
Signals and Communication Technology

Jose Maria Giron-Sierra

Digital Signal
Processing with
Matlab Examples,
Volume 1
Signals and Data, Filtering, Non-
stationary Signals, Modulation

Signals and Communication Technology

More information about this series at http://www.springer.com/series/4748

Jose Maria Giron-Sierra

Digital Signal Processing
with Matlab Examples,
Volume 1
Signals and Data, Filtering, Non-stationary
Signals, Modulation

123

Jose Maria Giron-Sierra
Systems Engineering and Automatic Control
Universidad Complutense de Madrid
Madrid
Spain

ISSN 1860-4862 ISSN 1860-4870 (electronic)
Signals and Communication Technology
ISBN 978-981-10-2533-4 ISBN 978-981-10-2534-1 (eBook)
DOI 10.1007/978-981-10-2534-1

Library of Congress Control Number: 2016951678

MATLAB® is a registered trademark of The MathWorks, Inc., and is used with permission. The
MathWorks does not warrant the accuracy of the text or exercises in this book. This book’s use or
discussion of MATLAB software or related products does not constitute endorsement or sponsorship by
the MathWorks of a particular pedagogical approach or particular use of the MATLAB software.

© Springer Science+Business Media Singapore 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #22-06/08 Gateway East, Singapore 189721, Singapore

To Our Lady and to my parents

Preface

In our contemporary world, the digital processing of signals and data is certainly
very important. Most people are now using it, as it is involved in mobile com-
munications, TV and radio, GPS, medical instruments, transportation and traffic,
and a long et cetera. Also, most branches of technical development and research are
intrinsically connected to signals and data processing.

This book is the first of a trilogy. Our desire is to provide a concise and relatively
complete exposition of signal processing topics, and a guide for personal practical
exploration based on MATLAB programs. It has been said by many experts on
learning that readings could be forgotten, but experiments leave a mark in our
minds and help to gain significant insights.

The books include MATLAB programs to illustrate each of the main steps of the
theory. The code has been embedded in the text; with the purpose of showing how
to put into practice the ideas and methods being proposed.

It seems opportune to say some words on the author’s experience in the field of
signal and data processing. Since 30 years ago I belong to the Faculty of Physics,
University Complutense of Madrid, Spain. My research concerns automatic control
and robotics, with applications in autonomous vehicles, maritime drones, chemical
processes, satellites, and others. During the research a variety of sensors has been
used, for the measurement of gases, pH, forces, light, magnetic fields, evoked
human potentials, etc. More complex sensors, like GPS or cameras, have also been
employed. Currently I teach Biomedical Digital Signal Processing, and Digital
Signal Processing for New Technologies.

The motivation for elaborating this book is related to our interaction with stu-
dents and young researchers. Our teaching includes theory classes and laboratory
exercises. It was noticed in laboratory that the use of MATLAB and its Signal
Processing Toolbox has noticeable initial difficulties for the students, if they had to
start from scratch. Therefore, we began to provide them some simple programs that
give them initial success, and graphical results. A good start encourages the stu-
dents for further study steps, and helps to develop a more ambitious teaching.

This book is divided into three parts. The first part introduces periodic and
non-periodic signals. The second part is devoted to filtering, which is an important

vii

and most usual application. The third part contemplates topics that could be con-
sidered as advanced; one tries to analyze, with several purposes, what happens with
signals and data from real life, like for example fatigue of structures, earthquakes,
electro-encephalograms, animal songs, etc. Therefore, the third part focuses on
non-stationary signals. The last chapter is devoted to modulation, which implies the
intentional use of non-stationary signals, and so this chapter belongs to the third
part.

The book has two appendices. The first appendix is devoted to the Fourier
transform, other transforms, and sampling fundamentals. The second contains long
programs, which are put here in order to make the chapters more readable.

Concerning the MATLAB programs, the programming style is purposively
simple and illustrative. We tried to avoid coding ways that could be more optimized
but may result in obscuring the ideas behind. The programs work in the diverse
MATLAB versions, with perhaps some possible changes for some functions (in this
case, MATLAB itself suggests appropriate changes).

There are traditional books that could be used for consultation. The chapters
include references to these books and pertinent scientific papers. Most of the papers
are available from Internet. By the way, we have to show our gratitude to the public
information available from Internet, from web sites, academic institutions, ency-
clopedia, etc. All chapters have a final section with some convenient Internet links.

The reader is invited to typeset the programs included in the book, for it would
help for catching coding details. Anyway, all programs are available from the book
web page: www.dacya.ucm.es/giron/SPBook1/Programs.

Please, send feedback and suggestions for further improvements and support.
Acknowledgments: Thanks to my university, my colleagues and my students.

I have to mention in particular the help I received, along friendly discussions on
some signal processing topics, from Juan F. Jimenez and Segundo Esteban, two
members of my department. Since this book required a lot of time taken from
nights, weekends and holidays, I have to sincerely express my gratitude to my
family.

Madrid, Spain Jose Maria Giron-Sierra

viii Preface

Contents

Part I Signals and Data

1 Periodic Signals . 3
1.1 Introduction . 3
1.2 Signal Representation . 3
1.3 Generation of Periodic Signals . 5

1.3.1 Sinusoidal . 5
1.3.2 Square . 7
1.3.3 Sawtooth . 8

1.4 Hearing the Signals . 10
1.5 Operations with Signals . 11

1.5.1 Adding Signals . 11
1.5.2 Multiplication . 12

1.6 Harmonics. Fourier . 13
1.6.1 Odd Signals. 14
1.6.2 Even Signals . 16
1.6.3 Half Wave Symmetry . 18
1.6.4 Pulse Train . 19

1.7 Sampling Frequency . 22
1.8 Suggested Experiments and Exercises. 25
1.9 Resources . 26

1.9.1 MATLAB . 26
1.9.2 Web Sites . 28

References. 28

2 Statistical Aspects . 29
2.1 Introduction . 29
2.2 Random Signals and Probability Density Distributions. 30

2.2.1 Basic Concepts . 30
2.2.2 Random Signal with Uniform PD 31

ix

2.2.3 Random Signal with Normal (Gaussian) PDF 33
2.2.4 Random Signal with Log-Normal PDF 36

2.3 Expectations and Moments . 38
2.3.1 Expected Values, and Moments. 39
2.3.2 Mean, Variance, Etc. 39
2.3.3 Transforms . 41
2.3.4 White Noise . 42

2.4 Power Spectra. 42
2.4.1 Basic Concept . 43
2.4.2 Example of Power Spectral Density of a Random

Variable. 43
2.4.3 Detecting a Sinusoidal Signal Buried in Noise 44
2.4.4 Hearing Random Signals . 46

2.5 More Types of PDFs . 47
2.5.1 Distributions Related with the Gamma Function 47
2.5.2 Weibull and Rayleigh PDFs . 53
2.5.3 Multivariate Gaussian PDFs . 55
2.5.4 Discrete Distributions . 57

2.6 Distribution Estimation . 60
2.6.1 Probability Plots . 60
2.6.2 Histogram . 61
2.6.3 Likelihood . 63
2.6.4 The Method of Moments. 65
2.6.5 Mixture of Gaussians. 67
2.6.6 Kernel Methods . 69

2.7 Monte Carlo Methods. 72
2.7.1 Monte Carlo Integration . 72
2.7.2 Generation of Random Data with a Desired PDF 80

2.8 Central Limit . 87
2.9 Bayes’ Rule . 89

2.9.1 Conditional Probability . 90
2.9.2 Bayes’ Rule. 91
2.9.3 Bayesian Networks. Graphical Models 94

2.10 Markov Process . 96
2.10.1 Markov Chain . 97
2.10.2 Markov Chain Monte Carlo (MCMC) 99
2.10.3 Hidden Markov Chain (HMM) . 103

2.11 MATLAB Tools for Distributions . 106
2.12 Resources . 108

2.12.1 MATLAB . 108
2.12.2 Web Sites . 109

References. 110

x Contents

Part II Filtering

3 Linear Systems . 117
3.1 Introduction . 117
3.2 Examples About Transfer Functions . 117

3.2.1 A Basic Low-Pass Electronic Filter 117
3.2.2 A Basic Resonant Electronic Filter 119

3.3 Response of Continuous Linear Systems 120
3.3.1 Frequency Response . 121
3.3.2 Time Domain Response . 126

3.4 Response of Discrete Linear Systems . 133
3.5 Random Signals Through Linear Systems 135
3.6 State Variables . 138
3.7 State Space Gauss–Markov Model . 141

3.7.1 A Scalar State Space Case. 141
3.7.2 General State Space Case . 153

3.8 Time-Series Models . 155
3.8.1 The Discrete Transfer Function in Terms of the

Backshift Operator. 155
3.8.2 Considering Random Variables . 158

3.9 Resources . 181
3.9.1 MATLAB . 181
3.9.2 Web Sites . 183

References. 183

4 Analog Filters . 185
4.1 Introduction . 185
4.2 Basic First Order Filters . 185
4.3 A Basic Way for Filter Design . 190
4.4 Causality and the Ideal Band-Pass Filter. 197
4.5 Three Approximations to the Ideal Low-Pass Filter 198

4.5.1 Butterworth Filter . 199
4.5.2 Chebyshev Filter . 204
4.5.3 Elliptic Filter . 211
4.5.4 Comparison of Filters . 215
4.5.5 Details of the MATLAB Signal Processing Toolbox. . . . 217

4.6 Considering Phases and Delays . 221
4.6.1 Bessel Filter . 221
4.6.2 Comparison of Filter Phases and Group Velocities 224

4.7 Some Experiments . 229
4.7.1 Recovering a Signal Buried in Noise. 229
4.7.2 Adding and Extracting Signals . 230
4.7.3 Near Cut-off Frequency . 231

Contents xi

4.8 Resources . 235
4.8.1 MATLAB . 235
4.8.2 Web Sites . 236

References. 236

5 Digital Filters . 239
5.1 Introduction . 239
5.2 From Analog Filters to Digital Filters. 241
5.3 FIR Digital Filters . 246

5.3.1 Duality and Brickwall Shapes . 246
5.3.2 Truncation and Time-Shifting . 250
5.3.3 Windows . 253
5.3.4 Optimization . 266
5.3.5 Other FIR Filters . 273
5.3.6 Details of FIR Filters in the MATLAB Signal

Processing Toolbox . 281
5.4 IIR Digital Filters . 282

5.4.1 Classical Approach . 282
5.4.2 Direct Design . 285
5.4.3 Details of IIR Filters in the MATLAB Signal

Processing Toolbox . 297
5.5 Experiments . 302

5.5.1 Adding and Extracting Signals . 302
5.5.2 Modelling a Piano Note . 303

5.6 A Quick Introduction to the FDATool . 305
5.7 Resources . 308

5.7.1 MATLAB . 308
5.7.2 Web Sites . 309

References. 309

Part III Non-stationary Signals

6 Signal Changes . 313
6.1 Introduction . 313
6.2 Changes in Sinusoidal Signals . 314

6.2.1 Changes in Amplitude . 314
6.2.2 Changes in Frequency . 317

6.3 Two Analytical Tools . 320
6.3.1 Cepstral Analysis. 321
6.3.2 Chirp Z-Transform . 328

6.4 Some Signal Phenomena . 332
6.4.1 Spectrum Shifts . 332
6.4.2 Changes in Spectrum Shape . 335
6.4.3 Musical Instruments . 340

xii Contents

6.4.4 Changes in Signal Energy . 343
6.4.5 Repetitions, Rhythm . 345

6.5 Some Complex Sounds. 349
6.5.1 Animal Sounds . 349
6.5.2 Music . 351

6.6 Resources . 352
6.6.1 MATLAB . 352
6.6.2 Internet . 353

References. 354

7 Time-Frequency Analysis . 357
7.1 Introduction . 357
7.2 Uncertainty . 359
7.3 Ambiguity. 362
7.4 Transforms for Time-Frequency Studies . 363

7.4.1 The Short-Time Fourier Transform 364
7.4.2 The Gabor Expansion . 368
7.4.3 The Continuous Wavelet Transform 372

7.5 Time-Frequency Distributions. 375
7.5.1 Densities . 375
7.5.2 The Wigner Distribution . 376
7.5.3 The SAF . 381
7.5.4 From Wigner to SAF and Vice-Versa 386
7.5.5 About Interferences . 390
7.5.6 Smoothing of the Wigner Distribution. 397

7.6 Signal Representation . 399
7.6.1 Types of Representations. 399
7.6.2 Analysis Approaches . 400
7.6.3 Basic Time-Frequency Operators. 402
7.6.4 Geometric Transformations . 404
7.6.5 Some Important Types of Matrices 406
7.6.6 Linear Operators . 407
7.6.7 Covariance . 410

7.7 The Cohen’s Class and the Affine Class . 412
7.7.1 The Cohen’s Class . 412
7.7.2 The Affine Class . 416
7.7.3 Classification of TFRs . 417

7.8 Linear Canonical Transformation . 418
7.8.1 Particular Cases . 419
7.8.2 Decomposition of the LCT . 421
7.8.3 Effect on the Wigner Distribution 422
7.8.4 Comments . 422
7.8.5 Example of Fractional Fourier Transform 423

Contents xiii

7.9 Adaptation and Decomposition for Better Signal
Representation . 426
7.9.1 The Chirplet Transform . 426
7.9.2 Unitary Equivalence Principle . 437
7.9.3 The Reassignment Method . 444

7.10 Other Methods . 447
7.10.1 The Modified S-Transform . 448
7.10.2 The Fan-Chirp-Transform . 451
7.10.3 The Mellin Transform . 452
7.10.4 The Empirical Mode Decomposition

and Hilbert–Huang Transform . 455
7.10.5 More Transforms . 465

7.11 Experiments . 467
7.11.1 Fractional Fourier Transform of a Rectangular

Signal . 468
7.11.2 Filtered Wigner Analysis of Nature Chirps 469
7.11.3 Wavelet Analysis of Lung and Heart Sounds 471
7.11.4 Fan-Chirp Transform of Some Animal Songs 474
7.11.5 Modified S-Transform Analysis of Some Cases 478

7.12 Resources . 484
7.12.1 MATLAB . 484
7.12.2 Internet . 485

References. 486

8 Modulation. 495
8.1 Introduction . 495
8.2 Modulation and Demodulation of Sinusoidal Signals 496

8.2.1 Amplitude Modulation and Demodulation 496
8.2.2 Frequency Modulation and Demodulation 507
8.2.3 Digital Modulation of Sine Signals 512
8.2.4 Details of the MATLAB Signal Processing

Toolbox. 517
8.3 Modulation and Demodulation of Pulses 518

8.3.1 Sampling. Demodulation of modulated pulses 518
8.3.2 Modulation of Pulses. 519
8.3.3 Coding. 522
8.3.4 Inter-symbol Interference. 522

8.4 Transmission Media. Multiplexing . 523
8.4.1 Frequency Domain Multiplexing 523
8.4.2 Time Domain Multiplexing . 523

8.5 Experiments . 525
8.5.1 Communication and Noise . 525
8.5.2 Cepstrum of Analog AM Modulation 529

xiv Contents

8.6 Resources . 530
8.6.1 MATLAB . 530
8.6.2 Internet . 531

References. 531

Appendix A: Transforms and Sampling . 533

Appendix B: Long Programs . 557

Index . 617

Contents xv

List of Figures

Figure 1.1 A square signal. 4
Figure 1.2 The sampled square signal . 5
Figure 1.3 Sinusoidal signal . 6
Figure 1.4 Sine (solid) and cosine (dashed) signals 6
Figure 1.5 Square signal . 7
Figure 1.6 Sawtooth signal . 8
Figure 1.7 Different sawtooth signals . 9
Figure 1.8 The sinusoidal audio signal . 10
Figure 1.9 Sum of three sinusoidal signals . 12
Figure 1.10 Multiplication of two sinusoidal signals 13
Figure 1.11 Example of odd signal (sawtooth signal, 3 periods) 14
Figure 1.12 Amplitude of the first ten harmonics of the sawtooth

signal . 15
Figure 1.13 Example of even signal (rectified sine signal, 3 periods) . . . 16
Figure 1.14 Amplitude of the first ten harmonics of the rectified

sine signal . 17
Figure 1.15 Example of signal with half-wave symmetry

(triangular signal, 3 periods) . 18
Figure 1.16 Amplitude of the first ten harmonics of the triangular

signal . 19
Figure 1.17 A pulse train signal (3 periods) . 20
Figure 1.18 Amplitude of the first 50 harmonics of the pulse train

signal . 21
Figure 1.19 The sinc(t) function . 22
Figure 1.20 Effect of a low sampling frequency

