, Y, respectively. "
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Example
4.3-13

Consider the joint distribution of the two types of errors, X and Y, a robot makes,
as given in Example 4.3-1. Are X, Y independent?

Solution
Using the table that displays the joint and marginal PMFs given in Example 4.3-1 we
have

p(0, 0) = 0.84 ̸= pX(0)pY(0) = (0.9)(0.91) = 0.819.

This suffices to conclude that X and Y are not independent.

If the jointly discrete X and Y are independent then, by part (1) of Proposition
4.3-1,

p(x, y) = pY(y)pX(x).

On the other hand, the multiplication rule for joint PMFs states that

p(x, y) = pY|X=x(y)pX(x)

is always true. Thus, when X and Y are independent it must be that pY(y) =
pY|X=x(y) for all x in the sample space of X. Similarly, if the jointly continuous X
and Y are independent then, by part (2) of Proposition 4.3-1 and the multiplication
rule for joint PDFs (4.3.8), fY(y) = fY|X=x(y). This argument is the basis for the
following result.

Proposition
4.3-2

If X and Y are jointly discrete, each of the following statements implies, and is
implied by, their independence.

1. pY|X=x(y) = pY(y).
2. pY|X=x(y) does not depend on x, that is, is the same for all possible values of X.
3. pX|Y=y(x) = pX(x).
4. pX|Y=y(x) does not depend on y, that is, is the same for all possible values of Y.

Each of the above statements with PDFs replacing PMFs implies, and is implied by,
the independence of the jointly continuous X and Y. "

Example
4.3-14

A system is made up of two components, A and B, connected in parallel. Let X
take the value 1 or 0 if component A works or not, and Y take the value 1 or 0 if
component B works or not. From the repair history of the system it is known that
the conditional PMFs of Y given X = 0 and X = 1 are

y

0 1

pY |X=0(y) 0.01 0.99

pY |X=1(y) 0.01 0.99

Are X and Y independent?

Solution
From the table of conditional probabilities, it is seen that the conditional PMF of
Y given X = 0 is the same as its conditional PMF given X = 1. By part (2) of
Proposition 4.3-2, we conclude that X and Y are independent.
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Example
4.3-15

For a cylinder selected at random from the production line, let X be the cylinder’s
height and Y the cylinder’s radius. Suppose X, Y have a joint PDF

f (x, y) =

⎧
⎨

⎩

3
8

x
y2 if 1 ≤ x ≤ 3,

1
2

≤ y ≤ 3
4

0 otherwise.

Are X and Y independent?

Solution
The marginal PDF of X is

fX(x) =
∫ ∞

−∞
f (x, y) dy =

∫ .75

.5

(
3
8

x
y2

)
dy = x

4

for 1 ≤ x ≤ 3 and zero otherwise. The marginal PDF of Y is

fY(y) =
∫ ∞

−∞
f (x, y) dx =

∫ 3

1

(
3
8

x
y2

)
dx = 3

2
1
y2

for 0.5 ≤ y ≤ 0.75 and zero otherwise. Since

f (x, y) = fX(x)fY(y),

we conclude that X and Y are independent.

It is instructive to also consider the conditional PDF of Y given X = x, which is

fY|X=x(y) = f (x, y)
fX(x)

= 3
2

1
y2

for 0.5 ≤ y ≤ 0.75 and zero otherwise. It is seen that this expression does not depend
on the value x; in fact it is seen that fY|X=x(y) = fY(y). Thus, by the PDF version
of either part (1) or part (2) of Proposition 4.3-2, we again conclude that X, Y are
independent.

In Example 4.3-15 the joint PDF can be written as f (x, y) = g(x)h(y), where
g(x) = (3/8)x for 1 ≤ x ≤ 3 and zero otherwise and h(y) = 1/y2 for 0.5 ≤ y ≤ 0.75
and zero otherwise. In such cases, one may conclude that X and Y are independent
without finding their marginal PDFs; see Exercise 12.

The following proposition summarizes some important properties of indepen-
dent random variables.

Proposition
4.3-3

Let X and Y be independent. Then,

1. The regression function E(Y|X = x) of Y on X is constant, that is, does not
depend on the value of X, and equals E(Y).

2. g(X) and h(Y) are independent for any functions g, h.
3. E(g(X)h(Y)) = E(g(X))E(h(Y)) holds for any functions g, h. "

Part (1) of Proposition 4.3-3 follows from the computational formulas (4.3.11)
and (4.3.12) of the regression function and Proposition 4.3-2, which asserts that if X
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and Y are independent the conditional distribution of Y given the value of X is the
same as the marginal distribution of Y. Part (2) is self-evident. Part (3) of Proposition
4.3-3 will also be shown in Example 4.4-4 of the next section, but it is instructive to
give here a proof based on the Law of Total Expectation. Using the form of the Law
given in (4.3.13), that is, E(Y) = E[E(Y|X)], with g(X)h(Y) in place of Y we have

E(g(X)h(Y)) = E[E(g(X)h(Y)|X)] = E[g(X)E(h(Y)|X)],

where the second equality holds by the fact that given the value of X, the value
of g(X) is also known and thus E(g(X)h(Y)|X) = g(X)E(h(Y)|X) follows from
part (3) of Proposition 3.3-1. Next, since X and h(Y) are also independent (as it
follows from part (2) of Proposition 4.3-3), the regression function E(h(Y)|X) of
h(Y) on X equals E(h(Y)), and one more application of part 3.3-1 of Proposition
3.3-1 yields

E[g(X)E(h(Y)|X)] = E[g(X)E(h(Y))] = E(g(X))E(h(Y)),

showing that E(g(X)h(Y)) = E(g(X))E(h(Y)).

Example
4.3-16

Consider the two-component system described in Example 4.3-14, and suppose that
the failure of component A incurs a cost of $500.00, while the failure of component
B incurs a cost of $750.00. Let CA and CB be the costs incurred by the failures of
components A and B, respectively. Are CA and CB independent?

Solution
The random variable CA takes values 500 and 0 depending on whether component
A fails or not. Thus, CA = 500(1 − X), where X takes the value 1 if component A
works and the value 0 of it does not. Similarly CB = 750(1 − Y), where Y takes
the value 1 or 0 if component B works or not. In Example 4.3-14 it was seen that X
and Y are independent. Thus, by part (2) of Proposition 4.3-3, CA and CB are also
independent.

Example
4.3-17

Let the height, X, and radius, Y, both measured in centimeters, of a cylinder ran-
domly selected from the production line have the joint PDF given in Example
4.3-15.

(a) Find the expected volume of a randomly selected cylinder.
(b) Let X1, Y1 be the height and radius of the cylinder expressed in inches. Are

X1 and Y1 independent?

Solution
(a) In Example 4.3-15 we saw that X and Y are independent with marginal PMFs

fX(x) = x/4 for 1 ≤ x ≤ 3 and zero otherwise, and fY(y) = 3/(2y2) for
0.5 ≤ y ≤ 0.75 and zero otherwise. Since the volume is given by πXY2, an
application of part (3) of Proposition 4.3-3 gives

E
[
πXY2

]
= πE(X)E(Y2)

= π

∫ 3

1
xfX(x) dx

∫ 0.75

0.5
y2fY(y) dy

= π
13
6

3
8

= π
13
16

.
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(b) Since X1 and Y1 are (linear) functions of X and Y, respectively, the indepen-
dence of X and Y implies that X1 and Y1 are also independent.

The concept of independence extends to several random variables in a straight-
forward manner. In particular, conditions (4.3.18) and (4.3.19) extend as follows: The
jointly discrete random variables X1, X2, . . . , Xn are independent if and only if

Condition for
Independence of
Several Discrete

Random Variables
p(x1, x2, . . . , xn) = pX1 (x1) · · · pXn (xn)

and the jointly continuous X1, X2, . . . , Xn are independent if and only if
Condition for

Independence of
Several Continuous
Random Variables

f (x1, x2, . . . , xn) = fX1(x1) · · · fXn (xn)

hold for all x1, . . . , xn. If X1, X2, . . . , Xn are independent and also have the same dis-
tribution (which is the case of a simple random sample from an infinite/hypothetical
population) they are called independent and identically distributed, or iid for short.

Exercises

1. Let X denote the monthly volume of book sales from
the online site of a bookstore, and let Y denote the
monthly volume of book sales from its brick and mortar
counterpart. The possible values of X and Y are 0, 1, or
2, in which 0 represents a volume that is below expecta-
tions, 1 represents a volume that meets expectations, and
2 represents a volume above expectations. The joint PMF
p(x, y) of (X, Y) appears in the table.

y

0 1 2

0 0.06 0.04 0.20

x 1 0.08 0.30 0.06

2 0.10 0.14 0.02

(a) Find the marginal PMFs of X and Y, and use them to
determine if X and Y are independent. Justify your
answer.

(b) Compute the conditional PMFs, pY|X=x(y), for x =
0, 1, 2, and use them to determine if X and Y are
independent. Justify your answer. (Hint. Proposition
4.3-2.)

(c) Compute the conditional variance, Var(Y|X = 1), of
Y given X = 1.

2. Let X, Y have the joint PMF given in Exercise 1.
(a) Find the regression function Y on X.
(b) Use the Law of Total Expectation to find E(Y).

3. Let X, Y be as in Exercise 3 in Section 4.2.
(a) Find the regression function Y on X.
(b) Use the Law of Total Expectation to find E(Y).
(c) Is the amount of tip left independent of the price

of the meal? Justify your answer in terms of the
regression function. (Hint. Use part (1) of Proposition
4.3-3.)

4. Consider the information given in Exercise 2 in
Section 4.2.
(a) What is the conditional PMF of the number of tumors

for a randomly selected rat in the 1.0 mg/kg drug
dosage group?

(b) Find the regression function of Y, the number of
tumors present on a randomly selected laboratory
rat, on X, the amount of drug administered to
the rat.

(c) Use the Law of Total Expectation to find
E(Y).

5. Let X take the value 0 if a child between 4 and 5 years
of age uses no seat belt, 1 if he or she uses a seat belt,
and 2 if it uses a child seat for short-distance car com-
mutes. Also, let Y take the value 0 if a child survived a
motor vehicle accident and 1 if he or she did not. Accident
records from a certain state suggest the following condi-
tional PMFs of Y given X = x and marginal distribution
of X:1

1 The effectiveness of seat belts in preventing fatalities is considered by the National Highway Traffic Safety
Administration; see http://www.nhtsa.gov/search?q=SEAT+BELT&x=25&y=4.

http://www.nhtsa.gov/search?q=SEAT+BELT&x=25&y=4
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y 0 1

pY |X=0(y) 0.69 0.31

pY |X=1(y) 0.85 0.15

pY |X=2(y) 0.84 0.16

x 0 1 2

pX (x) 0.54 0.17 0.29

(a) Use the table of conditional PMFs of Y given X = x
to conclude whether or not X and Y are independent.
Justify your answer.

(b) Make a table for the joint PMF of (X, Y), show-
ing also the marginal PMFs, and use it to conclude
whether or not X and Y are independent. Justify your
answer.

6. Consider the information given in Exercise 5.
(a) Find the regression function, µY|X(x), of Y on X.
(b) Use the Law of Total Expectation to find E(Y).

7. The moisture content of batches of a chemical sub-
stance is measured on a scale from 1 to 3, while the
impurity level is recorded as either low (1) or high (2).
Let X and Y denote the moisture content and the impu-
rity level of a randomly selected batch, respectively. Use
the information given in the table to answer parts (a)–(d).

y

1 2

pY |X=1(y) 0.66 0.34

pY |X=2(y) 0.80 0.20

pY |X=3(y) 0.66 0.34

x 1 2 3

P(X = x) 0.2 0.3 0.5

(a) Find E(Y|X = 1) and Var(Y|X = 1).
(b) Tabulate the joint PMF of X and Y.
(c) What is the probability that the next batch received

will have a low impurity level?
(d) Suppose the next batch has a low impurity level. What

is the probability that the level of its moisture content
is 1?

8. Consider the information given in Exercise 7.
(a) Find the regression function, µY|X(x), of Y on X.
(b) Use the Law of Total Expectation to find E(Y).

9. Let X be the force applied to a randomly selected
beam for 150 hours, and let Y take the value 1 or 0
depending on whether the beam fails or not. The random
variable X takes the values 4, 5, and 6 (in 100-lb units)
with probability 0.3, 0.5, and 0.2, respectively. Suppose
that the probability of failure when a force of X = x is
applied is

P(Y = 1|X = x) = (−0.8 + 0.04x)4

1 + (−0.8 + 0.04x)4

(a) Tabulate the joint PMF of X and Y. Are X and Y
independent?

(b) Find the average force applied to beams that fail
(E(X|Y = 1)), and the average force applied to
beams that do not fail (E(X|Y = 0)).

10. It is known that, with probability 0.6, a new laptop
owner will install a wireless Internet connection at home
within a month. Let X denote the number (in hundreds)
of new laptop owners in a week from a certain region, and
let Y denote the number among them who install a wire-
less connection at home within a month. Suppose that the
PMF of X is

x 0 1 2 3 4

pX (x) 0.1 0.2 0.3 0.25 0.15

(a) Argue that given X = x, Y ∼ Bin(n = x, p = 0.6), and
find the joint PMF of (X, Y).

(b) Find the regression function of Y on X.
(c) Use the Law of Total Expectation to find E(Y).

11. The joint PDF of X and Y is f (x, y) = x + y for 0 <
x < 1, 0 < y < 1, and f (x, y) otherwise.
(a) Find fY|X=x(y) and use it to compute P(0.3 < Y <

0.5|X = x).
(b) Use (4.3.16) to compute P(0.3 < Y < 0.5).

12. Criterion for independence. X and Y are indepen-
dent if and only if

fX,Y(x, y) = g(x)h(y) (4.3.20)

for some functions g and h (which need not be PDFs).
[An important point to keep in mind when applying this
criterion is that condition (4.3.20) implies that the region
of (x, y) values where f (x, y) is positive has to be a rectan-
gle, i.e., it has to be of the form a ≤ x ≤ b, c ≤ y ≤ d,
where a, c may also be −∞ and b, d may also be ∞.] Use
this criterion to determine if X and Y are independent in
each of the following cases.
(a) The joint PDF of X and Y is f (x, y) = 6e−2xe−3y for

0 < x < ∞, 0 < y < ∞ and zero otherwise.
(b) The joint PDF of X and Y is f (x, y) = 24xy for

0 < x + y < 1 and zero otherwise.

(c) The joint PDF of X and Y is f (x, y) = e−x/ye−y

y for
0 < x < ∞, 0 < y < ∞ and zero otherwise.

13. Let Ti, i = 1, 2, denote the first two interarrival
times of a Poisson process X(s), s ≥ 0, with rate α. (So,
according to Proposition 3.5-1, both T1 and T2 have an
exponential distribution with PDF f (t) = αe−αt, t > 0.)
Show that T1 and T2 are independent. (Hint. Argue that
P(T2 > t|T1 = s) = P(No events in (s, s + t]|T1 = s),
and use the third postulate in definition 3.4-1 of a Poisson
process to justify that it equals P(No events in (s, s + t]).
Express this as P(X(s + t) − X(s) = 0) and use part (2) of
Proposition 3.4-2 to obtain that it equals e−αt. This shows



180 Chapter 4 Jointly Distributed Random Variables

that P(T2 > t|T1 = s), and hence the conditional density
of T2 given T1 = s does not depend on s.)

14. During a typical Pennsylvania winter, potholes along
I80 occur according to a Poisson process averaging 1.6 per
10 miles. A certain county is responsible for repairing pot-
holes in a 30-mile stretch of I80. At the end of winter the
repair crew starts inspecting for potholes from one end of
the 30-mile stretch. Let T1 be the distance (in miles) to the
first pothole, and T2 the distance from the first pothole
the second one.
(a) If the first pothole found is 8 miles from the start, find

the probability that the second pothole will be found
between 14 and 19 miles from the start. (Hint. Argue
the desired probability is that of T2 taking value
between 14 − 8 = 6 and 19 − 8 = 11 miles. According
to Proposition 3.5-1, T2 is exponential(0.16).)

(b) Let X = T1 and Y = T1 + T2. Find the regression
function of Y on X. (Hint. E(T1 + T2|T1 = x) = x +
E(T2|T1 = x). You may use the result from Exercise
13 stating that T1 and T2 are independent.)

15. Let X and Y have the joint PDF of Example 4.3-5.
Use the form of the conditional PDF of X given Y = y
for y > 0, derived there, to conclude whether or not X
and Y are independent. (Hint. Use part (4) of Proposition
4.3-2.)

16. Let X be the force (in hundreds of pounds) applied
to a randomly selected beam and Y the time to failure of
the beam. Suppose that the PDF of X is

fX(x) = 1
log(6) − log(5)

1
x

for 5 ≤ x ≤ 6

and zero otherwise, and that the conditional distribution
of Y given that a force X = x is applied is exponential
(λ = x). Thus,

fY|X=x(y) = xe−xy for y ≥ 0,

and fY|X=x(y) = 0 for y < 0.
(a) Find the regression function of Y on X, and give the

numerical value of E(Y|X = 5.1). (Hint. Use the for-
mula for the mean value of an exponential random
variable.)

(b) Use the Law of Total Expectation to find E(Y).

17. A type of steel has microscopic defects that are classi-
fied on a continuous scale from 0 to 1, with 0 the least
severe and 1 the most severe. This is called the defect
index. Let X and Y be the static force at failure and
the defect index, respectively, for a particular type of
structural member made from this steel. For a mem-
ber selected at random, X and Y are jointly distributed
random variables with joint PDF

f (x, y) =
{

24x if 0 ≤ y ≤ 1 − 2x and 0 ≤ x ≤ .5

0 otherwise.

(a) Sketch the support of this PDF, that is, the region of
(x, y) values where f (x, y) > 0.

(b) Are X and Y independent? Justify your answer in
terms the support of the PDF sketched above.

(c) Find each of the following: fX(x), fY(y), E(X), and
E(Y).

18. Consider the context of Exercise 17.
(a) It is given that the marginal density of X is fX(x) =∫ 1−2x

0 24x dy = 24x(1 − 2x), 0 ≤ x ≤ 0.5. Find
fY|X=x(y) and the regression function E(Y|X = x).
Plot the regression function and give the numerical
value of E(Y|X = 0.3).

(b) Use the Law of Total Expectation to find E(Y).

4.4 Mean Value of Functions of Random Variables
4.4.1 THE BASIC RESULT

As in the univariate case the expected value and, consequently, the variance of a
statistic, that is, a function of random variables, can be obtained without having to
first obtain its distribution. The basic result follows.

Proposition
4.4-1

1. Let (X, Y) be discrete with joint PMF p(x, y). The expected value of a function,
h(X, Y), of (X, Y) is computed by

Mean Value of a
Function of Discrete

Random Variables

E[h(X, Y)] =
∑

x∈SX

∑

y∈SY

h(x, y)p(x, y)



Section 4.4 Mean Value of Functions of Random Variables 181

2. Let (X, Y) be continuous with joint PDF f (x, y). The expected value of a
function, h(X, Y), of (X, Y) is computed by

Mean Value
of a Function

of Continuous
Random Variables

E[h(X, Y)] =
∫ ∞

−∞

∫ ∞

−∞
h(x, y)f (x, y)dx dy

"

The variance of h(X, Y) is computed by

Variance of a
Function of Two

Random Variables
σ 2

h(X,Y) = E[h2(X, Y)] − [E[h(X, Y)]]2 (4.4.1)

where, according to parts (1) and (2) of Proposition 4.4-1,

E[h2(X, Y)] =
∑

x

∑

y
h2(x, y)pX, Y(x, y)

E[h2(X, Y)] =
∫ ∞

−∞

∫ ∞

−∞
h2(x, y)fX, Y(x, y) dx dy

in the discrete and continuous case, respectively.
The formulas in Proposition 4.4-1 extend directly to functions of more than

two random variables. For example, in the discrete case, the expected value of the
statistic h(X1, . . . , Xn) is computed by

E[h(X1, . . . , Xn)] =
∑

x1

· · ·
∑

xn

h(x1, . . . , xn)p(x1, . . . , xn),

where p denotes the joint PMF of X1, . . . , Xn, while in the continuous case, the
expected value of h(X1, . . . , Xn) is computed by

E[h(X1, . . . , Xn)] =
∫ ∞

−∞
· · ·

∫ ∞

−∞
h(x1, . . . , xn)f (x1, . . . , xn)dx1 · · · dxn.

Example
4.4-1

A photo processing website receives compressed files of images with X × Y pixels
where X and Y are random variables. At compression factor 10:1, 24 bits-per-pixel
images result in compressed images of Z = 2.4XY bits. Find the expected value and
variance of Z when the joint PMF of X and Y is

y

p(x, y) 480 600 900

640 0.15 0.1 0.15

x 800 0.05 0.2 0.1

1280 0 0.1 0.15

Solution
The formula in part (1) of Proposition 4.4-1, with h(x, y) = xy yields

E(XY) = 640 × 480 × 0.15 + 640 × 600 × 0.1 + 640 × 900 × 0.15

+ 800 × 480 × 0.05 + 800 × 600 × 0.2 + 800 × 900 × 0.1

+ 1280 × 480 × 0 + 1280 × 600 × 0.1 + 1280 × 900 × 0.15

= 607,680.
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The same formula yields

E[(XY)2] = 6402 × 4802 × 0.15 + 6402 × 6002 × 0.1 + 6402 × 9002 × 0.15

+8002 × 4802 × 0.05 + 8002 × 6002 × 0.2 + 8002 × 9002 × 0.1

+12802 × 4802 × 0 + 12802 × 6002 × 0.1 + 12802 × 9002 × 0.15

= 442,008,576,000.

It follows that the variance of XY is

Var(XY) = 442,008,576,000 − 607,6802 = 72,733,593,600.

Finally, the expected value and variance of Z = 2.4XY are E(Z) = 2.4E(XY) =
1,458,432 and Var(Z) = 2.42Var(XY) = 418,945,499,136.

Example
4.4-2

A system consists of components A and B connected in series. If the two components
fail independently, and the time to failure for each component is a uniform(0, 1)
random variable, find the expected value and variance of the time to failure of the
system.

Solution
Because the two components are connected in series, if X and Y denote the times
to failure of components A and B, respectively, the time to failure of the system
is the smaller of X and Y. Thus, we want the expected value and variance of the
function T = min{X, Y}. These are most easily found by first finding the CDF of the
random variable T, and differentiating the CDF to get the PDF. Note first that for
any number t between 0 and 1, the event [T > t] means that both [X > t] and [Y > t]
are true. Thus,

P(T > t) = P(X > t, Y > t) = P(X > t)P(Y > t) = (1 − t)(1 − t) = 1 − 2t + t2,

where the second equality holds by the fact that the events [X > t] and [Y > t]
are independent, and the third equality uses the fact that X and Y have the uniform
distribution. Thus, if FT(t) and fT(t) denote the CDF and PDF of T then, for 0 < t <

1, we have

FT(t) = P(T ≤ t) = 1 − P(T > t) = 2t − t2 and fT(t) = d
dt

FT(t) = 2 − 2t.

Hence,

E(T) =
∫ 1

0
tfT(t)dt = 1 − 2

3
= 1

3
, E(T2) =

∫ 1

0
t2fT(t)dt = 2

3
− 2

4
= 1

6
,

which yields Var(T) = 1/6 − (1/3)2 = 0.05556.
Alternatively, the mean and variance of T can be found by considering

T as a function h(X, Y) = min{X, Y} of X and Y, and using part (2) of
Proposition 4.4-1:
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E[min{X, Y}] =
∫ 1

0

∫ 1

0
min{x, y} dx dy

=
∫ 1

0

[∫ y

0
min{x, y} dx +

∫ 1

y
min{x, y} dx

]

dy

=
∫ 1

0

[∫ y

0
x dx +

∫ 1

y
y dx

]

dy

=
∫ 1

0

[
1
2

y2 + y(1 − y)
]

dy = 1
2

1
3

+ 1
2

− 1
3

= 1
3

.

Next, with similar steps as above we obtain

E[min{X, Y}2] =
∫ 1

0

[∫ y

0
x2 dx +

∫ 1

y
y2 dx

]

dy

=
∫ 1

0

[
1
3

y3 + y2(1 − y)
]

dy = 1
3

1
4

+ 1
3

− 1
4

= 1
6

.

Thus, Var(min{X, Y}) = 1/6 − (1/3)2 = 0.05556.

The next two examples deal with the expected value of the sum of two variables and
the expected value of the product of two independent random variables, respectively.

Example
4.4-3

Show that for any two random variables

E(X + Y) = E(X) + E(Y).

Solution
Assume that X and Y are jointly discrete; the proof in the continuous case is similar.
Then, according to part (1) of Proposition 4.4-1,

E(X + Y) =
∑

x∈SX

∑

y∈SY

(x + y)p(x, y)

=
∑

x∈SX

∑

y∈SY

xp(x, y) +
∑

x∈SX

∑

y∈SY

yp(x, y) (separate terms)

=
∑

x∈SX

∑

y∈SY

xp(x, y) +
∑

y∈SY

∑

x∈SX

yp(x, y)

(interchange summations in second term)

=
∑

x∈SX

x
∑

y∈SY

p(x, y) +
∑

y∈SY

y
∑

x∈SX

p(x, y)

=
∑

x∈SX

xpX(x) +
∑

y∈SY

ypY(y) (definition of marginal PMFs)

= E(X) + E(Y).
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Example
4.4-4

If X and Y are independent, show that, for any functions g and h,

E[g(X)h(Y)] = E[g(X)]E[h(Y)].

Solution
Assume that X and Y are jointly continuous; the proof in the discrete case is similar.
Then, according to part (2) of Proposition 4.4-1,

E[g(X)h(Y)] =
∫ ∞

−∞

∫ ∞

−∞
g(x)h(y)f (x, y) dx dy

=
∫ ∞

−∞

∫ ∞

−∞
g(x)h(y)fX(x)fY(y) dx dy (by independence)

=
∫ ∞

−∞
g(x)fX(x) dx

∫ ∞

−∞
h(y)fY(y) dy = E[g(X)]E[g(Y)].

The same result was obtained in Proposition 4.3-3 with a different method.

4.4.2 EXPECTED VALUE OF SUMS
Proposition

4.4-2
Let X1, . . . , Xn be any n random variables (i.e., they may be discrete or continuous,
independent or dependent), with marginal means E(Xi) = µi. Then

Expected Value of a
Linear Combination of

Random Variables
E(a1X1 + · · · + anXn) = a1µ1 + · · · + anµn

holds for any constants a1, . . . , an. "

The proof of this proposition is similar to the proof of Example 4.4-3, the result
of which it generalizes. In particular, applications of Proposition 4.4-2 with n = 2,
a1 = 1, and a2 = −1, and with n = 2, a1 = 1, and a2 = 1 yield, respectively,

E(X1 − X2) = µ1 − µ2 and E(X1 + X2) = µ1 + µ2. (4.4.2)

Corollary
4.4-1

If the random variables X1, . . . , Xn have common mean µ, that is, if E(X1) = · · · =
E(Xn) = µ, then

Expected Value
of the Average

and the Total
E(X) = µ and E(T) = nµ (4.4.3)

where X = (1/n)
∑

i Xi and T = nX = ∑
i Xi.

The proof of this corollary follows by an application of Proposition 4.4-2 with
a1 = · · · = an = 1/n and a1 = · · · = an = 1, for the mean and total sum, respec-
tively. If the Xi in Corollary 4.4-1 are Bernoulli with probability of success p, then
µ = p and X = p̂, the sample proportion of successes. Thus, we obtain
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Expected Value
of the Sample

Proportion
E(̂p) = p (4.4.4)

Moreover, since T = X1 + · · · + Xn ∼ Bin(n, p), Corollary 4.4-1 provides an alter-
native (easier!) proof that the expected value of a Bin(n, p) random variable is
E(T) = np.

Example
4.4-5

In a typical evening, a waiter serves four tables that order alcoholic beverages and
three that do not.

(a) The tip left at a table that orders alcoholic beverages is a random variable with
mean µ1 = 20 dollars. Find the expected value of the total amount of tips the
waiter will receive from the four tables that order alcoholic beverages.

(b) The tip left at a table where no alcoholic beverages are ordered is a random
variable with mean µ2 = 10 dollars. Find the expected value of the total
amount of tips the waiter will receive from the three tables where no alcoholic
beverages are ordered.

(c) Find the expected value of the total amount of tips the waiter will receive in a
typical evening.

Solution
(a) Let X1, . . . , X4 denote the tips left at the four tables that order alcoholic bev-

erages. The Xi’s have a common mean value of µ1 = 20. Thus, according to
Corollary 4.4-1, the expected value of the total amount, T1 = ∑4

i=1 Xi, of tips
is E(T1) = 4 × 20 = 80.

(b) Let Y1, Y2, Y3 denote the tips left at the three tables where no alcoholic
beverages are ordered. The Yi’s have a common mean value of µ2 = 10.
Thus, according to Corollary 4.4-1, the expected value of the total amount,
T2 = ∑3

i=1 Yi, of tips is E(T2) = 3 × 10 = 30.
(c) The total amount of tips the waiter will receive in a typical evening is T = T1 +

T2, where T1 and T2 are the total tips received from tables with and without
alcoholic beverages. Thus, according to (4.4.2), E(T) = E(T1) + E(T2) = 80 +
30 = 110.

The following proposition, which gives the expected value of the sum of a
random number of random variables, has interesting applications.

Proposition
4.4-3

Suppose that N is an integer-valued random variable, and the random variables Xi
are independent from N and have common mean value µ. Then,

Expected Value of a
Sum of a Random

Number of Random
Variables

E

( N∑

i=1

Xi

)

= E(N)µ

"

The proof of this proposition follows by a combination of the Law of Total
Expectation and the formula for the expected value of sums, but the details will
not be presented.
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Example
4.4-6

Let N denote the number of people entering a department store in a typical day, and
let Xi denote the amount of money spent by the ith person. Suppose the Xi have a
common mean of $22.00, independently from the total number of customers N. If N
is a Poisson random variable with parameter λ = 140, find the expected amount of
money spent in the store in a typical day.

Solution
The total amount, T, of money spent in the store in a typical day is the sum of the
amounts Xi, i = 1, . . . , N, spent by each of the N people that enter the store, that is,
T = ∑N

i=1 Xi. The information that N ∼ Poisson(λ = 140) implies that E(N) = 140.
Since the conditions stated in Proposition 4.4-3 are satisfied, it follows that

E(T) = E(N)E(X1) = 140 × 22 = 3080.

4.4.3 THE COVARIANCE AND THE VARIANCE OF SUMS

In the previous section we saw that the same simple formula for the expected value
of a linear combination of random variables holds regardless of whether or not the
random variables are independent. Dependence, however, does affect the formula
for the variance of sums. To see why, let’s consider the variance of X + Y:

Var(X + Y) = E
{[

X + Y − E(X + Y)
]2

}

= E
{[

(X − E(X)) + (Y − E(Y))
]2

}

= E
[
(X − E(X))2 + (Y − E(Y))2 + 2(X − E(X))(Y − E(Y))

]

= Var(X) + Var(Y) + 2E
[
(X − E(X))(Y − E(Y))

]
. (4.4.5)

If X and Y are independent then, part (3) of Proposition 4.3-3 (or Example 4.4-4)
with g(X) = X − E(X) and h(Y) = Y − E(Y) implies

E
[
(X − E(X))(Y − E(Y))

]
= E

[
X − E(X)

]
E

[
Y − E(Y)

]

=
[
E(X) − E(X)

][
E(Y) − E(Y)

]
= 0. (4.4.6)

Thus, if X and Y are independent the formula for the variance of X + Y simplifies
to Var(X + Y) = Var(X) + Var(Y).

The quantity E
[
(X − E(X))(Y − E(Y))

]
that appears in formula (4.4.5) is called

the covariance of X and Y, and is denoted by Cov(X, Y) or σX, Y :

Definition of and
Short-cut Formula for

the Covariance

σX, Y = E
[
(X − µX)(Y − µY)

]

= E(XY) − µXµY
(4.4.7)

where µX and µY are the marginal expected values of X and Y, respectively. The
second equality in (4.4.7) is a computational formula for the covariance, similar to
the computational (short-cut) formula, σ 2

X = E[(X − µX)2] = E(X2) − µ2
X , for the

variance.
The formula for the variance of the sum of two random variables derived in

(4.4.5), and a corresponding formula for the difference of two random variables, will
be used often in the chapters to follow. For this reason, these formulas and their
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extensions to the sums of several random variables are highlighted in the following
proposition.

Proposition
4.4-4

1. Let σ 2
1 , σ 2

2 denote the variances of X1, X2, respectively. Then
(a) If X1, X2 are independent (or just Cov(X1, X2) = 0),

Var(X1 + X2) = σ 2
1 + σ 2

2 and Var(X1 − X2) = σ 2
1 + σ 2

2 .

(b) If X1, X2 are dependent,

Var(X1 − X2) = σ 2
1 + σ 2

2 − 2Cov(X1, X2)

Var(X1 + X2) = σ 2
1 + σ 2

2 + 2Cov(X1, X2).

2. Let σ 2
1 , . . . , σ 2

m denote the variances of X1, . . . , Xm, respectively, and a1, . . . , am
be any constants. Then
(a) If X1, . . . , Xm are independent (or just Cov(Xi, Xj) = 0, for all i ̸= j),

Var(a1X1 + · · · + amXm) = a2
1σ

2
1 + · · · + a2

mσ 2
m.

(b) If X1, . . . , Xm are dependent,

Var(a1X1 + · · · + amXm) = a2
1σ

2
1 + · · · + a2

mσ 2
m +

∑

i

∑

j ̸=i

aiajσij

"

According to part (1) of Proposition 4.4-4, the variances of X + Y and X − Y are
the same if X and Y are independent, but differ if their covariance is different
from zero. Because part (1a) appears counterintuitive at first sight, the following
example offers numerical verification of it based on the fact that when the sample
size is large enough the sample variance is a good approximation to the population
variance.

Example
4.4-7

Simulation-based verification of part (1a) of Proposition 4.4-4. Let X, Y be inde-
pendent uniform(0, 1) random variables. Generate a random sample of size 10,000
of X+Y values, and a random sample of size 10,000 of X−Y values and compute the
sample variances of the two samples. Argue that this provides numerical evidence
in support of part (1a) of Proposition 4.4-4. (See also Exercise 13 for a numerical
verification of part (1b) of Proposition 4.4-4).

Solution
The R commands

set.seed=111; x=runif(10000); y=runif(10000)

generate a random sample of size 10,000 X values and a random sample of size
10,000 Y values. (set.seed=111 was used in order to have reproducibility of the
results.) The additional R commands

var(x + y); var(x - y)

yield 0.167 and 0.164 (rounded to 3 decimal places) for the sample variances of a
sample of 10,000 X + Y values and a sample of 10,000 X − Y values, respectively.
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Repeating the above commands with the seed set to 222 and to 333 yields pairs of
sample variances of (0.166, 0.167) and (0.168, 0.165). This suggests that the sample
variances of X + Y values approximate the same quantity as the sample variances
of X − Y values, supporting the statement of part (1a) of Proposition 4.4-4 that
Var(X + Y) = Var(X − Y) = 2/12 = 0.1667 (where we also used the fact that
Var(X) = Var(Y) = 1/12; see Example 3.3-13).

Example
4.4-8

Let X take the value 0, 1, or 2 depending on whether there are no customers,
between one and 10 customers, and more than 10 customers in the regular (manned)
checkout lines of a supermarket. Let Y be the corresponding variable for the self
checkout lines. Find Var(X + Y), when the joint PMF of X and Y is given by

y

p(x, y) 0 1 2 pX (x)

0 0.17 0.02 0.01 0.20

x 1 0.150 0.225 0.125 0.50

2 0.060 0.105 0.135 0.30

pY (y) 0.38 0.35 0.27

Solution
In order to use formula (4.4.5) we will need to compute σ 2

X , σ 2
Y , and σXY . As a first

step we compute E(X), E(Y), E(X2), E(Y2) and E(XY):

E(X) =
∑

x
xpX(x) = 1.1, E(Y) =

∑

y
ypY(y) = 0.89,

E(X2) =
∑

x
x2pX(x) = 1.7, E(Y2) =

∑

y
y2pY(y) = 1.43,

and, according to part (1) of Proposition 4.4-1,

E(XY) =
∑

x

∑

y
xyp(x, y) = 0.225 + 2 × 0.125 + 2 × 0.105 + 4 × 0.135 = 1.225.

Thus, σ 2
X = 1.7 − 1.12 = 0.49, σ 2

Y = 1.43 − 0.892 = 0.6379 and, according to the
computational formula (4.4.7), Cov(X, Y) = 1.225 − 1.1 × 0.89 = 0.246. Finally, by
(4.4.5),

Var(X + Y) = 0.49 + 0.6379 + 2 × 0.246 = 1.6199.

Example
4.4-9

Using a geolocation system, a dispatcher sends messages to two trucks sequentially.
Suppose the joint PDF of the response times X1 and X2, measured in seconds,
is f (x1, x2) = exp(−x2) for 0 ≤ x1 ≤ x2, and f (x1, x2) = 0 otherwise. Find
Cov(X1, X2).

Solution
Will use the computational formula Cov(X1, X2) = E(X1X2) − E(X1)E(X2). First,
the marginal PDFs of X1 and X2 are,

fX1(x1) =
∫ ∞

x1

e−x2 dx2 = e−x1 and fX2(x2) =
∫ x2

0
e−x2 dx1 = x2e−x2 ,
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respectively. Thus,

E(X1) =
∫ ∞

0
xfX1(x) dx =

∫ ∞

0
xe−xdx = 1. and

E(X2) =
∫ ∞

0
yfX2(y) dy =

∫ ∞

0
y2e−ydy = 2

follow by integration techniques similar to those in Examples 3.3-6 and 3.3-14,
or by the R command f=function(x){x**2*exp(-x)}; integrate(f, 0, Inf) for the sec-
ond integral and a similar one for the first. Next, according to part (4.4-1) of
Proposition 4.4-1,

E(X1X2) =
∫ ∞

0

∫ ∞

0
x1x2f (x1, x2) dx1 dx2 =

∫ ∞

0

∫ x2

0
x1x2e−x2 dx1 dx2

=
∫ ∞

0
x2e−x2

∫ x2

0
x1 dx1 dx2 =

∫ ∞

0
0.5x2

2e−x2 dx2 = 1.

Thus, we obtain Cov(X1, X2) = 1 − 1 · 2 = −1.

An important special case of part (2a) of Proposition 4.4-4 has to do with the
variance of the sample mean and the sample sum. This is given next.

Corollary
4.4-2

Let X1, . . . , Xn be iid (i.e., a simple random sample from an infinite population)
with common variance σ 2. Then,

Variance of
the Average and

the Sum
Var(X) = σ 2

n
and Var(T) = nσ 2 (4.4.8)

where X = n−1 ∑n
i=1 Xi and T = ∑n

i=1 Xi.

If the Xi in Corollary 4.4-2 are Bernoulli with probability of success p, then
σ 2 = p(1 − p) and X = p̂, the sample proportion of successes. Thus, we obtain

Variance of the
Sample Proportion Var(̂p) = p(1 − p)

n
(4.4.9)

Moreover, since T = X1 + · · · + Xn ∼ Bin(n, p), Corollary 4.4-2 provides
an alternative (easier!) proof that the variance of a Bin(n, p) random variable is
Var(T) = np(1 − p).

Proposition
4.4-5

Properties of covariance.

1. Cov(X, Y) = Cov(Y, X).
2. Cov(X, X) = Var(X).
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3. If X, Y are independent, then Cov(X, Y) = 0.
4. Cov(aX + b, cY + d) = acCov(X, Y) for any real numbers a, b, c, and d.

Proof of Proposition 4.4-5. Parts (1) and (2) follow immediately from the defini-
tion of covariance, while part (3) is already proved in relation (4.4.6). For part (4)
note that E(aX + b) = aE(X) + b and E(cY + d) = cE(Y) + d. Hence,

Cov(aX + b, cY + d) = E
{[

aX + b − E(aX + b)
][

cY + d − E(cY + d)
]}

= E
{[

aX − aE(X)
][

cY − cE(Y)
]}

= E
{
a
[
X − E(X)

]
c
[
Y − E(Y)

]}

= acCov(X, Y). "

Example
4.4-10

Consider the information given in Example 4.4-9, but assume that the response times
are given in milliseconds. If (X̃1, X̃2) denote the response times in milliseconds, find
Cov(X̃1, X̃2).

Solution
The new response times are related to those of Example 4.4-9 by (X̃1, X̃2) =
(1000X1, 1000X2). Hence, according to part (4) of Proposition 4.4-5,

Cov(X̃1, X̃2) = Cov(1000X1, 1000X2) = −1,000,000.

The next example shows that Cov(X, Y) can be zero even when X and Y are not
independent. An additional example of this is given in Exercise 8 in Section 4.5.

Example
4.4-11

If X, Y have the joint PMF given by

y

p(x, y) 0 1

−1 1/3 0 1/3

x 0 0 1/3 1/3

1 1/3 0 1/3

2/3 1/3 1.0

find Cov(X, Y). Are X and Y independent?

Solution
Since E(X) = 0, use of the computational formula Cov(X, Y) = E(XY)−E(X)E(Y)
gives Cov(X, Y) = E(XY). However, the product XY takes the value zero with
probability 1. Thus, Cov(X, Y) = E(XY) = 0. Finally, X and Y are not independent
because p(0, 0) = 0 ̸= pX(0)pY(0) = 2/9.

Exercises

1. Due to promotional sales, an item is sold at 10% or
20% below its regular price of $150. Let X and Y denote
the selling prices of the item at two online sites, and let
their joint PMF be

y

p(x, y) 150 135 120

150 0.25 0.05 0.05

x 135 0.05 0.2 0.1

120 0.05 0.1 0.15
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If a person checks both sites and buys from the one list-
ing the lower price, find the expected value and variance
of the price the person pays. (Hint. The price the person
pays is expressed as min{X, Y}.)

2. A system consists of components A and B connected
in parallel. Suppose the two components fail indepen-
dently, and the time to failure for each component is a
uniform(0, 1) random variable.
(a) Find the PDF of the time to failure of the system.

(Hint. If X, Y are the times components A, B fail,
respectively, the system fails at time T = max{X, Y}.
Find the CDF of T from P(T ≤ t) = P(X ≤ t)P
(Y ≤ t) and the CDF of a uniform(0, 1) random
variable. Then find the PDF by differentiation.)

(b) Find the expected value and variance of the time to
failure of the system.

3. The joint distribution of X = height and Y = radius of a
cylinder is f (x, y) = 3x/(8y2) for 1 ≤ x ≤ 3, 0.5 ≤ y ≤ 0.75
and zero otherwise. Find the variance of the volume of
a randomly selected cylinder. (Hint. The volume of the
cylinder is given by h(X, Y) = πY2X. In Example 4.3-17
it was found that E[h(X, Y)] = (13/16)π .)

4. In a typical week a person takes the bus five times
in the morning and three times in the evening. Suppose
the waiting time for the bus in the morning has mean
3 minutes and variance 2 minutes2, while the waiting
time in the evening has mean 6 minutes and variance
4 minutes2.
(a) Let Xi denote the waiting time in the ith morning

of the week, i = 1, . . . , 5, and let Yj denote the waiting
time in the jth evening of the week. Express the
total waiting time as a linear combination of these
X’s and Y’s.

(b) Find the expected value and the variance of the total
waiting time in a typical week. State any assumptions
needed for the validity of your calculations.

5. Two towers are constructed, each by stacking 30 seg-
ments of concrete vertically. The height (in inches) of a
randomly selected segment is uniformly distributed in the
interval (35.5, 36.5).
(a) Find the mean value and the variance of the height

of a randomly selected segment. (Hint. See Examples
3.3-8 and 3.3-16 for the mean and variance of a
uniform random variable.)

(b) Let X1, . . . , X30 denote the heights of the segments
used in tower 1. Find the mean value and the variance
of the height of tower 1. (Hint. Express the height of
tower 1 as the sum of the X’s.)

(c) Find the mean value and the variance of the dif-
ference of the heights of the two towers. (Hint. Set
Y1, . . . , Y30 for the heights of the segments used in
tower 2, and express the height of tower 2 as the sum
of the Y’s.)

6. Let N denote the number of accidents per month in all
locations of an industrial complex, and let Xi denote the
number of injuries reported for the ith accident. Suppose
that the Xi are independent random variables having
common expected value of 1.5 and are independent from
N. If E(N) = 7, find the expected number of injuries in a
month.

7. In a typical evening, a waiter serves N1 tables that
order alcoholic beverages and N2 tables that do not.
Suppose N1, N2 are Poisson random variables with
parameters λ1 = 4, λ2 = 6, respectively. Suppose the
tips, Xi, left at tables that order alcoholic beverages have
common mean value of $20.00, while the tips, Yj, left at
tables that do not order alcoholic beverages have a com-
mon mean value of $10.00. Assuming that the tips left
are independent from the total number of tables being
served, find the expected value of the total amount in tips
received by the waiter in a typical evening. (Hint. Use
Proposition 4.4-3)

8. Suppose (X, Y) have the joint PDF

f (x, y) =
{

24xy 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x + y ≤ 1
0 otherwise.

Find Cov(X, Y). (Hint. Use the marginal PDF of X, which
was derived in Example 4.3-9, and note that by the sym-
metry of the joint PDF in x, y, it follows that the marginal
PDF of Y is the same as that of X.)

9. Suppose the random variables Y, X, and ϵ are related
through the model

Y = 9.3 + 1.5X + ε,

where ε has zero mean and variance σ 2
ε = 16, σ 2

X = 9, and
X, ε are independent. Find the covariance of Y and X and
that of Y and ε. (Hint. Write Cov(X, Y) = Cov(X, 9.3 +
1.5X + ε) and use part (4) of Proposition 4.4-5. Use a
similar process for Cov(ε, Y).)

10. Using the information on the joint distribution of
meal price and tip given in Exercise 3 in Section 4.3, find
the expected value and the variance of the total cost of the
meal (entree plus tip) for a randomly selected customer.

11. Consider the information given in Exercise 1 in
Section 4.3 on the joint distribution of the volume, X,
of online monthly book sales, and the volume, Y, of
monthly book sales from the brick and mortar counter-
part of a bookstore. An approximate formula for the
monthly profit, in thousands of dollars, of the bookstore
is 8X + 10Y. Find the expected value and variance of the
monthly profit of the bookstore.

12. Consider the information given in Exercise 7 in
Section 4.3 regarding the level of moisture content and
impurity of chemical batches. Such batches are used to
prepare a particular substance. The cost of preparing the
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substance is C = 2
√

X +3Y2. Find the expected value and
variance of the cost of preparing the substance.

13. Let X, Y, and Z be independent uniform(0, 1) ran-
dom variables, and set X1 = X + Z, Y1 = Y + 2Z.

(a) Find Var(X1 + Y1) and Var(X1 − Y1). (Hint. Find
Var(X1), Var(Y1), Cov(X1, Y1), and use part (1) of
Proposition 4.4-4.)

(b) Using R commands similar to those used in Example
4.4-7, generate a sample of size 10,000 of X1 + Y1 val-
ues and a sample of size 10,000 of X1 − Y1 values
and compute the two sample variances. Argue that
this provides numerical evidence in support of part (a)
above and also for part (1b) of Proposition 4.4-4.

14. On the first day of a wine-tasting event three ran-
domly selected judges are to taste and rate a particular
wine before tasting any other wine. On the second day
the same three judges are to taste and rate the wine after
tasting other wines. Let X1, X2, X3 be the ratings, on a
100-point scale, on the first day, and Y1, Y2, Y3 be the rat-
ings on the second day. We are given that the variance of
each Xi is σ 2

X = 9, the variance of each Yi is σ 2
Y = 4,

the covariance Cov(Xi, Yi) = 5 for all i = 1, 2, 3, and
Cov(Xi, Yj) = 0 for all i ̸= j. Find the variance of the
combined rating X + Y. (Hint. The formula in part (4) of
Proposition 4.4-5 generalizes to the following formula for
the covariance of two sums of random variables:

Cov

⎛

⎝
m∑

i=1

aiXi,
n∑

j=1

bjYj

⎞

⎠ =
m∑

i=1

n∑

j=1

aibjCov
(
Xi, Yj

)
.

Use this formula to find the Cov(X, Y), keeping in mind
that Cov(Xi, Yj) = 0 if i ̸= j. Then use the formula in
part (1) of Propositon 4.4-4 and Corollary 4.4-2 for the
variance of the sample average.)

15. Let X be a hypergeometric random variable with
parameters n, M1, and M2. Use Corollary 4.4-1 to give an
alternative (easier) derivation of the formula for E(X).
(Hint. See the derivation of the expected value of a
Bin(n, p) random variable following Corollary 4.4-1.)

16. Let X have the negative binomial distribution with
parameters r and p. Thus, X counts the total number of
Bernoulli trials until the rth success. Next, let X1 denote
the number of trials up to and including the first success,
let X2 denote the number from the first success up to
and including the second success, and so on, so that Xr
denotes the number of trials from the (r − 1)-st success
up to and including the rth success. Note that the Xi’s are
iid having the geometric distribution, X = X1 + · · · + Xr.
Use Corollary 4.4-1 and Proposition 4.4-4 to derive the
expected value and variance of the negative binomial ran-
dom variable X. (Hint. The expected value and variance
of a geometric random variable are derived in Examples
3.3-3 and 3.3-12.)

4.5 Quantifying Dependence
When two random variables X and Y are not independent, they are dependent. Of
course, there are various degrees of dependence, ranging from very strong to very
weak. In this section we introduce correlation as a means for quantifying depen-
dence. First we introduce the concept of monotone dependence, make the distinction
between positive and negative dependence, and illustrate the role of the covariance
in characterizing the distinction. Then we present Pearson’s correlation coefficient
and discuss its interpretation.

4.5.1 POSITIVE AND NEGATIVE DEPENDENCE

We say that X and Y are positively dependent, or positively correlated, if “large”
values of X are associated with “large” values of Y and “small” values of X are
associated with “small” values of Y. (Here, “large” means “larger than average”
and “small” means “smaller than average.) For example, the variables X = height
and Y = weight of a randomly selected adult male are positively dependent. In the
opposite case, that is, when “large” values of X are associated with “small” values
of Y and “small” values of X are associated with “large” values of Y, we say that X
and Y are negatively dependent or negatively correlated. An example of negatively
dependent variables is X = stress applied and Y = time to failure. If the variables are
either positively or negatively dependent, their dependence is called monotone.

It should be clear that if the dependence is positive then the regression function,
µY|X(x) = E(Y|X = x), of Y on X is an increasing function of x. For example, if we
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consider X = height and Y = weight then, due to the positive dependence of these
variables, we have µY|X(1.82) < µY|X(1.90), that is, the average weight of men 1.82
meters tall is smaller than the average weight of men 1.90 meters tall (1.82 meters
is about 6 feet). Similarly, if the dependence is negative then µY|X(x) is decreasing,
and if the dependence is monotone then µY|X(x) is monotone.

The fact that covariance can be used for identifying a monotone dependence
as being positive or negative is less obvious, but here is the rule: The monotone
dependence is positive or negative if the covariance takes a positive or negative
value, respectively.

In order to develop an intuitive understanding as to why the sign of covariance
identifies the nature of a monotone dependence, consider a finite population of N
units, let (x1, y1), (x2, y2), . . . , (xN , yN) denote the values of a bivariate characteristic
of interest for each of the N units, and let (X, Y) denote the bivariate characteris-
tic of a randomly selected unit. Then (X, Y) has a discrete distribution taking each
of the possible values (x1, y1), . . . , (xN , yN) with probability 1/N. In this case the
covariance formula in definition (4.4.7) can be written as

σX, Y = 1
N

N∑

i=1

(xi − µX)(yi − µY), (4.5.1)

where µX = 1
N

∑N
i=1 xi and µY = 1

N
∑N

i=1 yi are the marginal expected values of X
and Y, respectively. Suppose now X and Y are positively correlated. Then, X-values
larger than µX are associated with Y-values that are larger than µY , and X-values
smaller than µX are associated with Y-values smaller than µY .Thus, the products

(xi − µX)(yi − µY), (4.5.2)

which appear in the summation of relation (4.5.1), will tend to be positive, resulting
in a positive value for σX, Y . Similarly, if X and Y are negatively correlated, the
products in (4.5.2) will tend to be negative, resulting in a negative value for σX, Y .

However, the usefulness of covariance in quantifying dependence does not
extend beyond its ability to characterize the nature of monotone dependence. This
is because a successful measure of dependence should be scale-free. For example,
the strength of dependence of the variables (Height, Weight) should not depend on
whether the variables are measured in meters and kilograms or feet and pounds.
According to part (4) of Proposition 4.4-5, however, the value of the covariance is
scale-dependent and thus cannot serve as a quantification of dependence.

4.5.2 PEARSON’S (OR LINEAR) CORRELATION COEFFICIENT

It turns out that a simple adjustment of the covariance makes its value scale-free,
and leads to the most commonly used quantification of dependence, the (linear)
correlation coefficient, also known as Pearson’s correlation coefficient in honor of its
inventor.

Definition 4.5-1
The Pearson’s (or linear) correlation coefficient of X and Y, denoted by
Corr(X, Y) or ρX,Y , is defined as

ρX,Y = Corr(X, Y) = Cov(X, Y)
σXσY

,

where σX , σY are the marginal standard deviations of X, Y, respectively.
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The following proposition summarizes some properties of the correlation
coefficient.

Proposition
4.5-1

1. If a and c are either both positive or both negative, then

Corr(aX + b, cY + d) = ρX, Y .

If a and c are of opposite signs, then

Corr(aX + b, cY + d) = −ρX, Y .

2. −1 ≤ ρX,Y ≤ 1, and
(a) if X, Y are independent then ρX, Y = 0.
(b) ρX, Y = 1 or −1 if and only if Y = aX + b for some numbers a, b with a ̸= 0.

"

The properties listed in Proposition 4.5-1 imply that correlation is indeed a
successful measure of linear dependence. The properties in part (1) mean that it has
the desirable property of being scale-free. The properties in part (2) make it possible
to develop a feeling for the strength of linear dependence implied by a ρX, Y -value.
Thus, if the variables are independent, ρX, Y = 0, while ρX, Y = ±1 happens if and
only if X and Y have the strongest possible linear dependence (that is, knowing
one amounts to knowing the other). The scatterplots in Figure 4-2 correspond to

Correlation = 0.2 Correlation = 0.45

Correlation = 0.65 Correlation = 0.9

Figure 4-2 Scatterplots
corresponding to different
correlation coefficients.



Section 4.5 Quantifying Dependence 195

artificially constructed populations of size 1000, having correlation ranging from 0.2
to 0.9; the line through each scatterplot is the corresponding regression function of
Y on X.

Example
4.5-1

In a reliability context a randomly selected electronic component will undergo an
accelerated failure time test. Let X1 take the value 1 if the component lasts less than
50 hours and zero otherwise, and X2 take the value 1 if the component lasts between
50 and 90 hours and zero otherwise. The probabilities that a randomly selected com-
ponent will last less than 50 hours, between 50 and 90 hours, and more than 90 hours
are 0.2, 0.5, and 0.3, respectively. Find ρX1, X2 .

Solution
We will first find the covariance of X1 and X2 using the short-cut formula
σX1X2 = E(X1X2) − E(X1)E(X2). Next, because the sample space of (X1, X2) is
{(1, 0), (0, 1), (0, 0)}, it follows that the product X1X2 is always equal to zero and
hence E(X1X2) = 0. Because the marginal distribution of each Xi is Bernoulli, we
have that

E(X1) = 0.2, E(X2) = 0.5, σ 2
X1

= 0.16, and σ 2
X2

= 0.25.

Combining these calculations we find σX1X2 = 0 − 0.2 × 0.5 = −0.1. Finally, using
the definition of correlation,

ρX1, X2 = σX1X2

σX1σX2

= −0.1
0.4 × 0.5

= −0.5.

Example
4.5-2

Using a geolocation system, a dispatcher sends messages to two trucks sequentially.
Suppose the joint PDF of the response times X1 and X2, measured in seconds, is
f (x1, x2) = exp(−x2) for 0 ≤ x1 ≤ x2, and f (x1, x2) = 0 otherwise.

(a) Find Corr(X1, X2).
(b) If (X̃1, X̃2) denote the response times in milliseconds, find Corr(X̃1, X̃2).

Solution
(a) In Example 4.4-9 we saw that Cov(X1, X2) = −1. In the same example, we

found that the marginal PDFs and means of X1 and X2 are

fX1(x1) = e−x1 , fX2(x2) = x2e−x2 , E(X1) = 1, and E(X2) = 2.

Using these marginal PDFs, we find

E(X2
1 ) =

∫ ∞

0
x2fX1(x) dx = 2 and E(X2

2 ) =
∫ ∞

0
x2fX2(x) dx = 6.

The above integrations can also be performed in R; for example the value of
E(X2

2 ) can be found with the R command f=function(x){x**3*exp(-x)}; inte-
grate(f, 0, Inf). Combining the above results, the standard deviations of X1
and X2 are obtained as

σX1 =
√

2 − 12 = 1 and σX2 =
√

6 − 22 = 1.414.
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Thus, from the definition of the correlation coefficient,

ρX1, X2 = −1
1 · 1.414

= −0.707.

(b) Using properties of the covariance, in Example 4.4-10 we saw that
Cov(X̃1, X̃2) = −1,000, 000. Moreover, from the properties of standard devi-
ation (see Proposition 3.3-2) we have σX̃1

= 1000 and σX̃2
= 1414. It follows

that ρX̃1,X̃2
= −1,000,000/(1000 · 1414) = −0.707. Thus, ρX̃1,X̃2

= ρX1, X2 as
stipulated by Proposition 4.5-1, part (1).

Pearson’s Correlation as a Measure of Linear Dependence It should be emphasized
that correlation measures only linear dependence. In particular, it is possible to have
the strongest possible dependence, that is, knowing one amounts to knowing the
other, but if the relation between X and Y is not linear, then the correlation will not
equal 1, as the following example shows.

Example
4.5-3

Let X have the uniform in (0, 1) distribution, and Y = X2. Find ρX, Y .

Solution
First we will find the covariance through the short-cut formula Cov(X, Y) =
E(XY) − E(X)E(Y). Note that since Y = X2, we have XY = X3. Thus, E(XY) =
E(X3) =

∫ 1
0 x3 dx = 1/4. Also, since E(Y) = E(X2) = 1/3 and E(X) = 1/2, we

obtain

Cov(X, Y) = 1
4

− 1
2

1
3

= 1
12

.

Next, σX = 1/
√

12 (see Example 3.3-13), and σY =
√

E(X4) − [E(X2)]2 =√
1/5 − 1/9 = 2/3

√
5. Combining the above results we obtain

ρX,Y = Cov(X, Y)
σXσY

= 3
√

5

2
√

12
= 0.968.

A similar set of calculations reveals that with X as before and Y = X4,
ρX,Y = 0.866.

Note that in the above example, knowing X amounts to knowing Y and, con-
versely, X is given as the positive square root of Y. However, although monotone,
the relationship between X and Y is not linear.

Definition 4.5-2
Two variables having zero correlation are called uncorrelated.

Independent variables are uncorrelated, but uncorrelated variables are not necessar-
ily independent; see Example 4.4-11. In general, if the dependence is not monotone,
that is, neither positive nor negative, it is possible for two variables to have zero
correlation even though they are very strongly related; see Exercise 8.
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Sample Versions of the Covariance and Correlation Coefficient If (X1, Y1), . . . ,
(Xn, Yn) is a sample from the bivariate distribution of (X, Y), the sample covari-
ance, denoted by Ĉov(X, Y) or SX, Y , and sample correlation coefficient, denoted by
Ĉorr(X, Y) or rX, Y , are defined as

Sample Versions of
Covariance and

Correlation
Coefficient

SX, Y = 1
n − 1

n∑

i=1

(Xi − X)(Yi − Y)

rX, Y = SX,Y

SXSY

(4.5.3)

where X, SX and Y, SY are the (marginal) sample mean and sample standard
deviation of the X-sample and Y-sample, respectively.

In Chapter 1 it was repeatedly stressed that sample versions of the population
parameters estimate but, in general, they are not equal to the corresponding popu-
lation parameters. In particular, Ĉov(X, Y) and Ĉorr(X, Y) estimate Cov(X, Y) and
Corr(X, Y), respectively, but, in general, they are not equal to them.

A computational formula for the sample covariance is

SX, Y = 1
n − 1

[ n∑

i=1

XiYi − 1
n

( n∑

i=1

Xi

) ( n∑

i=1

Yi

)]

.

If the Xi values are in the R object x and the Yi values are in y, the R commands for
computing SX, Y and rX, Y are

R Commands for Covariance and Correlation

cov(x, y) # gives SX,Y

cor(x, y) # gives rX,Y

Example
4.5-4

To calibrate a method for measuring lead concentration in water, the method
was applied to 12 water samples with known lead content. The concentration
measurements, y, and the known concentration levels, x, are given below.

x 5.95 2.06 1.02 4.05 3.07 8.45 2.93 9.33 7.24 6.91 9.92 2.86

y 6.33 2.83 1.65 4.37 3.64 8.99 3.16 9.54 7.11 7.10 8.84 3.56

Compute the sample covariance and correlation coefficient.

Solution
With this data,

∑12
i=1 Xi = 63.79,

∑12
i=1 Yi = 67.12, and

∑12
i=1 XiYi = 446.6939. Thus,

SX,Y = 1
11

[
446.6939 − 1

12
63.79 × 67.12

]
= 8.172.

Moreover,
∑12

i=1 X2
i = 440.302 and

∑12
i=1 Y2

i = 456.745, so that, using the computa-
tional formula for the sample variance given in (1.6.14), S2

X = 9.2 and S2
Y = 7.393.

Thus,

rX,Y = 8.172√
9.2

√
7.393

= 0.99.
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Entering the data into the R objects x and y by x=c(5.95, 2.06, 1.02, 4.05, 3.07, 8.45,
2.93, 9.33, 7.24, 6.91, 9.92, 2.86) and y=c(6.33, 2.83, 1.65, 4.37, 3.64, 8.99, 3.16, 9.54,
7.11, 7.10, 8.84, 3.56), the above values for the covariance and correlation coefficient
can be found with the R commands cov(x, y) and cor(x, y), respectively.

REMARK 4.5-1 As Example 4.5-3 demonstrated, linear correlation is not a good
measure of the non-linear dependence of two variables. Two different types of cor-
relation coefficients, Kendall’s τ and Spearman’s ρ, are designed to capture correctly
the strength of non-linear (but monotone) dependence. Detailed descriptions of
these correlation coefficients is beyond the scope of this book. ▹

Exercises

1. Using the joint distribution, given in Exercise 1 in
Section 4.3, of the volume of monthly book sales from
the online site, X, and the volume of monthly book sales
from the brick and mortar counterpart, Y, of a bookstore,
compute the linear correlation coefficient of X and Y.

2. Consider the information given in Exercise 2 in
Section 4.2 regarding the amount, X, of drug adminis-
tered to a randomly selected laboratory rat, and number,
Y, of tumors the rat develops.
(a) Would you expect X and Y to be positively or nega-

tively correlated? Explain your answer, and confirm it
by computing the covariance.

(b) Compute the linear correlation coefficient of X
and Y.

3. An article2 reports data on X = distance between a
cyclist and the roadway center line and Y = the separa-
tion distance between the cyclist and a passing car, from
ten streets with bike lanes. The paired distances (Xi, Yi)
are determined by photography and are given below in
feet.

x 12.8 12.9 12.9 13.6 14.5 14.6 15.1 17.5 19.5 20.8

y 5.5 6.2 6.3 7.0 7.8 8.3 7.1 10.0 10.8 11.0

(a) Compute SX, Y , S2
X , S2

Y , and rX, Y .
(b) Indicate how the quantities in part (a) would change

if the distances had been given in inches.

4. Use ta=read.table(”TreeAgeDiamSugarMaple.txt”,
header=T) to import the data set of diameter–age mea-
surements for 27 sugar maple trees into the R data frame
ta, and x=ta$Diamet; y=ta$Age to copy the diameter and
age values into the R objects x and y, respectively.
(a) Would you expect the diameter and age to be posi-

tively or negatively correlated? Explain your answer,

and confirm it by doing a scatterplot of the data
(plot(x,y)).

(b) Compute the sample covariance and linear correla-
tion of diameter and age using R commands. On
the basis of the scatterplot are you satisfied that lin-
ear correlation correctly captures the strength of the
diameter–age dependence?

5. Import the bear data into R with the R command
br=read.table(”BearsData.txt”, header=T), and form a
data frame consisting only of the measurements with the
R commands attach(br); bd=data.frame(Head.L, Head.W,
Neck.G, Chest.G, Weight).3 The R command cor(bd)
returns a matrix of the pairwise correlations of all vari-
ables. (The matrix is symmetric because rX, Y = rY, X ,
and its diagonal elements are 1 because the correlation of
a variable with itself is 1.) Using this correlation matrix,
which would you say are the two best single predictors of
the variable Weight?

6. Select two products from a batch of 10 containing three
defective and seven non-defective products. Let X = 1 or
0 as the first selection from the 10 products is defective or
not, and Y = 1 or 0 as the second selection (from the nine
remaining products) is defective or not.
(a) Find the marginal distribution of X.
(b) Find the conditional distributions of Y given each of

the possible values of X.
(c) Use the results in parts (a) and (b), and the mul-

tiplication rule for joint probability mass functions
given in (4.3.4), to find the joint distribution of
X and Y.

(d) Find the marginal distribution of Y. Is it the same as
that of X?

(e) Find the covariance and the linear correlation coeffi-
cient of X and Y.

2 B. J. Kroll and M. R. Ramey (1977). Effects of bike lanes on driver and bicyclist behavior, Transportation Eng.
J., 243–256.
3 This data set is a subset of a data set contributed to Minitab by Gary Alt.
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7. Consider the context of Exercise 17 in Section 4.3, so
that the variables X = static force at failure, Y = defect
index, have joint PDF

f (x, y) =
{

24x if 0 ≤ y ≤ 1 − 2x and 0 ≤ x ≤ .5

0 otherwise.

(a) It is given that the marginal density of X is fX(x) =∫ 1−2x
0 24x dy = 24x(1 − 2x), 0 ≤ x ≤ 0.5, and the

marginal density of Y is fY(y) =
∫ (1−y)/2

0 24x dx =
3(1 − y)2, 0 ≤ y ≤ 1. Find σ 2

X , σ 2
Y , and σX, Y .

(b) Find the linear correlation coefficient, ρX, Y , of
X and Y.

(c) Find the regression function of Y on X. Taking this
into consideration, comment on the appropriateness
of ρX, Y as a measure of the dependence between X
and Y.

8. Let X have the uniform in (−1, 1) distribution and let
Y = X2. Using calculations similar to those in Example
4.5-3, show that ρX, Y = 0.

9. Let X be defined by the probability density function

f (x) =

⎧
⎪⎨

⎪⎩

−x −1 < x ≤ 0

x 0 < x ≤ 1

0 otherwise.

(a) Define Y = X2 and find Cov(X, Y).
(b) Without doing any calculations, find the regression

function E(Y|X = x) (Hint. When the value of X is
given, the value of Y is known).

(c) On the basis of the regression function found above,
comment on the appropriateness of the linear correla-
tion coefficient as a measure of dependence between
X and Y.

4.6 Models for Joint Distributions
4.6.1 HIERARCHICAL MODELS

The multiplication rule for joint probability mass functions given in (4.3.4) expresses
the joint PMF of X and Y as the product of the conditional PMF of Y given X = x
and the marginal PMF of X, that is, p(x, y) = pY|X=x(y)pX(x). Similarly, the multi-
plication rule for joint PDFs given in (4.3.8) states that f (x, y) = fY|X=x(y)fX(x).

The principle of hierarchical modeling uses the multiplication rules in order to
specify the joint distribution of X and Y by first specifying the conditional distribu-
tion of Y given X = x, and then specifying the marginal distribution of X. Thus, a
hierarchical model consists of

Y|X = x ∼ FY|X=x(y), X ∼ FX(x), (4.6.1)

where the conditional distribution of Y given X = x, FY|X=x(y), and the marginal
distribution of X, FX(x), can depend on additional parameters. (The description of
the hierarchical model in (4.6.1) uses CDFs in order to include both discrete and
continuous random variables.) Examples of hierarchically specified joint distribu-
tions have already been seen in Examples 4.3-4 and 4.3-7, and in Exercises 5, 7, 9,
and 10 in Section 4.3. An additional example follows.

Example
4.6-1

Let X be the number of eggs an insect lays and Y the number of eggs that sur-
vive. Suppose each egg survives with probability p, independently of other eggs. Use
the principle of hierarchical modeling to describe a reasonable model for the joint
distribution of X and Y.

Solution
The principle of hierarchical modeling can be applied in this context as follows. First
we can model the number of eggs X an insect lays as a Poisson random variable.
Second, since each egg survives with probability p, independently of other eggs, if
we are given the number of eggs X = x the insect lays it is reasonable to model
the number of eggs that survive as a binomial random variable with x trials and
probability of success p. Thus, we arrive at the hierarchical model
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Y|X = x ∼ Bin(x, p), X ∼ Poisson(λ),

which leads to a joint PMF of (X, Y), which, for y ≤ x, is:

p(x, y) = pY|X=x(y)pX(x) =
(

x
y

)
py(1 − p)x−y e−λλx

x! .

The hierarchical approach to modeling offers a way to specify the joint distri-
bution of a discrete and a continuous variable; see Exercise 2. Finally, the class of
hierarchical models includes the bivariate normal distribution which, because of its
importance, is revisited in Section 4.6.3.

Example
4.6-2

The bivariate normal distribution. X and Y are said to have a bivariate normal
distribution if their joint distribution is specified according to the hierarchical model

Y|X = x ∼ N
(
β0 + β1(x − µX), σ 2

ε

)
and X ∼ N(µX , σ 2

X). (4.6.2)

Give an expression of the joint PDF of X and Y.

Solution
The hierarchical model (4.6.2) implies that the conditional distribution of Y given
that X = x is normal with mean β0 +β1(x−µX) and variance σ 2

ε . Plugging this mean
and variance into the form of the normal PDF we obtain

fY|X=x(y) = 1
√

2πσ 2
ε

exp

{

− (y − β0 − β1(x − µX))2

2σ 2
ε

}

.

In addition, the hierarchical model (4.6.2) specifies that the marginal distribution of
X is normal with mean µX and variance σ 2

X . Thus,

fX(x) = 1
√

2πσ 2
X

exp

{

− (x − µX)2

2σ 2
X

}

.

It follows that the joint PDF of (X, Y), which is given by the product fY|X=x(y)fX(x),
takes the form

fX, Y(x, y) = 1
2πσεσX

exp

{

− (y − β0 − β1(x − µX))2

2σ 2
ε

− (x − µX)2

2σ 2
X

}

. (4.6.3)

4.6.2 REGRESSION MODELS

Regression models are used whenever the primary objective of the study is to under-
stand the nature of the regression function of a variable Y on another variable X. A
study of the speed, X, of an automobile and the stopping distance, Y; or a study of
the diameter at breast height, X, and age of a tree, Y; or a study of the stress applied,
X, and time to failure, Y, are examples of such studies. In regression studies Y is
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called the response variable, and X is interchangeably referred to as the covariate,
or the independent variable, or the predictor, or the explanatory variable. Because
interest lies in the conditional mean of Y given X = x, regression models specify
the conditional distribution of Y given X = x while the marginal distribution of X,
which is of little interest in such studies, is left unspecified.

Regression models are similar to, but more general than, hierarchical models
since they specify only the conditional distribution of Y given X = x and leave the
marginal distribution of X unspecified. In fact, regression models allow the covari-
ate X to be nonrandom because in some studies the investigator selects the values
of the covariate in a deterministic fashion. An even more general type of a regres-
sion model is one that specifies only the form of the regression function, without
specifying the conditional distribution of Y given X = x.

In this section we will introduce the simple linear regression model and the
normal simple linear regression model, setting the stage for revisiting the bivariate
normal distribution in Section 4.6.3.

The Simple Linear Regression Model The simple linear regression model specifies
that the regression function of Y on X is linear, that is,

µY|X(x) = α1 + β1x, (4.6.4)

and the conditional variance of Y given X = x, denoted by σ 2
ε , is the same for all

values x. The latter is known as the homoscedasticity assumption. In this model,
α1, β1, and σ 2

ε are unknown parameters. The regression function (4.6.4) is often
written as

µY|X(x) = β0 + β1(x − µX), (4.6.5)

where µX is the marginal mean value of X, and β0 is related to α1 through β0 =
α1 + β1µX . The straight line defined by the equation (4.6.4) (or (4.6.5)) is called the
regression line. Figure 4-3 illustrates the meaning of the slope of the regression line.
Basically, the slope expresses the change in the average or mean value of Y when
the value of X changes by one unit. Thus, if β1 > 0 then X and Y are positively
correlated, and if β1 < 0 then X and Y are negatively correlated. If β1 = 0 then X
and Y are uncorrelated, in which case X is not relevant for predicting Y. The above
discussion hints of a close connection between the slope in a simple linear regression
model and the covariance/correlation of X and Y. This connection is made precise
in Proposition 4.6-3.

Regression line

x0 x0 + 1
x

β0

β1

µY|X = x

µX

Figure 4-3 Illustration of
regression parameters.
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The reason the seemingly more complicated expression (4.6.5) is sometimes
preferred over (4.6.4) is that the parameter β0 equals the marginal mean of Y.

Proposition
4.6-1

The marginal expected value of Y is given by

E(Y) = α1 + β1µX and E(Y) = β0

when the simple linear regression model is parametrized as in (4.6.4) and (4.6.5),
respectively.

Proof Consider the parametrization in (4.6.5). Using the Law of Total Expectation
(4.3.13), we obtain

E(Y) = E[E(Y|X)]

= E[β0 + β1(X − µX)]

= β0 + β1E(X − µX) = β0.

The expression E(Y) = α1 +β1µX is obtained similarly using the parametrization in
(4.6.4). "

The simple linear regression model is commonly (and equivalently) given in the
so-called mean plus error form. If X has mean µX = E(X), its mean plus error
form is

X = µX + ε,

where ε = X − µX is called the (intrinsic) error variable. In statistics, the term error
variable is generally used to denote a random variable with zero mean. The mean
plus error expression of the response variable Y in a general regression setting is of
the form

Y = E(Y|X) + ε,

with the error variable given by ε = Y − E(Y|X). For the simple linear regression
model, where E(Y|X) is given by either (4.6.4) or (4.6.5), the mean plus error form is

Mean Plus Error Form
of the Simple Linear

Regression Model
Y = α1 + β1X + ε, or Y = β0 + β1(X − µX) + ε (4.6.6)

The mean plus error representation of the response variable suggests that the
intrinsic error variable ε represents the uncertainty regarding the value of Y given
the value of X. (See the statement regarding the conditional variance of Y given
X = x following (4.6.4), and Proposition 4.6-2.) In addition, the mean plus error
representation of Y is useful for deriving properties of the simple linear regression
model. For example, the result of Proposition 4.6-1 for the marginal mean value of
Y can also be derived from (4.6.6) along with the result of the mean value of sums
(Proposition 4.4-2); see Exercise 6. The mean plus error representation of Y will also
be used in the derivation of Proposition 4.6-3. But first we state without proof the
properties of the intrinsic error variable.

Proposition
4.6-2

The intrinsic error variable, ε, has zero mean and is uncorrelated from the explana-
tory variable X:

E(ε) = 0 and Cov(ε, X) = 0.
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Moreover, the variance of ε, σ 2
ε , is the conditional variance of Y given the

value of X. "

Proposition
4.6-3

If the regression function of Y on X is linear (so (4.6.4) or, equivalently, (4.6.5)
holds), then we have the following:

1. The marginal variance of Y is

σ 2
Y = σ 2

ε + β2
1σ 2

X . (4.6.7)

2. The slope β1 is related to the covariance, σX, Y , and the correlation, ρX, Y , by

β1 = σX, Y

σ 2
X

= ρX, Y
σY

σX
. (4.6.8)

Proof Using the mean plus error representation (4.6.6), the fact that adding (or
subtracting) a constant, which in this case is α1, does not change the variance, and
the formula for the variance of a sum, we have

Var(Y) = Var(α1 + β1X + ε) = Var(β1X + ε)

= Var(β1X) + Var(ε) + 2Cov(β1X, ε)

= β2
1 Var(X) + σ 2

ε ,

since Cov(β1X, ε) = β1Cov(X, ε) = 0 by the fact that ε and X are uncorrelated. For
the second part, it suffices to show the first equality, that is, that Cov(X, Y) = β1σ

2
X ,

since the second is equivalent. Using again the mean plus error representation of Y
and the linearity property of covariance (part (4) of Proposition 4.4-5),

Cov(X, Y) = Cov(X, α1 + β1X + ε)

= Cov(X, β1X) + Cov(X, ε)

= β1Cov(X, X) = β1Var(X),

since Cov(X, ε) = 0 and Cov(X, X) = Var(X). "

REMARK 4.6-1 Sample version of the regression line. Proposition 4.6-3 suggests
an estimator of β1. Indeed, if (X1, Y1), . . . , (Xn, Yn) is a sample from the bivariate
distribution of (X, Y), σX,Y can be estimated by SX, Y and σ 2

X can be estimated by
S2

X . Hence, if (X, Y) satisfy the simple linear regression model, then, according to
the first equation in (4.6.8), β1 can be estimated by

β̂1 = SX, Y

S2
X

. (4.6.9)

Moreover, from Proposition 4.6-1 we have α1 = E(Y) − β1µX , which suggests that
α1 can be estimated by

α̂1 = Y − β̂1X. (4.6.10)

These empirically derived estimators of the slope and intercept will be rederived
in Chapter 6 using the principle of least squares. ▹

The Normal Simple Linear Regression Model The normal regression model specifies
that the conditional distribution of Y given X = x is normal,
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xx1 x2

α1 + β1x

Figure 4-4 Illustration of
intrinsic scatter in
regression.

Y|X = x ∼ N
(
µY|X(x), σ 2

ε

)
, (4.6.11)

where µY|X(x) is a given function of x, typically depending on unknown parameters.
The normal simple linear regression model specifies, in addition, that the regres-

sion function µY|X(x) in (4.6.11) is linear, that is, that (4.6.5) or, equivalently, (4.6.4)
holds. The normal simple linear regression model is also written as

Y = α1 + β1x + ε, with ε ∼ N(0, σ 2
ε ), (4.6.12)

where the first part of the model can also be written as Y = β0 + β1(X − µX) + ε.
The intrinsic error variable ε expresses the conditional variability of Y around its
conditional mean given X = x, as Figure 4-4 illustrates.

Quadratic and more complicated normal regression models are also commonly
used. The advantages of such models are (a) it is typically easy to fit such a model to
data (i.e., estimate the model parameters from the data), and (b) such models offer
easy interpretation of the effect of X on the expected value of Y.

Example
4.6-3

Suppose that Y|X = x ∼ N(5 − 2x, 16), that is, given X = x, Y has the normal
distribution with mean µY|X(x) = 5 − 2x and variance σ 2

ε = 16, and let σX = 3.

(a) Find σ 2
Y and ρX,Y .

(b) If Y1 is an observation to be taken when X has been observed to take the value
1, find the 95th percentile of Y1.

Solution
(a) Using (4.6.7) we have σ 2

Y = 16 + (−2)232 = 52. Next, using Proposition 4.6-3,
ρX,Y = β1(σX/σY) = −2(3/

√
52) = −0.832.

(b) Because X has been observed to take the value 1, Y1 ∼ N(3, 42), where the
mean is computed from the given formula µY|X(x) = 5 − 2x with x = 1. Thus,
the 95th percentile of Y1 is 3 + 4z0.05 = 3 + 4 × 1.645 = 9.58.

4.6.3 THE BIVARIATE NORMAL DISTRIBUTION

The bivariate normal distribution was already introduced in Example 4.6-2, where
the joint PDF of (X, Y) was derived as a product of the conditional PDF of Y
given X = x times the PDF of the marginal distribution of X, which is specified to



Section 4.6 Models for Joint Distributions 205

be normal with mean µX and σ 2
X . It is worth pointing out that in the hierarchical

modeling of Example 4.6-2 the conditional distribution of Y given X = x is
specified as

Y|X = x ∼ N
(
β0 + β1(x − µX), σ 2

ε

)
,

which is precisely the normal simple linear regression model. Because of its con-
nection to the normal simple linear regression model, as well as some additional
properties, the bivariate normal distribution is considered to be the most important
bivariate distribution.

A more common and useful form of the joint PDF of (X, Y) is

f (x, y) = 1

2πσXσY
√

1 − ρ2
exp

{
−1

1 − ρ2

[
x̃ 2

2σ 2
X

− ρx̃ ỹ
σXσY

+ ỹ2

2σ 2
Y

]}

, (4.6.13)

where x̃ = x−µX , ỹ = y−µY , and ρ is the correlation coefficient between X and Y.
This form of the PDF can be derived from the expression given in Example 4.6-2 and
some careful algebra using Propositions 4.6-1 and 4.6-3; see Exercise 10. Figure 4-5
shows the joint PDFs of two marginally N(0, 1) random variables with ρ = 0 (left
panel) and ρ = 0.5 (right panel).

The expression of the PDF given in (4.6.13) makes it apparent that a bivariate
normal distribution is completely specified by the mean values and variances of X
and Y and the covariance of X and Y, that is, by µX , µY , σ 2

X , σ 2
Y , and σX,Y . The two

variances and the covariance are typically arranged in a symmetric matrix, called the
covariance matrix:

" =
(

σ 2
X σX,Y

σX,Y σ 2
Y

)

(4.6.14)

An alternative form of the bivariate normal PDF, one that is expressed in terms of
matrix operations, is given in Exercise 10.

The bivariate normal PDF and CDF are available in the R package mnormt,
which needs to be installed with the R command install.packages(“mnormt”). To use
it, the package must be evoked with the R command library(mnormt) in each new
R session. Once the package has been evoked, the PDF and CDF of the bivariate
normal distribution with parameters µX , µY , σ 2

X , σ 2
Y , and σX,Y evaluated at (x, y),

are obtained with the following R commands:
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Figure 4-5 Joint PMFs of
marginally N(0, 1) random
variables: ρ = 0 (left panel)
and ρ = 0.5 (right panel).
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R Commands for the Bivariate Normal PMF and CDF

dmnorm(c(x,y), c(µX,µY), matrix(c(σ2X, σX,Y, σX,Y, σ2Y),2)) # for
the PDF

pmnorm(c(x,y), c(µX,µY), matrix(c(σ2X, σX,Y, σX,Y, σ2Y),2)) # for
the CDF

Proposition
4.6-4

Let (X, Y) have a bivariate normal distribution with parameters µX , µY , σ 2
X , σ 2

Y and
σX, Y . Then we have the following:

1. The marginal distribution of Y is also normal.
2. If X and Y are uncorrelated then they are independent.
3. If X and Y are independent normal random variables, their joint distribution is

bivariate normal with parameters µX , µY , σ 2
X , σ 2

Y , and σX, Y = 0.
4. Any linear combination of X and Y has a normal distribution. In particular

aX + bY ∼ N(aµX + bµY , a2σ 2
X + b2σ 2

Y + 2abCov(X, Y)). "

Part (1) of Proposition 4.6-4 follows by the fact that the joint PDF f (x, y) of X
and Y is symmetric in x and y (this is most easily seen from the form of the PDF
given in (4.6.13)) together with the fact that, according to the hierarchical definition
of the bivariate normal distribution, the marginal distribution of X is normal. Hence,
the marginal PDF of Y, fY(y) =

∫ ∞
−∞ f (x, y) dx, is the PDF of a normal distribution

because this holds for the marginal PDF fX(x) =
∫ ∞
−∞ f (x, y) dy of X. Part (2) of

Proposition 4.6-4 follows by noting that if ρ = 0 the joint PDF given in (4.6.13)
becomes a product of a function of x times a function of y. Part (3) follows upon
writing the product of the two normal PDFs, which is the joint PDF of the indepen-
dent X and Y, and checking that it has the form given in (4.6.13) with ρ = 0. The
proof of part (4) of the proposition will not be given here as it requires techniques
not covered in this book.

Example
4.6-4

Suppose that Y|X = x ∼ N(5 − 2x, 16), that is, given X = x, Y has the normal
distribution with mean µY|X(x) = 5 − 2x and variance σ 2

ε = 16, and let σX = 3.

(a) Let Y1 and Y2 be observations to be taken, independently from each other,
when X has been observed to take the value 1 and 2, respectively. Find the
probability that Y1 > Y2.

(b) Assume in addition that X has the normal distribution with mean 2 (and
variance 9, as mentioned above). Use R commands to find the probability
P(X ≤ 0, Y ≤ 2).

Solution
(a) In Example 4.6-3 we saw that Y1 ∼ N(3, 42). Similarly, we find that Y2 ∼

N(1, 42). Because Y1 and Y2 are independent, their joint distribution is
bivariate normal, according to part (3) of Proposition 4.6-4. By part (4) of
Proposition 4.6-4, Y1 − Y2 ∼ N(3 − 1, 42 + 42) = N(2, 32). Thus,

P(Y1 > Y2) = P(Y1 − Y2 > 0) = 1 − ,

( −2√
32

)
= 0.638.
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(b) X and Y have a bivariate normal distribution with parameters µX = 2, µY =
5 − 2µX = 1 (by Proposition 4.6-1), σ 2

X = 9, σ 2
Y = 16 + 4 × 9 = 52 (see

(4.6.7)), and σX,Y = −2 × 9 = −18 (by Proposition 4.6-3). Thus, assuming that
the package mnormt has been installed (and evoked in the current R session
with the command library(mnormt)), the R command pmnorm(c(0, 2), c(2, 1),
matrix(c(9, -18, -18, 52), 2)) gives 0.021 (rounded to 3 decimal places) for the
value of P(X ≤ 0, Y ≤ 2).

4.6.4 THE MULTINOMIAL DISTRIBUTION

The multinomial distribution arises in cases where a basic experiment that has r pos-
sible outcomes is repeated independently n times. For example, the basic experiment
can be life testing of an electronic component, with r = 3 possible outcomes: 1 if the
life time is short (less than 50 time units), 2 if the life time is medium (between 50
and 90 time units), or 3 if the life time is long (exceeds 90 time units). When this
basic experiment is repeated n times, one typically records

N1, . . . , Nr, (4.6.15)

where Nj = the number of times outcome j occurred. If the r possible outcomes of
the basic experiment have probabilities p1, . . . , pr, the joint distribution of the ran-
dom variables N1, . . . , Nr is said to be multinomial with n trials and probabilities
p1, . . . , pr.

Note that, by their definition, N1, . . . , Nr and p1, . . . , pr satisfy

N1 + · · · + Nr = n and p1 + · · · + pr = 1. (4.6.16)

For this reason, Nr is often omitted as superfluous (since Nr = n − N1 − · · · − Nr−1),
and the multinomial distribution is defined to be the distribution of (N1, . . . , Nr−1).
With this convention, if r = 2 (i.e., there are only two possible outcomes, which
can be labeled “success” and “failure”) the multinomial distribution reduces to the
binomial distribution.

If N1, . . . , Nr have the multinomial(n, p1, . . . , pr) distribution, then their joint
PMF is

P(N1 = x1, . . . , Nr = xr) = n!
x1! · · · xr!

px1
1 · · · pxr

r (4.6.17)

if x1+· · ·+xr = n and zero otherwise. The multinomial PMF can be obtained for any
set of r nonnegative integers x1, . . . , xr, and p1, . . . , pr with the following R command:

R Command for the Multinomial PMF

dmultinom(c(x1, . . .,xr), prob=c(p1, . . .,pr)) # gives the PMF
P(N1 = x1, . . .,Nr = xr)

Example
4.6-5

The probabilities that a certain electronic component will last less than 50 hours
in continuous use, between 50 and 90 hours, or more than 90 hours, are p1 = 0.2,
p2 = 0.5, and p3 = 0.3, respectively. The time to failure of eight such electronic
components will be recorded. Find the probability that one of the eight will last less
than 50 hours, five will last between 50 and 90 hours, and two will last more than 90
hours.
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Solution
Set N1 for the number of these components that last less than 50 hours, N2 for the
number that last between 50 and 90 hours, and N3 for the number that last more
than 90 hours. Then (N1, N2, N3) have the multinomial(n, 0.2, 0.5, 0.3) distribution
and, according to (4.6.17),

P(N1 = 1, N2 = 5, N3 = 2) = 8!
1!5!2!0.210.550.32 = 0.0945.

The R command dmultinom(c(1, 5, 2), prob=c(0.2, 0.5, 0.3)) gives the same value.

If N1, . . . , Nr have the multinomial(n, p1, . . . , pr) distribution then the marginal dis-
tribution of each Nj is binomial(n, pj). The easiest way to see this is to call the
outcome of the basic experiment a “success” if outcome j occurs, and a “failure” if
outcome j does not occur. Then Nj counts the number of successes in n independent
trials when the probability of success in each trial is pj. Moreover, the covariance
between an Ni and an Nj can be shown to be −npipj. These results are summarized
in the following proposition.

Proposition
4.6-5

If N1, . . . , Nr have the multinomial distribution with parameters n, r, and p1, . . . , pr,
the marginal distribution of each Ni is binomial with probability of success equal to
pi, that is, Ni ∼ Bin(n, pi). Thus,

E(Ni) = npi and Var(Ni) = npi(1 − pi).

Moreover, for i ̸= j the covariance of Ni and Nj is

Cov(Ni, Nj) = −npipj. "

Example
4.6-6

In the context of Example 4.6-5, set N1 for the number of these components that last
less than 50 hours, N2 for the number that last between 50 and 90 hours, and N3 for
the number that last more than 90 hours.

(a) Find the probability that exactly one of the eight electronic components will
last less than 50 hours.

(b) Find the covariance of N2 and N3 and explain, at an intuitive level, why this
covariance is negative.

(c) Find Var(N2 + N3) and Cov(N1, N2 + N3).

Solution
(a) According to Proposition 4.6-5, N1 ∼ Bin(8, 0.2). Hence,

P(N1 = 1) =
(

8
1

)
0.21 × 0.87 = 0.3355.

(b) According to Proposition 4.6-5, Cov(N2, N3) = −8 × 0.5 × 0.3 = −1.2. At
an intuitive level, the negative covariance can be explained as follows. Since
N1 + N2 + N3 = 8, it follows that if N2 takes a small value then the probability
that N1 and N3 take a larger value increases; similarly, if N2 takes a large value
then it is more likely that N1 and N3 will take a small value. This means that
the dependence between any two of N1, N2, and N3 is negative, and hence the
covariance is negative.
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(c) It is instructive to compute the variance of N2 + N3 in two ways. First,

Var(N2 + N3) = Var(N2) + Var(N3) + 2Cov(N2, N3)

= 8 × 0.5 × 0.5 + 8 × 0.3 × 0.7 − 2 × 1.2 = 1.28,

where the second equality in the above relation used the formula for the vari-
ance of the binomial distribution and the covariance found in part (b). An
alternative way of finding the variance of N2 + N3 is to use the fact that
N2 + N3 is the number of components that last more than 50 hours. Hence,
N2 + N3 ∼ Bin(8, 0.8) and, using the formula for the variance of a binomial
random variable, Var(N1 + N2) = 8 × 0.8 × 0.2 = 1.28. Finally, using the
properties of covariance,

Cov(N1, N2 + N3) = Cov(N1, N2) + Cov(N1, N3)

= −8 × 0.2 × 0.5 − 8 × 0.2 × 0.3 = −1.28.

Exercises

1. In an accelerated life testing experiment, different
batches of n equipment are operated under different
stress conditions. Because the stress level is randomly set
for each batch, the probability, P, with which an equip-
ment will last more than T time units is a random variable.
In this problem it is assumed that P is discrete, taking the
values 0.6, 0.8, and 0.9 with corresponding probabilities
0.2, 0.5, and 0.3. Let Y denote the number of equipment
from a randomly selected batch that last more than T time
units.
(a) Use the principle of hierarchical modeling to spec-

ify the joint distribution of (P, Y). (Hint. Given that
P = p, Y ∼ Bin(n, p).)

(b) Find the marginal PMF of Y when n = 3.

2. Consider the same setting as in Exercise 1, except now
P is assumed here to have the uniform(0, 1) distribution.
(a) Use the principle of hierarchical modeling to specify

the joint density of fP,Y(p, y) of (P, Y) as the product
of the conditional PMF of Y given P = p times the
marginal PDF of P.

(b) Find the marginal PMF of Y. (Hint. The marginal
PDF of Y is still given by integrating fP,Y(p, y) over
p. You may use

∫ 1
0

(n
k

)
pk(1 − p)n−k dp = 1

n+1 for
k = 0, . . . , n.)

3. In the context of the normal simple linear regression
model

Y|X = x ∼ N(9.3 + 1.5x, 16),

let Y1, Y2 be independent observations corresponding to
X = 20 and X = 25, respectively.
(a) Find the 95th percentile of Y1.

(b) Find the probability that Y2 > Y1. (Hint. See Example
4.6-4.)

4. Consider the information given in Exercise 3. Suppose
further that the marginal mean and variance of X are
E(X) = 24 and σ 2

X = 9, and the marginal variance of
Y is σ 2

Y = 36.25.
(a) Find the marginal mean of Y. (Hint. Use Proposition

4.6-1, or the Law of Total Expectation given in 4.3.15.)
(b) Find the covariance and the linear correlation coeffi-

cient of X and Y. (Hint. Use Proposition 4.6-3.)

5. Consider the information given in Exercise 3. Suppose
further that the marginal distribution of X is normal with
µX = 24 and σ 2

X = 9.
(a) Give the joint PDF of X, Y.
(b) Use R commands to find P(X ≤ 25, Y ≤ 45).

6. Use the second mean plus error expression of the
response variable given in (4.6.6) and Proposition 4.4-2
to derive the formula E(Y) = β0. (Hint. Recall that any
(intrinsic) error variable has mean value zero.)

7. The exponential regression model. The exponential
regression model is common in reliability studies inves-
tigating how the expected life time of a product changes
with some operational stress variable X. This model
assumes that the life time, Y, has an exponential distri-
bution whose parameter λ depends on the value x of X.
We write λ(x) to indicate the dependence of the parame-
ter λ on the value of the stress variable X. An example of
such a regression model is

log λ(x) = α + βx.
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Suppose that in a reliability study, the stress variable X is
uniformly distributed in the interval (2, 6), and the above
exponential regression model holds with α = 4.2 and
β = 3.1.
(a) Find the expected life time of a randomly selected

product. (Hint. Given X = x, the expected life time
is 1/λ(x) = 1/ exp(α + βx). Use the Law of Total
Expectation. Optionally, R may be used for the inte-
gration.)

(b) Give the joint PDF of (X, Y). (Hint. Use the principle
of hierarchical modeling.)

8. Suppose that 60% of the supply of raw material kits
used in a chemical reaction can be classified as recent,
30% as moderately aged, 8% as aged, and 2% unus-
able. Sixteen kits are randomly chosen to be used for 16
chemical reactions. Let N1, N2, N3, N4 denote the number
of chemical reactions performed with recent, moderately
aged, aged, and unusable materials.
(a) Find the probability that exactly one of the 16 planned

chemical reactions will not be performed due to unus-
able raw materials.

(b) Find the probability that 10 chemical reactions will be
performed with recent materials, 4 with moderately
aged materials, and 2 with aged materials.

(c) Use an R command to recalculate the probabilities in
part (b).

(d) Find Cov(N1 + N2, N3) and explain, at an intuitive
level, why it is reasonable for the covariance to be
negative.

(e) Find the variance of N1 + N2 + N3. (Hint. Think of
N1 + N2 + N3 as binomial.)

9. An extensive study undertaken by the National
Highway Traffic Safety Administration reported that
17% of children between the ages of five and six use no
seat belt, 29% use a seat belt, and 54% use a child seat. In
a sample of 15 children between five and six let N1, N2, N3
be the number of children using no seat belt, a seat belt,
and a child seat, respectively.
(a) Find the probability that exactly 10 children use a

child seat.
(b) Find the probability that exactly 10 children use a

child seat and five use a seat belt.
(c) Find Var(N2 + N3) and Cov(N1, N2 + N3).

10. This exercise connects the form of bivariate normal
PDF obtained in (4.6.3) through the principle of hier-
archical modeling with its more common form given in
(4.6.13). It also gives an alternative form of the PDF using
matrix operations. For simplicity, ρ denotes ρX, Y .

(a) Show that 1 − ρ2 = σ 2
ε /σ 2

Y . (Hint. From Proposition
4.6-3 we have ρ2 = β2

1σ 2
X/σ 2

Y . Now use (4.6.7) to show
that σ 2

ε = σ 2
Y − ρ2σ 2

Y and finish the proof.)
(b) Using the result of part (a), which implies

σXσY
√

1 − ρ2 = σεσX , and making additional use
of the relationships given in Propositions 4.6-1 and
4.6-3, show that the form of the joint PDF given in
(4.6.13) is equivalent to the form given in (4.6.3).

(c) Let " be the variance-covariance matrix given in
(4.6.14). Use matrix operations to show that an equiv-
alent form of the joint PDF of (X, Y) is

1
2π

√|"| exp
{
−1

2
(x − µX , y − µY)"−1

(
x − µX
y − µY

)}
,

where |"| denotes the determinant of ".
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5Some Approximation Results

5.1 Introduction
Chapter 1 introduced the sample mean or average, the sample variance, the sample
proportion, and sample percentiles. In each case it was stressed that these statistics
approximate but are, in general, different from the true population parameters they
estimate. Moreover, we have accepted as true, based on intuition, that the bigger the
sample size the better the approximation; for example, the numerical verification
of Corollary 4.4-4, offered in Example 4.4-7, is based on this intuition. Evidence
supporting this intuition is provided by the formulas for the variances of X and p̂,
which decrease as the sample size increases. The Law of Large Numbers, or LLN
for short, stated in the second section of this chapter, is an explicit assertion that this
intuition is in fact true. The LLN is stated for the sample mean, but similar results
hold for all statistics we consider.

Though the LLN justifies the approximation of the population mean by the sam-
ple mean, it does not offer guidelines for determining how large the sample size
should be for a desired quality of the approximation. This requires knowledge of
the distribution of the sample mean. Except for a few cases, such as when sam-
pling from a normal population (see Section 5.3.2), the exact distribution of the
sample mean is very difficult to obtain. This is discussed further in Section 5.3.
In Section 5.4 we present the Central Limit Theorem, or CLT for short, which
provides an approximation to the distribution of sums or averages. Moreover, the
CLT provides the foundation for approximating the distribution of other statis-
tics, such as the regression coefficients, which will be used in the chapters to
follow.

5.2 The LLN and the Consistency of Averages
The limiting relative frequency definition of probability suggests that p̂ becomes a
more accurate estimator of p as the sample size increases. In other words, the

error of estimation |̂p − p|
converges to zero as the sample size increases. A more precise term is to say that
p̂ converges in probability to p, which means that the probability that the error of
estimation exceeds ϵ tends to zero for any ϵ > 0. This is written as

P (|̂p − p| > ϵ) → 0 as n → ∞. (5.2.1)

211
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Whenever an estimator converges in probability to the quantity it is supposed to
estimate, we say that the estimator is consistent. The LLN, stated below, asserts that
averages possess the consistency property.

Theorem
5.2-1

The Law of Large Numbers. Let X1, . . . , Xn be independent and identically
distributed and let g be a function such that −∞ < E[g(X1)] < ∞. Then,

1
n

n∑

i=1

g(Xi) converges in probability to E[g(X1)],

that is, for any ϵ > 0,

P

(∣∣∣∣∣
1
n

n∑

i=1

g(Xi) − E[g(X1)]

∣∣∣∣∣ > ϵ

)

→ 0 as n → ∞. (5.2.2)

If g is the identity function, that is, g(x) = x, this theorem asserts that for
any ϵ > 0

P
(
|X − µ| > ϵ

)
→ 0 as n → ∞, (5.2.3)

that is, X = n−1 ∑n
i=1 Xi is a consistent estimator of the population mean µ = E(X1),

provided µ is finite. Since p̂ is the average of independent Bernoulli random vari-
ables, whose mean value is p, we see that relation (5.2.1) is a special case of
(5.2.3).

The consistency property, which the Law of Large Numbers (and its various
ramifications) guarantees, is so basic and indispensable that all estimators used in
this book, and indeed all estimators used in statistics, have this property. For exam-
ple, the numerical verification of Corollary 4.4-4 offered in Example 4.4-7 is possible
because of the consistency of the sample variance.

If we also assume that the common variance of the g(Xi) is finite, then the proof
of the Law of Large Numbers is a simple consequence of the following inequality,
which is useful in its own right.

Lemma
5.2-1

Chebyshev’s inequality. Let the random variable Y have mean value µY and
variance σ 2

Y < ∞. Then, for any ϵ > 0,

P(|Y − µY | > ϵ) ≤ σ 2
Y

ϵ2 .

In words, Chebyshev’s inequality makes an explicit connection between the
variance of a random variable and (an upper bound on) the likelihood that the
random variable will differ “much” from its mean: The smaller the variance, the
less likely it is for the variable to differ “much” from its mean, and this likelihood
tends to zero if the variance tends to zero. Recall now that the mean of the sample
mean is the population mean, that is, E(X) = µ, regardless of the sample size (see
(4.4.3)), but its variance is

Var(X) = σ 2

n
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where σ 2 is the population variance; see (4.4.8). As long as σ 2 is finite, the variance
of X tends to zero as the sample size increases. Hence, Chebyshev’s inequality
implies the probability of the error of estimation exceeding ϵ, that is, P(|X − µ| >

ϵ), tends to zero for any ϵ > 0. This is the gist of the proof of the consistency of the
sample mean in the case of a finite population variance. The technical proof, also
in the more general context of the average of the g(Xi), follows.

Proof of the Law of Large Numbers (assuming also a finite variance). We will
use Chebyshev’s inequality with Y = n−1 ∑n

i=1 g(Xi). Thus,

µY = 1
n

n∑

i=1

E[g(Xi)] = E[g(X1)] and σ 2
Y = Var

(
1
n

n∑

i=1

g(Xi)

)

=
σ 2

g

n
,

where σ 2
g = Var[g(Xi)]. Hence, by Chebyshev’s inequality we have that for any

ϵ > 0,

P

(∣∣∣∣∣
1
n

n∑

i=1

g(Xi) − E[g(X1)]

∣∣∣∣∣ > ϵ

)

≤
σ 2

g

nϵ2 → 0 as n → ∞.

Though it is a fundamental result, the usefulness of the LLN has its limitations:
While it asserts that as the sample size increases, sample averages approximate the
population mean more accurately, it provides no guidance regarding the quality of
the approximation. In addition to helping prove the LLN (in the case of a finite vari-
ance), Chebyshev’s inequality provides some information about the quality of the
approximation but only in the sense of probability bounds. The following example
illustrates these points.

Example
5.2-1

Cylinders are produced in such a way that their height is fixed at 5 centimeters (cm),
but the radius of their base is uniformly distributed in the interval (9.5 cm, 10.5 cm).
The volume of each of the next 100 cylinders to be produced will be measured, and
the 100 volume measurements will be averaged.

(a) What will the approximate value of this average be?
(b) What can be said about the probability that the average of the 100 volume

measurements will be within 20 cm3 from its population mean?

Solution
Let Xi, i = 1, . . . , 100, and X denote the volume measurements and their average,
respectively.

(a) By the LLN, X should be approximately equal to the expected volume of a
randomly selected cylinder. Since the volume is given by X = πR2h cm3 with
h = 5 cm, the expected volume of a randomly selected cylinder is

E(X) = 5πE
(

R2
)

= 5π

∫ 10.5

9.5
r2 dr

= 5π
1
3

r3
∣∣∣∣
10.5

9.5
= 5π

1
3

(
10.53 − 9.53

)
= 1572.105.

Thus, the value of X should be “close” to 1572.105.
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(b) We are interested in an assessment of the probability

P(1572.105 − 20 ≤ X ≤ 1572.105 + 20) = P(1552.105 ≤ X ≤ 1592.105).

Since the LLN does not provide any additional information about the qual-
ity of the approximation of µ by X, we turn to Chebyshev’s inequality. Note
that the event 1552.105 ≤ X ≤ 1592.105 is the complement of the event∣∣∣X − 1572.105

∣∣∣ > 20. Since Chebyshev’s inequality provides an upper bound
for the probability of the later event, which is

P
(∣∣∣X − 1572.105

∣∣∣ > 20
)

≤ Var(X)
202 ,

it follows that it also provides a lower bound for the probability of the former
event

P
(

1552.105 ≤ X ≤ 1592.105
)

= 1 − P
(∣∣∣X − 1572.105

∣∣∣ > 20
)

≥ 1 − Var(X)
202 . (5.2.4)

It remains to compute the variance of X. Since

E
(

X2
)

= 52π2E
(

R4
)

= 52π2
∫ 10.5

9.5
r4 dr = 52π2 1

5
r5

∣∣∣∣
10.5

9.5
= 2,479,741,

the variance of X is σ 2 = 2,479,741 − 1572.1052 = 8227.06. Hence, Var(X) =
σ 2/n = 82.27. Substituting into (5.2.4), we obtain

P
(

1552.105 ≤ X ≤ 1592.105
)

≥ 1 − 82.27
400

= 0.79. (5.2.5)

Thus, it can be said that the probability of the average of the 100 vol-
ume measurements being within 20 cm3 from its population mean is at
least 0.79.

In general, Chebyshev’s inequality provides a lower bound to probabilities of
the form

P(µ − C ≤ X ≤ µ + C),

for any constant C. These lower bounds are valid for any sample size n and for sam-
ples drawn from any population, provided the population variance is finite. Because
these lower bounds apply so generally, they can be quite conservative for some
distributions. For example, if the volume measurements in Example 5.2-1 are
normally distributed, thus X1, . . . , X100 are iid N(1572.105, 8227.06), then X ∼
N(1572.105, 82.27) (this is a consequence of Proposition 4.6-4; see also Corollary
5.3-1). Using this fact, the exact value of the probability in (5.2.5), which can be found
with the R command pnorm(1592.105, 1572.105, sqrt(82.27)) − pnorm(1552.105,
1572.105, sqrt(82.27)), is 0.97. Because the lower bounds obtained from Chebyshev’s
inequality can underestimate the true probability (considerably for some distribu-
tions), they are not useful for answering practical questions involving the sample size
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required for a specified level of accuracy in the estimation of µ by X. To properly
address such questions, knowledge (or approximate knowledge) of the distribution
of averages is required; see Example 5.3-6. The rest of this chapter deals with this
issue, but first we discuss the assumptions of finite mean and finite variance that
underly all developments.

The Assumptions of a Finite Mean and a Finite Variance The LLN requires the
existence of a finite mean, while the simple proof of Theorem 5.2-1, based in
Chebyshev’s inequality, requires the stronger assumption of a finite variance. In a
first course in probability and statistics many students wonder how it is possible for
a random variable not to have a finite mean or to have a finite mean but infinite
variance, how one becomes aware of such abnormalities when confronted with a real
data set, and what the consequences are of ignoring evidence of such abnormalities.
The following paragraphs give brief answers to these questions.

First, it is easy to construct examples of distributions having infinite mean, or
having finite mean but infinite variance. Consider the functions

f1(x) = x−2, 1 ≤ x < ∞, and f2(x) = 2x−3, 1 ≤ x < ∞,

and both are zero for x < 1. It is easy to see that both are probability density func-
tions (both are nonnegative and integrate to 1). Let X1 have PDF f1 and X2 have
PDF f2. Then the mean value (and hence the variance) of X1 is infinite, while the
mean value of X2 is 2 but its variance is infinite:

E(X1) =
∫ ∞

1
xf1(x) dx = ∞, E(X2

1 ) =
∫ ∞

1
x2f1(x) dx = ∞

E(X2) =
∫ ∞

1
xf2(x) dx = 2, E(X2

2 ) =
∫ ∞

1
x2f2(x) dx = ∞

The most famous abnormal distribution is the (standard) Cauchy distribution, whose
PDF is

f (x) = 1
π

1
1 + x2 , −∞ < x < ∞. (5.2.6)

Note that this PDF is symmetric about zero, and thus its median is zero. However,
its mean does not exist in the sense that the integral

∫ ∞
−∞ xf (x) dx, with f (x)

given in (5.2.6), is undefined. Hence, its variance cannot be defined; however,∫ ∞
−∞ x2f (x) dx = ∞.

If the sample comes from a distribution without a finite mean, then the LLN
does not hold. In particular, if the mean is ±∞, X diverges to ±∞ as the sample size
tends to ∞. If the mean of the distribution does not exist, X need not converge to
any constant and it need not diverge; see Exercise 1 in Section 5.4 for a numerical
demonstration of this fact using samples from the Cauchy distribution. If the mean
exists and is finite then, by the Law of Large Numbers, X converges to the mean.
However, assessment of the accuracy in the estimation of µ by X requires that the
variance be finite too.

Distributions with infinite mean, or infinite variance, are described as heavy
tailed, a term justified by the fact that there is much more area under the tails (i.e.,
the extreme ends) of the PDF than for distributions with a finite variance. As a con-
sequence, samples obtained from heavy tailed distributions are much more likely to
contain outliers. If large outliers exist in a data set, it might be a good idea to focus
on estimating another quantity, such as the median, which is well defined also for
heavy tailed distributions.
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Exercises

1. Using Chebyshev’s inequality:
(a) Show that any random variable X with mean µ and

variance σ 2 satisfies

P(|X − µ| > aσ ) ≤ 1
a2 ,

that is, that the probability X differs from its mean
by more than a standard deviations cannot exceed
1/a2.

(b) Supposing X ∼ N(µ, σ 2), compute the exact prob-
ability that X differs from its mean by more than
a standard deviations for a = 1, 2, and 3, and com-
pare the exact probabilities with the upper bounds
provided by Chebyshev’s inequality.

2. The life span of an electrical component has the
exponential distribution with parameter λ = 0.013. Let
X1, . . . , X100 be a simple random sample of 100 life times
of such components.
(a) What will be the approximate value of their

average X?

(b) What can be said about the probability that X will be
within 15.38 units from the population mean? (Hint.
The mean and variance of a random variable having
the exponential distribution with parameter λ are 1/λ
and 1/λ2, respectively.)

3. Let X1, . . . , X10 be independent Poisson random vari-
ables having mean 1.

(a) Use Chebyshev’s inequality to find a lower bound on
the probability that X is within 0.5 from its mean,
that is, P

(
0.5 ≤ X ≤ 1.5

)
. (Hint. The probability in

question can be written as 1 − P(|X − 1| > 0.5); see
Example 5.2-1.)

(b) Use the fact that
∑10

i=1 Xi is a Poisson random variable
with mean 10 (see Example 5.3-1) to find the exact
value of the probability given in part (a). Compare
the exact probability to the lower bound obtained in
part (a). (Hint. The R command ppois(x, λ) gives the
value of the Poisson(λ) CDF at x.)

5.3 Convolutions
5.3.1 WHAT THEY ARE AND HOW THEY ARE USED

In probability and statistics, the convolution of two independent random variables
refers to the distribution of their sum. Alternatively, the convolution refers to formu-
las for the PDF/PMF and the CDF of their sum; see (5.3.3). The next two examples
find the convolution of two independent Poisson random variables and the convolu-
tion of two independent binomial random variables having the same probability of
success.

Example
5.3-1

Sum of independent Poisson random variables. If X ∼ Poisson(λ1) and Y ∼
Poisson(λ2) are independent random variables, show that

X + Y ∼ Poisson(λ1 + λ2).

Solution
We will find the distribution of Z = X +Y by first finding its conditional distribution
given X = k and subsequent application of the Law of Total Probability for marginal
PMFs given in relation (4.3.5). Note that given the information that X = k, the
possible values of Z are k, k + 1, k + 2, . . .. For n ≥ k

P(Z = n|X = k) = P(Z = n, X = k)
P(X = k)

= P(Y = n − k, X = k)
P(X = k)

= P(Y = n − k)P(X = k)
P(X = k)

= P(Y = n − k)

= e−λ2
λn−k

2
(n − k)! ,
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where the third equality above follows from the independence of X and Y. Next,

P(Z = n) =
n∑

k=0

P(Z = n|X = k)pX(k) =
n∑

k=0

e−λ2
λn−k

2
(n − k)!e−λ1

λk
1

k!

