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PREFACE

All men by nature desire knowledge

ARISTOTLE
Metaphysics, Book |

Knowledge, however meager, is usable
if we know the amount of
uncertainty in it

CR Rao

Statistics has become an integral part of scientific investigations in virtually all disci-
plines and is used extensively in industry and government organizations. Probability
& Statistics with R for Engineers and Scientists offers a comprehensive introduction
to the most commonly used statistical ideas and methods.

This book evolved from lecture notes for a one-semester course aimed mainly
at undergraduate students in engineering and the natural sciences, as well as mathe-
matics education majors and graduate students from various disciplines. The choice
of examples, exercises, and data sets reflects the diversity of this audience.

The mathematical level has been kept relatively modest. Students who have
completed one semester of differential and integral calculus should find almost all
the exposition accessible. In particular, substantial use of calculus is made only in
Chapters 3 and 4 and the third section of Chapter 6. Matrix algebra is used only in
Chapter 12, which is usually not taught in a one-semester course.

THE R SOFTWARE PACKAGE

The widespread use of statistics is supported by a number of statistical software
packages. Thus, modern courses on statistical methodology familiarize students with
reading and interpreting software output. In sharp contrast to other books with
the same intended audience, this book emphasizes not only the interpretation of
software output, but also the generation of this output.

I decided to emphasize the software R (launched in 1984), which is spon-
sored by the Free Software Foundation. R is now used by the vast majority
of statistics graduate students for thesis research, is a leader in new software
development,! and is increasingly accepted in industry.? Moreover, R can be
downloaded for free so students do not have to go to computer labs for their assign-
ments. (To download R, go to the site http:/www.R-project.org/ and follow the
instructions.)

I See, e.g., http://www.r-bloggers.com/r-and-the-journal-of-computational-and-graphical-statistics.
2 See the New York Times article “Data Analysts Captivated by R’s Power,” by Ashlee Vance, January 6, 2009.

ix
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TEACHING INNOVATIONS AND CHAPTER CONTENT

In addition to the use of a software package as an integral part of teaching
probability and statistics, this book contains a number of other innovative
approaches, reflecting the teaching philosophy that: (a) students should be
intellectually challenged and (b) major concepts should be introduced as early as
possible.

This text’s major innovations occur in Chapters 1 and 4. Chapter 1 covers most
of the important statistical concepts including sampling concepts, random variables,
the population mean and variance for finite populations, the corresponding sam-
ple statistics, and basic graphics (histograms, stem and leaf plots, scatterplots, matrix
scatterplots, pie charts and bar graphs). It goes on to introduce the notions of sta-
tistical experiments, comparative studies, and corresponding comparative graphics.
The concepts and ideas underlying comparative studies, including main effects and
interactions, are interesting in themselves, and their early introduction helps engage
students in “statistical thinking.”

Chapter 4, which deals with joint (mainly bivariate) distributions, covers the
standard topics (marginal and conditional distributions, and independence of ran-
dom variables), but also introduces the important concepts of covariance and
correlation, along with the notion of a regression function. The simple linear regres-
sion model is discussed extensively, as it arises in the hierarchical model approach
for defining the bivariate normal distribution.

Additional innovations are scattered throughout the rest of the chapters.
Chapter 2 is devoted to the definition and basic calculus of probability. Except for
the use of R to illustrate some concepts and the early introduction of probabil-
ity mass function, this material is fairly standard. Chapter 3 gives a more general
definition of the mean value and variance of a random variable and connects it to
the simple definition given in Chapter 1. The common probability models for dis-
crete and continuous random variables are discussed. Additional models commonly
used in reliability studies are presented in the exercises. Chapter 5 discusses the
distribution of sums and the Central Limit Theorem. The method of least squares,
method of moments, and method of maximum likelihood are discussed in Chapter
6. Chapters 7 and 8 cover interval estimation and hypothesis testing, respectively,
for the mean, median, and variance as well as the parameters of the simple lin-
ear regression model. Chapters 9 and 10 cover inference procedures for two and
k > 2 samples, respectively, including paired data and randomized block designs.
Nonparametric, or rank-based, inference is discussed alongside traditional meth-
ods of inference in Chapters 7 through 10. Chapter 11 is devoted to the analysis
of two-factor, three-factor, and fractional factorial designs. Polynomial and multiple
regression, and related topics such as weighted least squares, variable selection, mul-
ticollinearity, and logistic regression are presented in Chapter 12. The final chapter,
Chapter 13, develops procedures used in statistical process control.

DATA SETS

This book contains both real life data sets, with identified sources, and simulated
data sets. They can all be found at

www.pearsonhighered.com/akritas

Clicking on the name of a particular data set links to the corresponding data file.
Importing data sets into R from the URL is easy when using the read.table command.
As an example, you can import the data set BearsData.txt into the R data frame br
by copying and pasting its URL into a read.table command:


http://www.pearsonhighered.com/akritas

Preface xi

br=read.table(”http://media.pearsoncmg.com/cmg/pmmg_mml_shared/
mathstatsresources/Akritas/BearsData.txt”, header=T)

The data sets can also be downloaded to your computer and then imported into R
from there.

Throughout the book, the read.table command will include only the name of the
particular data set to be imported into R. For example, the command for importing
the bear data into R will be given as

br=read.table(”BearsData.txt”, header=T)

SUGGESTED COVERAGE

This book has enough material for a year-long course, but can also be adapted for
courses of one semester or two quarters. In a one-semester course, meeting three
times a week, I cover selected topics from Chapters 1 through 10 and, recalling
briefly the concepts of main effects and interaction (first introduced in Chapter 1),
I finish the course by explaining the R commands and output for two-way anal-
ysis of variance. I typically deemphasize joint continuous distributions in Chapter
4 and may skip one or more of the following topics: multinomial distribution
(Section 4.6.4), the method of maximum likelihood (Section 6.3.2), sign confidence
intervals for the median (Section 7.3.4), the comparison of two variances (Section
9.4), the paired T test for proportions (Section 9.5.3), the Wilcoxon signed-rank test
(Section 9.5.4), and the chi-square test for proportions (Section 10.2.3). It is possible
to include material from Chapter 13 on statistical process control (for example after
Chapter 8) by omitting additional material. One suggestion is to omit the section
on comparing estimators (Section 6.4), confidence intervals and tests for a normal
variance (Sections 7.3.5 and 8.3.6), and randomized block designs (Section 10.4).

ACKNOWLEDGMENTS

I greatly appreciate the support of the Department of Statistics at Penn State
University and express my sincere thanks to colleagues, instructors, and graduate
students who used various editions of the lecture notes and provided many sugges-
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Portland State University; Michael Levine, Purdue University; Karin Reinhold,
SUNY at Albany; Kingsley A. Reeves, Jr., University of South Florida; Katarina
Jegdic, University of Houston Downtown; Lianming Wang, University of South
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Chapter

Basic StaTisTicAL CONCEPTS

Example
I.1-1

[.I ' Why Statistics?

Statistics deals with collecting, processing, summarizing, analyzing, and interpreting
data. On the other hand, scientists and engineers deal with such diverse issues as the
development of new products, effective use of materials and labor, solving produc-
tion problems, quality improvement and reliability, and, of course, basic research.
The usefulness of statistics as a tool for dealing with the above problems is best seen
through some specific case studies mentioned in the following example.

Examples of specific case studies arising in the sciences and engineering include

1. estimating the coefficient of thermal expansion of a metal;

2. comparing two methods of cloud seeding for hail and fog suppression at
international airports;

3. comparing two or more methods of cement preparation in terms of compres-
sive strength;

4. comparing the effectiveness of three cleaning products in removing four
different types of stains;

5. predicting the failure time of a beam on the basis of stress applied;

6. assessing the effectiveness of a new traffic regulatory measure in reducing the
weekly rate of accidents;

7. testing a manufacturer’s claim regarding the quality of its product;

8. studying the relation between salary increases and employee productivity in a
large corporation;

9. estimating the proportion of US citizens age 18 and over who are in favor of
expanding solar energy sources; and

10. determining whether the content of lead in the water of a certain lake is within
the safety limit. m

The reason why tasks like the above require statistics is variability. Thus, if
all cement prepared according to the same method had the same compressive
strength, the task of comparing the different methods in case study 3 would not
require statistics; it would suffice to compare the compressive strength of one cement
specimen prepared from each method. However, the strength of different cement
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Figure 1-1 Histogram of
32 compressive strength

measurements.

Example

1.2-1

Frequency

42 44 46 48 50

specimens prepared by the same method will, in general, differ. Figure 1-1 shows
the histogram for 32 compressive strength measurements.! (See Section 1.5 for a
discussion about histograms.) Similarly, if all beams fail at the same time under a
given stress level, the prediction problem in case study 5 would not require statistics.
A similar comment applies to all the case studies mentioned in Example 1.1-1.

An appreciation of the complications caused by variability begins by realizing
that the problem of case study 3, as stated, is ambiguous. Indeed, if the hardness
differs among preparations of the same cement mixture, then what does it mean to
compare the hardness of different cement mixtures? A more precise statement of
the problem would be to compare the average (or mean) hardness of the different
cement mixtures. Similarly, the estimation problem in case study 1 is stated more
precisely by referring to the average (or mean) thermal expansion.

It should also be mentioned that, due to variability, the familiar words average
and mean have a technical meaning in statistics that can be made clear through the
concepts of population and sample. These concepts are discussed in the next section.

[.2 Populations and Samples

As the examples of case studies mentioned in Example 1.1-1 indicate, statistics
becomes relevant whenever the study involves the investigation of certain charac-
teristic(s) of members (objects or subjects) in a certain population or populations.
In statistics the word population is used to denote the set of all objects or subjects
relevant to the particular study that are exposed to the same treatment or method.
The members of a population are called population units.

(a) In Example 1.1-1, case study 1, the characteristic under investigation is the
thermal expansion of a metal in the population of all specimens of the
particular metal.

(b) In Example 1.1-1, case study 3, we have two or more populations, one for
each type of cement mixture, and the characteristic under investigation is
compressive strength. Population units are the cement preparations.

(¢) In Example 1.1-1, case study 5, the characteristic of interest is time to failure
of a beam under a given stress level. Each stress level used in the study

! Compressive strength, in MPa (megapascal units), of test cylinders 6 in. in diameter by 12 in. high, using
water/cement ratio of 0.4, measured on the 28th day after they were made.



Example
1.2-2

Example
1.2-3

Section 1.2 Populations and Samples 3

corresponds to a separate population that consists of all beams that will be
exposed to that stress level.

(d) In Example 1.1-1, case study 8, we have two characteristics, salary increase
and productivity, for each subject in the population of employees of a large
corporation. m

In Example 1.2-1, part (c), we see that all populations consist of the same type of
beams but are distinguished by the fact that beams of different populations will be
exposed to different stress levels. Similarly, in Example 1.1-1, case study 2, the two
populations consist of the same type of clouds distinguished by the fact that they will
be seeded by different methods.

As mentioned in the previous section, the characteristic of interest varies
among members of the same population. This is called the inherent or intrinsic
variability of a population. A consequence of intrinsic variability is that complete,
or population-level, understanding of characteristic(s) of interest requires a census,
that is, examination of all members of the population. For example, full understand-
ing of the relation between salary and productivity, as it applies to the population of
employees of a large corporation (Example 1.1-1, case study 8), requires obtain-
ing information on these two characteristics for all employees of the particular
large corporation. Typically, however, census is not conducted due to cost and time
considerations.

(a) Cost and time considerations make it impractical to conduct a census of all US
citizens age 18 and over in order to determine the proportion of these citizens
who are in favor of expanding solar energy sources.

(b) Cost and time considerations make it impractical to analyze all the water in a
lake in order to determine the lake’s content of lead. [

Moreover, census is often not feasible because the population is hypothetical
or conceptual, in the sense that not all members of the population are available for
examination.

(a) If the objective is to study the quality of a product (as in Example 1.1-1, case
studies 7 and 4), the relevant population consists not only of the available sup-
ply of this product, but also that which will be produced in the future. Thus, the
relevant population is hypothetical.

(b) In a study aimed at reducing the weekly rate of accidents (Example 1.1-1, case
study 6) the relevant population consists not only of the one-week time periods
on which records have been kept, but also of future one-week periods. Thus,
the relevant population is hypothetical. [

In studies where it is either impractical or infeasible to conduct a census (which
is the vast majority of cases), answers to questions regarding population-level prop-
erties/attributes of characteristic(s) under investigation are obtained by sampling the
population. Sampling refers to the process of selecting a number of population units
and recording their characteristic(s). For example, determination of the proportion
of US citizens age 18 and over who are in favor of expanding solar energy sources
is based on a sample of such citizens. Similarly, the determination of whether or not
the content of lead in the water of a certain lake is within the safety limit must be
based on water samples. The good news is that if the sample is suitably drawn from
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Example
1.2-4

Example
1.2-5

Figure 1-2 Population and
sample relationships
between chest girth (in)
and weight (Ib) of black
bears.

the population, then the sample properties/attributes of the characteristic of interest
resemble (though they are not identical to) the population properties/attributes.

(a) A sample proportion (i.e., the proportion in a chosen sample) of US citizens
who favor expanding the use of solar energy approximates (but is, in gen-
eral, different from) the population proportion. (Precise definitions of sample
proportion and population proportion are given in Section 1.6.1.)

(b) The average concentration of lead in water samples (sample average) approx-
imates (but is, in general, different from) the average concentration in the
entire lake (population average). (Precise definitions of sample average and
population average are given in Section 1.6.2.)

(c) The relation between salary and productivity manifested in a sample of
employees approximates (but is, in general, different from) the relation in the
entire population of employees of a large corporation. [

The easier-to-measure chest girth of bears is often used to estimate the harder-to-
measure weight. Chest girth and weight measurements for 50 bears residing in a
given forested area are marked with “x” in Figure 1-2. The colored circles indicate
the chest girth and weight measurements of the bears in a sample of size 10.> The
black line captures the roughly linear relationship between chest girth and weight
in the population of 50 black bears, while the colored line does the same for the
sample.’ It is seen that the relationship between chest girth and weight suggested by
the sample is similar but not identical to that of the population.

=

Sample properties of the characteristic of interest also differ from sample to
sample. This is another consequence of the intrinsic variability of the population
from which samples are drawn. For example, the number of US citizens, in a sample
of size 20, who favor expanding solar energy will (most likely) be different from the
corresponding number in a different sample of 20 US citizens. (See also the examples
in Section 1.6.2.) The term sampling variability is used to describe such differences
in the characteristic of interest from sample to sample.
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2 The sample was obtained by the method of simple random sampling described in Section 1.3.
3 The lines were fitted by the method of least squares described in Chapter 6.



Figure 1-3 Variability in
the relationships between
chest girth and weight of
black bears suggested by
two different samples of
size 10.
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As an illustration of sampling variability, a second sample of size 10 was taken from
the population of 50 black bears described in Example 1.2-5. Figure 1-3 shows the
chest girth and weight measurements for the original sample in colored dots while
those for the second sample are shown in black dots. The sampling variability is
demonstrated by the colored and black lines, which suggest somewhat different
relationships between chest girth and weight, although both lines approximate the
population relationship. m

One must never lose sight of the fact that all scientific investigations aim
at discovering the population-level properties/attributes of the characteristic(s) of
interest. In particular, the problems in all the case studies mentioned in Example
1.1-1 refer to population-level properties. Thus, the technical meaning of the famil-
iar word average (or mean), which was alluded to at the end of Section 1.1, is that of
the population average (or mean); see Section 1.6.2 for a precise definition.

Population-level properties/attributes of characteristic(s) are called population
parameters. Examples include the population mean (or average) and the popula-
tion proportion that were referred to in Example 1.2-4. These and some additional
examples of population parameters are defined in Sections 1.6 and 1.7. Further
examples of population parameters, to be discussed in later chapters, include the
correlation coefficient between two characteristics, e.g., between salary increase and
productivity or between chest girth and weight. The corresponding sample proper-
ties/attributes of characteristics are called statistics, which is a familiar term because
of its use in sports statistics. The sample mean (or average), sample proportion, and
some additional statistics are defined in Sections 1.6 and 1.7, while further statistics
are introduced in later chapters.

A sample can be thought of as a window that provides a glimpse into the
population. However, due to sampling variability, a sample cannot yield accurate
information regarding the population properties/attributes of interest. Using the
new terminology introduced in the previous paragraph, this can be restated as: statis-
tics approximate corresponding population parameters but are, in general, not equal
to them.

Because only sample information is available, population parameters remain
unknown. Statistical inference is the branch of statistics dealing with the uncertainty
issues that arise in extrapolating to the population the information contained in the
sample. Statistical inference helps decision makers choose actions in the absence of
accurate knowledge about the population by



6 Chapter 1 Basic Statistical Concepts

e assessing the accuracy with which statistics approximate corresponding
population parameters; and

e providing an appraisal of the probability of making the wrong decision, or
incorrect prediction.

For example, city officials might want to know whether a new industrial plant
is pushing the average air pollution beyond the acceptable limits. Air samples are
taken and the air pollution is measured in each sample. The sample average, or
sample mean, of the air pollution measurements must then be used to decide if
the overall (i.e., population-level) average air pollution is elevated enough to jus-
tify taking corrective action. In the absence of accurate knowledge, there is a risk
that city officials might decide that the average air pollution exceeds the acceptable
limit, when in fact it does not, or, conversely, that the average air pollution does not
exceed the acceptable limit, when in fact it does.

As we will see in later chapters, statistical inference mainly takes the form
of estimation (both point and, the more useful, interval estimation) of the pop-
ulation parameter(s) of interest, and of testing various hypotheses regarding the
value of the population parameter(s) of interest. For example, estimation would
be used in the task of estimating the average coefficient of thermal expansion of
a metal (Example 1.1-1, case study 1), while the task of testing a manufacturer’s
claim regarding the quality of its product (Example 1.1-1, case study 7) involves
hypothesis testing. Finally, the principles of statistical inference are also used in the
problem of prediction, which arises, for example, if we would like to predict the fail-
ure time of a particular beam on the basis of the stress to which it will be exposed
(Example 1.1-1, case study 5). The majority of the statistical methods presented in
this book fall under the umbrella of statistical inference.

Exercises

I. A car manufacturer wants to assess customer satisfac-
tion for cars sold during the previous year.

(a) Describe the population involved.
(b) Is the population involved hypothetical or not?

2. A field experiment is conducted to compare the yield
of three varieties of corn used for biofuel. Each variety
will be planted on 10 randomly selected plots and the
yield will be measured at the time of harvest.

(a) Describe the population(s) involved.

(b) What is the characteristic of interest?

(c) Describe the sample(s).

3. An automobile assembly line is manned by two shifts
a day. The first shift accounts for two-thirds of the overall
production. Quality control engineers want to compare
the average number of nonconformances per car in each
of the two shifts.

(a) Describe the population(s) involved.

(b) Is (are) the population(s) involved hypothetical or
not?

(c) What is the characteristic of interest?

4. A consumer magazine article titled “How Safe Is the
Air in Airplanes” reports that the air quality, as quantified
by the degree of staleness, was measured on 175 domestic
flights.

(a) Identify the population of interest.
(b) Identify the sample.
(c) What is the characteristic of interest?

5. In an effort to determine the didactic benefits of com-
puter activities when used as an integral part of a statistics
course for engineers, one section is taught using the tra-
ditional method, while another is taught with computer
activities. At the end of the semester, each student’s
score on the same test is recorded. To eliminate unnec-
essary variability, both sections were taught by the same
professor.

(a) Is there one or two populations involved in the
study?

(b) Describe the population(s) involved.

(c) Is (are) the population(s) involved hypothetical or
not?

(d) What is (are) the sample(s) in this study?
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[.3 Some Sampling Concepts
1.3.1 REPRESENTATIVE SAMPLES

Proper extrapolation of sample information to the population, that is, valid statis-
tical inference, requires that the sample be representative of the population. For
example, extrapolation of the information from a sample that consists of those who
work in the oil industry to the population of US citizens will unavoidably lead to
wrong conclusions about the prevailing public opinion regarding the use of solar
energy.

A famous (or infamous) example that demonstrates what can go wrong when a
non-representative sample is used is the Literary Digest poll of 1936. The magazine
Literary Digest had been extremely successful in predicting the results in US presi-
dential elections, but in 1936 it predicted a 3-to-2 victory for Republican Alf Landon
over the Democratic incumbent Franklin Delano Roosevelt. The blunder was due to
the use of a non-representative sample, which is discussed further in Section 1.3.4. It
is worth mentioning that the prediction of the Literary Digest magazine was wrong
even though it was based on 2.3 million responses (out of 10 million questionnaires
sent). On the other hand, Gallup correctly predicted the outcome of that election by
surveying only 50,000 people.

The notion of representativeness of a sample, though intuitive, is hard to pin
down because there is no way to tell just by looking at a sample whether or not
it is representative. Thus we adopt an indirect definition and say that a sample is
representative if it leads to valid statistical inference. The only assurance that the
sample will be representative comes from the method used to select the sample.
Some of these sampling methods are discussed below.

[.3.2 SIMPLE RANDOM SAMPLING AND STRATIFIED SAMPLING

The most straightforward method for obtaining a representative sample is called
simple random sampling. A sample of size n, selected from some population, is a
simple random sample if the selection process ensures that every sample of size n
has an equal chance of being selected. In particular, every member of the population
has the same chance of being included in the sample.

A common way to select a simple random sample of size n from a finite pop-
ulation consisting of N units is to number the population units from 1,..., N, use
a random number generator to randomly select n of these numbers, and form the
sample from the units that correspond to the n selected numbers. A random num-
ber generator for selecting a simple random sample simulates the process of writing
each number from 1, ..., N on slips of paper, putting the slips in a box, mixing them
thoroughly, selecting one slip at random, and recording the number on the slip. The
process is repeated (without replacing the selected slips in the box) until n distinct
numbers from 1, ..., N have been selected.

Sixty KitchenAid professional grade mixers are manufactured per day. Prior to ship-
ping, a simple random sample of 12 must be selected from each day’s production and
carefully rechecked for possible defects.

(a) Describe a procedure for obtaining a simple random sample of 12 mixers from
a day’s production of 60 mixers.

(b) Use R to implement the procedure described in part (a).
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Solution

As a first step we identify each mixer with a number from 1 to 60. Next, we write
each number from 1 to 60 on separate, identical slips of paper, put all 60 slips of
paper in a box, and mix them thoroughly. Finally, we select 12 slips from the box,
one at a time and without replacement. The 12 numbers selected specify the desired
sample of size n = 12 mixers from a day’s production of 60. This process can be
implemented in R with the command

Simple Random Sampling in R
y=sample(seq(l, 60), size=12) 1.3.1)

The command without the y =, that is, sample(seq (1, 60), size = 12), will result in the
12 random numbers being typed in the R console; with the command as stated the

random numbers are stored in the object y and can be seen by typing the letter “y.
A set of 12 numbers thus obtained is 6, 8, 57, 53, 31, 35, 2,4, 16, 7, 49, 41. [

Clearly, the above technique cannot be used with hypothetical/infinite popula-
tions. However, measurements taken according to a set of well-defined instructions
can assure that the essential properties of simple random sampling hold. For exam-
ple, in comparing the compressive strength of cement mixtures, guidelines can be
established for the mixture preparations and the measurement process to assure that
the sample of measurements taken is representative.

As already mentioned, simple random sampling guarantees that every popula-
tion unit has the same chance of being included in the sample. However, the mere
fact that every population unit has the same chance of being included in the sample
does not guarantee that the sampling process is simple random. This is illustrated in
the following example.

In order to select a representative sample of 10 from a group of 100 undergradu-
ate students consisting of 50 male and 50 female students, the following sampling
method is implemented: (a) assign numbers 1-50 to the male students and use a ran-
dom number generator to select five of them; (b) repeat the same for the female
students. Does this method yield a simple random sample of 10 students?

Solution

First note that the sampling method described guarantees that every student has the
same chance (1 out of 10) of being selected. However, this sampling excludes all
samples with unequal numbers of male and female students. For example, samples
consisting of 4 male and 6 female students are excluded, that is, have zero chance of
being selected. Hence, the condition for simple random sampling, namely, that each
sample of size 10 has equal chance of being selected, is violated. It follows that the
method described does not yield a simple random sample. m

The sampling method of Example 1.3-2 is an example of what is called strati-
fied sampling. Stratified sampling can be used whenever the population of interest
consists of well-defined subgroups, or sub-populations, which are called strata.
Examples of strata are ethnic groups, types of cars, age of equipment, differ-
ent labs where water samples are sent for analysis, and so forth. Essentially, a
stratified sample consists of simple random samples from each of the strata. A
common method of choosing the within-strata sample sizes is to make the sample
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representation of each stratum equal to its population representation. This method
of proportionate allocation is used in Example 1.3-2. Stratified samples are also rep-
resentative, that is, they allow for valid statistical inference. In fact, if population
units belonging to the same stratum tend to be more homogenous (i.e., similar) than
population units belonging in different strata, then stratified sampling provides more
accurate information regarding the entire population, and thus it is preferable.

[.3.3 SAMPLING WITH AND WITHOUT REPLACEMENT

In sampling from a finite population, one can choose to do the sampling with replace-
ment or without replacement. Sampling with replacement means that after a unit is
selected and its characteristic is recorded, it is replaced back into the population and
may therefore be selected again. Tossing a fair coin can be thought of as sampling
with replacement from the population {Heads, Tails}. In sampling without replace-
ment, each unit can be included only once in the sample. Hence, simple random
sampling is sampling without replacement.

Itis easier to analyze the properties of a sample drawn with replacement because
each selected unit is drawn from the same (the original) population of N units.
(Whereas, in sampling without replacement, the second selection is drawn from a
reduced population of N — 1 units, the third is drawn from a further reduced popu-
lation of N — 2 units, and so forth.) On the other hand, including population unit(s)
more than once (which is possible when sampling with replacement) clearly does not
enhance the representativeness of the sample. Hence, the conceptual convenience
of sampling with replacement comes with a cost, and, for this reason, it is typically
avoided (but see the next paragraph). However, the cost is negligible when the pop-
ulation size is much larger than the sample size. This is because the likelihood of
a unit being included twice in the sample is negligible, so that sampling with and
without replacement are essentially equivalent. In such cases, we can pretend that
a sample obtained by simple random sampling (i.e., without replacement) has the
same properties as a sample obtained with replacement.

A major application of sampling with replacement occurs in the statistical
method known by the name of bootstrap. Typically, however, this useful and widely
used tool for statistical inference is not included in introductory textbooks.

1.3.4 NON-REPRESENTATIVE SAMPLING

Non-representative samples arise whenever the sampling plan is such that a part,
or parts, of the population of interest are either excluded from, or systematically
under-represented in, the sample.

Typical non-representative samples are the so-called self-selected and conve-
nience samples. As an example of a self-selected sample, consider a magazine that
conducts a reply-card survey of its readers, then uses information from cards that
were returned to make statements like “80% of readers have purchased cellphones
with digital camera capabilities.” In this case, readers who like to update and try
new technology are more likely to respond indicating their purchases. Thus, the pro-
portion of purchasers of cellphones with digital camera capabilities in the sample of
returned cards will likely be much higher than it is amongst all readers. As an exam-
ple of a convenience sample, consider using the students in your statistics class as a
sample of students at your university. Note that this sampling plan excludes students
from majors that do not require a statistics course. Moreover, most students take
statistics in their sophomore or junior year and thus freshmen and seniors will be
under-represented.
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Perhaps the most famous historical example of a sampling blunder is the 1936
pre-election poll by the Literary Digest magazine. For its poll, the Literary Digest
used a sample of 10 million people selected mainly from magazine subscribers, car
owners, and telephone directories. In 1936, those who owned telephones or cars,
or subscribed to magazines, were more likely to be wealthy individuals who were
not happy with the Democratic incumbent. Thus, it was a convenience sample that
excluded (or severely under-represented) parts of the population. Moveover, only
2.3 million responses were returned from the 10 million questionnaires that were
sent. Obviously, those who felt strongly about the election were more likely to
respond, and a majority of them wanted change. Thus, the Literary Digest sample
was self-selected, in addition to being a sample of convenience. (The Literary Digest
went bankrupt, while Gallup survived to make another blunder another day [in the
1948 Dewey-Truman contest].)

The term selection bias refers to the systematic exclusion or under-
representation of some part(s) of the population of interest. Selection bias, which
is inherent in self-selected and convenience samples, is the typical cause of non-
representative samples. Simple random sampling and stratified sampling avoid
selection bias. Other sampling methods that avoid selection bias do exist, and in
some situations they can be less costly or easier to implement. But in this book we
will mainly assume that the samples are simple random samples, with occasional

passing reference to stratified sampling.

Exercises

I. The person designing the study of Exercise 5 in
Section 1.2, aimed at determining the didactic benefits
of computer activities, can make one of the two choices:
(i) make sure that the students know which of the two
sections will be taught with computer activities, so they
can make an informed choice, or (ii) not make available
any information regarding the teaching method of the two
sections. Which of these two choices provides a closer
approximation to simple random sampling?

2. A type of universal remote for home theater systems
is manufactured in three distinct locations. Twenty per-
cent of the remotes are manufactured in location A, 50%
in location B, and 30% in location C. The quality con-
trol team (QCT) wants to inspect a simple random sample
(SRS) of 100 remotes to see if a recently reported prob-
lem with the menu feature has been corrected. The QCT
requests that each location send to the QC Inspection
Facility a SRS of remotes from their recent production as
follows: 20 from location A, 50 from B, and 30 from C.

a) Does the sampling scheme described produce a sim-
pling p
ple random sample of size 100 from the recent pro-
duction of remotes?

(b) Justify your answer in part (a). If you answer no, then
what kind of sampling is it?

3. A civil engineering student, working on his thesis,
plans a survey to determine the proportion of all current
drivers in his university town that regularly use their seat
belt. He decides to interview his classmates in the three
classes he is currently enrolled.

(a) What is the population of interest?

(b) Do the student’s classmates constitute a simple ran-
dom sample from the population of interest?

(c) What name have we given to the sample that the
student collected?

(d) Do you think that this sample proportion is likely to
overestimate or underestimate the true proportion of
all drivers who regularly use their seat belt?

4. In the Macworld Conference Expo Keynote Address
on January 9, 2007, Steve Jobs announced a new prod-
uct, the iPhone. A technology consultant for a consumer
magazine wants to select 15 devices from the pilot lot
of 70 iPhones to inspect feature coordination. Describe
a method for obtaining a simple random sample of 15
from the lot of 70 iPhones. Use R to select a sam-
ple of 15. Give the R commands and the sample you
obtained.

5. A distributor has just received a shipment of 90 drain
pipes from a major manufacturer of such pipes. The dis-
tributor wishes to select a sample of size 5 to carefully
inspect for defects. Describe a method for obtaining a
simple random sample of 5 pipes from the shipment of
90 pipes. Use R to implement the method. Give the R
commands and the sample you obtained.

6. A service agency wishes to assess its clients’ views on
quality of service over the past year. Computer records
identify 1000 clients over the past 12 months, and a
decision is made to select 100 clients to survey.



(a) Describe a procedure for selecting a simple random
sample of 100 clients from last year’s population of
1000 clients.

(b) The population of 1000 clients consists of 800
Caucasian-Americans, 150 African-Americans and
50 Hispanic-Americans. Describe an alternative pro-
cedure for selecting a representative random sam-
ple of size 100 from the population of 1000
clients.

(c) Give the R commands for implementing the sampling
procedures described in parts (a) and (b).

7. A car manufacturer wants information about customer
satisfaction for cars sold during the previous year. The
particular manufacturer makes three different types of
cars. Describe and discuss two different random sampling
methods that might be employed.

8. A particular product is manufactured in two facilities,
A and B. Facility B is more modern and accounts for 70%
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of the total production. A quality control engineer wishes
to obtain a simple random sample of 50 from the entire
production during the past hour. A coin is flipped and
each time the flip results in heads, the engineer selects
an item at random from those produced in facility A, and
each time the flip results in tails, the engineer selects an
item at random from those produced in facility B. Does
this sampling scheme result in simple random sampling?
Explain your answer.

9. An automobile assembly line operates for two shifts
a day. The first shift accounts for two-thirds of the over-
all production. The task of quality control engineers is to
monitor the number of nonconformances per car. Each
day a simple random sample of 6 cars from the first shift,
and a simple random sample of 3 cars from the second
shift is taken, and the number of nonconformances per
car is recorded. Does this sampling scheme produce a sim-
ple random sample of size 9 from the day’s production?
Justify your answer.

Example
1.4-1

.4 Random Variables and Statistical Populations

The characteristics of interest in all study examples given in Section 1.1 can be
quantitative in the sense that they can be measured and thus can be expressed as
numbers. Though quantitative characteristics are more common, categorical, includ-
ing qualitative, characteristics also arise. Two examples of qualitative characteristics
are gender and type of car, while strength of opinion is (ordinal) categorical. Since
statistical procedures are applied on numerical data sets, numbers are assigned for
expressing categorical characteristics. For example, —1 can be used to denote that a
subject is male, and +1 to denote a female subject.

A characteristic of any type expressed as a number is called a variable.
Categorical variables are a particular kind of discrete variables. Quantitative vari-
ables can also be discrete. For example, all variables expressing counts, such as
the number in favor of a certain proposition, are discrete. Quantitative variables
expressing measurements on a continuous scale, such as measurements of length,
strength, weight, or time to failure, are examples of continuous variables. Finally,
variables can be univariate, bivariate, or multivariate depending on whether one or
two or more characteristics are measured, or recorded, on each population unit.

(a) In a study aimed at determining the relation between productivity and salary
increase, two characteristics are recorded on each population unit (productiv-
ity and salary increase), resulting in a bivariate variable.

(b) Consider the study that surveys US citizens age 18 and over regarding their
opinion on solar energy. If an additional objective of the study is to deter-
mine how this opinion varies among different age groups, then the age of
each individual in the sample is also recorded, resulting in a bivariate variable.
If, in addition, the study aims to investigate how this opinion varies between
genders, then the gender of each individual in the sample is also recorded,
resulting in a multivariate variable.

(c) Consider the environmental study that measures the content of lead in water
samples from a lake in order to determine if the concentration of lead exceeds
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the safe limits. If other contaminants are also of concern, then the content of
these other contaminants is also measured in each water sample, resulting in a
multivariate variable. -

Due to the intrinsic variability, the value of the (possibly multivariate) variable
varies among population units. It follows that when a population unit is randomly
sampled from a population, its value is not known a priori. The value of the variable
of a population unit that will be randomly sampled will be denoted by a capital letter,
such as X. The fact that X is not known a priori justifies the term random variable
for X.

A random variable, X, denotes the value of the variable of a population unit
that will be sampled.

The population from which a random variable was drawn will be called the
underlying population of the random variable. Such terminology is particularly help-
ful in studies involving several populations, as are all studies that compare the
performance of two or more methods or products; see, for example, case study 3
of Example 1.1-1.

Finally, we need a term for the entire collection of values that the variable
under investigation takes among the units in the population. Stated differently,
suppose that each unit in the population is labeled by the value of the variable under
investigation, and the values in all labels are collected. This collection of values is
called the statistical population. Note that if two (or more) population units have
the same value of the variable, then this value appears two (or more) times in the
statistical population.

Consider the study that surveys US citizens age 18 and over regarding their opin-
ion on solar energy. Suppose that the opinion is rated on the scale 0,1,...,10, and
imagine each member of the population labeled by the value of their opinion. The
statistical population contains as many 0’s as there are people with opinion rated 0,
as many 1’s as there are people whose opinion is rated 1, and so forth. m

The word “population” will be used to refer either to the population of units or to
the statistical population. The context, or an explanation, will make clear which is
the case.

In the above discussion, a random variable was introduced as the numerical
outcome of random sampling from a (statistical) population. More generally, the
concept of a random variable applies to the outcome of any action or process that
generates a random numerical outcome. For example, the process of taking the arith-
metic average of a simple random sample (see Section 1.6 for details) generates a
random numerical outcome which, therefore, is a random variable.

1. In a population of 500 tin plates, the number of plates (c) Is the variable of interest univariate, bivariate, or
with 0, 1, and 2 scratches is Ny = 190, N; = 160, and multivariate?

N, = 150.

(a) Identify the variable of interest and the statistical
population.

2. Consider the following examples of populations,
together with the variable/characteristic measured on

(b) Is the variable of interest quantitative or qualitative? each population unit.



(a) Allundergraduate students currently enrolled at PSU.
Variable: major.

(b) All campus restaurants. Variable: seating capacity.

(c) All books in Penn State libraries. Variable: frequency
of check-out.

(d) All steel cylinders made in a given month. Variable:
diameter.

For each of the above examples, describe the statistical
population, state whether the variable of interest is quan-
titative or qualitative, and specify another variable that
could be measured on the population units.

3. At the final assembly point of BMW cars in Graz,
Austria, the car’s engine and transmission arrive from
Germany and France, respectively. A quality control
inspector, visiting for the day, selects a simple random
sample of n cars from the N cars available for inspection,
and records the total number of engine and transmission
nonconformances for each of the n cars.

(a) Is the variable of interest univariate, bivariate or
multivariate?

(b) Is the variable of interest quantitative or qualitative?
(c) Describe the statistical population.
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(d) Suppose the number of nonconformances in the
engine and transmission are recorded separately for
each car. Is the new variable univariate, bivariate, or
multivariate?

4. In Exercise 4 in Section 1.2, a consumer magazine
article reports that the air quality, as quantified by
the degree of staleness, was measured on 175 domestic
flights.

(a) Identify the variable of interest and the statistical
population.

(b) Is the variable of interest quantitative or qualitative?
(c) Is the variable of interest univariate or multivariate?

5. A car manufacturing company that makes three dif-
ferent types of cars wants information about customer
satisfaction for cars sold during the previous year. Each
customer is asked for the type of car he or she bought last

year and to rate his or her level of satisfaction on a scale
from 1-6.

(a) Identify the variable recorded and the statistical
population.

(b) Is the variable of interest univariate?
(c) Is the variable of interest quantitative or categorical?

[.5 Basic Graphics for Data Visualization

This section describes some of the most common graphics for data presentation and
visualization. Additional graphics are introduced throughout this book.

[.5.1

HISTOGRAMS AND STEM AND LEAF PLOTS

Histograms and stem and leaf plots offer ways of organizing and displaying data.
Histograms consist of dividing the range of the data into consecutive intervals, or
bins, and constructing a box, or vertical bar, above each bin. The height of each box
represents the bin’s frequency, which is the number of observations that fall in the
bin. Alternatively, the heights can be adjusted so the histogram’s area (i.e., the total
area defined by the boxes) equals one.

R will automatically choose the number of bins but it also allows user-specified
intervals. Moreover, R offers the option of constructing a smooth histogram.
Figure 1-4 shows a histogram (with area adjusted to one) of the Old Faithful geyser’s
eruption durations with a smooth histogram superimposed. (The data are from the

R data frame faithful.)

Stem and leaf plots offer a somewhat different way for organizing and display-
ing data. They retain more information about the original data than histograms but
do not offer as much flexibility in selecting the bins. The basic idea is to think of
each observation as the stem, which consists of the beginning digit(s), and the /leaf,
which consists of the first of the remaining digits. In spite of different grouping of
the observations, the stem and leaf display of the Old Faithful geyser’s eruption
durations shown in Figure 1-5 reveals a similar bimodal (i.e., having two modes or

peaks) shape.
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Figure 1-4 Histogram and
smooth histogram for 272
eruption durations (min).

Figure 1-5 Stem and leaf
plot for the 272 eruption
durations.
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With the R object x containing the data (e.g., x = faithful$eruptions), the R
commands for histograms and the stem and leaf plot are [# is the comment character]

R Commands for Histograms, Smooth Histograms, and Stem
and Leaf Plots

hist(x) # basic frequency histogram
hist(x, freq=FALSE) # histogram area = 1
plot(density(x)) # basic smooth histogram

hist(x, freq=F); Tines(density(x)) # superimposes
the two

stem(x) # basic stem and leaf plot

stem(x, scale=1) # equivalent to the above

(1.5.1)
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REMARK 1.5-1

1. The main label of a figure and the labels for the axes are controlled by
main = 7 7, xlab = ” 7, ylab = ” 7, respectively; leaving a blank space
between the quotes results in no labels. The color can also be specified. For
example, the commands used for Figure 1-4 are x = faithful$eruptions; hist(x,
freq = E main = "Eruption Durations of the Old Faithful Geyser”, xlab=""",
col="grey”); lines(density(x), col = "red”).

2. To override the automatic selection of bins one can either specify the number of
bins (for example breaks = 6), or specify explicitly the break points of the bins.
Try hist(faithful$eruptions, breaks =seq(1.2, 5.3, 0.41)).

3. For additional control parameters type ?7hist, ?density, or ?stem on the R
console. <

As an illustration of the role of the scale parameter in the stem command
(whose default value is 1), consider the data on US beer production (in millions of
barrels)

| 566699

| 11122444444
| 6678899

| 022334

| 5

[V BV, [ S S OV

for different quarters during the period 1975-1982. Entering the data in the R object
x through x =c¢(35, 36, 36, 36, 39, 39, 41, 41, 41, 42, 42, 44, 44, 44, 44, 44, 44, 46, 46,
47, 48, 48, 49, 49, 50, 52, 52, 53, 53, 54, 55), the command stem(x, scale =0.5) results
in the above stem and leaf display. Note that leaves within each stem have been split
into the low half (integers from O through 4) and the upper half (integers from 5
through 9).

1.5.2 SCATTERPLOTS

Scatterplots are useful for exploring the relationship between two and three vari-
ables. For example, Figures 1-2 and 1-3 show such scatterplots for the variables bear
chest girth and bear weight for a population of black bears and a sample drawn
from that population. These scatterplots suggested a fairly strong positive associa-
tion between chest girth and weight (i.e., bigger chest girth suggests a heavier bear),
so that chest girth can be used for predicting a bear’s weight. In this section we will
see some enhanced versions of the basic scatterplot and a three-dimensional (3D)
scatterplot.

Scatterplots with Subclass Identification The scatterplot in Figure 1-6 is similar to
the scatterplot of Figure 1-2 but uses colors to distinguish between male and female
bears. The additional insight gained from Figure 1-6 is that the relationship between
the variables chest girth and weight is similar for both genders in that population of
black bears.

Scatterplot Matrix ~ As the name suggests, a scatterplot matrix is a matrix of scatter-
plots for all pairs of variables in a data set. In fact, two scatterplots are produced for
every pair of variables, with each variable being plotted once on the x-axis and once
on the y-axis. Figure 1-7 gives the matrix of all pairwise scatterplots between the
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Figure 1-6 Bear weight vs
chest girth scatterplot.

Figure 1-7 Scatterplot
matrix for bear
measurements.
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different measurements taken on the black bears. The scatterplot in location (2,1),
that is, in row 2 and column 1, has Head.L (head length) on the x-axis and Head.W
(head width) on the y-axis, while the scatterplot in location (1,2) has Head.W on the
x-axis and Head.L on the y-axis.

Scatterplot matrices are useful for identifying which variable serves as the
best predictor for another variable. For example, Figure 1-7 suggests that a
bear’s chest girth and neck girth are the two best single predictors for a bear’s
weight.



Figure 1-8 Scatterplot of
bear weight vs chest girth
showing the marginal
histograms.
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With the data read into data frame br (for example by br=read.
table(”BearsData.txt”, header = T)), the R commands that generated Figures 1-6 and
1-7 are:*

R Commands for Figures 1-6 and 1-7
attach(br) # so variables can be referred to by name

plot(Chest.G, Weight, pch=21, bg=c(’red”,
”green”) [unclass(Sex)]) # Figure 1-6

Tegend( x=22, y=400, pch=c(21, 21), col=c(’red”,
”green”), legend=c(”Female”, “Male”)) # add legend in
Figure 1-6

pairs(br[4:8], pch=21,bg=c(’red”, “green”)[unclass(Sex)]) #
Figure 1-7

Scatterplots with Marginal Histograms This enhancement of the basic scatterplot
shows individual histograms for the two variables used in the scatterplot. Figure 1-8
shows such an enhancement for the scatterplot of Figure 1-6.° The term marginal,
which is justified by the fact the histograms appear on the margins of the scatterplot,
is commonly used to refer to the statistical population of individual variables in a
multivariate data set; see also Chapter 4.
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4 Attempts to estimate a bear’s weight from its chest girth measurements go back to Neil F. Payne (1976).
Estimating live weight of black bears from chest girth measurements, The Journal of Wildlife Management, 40(1):
167-169. The data used in Figure 1-7 is a subset of a data set contributed to Minitab by Dr. Gary Alt.

5 The R commands that generated Figure 1-8 are given at http://www.stat.psu.edu/~mga/401/fig/ScatterHist.txt;
they are a variation of the commands given in an example on http:/www.r-bloggers.com/example-8-41-
scatterplot-with-marginal-histograms.


http://www.stat.psu.edu/~mga/401/fig/ScatterHist.txt
http://www.r-bloggers.com/example-8-41-scatterplot-with-marginal-histograms
http://www.r-bloggers.com/example-8-41-scatterplot-with-marginal-histograms
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Figure 1-9 3D scatterplot

for temperature,

production, and electricity.
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3D Scatterplot Figure 1-9 pertains to data on electricity consumed in an industrial
plant in 30 consecutive 30-day periods, together with the average temperature and
amount (in tons) of production. This figure gives a three dimensional view of the
joint effect of temperature and production volume on electricity consumed.

With the data read into data frame el, for example, by el=read.
table(” ElectrProdTemp.txt”, header=T), the R commands used to generate this
figure are:

R Commands for Figure 1-9
attach(el) # so variables can be referred to by name

install.packages(”scatterplot3d”); Tibrary(scatterplot3d) #
needed for the next command

scatterplot3d(Temperature, Production, Electricity,
angle=35, col.axis="blue”, col.grid="Tightblue”,
color="red”, main=" ", pch=21, box=T) # for
Figure 1-9

[.5.3 PIE CHARTS AND BAR GRAPHS

Pie charts and bar graphs are used with count data that describe the prevalence of
each of a number of categories in the sample. Alternatively, they can display the per-
centage or proportion (see Section 1.6.1 for the precise definition and notation) of
each category in the sample. Examples include the counts (or percentages or pro-
portions) of different ethnic or education or income categories, the market share of
different car companies at a given point in time, the popularity of different car col-
ors, and so on. When the heights of the bars are arranged in a decreasing order, the
bar graph is also called a Pareto chart. The Pareto chart is a key tool in improvement
programs, where it is often used to represent the most common sources of defects in
a manufacturing process, or the most frequent reasons for customer complaints, and
SO on.

The pie chart is perhaps the most widely used statistical chart in the busi-
ness world and is particularly popular in the mass media. It is a circular chart,



Figure 1-10 Pie chart of
light vehicle market share
data.

Figure 1-11 Bar graph of
light vehicle market share
data.
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where the sample or the population is represented by a circle (pie) that is divided
into sectors (slices) whose sizes represent proportions. The pie chart in Figure 1-
10 displays information on the November 2011 light vehicle market share of car
companies.

It has been pointed out, however, that it is difficult to compare different sections
of a given pie chart, or to compare data across different pie charts such as the light
vehicle market share of car companies at two different time points. According to
Stevens’ power law,’ length is a better scale to use than area. The bar graph achieves
improved visual perception by using bars of height proportional to the proportion it
represents. In that sense, a bar graph is similar to a histogram with area adjusted to
one. The bar graph for the aforementioned light vehicle market share data is shown
in Figure 1-11.
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© http://wardsauto.com/datasheet/us-light-vehicle-sales-and-market-share-company-2004-2013
7'S. S. Stevens (1957). On psychophysical law. Psychological Review. 64(3): 153-181.


http://wardsauto.com/datasheet/us-light-vehicle-sales-and-market-share-company-2004%E2%80%932013
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With the data read into the data frame [lv, [e.g., by [Iv=read.table
("MarketShareLightVeh.txt”, header = T)], the R commands used to generate these
figures (using rainbow colors) are:

R Commands for Figures 1-10 and 1-11
attach(lv) # so variables can be referred to by name

pie(Percent, Tabels=Company, col=rainbow(length(Percent)))
# for Figure 1-10

barplot(Percent, names.arg=Company, col=rainbow(length
(Percent)), las=2) # for Figure 1-11

REMARK 1.5-2 Bar graphs can also be displayed horizontally. Try barplot(Percent,
names.arg = Company, col = rainbow (length(Percent)), horiz =T, las = 1) for a hori-
zontal version of Figure 1-11. See also Exercise 17 below for a variation of the Pareto

chart.

Exercises

<

1. Use cs =read.table(”Concr.Strength.1s. Data.txt”,
header =T) to read into the R object c¢s data on
28-day compressive-strength measurements of con-
crete cylinders using water/cement ratio 0.4.8 Then
use the commands attach(cs); hist(Str, freq=FALSE);
lines(density(Str)); stem(Str) to produce a histogram with
the smooth histogram superimposed, and a stem and leaf
plot.

2. Use the commands attach(faithful); hist(waiting);
stem(waiting) to produce a basic histogram of the Old
Faithful data on waiting times before eruptions, and
the corresponding stem and leaf plot. Is the shape
of the stem and leaf plot similar to that of the his-
togram? Next, use commands similar to those given in
Remark 1.5-1 to color the histogram, to superimpose
a colored smooth histogram, and to add a histogram
title.

3. Use the commands attach(faithful); plot(waiting, erup-
tions) to produce a scatterplot of the Old Faithful data
on eruption duration against waiting time before erup-
tion. Comment on the relationship between waiting time
before eruption and eruption duration.

4. The data in Temp.Long Lat.txt give the average
(over the years 1931 to 1960) daily minimum January

temperature in degrees Fahrenheit with the latitude and
longitude of 56 US cities.”

(a) Construct a scatterplot matrix of the data. Does lon-
gitude or latitude appear to be the better predictor of
a city’s temperature? Explain in terms of this plot.

(b) Construct a 3D scatterplot of the data. Does longitude
or latitude appear to be the better predictor of a city’s
temperature? Explain in terms of this plot.

5. Import the bear measurements data into the R data
frame br as described in Section 1.5.2, and use the com-
mand

scatterplot3d(br[6:8], pch=21,
bg=c(”red”,”green”) [unclass(br$Sex)])

for a 3D scatterplot of neck girth, chest girth, and weight
with gender identification.!”

6. Studies of the relationship between a vehicle’s speed
and the braking distance have led to changes in speed-
ing laws and car design. The R data set cars has braking
distances for cars traveling at different speeds recorded
in the 1920s. Use the commands attach(cars); plot(speed,
dist) to produce a basic scatterplot of the braking distance
against speed. Comment on the relationship between
speed and breaking distance.

8 V. K. Alilou and M. Teshnehlab (2010). Prediction of 28-day compressive strength of concrete on the third day
using artificial neural networks, International Journal of Engineering (IJE), 3(6).
9 J. L. Peixoto (1990). A property of well-formulated polynomial regression models. American Statistician,

44:26-30.

10 Braking distance is the distance required for a vehicle to come to a complete stop after its brakes have

been activated.



7. Read the data on the average stopping times (on a
level, dry stretch of highway, free from loose material) of
cars and trucks at various speeds into the data frame bd by
bd =read.table(”SpeedStopCarTruck.txt”,  header=T).
Then, use commands similar to those for Figure 1-6,
given in Section 1.5.2, to plot the data using colors to
differentiate between cars and trucks. Add a legend to
the plot.

8. Determining the age of trees is of interest to both
individual land owners and to the Forest Service of the
US Department of Agriculture. The simplest (though
not the most reliable) way of determining the age
of a tree is to use the relationship between a tree’s
diameter at breast height (4-5 ft) and age. Read the
data on the average age of three types of trees at
different diameter values into the data frame ad by
ad =read.table(” TreeDiamAAge3Stk.txt”,  header=T).
Then, use the commands attach(ad); plot(diam, age,
pch=21, bg=c("red”, "green”, "blue”)[unclass(tree)]);
legend( x=35 y=250, pch = c¢(21, 21, 21), col
= c(’red”, “green”, ”"blue”), legend = c(”SMaple”,
“ShHickory”, "WOak”)) to plot the data and add a leg-
end. Comment on any difference in the growth patterns
of the three different trees.

9. Read the data on Robot reaction times to
simulated malfunctions into the data frame ¢ by
t=read.table(”RobotReactTime.txt”, header=T). Copy
the reaction times of Robot 1 into the vector ¢/ by
attach(t); tl =Time[Robot==1]. Using the commands
given in (1.5.1) do:

(a) A basic histogram with a smooth histogram superim-

posed for the reaction times of Robot 1.

(b) A stem and leaf plot for the reaction times of Robot 1.

10. Data from an article reporting conductivity (#S/cm)
measurements of surface water (X) and water in the sed-
iment at the bank of a river (Y), taken at 10 points during
winter, can be found in ToxAssesData.txt.}! Read the data
into the data frame Cond using a command similar to that
given in Exercise 7, and construct a basic scatterplot of
Y on X using the commands given in Exercise 6. Does
it appear that the surface conductivity can be used for
predicting sediment conductivity?

11. Is rainfall volume a good predictor of runoff volume?
Data from an article considering this question can be
found in SoilRunOffData.txt.'?> Read the data into the
data frame Rv using a command similar to that given in
the Exercise 7, and construct a basic scatterplot of the
data using the commands given in Exercise 6. Does it
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appear that the rainfall volume is useful for predicting the
runoff volume?

12. Read the projected data on the electricity consumed
in an industrial plant in 30 consecutive 30-day periods,
together with the average temperature and amount of
production (in tons) into the data frame e/ using the
commands given for Figure 1-9, Section 1.5.2, and use
the commands given in the same section to construct a
scatterplot matrix for the data. Which of the variables
temperature and production is a better single predictor for
the amount of electricity consumed?

13. The R data set airquality contains daily ozone mea-
surements, temperature, wind, solar radiation, month,
and day. Use the command pairs(airquality[1:5]) to pro-
duce a scatterplot matrix for the first five variables of this
data set, and answer the following questions:

(a) Is it more likely to have higher ozone levels on hot
days?

(b) Is it more likely to have higher ozone levels on windy
days?

(c) What seems to happen to ozone levels when there is
increased solar radiation?

(d) Which month seems to have the highest ozone
levels?

14. Data from an article investigating the effect
of auxin-cytokinin interaction on the organogen-
esis of haploid geranium callus can be found in
AuxinKinetinWeight.txt.)> Read the data into the
data frame Ac using a command similar to that
given in Exercise 7, and use the commands given in
Section 1.5.2 to

(a) construct a scatterplot matrix for the data, and
(b) construct a 3D scatterplot for the data.

Comment on the usefulness of the variables auxin and
kinetin as predictors of the callus weight.

15. The R data set mitcars contains data on the weight,
displacement, and mileage of cars. Use the commands
library(scatterplot3d); attach(mtcars); scatterplot3d(wt,
disp, mpg, pch =21, highlight.3d =T, type="h", box="T,
main="") for a variation of the 3D scatterplot. Repeat
the command replacing box =T by box =F.

16. Read the projected numbers and types of accidents of
US residents age 16-24 years, found in AccidentTypes.txt,
into the frame At using a command similar to that given
in Exercise 7. Construct a bar graph and a pie chart for
this data using the commands given in Section 1.5.3.

11 M. Latif and E. Licek (2004). Toxicity assessment of wastewaters, river waters, and sediments in Austria using
cost-effective microbiotests, Environmental Toxicology, 19(4): 302-308.

12 M. E. Barrett et al. (1995). Characterization of Highway Runoff in Austin, Texas, Area. Center for Research
in Water Resourses, University of Texas at Austin, Tech. Rep.# CRWR 263.

13 M. M. EI-Nil, A. C. Hildebrandt, and R. E. Evert (1976). Effect of auxin-cytokinin interaction on organogen-
esis in haploid callus of Pelargonium hortorum, In Vitro 12(8): 602-604.



22 Chapter 1 Basic Statistical Concepts

17. Read the projected percents and reasons why people are arranged in decreasing order. Use the com-
in the Boston area are late for work into the data frame Iw mands attach(lw); plot(c(0, 6), c(0, 100), pch="
using the command Iw = read.table(” Reasons LateForWork. 7, xlab="""7", ylab=" ", xaxt="n", yaxt="n");
txt”, sep=",", header =T). barplot(Percent, width=0.8, names.arg = Reason,
(a) Construct a bar graph and a pie chart for this data cpl:r ainbow (length(Percent)), las=2, add=T);

using the commands given in Section 1.5.3. lines(seq(0.5, 5.5, 1), cumsum(Percent), col="red”)

(b) The bar graph constructed in part (a) above is
actually a Pareto chart, since the bar heights

Definition of
Population Proportion

Definition of
Sample Proportion

Example
1.6-1

to construct a variation of the Pareto chart, which
also displays the cumulative percentages.

.6 Proportions, Averages, and Variances

Typically scientists want to learn about certain quantifiable aspects, called param-
eters, of the variable, or statistical population, of interest. The most common
parameters are the proportion, the average, and the variance. In this section we dis-
cuss these parameters for finite populations. Sample versions of these parameters
will also be discussed.

[.6.1 POPULATION PROPORTION AND SAMPLE PROPORTION

When the variable of interest is categorical, such as Defective or Non-Defective,
Strength of Opinion, Type of Car, and so on, then interest lies in the proportion of
population (or sample) units in each of the categories. Graphical methods for visu-
alizing proportions were presented in Section 1.5.3. Here we introduce the formal
definition and notation for the population proportion and the sample proportion,
and illustrate the sampling variability of the sample proportion.

If the population has N units, and N; units are in category i, then the population
proportion of category i is

~_ #{population units in category i}  N; 16
T #{population units} TN’ .

If a sample of size n is taken from this population, and n; sample units are in
category i, then the sample proportion of category i is

. # 1 its in cat ] j
5 = {sample units in Cfd egory i} _n ' @62
#{sample units} n

A car manufacturer receives a shipment of N = 10,000 navigation systems that are
to be installed as a standard feature in the next line of luxury cars. Of concern is
a type of satellite reception malfunction. N; = 100 systems have this malfunction
(category 1) and N, = 9900 do not (category 2). For quality control purposes, a sam-
ple of n = 1000 systems is taken. After examination, it is found that n; = 8 systems
in the sample have this malfunction and n, = 992 do not. Give the population and
sample proportions for the two categories.

Solution
According to the formula (1.6.1), the population proportions for the two
categories are



Example
1.6-2

Definition of
Population Mean
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100 9900
P1= 10,000 P27 70,000

According to the formula (1.6.2), the sample proportions for the two categories are

8 992
Bl = — = 0008, Pp= " =0.992.
P1= 7000 © P2= 1000

As already suggested in Example 1.2-4, sample properties of the variable of
interest approximate (though, in general, will not be identical to) corresponding
population properties. In particular,

The sample proportion p approximates but is, in general, different from
the population proportion p.

The next example further illustrates the quality of the approximation of p by p,
while also illustrating the sampling variability of p.

Use R to obtain five samples of size 1,000 from the population of 10,000 naviga-
tion systems of Example 1.6-1, and to compute the sample proportions for the two
categories in each sample.

Solution

We begin by forming the statistical population, that is, by assigning the value 1 to
each of the 100 systems with reception malfunction and the number 2 to each of the
9900 systems with no reception malfunction. The R commands for defining an object
(vector) x in R representing the statistical population of 100 1’s and 9900 2’s, for
obtaining a simple random sample of 1000 from this population, and for calculating
the two sample proportions are:

x = c(rep(l, 100), rep(2, 9900)) # set the statistical

population in x (1.6.3)
y = sample(x, size=1000) # set the sample of size

1000 in y 1.6.4)
table(y)/length(y) # compute the sample proportions (1.6.5)

Repeating the set of commands (1.6.4), (1.6.5) five times gives the following pairs of
sample proportions, all of which approximate the population proportions of (0.01,
0.99): (0.013, 0.987), (0.012, 0.988), (0.008, 0.992), (0.014, 0.986), (0.01, 0.99). =

1.6.2 POPULATION AVERAGE AND SAMPLE AVERAGE

Consider a population consisting of N units, and let v{,vs,...,vy denote the val-
ues in the statistical population corresponding to some variable of interest. Then
the population average or population mean, denoted by , is simply the arithmetic
average of all numerical values in the statistical population. That is,

| N
n= X]: Vi. (1.6.6)
=
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If the random variable X denotes the value of the variable of a randomly
selected population unit, then a synonymous term for the population mean is
expected value of X, or mean value of X, and is denoted by pny or E(X).

If a sample of size n is randomly selected from the population, and if
X1,X2,...,Xx, denote the variable values corresponding to the sample units (note that
a different symbol is used to denote the sample values), then the sample average or
sample mean is simply

n
Definition of - 1 .
Sample Mean X = 7 Xi.- (1.6.7)

Example A company of N = 10,000 employees initiates an employee productivity study in
1.6-3 which the productivity of each employee is rated on a scale from 1 to 5. Suppose that
300 of the employees are rated 1, 700 are rated 2, 4000 are rated 3, 4000 are rated 4,
and 1000 are rated 5. A pilot study into the degree of employee satisfaction at work
interviews 10 randomly selected employees of this company. The productivity ratings

of the 10 selected employees are

X1=2, xp=x3=x4=23, xs5=x=x7=x3 =4, X9 =x19=215.

(a) Describe the statistical population for the variable productivity rating.

(b) Letting the random variable X denote the productivity rating of a randomly
selected employee, compute the mean (or expected) value E(X) of X.

(c) Compute the sample mean of the productivity ratings of the 10 selected
employees.
Solution

(a) The statistical population consists of 10,000 productivity ratings, vi,vs,...,
V10,000, Which are

vi=1, i=1,...,300,

vi =2, i=2301,...,1000,
vi =3, i=1001,...,5000,
vi =4, i=5001,...,9000,
vi =5, i=9001,...,10,000.

(b) According to the expression (1.6.6), the expected value of X (which is also the
population average rating) is

10,000

~ 10,000 21: 1= 70,000

i=

E(X) (1 x 300 + 2 x 700

+3 x 4000 + 4 x 4000 4+ 5 x 1000) = 3.47.

(c) Finally, according to the expression (1.6.7), the sample of 10 productivity
ratings yields a sample mean of
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Example 1.2-4 already highlights the fact that sample properties of the variable
of interest approximate (though, in general, will not be identical to) corresponding
population properties. In particular,

The sample mean X approximates but is, in general, different from the
population mean u.

To further illustrate the quality of the approximation of i by X and to illustrate
the sampling variability of X, we will obtain five samples of size 10 from the popula-
tion of 10,000 employees of Example 1.6-3 and for each sample we will compute the
sample mean.

Use R to obtain five samples of size 10 from the population of 10,000 employees of
Example 1.6-3 and to compute the sample mean for each sample.

Solution
Setting

x=c(rep(1l, 300), rep(2, 700), rep(3, 4000), rep(4, 4000),
rep(5, 1000))

for the statistical population given in the solution of Example 1.6-3, and repeating
the commands

y=sample(x, size=10); mean(y)
five times gives, for example the following sample means: 3.7, 3.6, 2.8, 3.4, 3.2. m

Example 1.6-5 demonstrates the simple, but very important, fact that propor-
tions can be expressed as means or, in other words,

A proportion is a special case of mean.

A certain county has 60,000 US citizens of voting age, 36,000 of whom are in favor
of expanding the use of solar energy. Of the 50 such citizens who are randomly
selected in a statewide public opinion poll, 28 are in favor of expanding the use of
solar energy.

(a) Express the proportion of citizens who are in favor of expanding solar energy,
p = 36,000/60,000 = 0.6, as the expected value of a random variable X.

(b) Express the sample proportion of citizens in the sample who are in favor of
expanding solar energy, p = 28/50 = 0.56, as a sample mean.

Solution

(a) The characteristic of interest here is qualitative (in favor or not in favor), but
we can convert it to a variable by setting 0 for “not in favor” and 1 for “in
favor.” With this variable, the statistical population consists of 24,000 0’s and
36,000 1’s:

vi=0, i=1,...,24000; v;=1, i=24001,...,60,000.

Letting the random variable X denote a randomly selected value from this
statistical population, we have (according to the expression (1.6.6))
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Definition of
Population Variance

1 6%°v_ 36000
HX = 60,000 £ 17 60,000

(b) Next, the sample of 50 citizens corresponds to a sample from the statistical
population with 22 0’s and 28 1’s:

The above exposition pertains to univariate variables. The population mean and
the sample mean for bivariate or multivariate variables is given by averaging each
coordinate separately. Moreover, the above definition of a population mean assumes
a finite population. The definition of population mean for an infinite or conceptual
population, such as that of the cement mixtures in Example 1.1-1, case study 3, will
be given in Chapter 3. The definition of sample mean remains the same regardless
of whether or not the sample has been drawn from a finite or an infinite population.

[.6.3 POPULATION VARIANCE AND SAMPLE VARIANCE

The population variance and standard deviation offer a quantification of the intrinsic
variability of the population. Quantification of the intrinsic variability is of inter-
est as a quality measure in manufacturing. Indeed, the main characteristic(s) of a
high-quality product should vary as little as possible from one unit of the product to
another (i.e., the corresponding statistical population should have as low an intrinsic
variability as possible). For example, while high average gas mileage is a desirable
characteristic of a certain car, it is also desirable that different cars of the same make
and model achieve similar gas mileage.

Consider a population consisting of N units, and let v, v», ..., vy denote the val-
ues in the statistical population corresponding to some variable. Then the population
variance, denoted by o2, is defined as

N

o= = > (vi — ) (1.6.8)
N 4 ;
=

where p is the population mean. If the random variable X denotes the value of the
variable of a randomly selected population unit, then the population variance is also
called the variance of the random variable X, and we write 0)2(, or Var(X).

The variance of a random variable X, or of its underlying population, quantifies
the extent to which the values in the statistical population differ from the population
mean. As its expression in (1.6.8) indicates, the population variance is the average
squared distance of members of the statistical population from the population mean.
As it is an average squared distance, it goes without saying that the variance of a
random variable can never be negative. Some simple algebra reveals the following
alternative expression for the population variance.
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1 N
2 _ Zz_ 2
o7 = _N . ]vi n (1.6.9)
1=

Expression (1.6.9) is more convenient for calculating the variance.
The positive square root of the population variance is called the population
standard deviation and is denoted by o

o =+vVo?2 (1.6.10)

The standard deviation of a random variable X, or of its underlying statistical
population, is expressed in the same units as the variable itself, whereas the variance
is expressed in squared units. For example, a variable measured in inches will have
a standard deviation measured in inches, but variance measured in square inches.
For this reason, the standard deviation is often a preferable measure of the intrinsic

variability.
If a sample of size n is randomly selected from the population, and if
X1,X2,...,X, denote the variable values corresponding to the sample units, then the

sample variance is

1 & _
sz = — Z(xi —x)? (1.6.11)
i—1

REMARK 1.6-1 Dividing by n— 1 (instead of n) in (1.6.11) is a source of intrigue to
anyone who sees this formula for the first time. The typical explanation, offered in
textbooks and classrooms alike, is given in terms of the statistical parlance of degrees
of freedom: Because the definition of S? involves the deviations of each observation
from the sample mean, that is, x; —X,x — X, ..., x, — X, and because these deviations
sum to zero, that is,

n
Z(xi -X) =0, (1.6.12)
i=1

there are n—1 degrees of freedom, or independent quantities (deviations) that deter-
mine S2. This is not completely satisfactory because a relation similar to (1.6.12)
holds also at the population level (simply replace n, x;, and X by N, v;, and ). A
more complete explanation is that if a large number of investigators each select
a random sample of size n with replacement and the sample variances that they
obtain are averaged, then this average sample variance will be almost identical to
the population variance. (See Exercise 10.) This property of 52, called unbiasedness,
requires that the sum of squared deviations be divided by n — 1, not n. Unbiasedness
is a desirable property of estimators and it will be discussed in more detail in
Chapter 6. <

The positive square root of the sample variance is called the sample standard
deviation and is denoted by S:

S = \/§ (1.6.13)
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A computational formula for S? is

Computational 5 1 n , 1 n 2
Formula for Sample §e = w1 [in — ; < ZJQ’) :| (1.6.14)

Variance i=1

As we did with the sample mean and sample proportion, we emphasize here that

§? and S approximate but are, in general, different from o2 and o.

Example (a) Find the variance and standard deviation of the statistical population

I.6-6 yi=0, i=1,....24000. v;=1, i=24001,....60.000.

corresponding to the 60,000 US citizens of voting age of Example 1.6-5.
(b) Find the sample variance and standard deviation of the sample

xi=0, i=1,...,22; x;=1, i=23,...,50
from the above statistical population.

Solution

(a) Using the computational formula (1.6.9), the population variance is

N

1 36,000

o2 = ~ > vi—ut= 50.000 (0.6)> = 0.6(1 — 0.6) = 0.24.
i=1 ’

The population standard deviation is 0 = +/0.24 = 0.49.

(b) Next, using the computational formula (1.6.14) for the sample variance, we
have

P Xn:xz—l Xn:x- o1 28— 4282 | =025
=& a\ &) T ST R

=
and thus, the sample standard deviation is S = +/0.25 = 0.5.

The sample variance and sample standard deviation in the above example
provide good approximations to the population variance and standard deviation,
respectively. The next example provides further insight into the quality of these
approximations and also the sampling variability of the sample variance and sample
standard deviation.

Example Use R to obtain five samples of size 50 from the statistical population given in
1.6-7 Example 1.6-6, and to compute the sample variance for each sample.
Solution

Setting x = c(rep(0, 24,000), rep(1, 36,000)) for the statistical population, and repeat-
ing the commands

y=sample(x, size=50); var(y); sd(y)
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five times gives, for example, the following five pairs of sample variances and stan-
dard deviations: (0.2143, 0.4629), (0.2404, 0.4903), (0.2535, 0.5035), (0.2551, 0.5051),

(0.2514, 0.5014).

The definitions of the population variance and standard deviation given in this
section assume a finite population. The more general definition, applicable to any
population, will be given in Chapter 3. The definitions of the sample variance and
standard deviation remain the same regardless of whether or not the sample has
been drawn from a finite or an infinite population.

Exercises

1. A polling organization samples 1000 adults nationwide
and finds that the average duration of daily exercise is 37
minutes with a standard deviation of 18 minutes.

(a) The correct notation is for the number 37 is (choose
one): (i) x, (ii) .

(b) The correct notation is for the number 18 is (choose
one): (i) S, (ii)o.

(c) Of the 1000 adults in the sample 72% favor tougher
penalties for persons convicted of drunk driving. The
correct notation for the number 0.72 is (choose one):

@Hp, @()p.

2. In its year 2000 census, the United States Census
Bureau found that the average number of children of all
married couples is 2.3 with a standard deviation of 1.6.

(a) The correct notation is for the number 2.3 is (choose
one): (i) x, (ii) .

(b) The correct notation is for the number 1.6 is (choose
one): (i) S, (ii)o.

(c) According to the same census, 17% of all adults chose

not to marry. The correct notation for the number 0.17
is (choose one): (i) p = 0.17, (i) p = 0.17.

3. A data set of 14 ozone measurements (Dobson units)
taken at different times from the lower stratosphere,
between 9 and 12 miles (15 and 20 km) altitude, can
be found in OzoneData.txt. What proportion of these
measurements falls below 2507 What does this sample
proportion estimate?

4. Use cs =read.table(”Concr.Strength.1s.Data.txt”,
header=T) to read into the R object ¢s data on 28-
day compressive-strength measurements of concrete
cylinders using water/cement ratio 0.4 (see footnote
5 in Exercise 1 in Section 1.5). Then use the com-
mands attach(cs); sum(Str <= 44)/length(Str); sum(Str
> = 47)/length(Str) to obtain the proportion of mea-
surements that are less than or equal to 44, and greater
than or equal to 47. What do these sample proportions
estimate?

5. Refer to Example 1.6-3.

(a) Use the information on the statistical population of
productivity ratings given in the example to calculate
the population variance and standard deviation.

(b) Use the sample of 10 productivity ratings given in
the example to calculate the sample variance and
standard deviation.