(sampled sine signal) . 23
Figure 1.21 Aliasing example (3 Hz sine signal) 24
Figure 2.1 A probability density function . 30
Figure 2.2 A random signal with uniform PDF. 31
Figure 2.3 Uniform PDF . 32
Figure 2.4 Histogram of a random signal with uniform PDF 33

xvii

Figure 2.5 A random signal with normal PDF 34
Figure 2.6 Normal PDF. 35
Figure 2.7 Histogram of a random signal with normal PDF 35
Figure 2.8 A random signal with log-normal PDF 37
Figure 2.9 Log-normal PDF. 37
Figure 2.10 Histogram of a random signal with log-normal PDF 38
Figure 2.11 Mean, median and mode marked on a PDF 40
Figure 2.12 PSD of a random signal with log-normal PDF 44
Figure 2.13 The buried sinusoidal signal . 44
Figure 2.14 The sine+noise signal . 45
Figure 2.15 PSD of the sine+noise signal . 46
Figure 2.16 The random signal with normal PDF to be heared. 47
Figure 2.17 The gamma function . 48
Figure 2.18 Gamma-type PDFs . 49
Figure 2.19 Example of chi-square PDF . 50
Figure 2.20 Example of beta PDF . 51
Figure 2.21 Example of Student’s t PDF . 52
Figure 2.22 Example of Weibull PDF . 53
Figure 2.23 Example of Rayleigh PDF . 54
Figure 2.24 Example of bivariate Gaussian PDF 56
Figure 2.25 Example of bivariate Gaussian PDF 56
Figure 2.26 Example of binomial PDF . 58
Figure 2.27 Example of Poisson PDF . 59
Figure 2.28 Example of geometric PDF . 59
Figure 2.29 Normal probability plot . 61
Figure 2.30 Weibull probability plot . 62
Figure 2.31 The log-likelihood of the Gaussian distribution,

using 20, or 60, or 200, or 500 data values 64
Figure 2.32 Bimodal distribution and mixture of Gaussians 68
Figure 2.33 Bimodal distribution example . 69
Figure 2.34 Parzen estimation of PDF. 70
Figure 2.35 Kernel-based estimation of PDF . 71
Figure 2.36 Area covered by a curve . 73
Figure 2.37 Same as previous figure, but with random points 73
Figure 2.38 Example of integral of the product gðxÞ � pðxÞ 75
Figure 2.39 Example of un-importance sampling 78
Figure 2.40 Example of f(x), and p(x) for importance sampling 78
Figure 2.41 The inversion procedure. 81
Figure 2.42 Example of desired distribution function and PDF. 81
Figure 2.43 Histogram of random data generated using analytical

inversion . 82
Figure 2.44 Generation of random data with a certain PDF 83
Figure 2.45 Histogram of random data generated using numerical

inversion . 84

xviii List of Figures

Figure 2.46 Example of desired f(x) PDF and proposal g(x) PDF. 85
Figure 2.47 Histogram of random data generated using the rejection

method . 86
Figure 2.48 Histogram of sum of signals. 89
Figure 2.49 The PDFs of two variables A and B 92
Figure 2.50 The two products of interest . 93
Figure 2.51 The product of the two PDFs . 93
Figure 2.52 A simple Bayes network . 94
Figure 2.53 Another example of Bayes network 95
Figure 2.54 Two parents in a Bayes network . 95
Figure 2.55 An example of Markov chain FSM 97
Figure 2.56 Example of Markov Chain result. 100
Figure 2.57 The case considered in the Metropolis example. 102
Figure 2.58 Histogram of random data generated by the Metropolis

algorithm . 102
Figure 2.59 An example of HMM (speech generator) 104
Figure 2.60 Results of HMM example . 104
Figure 2.61 Another HMM example . 105
Figure 2.62 An experiment with the HMM example 105
Figure 2.63 A generic HMM path . 105
Figure 2.64 Initial disttool screen . 106
Figure 2.65 Initial randtool screen . 107
Figure 2.66 Example of box plot . 108
Figure 3.1 Example of electronic filter . 118
Figure 3.2 Solution of equation (3.1) . 118
Figure 3.3 Another example of electronic filter. 119
Figure 3.4 Visualization of poles and zeros of G(s)

on the complex plane . 121
Figure 3.5 Comparison of sinusoidal input and output 122
Figure 3.6 Visualization of the frequency response of example A 123
Figure 3.7 Alternative visualization of the frequency response

of example A . 124
Figure 3.8 Visualization of the frequency response of example B 124
Figure 3.9 Alternative visualization of the frequency response

of example B . 125
Figure 3.10 Step response of filter example A 127
Figure 3.11 Step response of filter example B 128
Figure 3.12 Three cases of zero-pole maps . 129
Figure 3.13 Response of example A to sinusoidal input 130
Figure 3.14 Response of example B to sinusoidal input 131
Figure 3.15 Response of example B to a square signal 132
Figure 3.16 Response of example B to a high-frequency

square signal . 133

List of Figures xix

Figure 3.17 Step response of a discrete system. 134
Figure 3.18 Example of zero-pole map for a discrete system 135
Figure 3.19 PSD of u(t), and PSD of y(t) . 136
Figure 3.20 Real and estimated frequency responses of G(s) 137
Figure 3.21 State space model diagram . 138
Figure 3.22 A two-tank system example . 139
Figure 3.23 System state evolution . 140
Figure 3.24 Autonomous behaviour of the system 142
Figure 3.25 Forced response of the system, unit step input 142
Figure 3.26 Propagation of initial state perturbations. 144
Figure 3.27 Evolution of mean and variance of the state

for the previous example . 145
Figure 3.28 Influence of process perturbations 146
Figure 3.29 Evolution of mean and variance of the state

for the example with process noise 147
Figure 3.30 Histograms of x(2), x(3) and process noise. 148
Figure 3.31 A beta PDF . 148
Figure 3.32 Influence of process perturbations 149
Figure 3.33 Histograms of process noise and x(10). 150
Figure 3.34 Influence of the process and the measurement noises. 151
Figure 3.35 Histograms of y(10) . 151
Figure 3.36 Influence of the process and the measurement noises. 152
Figure 3.37 Histograms of y(10) . 153
Figure 3.38 Behaviour of a DARMA model example 156
Figure 3.39 Semi-annual Sunspot activity . 160
Figure 3.40 Periodogram of semi-annual Sunspot activity 161
Figure 3.41 Behaviour of an MA process . 163
Figure 3.42 Roots of the lag polynomial . 164
Figure 3.43 Covariances . 164
Figure 3.44 Behaviour of an AR process. 165
Figure 3.45 Roots of the lag polynomial . 166
Figure 3.46 Covariances . 166
Figure 3.47 Drift and trend . 168
Figure 3.48 Behaviour of an ARMA model . 171
Figure 3.49 Weekly toothpaste sales: (left) data, (right) increments 173
Figure 3.50 An AR(1) process simulation . 174
Figure 3.51 Quarterly US personal consumption expenditure:

(left) data, (right) increments . 175
Figure 3.52 Gold prices (monthly): (left) data, (center) log(data),

(right) increments of log(data) . 177
Figure 3.53 Monthly beer production in Australia 178
Figure 3.54 Classical decomposition: (top) beer production,

(below) linear drift, (next below) cosine component,
(bottom) residual . 179

xx List of Figures

Figure 3.55 Cosine fitting . 180
Figure 4.1 A first order low-pass filter . 186
Figure 4.2 Frequency response of the first order low-pass filter 186
Figure 4.3 A first order high-pass filter . 187
Figure 4.4 Frequency response of the first order high-pass filter 187
Figure 4.5 Response of the first order low-pass filter

to a square signal . 188
Figure 4.6 Response of the first order high–pass filter

to a square signal . 189
Figure 4.7 A desired low-pass frequency response 191
Figure 4.8 A desired high-pass frequency response 191
Figure 4.9 A desired band-pass frequency response. 192
Figure 4.10 A desired band-stop frequency response. 192
Figure 4.11 A desired frequency response: approximation and reality . . . 193
Figure 4.12 A filter structure . 194
Figure 4.13 Foster forms . 195
Figure 4.14 Cauer forms . 196
Figure 4.15 Radio tuning with an ideal filter . 198
Figure 4.16 Specification of a low-pass filter . 199
Figure 4.17 Frequency response of 5th order Butterworth filter. 200
Figure 4.18 Poles of 5th order Butterworth filter 201
Figure 4.19 Step response of 5th order Butterworth filter 202
Figure 4.20 Effect of n on the frequency response of the Butterworth

filter . 202
Figure 4.21 Response of 5th order Butterworth filter

to a square wave. 203
Figure 4.22 Frequency response of 5th order Chebyshev 1 filter 204
Figure 4.23 Poles of 5th order Chebyshev 1 filter 205
Figure 4.24 Step response of 5th order Chebyshev 1 filter 205
Figure 4.25 Effect of n on the frequency response of the Chebyshev

1 filter . 206
Figure 4.26 Response of 5th order Chebyshev 1 filter

to a square wave. 206
Figure 4.27 Frequency response of 5th order Chebyshev 2 filter 208
Figure 4.28 Poles and zeros of 5th order Chebyshev 2 filter 209
Figure 4.29 Step response of 5th order Chebyshev 2 filter 209
Figure 4.30 Effect of n on the frequency response

of the Chebyshev 2 filter . 210
Figure 4.31 Response of 5th order Chebyshev 2 filter

to a square wave. 210
Figure 4.32 Frequency response of 5th order elliptic filter 212
Figure 4.33 Poles of 5th order elliptic filter . 212
Figure 4.34 Step response of 5th order elliptiic filter 213

List of Figures xxi

Figure 4.35 Effect of n on the frequency response of the
elliptic filter . 213

Figure 4.36 Response of 5th order elliptic filter to a square wave 213
Figure 4.37 Comparison of the frequency response of the four filters . . . 215
Figure 4.38 Comparison of the step response of the four filters 217
Figure 4.39 Frequency response of a band-pass 5th order Butterworth

filter . 218
Figure 4.40 Frequency response of a high-pass 5th order Butterworth

filter . 219
Figure 4.41 Frequency response of a band-stop 5th order Butterworth

filter . 219
Figure 4.42 Frequency response of 5th order Bessel filter 222
Figure 4.43 Poles of 5th order Bessel filter . 222
Figure 4.44 Step response of 5th order Bessel filter. 223
Figure 4.45 Effect of n on the frequency response of the Bessel filter . . . 223
Figure 4.46 Response of 5th order Bessel filter to a square wave 224
Figure 4.47 Effect of n on the frequency response phase

of the Bessel filter. 224
Figure 4.48 Frequency response phases of the five 5th filters 225
Figure 4.49 Polar plot of frequency response of 5th Butterworth,

Chebyshev 1 and Bessel filters . 226
Figure 4.50 Polar plot of frequency response of 5th Chebyshev 2,

elliptic and Butterworth filters . 227
Figure 4.51 Zoom in of the polar plot of frequency response

of 5th Chebyshev 2, elliptic and Butterworth filters 228
Figure 4.52 Comparison of the group delay of the five 5th order

filters. 229
Figure 4.53 Recovering a signal buried in noise 230
Figure 4.54 Extracting components from a compound signal 231
Figure 4.55 Original and reconstructed signals 232
Figure 4.56 The three filtered square signals when using

5th Butterworth filter . 232
Figure 4.57 The three filtered square signals when

using 5th Chebyshev 1 filter . 233
Figure 4.58 The three filtered square signals when using

5th Chebyshev 2 filter . 234
Figure 4.59 The three filtered square signals when

using 5th elliptic filter . 234
Figure 4.60 The three filtered square signals when

using 5th Bessel filter. 235
Figure 5.1 Frequency response of the analog filter example 242
Figure 5.2 Frequency response of the digital filter obtained

with bilinear transformation and fs ¼ 1200 Hz 243

xxii List of Figures

Figure 5.3 Frequency response of the digital filter obtained
with bilinear transformation and fs ¼ 100 Hz 244

Figure 5.4 Frequency response of the digital filter obtained
with the impulse invariance method and fs ¼ 1200 Hz 244

Figure 5.5 Frequency response of the digital filter obtained
with the impulse invariance method and fs ¼ 100 Hz 245

Figure 5.6 The sinc(x) function . 247
Figure 5.7 Frequency response of filter with h(n) ¼ ones(7,1) 249
Figure 5.8 Frequency response of filter with h(n) ¼ ones(33,1) 250
Figure 5.9 h(n) truncation and time-shift . 251
Figure 5.10 Frequency response of truncated causal filter 252
Figure 5.11 Triangular window and frequency response

of the windowed FIR filter . 255
Figure 5.12 Hamming window and frequency response

of the windowed FIR filter . 257
Figure 5.13 Comparison of Hamming filter frequency response Hf(ωÞ

for several orders N of the filter . 258
Figure 5.14 Comparison of hwðnÞ of Hanning, Hamming

and Blackman windows . 258
Figure 5.15 Comparison of Hf (ωÞ of Hanning, Hamming

and Blackman windowed filters . 260
Figure 5.16 Comparison of HwðωÞ of Hanning, Hamming

and Blackman windows . 260
Figure 5.17 Detail of the stop-band in the Hanning, Hamming

and Blackman windows . 261
Figure 5.18 Comparison of hwðnÞ of Kaiser window for several

values of β . 263
Figure 5.19 Frequency response of the Kaiser windowed filter

for several values of β . 264
Figure 5.20 Detail of the stop-and in the Kaiser window

for several values of β . 265
Figure 5.21 A typical frequency response of a digital filter 266
Figure 5.22 Boxcar window and frequency response of the

corresponding windowed FIR filter 268
Figure 5.23 Chebyshev window and frequency response

of the corresponding windowed FIR filter 269
Figure 5.24 Impulse response h(n) and frequency response H(ωÞ

of a 50th Parks–McClelland FIR filter 271
Figure 5.25 Impulse response h(n) and frequency response H(ωÞ

of a 50th least-squares FIR filter . 273
Figure 5.26 Frequency responses H(ωÞ of a 50th raised cosine

FIR filter . 274
Figure 5.27 Impulse responses h(n) of a 50th raised cosine FIR filter . . . 275

List of Figures xxiii

Figure 5.28 Train of impulses . 276
Figure 5.29 Response of the 50th raised cosine FIR filter

to the train of impulses . 277
Figure 5.30 Response of the 50th raised cosine FIR filter

with 2 fu cut-off frequency to the train of impulses 278
Figure 5.31 FIR filter coefficients to be applied, according

with the Savitzky–Golay strategy 279
Figure 5.32 On top, the pure sawtooth signal. Below,

the sawtooth þ noise input signal and the response
of the Savitzky–Golay filter . 280

Figure 5.33 Block diagram of an IFIR filter. 280
Figure 5.34 Comparison of frequency response

of the four digital filters. 283
Figure 5.35 Comparison of impulse response

of the four digital filters. 284
Figure 5.36 Comparison of pole-zero maps of the four digital filters. . . . 286
Figure 5.37 Frequency response amplitude of a Yule–Walker filter

approximating desired frequency response amplitude
(dotted line) . 287

Figure 5.38 Pole-zero map of the obtained IIR filter 288
Figure 5.39 Phase of the frequency response of the obtained

IIR filter . 289
Figure 5.40 Amplitude and phase of the frequency response

of the obtained IIR filter approximating desired
amplitude and phase . 289

Figure 5.41 Pole-zero map of the obtained IIR filter 291
Figure 5.42 Frequency response amplitude and impulse response

of a digital all-pole IIR filter . 292
Figure 5.43 Comparison of all-pole IIR desired and modelled

response, for the arburg() case . 293
Figure 5.44 Comparison of all-pole IIR desired and modelled

responses, for the four methods. 294
Figure 5.45 Comparison of recursive IIR desired and modelled

response, for the prony() case . 296
Figure 5.46 Comparison of recursive IIR desired and modelled

response, for the stmcb() case . 297
Figure 5.47 Frequency response and pole-zero map of maxflat()

filter example . 298
Figure 5.48 Comparison of filter() and filtfilt() effects 299
Figure 5.49 Input (with x-marks) and output of Hilbert filter 301
Figure 5.50 Input (with x-marks) and output of a differentiator 301
Figure 5.51 Extracting components from a compound signal 303
Figure 5.52 Original and reconstructed signals 304
Figure 5.53 IIR models of G6 and C6 piano notes 304

xxiv List of Figures

Figure 5.54 FDATool initial screen . 306
Figure 5.55 Result of the defaults FIR filter design. 307
Figure 5.56 Prepare for export to simulink model. 307
Figure 6.1 Sine signal with decay . 314
Figure 6.2 Audio sine signal with decay . 315
Figure 6.3 Envelope of the sine signal with decay 316
Figure 6.4 Sine signal with frequency variation 317
Figure 6.5 Audio sine signal with frequency variation 318
Figure 6.6 Sine signal with frequency variation 319
Figure 6.7 Spectrogram of the sine signal with frequency variation 320
Figure 6.8 Coloured noise signals; the signal below is a delayed

version of the signal on top . 322
Figure 6.9 Fourier transforms of main signal and composite signal 323
Figure 6.10 The composite signal and its real cepstrum. 324
Figure 6.11 The ‘I’ vowel . 326
Figure 6.12 Spectrum of the ‘I’ signal . 327
Figure 6.13 Cepstrum of the ‘I’ signal . 328
Figure 6.14 Spectrogram of a quadratic chirp signal 328
Figure 6.15 The result of adding 10 and 11 Hz sine signals. 330
Figure 6.16 DFT and chirp-z transform of the composite signal 331
Figure 6.17 Car Doppler signal . 333
Figure 6.18 Spectrum shift due to Doppler effect 333
Figure 6.19 Spectrogram of the car Doppler signal 334
Figure 6.20 Spectrogram of siren signal . 335
Figure 6.21 Transformer sound . 336
Figure 6.22 Spectral density of the transformer signal 337
Figure 6.23 A quack signal . 338
Figure 6.24 Changes in the spectrum shape along the quack 339
Figure 6.25 Triangle signal . 340
Figure 6.26 Spectrogram of the Big Ben chime 341
Figure 6.27 Spectrogram of a harp phrase . 342
Figure 6.28 A synthesised audio signal with ADSR envelope 343
Figure 6.29 Earthquake vertical acceleration record 344
Figure 6.30 Spectrum of the main part of quake signal 345
Figure 6.31 A periodic impulse train and its autocovariance 346
Figure 6.32 An ECG record and its covariance 347
Figure 6.33 ECG record showing problems . 348
Figure 6.34 Spectrogram of elephant trumpeting 349
Figure 6.35 The mooing of a cow signal . 350
Figure 6.36 Spectrogram of cow sound . 351
Figure 7.1 GMP signal and spectrum . 361
Figure 7.2 Sine signal for STFT testing. 365
Figure 7.3 STFT of 1-sine signal and time fine precision. 366
Figure 7.4 STFT of 1-sine signal and frequency fine precision 367