= e−(λ1+λ2)
n∑

k=0

λk
1λn−k

2
k!(n − k)!

= e−(λ1+λ2)

n!
n∑

k=0

n!
k!(n − k)!λ

k
1λn−k

2

= e−(λ1+λ2)

n! (λ1 + λ2)n,

which shows that X + Y ∼ Poisson(λ1 + λ2).

Example
5.3-2

Sum of independent binomial random variables. If X ∼ Bin(n1, p) and Y ∼
Bin(n2, p) are independent binomial random variables with common probability of
success, show that

X + Y ∼ Bin(n1 + n2, p).

Solution
This problem can be done with steps similar to those used in Example 5.3-1; see
Exercise 1 in Section 4.3. Alternatively, recalling that a binomial random variable
arises as the number of successes in a number of independent Bernoulli trials each
of which has the same probability of success, it can be argued that Z = X1 + X2 ∼
Bin(n1+n2, p) because Z is the number of successes in n1+n2 independent Bernoulli
trials each of which has the same probability of success.

By an inductive argument, Example 5.3-2 also implies that if Xi ∼ Bin(ni, p),
i = 1, . . . , k, are independent then X1 +· · ·+Xk ∼ Bin(n, p), where n = n1 +· · ·+nk.
Similarly, Example 5.3-1 and an inductive argument yields that the sum of sev-
eral independent Poisson random variables is also a Poisson random variable with
mean equal to the sum of their means. Moreover, in Proposition 4.6-4 it was seen
that the sum of multivariate normal random variables has a normal distribution.
Unfortunately, such nice examples are exceptions to the rule. In general, the dis-
tribution of the sum of two independent random variables need not resemble the
distribution of the variables being summed. For example, the sum of two indepen-
dent binomial random variables is binomial only if they share a common probability
of success; if the probabilities of success are different, the distribution of their sum is
none of the common types of discrete distributions we considered in Chapter 3. Also,
as the next example shows, the sum of two independent uniform random variables
is not a uniform random variable.

Example
5.3-3

The sum of two uniforms. If X1 and X2 are independent random variables having
the uniform in (0, 1) distribution, find the distribution of X1 + X2.

Solution
We will first find the cumulative distribution function, FX1+X2(y) = P(X1 + X2 ≤ y),
of X1 + X2, for 0 < y < 2. The probability density function will follow by differen-
tiation. A general method for finding the cumulative distribution of the sum of two
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independent random variables is to condition on one of them, say X1, and then use
a version of the Law of Total Expectation given in (4.3.16). Using this formula with
X1 in place of X, and B being the event that the sum X1 + X2 is less than or equal to
y, that is, [X1 + X2 ≤ y], we obtain

FX1+X2(y) =
∫ ∞

−∞
P(X1 + X2 ≤ y|X1 = x1)fX1(x1) dx1

=
∫ ∞

−∞
P(X2 ≤ y − x1|X1 = x1)fX1(x1) dx1

=
∫ ∞

−∞
P(X2 ≤ y − x1)fX1(x1) dx1

by the independence of X1 and X2. Replacing P(X2 ≤ y − x1) by FX2 (y − x1), we
obtain

FX1+X2 (y) =
∫ ∞

−∞
FX2 (y − x1)fX1(x1) dx1 (5.3.1)

From the fact that X1 and X2 are nonnegative it follows that, in the integral in (5.3.1),
x1 has to be less than y (so the upper limit of the integral can be replaced by y).
Moreover, since X1 and X2 are uniform in (0, 1), fX1(x1) = 1 if 0 < x1 < 1 and zero
otherwise, and when y − x1 < 1, FX2 (y − x1) = y − x1, while when y − x1 > 1,
FX2 (y − x1) = 1. Hence, if y < 1 the upper limit in the integral in (5.3.1) can be
replaced by y, and we have

FX1+X2(y) =
∫ y

0
(y − x1) dx1 = 1

2
y2.

If 1 < y < 2, the upper limit in the integral in (5.3.1) can be replaced by 1, and we
have

FX1+X2(y) =
∫ 1

0
FX2 (y − x1) dx1 =

∫ y−1

0
FX2 (y − x1) dx1 +

∫ 1

y−1
FX2 (y − x1) dx1

=
∫ y−1

0
dx1 +

∫ 1

y−1
(y − x1) dx1 = y − 1 + y

[
1 − (y − 1)

]
− 1

2
x2

1

∣∣∣∣
1

y−1

= 2y − 1
2

y2 − 1.

Differentiating the cumulative distribution function gives the following PDF of
X1 + X2:

fX1+X2 (y) =
{

y if 0 ≤ y ≤ 1
2 − y if 1 ≤ y ≤ 2. (5.3.2)

Formula (5.3.1) gives the cumulative distribution function of the sum of two
independent random variables X1 and X2 and is called the convolution of the distri-
butions FX1 and FX2 . The convolution also refers to the expression giving the PDF
of the sum of the independent random variables X1 and X2, which is obtained by
differentiating (5.3.1):
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Figure 5-1 The
convolution PDF of two
(left panel) and of three
(right panel) uniform
PDFs.

Convolution of the
PDFs f1 and f2

fX1+X2(y) =
∫ ∞

−∞
fX2(y − x1)fX1(x1) dx1 (5.3.3)

The left panel of Figure 5-1 shows the PDF (5.3.2). It is quite clear that
the convolution of two uniform(0, 1) PDFs is very different from the PDF of a
uniform.

Applying either of the convolution formulas shows that the distribution of the
sum of two independent exponential random variables is not an exponential random
variable (see Exercise 2 in Section 5.4). In general the distribution of the sum of two
random variables need not resemble the distribution of either variable.

The convolution formula (5.3.3) can be used recursively to find the distribution
of the sum of several independent random variables. The right panel of Figure 5-1
shows the convolution of three uniform PDFs. It is quite clear that the distribution
of the sum of three independent uniform random variables is different from that of
the sum of two, as well as from that of a uniform random variable.

A version of the convolution formulas applies to discrete random variables as
well. In fact, one such version was used in Example 5.3-1 to find the distribution of
the sum of two independent Poisson random variables. Again, convolution formulas
for two discrete random variables can be applied recursively to find the distribu-
tion of the sum of several independent discrete random variables. Such formulas,
however, may be difficult or impractical to use for calculating probabilities.

As an alternative to deriving formulas, computer evaluation of the convolution
of two random variables is possible. The following example demonstrates the use of
R for computing the convolution of two binomial random variables with different
probabilities of success (a case for which we have not derived a formula for the
convolution).

Example
5.3-4

The PMF and CDF of X + Y with R. If X and Y are independent with X ∼
Bin(3, 0.3) and Y ∼ Bin(4, 0.6), find the convolution distribution (the PMF and
CDF) of X + Y using R.

Solution
First we create the sample space of (X, Y), which consists of the 4 × 5 = 20 pairs of
(x, y) values with x = 0, 1, 2, 3 and y = 0, 1, 2, 3, 4. This is done with the R command

S = expand.grid(X=0:3,Y=0:4)

The first column of S contains the x-values of the 20 (x, y) pairs, and the second
column of S contains the y-values of the pairs. The first column of S can be accessed
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either by S$X or by S[,1]. Similarly, the second column of S can be accessed either
by S$Y or by S[,2]. Next, we create the joint probabilities p(x, y) for each (x, y) in
the sample space, that is, for each row of S. This is done with the R commands

P = expand.grid(px=dbinom(0:3, 3, .3), py=dbinom(0:4, 4, .6));
P$pxy = P$px*P$py

The first of the above commands creates a matrix P having 20 rows and two
columns, labeled px and py, that contain the marginal probabilities (pX(x), pY(y))
for the (x, y) pair in the corresponding row of S. The second command, P$pxy =
P$px*P$py, forms a new column in the P matrix that contains the joint probabilities
p(x, y) = pX(x)pY(y) for each (x, y) pair in S. The additional commands

attach(P); attach(S)

allow the columns of P and S to be accessed simply by their name. With the sample
space in S and the joint probabilities in the column pxy of P, all joint probabilities
pertaining to the variables X and Y can be calculated. For example,

sum(pxy[which(X + Y==4)])

gives 0.266328, which is the probability P(X + Y = 4);

pz=rep(0,8); for(i in 1:8)pz[i]=sum(pxy[which(X + Y==i - 1)]); pz

returns 0.009 0.064 0.191 0.301 0.266 0.132 0.034 0.003, which are the values of the
PMF pZ(z) of Z = X + Y for z = 0, . . . , 7 (the probabilities are rounded to three
decimal places);

sum(pxy[which(X + Y<=4)])

gives 0.830872, which is the cumulative probability P(X + Y ≤ 4); and

Fz=rep(0,8); for(i in 1:8)Fz[i]=sum(pxy[which(X + Y<=i-1)]); Fz

returns 0.009 0.073 0.264 0.565 0.831 0.963 0.997 1.000, which are the values (again
rounded to three decimals) of the CDF FZ(z) = P(X + Y ≤ x), for z = 0, . . . , 7.
Finally,

sum(pxy[which(3<X + Y & X + Y<=5)])

gives 0.398, which is the probability P(3 < X + Y ≤ 5) = FZ(5) − FZ(3).

The main points of this section are (a) the distribution of the sum of two indepen-
dent random variables need not resemble the distribution of the individual variables,
and (b) as the number of random variables that are summed increases so does the
difficulty in using both the convolution formulas and the R code for finding the exact
distribution of the sums.

5.3.2 THE DISTRIBUTION OF X IN THE NORMAL CASE

The following proposition follows by a recursive application of part (4) of
Proposition 4.6-4 for the case of independent normal random variables, but is high-
lighted here because of the importance of the normal distribution for statistical
inference.
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Proposition
5.3-1

Let X1, X2, . . . , Xn be independent and normally distributed random variables, Xi ∼
N(µi, σ 2

i ), and let Y = a1X1 + · · · + anXn be a linear combination of the Xi.
Then

Y ∼ N(µY , σ 2
Y), where µY = a1µ1 + · · · + anµn, σ 2

Y = a2
1σ

2
1 + · · · + a2

nσ 2
n . "

Example
5.3-5

Two airplanes, A and B, are traveling parallel to each other in the same direc-
tion at independent speeds of X1 km/hr and X2 km/hr, respectively, such that
X1 ∼ N(495, 82) and X2 ∼ N(510, 102). At noon, plane A is 10 km ahead of plane B.
Let D denote the distance by which plane A is ahead of plane B at 3:00 p.m. (Thus
D is negative if plane B is ahead of plane A.)

(a) What is the distribution of D?
(b) Find the probability that at 3:00 p.m. plane A is still ahead of plane B.

Solution
The distance by which plane A is ahead at 3:00 p.m. is given by D = 3X1 − 3X2 + 10.
According to Proposition 5.3-1, the answer to part (a) is

D ∼ N(3 × 495 − 3 × 510 + 10, 9 × 64 + 9 × 100) = N(−35, 1476).

Hence, the answer to part (b) is

P(D > 0) = 1 − ,

(
35√
1476

)
= 0.181.

Corollary
5.3-1

Let X1, . . . , Xn be iid N(µ, σ 2), and let X be the sample mean. Then

X ∼ N(µX , σ 2
X

), where µX = µ, σ 2
X

= σ 2

n
.

The next example demonstrates the use of Corollary 5.3-1 for determining, in the
case of a normal distribution with known variance, the sample size needed to
ensure that the sample mean achieves a satisfactory approximation to the population
mean.

Example
5.3-6

It is desired to estimate the mean of a normal population whose variance is known
to be σ 2 = 9. What sample size should be used to ensure that X lies within 0.3 units
of the population mean with probability 0.95?

Solution
In probabilistic notation, we want to determine the sample size n so that P(|X −µ| <

0.3) = 0.95. According to Corollary 5.3-1,

X − µ

σ/
√

n
∼ N(0, 1).
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Using this, and rewriting P(|X − µ| < 0.3) = 0.95 as

P

(∣∣∣∣∣
X − µ

σ/
√

n

∣∣∣∣∣ <
0.3

σ/
√

n

)

= P
(

|Z| <
0.3

σ/
√

n

)
= 0.95,

where Z ∼ N(0, 1), it follows that 0.3/(σ/
√

n) = z0.025. This is because z0.025 is the
only number that satisfies P (|Z| < z0.025) = 0.95. Solving for n gives

n =
(

1.96σ

0.3

)2
= 384.16.

Thus, using n = 385 will satisfy the desired precision objective.

REMARK 5.3-1 The solution to Example 5.3-6 is not completely satisfactory
because, typically, σ is unknown. Of course, σ can be estimated by the sample
standard deviation S. More details on this will be given in Chapter 7, where the deter-
mination of the required sample size for satisfactory approximation of the mean will
be discussed in more detail. ▹

Exercises

1. Let X ∼ Bin(n1, p), Y ∼ Bin(n2, p) be independent
and let Z = X + Y.
(a) Find the conditional PMF of Z given that X = k.
(b) Use the result in part (a), and the Law of Total

Probability for marginal PMFs as was done in
Example 5.3-1, to provide an analytical proof of
Example 5.3-2, namely that Z ∼ Bin(n1+n2, p). (Hint.
You will need the combinatorial identity

(n1+n2
k

)
=∑n1

i=0
(n1

i

)( n2
k−i

)
.)

2. Let X1 and X2 be two independent exponential
random variables with mean µ = 1/λ. (Thus, their
common density is f (x) = λ exp(−λx), x > 0.). Use the
convolution formula (5.3.3) to find the PDF of the sum
of two independent exponential random variables.

3. Let X1, X2, X3 be independent normal random vari-
ables with common mean µ1 = 60 and common variance
σ 2

1 = 12, and Y1, Y2, Y3 be independent normal random
variables with common mean µ2 = 65 and common vari-
ance σ 2

2 = 15. Also, Xi and Yj are independent for all i
and j.
(a) Specify the distribution of X1 + X2 + X3, and find

P(X1 + X2 + X3 > 185).

(b) Specify the distribution of Y − X, and find
P(Y − X > 8).

4. Each of 3 friends bring one flashlight containing a fresh
battery for their camping trip, and they decide to use one
flashlight at a time. Let X1, X2, and X3 denote the lives
of the batteries in each of the 3 flashlights, respectively.
Suppose that they are independent normal random vari-
ables with expected values µ1 = 6, µ2 = 7, and µ3 = 8
hours, and variances σ 2

1 = 2, σ 2
2 = 3, and σ 2

3 = 4,
respectively.

(a) Find the 95th percentile of the total duration of the
flashlights.

(b) Calculate the probability that the flashlights will last a
total of less than 25 hours.

(c) Suppose that the 3 friends have five camping trips that
year and each time they start with the same types of
fresh batteries as above. Find the probability that the
batteries last more than 25 hours exactly 3 of the 5
times.

5. It is desired to estimate the mean diameter of steel rods
so that, with probability 0.95, the error of estimation will
not exceed 0.005 cm. It is known that the distribution of
the diameter of a randomly selected steel rod is normal
with standard deviation 0.03 cm. What sample size should
be used?

5.4 The Central Limit Theorem
Because, in general, finding the exact distribution of the sum or average of a large
number of random variables is impractical, it would be very desirable to have a sim-
ple way to approximate it. Such an approximation is made possible by the Central
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Limit Theorem, or CLT for short. In all that follows,
·∼ is read as “is approximately

distributed as.”

Theorem
5.4-1

The Central Limit Theorem. Let X1, . . . , Xn be iid with mean µ and a finite
variance σ 2. Then for large enough n (n ≥ 30 for our purposes),

1. X has approximately a normal distribution with mean µ and variance σ 2/n,
that is,

X
·∼ N

(

µ,
σ 2

n

)

.

2. T = X1 + . . . + Xn has approximately a normal distribution with mean nµ

and variance nσ 2, that is,

T = X1 + . . . + Xn
·∼ N

(
nµ, nσ 2

)
.

REMARK 5.4-1 The quality of the approximation increases with n, and also
depends on the population distribution. For example, data from skewed populations
require a larger sample size than data from, say, the uniform distribution. Moreover,
the presence of really extreme outliers might indicate non-finite population vari-
ance, in which case the CLT does not hold; see the discussion on the assumptions
of a finite mean and a finite variance at the end of Section 5.2. For the rest of this
book we will always assume that data sets have been drawn from a population with
a finite variance, and, as a rule of thumb, will apply the CLT whenever n ≥ 30. ▹

The CLT is a really amazing result that explains the central role of the nor-
mal distribution in probability and statistics. Indeed, the importance to statistics of
being able to approximate the distribution of averages (or sums) cannot be over-
stated. For this reason, the Central Limit Theorem is considered the most important
theorem in probability and statistics. The convergence of the distribution of the aver-
age of exponential random variables to the normal distribution is demonstrated in
Figure 5-2.

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

PD
F

n=1
n=5
n=15
n=25

Figure 5-2 The
distribution of the sum of n
exponential(λ = 1) random
variables.



224 Chapter 5 Some Approximation Results

Example
5.4-1

The number of units serviced in a week at a certain service facility is a random vari-
able having mean 50 and variance 16. Find an approximation to the probability that
the total number of units to be serviced at the facility over the next 36 weeks is
between 1728 and 1872.

Solution
Let X1, . . . , X36 denote the number of units that are serviced in each of the next
36 weeks, and assume they are iid. Set T = ∑36

i=1 Xi for the total number of units
serviced. Then E(T) = 36 × 50 = 1800 and Var(T) = 36 × 16 = 576. Since the
sample size is ≥ 30, according to the CLT the distribution of T is approximately
normal with mean 1800 and variance 576. Thus,

P(1728 < T < 1872) = P
( −72√

576
<

T − 1800√
576

<
72√
576

)

≃ , (3) − , (−3) = 0.997.

Example
5.4-2

The level of impurity in a randomly selected batch of chemicals is a random variable
with µ =4.0% and σ =1.5%. For a random sample of 50 batches, find

(a) an approximation to the probability that the average level of impurity is
between 3.5% and 3.8%, and

(b) an approximation to the 95th percentile of the average impurity level.

Solution
Let X1, . . . , X50 denote the levels of impurity in each of the 50 batches, and let X
denote their average. Since the sample size is ≥ 30, according to the CLT, X

·∼
N(4.0, 1.52/50) = N(4.0, 0.045). The probability for part (a) and percentile for part
(b) will be approximated according to this distribution. Thus, the answer to part (a) is

P(3.5 < X < 3.8) ≃ P
(

3.5 − 4.0√
0.045

< Z <
3.8 − 4.0√

0.045

)

≃ ,(−0.94) − ,(−2.36) = 0.1645,

and the answer to part (b) is

x0.05 ≃ 4.0 + z0.05

√
1.52/50 = 4.35.

5.4.1 THE DEMOIVRE-LAPLACE THEOREM

The DeMoivre-Laplace Theorem, which is the earliest form of the Central Limit
Theorem, pertains to the normal approximation of binomial probabilities. It was
proved first by DeMoivre in 1733 for p = 0.5 and extended to general p by Laplace
in 1812. Because of the prevalence of the Bernoulli distribution in the experimental
sciences, the DeMoivre-Laplace Theorem continues to be stated separately even
though it is now recognized as a special case of the CLT.

Consider n replications of a Bernoulli experiment with probability of success p,
and let T denote the total number of successes. Thus, T ∼ Bin(n, p). The relevance
of the CLT for approximating binomial probabilities becomes clear if T is expressed
as a sum,

T = X1 + · · · + Xn,
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of the individual Bernoulli variables. Since the X1, . . . , Xn are iid with E(Xi) = p
and Var(Xi) = p(1 − p) we have the following consequence of the Central Limit
Theorem.

Theorem
5.4-2

DeMoivre-Laplace. If T ∼ Bin(n, p) then, for large enough n,

T
·∼ N

(
np, np(1 − p)

)
.

The general condition n ≥ 30 for achieving acceptable quality in the approxima-
tion can be specialized for the binomial distribution as follows:

Sample Size
Requirement for

Approximating
Binomial Probabilities

by Normal
Probabilities

np ≥ 5 and n(1 − p) ≥ 5

Figure 5-3 demonstrates that the probability mass function of the binomial tends
to become symmetric as the sample size increases.

The Continuity Correction Whenever the Central Limit Theorem is used to approx-
imate probabilities of a discrete distribution, the approximation is improved by
the so-called continuity correction. To explain how this correction works let X ∼
Bin(10, 0.5) and suppose we are interested in using the DeMoivre-Laplace Theorem
to approximate P(X ≤ 5). Since the sample size requirements are satisfied, we would
approximate P(X ≤ 5) by P(Y ≤ 5), where Y ∼ N(5, 2.5). Figure 5-4 shows the bar
graph of the Bin(10, 0.5) PMF with the N(5, 2.5) PDF superimposed. In bar graphs
of PMFs the area of each bar corresponds to individual probabilities. For example,
P(X = 5) equals the area of the bar centered at x = 5, half of which is shown col-
ored. It follows that the probability P(X ≤ 5) equals the sum of the areas of the bars
centered at 0, 1, . . . , 5. Approximating this by P(Y ≤ 5), which is the area under the
normal PDF to the left of x = 5, leaves the area in color (i.e., half of P(X = 5))
unaccounted for.

The continuity correction consists of using the area under the normal PDF to
the left of 5.5 as an approximation to P(X ≤ 5). The improvement in approximation
is remarkable. Indeed, P(X ≤ 5) = 0.623 would be approximated by P(Y ≤ 5) = 0.5
without the continuity correction, and by P(Y ≤ 5.5) = 0.624 with the continuity
correction.
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In general, if X is a discrete random variable taking integer values and Y is the
approximating normal random variable, probabilities and cumulative probabilities
of X are approximated by

P(X = k) ≃ P(k − 0.5 < Y < k + 0.5) and P(X ≤ k) ≃ P(Y ≤ k + 0.5). (5.4.1)

Application of the continuity correction to the DeMoivre-Laplace Theorem
yields the following approximation to the cumulative probabilities of X ∼ Bin(n, p):
If the conditions np ≥ 5 and n(1 − p) ≥ 5 hold, then

P(X ≤ k) ≃ P(Y ≤ k + 0.5) = ,

(
k + 0.5 − np
√

np(1 − p)

)
, (5.4.2)

where Y is a random variable having the normal distribution with mean and vari-
ance equal to the mean and variance of the Binomial random variable X, that is,
Y ∼ N(np, np(1 − p)).

Example
5.4-3

A college basketball team plays 30 regular season games, 16 of which are against
class A teams and 14 are against class B teams. The probability that the team will
win a game is 0.4 if the team plays against a class A team and 0.6 if the team plays
against a class B team. Assuming that the results of different games are independent,
approximate the probability that

(a) the team will win at least 18 games, and
(b) the number of wins against class B teams is smaller than that against class A

teams.

Solution
Let X1 and X2 denote the number of wins against class A teams and class B teams,
respectively. Then, X1 ∼ Bin(16, 0.4), and X2 ∼ Bin(14, 0.6).

(a) We want the probability P(X1 + X2 ≥ 18). Since the probability of success is
different for the two binomial distributions, the exact distribution of X1 +X2 is
not known. However, since 16 × 0.4 and 14 × 0.4 are both ≥ 5, the DeMoivre-
Laplace Theorem can be used to approximate the individual distributions of
X1 and X2,
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X1
·∼ N(6.4, 3.84), X2

·∼ N(8.4, 3.36), (5.4.3)

where 6.4 = 16 × 0.4, 3.84 = 16 × 0.4 × 0.6, 8.4 = 14 × 0.6, and 3.36 =
14 × 0.6 × 0.4. Consequently, since X1 and X2 are independent, by Proposition
5.3-1,

X1 + X2
·∼ N(6.4 + 8.4, 3.84 + 3.36) = N(14.8, 7.20).

Hence, using also continuity correction, the needed approximation for
part (a) is

P(X1 + X2 ≥ 18) = 1 − P(X1 + X2 ≤ 17) ≃ 1 − ,

(
17.5 − 14.8√

7.2

)

= 1 − ,(1.006) = 1 − 0.843 = 0.157.

(b) Using again the approximation to the individual distributions of X1 and X2
given in (5.4.3), the fact that X1 and X2 are independent, and Proposition 5.3-1,
we have

X2 − X1
·∼ N(8.4 − 6.4, 3.84 + 3.36) = N(2, 7.20).

Hence, using also continuity correction, the needed approximation for
part (b) is

P(X2 − X1 < 0) ≃ ,

(−0.5 − 2√
7.2

)
= ,(−0.932) = 0.176.

Example
5.4-4

Suppose that 10% of a certain type of component last more than 600 hours in opera-
tion. For n = 200 components, let X denote the number of those that last more than
600 hours. Approximate the probabilities (a) P(X ≤ 30), (b) P(15 ≤ X ≤ 25), and
(c) P(X = 25).

Solution
Here X has a binomial distribution with n = 200 and p = 0.1. Since 200 × 0.1 = 20,
the sample size conditions for the application of the DeMoivre-Laplace Theorem
are met. Using also the continuity correction, we have:

(a) P(X ≤ 30) ≃ ,

(
30.5 − 20√

18

)
= ,(2.47) = 0.9932.

(b) To apply the DeMoivre-Laplace Theorem for approximating this probability,
it is necessary to first express it as

P(15 ≤ X ≤ 25) = P(X ≤ 25) − P(X ≤ 14)

and then apply the DeMoivre-Laplace approximation to each probability on
the right hand side. Thus,

P(15 ≤ X ≤ 25) ≃ ,

(
25.5 − 20√

18

)
− ,

(
14.5 − 20√

18

)

= 0.9032 − 0.0968 = 0.8064.
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(c) To apply the DeMoivre-Laplace Theorem for approximating this probability,
it is necessary to first express it as

P(X = 25) = P(X ≤ 25) − P(X ≤ 24)

and then apply the DeMoivre-Laplace approximation to each probability on
the right hand side. Thus,

P(X = 25) ≃ ,

(
25.5 − 20√

18

)
−

(
24.5 − 20√

18

)
= 0.9032 − 0.8554 = 0.0478.

Exercises

1. A random variable is said to have the (standard)
Cauchy distribution if its PDF is given by (5.2.6). This
exercise uses computer simulations to demonstrate that
a) samples from this distribution often have extreme out-
liers (a consequence of the heavy tails of the distribution),
and (b) the sample mean is prone to the same type of
outliers. (In fact, for any sample size, the sample mean
has the standard Cauchy distribution, implying that the
LLN and CLT do not apply for samples from a Cauchy
distribution.)
(a) The R commands x=rcauchy(500); summary(x) gen-

erate a random sample of size 500 from the Cauchy
distribution and display the sample’s five number
summary; see Section 1.7. Report the five number
summary and the interquartile range, and comment
on whether or not the smallest and largest order
statistics are outliers. Repeat this 10 times.

(b) The R commands m=matrix(rcauchy(50000),
nrow=500); xb=apply(m, 1, mean); summary(xb) gen-
erate the matrix m that has 500 rows, each of which is
a sample of size n = 100 from the Cauchy distribution,
compute the 500 sample means and store them in xb,
and display the five number summary of xb. Repeat
these commands 10 times, and report the 10 sets of
five number summaries. Compare with the 10 sets of
five number summaries from part (a), and comment
on whether or not the distribution of the averages
seems to be as prone to extreme outliers as that of the
individual observations.

2. Let X1, . . . , X30 be independent Poisson random vari-
ables having mean 1.
(a) Use the CLT, with and without continuity correction,

to approximate the probability P(X1 + · · · + X30 ≤
35). (Hint. The R command pnorm(z) gives ,(z), the
value of the standard normal CDF at z.)

(b) Use the fact that X1 + · · · + X30 is a Poisson random
variable (see Example 5.3-1) to find the exact value
of the probability given in part (a). Compare the two

approximations obtained in part (a) to the exact prob-
ability. (Hint. The R command ppois(x, λ) gives the
value of the Poisson(λ) CDF at x).

3. Suppose that the waiting time for a bus, in minutes,
has the uniform in (0, 10) distribution. In five months a
person catches the bus 120 times. Find an approximation
to the 95th percentile of the person’s total waiting time.
(Hint. The mean and variance of a uniform(0, 10) distri-
bution are 5 and 100/12, respectively; see Examples 3.3-8
and 3.3-13.)

4. Suppose the stress strengths of two types of materi-
als follow the gamma distribution (see Exercise 13 in
Section 3.5) with parameters α1 = 2, β1 = 2 for type
1 and α2 = 1, β2 = 3 for type two. Let X1 and X2 be
average stress strength measurements corresponding to
samples of sizes n1 = 36 specimens of type 1 material and
n2 = 42 specimens of type 2 material, respectively.

(a) Specify the (approximate) distributions of X1, X2,
and X1 − X2. Justify your answers.

(b) Find the (approximate) probability that X1 will be
larger than X2.

5. Two towers are constructed, each by stacking 30 seg-
ments of concrete vertically. The height (in inches) of a
randomly selected segment is uniformly distributed in the
interval (35.5, 36.5). A roadway can be laid across the 2
towers provided the heights of the 2 towers are within 4
inches of each other. Find the probability that the road-
way can be laid. Be careful to justify the steps in your
argument, and state whether the probability is exact or
approximate.

6. Using the information on the joint distribution of meal
price and tip given in Exercise 3 in Section 4.3, answer the
following question: If a waitress serves 70 customers in
an evening, find an approximation to the probability that
her tips for the night exceed $120. (Hint. The mean and
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variance of the tip from a random customer are 1.8175
and 0.1154.)

7. When a randomly selected number A is rounded off
to its nearest integer RA, it is reasonable to assume that
the round-off error A − RA is uniformly distributed in
(−0.5, 0.5). If 50 numbers are rounded off to the nearest
integer and then averaged, approximate the probability
that the resulting average differs from the exact average
of the 50 numbers by more than 0.1.

8. Components that are critical for the operation of elec-
trical systems are replaced immediately upon failure.
Suppose that the life time of a certain such component
has mean and standard deviation of 100 and 30 time units,
respectively. How many of these components must be in
stock to ensure a probability of at least 0.95 for the system
to be in continuous operation for at least the next 3000
time units? (Hint. If T = X1 + · · · + Xn is the combined
duration of n components, we want P(T > 3000) = 0.95.
This means that 3000 is the 5th percentile of T. Using
the CLT to approximate the 5th percentile of T leads to
a quadratic equation for the square root of n, that is, an
equation of the form αx2 + βx + γ = 0, with x being the
square root of n. The roots of such an equation can be
found with the R command polyroot(c(γ , β, α)).)

9. An optical company uses a vacuum deposition method
to apply a protective coating to certain lenses. The coat-
ing is built up one layer at a time. The thickness of a given
layer is a random variable with mean µ = 0.5 microns and
standard deviation σ = 0.2 microns. The thickness of each
layer is independent of the others and all layers have the
same thickness distribution. In all, 36 layers are applied.
(a) What is the approximate distribution of the coating

thickness? Cite the appropriate theorem to justify
your answer.

(b) The company has determined that a minimum thick-
ness of 16 microns for the entire coating is neces-
sary to meet all warranties. Consequently, each lens
is tested and additional layers are applied if the
lens does not have at least a 16-micron-thick coat.
What proportion of lenses must have additional layers
applied?

10. A batch of 100 steel rods passes inspection if the
average of their diameters falls between 0.495 cm and
0.505 cm. Let µ and σ denote the mean and standard

deviation, respectively, of the diameter of a randomly
selected rod. Answer the following questions assuming
that µ = 0.503 cm and σ = 0.03 cm.
(a) What is the (approximate) probability the inspector

will accept (pass) the batch?
(b) Over the next 6 months 40 batches of 100 will be deliv-

ered. Let X denote the number of batches that will
pass inspection.
(i) State the exact distribution of X, and use R to find

the probability P(X ≤ 30).
(ii) Use the DeMoivre-Laplace Theorem, with and

without continuity correction, to approximate
P(X ≤ 30). Comment on the quality of the
approximation provided by the two methods.

11. Suppose that only 60% of all drivers wear seat belts at
all times. In a random sample of 500 drivers let X denote
the number of drivers who wear seat belt at all times.
(a) State the exact distribution of X and use R to find

P(270 ≤ X ≤ 320).
(b) Use the DeMoivre-Laplace Theorem, with and with-

out continuity correction, to approximate P(270 ≤
X ≤ 320). Comment on the quality of the approxi-
mation provided by the two methods.

12. A machine manufactures tires with a tread thick-
ness that is normally distributed with mean 10 millimeters
(mm) and standard deviation 2 mm. The tire has a 50,000-
mile warranty. For the tire to last 50,000 miles, the manu-
facturer’s guidelines specify that the tread thickness must
be at least 7.9 mm. If the thickness of tread is measured
to be less than 7.9 mm, then the tire is sold as an alterna-
tive brand with a warranty of less than 50,000 miles. Give
an approximation to the probability that in a batch of 100
tires there are no more than 10 rejects.

13. Items produced in assembly line A are defect free
with probability 0.9, and those produced in assembly line
B are defect free with probability 0.99. A sample of 200
items from line A and a sample of 1000 from line B are
inspected.
(a) Give an approximation to the probability that the

total number of defective items found is at most 35.
(Hint. See Example 5.4-3.)

(b) Use R commands similar to those used in Example
5.3-4 to find the exact probability of part (a).
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6Fitting Models to Data

6.1 Introduction
In Chapter 1 we saw that estimation of population parameters, such as pro-
portion, mean, variance, and percentiles, is achieved by using the corresponding
sample quantities. Similarly, in Chapter 4 we saw sample versions of the covariance
and Pearson’s correlation coefficients that estimate the corresponding population
quantities. This approach to estimation, which is called interchangeably empirical,
model-free, or nonparametric, is universal in the sense that it applies to all types of
population distributions.

When a model for the distribution of the data is assumed, it is typically of interest
to estimate the parameters of the assumed model. For example,

(a) if it can be reasonably assumed that the data came from a uniform distribution
it would be of interest to estimate the two endpoints,

(b) if it can be reasonably assumed that the data came from a gamma or a Weibull
distribution, both of which are governed by parameters denoted by α and β

(see Exercises 13 and 14 in Section 3.5), it would be of interest to estimate
these two parameters, and

(c) if it can be reasonably assumed that the data came from the normal simple
linear regression model, it would be of interest to estimate the regression line
(i.e., the slope and the intercept) and the intrinsic error variance.

In statistical jargon, estimating the parameters of a particular model from a data
set is called fitting the model to the data. Three methods of fitting models to data
are (a) the method of moments, (b) the method of maximum likelihood, and (c) the
method of least squares. The last is most commonly used for fitting regression models.

Estimation of the model parameters leads to an alternative way for estimating
population parameters, called model-based estimation; this and the notion of unbi-
ased estimation are discussed in Section 6.2. The aforementioned three methods for
fitting models to data are presented in Section 6.3. Model-based estimation of popu-
lation parameters can differ from the empirical, or model-free, estimation discussed
in Chapter 1; moreover, the three methods for fitting models will occasionally pro-
duce different estimators of model parameters. Thus, another learning objective of
this chapter is to develop criteria for selecting the best among different estimators
of the same (model or population) parameter; this is the subject of Section 6.4.
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6.2 Some Estimation Concepts
6.2.1 UNBIASED ESTIMATION

The Greek letter θ will be used as a generic notation for any model or population
parameter(s) that we are interested in estimating. Thus, if we are interested in the
population mean value, then θ = µ, and if we are interested in the population mean
value and variance, then θ = (µ, σ 2). The expression true value of θ refers to the
(unknown to us) population value of θ .

When a sample is denoted in capital letters, such as X1, . . . , Xn, the Xi’s are
considered random variables, that is, before their values are observed. The observed
sample values, or data, are denoted in lowercase letters, that is, x1, . . . , xn.

A quantity used to estimate the true value of a parameter θ is denoted by θ̂ .
Because θ̂ is computed from the sample, it is a function of it. This is emphasized by
writing

θ̂ = θ̂(X1, . . . , Xn) or θ̂ = θ̂(x1, . . . , xn).

In the former case, θ̂ is called an estimator, and in the latter, an estimate. Thus, an
estimator is a random variable, while an estimate is an observed value.

The distribution of an estimator θ̂ depends on the true value of θ (and perhaps
the true value of additional parameters). For example, suppose that X1, . . . , Xn is a
sample from a N(µ, σ 2) population and the true values of the parameters are µ =
8.5, σ 2 = 18. Then, the estimator of θ = µ is θ̂ = X and, according to Corollary
5.3-1,

X ∼ N
(

8.5,
18
n

)
.

Thus, in this case, the distribution of θ̂ depends on the true value of θ and the true
value of the additional parameter σ 2. We also write

Eµ=8.5

(
X

)
= 8.5 and Varσ 2=18(X) = 18

n

to emphasize the dependence of the mean and variance of X on the true values of the
parameters. Similar notation will be used to emphasize the dependence of the mean
and variance of any estimator θ̂ on the true value(s) of the relevant parameter(s).

An estimator θ̂ of θ is called unbiased for θ if E(θ̂) = θ or, according to the
notation just introduced, if

Definition of an
Unbiased Estimator Eθ

(
θ̂
)

= θ (6.2.1)

The difference Eθ (θ̂) − θ is called the bias of θ̂ and is denoted by bias(θ̂):

Definition of the Bias
of an Estimator bias

(
θ̂
)

= Eθ

(
θ̂
)
− θ (6.2.2)

Actually, the correct notation is biasθ (θ̂) but we will use bias(θ̂) for simplicity.
As established in Corollary 4.4-1, and relation (4.4.4), the estimators X and p̂

are unbiased for µ and p, respectively. That is,

Ep(̂p) = p and Eµ(X) = µ.
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Moreover, the least squares estimators β̂1 and α̂1 in the simple linear regression
model, which will be given in Section 6.3.3 (see also Remark 4.6-1), are also unbi-
ased. The next proposition shows that the sample variance, S2, is also an unbiased
estimator for σ 2.

Proposition
6.2-1

Let X1, . . . , Xn be iid with (common) variance σ 2. Then the expected value of the

sample variance S2 = (n − 1)−1 ∑n
i=1

(
Xi − X

)2
equals σ 2. That is,

Expected Value of the
Sample Variance

E
(

S2
)

= σ 2

Proof of Proposition 6.2-1: Assume without loss of generality that the population
mean is zero, that is, E(Xi) = 0 for all i = 1, . . . , n. By straightforward algebra we

obtain
∑

i

(
Xi − X

)2
= ∑

i X2
i − nX

2
. Now using the facts

E(X2
i ) = Var(Xi) = σ 2 and E(X

2
) = Var(X) = σ 2

n
,

we obtain

E

( n∑

i=1

(
Xi − X

)2
)

= E

( n∑

i=1

X2
i − nX

2
)

= nσ 2 − n
σ 2

n
= (n − 1)σ 2.

It follows that E(S2) = (n − 1)−1E(
∑

i

(
Xi − X

)2
) = (n − 1)−1(n − 1)σ 2 = σ 2. "

The estimation error of an estimator θ̂ for θ is defined as

Definition of
Estimation Error θ̂ − θ (6.2.3)

Unbiased estimators have zero bias, which means that there is no tendency to
overestimate or underestimate the true value of θ . Thus, though with any given sam-
ple θ̂ may underestimate or overestimate the true value of θ , the estimation errors
average to zero. In particular, the unbiasedness of S2, implied by Proposition 6.2-1,
means that if a large number of samples of size n, any n ≥ 2, are taken from any
population (e.g., Poisson, normal, exponential, etc.) and the sample variance is com-
puted for each sample, the average of these sample variances will be very close to
the population variance; equivalently, the average of the estimation errors will be
very close to zero. This is illustrated in the computer activity of Exercise 8.

While unbiasedness is a desirable property, it is not indispensable. What justifies
the use of biased estimators is the fact that their bias is often small and tends to
zero as the sample size increases. (An estimator whose bias does not tend to zero
does not possess the indispensable property of consistency, and would not be used!)
An example of a commonly used biased estimator is the sample standard deviation.
The bias of the sample standard deviation, and the fact that its bias decreases as the
sample size increases, are also demonstrated in the computer activity of Exercise 8.

The standard error of an estimator θ̂ is an alternative, but widely used, term for
the estimator’s standard deviation:

Standard Error of an
Estimator θ̂ σθ̂ =

√
Varθ

(
θ̂

)
(6.2.4)



Section 6.2 Some Estimation Concepts 233

In accordance with the notation explained above, the subscript θ on the right
hand side of (6.2.4) indicates the dependence of the variance of θ̂ on the true value
of θ . An estimator/estimate of the standard error, is called the estimated standard
error and is denoted by Sθ̂ .

Example
6.2-1

(a) Give the standard error and the estimated standard error of the estimator p̂ =
X/n, where X ∼ Bin(n, p).

(b) Given the information that there are 12 successes in 20 trials, compute the
estimate of p and the estimated standard error.

Solution

(a) The standard error and the estimated standard error of p̂ are, respectively,

σp̂ =
√

p(1 − p)
n

and Sp̂ =
√

p̂(1 − p̂)
n

.

(b) With the given the information, p̂ = 12/20 = 0.6 and

Sp̂ =
√

p̂(1 − p̂)
n

=
√

0.6 × 0.4
20

= 0.11.

Example
6.2-2

(a) Let X, S2 be the sample mean and variance of a simple random sample of
size n from a population with mean µ and variance σ 2, respectively. Give the
standard error and the estimated standard error of X.

(b) Given the information that n = 36 and S = 1.3, compute the estimated
standard error of X.

Solution

(a) The standard error and the estimated standard error of X are, respectively,

σX = σ√
n

and SX = S√
n

.

(b) With the given the information, the estimated standard error of X is

SX = 1.3√
36

= 0.22.

Example
6.2-3

Let X1, S2
1 be the sample mean and variance of a simple random sample of size m

from a population with mean µ1 and variance σ 2
1 , respectively, and X2, S2

2 be the
sample mean and variance of a simple random sample of size n from a population
with mean µ2 and variance σ 2

2 , respectively.

(a) Show that X1 − X2 is an unbiased estimator of µ1 − µ2.
(b) Assume the two samples are independent, and give the standard error and the

estimated standard error of X1 − X2.

Solution

(a) From the properties of expectation we have

E(X1 − X2) = E(X1) − E(X2) = µ1 − µ2,

which shows that X1 − X2 is an unbiased estimator of µ1 − µ2.
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(b) Recall that if two variables are independent, the variance of their difference is
the sum of their variances; see Proposition 4.4-4. Thus, the standard error and
estimated standard error of X1 − X2 are

σX1−X2
=

√
σ 2

1
m

+ σ 2
2

n
and SX1−X2

=

√
S2

1
m

+ S2
2

n
.

6.2.2 MODEL-FREE VS MODEL-BASED ESTIMATION

As mentioned in Section 6.1, if a model for the population distribution has been
assumed, the focus of estimation shifts to the model parameters. This is because
estimation of the model parameters entails estimation of the entire distribution,
and hence estimation of any other population quantity of interest. For example, if
X1, . . . , Xn can be assumed to have come from a N(µ, σ 2) distribution, the method
of moments and the method of maximum likelihood estimate θ = (µ, σ 2) by
θ̂ = (X, S2).1 Hence, the population distribution is estimated by N(X, S2). This has
the following consequences:

(a) There is no need to use a histogram of the data because the density is esti-
mated by the N(X, S2) density. (Of course, histograms and Q-Q plots are
indispensable for checking the appropriateness of an assumed model.)

(b) Because the (1 − α)-100th percentile of a normal population is expressed as
µ + σzα (see Corollary 3.5-2), it may be estimated by X + Szα ; in particular,
the median is also estimated by X.

(c) Because P(X ≤ x) = ,((x − µ)/σ ) such probabilities may be estimated by
,((x − X)/S).

The estimators of the density, percentiles, and probabilities in parts (a), (b), and
(c), respectively, which are appropriate only if the normality assumption is correct,
are examples of model-based estimators. They can be used instead of the model-free
estimators of Chapter 1, which are, respectively, the histogram, sample percentiles,
and sample proportions (i.e., #{Xi ≤ x; i = 1, . . . , n}/n in this case).

Such model-based estimators of the density, percentiles, and probabilities can
similarly be constructed if X1, . . . , Xn is assumed to have come from any other
distribution, such as exponential, gamma, Weibull, and so forth.

Example
6.2-4

(a) Let X1, . . . , Xn represent n weekly counts of earthquakes in North America,
and assume they have the Poisson(λ) distribution. Find a model-based estima-
tor of the population variance.

(b) Let X1, . . . , Xn represent waiting times of a random sample of n passengers
of a New York commuter train, and assume they have the uniform(0, θ)
distribution. Find a model-based estimator of the population mean waiting
time.

Solution

(a) From Section 3.4.4 we have that the variance of the Poisson(λ) distribution
equals its mean (and both equal λ). Both the method of moments and the
method of maximum likelihood estimate λ by λ̂ = X (see Example 6.3-2

1 This is not quite true, as both methods of estimation yield [(n − 1)/n]S2 as the estimator of σ 2. For simplicity,
however, we will ignore this difference.
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and Exercise 6 in Section 6.3). Thus, the Poisson model-based estimator of
the variance is the sample mean X.

(b) From Example 3.3-8 we have that the mean of the uniform(0, θ) distribution
is µ = θ/2. Hence, if θ̂ is an estimator of θ , a model-based estimator for the
mean of the uniform(0, θ) distribution is µ̂ = θ̂/2. The maximum likelihood
estimator for θ (derived in Example 6.3-6) is θ̂ = X(n) = max{X1, . . . , Xn}.
Thus, the model-based estimator of the population mean in this case is µ̂ =
X(n)/2.

REMARK 6.2-1 The method of moments estimator of θ in the uniform(0, θ) dis-
tribution is 2X; see Example 6.3-1. Using this estimator of θ , the model-based
estimator of the population mean in part (b) of Example 6.2-4 is X, that is, the same
as the model-free estimator. ▹

If the model assumption is correct then, according to the mean square error cri-
terion, which will be discussed in Section 6.4, model-based estimators are typically
preferable to model-free estimators. Thus, if the assumption of a Poisson distribu-
tion is correct, X is a better estimator of the population variance than the sample
variance is, and if the assumption of a uniform(0, θ) distribution is correct, X(n)/2 is
a better estimator of the population mean than the sample mean is (at least for large
enough n; see Exercise 1 in Section 6.4).

On the other hand, if the model assumption is not correct, model-based estima-
tors can be misleading. The following example illustrates this point by fitting two
different models to the same data set and thus obtaining discrepant estimates for a
probability and a percentile.

Example
6.2-5

The life times, in hours, of a random sample of 25 electronic components yield
sample mean X = 113.5 hours and sample variance S2 = 1205.55 hours2. Find
model-based estimators of the 95th population percentile of the lifetime distribu-
tion, and of the probability that a randomly selected component will last more than
140 hours, under the following two model assumptions:

(a) The distribution of life times is Weibull(α, β). (See Exercise 14 in Section 3.5
for the definition of this distribution.)

(b) The distribution of life times is exponential(λ).

Solution

(a) With the given information, only the method of moments can be used to fit the
Weibull(α, β) model. The resulting estimators are α̂ = 3.634 and β̂ = 125.892;
see Example 6.3-3. The R commands

1-pweibull(140,3.634,125.892); qweibull(0.95,3.634,125.892)

yield 0.230 and 170.264 as estimates of P(X > 140) and x0.05, respectively.
(b) For fitting the exponential(λ) distribution, both the method of moments

and the method of maximum likelihood yield λ̂ = 1/X (see Exercise 1 in
Section 6.3 and Example 6.3-5). Thus, the fitted model is exponential(λ =
1/113.5). The R commands

1-pexp(140, 1/113.5); qexp(0.95, 1/113.5)

yield 0.291 and 340.016 as estimates of P(X > 140) and x0.05, respectively.
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This example highlights the need for diagnostic checks, such as the Q-Q plot
discussed in Section 3.5.2, to help decide whether a stipulated parametric model
provides a reasonable fit to the data.

Exercises

1. The data in OzoneData.txt contains n = 14 ozone
measurements (Dobson units) taken from the lower
stratosphere, between 9 and 12 miles (15 and 20 km).
Compute the sample mean and its estimated standard
error.

2. To compare the corrosion-resistance properties of two
types of material used in underground pipelines, speci-
mens of both types are buried in soil for a 2-year period
and the maximum penetration (in mils) for each speci-
men is measured. A sample of size n1 = 48 specimens
of material type A yielded X1 = 0.49 and S1 = 0.19; a
sample of size n2 = 42 specimens of material type B gave
X2 = 0.36 and S2 = 0.16. What is 0.49 − 0.36 = 0.13 an
estimate of? Assuming that the two samples are indepen-
dent, compute the estimated standard error of X1 − X2.
(Hint. See Example 6.2-3.)

3. In the context of Exercise 2, suppose that the popu-
lation variance of the maximum penetration is the same
for both material types. Call the common population
variance σ 2, and show that

σ̂ 2 = (n1 − 1)S2
1 + (n2 − 1)S2

2
n1 + n2 − 2

is an unbiased estimator of σ 2.

4. The financial manager of a department store chain
selected a random sample of 200 of its credit card cus-
tomers and found that 136 had incurred an interest charge
during the previous year because of an unpaid balance.
(a) Specify the population parameter of interest in this

study, give the empirical estimator for it, and use the
information provided to compute the estimate.

(b) Is the estimator in part (a) unbiased?
(c) Compute the estimated standard error of the

estimator.

5. In Example 6.3-1 it is shown that if X1, . . . , Xn is a
random sample from the uniform(0, θ) distribution, the
method of moments estimator of θ is θ̂ = 2X. Give the
standard error of θ̂ . Is θ̂ unbiased?

6. To estimate the proportion p1 of male voters who are
in favor of expanding the use of solar energy, take a ran-
dom sample of size m and set X for the number in favor.
To estimate the corresponding proportion p2 of female
voters, take an independent random sample of size n and
set Y for the number in favor.

(a) Set p̂1 = X/m and p̂2 = Y/n and show that p̂1 − p̂2 is
an unbiased estimator of p1 − p2.

(b) Give the standard error and the estimated standard
error of p̂1 − p̂2.

(c) The study uses sample sizes of m = 100 and n = 200,
which result in X = 70 and Y = 160. Compute the
estimate of p1 − p2 and the estimated standard error
of the estimator.

7. The fat content measurements of a random sample
of 6 jugs of 2% lowfat milk jugs of a certain brand are
2.08, 2.10, 1.81, 1.98, 1.91, 2.06.
(a) Give the model-free estimate of the proportion of

milk jugs having a fat content measurement of 2.05
or more.

(b) Assume the fat content measurements are normally
distributed, and give the model-based estimate of the
same proportion (using X and S2 as estimators of µ
and σ 2).

8. The R commands

set.seed=1111; m=matrix(runif(20000),
ncol=10000); mean(apply(m, 2, var));
mean(apply(m, 2, sd))

generate 10,000 samples of size n = 2 from the uni-
form(0, 1) distribution (each column of the matrix m is a
sample of size 2), compute the sample variance from each
sample, average the 10,000 variances, and do the same for
the sample standard deviations.
(a) Compare the average of the 10,000 variances to the

population variance σ 2 = 1/12 = 0.0833; similarly,
compare the average of the 10,000 sample standard
deviations to the population standard deviation σ =√

1/12 = 0.2887. Use the comparisons to conclude
that S2 is unbiased but S is biased.

(b) Repeat the above but use 10,000 samples of size n = 5
from the uniform(0, 1). (Use m=matrix(runif(50000),
ncol=10000)) for generating the random samples.)
Use the comparisons to conclude that the bias of S
decreases as the sample size increases.

9. Use the R command set.seed=1111; x=rnorm(50, 11,
4) to generate a simple random sample of 50 observa-
tions from a N(11, 16) population and store it in the R
object x.
(a) Give the true (population) values of P(12 < X ≤ 16)

and of the 15th, 25th, 55th, and 95th percentiles.
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(b) Give the empirical/nonparametric estimates of the
above population quantities. (Hint. The R command
sum(12<x&x<=16) gives the number of data points
that are greater than 12 and less than or equal to 16.
For the sample percentiles see the R commands given
in (1.7.2).)

(c) Using X and S2 as estimators of the model parame-
ters of N(µ, σ 2), give the model-based estimates of
the above population quantities and compare how
well the two types of estimates approximate the true
population values.

10. Use cs=read.table(”Concr.Strength.1s.Data.txt”,
header=T); x=cs$Str to store the data set2 consisting
of 28-day compressive-strength measurements of con-
crete cylinders using water/cement ratio 0.4 into the R
object x.

(a) Use the commands given in Section 3.5.2 to pro-
duce a normal Q-Q plot for the data. Comment on
the appropriateness of the normal model for this
data set.

(b) Using X and S2 as estimators of the model parameters
of N(µ, σ 2), give model-based estimates of P(44 <
X ≤ 46), the population median, and the 75th
percentile.

(c) Give the empirical, or model-free, estimates of the
above population quantities. (Hint. The R command
sum(44<x&x<=46) gives the number of data points
that are greater than 44 and less than or equal to 46.
For the sample percentiles see the R commands given
in (1.7.2).)

(d) Which of the two types of estimates for the above
population quantities would you prefer and why?

6.3 Methods for Fitting Models to Data
Model-based estimation of a particular population parameter consists of expressing
it in terms of the model parameter(s) θ and plugging the estimator θ̂ into the expres-
sion (see Section 6.2.2). Clearly, the method relies on having an estimator for θ . This
section presents three methods for obtaining such estimators.

6.3.1 THE METHOD OF MOMENTS

The method of moments relies on the empirical, or model-free, estimators of popu-
lation parameter(s), such as the sample mean (X) or the sample mean and variance
(X and S2), and reverses the process of model-based estimation in order to estimate
the model parameter(s).

In particular, the method of moments uses the fact that when the population
distribution is assumed to be of a particular type, population parameter(s), such as
the mean or the mean and variance, can be expressed in terms of the model param-
eter(s) θ . These expressions can be inverted to express θ in terms of the population
mean or the population mean and variance. Plugging the sample mean or the sam-
ple mean and variance into these inverted expressions yields the method of moments
estimator of θ . A more complete description of moment estimators is given after the
next example, which illustrates the above process.

Example
6.3-1

Let X1, . . . , Xn be a simple random sample taken from some population. Use the
method of moments approach to fit the following models to the data:

(a) The population distribution of the Xi is uniform(0, θ).
(b) The population distribution of the Xi is uniform(α, β).

Solution

(a) Here we have only one model parameter, so the method of moments starts
by expressing the population mean in terms of the model parameter. In this

2 V. K. Alilou and M. Teshnehlab (2010). Prediction of 28-day compressive strength of concrete on the third day
using artificial neural networks. International Journal of Engineering (IJE), 3(6): 521–610.
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case, the expression is µ = θ/2. This expression is then inverted to express θ in
terms of µ. In this case, the inverted expression is θ = 2µ. Finally, the method
of moments estimator of θ is obtained by plugging X instead of µ into inverted
expression: θ̂ = 2X.

(b) Here we have two model parameters (θ = (α, β)), so the method of moments
starts by expressing the population mean and variance in terms of the two
model parameters. In this case, the expressions are

µ = α + β

2
and σ 2 = (β − α)2

12
.

This expression is then inverted to express α and β in terms of µ and σ 2:

α = µ −
√

3σ 2 and β = µ +
√

3σ 2.

Finally, the method of moments estimator of θ = (α, β) is obtained by plugging
X and S2 instead of µ and σ 2, respectively, into the inverted expressions:

α̂ = X −
√

3S2 and β̂ = X +
√

3S2.

The method of moments derives its name from the fact that the expected value
of the kth power of a random variable is called its kth moment; this is denoted by µk:

kth Moment of the
Random Variable X µk = E(Xk)

In this terminology, the population mean is the first moment and is also denoted by
µ1, while the population variance can be expressed in terms of the first two moments
as σ 2 = µ2−µ2

1. If X1, . . . , Xn is a sample from a population with a finite kth moment,
then the empirical/nonparametric estimator of µk is the kth sample moment, defined
as follows:

kth Sample Moment of
the Random Variable X µ̂k = 1

n

∑n

i=1
Xk

i

According to the Law of Large Numbers, µ̂k is a consistent estimator of µk.
For models with m parameters, method of moments estimators are constructed

by (a) expressing the first m population moments in terms of the model parameters,
(b) inverting these expressions to obtain expressions of the model parameters in
terms of the population moments, and (c) plugging into these inverted expressions
the sample moments. Choosing the number of moments in part (a) equal to the
number of model parameters assures that the inversion mentioned in part (b) has a
unique solution. In this book we will not consider distribution models with more than
two model parameters, so in our applications of the method of moments, we will use
either only the first moment or the first and the second moments. Equivalently, we
will use either only the mean or the mean and the variance as was done in Example
6.3-1.

REMARK 6.3-1 Using the variance instead of the second moment is not exactly
the same, because the sample variance is defined by dividing

∑
i(Xi − X)2 by

n − 1. Ignoring this (rather insignificant) difference, we will use the variance and the
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sample variance (instead of the second moment and the second sample moment)
when applying the method of moments. ▹

We finish this section with two more examples.

Example
6.3-2

(a) Let X1, . . . , Xn be iid Poisson(λ). Find the method of moments estimator of λ.
Is it unbiased?

(b) The weekly counts of earthquakes in North America for 30 consecutive weeks
are summarized in the following table:

Number of Earthquakes 4 5 6 7 8 9 10 11 12 13 15 16 17

Frequency 1 2 1 5 4 4 1 1 4 1 2 2 2

Assuming that the earthquake counts have the Poisson(λ) distribution, compute the
method of moments estimate of λ.

Solution

(a) Because we have only one model parameter, the method of moments starts
by expressing the population mean in terms of the model parameter. In this
case, the expression is µ = λ; see Section 3.4.4. Thus, λ = µ and the method of
moments estimator of λ is λ̂ = X. Because X is an unbiased estimator of µ, it
follows that λ̂ is an unbiased estimator of λ.

(b) The average of the given 30 weekly counts of earthquakes is (1 × 4 + 2 ×
5 + · · · + 2 × 17)/30 = 10.03. Thus, the method of moments estimate of λ is
λ̂ = 10.03.

Example
6.3-3

The life spans, in hours, of a random sample of 25 electronic components yield sam-
ple mean X = 113.5 hours and sample variance S2 = 1205.55 hours2. Use the
method of moments approach to fit the Weibull(α, β) model.

Solution
Because we have two model parameters (θ = (α, β)), the method of moments
starts by expressing the population mean and variance in terms of the two model
parameters. These expressions are (see Exercise 14 in Section 3.5)

µ = β-

(
1 + 1

α

)
and σ 2 = β2

{

-

(
1 + 2

α

)
−

[
-

(
1 + 1

α

)]2
}

,

where - is the gamma function (see Exercise 13 in Section 3.5). Note that α enters
these equations in a highly non-linear manner, so it is impossible to then invert and
find closed-form expressions for α and β in terms of µ and σ 2. As a first step, we
replace µ and σ 2 by 113.5 and 1205.55, respectively, solve the first equation with
respect to β, and replace β with that solution in the second equation. This results in

1205.55 =

⎡

⎣ 113.5

-
(

1 + 1
α

)

⎤

⎦
2 {

-

(
1 + 2

α

)
−

[
-

(
1 + 1

α

)]2
}

. (6.3.1)

The second step is to solve this equation numerically. This can be done with
the function nleqslv in the R package nleqslv, which should first be installed
(install.packages(“nleqslv”)). Then use the following R commands:



240 Chapter 6 Fitting Models to Data

fn=function(a){(mu/gamma(1+1/a))ˆ2*(gamma(1+2/a)-gamma(1+1/a)
ˆ2)-var} # this command defines fn as a function of a to be numerically
solved

library(nleqslv); mu=113.5; var=1205.55 # this command loads the
package nleqslv to the current session and sets the values for X and S2

nleqslv(13, fn); mu/gamma(1+1/3.634) # the first of these commands
finds the solution to equation fn(a)=0 (which is α̂) with starting value 13; the
second computes β̂.

The resulting method of moments estimate for θ = (α, β) is θ̂ = (3.634, 125.892)
(rounded to three decimal places).

6.3.2 THE METHOD OF MAXIMUM LIKELIHOOD

The method of maximum likelihood (ML) estimates the parameter θ of a model by
addressing the question “what value of the parameter is most likely to have gen-
erated the data?” For discrete probability models, the answer to this question is
obtained by maximizing, with respect to θ , the probability that a repetition of the
experiment will result in the observed data. (A shorter way of saying this is that we
“maximize the probability of observing the observed data.”) The value of the param-
eter that maximizes this probability is the maximum likelihood estimator (MLE). A
more complete description of the method of maximum likelihood is given after the
next example, which illustrates the process.

Example
6.3-4

Car manufacturers often advertise damage results from low-impact crash experi-
ments. In an experiment crashing n = 20 randomly selected cars of a certain type
against a wall at 5 mph, X = 12 cars sustain no visible damage. Find the MLE of
the probability, p, that a car of this type will sustain no visible damage in such a
low-impact crash.

Solution
Intuitively, the value of the parameter p that is most likely to have generated 12
successes in 20 trials is the value that maximizes the probability for observing X =
12. Because X has the binomial(n = 20, p) distribution, this probability is

P(X = 12|p) =
(

20
12

)
p12(1 − p)8. (6.3.2)

Note that the dependence of the probability on the parameter p is made explicit in
the notation. To find the MLE it is more convenient to maximize

log P(X = 12|p) = log
(

20
12

)
+ 12 log(p) + 8 log(1 − p) (6.3.3)

with respect to p. Note that, because logarithm is a monotone function, maximizing
log P(X = 12|p) is equivalent to maximizing P(X = 12|p). The value of p that max-
imizes (6.3.3) can be found by setting the first derivative with respect to p equal to
zero and solving for p. Doing so yields p̂ = 12/20 as the maximum likelihood esti-
mate. In general, the MLE of the binomial probability p is the same as the empirical
estimator of p, that is, p̂ = X/n.

In general, let x1, . . . , xn denote the data, and f (x|θ) the probability model (PDF
or PMF) to be fitted. (As in Example 6.3-4, the dependence of the PDF/PMF on
θ is made explicit.) The likelihood function is the joint PDF/PMF of the random
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variables X1, . . . , Xn evaluated at x1, . . . , xn and considered as a function of θ .
Because the Xi are iid, their joint PDF/PMF is simply the product of their individual
PDFs/PMFs:

Definition of the
Likelihood Function

lik(θ) =
n∏

i=1

f (xi|θ) (6.3.4)

The value of θ that maximizes the likelihood function is the maximum likeli-
hood estimator θ̂ . Typically, it is more convenient to maximize the logarithm of the
likelihood function, which is called the log-likelihood function:

Definition of the
Log-Likelihood

Function
L(θ) =

n∑

i=1

log(f (xi|θ)) (6.3.5)

In the binomial case of Example 6.3-4, the likelihood function is simply the proba-
bility given in (6.3.2) and the log-likelihood function is given in (6.3.3). Two more
examples follow.

Example
6.3-5

Let x1, . . . , xn be the waiting times for a random sample of n customers of a certain
bank. Use the method of maximum likelihood to fit the exponential(λ) model to this
data set.

Solution
The PDF of the exponential(λ) distribution is f (x|λ) = λe−λx. Thus, the likelihood
function is

lik(λ) = λe−λx1 · · · λe−λxn = λne−λ
∑

xi ,

and the log-likelihood function is

L(λ) = n log(λ) − λ

n∑

i=1

xi.

Setting the first derivative of the log-likelihood function to zero yields the equation

∂

∂λ

[
n log(λ) − λ

n∑

i=1

Xi

]
= n

λ
−

n∑

i=1

Xi = 0.

Solving this equation with respect to λ yields the MLE λ̂ = 1/X of λ.

The next example demonstrates that the MLE can be very different from the
method of moments estimator. It is also an example of a discontinuous likelihood
function, which therefore cannot be maximized by differentiation.

Example
6.3-6

(a) Let X1, . . . , Xn be iid uniform(0, θ). Find the maximum likelihood estima-
tor of θ .

(b) The waiting times for a random sample of n = 10 passengers of a New York
commuter train are: 3.45, 8.63, 8.54, 2.59, 2.56, 4.44, 1.80, 2.80, 7.32, 6.97.
Assuming that the waiting times have the uniform(0, θ) distribution, compute
the MLE of θ and the model-based estimate of the population variance.
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Solution

(a) Here f (x|θ) = 1/θ if 0 < x < θ and 0 otherwise. Thus the likelihood function is

lik(θ) = 1
θn if 0 < X1, . . . , Xn < θ and 0 otherwise.

This likelihood function is maximized by taking θ as small as possible.
However, if θ gets smaller than the largest data value, X(n) = max{X1, . . . , Xn},
then the likelihood function becomes zero. Hence, the MLE is the smallest θ

value for which the likelihood function is non-zero, that is, θ̂ = X(n).
(b) The largest among the given sample of waiting times is X(n) = 8.63. Thus,

according to the derivation in part (a), the MLE of θ is θ̂ = 8.63. Next, because
the variance of the uniform(0, θ) distribution is σ 2 = θ2/12, the model-based
estimate of the population variance is σ̂ 2 = 8.632/12 = 6.21.

According to theoretical results, which are beyond the scope of this book, the
method of maximum likelihood yields estimators that are optimal, at least when the
sample size is large enough, under general regularity conditions. See Exercise 1 in
Section 6.4, where the comparison of the methods of moments and ML for fitting
the uniform(0, θ) model confirms the superiority of the MLE in this particular case.
Moreover, a function of the MLE, g(θ̂), is the MLE of g(θ) and thus its optimal
estimator. For example, the estimator σ̂ 2 = X2

(n)/12, which is the estimator of σ 2

derived in Example 6.3-6, is a function of the MLE and thus it is the MLE, and
optimal estimator of σ 2, at least when the sample size is large enough.

6.3.3 THE METHOD OF LEAST SQUARES

The method of least squares (LS), which is the most common method for fitting
regression models, will be explained here in the context of fitting the simple linear
regression model (4.6.4), that is,

µY|X(x) = E(Y|X = x) = α1 + β1x. (6.3.6)

Let (X1, Y1), . . . , (Xn, Yn) denote a simple random sample from a bivariate pop-
ulation (X, Y) satisfying the simple linear regression model. To explain the method
of LS, consider the problem of deciding which of two lines provides a “better” fit
to the data. As a first step, we must adopt a principle on whose basis we can judge
the quality of a fit. The principle of least squares evaluates the quality of a line’s fit
by the sum of the squared vertical distances of each point (Xi, Yi) from the line. The
vertical distance of a point from a line is illustrated in Figure 6-1. Of the two lines in
this figure, the line for which this sum of squared vertical distances is smaller is said
to provide a better fit to the data.

The best-fitting line according to the principle of least squares is the line that
achieves a sum of vertical squared distances smaller than any other line. The best-
fitting line will be called the fitted regression line. The least squares estimators
(LSEs) of the intercept and slope of the simple linear regression model (6.3.6) are
simply the intercept and slope of the best-fitting line.

The problem of finding the best-fitting line has a surprisingly simple and closed
form solution. Since the vertical distance of the point (Xi, Yi) from a line a + bx is
Yi − (a + bXi), the method of least squares finds the values α̂1, β̂1 that minimize the
objective function
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Line 1

Line 2

Vertical distance from Line 2

Figure 6-1 Two lines
through a data set with an
illustration of vertical
distance.

L(a, b) =
n∑

i=1

(Yi − a − bXi)2

with respect to a, b. This minimization can be carried out by setting the two first
partial derivatives to zero. Omitting the details, the LSE of α1 and β1 are

Least Squares
Estimators of the

Slope and Intercept

β̂1 = n
∑

XiYi − (
∑

Xi)(
∑

Yi)
n

∑
X2

i − (
∑

Xi)2

α̂1 = Y − β̂1X (6.3.7)

Thus, the fitted regression line is µ̂Y|X(x) = α̂1+β̂1x. Evaluating the fitted regression
line at the X-values of the data set gives the fitted values:

Ŷi = α̂1 + β̂1Xi, i = 1, . . . , n.

REMARK 6.3-2 The expression β̂1 = SX,Y/S2
X , where SX,Y is the sample covari-

ance and S2
X is the sample variance of the X’s, which was derived empirically in

Remark 4.6-1, is algebraically equivalent to the expression in (6.3.7). Moreover,
under the assumption of normality for the error variable, that is, for the normal
simple linear regression model, the maximum likelihood estimators of the slope and
intercept coincide with the LSEs. ▹

Example
6.3-7

The summary statistics from n = 10 measurements of X = stress applied and
Y = time to failure are

∑10
i=1 Xi = 200,

∑10
i=1 X2

i = 5412.5,
∑10

i=1 Yi = 484, and
∑10

i=1 XiYi = 8407.5. Find the best-fitting line to this data set.

Solution
According to (6.3.7), the best-fitting line has slope and intercept given by

β̂1 = 10 × 8407.5 − 200 × 484
10 × 5412.5 − 2002 = −0.900885, α̂1 = 484

10
− β̂1

200
10

= 66.4177.

Example 6.3.7 highlights the fact that the best-fitting line can be obtained without
having the actual data points. Indeed, as the formulas (6.3.7) suggest, all one needs
are the summary statistics as given in Example 6.3-7. This practice, however, should
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be avoided because a scatterplot of the data may reveal that the linear model is not
appropriate.

A third parameter of the simple linear regression model is the conditional vari-
ance, σ 2

ε , of Y given the value of X. Recall that σ 2
ε is also the variance of the

intrinsic error variable ε, which appears in the expression (4.6.6) of the simple linear
regression model, and rewritten here for convenience:

Y = α1 + β1X + ε. (6.3.8)

The idea for estimating σ 2
ε is that, if the true values of α1 and β1 were known,

then σ 2
ε would be estimated by the sample variance of

εi = Yi − α1 − β1Xi, i = 1, . . . , n.

Of course, α1 and β1 are not known and so the intrinsic error variables, εi, cannot be
computed. But since α1 and β1 can be estimated, so can the εi:

ε̂1 = Y1 − α̂1 − β̂1X1, . . . , ε̂n = Yn − α̂1 − β̂1Xn. (6.3.9)

The estimated intrinsic error variables, ε̂i, are called residuals. The residuals are
also expressed in terms of the fitted values as

ε̂i = Yi − Ŷi, i = 1, . . . , n.

The residuals and the fitted values are illustrated in Figure 6-2.
Because the computation of residuals requires that two parameters be esti-

mated, which, in statistical jargon, entails the loss of two degrees of freedom, we
do not use their exact sample variance for estimating σ 2

ε . Instead we use:

Least Squares
Estimation of the

Intrinsic Error
Variance

S2
ε = 1

n − 2

n∑

i=1

ε̂ 2
i (6.3.10)

Due to an algebraic identity, which is not derived here, the residuals sum to zero,
that is,

n∑

i=1

ε̂i =
n∑

i=1

(Yi − Ŷi) = 0.

ˆ ˆ ˆµY|X(x) = α1 + β1x

ˆˆ ˆyi = α1 + β1xi

ˆ ˆεi = yi – yi

0 2 xi 4 6 8

0
1

2
3

4

yi

Figure 6-2 Illustration of
the fitted regression line,
fitted values, and residuals.
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Thus, the formula for S2
ε in (6.3.10) differs from the sample variance only in that it

divides by n − 2.
The quantity

∑n
i=1 ε̂2

i in (6.3.10) is called the error sum of squares and is denoted
by SSE. Because of the frequent use of this quantity in the chapters that follow, its
computational formula is also given here:

SSE =
n∑

i=1

ε̂2
i =

n∑

i=1

Y2
i − α̂1

n∑

i=1

Yi − β̂1

n∑

i=1

XiYi. (6.3.11)

Example
6.3-8

Consider the following data on Y = propagation velocity of an ultrasonic stress wave
through a substance and X = tensile strength of substance.

x 12 30 36 40 45 57 62 67 71 78 93 94 100 105
y 3.3 3.2 3.4 3.0 2.8 2.9 2.7 2.6 2.5 2.6 2.2 2.0 2.3 2.1

(a) Use the method of LS to fit the simple linear regression model to this data.
(b) Obtain the error sum of squares and the LSE of the intrinsic error variance.
(c) Compute the fitted value and residual at X3 = 36.

Solution

(a) The scatterplot of the n = 14 data points, shown in Figure 6-3, suggests that the
assumptions of the simple linear regression model, which are linearity of the
regression function and homoscedasticity (i.e., Var(Y|X = x) is the same for
all x), appear to be satisfied for this data set. The summary statistics needed
for the LS estimators are

14∑

i=1

Xi = 890,
14∑

i=1

Yi = 37.6,
14∑

i=1

XiYi = 2234.30,

14∑

i=1

X2
i = 67, 182,

14∑

i=1

Y2
i = 103.54.
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the data of Example 6.3-8.
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Plugging these values into formula (6.3.7) we get

β̂1 = 14 × 2234.3 − 890 × 37.6
14 × 67182 − 8902 = −0.014711, α̂1 = 37.6

14
− β̂1

890
14

= 3.62091.

(b) Using the calculations in part (a) and formula (6.3.11) we have

SSE = 103.54 − α̂1(37.6) − β̂1(2234.30) = 0.26245,

so that the LSE of the intrinsic error variance is

S2
ε = 1

n − 2
SSE = 0.26245

12
= 0.02187.

(c) The fitted value and residual at X3 = 36 are

Ŷ3 = α̂1 + β̂136 = 3.0913 and ε̂3 = Y3 − Ŷ3 = 3.4 − 3.0913 = 0.3087.

The fitted regression line can be used for estimating the expected response at a
given value of X, provided the given value of X is within the range of the X-values
of the data set. For example, with the data set given in Example 6.3-8, the expected
response at X = 65, that is, E(Y|X = 65), can be estimated by

µ̂Y|X(65) = α̂1 + β̂165 = 2.6647.

On the other hand, it is not appropriate to use the fitted regression line for
estimating the expected response at X = 120 because the largest X-value is 105.
The main reason why it is not appropriate to extrapolate beyond the range of the
X-values is that we have no indication that the linear model continues to hold. For
example, even though Figure 6-3 suggests that the simple linear regression model is
reasonable for this data set, there is no guarantee that the linearity continues to hold
for X-values larger than 105 or smaller than 12.

With the X- and Y-values in the R objects x and y, respectively, the R commands
for obtaining the LS estimates and other related quantities are as follows:

R Commands for the LS Estimates in Simple Linear
Regression

lm(y ∼ x)$coef # gives α̂1 and β̂1

lm(y ∼ x)$fitted # gives the fitted values

lm(y ∼ x)$resid # gives the residuals

(6.3.12)

Instead of repeating the lm(y ∼ x) command, it is possible to set all output
of this command in the R object out, by out=lm(y ∼ x), and then use out$coef,
out$fitted, and out$resid. It is also possible to obtain specific fitted values or residuals.
For example, out$fitted[3] and out$resid[3] give the third fitted value and residual,
respectively, which were calculated in part (c) of Example 6.3-8.

Having issued the command out=lm(y ∼ x), the error sum of squares, SSE, and
the estimator of the intrinsic error variance, S2

ε , can be obtained by the following
R commands:
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sum(out$resid**2)
sum(out$resid**2)/out$df.resid

(6.3.13)

respectively, where out$df.resid gives the value of n − 2. Finally, the scatterplot with
the fitted regression line shown in Figure 6-3, was generated with the R commands
below:

plot(x, y, xlab = ”Tensile Strength”, ylab = ”Propagation Velocity”);
abline(out, col = ”red”)

Example
6.3-9

Use R commands and the n = 153 measurements (taken in New York from May to
September 1973) on solar radiation (lang) and ozone level (ppb) from the R data set
airquality to complete the following parts.

(a) Use the method of LS to fit the simple linear regression model to this data set.
(b) Construct a scatterplot of the data and comment on whether or not the model

assumptions seem to be violated. Comment on the impact of any violations of
the model assumptions on the estimators obtained in part (a).

(c) Transform the data by taking the logarithm of both variables, and construct a
scatterplot of the transformed data. Comment on whether or not the assump-
tions of the simple linear regression model appear tenable for the transformed
data.

Solution

(a) We first copy the solar radiation and ozone data into the R objects x and y
by x=airquality$Solar.R; y=airquality$Ozone. The command in the first line of
(6.3.12) gives the LSE of the intercept and slope as

α̂1 = 18.599 and β̂1 = 0.127,

while the second command in (6.3.13) gives the LSE for σ 2
ε as S2

ε = 981.855.
(b) The scatterplot with the fitted regression line, shown in the left panel of

Figure 6-4, suggests that the ozone level increases with the solar radiation
level at approximately linear fashion. Thus, the assumption of linearity of
the regression function µY|X(x) seems to be, at least approximately, satis-
fied. On the other hand, the variability in the ozone measurements seems
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Figure 6-4 Scatterplot for
the solar radiation and
ozone data in the original
scale (left panel) and log
scale (right panel).
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to increase with the solar radiation level. Thus, the homoscedasticity assump-
tion appears to be violated for this data set. As a consequence, the estimator
S2

ε = 981.855 does not make sense for this data set. This is because σ 2
ε is

defined to be the conditional variance Var(Y|X = x) which, in a homoscedas-
tic context, is the same for all x. If homoscedasticity does not hold (so the data
are heteroscedastic), Var(Y|X = x) changes with x, as it does for this data set.
Hence, the parameter σ 2

ε is not defined for such data sets.
(c) The scatterplot with the fitted regression line shown in the right panel of

Figure 6-4 suggests that the assumptions of linearity and homoscedasticity are
satisfied, at least approximately, for the log-transformed data.

Exercises

1. Let X1, . . . , Xn be iid exponential(λ). Find the method
of moments estimator of λ. Is it unbiased?

2. Use t=read.table(”RobotReactTime.txt”, header=T);
t1=t$Time[t$Robot==1] to import the data on robot reac-
tion times to simulated malfunctions, and copy the reac-
tion times of Robot 1 into the R object t1.
(a) Follow the approach of Example 6.3-3 to fit the

Weibull(α, β) model to the data in t1. (Hint. Use
mean(t1); var(t1) to compute the sample mean and
variance.)

(b) Use Example 6.3-5 to fit the exponential(λ) model to
the data in t1.

(c) Use each of the fitted models in parts (a) and (b)
to give model-based estimates of the 80th population
percentile of reaction times, as well as the probabil-
ity P(28.15 ≤ X ≤ 29.75), where X denotes the next
response time of Robot 1. (Hint. See Example 6.2-5.)

(d) Give empirical estimates for the 80th population
percentile and the probability P(28.15 ≤ X ≤
29.75). (Hint. The R command for finding per-
centiles is given in Section 1.7. The R command
sum(t1>=28.15&t1<=29.75) counts the number of
reaction times that are between 28.15 and 29.75.
Finally, length(t1) gives the number of observations
in t1.)

3. The life spans, in hours, of a random sample of 25 elec-
tronic components yield sample mean X = 113.5 hours
and sample variance S2 = 1205.55 hours2. Using the
method of moments, fit the gamma(α, β) model to this
data. (Hint. The mean and variance of the gamma(α, β)
distribution are given in Exercise 13 in Section 3.5.)

4. The probability density function of the Rayleigh distri-
bution is

f (x) = x
θ2 e−x2/(2θ2), x ≥ 0,

where θ is a positive-valued parameter. It is known that
the mean and variance of the Rayleigh distribution are

µ = θ

√
π

2
and σ 2 = θ2 4 − π

2
.

Let X1, . . . , Xn be a random sample from a Rayleigh
distribution.
(a) Construct the method of moments estimator of θ . Is it

unbiased?
(b) Construct a model-based estimator of the population

variance. Is it unbiased?

5. Answer the following questions.
(a) Let X ∼ Bin(n, p). Find the method of moments

estimator of p. Is it unbiased?
(b) To determine the probability p that a certain compo-

nent lasts more than 350 hours in operation, a random
sample of 37 components was tested. Of these, 24
lasted more than 350 hours. Compute the method of
moments estimate of p.

(c) A system consists of two such components connected
in series. Assume the components fail independently
of each other. Give the method of moments estima-
tor of the probability the system lasts more than 350
hours in operation, and compute it using the informa-
tion given in part (b). (Hint. Justify that the probability
the system lasts more than 350 hours is p2.)

(d) Is the estimator derived in part (c) unbiased? Justify
your answer. (Hint. For any random variable X,
E(X2) = Var(X) + [E(X)]2.)

6. Answer the following questions.
(a) Let X1, . . . , Xn be iid Poisson(λ). Find the maximum

likelihood estimator of λ.
(b) The numbers of surface imperfections for a random

sample of 50 metal plates are summarized in the
following table:

Number of Scratches per Item 0 1 2 3 4
Frequency 4 12 11 14 9

Assuming that the imperfection counts have the
Poisson(λ) distribution, compute the maximum like-
lihood estimate of λ.
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(c) Give the model-based estimate of the population
variance, and compare it with the sample variance.
Assuming the Poisson model correctly describes the
population distribution, which of the two estimates
would you prefer and why?

7. A company manufacturing bike helmets wants to
estimate the proportion p of helmets with a certain
type of flaw. They decide to keep inspecting helmets
until they find r = 5 flawed ones. Let X denote the
number of helmets that were not flawed among those
examined.

(a) Write the log-likelihood function and find the MLE
of p.

(b) Find the method of moments estimator of p.
(c) If X = 47, give a numerical value to your estimators

in (a) and (b).

8. Let X1, . . . , Xn be a random sample from the
uniform(0, θ) distribution. Use the R command
set.seed(3333); x=runif(20, 0, 10) to generate a random
sample X1, . . . , X20 from the uniform(0, 10) distribution,
and store it into the R object x.

(a) Give the method of moments estimate of θ and the
model-based estimate of the population variance σ 2.
(Hint. See Example 6.3-1; use mean(x) to compute the
sample mean.)

(b) Use var(x) to compute the sample variance S2.
Comment on which of the two estimates (S2 or the
model-based) provides a better approximation to the
true value of the population variance σ 2, which is
102/12, for this data set.

9. Plumbing suppliers typically ship packages of plumb-
ing supplies containing many different combinations of
item such as pipes, sealants, and drains. Almost invariably
a shipment contains one or more incorrectly filled items:
a part may be defective, missing, not the type ordered,
etc. In this context, the random variable of interest is the
proportion P of incorrectly filled items. A family of distri-
butions for modeling the distribution of proportions has
PDF

f (p|θ) = θpθ−1, 0 < p < 1, θ > 0.

It is given that the expected value of a random variable P
having this distribution is E(P) = θ/(1 + θ).
(a) If P1, . . . , Pn is a random sample of proportions of

incorrectly filled items, find the moments estima-
tor of θ .

(b) In a sample of n = 5 shipments, the proportions of
incorrectly filled items are 0.05, 0.31, 0.17, 0.23, and
0.08. Give the method of moments estimate of θ .

10. A study was conducted to examine the effects of
NaPO4, measured in parts per million (ppm), on the
corrosion rate of iron.3 The summary statistics corre-
sponding to 11 data points, where the NaPO4 concentra-
tions ranged from 2.50 ppm to 55.00 ppm, are as follows:∑n

i=1 xi = 263.53,
∑n

i=1 yi = 36.66,
∑n

i=1 xiyi = 400.5225,∑n
i=1 x2

i = 9677.4709, and
∑n

i=1 y2
i = 209.7642.

(a) Find the estimated regression line.
(b) The engineer in charge of the study wants to estimate

the expected corrosion rate for NaPO4 concentrations
of 4.5, 34.7, and 62.8 ppm, using a fitted regression
line. For each of these concentrations, comment on
whether or not it is appropriate to use the fitted
regression line. Report the estimates at the concen-
trations for which the use of the fitted regression line
is appropriate.

11. Manatees are large, gentle sea creatures that live
along the Florida coast. Many manatees are killed or
injured by powerboats. Below are data on powerboat reg-
istrations (in thousands) and the number of manatees
killed by boats in Florida for four different years between
2001 and 2004:

Number of Boats (thousands) 498 526 559 614
Number of Manatee Deaths 16 25 34 39

Assume the relationship between the number of boats
and the number of manatee deaths is linear, and complete
the following parts using hand calculations.
(a) Find the estimated regression line and estimate the

expected number of manatee deaths in a year with 550
(thousand) powerboat registrations.

(b) Use (6.3.11) to compute the error sum of squares, and
give the estimate of the intrinsic error variance.

(c) Compute the four fitted values and the correspond-
ing residuals. Verify that the sum of squared residuals
equals the SSE obtained in part (b).

12. Use sm=read.table(”StrengthMoE.txt”, header=T) to
read the data on cement’s modulus of elasticity and
strength into the R data frame sm. Copy the data into the
R objects x and y by x=sm$MoE and y=sm$Strength, and
use R commands to complete the following.
(a) Construct a scatterplot of the data with the fitted

regression line drawn through it. Do the assump-
tions of the simple linear regression model, which are
linearity of the regression function and homoscedas-
ticity, appear to hold for this data set?

(b) Give the LSE for the regression coefficients, and esti-
mate the expected strength at modulus of elasticity
X = 60.

(c) Give the error sum of squares and the estimator of the
intrinsic error variance.

3 Sodium Phosphate Hideout Mechanisms: Data and Models for the Solubility and RedoxBehavior of Iron(II)
and Iron(III) Sodium-Phosphate Hideout Reaction Products, EPRI, Palo Alto, CA: 1999. TR-112137.
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13. Use da=read.table(”TreeAgeDiamSugarMaple.txt”,
header=T) to read the data on the diameter (in millime-
ters) and age (in years) of n = 27 sugar maple trees into
the R data frame da. Copy the data into the R objects x
and y by x=da$Diamet; y=da$Age, and use R commands
to complete the following.
(a) Use the method of LS to fit the simple linear regres-

sion model to this data set.
(b) Construct a scatterplot of the data and comment on

whether or not the model assumptions, which are

linearity of the regression function of Y on X and
homoscedasticity, seem to be violated. Comment on
the impact of any violations of the model assumptions
on the estimators obtained in part (a).

(c) Transform the data by taking the logarithm (that is,
by x1=log(x); y1=log(y)), and construct a scatterplot
of the transformed data. Comment on whether or
not the assumptions of the simple linear regression
model seem to be violated for the log-transformed
data.

6.4 Comparing Estimators: The MSE Criterion
Given two estimators, θ̂1, θ̂2, of the same parameter θ , the estimator of choice is the
one that achieves the smaller estimation error. However, the estimation errors, θ̂1−θ

and θ̂2 − θ , cannot be computed because θ is unknown. Even if θ were known, the
estimators are random variables and thus it is possible that for some samples θ̂1 − θ

will be smaller than θ̂2 −θ , while for other samples the opposite will be true. It is thus
sensible to look at some type of “average error.” Here we will consider the average
of the squared error as a criterion for selecting between two estimators.

Definition 6.4-1
The mean square error (MSE) of an estimator θ̂ for the parameter θ is defined
to be

MSE
(
θ̂

)
= Eθ

(
θ̂ − θ

)2

The MSE selection criterion says that among two estimators, the one with the
smaller MSE is preferred.

Again, the correct notation is MSEθ (θ̂ ) but we will use MSE(θ̂ ) for simplic-
ity. The following proposition relates the mean square error of an estimator to its
variance and bias.

Proposition
6.4-1

If θ̂ is unbiased for θ then

MSE
(
θ̂

)
= σ 2

θ̂
.

In general,

MSE
(
θ̂

)
= σ 2

θ̂
+

[
bias

(
θ̂

)]2 . "

For unbiased estimators, the MSE equals the variance. Thus, among two unbi-
ased estimators, the MSE selection criterion selects the one with the smaller
standard error. The rationale for this is illustrated in Figure 6-5, which shows the
PDFs of two unbiased estimators. Because θ̂1 has a smaller standard error than θ̂2,
the PDF of θ̂1 is more concentrated about the true value of θ . Hence, |θ̂1 − θ | is less
likely to take a larger value than |θ̂2 − θ |. For estimators that are not unbiased, how-
ever, the MSE selection criterion incorporates both the standard error and the bias
for their comparison.
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Figure 6-5 PDFs of two
unbiased estimators of θ .

Example
6.4-1

Simple random vs stratified sampling. Facilities A and B account for 60% and 40%,
respectively, of the production of a certain electronic component. The components
from the two facilities are shipped to a packaging location where they are mixed and
packaged. A sample of size 100 will be used to estimate the expected life time in the
combined population. Use the MSE criterion to decide which of the following two
sampling schemes should be adopted: (a) simple random sampling at the packaging
location, and (b) stratified random sampling based on a simple random sample of
size 60 from facility A and a simple random sample of size 40 from facility B.

Solution
Let Y denote the life time of a randomly selected component from the packaging
location (i.e., the combined population), and let X take the value 1 or 2, depending
on whether the component was produced in facility A or B, respectively. We are
interested in estimating µ = E(Y). An application of the Law of Total Expectation
yields

µ = 0.6E(Y|X = 1) + 0.4E(Y|X = 2) = 0.6µA + 0.4µB, (6.4.1)

where µA and µB are defined implicitly in (6.4.1).
Let Y1, . . . , Y100, YA1, . . . , YA60, YB1, . . . , YB40, be simple random samples from

the packaging location, facility A, and facility B, respectively, and let Y, YA, YB
denote the corresponding sample means. Because of (6.4.1), µ can be estimated
either as

Y or as YStr = 0.6YA + 0.4YB.

Note that both Y and YStr are based on samples of size 100, but the former uses
simple random sampling while the latter uses stratified sampling. Because each is
an unbiased estimator of µ, its MSE equals its variance. Thus, since YA and YB are
independent,

MSE(YStr) = 0.62 σ 2
A

60
+ 0.42 σ 2

B
40

= 0.6
σ 2

A
100

+ 0.4
σ 2

B
100

, (6.4.2)
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where σ 2
A = Var(Y|X = 1) and σ 2

B = Var(Y|X = 2) denote the variance of the life
time of a randomly chosen component from facility A and B, respectively.

Next, let σ 2 = Var(Y). Using the Law of Total Expectation and some algebra,
we obtain

σ 2 = E(Y2) − µ2 = 0.6E(Y2|X = 1) + 0.4E(Y2|X = 2) − (0.6µA + 0.4µB)2

= 0.6σ 2
A + 0.4σ 2

B + 0.6µ2
A + 0.4µ2

B − (0.6µA + 0.4µB)2

= 0.6σ 2
A + 0.4σ 2

B + (0.6)(0.4)(µA − µB)2.

Hence, MSE(Y) = Var(Y) = σ 2/100 or, in view of the above calculation,

MSE(Y) = 0.6
σ 2

A
100

+ 0.4
σ 2

B
100

+ 0.6 × 0.4
(µA − µB)2

100
. (6.4.3)

Comparing (6.4.3) and (6.4.2), it follows that MSE(Y) ≥ MSE(YStr), with equality
only if µA = µB. Hence, stratified sampling is preferable for estimating µ.

Exercises

1. Let X1, . . . , Xn be a random sample from the
uniform(0,θ) distribution, and let θ̂1 = 2X and θ̂2 = X(n),
that is, the largest order statistic, be estimators for θ . It is
given that the mean and variance of θ̂2 are

Eθ (θ̂2) = n
n + 1

θ and Varθ (θ̂2) = n
(n + 1)2(n + 2)

θ2.

(a) Give an expression for the bias of each of the two
estimators. Are they unbiased?

(b) Give an expression for the MSE of each of the two
estimators.

(c) Compute the MSE of each of the two estimators
for n = 5 and true value of θ equal to 10. Which

estimator is preferable according to the MSE selec-
tion criterion?

2. Let X1, . . . , X10 be a random sample from a popula-
tion with mean µ and variance σ 2, and Y1, . . . , Y10 be
a random sample from another population with mean
also equal to µ and variance 4σ 2. The two samples are
independent.

(a) Show that for any α, 0 ≤ α ≤ 1, µ̂ = αX + (1 − α)Y is
unbiased for µ.

(b) Obtain an expression for the MSE of µ̂.

(c) Is the estimator X preferable over the estimator
0.5X + 0.5Y? Justify your answer.
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7Confidence and Prediction
Intervals

7.1 Introduction to Confidence Intervals
Due to sampling variability (see Section 1.2), point estimators such as the sample
mean, median, variance, proportion, and regression parameters approximate corre-
sponding population parameters but, in general, are different from them. This was
repeatedly emphasized in Chapter 1 for the point estimators introduced there. Now
we can make more precise statements. For example, the Law of Large Numbers
(Section 5.2) asserts that X approximates the true population mean more accurately
as the sample size increases, while the CLT (Section 5.4) allows one to assess the
probability that X will be within a certain distance from the population mean. This
suggests that the practice of reporting only the value of X as a point estimate of µ

is not as informative as it can be because (a) it does not quantify how accurate the
estimator is, and (b) it does not connect the level of accuracy to the sample size. The
same comment applies to all point estimators discussed in Chapter 6.

Confidence intervals have been devised to address the lack of information that
is inherent in the practice of reporting only a point estimate. A confidence interval
is an interval for which we can assert, with a given degree of confidence/certainty,
that it includes the true value of the parameter being estimated. The construction of
confidence intervals, which is outlined below, relies on the exact distribution of the
point estimator, or an approximation to it provided by the Central Limit Theorem.
Prediction intervals, which are also discussed in this chapter, are similar in spirit to
confidence intervals but pertain to future observations as opposed to population
parameters.

7.1.1 CONSTRUCTION OF CONFIDENCE INTERVALS

By virtue of the Central Limit Theorem, if the sample size n is large enough,
many estimators, θ̂ , are approximately normally distributed with mean equal, or
approximately equal, to the true value of the parameter, θ , that is being estimated.
Moreover, by virtue of the Law of Large Numbers, the estimated standard error, Sθ̂ ,
is a good approximation to the standard error σθ̂ . Taken together, these facts imply
that, if n is large enough,

θ̂ − θ

Sθ̂

·∼ N(0, 1). (7.1.1)

253
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For example, this is the case for the empirical estimators discussed in Chapters 1
and 4, as well as the moment estimators, least squares estimator, and most maximum
likelihood estimators discussed in Chapter 6. In view of the 68-95-99.7% rule of the
normal distribution, (7.1.1) implies that the estimation error |θ̂ − θ | is less than 2Sθ̂
approximately 95% of the time. More precisely, an approximate 95% error bound
in the estimation of θ is

|θ̂ − θ | ≤ 1.96Sθ̂ , (7.1.2)

where 1.96 = z0.025. After some simple algebra, (7.1.2) can be written as

θ̂ − 1.96Sθ̂ ≤ θ ≤ θ̂ + 1.96Sθ̂ (7.1.3)

which gives an interval of plausible values for the true value of θ , with degree of
plausibility, or confidence level, approximately 95%. Such an interval is called a
confidence interval (CI). More generally, a (1 − α)100% error bound,

|θ̂ − θ | ≤ zα/2Sθ̂ , (7.1.4)

can be written as a CI with confidence level (1 − α)100%, also called (1 − α)
100% CI:

θ̂ − zα/2Sθ̂ ≤ θ ≤ θ̂ + zα/2Sθ̂ . (7.1.5)

Typical values for α are 0.1, 0.05, and 0.01. They correspond to 90%, 95%, and
99% CIs.

7.1.2 Z CONFIDENCE INTERVALS

Confidence intervals that use percentiles from the standard normal distribution, like
that in relation (7.1.5), are called Z CIs, or Z intervals.

Z intervals for the mean (so θ = µ) are used only if the population variance is
known and either the population is normal or the sample size is at least 30. Because
the assumption of a known population variance is not realistic, Z intervals for the
mean are deemphasized in this book. Instead, Z intervals will be primarily used for
the proportion (θ = p).

7.1.3 THE T DISTRIBUTION AND T CONFIDENCE INTERVALS

When sampling from normal populations, an estimator θ̂ of some parameter θ often
satisfies, for all sample sizes n,

θ̂ − θ

Sθ̂

∼ Tν , (7.1.6)

where Sθ̂ is the estimated standard error of θ̂ , and Tν stands for the T distribution
with ν degrees of freedom. The degrees of freedom, ν, depend on the sample size
and the particular estimator θ̂ , and will be given separately for each estimator we
consider. The 100(1−α)-th percentile of the T distribution with ν degrees of freedom
will be denoted by tν, α ; see Figure 7-1. The form of the T density will not be used
and thus it is not given. The R commands for the Tν PDF, CDF, and percentiles as
well as for simulating random samples are as follows (as usual, both x and s in these
commands can be vectors):
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0 tν,α
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Shaded area = α

Figure 7-1 Density and
percentile of the Tν

distribution.

R Commands for the Tν Distribution

dt(x, ν) # gives the PDF of Tν for x in (−∞,∞)

pt(x, ν) # gives the CDF of Tν for x in (−∞,∞)

qt(s, ν) # gives the s100th percentile of Tν for s in (0, 1)

rt(n, ν) # gives a sample of n Tν random variables

A T distribution is symmetric and its PDF tends to that of the standard normal as
ν tends to infinity. As a consequence, the percentiles tν, α approach zα as ν gets large.
For example, the 95th percentile of the T distributions with ν = 9, 19, 60, and 120,
are 1.833, 1.729, 1.671, and 1.658, respectively, while z0.05 = 1.645. The convergence
of the Tν density to that of the standard normal is illustrated in Figure 7-2.

Relation (7.1.6), which also holds approximately when sampling non-normal
populations provided n ≥ 30, leads to the following bound on the error of estimation
of θ :

|θ̂ − θ | ≤ tν, α/2Sθ̂ , (7.1.7)
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converging to the N(0, 1)
density as ν gets large.
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which holds with probability 1 −α. We note that the probability for this error bound
is exact, for all sample sizes n, if the normality assumption holds, whereas it holds
with probability approximately 1 − α, provided n ≥ 30 (according to the rule of
thumb introduced in Remark 5.4-1), if the normality assumption does not hold. The
error bound in (7.1.7) leads to the following (1 − α)100% CI for θ :

(θ̂ − tν, α/2Sθ̂ , θ̂ + tν, α/2Sθ̂ ) (7.1.8)

In this book, T intervals will be used for the mean as well as for the regression
parameters in the linear regression model. Using short-hand notation, the CI (7.1.8)
can also be written as

θ̂ ± tν, α/2Sθ̂ .

REMARK 7.1-1 A consequence of the fact that tν, α/2 approaches zα/2 for large ν

is that the Z CIs (7.1.5) and the T CIs in (7.1.8) will be almost identical for large
sample sizes. ▹

7.1.4 OUTLINE OF THE CHAPTER

In the next section we will discuss the interpretation of CIs. Section 7.3 presents
confidence intervals (either Z or T intervals) for population means and proportions,
for the regression parameters in the linear regression model, and for the median
and other percentiles. A χ2-type CI for the variance, presented in Section 7.3.5,
is valid only under the normality assumption. The aforementioned Z and T inter-
vals are valid also in the non-normal case, provided the sample size is large enough,
by virtue of the Central Limit Theorem. The issue of precision in estimation, dis-
cussed in Section 7.4, considers techniques for manipulating the sample size in
order to increase the precision of the estimation of a population mean and propor-
tion. Finally, Section 7.5 discusses the construction of prediction intervals under the
normality assumption.

7.2 CI Semantics: The Meaning of “Confidence”
A CI can be thought of as a Bernoulli trial: It either contains the true value of the
parameter or not. However, the true value of the parameter is unknown and, hence,
it is not known whether or not a particular CI contains it. For example, the estimate
p̂ = 0.6, based on n = 20 Bernoulli trials, leads to a 95% CI of

(0.39, 0.81) (7.2.1)

for the true value of p. (The construction of the CI in (7.2.1) will be explained in the
next section.) The interval (0.38,0.82) either contains the true value of p or it does
not, and there is no way of knowing what is the case.

Think of flipping a coin, catching it mid-air, and placing it on the table with your
hand still covering the coin. Because the coin is covered, it is not known whether it
shows heads or tails. Before flipping the coin we say that the probability of heads is
0.5 (assuming the coin is unbiased). When the coin has been flipped there is no more
randomness, because the experiment has been performed (the randomness of the
experiment lies in the coin flip). Thus, even though the outcome of the experiment
is unknown, it is not appropriate to use the word probability. Instead, we say we are
50% confident that the outcome is heads.

The randomness of the coin flip corresponds to the randomness of collecting the
data for the purpose of constructing the CI. Before the data are collected, the CI is a
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Figure 7-3 Fifty CIs for p.

random interval (see Figure 7-3) and we say that the probability that it will contain
the true value of the parameter is, say, 0.95. After the data have been collected, a
particular interval is constructed, like that in (7.2.1), and there is no more random-
ness, even though we do not know whether it contains the true value or not. This
corresponds to the coin being covered. Thus we say that we are 95% confident that
the interval contains the true value of the parameter.

Figure 7-3 shows 50 90% CIs for p based on n = 20 Bernoulli trials with the true
value of p being 0.5. Each CI is represented by a horizontal straight line, and the y-
axis enumerates the CIs. An interval contains the true value of p if the corresponding
line intersects the vertical line at x = 0.5. (The advantage of using simulated data is
that the true value of the parameter is known!) Because a 90% CI includes the true
value of the parameter with probability 0.9, the total number of CIs that intersect
the vertical line at x = 0.5 is a binomial(n = 50, p = 0.9) random variable. Thus, we
would expect 50 × 0.9 = 45 of them to contain the true value of p. In Figure 7-3,
44 of the 50 intervals shown contain 0.5. Being binomial(50, 0.9), the number of
CIs that contain the true value p has standard deviation of

√
50 × 0.9 × 0.1 =

2.12. Thus, even larger deviations from the expected value of 45 would not be
unusual.

7.3 Types of Confidence Intervals
7.3.1 T CIs FOR THE MEAN

Let X1, . . . , Xn be a simple random sample from a population, and let X, S2 denote
the sample mean and sample variance, respectively.

Proposition
7.3-1

If the population is normal then,

X − µ

S/
√

n
∼ Tn−1, (7.3.1)

where µ stands for the true value of the population mean. Without the normality
assumption, relation (7.3.1) holds approximately provided n ≥ 30. "
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Relation (7.3.1) is a version of relation (7.1.6) with X and µ in the place of θ̂

and θ , respectively. Thus, (7.3.1) implies a bound for the error in estimating µ and
a CI for µ, which are versions of (7.1.7) and (7.1.8), respectively. In particular, the
(1 − α)100% CI for the normal mean is

T Confidence
Interval for the

Population Mean µ

(
X − tn−1, α/2

S√
n

, X + tn−1, α/2
S√
n

)
(7.3.2)

This CI can also be used with non-normal populations, provided n ≥ 30, in which
case its confidence level is approximately (i.e., not exactly) (1 − α)100%.

With the data in the R object x, the T CI for the mean can also be obtained with
either of the following R commands:

R Commands for the (1− α)100% T CI (7.3.2)

confint(lm(x∼1), level=1-α)

mean(x)±qt(1-α/2, df=length(x)-1)*sd(x)/sqrt(length(x))

In the first command for the CI, the default value for the level is 0.95; thus,
confint(lm(x∼1)) gives a 95% CI. Also, note that the second command for the CI
has been given in a condensed form: It has to be used once with the − sign, for the
lower endpoint of the interval, and once with the + sign, for the upper endpoint.

Example
7.3-1

The Charpy impact test, developed by French scientist George Charpy, determines
the amount of energy, in joules, absorbed by a material during fracture. (Fracture is
induced by one blow from a swinging pendulum, under standardized conditions. The
test was pivotal in understanding the fracture problems of ships during WWII.) A
random sample of n = 16 test specimens of a particular metal, yields the following
measurements (in kJ):

x 4.90, 3.38, 3.32, 2.38, 3.14, 2.97, 3.87, 3.39, 2.97, 3.45, 3.35, 4.34, 3.54, 2.46, 4.38, 2.92

Construct a 99% CI for the population mean amount of energy absorbed during
fracture.

Solution
Because the sample size is < 30, we must assume that the energy absorption pop-
ulation is normal. The Q-Q plot in Figure 7-4 does not strongly contradict this
assumption, so we can proceed with the construction of the CI. (See, however,
Section 7.3.4 for an alternative CI that does not require normality or a large sam-
ple size.) The given data set yields an average energy absorption of X = 3.42 kJ,
and standard deviation of S = 0.68 gr. The degrees of freedom is ν = n − 1 = 15,
and, for the desired 99% CI, α = 0.01. Using either Table A.4 or the R command
qt(0.995,15), we find tn−1, α/2 = t15, 0.005 = 2.947. Substituting this information into
formula (7.3.2) yields

X ± tn−1, α/2(S/
√

n) = 3.42 ± 2.947(0.68/
√

16), or (2.92, 3.92).
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the data in Example 7.3-1.

Alternatively, with the data in the R object x, the R command confint(lm(x∼1),
level=0.99) returns

0.5% 99.5%
(Intercept) 2.921772 3.923228

which is the same (up to rounding) as the CI obtained by hand calculations.

Example
7.3-2

A random sample of n = 56 cotton pieces gave average percent elongation of X =
8.17 and a sample standard deviation of S = 1.42. Construct a 95% CI for µ, the
population mean percent elongation.

Solution
Because the sample size of n = 56 is large enough, the CI (7.3.2) can be used
without the assumption of normality. The degrees of freedom is ν = 56 − 1 = 55
and, for the desired 95% CI, α = 0.05. Table A.4 does not list the percentiles of
Tν = 55 but, interpolating between the 97.5th percentiles of Tν = 40 and Tν = 80, we
find that t55, α/2 = t55, 0.025

·= 2.01. The R command qt(0.975, 55) gives the exact value
t55, 0.025 = 2.004. Using the approximate value of the percentile and the given sample
information, we obtain

X ± t55, α/2
S√
n

= 8.17 ± 2.01
1.42√

56
= (7.80, 8.54)

for the desired 95% CI for µ.

7.3.2 Z CIs FOR PROPORTIONS

Let X be the number of successes in n Bernoulli trials, and p̂ = X/n be the sample
proportion of successes. By the DeMoivre-Laplace Theorem, and by the fact that p̂
is a consistent estimator of p, the true value of the probability of success, it follows
that
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p̂ − p
Sp̂

·∼ N (0, 1) , (7.3.3)

where Sp̂ =
√

p̂(1 − p̂)/n. This is a version of (7.1.1) with p̂ and p in the place of θ̂

and θ , respectively. Thus, (7.3.3) leads to a bound for the error in estimating p and
a Z CI for p, which are versions of (7.1.4) and (7.1.5), respectively. In particular, the
approximate (1 − α)100% CI for the binomial probability p is

Z Confidence
Interval for the

Population
Proportion p

(

p̂ − zα/2

√
p̂(1 − p̂)

n
, p̂ + zα/2

√
p̂(1 − p̂)

n

)

(7.3.4)

For the purposes of this book, (1−α)100% is a reasonable approximation to the
true confidence level of the above CI provided there are at least 8 successes and at
least 8 failures in our sample of n Bernoulli experiments, that is, provided

Sample Size
Requirement for
the Z CI (7.3.4)

n̂p ≥ 8 and n(1 − p̂) ≥ 8 (7.3.5)

Note that the condition (7.3.5) is different from the condition np ≥ 5 and n(1 − p)
≥ 5 for the application of the DeMoivre-Laplace Theorem. This is due to the fact
that p is unknown.

With the value of p̂ in the R object phat, the Z CI for p can also be obtained
with the following R command:

R Command for the (1− α)100% Z CI (7.3.4)

phat±qnorm(1-α/2)∗sqrt(phat∗(1-phat)/n)

Note that the R command for the CI has been given in a condensed form: It has to
be used once with the − sign for the lower endpoint of the interval and once with
the + sign for the upper endpoint.

Example
7.3-3

In a low-impact car crash experiment, similar to that described in Example 6.3-4,
18 of 30 cars sustained no visible damage. Construct a 95% CI for the true value
of p, the probability that a car of this type will sustain no visible damage in such a
low-impact crash.

Solution
The number of successes and the number of failures in this binomial experiment are
at least 8, so the sample size requirement (7.3.5) for the CI (7.3.4) holds. Applying
the formula with p̂ = 18/30 = 0.6, the desired CI is

0.6 ± 1.96

√
0.6 × 0.4

30
= 0.6 ± 1.96 × 0.089 = (0.425, 0.775).

Alternatively, the R commands phat = 0.6; phat-qnorm(0.975)*sqrt(phat*(1-phat)
/30); phat+qnorm(0.975)*sqrt(phat*(1-phat)/30) returns the values 0.4246955 and
0.7753045. These are the same (up to rounding) with the lower and upper endpoint,
respectively, of the 95% CI for p obtained by hand calculations.
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7.3.3 T CIs FOR THE REGRESSION PARAMETERS

Let (X1, Y1), . . . , (Xn, Yn), be a simple random sample from a population of (X, Y)
values that satisfy the simple linear regression model. Thus,

µY|X(x) = E(Y|X = x) = α1 + β1x,

and the homoscedasticity assumption holds, that is, the intrinsic error variance σ 2
ε =

Var(Y|X = x) is the same for all values x of X.
This section presents CIs for the slope, β1, and the regression line, µY|X(x). The

corresponding CI for the intercept is deferred to Exercise 12 because it is a special
case of the CI for µY|X(x). This follows from the fact that α1 = µY|X(0); see also the
comment following Proposition 7.3-2 below.

Preliminary Results The formulas for the LSEs α̂1, β̂1, and S2
ε , of α1, β1, and σ 2

ε ,
respectively, which were given in Section 6.3.3 of Chapter 6, are restated here for
convenient reference:

α̂1 = Y − β̂1X, β̂1 = n
∑

XiYi − (
∑

Xi)(
∑

Yi)
n

∑
X2

i − (
∑

Xi)2
, and (7.3.6)

S2
ε = 1

n − 2

[ n∑

i = 1

Y2
i − α̂1

n∑

i = 1

Yi − β̂1

n∑

i = 1

XiYi

]

. (7.3.7)

These estimators are unbiased for their respective parameters. The construction of
confidence intervals for β1 and µY|X(x) is based on the following proposition.

Proposition
7.3-2

1. The estimated standard error of β̂1 is

Sβ̂1
= Sε

√
n

n
∑

X2
i − (

∑
Xi)2

. (7.3.8)

2. The estimated standard error of µ̂Y|X=x = α̂1 + β̂1x is

Sµ̂Y|X (x) = Sε

√√√√ 1
n

+ n(x − X)2

n
∑

X2
i − (

∑
Xi)2

. (7.3.9)

3. Assume now, in addition, that the conditional distribution of Y given X = x is
normal or, equivalently, that the intrinsic error variables are normal. Then,

β̂1 − β1

Sβ̂1

∼ Tn−2 and
µ̂Y|X = x − µY|X = x

Sµ̂Y|X = x

∼ Tn−2. (7.3.10)

4. Without the normality assumption, relation (7.3.10) holds approximately pro-
vided n ≥ 30. "

Worth pointing out is the term (x − X)2 in the expression of Sµ̂Y|X (x). This term
implies that the standard error of µ̂Y|X(x) increases with the distance of x from X;
see Figure 7-5 on page 262. Note also that µ̂Y|X(0) = α̂1, which means that the CI
for α1 is the same as that for µY|X(0) given below; see Exercise 12.

CIs for the Slope and the Regression Line The relations in (7.3.10) are versions of
(7.1.6) with θ̂ and θ replaced by each of β̂1 and µ̂Y|X(x), and the corresponding
parameters they estimate, respectively. Hence, the relations in (7.3.10) imply bounds
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Figure 7-5 Data of
Example 7.3-4 with the
fitted regression line (in
color) and lower and upper
limits of the CIs for
µY|X(x) (in black).

for the error in estimating β1 and µY|X(x) and CIs for these parameters, which
are versions of (7.1.7) and (7.1.8), respectively. In particular, the (1 − α)100% CI
for β1 is

T Confidence
Interval for the Slope

of the Regression Line
β̂1 ± tn − 2, α/2Sβ̂1

(7.3.11)

where Sβ̂1
is given in (7.3.8), and the (1 − α)100% CI for the regression line is

T Confidence
Interval for the
Regression Line

µY|X(x)
µ̂Y|X(x) ± tn − 2, α/2Sµ̂Y|X (x) (7.3.12)

where Sµ̂Y|X (x) is given in (7.3.9).
If the normality assumption holds, the confidence level of each of the above CIs

is exactly 1 − α for all n. Without the normality assumption, the confidence level is
approximately 1 − α provided n ≥ 30.