6. Use R commands to obtain a simple random sample
of size 50 from the statistical population of productivity
ratings given in Example 1.6-3, and calculate the sample
mean and sample variance. Repeat this for a total of five
times, and report the five pairs of (%, S?).

7. Refer to Exercise 1 in Section 1.4.

(a) For the statistical population corresponding to the
number of scratches of the 500 tin plates described in
the exercise (Ng = 190 0’s, Ny = 160 1’s and N, =
150 2’s), find the population mean, the population
variance, and the population standard deviation.

(b) A simple random sample of n = 100 from the above
statistical population consists of ny = 38 0’s, n; = 33
1’s, and ny = 29 2’s. Find the sample mean, the sample
variance, and the sample standard deviation.

8. Set the statistical population of Exercise 7 in the
R object (vector) x by x=c(rep(0,190), rep(1,160),
rep(2,150)).

(a) The R commands y=sample(x, 100); table(y)/100
select a sample of size n = 100 and compute the
proportions for the three categories. Repeat these
commands a total of five times, report the results,
and give the population proportions that the sample
proportions estimate.

(b) The R commands y = sample(x, 100); mean(y), var(y);
sd(y) select a sample of size n = 100 and compute
the sample mean, sample variance, and sample stan-
dard deviation. Repeat these commands a total of five
times, report the results, and give the values of the
population parameters that are being estimated.
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9. The outcome of a roll of a die is a random variable X
that can be thought of as resulting from a simple random
selection of one number from 1,...,6.

(a) Compute 1 and 0%, either by hand or using R.

(b) Select a sample of size 100 with replacement from
the finite population 1,...,6, and compute the sam-
ple mean and sample variance. The R commands for
doing so are:

x=sample(1l:6, 100, replace=T) # T for
TRUE -- capitalization 1is necessary
mean(x); var(x)

Comment on how well the sample mean and variance
approximates the true population parameters.

(c) Use the R command table(x)/100, where x is the
sample of size n = 100 obtained in part (b), to
obtain the sample proportions of 1,...,6. Are they all
reasonably close to 1/6?

10. Setting 1 for Heads and 0 for Tails, the outcome X of
a flip of a coin can be thought of as resulting from a simple
random selection of one number from {0, 1}.

(a) Compute the variance 0)2( of X.

(b) The possible samples of size two, taken with
replacement from the population {0,1}, are
{0,0},{0,1},{1,0},{1, 1}. Compute the sample variance
for each of the possible four samples.

(c) Consider the statistical population consisting of the
four sample variances obtained in part (b), and let Y
denote the random variable resulting from a simple
random selection of one number from this statistical
population. Compute E(Y).

(d) Compare 0)2( and E(Y). If the sample variance in
part (b) was computed according to a formula that
divides by 7 instead of n — 1, how would 0)2( and E(Y)
compare?

I1. A random sample of 5 cars of type A that were test
driven yielded the following gas mileage on the highway:
29.1, 29.6, 30, 30.5, 30.8. A random sample of 5 cars of
type B yielded the following gas mileage when test driven
under similar conditions: 21, 26, 30, 35, 38.

(a) For each type of car, estimate the population mean
gas mileage.

(b) For each type of car, estimate the population variance
of gas mileage.

(c) On the basis of the above analysis, rank the two types
of car in terms of quality. Justify your answer.

12. Consider a statistical population consisting of N val-
ues vi,...,vy, and let w,, avz, o, denote the population
mean value, variance, and standard deviation.

(a) Suppose that the v; values are coded to wi,...,wy,
where w; = ¢ + v;, where ¢ is a known constant.

Show that the mean value, variance, and standard
deviation of the statistical population wy,...,wy are

:U/W:Cl—i_l’(/\/’ 01%:0")2’
(Hint. The computational formula for the variance is

not very convenient for this derivation. Use instead
(1.6.8). The same is true for parts (b) and (c).)

(b) Suppose that the v; values are coded to wy,...,wn,
where w; = ¢v;, where ¢, is a known constant. Show
that the mean value, variance, and standard deviation

Oy = Oy.

of the statistical population wy,...,wy are
2_ 22
MHw = C2 Uy, aw = Czav, Oy = |C2|0V'
(c) Suppose that the v; values are coded to wy,...,wn,
where w; = c¢; + cpv;, where c¢q, ¢ are known

constants. Show that the mean value, variance,
and standard deviation of the statistical population
Wi,...,WN arec

2 2 2
Hw = €1 + 2y, GW = Czav ’

13. Consider a sample xg,...,x, from some statistical
population, and let X, S)ZC, and Sy denote the sample mean,
sample variance, and sample standard deviation.

(a) Suppose that the x; values are coded to yi,...,yn,
where y; = ¢ +x;, where ¢ is a known constant. Show
that the sample mean, sample variance, and sample
standard deviation of yq,...,y, are

Sy = S,.

(b) Suppose that the x; values are coded to yi,...,yn,
where y; = ¢yx;, where ¢; is a known constant. Show
that the sample mean, sample variance, and sample
standard deviation of y1,...,y, are

y=ci+% S =5

X

> = 2 2 Q2
Y = X, Sy =068, Sy =lc2lSx.

(c) Suppose that the x; values are coded to yi,...,yn,
where y; = ¢1+c2x;, where ¢, ¢ are known constants.
Show that the sample mean, sample variance, and
sample standard deviation of the statistical population

VY1s---,Yp are

y =c1 + X, S§ = c%Sx, Sy = |c2|Sx.

14. The noon-time temperature of seven randomly
selected days of August in a coastal site of Spain gives
X = 31C? and S = 1.5C°. The formula for converting a
measurement in the Celsius scale to the Fahrenheit scale
is F° = 1.8C° + 32. Find the sample mean and variance of
the seven temperature measurements when expressed in
the Fahrenheit scale.

15. Consider the sample X; = 81.3001, X, = 81.3015,
X3 = 81.3006, X4 = 81.3011, X5 = 81.2997, Xy =
81.3005, X7 = 81.3021. Code the data by subtracting
81.2997 and multiplying by 10,000. Thus the coded data
are 4, 18, 9, 14, 0, 8, 24. It is given that the sample vari-
ance of the coded data is S%, = 68.33. Find the sample
variance of the original data.
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16. The following data show the starting salaries, in $1000 per year, for a sample of 15
senior engineers:

152 169 178 179 185 188 195 196 198 203 204 209 210 212 214

(a) Assuming that the 15 senior engineers represent a simple random sample from the
population of senior engineers, estimate the population mean and variance.

(b) Give the sample mean and variance for the data on second-year salaries for the same
group of engineers if
(i) if each engineer gets a $5000 raise, and
(ii) if each engineer gets a 5% raise.

.7 Medians, Percentiles, and Boxplots

Percentiles are used mainly for continuous variables, or discrete-valued variables if
the divisions between values are fine enough, as, for example, SAT scores. The defi-
nition of percentiles for finite populations (the only type of populations considered
in this chapter) is the same as that for sample percentiles. For this reason, only the
sample percentiles will be discussed in this section. Population percentiles for infinite
populations will be defined in Chapter 3.

Letxq,...,x, beasimple random sample from a continuous population distribu-
tion. Roughly speaking, the (1 —«)100th sample percentile divides the sample in two
parts, the part having the (1 —«)100% smaller values, and the part having the «100%
larger values. For example, the 90th sample percentile [note that 90 = (1 — 0.1)100]
separates the upper (largest) 10% from the lower 90% of values in the data set. The
50th sample percentile is also called the sample median and is denoted by Xx; it is the
value that separates the upper or largest 50% from the lower or smallest 50% of
the data. The 25th, the 50th, and the 75th sample percentiles are also called sample
quartiles, as they divide the sample into roughly four equal parts. We also refer to
the 25th and the 75th sample percentiles as the lower sample quartile (¢;) and upper
sample quartile (g3), respectively. The precise (computational) definition of sample
quartiles is given in Definition 1.7-2, but for now we give the following definition of
a different measure of variability.

Definition 1.7-1
The sample interquartile range, or sample IQR, defined as

IOR =q5 — q1

is an estimator of the population IQR, which is a measure of variability.

Sample percentiles serve as estimators of corresponding population percentiles.
For a precise definition of sample percentiles we need to introduce notation for the
ordered sample values, or order statistics: The sample values x1,...,x, arranged in
increasing order are denoted

Notation for the
Order Statistics X(1)>X(2)> - -+ »X(n) 1.7.1)
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Example
1.7-1

Because they have been ordered in increasing order, it follows that x; is the smallest
observation and x(, is the largest. In particular, x(1) < x2) < -+ < X(p).

We begin by identifying each x(; as an estimator of a population percentile.
Following that, we give precise (computational) definitions of the sample median
and the upper and lower quartiles.

Definition 1.7-2

Let x(1),X2), - - -, X(n) denote the ordered sample values in a sample of size n.
. i — 0.5

Then x(;), the ith smallest sample value, is taken to be the 100 <IT>-th

sample percentile. Sample percentiles estimate the corresponding population

percentiles.

A simple random sample of size 10, drawn from the statistical population of the 50
black bears’ weight measurements used in Example 1.2-5, is:

154 158 356 446 40 154 90 94 150 142
Give the order statistics, and state the population percentiles they estimate.

Solution
The R command

sort(c(154, 158, 356, 446, 40, 154, 90, 94, 150, 142))

returns the order statistics: 40, 90, 94, 142, 150, 154, 154, 158, 356, 446. These order
statistics estimate the S5th, 15th, 25th, 35th, 45th, 55th, 65th, 75th, 85th, and 95th
population percentiles, respectively. For example, x(3) = 94 is the 100(3 — 0.5)/10 =
25th percentile and estimates the corresponding population percentile. [

As the above example demonstrates, it is possible that none of the order statis-
tics corresponds to a sample percentile of interest. For example, none of the order
statistics in Example 1.7-1 corresponds to the median or the 90th percentile. In gen-
eral, if the sample size is even, none of the order statistics will be the sample median,
and if the sample size is not of the form 6 4 (a multiple of 4), none of the order
statistics will equal the quartiles. R uses an interpolation algorithm for evaluating
any sample percentile from a given data set. With data in the object x, the commands

R Commands for Percentiles

median(x)

quantile(x, 0.25)

quantile(x, c(0.3, 0.7, 0.9))
summary (x)

17.2)

give, respectively, the median, the 25th percentile, the 30th, 70th, and 90th per-
centiles, and a five number summary of the data consisting of x(y), g1, X, g3,
and x(,).
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1.7-2

Example
1.7-3

Figure 1-12 Boxplot of
ozone data.
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Using the sample of 10 black bear weights given in Example 1.7-1, estimate the
population median, 70th, 80th, and 90th percentiles.

Solution

Putting the sample values in the object w as described in Example 1.7-1, the R com-
mand quantile(w, c(0.5, 0.7, 0.8, 0.9)) returns 152.0, 155.2, 197.6, 365.0 for the sample
median, 70th, 80th, and 90th percentiles, respectively. [}

The five number summary of the data given by the summary(x) command in
R is the basis for the boxplot, which is a simple but effective visual description of
the main features of a data set xq,...,x,. A boxplot displays the central 50% of
the data with a box, the lower (or left) edge of which is at g; and the upper (or
right) edge at g3. A line inside the box represents the median. The lower 25% and
upper 25% of the data are represented by lines (or whiskers) that extend from each
edge of the box. The lower whisker extends from g until the smallest observation
within 1.5 interquartile ranges from g;. The upper whisker extends from g3 until
the largest observation within 1.5 interquartile ranges from g3. Observations farther
from the box than the whiskers’ ends (i.e., smaller than g; — 1.5 x IQR or larger than
g3 + 1.5 x IQR) are called outliers, and are plotted individually. The construction of
a boxplot is demonstrated in the following example.

Scientists have been monitoring the ozone hole since 1980. A data set of 14 ozone
measurements (Dobson units) taken from the lower stratosphere, between 9 and 12
miles (15 and 20 km) altitude, can be found in OzoneData.txt. Give the five number
summary of this data and construct the boxplot.

Solution

Reading this data into the R object oz, the command summary(oz) gives the five
number summary of this data as: x(jy = 211.0, g1 = 247.8, X = 2725, q3 = 292.2,
X(14y = 446.0. The interquartile range is IQR = 2922 — 247.8 = 444, and g3 +
1.5 x IQR =358.8. Thus, the two largest observations, which are the 395 and 446.0,
are outliers. The boxplot of this data, shown in Figure 1-12, was generated by the R
command

boxplot(oz, col= "grey”).
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Example
1.7-4

In what follows we give computational definitions for the sample median and
the lower and upper quartiles.

Definition 1.7-3
Let x(1),X(2), - - - ,X(n) denote the order statistics. Then

1. The sample median is defined as

x<L+1), if n 1s odd

2

=
Il

*&) TXGH
2 K

2. The sample lower quartile is defined as

if n is even

g1 = Median of smaller half of the data values

where, if 7 is even the smaller half of the values consists of the smallest 7/2
values, and if 7 is odd the smaller half consists of the smallest (n + 1)/2
values. Similarly, the sample upper quartile is defined as

g3 = Median of larger half of the data values

where, if n is even the larger half of the values consists of the largest n/2
values, and if n is odd the larger half consists of the largest (n + 1)/2 values.

Thus, when the sample size is even, the sample median is defined by interpolat-
ing between the nearest sample percentiles. Similarly, when the sample size is not
of the form 6 + (a multiple of 4), the above definition uses interpolation to define
the sample lower and upper quartiles. This interpolation is convenient for hand
calculations but is different from the interpolation used by R. For example, the R
command summary(1:10) yields the first and third quartiles for the numbers 1,...,10
as g1 = 3.25 and g3 = 7.75, while the rule of Definition 1.7-3 gives g1 = 3, g3 = 8.
However the R command summary(1:11) yields the first and third quartiles of the
numbers 1,...,11 as g; = 3.5 and g3 = 8.5, respectively, which is exactly what the
rule of Definition 1.7-3 gives.

The sample values of a sample of size n = 8 are 9.39, 7.04, 7.17, 13.28, 7.46, 21.06,
15.19, 7.50. Find the lower and upper quartiles. Repeat the same with an additional
observation of 8.20.

Solution

Since n is even and n/2 = 4, q1 is the median of the smallest four values, which are
7.04,7.17,7.46, 7.50, and g3 is the median of the largest four values which are 9.39,
13.28,15.19, 21.06. Thus g = (7.17 4+ 7.46)/2 = 7.315, and g3 = (13.28 + 15.19)/2 =
14.235. With an additional observation of 8.20,son =9, g1 = 7.46, g3 = 13.28. m

The next example illustrates the similarities and differences between the sample
mean and the sample median.
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Let the sample values of a sample of size n = 5,be x; = 2.3, x, = 3.2, x3 = 1.8, x4 =
2.5, x5 = 2.7. Find the sample mean and the sample median. Repeat the same after

changing the x, value from 3.2 to 4.2.

Solution
The sample mean is

X =

23+32+18+25+27

2.5.
5

For the median, we first order the values from smallest to largest: 1.8, 2.3, 2.5, 2.7,
3.2. Since the sample size here is odd, and (n + 1)/2 = 3, the median is

X= X3y = 2.5,

which is the same as the mean. Changing the x, value from 3.2 to 4.2 we get

[\

7, ¥=25. -

X =

This example illustrates the point that the value of X is affected by extreme
observations (outliers), where as the median is not.

Exercises

1. The following is a stem and leaf display of n = 40
solar intensity measurements (integers in watts/m?) on
different days at a location in southern Australia. The
(optional) first column of the stem and leaf plot contains
a leaf count in a cumulative fashion from the top down to
the stem that contains the median and also from the bot-
tom up to the stem that contains the median. The stem
containing the median has its own leaf count, shown in
parentheses. Thus, 18 + 4 + 18 equals the sample size.

4 67 3 3 6 7
8 68 0 2 2 8
1 69 01 9
8 70 0147799
4 71 5779
18 72 0 0 2 3
14 73 012 4 45
8 74 01 3 6 6 6
2 75 0 8
(a) Obtain the sample median and the 25th and the 75th
percentiles.

(b) Obtain the sample interquartile range.
(c) What sample percentile is the 19th ordered value?

2. Read the data on robot reaction times to sim-
ulated malfunctions into the data frame ¢ by
t=read.table(”RobotReactTime.txt”, header=T). Read
the reaction times of Robot 1 into the vector ¢/ by

attach(t); tl = Time[Robot==1], and sort the data (i.e.,
arrange it from smallest to largest) by sort(t1). Using the
sorted data and hand calculations

(a) estimate the population median and the 25th and the
75th percentiles,

(b) estimate the population interquartile range, and
(c) find the percentile of the 19th ordered value.

3. The site given in Exercise 2 also gives the reaction
times of Robot 2. Use commands similar to those given
in Exercise 2 to read the reaction times of Robot 2 into
the vector 2.

(a) Use the R command summary given in (1.7.2) to
obtain the five number summary of this data set.

(b) Use the R command quantile given in (1.7.2) get the
sample 90th percentile.

(c) Use the R command “boxplot” given in Example 1.7-

3 to construct a boxplot for the data. Are there any
outliers?

4. Enter the solar intensity measurements of Exercise 1

into the R object si with si=read.table(”SolarIntensAu

Data.txt”, header = T). Use R commands to

(a) construct a boxplot of the
measurements, and

(b) obtain the 30th, 60th, and 90th sample percentiles.

solar intensity
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Example
1.8-1

Example
1.8-2

Figure 1-13 Treatments, or
factor-level combinations,
in a two-factor study.

.8 Comparative Studies

Comparative studies aim at discerning and explaining differences between two
or more populations. In this section we introduce the basic concepts and jargon
associated with such studies.

[.8.1 BASIC CONCEPTS AND COMPARATIVE GRAPHICS

The comparison of two methods of cloud seeding for hail and fog suppression at
international airports, the comparison of two or more cement mixtures in terms
of compressive strength, and the comparison of the effectiveness of three cleaning
products in removing four different types of stains (which are mentioned as case
studies 2, 3, and 4 in Example 1.1-1) are examples of comparative studies.

Comparative studies have their own jargon. Thus, the comparison of three
cement mixtures in terms of their compressive strength is a one-factor study, the
factor being cement mixture; this factor enters the study at three levels, and the
response variable is cement strength. In one-factor studies the levels of the factor
are also called treatments. The study comparing the effectiveness of three cleaning
products in removing four different types of stains is a two-factor study where the
factor cleaning product has three levels and the factor stain has four levels; the
response variable is the degree of stain removal. In two-factor studies, treatments
correspond to the different factor-level combinations; see Figure 1-13. Thus, a
two-factor study where factor A enters with a levels and factor B enters with b levels
involves a x b treatments.

A study will compare the level of radiation emitted by five kinds of cellphones at
each of three volume settings. State the factors involved in this study, the number
of levels for each factor, the total number of populations or treatments, and the
response variable.

Solution

The two factors involved in this study are type of cellphone (factor 1) and vol-
ume setting (factor 2). Factor 1 has five levels, and factor 2 has three levels. The
total number of populations is 5 x 3 = 15, and the response variable is level of
radiation. [

Different treatments (factor levels or factor-level combinations) correspond
to different populations. The complete description of these populations, however,
also involves the experimental units, which are the units on which measurements
are made.

(a) In the study that compares the cleaning effectiveness of cleaning products on
different types of stains, experimental units are pieces of fabric.

(b) In the study that compares the effect of temperature and humidity on the yield
of a chemical reaction, experimental units are aliquots of materials used in the

reaction.
(¢) In studying the effectiveness of a new diet in reducing weight, experimental
units are the subjects participating in the study. =
Factor B
Factor A 1 2 3 4
1 Trqq Trqo Trq3 Trig
2 Tr21 Tr22 Tr23 Tr24
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Comparisons of the different populations typically focus either on comparisons
of means, proportions, medians, or variances. Comparisons of means (also propor-
tions and medians) is typically based on differences, while comparisons of variances
are typically based on ratios. For example, the comparison of two different cloud
seeding methods may be based on

¥ — %o, (1.8.1)

where X; and X, are the sample mean rainfalls produced by methods 1 and 2,
respectively.

The difference in (1.8.1) is the simplest type of a contrast. In general, contrasts
may involve differences not only of individual means but also of certain linear com-
binations of means. The following example illustrates different contrasts that may be
of interest in one-factor studies.

Example A study is aimed at comparing the mean tread life of four types of high-performance
1.8-3 tires designed for use at higher speeds. Specify three different types of contrasts that
may be of interest.

Solution
Let X1,...,x4 denote sample mean tread lives obtained from samples of size
ni,...,n4 from each of the four types of tires.

(a) If tire type 1 is currently manufactured, and tire types 2, 3, and 4 are
experimental, interest may lie in the contrasts

Xy — X2, X1 —X3, X|—X4

These types of contrasts are common in the so-called control versus treatment
studies.

(b) If tire types 1 and 2 are made by manufacturer A, while tire types 3 and 4 are
made by manufacturer B, interest may lie in the contrast
X1+ X _ X3+ X4
2 2 7

which compares the two brands made by manufacturer A to the two brands
made by manufacturer B.

(c) An overall comparison of the four types of tires is typically based on the
contrasts

X{—X, Xp—X, X3—X, X4—X,
where X = (X1 + X3 + X3 + X4)/4. The contrast X; — X of the ith sample mean to

the average of all four sample means is called the effect of level i of the factor
tire type. -

The sample effects, defined in Example 1.8-3 part (c), are typically denoted by @;:

Sample Effect of

Level iin a Wi=X—X (1.8.2)
One-Factor Design
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Example
1.8-4

Figure 1-14 Comparative
boxplot for iron
concentration data.

The sample contrasts and sample effects estimate their population counterparts.
For example, the sample effects in (1.8.2) estimate the k population effects

k
Z Wi. (1.8.3)
i=1

For example, if the four types of high-performance tires have mean tread lives u; =
16, iy = 13, w3 = 14, and u4 = 17, the overall mean tread life is u = (16 + 13+ 14+
17)/4 = 15, and the effects of the tire types are ] = 16 —15=1,0p = 13—-15 = -2,
a3 =14 — 15 = —1,and ay = 17 — 15 = 2. Note that the tire effects sum to zero.

Additional contrasts, relevant in two-factor studies, will be given in Section 1.8.4.

The comparative boxplot and the comparative bar graph are commonly used
for visualizing population differences in one-factor studies. The comparative boxplot
consists of side-by-side individual boxplots for the data sets from each population;
it is useful for providing a visual impression of differences in the median and per-
centiles. Example 1.8-4 provides the context for Figure 1-14 and the R commands
for constructing it.

o = i — pu, where pu=

EE

Comparative boxplots in R. Iron concentration measurements from four ore for-
mations are given in FeData.txt. Construct a comparative boxplot and comment on
possible concentration differences.

Solution
Use fe=read.table(”FeData.txt”, header=T) to import the data into the R data
frame fe, and also the following commands:

w=stack(fe) # stacks data and assigns indices
boxpTot(w$values~w$ind, col=rainbow(4))
# constructs the boxplot

The comparative boxplot suggests that the fourth iron ore formation has higher, on
average, iron concentration than the other three. (It should always be kept in mind
that the differences at the data level, which the comparative boxplot suggest, are

only approximations to the population level differences.) m
0
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o
<
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Figure 1-15 Comparative
bar graph for light vehicle
market share data.

Example
1.8-5
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The comparative bar graph generalizes the bar graph in that it plots several bars
for each category. Each bar represents the category’s proportion in one of the popu-
lations being compared; different colors are used to distinguish bars that correspond
to different populations. Example 1.8-5 provides the context for Figure 1-15 and the

R commands for constructing it.

= 2010
2011

!

Other

v ]
Daimler 5

Chrysler
GM
Honda
Hyundai
Kia
Nissan
Toyota

Comparative bar graphs in R. The light vehicle market share of car companies for
November 2010 and 2011 is given in MarketShareLightVehComp.txt.'* Construct a
comparative bar graph and comment on possible changes in the companies’ light

vehicle market share.

Solution
Use the read.table command to import the data into the R data frame /v2 (see

Example 1.8-4), and also the following commands:

m=rbind(1v2$Percent_2010, 1v2$Percent_2011)
# creates a data matrix

barplot(m, names.arg=1v2$Company, ylim=c(0, 20),
col=c(’darkblue”, ”red”), legend.text= c(”2010”, ”2011”),

beside=T, las=2) # constructs the bar graph

Figure 1-15 makes it easy to discern the changes in the companies’ market shares. In
particular, Chrysler had the biggest market share gain over this one-year period. m

Bar graphs are also used to represent how a quantity other than a proportion
varies across certain categories. Most often the quantity represented is a count and
the category is a time period, such as how the number of visitors at Napa Valley,
or the volume of sales of a certain product, varies across the months or seasons of
the year. A stacked bar graph (also called segmented bar graph) is a visualization
technique that can also incorporate information about an additional classification

14 Data from http://wardsauto.com/datasheet/us-light-vehicle-sales-and-market-share-company-2004-2013.


http://wardsauto.com/datasheet/us-light-vehicle-sales-and-market-share-company-2004%E2%80%932013
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Example
1.8-6

Figure 1-16 Stacked bar
graph of annual smart
phone sales.

of the units being counted. For example, in addition to classifying visitors at Napa
Valley according to month of visit, a stacked bar graph can also display information
about the nationality breakdown of the visitors; similarly, in addition to showing
the quarterly volume of sales of a company, a stacked bar graph can also display
information about the breakdown of the quarterly volume into sales of particular
products. In general, the stacked bar graph is useful for studying two-way tables,
that is, tables where each unit is classified in two ways. Example 1.8-6 provides the
context for Figure 1-16 and the R commands for constructing it.

Stacked bar graphs in R. The data file QsalesSphone.txt shows simulated world-
wide smart phone sales data, in thousands of units, categorized by year and quarter.
Construct a segmented bar graph and comment on its features.

Solution

Use the read.table command to import the data into the R object gs, and form a
data matrix by m =rbind(qs$Q1, qs$Q2, qs$Q3, qs$Q4). The stacked bar graph is
constructed with the command

barplot(m, names.arg=qs$Year, ylim=c(0, 40000),
col=c(’green”, "blue”, "yellow”, "red”))

and the legend is added with the command

legend("topleft”, pch=c(22, 22, 22, 22), col=c(’green”,
"blue”, ”yellow”, "red”), legend=c(”Quarter 17,
"Quarter 2”, "Quarter 3”7, "Quarter 47))

Figure 1-16 makes it apparent that more units were sold in the fourth quarter of each
year than in any other quarter. This may be due to a strategy of increased product
promotion during that quarter. [

In comparative studies with two or more factors, it is of interest to also examine
how the different factors interact in influencing the response. This is discussed in
Section 1.8.4.
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1.8.2 LURKING VARIABLES AND SIMPSON’S PARADOX

In order to avoid comparing apples with oranges, the experimental units assigned to
different treatments must be as similar (or homogenous) as possible. For example,
if the age of the fabric is a factor that affects the response in Example 1.8-2 part
(a), then, unless the ages of the fabrics that are assigned to different treatments are
homogenous, the comparison of treatments will be distorted.

To guard against such distorting effects of other possible factors, also called
lurking variables, it is recommended that the allocation of units to treatments be
randomized. Randomization helps mitigate the distorting effects, called confound-
ing in technical parlance, by equalizing the distribution of lurking variables across
treatments.

(a) Randomizing the allocation of fabric pieces to the different treatments (i.e.,
combinations of cleaning product and type of stain) avoids confounding the
factors of interest (cleaning product and stain) with the potentially influential
factor age of fabric.

(b) In the study of Example 1.8-2 part (b), the acidity of the materials used in the
reaction might be another factor affecting the yield. Randomizing the alloca-
tion of the experimental units, that is, the materials, to the different treatments
avoids confounding the factors of interest (temperature and humidity) with the
potentially influential factor acidity. [

The distortion caused by lurking variables in the comparison of proportions is
called Simpson’s paradox. Some examples of Simpson’s paradox follow.

1. Batting averages: The overall batting average of baseball players Derek Jeter
(New York Yankees) and David Justice (Atlanta Braves) during the years 1995
and 1996 were 0.310 and 0.270, respectively. This seems to show that Jeter is
more effective at bat than Justice. However, if we take into consideration each
year’s performance for the two players, the conclusion is not so straightforward:

1995 1996 Combined
Derek Jeter 12/48 or 0.250 183/582 or 0.314 195/630 or 0.310
David Justice 104/411 or 0.253 45/140 or 0.321 149/551 or 0.270

In both 1995 and 1996, Justice had a higher batting average than Jeter, even
though his overall batting average is lower. This appears paradoxical because
the combined or overall average is not computed by a simple average of each
year’s average.!’

2. Kidney stone treatment: This is a real-life example from a medical study compar-
ing the success rates of two treatments for kidney stones.'® The first table shows
the overall success rates for Treatment A (all open procedures) and Treatment
B (percutaneous nephrolithotomy):

Treatment A ‘ Treatment B
78% (273/350) ‘ 83% (289/350)

15 The batting averages used in this example are from Ken Ross (2004). A Mathematician at the Ballpark: Odds
and Probabilities for Baseball Fans (paperback). Pi Press.

16 C. R. Charig, D. R. Webb, S. R. Payne, and O. E. Wickham (1986). Comparison of treatment of renal calculi
by operative surgery, percutaneous nephrolithotomy, and extracorporeal shock wave lithotripsy. Br Med J (Clin
Res Ed) 292(6524): 879-882.
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The table seems to show Treatment B is more effective. However, if we include
data about kidney stone size, a different picture emerges:

Treatment A Treatment B
Small Stones 93% (81/87) 87% (234/270)
Large Stones 73% (192/263) 69% (55/80)
Both 78% (273/350) 83% (289/350)

The information about stone size has reversed our conclusion about the
effectiveness of each treatment. Now Treatment A is seen to be more effective
in both cases. In this example the lurking variable (or confounding variable)
of stone size was not previously known to be important until its effects were
included. [

1.8.3 CAUSATION: EXPERIMENTS AND OBSERVATIONAL STUDIES

A study is called a statistical experiment if the investigator controls the allocation
of units to treatments or factor-level combination, and this allocation is done in
a randomized fashion. Thus, the studies mentioned in Example 1.8-7 are statisti-
cal experiments. Similarly, the study on the effectiveness of a new diet in reducing
weight becomes a statistical experiment if the allocation of the participating subjects
to the control group (which is the group using the standard diet) and the treatment
group (which is the group using the new diet) is done in a randomized fashion.
Though desirable, randomization is not always possible.

1. It is not possible to assign subjects to different levels of smoking in order to
study the effects of smoking.

2. It does not make sense to assign random salary increases in order to study the
effects of salary on productivity.

3. It may not be possible to randomly assign parents to different types of disci-
plinary actions in order to study the actions’ effects on teenage delinquency. m

When the allocation of units to treatments is not controlled by the investiga-
tor, and thus the allocation is not randomized, the study is called observational.
Observational studies cannot be used for establishing causation because the lack
of randomization allows potentially influential lurking variables to be confounded
with the factors being studied.

For example, even a strong relation between salary increases and employee pro-
ductivity does not imply that salary increases cause increased productivity (it could
be vice versa). Similarly, a strong relation between spanking and anti-social behav-
ior in children does not imply that spanking causes anti-social behavior (it could be
vice versa). Causality can be established only through experimentation. This is why
experimentation plays a key role in industrial production and especially in the area
of quality improvement of products. In particular, factorial experimentation (which
is discussed in the next section) was vigorously advocated by W. Edwards Deming
(1900-1993). Having said that, one should keep in mind that observational studies
have yielded several important insights and facts. For example, studies involving the
effect of smoking on health are observational, but the link they have established
between the two is one of the most important issues of public health.
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Figure 1-17 A 2 x 2 design
with interaction
(non-additive design).
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1.8.4 FACTORIAL EXPERIMENTS: MAIN EFFECTS AND INTERACTIONS

A statistical experiment involving several factors is called a factorial experiment if all
factor-level combinations are considered. Thus, in a two-factor factorial experiment,
where factor A enters with a levels and factor B enters with b levels, a x b samples
are collected, one from each factor-level combination. For example, the two-factor
study portrayed in Figure 1-13 is a factorial experiment if all eight treatments are
included in the study.

In factorial experiments with two or more factors, it is not enough to consider
possible differences between the levels of each factor separately. Comparative box-
plots for the levels of each individual factor fail to capture possible synergistic effects
among the levels of different factors. Such synergistic effects, called interactions in
statistical parlance, may result in some factor-level combinations yielding improved
or diminished response levels far beyond what can be explained by any differences
between the levels of the individual factors.

An experiment considers two types of corn, used for bio-fuel, and two types of
fertilizer. The table in Figure 1-17 gives the population mean yields for the four
combinations of seed type and fertilizer type. It is seen that the fertilizer factor
has different effects on the mean yields of the two seeds. For example, fertilizer II
improves the mean yield of seed A by 111 — 107 = 4, while the mean yield of seed B
is improved by 110 — 109 = 1. Moreover, the best yield is obtained by using fertilizer
IT on seed A (synergistic effect) even though the average yield of seed A over both
fertilizers, which is ;. = (107 4+ 111)/2 = 109, is lower than the average yield of
seed B which is 71,. = (109 + 110)/2 = 109.5. =

Definition 1.8-1

When a change in the level of factor A has different effects on the levels of
factor B we say that there is interaction between the two factors. The absence of
interaction is called additivity.

Under additivity there is an indisputably best level for each factor and the best
factor-level combination is that of the best level of factor A with the best level of
factor B. To see this, suppose that the mean values in the fertilizer and seed exper-
iment of Example 1.8-10 are as in Figure 1-18. In this case, changing to fertilizer 11
has the same effect on both seeds (an increase of 4 in the mean yield). Similarly, it
can be said that seed B is better than seed A because it results in higher yield (by
two units) regardless of the fertilizer used. Thus, there is a clear-cut better level for
factor A (seed B) and a clear-cut better level for factor B (fertilizer II), and the best
results (highest yield) is achieved by the factor-level combination that corresponds
to the two best levels (seed B and fertilizer II in this case).

Fertilizer Row Main Row
| Il Averages Effects
Seed A wq1q = 107 n12 =111 q. =109 a1 =-0.25
Seed B poq = 109 oo =110 o, =109.5 ap =0.25

Column
Averages w.q =108 w2 =1105 | . =109.25
Main
Column | B4 =-1.25 B2 =125
Effects
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Figure 1-18 A 2 x 2 design
with no interaction
(additive design).

Main Row and
Column Effects

Cell Means under
Additivity

Interaction Effects

Example
1.8-11

Fertilizer Row Main Row
| 1l Averages Effects
Seed A |u11 =107 | p12 =111 | wq. =109 ag=-1
Seed B |up1 =109 | ppp =113 | mwp. =111 ag =1
Column
Averages | t.q = 108 o =112 .. =110
Main
Column p1=-2 B2 =2
Effects

Under additivity, the comparison of the levels of each factor is typically based
on the so-called main effects. The main row effects, denoted by «;, and main column
effects, denoted by f;, are defined as

0 =M —H., Bj=Ti;— L. (1.8.49)

Figures 1-17 and 1-18 show the main row and the main column effects in these
two fertilizer-seed designs.

Under additivity, the cell means p;; are given in terms of their overall average,
.. and the main row and column effects in an additive manner:

ij = I.. + i + B (1.8.5)

For example, in the additive design of Figure 1-18, u1; = 107 equals the sum of
the main effect of row 1, @; = —1, plus the main effect of column 1, 81 = —2, plus
the overall mean, 7&.. = 110; similarly, ;112 = 111 equals the sum of the main effect
of row 1, @1 = —1, plus the main effect of column 2, 8, = 2, plus the overall mean,
.. = 110, and so on.

When there is interaction between the two factors, the cell means are not given
by the additive relation (1.8.5). The discrepancy/difference between the left and
right-hand sides of this relation quantifies the interaction effects:

vi = wij — (@ + ai + B) (1.8.6)

Compute the interaction effects in the design of Example 1.8-10.

Solution

Using the information shown in Figure 1-17, we have
i1 = pi1 — L. —ap — B =107 —109.25 4+ 025+ 1.25 = —0.75
Yo = 12 — ;.. —op — B =111 —109.25 + 025 — 1.25 = 0.75
Y21 = M1 — .. —ap — B =109 —109.25 - 0254+ 1.25 =0.75
Y0 = Up — ;.. —op — fr =110 — 109.25 — 0.25 — 1.25 = —0.75.



Figure 1-19 Data notation
in a2 x 4 factorial
experiment.

Sample Mean
of Observations in
Cell (i, j)

Sample Main Row
and Column Effects

Sample Interaction
Effects

Figure 1-20 Calculation of
the sample main row
effects in a 3 x 3 design.
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Factor B
Factor A 1 2 3 4
1 X1k X124k X13k: X14k;
k=1,...,n11 k= o eeal12 k=1,...,n13 k= yeeen M4
2 X21k» X202k X23k» X24k»
k:1,...,n21 k= 1, ,N22 k= 1, ,N23 k= 1,...,I124

Data from a two-factor factorial experiment are typically denoted using three
subscripts as shown in Figure 1-19. Thus, the first two subscripts correspond to the
factor-level combination and the third subscript enumerates the observations, the
number of which may differ among the different treatments. Sample versions of the
main effects and interactions are defined similarly using the cell means

}’l,'/'

_ 1
Yij = injb

U k=1

(1.8.7)

instead of the population means w;;. The formulas for the sample main row effects,
a;, and the sample main column effects, p;, are

o~ —

o =X —X.., (1.8.8)

Also, in analogy to (1.8.6), estimates of the interaction effects, the sample interaction
effects, are obtained by

Vi =%j— (X.+ @+ B) (1.8.9)

These calculations, and the relevant notation, are illustrated in Figure 1-20.

Note that X.. can be obtained either as a column average (i.e., the average of 1.,
X». and X3.), or as a row average (i.e., the average of ¥.1, X, and X.3), or as the average
of the nine cell sample means Xj;, (i.e., X.. = (1/9) 21‘3:1 Z?:l Xjj).

The following example demonstrates the calculation of the sample main and
interaction effects with R.

Column Factor
Row Row Main Row
Factor 1 2 3 Averages Effects
1 711 Y»]z Y13 Y']‘ 671:;1. — X..
2 721 722 723 Yz. 622= YZ — X..
3 Y31 Y32 Y33 Y34 &3= Y3A - X..
Column
Averages X1 X.2 X.3 X..
Main
Column B1=X14 —X.. | f2=X2 —X.. | B3=X3 — X
Effects
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Example
1.8-12

Figure 1-21 Interaction
plot for the cloud seeding
data of Example 1.8-12.

Cell means, main effects, and interaction effects in R. Figure 1-21 contains data on
the amount of rainfall, in inches, in select target areas of Tasmania with and without
cloud seeding during the different seasons.!”"!® Use R to compute the cell means,
and the main and interaction effects for the factors seed and season.

Solution
Import the data into R using cs=read.table(”CloudSeed2w.txt”, header=T) and use
the following commands:

mcm=tapply(cs$rain, cs[,c(2, 3)], mean) # the matrix
of cell means
alphas=rowMeans (mcm)-mean(mcm) # the vector of main row effects
betas=colMeans(mcm)-mean(mcm) # the vector main column effects
gammas=t (t(mcm-mean(mcm)-alphas) -betas) # the matrix of
interaction effects

The computed interaction effects are

Season
Seeded Autumn Spring Summer Winter
no 0.0298 -0.0883 -0.1345 0.1930
yes -0.0298 0.0883 0.1345 -0.1930

The computed main effects for seeded and unseeded are -0.0352 and 0.0352, respec-
tively, while the computed main effects for Autumn, Spring, Summer, and Winter
are 0.4802, -0.0017, -0.9355, and 0.4570, respectively. [}

As we did in other sections of this chapter, we stress again that the sample ver-
sions of the main effects and interactions approximate but, in general, they are not
equal to their population counterparts. In particular, the sample interaction effects
will not be equal to zero even if the design is additive. The interaction plot is a
useful graphical technique for assessing whether the sample interaction effects are
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17 A. J. Miller et al. (1979). Analyzing the results of a cloud-seeding experiment in Tasmania, Communications
in Statistics— Theory & Methods, A8(10): 1017-1047.

18 See also the related article by A. E. Morrison et al. (2009). On the analysis of a cloud-seeding dataset over
Tasmania, American Meteorological Society, 48: 1267-1280.
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sufficiently different from zero to imply a non-additive design. For each level of one
factor, say factor B, the interaction plot traces the cell means along the levels of the
other factor. If the design is additive, these traces (also called profiles) should be
approximately parallel. The interaction plot for the cloud-seeding data of Example
1.8-12, shown in Figure 1-21, was generated with the commands:

R Commands for the Interaction Plot of Figure 1-21

attach(cs) # so variables can be referred to by name

interaction.plot(season, seeded, rain, col=c(2,3), Tty = 1,
xlab="Season”, ylab="Cell Means of Rainfall”, trace.label
="Seeding”)

The crossing of the traces (or profiles) seen in Figure 1-21 is typically indicative
of interaction.

Factor interaction is prevalent in everyday life as it is in sciences. For exam-
ple, different spices may interact with different types of food to enhance taste, and
different wines interact with different appetizers. In agriculture, different types of
fertilization may interact with different types of soil as well as different levels of
watering. The June 2008 issue of Development features research suggesting interac-
tion between two transcription factors that regulate the development and survival
of retinal ganglion cells. A quality of service (QoS) IEEE article!® considers the
impact of several factors on total throughput and average delay as measures of ser-
vice delivery. Due to interactions, the article concludes, the factors cannot be studied
in isolation. Finally, in product and industrial design it is typical to consider the
potential impact of a large number of factors and their interactions on a number
of quality characteristics of a product, or aspects of a product. In car manufacturing,
for example, quality aspects range from the car’s handling to the door’s holding abil-
ity for remaining open when the car is parked uphill. Optimization of such quality
characteristics is only possible through factorial experimentation.

1. An experiment is conducted to determine the opti-
mal time and temperature combination for baking a cake.
The response variable of interest is taste. Four batches of
cake will be baked separately at each combination of bak-
ing times (25 and 30 minutes) and temperature settings
(275°F, 300°F, and 325°F).

(a) What are the experimental units?

(b) What are the factors in this experiment?

(c) State the levels of each factor.

(d) List all the treatments in this experiment.

(e) Is the response variable qualitative or quantitative?

2. An experiment to assess the effect of watering on the
life span of a certain type of root system incorporates
three watering regimens.

(a) How many populations involved in the study?

(b) The population(s) involved is (are) hypothetical: True
or false?

(c) The variable of interest is qualitative: True or false?
(d) What is considered a treatment in this study?

(e) Suppose the experiment will be carried out in three
different locations. It is known that specific location
characteristics (e.g., temperature and soil conditions)
also affect the life span of the root systems.

(i) Does this change the number of populations
involved in the study?

(i) List the factors involved in this experiment and
their levels.

3. A quantification of coastal water quality converts mea-
surements on several pollutants (arsenic in oyster shells,
mercury, etc.) to a water quality index with values from
1 to 10. An investigation into the after-clean-up water

19 K. K. Vadde and Syrotiuk (2004). Factor interaction on service delivery in mobile ad hoc networks, Selected
Areas in Communications, 22: 1335-1346.
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quality of a lake analyzes water samples collected from
five areas encompassing the two beaches on the eastern
shore and the three beaches on the western shore. Let
n1 and uo denote the mean water quality index for the
beaches on the eastern shore, and u3, u4, and ps be the
mean water quality index for the beaches on the western
shore.

(a) Write the contrasts that represent the effects of each
of the five areas.

(b) Write the contrast for comparing the water quality
around the two beaches on the eastern shore with that
around the three beaches on the western shore.

4. An article reports on the results of a cloud-seeding
experiment.”’ The question of interest is whether cloud
seeding with silver nitrate increases rainfall. Out of 52
clouds, 26 were randomly selected for seeding, with the
remaining 26 serving as controls. The rainfall measure-
ments, in acre-feet, are given in CloudSeedingData.txt.
Use the R commands given in Example 1.8-4 to construct
a comparative boxplot and comment on possible differ-
ences in rainfall between seeded and unseeded clouds.

5. For its new generation of airplanes, a commercial air-
line is considering three new designs of the control panel
as possible alternatives to the current design with the aim
of improving the pilot’s response time to emergency dis-
plays. Letting 1 denote the mean pilot response time to
simulated emergency conditions with the current design,
and uy, 143, and g denote the mean response times with
the three new designs, write the control versus treatment
contrasts.

6. Rural roads with little or no evening lighting use reflec-
tive paint to mark the lanes on highways. It is suspected
that the currently used paint does not maintain its reflec-
tivity over long periods of time. Three new types of
reflective paint are now available and a study is initiated
to compare all four types of paint.

(a) How many populations are involved in the study?

(b) What is considered a treatment in this study?

(c) Letting pq denote the mean time the currently used
paint maintains its reflectivity, and wy, n3, and ug
denote the corresponding means for the three new
types of paint, write the control versus treatment
contrasts.

7. The researcher in charge of the study described in
Exercise 6 identifies four locations of the highway, and
for each location she designates four sections of length
six feet to serve as the experimental units on which the
paints will be applied. It is known that specific aspects
of each location (e.g., traffic volume and road conditions)
also affect the duration of the reflectivity of the paints.

(a) Does this change the number of populations involved
in the study?

(b) List the factors involved in this experiment, the levels
of each factor, and the treatments.

8. The ignition times of two types of material used for
children’s clothing are measured to the nearest hundredth
of a second. The 25 measurements from material type A
and 28 measurements from material type B are given in
IgnitionTimesData.txt. Read the data into the data file ig
and use the boxplot command given in Example 1.8-4, with
ig§Time~ig§Type instead of w$values~w$ind, to con-
struct a comparative boxplot and comment on possible
differences in the ignition times of the two material types.

9. Wildlife conservation officials collected data on black
bear weight during the period September to November.
After sedation, the weight and gender (among other
measurements) were obtained for a sample of 50 black
bears. The data can be found in bearWeightgender.txt.*!
Construct a comparative boxplot and comment on the
differences between female and male black bear sample
weights.

10. Read the projected data on reasons why people in
the Boston, MA, and Buffalo, NY, areas are late for
work, found in ReasonsLateForWork2.txt, into the data
frame Iw using the read.table command given in Exercise
17 in Section 1.5. Then, use commands similar to those
in Example 1.8-5 to construct a comparative bar graph.
What are the biggest differences you notice?

I1. Import the data on monthly online and -cata-
log sales of a company into the R object oc using
oc =read.table(”MonthlySalesOC.txt”, header=T).

(a) Use R commands similar to those in Example 1.8-5
to construct a bar graph comparing the online and
catalog volumes of sale.

(b) Use R commands similar to those in Example 1.8-6 to
construct a stacked bar graph showing the breakdown
of the total volume of sales into online and catalog.

(c) Comment on the relative advantages of each of the
two types of plots.

12. In the context of Exercise 2 part (e), the researcher
proceeds to assign a different watering regimen to each
of the three locations. Comment on whether or not the
above allocation of treatments to units (root systems) will
avoid confounding the effect of the watering levels with
the location factor. Explain your answer and describe a
possibly better allocation of treatments to units.

13. The researcher mentioned in Exercise 7 proceeds to
randomly assign a type of paint to each of the four loca-
tions. It is known that specific aspects of each location
(e.g., traffic volume and road conditons) also affect the
duration of the reflectivity of the paints. Comment on
whether or not the above allocation of paints (treatments)
to the road segments (experimental units) will avoid
confounding with the treatment effect with the location

207, Simpson, A. Olsen, and J. C. Eden (1975). Technometrics, 17: 161-166.
21 The data is a subset of a data set contributed to Minitab by Dr. Gary Alt.



factor. Explain your answer and describe a possibly better
allocation of treatments to units.

14. A study is initiated to compare the effect of two lev-
els of fertilization and two levels of watering on the yield
per bushel for a variety of corn. One hundred bushels
are to be grown under each of the four combinations of
fertilization and watering.

(a) How many populations are involved in this study?

(b) The population(s) involved is (are) hypothetical: True
or false?

(c) The variable of interest is qualitative: True or false?
(d) List the factors and their levels involved in this study.

(e) Suppose the experiment will be carried out on two
farms, one using traditional pest control practices and
one that uses organic practices. To avoid confounding
the factors in this study with the potentially influen-
tial factor of pest control practices, all fertilization and
watering levels must be applied to both farms. True or
false?

15. The 1973 admission rates of men and women apply-
ing to graduate school in different departments of the
University of California at Berkeley are as follows:

Major Men Women
Applicants % Admitted | Applicants % Admitted
A 825 62% 108 82%
B 560 63% 25 68%
C 325 37% 593 34%
D 417 33% 375 35%
E 191 28% 393 24%
F 272 6% 341 7%

(a) What are the overall admission rates of men and
women applying to graduate programs at Berkeley?

(b) UC Berkeley was actually sued for bias against
women applying to graduate school on the basis of
the overall admission rates. Do you agree that the
above overall admission rates suggest gender bias in
Berkeley’s graduate admissions?

(c) Are the overall averages appropriate indicators for
gender bias in this case? Why or why not?

16. Pygmalion was a mythical king of Cyprus who
sculpted a figure of the ideal woman and then fell in love
with his own creation. The Pygmalion effect in psychol-
ogy refers to a situation where high expectations of a
supervisor translates into improved performance by sub-
ordinates. A study was conducted in an army training
camp using a company of male recruits and one of female
recruits. Each company had two platoons. One platoon in
each company was randomly selected to be the Pygmalion
platoon. At the conclusion of basic training, soldiers
took a battery of tests. The following table gives the
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population mean scores for female (F) and male (M) sol-
diers. PP denotes the Pygmalion platoon and CP denotes
the control platoon.

cP PP
Fl n1=8|npp=13

(a) Is this an additive design? Justify your answer.

(b) Compute the main gender effects and the main
Pygmalion effect.

(c) Compute the interaction effects.

17. A soil scientist is considering the effect of soil pH
level on the breakdown of a pesticide residue. Two pH
levels are considered in the study. Because pesticide
residue breakdown is affected by soil temperature, four
different temperatures are included in the study.

Temp A Temp B Temp C Temp D
pH I | g1 =108 | 12 =103 | 13 =101 | pq4 =100
PHII | o1 =111 | pnoo =104 | uo3 =100 | w4 =98

(a) Draw the interaction plot by hand with pH being the
trace factor.

(b) Is there interaction between factors pH and tempera-
ture? Use the interaction plot to justify your answer.

(c) Compute the main pH effects and the main tempera-
ture effects.

(d) Compute the interaction effects.

18. The file SpruceMothTrap.txt contains data on the
number of moths caught in moth traps using different
lures and placed at different locations on spruce trees.??
Use R to:

(a) Compute the cell means and the main and interaction
effects for the factors location and lure.

(b) Construct an interaction plot with the levels of the
factor location being traced. Comment on the main
effects of the factors location and lure, and on their
interaction effects.

19. The data file AdLocNews.txt contains the number
of inquiries regarding ads placed in a local newspa-
per. The ads are categorized according to the day of
the week and in which section of the newspaper they
appeared. Use R to:

(a) Compute the cell means and the main and interaction
effects for the factors day and newspaper section. Is
there an overall best day to place a newspaper ad?
Is there an overall best newspaper section to place
the ad in?

(b) Construct an interaction plot with the levels of the
factor day being traced. Construct an interaction plot
with section being the trace factor. What have you
learned from these interaction plots?

22 Data based on “Two-way ANOVA?” Talk Stats, April 22,2012, http://www.talkstats.com/showthread.php/25167-

Two-way-ANOVA
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Example
1.9-1

Example
1.9-2

[.9 The Role of Probability

The most common probability questions deal with flipping a fair coin or picking
cards from a deck.?? Flipping a fair coin once can be thought of as taking a sim-
ple random sample of size one from the population consisting of {Heads, Tails}.
By the definition of simple random sampling, there is a 50% chance of heads. The
coin-flipping paradigm leads to more complicated probability questions by simply
increasing the number of flips.

(a) What are the chances of one heads in two flips of a fair coin? This can be
thought of as taking a sample of size two with replacement from the population
consisting of {Heads, Tails} and asking for the chances of the sample containing
the item heads only once.

(b) What are the chances of 4 heads, or of 10 heads, or of 18 heads in 20 flips of
a fair coin? Again, this can be rephrased in terms of a sample of size 20 taken
with replacement from the population {Heads, Tails}. [

Other examples of probability questions, not related to games of chance, are
given in the following example.

(a) If 75% of citizens of voting age are in favor of introducing incentives for the
use of solar energy, what are the chances that in a sample of 1000, at least 650
will be in favor of such incentives?

(b) If 5% of electrical components have a certain defect, what are the chances that
a batch of 500 such components will contain less than 20 defective ones?

(c) If 60% of all batteries last more than 1500 hours in operation, what are the
chances that a sample of 100 batteries will contain at least 80 that last more
than 1500 hours?

(d) If the highway mileage achieved by the 2011 Toyota Prius cars has population
mean and standard deviation of 51 and 1.5 miles per gallon, respectively, what
are the chances that in a sample of size 10 cars, the average highway mileage is
less than 50 miles per gallon? [

The probability questions in Examples 1.9-1 and 1.9-2 highlight what is true of
all probability questions. Namely, in probability theory one assumes that all relevant
information about the population is known and seeks to assess the chances that a
sample will possess certain properties of interest. This, of course, is opposite from
statistics where one uses sample-level information to infer properties of the popu-
lation. For example, a statistical counterpart of the battery-life question in Example
1.9-2 would be: “If 80 batteries out of a sample of 100 last more than 1500 hours, can
we conclude that the corresponding population proportion is more than 60%?” The
reverse actions of probability and statistics are illustrated in Figure 1-22.

In spite of this difference, statistical inference itself would not be possible with-
out probability. That probability is such an indispensable tool for statistics is seen
by considering the meaning of the expression statistical proof. A statistical proof
is proof beyond reasonable doubt. This is the only kind of proof that statistics can
provide because the sample (on which statistical proofs are based) is only a small

23 The field of probability known today as classical probability arose from the study of games of chance.
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Statistics

part of the population. Probability is the tool for establishing statistical proof that a
population has a certain property; for example that there is interaction between the
two factors in a factorial experiment. This is done by assuming that the population
does not have the property in question (for example that the design is additive), and
calculating the chances of obtaining the kind of sample we observed (for example
the kind of interaction plot the data produced). If the chances are small enough,
we conclude that we have statistical proof for the existence of the property in ques-
tion. This process of establishing a statistical proof is demonstrated in the following
simple example.

In 20 flips of a coin, 18 heads result. Should the fairness of the coin be dismissed?

Solution

Since it is not impossible to have 18 heads in 20 flips of a fair coin, one can never
be sure whether the coin is fair or not. The decision in such cases is based on the
knowledge, which is provided by probability, of the likelihood of an outcome at
least as extreme as the one observed. In the present example, outcomes at least as
extreme as the one observed are 18, 19, or 20 heads in 20 flips. Since 18 or more
heads in 20 flips of a fair coin is quite unlikely (the chances are 2 in 10,000), one can
claim there is statistical proof, or proof beyond reasonable doubt, that the coin is
not fair. m

[.10 Approaches to Statistical Inference

The main approaches to statistical inference can be classified into parametric, robust,
nonparametric, and Bayesian.

The parametric approach relies on modeling aspects of the mechanism underly-
ing the generation of the data.

Predicting the failure time on the basis of stress applied hinges on the regression
model and the distribution of the intrinsic error (words in italics are technical terms
to be clarified in Chapter 4). A parametric approach might specity a linear regression
model and the normal distribution for the intrinsic error. m

In the parametric approach, models are described in terms of unknown model
parameters. Hence the name parametric. In the above example, the slope and inter-
cept of the linear function that models the relation between failure time and stress
are model parameters; specification of the (intrinsic) error distribution typically
introduces further model parameters. In the parametric approach, model parameters
are assumed to coincide with population parameters, and thus they become the focus
of the statistical inference. If the assumed parametric model is a good approximation
to the data-generation mechanism, then the parametric inference is not only valid
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but can be highly efficient. However, if the approximation is not good, the results
can be distorted. It has been shown that even small deviations of the data-generation
mechanism from the specified model can lead to large biases.

The robust approach is still parametric in flavor, but its main concern is with
procedures that guard against aberrant observations such as outliers.

The nonparametric approach is concerned with procedures that are valid under
minimal modeling assumptions. Some procedures are both nonparametric and
robust, so there is overlap between these two approaches. In spite of their generality,
the efficiency of nonparametric procedures is typically very competitive compared
to parametric ones that employ correct model assumptions.

The Bayesian approach is quite different from the first three as it relies on
modeling prior beliefs/information about aspects of the population. The increase
of computational power and efficiency of algorithms have made this approach
attractive for dealing with some complex problems in different areas of application.

In this book we will develop, in a systematic way, parametric and nonparamet-
ric procedures, with passing reference to robustness issues, for the most common
(“bread-and-butter™) applications of statistics in the sciences and engineering.
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INTRODUCTION TO PROBABILITY

Example
2.2-1

2.1 Overview

The field of probability known as classical probability arose from the need to quan-
tify the likelihood of occurrence of certain events associated with games of chance.
Most games of chance are related to sampling experiments. For example, rolling a
die five times is equivalent to taking a sample of size five, with replacement, from the
population {1,2,3,4,5,6}, while dealing a hand of five cards is equivalent to taking
a simple random sample of size five from the population of 52 cards. This chapter
covers the basic ideas and tools used in classical probability. This includes an intro-
duction to combinatorial methods and to the concepts of conditional probability and
independence.

More modern branches of probability deal with modeling the randomness of
phenomena such as the number of earthquakes, the amount of rainfall, the lifetime
of a given electrical component, or the relation between education level and income.
Such models, and their use for calculating probabilities, will be discussed in Chapters
3and 4.

2.2 Sample Spaces, Events, and Set Operations

Any action whose outcome is random, such as counting the number of heads in ten
flips of a coin or recording the number of disabled vehicles on a motorway during a
snowstorm, is a (random or probabilistic) experiment.

Definition 2.2-1
The set of all possible outcomes of an experiment is called the sample space of
the experiment and will be denoted by S.

(a) Give the sample space of the experiment that selects two fuses and classifies
each as non-defective or defective.

(b) Give the sample space of the experiment that selects two fuses and records
how many are defective.

(c) Give the sample space of the experiment that records the number of fuses
inspected until the second defective is found.

53
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Example
2.2-2

Example
2.2-3

Solution

(a) The sample space of the first experiment can be represented as
S1 ={NN,ND,DN,DD},

where N denotes a non-defective fuse and D denotes a defective fuse.

(b) When only the number of defective fuses is recorded, the sample space is
S =1{0,1,2}.

The outcome 0 means that none of the two examined fuses are defective, the
outcome 1 means that either the first or the second of the selected fusses
is defective (but not both), and the outcome 2 means that both fuses are
defective.

(c) For the experiment that records the number of fuses examined until the second
defective is found, the sample space is

Sy =1{2,3,...}.

Note that 0 and 1 are not possible outcomes because one needs to examine at
least two fuses in order to find two defective fuses. [

An undergraduate student from a particular university is selected and his/her
opinion about a proposal to expand the use of solar energy is recorded on a scale
from 1 to 10.

(a) Give the sample space of this experiment.
(b) How does the sample space differ from the statistical population?

Solution

(a) When the opinion of only one student is recorded, the sample space is S =
{1,2,...,10}.

(b) The statistical population for this sampling experiment is the collection of
opinion ratings from the entire student body of that university. The sam-
ple space is smaller in size since each of the possible outcomes is listed
only once. [

Three undergraduate students from a particular university are selected and their
opinions about a proposal to expand the use of solar energy are recorded on a scale
from 1 to 10.

(a) Describe the sample space of this experiment. What is the size of this sample
space?

(b) Describe the sample space if only the average of the three responses is
recorded. What is the size of this sample space?

Solution

(a) When the opinions of three students are recorded the set of all possible
outcomes consists of the triplets (x1,x7,x3), where x; = 1,2,...,10 denotes
the response of the first student, x, = 1,2,...,10 denotes the response of the
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second student, and x3 = 1,2, ...,10 denotes the response of the third student.
Thus, the sample space is described as

Sl = {(xl,XZ,X3) X1 = 1,2,...,10, Xy = 1,2,...,10, X3 = 1,2,...,10}.

There are 10 x 10 x 10 = 1000 possible outcomes.

(b) The easiest way to describe the sample space, S,, when the three responses are
averaged is to say that it is the collection of distinct averages (x1 + x2 + x3)/3
formed from the 1000 triplets of S;. The word “distinct” is emphasized because
the sample space lists each individual outcome only once, whereas several
triplets might result in the same average. For example, the triplets (5, 6,7) and
(4,6,8) both yield an average of 6. Determining the size of S, can be done,
most easily, with the following R commands:

Sl=expand.grid(x1=1:10, x2=1:10, x3=1:10) # Tists all
triplets in S1

Tength(table(rowSums(S1))) # gives the number of different
sums

The last command! gives the desired answer, which is 28. m

In experiments with many possible outcomes, investigators often classify indi-
vidual outcomes into distinct categories. This is done for convenience in summarizing
and interpreting the results. For example, in the context of the experiment of
Example 2.2-2(a), the investigator may wish to classify the opinion ratings into low
(L ={0,1,2,3}), medium (M = {4,5,6}) and high (H = {7,8,9,10}). Such subsets
of the sample space (i.e., collections of individual outcomes) are called events. An
event consisting of only one outcome is called a simple event. Events consisting of
more than one outcome are called compound.

Events can be described either by listing the individual outcomes comprising
them or in a descriptive manner. For example, in selecting one card from a deck
of cards, the event A = {the card is a spade} can also be described by listing the 13
spade cards. Also, when tossing a coin five times and recording the number of heads,
the event E = {at most 3 heads} can also be described by listing the outcomes that
comprise it, which are {0, 1,2, 3}.

We say that a particular event A has occurred if the outcome of the experiment
is a member of A. In this parlance, the sample space of an experiment is an event
which always occurs when the experiment is performed.

Because events are sets, the usual set operations are relevant for probabil-
ity theory. Venn diagram illustrations of the basic set operations are given in
Figure 2-1.

The operations of union and intersection can also be defined for any number
of events. Verbally, the union A1 U --- U Ay is the event consisting of all outcomes
that make up the events Ay, ..., Ag. The union is also referred to as the event that
happens when A1 or A; or ... or A happens (the “or” is used in its nonexclusive
sense here) or as the event that happens when at least one of Aq,..., A happens.
The intersection A1 N --- N Ay is the event consisting of all outcomes that are com-
mon to all events Aq,...,Ay. The intersection is also referred to as the event that

! The R command rowMeans(SI) can be used instead of rowSums(S1).
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Figure 2-1 Venn diagram
illustrations of basic set
operations.

Figure 2-2 Venn diagram
illustrations of A, B disjoint
(left), and A C B (right).

Intersection of A and B
ANB

Union of A and B
AUB

The Complement of A The Difference Operation
A° A-B

happens when A; and A, and ... and A, happen or as the event that happens when
all of Aq,..., Ay happen. The complement A€ of A is the event that consists of all
outcomes that are not in A. Alternatively, A€ is the event that happens when A does
not happen. The difference A — B is the event consisting of those outcomes in A that
are not in B. Alternatively, A — B is the event that happens when A happens and B
does not happen, thatis, A — B = A N B°.

Two events, A, B, are called disjoint or mutually exclusive if they have no
outcomes in common and therefore they cannot occur together. In mathematical
notation, A, B are disjoint if A N B = ¢, where ¢ denotes the empty set. The empty
event can be thought of as the complement of the sample space, § = S¢. Finally, we
say that an event A is a subset of an event B if all outcomes of A are also outcomes
of B. Alternatively, A is a subset of B if the occurrence of A implies the occurrence
of B. The mathematical notation indicating that A is a subset of B is A C B. Figure
2-2 illustrates disjoint A, B,and A C B.
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The mathematical notation expressing that x is an element of an event Eisx € E.

The usual way of establishing that an event A is a subset of an event B is to show
that if x € A then x € B is also true. The usual way of establishing that events A and
B are equal is to show that A € B and B C A.

Resistors manufactured by a machine producing 1k resistors are unacceptable if
they are not within 502 of the nominal value. Four such resistors are tested.

(a) Describe the sample space of this experiment.
(b) Let E; denote the event that the ith resistor tests acceptable. Are the E;s

mutually exclusive?

(c) Let Ay denote the event that all resistors test acceptable and A, denote the

event that exactly one resistor tests unacceptable. Give verbal descriptions of
the events B; = A{ UAj and B, = A] N Aj.

(d) Express A and Aj; in terms of the Ejs.

Solution

(a) Setting 1 when a resistor tests acceptable and 0 when it tests unacceptable, the

sample space is S = {(x1,x2,x3,%4) : x; =0or 1,i =1,2,3,4}.

(b) The event E; consists of all outcomes (x1,x3,x3,x4) in S with x; = 1. For

example, E1 = {(1,x2,x3,x4) : x; = O or 1,i = 2,3,4}. It follows that the
events E; are not disjoint. For example, the outcome (1,1,1,1) is contained in
all of them.

(c) The event B = A1 UA; happens when at most one resistor tests unacceptable.

The event B, = A1 N A; is the empty event, since A; and A, are disjoint.

(d) That all resistors test acceptable means that all £; happen. Thus, A} = E1NE;N

EsNE4 ={(1,1,1,1)}. Exactly one resistor tests unacceptable means that either
the first resistor tests unacceptable and the rest test acceptable, the second
tests unacceptable and the rest test acceptable, the third tests unacceptable
and the rest test acceptable, or the fourth tests unacceptable and the rest test
acceptable. Translating the above into mathematical notation we have

Ay =F L UF,UF;3U Fy,
where Fj is the event that the ith resistor tests unacceptable and the others test

acceptable. For example, F| = E{ N E; NE3N Ey, F, = ESNE1 N E3N Ey, and
so forth. [

In measuring the diameter of a cylinder the sample space (in cm) is S = {x : 5.3 <
x <57V LetEy ={x:x>54}and E; = {x : x < 5.6}. Describe the events E| U E,
E{NE;, and E| — E>.

Solution
EiUE, =S, EfNE,={x:54 <x<56},andE; — E, ={x:56 <x <57} [

The event operations conform to the following laws:

Commutative Laws:

AUB=BUA, ANB=BNA.
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Associative Laws:
(AUBYUC=AU(BUC), (ANB)NC=AN(BNC).

Distributive Laws:
(AUB)NC=(ANC)UBNC), (ANB)UC=(AUC)N(BUOQO).
De Morgan’s Laws:
(AUB)Y =A°NB°, (ANB)=A°UB"

These laws can be demonstrated with Venn diagrams (see Exercises 6 and 7)
but can also be shown formally by showing that the event on the left side of each
equation is a subset of the event on the right side and vice versa. As an illustration
of this type of argument, we will show the first of the distributive laws. To do so note
thatx € (AUB)NCis the same asx € C andx € AUB, which is the same asx € C and
x € Aorx € B,whichisthesameasx € Candx € A orx € C and x € B, which is the
same as x € (ANC)U(BNC). This shows that (AUB)NC < (ANC)U(BNC). Since the
sequence of arguments is reversible, it also follows that (ANC)U(BNC) € (AUB)NC
and thus ( ANC)U(BNC)=(AUB)NC.

In telecommunications, a handoff or handover is when a cellphone call in progress
is redirected from its current cell (called source) to a new cell (called target). For
example, this may happen when the phone is moving away from the area covered by
the source cell and entering the area covered by the target cell. A random sample of
100 cellphone users is selected and their next phone call is categorized according to
its duration and the number of handovers it undergoes. The results are shown in the
table below.

Number of Handovers

Duration 0 1 > 1
>3 10 20 10
<3 40 15 5

Let A and B denote the events that a phone call undergoes one handover and a
phone call lasts less than three minutes, respectively.

(a) How many of the 100 phone calls belong in A U B, and how many in A N B?

(b) Describe in words the sets (A U B)¢ and A¢ N B€. Use these descriptions to
confirm the first of De Morgan’s laws.

Solution

(a) The union AUB consists of the 80 phone calls that either undergo one handover
or last less than three minutes (or both) and so are categorized either in the
column with heading 1 or in the second row of the table. The intersection AN B
consists of the 15 phone calls that undergo one handover and last less than
three minutes and so are categorized both in the column with heading 1 and in
the second row of the table.

(b) In words, the complement (A U B)¢ consists of the 20 phone calls that are not
in A U B, that is, the phone calls that undergo either zero or more than one
handovers and last more than three minutes. The intersection A¢ N B¢ consists
of the phone calls that do not undergo one handover (so they undergo either
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zero or more than one handovers) and do not last less than three minutes (so
they last more than three minutes). Thus (A U B)¢ and A N B¢ are the same, in
accordance to the first of De Morgan’s laws. [

Exercises

1. Give the sample space for each of the following
experiments.

(a) A die is rolled twice and the outcomes are recorded.

(b) A die is rolled twice and the sum of the outcomes is
recorded.

(c) From a shipment of 500 iPods, 6 of which have a click
wheel problem, a simple random sample of 30 ipods is
taken and the number found to have the click wheel
problem is recorded.

(d) Fuses are inspected until the first defective fuse
is found. The number of fuses inspected is recorded.

2. In a certain community, 40% of the households sub-
scribe to a local newspaper, 30% subscribe to a newspaper
of national circulation, and 60% subscribe to at least one
of the two types of newspapers. Let E1 denote the event
that a randomly chosen household subscribes to a local
newspaper, and let £, denote the corresponding event for
the national newspaper.

(a) Make a Venn Diagram showing events E1 and E, and
shade the region representing the 60% of the house-
holds that subscribe to at least one of the two types of
newspapers.

(b) Make a Venn Diagram showing events £ and E, and
shade the event that a randomly selected household
subscribes to both types of newspapers.

(c) Make a Venn Diagram showing events £ and E; and
shade the event that a randomly selected household
subscribes only to a local newspaper.

3. An engineering firm is considering the possibility of
establishing a branch office in Toronto and one in Mexico
City. Let T be the event that the firm will establish a
branch office in Toronto and M be the event that the firm
will establish a branch office in Mexico City.

(a) Express each of the events described below in terms
of set operations on 7 and M.
(i) The firm establishes a branch office in both cities.
(ii) The firm establishes a branch office in neither of
the cities.
(iii) The firm establishes a branch office in exactly one
of the cities.

(b) For each of the three subparts of part (a), draw a Venn
diagram that shows the events 7" and M and shade the
event described.

4. Sketch two Venn diagrams like the one in Figure 2-3.
On the first shade the set (A — B) U (B — A), and on the

second shade the event (A U B) — (A N B). Are they the
same?

Figure 2-3 Generic Venn diagram with two events.

5. In testing the lifetime of components, the sample space
is the set S = {x:x > 0} of positive real numbers. Let A
be the event that the next component tested will last less
than 75 time units and B the event that it will last more
than 53 time units. In mathematical notation, A = {x:x <
75}, and B = {x:x > 53}. Describe each of the events (a)
A€, (b)ANB,(c) AUB,and (d) (A — B)U (B — A), both
in words and in mathematical notation.

6. Prove the second of De Morgan’s Laws by sketching
two Venn diagrams like the one in Figure 2-3. On the first
shade the event (A N B)¢, on the second shade the event
AU B¢, and then confirm that they are the same.

7. Sketch two Venn diagrams like the one in Figure 2-4.
On the first shade the event (ANB)UC, and on the second
shade the event (A U C) N (B U C). Are they the same?

A B

Figure 2-4 Generic Venn diagram with three events.

8. Prove that the pairs of event given in Exercises 4, 6,
and 7 are equal by means of a sequence of formal (logi-
cal) arguments showing that, in each case, each event is a
subset of the other.

9. In measuring the diameter of a cylinder to the
nearest millimeter the sample space (in cm) is S =
{5.3,5.4,5.5,5.6,5.7}. Five cylinders are randomly selected
and their diameters are measured to the nearest
millimeter.
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(a) Describe the sample space of this experiment. What is
the size of this sample space?