List of Figures xxv

Figure 7.5 Dennis Gabor . 368
Figure 7.6 Idea of the Gabor expansion. 369
Figure 7.7 Visualization of the Gabor logons 370
Figure 7.8 Scalogram of square signal. 373
Figure 7.9 Eugene Wigner . 376
Figure 7.10 A test signal composed of two different GMPs 379
Figure 7.11 Wigner distribution of the previous test signal 380
Figure 7.12 Frequency marginal of the Wigner distribution

(2 GMP signal). 382
Figure 7.13 Time marginal of the Wigner distribution

(2 GMP signal). 382
Figure 7.14 SAF of the previous test signal . 384
Figure 7.15 Frequency autocorrelation (2 GMP signal) 386
Figure 7.16 Time autocorrelation (2 GMP signal). 386
Figure 7.17 SAF obtained from Wigner distribution (2 GMP signal). . . . 387
Figure 7.18 Wigner distribution obtained from SAF,

two GMPs signal . 389
Figure 7.19 Signal with 2 sine components . 390
Figure 7.20 Wigner distribution of the signal with 2 sine components. . . 391
Figure 7.21 Frequency marginal of the Wigner distribution

(2 sine signal). 391
Figure 7.22 Time marginal of the Wigner distribution (2 sine signal) . . . 392
Figure 7.23 Quadratic chirp signal . 392
Figure 7.24 Wigner distribution of the quadratic chirp signal 393
Figure 7.25 Kernel and filtered SAF for 2 GMP signal 394
Figure 7.26 Filtered Wigner distribution for 2 GMP signal 394
Figure 7.27 Kernel and filtered SAF for chirp signal 396
Figure 7.28 Filtered Wigner distribution for chirp signal 397
Figure 7.29 Analysis in the TF plane using inner product 401
Figure 7.30 Frequency shift þ time shift of the analysis function 401
Figure 7.31 Scaling þ time shift of the analysis function 402
Figure 7.32 Tiling of the TF plane corresponding to the first

alternative . 402
Figure 7.33 Tiling of the TF plane corresponding to the second

alternative . 403
Figure 7.34 Fourier relationships between kernels (Cohen’s class) 413
Figure 7.35 The Choi–Williams kernel . 415
Figure 7.36 Fractional Fourier transform of one cosine cycle 423
Figure 7.37 Fractional Fourier transform of a chirp which rate

corresponds to the transform exponent 425
Figure 7.38 An oblique perspective . 427
Figure 7.39 Four affine transformations of the rectangular tiling. 428

xxvi List of Figures

Figure 7.40 Two more affine transformations, and two perspective
projections . 428

Figure 7.41 Wigner distribution of prolate signal 429
Figure 7.42 Wigner distribution of prolate function with frequency

shear . 430
Figure 7.43 Example of Gaussian chirplet atom 433
Figure 7.44 Wigner distribution of a Gaussian chirplet atom 433
Figure 7.45 Example of dopplerlet . 434
Figure 7.46 Example of warblet . 435
Figure 7.47 Instantaneous frequency of the warblet example 436
Figure 7.48 The modulated signal . 439
Figure 7.49 Wigner distribution of the original signal 440
Figure 7.50 Wigner distribution of the warped signal 440
Figure 7.51 The time-warping relationship. 442
Figure 7.52 The frequency conversion factor . 442
Figure 7.53 Unwarped Wigner distribution . 444
Figure 7.54 Re-assigning idea . 445
Figure 7.55 A re-assigned spectrogram example. 445
Figure 7.56 Original spectrogram of the siren signal 447
Figure 7.57 Reassigned spectrogram of the siren signal. 447
Figure 7.58 Spectrogram of a linear chirp . 449
Figure 7.59 Modified S-transform of the linear chirp 449
Figure 7.60 Geometry corresponding to the Fan-Chirp transform 452
Figure 7.61 Spectrogram of a linear chirp . 452
Figure 7.62 Fan-Chirp transform of the linear chirp 453
Figure 7.63 A signal, its 1st IMF, and its 1st residue 456
Figure 7.64 The 1st residue, the 2nd IMF, and the 2nd residue 456
Figure 7.65 The upper and lower envelopes . 457
Figure 7.66 The mean of the two envelopes . 457
Figure 7.67 The signal and the mean of envelopes 458
Figure 7.68 The first IMF . 458
Figure 7.69 The electrocardiogram . 461
Figure 7.70 The first five IMFs . 461
Figure 7.71 The 6th to 10th IMFs . 462
Figure 7.72 The first five IMFs . 464
Figure 7.73 The Hilbert spectrum. 464
Figure 7.74 Fractional Fourier transforms of a rectangular signal,

using different values of the exponent 468
Figure 7.75 The fractional Fourier transform of the rectangle

becomes close to the sinc signal for a ¼ 0.99. 469
Figure 7.76 Wigner analysis . 469
Figure 7.77 Bat chirp . 470
Figure 7.78 Bird tweet . 471
Figure 7.79 Sound of normal respiration (10 s) 472

List of Figures xxvii

Figure 7.80 Scalogram of a signal segment . 473
Figure 7.81 Sound of respiration with crackles (10 s) 473
Figure 7.82 Scalogram of a signal segment . 474
Figure 7.83 Scalogram of heart sound (2 beats) 475
Figure 7.84 Spectrogram of the quack. 475
Figure 7.85 Fan-Chirp transform of the quack 476
Figure 7.86 Spectrogram of the dog bark . 476
Figure 7.87 Fan-Chirp transform of the dog bark 477
Figure 7.88 Respiration with wheezing, 3 levels of detail 478
Figure 7.89 Spectrogram of the signal segment with wheezing. 479
Figure 7.90 Modified S-transform of the signal segment

with wheezing . 479
Figure 7.91 Spectrogram of whale song (divided into 2 parts) 480
Figure 7.92 Modified S-transform of whale song

(divided into 2 parts) . 480
Figure 7.93 The Earthquake signal at two detail levels 482
Figure 7.94 Spectrogram of the signal segment 482
Figure 7.95 Modified S-transform of the signal segment 483
Figure 7.96 Extraction of a T-F region of interest. 483
Figure 7.97 The extracted signal segment at two levels of detail 494
Figure 8.1 The Brant Rock radio tower, and Mr. R. Fessenden 496
Figure 8.2 Radio transmission can be done using modulation

and demodulation . 496
Figure 8.3 AM modulation diagram . 497
Figure 8.4 Amplitude modulation of sine signal 498
Figure 8.5 Amplitude modulation of audio sine signal. 499
Figure 8.6 Spectral density and amplitude modulation 501
Figure 8.7 Diode demodulation of DSB amplitude modulated signal . . . 503
Figure 8.8 Suppressed carrier amplitude modulation of sine signal 504
Figure 8.9 SSB amplitude modulation with a sawtooth signal 506
Figure 8.10 Mr. Armstrong, his wife and a superheterodyne radio 508
Figure 8.11 Frequency modulation of sine signal 508
Figure 8.12 Frequency of FM modulated signal in audio example 509
Figure 8.13 Spectral density of frequency modulated signal 511
Figure 8.14 Pulse modulation of sine signal. 513
Figure 8.15 ASK, FSK and PSK modulation of sine signal 513
Figure 8.16 The four basic pieces of 4_PSK modulation 514
Figure 8.17 Example of 4-PSK modulation . 515
Figure 8.18 Amplitude modulation of sine signal 517
Figure 8.19 C.E. Shannon . 519
Figure 8.20 Modulation of pulses . 519
Figure 8.21 Analog modulation of pulses . 520
Figure 8.22 Demodulation of pulses . 521
Figure 8.23 Frequency division multiplexing50 524

xxviii List of Figures

Figure 8.24 Time division multiplexing. 524
Figure 8.25 Noisy communication . 525
Figure 8.26 AM communication in the presence of noise 526
Figure 8.27 PWM communication in the presence of noise 528
Figure 8.28 PTM communication in the presence of noise. 528
Figure 8.29 Cepstrum of AM modulated signal, compared

with added signals on top . 529
Figure A.1 Square wave. 538
Figure A.2 Single pulse . 538
Figure A.3 Single triangle . 539
Figure A.4 Basic diagram. 543
Figure A.5 The N = 4 DFT computation procedure 543
Figure A.6 The N=8 DFT decomposition into 3 stages 544
Figure A.7 The N = 8 DFT computation procedure 544
Figure B.1 Weather prediction model with three states (Fig. 2.55). 558
Figure B.2 Simple HMM model of speech (Fig. 2.59) 559
Figure B.3 Comparison of the group delay of the five

5th order filters (Fig. 4.52) . 561
Figure B.4 Recovering a signal buried in noise (Fig. 4.53) 563
Figure B.5 Extracting components from a compound signal

(Fig. 4.54) . 564
Figure B.6 Original and reconstructed signals (Fig. 4.55) 565
Figure B.7 Comparison of pole-zero maps of the four digital filters

(Fig. 5.36) . 566
Figure B.8 Extracting components from a compound signal

(Fig. 5.51) . 568
Figure B.9 Original and reconstructed signals (Fig. 5.52) 568
Figure B.10 Wigner distribution of a 2 sine signal (Fig. 7.20) 570
Figure B.11 Wigner distribution of a chirp signal (Fig. 7.24) 572
Figure B.12 Kernel and filtered SAF for chirp signal (Fig. 7.27). 573
Figure B.13 Filtered Wigner distribution for chirp signal (Fig. 7.28) 573
Figure B.14 Fractional Fourier transform of a chirp which rate

corresponds to the transform exponent 575
Figure B.15 Wigner distribution of a Gaussian chirplet atom

(Fig. 7.44) . 577
Figure B.16 Wigner distribution of the original signal (Fig. 7.49) 578
Figure B.17 Original spectrogram of the siren signal (Fig. 7.56) 579
Figure B.18 Reassigned spectrogram of the siren signal (Fig. 7.57) 579
Figure B.19 Spectrogram of a linear chirp (Fig. 7.61) 582
Figure B.20 Fan-Chirp transform of the linear chirp (Fig. 7.62) 582
Figure B.21 The first five IMFs (Fig. 7.72) . 584
Figure B.22 The Hilbert spectrum (Fig. 7.63) . 584
Figure B.23 Fractional Fourier transforms of a rectangular signal,

using different values of the exponent (Fig. 7.74) 587

List of Figures xxix

Figure B.24 The fractional Fourier transform of the rectangle
becomes close to the sinc signal for a ¼ 0.99 (Fig. 7.75) . . . 587

Figure B.25 Wigner analysis (Fig. 7.6) . 589
Figure B.26 Bat chirp (Fig. 7.7) . 592
Figure B.27 Bird tweet (Fig. 7.78) . 593
Figure B.28 Sound of normal respiration (10 s) (Fig. 7.79) 594
Figure B.29 Scalogram of a signal segment (Fig. 7.80) 595
Figure B.30 Sound of respiration with crackles (10 s) (Fig. 7.81) 596
Figure B.31 Scalogram of a signal segment (Fig. 7.82) 597
Figure B.32 Scalogram of heart sound (2 beats) (Fig. 7.83) 598
Figure B.33 Spectrogram of the quack (Fig. 7.84). 600
Figure B.34 Fan-Chirp transform of the quack (Fig. 7.85) 600
Figure B.35 Spectrogram of the dog bark (Fig. 7.86) 602
Figure B.36 Fan-Chirp transform of the dog bark (Fig. 7.87) 602
Figure B.37 Respiration with wheezing, 3 levels of detail (Fig. 7.88) . . . 604
Figure B.38 Spectrogram of the signal segment with wheezing

(Fig. 7.89) . 604
Figure B.39 Modified S-transform of the signal segment

with wheezing (Fig. 7.90) . 605
Figure B.40 Spectrogram of whale song (divided into 2 parts)

(Fig. 7.91) . 606
Figure B.41 Modified S-transform of whale song

(divided into 2 parts) (Fig. 7.92) . 606
Figure B.42 The Earthquake signal at two detail levels (Fig. 7.93) 608
Figure B.43 Spectrogram of the signal segment (Fig. 7.94) 608
Figure B.44 Modified S-transform of the signal segment (Fig. 7.95) 609
Figure B.45 Extraction of a TF region of interest (Fig. 7.96) 611
Figure B.46 The extracted signal segment at two levels of detail

(Fig. 7.97) . 611
Figure B.47 ASK, FSK and PSK modulation of sine signal

(Fig. 8.15) . 613

xxx List of Figures

Listings

1.1 Square signal . 4
1.2 Sine signal . 5
1.3 Sine and cosine signals. 6
1.4 Square signal . 7
1.5 Sawtooth signal . 8
1.6 Sawtooth signals . 9
1.7 Sine audio signal . 10
1.8 Sum of sines signal . 11
1.9 Multiplication of sines . 13
1.10 Sawtooth signal to be analyzed. 14
1.11 Fourier transform of sawtooth signal . 15
1.12 Rectified signal to be analyzed . 16
1.13 Fourier transform of rectified signal . 17
1.14 Triangular signal to be analyzed . 18
1.15 Fourier transform of triangular signal . 19
1.16 Pulse train signal . 20
1.17 Fourier transform of pulse train signal . 20
1.18 Sinc function . 22
1.19 Sine signal and low sampling frequency. 23
1.20 Sine signal and aliasing . 24
2.1 Random signal with uniform PDF . 32
2.2 Uniform PDF . 32
2.3 Histogram of a random signal with uniform PDF. 33
2.4 Random signal with normal PDF . 34
2.5 Normal PDF . 35
2.6 Histogram of a random signal with normal PDF 36
2.7 Random signal with log-normal PDF . 36
2.8 Log-normal PDF. 37
2.9 Histogram of a random signal with log-normal PDF 38
2.10 A skewed PDF with mean, median and mode 40

xxxi

2.11 Power spectral density (PSD) of random signal
with log-normal PDF . 43

2.12 The sine+noise signal . 45
2.13 Power spectral density (PSD) of a signal+noise 45
2.14 See and hear a random signal with normal PDF. 46
2.15 Gamma function . 48
2.16 Gamma-type PDFs . 49
2.17 Chi-square PDF . 50
2.18 beta PDF . 51
2.19 Student’s PDF . 52
2.20 Weibull PDF. 53
2.21 Rayleigh PDF . 54
2.22 Bivariate normal PDF . 56
2.23 Binomial PDF. 57
2.24 Poisson PDF. 58
2.25 Geometric PDF. 60
2.26 Normal probability plot . 60
2.27 Weibull probability plot . 61
2.28 Likelihood example . 63
2.29 Mixture of 2 Gaussians. 67
2.30 Histogram of Bimodal distribution . 68
2.31 Kernel method example . 71
2.32 Curve and area . 72
2.33 Monte Carlo points, and area approximation 73
2.34 Integration as expected value . 76
2.35 Integration as expected value: Importance sampling 78
2.36 Generation of random data with a desired PDF 81
2.37 Numerical inversion of a function . 83
2.38 Generation of random data with a desired PDF 84
2.39 Generation of random data with a desired PDF 85
2.40 Central limit of wav sounds . 88
2.41 Two overlapped PDFs . 93
2.42 Generation of random data with a desired PDF 101
2.43 Example of box plots . 107
3.1 Pole-zero map of G(s) . 121
3.2 Frequency response of example A . 122
3.3 Frequency response of example A . 123
3.4 Frequency response of example B . 124
3.5 Frequency response of example B . 125
3.6 Step response of example A . 127
3.7 Step response of example B . 127
3.8 Pole-zero maps of three G(s) cases . 129
3.9 Time-domain response to sine, example A . 130
3.10 Time-domain response to sine, example B . 131

xxxii Listings

3.11 Time-domain response to square signal, example B 132
3.12 Step response of a discrete system . 134
3.13 Pole-zero map of a discrete system. 134
3.14 PSDs of random u(t) and output y(t) . 136
3.15 Estimate of the transfer function from random input u(t)

and output y(t) . 137
3.16 System example . 140
3.17 Deterministic state evolution. 142
3.18 Deterministic state evolution. 143
3.19 Propagation of uncertainty on initial state. 143
3.20 Evolution of state mean and variance . 144
3.21 Influence of Gaussian process noise . 145
3.22 Evolution of state mean and variance . 146
3.23 Propagation of Gaussian state noise: details of states

x(2) and x(3) . 147
3.24 A beta PDF . 149
3.25 Propagation of non-Gaussian process noise . 149
3.26 Influence of Gaussian process noise and measurement noise 151
3.27 Influence of Gaussian process noise . 152
3.28 Example of DARMA behaviour . 156
3.29 Example of DARMA behaviour . 157
3.30 Periodogram of Sunspots . 160
3.31 Example of MA behaviour . 162
3.32 Example of AR behaviour . 166
3.33 Drift and trend . 167
3.34 Example of ARMA behaviour . 170
3.35 Example of weekly toothpaste sales . 173
3.36 AR(1) model of weekly toothpaste sales. 174
3.37 Quarterly US personal consumption expediture 175
3.38 Gold prices . 176
3.39 Australian Beer production . 179
4.1 Frequency response of high-pass filter . 188
4.2 Response to square signal, low-pass filter. 188
4.3 Response to square signal, high-pass filter . 190
4.4 Abstract design, desired filter . 193
4.5 Frequency response of Butterworth filter . 200
4.6 Pole-zero map of Butterworth filter . 201
4.7 Step response of Butterworth filter . 201
4.8 Comparison of frequency response of Butterworth filters 202
4.9 Response of Butterworth filter to square signal 203
4.10 FrB . 204
4.11 FrC1 . 204
4.12 FrC2 . 209
4.13 Pole-zero map of Chebyshev 2 filter. 210