With the data on the predictor and the response in the R objects x and y, respec-
tively, the T CIs for the regression parameters α1, β1 and µY|X(v) (note the use of v
instead of the usual x, since x stands for the R object containing the X-values) can
be obtained with the following R commands:

R Commands for (1− α)100% T CIs for α1, β1, and µY|X(v)

out=lm(y∼x); t=data.frame(x=v) # defines out, and sets new
x-value

confint(out, level=1-α) # gives CIs for α1 and β1

predict(out, t, interval=”confidence”, level=1-α) # gives CI
for µY|X(v).
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In the command t=data.frame(x=v), v can be either a single value, for example,
t=data.frame(x=4), or a set of values, for example, t=data.frame(x=c(4, 6.3, 7.8)). In
the latter case, the predict command will return (1 − α)100% T CIs for µY|X(4),
µY|X(6.3), and µY|X(7.8).

Example
7.3-4

Can changes in Gross Domestic Product (GDP) be predicted from changes in
the unemployment rate? Quarterly data on changes in unemployment rate (X)
and percent change in GDP (Y), from 1949 to 1972, are given in the data file
GdpUemp49-72.txt.1 Assuming the simple linear regression model is a reasonable
model for the regression function of Y on X, use R commands to complete the
following parts:

(a) Estimate the regression function and construct 95% CIs for the slope and the
expected percent change in GDP when the unemployment rate increases by 2
percentage points.

(b) Plot the lower and upper limits of the CIs for µY|X(x), for x in the range of
X-values, to illustrate the effect of the distance of x from X on the width of
the CI.

Solution
(a) First, the scatterplot shown in Figure 7-5 suggests that the simple linear regres-

sion model is appropriate for this data. With the values of unemployment
rate changes in the R object x, and those for percent changes in GDP in y,
the R commands out=lm(y∼x); out$coef; confint(out, level=0.95) return the
following:

(Intercept) x
4.102769 -2.165556

2.5% 97.5%
(Intercept) 3.837120 4.368417

x -2.367161 -1.963951

Thus, α̂1 = 4.102769, β̂1 = −2.165556, and the 95% CI for the slope
is (−2.367161, −1.963951). Finally, the commands t=data.frame(x=2); pre-
dict(out, t, interval=”confidence”, level=0.95) return the following values:

fit lwr upr
-0.2283429 -0.6991205 0.2424347

So µ̂Y|X(2) = −0.2283429 and the 95% CI for µY|X(2) is (−0.6991205,
0.2424347).

(b) The commands plot(x, y, xlab=”Quarterly Change in Unemployment Rate”,
ylab=”Quarterly Percent Change in GDP”); abline(lm(y∼x), col=”red”)
produce the scatterplot with the fitted LS line in red. The additional
commands LUL=data.frame(predict(out, interval=”confidence”, level=0.999));
attach(LUL); lines(x, lwr, col=”blue”); lines(x, upr, col=”blue”) superimpose
the lower and upper limits of the CIs for µY|X(x) for x in the range of X-values.

Example
7.3-5

The following summary statistics and least squares estimators were obtained using
n = 14 data points on Y= propagation velocity of an ultrasonic stress wave through
a substance and X= tensile strength of the substance:

1 Source: http://serc.carleton.edu/sp/library/spreadsheets/examples/41855.html. This data has been used by Miles
Cahill, College of the Holy Cross in Worcester, MA, to provide empirical evidence for Okun’s law.

http://serc.carleton.edu/sp/library/spreadsheets/examples/41855.html
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(1) 14∑

i = 1

Xi = 890,
14∑

i = 1

Yi = 37.6,
14∑

i = 1

XiYi = 2234.30,

14∑

i = 1

X2
i = 67, 182,

14∑

i = 1

Y2
i = 103.54.

(2) α̂1 = 3.62091, β̂1 = −0.014711, and S2
ε = 0.02187.

A scatterplot for this data does not indicate violation of the assumptions for
the simple linear regression model. Use the information given to complete the
following:

(a) Construct a 95% CI for β1, and use it to produce a 95% CI for µY|X(66) −
µY|X(30), the expected difference between propagation velocities at tensile
strengths of 66 and 30.

(b) Construct a 95% CI for µY|X(66) and for µY|X(30). Give an explanation for
the difference between the widths of these two CIs.

(c) Construct a normal Q-Q plot for the residuals to check the assumption that
the intrinsic error variables are normally distributed.

Solution

(a) Plugging these results into formula (7.3.8) we obtain

Sβ̂1
= Sε

√
n

n
∑

X2
i − (

∑
Xi)2

=
√

0.02187

√
14

14 × 67182 − 8902 = 0.001436.

Thus, according to (7.3.11) and since t12, 0.025 = 2.179, the 95% CI for β1 is

−0.014711 ± t12, 0.0250.001436 = (−0.01784, −0.011582).

Next, note that 66 and 30 are within the range of X-values, and thus it is
appropriate to consider estimation of the expected response at these covari-
ate values. Note also that µY|X(66) − µY|X(30) = 36β1. Since −0.01784 <

β1 < −0.011582 with 95% confidence, it follows that −36 × 0.01784 < 36β1 <

−36 × 0.011582 also holds with confidence 95%, because the two sets of
inequalities are equivalent. Hence, a 95% CI for µY|X(66) − µY|X(30) is

(−36 × 0.01784, −36 × 0.011582) = (−0.64224, −0.41695).

(b) Using the summary statistics given in part (a), formula (7.3.9) gives

Sµ̂Y|X (66) = Sε

√
1

14
+ 14(66 − 63.5714)2

14 × 67182 − 8902 = 0.03968 and

Sµ̂Y|X (30) = Sε

√
1

14
+ 14(30 − 63.5714)2

14 × 67182 − 8902 = 0.06234.
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Figure 7-6 Normal Q-Q
plot for the LS residuals of
Example 7.3-5.

Moreover, µ̂Y|X(66) = 2.65 and µ̂Y|X(30) = 3.18. With these calculations,
formula (7.3.12), yields the following 95% CIs for µY|X(66) and µY|X(30),
respectively:

2.65 ± 2.179 × 0.03968 = (2.563, 2.736)

and 3.18 ± 2.179 × 0.06234 = (3.044, 3.315).

The width of the CI for µY|X(66) is 2.736 − 2.563 = 0.173, while that of
µY|X(30) is 3.315 − 3.044 = 0.271. This is explained by the fact that the covari-
ate value of 66 is much closer to X = 63.57 than 30 is, resulting in µ̂Y|X(66)
having smaller estimated standard error than µ̂Y|X(30).

(c) Since the sample size of this data set is 14, the validity of the CIs con-
structed in parts (a) and (b) hinges on the assumption that the intrinsic error
variables are normal. Of course, the intrinsic error variables, εi, are not observ-
able, but their estimated versions, the residuals, are easily available. With the
X- and Y-values in the R objects x and y, respectively, the R commands
qqnorm(lm(y∼x)$resid); qqline(lm(y∼x)$resid, col=”red”) produce the Q-Q
plot shown in Figure 7-6. The plot does not suggest serious departure from the
normality assumption, and thus the above CIs can be reasonably trusted.

7.3.4 THE SIGN CI FOR THE MEDIAN

The sign CI for the median, µ̃, is useful because it can be applied also with non-
normal data without requiring the sample size to be ≥ 30. To describe it, let
X1, . . . , Xn be a sample from a continuous population and let X(1) < · · · < X(n)
denote the order statistics. The (1 − α)100% sign CIs for the median µ̃ are based on
intervals of the form

(
X(a), X(n − a + 1)

)
(7.3.13)

for a < (n+1)/2 an integer. Each such interval is a CI for the median with confidence
level
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Confidence Level
of the CI (7.3.13)

for the Median

(
1 − 2P

(
X(a) > µ̃

))
100% (7.3.14)

This formula is derived by writing

P
(
X(a) ≤ µ̃ ≤ X(n−a+1)

)
= 1 − 2P

(
X(a) > µ̃

)

since, by symmetry, P
(
X(n − a + 1) < µ̃

)
= P

(
X(a) > µ̃

)
.

It is a rather surprising fact that, for any integer a, the probability P
(
X(a) > µ̃

)
is

the same no matter what continuous population distribution the data has come from.
Moreover, this probability can be found by expressing it as a binomial probability.
Here is how: Define Bernoulli random variables Y1, . . . , Yn by

Yi =
{

1 if Xi > µ̃

0 if Xi < µ̃
.

Thus, the probability of success in each Bernoulli trial is 0.5. So T = ∑
i Yi is a

binomial (n, 0.5) random variable. Then the events

X(a) > µ̃ and T ≥ n − a + 1 (7.3.15)

are equivalent. Hence, the level of each CI in (7.3.13) can be found with the use of
binomial probabilities as

Confidence Level
(7.3.14) in Terms of

Binomial Probabilities
(1 − 2P (T ≥ n − a + 1)) 100% (7.3.16)

In other words, (7.3.13) is a (1 − α)100% CI for µ̃, where α can be computed exactly
with the R command 2*(1-pbinom(n-a, n, 0.5)).

Example
7.3-6

Let X1, . . . , X25 be a sample from a continuous population. Find the confidence level
of the following CI for the median:

(
X(8), X(18)

)
.

Solution
First note that the CI (X(8), X(18)) is of the form (7.3.13) with a = 8. Hence, the
confidence level of this interval is computed according to the formula (7.3.16). Using
the R command 2*(1-pbinom(25-8, 25, 0.5)), we find

α = 0.0433.

Thus, regardless of which continuous distribution the data came from, the confidence
level of the CI

(
X(8), X(18)

)
, is (1 − α)100% = 95.67%.

Since the confidence level of each CI in (7.3.13) can be computed, it should be an
easy matter to find the one with the desired (1−α)100% confidence level. This is true
except for a slight problem. To see where the problem lies, assume n is large enough
for the DeMoivre-Laplace approximation to the probability in (7.3.15). Including
continuity correction,

P
(
X(a) > µ̃

)
≃ 1 − ,

(
n − a + 0.5 − 0.5n√

0.25n

)
.
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Setting this equal to α/2 and solving for a we obtain

a = 0.5n + 0.5 − zα/2
√

0.25n. (7.3.17)

The slight problem lies in the fact that the right-hand side of (7.3.17) need not be
an integer. Rounding up gives a CI with confidence level less than (1 − α)100%,
and rounding down results in the confidence level being larger than (1 − α)100%.
Various interpolation methods exist for constructing a (1 − α)100% sign CI. One
such method is employed in the following R command (the package BSDA should
first be installed with install.packages(”BSDA”)):

R Commands for the (1− α)100% Sign CI

library(BSDA); SIGN.test(x, alternative=”two.sided”,
conf.level = 1-α)

where the R object x contains the data.

Example
7.3-7

Using the energy absorption data given in Example 7.3-1, construct a 95% CI for the
population median energy absorption.

Solution
With the n = 16 data points in the R object x, the R commands library(BSDA);
SIGN.test(x, alternative=”two.sided”, conf.level=0.95) generate output the last part
of which gives three CIs for the median:

Conf.Level L.E.pt U.E.pt
Lower Achieved CI 0.9232 2.97 3.54
Interpolated CI 0.9500 2.97 3.70
Upper Achieved CI 0.9787 2.97 3.87

The 92.32% CI given in the first line corresponds to a = 5; thus, its lower endpoint
(L.E.pt) is X(5) = 2.97, and its upper endpoint (U.E.pt) is X(n − a + 1) = X(12) = 3.54.
Similarly, the 97.87% CI in the third line corresponds to a = 4 with lower and
upper endpoints of X(4) = 2.97 and X(16−4+1) = 3.87. Because no CI of the
form (7.3.13) has the desired confidence level, the interpolation method used in
this package produces the 95% CI given in the second line. For comparison pur-
poses, the R command confint(lm(x ∼1), level=0.95) returns the CI (3.06, 3.78) for
the mean.

7.3.5 χ2 CIs FOR THE NORMAL VARIANCE AND STANDARD
DEVIATION

A special case of the gamma distribution, introduced in Exercise 13 in Section 3.5, is
the χ2 distribution with ν degrees of freedom, denoted by χ2

ν . It corresponds to the
gamma parameters α = ν/2 and β = 2. Thus, the mean and variance of a χ2

ν random
variable are ν and 2ν, respectively; see Exercise 13 in Section 3.5. The prominence of
the χ2 distribution stems from its connection to the standard normal distribution. In
particular, if Z1, . . . , Zν are ν iid N(0, 1) random variables, then their sum of squares
has the χ2

ν distribution:

Z2
1 + · · · + Z2

ν ∼ χ2
ν .
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As a consequence it also arises as the distribution of certain other sums of squares
that are used in statistics. In particular, if X1, . . . , Xn is a random sample and S2 its
sample variance, we have the following result:

Proposition
7.3-3

If the population from which the sample was drawn is normal, then

(n − 1)S2

σ 2 ∼ χ2
n − 1,

where σ 2 stands for the true value of the population variance. "

This proposition implies that

χ2
n − 1, 1 −α/2 <

(n − 1)S2

σ 2 < χ2
n − 1, α/2 (7.3.18)

will be true (1 − α)100% of the time, where χ2
n − 1,α/2, χ2

n − 1, 1−α/2 denote percentiles
of the χ2

n − 1 distribution as shown in Figure 7-7. Note that the bounds on the error
of estimation of σ 2 by S2 are given in terms of the ratio S2/σ 2. After an algebraic
manipulation, (7.3.18) yields the following CI:

(1 − α)100% CI for
the Normal Variance

(n − 1)S2

χ2
n − 1, α/2

< σ 2 <
(n − 1)S2

χ2
n − 1, 1 −α/2

(7.3.19)

Selective percentiles of χ2 distributions are given in Table A.5, but can also be
obtained with the following R command:

R Commands for the χ2ν Percentiles

qchisq(p, ν) # gives χ2
ν,1−p

χ2
n –1, 1– α /2 χ2

n –1, α /2

0
0.

05
0.

1
0.

15

Each shaded area = α /2

Figure 7-7 Density and
percentiles of the χ2

n−1
distribution.
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Taking the square root of the lower and upper limit of the CI (7.3.19) yields a CI
for σ :

(1 − α)100% CI
for the Normal

Standard Deviation

√√√√ (n − 1)S2

χ2
n − 1, α/2

< σ <

√√√√ (n − 1)S2

χ2
n − 1, 1−α/2

(7.3.20)

Unfortunately, the CIs (7.3.19) and (7.3.20) are valid only when the sample has
been drawn from a normal population, regardless of the sample size. Thus, they
should only be used when normality appears to be a reasonable model for the
population distribution.

Example
7.3-8

An optical firm purchases glass to be ground into lenses. As it is important that the
various pieces of glass have nearly the same index of refraction, the firm is interested
in controlling the variability. A simple random sample of size n = 20 measurements
yields S2 = (1.2)10−4. From previous experience, it is known that the normal distri-
bution is a reasonable model for the population of these measurements. Find a 95%
CI for σ .

Solution
With n − 1 = 19 degrees of freedom, Table A.5 gives χ2

0.975, 19 = 8.906 and
χ2

0.025, 19 = 32.852. The same values (up to rounding) are obtained with the R
commands qchisq(0.025, 19) and qchisq(0.975, 19), respectively. Thus, according to
(7.3.20), a 95% CI for σ is

√
(19)(1.2 × 10−4)

32.852
< σ <

√
(19)(1.2 × 10−4)

8.906
,

or 0.0083 < σ < 0.0160.

Exercises

1. A question relating to a study of the echolocation sys-
tem for bats is how far apart the bat and an insect are
when the bat first senses the insect. The technical prob-
lems for measuring this are complex and so only n = 11
data points were obtained (in dm):

x 57.16, 48.42, 46.84, 19.62, 41.72, 36.75, 62.69, 48.82,
36.86, 50.59, 47.53

It is given that X = 45.18 and S = 11.48.
(a) Construct by hand a 95% CI for the mean distance µ.

What assumptions, if any, are needed for the validity
of this CI?

(b) Copy the data into the R object x, that is, by x=c(57.16,
48.42, 46.84, 19.62, 41.72, 36.75, 62.69, 48.82, 36.86,
50.59, 47.53), and do the normal Q-Q plot for this
data. Comment on the appropriateness of the CI in
part (a).

2. Analysis of the venom of 7 eight-day-old worker bees
yielded the following observations on histamine content
in nanograms: 649, 832, 418, 530, 384, 899, 755.
(a) Construct by hand a 90% CI for the true mean his-

tamine content for all worker bees of this age. What
assumptions, if any, are needed for the validity of the
CI?

(b) The true mean histamine content will be in the CI you
constructed in part (a) with probability 90%. True or
false?

3. For a random sample of 50 measurements of the break-
ing strength of cotton threads, X = 210 grams and S = 18
grams.
(a) Obtain an 80% CI for the true mean breaking

strength. What assumptions, if any, are needed for the
validity of the CI?
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(b) Would the 90% CI be wider than the 80% CI con-
structed in part (a)?

(c) A classmate offers the following interpretation of the
CI you obtained in part (a): We are confident that
80% of all breaking strength measurements of cot-
ton threads will be within the calculated CI. Is this
interpretation correct?

4. Refer to Exercises 1 and 2.
(a) For the data in Exercise 1, find the confidence level

of the CIs (36.86, 50.59) and (36.75, 57.16) for the
population median distance.

(b) For the data in Exercise 2, find the confidence level
of the CI (418, 832) for the population median
histamine content.

5. The data file OzoneData.txt contains n = 14 ozone
measurements (Dobson units) taken from the lower
stratosphere, between 9 and 12 miles (15 and 20 km).
Import the data into the R data frame oz, copy the
data into the R object x by x=oz$OzoneData, and use R
commands to complete the following parts.
(a) Do the normal Q-Q plot for this data, and comment

on the appropriateness of the normal distribution
as a model for the population distribution of ozone
measurements.

(b) Construct a 90% CI for the mean ozone level.
(c) Construct a 90% CI for the median ozone level.
(d) Compare the lengths of the two CIs and comment on

the appropriateness of using each of them.

6. The data file SolarIntensAuData.txt contains n = 40
solar intensity measurements (watts/m2) on different days
at a location in southern Australia. Import the data into
the R data frame si, copy the data into the R object x by
x=si$SI, and use R commands to complete the following
parts.
(a) Construct a 95% CI for the mean solar intensity, and

state any assumptions needed for the validity of the
CI.

(b) Construct a 95% CI for the median solar intensity, and
state any assumptions needed for the validity of the
CI.

(c) It is suggested that 95% of the (conceptual) popu-
lation of solar intensity measurements taken in the
same location on similar days of the year will lie
within the CI in part (a). Is this a correct interpreta-
tion of the CI? What about a similar interpretation for
the CI in part (b)?

7. Fifty newly manufactured items are examined and the
number of scratches per item are recorded. The resulting
frequencies of the number of scratches is:

Number of scratches per item 0 1 2 3 4
Observed frequency 4 12 11 14 9

Assume that the number of scratches per item is a
Poisson(λ) random variable.
(a) Construct a 95% CI for λ. (Hint. λ = µ.)
(b) Construct a 95% CI for σ , the standard deviation

of the number of scratches per item. (Hint. In the
Poisson model, σ 2 = λ.)

8. Copy the Old Faithful geyser’s eruption dura-
tions data into the R object ed with the command
ed=faithful$eruptions, and use R commands to complete
the following parts.
(a) Construct a 95% CI for the mean eruption duration.
(b) Construct a 95% CI for the median eruption duration.
(c) Construct a 95% CI for the probability that an erup-

tion duration will last more than 4.42 min. (Hint.
The sample proportion, p̂, can be found with the R
command sum(ed>4.42)/length(ed).)

9. In making plans for an executive traveler’s club, an
airline would like to estimate the proportion of its cur-
rent customers who would qualify for membership. A
random sample of 500 customers yielded 40 who would
qualify.
(a) Construct a 95% CI for the population proportion, p,

of customers who qualify.
(b) What assumptions, if any, are needed for the validity

of the above CI?

10. A health magazine conducted a survey on the drink-
ing habits of young adult (ages 21–35) US citizens. On the
question “Do you drink beer, wine, or hard liquor each
week?” 985 of the 1516 adults interviewed responded
“yes.”
(a) Find a 95% confidence interval for the proportion, p,

of young adult US citizens who drink beer, wine, or
hard liquor on a weekly basis.

(b) The true proportion of young adults who drink on a
weekly basis lies in the interval obtained in part (a)
with probability 0.95. True or false?

11. To determine the probability that a certain compo-
nent lasts more than 350 hours in operation, a random
sample of 37 components was tested. Of these, 24 lasted
longer than 350 hours.
(a) Construct a 95% CI for the probability, p, that a

randomly selected component lasts more than 350
hours.

(b) A system consists of two such components connected
in series. Thus, the system operates if and only if both
components operate properly. Construct a 95% CI
for the probability that the system lasts more than
350 hours. You can assume that the life spans of the
two components in the system are independent. (Hint.
Express the probability that the system lasts more
than 350 hours in terms of p.)
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12. In the parametrization µY|X(x) = α1 +β1x of the sim-
ple linear regression model, µY|X(0) = α1 and µ̂Y|X(0) =
α̂1. Use this fact and the formula for the (1 − α)100% CI
for µY|X(x) to give the formula for the (1 − α)100% CI
for α1.

13. A study was conducted to determine the relation
between the (easier to measure) conductivity (µS/cm) of
surface water and water in the sediment at the bank of a
river.2 The summary statistics for 10 pairs of surface (X)
and sediment (Y) conductivity measurements are

∑
Xi =

3728,
∑

Yi = 5421,
∑

X2
i = 1816016,

∑
Y2

i = 3343359,
and

∑
XiYi = 2418968, with the X-values ranging from

220 to 800. Assume the regression function of Y on X is
linear, and that Var(Y|X = x) is for all x.
(a) Give the LSEs for α1, β1, and σ 2

ε .
(b) Construct a 95% CI for the true slope of the regres-

sion line. What additional assumptions, if any, are
needed for the validity of T CIs for this data set?

(c) Construct a 95% CI for the expected sediment con-
ductivity when the surface conductivity is 500. Repeat
the same for surface conductivity of 900. Comment on
the appropriateness of the two CIs.

14. A study examined the effect of varying the
water/cement ratio (X) on the strength (Y)
of concrete that has been aged 28 days.3 Use
CS=read.table(”WaCeRat28DayS.txt”, header=T) to read
the n = 13 pairs of measurements into the R data frame
CS. Copy the data into the R objects x and y by x=CS$X
and y=CS$Y, and use R commands to complete the
following parts.
(a) Make a scatterplot of the data and comment on

whether the simple linear regression model assump-
tions, which are linearity of the regression function of
Y on X and homoscedasticity (i.e., Var(Y|X = x) for
all x), appear to be satisfied for this data set.

(b) Give the LSEs for α1, β1, and σε. (Hint. Use (6.3.12)
and (6.3.13).)

(c) Give 90% CIs for β1 and for the mean difference
of the strengths at water/cement ratios 1.55 and
1.35. (Hint. The mean difference of the strengths at
water/cement ratios 1.55 and 1.35 is µY|X(1.55) −
µY|X(1.35) = 0.2β1).

(d) Give 90% CIs for the mean strength at water/cement
ratios 1.35, 1.45, and 1.55.

(e) Since the sample size of this data set is 13, the
validity of the CIs in parts (b) and (c) requires
the assumption of normality for the intrinsic error

variables. Construct a normal Q-Q plot of the
residuals and comment on whether or not this
assumption appears to be violated.

15. Copy the n = 153 daily measurements of temper-
ature (oF) and wind speed (mph), taken in New York
from May to September 1973 and included in the R data
set airquality, by x=airquality$Temp; y=airquality$Wind,
and use R commands to complete the following
parts.
(a) Contruct a scatterplot of the data and comment on

whether or not the linearity and homoscedasticity
assumptions of the simple linear regression model
seem to be violated.

(b) Give 95% CIs for β1 and for the expected wind speed
on an 80oF day.

16. Let X1, . . . , X30 be a random sample from a continu-
ous population. It has been decided to use (X(10), X(21))
as a CI for the median. Find the confidence level of this
CI.

17. Use formula (7.3.16) to confirm that in a sample of
size n = 16 from a continuous population, a = 4 and a = 5
yield confidence levels as reported in Example 7.3-7.

18. An important quality characteristic of the lapping
process that is used to grind certain silicon wafers is the
population standard deviation, σ , of the thickness of die
pieces sliced out from the wafers. If the thickness of 15
dice cut from such wafers have sample standard devi-
ation of 0.64 µm, construct a 95% confidence interval
for σ . What assumption is needed for the validity of
this CI?

19. Kingsford’s regular charcoal with hickory is avail-
able in 15.7-lb bags. Long-standing uniformity standards
require the standard deviation of weights not to exceed
0.1 lb. The quality control team uses daily samples of
35 bags to see if there is evidence that the standard
deviation is within the required limit. A particular day’s
sample yields S = 0.117. Make a 95% CI for σ . Does the
traditional value of 0.1 lie within the CI?

20. Use rt=read.table(”RobotReactTime.txt”, header=T);
t2=rt$Time[rt$Robot==2] to import the robot reaction
times data set into the R data frame rt and to copy the 22
reaction times of Robot 2 into the R object t2. Construct
a 95% CI for the population variance of reaction times of
Robot 2, using R commands to compute the sample vari-
ance of the data and to find the needed percentiles of the
χ2 distribution.

2 M. Latif and E. Licek (2004). Toxicity assessment of wastewaters, river waters, and sediments in Austria using
cost-effective microbiotests. Environmental Toxicology, 19(4): 302–308.
3 V. K. Alilou and M. Teshnehlab (2010). Prediction of 28-day compressive strength of concrete on the third day
using artificial neural networks. International Journal of Engineering (IJE), 3(6): 521–670.
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7.4 The Issue of Precision
Precision in the estimation of a parameter θ is quantified by the size of the bound of
the error of estimation |θ̂ − θ |, or, equivalently, by the length of the CI for θ , which is
twice the size of the error bound. A shorter error bound, or shorter CI, implies more
precise estimation.

The bounds on the error of estimation of a population mean µ and population
proportion p are of the form

∣∣∣X − µ
∣∣∣ ≤ zα/2

σ√
n

(known σ ; normal case or n > 30)

∣∣∣X − µ
∣∣∣ ≤ tn − 1, α/2

S√
n

(unknown σ ; normal case or n > 30)

|̂p − p| ≤ zα/2

√
p̂(1 − p̂)

n
(n̂p ≥ 8, n(1 − p̂) ≥ 8).

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(7.4.1)

The above expressions suggest that, for a given σ or p, the size of the error bound
(or length of CI) depends on the sample size n and the choice of α: For a fixed α,
a larger sample size yields a smaller error bound, and thus more precise estimation.
For a fixed n, a 90% CI is shorter than a 95% CI, which is shorter than a 99% CI.
This is so because

z0.05 = 1.645 < z0.025 = 1.96 < z0.005 = 2.575,

and similar inequalities hold for the t critical values.
The increase in the length of the CI with the level of confidence is to be expected.

Indeed, we are more confident that the wider CI will contain the true value of the
parameter. However, we rarely want to reduce the length of the CI by decreasing
the level of confidence. Hence, more precise estimation is achieved by selecting a
larger sample size.

In principle, the problem of selecting the sample size needed to achieve a desired
level of precision has a straightforward solution. For example, suppose we are sam-
pling a normal population with known variance. Then the sample size needed to
achieve length L for the (1 − α)100% CI for the mean is found by solving

2zα/2
σ√
n

= L,

for n. The solution is

n =
(

2zα/2
σ

L

)2
. (7.4.2)

More likely than not, the solution will not be an integer, in which case the rec-
ommended procedure is to round up. The practice of rounding up guarantees that
the desired precision level will be more than met.

The main obstacle to getting a completely satisfactory solution to the problem
of sample size selection is twofold: (a) the true value of the variance is rarely known,
and (b) the estimated standard error, which enters the second and third error bounds
in (7.4.1), is unknown prior to the data collection. Thus, sample size determinations
must rely on some preliminary approximation of, or bound to, the standard error.
Methods for such approximations are discussed separately for the mean and the
proportion.

Sample Size Determination for µ The most common method for sample size deter-
mination for µ is to use the sample standard deviation, Spr, from a preliminary/pilot
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sample of size npr. Then the sample size needed to achieve length L for the
(1 − α)100% T CI for the mean is found by solving for n, and rounding the solution
up, giving either

2tnpr − 1, α/2
Spr√

n
= L or 2zα/2

Spr√
n

= L,

depending on whether or not Spr came from a sample of known sample size. Thus,
the recommended sample size is the rounded-up value of

n =
(

2tnpr − 1, α/2
Spr

L

)2
or n =

(
2zα/2

Spr

L

)2
, (7.4.3)

depending on whether or not npr is known. Note that the second formula in (7.4.3)
is formula (7.4.2) with Spr replacing the unknown σ .

When a pilot sample is not available, but the likely range of values the variable
can take can be guessed, the sample size is determined by the second formula in
(7.4.3) with

Spr = range
3.5

or Spr = range
4

.

These approximations are justified by the relations

σ = B − A√
12

= B − A
3.464

and σ = z0.025 − z0.975

3.92
,

which hold for the uniform(A, B), and the normal(0, 1) distributions, respectively.

Sample Size Determination for p The two most commonly used methods for sample
size determination for p correspond to whether or not a preliminary estimator p̂pr of
p (obtained, e.g., from a pilot sample) is available.

When a preliminary estimator p̂pr exists, the sample size needed to achieve a
desired length L for the CI for p is found by solving for n and rounding the solution
up:

2zα/2

√
p̂pr(1 − p̂pr)

n
= L.

Thus, the required sample size is the rounded up value of

n =
4z2

α/2p̂pr(1 − p̂pr)

L2 . (7.4.4)

When no preliminary estimator for p exists, we use (7.4.4) with p̂pr = 0.5. The
rationale for doing so is seen by noting that the value of p̂pr (1 − p̂pr) is largest when
p̂pr = 0.5. Hence, the calculated sample size will be at least as large as needed for
meeting the precision specification. With p̂pr = 0.5, (7.4.4) becomes

n =
z2
α/2

L2 . (7.4.5)

REMARK 7.4-1 Sample size determination for µ by either of the formulas in
(7.4.3) is not completely satisfactory because the standard deviation of the final sam-
ple, upon which the CI will be calculated, will be different from Spr. Thus it is possible
that the desired level of precision objective may not be met. Typically, the desired
level of precision is achieved after some trial-and-error iteration. A similar comment
applies for the sample size determination for p by the formula (7.4.4). ▹
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Having installed the package BSDA with install.packages(”BSDA”), the follow-
ing R commands can be used for sample size calculation.

R Commands for Sample Size Calculation for CIs

library(BSDA) # makes package available

nsize(b=L/2, sigma=Spr, conf.level=1-α, type=”mu”) # gives
sample size for µ

nsize(b=L/2, p=p̂, conf.level=1-α, type=”pi”) # gives sample
size for p

In the commands for sample size determination, b stands for the desired bound on
the error of estimation, which is half the desired length for the CI. Note also that the
command for sample size determination for µ does not allow input of the size of the
preliminary sample. Hence, it always uses the second formula in (7.4.3).

Example
7.4-1

The estimation of a new operating system’s mean response time to an editing
command should have an error bound of 5 milliseconds with 95% confidence.
Experience with other operating systems suggests that Spr = 25 is a reasonable
approximation to the population standard deviation. What sample size n should be
used?

Solution
The second formula in (7.4.3) with α = 0.05 (so zα/2 = 1.96) and L = 10 gives

n =
(

2 × 1.96 × 25
10

)2
= 96.04,

which is rounded up to n = 97. The same answer is found with the R command
nsize(b=5, sigma=25, conf.level=0.95, type=”mu”).

Example
7.4-2

A new method of pre-coating fittings used in oil, brake, and other fluid systems
in heavy-duty trucks is being studied for possible adoption. In this context, the
proportion of such fittings that leak must be determined to within 0.01 with 95%
confidence.

(a) What sample size is needed if a preliminary sample gave p̂pr = 0.9?
(b) What sample size is needed if there is no prior information regarding the true

value of p?

Solution
“To within 0.01” is another way of saying that the 95% bound on the error of
estimation should be 0.01, or the desired CI should have length L = 0.02.

(a) Since we have preliminary information, we use (7.4.4):

n = 4(1.96)2(0.9)(0.1)
0.022 = 3457.44.
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This is rounded up to 3458. The R command nsize(b=0.01, p=0.9,
conf.level=0.95, type=”pi”) gives the same answer.

(b) If no prior information is available, we use (7.4.5):

n = 1.962

0.022 = 9604.

The same answer is found with the R command nsize(b=0.01, p=0.5,
conf.level=0.95, type=”pi”).

Exercises

1. The estimation of the average shrinkage percent-
age of plastic clay should have an error bound of 0.2
with 98% confidence. A pilot sample of npr = 50
gave Spr = 1.2. Use either hand calculations or an
R command to determine the sample size that should
be used.

2. A pilot sample of 50 measurements of the breaking
strength of cotton threads gave Spr = 18 grams. Use
either hand calculations or an R command to determine
the sample size needed to obtain a 90% CI of length 4.

3. A food processing company, considering the market-
ing of a new product, is interested in the proportion p
of consumers that would try the new product. In a pilot
sample of 40 randomly chosen consumers, 9 said that they
would purchase the new product and give it a try. Use

either hand calculations or R commands to answer the
following.
(a) What sample size is needed for the 90% CI for p to

have length 0.1?
(b) What would your answer be if no information from a

pilot study were available?

4. A pilot study of the electro-mechanical protection
devices used in electrical power systems showed that of
193 devices that failed when tested, 75 failed due to
mechanical parts failures. Use either hand calculations or
R commands to answer the following.
(a) How large a sample is required to estimate p to within

0.03 with 95% confidence?
(b) What would your answer be if no information from a

pilot study were available?

7.5 Prediction Intervals
7.5.1 BASIC CONCEPTS

The meaning of the word prediction is related to, but is distinct from, the word esti-
mation. The latter is used for a population or model parameter, while the former
is used for a future observation. For a concrete example, suppose a person eating
a hot dog wonders about the amount of fat in the hot dog he or she is eating. This
is different from the question “what is the expected (mean) amount of fat in a hot
dog of the type being eaten?” To further emphasize the difference between the two,
suppose that the mean amount of fat is known to be 20 grams. Even so, the amount
of fat in the particular hot dog being eaten is unknown, simply because it is a random
variable.

The basic result in prediction is given in the next proposition.

Proposition
7.5-1

According to the mean square error (MSE) criterion, the best predictor of a random
variable Y is its mean value µY .

Proof The prediction error of a predictor PY of Y is Y − PY . According to the
MSE criterion, the best predictor is the one that achieves the smallest MSE, where
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the MSE of a predictor PY of Y is E[(Y − PY)2]. Adding and subtracting µY , the
MSE of a predictor PY can be written as

E[(Y − PY)2] = E[(Y − µY + µY − PY)2]

= E[(Y − µY)2] + 2E[(Y − µY)(µY − PY)] + E[(µY − PY)2]

= σ 2
Y + 0 + (µY − PY)2, (7.5.1)

where the last equality holds because (µY − PY) is a constant and, hence, E[(µY −
PY)2] = (µY − PY)2 and E[(Y − µY)(µY − PY)] = (µY − PY)E[(Y − µY)] = 0.
Relation (7.5.1) implies that the smallest MSE any predictor of Y can achieve is σ 2

Y ,
and PY = µY achieves this minimum value. "

Proposition 7.5-1 also implies that if prior information is available, the best pre-
dictor of Y is the conditional expectation of Y given the available information. In
particular, given the information that a predictor variable X takes the value x, the
best predictor of Y is E(Y|X = x) = µY|X(x).

The confidence interval analogue in prediction is called the prediction interval
(PI). Roughly speaking, the (1 − α)100% PI for a future observation Y is

(y(1 − α/2), yα/2),

where yα denotes the (1 − α)100th percentile of the distribution (or the conditional,
given X = x, distribution) of Y. Because of this, construction of a PI requires knowl-
edge of the distribution (or the conditional, given X = x, distribution) of Y. This is
a sharp difference between CIs and PIs.

If we assume that Y ∼ N(µY , σ 2
Y), and if µY and σ 2

Y are known, the (1−α)100%
PI for a future observation Y is

(µY − zα/2σY , µY + zα/2σY). (7.5.2)

This PI is illustrated in Figure 7-8.
Similarly, if we assume the normal linear regression model, that is, Y|X = x ∼

N(α1 +β1x, σ 2
ε ), and if all population parameters are known, the (1 −α)100% PI for

a future observation Y, taken when the predictor variable has the value X = x, is

µY – zα /2σY µY + zα /2σYµY 

Figure 7-8 The
(1 − α)100% PI for a future
observation Y having the
normal distribution when
µY and σ 2

Y are known.
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x

µYlX(x) + zα /2σε

µYlX(x) – zα /2σε

µYlX(x) = α1 + β1x

Figure 7-9 Prediction
interval for a future
observation Y at X = x
under the normal simple
linear regression model
with all model parameters
known.

(α1 + β1x − zα/2σε, α1 + β1x + zα/2σε). (7.5.3)

This PI is illustrated in Figure 7-9.
The model parameters µY and σY (and, in a regression context, α1, β1, and

σε) are, of course, unknown and need to be estimated. However, simple substitu-
tion of estimators in the PIs (7.5.2) and (7.5.3) does not suffice. This is because the
variability of the estimators must be taken into consideration. This is described next.

7.5.2 PREDICTION OF A NORMAL RANDOM VARIABLE

Let Y1, . . . , Yn be a sample from a normal(µY , σ 2
Y) population, and let Y, S2 denote

the sample mean and variance. By Proposition 7.5-1, the best predictor of a future
observation Y is µY . Since Y estimates the unknown µY (in fact, Y is the best esti-
mator of µY under the normal model), we use Y as a prediction of the value of Y. If
Y is independent from the sample (which is typically the case), the prediction error
Y − Y has variance

σ 2
Y + σ 2

Y
n

= σ 2
Y

(
1 + 1

n

)
.

(Compare the above with the variance of the prediction error Y − µY , which is σ 2
Y .)

Thus, replacing µY by Y in (7.5.2) requires σY to be replaced by σY
√

1 + 1/n. Finally,
replacing σY by the sample standard deviation S requires that zα/2 in (7.5.2) be
replaced by tn−1, α/2. With these substitutions, (7.5.2) transforms into the following
(1 − α)100% PI:

(1 − α)100% PI for a
Future Observation Y Y ± tn−1, α/2S

√
1 + 1

n
(7.5.4)

Note that for a large enough sample size, the PI in (7.5.4) is nearly the same as
the PI in (7.5.2). This is because if n is large enough, Y ≃ µY , S ≃ σY (both by the
Law of Large Numbers), tn−1, α/2 ≃ zα/2, and 1 + 1/n ≃ 1.
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With the data set in the R object y, the PI in (7.5.4) can be obtained with the
following R command:

R Command for the (1− α)100% PI in (7.5.4)

predict(lm(y∼1), data.frame(1), interval=”predict”,
level=1-α) (7.5.5)

Example
7.5-1

The following is fat content measurements (in g) from a sample of size n = 10 hot
dogs of a certain type:

y 24.21, 20.15, 14.70, 24.38, 17.02, 25.03, 26.47, 20.74, 26.92, 19.38

Use this data to construct a 95% PI for the fat content of the next hot dog to be
sampled. What assumptions are needed for the validity of this PI?

Solution
The sample mean and standard deviation from this data is Y = 21.9 and S = 4.13.
Using this, and the percentile value t9, 0.025 = 2.262, formula (7.5.4) yields the 95% PI

Y ± t9, 0.025 S

√
1 + 1

n
= (12.09, 31.71).

Copying the data into the R object y, that is, by y=c(24.21, 20.15, 14.70, 24.38, 17.02,
25.03, 26.47, 20.74, 26.92, 19.38), the R command predict(lm(y∼1), data.frame(1),
interval=”predict”, level=0.95) yields the same PI. The constructed PI is valid under
the assumption that the 10 measurements have come from a normal population. The
normal Q-Q plot for this data (not shown here) suggests that this assumption may
indeed be (at least approximately) correct.

7.5.3 PREDICTION IN NORMAL SIMPLE LINEAR REGRESSION

Let (X1, Y1), . . . , (Xn, Yn) be a sample from a population of (X, Y) values, and let
α̂1, β̂1, and S2

ε denote the LSEs of α1, β1, and σ 2
ε , respectively. By Proposition 7.5-1,

the best predictor of a future observation Y at X = x is µY|X(x) = α1 +β1x. Assume
now that the population of (X, Y) values satisfies the assumptions of the normal
simple linear regression model. Since α̂1 and β̂1 estimate α1 and β1, respectively (in
fact, they are the best estimators under the normal simple linear regression model),
we use µ̂Y|X(x) = α̂1 + β̂1x to predict the value of Y.

Using arguments similar to those leading to the PI (7.5.4), it follows that
replacing the unknown model parameters in the formula (7.5.3) by their estima-
tors requires additional substitutions that transform the formula into the following
100(1 − α)% PI for a future observation Y at X = x:

100(1 − α)% PI for
an Observation

Y at X = x
µ̂Y|X=x ± tn−2, α/2Sε

√√√√1 + 1
n

+ n(x − X)2

n
∑

X2
i − (

∑
Xi)2

(7.5.6)
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With the data on the predictor and the response variables in the R objects x and
y, respectively, the PI in (7.5.6) for a new observation Y at X=v (note the use of v
instead of the x used in (7.5.6), since now x stands for the R object containing the
X-values) can be obtained with the following R commands:

R Command for the (1− α)100% PI in (7.5.6)

predict(lm(y∼x), data.frame(x=v), interval=”predict”,
level=1-α) (7.5.7)

The v in data.frame(x=v) of the above command can be either a single value, for
example, data.frame(x=4), or a set of values, for example, data.frame(x=c(4, 6.3,
7.8)). In the latter case, the command will return (1 − α)100% PIs for future
observations at X = 4, X = 6.3, and X = 7.8.

Example
7.5-2

Data on rainfall volume (X) and soil runoff volume (Y) can be found in
SoilRunOffData.txt.4 Make a prediction for the volume of soil runoff at the next
rainfall of volume X = 62, and construct a 95% PI for the volume of soil runoff
at X = 62. What assumptions are needed for the validity of the prediction? What
assumptions are needed for the validity of the PI?

Solution
The n = 15 data points give the following summary statistics:

∑
i Xi = 798,

∑
i X2

i =
63040,

∑
i Yi = 643,

∑
i Y2

i = 41999, and
∑

i XiYi = 51232. On the basis of these
summary statistics, the LSEs of α1, β1, and σε are found to be (see formulas (7.3.6)
and (7.3.7)) α̂1 = −1.128, β̂1 = 0.827, and Sε = 5.24. The soil runoff at the next
rainfall of volume X = 62 is predicted to be

µ̂Y|X=62 = −1.128 + 0.827 × 62 = 50.15.

Using the above calculations and the percentile value t13, 0.25 = 2.16, formula (7.5.6)
yields the following 95% PI for a Y measurement to be made at X = 62:

µ̂Y|X=62 ± t13, 0.025(5.24)

√

1 + 1
15

+ 15(62 − 798/15)2

15 × 63, 040 − 7982 = (38.43, 61.86).

With the data on the predictor and the response variables in the R objects x and y,
respectively, the R command predict(lm(y∼x), data.frame(x=62), interval=”predict”,
level=0.95) yields the same PI. For the validity of the prediction, the assumption
of linearity of the regression function of Y on X must be satisfied. The validity
of the PI requires that all the assumptions of the normal simple linear regression
model, that is, the additional assumptions of homoscedasticity and normality of the
intrinsic error variables, be satisfied. The scatterplot in the left panel of Figure 7-10
suggests that the first two assumptions are reasonable for this data set, while the
normal Q-Q plot for the residuals in the right panel does not suggest gross violation
of the normality assumption.

4 M. E. Barrett et al. (1995). Characterization of Highway Runoff in Austin, Texas Area, Center for Research in
Water Resources, University of Texas at Austin, Tech. Rep.# CRWR 263.
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Figure 7-10 Scatterplot
(left panel) and residual
Q-Q plot (right panel) for
the data of Example 7.5-2.

Exercises
1. A random sample of 16 chocolate chip cookies made
by a machine yields an average weight of 3.1 oz and a
standard deviation of 0.3 oz. Construct an interval that
contains the weight of the next chocolate chip cookie to
be sampled with confidence 90%, and state any assump-
tions that are needed for its validity.

2. Soil heat flux is used extensively in agro-
meteorological studies, as it relates to the amount of
energy stored in the soil as a function of time. A par-
ticular application is in the prevention of frost damage
to orchards. Heat flux measurements of eight plots cov-
ered with coal dust yielded X = 30.79 and S = 6.53. A
local farmer using this method of frost prevention wants
to use this information for predicting the heat flux of his
coal-dust-covered plot.
(a) Construct a 90% prediction interval and state what

assumptions, if any, are needed for its validity.
(b) Construct a 90% CI for the mean heat flux, and com-

pare the lengths of the confidence and prediction
intervals.

3. Use cs=read.table(”Concr.Strength.1s.Data.txt”, header
=T) to read into the R data frame cs data on 28-day
compressive strength measurements of concrete cylinders
using water/cement ratio 0.4,5 and the command y=cs$Str
to copy the n = 32 data points into the R object y. Use R
commands to complete the following parts.
(a) Construct a 95% PI for the compressive strength of

the next concrete specimen.

(b) Construct a normal Q-Q plot for the data. Comment
on whether or not the plot appears to contradict the
normality assumption.

4. The article Effects of Bike Lanes on Driver and
Bicyclist Behavior reports data from a study on X = dis-
tance between a cyclist and the roadway center line, and
Y = the separation distance between the cyclist and a
passing car (both determined by photography).6 The data,
in feet, from n = 10 streets with bike lanes yield the
summary statistics

∑
i Xi = 154.2,

∑
i Yi = 80,

∑
i X2

i =
2452.18,

∑
i Y2

i = 675.16,
∑

i XiYi = 1282.74, with the X-
values ranging from 12.8 to 20.8 feet. Fitting the simple
linear regression model with the method of LS yields the
estimates α̂1 = −2.1825, β̂1 = 0.6603, and S2

ε = 0.3389 for
α1, β1, and σ 2

ε , respectively.
(a) Construct a 90% prediction interval for the separation

distance between the next cyclist, whose distance from
the roadway center line is 15 feet, and a passing car.

(b) A state-level committee charged with investigating
the safety of existing bike lanes requests the civil
engineering department to provide a 90% PI for the
separation distance when the cyclist is 12 feet from
the center line. What should the civil engineering
department’s response be?

5. Fifty black bears, captured in the period September to
November, were anesthetized and their bodies were mea-
sured and weighed.7 Use bd=read.table(”BearsData.txt”,
header=T); x=bd$Chest.G; y=bd$Weight to import the

5 V. K. Alilou and M. Teshnehlab (2010). Prediction of 28-day compressive strength of concrete on the third day
using artificial neural networks. International Journal of Engineering (IJE), 3(6): 521–670.
6 B. J. Kroll and M. R. Ramey (1977). Effects of bike lanes an driver and bicyclist behavior, Transportation Eng.
J., 103(2): 243–256.
7 This data set is a subset of a data set contributed to Minitab by Gary Alt.
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data into the R data frame bd and to copy the chest girth
and weight measurements into the R objects x and y,
respectively. Use R commands to complete the following
parts.
(a) Using only the weight measurements, that is, the data

in the R object y, make a prediction for the weight of
the next black bear that will be captured during the
same time period and construct a 95% PI.
(i) What assumptions are needed for the validity of

your prediction?
(ii) What assumptions are needed for the validity of

the PI?

(b) Using both the chest girth and the weight measure-
ments, make a prediction for the weight of the next
bear that will be captured during the same time
period if its chest girth measures 40 cm. Construct also
a 95% PI.

(i) What assumptions are needed for the validity of
your prediction?

(ii) What assumptions are needed for the validity of
the PI?

(c) Comment on the lengths of the PIs constructed in
parts (a) and (b).



Chapte r

8Testing of Hypotheses

8.1 Introduction
In many situations, mainly involving decision making, investigators are called upon
to decide whether a statement regarding the value of a parameter is true. For exam-
ple, the decision to implement a new design for a product may rest on whether the
mean value of some quality characteristic of the product exceeds a certain thresh-
old. A statement regarding the value of a parameter of interest is called a hypothesis.
This chapter deals with the statistical procedures for testing hypotheses, that is, for
deciding whether a certain hypothesis regarding the true value of a parameter θ is
supported by the data.

Confidence intervals, which provide a set of plausible (i.e., compatible with the
data) values for the true value of θ , can be used for hypothesis testing. For example,
consider testing a hypothesis of the form

H0 : θ = θ0, (8.1.1)

where θ0 is a specified value. A sensible way of testing this hypothesis is to construct
a CI for θ and check whether or not the specified value θ0 belongs in the CI. If it does
then the hypothesis H0 is compatible with the data and cannot be refuted/rejected,
while if it does not belong in the CI then H0 is not supported by the data and is
rejected. For a concrete example of this testing procedure, suppose it is hypothesized
that the population mean value is 9.8. Thus, θ = µ, θ0 = 9.8, and

H0 : µ = 9.8.

Suppose further that the data yield a 95% CI of (9.3, 9.9) for the true value of µ.
Since 9.8 belongs in the 95% CI, we conclude that H0 is not refuted by the data or,
in proper statistical parlance, that H0 is not rejected at level of significance α = 0.05.

Even though there is a close connection between CIs and hypothesis testing,
there are a number of specific issues that arise in hypothesis testing and deserve
separate treatment. These issues are listed below.

1. The null hypothesis and the alternative hypothesis. In every hypothesis-testing
situation, there is a null and an alternative hypothesis. Typically, the statement
of the alternative hypothesis is the complement of the statement of the null
hypothesis. For example, the alternative to the null hypothesis H0 : θ = θ0 is

Ha : θ ̸= θ0.

282
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This alternative hypothesis is called two-sided. Other common null hypotheses
are

H0 : θ ≤ θ0 or H0 : θ ≥ θ0, (8.1.2)

with corresponding alternative hypotheses

Ha : θ > θ0 or Ha : θ < θ0. (8.1.3)

The alternative hypotheses in (8.1.3) are called one-sided. Testing procedures
do not treat the null and the alternative hypotheses equally. Basically, test pro-
cedures treat the null hypothesis in a manner similar to the manner in which the
presumption of innocence is treated in a court of law. Thus, the null hypothe-
sis is not rejected unless there is strong evidence (beyond “reasonable doubt,”
in legalistic terms) against it. Perhaps the most important learning objective of
this chapter is the designation of the null and alternative hypotheses in a given
testing situation.

2. Rejection rules. The intuitive, CI-based procedure described above for rejecting
the null hypothesis in relation (8.1.1) is not suitable for testing the one-sided null
hypotheses in (8.1.2). While it is possible to define one-sided CIs and base test
procedures for one-sided hypotheses on them, there are more informative ways
of reporting the outcome of a test procedure (see issue 4 below). Moreover,
there exist test procedures that are quite distinct from the CI-based procedure.
For these reasons, the rejection rules presented in this chapter do not make
explicit reference to CIs.

3. Sample size determination. This issue involves considerations that are quite
distinct from the considerations for determining the sample size required to
achieve a desired level of precision in CI construction.

4. Reporting the outcome. The practice of reporting the outcome of a test pro-
cedure as “H0 is rejected” or “H0 is not rejected” fails to convey all available
information regarding the strength (or lack thereof) of the evidence against H0.
Full information is conveyed by also reporting the so-called p-value.

In this chapter we will learn how to deal with these issues for testing hypotheses
about a population mean, median, variance, and proportion, and we will learn about
regression parameters in the simple linear regression (SLR) model.

8.2 Setting Up a Test Procedure
8.2.1 THE NULL AND ALTERNATIVE HYPOTHESES

The hypothesis testing problems we will consider take the form of deciding between
two competing hypotheses, the null hypothesis, denoted by H0, and the alternative
hypothesis, denoted by Ha. Proper designation of H0 and Ha is very important,
because test procedures do not treat the two hypotheses symmetrically. In partic-
ular, test procedures are designed to favor the null hypothesis, so that H0 will not be
rejected unless the data present strong evidence against it. To draw an analogy, test
procedures treat a null hypothesis like the presumption of innocence is treated in a
court of law, where the accused is presumed innocent unless proven guilty.

An immediate implication of this is that when H0 is not rejected, it cannot be
claimed that it is true—one can only say that the evidence in the data is not strong
enough to reject it. This is best demonstrated with the CI-based test procedure that
rejects H0 : θ = θ0 if θ0 does not belong in the CI for θ . Since any value in the CI is
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a plausible (given the data set) candidate for the true parameter value, it is evident
that by not rejecting H0 : θ = θ0, we have not proved that H0 is true. For example, if
H0 : µ = 9.8 and the 95% CI for µ is (9.3, 9.9), then H0 : µ = 9.8 is not rejected at
level α = 0.05; on the other hand H0 : µ = 9.4 is not rejected either, so that by not
rejecting H0 : µ = 9.8, we have not proved that H0 : µ = 9.8 is true. The court of law
analogy to this is that when an accused is acquitted, his or her innocence has not been
established. A test procedure provides statistical proof only when H0 is rejected. In
that case it can be claimed that the alternative has been proved (in the statistical
sense) at level of significance α. The level of significance quantifies the reasonable
doubt we are willing to accept when rejecting a null hypothesis; see Section 8.2.2 for
a more precise definition.

The above discussion leads to the following rule for designating H0 and Ha:

Rule for Designating H0 and Ha

The statement for which the investigator seeks evidence, or statistical proof, is
designated as Ha. The complementary statement is designated as H0.

It is important to note that, as suggested by (8.1.1) and (8.1.2), the equality sign
(=, ≥, or ≤) is always part of the statement of H0.

Example
8.2-1

Designate H0 and Ha for each of the following testing situations.

(a) A trucking firm suspects that a tire manufacturer’s claim that certain tires
last at least 28,000 miles, on average, is faulty. The firm intends to initiate a
study, involving data collection and hypothesis testing, to provide evidence
supporting this suspicion.

(b) A tire manufacturing firm wants to claim that certain tires last, on average,
more than 28,000 miles. The firm intends to initiate a study, involving data
collection and hypothesis testing, to support the validity of the claim.

Solution
(a) Let µ denote the mean life span of the tires in question. The trucking firm

seeks evidence that the claim made by the tire manufacturer is wrong, that is,
it seeks evidence supporting the statement that µ < 28,000. According to the
rule, this statement is designated as Ha and the complementary statement is
designated as H0. Thus, the hypotheses to be tested are H0 : µ ≥ 28, 000 vs
Ha : µ < 28, 000.

(b) The manufacturing firm seeks evidence in support of the claim that is about
to be made, that is, that µ > 28,000. According to the rule, this statement is
designated as Ha and the complementary statement is designated as H0. Thus,
the hypotheses to be tested are H0 : µ ≤ 28, 000 vs Ha : µ > 28, 000.

8.2.2 TEST STATISTICS AND REJECTION RULES

A test procedure is specified in terms of a test statistic and a rejection rule (RR).
The test statistic for testing a null hypothesis H0 about a parameter θ can be based
on a point estimator θ̂ of θ . (Other types of test statistics will be seen in Sections 8.3.4
and 8.3.5.) The rejection rule prescribes when H0 is to be rejected. Basically, H0 is
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rejected when the test statistic takes a value of such magnitude (too large, or too
small, or either, depending on the alternative hypothesis) that the value is unlikely
if H0 were true.

Consider, for example, the hypothesis-testing problem in part (a) of Example
8.2-1. Where the null hypothesis is H0 : µ ≥ 28,000. Let X denote the average tread
life span of a random sample of n tires. Being an estimator of µ, X is unlikely to take
values that are much smaller than 28,000 if H0 were true. Thus, the rejection region
is of the form X ≤ C1 for some constant smaller than 28,000. For example, the
rejection region can be X ≤ 27, 000, X ≤ 26, 000, etc. Similarly, the null hypothesis
H0 : µ ≤ 28, 000 in part (b) of Example 8.2-1 is rejected if the test statistic X takes a
value so large that it is unlikely to happen if H0 were true. Thus, the rejection region
is of the form X ≥ C2, where C2 can be 29,000, 30,000, or some other constant larger
than 28,000. Finally, for testing H0 : µ = 28,000 vs Ha : µ ̸= 28, 000, the rejection
region is of the form X ≤ C3 or X ≥ C4, where, for the CI-based procedure, C3, C4
are the endpoints of the CI.

But how exactly are the values of the constants C1, C2, C3, and C4 to be
selected? The answer to this question rests on the level of significance, which is
defined as

Definition of Level of Significance

The level of significance is the (largest) probability of incorrectly rejecting H0, or,
in other words, the (largest) probability of rejecting H0 when H0 is true.

As already mentioned, the level of significance specifies the risk (or, in legalistic
terms, the “reasonable doubt”) we are willing to accept for being wrong when con-
cluding that H0 is false. It turns out that the constants C1 and C2 can be determined
by specifying the level of significance. The way this works is demonstrated in the
following example.

Example
8.2-2

Consider the two testing problems in parts (a) and (b) of Example 8.2-1, and suppose
that the tread life spans are approximately normally distributed and the population
variance σ 2 is known. Let X ≤ C1 and X ≥ C2 be the rejection regions for the
testing problems in parts (a) and (b), respectively. Determine the values of C1 and
C2 so the tests have level of significance α = 0.05.

Solution
Consider first the testing problem in part (a) where H0 : µ ≥ 28, 000. The require-
ment that the level of significance, that is, the probability of incorrectly rejecting H0,
is no more than 0.05 can be expressed, in mathematical notation, as

P(X ≤ C1) ≤ 0.05 if H0 is true. (8.2.1)

Clearly, the probability P(X ≤ C1) depends on the actual value of µ, which, when
H0 is true, can be any number ≥ 28,000. Thus the task is to choose C1 so that the
above probability does not exceed 0.05 no matter what value, in the range specified
by H0 (i.e., ≥ 28,000) µ takes. Because the event X ≤ C1 specifies “small” values for
X, its probability is largest when µ = 28,000, that is, when µ takes the smallest value
specified by H0. Thus, the requirement (8.2.1) will be satisfied if C1 is chosen so that
when µ = 28,000, P(X ≤ C1) = 0.05. This is achieved by choosing C1 to be the 5th
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percentile of the distribution of X when µ = 28,000, that is, C1 = 28,000−z0.05σ/
√

n
(recall that σ is assumed known). This yields a rejection region of the form

X ≤ 28,000 − z0.05σ/
√

n. (8.2.2)

Similarly, the constant C2 for testing the null hypothesis H0 : µ ≤ 28,000 of part (b),
is determined from the requirement that the probability of incorrectly rejecting H0
is no more than 0.05 or, in mathematical notation, from

P(X ≥ C2) ≤ 0.05 if H0 is true. (8.2.3)

Again, it can be argued that, over the range of µ values specified by H0 (i.e.,
µ ≤ 28,000), the probability P(X ≥ C2) is largest when µ = 28,000. Thus, the
requirement (8.2.3) will be satisfied if C2 is chosen so that when µ = 28,000,
P(X ≥ C2) = 0.05. This is achieved by choosing C2 to be the 95th percentile of
the distribution of X when µ = 28,000. This yields a rejection region of the form

X ≥ 28,000 + z0.05σ/
√

n. (8.2.4)

The next example expresses the CI-based RR for testing H0 : µ = µ0, where µ0 is a
specified value, in terms of a test statistic, and shows that the level of significance of
the test is related to the confidence level of the CI.

Example
8.2-3

Let X1, . . . , Xn be a simple random sample from a normal(µ, σ 2) population, and
consider testing the hypothesis H0 : µ = µ0 versus Ha : µ ̸= µ0 by rejecting H0 if
µ0 does not lie inside the (1 − α)100% T CI for µ. Express this RR in terms of a test
statistic, and show that the level of significance is α.

Solution
Since the (1 − α)100% CI for µ is X ± tn − 1, α/2S/

√
n, H0 is rejected if

µ0 ≤ X − tn−1, α/2S/
√

n or µ0 ≥ X + tn−1, α/2S/
√

n.

After an algebraic manipulation, the two inequalities can be rewritten as

X − µ0

S/
√

n
≥ tn−1, α/2 or

X − µ0

S/
√

n
≤ −tn−1, α/2.

Setting

TH0 = X − µ0

S/
√

n

for the test statistic, the CI-based RR can be expressed as

∣∣TH0

∣∣ ≥ tn−1, α/2. (8.2.5)

Finally, since TH0 ∼ Tn−1 when H0 is true (see Proposition 7.3-1), it follows that
the level of significance, that is, the (largest) probability of incorrectly rejecting
H0, is α.
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Note that the test statistic TH0 in Example 8.2-3 is a standardized version1 of
X. In general, RRs for testing hypotheses about a parameter θ are expressed more
concisely in terms of the standardized θ̂ . For example, using the standardized test
statistic

ZH0 = X − µ0

σ/
√

n
(8.2.6)

with µ0 = 28,000, the RRs (8.2.2) and (8.2.4) can be written as

ZH0 ≤ −z0.05 and ZH0 ≥ z0.05, (8.2.7)

respectively. For this reason, the test statistics based on θ̂ will always be given in
terms of the standardized θ̂ .

8.2.3 Z TESTS AND T TESTS

The description of the test procedures will be simplified by adopting the convention
of always stating the null hypothesis about a parameter θ as

H0 : θ = θ0, (8.2.8)

where θ0 is a specified value, regardless of whether the alternative hypothesis is of
the form Ha : θ < θ0 or Ha : θ > θ0 or Ha : θ ̸= θ0. This convention, done for
reasons of convenience and simplicity in notation, should cause no confusion since
the actual null hypothesis being tested is always the complementary version of a
given alternative hypothesis.

As with confidence intervals, we have Z tests and T tests. The rejection rule in
relation (8.2.7) is an example of a Z test, while that in (8.2.5) is an example of a
T test. In general, tests that use percentiles from the standard normal distribution
for the specification of the rejection rule are called Z tests, while tests that use per-
centiles from the T distribution are called T tests. As with CIs, there are also other
types of tests which, typically but not always, are named after the distribution whose
percentiles are used to specify the rejection rules. These will be discussed in the next
section.

Like the Z intervals, Z tests for the mean are used only if the population vari-
ance is known and either the population is normal or the sample size is large enough
(≥ 30). In this case, the test statistic for testing H0 : µ = µ0, where µ0 is a spec-
ified value, against any of the common alternatives, is ZH0 as given in (8.2.6). The
subscript H0 serves as a reminder that ZH0 has the standard normal distribution
(exactly, if sampling from a normal population; otherwise approximately, if n ≥ 30)
only if H0 is true.

Because the assumption of a known population variance is not realistic, Z tests
for the mean are deemphasized in this book. Instead, Z tests will be used primarily
for the proportion and the median. The Z test statistic for testing H0 : p = p0, where
p0 is a specified value, against any of the common alternatives, is

Z Test Statistic
for H0 : p = p0 ZH0 = p̂ − p0√

p0(1 − p0)/n
(8.2.9)

1 The standardized version of an estimator θ̂ is obtained by subtracting its expected value and dividing by its
standard error or estimated standard error.
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By the DeMoivre-Laplace Theorem, if n is large enough (np0 ≥ 5 and n(1−p0) ≥ 5,
for our purposes), ZH0 has approximately the standard normal distribution only if
H0 : p = p0 is true.

Like the T intervals, T tests will be used for the mean and the regression parame-
ters (slope, intercept, and regression line). Let θ denote the true value of any of these
parameters, and let θ̂ and Sθ̂ denote its estimator and the estimator’s estimated stan-
dard error, respectively. As mentioned in Section 7.1.3, when sampling from normal
populations,

θ̂ − θ

Sθ̂

∼ Tν (8.2.10)

is true for all sample sizes n. Moreover, (8.2.10) is approximately true if n ≥ 30
without the normality assumption. (Recall that ν is n − 1 when θ = µ and is n − 2
when θ stands for any of the simple linear regression parameters.) Because of this,
the test statistic for testing H0 : θ = θ0 is

T Test Statistic
for H0 : θ = θ0

when θ is either µ,
α1, β1, or µY|X=x

TH0 = θ̂ − θ0

Sθ̂

(8.2.11)

According to (8.2.10), TH0 has a Tν distribution only if H0 : θ = θ0 is true.

8.2.4 P-VALUES

Reporting the outcome of a test procedure as only a rejection of a null hypothesis
does not convey the full information contained in the data regarding the strength
of evidence against it. To illustrate the type of information that is not conveyed,
consider the following testing situation.

Example
8.2-4

It is suspected that a machine, used for filling plastic bottles with a net volume of
16.0 oz, on average, does not perform according to specifications. An engineer will
collect 15 measurements and will reset the machine if there is evidence that the mean
fill volume is different from 16 oz. The resulting data, given in FillVolumes.txt, yield
X = 16.0367 and S = 0.0551. Test the hypothesis H0 : µ = 16 vs Ha : µ ̸= 16 at level
of significance α = 0.05.

Solution
The value of the test statistic is

TH0 = 16.0367 − 16

0.0551/
√

15
= 2.58.

According to the CI-based RR given in (8.2.5), H0 will be rejected at level α = 0.05
if |TH0 | ≥ t14, 0.025. Since t14, 0.025 = 2.145, H0 is rejected at level of significance
α = 0.05.

Knowing only the outcome of the test procedure in Example 8.2-4, we do not
have a full appreciation of the strength of evidence against H0. For example, we
cannot know if H0 would have been rejected had the level of significance been α =
0.01. Indeed, we cannot know whether or not |TH0 | ≥ t14, 0.005 = 2.977 if it is only
known that |TH0 | ≥ 2.145. With the data of this particular example, H0 is not rejected
at level of significance α = 0.01.
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0 TH0

0TH0

0–|TH0| |TH0|

Figure 8-1 P-values of the
T test for Ha : µ > µ0 (top
panel), Ha : µ < µ0
(middle panel), and
Ha : µ ̸= µ0 (bottom
panel). In all panels the
PDF is that of the Tn − 1
distribution.

We can convey the full information about the strength of evidence against the
null hypothesis by reporting the p-value. Basically, the p-value is the (largest) prob-
ability, computed under H0, of the test statistic taking a value more “extreme” (i.e.,
smaller or larger, depending on the alternative hypothesis) than the value we com-
puted from the data. For a T test, with TH0 denoting the value of the test statistic
computed from the data, the p-values for the different alternative hypotheses are
illustrated in Figure 8-1.

The relation of the p-value to the strength of evidence is inverse: The smaller the
p-value, the stronger the evidence against H0. The formal definition of the p-value
is often given as follows.

Definition 8.2-1
In any hypothesis-testing problem, the p-value is the smallest level of signifi-
cance at which H0 would be rejected for a given data set.

The practical consequence of this definition is that the rejection rule for any
hypothesis-testing problem can be stated in terms of the p-value as follows:

Rejection Rule in
Terms of the p-Value If the p-value ≤ α ⇒ reject H0 at level α (8.2.12)

The computation of the p-value is illustrated in the following example.

Example
8.2-5

Consider testing the hypothesis H0 : µ = 16 vs Ha : µ ̸= 16 using the sample of 15
observations given in Example 8.2-4. Find the p-value.

Solution
From Example 8.2-4 and the discussion following it, we have that the value of the test
statistic is TH0 = 2.58 and H0 is rejected at level 0.05 but is not rejected at level 0.01.
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What is the smallest level at which H0 is rejected? Since the RR is |TH0 | ≥ t14, α/2,
the smallest level at which H0 is rejected is found by solving 2.58 = t14, α/2 for α.
Letting Gν denote the cumulative distribution function of the Tν distribution, the
solution to this equation, which is also the p-value, is

p-value = 2(1 − G14(2.58)) = 2 × 0.0109 = 0.0218.

Alternatively (and more simply), since TH0 = 2.58, the shaded area shown in the
bottom panel of Figure 8-1 is 2(1 − G14(2.58)) = 0.0218, as computed above.

Formulas for calculating the p-value will be given for each of the test procedures
discussed in the following section.

Statistical Significance vs Practical Significance The extent to which the alternative
physically differs from the null hypothesis is referred to as practical significance. For
example, suppose that gasoline additive A increases the mileage of a certain type
of car by an average of µA = 2 miles per gallon (mpg), while additive B results
in an average increase of µB = 4 mpg. Then, from the practical point of view, the
alternative µB (when testing H0 : µ ≤ 0 vs Ha : µ > 0) is more significant (meaning
more significantly different from H0) than µA.

As already mentioned, the smaller the p-value the stronger the evidence against
the null hypothesis, or, in statistical parlance, the higher the statistical significance
of the alternative. Is it true that high statistical significance implies high practical
significance? The correct answer is: Not necessarily! To see why, let’s focus on the
T test statistic TH0 . As suggested by the bottom panel of Figure 8-1, the larger the
value of |TH0 | the smaller the p-value when testing against the two-sided alternative.
(Similar statements, accounting also for the sign of TH0 , hold for the other alternative
hypotheses.) |TH0 | is large if its numerator, |X − µ0|, is large, or its denominator,
S/

√
n, is small, or both. The practical significance of an alternative affects the value

of the numerator, but not that of the denominator. For example, X tends to be larger
under the alternative µB = 4 than under the alternative µA = 2, but the alternative
has no effect on the sample size or the sample variance (at least in homoscedastic
settings). Hence, since the practical significance of the alternative is not the only
factor affecting the value of TH0 , it follows that high statistical significance does not
necessarily imply high practical significance.

For a numerical demonstration of the above discussion, we resort to simu-
lated data. The R commands n1=10; n2=100; set.seed(333); x1=rnorm(n1, 4, 5);
x2=rnorm(n2, 2, 5) generate two data sets, stored in objects x1 and x2, of sizes 10 and
100, respectively. Thus, both population distributions are normal with σ 2 = 25, but
for the data in x1 the population mean is µ1 = 4, while for x2 it is µ2 = 2. The addi-
tional commands T1=mean(x1)/sqrt(var(x1)/n1); T2=mean(x2)/sqrt(var(x2)/n2); 1-
pt(T1, n1-1); 1-pt(T2, n2-1) compute the test statistics and yield p-values of 0.03 and
9.57×10−5 for samples x1 and x2, respectively. Thus, there is stronger evidence (a
smaller p-value) that µ2 = 2 is different from zero, even though µ1 = 4 is bigger.

Exercises

1. Researchers are exploring alternative methods for
preventing frost damage to orchards. It is known that
the mean soil heat flux for plots covered only with
grass is 29 units. An alternative method is to use coal
dust cover. Due to the additional cost of covering plots

with coal dust, this method will not be recommended
unless there is significant evidence that coal dust cover
raises the mean soil heat flux by more than 2 units.
Formulate this decision problem as a hypothesis-testing
problem by
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(a) stating the null and alternative hypotheses, and
(b) stating what action should be taken if the null hypoth-

esis is rejected.

2. In 10-mph crash tests, 25% of a certain type of auto-
mobile sustain no visible damage. A modified bumper
design has been proposed in an effort to increase this
percentage. Let p denote the probability that a car with
the modified bumper design sustains no visible damage
in a 10-mph crash test. Due to cost considerations, the
new design will not be implemented unless there is sig-
nificant evidence that the new bumper design improves
the crash test results. Formulate this decision problem as
a hypothesis-testing problem by
(a) stating the null and alternative hypotheses, and
(b) stating what action should be taken if the null hypoth-

esis is rejected.

3. The CEO of a car manufacturer is considering the
adoption of a new type of grille guard for the upcom-
ing line of SUVs. If µ0 is the average protection index of
the current grille guard and µ is the corresponding aver-
age for the new grille guard, the manufacturer wants to
test the null hypothesis H0 : µ = µ0 against a suitable
alternative.
(a) What should Ha be if the CEO wants to adopt it

(because, by using the latest innovation from mate-
rial science, it is lighter and thus will not affect the
mileage) unless there is evidence that it has a lower
protection index?

(b) What should Ha be if the CEO does not want to adopt
it (because the new material is more expensive and he
does not really care for the new design) unless there
is evidence that it has a higher protection index?

(c) For each of the two cases above, state whether or not
the CEO should adopt the new grille guard if the null
hypothesis is rejected.

4. An appliance manufacturer is considering the pur-
chase of a new machine for cutting sheet metal parts. If
µ0 is the average number of metal parts cut per hour by
her old machine and µ is the corresponding average for
the new machine, the manufacturer wants to test the null
hypothesis H0 : µ = µ0 against a suitable alternative.
(a) What should Ha be if she does not want to buy

the new machine unless there is evidence it is more
productive than the old one?

(b) What should Ha be if she wants to buy the new mach-
ine (which has additional improved features) unless
there is evidence it is less productive than the old one?

(c) For each of the two cases above, state whether she
should buy the new machine if the null hypothesis is
rejected.

5. In making plans for an executive traveler’s club, an
airline would like to estimate the proportion of its current

customers who would qualify for membership. A random
sample of 500 customers yielded 40 who would qualify.
(a) The airline wants to proceed with the establishment of

the executive traveler’s club unless there is evidence
that less that 5% of its customers qualify. State the
null and alternative hypotheses.

(b) State the action the airline should take if the null
hypothesis is rejected.

6. Consider the hypothesis-testing problem in part (b) of
Example 8.2-1. Thus, the null hypothesis is H0 : µ ≤
28, 000. Let X denote the average tread life span of a
random sample of n tires.
(a) The rule for rejecting this null hypothesis should be of

the form X ≥ C, for some constant C > 28,000. True
or false?

(b) Use the rationale of Example 8.2-2 to find C when the
level of significance is chosen as α = 0.05, assuming
that the population variance σ 2 is known.

(c) Express the RR in terms of the standardized X.

7. In a simple linear regression context, consider testing
a hypothesis regarding the expected response at a value
X = x of the covariate.
(a) If the hypothesis is of the form H0 : µY|X(x) =

µY|X(x)0 versus Ha : µY|X(x) > µY|X(x)0, where
µY|X(x)0 is a specified value, state the form of the RR.
(Hint. It is either of the form µ̂Y|X(x) ≥ C or of the
form µ̂Y|X(x) ≤ C for some constant C.)

(b) Use the rationale of Example 8.2-2 to determine the
constant C from the requirement that the level of
significance is α = 0.05.

8. A coal mining company suspects that certain detona-
tors used with explosives do not meet the requirement
that at least 90% will ignite. To investigate this suspicion,
a random sample of n detonators is selected and tested.
Let X denote the number of those that ignite.
(a) State the null and alternative hypotheses.
(b) Give the standardized test statistic ZH0 in terms of

p̂ = X/n.
(c) The RR will be of the form ZH0 ≥ C for some

constant C. True or false?

9. Working as in Example 8.2-3, give the CI-based rejec-
tion rule for testing H0 : θ = θ0 versus Ha : θ ̸= θ0 in terms
of a test statistic when
(a) θ stands for the regression slope β1.
(b) θ stands for the expected response µY|X(x) at a given

value x of the covariate.

10. Suppose a tire manufacturer wants to claim that the
average tread life of a certain type of tire is more than
28,000 miles. To gain empirical evidence that this claim is
true, a study is initiated to test H0 : µ = 28,000 vs Ha :
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µ > 28,000. The tread life spans of a random sample of
n = 25 yields sample mean of X = 28,640. Assume the
tread life spans are normally distributed and the standard
deviation is known to be σ = 900.
(a) Find the p-value. (Hint. Use the RR in (8.2.7) and

argue as in Example 8.2-5.)
(b) Should the null hypothesis be rejected at level of

significance 0.05?

11. In the context of Exercise 2, suppose it is decided to
test H0 : p = 0.25 vs Ha : p > 0.25. In n = 50 independent

crashes of car prototypes with the new bumper, X = 8
result in no visible damage. Let ZH0 be the test statistic
given in (8.2.9).

(a) Draw by hand a figure similar to those in Figure 8-1,
using ZH0 instead of TH0 , and shade the area that cor-
responds to the p-value. The PDF you drew is that of
what distribution?

(b) Use the figure you drew to compute the p-value.
Should the H0 be rejected at level of significance
α = 0.05?

8.3 Types of Tests
8.3.1 T TESTS FOR THE MEAN

Let X1, . . . , Xn be a simple random sample from a population, and let X, S2 denote
the sample mean and sample variance, respectively. The T test procedures for testing
H0 : µ = µ0, where µ0 is a given value, against the various alternative hypotheses,
as well as formulas for the p-value, are given below:

The T Test Procedures for H0 : µ = µ0

(1) Assumptions: The population is normal, or n ≥ 30

(2) Test Statistic: TH0 = X − µ0

S/
√

n
(3) Rejection Rules for the Different Ha:

Ha RR at Level α

µ > µ0 TH0
> tn−1, α

µ < µ0 TH0
< −tn−1, α

µ ̸= µ0 |TH0
| > tn−1, α/2

(4) Formulas for the p-Value:

p-value =

⎧
⎨

⎩

1 − Gn−1(TH0 ) for Ha : µ > µ0
Gn−1(TH0 ) for Ha : µ < µ0
2
[
1 − Gn−1(|TH0 |)

]
for Ha : µ ̸= µ0

where Gn−1 is the CDF of the Tn−1 distribution

(8.3.1)

With the data set in the R object x, the R command for computing the above T
test statistic and p-value is as follows:

R Commands for the T Test Statistic and p-Values in
(8.3.1)

t.test(x, mu=µ0, alternative=”greater”) # for testing
against Ha : µ > µ0

t.test(x, mu=µ0, alternative=”less”) # for testing against
Ha : µ < µ0

t.test(x, mu=µ0, alternative=”two.sided”) # for testing
against Ha : µ ̸= µ0
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These R commands will also return a CI for µ (one-sided CIs for alterna-
tive=”greater” and alternative=”less” and the usual two-sided CI for alterna-
tive=”two.sided”). The default confidence level is 95%, but adding conf.level=1-α
in any of these commands, for example, t.test(x, mu=µ0, alternative=”two.sided”,
conf.level = 1-α), gives a (1 − α)100% CI.

Example
8.3-1

The proposed federal health standard for the maximum acceptable level of exposure
to microwave radiation in the US2 is an average of 10 W/cm2. It is suspected that a
radar installation used for air traffic control may be pushing the average level of
radiation above the safe limit. A random sample of n = 25 measurements, taken at
different points around the installation and at different times of the day, is given in
ExRadiationTestData.txt.

(a) Specify the alternative hypothesis. What are the requirements for the validity
of the T test in this case?

(b) Compute the test statistic and the corresponding p-value. Do the data provide
strong evidence in favor of the suspicion? Use the p-value to test H0 : µ = 10
at level of significance α = 0.05.

(c) Conduct the above test using the rejection rules given in (8.3.1) with α = 0.05.

Solution
(a) To gain evidence in support of the suspicion, the alternative hypothesis is spec-

ified as Ha : µ > 10. Since the sample size is less than 30, the validity of the
test requires the data to have come from a normal population. A normal Q-Q
plot (not shown here) suggests that normality is a reasonable assumption for
this data set.

(b) The data yield X = 10.6 and S = 2.0. Hence, the test statistic is

TH0 = X − µ0

s/
√

n
= 10.6 − 10

2/
√

25
= 1.5.

Table A.4 is not detailed enough for exact computation of the p-value. The
table gives 1.318 and 1.711 as the 90th and 95th percentiles of the T24 distri-
bution. Hence, the p-value, which is 1 − G24(1.5), lies between 0.05 and 0.1.
The exact p-value, which can be found with the R command 1-pt(1.5, 24), is
0.0733. With the data copied in the R object x, the R command t.test(x, alterna-
tive=”greater”, mu=10) returns the same values (up to round-off error) for the
test statistic and the p-value. The evidence in favor of the suspicion (and hence
against H0) suggested by the p-value is only moderately strong. In particular,
H0 cannot be rejected at level of significance α = 0.05 (since 0.0733 > 0.05)
but it would have been rejected at α = 0.1.

(c) According to the RR given in (8.3.1), H0 is rejected in favor of Ha : µ > 10 if
TH0 > t24, 0.05 = 1.711. Since 1.5 is not greater than 1.711, H0 is not rejected.

REMARK 8.3-1 The result in Example 8.3-1, namely, that X = 10.6 but H0 : µ= 10,
is not rejected at level 0.05 in favor of Ha : µ > 10, serves to highlight the fact that
test procedures do not treat the two hypotheses evenly. ▹

2 S. Henry (1978). Microwave radiation: level of acceptable exposure subject of wide disagreement. Can. Med.
Assoc. J., 119(4): 367–368.
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8.3.2 Z TESTS FOR PROPORTIONS

Let X denote the number of successes in n Bernoulli trials, and let p̂ = X/n denote
the sample proportion. The Z test procedure for testing H0 : p = p0, where p0 is
a specified value, against the various alternative hypotheses, as well as formulas for
the p-value, are given below:

The Z Test Procedures for H0 : p = p0

(1) Condition: np0 ≥ 5 and n(1 − p0) ≥ 5

(2) Test Statistic: ZH0 = p̂ − p0√
p0(1 − p0)/n

(3) Rejection Rules for the Different Ha:

Ha RR at Level α

p > p0 ZH0
≥ zα

p < p0 ZH0
≤ −zα

p ̸= p0 |ZH0
| ≥ zα/2

(4) Formulas for the p-Value:

p-value =

⎧
⎨

⎩

1 − ,(ZH0) for Ha : p > p0
,(ZH0) for Ha : p < p0
2
[
1 − ,(|ZH0 |)

]
for Ha : p ̸= p0

(8.3.2)

With the number of successes and the number of trials in the R objects x,
n, respectively, the R commands 1-pnorm((x/n- p0)/sqrt(p∗

0(1-p0)/n)), pnorm((x/n-
p0)/sqrt(p∗

0(1-p0)/n)), and 2*(1-pnorm(abs((x/n-p0)/sqrt(p0*(1-p0)/n)))) compute the
p-values for Ha : p > p0, Ha : p < p0, and Ha : p ̸= p0, respectively.

Example
8.3-2

It is thought that more than 70% of all faults in transmission lines are caused by
lightning. In a random sample of 200 faults from a large data base, 151 are due to
lightning. Does the data provide strong evidence in support of this contention? Test
at level of significance α = 0.01, and report the p-value.

Solution
To assess the evidence in favor of this contention, the alternative hypothesis is spec-
ified as Ha : p > 0.7. Since 200(0.7) ≥ 5 and 200(0.3) ≥ 5, the condition needed for
the validity of the test procedure in (8.3.2) is satisfied. From the data given we have
p̂ = 151/200 = 0.755, and thus the test statistic is

ZH0 = p̂ − 0.7
√

(0.7)(0.3)/200
= 1.697.

According to the RR given in (8.3.2), H0 is rejected in favor of Ha : p > 0.7 at level
of significance α = 0.01 if ZH0 > z0.01 = 2.33. Since 1.697 ≯ 2.33, H0 is not rejected.
Next, since this is an upper tail test, the p-value is 1 − ,(1.697). Using Table A.3, we
find

p-value = 1 − ,(1.697) ≃ 1 − ,(1.7) = 1 − 0.9554 = 0.0446.

The R command 1-pnorm((151/200-0.7)/sqrt(0.7*0.3/200)) returns 0.0448 for the
p-value. The additional information conveyed by reporting the p-value is that the
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data does provide strong evidence against H0, and, hence, in support of the con-
tention that more than 70% of all faults in transmission lines are caused by lightning.
In fact, had the level of significance been set at 0.05, H0 would have been rejected
because 0.0446 < 0.05.

REMARK 8.3-2 With the number of successes and the number of trials in the
R objects x, n, respectively, the R command prop.test(x, n, p=p0, alternative=
”two.sided”, conf.level=1-α) gives the p-value for Ha : p ̸= p0, and a (1 − α)100% CI
for p. This p-value and CI are based on different formulas than the ones given, and
thus will not be used. ▹

REMARK 8.3-3 The R commands 1-pbinom(x-1, n, p0) and pbinom(x, n, p0) give
exact p-values, valid for any n, for Ha : p > p0 and Ha : p < p0, respectively. For
example, the command 1-pbinom(150, 200, 0.7) returns 0.0506 for the exact p-value
in Example 8.3-2. ▹

8.3.3 T TESTS ABOUT THE REGRESSION PARAMETERS

Let (X1, Y1), . . . , (Xn, Yn) come from the simple linear regression model

Yi = α1 + β1Xi + εi, i = 1, . . . , n, (8.3.3)

where the intrinsic error variables have variance Var(εi) = σ 2
ε . The LSEs of α1,

β1, and σ 2
ε , which were given in Section 6.3.3 of Chapter 6, are restated here for

convenient reference:

α̂1 = Y − β̂1X, β̂1 = n
∑

XiYi − (
∑

Xi)(
∑

Yi)
n

∑
X2

i − (
∑

Xi)2
, and (8.3.4)

S2
ε = 1

n − 2

[ n∑

i=1

Y2
i − α̂1

n∑

i=1

Yi − β̂1

n∑

i=1

XiYi

]

(8.3.5)

Tests about the Regression Slope and the Regression Line The T test procedure for
testing H0 : β1 = β1, 0, where β1, 0 is a specified value, against the various alternatives,
as well as formulas for the p-value, are given below:

The T Test Procedures for H0 : β1 = β1,0

(1) Assumptions: Either the εi in (8.3.3) are normal or n ≥ 30

(2) Test Statistic: TH0 = β̂1 − β1,0

Sβ̂1

,

where Sβ̂1
=

√√√√√
S2

ε

∑
X2

i − 1
n

(
∑

Xi)2
and S2

ε is given in (8.3.5)

(3) Rejection Rules for the Different Ha:

Ha RR at Level α

β1 > β1, 0 TH0
> tn−2, α

β1 < β1, 0 TH0
< −tn−2, α

β1 ̸= β1, 0 |TH0
| > tn−2, α/2

(8.3.6)
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(4) Formulas for the p-Value:

p-value =

⎧
⎨

⎩

1 − Gn−2(TH0 ) for Ha : β1 > β1,0
Gn−2(TH0 ) for Ha : β1 < β1,0
2
[
1 − Gn−2(|TH0 |)

]
for Ha : β1 ̸= β1,0,

where Gn−2 is the CDF of the Tn−2 distribution

The most common testing problem is H0 : β1 = 0 vs Ha : β1 ̸= 0. This is called
the model utility test, a terminology justified by the fact that, if H0 : β1 = 0 is true,
then the regression model has no utility, that is, that X has no predictive value for Y.

The T procedures for testing hypotheses about the regression line and formulas
for computing the p-value for each hypothesis are given in the display (8.3.7). The R
commands for testing in regression are given and demonstrated in Example 8.3-3.

The T Test Procedures for H0 : µY|X(x) = µY|X(x)0

(1) Assumptions: Either the εi in (8.3.3) are normal or n ≥ 30
(2) Condition: The value x lies in the range of X-values

(3) Test Statistic: TH0 = µ̂Y|X(x) − µY|X(x)0

Sµ̂Y|X (x)
, where

Sµ̂Y|X (x) = Sε

√√√√ 1
n

+ n(x − X)2

n
∑

X2
i − (

∑
Xi)2

and S2
ε is given in (8.3.5).

(4) Rejection Rules for the Different Ha:

Ha RR at Level α

µY |X (x) > µY |X (x)0 TH0
> tα, n−2

µY |X (x) < µY |X (x)0 TH0
< −tα, n−2

µY |X (x) ̸= µY |X (x)0 |TH0
| > tα/2, n−2

(5) Formulas for the p-Value:

p-value =

⎧
⎨

⎩

1 − Gn−2(TH0 ) for Ha : µY|X(x) > µY|X(x)0
Gn−2(TH0 ) for Ha : µY|X(x) < µY|X(x)0
2
[
1 − Gn−2(|TH0 |)

]
for Ha : µY|X(x) ̸= µY|X(x)0,

where Gn−2 is the CDF of the Tn−2 distribution

(8.3.7)

Example
8.3-3

Measurements along the river Ijse3 on temperature (oC) and dissolved oxy-
gen (mg/L), taken from March 1991 to December 1997, can be found in
OxygenTempData.txt.

(a) The question of scientific interest is whether temperature (X) can be used for
predicting the amount of dissolved oxygen (Y).
(i) Does the normal simple linear regression model seem appropriate for this

data?
(ii) Using the summary statistics

∑
i Xi = 632.3,

∑
i X2

i = 7697.05,
∑

i Yi =
537.1,

∑
i Y2

i = 5064.73, and
∑

i XiYi = 5471.55, test the question of
scientific interest at level of significance α = 0.01 and report the p-value.

3 River Ijse is a tributary of the river Dijle, Belgium. Data from VMM (Flemish Environmental Agency)
compiled by G. Wyseure.



Section 8.3 Types of Tests 297

(b) Two questions of secondary scientific interest have to do with the rate of
change in oxygen as temperature changes and with the average level of oxygen
at 10oC. The corresponding testing problems are: (i) H0 : β1 = − 0.25 vs
Ha : β1 < −0.25 and (ii) H0 : µY|X(10) = 9 vs Ha : µY|X(10) ̸= 9. Test the first
at level α = 0.05, the second at level α = 0.1, and report the p-value for both.

Solution
(a) The scatterplot shown in the first panel of Figure 8-2 suggests that the assump-

tions of the simple linear regression model, which are linearity of the regression
function of Y on X and homoscedasticity, are, at least approximately, satisfied.
However, the normal Q-Q plot for the residuals suggests that the normality
assumption is not realistic. Since the sample size is n = 59, the T test proce-
dures for the regression coefficients and the regression line can still be applied.
The question of whether temperature can be used for predicting the amount
of dissolved oxygen can be answered by performing the model utility test: If
H0 : β1 = 0 is rejected, we conclude that temperature can indeed be used for
the stated purpose. Using the summary statistics and the formulas for β̂1 and
its standard error given in (8.3.4) and (8.3.6), we obtain

β̂1 = 59 × 5471.55 − 632.3 × 537.1
59 × 7697.05 − 632.32 = −0.309,

α̂1 = 537.1
59

+ 0.309
632.3

59
= 12.415,

S2
ε = 1

57
(5064.73 − 12.415 × 537.1 + 0.309 × 5471.55) = 1.532, and

Sβ̂1
=

√
1.532

7697.05 − 632.32/59
= 0.0408

Thus, the T statistic and p-value for the model utility test are

TH0 = −0.309
0.0408

= −7.573,

p-value = 2(1 − G57(7.573)) = 3.52 × 10−10, (8.3.8)
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Figure 8-2 Scatterplot (left
panel) and residual Q-Q
plot (right panel) for the
data of Example 8.3-3.
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where the R command 2*(1-pt(7.573, 57)) was used to get the above p-value.
Since |TH0 | = 7.573 > t57, 0.005 = 2.6649 (or, equivalently, since the p-value
= 3.52 × 10−10 < 0.01), H0 : β1 = 0 is rejected at level of significance 0.01.
Using to=read.table(”OxygenTempData.txt”, header=T); x=to$T; y=to$DO to
copy the data into the R objects x and y, the R commands out=lm(y∼x);
summary(out) produce output, part of which is

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 12.4152 0.4661 26.639 < 2e-16
x -0.3090 0.0408 -7.573 3.52e-10
--
Residual standard error: 1.238 on 57 degrees of freedom

The column headed “Estimate” gives the LSEs α̂1 and β̂1, and the next column
gives their standard errors. The column headed “t value” gives the ratios of
each estimate over its standard error. These ratios are the T statistics for testing
Ha : α1 ̸= 0 and Ha : β1 ̸= 0. The final column gives the p-values for these
tests. In particular, the T statistic and p-value for the model utility test are
−7.573 and 3.52e-10, as found in (8.3-3). The last line of the displayed output
gives 1.238 for the value of Sε, in agreement with the value of S2

ε found by hand
calculations (1.2382 = 1.532).

(b) According to (8.3.6), the test statistic and p-value for testing H0 : β1 = −0.25
vs Ha : β1 < −0.25 are

TH0 = −0.309 + 0.25
0.0408

= −1.4461, p-value = G57(−1.4461) = 0.0768,

where the value 0.0768 was obtained with the R command pt(-1.4461, 57).
Since TH0 = −1.4461 ≮ t57, 0.05 = −1.672 (or, equivalently, since the p-value
= 0.0768 > 0.05), the null hypothesis is not rejected.

Finally, using the LSEs obtained in part (a), we have µ̂Y|X(10) = 12.415 −
0.309 × 10 = 9.325. Using the value of Sε found in part (a) and the formula for
the standard error of µ̂Y|X(x) given in (8.3.7), we obtain

Sµ̂Y|X (10) = 1.238

√
1

59
+ 59(10 − 10.717)2

59 × 7697.05 − 632.32 = 0.1638

Thus, the test statistic and p-value for testing H0 : µY|X(10) = 9 vs Ha :
µY|X(10) ̸= 9 are

TH0 = 9.325 − 9
0.1638

= 1.984, p-value = 2(1 − G57(1.984)) = 0.052,

where G57(1.984) was found by the R command pt(1.984, 57). Since |TH0 | =
1.984 > t57, 0.05 = 1.672 (or, equivalently, since the p-value = 0.052 < 0.1), the
null hypothesis is rejected at level of significance 0.1. The easiest way to test this
hypothesis with R commands is to make a 90% CI for µY|X(10) and check if
the value 9 belongs in the CI (i.e., use the CI-based test). Having created the R
object out in part (a), the additional R command predict(out, data.frame(x=10),
interval=”confidence”, level=.9) returns

fit lwr upr
1 9.324943 9.05103 9.598855
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for the fitted value (µ̂Y|X(10)) and the lower and upper endpoints of the 90%
CI. Since the value 9 is not included in the CI, the null hypothesis is rejected
at level of significance 0.1. The calculation of the p-value with R still requires
that the value of the test statistic be computed. The additional R commands
fit=predict(out, data.frame(x=10), interval=”confidence”, 1); fit$se.fit return the
same value for Sµ̂Y|X (10) that was obtained previously by hand calculations.
Using the value of µ̂Y|X(10) that was also given with the output for the 90%
CI, the computation of the test statistic and p-value proceeds with the same
calculations as done above.

8.3.4 THE ANOVA F TEST IN REGRESSION

ANOVA, an acronym for Analysis Of Variance, is a very useful and generally appli-
cable approach to hypothesis testing. All ANOVA F tests involve the F distribution.
F distributions are positively skewed distributions that are characterized by two
degrees of freedom, the numerator degrees of freedom, denoted by ν1, and the
denominator degrees of freedom, denoted by ν2. If W1 and W2 are two independent
random variables having χ2 distributions (see Section 7.3.5) with degrees of freedom
ν1 and ν2, respectively, then

F = W1/ν1

W2/ν2
(8.3.9)

has the F distribution with ν1 and ν2 degrees of freedom. This is denoted by writing
F ∼ Fν1, ν2 . The notation Fν1, ν2 is also used for the cumulative distribution function
of the Fν1, ν2 distribution; thus, if F ∼ Fν1, ν2 , P(F ≤ x) = Fν1, ν2 (x). The (1 − α)100th
percentile of the Fν1, ν2 distribution is denoted by Fν1, ν2, α . Selected percentiles of
F distributions are given in Table A.6, but can also be obtained with the following
R command:

R Commands for the Fν1,ν2 Percentiles and Cumulative
Probabilities

qf(1-α, ν1, ν2) # gives Fν1,ν2,α

pf(x, ν1, ν2) # gives Fν1,ν2(x)

In the regression context, the ANOVA F test is an alternative (but equivalent)
way of conducting the model utility test, that is, testing H0 : β1 = 0 vs Ha : β1 ̸= 0.
The ANOVA methodology is based on a decomposition of the total variability (to
be defined below) into components. Variability in ANOVA is represented by the so-
called sums of squares, or SS. The total variability, or total SS, abbreviated by SST,
is defined as

SST =
n∑

i = 1

(Yi − Y)2 =
n∑

i=1

Y2
i − 1

n

( n∑

i = 1

Yi

)2

. (8.3.10)

Note that SST is related to the sample variance, S2
Y , of the Y values by SST =

(n − 1)S2
Y .

SST is decomposed into the regression SS (SSR), which represents the variabil-
ity explained by the regression model, and the error SS (SSE), which represents the
variability due to the intrinsic scatter:
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Decomposition of the
Total SS in Simple
Linear Regression

SST = SSR + SSE (8.3.11)

SSE has already been introduced, as the sum of squared residuals, in Chapter
6 in connection with the estimator S2

ε of the intrinsic error variance σ 2
ε . A compu-

tational formula for SSE is given in (6.3.11), and is restated below for convenient
reference:

SSE =
n∑

i=1

Y2
i − α̂1

n∑

i=1

Yi − β̂1

n∑

i=1

XiYi. (8.3.12)

The regression SS is computed from (8.3.11) by subtraction: SSR = SST − SSE.
The proportion of the total variability that is explained by the regression model,

that is,

R2 = SSR
SST

, (8.3.13)

is called the coefficient of determination. R2, also denoted by “R-squared” in the
output of software packages, is widely used in practice as a measure of the utility
of the regression model: The larger R2 is, the better the predictive power of the
regression model is. This interpretation of R2 is also justified by the fact that R2 =
SSR/SST equals the square of Pearson’s correlation coefficient.

The ANOVA F test rejects H0 : β1 = 0 if SSR is large compared to SSE.
For a proper comparison of SSR and SSE, however, they must be divided by their
respective degrees of freedom, which are as follows:

Degrees of Freedom
for SST, SSE, SSR DFSST = n − 1, DFSSE = n − 2, DFSSR = 1 (8.3.14)

Dividing each of the SSE and SSR by their degrees of freedom we obtain,
respectively, the mean squares for error (MSE) and the mean squares for regression
(MSR):

Mean Squares for
Error and Regression MSE = SSE

n − 2
, MSR = SSR

1
(8.3.15)

From the computational formula (8.3.5), it can be seen that S2
ε = SSE/(n − 2).

Thus, MSE is just another notation for the estimator S2
ε of σ 2

ε .
The ANOVA F test statistic for the model utility test is

F Test Statistic for the
Model Utility Test

F = MSR
MSE

(8.3.16)

The sums of squares, the mean squares, and the F statistic are summarized in an
organized fashion in the so-called ANOVA table as follows:

Source df SS MS F

Regression 1 SSR MSR= SSR
1

F = MSR
MSE

Error n − 2 SSE MSE= SSE
n − 2

Total n − 1 SST

(8.3.17)
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In the normal simple linear regression model, the exact null distribution of the F
statistic (i.e., its distribution when H0 : β1 = 0 is true) is F with numerator degrees
of freedom 1 and denominator degrees of freedom n − 2:

Exact Null
Distribution of the

ANOVA F Statistic in
the Normal Simple

Linear Regression
Model

F = MSR
MSE

∼ F1, n−2 (8.3.18)

Without the normality assumption, F1, n−2 is the approximate null distribution
of the F statistic, provided n ≥ 30. On the basis of (8.3.18), the null hypothesis H0 :
β1 = 0 is rejected in favor of Ha : β1 ̸= 0, at level of significance α, if F > F1, n−2, α .

The ANOVA F test procedure for H0 : β1 = 0 vs Ha : β1 ̸= 0, including the
p-value, and the R command for constructing the ANOVA table are given below:

The F Test Procedure for the Model Utility Test

(1) Assumptions: Yi = α1 + β1Xi + ϵi, i = 1, . . . , n, where either the
iid ϵis are normal or n ≥ 30

(2) Test Statistic: F = MSR
MSE

,

where MSR and MSE are defined in (8.3.15)
(3) Rejection Rule at Level α: F > F1, n − 2, α ,

where F1, n−2, α is the 100(1 − α)th percentile
of the F1, n−2 distribution.

(4) Formula for the p-Value: p-value = 1 − F1, n−2(F),
where F1, n−2 is the CDF of the F1, n−2 distribution.

(8.3.19)

R Commands for Constructing the ANOVA Table

out=lm(y∼x); anova(out) (8.3.20)

Example
8.3-4

The n = 59 measurements of temperature and dissolved oxygen of Example 8.3-3
yield MSE = 1.5329 and MSR = 87.924.

(a) Using the given information, construct the ANOVA table by hand calcula-
tions and report the percent of the total variability explained by the regression
model.

(b) Conduct the ANOVA F test for the model utility test at level α = 0.1 and
report its p-value.

(c) Confirm the hand calculations in parts (a) and (b) by constructing the ANOVA
table with an R command.

Solution
(a) According to (8.3.14), or (8.3.17), the degrees of freedom in the second column

of the ANOVA table are 1, n − 2 = 57, and n − 1 = 58. Since the SSs equal
the MSs times the corresponding degrees of freedom (see (8.3.15) or (8.3.17)),
the entries in the third column of the ANOVA table are SSR = 87.924, SSE
= 1.5329×57 = 87.375 and SST = SSR+SSE = 175.299. Thus, the F statistic in
the fifth column is MSR/MSE = 57.358. With these calculations, the ANOVA
table shown below:
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Source df SS MS F

Regression 1 87.924 87.924 57.358
Error 57 87.375 1.5329
Total 58 175.299

Finally, the percent of the total variability explained by the regression model is
R2 = (87.924/175.299) = 0.5016.

(b) According to the rejection rule given in (8.3.19), H0 : β1 = 0 is rejected in
favor of Ha : β1 ̸= 0 at level α if F > F1,57,0.1. From Table A.6 it can be seen
that F1, 100, 0.1 = 2.76 < F1, 57, 0.1 < F1, 50, 0.1 = 2.81, while the R command qf(.9,
1, 57) returns F1,57,0.1 = 2.796. Since F = 57.358, the null hypothesis is rejected
at level 0.1. The R command 1-pf(57.358, 1, 57) returns 3.522 × 10−10 for the
p-value.

(c) The R command out=lm(y∼x); anova(out) returns the following ANOVA
table:

Analysis of Variance Table
Response: y

Df Sum Sq Mean Sq F value Pr(>F)
x 1 87.924 87.924 57.358 3.522e-10
Residuals 57 87.375 1.533

Note that the lines labeled “x” and “Residuals” correspond to the lines labeled
“Regression” and “Error”, respectively, of the ANOVA table in part (a). Also
note that the R output does not include the last line (labeled “Total”). With
these clarifications, it is seen that the ANOVA table generated by R confirms
the hand calculations done in parts (a) and (b).

REMARK 8.3-4 The T test statistic for the model utility test and the ANOVA
F test statistic for the same test are related by

T2
H0

= F.

This rather surprising algebraic identity will not be proved here. As a check of this
identity, the square of the T statistic computed in part (a) of Example 8.3-3 is T2

H0
=

(−7.573)2 = 57.35, while the F statistic computed in Example 8.3-4 is F = 57.358.
The two values represent the same quantity but have different round-off errors. This
identity, together with the relationship

t2ν, α/2 = F1, ν, α

between the quantiles of the Tν and F1, ν distributions, proves that the ANOVA
F test and the T test are two equivalent ways of conducting the model utility test. ▹

8.3.5 THE SIGN TEST FOR THE MEDIAN

When the sample size is small and the sample X1, . . . , Xn has come from a non-
normal population, T tests for the mean are not valid. In such cases, the sign test for
the median, µ̃, is useful as it can be applied with non-normal data without requiring
the sample size to be ≥ 30. Of course, conclusions reached about the median do
not translate into conclusions about the mean (unless the population distribution is
known to be symmetric). However, the median is meaningful in its own right.
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The sign test procedure is based on the fact that, in continuous populations, the
probability that an observation is larger than µ̃ is 0.5. This fact helps convert a null
hypothesis of the form H0 : µ̃ = µ̃0 into a null hypothesis of the form H0 : p =
0.5, where p is the probability that an observation is larger than µ̃0. To see how
alternative hypotheses about the median are converted, suppose that µ̃0 = 3 but the
true value of the median is µ̃ > 3, for example, µ̃ = 5. In this case, the probability
that an observation is larger than 3 is larger than 0.5. Thus, the alternative hypothesis
Ha : µ̃ > µ̃0 is converted into Ha : p > 0.5. Similarly, the alternative hypothesis
Ha : µ̃ < µ̃0 is converted into Ha : p < 0.5, while the alternative hypothesis Ha :
µ̃ ̸= µ̃0 is converted into Ha : p ̸= 0.5.

With slight modifications to the above argument, hypotheses about other per-
centiles can also be converted into hypotheses about probabilities. See Exercise 13.

The steps for carrying out the sign test procedure for testing hypotheses about
the median are displayed in (8.3.21).

Example
8.3-5

Elevated blood pressure among infants is thought to be a risk factor for hyperten-
sive disease later in life.4 However, because blood pressure is rarely measured on
children under the age of three, there is little understanding of what blood pressure
levels should be considered elevated. Systolic blood pressure (SBP) measurements
from a sample of 36 infants can be found in InfantSBP.txt. Do the data suggest that
the median is greater than 94? Test at α = 0.05 and report the p-value.

The Sign Test Procedure for H0 : µ̃ = µ̃0

(1) Assumptions: X1, . . . , Xn has come from a continuous population
and n ≥ 10

(2) Converted Null Hypothesis: H0 : p = 0.5, where p is the probability
that an observation is > µ̃0

(3) The Sign Statistic: Y = # of observations that are > µ̃0
(4) Converted Alternative Hypotheses:

Ha for µ̃ Ha for p

µ̃ > µ̃0 Converts to p > 0.5
µ̃ < µ̃0 Converts to p < 0.5
µ̃ ̸= µ̃0 Converts to p ̸= 0.5

(5) Test Statistic: ZH0 = p̂ − 0.5
0.5/

√
n

, where p̂ = Y
n

(6) Rejection Rules for the Different Ha:

Ha RR at Level α

µ̃ > µ̃0 ZH0
≥ zα

µ̃ < µ̃0 ZH0
≤ −zα

µ̃ ̸= µ̃0 |ZH0
| ≥ zα/2

(7) Formulas for the p-Value:

p-value =

⎧
⎨

⎩

1 − ,(ZH0) for Ha : µ̃ > µ̃0
,(ZH0) for Ha : µ̃ < µ̃0
2
[
1 − ,(|ZH0 |)

]
for Ha : µ̃ ̸= µ̃0

(8.3.21)

4 Andrea F. Duncan et al. (2008). Interrater reliability and effect of state on blood pressure measurements in
infants 1 to 3 years of age, Pediatrics, 122, e590–e594; http://www.pediatrics.org/cgi/content/full/122/3/e590.

http://www.pediatrics.org/cgi/content/full/122/3/e590
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Solution
The null and alternative hypotheses are H0 : µ̃ = 94 vs Ha : µ̃ > 94. The assump-
tions on the population and sample size are satisfied and thus the sign test can be
applied. With the data copied into the R object x, the R command sum(x > 94)
returns 22 for the value of the sign statistic Y. Thus, p̂ = Y/n = 22/36 = 0.611. The
converted hypothesis-testing problem is H0 : p = 0.5 vs Ha : p > 0.5 and the ZH0
test statistic is

ZH0 = 0.611 − 0.5

0.5/
√

36
= 1.332.

Since 1.332 < z0.05 = 1.645, there is not enough evidence to conclude, at level 0.05,
that the median is larger than 94. The p-value is 1 − ,(1.332) = 0.091.

8.3.6 χ2 TESTS FOR A NORMAL VARIANCE

As with the CIs of Section 7.3.5, hypothesis testing for a normal variance will be
based on Proposition 7.3-3, according to which (n − 1)S2/σ 2 ∼ χ2

n−1. This leads to
the test procedure and formulas for the p-value detailed below:

The χ2 Test Procedures for H0 : σ 2 = σ 2
0

(1) Assumptions: X1, . . . , Xn has come from a normal distribution

(2) Test Statistic: χ2
H0

= (n − 1)S2

σ 2
0

(3) Rejection Rules for the Different Ha:

Ha RR at Level α

σ2 > σ2
0 χ2

H0
> χ2

n−1, α
σ2 < σ2

0 χ2
H0

< χ2
n−1, 1−α

σ2 ̸= σ2
0 χ2

H0
> χ2

n−1, α/2 or χ2
H0

< χ2
n−1,1−α/2

(4) Formulas for the p-Value:

p-value =

⎧
⎪⎨

⎪⎩

1 − 4n−1(χ2
H0

) for Ha : σ 2 > σ 2
0

4n−1(χ2
H0

) for Ha : σ 2 < σ 2
0

2 min
{
4n−1(χ2

H0
), 1 − 4n−1(χ2

H0
)
}

for Ha : σ 2 ̸= σ 2
0 ,

where 4n−1 is the CDF of the χ2
n−1 distribution

(8.3.22)

Example
8.3-6

An optical firm is considering the use of a particular type of glass for making lenses.
As it is important that the various pieces of glass have nearly the same index of
refraction, this type of glass will be used if there is evidence that the standard devi-
ation of the refraction index is less than 0.015. The refraction index measurements
for a simple random sample of n = 20 glass specimens yields S = 0.01095. With this
information, should this glass type be used? Test at α = 0.05 and report the p-value.

Solution
The testing problem for answering this question is H0 : σ 2 = 0.0152 vs Ha : σ 2 <

0.0152. Assume that the refraction measurements follow the normal distribution.
Then, according to the rejection rules in (8.3.22), H0 will be rejected at α = 0.05 if
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χ2
H0

= (n − 1)S2

σ 2
0

= 19 × 0.010952

0.0152 = 10.125

is less than χ2
19, 0.95, which, from Table A.5, is seen to be 10.117. Since 10.125 ̸<

10.117, the null hypothesis is not rejected, and this type of glass will not be adopted
for use. Working only with Table A.5, we see that the value 10.125 is sandwiched
between the 5th and 10th percentiles (i.e., between 10.117 and 11.651) of the χ2

19
distribution. From this, and the formulas for the p-value given in (8.3.22), we can say
that the p-value is between 0.05 and 0.1. The R command pchisq(10.125, 19) returns
0.0502 for the exact p-value.

Exercises
1. In the context of Exercise 4 in Section 8.2, suppose
that the old machine achieves µ0 = 9.5 cuts per hour.
The appliance manufacturer decides to test H0 : µ = 9.5
against Ha : µ > 9.5 at level α = 0.05. She gets the
machine manufacturer to lend her a new machine and
she measures the number of cuts made by the machine
in 50 one-hour time periods. The summary statistics for
this random sample are X = 9.8 and S = 1.095.
(a) Carry out the test at level α = 0.05, and report

whether or not H0 should be rejected.
(b) State any assumptions needed for the validity of the

test procedure.

2. Studies have shown that people who work with ben-
zene longer than five years have 20 times the incidence of
leukemia than the general population. As a result, OSHA
(Occupational Safety and Health Administration) has set
a time-weighted average permissible exposure limit of
1 ppm. A steel manufacturing plant, which exposes its
workers to benzene daily, is under investigation for possi-
ble violations of the permissible exposure limit. Thirty-six
measurements, taken over a period of 1.5 months, yielded
X = 2.1 ppm, S = 4.1 ppm. Complete the following parts
to determine if there is sufficient evidence to conclude
that the steel manufacturing plant is in violation of the
OSHA exposure limit.
(a) State the null and alternative hypotheses.
(b) Carry out the test at α = 0.05 and state your con-

clusion. What assumptions, if any, are needed for the
validity of this test?

(c) Give the p-value (i) approximately using Table A.4
and (ii) exactly using R.

3. To investigate the corrosion-resistance properties of
a certain type of steel conduit, 16 specimens are buried
in soil for a 2-year period. The maximum penetration
(in mils) for each specimen is then measured, yielding a
sample average penetration of X = 52.7 and a sample
standard deviation of S = 4.8. The conduits will be used
unless there is strong evidence that the (population) mean
penetration exceeds 50 mils.

(a) State the null and alternative hypotheses.
(b) Carry out the test at level α = 0.1 and state your con-

clusion. What assumptions, if any, are needed for the
validity of this test?

(c) Give the p-value (i) approximately using Table A.4
and (ii) exactly using R.

4. Researchers are exploring alternative methods for pre-
venting frost damage to orchards. It is known that the
mean soil heat flux for plots covered only with grass is
µ0 = 29 units. An alternative method is to use coal dust
cover.
(a) Heat flux measurements of 8 plots covered with coal

dust yielded X = 30.79 and S = 6.53. Test the hypoth-
esis H0 : µ = 29 vs Ha : µ > 29 at α = 0.05, and report
the p-value (either exactly, using R, or approximately,
using Table A.4).

(b) What assumption(s) underlie the validity of the above
test?