(b) Describe the sample space if only the average of the
five measurements is recorded, and use R commands
similar to those used in Example 2.2-3 to determine
the size of this sample space.

10. A random sample of 100 polycarbonate plastic disks
are categorized according to their hardness and shock
absorption. The results are shown in the table below.

A disk is selected at random. Define the events E| = {the

disk has low hardness}, £, = {the disk has low shock

absorption}, E3 = {the disk has low shock absorption or

low hardness}.

(a) How many of the 100 disks belong in each of the three
events?

(b) Make two drawings of a Venn diagram showing the
events £ and Ej. On the first drawing shade the
event (Eq N E»)¢ and on the second shade the event

E{ U ES. Confirm the second of De Morgan’s Laws
for these events.

Shock Absorption (c) Describe in words the events EyNEy, E{UE,, E1 — E;,
Hardness low high and (E; — E3) U (Ey — Ey).
low 5 16 (d) How many of the 100 disks belong in each of the
high 9 70 events in part (c)?

2.3 Experiments with Equally Likely Outcomes
2.3.1 DEFINITION AND INTERPRETATION OF PROBABILITY

In any given experiment we might be interested in assessing the likelihood, or
chance, of occurrence of an outcome or, more generally, of an event. The probability
of an event E, denoted by P(E), is used to quantify the likelihood of occurrence of
E by assigning a number from the interval [0, 1]. Higher numbers indicate that the
event is more likely to occur. A probability of 1 indicates that the event will occur
with certainty, while a probability of 0 indicates that the event will not occur.

The likelihood of occurrence of an event is also quantified as a percent, or in
terms of the odds. The expression “the odds of winning are two to one” means that
a win is twice as likely as a non-win, which means that the probability of a win is
about 0.67. The percent quantification has a more direct correspondence to prob-
ability. For example, the expression “there is a 70% chance of rain this afternoon”
means that the probability of rain this afternoon is 0.7. The use of percents is sug-
gestive of the limiting relative frequency interpretation of probability, which is based
on the conceptual model of repeated replications of the experiment under the same
conditions. For example, if we conceptualize the collection of all days with identi-
cal meteorological conditions as today, the statement that there is a 70% chance of
rain can be interpreted to mean that it would rain in 70% of the days with identical
conditions as today.

In general, if N,(E) denotes the number of occurrences of the event E in n
repetitions of the experiment, the limiting relative frequency approach interprets
P(E) as the limiting value, as n gets larger and larger (i.e., n — o00) of the ratio

Nu(E)
.

Even though the limiting relative frequency interpretation is intuitively appealing, it
cannot serve as a formal definition of probability because there is no guarantee that
the limit of N,,(E)/n exists. For example, why is it true that in a long sequence of coin
tosses, the proportion of heads tends to 1/2? For this reason, the modern approach
to probability sets forth a number of axioms that any assignment of probabilities to
events must satisfy, and from these axioms derive all properties of probability. These
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axioms are given in Section 2.4. That the limit of N,,(E)/n exists is a consequence of
the Law of Large Numbers given in Chapter 5.

Even if the existence of the limit of N,(E)/n were to be accepted as an axiom,
the limiting relative frequency interpretation of probability is not a practical method
for assigning probabilities to events. In modern probability theory this assignment is
based on probability models deemed suitable for each experiment. The simplest such
model pertains to experiments with a finite number of equally likely outcomes, such
as those used in games of chance. The definition and assignment of probabilities for
such models is discussed next. Other probability models are discussed in Chapters 3
and 4.

For experiments that have a finite number of equally likely outcomes, including
those that take the form of simple random sampling from a finite population, the
assignment of probabilities to individual outcomes is straightforward and intuitive:
If we denote by N the finite number of outcomes of such an experiment, then the
probability of each outcome is 1/N. This is important enough to be highlighted:

If the sample space of an experiment consists of N outcomes that are equally
likely to occur, then the probability of each outcome is 1/N.

For example, a toss of a fair coin has two equally likely outcomes so the probability
of each outcome (heads or tails) is 1/2, the roll of a die has six equally likely outcomes
so the probability of each outcome is 1/6, and in drawing a card at random from a
deck of 52 cards each card has probability 1/52 of being drawn.

Having the probability of each individual outcome, it is straightforward to assign
probabilities to events consisting of several outcomes. If N(E) denotes the number
of outcomes that constitute the event E, then the probability of E is

P(E)= ——+ 2.3.1)

For example, in rolling a die, the probability of an even outcome is 3/6, and in draw-
ing a card at random from a deck of 52 cards, the probability of drawing an ace is
4/52. Two additional examples follow.

The efficiency of laser diodes (measured at 25°C in mW per mA) varies from 2
to 4. In a shipment of 100, the numbers having efficiency 2, 2.5, 3, 3.5, and 4 are
10, 15, 50, 15, and 10, respectively. One laser diode is randomly selected. Find the
probabilities of the events £; = {the selected laser diode has efficiency 3} and E, =
{the selected laser diode has efficiency at least 3}.

Solution
Here there are N = 100 equally likely outcomes. Moreover, N(E{) = 50 and
N(E,) =75. Thus, P(E1) = 0.5 and P(E;) = 0.75. [

Roll two dice separately (or one die twice). Find the probability of the event that the
sum of the two sides is seven.

Solution
When two dice are rolled, there are N = 36 equally likely outcomes. The
event A = ({sum of twosides =7} consists of the outcomes (1,6), (2,5), (3,4),
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(4,3), (5,2), and (6,1). Thus N(A) = 6 and, according to the formula (2.3.1),
P(A) =6/36 =1/6. =

2.3.2 COUNTING TECHNIQUES

While the method of assigning probabilities to events of experiments with equally
likely outcomes is straightforward, the implementation of this method is not straight-
forward if N is large and/or the event A is complicated. For example, to find the
probability that five cards, randomly selected from a deck of 52 cards, will form a
full house (three of a kind and two of a kind) we need to be able to determine how
many 5-card hands are possible and how many of those constitute a full house. Such
determination requires specialized counting techniques, which are presented in this

section.
We begin with the most basic counting technique, from which all results
follow.
Fundamental If a task can be completed in two stages, if stage 1 has n; outcomes, and if stage
Principle of Counting 2 has n; outcomes, regardless of the outcome in stage 1, then the task has nin,
outcomes.

The task in the fundamental principle of counting can be an experiment and
the stages can be subexperiments, or the stages can be experiments in which case
the task is that of performing the two experiments in succession. For example, the
task of rolling two dice has 6 x 6 = 36 outcomes. The rolling of two dice can be
the experiment with subexperiments the rolling of each die, or each of the two
die rolls can be an experiment in which case the task is to roll the two dice in
succession.

Example For each of the following tasks specify the stages, the number of outcomes of each
2.3-3 stage, and the number of outcomes of the task.

(a) Select a plumber and an electrician from three plumbers and two electricians
available in the yellow pages.

(b) Select two items from an assembly line, and classify each item as defective (0)
or non-defective (1).

(c) Select a first and a second place winner from a group of four finalists.

Solution

(a) Stage 1 can be the selection of a plumber and stage 2 the selection of an
electrician. Then ny = 3,n, = 2, and thus the task has njn, = 6 possible
outcomes.

(b) The outcome of stage 1 can be either 0 or 1. Similarly for stage 2. Thus, this
task has 2 x 2 = 4 outcomes.

(c) Stage 1 can be the selection of the second place winner, and stage 2 the selec-
tion of the first place winner. Then ny = 4,n, = 3, and thus the task has
niny = 12 possible outcomes. =
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The stages of all three tasks of Example 2.3-3 involve sampling. In part (a)
different sets of subjects are sampled in the two stages, in part (b) the same set
(which is {0, 1}) is sampled with replacement, and in part (c) the same set of subjects
is sampled without replacement.

The fundamental principle of counting generalizes in a straightforward manner.

If a task can be completed in k stages and stage i has n; outcomes, regardless of
the outcomes of the previous stages, then the task has nn; - - - nx outcomes.

For each of the following tasks specify the stages, the number of outcomes of each
stage and the number of outcomes of the task.

(a) Select a plumber, an electrician, and a remodeler from three plumbers, two
electricians, and four remodelers available in the yellow pages.

(b) Form a binary sequence of length 10 (i.e., a 10-long sequence of 0’s and 1’s).

(c) Form a string of seven characters such that the first three are letters and the
last four are numbers.

(d) Select a first, second, and third place winner from a group of four finalists.

Solution

(a) This task consists of three stages with number of outcomes n; = 3,n, = 2, and
n3 = 4. Thus the task has 3 x 2 x 4 = 24 outcomes.

(b) This task consists of 10 stages with each stage having two possible outcomes,
either 0 or 1. Thus, the task has 210 = 1024 outcomes.

(c) This task consists of seven stages. Each of the first three stages involves select-
ing one of the 26 letters, so ny = ny = n3 = 26. Each of last four stages
involves selecting one of the 10 numbers, so ng = - -+ = n7 = 10. Thus the task
has 26° x 10* = 175,760,000 outcomes.

(d) This task consists of three stages with number of outcomes n; = 4,n, = 3, and
n3 = 2. Thus the task has 4 x 3 x 2 = 24 outcomes. =

When the stages of a task involve sampling without replacement from the same
set of units (objects or subjects), as in part (c) of Example 2.3-3 or part (d) of
Example 2.3-4, we may or may not want to distinguish between the outcomes of
the different stages. This is exemplified in the following.

In selecting a first and second place winner from the group of four finalists con-
sisting of Niki, George, Sophia, and Martha, the outcomes (George, Sophia) and
(Sophia, George) are two of the 12 distinct outcomes mentioned in Example 2.3-
3(c). However, if both winners will receive the same prize, so there is no distinction
between the first and second place winner, the two outcomes will be counted as one
(since, in this case, George and Sophia will each receive the same prize). Similarly,
if all three winners mentioned in Example 2.3-4(d) receive the same prize there
is no need to distinguish between the outcomes of the different stages because
any arrangement of, for example, (Niki, George, Sophia) identifies the three equal
winners. [
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Definition 2.3-1
If the k stages of a task involve sampling one unit each, without replacement,
from the same group of 7 units, then:

1. If a distinction is made between the outcomes of the stages, we say the
outcomes are ordered. Otherwise we say the outcomes are unordered.

2. The ordered outcomes are called permutations of k units. The number
of permutations of k units selected from a group of » units is denoted
by P.

3. The unordered outcomes are called combinations of k units. The number
of combinations of k units selected from a group of n units is denoted

(&)

The formula for Py, follows readily from the generalized fundamental principle
of counting. To see how, reason as follows: The task making an ordered selection
of k units out of a set of n units consists of k stages. Stage 1, which corresponds to
selecting the first unit, has n; = n possible outcomes. Stage 2, which corresponds to
selecting the second unit from the remaining n—1 units (remember that the sampling
is without replacement), has ny = n — 1 possible outcomes, and so forth until stage
k which has ny = n — k + 1 outcomes. Hence, according to the generalized principle
of counting,

n!
Pk’n:n(n—l)---(n—k—i-l):m 2.3.2)

where, for a nonnegative integer m, the notation m! is read m factorial and is
defined as

m! =m(m—1)---(2)(1).
For k = n, formula (2.3.2) with the convention that 0! = 1, yields the num-

ber of different permutations (or arrangements or orderings) of n units among
themselves.

P, =n! (2.3.3)

g

(a) The lineup or batting order is a list of the nine baseball players for a team in
the order they will bat during the game. How many lineups are possible?

(b) The Department of Tranpostation (DOT) plans to assign six civil engineers to
oversee six interstate safety design projects. How many different assignments
of civil engineers to projects are possible?

Solution

(a) There are Pgg = 9! = 362,880 possible lineups.
(b) There are Pgg = 6! = 720 different assignments. m
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The number of combinations (unordered selections, or groups) of k units that
can be drawn from a set of n units does not follow directly from the generalized
fundamental principle of counting, but it does follow from the permutation formulas
(2.3.2) and (2.3.3). To see how, consider the specific task of selecting a group of three
out of a set of four units (e.g., a group of 3 equal winners from a group of 4 finalists).
Note now that, by (2.3.3), each group of three yields P33 = 3! = 6 permutations.
This means that the number of permutations will be six times the number of com-
binations. By formula (2.3.2), the number of permutations of 3 that can be obtained
from a set of 4is P34 = 4!/(4 — 3)! = 4! = 24. Hence, the number of combinations
of 3 that can be obtained from a set of 4 is (g) = P34/P33 =24/6 = 4.

In general we have the formula

Number of <n) Pi,, n!
Combinations of k == 2.3.4)
Units Selected from n k Pri  kli(n—k)!
Because the numbers (Z), k = 1,...,n, are used in the binomial theorem (see

Exercise 18), they are referred to as the binomial coefficients.

Example Two cards will be selected from a deck of 52 cards.

2.3-7
(a) How many outcomes are there if the first card will be given to player 1 and the

second card will be given to player 2?
(b) How many outcomes are there if both cards will be given to player 1?

Solution

(a) In this case it makes sense to distinguish the outcome (Ace, King), meaning
that player 1 gets the ace and player 2 gets the king, from the outcome (King,
Ace). Thus, we are interested in the number of permutations of two cards
selected from 52 cards. According to (2.3.2) the number of (ordered) outcomes
is Py sp = 52 x 51 = 2652.

(b) In this case it can be argued that the order in which the two cards are received
is not relevant, since both result in the same two-card hand. Thus, we are
interested in the number of combinations of two cards selected from 52 cards.
According to (2.3.4) the number of (unordered) outcomes is (5) = 2652/2 =

1326. [
Example (a) How many binary sequences (i.e., sequences of 0’s and 1’s) of length 10 with
2.3-8 exactly four 1’s can be formed?

(b) If a binary sequence of length 10 is selected at random, what is the probability
that it has four 1’s?

Solution

(a) A 10-long binary sequence of four 1’s (and hence six 0’s) is determined from
the location of the four 1’s in the 10-long sequence (all other locations in the
sequence have 0’s). Thus the problem is that of selecting four out of the 10
locations in the sequence. The answer is ('})) = 210.

. o . 10
(b) Using also the result of Example 2.3-4(b), the probability is ( 4)/210 =
210/1024 = 0.2051. =
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Example
2.3-10

(a) How many binary sequences of length 10 with exactly four 1’s that are not
consecutive can be formed?

(b) If a binary sequence of length 10 having four 1’s is selected at random, what is
the probability that the four 1’s are nonconsecutive?

Solution

(a) Any binary sequence of length 10 with four nonconsecutive 1’s is formed by
selecting four of the seven spaces created by the six 0’s, which are shown below
as wedges.

AOAOAOAOAOAODA

Thus, the answer is (Z) = 35.

(b) Using also the result of Example 2.3-8(a), the probability is (})/(}) =
35/210 = 0.1667. -

In the game of poker each player receives five cards dealt from a deck of 52 cards.
Full house refers to a five-card hand consisting of three of a kind and two of a kind.
An example of a full house is a hand consisting of three 10’s and two 5’s. Find the
probability that a randomly dealt five-card hand is a full house.

Solution

Since the five-card hand is randomly dealt, the set of equally likely outcomes is that
of all five-card hands. To determine the probability we need to find the number of
possible outcomes and the number of outcomes that constitute a full house. First,
the number of all five-card hands is (552) = 2,598,960. To find the number of hands
that constitute a full house, think of the task of forming a full house as consisting
of two stages. Stage 1 consists of choosing two cards of the same kind, and stage
2 consists of choosing three cards of the same kind. Stage 1 can be completed in
()() = (13)(6) = 78 ways. (This is because stage 1 can be thought of as consisting
of two substages: first selecting a kind from the available 13 kinds and then selecting
two from the four cards of the selected kind.) For each outcome of stage 1, the task of
stage 2 becomes that of selecting three of a kind from one of the remaining 12 kinds.
This can be completed in (') (3) = 48 ways. Thus there are (78)(48) = 3744 possible
full houses. It follows that the probability of dealing a full house is 3744/2,598,960 =
1.4406 x 1073. =

We are often interested in dividing # units into more than two groups. The num-
ber of such divisions can be obtained through the generalized fundamental principle
of counting, and use of the formula (2.3.4). To fix ideas, suppose that eight mechan-
ical engineers will be divided into three groups of three, two, and three to work on
design projects A, B, and C, respectively. The task of assigning the eight engineers
to the three projects consists of two stages. Stage 1 selects three of the engineers to
work on project A, and stage 2 selects two of the remaining five engineers to work on
project B. (The remaining three engineers are then assigned to work on project C.)
Stage 1 has n| = (g) outcomes, and stage 2 has n, = (g) outcomes. Hence, the task
of assigning three of the eight engineers to project A, two to project B, and three to

project C has
8\ (5 8! 5! 8!
<3> (2> = 3512031~ om0 2.3.5)
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possible outcomes. We will use the notation (n1 nz" n,) for the number of ways n
units can be divided into r groups of sizes ny,ny,...,n,. Thus, the outcome of the
calculation in (2.3.5) can be written as (55 ;) = 560.

A generalization of the line of reasoning leading to (2.3.5) yields the following
result:

n n!
= (2.3.6)
ny,no, ..., Ny nilny!---n,!

Because the numbers (n1 nz” nr), with ny + np + --- + n, = n, are used in the

multinomial theorem (see Exercise 19), they are referred to as the multinomial
coefficients.

The clock rate of a CPU (central processing unit) chip refers to the frequency,
measured in megahertz (MHz), at which it functions reliably. CPU manufacturers
typically categorize (bin) CPUs according to their clock rate and charge more for
CPUs that operate at higher clock rates. A chip manufacturing facility will test and
bin each of the next 10 CPUs in four clock rate categories denoted by Gy, Gy, G3,
and Gy.

(a) How many possible outcomes of this binning process are there?

(b) How many of the outcomes have three CPUs classified as G1, two classified as
G», two classified as G3, and three classified as G4?

(c) If the outcomes of the binning process are equally likely, what is the probability
of the event described in part (b)?

Solution

(a) The binning process consists of 10 stages, each of which has four possible out-
comes. Hence, by the generalized fundamental principle of counting, there are
410 = 1,048,576 possible outcomes.

(b) The number of possible outcomes is

10 10!
(3, 2,2, 3) = 3onn; = 2200

(c) The probability is 25,200/1, 048,576 = 0.024. =

2.3.3 PROBABILITY MASS FUNCTIONS AND SIMULATIONS

In many sampling experiments, even though the units are selected with equal prob-
ability, the sample space of the random variable recorded consists of outcomes that
are not equally likely. For example, the outcomes of the experiment that records
the sum of two die rolls, that is, {2,3,...,12}, are not equally likely, since the prob-
ability of a 2 (and also of a 12) is 1/36, while the probability of a seven is six times
that, as derived in Example 2.3-2. As another example, if an undergraduate stu-
dent is randomly selected and his/her opinion regarding a proposed expansion of
the use of solar energy is rated on a scale from 1 to 10, each student has an equal
chance of being selected, but the individual outcomes of the sample space (which
are {1,2,...,10}) will not be equally likely.
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Definition 2.3-2

The probability mass function (PMF for short) of an experiment that records
the value of a discrete random variable X, or simply the PMF of X, is a list of
the probabilities p(x) for each value x of the sample space Sy of X.

Example A simple random sample of size n = 3 is drawn from a batch of 10 product items.

2.3-12 If three of the 10 items are defective, find the PMF of the random variable X =
{number of defective items in the sample}.

Solution
By the definition of simple random sampling, each of the (') samples are equally
likely. Thus, the probabilities for each outcome Sy = {0, 1,2, 3} can be calculated as:

P(X=0)=@, P(X:l)zw,
(130) (13())

P(X=2)=%, P(X:s)ZQ_
() (%)

X \ 0 1 2 3
p(x) | 0292 0525 0175 0.008

Thus, the PMF of X is:

Figure 2-5 shows the PMF of Example 2.3-12 as a bar graph.

Figure 2-5 Bar graph for Bar Graph

the PMF of Example
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Roll two dice separately (or one die twice). Find the probability mass function of the
experiment that records the sum of the two die rolls.

Solution

This experiment records the value of the variable X = {sum of two die rolls}, whose
possible values are 2,3, ...,12. Counting which of the 36 equally likely outcomes of
the two die rolls result in each of the possible values of X (see Example 2.3-2), we
obtain the following PMF of the experiment (or of X):

X ‘ 2 3 4 5 6 7 8 9 10 11 12
p(x) ‘ 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

This can also be obtained with the following R commands:

R Commands for the PMF of the Sum of Two Die Rolls
S=expand.grid(X1=1:6, X2=1:6)
table(S$X1+S$X2) /36

Once the PMF of an experiment is obtained, it is easier to compute probabil-
ities of more complicated events using it than by counting the number of equally
likely outcomes that comprise these events. For example, it is easier to compute
the probability of the event £ = {the sum of two die rolls is at least 10} by the sum
p(10) + p(11) + p(12), where p(x) is the PMF found in Example 2.3-13, than by
the formula N(E)/36. That the two are the same follows from the properties of
probability presented in Section 2.4, but can also be verified here by noting that
N(E) = N(E1) +N(E11) + N(E12), where Eqg, Eq1, and E1; denote the events that
the sum of the two die rolls is 10, 11, and 12, respectively. Hence,

N(E) _ N(Ey) , N(Eu)  N(Enp) 6
P(E) = % = 36 + 36 + 6 =p(10) + p(11) + p(12) = %

Moreover, having the PMF of an experiment and access to a software package,
one can simulate the experiment. This means that one can obtain outcomes from the
sample space of the experiment without actually performing the experiment. The
following example illustrates the use of R for simulating the experiment of Example
2.3-13 ten times.

Simulating an experiment with R. Use the PMF obtained in Example 2.3-13 to
simulate 10 repetitions of the experiment that records the sum of two die rolls.

Solution
Note first that the R command ¢(1:6, 5:1)/36 produces the PMF given in Example 2.3-
13. For sampling from the sample space {2,3,...,12} ten times use the R command

sample(2:12, size=10, replace=T, prob=c(1l:6, 5:1)/36) (2.3.7)

If one sets the seed to 111 by set.seed(111) (setting the seed to the same value ensures
reproducibility of the results), the above command yields the 10 numbers

9465667567
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Figure 2-6 Histogram of
relative frequencies and
line graph of the PMF.

These numbers represent the outcome of rolling a pair of dice ten times and
each time summing the two die rolls (without rolling any dice!). Repeating the
R command in (2.3.7) without setting the seed will give different sets of 10
numbers. [

The simulation carried out in Example 2.3-14 involves random sampling, with
replacement, from the sample space of the experiment using its probability mass
function. This kind of sampling, which is random but not simple random, is called
probability sampling, or sampling from a probability mass function. When the sam-
ple space is considered as the population from which we sample with replacement,
it is called a sample space population.

Simulations can be used to gain understanding of different properties of the
system, as well as for empirical verification of certain results. For example, setting
the seed to 111 with set.seed(111), the R command

table(sample(2:12, size=10000, replace=T,

2.3.
prob=c(1:6, 5:1)/36))/10000 2:38)

yields the following relative frequencies for each number in the sample space

2 3 4 5 6 7 8 9 10 11 12
0.0275 0.0561 0.0833 0.1083 0.1366 0.1686 0.1367 0.1137 0.0865 0.0567 0.0260

Figure 2-6 shows the probability mass function of Example 2.3-13 (line graph
in color) and the above relative frequencies (bar graph/histogram). Since all
relative frequencies are good approximations to corresponding probabilities, we
have empirical confirmation of the limiting relative frequency interpretation of
probability.

Because of the aforementioned advantages of working with a probability mass
function, Chapter 3 presents probability models, which are classes of probability

Relative Frequencies and True Probabilities

0.15

0.10

0.05
|

0.00
L
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mass functions, that are relevant to the sample space of the most prevalent types
of experiments used in sciences and engineering.

Exercises

1. In electronics, a wafer is a thin slice of semiconductor
material used in the fabrication of integrated circuits and
other micro-devices. They are formed of highly pure crys-
talline material, which is doped (i.e., impurity atoms are
added) to modulate its electrical properties. The doping
is either n-type or p-type. Moreover, the doping is either
light or heavy (one dopant atom per 100 million atoms,
or per ten thousand atoms, respectively). The following
table shows a batch of 10 wafers broken down into the
four categories.

Degree of Doping
Type of Doping | light heavy
n-type 2 3
p-type 3 2

One wafer is selected at random. Let E;{ denote the
event that the selected wafer is n-type, and E; the event
that the wafer is heavily doped. Find the probabilities
P(E1), P(Ep), P(E1 N Ey), P(E1 U Ep), P(Ey — E3), and
P((E1 — E2) U (E2 — Ev)).

2. Refer to Exercise 1.
(a) Select two wafers, at random and with replacement,
from the batch of 10 wafers given in the exercise.

(i) Give the sample space for the experiment that
records the doping type of the two wafers and
the probability for each outcome.

(ii) Give the sample space of the experiment that
records the number of n-type wafers among the
two selected and the corresponding probability
mass function.

(b) Select four wafers, at random and with replacement,
from the batch of 10 wafers given in the exercise.

(i) Give a verbal description of the sample space
for the experiment that records the dop-
ing type of the four wafers, find the size
of the sample space using the R commands
G=expand.grid(W1=0:1,W2=0:1,W3=0:1, W4=
0:1); length(G$WI), and give the probability
of each outcome.

(ii) Give the sample space of the experiment that
records the number of n-type wafers among
the four selected and the corresponding PMF
using the additional R commands attach(G);
table(W1+W2+W3+W4)/4)/length(W1 ).

(iii) Use the probability mass function to find the
probability of at most one n-type wafer among
the four selected.

3. Soil or water pH is measured on a scale of 0-14. A pH
reading below 7 is considered acidic, while a pH reading
above 7 is basic. The pH level of water provided by a type
of spray tank irrigator is equally likely to be either 6.8, 6.9,
7.0,7.10or 7.2. Let Eq denote the event that at the next irri-
gation the water pH level measurement is at most 7.1, and
E, the event that the water pH level is at least 6.9. Find
the probabilities P(E1), P(E,), P(E1 N E3), P(E1 U E),
P(E1 — Ep), and P((Ey — E2) U (E2 — Ey)).

4. The following two questions pertain to the spray tank
irrigator of Exercise 3.

(a) The water pH level is measured over the next two
irrigations.

(i) Give the sample space of this experiment, and
its size, using R commands t=seq(6.8, 7.2, 0.1);
G=expand.grid(X1=t,X2=t); G; length(G$X1).

(ii) Give the sample space of the experiment that
records the average of the two pH measurements,
and the corresponding probability mass func-
tion, using the additional R commands attach(G);
table((X1+X2)/2)/length(X1).

(b) Using R commands similar to the above, give the
probability mass function of the experiment that
records the average of the pH measurements taken
over the next five irrigations.

5. The R command S=expand.grid(X1=1:6, X2=1:6) gen-
erates the sample space of two die rolls. The additional R
command attach(S); Y=(X1==6)+(X2==6) generates the
number of times a six occurs for each of the 36 outcomes
in the sample space. Finally, the additional R commands
pr=table(Y)/36; pr generates the probability mass func-
tion for the experiment that records the number of times
a six occurs in two rolls of a die.

(a) Use the PMF obtained and R commands similar to
those given in (2.3.7) to simulate 10 replications of
the experiment that records the number of times a six
occurs in two die rolls.

(b) Use the PMF obtained and R commands similar
to those given in (2.3.8), namely x= sample(0:2,
size=10000, replace=T, prob=pr); table(x)/10000, to
obtain the relative frequencies for each outcome in
the sample space of the experiment that records the
number of times a six occurs in two die rolls, based on
10,000 replications.

(c) Use the R command #hist(x,seq(-0.5, 2.5, 1), freq=F);
lines(0:2, pr, type="p”, col="red”); lines(0:2, pr,
type="h", col="red”) to construct a histogram of

the relative frequencies and line graph of the
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probability mass function. This figure provides
empirical verification of which property?

6. A test consists of five true-false questions.

(a) In how many ways can it be completed? (Hint. The
task of answering five true-false questions consists of
five stages.)

(b) A correctly answered question receives 1 point, while
an incorrectly answered question gets 0. Give the sam-
ple space for the experiment that records the test
score.

(c) A reasonable model for the answers given by a stu-
dent who has not studied assumes that each question
is marked T or F by flipping a coin. Thus, any 5-
long binary sequence of 0’s and 1’s, that is, points
received in each of the five questions, is equally
likely. Let X denote the test score of such a stu-
dent. Find the PMF of X. (Hint. The probability
that X = k is the number of binary sequences
that sum to k divided by the total number of
binary sequences, which is your answer in part (a).
This can be found, simultaneously for all k, with
the following R commands: S=expand.grid(X1=0:1,
X2=0:1, X3=0:1, X4=0:1, X5=0:1); attach(S);
table(X1+X2+X3+X4+X5)/length(X1)

7. An information technology company will assign four
electrical engineers to four different JAVA program-
ming projects (one to each project). How many different
assignments are there?

8. In many countries the license plates consist of a string
of seven characters such that the first three are letters and
the last four are numbers. If each such string of seven
characters is equally likely, what is the probability that the
string of three letters begins with a W and the string of
four numbers begins with a 4? (Hint. Assume an alphabet
of 26 letters. The number of possible such license plates is
found in Example 2.3-4(c).)

9. Twelve individuals want to form a committee of
four.

(a) How many committees are possible?

(b) The 12 individuals consist of 5 biologists, 4 chemists,
and 3 physicists. How many committees consisting of
2 biologists, 1 chemist, and 1 physicist are possible?

(c) In the setting of part (b), if all committees are equally
likely, what is the probability the committee formed
will consist of 2 biologists, 1 chemist, and 1 physicist?

10. Answer the following questions.
(a) A team of 5 starters will be selected from 10 basket-
ball players. How many selections are there?

(b) Ten basketball players will be divided into two teams
for a practice game. How many divisions of the 10
players into two teams of 5 are there?

(c) If each of 12 individuals shakes hands with everybody
else, how many handshakes take place?

I1. A path going from the lower left corner of the grid in
Figure 2-7 to the upper right corner can be represented as
a binary sequence having four 0’s and four 1’s, with each 0
representing a move to the right and each 1 representing
a move upwards.

(a) How many paths going from the lower left corner to
the upper right corner of this grid are there?

(b) How many paths going from the lower left corner to
the upper right corner of this grid and passing through
the circled point are there?

(c) If a path is selected at random, what is the probability
it will pass through the circled point?

N
N

Figure 2-7 A 4x4 grid for Exercise 11.

12. A communication system consists of 13 antennas
arranged in a line. The system functions as long as no two
nonfunctioning antennas are next to each other. Suppose
five antennas stop functioning.

(a) How many different arrangements of the five non-
functioning antennas result in the system being func-
tional? (Hint. This question and the next are related
to Example 2.3-9.)

(b) If the arrangement of the five nonfunctioning anten-
nas is equally likely, what is the probability the system
is functioning?

13. Five of the 15 school buses of a particular school dis-
trict will be selected for thorough inspection. Suppose
four of the buses have developed a slight defect since
their last inspection (the steering wheel shakes when
braking).

(a) How many possible selections are there?

(b) How many selections contain exactly three buses with
the defect?

(c) If the five buses are selected by simple random sam-
pling, what is the probability the sample includes
exactly three of the buses with the defect?



(d) If the buses are selected by simple random sampling,
what is the probability all five buses are free of the
defect?

14. A forest contains 30 moose of which six are captured,
tagged, and released. A certain time later, five of the 30
moose are captured.

(a) How many samples of size five are possible?

(b) How many samples of size five, which include two of
the six tagged moose, are possible?

(c) If the five captured moose represent a simple random
sample drawn from the 30 moose (six of which are
tagged), find the probability that (i) two of the five
captured moose are tagged and (ii) none of the five
captured moose is tagged.

15. A simple random sample of size five is selected from
52 cards. Find the probability of each of the following
events.

(a) The five-card hand contains all four 2’s.
(b) The five-card hand contains two aces and two 7’s.

(c¢) The five-card hand contains three kings and the other
two cards are of different denomination.

16. The information technology company mentioned
in Exercise 7 has 10 EE majors working as interns.
Two interns will be assigned to work on each of the
four programing projects, and the remaining two interns
will be assigned to another project. How many possible
assignments of the 10 interns are there?
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17. After testing, asphalt shingles are classified as high,
medium, or low grade, and different grade shingles are
sold under different warranties.

(a) In how many ways can the next 15 shingles be classi-
fied into high, medium, or low grade? (Hint. Think of
a task consisting of 15 stages, with each stage having 3
outcomes.

(b) How many classifications have three, five, and seven
shingles in the high, medium, and low grade cate-
gories, respectively?

(c) If the classifications are all equally likely, what is the
probability of the event in part (b)?

18. The binomial theorem states that
n
n
b n_ kbnfk-
@ror =3 ( k)a

(a) Use the binomial theorem to show that Y 7_, (}) =
2. (Hint. 2" = (1+ 1))
(b) Expand (a* + b)*.

19. The multinomial theorem states that

n -
(a1+---+a)" = Z ( )5’11022-..41?',
ny+--4ny=n ny,ny,...,ny
where Z denotes the sum over all nonnegative
ni4-+n,=n

integers ny,no,...,n,, which sum to n. Using the multi-
nomial theorem, expand (a% +2a; + a3)>.

2.4 Axioms and Properties of Probabilities

The previous section introduced probability in the intuitive context of experiments
having a finite number of equally likely outcomes. For more general contexts we
have the following definition.

Definition 2.4-1

For an experiment with sample space S, probability is a function that assigns a
number, denoted by P(E), to any event E so that the following axioms hold:

Axiom1: 0 <P(E) <1

Axiom 2: P(S) =1

Axiom 3: For any sequence of disjoint events Eq, Ej,..

. the probability of

their union equals the sum of their probabilities, that is,

P (G El-) = i P(E)).
i=1 i=1
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Proposition
2.4-1

Figure 2-8 Venn diagram
showing B as the disjoint
union of A and B — A.

Axiom 1 states that the probability that an event will occur is some number
between 0 and 1, something that is already known from the discussion in Section
2.3. Axiom 2 states that the sample space will occur with probability one, which
is intuitive since the sample space is an event that contains all possible out-
comes. Axiom 3 states that for any countable collection of disjoint events, the
probability that at least one of them will occur is the sum of their individual
probabilities.

The three axioms imply the following properties of probability:

1. The empty set, @, satisfies P(#) = 0.
2. For any finite collection, E1, ..., E,, of disjoint events

P(E{UEy,U---UEy) = P(E1) + P(Ey) + - - + P(Ep).

3. If A C Bthen P(A) < P(B).
4. P(A°) =1— P(A), where A is the complement of A. [ |

Part (1) of Proposition 2.4-1 is quite intuitive: Since the empty set does not con-
tain any outcomes, it will never occur and thus its probability should be zero. Part
(2) of Proposition 2.4-1 states that Axiom 2.4.3 applies also to a finite collection
of disjoint events. In addition to being intuitive, parts (1) and (2) of Proposition
2.4-1 can be derived from the axioms; an outline of these derivations is given in
Exercise 13.

Part (3) of Proposition 2.4-1 follows by noting thatif A € B,then B = AU(B—A)
and the events A, B — A are disjoint; see Figure 2-8. Hence, by part (2),

P(B) = P(AU (B — A)) = P(A) + P(B — A)

and since P(B — A) > 0 it follows that P(A) < P(B).

Part (4) of Proposition 2.4-1 states that if we know that the probability event A
will occur is 0.6, then the probability event A will not occur must be 1—0.6 = 0.4. For
example, if the probability that a Hershey’s Kiss will land on its base when tossed is
0.6, then the probability that it will not land on its base must be 1 — 0.6 = 0.4. As an
additional example, if we know that the probability a die roll will result in 3 is 1/6,
then the probability a die roll will not result in 3 must be 1 — 1/6 = 5/6. To derive
this property in general, note that S = A U A¢ and that A, A are disjoint. Hence,
1=P(S) = P(A) + P(A°), or P(A°) =1 — P(A).

A particularly useful consequence of Axiom 2.4.3 (and/or part (2) of Proposition
2.4-1) is that the probability of an event E equals the sum of the probabilities of
each outcome included in E. For the special case where the event in question is the
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entire sample space, it implies that the sum of the individual probabilities of each
outcome is 1. In mathematical notation, if 51, 52, . . . denote the possible outcomes of
an experiment, we have

P(Ey= > P(isi) @2.4.1)
alls; in E

1= Z P({si}) (2.42)
alls;in S

The use of these properties is illustrated in the next example.

The PMF of the experiment that records the number of heads in four flips of a coin,
which can be obtained with the R commands attach(expand.grid(X1=0:1, X2=0:1,
X3=0:1, X4=0:1)); table(X1+X2+X3+X4)/length(X1), is

X \ 0 1 2 3 4
p(x) [ 0.0625 0.25 0375 025 0.0625 '

Thus, if the random variable X denotes the number of heads in four flips of a coin
then the probability of, for example, two heads is P(X = 2) = p(2) = 0.375.

(a) What does relation (2.4.2) imply for the sum of the probabilities given by the
probability mass function?

(b) What is P(X > 2), that is, the probability that the number of heads will be
at least 2?

Solution

(a) The probabilities in the PMF sum to one.

(b) The event [X > 2] = {the number of heads is at least 2} consists of the
outcomes 2, 3, and 4. By relation (2.4.1),

P(X >2)=0375+0.25 4+ 0.0625 = 0.6875. =

Use of the property in part (3) of Proposition 2.4-1 is key for the solution in the
next example.

The reliability of a system is defined as the probability that a system will function
correctly under stated conditions. A system’s reliability depends on the reliability of
its components as well as the way the components are arranged. A type of commu-
nications system works if at least half of its components work. Suppose it is possible
to add a sixth component to such a system having five components. Show that the
resulting six-component system has improved reliability.

Solution

Let E5 denote the event that the five-component system works and Eg denote the
event that the system with the additional component works. Since these types of
systems work if at least half of their components work, we have
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Proposition
2.4-2

Example
2.4-3

Figure 2-9 Venn diagram
of events and probabilities
for Example 2.4-3.

Es5 = {at least three of the five components work},

E¢ = {at least three of the six components work}.
However, Eg can be written as Eg = E5 U B, where

B = {two of the original five components work and the

additional component works}.

Because the events E5 and B are disjoint, part (2) of Proposition 2.4-2 implies that
P(Eg) > P(Es). This shows that the six-component system is at least as reliable as
the five-component system. [

The point of Example 2.4-2 is not that the addition of another component will
always improve reliability; see Exercise 9.

Some additional implications of the three axioms of probability are given in the
following proposition.

The three axioms imply the following properties of probability:

1. P(AUB) =P(A)+ P(B) — P(AN B).

2. PAUBUC)=PA)+PB)+P(C)—P(ANB)—PANC)
—P(BNC)+P(ANBNC). [ |

In a certain community, 60% of the families own a dog, 70% own a cat, and 50% own
both a dog and a cat. If a family is selected at random, calculate the probabilities of
the following events.

(a) The family owns a dog but not a cat.

(b) The family owns a cat but not a dog.
(c) The family owns at least one of the two kinds of pets.

Solution

Define the events A = {family owns a dog} and B = ({family owns a cat}. The
intersection and differences of these events are shown in the Venn diagram of
Figure 2-9.

0.1 0.5 0.2

0.2
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(a) This event is represented as A — B. Since a family that owns a dog will either
not own a cat or will also own a cat, the event A is the union of A — B and
A N B and these two events are disjoint. Hence,

P(A) = P(A—B)+ P(ANB). (24.3)

From this it follows that P(A — B) = P(A) — P(ANB) =0.6 —0.5=0.1.

(b) This event is represented as B — A. A line of reasoning similar to the above
leads to

P(B)=P(B—A)+P(ANB) (2.4.49)

from which it follows that P(B — A) = P(B) — P(ANB) =0.7—-0.5 = 0.2.

(c) This event is represented as A U B. Since a family that owns at least one of the
two kinds of pets will own only a dog, only a cat, or both a dog and a cat, AUB
is the union of A — B, B — A, and A N B and these three events are disjoint.
Hence,

P(AUB)=PA—-B)+P(ANB)+P(B—A)
=01+05+02=038. 2.4.5)

Another way of finding this probability is to apply directly part (1) of
Proposition 2.4-2:

P(AUB) = P(A) + P(B) — P(AN B) = 0.6 + 0.7 — 0.5 = 0.8. =

The solution to the above example provides insight into the formula in part
(1) of Proposition 2.4-2. From relations (2.4.3) and (2.4.4), which hold in general,
it follows that when the probabilities of A and B are added, the probability of the
intersection is counted twice, that is,

P(A) + P(B) = P(A — B) + 2P(A N B) + P(B — A).

Therefore, in order to obtain the expression for the probability of A U B given
in (2.4.5), which also holds in general, the probability of the intersection must be
subtracted.

The formula in part (2) of Proposition 2.4-2 can be justified similarly: By adding
the probabilities of A, B, and C, the probabilities of the pairwise intersections have
been added twice. Therefore, the probabilities of A N B, A N C, and B N C must
be subtracted. Now notice that the intersection A N B N C is included in all three
events and their pairwise intersections. Thus, its probability has been added three
times and subtracted three times and, therefore, it needs to be added back. This type
of inclusion-exclusion argument can also be used for the probability of the union of
more than three events.

1. A person is selected at random from the population of 2. The events Ay, A»,..., A, are said to form a partition
Verizon wireless subscribers. Let A be the event that the of the sample space of an experiment if they are disjoint
chosen subscriber has friends or family added to his/her and their union equals the sample space.

plan, and B denote the event that the subscriber has
unlimited text messaging. Extensive records suggest that

(a) If all m events of such a partition are equally likely,

P(A) = 037, P(B) = 0.23, and P(A U B) = 0.47. Find whatis their common probability?

P(ANB).

(b) If m = 8 find the probability of A] U Ay U A3 U Ay.
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3. A new generation of hybrid vehicles achieves high-
way gas mileage in the range of 50 to 53 MPG. The gas
mileage of three such cars, during a pre-specified 100-mile
drive, will be rounded to the nearest integer, resulting in
the sample space S = {(x1,x2,x3) : x; = 50,51,52,53},
i=1,2,3.

(a) Assume that the outcomes of the sample space S are
equally likely, and use R commands similar to those
used in Example 2.4-1 to find the probability mass
function of the experiment that records the average
mileage the three cars achieve.

(b) Use the PMF obtained in part (a) to compute the
probability that the average gas mileage is at least 52
MPG.

4. The PMF of the sum of two die rolls, found in Example
2.3-13,is

x\23456789101112
P(x)|1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

(a) For each of the following events specify the outcomes
that belong to them, and use relation (2.4.1) to find
their probabilities.

(i) E1 = {the sum of the two die rolls is at least 5}.
(ii) E» = {the sum of the two die rolls is no more
than 8}.
(iii) Es=FE UE;, E4=FE| — E>,and E5 = Ef N E;

(b) Recalculate the probability of E3 using part (1) of

Proposition 2.4-2.

(c) Recalculate the probability of Es using De Morgan’s
first law, the probability of FE3, and part (4) of
Proposition 2.4-1.

5. A telecommunications company classifies transmis-
sion calls by their duration as brief (< 3 minutes) or long
(> 3 minutes) and by their type as voice (V), data (D),
or fax (F). From an extensive data base, the company has
come up with the following probabilities for the category
of a random (e.g. the next) transmission call.

Type of Transmission Call

Duration \% D F
>3 0.25 0.10 0.07
<3 0.30 0.15 0.13

(a) For each of the following events specify the cate-
gory outcomes that belong to them, and find their
probabilities using relation (2.4.1).

(i) E1 = the next call is a voice call.
(ii) E, = the next call is brief.
(ili) E3 = the next call is a data call.
(iv) E4 = E{UE,,and E5s = E{ U E, U Ej.

(b) Recalculate the probability of E4 using part (1) of

Proposition 2.4-2.

(c) Recalculate the probability of Es using part (2) of
Proposition 2.4-2.

6. Each of the machines A and B in an electronics fab-
rication plant produces a single batch of 50 electrical
components per hour. Let £y denote the event that, in any
given hour, machine A produces a batch with no defective
components, and E; denote the corresponding event for
machine B. The probabilities of E1, E,, and E1 N E; are
0.95, 0.92, and 0.88, respectively. Express each of the fol-
lowing events as set operations on E; and E;, and find
their probabilities.

(a) In any given hour, only machine A produces a batch
with no defects.

(b) In any given hour, only machine B produces a batch
with no defects.

(¢) In any given hour, exactly one machine produces a
batch with no defects.

(d) In any given hour, at least one machine produces a
batch with no defects.

7. The electronics fabrication plant in Exercise 6 has a
third machine, machine C, which is used in periods of
peak demand and is also capable of producing a batch
of 50 electrical components per hour. Let £, E; be as
in Exercise 6, and E3 be the corresponding event for
machine C. The probabilities of E3, E1 N E3, E; N E3, and
E1 N E>, N E3 are 0.9, 0.87, 0.85, and 0.82, respectively.
Find the probability that at least one of the machines will
produce a batch with no defectives.

8. The monthly volume of book sales from the online site
of a bookstore is categorized as below expectations (0), in
line with expectations (1), or above expectations (2). The
monthly volume of book sales from the brick and mortar
counterpart of the bookstore is categorized similarly. The
following table gives the probabilities of the nine possi-
ble outcomes of an experiment that records the monthly
volume of sales categories.

Brick and Mortar Sales
Online Sales 0 1 2
0 0.10 0.04 0.02
1 0.08 0.30 0.06
2 0.06 0.14 0.20

(a) Find the probabilities of each of the following events.
(i) E1 = the online sales volume category is < 1.
(ii) E, = the brick and mortar sales volume category
is < 1.

(iii)) E3 = E1 N Ej.

(b) Find the probability mass function for the experiment
that records only the online monthly volume of sales
category.

9. A type of communications system works if at least half
of its components work. Suppose it is possible to add a



fifth component to such a system having four components.
Show that the resulting five-component system is not nec-
essarily more reliable. (Hint. In the notation of Example
2.4-2, it suffices to show that E4 ¢ E5. Expressing Es
as the union of {at least three of the original four com-
ponents work} and {two of the original four components
work and the additional component works}, it can be
seen that the event {two of the original four components
work and the additional component does not work} is
contained in E4 but not in Es.)

10. Consider the game where two dice, die A and die B,
are rolled. We say that die A wins, and write A > B, if
the outcome of rolling A is larger than that of rolling B. If
both rolls result in the same number it is a tie.

(a) Find the probability of a tie.

(b) Find the probability that die A wins.

11. Efron’s dice. Using arbitrary numbers on the sides
of dice can have surprising consequences for the game
described in the Exercise 10. Efron’s dice are sets of dice
with the property that for each die there is another that
beats it with larger probability when the game of Exercise

10 is played. An example of a set of four Efron’s dice is as
follows:

e Die A: four 4’s and two 0’s
e Die B:six 3’s
e Die C: four 2’s and two 6’s

e Die D: three 5’s and three 1’s
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(a) Specify the events A > B,B > C,C > D, D > A.

(b) Find the probabilities that A > B, B > C, C > D,
D> A.

12. Let’s make a deal. In the game Let’s Make a Deal,
the host asks a participant to choose one of three
doors. Behind one of the doors is a big prize (e.g.,
a car), while behind the other two doors are minor
prizes (e.g., a blender). After the participant selects a
door, the host opens one of the other two doors (know-
ing it is not the one having the big prize). The host
does not show the participant what is behind the door
the participant chose. The host asks the participant to
either

(a) stick with his/her original choice, or
(b) select the other of the remaining two closed doors.

Find the probability that the participant will win the big
prize for each of the strategies (a) and (b).

13. Using only the three axioms of probability, prove
parts (1) and (2) of Proposition 2.4-1. (Hint. For part (1)
apply Axiom 2.4.3 to the sequence of events E; = S and
E; =¢fori=2,3,..., the union of which is S. This results
in the equation P(S) = Y%, P(E;) = P(S) + Y2, P(¥).
Now complete the argument. For part (2) apply Axiom
2.4.3 to the sequence of events Eq,...,E,, and E; =
for i = n+ 1,n + 2,..., the union of which is U/, E;.
This results in the equation P(U!_ E;) = > 2 P(E;) =
PV E) + YZ,.1P®). Now complete the
argument.)

2.5 Conditional Probability

Conditional probability refers to the probability computed when some partial
information concerning the outcome of the experiment is available.

Example
2.5-1

Solution

A card drawn at random from a deck of 52 cards is observed to be a face card. Given
this partial information, what is the probability the card is a king?

Since four of the 12 face cards are kings, it is intuitive that the desired probability is

4/12 or 1/3.

If we let A denote the event that the card drawn is a face card and B denote
the event that the card drawn is a king, the probability obtained in Example 2.5-1 is
called the conditional probability that B occurs given that A occurred and is denoted

by P(B|A).

The intuitive derivation of the conditional probability in Example 2.5-1 rests on
the following basic principle for computing conditional probabilities in experiments

with equally likely outcomes.
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Basic Principle
for Conditional
Probabilities

Example
2.5-2

Example
2.5-3

Given the information that an experiment with sample space S

resulted in the event A, conditional probabilities are calculated by
(2.5.1)
e replacing the sample space S by 4, and

e treating the outcomes of the new sample space A as equally likely.

Two dice are rolled and their sum is observed to be 7. Given this information, what
is the conditional probability that one of the two die rolls was a 3?

Solution

To follow the basic principle for computing conditional probabilities, let the sam-
ple space S be the 36 equally likely outcomes of rolling two dice. The event A =
{the sum of the two die rolls is 7} consists of the outcomes (1,6), (2,5), (3,4), (4,3),
(5,2), and (6,1), which now constitute the new sample space. Because the outcomes
in this new sample space are equally likely, the conditional probability of each out-
come is 1/6. Since a die roll of 3 occurs in two of the six equally likely outcomes, it
follows that the desired conditional probability is 2/6 or 1/3. [

The basic principle (2.5.1) can be used even when the number of equally likely
outcomes is not known.

Example 2.4-3 gave the percentages of families in a certain community that own a
dog, a cat, or both as 60%, 70%, and 50%, respectively. If a randomly selected family
owns a dog, what is the probability it also owns a cat?

Solution

Let A denote the event that the family owns a dog and B the event that the family
owns a cat. In Example 2.4-3 it was found that P(A — B) = 0.1. Since A = (A-B) U
(AN B) (see also Figure 2-9), it follows that among families who own a dog, the ratio
of families who also own a cat to those who do not is 5 to 1. Therefore, the conditional
probability that the family owns a cat given that it owns a dogis P(B|A) =5/6. m

The reasoning used in Example 2.5-3 generalizes to any two events A and B:
Given that the event A occurred, B will also occur if the outcome belongs in A N B.
According to the basic principle (2.5.1), however, A is the new sample space and
the ratio of the probability of A N B to A — B remains the same. Since A N B and
A — B are complementary events relative to the new sample space, that is, given that
A occurred, then either A N B or A — B must also have occurred, we arrive at the
following definition.

Definition 2.5-1
The definition of conditional probability states that for any two events A, B with
P(A) > 0,

P(AN B)



Example

2.5-4

Figure 2-10 Diagram

showing the events used in

Example 2.5-4.

Example

2.5-5
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The probability that the life of a product does not exceed ¢ time units is 1 —
exp(—0.1¢). Given that a product has lasted 10 time units, what is the probability
it will fail in the next 5 time units?

Solution

Let A denote the event that a product’s life exceeds 10 time units and B denote the
event that the life will not exceed 15 time units. The events A, A€, and B are shown
in the diagram of Figure 2-10. According to Definition 2.5-1, in order to find P(B|A)
it suffices find P(A) and P(A N B). By the formula given, the probabilities of A€, that
is, that the life of a product does not exceed 10 time units, and of B are

P(A°) =1 —exp(—0.1 x 10) = 0.632 and P(B)=1—exp(—0.1 x 15) =0.777.
Noting that A° C B (see Figure 2-10), it follows that
B=(BNA)YU(BNA)=A“U(BNA).

Hence, since A€ and (B N A) are disjoint, P(B) = P(A¢) + P(B N A) from which it
follows that

P(BNA)=P(B) — P(A°) = 0.777 — 0.632 = 0.145.
Hence, since P(A) =1 — P(A¢) =1 — 0.632 = 0.368, we have

P(BNA) _ 0.145

P(B|A) = = =0.394.
(Bl4) P(A) 0.368
B
A° A
10 15 -

A supermarket has regular (manned) checkout lines and self checkout lines. Let X
take the value 0, 1, or 2 depending on whether there are no customers, between 1
and 10 customers, or more than 10 customers, respectively, in the self checkout lines
in any given five-minute period. Let Y be the corresponding variable for the regular
(manned) checkout lines. The probabilities for each of the nine possible outcomes
of the experiment that records X and Y for a five-minute period are given in the
following table.

Regular Checkout
Self Checkout 0 1 2
0 0.17 0.02 0.01
1 0.15 | 0.225 | 0.125
2 0.06 | 0.105 | 0.135
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Example
2.5-6

Let Ag, By be the events that X = 0 and Y = 0, respectively.

(a) Find the probability of Ay.
(b) Find the conditional probability of By given Ay.
(c) Find the probability mass function of the random variable X.

Solution

(a) The event Ag = [X = 0] can only occur together with one of the events By =
[Y =0],B; =[Y = 1], or B = [Y = 2]. In mathematical notation, we have

Ao = (Ao N Bo) U (A9 N B1) U (A9 N By),
and the events (A9 N By), (Ap N B1), and (Ag N By) are disjoint. Hence, by part
(2) of Proposition 2.4-1,
P(Ag) = P(Ag N By) + P(Ag N B1) + P(Ap N By) = 0.17 4+ 0.02 + 0.01 = 0.2.

(b)

P(BynApy) 0.17
P(BylAy) = ———= = — =0.85.
(BolAo) P(Ag) 02
(c) Inpart (a) we found that P(X = 0) = 0.2. Working similarly, we find that

P(X =1)=0.15+40225+0.125=0.5 and
P(X =2) =0.060 + 0.105 + 0.135 = 0.3.
Hence, the PMF of X is

x | o 1 2
px) | 02 05 03 =

According to the basic principle for conditional probabilities (2.5.1), the con-
ditional probabilities given the information that an event A has occurred are
probabilities from a new experiment in which the sample space has been reduced
from the original S to A. One way of simulating outcomes from this new experiment
is to generate outcomes from the original experiment and ignore those outcomes
that are not in A. For example, given the information that the roll of a die is an even
number, the sample space shrinks from S = {1,...,6} to A = {2, 4, 6}. In the absence
of a random number generator, outcomes from this reduced sample space can be
obtained by repeated die rolls and ignoring the outcomes that are not in A.

Fair game with an unfair coin. Suppose that when a biased coin is flipped it results
in heads with probability p. A fair game with such an unfair coin can be played as
follows: Flip the coin twice. If the outcome is (H, H) or (T, T) ignore the outcome
and flip the coin two more times. Repeat until the outcome of the two flips is either
(H, T) or (T, H). Code the first of these outcomes as 1 and the second as 0. Prove
that the probability of getting a 1 equals 0.5.

Solution
Ignoring the outcomes (H, H) and (T, T) is equivalent to conditioning on the
event A = {(H,T),(T,H)}. Thus we will be done if we show that the conditional



Multiplication Rule
for Two Events

Example
2.5-7

Multiplication Rule
for Three Events

Example
2.5-8
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probability of (H, T) given A is 0.5. Using the definition of conditional probability
we have

P((H,T)NA) P(H,T))  p(l—p) 0.5.

P DIA) = =5 =~y = s -p) 1t —pp ~ =

2.5.1 THE MULTIPLICATION RULE AND TREE DIAGRAMS

Though the axioms and properties of probability do not contain an explicit for-
mula for calculating the intersection of events, part (1) of Proposition 2.4-2 contains
implicitly the following formula

P(ANB) = P(A)+ P(B) — P(AUB). (25.2)

Note that (2.5.2) requires three pieces of information, which are P(A), P(B), and
P(A U B), for the calculation of P(A N B). Definition 2.5-1 of conditional probability
yields the following alternative (multiplicative) formula that uses only two pieces of
information.

P(ANB)=P(A)P(B|A) (2.5.3)

Two consecutive traffic lights have been synchronized to make a run of green lights
more likely. In particular, if a driver finds the first light to be red, the second light
will be green with probability 0.9, and if the first light is green the second will be
green with probability 0.7. If the probability of finding the first light green is 0.6, find
the probability that a driver will find both lights green.

Solution

Let A denote the event that the first light is green and B the corresponding event for
the second light. The question concerns the probability of the intersection of A and
B. From the multiplication rule we obtain

P(A N B) = P(A)P(B|A) = 0.6 x 0.7 = 0.42. -

This multiplicative formula generalizes to more than two events.

P(ANBNC)=P(A)P(BJA)P(C|A N B) @25.4)

To prove the multiplication rule for three events apply the definition of conditional

probability to its right-hand side to get

P(ANB)PANBNCQC)
P(A) P(ANB)

P(A) =P(ANBNCQ).

See Exercise 13 for the extension of the multiplication rule to several events.

Pick three cards from a deck. Find the probability that the first draw is an ace, the
second draw is a king, and the third draw is a queen.
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Example
2.5-9

Figure 2-11 Tree diagram
for Example 2.5-9.

Solution

Let A = f{first draw results in ace}, B = {second draw results in king}, and C =
{third draw results in queen}. Thus we want to calculate P(A N B N C). From the
multiplication rule for three events we have

P(ANBNC) = P(A)PB|IA)P(CIANB) = = 0.000483.

2|
]

4
251

(Jll'p

Of the customers entering a department store 30% are men and 70% are women.
The probability a male shopper will spend more than $50 is 0.4, and the correspond-
ing probability for a female shopper is 0.6. The probability that at least one of the
items purchased is returned is 0.1 for male shoppers and 0.15 for female shoppers.
Find the probability that the next customer to enter the department store is a woman
who will spend more than $50 on items that will not be returned.

Solution

Let W = {customeris a woman}, B = {the customer spends >$50}, and R =
{at least one of the purchased items is returned}. We want the probability of the
intersection of W, B, and R¢. By the formula in (2.5.4), this probability is given by

P(WN BN R®) = P(W)P(BIW)P(R\)WNB) =07 x 0.6 x 0.85=0357. ™

The multiplication rule typically applies in situations where the events whose
intersection we wish to compute are associated with different stages of an experi-
ment. For example, the experiment in Example 2.5-9 consists of three stages, which
are (a) record customer’s gender, (b) record amount spent by customer, and (c)
record whether any of the items purchased are subsequently returned. Therefore, by
the generalized fundamental principle of counting, this experiment has2 x 2 x 2 = 8
different outcomes. Each outcome is represented by a path going from left to right
in the tree diagram of Figure 2-11. The numbers appearing along each path are
the (conditional) probabilities of going from each outcome of a stage to the out-
comes of the next stage. The probability of each outcome of the experiment is the
product of the numbers appearing along the path that represents it. For example,
the probability found in Example 2.5-9 is that of the outcome represented by the
path that defines the bottom boundary of the tree diagram. Tree diagrams provide
additional insight into the probability structure of the experiment and facilitate the



Law of Total

Probability

Figure 2-12 Anevent B
arising in connection with

events Aq,..

A4
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computation of probabilities. For example, the probability that a purchase will result
in at least one item being returned is found by summing the probabilities of the four
events represented by the four paths leading to an R in Figure 2-11:

03x04x014+03x06x01+0.7x04x0.15
+ 0.7 x 0.6 x 0.15 = 0.135. (2.5.5)

The rule for constructing tree diagrams is as follows: Start with the stage of the
experiment for which unconditional probabilities for its possible outcomes are given.
Call this stage 1. From the origin (i.e., the little circle at the very left of Figure 2-11)
draw branches to each of the possible outcomes of stage 1. Next, there are condi-
tional probabilities, given the outcome of stage 1, for the outcomes of the next stage
of the experiment. Call this stage 2. From each outcome of stage 1 draw branches to
each of the possible outcomes of stage 2, and so forth.

2.5.2 LAW OF TOTAL PROBABILITY AND BAYES' THEOREM

The probability computed in (2.5.5) is an example of a total probability. 1t is called
total because it is obtained by summing the probabilities of the individual out-
comes of the experiment, that is, paths in the tree diagram, whose end result is
R = {at least one of the purchased items is returned}. Grouping the paths into those
that pass through M and those that pass through W (see Figure 2-11), the terms in
the left-hand side of (2.5.5) can be written as

0.3(0.4 x 0.1+ 0.6 x 0.1) +0.7(0.4 x 0.15 + 0.6 x 0.15)
= P(M)P(R|M) + P(W)P(R|W) = P(R). 25.6)

This is a simple form of the Law of Total Probability.

In general, the Law of Total Probability is a formula for calculating the prob-
ability of an event B, when B arises in connection with events Ay,..., Ak, which
constitute a partition of the sample space (i.e., they are disjoint and make up the
entire sample space); see Figure 2-12. If the probability of each A; and the condi-
tional probability of B given each A; are all known, the Law of Total Probability
expresses the probability of B as

P(B) = P(A1)P(B|A1) + - - - + P(Ax)P(B|Ax) 25.7)

The events Ay, ..., Ay can also be thought of as a stratification of the population.
In the simple example of the Law of Total Probability given in (2.5.6), the events
M = {customer is a man} and W = {customer is a woman}, which play the role of
A1 and A; (so k = 2), form a stratification of the population of customers. That M
and W form a partition of the sample space also follows from the fact that every path
in the tree diagram of Figure 2-11 passes either through M or through W.

A= P

A1 Az A3 A4
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Example
2.5-10

Example
2.5-11

To prove the Law of Total Probability use the multiplication rule, and the fact
that A1, ..., Ay form a partition of the sample space, to write the right-hand side of
(2.5.7) as

P(BNA)+--+P(BNAg) =P[(BNA)U---U(BNA)] = P(B),

where the first equality follows because the events BNA; are disjoint, and the second
follows because (BN A1) U---U (BN Ag) = B; see also Figure 2-12.

REMARK 2.5-1 The number of the events A; in the partition may also be (count-
ably) infinite. Thus, if A; N A; = ¢, for all i # j, and U7°| A; = S, the Law of Total
Probability states that

P(B) =) P(A))P(B|A;)
i=1

holds for any event B. <

Two friends will be dealt a card each. The two cards will be drawn from a standard
deck of 52 cards at random and without replacement. If neither gets an ace, the full
deck is reshuffled and two cards are again drawn without replacement. The game
ends when at least one of the two friends gets an ace. The ones with ace win a prize.
Is this a fair game?

Solution

The game will be fair if the probability of an ace in the second draw is 4/52, which
is the probability of an ace in the first draw. Let B denote the event that the second
draw results in an ace, let A; denote the event that the first draw results in an ace,
and let A, be the complement of A;. Then, according to the Law of Total Probability,

43 484 4

P(B) = P(A)P(BIA1) + P(A)P(BlA2) = & o + 551 = 55

Thus the game is fair. [

Use the information given in Example 2.5-7 regarding the two consecutive synchro-
nized traffic lights to complete the following.

(a) Find the probability that a driver will find the second traffic light green.

(b) Recalculate the probability of part (a) through a tree diagram for the exper-
iment that records whether or not a car stops at each of the two traffic
lights.

Solution

(a) Let A and B denote the events that a driver will find the first and the sec-
ond, respectively, traffic lights green. Because the events A and A€ constitute
a partition of the sample space, according to the Law of Total Probability

P(B) = P(A)P(B|A) + P(A°)P(B|A°)
= 0.6 x 0.7+ 0.4 x 0.9 = 0.42 + 0.36 = 0.78.

(b) The tree diagram is given in Figure 2-13. The experiment has two outcomes
resulting in the second light being green which are represented by the



Figure 2-13 Tree diagram
for Example 2.5-11.

Bayes’ Theorem

Example
2.5-12

Example
2.5-13
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R
0.1
R
0.9 G
0.4
0.6
0.3 R
G
0.7
G

paths with the pairs of probabilities (0.6, 0.7) and (0.4, 0.9). The sum of
the probabilities of these two outcomes is 0.6 x 0.7 + 04 x 0.9 = 042
+0.36 =0.78. =

Bayes’ Theorem applies to the same context, and with the same information, used in
the Law of Total Probability. Thus there is a partition Ay, . .., A, of the sample space
and an event B, as shown in Figure 2-12. The probabilities of the events A; are given,
and so are the conditional probabilities of B given that an A; has occurred. Bayes’
Theorem answers the question: Given that B has occurred, what is the probability
that a particular A; has occurred? The answer is provided by the following formula.

P(A))P(B|A))
k

> P(A)P(B|A;)

i=1

P( A]- | B) — (2.5.8)

A proof of the formula follows by first writing P(A;|B) = P(A; N B)/P(B)
and then applying the multiplication rule in the numerator and the Law of Total
Probability in the denominator.

In the setting of Example 2.5-11, find the probability that a passing car encountered
a green first light given that it encountered a green second light.

Solution
With the events A and B as defined in Example 2.5-11, we want to find P(A|B).
Using Bayes’ theorem we obtain

P(AIB) = P(A)P(B|A)
~ P(A)P(B|A) + P(A¢)P(B|A°)
0.6 x 0.7 0.42
= 06 x07504x00 o078~ >3 =

Suppose that 5% of all men and 0.25% of all women are color-blind. A person is
chosen at random from a community having 55% women and 45% men.

(a) What is the probability that the person is color-blind?

(b) If the chosen person is color-blind, what is the probability that the person is
male?
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Solution

Let B denote the event that the selected person is color-blind, A; denote the event
that the person is a man, and A, denote the event that the person is a woman.

(a) According to the Law of Total Probability,

P(B) = P(A\)P(BIA1) + P(A>)P(B|A2)

= 0.45 x 0.05 4 0.55 x 0.0025 = 0.02309.

(b) According to Bayes’ Theorem,

P(A{|B) =

Exercises

P(A1)P(BIA;)  045x0.05

2 00239 0.-9424.

> P(A;)P(B|A;)
i=1 ||

1. The probability that a phone call will last more than ¢
minutes is (14¢)~2. Given that a particular phone call has
not ended in two minutes, what is the probability it will
last more than three minutes?

2. The probability that two or more of a system’s 10
components fail between consecutive inspections is 0.005,
while the probability that only one component fails is
0.1. When two or more components fail, a re-evaluation
of the system is initiated during which all failed com-
ponents, and those deemed unreliable, are replaced.
Otherwise, components are replaced upon their fail-
ure. Find the probability that a system re-evaluation
occurs before any component is individually replaced.
(Hint. Let B = ({system re-evaluation occurs}, C =
{a component is individually replaced}, and consider a
new experiment with reduced sample space A = B U C.
The desired probability is the probability of B in this new
experiment. See also Example 2.5-6.)

3. The moisture content of batches of a chemical sub-
stance is measured on a scale from 1 to 3, while the
impurity level is recorded as either low (1) or high (2).
Let X and Y denote the moisture content and the impu-
rity level, respectively, of a randomly selected batch. The
probabilities for each of the six possible outcomes of the
experiment that records X and Y for a randomly selected
batch are given in the following table.

Impurity Level
Moisture 1 2
1 0.132 0.068
2 0.24 0.06
3 0.33 0.17

Let A and B be the events that X = 1 and Y = 1,
respectively.

(a) Find the probability of A.
(b) Find the conditional probability of B given A.

(c) Find the probability mass function of the random
variable X.

4. Two major brands of flat screen TVs control 50% and
30% of the market, respectively. Other brands have the
remaining 20% of the market. It is known that 10% of
brand 1 TVs require warranty repair work, as do 20% of
brand 2 and 25% of different brand TVs.

(a) Find the probability that the next flat screen TV pur-
chased is a brand 1 TV which will need warranty
repair work.

(b) Make a tree diagram for the experiment that records
the brand of the next flat screen TV to be sold, and
whether or not it will require warranty repair work,
and mark the given probabilities on the different
paths of the tree diagram.

(c) Use the tree diagram to find the probability that the
next flat screen TV to be sold will need warranty
repair work.

5. An article on vehicle choice behavior? gives the fol-
lowing information about the US car and truck market.
The ratio of cars to trucks is 36/64. Among the cars
sold 42% are made in the US, while 58% are imports.
The corresponding percentages for trucks sold are 70%
and 30%.

(a) Find the probability that the next auto consumer will
buy an imported car. (Hint. 36% of the sales are
cars.)

2 K. E. Train and C. Winston (2007). Vehicle choice behavior and the declining market share of US automakers,
International Economic Review, 48(4): 1469-1796.



(b) It is also known that 35% of the consumers who
get an import choose to lease it, while 20% of
those getting a US-made vehicle lease. Make a
tree diagram for the experiment that records the
decisions made in the various vehicle acquisition
stages, which are (1) car or truck, (2) US made
or imported, and (3) buy or lease, and mark the
given probabilities on the different paths of the tree
diagram.

(c) Use the tree diagram to compute the probability that
the next auto consumer will choose to lease his/her
chosen vehicle.

6. A particular consumer product is being assembled on
production lines A, B, and C, and packaged in batches of
10. Each day, the quality control team selects a production
line by probability sampling with probabilities P(A) =
P(B) = 0.3 and P(C) = 0.4 and inspects a randomly
drawn batch from the selected production line. The prob-
ability that no defects are found in a batch selected from
production line A is 0.99, and the corresponding proba-
bilities for production lines B and C are 0.97 and 0.92,
respectively. A tree diagram may be used for answering
the following questions.

(a) What is the probability that a batch from production
line A is inspected and no defects are found?

(b) Answer the above question for production lines B
and C.

(c) What is the probability that no defects are found in
any given day?

(d) Given that no defects were found in a given day,
what is the probability the inspected batch came from
production line C?

7. Fifteen percent of all births involve Cesarean (C) sec-
tion. Ninety-eight percent of all babies survive delivery,
whereas when a C section is performed the baby survives
with probability 0.96.

(a) Make a tree diagram and mark the given infor-
mation on the appropriate paths of the diagram.
(Note that the probabilities for certain paths are not
given.)

(b) What is the probability that a baby will survive deliv-
ery if a C section is not performed? (Hint. Use the
tree diagram and the remaining information given to
set up an equation.)

8. Thirty percent of credit card holders carry no monthly
balance, while 70% do. Of those card holders carrying a
balance, 30% have annual income $20,000 or less, 40%
between $20,001 and $50,000, and 30% over $50,000.
Of those card holders carrying no balance, 20%, 30%,
and 50% have annual incomes in these three respective
categories.

(a) What is the probability that a randomly chosen card
holder has annual income $20,000 or less?
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(b) If this card holder has an annual income that is
$20,000 or less, what is the probability that (s)he
carries a balance?

9. You ask your roommate to water a sickly plant while
you are on vacation. Without water the plant will die with
probability 0.8 and with water it will die with probability
0.1. With probability 0.85, your roommate will remember
to water the plant.

(a) What is the probability that your plant is alive when
you return? (You may use a tree diagram.)

(b) If the plant is alive when you return, what is the prob-
ability that your roommate remembered to water it?

10. A batch of 10 fuses contains three defective ones.
A sample of size two is taken at random and without
replacement.

(a) Find the probability that the sample contains no
defective fuses.

(b) Let X be the random variable denoting the number
of defective fuses in the sample. Find the probability
mass function of X.

(c) Given that X = 1, what is the probability that the
defective fuse was the first one selected?

11. A city’s police department plans to enforce speed lim-
its by using radar traps at four different locations. During
morning rush hour, the radar traps at locations L1, Ly, L3,
L4 are operated with probabilities 0.4, 0.3, 0.2, and 0.3,
respectively. A person speeding to work has probabilities
of 0.2, 0.1, 0.5, and 0.2, respectively, of passing through
these locations.

(a) What is the probability the speeding person will
receive a speeding ticket?

(b) If the person received a speeding ticket while speed-
ing to work, what is the probability that he/she passed
through the radar trap at location L;,?

12. Seventy percent of the light aircraft that disappear
while in flight in a certain country are subsequently dis-
covered. Of the aircraft that are discovered, 60% have
an emergency locator, whereas 10% of the aircraft not
discovered have such a locator. Suppose a light aircraft
disappears while in flight.