Listings xxxiii

4.14 FrE . 214
4.15 Pole-zero map of elliptic filter . 214
4.16 Comparison of frequency response of the 4 filters 215
4.17 Comparison of step response of the 4 filters . 216
4.18 Frequency response of band-pass Butterworth filter 218
4.19 Frequency response of high-pass Butterworth filter 218
4.20 Frequency response of band-stop Butterworth filter 219
4.21 FrT . 221
4.22 Comparison of frequency response phase of Bessel filters 223
4.23 Frequency response phases of the five filters 225
4.24 Comparison of frequency response phase of Butterworth,

Chebyshev 1 and Bessel filters in polar plane 226
4.25 Comparison of frequency response phase of Butterworth,

Chebishev 2 and elliptic filters in polar plane. 227
4.26 Response of Butterworth filter to square signal near cut-off 231
5.1 Frequency response of analog filter example 241
5.2 Bilinear transformation from analog filter to digital filter 242
5.3 Invariant impulse transformation from analog filter to digital

filter . 245
5.4 The sinc function . 246
5.5 h(n) = 7 ones, H(w) of the digital filter . 248
5.6 h(n) = 13 ones, H(w) of the digital filter . 249
5.7 Truncation and time shifting. 252
5.8 Frequency response of the truncated filter. 253
5.9 hw(n) of triangular window, and frequency response Hf(w)

of windowed filter . 255
5.10 hw(n) of Hamming window, and frequency response Hf(w)

of windowed filter . 256
5.11 Comparison of hw(n) of Hanning, Hamming and Blackman

windows . 259
5.12 Comparison of Hf(w) of Hanning, Hamming and Blackman

windowed filters . 259
5.13 Comparison of Hw(w) of Hanning, Hamming and Blackman

windows . 260
5.14 Comparison of stop-band of Hw(w) of Hanning, Hamming

and Blackman windows . 262
5.15 Comparison of hw(n) of Kaiser window. 263
5.16 Comparison of Hf(w) of Kaiser window. 264
5.17 Comparison of Hw(w) of Kaiser window . 265
5.18 hw(n) of boxcar window, and frequency response Hf(w)

of windowed filter . 267
5.19 hw(n) of Chebyshev window, and frequency response Hf(w)

of windowed filter . 269
5.20 h(n) and Hf(w) of (Remez) Parks-McClellan filter 271

xxxiv Listings

5.21 h(n) and Hf(w) of least-squares error filter . 272
5.22 Frequency response of raised cosine filter. 274
5.23 Impulse response of raised cosine filter . 275
5.24 Train of impulses . 276
5.25 Response of the raised cosine filter to the train of impulses 276
5.26 FIR filter coefficients with Savitzky-Golay filter 278
5.27 Frequency response of sgolay filter. 279
5.28 Comparison of frequency response of the 4 digital filters 283
5.29 Comparison of impulse response of the 4 digital filters 284
5.30 Frequency response of IIR yulewalk filter . 287
5.31 Pole-zero map of IIR yulewalk filter. 287
5.32 Phase of the frequency response of IIR yulewalk filter. 288
5.33 Frequency response of IIR invfreqz filter . 289
5.34 Pole-zero map of IIR invfreqz filter . 290
5.35 Reference IIR filter: frequency and impulse responses 291
5.36 IIR from impulse response, using arburg . 292
5.37 IIR from impulse response, the four methods 293
5.38 IIR from impulse response, using prony . 295
5.39 IIR from impulse response, using stmcb. 296
5.40 Frequency response of IIR maxflat filter . 298
5.41 Comparing filter() with filtfilt() . 299
5.42 Effect of Hilbert filter . 300
5.43 Effect of a differentiator . 302
5.44 Piano note modelling, using stmcb . 305
6.1 Sine signal with decay . 314
6.2 Sound of a sine signal with decay . 315
6.3 Hilbert and the envelope of sine signal with decay. 316
6.4 Sine signal with frequency variation . 317
6.5 Sound of sine signal with frequency variation 318
6.6 Hilbert and the frequency of sine signal with frequency variation . . . 319
6.7 Spectrogram of sine signal with frequency variation. 320
6.8 Coloured noise and echo . 321
6.9 Spectra of input and composite signals . 323
6.10 Composite signal and cepstrum . 324
6.11 Hear and plot vowel signal . 326
6.12 Analyse vowel with spectrum. 327
6.13 Analyse vowel with cepstrum. 327
6.14 Spectrogram of a chirp . 329
6.15 Two added sines. 330
6.16 Chirp-z transform of a signal . 331
6.17 Hear and see car doppler WAV . 332
6.18 Spectral densities of Doppler signal begin and end. 333
6.19 Spectrogram of car doppler signal . 334
6.20 Spectrogram of siren signal . 335

Listings xxxv

6.21 Hear and see transformer signal . 336
6.22 Spectral density of transformer signal . 337
6.23 Hear and see quack WAV . 338
6.24 Spectral densities of quack signal begin and end 339
6.25 Triangle signal . 340
6.26 Spectrogram of Big-Ben signal . 341
6.27 Spectrogram of harp signal . 341
6.28 ADSR synthesis of audio sine signal . 342
6.29 Read quake data file . 344
6.30 Spectrum of central quake signal . 345
6.31 Impulse train autocovariance. 346
6.32 Read ECG data file and compute autocovariance 347
6.33 Read ECG data file and compute autocovariance 348
6.34 Spectrogram of Elephant signal . 350
6.35 Hear and see cow WAV. 350
6.36 Spectrogram of cow signal . 351
7.1 GMP signal and spectrum. 361
7.2 STFT of 1-sine signal . 366
7.3 STFT of 1-sine signal . 367
7.4 Plot of 5x6 large logons . 371
7.5 Signal analysis by continuous wavelet transform 374
7.6 2 GMPs signal . 379
7.7 Wigner distribution of 2 GMPs signal . 380
7.8 SAF of 2 GMPs signal . 384
7.9 SAF from Wigner distribution of 2 GMPs signal 387
7.10 Wigner distribution from SAF, of 2 GMPs signal 388
7.11 Quadratic chirp signal. 391
7.12 WD of 2 GMPs signal, with no interference. 395
7.13 The Choi-Williams kernel. 415
7.14 Fractional Fourier transform . 423
7.15 Wigner distribution of prolate signal. 429
7.16 Wigner distribution of prolate signal with frequency shear 431
7.17 Gaussian chirplet . 432
7.18 Dopplerlet . 435
7.19 Warblet . 436
7.20 Modulated signal . 439
7.21 Wigner distribution of a warped modulated signal 440
7.22 Unwarping the Wigner distribution of the warped signal 442
7.23 Modified S-transform . 449
7.24 EMD example . 462
8.1 Amplitude modulation of sine signal . 498
8.2 Amplitude modulation of audio sine signal . 499
8.3 Amplitude modulation of sine signal and spectra 500
8.4 Demodulation of a DSB signal . 502

xxxvi Listings

8.5 Suppressed carrier amplitude modulation of sine signal 504
8.6 SSB amplitude modulation of sine signal . 506
8.7 Frequency modulation of sine signal . 509
8.8 Frequency modulation of audio sine signal. 510
8.9 Spectra of frequency modulated signals . 511
8.10 Pieces of 4-PSK . 514
8.11 A message via 4-PSK. 516
8.12 Amplitude modulation of sine signal, using modulate() 518
8.13 Modulation of pulses . 520
8.14 Demodulation of pulses . 521
8.15 AM and noise in the communication channel 526
8.16 PWM and noise in the communication channel 527
8.17 PTM and noise in the communication channel 528
8.18 Analyze AM modulation with cepstrum . 530
B.1 Example of Markov Chain (weather prediction) 557
B.2 Example of HMM (synthetic speech) . 559
B.3 Comparison of group delay of 5 filters . 561
B.4 Recovering a sinusoid buried in noise . 562
B.5 Adding and recovering experiment . 564
B.6 Comparison of pole-zero maps of the 4 digital filters 567
B.7 Adding and recovering with filtfilt experiment 569
B.8 Wigner distribution of a 2-sine signal. 570
B.9 Wigner distribution of a chirp signal . 571
B.10 WD of chirp signal, with no interference . 574
B.11 Fractional Fourier transform (chirp signal) . 575
B.12 Wigner distribution of Gaussian chirplet. 577
B.13 Wigner distribution of a modulated signal . 578
B.14 Reassigned STFT . 580
B.15 Short Time Fan-Chirp transform. 581
B.16 EMD and Hilbert Spectrum example . 585
B.17 Fractional Fourier transform of a rectangle signal. 588
B.18 Wigner analysis of FFR of rectangle signal . 590
B.19 Filtered (mask) WD of Bat signal. 591
B.20 Filtered (mask) WD of Bird signal . 593
B.21 Signal analysis by Morlet continuous wavelet transform 594
B.22 Signal analysis by Morlet continuous wavelet transform 596
B.23 Signal analysis by Morlet continuous wavelet transform 598
B.24 Short Time Fan-Chirp transform. 600
B.25 Short Time Fan-Chirp transform. 602
B.26 Modified S-transform . 604
B.27 Modified S-transform of Whale signal . 607
B.28 Modified S-transform (Earthquake) . 608
B.29 Inversion of Modified S-transform (Earthquake) 610
B.30 Pulse modulations of sine signal. 613

Listings xxxvii

Part I
Signals and Data

Chapter 1
Periodic Signals

1.1 Introduction

This chapter is devoted to initial fundamental concepts of signal processing. Periodic
signals provide a convenient context for this purpose.

The chapter is also an introduction to the Signal Processing Toolbox. A number
of figures and MATLAB programs have been included to illustrate the concepts and
functions being introduced. This methodology is continued in the next chapters of
the book.

Some examples include sound output, which contributes for amore intuitive study
of periodic signals.

Of course, a main reference for this chapter and the rest of the book is the Docu-
mentation that accompanies the MATLAB Signal Processing Toolbox. Other more
specific references are indicated when opportune in the different sections of the
chapter.

Themost important contents to be considered in the next pages refers to the Fourier
transform and to sampling criteria. Both are introduced by way of examples. The
Appendix A of the book contains a more formal exposition of these topics, including
bibliography.

The two final sections of this chapter include Internet addresses of interesting
resources, and a list of literature references. The book [3] provides a convenient
background for this chapter.

1.2 Signal Representation

Suppose you have a signal generator so you have the capability of generating a square
wave with 1 Hz frequency. You adjust the generator, so the low level of the signal is
0 v. and the high level is 1 v. Figure 1.1 shows 3s of such signal:

The signal in Fig. 1.1 repeats three consecutive times the same pattern. It is a
periodic signal with period T = 1 s.

© Springer Science+Business Media Singapore 2017
J.M. Giron-Sierra, Digital Signal Processing with Matlab Examples, Volume 1,
Signals and Communication Technology, DOI 10.1007/978-981-10-2534-1_1

3

4 1 Periodic Signals

Fig. 1.1 A square signal

0 0.5 1 1.5 2 2.5 3
-0.5

0

0.5

1

1.5

seconds

Suppose you also have a computer with a data acquisition channel, so it is possible
to get samples of the 1 Hz square signal. For instance, let us take 10 samples per
second. In this case, you get from 3s of signal, a data set like the following:

A = [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0];

From this data set, with 30 numbers, it is possible to reproduce the signal, provided
information about time between samples is given. In order to have such information,
another parallel set of 30 sampling times could be recorded when you get the data;
or just keep in memory or paper what the sampling frequency was (or the total time
of signal that was sampled).

Figure 1.2 plots the data set A versus 30 equally spaced time intervals along the
3 s.

The MATLAB code to generate Fig. 1.2 is the following:

Program 1.1 Square signal

% Square signal
A=[1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,...
1,1,1,1,1,0,0,0,0,0];
fs=10; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(3-tiv); %time intervals set (30 values)
plot(t,A,'*'); %plots figure
axis([0 3 -0.5 1.5]);
xlabel('sec.'); title('square wave samples');

MATLAB handles signals using data sets (vectors). Usually the Signal Processing
Toolbox routines ask for the signal samples data set, and for information about the
sampling frequency.

1.3 Generation of Periodic Signals 5

Fig. 1.2 The sampled
square signal

0 0.5 1 1.5 2 2.5 3
-0.5

0

0.5

1

1.5

seconds

1.3 Generation of Periodic Signals

Let us use the periodic signals included in the Signal Processing Toolbox.

1.3.1 Sinusoidal

The following MATLAB program generates a sinusoidal signal with 1 s period. It is
based on the use of the sin() function.

Program 1.2 Sine signal

% Sine signal
fy=1; %signal frequency in Hz
wy=2*pi*fy; %signal frequency in rad/s
fs=60; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(3-tiv); %time intervals set, 180 values
y=sin(wy*t); %signal data set
plot(t,y,'k'); %plots figure
axis([0 3 -1.5 1.5]);
xlabel('seconds'); title('sine signal');

Figure 1.3 shows the results of the Program 1.2, it is a 180 points data set covering
3s of the 1 Hz signal.

In the next program, both sine and cosine signals, with the same 1 Hz frequency,
are generated.

6 1 Periodic Signals

Fig. 1.3 Sinusoidal signal

0 0.5 1 1.5 2 2.5 3
-1.5

-1

-0.5

0

0.5

1

1.5

seconds

Fig. 1.4 Sine (solid) and
cosine (dashed) signals

0 0.5 1 1.5 2 2.5 3
-1.5

-1

-0.5

0

0.5

1

1.5

seconds

Program 1.3 Sine and cosine signals

% Sine and cosine signals
fy=1; %signal frequency in Hz
wy=2*pi*fy; %signal frequency in rad/s
fs=60; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(3-tiv); %time intervals set
ys=sin(wy*t); %signal data set
plot(t,ys,'k'); hold on; %plots figure
axis([0 3 -1.5 1.5]);
xlabel('seconds');
yc=cos(wy*t); %signal data set
plot(t,yc,'--k'); %plots figure

1.3 Generation of Periodic Signals 7

axis([0 3 -1.5 1.5]);
xlabel('seconds'); title('sine (solid) and cosine (dashed)');

Figure 1.4 shows the results of Program 1.3, two superimposed (using hold on)
signals. Notice the 90◦ phase difference between both signals.

As shall be seen shortly, periodic signals can be decomposed into a sum of sine
and cosine signals.

1.3.2 Square

The following MATLAB program generates 0.03 s of a square signal with 0.01 s
period (100Hz frequency). The signal generation is based on the use of the square()
function. A feature of this function is that it is possible to specify the duty cycle (the
percent of the period in which the signal is positive), in order to generate rectangular
signals.

Program 1.4 Square signal

% Square signal
fy=100; %signal frequency in Hz
wy=2*pi*fy; %signal frequency in rad/s
duy=0.03; %signal duration in seconds
fs=20000; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(duy-tiv); %time intervals set
y=square(wy*t); %signal data set
plot(t,y,'k'); %plots figure
axis([0 duy -1.5 1.5]);
xlabel('seconds'); title('square signal');

Figure 1.5 shows the results of Program 1.4.