5. In the airline executive traveler’s club setting of
Exercise 5 in Section 8.2, a random sample of 500 cus-
tomers yielded 40 who would qualify.
(a) Test the hypothesis H0 : p = 0.05 vs Ha : p < 0.05

at α = 0.01, and state what action the airline should
take.

(b) Compute the p-value using either Table A.3 or R.

6. KitchenAid will discontinue the bisque color for its
dishwashers, due to reports suggesting it is not popular
west of the Mississippi, unless more than 30% of its cus-
tomers in states east of the Mississippi prefer it. As part
of the decision process, a random sample of 500 customers
east of the Mississippi is selected and their preferences are
recorded.
(a) State the null and alternative hypotheses.
(b) Of the 500 interviewed, 185 said they prefer the

bisque color. Carry out the test at level α = 0.05 and
state what action KitchenAid should take.
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(c) Compute the p-value, and use the rejection rule
(8.2.12) to conduct the above test at α = 0.01.

7. A food processing company is considering the market-
ing of a new product. The marketing would be profitable
if more than 20% of consumers would be willing to try
this new product. Among 42 randomly chosen consumers,
9 said that they would purchase the new product and give
it a try.
(a) Set up the appropriate null and alternative hypothe-

ses.
(b) Carry out a test at level α = 0.01 and report the p-

value. Is there evidence that the marketing would be
profitable?

8. An experiment examined the effect of temperature
on the strength of new concrete. After curing for several
days at 20oC, specimens were exposed to temperatures of
−10oC, −5oC, 0oC, 10oC, or 20oC for 28 days, at which
time their strengths were determined. The data can be
found in Temp28DayStrength.txt.
(a) Import the data on X = exposure temperature and

Y = 28-day strength into the R objects x and y, respec-
tively, and use R commands to fit the simple linear
regression model. Give the estimated regression line.

(b) Use R commands to construct a scatterplot of the data
and a normal Q-Q plot of the residuals. Do these plots
suggest any possible violations of the normal simple
linear regression model assumptions?

(c) Using output from an R command, give SST, SSE, and
SSR. On the basis of these SSs, what percent of the
total variability is explained by the regression model?

(d) Give the value of the F statistic, and use it to carry out
the model utility test at level of significance 0.05.

(e) Because this concrete is used in structures located in
cold climates, there is concern that the decrease in
temperature would weaken the concrete. State the
relevant H0 and Ha for assessing the evidence in
support of this concern. Carry out the test for the
hypotheses specified at level α = 0.05, and state your
conclusion.

9. In the context of a study on the relationship between
exercise intensity and energy consumption, the percent-
age of maximal heart rate reserve (X) and the percentage
of maximal oxygen consumption (Y) were measured for
26 male adults during steady states of exercise on a tread-
mill.5 Use the data set given in HeartRateOxygCons.txt
and R commands to complete the following
parts.
(a) Construct a scatterplot of the data and a normal Q-Q

plot of the residuals. Do these plots suggest any pos-
sible violations of the normal simple linear regression
model assumptions?

(b) Give the ANOVA table. What proportion of the total
variability in oxygen consumption is explained by the
regression model?

(c) Give the fitted regression line, and the estimated
change in the average oxygen consumption when the
percentage of maximal heart rate reserve increases by
10 points?

(d) Is there evidence that oxygen consumption increases
by more than 10 points when the percentage of maxi-
mal heart rate reserve increases by 10 points?
(i) Formulate the null and alternative hypotheses

for answering this question. (Hint. Express the
hypotheses in terms of the slope.)

(ii) Test the hypotheses at level 0.05 and report the
p-value.

10. A historic (circa 1920) data set on the relationship
between car speed (X) and stopping distance (Y) is given
in the R data frame cars. Use the R output given below to
answer the following questions.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.5791 6.7584 -2.601 0.0123
x 3.9324 0.4155 9.464 1.49e-12
Multiple R-squared: 0.6511

Analysis of Variance Table
Df Sum Sq Mean Sq F value Pr(>F)

x 1 21186 1.490e-12
Residuals 48 11354

(a) What is the sample size in this study?
(b) Give the estimate of the standard deviation of the

intrinsic error.
(c) Give the values of the T test statistics for testing

H0 : α1 = 0 vs Ha : α1 ̸= 0 and H0 : β1 = 0 vs
Ha : β1 ̸= 0. What are the corresponding p-values?

(d) Fill in the missing entries in the ANOVA table.
(e) What proportion of the total variability of the

stopping distance is explained by the regression
model?

11. It is claimed that the median increase in home own-
ers’ taxes in a certain county is $300. A random sample
of 20 home owners gives the following tax-increase data
(arranged from smallest to largest): 137, 143, 176, 188,
195, 209, 211, 228, 233, 241, 260, 279, 285, 296, 312, 329,
342, 357, 412, 517.
(a) Does the data present strong enough evidence to

conclude that the claim is false? State the null and
alternative hypotheses and test at level α = 0.05.

(b) Does the data present strong enough evidence to con-
clude that the median increase is less than 300? Test
at level α = 0.05.

5 T. Bernard et al. (1997). Relationships between oxygen consumption and heart rate in transitory and steady
states of exercise and during recovery: Influence of type of exercise. Eur. J. Appl., 75: 170–176.
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12. Use rt=read.table(”RobotReactTime.txt”, header=T);
r2=rt$Time[rt$Robot==2] to copy the reaction times of
robot 2 into the R object r2.
(a) It is desired to test either H0 : µ̃ = 28 vs Ha µ̃ > 28 or

H0 : µ = 28 vs Ha µ > 28. Use a normal Q-Q plot to
decide which of the two hypotheses tests can be used
with this data set. Justify your answer.

(b) Test H0 : µ̃ = 28 vs Ha µ̃ > 28 at level 0.05 and report
the p-value.

13. Sign test for percentiles. The sign test procedure can
also be applied to test a null hypothesis H0 : xπ = η0 for
the (1−π)100th percentile, xπ , by converting it to the null
hypothesis H0 : p = π , where p is the probability that an
observation is larger than η0. The alternative hypotheses
Ha : xπ > η0, Ha : xπ < η0, and Ha : xπ ̸= η0 convert to
Ha : p > π , Ha : p < π , and Ha : p ̸= π , respectively. Let

Y = # of observations that are > η0,

ZH0 = p̂ − π
√

π(1 − π)/n
,

where p̂ = Y/n, be the sign statistic and test statistic,
respectively, and suppose n × π ≥ 5 and n × (1 − π) ≥ 5.
With these changes, the rejection rules and formulas for
the p-value given in (8.3.2) apply for testing H0 : xπ = η0
against the various alternatives.
(a) Use v=read.table(”ProductionVol.txt”, header=T);

x=v$V to copy a sample of 16 hourly outputs of a
production facility into the R object x, and the R

command sum(x>250) to find the number of obser-
vations that are greater than 250. Is there sufficient
evidence to accept the alternative hypothesis that the
25th percentile is smaller than 250? Test at level 0.05.

(b) Use the data given in Example 8.3-5 to test, at level
0.05, the alternative hypothesis that the 75th per-
centile of the systolic blood pressure is greater than
104.

14. A tire manufacturer will adopt a new tire design
unless there is evidence that the standard deviation of
tread life span of the new tires is more than 2.5 thousand
miles.
(a) Specify the null and alternative hypotheses.
(b) Use t=read.table(”TireLifeTimes.txt”, header=T);

var(t$x) to compute the sample variance of the
tread life spans of a sample of 20 new tires. Test the
hypotheses specified in part (a) at level α = 0.025. On
the basis of this test, will the new design be adopted?

(c) Construct a normal Q-Q plot and comment on any
concerns that ought to be raised regarding the proce-
dure used to decide on the adoption of the new tire
design.

15. The standard deviation of a random sample of 36
chocolate chip cookie weights is 0.25 oz. Test the hypothe-
sis H0 : σ = 0.2 vs Ha : σ ̸= 0.2 at α = 0.05, and report the
p-value. State any assumptions that are needed to justify
your results.

8.4 Precision in Hypothesis Testing
8.4.1 TYPE I AND TYPE II ERRORS

Because of sampling variability, it is possible that the test statistic will take a value
in the rejection region when the null hypothesis is true. Similarly, it is possible that
the test statistic will not take a value in the rejection region when the alternative
hypothesis is true. For example, in the testing problem

H0 : µ = 28,000 vs Ha : µ < 28,000

with rejection region X < 27,000, it is possible that X < 27,000 (which would lead
the investigator to reject H0) even when the true value of the mean is µ = 28,500;
similarly, it is possible that X > 27,000 (which would lead the investigator not to
reject H0) even when the true value of the mean is µ = 26,000. Type I error is
committed when the null hypothesis is rejected when in fact it is true. Type II error
is committed when the null hypothesis is not rejected when in fact it is false. These
two types of error are illustrated in the following table.

Truth

H0 Ha

Correct Type II
Outcome
of Test

H0 decision

Type I CorrectHa decision
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The next two examples illustrate the calculation of the probabilities for commit-
ting type I and type II errors in the context of testing a hypothesis for a binomial
proportion.

Example
8.4-1

A coal mining company suspects that certain detonators used with explosives do not
meet the requirement that at least 90% will ignite. To test the hypothesis

H0 : p = 0.9 vs Ha : p < 0.9,

a random sample of n = 20 detonators is selected and tested. Let X denote the
number of those that ignite. For each of the two rejection rules

Rule 1: X ≤ 16 and Rule 2: X ≤ 17,

(a) calculate the probability of type I error, and
(b) calculate the probability of type II error when the true value of p is 0.8.

Solution
Using Table A.1, the probability of committing type I error with Rule 1 is

P(type I error) = P(H0 is rejected when it is true)

= P(X ≤ 16 | p = 0.9, n = 20) = 0.133.

Thus, there is a 13.3% chance that H0 will be rejected when it is true. Now suppose
that p = 0.8, so Ha is true. Using Table A.1, the probability of type II error with
Rule 1 is

P(type II error when p = 0.8) = P(H0 is not rejected when p = 0.8)

= P(X > 16 | p = 0.8, n = 20) = 1 − 0.589 = 0.411.

Using the same calculations for Rule 2 we obtain

P(type I error) = P(X ≤ 17 | p = 0.9, n = 20) = 0.323, and

P(type II error when p = 0.8) = P(X > 17 | p = 0.8, n = 20) = 0.206.

The calculations in the above example demonstrate the very important fact that
it is not possible to reduce the probabilities of both types of errors simply by chang-
ing the rejection rule. This is due to the fact that the events involved in the calculation
of the two probabilities are complementary. Thus, shrinking the rejection region
(which results in decreased probability of type I error), expands its complement
(thereby increasing the probability of type II error). Hence, because type I error
is deemed more important, all test procedures given earlier in this chapter were con-
structed so the (maximum) probability of type I error does not exceed the level of
significance α, ignoring the probability of type II error.

However, the issue of type II error arises naturally in many hypothesis-testing
situations. For example, in Example 8.3-1 it was seen that H0 : µ = 10 was not
rejected in favor of Ha : µ > 10 even though the point estimate, X = 10.6, suggested
that Ha was true. While this is a manifestation of the fact that test procedures favor
H0, situations like this raise questions regarding the performance characteristics of
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the test procedure. For example, in the context of the aforementioned example, it
would be of interest to know what the probability of type II error is when the true
value of the population mean is 10.5 or 11. The next example demonstrates the cal-
culation of the probability of type II error in the simple setting of sampling from a
normal population with known variance.

Example
8.4-2

A proposed change to the tire design is justifiable only if the average life span of
tires with the new design exceeds 20,000 miles. The life spans of a random sample of
n = 16 tires with the new design will be used for the decision. It is known that the
life spans are normally distributed with σ = 1,500. Compute the probability of type
II error of the size α = 0.01 test at µ = 21,000.

Solution
Since σ is known, we will use ZH0 =

(
X − µ0

)
/(σ/

√
n) as the test statistic and, since

Ha : µ > 20,000, the appropriate rejection region is ZH0 > zα . Thus,

β(21, 000) = P(type II error | µ = 21,000)

= P
(

X − µ0

σ/
√

n
< zα

∣∣∣∣ µ = 21,000
)

= P
(

X < µ0 + zα
σ√
n

∣∣∣∣ µ = 21,000
)

= ,

(
µ0 − 21, 000

σ/
√

n
+ zα

)
.

With µ0 = 20,000, σ = 1,500, and α = 0.01 (thus zα = 2.33), we obtain β(21,000) =
,(−0.34) = 0.3669, so the power (defined below) at µ = 21,000 is 1 − 0.3669 =
0.6331.

When testing hypotheses about a parameter θ , the probability of committing
a type II error when θ = θa, where θa belongs in the domain of the alternative
hypothesis Ha, is denoted by β(θa). That is,

β(θa) = P(type II error when θ = θa). (8.4.1)

One minus the probability of type II error, evaluated at θa, is called the power of the
test procedure at θa. That is

Power at θa = 1 − β(θa). (8.4.2)

Thus, power is the probability of rejecting H0 when the alternative is true.
Precision in hypothesis testing is quantified by the power of the test procedure.

Plotting the power as a function of θ gives a visual impression of the efficiency of the
test procedure. In general, the power increases as the alternative value of θ moves
farther away from the null hypothesis; it also increases as the sample size increases.
These facts are illustrated in Figure 8-3.
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Figure 8-3 Power
functions for H0 : µ ≤ 0 vs
Ha : µ > 0.

8.4.2 POWER AND SAMPLE SIZE CALCULATIONS

Since the level of significance remains fixed for each testing problem, a precision
objective, that is, a specified level of power at a given alternative value of the
parameter, is achieved by increasing the sample size.

However, calculation of the power of T tests involves the non-central T distribu-
tion and will not be presented. Instead, power and sample-size calculations will be
done using R. Commands for power and sample-size calculation when testing for a
proportion are also given. The R commands for power calculations are shown below;
those for sample-size determination follow Example 8.4-3.

R Commands for Power Calculations for Testing H0 : µ = µ0
and H0 : p = p0

library(pwr) # Loads the package pwr

pwr.t.test(n,
µa − µ0

sd
, α, power=NULL, ”one.sample”,

c(”greater”, ”less”, ”two.sided”)) # Gives the power at
µa

h=2∗asin(sqrt(pa))-2∗asin(sqrt(p0)); pwr.p.test(h, n, α,
power=NULL, c(”greater”, ”less”, ”two.sided”)) # Gives the
power at pa

REMARK 8.4-1 The above commands require installation of the package pwr,
which can be done with the command install.packages(”pwr”). ▹

REMARK 8.4-2 Underlying the R command for the power of the test for a
proportion is an approximation formula, so the power value returned dif-
fers somewhat from the exact power. For example, noting that the level
of significance of the test that corresponds to Rule 1 of Example 8.4-1 is
0.133, the command h=2*asin(sqrt(0.8))-2*asin(sqrt(0.9)); pwr.p.test(h, 20, 0.133,
alternative=”less”) returns 0.562 for the power at pa = 0.8. This is slightly smaller
than the exact value of the power found in Example 8.4-1. ▹



Section 8.4 Precision in Hypothesis Testing 311

Example
8.4-3

(a) For the testing problem of Example 8.3-1, find the power at µa = 11.
(b) For the testing problem of Example 8.3-2, find the power at p = 0.8.

Solution
(a) Example 8.3-1 tests H0 : µ = 10 vs Ha : µ > 10 at level α = 0.05 using a

sample of size 25, which results in S = 2. The R command pwr.t.test(25, (11-
10)/2, 0.05, power=NULL, ”one.sample”, ”greater”) returns a power of 0.78.

(b) Example 8.3-2 tests H0 : p = 0.7 vs Ha : p > 0.7 at level of significance
α = 0.01 using a sample of size 200. The R command h=2*asin(sqrt(0.8))-
2*asin(sqrt(0.7)); pwr.p.test(h, 200, 0.01,power=NULL,”greater”) returns a
power of 0.83.

With the package pwr installed (see Remark 8.4-1), the R commands for deter-
mining the sample size needed to achieve a desired level of power, at a specified µa
or pa, when testing H0 : µ = µ0 or H0 : p = p0, respectively, are shown below:

R Commands for Sample Size Determination

library(pwr) # Loads the package pwr

pwr.t.test(n=NULL,
µa − µ0
Spr

, α, 1-β(µa), ”one.sample”, alter-

native=c(”greater”, ”less”, ”two.sided”)) # Gives the n
needed for power 1-β(µa) at µa

h=2∗asin(sqrt(pa))-2*asin(sqrt(p0)); pwr.p.test(h, n=NULL, α,
1-β(pa), c(”greater”, ”less”, ”two.sided”)) # Gives the n
needed for power 1-β(pa) at pa

The quantity Spr, which is used in the command for sample size determination
for the T test for the mean, is a preliminary estimator of the standard deviation. See
Section 7.4 for a discussion of methods for obtaining such a preliminary estimator.

Example
8.4-4

(a) For the testing problem of Example 8.3-1, find the sample size needed to
achieve power of 0.9 at µa = 11.

(b) For the testing problem of Example 8.3-2, find the sample size needed to
achieve power of 0.95 at p = 0.8.

Solution
(a) Example 8.3-1 tests H0 : µ = 10 vs Ha : µ > 10 at level α = 0.05. A sam-

ple of size 25 gives a preliminary estimator Spr = 2 of the standard deviation.
The R command pwr.t.test(n=NULL, (11-10)/2, 0.05, 0.9, ”one.sample”, alter-
native=”greater”) returns a sample size of 35.65, which is rounded up to 36.

(b) Example 8.3-2 tests H0 : p = 0.7 vs Ha : p > 0.7 at level
of significance α = 0.01 using a sample of size 200. The R command
h=2*asin(sqrt(0.8))-2*asin(sqrt(0.7)); pwr.p.test(h, n=NULL, 0.01, 0.95, alter-
native=”greater”) returns a sample size of 293.04, which is rounded up to
294.
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Exercises

1. (a) When a null hypothesis is rejected, there is risk of
committing which type of error?

(b) When a null hypothesis is not rejected, there is risk
of committing which type of error?

2. To investigate the flame resistance of material type
A, used in children’s pajamas, 85 specimens of the mate-
rial were subjected to high temperatures and 28 of those
specimens ignited. Consider testing H0 : pA = 0.3 vs
Ha : pA ̸= 0.3, where pA is the probability that a specimen
exposed to such high temperatures will ignite. Specify
true or false for each of the following:
(a) The probability of type I error is defined as the prob-

ability of concluding that pA ̸= 0.3 when in fact
pA = 0.3.

(b) The probability of type I error is the same thing as the
level of significance.

(c) The probability of type II error is defined as the prob-
ability of concluding that pA ̸= 0.3 when in fact
pA = 0.3.

3. In 10-mph crash tests, 25% of a certain type of automo-
bile sustain no visible damage. A modified bumper design
has been proposed in an effort to increase this percent-
age. Let p denote the proportion of all cars with this new
bumper that sustain no visible damage in 10-mph crash
tests. The hypothesis to be tested is H0 : p = 0.25 vs Ha :
p > 0.25. The test will be based on an experiment involv-
ing n = 20 independent crashes of car prototypes with the
new bumper. Let X denote the number of crashes result-
ing in no visible damage, and consider the test procedure
that rejects H0 if X ≥ 8.

(a) Use the binomial table to find the probability of type
I error.

(b) Use the binomial table to find the power at p = 0.3.
(c) Using R, find the probability of type I error and the

power at p = 0.3, when n = 50 and rejection region
X ≥ 17. Compare the level and power achieved by
the two different sample sizes.

4. Use R commands and the information given in
Exercise 2 in Section 8.3, that is, n = 36, S = 4.1,
H0 : µ = 1 vs Ha : µ > 1, and α = 0.05, to complete the
following.
(a) Find the probability of type II error when the true

concentration is 2 ppm.
(b) OSHA would like the probability of type II error not

to exceed 1% when the true concentration is 2 ppm,
while keeping the level of significance at 0.05. What
sample size should be used?

5. Acid baths are used to clean impurities from the sur-
faces of metal bars used in laboratory experiments. For
effective cleaning, the average acidity of the solution
should be 8.5. Average acidity in excess of 8.65 may dam-
age the plated surface of the bars. Before delivering a
batch of acid bath solution, the chemical company will
make several acidity measurements and test H0 : µ = 8.5
against Ha : µ > 8.5 at level α = 0.05. If the null
hypothesis is rejected, the batch will not be delivered. A
preliminary sample gave sample standard deviation of 0.4.
Use R commands to determine the sample size needed
to satisfy the laboratory’s requirement that the probabil-
ity of delivering a batch of acidity 8.65 should not exceed
0.05.

6. Use R commands and the information given in
Exercise 7 in Section 8.3, that is, n = 42, H0 : p = 0.2 vs
Ha : p > 0.2, and α = 0.01, to complete the following.
(a) Find the probability of type II error at pa = 0.25.
(b) What sample size should be used to achieve power of

0.3 at pa = 0.25 while keeping the level of significance
at 0.01?

7. Ues R commands and the information given in
Exercise 5 in Section 8.3, that is, n = 500, H0 : p = 0.05 vs
Ha : p < 0.05, and α = 0.01, to complete the following.
(a) Find the probability of type II error at pa = 0.04.
(b) What sample size should be used to achieve power of

0.5 at pa = 0.04 while keeping the level of significance
at 0.01?
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9Comparing Two Populations

9.1 Introduction
In this chapter we use confidence intervals and hypothesis testing for comparing
particular aspects of two populations. Specifically, we will develop procedures for
comparing two population means, two population proportions, and two population
variances.

Studies aimed at comparing two populations are the simplest kind of compar-
ative studies, as mentioned in Section 1.8. These two populations are also called
treatments, or factor levels. In order to establish causation, that is, to claim that a
statistically significant comparison is due to a difference in the treatments, the alloca-
tion of experimental units to the treatments must be done in a randomized fashion,
in other words, a statistical experiment must be performed. In all that follows, we
assume that the data have been collected from a statistical experiment.

Section 9.2 presents CIs and tests for the difference of two means and two pro-
portions. Section 9.3 presents a procedure for testing the equality of two populations
based on the ranks of the data. The rank-based test is the recommended procedure
for small sample sizes from non-normal populations, but it is also a useful procedure
regardless of the sample sizes. Section 9.4 presents two test procedures for com-
paring the variances of two populations. The procedures in Sections 9.2, 9.3, and
9.4 are based on two independent samples, one from each population. Section 9.5
presents CIs and tests for the difference of two means and of two proportions based
on non-independent samples, where the dependence in the two samples is caused by
a process of pairing observations.

9.2 Two-Sample Tests and CIs for Means
Let µ1, σ 2

1 denote the mean and variance of population 1, and µ2, σ 2
2 denote the

mean and variance of population 2. If the two populations are Bernoulli, then µi = pi
and σ 2

i = pi(1−pi), where pi is the probability of success in a random selection from
population i, i = 1, 2. The comparison of the two populations will be based on a
simple random sample from each of the two populations. Let

Xi1, Xi2, . . . , Xini , i = 1, 2, (9.2.1)

denote the two samples. Thus, the sample from population 1 has size n1, with obser-
vations denoted by X11, . . . , X1n1 , and the sample from population 2 has size n2 with

313
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observations denoted by X21, . . . , X2n2 . The two samples are assumed independent.
Let

Xi = 1
ni

ni∑

j=1

Xij, S2
i = 1

ni − 1

ni∑

j=1

(
Xij − Xi

)2
, (9.2.2)

be the sample mean and sample variance from the ith sample, i = 1, 2. When the
populations are Bernoulli

Xi = p̂i and S2
i = ni

ni − 1
p̂i(1 − p̂i),

though p̂i(1 − p̂i) is typically used as an estimator of σ 2
i = pi(1 − pi). Moreover,

typically, only the proportion, p̂i, or the number of successes, nîpi, in the sample
from population i, i = 1, 2, is given when sampling Bernoulli populations.

9.2.1 SOME BASIC RESULTS

The following proposition collects the results that are used for the construction of
CIs and tests for the difference of two means or two proportions.

Proposition
9.2-1

1. If both populations are normal with the same variance, that is, σ 2
1 = σ 2

2 , then,
for any sample sizes,

X1 − X2 − (µ1 − µ2)
√

S2
p

(
1

n1
+ 1

n2

) ∼ Tn1+n2−2, (9.2.3)

where, letting S2
1, S2

2 be the two sample variances defined in (9.2.2),

S2
p = (n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2
(9.2.4)

is the pooled estimator of the common variance.
2. If the populations are non-normal with the same variance, then, provided the

sample sizes are large enough (n1 ≥ 30, n2 ≥ 30), (9.2.3) holds approximately.
3. If both populations are normal with possibly unequal variances, that is, σ 2

1 ̸= σ 2
2 ,

then

X1 − X2 − (µ1 − µ2)
√

S2
1

n1
+ S2

2
n2

·∼ Tν , where ν =

⎡

⎢⎢⎢⎣

(
S2

1
n1

+ S2
2

n2

)2

(S2
1 /n1)2

n1−1 + (S2
2 /n2)2

n2−1

⎤

⎥⎥⎥⎦
, (9.2.5)

holds for any sample sizes, where S2
1, S2

2 are the two sample variances defined in
(9.2.2), and brackets around a number x, [x], denote the integer part of x (i.e., x
rounded down to its nearest integer). The approximate distribution in (9.2.5) is
called the Smith-Satterthwaite approximation.

4. If the populations are non-normal, then, provided the sample sizes are large
enough (n1 ≥ 30, n2 ≥ 30), the Smith-Satterthwaite approximation (9.2.5) can
be used.

5. When the sample sizes are large enough (n1p̂1 ≥ 8, n1(1−p̂1) ≥ 8, and n2p̂2 ≥ 8,
n2(1 − p̂2) ≥ 8, for our purposes),
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p̂1 − p̂2 − (p1 − p2)
σ̂p̂1−p̂2

·∼ N (0, 1) , (9.2.6)

where

σ̂p̂1−p̂2 =
√

p̂1(1 − p̂1)
n1

+ p̂2(1 − p̂2)
n2

. (9.2.7)

"

9.2.2 CONFIDENCE INTERVALS

CIs for µ1−µ2: Equal Variances Let S2
p be the pooled estimator of the common vari-

ance defined in (9.2.4). Relation (9.2.3) yields the following (1 −α)100% confidence
interval for µ1 − µ2.

T CI for µ1 − µ2 for
Equal Variances X1 − X2 ± tn1+n2−2,α/2

√

S2
p

(
1
n1

+ 1
n2

)
(9.2.8)

The R command for this CI is given in Section 9.2.3.
If the two populations are normal (and have equal variances), (9.2.8) is an

exact (1 − α)100% CI for µ1 − µ2 with any sample sizes. If the populations are
not normal, and σ 2

1 = σ 2
2 , (9.2.8) is an approximate (1 − α)100% CI for µ1 − µ2

provided n1, n2 ≥ 30.
Section 9.4 discusses procedures for testing the assumption of equal population

variances, which is needed for the CI (9.2.8). However, the following rule of thumb,
based on the ratio of the larger sample variance (max{S2

1, S2
2}) to the smaller one

(min{S2
1, S2

2}), can be used as a rough check for σ 2
1 ≃ σ 2

2 , that is, that σ 2
1 , σ 2

2 are
approximately equal:

Rule of Thumb for
Checking If σ2

1 ≃ σ2
2

max{S2
1, S2

2}
min{S2

1, S2
2}

<

⎧
⎨

⎩

5 if n1, n2 ≃ 7
3 if n1, n2 ≃ 15
2 if n1, n2 ≃ 30

(9.2.9)

Example
9.2-1

To compare two catalysts in terms of the mean yield of a chemical process, n1 = 8
chemical processes are performed with catalyst A, and n2 = 8 are performed with
catalyst B. From catalyst A we obtain X1 = 92.255, S1 = 2.39. From catalyst B we
obtain X2 = 92.733, S2 = 2.98. Construct a 95% CI for the contrast µ1 − µ2. What
assumptions, if any, are needed for the validity of the CI?

Solution
Since the ratio of the larger sample variance to the smaller one is S2

2/S2
1 = 1.55, the

assumption of equal variances appears to be approximately satisfied, according to
the rule of thumb (9.2.9). The pooled estimator of the common standard deviation is

Sp =
√

(8 − 1)S2
1 + (8 − 1)S2

2
8 + 8 − 2

=
√

7.30 = 2.7.
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According to (9.2.8), the requested 95% CI for µ1 − µ2 is

X1 − X2 ± t14, 0.025

√

S2
p

(
1
8

+ 1
8

)
= −0.478 ± 2.145 × 1.351 = (−3.376, 2.420).

Because both sample sizes are less than 30, the validity of the above CI requires that
both populations are normal.

Example
9.2-2

A manufacturer of video display units wants to compare two micro circuit designs
in terms of the current flow they produce. Using Design 1, n1 = 35 current flow
measurements give X1 = 24.2 and S1 =

√
10.0 amps. Using Design 2, n2 = 40

measurements give X2 = 23.9 and S2 =
√

14.3 amps. Construct a 90% CI for µ1−µ2,
and state any assumptions that are needed for its validity.

Solution
Since the ratio of the larger sample variance to the smaller one is S2

2/S2
1 = 1.43, the

rule of thumb (9.2.9) suggests that the data do not contradict the assumption that
σ 2

1 = σ 2
2 . The pooled estimator of the common standard deviation is

Sp =
√

(35 − 1)S2
1 + (40 − 1)S2

2
35 + 40 − 2

=
√

12.3 = 3.51.

Since both sample sizes are greater than 30, we do not need the normality assump-
tion. The requested 90% CI is

X1 − X2 ± t35+40−2, 0.05

√

S2
p

(
1
35

+ 1
40

)
= 0.3 ± 1.666 × 0.812 = (−1.05, 1.65).

CIs for µ1 − µ2: Possibly Unequal Variances Regardless of whether or not the two
population variances are equal, the Smith-Satterthwaite approximation (9.2.5) yields
the following (1 − α)100% confidence interval for µ1 − µ2:

T CI for µ1 − µ2 for
Unequal Variances X1 − X2 ± tν, α/2

√
S2

1
n1

+ S2
2

n2
(9.2.10)

where the degrees of freedom ν is given in (9.2.5). The R command for this CI is
given in Section 9.2.3.

If the two populations are either normal or the sample sizes are large enough
(n1 ≥ 30, n2 ≥ 30), the Smith-Satterthwaite CI (9.2.10) is an approximate
(1−α)100% CI for µ1−µ2. Because the CI (9.2.10) does not require any assumptions
when the two sample sizes are at least 30, it is the default procedure in R and other
statistical software. However, the CIs (9.2.8) tend to be shorter, and thus should be
preferred if the assumption σ 2

1 = σ 2
2 appears tenable.

Example
9.2-3

A random sample of n1 = 32 specimens of cold-rolled steel give average strength
X1 = 29.80 ksi, and sample standard deviation of S1 = 4.00 ksi. A random sample of
n2 = 35 specimens of two-sided galvanized steel give average strength X2 = 34.70
ksi, and S2 = 6.74 ksi. Construct a 99% CI for µ1 − µ2, and state any assumptions
that are needed for its validity.
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Solution
Because both sample sizes are greater than 30, the Smith-Satterthwaite CI (9.2.10)
requires no assumptions for its validity (except finite variances). Here

ν =

⎡

⎢⎣

(
16
32 + 45.4276

35

)2

(16/32)2

31 + (45.4276/35)2

34

⎤

⎥⎦ = [56.11] = 56,

and tν,α/2 = t56,0.005 = 2.6665. Thus, the desired CI is

X1 − X2 ± tν, α/2

√
S2

1
n1

+ S2
2

n2
= −4.9 ± 3.5754 = (−8.475, −1.325).

Confidence Intervals for p1 − p2 Relation (9.2.6) yields the following approximate
(1 − α)100% confidence interval for p1 − p2, provided n1p̂1 ≥ 8, n1(1 − p̂1) ≥ 8, and
n2p̂2 ≥ 8, n2(1 − p̂2) ≥ 8:

(1 − α)100%
Z CI for p1 − p2

p̂1 − p̂2 ± zα/2σ̂p̂1−p̂2 (9.2.11)

where σ̂p̂1−p̂2 is given in (9.2.7). The R command for this CI is given in Section 9.2.3.

Example
9.2-4

A certain type of tractor is being assembled at two locations, L1 and L2. An investi-
gation into the proportion of tractors requiring extensive adjustments after assembly
finds that in random samples of 200 tractors from L1 and 400 from L2, the number
requiring extensive adjustments were 16 and 14, respectively. Construct a 99% CI
for p1 − p2, the difference of the two proportions.

Solution
Here p̂1 = 16/200 = 0.08 and p̂2 = 14/400 = 0.035, and the conditions needed for
the CI (9.2.11) are satisfied. Moreover, α = 0.01, so that zα/2 = z0.005 = 2.575. Thus
the 99% CI is

0.08 − 0.035 ± 2.575

√
(0.08)(0.92)

200
+ (0.035)(0.965)

400
= (−0.01, 0.10).

9.2.3 HYPOTHESIS TESTING

In comparing two population means, the null hypothesis of interest can be put in the
form

H0 : µ1 − µ2 = '0, (9.2.12)

where the constant '0 is specified in the context of a particular application. Note
that if '0 = 0, the null hypothesis claims that µ1 = µ2. The null hypothesis in
(9.2.12) is tested against one of the alternatives

Ha : µ1 − µ2 > '0 or Ha : µ1 − µ2 < '0 or Ha : µ1 − µ2 ̸= '0. (9.2.13)
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In comparing two population proportions, the null and alternative hypotheses are as
shown above, with p1 and p2 replacing µ1 and µ2, respectively.

Tests about µ1 − µ2 As with confidence intervals, there is one test procedure for
when the two population variances can be assumed equal and a different proce-
dure that can be applied regardless of whether σ 2

1 = σ 2
2 or not. The procedure that

requires the assumption of equal variances deserves its place in the statistical toolbox
as it can yield higher power.

When σ 2
1 = σ 2

2 can be assumed, the statistic for testing the null hypothesis
(9.2.12) is (the superscript EV stands for Equal Variance)

TEV
H0

= X1 − X2 − '0√

S2
p

(
1
n1

+ 1
n2

) , (9.2.14)

where S2
p is the pooled variance given in (9.2.4). An alternative test statistic, which

does not rely on the assumption that σ 2
1 = σ 2

2 (and thus is to be preferred, especially
when this assumption appears to be violated), is (the superscript SS stands for Smith-
Satterthwaite)

TSS
H0

= X1 − X2 − '0√
S2

1
n1

+ S2
2

n2

. (9.2.15)

If the H0 is true, that is, if µ1 − µ2 = '0, relations (9.2.3) and (9.2.5) of Proposition
9.2-1 imply

TEV
H0

∼ Tn1+n2−2 and TSS
H0

·∼ Tν , where ν =

⎡

⎢⎢⎢⎣

(
S2

1
n1

+ S2
2

n2

)2

(S2
1/n1)2

n1−1 + (S2
2/n2)2

n2−1

⎤

⎥⎥⎥⎦
(9.2.16)

provided that either both populations are normal or that n1 ≥ 30 and n2 ≥ 30. The
rules for rejecting (9.2.12) in favor of the various alternatives listed in (9.2.13), as
well as formulas for the p-value, are given in (9.2.17).

With the data from populations 1 and 2 in the R objects x1 and x2, respec-
tively, the R commands for computing TSS

H0
, the degrees of freedom ν, and

p-value, are:

R Commands for Testing H0 : µ1 − µ2 = (0 without Assuming
σ21 = σ22

t.test(x1, x2, mu='0, alternative=”greater”)
# if Ha : µ1 −µ2 > '0

t.test(x1, x2, mu='0, alternative=”less”)
# if Ha : µ1 −µ2 < '0

t.test(x1, x2, mu='0, alternative=”two.sided”)
# if Ha : µ1 −µ2 ̸= '0



Section 9.2 Two-Sample Tests and CIs for Means 319

For the test procedure that assumes σ 2
1 = σ 2

2 , include var.equal=T in any of the above
R commands. For example

t.test(x1, x2, var.equal=T)

tests H0 : µ1 −µ2 = 0 (which is the default value of '0) against a two-sided alterna-
tive (which is the default alternative) using the test statistic TEV

H0
. Occasionally, the

data file has both samples stacked in a single data column, with a second column
indicating the sample index of each observation in the data column. If the data and
sample index columns are in the R objects x and s, respectively, use x∼s instead of
x1, x2 in any of the above commands. These R commands will also return a CI for
µ1 −µ2 (one-sided CIs if alternative=”greater” or ”less”, and the CIs of Section 9.2.2
if alternative=”two.sided”). The default confidence level is 95%, but a (1 − α)100%
CI can be obtained by adding conf.level=1-α in any of these commands; for example,
t.test(x1, x2, conf.level=0.99) gives the 99% CI (9.2.10).

The T Test Procedures for H0 : µ1 − µ2 = (0

(1) Assumptions:
(a) X11, . . . , X1n1 , X21, . . . , X2n2 are independent simple random
samples
(b) Either the populations are normal or n1 and n2 ≥ 30

(2) Test Statistic:

TH0 =
{

TEV
H0

if σ 2
1 = σ 2

2 is assumed

TSS
H0

regardless of whether or not σ 2
1 = σ 2

2

where TEV
H0

and TSS
H0

are defined in (9.2.14) and (9.2.15)
(3) Rejection Rules for the Different Ha:

Ha RR at Level α

µ1 − µ2 > '0 TH0
> tα,df

µ1 − µ2 < '0 TH0
< −tα,df

µ1 − µ2 ̸= '0 |TH0
| > tα/2,df

where df = n1 + n2 − 2 if TH0 = TEV
H0

, or else df = ν, where ν is
given in (9.2.16), if TH0 = TSS

H0
(4) Formulas for the p-Value:

p-value =

⎧
⎨

⎩

1 − Gdf (TH0 ) for Ha : µ1 − µ2 > '0
Gdf (TH0) for Ha : µ1 − µ2 < '0
2
[
1 − Gdf (|TH0 |)

]
for Ha : µ1 − µ2 ̸= '0

where Gdf is the cumulative distribution function of Tdf and the
degrees of freedom df are as described in (3)

(9.2.17)

Example
9.2-5

Consider the data from the experiment of Example 9.2-3, which compares the
strengths of two types of steel. Thus, the n1 = 32 cold-rolled steel observations yield
X1 = 29.8, S1 = 4.0, and the n2 = 35 two-sided galvanized steel observations yield
X2 = 34.7, S2 = 6.74. Are the mean strengths of the two types of steel different?

(a) Test at level α = 0.01 and compute the p-value.
(b) Use ss=read.table(”SteelStrengthData.txt”, header=T) to read the data into the

R data frame ss, then use R commands to conduct the test of part (a) and to
construct a 99% CI.
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Solution
(a) Here we want to test H0 : µ1 − µ2 = 0 vs Ha : µ1 − µ2 ̸= 0; thus, '0 = 0.

The ratio of the larger to the smaller sample variance is 6.742/4.02 = 2.84.
Since both sample sizes are over 30, the rule of thumb (9.2.9) suggests that
the assumption of equal population variances is not plausible. Hence, the test
statistic should be

TH0 = TSS
H0

= 29.8 − 34.7
√

16
32 + 45.4276

35

= −3.654.

In Example 9.2-3 it was found that ν = 56, and t56,0.005 = 2.6665. Since
| − 3.654| > 2.6665, H0 is rejected at level 0.01. Using the formula given in
(9.2.17), the p-value is 2[1 − Gν(|TH0 |)] = 2[1 − G56(3.654)] = 0.00057.

(b) The command t.test(Value∼Sample, conf.level=0.99, data=ss) returns TH0 =
−3.6543, ν = 56 (rounded down from 56.108), and a p-value of 0.000569,
which match the hand calculations done in part (a). It also returns a 99%
CI of (−8.475447, −1.324785), which matches the 99% CI obtained by hand
calculations in Example 9.2-3.

Example
9.2-6

Consider the data from the experiment of Example 9.2-2, which compares the cur-
rent flow of two micro circuit designs. Thus, the n1 = 35 measurements using
Design 1 give X1 = 24.2 amps, S1 =

√
10 amps, and the n2 = 40 measurements

using Design 2 give X2 = 23.9 amps and S2 =
√

14.3 amps. Is the mean current flow
with Design 1 (statistically) significantly bigger than that of Design 2?

(a) Test at level α = 0.1 and compute the p-value.
(b) Use cf=read.table(”MicroCirCurFlo.txt”, header=T) to read the data into the

R data frame cf, then use R commands to conduct the test of part (a) and to
construct a 90% CI.

Solution
(a) Here we want to test H0 : µ1 − µ2 = 0 vs Ha : µ1 − µ2 > 0; thus, '0 = 0.

The ratio of the larger to the smaller sample variance is S2
2/S2

1 = 1.43, so that,
according to the rule of thumb (9.2.9), the assumption of equal population
variances is not contradicted by the data. Hence, the test statistic that requires
the assumption of equal population variances can be used. Moreover, since
both sample sizes are greater than 30, no additional assumptions are required.
From Example 9.2-2 we have that the pooled estimator of the variance is S2

p =
12.3. Thus, the test statistic is

TH0 = TEV
H0

= 24.2 − 23.9
√

12.3(1/35 + 1/40)
= 0.369.

Since 0.369 ≯ t35+40−2,0.1 = 1.293, H0 is not rejected at level 0.1. Using the
formula given in (9.2.17), the p-value is 1 − G73(0.369) = 0.357.

(b) The command t.test(CurFlo∼Design, var.equal=T, alternative=”greater”,
data=cf) returns a T statistic, degrees of freedom, and p-value of 0.3692,
73, and 0.3565, respectively, in agreement with the hand calculations in
part (a). However, the CI it returns is one-sided (in addition to having
the default level of 95%). To get the CI (9.2.8) at the 90% level, the t.test
command needs to be re-issued with the (default) alternative ”two.sided”:
t.test(CurFlo∼Design, var.equal=T, conf.level=0.9, data=cf). Doing so returns
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the 90% CI (−1.052603, 1.652032), in agreement with the CI obtained in
Example 9.2-2.

Tests about p1 − p2 Given sample proportions p̂1, p̂2, the test statistic for testing
H0 : p1 − p2 = '0, in favor of the various alternative hypotheses, depends on
whether '0 is zero or not. If '0 ̸= 0, the test statistic is

ZP1P2
H0

= p̂1 − p̂2 − '0√
p̂1(1 − p̂1)

n1
+ p̂2(1 − p̂2)

n2

. (9.2.18)

If '0 = 0, the test statistic is

ZP
H0

= p̂1 − p̂2√

p̂(1 − p̂)
(

1
n1

+ 1
n2

) , where p̂ = n1p̂1 + n2p̂2

n1 + n2
. (9.2.19)

The estimator p̂ of the common value p, under H0 : p1 = p2, of p1 and p2 is
called the pooled estimator of p.

If the null hypothesis H0 : p1 − p2 = '0 for '0 ̸= 0 is true, ZP1P2
H0

has, approx-
imately, a N(0, 1) distribution provided n1p̂1 ≥ 8, n1(1 − p̂1) ≥ 8, and n2p̂2 ≥ 8,
n2(1 − p̂2) ≥ 8. Similarly, under the same sample size conditions, if H0 : p1 − p2 = 0
is true, ZP

H0
has, approximately, a N(0, 1) distribution. These facts lead to the follow-

ing test procedures and formulas for the p-value when testing for the difference of
two proportions.

The Z Test Procedures for H0 : p1 − p2=(0

(1) Assumptions:
(a) p̂1, p̂2, are independent
(b) nîpi ≥ 8, ni(1 − p̂i) ≥ 8, i = 1, 2

(2) Test Statistic:

ZH0 =

⎧
⎨

⎩

ZP1P2
H0

if '0 ̸= 0

ZP
H0

if '0 = 0

where ZP1P2
H0

and ZP
H0

are given in (9.2.18) and (9.2.19), respectively
(3) Rejection Rules for the Different Ha:

Ha RR at Level α

p1 − p2 > '0 ZH0
> zα

p1 − p2 < '0 ZH0
< −zα

p1 − p2 ̸= '0 |ZH0
| > zα/2

(4) Formulas for the p-Value:

p-value =

⎧
⎨

⎩

1 − ,(ZH0) for Ha : p1 − p2 > '0
,(ZH0) for Ha : p1 − p2 < '0
2
[
1 − ,(|ZH0 |)

]
for Ha : p1 − p2 ̸= '0

where , is the CDF of the standard normal distribution

(9.2.20)

Let x1, x2 denote the number of successes from populations 1 and 2, respectively.
The following R commands return (ZP

H0
)2, that is, the square of statistic in (9.2.20)

for testing H0 : p1 = p2, and the p-value:
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R Commands for the Z Procedure for Testing H0 :p1 −p2 =0

x = c(x1,x2); n = c(n1,n2)

prop.test(x, n, alternative=”greater”, correct=F)
# if Ha : p1 −p2 > 0

prop.test(x, n, alternative=”less”, correct=F)
# if Ha : p1 −p2 < 0

prop.test(x, n, alternative=”two.sided”, correct=F)
# if Ha : p1 −p2 ̸= 0

Omitting the correct=F part in the commands (or using the default correct=T
instead) gives a version of the procedure in (9.2.20) with continuity correction. The
default alternative is ”two.sided”. These R commands will also return a CI for p1−p2
(one-sided CIs if the alternative is specified as ”greater” or ”less”, and the CIs of
Section 9.2.2 if ”two.sided” is used). The default confidence level is 95%, but a
(1−α)100% CI can be obtained by adding conf.level=1-α in any of these commands;
for example, prop.test(c(x1, x2), c(n1, n2), correct=F, conf.level=0.99) gives the 99%
CI (9.2.11).

Example
9.2-7

During an investigation into the flame-resistance properties of material types A and
B, which are being considered for use in children’s pajamas, 85 randomly selected
specimens of material type A and 100 randomly selected specimens of material type
B were subjected to high temperatures. Twenty-eight of the specimens of type A
material and 20 of the specimens of type B material ignited. Material type A will be
used unless there is evidence that its probability of ignition exceeds that of material
B by more than 0.04. On the basis of these data, should material A be used? Test at
level α = 0.05 and compute the p-value.

Solution
Let p1, p2 denote the ignition probabilities for material types A, B, respectively. To
answer the question posed, we need to test H0 : p1 − p2 = 0.04 vs Ha : p1 −
p2 > 0.04. Here n1 = 85, n2 = 100, p̂1 = 0.3294, and p̂2 = 0.2, so the sample
size requirements are satisfied. Moreover, the description of the experiment suggests
that the assumption of independence of p̂1 and p̂2 is satisfied. The value of the test
statistic is

ZH0 = ZP1P2
H0

= p̂1 − p̂2 − 0.04
√

p̂1(1 − p̂1)
n1

+ p̂2(1 − p̂2)
n2

= 1.38.

Since 1.38 ≯ z0.05 = 1.645, the null hypothesis is not rejected. Hence, material type
A should be used. The p-value is 1 − ,(1.38) = 0.084; hence, H0 would have been
rejected had the test been conducted at α = 0.1.

Example
9.2-8

Consider the manufacturing of tractors using two different assembly lines, as
described in Example 9.2-4. Let p1 denote the proportion of tractors coming out
of assembly line L1 that require adjustments, and let p2 be the corresponding
proportion for assembly line L2.
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(a) Test H0 : p1 = p2 against Ha : p1 > p2 at level of significance at α = 0.01, and
compute the p-value.

(b) Use R commands to conduct the test of part (a) and to construct a 99% CI for
p1 − p2.

Solution
(a) Here n1 = 200, n2 = 400, p̂1 = 0.08, and p̂2 = 0.035. Thus, the sample size

conditions are satisfied. The pooled estimate of the common value (under H0)
of the two probabilities is p̂ = 0.05. The test statistic is

ZH0 = ZP
H0

= 0.08 − 0.035
√

(0.05)(0.95)(1/200 + 1/400)
= 2.384.

Since 2.384 > z0.01 = 2.33, H0 is rejected. The p-value is 1−,(2.384) = 0.0086.
(b) The command prop.test(c(16, 14), c(200, 400), correct=F, conf.level=0.99)

returns 5.6842 for the value of the squared test statistic, in agreement with
2.3842 = 5.683 obtained in part (a), and (−0.00979, 0.09979) for the 99% CI
for p1−p2, in agreement with the 99% CI of (−0.01, 0.10) obtained in Example
9.2-4 by hand calculations.

Exercises
1. An article reports on a study regarding the effect of
thickness in fatigue crack growth in aluminum alloy 2024-
T351.1 Two groups of specimens were created, one with
a thickness of 3 mm and the other with a thickness of
15 mm. Each specimen had an initial crack length of 15
mm. The same cyclic loading was applied to all speci-
mens, and the number of cycles it took to reach a final
crack length of 25 mm was recorded. Suppose that for
the group having a thickness of 3 mm, a sample of size
36 gave X1 = 160,592 and S1 = 3,954, and for the
group having a thickness of 15 mm, a sample of size
42 gave X2 = 159,778 and S2 = 15,533. The scientific
question is whether or not thickness affects fatigue crack
growth.
(a) State the null and alternative hypotheses. Is the test

statistic in (9.2.14) appropriate for this data? Justify
your answer.

(b) State which statistic you will use, test at level α =
0.05, and compute the p-value. What assumptions,
if any, are needed for the validity of this test
procedure?

(c) Construct a 95% CI for the difference in the two
means. Explain how the testing problem in (a) can
be conducted in terms of the CI, and check if the test
result remains the same.

2. To compare the corrosion-resistance properties of two
types of material used in underground pipe lines, speci-
mens of both types are buried in soil for a 2-year period

and the maximum penetration (in mils) for each specimen
is measured. A sample of size 42 specimens of material
type A yielded X1 = 0.49 and S1 = 0.19, and a sample
of size 42 specimens of material type B gave X2 = 0.36
and S2 = 0.16. Is there evidence that the average pene-
tration for material A exceeds that of material B by more
than 0.1?
(a) State the null and alternative hypotheses. Is the test

statistic in (9.2.14) appropriate for this data? Justify
your answer.

(b) State which statistic you will use, test at level α = 0.05,
and compute the p-value. What assumptions, if any,
are needed for the validity of this test procedure?

(c) Construct a 95% CI for the difference in the two
means.

3. A company is investigating how long it takes its drivers
to deliver goods from its factory to a port for export.
Records reveal that with a standard driving route, the last
48 delivery times have sample mean 432.7 minutes and
sample standard deviation 20.38 minutes. A new driving
route is proposed and this has been tried 34 times with
sample mean 403.5 minutes and sample standard devi-
ation 15.62 minutes. Is this sufficient evidence for the
company to conclude, at α = 0.05, that the new route is
faster than the standard one?
(a) State the null and alternative hypotheses. Is the test

statistic in (9.2.14) appropriate for this data? Justify
your answer.

1 J. Dominguez, J. Zapatero, and J. Pascual (1997). Effect of load histories on scatter fatigue crack growth in
aluminum alloy 2024-T351. Engineering Fracture Mechanics, 56(1): 65–76.
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(b) State which statistic you will use, test at level α = 0.05,
and compute the p-value. What assumptions, if any,
are needed for the validity of this test procedure?

(c) Construct a 99% CI for the difference in the two
means.

(d) Use dd=read.table(”DriveDurat.txt”, header=T) to
import the data set into the R data frame dd, then use
R commands to perform the test and construct the CI
specified in parts (b) and (c).

4. After curing for several days at 20oC, concrete spec-
imens were exposed to temperatures of either −8oC or
15oC for 28 days, at which time their strengths were
determined. The n1 = 9 strength measurements at −8oC
resulted in X1 = 62.01 and S1 = 3.14, and the n2 = 9
strength measurements at 15oC resulted in X2 = 67.38
and S2 = 4.92. Is there evidence that temperature has an
effect on the strength of new concrete?
(a) State the null and alternative hypotheses. Is the test

statistic in (9.2.14) appropriate for this data? Justify
your answer.

(b) State which statistic you will use, test at level α = 0.1,
and compute the p-value. What assumptions, if any,
are needed for the validity of this test procedure?

(c) Construct a 90% CI for the difference in the two
means.

(d) Use cs = read.table(”Concr.Strength.2s.Data.txt”, hea-
der = T) to import the data set into the R data frame
cs, then use R commands to perform the test and
construct the CI specified in parts (b) and (c).

5. Wrought aluminum alloy 7075-T6 is commonly used
in applications such as ski poles, aircraft structures, and
other highly stressed structural applications, where very
high strength and good corrosion resistance are needed.
A laboratory conducts an experiment to determine if the
ultimate tensile strength (UTS) of holed specimens of
7075-T6 wrought aluminum is, on average, more than 126
units greater than that of notched specimens. Random
samples of 15 specimens of each type give X1 = 557.47,
S2

1 = 52.12, X2 = 421.40, S2
2 = 25.83.

(a) State the null and alternative hypotheses. Is the test
statistic in (9.2.14) appropriate for this data? Justify
your answer.

(b) State which statistic you will use, test at level α = 0.05,
and compute the p-value. What assumptions, if any,
are needed for the validity of this test procedure?

(c) Construct a 95% CI for the difference in the two
means.

(d) Use uts=read.table(”HoledNotchedUTS.txt”, header=
T) to import the data set into the R data frame uts,

then use R commands to test, at level α = 0.05, the
hypotheses stated in part (a) in two ways, once using
the statistic in (9.2.14), and once using the statistic in
(9.2.15). Report the p-values from each procedure.

6. A facility for bottling soft drinks uses two fill and
seal machines. As part of quality control, data are peri-
odically collected to test if the fill weight is the same
for the two machines. A particular data collection of
12 fill weights from each machine yields sample mean
and sample variance of X1 = 966.75, S2

1 = 29.30
from the first and X2 = 962.33, S2

2 = 26.24 from the
second.
(a) State the null and alternative hypotheses. Is the test

statistic in (9.2.14) appropriate for this data? Justify
your answer.

(b) Test, at level α = 0.05, the hypotheses stated in part
(a) in two ways, once using the statistic in (9.2.14),
and once using the statistic in (9.2.15). Report the
p-values from each procedure. What assumptions,
if any, are needed for the validity of this test
procedure?

(c) Construct a 95% CI for the difference in the two
means. Explain how the testing problem in (a) can
be conducted in terms of the CI, and check if the test
result remains the same.

7. Earnings management refers to a wide array of
accounting techniques that can help earnings per share
(EPS) meet analyst expectations. Because reported EPS
in the United States are rounded to the nearest cent,
earnings of 13.4 cents are rounded down to 13 cents
while earnings of 13.5 cents are rounded up to 14 cents.
Thus, under-representation of the number four in the
first post-decimal digit of EPS data, termed quadropho-
bia,2 suggests a particular form of earnings management,
that is, that managers of publicly traded firms want to
increase their reported earnings by one cent. In a typ-
ical year (1994), 692 out of 9,396 EPS reports by firms
with analyst coverage had the number four in the first
post-decimal digit. The corresponding number for the
13,985 EPS reports by firms with no analyst coverage is
1,182. Do the data suggest a significantly different level
of quadrophobia for the two types of firms?
(a) State the null and alternative hypotheses, carry out

the test at level 0.01, and report the p-value.
(b) Construct a 99% CI for p1 − p2.
(c) Repeat parts (a) and (b) using R commands.

8. An article3 reported results of arthroscopic menis-
cal repair with an absorbable screw. For tears greater

2 Joseph Grundfest and Nadya Malenko (2009). Quadrophobia: Strategic Rounding of EPS Data, available at
http://ssrn.com/abstract=1474668.
3 M. E. Hantes, E. S. Kotsovolos, D. S. Mastrokalos, J. Ammenwerth, and H. H. Paessler (2005). Anthroscopic
meniscal repair with an absorbable screw: results and surgical technique, Knee Surgery, Sports Traumatology,
Arthroscopy, 13: 273–279.

http://ssrn.com/abstract=1474668


Section 9.3 The Rank-Sum Test Procedure 325

than 25 millimeters, 10 of 18 repairs were successful,
while for tears less than 25 millimeters, 22 of 30 were
successful.

(a) Is there evidence that the success rates for the two
types of tears are different? Test at α = 0.1 and report
the p-value.

(b) Construct a 90% confidence interval for p1 − p2.
(c) Repeat parts (a) and (b) using R commands.

9. A tracking device, used for enabling robots to home
in on a beacon that produces an audio signal, is said
to be fine-tuned if the probability of correct identifi-
cation of the direction of the beacon is the same for
each side (left and right) of the tracking device. Out
of 100 signals from the right, the device identifies the
direction correctly 85 times. Out of 100 signals from

the left, the device identifies the direction correctly
87 times.
(a) State the null and alternative hypotheses, carry out

the test at level 0.01, and report the p-value.
(b) Construct a 99% CI for p1 − p2.
(c) Repeat parts (a) and (b) using R commands.

10. In 85 10-mph crash tests with type A cars, 19 sustained
no visible damage. For type B cars, 22 out of 85 sustained
no visible damage. Is this evidence sufficient to claim that
type B cars do better in 10-mph crash tests than type A
cars?
(a) State the null and alternative hypotheses, carry out

the test at level 0.05, and report the p-value.
(b) Construct a 90% CI for p1 − p2.
(c) Repeat parts (a) and (b) using R commands.

9.3 The Rank-Sum Test Procedure
The procedures described in Section 9.2 for inference about µ1 − µ2 require either
the normality assumption or large sample sizes. An alternative procedure, which can
be used with both small and large sample sizes regardless of whether or not the
normality assumption is tenable, is the Mann-Whitney-Wilcoxon rank-sum test, also
referred to as rank-sum test or MWW test for short.

Underlying the versatility of the rank-sum test is the amazing fact that, for any
given sample sizes n1 and n2, the exact null distribution of the statistic is the same no
matter what the continuous population distribution is. Moreover, if the population
distribution is discrete, the null distribution of the statistic can be well approximated
with much smaller sample sizes. The popularity of the rank-sum test is also due to
its desirable power properties (i.e., low probability of type II error), especially if the
two population distributions are heavy tailed, or skewed.

The null hypothesis tested by the rank-sum procedure is

HF
0 : F1 = F2, (9.3.1)

where F1, F2 denote the two population cumulative distribution functions. However,
the rank-sum test is widely interpreted to be a test for equality of the medians, that
is, H0 : µ̃1 = µ̃2. For this reason, the different alternative hypotheses are stated
in terms of the medians in (9.3.5). Remark 9.3-1(a) gives a different view of the
alternative hypotheses. The rank-sum test procedure can also be adapted for testing
H0 : µ̃1 − µ̃2 = '0, for some constant '0, against the different alternatives; see
Remark 9.3-1(d) and the R commands following it. Finally, it is possible to construct
a confidence interval for the difference µ̃1 − µ̃2 of the medians (or, more precisely,
the median of the distribution of X1 − X2). While description of the confidence
interval is beyond the scope of this book, the R command for the rank-sum test can
produce it.

Implementation of the rank-sum test procedure begins by ranking the data, a
process that consists of the following steps:

• Combine the observations, X11, . . . , X1n1 and X21, . . . , X2n2 , from the two
samples into an overall set of N = n1 + n2 observations.

• Arrange the combined set of observations from smallest to largest.
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• For each observation Xij, define its rank Rij to be the position that Xij occupies
in this ordered arrangement.

In Table 9.1, 0.03, −1.42, −0.25 are the n1 = 3 observations from population 1,
and −0.77, −2.93, 0.48, −2.38 are the n2 = 4 observations from population 2. The
combined data set, the ordered observations, and the rank of each observation are
displayed in the table. For example, R11 = 6 because 0.03 occupies the sixth position
in the ordered arrangement of the combined set of observations. If some observa-
tions share the same value, that is, if there are tied observations, then they cannot be
assigned ranks as described above because they cannot be arranged from smallest
to largest in a unique way. For example, if X13 were −0.77 (instead of −0.25) then
observations X13 and X21 would be tied, so the combined set of observations could
also be arranged from smallest to largest as

X22 X24 X12 X13 X21 X11 X23.

In either case, the pair of tied observations, that is, X13 and X21, would occupy the
pair of ranks 4 and 5 but it is not clear which observation should be ranked 4 and
which should be ranked 5. The solution is to assign mid-ranks to tied observations,
which is the average of the ranks they occupy. In particular, X13 and X21 would
both receive the mid-rank of 4.5 and all other observations would maintain their
previously assigned ranks. The R command rank(x) returns the ranks (and mid-
ranks if there are tied observations) for each number in the object x. For example,
rank(c(0.03, -1.42, -0.77, -0.77, -2.93, 0.48, -2.38)) returns

6.0 3.0 4.5 4.5 1.0 7.0 2.0.

As the name of the procedure suggests, the rank-sum test is based on the sum of
the ranks. But the sum of the ranks of all N = n1 + n2 in the combined set is
always

1 + 2 + · · · + N = N(N + 1)
2

(9.3.2)

and thus does not provide any information regarding the validity of the null hypoth-
esis (9.3.1). On the other hand, the sum of the ranks of the observations of each
sample separately is quite informative. For example, if the sum of the ranks of
the observations from sample 1 is “large,” it implies that the corresponding sum
from sample 2 is “small” (since, by (9.3.2), the sum of the two is N(N + 1)/2), and
both imply that the observations from sample 1 tend to be larger than those from

Table 9-1 Illustration of the ranking
process

Original Data

X11 X12 X13 X21 X22 X23 X24

0.03 −1.42 −0.25 −0.77 −2.93 0.48 −2.38

Ordered Observations

X22 X24 X12 X21 X13 X11 X23

−2.93 −2.38 −1.42 −0.77 −0.25 0.03 0.48

Ranks of the Data

R11 R12 R13 R21 R22 R23 R24

6 3 5 4 1 7 2
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sample 2. The rank-sum statistic is typically taken to be the sum of the ranks of the
observations in the first sample:

W1 = R11 + · · · + R1n1 (9.3.3)

If the null hypothesis (9.3.1) is true, the distribution of W1 is the same no matter
what the continuous population distribution is. On the basis of this null distribution,
it can be determined if W1 is “large” enough, or “small” enough, to reject the null
hypothesis. Before statistical software became widely available, the null distribution
of W1, for data without ties, was given in tables for each combination of values of
n1 and n2. If both n1 and n2 are > 8, the distribution of the standardized W1 (i.e.,
(W1 − E(W1))/σW1 ) is well approximated by the standard normal distribution, even
for data with ties. Formulas for the standardized W1, for data with and without ties,
are given in Remark 9.3-1(b), but both of these formulas are included in the unified
formula given in (9.3.5). Set

R1 = 1
n1

n1∑

j=1

R1j, R2 = 1
n2

n2∑

j=1

R2j, and

S2
R = 1

N − 1

2∑

i=1

ni∑

j=1

(
Rij −

N + 1
2

)2
. (9.3.4)

With this notation the rank-sum test procedures are as follows:

The Rank-Sum Test Procedures for H0 : µ̃1 = µ̃2

(1) Assumptions: X11, . . . , X1n1 , X21, . . . , X2n2 , are
independent simple random samples and n1, n2 > 8

(2) Test Statistic: ZH0 = R1 − R2√

S2
R

(
1
n1

+ 1
n2

) ,

where R1, R2, and S2
R are given in (9.3.4)

(3) Rejection Rules for the Different Ha:

Ha RR at Level α

µ̃1 − µ̃2 > 0 ZH0 > zα

µ̃1 − µ̃2 < 0 ZH0 < −zα

µ̃1 − µ̃2 ̸= 0 |ZH0 | > zα/2

(4) Formulas for the p-Value:

p-value =

⎧
⎨

⎩

1 − ,(ZH0) for Ha : µ̃1 − µ̃2 > 0
,(ZH0) for Ha : µ̃1 − µ̃2 < 0
2
[
1 − ,(|ZH0 |)

]
for Ha : µ̃1 − µ̃2 ̸= 0

where , is the cumulative distribution function of the
standard normal distribution

(9.3.5)

REMARK 9.3-1

(a) The alternative µ̃1 − µ̃2 > 0 is also commonly stated as P(X1 > X2) > 0.5.
Expressed this way, the alternative means that an observation from popula-
tion 1 is more likely to be larger than an observation from population 2 than
vice-versa. The left-sided and two-sided alternatives can also be expressed
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as P(X1 > X2) < 0.5 and P(X1 > X2) ̸= 0.5, respectively, with similar
interpretations.

(b) In the case of no ties, an alternative (and easier to compute) form of the
standardized rank-sum statistic is

ZH0 =
√

12
n1n2(N + 1)

(
W1 − n1

N + 1
2

)
.

In the case of ties, an alternative form of the standardized rank-sum statistic is

ZH0 =
[

n1n2(N + 1)
12

− n1n2
∑

k dk(d2
k − 1)

12N(N − 1)

]−1/2 (
W1 − n1

N + 1
2

)
,

where the summation is over all groups of tied observations in the combined
sample, and dk is the number of tied observations at the kth group.

(c) The Mann-Whitney form of the rank-sum statistic is computed as the number
of pairs (X1i, X2j) for which X1i > X2j; pairs for which X1i = X2j count as 0.5.
While this number, called W in the R output, is different from the rank-sum
statistic W1 given in (9.3.3), the two are equivalent in the sense that they lead
to the same inference, that is, same p-value and CIs.

(d) The rank-sum test procedure is easily adapted for testing H0 : µ̃1 − µ̃2 = '0
against the various alternatives. To do so, modify sample 1 by subtracting '0
from each observation in sample 1, that is, form X11 − '0, . . . , X1n1 − '0, and
apply the procedure (9.3.5) to the modified sample 1 and sample 2. ▹

With the data from populations 1 and 2 in the R objects x1 and x2, respectively, the
following R commands return the Mann-Whitney form of the rank-sum statistic (see
Remark (9.3-1)(c)), and the p-value for testing the null hypothesis in (9.3.1) against
the different alternatives.

R Commands for the Rank-Sum Test for H0 : µ̃ − µ̃2 = (0

wilcox.test(x1, x2, mu='0, alternative=”greater”)
# if Ha : µ̃1 − µ̃2 > '0

wilcox.test(x1, x2, mu='0, alternative=”less”)
# if Ha : µ̃1 − µ̃2 < '0

wilcox.test(x1, x2, mu='0, alternative=”two.sided”)
# if Ha : µ̃1 − µ̃2 ̸= '0

In the above commands, the default value of µ is zero, and the default alternative is
”two.sided”. Thus, wilcox.test(x1, x2) tests HF

0 : F1 = F2 (or H0 : µ̃1 = µ̃2) against
Ha : µ̃1 ̸= µ̃2. Occasionally, the data file has both samples stacked in a single data
column, with a second column indicating the sample index of each observation in
the data column. If the data and sample index columns are in the R objects x and s,
respectively, use x ∼ s instead of x1, x2 in any of the above commands. A (1−α)100%
CI for µ̃1 − µ̃2 (one-sided if the alternative is specified as ”greater” or ”less”, and
two-sided if the default alternative is chosen) can be obtained by adding conf.int=T,
conf.level=1-α in any of the commands. For example wilcox.test(x1, x2, conf.int=T)
will also return a 95% CI, while wilcox.test(x1, x2, conf.int=T, conf.level=0.9) will
return a 90% CI. (If there are ties in the data, R gives a warning that the p-value and
the level of the CI are not exact.)
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Example
9.3-1

The sputum histamine levels (in µg/g) from a sample of size 9 allergic individuals
and 13 non-allergic individuals4 are as follows:

Allergic 67.7, 39.6, 1,651.0, 100.0, 65.9, 1,112.0, 31.0, 102.4, 64.7

Non-Allergic 34.3, 27.3, 35.4, 48.1, 5.2, 29.1, 4.7, 41.7, 48.0, 6.6, 18.9, 32.4, 45.5

Is there a difference between the two populations? Test at level α = 0.01, and use
R commands to construct a 95% CI for the median of the difference between the
histamine levels of an allergic and non-allergic individual.

Solution
The data set for allergic individuals contains a couple of huge outliers, so the nor-
mality assumption is untenable. Because both sample sizes are larger than 8, we can
use the test procedure in (9.3.5). Moreover, since there are no ties, the simpler for-
mula for ZH0 given in Remark 9.3-1(b) can be used. The ranks of the observations of
sample 1 (allergic individuals) are R11 = 18, R12 = 11, R13 = 22, R14 = 19, R15 = 17,
R16 = 21, R17 = 7, R18 = 20, R19 = 16. Thus W1 = ∑

j R1j = 151 and the test statistic

ZH0 = 151 − 9(23)/2
√

9(13)(23)/12
= 3.17

yields a p-value of 2[1 − ,(3.17)] = 0.0015. Thus H0 is rejected in favor of
Ha : µ̃1 ̸= µ̃2. For the sake of illustration, we recalculate ZH0 using the unified
formula given in (9.3.5). This is most easily done using R commands. With the data
from sample 1 and 2 in the R objects x1 and x2, respectively, the commands

n1=9; n2=13; N=n1+n2; x=c(x1, x2); r=rank(x)

w1=sum(r[1:n1]); w2=sum(r[n1+1:n2])

s2r=sum((r-(N+1)/2)ˆ2)/(N-1); z=(w1/n1-w2/n2)

/sqrt(s2r*(1/n1+1/n2)); z

return the same value for ZH0 . Finally, the R command wilcox.test(x1, x2, conf.int=T)
returns an exact p-value of 0.000772, and a 95% CI for the median of the difference
between the histamine levels of an allergic and a non-allergic individual of (22.2,
95.8).

Exercises

1. An article reports on a cloud seeding experiment con-
ducted to determine whether cloud seeding with silver
nitrate increases rainfall.5 Out of 52 clouds, 26 were ran-
domly selected for seeding, with the remaining 26 serving
as controls. The rainfall measurements, in acre-feet, are
given in CloudSeedingData.txt. State the null and the
alternative hypotheses and use R commands to (i) carry
out the test at α = 0.05, and (ii) construct a 95% CI for
the median of the difference in rainfall between a seeded
and an unseeded cloud.

2. Six water samples taken from the eastern part of a lake
and seven taken from the western part are subjected to a
chemical analysis to determine the percent content of a
certain pollutant. The data are as shown below:

Eastern Part 1.88 2.60 1.38 4.41 1.87 2.89

Western Part 1.70 3.84 1.13 4.97 0.86 1.93 3.36

Is the pollutant concentration on the two sides of the lake
significantly different at α = 0.1?

4 S. K. Hong, P. Cerretelli, J. C. Cruz, and H. Rahn (1969). Mechanics of respiration during submersion in water,
J. Appl. Physiol., 27(4): 535–538.
5 J. Simpson, A. Olsen, and J. C. Eden (1975). A Bayesian analysis of a multiplicative treatment effect in weather
modification, Technometrics, 17: 161–166.
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(a) State the appropriate null and alternative hypothe-
ses. Is the test procedure (9.3.5) recommended for this
data set? Justify your answer.

(b) Use R commands to (i) carry out the test, and (ii)
construct a 95% CI for the median of the difference
between a measurement from the eastern part of the
lake and one from the western part.

3. An article reports on a study using high tempera-
ture strain gages to measure the total strain amplitude
('εm/2) of different types of cast iron for use in disc
brakes.6 The results for spheroidal graphite (SG) and
compacted graphite (CG), multiplied by 10,000, are given
below:

SG 105 77 52 27 22 17 12 14 65

CG 90 50 30 20 14 10 60 24 76

Are the total amplitude strain properties of the differ-
ent types of cast iron significantly different at level of
significance α = 0.05?
(a) State the appropriate null and alternative hypotheses,

conduct the rank-sum procedure in (9.3.5), and com-
pute the p-value. (You may use the R commands given
in Example 9.3-1 instead of hand calculations.)

(b) Use R commands to (i) carry out the test on the basis
of the exact p-value, and (ii) construct a 95% CI for

the median of the difference between a measurement
from SG and one from CG cast iron.

4. One of the variables measured during automobile
driver-side crash tests with dummies is the left femur
load (the femur is the largest and strongest bone in
the human body, situated between the pelvis and the
knee). The data file FemurLoads.txt gives left femur
load measurements for vehicles of 2800 lb (type 1 vehi-
cles) and 3200 lb (type 2 vehicles).7 Are the Femur
loads for the two types of cars significantly different at
level 0.1?
(a) Construct a boxplot for each of the two data sets, and

comment on whether or not the normality assumption
is tenable.

(b) State the appropriate null and alternative hypotheses,
then use R commands to (i) carry out the test, and
(ii) construct a 95% CI for the median of the differ-
ence between a femur load measurement from a type
1 vehicle and one from a type 2 vehicle.

5. Consider the data set and testing problem given in
Exercise 3 in Section 9.2, and compare the p-values
obtained from the T test and the MWW rank-sum test.
Next, compare the 90% CI obtained through the rank-
sum procedure and with the 90% T CI. Use R commands
to obtain all p-values and CIs.

9.4 Comparing Two Variances
Let X11, . . . , X1n1 and X21, . . . , X2n2 denote the samples from populations 1 and 2,
respectively. We will present two procedures for testing the equality of the two vari-
ances, Levene’s test and the F test. The former is a more generally applicable test
procedure, while the latter requires the normality assumption.

9.4.1 LEVENE’S TEST

Levene’s test (also called the Brown-Forsythe test) is based on the idea that if σ 2
1 =

σ 2
2 , then the induced samples

V1j = |X1j − X̃1|, j = 1, . . . , n1, and V2j = |X2j − X̃2|, j = 1, . . . , n2,

where X̃i is the sample median of Xi1, . . . , Xini for i = 1, 2, have equal population
means and variances. Moreover, if σ 2

1 > σ 2
2 , then the population mean µV1 of the V1

sample will be larger than the population mean µV2 of the V2 sample. Thus, testing
H0 : σ 2

1 = σ 2
2 versus Ha : σ 2

1 > σ 2
2 or Ha : σ 2

1 < σ 2
2 or Ha : σ 2

1 ̸= σ 2
2 can be performed

by testing the hypothesis HV
0 : µV1 = µV2 versus

HV
a : µV1 > µV2 or HV

a : µV1 < µV2 or HV
a : µV1 ̸= µV2 ,

6 F. Sherratt and J. B. Sturgeon (1981). Improving the thermal fatigue resistance of brake discs, Materials,
Experimentation and Design in Fatigue: Proceedings of Fatigue 1981: 60–71.
7 Data from the National Transportation Safety Administration, reported in http://lib.stat.cmu.edu/DASL.

http://lib.stat.cmu.edu/DASL
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respectively, using the two-sample T test with pooled variance, that is, the procedure
(9.2.17) based on the statistic TEV

H0
given in (9.2.14), using the two V samples.

The R function levene.test, which is available in the R package lawstat (to
install it use install.packages(”lawstat”)), performs Levene’s test for testing H0 :
σ 2

1 = σ 2
2 versus Ha : σ 2

1 ̸= σ 2
2 . With the two samples in the R objects x1, x2, the

R commands

library(lawstat)
x=c(x1, x2); ind=c(rep(1, length(x1)), rep(2, length(x2)));

levene.test(x, ind)
(9.4.1)

return the square of the test statistic TEV
H0

evaluated on the two induced V samples
and the p-value for the two-sided alternative Ha : σ 2

1 ̸= σ 2
2 . Alternatively, the R

commands

v1=abs(x1-median(x1)); v2=abs(x2-median(x2));
t.test(v1, v2, var.equal=T)

(9.4.2)

return the value of TEV
H0

evaluated on the two induced V samples and the same p-
value, that is, for the two-sided alternative, as the levene.test function. Moreover,
by adding alternative=”greater” or ”less” one obtains the p-value for one-sided
alternatives.

Example
9.4-1

Numerous studies have shown that cigarette smokers have a lower plasma concen-
tration of ascorbic acid (vitamin C) than nonsmokers. Given the health benefits
of ascorbic acid, there is also interest in comparing the variability of the con-
centration in the two groups. The following data represent the plasma ascorbic
acid concentration measurements (µmol/l) of five randomly selected smokers and
nonsmokers:

Nonsmokers 41.48 41.71 41.98 41.68 41.18

Smokers 40.42 40.68 40.51 40.73 40.91

Test the hypothesis H0 : σ 2
1 = σ 2

2 versus Ha : σ 2
1 ̸= σ 2

2 at α = 0.05.

Solution
Here the two medians are X̃1 = 41.68, X̃2 = 40.68. Subtracting them from their
corresponding sample values, and taking the absolute values, we obtain the two V
samples:

V1 Values for Nonsmokers 0.20 0.03 0.30 0.00 0.50

V2 Values for Smokers 0.26 0.00 0.17 0.05 0.23

The two-sample test statistic TEV
H0

evaluated on the two induced V samples takes a
value of 0.61. With 8 degrees of freedom, this corresponds to a p-value of 0.558. Thus,
there is not enough evidence to reject the null hypothesis of equality of the two popu-
lation variances. Instead of using hand calculations, the two samples can be imported
into R with the commands x1=c(41.48, 41.71, 41.98, 41.68, 41.18); x2=c(40.42, 40.68,
40.51, 40.73, 40.91) and then we can use either of the commands in (9.4.1) or (9.4.2)
to get the same p-value.
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9.4.2 THE F TEST UNDER NORMALITY

The F test for equality of two population variances derives its name from the class of
F distributions, which was introduced in Section 8.3.4. When the two samples have
been drawn from normal populations, the exact distribution of the ratio of the two
sample variances is a multiple of an F distribution. This fact, which is the basis for
the F test, is stated precisely in the following theorem.

Theorem
9.4-1

Let X11, . . . , X1n1 and X21, . . . , X2n2 be two independent random samples from nor-
mal populations with variances σ 2

1 and σ 2
2 , respectively, and let S2

1 and S2
2 denote

the two sample variances. Then

S2
1/σ

2
1

S2
2/σ

2
2

∼ Fn1−1, n2−1,

that is, the ratio has an F distribution with ν1 = n1 − 1 and ν2 = n2 − 1 degrees of
freedom.

This result suggests that H0 : σ 2
1 = σ 2

2 can be tested using the statistic

FH0 = S2
1

S2
2

. (9.4.3)

Indeed, if H0 : σ 2
1 = σ 2

2 is true then FH0 ∼ Fν1, ν2 , but if σ 2
1 > σ 2

2 then FH0 will tend
to take a larger value than would have been anticipated under the null hypothesis.
Similarly, if σ 2

1 < σ 2
2 then FH0 will tend to take a smaller value (or, equivalently,

1/FH0 = S2
2/S2

1 would tend to take a larger value) than would have been anticipated
under the null hypothesis. This leads to the following rejection rules and formulas
for the p-value when testing H0 : σ 2

1 = σ 2
2 against the different alternatives.

The F Test Procedures for H0 : σ 2
1 = σ 2

2

(1) Assumption: X11, . . . , X1n1 and X21, . . . , X2n2 are
independent samples from normal populations

(2) Test Statistic: FH0 = S2
1

S2
2

.

(3) Rejection Rules for the Different Ha:

Ha RR at Level α

σ 2
1 > σ 2

2 FH0 > Fn1−1,n2−1; α

σ 2
1 < σ 2

2
1

FH0

> Fn2−1,n1−1; α

σ 2
1 ̸= σ 2

2 either FH0 > Fn1−1,n2−1; α/2

or
1

FH0

> Fn2−1,n1−1; α/2

where Fν1,ν2;α denotes the (1 − α)100th percentile of the
Fν1, ν2 distribution

(9.4.4)
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(4) Formulas for the p-Value:

p-value =

⎧
⎪⎪⎨

⎪⎪⎩

p1 = 1 − Fn1−1, n2−1(FH0 ) for Ha : σ 2
1 > σ 2

2

p2 = 1 − Fn2−1, n1−1(1/FH0 ) for Ha : σ 2
1 < σ 2

2

2[min(p1, p2)] for Ha : σ 2
1 ̸= σ 2

2

where Fν1, ν2 denotes the CDF of the Fν1, ν2 distribution

Percentiles Fν1, ν2;α can be obtained with the R command qf(1-α, ν1, ν2).
Moreover, pf(x, ν1, ν2) gives Fν1, ν2 (x), that is, the CDF Fν1, ν2 evaluated at x.

With the data from populations 1 and 2 in the R objects x1 and x2, respectively,
the following R commands return the F test statistic and the p-value for testing
H0 : σ 2

1 = σ 2
2 against the different alternatives.

R Commands for the F Test for H0 : σ21 = σ22

var.test(x1, x2, alternative=”greater”) # if Ha : σ21 > σ22

var.test(x1, x2, alternative=”less”) # if Ha : σ21 < σ22

var.test(x1, x2, alternative=”two.sided”) # if Ha : σ21 ̸= σ22

In the above commands the default alternative is ”two.sided”. Occasionally, the data
file has both samples stacked in a single data column, with a second column indicat-
ing the sample index of each observation in the data column. If the data and sample
index columns are in the R objects x and s, respectively, use x∼s instead of x1, x2
in any of the above commands. The above commands will also return a 95% CI for
σ 2

1 /σ 2
2 (one-sided if the alternative is specified as ”greater” or ”less”, and two-sided

if the default alternative is chosen). A (1 − α)100% CI can be obtained by adding
conf.level=1-α in any of the commands. For example var.test(x1, x2, conf.level=0.9)
will return a 90% CI.

Example
9.4-2

Consider the data and testing problem described in Example 9.4-1, and assume that
the underlying populations are normal.

(a) Test H0 : σ 2
1 = σ 2

2 versus Ha : σ 2
1 ̸= σ 2

2 using the F test procedure (9.4.4).
(b) Implement the F test procedure using R commands, and report the 95% CI

for σ 2
1 /σ 2

2 .

Solution
(a) The test statistic is

FH0 = 0.08838
0.03685

= 2.40.

The value 2.4 corresponds to the 79th percentile of the F distribution with
ν1 = 4 and ν2 = 4 degrees of freedom. Thus, noting also that 1 − F4, 4(2.4) <

1 − F4, 4(1/2.4), the p-value is 2(1 − 0.79) = 0.42.
(b) The commands x1=c(41.48, 41.71, 41.98,41.68, 41.18); x2=c(40.42, 40.68, 40.51,

40.73, 40.91); var.test(x1, x2) return 2.3984 and 0.4176 for the F statistic and
p-value, respectively. Rounded to two decimal places, these values match those
obtained in part (a). In addition, the above commands return (0.25, 23.04) as
a 95% CI for σ 2

1 /σ 2
2 .
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Exercises

1. Consider the information given in Exercise 3 in
Section 9.3, and apply Levene’s test to test the equality
of the two variances against the two-sided alternative at
level α = 0.05.

2. Consider the information given in Exercise 1 in
Section 9.2, and apply the F test to test for the equal-
ity of the two variances against the two-sided alternative

at level α = 0.05. What assumptions are needed for the
validity of this test?

3. Consider the information given in Exercise 3 in
Section 9.2, and apply the F test to test for the equal-
ity of the two variances against the two-sided alternative
at level α = 0.05. What assumptions are needed for the
validity of this test?

9.5 Paired Data
9.5.1 DEFINITION AND EXAMPLES OF PAIRED DATA

Paired data arise from an alternative sampling design used for the comparison of
two population means. In particular, such data arise whenever each of n randomly
chosen experimental units (subjects or objects) yields two measurements, one from
each of the two populations whose means are to be compared. This section develops
CIs and test procedures for the comparison of two means using paired data. The
following examples highlight two contexts where such data arise.

Example
9.5-1

A certain lake has been designated for pollution clean-up. One way to assess the
effectiveness of the clean-up measures is to randomly select a number n of locations
from which water samples are taken and analyzed both before and after the clean-
up. The n randomly chosen locations are the experimental units, each of which yields
two measurements. This results in paired data. Another way of designing the com-
parative study is to select a random sample of n1 locations from which water samples
are taken to assess the water quality before the clean-up measures, and a differ-
ent random sample of n2 locations which will serve to assess the water quality after
the clean-up measures. The second sampling design will result in two independent
samples, one from each population.

Example
9.5-2

Two different types of materials for making soles for children’s shoes are to be com-
pared for durability. One way of designing this comparative experiment is to make n
pairs of shoes where one (either the left or the right) is randomly selected to be made
with material A, and the other with material B. Then a random sample of n children
is selected and each is fitted with such a pair of shoes. After a certain amount of time,
the shoes are evaluated for wear and tear. In this example, the n children in the sam-
ple are the subjects, and the two treatments are the two types of material. For each
subject there will be two measurements: the quantification of wear and tear in the
shoe made with material A and the corresponding quantification in the shoe made
with material B. This results in paired data. Another way of designing the compara-
tive study is to select a random sample of n1 children who are each fitted with shoes
made with material A and a random sample of n2 children who are each fitted with
shoes made with material B. This will result in two independent samples, one from
each population.

Example
9.5-3

Two different methods for determining the percentage of iron in ore samples are
to be compared. One way of designing this comparative study is to obtain n ore
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samples and subject each of them to the two different methods for determining the
iron content. In this example, the n ore samples are the objects, and the two methods
are the treatments. For each ore sample there will be two measurements, resulting
in paired data. Another way of designing the comparative study is to obtain n1 ore
samples to be evaluated with method 1, and, independently, obtain a different set of
n2 ore samples to be evaluated with method 2. This will result in two independent
samples, one from each population.

From the above examples it follows that designs involving paired data have
the potential to eliminate a large part of the uncontrolled variability. In Example
9.5-2, a large part of the uncontrolled variability is due to children having different
weights, walking in different terrains, etc. Fitting the children with pairs of shoes
where one shoe is made with material A and the other with material B eliminates
this source of uncontrolled variability. Similarly, in Example 9.5-3, though the ore
samples come from the same area, individual ore samples may differ in iron content
due to natural variability. Subjecting the same ore samples to each method elimi-
nates this source of uncontrolled variability. Elimination of uncontrolled variability
means that we can achieve a more accurate comparison with smaller sample sizes.
Thus, comparative studies should be designed to yield paired data whenever it is
reasonable to expect that such a design can eliminate a large part of the uncon-
trolled variability. A popular class of designs yielding paired data are the so-called
before-after designs that are used to evaluate the effectiveness of a treatment or
program. See Example 9.5-1 for an application of such a design in the evaluation
of the effectiveness of a clean-up program in reducing pollution. Other applica-
tions include the evaluation of the effectiveness of a new diet in reducing weight,
and the effectiveness of a political speech in changing public opinion on a certain
matter.

Because the two samples are derived from the same set of experimental units,
they are not independent. As a consequence, the procedures described in Sections
9.2 and 9.3 for constructing CIs and tests for the difference of two population
means and two proportions, which assume that the two samples are independent,
cannot be used. The adaptation of these procedures to paired data is discussed in
the next sections. An alternative procedure, the signed-rank test, which is applica-
ble without the normality assumption even with a small sample size, will also be
discussed.

9.5.2 THE PAIRED DATA T TEST

Let X1i denote the observation on experimental unit i receiving treatment 1, and X2i
denote the observation on experimental unit i receiving treatment 2. Thus, experi-
mental unit i contributes the pair of observations (X1i, X2i) to the data set, which can
be put in the form

(X11, X21), . . . , (X1n, X2n).

Because they are associated with the same experimental unit, X1i and X2i are
not independent. This, in turn, implies that the sample averages X1 and X2 are not
independent. Hence, the formula for the estimated standard error of the sample
contrast X1 − X2, that is,

σ̂X1−X2
=

√
S2

1
n1

+ S2
2

n2
,
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where S2
1, S2

2 are the sample variances from populations 1, 2, respectively, does not
apply because the standard error also involves the covariance of X1 and X2; see
Proposition 4.4-4. We will now describe a way of estimating the standard error of
the sample contrast without estimating the covariance of X1 and X2.

Let Di = X1i −X2i denote the difference of the two observations on the ith unit,
i = 1, . . . , n. For example, if each of 12 ore samples are analyzed by both methods in
the context of Example 9.5-3, the paired data and differences Di are shown below:

Ore Sample Method A Method B D

1 38.25 38.27 −0.02

2 31.68 31.71 −0.03
...

...
...

...

12 30.76 30.79 −0.03

Set D, S2
D for the sample average and sample variance, respectively, of the Di, that is,

D = 1
n

n∑

i=1

Di, S2
D = 1

n − 1

n∑

i=1

(
Di − D

)2
. (9.5.1)

Thus, the estimated standard error of D is σ̂D = SD/
√

n. However,

D = X1 − X2.

Hence, the standard error of X1 − X2 is the same as the standard error of D, that is,

σ̂X1−X2
= σ̂D = SD√

n
. (9.5.2)

Moreover, the population mean of the differences Di is

µD = E(Di) = E(X1i) − E(X2i) = µ1 − µ2,

which means that a CI for µ1 − µ2 is the same as a CI for µD, which can be con-
structed as described in Chapter 7. Similarly, H0 : µ1 − µ2 = '0 is true if and only if
H̃0 : µD = '0, which can be tested with the procedures described in Chapter 8. This
leads to the following paired T test procedures and confidence intervals for µ1 − µ2.

The Paired T Test Procedures and CIs

(1) Assumptions: The differences Di = X1i − X2i, i = 1, . . . , n,
are independent, and either normal or n ≥ 30

(2) (1 − α)100% CI for µ1 − µ2: D ± tn−1,α/2

√
S2

D
n

,

where S2
D is given in (9.5.1)
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(3) Test Statistic for H0 : µ1 − µ2 = '0: TH0 = D − '0√
S2

D/n
,

where S2
D is given in (9.5.1)

(4) Rejection Rules for the Different Ha:

Ha RR at Level α

µ1 − µ2 > '0 TH0 > tn−1,α
µ1 − µ2 < '0 TH0 < −tn−1,α
µ1 − µ2 ̸= '0 |TH0 | > tn−1,α/2

(5) Formulas for the p-Value:

p-value =

⎧
⎪⎨

⎪⎩

1 − Gn−1(TH0 ) for Ha : µ1 − µ2 > '0

Gn−1(TH0 ) for Ha : µ1 − µ2 < '0

2
[
1 − Gn−1(|TH0 |)

]
for Ha : µ1 − µ2 ̸= '0

where Gn−1 is the CDF of Tn−1

(9.5.3)

With the data from populations 1 and 2 in the R objects x1 and x2, respectively, the
R commands for computing the paired T statistic, TH0 , and p-value, are

R Commands for the Paired T Test for H0 : µ1 − µ2 = (0

t.test(x1, x2, mu='0, paired=T, alternative=”greater”)
# if Ha : µ1 − µ2 > '0

t.test(x1, x2, mu='0, paired=T, alternative=”less”)
# if Ha : µ1 − µ2 < '0

t.test(x1, x2, mu='0, paired=T, alternative=”two.sided”)
# if Ha : µ1 − µ2 ̸= '0

Occasionally, the data file has both samples stacked in a single data column, with
a second column indicating the sample index of each observation in the data column.
If the data and sample index columns are in the R objects x and s, respectively, use
x∼s instead of x1, x2 in any of the above commands. These R commands will also
return a CI for µ1 − µ2 (one-sided CIs if alternative=”greater” or ”less”, and the
CIs shown in (9.5.3) if alternative=”two.sided”). The default confidence level is 95%,
but a (1 − α)100% CI can be obtained by adding conf.level=1-α in any of these
commands; for example, t.test(x1, x2, conf.level = 0.99) gives the 99% CI shown in
(9.5.3).

Example
9.5-4

Consider the study for comparing two methods for determining the iron content in
ore samples described in Example 9.5-3. A total of 12 ore samples are analyzed by
both methods, producing the paired data that yield D = −0.0167 and SD = 0.02645.
Is there evidence that method B gives a higher average percentage than method A?
Test at α = 0.05, compute the p-value, and state any needed assumptions.

Solution
The appropriate null and alternative hypotheses are H0 : µ1 − µ2 = 0 and Ha :
µ1 − µ2 < 0. Because the sample size is small, we must assume normality. The test
statistic is
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TH0 = D
SD/

√
n

= −0.0167

0.02645/
√

12
= −2.1872.

Since TH0 < −t11,0.05 = −1.796, H0 is rejected. According to the formula in (9.5.3),
the p-value is G11(−2.1865) = 0.026.

Example
9.5-5

Changes in the turbidity of a body of water are used by environmental or soil
engineers as an indication that surrounding land may be unstable, which allows sed-
iments to be pulled into the water. Turbidity measurements using the Wagner test,
from 10 locations around a lake taken both before and after a land-stabilization
project, can be found in Turbidity.txt. Is there evidence that the land-stabilizing
measures have reduced the turbidity?

(a) Using R commands test the appropriate hypothesis at level α = 0.01, give the
p-value, and construct a 99% CI. What assumptions, if any, are needed for the
validity of this procedure?

(b) Conduct the test and CI assuming that the two samples are independent and
compare the results with those obtained in part (a). Use the default statistic
that does not assume equal variances.

Solution
(a) Having read the data into the R data frame tb, the command t.test(tb$Before,

tb$After, paired=T, alternative=”greater”) returns the paired T statistic,
degrees of freedom, and p-value of 8.7606, 9, and 5.32 × 10−06, respectively.
The p-value is much smaller than the chosen level of significance, and thus
the null hypothesis is rejected. Because of the small sample size, the normality
assumption is needed for the validity of the procedure. Repeating the com-
mand with the default alternative and confidence level specification of 0.99,
that is, t.test(tb$Before, tb$After, paired=T, conf.level=0.99), returns a 99% CI
of (1.076, 2.344).

(b) Without ”paired=T ”, the first of the two R commands in part (a) returns the
two-sample T statistic, degrees of freedom, and p-value of 0.956, 17.839, and
0.1759, respectively. Now the p-value is large enough that the null hypothesis
cannot be rejected even at level 0.1. Next, the second of the two commands
in (a) without ”paired=T ” returns a 99% CI of (−3.444, 6.864). It is seen that
the p-value is radically different from that obtained in part (a) and leads to
a different hypothesis-testing decision. Similarly, the 99% CI is radically dif-
ferent from that obtained in part (a). This highlights the need to apply the
appropriate procedure to each data set.

9.5.3 THE PAIRED T TEST FOR PROPORTIONS

When the paired observations consist of Bernoulli variables, each pair (X1j, X2j) can
be either (1, 1) or (1, 0) or (0, 1) or (0, 0). To illustrate, consider the before-after
example where a random sample of n voters are asked, both before and after a
presidential speech, whether or not they support a certain policy. Thus, X1j takes
the value 1 if the jth voter is in favor of the policy before the President’s speech and
0 otherwise, while X2j = 1 or 0 according to whether or not the same voter is in
favor of the policy after the speech. Since E(X1j) = p1, which is the probability that
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X1j = 1, and E(X2j) = p2, which is the probability that X2j = 1, the paired T test
procedure and CIs of (9.5.3) pertain to p1 − p2. Note that

X1 = p̂1, X2 = p̂2, D = p̂1 − p̂2. (9.5.4)

Also, as before, S2
D/n, where S2

D is given in (9.5.1) correctly estimates the variance
of p̂1 − p̂2.

In spite of these similarities to the general case, two issues deserve special men-
tion in the case of Bernoulli variables. The first has to do with a different sample size
requirement; this is stated in (9.5.9). The second issue is computational. This issue
arises because, in the case of Bernoulli variables, it is customary to present the data
in the form of a summary table like the following

After

1 0

Before
1 Y1 Y2

0 Y3 Y4

(9.5.5)

where “Before” refers to the first coordinate (observation) of a pair and “After”
refers to the second. Thus, Y1 is the number of pairs (X1j, X2j) whose coordinates
are both 1, that is, the number of (1, 1) pairs, Y2 is the number of (1, 0) pairs, and so
forth. Clearly, Y1 + Y2 + Y3 + Y4 = n. To construct CIs for p1 − p2 and to compute
the test statistic in (9.5.3) note first that

Y1 + Y2

n
= p̂1,

Y1 + Y3

n
= p̂2. (9.5.6)

Thus, from (9.5.4) and (9.5.6) it follows that

D = Y2 − Y3

n
. (9.5.7)

Expressing S2
D in terms of the Yi’s requires some algebra. Omitting the details, we

have

n − 1
n

S2
D = 1

n

n∑

i=1

(Di − D)2 = q̂2 + q̂3 − (̂q2 − q̂3)2, (9.5.8)

where q̂2 = Y2/n, q̂3 = Y3/n. Paired data CIs and tests for p1 − p2 are conducted
according

Computation of TH0 and Sample Size Requirement for the Procedures in
(9.5.3) with Bernoulli Variables

(1) Sample Size Requirement: The numbers n10 and n01 of (1, 0)
and (0, 1) pairs, respectively, must satisfy n10 + n01 ≥ 16

(2) Test Statistic for H0 : p1 − p2 = '0:

TH0 = (̂q2 − q̂3) − '0√
(̂q2 + q̂3 − (̂q2 − q̂3)2)/(n − 1)

,

where q̂2 = Y2/n, q̂3 = Y3/n with the Yk depicted in (9.5.5)

(9.5.9)
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to (9.5.3) by replacing D and S2
D with the expressions in (9.5.7) and (9.5.8). The

resulting form of the paired data test statistic and new sample size requirement are
given in (9.5.9).

McNemar’s Test For testing H0 : p1 − p2 = 0, a variation of the paired T test
statistic for proportions bears the name of McNemar’s test. The variation consists of
omitting the term (̂q2 − q̂3)2 in the denominator of (9.5.9) and using n instead of
n − 1. Thus, McNemar’s test statistic is

McNemar’s Statistic MN = (̂q2 − q̂3)
√

(̂q2 + q̂3)/n
= Y2 − Y3√

Y2 + Y3
. (9.5.10)

Omission of the term (̂q2 − q̂3)2 is justified on the grounds that, under the null
hypothesis, P((X1j, X2j) = (1, 0)) = P((X1j, X2j) = (0, 1)); that is, the quantity
estimated by q̂2 − q̂3 is zero. Use of such a variance estimator, however, restricts
McNemar’s procedure to testing only for the equality of two proportions, that is,
only in the case where '0 = 0.

Example
9.5-6

To assess the effectiveness of a political speech in changing public opinion on a pro-
posed reform, a random sample of n = 300 voters was asked, both before and after
the speech, if they support the reform. The before-after data are given in the table
below:

After

Yes No

Before
Yes 80 100

No 10 110

Was the political speech effective in changing public opinion? Test at α = 0.05.

Solution
According to (9.5.10) McNemar’s test statistic is

MN = 90√
110

= 8.58,

and according to (9.5.9) the paired T test statistic is

TH0 = 0.3
√

(11/30 − 0.32)/299
= 9.86.

Because of the large sample size we use zα/2 = z0.025 = 1.96 as the critical point.
Since both 8.58 and 9.86 are greater than 1.96, we conclude that the political speech
was effective in changing public opinion.
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9.5.4 THE WILCOXON SIGNED-RANK TEST

The signed-rank test is a one-sample procedure that can be used even with small sam-
ple sizes provided the population distribution is continuous and symmetric. Because
it requires the sample to have come from a symmetric population, the test pertains
to both the mean and the median. If the population distribution is known to be sym-
metric, the signed-rank test is preferable to (i.e., is more powerful than) the sign
test discussed in Section 8.3.5. The assumption of symmetry, however, cannot be
tested effectively with small sample sizes, which is why the signed-rank test was not
discussed in Chapter 8.

The relevance of the signed-rank test to paired data (X1i, X2i), i = 1, . . . , n,
stems from the fact that, if X1i, X2i have the same marginal distributions, that is,
HF

0 : F1 = F2 is true, the distribution of the differences Di = X1i − X2i is symmetric
about zero. Thus, the crucial requirement of symmetry is automatically met for the
differences, and the signed-rank procedure can be used for testing H0 : µD = 0.

The construction of the signed-rank statistic, denoted by S+, involves ranking
the absolute values of the differences Di and taking the sum of the ranks of the
positive Di’s. To appreciate the relevance of S+ for testing H0 : µD = 0, note that
if µD were larger than 0, then more differences Di will tend to be positive and also
the positive differences will tend to be larger than the absolute value of the negative
differences. Thus, S+ will tend to take larger values if the alternative Ha : µ > 0 is
true. Similarly, S+ will tend to take smaller values if the alternative Ha : µ < 0 is
true. To test Ha : µ = '0 against the different alternatives, '0 is subtracted from the
Di. A detailed description of the signed-rank test procedure is given in the display
(9.5.11) below.

The signed-rank statistic shares the property of the rank-sum statistic that its
exact null distribution does not depend on the continuous distribution of the Di.
Thus, it can be carried out even with small sample sizes with the use of tables or a
software package.

With the data from populations 1 and 2 in the R objects x1 and x2, respectively,
the R command wilcox.test, given in Section 9.3, with the paired=T specification,
returns the signed-rank statistic and the p-value for testing the null hypothesis H0 :
µD = '0 against the different alternatives. The paired=T specification should be
omitted if only the differences (d=x1-x2) are used as input. Moreover, a (1−α)100%
CI for µD (one-sided if the alternative is specified as ”greater” or ”less” and two-
sided if the default alternative is chosen) can be obtained by adding conf.int=T,
conf.level=1-α. The procedure for hand calculation of the signed-rank test statistic
and p-value is given in (9.5.11).

The Signed-Rank Test Procedures for H0 : µD = (0

(1) Assumptions: The pairs (X1i, X2i), i = 1, . . . , n, are iid
with continuous marginal distributions; n ≥ 10

(2) Construction of the Signed-Rank Statistic S+:
(a) Rank the absolute differences |D1 − '0|, . . . , |Dn − '0| from

smallest to largest. Let Ri denote the rank of |Di − '0|
(b) Assign to Ri the sign of Di − '0
(c) Let S+ be the sum of the ranks Ri with positive sign

(3) Test Statistic: ZH0 =

(
S+ − n(n + 1)

4

)

√
n(n + 1)(2n + 1)/24

(9.5.11)
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(4) Rejection Rules for the Different Ha:

Ha RR at Level α

µD > '0 ZH0 > zα

µD < '0 ZH0 < −zα

µD ̸= '0 |ZH0 | > zα/2

(5) Formulas for the p-Value:

p-value =

⎧
⎪⎨

⎪⎩

1 − ,(ZH0) for Ha : µD > 0

,(ZH0) for Ha : µD < 0

2
[
1 − ,(|ZH0 |)

]
for Ha : µD ̸= 0

where , is the CDF of the standard normal distribution

Example
9.5-7

The octane ratings of 12 gasoline blends were determined by two standard methods.
The 12 differences Di are given in the first row of the table below.

Di 2.1 3.5 1.7 0.2 −0.6 2.2 2.5 2.8 2.3 6.5 −4.6 1.6

|Di | 2.1 3.5 1.7 0.2 0.6 2.2 2.5 2.8 2.3 6.5 4.6 1.6

Ri 5 10 4 1 2 6 8 9 7 12 11 3

Signed Ri 5 10 4 1 −2 6 8 9 7 12 −11 3

Is there evidence, at level α = 0.1, that the rating produced by the two methods
differs?

(a) Using hand calculations, carry out the test procedure specified in (9.5.11) and
report the p-value.

(b) Use R commands to obtain the p-value and to construct a 90% CI for µD.

Solution
(a) Rows 2, 3, and 4 of the above table are formed according to the steps in part

(2) of (9.5.11). From this we have S+ = 5+10+4+1+6+8+9+7+12+3 = 65.
Thus

ZH0 = 65 − (156/4)
√

12 × 13 × 25/24
= 65 − 39√

162.5
= 2.04.

The p-value equals 2[1 − ,(2.04)] = 0.04 and thus, H0 is rejected at level
α = 0.1.

(b) With the differences entered in the R object d, that is, with d=c(2.1, 3.5, 1.6, 0.2,
-0.6, 2.2, 2.5, 2.8, 2.3, 6.5, -4.6, 1.6), the R command wilcox.test(d, conf.int=T,
conf.level=0.9) returns a p-value of 0.045 and a 90% CI of (0.8, 2.8).

Exercises

1. A study was conducted to see whether two types of
cars, A and B, took the same time to parallel park. Seven
drivers were randomly obtained and the time required

for each of them to parallel park each of the 2 cars
was measured. The results are listed in the following
table.
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Driver

Car 1 2 3 4 5 6 7

A 19.0 21.8 16.8 24.2 22.0 34.7 23.8

B 17.8 20.2 16.2 41.4 21.4 28.4 22.7

Is there evidence that the time required to parallel park
the two types of car are, on average, different?
(a) Test at α = 0.05 using the paired T test. What assump-

tions are needed for the validity of this test? Comment
on the appropriateness of the assumptions for this
data set.

(b) Test at α = 0.05 using the signed-rank test.

2. Two different analytical tests can be used to determine
the impurity levels in steel alloys. The first test is known
to perform very well but the second is cheaper. A spe-
cialty steel manufacturer will adopt the second method
unless there is evidence that it gives significantly differ-
ent results than the first. Eight steel specimens are cut in
half and one half is randomly assigned to one test and the
other half to the other test. The results are shown in the
following table.

Specimen Test 1 Test 2

1 1.2 1.4

2 1.3 1.7

3 1.5 1.5

4 1.4 1.3

5 1.7 2.0

6 1.8 2.1

7 1.4 1.7

8 1.3 1.6

(a) State the appropriate null and alternative hypotheses.
(b) Carry out the paired data T test at level α = 0.05, and

state whether H0 is rejected or not. Should the spe-
cialty steel manufacturer adopt the second method?

(c) Construct a 95% CI for the mean difference.

3. The percent of soil passing through a sieve is one of
several soil properties studied by organizations such as
the National Highway Institute. A particular experiement
considered the percent of soil passing through a 3/8-inch
sieve for soil taken from two separate locations. It is
known that the percent of soil passing through the sieve
is affected by weather conditions. One measurement on
soil taken from each location was made on each of 32
different days. The data are available in SoilDataNhi.txt.
Is there evidence that the average percent of soil passing
through the sieve is different for the two locations? Use
R commands to complete the following parts.

(a) Enter the data in R and use the paired T procedure
to conduct the test at level α = 0.05, and construct a
95% CI for the difference of the population means.

(b) Use the signed-rank procedure to repeat part (a). Are
the p-values and CIs from the two procedures similar?

(c) Conduct the test and CI using the t.test and wilcox.test
commands without the paired=T specification. How
do the new p-values and CIs compare to those
obtained in parts (a) and (b)?

4. Two brands of motorcycle tires are to be compared
for durability. Eight motorcycles are selected at random
and one tire from each brand is randomly assigned (front
or back) on each motorcycle. The motorcycles are then
run until the tires wear out. The data, in km, are given in
McycleTiresLifeT.txt. Use either hand calculations or R
commands to complete the following parts.
(a) State the null and alternative hypotheses, then use

the paired T test procedure to test the hypothesis
at level α = 0.05 and to construct a 90% CI. What
assumptions are needed for its validity?

(b) Conduct, at level α = 0.05, the signed-rank test.

5. During the evaluation of two speech recognition algo-
rithms, A1 and A2, each is presented with the same
sequence, u1, . . . , un, of labeled utterances for recogni-
tion. The {ui} are assumed to be a random sample from
some population of utterances. Each algorithm makes a
decision about the label of each ui which is either correct
or incorrect. The data are shown below:

A2

Correct Incorrect

A1
Correct 1325 3

Incorrect 13 59

Is there evidence that the two algorithms have different
error rates? Test at α = 0.05 using both the paired T test
procedure and McNemar’s test procedure.

6. To assess a possible change in voter attitude toward
gun control legislation between April and June, a random
sample of n = 260 was interviewed in April and in June.
The resulting responses are summarized in the following
table:

June

No Yes

April
No 85 62

Yes 95 18

Is there evidence that there was a change in voter atti-
tude? Test at α = 0.05 using both the paired T test
procedure and McNemar’s test procedure.



Chapte r

10Comparing k > 2
Populations

10.1 Introduction
This chapter considers the comparison of several population means or proportions.
The basic hypothesis-testing problem in the comparison of k > 2 means is

H0 : µ1 = · · · = µk vs Ha : H0 is not true. (10.1.1)

The alternative Ha is equivalent to the statement that at least one pair of mean
values differs. When the null hypothesis is rejected, the additional question—which
pairs of means differ—arises naturally. Addressing this additional question leads to
the subjects of simultaneous confidence intervals (simultaneous CIs or SCIs) and
multiple comparisons. Moreover, the primary focus of comparative experiments is
often the comparison of specific contrasts instead of the general testing problem
(10.1.1); see Example 1.8-3 for different types of contrasts that might be of interest.
Such specialized comparisons can also be carried out in the framework of multiple
comparisons and simultaneous CIs. Similar comments apply for the comparison of
k > 2 population proportions.

Section 10.2 deals with different methods for testing the basic hypothesis
(10.1.1). Section 10.2.1 describes the analysis of variance (ANOVA) approach.
Testing for a specific contrast and testing for the assumptions needed for the validity
of the ANOVA procedure are also considered. Section 10.2.2 describes the Kruskal-
Wallis test procedure, which extends the rank-sum test to the present setting of
comparing k > 2 populations. Section 10.2.3 describes the chi-square test for the
equality of k > 2 proportions, including its contingency table formulation. Section
10.3 introduces the concepts of simultaneous CIs and multiple comparisons. There
are several methods for performing these procedures, but this chapter (and book)
presents Bonferroni’s and Tukey’s methods, including Tukey’s method on the ranks.
The procedures in Sections 10.2 and 10.3 require that the samples from the k popula-
tions are collected independently. A generalization of the paired data design, which
is discussed in Section 9.5, is the randomized block design. The k samples arising
from randomized block designs are not independent for the same reason that paired
data are not independent. Section 10.4 considers methods for testing the hypothesis
(10.1.1) when the k > 2 samples arise from a randomized block design. These meth-
ods include the ANOVA procedure (Section 10.4.2) and Friedman’s test and the
ANOVA procedure on the ranks (Section 10.4.3). Finally, the Bonferroni and Tukey
methods for simultaneous CIs and multiple comparisons are described in Section
10.4.4.

344
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10.2 Types of k-Sample Tests
10.2.1 THE ANOVA F TEST FOR MEANS

The comparison of the k populations means, µ1, . . . , µk, will be based on k simple
random samples, which are drawn independently, one from each of the populations.
Let

Xi1, Xi2, . . . , Xini , i = 1, . . . , k, (10.2.1)

denote the k samples. Thus, the random sample from population 1 has size n1 with
observations denoted by X11, . . . , X1n1 , the random sample from population 2 has
size n2 with observations denoted by X21, . . . , X2n2 , and so forth. This is the simplest
type of comparative study for which it is common to write a statistical model for the
data. The model can be written as

Xij = µi + ϵij or Xij = µ + αi + ϵij, (10.2.2)

where µ = 1
k

∑k
i=1 µi, αi = µi − µ are the population (or treatment) effects defined

in (1.8.3), and the intrinsic error variables ϵij are independent with zero mean and
variance σ 2

ϵ . Note that the definition of the treatment effects implies that they satisfy
the condition

k∑

i=1

αi = 0. (10.2.3)

The first expression in (10.2.2) is called the mean-plus-error form of the model,
while the second is the treatment effects form. The null hypothesis of equality of the
k means in (10.1.1) is often expressed in terms of the treatment effects as

H0 : α1 = α2 = · · · = αk = 0. (10.2.4)

As mentioned in Section 8.3.4, the ANOVA methodology is based on a decom-
position of the total variability into the variability due to the differences in the
population means (called between groups variability) and the variability due to
the intrinsic error (called within groups variability). As in the regression setting,
variability is represented by the sums of squares, or SS. To define them, set

Xi = 1
ni

ni∑

j = 1

Xij and X = 1
N

k∑

i = 1

ni∑

j = 1

Xij = 1
N

k∑

i = 1

niXi, (10.2.5)

where N = n1 + · · · + nk, for the sample mean from the ith sample and the average
of all observations. The treatment SS and the error SS are defined as follows:

Treatment Sum
of Squares SSTr =

k∑

i = 1

ni(Xi − X)2 (10.2.6)

Error Sum of
Squares

SSE =
k∑

i = 1

ni∑

j = 1

(Xij − Xi)2 (10.2.7)
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It can be shown that SSTr and SSE decompose the total sum of squares, which
is defined as SST = ∑k

i = 1
∑ni

j = 1(Xij − X)2. That is,

SST = SSTr + SSE.

This is similar to the decomposition of the total sum of squares we saw in (8.3.11) for
the construction of the F statistic in the context of simple linear regression.