(a) What is the probability that it has an emergency
locator and it will not be discovered?

(b) What is the probability that it has an emergency
locator?

(c) If it has an emergency locator, what is the probability
that it will not be discovered?

13. Prove the following generalization of the multiplica-

tion rule.

P(E1NEy NN Ep) =P(E1)P(E2|E1)P(E3|Ey N E>)

< P(Ej|JEiNEyN---NE,;_1).
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2.6 Independent Events

If a coin is flipped twice, knowing that the first flip is heads does not change the prob-
ability that the second flip will be heads. This captures the notion of independent
events. Namely, events A and B are independent if the knowledge that A occurred
does not change the probability of B occurring. In mathematical notation, this is
expressed as

P(B|A) = P(B). (2.6.1)

Primarily for reasons of symmetry, the definition of independence of two events is
given in terms of their intersection.

Definition 2.6-1
Events A and B are called independent if

P(AN B) = P(A)P(B).

If events A and B are not independent, then they are dependent.

By the multiplication rule (2.5.3), P(A N B) = P(A)P(B|A), provided P(A) > 0.
Thus, P(A N B) = P(A)P(B) holds if and only if relation (2.6.1) holds. A similar
argument implies that, if P(B) > 0, Definition 2.6-1 is equivalent to

P(A|B) = P(A). (2.6.2)

Typically, independent events arise in connection with experiments that are per-
formed independently, or in connection with independent repetitions of the same
experiment. By independent experiments or independent repetitions of the same
experiment we mean that there is no mechanism through which the outcome of one
experiment will influence the outcome of the other. The independent repetitions of
an experiment are typically sub-experiments of an experiment, such as the individ-
ual flips of a coin in an experiment consisting of # coin flips, or the selection of each
individual unit in simple random sampling of » units from a very large/conceptual
population.

(a) A die is rolled twice. Let A = {outcome of first roll is even} and B =
{outcome of second roll is either a 1 or a 3}. Are the events A and B
independent?

(b) Two electronic components are selected from the production line for thorough
inspection. It is known that 90% of the components have no defects. Find the
probability that the two inspected components have no defects.

Solution

(a) The two rolls of a die can realistically be assumed to be independent repeti-
tions of the same experiment. Therefore, since event A pertains to the first
roll, while event B pertains to the second roll, we may conclude that A and
B are independent. Alternatively, by Definition 2.6-1, A and B are indepen-
dent if the probability of their intersection is the product of their probabilities.
Assume that the 36 possible outcomes of the two die rolls are equally likely.
Since A N B has 3 x 2 = 6 outcomes, it follows that P(A N B) = 6/36 = 1/6.
Also, P(A)P(B) = (1/2)(1/3) = 1/6. Hence, A and B are independent.



Section 2.6 Independent Events 91

(b) The two selected components are a simple random sample of size two from
the conceptual population of such components. Let A = {the first inspected
component has no defects} and B = {the second inspected component has no
defects}. Since the sub-experiments that select each of the two components are
independent, so are the events A and B. Therefore, P(A N B) = P(A)P(B) =
0.9 = 0.81. =

When A and B do not arise in connection with independent experiments, their
independence can only be verified through Definition 2.6-1.

Example A card is drawn at random from an ordinary deck of 52 cards. Let A and B denote
2.6-2 the events that the card is a five and the card is a spade, respectively. Are the events
A and B independent?

Solution

The events A and B are independent if the probability of their intersection is
the product of their probabilities. Since P(A N B) = 1/52, and P(A)P(B) =
(4/52)(13/52) = 1/52, it follows that A and B are independent. [

Whenever independence seems a reasonably realistic assumption, assuming
independence can facilitate the computation of probabilities.

Example A laundromat’s aging washing machine and clothes dryer are being replaced. The
2.6-3 probability a new washing machine will require warranty service is 0.22. The cor-
responding probability for a new dryer is 0.15. What is the probability that both

machines will require warranty service?

Solution

Let experiments 1 and 2 record whether or not the washing machine and the dryer,
respectively, require warranty service. The problem statement does not provide suf-
ficient information to compute the desired probability without the assumption of
independence. Assuming that the two experiments are independent, it follows that
the events A = {the washing machine requires warranty service} and B = {the dryer
requires warranty service} are independent. Hence,

P(AN B) = P(A)P(B) = (0.22)(0.15) = 0.033. =

Some basic properties of independent events are given next.

Proposition 1 If A and B are independent, then so are A€ and B.
2.6-1 2. The empty set, ¥, and the sample space, S, are independent from any other set.
3. Disjoint events are not independent unless the probability of one of them is
ZETO. |

To see why part (1) of Proposition 2.6-1 is true, use the fact that B is the union
of the disjoint events B N A and B N A€, and the independence of A and B, to write
P(B) = P(B)P(A)+P(BNA€). Now bring P(B)P(A) on the left side of this equation
to get P(B)[1 — P(A)] = P(B N A°). Hence, P(B)P(A¢) = P(B N A°), which implies
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their independence. The first statement of part (2) of the proposition is true because,
for any event A, AN @ = #. Hence, 0 = P(AN¥) = P(W)P(A) = 0. The second
statement of part (2) of the proposition follows from part (1), since S = ¢¢. Part (3)
of the proposition follows by noting that if A and B are disjoint, then P(A N B) =
P(#) = 0. Thus, A and B cannot be independent unless P(A) = 0 or P(B) = 0.

The proportion of female voters who strongly support the exploration of all alter-
native forms of energy production is the same as the proportion of all voters who
strongly support the exploration of all alternative forms of energy production. For
a person selected at random from the population of voters, let F and E denote the
events that the selected voter is female and the selected voter strongly supports the
exploration of all alternative forms of energy production, respectively.

(a) Are the events E and F independent?
(b) Is the proportion of male voters who strongly support the exploration of

all alternative forms of energy production the same as the corresponding
proportion of female voters?

Solution

(a) Translated into mathematical notation, the first sentence of the problem state-
ment is written as P(E|F) = P(E). According to the discussion following
Definition 2.6-1 (see relations (2.6.1) and (2.6.2)), this implies that £ and F
are independent.

(b) Let M be the event that a randomly selected voter is male. Since M = F¢, the
independence of E and F shown in part (a) and part (1) of Proposition 2.6-1
imply that M and E are independent. According to relations (2.6.1) and/or
(2.6.2), this is equivalent to P(E|M) = P(E). Using the result of part (a), this
implies P(E|M) = P(E|F). Translated into words, this relationship is stated as
the proportion of male voters who strongly support the exploration of all alter-
native forms of energy production is the same as the corresponding proportion
among all female voters. -

It would appear that events E1, E;, E3 are independent if £ is independent from
E, and E3, and E» is independent from E3 or, in mathematical notation, if

P(E1 N Ez) = P(E1)P(E2),
P(E1 N E3) = P(E1)P(E3), (2.6.3)
P(E; N E3) = P(Ey)P(E3).

However, this pairwise independence does not imply
P(E1 NEN E3) = P(El)P(Ez)P(E3); (2.6.4)

see Exercise 8. It is also possible that (2.6.4) holds but one of the relations in (2.6.3)
does not hold. This is demonstrated next.

Roll a die once and record the outcome. Define the events E; = {1,2,3}, £, =
{3,4,5}, E3 = {1,2,3,4}. Verify that

P(Ey N Ey N E3) = P(E1)P(E)P(E3)

and also that £ and E, are not independent.
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Solution

Since P(E1 N E; N E3) = P({3}) = 1/6 and P(E )P(Ey)P(E3) = (1/2)(1/2)(4/6)
= 1/6, it follows that P(E] NnE;N E3) = P(E] )P(EQ)P(E:;). Next, P(E1 N Ey) =
P({3}) = 1/6, which is not equal to P(E1)P(Ey) = (1/2)(1/2) = 1/4. Thus, E; and
E, are not independent. m

The above discussion leads to the following definition for the independence of
three events.

Definition 2.6-2
Independence of three events. The events E1, E;, E3 are (mutually) independent
if all three relations in (2.6.3) hold and (2.6.4) holds.

The specification mutually serves to distinguish the concept of Definition 2.6-1
from that of pairwise independence. In this book we will use independence to mean
mutual independence.

Of course, the concept of independence extends to more than three events. The

events E1,..., E, are said to be independent if for every subset E;,, ..., E; , k <n,
P(Eil N Ei2 n---N Eik) = P(EII)P(EZZ) .. P(Elk)
If Eq, E,, ..., E, are independent, then so are their complements. This is sim-

ilar to the corresponding property for two events (part (1) of Proposition 2.6-1).
Moreover, any one of the n independent events will be independent from events
formed from all the others. For instance, in the case of three independent events,
Ey, E», and Ej, the event Ey is independent of events such as F; U E3, ES U E3, etc.
See Exercise 9.

At 25°C, 20% of a certain type of laser diodes have efficiency below 0.3 mW/mA.
For five diodes, selected by simple random sampling from a large population of such
diodes, find the probability of the following events.

(a) All five have efficiency above 0.3 at 25°C.

(b) Only the second diode selected has efficiency below 0.3 at 25°C.
(c) Exactly one of the five diodes has efficiency below 0.3 at 25°C.
(d) Exactly two of the five diodes have efficiency below 0.3 at 25°C.

Solution

Define the events A; = {the ith diode has efficiency below 0.3},i = 1,...,5. Because
the five sub-experiments, each consisting of selecting one diode and measuring its
efficiency, are independent, so are the events A1, ..., As. Hence we have:

(a)
PAS N -+~ NAS) = P(AS) - P(AS) = 0.8% = 0328,
(b)
P(AS N Ay N AS N AS N AS) = P(AS)P(A2) P(AS)P(AS)P(AS)

= (0.2)(0.8*) = 0.082.
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Figure 2-14 Components
connected in series (left)
and in parallel (right).

(c) This event is the union of the disjoint events E; = {only the ith diode has
efficiency below 0.3 at 25°C}. A calculation similar to that of part (b) yields
that P(E;) = 0.082 for all i = 1,...,5. Thus, the requested probability is

P(E1U---UEs) = P(E1) + P(E) + P(E3) + P(E4) + P(Es)
=5x0.082 =0.41.

(d) This event is the union of (g) = 10 disjoint events, each of which has the same

probability as the event A = {only the first and the second have efficiency
below 0.3 at 25°C}. Thus, the requested probability is

10 x P(A) =10 x 0.2 x 0.8> = 0.205. =

2.6.1 APPLICATIONS TO SYSTEM RELIABILITY

In Example 2.4-2 it was mentioned that the reliability of a system, which is defined as
the probability that a system will function correctly under stated conditions, depends
on the reliability of its components as well as the way the components are arranged.
The two basic types of component arrangements are in series and in parallel. These
are depicted in Figure 2-14. A system (or part of a system) whose components are
arranged in series works if all its components work. For instance, the four wheels
of an automobile represent an arrangement in series since the automobile cannot
be driven with a flat tire. A system (or part of a system) whose components are
arranged in parallel works if at least one of its components works. For instance, three
photocopying machines in an office represent an arrangement in parallel since a
photocopying request can be carried out if at least one of the three machines is
working. Thus, arranging components in parallel is a way of building redundancy
into the system in order to improve its reliability.

The assumption that components fail independently is often used for calculating
the reliability of a system from the probability of failure of its components.

The three components of the series system shown in the left panel of Figure 2-14 fail
with probabilities p; = 0.1, p» = 0.15, and p3 = 0.2, respectively, independently of
each other. What is the probability the system will fail?

Solution

Let A denote the event that the system fails. The probability of A is computed most
easily by computing first the probability of A€. Since components fail independently,
and thus the events that they do not fail are also independent, we have
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P(A€) = P(no component fails) = (1 — 0.1)(1 — 0.15)(1 — 0.2) = 0.612.

Using part (4) of Proposition 2.4-1, it follows that P(A) = 1 — P(A¢) = 0.388. =

The three components of the parallel system shown in the right panel of Figure
2-14 function with probabilities p; = 0.9, p, = 0.85, and p3 = 0.8, respectively,
independently of each other. What is the probability the system functions?

Solution

Let A denote the event that the system functions and A; denote the event that com-
ponent i functions, i = 1,2,3. Because the components are connected in parallel,
A = A1 U A, U As. Using part (2) of Proposition 2.4-2, and the independence of the
events A;, we have

P(A) = P(A1) + P(A2) + P(A3) — P(A1 N Az) — P(A1 N A3)
— P(A> N A3) + P(A; N Ay N A3)
=094+0.854+0.8—-0.9x085-09 x0.8—-0.85x084+0.9 x 0.85 x 0.8
=0.997.

An alternative way of computing the probability that the system functions is to com-
pute first the probability that the system does not function. Because it is a parallel
system, it does not function only if all three components do not function. Thus, by
the independence of the events A; and hence of their complements,

P(A€) = P(AS)P(AS)P(AS) = 0.1 x 0.15 x 0.2 = 0.003,

which yields P(A) = 1 — 0.003 = 0.997, as before. This alternative method is much
more expedient for computing the reliability of parallel systems with more than
three components. =

A series system has no redundancy in the sense that it functions only if all its
components function. A parallel system has the maximum possible redundancy since
it functions if at least one of its components functions. A k-out-of-n system functions
if at least k of its n components functions. For example, the engine of a V8 car may
be designed so that the car can be driven if at least four of its eight cylinders are
firing, in which case it is a 4-out-of-8 system. With this terminology, a series system
is an n-out-of-n system, while a parallel system is a 1-out-of-n system.

Find the reliability of a 2-out-of-3 system whose three components function with
probabilities p; = 0.9, po = 0.85, and p3 = 0.8, respectively, independently of each
other.

Solution

Let A denote the event that the system functions, and A; denote the event that com-
ponent i functions, i = 1,2, 3. Because it is a 2-out-of-3 system, it functions if only
components 1 and 2 function, or only components 1 and 3 function, or only com-
ponents 2 and 3 function, or all components function. In mathematical notation,
A=(A1NA))UAINA3)U (A NA3)U(A] NAy N Az). Because these events are
disjoint,
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P(A) = P(A1NA; NAS) + P(AiNASNA3) + P(A]NAyNA3) + P(A1 N Ay N A3z)
=09 x0.85%x02+0.9 x0.15 x 0.8+ 0.1 x 0.85 x 0.8 + 0.9 x 0.85 x 0.8

= 0.941,

where the second equality follows by the independence of the events A;. m

Exercises

1. In a batch of 10 laser diodes, two have efficiency
below 0.28, six have efficiency between 0.28 and 0.35,
and two have efficiency above 0.35. Two diodes are
selected at random and without replacement. Are the
events E; = {the first diode selected has efficiency
below 028} and E, = {thesecond diode selected
has efficiency above 0.35} independent? Justify your
answer.

2. In the context of Exercise 2.5-3, are the events [X = 1]
and [Y = 1] independent? Justify your answer.

3. A simple random sample of 10 software widgets are
chosen for installation. If 10% of this type of software
widgets have connectivity problems, find the probability
of each of the following events.

(a) None of the 10 have connectivity problems.

(b) The first widget installed has connectivity problems
but the rest do not.

(c) Exactly one of the 10 has connectivity problems.

4. An experiment consists of inspecting fuses as they
come off a production line until the first defective
fuse is found. Assume that each fuse is defective with
a probability of 0.01, independently of other fuses.
Find the probability that a total of eight fuses are
inspected.

5. Quality control engineers monitor the number of non-
conformances per car in an automobile production facil-
ity. Each day, a simple random sample of four cars from
the first assembly line and a simple random sample of
three cars from the second assembly line are inspected.
The probability that an automobile produced in the first
shift has zero nonconformances is 0.8. The corresponding
probability for the second shift is 0.9. Find the probability
of the events (a) zero nonconformances are found in the
cars from the first assembly line in any given day, (b) the
corresponding event for the second assembly line, and (c)
zero nonconformances are found in any given day. State
any assumptions you use.

6. An athlete is selected at random from the population
of student athletes in a small private high school, and
the athlete’s gender and sports preference is recorded.

Define the events M = {the student athlete is male}, F
= {the student athlete is female}, and 7= {the student
athlete prefers track}. We are told that the proportion
of male athletes who prefer track is the same as the
proportion of student athletes who prefer track or, in
mathematical notation, P(T|M) = P(T). Can we con-
clude that the proportion of female athletes who prefer
track is the same as the proportion of student athletes
who prefer track, or P(T|F) = P(T)? Justify your
answer.

7. Some information regarding the composition of the
student athlete population in the high school mentioned
in Exercise 6 is given in the table below. For exam-
ple, 65% of the student athletes are male, 50% of the
student athletes play basketball, and female athletes
do not play football. For a student athlete selected at
random, the events F = ({the student athlete is female}

and 7= f{the student athlete prefers track} are
independent.
Football | Basketball | Track | Total
Male 0.3 0.65
Female 0
Total 0.3 0.5 0.2

(a) Fill in the remaining entries of the above table.

(b) If a randomly selected student athlete prefers basket-
ball, what is the probability that the student athlete is
female?

(c) Are the events F and B= {the student athlete prefers
basketball} independent?

8. Roll a die twice and record the two outcomes. Let
E1 = {the sum of the two outcomes is 7}, E>={the out-
come of the first roll is 3}, E3={the outcome of the second
roll is 4}. Show that Eq, E,, E3 are pairwise independent
but (2.6.4) does not hold.

9. Show that if Ej, E;, E3 are independent, then Ej is
independent from E,UFE3. (Hint. By the Distributive Law,
P(E; N (E> U E3)) = P((E1 N Ey) U (E1 N E3)). Using



the formula for the probability of the union of two events
(part (1) of Proposition 2.4-2) and the independence
of Eq, E;, E3, write this as P(E1)P(E;) + P(E1)P(E3) —
P(E1)P(E; N E3) and finish the proof.)

10. The system of components shown in Figure 2-15
below functions as long as components 1 and 2 both func-
tion or components 3 and 4 both function. Each of the
four components functions with probability 0.9 indepen-
dently of the others. Find the probability that the system
functions.
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Figure 2-15 System of four components.

11. Find the reliability of a 3-out-of-4 system if each of its
four components functions with probability 0.9 indepen-
dently of the others.



RANDOM VARIABLES AND THEIR
DISTRIBUTIONS

Chapter

3.1 Introduction

The probability distribution of a random variable specifies how the total probability
of its sample space, which is 1, is distributed within the range of values of the sample
space. We say that we know the probability distribution of a random variable if
we know the probability with which its value will fall in any given interval. The
probability mass function, or PMF, which was introduced in Section 2.3.3, is a way
of describing the probability distribution of a discrete random variable. This chapter
introduces the probability density function, or PDF, as the continuous variable
version of the probability mass function, and the cumulative distribution function, or
CDF, which is another way of describing the probability distribution of a (discrete
or continuous) random variable. The PMF and PDF are used to extend the notions
of expected (or mean) value and variance to more general random variables, such as
variables with an infinite sample space, while the CDF is used to define percentiles
of continuous random variables. Finally, this chapter introduces the most common
probability models for both discrete and continuous random variables. Similar
concepts for bivariate and multivariate random variables will be discussed in the

next chapter.

3.2 Describing a Probability Distribution

3.2.1 RANDOM VARIABLES, REVISITED

The concept of a random variable was introduced in Section 1.4 as the numerical
description of a unit’s characteristic(s) when the unit has been selected at random
from a population of interest, and was generalized to the outcome of any action or
process that generates a random numerical outcome. A more formal definition of a

random variable can be given using concepts introduced in Chapter 2.

Definition 3.2-1

A random variable is a function (or rule) that associates a number with each

outcome of the sample space of a random experiment.

For example, in a sampling experiment where observations X7, ..
from a population, the sample mean, X, the sample variance, S2, and a sample

98

., X, are collected
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proportion p (such as the proportion of observations that are greater than 25) are
random variables.

The notions of discrete and continuous random variables were also introduced
in Section 1.4. More formally, we have

Definition 3.2-2
A discrete random variable is a random variable whose sample space has a finite
or at most a countably infinite number of values.

Example The following three examples of discrete random variables arise in sample inspection
3.2-1 experiments used for product quality control.

(a) Ten laser diodes are randomly selected from the production line and the num-
ber of those with efficiency above 3 mW per mA at 25°C is recorded. The
resulting random variable is discrete with finite sample space S = {0, 1,...,10}.

(b) Ten laser diodes are randomly selected from a shipment of 100 and the number
of those with efficiency above 3 mW per mA at 25°C is recorded. Assuming the
shipment contains at least 10 laser diodes with efficiency above 3, the resulting
random variable is discrete with finite sample space S = {0, 1,...,10}, same as
the sample space in part (a).

(c) The efficiency of laser diodes is measured, as they come off the production
line, until 10 diodes with efficiency above 3 are found. Let X denote the total
number of diodes inspected until the tenth diode with efficiency above 3 is
found. Then X is a discrete random variable with infinite sample space Sy =
{10,11,12,...}. m

The following is an example of a random variable that is not discrete.

Example In accelerated life testing, products are operated under harsher conditions than
3.2-2 those encountered in real life. Consider the experiment where one such product
is tested until failure, and let X denote the time to failure. The sample space of this

experiment, or of X, is Sy = [0, 00). m

The reason why X of the above example is not discrete is because its sample
space is not countably infinite (i.e., it cannot be enumerated). As an indication that
the numbers in [0, co) cannot be enumerated, note that it is impossible to identify
which number comes after 0. Even finite intervals, such as [0, 1] contain uncountably
infinite many numbers.

Definition 3.2-3
A random variable X is called continuous if it can take any value within a finite
or infinite interval of the real number line (—oo, c0).

Examples of experiments resulting in continuous variables include measure-
ments of length, weight, strength, hardness, life time, pH, or concentration of
contaminants in soil or water samples.
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Proposition
3.2-1

REMARK 3.2-1

(a) Although a continuous variable can take any possible value in an interval,
its measured value cannot. This is because no measuring device has infinite
resolution. Thus, continuous variables do not exist in real life; they are only
ideal versions of the discretized variables that are measured. Nevertheless, the
study of continuous random variables is meaningful as it provides useful, and
quite accurate, approximations to probabilities pertaining to their discretized
versions.

(b) If the underlying population of units is finite, there is a finite number of values
that a variable can possibly take, regardless of whether it is thought of in its
ideal continuous state or in its discretized state. For example, an experiment
investigating the relation between height, weight, and cholesterol level of men
55-65 years old records these three continuous variables for a sample of the
aforementioned finite population. Even if we think of these variables as con-
tinuous (i.e., non-discretized), the number of different values that each of them
can take cannot exceed the number of existing 55-65 year old men. Even in
such cases the model of a continuous random variable offers both convenience
and accurate approximation of probability calculations. <

3.2.2 THE CUMULATIVE DISTRIBUTION FUNCTION

A concise description of the probability distribution of a random variable X, either
discrete or continuous, can be achieved through its cumulative distribution function.

Definition 3.2-4
The cumulative distribution function, or CDF, of a random variable X gives the
probability of events of the form [X < x], for all numbers x.

The CDF of a random variable X is typically denoted by a capital letter, most
often F in this book. Thus, in mathematical notation, the CDF of X is defnined as

Fx(x) = P(X <x), (3:2.1)

for all numbers x of the real number line (—oo, c0). When no confusion is possible,
the CDF of X will simply be denoted as F(x), that is, the subscript X will be omitted.

The cumulative distribution function, F, of any (i.e., discrete or continuous) random
variable X satisfies the following basic properties:

1. Ttis non-decreasing: If a < b then F(a) < F(b).
2. F(—00) =0, F(o0) = 1.
3. Ifa < bthen P(a < X < b) = F(b) — F(a). [ |

To show the first property, note that if it is known that the event [X < 4]
occurred then the event [X < b] has also occurred. Thus, [X < a] € [X < b] and
hence, P(X < a) < P(X < b), which is equivalent to F(a) < F(b). Property 2 fol-
lows by noting that the event [X < —oo] never happens, whereas the event [X < o]
happens always. It follows that [X < —oo] = ¥ whereas [X < oo] = Sy, and hence
F(—00) = P(#) = 0 whereas F(co) = P(Sx) = 1. Finally, property 3 follows by not-
ing that the event [X < b]is the union of the disjoint events [X < a]and[a < X < b].
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Therefore, P(X <b)=P(X <a)+ P(a < X <b),or F(b) = F(a) + P(a < X <b),
or Pla< X <b)=P(X <b)— P(X <a).

As stated in the introduction of this chapter, the probability distribution of a
random variable X is known if the probability of events of the form [a < X < b]
is known for all a < b. Thus, property 3 of Proposition 3.2-1 implies that the CDF
describes completely the probability distribution of a random variable.

The PMF of a random variable X is

x | 1 2 3 4
p) | 04 03 02 01

Find the CDF F of X.

Solution

The given PMF implies that the sample space of X is Sy = {1,2, 3,4}, that P(X = x)
= p(x) forx = 1,...,4, and that P(X = x) = 0 for all other x values. The key to
finding the CDF is to re-express the “cumulative” probabilities P(X < x) in terms
of the probabilities P(X = x) for x in the sample space. Note first that P(X < 1) =
P(X = 1); this is because X does not take values < 1. Also, P(X <2) = P([X = 1]
U[X = 2]), which is because if X < 2 then either X = 1 or X = 2. For similar
reasons, P(X <3) = P([X <2]U[X =3]) and P(X <4) = P([X <3]U[X = 4]).
Using now the additivity property of probability (i.e., the probability of the union
of disjoint events equal the sum of their probabilities) and the PMF of X we can
compute F(x) for all x in Sy:

F)=P(X<1)=PX =1) =04, (322
F2)=P(X <2)=F1)+P(X =2)=04+03=0.7, (3.2.3)
FB3)=P(X <3)=FQ2)+P(X =3)=07+02=0.9, (3.2.4)
F4)=P(X<4)=F3)+PX=4)=09+01=1 (3.2.5)

It remains to determine F(x) for x values that are not in Sy. Again, the key is to re-
express the cumulative probabilities P(X < x) for x not in Sy in terms of cumulative
probabilities P(X < x) for x in Sy. The end result and brief explanations are:

F(x)=0 for all x < 1 (because [X < x] = 0),

F(x) =F()=04 foralll <x <2 (because [X <x]=[X <1]),

F(x) =F(2)=0.7 forall2 <x <3 (because [X < x]=[X <2]), (3:2.6)
F(x) =F(3)=0.9 forall3 <x <4 (because [X < x]=[X <3]),
F(x)=F(4)=1 forall4 <x (because [X <x]=[X <4]).

The function F(x) is plotted in Figure 3-1. Functions with plots such as that of Figure
3-1 are called step or jump functions. [

The derivation of the CDF from the PMF in Example 3.2-3 also suggests that the
PMF can be obtained from the CDF by reversing the process. This reverse process
is summarized in the table below.
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Figure 3-1 The CDF of the
random variable of
Example 3.2-3.

Proposition
3.2-2
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X 1 2 3 4
F(x) | 04 0.7 0.9 1
px) | 04 07-04=03 09-07=02 1-0.9=0.1

Some of the key features of the CDF of Example 3.2-3 are true for the CDF of
any random variable X whose sample space Sy is a subset of the integers (or, more
generally, Sy = {x1,x2,...} with x; < x, < ---). In particular, the CDF F of any
such random variable is a step function with jumps occurring only at the values x
of Sx, while the flat regions of F correspond to regions where X takes no values.
Moreover, the size of the jump at each x of Sy equals p(x) = P(X = x). Thus, there
is a connection between the PMF and the CDF, and one can be obtained from the
other. These facts are stated formally in the following proposition.

Let x; < x, < --- denote the possible values of the discrete random variable X
arranged in an increasing order. Then

1. F is a step function with jumps occurring only at the values x of Sx, while the
flat regions of F correspond to regions where X takes no values. The size of the
jump at each x of Sy equals p(x) = P(X = x).

2. The CDF can be obtained from the PMF through the formula

F(x) =) p(x).
Xi<X
3. The PMF can be obtained from the CDF as
p(x1) = F(x1), and p(x;) = F(x;) — F(x;—1) for i=23,....

4. The probability of events of the form [a < X < b] is given in terms of the
PMF as

Pla<X <b)= Z p(xi),

a<x;<b
and in terms of the CDF as
P(a < X <b)=F(b)— F(a). [

In view of part (2) of Proposition 3.2-2, the CDF property F(oco) = 1 (see property
2 of Proposition 3.2-1) can be restated as
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Z px) =1, (G2.7)

x,‘ESX

that is, the values of the PMF sum to 1. Of course, (3.2.7) can be independently
justified in terms of Axiom 2.4.2 of probabilities.

3.2.3 THE DENSITY FUNCTION OF A CONTINUOUS DISTRIBUTION

A continuous random variable X cannot have a PMF. The reason for this is
P(X =x) =0, for any value x. (3:2.8)

This rather counterintuitive fact can be demonstrated in terms of the continuous
random variable X that records the outcome of selecting a number at random from
the interval [0, 1]. The selection is random in the sense that any two subintervals of
[0,1] of equal length, such as [0,0.1] and [0.9, 1], are equally likely to contain the
selected number. This implies that

P(X in an interval of length /) = /. (3:2.9)

For example, P(0 < X <0.5) = 0.5 follows because P(0 < X <0.5) = P(0.5 <X <1),
since the two intervals are of equal length, and P(0 < X <0.5)+ P(05<X <1) =1,
since they are disjoint and their union is the entire sample space. Relation (3.2.9)
implies (3.2.8) because a single number is an interval of zero length.

The random variable used to demonstrate (3.2.8) is the simplest named contin-
uous random variable.

Definition 3.2-5

Uniform in [0, 1] random variable. Select a number from [0, 1] so that any two
subintervals of [0, 1] of equal length are equally likely to contain the selected
number, and let X denote the selected number. Then we say that X has the
uniform in [0, 1] distribution and denote this by writing X ~ U(0, 1).

Relation (3.2.9) implies that the probability distribution of the uniform in [0, 1]
random variable is known. In fact, if X ~ U(0, 1) its CDF is

0 ifx<0O
Fx(x)=PX <x)=4x if0<x<l1 (3.2.10)
1 ifx>1.

Note how the plot of this CDF, shown in Figure 3-2, differs from the CDF plot of a
discrete random variable.

In addition to the CDF, the probability distribution of a continuous random
variable can be described in terms of its probability density function.

Definition 3.2-6

The probability density function, or PDF, of a continuous random variable X
is a nonnegative function fx (thus, fy(x) > 0, for all x), with the property that
P(a < X < b) equals the area under it and above the interval [a, b]. Thus,

P(a < X < b) = area under fy between a and b. (3:2.11)
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Figure 3-2 CDF of the

uniform in [0, 1] random 24

variable.
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Some typical shapes of probability density functions are presented in Figure 3-3.
A positively skewed distribution is also called skewed to the right, and a negatively
skewed distribution is also called skewed to the left.

The area under a curve and above an interval is illustrated in Figure 3-4. Since
the area under a curve is found by integration, we have

Probability of

b
an Interval in Pla<X <b)= / fx(x) dx (32.12)
Terms of the PDF a

Figure 3-3 Typical shapes
of PDFs.

Symmetric Bimodal
Positively skewed Negatively skewed
Figure 3-4 P(a < X < b) o
as the area under the PDF
above the interval [a, b].
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Total Area Under
the Curve of a PDF
Must Equal |

Example
3.244

Proposition
3.2-3

Figure 3-5 PDF of the
uniform in [0, 1] random
variable.
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This is basically why integration is needed in probability theory. For a nonnega-
tive function f to be a probability density function, the total area under the curve
it defines must equal 1.

o0
/ fx)dx =1 (32.13)
—0o0

If X ~ U(0,1), show that the PDF of X is

0 ifx<O
fx(x)=11 ifo<x<1
0 ifx>1.

Solution

We need to show that (3.2.11) holds. Since all the area under this function
corresponds to the interval [0, 1] (see also Figure 3-5), the area above any interval
(a,b] equals the area above the intersection of [a, b] with [0, 1]. Thus, it suffices to
show that (3.2.11) holds for intervals [a, b] with 0 < a < b < 1. For such intervals,

fabfx(x)dxzfabldxzb—a.

By (3.2.9) it is also true that P(a < X < b) = b — a. Thus, (3.2.11) holds. [

Because the area above an interval of length zero is zero for any curve, it fol-
lows that (3.2.8) is true for any continuous random variable X. Thus, we have the
following result.

If X is a continuous random variable,

Pla<X <b)=Pla<X <b)=F(b)— F(a). m

For example, if X ~ U(0,1), then
P02<X<06)=P02<X<06)=06-02=04
and, of course, P(0.2 < X <0.6) = P(0.2 < X <0.6) =0.4.

P(0.2 < X < 0.6)

1.0

06 0.8
1

0.4

0.2

0.0 0.2 0.4 0.6 0.8 1.0
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Proposition
3.2-4

Example
3.2-5

REMARK 3.2-2  Proposition 3.2-3 is true only for the idealized version of a contin-
uous random variable. As we have pointed out, in real life, all continuous variables
are measured on a discrete scale. The PMF of the discretized random variable that
is actually measured is readily approximated from the formula

P(x — Ax < X <x+ Ax) = 2fx(x)Ax,

where Ax denotes a small number. Thus, if Y denotes the discrete measurement of
the continuous random variable X, and if Y is measured to three decimal places with
the usual rounding, then

P(Y = 0.123) = P(0.1225 < X < 0.1235) & fy(0.123)(0.001).

Moreover, breaking up the interval [a, b] into n small subintervals [x; — Axg,xx +
Axgl,k=1,...,n, we have

n
Pla<Y <b)~ > 2fx(xx)Axt.
k=1

Since the summation on the right approximates the integral [ ab fx(x)dx, the above
confirms the approximation

Pla<X <b)~Pa<Y <b),

namely, that the distribution of the discrete random variable Y is approximated by
that of its idealized continuous version. <

If X is a continuous random variable with PDF f and CDF F, then
(a) The CDF can be obtained from the PDF through the formula

X
F(x) = / f()dy. (3:2.14)
—00
(b) The PDF can be obtained from the CDF through the formula
d
= F'(x) = —F(x). 3.2.15
1) = F(x) = 2 F(x) 6219)
|

Part (a) of Proposition 3.2-4 follows from relation (3.2.12) by setting —oo for @ and
x for b. Part (b) of the proposition is a consequence of the Fundamental Theorem
of Calculus.

The reader easily can verify that the CDF and PDF of a uniform in [0, 1] random
variable, given in relation (3.2.10) and in Example 3.2-4, respectively, satisfy relation
(3.2.14) and (3.2.15) except for x = 0 or 1, where the derivative of the CDF does
not exist.

A random variable X is said to have the uniform in [A, B] distribution, denoted by
X ~ U(A,B), if its PDF is

0 ifx<A
1
0 ifx>B.

Find the CDF F(x).
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Solution
Note first that since f(x) = 0 for x < A, we also have F(x) = 0 for x < A. This and
relation (3.2.14) imply that for A <x < B,

R | x—A
Fx:/ dy = .
W=] 5=aY=3a

Finally, since f(x) = 0 for x > B, it follows that F(x) = F(B) = 1 for x > B. =

If the life time 7', measured in hours, of a randomly selected electrical component
has PDF fr(¢) = 0 for t < 0, and fr(¢t) = 0.001 exp(—0.001¢) for ¢+ > 0, find the
probability the component will last between 900 and 1200 hours of operation.

Solution
Using (3.2.13),

1200

P(900 < T < 1200) = / 0.001¢= 0001 g
900

— ¢~ 0.001(900) _ ,—0.001(1200) _ ,—0.9 _ ,~12 _ () 1054,
Alternatively, one can first find the CDF and use Proposition 3.2-3. By (3.2.14),
t t
Fr(f) = / fr(s)ds = / 0.001e 00015 gg — 1 — 70001 45 .
—00 0

Thus, by Proposition 3.2-3,
P(900 < T < 1200) = F7r(1200) — F7(900)

_ [1 _ 6—0.001(1200)] _ |:1 _ 6—0.001(900)} — 0.1054. -

It is often more convenient to work with the CDF. In the above example, one
can use the CDF to find any probability of the form P(a < T < b) without further
integration. An additional advantage of working with the CDF is demonstrated in
the following examples.

In the context of Example 3.2-6, let T be the life time, measured in minutes, of the
randomly selected electrical component. Find the PDF of T.

Solution

The easiest way to solve this type of problem is to first find the CDF of T and then
use relation (3.2.15) to find the PDF from the CDF. Noting that T = 60T, where T
is the life time measured in hours, we have

Fi() = P(T <) = POOT <) = P (T = Z) = Fr (%),

Hence, since F/.(t) = fT(t) = 0.001 exp(—0.001¢), for ¢ > 0, it follows that for x > 0,

1) = P = e (55) = o (55) = g o (g o)
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Example
3.2-8

Example
3.2-9

Let X denote the amount of time a statistics reference book on a two-hour reserve
at the engineering library is checked out by a randomly selected student. Suppose
that X has density function

1 1

— 0 3
f)={log@®T+x - F°

0 otherwise.

For books returned after two hours, students are charged a fine of $2.00 plus $1.00
for each additional 15-minute delay.

(a) Find the probability that a student checking out the book will be charged a
fine.

(b) Given that a student has been charged a fine, what is the probability the fine
is at least $3.00?

Solution
(a) The formula for the CDF F of X is

X 1+x
o log(4)1+1¢ log(4) J1 vy log(4)

F(x) = 0for x <0, and F(x) = 1 for x > 3. Hence, the desired probability is
P(X >2)=1-F(2)=1-1o0g(3)/log(4) = 0.2075.
(b) The fine is at least $3.00 if X > 2.25. The desired conditional probability is

P([X >225]N[X >2])  P(X >225)
P(X > 2) T TP(X > 2)

1—F(225) 0.1498
1-FQ2) 02075

P(X >225|X >2) =

= 0.7218. -

Suppose that a point is selected at random from a circle centered at the origin and
having radius 6. Thus, the probability of the point lying in a region A of this circle is
proportional to the area of A. Find the PDF of the distance D of this point from the
origin.

Solution

The range of values of the random variable D is clearly [0,6]. We will first find the
CDF Fp(d) = P(D < d) of D. Note that since the probability that the point lies in
the given circle of radius 6 is 1 and since the area of this circle is 762, the probability
of the point lying in a region A of this circle equals the area of A divided by 762
Thus, since D < d happens if and only if the selected point lies in a circle of radius d
centered at the origin, we have

nd> 4

bd)="6G=%

for 0 < d < 6. It follows that the PDF of D is
fpo(d) = F’D(d) =d/18, 0<d<6,

and zero otherwise. [ ]
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Probability Sampling from a PDF In Section 2.3.3 we saw that it is possible to sim-
ulate the experiment of a discrete random variable by probability sampling from
its probability mass function. Simulating the experiment of a continuous random
variable is also possible. R commands for probability sampling from a probability
density function will be given separately for each class of PDFs that will be discussed
in Section 3.5. For the class of uniform PDFs, the R command is as follows:

R Command for Simulating the Uniform PDF

runif(n, A, B) # returns a random sample of size n drawn from
the uniform(A, B) distribution

For example, the R command set.seed(111); runif(4, 10, 15) returns the four num-
bers 12.96491 13.63241 11.85211 12.57462, which represent a random sample of size
4 from the uniform(10, 15) distribution. (Repeated applications of the runif(4, 10, 15)
part of the command will give different samples of size 4; using both parts of the com-
mand will always result in the same four numbers.) The default values of A and B
are 0 and 1, respectively. Thus, set.seed(200); runif(5) and set.seed(200); runif(s, 0, 1)
return the same sample of size 5 drawn from the uniform(0, 1) distribution.
Simulations are used extensively in statistics as they offer insight on properties of
samples drawn from different PDFs. In Exercise 11, simulations are used to provide
numerical evidence for the fact that a sample’s histogram approximates the PDF

from which the sample was drawn.

Exercises

1. Answer the following questions.

(a) Check whether or not each of p1(x), pa(x) is a legiti-
mate probability mass function.

x o 1 2 3
pi(x) | 03 03 05 -0.1

x o 1 2 3
pa(x) | 01 04 04 0.1
(b) Find the value of the multiplicative constant k so p(x)

given in the following table is a legitimate probability
mass function.

x | o 1 2 3
p(x) | 0.2k 03k 0.4k 0.2k

2. A metal fabricating plant currently has five major
pieces under contract each with a deadline for comple-
tion. Let X be the number of pieces completed by their
deadlines, and suppose its PMF p(x) is given by

x | o 1 2 3 4 5
p(x) | 0.05 010 015 025 035 0.10

(a) Find and plot the CDF of X.

(b) Use the CDF to find the probability that between
one and four pieces, inclusive, are completed by their
deadline.

3. Let Y denote the cost, in hundreds of dollars, incurred
to the metal fabricating plant of Exercise 2 due to missing
deadlines. Suppose the CDF of Y is

0 y<0
02 0O<y<l1

Fy(y)) =407 1<y<?2
09 2<y<3
1 3<y.

(a) Plot the CDF and find the probability that the cost
from delays will be at least $200.00.

(b) Find the probability mass function of Y.

4. A simple random sample of size n = 3 is drawn from
a batch of ten product items. If three of the 10 items
are defective, find the PMF and the CDF of the ran-
dom variable X = {number of defective items in the
sample}.

5. Answer the following questions.

(a) Check whether or not each of fi(x), f2(x) is a legiti-
mate probability density function

. 05Bx—x%) 0<x<2
filx) = { 0 otherwise.
_[033@x—x%) 0<x<2
f2() = { 0 otherwise.



110 Chapter 3 Random Variables and Their Distributions

(b) Let X denote the resistance of a randomly chosen
resistor, and suppose that its PDF is given by
£(0) kx if8<x<10
V=10 otherwise.

(i) Find k and the CDF of X, and use the CDF to
calculate P(8.6 < X <9.8).

(ii) Find the conditional probability that X < 9.8
given that X > 8.6.

6. Let X ~ U(0,1). Show that Y = 34+6X ~ U(3,9), that
is, that it has the uniform in [3, 9] distribution defined in
Example 3.2-5. (Hint. Find the CDF of Y and show it has
the form of the CDF found in the solution of Example
3.2-5))

7. Let X ~ U(0,1), and set Y = —log(.X). Give the sam-
ple space of Y, and find the CDF and PDF of Y. (Hint.

Fy(y) = P(Y <y) = P(X > exp(-y)).)

8. The cumulative distribution function of checkout dura-
tion X, measured in minutes, in a certain supermarket is

2
F(x) = xz for x between 0 and 2,
F(x) =0forx <0,and F(x) =1 forx > 2.
(a) Find the probability that the duration is between 0.5
and 1 minute.
(b) Find the probability density function f(x).

(c) Let Y denote the checkout duration measured in
seconds. Find the CDF and PDF of Y.

9. In a game of darts, a player throws the dart and wins
X =30/D dollars, where D is the distance in inches of the
dart from the center of the dartboard. Suppose a player
throws the dart in such a way that it lands in a randomly

selected point on the 18-inch diameter dartboard. Thus,
the probability that it lands in any region of the dartboard
is proportional to the region’s area, and the probability
that it lands in the dartboard is 1.

(a) Find the probability that the player will win more than
$10.00.

(b) Find the PDF of X.

10. The time X in hours for a certain plumbing manu-
facturer to deliver a custom made fixture is a random
variable with PDF

0.02¢002(x—48)  jf x > 48

0 otherwise.

fl) = {

An architect overseeing a renovation orders a custom
made fixture to replace the old one, which unexpectedly
broke. If the ordered fixture arrives within three days no
additional cost is incurred, but for every day beyond that
an additional cost of $200.00 is incurred.

(a) Find the probability that no additional cost is
incurred.

(b) Find the probability that the additional cost incurred
is between $400 and $800.

11. Use the R commands set.seed(111); hist(runif(100),
freq=F) to generate a sample of size 100 from the uni-
form(0, 1) distribution and to plot its histogram, and
the additional R command curve(dunif, 0, 1, add=T) to
superimpose the uniform(0, 1) PDF on the graph. Does
the histogram provide a reasonable approximation to the
uniform(0, 1) PDF? Repeat the set of commands using
samples of size 1000, 10,000 and 100,000. For what sample
size(s) would you say the histogram provides a reasonable
approximation to the PDF?

3.3 Parameters of Probability Distributions

This section introduces certain summary parameters that are useful for describ-
ing prominent features of the distribution of a random variable. The parameters
we will consider are the mean value, also referred to as the average value or
expected value, the variance, and standard deviation. These generalize the corre-
sponding quantities defined in Chapter 1. For continuous random variables, we will
also consider percentiles, such as the median, which are commonly used as addi-
tional parameters to describe the location, variability, and shape of a continuous

distribution.

3.3.1

Discrete Random Variables

EXPECTED VALUE

Let X be a discrete random variable with sample space

Sx, which can possibly be infinite, and let p(x) = P(X = x) denote its probability
mass function. Then, the expected value, E(X) or tx, of X is defined as
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EX)=px= Y xp(x) (33.)

xinSX

The mean value of an arbitrary discrete population is the same as the expected value
of the random variable it underlies.

This definition generalizes definition (1.6.6) of Section 1.6.2 because it also
applies to random variables that are not necessarily obtained through simple ran-
dom sampling from a finite population. For example, if X denotes the number of
heads in 10 flips of a coin, X is not obtained by simple random sampling from the
numbers 0,...,10, and thus its expected value cannot be computed from (1.6.6).
As another example, X can be obtained by simple random sampling from an infinite
population; see Example 3.3-2 below. Finally, (3.3.1) applies also to random variables
with infinite sample space; see Example 3.3-3 below.

Suppose the population of interest is a batch of N = 100 units, 10 of which have
some type of defect, received by a distributor. An item is selected at random from
the batch and is inspected. Let X take the value 1 if the selected unit has the defect
and 0 otherwise. Use formula (3.3.1) to compute the expected value of X, and show
that result coincides with the expected value computed according to the definition
(1.6.6).

Solution
The sample space of X is Sy = {0,1} and its PFM is p(0) = P(X = 0) = 0.9, p(1) =
P(X =1) = 0.1. Thus, according to (3.3.1),

ux =0x09+1x01=0.1.

Letv;, i =1,2,...,100, where 90 v; are 0 and 10 are 1, be the statistical population.
Then, according to (1.6.6),

100

1 (90)(0) + (10)(1)
= — = =0.1.
KX =100 ; i 100 0
Thus, both definitions give the same mean value for X. [

The result of Example 3.3-1 is true whenever X is obtained by simple random
sampling from any finite population. To see this let v, v;, ..., vy denote the N values
in the underlying statistical population, and let Sy = {x1,...,x,} be the sample
space of X. (Thus, x1,...,x;, are the distinct values among v1,...,vy.) Also, let n;
denote the number of times that the distinct value x; is repeated in the statistical
population, so that the PMF of X is given by p(x;) = P(X = x;) = n;/N. In this
case, the expressions for the expected value of X according to definitions (1.6.6) and
(3.3.1) are, respectively,

N m
1
nwx = N Xl:vi and nx = Xl:x]'p(x]'). 3.3.2)
i= j=

That the two expressions in (3.3.2) are equivalent follows by noting that Zf\il Vi =
eril njx;.



112 Chapter 3 Random Variables and Their Distributions

Example Select a product item from the production line and let X take the value 1 or O as the
3.3-2 product item is defective or not. Let p be the proportion of defective items in the
conceptual population of this experiment. Find E(X) in terms of p.

Solution

The random variable in this experiment is similar to that of Example 3.3-1 except
for the fact that the population of all product items is infinite and conceptual. Thus,
definition (1.6.6) cannot be used. The sample space of X is Sy = {0,1} and its PMF
isp(0)=P(X =0)=1—-p, p(1) = P(X = 1) = p. Thus, according to (3.3.1),

E(X)= Y xp(x)=0(1—p)+1p=p.

X in SX
Thus, for p = 0.1 the answer is similar to that of Example 3.3-1. [
Example Consider the experiment where product items are being inspected for the presence
3.3-3 of a particular defect until the first defective product item is found. Let X denote the

total number of items inspected. Suppose a product item is defective with probability
p, p >0, independently of other product items. Find E(X) in terms of p.

Solution
The sample space of X is Sy = {1,2,3,...}. Since items are defective or not
independently of each other, the PMF p(x) = P(X = x) is

p(x) = P(the first x — 1 items are not defective and the xth is defective)
= (1-p)'p.

Note that the geometric series Y20, (1 — p)*~1 = 3°2° (1 — p)* equals 1/p, so the
PMF sums to one as indeed it should. According to (3.3.1),

o0

EX)= 3 xp) =3 x(1—pylp
x in Sy x=1
o
= Z(x —1+4+1)(1 —p)*'p (add and subtract 1)
x=1

=> x=DA=py'p+ Y (1-pp

x=1 x=1

o
= Z(x —1)(1 —p)*!p+1 (since the PMF sums to 1)

=
—

WK

x(1 — p)*p +1 (change of summation index)

Il
=}

pe

Since for x = 0 the term is zero, the last infinite series can start from x = 1.
Moreover, since (1 — p) is a common factor to all terms, we obtain

EX)=(1-p)Y x(1-p)'p+1=(1-pEX)+1

x=1

Solving E(X) = (1 — p)E(X) + 1 for E(X) yields E(X) =p~'. [
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Even for finite populations, definition (3.3.1) is preferable to (1.6.6) for two
reasons. First, taking a weighted average of the values in the sample space is sim-
pler/easier than averaging the values of the underlying statistical population because
the sample space is often much smaller (has fewer values) than the statistical popu-
lation. Second, definition (3.3.1) affords an abstraction of the random variable in the
sense that it disassociates it from its underlying population and refers X to an equiv-
alent experiment involving probability sampling from the sample space population.
For example, when referred to their sample space populations, the random variables
X in Examples 3.3-1 and 3.3-2 correspond to identical sampling experiments. This
abstraction will be very useful in Sections 3.4 and 3.5 where we will introduce models
for probability distributions.

Continuous Random Variables The expected value or mean value of a continuous
random variable X with probability density function f(x) is defined by

E(X)=pux = / ” xf(x)dx (33.3)

provided the integral exists. As in the discrete case, the mean value of the popula-
tion underlying X is used synonymously with the mean or expected value of X. The
approximation of integrals by sums, as we saw in Remark 3.2-2, helps connect the
definitions of expected value for discrete and continuous random variables.

If the PDF of X is f(x) = 2x for 0 < x < 1 and 0 otherwise, find E(X).

Solution
According to definition (3.3.3),

E(X) = /C:xf(x)dx = [)1 2x%dx = %

Let X ~ U(0,1), that is, X has the uniform in [0, 1] distribution (see Example 3.2-4).
Show that E(X) = 0.5.

Solution
Using definition (3.3.3) and the PDF of a uniform in [0, 1] random variable, given in
Example 3.2-4, it follows that

E(X) = /oo xf(x)dx = /ledx =0.5.

—0o0

The time T, in days, required for the completion of a contracted project is a ran-
dom variable with PDF fr(f) = 0.1exp(—0.1¢) for t > 0 and 0 otherwise. Find the
expected value of 7.

Solution
Using definition (3.3.3),

E(T) = /oo tfr(t)dt = fOOOtO.leO'“ dt

t—01z|oo+/°° 011 4 1 ~010% _ 1
= —te e =——02¢" = 10.
o 01 o
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Proposition
3.3-1

Mean Value of a Function
of a Discrete Random
Variable X

Mean Value of a Function
of a Continuous Random
Variable X

Mean Value of a Linear
Function of a General
Random Variable X

Example
3.3-7

R can also be used for numerical integration. The commands for evaluating the

integrals
5 o0 0
/ ;dx / idx and / e ldx
0 (x+1)ﬁ ' L —00

are given below:

R Commands for Function Definition and Integration

f=function(x) {1/((x+1)*sqrt(x))}; integrate(f, Tower=0,
upper=5)

f=function(x) {1/x**2}; integrate(f, lower=1, upper=Inf)

f=function(x) {exp(-abs(x))}; integrate(f, Tower=-Inf,
upper=Inf)

In particular the answer to Example 3.3-6 can also be found with the R command

g=function(x) {x*0.1*exp(-0.1*x)}; integrate(g, Tower=0,
upper=Inf)

Mean Value of a Function of a Random Variable If the random variable of interest,
Y, is a function of another random variable, X, whose distribution is known, the
expected value of Y can be computed using the PMF or PDF of X without find-
ing first the PMF or PDF of Y. The formulas for doing so are given in the next
proposition.

1. If X is discrete with sample space Sy and A(x) is a function on Sy, the mean
value of Y = h(X) can be computed using the PMF px(x) of X as

E(MX)= Y h(x)px(x).

xinSX

2. If X is continuous and A(x) is a function, the expected value of Y = A(X) can
be computed using the PDF fx(x) of X as

B0 = [ " h0f (),

3. If the function A(x) is linear, that is, 4(x) = ax + b,so Y = aX + b, then

E(h(X)) = aE(X) + b.

A bookstore purchases three copies of a book at $6.00 each and sells them for $12.00
each. Unsold copies are returned for $2.00 each. Let X = {number of copies sold}
and Y = {net revenue}. If the PMF of X is
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x o 1 2 3
px(x) [ 01 02 02 05

find the expected value of Y.

Solution

The net revenue can be expressed as a function of the number of copies sold, that is,
as Y = h(X) = 12X +2(3 — X) — 18 = 10X — 12. For instructive purposes, E(Y) will
be computed in three ways. First, note that the PMF of Y is

y |-12 2 8 18
py(y)| 0.1 02 02 05

Thus, using definition (3.3.1),

EY)= Y ypy(y) = (~12)(0.1) + (~2)(0:2) + (8)(0.2) + (18)(0.5) = 9.

all y values

Alternatively, E(Y) can be computed, without first finding the PMF of Y, through
the formula in part (1) of Proposition 3.3-1:

E(Y)= Y  hpx(x)=(-12)(0.1) + (-2)(0.2) + (8)(0.2) + (18)(0.5) = 9.

all x values

Finally, since Y = 10X — 12 is a linear function of X, part (3) of Proposition 3.3-1
implies that E(Y) can be computed using only the value of E(X). Since E(X) =
> xpx(x) =2.1, we have E(Y) =10(2.1) — 12 =9. |

Let Y ~ U(A,B), that is, Y has the uniform in [A, B] distribution (see Example
3.2-5). Show that E(Y) = (B + A)/2.

Solution

This computation can be done using definition (3.3.3) and the PDF of a uniform
in [A, B] random variable, which is given in Example 3.2-5 (the interested reader is
encouraged to do this computation). Alternatively, E(Y) can be found through the
formula in part (3) of Proposition 3.3-1 using the fact that if X ~ U(0, 1), then

Y=A+(B—-A)X ~U(A,B). (3:3.4)

Relation (3.3.4) can be verified by finding the CDF of Y and showing it has the form
of the CDF found in the solution of Example 3.2-5 (see also Exercise 6 in Section
3.2). Thus,

E(Y):A+(B—A)E(X)=A+¥=¥. -

The time 7, in days, required for the completion of a contracted project is a random
variable with PDF f7(f) = 0.1 exp(—0.1¢) for t > 0 and 0 otherwise. Suppose the con-
tracted project must be completed in 15 days. If T < 15 there is a cost of $5(15 - T)
and if T > 15 there is a cost of $10(7" — 15). Find the expected value of the cost.
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General Definition of
Variance of a
Random Variable X

Short-cut Formula for
Variance of a Random
Variable X

Solution
Define the functions /() = 5(15 —¢) if t < 15, and A(¢) = 10(t — 15) if t > 15, and let
Y = h(T) denote the cost. According to part (3) of Proposition 3.3-1,

15

v = [ " hyfr(tydx =

= 36.1565 + 22.313 = 58.4695.

oo
5(15 — 1)0.1e " dr + / 10(t — 15)0.1e™*ar
15

This answer can also be found by summing the outputs of the following two R
commands:

g=function(x) {5*(15-x)*0.1*exp(-0.1*x)}; integrate(g, Tower=0,

upper=15)
g=function(x) {10*(x-15)*0.1*exp(-0.1*x)}; integrate(g, lower=15,
upper=Inf) -

3.3.2 VARIANCE AND STANDARD DEVIATION

The variance 0)2(, or Var(X), of a random variable X is defined as

oy =E [(X — i X)z] (33.5)

where uy = E(X) is the expected value of X. The variance of an arbitrary
discrete population is the same as the variance of the random variable it under-
lies. A computationally simpler formula (also called the short-cut formula) for

2 .
UXIS

oy = E(X*) — [E(X)]? (3:3.6)

In terms of the PMF p(x) of X, if X is discrete with sample space Sy or the PDF
f(x) of X, if X is continuous, (3.3.5) can be written, respectively, as

oy = Y. (x—pux)’p(x) and of = /_ Z(x—uX)ZfX(x) dx. (33.7)

x in Sy

These alternative expressions for 0)2( follow from parts (1) and (2) of Proposition
3.3-1, respectively, with h(x) = (x — ux)?. Similarly, expressing E(X?) according to
parts (1) and (2) of Proposition 3.3-1 with h(x) = x? yields the following alterna-
tive expression for the short-cut formula (3.3.6) for discrete and continuous random
variables, respectively:

(0.¢]
0}2( = Z x’p(x) — M%( and o7 = / X fx(x)dx — M%{- (3.3.8)
x in SX -

The standard deviation of X is defined to be the positive square root, o, of %
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Definition of _ 2
Standard Deviation 0X =40y (3.3.9)
Example Select a product from the production line and let X take the value 1 or O as the
3.3-10 product is defective or not. If p is the probability that the selected item is defective,

find Var(X) in terms of p.

Solution

In Example 3.3-2 we saw that E(X) = p, where p denotes the proportion of defective
items. Next, because X take only the values 0 or 1 it follows that X> = X. Hence,
E(X?) = E(X) = p. Using the short-cut formula (3.3.6) we obtain

oy = E(X?) - [EX)P =p-p* =p(l—p). -

Example Roll a die and let X denote the outcome. Find Var(X).

3.3-11
Solution
The expected value of X is uxy = (1 +--- 4+ 6)/6 = 3.5. Using the short-cut formula
for the variance we have
° 91
ox = E(X?) — i =) xipj—ux = < 3.5 =2917.
j=1 [
Example Consider the experiment where product items are being inspected for the presence
3.3-12 of a particular defect until the first defective product item is found. Let X denote the

total number of items inspected. Suppose a product item is defective with probability
p, p >0, independently of other product items. Find 0)2( in terms of p.

Solution
The PMF and the mean value of X were found in Example 3.3-3 to be p(k) = P(X
=k)=(1-p)*lp,fork=1,2,... ,and uyx = 1/p. Next, settingg = 1 — p,

o0 o
E(X?) = Zkzqk_lp = Z(k —1+1)’¢*'p (add and subtract 1)
k=1 k=1

o oo o
= Z(k —1)%¢"p + Z 20k = 1)g"p + Z q"'p (expand the square)

k=1 k=1 k=1
o0 o0
= Z K2q*p +2 Z kq¥p +1 (change summation index; PDF sums to 1)
k=1 k=1

= qE(X?) +2qE(X) + 1.

Using E(X) = 1/p and solving the equation E(X?) = qE(X?) + 2qE(X) + 1 for
E(X?)yields E(X?) = (¢ +1)/p*> = (2 — p)/p*. Hence, by (3.3.6)

2—p 1 1-p
0% = E(X?) - [EX)]? = i =
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Example
3.3-13

Example
3.3-14

Proposition
3.3-2
Variance and

Standard Deviation of
a Linear Transformation

Example
3.3-15

Let X ~ U(0,1), that is, X has the uniform in [0, 1] distribution (see Example 3.2-4).
Show Var(X) = 1/12.

Solution
We have E(X) = fol x dx = 0.5, as was also found in Example 3.3-5. Moreover,

1
E(X?) = / x? dx =1/3,
0

so that, by the short-cut formula (3.3.6), 02 = 1/3 — 0.5 = 1/12. -

Let X have PDF fy(x) = 0.1 exp(—0.1x) for x > 0 and 0 otherwise. Find the variance
and standard deviation of X.

Solution
From Example 3.3-6 we have E(X) = [;0.1x e=%* dx = 1/0.1. Next,

(0.¢] o
E(X?) = / X*fx(x) dx = fo x20.1e01% dx
—00

_ —x2€70'1x

00 00 2
—0.1 _

0 +‘/‘O 2x€ X dx = W,

since the last integral equals (2/0.1) E(X). Thus, by (3.3.6), we have

0% = E(X?) — [EX)P = 2 —

=7 o =100 and oy =10,

Note that the standard deviation of this random variable equals its mean value. m

Variance and Standard Deviation of a Linear Transformation

If the variance of X is 0)2( and Y = a+ bX, then

2 2 2
oy = b0y, oy =|blox

A bookstore purchases three copies of a book at $6.00 each and sells each at $12.00
each. Unsold copies are returned for $2.00. The PMF of X = {number of copies
sold} is given in Example 3.3-7. Find the variance of X and of the net revenue Y =
10X —12.

Solution
The mean value of X was found in Example 3.3-7 to be E(X) = 2.1. Next,

EX?)=0>x014+12x02+22x02+3>x05=55.
Thus, 0)2( = 5.5 —2.12 = 1.09. Using Proposition 3.3-2, the variance of Y is

o =10%0% = 109. -
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Let Y ~ U(A, B), that is, Y has the uniform in [A, B] distribution (see Example
3.2-5). Show that Var(Y) = (B — A)?/12.

Solution

In Example 3.3-13 we found that if X ~ U(0,1), then Var(X) = 1/12. Using the
additional fact that Y = A + (B — A)X ~ U(A, B), as was done in Example 3.3-8,
Proposition 3.3-2 yields

(B—A)

Var(Y) = (B — A)*Var(X) = > .

3.3.3 POPULATION PERCENTILES

The precise definition of a population percentile or percentile of a random variable
involves the cumulative distribution function and will be given only for continuous
random variables. While the definition of population percentiles appears quite dif-
ferent from that of sample percentiles given in Section 1.7, it should be kept in mind
that sample percentiles estimate corresponding population percentiles.

Definition 3.3-1

Let X be a continuous random variable with CDF F and « a number between 0
and 1. The 100(1 — «)-th percentile (or quantile) of X is the number, denoted by
X4, With the property

F(xg) =P(X <x9)=1-—0.
In particular:

1. The 50th percentile, which corresponds to « = 0.5 and is denoted by x5, is
called the median and is also denoted by /i x. The defining property of fiy is

F(iix)=0.5. (3.3.10)

2. The 25th percentile, which corresponds to « = 0.75 and is denoted by x 75,
is called the lower quartile and is also denoted by Q1. The defining property
of Q1 is

F(Qp) = 0.25. (3:3.11)

3. The 75th percentile, which corresponds to « = 0.25 and is denoted by x5,
is called the upper quartile and is also denoted by 3. The defining property
of O3 is

F(0O3) =0.75. (3.3.12)

The defining property of each percentile also serves as the equation whose solution
determines the value of the percentile. For example, the defining property of the
median means that j& is the point where the graph of F crosses the horizontal line at
0.5. This is illustrated in the left panel of Figure 3-6 using the CDF F(x) = 1 —e™*
for x > 0, and F(x) = 0 for x < 0. For the cumulative distribution functions we will
consider there is only one point of contact between the horizontal line at 0.5 and the
CDF, and thus /iy is the unique solution of F(fix) = 0.5. The median could also be
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Figure 3-6 Left: The
horizontal line y = 0.5
crosses F(x) at x = [i.
Right: The area under the
PDF is split into two equal
parts at [i.

Example
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3.3-18
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defined as the point & which splits the area under the PDF of X into two equal parts.
This is illustrated in the right panel of Figure 3-6 for the PDF f(x) = ¢™* for x > 0,
and f(x) = 0 for x < 0, which corresponds to the CDF used in the left panel. Similar
comments apply for the other percentiles. For example, the 95th percentile is found
as the unique solution of its defining equation, and it has the property that it splits
the area under the PDF into two parts, with the left part having area 0.95 and the
right part having area 0.05.

Suppose X has PDF f(x) = ¢ for x > 0, and f(x) = 0 for x < 0. Find the median
and the 95th percentile of X.

Solution
The median of X is the unique solution of the equation

F(f1) = 0.5,

where F(x) = 0 for x < 0, and F(x) = [ e”*ds =1 — e~ for x > 0. Thus, the above
equation becomes

1—e =05,
ore " = 0.5, or —ji = log(0.5), or
i = —1log(0.5) = 0.693.

Similarly, the 95th percentile is found by solving F(xgs) = 0.95, or 1 —e™*0:05 = (.95,
or e~*005 = (.05, or

X0.05 = — 10g(0.05) = 2.996. =

If X ~ U(A, B), find the median and the 90th percentile of X.

Solution
The CDF of a uniform in [A, B] distribution was found in Example 3.2-5 to be
F(x)=0forx < A,

—A
F(x) = ;ﬂ for A <x < B,

and F(x) = F(B) = 1 for x > B. Thus, the median is the unique solution to the
equation
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ix —A
=0.5
B—A ’

which yields fiy = A+0.5(B—A). Similarly, the 90th percentile is the unique solution
to the equation (xp1 — A)/(B — A) = 0.9, which yieldsxg; = A+ 09(B—-A). m

Rewriting the median of the uniform in [A, B] random variable X as jixy =
(A + B)/2 reveals that, for this random variable, the median equals the mean;
see Example 3.3-8. In general, it is true that for random variables having a sym-
metric distribution the median equals the mean. For random variables having a
positively skewed distribution the mean is greater than the median and for ran-
dom variables having a negatively skewed distribution, the mean is smaller than the
median.

Like the mean, percentiles are measures of /ocation in the sense of identifying
points of interest of a continuous distribution. In addition, percentiles help define
measures of spread (or variability), which serve as alternatives to the standard devi-
ation. The most common such measure of spread is the (population) interquartile
range, whose definition is the direct analogue of the sample interquartile range
defined in Section 1.7.

Definition 3.3-2
The interquartile range, abbreviated by IQR, is the distance between the 25th
and 75th percentile:

IOR = O3 — 0.

Let X have PDF f(x) = 0.001e=%% for x > 0, and f(x) = 0 for x < 0. Find a
general expression for the 100(1 — «)-th percentile of X in terms of «, for « between
0 and 1, and use it to find the interquartile range of X.

Solution

The CDF of X is F(x) = 1 — e %1¥ for x > 0 and zero otherwise; see Example
3.2-6. Hence, according to Definition 3.3-1, the 100(1 — «)-th percentile is the unique
solution to 1 — e~%001% — 1 _ ¢ which is

_ log(e)
Y= T0001

Using this formula, O3 = xp35 = —10g(0.25)/0.001 = 1386.29, and Q1 = xp75 =
—10g(0.75)/0.001 = 287.68. Thus, the IQR = 1098.61. [

1. A simple random sample of three items is selected
from a shipment of 20 items of which four are defective.
Let X be the number of defective items in the sample.

(a) Find the PMF of X.
(b) Find the mean value and variance of X. (a) Calculate E(X) and E(1/X).

2. Let X have PMF

x |1 2 3 4
px) | 04 03 01 02
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(b) In a win-win game, the player will win a monetary
prize, but has to decide between the fixed price of
$1000/E(X) and the random price of $1000/X, where
the random variable X has the PMF given above.
Which choice would you recommend the player
make?

3. A customer entering an electronics store will buy a flat
screen TV with probability 0.3. Sixty percent of the cus-
tomers buying a flat screen TV will spend $750.00 and
40% will spend $400.00. Let X denote the amount spent
on flat screen TVs by two random customers entering the
store.

(a) Find the PMF of X. (Hint. Sy = {0, 400, 750, 800,
1150, 1500} and P(X = 400) =2 x 0.7 x 0.3 x 0.4.)

(b) Find the mean value and variance of X.

4. A metal fabricating plant currently has five major
pieces under contract, each with a deadline for comple-
tion. Let X be the number of pieces completed by their
deadlines. Suppose that X is a random variable with PMF

p(x) given by

X \ 0 1 2 3 4 5
p(x) | 005 010 045 025 035 0.10

(a) Compute the expected value and variance of X.

(b) For each piece completed by the deadline, the plant
receives a bonus of $15,000. Find the expected value
and variance of the total bonus amount.

5. The life time X, in months, of certain equipment is
believed to have PDF

f(x) = (1/100)xe™/ x>0 and f(x)=0, x <O.

Using R commands for the needed integrations, find
E(X) and 0)2(.

6. Consider the context of Example 3.3-9 where there is
a cost associated with either early (i.e., before 15 days)
or late (i.e., after 15 days) completion of the project. In
an effort to reduce the cost, the company plans to start
working on the project five days after the project is com-
missioned. Thus, the cost due to early or late completion
of the project is given by Y = h(T), where T = T + 5,
and the function & is h(f) = 5(15 — ) if 7 < 15, and A(7) =
10(—15) if 7 > 15. The PDF of T is f7(r) = 0.1 exp(—0.1¢)
for t > 0, and 0 otherwise.
(a) Find the PDF of f3(7) of T. (Hint. First find the CDF
F5(t) of T.)
(b) Use R commands similar to those given in Example
3.3-9 to find the expected cost, E(T). Does the com-

pany’s plan to delay the work on the project reduce
the expected cost?

7. The CDF function of the checkout duration, X, in a
certain supermarket, measured in minutes, is F(x) = 0 for
x <0,F(x)=1forx >2,and

x2

F(x) = T for x between 0 and 2 .

(a) Find the median and the interquartile range of the
checkout duration.

(b) Find E(X) and ox. You may use R commands for the
needed integrations.

8. The length of time X, in hours, that a statistics ref-
erence book on a two-hour reserve at the engineering
library is checked out by a randomly selected student
has PDF

1 1
—— 0<x<3
log(4) 1+ x =t=

0 otherwise.

fx) =

For books returned after two hours, students are charged
a fine of $2.00 plus 6 cents times the number of minutes
past the two hours.

(a) Let Y = 60X be the amount of time, in minutes,
the book is checked out. Find the PDF of Y. (Hint.
First find the CDF of Y using the CDF of X found in
Example 3.2-8.)

(b) Let V be the fine amount, in cents, that a random
student checking out the book will pay. Find E(V)
and 0‘2,. You may use R commands for the needed
integrations. (Hint. V. = h(Y), where h(y) = 0 for
0 <y <120, and A(y) = 200 + 6(y — 120),y > 120.)

(c) Give the mean value and variance of the fine amount
expressed in dollars.

9. Plumbing suppliers typically ship packages of plumb-
ing supplies containing many different combinations of
items such as pipes, sealants, and drains. Almost invari-
ably there are one or more parts in the shipment that
are not correct: the part may be defective, missing, not
the one that was ordered, etc. In this question the ran-
dom variable of interest is the proportion P of parts in
a shipment, selected at random, that are not correct. A
family of distributions for modeling a random variable
P, where P is a proportion, has the probability density
function

fe(p) =6p°~",

O<p<l1l, 6>0.

(a) Find E(P) and o3 in terms of the parameter 6.

(b) Find the CDF of P in terms of the parameter 6.

(c) Find the interquartile range of P in terms of the
parameter 6.
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3.4 Models for Discrete Random Variables

Considering each random variable as being obtained by probability sampling from
its own sample space leads to a classification of sampling experiments, and the corre-
sponding variables, into classes. Random variables within each class share a common
probability mass function up to unknown parameters. These classes of probability
distributions are also called probability models. In this section we describe the four
main types of probability models for discrete random variables and the practical
contexts to which they apply.

3.4.1 THE BERNOULLI AND BINOMIAL DISTRIBUTIONS

The Bernoulli Distribution A Bernoulli trial or experiment is one whose outcome
can be classified as either a success or a failure. The Bernoulli random variable X
takes the value 1 if the outcome is a success, and the value 0 if it is a failure.

Examples of Bernoulli random variables.

1. The prototypical Bernoulli experiment is a flip of a coin, with heads and tails
being success and failure, respectively.

2. In an experiment where a product is selected from the production line, the
Bernoulli random variable X takes the value 1 or 0 as the product is defective
(success) or not (failure).