Fig. 1.5 Square signal

0 0.005 0.01 0.015 0.02 0.025 0.03
-1.5

-1

-0.5

0

0.5

1

1.5

seconds

8 1 Periodic Signals

1.3.3 Sawtooth

The following MATLAB program generates 0.03 s of a sawtooth signal with 0.01 s
period (100Hz frequency). The signal generation is based on the use of the sawtooth()
function.

Program 1.5 Sawtooth signal

% Sawtooth signal
fy=100; %signal frequency in Hz
wy=2*pi*fy; %signal frequency in rad/s
duy=0.03; %signal duration in seconds
fs=20000; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(duy-tiv); %time intervals set
y=sawtooth(wy*t); %signal data set
plot(t,y,'k'); %plots figure
axis([0 duy -1.5 1.5]);
xlabel('seconds'); title('sawtooth signal');

Figure 1.6 shows the results of Program 1.5.
The shape of the sawtooth signal can be modified using a feature (a width specifi-

cation) of this function. Figure 1.7 shows four examples. Look into the sentenceswith
the sawtooth() function in the Program 1.6, to see the width specifications applied in
the examples.

Fig. 1.6 Sawtooth signal

0 0.005 0.01 0.015 0.02 0.025 0.03
-1.5

-1

-0.5

0

0.5

1

1.5

seconds

1.3 Generation of Periodic Signals 9

0 0.01 0.02 0.03
-1.5

-1

-0.5

0

0.5

1

1.5

seconds
0 0.01 0.02 0.03

-1.5

-1

-0.5

0

0.5

1

1.5

seconds

0 0.01 0.02 0.03
-1.5

-1

-0.5

0

0.5

1

1.5

seconds
0 0.01 0.02 0.03

-1.5

-1

-0.5

0

0.5

1

1.5

seconds

Fig. 1.7 Different sawtooth signals

Program 1.6 Sawtooth signals

% Sawtooth signals
fy=100; %signal frequency in Hz
wy=2*pi*fy; %signal frequency in rad/s
duy=0.03; %signal duration in seconds
fs=20000; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(duy-tiv); %time intervals set
y=sawtooth(wy*t,0.1); %signal data set (width 0.1)
subplot(2,2,1); plot(t,y,'k'); %plots figure
axis([0 duy -1.5 1.5]);
xlabel('seconds'); title('sawtooth signal');
y=sawtooth(wy*t,0.3); %signal data set (width 0.3)
subplot(2,2,2); plot(t,y,'k'); %plots figure
axis([0 duy -1.5 1.5]);
xlabel('seconds'); title('sawtooth signal');
y=sawtooth(wy*t,0.5); %signal data set (width 0.5)
subplot(2,2,3); plot(t,y,'k'); %plots figure
axis([0 duy -1.5 1.5]);
xlabel('seconds'); title('sawtooth signal');
y=sawtooth(wy*t,0.9); %signal data set (width 0.9)
subplot(2,2,4); plot(t,y,'k'); %plots figure
axis([0 duy -1.5 1.5]);
xlabel('seconds'); title('sawtooth signal');

10 1 Periodic Signals

1.4 Hearing the Signals

Many computers have loudspeakers, or a connector for headsets. Using MATLAB it
is possible to hear the signals under study, provided the frequencies of these signals
are in the audio range. Frequencies in the 100–1000Hz range give comfortable sound.

The Program 1.7 generates a 300Hz sinusoidal signal along 5s. There is a sen-
tence with the function sound() that sends this signal, with sufficient power, to the
loudspeaker.

Program 1.7 Sine audio signal

% Sine signal sound
fy=300; %signal frequency in Hz
wy=2*pi*fy; %signal frequency in rad/s
fs=6000; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(5-tiv); %time intervals set (5 seconds)
y=sin(wy*t); %signal data set
sound(y,fs); %sound
t=0:tiv:(0.01-tiv); %time intervals set (0.01 second)
y=sin(wy*t); %signal data set
plot(t,y,'k'); %plots figure
axis([0 0.01 -1.5 1.5]);
xlabel('seconds'); title('sine signal');

Figure 1.8 shows the sinusoidal audio signal.

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
-1.5

-1

-0.5

0

0.5

1

1.5

seconds

Fig. 1.8 The sinusoidal audio signal

1.5 Operations with Signals 11

1.5 Operations with Signals

We can add, subtract, multiply, etc. signals. It is interesting to deal, in this section,
with some basic examples.

1.5.1 Adding Signals

In Program 1.8 we add three sinusoidal signals. This is done in the sentence with the
following expression:

y = 0.64 sin(ωyt) + 0.21 sin(3ωyt) + 0.12 sin(5ωyt) (1.1)

Notice that the amplitude and frequency of the three sinusoids are the following:

signal amplitude frequency
1st harmonic 0.64 ω (300 Hz)
3rd harmonic 0.21 3 ω (900 Hz)
5th harmonic 0.12 5 ω (1500 Hz)

The Program 1.8 is as follows:

Program 1.8 Sum of sines signal

% Sum of sines signal
fy=300; %signal frequency in Hz
wy=2*pi*fy; %signal frequency in rad/s
fs=6000; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(5-tiv); %time intervals set (5 seconds)
%signal data set:

y=0.64*sin(wy*t)+0.21*sin(3*wy*t)+0.12*sin(5*wy*t);
sound(y,fs); %sound
t=0:tiv:(0.01-tiv); %time intervals set (0.01 second)
%signal data set:

y=0.6*sin(wy*t)+0.3*sin(3*wy*t)+0.2*sin(5*wy*t);
plot(t,y,'k'); %plots figure
axis([0 0.01 -1.5 1.5]);
xlabel('seconds'); title('sum of sines signal');

Figure 1.9 shows the result of adding the three sinusoidal signal. It is a periodic
signal with frequency 300Hz. It looks similar to a square signal.

Fourier series are sums of sinusoidal harmonics. In the case of Program 1.8 we
are taking the first three non-zero harmonics of the series corresponding to a square

12 1 Periodic Signals

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
-1.5

-1

-0.5

0

0.5

1

1.5

seconds

Fig. 1.9 Sum of three sinusoidal signals

signal. By adding more non-zero harmonics we can improve the approximation to
the square signal.

The Program 1.8 includes the sound() function so it is possible to hear the 300Hz
square-like signal and compare it with the smoother sound of the pure 300Hz sinu-
soidal signal (Program 1.7).

The reader is invited to obtain other waveforms by changing the expression of the
signal y in Program 1.8. This is one of the typical activities when using a music syn-
thesizer [6]. A few web sites on sound synthesis have been included in the Resources
section at the end of the chapter.

1.5.2 Multiplication

Figure 1.10 shows the result of multiplying two sinusoidal signals. One of the signals
has 70Hz frequency and the other has 2Hz frequency. Both signals have amplitude 1.

The result obtained is a modulated signal. Chapter 8 of this book is devoted to
modulation, and a similar example will be seen in more detail.

Program 1.9 has been used to generate the Fig. 1.10. It includes a sentence with
a sound() function. When hearing the modulated signal, notice the tremolo effect
caused by the 2Hz signal. The Internet address of a tutorial on sound amplitude
modulation has been included in the Resources section.

http://dx.doi.org/10.1007/978-981-10-2534-1_8

1.5 Operations with Signals 13

Fig. 1.10 Multiplication of
two sinusoidal signals

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1.5

-1

-0.5

0

0.5

1

1.5

seconds

Program 1.9 Multiplication of sines

% Multiplication of sines signal
fx=70; %signal frequency in Hz
wx=2*pi*fx; %signal frequency in rad/s
fz=2; %signal frequency in Hz
wz=2*pi*fz; %signal frequency in rad/s
fs=6000; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(8-tiv); %time intervals set (8 seconds)
y=sin(wx*t).*sin(wz*t); %signal data set
sound(y,fs); %sound
t=0:tiv:(1-tiv); %time intervals set (1 second)
y=sin(wx*t).*sin(wz*t); %signal data set
plot(t,y,'k'); %plots figure
axis([0 1 -1.5 1.5]);
xlabel('seconds'); title('multiplication of sines signal');

1.6 Harmonics. Fourier

Periodic signals can be decomposed into sums of sine and cosine signals, according
with the following expression, which is a Fourier series:

y(t) = a0 +
∞∑

n=1

an cos (n · w0 t) +
∞∑

n=1

bn sin(n · w0 t) (1.2)

where ω0 is the frequency (rad/s) of the periodic signal.

14 1 Periodic Signals

Fig. 1.11 Example of odd
signal (sawtooth signal, 3
periods)

0 0.5 1 1.5 2 2.5 3
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

seconds

Several types of periodic signals can be distinguished, considering symmetries.
Let us explore some of these types.

1.6.1 Odd Signals

Odd signals have the following symmetry:

y(−t) = − y(t) (1.3)

The sine signal is an odd signal. All other odd signals can be obtained with:

y(t) =
∞∑

n=1

bn sin (n · w0 t) (1.4)

Let us consider the example shown in Fig. 1.11. It is a sawtooth signal (which is an
odd signal).

Figure 1.11 has been obtained with the Program 1.10 (very similar to
Program 1.5)

Program 1.10 Sawtooth signal to be analyzed

%sawtooth signal to be analyzed
fy=1; %signal frequency in Hz
wy=2*pi*fy; %signal frequency in rad/s
Ty=1/fy; %signal period in seconds
N=256;
fs=N*fy; %sampling frequency in Hz

1.6 Harmonics. Fourier 15

tiv=1/fs; %time interval between samples;
t=0:tiv:((3*Ty)-tiv); %time intervals set (3 periods)
y3=sawtooth(wy*t); %signal data set
plot(t,y3'k');
xlabel('seconds'); title('sawtooth signal (3 periods)');

By using the function fft() (fast Fourier transform) we can obtain the values of
coefficients bi in Eq. (1.4). Let us apply this function for the y(t) sawtooth signal.
Program 1.11 obtains the first ten coefficients. Notice that it is enough to pass to fft()
one signal period.

Program 1.11 Fourier transform of sawtooth signal

%Fourier Transform of sawtooth signal
fy=1; %signal frequency in Hz
wy=2*pi*fy; %signal frequency in rad/s
Ty=1/fy; %signal period in seconds
N=256;
fs=N*fy; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(Ty-tiv); %time intervals set
y=sawtooth(wy*t); %signal data set
fou=fft(y,fs); %Fourier Transform (set of complex numbers)
hmag=imag(fou); bh=hmag/N; %get set of harmonic amplitudes
stem(0:9,bh(1:10)); %plot of first 10 harmonics
axis([0 10 0 1]);
xlabel('Hz'); title('sawtooth signal harmonics');

Figure 1.12 shows the values of the coefficients bi versus frequencies 0, ω0, 2ω0,
3ω0, etc. in Hz.

Fig. 1.12 Amplitude of the
first ten harmonics of the
sawtooth signal

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hz

16 1 Periodic Signals

Fig. 1.13 Example of even
signal (rectified sine signal, 3
periods)

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

seconds

1.6.2 Even Signals

Even signals have the following symmetry:

y(−t) = y(t) (1.5)

The cosine signal is an even signal. All other even signals can be obtained with:

y(t) = a0 +
∞∑

n=1

an cos (n · w0 t) (1.6)

where a0 is the average value of the signal.
Consider the signal shown in Fig. 1.13. It is a rectified sine signal (which is an

even signal). This signal is found, for instance, in AC to DC electronics conversion
for power supply.

The signal in Fig. 1.13 has been obtained with the Program 1.12.

Program 1.12 Rectified signal to be analyzed

%rectified sine signal to be analyzed
fy=1; %signal frequency in Hz
wy=2*pi*fy; %signal frequency in rad/s
Ty=1/fy; %signal period in seconds
N=256;
fs=N*fy; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:((3*Ty)-tiv); %time intervals set (3 periods)
y3=abs(sin(wy*t)); %signal data set
plot(t,y3'k');
xlabel('seconds'); title('rectified sine signal (3 periods)');

1.6 Harmonics. Fourier 17

Now, let us apply fft() to obtain the an coefficients in Eq. (1.6). This is done with
the Program 1.13.

Program 1.13 Fourier transform of rectified signal

%Fourier Transfom of rectified sine signal
fy=1; %signal frequency in Hz
wy=2*pi*fy; %signal frequency in rad/s
Ty=1/fy; %signal period in seconds
N=256;
fs=N*fy; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(Ty-tiv); %time intervals set
y=abs(sin(wy*t)); %signal data set
fou=fft(y,fs); %Fourier Transform (set of complex numbers)
hmag=real(fou); ah=hmag/N; %get set of harmonic amplitudes
stem(0:9,ah(1:10)); hold on; %plot of first 10 harmonics
plot([0 10],[0 0],'k');
xlabel('Hz'); title('rectified sine signal harmonics');

Figure 1.14 shows the values of the coefficients ai versus frequencies 0, ω0, 2ω0,
3ω0, etc. in Hz.

Since the rectified sine has a non-zero average value, Fig. 1.14 shows a non-zero
value of a0.

Fig. 1.14 Amplitude of the
first ten harmonics of the
rectified sine signal

0 1 2 3 4 5 6 7 8 9 10
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Hz

18 1 Periodic Signals

1.6.3 Half Wave Symmetry

A signal has half-wave symmetry if:

y

(
t + T0

2

)
= − y(t) (1.7)

For this kind of signals, the harmonics for frequencies 0, 2ω0, 4ω0, 8ω0, etc. have
zero amplitude.

Consider the signal shown in Fig. 1.15. It is a triangular signal, which has half-
wave symmetry. It is also an even signal (it will have only cosine harmonics).

The signal in Fig. 1.15 has been obtained with the Program 1.14.

Program 1.14 Triangular signal to be analyzed

%triangular signal to be analyzed
fy=1; %signal frequency in Hz
wy=2*pi*fy; %signal frequency in rad/s
Ty=1/fy; %signal period in seconds
N=256;
fs=N*fy; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:((3*Ty)-tiv); %time intervals set (3 periods)
y3=-sawtooth(wy*t,0.5); %signal data set
plot(t,y3'k');
xlabel('seconds'); title('triangular signal (3 periods)');

Let us apply fft() to obtain the an coefficients corresponding to the triangular
signal. This is done with the Program 1.15.

Fig. 1.15 Example of signal
with half-wave symmetry
(triangular signal, 3 periods)

0 0.5 1 1.5 2 2.5 3
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

seconds

1.6 Harmonics. Fourier 19

Fig. 1.16 Amplitude of the
first ten harmonics of the
triangular signal

0 1 2 3 4 5 6 7 8 9 10
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Hz

Program 1.15 Fourier transform of triangular signal

%Fourier Transfom of triangular signal
fy=1; %signal frequency in Hz
wy=2*pi*fy; %signal frequency in rad/s
Ty=1/fy; %signal period in seconds
N=256;
fs=N*fy; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(Ty-tiv); %time intervals set
y=-sawtooth(wy*t,0.5); %signal data set
fou=fft(y,fs); %Fourier Transform (set of complex numbers)
hmag=real(fou); ah=hmag/N; %get set of harmonic amplitudes
stem(0:9,ah(1:10)); hold on; %plot of first 10 harmonics
plot([0 10],[0 0],'k');
xlabel('Hz'); title('triangular signal harmonics');

Figure 1.16 shows the values of the coefficients ai versus frequencies 0, ω0, 2ω0,
3ω0, etc. in Hz.

Notice that amplitudes of harmonics with frequencies 0, 2ω0, 4ω0, 6ω0, etc. are
zero.

1.6.4 Pulse Train

Consider the case of a pulse train signal, as shown in Fig. 1.17.
The signal in Fig. 1.17 has been obtained with the Program 1.16.

20 1 Periodic Signals

Fig. 1.17 A pulse train
signal (3 periods)

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

seconds

Program 1.16 Pulse train signal

%pulse train signal to be analyzed
fy=1; %signal frequency in Hz
wy=2*pi*fy; %signal frequency in rad/s
Ty=1/fy; %signal period in seconds
N=256;
fs=N*fy; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:((3*Ty)-tiv); %time intervals set (3 periods)
W=20;
%signal first part:
y1=zeros(256,1); y1(1:W)=1; y1((256-W):256)=1;
yt=cat(1,y1,y1,y1); %signal to be plotted
plot(t,yt'k');
xlabel('seconds'); title('pulse train signal (3 periods)');

The width of the high level parts of the signal can be modified by changing the
value of W in Program 1.16.

Again, let us apply fft() to obtain the an coefficients corresponding to the pulse
train signal, which is an even signal (Program 1.17).