The ANOVA F test rejects H0 in (10.2.4) if SSTr is large compared to SSE.
For a proper comparison of SSTr and SSE, however, they must be divided by their
respective degrees of freedom, which are (recall that N = n1 +· · ·+nk) given below:

Degrees of Freedom
for SSTr and SSE DFSSTr = k − 1, DFSSE = N − k (10.2.8)

Dividing each of the SSTr and SSE by their degrees of freedom, we obtain the mean
squares for treatment, or MSTr, and the mean squares for error, or MSE, shown
below:

Mean Squares for
Treatment and Error MSTr = SSTr

k − 1
, MSE = SSE

N − k
(10.2.9)

The k-sample version of the pooled variance we saw in (9.2.4), denoted also by
S2

p, is

S2
p = (n1 − 1)S2

1 + · · · + (nk − 1)S2
k

n1 + · · · + nk − k
, (10.2.10)

where S2
i is the sample variance from the ith sample. It is not difficult to verify that

MSE = S2
p. (10.2.11)

The ANOVA F statistic, FH0 , is computed as the ratio of MSTr/MSE. Since
MSE can be computed from the sample variances and MSTr can be computed from
the sample means, it follows that FH0 can be computed from the sample means
and the sample variances of the k samples. Under the assumptions of normality
and homoscedasticity (i.e., σ 2

1 = · · · = σ 2
k ), its exact distribution is known to be

Fk−1, N−k, where N = n1+· · ·+nk. (In the notation introduced in Section 8.3.4, Fν1, ν2
stands both for the F distribution with numerator degrees of freedom ν1 and denom-
inator degrees of freedom ν2 and for its CDF.) The discussion of this paragraph is
summarized in the following display:

ANOVA F Statistic
and Its Null

Distribution for
Homoscedastic

Normal Data

FH0 = MSTr
MSE

∼ Fk−1, N−k (10.2.12)

Under the alternative hypothesis, FH0 tends to take larger values so the p-value
is computed from the formula 1 − Fk−1, N−k(FH0). The F statistic FH0 , its p-value,
and all quantities required for their computation are shown in an ANOVA table in
the form shown below:
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Source DF SS MS F P

Treatment k − 1 SSTr MSTr = SSTr
k − 1

FH0
= MSTr

MSE
1 − Fk−1, N−k (FH0

)

Error N − k SSE MSE = SSE
N − k

Total N − 1 SST

With the k samples stacked in a single data column, called Value, and a second
column, called Sample, indicating the sample membership index of each observation
in the data column, after the data are read into the R data frame df, the following
R command gives the ANOVA table including the value of the F statistic and the
p-value.

R Commands for the ANOVA F Test for H0 : µ1 = · · · = µk

fit=aov(Value∼as.factor(Sample), data=df); anova(fit)

The as.factor designation of the sample membership column Sample is only
needed if the column is numeric, but it can always be used. In the first of the
two examples below, the sample membership column is not numeric and the
as.factor designation can be omitted. The two commands can be combined into one:
anova(aov(Value∼as.factor(Sample), data=df)).

The following display summarizes all assumptions and formulas needed for
implementing the ANOVA F test procedure discussed in this section.

The F Procedure for Testing the Equality of k Means

(1) Assumptions:
(a) For each i = 1, . . . , k, Xi1, . . . , Xini is a simple random sample

from the ith population
(b) The k samples are independent
(c) The k variances are equal: σ 2

1 = · · · = σ 2
k

(d) The k populations are normal, or ni ≥ 30 for all i
(2) Construction of the F Test Statistic:

(a) Compute the sample mean and sample variance of each of
the k samples

(b) Compute SSTr according to (10.2.6), and MSTr as
MSTr=SSTr/DFSSTr, where the degrees of freedom
are given in (10.2.8)

(c) Compute MSE from (10.2.10) and (10.2.11)
(d) Compute FH0 = MSTr/MSE

(3) Rejection Region:
FH0 > Fk−1,N−k,α , where Fk−1,N−k,α is the (1 − α)100th per-
centile of the Fk−1,N−k distribution

(4) p-Value:
p-value = 1 − Fk−1,N−k(FH0)

(10.2.13)

Example
10.2-1

To compare three different mixtures of methacrylic acid and ethyl acrylate for
stain/soil release effectiveness, 5 cotton fabric specimens are treated with each
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mixture and tested. The data are given in FabricSoiling.txt. Do the three mixtures
differ in the stain/soil release effectiveness? Test at level of significance α = 0.05 and
report the p-value. What assumptions, if any, are needed?

Solution
Let µ1, µ2, µ3 denote the average stain/soil release for the three different mixtures.
We want to test H0 : µ1 = µ2 = µ3 vs Ha : H0 is false at α = 0.05. Because of
the small sample sizes, we need to assume that the three populations are normal and
homoscedastic (i.e., have equal variances); methods for testing these assumptions
are described below. Following the steps for computing the F statistic given in the
display (10.2.13), we first compute the three sample means and sample variances:

X1 = 0.918, X2 = 0.794, X3 = 0.938

S2
1 = 0.04822, S2

2 = 0.00893, S2
3 = 0.03537.

This gives an overall mean of X = 0.883 and pooled sample variance of S2
p = MSE =

0.0308. Next, using formula (10.2.6) we obtain SSTr = 0.0608 and MSTr = SSTr/2 =
0.0304. Thus, FH0 = 0.0304/0.0308 = 0.99. The calculations are summarized in the
ANOVA table below. From Table A.6, we find F2,12,0.05 = 3.89. Since 0.98 ̸> 3.89,
the null hypothesis is not rejected. The R command 1-pf(0.99, 2, 12) returns a p-value
of 0.4.

Source DF SS MS F P

Treatment k − 1 = 2 0.0608 0.0304 0.99 0.4

Error N − k = 12 0.3701 0.0308

Total N − 1 = 14 0.4309

With the data read into the R data fame df, the R commands

anova(aov(Value∼Sample, data=df))

returns the same ANOVA table.

Testing for a Particular Contrast Instead of the basic, overall hypothesis of equality
of all k means, interest often lies in testing for specialized contrasts. The concept
of a contrast was discussed in Section 1.8; see Example 1.8-3 for some examples of
contrasts that arise in the comparison of k means. In general, a contrast of the k
means, µ1, . . . , µk, is any linear combination

θ = c1µ1 + · · · + ckµk (10.2.14)

of these means whose coefficients sum to zero, that is, c1 +· · ·+ck = 0. For example,
the two sets of coefficients

(1, −1, 0, . . . , 0) and
(

1, − 1
k − 1

, . . . , − 1
k − 1

)

define the contrasts µ1−µ2 and µ1−(µ2+· · ·+µk)/(k−1), respectively. The first con-
trast compares only the first two means, while the second compares the first with the
average of all other means. The basic, or overall, null hypothesis H0 : µ1 = · · · = µk
implies that all contrasts are zero. [To see this note that, under H0, any contrast of
the form (10.2.14) can be written as µ(c1 + · · · + ck), where µ denotes the common
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value of µ1, . . . , µk; hence, by the definition of a contrast, it is zero.] However, test-
ing for individual contrasts is more powerful than the overall ANOVA F test. For
example, if µ2 = · · · = µk but µ1 differs from the rest, a test is much more likely to
reject the null hypothesis that specifies that the contrast

µ1 − (µ2 + · · · + µk)/(k − 1)

is zero than the overall null hypothesis. This is demonstrated in Example 10.2-2.
The one-sample T test procedure of Chapter 8 and the one-sample T CI of

Chapter 7 can be used for testing hypotheses and for constructing CIs for the con-
trast θ in (10.2.14). In particular, the estimator of θ and its estimated standard error
are

θ̂ = c1X1 + · · · + ckXk and σ̂θ̂ =

√√√√S2
p

(
c2

1
n1

+ · · · + c2
k

nk

)

, (10.2.15)

where S2
p is the pooled variance given in (10.2.10). If the populations are normal,

θ̂ − θ

σ̂θ̂

∼ TN−k,

and the same relationship holds approximately if the sample sizes are large. It follows
that a (1 − α)100% CI for θ is given by (7.1.8), with θ̂ , σ̂θ̂ given by (10.2.15), and
ν = N − k. Also, the test statistic for H0 : θ = 0 is

TH0 = θ̂

σ̂θ̂

, (10.2.16)

and the p-value for testing vs Ha : θ ̸= 0 is given by 2(1 − GN−k(|TH0 |)).

Example
10.2-2

A quantification of coastal water quality converts measurements on several pollu-
tants to a water quality index with values from 1 to 10. An investigation into the
after-clean-up water quality of a lake focuses on five areas encompassing the two
beaches on the eastern shore and the three beaches on the western shore. Water
quality index values are obtained from 12 water samples from each beach. The data
are found in WaterQualityIndex.txt. One objective of the study is the comparison of
the water quality on the eastern and western shores of the lake.

(a) Identify the relevant contrast, θ , for the study’s objective, and use the data to
(i) carry out the test of H0 : θ = 0 vs Ha : θ ̸= 0 at level of significance α = 0.05,
and (ii) to construct a 95% CI for θ .

(b) Test, at α = 0.05, the overall hypothesis that the average pollution index is the
same for all five beaches.

Solution

(a) Let µ1, µ2 denote the average pollution index at the two beaches in the eastern
shore, and µ3, µ4, µ5 denote the average pollution index at the three beaches
in the western shore. The hypothesis-testing problem relevant to the stated
objective is H0 : θ = 0 vs Ha : θ ̸= 0, where the contrast θ is defined as

θ = µ1 + µ2

2
− µ3 + µ4 + µ5

3
,
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so the corresponding set of coefficients is c1 = 1/2, c2 = 1/2, c3 = −1/3, c4 =
−1/3, c5 = −1/3. From the data we obtain

X1 = 8.01, X2 = 8.33, X3 = 8.60, X4 = 8.63, X5 = 8.62

S2
1 = 0.43, S2

2 = 0.63, S2
3 = 0.38, S2

4 = 0.18, S2
5 = 0.56.

This gives (note that when the sample sizes are equal, the pooled sample
variance, S2

p, is the average of the sample variances)

θ̂ = X1 + X2

2
− X3 + X4 + X5

3
= −0.45 and S2

p = S2
1 + · · · + S2

5
5

= 0.44,

and σ̂θ̂ =
√

S2
p

[
1
4

(
1
n1

+ 1
n2

)
+ 1

9

(
1
n3

+ 1
n4

+ 1
n5

)]
= 0.17, using the fact

that all ni = 12. The degrees of freedom are ν = N − k = 60 − 5 = 55. Thus,
the 95% CI is

θ̂ ± t55,0.025σθ̂ = (−0.45 ± 0.17 × 2.00) = (−0.79, −0.11),

where the value of tν,0.025, with ν = 55, was obtained from the command
qt(0.975, 55). Note that the CI does not include zero, suggesting that the con-
trast is significantly different from zero at α = 0.05. Next, the test statistic and
p-value are

TH0 = θ̂

σ̂θ̂

= −0.45
0.17

= −2.65, p-value = 2(1 − G55(2.65)) = 0.01.

Again we see that the null hypothesis H0 : θ = 0 is rejected in favor of Ha :
θ ̸= 0 at level α = 0.05, since the p-value is less than 0.05.

The above calculations can easily be done with R commands. First, read the
data into the R data frame wq, attach it with attach(wq), and then use the
following commands:

sm=by(Index, Beach, mean); svar=by(Index, Beach, var)

t=(sm[1]+sm[2])/2-(sm[3]+sm[4]+sm[5])/3

st=sqrt(mean(svar)*((1/4)*(2/12)+(1/9)*(3/12)))

t-qt(0.975, 55)*st; t+qt(0.975, 55)*st; TS=t/st

The commands in the first three lines compute the five sample means, the sam-
ple variances, the contrast, and the standard deviation of the contrast, which
are stored in the R objects t and st, respectively. The commands in the last line
compute the lower and upper endpoint of the 95% CI for the contrast, and
store the value of the test statistic TH0 in the R object TS. With three decimals,
the obtained value of TH0 is −2.555. Finally, the command 2*(1-pt(abs(TS),
55)) returns 0.013 for the p-value.

(b) The R command anova(aov(Index∼as.factor(Beach))) returns the ANOVA
table

Df Sum Sq Mean Sq F value Pr(>F)

as.factor(Beach) 4 3.496 0.87400 1.9921 0.1085

Residuals 55 24.130 0.43873
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Since the p-value is greater than α = 0.05, the null hypothesis H0 : µ1 = · · · =
µ5 is not rejected. Note that the outcome of the test for the overall null hypoth-
esis of equality of all means would suggest that the contrast θ in part (a) is also
not significantly different from zero. However, the test procedure applied in
part (a), which targets that specific contrast, rejects the null hypothesis that
θ = 0.

Testing the Validity of the Assumptions The validity of the ANOVA F test pro-
cedure rests on the assumptions stated in (10.2.13). The assumptions that the data
constitute simple random samples from their respective populations and that the k
samples are independent are best checked by reviewing the data collection protocol.
Here we will discuss ways of checking the assumption of equal variances and, in case
the sample sizes are less than 30, the normality assumption.

When dealing with comparative studies involving more than two populations,
the group sample sizes are rarely 30 or more. Because the normality assumption can-
not be checked reliably with small sample sizes, it is customary to perform a single
normality test for all samples. Combining the raw observations from each popula-
tion, however, is not recommended because differences in the population means
and variances render the normality test invalid. For this reason, the normality test
is applied on the residuals, after the homoscedasticity assumption has been judged
tenable. The details of testing the homoscedasticity and normality assumptions are
given next.

Note that the variance of the ith population equals the variance of each of the
intrinsic error variables ϵij, j = 1, . . . , ni, in the model (10.2.2). Moreover, since the
intrinsic error variables have zero mean,

Var(Xij) = E(ϵ2
ij).

It follows that the equal variance assumption can be tested by testing that the k
samples

ϵ2
ij, j = 1, . . . , ni, i = 1, . . . , k, (10.2.17)

have equal means. Thus, if the intrinsic error variables were observed, we would
perform the ANOVA F test on the k samples in (10.2.17). Since the intrinsic error
variables are not observed, we use the squared residuals obtained by fitting the
model (10.2.2):

ϵ̂2
ij =

(
Xij − Xi

)2
, j = 1, . . . , ni, i = 1, . . . , k. (10.2.18)

If the p-value resulting from performing the ANOVA F test on the squared
residuals in (10.2.18) is greater than 0.1, conclude that the assumption of equal
variances is approximately satisfied.

REMARK 10.2-1 Levene’s test for testing the equality of two variances (see
Section 9.4) can be extended to testing the equality of k variances by performing
the ANOVA F test on the k samples |Xij − X̃i|, j = 1, . . . , ni, i = 1, . . . , k, where X̃i
is the sample median of the ith sample. However, the described procedure is simpler
to implement in R. ▹

Next, noting that the normality assumption is satisfied if the intrinsic error vari-
ables ϵij in the model (10.2.2) are normal, the normality assumption can be checked
by performing the Shapiro-Wilk normality test on the residuals. If the p-value is
greater than 0.1, it can be concluded that the normality assumption is approximately
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satisfied. With the data read into the data frame df, the first column of which, named
Value, contains the stacked data, and the second column, named Sample, specifies
the treatment level for each observation, the following R commands perform the
described test for equal variances and the Shapiro-Wilk normality test:

R Command for Testing the Assumption σ21 = · · · = σ2k

anova(aov(resid(aov(df$Value∼df$Sample))**2∼df$Sample))
(10.2.19)

R Command for Testing the Normality Assumption

shapiro.test(resid(aov(df$Value∼df$Sample))) (10.2.20)

Residual plots can shed light on the nature of assumptions violations. With the
object fit defined as fit=aov(df$Value∼df$Sample), the commands

plot(fit, which=1)
plot(fit, which=2)

(10.2.21)

will display the residuals by groups (labeled by the fitted, i.e., the µ̂i = Xi, values),
and produce a Q-Q plot for the combined residuals, respectively. A boxplot of the
combined residuals can also be informative.

Example
10.2-3

In the context of the water quality measurements of Example 10.2-2, test the validity
of the assumptions of equal variances and normality.

Solution
Use wq=read.table(”WaterQualityIndex.txt”, header=T) to import the data into the
data frame wq, and set the R object Sample by Sample=as.factor(wq$Beach).
The R commands fit=aov(wq$Index∼Sample); anova(aov(resid(fit)**2∼Sample))
return a p-value of 0.166. Thus, it is concluded that the assumption of equal
variances is approximately satisfied. Plotting the residuals against the fitted val-
ues through the command plot(fit, which=1), shown in Figure 10-1, confirms
that the variability within each group is approximately the same. Next, the
R command

shapiro.test(resid(aov(wq$Index∼Sample)))

returns a p-value of 0.427. Thus, it is concluded that the normality assumption is
approximately satisfied. Finally, the R commands

Resid=resid(aov(wq$Index∼Sample)); boxplot(Resid)
qqnorm(Resid); qqline(Resid, col=2)
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Figure 10-1 Plotting
residuals by groups in
Example 10.2-3.

produce the boxplot and Q-Q plot of the residuals, shown in Figure 10-2. (The Q-Q
plot could also have been produced by plot(fit, which=2).) These plots also sug-
gest that the normality assumption is approximately satisfied, in agreement with the
Shapiro-Wilk test p-value.

10.2.2 THE KRUSKAL-WALLIS TEST

This section describes the Kruskal-Wallis test, a rank-based procedure for testing
the hypothesis of equality of k populations. Like the two-sample rank-sum test,
which it generalizes to k samples, the Kruskal-Wallis test can be used with both
small and large sample sizes, regardless of the normality assumption. The popu-
larity of this procedure is also due to its relatively high power (or low probability
of type II error), especially if the two population distributions are heavy tailed, or
skewed.
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The null hypothesis tested by the Kruskal-Wallis procedure is

HF
0 : F1 = · · · = Fk, (10.2.22)

where F1, . . . , Fk are the cumulative distribution functions of the k populations. Note
that if HF

0 is true, then so is the hypothesis of equality of the k population means,
H0 : µ1 = · · · = µk.

The calculation of the rank test statistic begins by combining the observations
from the k samples, Xi1, . . . , Xini , i = 1, . . . , k, into an overall set of N = n1 +· · ·+nk
observations, arranging them from smallest to largest, and assigning to each obser-
vation Xij its rank (or mid-rank). The process of combining the k = 2 samples and
ranking the combined set of observations was explained in detail in Section 9.3 in the
context of the rank-sum test. With more than two samples, the process of ranking the
data works in the same way. Let Rij denote the rank, or mid-rank, of observation Xij,
and set

Ri = n−1
i

ni∑

j=1

Rij, S2
KW = 1

N − 1

k∑

i=1

ni∑

j=1

(
Rij − N + 1

2

)2
, (10.2.23)

for the average rank in group i and the sample variance of the ranks of the combined
sample. (Recall that the average of the ranks is (N + 1)/2.) With this notation, the
Kruskal-Wallis test statistic is

Kruskal-Wallis Test
Statistic

KW = 1
S2

KW

k∑

i=1

ni

(
Ri − N + 1

2

)2
(10.2.24)

If there are no tied observations, the Kruskal-Wallis test statistic has the
following simpler form:

Kruskal-Wallis
Statistic for Data

with No Ties
KW = 12

N(N + 1)

k∑

i=1

ni

(
Ri − N + 1

2

)2
(10.2.25)

The equivalence of the formulas (10.2.24) and (10.2.25) in the case of no ties
follows from the identity

N∑

i=1

(
i − N + 1

2

)2
= (N − 1)N(N + 1)

12
.

If the populations are continuous (so no ties), the exact null distribution of the
Kruskal-Wallis test statistic is known even with very small sample sizes. However,
this exact null distribution depends on the group sample sizes, so it requires exten-
sive tables for its presentation. On the other hand, the exact null distribution of the
Kruskal-Wallis statistic is approximated well by a chi-square distribution with k − 1
degrees of freedom even with small (≥ 8) sample sizes; see Section 7.3.5 for a quick
introduction to the chi-square distribution and the R command for finding its per-
centiles. For this reason, and also because the exact p-value of the Kruskal-Wallis test
can be well approximated in R for even smaller sample sizes (see Example 10.2-4),
no tables for the exact null distribution of the Kruskal-Wallis statistic are given in
this book.
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The rule for rejecting HF
0 : F1 = · · · = Fk using the approximate null distribution

of the statistic and the formula for the approximate p-value follow:

Kruskal-Wallis
Rejection Rule and

p-Value when ni ≥ 8
KW > χ2

k−1, α , p-value = 1 − 4k−1(KW) (10.2.26)

where 4ν denotes the CDF of the χ2
ν distribution.

With the data from the k samples stacked in a single data column, and a second
column indicating the sample index of each observation in the data column, the R
command for computing the Kruskal-Wallis test statistic and p-value is:

R Command for the Kruskal-Wallis Test

kruskal.test(x∼s)

where x and s are the R objects containing the data column and the sample index
column, respectively.

Example
10.2-4

Organizations such as the American Society for Testing Materials are interested
in the flammability properties of clothing textiles. A particular study performed a
standard flammability test on six pieces from each of three types of fabric used in
children’s clothing. The response variable is the length of the burn mark made when
the fabric piece is exposed to a flame in a specified way. Using the Kruskal-Wallis
procedure on the data from this study (Flammability.txt), test the hypothesis that the
flammability of the three materials is the same, at level of significance α = 0.1, and
compute the p-value.

Solution
The ranks and rank averages of the flammability data are

Ranks Ri

Material 1 1 18 8 15.5 10 12 10.75

Material 2 4 3 7 5 6 9 5.667

Material 3 2 17 15.5 14 13 11 12.08

Note that observation 2.07 in group 1 is tied with an observation in group 3. Thus, we
will use the more general expression of the Kruskal-Wallis statistic given in (10.2.24).
The sample variance of the combined set of the N = 6 + 6 + 6 = 18 ranks is S2

KW =
28.47. Next, using the average ranks Ri we have

3∑

i=1

ni

(
Ri −

N + 1
2

)2
= 6(10.75 − 9.5)2 + 6(5.667 − 9.5)2 + 6(12.08 − 9.5)2 = 137.465.

Thus, the Kruskal-Wallis statistic is

KW = 137.465/28.47 = 4.83.

The 90th percentile of the chi-square distribution with 2 degrees of free-
dom is χ2

2 (0.1) = 4.605. Since 4.83 > 4.605, the null hypothesis is rejected at



356 Chapter 10 Comparing k > 2 Populations

α = 0.1. Using the formula for the p-value in (10.2.26) and the R command
1-pchisq(4.83, 2), we find a p-value of 0.089. Reading the flammability data into the
R data frame fl, the R commands x=fl$BurnL; s=fl$Material; kruskal.test(x∼s) give
the same values for the test statistic and p-value. Because the sample sizes are ni = 6,
that is, < 8, a more accurate p-value (computed through Monte-Carlo resampling)
can be obtained from the R commands library(coin); kw=kruskal_test(x∼factor(s),
distribution=approximate(B=9999)); pvalue(kw). These commands return a p-value
of 0.086. Thus, the original conclusion of rejecting the null hypothesis at α = 0.1
holds.

10.2.3 THE CHI-SQUARE TEST FOR PROPORTIONS

If we want to compare different types of cars in terms of the proportion that sustain
no damage in 5-mph crash tests, or if we want to compare the proportion of defective
products of a given production process in different weeks, we end up wanting to test

H0 : p1 = p2 = · · · = pk = p versus Ha : H0 is not true. (10.2.27)

Since the probability p of a 1 (i.e., of a “success”) in a Bernoulli experiment is also
the mean value of the Bernoulli random variable, this testing problem is a special
case of testing for the equality of k means. Moreover, because the variance of the ith
population is σ 2

i = pi(1 − pi), the homoscedasticity (i.e., equal variances) assump-
tion is automatically satisfied under the null hypothesis. However, testing (10.2.27)
is typically not performed with the ANOVA F test procedure.

Let the k sample proportions and the overall, or pooled, proportion be
denoted by

p̂1, . . . , p̂k, and p̂ =
k∑

i=1

ni

N
p̂i, (10.2.28)

respectively. The test statistic for testing (10.2.27) is

QH0 =
k∑

i=1

ni (̂pi − p̂)2

p̂(1 − p̂)
. (10.2.29)

There are similarities and differences between QH0 and the ANOVA F statistic FH0 .
First, the denominator p̂(1 − p̂) of QH0 is the variance corresponding to the pooled
proportion instead of the pooled variance. Next, note that substituting the sample
means Xi by p̂i and the overall sample mean X by p̂ in the formula for SSTr in
(10.2.6) gives

SSTr =
k∑

i=1

ni (̂pi − p̂)2 .

Thus, the numerator of QH0 is SSTr, not MSTr. Because of this, the null distribution
of QH0 is (approximately) chi-square with k − 1 degrees of freedom. Thus, the rule
for rejecting H0 at level of significance α and the formula for the p-value follow:

Chi-Square Test and
p-Value for (10.2.27),

with ni ≥ 8
QH0

> χ2
k−1,α , p-value = 1 − 4k−1(QH0

) (10.2.30)

where 4ν denotes the CDF of the χ2
ν distribution.
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The Contingency Table Form of QH0 Even though the expression of QH0 in (10.2.29)
is quite simple, an equivalent form of it is more common. To describe this equivalent
form, we need the following additional notation:

O1i = nîpi, O2i = ni (1 − p̂i) (10.2.31)

E1i = nîp, E2i = ni (1 − p̂) , (10.2.32)

where p̂ is the overall sample proportion defined in (10.2.28). Thus, O1i is the
observed number of successes (or 1’s) in the ith group, O2i is the observed num-
ber of failures (or 0’s) in the ith group, and E1i, E2i are the corresponding expected
numbers under the null hypothesis that the probability of 1 is the same in all groups.
With this notation, the alternative form for QH0 , called the contingency table form, is

QH0 =
k∑

i=1

2∑

ℓ=1

(Oℓi − Eℓi)
2

Eℓi
. (10.2.33)

The equivalence of the two expressions for QH0 (10.2.29) and (10.2.33) is easily
seen by noting the following easy algebraic identities:

(O1i − E1i)
2 = (O2i − E2i)

2 = n2
i (̂pi − p̂)2

1
E1i

+ 1
E2i

= E1i + E2i

E1iE2i
= 1

nîp (1 − p̂)
.

Thus, for each i,

2∑

ℓ=1

(Oℓi − Eℓi)
2

Eℓi
= n2

i (̂pi − p̂)2
(

1
E1i

+ 1
E2i

)
= ni (̂pi − p̂)2

p̂(1 − p̂)
,

which shows the equivalence of the expressions (10.2.29) and (10.2.33).
Using the notation O1i, O2i, for i = 1, . . . , k, defined in (10.2.31), the R com-

mands for computing the chi-square statistic (10.2.33) and the corresponding p-value
follow:

R Commands for the Chi-Square Test for H0 : p1 = · · · = pk

table=matrix(c(O11, O21, . . ., O1k, O2k), nrow=2)
chisq.test(table)

Example
10.2-5

A commercial airline is considering four different designs of the control panel for
the new generation of airplanes. To see if the designs have an effect on the pilot’s
response time to emergency displays, emergency conditions were simulated and the
response times of pilots were recorded. The sample sizes, ni, and number of times,
O1i, that the response times were below 3 seconds for the four designs are as follows:
n1 = 45, O11 = 29; n2 = 50, O12 = 42; n3 = 55, O13 = 28; n4 = 50, O14 = 24.
Perform the test at level of significance α = 0.05.
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Solution
Let pi denote the probability that the response time of a pilot to a simulated emer-
gency condition with control panel design i is below 3 seconds. The airline wants to
test H0 : p1 = p2 = p3 = p4 vs Ha : H0 is not true, at level of significance α = 0.05.
Thus, the rejection region is QH0 > χ2

3 (0.05) = 7.815. With the data given,

p̂ = O11 + O12 + O13 + O14

n1 + n2 + n3 + n4
= 123

200
= 0.615,

so the common denominator of the terms in the expression (10.2.29) for QH0 is
p̂(1 − p̂) = 0.2368. Continuing with the expression (10.2.29) for QH0 , and using
p̂i = O1i/ni, we obtain

QH0 = 45(0.6444 − 0.615)2

0.2368
+ 50(0.84 − 0.615)2

0.2368

+55(0.5091 − 0.615)2

0.2368
+ 50(0.48 − 0.615)2

0.2368
= 0.1643 + 10.6894 + 2.6048 + 3.8482 = 17.307.

Since 17.307 > 7.815, the null hypothesis is rejected. The R commands
table=matrix(c(29, 16, 42, 8, 28, 27, 24, 26), nrow=2); chisq.test(table) return the
same value for the test statistic and a p-value of 0.0006, which also leads to the null
hypothesis being rejected.

Exercises

1. In a study aimed at comparing the average tread
lives of four types of truck tires, 28 trucks were
randomly divided into four groups of seven trucks.
Each group of seven trucks was equipped with tires
from one of the four types. The data in TireLife1
Way.txt consist of the average tread lives of the four tires
of each truck.

(a) Are there any differences among the four types of
tires? State the relevant null and alternative hypothe-
ses for answering this question. Use either hand cal-
culations or R commands to conduct the ANOVA F
test at level of significance α = 0.1, and state any
assumptions that are needed for the validity of this
test procedure. (Hint. If you choose hand calcula-
tions, you may use the following summary statistics:
X1 = 40.069, X2 = 40.499, X3 = 40.7, X4 = 41.28,
S2

1 = 0.9438, S2
2 = 0.7687, S2

3 = 0.7937, and S2
4 =

0.9500.)
(b) It is known that tire types 1 and 2 are brand A tires,

while tire types 3 and 4 are brand B tires. Of interest
is to compare the two brands of tires.

(i) Write the relevant contrast, and the null and
alternative hypotheses to be tested for this com-
parison.

(ii) Use either hand calculations or R commands
similar to those given in Example 10.2-2 to con-
duct the test at α = 0.1 and to construct a
90% CI.

(iii) Is the outcome of the test for the specialized con-
trast in agreement with the outcome of the test
for the overall null hypothesis in part (a)? If not,
provide an explanation.

2. In the context of Example 10.2-4, where three types of
fabric are tested for their flammability, materials 1 and 3
have been in use for some time and are known to pos-
sess similar flammability properties. Material 2 has been
recently proposed as an alternative. Of primary interest
in the study is the comparison of the joint population
of materials 1 and 3 with that of material 2. Import the
data into the R data frame fl and complete the following
parts.
(a) Specify the contrast θ of interest, and use hand

calculations to test H0 : θ = 0 vs Ha : θ ̸= 0
at level of significance α = 0.05 using the pro-
cedure described in Section 10.2.1. (Hint. You
may use attach(fl); sm=by(BurnL, Material, mean);
sv=by(BurnL, Material, var) to obtain the sample
means and sample variances.)
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(b) Combine the burn-length measurements from mate-
rials 1 and 3 into one data set, and use the
rank-sum procedure for testing that the combined
populations of materials 1 and 3 is the same as
that of material 2. (Hint. Use the R commands
x=c(BurnL[(Material==1)], BurnL[(Material==3)]);
y=BurnL[(Material==2)] ; wilcox.test(x, y).)

3. Four different concentrations of ethanol are compared
at level α = 0.05 for their effect on sleep time. Each
concentration was given to a sample of 5 rats and the
REM (rapid eye movement) sleep time for each rat
was recorded (SleepRem.txt). Do the four concentrations
differ in terms of their effect on REM sleep time?

(a) State the relevant null and alternative hypotheses for
answering this question, and use hand calculations to
conduct the ANOVA F test at level of significance
0.05. State any assumptions needed for the validity
of this test procedure. (Hint. You may use the sum-
mary statistics X1 = 79.28, X2 = 61.54, X3 = 47.92,
X4 = 32.76, and MSE = S2

p = 92.95.)

(b) Import the data into the R data frame sl, and use the
R command anova(aov(sl$values∼sl$ind)) to conduct
the ANOVA F test. Give the ANOVA table, stating
the p-value, and the outcome of the test at level of
significance 0.05.

(c) Use R commands to test the assumptions of equal
variances and normality. Report the p-values from the
two tests and the conclusions reached. Next, construct
a boxplot and the normal Q-Q plot for the resid-
uals, and comment on the validity of the normality
assumption on the basis of these plots.

4. Consider the setting and data of Exercise 3.

(a) Use hand calculations to conduct the Kruskal-Wallis
test at level α = 0.05, stating any assumptions
needed for its validity. (Hint. There are no ties in this
data set. You may use attach(sl); ranks=rank(values);
rms=by(ranks, ind, mean) to compute the rank aver-
ages.)

(b) Use the R command kruskal.test(sl$values∼sl$ind) to
conduct the Kruskal-Wallis test. Report the value of
the test statistic, the p-value, and whether or not the
null hypothesis is rejected at level α = 0.05.

5. As part of a study on the rate of combustion of arti-
ficial graphite in humid air flow, researchers conducted
an experiment to investigate oxygen diffusivity through a
water vapor mixture. An experiment was conducted with
mole fraction of water at levels MF1 = 0.002, MF2 = 0.02,
and MF3 = 0.08. Nine measurements at each of the three
mole fraction levels were taken. The total sum of squares
of the resulting data is SST = 24.858, and the treatment
sum of squares is given in the partly filled out ANOVA
table below.

Df Sum Sq Mean Sq F value

Treatment 0.019

Residuals

(a) State the null and alternative hypotheses, and use
the information given to complete the ANOVA
table.

(b) Use the value of the F statistic to test the hypothesis
at level α = 0.05.

(c) Compute the p-value and use it to decide whether or
not the null hypothesis is rejected at level α = 0.05.
(Hint. You may use R to compute the p-value. See
Example 10.2-1.)

6. Porous carbon materials are used commercially in
several industrial applications, including gas separation,
membrane separation, and fuel cell applications. For
the purpose of gas separation, the pore size is impor-
tant. To compare the mean pore size of carbon made
at temperatures (in ◦C) of 300, 400, 500, and 600, an
experiment uses 5 measurements at each temperature
setting (PorousCarbon.txt). Is there any difference in
the average pore size of carbon made at the different
temperatures?

(a) State the relevant null and alternative hypotheses for
answering this question, and use hand calculations to
conduct the ANOVA F test at level α = 0.05, stat-
ing any assumptions needed for its validity. (Hint. You
may use the following summary statistics: X1 = 7.43,
X2 = 7.24, X3 = 6.66, X4 = 6.24, S2

1 = 0.2245,
S2

2 = 0.143, S2
3 = 0.083, S2

4 = 0.068.)
(b) Use R commands to import the data into the R data

frame pc and to conduct the ANOVA F test. Report
the value of the test statistic, the p-value, and whether
or not the null hypothesis is rejected at level α = 0.05.

(c) Use R commands to test the assumptions of equal
variances and normality. Report the p-values from the
two tests and the conclusions reached. Next, construct
a boxplot and the normal Q-Q plot for the residuals
from fitting the model (10.2.2), and comment on the
validity of the normality assumption on the basis of
these plots.

7. Consider the setting and data of Exercise 6.

(a) Use hand calculations to conduct the Kruskal-Wallis
test at level α = 0.05, stating any assumptions
needed for its validity. (Hint. This data set has
ties. You may use attach(pc); ranks=rank(values);
vranks=var(ranks); rms= by(ranks, temp, mean) to
compute S2

KW and the rank averages.)
(b) Use R commands to conduct the Kruskal-Wallis test.

Report the value of the test statistic, the p-value, and
whether or not the null hypothesis is rejected at level
α = 0.05.
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8. Compression testing of shipping containers aims at
determining if the container will survive the compres-
sion loads expected during distribution. Two common
types of compression testers are fixed platen and float-
ing platen. The two methods were considered in a study,
using different types of corrugated fiberboard contain-
ers.1 Suppose that n1 = 36, n2 = 49, and n3 = 42
fixed-platen strength measurements for types 1, 2, and 3
of corrugated containers, respectively, yielded the follow-
ing summary statistics: X1 = 754, X2 = 769, X3 = 776,
S1 = 16, S2 = 27, and S3 = 38. Is there evidence that
the three types of corrugated fiberboard containers dif-
fer in terms of their average strength using fixed-platen
testers? State the null and alternative hypotheses relevant
for answering this question, and use the ANOVA proce-
dure for conducting the test at level α = 0.05. State any
assumptions needed for the validity of the ANOVA test
procedure.

9. An article reports on a study where fatigue tests were
performed by subjecting the threaded connection of large
diameter pipes to constant amplitude stress of either L1
= 10 ksi, L2 = 12.5 ksi, L3 = 15 ksi, L4 = 18 ksi, or L5 =
22 ksi.2 The measured fatigue lives, in number of cycles to
failure (in units of 10,000 cycles), are given in FlexFatig.txt.
Read the data into the data frame ff and complete the
following.

(a) Use R commands to test the assumptions of equal
variances and normality. Report the p-values from the
two tests and the conclusions reached. Next, construct
a boxplot and the normal Q-Q plot for the residuals
from fitting the model (10.2.2), and comment on the
validity of the normality assumption on the basis of
these plots.

(b) Taking into consideration the conclusions reached in
part (a), which procedure for testing whether the
stress level impacts the fatigue life would you recom-
mend? Justify your recommendation.

(c) Carry out the test procedure you recommended in
part (b) at level of significance 0.01. Report the value
of the test statistic and the p-value.

10. The flame resistance of three materials used in chil-
dren’s pajamas was tested by subjecting specimens of the
materials to high temperatures. Out of 111 specimens of
material A, 37 ignited. Out of 85 specimens of material B,
28 ignited. Out of 100 specimens of material C, 21 ignited.
Test the hypothesis that the probability of ignition is the
same for all three materials versus the alternative that this
hypothesis is false at α = 0.05.

11. A certain brand of tractor is assembled in five dif-
ferent locations. To see if the proportion of tractors that
require warranty repair work is the same for all loca-
tions, a random sample of 50 tractors from each location is
selected and followed up for the duration of the warranty
period. The numbers requiring warranty repair work are
18 for location A, 8 for location B, 21 for location C, 16 for
location D, and 13 for location E. Is there evidence that
the five population proportions differ at level of signifi-
cance α = 0.05? State the null and alternative hypotheses
relevant for answering this question, and use an appropri-
ate method to conduct the test. Report the method used,
the value of the test statistic, the test outcome, and any
assumptions needed for the validity of the test.

12. Wind-born debris (from roofs, passing trucks, insects,
or birds) can wreak havoc on architectural glass in the
upper stories of a building. A paper reports the results
of an experiment where 10 configurations of glass were
subjected to a 2-gram steel ball projectile traveling under
5 impact velocity ranges.3 Here we report the results for
configurations 1, 2, 3, and 5. Out of 105 inner glass ply
breaks (IPBs) of configuration 1, 91 were at impact veloc-
ity of 139 ft/s or less. For configurations 2, 3, and 5 the
results were 128 out of 148, 46 out of 87, and 62 out of 93.
Test the hypothesis that the five population proportions
are the same at α = 0.05.

10.3 Simultaneous CIs and Multiple Comparisons
Because the null hypothesis H0 : µ1 = µ2 = · · · = µk is tested against the alternative
Ha : H0 is false, it follows that when H0 is rejected it is not clear which µi’s are
significantly different. It would seem that this question can be addressed quite simply
by conducting individual tests of H0 : µi − µj = 0 vs Ha : µi − µj ̸= 0 for each
pair of means µi, µj. If a test rejects the null hypothesis, the corresponding means

1 S. P. Singh, G. Burgess, and M. Langlois (1992). Compression of single-wall corrugated shipping containers
using fixed and floating test platens, J. Testing and Evaluation, 20(4): 318–320.
2 A. H. Varma, A. K. Salecha, B. Wallace, and B. W. Russell (2002). Flexural fatigue behavior of threaded
connections for large diameter pipes, Experimental Mechanics, 42: 1–7.
3 N. Kaiser, R. Behr, J. Minor, L. Dharani, F. Ji, and P. Kremer (2000). Impact resistance of laminated glass using
“sacrificial ply” design concept, Journal of Architectural Engineering, 6(1): 24–34.
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are declared significantly different. With some fine-tuning, this approach leads to a
correct multiple comparisons method.

The individual tests mentioned above can be conducted through any of the test
procedures we have described; for example, the two-sample T test procedure, or
the rank-sum procedure, or the Z procedure for the comparison of two proportions
in the case of Bernoulli populations. Alternatively, the tests can be conducted by
constructing individual CIs for each contrast µi − µj and checking whether or not
each CI contains zero. If one of these confidence intervals does not contain zero,
then the means involved in the corresponding contrast are declared significantly
different.

The reason the above simple procedure needs fine-tuning has to do with the
overall, or experiment-wise error rate, which is the probability of at least one pair of
means being declared different when in fact all means are equal.

To appreciate the experiment-wise error rate, suppose that the problem involves
the comparison of k = 5 population means. If the overall null hypothesis H0 :
µ1 = · · · = µ5 is rejected, then, to determine which pairs of means are significantly
different, (1 − α)100% CIs for all 10 pairwise differences,

µ1 − µ2, . . . , µ1 − µ5, µ2 − µ3, . . . , µ2 − µ5, . . . , µ4 − µ5, (10.3.1)

must be made. (Equivalently, we could test H0 : µi − µj = 0 vs Ha : µi − µj ̸=
0 for each of the above 10 contrasts at level of significance α, but we will focus
the discussion on the CIs approach.) Assume for the moment that the confidence
intervals for the 10 contrasts in (10.3.1) are independent. (They are not independent
because the confidence intervals for, say, µ1 − µ2 and µ1 − µ3 both involve the
sample X11, . . . , X1n1 from population 1.) In that case, and if all means are the same
(so all contrasts are zero), the probability that each interval contains zero is 1−α and
thus, by the assumed independence, the probability that all 10 confidence intervals
contain zero is (1 − α)10. Thus, the experiment-wise error rate is 1 − (1 − α)10. If
α = 0.05, then the experiment-wise error rate is

1 − (1 − 0.05)10 = 0.401. (10.3.2)

It turns out that, in spite of the dependence of the confidence intervals, the above
calculation gives a fairly close approximation to the true experiment-wise error
rate. Thus, the chances are approximately 40% that at least one of contrasts will
be declared significantly different from zero when using traditional 95% confidence
intervals.

Confidence intervals that control the experiment-wise error rate at a desired
level α will be called (1 − α)100% simultaneous confidence intervals. We will see
two methods of fine-tuning the naive procedure of using traditional confidence
intervals. One method, which gives an upper bound on the experiment-wise error
rate, is based on Bonferroni’s inequality. The other, Tukey’s procedure, gives the
exact experiment-wise error rate if the samples come from normal homoscedas-
tic populations, but can also be used as a good approximation with large samples
from other homoscedastic populations. Moreover, Tukey’s method can be applied
on the ranks, with smaller sample sizes, when sampling from skewed distribu-
tions. On the other hand, Tukey’s method applies only to the set of all pairwise
comparisons, while Bonferonni’s method can also be used for multiple compar-
isons and simultaneous CIs of the particular specialized contrasts that might be of
interest.



362 Chapter 10 Comparing k > 2 Populations

10.3.1 BONFERRONI MULTIPLE COMPARISONS AND
SIMULTANEOUS CIs

The idea behind Bonferroni’s intervals is to adjust the level of the traditional
confidence intervals in order to achieve the desired experiment-wise error rate.
As mentioned in connection to the calculation in (10.3.2) above, due to the
dependence among the confidence intervals it is not possible to know the exact
experiment-wise error rate when performing a total of m confidence intervals.
However, Bonferroni’s inequality asserts that, when each of m confidence inter-
vals are performed at level α, then the probability that at least one does not
contain the true value of the parameter, that is, the experiment-wise error rate,
is no greater than mα. Similarly, if each of m pairwise tests are performed at
level α, the experiment-wise level of significance (i.e., the probability of reject-
ing at least one of the m null hypotheses when all are true), is no greater
than mα.

The above discussion leads to the following procedure for constructing
Bonferroni simultaneous CIs and multiple comparisons:

1. Bonferroni Simultaneous CIs:
For each of the m contrasts construct a (1−α/m)100% CI. This set of m CIs are
the (1 − α)100% Bonferroni simultaneous CIs for the m contrasts.

2. Bonferroni Multiple Comparisons:
(a) Multiple Comparisons through Simultaneous CIs: If any of the

m (1 − α)100% Bonferroni simultaneous CIs does not contain zero,
the corresponding contrast is declared significantly different from 0 at
experiment-wise level α.

(b) Multiple Comparisons through Testing: For each of m contrasts, test the null
hypothesis that the contrast is zero vs the alternative that it is not zero at
level of significance α/m. If any of the m tests rejects the null hypothesis,
the corresponding contrast is declared significantly different from zero at
experiment-wise level of significance α.

Example
10.3-1

In the context of Example 10.2-5, use multiple comparisons based on Bonferroni
simultaneous CIs to determine which pairs of panel designs differ, at experiment-
wise level of significance α = 0.05, in terms of their effect on the pilot’s reaction
time.

Solution
Since there are four panel designs, there are m =

(4
2
)

= 6 possible pairwise
contrasts:

p1 − p2, p1 − p3, p1 − p4, p2 − p3, p2 − p4, p3 − p4.

Recall that the sample sizes and number of successes (where “success” is a response
time below 3 seconds) for the four panel designs are: n1 = 45, O11 = 29; n2 = 50,
O12 = 42; n3 = 55, O13 = 28; n4 = 50, O14 = 24. The 95% Bonferroni
simultaneous CIs for these contrasts consist of individual (1 − 0.05/6)100% =
99.17% CIs for each of them. The following R commands give the CIs for the six
contrasts:
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k=4; alpha=0.05/(k*(k-1)/2); o=c(29, 42, 28, 24);
n=c(45,50,55,50)

for(i in 1:(k-1)){for(j in (i+1):k){print(prop.test(c(o[i],
o[j]), c(n[i], n[j]), conf.level=1-alpha,
correct=F)$conf.int)}}

The CIs for the six contrasts are shown in the second column of the following
table:

Individual

Contrast 99.17% CI Contains Zero?

p1 − p2 (−0.428, 0.0371) Yes

p1 − p3 (−0.124, 0.394) Yes

p1 − p4 (−0.100, 0.429) Yes

p2 − p3 (0.107, 0.555) No

p2 − p4 (0.129, 0.591) No

p3 − p4 (−0.229, 0.287) Yes

To conduct multiple comparisons based on these intervals, we check for any that do
not contain zero. The answers are given in the third column of the above table. Thus,
p2 is significantly different, at experiment-wise level α = 0.05, from p3 and p4. All
other contrasts are not significantly different from zero.

The results from a multiple comparisons procedure can be summarized by list-
ing the estimates of the parameters being compared in increasing order, and joining
each pair that is not significantly different by an underline. For example, the results
from the Bonferroni multiple comparisons procedure in Example 10.3-1 can be
displayed as

p̂4 p̂3 p̂1 p̂2
0.48 0.51 0.64 0.84

Example
10.3-2

Iron concentration measurements from four ore formations are given in FeData.txt.
Use Bonferroni multiple comparisons, based on rank-sum tests, to determine which
pairs of ore formations differ, at experiment-wise level of significance α = 0.05, in
terms of iron concentration.

Solution
The four ore formations yield m = 6 possible pairwise median contrasts:

µ̃1 − µ̃2, µ̃1 − µ̃3, µ̃1 − µ̃4, µ̃2 − µ̃3, µ̃2 − µ̃4, µ̃3 − µ̃4.

The hypothesis that each of the above contrasts is zero vs the two-sided alter-
native will be tested at an individual level of α/6 = 0.0083. With the data
imported into the R data frame fe, the R commands f1=fe$conc[fe$ind==”V1”];
f2=fe$conc[fe$ind==”V2”]; f3=fe$conc[fe$ind==”V3”]; f4=fe$conc[fe$ind==”V4”]
assign the concentration samples from the four formations into the R objects
f 1, . . . , f 4. Using the command wilcox.test for each pair of samples (i.e.,
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wilcox.test(f1, f2), for testing H0 : µ̃1 − µ̃2 = 0 vs Ha : µ̃1 − µ̃2 ̸= 0, and sim-
ilarly for the other contrasts), we obtain the following table of p-values and their
comparisons with α/6 = 0.0083:

p-Value for

Contrast H0 : µ̃i − µ̃j = 0 Less than 0.0083?

µ̃1 − µ̃2 0.1402 No

µ̃1 − µ̃3 0.0172 No

µ̃1 − µ̃4 0.0013 Yes

µ̃2 − µ̃3 0.0036 Yes

µ̃2 − µ̃4 0.0017 Yes

µ̃3 − µ̃4 0.0256 No

These results are summarized as

X̃2 X̃1 X̃3 X̃4
25.05 27.65 30.10 34.20

Thus, at experiment-wise level of significance α = 0.05, ore formation 1 is not signif-
icantly different from formations 2 and 3, nor is formation 3 from 4. All other pairs
of formations are significantly different.

10.3.2 TUKEY’S MULTIPLE COMPARISONS AND SIMULTANEOUS CIs

Tukey’s simultaneous CIs are appropriate under normality and homoscedasticity,
and apply to all m = k(k − 1)/2 pairwise contrasts µi − µj. If group sample sizes
are all large (≥ 30), they are approximately valid without the normality assumption,
though the homoscedasticity assumption is still needed.

Tukey’s intervals are based on the so-called studentized range distribution which
is characterized by a numerator degrees of freedom and a denominator degrees of
freedom. The numerator degrees of freedom equals the number of means, k, that
are being compared. The denominator degrees of freedom equals the degrees of
freedom of the MSE in the ANOVA table, which is N − k, where N = n1 + · · · +
nk. The 90th and 95th percentiles of the studentized range distribution are given in
Table A.7, where the denominator degrees of freedom, N − k, is denoted by ν.

With Qα,k,N−k denoting the upper-tail α critical value of the studentized range
distribution with k and ν = N − k degrees of freedom, selected from Table A.7,
Tukey’s simultaneous CIs and multiple comparisons are as follows:

1. Tukey’s Simultaneous CIs: The (1 − α)100% Tukey’s simultaneous CIs for all
contrasts µi − µj, i ̸= j, are constructed as

Xi − Xj ± Qα,k,N−k

√
S2

p

2

(
1
ni

+ 1
nj

)
, (10.3.3)

where S2
p = MSE is the pooled sample variance given in (10.2.10).

2. Tukey’s Multiple Comparisons at Level α: If for a pair (i, j), i ̸= j, the interval
(10.3.3) does not contain zero, it is concluded that µi and µj differ significantly
at level α.

Example
10.3-3

Four different concentrations of ethanol are compared at level α = 0.05 for their
effect on sleep time. Each concentration was given to a sample of 5 rats and the
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REM sleep time for each rat was recorded. Use the resulting data set (SleepRem.txt)
to construct Tukey’s 95% simultaneous CIs and apply the Tukey multiple compar-
isons method to identify the pairs of concentrations that are significantly different at
experiment-wise level of significance 0.05.

Solution
Because the sample sizes are small, we assume that the four populations are nor-
mal, with the same variance. Importing the data into the R data frame sl, the
R command by(sl$values, sl$ind, mean) returns the four sample means as X1 =
79.28, X2 = 61.54, X3 = 47.92, and X4 = 32.76. The additional command
anova(aov(sl$values∼sl$ind)) returns MSE = S2

p = 92.95 (it also returns a p-value
of 8.322×10−6, so that the null hypothesis of equality of the four means is rejected at
α = 0.05). Next, from Table A.7 we find that the 95th percentile of the studentized
range distribution with k = 4 and N − k = 16 degrees of freedom is Q0.05,4,16 = 4.05.
With the above information, the computed 95% Tukey’s simultaneous CIs, using the
formula (10.3.3), are given in the second column of the following table:

Simultaneous

Contrast 95% CI Contains Zero?

µ1 − µ2 (0.28, 35.20) No

µ1 − µ3 (13.90, 48.82) No

µ1 − µ4 (29.06, 63.98) No

µ2 − µ3 (-3.84, 31.08) Yes

µ2 − µ4 (11.32, 46.24) No

µ3 − µ4 (-2.30, 32.62) Yes

Checking whether or not each CI contains zero results in the third column of the
table. Thus, all pairs of means except for the pairs (µ2, µ3) and (µ3, µ4) are significant
at experiment-wise level of significance 0.05. The results are summarized as

X4 X3 X2 X1
32.76 47.92 61.54 79.28

With the observations stacked in the R object y, and the sample membership
of each observation contained in the R object s, the R commands for constructing
Tukey’s simultaneous CIs, including a plot for their visual display, are

R Commands for Tukey’s (1− α)100% Simultaneous CIs

TukeyHSD(aov(y∼s), conf.level=1-α)

plot(TukeyHSD(aov(y∼s), conf.level=1-α))

The default value of α is 0.05. For example, the command
TukeyHSD(aov(sl$values∼sl$ind)) gives the 95% Tukey’s simultaneous CIs
shown in the solution of Example 10.3-3 (except for reversing the sign of
the contrasts, i.e., µ2 − µ1 instead of µ1 − µ2, etc). The additional command
plot(TukeyHSD(aov(sl$values∼sl$ind))) produces the plot in Figure 10-3. The
vertical line at zero in Figure 10-3 helps identify the CIs that contain zero, which are
the CIs for µ4 − µ3 and µ3 − µ2. This is in agreement with the findings of Example
10.3-3.
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Figure 10-3 Visual display
of Tukey’s simultaneous
CIs for Example 10.3-3.

10.3.3 TUKEY’S MULTIPLE COMPARISONS ON THE RANKS

This procedure consists of first combining the observations from the k samples into
an overall set of N = n1 + . . . + nk observations, sorting them from smallest to
largest, and assigning ranks or mid-ranks to each observation. See Section 10.2.2
for the details of this ranking step. As a second step, arrange the ranks of the N
observations into k rank-samples, so that the ith rank-sample contains the ranks
of the observations in the ith sample. Finally, apply Tukey’s multiple comparisons
procedure on the k rank-samples.

Tukey’s multiple comparisons procedure on the ranks is recommended when-
ever the sample sizes are small and/or non-normal. It should be kept in mind,
however, that the resulting simultaneous CIs are not CIs for the contrasts of the
medians or the means of the original observations. Instead, the results of this mul-
tiple comparisons procedure are interpretable as multiple comparisons for pairs of
the k populations the observations came from, or as multiple comparisons for all
pairs of median contrasts µ̃i − µ̃j, for i ̸= j.

Example
10.3-4

Consider the setting of Example 10.2-4, where three types of fabric are tested for
their flammability, and use Tukey’s multiple comparisons method on the ranks to
identify which materials differ in terms of flammability at experiment-wise level of
significance α = 0.1.

Solution
With the flammability data read into the R data frame fl, we can use the following
R commands:

r=rank(fl$BurnL); s=as.factor(fl$Material)
plot(TukeyHSD(aov(r∼s), conf.level=0.9))
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Figure 10-4 Tukey’s
simultaneous CIs on the
ranks for Example 10-4.

These commands generate the plot shown in Figure 10-4 Thus, only materials 2 and
3 are significantly different at experiment-wise level of significance α = 0.1. The
results are summarized as

R3 R1 R2
12.083 10.750 5.667

Exercises
1. An article reports on a study using high temperature
strain gages to measure the total strain amplitude of three
different types of cast iron [spheroidal graphite (S), com-
pacted graphite (C), and gray (G)] for use in disc brakes.4
Nine measurements from each type were taken and the
results (multiplied by 10,000) are in FatigueThermal.txt.
The scientific question is whether the total strain ampli-
tude properties of the different types of cast iron
differ.
(a) State the relevant null and alternative hypotheses for

answering this question.
(b) Import the data into the R data frame tf and use

the R command kruskal.test( tf$values∼tf$ind) to con-
duct the the Kruskal-Wallis procedure for testing the
equality of the three populations. State the p-value
and whether or not the null hypothesis is rejected at
level 0.05.

(c) On the basis of the test outcome in part (b), is there a
need to conduct multiple comparisons to determine

which pairs of populations differ at experiment-wise
level of significance 0.05? Justify your answer.

2. Consider the data in Exercise 8 in Section 10.2 on
fixed-platen compression strengths of three types of cor-
rugated fiberboard containers.
(a) One of the assumptions needed for the validity of

the ANOVA F test is homoscedasticity, or equal vari-
ances. Since only summary statistics are given, the
homoscedasticity assumption can be tested by per-
forming all pairwise tests for the three population
variances and use the Bonferroni multiple compar-
isons procedure. In particular, apply the F test for
the equality of two variances, given in Section 9.4,
to test H10 : σ 2

1 = σ 2
2 , H20 : σ 2

1 = σ 2
3 , and H30 :

σ 2
2 = σ 2

3 versus the corresponding two-sided alter-
native hypotheses, and apply the Bonferroni method
at experiment-wise level of significance 0.1. Does the
homoscedasticity assumption appear to be violated?

4 “Improving the thermal fatigue resistance of brake discs” in Materials, Experimentation and Design in Fatigue.
Eds. F. Sherrat and J. B. Sturgeon. 1982. 60–71.
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(b) Use the Bonferroni multiple comparisons method,
with pairwise two-sample T tests without the equal-
variance assumption, to identify the types of cor-
rugated containers whose population means differ
significantly at experiment-wise level of significance
α = 0.05. Summarize your results by arranging the
means in increasing order and underlining the ones
that do not differ significantly.

3. A study conducted at Delphi Energy & Engine
Management Systems considered the effect of blow-off
pressure during the manufacture of spark plugs on the
spark plug resistance. The resistance measurements of
150 spark plugs manufactured at each of three different
blow-off pressures (10, 12, and 15 psi) yield the following
summary statistics: X1 = 5.365, X2 = 5.415, X3 = 5.883,
S2

1 = 2.241, S2
2 = 1.438, and S2

3 = 1.065. Is there evidence
that the blow-off pressure affects the average spark plug
resistance?
(a) State the relevant null and alternative hypotheses for

answering this question, and use hand calculations to
conduct the ANOVA F test at level of significance
0.05. State any assumptions needed for the validity of
this test procedure.

(b) Use the Bonferroni multiple comparisons method,
with pair wise two-sample T tests using the equal-
variance assumption, to identify the groups whose
population means differ significantly at experiment-
wise level of significance α = 0.05. Summarize your
results by arranging the means in increasing order and
underlining the ones that do not differ significantly.

4. Consider the setting and data of Exercise 6 in
Section 10.2.
(a) Use R commands or hand calculations to compute

Tukey’s 95% simultaneous CIs, and perform Tukey’s
multiple comparisons at experiment-wise level of sig-
nificance α = 0.05. (Hint. You may use the summary
statistics given in Exercise 6 in Section 10.2.)

(b) Use R commands or hand calculations to perform
Tukey’s multiple comparisons, procedure on the ranks
at experiment-wise level α = 0.05. (Hint. For hand
calculations you may use the rank summary statis-
tics obtained by commands given in Exercise 7 in
Section 10.2.)

(c) For each analysis performed in parts (a) and (b),
summarize your results by arranging the means in
increasing order and underlining the ones that do not
differ significantly.

5. Records from an honors statistics class, Experimental
Design for Engineers, indicated that each professor had
adopted one of three different teaching methods: (A) use
of a textbook as the main source of teaching material,
(B) use of a textbook combined with computer activi-
ties, and (C) use of specially designed instructional notes
together with computer activities. It was decided to com-
pare the three teaching methods by randomly dividing
24 students into three groups of eight, with each group
receiving one of the three teaching methods. A common
exam was administered at the end of the study. The scores
for the three groups (GradesTeachMeth.txt) will be used
to compare the pedagogical effectiveness of the three
methods.
(a) State the null and alternative hypotheses relevant for

this comparison, and use the ANOVA procedure to
test at level α = 0.05. What assumptions, if any, are
needed for the validity of the test?

(b) Construct Tukey’s 95% simultaneous CIs for all pair-
wise contrasts, and use them to conduct Tukey’s mul-
tiple comparisons procedure at experiment-wise level
of significance α = 0.05 to determine which teaching
methods are (statistically) significantly different.

(c) Use R commands to test the validity of the needed
assumptions. Report the p-values for each test and
the conclusion reached. According to the conclusion
reached, are the procedures in parts (a) and (b) valid?

6. Consider the data in Exercise 5.
(a) Conduct the Kruskal-Wallis test at level α = 0.05

and state what assumptions, if any, are needed for its
validity.

(b) Use the Bonferroni multiple comparisons method
with the rank-sum test to identify the groups whose
population means differ significantly at experiment-
wise level of α = 0.05.

(c) Repeat part (b) using Tukey’s multiple comparisons
procedure on the ranks.

7. For the data in Exercise 10 in Section 10.2, construct
Bonrerroni 95% simultaneous CIs for all pairwise dif-
ferences of proportions, and use them to identify the
pairs of proportions that differ at experiment-wise level
of significance 0.05.

8. For the data in Exercise 12 in Section 10.2, use the
Bonferroni multiple comparisons method to identify the
groups whose population proportions differ significantly
at experiment-wise level of significance α = 0.05.

10.4 Randomized Block Designs
A randomized block design generalizes the paired data design, which we saw in
Section 9.5, to the comparison of k > 2 populations. Analogously with the paired
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data design, the k samples generated from a randomized block design are not inde-
pendent. Thus, the methods for comparing k > 2 populations discussed in the
previous sections, which are all based on the assumption that the k samples are
independent, are not valid.

A randomized block design arises when a random sample of n individuals (sub-
jects or objects) receives each of the k treatments that are to be compared. Because
k observations, one for each treatment, are obtained from the same subject or object,
the k samples are not independent. The subjects or objects on which observations are
made are called blocks. A block design is called randomized if the order in which
the k treatments are applied is randomized for each block. The term randomized
complete block design is also used to emphasize the fact that each block receives
all k treatments. For our purposes, the term randomized block design refers to a
randomized complete block design.

The following examples highlight two contexts where such data arise.

Example
10.4-1

Four different types of truck tires, A, B, C, and D, are to be compared for durabil-
ity. One way of designing this comparative experiment is to select a random sample
of n trucks and fit each of them with one tire of each type. The locations (front
left, front right, rear left, and rear right) where each tire is fitted are selected at
random for each truck. After a pre-specified number of miles on the road, the
tires are evaluated for wear and tear. In this example, the sample of n trucks are
the blocks, and the four populations/treatments to be compared correspond to the
four tire types. From each block four measurements are made, which are quan-
tifications of wear and tear of each tire. Because of the specific way that a truck
affects the wear and tear of its tires (load, road conditions, driver, etc.), the four
measurements from each block cannot be assumed independent. However, mea-
surements from different trucks can be assumed independent. Another design for
this comparative study is to use tire type A on a random sample of n1 trucks, fit a
different sample of n2 trucks with tire type B, a different sample of n3 trucks with
tire type C, and a different sample of n4 trucks with tire type D. From each truck
the average wear and tear of its four tires is recorded, resulting in four independent
samples.

Example
10.4-2

Three different methods for determining the percentage of iron in ore samples are
to be compared. A randomized block design for this comparative study consists of
obtaining n ore samples and subjecting each of them to the three different methods
for determining its iron content. The order in which the three methods are applied is
randomized for each ore sample. In this example, the n ore samples are the blocks,
and the populations that are compared correspond to the three different methods.
For each ore sample there will be three measurements that are dependent, because
they depend on the ore sample’s true iron content. Another design for this com-
parative study is to use different ore samples for each method, resulting in three
independent samples.

From the above two examples it follows that a randomized block design elim-
inates a lot of uncontrolled variability in the measurements. In Example 10.4-1,
the randomized block design eliminates the uncontrolled variability caused by the
trucks having different loads and traveling different routes at different speeds
with different drivers. Similarly, in Example 10.4-2, the randomized block design
eliminates the uncontrolled variability caused by the different iron content of the
various ore samples.
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10.4.1 THE STATISTICAL MODEL AND HYPOTHESIS

The data notation uses the subscript i to represent the treatment and the subscript j
to represent the block. Thus, Xij denotes the jth observation (j = 1, . . . , n) from treat-
ment i (i = 1, . . . , k). Figure 10-5 shows the data from a randomized block design
with three treatments. The k observations within each block j, that is

(X1j, X2j, . . . , Xkj), j = 1, . . . , n, (10.4.1)

are, in general, correlated, but observations in different blocks (different columns in
Figure 10-5) are assumed to be independent.

The set of observations for treatment i is assumed to be a random sample from
the population corresponding to treatment i. Letting µi denote the mean of obser-
vations coming from treatment i, that is, E(Xij) = µi, decompose these means into
an overall mean and treatment effect as in (10.2.2):

µi = µ + αi,

where µ = 1
k

∑k
i=1 µi, and αi = µi − µ. Thus, the null hypothesis of equality of the

treatment means, H0 : µ1 = · · · = µk, can also be written as

H0 : α1 = · · · = αk = 0. (10.4.2)

Note, however, that the statistical model (10.2.2) does not apply to data Xij from a
randomized block design, because it does not account for the dependence of the k
observations within each block. To account for the dependence within the observa-
tions of each k-tuple in (10.4.1), model (10.2.2) is modified by including a random
effect for each block j, denoted by bj:

Xij = µ + αi + bj + ϵij. (10.4.3)

The random effects bj, j = 1, . . . , n, are assumed to be iid, with

E(bj) = 0 and Var(bj) = σ 2
b .

As in (10.2.2), the intrinsic error variables ϵij are assumed to be uncorrelated (also
independent for different blocks) with zero mean and variance σ 2

ϵ . Moreover, the
intrinsic error variables are uncorrelated from the random effects. Model (10.4.3),
and properties of covariance, yield the following expressions for the variance of an
observation Xij and the covariance between any two observations, Xi1j and Xi2j, with
i1 ̸= i2, from block j:

Var(Xij) = σ 2
b + σ 2

ϵ , Cov
(
Xi1j, Xi2j

)
= σ 2

b . (10.4.4)

Figure 10-5 Data display
for a randomized block
design.

Blocks

Treatments 1 2 3 · · · n

1 X11 X12 X13 · · · X1n

2 X21 X22 X23 · · · X2n

3 X31 X32 X33 · · · X3ns
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Thus, according to model (10.4.3), all pairs of observations within each block are
assumed to have equal covariance. This assumption is made tenable by the fact that
the treatments are randomized within each block.

10.4.2 THE ANOVA F TEST

As mentioned in Sections 8.3.4 and 10.2.1, the ANOVA methodology is based on
a decomposition of the total variability, represented by the total sums of squares
(SST), into different components. In the context of a randomized block design, SST
is decomposed into the sum of squares due to differences in the treatments (SSTr),
due to differences in the blocks (SSB), and due to the intrinsic error variable (SSE).
To define these sums of squares, set

Xi· = 1
n

n∑

j=1

Xij, X ·j = 1
k

k∑

i=1

Xij, and X ·· = 1
kn

k∑

i=1

n∑

j=1

Xij.

This is similar to the dot and bar notation introduced in Figure 1-20. The treatment
SS, the block SS, and the error SS are defined as follows:

Treatment Sum
of Squares SSTr =

k∑

i=1

n
(

Xi· − X ··
)2

(10.4.5)

Block Sum
of Squares

SSB =
n∑

j=1

k
(

X ·j − X ··
)2

(10.4.6)

Error Sum
of Squares

SSE =
k∑

i=1

n∑

j=1

(
Xij − Xi· − X ·j + X ··

)2
(10.4.7)

It can be shown that SSTr, SSB and SSE decompose the total sum of squares,

which is defined as SST = ∑k
i=1

∑n
j=1

(
Xij − X ··

)2
. That is,

SST = SSTr + SSB + SSE. (10.4.8)

The ANOVA F test rejects the hypothesis of equality of the k means (or, of no
main treatment effects, see (10.4.2)), if SSTr is large compared to SSE. Though not of
primary concern in the present context of randomized block designs, the hypothesis
of no significant block effects can be rejected if SSB is large compared to SSE.

REMARK 10.4-1 The F test for the hypothesis of no main treatment effects
remains the same even if the block effects are fixed instead of random; that is, even
under the model

Xij = µ + αi + βj + ϵij,
∑

i

αi = 0,
∑

j

βj = 0, E(ϵij) = 0, (10.4.9)

which is the model for a two-factor design without interaction (see Section 1.8.4). ▹
For a proper comparison of SSTr and SSB with SSE, these sums of squares must

be divided by their respective degrees of freedom, which are:
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Degrees of Freedom
for SSTr, SSB, and SSE DFSSTr = k − 1, DFSSB = n − 1, DFSSE = (k − 1)(n − 1) (10.4.10)

Dividing each of SSTr, SSB, and SSE by their degrees of freedom, we obtain the
corresponding mean squares:

Mean Squares
for Treatment, Block,

and Error
MSTr = SSTr

k − 1
, MSB = SSB

n − 1
, MSE = SSE

(k − 1)(n − 1)
(10.4.11)

The ANOVA F statistic is computed as the ratio MSTr/MSE. If the random
effects and the error terms in the model (10.4.3) have a normal distribution, the exact
null distribution of the F statistic, that is, its distribution when H0 : µ1 = · · · = µk is
true, is known to be F with k − 1 and (k − 1)(n − 1) degrees of freedom:

Null Distribution of
the ANOVA

F-Statistic under
Normality

FTr
H0

= MSTr
MSE

∼ Fk−1, (k−1)(n−1) (10.4.12)

This null distribution of FTr
H0

is approximately correct without the normality assump-
tion provided n ≥ 30.

Under the alternative hypothesis Ha : H0 is not true, the ANOVA F statis-
tic tends to take larger values. Thus, H0 : µ1 = · · · = µk is rejected at level of
significance α if

ANOVA Region for
Rejecting

H0 : µ1 = · · · = µk
at Level α

FTr
H0

> Fk−1, (k−1)(n−1),α (10.4.13)

Moreover, the p-value is computed as 1−Fk−1, (k−1)(n−1)(FTr
H0

), where Fk−1, (k−1)(n−1)

denotes the CDF of the Fk−1, (k−1)(n−1) distribution. The F statistic FTr
H0

, its p-value,
and all quantities required for their computation are shown in an ANOVA table in
the form summarized below:

Source DF SS MS F P

Treatment k − 1 SSTr MSTr FTr
H0

= MSTr
MSE

1 − Fk−1, (k−1)(n−1)(F
Tr
H0

)

Blocks n − 1 SSB MSB FBl
H0

= MSB
MSE

1 − Fn−1, (k−1)(n−1)(F
Bl
H0

)

Error (n − 1)(k − 1) SSE MSE

Note that this ANOVA table also shows the test statistic FBl
H0

and the correspond-
ing p-value that can be used for testing the hypothesis of no block effects. This
hypothesis, however, will not typically concern us.

Example
10.4-3

A random sample of 36 Napa Valley visitors tested and rated four wine varieties on
a scale of 1–10. For impartiality purposes, the wines were identified only by numbers
1–4. The order in which each of the four wines were presented to each visitor was
randomized. The average rating for each wine, and overall average rating, are X1· =
8.97, X2· = 9.04, X3· = 8.36, X4· = 8.31, and X ·· = 8.67. Moreover, it is given that
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the sum of squares due to the visitors (blocks) is SSB = 11.38 and the total sum of
squares is SST = 65.497. With the information given, construct the ANOVA table.
Is there a significant difference in the rating of the four wines? Test at α = 0.05.

Solution
In this example, the visitors constitute the blocks and the wines constitute the “treat-
ments” (in the sense that the visitors are “treated” with different wines). The MS, F,
and P columns of the ANOVA table follow from the first two columns. The entries
in the degrees of freedom column are 3, 35, and 105. The information on the average
rating of each wine, and formula (10.4.5) give

SSTr=36
[
(8.97 − 8.67)2+(9.04 − 8.67)2+(8.36 − 8.67)2+(8.31 − 8.67)2

]
= 16.29.

The information given about the values SSB and SST, together with formula (10.4.8)
give

SSE = SST − SSTr − SSB = 65.497 − 16.29 − 11.38 = 37.827.

The resulting ANOVA table is

Source df SS MS F P

Wines 3 16.29 5.43 15.08 3.13 × 10−8

Visitors 35 11.38 0.325 0.9 0.63

Error 105 37.827 0.36

The p-values in the last column were found with the R commands 1-pf(15.08, 3,
105) and 1-pf(0.9, 35, 105). Since the p-value for the wine effect is very small, it is
concluded that the wines differ significantly (at α = 0.05, as well as at any of the
common levels of significance) in terms of their average rating.

With the data stacked in the single column in the R object values, and additional
columns in the R objects treatment and block indicating the treatment and block,
respectively, for each observation, the R command for generating the randomized
block design ANOVA table is

R Command for the Randomized Block Design

summary(aov(values∼treatment+block))

As an example, we import the wine tasting data of Example 10.4-3 into the R
data frame wt by wt=read.table(”NapaValleyWT.txt”, header=T). (Note that the
observations for each treatment, i.e., the ratings for each wine, are given in the
columns of this data file, whereas in Figure 10-5 they are depicted as rows.) The R
commands

st=stack(wt); wine=st$ind; visitor=as.factor(rep(1:36,4))
summary(aov(st$values∼wine+visitor))

will generate the ANOVA table of Example 10.4-3 (up to round-off errors).
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Testing the Validity of the Assumptions The ANOVA F test procedure requires
that the intrinsic error variables ϵij in the model (10.4.3) are homoscedastic and, if
n < 30, normally distributed. The validity of these assumptions can be tested from
the residuals obtained from fitting the model (10.4.3) in a manner similar to that
described in Section 10.2.1. In particular, with the data stacked in the single column
in the R object values, and additional columns in the R objects trt and blk indicating
the treatment and block, respectively, for each observation, the R commands for
testing the validity of the assumptions are:

R Command for Testing the Homoscedasticity Assumption

anova(aov(resid(aov(values∼trt+blk))**2∼trt+blk)) (10.4.14)

R Command for Testing the Normality Assumption

shapiro.test(resid(aov(values∼trt+blk))) (10.4.15)

As an example, using the R objects previously defined for the wine tasting data
of Example 10.4-3, the R command:

anova(aov(resid(aov(st$values∼wine+visitor))**2∼wine+visitor))

produces p-values of 0.7906 and 0.4673 for the wine and visitor effects. These p-
values suggest that the residual variance is not significantly different for different
wines or visitors, and thus the homoscedasticity assumption is approximately valid.
However, the additional command

shapiro.test(resid(aov(st$values∼wine+visitor)))

returns a p-value of 0.006, suggesting that the normality assumption is violated. The
residual boxplot and Q-Q plot shown in Figure 10-6 shed some insight into the nature
of the violation. The boxplot does not suggest any violations in terms of lack of
symmetry or existence of outliers, but the Q-Q plot suggests that the data come
from a distribution with lighter tails than the normal. However, the sample size in
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Figure 10-6 Boxplot and
Q-Q plot of the residuals in
Example 10.4-3.
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this study is greater than 30, so the ANOVA F test procedure is approximately valid
even under violations of the normality assumption.

10.4.3 FRIEDMAN’S TEST AND F TEST ON THE RANKS

When the data appear to contradict the normality assumption, Friedman’s test and
the F test on the ranks of the observations are alternative procedures for testing the
equality of the distributions of k treatment populations.

Let F1, . . . , Fk denote the cumulative distribution functions of the k populations,
and µ̃1, . . . , µ̃k be their respective medians. The two procedures described in this
section are widely interpreted as tests for

H0 : µ̃1 = · · · = µ̃k. (10.4.16)

F Test on the Ranks As the name of this procedure suggests, it consists of applying
the ANOVA F test on the ranks of the observations. In particular, the procedure
consists of the following steps:

1. Combine the data from the k samples, Xi1, . . . , Xin, i = 1, . . . , k, into an overall
set of n × k observations.

2. Assign ranks, or mid-ranks, to the combined set of observations as discussed in
Sections 9.3 and 10.2.2. Let Rij denote the (mid-)rank of observation Xij.

3. Compute rank sums of squares SSTrR, SSBR, and SSER from the formulas
(10.4.5), (10.4.6), and (10.4.7), respectively, using Rij instead of Xij, and com-
pute the mean rank sums of squares MSTrR, MSBR, and MSER, by dividing
the rank sums of squares by their respective degrees of freedom, as given in
(10.4.10).

4. Compute the F statistic on the ranks by FRTr
H0

= MSTrR/MSER, and the p-value
by 1 − Fk−1,(k−1)(n−1)(FRTr

H0
). The null hypothesis (10.4.16) is rejected at level α

if FRTr
H0

> Fk−1,(k−1)(n−1),α or if the p-value is less than α.

This test procedure is approximately valid for n ≥ 8.

Example
10.4-4

For the wine tasting data set of Example 10.4-3, the summary statistics on the ranks
are R1· = 90.93, R2· = 94.89, R3· = 52.97, R4· = 51.21, and R·· = 72.50. Moreover,
it is given that the rank sum of squares due to the visitors (blocks) is SSBR = 41,843
and the rank total sum of squares is SSTR = 248203. With the information given,
calculate the F statistic on the ranks and test the hypothesis of no difference in the
ratings of the four wines at α = 0.05.

Solution
Plugging the given summary statistics into the formula (10.4.5) for the treatment sum
of squares, we have

SSTrR = 36
[
(90.93 − 72.5)2 + (94.89 − 72.5)2 + (52.97 − 72.5)2 + (51.21 − 72.5)2

]

= 60,323.83.

The information about the values SSBR and SSTR together with formula (10.4.8)
give

SSER = SSTR − SSTrR − SSBR = 248,203.00 − 41,843.00 − 60,323.83 = 146,036.17.
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Thus, MSTrR = 60,323.83/3 = 20,107.94, MSER = 146,036.2/105 = 1390.82,

FRTr
H0

= 20,107.94
1390.82

= 14.46, and p-value = 1 − F3, 105(14.46) = 5.93 × 10−8.

Since the p-value is smaller than 0.05 (or, since 14.46 > F3, 105, 0.05 = 2.69), it is
concluded that the wines differ significantly at α = 0.05 in terms of their median
rating.

With the wine tasting data read into the R data frame wt and stacked into the
data frame st (by st=stack(wt)), the R commands

ranks=rank(st$values); wine=st$ind;
visitor=as.factor(rep(1:36,4))

summary(aov(ranks∼wine+visitor))

will generate the sums of squares and F statistic of Example 10.4-4 (up to round-off
errors).

Friedman’s Test The main difference between Friedman’s test and the ANOVA
F test on the ranks is that in the former test each observation is ranked among
the k observations of its own block. These within block ranks are denoted by rij.
There are three additional differences. First, the rank mean error sum of squares
is computed differently and is denoted by MSE∗

r . Second, the test statistic is the
ratio of SSTrr/MSE∗

r . Finally, the null distribution of Friedman’s test statistic is
approximately χ2

k−1 (chi-square with k − 1 degrees of freedom).
The steps for computing Friedman’s test statistic and its p-value follow:

1. Let rij denote the (mid-)rank of observation Xij among the observations in the
jth block, that is, among X1j, . . . , Xkj.

2. Compute SSTrr from (10.4.5), using rij instead of Xij, and compute MSE∗
r as

MSE∗
r = 1

n(k − 1)

k∑

i=1

n∑

j=1

(rij − r··)2 (10.4.17)

3. Compute Friedman’s statistic by QH0 = SSTrr/MSE∗
r and the p-value by 1 −

4k−1(QH0), where 4ν denotes the CDF of the χ2
ν distribution. H0 in (10.4.16) is

rejected at level α if QH0 > 4k−1,α or if the p-value is less than α.

Friedman’s test procedure is approximately valid for n > 15 and k > 4.

Example
10.4-5

For the wine tasting data set of Example 10.4-3, the summary statistics on the
within-block ranks rij are r1· = 3.11, r2· = 3.14, r3· = 1.92, r4· = 1.83, and
r·· = 2.5. Moreover, the sample variance of these ranks is 1.248. With the infor-
mation given, calculate Friedman’s test statistic and p-value, and test the hypothesis
of no difference in the ratings of the four wines at α = 0.05.

Solution
Plugging the given summary statistics into the formula (10.4.5) for the treatment sum
of squares, we have

SSTrr = 36
[
(3.11 − 2.5)2 + (3.14 − 2.5)2 + (1.92 − 2.5)2 + (1.83 − 2.5)2

]
= 56.41.
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Formula (10.4.17) implies that MSE∗
r can be computed from the sample variance, S2

r ,
of the within-block ranks as

MSE∗
r = 1

n(k − 1)
(nk − 1)S2

r . (10.4.18)

Thus, using the information that S2
r = 1.248,

MSE∗
r = (36 × 4 − 1)1.248

36 × 3
= 1.65 and QH0 = 56.41

1.65
= 34.19.

The command 1-pchisq(34.19, 3) returns a p-value of 1 − 43(34.19) = 1.8 × 10−7.
Moreover, from Table A.5 we have 42

3, 0.05 = 7.815. Since QH0 = 34.19 > 7.815,
and also since the p-value is less than 0.05, it is concluded that the wines differ
significantly at α = 0.05 in terms of their median rating.

With the data read into the R data frame wt, and stacked into the data frame st
(by st=stack(wt)), the R command for performing Friedman’s test is

R Command for Friedman’s Test

friedman.test(st$values, st$ind, as.factor(rep(1:n, k)))

In particular, with the wine tasting data read into the R data frame wt and
stacked into the data frame st, the command friedman.test(st$values, st$ind,
as.factor(rep(1:36, 4)) gives the value of Friedman’s test statistic and p-value (up
to round-off errors) that was found in Example 10.4-5.

REMARK 10.4-2 Though Friedman’s test is the more commonly used rank statistic
for randomized block designs, it is generally less powerful than the ANOVA F test
on the ranks. ▹

10.4.4 MULTIPLE COMPARISONS

As discussed in Section 10.3, when the null hypothesis of equality of the k
means/medians is rejected, the further question arises as to which of the pairwise
contrasts is different from zero at a given level of significance α. This section presents
the Bonferroni and Tukey multiple comparisons procedures as they apply to data
from randomized block designs.

Bonferroni Multiple Comparisons and Simultaneous CIs The procedure for con-
structing Bonferroni simultaneous CIs and multiple comparisons remains as
described in Section 10.3.1. The only difference now is that the simultaneous CIs
for the pairwise differences of means take the form of the paired T CI of Section
9.5. Similarly, if the multiple comparisons are to be done through pairwise test-
ing, the only difference is that we use either the paired T test of Section 9.5 or the
signed-rank test of Section 9.5.4. These Bonferroni multiple comparison procedures,
through simultaneous CIs, and through pairwise testing, are demonstrated in the
following example.
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Example
10.4-6

In the context of the wine tasting data of Example 10.4-3, apply the following
Bonferroni multiple comparisons procedures to identify which of the

(4
2
)

= 6 pairs of
wines are significantly different at experiment-wise level of significance α = 0.05.

(a) Construct 95% Bonferroni simultaneous CIs, and perform multiple compar-
isons based on them.

(b) Perform the Bonferroni multiple comparisons procedure through pairwise
testing using the Wilcoxon’s signed-rank procedure.

(c) Perform the Bonferroni multiple comparisons procedure through pairwise
testing using the paired T test procedure.

Solution
Since four wines were found to be significantly different in terms of their average,
or median, ratings in Examples 10.4-3, 10.4-4, and 10.4-5, application of a multiple
comparisons procedure is warranted.

(a) Because there are m = 6 95% simultaneous CIs to be constructed,
the Bonferroni method constructs each CI at confidence level of (1 −
0.05/6)100% = 99.167%. The six simultaneous CIs are displayed in the
following table:

Comparison 99.17% CI Includes 0?

µ1 − µ2 (−0.470, 0.326) Yes

µ1 − µ3 (0.237, 0.974) No

µ1 − µ4 (0.278, 1.044) No

µ2 − µ3 (0.295, 1.061) No

µ2 − µ4 (0.320, 1.147) No

µ3 − µ4 (−0.370, 0.481) Yes

(10.4.19)

For example, recalling that there are n = 36 blocks, the first interval is
constructed as

X1· − X2· ± t35, 0.05/12S1, 2/6

where 0.05/12 is half of 0.05/6, and S1, 2 is the standard deviation of the dif-
ferences X1j − X2j, j = 1, . . . , 36. Alternatively, with the data read into the
R data frame wt, this first interval can be constructed with the R command
t.test(wt$W1,wt$W2, paired=T, conf.level=0.99167), and similarly for the oth-
ers. Using these CIs, Bonferroni 95% multiple comparisons are performed by
checking which of them includes zero. If an interval does not include zero, the
corresponding comparison is declared significant at experiment-wise level of
0.05. The results, given in the last column of the table in (10.4.19), mean that
each of the wines 1 and 2 is significantly different from wines 3 and 4, but
wine 1 is not significantly different from wine 2, and wine 3 is not significantly
different from wine 4.

(b) The p-values resulting from the signed-rank test applied on the data from each
of the m = 6 pairs of wine ratings are given in the table in (10.4.20). Because
the desired experiment-wise level of significance is 0.05, each p-value is com-
pared to 0.05/6 = 0.00833. Comparisons with p-values less than 0.00833 are
declared significantly different.
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Comparison p-Value Less than 0.0083?

1 vs 2 0.688 No

1 vs 3 0.000 Yes

1 vs 4 0.000 Yes

2 vs 3 0.000 Yes

2 vs 4 0.000 Yes

3 vs 4 0.712 No

(10.4.20)

According to the last column of the table in (10.4.20), each of the wines 1 and
2 is significantly different from wines 3 and 4, but wine 1 is not significantly
different from wine 2, and wine 3 is not significantly different from wine 4.
This conclusion is in agreement with the conclusion reached in part (a).

(c) The p-values resulting from the paired T test applied on the data from each of
the m = 6 pairs of wine ratings are: 0.615, 5.376 × 10−5, 2.728 × 10−5, 1.877 ×
10−5, 1.799 × 10−5, and 0.717. Arranging these p-values in the second column
of a table like the one in (10.4.20) and comparing them with 0.00833 result in
exactly the same conclusion that was reached in parts (a) and (b).

The multiple comparison results from all three methods are summarized as

X4 X3 X1 X2
8.31 8.36 8.97 9.04

Tukey’s Multiple Comparisons and Simultaneous CIs Tukey’s method is appropriate
under the normality assumption of Section 10.4.2 or if the number of blocks is large
(≥ 30).

The procedures for simultaneous CIs of all pairwise contrasts and for multiple
comparisons, are similar to those described in Section 10.3.2, but we use the MSE
for the randomized block designs and now the denominator degrees of freedom of
the studentized range distribution is (k − 1)(n − 1). More precisely, the procedures
are as follows:

1. Tukey’s Simultaneous CIs: The (1 − α)100% Tukey’s simultaneous CIs for all
contrasts µi − µj, i ̸= j, are constructed as

Xi· − Xj· ± Qα,k,(k−1)(n−1)

√
MSE

n
(10.4.21)

where MSE is given in (10.4.11).
2. Tukey’s Multiple Comparisons at Level α: If for a pair (i, j), i ̸= j, the interval

(10.4.21) does not contain zero, it is concluded that µi and µj differ significantly
at level α.

Example
10.4-7

In the context of the wine tasting data of Example 10.4-3, apply Tukey’s method
to construct 95% simultaneous CIs and multiple comparisons to identify which of
the

(4
2
)

= 6 pairs of wines are significantly different at experiment-wise level of
significance α = 0.05.

Solution
Formula (10.4.21) yields the following 95% simultaneous CIs for the six pairwise
differences of means.
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Comparison 95% Tukey’s SCI Includes 0?

µ1 − µ2 (−0.442, 0.297) Yes

µ1 − µ3 (0.236, 0.975) No

µ1 − µ4 (0.292, 1.030) No

µ2 − µ3 (0.308, 1.047) No

µ2 − µ4 (0.364, 1.103) No

µ3 − µ4 (−0.314, 0.425) Yes

(10.4.22)

By checking which of these intervals include zero, the third column of the table
in (10.4.22) yields multiple comparison results that are in agreement with those of
Example 10.4-6.

REMARK 10.4-3 Note that the widths of the CIs in (10.4.22) tend to be smaller
than the Bonferroni CIs of Example 10.4-6(a). This is due, in part, to the fact that
Tukey’s intervals use the assumption of equal variances, whereas the Bonferroni
intervals do not. ▹

With the data stacked in the single column in the R object values, and additional
columns in the R objects treatment and block indicating the treatment and block,
respectively, for each observation, the R commands for Tukey’s simultaneous CIs
are:

R Commands for Tukey’s (1− α)100% Simultaneous CIs

TukeyHSD(aov(values∼treatment+block), ”treatment”,
conf.level=1-α)

plot(TukeyHSD(aov(values∼treatment+block), ”treatment”,
conf.level=1-α))

The default value of α is 0.05. As an example, with the wine tasting data of Example
10.4-3 imported into the R data frame wt, the R commands

st=stack(wt); wine=st$ind; visitor=as.factor(rep(1:36, 4))
TukeyHSD(aov(st$values∼wine+visitor),”wine”)

will generate the table of 95% simultaneous CIs of Example 10.4-7 (except for
reversing the sign of the contrasts, i.e., µ2 − µ1 instead of µ1 − µ2, etc., and
up to round-off errors). The additional command plot(TukeyHSD(aov(st$values∼
wine+visitor),”wine”)) produces the plot of Figure 10-7, which is an effective visual
display of the multiple comparisons results.

Tukey’s Multiple Comparisons on the Ranks This procedure consists of first com-
bining all observations into an overall set of N = n × k observations, sorting them
from smallest to largest, and assigning ranks or mid-ranks to each observation. This
ranking process is described in Section 10.2.2. Then the data are replaced by their
ranks, and Tukey’s multiple comparisons procedure is applied on them. The appli-
cation of Tukey’s method on the (mid-)ranks of the combined data is approximately
valid for n ≥ 8, and is the recommended procedure with non-normal data.

As explained in Section 10.3.3, Tukey’s simultaneous CIs are not relevant to the
contrasts µi −µj, but the resulting multiple comparisons procedure are interpretable
as multiple comparisons for pairs of the k populations the observations came from.
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Figure 10-7 Visual display
of Tukey’s simultaneous
CIs for Example 10.4-7.

In particular, the results of Tukey’s multiple comparisons procedure on the ranks
will be interpreted as multiple comparisons for all pairs of median contrasts µ̃i − µ̃j.

Example
10.4-8

In the context of the wine tasting data of Example 10.4-3, perform multiple compar-
isons at experiment-wise level of significance α = 0.05 using Tukey’s method on the
ranks.

Solution
With the wine tasting data imported into the R data frame wt, the R commands

st=stack(wt); wine=st$ind; visitor=as.factor(rep(1:36, 4))
TukeyHSD(aov(rank(st$values)∼wine+visitor),”wine”)

give the 95% Tukey simultaneous CIs on the ranks shown in the table below.

Comparison 95% Tukey’s SCI Includes 0?

1 vs 2 (−26.91, 18.99) Yes

1 vs 3 (15.01, 60.91) No

1 vs 4 (16.77, 62.67) No

2 vs 3 (18.97, 64.87) No

2 vs 4 (20.73, 66.63) No

3 vs 4 (−21.18, 24.71) Yes

As already mentioned, these CIs do not pertain to contrasts of the means or medi-
ans of the wine ratings. However, the multiple comparison procedure resulting from
checking whether or not each interval includes zero does pertain to the contrasts
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of the medians. It is seen that the multiple comparisons results that follow from the
third column of the above table are in agreement with those of Examples 10.4-6 and
10.4-7.

Exercises

1. The data for the rate of combustion in humid air
flow study of Exercise 5 in Section 10.2 can be found
in CombustRate.txt. In the context of that exercise, an
engineer with statistical training observes that there is a
certain pattern in the data and inquires about other exper-
imental conditions. It turned out that different rows corre-
sponded to different temperatures. Having this additional
information, the engineer decides to treat the different
temperature levels as random blocks.
(a) Explain why the ANOVA F procedure of Section

10.2.1 is not recommended, and write a model for
the observations Xij that incorporates the additional
information.

(b) Using parameters of the model you wrote in part (a),
state the null and alternative hypotheses relevant for
deciding if variation in the mole fraction of water
affects the mean diffusivity.

(c) Use R commands to construct the ANOVA table for
the model in part (a), and use the p-value to conduct
the test at level α = 0.01.

(d) Compare the p-value obtained in (c) with that
obtained in Exercise 5 in Section 10.2, and give a brief
explanation for the observed difference.

(e) Use R commands to construct Tukey’s 99% simulta-
neous CIs and multiple comparisons.

2. A service center for electronic equipment is interested
in investigating possible differences in service times of the
three types disk drives that it regularly services. Each of
the three technicians currently employed was randomly
assigned to one repair of each type of drive and the repair
times were recorded. The results are shown in the table
below:

Technician

Drive 1 2 3

1 44.8 33.4 45.2

2 47.8 61.2 60.8

3 73.4 71.2 64.6

(a) Write a model for the observations. Do the random
blocks correspond to the drives or the technicians?
(Hint. The technicians currently employed can be
viewed as a random sample from the population of
available technicians.)

(b) Complete the ANOVA table and report the p-value
for testing the null hypothesis that the average service
time of the three drives is the same.

(c) Compute Friedman’s test statistic for the hypothesis
in (b) and report the p-value.

3. A commercial airline is considering four different
designs of the control panel for the new generation of air-
planes. To see if the designs have an effect on the pilot’s
response time to emergency displays, emergency condi-
tions were simulated and the response times, in seconds,
of 8 pilots were recorded. The same 8 pilots were used for
all four designs. The order in which the designs were eval-
uated was randomized for each pilot. The data are given
in PilotReacTimes.txt.
(a) Write a model for the observations Xij and specify

which parameters represent the treatment effects and
which represent the random block effects.

(b) Using parameters of the model you wrote in part (a),
state the null and alternative hypotheses relevant for
deciding if the designs differ in terms of the pilot’s
mean response time.

(c) Using R commands, perform the tests for checking the
assumptions of homoscedasticity and normality of the
intrinsic error variables of the model in (a). Report
the p-values of the tests, and construct the residual
boxplot and Q-Q plot. Comment on the validity of the
two assumptions on the basis of the p-values and the
plots.

(d) Regardless of the conclusions reached in part (c),
carry out the ANOVA F procedure at level of signif-
icance α = 0.01 for testing the hypothesis in part (b),
and report the p-value.

4. In the context of Exercise 3, use R commands to
construct Tukey’s 99% simultaneous CIs, including the
plot that visually displays them, and perform multiple
comparisons at experiment-wise level 0.01 to determine
which pairs of designs differ significantly in terms of
the pilot’s response time. Summarize the conclusions
by arranging the sample means in increasing order and
underlining the pairs of means that are not significantly
different.

5. An experiment was performed to determine the effect
of four different chemicals on the strength of a fabric.
Five fabric samples were selected and each chemical was
tested once in random order on each fabric sample. The
total sum of squares for this data is SST = 8.4455. Some
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additional summary statistics are given in the partially
filled ANOVA table below:

Df Sum Sq Mean Sq F value
treatment
block 5.4530

Residuals 0.5110

(a) Which of the two factors in this study, that is, which
of the factors “chemical” and “fabric,” is the blocking
factor?

(b) Complete the ANOVA table and test the null hypoth-
esis at level α = 0.05 that the four chemicals do not
differ in terms of the mean strength of the fabric.
Report the p-value.

6. The data file FabricStrengRbd.txt contains the fabric
strength data of Exercise 5. Import the data into the R
object fs, and use the R commands

ranks=rank(fs$streng);anova(aov(ranks∼
fs$chemical+fs$fabric))

to construct the ANOVA table on the ranks.

(a) Report the p-value for testing the null hypothesis
that the four chemicals do not differ in terms of the

mean strength of the fabric. Should the hypothesis be
rejected at level α = 0.01?

(b) Conduct Tukey’s multiple comparisons on the ranks,
and report which pairs of chemicals differ at
experiment-wise level of significance α = 0.01.

7. A study was conducted to see whether three cars, A,
B, and C, took the same time to parallel park. A ran-
dom sample of seven drivers was obtained and the time
required for each of them to parallel park each of the
three cars was measured. The results are listed in the table
below.

Driver

Car 1 2 3 4 5 6 7

A 19.0 21.8 16.8 24.2 22.0 34.7 23.8

B 17.8 20.2 16.2 41.4 21.4 28.4 22.7

C 21.3 22.5 17.6 38.1 25.8 39.4 23.9

Is there evidence that the time required to parallel park
the three types of car are, on average, different? You may
use hand calculations or R commands to complete the
following parts.
(a) Construct Bonferroni’s 95% simultaneous CIs and

perform the corresponding multiple comparisons.
(b) Perform Bonferroni’s multiple comparisons at

experiment-wise error rate of 0.05, using the signed-
rank test.



Chapte r

11Multifactor Experiments

11.1 Introduction
A statistical experiment involving several factors is called a factorial experiment if
all factor-level combinations are considered, that is, if data are collected from all
factor-level combinations.

Section 1.8.4 introduced the important concepts of main effects and interaction
in the context of a two-factor factorial experiment. It was seen that in additive
designs (i.e., designs where there is no interaction among the factors) the different
levels of a factor can be compared in terms of the main effect, and the “best” factor-
level combination is the one that corresponds to the “best” level of each factor.
However, in non-additive designs (i.e., when there is interaction among the factors)
the comparison of different levels of a factor is more complicated. The same is true
for designs with more than two factors. For this reason, the analysis of data from a
factorial experiment often begins by determining whether or not the design is addi-
tive. The interaction plot we saw in Section 1.8.4 is useful in this regard but needs to
be followed up by a formal test.

In this chapter we will discuss the ANOVA F procedure for testing the null
hypothesis that a two-factor design is additive versus the alternative that states the
opposite. ANOVA F tests for the main effects will also be presented. The concepts
of main effects and interactions will then be extended to a three-factor design, and
the ANOVA F procedures for testing them will be presented. Finally, the last section
presents a special class of experimental designs, 2r factorial and fractional factorial
designs, which are used extensively in quality improvement programs.

11.2 Two-Factor Designs
11.2.1 F TESTS FOR MAIN EFFECTS AND INTERACTIONS

We begin by reviewing some of the notation and terminology introduced in Section
1.8.4, but we advise the reader to go back and review that section before proceeding
with this section.

A design where factor A, the row factor, has a levels and factor B, the column
factor has b levels is referred to as an a × b design; a 2 × 2 design is also referred to
as a 22 design. Let µij denote the mean value of an observation taken at factor-level
combination (i, j), that is, when the level of factor A is i and the level of factor B is j.
The set of mean values µij, i = 1, . . . , a, j = 1, . . . , b, can be decomposed as

384
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Decomposition
of Means in a

Two-Factor Design
µij = µ + αi + βj + γij (11.2.1)

where µ = µ·· is the average of all the µij, and αi, βj, and γij are the main row
effects, main column effects, and interaction effects, defined in (1.8.4) and (1.8.6),
respectively. Note that the definition of the main effects and interactions implies
that they satisfy the following conditions:

a∑

i=1

αi = 0,
b∑

j=1

βj = 0,
a∑

i=1

γij = 0,
b∑

j=1

γij = 0. (11.2.2)

It can be shown that the αi, βj, and γij defined in (1.8.4) are the only sets of
numbers that satisfy both the decomposition (11.2.1) and the conditions (11.2.2).

From each factor-level combination (i, j) we observe a simple random sample

Xijk, i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , nij.

Note that the first two indices refer to the levels of factors A and B, and the third
index enumerates the observations within each factor-level combination; see Figure
1-19 for an illustration of the arrangement of the observations within each factor-
level combination. When all group sample sizes are equal, that is, nij = n, for all i, j,
we say that the design is balanced.

The statistical model for the data can be written as

Xijk = µij + ϵijk or Xijk = µ + αi + βj + γij + ϵijk, (11.2.3)

where the intrinsic error variables ϵijk are assumed to be independent with zero
mean and common variance σ 2

ϵ (homoscedasticity assumption). The first expres-
sion in (11.2.3) is called the mean-plus-error form of the model, while the second
is the treatment-effects form. The null hypotheses of no interaction effect and no
main factor effects are

No Interaction
Effects HAB

0 : γ11 = · · · = γab = 0 (11.2.4)

No Main Row
Effects HA

0 : α1 = · · · = αa = 0 (11.2.5)

No Main Column
Effects HB

0 : β1 = · · · = βb = 0 (11.2.6)

Testing for these hypotheses will be based on the ANOVA methodology, which
was used in Sections 8.3.4 and 10.2.1 in the context of the simple linear regression
model and testing for the equality of k means, respectively. For technical reasons,
the formulas for the decomposition of the total sum of squares and the resulting F
statistics will be given only for the case of a balanced design, that is, nij = n for
all i, j.

For data denoted by multiple indices, the dot and bar notation (already partly
used in Section 1.8.4) is very useful for denoting summations and averages over some
of the indices. According to this notation, replacing an index by a dot means sum-
mation over that index, while a dot and a bar means averaging over that index.
For example, the sample mean from factor-level combination, or group, (i, j) is
denoted by
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Xij· = 1
n

n∑

k=1

Xijk. (11.2.7)

For simplicity in notation, however, we write Xij instead of Xij·. Moreover, set

Xi· = 1
b

b∑

j=1

Xij, X ·j = 1
a

a∑

i=1

Xij, X ·· = 1
a

1
b

a∑

i=1

b∑

j=1

Xij. (11.2.8)

The total sum of squares, and its degrees of freedom, are defined as the
numerator of the sample variance of all Xijk and their total number minus one,
respectively:

SST =
a∑

i=1

b∑

j=1

n∑

k=1

(
Xijk − X ··

)2
, DFSST = abn − 1. (11.2.9)

The total sum of squares is decomposed as

SST = SSA + SSB + SSAB + SSE, (11.2.10)

where the sum of squares due to the main row effects, SSA, the main column effects,
SSB, the interaction effects, SSAB, and the error term, SSE, are defined as

SSA = bn
a∑

i=1

(
Xi· − X ··

)2
, SSB = an

b∑

j=1

(
X ·j − X ··

)2
, (11.2.11)

SSAB = n
a∑

i=1

b∑

j=1

(
Xij − Xi· − X ·j + X ··

)2
, and (11.2.12)

SSE =
a∑

i=1

b∑

j=1

n∑

k=1

(
Xijk − Xij

)2
. (11.2.13)

It is instructive to note that

SSA = bn
a∑

i=1

α̂2
i , SSB = an

b∑

j=1

β̂2
j , and SSAB = n

a∑

i=1

b∑

j=1

γ̂ 2
ij , (11.2.14)

where α̂i, β̂j, and γ̂ij are the estimated effects defined in (1.8.8) and (1.8.9). The
corresponding decomposition of the total degrees of freedom, DFSST , is

abn − 1 = (a − 1) + (b − 1) + (a − 1)(b − 1) + ab(n − 1)

= DFSSA + DFSSB + DFSSAB + DFSSE, (11.2.15)

where DFSSA, DFSSB, DFSSAB, and DFSSE are defined implicitly in (11.2.15). The
mean squares are obtained by dividing the sums of squares by their degrees of
freedom:

MSA = SSA
a − 1

, MSB = SSB
b − 1

, MSAB = SSAB
(a − 1)(b − 1)

, MSE = SSE
ab(n − 1)

.

It is not difficult to verify that the pooled sample variance, S2
p, which, since all

sample sizes are equal, is just the average of the ab sample variances, equals MSE.
See also (10.2.11) for the one-factor analogue of this result.
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The F statistics for testing HAB
0 , HA

0 , and HB
0 and their null distributions are:

F-Statistic
for HAB

0
FAB

H0
= MSAB

MSE
∼ F(a−1)(b−1), ab(n−1) (11.2.16)

F-Statistic
for HA

0
FA

H0
= MSA

MSE
∼ Fa−1, ab(n−1) (11.2.17)

F-Statistic
for HB

0
FB

H0
= MSB

MSE
∼ Fb−1, ab(n−1) (11.2.18)

Recall that the notation Fν1, ν2 is used to denote both the F distribution with numer-
ator and denominator degrees of freedom ν1 and ν2, respectively, and its CDF. The
above computations are summarized in an ANOVA table in the form summarized
below:

Source Df SS MS F p-Value

Main Effects
A a − 1 SSA MSA FA

H0
1 − Fa−1,ab(n−1)(F

A
H0

)

B b − 1 SSB MSB FB
H0

1 − Fb−1,ab(n−1)(F
B
H0

)

Interactions
AB (a − 1)(b − 1) SSAB MSAB FAB

H0
1 − F(a−1)(b−1),ab(n−1)(F

AB
H0

)

Error ab(n − 1) SSE MSE

Total abn − 1 SST

It is typically recommended that the test for interaction be performed first. If
HAB

0 is rejected we may conclude that both factors influence the response even if
HA

0 and HB
0 are not rejected. This is because the main effects are average effects,

where the averaging is over the levels of the other factor. For example, if interaction
is present it may be that at level j = 1 of factor B, level i = 1 of factor A results in
higher mean than level i = 2, while the opposite is true for level j = 2 of factor B. The
phenomenon of insignificant main effects in the presence of significant interaction
effects is often referred to as the masking of main effects due to interaction.

When one of the hypotheses is rejected, simultaneous CIs and multiple com-
parisons can be performed to determine which pairs of parameters are significantly
different. For example, if HA

0 is rejected, simultaneous CIs and multiple comparisons
can determine which pairs of contrasts of the row main effects are significantly dif-
ferent, that is, which differences αi − αj are significantly different from zero. Instead
of giving formulas, we rely on R output for conducting such multiple comparisons.

With the response variable and the levels of the two factors read into the R
objects y, A, and B, respectively, the following R commands for constructing the
ANOVA table and Tukey’s simultaneous CIs apply also for unbalanced designs, that
is, when the sample sizes nij are not equal:
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R Commands for the ANOVA F Tests and Tukey’s (1 − α)100%
Simultaneous CIs

fit=aov(y∼A*B); anova(fit); TukeyHSD(fit, conf.level=1-α)

The following display summarizes all assumptions and formulas needed for imple-
menting the ANOVA F test procedure discussed in this section.

ANOVA F Tests in Two-Factor Designs

(1) Assumptions:
(a) Xij1, . . . , Xijn is a simple random sample from

the (i, j)th population, i = 1, . . . , a, j = 1, . . . , b
(b) The ab samples are independent
(c) The ab variances are equal (homoscedasticity)
(d) The ab populations are normal or n ≥ 30

(2) Construction of the F Test Statistics:
(a) Compute the sample variance of each of the ab

samples, and average them to form S2
p = MSE.

(b) Compute Xij, Xi·, X ·j, X ··, as shown in (11.2.7)
and (11.2.8), and use them to compute SSA, SSB
and SSAB as shown in (11.2.11) and (11.2.12)

(c) Compute FAB
H0

, FA
H0

and FB
H0

by following the
steps leading to (11.2.16), (11.2.17), and (11.2.18)

(3) Rejection Regions and p-Values:

Hypothesis Rejection Region

HAB
0 FAB

H0
> F(a−1)(b−1),ab(n−1),α

HA
0 FA

H0
> Fa−1,ab(n−1),α

HB
0 FB

H0
> Fb−1,ab(n−1),α

where Fν1,ν2,α is the (1 − α)100th percentile of

the Fν1,ν2 distribution
Hypothesis p-Value

HAB
0 1 − F(a−1)(b−1),ab(n−1)(F

AB
H0

)

HA
0 1 − Fa−1,ab(n−1)(F

A
H0

)

HB
0 1 − Fb−1,ab(n−1)(F

B
H0

)

(11.2.19)

Example
11.2-1

Data were collected1 on the amount of rainfall, in inches, in select target areas of
Tasmania with and without cloud seeding during the different seasons. The sam-
ple means and sample variances of the n = 8 measurements from each factor-level
combination are given in the table below.

1 A. J. Miller et al. (1979). Analyzing the results of a cloud-seeding experiment in Tasmania, Communications in
Statistics—Theory & Methods, A8(10): 1017–1047.
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Season

Winter Spring Summer Autumn
Mean Var Mean Var Mean Var Mean Var

No 2.649 1.286 1.909 1.465 0.929 0.259 2.509 1.797
Seeded

Yes 2.192 3.094 2.015 3.141 1.127 1.123 2.379 2.961

Carry out the tests for no interaction and no main effects at level of significance
0.05.

Solution
The sample versions of the main effects and interactions were computed in Example
1.8-12, and the interaction plot is shown in Figure 1-21. Here we will determine
whether the differences in the sample versions are big enough to declare the popu-
lation quantities significantly different. (The assumptions needed for the validity of
the tests will be checked in Example 11.2-3.) Averaging the eight sample variances
yields

MSE = 1.891.

Let “Seeded” be factor A, with levels “No” (i = 1) and “Yes” (i = 2), and “Season”
be factor B, with levels “Winter,” “Spring,” “Summer,” “Autumn” corresponding to
j = 1, 2, 3, 4, respectively. Averaging the means overall and by rows and columns
yields

x·· = 1.964, x1· = 1.999, x2· = 1.928

x·1 = 2.421, x·2 = 1.962, x·3 = 1.028, x·4 = 2.444.

Using formulas (11.2.11) and (11.2.12), we obtain SSA = 0.079, SSB =
21.033, SSAB = 1.024. Dividing these by the corresponding degrees of freedom,
which are 1, 3, and 3, respectively, we obtain

MSA = 0.079, MSB = 7.011, MSAB = 0.341.

Using also the previously obtained MSE, the test statistics are

FAB
H0

= 0.341
1.891

= 0.180, FA
H0

= 0.079
1.891

= 0.042, FB
H0

= 7.011
1.891

= 3.708.

The corresponding p-values are

1 − F3,56(0.180) = 0.909, 1 − F1,56(0.042) = 0.838, 1 − F3,56(3.708) = 0.017.

Thus, only the levels of factor B (the seasons) are significantly different at level 0.05
in terms of the amount of rainfall produced.

Example
11.2-2

The data file CloudSeed2w.txt contains the rainfall measurements of the previ-
ous example. Use R commands to construct the ANOVA table and to perform
Tukey’s 95% simultaneous CIs and multiple comparisons for determining the pairs
of seasons that are significantly different at experiment-wise error rate of 0.05.
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Solution
The commands

cs=read.table(”CloudSeed2w.txt”, header=T)

y=cs$rain; A=cs$seeded; B=cs$season

fit=aov(y∼A*B); anova(fit); TukeyHSD(fit)

import the data into the R data frame cs; define the objects y, A, and B as columns
containing the rainfall data, the level of factor A, and the level of factor B, respec-
tively; and perform the analysis of variance including Tukey’s 95% simultaneous CIs.
The resulting ANOVA table is shown below:

Df Sum Sq Mean Sq F value Pr(>F)
A 1 0.079 0.0791 0.0418 0.83868
B 3 21.033 7.0108 3.7079 0.01667
A:B 3 1.024 0.3414 0.1806 0.90914
Residuals 56 105.885 1.8908

The p-values shown in the ANOVA table are the same (up to round-off errors) with
those obtained in the previous example, and thus the conclusion that only seasons
are significantly different at level 0.05 remains. It follows that multiple comparisons
are needed only to determine which seasons are different from each other. (Note
that factor A has only two levels, so there would be no need for multiple com-
parisons even if HA

0 had been rejected.) The command TukeyHSD(fit) gives 95%
simultaneous CIs for the contrasts of the form αi1 − αi2 (so an ordinary 95% CI if
factor A has only two levels), a separate set of 95% simultaneous CIs for contrasts
of the form βj1 − βj2 , and a separate set of 95% simultaneous CIs for contrasts of
the form µi1j1 − µi2j2 which, however, are typically of no interest. The 95% simul-
taneous CIs for contrasts of the form βj1 − βj2 (the seasons’ contrasts) are given in
the following table. From this table it is seen that only the simultaneous CIs for the
Summer-Autumn and Winter-Summer contrasts do not contain zero, so these are the
only contrasts that are significantly different from zero at experiment-wise level of
significance 0.05.

Tukey multiple comparisons of means
95% family-wise confidence level

diff lwr upr p adj
Spring-Autumn -0.481875 -1.7691698 0.8054198 0.7550218
Summer-Autumn -1.415625 -2.7029198 -0.1283302 0.0257497
Winter-Autumn -0.023125 -1.3104198 1.2641698 0.9999609
Summer-Spring -0.933750 -2.2210448 0.3535448 0.2311927
Winter-Spring 0.458750 -0.8285448 1.7460448 0.7815268
Winter-Summer 1.392500 0.1052052 2.6797948 0.0291300

11.2.2 TESTING THE VALIDITY OF ASSUMPTIONS

The validity of the ANOVA F tests for interaction and main effects rests on the
assumptions stated in (11.2.19). The assumptions that the data constitute simple
random samples from their respective populations, that is, factor-level combina-
tions, and the ab samples being independent are best checked by reviewing the data
collection protocol. Here we will discuss ways of checking the assumption of equal
variances and, in case the sample sizes are less than 30, the normality assumption.
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As remarked in Section 10.2.1, in comparative studies involving more than two
populations, the group sample sizes are rarely 30 or more. Because the normality
assumption cannot be checked reliably with the small sample sizes, it is custom-
ary to perform a single normality test on the combined set of residuals after the
homoscedasticity assumption has been judged tenable.