3. In an experiment where a product undergoes accelerated life testing (see
Example 3.2-2), the Bernoulli random variable X can take the value 1 if the
product lasts more than 1500 hours in operation (success) and 0 otherwise.

4. In an experiment where two fuses are examined for the presence of a defect,
the Bernoulli random variable X can take the value 1 if none of the two fuses
have the defect and 0 otherwise. |

If the probability of success is p and that of failure is 1 — p, the PMF and CDF
of X are

X 0 1
px) | 1—p p
Fx) | 1—=p 1

The expected value and variance of a Bernoulli random variable X have already
been derived in Examples 3.3-2 and 3.3-10, before the random variable in these
examples was identified as Bernoulli. The results from these examples are summa-
rized below for convenience.

px =p, ox=p(l-p). (3.4.1)

The probability that an electronic product will last more than 5500 time units is 0.1.
Let X take the value 1 if a randomly selected product lasts more than 5500 time units
and the value 0 otherwise. Find the mean value and variance of X.

Solution
Here X is Bernoulli with probability of success p = 0.1. Thus, according to (3.4.1),
px = 0.1and o3 = 0.1 x 0.9 = 0.09. -
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PMF of the
Binomial Distribution

The Binomial Distribution Suppose n Bernoulli experiments, each having proba-
bility of success equal to p, are performed independently. Taken together, the n
independent Bernoulli experiments constitute a binomial experiment. The binomial
random variable Y is the total number of successes in the n Bernoulli trials.

The prototypical binomial experiment consists of n flips of a coin, with the
binomial random variable Y being the total number of heads, but independent repe-
titions of the other Bernoulli trials mentioned in Example 3.4-1 also lead to binomial
experiments and corresponding binomial random variables. For example, if n prod-
ucts are randomly selected from the production line, the inspection of each of them
for the presence of a defect constitutes a Bernoulli trial and, assuming that prod-
ucts are defective or not independently of each other, the total number of defective
products among the n examined is a binomial random variable.

If X; denotes the Bernoulli random variable associated with the ith Bernoulli
trial, that is,

X, = 1 if ith ex.perlment results in success fori=1.....n.
0 otherwise
then the binomial random variable Y equals
n
Y = ZXi ) (3.42)
i=1

The binomial random variable Y takes the value 0 if all # Bernoulli trials result in
failure, and takes the value # if all Bernoulli trials result in success. The sample space
of YisSy ={0,1,...,n}. The probability distribution of a binomial random variable
is controlled by two parameters, the number of trials » and the common probability
of success in each of the n Bernoulli trials. If Y ~ Bin(n, p), which means that Y is
a binomial random variable with parameters »n and p, its PMF p(y) = P(Y = y) is
given by the formula

P(Y =y) = (Z)py(l—p)”y, y=0,1,....n (3.4.3)

To justify this formula note first that, by the assumption of independence,
the probability that the n Bernoulli trials result in a sequence with exactly y 1’s is
p’(1 — p)"Y, and then argue that the number of such sequences is (;), see also
Example 2.3-8. Figure 3-7 shows three binomial PMFs for n = 20. Note that for
p = 0.5, the PMF is symmetric about 10, while those for p = 0.3 and p = 0.7 are
mirror images of each other.

There is no closed form expression for the binomial CDF P(Y < y), but Table
A.11in the appendix gives the CDF for n = 5,10, 15, and 20 and selected values of p.
Both the PMF and the CDF of the binomial(n, p) distribution can be obtained, for
any n and p, with the following R commands:

R Commands for the Binomial PMF and CDF

dbinom(y, n, p) # gives the PMF P(Y=y) for y=0,1,...,n
pbinom(y, n, p) # gives the C(DF P(Y <y) for y=0,1,...,n
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In the above R commands, y can be a vector of integers from 0 to n. For example,

e The command dbinom(4, 10, 0.5) returns 0.2050781, which is the probability of
four heads in 10 flips of a fair coin, or P(Y = 4) for Y ~ Bin(10,0.5).

e The command dbinom(0:10, 10, 0.5) returns the entire PMF of Y ~
Bin(10,0.5). Thus, probability sampling from the Bin(10, 0.5) PMF can be
done either with the command sample that was used in Example 2.3-14, or
with the new command rbinom. For example, sample(0:10, size=5, replace=T,
prob=dbinom(0:10, 10, 0.5)) and rbinom(5, 10, 0.5) both give five numbers that
represent the number of heads in five sets of 10 coin flips.

e The commands sum(dbinom(4:7, 10, 0.5)) and pbinom(7, 10, 0.5)-
pbinom(3, 10, 0.5) both give 0.7734375, which is the probability P(3 < Y < 7)
= F(7) — F(3).

The mean value and variance of a binomial X with parameters n, p are

E(X)=np, o%=np(1-p) (3.4.4)

For n = 1 the binomial random variable is just a Bernoulli random variable, and the
above formulas reduce to the mean and variance given in (3.4.1).

Physical traits such as eye color are determined from a pair of genes, with one gene
inherited from the mother and one from the father. Each gene can be either domi-
nant (D) or recessive (R). People with gene pairs (DD), (DR), and (RD) are alike
in that physical trait. Assume that a child is equally likely to inherit either of the two
genes from each parent. If both parents are hybrid with respect to a particular trait
(i.e., both have pairs of genes (DR) or (RD)), find the probability that three of their
four children will be like their parents with respect to this trait.



126 Chapter 3 Random Variables and Their Distributions

Example
3.4-4

Example
3.4-5

Solution

Let X denote the number of children among the four offspring that are like their
parents in that physical trait. Each child represents a Bernoulli trial with probability
of success (meaning that the child shares the physical trait) p = P(DD) + P(RD) +
P(DR) = 0.25 + 0.25 4+ 0.25 = 0.75. Since it is reasonable to assume that the four
Bernoulli trials are independent, X ~ Bin(4,0.75). Thus, by formula (3.4.3),

4
P(X =3) = ( 3)0.7530.251 >~ (.422. -

Suppose 70% of all purchases in a certain store are made with credit card. Let X
denote the number of credit card uses in the next 10 purchases. Find (a) the expected
value and variance of X, and (b) the probability that P(5 < X < 8).

Solution

(a) Each purchase represents a Bernoulli trial where success means use of
credit card. Since it is reasonable to assume that the 10 Bernoulli trials are
independent, X ~ Bin(10,0.7). Thus, by formula (3.4.4),

E(X)=np =1000.7) =7, o% =10(0.7)(0.3) = 2.1.
(b) Next, using property 3 of Proposition 3.2-1 and Table A.1 we have

PO<X<8=P4<X <8 =F@®8)—F4)
= 0.851 — 0.047 = 0.804.

The R command pbinom(8, 10, 0.7)-pbinom(4, 10, 0.7) returns 0.8033427.
Alternatively, this probability can be calculated as

PG<X<8)=PX=5+PX=6)+PX=7)+P(X=8)

10 10 10 10
- ( p )0.750.35 + ( ¢ )0.760.34 + (7 )0.770.33 + <8 )0.780.32

= 0.103 + 0.200 4 0.267 + 0.233 = 0.803. (3.4.5)

The R command sum(dbinom(5:8, 10, 0.7)) returns the same answer as the
previous R command. In absence of a software package like R, however, the
alternative calculation (3.4.5) is more labor intensive. m

Suppose that in order for the defendant to be convicted in a jury trial, at least eight of
the 12 jurors must enter a guilty vote. Assume each juror makes the correct decision
with probability 0.7 independently of other jurors. If 40% of the defendants in such
jury trials are innocent, what is the proportion of correct verdicts?

Solution

The proportion of correct verdicts is P(B), where B = {jury renders the cor-
rect verdict}. If A = {defendant is innocent} then, according to the Law of Total
Probability,
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P(B) = P(B|A)P(A) + P(B|A°)P(A°) = P(B|A)0.4 + P(B|A)0.6.

Next, let X denote the number of jurors who reach the correct verdict in a partic-
ular trial. Here, each juror represents a Bernoulli trial where success means that
the juror reached the correct verdict. Since the Bernoulli trials are independent,
X ~ Bin(12,0.7). Note further that the correct verdict is “not guilty” if the defendant
is innocent and “guilty” otherwise. Thus,

12
PBIA)=P(X =5 =1-)_ ( . >0.7k0.312k =0.9905, and

k=0

12 12

P(BIA) =P(X =8) =) ( . )o.7k0.312k = 0.724.
k=8
It follows that
P(B) = P(B|A)0.4 + P(B]A)0.6 = 0.8306. =

3.4.2 THE HYPERGEOMETRIC DISTRIBUTION

The hypergeometric model applies to situations where a simple random sample of
size n is taken from a finite population of N units of which M, are labeled 1 and the
rest, which are My = N — My, are labeled 0. The number X of units labeled 1 in the
sample is a hypergeometric random variable with parameters M1, M», and n.

Sampling from finite populations is relevant in several contexts including
ecology; see Example 3.4-7. The prototypical engineering application of the hyper-
geometric distribution is that of quality control at the distributor level: A batch
of N product items arrives at a distributor. The distributor draws a simple ran-
dom sample of size n and inspects each for the presence of a particular defect. The
hypergeometric random variable X is the number of defective items in the sample.

In this prototypical hypergeometric experiment, each product item represents a
Bernoulli trial where success corresponds to the product item being defective. The
probability of success is the same in all Bernoulli trials and equals p = M;/N.
This follows by a generalization of the argument in Example 2.5-10 where it is
shown that the probability of success in the first and second draw are the same.
If X; is the Bernoulli random variable corresponding to the ith product item, the
hypergeometric random variable X equals

n
X = ZX,-, (3.4.6)
i=1

which is similar to the expression (3.4.2) for the binomial random variable. A hyper-
geometric experiment, however, differs from a binomial experiment in that the
successive Bernoulli trials are not independent. This is because the conditional prob-
ability of success in the second Bernoulli trial given success in the first is different
from their common (unconditional) probability of success.

The number of defective items in the sample cannot exceed the total number M;
of defective items, and of course it cannot exceed the sample size n. For example, if
a batch of size N = 10 product items has M; = 5 defective items and a sample
of size n = 6 is drawn, the number of defective items in the sample cannot exceed
five. In the same example, the number of defective items in the sample of size n = 6
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cannot be zero. This is because there are only five non-defective items; hence, a
sample of size six will have at least one defective item. Thus, in general, the sample
space of hypergeometric(M1, M3, n) variable X may be a subset of {0,1,...,n}. The
precise subset is typically clear from the context, but in mathematical notation it is
expressed as

Sx = {max(0,n — M»), ... ,min(n, M1)}, (3.4.7)

where max(ay,a;) and min(ag, ay) denote the larger and the smaller, respectively, of
the two numbers a; and a.

By the definition of simple random sampling, all (*72)
equally likely to be selected. Since there are (!)(¥2) samples having exactly x
defective items, it follows that the PMF of a hypergeometric(M1, M,,n) random

variable X is (see also Example 2.3-12)

M\ ( M
P(X=x)=w

M+ M,
n

As in the binomial case we have P(X = x) = 0 if x > n. In addition we now
have that P(X = x) = 0 if x > My, since the sample cannot contain more 1’s than
the population, or if n — x > M3, since the sample cannot contain more 0’s than the
population. This can be restated equivalently as P(X = x) = 0 if x does not belong
in the sample space given in (3.4.7).

Figure 3-8 shows the hypergeometric PMF for n = 10, N = 60, and different
values of M. Note that for M| = 30,so p = M;/N = 0.5, the PMF is symmetric
about 5, while those for M1 = 15 and M = 45 are mirror images of each other.

samples of size n are

(3.4.8)

Hypergeometric (M4, 60 — M4, 10)

< M, =15
S -+ M; =30
4~ M, =45
(3p)
C>'_
=
I
X
a o
S -
o
o'_
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There is no closed form expression for the CDF of the hypergeometric random
variable. Both the PMF and the CDF of the hypergeometric(M1, M;,n) random vari-
able X can be obtained, for any values of the parameters M1, M, and n, with the
following R commands:

R Commands for the Hypergeometric PMF and CDF
dhyper(x,M{,M,n) # gives the PMF P(X = x) for x in Sx given
in (3.4.7).

phyper(x,M;,M>,n) # gives the CDF P(X < x) for x in Sy given
in (3.4.7).

In the above R commands, x can be a vector of integers from Sy. For example,
if Y is the hypergeometric(30, 30, 10) random variable,

e The command dhyper(4, 30, 30, 10) returns 0.2158315 for the value of
P(Y =4).

e The command dhyper(0:10, 30, 30, 10) returns the entire PMF of Y. Thus,
probability sampling from the hypergeometric(30, 30, 10) PMF can be done
either with the command sample that was used in Example 2.3-14, or
with the new command rhyper. For example, sample(0:10, size=5, replace=T,
prob=dhyper(0:10, 30, 30, 10)) and rhyper (5, 30, 30, 10) both give five numbers
that represent a random sample from the hypergeometric(30, 30, 10) PMF.

e The commands sum(dhyper(4:7, 30, 30, 10)) and phyper(7, 30, 30, 10)-phyper (3,

30, 30, 10) both give 0.8106493, which is the probability P(3 < Y < 7) =
F(7) — F(3).

The mean value and variance of a hypergeometric(M{,N — M1,n) random
variable X are

(3.4.9)

Twelve refrigerators have been returned to the distributor because of a high-pitched
oscillating noise. Suppose that four of the 12 have a defective compressor and the
rest less-serious problems. Six refrigerators are selected at random for problem
identification. Let X be the number of those found with a defective compressor.
Give the sample space of X, and find P(X = 3) as well as the expected value and
variance of X.

Solution
Here N = 12, n = 6, and M| = 4. Thus, the possible values of X are Sy =
{0,1,2,3,4}. Using formula (3.4.8),

(36
(&)

P(X =3) = = 0.2424.
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Next, using formula (3.4.9),

12—-6 8

E(X)_6—— , Var(X)_6( )( )ﬁ o _

The most common method for estimating the size of wildlife populations is the
so-called capture-recapture method. It consists of taking a sample of animals (i.e.,
capturing them), then tagging and releasing them. On a later occasion, after the
tagged animals have had a chance to reintegrate into their community, a second sam-
ple is taken. The number of tagged animals in the second sample is used to estimate
the size of the wildlife population.

The capture-recapture method. A forest contains 30 elk of which 10 are captured,
tagged, and released. A certain time later, five of the 30 elk are captured. Find the
probability that two of the five captured elk are tagged. What assumptions are you
making?

Solution

Assume that the five captured elk constitute a simple random sample from the pop-
ulation of 30 elk. In particular, it is assumed that each elk, whether tagged or not,
has the same probability of being captured. Under this assumption, the number X
of tagged elk among the five captured elk is a hypergeometric random variable with
M =10, M, =20, and n = 5. Thus, according to formula (3.4.8),

10y (20
P(X =2) = % = 0.360.
(5) =

Binomial Approximation to Hypergeometric Probabilities As mentioned in connec-
tion to relation (3.4.6), a hypergeometric random variable differs from a binomial
only in that the Bernoulli trials that comprise it are not independent. However, if
the population size N is large and the sample size n is small, the dependence of the
Bernoulli trials will be weak. For example, if N = 1000 and M; = 100, the condi-
tional probability of success in the second trial given success in the first trial, which
is 99/999 = 0.099, is not very different from the unconditional probability of suc-
cess, which is 100/1000 = 0.1. In such cases, the hypergeometric PMF can be well
approximated by a binomial PMF with p = M /N and the same n. Note also that
the formula for the hypergeometric mean is the same as that for the binomial mean
with p = M1/N, and the formula for the hypergeometric variance differs from that
of the binomial by the multiplicative factor %, which is close to 1 if NV is large and

n is small. The factor =2 N—1 is called the finite population correction factor.

The practical usefulness of this approximation does not rest on the fact that
binomial probabilities are simpler to compute. With software packages like R, hyper-
geometric probabilities can be computed just as readily as binomial ones. Instead,
by treating a hypergeometric random variable as binomial, hypergeometric prob-
abilities can be computed, to a good approximation, without knowledge of the
population size.

To gain some insight into how the quality of the binomial approximation to
hypergeometric probabilities improves as the population size N increases relative to
the sample size n, let X be hypergeometric(My, N—Mi,n), and Y be binomial(n,p =
M1/N). Then,
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G)(x)
1)
%)

o If M{ =5 N=20,andn =10,P(X =2) = = (.3483.

()

—~~
—

o If My =25,N =100,and n = 10, P(X =2) = ~2/587 = 0.2924.
(10)
(%)
o If M; =250, N = 1000, and n = 10, P(X =2) = ooy = 0.2826.
10

In all cases p = M1/N = 0.25,s0 P(Y = 2) = 0.2816, which provides a reasonably
good approximation to the third hypergeometric probability.

If X is a hypergeometric(M{,N — Mi,n) random variable and Y is a
binomial(n,p = M{/N) random variable, the rule of thumb we will use in this book
for applying the binomial approximation to hypergeometric probabilities is

1t % <005, then P(X =x)=~P(Y =x) (3.4.10)

3.4.3 THE GEOMETRIC AND NEGATIVE BINOMIAL DISTRIBUTIONS

The Geometric Distribution A geometric experiment is one where independent
Bernoulli trials, each with the same probability p of success, are performed until
the occurrence of the first success. The geometric(p) random variable X is the total
number of trials up to and including the first success in such a geometric experiment.

The prototypical engineering application of the geometric distribution is that of
quality control at the production level: Product items are being inspected as they
come off the production line until the first one with a certain defect is found. The
geometric random variable X is the total number of items inspected.

The sample space of a geometric(p) random variable X is Sy = {1,2,...}. Note
that 0 is not in the sample space since at least one item must be inspected in order to
find the first defective item. On the other hand, this sample space is open-ended on
the right because the probability P(X = x) is positive for any value x; see the PMF
below. The event X = x means that the first x — 1 Bernoulli trials resulted in failure,
while the xth Bernoulli trial resulted in success. Hence, by the independence of the
Bernoulli trials, we arrive at the following formula for the PMF of the geometric(p)
distribution; see also Example 3.3-3:

PX=x)=1-py¥p, x=1273,... (3.4.11)

Figure 3-9 shows the geometric PMF for different values of p. Using the formula
for the partial sums of a geometric series, which is Z’yczo @ =(1—-at)/(1—a),it
follows that

X x—1
Fx)=Y P(Y=y)=p) (1-pY'=p> (1-p),
y=x y=1 y=0

where the last equality follows by a change of the summation variable. Hence the
CDF of the geometric(p) distribution is given by the following formula.
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Figure 3-9 Some
geometric PMFs.
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Fx)=1-(1-p), x=1,2,3,... (3.4.12)

The mean value and variance of a geometric random variable X are derived in
Examples 3.3-3 and 3.3-12, respectively, and summarized below.

1
EX)=-, o= (3.4.13)
p

The Negative Binomial Distribution A negative binomial experiment is one where
independent Bernoulli trials, each with the same probability p of success, are per-
formed until the occurrence of the rth success. The negative binomial(r, p) random
variable Y is the total number of trials up to and including the rth success in such a
negative binomial experiment.

The sample space of the negative binomial(r,p) random variable Y is Sy =
{r,r + 1,...}. For r = 1, the negative binomial(r,p) experiment reduces to the
geometric(p) experiment. In fact, if X7 is the geometric(p) random variable that
counts the number of trials until the first success, X, is the geometric(p) random
variable that counts the additional number of trials until the second success, and so
forth, the negative binomial(r, p) random variable Y can be expressed in terms of
these geometric(p) random variables as

.
Y=> X (3.4.14)
i=1

The PMF P(Y = y),y = r,r + 1,..., of the negative binomial(r, p) random
variable Y is

-1
P(Y =y) = (i 3 1)1)’(1 - (3.4.15)

To see how this formula is derived argue as follows: Any particular outcome
sequence has r successes and y — r failures, and thus its probability is p"(1 — p)*~".
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Hence the formula follows by noting that there are ({ j) binary sequences of length
y — 1 with exactly r — 1 successes. Figure 3-10 shows negative binomial(r, p) PMFs
for different values of r and p, all shifted to the origin for easier comparison.

The PMF and the CDF of the negative binomial(r, p) random variable Y can be
obtained with the following R commands:

R Commands for the Negative Binomial PMF and CDF

dnbinom(x, r, p) # gives the PMF P(Y=r+x) for x=0,1,2,...
pnbinom(x, r, p) # gives the CDF P(Y<r+x) for x=0,1,2,...

In the above R commands x, which represents the number of failures until the rth

success, can be a vector of integers from {0, 1,...}. For example, if Y is a negative
binomial(5, 0.4),

e The command dnbinom(6, 5, 0.4) returns 0.1003291 for the value of P(Y = 11).

e The command dnbinom(0:15, 5, 0.4) returns the values of P(Y = 5),...,
P(Y = 20).

e The commands sum(dnbinom(0:15, 5, 0.4)) and pnbinom(15, 5, 0.4) both
return 0.949048, which is the value of P(Y < 20).

Because of its infinite sample space, only the new R command rnbinom is
available for probability sampling.

R Command for Simulating Negative Binomial Experiment

r+rnbinom(k, r, p) # gives a sample of k negative
binomial(r, p) random variables

It can be shown that the mean and variance of a negative binomial(r, p) random
variable Y are
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Mean and Variance
of the Negative
Binomial Distribution

Example
3.4-8

Example
3.4-9

(3.4.16)

Items are being inspected as they come off the production line until the third defec-
tive item is found. Let X denote the number of non-defective items found. If an
item is defective with probability p = 0.1 independently of other items, find the
mean value and variance of X and P(X = 15).

Solution

The total number of items inspected until the third defective item is found, which
is given by Y = 3 + X, is a negative binomial with parameters r = 3 and p = 0.1.
By (3.4.16), E(Y) = 3/0.1 = 30 and Var(Y) = 3 x 0.9/(0.12) = 270. Hence, since
X =Y —3, E(X) =27 and Var(X) = 270. Next, using formula (3.4.15),

18 -1

P(X=15)=P(Y=18)=<3_1

) x 0.1% x 0.9'83 = 0.028.
The R command dnbinom(15, 3, 0.1) returns 0.02800119. -

REMARK 3.4-1 As in Example 3.4-8, the outcome recorded in a negative
binomial(r, p) experiment is often the total number X of failures until the rth success.
X and Y = r 4+ X are both referred to as negative binomial(r, p) random variables.
In particular the R command for the negative binomial PMF gives the PMF of X,
and PMFs plotted in Figure 3-10 correspond to X. <

Three electrical engineers toss coins to see who pays for coffee. If all three match,
they toss another round. Otherwise the “odd person” pays for coffee.

(a) Find the probability that a round of tossing will result in a match (that is, either
three heads or three tails).

(b) Let X be the number of times they toss coins until the odd person is deter-
mined. Name the probability distribution of X, and compute the probability
P(X = 3).

(c) Find the expected value and variance of X.

Solution

a e probability that all three match 1s 0.5° + 0.57 = 0.25.
The probability that all th his 0.5% +0.5° = 0.25

(b) X has the geometric distribution with p = 0.75. Using formula (3.4.12) we
have

PX>3)=1-PX<2)=1— [1 —(1- 0.75)2] =1-0.9375 = 0.0625.

The R command /-pnbinom(1, 1, 0.75) also returns 0.0625 for P(X > 3).

(c) Using formula (3.4.13),

1 1-0.75
E(X) = 075 = 1333 and oy = 7 = 0.444. .
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Figure 3-11 Poisson PMFs
for different values of A.
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Two athletic teams, A and B, play a best-of-three series of games (i.e., the first team
to win two games is the overall winner). Suppose team A is the stronger team and
will win any game with probability 0.6, independently from other games. Find the
probability that the stronger team will be the overall winner.

Solution

Let X be the number of games needed for team A to win twice. Then X has the
negative binomial distribution with » = 2 and p = 0.6. Team A will win the series
if X = 2 or X = 3. Since these two events are disjoint, formula (3.4.15) with r = 2
gives

P(Team A wins the series) = P(X =2) + P(X = 3)

- (1)0.62(1 —0.6)>72 + (§)0'62(1 062

= 0.36 + 0.288 = 0.648. [

3.4.4 THE POISSON DISTRIBUTION

The Model and Its Applications A random variable X that takes values 0,1,2,...1s
said to be a Poisson random variable with parameter A, denoted by X ~ Poisson(2),
if its PMF is given by

X

A
P(X =x) = e_)‘—‘, x=0,1,2,... (3.4.17)
X!

for some A > 0, where e = 2.71828... is the base of the natural logarithm. That
p(x) = P(X = x) given above is a proper PMF (i.e., the probabilities sum to 1) is
easily seen from the fact that e* = Y32 (1*/k!). Figure 3-11 shows the Poisson PMF
for three different values of A.

0.3

P(X =k)

0.1

0.0
1
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The Poisson cumulative distribution function does not have a closed form
expression. Its value, for selected values of A and x, is given in Table A.2. The
R commands for the Poisson(A) PMF and CDF and for simulating a Poisson
experiment are:

R Commands for the Poisson PMF, CDF, and Simulation

dpois(x, 1) # gives the PMF P(X=x) for x integer
ppois(x, A) # gives the CDF P(X<x) for all x

rpois(n, 1) # gives a sample of n Poisson(A) random variables

In the above R commands x can be a vector of integers from {0, 1,...}. For example,
if X is Poisson(5),

e The command dpois(6, 5) returns 0.1462228 for the value of P(X = 6).
e The command dpois(0:10, 5) returns the values of P(X = 0),..., P(X = 10).

e The commands sum(dpois(6:10, 5)) and ppois(10, 5)-ppois(5, 5) both return
the value of P(6 < X < 10), which is 0.3703441.

The Poisson distribution is used to model the probability that a number of
certain events occur in a specified period of time. The type of events whose
occurrences are thus modeled must occur at random and at a rate that does not
change with time. The Poisson distribution can also be used for the number occur-
rences of events occurring in other specified intervals such as distance, area, or
volume.

The parameter A in (3.4.17) specifies the “average” number of occurrences in
the given interval (of time, area, or space). In particular, if X ~ Poisson(1) then

Mean and Variance
of the Poisson nwx = A, 0)2( =A (3.4.18)
Distribution

Thus, if a random variable has the Poisson distribution, then its expected value
equals its variance.
To derive the formula for the expected value write

o]

—AqX
E(X):er A

:)Le_’\Z— by lettingy = x — 1
y=0 ¥

= A.

To derive the formula for the variance, first use a similar technique to get
E(X?) = A(x 4 1), and then apply the formula Var(X) = E(X?) — [E(X)]>.
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Let X ~ Poisson(4). Use Table A.2 to find P(X <5), P(3 < X <6),and P(X > 8).

Solution

All probabilities are obtained using the cumulative probabilities listed under A = 4.0
in Table A.2. The first probability is given directly from the table as P(X <5)
= 0.785. The second and third probabilities must first be expressed in terms of
cumulative probabilities before we can use Table A.2. Thus, the second probability
is given by

PB3<X=<6)=PR<X<6)=P(X <6)—P(X <2)=0.889 —0.238 = 0.651,
and the third one is given by

P(X>8)=1-P(X <7)=1-F(7)=1-0.949 = 0.051. =

Suppose that a person taking Vitamin C supplements contracts an average of three
colds per year and that this average increases to five colds per year for persons not
taking Vitamin C supplements. Suppose further that the number of colds a person
contracts in a year is a Poisson random variable.

(a) Find the probability of no more than two colds for a person taking supple-
ments and a person not taking supplements.

(b) Suppose 70% of the population takes Vitamin C supplements. Find the prob-
ability that a randomly selected person will have no more than two colds in a
given year.

(c) Suppose that a randomly selected person contracts no more than two colds in a
given year. What is the probability that person takes Vitamin C supplements?

Solution

(a) Let X7 denote the number of colds contracted by a person taking Vitamin C
supplements and X, denote the number of colds contracted by a person not
taking supplements. We are given that X;, X, are Poisson random variables
with mean values 3, 5, respectively. Therefore, by (3.4.18), X; ~ Poisson(3)
and X, ~ Poisson(5). Hence, from Table A.2,

P(X, <2)=0423, P(X, <2)=0.125.

The R commands ppois(2, 3) and ppois(2, 5) return 0.4231901 and 0.1246520
for P(X; < 2) and P(X; < 2), respectively.

(b) Let X denote the number of colds contracted by a person, and let A denote
the event that this person takes Vitamin C supplements. By the Law of Total
Probability,

P(X <2)=(0.423)(0.7) + (0.125)(0.3) = 0.334.
(c) Using Bayes’ Theorem, the desired probability is calculated as

(0.423)(0.7)

PAIX £2) = =

= (0.887. [
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Proposition
3.4-1

Poisson
Approximation to
Binomial Probabilities

One of the earliest uses of the Poisson distribution was in modeling the number
of alpha particles emitted from a radioactive source during a given period of time.
Today it has a tremendous range of applications in such diverse areas as insurance,
tourism traffic engineering, demography, forestry, and astronomy. For example, the
Poisson random variable X can be

the number of fish caught by an angler in an afternoon,
the number of new potholes in a stretch of 180 during the winter months,
the number of disabled vehicles abandoned on 195 in a year,

L=

the number of earthquakes (or other natural disasters) in a region of the
United States in a month,

I

the number of wrongly dialed telephone numbers in a given city in an hour,

6. the number of freak accidents, such as falls in the shower, in a given time
period,

7. the number of vehicles that pass a marker on a roadway in a given time period,
8. the number of marriages, or the number of people who reach the age of 100,
9. the distribution of trees in a forest, and

10. the distribution of galaxies in a given region of the sky.

As seen from these applications of the Poisson model, the random phenomena
that the Poisson distribution models differ from those of the previously discussed
distributions in that they are not outcomes of sampling experiments from a well-
understood population. Consequently, the Poisson PMF is derived by arguments that
are different from the ones used for deriving the PMFs of the previously discussed
distributions (which use the counting techniques of Chapter 2 and the concept of
independence). Instead, the Poisson PMF is derived as the limit of the binomial PMF
(see Proposition 3.4-1 below) and can also be obtained as a consequence of certain
postulates governing the random occurrence of events (see the following discussion
about the Poisson process).

Poisson Approximation to Binomial Probabilities The enormous range of applica-
tions of the Poisson random variable is, to a large extent, due to the following
proposition stating that it can be used as an approximation to binomial random
variables.

A binomial experiment where the number of trials # is large (n > 100), the proba-
bility p of success in each trial is small (p < 0.01), and the product np is not large
(np < 20), can be modeled (to a good approximation) by a Poisson distribution with
A = np. In particular, if Y ~ Bin(n, p), with n > 100, p < 0.01, and np < 20, then the
approximation

P(Y = k)~ P(X = k)

holds for all k = 0,1,2,...,n, where X ~ Poisson(i = np).

Proof of Proposition We will show that as n — oo and p — 0 in such a way that
np — XA,some A > 0, then

sk
P(Y =k)= (Z)pk(l —p) k- e‘*F, as n— oo, (3.4.19)
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holds for all k = 0,1,2,.... The proof makes use of Stirling’s formula for
approximating n! for large n: n! >~ +/27n(%)", or more precisely

n
n! = 2nn (g) €)L" where m < )\n < E

Using this, the left-hand side of (3.4.19) can be approximated by

/ n,—n
P(Y = k)~ 2nnne 1 —py*
k\\/2n(n — k)(n — kyn—ke—(n—k)
nnn—ke—k
o/ (np)*(1 — p)"* (3.4.20)

T ki — k(n — kyk

by canceling out the /27 in the numerator and denominator, simplifying the expo-
nent of e, and multiplying and dividing by n*. Note now that the ratio \/n/v/n — k
tends to 1 as n — oo with k remaining fixed, that (np)* — AK asn — oo, np — 2,
and k remains fixed, that

(a-pyt=(1-"2)""

n
:(1—%>n(1—%)71{—>e—’x-1=e—)‘

asn — oo, np — A, and k remains fixed, and that

n—k n—k
k
(nik) =<1+n—k) -

as n — oo and k remains fixed. Substituting these into (3.4.20) establishes
(3.4.19). [ |

This proposition justifies the use of the Poisson random variable for model-
ing occurrences of random events such as car accidents: Each person getting in his
or her car to drive to work each morning has a very small chance of getting into
an accident. Assuming each driver acts independently we have a large number of
Bernoulli trials with a small probability of success (i.e., accident). As a consequence
of Proposition 3.4-1, the number of accidents in a given day is modeled as a Poisson
random variable.

The same rationale can be used for modeling the number of earthquakes in a
month by dividing the month into small time intervals and thinking of each interval
as a Bernoulli trial, where success is the occurrence of an earthquake in that interval.
Since the probability of success in each interval is small and the number of intervals is
large, the number of earthquakes in a given month is modeled as a Poisson random
variable. The following discussion of the Poisson process provides the conditions
needed for giving rigorous support to this type of argument.

To illustrate the convergence of the binomial(n, p) probabilities to those of the
Poisson(1 = np) distribution as » increases and p decreases in such a way that np
remains constant, consider the binomial random variables

Y1 ~ Bin(9,1/3), Y, ~ Bin(18,1/6),
Y3 ~ Bin(30,0.1), and Y4~ Bin(60,0.05).

Note that in all cases & = np = 3. Figure 3-12 shows the PMFs of these four binomial
random variables and the PMF of the approximating Poisson(3) random variable.
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Figure 3-12 Binomial
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For a numerical illustration of the quality of approximation, the binomial CDF at
x = 2 in each case is compared with the corresponding CDF of the Poisson(3)
distribution:

P(Y1 <2)=0.3772, P(Y, <2)=0.4027,
P(Y3 <2)=04114, and P(Y4 <2) = 0.4174.
The approximating Poisson(3) probability is

32
PX <2)=¢" (1 +3+ 3> =0.4232,

which is reasonably close to the value of P(Y4 < 2). Note, however, that the first two
conditions on n and p mentioned in Proposition 3.4-1 are not satisfied for any of the
four binomial random variables.

Due to a serious defect, a car manufacturer issues a recall of n = 10,000 cars. Let
p = 0.0005 be the probability that a car has the defect, and let Y be the number of
defective cars. Find (a) P(Y > 10) and (b) P(Y = 0).

Solution

Here each car represents a Bernoulli trial with success if the car has the defect and
failure if it does not. Thus, Y is a binomial random variable with » = 10,000, and
p = 0.0005. Note that the three conditions on # and p mentioned in Proposition 3.4-1
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for the approximation of the binomial probabilities by corresponding Poisson
probabilities are satisfied. Let X ~ Poisson(A = np = 5). For part (a) write

P(Y >10) ~ P(X > 10) =1 — P(X < 9) =1 — 0.968,

where the value of the CDF in the last equality was obtained from Table A.2.
Similarly, for part (b) write

P(Y =0) ~ P(X =0) = e~ = 0.007. =

Suppose the monthly suicide rate in a certain county is 1 per 100,000 people. Give
an approximation to the probability that in a city of 500,000 in this county there will
be no more than six suicides in the next month.

Solution

Let Y denote the number of suicides in that city during the next month. We want
to approximate the probability P(Y < 6). Here Y ~ Bin(n = 500,000, p = 1075)
so the three conditions mentioned in Proposition 3.4-1 are satisfied. Hence, letting
X ~ Poisson(: = np = 5), and using Table A.2, it follows that

P(Y < 6) ~ P(X <6) = 0.762. =

The Poisson Process  All examples of Poisson random variable pertain to the num-
ber of events occurring in a fixed time period (fish caught in an afternoon, potholes
during the winter months, etc). Often, however, events are recorded at the time they
occur as time unfolds. This requires that time itself become an integral part of the
notation describing the data records. Letting time 0 denote the start of observations
we set

X(t) = number of events occurring in the time interval (0, ¢]. (34.21)

Definition 3.4-1
Viewed as a function of time, the number of occurrences X (t), ¢ > 0, is called a
Poisson process if the following postulates are satisfied.

1. The probability of exactly one occurrence in a time period of length /4 is
equal to wh + o(h), for some o« > 0, where the quantity o(h) satisfies
o(h)/h — 0,as h — 0.

2. The probability of more than one occurrence in a short time period of

length 4 is equal to o(h).
3. For any set of nonoverlapping time intervals A;, i = 1,...,n, the events
E; = [k; events occur in A;], i = 1,...,n, where the k; are any integers, are

mutually independent.

The parameter « in the first postulate specifies the rate of the occurrences or,
synonymously, the average number of occurrences per unit of time. Thus, the first
postulate states that the rate at which events occur is constant in time. The second
postulate means that the events are rare, in the sense that it is highly unlikely that
two will occur simultaneously. Finally, the third postulate specifies that in disjoint
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Proposition

3.4-2

Example
3.4-15

time intervals events occur independently. When these postulates hold we have the
following proposition.

If X(¢), t > 0,is a Poisson(«) process, then

1. For each fixed ty, the random variable X(#), which counts the number of
occurrences in (0, fy], has the Poisson distribution with parameter » = o x &.
Thus,

P
P(X(tp) = k) = e_"”o%, k=0,1,2,.... (3.4.22)

2. For any two positive numbers #; < #, the random variable X (#;) — X(#1), which
counts the number of occurrences in (¢1,;], has the Poisson distribution with
parameter A = a(t; — t1). Thus, the PMF of X(t;) — X(#1) is given by (3.4.22)
with £y replaced by (¢, — 7).

3. For any two positive numbers #; < f, the random variable X () — X(#) is
independent from X (s) for all s < #. [ |

A noteworthy implication of part (2) of this proposition is that the zero time
point of a Poisson process can be any arbitrary time point. In other words, one may
start recording the events which happen after time ¢;, completely ignoring anything
that happened up to that point, and still get a Poisson process with the same rate.

The proof of Proposition 3.4-2 is based on the fact that Poisson probabilities are
obtained as limits of binomial probabilities (Proposition 3.4-1). Indeed, if the postu-
lates of Definition 3.4-1 are satisfied, then by dividing an interval into a large number
of small subintervals of equal length, the total number of occurrences in that interval
can be thought of as a binomial random variable made up of the sum of Bernoulli
random variables, each of which corresponds to one of the small subintervals. Since
by Proposition 3.4-1 the Poisson probability mass function is obtained as the limit
of binomial probability mass functions, it can be argued that the total number of
occurrences is a Poisson random variable. While making this argument rigorous is
not beyond the scope of this book, such a proof adds little to the understanding of
the Poisson process and thus will not be presented.

Continuous inspection of electrolytic tin plate yields on average 0.2 imperfections
per minute. Find each of the following:

(a) The probability of one imperfection in three minutes.
(b) The probability of at least two imperfections in five minutes.
(c) The probability of at most one imperfection in 0.25 hours.

Solution
Let X(¢) denote the number of imperfections found in (0,7], where the time ¢ is
expressed in minutes.

(a) Here « = 0.2, ¢t = 3, so that X(3) ~ Poisson(r = «at = 0.6). Thus, using
Table A.2,

P(X(3)=1) = P(X(3) < 1) — P(X(3) < 0) = 0.878 — 0.549 = 0.329.

(b) Here @« = 0.2, ¢t = 5, so that X(5) ~ Poisson(A = «at = 1.0). Thus, using
Table A.2,

P(X(5)>2)=1-PX(5) <1)=1-0.736 = 0.264.
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(¢) Here « = 0.2, ¢ = 15, so that X(15) ~ Poisson(A = at = 3.0). Thus, using
Table A.2,

P(X(15) < 1) = 0.199. -

People enter a department store according to a Poisson process with rate « per hour.
It is known that 30% of those entering the store will make a purchase of $50.00 or
more. Find the probability mass function of the number of customers who will make
purchases of $50.00 or more during the next hour.

Solution

Let X denote the number of people entering the store during the next hour and Y
the number of those who make a purchase of $50.00 or more. The information given
implies that X ~ Poisson(«), and that the conditional distribution of Y given X = n
is binomial(r, 0.3). Thus,

P(Y = k|X = n) = (Z) 03K 0.7)"* for n > k,

and P(Y = k|X = n) = 0 for n < k, since the number of customers spending
$50.00 or more cannot exceed the number of customers entering the department
store. Thus, by the Law of Total Probability,

P(Y =k) = iP(Y:k|X=k+m)P(X:k+m)

m=0

_ = k+m k m _—a ak-i—m

_ i 670'30( (030l)k 670'70[ (O70l)m

k! m)!
m=0

_ o03a (0.3a) i o7 (0.7a)™

N k! i m!
m=!

_ 03 (03)"

o k=012,

where the last equality follows by the fact that a PMF sums to 1. Thus, ¥ ~
Poisson(0.3«). =

Let X (¢) be a Poisson process with rate «. It is given that X (1) = n. Show that the
conditional distribution of X(0.4) is binomial(n,0.4). In words, if we know that n
events occurred in the interval (0, 1], then the number of events that occurred in the
interval (0,0.4] is a binomial(7, 0.4) random variable.

Solution
For k=0,1,...,n, the events

[X(0.4)=k]N[X(1)=n] and [X(04)=k]N[X(1) - X(0.4) = n — k]
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are identical as they both express the fact that k£ events occurred in (0,0.4] and n — k
events occurred in (0.4, 1]. Thus,

P(X(0.4) = k|X(1) = n)

_ P(IX(04) = K] N [X(1) = n])

P(X(1) =1)

_ P([X(04) = K] N [X(1) = X(04) = n — k]

P(X(1) =1)

_ P(X(04) = )P(X(1) - X(0.4) = n — k)

P(X(1) =1)

(by part (3) of Proposition 3.4-2)

[ (0.40)k /K1~ 10D [(1 — 0.4)a]"*/(n — k)!

n!
~ kl(n—k)

e %" /n!

(by part (2) of Proposition 3.4-2)

0451 — 0.4y,

which is the PMF of the binomial(n, 0.4) distribution. [

Exercises

1. Grafting, the uniting of the stem of one plant with
the stem or root of another, is widely used commercially
to grow the stem of one variety that produces fine fruit
on the root system of another variety with a hardy root
system. For example, most sweet oranges grow on trees
grafted to the root of a sour orange variety. Suppose each
graft fails independently with probability 0.3. Five grafts
are scheduled to be performed next week. Let X denote
the number of grafts that will fail next week.

(a) The random variable X is (choose one)
(i) binomial (ii) hypergeometric (iii) negative bino-
mial (iv) Poisson.
(b) Give the sample space and PMF of X.
(c) Give the expected value and variance of X.

(d) Suppose that the cost of each failed graft is $9.00.
Find:
(i) The probability that the cost from failed grafts will
exceed $20.00.
(ii) The expected value and the variance of the cost
from failed grafts.

2. Suppose that 30% of all drivers stop at an intersection
having flashing red lights when no other cars are visible.
Of 15 randomly selected drivers coming to an intersection
under these conditions, let X denote the number of those
who stop.

(a) The random variable X is (choose one)
(i) binomial (ii) hypergeometric (iii) negative bino-
mial (iv) Poisson.

(b) Give the expected value and variance of X.
(c) Find the probabilities P(X = 6) and P(X > 6). You
may use R commands.

3. A company sells small, colored binder clips in pack-
ages of 20 and offers a money-back guarantee if two or
more of the clips are defective. Suppose a clip is defective
with probability 0.01, independently of other clips. Let X
denote the number of defective clips in a package of 20.

(a) The distribution of the random variable X is (choose
one)
(i) binomial (ii) hypergeometric (iii) negative bino-
mial (iv) Poisson.
(b) Specify the value of the parameter(s) of the cho-
sen distribution and use R commands to find the
probability that a package sold will be refunded.

4. A test consists of 10 true-false questions. Suppose a
student answers the questions by flipping a coin. Let X
denote the number of correctly answered questions.

(a) Give the expected value and variance of X.

(b) Find the probability the student will answer correctly
exactly 5 of the questions.

(c) Find the probability the student will answer correctly
at most 5 of the questions. Use the CDF to answer this
question.

(d) Let Y = 10 — X. In words, what does Y represent?
(e) Use the CDF to find P(2 < Y <)Y).



5. The probability that a letter will be delivered within
three working days is 0.9. You send out 10 letters on
Tuesday to invite friends for dinner. Only those who
receive the invitation by Friday (i.e., within 3 working
days) will come. Let X denote the number of friends who
come to dinner.

(a) The random variable X is (choose one)
(i) binomial (ii) hypergeometric (iii) negative bino-
mial (iv) Poisson.
(b) Give the expected value and variance of X.

(c) Determine the probability that at least 7 friends will
come.

(d) A catering service charges a base fee of $100 plus
$10 for each guest coming to the party. What is the
expected value and variance of the catering cost?

6. Suppose that in order for the defendant to be con-
victed in a military court the majority of the nine
appointed judges must enter a guilty vote. Assume that
a judge enters a guilty vote with probability 0.1 or 0.9
if the defendant is innocent or guilty, respectively, inde-
pendently of other judges. Assume also that 40% of the
defendants in such trials are innocent.

(a) What proportion of all defendants is convicted?
(b) What is the proportion of correct verdicts?

7. In the grafting context of Exercise 1, suppose that
grafts are done one at a time and the process continues
until the first failed graft. Let X denote the number of
grafts up to and including the first failed graft.

(a) The random variable X is (choose one)
(i) binomial (ii) hypergeometric (iii) negative bino-
mial (iv) Poisson.
(b) Give the sample space and PMF of X.
(c) Give the expected value and variance of X.

8. In the context of quality control, a company manu-
facturing bike helmets decides that helmets be inspected
until the fifth helmet having a particular type of flaw is
found. The total number X of helmets inspected will be
used to decide whether or not the production process is
under control. Assume that each helmet has the flaw with
probability 0.05 independently of other helmets.

(a) The random variable X is (choose one)
(i) binomial (ii) hypergeometric (iii) negative bino-
mial (iv) Poisson.
(b) Give the sample space and PMF of X.

(c) Use R commands to find the probability that
X > 35.

9. Two athletic teams, A and B, play a best-of-five series
of games (i.e., the first team to win three games is the
overall winner). Suppose team A is the better team and
will win any game with probability 0.6, independently
from other games.
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(a) Find the probability that the better team will be the
overall winner.

(b) A similar question was answered in Example 3.4-10
for a best-of-three series. Compare the two probabili-
ties and provide an intuitive explanation for why one
of the two probabilities is larger.

10. Average run length. To control the quality of a
manufactured product, samples of the product are
taken at specified inspection time periods and a quality
characteristic is measured for each product. If the aver-
age measurement falls below a certain predetermined
threshold, the process is declared out of control and is
interrupted. The number of inspections between succes-
sive interruptions of the process is called a run length. The
expected value of the random variable X = run length is
called the average run length. Suppose the probability that
an inspection will result in the process being interrupted
is 0.01.

(a) The random variable X is (choose one)
(i) binomial (ii) hypergeometric (iii) negative bino-
mial (iv) Poisson.
(b) Give the sample space and PMF of X.
(c) What is the average run length?

11. In the context of Exercise 10, suppose that after five
interruptions the process undergoes a major evaluation.
Suppose also that inspections happen once every week.
Let Y denote the number of weeks between successive
major evaluations.

(a) The random variable Y is (choose one)
(i) binomial (ii) hypergeometric (iii) negative bino-
mial (iv) Poisson.
(b) Find the expected value and variance of Y.

12. Suppose that six of the 15 school buses in a particular
school district have developed a slight defect since their
last inspection (the steering wheel shakes when braking).
Five buses are to be selected for thorough inspection. Let
X denote the number of buses among the five that are
inspected that have the defect.

(a) The random variable X is (choose one)
(i) binomial (ii) hypergeometric (iii) negative bino-
mial (iv) Poisson.
(b) Give the sample space and formula for the PMF of X.
(c) Use R commands to find P(2 < X < 4).

(d) Give the expected value and variance of X.

13. A distributor receives a new shipment of 20 iPods.
He draws a random sample of five iPods and thoroughly
inspects the click wheel of each of them. Suppose that the
shipment contains three iPods with a malfunctioning click
wheel. Let X denote the number of iPods with a defective
click wheel in the sample of five.
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(a) The random variable X is (choose one)
(i) binomial (ii) hypergeometric (iii) negative
binomial (iv) Poisson.
(b) Give the sample space and the formula for the PMF
of X.

(c) Compute P(X = 1).
(d) Find the expected value and variance of X.

14. In a study of a lake’s fish population, scientists cap-
ture fish from the lake, then tag and release them.
Suppose that over a period of five days, 200 fish of a cer-
tain type are tagged and released. As part of the same
study, 20 such fish are captured three days later. Let X
denote the number of tagged fish among the 20 captured.
Suppose it is known that the lake has 1000 fish of this
particular type.

(a) The distribution of the random variable X is (choose
one)
(i) binomial (ii) hypergeometric (iii) negative bino-
mial (iv) Poisson.
(b) Use R commands to find P(X < 4).

(c) Which distribution from those listed in part (a) can be
used as an approximation to the distribution of X?

(d) Using the approximate distribution, give an approxi-
mation to the probability P(X < 4), and compare it
with the exact probability found in part (b).

15. In a shipment of 10,000 of a certain type of elec-
tronic component, 300 are defective. Suppose that 50
components are selected at random for inspection, and
let X denote the number of defective components
found.

(a) The distribution of the random variable X is (choose
one)
(i) binomial (ii) hypergeometric (iii) negative bino-
mial (iv) Poisson.
(b) Use R commands to find P(X < 3).

(c) Which distribution from those listed in part (a) can be
used as an approximation to the distribution of X?

(d) Using the approximate distribution, give an approxi-
mation to the probability P(X < 3), and compare it
with the exact probability found in part (b).

16. A particular website generates income when people
visiting the site click on ads. The number of people visit-
ing the website is modeled as a Poisson process with rate
a = 30 per second. Of those visiting the site, 60% click on
an ad. Let Y denote the number of those who will click on
an ad over the next minute.

(a) The distribution of the random variable Y is (choose
one)
(i) binomial (ii) hypergeometric (iii) negative bino-
mial (iv) Poisson.
(Hint. See Example 3.4-16.)

(b) Give the mean and variance of Y.

(c) Use R commands to find the probability that Y >
1100.

17. Structural loads are forces applied to a structure or its
components. Loads cause stresses that can lead to struc-
tural failure. It has been suggested that the occurrence of
live (or probabilistic) structural loads over time in aging
concrete structures can be modeled by a Poisson process
with a rate of two occurrences per year. Find the proba-
bility that more than two loads will occur during the next
quarter of a year.

18. During a typical Pennsylvania winter, I80 averages
1.6 potholes per 10 miles. A certain county is responsible
for repairing potholes in a 30-mile stretch of the inter-
state. Let X denote the number of potholes the county
will have to repair at the end of next winter.

(a) The distribution of the random variable X is (choose
one)
(i) binomial (ii) hypergeometric (iii) negative bino-

mial (iv) Poisson.

(b) Give the expected value and variance of X.

(c) Find P(4 < X <9).

(d) The cost of repairing a pothole is $5000. If Y denotes
the county’s pothole repair expense for next winter,
find the mean value and variance of Y.

19. A typesetting agency used by a scientific journal
employs two typesetters. Let X7 and X, denote the num-
ber of errors committed by typesetter 1 and 2, respec-
tively, when asked to typeset an article. Suppose that
X1 and X, are Poisson random variables with expected
values 2.6 and 3.8, respectively.

(a) What is the variance of X7 and of X,?

(b) Suppose that typesetter 1 handles 60% of the articles.
Find the probability that the next article will have no
errors.

(c) If an article has no typesetting errors, what is the
probability it was typeset by the second typesetter?

20. An engineer at a construction firm has a subcontract
for the electrical work in the construction of a new office
building. From past experience with this electrical sub-
contractor, the engineer knows that each light switch that
is installed will be faulty with probability p = 0.002 inde-
pendent of the other switches installed. The building will
have n = 1500 light switches in it. Let X be the number
of faulty light switches in the building.

(a) The distribution of the random variable X is (choose
one)
(i) binomial (ii) hypergeometric (iii) negative bino-
mial (iv) Poisson.
(b) Use R commands to find P(4 < X < 8).

(c) Which distribution from those listed in part (a) can be
used as an approximation to the distribution of X?



(d) Using the approximate distribution, give an approxi-
mation to the probability P(4 < X < 8), and compare
it with the exact probability found in part (b).

(e) Compute the exact and approximate probability of no
faulty switches.

21. Suppose that a simple random sample of 200 is taken
from the shipment of 10,000 electronic components of
Exercise 15, which contais 300 defective components, and
let Y denote the number of defective components in the
sample.

(a) The random variable Y has a hypergeometric(M1, M»,
n) distribution, which can be approximated by a
binomial(n,p) distribution, which can be approx-
imated by a Poisson()1) distribution. Specify the
parameters of each distribution mentioned in the last
sentence.

(b) Use R commands to compute the exact probability
P(Y < 10), as well as the two approximations to this
probability mentioned in part (a).

22. Let X be the random variable that counts the number
of events in each of the following cases.

(a) The number of fish caught by an angler in an after-
noon.

(b) The number of disabled vehicles abandoned on 195 in
a year.
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(c) The number of wrongly dialed telephone numbers in
a given city in an hour.

(d) The number of people who reach the age of 100 in a
given city.

For each case explain how the Poisson approximation to

the binomial distribution can be used to justify the use of

the Poisson model for X, and discuss the assumptions that

are needed for this justification.

23. Let X(¢) be a Poisson process with rate .
(a) Use words to justify that the events

[X(5) = 1]N[X(1) = 1] and
[X(r) =1]N[X(1) — X(r) = 0]

are the same

(b) Use Proposition 3.4-2 to find the probability of the
event in (a) when o = 2 and ¢ = 0.6.

(c) Tt is given that X (1) = 1, that is, only one event in the
time interval [0,1]. Let T denote the time the event
occurred, and let ¢ be between 0 and 1.

(i) Use words to justify that the events T < ¢ and
X(t) = 1 are the same.

(ii) Show that the conditional distribution of T, given
that X(1) = 1, is uniform in [0, 1] by showing that
P(T=<1yX1)=1)=rt

3.5 Models for Continuous Random Variables

The simplest continuous distribution, which is the uniform, was introduced in
Definition 3.2-5, extended in Example 3.2-5, and further studied in Examples 3.2-4,
3.3-8, and 3.3-16. This section presents in some detail two other useful classes of
continuous distributions, the exponential and the normal. Three additional families
of distributions, commonly used in reliability theory, are briefly introduced in the
exercises.

Unlike the discrete random variables discussed in Section 3.4, where the nature
of the experiment determines the type of probability model under fairly transpar-
ent assumptions, we often have no indication as to which probability model will best
describe the true distribution of a particular continuous random variable. For exam-
ple, there may be no a priori knowledge that the probability density function of
the life time of a randomly chosen electrical component has the form assumed in
Example 3.2-6. For this reason, this section also presents a diagnostic procedure that
helps assess the goodness-of-fit of a particular probability model to a data set.

3.5.1 THE EXPONENTIAL DISTRIBUTION

A random variable X is said to be an exponential, or to have the exponential
distribution with parameter A, denoted by X ~ Exp(A), if its PDF is

)\‘e—kx

=15

if x>0
if x <O.
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Figure 3-13 PDFs (left o ) o )
panel) and CDFs (right The exponential distribution is used in reliability theory as the simplest model
panel) of three exponential ~ for the life time of equipment. (See Exercises 13 and 14 for generalizations of the
distributions. exponential distribution.) Moreover, as discussed below, the time until the next

event of a Poisson process follows the exponential distribution. Thus, the exponen-
tial distribution models a wide range of waiting times, such as the time for the next
customer to arrive at a service station, the time until the next bank or investment
firm failure, the time until the next outbreak of hostilities, the time until the next
earthquake, or the time until the next component of a multi-component system fails.

The PDF used in Example 3.2-6 is exponential with A = 0.001. With an integra-
tion similar to the one used in that example, it follows that the CDF of the Exp())
distribution is

1—e™ if x>0

Fx) = {0 if x <O. (5.1

Figure 3-13 presents plots of the PDF and CDF of the exponential distribution for
different values of the parameter A.

Some R commands related to the exponential distribution are given in
Exercise 4.

Examples 3.3-6 and 3.3-14 find the mean value and variance, respectively, of an
exponential distribution with A = 0.1, while Example 3.3-19 finds the percentiles of
an exponential distribution with A = 0.001. The same type of calculations yield the
following formulas for a general A:

Mean, Variance, and ) . log(a)
Percentiles of the 2 ogla
Exponential n= v o = 2 Xo = B 3.5.2)
Distribution
Example Suppose the useful life time, in years, of a personal computer (PC) is exponentially
3.5-1 distributed with parameter A = 0.25. A student entering a four-year undergradu-

ate program inherits a two-year-old PC from his sister who just graduated. Find the
probability the useful life time of the PC the student inherited will last at least until
the student graduates.



Memoryless Property
of a Random Variable

Proposition
3.5-1
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Solution

Let X denote the useful life time of the PC. The PC has already operated for
two years and we want the probability it will last at least four more years. In
mathematical notation this is expressed as P(X > 2 + 4|X > 2). Using the defi-
nition of conditional probability and the form of the CDF of an exponential random
variable we have

P([X >24+4]Nn[X >2])

P(X >2+4X>2) =

P(X > 2)
_P(X>2+4]) e~ 025%(2+4)
- P(X > 2) T e—025x2
— o 025x4
Since P(X > 4) also equals e=?2>%* it follows that the two-year-old PC has the same
probability of lasting until the student graduates as a brand new PC would. [

A nonnegative random variable X is said to have the memoryless property, also
called the no-aging property, if for all 5,7 > 0,

PX>s+tX >5)=PX >1) (3.5.3)

By a calculation similar to the one done in Example 3.5-1 it follows that the
exponential random variable has the memoryless property. In fact, it can be shown
that the exponential is the only distribution with the memoryless property.

The Poisson-Exponential Connection For a Poisson process, let 71 be the time the
first event occurs, and for i = 2,3,..., let 7; denote the time elapsed between the
occurrence of the (i — 1)-st and the ith event. For example, 77 = 3 and 7, = 5 means
that the first occurrence of the Poisson process happened at time 3 and the second
at time 8. The times 77, T», ... are called interarrival times.

If X(s), s > 0, is a Poisson process with rate «, the interarrival times have the
exponential distribution with PDF f(¢) = ae™*, ¢ > 0.

Proof Let 7; be the first arrival time. To find the PDF of T we will first find
1 — Fr,(t) = P(T1 > t). This is done by noting that event 71 > t is equivalent to
the event X () = 0 since both are equivalent to the statement that no event occurred
in the interval (0, ¢]. Thus,

P(T; > 1) =P(X(t) =0)=e ™.

Hence, Fr,(t) = P(T) < t) = 1 — e, and upon differentiation we find that the
PDF of T is as specified in the proposition. To show that 75, the second inter-
arrival time, has the same distribution note that, by Proposition 3.4-2, if we start
recording the events that occur after time 7, we obtain a new Poisson process for
which time zero is set to 77 and has the same rate «. Since in this new Poisson
process 75 is the first interarrival time, it follows that 7, has the same distribu-
tion as 77. That all interarrival times have the same distribution follows by a similar
argument. |
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Example
3.5-2

Figure 3-14 PDF of the
N(0,1) distribution.

User log-ons to a college’s computer network can be modeled as a Poisson process
with a rate of 10 per minute. If the system’s administrator begins tracking the number
of log-ons at 10:00 a.m., find the probability that the first log-on recorded occurs
between 10 and 20 seconds after that.

Solution
With time zero set at 10:00 a.m., let 7 denote the time, in minutes, of the first arrival.
Since by Proposition 3.5-1 71 ~ Exp(10), the CDF formula given in (3.5.1) yields

P <£ <T < %) _ e—lOX(10/60) _ e—lOX(ZO/GO) = 0.1532.

3.5.2 THE NORMAL DISTRIBUTION

A random variable is said to have the standard normal distribution if its PDF and
CDF, which are denoted (universally) by ¢ and ®, respectively, are

#(z) =

1 2 2
e 7 and ®(z =/ ¢ (x) dx
N ©=] .00
for —oo < z < oo. A standard normal random variable is denoted by Z. Note that
the PDF ¢ is symmetric about zero; see Figure 3-14.
A random variable X is said to have the normal distribution, with parameters p
and o, denoted by X ~ N(u,0?), if its PDF and CDF are

flx) = %q& <x;u) and F(x)=@ (x;M>

for —oo < x < o0. Thus,

f) =

1 2 2
exp(—[x — u]”/[207]),
N2mo?
which is symmetric about n. Thus, p is both the mean, the median, and the mode
of X. The parameter o is the standard deviation of X. For p = 0ando =1, X is
standard normal and is denoted by Z.

0.4

0.3
1

0.1




Proposition
3.5-2

Example
3.5-3
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The normal PDF is difficult to integrate and will not be used for calculating
probabilities by integration. Moreover, the CDF does not have a closed form expres-
sion. The R commands for the normal(u,az) PDF, CDEF, and percentiles and for
simulating normal samples are as follows:

R Commands for the Nor‘ma1(u,62) Distribution

dnorm(x, n, o) # gives the PDF for x in (—oo, o0)
pnorm(x, u,o) # gives the CDF for x in (—oo0, c©)
gnorm(s, u,o) # gives the s100th percentile for s in (0,1)

rnorm(n, u,o) # gives a sample of n normal (u,oz) random
variables

In the above R commands both x and s can be vectors. For example, if X ~
N(5,16),

e dnorm(6, 5, 4) returns 0.09666703 for the value of the PDF of X atx = 6.
e pnorm(c(3, 6), 5, 4) returns the values of P(X < 3) and P(X < 6).

e gnorm(c(0.9, 0.99), 5, 4) returns 10.12621 and 14.30539 for the 90th and 99th
percentile of X, respectively.

The standard normal PDF ®(z) is tabulated in Table A.3 for values of z from 0 to
3.09 in increments of 0.01. For the rest of this section we will learn how to use Table
A.3not only for finding probabilities and percentiles of the standard normal random
variable, but for any other normal random variable. The ability to use only one table,
that for the standard normal, for finding probabilities and percentiles of any normal
random variable is due to an interesting property of the normal distribution, which
is given in the following proposition.

If X ~ N(i,02) and a, b are any real numbers, then
a+bX ~ N(a+ bu, b*c?). (3.5.4)
]

The new element of this proposition is that a linear transformation of a normal ran-
dom variable is also a normal random variable. That the mean value and variance of
the transformed variable, Y = a+bX, are a+bu and b2c2 follows from Propositions
3.3-1 and 3.3-2, respectively, so there is nothing new in these formulas.

Finding Probabilities We first illustrate the use of Table A.3 for finding probabilities
associated with the standard normal random variable.

Let Z ~ N(0,1). Find (a) P(-1<Z < 1), (b) P(-2<Z <2),and (c) P(-3 < Z < 3).

Solution

In Table A.3, z-values are listed in two decimal places, with the second decimal place
identified in the top row of the table. Thus, the z-value 1 is identified by 1.0 in the
left column of the table and 0.00 in the top row of the table. The probability ®(1) =
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Figure 3-15 Illustration of
the 68-95-99.7% property
of normal distributions.

02 03 04

34.1%

0.0 041

P(Z < 1) is the number that corresponds to the row and column identified by 1.0
and 0.00, which is 0.8413. Since negative values are not listed in Table A.3, ®(—1) =
P(Z < —1) is found by exploiting the fact that the standard normal distribution is
symmetric about zero. This means that the area under the N(0, 1) PDF to the left of
—1is equal to the area under it to the right of 1; see Figure 3-14. Hence,

(—1) =1 — (1),

and the same relation holds with any positive number substituting 1. Thus, the
answer to part (a) is
P(-1<Z<1)=®(1)— &(—1) =0.8413 — (1 — 0.8413)
= 0.8413 — 0.1587 = 0.6826.

Working similarly, we find the following answers for parts (b) and (c):

P(—2 < Z <2) = ®(2) — ®(—2) = 0.9772 — 0.0228 = 0.9544, and
P(=3 < Z <3) = ®(3) — &(—3) = 0.9987 — 0.0013 = 0.9974.

Thus, approximately 68% of the values of a standard normal random variable fall
within one standard deviation from its mean, approximately 95% fall within two
standard deviations of its mean, and approximately 99.7% of its values fall within
three standard deviations of its mean. This is known as the 68-95-99.7% rule. (See
also Figure 3-15.) [

The use of Table A.3 for finding probabilities associated with any normal random
variable is made possible through the following corollary to Proposition 3.5-2.

Corollary
3.5-1

If X ~ N(p,0?), then
X—pn

1. ~ N(0,1), and

2. P(anfb):dD(b_—“)—cb(”_—“).

o o

To show how the corollary follows from Proposition 3.5-2, first apply formula
(3.5.4) witha = —p and b = 1 to see that if X ~ N(u,0?), then
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3.5-4
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X — p~ N(0,02).

A second application of the formula (3.5.4), now on the normal random variable
X —pwitha=0and b =1/0, yields

X—u

~ N(0,1).

In words, part (1) of Corollary 3.5-1 means that any normal random variable,
X, can be standardized (i.c., transformed to a standard normal random variable, Z),
by subtracting from it its mean and dividing by its standard deviation. This implies
that any event of the form a < X < b can be expressed in terms of the standardized
variable:

[a§X§b]=|:a_M<X_M§b_M]
o o o

Thus, part (2) of Corollary 3.5-1 follows from

P(asXsb):P(a;MSX_“<b_M)=<b<b_M>—<D<a_M>,

o - 0o o o

where the last equality follows from the fact that (X — u)/o has the standard normal
distribution.

Let X ~ N(1.25,0.46). Find (a) P(1 < X < 1.75) and (b) P(X > 2).

Solution
A direct application of part (2) of Corollary 3.5-1, yields

1.75-1.25 1-1.25

= 0(1.09) — d(—0.54) = 0.8621 — 0.2946 = 0.5675.

Working similarly for the event in part (b), we have

2-125

P(X>2)=pP(z>""22
X>2) (> 0.46

) — 1 — o(1.63) = 0.0516. -

Another consequence of Corollary 3.5-1 is that the 68-95-99.7% rule of the
standard normal seen in Example 3.5-3 applies for any normal random variable
X ~ N(u,0?):

Plu—1lo <X <p+1lo)=P(-1 < Z <1)=0.6826,
Pu—20 <X <p+20)=P(-2<Z<2)=0.9544, and
P(u—30 <X <pn+30)=P(-3<Z <3)=0.9974.

Finding Percentiles According to the notation introduced in Definition 3.3-1, the
(1—a)-100th percentile of Z will be denoted by z,,. Thus, the area under the standard
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Figure 3-16 The percentile
Zq In relation to the
standard normal CDF (left
panel) and PDF (right
panel).
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normal PDF to the right of z, is «, as shown in the right panel of Figure 3-16. The
left panel of this figure illustrates the defining property of z,, that is,

D(zg)=1—a,

which is used to find z,. Since the function ® does not have a closed form expression,
we use Table A.3 to solve this equation by first locating 1 — « in the body of the table
and then reading z, from the margins. If the exact value of 1 —« does not exist in the
main body of the table, then an approximation is used. This process is demonstrated
in the following example.

Find the 95th percentile of Z.

Solution

Here o = 0.05,s0 1 —a = 0.95. However, the exact number 0.95 does not exist in the
body of Table A.3. So we use the entry that is closest to but larger than 0.95 (which is
0.9505), as well as the entry that is closest to but smaller than 0.95 (which is 0.9495),
and approximate z¢ g5 by averaging the z-values that correspond to these two closest
entries: zg o5 =~ (1.64 + 1.65)/2 = 1.645. [

The use of Table A.3 for finding percentiles of any normal random variable is made
possible through the following corollary to Proposition 3.5-2.

Corollary
3.5-2

Let X ~ N(u,0?), and let x,, denote the (1 — )-100th percentile of X. Then,

Xg = U+ 0Zg. (3.5.5)

For the proof of this corollary it must be shown that P(X < u+o0zy4) =1 — a.
But this follows by an application of part (2) of Corollary 3.5-1 with ¢ = —oo and
b=u+o0z4:

PX <pu+40zq) =P(20) —P(—00)=1—a—-0=1—0.
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Let X ~ N(1.25,0.46%). Find the 95th percentile, x5, of X.

Solution
From (3.5.5) we have

X005 = 1.25 + 0.4620 5 = 1.25 + (0.46)(1.645) = 2.01. -

The Q-Q Plot As already mentioned, most experiments resulting in the measure-
ment of a continuous random variable provide little insight as to which probability
model best describes the distribution of the measurements. Thus, several procedures
have been devised to test the goodness-of-fit of a particular model to a random
sample obtained from some population. Here we discuss a very simple graphical
procedure, called the Q-Q plot, as it applies for checking the goodness-of-fit of the
normal distribution.

The basic idea of the Q-Q plot is to plot the sample percentiles, which are the
ordered sample values, against with the corresponding percentiles of the assumed
model distribution. Since sample percentiles estimate corresponding population per-
centiles, if the assumed model distribution is a good approximation to the true
population distribution, the plotted points should fall approximately on a straight
line of angle 45¢ that passes through the origin.

For example, in a sample of size 10 the order statistics are the 5th, 15th, ...,
95th sample percentiles; see Definition 1.7-2. To check if this sample could have
come from the standard normal distribution, the sample percentiles would be plotted
against the standard normal percentiles, which can be obtained from the R command
gnorm(seq(0.05, 0.95, 0.1)). In fact, the sample percentiles would be plotted against
the standard normal percentiles even for checking if the sample could have come
from a normal(u,o?), for unspecified  and o. This is because the normal(u,o?)
percentiles, x,, are related to the normal(0, 1) percentiles, z, through x, = 1 + 0z,
which is a linear relationship. Thus, if the normal model is correct, the plotted points
would fall on a straight line, though not necessarily the 45° line through the origin.

In R there is a customized command for the normal Q-Q plot. With the data in
the R object x, two versions of the command are as follows:

R Commands for the Normal Q-Q Plot

qggnorm(x); qqgline(x, col=2)
ggnorm(x, datax=T); qqline(x, datax=T, col=2)

The first version has the sample percentiles on the y-axis, and the second puts them
on the x-axis.

The two plots in Figure 3-17, which are based on simulated samples of size 50,
illustrate the extent to which the plotted points conform to a straight line when
the data have indeed come from a normal distribution, or do not conform to a
straight line when the data have come from an exponential distribution. The R com-
mands that generated the left panel of Figure 3-17 are set.seed(111); x=rnorm(50);
qqnorm(x, datax=T); qqline(x, datax=T, col=2), and those that generated the right
panel are x=rexp(50); ggnorm(x, datax=T); qqline(x, datax=T, col=2).
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Figure 3-17 Normal Q-Q
plots with normal data

Normal Q-Q Plot

Normal Q-Q Plot

(left) and exponential data
(right).

Theoretical quantiles

Theoretical quantiles
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Exercises

1 2 0 1 2 3 4
Sample quantiles

I. The lifespan of a car battery averages six years.
Suppose the battery lifespan follows an exponential
distribution.

(a) Find the probability that a randomly selected car
battery will last more than four years.

(b) Find the variance and the 95th percentile of the bat-
tery lifespan.

(c) Suppose a three-year-old battery is still going strong.
(i) Find the probability the battery will last an addi-
tional five years.
(ii) How much longer is this battery expected to
last?

2. The number of wrongly dialed phone calls you receive
can be modeled as a Poisson process with the rate of one
per month.

(a) Find the probability that it will take between two
and three weeks to get the first wrongly dialed phone
call.

(b) Suppose that you have not received a wrongly dialed
phone call for two weeks. Find the expected value and
variance of the additional time until the next wrongly
dialed phone call.

3. Justify that the no-aging or memoryless property of the
exponential random variable X, stated in (3.5-3), can be
equivalently restated as

P(X <s+1tX >s)=1—exp{—it}.

4. Use the R command set.seed(111); hist(rexp(10000),
breaks=35, freq=F) to generate a sample of size 10,000
from the exponential(1) distribution and to plot its
histogram, and the additional R command curve(dexp,
0, 8, add=T) to superimpose the exponential(l) PDF
on the graph. Does the histogram provide a reasonable

approximation to the PDF? Repeat the above set of
commands with a sample size of 1000, using breaks=27.
Comment on how well this histogram approximates
the PDF.