Program 1.17 Fourier transform of pulse train signal

%Fourier Transform of pulse train signal
fy=1; %signal frequency in Hz
wy=2*pi*fy; %signal frequency in rad/s
Ty=1/fy; %signal period in seconds
N=256; W=20;
fs=N*fy; %sampling frequency in Hz
y1=zeros(256,1); y1(1:W)=1; y1((256-W):256)=1; %signal period
fou=fft(y1,fs); %Fourier Transform (set of complex numbers)
hmag=real(fou); ah=hmag/N; %get set of harmonic amplitudes

1.6 Harmonics. Fourier 21

stem(0:49,ah(1:50)); hold on; %plot of first 50 harmonics
plot([0 50],[0 0],'k');
xlabel('Hz'); title('pulse train signal harmonics');

Figure 1.18 shows the values of the coefficients ai versus frequencies 0, ω0, 2ω0,
3ω0, etc. in Hz.

For a certain value nc, it will happen that all coefficients an with n>nc will have
an absolute value less than a0/100. Let us take this value nc as a practical limit of
the number of harmonics that deserve to be considered. Also, let us take wnc as the
maximum frequency of interest for the study of the signal.

If you decrease the value ofW in Program 1.17, making the pulses to narrow, you
will notice an increase of nc and of wnc. From the point of view of data transmission
it means that the narrower the pulses to be transmitted through a channel (for instance
a wire), the larger the channel bandwidth must be.

Look at the data points in Fig. 1.18. They draw a peculiar curve that we shall meet
again in other parts of the book. It corresponds to the sinc() function:

sinc(x) = sin(x)

x
(1.8)

Figure 1.19 depicts part of the sinc(t) function. It is usual to represent this function
with respect to negative and positive values of time.

Fig. 1.18 Amplitude of the
first 50 harmonics of the
pulse train signal

0 5 10 15 20 25 30 35 40 45 50
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Hz

22 1 Periodic Signals

Fig. 1.19 The sinc(t)
function

-6 -4 -2 0 2 4 6
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

seconds

Figure 1.19 has been obtained with Program 1.18.

Program 1.18 Sinc function

%sinc function
fy=1; %signal frequency in Hz
wy=2*pi*fy; %signal frequency in rad/s
Ty=1/fy; %signal period in seconds
N=256;
fs=N*fy; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
%time intervals set (12 periods):
t=-((6*Ty)-tiv):tiv:((6*Ty)-tiv);
y=sinc(t); %signal data set
plot(t,y'k'); hold on;
plot([0 0],[-0.4 1.2],'k');
xlabel('seconds'); title('sinc function');

1.7 Sampling Frequency

Notice than all signals in Sect. 1.3. have been generated with a sampling frequency
that is higher enough with respect to the signal frequency. Let us see what happens
lowering the sampling frequency. Next program generates a 1Hz sinusoidal signal
using a 7Hz sampling frequency.

1.7 Sampling Frequency 23

Program 1.19 Sine signal and low sampling frequency

% Sine signal and low sampling frequency
fy=1; %signal frequency in Hz
wy=2*pi*fy; %signal frequency in rad/s
fs=7; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(3-tiv); %time intervals set
y=sin(wy*t); %signal data set
plot(t,y,'-kd'); %plots figure
axis([0 3 -1.5 1.5]);
xlabel('seconds'); title('sine signal');

Figure 1.20 shows the results of Program 1.19. Notice how the signal looks dis-
torted with respect to a pure sine.

It is interesting to play with the Program 1.19, changing the sampling frequency
and looking at the results. In particular, there may appear peculiar effects if the
sampling frequency is equal or lower than two times the signal frequency.

For example let us consider the case of the sampling frequency and the signal
frequency being equal. In this case the signal data points draw a horizontal line. It
seems that there is a simple constant (DC) signal. This can happen, and has happened,
in reality: you measure at a certain sampling frequency, you believe from sampled
data that there is a constant signal, but it is not true (what you see on the computer
screen is an impostor, a signal “alias”) [2, 5].

So it is important to determine the frequency of the signal you are sampling.

Fig. 1.20 Effect of a low
sampling frequency
(sampled sine signal)

0 0.5 1 1.5 2 2.5 3
-1.5

-1

-0.5

0

0.5

1

1.5

seconds

24 1 Periodic Signals

0 0.5 1 1.5 2 2.5 3
-1.5

-1

-0.5
0

0.5

1

1.5

fs
=1

00

0 0.5 1 1.5 2 2.5 3
-1.5

-1

-0.5

0

0.5

1

1.5

seconds

fs
=4

Fig. 1.21 Aliasing example (3 Hz sine signal)

Figure 1.21 shows what happens when a 3Hz sinusoidal signal is sampled at 4Hz
sampling frequency. This figure is obtained with Program 1.20.

Program 1.20 Sine signal and aliasing

% Sine signal and aliasing
fy=3; %signal frequency in Hz
wy=2*pi*fy; %signal frequency in rad/s
% good sampling frequency

fs=100; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(3-tiv); %time intervals set
y=sin(wy*t); %signal data set
subplot(2,1,1); plot(t,y,'k'); %plots figure
axis([0 3 -1.5 1.5]);
title('3Hz sine signal');
ylabel('fs=100');
% too slow sampling frequency
fs=4; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(3-tiv); %time intervals set
y=sin(wy*t); %signal data set
subplot(2,1,2); plot(t,y,'-kd'); %plots figure
axis([0 3 -1.5 1.5]);
xlabel('seconds');
ylabel('fs=4');

1.7 Sampling Frequency 25

Figure 1.21 shows on top the 3Hz sinusoidal signal. The plot below shows the
data obtained sampling the sinusoidal signal: by joining the data points it seems that
the data obtained correspond to a triangular signal. Again this is a mistake, we see
on screen an “alias” of the real sinusoidal signal.

In the case of sinusoidal signals, the sampling frequency should be higher than
two times the signal frequency [1, 7]. If this is the case of a non-sinusoidal periodic
signal, the highest frequency of interest wnc for this signal must be determined (see
the case of the pulse train in Sect. 1.6.4.) and the sampling frequency should be
higher than two times this frequency (Shannon’s theorem) [4].

1.8 Suggested Experiments and Exercises

In this brief section some signal processing experiments/exercises are suggested.
(a) Synthesizer
Based on Fourier series, a kind of simple synthesizer can be developed. The GUI for
this synthesizer could be a series of sliders, corresponding to even and odd harmonics.
It would be interesting to use as reference the frequencies of piano notes.

An opportune experiment would be to try only even harmonics, or only odd
harmonics, and hear the result.

There are databases of music instrument sounds, available from Internet, that
could be analysed using fft(). Once the analysis was done, it would be interesting to
try to reproduce the same harmonics contents using the synthesizer. We are not yet
speaking of sound envelopes, but some curiosity about would be expected to arise.
(b) Saturation
Imagine you inject a sine signal into a device with saturation. For instance, the case
of connecting a humble, small loudspeaker to a large signal, which normally results
in much distortion and not very much sound.

What happens when there is saturation? The output will not be a pure sinusoid,
some odd harmonics appear. A basic exercise would be to analyse with fft() the
saturated signal.

Suppose the saturated signal is applied to a resistor. It would be interesting to
evaluate, with some graphics, the proportion of power that goes to distortion.

Saturation is a major problem in industrial scenarios, and in communication sys-
tems.
(c) Aliasing
Although one example has been already considered in the chapter, it would be con-
venient to do some more experiments about aliasing. For instance, to conduct a
systematic study of sampling frequencies that leads to aliasing in the form of other
types of signals. The original signal to be sampled could be a sinusoid, squares,
triangles, etc.

A typical aliasing effect happens when you see on a movie wheels that seem to
turn backwards while the car moves forward.
(d) Fourier transform of a signal made of sincs

26 1 Periodic Signals

This is a simple exercise that may lead to interesting observations. The idea is to
create a signal by concatenating a series of sinc functions, and then apply fft() to this
signal.
(e) Analysis of a modulated signal
The modulated signals obtained by multiplication have interesting harmonics con-
tents. It would be opportune to apply fft() and discuss the result.

One experiment could be to take a sound file and try tomodulate it with a sinusoid,
and see what happens.

1.9 Resources

1.9.1 MATLAB

1.9.1.1 Tutorial Texts

• Partial List of On-line Matlab Tutorials (Duke Univ.):
http://people.duke.edu/~hpgavin/matlab.html/

• Getting Started with MATLAB (MathWorks):
http://www.mathworks.com/help/pdf_doc/matlab/getstart.pdf

• Signal Processing Toolbox Examples (MathWorks):
http://es.mathworks.com/help/signal/examples.html

• Griffiths, D.F. (1996). An Introduction to Matlab (U. Dundee.).
http://www.exercicescorriges.com/i_42456.pdf/

• Houcque, D. (2005). Introduction to MATLAB for Engineering Students (North-
western Univ.).
http://www.cse.cuhk.edu.hk/~cslui/CSCI1050/matlab_notes2.pdf/

• Overman, E. (2015). A MATLAB Tutorial (Ohio State Univ.).
https://people.math.osu.edu/overman.2/matlab.pdf

• Kalechman, M. (2009). Practical Matlab Basics for Engineers (City Univ. New
York):
http://read.pudn.com/downloads161/ebook/731301/Practical-Matlab-Basics-for-
Engineers.pdf

• MATLAB Tutorial (GA Tech):
http://users.ece.gatech.edu/bonnie/book/TUTORIAL/tutorial.html/

• YAGTOM: Yet Another Guide TO Matlab (U. Britsh Columbia):
http://ubcmatlabguide.github.io/

• MATLAB Hints and Tricks (Columbia U.):
http://www.ee.columbia.edu/~marios/matlab/matlab_tricks.html

• Some Useful Matlab Tips (K. Murphy, U. British Columbia):
http://www.cs.ubc.ca/~murphyk/Software/matlab_tips.html

http://people.duke.edu/~hpgavin/matlab.html/
http://www.mathworks.com/help/pdf_doc/matlab/getstart.pdf
http://es.mathworks.com/help/signal/examples.html
http://www.exercicescorriges.com/i_42456.pdf/
http://www.cse.cuhk.edu.hk/~cslui/CSCI1050/matlab_notes2.pdf/
https://people.math.osu.edu/overman.2/matlab.pdf
http://read.pudn.com/downloads161/ebook/731301/Practical-Matlab-Basics-for-Engineers.pdf
http://read.pudn.com/downloads161/ebook/731301/Practical-Matlab-Basics-for-Engineers.pdf
http://users.ece.gatech.edu/bonnie/book/TUTORIAL/tutorial.html/
http://ubcmatlabguide.github.io/
http://www.ee.columbia.edu/~marios/matlab/matlab_tricks.html
http://www.cs.ubc.ca/~murphyk/Software/matlab_tips.html

1.9 Resources 27

• MATLAB Hints Index (Rensselaer I.):
http://www.rpi.edu/dept/acs/rpinfo/common/Computing/Consulting/Software/
MATLAB/Hints/matlab.html

• High-Quality Graphics in Matlab:
http://dgleich.github.io/hq-matlab-figs/

• High-Quality Figures in Matlab (Univ. Utah.):
https://www.che.utah.edu/department_documents/Projects_Lab/Projects_Lab_
Handbook/MatlabPlots.pdf

• How to Make Pretty Figures with Matlab (D. Varagnolo):
http://staff.www.ltu.se/~damvar/Matlab/HowToMakePrettyFiguresWithMatlab.
pdf

1.9.1.2 Toolboxes

• Signal Processing Toolbox MATLAB:
http://es.mathworks.com/products/signal/

• Data Visualization Toolbox for MATLAB:
http://www.datatool.com/prod02.htm

• WFDB Toolbox (Physiologic signals):
http://physionet.org/physiotools/matlab/wfdb-app-matlab/

1.9.1.3 MATLAB Code

• Matlab Signal Processing Examples:
http://eleceng.dit.ie/dorran/matlab/resources/MatlabSignalProcessingExamples.
pdf

• Digital Signal Processing Demonstrations (Purdue Univ.):
https://engineering.purdue.edu/VISE/ee438/demos/Demos.html

• Matlab Signal Processing, Plotting and Recording Notes,
J. Vignola (Catholic Univ. America):
http://faculty.cua.edu/vignola/Vignola_CUA/ME_560_files/Matlabsignal.proce
ssing-plotingand-recording-knotes.pdf

• Lecture Support Material and Code (Cardiff Univ.):
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/

• Audio Processing in Matlab (McGill Univ.):
http://www.music.mcgill.ca/~gary/307/week1/matlab.html

• Sound Processing in Matlab (U. Dayton):
http://homepages.udayton.edu/~hardierc/ece203/sound.htm

• Matlab Implementation of some Reverberation Algorithms (U. Zaragoza):
http://www.cps.unizar.es/~fbeltran/matlab_files.html

• Sound Processing in Matlab:
http://alex.bikfalvi.com/research/advanced_matlab_boxplot/

http://www.rpi.edu/dept/acs/rpinfo/common/Computing/Consulting/Software/MATLAB/Hints/matlab.html
http://www.rpi.edu/dept/acs/rpinfo/common/Computing/Consulting/Software/MATLAB/Hints/matlab.html
http://dgleich.github.io/hq-matlab-figs/
https://www.che.utah.edu/department_documents/Projects_Lab/Projects_Lab_Handbook/MatlabPlots.pdf
https://www.che.utah.edu/department_documents/Projects_Lab/Projects_Lab_Handbook/MatlabPlots.pdf
http://staff.www.ltu.se/~damvar/Matlab/HowToMakePrettyFiguresWithMatlab.pdf
http://staff.www.ltu.se/~damvar/Matlab/HowToMakePrettyFiguresWithMatlab.pdf
http://es.mathworks.com/products/signal/
http://www.datatool.com/prod02.htm
http://physionet.org/physiotools/matlab/wfdb-app-matlab/
http://eleceng.dit.ie/dorran/matlab/resources/MatlabSignalProcessing Examples.pdf
http://eleceng.dit.ie/dorran/matlab/resources/MatlabSignalProcessing Examples.pdf
https://engineering.purdue.edu/VISE/ee438/demos/Demos.html
http://faculty.cua.edu/vignola/Vignola_CUA/ME_560_files/Matlabsignal.processing-plotingand-recording-knotes.pdf
http://faculty.cua.edu/vignola/Vignola_CUA/ME_560_files/Matlabsignal.processing-plotingand-recording-knotes.pdf
http://www.cs.cf.ac.uk/Dave/CM0268/Lecture_Examples/
http://www.music.mcgill.ca/~gary/307/week1/matlab.html
http://homepages.udayton.edu/~hardierc/ece203/sound.htm
http://www.cps.unizar.es/~fbeltran/matlab_files.html
http://alex.bikfalvi.com/research/advanced_matlab_boxplot/

28 1 Periodic Signals

1.9.2 Web Sites

• Educational Matlab GUIs (GA Tech):
http://users.ece.gatech.edu/mcclella/matlabGUIs/

• Signal Processing FIRST (Book site, demos):
http://www.rose-hulman.edu/DSPFirst/visible3/contents/index.htm/

• OnLine Demos (Book site):
http://users.ece.gatech.edu/bonnie/book/applets.html

• Signal Processing Tools (U. Maryland):
http://terpconnect.umd.edu/~toh/spectrum/SignalProcessingTools.html

• Music Analysis and Synthesis (M.R. Petersen):
http://amath.colorado.edu/pub/matlab/music/

• Music Signal Processing (J. Fessler):
http://web.eecs.umich.edu/~fessler/course/100/

• Sound based on sinewaves (D. Ellis):
http://labrosa.ee.columbia.edu/matlab/sinemodel/

• Tutorial on sound amplitude modulation:
https://docs.cycling74.com/max5/tutorials/msp-tut/mspchapter09.html

References

1. P. Cheung, Sampling & Discrete Signals. Lecture presentation, Imperial College Lon-
don (2011). http://www.ee.ic.ac.uk/pcheung/teaching/ee2_signals/Lecture2013-Sampling&
discrete-signals.pdf

2. M. Handley, Audio Basics. Lecture presentation, University College London (2002). www0.cs.
ucl.ac.uk/teaching/Z24/02-audio.pdf

3. J.H.McClellan, R.W. Schafer,M.A. Yoder, Signal Processing First (Prentice Hall, Upper Saddle
River, 2003)

4. T.K. Moon, Sampling. Lecture Notes, UtahState Univ. (2006). http://ocw.usu.edu/Electrical_
and_Computer_Engineering/Signals_and_Systems/lecture6.pdf

5. B.A. Olshausen. Aliasing. Lecture Notes, UC Berkeley (2000).
redwood.berkeley.edu/bruno/npb261/aliasing.pdf

6. H.D. Pfister. Fourier Series Synthesizer. Lecture Notes, Duke Univ. (2013). http://pfister.ee.
duke.edu/courses/ecen314/project1.pdf

7. J. Schesser. Sampling and Aliasing. Lecture presentation, New Jersey Institute of Technology
(2009). https://web.njit.edu/~joelsd/Fundamentals/coursework/BME310computingcw6.pdf

http://users.ece.gatech.edu/mcclella/matlabGUIs/
http://www.rose-hulman.edu/DSPFirst/visible3/contents/index.htm/
http://users.ece.gatech.edu/bonnie/book/applets.html
http://terpconnect.umd.edu/~toh/spectrum/SignalProcessingTools.html
http://amath.colorado.edu/pub/matlab/music/
http://web.eecs.umich.edu/~fessler/course/100/
http://labrosa.ee.columbia.edu/matlab/sinemodel/
https://docs.cycling74.com/max5/tutorials/msp-tut/mspchapter09.html
http://www.ee.ic.ac.uk/pcheung/teaching/ee2_signals/Lecture2013-Sampling&discrete-signals.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/ee2_signals/Lecture2013-Sampling&discrete-signals.pdf
www0.cs.ucl.ac.uk/teaching/Z24/02-audio.pdf
www0.cs.ucl.ac.uk/teaching/Z24/02-audio.pdf
http://ocw.usu.edu/Electrical_and_Computer_Engineering/Signals_and_Systems/lecture6.pdf
http://ocw.usu.edu/Electrical_and_Computer_Engineering/Signals_and_Systems/lecture6.pdf
http://redwood.berkeley.edu/bruno/npb261/aliasing.pdf
http://pfister.ee.duke.edu/courses/ecen314/project1.pdf
http://pfister.ee.duke.edu/courses/ecen314/project1.pdf
https://web.njit.edu/~joelsd/Fundamentals/coursework/BME310computingcw6.pdf

Chapter 2
Statistical Aspects

2.1 Introduction

Practical signal processing frequently involves statistical aspects. If you are using a
sensor to measure say temperature, or light, or pressure, or anything else, you usually
get a signal with noise in it, and then there is a problem of noise removal. The almost
immediate idea could be to apply averaging; however our advice is first try to know
better about the noise you have. There aremany other contexts where the data you get
suffer from interference, lack of precision, variations along time, etc. For example,
suppose you want to measure the period of a pendulum using a watch: the scientific
procedure is to repeat the measurements (the values obtained will be different for
each measurement), get a data set, and then statistically process this set.