As explained in Section 10.2.1, the homoscedasticity assumption can be checked
by performing the two-factor ANOVA F test on the squared residuals obtained from
fitting the model in (11.2.3). If the resulting p-values for no main effects and no inter-
actions are all greater than 0.05, conclude that the assumption of equal variances
is approximately satisfied. Once the homoscedasticity assumption has been judged
tenable, the normality assumption can be checked by performing the Shapiro-Wilk
normality test on the residuals. Again, if the p-value is greater than 0.05 it can be
concluded that the normality assumption is approximately satisfied. Residual plots
can shed light on the nature of assumptions violations.

With the R object fit containing the output from fitting the model (11.2.3),
that is, by using the command fit=aov(y∼A*B), the R commands for obtaining the
p-values from the two-factor ANOVA F tests on the squared residuals and from the
Shapiro-Wilk normality test on the residuals are:

R Command for Testing the Homoscedasticity Assumption

anova(aov(resid(fit)**2∼A*B)) (11.2.20)

R Command for Testing the Normality Assumption

shapiro.test(resid(fit)) (11.2.21)

Further, the commands

plot(fit, which=1)
plot(fit, which=2)

(11.2.22)

will display the residuals by groups (labeled by the fitted, or the µ̂ij, values) and
produce a Q-Q plot for the combined residuals, respectively.

Example
11.2-3

Check whether the data of Examples 11.2-1 and 11.2-2 satisfy the homoscedasticity
and normality assumptions.

Solution
Using the R object fit generated in Example 11.2-2, the R command shown in
(11.2.20) generates the following ANOVA table:

Df Sum Sq Mean Sq F value Pr(>F)
A 1 23.264 23.2643 4.1624 0.04606
B 3 23.736 7.9121 1.4156 0.24781
A:B 3 1.788 0.5960 0.1066 0.95588
Residuals 56 312.996 5.5892
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Figure 11-1 Residuals
plotted against the fitted
values for Example 11.2-3.

Since the p-value corresponding to factor A is less than 0.05, we conclude that the
two levels of factor A (seeded and not seeded) have different effect on the residual
variance. It follows that the homoscedasticity assumption does not appear tenable
and, hence, it does not make sense to test for the normality assumption because
heteroscedasticity renders the test invalid. The command plot(fit, which=1) gen-
erates the plot in Figure 11-1, which shows that the variability of the residuals
varies significantly among the different groups. In such cases, a weighted analysis
is recommended; see Sections 12.4.1 and 12.4.2.

11.2.3 ONE OBSERVATION PER CELL

In some cases, factorial experiments are designed with only one observation per cell.
In such cases, the previous analysis cannot be carried out. The main reason for this
is that MSE cannot be formed. Recall that MSE is obtained by pooling the sample
variances from all ab samples. Since the calculation of the sample variance requires
at least two observations, the sample variances, and hence MSE, cannot be formed.
In technical parlance, interactions are confounded with the error term, or there are
as many parameters (which are the ab group means µij) as there are observations,
and thus there are no degrees of freedom left for estimating the error variance. The
usual remedy is to model the ab group means using fewer parameters, and the most
common way of doing so is to assume an additive model, that is, all γij = 0:

µij = µ + αi + βj, (11.2.23)

where the main effects satisfy the usual conditions
∑a

i=1 αi = 0 = ∑b
j=1 βj. Note that,

under the additive model, the ab group means are given in terms of 1+(a−1)+(b−1)
= a+b−1 parameters, so there are ab−a−b+1 = (a−1)(b−1) degrees of freedom
left for estimating the error variance. (Essentially, what was the interaction sum of
squares now becomes the error sum of squares.)

The procedures for generating the ANOVA table, for testing HA
0 : α1 = · · · =

αa = 0 and HB
0 : β1 = · · · = βb = 0, and for constructing Tukey’s simultaneous

CIs and multiple comparisons, under the additive model (11.2.23), are the same as
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the procedures described in Section 10.4.2 for testing for no treatment (and for no
block) effect in a randomized block design. For convenient reference, however, we
restate here the R commands for constructing the ANOVA table and for performing
Tukey’s multiple comparisons. With the response variable and the levels of the two
factors read into the R objects y, A, and B, respectively, these commands are:

fit=aov(y∼A+B); anova(fit); TukeyHSD(fit) (11.2.24)

Analyzing data under an incorrect model, however, can lead to misleading
results. In particular, analyzing data under the additive model (11.2.23) when, in
fact, the model is non-additive can mask significant main effects. For this reason, the
experimenter should examine the data for indications of non-additivity. The interac-
tion plot we saw in Chapter 1 is a useful graphical tool. A formal test for interaction,
called Tukey’s one degree of freedom test, is also possible. The procedure uses the
squared fitted values as an added covariate in the model (11.2.23). The p-value for
testing the significance of this covariate is the p-value for Tukey’s one degree of
freedom test for interaction.

To describe the implementation of Tukey’s test, let fit be the object from fitting
the additive model, for example, as in (11.2.24), and use the R commands

fitteds=(fitted(fit))**2; anova(aov(y∼A+B+fitteds)) (11.2.25)

These commands generate an ANOVA table from fitting the additive model that
includes the two factors and the covariate fitteds, which is the square of the fitted
values. The p-value for Tukey’s test for interaction can be read at the end of the
row that corresponds to the covariate fitteds in the ANOVA table. If this p-value is
less than 0.05, the assumption of additivity is not tenable. Conclude that both factors
influence the response.

The following example uses simulated data to illustrate the implementation of
Tukey’s one degree of freedom test for interaction, and to highlight the masking of
main effects when the additive model is erroneously assumed.

Example
11.2-4

Use R commands to generate data from an additive, and also from a non-additive,
3 × 3 design with one observation per cell and non-zero main effects.

(a) Apply Tukey’s one degree of freedom test for interaction to both data sets,
stating whether or not the additivity assumption is tenable.

(b) Regardless of the outcome of Tukey’s tests in part (a), assume the additive
model to analyze both data sets, stating whether or not the main effects for
factors A and B are significantly different from zero at level of significance
α = 0.05.

Solution
The commands

S=expand.grid(a=c(-1, 0, 1), b=c(-1, 0, 1));
y1=2+S$a+S$b+rnorm(9, 0, 0.5)

generate data according to the additive model (11.2.23) with α1 = −1, α2 = 0, α3=1,
β1 = −1, β2 = 0, β3 = 1, and normal errors with zero mean and standard deviation
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0.5. The additional command y2=2+S$a+S$b+S$a*S$b+rnorm(9, 0, 0.5) generates
data from a non-additive model having the same main effects for factors A and
B and the same type of error variable. (Note that the seed for random number
generation was not set. Thus, the numerical results in parts (a) and (b) are not
reproducible.)

(a) To perform Tukey’s test for additivity for the first data set, use

A=as.factor(S$a); B=as.factor(S$b); fit=aov(y1∼A+B)
fitteds=(fitted(fit))**2; anova(aov(y1∼A+B+fitteds))

These commands generate the following ANOVA table:

Df Sum Sq Mean Sq F value Pr(>F)
A 2 4.3357 2.16786 16.9961 0.02309
B 2 4.7662 2.38310 18.6836 0.02026
fitteds 1 0.0074 0.00737 0.0578 0.82548
Residuals 3 0.3827 0.12755

The p-value for Tukey’s test for additivity, given at the end of the row that cor-
responds to “fitteds,” is 0.82548. Since this is greater than 0.05, we conclude
that the additivity assumption is tenable, in agreement with the fact that the
data are generated from an additive design. Repeating the same commands
for the second data set (i.e., replacing y1 by y2) yields the ANOVA table
below:

Df Sum Sq Mean Sq F value Pr(>F)
A 2 2.378 1.1892 23.493 0.0147028
B 2 53.154 26.5772 525.031 0.0001521
fitteds 1 5.012 5.0123 99.017 0.0021594
Residuals 3 0.152 0.0506

This time, the p-value for Tukey’s test for additivity is 0.0021594. Since this
is less than 0.05, we conclude that the additivity assumption is not tenable, in
agreement with the fact that the data are generated from a non-additive design.
The interaction plots for the two data sets are displayed in Figure 11-2.

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Factor A

R
es

po
ns

e 
m

ea
n 

va
lu

es

1 2 3

Factor B
1
0

–1

0
2

4
6

Factor A

R
es

po
ns

e 
m

ea
n 

va
lu

es

1 2 3

Factor B
1
0

–1

Figure 11-2 Interaction
plots for the additive (left
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(right panel) designs of
Example 11.2-4.
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(b) The command anova(aov(y1∼A+B)) generates the ANOVA table below:

Df Sum Sq Mean Sq F value Pr(>F)
A 2 4.3357 2.16786 22.233 0.006812
B 2 4.7662 2.38310 24.440 0.005722
Residuals 4 0.3900 0.09751

The p-values for the main effects of both factors are quite small, suggesting that
the main effects are non-zero in agreement with the fact that the main effects
are truly non-zero. Performing the same analysis on the second data set (that
is, anova(aov(y2∼A+B))) generates the ANOVA table shown here:

Df Sum Sq Mean Sq F value Pr(>F)
A 2 2.378 1.1892 0.9212 0.468761
B 2 53.154 26.5772 20.5859 0.007841
Residuals 4 5.164 1.2910

The conclusion from this analysis is that only the main effects of factor B are
significantly different from zero. This, of course, is not correct since both fac-
tors have non-zero main effects. The incorrect conclusion was reached because
the data analysis assumes (incorrectly in this case) that the model is additive.
The interaction between the factors A and B has masked the effect of factor A.

Exercises

1. An experiment studying the effect of growth hormone
and sex steroid on the change in body mass fat in men
resulted in the data shown in GroHormSexSter.txt (P, p
for placebo, and T, t for treatment).2 This is an unbal-
anced design with sample sizes n11 = 17, n12 = 21, n21 =
17, n22 = 19, where level 1 is placebo and factor A
is growth hormone. Use R commands to complete the
following parts.
(a) Test for no interaction and for no main effects for each

of the two factors. Report the three test statistics and
the corresponding p-values, and state whether each of
the three hypotheses is rejected at level of significance
0.05.

(b) Generate the interaction plot and comment on its
interpretation. Is this in agreement with the formal F
test?

(c) Generate residual plots for checking the homoscedas-
ticity and normality assumptions. What do you con-
clude from these plots?

(d) Conduct formal tests for the homoscedasticity and
normality assumptions, and state your conclusions.

2. A cellphone’s SAR (Specific Absorption Rate) is a
measure of the amount of radio frequency (RF) energy
absorbed by the body when using the handset. For a
phone to receive FCC certification, its maximum SAR

level must be 1.6 watts per kilogram (W/kg); the level
is the same in Canada, while in Europe it is capped at
2 W/kg. All cellphones emit RF energy and the SAR
varies by handset model. Moreover, in weak signal areas
the handset generates more radiation in order to con-
nect to the tower. Simulated data comparing the radiation
emitted by five different types of cellphones, at three sig-
nal levels, are given in CellPhoneRL.txt. Use R commands
to complete the following parts.
(a) Test for no interaction and no main effects. Report the

three test statistics and the corresponding p-values,
and state whether each of the three hypotheses is
rejected at level of significance 0.01.

(b) Perform multiple comparisons to determine which
pairs of cellphone types are significantly different at
level 0.01 in terms of their main effects. Do the same
for the three signal levels.

(c) Conduct formal tests for the homoscedasticity and
normality assumptions, and state your conclusions.

(d) Generate the interaction plot and the residual plots
for checking the homoscedasticity and normality
assumptions. What do you conclude from these plots?

3. The data file Alertness.txt contains data from a study
on the effect on alertness of two doses of a medication on
male and female subjects. This is a 2 × 2 design with four

2 Marc Blackman et al. (2002). Growth hormone and sex steroid administration in healthy aged women and
men, Journal of the American Medical Association, 288(18): 2282–2292.
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replications. The question of interest is whether changing
the dose changes the average alertness of male and female
subjects by the same amount.
(a) Express in words the null hypothesis that should be

tested for answering the question of interest (use
statistical terminology).

(b) Use either R commands or hand calculations to test
the hypothesis in part (a).

4. The data file AdhesHumTemp.txt contains simulated
data from a study conducted to investigate the effect of
temperature and humidity on the force required to sep-
arate an adhesive product from a certain material. Two
temperature settings (20◦, 30◦) and four humidity set-
tings (20%, 40%, 60%, 80%) are considered, and three
measurements are made at each temperature-humidity
combination. Let µij denote the mean separating force at
temperature-humidity combination (i, j).
(a) The experimenter wants to know if the difference in

the mean separating forces between the two temper-
ature levels is the same at each humidity level. In
statistical notation, of interest is whether

µ11 − µ21 = µ12 − µ22 = µ13 − µ23 = µ14 − µ24

is false. Which is the relevant hypothesis to be tested?
(b) The experimenter wants to know if the average (over

the two temperature settings) of the mean separat-
ing forces is the same for each humidity setting. In
statistical notation, of interest is whether

µ11 + µ21

2
= µ12 + µ22

2
= µ13 + µ23

2
= µ14 + µ24

2

is false. Which is the relevant hypothesis to be tested?
(c) Test for no interaction and for no main effects for each

of the two factors. Report the three test statistics and
the corresponding p-values, and state whether each of
the three hypotheses is rejected at level of significance
0.05.

(d) Is it appropriate to conduct multiple comparisons for
determining which of the humidity level main effects
are different from each other? If so, perform the mul-
tiple comparisons at level of siginficance 0.01, and
state your conclusions.

5. The data file AdLocNews.txt contains the number of
inquiries regarding ads placed in a local newspaper. The
ads are categorized according to the day of the week and
section of the newspaper in which they appeared. Use R
commands to complete the following:
(a) Construct plots to help assess the validity of the

homoscedasticity and normality assumptions. What is
your impression?

(b) Perform formal tests for the validity of the
homoscedasticity and normality assumptions. State
your conclusions.

(c) Perform multiple comparisons to determine which
days are significantly different and which news-
paper sections are significantly different, both at
experiment-wise error rate α = 0.01, in terms of the
average number of inquiries received.

6. A large research project studied the physical proper-
ties of wood materials constructed by bonding together
small flakes of wood. Three different species of trees
(aspen, birch, and maple) were used, and the flakes were
made in two different sizes (0.015 inches by 2 inches and
0.025 inches by 2 inches). One of the physical proper-
ties measured was the tension modulus of elasticity in
the direction perpendicular to the alignment of the flakes
in pounds per square inch. There are three observations
per cell. With the response values and the correspond-
ing levels of the factors “tree species” and “flake size”
in the R objects y, A, B, respectively, the command
anova(aov(y∼A*B)) produces an ANOVA table, which
is shown partially filled below:

DF SS MS F P
Species 2 0.016
Size 1 3308
Interaction 20854 0.224
Error 147138
Total 17 338164

(a) Fill out the remaining entries in the ANOVA table.
(Hint. You need to use R to fill out the missing p-
value. The command is of the form 1-pf(FB

H0
, ν1, ν2).)

(b) Let Yijk be the kth observation in factor-level combi-
nation (i, j). Write the statistical model for Yijk that
was used to produce the given ANOVA table, and
state the assumptions needed for the validity of the
statistical analysis.

(c) Write the null and alternative hypotheses for testing
whether an additive model is appropriate for this data,
and test this hypothesis at level α = 0.05.

(d) Using the p-values from the filled out ANOVA table,
test each of the hypotheses HA

0 and HB
0 at level α =

0.05. (Recall A = “tree species” and B = “flake size”.)

7. When an additive model is considered for a balanced
design, the decomposition of the total sum of squares in
(11.2.10) reduces to SST = SSA + SSB + SSE, where SST
and its degrees of freedom are still given by (11.2.9), and
SSA, SSB, and their degrees of freedom are still given by
(11.2.11) and (11.2.15), respectively. Use this information
to construct the ANOVA table from fitting the additive
model to the data in Exercise 6 and to test the hypotheses
HA

0 and HB
0 at level α = 0.05 using the additive model.

8. It is known that the life span of a particular type of root
system is influenced by the amount of watering it receives
and its depth. An experiment is designed to study the
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effect of three watering regimens (“W1,” “W2,” “W3”),
and their possible interaction with the depth factor. The
depth variable was categorized as “D1” (< 4 cm), “D2”
(between 4 and 6 cm), and “D3” (> 6 cm). The life spans
of five root systems were recorded for each factor-level
combination. The logarithms of the life spans yield the
following cell means and variances.

Depth
D1 D2 D3

Mean Var Mean Var Mean Var

W1 2.94 2.10 3.38 6.62 5.30 3.77

Watering W2 3.03 1.18 5.24 0.15 6.45 2.97

W3 4.78 2.12 5.34 0.41 6.61 2.40

Compute the ANOVA table, and carry out the tests for
no interaction and no main effects at level of significance
0.01.

9. The data file InsectTrap.txt contains the average num-
ber of insects trapped for three kinds of traps used in
five periods.3 Read the data into the data frame df, set
y=df$catch; A=as.factor(df$period); B=as.factor(df$trap),
and use R commands to complete the following.
(a) Construct the ANOVA F table, and give the p-values

for testing for no main row and no main column
effects in an additive design. Are the null hypotheses
rejected at level 0.05?

(b) Generate the interaction plot. Does it appear that the
two factors interact? Perform Tukey’s one degree of
freedom test for additivity at level 0.05, and state your
conclusion.

(c) As an overall conclusion, do the factors “period” and
“trap” make a difference in terms of the number of
insects caught?

10. Consider the cellphone radiation data of Exercise 2,
but use one observation per cell. (This serves to highlight
the additional power gained by using several observa-
tions per factor-level combination.) Having imported the
data into the data frame df, use y = df $y[1 : 15], S =
df $S[1:15], C = df $C[1 : 15], a one-observation-per-cell
data set with the response in y and the levels of the two
factors in S and C.
(a) Construct the ANOVA F table, and give the p-values

for testing for no main row and no main column

effects in an additive design. Are the null hypotheses
rejected at level 0.01?

(b) Perform multiple comparisons to determine which
pairs of cellphone types and/or which pairs of signal
levels are significantly different at level 0.01.

11. Data from an article investigating the effect of auxin-
cytokinin interaction on the organogenesis of haploid
geranium callus can be found in AuxinKinetinWeight.txt.4
Read the data into the data frame Ac, and use attach(Ac);
A=as.factor(Auxin); B=as.factor(Kinetin); y=Weight to
copy the response variable and the levels of factors
“Auxin” and “Kinetin” into the R objects y, A, B, respec-
tively.
(a) Construct the ANOVA F table, and give the p-values

for testing for no main row and no main column
effects in an additive design. Are the null hypotheses
rejected at level 0.01?

(b) Perform multiple comparisons to determine which
pairs of the Auxin factor levels are significantly dif-
ferent at level 0.01.

(c) Perform Tukey’s one degree of freedom test for addi-
tivity and state your conclusion.

12. A soil scientist is considering the effect of soil pH
level (factor A) on the breakdown of a pesticide residue.
Two pH levels are considered in the study. Because pesti-
cide residue breakdown is also affected by soil tempera-
ture (factor B), four different temperatures are included
in the study. The eight observations are given in the
following table.

Temp A Temp B Temp C Temp D

pH I X11 = 108 X12 = 103 X13 = 101 X14 = 100

pH II X21 = 111 X22 = 104 X23 = 100 X24 = 98

(a) Construct the ANOVA table given in Section 10.4.2.
(Hint. Use formulas (10.4.5) and (10.4.6) for SSA and
SSB, respectively, keeping in mind that, in the nota-
tion of Section 10.4.2, k is the number of row levels
and n is the number of column levels. Thus, for this
data set, k = 2 and n = 4.)

(b) Test each of the hypotheses HA
0 and HB

0 at level α =
0.05.

11.3 Three-Factor Designs
This section extends the two-factor model, the concepts of main effects and inter-
actions, and the corresponding test procedures to designs with three factors. For

3 George Snedecor and William Cochran (1989). Statistical Methods, 8th ed. Ames: Iowa State University Press.
4 M. M. El-Nil, A. C. Hildebrandt, and R. F. Evert (1976). Effect of auxin-cytokinin interaction on organogenesis
in haploid callus of Pelargonium hortorum, In Vitro, 12(8): 602–604.
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example, the model for a three-factor design involves the three-factor interaction,
which generalizes the concept of two-factor interactions. As with two-factor designs,
formulas for the decomposition of the total sum of squares, and the resulting F statis-
tics, will be given only in the case of balanced designs, that is, when all cell sample
sizes are equal.

In designs with three or more factors, it is quite common to assume that some of
the effects (typically higher order interactions) are zero and to fit a reduced model
that does not include these effects. The decomposition of the total sums of squares
corresponding to the reduced model essentially involves combining the sums of
squares of the omitted effects with the error sum of squares. This is similar to using
the interaction sum of squares as the error sum of squares in the two-factor design
with one observation per cell; see also Exercise in Section 11.2.

Designs with more than three factors involve even higher order interaction
effects. However, the interpretation of higher order interaction effects, the formulas
for the decomposition of the total sum of squares and of the F test statistics (both
for the full and reduced models), as well as the R commands for fitting both full and
reduced models, are quite similar and will not be discussed in detail.

Statistical Model for a Three-Factor Design A design where factor A has a levels,
factor B has b levels, and factor C has c levels is referred to as an a × b × c design;
a 2 × 2 × 2 design is also referred to as a 23 design. Let µijk denote the mean value
of an observation taken at factor level combination (i, j, k), that is, when the level of
factor A is i, the level of factor B is j, and the level of factor C is k. The set of mean
values µijk, i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , c, can be decomposed as

Decomposition
of Means in a

Three-Factor Design
µijk = µ + αi + βj + γk + (αβ)ij + (αγ )ik + (βγ )jk + (αβγ )ijk. (11.3.1)

The decomposition (11.3.1) builds on the decomposition (11.2.1) for two factor
designs, in the sense that µ, αi, βj and (αβ)ij decompose the average µij· of µijk over k:

µij· = µ + αi + βj + (αβ)ij.

Thus they are given by

µ = µ···, αi = µi·· − µ, βj = µ·j· − µ, (αβ)ij = µij· − µi·· − µ·j· + µ. (11.3.2)

Similarly, µ, αi, γk, and (αγ )ik decompose µi·k, and so forth. It follows that the main
effects and interaction of the decomposition (11.3.1) satisfy the zero-sum conditions
given in (11.2.2). The only really new component in the decomposition (11.3.1) is the
three-factor interaction term (αβγ )ijk, which is defined from (11.3.1) by subtraction.
It can be shown that three-factor interaction terms also satisfy zero-sum conditions:

a∑

i=1

(αβγ )ijk =
b∑

j=1

(αβγ )ijk =
c∑

k=1

(αβγ )ijk = 0. (11.3.3)

The interpretation of the three-factor interaction terms becomes clear upon
examining the interaction term in a two-factor decomposition of µijk obtained by
holding the level of one of the factors fixed. For example, the interaction term in the
decomposition

µijk = µk + αk
i + βk

j + (αβ)k
ij (11.3.4)



Section 11.3 Three-Factor Designs 399

of µijk, i = 1, . . . , a, j = 1, . . . , b, which is obtained by holding the level of factor C
fixed at k, is given by (see Exercise 6)

(αβ)k
ij = (αβ)ij + (αβγ )ijk. (11.3.5)

It follows that the three-factor interaction terms capture the change in two-
factor interactions as the level of the remaining factor changes. Hence, when the
null hypothesis of no third order interaction effects is rejected, it may be concluded
that second order interaction effects exist (i.e., the (αβ)k

ij are not zero) even if the
average second order interaction effects (i.e., (αβ)ij) are not significantly different
from zero.

From each factor-level combination (i, j, k) we observe a simple random sample
of size n: Xijkℓ, ℓ = 1, . . . n. The mean-plus-error form of the statistical model for the
data is

Xijkℓ = µijk + ϵijkℓ. (11.3.6)

Replacing the means µijk by their decomposition (11.3.1), the mean-plus-error
form of the model becomes the treatment-effects form of the model. As always, the
cell means µijk are estimated by the corresponding cell averages, that is,

µ̂ijk = Xijk = 1
n

n∑

ℓ=1

Xijkℓ.

(Note that, for simplicity, we use Xijk instead of Xijk·.) The parameters in the
treatment-effects form of the model are estimated by replacing µijk by Xijk in
expressions like (11.3.2). Thus, µ̂ = X ···, and

Estimators of
Main Effects

Estimators of
Two-Factor

Interactions

Estimators of
Three-Factor
Interactions

α̂i = Xi·· − X ···, β̂j = X ·j· − X ···, γ̂k = X ··k − X ···

(̂αβ)ij = Xij· − Xi·· − X ·j· + X ···, (̂αγ )ik = Xi·k − Xi·· − X ··k + X ···,

(̂βγ )jk = X ·jk − X ·j· − X ··k + X ···

(̂αβγ )ijk = Xijk − X ··· − α̂i − β̂j − γ̂k − (̂αβ)ij − (̂αγ )ik − (̂βγ )jk

(11.3.7)

The relevant sums of squares and their degrees of freedom are

Sums of Squares Degrees of Freedom
SST = ∑a

i=1
∑b

j=1
∑c

k=1
∑n

ℓ=1(Xijkℓ − X ···)2 abcn − 1

SSA = bcn
∑a

i=1 α̂2
i a − 1

SSAB = cn
∑a

i=1
∑b

j=1 (̂αβ)
2
ij (a − 1)(b − 1)

SSABC = n
∑a

i=1
∑b

j=1
∑c

k=1 (̂αβγ )
2
ijk (a − 1)(b − 1)(c − 1)

SSE = ∑a
i=1

∑b
j=1

∑c
k=1

∑n
ℓ=1(Xijkℓ − Xijk)2 abc(n − 1)

(11.3.8)
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with the sums of squares for the other main effects and two-factor interactions
defined symmetrically. In total there are eight sums of squares for main effects and
interactions, and their sum equals SST. Similarly, the degrees of freedom for SST is
the sum of the degrees of freedom for all other sums of squares.

As usual, the mean squares are defined as the sums of squares divided by their
degrees of freedom. For example, MSA = SSA/(a − 1), and so forth. The ANOVA
F test procedures for the hypotheses of no main effects and no interactions are

Hypothesis F Test Statistic Rejection Rule at Level α

HABC
0 : all (αβγ )ijk = 0 FABC

H0
= MSABC

MSE FABC
H0

> F(a−1)(b−1)(c−1),abc(n−1),α

HAB
0 : all (αβ)ij = 0 FAB

H0
= MSAB

MSE FAB
H0

> F(a−1)(b−1),abc(n−1),α

HA
0 : all αi = 0 FA

H0
= MSA

MSE FA
H0

> Fa−1,abc(n−1),α

and similarly for testing for the other main effects and two-factor interac-
tions. These test procedures are valid under the assumptions of homoscedas-
ticity (i.e., same population variance for all abc factor-level combinations) and
normality.

Hand calculations will only be demonstrated in 23 designs. For such designs,
there is a specialized method for efficient hand calculations, which is described in
the following example.

Example
11.3-1

Hand calculations in a 23 design. Surface roughness is of interest in many manufac-
turing processes. A paper5 considers the effect of several factors including tip radius
(TR), surface autocorrelation length (SAL), and height distribution (HD) on surface
roughness, on the nanometer scale, by the atomic force microscope (AFM). The cell
means, based on two simulated replications (i.e., two observations per cell), are given
in Table 11-1. Use this information to compute the main effects and interactions and
the corresponding sums of squares.

Solution
Let factors A, B, and C be TR, SAL, and HD, respectively. Let µ̂ denote the aver-
age of all eight observations in the table. According to the formulas in (11.3.7),
α̂1 is the average of the four observations in the first line of the table minus µ̂,
that is,

Table 11-1 Cell means in the 23 design of Example 11.3-1

HD

1 2

SAL SAL

1 2 1 2

TR
1 x111 = 6.0 x121 = 8.55 x112 = 8.0 x122 = 7.0

2 x211 = 8.9 x221 = 9.50 x212 = 11.5 x222 = 13.5

5 Y. Chen and W. Huang (2004). Numerical simulation of the geometrical factors affecting surface roughness
measurements by AFM, Measurement Science and Technology, 15(10): 2005–2010.
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α̂1 = x111 + x121 + x112 + x122

4

−x111 + x121 + x112 + x122 + x211 + x221 + x212 + x222

8

= x111 + x121 + x112 + x122 − x211 − x221 − x212 − x222

8
= −1.73125. (11.3.9)

Similarly, β̂1 is the average of the four observations in the two columns where SAL is
1 (the first and third columns) minus µ̂, and γ̂1 is the average of the four observations
where HD is 1 (the first two columns) minus µ̂. Working as above, we arrive at the
expressions

β̂1 = x111 + x211 + x112 + x212 − x121 − x221 − x122 − x222

8
= −0.51875

γ̂1 = x111 + x211 + x121 + x221 − x112 − x212 − x122 − x222

8
= −0.88125.

Because of the zero-sum conditions, α̂2 = −α̂1, β̂2 = −β̂1, and γ̂2 = −γ̂1, they do not
need to be calculated. For the same reason, only one from each of the three types of
two-factor interactions needs to be calculated, and only one three-factor interaction.

Before computing estimators of the remaining effects, we describe an orga-
nized way for calculating these effects. This method consists of creating a column
of cell means and a column of pluses and minuses for each effect, as shown in
Table 11-2. The numerator of each effect estimator is formed by combining the cell
means according to the signs of the corresponding column. Since the denominator is
always 8, the numerators suffice to determine the estimators. For example, it is easily
checked that the numerator in the expression for α̂1 given in (11.3.9) is

x111 − x211 + x121 − x221 + x112 − x212 + x122 − x222.

The column of cell means in Table 11-2 is formed by stacking the columns in the cell-
means of Table 11-1. Except for the µ column, the columns for each effect consist of
four + signs and four − signs. Thus, in the terminology introduced in Section 1.8, the
estimators of all main effects and interactions are contrasts. (Because the estimator
of the overall mean µ, represented by the µ column in Table 11-2, is not a contrast,
it is often not considered to be one of the effects.)

Table 11-2 Signs for estimating the effects in a 23 design

Factor-Level Combination Cell Means µ α1 β1 γ1 (αβ)11 (αγ )11 (βγ )11 (αβγ )111

1 x111 + + + + + + + +

a x211 + − + + − − + −
b x121 + + − + − + − −
ab x221 + − − + + − − +

c x112 + + + − + − − −
ac x212 + − + − − + − +

bc x122 + + − − − − + +

abc x222 + − − − + + + −
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Different columns have very distinct patterns of +’s and −’s. In the α1 column,
+’s and −’s alternate; in the β1 column, two +’s; alternate with two −’s; and in the
γ1 column, four +’s are followed by four −’s. The interaction columns are formed
by the products (in the row-wise sense) of the respective main effects columns. For
example, the (αβ)11 column is the product of the α1 column times the β1 column,
and so forth.

The first column of Table 11-2 contains codes for each cell (factor-level combi-
nation). According to this code (which is commonly used in all 2r designs), level 1 is
the default level of a factor. The letters a, b, and c, respectively, are used to denote
that factors A, B, and C are at level 2. Thus, the first cell, which corresponds to level
1 for all three factors, is the default cell and is coded by 1. Thus, the letter a in the
second row of the table denotes factor-level combination (2, 1, 1), the letters ab in
the fourth row of the table correspond to cell (2, 2, 1), and so forth. It is worth noting
that the codes in the last four rows are formed by adding c to the codes of the first
four rows.

Using this method, the remaining effects are computed as follows (note that 6.0,
8.9, 8.55, 9.5, 8.0, 11.5, 7.0, 13.5 are the cell means in the order shown in the second
column of Table 11-2):

(̂αβ)11 = 6.0 − 8.9 − 8.55 + 9.5 + 8.0 − 11.5 − 7.0 + 13.5
8

= 0.13125

(̂αγ )11 = 6.0 − 8.9 + 8.55 − 9.5 − 8.0 + 11.5 − 7.0 + 13.5
8

= 0.76875

(̂βγ )11 = 6.0 + 8.9 − 8.55 − 9.5 − 8.0 − 11.5 + 7.0 + 13.5
8

= −0.26875

(̂αβγ )111 = 6.0 − 8.9 − 8.55 + 9.5 − 8.0 + 11.5 + 7.0 − 13.5
8

= −0.61875.

Finally, the sums of squares for the main effects and interactions can be obtained
from the formulas (11.3.8). Since a = b = c = 2, the zero-sum conditions imply
that each sum of squares equals 16 times the square of the corresponding effect
computed above. For example (note also that n = 2), SSA = 2 · 2 · 2 · (̂α2

1 +
α̂2

2) = 16α̂2
1. Thus, rounding the numerical value of each effect to three decimal

places,

SSA = 16(1.7312) = 47.956, SSB = 16(0.5192) = 4.306,

SSC = 16(0.8812) = 12.426

SSAB = 16(0.1312) = 0.276, SSAC = 16(0.7692) = 9.456

SSBC = 16(0.2692) = 1.156, SSABC = 16(0.6192) = 6.126.

It should be noted that the +’s and −’s in Table 11-2 can (and are) also used to
represent the factor levels. A “+” in the α1 column represents level 1 for factor A
and a “−” represents level 2. Similarly, the +’s and −’s in the β1 column represent
levels 1 and 2, respectively, for factor B, and those in the γ1 column represent the
levels of factor C. The sequence of three +’s and/or −’s from the α1, β1, and γ1
columns reveals the factor-level combination in each row.

With the response variable and the levels of the three factors read into the R
objects y, A, B, and C, respectively, the R commands for fitting different versions of
the three-factor model are:



Section 11.3 Three-Factor Designs 403

R Commands for Fitting the Full and Reduced Models

out=aov(y∼A*B*C); anova(out) # for fitting the full model

out=aov(y∼A+B+C); anova(out) # for fitting the additive
model

out=aov(y∼A*B+A*C+B*C); anova(out) # for fitting the model
without ABC interactions

To clarify the syntax of the R commands, we note that a longer version
of the command anova(aov(y ∼ A*B*C)) is anova(aov(y∼A+B+C+A*B+
A*C+B*C+A*B*C)). Thus, anova(aov(y∼A*C+B*C)) fits the model without
AB and ABC interactions, while anova(aov(y∼A+B*C)) fits the model without AB,
AC, and ABC interactions.

Example
11.3-2

A paper reports on a study sponsored by CIFOR (Center for International Forestry
Research) to evaluate the effectiveness of monitoring methods related to water and
soil management.6 Part of the study considered soil runoff data from two catchment
areas (areas number 37 and 92) using runoff plots classified as “undisturbed/control”
and “harvested.” The runoff volume was calculated at each rainfall event, with the
amount of rainfall serving as an additional factor at three levels (3.5–10 mm, 10–
20 mm, and > 20 mm). The data, consisting of four measurements per factor-level
combination, is in SoilRunoff3w.txt. Use R commands to complete the following
parts using level of significance of α = 0.05.

(a) Construct the ANOVA table corresponding to fitting the full model and report
which of the null hypotheses are significant.

(b) Construct the ANOVA table corresponding to fitting the additive model and
report which of the null hypotheses are significant.

(c) Construct the ANOVA table corresponding to fitting the model with no three-
factor interactions, and report which of the null hypotheses are significant.

(d) Using the residuals from fitting the full model, check the homoscedasticity and
normality assumptions.

Solution
(a) With the data read into the R data frame Data, the commands attach(Data);

out=aov(y∼Rain*Log*Catch); anova(out) produce the ANOVA table below:

Df Sum Sq Mean Sq F value Pr(>F)
Rain 2 0.1409 0.0704 13.396 4.48e-05
Log 1 0.0630 0.0630 11.984 0.001
Catch 1 0.0018 0.0018 0.349 0.558
Rain:Log 2 0.0799 0.0400 7.603 0.002
Rain:Catch 2 0.0088 0.0044 0.834 0.442
Log:Catch 1 0.0067 0.0067 1.265 0.268
Rain:Log:Catch 2 0.0032 0.0016 0.301 0.742
Residuals 36 0.1893 0.0053

6 Herlina Hartanto et al. (17 July 2003). Factors affecting runoff and soil erosion: Plot-level soil loss monitoring
for assessing sustainability of forest management, Forest Ecology and Management, 180(13): 361–374. The data
used are based on the information provided in Tables 2 and 3.
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It follows that the main effects of the factors “Rain” and “Log” (for “logging”)
are significant at level 0.05, and so are their interaction effects. All other effects
are not significant; thus, the “Catch” factor has no impact on the average (over
the other factors) mean runoff volume, does not interact with the other two
factors, and has no impact on the interaction of the factors “Rain” and “Log”
(i.e., no significant three-factor interaction).

(b) The command anova(aov(y∼Rain+Log+Catch)) produces the following
ANOVA table:

Df Sum Sq Mean Sq F value Pr(>F)

Rain 2 0.1409 0.0704 10.5224 0.0002

Log 1 0.0630 0.0630 9.4132 0.004

Catch 1 0.0018 0.0018 0.2746 0.603

Residuals 43 0.2878 0.0067

It follows that the main effects of the factors “Rain” and “Log” are significant
at level 0.05, but the main effects of the factor “Catch” are not significantly
different from zero. It is worth noting that the error, or residual, degrees of
freedom in this table is the sum of the error degrees of freedom plus the
degrees of freedom of all two- and three-factor interactions in the ANOVA
table of part (a), that is, 43 = 2 + 2 + 1 + 2 + 36. Similarly for the sums
of squares: 0.2878 = 0.0799 + 0.0088 + 0.0067 + 0.0032 + 0.1893, up to
rounding.

(c) The commands out1=aov(y∼Rain*Log+Rain*Catch+Log*Catch); anova
(out1) produce an ANOVA table, shown below, according to which the main
effects of the factors “Rain” and “Log” are significant at level 0.05, and
so are the interaction effects of these two factors. All other effects are not
significant, implying that the “Catch” factor has no impact on the mean runoff
volume.

Df Sum Sq Mean Sq F value Pr(>F)

Rain 2 0.1409 0.0704 13.9072 2.94e-05

Log 1 0.0630 0.0630 12.4412 0.001

Catch 1 0.0018 0.0018 0.3629 0.550

Rain:Log 2 0.0799 0.0400 7.8933 0.001

Rain:Catch 2 0.0088 0.0044 0.8663 0.429

Log:Catch 1 0.0067 0.0067 1.3133 0.259

Residuals 38 0.1924 0.0051

Again, we point out that the error, or residual, degrees of freedom in this table
is the sum of the error degrees of freedom plus those of the three-factor inter-
actions in the ANOVA table of part (a), that is, 38 = 2 + 36. Similarly for the
sums of squares: 0.1924 = 0.0032 + 0.1893, up to rounding.

(d) To test for homoscedasticity, use anova(aov(resid(out)**2∼Rain*Log*Catch)).
The resulting output suggests that only the main rain effect is significant
(p-value of 0.026). As mentioned in Example 11.2-3, a weighted analysis
(see Sections 12.4.1, 12.4.2) is recommended. Heteroscedasticity affects the
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validity of the normality test but, for illustration purposes, the command
shapiro.test(resid(out)) yields a p-value of 0.032. The commands plot(out,
which=1) and plot(out, which=2) produce plots (not shown here) that add
insight into the nature of violations of these assumptions.

When the assumptions underlying the validity of the ANOVA F tests appear
to be violated, as in Example 11.3-2, a Q-Q plot of the estimated main effects and
interactions can add credibility to the significant outcomes of the F tests. Because
of the zero-sum constraints the effects satisfy, only a linearly independent subset
of them is plotted. The rationale behind this plot is that if an effect is zero, the
estimated effect has expected value zero, while estimated effects corresponding to
non-zero effects have either negative or positive expected value. Thus, estimated
effects that appear as outliers, that is, either underneath the line on the left side of
the plot or above the line on the right side of the plot, most likely correspond to
non-zero effects. With the R object out containing the results of fitting the full three-
factor model, the R command eff=effects(out) generates a length N vector (where
N = abcn is the total number of observations) whose first element is the overall
mean µ̂, the next seven elements are the main effects and interactions (multiplied
by

√
N), and the remaining abc(n − 1) elements are uncorrelated single-degree-

of-freedom values which, in technical terms, span the residual space. However, the
effectiveness of the Q-Q plot in helping to discern significant effects can be enhanced
by including all values of eff except for the first (i.e., except for the µ̂ value). Thus,
it is recommended that the Q-Q plot produced by the following R commands be
examined:

eff=effects(out); qqnorm(eff[-1]); qqline(eff[-1], col=”red”)

As an example, Figure 11-3 was generated by the above command with out con-
taining the results of fitting the full three-factor model to the data of Example 11.3-2.
The outlier on the left side of Figure 11-3, with value of −0.361, corresponds to one
of the main effects of the “Rain” factor; the two smaller outliers on the right side of
the plot, with values of 0.251 and 0.279, correspond to the main effect of the “Log”
factor and one of the “Rain*Log” interactions. This is in agreement with the formal
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analysis, suggesting that the main effects of the factors “Rain” and “Log,” as well as
their interactions, are indeed significant.

Figure 11-4 shows three “Rain*Log” interaction plots. The first uses all data
points but ignores the factor “Catch.” The other two are “Rain*Log” interaction
plots within each level of the “Catch” factor. Since the three-factor interactions
are not significantly different from zero, the similarity of the three plots illus-
trates the given interpretation of the three-factor interaction (based on relation
(11.3.4)), namely, that it captures the change in two-factor interactions as the level
of the third factor changes. The middle plot in Figure 11-4 was produced by the
R command

interaction.plot(Rain[Catch==”C37”],
Log[Catch==”C37”], y[Catch==”C37”], col=c(2,3))

As pointed out in Exercise 7 in Section 11.2 and highlighted in parts (b) and
(c) of Example 11.3-2, when a reduced model (i.e., when some of the effects are
omitted) is fitted, the sums of squares of the remaining effects in the reduced
model remain the same as when fitting the full model, while the error sums
of squares in the reduced model equals the sums of squares corresponding to
all omitted effects plus the full model error sum. This fact, which is true only
for balanced designs, allows us to form the ANOVA tables for reduced mod-
els from that of the full-model ANOVA table. This is important enough to be
highlighted:

Rules for
Forming

ANOVA Tables
for Reduced

Models from the
Full-Model

ANOVA Table in
Balanced
Designs

(a) The sums of squares of the effects in the reduced model, and their degrees
of freedom, remain the same as when fitting the full model.

(b) The reduced-model SSE equals the full-model SSE plus the sums of squares
of all omitted effects. Similarly, the reduced-model error degrees of freedom
equals the full-model error degrees of freedom plus the degrees of freedom
of all omitted effects.

It can be verified that the ANOVA tables in parts (b) and (c) of Example 11.3-2,
which were obtained by R commands, could also have been derived by applying the
above rules to the ANOVA table in part (a).
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Exercises

1. A number of studies have considered the effectiveness
of membrane filtration in removing or rejecting organic
micropollutants. Membranes act as nano-engineered
sieves and thus the rejection rate depends on the molec-
ular weight of the pollutant or solute. In addition, the
rejection rate depends on the membrane–solute elec-
trostatic and hydrophobic interactions and several other
factors.7,8 The file H2Ofiltration3w.txt contains simu-
lated data of rejection rates for uncharged solutes in
a 2 × 3 × 2 design with five replications. Factor A is
“Molecule Size” (MS) at two levels, above or below
the membrane’s molecular weight cut off (MWCO).
Factor B is “Solute Hydrophobicity” (SH) at three lev-
els, log Kow < 1, 1 < log Kow < 3, and log Kow > 3,
where log Kow is the logarithm of the octanol-water parti-
tion coefficient. Factor C is “Membrane Hydrophobicity”
(MH) at two levels, θ < 45o and θ > 45o, where
θ is the contact angle with a water droplet on the
membrane surface. Use R commands to complete the
following.
(a) Write the full model, construct the corresponding

ANOVA table, and report which of the main effects
and interactions are significant at level 0.05.

(b) Write the model without the three-factor interac-
tion, construct the corresponding ANOVA table, and
report which of the main effects and interactions are
significant at level 0.05.

(c) Using residuals from fitting the full model, conduct
the homoscedasticity and normality tests and state
your conclusion.

(d) The square root arcsine transformation is often used
to transform the rate or proportion data so the nor-
mality and homoscedasticity assumptions are approx-
imately satisfied. With the response variable in the R
object y, use the command yt=sqrt(asin(y)) to trans-
form the data. Fit the full model to the transformed
data and test for homoscedasticity and normality.
State your conclusion.

2. In a study of the effectiveness of three types of
home insulation methods in cold weather, an experi-
ment considered the energy consumption, in kilowatt
hours (kWh) per 1000 square feet, at two outside tem-
perature levels (15o–20oF and 25o–30oF), using two
different thermostat settings (68o–69oF and 70o–71oF).
The three replications at each factor-level combination
were obtained from homes using similar types of elec-
tric heat pumps. The simulated data are available in
ElectrCons3w.txt. Use R commands to complete the
following.

(a) Write the full model, construct the corresponding
ANOVA table, and report which of the main effects
and interactions are significant at level 0.05.

(b) Using residuals from fitting the full model, conduct
the homoscedasticity and normality tests and state
your conclusion.

(c) Construct three interaction plots for the factors “insu-
lation type” and “outside temperature” similar to
those in Figure 11-4 (i.e., an overall plot and a plot
for each of the two levels of the factor “thermostat
setting”). Comment on the agreement of these plots
with the test results in part (a).

(d) Write the model without the (αβ), (αγ ), and (αβγ )
interactions. Use the ANOVA table from part (a)
to construct the ANOVA table corresponding to the
model without the aforementioned interactions and
three-factor interaction, and to test for the signifi-
cance of the remaining effects at level 0.05.

3. Line yield and defect density are very important vari-
ables in the semiconductor industry as they are directly
correlated with production cost and quality. A small pilot
study considered the effect of three factors, “PMOS tran-
sistor threshold voltage,” “polysilicon sheet resistance,”
and “N-sheet contact chain resistance,” on the defect
density in batches of wafers (determined by synchrotron
X-ray topographs and etch pit micrographs). The design
considered two levels for each factor with one replication.
Using the system of coding the factor-level combinations
explained in Example 11.3-1, the data are

Treatment Code
1 a b ab c ac bc abc

11 10 8 16 12 15 18 19

(a) Which are the observations denoted by x221, x112, and
x122?

(b) Construct a table of signs similar to Table 11-2.
(c) Use the table of signs constructed in part (b) to

estimate the main effects and interactions.
(d) Compute the sum of squares for each effect.
(e) Assuming all interactions are zero, test for the signifi-

cance of the main effects at level 0.05.
(f) Enter the estimates of the seven main and interaction

effects in the R object eff and use an R command to
produce a probability plot of the effects. Comment on
the assumption that the three interaction effects are
zero.

7 C. Bellonal et al. (2004). Factors affecting the rejection of organic solutes during NF/RO treatment: A literature
review, Water Research, 38(12): 2795–2809.
8 Arne Roel Dirk Verliefde (2008). Rejection of organic micropollutants by high pressure membranes (NF/RO).
Water Management Academic Press.
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4. The data shown in Table 11-3 are from an experiment
investigating the compressive strength of two different
mixtures at two temperatures and two aging periods.

Table 11-3 Observations in the 23 design of
Exercise 4

Mixture

1 2

Age Age

1 2 1 2

Temperature
1 459, 401 458, 385 475, 524 473, 408

2 468, 532 466, 543 479, 542 479, 544

(a) Compute a table of signs for estimating the main and
interaction effects, similar to Table 11-2. (Include the
first column of treatment codes.)

(b) Use the table of signs constructed in part (a) to
estimate the main effects and interactions.

(c) Compute the sum of squares for each effect.
(d) You are given that MSE = 2096.1. Test for the sig-

nificance of the main and interaction effects at level
0.05.

5. Assume the 23 design of Example 11.3-1 has only one
replication, that is, n = 1, with the observations as given

in Table 11-1. Use hand calculations to complete the
following.
(a) The estimated main and interaction effects computed

in Example 11.3-1 remain the same. True or false? If
you answer “false,” recompute all effects.

(b) The sums of squares for the main and interaction
effects computed in Example 11.3-1 remain the same.
True or false? If you answer “false,” recompute the
sums of squares for all effects.

(c) Assume that the three-factor interactions are zero and
conduct tests for the significance of all other effects.
Report the values of the F test statistics, the p-values,
and whether or not each hypothesis is rejected at level
0.05.

6. Let µ, αi, (αβ)ij, (αβγ )ijk, etc., be the terms in the
decomposition (11.3.1), and let

µk = µ··k, αk
i = µi·k − µk,

βk
j = µ·jk − µk, (αβ)k

ij = µijk − µk − αk
i − βk

j ,

be the terms in the decomposition (11.3.4) when the level
of factor C is held fixed at k. Verify the following relations
between the terms of the two decompositions.
(a) µk = γk + µ.
(b) αk

i = αi + (αγ )ik.

(c) βk
j = βj + (βγ )jk.

(d) Relation (11.3.5), that is, (αβ)k
ij = (αβ)ij + (αβγ )ijk.

11.4 2r Factorial Experiments
When many factors can potentially influence a response, and each run of the exper-
iment (i.e., taking an observation/measurement under each experimental condition)
is time consuming, pilot/screening experiments using 2r designs are very common for
two main reasons. First, such designs use the smallest number of runs for studying
r factors in a complete factorial design. Second, a 2r design is an efficient tool for
identifying the relevant factors to be further studied, especially if the two levels for
each of the p factors are carefully selected.

As the number of factors increases, so does the number of effects that must
be estimated. In particular, a 2r design has 2r − 1 effects which, for r > 3, include
interactions, of order higher than three. For example, a 24 design has 4 main effects,
6 two-factor interactions, 4 three-factor interactions, and 1 four-factor interaction.
However, the computation of the effects and the statistical analysis for 2r designs
with r > 3 parallels that for three factors. Thus, this section focuses on some addi-
tional issues that arise in the analysis of 2r designs with r > 3. These issues arise
because of the need to incorporate as many factors as possible, and, due to lim-
itations placed by cost and time considerations, 2r designs with r > 3 are often
unreplicated. (The term unreplicated means there is only n = 1 observation per
experimental condition or factor-level combination.)

The first such issue has to do with the fact that MSE cannot be formed (the error
variance cannot be estimated) in unreplicated designs. As we did with unreplicated
two- and three-factor designs, this issue is dealt with by assuming that higher order
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interactions are zero. The sparsity of effects principle, according to which multifac-
tor systems are usually driven by main effects and low-order interactions, underlies
this approach. In addition, as explained in the previous section, a Q-Q plot of the
effects can help confirm the appropriateness of applying this principle in each par-
ticular case. However, even unreplicated multifactor factorial experiments require
considerable effort. Another issue has to do with finding efficient ways of conduct-
ing either the full factorial design, or a fraction of it, while preserving the ability to
test for main effects and lower order interactions. This is addressed in the following
two sections.

11.4.1 BLOCKING AND CONFOUNDING

Due to the time and space requirements in running multifactor experiments, it is
often impossible to keep the experimental settings homogeneous for all experimen-
tal runs. The different settings may correspond to incidental factors (whose effects
are not being investigated), including different laboratories, different work crews,
and different time periods over which the scheduled experimental runs are con-
ducted. The different settings under which the experimental runs are performed are
called blocks. The presence of blocks results in additional effects, called block effects.
In the terminology introduced in Chapter 1, blocks may act as lurking variables and
confound certain effects of the factors being investigated.

It turns out that, with judicious allocation of the scheduled runs in the different
blocks, it is possible to confound the block effects only with higher order interactions.
To see how this works, consider a 22 design and two blocks. Assuming that the blocks
do not interact with the factors, the blocks contribute only main effects, say θ1 and
θ2 = −θ1. Thus, the model for an observation in factor-level combination (i, j) is

Yij = µ + αi + βj + (αβ)ij + θ1 + ϵij or

Yij = µ + αi + βj + (αβ)ij + θ2 + ϵij,
(11.4.1)

depending on whether the experimental condition (i, j) has been allocated in block 1
or block 2. Suppose that experimental conditions (1, 1), (2, 2) are allocated to block
1, and (1, 2), (2, 1) are allocated to block 2. Using (11.4.1), it is seen that the block
effect cancels from the estimators of α1 and β1. For example, α̂1 is the contrast

Yi· − Y ·· = Y11 − Y21 + Y12 − Y22

4

and θ1 is eliminated as Y11 and Y22 enter in opposite signs; similarly, θ2 is eliminated
as Y21 and Y12 enter in opposite signs. In the same manner, the block effects cancel
out in the contrast estimating β1. However, the block effects do not cancel out in the
contrast

Y11 − Y21 − Y12 + Y22

4

and thus, instead of estimating (αβ)11 it estimates (αβ)11 + θ1. It follows that the
main effects can be estimated as usual but the interaction effect is confounded with
the block effect.

Using the letter codes for the experimental conditions introduced in Example
11.3-1 (i.e., 1, a, b, and ab for (1, 1), (2, 1), (1, 2) and (2, 2), respectively), the alloca-
tion of experimental conditions to blocks so that the block effect is confounded only
with the interaction effect is shown in Figure 11-5. Note that experimental conditions
with codes sharing an even number of letters with ab, such as 1 (zero counts as
even) and ab, go in one block, and experimental conditions having an odd number
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Figure 11-5 Treatment
allocation in a 22 design to
confound the AB
interaction.

Block 1 Block 2
1, ab a, b

Figure 11-6 Treatment
allocation in a 23 design to
confound the ABC
interaction.

Block 1 Block 2
1, ab, ac, bc a, b, c, abc

of letters in common with ab go to the other block. In fact, this is a rule of gen-
eral applicability (but always under the assumption that blocks do not interact with
the factors). Thus, in a 23 design the allocation of factor-level combinations to two
blocks so that the block effect is confounded only with the three-factor interactions,
experimental conditions with codes sharing an even number of letters with abc go in
one block, and experimental conditions having an odd number of letters in common
with abc go to the other block; see Figure 11-6

The R package conf.design has a function that shows the allocation of factor-
level combinations to blocks so that only the specified effect is confounded with
the block effect. As usual, the command install.packages(”conf.design”) installs the
package and library(conf.design) makes it available in the current session. Then the
R command shown below produces the allocation of treatments to two blocks that
results in the block effect being confounded only with the highest order interaction:

R Command for Simple Confounding in 2r Designs

conf.design(c(1,. . .,1), p=2,

treatment.names=c(”A1”,. . .,”Ar”))
(11.4.2)

In this command, the length of the vector of 1’s (i.e., the c(1,. . .,1) part of the com-
mand) is r, that is, the number of factors in the study, the fact that this vector consists
of 1’s specifies that the highest order interaction is to be confounded with the block
effect, and the p=2 part of the command informs R that each factor has two levels.
As an example, the R command conf.design(c(1, 1), p=2, treatment.names=c(”A”,
”B”)) returns

Blocks A B

1 0 0 0

2 0 1 1

3 1 1 0

4 1 0 1

which is the allocation of experimental conditions to blocks given in Figure 11-5.
(Note that in the R output, the blocks are numbered by 0 and 1 and the two levels of
factors A and B are also numbered by 0 and 1. Thus, in the letter coding of the exper-
imental conditions introduced in Example 11.3-1, the experimental condition (0, 0)
of the first line is denoted by 1, the condition (1, 1) of the second line is denoted by
ab and so forth.) As an additional example, the R command conf.design(c(1, 1, 1),
p=2, treatment.names=c(”A”, ”B”, ”C”)) returns
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Blocks A B C

1 0 0 0 0

2 0 1 1 0

3 0 1 0 1

4 0 0 1 1

5 1 1 0 0

6 1 0 1 0

7 1 0 0 1

8 1 1 1 1

which is the allocation of experimental conditions to blocks given in
Figure 11-6.

It is also possible to designate a lower order interaction, or even a main effect,
to be confounded with the block effect (though, typically, this is not desirable). For
example, the R commands

conf.design(c(1, 0), p=2)
conf.design(c(0, 1, 1), p=2)

(11.4.3)

give the allocations of treatments to blocks that result in the block effect to be con-
founded with the main effect of factor A in a 22 design and with the BC interaction
in a 23 design, respectively.

Recall that to test for main effects in an unreplicated 22 design, the interaction
effect is assumed zero, and the interaction sum of squares is used as the error sum
of squares. Thus, if an unreplicated 22 design is run in two blocks, with the block
effect confounding the interaction effect, it is not possible to test for main effects.
Similarly, if an unreplicated 23 design is run in two blocks, with the block effect
confounding the three-factor interaction effect, the only way to test for the main
effects is by assuming that at least one of the two-factor interactions is zero. Rules
similar to those given at the end of Section 11.3 for forming ANOVA tables for
reduced models apply here, too. For replicated 2r designs that are run in two blocks,
the error sum of squares can be formed without assuming any effects to be zero.
The command for fitting a 23 design that has been run in two blocks, with the block
effect confounded with the ABC interaction term, is demonstrated in the following
example.

Example
11.4-1

Due to time considerations, an accelerated life testing experiment is conducted in
two labs. There are two levels for each of the three factors involved and the exper-
imental runs are allocated in the two labs so that the lab effect is confounded only
with the three-factor interaction effect; see Figure 11-6. The experiment is replicated
four times. The data are given in ALT2cbBlockRepl.txt. Use R commands to test for
significance of the main effects and two-factor interactions.

Solution
With the data set read into the data frame dat the command

anova(aov(LIFE∼Block+A*B*C, data=dat)) (11.4.4)
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produces the ANOVA table below:

Df Sum Sq Mean Sq F value Pr(>F)

Block 1 1176.1 1176.1 1.4362 0.242

A 1 378.1 378.1 0.4617 0.503

B 1 1035.1 1035.1 1.2640 0.272

C 1 11628.1 11628.1 14.1994 0.001

A:B 1 406.1 406.1 0.4959 0.488

A:C 1 2278.1 2278.1 2.7819 0.108

B:C 1 16471.1 16471.1 20.1133 0.0001

Residuals 24 19654.0 818.9

It follows that the main effect of factor C and the BC two-factor interaction are
significant, but all other effects are not. Note that the ANOVA table does not
include a line for the ABC interaction effect since this effect is confounded with
the main Block effect. Note also that the syntax of the R command in (11.4.4)
serves as a reminder of the assumption of no interaction between the block and the
factors.

In general, it is possible to allocate the runs of a 2r design in 2p blocks. In that case,
2p − 1 effects will be confounded with block effects. However, it is only possible to
hand pick p effects to be confounded with block effects. The p chosen effects are
called the defining effects. The remaining 2p − 1 − p effects confounded with block
effects are generalized interactions formed from the p defining effects. To explain the
notion of generalized interaction, consider a 23 design whose runs are allocated into
22 = 4 blocks. Then, 22 − 1 = 3 effects will be confounded with the block effects and
we can hand pick only two of them. Suppose the two defining events we choose are
the AB and AC interaction effects. Their generalized interaction is obtained by writ-
ing the two defining effects side by side and canceling any letters common to both,
that is, ABAC = BC. Thus, the three interaction effects that will be confounded with
block effects are the three two-factor interactions. Note that had the defining effects
been chosen as AC and ABC, their generalized interaction is ACABC = B, which
shows that a generalized interaction can be a main effect. For p > 2, the generalized
interactions are formed by any two, any three, etc., of the effects in the defining set.
(Note that 2p − 1 − p =

(p
2

)
+ · · · +

(p
p

)
; see the Binomial Theorem in Exercise 18 in

Section 2.3.)
The command conf.design we saw before can also be used to get the allocation of

experimental runs of a 2r design into 2p blocks by specifying the p defining effects.
Each of the p defining events is denoted by a vector of 0’s and 1’s of length r, as
described in (11.4.2) and further illustrated in (11.4.3), and the p 0-1 vectors are
arranged into a matrix. For example, to get the allocation of the runs of a 23 design
into 22 = 4 blocks, the R commands

G=rbind(c(1, 0, 1), c(1, 1, 1)); conf.design(G, p=2) (11.4.5)

produce the following output (we could have also specified treatment.names=c(”A”,
”B”, ”C”) in the above conf.design command):
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Blocks T1 T2 T3

1 00 0 0 0

2 00 1 0 1

3 01 0 1 0

4 01 1 1 1

5 10 1 1 0

6 10 0 1 1

7 11 1 0 0

8 11 0 0 1

which shows the allocation of runs into four blocks that result in the main B effect
and the AC and ABC interactions being confounded with the block effects.

11.4.2 FRACTIONAL FACTORIAL DESIGNS

Another way of dealing with the space and time requirements in running multifac-
tor factorial experiments is to conduct only a fraction of the 2r runs, that is, take
measurements at only a fraction of the 2r factor-level combinations. An experiment
where only a fraction of the factor-level combinations is run is called a fractional
factorial experiment. A half-replicate of a 2r design involves 2r−1 runs, a quarter-
replicate involves 2r−2 runs, and so forth. We write 2r−p to denote a 1/2p replicate of
a 2r factorial design.

The success of fractional factorial designs rests on the sparsity of effects prin-
ciple, that is, the assumption that higher order interactions are negligible. Under
this assumption, a fraction of the runs (experimental conditions) can be carefully
selected so as to ensure that the main effects and low-order interactions can be
estimated.

To see how this works, consider a 23 design where all interactions are assumed
to be zero. In this case, a half-replicate that allows the estimation of the main effects
consists of the runs that correspond to the lines with a “+” in the (αβγ )111 column of
Table 11-2. These are shown in Table 11-4. Note that except for the µ and (αβγ )111
columns, all other columns in Table 11-4 have two pluses and two minuses and thus
define contrasts in the cell means. Note also that the contrast defined by each of the
main effects columns is identical to that defined by a two-factor interaction column.
For example, the α1 column is identical to the (βγ )11 column, and so forth. Effects
with identical columns of pluses and minuses are confounded (the term aliased is
also used in this context). To illustrate this, consider the contrast defined by the α1
column (which is the same as the (βγ )11 column), that is,

x111 − x221 − x212 + x122

4
. (11.4.6)

Table 11-4 Estimating effects in a 23−1 fractional factorial design

Factor-Level Combination Cell Means µ α1 β1 γ1 (αβ)11 (αγ )11 (βγ )11 (αβγ )111

1 x111 + + + + + + + +

ab x221 + − − + + − − +

ac x212 + − + − − + − +

bc x122 + + − − − − + +
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According to the model (11.3.1), each cell sample mean xijk estimates µijk =
αi + βj + γk + (αβ)ij + (αγ )ik + (βγ )jk + (αβγ )ijk. Thus, the contrast in (11.4.6)
estimates

1
4

[α1 + β1 + γ1 + (αβ)11 + (αγ )11 + (βγ )11 + (αβγ )111]

− 1
4

[−α1 − β1 + γ1 + (αβ)11 − (αγ )11 − (βγ )11 + (αβγ )111]

− 1
4

[−α1 + β1 − γ1 − (αβ)11 + (αγ )11 − (βγ )11 + (αβγ )111]

+ 1
4

[α1 − β1 − γ1 − (αβ)11 − (αγ )11 + (βγ )11 + (αβγ )111]

= α1 + (βγ )11, (11.4.7)

where we also used the fact that, because each factor has two levels, the zero-sum
constraints, which the effects satisfy, imply that each main effect and interaction can
be expressed in terms of the corresponding effect with all indices equal to 1. For
example, (αβγ )211 = −(αβγ )111 = (αβγ )222 and so forth. Relation (11.4.7) shows
that α1 is confounded, or aliased, with (βγ )11, implying that α1 cannot be estimated
unless (βγ )11 = 0. Similarly, it can be seen that β1 is confounded with (αγ )11 and γ1
is confounded with (αβ)11; see Exercise 8.

The pairs of confounded effects in 2r−1 designs are called alias pairs. Thus,
denoting the main effects and interactions by capital letters and their products,
respectively, the alias pairs in the 23−1 design of Table 11-4 are

[A, BC ], [B, AC ], and [C, AB ].

Note that each main effect is confounded with its generalized interaction with the
three-factor interaction effect. The 23−1 design that is complimentary to that of Table
11-4, that is, the one that consists of the runs that correspond to the lines with a “−”
in the (αβγ )111 column of Table 11-2, has the same set of alias pairs; see Exercise 9.

Table 11-5 Concise
description of the 23−1

design of Table 11-4

A B C

+ + +
− − +
− + −
+ − −

For the purpose of designating a 23−1 design, a shorter version of Table 11-4
suffices. This shorter version displays only the columns α1, β1 and γ1, with labels A,
B, and C, respectively. Thus, the 23−1 design of Table 11-4 is completely specified by
Table 11-5, each row of which specifies the treatment combination using the conven-
tion that a “+” denotes a factor’s level 1 and a “−” denotes level 2. Note that the
columns A and B represent the factor-level combinations of a 22 design, and the C
column is the (row-wise) product of columns A and B. As will be seen shortly, this is
a special case of a generally applicable rule.

Half-replicates of 2r fractional factorial designs can be constructed in a manner
similar to that for constructing the 23−1 design. The first step is to select an effect,
called the generator effect. The generator effect, which will be non-estimable, is typ-
ically chosen to be the highest order interaction effect. Hence, the discussion will be
concentrated on this choice. (In technical terms, choosing the highest order interac-
tion to be the generator effect results in the desirable highest resolution design.) As
a second step, form a table of pluses and minuses for estimating the main effects and
the highest order interaction (the columns for the other interactions are not needed)
of a design with r factors. This can be done by extending the pattern described for
Table 11-2 to more than three factors. Then the 2r−1 fractional factorial design con-
sists of the runs corresponding to the “+” entries in the highest order interaction
column.
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Instead of writing all 2r runs and then selecting those with “+” entries in the
highest order interaction column, it is more expedient to construct directly the runs
of the 2r−1 design in the form of Table 11-5. This can be accomplished by first writing
down the factor-level combinations for a full factorial design with r − 1 factors in
the form of r − 1 columns of pluses and minuses, with “+” denoting level 1 and “−”
denoting level 2 as usual. Then, add an rth column formed by the (row-wise) product
of all r−1 columns. The r columns of pluses and minuses thus formed specify the 2r−1

runs of the same half-replicate of a 2r design described in the previous paragraph.
As with the 23−1 design, the constructed 2r−1 design has the property that each

effect is aliased with its generalized interaction with the highest order interaction
effect.

Example
11.4-2

Construct a 24−1 design by selecting ABCD for the generator effect, and give the set
of aliased pairs.

Solution
For instructional purposes, we will derive the 24−1 fractional factorial design by both
ways described above. The first approach uses the table on the left side of Table 11-6,
which shows the pluses and minuses columns for the main effects and the four-factor
interaction of a 24 factorial design. According to this approach, the factor-level com-
binations of the four factors in the half-replicate correspond to the rows where there
is a “+” in the ABCD column. The second (and more expedient) approach con-
structs directly the factor-level combinations of the 24−1 fractional factorial design
by adding a column D to the table of factor-level combinations of a 23 factorial
design. The column D is constructed as the (row-wise) product of the columns A,
B, and C, and this shorter version of the half-replicate is shown on the right side of
Table 11-6. It is easily checked that each level combination of the A, B, C, and D
factors shown on the right side of Table 11-6 is a level combination with a “+” in the

Table 11-6 Two ways of constructing a 24−1 design

24 Factorial Design: Main Effects and
4-Factor Interaction

23 Factorial Design: Main Effects
and Their Product

A B C D ABCD A B C D(=ABC)

+ + + + + + + + +

− + + + − − + + −
+ − + + − + − + −
− − + + + − − + +

+ + − + − + + − −
− + − + + − + − +

+ − − + + + − − +

− − − + − − − − −
+ + + − −
− + + − +

+ − + − +

− − + − −
+ + − − +

− + − − −
+ − − − −
− − − − +
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ABCD column on the left side of the table (though not listed in the same order).
The set of (24 − 2)/2 = 7 alias pairs is

[A, BCD ], [B, ACD ], [C, ABD ], [D, ABC ],

[AB, CD ], [AC, BD ], [AD, BC ].

It is worth noting that the factor D, whose column was added on the right side of
Table 11-6, is aliased with ABC. This observation justifies setting the D column as
the product of A, B, and C.

To construct a quarter-replicate of a 2r factorial design, two generator effects
must be selected. The runs where both generator effects have a “+” define a 2r−2

design. (The other three quarter-replicates consist of the runs with signs “+, −”, “−,
+”, and “−, −”, respectively.) The generator effects and their generalized interaction
will be the non-estimable effects. The expedient way of forming the 2r−2 fractional
factorial design is to first construct a table of signs representing the factor-level com-
binations of a factorial design consisting of the first r − 2 factors. The columns for
the two missing factors are the interaction terms that are aliased with each of them.

Example
11.4-3

Construct a 25−2 fractional factorial design using ABD and BCE as the generator
effects.

Solution
Note that the main effects corresponding to the factors denoted by D and E are
aliased with the AB and BC interaction effects, respectively. The first step is to con-
struct the 23 design for factors A, B, and C. Then add two columns by forming the
AB and BC products, and label these columns as D and E, respectively. The result is
shown in Table 11-7.

It should be clear that the expedient way of constructing a 2r−2 fractional facto-
rial design requires that the main effects of the factors denoted by the last two letters
are aliased with interactions of some of the factors denoted by the first r − 2 letters.

In 2r−2 designs, each effect is aliased with its generalized interactions
with each of the three non-estimable effects (i.e., the two generator effects
and their generalized interaction). In the 25−2 design of Example 11.4-3, the

Table 11-7 The 25−2 fractional factorial design of Example 11.4-3

A B C D(=AB) E(=BC)

+ + + + +

− + + − +

+ − + − −
− − + + −
+ + − + −
− + − − −
+ − − − +

− − − + +
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(25 − 4)/4 = 7 aliased groups of four are (note that the third non-estimable effect is
(ABD)(BCE)=ACDE):

[A, BD, ABCE, CDE ], [B, AD, CE, ABCDE ], [C, ABCD, BE, ADE ],
[D, AB, BCDE, ACE ], [E, ABDE, BC, ACD ],
[AC, CBD, ABE, DE ], [AE, BDE, ABC, CD ]

⎫
⎬

⎭ (11.4.8)

The method for constructing half- and quarter-replicates of a 2r factorial design
can be extended for constructing 1/2p replicates for any p. For details, and addi-
tional applications to real-life engineering experiments see, for example, the book
by Montgomery.9

Sums of squares in 2r−p fractional factorial designs can be computed by formulas
analogous to those in (11.3.8), except that there is one sum of squares for each class
of aliased effects. A method similar to that used in Example 11.3-1 can be used for
their computation. As a first step in this computation, the table of r columns of +’s
and −’s, which describes the treatment combinations of the design, is expanded with
a column on the left containing the observations at each treatment combination and
with additional columns on the right, one for each class of aliased effects. The sum
of squares corresponding to each class of aliased effects columns is computed as

SSeffect =
(
Sum{(Observations)(Effect Column)}

)2

2r−p (11.4.9)

The somewhat imprecise notation of (11.4.9) will be clarified in Example 11.4-4.
These sums of squares for classes of aliased effects have one degree of freedom.
Because fractional factorial experiments are typically unreplicated, the significance
of effects cannot be tested unless some aliased pairs of higher order interactions are
assumed zero.

Example
11.4-4

The data in Ffd.2.5-2.txt are from an experiment using a 25−2 design with treatment
combinations given in Example 11.4-3.
(a) Compute the sums of squares for each class of aliased effects using (11.4.9).
(b) Assuming that one class of aliased effects is zero (or negligible), test for the

significance of the remaining (classes of aliased) effects.

Solution

(a) The effects denoted by A, B, C, D, E, AC, and CD can be used to represent
each of the seven classes of aliased effects given in (11.4.8). Thus, as a first
step, Table 11-7 is expanded to include the observations (y) column on the left
and the AC and CD columns on the right. Table 11-8 shows the expanded table.
Next, using (11.4.9) we have

SSA = (12.1 − 4.4 + 5.8 − 5.1 + 12.7 − 12.3 + 5.7 − 7.0)2

25−2 = 56.25
8

= 7.031.

The remaining sums of squares can be computed by applying the same formula.

9 Douglas C. Montgomery (2005). Design and Analysis of Experiments, 6th ed. John Wiley & Sons.
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Table 11-8 Expansion of Table 11-7 for calculating the sums of
squares

y A B C D E AC CD

12.1 + + + + + + +

4.4 − + + − + − −
5.8 + − + − − + −
5.1 − − + + − − +

12.7 + + − + − − −
12.3 − + − − − + +

5.7 + − − − + − +

7.0 − − − + + + −

The results are summarized in the sum of squares column (Sum Sq) of the
following ANOVA table.

Df Sum Sq Mean Sq F value Pr(>F)

A 1 7.031 7.031 2.002 0.392

B 1 40.051 40.051 11.407 0.183

C 1 13.261 13.261 3.777 0.303

D 1 9.461 9.461 2.695 0.348

E 1 5.611 5.611 1.598 0.426

A:C 1 10.811 10.811 3.079 0.330

C:D 1 3.511 3.511

(b) This data set has no replications (n = 1) and, as already mentioned, the error
sum of squares cannot be formed and thus tests cannot be conducted. Since the
sum of squares of the (alias class of the) effect CD is the smallest (smaller by
more than a factor of 10 from the largest SS), we may tentatively assume that
it is negligible. Treating the SS for CD as error sum of squares with one degree
of freedom, we can compute the F statistics and the corresponding p-values
shown in the above ANOVA table. All p-values are greater than 0.05, so none
of the effects is statistically significant.

Having read the data into the data frame df, the sum of squares in the ANOVA
table of Example 11.4-4 can also be obtained with the R command

anova(aov(y∼A*B*C*D*E, data=df))

This command does not produce any F statistics or p-values because, as mentioned
above, there are no degrees of freedom left for the error SS. To require R to treat
the CD interaction as error term, use the command

anova(aov(y∼A+B+C+D+E+A*C, data=df))

This command produces the entire ANOVA table of Example 11.4-4, except that
the “C:D” row is labeled “Residuals.” Finally, we note that it is possible to assume
that a main effect is negligible. The command for fitting the model assuming the E
and CD effects are negligible is

anova(aov(y∼A+B+C+D+A*C, data=df))

This command gives error sum of squares that is equal to the sum of squares of
effects E and CD and has two degrees of freedom.
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Exercises
1. Verify that the treatment allocation to blocks described
in Figure 11-6 confounds only the three-factor interac-
tions with the block effect. (Hint. The contrasts estimating
the different effects are given in Example 11.3-1.)

2. Verify the following:
(a) Use the first of the two commands given in (11.4.3)

to verify that the block effect is confounded only with
the main effect of factor A.

(b) Use the second of the two commands given in (11.4.3)
to verify that the block effect is confounded only with
the BC interaction effect.

3. A 25 design will be run in four blocks. Let the five
factors be denoted by A, B, C, D, and E.
(a) Find the generalized interaction of the defining effects

ABC and CDE.
(b) Find the generalized interaction of the defining effects

BCD and CDE.
(c) For each of the two cases above, use R commands to

find the allocation of runs into the four blocks so the
block effects are confounded only with the defining
effects and their generalized interaction.

4. A 25 design will be run in eight blocks. Let the five
factors be denoted by A, B, C, D, and E.
(a) What is the total number of effects that must be

confounded with the block effects?
(b) Construct the set of confounded effects from the

defining effects ABC, BCD, and CDE.
(c) Use R commands to find the allocation of runs into

the eight blocks so the block effects are confounded
only with the defining effects and their generalized
interaction.

5. A paper presents a study investigating the effects of
feed rate (factor A at levels 50 and 30), spindle speed
(factor B at levels 1500 and 2500), depth of cut (factor
C at levels 0.06 and 0.08), and the operating chamber
temperature on surface roughness.10 In the data shown
in SurfRoughOptim.txt, temperature is used as a blocking
variable so that it is confounded with the ABC interaction
effect. Use R commands to complete the following.
(a) Read the data into the data frame sr and introduce a

blocking variable indicating the splitting of the exper-
imental conditions into the two blocks. (Hint. The
eight entries of the “block” variable will be either 1
or 2 depending on whether the corresponding line in
the data set is from block 1 or 2. [The block num-
bering does not matter.] The “block” variable can be
introduced into the data frame sr by the command
sr$block=c(1, 2, . . .).)

(b) Test for the significance of the main factor effects and
their interactions at level 0.05.

6. In the context of Exercise 5, the experiment accounted
for the possible influence of the blocking factor “tool
inserts” at two levels, with the eight runs allocated into
four blocks in such a way that the interactions AB, AC,
and their generalized interaction, which is BC, are con-
founded with the block effects. Repeat parts (a) and (b)
of Exercise 5.

7. Arc welding is one of several fusion processes for join-
ing metals. By intermixing the melted metal between two
parts, a metallurgical bond is created resulting in desir-
able strength properties. A study investigated the effect
on the strength of welded material (factor A at levels
SS41 and SB35), thickness of welded material (factor B
at levels 8 mm and 12 mm), angle of welding device (fac-
tor C at levels 70◦ and 60◦), and current (factor D at levels
150 A and 130 A). The simulated data are in ArcWeld.txt.
Four blocks are used in this experiment, and the defin-
ing effects for confounding were AB and CD. Use R
commands to complete the following.
(a) Find the allocation of runs into the four blocks.
(b) Read the data into the data frame aw and introduce a

blocking variable indicating the splitting of the exper-
imental conditions into the four blocks identified in
part (a). (Hint. See the hint in part (a) of Exercise
5 for how to introduce the blocking variable into the
data frame aw.)

(c) Test for the significance of the main factor effects and
their interactions at level 0.01.

8. Consider the 23−1 design shown in Table 11-4, and ver-
ify that β1 is confounded with (αγ )11 and γ1 is confounded
with (αβ)11.

9. Verify that the set of alias pairs in the 23−1 design

Factor-Level Cell
Combination Means µ α1 β1 γ1 (αβ)11 (αγ )11 (βγ )11 (αβγ )111

a x211 + − + + − − + −
b x121 + + − + − + − −
c x112 + + + − + − − −
abc x222 + − − − + + + −

are the same as those for its complimentary 23−1 design
given in Table 11-4. (Hint. Write the contrast correspond-
ing to each main effect column, as was done in (11.4.6),
and find what it estimates, as was done in (11.4.7).)

10 J. Z. Zhang et al. (2007). Surface roughness optimization in an end-milling operation using the Taguchi design
method, Journal of Materials Processing Technology, 184(13): 233–239.
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10. Answer the following questions.
(a) Construct a 25−1 design, using the five-factor inter-

action as the generator effect, and give the set of
(25 − 2)/2 = 15 aliased pairs.

(b) Construct a 26−2 fractional factorial design using
ABCE and BCDF as the generator effects. Give the
third non-estimable effect and the set of (26 − 4)/4 =
15 groups of four aliased effects.

(c) Construct a 27−2 fractional factorial design using
ABCDF and BCDEG as the generator effects, and
give the third non-estimable effect. How many groups
of four aliased effects are there? (You need not list
them.)

11. Photomasks are used to generate various design pat-
terns in the fabrication of liquid crystal displays (LCDs).
A paper11 reports on a study aimed at optimizing process
parameters for laser micro-engraving iron oxide coated

glass. The effect of five process parameters was explored
(letter designation in parentheses): beam expansion ratio
(A), focal length (B), average laser power (C), pulse
repetition rate (D), and engraving speed (E). The pri-
mary response is the engraving linewidth. Data from an
unreplicated 25−1 design, using the five-factor interaction
as generator, are in Ffd.2.5-1.1r.txt.

(a) Give the set of aliased pairs.
(b) Use R commands to compute the sums of squares of

(the classes of) aliased effects. Is it possible to test for
the significance of effects?

(c) Use the AC interaction term as error, and test for
the significance of the effects at level 0.05. (Hint.
With the data read into the data frame df, the R
command for omitting the AC interaction term is
anova(aov(y∼A+B+C+D+E+A*B+A*D+A*E+B*C+
B*D+B*E+C*D+C*E+D*E, data=df)).)

11 Y. H. Chen et al. (1996). Application of Taguchi method in the optimization of laser micro-engraving of
photomasks, International Journal of Materials and Product Technology, 11(3/4).



Chapte r

12Polynomial and Multiple
Regression

12.1 Introduction
The simple linear regression model, introduced in Section 4.6.2, specifies that the
regression function, µY|X(x) = E(Y|X = x), of a response variable Y is a linear func-
tion of the predictor/explanatory variable X. Many applications, however, require
more general regression models either because the regression function is not linear
or because there are more than one predictor variables. Including polynomial terms
in the regression model is a common way to achieve a better approximation to the
true regression function. This leads to the term polynomial regression. Incorporating
several predictor variables, with or without additional polynomial terms, leads to the
term multiple regression. This chapter discusses estimation, testing, and prediction
in the context of polynomial and multiple regression models. Additional issues such
as weighted least squares, variable selection, and multi-collinearity are discussed.

The multiple regression model allows categorical covariates and, as such, it can
be (and is) used to model factorial designs. In addition to providing a new perspec-
tive on factorial designs, and a unified data analytic methodology, this provides a
natural way of handling heteroscedastic factorial designs.

A suitable transformation of the response variable, the predictor variables, or
the regression function often leads to a better approximation of the true regression
function by the multiple regression model. One such transformation, commonly used
for Bernoulli response variables, leads to logistic regression, which is also briefly
discussed.

12.2 The Multiple Linear Regression Model
The multiple linear regression (MLR) model specifies that the conditional expecta-
tion, E(Y|X1 = x1, . . . , Xk = xk) = µY|X1,...,Xk (x1, . . . , xk), of a response variable
Y given the values of k predictor variables, X1, . . . , Xk, is a linear function of the
predictors’ values:

µY|X1,...,Xk (x1, . . . , xk) = β0 + β1x1 + · · · + βkxk. (12.2.1)

Equation (12.2.1) describes a hyperplane in the (k+1)-dimensional space of the
response and predictor variables. For example, for k = 2 predictors, relation (12.2.1),
that is,

µY|X1, X2 (x1, x2) = β0 + β1x1 + β2x2,

421
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Figure 12-1 The regression
plane for the model
µY|X1, X2 (x1, x2) =
5 + 4x1 + 6x2.

describes a plane in the 3D space. Figure 12-1 shows such a plane for a specific choice
of the regression parameters β0, β1, and β2. For notational simplicity, the intercept
term in the MLR model will always be denoted by β0 regardless of whether or not
the predictor variables have been centered (see (4.6.4) and (4.6.5)). The regression
parameters βj have a clear physical interpretation. Noting that βj, j ≥ 1, is the partial
derivative of µY|X1, ..., Xk (x1, . . . , xk) with respect to xj, it follows that βj represents
the change in the regression function per unit change in xj when all other predictors
are held fixed. Moreover, if the predictor variables have been centered, the intercept
parameter β0 is the marginal mean of Y; see Proposition 4.6-1.

The multiple linear regression model is most commonly written as an equation
relating the response variable Y to the explanatory/predictor variables X1, . . . , Xk
and an intrinsic error variable as

Y = β0 + β1X1 + · · · + βkXk + ε, (12.2.2)

with the intrinsic error variable ε being implicitly defined by (12.2.2). The basic
properties of the intrinsic error variable are analogous to those summarized in
Proposition 4.6-2 for the simple linear regression model. Namely, ε has zero mean,
is uncorrelated from the predictor variables X1, . . . , Xk, and its variance σ 2

ε is the
conditional variance of Y given the values of X1, . . . , Xk. As in the simple lin-
ear regression model, it will be assumed that the intrinsic error variance does
not depend on (i.e., does not change with) the values of the predictor variables
(homoscedasticity assumption); see, however, Section 12.4.2.

The Polynomial Regression Model When there is only one predictor variable, but
either theoretical reasoning or a scatterplot of the data suggests that the true regres-
sion function has one or more peaks or valleys (i.e., local maxima or minima), the
simple linear regression model is not appropriate. In such cases incorporation of
polynomial terms in the model for the regression function becomes necessary. A
kth-degree polynomial may accommodate up to k − 1 peaks and valleys. Figure 12-2
shows a regression function modeled as a third-degree polynomial.

In general, the kth-degree polynomial regression model is

Y = β0 + β1X + β2X2 + · · · + βkXk + ε. (12.2.3)
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Figure 12-2 Polynomial
regression model
µY|X(x) = −8 − 4.5x+
2x2 + 0.33x3.

A comparison of the MLR model (12.2.2) with the polynomial regression model
(12.2.3) reveals that the polynomial regression model can also be written as an MLR
model:

Y = β0 + β1X1 + β2X2 + · · · + βkXk + ε, where Xi = Xi for i = 1, . . . , k. (12.2.4)

Thus, procedures for estimating the parameters of an MLR model apply for
polynomial regression models as well. However, the interpretation of the param-
eters is different. For example, the coefficient β1 in (12.2.3) is the derivative of the
regression function at x = 0, and thus it represents the rate of change of the regres-
sion function at x = 0. Similarly, β2 in (12.2.3) is one-half of the second derivative
of the regression function at x = 0, and so forth. Of course, if zero is not in the
range of the covariate values, knowing the rate of change of the regression function
at x = 0 has no practical value. This is one of the reasons why centering the covari-
ate in a polynomial regression model is recommended: If the covariate is centered,
β1 represents the rate of change of the regression function at the average x-value.
The second reason for centering is grounded in empirical evidence suggesting that
coefficients of polynomial regression models are more accurately estimated if the
covariate has been centered. Lastly, even when the predictor variable in a polyno-
mial regression model is centered, the intercept β0 is not the marginal expected
value of Y. To see this, consider the quadratic regression model with centered
covariate:

Y = β0 + β1(X − µX) + β2(X − µX)2 + ε, (12.2.5)

and recall that the use of a capital letter for the covariate indicates it is considered a
random variable. Taking the expected value on both sides of (12.2.5), it follows that

E(Y) = β0 + β2Var(X).

In practice, the covariate is centered by its sample mean but the interpretation of
coefficients is similar.

Polynomial Models with Interaction Terms When there are more than one predic-
tors it is usually a good idea to include interaction effects in the model. The concept
of interaction in multiple regression is similar to the concept of interaction in two-
way factorial designs (see Section 1.8.4 and Chapter 11). In particular, we say that
predictor variables X1 and X2 interact if the effect of changing the level of one vari-
able (X1, say) depends on the level of the other variable (X2). The most common
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Figure 12-3 The regression
plane for the model
µY|X1,X2 (x1, x2) =
5 + 4x1 + 6x2 + 5x1x2.

way of modeling the interaction effect of two variables is by their cross-product. For
example, the regression function of Y on X1 and X2 can be modeled as

µY|X1,X2 (x1, x2) = β0 + β1x1 + β2x2 + β3x1x2. (12.2.6)

Figure 12-3 shows the plot of the regression function (12.2.6) with a particular choice
of the regression coefficients. Because of the interaction term, this regression func-
tion is not a plane, as the one in Figure 12-1 is. Figure 12-3 illustrates the fact that the
expected change in Y when x1 is changed (say, by one unit) is a function of x2.

Finally, the modeling flexibility can be enhanced by combining polynomial terms
with interaction terms. For example, the regression function of Y on X1 and X2 may
be modeled as a second-degree polynomial with interaction as

µY|X1, X2 (x1, x2) = β0 + β1x1 + β2x2 + β3x2
1 + β4x2

2 + β5x1x2. (12.2.7)

Figure 12-4 shows the plot of the regression function (12.2.7) with a particular choice
of the regression coefficients. By varying the values of the regression coefficients in
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(12.2.7), the second-degree polynomial model with interaction can assume a wide
variety of shapes.

Regression models with interaction terms can also be put in the form of
the MLR model (12.2.2). For example, the regression function in (12.2.7) can be
written as

µY|X1,X2(x1, x2) = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5, (12.2.8)

where x3 = x2
1, x4 = x2

2, and x5 = x1x2. It follows that procedures for estimating
the parameters of an MLR model apply for regression models with polynomial and
interaction terms as well.

Transformations Occasionally, empirical evidence or science suggests a non-linear
(and non-polynomial) relationship between the response and predictor variables. In
such cases it may be possible that a suitable transformation of the response, or of
the covariate, or both, will restore the suitability of a multiple linear or polynomial
regression model. For example, the exponential growth model, for example, for cell
counts, specifies a relationship of the form

E(Yt) = α0eβ1t, t ≥ 0,

for the expected number of cells at time t. Taking logs, the relationship becomes
linear: log(E(Yt)) = log(α0) + β1t. Assuming further that the intrinsic error term
for Yt is multiplicative, that is, Yt = α0eβ1tUt, the transformed variable Ỹt = log(Yt)
follows the simple linear regression model

Ỹt = β0 + β1t + εt, where β0 = log(α0) and εt = log Ut. (12.2.9)

Note that for model (12.2.9) to be a normal simple linear regression model, Ut must
have the log-normal distribution (see Exercise 12 in Section 3.5).

As another example, consider the non-linear model µY|X(x) = α0xβ1 . Assuming
again a multiplicative error term for Y, the transformed variables Ỹ = log(Y)
and X̃ = log(X) follow the simple linear regression model

Ỹ = β0 + β1X̃ + ε, where β0 = log α0.

Models fitted on transformed variables can be used for prediction in a
straightforward manner. For example, if fitting model (12.2.9) to data yields least
squares estimators β̂0 and β̂1, the number of cells at time t0 is predicted by
Ŷt0 = eβ̂0+β̂1t0 .

Exercises

1. A response variable is related to two predictors
through the multiple linear regression model Y = 3.6 +
2.7X1 + 0.9X2 + ε.

(a) Give µY|X1,X2 (12, 25) = E(Y|X1 = 12, X2 = 25).
(b) If E(X1) = 10 and E(X2) = 18, find the (marginal)

expected value of Y.
(c) What is the expected change in Y when X1 increases

by one unit while X2 remains fixed?
(d) The model can be expressed equivalently in terms

of the centered variables as Y = β0 + β1(X1 − µX1 ) +
β2(X2 − µX2 ) + ε. Using the information about the

expected values of X1 and X2 given in part (b), give
the values of β0, β1, and β2.

2. A response variable is related to two predictors
through the multiple regression model with an interaction
term Y = 3.6 + 2.7X1 + 0.9X2 + 1.5X1X2 + ε.
(a) If E(X1) = 10, E(X2) = 18, and Cov(X1, X2) =

80, find the (marginal) expected value of Y. (Hint.
Cov(X1, X2) = E(X1X2) − E(X1)E(X2).)

(b) Express the model in terms of the centered variables
as Y = β0 + β1(X1 − µX1 ) + β2(X2 − µX2 ) + β3(X1 −
µX1 )(X2 − µX2 ) + ε. Justify that β3 = 1.5. Next, show
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that β0 = E(Y) − β3Cov(X1, X2), and use part (a) to
find its value.

3. A response variable is related to a predictor variable
through the quadratic regression model µY|X(x) = −8.5−
3.2x + 0.7x2.
(a) Give the rate of change of the regression function at

x = 0, 2, and 3.
(b) Express the model in terms of the centered vari-

ables as µY|X(x) = β0 + β1(x − µX) + β2(x −
µX)2. If µX = 2, give the values of β0, β1, and β2.
(Hint. Match the coefficients of the different powers
of x.)

4. The data set Leinhardt in the R package car
has data on per capita income and infant mortal-
ity rate from several countries. Use the R commands
install.packages(”car”) to install the package, the com-
mand library(car) to make the package available to
the current R session, and the command x=Leinhardt$
income; y=Leinhardt$infant to set the income val-
ues and mortality rates in the R objects x and y,
respectively.
(a) Construct the (x, y) and (log(x), log(y)) scatter-

plots. Which scatterplot suggests a linear relationship?
[Note: Cases with missing values are omitted when
plotting.]

(b) Fit the simple linear regression model to the set of
variables whose scatterplot suggests a linear relation-
ship and give the estimated regression line.

(c) Use the estimated regression line from part (b) to pre-
dict the infant mortality rate of a country with per
capita income of 1400.

5. The file BacteriaDeath.txt has simulated data on bacte-
ria deaths over time. Import the time and bacteria counts
into the R objects t and y, respectively.
(a) Construct the (t, y) and (t, log(y)) scatterplots. Which

scatterplot suggests a linear relationship?
(b) Construct a predictive equation for the bacteria count

Y at time t.

6. The data set in WindSpeed.txt has 25 measurements of
current output, produced by a wind mill, and wind speed
(in miles per hour).1 Import the wind speed and output
into the R objects x and y, respectively.
(a) Construct the (x, y) and (1/x, y) scatterplots. Which

scatterplot suggests a linear relationship?
(b) Fit the simple linear regression model to the set of

variables whose scatterplot suggests a linear relation-
ship and give the estimated regression line.

(c) Use the estimated regression line from part (b) to pre-
dict the current produced at a wind speed of 8 miles
per hour.

12.3 Estimation, Testing, and Prediction
12.3.1 THE LEAST SQUARES ESTIMATORS

The method of least squares, introduced in Section 6.3.3, can also be used to fit a
multiple linear regression model to the data. To describe it in this context, let

(yi, xi1, xi2, . . . , xik), i = 1, . . . , n,

be n > k observations on the k covariates/predictor variables and the response
variable. Typically, the data are presented in table form as:

y x1 x2 · · · xk
y1 x11 x12 · · · x1k
y2 x21 x22 · · · x2k
...

...
...

...
...

yn xn1 xn2 · · · xnk

Each row of data is assumed to satisfy the model equation

yi = β0 + β1xi1 + β2xi2 + · · · + βkxik + εi, i = 1, . . . , n, (12.3.1)

according to (12.2.2). The least squares estimates, β̂0, β̂1, . . . , β̂k, of the regression
coefficients are obtained by minimizing the objective function

1 D. C. Montgomery, E. A. Peck, and G. G. Vining (2012). Introduction to Linear Regression Analysis, 5th ed.
Hoboken: Wiley & Sons. Table 5.5.
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L(b0, b1, . . . , bk) =
n∑

i=1

(yi − b0 − b1xi1 − b2xi2 − · · · − bkxik)2 (12.3.2)

with respect to b0, b1, . . . , bk. Equivalently, the least squares estimates are obtained
as the solution to the following system of equations known as the normal equations:

∂L
∂b0

= −2
n∑

i=1

⎛

⎝yi − b0 −
k∑

j=1

bjxij

⎞

⎠ = 0

∂L
∂bj

= −2
n∑

i=1

⎛

⎝yi − b0 −
k∑

j=1

bjxij

⎞

⎠ xij = 0, j = 1, . . . , k.

The normal equations simplify to

nb0 + b1

n∑

i=1

xi1 + b2

n∑

i=1

xi2 + · · · + bk

n∑

i=1

xik =
n∑

i=1

yi

b0

n∑

i=1

xi1 + b1

n∑

i=1

x2
i1 + b2

n∑

i=1

xi1xi2 + · · · + bk

n∑

i=1

xi1xik =
n∑

i=1

xi1yi

...
...

...

b0

n∑

i=1

xik + b1

n∑

i=1

xikxi1 + b2

n∑

i=1

xikxi2 + · · · + bk

n∑

i=1

x2
ik =

n∑

i=1

xikyi.

As an example, the normal equations for the simple linear regression model are:

nb0 + b1

n∑

i=1

xi1 =
n∑

i=1

yi

b0

n∑

i=1

xi1 + b1

n∑

i=1

x2
i1 =

n∑

i=1

xi1yi.

Solving them yields the least squares estimators as shown in (6.3.7). (Note that in
(6.3.7), xi1 is denoted by xi and the intercept estimator is denoted by α̂1 instead
of β̂0.) The solution of the normal equations for the general MLR model, that is, for
k > 1 predictors, is most conveniently given in matrix notation and will be discussed
later.

According to the terminology introduced in Section 6.3.3 for the simple lin-
ear regression model, the least squares estimators specify the estimated regression
function, the fitted (or predicted) values, and the residuals (or estimated errors):

Estimated Regression
Function

Fitted Values

Residuals

µ̂Y|X1, ..., Xk (x1, . . . , xk) = β̂0 + β̂1x1 + · · · + β̂kxk

ŷi = β̂0 + β̂1xi1 + · · · + β̂kxik, 1 ≤ i ≤ n (12.3.3)

ei = yi − ŷi, 1 ≤ i ≤ n

Moreover, the sum of the squared residuals gives the error sum of squares, SSE,
whose degrees of freedom is DFSSE = n − k − 1, that is, the number of observa-
tions minus the total number of regression coefficients being estimated. Dividing
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the SSE by DFSSE gives the MSE, which is an unbiased estimator of the intrinsic
error variance σ 2

ε :

Error Sum of Squares

Mean Square Error

SSE =
n∑

i=1

e2
i =

n∑

i=1

(yi − ŷi)2

MSE = SSE
DFSSE

= SSE
n − k − 1

= σ̂ 2
ε

(12.3.4)

As in the simple linear regression model, SSE expresses the variability in
the response variable that is not explained by the regression model (unexplained
variability). Subtracting SSE from the total variability (which, as always, is the
numerator of the sample variance of the response variable) gives the regression
sum of squares, SSR. SSR expresses the variability in the response variable that is
explained by the regression model (explained variability). The proportion of the total
variability explained by the model, SSR/SST or 1−SSE/SST, is called the coefficient
of multiple determination and is denoted by R2. The following display summarizes
these quantities:

Total Sum of Squares

Regression Sum of
Squares

Coefficient of
Multiple

Determination

SST =
n∑

i=1

(yi − yi)
2

SSR = SST−SSE (12.3.5)

R2 = 1 − SSE
SST

= SSR
SST

The notion of correlation between X and Y can be extended to the notion
of multiple correlation between X1, . . . , Xk and Y. The multiple correlation coeffi-
cient between the response variable and the predictor variables is computed as the
Pearson’s linear correlation coefficient between the pairs (yi, ŷi), i = 1, . . . , n. It
can be shown that the positive square root of R2 equals the multiple correlation
coefficient between the response and the predictors.

Since a main objective of regression analysis is to reduce the unexplained vari-
ability, it should be that the higher the R2, the more successful the model. It turns
out, however, that R2 can be inflated by including additional covariates, even if the
additional covariates have no predictive power. For example, inclusion of polyno-
mial and interaction terms in the regression model will increase R2. At the same
time, polynomial and interaction terms complicate the interpretation of the effect
each covariate has. According to the principle of parsimony, models should be as
simple as possible. One way of balancing the loss of interpretability due to the inclu-
sion of additional parameters, against the gain in R2, that such inclusion entails, is to
use the adjusted coefficient of multiple determination denoted by R2(adj):

Adjusted Coefficient
of Multiple

Determination
R2(adj) = 1 − MSE

MST
= (n − 1)R2 − k

n − 1 − k
(12.3.6)

R Commands for Regression Analysis Let the R objects y, x1, x2, x3 con-
tain the values of the response variable Y and those of the three covariates,
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Table 12-1 R commands for fitting multiple linear and polynomial regression
models

R Command Model

fit=lm(y∼x1+ x2+x3)
Fits the basic model
Y = β0 + β1X1 + β2X2 + β3X3 + ε

fit=lm(y∼(x1+x2+x3)ˆ2) Fits the basic model plus
all pairwise interaction terms

fit=lm(y∼x1+x2+x3+x1:x2+x1:x3+x2:x3) Fits the basic model plus
all pairwise interaction terms

fit=lm(y∼x1*x2*x3)
Fits the basic model plus
all interactions up to order three

fit=lm(y∼(x1+x2+x3)ˆ3) Fits the basic model plus
all interactions up to order three

fit=lm(y∼x1+I(x1ˆ2)+x2+x3) Fits the basic model plus
a quadratic term in X1

fit=lm(y∼poly(x1, 2, raw=T)+x2+x3)
Fits the basic model plus
a quadratic term in X1

fit=lm(y∼poly(x1, 3, raw=T)+x2+x3)
Fits the basic model plus
quadratic and cubic terms in X1

X1, X2, X3, respectively. The R commands in Table 12.1 fit the basic MLR model
Y = β0 +β1X1 +β2X2 +β3X3 +ε and certain variations of it that include polynomial
and interaction terms. The commands extend to regression models with more than
three predictors in a straightforward manner. Regardless of the model to be fitted,
it is always a good idea to first center the variables:

Centering the Predictors Prior to Fitting the Model

x1=x1-mean(x1); x2=x2-mean(x2); x3=x3-mean(x3)

Table 12-1 shows that some models can be specified in more than one way. For
example, the model with all pairwise interactions can be specified by the command
in either the second or third row of Table 12-1, as well as by the command

fit=lm(y∼x1*x2*x3-x1:x2:x3)

Similarly, the model with all interaction terms, including the third order interaction,
can be specified by the command in either the fourth or fifth row of Table 12-1, as
well as by the command fit=lm(y∼(x1+x2+x3)ˆ2+x1:x2:x3). Finally, the commands in
the last three rows of Table 12-1 show a couple of options for including polynomial
terms in the model.

REMARK 12.3-1 Using simply poly(x1, 3) instead of poly(x1, 3, raw=T), gives
what is known as orthogonal polynomial terms. Orthogonal polynomials result in
“cleaner” inference procedures, and are preferable for testing the significance of
higher order polynomial terms. On the other hand, their construction is complicated
and thus it is difficult to use the fitted model for prediction. ▹

Adding the R command fit, or coef(fit), at the end of any of the Table 12-1 com-
mands will give the least squares estimates of the regression coefficients. Adding
summary(fit) gives, in addition, standard errors of the estimated coefficients, the
residual standard error (i.e., σ̂ε) together with the error degrees of freedom, R2,
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R2(adj), and p-values for hypothesis-testing problems that will be discussed in the
next section.

Example
12.3-1

The data2 in Temp.Long.Lat.txt give the average (over the years 1931 to 1960) daily
minimum January temperature in degrees Fahrenheit with the latitude and longitude
of 56 US cities. Let Y, X1, X2 denote the temperature and the centered latitude and
longitude variables, respectively.

(a) Using R commands to fit the following models, report the least squares esti-
mates of the regression parameters, the estimated intrinsic error variance, as
well as R2 and R2(adj) for each of the models:
(1) the basic multiple regression model Y = β0 + β1X1 + β2X2 + ε,
(2) the model Y = β0 +β1X1 +β2X2 +β3X1X2 +ε, which adds the interaction

term to the basic model, and
(3) the model Y = β0 +β1X1 +β1, 2X2

1 +β2X2 +β2, 2X2
2 +β3X1X2 + ε, which

includes second-degree polynomial terms in X1 and X2 and their inter-
action. (Note that indexing coefficients of polynomial terms by double
subscripts, as done above, is not very common.)

(b) Use each model’s estimated intrinsic variance and the corresponding degrees
of freedom to find each model’s SSE and (their common) SST.

(c) The average minimum January temperature in Mobile, AL, and its latitude and
longitude are 44, 31.2, 88.5. For each of the three models, give the fitted value
and the residual for Mobile, AL.

Solution

(a) Use df=read.table(”Temp.Long.Lat.txt”, header=T) to import the data into the
R data frame df, and y=df$JanTemp; x1=df$Lat-mean(df$Lat); x2=df$Long-
mean(df$Long) to set the response variable and the centered covariates into
the R objects y, x1, x2, respectively. Then the commands

fit1=lm(y∼x1+x2); fit2=lm(y∼x1*x2);
fit3=lm(y∼poly(x1, 2, raw=T)+poly(x2, 2, raw=T)+x1:x2)
summary(fit1); summary(fit2); summary(fit3)

fit the three models and produce the desired information, which is summarized
in the table below:

Model Intercept X1 X2
1 X2 X2

2 X1X2 σ̂ε R2 R2(adj)

(1) 26.52 −2.16 0.13 6.935 0.741 0.731

(2) 26.03 −2.23 0.034 0.04 6.247 0.794 0.782

(3) 21.31 −2.61 −0.01 −0.18 0.02 0.04 4.08 0.916 0.907

(b) According to (12.3.4), SSE = σ̂ 2
ε (n − k − 1), where n is the sample size and k

is the number of regression coefficients excluding the intercept. Since in this
data set n = 56, and σ̂ε and R2 are reported in part (a), we have

2 J. L. Peixoto (1990). A property of well-formulated polynomial regression models. American Statistician,
44: 26–30.
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Model k DFSSE = n − k − 1 σ̂2
ε SSE

(1) 2 53 48.09 2548.99

(2) 3 52 39.02 2029.3

(3) 5 50 16.61 830.69

Note the decrease in SSE as interaction and polynomial terms are added to the
model. The SST, which is the numerator of the sample variance of the response
variable, is most accurately computed with the command var(y)*55; its value is
9845.98. It can also be computed through the formula

SST = SSE
1 − R2 ,

which follows from (12.3.5). For each of the three models, this formula gives
9845.48, 9846.19, and 9842.28, respectively, due to different round-off errors.

(c) Since Mobile, AL, is listed first in the data set, the corresponding response and
covariate values are subscripted by 1. The centered covariate values are x11 =
31.2 − 38.97 = −7.77, x12 = 88.5 − 90.96 = −2.46, where 38.97 and 90.96 are
the average latitude and longitude in the data set. According to the formulas in
(12.3.3), and the MLR model representation of polynomial regression models
given, for example, in (12.2.8), we have

Model ŷ1 e1 = y1 − ŷ1

(1) 25.52 − 2.16x11 + 0.13x12 = 43 1.00

(2) 26.03 − 2.23x11 + 0.034x12 + 0.04x11x12 = 44.1 −0.10

(3) 21.31 − 2.61x11 − 0.01x2
11 − 0.18x12 + 0.02x2

12 + 0.04x11x12 = 42.29 1.71

The above fitted values and residuals can also be obtained with the R
commands

fitted(fit1)[1]; fitted(fit2)[1]; fitted(fit3)[1]
resid(fit1)[1];resid(fit2)[1];resid(fit3)[1],

respectively. Given the different outcomes produced by the different models,
the question as to which model should be preferred arises. This question can be
addressed through hypothesis testing and variable selection; see Sections 12.3.3
and 12.4.3.

Matrix Notation∗ The MLR model equations for the data in (12.3.1) can be written
in matrix notation as

y = Xβ + ϵ (12.3.7)

where

y =

⎛

⎜⎜⎜⎝

y1
y2
...

yn

⎞

⎟⎟⎟⎠
, X =

⎛

⎜⎜⎜⎝

1 x11 x12 · · · x1k
1 x21 x22 · · · x2k
...

...
...

...
1 xn1 xn2 · · · xnk

⎞

⎟⎟⎟⎠
, β =

⎛

⎜⎜⎜⎝

β0
β1
...

βk

⎞

⎟⎟⎟⎠
, ϵ =

⎛

⎜⎜⎜⎝

ϵ1
ϵ2
...
ϵn

⎞

⎟⎟⎟⎠
.

∗This section may be skipped at first reading.
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The above matrix X is known as the design matrix. Using matrix notation, with the
convention that ′ denotes transpose, the objective function (12.3.2) can be written as

L(b) = (y − Xb)′(y − Xb) = y′y − 2b′X′y + b′X′Xb. (12.3.8)

The least squares estimator, β̂, that minimizes the objective function satisfies

∂L(b)
∂b

∣∣∣∣
β̂

= −2X′y + 2X′Xβ̂ = 0,

or, equivalently, β̂ satisfies the matrix version of the normal equations

X′Xβ̂ = X′y. (12.3.9)

Multiplying both sides of (12.3.9) by the inverse of X′X we obtain the closed form
solution to the normal equations:

Least Squares
Estimators

of the Regression
Coefficients

β̂ = (X′X)−1X′y (12.3.10)

The matrix form of the fitted values and residuals is

Fitted Values and
Residuals in

Matrix Notation
ŷ = Xβ̂ and e = y − ŷ (12.3.11)

Example
12.3-2

Consider the first 8 of the 56 data points of the temperature-latitude-longitude data
set of Example 12.3-1.

(a) Give the design matrices for models (1) and (2) specified in Example 12.3-1.
(b) Write the normal equations for model (1) and obtain the least squares

estimators.
(c) Give the estimated regression function, fitted values, and residuals for

model (1).

Solution
(a) The values of the covariates in the first 8 lines of the data set are 31.2, 32.9, 33.6,

35.4, 34.3, 38.4, 40.7, 41.7 with sample mean 36.025 for latitude, and 88.5, 86.8,
112.5, 92.8, 118.7, 123.0, 105.3, 73.4 with sample mean 100.125 for longitude.
The design matrices X and X̃ for models (1) and (2), respectively, are

X =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −4.825 −11.625
1 −3.125 −13.325
1 −2.425 12.375
1 −0.625 −7.325
1 −1.725 18.575
1 2.375 22.875
1 4.675 5.175
1 5.675 −26.725

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, X̃ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −4.825 −11.625 56.09
1 −3.125 −13.325 41.64
1 −2.425 12.375 −30.01
1 −0.625 −7.325 4.58
1 −1.725 18.575 −32.04
1 2.375 22.875 54.33
1 4.675 5.175 24.19
1 5.675 −26.725 −151.66

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, X consists of a column of 1’s, a column for the centered latitude values,
and a column for the centered longitude values, while X̃ has an additional
column with entries the products of the centered latitude and longitude values.
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(b) The matrix X′X and its inverse are

X′X =

⎛

⎝
8 0 0
0 101.99 −32.88
0 −32.88 2128.79

⎞

⎠ , (X′X)−1 =

⎛

⎝
0.125 0 0

0 0.010 0.0002
0 0.0002 0.0005

⎞

⎠ .

Moreover, the vector of responses is y = (44, 38, 35, 31, 47, 42, 15, 22)′ and
X′y = (274, −221.65, 511.65)′. Using the above, the normal equations (12.3.9)
take the form

8β̂0 = 274

101.99β̂1 − 32.88β̂2 = −221.65

−32.88β̂1 + 2128.79β̂2 = 511.65,

and their solution (12.3.10) is

β̂ = (X′X)−1X′y = (34.25, −2.1061, 0.2078)′.

Thus, β̂0 = 34.25, β̂1 = −2.1061, and β̂2 = 0.2078.
(c) The estimated regression function is

µY|X1, X2 (x1, x2) = 34.25 − 2.1061(x1 − 36.025) + 0.2078(x2 − 100.125),

the fitted or predicted values ŷi = β̂0 + β̂1(xi1 − 36.025) + β̂2(xi2 − 100.125) are

ŷ1 = 41.996, ŷ2 = 38.062, ŷ3 = 41.929, ŷ4 = 34.044,

ŷ5 = 41.743, ŷ6 = 34.002, ŷ7 = 25.479, ŷ8 = 16.744,

and the residuals ei = yi − ŷi are

e1 = 2.004, e2 = −0.063, e3 = −6.929, e4 = −3.044

e5 = 5.257, e6 = 7.998, e7 = −10.479, e8 = 5.256.