5. The yield strength (ksi) for A36 steel is normally
distributed with = 43 and o = 4.5.

(a) What is the 25th percentile of the distribution of A36
steel strength?

(b) What strength value separates the strongest 10% from
the others?

(c) What is the value of ¢ such that the interval (43 — c,
43 + ¢) includes 99% of all strength values?

(d) What is the probability that at most three of 15
independently selected A36 steels have strength less
than 43?

6. The mean weight of frozen yogurt cups in an ice cream

parlor is 8 oz. Suppose the weight of each cup served

is normally distributed with standard deviation 0.5 oz,

independently of others.

(a) What is the probability of getting a cup weighing more
than 8.64 0z?

(b) What is the probability of getting a cup weighing more
than 8.64 oz three days in a row?

7. The resistance for resistors of a certain type is a
random variable X having the normal distribution with
mean 9 ohms and standard deviation 0.4 ohms. A resistor
is acceptable if its resistance is between 8.6 and 9.8 ohms.

(a) What is the probability that a randomly chosen resis-
tor is acceptable?
(b) What is the probability that out of four ran-

domly and independently selected resistors, two are
acceptable?



8. Admission officers in Colleges A and B use SAT
scores as their admission criteria. SAT scores are nor-
mally distributed with mean 500 and standard deviation
80. College A accepts people whose scores are above 600,
and College B accepts the top 1% of people in terms of
their SAT scores.

(a) What percentage of high school seniors can get into
College A?

(b) What is the minimum score needed to get accepted by
College B ?

9. The finished inside diameter of a piston ring is nor-
mally distributed with a mean of 10 cm and a standard
deviation of 0.03 cm.

(a) Above what value of inside diameter will 85.08% of
the piston rings fall?

(b) What is the probability that the diameter of a ran-
domly selected piston will be less than 10.06?

10. A machine manufactures tires with a tread thick-
ness that is normally distributed with mean 10 millimeters
(mm) and standard deviation 2 mm. The tire has a 50,000-
mile warranty. In order to last for 50,000 miles the tread
thickness must be at least 7.9 mm. If the thickness of tread
is measured to be less than 7.9 mm, then the tire is sold as
an alternative brand with a warranty of less than 50,000
miles.

(a) Find the expected proportion of tires sold under the
alternative brand.

(b) The demand for the alternative brand of tires is such
that 30% of the total output should be sold under
the alternative brand name. What should the critical
thickness, originally 7.9 mm, be set at in order to meet
the demand?

11. Answer the following questions.

(a) Use the R command x=runif(50) to generate a simu-
lated sample of size 50 from the uniform(0, 1) distri-
bution and use commands like those given in Section
3.5.2 to construct a normal Q-Q plot. Could the
simulated sample of 50 have come from a normal
distribution? Explain.

(b) Use the R command x=rgamma(50, 1, 1) to generate
a simulated sample of size 50 from the gamma(l,1)
distribution (see Exercise 13) and use commands like
those given in Section 3.5.2 to construct a normal Q-
Q plot. Could the simulated sample of 50 have come
from a normal distribution? Explain.

Probability Models Used in Reliability Theory

12. A random variable T is said to have the log-
normal( .y, o1,) distribution if log 7 ~ N(u1y, a]i), where
log is the natural logarithm. The mean value and variance
of T are
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2 2 2
T = eMln+ﬁln/2’ O’% = 62”1“+Uln (ea-ln — 1) .

The log-normal(0,1) distribution is called the standard
log-normal distribution.

(a) Show that if 7" has the log-normal(uy,o1,) distribu-
tion, its CDF is given by

logt — pm
Oln

FT(t)=<I>< > fort > 0,
and Fr(t) = Ofort < 0. (Hint. Fr(t) = P(T <1t) =
P(log T <logt),and log T ~ N(mn,al%]).)

(b) Use the R commands curve(dinorm(x, 0, 1), 0, 10,
col=1, ylab="Log-Normal PDFs”), curve(dlnorm(x,
1, 1), 0, 10, add=T, col=2), and curve(dlnorm(x, 1.5,
1), 0, 10, add=T, col=3) to superimpose the plots
of three log-normal PDFs corresponding to different
parameter values. Superimpose the plots of the cor-
responding three log-normal CDFs by making appro-
priate changes to these commands (d/norm changes to
plnorm, and PDFs changes to CDFs).

(c) Using the formulas given above, compute the mean
and variance of the log-normal(0, 1), log-normal(5, 1)
and log-normal(5,2) distributions.

(d) The R command glnorm(0.95), which is equivalent to
qlnorm(0.95, 0, 1), gives the 95th percentile of the
standard log-normal distribution. Verify that the R
commands log(qlnorm(0.95)) and gnorm(0.95) return
the same value, which is the 95th percentile of the
standard normal distribution, and provide an expla-
nation for this.

13. A random variable 7 has a gamma distribution with
shape parameter « > 0 and scale parameter § > 0 if its
PDF is zero for negative values and

1
fr() = BT (o)

where T is the gamma function defined by I'(a) =
Jo7 t*~te~'dr. The most useful properties of the gamma
function are: ['(1/2) = 7'/2, I'(a) = (@ — D)I'(a — 1),
for «>1, and T'(r) = (r — 1)! for an integer r > 1.
The mean and variance of a gamma(«, 8) distribution are
given by

e P for 1> 0,

ur = ap, 0% = 05,32.

When ¢« = 1 we get the family of exponential distribu-
tions with A = 1/p. Additionally, for « = r, with r integer
> 1, we get the family of Erlang distributions, which
models the time until the rth occurrence in a Poisson
process. Finally, the chi-square distribution with v degrees
of freedom, where v > 1 is an integer, denoted by Xf,
corresponds toa = v/2 and 8 = 2.

(a) Use the R commands curve(dgamma(x, 1, 1), 0, 7,
yvlab="Gamma PDFs”), curve(dgamma(x, 2, 1), 0,
7, add=T, col=2), and curve(dgamma(x, 4, 1), 0, 7,
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add=T, col=3) to superimpose the plots of three
gamma PDFs corresponding to different parameter
values. Superimpose the plots of the corresponding
three gamma CDFs by making appropriate changes to
these commands (dgamma changes to pgamma, and
PDFs changes to CDFs).

(b) Using the formulas given above, compute the
mean and variance of the gamma(2, 1), gamma(2,2),
gamma(3, 1), and gamma(3,2) distributions.

(c) Use the R command ggamma(0.95, 2, 1) to find
the 95th percentile of the gamma(2,1) distribution.
Making appropriate changes to this command, find
the 95th percentile of the gamma(2,2), gamma(3,1),
and gamma(3,2) distributions.

14. A random variable 7 is said to have a Weibull distri-
bution with shape parameter « > 0 and scale parameter
B > 0if its PDF is zero for t < 0 and

fr) = g—at""le’(”ﬂ)a for ¢ > 0.
The CDF of a Weibull(«, 8) distribution has the following
closed form expression:
Fr(t)=1—e WP,

When o = 1 the Weibull PDF reduces to the exponen-
tial PDF with A = 1/8. The mean and variance of a
Weibull(«, ) distribution are given by

Mzﬂl“(l-i-é),
d=elr(+2)-[r(=2)] ]

where I' is the gamma function defined in Exercise 13.

(a) Use the R commands curve(dweibull(x, 0.5,1),0,4),
curve(dweibull(x, 1, 1), 0, 4, add=T, col="red”),
curve(dweibull(x, 1.5, 1), 0, 4, add=T, col="blue”), and
curve(dweibull(x, 2, 1), 0, 4, add=T, col="green”) to
superimpose four Weibull PDFs, noting that the sec-
ond corresponds to the exponential(1) distribution.

(b) One of the imbedded functions in R is the gamma
function. Use the R commands 10*gamma(1+1/0.2)
and 10%*2*(gamma(1+2/0.2)-gamma(1+1/0.2)**2) to
find the mean and variance, respectively, of the
Weibull(0.2, 10) distribution.

(c) Use the formula for the Weibull CDF given above
to find P20 < T < 30), where T ~ Weibull
(0.2,10). Confirm your answer with the R command
pweibull(30, 0.2, 10)-pweibull(20, 0.2, 10).

(d) Find the 95th percentile of 7 having the
Weibull(0.2,10) distribution by solving the equation
Fr(th05) = 0.95, where Fr is the Weibull CDF given
above with parameters « = 0.2 and 8 = 10. Confirm
your answer with the R command gweibull(0.95,
0.2, 10).



Chapter

JOINTLY DISTRIBUTED RANDOM

VARIABLES

4.1 Introduction

When experiments record multivariate observations (see Section 1.4), the behavior
of each individual variable is, typically, not the primary focus of the investigation.
For example, studies of atmospheric turbulence may focus on understanding and
quantifying the degree of relationship between the components X, Y, and Z of wind
velocity; studies of automobile safety may focus on the relationship between the
velocity X and stopping distance Y under different road and weather conditions;
and understanding the relationship between the diameter at breast height X and
age of a tree can lead to an equation for predicting age from the (easier to measure)
diameter.

In this chapter we will introduce, among other things, the notion of correlation,
which serves as a quantification of the relationship between two variables, and the
notion of a regression function, which forms the basis for predicting one variable
from another. These concepts follow from the joint distribution of the random vari-
ables. Moreover, the joint distribution of the observations in a simple random sample
leads to the distribution of statistics, such as the sample average, which forms the
basis of statistical inference. Formulas for the mean and variance of sums will be
derived, while a more complete discussion of the distribution of sums will be given
in the next chapter. Finally, some of the most common probability models for joint
distributions will be presented.

4.2 Describing Joint Probability Distributions
4.2.1 THE JOINT AND MARGINAL PMF
Definition 4.2-1

The joint, or bivariate, probability mass function (PMF) of the jointly discrete
random variables X and Y is defined as

p(x,y)=P(X =x,Y =y).

159
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Obtaining the
Marginal PMFs from
the Joint PMF

Example
4.2-1

Figure 4-1 3D barplot of
the bivariate PMF of
Example 4.2-1.

If S = {(x1,y1), (x2,¥2),...} is the sample space of (X, Y), Axioms 2.4.1 and 2.4.2 of
probability imply

p(x;,y;) >0 foralli, and Z p(xi,yi) =1 4.2.1)
all (xi,yi)eS
Moreover, by part (2) of Proposition 2.4-1,
Pla<X<b,c<Y<d)= Z p(xi, yi). 4.2.2)
ia<xij<b,c<y;i<d

In the context of joint distributions, the distributions of individual variables are
called marginal distributions. (Recall the marginal histograms used in Section 1.5.2.)
The marginal PMFs of X and Y are obtained as

px(@) =Y pxy), pr(y)= ) pxy) @23)

yeSY XESX

Let X, Y have the joint PMF as shown in the following table.

-y
px.y) | 1 2

1 0.034 0.134
x| 2 |0066 0.266
3 10100 0.400

This PMF is illustrated in Figure 4-1.

(a) Find P(0.5 < X <2.5,15 <Y <25)and P(0.5 < X <2.5).
(b) Find the marginal PMF of Y.

Solution

(a) By relation (4.2.2), P(0.5 < X <2.5,1.5 < Y < 2.5) is the sum of p(x;, y;) for
all (x;,y;) such that 0.5 < x; <2.5and 1.5 < y; < 2.5. These two conditions are
satisfied for the (x, y) pairs (1, 2) and (2, 2). Thus,

P(0.5 < X <2515 <Y <25)=p(1,2) + p(2.2) = 0.134 + 0.266 = 0.4.
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4.2-2
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Next, by (4.2.2) again, P(0.5 < X <25)=P05 < X <25,—00 <Y < x0)
is the sum of p(x;,y;) for all (x;,y;) such that 0.5 < x; < 2.5. This condition is
satisfied for the (x, y) pairs (1, 1), (1, 2), (2, 1) and (2, 2). Thus,
P05 <X <25)=p1,1)+p1,2) +p(2,1) + p(2,2)
= 0.034 4 0.134 + 0.066 + 0.266 = 0.5.

(b) P(Y = 1) = py(1) is the sum of p(x;,y;) for all (x;,y;) such that y; = 1. This
condition is satisfied for the (x,y) pairs (1, 1), (2, 1) and (3, 1). Thus,

py(1) = 0.034 + 0.066 + 0.100 = 0.2,

which also follows by a direct application of (4.2.3). In terms of Figure 4-1,
py(1) is the height of the block obtained by stacking the three light-colored
blocks. Similarly,

py(2) =0.134 + 0.266 4 0.400 = 0.8,

which is the height of the block formed by stacking the three dark-colored
blocks in Figure 4-1. [

By the formula in (4.2.3), the marginal PMF of X in the above example is found
by summing the rows in the joint PMF table:

px(1) =0.034+0.134 = 0.168, px(2) = 0.066 + 0.266 = 0.332,
px(3) =0.1+04=05.

The table below reproduces the joint PMF of Example 4.2-1 and has an addi-
tional column on the right to display the PMF of X as well as an additional row at
the bottom to display the PMF of Y.

pixy) | 1 2 | px0
1 0034 0.134 | 0.168
x| 2 [0066 02660332
3 | 0.100 0.400 | 0.500
py(y) | 0.200 0.800 | 1.000

This method of displaying the marginal PMFs, that is, in the margins of the joint
PMF table, justifies their name.

If X1,X5,...,X), are jointly discrete, their joint or multivariate PMF is
defined as

p(x1,x2,...,xy) = P(X1 = x1, X2 = x2,..., Xy = xp).

In a batch of 12 laser diodes, three have efficiency below 0.28, four have efficiency
between 0.28 and 0.35, and five have efficiency above 0.35. Three diodes are selected
at random and without replacement. Let X7, X, and X3 denote, respectively, the
number of diodes with efficiency below 0.28, between 0.28 and 0.35, and above 0.35
in the sample. Find the joint PMF of X1, X3, and X3, and the marginal PMF of X.
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Solution

The sample space of this experiment consists of triplets (x1,x2,x3) of nonnegative
integers satisfying x| + xp + x3 = 3. Because all samples of size three are equally
likely, application of the Generalized Fundamental Principle of Counting yields the
following probabilities

p0,0,3 = 0 ((EZ))G) N 0= (3)((1‘31‘2))(2) o
p(0.2,1) = <3>(<1§2>)G> 0 050- <3>(<1§2>)<3) L
p(1.0.2) = <?>(<§2))(§> 2 - G)((l?)@ _w
p(1.2.0) = @)((%(3) B ean- (3)((1‘352))@) s
p(2.1.0) = <3>(<1‘1‘2))(3) 2 600 @)((%(3) L

By analogy to the formula (4.2.3), P(X| = 0) = px, (0) is the sum of p(x{,x2,x3) for
all (x1,x2,x3) such that x; = 0. This condition is satisfied for the (x1,x7,x3) triplets
(0,0,3),(0,1,2), (0,2, 1), (0, 3, 0). Thus,

10 40 30 4 84

PO =556 % 226 * 320 T 220 = 220
Similarly, we obtain

px(1) = ot oo =
! 220 220 @ 220 220°
15 12 27
=20 " 20" 20’

In the above example, the random variable X; = {the number of diodes with effi-
ciency below 0.28} in a simple random sample of size three, taken from 12 diodes
only three of which have efficiency below 0.28, is hypergeometric(3, 9, 3). The R
command dhyper(0:3, 3, 9, 3) returns 0.381818182, 0.490909091, 0.122727273, and
0.004545455 for the PMF of X1, which confirms the PMF found in Example 4.2-2.

4.2.2 THE JOINT AND MARGINAL PDF

Definition 4.2-2

The joint or bivariate density function of the jointly continuous random vari-
ables X and Y is a nonnegative function f(x,y) with the property that the
probability that (X, Y) will take a value in a region A of the x-y plane equals
the volume under the surface defined by f(x, y) and above the region A.



Volume Under the
Entire Surface Defined

by f(x,y) Is 1

Probability that
(X, Y) Lies in the
Region A

Probability of (X, Y)
Lying in a Rectangle

Obtaining the
Marginal PDFs from
the Joint PDF

Example
4.2-3

Section 4.2 Describing Joint Probability Distributions 163

Since the volume under a surface is found by integration, we have

[—Z f_: flx,y)dxdy =1

and the probability that (X, Y) will take a value in a region A of the plane is

4.2.9)

(4.2.5)

IWKW€M=fome@

Taking A to be the rectangle A = (a,b] x (¢,d] ={(x,y):a<x<b, c <y <d}
we obtain

b pd
Pla<X<b,c<Y<d= / / f(x,y) dy dx (4.2.6)
a Cc

Finally, the marginal PDFs of X and Y are obtained from their joint PDF as

mm=[ﬂmwm

2.7

ﬁ@=[ﬁmww

Consider the bivariate density function

202 +x)
0 otherwise.

f(x,y)={ O=xy=1

(a) Find the probability that X > Y.
(b) Find the probability that X < 0.6 and Y < 0.4.
(c) Find the marginal PDF of X and Y.

Solution
(a) The desired probability can be found by integrating f over the region A =
{(x,y):0 <y < x < 1}. Note that A is not a rectangle, so we use (4.2.5):

2, 9
P(X>Y)=7[) /O(x +xy)dydx=ﬁ.

(b) Using (4.2.6) we have

12 06 r04
P(X <06, Y <04) = = / (% + xy) dy dx = 0.0741.
0 0

(c) Using (4.2.7), we have thatfor 0 <x <1,
1
12 12 6
m@=f-4ﬁ+m@=—ﬁ+w,
0o 7 7 7
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Example
4.2-4

and fx(x) = 0 for x not in [0, 1]. Similarly, the marginal PDF of Y is given by

y

N

1
o) = [ F6 v =+

for0 <y <1, and fy(y) = 0 for y notin [0,1]. =

The joint or multivariate probability density function of the continuous
(X1,X3,...,X,) is a nonnegative function f(x1,xz,...,x,) such that

o0 o0
/ / f(xl’x2,~~,xn)dxl"'dxn=1 and
o0 oo

P((X1,X2,...,X5) eB):/-~-/Bf(x1,x2,...,xn) dxy -+ -dx,, 4.2.8)

where B is a region in n-dimensional space. A formula analogous to (4.2.7) exists in
the multivariate case, and its use is demonstrated in the following example.

Let X1, X2, X3 have the joint PDF given by

X3

f(x1,x0,x3) = e Me e for x; > 0,xp > 0,x3 > 0,

and f(x1,x2,x3) = 0 if one or more of the x; is negative.

(a) Find an expression for P(X1 < t1,X> < 1p).
(b) Find Fx, (1), the marginal CDF of X.
(c) Find fx, (t1), the marginal PDF of X;.

Solution

(a) Because the event X7 < f; and X, < 1, is equivalent to the event 0 < X} < 1,
0<X; <t,and 0 < X3 < o0, it follows that

1 plr oo
P(X1<t1,X <h)= / / / e e ™2e™ dxs dxy dxy
0o Jo JO
oo

151 %)
= / e dxy / e 2 dx2/ e Bdiy=1—-e )1 —em).
0 0 0

(b) Because the event X| < f; is equivalent to the event 0 < X7 <£,0 < X, < oo,
and 0 < X3 < oo, and Fy, (t;) = P(X1 < 1), it follows that

15t e’} e’}
Fx,(t1) = /0 /0 /0 e ¥ e ™2™ dys dxy dx; =1 — e 11,

(c) The marginal PDF of X can be obtained by differentiating its marginal CDF.
This gives fx, (t;) = e~"1. Alternatively, by the formula analogous to (4.2.7),

o0 o
fx,(x1) = / / e Me™2e7 dxs dxy = e,
0o Jo
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1. Let X be the number of daily purchases of a luxury
item from a factory outlet location and Y be the daily
number of purchases made online. Let the values 1, 2,
and 3 denote the number of purchases less than five, at
least five but less than 15, and 15 or more, respectively.
Suppose the joint PMF of X and Y is

y
p(x,y) | 1 2 3
0.09 0.12 0.13
X 2 012 0.11 0.1
3 0.13 0.10 0.09

(a) Find the probability of each of the events
(X>1,Y>2),(X>1orY > 2),and (X > 2,Y > 2).
(Hint. List the outcomes, i.e., the (x,y)-values, that
comprise each event and sum the corresponding
probabilities.)

(b) Find the marginal PMF of X and that of Y.

2. The joint PMF of X, the amount of drug administered
to a randomly selected laboratory rat, and Y, the number
of tumors the rat develops, is

y
p(x,y) 0 1 2
0.0 | 0.388 0.009 0.003
x| 1.0 |0485 0.010 0.005
2.0 | 0.090 0.006 0.004

(a) Find the marginal PMF of X and that of Y.

(b) What is the probability that a randomly selected rat
has (i) one tumor, (ii) at least one tumor?

(c) Given that a randomly selected rat has received the
1.0 mg/kg drug dosage, what is the probability that it
has (i) no tumor, (ii) at least one tumor?

3. A local diner offers entrees in three prices, $8.00,
$10.00, and $12.00. Diner customers are known to tip
either $1.50, $2.00, or $2.50 per meal. Let X denote the
price of the meal ordered, and Y denote the tip left, by a
random customer. The joint PMF of X and Y is

y

p(x,y) | $1.50 $2.00 $2.50
$8.00 | 03 012 0

x | $10.00 | 0.15 0.135 0.025

$12.00 | 003 015 0.09

(a) Find P(X <10,Y <2)and P(X < 10,Y =2).
(b) Compute the marginal PMFs of X and Y.

(c) Given that a customer has left a tip of $2.00, find the
probability that the customer ordered a meal of $10.00
or less.

4. The joint cumulative distribution function, or joint
CDF, of the random variables X and Y is defined as
F(x,y) = P(X <x,Y <y).Let X and Y be the random
variables of Exercise 1.

(a) Make a table for the F(x,y) at the possible (x,y)
values that (X, Y) takes.

(b) The marginal CDFs of X and Y can be obtained from
their joint CDF as Fx(x) = F(x,00), and Fy(y) =
F(oco,y). Use these formulas to find the marginal
CDFsof X and Y.

(c) It can be shown that the joint PMF can be obtained
from the joint CDF as

P(X =x,Y=y)=F(x,y)— F(x,y— 1)
—F(x—1,y)+ F(x—1,y —1).

(This is more complicated than the formula P(X =
x) = Fx(x) — Fx(x — 1) for the univariate case!) Use
this formula to compute P(X = 2,Y = 2), and con-
firm your answer from the PMF given in Exercise 1.

5. Let X, X5, and X3 denote the number of customers
in line for self checkout, for regular checkout, and for
express (15 items of less) checkout, respectively. Let the
values 0, 1, and 2 denote zero customers, one customer,
and two or more customers, respectively. Suppose the
joint PMF, p(x1,x2,x3), of (X1,X3,X3) is given in the
table below. Find the marginal PMFs of X7, X5, and X3.

p(0, X2, x3) p(1, X2, X3) p(2, X2, X3)
X3 X3 X3
1 2 3 1 2 3 1 2 3

o

0.030 0.027 0.024

0.030 0.027 0.024

0.040 0.036 0.032

X2

N

0.033 0.042 0.039

0.033 0.042 0.039

0.044 0.056 0.052

N

0.024 0.033 0.048

0.024 0.033 0.048

0.032 0.044 0.064

6. When being tested, an integrated circuit (IC) is con-
sidered as a black box that performs certain designed
functions. Four ICs will be randomly selected from a
shipment of 15 and will be tested for static voltages,
external components associated with the IC, and dynamic
operation. Let X1, X,, and X3 be the number of ICs
in the sample that fail the first, second, and third test,
respectively, and X4 be the number of ICs in the sam-
ple that do not fail any of the tests. Suppose that, if
tested, three of the 15 ICs would fail only the first test,
two would fail only the second test, one would fail only
the third test, and nine would not fail any of the three
tests.

(a) Specify the sample space of (X1, ..., Xy).
(b) Find the joint PMF of X7, X7, and X3.
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7. Let the random variables X and Y have the joint PDF 8. Let the random variables X and Y have the joint PDF

given below:

fx,y) =kxy* for 0<x<2,x<y<3.

(a) Find the constant k. (Hint. Use the property that

given below:

2"V 0<x<y<oo

fley) = i

0 otherwise.

the volume under the entire surface defined by

f(x,y)is1.)

(a) Find P(X + Y < 3).

(b) Find the joint CDF of X and Y. (b) Find the marginal PDFs of Y and X.

Definition of
Conditional PMF
of Y given X = x

Example
4.3-1

4.3 Conditional Distributions
4.3.1 CONDITIONAL PROBABILITY MASS FUNCTIONS

For jointly discrete (X, Y), the concept of a conditional PMF is an extension of the
concept of conditional probability of an event. If x is one of the possible values
that X can take, then the conditional probability that Y takes the value y given that
X =xis
PX=xY=y) pxy)

P(X =x) px(x)
The above relation follows simply from the definition of conditional probability, but
when we think of it as a function of y, with y ranging in the sample space Sy of Y,

while keeping x fixed, we call it the conditional PMF of Y given the information
that X = x:

P(Y=ylX=x)=

X,
Pyix=x(y) = al y), y e Sy @.3.1)
px(x)

for px(x) > 0. Similarly, the conditional PMF of X given Y = y is defined as
Px|y=y(x) = p(x,y)/py(y), x € Sx, for py(y) > 0.

If the joint PMF of (X, Y) is given in a table form, py|x=x(y) is found by dividing
the joint probabilities in the row that corresponds to x by the marginal probability
that X = x.

A robot performs two tasks, welding joints and tightening bolts. Let X be the number
of defective welds and Y be the number of improperly tightened bolts per car. The
joint and marginal PMFs of X and Y are given in the table below:

y
p(x,y) | O 1 2 3 Px(X)
0 [084 003 002 001 ]| 09
x| 1 006 001 0008 0002 008
2 [ 001 0005 0004 0.001]| 0.02
py(y) | 091 0.045 0.032 0013 | 1.0

Find the conditional PMF of Y given X = 0.

Solution
The conditional PMF of Y given X = 0 is obtained by dividing each joint probability
in the row that corresponds to x = 0 by the marginal probability that X = 0:
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4.3-2

Basic Properties of
Conditional PMFs

Example
4.3-3
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y | o 1 2 3
Pyix—o(y) | 0.9333 0.0333 0.0222 0.0111 -

The next example illustrates the computation of conditional PMFs without the
use of a table of joint probabilities.

Let X (¢) be a Poisson process with rate «. Find the conditional PMF of X (0.6) given
X(1) = n (i.e., given that there are n occurrences in the time period [0, 1]).

Solution
Because 0 < X(0.6) < X(1), and we are given that X (1) = n, it follows that the
possible values of X (0.6) are 0,1,...,n. Form =0,1,...,n, we have

_ P(X(0.6) = m, X(1) - X(0.6) =n —m)

P(X(0.6) = m|X(1) = n) P(X(1) = n)

4.3.2)

By the properties of Poisson processes, the events [X(0.6) = m] and [X(1)—X(0.6) =
n — m] are independent. Moreover, X(0.6) ~ Poisson(« x 0.6) and, according to
Proposition 3.4-2, part (b), X (1)— X (0.6) ~ Poisson(«(1—0.6)). Thus, the numerator
of (4.3.2) becomes

0.6)™ 1-0.6)"" ol
e—oz><0.6 (Ol X ) e—ax(l—O.ﬁ) (Oé X ( )) — € "o 0.6m(1 _ 0.6)n—m.
m! (n — m)! m!(n — m)!

Finally, the denominator of (4.3.2) is e"%«” /n!. Hence,

P(X(0.6) = m|X(1) = n) = (;)0.6’”(1 — 0.6y,

which is the Bin(n, 0.6) PMF. =

A conditional PMF is a proper PMF and, as such, it has the same basic
properties:

Pyix=x(y) =0, yeSy, and ZPY|X:x(Y) =1 4.3.3)
y

Because a conditional PMF is a proper PMF, it makes sense to consider the condi-
tional expected value and the conditional variance of, say, Y when the value of X is
given.

Let X and Y be as in Example 4.3-1. The conditional PMF of Y given X = 0 was
found there to be

y | o 1 2 3
Pyix—o(y) | 0.9333 0.0333 0.0222 0.0111

Calculate the conditional expected value and variance of Y given that X = 0.
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Multiplication Rule
for Joint Probabilities

Law of Total
Probability for
Marginal PMFs

Example
4.3-4

Solution
The conditional expected value of Y given X = 0 is

E(Y|X =0) =0 x (0.9333) + 1 x (0.0333) + 2 x (0.0222) + 3 x (0.0222) = 0.111.
To compute the conditional variance, Var(Y|X = 0), we first compute

E(Y?|X =0) =0 x (0.9333) + 1 x (0.0333) 4+ 4 x (0.0222) + 9 x (0.0222) = 0.222,
Thus, using Var(Y|X = 0) = E(Y?|X = 0) — [E(Y|X = 0)]?, we obtain

Var(Y|X = 0) = 0.222 — (0.111)% = 0.2097. =

The definition of conditional PMF is equivalent to the relation

p(x.y) = pyx=x(y)Px (x) 3.9

which is a direct analogue of the multiplication rule (2.5.3). Using (4.3.4), the formula
(4.2.3) for the marginal PMF of Y can be written as

Py = Y pyix=(px(x) @35)

xESX

which is a version of the Law of Total Probability (2.5.7).

Let X take the value 0, 1, or 2 depending on whether there are no customers,
between 1 and 10 customers, and more than 10 customers in the regular (manned)
checkout lines of a supermarket. Let Y be the corresponding variable for the self
checkout lines. An extensive study undertaken by the management team of the
supermarket resulted in the following conditional distributions of Y given X = x,
and the marginal distribution of X:

y 0 1 2
Pyx0(¥) 085 010 0.5 x | o 1 2
Pyix—1(y) | 030 045 025 px(x) | 0.20 050 0.30
Pyix—2(y) | 020 035 045

(a) Use the Law of Total Probability to find the marginal PMF of Y.

(b) Use the multiplication rule for joint probabilities to tabulate the joint distribu-
tion of X and Y.

Solution
(a) According to formula (4.3.5), py(y) is found by multiplying the entries in the y
column of the table by the corresponding entry in the marginal PMF of X and
summing the products. Thus, py(0) is found by multiplying 0.85, 0.3, and 0.2 by
0.2, 0.5, and 0.3, respectively, and summing the products:

py(0) =0.85x%x02+03 x05+0.2x 03 =0.38.
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Similarly, py(1) = 0.1 x 0.2 + 0.45 x 0.5+ 0.35 x 0.3 = 0.35 and py(2) =
0.05 x 0.240.25 x 0.5+ 0.45 x 0.3 = 0.27.

(b) According to formula (4.3.4), the x-row in the table of joint probabilities, that
is, p(x,y) for y = 0,1,2, is found by multiplying the py|x=,(y)-row in the table
of conditional probabilities by p x (x). Thus, the py|x=o(y)-row is multiplied by
0.2, the py|x=1(y)-row is multiplied by 0.5 and the py|x—>(y)-row is multiplied
by 0.3:

y
px,y)| O 1 2
0 |0.170 0.020 0.010
x| 1 ]0.150 0.225 0.125
2 |0.060 0.105 0.135 [

4.3.2 CONDITIONAL PROBABILITY DENSITY FUNCTIONS

In analogy with the definition in the discrete case, if (X, Y) are continuous with the
joint PDF f, and marginal PDFs fy, fy, the conditional PDF of Y given X = x is
defined to be

_ fxy)
frix=x(y) = o) (4.3.6)

if fxy(x) > 0. Similarly, the conditional PDF of X given Y = y is defined as
fxiy=y(0) = f(x.y)/fy(y), x € Sx. for fy(y) > 0.

The joint PDF of X and Y is f(x,y) = 0 if either x or y is < 0, and

e_x/ye_y
f(x,y)= —— for x>0, y>0.
y

Find fix|y—y (x).

Solution
The marginal PDF of Y is

00 1 1
fr(y) = / —e Ve Vdx = e’y/ ZeVdx = eV
o Y oy

for y > 0, and fy(y) = 0 otherwise. Thus, for y > 0,

) 1
fxiy=y(x) = ];(j(;)) = ;e /y

for x > 0,

and fx|y—y(x) = 0 otherwise. [

The conditional PDF is a proper PDF and, as such, it has the same basic
properties: fy|x=x(y) = 0, and
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Conditional b
Probabilities in o

Terms of the Pla<Y <blX=x)= fa frix=x(y) dy. 4.3.7)

Conditional PDF

Thus, as in the discrete case, it makes sense to consider the conditional expected
value and the conditional variance of Y given that X = x.

A remarkable aspect of relation (4.3.7) should not go unnoticed: The definition
of conditional probabilities given in Chapter 2, namely P(B|A) = P(BN A)/P(A),
requires P(A) > 0.If P(A) = 0, the definition does not apply. As we have seen, when
X is continuous, P(X = x) = 0 for any value x. Thus, the conditional probability
Pla < Y < b|X = x) cannot be evaluated according to the definition given in
Chapter 2.

Example Let X, Y have the joint PDF given in Example 4.3-5.

4.3-6 i
(a) Find P(X > 1|Y =3).

(b) Find the conditional mean and variance of X given that Y = 3.

Solution
(a) According to Example 4.3-5, fx|y=3(x) = 37'e™/3 for x > 0. Thus,

1
P(X>1|Y:3)=/ 3(}(/3 dx = e 153,
1

Alternatively, the same answer can be obtained by recognizing fx|y=3(x) as
the PDF of the exponential distribution with parameter A = 1/3, and using the
formula for the exponential CDF given in (3.5.1).

(b) The conditional expected value of X given Y = 3 is

o (0.¢] 1
E(X|Y =3) = / xfx|y=y(x) dx = / x=e 3 dx =3.
NS 0o 3

Alternatively, the same result can be obtained by applying directly the formula
for the mean value of the exponential distribution given in (3.5.2). The formula
for the variance of the exponential distribution given in the same relation yields
Var(X|Y =3) =09. =

The definition of the conditional PDF is equivalent to the relation

Multiplication Rule
for ]oint PDFs f(x9 y) = fY|X=X(y)fX(x) (4'3'8)

which is the continuous variable version of the multiplication rule. Using (4.3.8), the
formula (4.2.7) for the marginal PDF of Y can be written as

Law of Total

o0
Probability for fr(y) = / Frix=x(»)fx(x)dx 4.3.9)
Marginal PDFs -
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Let X be the force (in hundreds of pounds) applied to a randomly selected beam
and Y the time to failure of the beam. Suppose that the PDF of X is

1 1

—————— for5 6
log(6) — log(5) x oro=x=

fx(x) =

and zero otherwise, and that the conditional distribution of Y, given that a force
X = xis applied, is exponential(A = x). Thus,

fyix=x(y) =xe™™ for y >0,

and fy|x=x(y) = 0 for y < 0. Find the joint PDF of (X,Y), and the marginal PDF
of Y.

Solution
Using the multiplication rule for joint probabilities given in (4.3.8),

f(x,y) =fY|X=x(y)fX(x) = Mefxy

Next, using the Law of Total Probability for marginal PDFs given in (4.3.9),

00 6 1 .
) = [ rende= [ s ds

_ 1 1/ 5
~ log(6) — log(3) y(e e y)

for y > 0, and fy(y) = 0 otherwise. [

4.3.3 THE REGRESSION FUNCTION
The conditional expected value of Y given that X = x,
wyx(x) = E(Y|X =x), (4.3.10)

when considered as a function of x, is called the regression function of Y on
X. Thus, “regression function” is synonymous to conditional mean value function.
Formulas for calculating the regression function for discrete and continuous random
variables are

wyx(¥) = > ypyix=x(»). xeSx 4311)
yeSy
o0
pyx(x) = _/ Vyix=x(y) dy, xeSx (4.3.12)
—00
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Example
4.3-8

Example
4.3-9

Let X and Y be as in Example 4.3-4. Find the regression function of Y on X.

Solution
Using the conditional PMFs of Y given X = x, given in Example 4.3-4, we have

2
E(YIX =0) =Y ypyix=o(y) = 0 x 0.85+1 x 0.10 +2 x 0.05 = 0.2,
y=0

2
EYIX=1)= Zypy‘le(y) =0x030+1x0.45+2x0.25 =0.95,
y=0

2
E(YIX =2) =Y ypyix=2(y) = 0x 020+ 1 x 0.35+2 x 0.45 = 1.25.
y=0

Thus, in a table form, the regression function of Y on X is:

x o 1 2
nyx(x) |02 095 1.25

The information that this regression function makes visually apparent, and that was
not easily discernable from the joint probability mass function, is that if the regular
checkout lines are long, you can expect long self-checkout lines as well. m

Suppose (X, Y) have joint PDF

24xy 0<x<10<y<lx+y<l1
fley) =

0 otherwise.
Find the regression function of Y on X.

Solution
The marginal PDF of X is

1—x

fx(x) = /0 24xy dy = 12x(1 — x)?

for 0 < x < 1 and zero otherwise. This gives

_fxy) y
frix=x(y) = (o) 2(1 e
Thus, E(YIX = x) = [ yfypx=c(y) dy = 3(1 - x). =

As a consequence of the Law of Total Probability for marginal PMFs and PDFs,
given in (4.3.5) and (4.3.9), respectively, the expected value of Y can be obtained
as the expected value of the regression function. This is called the Law of Total
Expectation.



Law of Total
Expectation

Law of Total
Expectation for
Discrete Random
Variables

Law of Total
Expectation for
Continuous Random
Variables

Example
4.3-10

Example
4.3-11
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E(Y) = E[E(Y|X)] 43.13)

Explicit formulas for discrete and continuous random variables are as follows:

E(Y)= Y E(Y|X=x)px(x) 4.3.14)
xESX
E(Y) = /OO E(Y|X = x)fx(x) dx 4.3.15)

Use the regression function of Y on X and the marginal PMF of X,

x o 1 2

x |0 1 2
Lyx(x) 0.2 095 1.25

and px()[02 05 03

which were given in Examples 4.3-8 and 4.3-4, respectively, in order to find E(Y).

Solution
Using the formula in (4.3.14), we have

E(Y) = E(Y|X = 0)px(0) + E(YIX = Dpx(1) + E(Y|X =2)px(2)
=02 x0.2+0.95 x 0.5 +1.25 x 0.3 = 0.89.

Of course, we obtain the same result using the marginal distribution of Y, which is
found in Example 4.3-4: E(Y) =0 x 038+ 1 x 0.35 + 2 x 0.27 = 0.89. [

Use the regression function of Y on X, and the marginal PDF of X,
2 2
EY|X =x)= 3(1 —x) and fyxy(x)=12x(1—-x)°, 0<x<1,

which were found in Example 4.3-9, in order to find E(Y).

Solution
Using the formula in (4.3.15), we have

E(Y) = fol %(1 —x)12x(1 — x)? dx = 23—4 /01 x(1 —x)* dx.

The R commands f=function(x){x*(1-x)**3}; integrate(f, 0, 1) give 0.05 for the value
of the above integral. Thus, E(Y) = 0.4. =

The following example shows that the Law of Total Expectation, (4.3.13), can be
applied without knowledge of the marginal PMF or PDF of X, that is, without use
of (4.3.14) or (4.3.15).
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Example
4.3-12

Definition of
Independence of Two
Random Variables

Proposition
4.3-1

Condition for
Independence of Two
Discrete Random Variables

Condition for
Independence of Two
Continuous Random
Variables

Let Y denote the age of a tree, and let X denote the tree’s diameter at breast height.
Suppose that, for a particular type of tree, the regression function of Y on X is
wy|x(x) = 5+ 0.33x and that the average diameter of such trees in a given forested
area is 45 cm. Find the mean age of this type of tree in the given forested area.

Solution
According to the Law of Total Expectation, given in (4.3.13), and the property of
expected values given in part (3) of Proposition 3.3-1, we have

E(Y) = E[E(Y|X)] = E(5 +0.33X) =5+ 033E(X) = 5 + 0.33 x 45 = 19.85.

An interesting variation of the Law of Total Expectation occurs when Y is a
Bernoulli random variable, that is, it takes the value 1 whenever an event B happens
and zero otherwise. In this case we have E(Y) = P(B) and, similarly, E(Y|X = x) =
P(B|X = x). Hence, in this case, (4.3.14) and (4.3.15) can be written as

o]

P(B)= )  P(BIX =x)px(x) and P(B)= / P(BIX = x)fx(x) dx (43.16)

XESX -

The first expression in (4.3.16) is just the Law of Total Probability; see (2.5.7).

4.3.4 INDEPENDENCE

The notion of independence of random variables is an extension of the notion of
independence of events. The random variables X and Y are independent if any event
defined in terms of X is independent of any event defined in terms of Y. In particu-
lar, X and Y are independent if the events [X < x] and [Y < y] are independent for
all x and y, that is, if

P(X €A, Y eB)=P(X € AP(Y € B) @3.17)

holds for any two sets (subsets of the real line) A and B.

1. The jointly discrete random variables X and Y are independent if and only if

px,y(x,y) =px(x)py(y) (4.3.18)

holds for all x,y, where pyx, y is the joint PMF of (X,Y) and py, py are the
marginal PMFs of X, Y, respectively.

2. The jointly continuous random variables X and Y are independent if and only if

fx.y(x,y) = fx()fy(y) (4.3.19)

holds for all x,y, where fy y is the joint PDF of (X,Y) and fy, fy are the
marginal PDFs of X, Y, respectively. [ |
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Consider the joint distribution of the two types of errors, X and Y, a robot makes,
as given in Example 4.3-1. Are X, Y independent?

Solution
Using the table that displays the joint and marginal PMFs given in Example 4.3-1 we
have

p(0,0) = 0.84 # px(0)py (0) = (0.9)(0.91) = 0.819.

This suffices to conclude that X and Y are not independent. m

If the jointly discrete X and Y are independent then, by part (1) of Proposition
4.3-1,

p(x,y) = py(y)px(x).

On the other hand, the multiplication rule for joint PMFs states that

p(x,y) = pyix=x()px(x)

is always true. Thus, when X and Y are independent it must be that py(y) =
Py|x=x(y) for all x in the sample space of X. Similarly, if the jointly continuous X
and Y are independent then, by part (2) of Proposition 4.3-1 and the multiplication
rule for joint PDFs (4.3.8), fy(y) = fy|x=x(y). This argument is the basis for the
following result.

If X and Y are jointly discrete, each of the following statements implies, and is
implied by, their independence.

pyix=x(y) =py ().
Py|x=x(y) does not depend on x, that is, is the same for all possible values of X.
pX\Y:y(x) =px(x).
PXx|y=y(x) does not depend on y, that is, is the same for all possible values of Y.

L=

Each of the above statements with PDFs replacing PMFs implies, and is implied by,
the independence of the jointly continuous X and Y. |

A system is made up of two components, A and B, connected in parallel. Let X
take the value 1 or 0 if component A works or not, and Y take the value 1 or 0 if
component B works or not. From the repair history of the system it is known that
the conditional PMFs of Y given X = 0 and X =1 are

-y
0 1
Py|x=o(y) | 0.01 0.99
pyix=1(y) | 0.01 0.99

Are X and Y independent?

Solution

From the table of conditional probabilities, it is seen that the conditional PMF of
Y given X = 0 is the same as its conditional PMF given X = 1. By part (2) of
Proposition 4.3-2, we conclude that X and Y are independent. m
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Example
4.3-15

Proposition
4.3-3

For a cylinder selected at random from the production line, let X be the cylinder’s
height and Y the cylinder’s radius. Suppose X, Y have a joint PDF

3 x {1 <x<3 1< <3
—_—— x p— p—

fy =182 " =TE0 2502
0 otherwise.

Are X and Y independent?

Solution
The marginal PDF of X is

o= [ [ (o=

for 1 < x < 3 and zero otherwise. The marginal PDF of Y is

fr(y) = /_Zf(x,y) dx = /13 (g;g)dx _ ;y%

for 0.5 < y < 0.75 and zero otherwise. Since

fCy) = fx(0)fy (v),

we conclude that X and Y are independent.

It is instructive to also consider the conditional PDF of Y given X = x, which is

fey) 31
fx(x) 22

for 0.5 < y < 0.75 and zero otherwise. It is seen that this expression does not depend
on the value x; in fact it is seen that fy x=x(y) = fy(y). Thus, by the PDF version
of either part (1) or part (2) of Proposition 4.3-2, we again conclude that X, Y are
independent. m

Frix=x(y) =

In Example 4.3-15 the joint PDF can be written as f(x,y) = g(x)h(y), where
g(x) = (3/8)x for 1 < x < 3 and zero otherwise and h(y) = 1/y* for 0.5 < y < 0.75
and zero otherwise. In such cases, one may conclude that X and Y are independent
without finding their marginal PDFs; see Exercise 12.

The following proposition summarizes some important properties of indepen-
dent random variables.

Let X and Y be independent. Then,

1. The regression function E(Y|X = x) of Y on X is constant, that is, does not
depend on the value of X, and equals E(Y).

2. g(X) and h(Y) are independent for any functions g, /.

3. E(g(X)h(Y)) = E(g(X))E(h(Y)) holds for any functions g, h. |

Part (1) of Proposition 4.3-3 follows from the computational formulas (4.3.11)
and (4.3.12) of the regression function and Proposition 4.3-2, which asserts that if X
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and Y are independent the conditional distribution of Y given the value of X is the
same as the marginal distribution of Y. Part (2) is self-evident. Part (3) of Proposition
4.3-3 will also be shown in Example 4.4-4 of the next section, but it is instructive to
give here a proof based on the Law of Total Expectation. Using the form of the Law
given in (4.3.13), that is, E(Y) = E[E(Y|X)], with g(X)A(Y) in place of Y we have

E(g(X)n(Y)) = E[E(X)(Y)|X)] = E[g(X)E(h(Y)|X)],

where the second equality holds by the fact that given the value of X, the value
of g(X) is also known and thus E(g(X)h(Y)|X) = g(X)E(h(Y)|X) follows from
part (3) of Proposition 3.3-1. Next, since X and 4(Y) are also independent (as it
follows from part (2) of Proposition 4.3-3), the regression function E(h(Y)|X) of
h(Y) on X equals E(h(Y)), and one more application of part 3.3-1 of Proposition
3.3-1 yields

E[g(X)E(h(Y)|X)] = E[g(X)E(h(Y))] = E(g(X))E(h(Y)),
showing that E(g(X)h(Y)) = E(g(X))E(h(Y)).

Consider the two-component system described in Example 4.3-14, and suppose that
the failure of component A incurs a cost of $500.00, while the failure of component
B incurs a cost of $750.00. Let C4 and Cp be the costs incurred by the failures of
components A and B, respectively. Are C4 and Cp independent?

Solution

The random variable C4 takes values 500 and 0 depending on whether component
A fails or not. Thus, C4 = 500(1 — X), where X takes the value 1 if component A
works and the value 0 of it does not. Similarly Cp = 750(1 — Y), where Y takes
the value 1 or 0 if component B works or not. In Example 4.3-14 it was seen that X
and Y are independent. Thus, by part (2) of Proposition 4.3-3, C4 and Cp are also
independent. =

Let the height, X, and radius, Y, both measured in centimeters, of a cylinder ran-
domly selected from the production line have the joint PDF given in Example
4.3-15.

(a) Find the expected volume of a randomly selected cylinder.

(b) Let X7, Y7 be the height and radius of the cylinder expressed in inches. Are
X1 and Y; independent?

Solution
(a) In Example 4.3-15 we saw that X and Y are independent with marginal PMFs
fx(x) = x/4 for 1 < x < 3 and zero otherwise, and fy(y) = 3/(2y?) for
0.5 < y < 0.75 and zero otherwise. Since the volume is given by 7XY?, an
application of part (3) of Proposition 4.3-3 gives

Ehxﬂ]znaxwuﬁ

3 0.75
:nﬁxﬁ@whﬁsy7ﬂww

13313
768 "16
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(b) Since X7 and Y7 are (linear) functions of X and Y, respectively, the indepen-
dence of X and Y implies that X; and Y7 are also independent. [

The concept of independence extends to several random variables in a straight-
forward manner. In particular, conditions (4.3.18) and (4.3.19) extend as follows: The

jointly discrete random variables X1, X>, ..

Condition for

., X, are independent if and only if

Independence of
Several Discrete

p(x1,x2,..

<3 Xn) =PX1(X1) - px, (Xn)

Random Variables

and the jointly continuous X1, X>, ..

Condition for

., X, are independent if and only if

Independence of
Several Continuous flxt,x2,...,x0) = le (x1)-- -Ix, (xn)
Random Variables
hold for all xq,...,x,. If X1, X>,..., X, are independent and also have the same dis-

tribution (which is the case of a simple random sample from an infinite/hypothetical
population) they are called independent and identically distributed, or iid for short.

Exercises

I. Let X denote the monthly volume of book sales from
the online site of a bookstore, and let Y denote the
monthly volume of book sales from its brick and mortar
counterpart. The possible values of X and Y are 0, 1, or
2, in which 0 represents a volume that is below expecta-
tions, 1 represents a volume that meets expectations, and
2 represents a volume above expectations. The joint PMF
p(x,y) of (X,Y) appears in the table.

Y
0 1 2

0| 0.06 004 020
x| 1]0.08 030 0.06
2010 0.14 0.02

(a) Find the marginal PMFs of X and Y, and use them to
determine if X and Y are independent. Justify your
answer.

(b) Compute the conditional PMFs, py|x—,(y), for x =
0,1,2, and use them to determine if X and Y are
independent. Justify your answer. (Hint. Proposition
4.3-2.)

(c) Compute the conditional variance, Var(Y|X = 1), of
Y given X = 1.

2. Let X, Y have the joint PMF given in Exercise 1.

(a) Find the regression function Y on X.

(b) Use the Law of Total Expectation to find E(Y).

3. Let X, Y be as in Exercise 3 in Section 4.2.
(a) Find the regression function Y on X.
(b) Use the Law of Total Expectation to find E(Y).

(c) Is the amount of tip left independent of the price
of the meal? Justify your answer in terms of the
regression function. (Hint. Use part (1) of Proposition
4.3-3.)

4. Consider the information given in Exercise 2 in
Section 4.2.

(a) What is the conditional PMF of the number of tumors
for a randomly selected rat in the 1.0 mg/kg drug
dosage group?

(b) Find the regression function of Y, the number of
tumors present on a randomly selected laboratory
rat, on X, the amount of drug administered to
the rat.

(c) Use the
E(Y).

Law of Total Expectation to find

5. Let X take the value 0 if a child between 4 and 5 years
of age uses no seat belt, 1 if he or she uses a seat belt,
and 2 if it uses a child seat for short-distance car com-
mutes. Also, let Y take the value O if a child survived a
motor vehicle accident and 1 if he or she did not. Accident
records from a certain state suggest the following condi-
tional1 PMFs of Y given X = x and marginal distribution
of X:

! The effectiveness of seat belts in preventing fatalities is considered by the National Highway Traffic Safety
Administration; see http://www.nhtsa.gov/search?q=SEAT+BELT &x=25&y=4.


http://www.nhtsa.gov/search?q=SEAT+BELT&x=25&y=4

y 0 1
Pyx—o(y) | 0.69 0.31 x | o 1 2
Pyix—1(y) | 085 0.15 px(x) | 054 047 029
Py|x=2(y) | 0.84 0.16

(a) Use the table of conditional PMFs of Y given X = x
to conclude whether or not X and Y are independent.
Justify your answer.

(b) Make a table for the joint PMF of (X,Y), show-
ing also the marginal PMFs, and use it to conclude
whether or not X and Y are independent. Justify your
answer.

6. Consider the information given in Exercise 5.
(a) Find the regression function, wy|x(x), of Y on X.
(b) Use the Law of Total Expectation to find £(Y).

7. The moisture content of batches of a chemical sub-
stance is measured on a scale from 1 to 3, while the
impurity level is recorded as either low (1) or high (2).
Let X and Y denote the moisture content and the impu-
rity level of a randomly selected batch, respectively. Use
the information given in the table to answer parts (a)-(d).

Yy
1 2
(y) | 066 0.34 x |1 2 3
580G, PX=x) |02 03 05
Py|x=2(y) | 0.80 0.20
Pyx=3(y) | 0.66 0.34

(a) Find E(Y|X = 1) and Var(Y|X =1).

(b) Tabulate the joint PMF of X and Y.

(c) What is the probability that the next batch received
will have a low impurity level?

(d) Suppose the next batch has a low impurity level. What
is the probability that the level of its moisture content
is1?

8. Consider the information given in Exercise 7.

(a) Find the regression function, uy|x(x), of ¥ on X.
(b) Use the Law of Total Expectation to find E(Y).

9. Let X be the force applied to a randomly selected
beam for 150 hours, and let Y take the value 1 or 0
depending on whether the beam fails or not. The random
variable X takes the values 4, 5, and 6 (in 100-1b units)
with probability 0.3, 0.5, and 0.2, respectively. Suppose
that the probability of failure when a force of X = x is
applied is

(—0.8 + 0.04x)*
14 (=0.8 + 0.04x)*

P(Y =1|X =x) =

(a) Tabulate the joint PMF of X and Y. Are X and Y
independent?
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(b) Find the average force applied to beams that fail
(E(X1Y = 1)), and the average force applied to
beams that do not fail (E(X|Y = 0)).

10. It is known that, with probability 0.6, a new laptop
owner will install a wireless Internet connection at home
within a month. Let X denote the number (in hundreds)
of new laptop owners in a week from a certain region, and
let Y denote the number among them who install a wire-
less connection at home within a month. Suppose that the
PMF of X is

x o 1 2 3 4
px(x) [ 01 02 03 025 0.15

(a) Argue that given X = x, Y ~ Bin(n = x,p = 0.6), and
find the joint PMF of (X, Y).

(b) Find the regression function of Y on X.
(c) Use the Law of Total Expectation to find E(Y).

11. The joint PDF of X and Y is f(x,y) = x +y for 0 <

x <1,0<y<1,and f(x, y) otherwise.

(a) Find fy|x=x(y) and use it to compute P(0.3 < YV <
051X = x).

(b) Use (4.3.16) to compute P(0.3 < Y < 0.5).

12. Criterion for independence. X and Y are indepen-
dent if and only if

Ixy(x, y) = g(x)h(y)

for some functions g and 4 (which need not be PDFs).
[An important point to keep in mind when applying this
criterion is that condition (4.3.20) implies that the region
of (x,y) values where f(x, y) is positive has to be a rectan-
gle, i.e., it has to be of the forma < x < b,c <y < d,
where a, ¢ may also be —oco and b, d may also be oc.] Use
this criterion to determine if X and Y are independent in
each of the following cases.
(a) The joint PDF of X and Y is f(x,y) = 6e™*¢~% for
0 <x <00, 0 <y < oo and zero otherwise.
(b) The joint PDF of X and Y is f(x,y) = 24xy for
0 < x4y < 1 and zero otherwise.

(c) The joint PDF of X and Y is f(x,y) = # for
0 <x <00, 0 <y < oo and zero otherwise.

(4.3.20)

13. Let 73, i = 1,2, denote the first two interarrival
times of a Poisson process X(s), s > 0, with rate «. (So,
according to Proposition 3.5-1, both 77 and 7, have an
exponential distribution with PDF f(¢) = ae ¢t > 0.)
Show that 77 and T, are independent. (Hint. Argue that
P(T, > t|ITy = s) = P(Noeventsin (s,s + t]|T} = s),
and use the third postulate in definition 3.4-1 of a Poisson
process to justify that it equals P(No events in (s,s + t]).
Express this as P(X (s +t) — X(s) = 0) and use part (2) of
Proposition 3.4-2 to obtain that it equals e~%'. This shows
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that P(T, > t|T} = s), and hence the conditional density
of T, given T1 = s does not depend on s.)

14. During a typical Pennsylvania winter, potholes along
180 occur according to a Poisson process averaging 1.6 per
10 miles. A certain county is responsible for repairing pot-
holes in a 30-mile stretch of I80. At the end of winter the
repair crew starts inspecting for potholes from one end of
the 30-mile stretch. Let 77 be the distance (in miles) to the
first pothole, and 7, the distance from the first pothole
the second one.

(a) If the first pothole found is 8 miles from the start, find
the probability that the second pothole will be found
between 14 and 19 miles from the start. (Hint. Argue
the desired probability is that of 7, taking value
between 14 — 8 = 6 and 19 — 8 = 11 miles. According
to Proposition 3.5-1, 7> is exponential(0.16).)

(b) Let X = Ty and Y = Ty + T,. Find the regression
function of Y on X. (Hint. E(T) + T5|T) = x) = x +
E(T,|T; = x). You may use the result from Exercise
13 stating that 77 and 7 are independent.)

15. Let X and Y have the joint PDF of Example 4.3-5.
Use the form of the conditional PDF of X given Y =y
for y > 0, derived there, to conclude whether or not X
and Y are independent. (Hint. Use part (4) of Proposition
4.3-2.)

16. Let X be the force (in hundreds of pounds) applied
to a randomly selected beam and Y the time to failure of
the beam. Suppose that the PDF of X is

1 1
Tx() = log(6) — log(5) x
and zero otherwise, and that the conditional distribution

of Y given that a force X = x is applied is exponential
(A = x). Thus,

forS<x<6

frix=x(y) =xe™ for y >0,

and fy|x=x(y) = 0fory < 0.

(a) Find the regression function of Y on X, and give the
numerical value of E(Y|X = 5.1). (Hint. Use the for-
mula for the mean value of an exponential random
variable.)

(b) Use the Law of Total Expectation to find E(Y).

17. A type of steel has microscopic defects that are classi-
fied on a continuous scale from 0 to 1, with 0 the least
severe and 1 the most severe. This is called the defect
index. Let X and Y be the static force at failure and
the defect index, respectively, for a particular type of
structural member made from this steel. For a mem-
ber selected at random, X and Y are jointly distributed
random variables with joint PDF

24x if0<y<1-2x
fl,y) = 0

and 0<x<.5

otherwise.

(a) Sketch the support of this PDF, that is, the region of
(x,y) values where f(x,y) > 0.

(b) Are X and Y independent? Justify your answer in
terms the support of the PDF sketched above.

(c) Find each of the following: fx(x), fy(y), E(X), and
E(Y).

18. Consider the context of Exercise 17.

(a) It is given that the marginal density of X is fy(x) =
0 24x dy = 24x(1 —2x), 0 < x < 0.5. Find
frix=x(y) and the regression function E(Y|X = x).
Plot the regression function and give the numerical

value of E(Y|X = 0.3).
(b) Use the Law of Total Expectation to find E(Y).

4.4 Mean Value of Functions of Random Variables

4.4.1

THE BASIC RESULT

As in the univariate case the expected value and, consequently, the variance of a
statistic, that is, a function of random variables, can be obtained without having to
first obtain its distribution. The basic result follows.

Proposition
4.4-1

1. Let (X, Y) be discrete with joint PMF p(x, y). The expected value of a function,
h(X,Y), of (X,Y) is computed by

Mean Value of a
Function of Discrete
Random Variables

E[h(X’ Y)] = Z Z h(x,y)p(x,y)

XESX yESy




Mean Value

of a Function

of Continuous
Random Variables

Variance of a
Function of Two
Random Variables

Example
4.4-1
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2. Let (X,Y) be continuous with joint PDF f(x,y). The expected value of a
function, A(X,Y), of (X, Y) is computed by

Elnx. ) = [ h /| " hGey)f(ey)dxdy

The variance of 4(X,Y) is computed by

a}%(X,Y) = E[h*(X, Y)] — [E[h(X. Y)]]? @4.1)

where, according to parts (1) and (2) of Proposition 4.4-1,

E[R*(X,Y)] =) > h(x.y)px.v(x.y)
x oy

ER = [ [ Ry dedy

in the discrete and continuous case, respectively.

The formulas in Proposition 4.4-1 extend directly to functions of more than
two random variables. For example, in the discrete case, the expected value of the
statistic (X1, . .., X}) is computed by

E[h(X1.....X)] =Y h(x1,. . x)p(xn.. .. xn),

where p denotes the joint PMF of X7i,..., X}, while in the continuous case, the
expected value of h(X1,..., X)) is computed by

E[h(X1,....,Xn)] = /_OO /_OO h(xy,...,x0)f(x1,. .., x0)dxy -+ dxp.

A photo processing website receives compressed files of images with X x Y pixels
where X and Y are random variables. At compression factor 10:1, 24 bits-per-pixel
images result in compressed images of Z = 2.4XY bits. Find the expected value and
variance of Z when the joint PMF of X and Y is

y
p(x,y) | 480 600 900
640 | 0.15 0.1 0.15
x| 800 | 005 02 0.1
1280 | 0 01 015

Solution
The formula in part (1) of Proposition 4.4-1, with A(x, y) = xy yields

E(XY) = 640 x 480 x 0.15 + 640 x 600 x 0.1 + 640 x 900 x 0.15
+ 800 x 480 x 0.05 + 800 x 600 x 0.2 4+ 800 x 900 x 0.1
+ 1280 x 480 x 0 4 1280 x 600 x 0.1 + 1280 x 900 x 0.15
= 607,680.
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Example
4.4-2

The same formula yields

E[(XY)?] = 6407 x 4807 x 0.15 4 640% x 6007 x 0.1 + 640? x 900> x 0.15
+800% x 480% x 0.05 + 800% x 600% x 0.2 + 800 x 900 x 0.1
+1280% x 4807 x 0 + 12807 x 600% x 0.1 + 1280 x 900% x 0.15
= 442,008,576,000.

It follows that the variance of XY is
Var(XY) = 442,008,576,000 — 607,6802 = 72,733,593,600.

Finally, the expected value and variance of Z = 2.4XY are E(Z) = 24E(XY) =
1,458,432 and Var(Z) = 2.4>Var(XY) = 418,945,499,136. |

A system consists of components A and B connected in series. If the two components
fail independently, and the time to failure for each component is a uniform(0, 1)
random variable, find the expected value and variance of the time to failure of the
system.

Solution

Because the two components are connected in series, if X and Y denote the times
to failure of components A and B, respectively, the time to failure of the system
is the smaller of X and Y. Thus, we want the expected value and variance of the
function 7 = min{X, Y}. These are most easily found by first finding the CDF of the
random variable 7', and differentiating the CDF to get the PDF. Note first that for
any number ¢ between 0 and 1, the event [T > f] means that both [X > f]and [Y > ¢]
are true. Thus,

P(T>0)=PX>t,Y>0)=PX>0)P(Y>0)=1-0)(1—-1)=1-2t+1,

where the second equality holds by the fact that the events [X > t] and [Y > {]
are independent, and the third equality uses the fact that X and Y have the uniform
distribution. Thus, if F7(¢) and fr(¢) denote the CDF and PDF of T then, for 0 < ¢ <
1, we have

Fr()=P(T<t)=1-P(T>1t)=2t—* and fr(t) = %FT(t) =2-2t

Hence,

1

1 1
B() = [ ifrtar=1- -l Em- [ errioar= 1

>

Wl N
EEN ]

which yields Var(T) = 1/6 — (1/3)* = 0.05556.

Alternatively, the mean and variance of T can be found by considering
T as a function A(X,Y) = min{X,Y} of X and Y, and using part (2) of
Proposition 4.4-1:
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1 r1
E[min{X,Y}] = / / min{x, y} dx dy
0 JoO

1[ py 1
= / / min{x, y} dx —i—/ min{x, y} dx:| dy
0 L 0 y

y 1
/xdx—i—/ ydx|dy
L0 y

1, 11 1 1
2 +y<1‘y>]dy—§§+z‘§—§-

Next, with similar steps as above we obtain

1 y 1
E[min{X, Y}z] = / |:/ x? dx +f y2 dx:| dy
0 0 y

1
s, 11111
—/0 [5)’ +y(1 )’)}d}’—gz 37175

Thus, Var(min{X, Y}) = 1/6 — (1/3)? = 0.05556. -

The next two examples deal with the expected value of the sum of two variables and
the expected value of the product of two independent random variables, respectively.

Show that for any two random variables
E(X+Y)=EX)+ E).

Solution
Assume that X and Y are jointly discrete; the proof in the continuous case is similar.
Then, according to part (1) of Proposition 4.4-1,

> x+yplxy)

XESX yeSy

Z Z xp(x,y) + Z Z yp(x,y) (separate terms)

XESX yESy XESX yGSy

DO @y + Y Y wplxy)

XESX yeSy yESy xeSX

E(X +7Y)

(interchange summations in second term)

=Y x> pen)+ Yy Y pxy)

XESX yESy yESy XGSX
= Z xpx(x) + Z ypy () (definition of marginal PMFs)
xeSX yESY

= E(X) + E(Y). -
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Example If X and Y are independent, show that, for any functions g and 4,
4.4-4
E[g(X)n(Y)] = E[g(X)]E[h(Y)].

Solution

Assume that X and Y are jointly continuous; the proof in the discrete case is similar.
Then, according to part (2) of Proposition 4.4-1,

BlsnI = [ [ g@norey) deay
= /;00 /_"o g()h(y)fx(x)fy(y) dx dy (byindependence)

oo o
= [ swrxear [ hoiv0) dy = BlsCOIE()
o0 —00
The same result was obtained in Proposition 4.3-3 with a different method. [

4.4.2 EXPECTED VALUE OF SUMS

Proposition Let X1,...,X, be any n random variables (i.e., they may be discrete or continuous,
4.4-2 independent or dependent), with marginal means E(X;) = u;. Then

Expected Value of a

Linear Combination of Ea X1+ +anXp)=aipu1 + -+ aniin
Random Variables

holds for any constants ay, ..., a,. [ |

The proof of this proposition is similar to the proof of Example 4.4-3, the result
of which it generalizes. In particular, applications of Proposition 4.4-2 with n = 2,
a1 =1,and ap = —1, and withn =2, a; = 1, and a; = 1 yield, respectively,

E(X1 —X2) =1 —p2  and E(X1 +X2) = 1 + po. (44.2)
Corollary If the random variables X1, ..., X, have common mean g, thatis, if E(X{) =--- =
4.4-1 E(X,) = p, then

Expected Value

of the Average E(X)=u and E(T)=n 443
and the Total ( ) H ( ) o ( )

where X = (1/n) Y ; X;and T =nX = 3, X.

The proof of this corollary follows by an application of Proposition 4.4-2 with
ay=---=a, =1/nand a; = --- = a, = 1, for the mean and total sum, respec-
tively. If the X; in Corollary 4.4-1 are Bernoulli with probability of success p, then
w = p and X = p, the sample proportion of successes. Thus, we obtain




Expected Value R
of the Sample E(p)=p (4.4.9)
Proportion
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Moreover, since T = X + - - - + X, ~ Bin(n, p), Corollary 4.4-1 provides an alter-
native (easier!) proof that the expected value of a Bin(#n,p) random variable is
E(T) = np.

Example
4.4-5

Proposition
4.4-3

Expected Value of a
Sum of a Random
Number of Random
Variables

In a typical evening, a waiter serves four tables that order alcoholic beverages and
three that do not.

(a) The tip left at a table that orders alcoholic beverages is a random variable with
mean w1 = 20 dollars. Find the expected value of the total amount of tips the
waiter will receive from the four tables that order alcoholic beverages.

(b) The tip left at a table where no alcoholic beverages are ordered is a random
variable with mean py = 10 dollars. Find the expected value of the total
amount of tips the waiter will receive from the three tables where no alcoholic
beverages are ordered.

(c) Find the expected value of the total amount of tips the waiter will receive in a
typical evening.

Solution

(a) Let Xi,...,X4 denote the tips left at the four tables that order alcoholic bev-
erages. The X;’s have a common mean value of ©; = 20. Thus, according to
Corollary 4.4-1, the expected value of the total amount, 7} = Z?:l X;, of tips
is E(T1) =4 x 20 = 80.

(b) Let Yy,Y5,Y3 denote the tips left at the three tables where no alcoholic
beverages are ordered. The Y;’s have a common mean value of u, = 10.
Thus, according to Corollary 4.4-1, the expected value of the total amount,
Ty =3 | Y of tipsis E(T2) = 3 x 10 = 30.

(c) The total amount of tips the waiter will receive in a typical eveningis T = T+
T,, where T7 and T, are the total tips received from tables with and without
alcoholic beverages. Thus, according to (4.4.2), E(T) = E(Ty) + E(T,) = 80 +
30 = 110. =

The following proposition, which gives the expected value of the sum of a
random number of random variables, has interesting applications.

Suppose that N is an integer-valued random variable, and the random variables X;
are independent from N and have common mean value . Then,

N
E (Z X,~> = E(N)u
i=1

The proof of this proposition follows by a combination of the Law of Total
Expectation and the formula for the expected value of sums, but the details will
not be presented.
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Example
4.4-6

Definition of and
Short-cut Formula for
the Covariance

Let N denote the number of people entering a department store in a typical day, and
let X; denote the amount of money spent by the ith person. Suppose the X; have a
common mean of $22.00, independently from the total number of customers N. If N
is a Poisson random variable with parameter » = 140, find the expected amount of
money spent in the store in a typical day.

Solution

The total amount, 7, of money spent in the store in a typical day is the sum of the
amounts X;, i = 1,..., N, spent by each of the N people that enter the store, that is,
T = Zfi 1 Xi. The information that N ~ Poisson(A = 140) implies that E(N) = 140.
Since the conditions stated in Proposition 4.4-3 are satisfied, it follows that

E(T) = E(N)E(X;) = 140 x 22 = 3080. =

4.4.3 THE COVARIANCE AND THE VARIANCE OF SUMS

In the previous section we saw that the same simple formula for the expected value
of a linear combination of random variables holds regardless of whether or not the
random variables are independent. Dependence, however, does affect the formula
for the variance of sums. To see why, let’s consider the variance of X + Y=

Var(X +Y) = E {[X+ Y - E(X + Y)]Z}
= E{[(X - EX)) + (¥ - E()]’}
= E[(X = E(X))* + (Y = E(Y)* +2(X = EQO)(Y — E(Y))]

= Var(X) + Var(Y) + 2E[(X — E(X))(Y — E(Y))]. (4.4.5)
If X and Y are independent then, part (3) of Proposition 4.3-3 (or Example 4.4-4)
with g(X) = X — E(X) and h(Y) = Y — E(Y) implies
E[(X — E(X))(Y — E(Y))] = E[X — E(X)]E[Y — E(Y)]
=[E(X) — E(X)][E(Y) = E(Y)]=0. 4456

Thus, if X and Y are independent the formula for the variance of X + Y simplifies
to Var(X + Y) = Var(X) + Var(Y).

The quantity E[(X — E(X))(Y — E(Y))] that appears in formula (4.4.5) is called
the covariance of X and Y, and is denoted by Cov(X,Y) or ox, y:

ox,y = E[(X — ux)(Y — pny)]
= E(XY) — uxpy

44.7)

where puy and py are the marginal expected values of X and Y, respectively. The
second equality in (4.4.7) is a computational formula for the covariance, similar to
the computational (short-cut) formula, 0)2( = E[(X — ux)*] = E(X?) — /,Lg(, for the
variance.

The formula for the variance of the sum of two random variables derived in
(4.4.5), and a corresponding formula for the difference of two random variables, will
be used often in the chapters to follow. For this reason, these formulas and their



Proposition
4.4-4

Example
4.4-7
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extensions to the sums of several random variables are highlighted in the following
proposition.

1. Let 012, 022 denote the variances of X7, X3, respectively. Then
(a) If X1, X5 are independent (or just Cov(X7, X3) = 0),

Var(X; + X2) =of + 07 and Var(X; — X3) = o + 03.
(b) If X1, X, are dependent,
Var(X| — X3) = 012 + 022 —2Cov(X1,X2)
Var(X; 4+ X2) = o 4 05 +2Cov(X1, X2).

2. Let 012, o ,a,%l denote the variances of X1,..., X, respectively, and ay, ..., a;
be any constants. Then
(a) If Xy,..., X, are independent (or just Cov(X;, X;) = 0, for all i # j),

Var(a; X1 + -+ amXp) = ajol + -+ a’o2.
(b) If X1,...,X,, are dependent,
Var(a1 X1 + -+ + amXp) = aiof + -+ + ay,0,, + Z Z a;a;ojj
i m

According to part (1) of Proposition 4.4-4, the variances of X + Y and X — Y are
the same if X and Y are independent, but differ if their covariance is different
from zero. Because part (1a) appears counterintuitive at first sight, the following
example offers numerical verification of it based on the fact that when the sample
size is large enough the sample variance is a good approximation to the population
variance.