Let us imagine an example that encloses the main sources of randomness in the
signals to be processed. Suppose that with a radar on the sea coast you want to
determine the position of a floating body you just detected. There will be three main
problems:

• The radar signals are contaminated with electromagnetic noise.
• There are resolution limitations in the measurements.
• The floating body is moving because of the waves.

The best you can do in this example is to get a good estimate, in statistical terms.
In this chapter some aspects of probability and statistics, particularly relevant for

signal processing, are selected. First several kinds of probability density distributions
are considered, and then parameters to characterize random signals are introduced,
[101]. The last sections are devoted to matters that, nowadays, are subject of increas-
ing attention, like for instance Bayes’ rule and Markov processes.

In view of these topics it is opportune to consider two random events A and B.
They occur with probabilities P(A) and P(B) respectively. The two random events
are independent if the probability of having A and B is P(A, B) = P(A)P(B). A
typical example is playing with two dice. Another important concept is conditional

© Springer Science+Business Media Singapore 2017
J.M. Giron-Sierra, Digital Signal Processing with Matlab Examples, Volume 1,
Signals and Communication Technology, DOI 10.1007/978-981-10-2534-1_2

29

30 2 Statistical Aspects

probability. The expressionP(A|C) reads as the probability ofAgivenC. For instance,
the probability of raining in July.

Some of the functions used in this chapter belong to the MATLAB Statistics
Toolbox. This will be indicated with (*ST); for example weibpdf() (*ST) says the
function weibpdf() belongs to the MATLAB Statistics Toolbox.

2.2 Random Signals and Probability Density Distributions

The chief objective of this section is to introduce probability density distributions
and functions, selecting three illustrative cases: the uniform, the normal and the
log-normal distributions. The normal distribution is, in particular, a very important
case.

2.2.1 Basic Concepts

Suppose there is a continuous random variable y(t), the distribution function Fy(v)
of this variable is the following:

Fy(v) = P (y(t) ≤ v), −∞ < v < ∞ (2.1)

where P() is the probability of.
The probability density function of y(t) is:

Fig. 2.1 A probability
density function

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

values

2.2 Random Signals and Probability Density Distributions 31

fy(v) = d Fy(v)

d v
(2.2)

A well-known example of probability distribution function, the so-called normal
distribution, has a bell shaped probability density function as shown in Fig. 2.1. In
this figure a shaded zone has been painted corresponding to an interval [a, b] of the
values that y(t) can have. The probability of y(t) value to fall into this interval is
given by the area of the shaded zone.

The abbreviation “PDF” will be used in this book to denote “Probability Density
Function”.

2.2.2 Random Signal with Uniform PD

A random signal taking equiprobable values in successive instants has a uniform
PDF. For example, the sequence of values that would be obtained recording the final
angles (0◦.. 360◦) where a roulette wheel stops along several runs in gambling days.

Figure2.2 shows a random signal with uniform PDF. It has been obtained using
the rand() function provided by MATLAB. Notice that the values are from 0 to 1.
This signal can be easily modified by adding a constant and/or multiplying by a
constant: the result will also have a uniform PDF.

The following program has been used to generate Fig. 2.2.

Fig. 2.2 A random signal
with uniform PDF

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

seconds

32 2 Statistical Aspects

Program 2.1 Random signal with uniform PDF

% Random signal with uniform PDF
fs=100; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(2-tiv); %time intervals set (200 values)
N=length(t); %number of data points
y=rand(N,1); %random signal data set
plot(t,y,'-k'); %plots figure
axis([0 2 0 1.2]);
xlabel('seconds');
title('random signal with uniform PDF');

The uniform PDF graphical representation is just a horizontal line between two
limits, as shown in Fig. 2.3. This figure has been generated by Program 2.2, which
uses unifpdf() (*ST) for a uniform PDF between values 0 and 1 (other values can be
specified in the unifpdf() function parenthesis).

Program 2.2 Uniform PDF

% Uniform PDF
v=0:0.01:1; %values set
ypdf=unifpdf(v,0,1); %uniform PDF
plot(v,ypdf,'k'); hold on; %plots figure
axis([-0.5 1.5 0 1.1]);
xlabel('values'); title('uniform PDF');
plot([0 0],[0 1],'--k');
plot([1 1],[0 1],'--k');

An interesting way to check the quality of the MATLAB random variable gener-
ation functions is by plotting a histogram of the signal values along time. For this

Fig. 2.3 Uniform PDF

-0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

values

2.2 Random Signals and Probability Density Distributions 33

Fig. 2.4 Histogram of a
random signal with uniform
PDF

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

50

100

150

200

250

values

purpose relatively large signal data sets should be generated. MATLAB provides the
hist() function to obtain the histogram.

Figure2.4 shows the result for the rand() function. As it can be seen in Program
2.3, which has been used to generate the figure, a signal data set of 10,000 values
has been generated and then classified into data bins 0.02 wide, from 0 to 1 signal
values. The colour of the bars has been chosen to be cyan for a better view in press.
In general, Fig. 2.4 shows a passable approximation to a uniform PDF.

Program 2.3 Histogram of a random signal with uniform PDF

% Histogram of a random signal with uniform PDF
fs=100; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(100-tiv); %time intervals set (10000 values)
N=length(t); %number of data points
y=rand(N,1); %random signal data set
v=0:0.02:1; %value intervals set
hist(y,v); colormap(cool); %plots histogram
xlabel('values');
title('Histogram of random signal with uniform PDF');

2.2.3 Random Signal with Normal (Gaussian) PDF

The normal PDF has the following mathematical expression:

fy(v) = e−(v−μ)2/2σ2

σ
√
2π

, σ > 0, −∞ < μ < ∞, −∞ < v < ∞ (2.3)

where μ is the mean and σ is the standard deviation of the random variable.

34 2 Statistical Aspects

Fig. 2.5 A random signal
with normal PDF

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-3

-2

-1

0

1

2

3

seconds

As said before, the normal distribution is very important, both from theoretical and
practical points of view (see [78] for historical details). Most noise and perturbation
models employed in systems or automatic control theory are of Gaussian nature. The
practical reason is provided by the central limit theorem, which in words says that if
a phenomenon is the accumulation of many small additive random effects, it tends
to a normal distribution. For instance, the number of travels per day of an elevator.

Figure2.5 shows a random signal with normal PDF. It has been obtained using the
randn() function provided byMATLAB (notice the slight name difference compared
to rand(), which corresponds to uniform PDF).

The values of the signal in Fig. 2.5 have positive and negative values. The figure
has been obtained with Program 2.4, using the randn() function, which generates a
signal with mean zero and variance one.
Program 2.4 Random signal with normal PDF

% Random signal with normal PDF
fs=100; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(2-tiv); %time intervals set (200 values)
N=length(t); %number of data points
y=randn(N,1); %random signal data set
plot(t,y,'-k'); %plots figure
axis([0 2 -3 3]);
xlabel('seconds');
title('random signal with normal PDF');

The normal PDF has the shape of a bell. The larger the standard deviation, the
wider is the bell. Figure2.6 shows a PDF example, obtained with Program 2.5, for
a mean zero and a standard deviation one. The program uses the normpdf() (*ST)
function to obtain the PDF.

2.2 Random Signals and Probability Density Distributions 35

Fig. 2.6 Normal PDF

-3 -2 -1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

values

Fig. 2.7 Histogram of a
random signal with normal
PDF

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

50

100

150

200

250

300

350

400

450

values

Program 2.5 Normal PDF

% Normal PDF
v=-3:0.01:3; %values set
mu=0; sigma=1; %random variable parameters
ypdf=normpdf(v,mu,sigma); %normal PDF
plot(v,ypdf,'k'); hold on; %plots figure
axis([-3 3 0 0.5]);
xlabel('values'); title('normal PDF');

Like in the previous case—the uniform PDF—a histogram of the signal generated
by the randn() function has been obtained, with 10,000 signal data values, data bins
0.1 wide. Figure2.7 shows the result: a fairly good approximation to the normal PDF.

36 2 Statistical Aspects

Program 2.6 Histogram of a random signal with normal PDF

% Histogram of a random signal with normal PDF
fs=100; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(100-tiv); %time intervals set (10000 values)
N=length(t); %number of data points
y=randn(N,1); %random signal data set
v=-4:0.1:4; %value intervals set
hist(y,v); colormap(cool); %plots histogram
xlabel('values');
title('Histogram of random signal with normal PDF');

2.2.4 Random Signal with Log-Normal PDF

A random variable y is log-normally distributed if log(y) has a normal distribution.
The log-normal PDF has the following mathematical expression:

fy(v) = e−(log(v)−μ)2/2σ2

v σ
√
2π

, σ > 0, −∞ < μ < ∞, −∞ < v < ∞ (2.4)

where μ is the mean and σ is the standard deviation of the random variable.
The log-normal distribution is related the multiplicative product of many small

independent factors. It is observed for instance in environment, microbiology, human
medicine, social sciences, or economics contexts, [49]. For example, the case of latent
periods (time from infection to first symptoms) of infectious diseases.

Figure2.8 shows a randomsignalwith log-normal PDF. It has been obtained, using
the lognrnd() (*ST) function, with the Program 2.7. A mean zero and a standard
deviation one has been specified inside the parenthesis of lognrnd(); other mean
and standard deviation values can be explored. Notice that signal values are always
positive.

Program 2.7 Random signal with log-normal PDF

% Random signal with log-normal PDF
fs=100; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(2-tiv); %time intervals set (200 values)
N=length(t); %number of data points
mu=0; sigma=1; %random signal parameters
y=lognrnd(mu,sigma,N,1); %random signal data set
plot(t,y,'-k'); %plots figure
axis([0 2 0 12]);
xlabel('seconds'); title('random signal with log-normal PDF');

2.2 Random Signals and Probability Density Distributions 37

Fig. 2.8 A random signal
with log-normal PDF

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

seconds

Fig. 2.9 Log-normal PDF

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

values

Figure2.9 shows a log-normal PDF, as obtained by Program 2.8 using lognpdf()
(*ST). Notice that the PDF is skewed, corresponding to the fact that the signal exhibit
large peaks, as can be seen in Fig. 2.8.

Program 2.8 Log-normal PDF

% Log-normal PDF
v=-3:0.01:6; %values set
mu=0; sigma=1; %random variable parameters
ypdf=lognpdf(v,mu,sigma); %log-normal PDF
plot(v,ypdf,'k'); hold on; %plots figure
axis([0 6 0 0.7]);
xlabel('values'); title('log-normal PDF');

38 2 Statistical Aspects

Fig. 2.10 Histogram of a
random signal with
log-normal PDF

0 1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

values

Again a histogram of the signal has been obtained, for the case of log-normal
PDF, with 10,000 signal data values and data bins 0.1 wide. Figure2.10 shows the
result, as obtained by Program 2.9.

Program 2.9 Histogram of a random signal with log-normal PDF

% Histogram of a random signal with log-normal PDF
fs=100; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(100-tiv); %time intervals set (10000 values)
N=length(t); %number of data points
mu=0; sigma=1; %random signal parameters
y=lognrnd(mu,sigma,N,1); %random signal data set
v=0:0.1:12; %value intervals set
hist(y,v); colormap(cool); %plots histogram
axis([0 8 0 700]);
xlabel('values');
title('Histogram of random signal with log-normal PDF');

2.3 Expectations and Moments

Let us take from descriptive statistics some important concepts concerning the char-
acterization of random signals. Some comments and examples are added for a better
insight.

2.3 Expectations and Moments 39

2.3.1 Expected Values, and Moments

Consider the random variable y, with fy(v) as PDF. The expected value of y is:

E(y) =
∞∫

−∞
v fy(v) dv (2.5)

E(y) is said to exist if the integral converges absolutely.
Let g(y) be a function of y, then the expected value of g(y) is:

E(g(y)) =
∞∫

−∞
g(v) fy(v) dv (2.6)

The moments about the origin for the variable y are given by:

μ′
′k = E(yk), k = 1, 2, 3 . . . (2.7)

For k = 1: μ′
1 = μ (μ denotes the mean of y)

The moments about the mean, or central moments, for the variable y are given by:

μ′k = E((y − μ)k), k = 1, 2, 3 . . . (2.8)

2.3.2 Mean, Variance, Etc.

Figure2.11 shows a skewedPDFwhere themean, themedian and themode values are
marked (Program2.10). In symmetrical PDFs these three valueswould be coincident.

The mean μ of the variable y is the expected value of y (Eq. 2.5). It is also called
the average value of y. Using a mass analogy, it may be regarded as the center of
mass of the distribution.

Amedian y0 of the variable y is any point that divides the mass of the distribution
into two equal parts, that is:

P (y ≤ y0) = 1

2
(2.9)

A point vi such that:

fy(vi) > fy(vi + ε) and fy(vi) > fy(vi − ε) (2.10)

(where ε is an arbitrarily small positive quantity) is called a mode of y.
A mode is a value of y corresponding to a peak of the PDF. When the PDF has

only one peak, the distribution is said to be unimodal.

40 2 Statistical Aspects

Fig. 2.11 Mean, median and
mode marked on a PDF

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

values

mean

median

mode

Inmeasurement tasks, depending on the PDF of the signal being obtained it would
be advisable to consider the mean, or the median, or the mode or modes, as the value
of interest. In particular, while the mean of a variable y may not exist, the median
will exist.

Program 2.10 A skewed PDF with mean, median and mode

% A skewed PDF with mean, median and mode
v=0:0.01:8; %values set
alpha=2;; %random variable parameter
ypdf=raylpdf(v,alpha); %Rayleigh PDF
plot(v,ypdf,'k'); hold on; %plots figure
axis([0 8 0 0.4]);
xlabel('values'); title('a skewed PDF');
fs=100; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(20-tiv); %time intervals set (2000 values)
N=length(t); %number of data points
y=raylrnd(alpha,N,1); %random signal data set
mu=mean(y); %mean of y
vo=median(y); %median of y
[pky,pki]=max(ypdf); %peak of the PDF
plot([mu mu],[0 0.33],'--k'); %mean
plot([vo vo],[0 0.37],':k'); %median
plot([v(pki) v(pki)],[0 pky],'-.k'); %mode

The autocorrelation of y(t) is defined as:

R(t1 , t2) = E(y(t1) y(t2)) (2.11)

2.3 Expectations and Moments 41

The autocorrelation is related with the extent of predictability about the future behav-
iour of y(t) taking into account its past.

The value of R(t1, t2) for t1 = t2 is the average power of the signal y(t). It is also
the second moment of y(t) about the origin.

The autocovariance of y(t) is defined as:

C(t1 , t2) = E((y(t1) − μ) (y(t2) − μ)) (2.12)

The value of C(t1, t2) for t1 = t2 is the variance of the signal y(t). It is also the
second moment of y(t) about the mean. The positive square root of the variance is
the standard deviation σ.

The variance is related with how large is the range of values of y(t).
The random signal y(t) is called strict-sense stationary if all its statistical prop-

erties are invariant to a shift of the time origin.
MATLAB offers the following functions: mean(), median(), var(), std() (for stan-

dard deviation).