The closed form expression (12.3.10) of the least squares estimators can be used
to prove that β̂ is an unbiased estimator of the vector of regression coefficients and
to obtain a closed form expression for the so-called variance-covariance matrix of β̂:

E
(
β̂
)

= β and Var(β̂) = σ 2
ε (X′X)−1. (12.3.12)

In particular, the variance of β̂j, the jth component of β̂, is

Var(β̂j) = σ 2
ε Cj, j = 0, 1, . . . , k, (12.3.13)

where Cj is the jth diagonal element of (X′X)−1. Moreover, (12.3.12) implies that
the estimated regression function, µ̂Y|X1,...,Xk (x1, . . . , xk), see (12.3.3), is an unbiased
estimator of the true regression function, and its variance is

Var(µ̂Y|X1,...,Xk(x1, . . . , xk)) = σ 2
ε

[
(1, x1, . . . , xk)(X′X)−1(1, x1, . . . , xk)′

]
. (12.3.14)
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In particular, the variance of the ith fitted value ŷi, see (12.3.3), is

Var(̂yi) = σ 2
ε hi, where hi is the ith diagonal element of X(X′X)−1X′. (12.3.15)

12.3.2 MODEL UTILITY TEST

As in the simple linear regression model we saw in Section 8.3.3, the model util-
ity test is used to confirm the usefulness of the multiple or polynomial regression
model for predicting (i.e., for reducing the variability of) the response variable.
(Throughout, the expression “reduction of the variability” is to be interpreted as
a decrease of SSE.) Though not as informative in a multiple regression context
(see Section 12.3.3 for more interesting hypotheses) its p-value is routinely reported
in applications. Formally, the model utility test is interpreted as a test for the
hypothesis

H0 : β1 = · · · = βk = 0 versus Ha : H0 is not true. (12.3.16)

The F test statistic for this hypothesis is

Test Statistic for the
Model Utility Test FH0 = MSR

MSE
(12.3.17)

where MSE is given in (12.3.4) and MSR = SSR/k, where SSR is given in (12.3.5).
Under the assumption that the intrinsic error variance is normal—the normality
assumption—and that its variance does not depend on the covariate values—the
homoscedasticity assumption—(already implicitly made), the null distribution of the
test statistic is F with k and n − k − 1 degrees of freedom (FH0 ∼ Fk, n−k−1). Under
the alternative hypothesis in (12.3.16), F tends to take larger values, leading to the
rejection rule and p-value shown below:

Rejection Region and
p-Value for the Model

Utility Test
FH0 > Fk,n−k−1;α p-value = 1 − Fk,n−k−1(FH0 ) (12.3.18)

Since the F statistic (12.3.17) is used for testing if the reduction in variability is
significant, it makes sense that it can be expressed in terms of R2. This alternative
expression of the F statistic is given in Exercise 6.

The model utility test is easily implemented in R. Let fit be the object gener-
ated from the command fit=lm(y∼(model specification)); see Table 12-1 in Section
12.3.1. Part of the information contained in the output from the R command
summary(fit) are the value of the F test statistic (12.3.17) and the corresponding
p-value.

Standardized and Studentized Residuals The validity of the homoscedasticity and
normality assumptions can be ascertained through residual plots and formal tests.
Because the variance of the residuals depends on the covariate values (even if the
homoscedasticity assumption holds!), it is recommended that they first be divided
by an estimate of their standard deviation before applying the diagnostic plots and
formal tests to them. The standardized and the studentized residuals are defined,
respectively, as

ri = ei

σ̂ε

√
1 − hi

and r̃i = ei

σ̂
(−i)
ε

√
1 − hi

, (12.3.19)
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where hi is defined in (12.3.15), σ̂ε is the square root of the MSE defined in (12.3.4),
and σ̂

(−i)
ε is the square root of the MSE computed without the ith data point. If

fit is the object generated from the command fit=lm(y∼(model specification)), the
R commands

resid(fit); rstandard(fit)

give the residuals and standardized residuals, respectively. The studentized residuals
are available through library(MASS); studres(fit).

The diagnostic plots and formal tests are illustrated in the following example.

Example
12.3-3

For each of models (1) and (3) mentioned in Example 12.3-1 for the temperature-
latitude-longitude data set, do the following.

(a) Carry out the model utility test at level α = 0.01 and report the p-value.
(b) Use diagnostic plots and formal tests to test the assumptions of homoscedas-

ticity and normality of the intrinsic error variable.

Solution
(a) From Example 12.3-1 we have that for both models SST = 9845.98, and the

SSEs for models (1) and (3), respectively, are 2548.99 and 830.69. Thus, the
SSRs are 9845.98 − 2548.99 = 7296.99 and 9845.98 − 830.69 = 9015.29 for
models (1) and (3), respectively. By (12.3.17), the F statistics for models (1)
and (3), respectively, are

F(1)
H0

= 7296.99/2
2548.99/53

= 75.86, F(3)
H0

= 9015.29/5
830.69/50

= 108.53.

By (12.3.18), the corresponding p-values are 1−F2,53(75.86) = 2.22×10−16 and
1 − F5,50(108.53) = 0, found by the commands 1-pf(75.86, 2, 53); 1-pf(108.53,
5, 50). The commands summary(fit1); summary(fit3), used in Example 12.3-1,
give “F-statistic: 75.88 on 2 and 53 DF, p-value: 2.792e-16” for model (1), and
“F-statistic: 108.5 on 5 and 50 DF, p-value: < 2.2e-16” for model (3). Since both
p-values are less than 0.01, the model utility test rejects the null hypothesis for
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Figure 12-5 Normal Q-Q
plots for the standardized
residuals of models (1)
and (3).
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Figure 12-6 Plots of |ri| vs
ŷi for models (1) and (3).

both models. Thus, both models achieve a significant reduction in the variabil-
ity of the response variable, that is, SSR is a significant portion of SST for both
models.

(b) With the objects fit1 and fit3 as produced in Example 12.3-1, the commands

shapiro.test(rstandard(fit1)); shapiro.test(rstandard(fit3))

return p-values 0.08 and 0.51, respectively. This suggests that the normality
of the residuals in model (1) is suspect (probably due to the fact that model
(1) does not include important predictors), while for model (3) the normality
assumption appears to be satisfied. The Q-Q plot for the standardized residuals
of model (1), shown in the left panel of Figure 12-5, reveals a couple of larger
than expected observations contributing to the smaller p-value for model (1).

Plotting the standardized residuals, or their absolute values, against the fitted
values helps reveal possible heteroscedasticity for the model (1) residuals; see
Figure 12-6. To assign p-values with such plots one can try to fit a model with
fitted values serving as the covariate and the absolute value of the standardized
residuals serving as the response variable. The commands

r1=lm(abs(rstandard(fit1))∼poly(fitted(fit1), 2));
summary(r1)

r3=lm(abs(rstandard(fit3))∼poly(fitted(fit3), 2));
summary(r3)

give “F-statistic: 3.234 on 2 and 53 DF, p-value: 0.04731” for model (1), and
“F-statistic: 0.2825 on 2 and 53 DF, p-value: 0.755” for model (3). This suggests
that the model (1) residuals are heteroscedastic, while the homoscedasticity
assumption is not contradicted for the model (3) residuals.

12.3.3 TESTING THE SIGNIFICANCE OF REGRESSION COEFFICIENTS

The most common inference question in multiple/polynomial regression is whether
a variable, or a group of variables, contributes to significant additional decrease
of variability, that is, significant additional decrease of the error sum of squares,
given all other variables in the model. According to the aforementioned (see Section
12.3.1) principle of parsimony, if a variable or group of variables do not contribute to



Section 12.3 Estimation, Testing, and Prediction 437

a significant decrease of variability they should be omitted from the model. Groups
of variables that are commonly tested for their significance include all higher order
polynomial terms, or all interaction terms, etc.

Formally, testing the significance of a variable or group of variables amounts
to testing the null hypothesis that the coefficient or group of coefficients of the vari-
ables in question are zero, versus the alternative, which states that the null hypothesis
is false.

Under the null hypothesis Hj
0 : βj = 0, and the additional assumptions of nor-

mality and homoscedasticity, the ratio of β̂j to its standard error has a Tν distribution,
where ν = DFSSE = n − k − 1, that is,

T
Hj

0
= β̂j

σ̂β̂j

∼ Tn−k−1, where σ̂β̂j
= σ̂ε

√
Cj with Cj given in (12.3.13). (12.3.20)

The rejection rule and p-value for testing Hj
0 : βj = 0 vs Hj

a : Hj
0 is false, are given

next.

Procedure for Testing
Hj

0 : βj=0 vs

Hj
a : Hj

0 Is False

Test statistic: T
Hj

0
given in (12.3.20)

Rejection region: |T
Hj

0
| ≥ tn−k−1;α/2,

p-value = 2(1 − Gn−k−1(T
Hj

0
))

(12.3.21)

where Gν denotes the cumulative distribution function of the Tν distribution. A scat-
terplot of the residuals from the null hypothesis model (i.e., the model without the
variable being tested), against the variable being tested, provides a useful visual
impression of its potential for additional significant reduction of the error sum of
squares. See Example 12.3-4 for an illustration of such a plot. Finally, using (12.3.20),
testing Hj

0 versus one-sided alternative hypotheses and CIs for βj are constructed as
usual; see Section 12.3.4 for a discussion of CIs.

The standard errors σ̂β̂j
, the ratios β̂j/σ̂β̂j

, and the p-values for testing each Hj
0 :

βj = 0 vs Hj
a : Hj

0 is false, j = 0, 1, . . . , k, are all part of the output of the R commands

fit=lm(y∼(model specification)); summary(fit).

See Example 12.3-4 for an illustration.
To describe the procedure for testing for the significance of a group of variables,

let the full model and the reduced model refer to the model that includes the vari-
ables being tested and the one without the variables being tested, respectively. Thus,
if out of the k variables X1, . . . , Xk (some of which may correspond to polynomial
and/or interaction terms) we want to test the significance of the last ℓ of them, that
is, of Xk−ℓ+1, . . . , Xk, for ℓ < k, the full and reduced models are

Y = β0 + β1X1 + · · · + βkXk + ε and Y = β0 + β1X1 + · · · + βk−ℓXk−ℓ + ε,

respectively. Testing for the reduced model versus the full model is equivalent to
testing

H0 : βk−ℓ+1 = · · · = βk = 0 vs Ha : H0 is not true. (12.3.22)

Let SSEf and SSEr denote the error sums of squares resulting from fitting the full
and reduced models, respectively. If SSEf is significantly smaller than SSEr, that
is, if Xk−ℓ+1, . . . , Xk contribute significantly in reducing the variability, then these
variables should be kept in the model. The formal test procedure is
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Test Procedure for
the Hypotheses in

(12.3.22)

Test Statistic: FH0 = (SSEr − SSEf )/ℓ
SSEf /(n − k − 1)

Rejection Region: FH0 ≥ Fℓ,n−k−1;α , p-value = 1 − Fℓ,n−k−1(FH0 ) (12.3.23)

When ℓ= 1, that is, when testing for the significance of a single covariate, the
test procedures (12.3.21) and (12.3.23) give identical p-values. With fitF and
fitR being the R objects generated from fitting the full and reduced models,
respectively, that is, fitF=lm(y∼(full model)); fitR=lm(y∼(reduced model)), the
R command

anova(fitF, fitR)

gives the value of the F statistic in (12.3.23) and the corresponding p-value.

Example
12.3-4

For the temperature-latitude-longitude data set of Example 12.3-1, let X1 and X2
denote the centered latitude and longitude variables, and use R commands to
complete the following parts.

(a) Fit the model that includes second order polynomial terms in X1 and X2 and
X1X2 (the X1X2 interaction term), and report the p-values from the T tests
for individually testing the significance of each of the five covariates, that is,
X1, X2

1 , X2, X2
2 and X1 X2. Which of the coefficients are significantly different

from zero at level α = 0.01?
(b) Perform the procedure (12.3.23) for testing the significance of the X1X2

interaction term. Confirm that the p-value of the F test is identical to the
p-value of the corresponding T test in part (a). Construct a scatterplot of
the reduced model residuals against X1X2, and comment on whether or not
the visual impression it conveys about the significance of the X1X2 interac-
tion term for additional reduction of the error variability is consistent with the
p-value.

(c) Perform the procedure (12.3.23) for testing the significance of th X2
1 term, and

confirm that the p-value of the F test is identical to the p-value of the cor-
responding T test in part (a). Construct a scatterplot of the reduced model
residuals against X2

1 , and comment on whether or not the visual impression it
conveys about the significance of the X2

1 term for additional reduction of the
error variability is consistent with the p-value.

(d) Perform the procedure (12.3.23) for testing the joint (i.e., as a group) signifi-
cance of the two quadratic terms, X2

1 , X2
2 , in the model also containing X1, X2,

X1X2.

Solution

(a) The commands for fitting the model with the second order polynomials and
interaction term, and for producing the T test statistics and p-values for the
significance of each regression coefficient are:

fitF=lm(y∼poly(x1, 2, raw=T)+poly(x2, 2, raw=T)+x1:x2);
summary(fitF)
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The outcome it produces is

Estimate Std. Error t value Pr(> |t|)
(Intercept) 21.307601 0.908516 23.453 <2e-16

poly(x1, 2, raw=T)1 -2.613500 0.134604 -19.416 <2e-16

poly(x1, 2, raw=T)2 -0.011399 0.019880 -0.573 0.568968

poly(x2, 2, raw=T)1 -0.177479 0.048412 -3.666 0.000596

poly(x2, 2, raw=T)2 0.023011 0.002715 8.474 3.10e-11

x1:x2 0.041201 0.009392 4.387 5.93e-05

The p-values from the T test for each term are given in the last column of
the above table. Five of the six p-values are less than 0.01. Thus, all regression
coefficients except the one for X2

1 are significantly different from zero at level
α = 0.01.

(b) To perform the F test for the significance of X1X2 interaction term, the model
fitted in part (a) is designated as the “full model” and the model resulting
from omitting X1X2 interaction is designated as the “reduced model.” With
the object fitF as generated in part (a), the commands

fitR=lm(y∼poly(x1, 2, raw=T)+poly(x2, 2, raw=T));
anova(fitR, fitF)

produce the output

Model 1: y∼poly(x1, 2, raw=T)+poly(x2, 2, raw=T)+x1:x2

Model 2: y∼poly(x1, 2, raw=T)+poly(x2, 2, raw=T)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 51 1150.48

2 50 830.72 1 319.76 19.246 5.931e-05

Thus, the value of the F statistic is FH0 = 19.246, which corresponds to a
p-value of 5.93×10−5. This p-value is identical to the p-value for the interaction
term reported in part (a); note also that 19.246 = 4.3872. The command

plot(x1*x2, resid(fitR), main=”Reduced Model
Residuals vs x1*x2”)

produces the scatterplot in the left panel of Figure 12-7. The plot conveys the
impression of a linear trend between the reduced model and the product X1X2.
This visual impression suggests that the interaction term contributes to a signif-
icant additional reduction of the reduced model SSE, which is consistent with
the small p-value of the F test.

(c) To perform the F test for the significance of X2
1 , the model fitted in part (a) is

designated as the “full model” and the model resulting from omitting the X2
1

term is designated as the “reduced model.” With the object fitF as generated in
part (a), the commands (note that the first command redefines the object fitR)

fitR=lm(y∼x1+poly(x2, 2, raw=T)+x1:x2); anova(fitR, fitF)
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Figure 12-7 Reduced
model residual plots for
assessing the significance of
the X1X2 interaction term
(left panel) and the X2

1
term (right panel).

produce the output

Model 1: y∼poly(x1, 2, raw=T)+poly(x2, 2, raw=T)+x1:x2

Model 2: y∼x1+poly(x2, 2, raw=T)+x1:x2

Res.Df RSS Df Sum of Sq F Pr(>F)

1 51 836.18

2 50 830.72 1 5.4619 0.3287 0.569

Thus, the value of the F statistic is FH0 = 0.3287 with a corresponding
p-value of 0.569. This p-value is identical (up to round-off) to the p-value
for the X2

1 term reported in part (a); note also that 0.3287 = (−0.573)2. The
command

plot(x1ˆ2, resid(fitR), main=”Reduced Model
Residuals vs x1 Square”)

produces the scatterplot in the right panel of Figure 12-7. The plot does not
convey the impression of any trend between the reduced model residuals and
X2

1 . This visual impression suggests that X2
1 does not contribute to a significant

additional reduction of the reduced model SSE, which is consistent with the
large p-value of the F test.

(d) To perform the F test for the joint significance of X2
1 and X2

2 , the model fitted in
part (a) is designated as the “full model” and the model resulting from omitting
the X2

1 and X2
2 terms is designated as the “reduced model.” With the object fitF

as generated in part (a), the commands (note that fitR is being redefined again)

fitR=lm(y∼x1+x2+x1:x2); anova(fitF, fitR)

produce output, similar in layout to the output in parts (b) and (c) but not
shown here, giving FH0 = 36.065 with a corresponding p-value of 2.012×10−10.
This suggests that the two quadratic terms as a group contribute to a signif-
icant additional reduction of the reduced model SSE, without specifying the
contribution of each individual quadratic term.
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Scatterplot Matrices Scatterplot matrices were used in Section 1.5.2 as a tool for
identifying the single most useful predictor for a response variable. When used for
identifying groups of important predictors, as is often done in multiple regression
contexts, one should not be surprised if formal tests contradict what a scatterplot
matrix suggests. Indeed, it is possible for a variable to be a significant predictor
when taken individually (which is what the scatterplot shows), but an insignificant
predictor when other variables are taken into consideration. The data in Exercise 2
offer such an example. Surprisingly, the opposite can also occur. Namely, an indi-
vidual scatterplot between a covariate and a response variable may not show any
relationship, or show a negative association, but, when other predictors are taken
into consideration, the covariate becomes significant, or the nature of the association
reverses. The data in Exercise 12 in Section 12.4 offer such an example.

12.3.4 CONFIDENCE INTERVALS AND PREDICTION

Confidence intervals for the regression parameters βj and the regression function
µY|X1,...,Xk (x1, . . . , xk), as well as prediction intervals for a future observation, are as
follows:

1. With σ̂β̂j
given in (12.3.20), a 100(1 − α)% CI for βj is β̂j ± tn−k−1;α/2σ̂β̂j

.

2. A 100(1 − α)% CI for µY|X1,...,Xk (x), where x = (x1, . . . , xk), is

µ̂Y|X1,...,Xk (x) ± tn−k−1;α/2σ̂µ̂Y|X1,...,Xk (x),

where σ̂µ̂Y|X1,...,Xk (x) = σ̂ 2
ε (1, x1, . . . , xk)(X′X)−1(1, x1, . . . , xk)′; see (12.3.14).

3. A 100(1 − α)% PI for a future observation y to be taken at x = (x1, . . . , xk) is

µ̂Y|X1,...,Xk (x) ± tn−k−1;α/2

√
σ̂ 2

ε + σ̂ 2
µ̂Y|X1,...,Xk (x).

The matrix operations required for the computation of the standard errors in these
formulas make hand calculations impractical. Their implementation in R is very
convenient and is described next.

With fit being the object generated from fitting the multiple/polynomial regres-
sion model, that is, fit=lm(y∼(model specification)), the R command

confint(fit, level=1-α)

gives (1 − α)100% CIs for all k + 1 regression coefficients. (By default, confint(fit)
gives a 95% CI for all coefficients.)

As in the simple linear regression model, the function predict( ) can be used to
make both CIs for the regression function, µY|X1,..., Xk (x1, . . . , xk) at specified covari-
ate values (x1, . . . , xk), and prediction intervals for a future value of the response
variable taken at covariate values (x1, . . . , xk). To make a CI for the regression
function use the option interval=”confidence”. To make a PI use the option inter-
val=”prediction”. As always, the default level is 95%, but the option level=1-α can be
added for other confidence levels. Specification of the covariate values (x1, . . . , xk)
is done through the data.frame( ) option; see Example 12.3-5, parts (b) and (c), for
an illustration.

Example
12.3-5

For the data of Example 12.3-1, use R commands to fit the model that includes
second order polynomial terms in latitude and longitude, as well as the latitude-
longitude interaction, and to complete the following parts.
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(a) Construct 90% CIs for each of the six regression coefficients.
(b) Construct a 90% CI for the mean average daily minimum temperature for

a typical month of January at latitude and longitude of 35 and 110 degrees,
respectively.

(c) Construct a 90% PI for the average daily minimum temperature of next
January at latitude and longitude of 35 and 110 degrees, respectively.

Solution
As in Example 12.3-1, set the values of the response variable and those of the cen-
tered covariates into the R objects y, x1, x2, respectively, and use fit=lm(y∼poly(x1,
2, raw=T)+poly(x2, 2, raw=T)+x1:x2) to fit the model with second order polynomial
terms and interaction.

(a) The command confint(fit, level=0.9) generates the output

5% 95%

(Intercept) 19.78501346 22.83018765

poly(x1, 2, raw=T)1 -2.83908334 -2.38791667

poly(x1, 2, raw=T)2 -0.04471617 0.02191884

poly(x2, 2, raw=T)1 -0.25861371 -0.09634472

poly(x2, 2, raw=T)2 0.01846049 0.02756225

x1:x2 0.02546145 0.05694009

Thus, a 90% CI for the coefficient of X1 is (−2.839, −2.388), suggesting that
this coefficient is significantly different from zero; a 90% CI for the coefficient
of X2

1 is (−0.0447, 0.0219), suggesting that this coefficient is not significantly
different from zero, and so forth.

(b) The command for constructing a 90% CI for the regression line at latitude and
longitude of 35 and 110 degrees, is

predict(fit, data.frame(x1=35-38.97, x2=110-90.96),
interval=”confidence”, level=0.9).

Note that in this command, the sample mean of latitude has been subtracted
from 35 and the sample mean of longitude has been subtracted from 110.
This is necessary because the model was fitted using the centered latitude and
longitude values. The output produced by this command is

fit lwr upr

1 33.35018 31.00375 35.6966

Thus, the average daily minimum temperature for a typical month of January
at latitude and longitude of 35 and 110 is estimated to be 33.3oF, and a 90% CI
for it is (31.0, 35.7).

(c) The command for constructing a 90% PI for the regression line at latitude and
longitude of 35 and 110 degrees, is

predict(fit, data.frame(x1=35-38.97, x2=110-90.96),
interval=”prediction”, level=0.9).
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The output produced by this command is

fit lwr upr

1 33.35018 26.12731 40.57304

Thus, the average daily minimum temperature next January at latitude and
longitude of 35 and 110 degrees is predicted to be 33.3oF, and a 90% PI for it
is (26.1, 40.6).

Exercises

1. An article reports on a study of methyl tertiary-
butyl ether (MTBE) in the vicinity of two gas sta-
tions, one urban and one roadside, equipped with
stage I vapor recovery systems.3 The data set in
GasStatPoll.txt contains the MTBE concentration mea-
surements along with the covariates “Gas Sales,” “Wind
Speed,” and “Temperature” from eight days in May–
June and October. Use R commands to complete the
following.
(a) Fit an MLR model, with no polynomial or interac-

tion terms, for predicting concentration on the basis
of the three covariates. Report the estimated regres-
sion model, R2, and the p-value for the model utility
test. Is the model useful for predicting MTBE concen-
trations?

(b) Give the fitted value and the residual corresponding
to the first observation in the data set. (Hint. Use fitted
(fit); resid(fit).)

(c) Use diagnostic plots and formal tests to check the
assumptions of normality and heteroscedasticity. (See
Example 12.3-3, part (b).)

(d) Use the T test procedure to test the significance of
each predictor at level of significance 0.05.

(e) Construct 95% CIs for the regression coefficients.

2. The R data set stackloss4 contains data from 21 days
of operation of a plant whose processes include the
oxidation of ammonia (NH3) to nitric acid (HNO3).
The nitric-oxide wastes produced are absorbed in a
countercurrent absorption tower. There are three pre-
dictor variables: Air.Flow represents the rate of oper-
ation of the plant; Water.Temp is the temperature of
cooling water circulated through coils in the absorp-
tion tower; and Acid.Conc. is the concentration of the
acid circulating (given as the actual percentage minus
50 then times 10; that is, 89 corresponds to 58.9 per-
cent acid). The dependent variable, stack.loss, is 10 times
the percentage of the ingoing ammonia to the plant that
escapes from the absorption tower unabsorbed; that is,

an (inverse) measure of the overall efficiency of the
plant. Use y=stackloss$stack.loss; x1=stackloss$Air.Flow;
x2=stackloss$Water.Temp; x3=stackloss$Acid.Conc. (do
not omit the period!) to set the dependent variable and
the predictors in the R objects y, x1, x2, x3, respectively,
and x1=x1-mean(x1); x2=x2-mean(x2); x3=x3-mean(x3)
to center the predictor variables. Then use R commands
to complete the following.
(a) Fit an MLR model, with no polynomial or interaction

terms, for predicting stackloss on the basis of the three
covariates. Report the estimated regression model,
the adjusted R2, and the p-value for the model utility
test. Is the model useful for predicting stackloss?

(b) Report the p-value for x3; is it a useful predictor in
the model? Fit the MLR model using only x1 and x2,
with no polynomial or interaction terms. Report the
adjusted R2 value and compare it with the adjusted
R2 value of part (a). Justify the comparison in terms
of the p-value for x3.

(c) Using the model with only x1 and x2, give a 95% CI
for the expected stackloss at water temperature 20
and acid concentration 85. (Hint. The values 20 and
85 are not centered!)

(d) Fit the MLR model based on second order polynomi-
als for x1 and x2, as well as their interaction. Test the
joint (i.e., as a group) significance of the two quadratic
terms and the X1X2 interaction, using α = 0.05.

(e) Use pairs(stackloss) to produce a scatterplot matrix
for the data. Does “Acid.Conc.” appear correlated
with “stack.loss”? What explanation do you give for
the high p-value shown for this variable reported in
part (b)?

3. The R data set state.x77, collected by the US Bureau
of the Census in the 1970s, has the population, per
capita income, illiteracy, life expectancy, murder rate, per-
cent high school graduation, mean number of frost days
(defined as days with minimum temperature below freez-
ing in the capital or a large city for years 1931–1960),

3 Vainiotalo et al. (1998). MTBE concentrations in ambient air in the vicinity of service stations. Atmospheric
Environment, 32(20): 3503–3509.
4 K. A. Brownlee (1960, 2nd ed. 1965). Statistical Theory and Methodology in Science and Engineering. New
York: Wiley, pp 491–500.
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and land area in square miles for each of the 50
states. It can be imported into the R data frame st by
data(state); st=data.frame(state.x77, row.names=state.abb,
check.names=T), or by st = read.table(”State.txt”,
header=T). We will consider life expectancy to be
the response variable and the other seven as pre-
dictor variables. Use R commands to complete the
following.
(a) Use h1=lm(Life.Exp∼Population+Income+Illiteracy+

Murder+HS.Grad+Frost+Area, data=st); summary
(h1) to fit an MLR model, with no polynomial or
interaction terms, for predicting life expectancy on
the basis of the seven predictors. Report the estimated
regression model, the R2adj, and the p-value for the
model utility test. Is the model useful for predicting
life expectancy?

(b) Test the joint significance of the variables “Income,”
“Illiteracy,” and “Area” at level 0.05. (Hint.
The reduced model is most conveniently fitted
through the function update. The R command for
this is h2=update(h1, .∼. -Income-Illiteracy-Area).
According to the syntax of update( ), a dot means
“same.” So the above update command is read as
follows: “Update h1 using the same response vari-
ables and the same predictor variables, except remove
(minus) “Income,” “Illiteracy,” and “Area.”)

(c) Compare the R2 and R2adj values for the full and
reduced models. Is the difference in R2 consistent with
the p-value in part (b)? Explain. Why is the difference
in R2adj bigger?

(d) Using standardized residuals from the reduced model,
test the assumptions of normality and homoscedastic-
ity, both graphically and with formal tests.

(e) Using the reduced model, give the fitted value for
the state of California. (Note that California is listed
fifth in the data set.) Next, give a prediction for the
life expectancy in the state of California with the
murder rate reduced to 5. Finally, give a 95% predic-
tion interval for life expectancy with the murder rate
reduced to 5.

4. The file HardwoodTensileStr.txt has data on hardwood
concentration and tensile strength.5 Import the data into
the R data frame hc and use x=hc$Concentration; x=x-
mean(x); y=hc$Strength to set the centered predictor and
the response variable in the R objects x and y, respec-
tively.
(a) Use hc3=lm(y∼x+I(xˆ2)+I(xˆ3)); summary(hc3) to fit

a third order polynomial model to this data. Report
the adjusted R2 and comment on the significance of
the model utility test and the regression coefficients,
using level of significance 0.01.

(b) Use plot(x,y); lines(x,fitted(hc3), col=”red”) to pro-
duce a scatterplot of the data with the fitted curve
superimposed. Are you satisfied with the fit provided
by the third order polynomial model?

(c) The plot of the residuals vs the fitted
values (plot(hc3, which=1)—try it!) sug-
gests that the fit can be improved. Use
hc5=lm(y∼x+I(xˆ2)+I(xˆ3)+I(xˆ4)+I(xˆ5)); summary
(hc5) to fit a fifth order polynomial model to this data.
Report the adjusted R2 and comment on the signif-
icance of the regression coefficients, using level of
significance 0.01.

(d) Omit the polynomial term with the largest p-value
from the fit in part (c) and fit the model with all other
terms. Comment on the significance of the regression
coefficients, using α = 0.01. Compare the adjusted R2

to that of part (a). Finally, construct a scatterplot of
the data with the fitted curve from the final model
superimposed. Compare this scatterplot to the one of
part (b).

5. The data in EmployPostRecess.txt has the number
of employees of a particular company during 11 post-
recession quarters. Import the data into the R data frame
pr and use x=pr$Quarter; xc=x-mean(x); y=pr$Population
to set the centered predictor and the response variable in
the R objects x and y, respectively.
(a) Use pr3=lm(y∼x+I(xˆ2)+I(xˆ3)) to fit a third-degree

polynomial to this data set. Report R2 and the
adjusted R2 and comment on the significance of the
model utility test at level of significance 0.01.

(b) Test the joint significance of the quadratic and cubic
terms at α = 0.01 by fitting a suitably reduced model.

(c) Use pr8=lm(y∼poly(x, 8, raw=T)) to fit an eighth-
degree polynomial, and use it and the fit of part (a)
to test the joint significance of the polynomial terms
of orders four through eight, at level of significance
0.01. Next, report R2 and the adjusted R2 from fit pr8,
and compare with those from fit pr3 of part (a).

(d) Use plot(x, y); lines(x, fitted(pr3)) to superimpose
the fit pr3 on the scatterplot of the data. Construct
a different plot superimposing the fit pr8 to the
data. Finally, fit a tenth-degree polynomial using
pr10=lm(y∼poly(x, 10, raw=T)) and superimpose its
fit on the scatterplot of the data. What do you
notice?

6. Show that the F statistic for the model utility test given
in (12.3.17) can be expressed in terms of R2 as

F = R2/k
(1 − R2)/(n − k − 1)

.

5 D. C. Montgomery, E. A. Peck, and G. G. Vining (2012). Introduction to Linear Regression Analysis, 5th ed.
Hoboken: Wiley & Sons. Table 7.1.



Section 12.4 Additional Topics 445

12.4 Additional Topics
12.4.1 WEIGHTED LEAST SQUARES

When the intrinsic error variable is homoscedastic, that is, its variance is constant
throughout the range of values of the predictor variables, the least squares estima-
tors have smaller variance than any other linear unbiased estimator. Moreover, if
the sample size is sufficiently large, the tests of hypotheses and confidence intervals
discussed in Section 12.3 do not require the normality assumption. This is no longer
the case if the intrinsic error variable is heteroscedastic, due to the fact that the
formulas for the standard errors of the regression coefficients are valid only under
homoscedasticity. Under heteroscedasticity, however, the formulas for the standard
errors of the regression coefficients are not valid. Thus, while the estimators remain
consistent, the CIs are not valid; see Exercise 1.

The basic reason underlying this breakdown of the least squares method is
that all data points are weighted equally in the objective function that is mini-
mized. Under heteroscedasticity, however, observations with higher variance are
less precise and should be weighted less. The weighted least squares estimators,

β̂w
0 , β̂w

1 , . . . , β̂w
k are obtained by minimizing the objective function

Lw(b0, b1, . . . , bk) =
n∑

i=1

wi

⎛

⎝yi − b0 −
k∑

j=1

bjxij

⎞

⎠
2

, (12.4.1)

where the wi’s are weights that decrease with increasing intrinsic error variance. Let
σ 2

i denote the intrinsic error variance at the ith data point, that is,

σ 2
i = Var(εi) = Var(Yi|X1 = xi1, . . . , Xk = xik). (12.4.2)

Choosing the weights wi to be inversely proportional to σ 2
i , that is, wi = 1/σ 2

i ,
yields optimal estimators of the regression parameters. The R command for fitting a
regression model with the method of weighted least squares is

fitw=lm(y∼(model specification), weights=c(w1, . . . ,wn))

The main disadvantage of weighted least squares lies in the fact that the intrinsic
error variances σ 2

i , defined in (12.4.2), and hence the optimal weights wi = 1/σ 2
i , are

unknown. In the absence of a “Regression Oracle” (see Figure 12-8), these weights
will have to be estimated. Keeping in mind that inferences about coefficients may
not be valid for small sample sizes when the weights are estimated from the data,
even under normality, a simple method for estimating the weights is as follows:

1. Use fit=lm(y∼(model specification)) to fit the regression model using ordinary
least squares.

2. Use abse=abs(resid(fit)); yhat=fitted(fit) to set the absolute values of the residu-
als in the object abse and the fitted values in the object yhat.

3. Use efit=lm(abse∼poly(yhat,2)); shat=fitted(efit) to regress abse on yhat and to
set the resulting fitted values in shat.

4. Use w=1/shatˆ2; fitw=lm(y∼(model specification), weights=w) to obtain the
vector of weights and fit the regression model using weighted least squares.
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Figure 12-8 Statistician
(right) getting the
heteroscedastic intrinsic
error variances from the
Regression Oracle (left).

Example
12.4-1

The data file AgeBlPrHeter.txt contains data on age and diastolic blood pressure of
54 adult male subjects. The scatterplot shown in Figure 12-9 suggests a heteroscedas-
tic linear relation between the two variables. Use R commands to estimate the
heteroscedastic intrinsic error variances and to construct a 95% CI for the regression
slope using a weighted least squares analysis.

Solution
Import the age and blood pressure values into the R objects x and y, respec-
tively, and use fit=lm(y∼x); abse=abs(resid(fit)); yhat=fitted(fit); efit=lm(abse∼yhat);
w=1/fitted(efit)ˆ2 to generate the weights for the weighted least squares analysis. The
95% CI for the regression slope, generated by the commands

fitw=lm(y∼x, weights=w); confint(fitw),

is (0.439, 0.755). As a comparison, the corresponding CI obtained by the command
confint(fit) is (0.385, 0.773), which is a little wider than the weighted least squares
CI. More important, the actual confidence level of the interval (0.385, 0.773) is less
than 95% due to the fact that, under heteroscedasticity, the ordinary least squares
analysis underestimates the standard error of the slope; see Exercise 1.

20 30 40 50 60

70
80

90
10

0
11

0

Blood Pressure vs Age

Age

Bl
oo

d 
pr

es
su

re

Figure 12-9 Scatterplot
showing linear trend with
heteroscedasticity.
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12.4.2 APPLICATIONS TO FACTORIAL DESIGNS

The traditional applications of regression analysis involve quantitative predictor
variables. Categorical predictors, however, such as type of root system, coastal or
urban locations, gender, type of filter or material, education or income category,
strength of opinion, and so forth, can also be incorporated into regression models by
assigning numerical codes to the different categories. In particular, factorial designs
can be represented as multiple regression models and can be analyzed through
the multiple regression methodology. The main advantage of using the multiple
regression formulation for analyzing factorial designs is that R and other software
packages make the option of weighted least squares available in their multiple
regression menus.

For the multiple regression analysis to yield the information obtained from the
factorial design analysis presented in Chapters 10 and 11, each main effect and inter-
action term must correspond to one of the coefficients in the multiple regression
model. This is possible with a suitable numerical coding of the levels, the so-called
contrast coding. For a factor with k levels, contrast coding uses the following k − 1
indicator variables:

Xi =

⎧
⎨

⎩

1 if the observation comes from level i
−1 if the observation comes from level k, i = 1, . . . , k − 1

0 otherwise.
(12.4.3)

Taken jointly, these k − 1 indicator variables provide the convention for represent-
ing the k factor levels shown in Table 12.2. This indicator variable representation of
the k levels of a factor can be used to cast factorial designs into the multiple regres-
sion format. The details for one- and two-way layouts are given in the following
paragraphs.

Regression Formulation of the k-Sample Problem Let Yi1, . . . , Yini , i = 1, . . . , k,
denote the k samples. According to model (10.2.2),

Yij = µi + ϵij or Yij = µ + αi + ϵij, (12.4.4)

where the treatment effects αi satisfy the condition (10.2.3). A basic difference
between the data representation in regression models and in factorial design mod-
els is the single index enumeration of the observations in regression models versus
the multiple indices used in the factorial design representation. Regression models
avoid multiple indices by giving explicitly the covariate values corresponding to each
value of the response variable.

To cast data in (12.4.4) into the multiple linear regression format, set n =
n1 + · · · + nk, let Y1, . . . , Yn be a single index enumeration of the Yij’s, and let

Table 12-2 Indicator variable coding of k factor levels

Indicator Variable

Factor Level X1 X2 X3 . . . Xk−1

1 1 0 0 . . . 0

2 0 1 0 . . . 0
...

...
...

...
...

k − 1 0 0 0 . . . 1

k −1 −1 −1 . . . −1
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Table 12-3 Cell means in (12.4.4) in terms of the coefficients in (12.4.6)

Value of Predictors Regression Function

Cell Cell Mean (x1, . . . , xk−1) µY |X1,...,Xk−1
(x1, . . . , xk−1)

1 µ1 = µ + α1 (1, 0, . . . , 0) β0 + β1

2 µ2 = µ + α2 (0, 1, . . . , 0) β0 + β2
...

...
...

...
k − 1 µk−1 = µ + αk−1 (0, 0, . . . , 1) β0 + βk−1

k µk = µ + αk (−1, −1, . . . , −1) β0 − β1 − · · · − βk−1

Xj1, . . . , Xj,k−1, j = 1, . . . , n, be k − 1 indicator variables designating, in the coding
convention of Table 12.2, the level each Yj came from. Thus, the regression format
representation (i.e., response and covariate values) of the data in (12.4.4) is

(Yj, Xj1, . . . , Xj,k−1), j = 1, . . . , n. (12.4.5)

To see to what extent parameters of the multiple linear regression model

Yj = β0 + β1Xj1 + · · · + βk−1Xj,k−1 + εj, j = 1, . . . , n, (12.4.6)

correspond to those of (12.4.4), we express the cell means µi in terms of the
regression coefficients. These expressions, given in Table 12.3, yield the following
correspondence between the parameters of model (12.4.4) with those of model
(12.4.6):

µ0 = β0, α1 = β1, . . . , αk−1 = βk−1, αk = −β1 − · · · − βk−1. (12.4.7)

Note that the last equation in (12.4.7) is consistent with the restriction (10.2.3), that
is, α1 + · · · + αk = 0, satisfied by the parameters of (12.4.4).

The p-value from the F test for the hypothesis H0 : α1 = · · · = αk, in the con-
text of the ANOVA model (12.4.4), equals the p-value for the model utility test
obtained from an unweighted least squares analysis of the MLR model (12.4.6).
Rephrasing this in terms of R commands, the p-value of the F test obtained from
anova(aov(y∼A)), where A is the non-numeric (as.factor) column designating the
factor level of each observation, equals the p-value for the model utility test obtained
from fit=lm(y∼X1+ · · ·+Xk−1); summary(fit). Moreover, the MLR model (12.4.6)
permits a weighted least squares analysis through the R commands

R Commands for Weighted Least Squares Analysis of
One-Factor Designs

w=c(rep(1/S21, n1), ..., rep(1/S2k,nk));
lm(y∼X1+ · · · + Xk−1, weights=w)

(12.4.8)

where S2
1, . . . , S2

k denote the sample variances from each group.

Regression Formulation of Two-Factor Designs Let Yijk, k = 1, . . . , nij, denote the
observations taken from factor-level combination (i, j), for i = 1, . . . , a, j = 1, . . . , b.
According to the statistical model (11.2.3) for an a × b factorial design,
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Yijk = µij + ϵijk or Yijk = µ + αi + βj + γij + ϵijk, (12.4.9)

where the main effects and interaction satisfy the conditions (11.2.2).
To cast model (12.4.9) into the multiple linear regression format, set n =∑a

i=1
∑b

j=1 nij, and let Y1, . . . , Yn be a single index enumeration of the Yijk’s. To
indicate which factor level combination an observation Yk comes from we need to
introduce two sets of indicator variables,

XA
k1, . . . , XA

k,a−1 and XB
k1, . . . , XB

k,b−1.

In the coding convention of Table 12.2, XA
k1, . . . , XA

k,a−1 and XB
k1, . . . , XB

k,b−1 indicate
the level of factor A and level of factor B, respectively, that Yk came from. Thus, the
regression format representation of the data in (12.4.9) is

(Yk, XA
k1, . . . , XA

k,a−1, XB
k1, . . . , XB

k,b−1), k = 1, . . . , n. (12.4.10)

The regression model for the additive two-factor design, Yijk = µ + αi + βj +
ϵijk, is

Yk = β0 + βA
1 XA

k1 + · · · + βA
a−1XA

k,a−1 + βB
1 XB

k1 + · · · + βB
b−1XB

k,b−1 + εk. (12.4.11)

In Exercise 4 you are asked to show that βA
i = αi, i = 1, . . . , a − 1, with αa =

−βA
1 − · · · − βA

a−1, and a similar correspondence between the βj’s and βB
j ’s. The

regression model for the non-additive two-factor design, shown in (12.4.9), includes,
in addition, all interaction terms between the XA

i and XB
j covariates. Thus, in short-

hand notation, it is written as

Yk = β0 + (terms βA
i XA

ki) + (terms βB
j XB

kj) + (terms βAB
ij XA

kiX
B
kj) + εk, (12.4.12)

where i goes from 1 to a−1 and j goes from 1 to b−1. For example, if observation Yk
comes from cell (1, 1), the factor A indicator variables take values XA

k1 = 1, XA
k2 =

0, . . . , XA
k,a−1 = 0, and the factor B indicator variables take values XB

k1 = 1, XB
k2 =

0, . . . , XB
k,b−1 = 0. Thus, the only non-zero of the βA

i XA
ki terms is βA

1 , the only non-
zero of the βB

j XB
kj terms is βB

1 , and the only non-zero of the βAB
ij XA

kiX
B
kj terms is βAB

11 .
It follows that if observation Yk comes from cell (1, 1), (12.4.12) becomes

Yk = β0 + βA
1 + βB

1 + βAB
11 + εk.

Working similarly with other cells yields the following correspondence between the
parameters of model (12.4.9) and those of model (12.4.12)

µ = β0, αi = βA
i , βj = βB

j , γij = βAB
ij . (12.4.13)

For balanced two-factor designs, that is, when all sample sizes nij are equal, the
p-value from the F test for the hypothesis H0 : α1 = · · · = αa of no main fac-
tor A effects, which was discussed in Chapter 11, equals the p-value for testing the
significance of the group of variables XA

1 , . . . , XA
a−1, that is, for testing the hypoth-

esis H0 : βA
1 = · · · = βA

a−1 = 0, through an unweighted least squares analysis of
the MLR model (12.4.12). Similarly the p-values for the hypotheses of no main
factor B effects and no interaction, which are obtained through the aov(y∼A*B)
command, are equal to the p-values for testing the significance of the group of indi-
cator variables for factor B and the group interaction variables, respectively, through
an unweighted LS analysis of (12.4.12). Moreover, the MLR model (12.4.12) permits
a weighted LS analysis. The R commands for doing this are similar to the commands
in (12.4.8) and are demonstrated in Example 12.4-2.



450 Chapter 12 Polynomial and Multiple Regression

For unbalanced designs, the equivalence of the p-values obtained through aov and
the unweighted lm continues to hold for additive designs and for the interaction
effects in non-additive designs. Thus, for a weighted least squares analysis of an
unbalanced two-factor design, one should test for the significance of the interaction
variables in the MLR model (12.4.12). In the case of a significant outcome, the main
effects may also be declared significant. In the case of a non-significant outcome, the
main effects can be tested under the additive model (12.4.11). The benefit of using
weighted LS analysis is more pronounced in unbalanced designs.

Example
12.4-2

The file H2Ofiltration3w.txt contains data from a 2 × 2 × 3 design with five replica-
tions; see Exercise 1 in Section 11.3 for a description. Use a weighted least squares
analysis to test for main effects of factors A, B, and C, as well as their two- and
three-way interactions.

Solution
Use ne=read.table(”H2Ofiltration3w.txt”, header=T) to read the data into the R data
frame ne and Y=ne$y; A=ne$MS; B=ne$SH; C=ne$MH to set the response variable
and the levels of the three factors in the R objects Y, A, B, and C, respectively. The
MLR model representation of the data requires only one indicator variable for each
of the factors A and C, say xA and xC, and two indicator variables to represent the
three levels of factor B, say xB1, xB2. To set the values of the indicator variables xA
and xB1, use the following commands. The values of xC and xB2 are set similarly.

xA=rep(0, length(Y)); xB1=xA
xA[which(A==”A1”)]=1; xA[which(A==”A2”)]=-1
xB1[which(B==”B1”)]=1; xB1[which(B==”B2”)]=0;

xB1[which(B==”B3”)]=-1

The commands
vm=tapply(Y, ne[, c(1, 2, 3)], var);

s2=rep(as.vector(vm), 5); w=1/s2

compute the matrix of cell variances and define the weights for the weighted
LS methodology. (The data must be listed as in the given file for this to work.)
Finally, use

summary(lm(Y∼xA*xB1*xC+xA*xB2*xC, weights=w))

to produce the weighted LS analysis (regression coefficients with p-values, etc.). Two
separate p-values are produced for the main factor B effect, one for each of the two
indicator variables. The usual p-value for the main factor B effect is obtained by
testing for the joint significance of xB1 and xB2. Because the design is balanced (and
also because the factors have a small number of levels), the results of the weighted
LS analysis do not differ much from those of the unweighted analysis. For example,
the p-values for the main factor B effects with unweighted and weighted analysis are
0.08 and 0.07, respectively.

12.4.3 VARIABLE SELECTION

The discussion so far has assumed that all predictors are included in the model.
As data collection technologies improve, it becomes easier to collect data on
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a large number of covariates that may influence a particular response variable.
Inadvertently, some (occasionally even most!) of the variables collected are not
useful predictors. The question then becomes how to identify the subset of use-
ful predictors in order to build a parsimonious model. The process of identifying
a subset of useful predictors is called variable selection. There are two basic classes
of variable selection procedures, criterion-based procedures, also called best subset
procedures, and stepwise procedures.

Criterion-based, or best subset, procedures consider all subsets of predictors
that can be formed from the available predictors and fit all possible models. Thus, if
the number of available predictors is k, there are 2k+1−1 possible models to be fitted
(this includes also models without the intercept term). Each model fitted is assigned
a score according to a criterion for evaluating the quality of a fitted model, and the
model with the best score is selected as the model of choice. The most common
criteria used for this purpose are listed below:

1. Adjusted R2 criterion. It selects the model with the largest adjusted R2.
2. Akaike information criterion (AIC). It selects the model with the smallest AIC

value. Loosely speaking, a model’s AIC value is a relative measure of the
information lost when the model is used to describe reality. The AIC for a mul-
tiple regression model with p parameters, intercept included, and error sum of
squares SSE is (up to an additive constant) computed as

AIC = n log
(

SSE
n

)
+ 2p.

For small sample sizes, a corrected version of AIC, AICc = AIC + 2p(p + 1)/
(n − p − 1), is recommended.

3. Bayes information criterion (BIC). It selects the model with the smallest BIC
value. For a model with p parameters, intercept included, and error sum of
squares SSE, its BIC value is computed as

BIC = n log
(

SSE
n

)
+ p log n.

4. Mallow’s Cp criterion. It selects the model with the smallest Cp value. For a
model with p parameters, intercept included, whose error sum of squares is SSE,
its Cp value is computed as

Cp = SSE
MSEk+1

+ 2p − n,

where MSEk+1 stands for the mean square error of the full model, that is, the
model with all k predictor variables (so k+1 parameters, counting the intercept).

5. Predicted residual sum of squares (PRESS) criterion. This selects the model
with the smallest value of the PRESS statistic. To describe the computation of
the PRESS statistic for a particular model involving the covariates X1, . . . , Xp,
let β̂0,−i, β̂1,−i, . . . , β̂p,−i be the least squares estimators of the regression coeffi-
cients obtained by fitting the model after removing the ith data point, and let
ŷi,−i = β̂0,−i + β̂1,−ixi1 + · · · + β̂p,−ixip denote the corresponding predicted value
at the ith data point. Then the PRESS statistic for that model is computed as

PRESS =
n∑

i=1

(
yi − ŷi,−i

)2 .
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Thus, all model selection criteria, except for PRESS, use a “penalized” score based
on SSE, with the “penalty” increasing as the number of parameters in the model
increases. The degree to which a small SSE value is “penalized” is most easily com-
pared for the AIC and BIC selection criteria: BIC penalizes more heavily, especially
for larger sample sizes, and thus it will select a more parsimonious model. Mallow’s
Cp has the property that for the full model, that is, the model with all k predictors
and the intercept term, Ck+1 = k + 1. If a p-parameter model provides a good fit,
then its Cp value should be close to p; otherwise the Cp value is much bigger than p.
It is usual to plot Cp vs p and select the model with the smallest p for which the
point (p, Cp) is close to, or under, the diagonal. Note also that Cp orders the mod-
els in exactly the same way as AIC. The PRESS criterion, which is not based on a
penalized SSE score, is designed to select models with the best predictive properties.

Stepwise procedures adopt a sequential approach to model building. At each
step, these procedures use p-values obtained from testing the significance of each
predictor to decide whether that predictor should be dropped or added to the model.
The main algorithms for such stepwise model building are the following:

1. Backward elimination. This algorithm consists of the following steps:
(a) Fit the full model.
(b) If the p-values resulting from testing the significance of each predictor in

the model are all less than a preselected critical value αcr, stop. Otherwise
proceed to step (c).

(c) Eliminate the predictor with the largest p-value and fit the model with all
remaining predictors. Go to step (b).

The critical value αcr, which is called “p-to-remove,” need not be 0.05. Most
typically, it is chosen in the range of 0.1–0.2.

2. Forward selection. Basically, this reverses the backward elimination algorithm:
(a) Start with no predictors in the model.
(b) Add each of the remaining predictors to the model, one at a time and com-

pute each predictor’s p-value. If all p-values are larger than a preselected
critical value αcr, stop. Otherwise proceed to step (c).

(c) Add to the model the predictor with the smallest p-value. Go to
step (b).

In the context of forward selection, the critical value αcr is called “p-to-enter.”
3. Stepwise regression. This algorithm is a combination of backward elimination

and forward selection, and there are at least a couple of versions for implement-
ing it. One version starts with no predictors in the model, as in forward selection,
but at each stage a predictor may be added or removed. For example, suppose
the first predictor to be added, in a forward selection manner, is x1. Continuing
as in forward selection, suppose the second variable to be added is x2. At this
stage, variable x1 is re-evaluated, as in backward elimination, as to whether or
not it should be retained in a model that includes x2. The process continues until
no variables are added or removed. Another version starts with all predictors in
the model, as in backward elimination, but at each stage a previously eliminated
predictor may be re-entered in the model.

Model Selection in R The principal functions for best subset model selection are
regsubsets and leaps in the R package leaps. These functions order the models
according to each of the criteria: adjusted R2, BIC (available in the regsubsets func-
tion), and Cp criterion (available in the leaps function). The model ordering (and the
corresponding value of the criterion used for each model) can be displayed in plots.
Ordering according to the AIC criterion is not displayed explicitly (and therefore
the AIC value for each model is not produced automatically) because it is the same
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as the ordering according to the Cp criterion. However, the AIC for any particular
model can be obtained with the R command

fit=lm(y∼(model specification)); AIC(fit).

(Using AIC(fit, k=log(length(y))) produces the model’s BIC.) Finally, the function
press in the R package DAAG computes the PRESS criterion. It is invoked simply
as press(fit).

Stepwise procedures can also be performed with the regsubsets function, but the
step function in the stats package, which is described next, is just as convenient. The
argument direction can be used to specify backward elimination, forward selection,
or stepwise regression. The default setting is direction=”both” for stepwise regres-
sion; use direction=”backward” for backward elimination and direction=”forward”
for forward selection. The use of these R commands is illustrated in the next
example.

Example
12.4-3

An article6 reports data on six attributes/characteristics and a performance measure
(based on a benchmark mix relative to IBM 370/158-3) of 209 CPUs. The data are
available in the R package MASS under the name cpus. (For a description of the six
attributes used, type library(MASS); ?cpus.) Use these data to build a parsimonious
model for predicting a CPU’s relative performance from its attributes.

Solution
Use install.packages(”leaps”) to install the package leaps, and then load it to the
current R session by library(leaps). A basic invocation of regsubsets is

vs.out=regsubsets(perf∼syct+mmin+mmax+cach
+chmin+chmax, nbest=3, data=cpus)

(12.4.14)

The outcome object vs.out contains information on the best three models for each
model size, that is, the best three models with one variable, the best three mod-
els with two variables, and so forth; by default, all models include the intercept
term. (Note that, because ranking models of the same size is identical for all criteria
[except for PRESS], no particular criterion is specified in the regsubsets command.)
In particular, the command in (12.4.14) contains information on 16 models (the full
model and the three best for each size of one through five). The command sum-
mary(vs.out) will display these 16 models. This output is not shown here because,
typically, we are not concerned about which models are the best for each size.
Instead, we are concerned with the overall ranking of these 16 models, and the over-
all best model, according to each of the criteria. Using Mallow’s Cp criterion, the
overall ranking is given, in the form of the plot in Figure 12-10, by the command

R Command Generating the Plot of Figure 12-10, Where
vs.out comes from (12.4.14)

plot(vs.out, scale=”Cp”) (12.4.15)

Admittedly, such a plot seems strange when first encountered. Each row in the plot
represents a model, with the white spots representing the variables that are not
included in the model. The best model is at the top of the figure (darkest shading)

6 P. Ein-Dor and J. Feldmesser (1987). Attributes of the performance of central processing units: A relative
performance prediction model. Comm. ACM, 30: 308–317.
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5.1Figure 12-10 Ordering of
16 models, identified by
regsubsets, using Mallow’s
Cp criterion.

with Cp value of 5.1; it leaves out the variable “chmin.” The second best model, with
Cp value of 7, is the full model with all six predictor variables. The third best model,
with Cp value of 11, leaves out “syct” and “chmin,” and so forth. Note that the three
worst models all use only one predictor variable.

Recall that the ordering of the models shown in Figure 12-10 is identical to the
ordering produced by the AIC criterion. Plots showing the rankings of the 16 models
according to the adjusted R2 criterion and the BIC criterion are produced by

R Commands for Ranking Models According to R2 Adj and
BIC, Where vs.out Comes from (12.4.14)

plot(vs.out, scale=”adjr2”)
plot(vs.out, scale=”bic”)

(12.4.16)

It should be kept in mind that all criteria are computed from data and, hence, are
subject to variability. If the criterion value of the best model does not differ by much
from that of the second best or the third best, etc., claims about having identified the
“best” model should be made with caution. The AIC can give the relative probability
that a model that was not ranked best is indeed the best (in terms of minimizing
the information lost), as follows: Let AICmin be the minimum AIC score among the
models considered, and let AICj be the AIC score of the jth model considered. Then,
the relative probability that the jth model is the best is

eDj/2, where Dj = AICmin − AICj. (12.4.17)

In this example, the AIC scores of the top five models are 2311.479, 2313.375,
2317.471, 2319.272, and 2330.943. Thus the relative probability that each of the
models ranked second through fifth is actually the best is 0.39, 0.050, 0.020, and
5.93 × 10−5, respectively.

The best-fitting model according to either the Cp or the adjusted R2 criterion can
also be obtained through the leaps function (in the leaps package). The commands
for the Cp criterion are
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R Commands for the Best-Fitting Model According to Cp

fit=lm(perf∼syct+mmin+mmax+cach+chmin+chmax, data=cpus)
X=model.matrix(fit)[, -1]
cp.leaps=leaps(X, cpus$perf, nbest=3, method=”Cp”)
cp.leaps$which[which(cp.leaps$Cp==min(cp.leaps$Cp)),]

(12.4.18)

The output produced is

1 2 3 4 5 6

TRUE TRUE TRUE TRUE FALSE TRUE

This output specifies as best the model that includes all variables except the fifth,
which is “chmin.” Note that this is the same model identified as best in Figure 12-10.
The p vs Cp scatterplot of Figure 12-11, with the diagonal line superimposed, is
produced with the following additional commands:

R Commands for the Plot of Figure 12-11

plot(cp.leaps$size, cp.leaps$Cp, pch=23,
bg=”orange”, cex=3)

abline(0, 1)
(12.4.19)

Replacing the third and fourth lines of the commands in (12.4.18) by
adjr2.leaps=leaps(X, cpus$perf, nbest=3, method=”adjr2”) and adjr2.leaps$which
[which(adjr2.leaps$adjr2==min(adjr2.leaps$adjr2)), ], respectively, gives the best
model according to the adjusted R2 criterion. For this data set, the adjusted R2 crite-
rion gives as best the same model identified above. The BIC criterion has not been
implemented in the leaps function. Using method=”r2” will give the model with the
highest R2 value, though this is not an appropriate model ranking criterion.
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With fit defined from fit=lm(perf∼syct+mmin+mmax+cach+chmin+chmax,
data=cpus), the following R commands perform stepwise variable selection
(both, backward or forward).

R Commands for Stepwise Variable Selection

step(lm(perf∼1, data=cpus), list(upper=∼1+syct+mmin+
mmax+cach+chmin+chmax), direction =”forward”)

step(fit, direction=”backward”)
step(fit, direction=”both”)

(12.4.20)

These commands give the steps leading to the final model. As an illustration, the
output produced by the commands for stepwise regression (both directions) is shown
below. Note that the AIC values given in this output correspond to what is known
as generalized AIC, and are different from the usual AIC values given in connection
with (12.4.17).

Start: AIC=1718.26

perf∼syct+mmin+mmax+cach+chmin+chmax
Df Sum of Sq RSS AIC

- chmin 1 358 727360 1716.4

<none> 727002 1718.3

- syct 1 27995 754997 1724.2

- cach 1 75962 802964 1737.0

- chmax 1 163396 890398 1758.6

- mmin 1 252211 979213 1778.5

- mmax 1 271147 998149 1782.5

Step: AIC=1716.36

perf∼syct+mmin+mmax+cach+chmax
Df Sum of Sq RSS AIC

<none> 727360 1716.4

+ chmin 1 358 727002 1718.3

- syct 1 28353 755713 1722.3

- cach 1 78670 806030 1735.8

- chmax 1 177174 904534 1759.9

- mmin 1 258289 985649 1777.9

- mmax 1 270827 998187 1780.5

The model displayed in the second and final step is the same as the best model
according to the criterion-based procedures. In this example, stepwise regression
starts with the full model, and, because the best model includes all variables but one,
it stops after only two steps. The backward elimination procedure produces exactly
the same output, while forward selection takes several steps to reach the final (best)
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model; see Exercise 7. To also obtain the statistical analysis for the final model, use
summary(step(fit, direction=”both or forward or backward”)).

REMARK 12.4-1 The default rule for entering or deleting variables in the stepwise
algorithm of the function step is unclear. However, the function update, described in
Exercise 3 in Section 12.3, can be used for implementing backward elimination with
any chosen p-to-remove; see Exercise 8. ▹

12.4.4 INFLUENTIAL OBSERVATIONS

It is possible for a single observation to have a great influence on the results of a
regression analysis, in general, and on the variable selection process in particular.

The influence of the ith observation, yi, xi1, . . . , xik, is defined in terms of how
much the predicted, or fitted, values would differ if the ith observation were omitted
from the data. It is quantified by Cook’s distance (also referred to as Cook’s D),
which is defined as follows:

Di =
∑n

j=1(̂yj − ŷj,−i)2

pMSE
, (12.4.21)

where p is the number of fitted parameters (so p = k + 1 if an intercept is also
fitted), ŷj is the jth fitted value (see (12.3.3)) and ŷj,−i is the jth fitted value when the
ith observation has been omitted from the data. A common rule of thumb is that an
observation with a value of Cook’s D greater than 1.0 has too much influence.

REMARK 12.4-2 A related concept is leverage. The leverage of the ith observation
is defined to be the ith diagonal element of X(X′X)−1X′, which has been denoted by
hi in (12.3.15). It quantifies how far (xi1, . . . , xik) is from the rest of the covariates’
values. Put in different words, hi quantifies the extent to which (xi1, . . . , xik) is an
outlier with respect to the other covariates’ values. The ith observation is defined to
be a high-leverage point if hi > 3p/n, that is, if hi is larger than three times the aver-
age leverage.7 High-leverage observations have the potential of being influential,
but they need not be. An influential observation, however, will typically have high
leverage. On the other hand, a high-leverage observation with a large (in absolute
value) studentized residual (see (12.3.19)) will be an influential observation. ▹

As mentioned, an influential observation has the potential of changing the
outcome of a variable selection algorithm. Therefore, it is recommended that the
variable selection algorithm be reapplied to the data set with the influential observa-
tion(s) removed. If the same model is selected both with and without the influential
observation(s) in the data set, then all is well and no further action is needed. In
the opposite case, that is, if the algorithm selects a different model when the influ-
ential observation(s) are removed, one should check the “validity” of the influential
observation. For example, it is possible that there has been a recording error, or the
observation(s) came from experimental unit(s) erroneously included in the sample.
If the observations pass the validity check, it is probably a good idea to use the model
that includes all predictors included in the two selected models.

7 It can be shown that
∑n

i=1 hi = p, where p is the number of fitted parameters.
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Figure 12-12 Cook’s D for
the observations in the data
set of Example 12.4-3.

With fit generated from fit=lm(perf∼syct+mmin+mmax+cach+chmin+chmax,
data=cpus), the R command

plot(fit, which=4)

generates the plot in Figure 12-12, which, according to the rule of thumb, identifies
the observations numbered 10 and 200 in the data set cpus as influential.8

To see if the presence of these observations has an effect on the outcome of the
variable selection algorithms, use the R command

cpus1=cpus[-c(10, 200),] (12.4.22)

to define the data frame cpus1 which includes all observations in cpus except for the
10th and 200th. Applying to cpus1 the variable selection algorithms used in Example
12.4-3, we see that the stepwise procedures as well as the best subset procedure with
criterion “adjr2” select the full model, while the best subset with the “bic” crite-
rion selects the model without the variables “syct” and “chmin.” Only best subset
with Cp selects the same model as before. On the basis of these results, the final
recommendation is to use the full model.

12.4.5 MULTICOLLINEARITY

The predictors in multiple regression data sets often exhibit strong linear depen-
dencies. The stronger the interdependence among the predictors, the larger the
condition number9 of the normal equations (12.3.9).

Put in different words, strong interdependency among the predictors makes the
inverse (X′X)−1 unstable, where X is the design matrix defined in (12.3.7). As a
consequence, the least squares estimators, which are given in terms of this inverse
matrix (see (12.3.10)), are imprecise. Moreover, the variance of each β̂j is given in

8 The command cooks.distance(fit)[c(10, 199, 200)] returns Cook’s D values of 0.98, 0.57, and 2.89 for
observations numbered 10, 199, and 200, respectively.
9 The condition number of a linear equation Ax = b captures the rate at which the solution, x, will change with
respect to a change in b. The larger the condition number, the more sensitive the solution to changes in b.
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terms of Cj, the jth diagonal element of this inverse matrix; see (12.3.13). It can be
shown that Cj can be written as

Cj = 1
1 − R2

j

, (12.4.23)

where R2
j is the coefficient of multiple determination resulting from regressing the

jth predictor, Xj, on the remaining predictors. Clearly, if the linear dependence of Xj

on the remaining k − 1 predictors is strong, R2
j will be close to one, and this results

in an “inflation” of the variance of β̂j by the quantity Cj. For this reason, Cj is called
the variance inflation factor for βj. The data is said to exhibit multicollinearity if
the variance inflation factor for any βj exceeds 4 or 5, and multicollinearity is called
severe if a variance inflation factor exceeds 10.

Under multicollinearity, p-values and confidence intervals for individual param-
eters cannot be trusted. Nevertheless, even though individual parameters are impre-
cisely estimated, the significance of the fitted model may still be tested by the model
utility test, and its usefulness for prediction may still be judged by the coefficient of
multiple determination. An interesting side effect of (but also indication for) multi-
collinearity is the phenomenon of a significant model utility test when all predictors
are not significant; see Exercise 13.

The R package car has the function vif for computing the variance inflation
factor for each regression coefficient. The R commands for it are shown below:

R Commands for Computing the Variance Inflation Factors

library(car); vif(lm(y∼(model specification))) (12.4.24)

As an example, use df=read.table(”Temp.Long.Lat.txt”, header=T); y=df$JanTemp;
x1=df$Lat-mean(df$Lat); x2=df$Long-mean(df$Long) to read the temperature val-
ues and the centered latitude and longitude values into the R objects y, x1, x2,
respectively. Then the command

library(car); vif(lm(y∼x1+x2+I(x1ˆ2)+I(x2ˆ2)+x1:x2))

generates the following output:

x1 x2 I(x1ˆ2) I(x2ˆ2) x1:x2
1.735 1.738 1.958 1.764 1.963

All inflation factors are less than 2, so multicollinearity is not an issue for this
data set.

12.4.6 LOGISTIC REGRESSION

As mentioned in Section 12.2, there are cases where the regression function is not
a linear function of the predictor, but linearity can be restored through a suitable
transformation. This section deals with a particular case where the simple (or multi-
ple) linear regression model is not appropriate, namely, when the response variable
Y is Bernoulli.

Experiments with a binary response variable are encountered frequently in reli-
ability studies investigating the impact of certain variables, such as stress level, on
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the probability of failure of a product, or the probability of no major issues within
a product’s warranty period; they are also quite common in medical research and
other fields of science.10

To see why the simple linear regression model is not appropriate when Y is
Bernoulli, recall that E(Y) = p, where p is the probability of success. Thus, when the
probability of success depends on a covariate x, the regression function, which is

µY|X(x) = E(Y|X = x) = p(x),

is constrained to take values between 0 and 1. On the other hand, the regression
function implied by the linear regression model, that is, µY|X(x) = β0 + β1x, does
not conform to the same constraint as p(x). The MLR model is also not appropriate
for the same reason.

Continuing with one covariate for simplicity, the logistic regression model
assumes that the logit transformation of p(x), which is defined as

logit(p(x)) = log
(

p(x)
1 − p(x)

)
, (12.4.25)

is a linear function of x. That is, the logistic regression model assumes that

logit(p(x)) = β0 + β1x. (12.4.26)

Simple algebra shows that the logistic regression model is equivalently written as

p(x) = eβ0+β1x

1 + eβ0+β1x . (12.4.27)

The expression on the right-hand side of (12.4.27) is the logistic function of
β0 + β1x.11 This reveals the origin of the term logistic regression. Two logistic regres-
sion functions, one with positive and one with negative slope parameter (β1), are
shown in Figure 12-13.

If p is the probability of success (or, in general, of an event E), p/(1−p) is called
the odds ratio, and is used as an alternative quantification of the likelihood of success
through the expression “the odds of success are p/(1 − p) to one”; see Section 2.3.1.
An odds ratio of 3 means that success is 3 times as likely as failure. Thus, according
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Figure 12-13 Examples of
the logistic regression
function (12.4.27): β0 = 2
(both), β1 = 4 (left), and
β1 = −4 (right).

10 For example, F. van Der Meulen, T. Vermaat, and P. Willems (2011). Case study: An application of logistic
regression in a six-sigma project in health care, Quality Engineering, 23: 113–124.
11 In mathematical terminology, the logistic function is the inverse of the logit function.
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to the logistic regression model, the odds ratio changes by a (multiplicative) factor
of eβ1 as x changes by 1 unit.

Fitting the model (12.4.26), and its version with multiple covariates, to data, that
is, estimating the model parameters, is done by the method of maximum likelihood
(see Section 6.3.3). The details are involved and will not be given. Instead we will
demonstrate the use of R commands for obtaining the maximum likelihood estima-
tors. The R function for fitting logistic regression models is glm. The syntax of glm
is similar to that of lm except we must also specify what is called the family. This is
illustrated in the context of the following example.

Example
12.4-4

The file FluShotData.txt has simulated flu shot data from a study on the effect of
age and a health awareness index on a person’s decision to get a flu shot. Use R to
complete the following.

(a) Fit a two-predictor logistic regression model to the data, and test the signifi-
cance of the two predictors at level of significance 0.05.

(b) Fit the logistic regression model that includes the interaction of the two
predictors to the model of part (a). Construct 95% CIs for the regression
coefficients.

(c) Using the model with the interaction term, give an estimate of the probability
that a 35-year-old person with health awareness index 50 will get the flu shot.
Do the same for a 45-year-old person with index 50.

Solution
(a) With the data having been read into the data frame fd, the R commands

fit1=glm(Shot∼Age+Health.Aware, family=binomial( ),
data=fd); summary(fit1)

generate output, part of which is

Coefficients:

Estimate Std. Error z value Pr(> |z|)
(Intercept) -21.585 6.418 -3.363 0.0008

Age 0.222 0.074 2.983 0.0029

Health.Aware 0.204 0.063 3.244 0.0012

AIC: 38.416

Thus, both age and health awareness are significant at the 0.05 level (p-values
of 0.003 and 0.001, respectively).

(b) The command fit2=glm(Shot∼Age*Health.Aware, family=binomial( ),
data=fd); summary(fit2) generates output, part of which is

Coefficients:

Estimate Std. Error z value Pr(> |z|)
(Intercept) 26.759 23.437 1.142 0.254

Age -0.882 0.545 -1.618 0.106

Health.Aware -0.822 0.499 -1.647 0.099

Age:Health.Aware 0.024 0.012 1.990 0.047

AIC: 32.283
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Note that now age and health awareness are not significant at α = 0.05 but
their interaction is. As advised in the context of an MLR model, if the inter-
action of two variables is significant, both variables should be included in the
model. Note also the drop in the AIC value incurred by the inclusion of the
interaction term. The additional command

confint(fit2)

produces the following 95% CIs for the regression parameters.

2.5% 97.5%

(Intercept) -11.80 84.08

Age -2.25 -0.038

Health.Aware -2.066 -0.047

Age:Health.Aware 0.006 0.054

c) The R command

predict(fit2, list(Age=c(35, 45), Health.Aware=c(50, 50)),
type=”response”)

generates the output
1 2

0.02145 0.30809

Thus, the probability that a 35-year-old with health awareness index 50 will get
the shot is 0.021, while the probability for a 45-year-old with the same index
is 0.308.

For additional information on the topic of logistic regression see Applied Logistic
Regression by Hosmer, Lemeshow, and Sturdivant.12

Exercises

1. A computer activity. This exercise uses computer
simulations to demonstrate that, for heteroscedastic data,
unweighted/ordinary least squares (OLS) analysis under-
estimates the variability of the estimated slope, while
weighted least squares (WLS) analysis estimates it cor-
rectly. The simulated regression model has regression
function µY|X(x) = 3 − 2x and error variance function
Var(Y|X = x) = (1 + 0.5x2)2.
(a) Generate a set of 100 (x, y) values by x=rnorm(100,

0, 3); y=3-2*x+rnorm(100, 0, sapply(x, function
(x){1+0.5*x**2})). Then use fit=lm(y∼x); sum-
mary (fit), and fitw=lm(y∼x, weights=(1+0.5*x**2)**
(-2)); summary(fitw) and report the standard error of
the slope estimate obtained from the OLS and WLS
analyses.

(b) The following commands generate 1000 sets of
y-values. Like in part (a), obtain the OLS and WLS
slope estimates for each set of 100 (x, y) values, and
compute the standard deviation of the 1000 OLS
slope estimates and of the 1000 WLS slope esti-
mates. (The x-values stay the same for all 1000 sets
of 100 (x, y) values.) These standard deviations are
the simulation-based approximations of the true vari-
ability of the slope estimates. Compare them with the
standard errors or the slope estimates reported in part
(a), and comment. The needed commands for this
simulation are:

beta=rep(0, 1000); betaw=rep(0, 1000);
for(i in 1:1000) { y=3-2∗x+rnorm(100, 0,
sapply(x, function(x) {1+0.5∗x∗∗2}));

12 D. H. Hosmer, Jr., S. Lemeshow, and R. Sturdivant (2013). Applied Logistic Regression, 3rd Edition, Hoboken:
Wiley.
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beta[i]=lm(y∼x)$coefficients[2];
betaw[i]=lm(y∼x, weights=(1+
0.5∗x∗∗2)∗∗(-2))$coefficients[2]};
sd(beta); sd(betaw)

2. Perform the following analysis for the stackloss data
described in Exercise 2 in Section 12.3.
(a) Using the residuals from fitting an MLR model on

the three covariates with no polynomial or interaction
terms, check the homoscedasticity assumption using
the plot and formal test described in Example 12.3-3,
and state your conclusion.

(b) Use the steps outlined in Section 12.4.1 to fit the
MLR model by weighted LS. Report the p-value of
the model utility test.

(c) Use confint(fit); confint(fitw) to obtain the 95% OLS
and WLS CIs for the regression parameters. Which
method gives shorter cIs?

3. Use edu=read.table(”EducationData.txt”, header=T)
to import the 1975 education expenditure by state data set
into the R data frame edu.13 In this data set, the response
Y is per capita education expenditure, X1 is per capita
income, X2 is proportion of population under 18, and X3
is proportion in urban areas. (The covariate “Region” will
not be used in this exercise.)
(a) Use edu.fit=lm(Y∼X1+X2+X3, data=edu); plot(edu.

fit, which=1) to fit the MLR model by ordinary LS
and to plot the residuals versus the predicted values.
On the basis of this plot would you suspect the
homoscedasticity assumption? Check the homosced-
asticity assumption using the formal test described in
Example 12.3-3, and state your conlusion.

(b) Use the steps outlined in Section 12.4.1 to fit the MLR
model by weighted LS.

(c) Use confint(edu.fit); confint(fitw) to obtain the 95%
OLS and WLS CIs for the regression parameters.

4. For the regression model formulation, (12.4.11), of the
additive two-factor design, which is Yijk = µ+αi+βj+ϵijk,∑

i αi = ∑
j βj = 0, show that

αi = βA
i , for i = 1, . . . , a − 1,

βj = βB
j , for j = 1, . . . , b − 1,

αa = −βA
1 − · · · − βA

a−1, and

βb = −βB
1 − · · · − βB

b−1.

5. A company is investigating whether a new driving
route reduces the time to deliver goods from its factory
to a nearby port for export. Data on 48 delivery times
with the standard route and 34 delivery times with the
new route are given in DriveDurat.txt.

(a) The regression model formulation of the two-
sample problem requires only one indicator variable.
Specialize the indicator variable formula (12.4.3) to
the two-sample case.

(b) If x denotes the indicator variable of part (a), the
regression model formulation of the two samples is
written as Yi = β0 + β1xi + ϵi, i = 1, . . . , n1 + n2.
How are the regression parameters β0, β1 related to
the population means µ1, µ2?

(c) With data imported into the R data frame dd, use
the commands y=dd$duration; x=rep(0, length(y));
x[which(dd$route==1)]=1; x[which(dd$route==2)]
=-1 to set the duration times in the object y
and to define the indicator variable. Compare the
p-value from the model utility test using OLS
analysis of y on x with the p-value from the
two-sample T test that assumes equal variances.
(Hint. Use summary(lm(y∼x)) and t.test(y∼dd$route,
var.equal=T).)

(d) Test for heteroscedasticity using (i) Levene’s
test and (ii) the regression type test. Report
the two p-values. (Hint. Use library(lawstat); lev-
ene.test(y, x) for Levene’s test, and dd.fit=lm(y∼x);
summary(lm(abs(rstandard(dd.fit))∼poly(fitted(dd.
fit),2))) for the regression type test (report the p-value
for the model utility test).)

(e) Are the two population means significantly dif-
ferent at α = 0.05? Test using WLS anal-
ysis and the T test without the equal vari-
ances assumption. (Hint. For the WLS analysis
use efit=lm(abs(resid(dd.fit))∼poly(fitted(dd.fit), 2));
w=1/fitted(efit)**2; summary(lm(y∼x, weights= w)),
and use the p-value for the model utility test.)

6. With the data frame edu containing the educa-
tion data of Exercise 3, define indicator variables R1,
R2, and R3 to represent the four levels of the vari-
able “Region” according to the contrast coding of
(12.4.3). For example, the following commands define
R1: R1=rep(0, length(edu$R)); R1[which(edu$R==1)]=1;
R1[which(edu$R==4)]=-1. (Note that edu$R is an
accepted abbreviation of edu$Region.) Use WLS anal-
ysis to test the significance of the variable “Region” at
level of significance 0.1. (Hint. Use the steps outlined in
Section 12.4.1 to estimate the weights for the WLS anal-
ysis, using covariates X1, X2, X3, R1, R2, and R3. Let
fitFw and fitRw be the output objects from fitting the
full and the reduced (i.e., without R1, R2, and R3) mod-
els; for example fitFw = lm(Y∼X1+X2+X3+R1+R2+R3,
weights=w, data=edu). Then use anova(fitFw, fitRw) to
test the joint significance of R1, R2, and R3.)

7. Using the cpus data from Example 12.4-3 and
the R commands given in (12.4.20), perform forward

13 S. Chatterjee and B. Price (1977). Regression Analysis by Example. New York: Wiley, 108. This data set is also
available in R in the package robustbase.
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selection with the function step. Obtain the statistical
analysis for the final model, and report the p-value
for each predictor variable and of the model util-
ity test. (Hint. Set fit=step(lm(perf∼1, data=cpus),
list(upper=∼1+syct+mmin+mmax+cach+chmin+chmax),
direction=”forward”) and use summary(step(fit, direc-
tion=”forward”)).)

8. In this exercise we will apply backward elimination, at
p-to-remove 0.1, for variable selection on the “state” data
set described in Exercise 3 in Section 12.3. Stepwise vari-
able selection with p-to-remove (or p-to-enter) of your
choice is not automatic in R, but the process is greatly
facilitated by the update function described in Exercise 3
in Section 12.3. Use st=read.table(”State.txt”, header=T)
to import the data into the R data frame st and complete
the following.
(a) Use h=lm(Life.Exp∼ . , data=st); summary(h) to fit

the full model. (Here “.” means “use all predictors in
the data set.”) Because the largest p-value, which is
0.965, corresponds to “Area” and is > 0.1, continue
with h=update(h, . ∼ . -Area); summary(h) to fit the
model without the predictor “Area.”

(b) Continue removing the predictor with the largest
p-value until all p-values are smaller than 0.1. Give
the R2 for the final model and compare it with that of
the full model.

9. Using the “state” data of Exercise 8, perform criterion-
based variable selection with each of the criteria Cp,
adjusted R2, and BIC. (Hint. Invoke the command
library(leaps), create the outcome object vs.out as in
(12.4.14) (use the abbreviated lm statement given in part
(a) of Exercise 8), and then use (12.4.15) and (12.4.16) to
create plots like that in Figure 12-10 in order to select the
best model.)

10. UScereal is a built-in data frame in R’s package
MASS with n = 65 rows on 11 variables. Three of the
variables (“mfr” for manufacturer, “shelf” for the display
shelf with three categories counting from the floor, and
“vitamins”) are categorical, and the others are quantita-
tive. Type library(MASS); ?UScereal for a full description.
In this exercise we will apply variable selection methods
to determine the best model for predicting “calories,” the
number of calories in one portion, using the seven quan-
titative predictors. Use uscer=UScereal[, -c(1, 9, 11)] to
generate the data frame uscer without the three categori-
cal variables.
(a) Perform criterion-based variable selection with each

of the criteria Cp, adjusted R2, and BIC, and give
the model selected by each criterion. (Hint. Use
library(leaps); vs.out=regsubsets(calories∼ . , nbest=3,
data=uscer), and then use (12.4.15) and (12.4.16) to
create plots like that in Figure 12-10 in order to select
the best model according to each criterion.)

(b) Use Cook’s D to determine if there are any influen-
tial observations. (Hint. Use cer.out=lm(calories∼ . ,
data=uscer); plot(cer.out, which =4) to construct a plot
like Figure 12-12.)

(c) Create a new data frame, usc, by removing the influ-
ential observations; perform criterion-based variable
selection with each of the criteria Cp, adjusted R2 and
BIC; and give the model selected by each criterion.
Does the final model seem reasonable? (Hint. See
(12.4.22).)

11. Researchers interested in understanding how the
composition of the cement affects the heat evolved during
the hardening of cement, measured the heat in calo-
ries per gram (y), the percent of tricalcium aluminate
(x1), the percent of tricalcium silicate (x2), the per-
cent of tetracalcium alumino ferrite (x3), and the per-
cent of dicalcium silicate (x4) for 13 batches of cement.
The data are in CementVS.txt. Import the data into the
R data frame hc, fit the MLR model with hc.out=lm
(y∼ . , data=hc); summary(hc.out), and complete the
following.
(a) Are any of the variables significant at level α = 0.05?

Is your answer compatible with the R2 value and the
p-value for the model utility test? If not, what is a
possible explanation?

(b) Compute the variance inflation factors for each vari-
able. Is multicollinearity an issue with this data?

(c) Remove the variable with the highest variance infla-
tion factor and fit the reduced MLR model. Are any
of the variables significant at level 0.05? Is there
much loss in terms of reduction in R2 or adjusted
R2? (Hint. The data frame hc1 created by hc1=hc
[, -5] does not include x4. Alternatively, you can use
hc1.out=update(hc.out, .∼. -x4); summary(hc1.out).)

(d) Starting with the full model, apply backward elimi-
nation with p-to-remove 0.15; see Exercise 8. Give
the variables retained in the final model. Is there
much loss in terms of the adjusted R2 of the final
model?

12. The SAT data in SatData.txt are extracted from the
1997 Digest of Education Statistics, an annual publication
of the US Department of Education. Its columns corre-
spond to the variables name of state, current expenditure
per pupil, pupil/teacher ratio, estimated average annual
teacher salary (in thousands of dollars), percent of all eli-
gible students taking the SAT, average verbal SAT score,
average math SAT score, and average total score on the
SAT.
(a) Read the data into the R data frame sat and con-

struct a scatterplot matrix with pairs(sat). Does the
Salary vs Total scatterplot suggest that increasing
teachers salary will have a positive or negative effect
on student SAT score? Confirm your impression
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by fitting a least squares line through the scatter-
plot and reporting the value of the slope. (Use
summary(lm(Total∼Salary, data=sat)).)

(b) Fit the MLR model for predicting the total
SAT score in terms of all available covariates:
summary(lm(Total∼Salary+ExpendPP+PupTeachR+
PercentEll, data=sat)). Comment on whether increas-
ing teacher salary, while keeping all other predictor
variables the same, appears to have a positive or
negative effect on student SAT score. Is your com-
ment compatible with your answer in part (a)? If not,
suggest a possible reason for the incompatibility.

(c) Which, if any, of the predictor variables appear to
be significant predictors of the student SAT score?
Base your answer on each variable’s p-value at level
of significance 0.05.

(d) Report R2, adjusted R2, and the p-value for the model
utility test. Are these values compatible with your
comments in part (c) regarding the significance of
each individual predictor? If not, suggest a possible
reason for the incompatibility.

(e) Compute the variance inflation factor for each pre-
dictor variable and comment on whether or not they
suggest multicollinearity of the predictors.

13. The data set in LaysanFinchWt.txt has measurements
of weight and five other physical characteristics of 43
female Laysan finches.14 Import the data set into the
R data frame lf, use lf.out=lm(wt∼ . , data=lf); sum-
mary(lf.out) to fit the MLR model explaining weight
in terms of the other variables, and complete the
following.
(a) Report the R2 and the adjusted R2. Is the model utility

test significant at α = 0.05? Are any of the predictor
variables significant at α = 0.05?

(b) Compute the variance inflation factors for each vari-
able. Is multicollinearity an issue with this data?

What is a typical side effect of this degree of multi-
collinearity?

(c) Apply a criterion-based variable selection
method using the R command libaray (leaps);
vs.out=regsubsets(wt∼ . , nbest=3, data=lf). You
may use either Cp, BIC, or adjusted R2 to construct a
plot like Figure 12-10 and to identify the best model
according to the criterion chosen.

(d) Fit the model identified by the variable selection pro-
cedure of part (c), and report the R2, the adjusted R2,
the p-value for the model utility test, and the p-values
for each of the predictors in the model. Compare
these with the results obtained in part (a). Finally,
compute and report the variance inflation factors for
the variables in the model. Is multicollinearity an issue
now?

14. A reliability study investigated the probability of fail-
ure within 170 hours of operation of a product under
accelerated life testing conditions. A random sample of 38
products was used in the study. The data set FailStress.txt
contains simulated results (1 for failure, 0 for no failure)
together with a variable quantifying the stress level for
each product. Import the data into the data frame fs, and
set x=fs$stress; y=fs$fail.
(a) Assume the logit transformation of p(x) is a linear

function of x, and fit a logistic regression model to
the data. Test the significance of the stress variable at
level α = 0.05.

(b) Use the fitted model to estimate the probability of
failure at stress level 3.5.

(c) Fit the logistic regression model that includes a
quadratic term of the stress variable to model the logit
transformation of p(x). Construct 95% CIs for the
regression parameters. Use the CIs to test the hypoth-
esis at α = 0.05 that the coefficient of the quadratic
component is zero. (Hint. Use fit=glm(y∼x+I(x**2),
family=binomial( ), data=ld); summary(fit) to fit the
quadratic logistic regression model.)

14 Original data collected by Dr. S. Conant, University of Hawaii, from 1982 to 1992 for conservation-related
research.
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13.1 Introduction and Overview
Product quality and cost are the two major factors affecting purchasing decisions,
both by individual consumers and businesses. Industry has come to realize that high
quality and cost efficiency are not incompatible goals. The active use of statistics
plays an important role in raising quality levels and decreasing production costs.

Product quality is not assured by thorough inspection and evaluation of every
single product item produced. In fact, 100% inspection schemes are inefficient in
most practical settings. It is much more efficient to build quality into the manufactur-
ing process. Statistical process control represents a breakthrough in the strategy for
achieving cost-efficient, high-quality manufacturing. Careful (re-)examination of the
production process, which also includes the design and assembly states, may result in
lower costs and increased productivity. Indeed, the production process serves as the
common platform for implementing both quality control and quality improvement
programs. Quality improvement programs, which have sprung from the idea that
a product’s quality should be continuously improved, rely mainly on Pareto charts
(see Section 1.5.3) and designed factorial, or fractional factorial, experiments (see
Section 11.4). This chapter discusses the use of control charts, which are the main
tools for monitoring the production process in order to maintain product quality at
desired levels.

The quality of a product is represented by certain quality characteristic(s). For
example, comfort and safety features, gas mileage, and acceleration are some quality
characteristics of cars; while air permeability is an important quality characteristic
of woven fabrics used in parachute sails and air bags. The number of scratches in
optical lenses and the proportion of defective integrated circuits made in a day are
also important quality characteristics of their respective production processes. If the
average (i.e., population mean) of the quality characteristic is what it is desired to
be, that is, equal to a target value, the production process is called in control (with
respect to the mean). If the average characteristic deviates from its target value, the
process is said to be out of control.

High-quality manufacturing processes are also characterized by product unifor-
mity, that is, limited variation in the quality characteristic(s) among the product
items produced. For example, uniformity of cars (of a certain make and model)
with respect to, say, gas mileage, is indicative of high-quality car manufacturing. The
degree of uniformity is inversely proportional to the intrinsic variability (see Section
1.2) of the quality characteristic. If the variability, measured by the range or stan-
dard deviation, of the quality characteristic stays at a specified level, which is the

466
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naturally occurring (also called uncontrolled, or common cause) intrinsic variability,
the process is in control (with respect to uniformity). If the variability increases, the
process is out of control.

To put the above discussion in statistical notation, let Yt denote the quality char-
acteristic of a product item selected randomly at time t, and set µt and σ 2

t for the
population mean and variance of the product’s quality characteristic at time t. Also,
let µ0 and σ 2

0 denote the target values for the mean and variance of the quality char-
acteristic. For as long as µt = µ0 and σ 2

t = σ 2
0 the process is in control. Imagine

that, over time, a change in the processing conditions occurs and, as a consequence,
the mean and/or the variance deviate from their target values. Thus, if t∗ denotes the
(unknown to us) time when a change occurs, we have that, for t ≥ t∗, µt ̸= µ0 and/or
σ 2

t > σ 2
0 . Similarly, a change in the production process at time t∗ can increase the

probability of a defective product, or the rate at which unwanted features, such as
scratches and other defects/abnormalities, occur on the finished product. In words,
starting from time t∗, the process is out of control, which means that the quality of
the products produced do not meet the desired standards. The purpose of control
charts is to indicate when the production process drifts out of control. When an out-
of-control state is indicated, an investigation is launched to determine what caused
the out-of-control drift. Once causes, hereafter referred to as assignable causes, have
been identified, corrective actions are taken.

To monitor the state of the production process, control charts rely on a series
of samples taken at selected time points. Such a series of samples is shown in
Figure 13-1, where the unknown time t∗ when the process drifts out of control is also
indicated. A statistic, such as the sample mean or sample variance, is computed for
each sample in turn, as it becomes available. Control charts incorporate the sampling
distribution of the computed statistic and ideas similar to those of hypothesis test-
ing and CIs in order to indicate, at each time point, whether or not the new sample
suggests that the process is out of control.

When the mean and/or variance of the quality characteristic (also referred to
as process mean and process variability) drift away from their target values, it is of
interest to detect the change as quickly as possible. On the other hand, a false alarm
causes an unnecessary disruption in the production process, due to the investigation
to identify assignable causes. It is thus desirable that, at each time point when a
sample is selected and its conformance to the target mean and/or variance is tested,
an actual out-of-control state be detected with high probability. At the same time,
it is desirable to have a low probability for false alarms. These notions, which are

t* t*

Figure 13-1 Series of
samples of size 4. Changes
in the mean (left panel)
and the variance (right
panel) occur at time t∗.
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similar to type I and type II error probabilities in hypothesis testing (see Section
8.4.1), form the basis for evaluating the efficiency of a control chart.

Process Capability, Process Yield, and the Six Sigma Ethic Very often, the dual
objectives of keeping the process mean and process variability at specified target
levels, are replaced by an alternative objective that is expressed in terms of the pro-
portion of items whose quality characteristic lies within desirable specification limits.
For example, in aluminum cold rolling processes, the coolant viscosity, which has a
major impact on surface quality, should be between 2.7 ± 0.2 centistokes. In this
example, 2.7 − 0.2 = 2.5 is the lower specification limit, or LSL, and 2.7 + 0.2 is the
upper specification limit, or USL for the coolant production process. Since batches
of coolant with viscosity outside the specification limits result in inferior surface
quality, the coolant manufacturing process should produce such batches with low
probability. Because the proportion of product items whose quality characteristic
lies outside the specification limits depends on both the mean value and variance
of the quality characteristic (see Figure 13-2), controlling the proportion of product
items whose quality characteristic lies outside the specification limits is an indirect
way of controlling the mean value and the variance.

Process capability refers to the ability of a process to produce output within the
specification limits. A quantification for process capability is given by the capability
index:

C = USL − LSL
6σ

, (13.1.1)

where σ is the standard deviation of the quality characteristic, assuming that the
mean value is the midpoint, µ0, between USL and LSL.1 Note that the capability
index makes sense only for processes that are in statistical control. The higher a
process’s capability index, the smaller the probability that it will produce an item
with quality characteristic outside the specification limits. A process is said to be at
six sigma (6σ ) quality level if its capability index is 2. The so-called process yield of a
6σ process is 99.9999998%, meaning the probability (under normality) of producing

LSL USL

LSL USL

USL

µ = µ0

LSL µ = µ0

0.
1

0.
3

µ

0.
1

0.
3

0.
1

0.
2

µ0

Figure 13-2 Probability of
producing an item with
quality characteristic
outside the specification
limits (shaded area) when
mean and variance are
equal to target values (top
panel), only the mean is
larger than the target value
(middle panel), and only
the variance is larger than
the target value (bottom
panel).

1 See http://en.wikipedia.org/wiki/Process_capability_index for variations of this capability index.

http://en.wikipedia.org/wiki/Process_capability_index
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an item outside the specification limits is 2 × 10−9. Starting with Motorola in 1985
and General Electric in 1995, 6σ quality has become the standard in high-quality
manufacturing.

The Assumption of Rational Subgroups Rational subgroups is a technical term used
to describe a sequence of samples, such as shown in Figure 13-1, provided the obser-
vations taken at each time point are independent and identically distributed (iid) and
different samples are independent. Each sample is a rational subgroup and offers a
snapshot of the state of the process at the time it is taken. Observations from differ-
ent samples need not be identically distributed as the state of the process may have
changed.

The control charts we will discuss rely on the assumption that the samples taken
at the different inspection time points form rational subgroups. When observations
within a rational subgroup are not independent, in which case they are said to be
autocorrelated or serially correlated, their sample variance tends to underestimate
the population variance. Unless the autocorrelation is properly taken into account,
the control charts may produce frequent false alarms.

Historically, the idea of a control chart was first proposed by Dr. Walter A.
Shewhart in 1924 while he was working at Bell Labs. Shewhart’s thinking and use of
the control chart were further popularized by W. Edwards Deming, who is also cred-
ited with their wide adoption by the Japanese manufacturing industry throughout
the 1950s and 1960s.

The next section discusses the use of the X chart, which is the most common
chart for monitoring the process mean. Charts for controlling the variability are
discussed in Section 13.3. Charts for controlling the proportion of defective items
and charts for controlling the number of defects/abnormalities per item are pre-
sented in Section 13.4. The charts in Sections 13.2 through 13.4 are referred to as
Shewhart-type control charts. Finally, the cumulative sum, or CUSUM, chart and the
exponentially weighted moving average, or EWMA, chart, both of which have better
efficiency properties than the X chart for small deviations from the target value of
the process mean, are discussed in Section 13.5.

13.2 The X Chart
In addition to the assumption of rational subgroups, the X chart, which will
be described in this section, requires that the normality assumption is, at least
approximately, satisfied. In addition, construction of the X chart relies on the tacit
assumption that the variance of the quality characteristic is in control. For this rea-
son, charts for controlling the process variation (see Section 13.3) are typically the
first to be employed. On the other hand, the X chart is more suitable for explaining
the underlying ideas of control charts, and thus it is presented first.

There are two versions of the X chart. One assumes known target values for the
mean value and variance, while the other uses estimates of these target values. The
latter is mainly used in the early stages of a process control program when, more
often than not, the true target values are unknown. In addition to describing the two
versions of the X chart, this section introduces the concept of average run length,
which is used for evaluating the performance of control charts.

13.2.1 X CHART WITH KNOWN TARGET VALUES

Let µ0, σ0 denote the target values for the mean and standard deviation of a quality
characteristic, which is assumed to have the normal distribution. Then, if X denotes
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the mean of a sample of size n, taken when the process is in control, that is, when
the true mean and standard deviation of the quality characteristic are equal to their
target values, properties of the normal distribution imply that it lies within µ0 ±
3σ0/

√
n with high probability. In particular,

P
(

µ0 − 3
σ0√

n
≤ X ≤ µ0 + 3

σ0√
n

)
= 0.9973. (13.2.1)

This fact underlies the construction of the X chart.
Let x1, x2, x3, . . . denote the sample means of the samples (rational subgroups)

of size n taken at inspection time points 1, 2, 3, . . .. The X chart consists of a scatter-
plot of the points (1, x1), (2, x2), (3, x3), . . . together with horizontal lines drawn at
the lower control limit, or (LCL), and the upper control limit, or (UCL), where

LCL = µ0 − 3
σ0√

n
and UCL = µ0 + 3

σ0√
n

. (13.2.2)

If a point (i, xi) falls above the horizontal line at UCL or below the horizontal
line at LCL the process is declared out of control, and an investigation to identify
assignable causes is launched. If all points are within the control limits, then there is
no reason to suspect that the process is out of control.

The upper and lower control limits given in (13.2.2) are called 3σ control lim-
its. They are the most frequently used and the default control limits in statistical
software.

Example
13.2-1

The file CcShaftDM.txt contains 20 samples (rational subgroups) of n = 5 shaft
diameter measurements used in a process control study.2 Each sample was taken on
a different day. The target mean value for the shaft diameter is 0.407 and the historic
standard deviation is 0.0003.

(a) Construct an X chart with 3σ control limits.
(b) If the specification limits for these machine shafts is 0.407 ± 0.00025, use the

data to estimate the process yield.

Solution
(a) Application of the formulas for the control limits in (13.2.2) gives

LCL = 0.407 − 3
0.0003√

5
= 0.4065975 and

UCL = 0.407 + 3
0.0003√

5
= 0.4074025.

Importing the data into the R data frame ShaftDiam, the R commands
plot(rowMeans(ShaftDiam), ylim=c(0.4065, 0.4076)); abline(h=c(0.4065975,
0.407, 0.4074025)) plot the subgroup means and draw horizontal lines at
the control limits and the target value. Alternatively, the X chart can
be constructed with a customized R function available in the R package
qcc. With the package installed and loaded to the current R session by
install.packages(”qcc”) and library(qcc), respectively, the R command for the
3σ X chart with known target values is

2 Dale G. Sauers (1999). Using the Taguchi loss function to reduce common-cause variation. Quality Engineering,
12(2): 245–252.
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R Command for a 3σ X Chart with Specified Target
Mean Value and Standard Deviation

qcc(ShaftDiam, type=”xbar”, center=0.407,
std.dev=0.0003)

(13.2.3)

The output of this command is the X chart shown in Figure 13-3. The chart
shows two points above the upper control limit, suggesting that the process is
out of control. The number of observations beyond the control limits is also
given at the bottom of the chart, together with additional information.

Assuming normality, relation (13.2.1) gives that, when the process is in
control, the probability that each individual subsample mean falls within
the 3σ control limits is 0.9973. The options nsigmas and confidence.level
can be used to construct alternative X charts. For example, qcc(ShaftDiam,
type=”xbar”, center=0.407, std.dev=0.0003, nsigmas=2) constructs a 2σ X
chart, while qcc(ShaftDiam, type=”xbar”, center=0.407, std.dev=0.0003, confi-
dence.level=0.99) constructs an X chart with probability 0.99 for each individ-
ual subsample mean to fall within the control limits.

A final comment on the use of the R function qcc has to do with the
fact that data files often present the data in two columns, one correspond-
ing to the actual measurements and a second column specifying the sample
each measurement comes from. For illustration purposes, the shaft diam-
eter data is given in this alternative form in the file CcShaftD.txt. With
the data imported into the R data frame SD, the X chart of Figure 13-3
can be constructed with the R commands Diam=qcc.groups(SD$ShaftDiam,
SD$Day); qcc(Diam, type=”xbar”, center=0.407, std.dev=0.0003). The first of
these commands converts the data into the form suitable for use in the qcc
function.

X Chart for ShaftDiam–
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(b) The number of shafts within the specification limits, obtained with the
R command sum(ShaftDiam>=0.407-0.00025&ShaftDiam<=0.407+0.00025),
is 56. Since there is a total of 100 diameter measurements, the process
yield is 56%.

13.2.2 X CHART WITH ESTIMATED TARGET VALUES

As already mentioned, in the early stages of a process control program, the true
target values are often unknown. For example, the target mean value and variance
of characteristics such as the length where a cap is electronically placed on a syringe,
or the stress resistance of aluminum sheets, might be unknown when monitoring
of the respective production processes begins. In such cases, the initial purpose of
process monitoring is to maintain the product quality at current levels. To do so,
the current levels of the mean and standard deviation must first be estimated by
collecting samples from time periods when the process is assumed to be in control.

Let x1, . . . , xk, be the sample means of k samples (rational subgroups) taken
when the process is believed to be in control. It is recommended that the subgroup
sample size be at least 3 and the total number of observations in the k samples be at
least 60; for example, at least k = 20 samples each of size at least 3. Then the mean
value is estimated by averaging the k sample means:

µ̂ = 1
k

k∑

i=1

xi. (13.2.4)

There are two commonly used estimators of the standard deviation. One is based
on the subgroup standard deviations, and the other on the subgroup ranges, where
the range of a sample is defined as the difference between the largest and smallest
sample values. Thus, if xi1, . . . , xin are the n observations in the ith subgroup, its range
is computed as

ri = max{xi1, . . . , xin} − min{xi1, . . . , xin}.
Let s1, . . . , sk and r1, . . . , rk be sample standard deviations and sample ranges,

respectively, of the k rational subgroups. (Note that, even though the sample vari-
ance is an unbiased estimator of σ 2 [see Proposition 6.2-1], the sample standard
deviation is biased for σ .) The two commonly used unbiased estimators of the
population standard deviation are

σ̂1 = 1
An

1
k

k∑

i=1

si = 1
An

s, and σ̂2 = 1
Bn

1
k

k∑

i=1

ri = 1
Bn

r, (13.2.5)

where the constants An and Bn are chosen so that, if the normality assumption holds,
σ̂1 and σ̂2 are unbiased estimators of σ . An values are less than one, indicating that
the average of the sample standard deviations underestimates σ ; for example, for
n = 3, 4, 5, the value of An, rounded to three decimal places, is 0.886, 0.921, and
0.940, respectively. Bn values are greater than one, indicating that the average of
the sample ranges overestimates σ ; for example, for n = 2, 3, 4, 5, the value of Bn,
rounded to three decimal places, is 1.128, 1.693, 2.058, and 2.325, respectively. Tables
for the constants An and Bn are available in many textbooks and training materials
on statistical process control.3 Instead of reproducing the tables here, we rely on R
for the computation of σ̂1 and σ̂2.

3 A table of An values is also available at http://en.wikipedia.org/wiki/Unbiased_estimation_of_standard_
deviation. The values of Bn for n from 2 to 25 can be found in D. C. Montgomery (1996). Introduction to Statistical
Quality Control, 3rd Edition, New York: John Wiley & Sons, Inc.

http://en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation
http://en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation
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The 3σ control limits for the X chart with estimated parameters are

LCL = µ̂ − 3
σ̂√
n

and UCL = µ̂ + 3
σ̂√
n

, (13.2.6)

where µ̂ is given in (13.2.4) and σ̂ is either one of the two estimators of σ given in
(13.2.5).

Example
13.2-2

The R data frame pistonrings,4 available in the R package qcc, consists of 40 samples,
each of size 5, of the inside diameter of piston rings for an automotive engine. The
first column of the data frame gives the diameter measurements, and the second col-
umn is a sample (rational subgroup) indicator. The first 25 samples were taken when
the process was thought to be in control; this is indicated by “TRUE” on the third
column of the data frame. Use the data to estimate the in-control diameter mean
and standard deviation, construct a 3σ X chart, and check if any of the remaining
subgroups indicate an out-of-control state.

Solution
Use library(qcc); data(pistonrings); attach(pistonrings) to import the pistonrings data
frame to the current R session, and piston=qcc.groups(diameter, sample) to arrange
the 40 samples into 40 rows (each of size 5) in the object piston. The R command
for estimating the in-control diameter mean and standard deviation from the first 25
subgroups and constructing a 3σ X chart is

R Command for a 3σ X Chart with Estimated Mean Value and
Standard Deviation

qcc(piston[1:25,], type=”xbar”, newdata=piston[26:40, ]) (13.2.7)

The output of this command is the X chart shown in Figure 13-4. The vertical line
at the 25.5 mark on the x-axis separates the first 25 samples, called calibration data,
from the remaining samples that are to be tested using estimates of the mean and
standard deviation obtained from the calibration data. The chart shows three points,
corresponding to samples numbered 37, 38, and 39, above the upper control limit,
suggesting that the process is out of control.

The X chart shown in Figure 13-4 uses the estimator of σ based on the sample
ranges, that is, σ̂2, given in (13.2.5). A longer version of the command in (13.2.7) is:

qcc(piston[1:25,], type=”xbar”, newdata=piston[26:40, ],
std.dev=”UWAVE-R”).

To use the estimator σ̂1, given in (13.2.5), simply replace std.dev=”UWAVE-R” by
std.dev=”UWAVE-SD”. With the pistonrings data, the choice of σ̂ does not make
a noticeable difference in the resulting X chart. In fact, for this data set, σ̂1 =
0.009829977, while σ̂2 = 0.009785039 (also displayed at the bottom of Figure 13-4).
Finally, the options nsigmas and confidence.level, described in connection with
(13.2.3), can be used to construct alternative X charts.

4 D. C. Montgomery (1991). Introduction to Statistical Quality Control, 2nd Edition, New York: John Wiley &
Sons, 206–213.
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X Chart for piston[1:25, ] and piston[26:40, ]
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–Figure 13-4 3σ X chart for
the pistonrings data:
Estimated µ and σ .

Recomputing the Estimated Target Values It is possible that the sample mean of one
or more of the calibration subgroups falls outside the control limits. This is an indi-
cation that, contrary to previous belief, the process might not have been in control
during the collection of the calibration data. If an assignable cause can be identified,
a judgement must be made if the assignable cause affected only the subgroups whose
sample means fall outside the control limits. If so, these subgroups must be removed
from the calibration data, and the target values be recomputed using the remaining
subgroups in the calibration data. For example, had Figure 13-4 shown the means
x4, x9, x18 to lie outside the control limits, the elimination of subgroups 4, 9, and
18 from the calibration data set and the construction of the 3σ X chart using esti-
mated target values from the reduced calibration data would have been done with
the R commands

R Commands for Deleting Subgroups from the Calibration
Data

qcc(piston[c(1:25)[-c(4, 9, 18)], ], type=”xbar”,
newdata=piston[26:40, ])

(13.2.8)

The resulting chart shows the same three points above the upper control limit.

13.2.3 THE X CHART

When only n = 1 observation is collected at each inspection time point, the X chart
is called the X chart. Because computation of either the sample range or standard
deviation requires a sample of size at least 2, the methods described for estimating
the in-control standard deviation do not apply if n = 1. In such cases, the most
commonly used estimator uses the average moving range,



Section 13.2 The X Chart 475

MR = 1
k − 1

k−1∑

i=1

MRi, where MRi = |Xi+1 − Xi|,

where k is either the total number of inspection time points or the number of inspec-
tion time points when the process is believed to be in control. In particular, σ is
estimated by

σ̂ = MR/1.128, (13.2.9)

and the resulting control limits for the X chart are

LCL = µ̂ − 3
MR

1.128
and UCL = µ̂ + 3

MR
1.128

, (13.2.10)

where, in this case, µ̂ is simply the average x of all observations or of those taken
when the process is believed to be in control. If the target value, µ0, of the process
mean is known, µ0 can be used instead of µ̂ in (13.2.10).

With the data in the R object x, the R commands for the X chart are

R Commands for a 3σ X Chart

qcc(x, type=”xbar.one”)
qcc(x[1:k], type=”xbar.one”, newdata=x[k+1:length(x)])

(13.2.11)

In the first of the commands in (13.2.11), x and the average moving range (and
hence the estimator of σ ) are computed from the entire data set, while in the second
command they are computed from the first k observations, where k is the number
of inspection time points when the process is believed to be in control. If the target
value, µ0, of the process mean is known, the option center=µ0 can be used with either
of the two commands (e.g., qcc(x, type=”xbar.one”, center=0.0), if µ0 = 0.0).

To illustrate the construction of X charts, 50 observations were randomly gen-
erated, the first 30 from the N(0, 1) distribution and the last 20 from N(1, 1), and
saved in the file SqcSimDatXone.txt. Read the data into the data frame simd, and
copy the 50 values into the R object x by x=simd$x. Then the commands in (13.2.11)
with k and k+1 replaced by 30 and 31, respectively, produce the X charts shown
in Figure 13-5. Note that, up to three decimal places, the estimated standard devia-
tion in the two charts is the same. This is due to the fact that the process variability
remains in control, so only one of 49 moving ranges has the potential of being larger
(though in this case |x31 − x30| happens to be relatively small). What really makes a
difference in the two charts is the estimated mean, which is larger in the left panel
chart. This difference in the estimated center results in three points being in color in
the right panel chart. The significance of colored points is explained in the following
section.

13.2.4 AVERAGE RUN LENGTH AND SUPPLEMENTAL RULES

As already mentioned, it is desirable that false alarms, that is, out-of-control signals
when the process is in control, happen with low probability. If the quality character-
istic is normally distributed and the target variance is known to be σ 2

0 , the probability
that a 3σ X chart issues a false alarm is

Pµ0,σ0

(
X < µ0 − 3

σ0√
n

)
+ Pµ0, σ0

(
X > µ0 + 3

σ0√
n

)
= 2,(−3) = 0.0027. (13.2.12)
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data (left panel) and from
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(right panel).

(The subscript µ0, σ0 in Pµ0, σ0 is used to indicate that the probability is computed
under the assumption that the true mean of X is µ0 and its true variance is σ 2

0 /n, i.e.,
that the process mean is in control.) On the other hand, if the process shifts out of
control, it is desirable to have a high probability of an out-of-control signal. For the
X chart, such probabilities are calculated below.

The number of inspection time points until the first out-of-control signal is
called a run length. Intuitively, long run lengths are expected when the probabil-
ity of an out-of-control signal is low, and short run lengths are expected when this
probability is high. Under the assumption of rational subgroups, this connection
between run lengths and the probability of an out-of-control signal can be made
precise.

Consider a sequence of independent Bernoulli trials whose probability of “suc-
cess” is p. In the context of statistical process control, each inspection time point
corresponds to a Bernoulli trial, where “success” is the event that the correspond-
ing sample mean lies outside the control limits. For example, according to (13.2.12),
if the process is in control, and assuming normality and known σ , p = 0.0027
for a 3σ X chart. The number of Bernoulli trials until the first success is a ran-
dom variable having the geometric distribution (see Section 3.4.3). Thus, under
the assumption of rational subgroups, run lengths are geometric random variables.
The mean value of a run length is called average run length, or ARL. In terms
of ARL, the desirable properties of any control chart can be restated as follows:
long ARL when the process is in control, and short ARL when the process is out of
control.

From relation (3.4.13) we have that the mean value of a geometric random
variable is 1/p. Thus, (13.2.12) implies that, under the assumptions of rational sub-
groups, normality, and σ known to be σ0, the in-control ARL for a 3σ X chart
is 1/(2,(−3)) = 1/0.0027 = 370.4. Thus, on average, false alarms happen about
every 370 inspections of an in-control process. Similarly, the in-control ARL for a
2.7σ X chart and that for a 3.1σ X chart are found to be 144.2 and 516.7, respec-
tively (Exercise 1). These ARLs are approximately correct with estimated σ and
with the normality assumption being approximately satisfied.
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The probability of an out-of-control signal when (only) the process mean has
shifted out of control depends on the size of the shift, that is, |µ − µ0|, where µ

denotes the current value of the process mean and µ0 is the target value. If µ =
µ0 +'σ , so µ−µ0 = 'σ , where ' can be positive or negative (i.e., |µ−µ0| = |'|σ ),
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n'). (13.2.13)

Note that, for a fixed value of n, the value of (13.2.13) depends only on the absolute
value of ', not its sign (Exercise 1). Keeping n fixed, differentiation of (13.2.13)
reveals that the probability of an out-of-control signal increases as |'| increases. For
example, if n = 5, the R commands

Delta=seq(.2, 1.4, .2); p=1+pnorm(-3-sqrt(5)∗Delta)-
pnorm(3-sqrt(5)∗Delta); p; 1/p

give the values shown in Table 13-1 for the probability of an out-of-control signal
(P(signal) in the table), and the corresponding ARL for ' values from 0.2 to 1.4 in
increments of 0.2. (The table also shows the in-control ARL, i.e., ' = 0, which was
derived before.)

Similarly, the probability of an out-of-control signal increases with the sample
size for each fixed |'|; see Exercise 1 for an example.

From Table 13-1, it is clear that a 3σ X chart is slow to detect small shifts in
the process mean. This prompted investigators at the Western Electric Company5

to develop supplemental stopping rules. According to these rules, called Western
Electric rules, the process is also declared out of control if any of the following is
violated:

1. Two out of three consecutive points exceed the 2σ limits on the same side of the
center line.

2. Four out of five consecutive points exceed the 1σ limits on the same side of the
center line.

3. Eight consecutive points fall on one side of the center line.

Table 13-1 Probability of out-of-control signal and ARL for shifts of 'σ , with n = 5

' 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

P(signal) 0.0027 0.0056 0.0177 0.0486 0.1129 0.2225 0.3757 0.5519

ARL 370.4 177.7 56.6 20.6 8.9 4.5 2.7 1.8

5 Western Electric Company (1956). Statistical Quality Control Handbook. Indianapolis: Western Electric
Company.
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Rules 1 and 2 are referred to as scan rules, while rule 3 is referred to as the runs
rule. In control charts produced by R, the points violating the runs rule are marked in
color (see Figures 13-3, 13-4, and 13-5). (Note that, according to R’s default settings,
a violation of the runs rule occurs at the seventh consecutive point on the same side
of the center line. In general, there is some variation of the rules industry.)