Simulation-based verification of part (1a) of Proposition 4.4-4. Let X, Y be inde-
pendent uniform(0, 1) random variables. Generate a random sample of size 10,000
of X+Y values, and a random sample of size 10,000 of X —Y values and compute the
sample variances of the two samples. Argue that this provides numerical evidence
in support of part (1a) of Proposition 4.4-4. (See also Exercise 13 for a numerical
verification of part (1b) of Proposition 4.4-4).

Solution
The R commands

set.seed=111; x=runif(10000); y=runif(10000)

generate a random sample of size 10,000 X values and a random sample of size
10,000 Y values. (set.seed=111 was used in order to have reproducibility of the
results.) The additional R commands

var(x + y); var(x - y)

yield 0.167 and 0.164 (rounded to 3 decimal places) for the sample variances of a
sample of 10,000 X + Y values and a sample of 10,000 X — Y values, respectively.
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Example
4.4-8

Example
4.4-9

Repeating the above commands with the seed set to 222 and to 333 yields pairs of
sample variances of (0.166, 0.167) and (0.168, 0.165). This suggests that the sample
variances of X + Y values approximate the same quantity as the sample variances
of X — Y values, supporting the statement of part (1a) of Proposition 4.4-4 that
Var(X + Y) = Var(X — Y) = 2/12 = 0.1667 (where we also used the fact that
Var(X) = Var(Y) = 1/12; see Example 3.3-13). [

Let X take the value 0, 1, or 2 depending on whether there are no customers,
between one and 10 customers, and more than 10 customers in the regular (manned)
checkout lines of a supermarket. Let Y be the corresponding variable for the self
checkout lines. Find Var(X + Y), when the joint PMF of X and Y is given by

y
py) | 0 1 2 | px»
0 017 002 001 | 0.20
x| 1 [0150 0225 0.125]| 0.50
2 | 0060 0105 0.135| 0.30
py(y) | 038 035 027

Solution
In order to use formula (4.4.5) we will need to compute 0)2(, 0‘)2;, and oyy. As a first

step we compute E(X), E(Y), E(X?), E(Y?) and E(XY):

EX)=) wpx(x) =11 E(Y)=) ypy(y) =089,
X y

EXY) =Y @py() =17, EY) =Y ypy(y) =143,
x y

and, according to part (1) of Proposition 4.4-1,

E(XY) =) xyp(x,y) =0225+2 x 0.125+2 x 0.105 + 4 x 0.135 = 1.225.
x oy

Thus, 02 = 1.7 — 1.12 = 049, 07 = 1.43 — 0.89?> = 0.6379 and, according to the
computational formula (4.4.7), Cov(X,Y) = 1.225 — 1.1 x 0.89 = 0.246. Finally, by
(44.5),

Var(X 4+ Y) = 0.49 + 0.6379 + 2 x 0.246 = 1.6199. =

Using a geolocation system, a dispatcher sends messages to two trucks sequentially.
Suppose the joint PDF of the response times X7 and X, measured in seconds,
is f(x1,x2) = exp(—xp) for 0 < x; < xp, and f(x1,x) = 0 otherwise. Find
COV(X1,X2).

Solution
Will use the computational formula Cov(X1, X3) = E(X1X2) — E(X1)E(X3). First,
the marginal PDFs of X7 and X; are,

00 X2
e ?dxy=e and fx,(x)= f e 2 dx1 = xpe 2,
0

fx,(x1) = /

X1
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respectively. Thus,

[o0]

E(Xy) = /ooxfxl (x) dx = / xe *dx=1. and
0 0
E(X>) = /0 Vix,(y) dy = /0 yreVdy =2

follow by integration techniques similar to those in Examples 3.3-6 and 3.3-14,
or by the R command f=function(x){x**2*exp(-x)}; integrate(f, 0, Inf) for the sec-
ond integral and a similar one for the first. Next, according to part (4.4-1) of
Proposition 4.4-1,

o0 oo )
E(Xle) = / / xlxzf(xl,xz) dX1 dX2 = / / xlee_xz dx1 de
0 0 0 0
00 X2 0
= / Xpe 2 / x1 dxq dxy = / O.SX%E_XZ dx, =1.
0 0 0

Thus, we obtain Cov(X1,X3)=1-1-2=—1. [

An important special case of part (2a) of Proposition 4.4-4 has to do with the
variance of the sample mean and the sample sum. This is given next.

Corollary Let X1,...,X, be iid (i.e., a simple random sample from an infinite population)
4.4-2 with common variance o2. Then,
Variance of o o2
the Average and Var(X) = — and Var(T) = no? 4.4.8)
the Sum n

where X =n~! Y7 X;and T = Y 1| X..

Variance of the
Sample Proportion

Proposition
4.4-5

If the X; in Corollary 4.4-2 are Bernoulli with probability of success p, then
0% = p(1 —p) and X = p, the sample proportion of successes. Thus, we obtain

1-—
Var(p) = u (4.4.9)
n

Moreover, since T = X; + --- + X, ~ Bin(n,p), Corollary 4.4-2 provides
an alternative (easier!) proof that the variance of a Bin(n,p) random variable is
Var(T) = np(1 — p).

Properties of covariance.

1. Cov(X,Y) = Cov(Y,X).
2. Cov(X,X) = Var(X).
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Example
4.4-10

Example
4.4-11

Exercises

3. If X, Y are independent, then Cov(X,Y) = 0.
4. Cov(aX + b,cY + d) = acCov(X, Y) for any real numbers a, b, ¢, and d.

Proof of Proposition 4.4-5. Parts (1) and (2) follow immediately from the defini-
tion of covariance, while part (3) is already proved in relation (4.4.6). For part (4)
note that E(aX + b) = aE(X) + b and E(cY + d) = cE(Y) + d. Hence,

Cov(aX +b,cY +d) = E{[aX + b — E(aX +b)][cY +d — E(cY +d)]}
= E{[aX — aE(X)][cY — cE(Y)])
= E{a[X — EQ)][Y - E(Y)]}
= acCov(X,Y). u

Consider the information given in Example 4.4-9, but assume that the response times
are given in milliseconds. If (X7, X) denote the response times in milliseconds, find
COV(X 1s Xz).

Solution o
The new response times are related to those of Example 4.4-9 by (X1,X2) =
(1000X71, 1000X>). Hence, according to part (4) of Proposition 4.4-5,

Cov(X1, X») = Cov(1000X7,1000X5) = —1,000,000. =

The next example shows that Cov(X, Y) can be zero even when X and Y are not
independent. An additional example of this is given in Exercise 8 in Section 4.5.

If X, Y have the joint PMF given by

y
px,y) | 0 1

-1 |13 0o [1/3
x| o 0 1/3[1/3
1 13 0 | 1/3
2/3 1/3]10

find Cov(X,Y). Are X and Y independent?

Solution

Since E(X) = 0, use of the computational formula Cov(X,Y) = E(XY)—E(X)E(Y)
gives Cov(X,Y) = E(XY). However, the product XY takes the value zero with
probability 1. Thus, Cov(X,Y) = E(XY) = 0. Finally, X and Y are not independent
because p(0,0) =0 # px(0)py(0) =2/9. =

1. Due to promotional sales, an item is sold at 10% or Y
20% below its regular price of $150. Let X and Y denote p(x,y) | 150 | 135 | 120
the selling prices of the item at two online sites, and let 150 | 0.25 | 0.05 | 0.05

their joint PMF be

x| 136 | 005 | 02 | 0.1
120 | 0.05 | 0.1 | 0.15
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If a person checks both sites and buys from the one list-
ing the lower price, find the expected value and variance
of the price the person pays. (Hint. The price the person
pays is expressed as min{X, Y}.)

2. A system consists of components A and B connected
in parallel. Suppose the two components fail indepen-
dently, and the time to failure for each component is a
uniform(0, 1) random variable.

(a) Find the PDF of the time to failure of the system.
(Hint. If X, Y are the times components A, B fail,
respectively, the system fails at time 7' = max{X, Y}.
Find the CDF of T from P(T < t) = P(X < )P
(Y <¢) and the CDF of a uniform(0, 1) random
variable. Then find the PDF by differentiation.)

(b) Find the expected value and variance of the time to
failure of the system.

3. The joint distribution of X = height and Y =radius of a
cylinder is f(x,y) = 3x/(8y?) for1 <x <3,0.5 <y <0.75
and zero otherwise. Find the variance of the volume of
a randomly selected cylinder. (Hint. The volume of the
cylinder is given by 4(X,Y) = 7 Y?X. In Example 4.3-17
it was found that E[h(X,Y)] = (13/16)x.)

4. In a typical week a person takes the bus five times
in the morning and three times in the evening. Suppose
the waiting time for the bus in the morning has mean
3 minutes and variance 2 minutes?, while the waiting
time in the evening has mean 6 minutes and variance
4 minutes’.

(a) Let X; denote the waiting time in the ith morning
of theweek,i = 1,...,5,andlet Y; denote the waiting
time in the jth evening of the week. Express the
total waiting time as a linear combination of these
X’sand Y’s.

(b) Find the expected value and the variance of the total
waiting time in a typical week. State any assumptions
needed for the validity of your calculations.

5. Two towers are constructed, each by stacking 30 seg-
ments of concrete vertically. The height (in inches) of a
randomly selected segment is uniformly distributed in the
interval (35.5, 36.5).

(a) Find the mean value and the variance of the height
of a randomly selected segment. (Hint. See Examples
3.3-8 and 3.3-16 for the mean and variance of a
uniform random variable.)

(b) Let X1,...,X3p denote the heights of the segments
used in tower 1. Find the mean value and the variance
of the height of tower 1. (Hint. Express the height of
tower 1 as the sum of the X’s.)

(c) Find the mean value and the variance of the dif-
ference of the heights of the two towers. (Hint. Set
Y1,...,Y3 for the heights of the segments used in
tower 2, and express the height of tower 2 as the sum
of the Y’s.)

6. Let N denote the number of accidents per month in all
locations of an industrial complex, and let X; denote the
number of injuries reported for the ith accident. Suppose
that the X; are independent random variables having
common expected value of 1.5 and are independent from
N.1If E(N) =7, find the expected number of injuries in a
month.

7. In a typical evening, a waiter serves N; tables that
order alcoholic beverages and N, tables that do not.
Suppose Nj, N, are Poisson random variables with
parameters Ay = 4, A = 6, respectively. Suppose the
tips, Xj, left at tables that order alcoholic beverages have
common mean value of $20.00, while the tips, Y, left at
tables that do not order alcoholic beverages have a com-
mon mean value of $10.00. Assuming that the tips left
are independent from the total number of tables being
served, find the expected value of the total amount in tips
received by the waiter in a typical evening. (Hint. Use
Proposition 4.4-3)

8. Suppose (X, Y) have the joint PDF

_J24xy 0=x=<10=<y=<lx+y=<l1
fey) = {0 otherwise.
Find Cov(X, Y). (Hint. Use the marginal PDF of X, which
was derived in Example 4.3-9, and note that by the sym-
metry of the joint PDF in x, y, it follows that the marginal
PDF of Y is the same as that of X.)

9. Suppose the random variables Y, X, and € are related
through the model

Y =93+15X +e¢,

where ¢ has zero mean and variance 082 =16, 0)2( =9, and
X, ¢ are independent. Find the covariance of Y and X and
that of Y and ¢. (Hint. Write Cov(X,Y) = Cov(X,9.3 +
1.5X + ¢) and use part (4) of Proposition 4.4-5. Use a
similar process for Cov(e, Y).)

10. Using the information on the joint distribution of
meal price and tip given in Exercise 3 in Section 4.3, find
the expected value and the variance of the total cost of the
meal (entree plus tip) for a randomly selected customer.

11. Consider the information given in Exercise 1 in
Section 4.3 on the joint distribution of the volume, X,
of online monthly book sales, and the volume, Y, of
monthly book sales from the brick and mortar counter-
part of a bookstore. An approximate formula for the
monthly profit, in thousands of dollars, of the bookstore
is 8X + 10Y. Find the expected value and variance of the
monthly profit of the bookstore.

12. Consider the information given in Exercise 7 in
Section 4.3 regarding the level of moisture content and
impurity of chemical batches. Such batches are used to
prepare a particular substance. The cost of preparing the
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substance is C = 2+/X +3Y?. Find the expected value and
variance of the cost of preparing the substance.

13. Let X, Y, and Z be independent uniform(0, 1) ran-
dom variables, andset X1 =X+ Z,Y, =Y +27.

(a) Find Var(X7 + Y1) and Var(X; — Y1). (Hint. Find
Var(X1), Var(Y7), Cov(X1,Yq), and use part (1) of
Proposition 4.4-4.)

(b) Using R commands similar to those used in Example
4.4-7, generate a sample of size 10,000 of X7 4 Y7 val-
ues and a sample of size 10,000 of X; — Y7 values
and compute the two sample variances. Argue that
this provides numerical evidence in support of part (a)
above and also for part (1b) of Proposition 4.4-4.

14. On the first day of a wine-tasting event three ran-
domly selected judges are to taste and rate a particular
wine before tasting any other wine. On the second day
the same three judges are to taste and rate the wine after
tasting other wines. Let X7, X2, X3 be the ratings, on a
100-point scale, on the first day, and Y7, Y3, Y3 be the rat-
ings on the second day. We are given that the variance of
each X; is 0% = 9, the variance of each Y; is 0} = 4,
the covariance Cov(X;,Y;) = 5 for all i = 1,2,3, and
Cov(X;,Y;) = 0 for all i # j. Find the variance of the
combined rating X + Y. (Hint. The formula in part (4) of
Proposition 4.4-5 generalizes to the following formula for
the covariance of two sums of random variables:

m

m n n
Cov Z tll‘Xi, Z b]'Y]' = Z Z aibjCOV (X,', Y]) .

i=1 j=1 i=1 j=1
Use this formula to find the Cov(X, Y), keeping in mind
that Cov(X;,Y;) = 0if i # j. Then use the formula in
part (1) of Propositon 4.4-4 and Corollary 4.4-2 for the
variance of the sample average.)

15. Let X be a hypergeometric random variable with
parameters n, M1, and M. Use Corollary 4.4-1 to give an
alternative (easier) derivation of the formula for E(X).
(Hint. See the derivation of the expected value of a
Bin(n, p) random variable following Corollary 4.4-1.)

16. Let X have the negative binomial distribution with
parameters r and p. Thus, X counts the total number of
Bernoulli trials until the rth success. Next, let X denote
the number of trials up to and including the first success,
let X, denote the number from the first success up to
and including the second success, and so on, so that X,
denotes the number of trials from the (r — 1)-st success
up to and including the rth success. Note that the X;’s are
iid having the geometric distribution, X = X1 + - - + X,.
Use Corollary 4.4-1 and Proposition 4.4-4 to derive the
expected value and variance of the negative binomial ran-
dom variable X. (Hint. The expected value and variance
of a geometric random variable are derived in Examples
3.3-3 and 3.3-12.)

4.5 Quantifying Dependence

When two random variables X and Y are not independent, they are dependent. Of
course, there are various degrees of dependence, ranging from very strong to very
weak. In this section we introduce correlation as a means for quantifying depen-
dence. First we introduce the concept of monotone dependence, make the distinction
between positive and negative dependence, and illustrate the role of the covariance
in characterizing the distinction. Then we present Pearson’s correlation coefficient
and discuss its interpretation.

4.5.1 POSITIVE AND NEGATIVE DEPENDENCE

We say that X and Y are positively dependent, or positively correlated, if “large”
values of X are associated with “large” values of Y and “small” values of X are
associated with “small” values of Y. (Here, “large” means “larger than average”
and “small” means “smaller than average.) For example, the variables X = height
and Y = weight of a randomly selected adult male are positively dependent. In the
opposite case, that is, when “large” values of X are associated with “small” values
of Y and “small” values of X are associated with “large” values of Y, we say that X
and Y are negatively dependent or negatively correlated. An example of negatively
dependent variables is X = stress applied and Y = time to failure. If the variables are
either positively or negatively dependent, their dependence is called monotone.

It should be clear that if the dependence is positive then the regression function,
wyx(x) = E(Y|X = x),of Y on X is an increasing function of x. For example, if we
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consider X = height and Y = weight then, due to the positive dependence of these
variables, we have wy x(1.82) < uy|x(1.90), that is, the average weight of men 1.82
meters tall is smaller than the average weight of men 1.90 meters tall (1.82 meters
is about 6 feet). Similarly, if the dependence is negative then py|x(x) is decreasing,
and if the dependence is monotone then i y|x(x) is monotone.

The fact that covariance can be used for identifying a monotone dependence
as being positive or negative is less obvious, but here is the rule: The monotone
dependence is positive or negative if the covariance takes a positive or negative
value, respectively.

In order to develop an intuitive understanding as to why the sign of covariance
identifies the nature of a monotone dependence, consider a finite population of N
units, let (xq,y1), (x2,2),. .., (xn,yn) denote the values of a bivariate characteristic
of interest for each of the N units, and let (X, Y) denote the bivariate characteris-
tic of a randomly selected unit. Then (X, Y) has a discrete distribution taking each
of the possible values (x1,y1),...,(xn,yn) with probability 1/N. In this case the
covariance formula in definition (4.4.7) can be written as

N

1
oxy = ;(xi — ux)(i — 1), @5.1)
=

where uy = ]L\, Zf\il x;and puy = % Zfil yi are the marginal expected values of X
and Y, respectively. Suppose now X and Y are positively correlated. Then, X-values
larger than py are associated with Y-values that are larger than py, and X-values
smaller than px are associated with Y-values smaller than puy.Thus, the products

(xi — x)(yi — ny), (45.2)

which appear in the summation of relation (4.5.1), will tend to be positive, resulting
in a positive value for oy y. Similarly, if X and Y are negatively correlated, the
products in (4.5.2) will tend to be negative, resulting in a negative value for oy y.
However, the usefulness of covariance in quantifying dependence does not
extend beyond its ability to characterize the nature of monotone dependence. This
is because a successful measure of dependence should be scale-free. For example,
the strength of dependence of the variables (Height, Weight) should not depend on
whether the variables are measured in meters and kilograms or feet and pounds.
According to part (4) of Proposition 4.4-5, however, the value of the covariance is
scale-dependent and thus cannot serve as a quantification of dependence.

4.5.2 PEARSON’S (OR LINEAR) CORRELATION COEFFICIENT

It turns out that a simple adjustment of the covariance makes its value scale-free,
and leads to the most commonly used quantification of dependence, the (linear)
correlation coefficient, also known as Pearson’s correlation coefficient in honor of its
inventor.

Definition 4.5-1
The Pearson’s (or linear) correlation coefficient of X and Y, denoted by
Corr(X,Y) or px.y, is defined as
Cov(X,Y
pxy = Corr(X,Y) = L),
oxoy

where oy, oy are the marginal standard deviations of X, Y, respectively.
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The following proposition summarizes some properties of the correlation
coefficient.

Proposition 1. If a and c are either both positive or both negative, then
4.5-1
Corr(aX + b,cY +d) = px.y.

If a and c are of opposite signs, then
Corr(aX + b,cY +d) = —px.y.

2. —1< PXY = 1, and
(a) if X, Y are independent then py, y = 0.
(b) px.y =1lor—1lifandonlyif Y = aX + b for some numbers a, b with a £ 0.

The properties listed in Proposition 4.5-1 imply that correlation is indeed a
successful measure of linear dependence. The properties in part (1) mean that it has
the desirable property of being scale-free. The properties in part (2) make it possible
to develop a feeling for the strength of linear dependence implied by a py, y-value.
Thus, if the variables are independent, px,y = 0, while py y = %1 happens if and
only if X and Y have the strongest possible linear dependence (that is, knowing
one amounts to knowing the other). The scatterplots in Figure 4-2 correspond to

Figure 4-2 Scatterplots Correlation = 0.2 Correlation = 0.45
corresponding to different
correlation coefficients.
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artificially constructed populations of size 1000, having correlation ranging from 0.2
to 0.9; the line through each scatterplot is the corresponding regression function of
Y on X.

In a reliability context a randomly selected electronic component will undergo an
accelerated failure time test. Let X take the value 1 if the component lasts less than
50 hours and zero otherwise, and X take the value 1 if the component lasts between
50 and 90 hours and zero otherwise. The probabilities that a randomly selected com-
ponent will last less than 50 hours, between 50 and 90 hours, and more than 90 hours
are 0.2, 0.5, and 0.3, respectively. Find py, x,.

Solution
We will first find the covariance of X; and X; using the short-cut formula
ox,x, = E(X1X2) — E(X1)E(X>). Next, because the sample space of (X1, X>) is
{(1,0),(0,1),(0,0)}, it follows that the product XX, is always equal to zero and
hence E(X1X;) = 0. Because the marginal distribution of each X; is Bernoulli, we
have that

E(X1) =02, E(X;)=05, oy =016, andog =025.

Combining these calculations we find ox,x, = 0 — 0.2 x 0.5 = —0.1. Finally, using
the definition of correlation,

oX\ X, —-0.1

—0.5.

P = o ox,  04x05 -

Using a geolocation system, a dispatcher sends messages to two trucks sequentially.
Suppose the joint PDF of the response times X7 and X;, measured in seconds, is
f(x1,x2) = exp(—x;) for 0 < x1 < xp, and f(x1,x2) = 0 otherwise.

(a) Find Corr(X1, X3).

(b) If (X1, X>) denote the response times in milliseconds, find Corr(X1, X>).

Solution
(a) In Example 4.4-9 we saw that Cov(X1,X;) = —1. In the same example, we
found that the marginal PDFs and means of X; and X, are

fx,(x1) =e™,  fx,(x2) =x2e72, E(X1)=1, and E(X;)=2.

Using these marginal PDFs, we find
o0 o
E(Xlz) = / xzf)(1 (x)dx =2 and E(XZZ) = / xzfxz(x) dx = 6.
0 0

The above integrations can also be performed in R; for example the value of
E(Xzz) can be found with the R command f=function(x){x**3*exp(-x)}; inte-
grate(f, 0, Inf). Combining the above results, the standard deviations of X
and X, are obtained as

ox, =v2-12=1 and ox, =v6—22=1414.
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Thus, from the definition of the correlation coefficient,

= —0.707.

PX1. X = 171 414

(b) Using_properties of the covariance, in Example 4.4-10 we saw that
Cov(X1,X,) = —1,000,000. Moreover, from the properties of standard devi-
ation (see Proposition 3.3-2) we have 0%, = 1000 and o, = 1414. It follows
that PT.X, = —1,000,000/(1000 - 1414) = —0.707. Thus, PX, X = PX),X, @S
stipulated by Proposition 4.5-1, part (1). =

Pearson’s Correlation as a Measure of Linear Dependence It should be emphasized
that correlation measures only linear dependence. In particular, it is possible to have
the strongest possible dependence, that is, knowing one amounts to knowing the
other, but if the relation between X and Y is not linear, then the correlation will not
equal 1, as the following example shows.

Let X have the uniform in (0, 1) distribution, and Y = X?. Find PX.Y-

Solution

First we will find the covariance through the short-cut formula Cov(X,Y) =
E(XY) — E(X)E(Y). Note that since Y = X2, we have XY = X?3. Thus, E(XY) =
E(X%) = [} x® dx = 1/4. Also, since E(Y) = E(X2) = 1/3 and E(X) = 1/2, we
obtain

1 11 1
COV(X,Y) = Z — 55 = —.

Next, oy = 1/4/12 (see Example 3.3-13), and oy = E(X%) —[E(X?)]? =
V1/5 —1/9 = 2/3+/5. Combining the above results we obtain

_ Cov(X.Y) _ 35

= 0.968.
PXY = oxoy T 2VD2
A similar set of calculations reveals that with X as before and ¥ = X4,
PX)Y = 0.866. |

Note that in the above example, knowing X amounts to knowing Y and, con-
versely, X is given as the positive square root of Y. However, although monotone,
the relationship between X and Y is not linear.

Definition 4.5-2
Two variables having zero correlation are called uncorrelated.

Independent variables are uncorrelated, but uncorrelated variables are not necessar-
ily independent; see Example 4.4-11. In general, if the dependence is not monotone,
that is, neither positive nor negative, it is possible for two variables to have zero
correlation even though they are very strongly related; see Exercise 8.
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Sample Versions of the Covariance and Correlation Coefficient If (X1,Y7),...,
(X, Yy) is a sample from the bivariate distribution of (X, Y, the sample covari-
ance, denoted by Cov(X,Y) or Sx, vy, and sample correlation coefficient, denoted by

@(X ,Y)orry, v, are defined as

1< - -
Sxy == 2 (Xi=X0i-Y)
i=1 (45.3)

where X, Sy and Y, Sy are the (marginal) sample mean and sample standard
deviation of the X-sample and Y-sample, respectively.

In Chapter 1 it was repeatedly stressed that sample versions of the population
parameters estimate but, in general, they are not equal to the corresponding popu-
lation parameters. In particular, @(X ,Y)and 6c>\rr(X ,Y) estimate Cov(X,Y) and
Corr(X,Y), respectively, but, in general, they are not equal to them.

A computational formula for the sample covariance is

If the X; values are in the R object x and the Y; values are in y, the R commands for
computing Sy, y and ry, y are

R Commands for Covariance and Correlation

cov(x, y) # gives Sy vy

cor(x, y) # gives ry vy

To calibrate a method for measuring lead concentration in water, the method
was applied to 12 water samples with known lead content. The concentration
measurements, y, and the known concentration levels, x, are given below.

x‘5.95 206 1.02 4.05 3.07 845 293 933 724 691 992 286
y‘6.33 283 165 437 364 899 316 954 711 7.10 8.84 3.56

Compute the sample covariance and correlation coefficient.

Solution
With this data, Y12, X; = 63.79, Y12, ¥; = 67.12, and Y12, X;Y; = 446.6939. Thus,

1 1
Sxy = I |:446.6939 - E63.79 X 67.12} =8.172.

Moreover, Y ;2 X? = 440.302 and /%, Y? = 456.745, so that, using the computa-

tional formula for the sample variance given in (1.6.14), Sg( = 9.2 and S%, = 7.393.
Thus,

8.172

Py = —— 2 099,
Y 927393
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Entering the data into the R objects x and y by x=c(5.95, 2.06, 1.02, 4.05, 3.07, 8.45,
2.93, 9.33, 7.24, 6.91, 9.92, 2.86) and y=c(6.33, 2.83, 1.65, 4.37, 3.64, 8.99, 3.16, 9.54,
7.11,7.10, 8.84, 3.56), the above values for the covariance and correlation coefficient
can be found with the R commands cov(x, y) and cor(x, y), respectively. m

REMARK 4.5-1

As Example 4.5-3 demonstrated, linear correlation is not a good

measure of the non-linear dependence of two variables. Two different types of cor-
relation coefficients, Kendall’s T and Spearman’s p, are designed to capture correctly
the strength of non-linear (but monotone) dependence. Detailed descriptions of
these correlation coefficients is beyond the scope of this book. <

Exercises

1. Using the joint distribution, given in Exercise 1 in
Section 4.3, of the volume of monthly book sales from
the online site, X, and the volume of monthly book sales
from the brick and mortar counterpart, Y, of a bookstore,
compute the linear correlation coefficient of X and Y.

2. Consider the information given in Exercise 2 in
Section 4.2 regarding the amount, X, of drug adminis-
tered to a randomly selected laboratory rat, and number,
Y, of tumors the rat develops.

(a) Would you expect X and Y to be positively or nega-
tively correlated? Explain your answer, and confirm it
by computing the covariance.

(b) Compute the linear correlation coefficient of X
and Y.

3. An article? reports data on X = distance between a
cyclist and the roadway center line and Y = the separa-
tion distance between the cyclist and a passing car, from
ten streets with bike lanes. The paired distances (Xj, Y;)
are determined by photography and are given below in
feet.

x‘12.8 129 129 13.6 145 146 151 175 195 20.8
y‘5.5 62 63 70 78 83 7.1 10.0 108 11.0

(a) Compute Sy y, S%, 5%, and ry_y.
p , X Oy ;

(b) Indicate how the quantities in part (a) would change
if the distances had been given in inches.

4. Use ta=read.table(” TreeAgeDiamSugarMaple.txt”,
header=T) to import the data set of diameter—age mea-
surements for 27 sugar maple trees into the R data frame
ta, and x=ta$ Diamet; y=ta$Age to copy the diameter and
age values into the R objects x and y, respectively.

(a) Would you expect the diameter and age to be posi-
tively or negatively correlated? Explain your answer,

and confirm it by doing a scatterplot of the data
(plot(x,y)).

(b) Compute the sample covariance and linear correla-
tion of diameter and age using R commands. On
the basis of the scatterplot are you satisfied that lin-
ear correlation correctly captures the strength of the
diameter-age dependence?

5. Import the bear data into R with the R command
br=read.table(” BearsData.txt”, header=T), and form a
data frame consisting only of the measurements with the
R commands attach(br); bd=data.frame(Head.L, Head. W,
Neck.G, Chest.G, Weight)> The R command cor(bd)
returns a matrix of the pairwise correlations of all vari-
ables. (The matrix is symmetric because ry,y = ry x,
and its diagonal elements are 1 because the correlation of
a variable with itself is 1.) Using this correlation matrix,
which would you say are the two best single predictors of
the variable Weight?

6. Select two products from a batch of 10 containing three
defective and seven non-defective products. Let X = 1 or
0 as the first selection from the 10 products is defective or
not, and Y = 1 or 0 as the second selection (from the nine
remaining products) is defective or not.

(a) Find the marginal distribution of X.

(b) Find the conditional distributions of Y given each of
the possible values of X.

(c) Use the results in parts (a) and (b), and the mul-
tiplication rule for joint probability mass functions
given in (4.3.4), to find the joint distribution of
XandY.

(d) Find the marginal distribution of Y. Is it the same as
that of X?

(e) Find the covariance and the linear correlation coeffi-
cientof X and Y.

2 B. J. Kroll and M. R. Ramey (1977). Effects of bike lanes on driver and bicyclist behavior, Transportation Eng.

J., 243-256.

3 This data set is a subset of a data set contributed to Minitab by Gary Alt.



7. Consider the context of Exercise 17 in Section 4.3, so
that the variables X = static force at failure, Y = defect
index, have joint PDF

24x if0<y=<1-2x

0 otherwise.

and 0<x<.5

f(xvy) = {

(a) It is given that the marginal density of X is fy(x) =
0 24x dy = 24x(1 —2x), 0 < x < 0.5, and the
marginal density of Y is fy(y) = fo(l_y)/z 24x dx =
3(1—y)%,0<y<1.Find 0)2(, 012/, and oy y.
(b) Find the linear correlation coefficient, px y, of
XandY.

(c) Find the regression function of Y on X. Taking this
into consideration, comment on the appropriateness
of px, vy as a measure of the dependence between X
and Y.
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8. Let X have the uniform in (—1,1) distribution and let
Y = X?. Using calculations similar to those in Example
4.5-3, show that py y = 0.
9. Let X be defined by the probability density function
—x —-1<x<0
fl)=1yx

0 otherwise.

0<x<1

(a) Define Y = X? and find Cov(X,Y).

(b) Without doing any calculations, find the regression
function E(Y|X = x) (Hint. When the value of X is
given, the value of Y is known).

(c) On the basis of the regression function found above,
comment on the appropriateness of the linear correla-
tion coefficient as a measure of dependence between
XandY.

4.6 Models for Joint Distributions

4.6.1

HIERARCHICAL MODELS

The multiplication rule for joint probability mass functions given in (4.3.4) expresses
the joint PMF of X and Y as the product of the conditional PMF of Y given X = x
and the marginal PMF of X, that is, p(x,y) = py|x=x(¥)Px(x). Similarly, the multi-
plication rule for joint PDFs given in (4.3.8) states that f(x,y) = fyjx=x(y)fx(x).

The principle of hierarchical modeling uses the multiplication rules in order to
specify the joint distribution of X and Y by first specifying the conditional distribu-
tion of Y given X = x, and then specifying the marginal distribution of X. Thus, a
hierarchical model consists of

YIX =x ~ Fyjx—x(y),

X ~ Fx(x), 4.6.1)

where the conditional distribution of Y given X = x, Fy|x=x(y), and the marginal
distribution of X, Fx(x), can depend on additional parameters. (The description of
the hierarchical model in (4.6.1) uses CDFs in order to include both discrete and
continuous random variables.) Examples of hierarchically specified joint distribu-
tions have already been seen in Examples 4.3-4 and 4.3-7, and in Exercises 5, 7, 9,
and 10 in Section 4.3. An additional example follows.

Example
4.6-1

Let X be the number of eggs an insect lays and Y the number of eggs that sur-
vive. Suppose each egg survives with probability p, independently of other eggs. Use

the principle of hierarchical modeling to describe a reasonable model for the joint

distribution of X and Y.

Solution

The principle of hierarchical modeling can be applied in this context as follows. First
we can model the number of eggs X an insect lays as a Poisson random variable.
Second, since each egg survives with probability p, independently of other eggs, if
we are given the number of eggs X = x the insect lays it is reasonable to model
the number of eggs that survive as a binomial random variable with x trials and
probability of success p. Thus, we arrive at the hierarchical model
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Y|X = x ~ Bin(x,p), X ~ Poisson(}),
which leads to a joint PMF of (X, Y), which, for y < x, is:

e—A X

x! m

p(x,y) =pyix=x(V)px(x) = C)py 1-p)y

The hierarchical approach to modeling offers a way to specify the joint distri-
bution of a discrete and a continuous variable; see Exercise 2. Finally, the class of
hierarchical models includes the bivariate normal distribution which, because of its
importance, is revisited in Section 4.6.3.

The bivariate normal distribution. X and Y are said to have a bivariate normal
distribution if their joint distribution is specified according to the hierarchical model

YIX=x~N (ﬂo + Br(x — uX),af) and X ~ N(ux,0%). 4.6.2)
Give an expression of the joint PDF of X and Y.
Solution
The hierarchical model (4.6.2) implies that the conditional distribution of Y given

that X = x is normal with mean Sy + 81 (x — jx) and variance o2. Plugging this mean
and variance into the form of the normal PDF we obtain

— B0 — By (x — 2
fY|X=X(Y)=\/21726xp{—(y Po — Bi( :“X)),.

202
In addition, the hierarchical model (4.6.2) specifies that the marginal distribution of
X is normal with mean ux and variance 0)2(. Thus,

eXp{_M},

2
20%

Ix(x) =

1
,/2710)2(

It follows that the joint PDF of (X, Y), which is given by the product fy|x—(y)fx (x),
takes the form

fX,Y(x»y) — _(y_ﬂ()_ﬂl(x_ﬂ)())z B (x_MX)Z}‘ 4.6.3)

drowox ¥ { 202 262

4.6.2 REGRESSION MODELS

Regression models are used whenever the primary objective of the study is to under-
stand the nature of the regression function of a variable Y on another variable X. A
study of the speed, X, of an automobile and the stopping distance, Y; or a study of
the diameter at breast height, X, and age of a tree, Y; or a study of the stress applied,
X, and time to failure, Y, are examples of such studies. In regression studies Y is



Figure 4-3 Tllustration of
regression parameters.
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called the response variable, and X is interchangeably referred to as the covariate,
or the independent variable, or the predictor, or the explanatory variable. Because
interest lies in the conditional mean of Y given X = x, regression models specify
the conditional distribution of Y given X = x while the marginal distribution of X,
which is of little interest in such studies, is left unspecified.

Regression models are similar to, but more general than, hierarchical models
since they specify only the conditional distribution of Y given X = x and leave the
marginal distribution of X unspecified. In fact, regression models allow the covari-
ate X to be nonrandom because in some studies the investigator selects the values
of the covariate in a deterministic fashion. An even more general type of a regres-
sion model is one that specifies only the form of the regression function, without
specifying the conditional distribution of Y given X = x.

In this section we will introduce the simple linear regression model and the
normal simple linear regression model, setting the stage for revisiting the bivariate
normal distribution in Section 4.6.3.

The Simple Linear Regression Model The simple linear regression model specifies
that the regression function of Y on X is linear, that is,

wyx (x) = a1 + Bix, (4.6.4)

and the conditional variance of Y given X = x, denoted by o7, is the same for all
values x. The latter is known as the homoscedasticity assumption. In this model,
o1, P1, and 052 are unknown parameters. The regression function (4.6.4) is often
written as

nyx(x) = Bo+ Bi(x — ux), (4.6.5)

where px is the marginal mean value of X, and By is related to «; through gy =
a1 + Biux. The straight line defined by the equation (4.6.4) (or (4.6.5)) is called the
regression line. Figure 4-3 illustrates the meaning of the slope of the regression line.
Basically, the slope expresses the change in the average or mean value of Y when
the value of X changes by one unit. Thus, if §; > 0 then X and Y are positively
correlated, and if f; < 0 then X and Y are negatively correlated. If 1 = 0 then X
and Y are uncorrelated, in which case X is not relevant for predicting Y. The above
discussion hints of a close connection between the slope in a simple linear regression
model and the covariance/correlation of X and Y. This connection is made precise
in Proposition 4.6-3.

Hyix = x

Regression line

Bo




202 Chapter 4 Jointly Distributed Random Variables

Proposition
4.6-1

Mean Plus Error Form
of the Simple Linear
Regression Model

Proposition
4.6-2

The reason the seemingly more complicated expression (4.6.5) is sometimes
preferred over (4.6.4) is that the parameter By equals the marginal mean of Y.

The marginal expected value of Y is given by
E(Y)=oa1+pinx and E(Y)=pp

when the simple linear regression model is parametrized as in (4.6.4) and (4.6.5),
respectively.

Proof Consider the parametrization in (4.6.5). Using the Law of Total Expectation
(4.3.13), we obtain

E(Y) = E[E(YX)]
= E[Bo + B1(X — nx)]
= o+ BLE(X — nx) = Bo.
The expression E(Y) = a1 + B1/Lx is obtained similarly using the parametrization in

(4.6.4). m

The simple linear regression model is commonly (and equivalently) given in the
so-called mean plus error form. If X has mean uy = E(X), its mean plus error
form is

X = pux +e,

where ¢ = X — uy is called the (intrinsic) error variable. In statistics, the term error
variable is generally used to denote a random variable with zero mean. The mean
plus error expression of the response variable Y in a general regression setting is of
the form

Y = E(Y|X) +e,

with the error variable given by ¢ = Y — E(Y|X). For the simple linear regression
model, where E(Y|X) is given by either (4.6.4) or (4.6.5), the mean plus error form is

Y=a1+p1X+e, or Y=p+pX—pux)+e (4.6.6)

The mean plus error representation of the response variable suggests that the
intrinsic error variable ¢ represents the uncertainty regarding the value of Y given
the value of X. (See the statement regarding the conditional variance of Y given
X = x following (4.6.4), and Proposition 4.6-2.) In addition, the mean plus error
representation of Y is useful for deriving properties of the simple linear regression
model. For example, the result of Proposition 4.6-1 for the marginal mean value of
Y can also be derived from (4.6.6) along with the result of the mean value of sums
(Proposition 4.4-2); see Exercise 6. The mean plus error representation of Y will also
be used in the derivation of Proposition 4.6-3. But first we state without proof the
properties of the intrinsic error variable.

The intrinsic error variable, ¢, has zero mean and is uncorrelated from the explana-
tory variable X:

E(¢)=0 and Cov(e, X)=0.
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Moreover, the variance of ¢, 082, is the conditional variance of Y given the

value of X. |
If the regression function of Y on X is linear (so (4.6.4) or, equivalently, (4.6.5)
holds), then we have the following:

1. The marginal variance of Y is

2 2 2.2
oy =0, + Bjoy. (4.6.7)

2. The slope p; is related to the covariance, oy, y, and the correlation, px,y, by

ox,Y oy
B1 = —QS T PXY - (4.6.8)
oy ox

Proof Using the mean plus error representation (4.6.6), the fact that adding (or
subtracting) a constant, which in this case is «, does not change the variance, and
the formula for the variance of a sum, we have

Var(Y) = Var(a + 1 X +¢) = Var(f1X +¢)
= Var(B1X) + Var(e) + 2Cov(B1 X, ¢)
= B{Var(X) + o2,

since Cov(B1X,¢) = B1Cov(X,e) = 0 by the fact that ¢ and X are uncorrelated. For
the second part, it suffices to show the first equality, that is, that Cov(X,Y) = ,310)2(,
since the second is equivalent. Using again the mean plus error representation of Y
and the linearity property of covariance (part (4) of Proposition 4.4-5),

Cov(X, Y)=Cov(X, o1 + /1 X +¢)
= Cov(X, B1X)+ Cov(X, ¢)
= p1Cov(X, X) = piVar(X),
since Cov(X,¢) = 0 and Cov(X, X) = Var(X). [ |
REMARK 4.6-1 Sample version of the regression line. Proposition 4.6-3 suggests

an estimator of 8. Indeed, if (X1, Y1),..., (X, Yy) is a sample from the bivariate
distribution of (X, Y), ox,y can be estimated by Sx,y and 0)2( can be estimated by

Sg(. Hence, if (X, Y) satisfy the simple linear regression model, then, according to
the first equation in (4.6.8), 81 can be estimated by

~  Sxvy

BL="—". 4.6.9)
SX

Moreover, from Proposition 4.6-1 we have oy = E(Y) — B1tx, which suggests that
a1 can be estimated by
@ =Y - B X. (4.6.10)

These empirically derived estimators of the slope and intercept will be rederived
in Chapter 6 using the principle of least squares. <

The Normal Simple Linear Regression Model The normal regression model specifies
that the conditional distribution of Y given X = x is normal,
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Figure 4-4 Illustration of
intrinsic scatter in
regression.

Example
4.6-3

g By
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)

YIX=x~N <MY|X(x),082) , (4.6.11)

where wy|x(x) is a given function of x, typically depending on unknown parameters.

The normal simple linear regression model specifies, in addition, that the regres-
sion function py|x(x) in (4.6.11) is linear, that is, that (4.6.5) or, equivalently, (4.6.4)
holds. The normal simple linear regression model is also written as

Y =1+ fix+¢e,  with &~ N(0,02), (4.6.12)

where the first part of the model can also be written as Y = By + (X — ux) + &.
The intrinsic error variable ¢ expresses the conditional variability of Y around its
conditional mean given X = x, as Figure 4-4 illustrates.

Quadratic and more complicated normal regression models are also commonly
used. The advantages of such models are (a) it is typically easy to fit such a model to
data (i.e., estimate the model parameters from the data), and (b) such models offer
easy interpretation of the effect of X on the expected value of Y.

Suppose that Y|X = x ~ N(5 — 2x,16), that is, given X = x, Y has the normal
distribution with mean py|x(x) = 5 — 2x and variance %2 =16, and let oy = 3.

(a) Find 0}2, and pyy.
(b) If Y7 is an observation to be taken when X has been observed to take the value
1, find the 95th percentile of Y.

Solution
(a) Using (4.6.7) we have o3 = 16 + (—2)?3% = 52. Next, using Proposition 4.6-3,
px,y = Pi(ox/oy) = —2(3/+/52) = —0.832.
(b) Because X has been observed to take the value 1, Y1 ~ N(3,4%), where the

mean is computed from the given formula py|x(x) = 5 — 2x with x = 1. Thus,
the 95th percentile of Y7 is 3 + 47005 =3 +4 x 1.645 = 9.58. [

4.6.3 THE BIVARIATE NORMAL DISTRIBUTION

The bivariate normal distribution was already introduced in Example 4.6-2, where
the joint PDF of (X,Y) was derived as a product of the conditional PDF of Y
given X = x times the PDF of the marginal distribution of X, which is specified to



Figure 4-5 Joint PMFs of
marginally N(0,1) random
variables: p = 0 (left panel)
and p = 0.5 (right panel).
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be normal with mean px and 0)2(. It is worth pointing out that in the hierarchical
modeling of Example 4.6-2 the conditional distribution of Y given X = x is
specified as

YIX =x~ N (fo+Pi(x— ux)o?).

which is precisely the normal simple linear regression model. Because of its con-
nection to the normal simple linear regression model, as well as some additional
properties, the bivariate normal distribution is considered to be the most important
bivariate distribution.
A more common and useful form of the joint PDF of (X,Y) is
PXy

! exp i + 7 4.6.13)
—————expl—— | =5 — “ |1, @
2moxoyy/ 1 — p? 1—p? 20')2( oxoy 20}2,

where X = x—puy,y = y—uy, and p is the correlation coefficient between X and Y.
This form of the PDF can be derived from the expression given in Example 4.6-2 and
some careful algebra using Propositions 4.6-1 and 4.6-3; see Exercise 10. Figure 4-5
shows the joint PDFs of two marginally N(0, 1) random variables with p = 0 (left
panel) and p = 0.5 (right panel).

The expression of the PDF given in (4.6.13) makes it apparent that a bivariate
normal distribution is completely specified by the mean values and variances of X
and Y and the covariance of X and Y, that is, by uy, py, 0)2(, 032,, and oy y. The two
variances and the covariance are typically arranged in a symmetric matrix, called the

covariance matrix:
o2 o
y — X 9X)Y
- 2
oxy O Y

An alternative form of the bivariate normal PDF, one that is expressed in terms of
matrix operations, is given in Exercise 10.

The bivariate normal PDF and CDF are available in the R package mnormt,
which needs to be installed with the R command install.packages(“mnormt”). To use
it, the package must be evoked with the R command library(mnormt) in each new
R session. Once the package has been evoked, the PDF and CDF of the bivariate
normal distribution with parameters puy, py, 0)2(, 012,, and oy y evaluated at (x,y),
are obtained with the following R commands:

f(x,y) =

(4.6.14)

A,
L7
LLAINT
LRI
LN
TR
22
%
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Proposition

4.6-4

Example
4.6-4

R Commands for the Bivariate Normal PMF and CDF

dmnorm(c(x, y), cCux, ny), matrix(c(o)z(,ox,y,cx,y,0\2(),2)) # for
the PDF

pmnorm(c(x,y), c(ix,my), matrix(c(o?, ox,y,ox,y,02),2)) # for
the CDF

Let (X, Y) have a bivariate normal distribution with parameters uy, 1y, 0)2(, 012, and
ox,y. Then we have the following:

1. The marginal distribution of Y is also normal.
2. If X and Y are uncorrelated then they are independent.

3. If X and Y are independent normal random variables, their joint distribution is
bivariate normal with parameters wy, ny, 0)2(, a%,, and oy, y = 0.

4. Any linear combination of X and Y has a normal distribution. In particular

aX +bY ~ N(apy + buy,d*o% + b*o3 + 2abCov(X, Y)). ]

Part (1) of Proposition 4.6-4 follows by the fact that the joint PDF f(x,y) of X
and Y is symmetric in x and y (this is most easily seen from the form of the PDF
given in (4.6.13)) together with the fact that, according to the hierarchical definition
of the bivariate normal distribution, the marginal distribution of X is normal. Hence,
the marginal PDF of Y, fy(y) = [ f(x,y) dx, is the PDF of a normal distribution
because this holds for the marginal PDF fx(x) = [ f(x,y) dy of X. Part (2) of
Proposition 4.6-4 follows by noting that if p = 0 the joint PDF given in (4.6.13)
becomes a product of a function of x times a function of y. Part (3) follows upon
writing the product of the two normal PDFs, which is the joint PDF of the indepen-
dent X and Y, and checking that it has the form given in (4.6.13) with p = 0. The
proof of part (4) of the proposition will not be given here as it requires techniques
not covered in this book.

Suppose that Y|X = x ~ N(5 — 2x,16), that is, given X = x, Y has the normal
distribution with mean py|x(x) = 5 — 2x and variance %2 =16, and let oy = 3.

(a) Let Yy and Y, be observations to be taken, independently from each other,
when X has been observed to take the value 1 and 2, respectively. Find the
probability that Y > Y5.

(b) Assume in addition that X has the normal distribution with mean 2 (and
variance 9, as mentioned above). Use R commands to find the probability
P(X <0,Y <2).

Solution
(a) In Example 4.6-3 we saw that Y| ~ N(3,4%). Similarly, we find that Y, ~
N(1,4%). Because Y; and Y, are independent, their joint distribution is
bivariate normal, according to part (3) of Proposition 4.6-4. By part (4) of
Proposition 4.6-4, Y| — Y» ~ N(3 — 1,42 + 42) = N(2,32). Thus,

-2
P(Y) > Yy)=P(Y| - Y, >0):1—<1>< ) = 0.638.

V32
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(b) X and Y have a bivariate normal distribution with parameters uxy = 2, uy =
5 —2ux = 1 (by Proposition 4.6-1), 02 = 9,07 = 16 +4 x 9 = 52 (see
(4.6.7)), and oxy = —2 x 9 = —18 (by Proposition 4.6-3). Thus, assuming that
the package mnormt has been installed (and evoked in the current R session
with the command library(mnormt)), the R command pmnorm(c(0, 2), ¢(2, 1),
matrix(c(9, -18, -18, 52),2)) gives 0.021 (rounded to 3 decimal places) for the
value of P(X < 0,Y <?2). [}

4.6.4 THE MULTINOMIAL DISTRIBUTION

The multinomial distribution arises in cases where a basic experiment that has r pos-
sible outcomes is repeated independently # times. For example, the basic experiment
can be life testing of an electronic component, with » = 3 possible outcomes: 1 if the
life time is short (less than 50 time units), 2 if the life time is medium (between 50
and 90 time units), or 3 if the life time is long (exceeds 90 time units). When this
basic experiment is repeated n times, one typically records

Ni,...,N,, (4.6.15)
where N; = the number of times outcome j occurred. If the r possible outcomes of
the basic experiment have probabilities p1, ..., p,, the joint distribution of the ran-
dom variables Ny,...,N, is said to be multinomial with » trials and probabilities
plv s ,pr-

Note that, by their definition, Ny,...,N, and pq,...,p, satisfy
Ni+---+Ny,=n and pi+---+p,=1 (4.6.16)
For this reason, N, is often omitted as superfluous (since N, =n— Ny — -+ — N,_1),
and the multinomial distribution is defined to be the distribution of (Ny,...,N,_1).

With this convention, if » = 2 (i.e., there are only two possible outcomes, which
can be labeled “success” and “failure”) the multinomial distribution reduces to the
binomial distribution.

If Ni,...,N, have the multinomial(#n, p1,...,p,) distribution, then their joint
PMF is

n!
P(Ny =x1,....Ny =x;) = ———pi'---py’ (4.6.17)
xi!-ox)

if x; +- - -4x, = n and zero otherwise. The multinomial PMF can be obtained for any
set of r nonnegative integers x, . . ., X, and py, . . ., p, with the following R command:

R Command for the Multinomial PMF

dmultinom(c(xy, ..., Xr), prob=c(pi,...,pr)) # gives the PMF
P(N]_:X]_,...,Nr:Xr)

The probabilities that a certain electronic component will last less than 50 hours
in continuous use, between 50 and 90 hours, or more than 90 hours, are p; = 0.2,
p2 = 0.5, and p3 = 0.3, respectively. The time to failure of eight such electronic
components will be recorded. Find the probability that one of the eight will last less
than 50 hours, five will last between 50 and 90 hours, and two will last more than 90
hours.
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Proposition
4.6-5

Example
4.6-6

Solution

Set Ny for the number of these components that last less than 50 hours, N, for the
number that last between 50 and 90 hours, and N3 for the number that last more
than 90 hours. Then (N1, N3, N3) have the multinomial(n,0.2,0.5,0.3) distribution
and, according to (4.6.17),

8! 10 <50 22
P(Ny = 1,N> = 5,N3 = 2) = ——0210.5%0.32 = 0.0945.

115121
The R command dmultinom(c(1, 5, 2), prob=c(0.2, 0.5, 0.3)) gives the same value.
[
If Ny,..., N, have the multinomial(#n, p1, ..., p,) distribution then the marginal dis-

tribution of each N; is binomial(n, p;). The easiest way to see this is to call the
outcome of the basic experiment a “success” if outcome j occurs, and a “failure” if
outcome j does not occur. Then N; counts the number of successes in n independent
trials when the probability of success in each trial is p;. Moreover, the covariance
between an N; and an N; can be shown to be —np;p;. These results are summarized
in the following proposition.

If Nq,..., N, have the multinomial distribution with parameters n, r, and p1,...,p;,
the marginal distribution of each N; is binomial with probability of success equal to
pi, that is, N; ~ Bin(n, p;). Thus,

E(N;) =np; and Var(N;) = np;(1 — p;).
Moreover, for i # j the covariance of N; and N; is

Cov(N:.Nj) = —npip. O

In the context of Example 4.6-5, set N for the number of these components that last
less than 50 hours, N, for the number that last between 50 and 90 hours, and N3 for
the number that last more than 90 hours.

(a) Find the probability that exactly one of the eight electronic components will
last less than 50 hours.

(b) Find the covariance of N, and N3 and explain, at an intuitive level, why this
covariance is negative.

(c) Find Var(N; + N3) and Cov(Ny, N2 + N3).

Solution
(a) According to Proposition 4.6-5, N1 ~ Bin(8,0.2). Hence,

8

P(N; =1) = (1)0.2l x 0.87 = 0.3355.

(b) According to Proposition 4.6-5, Cov(N;,N3) = —8 x 0.5 x 0.3 = —1.2. At
an intuitive level, the negative covariance can be explained as follows. Since
N1+ N> + N3 = 8, it follows that if N, takes a small value then the probability
that Ny and N3 take a larger value increases; similarly, if N, takes a large value
then it is more likely that N; and N3 will take a small value. This means that

the dependence between any two of N1, N,, and N3 is negative, and hence the
covariance is negative.
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(c) Itisinstructive to compute the variance of N, + N3 in two ways. First,

Var(N; + N3) = Var(N;) + Var(N3) + 2Cov(N;, N3)

=8x05x054+8x03x07-2x12=1.28,

where the second equality in the above relation used the formula for the vari-
ance of the binomial distribution and the covariance found in part (b). An
alternative way of finding the variance of N, + N3 is to use the fact that
N, 4+ N3 is the number of components that last more than 50 hours. Hence,
N, + N3 ~ Bin(8,0.8) and, using the formula for the variance of a binomial
random variable, Var(N; + N;) = 8 x 0.8 x 0.2 = 1.28. Finally, using the
properties of covariance,

COV(N],N2 + N3) = COV(N],Nz) + COV(N],N3)

Exercises

=-8x02x05-8x02x03=-1.28. m

1. In an accelerated life testing experiment, different
batches of n equipment are operated under different
stress conditions. Because the stress level is randomly set
for each batch, the probability, P, with which an equip-
ment will last more than 7 time units is a random variable.
In this problem it is assumed that P is discrete, taking the
values 0.6, 0.8, and 0.9 with corresponding probabilities
0.2, 0.5, and 0.3. Let Y denote the number of equipment
from a randomly selected batch that last more than 7 time
units.

(a) Use the principle of hierarchical modeling to spec-
ify the joint distribution of (P,Y). (Hint. Given that
P =p,Y ~ Bin(n,p).)

(b) Find the marginal PMF of Y when n = 3.

2. Consider the same setting as in Exercise 1, except now
P is assumed here to have the uniform(0, 1) distribution.

(a) Use the principle of hierarchical modeling to specify
the joint density of fp y(p,y) of (P,Y) as the product
of the conditional PMF of Y given P = p times the
marginal PDF of P.

(b) Find the marginal PMF of Y. (Hint. The marginal
PDF of Y is still given by integrating fp y(p,y) over

p. You may use [i (I)pk(1 — py** dp = gt for
k= 0, . ,I’l.)

3. In the context of the normal simple linear regression
model

Y|X =x ~ N(9.3 + 1.5x,16),

let Y1, Y, be independent observations corresponding to
X =20and X = 25, respectively.

(a) Find the 95th percentile of Y7.

(b) Find the probability that Y, > Y7. (Hint. See Example
4.6-4.)

4. Consider the information given in Exercise 3. Suppose
further that the marginal mean and variance of X are
E(X) = 24 and 0% = 9, and the marginal variance of
Yisof = 36.25.

(a) Find the marginal mean of Y. (Hint. Use Proposition
4.6-1, or the Law of Total Expectation given in 4.3.15.)

(b) Find the covariance and the linear correlation coeffi-
cient of X and Y. (Hint. Use Proposition 4.6-3.)

5. Consider the information given in Exercise 3. Suppose
further that the marginal distribution of X is normal with
pnx =24and oy = 9.

(a) Give the joint PDF of X, Y.

(b) Use R commands to find P(X < 25,Y < 45).

6. Use the second mean plus error expression of the
response variable given in (4.6.6) and Proposition 4.4-2
to derive the formula E(Y) = By. (Hint. Recall that any
(intrinsic) error variable has mean value zero.)

7. The exponential regression model. The exponential
regression model is common in reliability studies inves-
tigating how the expected life time of a product changes
with some operational stress variable X. This model
assumes that the life time, Y, has an exponential distri-
bution whose parameter A depends on the value x of X.
We write A(x) to indicate the dependence of the parame-
ter A on the value of the stress variable X. An example of
such a regression model is

log A(x) = « + Bx.
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Suppose that in a reliability study, the stress variable X is
uniformly distributed in the interval (2,6), and the above
exponential regression model holds with « = 4.2 and
p =31

(a) Find the expected life time of a randomly selected
product. (Hint. Given X = x, the expected life time
is 1/x(x) = 1/exp(a + Bx). Use the Law of Total
Expectation. Optionally, R may be used for the inte-
gration.)

(b) Give the joint PDF of (X, Y). (Hint. Use the principle
of hierarchical modeling.)

8. Suppose that 60% of the supply of raw material kits
used in a chemical reaction can be classified as recent,
30% as moderately aged, 8% as aged, and 2% unus-
able. Sixteen kits are randomly chosen to be used for 16
chemical reactions. Let N1, N», N3, N4 denote the number
of chemical reactions performed with recent, moderately
aged, aged, and unusable materials.

(a) Find the probability that exactly one of the 16 planned
chemical reactions will not be performed due to unus-
able raw materials.

(b) Find the probability that 10 chemical reactions will be
performed with recent materials, 4 with moderately
aged materials, and 2 with aged materials.

(c) Use an R command to recalculate the probabilities in
part (b).

(d) Find Cov(N; + N,,N3) and explain, at an intuitive
level, why it is reasonable for the covariance to be
negative.

(e) Find the variance of N1 + N, + N3. (Hint. Think of
Ni + N, + N3 as binomial.)

9. An extensive study undertaken by the National
Highway Traffic Safety Administration reported that
17% of children between the ages of five and six use no
seat belt, 29% use a seat belt, and 54% use a child seat. In
a sample of 15 children between five and six let N1, Np, N3
be the number of children using no seat belt, a seat belt,
and a child seat, respectively.

(a) Find the probability that exactly 10 children use a
child seat.

(b) Find the probability that exactly 10 children use a
child seat and five use a seat belt.

(c¢) Find Var(N; + N3) and Cov(N1, N + N3).

10. This exercise connects the form of bivariate normal
PDF obtained in (4.6.3) through the principle of hier-
archical modeling with its more common form given in
(4.6.13). It also gives an alternative form of the PDF using
matrix operations. For simplicity, p denotes px,y.

(a) Show that 1 — p? = o /0}2,. (Hint. From Proposition
4.6-3 we have p? = ﬂ%o)z(/o,z,. Now use (4.6.7) to show
that 02 = 02 — po and finish the proof.)

(b) Using the result of part (a), which implies
oxoyy/1— p? = o.0x, and making additional use
of the relationships given in Propositions 4.6-1 and

4.6-3, show that the form of the joint PDF given in
(4.6.13) is equivalent to the form given in (4.6.3).

(c) Let ¥ be the variance-covariance matrix given in
(4.6.14). Use matrix operations to show that an equiv-
alent form of the joint PDF of (X, Y) is

1 1 -1 X—MX)
- - — — Yy
Zﬁm exp{ z(x nx,y :U“Y) <y —ny s

where | X| denotes the determinant of X.



SOME A PPROXIMATION RESULTS

Chapter

5.1 Introduction

Chapter 1 introduced the sample mean or average, the sample variance, the sample
proportion, and sample percentiles. In each case it was stressed that these statistics
approximate but are, in general, different from the true population parameters they
estimate. Moreover, we have accepted as true, based on intuition, that the bigger the
sample size the better the approximation; for example, the numerical verification
of Corollary 4.4-4, offered in Example 4.4-7, is based on this intuition. Evidence
supporting this intuition is provided by the formulas for the variances of X and p,
which decrease as the sample size increases. The Law of Large Numbers, or LLN
for short, stated in the second section of this chapter, is an explicit assertion that this
intuition is in fact true. The LLN is stated for the sample mean, but similar results

hold for all statistics we consider.

Though the LLN justifies the approximation of the population mean by the sam-
ple mean, it does not offer guidelines for determining how large the sample size
should be for a desired quality of the approximation. This requires knowledge of
the distribution of the sample mean. Except for a few cases, such as when sam-
pling from a normal population (see Section 5.3.2), the exact distribution of the
sample mean is very difficult to obtain. This is discussed further in Section 5.3.
In Section 5.4 we present the Central Limit Theorem, or CLT for short, which
provides an approximation to the distribution of sums or averages. Moreover, the
CLT provides the foundation for approximating the distribution of other statis-
tics, such as the regression coefficients, which will be used in the chapters to

follow.

5.2 The LLN and the Consistency of Averages

The limiting relative frequency definition of probability suggests that p becomes a

more accurate estimator of p as the sample size increases. In other words, the

error of estimation [p — p|

converges to zero as the sample size increases. A more precise term is to say that
D converges in probability to p, which means that the probability that the error of

estimation exceeds € tends to zero for any € > 0. This is written as

P(p—pl>¢€)—0 asn— oo.

211
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Theorem
5.2-1

Whenever an estimator converges in probability to the quantity it is supposed to
estimate, we say that the estimator is consistent. The LLN, stated below, asserts that
averages possess the consistency property.

The Law of Large Numbers. Let Xi,...,X, be independent and identically
distributed and let g be a function such that —oco < E[g(X1)] < oo. Then,

1 n
- Z g(X;) converges in probability to E[g(X7)],
n

i=1

that is, for any € > 0,

P (‘% > &(Xi)  Elg(xy)]
i=1

> e) — 0 asn— oo. (5.2.2)

If g is the identity function, that is, g(x) = x, this theorem asserts that for
any € >0

P(|)_(— n| > e) — 0 asn— oo, (5.2.3)

thatis, X =n~! Y, X;is a consistent estimator of the population mean . = E(X7),
provided p is finite. Since p is the average of independent Bernoulli random vari-
ables, whose mean value is p, we see that relation (5.2.1) is a special case of
(5.2.3).

The consistency property, which the Law of Large Numbers (and its various
ramifications) guarantees, is so basic and indispensable that all estimators used in
this book, and indeed all estimators used in statistics, have this property. For exam-
ple, the numerical verification of Corollary 4.4-4 offered in Example 4.4-7 is possible
because of the consistency of the sample variance.

If we also assume that the common variance of the g(X;) is finite, then the proof
of the Law of Large Numbers is a simple consequence of the following inequality,
which is useful in its own right.

Lemma
5.2-1

Chebyshev’s inequality. Let the random variable Y have mean value py and
variance 0}2, < oo. Then, for any € > 0,

02
P(IY — puy| > €) < 2.
€

In words, Chebyshev’s inequality makes an explicit connection between the
variance of a random variable and (an upper bound on) the likelihood that the
random variable will differ “much” from its mean: The smaller the variance, the
less likely it is for the variable to differ “much” from its mean, and this likelihood
tends to zero if the variance tends to zero. Recall now that the mean of the sample
mean is the population mean, that is, E(X) = u, regardless of the sample size (see
(4.4.3)), but its variance is

o 2
Var(X) = 7
n
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where o2 is the population variance; see (4.4.8). As long as o2 is finite, the variance
of X tends to zero as the sample size increases. Hence, Chebyshev’s inequality
implies the probability of the error of estimation exceeding e, that is, P(|1X — | >
€), tends to zero for any € > 0. This is the gist of the proof of the consistency of the
sample mean in the case of a finite population variance. The technical proof, also
in the more general context of the average of the g(X;), follows.

Proof of the Law of Large Numbers (assuming also a finite variance). We will
use Chebyshev’s inequality with Y = n~! 3", ¢(X;). Thus,

n " 02
ny = % > E[g(Xi)] = E[g(X1)] and oy = Var (% Zg(Xi)> _ Xg’
i=1 -

wheBe ag2 = Var[g(X;)]. Hence, by Chebyshev’s inequality we have that for any
€ >0,

P (‘}1 > 80xi)  Elg(xy)]

i=1

2
%%
> € 5—2—>0 as n — oo.
ne

Example
5.2-1

Though it is a fundamental result, the usefulness of the LLN has its limitations:
While it asserts that as the sample size increases, sample averages approximate the
population mean more accurately, it provides no guidance regarding the quality of
the approximation. In addition to helping prove the LLN (in the case of a finite vari-
ance), Chebyshev’s inequality provides some information about the quality of the
approximation but only in the sense of probability bounds. The following example
illustrates these points.

Cylinders are produced in such a way that their height is fixed at 5 centimeters (cm),
but the radius of their base is uniformly distributed in the interval (9.5 cm, 10.5 cm).
The volume of each of the next 100 cylinders to be produced will be measured, and
the 100 volume measurements will be averaged.

(a) What will the approximate value of this average be?

(b) What can be said about the probability that the average of the 100 volume
measurements will be within 20 cm? from its population mean?

Solution
Let X;,i = 1,...,100, and X denote the volume measurements and their average,
respectively.

(a) By the LLN, X should be approximately equal to the expected volume of a
randomly selected cylinder. Since the volume is given by X = 7 R*h cm? with
h =5 cm, the expected volume of a randomly selected cylinder is

10.5

E(X) = 5nE(R2) =57 | P dr
1 10.5 1
=57=P| =57= (10.53 - 9.53) — 1572.105.
3 lgs 3

Thus, the value of X should be “close” to 1572.105.
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(b) We are interested in an assessment of the probability
P(1572.105 — 20 < X < 1572.105 + 20) = P(1552.105 < X < 1592.105).

Since the LLN does not provide any additional information about the qual-
ity of the approximation of u by X, we turn to Chebyshev’s inequality. Note
that the event 1552.105 < X < 1592.105 is the complement of the event

‘7 — 1572.105‘ > 20. Since Chebyshev’s inequality provides an upper bound
for the probability of the later event, which is

Var(X)
202 7

P (’)_( - 1572.105] . 20) <

it follows that it also provides a lower bound for the probability of the former
event

P (1552.105 <X < 1592.105) —1-pP (‘Y _ 1572.105( > 20)

Var(X)
>1- . 5.2.4
> o3 (52.4)
It remains to compute the variance of X. Since
10.5 1 .103
E (X2> — 5272E (R“) — 5252 / dr= 52728 =2,479741,
95 5 los

the variance of X is 02 = 2,479,741 — 1572.105% = 8227.06. Hence, Var(X) =
0% /n = 82.27. Substituting into (5.2.4), we obtain

— 82.27
P (1552.105 <X< 1592.105) >1- 00 = 0.79. (5.2.5)

Thus, it can be said that the probability of the average of the 100 vol-
ume measurements being within 20 cm® from its population mean is at
least 0.79. [

In general, Chebyshev’s inequality provides a lower bound to probabilities of
the form

P(u—C<X <u+0C),

for any constant C. These lower bounds are valid for any sample size n and for sam-
ples drawn from any population, provided the population variance is finite. Because
these lower bounds apply so generally, they can be quite conservative for some
distributions. For example, if the volume measurements in Example 5.2-1 are
normally distributed, thus X7,..., X0 are iid N(1572.105,8227.06), then X ~
N(1572.105,82.27) (this is a consequence of Proposition 4.6-4; see also Corollary
5.3-1). Using this fact, the exact value of the probability in (5.2.5), which can be found
with the R command prorm(1592.105, 1572.105, sqrt(82.27)) — pnorm(1552.105,
1572.105, sqrt(82.27)),1s 0.97. Because the lower bounds obtained from Chebyshev’s
inequality can underestimate the true probability (considerably for some distribu-
tions), they are not useful for answering practical questions involving the sample size
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required for a specified level of accuracy in the estimation of x by X. To properly
address such questions, knowledge (or approximate knowledge) of the distribution
of averages is required; see Example 5.3-6. The rest of this chapter deals with this
issue, but first we discuss the assumptions of finite mean and finite variance that
underly all developments.

The Assumptions of a Finite Mean and a Finite Variance The LLN requires the
existence of a finite mean, while the simple proof of Theorem 5.2-1, based in
Chebyshev’s inequality, requires the stronger assumption of a finite variance. In a
first course in probability and statistics many students wonder how it is possible for
a random variable not to have a finite mean or to have a finite mean but infinite
variance, how one becomes aware of such abnormalities when confronted with a real
data set, and what the consequences are of ignoring evidence of such abnormalities.
The following paragraphs give brief answers to these questions.

First, it is easy to construct examples of distributions having infinite mean, or
having finite mean but infinite variance. Consider the functions

fik)=x2,1<x<o0, and fr(x)=2x"3,1<x < oo,

and both are zero for x < 1. It is easy to see that both are probability density func-
tions (both are nonnegative and integrate to 1). Let X7 have PDF f; and X; have
PDF f,. Then the mean value (and hence the variance) of X is infinite, while the
mean value of X> is 2 but its variance is infinite:

B = [ de= oo, EOD) = [T 2R dr= o

E(X>) = /] Ooxfz(x) dx=2, E(X3) = /1 ooxzfz(x) dx = 00

The most famous abnormal distribution is the (standard) Cauchy distribution, whose
PDFis

fay =L 1

= —m, -0 <X < OQ. (5.2.6)
v X

Note that this PDF is symmetric about zero, and thus its median is zero. However,
its mean does not exist in the sense that the integral [0 xf(x) dx, with f(x)
given in (5.2.6), is undefined. Hence, its variance cannot be defined; however,
[0, X% f(x) dx = oc.

If the sample comes from a distribution without a finite mean, then the LLN
does not hold. In particular, if the mean is +00, X diverges to =00 as the sample size
tends to oo. If the mean of the distribution does not exist, X need not converge to
any constant and it need not diverge; see Exercise 1 in Section 5.4 for a numerical
demonstration of this fact using samples from the Cauchy distribution. If the mean
exists and is finite then, by the Law of Large Numbers, X converges to the mean.
However, assessment of the accuracy in the estimation of x by X requires that the
variance be finite too.

Distributions with infinite mean, or infinite variance, are described as heavy
tailed, a term justified by the fact that there is much more area under the tails (i.e.,
the extreme ends) of the PDF than for distributions with a finite variance. As a con-
sequence, samples obtained from heavy tailed distributions are much more likely to
contain outliers. If large outliers exist in a data set, it might be a good idea to focus
on estimating another quantity, such as the median, which is well defined also for
heavy tailed distributions.
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Exercises
1. Using Chebyshev’s inequality: (b) What can be said about the probability that X will be
(a) Show that any random variable X with mean 1 and within 15.38 units from the population mean? (Hint.
variance o2 satisfies The mean and variance of a random variable having

1
P(|X —pu| > a0) < —

that is, that the probability X differs from its mean
by more than a standard deviations cannot exceed

the exponential distribution with parameter A are 1/

2 and 1/22, respectively.)

3. Let Xi,...,Xj0 be independent Poisson random vari-

1/d2. ables having mean 1.

(b) Supposing X ~ N(u, 02), compute the exact prob- (a) Use Chebyshev’s ine@ality to find a lower bound on
ability that X differs from its mean by more than the probability that X is within 0.5 from its mean,
a standard deviations for a = 1,2, and 3, and com- that is, P (0_5 <X <15). (Hint. The probability in

pare the exact probabilities with the upper bounds

question can be written as 1 — P(|X — 1| > 0.5); see

provided by Chebyshev’s inequality. Example 5.2-1.)