The computation of the in-control and out-of-control ARLs of X charts with the
supplemental rules is considerably more complicated and beyond the scope of this
book.6

Exercises

1. Complete the following:

(a) Verify that the ARLs for a 2.7σ X chart and a 3.1σ X
chart, under the assumptions of rational subgroups,
normality, and known σ0, are 144.2 and 516.7, respec-
tively.

(b) Show that, keeping n fixed, the value of (13.2.13) for
' = |'| is the same as its value for ' = −|'|.

(c) Use (13.2.13) to compute the probability of an out-
of-control signal and the corresponding ARL for n =
3, . . . , 7 when ' = 1.

2. A case study deals with the length at which a cap
is electronically placed on syringes manufactured in a
Midwestern pharmaceutical plant.7 The cap should be
tacked at an approximate length of 4.95 in. If the length is
less than 4.92 in. or larger than 4.98 in., the syringe must
be scrapped. In total, 47 samples of size 5 were taken, with
the first 15 samples used for calibration. After sample
32, the maintenance technician was called to adjust the
machine. The data (transformed by subtracting 4.9 and
multiplying times 100) can be found in SqcSyringeL.txt.
(a) Use commands similar to those given in Example

13.2-2 to construct a 3σ X chart, using the estimator σ̂2
given in (13.2.5). What does the chart suggest regard-
ing the effect of the adjustment made after the 32nd
sample? Has the adjustment brought the process back
in control?

(b) Use a command similar to (13.2.8) to delete the sec-
ond subgroup and re-construct the 3σ X chart with
the new control limits. Have your conclusions in part
(a) changed?

(c) Repeat parts (a) and (b) using the estimator σ̂1 given
in (13.2.5). Have the conclusions from parts (a) and
(b) changed?

(d) Use commands similar to those given in Example
13.2-1(b), and upper and lower specification lim-
its of 4.92 and 4.98, to estimate the process
yield after the adjustment made. (Hint. Import the
data into the R data frame syr, and transform it
back to the original scale by x=syr$x/100+4.9. Use
sum(x[161:235]>=4.92&x[161:235]<=4.98).)

3. A case study reports on controlling the viscosity of
a coolant used in an aluminum cold rolling process, as
the viscosity has a major impact on the surface qual-
ity of the aluminum produced.8 The data can be found
in SqcCoolVisc.txt. Use commands similar to those of
(13.2.11) to construct the following charts.
(a) A 3σ X chart with the center and standard deviation

computed from the entire data set.
(b) A 3σ X chart with the center and standard deviation

computed from the first 25 observations, taken when
the process is believed to be in control.

For each of the charts, identify any points that fall out-
side the control limits, as well as any points suggesting
an out-of-control state according to the General Electric
supplemental rules.

4. A study involves 48 daily unit rate construction labor
productivity data.9 The first 30 daily measurements cor-
respond to an unimpacted period and can be used for
calibration. The data are given in SqcLaborProd.txt. Use
commands similar to those of (13.2.11) to construct a 3σ
X chart with the center and standard deviation computed
from the first 30 observations.
(a) Is the process in control during the calibration period

or after the calibration period?
(b) Remove the 12th and 13th daily measurements and

answer again the questions in part (a).

6 See J. Glaz, J. Naus, and S. Wallenstein (2001). Scan Statistics. New York: Springer-Verlag, and N. Balakrishnan
and M. V. Koutras (2002). Runs and Scans with Applications, New York: John Wiley.
7 LeRoy A. Franklin and Samar N. Mukherjee (1999-2000). An SPC case study on stabilizing syringe lengths.
Quality Engineering, 12: 65–71.
8 Bryan Dodson (1995). Control charting dependent data: A case study. Quality Engineering, 7: 757–768.
9 Ronald Gulezian and Frederic Samelian (2003). Baseline determination in construction labor productivity-loss
claims. Journal of Management in Engineering, 19: 160–165.
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13.3 The S and R Charts
The commonly used charts for monitoring process variability are the S chart and the
R chart. As mentioned earlier, one of the underlying assumptions for the X chart is
that the process is in control with respect to variability. Thus, S and R charts should
always be performed first, and, if the process is declared out of control, there is no
need to proceed with the X chart.

Let s1, . . . , sk and r1, . . . , rk be the sample standard deviations and sample ranges,
respectively, of k rational subgroups, and let s, r denote their respective averages.
The expressions for the lower and upper control limits of the S and R charts use
the constants An and Bn, which are introduced in (13.2.5), and the additional con-
stant Cn, which is the standard deviation of the range of a sample of size n from the
standard normal distribution. These expressions are given in Table 13-2, keeping in
mind that the LCL is not allowed to take a negative value. In particular, LCL is set
to zero whenever its expression results in a negative value. This happens if n ≤ 5 for
the S chart and if n ≤ 6 for the R chart. Tables for Cn exist in many textbooks;10 for
example, for n = 3, 4, 5, the value of Cn, rounded to three decimal places, is 0.888,
0.880, 0.864. However, we will rely on R commands for the construction of S and R
charts. These are described in the following example.

Example
13.3-1

Use the R data frame pistonrings, which was also used in Example 13.2-2, to con-
struct S and R charts by computing s and r from all available subgroups. Repeat this
using only the first 25 subgroups for computing s and r.

Solution
As in Example 13.2-2, use library(qcc); data(pistonrings); attach(pistonrings);
piston= qcc.groups(diameter, sample) to import the pistonrings data frame to the
current R session and to create the object piston suitable for use in the qcc func-
tion. The R command for constructing S charts with s computed using all available
subgroups and then using only the first 25 subgroups, respectively, are

R Commands for S Charts

qcc(piston, type=”S”)
qcc(piston[1:25,], type=”S”, newdata=piston[26:40, ])

(13.3.1)

The charts are shown in Figure 13-6. Neither of these charts suggests that the process
variability is out of control. Thus, there is no reason to suspect the validity of the in-
control process variability assumption, which is needed for the X charts of Example
13.2-2.

Table 13-2 Lower and upper control limits of S and R charts

LCL UCL

S Chart s − 3s
√

1 − A2
n/An s + 3s

√
1 − A2

n/An

R Chart r − 3Cnr/Bn r + 3Cnr/Bn

10 D. C. Montgomery (1996). Introduction to Statistical Quality Control, 3rd Edition, New York: John Wiley &
Sons, A-15, constant d3.
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Figure 13-6 S charts: s
computed from all
available subgroups (left
panel) and from the first 25
subgroups (right panel).

Replacing type=”S” by type=”R” in (13.3.1) produces the corresponding R
charts. For the pistonrings data, these charts are similar to the S charts of Figure 13-6
and are not shown.

REMARK 13.3-1

(a) For the relatively small subgroup sizes typically used in quality control studies,
the sample standard deviation and range are not (even approximately) nor-
mally distributed. Thus, probability calculations like those of relations (13.2.1)
and (13.2.13) cannot be made for the S and R charts of Table 13-2.

(b) Because the 3σ -type control limits used in the S and R charts are not based
on sound probabilistic properties, it is recommended that both charts be
constructed, especially if n ≤ 7 or 10. For larger n values, the S chart is
preferable.

(c) Under the assumption that the underlying distribution of the quality charac-
teristic is normal, a different S chart, based on the χ2 CI for σ given in (7.3.20),
is possible; see Exercise 3. ▹

Exercises

1. Use the data of Exercise 2 in Section 13.2 and
commands similar to those given in Example 13.3-1
to construct an S and an R chart. What do these
charts suggest regarding the effect on the process
variability of the adjustment made after the 32nd
sample?

2. A case study deals with semiconductor wafer diam-
eter.11 The data set, consisting of samples of size
2 that are taken from 20 lots, can be found in
SqcSemicondDiam.txt.

(a) Use commands similar to those given in Example
13.3-1 to construct an S and an R chart. Comment
on what these charts suggest about the process
variability.

(b) Use commands similar to those given in Example
13.2-2 to construct a 3σ X chart, using the estimator
σ̂2 given in (13.2.5). What does the chart suggest
regarding the process mean?

(c) Repeat part (b) using the estimator σ̂1 given in
(13.2.5). Has the conclusion from part (a) changed?

11 Charles R. Jensen (2002). Variance component calculations: Common methods and misapplications in the
semiconductor industry, Quality Engineering, 14: 645–657.
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3. The χ2 CI for σ given in (7.3.20) suggests a χ2-based
S chart. The 99.7% control limits of this chart, using the
square root of the average of the k sample variances, s̃ =√

(1/k)
∑k

i=1 s2
i , as estimator of the in-control standard

deviation, are given by

LCL = s̃

√
χ2

n−1,0.9985

n − 1
and UCL = s̃

√
χ2

n−1,0.0015

n − 1
.

Implementation of the χ2-based S chart in R is not auto-
matic, but its construction for the pistonrings data frame
is demonstrated next. Let piston be the R object crated in
Example 13.2-2. The R commands

stilde=sqrt(mean(apply(piston[1:25, ], 1, var)))
n=5; LCL=stilde∗sqrt(qchisq(0.0015, n-1)/(n-1))
UCL=stilde∗sqrt(qchisq(0.9985, n-1)/(n-1))

compute the lower and upper control limits, and the
further commands
sdv=apply(piston, 1, sd)
plot(1:40, sdv, ylim=c(0.0015, 0.0208), pch=4,

main=”Chi square S chart”)
axis(4, at=c(LCL, UCL), lab=c(”LCL”, ”UCL”))
abline(h=LCL); abline(h=UCL)

plot the standard deviations from the 40 subgroups and
the control limits. Use the above commands to construct
the χ2-based S chart for the pistonrings data.

13.4 The p and c Charts
The p chart is used for controlling the binomial probability p which, in quality control
settings, typically refers to the proportion of defective/nonconforming items pro-
duced. The c chart (c for count) is used for controlling the Poisson parameter λ,
which typically refers to the average number of nonconformances per item or per
specified area of surface, or of the number of accidents in an industrial plant or out-
breaks of a certain disease, etc. In the quality control literature, count data used for
the p and c charts are jointly referred to as attribute data.

13.4.1 THE p CHART

Let Di be the number of defective items in a sample of size n taken at inspection
times i = 1, 2, . . ., and set p̂i = Di/n. In this context, the assumption of rational sub-
groups means that the Di, and hence the p̂i, are independent. Also assume that at
each inspection time point, different items are defective or non-defective indepen-
dently of each other. If the process is in control, and the in-control probability that
an item is defective is p, then, by (4.4.4) and (4.4.9),

E(̂pi) = p and Var(̂pi) = p(1 − p)
n

.

Moreover, if np ≥ 5 and n(1 − p) ≥ 5, the DeMoivre-Laplace Theorem (Theorem
5.4-2) implies that p̂ has approximately a normal distribution. Thus, the 3σ control
limits are

LCL = p − 3

√
p(1 − p)

n
and UCL = p + 3

√
p(1 − p)

n
. (13.4.1)

If LCL is negative, it is replaced by zero. When p is unknown, the control limits in
(13.4.1) are computed with p replaced by

p = 1
k

k∑

i=1

p̂i,

where p̂1, . . . , p̂k are obtained when the process is believed to be in control. Note
that because the probability of a defective item is typically quite small, the sample
size n is much larger here than for the X chart.
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The implementation of the p chart in R is illustrated in the following
example.

Example
13.4-1

The R data frame orangejuice,12 available in the R package qcc, consists of 54 sam-
ples (rational subgroups), each of size n = 50, of orange juice cans collected at
half-hour intervals. Each can was inspected after filling to determine whether the
liquid could leak either at the side seam or around the bottom joint, and the num-
ber of defective (leaking) cans for each sample was recorded. The first 30 samples
were taken when the machine was in continuous operation, but the last 24 samples
were taken after an adjustment was made. It is believed that the process was in con-
trol before the adjustment. Construct a 3σ p chart using the first 30 samples as the
calibration data set.

Solution
Use library(qcc) to load the package qcc to the current R session, and
data(orangejuice); attach(orangejuice) so the columns of the data frame orangejuice
can be referred to by their names. The three columns of this data frame are D for
the number of defectives in each sample, size for the sample size of each sample,
and trial, which is a logical variable taking the value TRUE and FALSE for the first
30 and last 24 samples, respectively. With this information, the R command for the
desired p chart is:

R Command for p Charts
qcc(D[trial], sizes=size[trial], type=”p”,

newdata=D[!trial], newsizes=size[!trial])
(13.4.2)

Note that c(1:30) and c(31:54) could have been used instead of trial and !trial, respec-
tively, in (13.4.2). The p chart produced by this command, shown in the left panel of
Figure 13-7, reveals that (a) the sample proportions p̂15 and p̂23, both of which are
used to obtain p, are above the 3σ UCL, and (b) the adjustment that happened after
the 30th subgroup appears to have decreased the proportion of defectives produced
(which is a good thing!).

Upon investigation, it turns out that sample 15 used a different batch of
cardboard, while sample 23 was obtained when an inexperienced operator was tem-
porarily assigned to the machine. Because assignable causes for these two points
have been found, samples 15 and 23 need to be removed from the calibration
set and the control limits must be recomputed (see the discussion on recomput-
ing the estimated target values in Section 13.2.2). The R command for doing
so is

R Command for Recomputing Control Limits in p Charts

qcc(D[c(1:30)[-c(15,23)]], sizes=size[c(1:30)[-c(15,23)]],
type=”p”, newdata=D[!trial], newsizes=size[!trial]) (13.4.3)

12 D. C. Montgomery (1991). Introduction to Statistical Quality Control, 2nd Edition, New York: John Wiley &
Sons, 152–155.
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Figure 13-7 p Charts for
the orangejuice data: The
first 30 of 54 subgroups
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panel), and after removing
two subgroups from the
calibration set (right
panel).

The p chart produced by this command is shown in the right panel of Figure 13-7.
Now a different sample proportion from the (reduced) calibration data set is
above the 3σ UCL. However, since no assignable cause has been found, it is not
removed. This chart also suggests that the adjustment, which happened after the
30th subgroup, reduced the proportion of defective items produced.

The np Chart Related to the p chart is the np chart, which plots the Di with cor-
responding 3σ limits np ± 3

√
np(1 − p). The np chart is constructed by replacing

type=”p” by type=”np” in (13.4.2) and (13.4.3).

13.4.2 THE c CHART

Let Ci be the observed count of some type (nonconformances per item or occur-
rences of some event per specified area or time) from the ith subgroup, i = 1, 2, . . ..
It is assumed that the counts follow a Poisson distribution. Let λ be the in-control
parameter value of the Poisson distribution. By (3.4.18), the in-control mean and
variance of each Ci are

E(Ci) = λ and Var(Ci) = λ.

Moreover, if λ ≥ 15, then Ci has approximately a normal distribution. Thus, the 3σ

control limits are

LCL = λ − 3
√

λ and UCL = λ + 3
√

λ. (13.4.4)

If LCL is negative, it is replaced by zero. When λ is unknown, the control limits in
(13.4.4) are computed with λ replaced by

λ = 1
k

k∑

i=1

Ci,

where C1, . . . , Ck are obtained when the process is believed to be in control.
The implementation of the c chart in R is illustrated in the following example.
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Example
13.4-2

The R data frame circuit,13 available in the R package qcc, consists of 46 counts, each
representing the total number of nonconformities in batches of 100 printed circuit
boards. The first 26 samples were taken when the process was believed to be in
control. Construct a 3σ c chart using the first 26 samples as the calibration data set.

Solution
Use library(qcc) to load the package qcc to the current R session and data(circuit);
attach(circuit) so the columns of the data frame circuit can be referred to by their
names. The three columns of this data frame are x for the number of nonconformi-
ties in each batch, size for the sample size of each batch, and trial, which is a logical
variable taking the value TRUE and FALSE for the first 26 and last 20 samples,
respectively. With this information, the R command for the desired c chart is:

R Command for c Charts

qcc(x[trial], sizes=size[trial], type=”c”,
newdata=x[!trial], newsizes=size[!trial])

(13.4.5)

The c chart produced by this command, shown in the left panel of Figure 13-8, reveals
that (a) counts C6 and C20, both of which are used to obtain λ, are outside the 3σ lim-
its, and (b) there is a violation of the runs rule. However, the run of points below the
center line involves points from the calibration set and thus can be discounted. (The c
chart for the last 20 points, generated by the command qcc(x[!trial], sizes=size[!trial],
center=19.84615, std.dev=4.454902, type=”c”) does not show any violations.)

Upon investigation, it turns out that sample 6 was examined by a new inspector
who was not trained to recognize several types of nonconformities that could have

c Chart for circuit$x[trial] and circuit$x[!trial]
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Figure 13-8 c Charts for
the circuit data: The first 26
of 46 counts used for
calibration (left panel), and
after removing two counts
from the calibration set
(right panel).

13 D. C. Montgomery (1991). Introduction to Statistical Quality Control, 2nd Edition, New York: John Wiley &
Sons, 173–175.
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been present. Furthermore, the unusually large number of nonconformities in sam-
ple 20 resulted from a temperature control problem in the wave soldering machine,
which was subsequently repaired. Because assignable causes for these two points
have been found, samples 6 and 20 need to be removed from the calibration set
and the control limits must be recomputed (see the discussion on recomputing the
estimated target values in Section 13.2.2). The R command for doing so is

R Command for Recomputing Control Limits in c Charts

qcc(x[c(1:26)[-c(6, 20)]], sizes=size[c(1:26)[-c(6, 20)]],
type=”c”, newdata=x[!trial], newsizes=size[!trial]) (13.4.6)

The c chart produced by this command is shown in the right panel of Figure 13-8.
This chart shows violations of the runs rule, which can be discounted for the same
reasons discussed above.

The u Chart In cases where the Poisson count pertains to the total number of non-
conformities in batches of items, as is the case in Example 13.4-2, a related chart,
called a u chart (u for unit), plots the average number of defectives per unit, that is,

Ui = Ci

n
,

where n is the batch size, with corresponding 3σ control limits λu ± 3
√

λu/n, where
λu = λ/n is the average number of nonconformities per unit. The u chart is con-
structed by replacing type=”c” by type=”u” in (13.4.5) and (13.4.6). The u chart can
also be used if the batch sample sizes are not equal; see Exercise 3.

Exercises

1. The analysis of the R data set orangejuice in Example
13.4-1 revealed that the probability of a defective item
decreased after the adjustment following the 30th inspec-
tion time point. To see if the smaller proportion of defec-
tives continues, 40 additional samples, each of size n = 50,
were taken. The data, made up of the last 24 samples in
the orangejuice data frame and the additional new 40 sam-
ples, are available in the R data set orangejuice2. Using
commands similar to those in Example 13.4-1, construct
a 3σ p chart using the first 24 samples in the orange-
juice2 data frame as the calibration data set and state your
conclusion.

2. The R data frame pcmanufact,14 available in the R
package qcc, consists of 20 counts, each representing the

total number of nonconformities in batches of 5 comput-
ers each. Construct a 3σ c chart, with λ estimated from the
entire data set. Explain the difference between a c chart
and a u chart, and construct the corresponding 3σ u chart
for these data.

3. Unequal sample sizes. For simplicity, all control lim-
its presented in this chapter assume equal sample sizes.
However, R commands allow also for unequal sample
sizes. The R data frame dyedcloth,15 available in the R
package qcc, consists of 10 counts, each representing the
total number of defects in batches of inspection units (50
square meters of dyed cloth). In this data set, the batch
sample sizes are unequal. Use the R commands given at
the end of Section 13.4.2 to construct a u chart.

14 D. C. Montgomery (1991). Introduction to Statistical Quality Control, 2nd Edition, New York: John Wiley &
Sons, 181–184.
15 Ibid., 183–184.
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13.5 CUSUM and EWMA Charts
The supplemental runs and scan rules were devised to shorten the fairly long ARLs
of the 3σ X chart for small shifts in the process mean. Like the X chart, how-
ever, these rules base the stopping (i.e., out-of-control) decision only on the current
subgroup mean.

An alternative approach for improving the performance of the X chart is to
base the stopping decision on the current and past subgroup means. The CUSUM
(for CUmulative SUM) chart and the EWMA (for Exponentially Weighted Moving
Average) chart correspond to two different methods for incorporating information
from past subgroups into the stopping decision. Both methods achieve shorter ARLs
for small shifts of the process mean and, unlike the supplemental rules, do not
decrease the in-control ARL. Moreover, these charts apply just as easily when the
subgroup size is n = 1 as when n > 1.

13.5.1 THE CUSUM CHART

As the name suggests, the CUSUM chart is based on the cumulative sums, which are
defined as

S1 = z1, S2 = S1 + z2, . . . , Sm = Sm−1 + zm =
m∑

i=1

zi, . . . ,

where, with µ0 and σ0 being the in-control mean and standard deviation,

zi = xi − µ0

σ0/
√

n
. (13.5.1)

If the subgroup size is n = 1, xi in (13.5.1) is the single observation in subgroup
i; if µ0 and σ0 are unknown, they are replaced by µ̂ and σ̂ , respectively, evaluated
from the calibration data; see (13.2.4) and (13.2.5), or (13.2.9) if n = 1.

The original CUSUM monitoring scheme consists of plotting the points (i, Si),
i = 1, 2, . . ., and using suitable control limits. If the process remains in control,
the cumulative sums Si are expected to fluctuate around zero, since (as random
variables) the cumulative sums have mean value zero. If the mean shifts from its
in-control value to µ1 = µ0 + 'σ0/

√
n, the mean value of Si is i'. Thus, a trend

develops in the plotted points, which is upward or downward, depending on whether
' is > 0 or < 0. On the other hand, the standard deviation of Si also increases with
i (σSi =

√
i), so the simple control limits of the Shewhart-type charts do not apply.

The appropriate control limits resemble a V on its side; this is known as the V-mask
CUSUM chart.

A different CUSUM monitoring scheme, called a Decision Interval Scheme or
DIS, uses a chart with horizontal control limits whose interpretation is similar to
the control limits in Shewhart charts. With the right choice of parameters, the two
CUSUM monitoring schemes are equivalent. However, in addition to its easier inter-
pretation, the DIS can be used for one-sided monitoring problems, and has a tabular
form as well as some additional useful properties.16 For this reason, we focus on the
DIS and describe its tabular form and corresponding CUSUM chart.

The DIS CUSUM Procedure Let zi be as defined in (13.5.1), set SL
0 = 0 and SH

0 = 0,
and define SL

i and SH
i for i = 1, 2, . . . recursively as follows:

16 See D. C. Montgomery (2005). Introduction to Statistical Quality Control, 5th Edition, New York: John Wiley
& Sons.
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SL
i = max

(
SL

i−1 − zi − k, 0
)

SH
i = max

(
SH

i−1 + zi − k, 0
) (13.5.2)

The constant k is called the reference value. The out-of-control decision uses a con-
stant h called the decision interval. As soon as an SL

i ≥ h or an SH
i ≥ h, an

out-of-control signal occurs. If the out-of-control signal occurs because of SL
i ≥ h,

there is indication that the process mean has shifted to a smaller value; if the out-of-
control signal occurs because of SH

i ≥ h, there is indication that the process mean
has shifted to a larger value.

The reference value k and the decision interval h can be chosen to achieve
desired in-control and out-of-control (at specified departures from the target mean)
ARLs; see the text in footnote 16 for details. In R, the default settings are k = 0.5
and h = 5. These choices yield good out-of-control ARLs for shifts of about ' = ±1
standard errors of x (i.e., µ1 = µ0 ± σ/

√
n).

A display of the computations in (13.5.2) in a table yields the tabular form of
the DIS CUSUM. The corresponding CUSUM chart consists of plotting the points
(i, SH

i ) and (i, −SL
i ) in the same figure, with horizontal lines at h and −h. If a point

falls above the horizontal line at h or below the horizontal line at −h, the process is
declared out of control, as discussed following (13.5.2).

Example
13.5-1

Let piston be the R object containing the 40 subgroups of the pistonrings data set
arranged into 40 rows of size 5 (see Example 13.2-2).

(a) Construct the CUSUM chart for the first 25 subgroups and the CUSUM chart
for all 40 subgroups using the first 25 subsamples as the calibration data. For
both charts, use the default reference value and decision interval, and estimate
σ from the subgroup standard deviations.

(b) Construct the tabular form of the DIS CUSUM procedure for the first 25
subgroups, using reference value k = 0.5 and decision interval h = 5.

Solution
(a) The R commands for the two CUSUM charts are

R Commands for CUSUM Charts

cusum(piston[1:25,], std.dev=”UWAVE-SD”)
cusum(piston[1:25,], newdata=piston[26:40,],

std.dev=”UWAVE-SD”)
(13.5.3)

The charts produced by these commands are shown in Figure 13-9. According
to the chart in the left panel, there is no reason to suspect that the process is
out of control during the first 25 sampling periods. But the chart in the right
panel shows the last four points above the decision interval, suggesting that the
process mean has shifted to a larger value.

Omitting std.dev=”UWAVE-SD” from the commands or instead using
std.dev=”UWAVE-R” results in using σ̂2 of (13.2.5) as estimator of σ̂ . To use
a reference value k different from the default k = 0.5 and a decision inter-
val different from the default h = 5, include, for example, se.shift=2k (the
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CUSUM Chart for piston[1:25, ]
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Figure 13-9 CUSUM
charts for the pistonrings
data: Only the first 25
subgroups (left panel), and
all 40 subgroups with the
first 25 serving as
calibration data (right
panel).

default value of k = 0.5 corresponds to se.shift=1) and decision.interval=h,
respectively, in either of the two commands.

(b) The commands mean(apply(piston[1:25, ], 1, mean)); mean(apply(piston[1:25,
], 1, sd))/0.94 yield µ̂ = 74.00118 (see (13.2.4)) and σ̂ = 0.00983 (see σ̂1
in (13.2.5)). (The more accurate value of 0.009829977 for σ̂ , displayed in
the CUSUM charts of Figure 13-9, is used in the computation that follows.)
The standardized subgroup means zi of (13.5.1) can be obtained with the
command

z=(apply(piston[1:25, ], 1, mean)-74.00118)/
(0.009829977/sqrt(5))

and the upper monitoring sums, SH
i , are computed with the commands

SH=rep(0, 25); SH[1]=max(z[1]-0.5, 0)
for(i in 2:25){SH[i]=max(SH[i-1]+z[i]-0.5, 0)}

The lower monitoring sums, SL
i , can be placed in the object SL using similar

commands. Alternatively, both SH and SL can be obtained from the cusum
function as

obj=cusum(piston[1:25, ], std.dev=”UWAVE-SD”)
SH=obj$pos; SL=-obj$neg

The results are displayed in Table 13-3, which is the tabular form of the
CUSUM chart in the left panel of Figure 13-9.
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Table 13-3 Tabular form of the CUSUM procedure

Sample xi zi SH
i SL

i

1 74.0102 2.05272885 1.5527289 0.0000000

2 74.0006 −0.13102525 0.9217037 0.0000000

3 74.0080 1.55228521 1.9739889 0.0000000

4 74.0030 0.41491328 1.8889022 0.0000000

5 74.0034 0.50590303 1.8948052 0.0000000

6 73.9956 −1.26839717 0.1264080 0.7683972

7 74.0000 −0.26750988 0.0000000 0.5359071

8 73.9968 −0.99542791 0.0000000 1.0313350

9 74.0042 0.68788254 0.1878826 0.0000000

10 73.9980 −0.72245865 0.0000000 0.2224587

11 73.9942 −1.58686131 0.0000000 1.3093200

12 74.0014 0.05095426 0.0000000 0.7583658

13 73.9984 −0.63146889 0.0000000 0.8898347

14 73.9902 −2.49675886 0.0000000 2.8865936

15 74.0060 1.09733644 0.5973365 1.2892571

16 73.9966 −1.04092279 0.0000000 1.8301799

17 74.0008 −0.08553037 0.0000000 1.4157103

18 74.0074 1.41580058 0.9158006 0.0000000

19 73.9982 −0.67696377 0.0000000 0.1769638

20 74.0092 1.82525447 1.3252545 0.0000000

21 73.9998 −0.31300475 0.5122498 0.0000000

22 74.0016 0.09644914 0.1086989 0.0000000

23 74.0024 0.27842865 0.0000000 0.0000000

24 74.0052 0.91535693 0.4153570 0.0000000

25 73.9982 −0.67696377 0.0000000 0.1769638

13.5.2 THE EWMA CHART

A weighted average is an extension of the usual average where the contribution
of each observation to the average depends on the weight it receives. A weighted
average of m + 1 numbers, xm, xm−1, . . . , x1, and µ is of the form

w1xm + w2xm−1 + · · · + wmx1 + wm+1µ, (13.5.4)

where the weights wi are nonnegative and sum to 1. Setting wi = 1/(m + 1) for
all i yields the usual average of the m + 1 numbers. For example, consider the four
numbers x3 = 0.90, x2 = 1.25, x1 = −0.13, and µ = 1.36, and the set of weights
w1 = 0.800, w2 = 0.160, w3 = 0.032, and w4 = 0.008; their average and weighted
average are 0.845 and 0.92672, respectively. Because 96% of the weight goes to the
first two numbers, the weighted average is determined, to a large extent, by the first
two numbers, that is, by 0.9 and 1.25.

Weighted averages (13.5.4) with weights of the form

w1 = λ, w2 = λλ, w3 = λ(λ)2, . . . , wm = λ(λ)m−1, wm+1 = (λ)m, (13.5.5)

where λ is some number between 0 and 1 and λ = 1 − λ, are called exponentially
weighted averages. Note that the first weight (w1 = λ), which is assigned to xm, is the
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largest, and subsequent weights (w2, . . . , wm) decrease exponentially fast. (However,
if λ < 0.5, wm+1 > wm.)

In statistical process control, the expression exponentially weighted moving
averages (EWMA) refers to the sequence

z1, z2, z3, . . . , (13.5.6)

where each zm is an exponentially weighted average of the m subgroup means
xm, . . . , x1 and µ̂ (or µ0, if it is known). Thus, each zm is given by (13.5.4), with
xm, . . . , x1 and µ replaced by xm, . . . , x1 and µ̂ (or µ0, if known), respectively, and
wi given by (13.5.5). Setting z0 = µ̂ (or µ0, if known), it can be shown that the
EWMA can be computed recursively as

zm = λxm + (1 − λ)zm−1, m = 1, 2, . . . . (13.5.7)

The EWMA control chart plots the points (m, zm), m = 1, 2, . . ., and draws
appropriate 3σ control limits for each zm, that is, of the form µ0 ± 3σzm . More
precisely, the control limits are computed as

Control Limits for
the zm EWMA

LCL = µ0 − 3
σ√
n

√
λ

2 − λ
[1 − (1 − λ)2m]

UCL = µ0 + 3
σ√
n

√
λ

2 − λ
[1 − (1 − λ)2m]

(13.5.8)

If the in-control process mean and standard deviation are unknown, µ0 and σ

are replaced by estimators µ̂ and σ̂ ; see (13.2.4) and (13.2.5), or (13.2.9) if n = 1.
The parameter λ in (13.5.8) is typically chosen between 0.1 and 0.5. Smaller

values of λ yield better (shorter) ARLs for small shifts. The default value in R is
λ = 0.2.
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The R commands that produced the EWMA charts shown in Figure 13-10 for
the pistonrings data are

R Commands for EWMA Charts

ewma(piston[1:25,])
ewma(piston[1:25,], newdata=piston[26:40,])

(13.5.9)

Note that because the option std.dev=”UWAVE-SD” is not used, the standard
deviation shown at the bottom of the charts is computed as σ̂2 in (13.2.5). To use
values of λ different from the default value of 0.2, say 0.4, use the option lambda=0.4.

As Figure 13-10 makes clear, the control limits of the EWMA chart are not of
equal width. However, the expression in the square root in (13.5.8) tends to λ/(2−λ)
exponentially fast, so that, after the first few inspection time points, the lines join-
ing the control limits look horizontal. Finally, note that the charts also show the
subgroup means (indicated with + signs).

Exercises

1. Completed the following:
(a) Use the data of Exercise 2 in Section 13.3 and com-

mands similar to those in display (13.5.3) to con-
struct a CUSUM chart for the semiconductor wafer
diameter data. Comment on what the chart suggests
regarding the process mean.

(b) Use commands similar to those in the display (13.5.9)
to construct a EWMA chart for the semiconductor
wafer diameter data. Comment on what the chart
suggests regarding the process mean.

2. Redox potential or ORP (for oxidation-reduction
potential) is a new method for assessing the efficacy of
disinfectants used in water treatment plants. A case study
reports 31 daily measurements of chlorine and sulfur
dioxide used at a municipal wastewater treatment plant
in California.17 The chlorine measurement data are given
in SqcRedoxPotent.txt. Use commands similar to those in
the displays (13.5.3) and (13.5.9) to construct the CUSUM
and EWMA charts for the chlorine data. Comment on
what the charts suggest regarding the process mean.

17 Y. H. Kim and R. Hensley (1997). Effective control of chlorination and dechlorination at wastewater
treatment plants using redox potential, Water Environment Research, 69: 1008–1014.
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Table A.1 Cumulative Binomial Probabilities

p

n x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5 0 0.591 0.328 0.168 0.078 0.031 0.010 0.002 0.000 0.000
1 0.919 0.737 0.528 0.337 0.188 0.087 0.031 0.007 0.000
2 0.991 0.942 0.837 0.683 0.500 0.317 0.163 0.058 0.009
3 0.995 0.993 0.969 0.913 0.813 0.663 0.472 0.263 0.082
4 1.000 1.000 0.998 0.990 0.699 0.922 0.832 0.672 0.410

10 0 0.349 0.107 0.028 0.006 0.001 0.000 0.000 0.000 0.000
1 0.736 0.376 0.149 0.046 0.011 0.002 0.000 0.000 0.000
2 0.930 0.678 0.383 0.167 0.055 0.012 0.002 0.000 0.000
3 0.987 0.879 0.650 0.382 0.172 0.055 0.011 0.001 0.000
4 0.988 0.967 0.850 0.633 0.377 0.166 0.047 0.006 0.000
5 1.000 0.994 0.953 0.834 0.623 0.367 0.150 0.033 0.002
6 1.000 0.999 0.989 0.945 0.828 0.618 0.350 0.121 0.013
7 1.000 1.000 0.998 0.988 0.945 0.833 0.617 0.322 0.070
8 1.000 1.000 1.000 0.998 0.989 0.954 0.851 0.624 0.264
9 1.000 1.000 1.000 1.000 0.999 0.994 0.972 0.893 0.651

15 0 0.206 0.035 0.005 0.001 0.000 0.000 0.000 0.000 0.000
1 0.549 0.167 0.035 0.005 0.001 0.000 0.000 0.000 0.000
2 0.816 0.398 0.127 0.027 0.004 0.000 0.000 0.000 0.000
3 0.944 0.648 0.297 0.091 0.018 0.002 0.000 0.000 0.000
4 0.987 0.836 0.516 0.217 0.059 0.009 0.001 0.000 0.000
5 0.998 0.939 0.722 0.403 0.151 0.034 0.004 0.000 0.000
6 1.000 0.982 0.869 0.610 0.304 0.095 0.015 0.001 0.000
7 1.000 0.996 0.950 0.787 0.500 0.213 0.050 0.004 0.000
8 1.000 0.999 0.985 0.905 0.696 0.390 0.131 0.018 0.000
9 1.000 1.000 0.996 0.966 0.849 0.597 0.278 0.061 0.002

10 1.000 1.000 0.999 0.991 0.941 0.783 0.485 0.164 0.013
11 1.000 1.000 1.000 0.998 0.982 0.909 0.703 0.352 0.056
12 1.000 1.000 1.000 1.000 0.996 0.973 0.873 0.602 0.184
13 1.000 1.000 1.000 1.000 1.000 0.995 0.965 0.833 0.451
14 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.965 0.794

20 0 0.122 0.012 0.001 0.000 0.000 0.000 0.000 0.000 0.000
1 0.392 0.069 0.008 0.001 0.000 0.000 0.000 0.000 0.000
2 0.677 0.206 0.035 0.004 0.000 0.000 0.000 0.000 0.000
3 0.867 0.411 0.107 0.016 0.001 0.000 0.000 0.000 0.000
4 0.957 0.630 0.238 0.051 0.006 0.000 0.000 0.000 0.000
5 0.989 0.804 0.416 0.126 0.021 0.002 0.000 0.000 0.000
6 0.998 0.913 0.608 0.250 0.058 0.006 0.000 0.000 0.000
7 1.000 0.968 0.772 0.416 0.132 0.021 0.001 0.000 0.000
8 1.000 0.990 0.887 0.596 0.252 0.057 0.005 0.000 0.000
9 1.000 0.997 0.952 0.755 0.412 0.128 0.017 0.001 0.000

10 1.000 0.999 0.983 0.873 0.588 0.245 0.048 0.003 0.000
11 1.000 1.000 0.995 0.944 0.748 0.404 0.113 0.010 0.000
12 1.000 1.000 0.999 0.979 0.868 0.584 0.228 0.032 0.000
13 1.000 1.000 1.000 0.994 0.942 0.750 0.392 0.087 0.002
14 1.000 1.000 1.000 0.998 0.979 0.874 0.584 0.196 0.011
15 1.000 1.000 1.000 1.000 0.994 0.949 0.762 0.370 0.043
16 1.000 1.000 1.000 1.000 0.999 0.984 0.893 0.589 0.133
17 1.000 1.000 1.000 1.000 1.000 0.996 0.965 0.794 0.323
18 1.000 1.000 1.000 1.000 1.000 1.000 0.992 0.931 0.608
19 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.988 0.878
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Table A.2 Cumulative Poisson Probabilities

λ

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.905 0.819 0.741 0.670 0.607 0.549 0.497 0.449 0.407 0.368

1 0.995 0.982 0.963 0.938 0.910 0.878 0.844 0.809 0.772 0.736

2 1.000 0.999 0.996 0.992 0.986 0.977 0.966 0.953 0.937 0.920

3 1.000 1.000 0.999 0.998 0.997 0.994 0.991 0.987 0.981

4 1.000 1.000 1.000 0.999 0.999 0.998 0.996

5 1.000 1.000 1.000 0.999

λ

x 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

0 0.301 0.247 0.202 0.165 0.135 0.111 0.091 0.074 0.061 0.050

1 0.663 0.592 0.525 0.463 0.406 0.355 0.308 0.267 0.231 0.199

2 0.879 0.833 0.783 0.731 0.677 0.623 0.570 0.518 0.469 0.423

3 0.966 0.946 0.921 0.891 0.857 0.819 0.779 0.736 0.692 0.647

4 0.992 0.986 0.976 0.964 0.947 0.928 0.904 0.877 0.848 0.815

5 0.998 0.997 0.994 0.990 0.983 0.975 0.964 0.951 0.935 0.961

6 1.000 0.999 0.999 0.997 0.995 0.993 0.988 0.983 0.976 0.966

7 1.000 1.000 0.999 0.999 0.998 0.997 0.995 0.992 0.988

8 1.000 1.000 1.000 0.999 0.999 0.998 0.996

9 1.000 1.000 0.999 0.999

λ

x 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

0 0.041 0.033 0.027 0.022 0.018 0.015 0.012 0.010 0.008 0.007

1 0.171 0.147 0.126 0.107 0.092 0.078 0.066 0.056 0.048 0.040

2 0.380 0.340 0.303 0.269 0.238 0.210 0.185 0.163 0.143 0.125

3 0.603 0.558 0.515 0.473 0.433 0.395 0.359 0.326 0.294 0.265

4 0.781 0.744 0.706 0.668 0.629 0.590 0.551 0.513 0.476 0.440

5 0.895 0.871 0.844 0.816 0.785 0.753 0.720 0.686 0.651 0.616

6 0.955 0.942 0.927 0.909 0.889 0.867 0.844 0.818 0.791 0.762

7 0.983 0.977 0.969 0.960 0.949 0.936 0.921 0.905 0.887 0.867

8 0.994 0.992 0.998 0.984 0.979 0.972 0.964 0.955 0.944 0.932

9 0.998 0.997 0.996 0.994 0.992 0.989 0.985 0.980 0.975 0.968

10 1.000 0.999 0.999 0.998 0.997 0.996 0.994 0.992 0.990 0.986

11 1.000 1.000 0.999 0.999 0.999 0.998 0.997 0.996 0.995

12 1.000 1.000 1.000 0.999 0.999 0.999 0.998

13 1.000 1.000 1.000 0.999
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Table A.3 The Cumulative Distribution Function for the Standard Normal
Distribution: Values of ,(z) for Nonnegative z

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
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Table A.4 Percentiles of the T Distribution

df 90% 95% 97.5% 99% 99.5% 99.9%

1 3.078 6.314 12.706 31.821 63.657 318.309

2 1.886 2.920 4.303 6.965 9.925 22.327

3 1.638 2.353 3.183 4.541 5.841 10.215

4 1.533 2.132 2.777 3.747 4.604 7.173

5 1.476 2.015 2.571 3.365 4.032 5.893

6 1.440 1.943 2.447 3.143 3.708 5.208

7 1.415 1.895 2.365 2.998 3.500 4.785

8 1.397 1.860 2.306 2.897 3.355 4.501

9 1.383 1.833 2.262 2.822 3.250 4.297

10 1.372 1.812 2.228 2.764 3.169 4.144

11 1.363 1.796 2.201 2.718 3.106 4.025

12 1.356 1.782 2.179 2.681 3.055 3.930

13 1.350 1.771 2.160 2.650 3.012 3.852

14 1.345 1.761 2.145 2.625 2.977 3.787

15 1.341 1.753 2.132 2.603 2.947 3.733

16 1.337 1.746 2.120 2.584 2.921 3.686

17 1.333 1.740 2.110 2.567 2.898 3.646

18 1.330 1.734 2.101 2.552 2.879 3.611

19 1.328 1.729 2.093 2.540 2.861 3.580

20 1.325 1.725 2.086 2.528 2.845 3.552

21 1.323 1.721 2.080 2.518 2.831 3.527

22 1.321 1.717 2.074 2.508 2.819 3.505

23 1.319 1.714 2.069 2.500 2.807 3.485

24 1.318 1.711 2.064 2.492 2.797 3.467

25 1.316 1.708 2.060 2.485 2.788 3.450

26 1.315 1.706 2.056 2.479 2.779 3.435

27 1.314 1.703 2.052 2.473 2.771 3.421

28 1.313 1.701 2.048 2.467 2.763 3.408

29 1.311 1.699 2.045 2.462 2.756 3.396

30 1.310 1.697 2.042 2.457 2.750 3.385

40 1.303 1.684 2.021 2.423 2.705 3.307

80 1.292 1.664 1.990 2.374 2.639 3.195

∞ 1.282 1.645 1.960 2.326 2.576 3.090
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Table A.5 Percentiles of the Chi-square Distribution

df 0.5% 1% 2.5% 5% 10% 90% 95% 97.5% 99% 99.5%

1 0.000 0.000 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879

2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597

3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838

4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860

5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086 16.750

6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548

7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278

8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955

9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589

10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188

11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757

12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300

13 3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819

14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319

15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801

16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267

17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718

18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156

19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.582

20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997

21 8.034 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932 41.401

22 8.643 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289 42.796

23 9.260 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 44.181

24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.559

25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 46.928

26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290

27 11.808 12.879 14.573 16.151 18.114 36.741 40.113 43.195 46.963 49.645

28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993

29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.336

30 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672

40 20.707 22.164 24.433 26.509 29.051 51.805 55.758 59.342 63.691 66.766

60 35.534 37.485 40.482 43.188 46.459 74.397 79.082 83.298 88.379 91.952

80 51.172 53.540 57.153 60.391 64.278 96.578 101.879 106.629 112.329 116.321
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Table A.6 Percentiles of the F Distribution (ν1 = Numerator df; ν2 = Denominator df)

ν1

ν2 α 1 2 3 4 5 6 7 8 12 24 1,000

1 0.10 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 60.71 62.00 63.30

0.05 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 243.9 249.1 254.2

2 0.10 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.41 9.45 9.49

0.05 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.41 19.45 19.49

3 0.10 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.22 5.18 5.13

0.05 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.74 8.64 8.53

4 0.10 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.90 3.83 3.76

0.05 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 5.91 5.77 5.63

5 0.10 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.27 3.19 3.11

0.05 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.68 4.53 4.37

6 0.10 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.90 2.82 2.72

0.05 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.00 3.84 3.67

7 0.10 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.67 2.58 2.47

0.05 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.57 3.41 3.23

8 0.10 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.50 2.40 2.30

0.05 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.28 3.12 2.93

10 0.10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.28 2.18 2.06

0.05 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 2.91 2.74 2.54

12 0.10 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.15 2.04 1.91

0.05 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.69 2.51 2.30

14 0.10 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.05 1.94 1.80

0.05 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.53 2.35 2.14

16 0.10 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 1.99 1.87 1.72

0.05 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.42 2.24 2.02

20 0.10 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.89 1.77 1.61

0.05 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.28 2.08 1.85

30 0.10 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.77 1.64 1.46

0.05 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.09 1.89 1.63

50 0.10 2.81 2.41 2.20 2.06 1.97 1.90 1.84 1.80 1.68 1.54 1.33

0.05 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 1.95 1.74 1.45

100 0.10 2.76 2.36 2.14 2.00 1.91 1.83 1.78 1.73 1.61 1.46 1.22

0.05 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.85 1.63 1.30

1,000 0.10 2.71 2.31 2.09 1.95 1.85 1.78 1.72 1.68 1.55 1.39 1.08

0.05 3.85 3.00 2.61 2.38 2.22 2.11 2.02 1.95 1.76 1.53 1.11



Appendix A Tables 499

Table A.7 Percentiles of the Studentized Range Distribution (Qα, k, ν for ν = 0.10 and
α = 0.05)

k

ν α 2 3 4 5 6 7 8 9 10 11

5 0.10 2.85 3.72 4.26 4.66 4.98 5.24 5.46 5.65 5.82 5.96

0.05 3.63 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7.17

6 0.10 2.75 3.56 4.06 4.43 4.73 4.97 5.17 5.34 5.50 5.64

0.05 3.46 4.34 4.90 5.30 5.63 5.89 6.12 6.32 6.49 6.65

7 0.10 2.68 3.45 3.93 4.28 4.55 4.78 4.97 5.14 5.28 5.41

0.05 3.34 4.16 4.68 5.06 5.36 5.61 5.81 6.00 6.16 6.30

8 0.10 2.63 3.37 3.83 4.17 4.43 4.65 4.83 4.99 5.13 5.25

0.05 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.05

10 0.10 2.56 3.27 3.70 4.02 4.26 4.46 4.64 4.78 4.91 5.03

0.05 3.15 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60 5.72

12 0.10 2.52 3.20 3.62 3.92 4.16 4.35 4.51 4.65 4.78 4.89

0.05 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.26 5.39 5.51

13 0.10 2.50 3.18 3.59 3.88 4.12 4.30 4.46 4.60 4.72 4.83

0.05 3.05 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32 5.43

14 0.10 2.49 3.16 3.56 3.85 4.08 4.27 4.42 4.56 4.68 4.79

0.05 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.36

16 0.10 2.47 3.12 3.52 3.80 4.03 4.21 4.36 4.49 4.61 4.71

0.05 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.26

18 0.10 2.45 3.10 3.49 3.77 3.98 4.16 4.31 4.44 4.55 4.65

0.05 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4.95 5.07 5.17

20 0.10 2.44 3.08 3.46 3.74 3.95 4.12 4.27 4.40 4.51 4.61

0.05 2.95 3.58 3.96 4.23 4.44 4.62 4.77 4.89 5.01 5.11

25 0.10 2.42 3.04 3.42 3.68 3.89 4.06 4.20 4.32 4.43 4.53

0.05 2.91 3.52 3.89 4.15 4.36 4.53 4.67 4.79 4.90 4.99

30 0.10 2.40 3.02 3.39 3.65 3.85 4.02 4.15 4.27 4.38 4.47

0.05 2.89 3.49 3.84 4.10 4.30 4.46 4.60 4.72 4.82 4.92

40 0.10 2.38 2.99 3.35 3.60 3.80 3.96 4.10 4.21 4.32 4.41

0.05 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73 4.82

60 0.10 2.36 2.96 3.31 3.56 3.75 3.91 4.04 4.15 4.25 4.34

0.05 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 4.73

80 0.10 2.35 2.94 3.29 3.54 3.73 3.88 4.01 4.12 4.22 4.31

0.05 2.81 3.38 3.71 3.95 4.13 4.28 4.40 4.51 4.60 4.69

∞ 0.10 2.33 2.90 3.24 3.48 3.66 3.81 3.93 4.04 4.13 4.21

0.05 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.55



Appendix

BAnswers to Selected
Exercises

Chapter 1
Section 1.2
1. (a) The customers (of all dealerships of the car

manufacturer) who bought a car the previous year.
(b) Not a hypothetical population.

3. (a) There are two populations, one for each shift. The
cars that have and will be produced by each shift
constitute the populations.

(b) Both populations are hypothetical.
(c) The number of nonconformances per car.

5. (a) There are two populations, one for each teaching
method.

(b) The students that have and will take the course with
each of the teaching methods.

(c) Both populations are hypothetical.
(d) The particular students whose test score will be

recorded at the end of the semester.

Section 1.3
1. Choice (ii).
3. (a) All current drivers in his university town.

(b) No. (c) Convenience sample.
(d) Assuming the proportion of younger drivers who

use their seat belt is smaller, it would underestimate.
5. Identify each pipe with a number from 1 to 90. Then

write each of these numbers on 90 slips of paper, put
them all in a box and, after mixing them thoroughly,
select 5 slips, one at a time and without replacement. The
R command sample(seq(1, 90), size=5) implements this
process. A set of five numbers thus generated is 30, 62,
15, 54, 31.

7. One method is to take a simple random sample, of
some size n, from the population of N customers (of
all dealerships of that car manufacturer) who bought
a car the previous year. Another method is to divide
the population of the previous year’s customers into

three strata, according to the type of car each cus-
tomer bought, and perform stratified sampling with
proportionate allocation of sample sizes. That is, if
N1, N2, N3 denote the sizes of the three strata,
take simple random samples of approximate (due to
rounding) sizes n1 = n(N1/N), n2 = n(N2/N),
n3 = n(N3/N), respectively, from each of the three
strata. Stratified sampling assures that the sample rep-
resentation of the three strata equals their population
representation.

9. No, because the method excludes samples consisting of
n1 cars from the first shift and n2 = 9 − n1 from the
second shift for any (n1, n2) different from (6, 3).

Section 1.4
1. (a) The variable of interest is the number of scratches in

each plate. The statistical population consists of 500
numbers, 190 zeros, 160 ones, and 150 twos.

(b) Quantitative. (c) Univariate.
3. (a) Univariate. (b) Quantitative.

(c) If N is the number cars of available for inspec-
tion, the statistical population consists of N numbers,
{v1, . . . , vN}, where vi is the total number of engine
and transmission non-conformances of the ith car.
(d) Bivariate.

Section 1.6
1. (a) x. (b) S. (c) p̂.
3. p̂ = 4/14 = 0.286. It estimates the proportion of time the

ozone level was below 250.
5. (a) σ 2 = 0.7691, σ = 0.877.

(b) S2 = 0.9, S = 0.949.
7. (a) µ = 0.92, σ 2 = 0.6736, σ = 0.8207.

(b) x = 0.91, S2 = 0.6686, S = 0.8177.
10. (a) σ 2

X = 0.25.

(b) S2
1 = 0, S2

2 = 0.5, S2
3 = 0.5, S2

4 = 0.

500
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(c) E(Y) = (0 + 0.5 + 0.5 + 0)/4 = 0.25.
(d) σ 2

X = E(Y). If the sample variances in part
(b) were computed according to a formula that
divides by n instead of n − 1, E(Y) would have
been 0.125.

11. (a) x1 = 30, x2 = 30. (b) S2
1 = 0.465, S2

2 = 46.5.
(c) There is more uniformity among cars of type

A (smaller variability in achieved gas mileage) so
type A cars are of better quality.

13. (a) y = 1
n

∑n
i=1 yi = 1

n
∑n

i=1(c1 + xi) = c1 + 1
n

∑n
i=1 xi =

c1 + x. Because yi − y = xi − x, S2
y = 1

n−1
∑n

i=1(yi −
y)2 = 1

n−1
∑n

i=1(xi − x)2 = S2
x. Sy =

√
S2

y =
√

S2
x = Sx.

(b) y = 1
n

∑n
i=1 yi = 1

n
∑n

i=1(c2xi) = c2
n

∑n
i=1 xi = c2x.

Because yi−y = c2(xi−x), S2
y = 1

n−1
∑n

i=1(yi−y)2 =
c2

2
n−1

∑n
i=1(xi − x)2 = c2

2S2
x. Sy =

√
S2

y =
√

c2
2S2

x =
|c2|Sx.

(c) Set ti = c2xi, so yi = c1 + ti. From (a) and (b) we
have y = c1 + t̄ = c1 + c2x, S2

y = S2
t = c2

2S2
x, and

Sy = St = |c2|Sx.

15. Because xi = 81.2997 + 10,000−1yi, the results to
Exercise 1.6.4-13 (with the roles of xi and yi reversed)
give S2

X = 10,000−2S2
Y = 10,000−268.33 = 10−76.833.

Section 1.7
1. (a) x̃ = 717, q1 = (691 + 699)/2 = 695, q3 = (734 +

734)/2 = 734. (b) 734 − 695 = 39.
(c) (100[19-0.5]/40)-th = 46.25th percentile.

3. (a) x(1) = 27.67, q1 = 27.99, x̃ = 28.64, q3 = 29.52,
x(n) = 30.93. (b) 29.768. (c) No.

Section 1.8
1. (a) The batches of cake.

(b) Baking time and temperature.
(c) 25 and 30 for baking time, and 275, 300, and 325 for

temperature.
(d) (25, 275), (25, 300), (25, 325), (30, 275), (30, 300), (30,

325).
(e) Qualitative.

3. (a) α1 = µ1 −µ, α2 = µ2 −µ, α3 = µ3 −µ, α4 = µ4 −µ,
α5 = µ5 −µ, where µ = (µ1 +µ2 +µ3 +µ4 +µ5)/5.

(b) µ1+µ2
2 − µ3+µ4+µ5

3 .
5. µ1 − µ2, µ1 − µ3, µ1 − µ4.

7. (a) Yes. (b) Paint type with levels T1, . . . , T4, and
location with levels L1, . . . , L4. The treatme-
nts are (T1, L1), . . . , (T1, L4), . . . , (T4, L1), . . . ,
(T4, L4).

12. The watering and location effects will be confounded.
The three watering regimens should be employed in each

location. The root systems in each location should be
assigned randomly to a watering regimen.

15. (a) Of 2590 male applicants, about 1192 (1191.96,
according to the major specific admission rates) were
admitted. Similarly, of the 1835 female applicants,
about 557 were admitted. Thus, the admission rates
for men and women are 0.46 and 0.30, respectively.

(b) Yes. (c) No, because the major specific admission
rates are higher for women for most majors.

16. (a) No, because the Pygmalion effect is stronger for
female recruits.

(b) Here, µ = (8 + 13 + 10 + 12)/4 = 10.75.
Thus, the main gender effects are αF = (8 +
13)/2 − 10.75 = −0.25, αM = (10 + 12)/2 −
10.75 = 0.25, and the main Pygmalion effects
are βC = (8 + 10)/2 − 10.75 = −1.75, βP =
(13 + 12)/2 − 10.75 = 1.75.

(c) γFC = 8 − 10.75 + 0.25 + 1.75 = −0.75, γFP = 13 −
10.75 + 0.25 − 1.75 = 0.75, γMC = 10 − 10.75 − 0.25 +
1.75 = 0.75, γMP = 12 − 10.75 − 0.25 − 1.75 = −0.75.

Chapter 2
Section 2.2
1. (a) {(1, 1), . . ., (1, 6), . . ., (6, 1), . . ., (6, 6)}.

(b) {2, 3, . . ., 12}. (c) {0, 1, . . ., 6}. (d) {1, 2, 3, . . . }.
3. (a) i. T ∩ M. ii. (T ∪ M)c. iii. (T ∩ Mc) ∪ (Tc ∩ M).
5. (a) Ac = {x|x ≥ 75}, the component lasts at least 75 time

units.
(b) A ∩ B = {x|53 < x < 75}, the component lasts more

than 53 but less than 75 time units.
(c) A ∪ B = S, the sample space.
(d) (A − B) ∪ (B − A) = {x|0 < x ≤ 53 or x ≥ 75}, the

component lasts either at most 53 or at least 75 time
units.

8. (a) e ∈ (A − B) ∪ (B − A) ⇐⇒ e ∈ A − B or e ∈
B − A ⇐⇒ e ∈ A ∪ B and e /∈ A ∩ B ⇐⇒ e ∈
(A ∪ B) − (A ∩ B).

(b) e ∈ (A ∩ B)c ⇐⇒ e ∈ A − B or e ∈ B − A or e ∈
(A ∪ B)c ⇐⇒ [e ∈ A − B or e ∈ (A ∪ B)c] or [e ∈
B−A or e ∈ (A∪B)c] ⇐⇒ e ∈ Bc or e ∈ Ac ⇐⇒
e ∈ Ac ∪ Bc.

(c) e ∈ (A ∩ B) ∪ C ⇐⇒ [e ∈ A and e ∈ B] or e ∈
C ⇐⇒ [e ∈ A or e ∈ C] and [e ∈ B or e ∈
C] ⇐⇒ e ∈ (A ∪ C) ∩ (B ∪ C).

9. (a) S1 = {(x1, . . . , x5): xi = 5.3, 5.4, 5.5, 5.6, 5.7, i =
1, . . . , 5}. 55 = 3125.

(b) The collection of distinct averages, (x1 + · · · +
x5)/5, formed from the elements of S1. The
commands S1=expand.grid(x1=1:5, x2=1:5, x3=1:5,
x4=1:5, x5=1:5); length(table(rowSums(S1))) return
21 for the size of the sample space of the averages.
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Section 2.3
1. P(E1) = P(E2) = 0.5, P(E1 ∩ E2) = 0.3, P(E1 ∪ E2) =

0.7, P(E1 − E2) = 0.2, P((E1 − E2) ∪ (E2 − E1)) = 0.4.
3. P(E1) = P(E2) = 4/5, P(E1∩E2) = 3/5, P(E1∪E2) = 1,

P(E1 − E2) = 1/5, P((E1 − E2) ∪ (E2 − E1)) = 2/5.
6. (a) 25 = 32. (b) S = {0, 1, . . . , 5}.

(c)
x 0 1 2 3 4 5

p(x) 0.031 0.156 0.313 0.313 0.156 0.031

8. (262 × 103)/(263 × 104) = 0.0038.
10. (a)

(10
5
)

= 252. (b) 252/2 = 126. (c)
(12

2
)

= 66.

12. (a)
(9
5
)

= 126. (b)
(9
5
)
/
(13

5
)

= 0.098.

14. (a)
(30

5
)

= 142,506. (b)
(6
2
)(24

3
)

= 30,360.
(c) (i) [

(6
2
)(24

3
)
]/

(30
5
)

= 0.213 (ii)
(24

5
)
/
(30

5
)

= 0.298.

16. (a)
( 10
2,2,2,2,2

)
= 113,400.

18. (a) 2n = (1 + 1)n = ∑n
k=0

(n
k
)
1k1n−k = ∑n

k=0
(n
k
)
.

(b) (a2 + b)4 = b4 + 4a2b3 + 6a4b2 + 4a6b + a8.

Section 2.4
1. 0.37 + 0.23 − 0.47 = 0.13.
3. (a) The commands attach(expand.grid(X1=50:53,

X2= 50:53, X3=50:53)); table(( X1+X2+X3)/3)/
length(X1) generate a table of possible values for
the average and corresponding probabilities.

(b) 0.3125. (This is found by summing the probabilities
of 52, 52.33, 52.67 and 53, which are the values in the
sample space of the average that are at least 52.)

5. (a) i. E1 = {(> 3, V), (< 3, V)}, P(E1) = 0.25 +
0.30 = 0.55. ii. E2 = {(< 3, V), (< 3, D), (< 3, F)},
P(E2) = 0.30 + 0.15 + 0.13 = 0.58. iii. E3 =
{(> 3, D), (< 3, D)}, P(E3) = 0.10 + 0.15 = 0.25.
iv. E4 = E1 ∪ E2 = {(> 3, V), (< 3, V), (< 3, D), (<
3, F)}, P(E4) = 0.25 + 0.30 + 0.15 + 0.13 = 0.83, and
E5 = E1 ∪E2 ∪E3 = {(> 3, V), (< 3, V), (< 3, D), (<
3, F), (> 3, D)}, P(E5) = 0.25 + 0.30 + 0.15 + 0.13 +
0.10 = 0.93.

(b) P(E4) = 0.55 + 0.58 − 0.30 = 0.83.
(c) P(E5) = 0.55+0.58+0.25−0.30−0−0.15+0 = 0.93.

7. P(E1 ∪E2 ∪E3) = 0.95+0.92+0.9−0.88−0.87−0.85+
0.82 = 0.99.

9. Let E4={at least two of the original four components
work}, E5= {at least three of the original four compo-
nents work}∪ {two of the original four components work
and the additional component works}. Then E4 ̸⊂
E5 because B = {exactly two of the original four
components work and the additional component does
not work}, which is part of E4, is not in E5. Thus,
E4 ̸⊂ E5 and, hence, it is not necessarily true that
P(E4) ≤ P(E5).

11. (a) A > B={die A results in 4}, B > C={die C results in
2}, C > D={die C results in 6, or die C results in 2

and die D results in 1}, D > A={die D results in 5, or
die D results in 1 and die A results in 0}.

(b) P(A > B) = 4/6, P(B > C) = 4/6, P(C > D) = 4/6,
P(D > A) = 4/6.

Section 2.5
1. P(> 3| > 2) = P(> 3)/P(> 2) = (1 + 2)2/(1 + 3)2 =

9/16.
3. (a) P(A) = 0.2. (b) P(B|A) = 0.132/0.2 = 0.66.

(c) P(X = 1) = 0.2, P(X = 2) = 0.3, P(X = 3) = 0.5.
5. (a) P(car ∩ (import)) = P((import)|car)P(car) = 0.58 ×

0.36 = 0.209.
(c) P(lease) = 0.2 × 0.42 × 0.36 + 0.35 × 0.58 × 0.36 +

0.2 × 0.7 × 0.64 + 0.35 × 0.3 × 0.64 = 0.260.
7. (b) (0.98 − 0.96 × 0.15)/0.85 = 0.984.
9. (a) 0.9 × 0.85 + 0.2 × 0.15 = 0.795.

(b) 0.9 × 0.85/0.795 = 0.962.
11. (a) 0.4 × 0.2 + 0.3 × 0.1 + 0.2 × 0.5 + 0.3 × 0.2 = 0.27. (b)

0.3 × 0.1/0.27 = 0.111.

Section 2.6
1. No, because P(E2) = 2/10 ̸= 2/9 = P(E2|E1).

3. (a) 0.910 = 0.349. (b) 0.1 × 0.99 = 0.039.
(c) 10 × 0.1 × 0.99 = 0.387.

5. (a) 0.84 = 0.410. (b) 0.93 = 0.729.
(c) 0.84 × 0.93 = 0.299. It is assumed that cars

have zero nonconformances independently of each
other.

6. Yes. Because, by Proposition 2.6-1, the independence of
T and M implies independence of T and Mc = F.

8. P(E1) = P({(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}) = 1/6,
P(E2) = P({(3, 1), . . . , (3, 6)}) = 1/6, P(E3) = P({(1, 4),
. . . , (6, 4)}) = 1/6. P(E1 ∩ E2) = P({(3, 4)}) = 1/36 =
P(E1)P(E2), P(E1 ∩ E3) = P({(3, 4)}) = 1/36 = P(E1)
P(E3), P(E2 ∩ E3) = P({(3, 4)}) = 1/36 = P(E2)P(E3).
Finally, P(E1 ∩ E2 ∩ E3) = P({(3, 4)}) = 1/36 ̸=
P(E1)P(E2)P(E3).

10. Let A, B, C, D be the events that components 1, 2, 3, 4,
respectively, function. P(system functions) = P(A∩B)+
P(C ∩ D) − P(A ∩ B ∩ C ∩ D) = 2 × 0.92 − 0.94 = 0.9639.

Chapter 3
Section 3.2
1. (a) No, yes. (b) k = 1/1.1.
3. (a) 1 − 0.7 = 0.3.

(b) p(x) = 0.2, 0.5, 0.2, 0.1 for x = 0, 1, 2, 3, respectively.
5. (a) No, yes.

(b) (i) k = 1/18, F(x) = 0 for x < 8, F(x) = (x2 − 64)/36
for 8 ≤ x ≤ 10, F(x) = 1 for x > 10, P(8.6 ≤
X ≤ 9.8) = 0.6133. (ii) P(X ≤ 9.8|X ≥ 8.6) =
0.6133/0.7233 = 0.8479.
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7. SY = (0, ∞). FY(y) = P(Y ≤ y) = P(X ≥ exp(−y)) =
1 − exp(−y). Thus, fY(y) = exp(−y).

9. (a) P(X > 10) = P(D < 3) = 1/9.
(b) Using Example 3.2-9, F(x) = P(X ≤ x) = 1−P(D ≤

30/x) = 1 − 100(x−2/9). Differentiating this we get
fx(x) = 200(x−3/9), for x > 0.

Section 3.3
2. (a) E(X) = 2.1 and E(1/X) = 0.63333.

(b) 1000/E(X) = 476.19 < E(1000/X) = 633.33.
Choose 1000/X.

4. (a) E(X) = 3.05, Var(X) = 1.7475.
(b) E(15,000X) = 45,750, Var(15,000X) = 393, 187,

500.
7. (a) µ̃ =

√
2, IQR =

√
3 − 1 = 0.732.

(b) E(X) = 1.333, Var(X) = 0.222.
9. (a) E(X) = θ/(θ + 1), Var(X) = θ/[(θ + 2)(θ + 1)2].

(b) FP(p) = 0 for p ≤ 0, FP(p) = pθ for 0 < p < 1, and
FP(p) = 1 for p ≥ 1. (c) IQR = 0.751/θ − 0.251/θ .

Section 3.4
1. (a) Binomial. (b) SX = {0, 1, . . . , 5}, pX (x) =(5

x
)
0.3x0.75−x for x ∈ SX .

(c) E(X)=5 × 0.3=1.5, Var(X)=5 × 0.3 × 0.7=1.05.
(d) (i) 0.163 (ii) E(9X) = 13.5, Var(9X) = 85.05.

3. (a) Binomial. (b) n = 20, p = 0.01. The command 1 −
pbinom(1, 20, 0.01) returns 0.0169 for the probability.

5. (a) Binomial. (b) E(X) = 9, Var(X) = 0.9.
(c) 0.987. (d) 190, 90.

7. (a) Negative binomial. (b) S = {1, 2, . . .}. P(X = x)
= (1 − p)x−1p. (c) 3.333, 7.778.

9. (a) If X denotes the number of games until team A wins
three games, we want P(X ≤ 5). The command pnbi-
nom(2, 3, 0.6) returns 0.6826. (b) It is larger. The
more games they play, the more likely it is the better
team will prevail.

11. (a) Negative binomial.
(b) E(Y) = 5/0.01 = 500, Var(Y) = 49500.

13. (a) Hypergeometric.

(b) S = {0, 1, 2, 3}, p(x) =
(3
x
)( 17

5−x
)
/
(20

5
)

for x ∈ S.
(c) 0.461. (d) 0.75, 0.5033.

15. (a) Hypergeometric.
(b) phyper(3, 300, 9700, 50) returns 0.9377.
(c) Binomial. (d) pbinom(3, 50, .03) returns 0.9372,

quite close to that found in part (b).
17. 0.0144 = 1 − ppois(2, 0.5).
19. (a) 2.6 and 3.8. (b) 0.0535.

(c) 0.167 = (ppois(0, 3.8)∗0.4)/(ppois(0, 2.6)∗0.6 +
ppois(0, 3.8)∗0.4).

21. (a) hypergeometric(300, 9,700, 200); binomial(200,
0.03); Poisson(6).

(b) 0.9615, 0.9599, 0.9574. (Note that the Poisson approx-
imation is quite good even though p = 0.03 is greater
than 0.01.)

23. (a) Both say that an event occurred in [0, t] and no event
occurred in (t, 1].

(b) 0.1624.
(c) (i) Both say that the event occurred before time t.

(ii) P(T ≤ t|X(1) = 1) = P([X(t) = 1] ∩ [X(1) =
1])/P(X(1) = 1) = P([X(t) = 1] ∩ [X(1) − X(t) =
0])/P(X(1) = 1) = e−αt(αt)e−α(1−t)/ (e−αα) = t.

Section 3.5
1. (a) λ = 1/6, P(T > 4) = exp(−λ4) = 0.513.

(b) σ 2 = 36, x0.05 = 17.97. (c) (i) 0.4346 (ii) six
years.

3. P(X ≤ s+t|X ≥ s) = 1−P(X > s+t|X ≥ s) = 1−P(X >

t), by (3.5.3), and P(X > t) = exp{−λt}.
5. (a) 39.96. (b) 48.77. (c) 11.59.

(d) 0.0176 = pbinom(3, 15, 0.5).
7. (a) pnorm(9.8, 9, 0.4) - pnorm(8.6, 9, 0.4) = 0.8186.

(b) 0.1323.
9. (a) qnorm(0.1492, 10, 0.03) = 9.97. (b) 0.9772.

10. (a) 0.147. (b) 8.95 mm.

Chapter 4
Section 4.2
1. (a) 0.20, 0.79, 0.09.

(b) PX (1) = 0.34, PX (2) = 0.34, PX (3) = 0.32; PY(1) =
0.34, PY(2) = 0.33, PY(3) = 0.33.

3. (a) 0.705, 0.255.
(b) pX (8) = 0.42, pX (10) = 0.31, pX (12) =

0.27, pY(1.5) = 0.48, pY(2) = 0.405, pY(2.5) =
0.115.

(c) 0.6296.
5. pX1 (0) = 0.3, pX1 (1) = 0.3, pX1 (2) = 0.4, pX2 (0) =

0.27, pX2 (1) = 0.38, pX2 (2) = 0.35, pX3 (0) =
0.29, pX3 (1) = 0.34, pX3 (2) = 0.37.

7. (a) k = 15.8667−1.
(b) fx(x) = k(27x − x4)/3, 0 ≤ x ≤ 2, fy(y) = ky4/2, if

0 ≤ y ≤ 2, and fy(y) = 2ky2, if 2 < y ≤ 3.

Section 4.3
1. (a) pX (0) = 0.30, pX (1) = 0.44, pX (2) =

0.26, pY(0) = 0.24, pY(1) = 0.48, pY(2) = 0.28.
Since 0.30 × 0.24 = 0.072 ̸= 0.06 they are not
independent.

(b) pY|X = 0(0) = 0.06/0.30, pY|X = 0(1) = 0.04/0.30,
pY|X = 0(2) = 0.20/0.30, pY|X = 1(0) = 0.08/0.44,
pY|X = 1(1) = 0.30/0.44, pY|X = 1(2) = 0.06/0.44,
pY|X = 2(0) = 0.10/0.26, pY|X = 2(1) = 0.14/0.26,
pY|X = 2(2) = 0.02/0.26. Since pY|X = 0(0) =
0.06/0.30 ̸= pY|X = 1(0) = 0.08/0.44 they are not
independent.
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(c) 0.3161.
3. (a) µY|X (8) = 1.64, µY|X (10) = 1.80, µY|X (12) = 2.11.

(b) 1.64 × 0.42 + 1.8 × 0.31 + 2.11 × 0.27 = 1.82.
(c) Not independent because the regression function is

not constant.
5. (a) Not independent because the conditional PMFs

change with x.
(b)

y 0 1 pX (x)

pX ,Y (0, y) 0.3726 0.1674 0.54

pX ,Y (1, y) 0.1445 0.0255 0.17

pX ,Y (2, y) 0.2436 0.0464 0.29

pY (y) 0.7607 0.2393

Not independent because 0.7607 × 0.54 = 0.4108 ̸=
0.3726.

8. (a) µY|X (1) = 1.34, µY|X (2) = 1.2, µY|X (3) = 1.34.
(b) 1.298.

10. (b) µY|X (x) = 0.6x.
(c) E(Y) = 1.29.

12. (a) Yes. (b) No. (c) No.
14. (a) 0.211. (b) µY|X (x) = 6.25 + x.
16. (a) µY|X (x) = 1/x; 0.196.

(b) (log(6) − log(5))−1(1/5 − 1/6) = 0.183.
18. (a) fY|X=x(y) = (1 − 2x)−1 for 0 ≤ y ≤ 1 − 2x,

E(Y|X = 0.3) = 0.5 − 0.3 = 0.2.
(b) 0.25.

Section 4.4
1. µ = 132, σ 2 = 148.5.
3. 0.81.
5. (a) 36, 1/12.

(b) 1080, 2.5.
(c) 0, 5.

7. 20 × 4 + 10 × 6 = 140.
9. Cov(X, Y) = 13.5, Cov(ε, Y) = 16.

11. 18.08, 52.6336.
13. (a) Var(X1 + Y1) = 11/12, Var(X1 − Y1) = 3/12.

Section 4.5
1. −0.4059.
3. (a) SX, Y = 5.46, S2

X = 8.27, S2
Y = 3.91, and rX, Y =

0.96.
(b) SX, Y , S2

X , and S2
Y change by a factor of 122, but rX, Y

remains unchanged.
6. (a) X ∼ Bernoulli(0.3).

(b) Y|X = 1 ∼ Bernoulli(2/9), Y|X = 0 ∼
Bernoulli(3/9).

(c) pX, Y(1, 1) = 0.3 × 2/9, pX, Y(1, 0) = 0.3 × 7/9,
pX, Y(0, 1) = 0.7 × 3/9, pX, Y(0, 0) = 0.7 × 6/9.

(d) pY(1) = 0.3 × 2/9 + 0.7 × 3/9 = 0.3, so Y ∼
Bernoulli(0.3), which is the same as the distribution
of X.

(e) −1/9.
9. (a) Cov(X, Y) = E(X3) − E(X)E(X2) = 0.

(b) E(Y|X = x) = x2.
(c) Not a linear relationship, so not appropriate.

Section 4.6
1. (a) For y = 0, . . . , n, pP, Y(0.6, y) = 0.2

(n
y
)
0.6y0.4n−y,

pP, Y(0.8, y) = 0.5
(n

y
)
0.8y0.2n−y, pP, Y(0.9, y) =

0.3
(n

y
)
0.9y0.1n−y.

(b) pY(0) = 0.0171, pY(1) = 0.1137, pY(2) = 0.3513,
pY(3) = 0.5179.

3. (a) 45.879.
(b) 0.9076.

5. (a) It is the PDF of a bivariate normal with µX =
24, µY = 45.3, σ 2

X = 9, σ 2
Y = 36.25, Cov(X, Y) =

13.5.
(b) 0.42612.

7. (a) 2.454 × 10−6.
(b) fX,Y(x, y) = 0.25λ(x) exp(−λ(x)y).

9. (a) 0.1304.
(b) 0.0130.
(c) 2.1165, −2.1165.

Chapter 5
Section 5.2
1. (a) P(|X − µ| > aσ ) ≤ σ 2

(aσ )2 = 1
a2 .

(b) 0.3173, 0.0455, 0.0027 compared to 1, 0.25, 0.1111;
upper bounds are much larger.

3. (a) 0.6. (b) 0.922; lower bound is much smaller.

Section 5.3
3. (a) N(180, 36); 0.202. (b) N(5, 9); 0.159.
5. 139.

Section 5.4
2. (a) 0.8423, 0.8193.

(b) 0.8426. The approximation with continuity correc-
tion is more accurate.

4. (a) N(4, 0.2222); N(3, 0.2143), by the CLT; N(1, 0.4365),
by the independence of the two sample means.

(b) 0.9349.
6. 0.9945.
8. 33.

10. (a) 0.744.
(b) (i) Binomial(40, 0.744); 0.596. (ii) 0.607, 0.536; the

approximation with continuity correction is closer to
the true value.

12. 0.1185 (with continuity correction).
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Chapter 6
Section 6.2
1. 286.36, 17.07.

3. E(̂σ 2) = (n1−1)E(S2
1)+(n2−1)E(S2

2)
n1+n2−2

= σ 2 (n1−1)+(n2−1)
n1+n2−2 = σ 2.

5. 2σ/
√

n. Yes.
7. (a) 0.5. (b) 0.298.

10. (b) 0.39, 45.20, 46.52.
(c) 0.375, 44.885, 46.42.

Section 6.3
1. λ̂ = 1/X. It is not unbiased.
3. α̂ = 10.686, β̂ = 10.6224.
5. (a) p̂ = X/n. It is unbiased.

(b) p̂ = 24/37.
(c) p̂2 = (24/37)2.
(d) No, because E(̂p2) = p(1 − p)/n + p2.

7. (a) log
(X+4

4
)

+ 5 log p + (X) log(1 − p), p̂ =
5/(X + 5).

(b) p̂ = 5/X.
(c) 0.096, 0.106.

9. (a) θ̂ = P/(1 − P).
(b) 0.202.

11. (a) −78.7381 + 0.1952x, 28.65.
(b) 24.82, 12.41.
(c) Fitted: 18.494, 23.961, 30.404, 41.142. Residuals:

−2.494, 1.039, 3.596, −2.142.

Section 6.4
1. (a) Bias(θ̂1) = 0; θ̂1 is unbiased. Bias(θ̂2) = −θ/(n + 1);

θ̂2 is biased.
(b) MSE(θ̂1) = θ2/(3n), MSE(θ̂2) = 2θ2/[(n+1)(n+2)].
(c) MSE(θ̂1) = 6.67, MSE(θ̂2) = 4.76. Thus, θ̂2 is

preferable.

Chapter 7
Section 7.3
1. (a) (37.47, 52.89). Normality.
3. (a) (206.69, 213.31). (b) Yes. (c) No.
5. (b) (256.12, 316.59). (c) (248.05, 291.16).
7. (a) (1.89, 2.59). (b) (

√
1.89,

√
2.59).

9. (a) (0.056, 0.104).
(b) The number who qualify and the number who do not

qualify must be at least 8.
11. (a) (0.495, 0.802). (b) (0.4952, 0.8022).
13. (a) α̂1 = 193.9643, β̂1 = 0.9338, S2

ε = 4118.563.
(b) (0.7072, 1.1605); normality.

(c) For X = 500, (614.02, 707.75); for X = 900, (987.33,
1081.51); the CI at X = 900 is not appropriate
because 900 is not in the range of X-values in the
data set.

15. (b) For β1: (−0.2237, −0.1172); for µY|X (80): (9.089,
10.105).

17. n=16; a=5; 1-2*(1-pbinom(n-a,n,0.5)) returns 0.9232;
changing to a=4 returns 0.9787.

19. (0.095, 0.153); yes.

Section 7.4
1. 195.
3. (a) 189. (b) 271.

Section 7.5
1. (2.56, 3.64). Normality.
3. (a) (41.17, 49.24).
4. (a) (7.66, 7.79).

(b) A distance of 12 feet is not in the range of X-
values in the data set, so the desired PI would not
be reliable.

Chapter 8
Section 8.2
1. (a) H0 : µ ≤ 31, Ha : µ > 31.

(b) Adopt the method of coal dust cover.
3. (a) Ha : µ < µ0.

(b) Ha : µ > µ0.
(c) For (a), the new grille guard is not adopted; for (b),

the new grille guard is adopted.
5. (a) H0 : p ≥ 0.05, Ha : p < 0.05.

(b) Not proceed.
7. (a) µ̂Y|X (x) ≥ C.

(b) µY|X (x)0 + tn − 2, 0.05Sµ̂Y|X (x).

9. (a) |TH0 | > tn − 2, α/2, where TH0 = (β̂1 − β1, 0)/
Sβ̂1

.

(b) TH0 = (µ̂Y|X (x) − µY|X (x)0)/Sµ̂Y|X (x).

Section 8.3
1. (a) TH0 = 1.94, H0 is rejected.

(b) No additional assumptions are needed.
3. (a) H0 : µ ≤ 50, Ha : µ > 50.

(b) Reject H0; normality.
(c) (i) Between 0.01 and 0.025 (ii) 0.02.

5. (a) H0 is not rejected, so club should be established.
(b) 0.999.

7. (a) H0 : p ≤ 0.2, Ha : p > 0.2.
(b) H0 is not rejected; p-value= 0.41. Not enough evi-

dence that the marketing would be profitable.
9. (b) R-squared = 0.975.

(c) µ̂Y|X (x) = −0.402 + 1.020x. 10.2.
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(d) (i) H0 : β1 ≤ 1, Ha : β1 > 1 (ii) H0 is not rejected;
p-value = 0.28.

11. (a) H0 : µ̃ = 300, Ha : µ̃ ̸= 300; H0 is not rejected,
so not enough evidence to conclude that the claim is
false.

(b) H0 : µ̃ ≥ 300, Ha : µ̃ < 300; H0 is rejected, so
there is enough evidence to conclude that the median
increase is less than 300.

15. H0 is rejected; p-value= 0.036; normality.

Section 8.4
1. (a) Type I.

(b) Type II.
3. (a) 0.102.

(b) 0.228.
(c) 0.098, 0.316; smaller probability of type I error and

more power.
5. 79.
7. (a) 0.926. (b) 2319.

Chapter 9
Section 9.2
1. (a) H0 : µ1 = µ2, Ha : µ1 ̸= µ2. No, because

15,5332/3,9542 = 15.43 is much larger than 2.
(b) TSS

H0
= 0.3275; H0 is not rejected; p-value = 0.74.

(c) (−4,186.66, 5,814.66); since zero is included in the CI,
H0 is not rejected.

3. (a) H0 : µ1 ≤ µ2, Ha : µ1 > µ2. Yes, because
20.386/15.622 = 1.70 < 2.

(b) TEV
H0

= 7.02; H0 is rejected; p-value= 3.29 × 10−10.

(c) (18.22, 40.18).
(d) t.test(duration∼route, data=dd, var.equal=T, alter-

native=”greater”) gives the p-value in (b),
and t.test(duration∼route, data=dd, var.equal=T,
conf.level=0.99) gives the CI in (c).

5. (a) H0 : µ1−µ2 ≤ 126, Ha : µ1−µ2 > 126. Yes, because
52.12/25.83 = 2.02 < 3.

(b) TEV
H0

= 4.42; H0 is rejected; p-value= 6.8 × 10−5.

(c) (131.4, 140.74).
(d) Using TEV

H0
, p-value = 6.83 × 10−5; using TSS

H0
,

p-value = 8.38 × 10−5.
7. (a) H0 : p1 = p2, Ha : p1 ̸= p2; H0 is rejected;

p-value= 0.0027.
(b) (−0.0201, −0.0017).
(c) prop.test(c(692, 1182), c(9396, 13985), correct=F,

conf.level=0.99) returns 0.0027 and (−0.0201,
−0.0017) for the p-value and 99% CI.

9. (a) H0 : p1 −p2 = 0, Ha : p1 −p2 ̸= 0; H0 is not rejected;
p-value= 0.6836.

(b) (−0.148, 0.108).

Section 9.3
1. H0 : µ̃S − µ̃C ≤ 0, Ha : µ̃S − µ̃C > 0; p-value= 0.007, so

H0 is rejected at α = 0.05; (14.10, 237.60).
3. (a) H0 : µ̃S − µ̃C = 0, Ha : µ̃S − µ̃C ̸= 0; ZH0 = 0.088,

H0 is not rejected, p-value= 0.93.
(b) (−33.00, 38.00).

5. t.test(duration∼route, alternative =”greater”, data=dd);
wilcox.test(duration∼route, alternative=”greater”,
data=dd) produce p-values of 8.13 × 10−11 and 1.19 ×
10−8, respectively. t.test(duration∼route, conf.level=0.9,
data=dd); wilcox.test(duration∼route, conf.int=T,
conf.level=0.9, data=dd) produce 90% CIs of (22.58,
35.82) and (22.80, 37.70), respectively.

Section 9.4
1. p-value= 0.79, H0 is not rejected.
3. p-value= 0.11, H0 is not rejected. Normality.

Section 9.5
1. (a) p-value= 0.78, H0 is not rejected. The differences

should be normally distributed; this assumption is
suspect due to an outlier.

(b) p-value= 0.27, H0 is not rejected.
3. (a) p-value = 0.037, H0 is rejected; (−5.490, −0.185).

(b) p-value= 0.037, H0 is rejected; (−5.450, −0.100);
quite similar to part (a).

(c) T test: p-value= 0.215, CI of (−7.364, 1.690), H0 is
not rejected; Rank-sum test: p-value= 0.340, CI of
(−6.900, 2.300), H0 is not rejected. Very different
from (a) and (b).

5. TH0 = −2.505, MN = −2.5, p-value= 0.012, H0 is
rejected at α = 0.05.

Chapter 10
Section 10.2
1. (a) H0 : µ1 = · · · = µ4, Ha : H0 is not true,

p-value= 0.1334, H0 is not rejected. Independent
samples, normality, and homoscedasticity.

(b) (i) θ = (µ1 + µ2)/2 − (µ3 + µ4)/2; H0 :
θ = 0, Ha : θ ̸= 0. (ii) TH0 = −2.01, p-
value= 0.056, H0 is rejected. The 90% CI is (−1.17,
−0.24). (After reading the data and attaching the
data frame use: sm=by(values, ind, mean); svar=
by(values, ind, var); t = (sm[1] + sm[2])/2 – (sm[3] +
sm[4])/2; st=sqrt(mean(svar)*2*(1/4)*(2/7)); t-qt(0.9,
24)*st; t+qt(0.9, 24)*st.)) (iii) No, because θ ̸= 0
means that H0 : µ1 = · · · = µ4 is not true. The T
test for a specialized contrast is more powerful than
the F test for the equality of all means.

3. (a) H0 : µ1 = · · · = µ4, Ha : H0 is not true, H0
is rejected; independent samples, normality,
homoscedasticity.

(b) p-value= 8.32 × 10−6, H0 is rejected.
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(c) After reading the data into the data frame df, the
command anova(aov(resid(aov(df$values∼df$ind))
**2∼df$ind)) returns a p-value of 0.62, suggesting
the homoscedasticity assumption is not contradicted
by the data. The Shapiro-Wilk test returns a p-value
of 0.13 suggest the normality assumption is not con-
tradicted by the data.

5. (a) H0 : µ1 = µ2 = µ3, Ha : H0 is not true,
DFSSTr = 2, DFSSE = 24, SSE = 24.839, MSTr =
0.0095, MSE = 1.035, F value = 0.009.

(b) H0 is not rejected.
(c) p-value = 0.99, H0 is not rejected.

7. (a) 14.72, χ2
3,0.05 = 7.81, H0 is rejected.

(b) 14.72, 0.002, H0 is rejected.
9. (a) fit=aov(values∼ind, data=ff); anova(aov(resid(fit)

ˆ2∼ff$ind)) return a p-value of 0.04; the assump-
tion of homoscedasticity is suspect. shapiro.test
(resid(fit)) returns a p-value of 0.008; there is sig-
nificant evidence that the assumption of normality is
not valid.

(b) Kruskal-Wallis is recommended as its validity does
not depend on these assumptions.

(c) 11.62, 0.02, H0 is not rejected at level α = 0.01.
11. H0 : p1 = · · · = p5, Ha : H0 is not true. Chi-square

test, 9.34, H0 is not rejected at level α = 0.05 (p-value=
0.053), independent samples.

Section 10.3
1. (a) H0 : µS = µC = µG, Ha : H0 is not true.

(b) 0.32, H0 is not rejected.
(c) No, because H0 is not rejected.

3. (a) H0 : µ1 = µ2 = µ3, Ha : H0 is not true, FH0 =
7.744, p-value= 0.0005, H0 is rejected at level α =
0.05.

(b) µ1 and µ2 are not significantly different, but µ1 and
µ3 as well as µ2 and µ3 are.

5. (a) H0 : µ1 = µ2 = µ3, Ha : H0 is not true, H0
is rejected at level α = 0.05. Independent samples,
normality, homoscedasticity.

(b) Tukey’s 95% SCIs for µ2 −µ1, µ3 −µ1, and µ3 −µ2
are (−3.72, 14.97), (2.28, 20.97), and (−3.35, 15.35),
respectively. Only teaching methods 1 and 3 are
significantly different.

(c) The p-values for the F test on the squared residuals
and the Shapiro test are 0.897 and 0.847, respectively.
The procedures in (a) and (b) are valid.

7. Bonferroni’s 95% SCIs for p1 −p2, p1 −p3, and p2 −p3,
are (−0.158, 0.166), (−0.022, 0.268), and (−0.037, 0.276).
respectively. None of the contrasts are significantly dif-
ferent from zero.

Section 10.4
1. (a) The assumption of independent samples, required

for the ANOVA F procedure of Section 10.2.1, does

not hold for this data. The appropriate model is Xij =
µ + αi + bj + εij, with

∑
i αi = 0 and Var(bj) = σ 2

b .
(b) H0 : α1 = α2 = α3, Ha : H0 is not true.
(c) With the data read in cr, the commands st=stack(cr);

MF=st$ind; temp=as.factor(rep(1:length(cr$MF1),
3)); summary(aov(st$values∼MF+temp)) gener-
ate the ANOVA table, which gives a p-value of
1.44 × 10−10 for testing H0. H0 is rejected.

(d) Ignoring the block effect, the command
summary(aov(st$values∼MF)) returns a p-value of
0.991, suggesting no mole fraction effect. This anal-
ysis is inappropriate because the samples are not
independent.

3. (a) Xij = µ + αi + bj + εij, with
∑

i αi = 0 and Var(bj) =
σ 2

b ; the parameters αi specify the treatment effects
and bj represent the random block (pilot) effects.

(b) H0 : α1 = · · · = α4, Ha : H0 is not true.
(c) fit=aov(times∼design+pilot, data=pr); anova(aov

(resid(fit)**2∼pr$design+pr$pilot)) return p-values
of 0.231 and 0.098 for the design and pilot effects on
the residual variance, suggesting there is no strong
evidence against the homoscedasticity assumption.
shapiro.test(resid(fit)) returns a p-value of 0.80, sug-
gesting the normality assumption is reasonable for
this data.

(d) The further command anova(fit) returns p-values of
0.00044 and 1.495 × 10−6 for the design and pilot
effects on the response time. The null hypothesis in
part (b) is rejected.

5. (a) “fabric”.
(b) DFSSTr = 3, DFSSB = 4, DFSSE = 12, SSTr

= 2.4815, MSTr = 0.8272, MSB = 1.3632, MSE =
0.0426, FTr

H0
= 19.425. Because 19.425 > F3,12,0.05 =

3.49, the hypothesis that the four chemicals do not
differ is rejected at level 0.05. The p-value, found by
1-pf(19.425, 3, 12), is 6.72 × 10−5.

7. (a) Bonferroni’s 95% SCIs for µA − µB, µA − µC,
and µB − µC are (−10.136, 8.479), (−9.702, 2.188),
and (−8.301, 2.444), respectively. None of the dif-
ferences is significantly different at experiment-wise
significance level 0.05.

(b) Bonferroni’s 95% SCIs for µ̃A − µ̃B, µ̃A − µ̃C, and
µ̃B−µ̃C are (−8.30, 3.75), (−13.9, −0.1), and (−11.0,
3.3), respectively. The difference µ̃A − µ̃C is signifi-
cantly different from zero at experiment-wise error
rate of 0.05, but the other differences are not.

Chapter 11
Section 11.2
1. (a) FGS

H0
= 0.6339 with p-value of 0.4286; the hypothe-

sis of no interaction effects is not rejected. FG
H0

=
141.78 with p-value of less than 2.2 × 10−16; the
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hypothesis of no main growth hormone effects is
rejected. FS

H0
= 18.96 with p-value of 4.46 × 10−5;

the hypothesis of no main sex steroid effects is
rejected.

(d) The p-values for testing the hypotheses of no main
growth effects, no main sex steroid effects, and
no interaction effects on the residual variance are,
respectively, 0.346, 0.427, and 0.299; none of these
hypotheses is rejected. The p-value for the normal-
ity test is 0.199, so the normality assumption appears
to be reasonable.

3. (a) The hypothesis of no interaction between gender and
dose.

(b) FGD
H0

= 0.0024 with p-value of 0.9617; the hypothesis
of no interaction effects is retained.

5. (b) The p-values for testing the hypotheses of no main
day effects, no main section effects, and no interac-
tion effects on the residual variance are, respectively,
0.3634, 0.8096, and 0.6280; none of these hypothe-
ses is rejected. The p-value for the normality test is
0.3147, so the normality assumption appears to be
reasonable.

(c) The pairs of days, except for (M, T), (M, W) and
(T, W), are significantly different at experiment-wise
error rate α = 0.01. The pairs of newspaper sec-
tions (Sports, Business) and (Sports, News) are also
significantly different.

7. The new SSE is 157,565 with 14 degrees of freedom. The
values of the F statistics for “tree species” and “flake
size” are 7.876 and 0.294, with corresponding p-values
of 0.005 and 0.596. HA

0 is rejected at level 0.05, but HB
0 is

not rejected.
9. (a) With “period” being the row factor and “trap” being

the column factor, the p-values are 0.0661 and 0.0005.
Both null hypotheses are rejected at level 0.05.

(b) The p-value for Tukey’s one degree of freedom test
for additivity is 0.0012, suggesting that the factors
interact.

(c) Yes.
11. (a) With “Auxin” being the row factor and “Kinetin”

being the column factor, the p-values are 2.347 ×
10−11 and 4.612 × 10−11. Both null hypotheses are
rejected at level 0.05.

(b) All pairs of levels of the “Auxin” factor, except for
(0.1, 0.5), (0.1, 2.5), and (0.5, 2.5), are significantly
different at experiment-wise error rate of 0.01.

(c) The p-value for Tukey’s one degree of freedom test
for additivity is 1.752 × 10−6, suggesting that the
factors interact.

Section 11.3
1. (a) Xijkℓ = αi + βj + γk + (αβ)ij + (αγ )ik + (βγ )jk +

(αβγ )ijk + εijkℓ. All main effects and interactions,

except for the main factor B effect (p-value 0.081)
and the three-way interaction effects (p-value 0.996),
are significant at level 0.05.

(b) Xijkℓ = αi +βj +γk + (αβ)ij + (αγ )ik + (βγ )jk +εijkℓ.
All main effects and interactions, except for the main
factor B effect (p-value 0.073), are significant at level
0.05.

(c) With the data read in h2o, and fit1 defined by
fit1=aov(y∼MS*SH*MH, data=h2o), the command
h2o$res=resid(fit1); anova(aov(res**2∼MS*SH*M
H, data=h2o)) yields the p-value of 0.0042 for the
main factor C effect on the residual variance. The
two other p-values are less than 0.05, suggesting the
homoscedasticity assumption does not hold. The p-
value of the Shapiro-Wilk test for normality is 0.07,
though in the presence of heteroscedasticity this is
not easily interpretable.

(d) After the square root arcsine transformation on the
response variable, only the main factor C effect on
the residual variance has a p-value less than 0.05
(0.012). The p-value of the Shapiro-Wilk test is 0.64,
suggesting the normality assumption is tenable.

3. (a) x221 = ab = 16, x112 = c = 12, and x122 = bc = 18.
(c) α1 = −1.375, β1 = −1.625, γ1 = −2.375, (αβ)11 =

0.875, (αγ )11 = −0.375, (βγ )11 = 0.875, (αβγ )111 =
1.375.

(d) SSA = 16 × 1.3752 = 30.25, SSB = 16 × 1.6252 =
42.25, SSC = 16 × 2.3752 = 90.25, SSAB = 16 ×
0.8752 = 12.25, SSAC = 16 × 0.3752 = 2.25, SSBC =
16 × 0.8752 = 12.25, SSABC = 16 × 1.3752 = 30.25.

(e) FA
H0

= 30.25/((12.25 + 2.25 + 12.25 + 30.25)/4) =
2.12, FB

H0
= 42.25/((12.25 + 2.25 + 12.25 + 30.25)/4)

= 2.96, FC
H0

= 90.25/((12.25 + 2.25 + 12.25 +
30.25)/4) = 6.33; these test statistics are all less than
F1,4,0.05, so none of the main effects is significantly
different from zero.

5. (a) True. (b) True.
(c) FA

H0
= 11.27, FB

H0
= 1.01, FC

H0
= 2.92; FA

H0
>

F1,4,0.05 = 7.709 so the hypothesis of no main fac-
tor A effects is rejected. The other test statistics are
all less than F1,4,0.05, so the main effects of factors B
and C are not significantly different from zero.

Section 11.4
1. If θ1 is the effect of block 1, and θ2 = −θ1 is the effect of

block 2, then the mean µijk of Xijk is µijk = µ+α1 +βj +
γk+(αβ)ij+(αγ )ik+(βγ )jk+(αβγ )ijk+θ1 if (i, j, k) is one
of (1, 1, 1), (2, 2, 1), (2, 1, 2), (1, 2, 2), and the same expres-
sion but with θ1 replaced by θ2 if (i, j, k) is one of the
other four sets of indices. Now use the expressions for the
contrasts estimating the different effects, which are given
in Example 11.3.1, to verify that θ1 and θ2 cancel each
other in all contrasts except the one for the three-factor
interaction.
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3. (a) ABDE.
(b) BE.
(c) G=rbind(c(1, 1, 1, 0, 0), c(0, 0, 1, 1, 1)); conf.design(G,

p=2) for part (a), and G=rbind(c(0, 1, 1, 1, 0), c(0, 0,
1, 1, 1)); conf.design(G, p=2) for part (b).

5. (a) block=c(rep(2,16)); for(i in c(1, 4, 6, 7, 9, 12,
14, 15))block[i]=1; sr$block=block generate the
“block” variable in the data frame sr, and
anova(aov(y∼block+A*B*C, data=sr)) returns the
ANOVA table.

(b) The three main effects and the AB interaction effect
are significantly different from zero.

7. (a) G=rbind(c(1, 1, 0, 0), c(0, 0, 1, 1)); conf.design(G,
p=2) give the allocation of runs into the four
blocks.

(b) x1=rep(4, 16); for(i in c(1, 4, 13, 16))x1[i]=1; for(i in
c(5, 8, 9, 12))x1[i]=2; for(i in c(2, 3, 14, 15))x1[i]=3;
block=c(x1, x1); aw$block=as.factor(block) generate
the “block” as part of the data frame aw.

(c) anova(aov(y∼block+A*B*C*D, data=aw)) returns
the ANOVA table. Only the main effects for factors
A and B are significant (p-values of 3.66 × 10−5 and
4.046 × 10−11).

9. The contrasts (−x211 + x121 + x112 − x222)/4, (x211 −
x121 + x112 − x222)/4, and (x211 + x121 − x112 − x222)/4
estimate α1−(βγ )11, β1−(αγ )11, and γ1−(αβ)11, respec-
tively. Thus, the alias pairs are [A, BC], [B, AC], [C, AB].

11. (a) [A, BCDE], [B, ACDE], [C, ABDE], [D, ABCE],
[E, ABCD], [AB, CDE], [AC, BDE], [AD, BCE],
[AE, BCD], [BC, ADE], [BD, ACE], [BE, ACD],
[CD, ABE], [CE, ABD], [DE, ABC].

(b) With the data read into the data frame df,
the sums of squares of the classes of aliased
effects can be obtained by the command
anova(aov(y∼A*B*C*D*E, data=df)). It is not
possible to test for the significance of the effects.

Chapter 12
Section 12.2
1. (a) 58.5.

(b) 46.8.
(c) Increases by 2.7.
(d) β0 = 46.8, β1 = 2.7, β2 = 0.9.

3. (a) −3.2, −0.4, 1.0.
(b) β2 = 0.7, β1 = −0.4, β0 = −12.1.

Section 12.3
1. (a) 10.4577 – 0.00023GS – 4.7198WS + 0.0033T; R2 =

0.8931; p-value= 0.021; yes.
(b) 5.9367; −1.0367.

(c) r1=lm(abs(rstandard(fit))∼poly(fitted(fit),2)); sum-
mary(r1) returns p-values of 0.60 and 0.61 for
the two regression slope parameters, suggesting
the homoscedasticity assumption is not contra-
dicted; shapiro.test(rstandard(fit)) returns a p-value
of 0.93, suggesting the normality assumption is not
contradicted.

(d) Only the coefficient of “Wind Speed” is significantly
different from zero at level 0.05 (p-value of 0.026).

(e) (1.30, 19.62), (−0.0022, 0.0017), (−8.51, −0.92),
(−0.171, 0.177).

3. (a) 70.94 + 10−55.18x1 − 10−52.18x2 + 10−23.382x3 −
10−13.011x4 + 10−24.893x5 − 10−35.735x6 −
10−87.383x7; R2adj: 0.6922; p-value: 10−102.534. The
model is useful for predicting life expectancy.

(b) The variables “Income,” “Illiteracy,” and “Area” are
not significant at level 0.05 (p-value of 0.9993).

(c) R2 is almost the same for both models; this is consis-
tent with the p-value in part (b) as they both suggest
that “Income,” “Illiteracy,” and “Area” are not sig-
nificant predictors; R2adj is bigger for the reduced
model, since the (almost identical) R2 is adjusted for
fewer predictors.

(d) r1=lm(abs(rstandard(h2))∼poly(fitted(h2), 2)); sum-
mary(r1) returns p-values of 0.67 and 0.48 for the
two regression slope parameters, suggesting the
homoscedasticity assumption is not contradicted;
shapiro.test(rstandard(h2)) returns a p-value of 0.56,
suggesting the normality assumption is not contra-
dicted.

(e) 71.796; 71.796 + (−0.3001)(5 − 10.3) = 73.386; pre-
dict(h2, data.frame(Population=21,198, Murder=5,
HS.Grad=62.6, Frost=20), interval=”prediction”)
returns the fitted value (73.386) and a 95%
prediction interval of (71.630, 75.143).

5. (a) R2: 0.962; adjusted R2: 0.946; significant (p-value =
2.4 × 10−5).

(b) The quadratic and cubic terms are jointly significant
at level 0.01 (p-value= 9.433 × 10−5).

(c) Polynomial terms of order 4-8 are not jointly signifi-
cant at level 0.01 (p-value 0.79); R2: 0.9824, adjusted
R2: 0.912; compared to those in (a), R2 is somewhat
bigger, but R2adj is somewhat smaller, consistent
with the non-significance of the higher order poly-
nomial terms.

Section 12.4
2. (a) r1=lm(abs(rstandard(fit))∼poly(fitted(fit),2)); sum-

mary(r1) returns a p-value of 0.038 for the model
utility test, suggesting violation of the homoscedas-
ticity assumption.

(b) p-value= 10−101.373.
(c) WLS.
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5. (a) X = 1 or −1 depending on whether the observation
comes from population 1 or 2.

(b) µ1 = β0 + β1, µ2 = β0 − β1.
(c) Both p-values are 10−106.609.
(d) 0.0898, 0.0775.
(e) < 10−162.2, 10−101.626.

7. mmax: 10−151.18; cach: 10−65.11; mmin: 10−154.34;
chmax: 10−113.05; syct: 0.00539; model utility test:
< 10−162.2.

11. (a) No variable is significant at level 0.05. The R2 value
of 0.9824 and the p-value of 10−74.756 for the model
utility test suggest that at least some of the vari-
ables should be significant. This is probably due to
multicollinearity.

(b) 38.50, 254.42, 46.87, 282.51. Yes.
(c) Variables x1 and x2 are highly significant. No.
(d) x1 and x2. No.

13. (a) R2: 0.3045, R2adj: 0.2105. Yes (p-value= 0.016). No.
(b) 13.95, 14.19, 1.92, 1.33, 1.20. Yes. Non-significance of

predictors, significant model utility test.
(c) According to the Cp criterion, the best model retains

only “lowid” and “tarsus.”
(d) R2: 0.2703, R2adj: 0.2338, model utility test: 0.0018,

lowid: 0.0059, tarsus: 0.0320. Somewhat smaller R2,
somewhat larger R2adj, smaller p-value for the
model utility test. The new variance inflation factors
are both equal to 1.0098. Multicollinearity is not an
issue now.

Chapter 13
Section 13.2
2. (a) It brought the subgroup means within the control

limits.
(b) No.
(c) No.
(d) 0.987.

4. (a) No, no.
(b) Yes, no.

Section 13.3
3. Both charts show most points after the calibration period

to be below the center line. It appears that the adjust-
ment had no effect on the process variability.

Section 13.4
1. The chart produced by the commands data(orangejuice2);

attach(orangejuice2); qcc(D[trial], sizes=size[trial],
type=”p”, newdata=D[!trial], newsizes=size[!trial])
suggests that the process remains in control.

Section 13.5
1. (a) The process is out of control (5 points outside the

control limits).
(b) One point shown out of control.
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A
Akaike information criterion,

451
alternative hypothesis

one-sided, 283
two-sided, 283

ANOVA table, 300
average

population, 23
sample, 24

average moving range, 474
average run length, 145

B
backward elimination, 452
balanced design, 385
Bayes information criterion,

451
bias, 231
bias, selection, 10
bivariate

pdf, 162
pmf, 159

bivariate normal distribution,
200

Bonferroni
multiple comparisons, 362
simultaneous CIs, 362

Bonferroni’s inequality, 362
bootstrap, 9
boxplot, 33

C
causation, 42
census, 3
Central Limit Theorem, 223
chi-square test

for proportions, 356
for variance, 304

coefficient of multiple determination,
428

common cause variability, 467
comparative study, 36
confidence interval, 254

for µ, t-interval, 258
for µ1 − µ2, nonparametric, 315
for µ1 − µ2, Smith-Satterthwaite,

316
for σ , 269
for σ 2, 268
for p1 − p2, 317
for regression line, 262
for β1, 262

confidence level, 254
confounded effects, 392,

409–413
confounding, 41
consistency, 212
contrast coding, 447
control limits, 470
Cook’s distance, 457
correlation, 159
correlation coefficient, 193
covariance matrix, 205
covariate, 201
cumulative distribution function, 100

D
degrees of freedom, simple linear

regression, 300
dependence, linear, 196
dependent

negatively, 192
positively, 192

diagram, Venn, 55
distribution

binomial, 123
geometric, 131
multinomial, 207
normal, 150
Poisson, 135
standard normal, 150
studentized range, 364
uniform, 103, 106, 113, 115

E
error bound, 254, 255
estimation

interval, 6
point, 6

estimation error, 211, 232
estimator, 231
event, 55
event, simple, 55
expected value, 24, 110

conditional, 167
of a random variable, 113

Experiment
Bernoulli, 123
binomial, 124
geometric, 131
hypergeometric, 127
negative binomial, 132
statistical, 42

experiment-wise error rate, 361
experimental unit, 36
explanatory variable, 201
exponential growth model, 425

F
fitted values, 427
forward selection, 452
full and reduced models, 437

G
generalized interactions, 412
goodness-of-fit, 155

H
histogram, 13
homoscedasticity, 385, 391
hypothesis

alternative, 282–284
null, 282, 283, 287

I
independent

events, 90
experiment, 90
variable, 201

independent and identically
distributed, 178

indicator variables, 447
interaction, 40
interaction effects, 423
interaction plot, 384
interquartile range, 121

sample, 31

K
Kruskal-Wallis test, 353

L
law

associative, 58
commutative, 57
De Morgan’s, 58
distributive, 58

law of total probability, 85
least squares, 242, 246
level of significance, 282
Levene’s test, 330
leverage, 457
log-likelihood function, 241
logistic function, 460
logit, 460

M
Mallow’s Cp criterion, 451
Mann-Whitney-Wilcoxon rank-sum

test, 325
masking of main effects, 387
McNemar’s test, 340
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mean, 2
population, 23
sample, 24

mean square error, 250
mean sum of squares

error, one-way, 346
error, randomized block

design, 372
error, simple linear regression, 300
regression, simple linear regression,

300
three-factor, 400
treatment, one-way, 346
two-factor, 386

mean value, 24, 111
median, 110

of a random variable, 119
population, 119
sample, 34

method of least squares,
230, 242

method of maximum likelihood,
230, 240

method of moments, 230
model utility test, 296
moments, 238
MSE selection criterion, 250
multiple comparisons, 387
multiple correlation coefficient,

428
multiplication rule, 83
multivariate, pdf, 164

N
nonparametric inference, 51
normal equations, 427

O
observational study, 42
order statistics, 31
orthogonal polynomials, 429

P
p-value, 283, 289

in s.l.r, 301
paired data, 334
parametric inference, 51
percentile, 119

sample, 32
Poisson process, 141
pooled sample proportion, 321

k samples, 356
pooled variance, k-samples, 346
population

average, 23
conceptual, 3
hypothetical, 3

mean, 23
standard deviation, 27
variance, 26

population average, 4
population parameter, 5
population proportion, 4, 22
population units, 2
power of a test procedure, 309
precision in estimation, 272
prediction interval, univariate sample,

277
predition interval, regression, 278
PRESS criterion, 451
probability, 60
probability density function, 103

conditional, 169
joint, 162

probability distribution, 98
probability mass function, 68

binomial, 124
conditional, 166
geometric, 131
hypergeometric, 128
joint, 159
multivariate, 161
negative binomial, 132
Poisson, 135

probability of type II error, 309
process capability, 468
process yield, 468
process, Poisson, 141
proportion

population, 22
sample, 22

Q
quantile, 119
quartile, sample, 31

lower, 31, 34
upper, 31, 34

R
random number generator, 7
random variable, 98

binomial, 124
continuous, 99
discrete, 99
geometric, 131
hypergeometric, 127
negative binomial, 132
Poisson, 135

randomized allocation, 41
randomized block design, 368
rank-sum test, 325
rational subgroups, 469
regression function, 159, 171
regression line, estimated, 242

regression model
multiple linear, 421
normal, 203
simple linear, 201

rejection rule, 283, 284
k-sample F, 347
Kruskal-Wallis test, 355
randomized block design, F, 372

rejection rules, F-test for H0 : σ 2
1 = σ 2

2 ,
332

rejection rules, sign test for median, 303
reliability, 75
residual, 244
residuals, 427

S
sample

convenience, 9
self-selected, 9

sample average, 4, 24
sample mean, 24
sample proportion, 4, 22
sample size determination: CI for µ,

272, 273
sample size determination: CI for p, 273
sample space, 53
sample standard deviation, 27, 28
sample variance, 27
sampling, 3

with replacement, 9
without replacement, 9
representative, 7
simple random, 7
stratified, 8
variability, 4

Shapiro-Wilk test, 391
sign confidence interval for the median,

265
sign test, 302
signed-rank test, 341
simultaneous CIs, 387
six sigma, 468
skewed

negatively, 104
positively, 104
to the left, 104
to the right, 104

Smith-Satterthwaite approximation,
314

standard deviation
of a random variable, 116
population, 27, 116
sample, 27, 28

standard error, 232
estimated, 233

standardized residuals, 434
statistic, 5
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statistical model
multiple linear regression, 422
one-way layout, 345
randomized block design, 370
simple linear regression, 202
three-factor design, 398
two-factor design, 385

stem and leaf plot, 13
stepwise regression, 452
strata, 8
studentized residuals, 434
sum of squares

error, 345, 371
treatment, 345, 371

T
T test statistic

for µ1 −µ2 with equal variances, 318
Smith and Satterthwaite, 318

T tests, 287
test procedure

χ2-test for a normal variance, 304
F-test for the slope of s.l.r., 301
t-test for µ, 292

t-test for the regression line of s.l.r.,
296

t-test for the slope of s.l.r., 295
Z-test for p, 294
Z-test for p1 − p2, 321

test statistic, 284
χ2-test for a normal variance, 304
t-test for µ, 292
t-test for the regression line, 296
t-test for the slope, 295
Kruskal-Wallis, 354
NP for k proportions, 356
paired Bernoulli

data, 339
paired data, 337
rank-sum, 327
sign for median, 303
signed-rank, 341

testing, 6
Tukey’s multiple comparisons, 364, 379
Tukey’s one degree of freedom test, 393
Tukey’s simultaneous CIs, 364, 387
type I error, 307
type II error, 307

U
unbalanced design, 387
unbiased estimator, 231
uncorrelated, random variables,

196

V
variability, 1

inherent, 3
intrinsic, 3

variance
conditional, 167
population, 26, 116
of a random variable, 116
sample, 27

variance inflation factor, 459

W
weighted average, 489

Z
Z confidence interval, 254
Z tests, 287
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