2. The life span of an electrical component has the
exponential distribution with parameter 2 = 0.013. Let

(b) Use the fact that Y"1, X; is a Poisson random variable
with mean 10 (see Example 5.3-1) to find the exact

X1,...,X100 be a simple random sample of 100 life times value of the probability given in part (a). Compare

of such components. the exact probability to the lower bound obtained in

(a) What will be the approximate value of their part (a). (Hint. The R command ppois(x, 1) gives the
average X? value of the Poisson(i) CDF at x.)

Example
5.3-1

5.3 Convolutions
5.3.1 WHAT THEY ARE AND HOW THEY ARE USED

In probability and statistics, the convolution of two independent random variables
refers to the distribution of their sum. Alternatively, the convolution refers to formu-
las for the PDF/PMF and the CDF of their sum; see (5.3.3). The next two examples
find the convolution of two independent Poisson random variables and the convolu-
tion of two independent binomial random variables having the same probability of
success.

Sum of independent Poisson random variables. If X ~ Poisson(i;) and Y ~
Poisson(1;) are independent random variables, show that

X + Y ~ Poisson(A1 + A2).

Solution

We will find the distribution of Z = X + Y by first finding its conditional distribution
given X = k and subsequent application of the Law of Total Probability for marginal
PMFs given in relation (4.3.5). Note that given the information that X = k, the
possible values of Z are k,k+ 1,k +2,....Forn > k

P(Z=nX=k) PY=n—kX=k)

P(Z=nlX=k)= PX =k P(X = k)
_P(Y=n—kPX =k _ .
_ P =%) =P(Y=n—k)
A )\'rzl_k

IO
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where the third equality above follows from the independence of X and Y. Next,

)Ln k )\k

= = 3= = = 3o o

k=0

—)n-i-)»
(A1 Z)Zk!(n—k)!

e—(hitag) N n! x ek
‘ Kl k)')ul)»
nt =

e ()‘1+)V2)
= n—()»l +212)",

which shows that X + Y ~ Poisson(i + A7). |

Sum of independent binomial random variables. If X ~ Bin(ny,p) and ¥ ~
Bin(n,, p) are independent binomial random variables with common probability of
success, show that

X +Y ~ Bin(ny + ny, p).

Solution

This problem can be done with steps similar to those used in Example 5.3-1; see
Exercise 1 in Section 4.3. Alternatively, recalling that a binomial random variable
arises as the number of successes in a number of independent Bernoulli trials each
of which has the same probability of success, it can be argued that Z = X| + Xp ~
Bin(n1+ny, p) because Z is the number of successes in n11 +n; independent Bernoulli
trials each of which has the same probability of success. [

By an inductive argument, Example 5.3-2 also implies that if X; ~ Bin(n;,p),
i=1,...,k, are independent then X7 +- - -+ X ~ Bin(n,p), wheren = n;+- - - +ny.
Similarly, Example 5.3-1 and an inductive argument yields that the sum of sev-
eral independent Poisson random variables is also a Poisson random variable with
mean equal to the sum of their means. Moreover, in Proposition 4.6-4 it was seen
that the sum of multivariate normal random variables has a normal distribution.
Unfortunately, such nice examples are exceptions to the rule. In general, the dis-
tribution of the sum of two independent random variables need not resemble the
distribution of the variables being summed. For example, the sum of two indepen-
dent binomial random variables is binomial only if they share a common probability
of success; if the probabilities of success are different, the distribution of their sum is
none of the common types of discrete distributions we considered in Chapter 3. Also,
as the next example shows, the sum of two independent uniform random variables
is not a uniform random variable.

The sum of two uniforms. If X; and X, are independent random variables having
the uniform in (0, 1) distribution, find the distribution of X7 + X5.

Solution

We will first find the cumulative distribution function, Fx, 1 x,(y) = P(X1+ X2 <),
of Xj + X5, for 0 < y < 2. The probability density function will follow by differen-
tiation. A general method for finding the cumulative distribution of the sum of two
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independent random variables is to condition on one of them, say X7, and then use
a version of the Law of Total Expectation given in (4.3.16). Using this formula with
X1 in place of X, and B being the event that the sum X + X is less than or equal to
y, that is, [ X7 + X, < y], we obtain

o0

Fxion() = / P(X1 + Xa < yIX1 = x1)fx, (x1) dixy
o0

o0
= / P(X; <y —x11X1 = x1)fx, (x1) dxq

—00

-/ T P(Xs <y — x)fy () diy

by the independence of X and X». Replacing P(X, <y —x1) by Fx,(y — x1), we
obtain

o0
Fx,1x,(y) = / Fx,(y — x1)fx, (x1) dxq (5.3.1)

—00

From the fact that X and X, are nonnegative it follows that, in the integral in (5.3.1),
x1 has to be less than y (so the upper limit of the integral can be replaced by y).
Moreover, since X and X; are uniform in (0,1), fx,(x1) = 1if 0 < x; < 1 and zero
otherwise, and when y — x; < 1, Fx,(y — x1) = y — x1, while when y —x; > 1,
Fx,(y —x1) = 1. Hence, if y < 1 the upper limit in the integral in (5.3.1) can be
replaced by y, and we have

y 1 9
FX1+X2(y)=/0 (y—X1)dX1 = zy .

If 1 <y < 2, the upper limit in the integral in (5.3.1) can be replaced by 1, and we
have

1
1 Fx,(y —x1) dxq

1 y—1
FX1+X2(Y)=/O FXz(y_xl) dxq Z/() sz(y—x1) dx1+/

y—1 1 1.1
:/0 dx1+/ l(y—h)dxl=y—1+y[1—(y—1)]—QX%
-

y—1
1
=2y— -y —1.
Y= 5y
Differentiating the cumulative distribution function gives the following PDF of
X1+ X5

fo0<y<l1

_
() = {2 _y ifley<2 (53.2)

Formula (5.3.1) gives the cumulative distribution function of the sum of two
independent random variables X7 and X, and is called the convolution of the distri-
butions Fy, and Fy,. The convolution also refers to the expression giving the PDF
of the sum of the independent random variables X; and X5, which is obtained by
differentiating (5.3.1):



Figure 5-1 The
convolution PDF of two
(left panel) and of three
(right panel) uniform
PDFs.

Convolution of the
PDFs f| and f

Example
5.3-4
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The left panel of Figure 5-1 shows the PDF (5.3.2). It is quite clear that
the convolution of two uniform(0, 1) PDFs is very different from the PDF of a
uniform.

Applying either of the convolution formulas shows that the distribution of the
sum of two independent exponential random variables is not an exponential random
variable (see Exercise 2 in Section 5.4). In general the distribution of the sum of two
random variables need not resemble the distribution of either variable.

The convolution formula (5.3.3) can be used recursively to find the distribution
of the sum of several independent random variables. The right panel of Figure 5-1
shows the convolution of three uniform PDFs. It is quite clear that the distribution
of the sum of three independent uniform random variables is different from that of
the sum of two, as well as from that of a uniform random variable.

A version of the convolution formulas applies to discrete random variables as
well. In fact, one such version was used in Example 5.3-1 to find the distribution of
the sum of two independent Poisson random variables. Again, convolution formulas
for two discrete random variables can be applied recursively to find the distribu-
tion of the sum of several independent discrete random variables. Such formulas,
however, may be difficult or impractical to use for calculating probabilities.

As an alternative to deriving formulas, computer evaluation of the convolution
of two random variables is possible. The following example demonstrates the use of
R for computing the convolution of two binomial random variables with different
probabilities of success (a case for which we have not derived a formula for the
convolution).

The PMF and CDF of X + Y with R. If X and Y are independent with X ~
Bin(3,0.3) and Y ~ Bin(4,0.6), find the convolution distribution (the PMF and
CDF) of X + Y using R.

Solution

First we create the sample space of (X, Y), which consists of the 4 x 5 = 20 pairs of

(x,y) values with x = 0,1,2,3 and y = 0, 1,2, 3, 4. This is done with the R command
S = expand.grid(X=0:3,Y=0:4)

The first column of S contains the x-values of the 20 (x,y) pairs, and the second
column of S contains the y-values of the pairs. The first column of S can be accessed
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either by S$X or by S[,1]. Similarly, the second column of S can be accessed either
by S$Y or by S[,2]. Next, we create the joint probabilities p(x, y) for each (x,y) in
the sample space, that is, for each row of S. This is done with the R commands
P = expand.grid(px=dbinom(0:3, 3, .3), py=dbinom(0:4, 4, .6));
P$pxy = P$px=P$py

The first of the above commands creates a matrix P having 20 rows and two
columns, labeled px and py, that contain the marginal probabilities (px(x),py(y))
for the (x,y) pair in the corresponding row of S. The second command, P$pxy =
P$px*P§py, forms a new column in the P matrix that contains the joint probabilities
p(x,y) = px(x)py(y) for each (x, y) pair in S. The additional commands

attach(P); attach(S)

allow the columns of P and S to be accessed simply by their name. With the sample
space in S and the joint probabilities in the column pxy of P, all joint probabilities
pertaining to the variables X and Y can be calculated. For example,

sum(pxy [which(X + Y==4)1)
gives 0.266328, which is the probability P(X + Y = 4);
pz=rep(0,8); for(i in 1:8)pz[il=sum(pxy[which(X + Y==1 - 1)1); pz

returns 0.009 0.064 0.191 0.301 0.266 0.132 0.034 0.003, which are the values of the
PMF pz(z) of Z = X + Y for z = 0,...,7 (the probabilities are rounded to three
decimal places);

sum(pxy [which(X + Y<=4)1)
gives 0.830872, which is the cumulative probability P(X + Y < 4); and

Fz=rep(0,8); for(i in 1:8)Fz[i]=sum(pxy[which(X + Y<=i-1)]); Fz

returns 0.009 0.073 0.264 0.565 0.831 0.963 0.997 1.000, which are the values (again
rounded to three decimals) of the CDF Fz(z) = P(X+Y < x),forz =0,...,7.
Finally,

sum(pxy[which(3<X + Y & X + Y<=5)])
gives 0.398, which is the probability P(3 < X + Y < 5) = Fz(5) — Fz(3). m

The main points of this section are (a) the distribution of the sum of two indepen-
dent random variables need not resemble the distribution of the individual variables,
and (b) as the number of random variables that are summed increases so does the
difficulty in using both the convolution formulas and the R code for finding the exact
distribution of the sums.

5.3.2 THE DISTRIBUTION OF X IN THE NORMAL CASE

The following proposition follows by a recursive application of part (4) of
Proposition 4.6-4 for the case of independent normal random variables, but is high-
lighted here because of the importance of the normal distribution for statistical
inference.
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Let X1, X3,. .., X}, be independent and normally distributed random variables, X; ~
N(,ui,aiz), and let Y = a1X;| + -+ 4+ a,X,, be a linear combination of the X;.
Then

Y~N(uy,o)2,), where py =ajuq + -+ + anpin, a,%:a%a12+-~-+anon. -

Two airplanes, A and B, are traveling parallel to each other in the same direc-
tion at independent speeds of X; km/hr and X, km/hr, respectively, such that
X1 ~ N(495,8%) and X, ~ N(510,10%). At noon, plane A is 10 km ahead of plane B.
Let D denote the distance by which plane A is ahead of plane B at 3:00 p.m. (Thus
D is negative if plane B is ahead of plane A.)

(a) What is the distribution of D?
(b) Find the probability that at 3:00 p.m. plane A is still ahead of plane B.

Solution
The distance by which plane A is ahead at 3:00 p.m. is given by D = 3X; —3X> + 10.
According to Proposition 5.3-1, the answer to part (a) is

D ~ N3 x495—3 x 510+ 10, 9 x 64+ 9 x 100) = N(—35,1476).
Hence, the answer to part (b) is

35

) = 0.181.

Corollary
5.3-1

Let X1,...,X, beiid N(u, 02), and let X be the sample mean. Then

)_(NN(uy,a%), where uy=p, oy=—.

Example
5.3-6

The next example demonstrates the use of Corollary 5.3-1 for determining, in the
case of a normal distribution with known variance, the sample size needed to
ensure that the sample mean achieves a satisfactory approximation to the population
mean.

It is desired to estimate the mean of a normal population whose variance is known
to be o2 = 9. What sample size should be used to ensure that X lies within 0.3 units
of the population mean with probability 0.95?

Solution .
In probabilistic notation, we want to determine the sample size n so that P(|.X —u| <
0.3) = 0.95. According to Corollary 5.3-1,

X—n
o/Jn

~ N(0,1).
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Using this, and rewriting P(|1X — p| < 0.3) = 0.95 as

0.3 0.3
P( <G/ﬁ>=P(|Z|<U/ﬁ)=O.95,

where Z ~ N(0,1), it follows that 0.3/(c/+/n) = zo.025. This is because zg s is the
only number that satisfies P (|Z] < zo.025) = 0.95. Solving for n gives

1.960 \2
- — 384.16.
" ( 03 )

X—n
o/vn

Thus, using n = 385 will satisfy the desired precision objective. [

REMARK 5.3-1 The solution to Example 5.3-6 is not completely satisfactory
because, typically, o is unknown. Of course, o can be estimated by the sample
standard deviation S. More details on this will be given in Chapter 7, where the deter-
mination of the required sample size for satisfactory approximation of the mean will

be discussed in more detail.

Exercises

<

1. Let X ~ Bin(ny,p), Y ~ Bin(ny,p) be independent

andletZ=X+Y.

(a) Find the conditional PMF of Z given that X = k.

(b) Use the result in part (a), and the Law of Total
Probability for marginal PMFs as was done in
Example 5.3-1, to provide an analytical proof of
Example 5.3-2, namely that Z ~ Bin(ni+ny, p). (Hint.
You will need the combinatorial identity ("'7"?) =

2o (D62
2. Let X7 and X, be two independent exponential
random variables with mean u = 1/A. (Thus, their

common density is f(x) = Aexp(—Aix),x>0.). Use the
convolution formula (5.3.3) to find the PDF of the sum
of two independent exponential random variables.

3. Let X1, X5, X3 be independent normal random vari-
ables with common mean @1 = 60 and common variance
o? = 12, and Y1, Y, Y3 be independent normal random
variables with common mean p, = 65 and common vari-
ance 022 = 15. Also, X; and Y; are independent for all i
and j.

(a) Specify the distribution of X7 + X, + X3, and find

P(X1+ X, + X3 > 185).

(b) Specify the distribution of Y—-X, and find
P(Y — X >8).

4. Each of 3 friends bring one flashlight containing a fresh
battery for their camping trip, and they decide to use one
flashlight at a time. Let X7, X, and X3 denote the lives
of the batteries in each of the 3 flashlights, respectively.
Suppose that they are independent normal random vari-
ables with expected values u; = 6, up = 7, and pu3 = 8
hours, and variances of = 2, 05 = 3, and 0 = 4,
respectively.

(a) Find the 95th percentile of the total duration of the
flashlights.

(b) Calculate the probability that the flashlights will last a
total of less than 25 hours.

(c) Suppose that the 3 friends have five camping trips that
year and each time they start with the same types of
fresh batteries as above. Find the probability that the
batteries last more than 25 hours exactly 3 of the 5
times.

5. Itis desired to estimate the mean diameter of steel rods
so that, with probability 0.95, the error of estimation will
not exceed 0.005 cm. It is known that the distribution of
the diameter of a randomly selected steel rod is normal
with standard deviation 0.03 cm. What sample size should
be used?

5.4 The Central Limit Theorem

Because, in general, finding the exact distribution of the sum or average of a large
number of random variables is impractical, it would be very desirable to have a sim-
ple way to approximate it. Such an approximation is made possible by the Central
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Limit Theorem, or CLT for short. In all that follows, ~ is read as “is approximately
distributed as.”

Theorem
5.4-1

The Central Limit Theorem. Let Xi,..., X, be iid with mean u and a finite
variance o2. Then for large enough n (n > 30 for our purposes),

1. X has approximately a normal distribution with mean u and variance o /n,

that is,
2
X~N (M, U—) .
n

2. T = X1+ ...+ X, has approximately a normal distribution with mean nu
and variance no?, that is,

T:X1+...+Xn'§N<nu,nc72).

Figure 5-2 The
distribution of the sum of n
exponential(A = 1) random
variables.

REMARK 5.4-1 The quality of the approximation increases with n, and also
depends on the population distribution. For example, data from skewed populations
require a larger sample size than data from, say, the uniform distribution. Moreover,
the presence of really extreme outliers might indicate non-finite population vari-
ance, in which case the CLT does not hold; see the discussion on the assumptions
of a finite mean and a finite variance at the end of Section 5.2. For the rest of this
book we will always assume that data sets have been drawn from a population with
a finite variance, and, as a rule of thumb, will apply the CLT whenever n > 30. <

The CLT is a really amazing result that explains the central role of the nor-
mal distribution in probability and statistics. Indeed, the importance to statistics of
being able to approximate the distribution of averages (or sums) cannot be over-
stated. For this reason, the Central Limit Theorem is considered the most important
theorem in probability and statistics. The convergence of the distribution of the aver-
age of exponential random variables to the normal distribution is demonstrated in
Figure 5-2.
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0.05 0.10

0.00
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Example
5.4-1

Example
5.4-2

The number of units serviced in a week at a certain service facility is a random vari-
able having mean 50 and variance 16. Find an approximation to the probability that
the total number of units to be serviced at the facility over the next 36 weeks is
between 1728 and 1872.

Solution
Let X1,...,X3¢ denote the number of units that are serviced in each of the next
36 weeks, and assume they are iid. Set 7' = ?21 X; for the total number of units

serviced. Then E(T) = 36 x 50 = 1800 and Var(7T) = 36 x 16 = 576. Since the
sample size is > 30, according to the CLT the distribution of 7 is approximately
normal with mean 1800 and variance 576. Thus,

72 T-1 2
P(1728<T<1872)=P( ! 800 _ 7 )

576 516 V576
~ D (3) — B (—3) = 0.997. -

The level of impurity in a randomly selected batch of chemicals is a random variable
with u =4.0% and o =1.5%. For a random sample of 50 batches, find

(a) an approximation to the probability that the average level of impurity is
between 3.5% and 3.8%, and
(b) an approximation to the 95th percentile of the average impurity level.

Solution o
Let X1,...,Xs50 denote the levels of impurity in each of the 50 batches, and let X

denote their average. Since the sample size is > 30, according to the CLT, X ~
N(4.0, 1.52/50) = N(4.0, 0.045). The probability for part (a) and percentile for part
(b) will be approximated according to this distribution. Thus, the answer to part (a) is
35-40 3.8 — 4.0)
—_— << ——

+/0.045 +/0.045

~ &(—0.94) — B(—2.36) = 0.1645,

P(35 <X <38) ~ P(

and the answer to part (b) is

X0.05 =~ 4.0 + 20,05 1.52/50 =4.35. -

5.4.1 THE DEMOIVRE-LAPLACE THEOREM

The DeMoivre-Laplace Theorem, which is the earliest form of the Central Limit
Theorem, pertains to the normal approximation of binomial probabilities. It was
proved first by DeMoivre in 1733 for p = 0.5 and extended to general p by Laplace
in 1812. Because of the prevalence of the Bernoulli distribution in the experimental
sciences, the DeMoivre-Laplace Theorem continues to be stated separately even
though it is now recognized as a special case of the CLT.

Consider n replications of a Bernoulli experiment with probability of success p,
and let 7 denote the total number of successes. Thus, T ~ Bin(n, p). The relevance
of the CLT for approximating binomial probabilities becomes clear if 7 is expressed
as a sum,

T=Xi+ -+ X,
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of the individual Bernoulli variables. Since the X1,..., X, are iid with E(X;) = p
and Var(X;) = p(1 — p) we have the following consequence of the Central Limit
Theorem.

Theorem
5.4-2

DeMoivre-Laplace. If T ~ Bin(n, p) then, for large enough n,

T ~ N (np,np(1 — p)).

Sample Size
Requirement for
Approximating
Binomial Probabilities
by Normal
Probabilities

Figure 5-3 Binomial PMFs
with p = 0.8 and
increasing .

The general condition n > 30 for achieving acceptable quality in the approxima-
tion can be specialized for the binomial distribution as follows:

np>5 and n(l-—p)=>5

Figure 5-3 demonstrates that the probability mass function of the binomial tends
to become symmetric as the sample size increases.

The Continuity Correction Whenever the Central Limit Theorem is used to approx-
imate probabilities of a discrete distribution, the approximation is improved by
the so-called continuity correction. To explain how this correction works let X ~
Bin(10,0.5) and suppose we are interested in using the DeMoivre-Laplace Theorem
to approximate P(X < 5). Since the sample size requirements are satisfied, we would
approximate P(X < 5) by P(Y <5), where Y ~ N(5,2.5). Figure 5-4 shows the bar
graph of the Bin(10,0.5) PMF with the N(5,2.5) PDF superimposed. In bar graphs
of PMFs the area of each bar corresponds to individual probabilities. For example,
P(X = 5) equals the area of the bar centered at x = 5, half of which is shown col-
ored. It follows that the probability P(X < 5) equals the sum of the areas of the bars
centered at 0,1,...,5. Approximating this by P(Y < 5), which is the area under the
normal PDF to the left of x = 5, leaves the area in color (i.e., half of P(X = 5))
unaccounted for.

The continuity correction consists of using the area under the normal PDF to
the left of 5.5 as an approximation to P(X < 5). The improvement in approximation
is remarkable. Indeed, P(X < 5) = 0.623 would be approximated by P(Y < 5) = 0.5
without the continuity correction, and by P(Y < 5.5) = 0.624 with the continuity
correction.

PMF
0.00 0.05 0.10 0.15 0.20 0.25 0.30
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Figure 5-4 Approximation

of P(X < 5) with and
without continuity
correction.

Example
5.4-3

Bin(10,0.5) PMF and N(5,2.5) PDF

0.10 0.15 020 0.25

0.05

0.00

In general, if X is a discrete random variable taking integer values and Y is the
approximating normal random variable, probabilities and cumulative probabilities
of X are approximated by

P(X=k)y~P(k—05<Y <k+0.5) and P(X <k)>~P(Y <k+0.5). (541

Application of the continuity correction to the DeMoivre-Laplace Theorem
yields the following approximation to the cumulative probabilities of X ~ Bin(n, p):
If the conditions np > 5 and n(1 — p) > 5 hold, then

k+0.5— np>
Jnp(1=p) /)

where Y is a random variable having the normal distribution with mean and vari-
ance equal to the mean and variance of the Binomial random variable X, that is,

Y ~ N(np,np(1 — p)).

P(X <k)~P(Y <k+05)= cp( (5.4.2)

A college basketball team plays 30 regular season games, 16 of which are against
class A teams and 14 are against class B teams. The probability that the team will
win a game is 0.4 if the team plays against a class A team and 0.6 if the team plays
against a class B team. Assuming that the results of different games are independent,
approximate the probability that

(a) the team will win at least 18 games, and

(b) the number of wins against class B teams is smaller than that against class A
teams.

Solution
Let X7 and X; denote the number of wins against class A teams and class B teams,
respectively. Then, X7 ~ Bin(16,0.4), and X, ~ Bin(14,0.6).

(a) We want the probability P(X; + X, > 18). Since the probability of success is
different for the two binomial distributions, the exact distribution of X7 + X3 is
not known. However, since 16 x 0.4 and 14 x 0.4 are both > 5, the DeMoivre-
Laplace Theorem can be used to approximate the individual distributions of
Xl and Xz,
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5.4-4
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X| ~ N(6.4,3.84), X, ~ N(8.4,3.36), (5.4.3)
where 6.4 = 16 x 0.4, 3.84 = 16 x 0.4 x 0.6, 84 = 14 x 0.6, and 3.36 =
14 x 0.6 x 0.4. Consequently, since X7 and X, are independent, by Proposition
5.3-1,

X1+ Xy ~ N(6.4 + 8.4,3.84 + 3.36) = N(14.8,7.20).

Hence, using also continuity correction, the needed approximation for

part (a) is
17.5-14.8

=1— &(1.006) = 1 — 0.843 = 0.157.

(b) Using again the approximation to the individual distributions of X; and X,
given in (5.4.3), the fact that X7 and X, are independent, and Proposition 5.3-1,
we have

X, — X1 ~ N(8.4 — 6.4,3.84 + 3.36) = N(2,7.20).

Hence, using also continuity correction, the needed approximation for
part (b) is

—-05-2

P(Xz—X1<0)ZCD< e

> = ®(—0.932) = 0.176.

Suppose that 10% of a certain type of component last more than 600 hours in opera-
tion. For n = 200 components, let X denote the number of those that last more than
600 hours. Approximate the probabilities (a) P(X < 30), (b) P(15 < X < 25), and
(c) P(X =125).

Solution

Here X has a binomial distribution with n = 200 and p = 0.1. Since 200 x 0.1 = 20,
the sample size conditions for the application of the DeMoivre-Laplace Theorem
are met. Using also the continuity correction, we have:

30.5 — 20
V18

(b) To apply the DeMoivre-Laplace Theorem for approximating this probability,
it is necessary to first express it as

(a) P(X < 30) ~ q>( ) = ©(2.47) = 0.9932.

P(I15<X <25)=P(X <25)— P(X <14)

and then apply the DeMoivre-Laplace approximation to each probability on
the right hand side. Thus,

25.5-20 14.5 - 20
PAS<X<25) > —— | - O ———
(13 = X =25) ( /18 ) ( /18 )

= 0.9032 — 0.0968 = 0.8064.
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(c) To apply the DeMoivre-Laplace Theorem for approximating this probability,
it is necessary to first express it as

P(X =25) = P(X <25)— P(X <24)

and then apply the DeMoivre-Laplace approximation to each probability on
the right hand side. Thus,

P(X =25) ~ qa(

Exercises

55 20) (245 20) _ g0 _nsssa -0
V18

V18

I. A random variable is said to have the (standard)
Cauchy distribution if its PDF is given by (5.2.6). This
exercise uses computer simulations to demonstrate that
a) samples from this distribution often have extreme out-
liers (a consequence of the heavy tails of the distribution),
and (b) the sample mean is prone to the same type of
outliers. (In fact, for any sample size, the sample mean
has the standard Cauchy distribution, implying that the
LLN and CLT do not apply for samples from a Cauchy
distribution.)

(a) The R commands x=rcauchy(500); summary(x) gen-
erate a random sample of size 500 from the Cauchy
distribution and display the sample’s five number
summary; see Section 1.7. Report the five number
summary and the interquartile range, and comment
on whether or not the smallest and largest order
statistics are outliers. Repeat this 10 times.

(b) The R commands m=matrix(rcauchy(50000),
nrow=500); xb=apply(m, 1, mean); summary(xb) gen-
erate the matrix m that has 500 rows, each of which is
asample of size n = 100 from the Cauchy distribution,
compute the 500 sample means and store them in xb,
and display the five number summary of xb. Repeat
these commands 10 times, and report the 10 sets of
five number summaries. Compare with the 10 sets of
five number summaries from part (a), and comment
on whether or not the distribution of the averages
seems to be as prone to extreme outliers as that of the
individual observations.

2. Let X1,...,X30 be independent Poisson random vari-
ables having mean 1.

(a) Use the CLT, with and without continuity correction,
to approximate the probability P(X1 + --- + X309 <
35). (Hint. The R command pnorm(z) gives ®(z), the
value of the standard normal CDF at z.)

(b) Use the fact that X7 + - - - + X3¢ is a Poisson random
variable (see Example 5.3-1) to find the exact value
of the probability given in part (a). Compare the two

approximations obtained in part (a) to the exact prob-
ability. (Hint. The R command ppois(x, A) gives the
value of the Poisson(A) CDF at x).

3. Suppose that the waiting time for a bus, in minutes,
has the uniform in (0, 10) distribution. In five months a
person catches the bus 120 times. Find an approximation
to the 95th percentile of the person’s total waiting time.
(Hint. The mean and variance of a uniform(0, 10) distri-
bution are 5 and 100/12, respectively; see Examples 3.3-8
and 3.3-13.)

4. Suppose the stress strengths of two types of materi-
als follow the gamma distribution (see Exercise 13 in
Section 3.5) with parameters oy = 2, f; = 2 for type
1and ap = 1, B = 3 for type two. Let X1 and X, be
average stress strength measurements corresponding to
samples of sizes n; = 36 specimens of type 1 material and
np = 42 specimens of type 2 material, respectively.

(a) Specify the (approximate) distributions of X1, X,
and X| — X». Justify your answers.

(b) Find the (approximate) probability that X; will be
larger than X>.

5. Two towers are constructed, each by stacking 30 seg-
ments of concrete vertically. The height (in inches) of a
randomly selected segment is uniformly distributed in the
interval (35.5, 36.5). A roadway can be laid across the 2
towers provided the heights of the 2 towers are within 4
inches of each other. Find the probability that the road-
way can be laid. Be careful to justify the steps in your
argument, and state whether the probability is exact or
approximate.

6. Using the information on the joint distribution of meal
price and tip given in Exercise 3 in Section 4.3, answer the
following question: If a waitress serves 70 customers in
an evening, find an approximation to the probability that
her tips for the night exceed $120. (Hint. The mean and



variance of the tip from a random customer are 1.8175
and 0.1154.)

7. When a randomly selected number A is rounded off
to its nearest integer R4, it is reasonable to assume that
the round-off error A — R4 is uniformly distributed in
(—0.5,0.5). If 50 numbers are rounded off to the nearest
integer and then averaged, approximate the probability
that the resulting average differs from the exact average
of the 50 numbers by more than 0.1.

8. Components that are critical for the operation of elec-
trical systems are replaced immediately upon failure.
Suppose that the life time of a certain such component
has mean and standard deviation of 100 and 30 time units,
respectively. How many of these components must be in
stock to ensure a probability of at least 0.95 for the system
to be in continuous operation for at least the next 3000
time units? (Hint. If T = X1 + - -- + X, is the combined
duration of n components, we want P(7" > 3000) = 0.95.
This means that 3000 is the 5th percentile of 7. Using
the CLT to approximate the 5th percentile of 7 leads to
a quadratic equation for the square root of #, that is, an
equation of the form ax? + Bx + y = 0, with x being the
square root of n. The roots of such an equation can be
found with the R command polyroot(c(y, B,a)).)

9. An optical company uses a vacuum deposition method
to apply a protective coating to certain lenses. The coat-
ing is built up one layer at a time. The thickness of a given
layer is a random variable with mean p = 0.5 microns and
standard deviation ¢ = 0.2 microns. The thickness of each
layer is independent of the others and all layers have the
same thickness distribution. In all, 36 layers are applied.

(a) What is the approximate distribution of the coating
thickness? Cite the appropriate theorem to justify
your answer.

(b) The company has determined that a minimum thick-
ness of 16 microns for the entire coating is neces-
sary to meet all warranties. Consequently, each lens
is tested and additional layers are applied if the
lens does not have at least a 16-micron-thick coat.
What proportion of lenses must have additional layers
applied?

10. A batch of 100 steel rods passes inspection if the
average of their diameters falls between 0.495cm and
0.505cm. Let u and o denote the mean and standard
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deviation, respectively, of the diameter of a randomly
selected rod. Answer the following questions assuming
that © = 0.503cm and o = 0.03 cm.

(a) What is the (approximate) probability the inspector
will accept (pass) the batch?

(b) Over the next 6 months 40 batches of 100 will be deliv-
ered. Let X denote the number of batches that will
pass inspection.

(i) State the exact distribution of X, and use R to find
the probability P(X < 30).

(ii) Use the DeMoivre-Laplace Theorem, with and
without continuity correction, to approximate
P(X < 30). Comment on the quality of the
approximation provided by the two methods.

11. Suppose that only 60% of all drivers wear seat belts at
all times. In a random sample of 500 drivers let X denote
the number of drivers who wear seat belt at all times.

(a) State the exact distribution of X and use R to find
P(270 < X < 320).

(b) Use the DeMoivre-Laplace Theorem, with and with-
out continuity correction, to approximate P(270 <
X < 320). Comment on the quality of the approxi-
mation provided by the two methods.

12. A machine manufactures tires with a tread thick-
ness that is normally distributed with mean 10 millimeters
(mm) and standard deviation 2 mm. The tire has a 50,000-
mile warranty. For the tire to last 50,000 miles, the manu-
facturer’s guidelines specify that the tread thickness must
be at least 7.9 mm. If the thickness of tread is measured
to be less than 7.9 mm, then the tire is sold as an alterna-
tive brand with a warranty of less than 50,000 miles. Give
an approximation to the probability that in a batch of 100
tires there are no more than 10 rejects.

13. Items produced in assembly line A are defect free
with probability 0.9, and those produced in assembly line
B are defect free with probability 0.99. A sample of 200
items from line A and a sample of 1000 from line B are
inspected.

(a) Give an approximation to the probability that the
total number of defective items found is at most 35.
(Hint. See Example 5.4-3.)

(b) Use R commands similar to those used in Example
5.3-4 to find the exact probability of part (a).



Chapter

FirtiING MODELS TO DATA

6.1 Introduction

In Chapter 1 we saw that estimation of population parameters, such as pro-
portion, mean, variance, and percentiles, is achieved by using the corresponding
sample quantities. Similarly, in Chapter 4 we saw sample versions of the covariance
and Pearson’s correlation coefficients that estimate the corresponding population
quantities. This approach to estimation, which is called interchangeably empirical,
model-free, or nonparametric, is universal in the sense that it applies to all types of
population distributions.

When a model for the distribution of the data is assumed, it is typically of interest
to estimate the parameters of the assumed model. For example,

(a) if it can be reasonably assumed that the data came from a uniform distribution
it would be of interest to estimate the two endpoints,

(b) if it can be reasonably assumed that the data came from a gamma or a Weibull
distribution, both of which are governed by parameters denoted by o and
(see Exercises 13 and 14 in Section 3.5), it would be of interest to estimate
these two parameters, and

(c) if it can be reasonably assumed that the data came from the normal simple
linear regression model, it would be of interest to estimate the regression line
(i.e., the slope and the intercept) and the intrinsic error variance.

In statistical jargon, estimating the parameters of a particular model from a data
set is called fitting the model to the data. Three methods of fitting models to data
are (a) the method of moments, (b) the method of maximum likelihood, and (c) the
method of least squares. The last is most commonly used for fitting regression models.

Estimation of the model parameters leads to an alternative way for estimating
population parameters, called model-based estimation; this and the notion of unbi-
ased estimation are discussed in Section 6.2. The aforementioned three methods for
fitting models to data are presented in Section 6.3. Model-based estimation of popu-
lation parameters can differ from the empirical, or model-free, estimation discussed
in Chapter 1; moreover, the three methods for fitting models will occasionally pro-
duce different estimators of model parameters. Thus, another learning objective of
this chapter is to develop criteria for selecting the best among different estimators
of the same (model or population) parameter; this is the subject of Section 6.4.
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6.2 Some Estimation Concepts
6.2.1 UNBIASED ESTIMATION

The Greek letter 6 will be used as a generic notation for any model or population
parameter(s) that we are interested in estimating. Thus, if we are interested in the
population mean value, then 6 = u, and if we are interested in the population mean
value and variance, then 6 = (u,0?). The expression true value of 6 refers to the
(unknown to us) population value of 6.

When a sample is denoted in capital letters, such as Xji,..., X}, the X;’s are
considered random variables, that is, before their values are observed. The observed
sample values, or data, are denoted in lowercase letters, that is, xq, .. ., x,.

A quantity used to estimate the true value of a parameter 6 is denoted by 6.
Because 6 is computed from the sample, it is a function of it. This is emphasized by
writing

o~ o~

=0(X1,....Xy) or 0 =0(x1,...,%).

In the former case, 0 is called an estimator, and in the latter, an estimate. Thus, an
estimator is a random variable, while an estimate is an observed value.

The distribution of an estimator @\depends on the true value of # (and perhaps
the true value of additional parameters). For example, suppose that Xi,..., X, is a
sample from a N(ju,0?) population and the true values of the parameters are u =
8.5, 2 = 18. Then, the estimator of & = x is § = X and, according to Corollary

5.3-1,
X~N (8.5, ﬁ) .
n

Thus, in this case, the distribution of & depends on the true value of 6 and the true
value of the additional parameter o-2. We also write

_ 18
E,ss (X) =85 and Var,_;5(X) = —

to emphasize the dependence of the mean and variance of X on the true values of the
parameters. Similar notation will be used to emphasize the dependence of the mean
and variance of any estimator 6 on the true value(s) of the relevant parameter(s).

An estimator 6 of 6 is called unbiased for 6 if E(8) = 6 or, according to the
notation just introduced, if

Eq, @ =0 62.1)

The difference E() — 6 is called the bias of & and is denoted by bias(d):

bias(d) = Ey (6) — 6 622)

Actually, the correct notation is biasg(9) but we will use bias(d) for simplicity.
As established in Corollary 4.4-1, and relation (4.4.4), the estimators X and p
are unbiased for u and p, respectively. That is,

E,p)=p and E,(X)=p.
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Proposition
6.2-1

Expected Value of the
Sample Variance

Definition of
Estimation Error

Standard Error of an
Estimator 0

Moreover, the least squares estimators Bi and @ in the simple linear regression
model, which will be given in Section 6.3.3 (see also Remark 4.6-1), are also unbi-
ased. The next proposition shows that the sample variance, $2, is also an unbiased

estimator for o2.

Let X1,...,X, be iid with (common) variance o2. Then the expected value of the

—\2
sample variance S* = (n — 1)"! Y%, (Xi — X) equals 2. That is,

E (52) =02

Proof of Proposition 6.2-1: Assume without loss of generality that the population
mean is zero, that is, E(X;) = 0 for all i = 1,...,n. By straightforward algebra we

—\2 —
obtain ) ; (Xi — X) =, X7 — nX . Now using the facts

2
E(X}) = Var(X) =o® and  E(X") = Var(X) = .

we obtain

E (Zn: (X,- - )_()2) —F (éx} - n)_(2> — no? — n(;_z — (n—1)o%

i=1
It follows that E(%) = (n — 1)~ E(Y, (X,» . )_()2) —n—1)""n-1o2=02 =

The estimation error of an estimator 8 for 6 is defined as

o~

0—06 (6.2.3)

Unbiased estimators have zero bias, which means that there is no tendency to
overestimate or underestimate the true value of 6. Thus, though with any given sam-
ple gmay underestimate or overestimate the true value of 6, the estimation errors
average to zero. In particular, the unbiasedness of S?, implied by Proposition 6.2-1,
means that if a large number of samples of size n, any n > 2, are taken from any
population (e.g., Poisson, normal, exponential, etc.) and the sample variance is com-
puted for each sample, the average of these sample variances will be very close to
the population variance; equivalently, the average of the estimation errors will be
very close to zero. This is illustrated in the computer activity of Exercise 8.

While unbiasedness is a desirable property, it is not indispensable. What justifies
the use of biased estimators is the fact that their bias is often small and tends to
zero as the sample size increases. (An estimator whose bias does not tend to zero
does not possess the indispensable property of consistency, and would not be used!)
An example of a commonly used biased estimator is the sample standard deviation.
The bias of the sample standard deviation, and the fact that its bias decreases as the
sample size increases, are also demonstrated in the computer activity of Exercise 8.

The standard error of an estimator 8 is an alternative, but widely used, term for
the estimator’s standard deviation:

o5 =/ Varg (9) (6.2.4)
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In accordance with the notation explained above, the subscript 6 on the right
hand side of (6.2.4) indicates the dependence of the variance of 6 on the true value
of 6. An estimator/estimate of the standard error, is called the estimated standard
error and is denoted by S5.

(a) Give the standard error and the estimated standard error of the estimator p =
X /n,where X ~ Bin(n, p).

(b) Given the information that there are 12 successes in 20 trials, compute the
estimate of p and the estimated standard error.

Solution

(a) The standard error and the estimated standard error of p are, respectively,

Ip(1 — p(1-p
op = l% and S5 = Q

(b) With the given the information, p = 12/20 = 0.6 and

p(1-p) \/0.6 x 0.4
5 = = =0.11.
S \/ n 20 0 -

(a) Let X, S? be the sample mean and variance of a simple random sample of
size n from a population with mean p and variance _02, respectively. Give the
standard error and the estimated standard error of X.

(b) Given the information that n = 36 and § = 1.3, compute the estimated
standard error of X.

Solution

(a) The standard error and the estimated standard error of X are, respectively,

o S
O'Y = % and SY = ﬁ
(b) With the given the information, the estimated standard error of X is
1.3
Sv=—==022.
X V36 -

Let X1, S% be the sample mean and variance of a simple random sample of size m

from a population with mean p1 and variance 012, respectively, and X5, S% be the

sample mean and variance of a simple random sample of size n from a population

with mean u; and variance 022, respectively.

(a) Show that X| — X is an unbiased estimator of pj — .

(b) Assume the two samples are independent, and give the standard error and the
estimated standard error of X1 — X>.

Solution

(a) From the properties of expectation we have
E(X| — X2) = E(X1) — E(X2) = pu1 — pa,

which shows that X; — X is an unbiased estimator of x; — u5.
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Example
6.2-4

(b) Recall that if two variables are independent, the variance of their difference is
the sum of their variances; see Proposition 4.4-4. Thus, the standard error and
estimated standard error of X1 — X, are

% and s .5
T TN T M en T T =

6.2.2 MODEL-FREE vs MODEL-BASED ESTIMATION

As mentioned in Section 6.1, if a model for the population distribution has been
assumed, the focus of estimation shifts to the model parameters. This is because
estimation of the model parameters entails estimation of the entire distribution,
and hence estimation of any other population quantity of interest. For example, if
X1,...,X, can be assumed to have come from a N(pu, 02) distribution, the method
of moments and the method of maximum likelihood estimate §# = (u,02) by
6 = (X, 52).! Hence, the population distribution is estimated by N(X, $2). This has
the following consequences:

(a) There is no need to use a histogram of the data because the density is esti-
mated by the N(X, §?) density. (Of course, histograms and Q-Q plots are
indispensable for checking the appropriateness of an assumed model.)

(b) Because the (1 — «)-100th percentile of a normal population is expressed as
1+ 0z4 (see Corollary 3.5-2), it may be estimated by X + Sz,; in particular,
the median is also estimated by X.

(c) Because P(X < x) = ®((x — u)/o) such probabilities may be estimated by
D((x — X)/S).

The estimators of the density, percentiles, and probabilities in parts (a), (b), and
(c), respectively, which are appropriate only if the normality assumption is correct,
are examples of model-based estimators. They can be used instead of the model-free
estimators of Chapter 1, which are, respectively, the histogram, sample percentiles,
and sample proportions (i.e., #{X; < x;i = 1,...,n}/n in this case).

Such model-based estimators of the density, percentiles, and probabilities can
similarly be constructed if Xi,..., X} is assumed to have come from any other
distribution, such as exponential, gamma, Weibull, and so forth.

(a) Let X7,...,X, represent n weekly counts of earthquakes in North America,
and assume they have the Poisson(2) distribution. Find a model-based estima-
tor of the population variance.

(b) Let Xi,...,X, represent waiting times of a random sample of n passengers
of a New York commuter train, and assume they have the uniform(0,6)
distribution. Find a model-based estimator of the population mean waiting
time.

Solution

(a) From Section 3.4.4 we have that the variance of the Poisson(}) distribution
equals its mean (and both equal A). Both the method of moments and the
method of maximum likelihood estimate A by A = X (see Example 6.3-2

! This is not quite true, as both methods of estimation yield [(n — 1)/n]S? as the estimator of o2, For simplicity,
however, we will ignore this difference.
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and Exercise 6 in Section 6.3). Thus, the Poisson model-based estimator of
the variance is the sample mean X.

(b) From Example 3.3-8 we have that the mean of the uniform(0,0) distribution
is w = 6/2. Hence, if 9 is an estimator of 0, a model-based estimator for the
mean of the uniform(0, 6) distribution is 7 = #/2. The maximum likelihood
estimator for 6 (derived in Example 6.3-6) is 0 = Xy = max{Xy,...,Xp}.
Thus, the model-based estimator of the population mean in this case is & =
X(n)/ 2. =

REMARK 6.2-1 The method of moments estimator of @ in the uniform(0,9) dis-
tribution is 2X; see Example 6.3-1. Using this estimator of #, the model-based
estimator of the population mean in part (b) of Example 6.2-4 is X, that is, the same
as the model-free estimator. <

If the model assumption is correct then, according to the mean square error cri-
terion, which will be discussed in Section 6.4, model-based estimators are typically
preferable to model-free estimators. Thus, if the assumption of a Poisson distribu-
tion is correct, X is a better estimator of the population variance than the sample
variance is, and if the assumption of a uniform(0,6) distribution is correct, X(,/2 is
a better estimator of the population mean than the sample mean is (at least for large
enough n; see Exercise 1 in Section 6.4).

On the other hand, if the model assumption is not correct, model-based estima-
tors can be misleading. The following example illustrates this point by fitting two
different models to the same data set and thus obtaining discrepant estimates for a
probability and a percentile.

The life times, in hours, of a random sample of 25 electronic components yield
sample mean X = 113.5 hours and sample variance $*> = 1205.55 hours?. Find
model-based estimators of the 95th population percentile of the lifetime distribu-
tion, and of the probability that a randomly selected component will last more than
140 hours, under the following two model assumptions:

(a) The distribution of life times is Weibull(«, 8). (See Exercise 14 in Section 3.5
for the definition of this distribution.)

(b) The distribution of life times is exponential(i).

Solution

(a) With the given information, only the method of moments can be used to fit the
Weibull(«, 8) model. The resulting estimators are @ = 3.634 and 8 = 125.892;
see Example 6.3-3. The R commands

1-pweibul1(140, 3.634,125.892); qweibul1(0.95, 3.634,125.892)

yield 0.230 and 170.264 as estimates of P(X > 140) and x( s, respectively.

(b) For fitting the exponential(1) distribution, both the method of moments
and the method of maximum likelihood yield A =1/X (see Exercise 1 in
Section 6.3 and Example 6.3-5). Thus, the fitted model is exponential(A =
1/113.5). The R commands

1-pexp(140, 1/113.5); gexp(0.95, 1/113.5)

yield 0.291 and 340.016 as estimates of P(X > 140) and xq s, respectively. m
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This example highlights the need for diagnostic checks, such as the Q-Q plot
discussed in Section 3.5.2, to help decide whether a stipulated parametric model
provides a reasonable fit to the data.

Exercises

1. The data in OzoneData.txt contains n = 14 ozone
measurements (Dobson units) taken from the lower
stratosphere, between 9 and 12 miles (15 and 20 km).
Compute the sample mean and its estimated standard
error.

2. To compare the corrosion-resistance properties of two
types of material used in underground pipelines, speci-
mens of both types are buried in soil for a 2-year period
and the maximum penetration (in mils) for each speci-
men is measured. A sample of size n; = 48 specimens
of material type A yielded X; = 049 and S; = 0.19; a
sample of size n, = 42 specimens of material type B gave
X, = 0.36 and S, = 0.16. What is 0.49 — 0.36 = 0.13 an
estimate of? Assuming that the two samples are indepen-
dent, compute the estimated standard error of X| — X».
(Hint. See Example 6.2-3.)

3. In the context of Exercise 2, suppose that the popu-
lation variance of the maximum penetration is the same
for both material types. Call the common population
variance o2, and show that

2 _ (n1 — l)S% + (np — l)S%
n+ny—2

is an unbiased estimator of 2.

4. The financial manager of a department store chain
selected a random sample of 200 of its credit card cus-
tomers and found that 136 had incurred an interest charge
during the previous year because of an unpaid balance.

(a) Specify the population parameter of interest in this
study, give the empirical estimator for it, and use the
information provided to compute the estimate.

(b) Is the estimator in part (a) unbiased?

(c) Compute the estimated standard error of the
estimator.

5. In Example 6.3-1 it is shown that if Xi,..., X, is a
random sample from the uniform(0, 6) distribution, the
method of moments estimator of 8 is & = 2X. Give the
standard error of @. Is § unbiased?

6. To estimate the proportion p; of male voters who are
in favor of expanding the use of solar energy, take a ran-
dom sample of size m and set X for the number in favor.
To estimate the corresponding proportion p, of female
voters, take an independent random sample of size n and
set Y for the number in favor.

(a) Set p; = X/m and p, = Y /n and show that p; — p; is
an unbiased estimator of p; — p».

(b) Give the standard error and the estimated standard
error of p; — py.

(c) The study uses sample sizes of m = 100 and n = 200,
which result in X = 70 and Y = 160. Compute the
estimate of p; — p; and the estimated standard error
of the estimator.

7. The fat content measurements of a random sample
of 6 jugs of 2% lowfat milk jugs of a certain brand are
2.08, 2.10, 1.81, 1.98, 1.91, 2.06.

(a) Give the model-free estimate of the proportion of
milk jugs having a fat content measurement of 2.05
or more.

(b) Assume the fat content measurements are normally
distributed, and give the model-based estimate of the
same proportion (using X and $? as estimators of
and o).

8. The R commands

set.seed=1111; m=matrix(runif(20000),
nco1=10000); mean(apply(m, 2, var));
mean(apply(m, 2, sd))

generate 10,000 samples of size n = 2 from the uni-
form(0, 1) distribution (each column of the matrix m is a
sample of size 2), compute the sample variance from each
sample, average the 10,000 variances, and do the same for
the sample standard deviations.

(a) Compare the average of the 10,000 variances to the
population variance 02 = 1/12 = 0.0833; similarly,
compare the average of the 10,000 sample standard
deviations to the population standard deviation o =
V1/12 = 0.2887. Use the comparisons to conclude
that 2 is unbiased but S is biased.

(b) Repeat the above but use 10,000 samples of size n = 5
from the uniform(0, 1). (Use m=matrix(runif(50000),
ncol=10000)) for generating the random samples.)
Use the comparisons to conclude that the bias of §
decreases as the sample size increases.

9. Use the R command set.seed=1111; x=rnorm(50, 11,
4) to generate a simple random sample of 50 observa-
tions from a N(11, 16) population and store it in the R
object x.

(a) Give the true (population) values of P(12 < X < 16)
and of the 15th, 25th, 55th, and 95th percentiles.



(b) Give the empirical/nonparametric estimates of the
above population quantities. (Hint. The R command
sum(12<x&x<=16) gives the number of data points
that are greater than 12 and less than or equal to 16.
For the sample percentiles see the R commands given
in (1.7.2).)

(c) Using X and S? as estimators of the model parame-
ters of N(u,0?), give the model-based estimates of
the above population quantities and compare how
well the two types of estimates approximate the true
population values.

10. Use cs=read.table(”Concr.Strength.1s.Data.txt”,
header=T); x=cs$Str to store the data set? consisting
of 28-day compressive-strength measurements of con-
crete cylinders using water/cement ratio 0.4 into the R
object x.

Section 6.3 Methods for Fitting Models to Data 237

(a) Use the commands given in Section 3.5.2 to pro-
duce a normal Q-Q plot for the data. Comment on
the appropriateness of the normal model for this
data set.

(b) Using X and 52 as estimators of the model parameters
of N(u,0?), give model-based estimates of P(44 <
X < 46), the population median, and the 75th
percentile.

(c) Give the empirical, or model-free, estimates of the
above population quantities. (Hint. The R command
sum(44<x&x<=46) gives the number of data points
that are greater than 44 and less than or equal to 46.
For the sample percentiles see the R commands given
in (1.7.2).)

(d) Which of the two types of estimates for the above
population quantities would you prefer and why?

6.3 Methods for Fitting Models to Data

Model-based estimation of a particular population parameter consists of expressing
it in terms of the model parameter(s) 6 and plugging the estimator 6 into the expres-
sion (see Section 6.2.2). Clearly, the method relies on having an estimator for 6. This
section presents three methods for obtaining such estimators.

6.3.1

THE METHOD OF MOMENTS

The method of moments relies on the empirical, or model-free, estimators of popu-
lation parameter(s), such as the sample mean (X) or the sample mean and variance
(X and §?), and reverses the process of model-based estimation in order to estimate

the model parameter(s).

In particular, the method of moments uses the fact that when the population
distribution is assumed to be of a particular type, population parameter(s), such as
the mean or the mean and variance, can be expressed in terms of the model param-
eter(s) 0. These expressions can be inverted to express 6 in terms of the population
mean or the population mean and variance. Plugging the sample mean or the sam-
ple mean and variance into these inverted expressions yields the method of moments
estimator of 6. A more complete description of moment estimators is given after the
next example, which illustrates the above process.

Example
6.3-1

Let X1,..

., Xn be a simple random sample taken from some population. Use the
method of moments approach to fit the following models to the data:

(a) The population distribution of the Xj is uniform(0, 9).

(b) The population distribution of the X; is uniform(e, ).

Solution

(a) Here we have only one model parameter, so the method of moments starts
by expressing the population mean in terms of the model parameter. In this

2 V. K. Alilou and M. Teshnehlab (2010). Prediction of 28-day compressive strength of concrete on the third day
using artificial neural networks. International Journal of Engineering (IJE), 3(6): 521-610.
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kth Moment of the
Random Variable X

kth Sample Moment of
the Random Variable X

case, the expression is © = 6/2. This expression is then inverted to express 6 in
terms of w. In this case, the inverted expression is & = 2u. Finally, the method
of moments estimator of 6 is obtained by plugging X instead of x into inverted
expression: § = 2X.

(b) Here we have two model parameters (9 = («, 8)), so the method of moments
starts by expressing the population mean and variance in terms of the two
model parameters. In this case, the expressions are

PRV
> and 02=%.

This expression is then inverted to express « and g in terms of x and o2

a=pu—+v302 and =u+ V302.
s B=un

Finally, the method of moments estimator of & = (a, B) is obtained by plugging
X and §? instead of i and o2, respectively, into the inverted expressions:

@=X—-+v352 and B=X+V35. -

The method of moments derives its name from the fact that the expected value
of the kth power of a random variable is called its kth moment; this is denoted by x:

i = E(X%)

In this terminology, the population mean is the first moment and is also denoted by
i1, while the population variance can be expressed in terms of the first two moments
aso? = ,uz—u%. If X1,..., X}, is asample from a population with a finite kth moment,
then the empirical/nonparametric estimator of y is the kth sample moment, defined
as follows:

n
T = — Xk
Mk nzizl L

According to the Law of Large Numbers, 1iy is a consistent estimator of py.

For models with m parameters, method of moments estimators are constructed
by (a) expressing the first m population moments in terms of the model parameters,
(b) inverting these expressions to obtain expressions of the model parameters in
terms of the population moments, and (c) plugging into these inverted expressions
the sample moments. Choosing the number of moments in part (a) equal to the
number of model parameters assures that the inversion mentioned in part (b) has a
unique solution. In this book we will not consider distribution models with more than
two model parameters, so in our applications of the method of moments, we will use
either only the first moment or the first and the second moments. Equivalently, we
will use either only the mean or the mean and the variance as was done in Example
6.3-1.

REMARK 6.3-1  Using the variance instead of the second moment is not exactly
the same, because the sample variance is defined by dividing Y ;(X; — X)? by
n — 1. Ignoring this (rather insignificant) difference, we will use the variance and the
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sample variance (instead of the second moment and the second sample moment)
when applying the method of moments. <

We finish this section with two more examples.

(a) Let Xi,..., X, beiid Poisson(A). Find the method of moments estimator of .
Is it unbiased?

(b) The weekly counts of earthquakes in North America for 30 consecutive weeks
are summarized in the following table:

NumberofEarthquakes‘4 567 89 10 11 12 13 15 16 17
Frequency ‘1215441141222

Assuming that the earthquake counts have the Poisson(A) distribution, compute the
method of moments estimate of A.

Solution

(a) Because we have only one model parameter, the method of moments starts
by expressing the population mean in terms of the model parameter. In this
case, the expression is u = Asee Section 3.4.4. Thus, A = u and the method of
moments estlmator of A is * = X. Because X is an unbiased estimator of W, it
follows that  is an unbiased estimator of A.

(b) The average of the given 30 weekly counts of earthquakes is (1 x 4 + 2 x
54 +2x 17)/30 = 10.03. Thus, the method of moments estimate of A is
A =10.03. =

The life spans, in hours, of a random sample of 25 electronic components yield sam-
ple mean X = 113.5 hours and sample variance S = 1205.55 hours?. Use the
method of moments approach to fit the Weibull(«, 8) model.

Solution

Because we have two model parameters (6 = («,B)), the method of moments
starts by expressing the population mean and variance in terms of the two model
parameters. These expressions are (see Exercise 14 in Section 3.5)

wopr(1+2) g az:ﬁz{r(l+g)_[r(l+§)}z],

where I is the gamma function (see Exercise 13 in Section 3.5). Note that « enters
these equations in a highly non-linear manner, so it is impossible to then invert and
find closed-form expressions for « and g in terms of y and o2. As a first step, we
replace i and o2 by 113.5 and 1205.55, respectively, solve the first equation with
respect to 8, and replace 8 with that solution in the second equation. This results in

2
2
105,55 = | 1135 {F(H%)_[r(m)”. 6o
r(i+}) o o

The second step is to solve this equation numerically. This can be done with
the function nlegslv in the R package nlegslv, which should first be installed
(install.packages(“nlegslv”)). Then use the following R commands:
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Example
6.3-4

fn=function(a) {(mu/gamma(1l+1/a)) "2+ (gamma(1l+2/a)-gamma(1l+1/a)
"2)-var} # this command defines fn as a function of a to be numerically
solved

Tibrary(nlegslv); mu=113.5; var=1205.55 # this comr@nd loads the
package nlegslv to the current session and sets the values for X and S?

nleqslv(13, fn); mu/gamma(1+1/3.634) # the first of these commands
finds the solution to equation fn(a)=0 (which is &) with starting value 13; the
second computes S.

The resulting method of moments estimate for 6 = («,8) is & = (3.634,125.892)
(rounded to three decimal places). [

6.3.2 THE METHOD OF MAXIMUM LIKELIHOOD

The method of maximum likelihood (ML) estimates the parameter 6 of a model by
addressing the question “what value of the parameter is most likely to have gen-
erated the data?” For discrete probability models, the answer to this question is
obtained by maximizing, with respect to 6, the probability that a repetition of the
experiment will result in the observed data. (A shorter way of saying this is that we
“maximize the probability of observing the observed data.”) The value of the param-
eter that maximizes this probability is the maximum likelihood estimator (MLE). A
more complete description of the method of maximum likelihood is given after the
next example, which illustrates the process.

Car manufacturers often advertise damage results from low-impact crash experi-
ments. In an experiment crashing n = 20 randomly selected cars of a certain type
against a wall at 5 mph, X = 12 cars sustain no visible damage. Find the MLE of
the probability, p, that a car of this type will sustain no visible damage in such a
low-impact crash.

Solution
Intuitively, the value of the parameter p that is most likely to have generated 12
successes in 20 trials is the value that maximizes the probability for observing X =
12. Because X has the binomial(n = 20, p) distribution, this probability is
20

P(X =12|p) = (12>p12(1 —-p)s. (63.2)
Note that the dependence of the probability on the parameter p is made explicit in
the notation. To find the MLE it is more convenient to maximize

20
log P(X = 12|p) = log (12> + 12log(p) + 8log(1 — p) (6.3.3)

with respect to p. Note that, because logarithm is a monotone function, maximizing
log P(X = 12|p) is equivalent to maximizing P(X = 12|p). The value of p that max-
imizes (6.3.3) can be found by setting the first derivative with respect to p equal to
zero and solving for p. Doing so yields p = 12/20 as the maximum likelihood esti-
mate. In general, the MLE of the binomial probability p is the same as the empirical
estimator of p, thatis,p = X /n. |

In general, let x1, ..., x, denote the data, and f(x|0) the probability model (PDF
or PMF) to be fitted. (As in Example 6.3-4, the dependence of the PDF/PMF on
6 is made explicit.) The likelihood function is the joint PDF/PMF of the random
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variables X1,...,X, evaluated at xy,...,x, and considered as a function of 6.
Because the X; are iid, their joint PDF/PMF is simply the product of their individual
PDFs/PMFs:

lik(0) = [ [ f(xil0) (63.4)

i=1

The value of ¢ that maximizes the likelihood function is the maximum likeli-
hood estimator 6. Typically, it is more convenient to maximize the logarithm of the
likelihood function, which is called the log-likelihood function:

L(0) =Y _log(f(xil0)) (63.5)

i=1

In the binomial case of Example 6.3-4, the likelihood function is simply the proba-
bility given in (6.3.2) and the log-likelihood function is given in (6.3.3). Two more
examples follow.

Let xq,...,x;, be the waiting times for a random sample of n customers of a certain
bank. Use the method of maximum likelihood to fit the exponential(1) model to this
data set.

Solution
The PDF of the exponential(1) distribution is f(x|A) = Ae~**. Thus, the likelihood
function is

llk()\,) = )\,e_)‘xl e ke_lxn — )\”le—)» in’

and the log-likelihood function is

L(X) =nlog(x) — A Xn:xi.

i=1

Setting the first derivative of the log-likelihood function to zero yields the equation
a - n -
ﬁ[nlog(x) — A ;Xl} =5 Z;Xi =0.
= 1=

Solving this equation with respect to A yields the MLE & = 1/X of A. m

The next example demonstrates that the MLE can be very different from the
method of moments estimator. It is also an example of a discontinuous likelihood
function, which therefore cannot be maximized by differentiation.

(a) Let Xi,...,X, be iid uniform(0,0). Find the maximum likelihood estima-
tor of 6.

(b) The waiting times for a random sample of n = 10 passengers of a New York
commuter train are: 3.45, 8.63, 8.54, 2.59, 2.56, 4.44, 1.80, 2.80, 7.32, 6.97.
Assuming that the waiting times have the uniform(0, 6) distribution, compute
the MLE of 6 and the model-based estimate of the population variance.



242 Chapter 6 Fitting Models to Data

Solution
(a) Here f(x|0) = 1/6if 0 < x < 6 and 0 otherwise. Thus the likelihood function is

1
lik(9) = on if 0 < Xi,...,X, <0 and 0 otherwise.

This likelihood function is maximized by taking 6 as small as possible.
However, if 6 gets smaller than the largest data value, X| (n) = max{Xj,..., Xy},
then the likelihood function becomes zero. Hence, the MLE is the smallest 0
value for which the likelihood function is non-zero, that is, 0 =X, (n)-

(b) The largest among the given sample of waiting times is X(,) = 8.63. Thus,
according to the derivation in part (a), the MLE of 6 is = 8.63. Next, because
the variance of the uniform(0,6) distribution is o2 = #2/12, the model-based
estimate of the population variance is 52 = 8.63%/12 = 6.21. m

According to theoretical results, which are beyond the scope of this book, the
method of maximum likelihood yields estimators that are optimal, at least when the
sample size is large enough, under general regularity conditions. See Exercise 1 in
Section 6.4, where the comparison of the methods of moments and ML for fitting
the uniform(0, ) model confirms the superiority of the MLE in this particular case.
Moreover, a function of the MLE, g(8), is the MLE of g(6) and thus its optimal
estimator. For example, the estimator 52 = X(zn) /12, which is the estimator of o
derived in Example 6.3-6, is a function of the MLE and thus it is the MLE, and
optimal estimator of o2, at least when the sample size is large enough.

6.3.3 THE METHOD OF LEAST SQUARES

The method of least squares (LS), which is the most common method for fitting
regression models, will be explained here in the context of fitting the simple linear
regression model (4.6.4), that is,

wyx(x) = E(Y|X =x) = a; + Bi1x. (6.3.6)

Let (X1, Y1),...,(Xy, Y,) denote a simple random sample from a bivariate pop-
ulation (X, Y) satisfying the simple linear regression model. To explain the method
of LS, consider the problem of deciding which of two lines provides a “better” fit
to the data. As a first step, we must adopt a principle on whose basis we can judge
the quality of a fit. The principle of least squares evaluates the quality of a line’s fit
by the sum of the squared vertical distances of each point (Xj, Y;) from the line. The
vertical distance of a point from a line is illustrated in Figure 6-1. Of the two lines in
this figure, the line for which this sum of squared vertical distances is smaller is said
to provide a better fit to the data.

The best-fitting line according to the principle of least squares is the line that
achieves a sum of vertical squared distances smaller than any other line. The best-
fitting line will be called the fitted regression line. The least squares estimators
(LSEs) of the intercept and slope of the simple linear regression model (6.3.6) are
simply the intercept and slope of the best-fitting line.

The problem of finding the best-fitting line has a surprisingly simple and closed
form solution. Since the vertical distance of the point (Xj, Y;) from a line a + bx is
Y; — (a + bX;), the method of least squares finds the values a7, B1 that minimize the
objective function
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L(a,b) = Xn:(yi —a—bX;)?
i=1

with respect to a,b. This minimization can be carried out by setting the two first
partial derivatives to zero. Omitting the details, the LSE of @1 and g; are

~  ny XiYi—(Q_X)(QYi)
1= nZXiZ—(ZXi)z

G =Y-pHX

=

63.7)

Thus, the fitted regression line is Ly x (x) = &1 + B1x. Evaluating the fitted regression
line at the X-values of the data set gives the fitted values:

?,':6[\14-}/3\1)(1', i=1,...,n.

REMARK 6.3-2 The expression /’3\1 = SX’Y/S%(, where Sy y is the sample covari-
ance and Sg( is the sample variance of the X’s, which was derived empirically in
Remark 4.6-1, is algebraically equivalent to the expression in (6.3.7). Moreover,
under the assumption of normality for the error variable, that is, for the normal
simple linear regression model, the maximum likelihood estimators of the slope and
intercept coincide with the LSEs. <

The summary statistics from n = 10 measurements of X = stress applied and
Y = time to failure are 3} X; = 200, 1% X? = 5412.5, Y1°, ¥; = 484, and
Z}Ql X;Y; = 8407.5. Find the best-fitting line to this data set.

Solution
According to (6.3.7), the best-fitting line has slope and intercept given by

~ 10 x 8407.5 — 200 x 484

5 484~ 200
1= 7770 x 54125 — 2002

Example 6.3.7 highlights the fact that the best-fitting line can be obtained without
having the actual data points. Indeed, as the formulas (6.3.7) suggest, all one needs
are the summary statistics as given in Example 6.3-7. This practice, however, should
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Figure 6-2 Illustration of
the fitted regression line,
fitted values, and residuals.

be avoided because a scatterplot of the data may reveal that the linear model is not
appropriate.

A third parameter of the simple linear regression model is the conditional vari-
ance, ogz, of Y given the value of X. Recall that 062 is also the variance of the
intrinsic error variable ¢, which appears in the expression (4.6.6) of the simple linear
regression model, and rewritten here for convenience:

Y=o +pX +e. (6.3.8)

The idea for estimating %2 is that, if the true values of «; and B; were known,
then ‘732 would be estimated by the sample variance of

8i=Y,'—O{1—,31X[‘, i:l,...,n.

Of course, @1 and B are not known and so the intrinsic error variables, ¢;, cannot be
computed. But since «; and f; can be estimated, so can the &;:

g =Y —a - pX1,....E8n =Y, — 01 — f1 X (6.3.9)

The estimated intrinsic error variables, g;, are called residuals. The residuals are
also expressed in terms of the fitted values as

aZYi_Yi» i=1,...,n.

The residuals and the fitted values are illustrated in Figure 6-2.

Because the computation of residuals requires that two parameters be esti-
mated, which, in statistical jargon, entails the loss of two degrees of freedom, we
do not use their exact sample variance for estimating o2. Instead we use:

1 &
82 = — > E? (6.3.10)
i=1

Due to an algebraic identity, which is not derived here, the residuals sum to zero,
that is,

n n
Y Ea=) (Yi-Y)=0
i=1

i=1

fyjx(x) T 0y + Byx
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Thus, the formula for $? in (6.3.10) differs from the sample variance only in that it
divides by n — 2.

The quantity Y7 ; 27 in (6.3.10) is called the error sum of squares and is denoted
by SSE. Because of the frequent use of this quantity in the chapters that follow, its
computational formula is also given here:

n n n n
SSE = Za.z = Z Y7 - @ Z Y — B ZX,Y,-. (63.11)
i=1 i=1 i=1 i=1
Example Consider the following data on Y = propagation velocity of an ultrasonic stress wave
6.3-8 through a substance and X = tensile strength of substance.

X‘12 30 36 40 45 57 62 67 71 78 93 94 100 105
y‘3.3 32 34 30 28 29 27 26 25 26 22 20 23 21

(a) Use the method of LS to fit the simple linear regression model to this data.
(b) Obtain the error sum of squares and the LSE of the intrinsic error variance.
(c) Compute the fitted value and residual at X3 = 36.

Solution

(a) The scatterplot of the n = 14 data points, shown in Figure 6-3, suggests that the
assumptions of the simple linear regression model, which are linearity of the
regression function and homoscedasticity (i.e., Var(Y|X = x) is the same for
all x), appear to be satisfied for this data set. The summary statistics needed
for the LS estimators are

14 14 14
Z X; = 890, Z Y; = 37.6, Z X;Y; = 2234.30,
i=1 i=1 =1

14 14

ZX? = 67,182, Z Y? =103.54.

i=1 i=1

Figure 6-3 Scatterplot for N
the data of Example 6.3-8.
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Plugging these values into formula (6.3.7) we get

14 x 22343 — 890 x 37.6 376 890
- = 0014711, @ = 2 — B2 = 3.62001.
hi 14 x 67182 — 8902 =y Py

(b) Using the calculations in part (a) and formula (6.3.11) we have
SSE = 103.54 — @ (37.6) — B1(2234.30) = 0.26245,

so that the LSE of the intrinsic error variance is

1 0.26245
2 = — = — = . .
§2= ——5SSE= —"— = 002187

(c) The fitted value and residual at X3 = 36 are

Y3 =31 + f136 =3.0913 and & = Y3 — Y3 = 3.4 —3.0913 = 0.3087. -

The fitted regression line can be used for estimating the expected response at a
given value of X, provided the given value of X is within the range of the X-values
of the data set. For example, with the data set given in Example 6.3-8, the expected
response at X = 65, that is, E(Y|X = 65), can be estimated by

Tyix(65) = @ + B165 = 2.6647.

On the other hand, it is not appropriate to use the fitted regression line for
estimating the expected response at X = 120 because the largest X-value is 105.
The main reason why it is not appropriate to extrapolate beyond the range of the
X-values is that we have no indication that the linear model continues to hold. For
example, even though Figure 6-3 suggests that the simple linear regression model is
reasonable for this data set, there is no guarantee that the linearity continues to hold
for X-values larger than 105 or smaller than 12.

With the X- and Y-values in the R objects x and y, respectively, the R commands
for obtaining the LS estimates and other related quantities are as follows:

R Commands for the LS Estimates in Simple Linear
Regression

Im(y ~ x)$coef # gives @; and B
Tm(y ~ x)$fitted # gives the fitted values (6.3.12)

TmCy ~ x)$resid # gives the residuals

Instead of repeating the /m(y ~ x) command, it is possible to set all output
of this command in the R object out, by out=lm(y ~ x), and then use out$coef,
out$fitted, and out8resid. It is also possible to obtain specific fitted values or residuals.
For example, out$fitted[3] and out$resid[3] give the third fitted value and residual,
respectively, which were calculated in part (c) of Example 6.3-8.

Having issued the command out=Im(y ~ x), the error sum of squares, SSE, and
the estimator of the intrinsic error variance, S2, can be obtained by the following
R commands:



Example
6.3-9

Figure 6-4 Scatterplot for
the solar radiation and
ozone data in the original
scale (left panel) and log
scale (right panel).
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sum(out$residx=2)

sum(out$resid=*=2)/out$df.resid (6.3.13)

respectively, where out$df.resid gives the value of n — 2. Finally, the scatterplot with
the fitted regression line shown in Figure 6-3, was generated with the R commands
below:

plot(x, y, xTab="Tensile Strength”, ylab ="Propagation Velocity”);
abline(out, col="red”)

Use R commands and the n = 153 measurements (taken in New York from May to
September 1973) on solar radiation (lang) and ozone level (ppb) from the R data set
airquality to complete the following parts.

(a) Use the method of LS to fit the simple linear regression model to this data set.

(b) Construct a scatterplot of the data and comment on whether or not the model
assumptions seem to be violated. Comment on the impact of any violations of
the model assumptions on the estimators obtained in part (a).

(c) Transform the data by taking the log