2.3.3 Transforms

There are several transforms that help to beautifully deduce important results. For
instance the following generating functions:

• Generating function:

g(υ) = E(υy) (2.13)

• Moment generating function:

Γ (υ) = E(eυ·y) (2.14)

As in many other contexts, it is convenient to consider the following transforms:

• Laplace transform:

E(e− s·y) (2.15)

• Fourier transform:

E(e− j υ·y) (2.16)

42 2 Statistical Aspects

Finally:

• Characteristic function:

ϕy(υ) = E(ej υ·y) =
∞∫

−∞
ej υ·yfy(v) dv (2.17)

Notice the relationship of the characteristic function and the Fourier transform of the
PDF.

If the characteristic functions of two randomvariables agree, then the twovariables
have the same distribution.

Consider the sum of independent random variables:

z =
∑

yi (2.18)

Then, the PDF of the sum is the convolution (denoted with an asterisk) of the PDFs
of each variable:

fz = fy1 ∗ fy2 ∗ . . . ∗ fyn (2.19)

And the characteristic function is the product:

ϕz = ϕy1 · ϕy2 · · · ϕyn (2.20)

2.3.4 White Noise

White noise is a signal y(t) whose autocorrelation is given by:

R(t1 , t2) = I(t1) δ(t1 − t2) (2.21)

where δ() is 1 for t1 = t2 and zero elsewhere.
The white noise is important for system identification purposes, and for noise

modelling.

2.4 Power Spectra

Up to this point only the time and the values domains have been considered. Now
let us have a look to the frequency dimension. Power spectra allow us to get an idea
of the frequencies contents of random signals.

2.4 Power Spectra 43

2.4.1 Basic Concept

The power spectrum of a stationary random variable y(t) is the Fourier transform of
its autocorrelation:

Sy(ω) =
∞∫

−∞
R(τ) e− j ωt dτ (2.22)

The area of Sy(ω) equals the average power of y(t):

E(y2) = 1

2π

∞∫

−∞
Sy(ω) dω (2.23)

2.4.2 Example of Power Spectral Density
of a Random Variable

Figure2.12 shows the power spectral density (PSD for short) of a random signal
y(t) with log-normal PDF. The PSD has units of power per unit frequency interval
(for example, if y(t) is in volts, the PSD is in watts per hertz). The PSD curve in
Fig. 2.12 is expressed in decibels. This figure has been generated by the Program
2.11, which uses the pwelch() function to compute and plot the PSD. The name of
the function refers to the method of Welch to obtain the PSD by repeated application
of the Fourier Transform.

The PSD curve in Fig. 2.12 is in general flat, except for a clear peak at 0Hz. This
peak is due to the non-zero DC level of the signal y(t). In order to suppress this peak,
the mean of y(t) should be obtained and then subtracted to y(t).

Program 2.11 Power spectral density (PSD) of random signal with log-normal PDF

% Power spectral density (PSD) of random signal
% with log-normal PDF
fs=100; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(40.96-tiv); %time intervals set (4096 values)
N=length(t); %number of data points
mu=0; sigma=1; %random signal parameters
y=lognrnd(mu,sigma,N,1); %random signal data set
nfft=256; %length of FFT
window=hanning(256); %window function
numoverlap=128; %number of samples overlap
pwelch(y,window,numoverlap,nfft,fs);
title('PSD of random signal with log-normal PDF');

44 2 Statistical Aspects

Fig. 2.12 PSD of a random
signal with log-normal PDF

0 5 10 15 20 25 30 35 40 45 50
-15

-10

-5

0

5

10

Frequency (Hz)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 (d

B
/H

z)

Fig. 2.13 The buried
sinusoidal signal

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-3

-2

-1

0

1

2

3

seconds

2.4.3 Detecting a Sinusoidal Signal Buried in Noise

Let us consider the following signal:

y(t) = sin (15 · 2 · π) + yn(t) (2.24)

where yn(t) is a zero-mean random signal with normal PDF.
Figure2.13 shows the 15Hz sinusoidal signal, and Fig. 2.14 shows the signal y(t).

Program 2.12 has been used to generate Fig. 2.14.

2.4 Power Spectra 45

Fig. 2.14 The sine+noise
signal

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-3

-2

-1

0

1

2

3

seconds

Program 2.12 The sine+noise signal

% The sine+noise signal
fs=100; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(2-tiv); %time intervals set (200 values)
N=length(t); %number of data points
yr=randn(N,1); %random signal data set
ys=sin(15*2*pi*t); %sinusoidal signal (15 Hz)
y=ys+yr'; %the signal+noise
plot(t,y,'k'); %plots sine+noise
axis([0 2 -3 3]);
xlabel('seconds'); title('sine+noise signal');

Since we fabricated the signal y(t) we already know there is a sinusoidal signal
buried into y(t). However it seems difficult to notice this in Fig. 2.14.

We can use the PSD to detect the sinusoidal signal. Figure2.15 shows the result.
There is a peak on15Hz that reveals the existence of a buried 15Hz signal. Figure2.15
has been generated with Program 2.13.

Program 2.13 Power spectral density (PSD) of a signal+noise

% Power spectral density (PSD) of a signal+noise
fs=100; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(40.96-tiv); %time intervals set (4096 values)
N=length(t); %number of data points
yr=randn(N,1); %random signal data set
ys=sin(15*2*pi*t); %sinusoidal signal (15 Hz)
y=ys+yr'; %the signal+noise
nfft=256; %length of FFT
window=hanning(256); %window function

46 2 Statistical Aspects

Fig. 2.15 PSD of the
sine+noise signal

0 5 10 15 20 25 30 35 40 45 50
-25

-20

-15

-10

-5

0

Frequency (Hz)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 (d

B
/H

z)

numoverlap=128; %number of samples overlap
pwelch(y,window,numoverlap,nfft,fs);
title('PSD of a sine+noise signal');

2.4.4 Hearing Random Signals

Like in Sect. 1.4, we can use MATLAB to hear random signals. Humans are usually
good to distinguish subtle details in the sounds.

Figure2.16 shows 1s of a random signal with normal PDF, generated by Program
2.14. This program also includes some lines to let us hear 5 s of the same signal.

In case you wished to hear any other of the random signals considered in this
chapter, the advice is to confine the signal into an amplitude range −1 < y < 1. It is
good to plot the signal to see what to do: for instance compute its mean and subtract
it to the signal, and then multiply by an opportune constant.

Program 2.14 See and hear a random signal with normal PDF

% See and hear a random signal with normal PDF
fs=100; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(2-tiv); %time intervals set (200 values)
N=length(t); %number of data points
y=randn(N,1); %random signal data set
plot(t,y,'-k'); %plots figure
axis([0 2 -3 3]);
xlabel('seconds');
title('random signal with normal PDF');
fs=6000; %sampling frequency in Hz

http://dx.doi.org/10.1007/978-981-10-2534-1_1

2.4 Power Spectra 47

Fig. 2.16 The random
signal with normal PDF to be
heared

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-3

-2

-1

0

1

2

3

seconds

tiv=1/fs; %time interval between samples;
t=0:tiv:(5-tiv); %time intervals set (5 seconds)
N=length(t);
y=randn(N,1); %random signal data set
sound(y,fs); %sound

2.5 More Types of PDFs

There are many types of PDFs. This section is devoted to add some significant types
of PDFs to the three types already presented in Sect. 2.2, [40, 71, 96].

2.5.1 Distributions Related with the Gamma Function

The gamma function has the following expression:

Γ (α) =
∞∫

0

vα−1 e−v dv (2.25)

Figure2.17, obtained with the Program 2.15, depicts the gamma function.

48 2 Statistical Aspects

Fig. 2.17 The gamma
function

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

8

9

10

values

Program 2.15 Gamma function

% Gamma function
v=0.1:0.01:1;
ygam=gamma(v);
plot(v,ygam,'k'); hold on;
xlabel('values'); title('gamma function');

2.5.1.1 The Gamma PDF

The gamma PDF has the following mathematical expression:

fy(v) =
{

vα−1 e−v/β

βα Γ (α)
α, β > 0, 0 ≤ v ≤ ∞

0 elsewhere
(2.26)

The gamma distribution corresponds to positively skewed data, such as movement
data and electrical measurements. The parameter α is called the rate parameter, and
β is called the scale parameter. Figure2.18 shows three gamma PDFs, corresponding
to β = 1 and three different values of α. The figure has been generated with Program
2.16, which uses the gampdf() (*ST) function.

For large values of α the gamma distribution closely approximates a normal PDF.
If y2 has gammaPDFwithα = 3/2 andβ = 2α, then y has aMaxwell–Boltzmann

PDF.

2.5 More Types of PDFs 49

Fig. 2.18 Gamma-type
PDFs

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

values

α=1

α=2

α=4

Program 2.16 Gamma-type PDFs

% Gamma-type PDFs
v=0:0.01:10; %values set
alpha=1; beta=1; %random variable parameters
ypdf=gampdf(v,alpha,beta); %gamma-type PDF
plot(v,ypdf,'k'); hold on; %plots figure
axis([0 10 0 1.2]);
alpha=2; beta=1; %random variable parameters
ypdf=gampdf(v,alpha,beta); %gamma-type PDF
plot(v,ypdf,'--k'); hold on; %plots figure
alpha=4; beta=1; %random variable parameters
ypdf=gampdf(v,alpha,beta); %gamma-type PDF
plot(v,ypdf,':k'); hold on; %plots figure
xlabel('values'); title('gamma-type PDFs');

2.5.1.2 The Exponential PDF

Taking as reference the gamma PDF, the density function for the special case α = 1
is called the exponential PDF, thus having the following expression:

fy(v) = e−v/β

β
β > 0, v ≥ 0 (2.27)

This PDF is one of the curves in Fig. 2.18. The time intervals between successive
random events follow an exponential distribution; this is the case, for example, of
life-times of electronic devices.

50 2 Statistical Aspects

Fig. 2.19 Example of
chi-square PDF

0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

values

2.5.1.3 The Chi-Square PDF

The gamma PDF with parameters α = υ/2 and β = 2 is called a chi-square PDF.
The parameter υ is called the “number of degrees of freedom” associated with the
chi-square random variable. Figure2.19 shows an example of chi-square PDF, for
υ = 3. This figure has been generated with Program 2.17, which uses the chi2pdf()
(*ST) function.

The sum of υ independent y2 variables with y having normal PDF is a chi-square
signal with υ degrees of freedom.

Program 2.17 Chi-square PDF

% Chi-square PDF
v=-3:0.01:16; %values set
nu=3; %random variable parameter ("degrees of freedom")
ypdf=chi2pdf(v,nu); %chi-square PDF
plot(v,ypdf,'k'); hold on; %plots figure
axis([0 16 0 0.3]);
xlabel('values'); title('chi-square PDF');

2.5.1.4 The Beta PDF

The beta PDF is defined on a [0..1] interval, according with the following mathemat-
ical expression:

fy(v) =
{

vα−1 (1−v)β−1

B(α,β)
α, β > 0, 0 ≤ v ≤ 1

0 elsewhere
(2.28)

2.5 More Types of PDFs 51

Fig. 2.20 Example of beta
PDF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

values

where:

B(α,β) = Γ (α) Γ (β)

Γ (α + β)
(2.29)

The parameter α is the first shape parameter and β is the second shape parameter.
Figure2.20 shows an example of beta PDF, corresponding to α = 5 and β = 3.
The figure has been generated with Program 2.18, which uses the betapdf() (*ST)
function.

The beta distribution is used in Bayesian statistics. Events which are constrained
to be within an interval defined by a minimum and a maximum correspond to beta
distributions; for instance time to completion of a task in project management or in
control systems.

For α = β = 1 the beta distribution is identical to the uniform distribution.
y1/(y1 + y2) has a beta PDF if y1 and y2 are independent and have gamma PDF.

Program 2.18 beta PDF

% beta PDF
v=0:0.01:1; %values set
alpha=5; beta=3; %random variable parameters
ypdf=betapdf(v,alpha,beta); %beta PDF
plot(v,ypdf,'k'); %plots figure
axis([0 1 0 2.5]);
xlabel('values'); title('beta PDF');

52 2 Statistical Aspects

Fig. 2.21 Example of
Student’s t PDF

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

values

2.5.1.5 The Student’s t PDF

The Student’s t PDF has the following mathematical expression:

fy(v) = Γ ((υ + 1)/2)√
υ π (υ/2) (1 + v2

υ
)(υ+1)/2

(2.30)

Theparameterυ is the number of “degrees of freedom”of the distribution. Figure2.21
shows an example of Student’s t PDF, corresponding to υ = 3. The figure has been
generated with Program 2.19, which uses the tpdf() (*ST) function.

The parameter υ is also the size of random samples of a normal variable; the larger
the degrees of freedom, the closer is the PDF to the normal PDF.

Program 2.19 Student’s PDF

% Student's PDF
v=-5:0.01:5; %values set
nu=3; %random variable parameter ("degrees of freedom")
ypdf=tpdf(v,nu); %Student's PDF
plot(v,ypdf,'k'); hold on; %plots figure
axis([-5 5 0 0.4]);
xlabel('values'); title('Student's PDF');

2.5 More Types of PDFs 53

Fig. 2.22 Example of
Weibull PDF

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

values

2.5.2 Weibull and Rayleigh PDFs

2.5.2.1 The Weibull PDF

The Weibull PDF has the following mathematical expression:

fy(v) = m vm−1e−vm/α

α
α, m > 0, 0 ≤ v < ∞ (2.31)

The parameter α is the scale parameter and m is the shape parameter. The Weibull
distribution is frequently used in reliability studies for time to failure modelling,
[2, 103]. If the failure rate decreases over time then m < 1, if it is constant m = 1,
and if it increases m > 1. When m < 1 it suggests that defective items fail early;
when m = 1 the failing comes from random events; when m > 1 there is “wear out”.
Figure2.22 shows an example of Weibull PDF, corresponding to α = 1 and m = 3
The figure has been generated with Program 2.20, which uses the weibpdf() (*ST)
function.

For α = 1 and m = 1 the Weibull distribution is identical to the exponential dis-
tribution. For m = 3 the Weibull distribution is similar to the normal distribution.

Program 2.20 Weibull PDF

% Weibull PDF
v=0:0.01:2.5; %values set
alpha=1; m=3; %random variable parameters
ypdf=weibpdf(v,alpha,m); %Weibull PDF
plot(v,ypdf,'k'); hold on; %plots figure
axis([0 2.5 0 1.2]);
xlabel('values'); title('Weibull PDF');

54 2 Statistical Aspects

Fig. 2.23 Example of
Rayleigh PDF

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

values

2.5.2.2 The Rayleigh PDF

The Rayleigh PDF is a particular case of the Weibull PDF, having the following
mathematical expression:

fy(v) = ve−v2/2β2

β2
β > 0, 0 ≤ v < ∞ (2.32)

If y1 and y2 are independent random signals with normal PDF and equal variance,
then √

y21 + y22 (2.33)

has Rayleigh PDF.
For example the distance of darts from the target in a dart-throwing game has a

Rayleigh distribution. Complex numbers with real and imaginary parts being inde-
pendent random numbers with normal distribution are also examples of Rayleigh dis-
tributions. Figure2.23 shows an example of Rayleigh PDF, corresponding to β = 1.
The figure has been generated with Program 2.21, which uses the raylpdf() (*ST)
function.

If y has Rayleigh distribution then y2 is chi-square with 2 degrees of freedom.
Rayleigh distributions are considered in image noise modelling and restoration,

[39, 53, 97], wind energy forecasting, [18, 56], reliability studies, [38], etc.

Program 2.21 Rayleigh PDF

% Rayleigh PDF
v=0:0.01:5; %values set
beta=1; %random variable parameter

2.5 More Types of PDFs 55

ypdf=raylpdf(v,beta); %Rayleigh PDF
plot(v,ypdf,'k'); hold on; %plots figure
axis([0 5 0 0.7]);
xlabel('values'); title('Rayleigh PDF');

2.5.3 Multivariate Gaussian PDFs

The multidimensional version of the Gaussian PDF is the following:

f (
⇀
x) = 1

(2 π)n/2
√|S| · exp

(
−1

2
(

⇀
x − ⇀

μx)
T · S · (

⇀
x − ⇀

μx)

)
(2.34)

where n is the dimension, and S is the covariance matrix:

S =

⎛

⎜⎜⎝

σ2
1 σ12 σ1n

σ21 σ2
2 σ2n

− − − −
σn1 σn2 σ2

n

⎞

⎟⎟⎠ (2.35)

In case of two dimensions, the covariance matrix is:

S =
(

σ2
1 σ12

σ21 σ2
2

)
(2.36)

Hence, the bivariate Gaussian PDF is:

f (
⇀
x) = 1

(2 π)
√|S| · exp

(
−1

2

σ2
1 σ2

2

|S| · Q

)
(2.37)

where Q:

Q =
{

(x1 − μ1)
2

σ2
1

− 2 σ12
(x1 − μ1)(x2 − μ2)

σ2
1 σ2

2

+ (x2 − μ2)
2

σ2
2

}
(2.38)

Figure2.24 depicts in 3D an example of bivariate Gaussian PDF. The figure has been
generated with the Program 2.22, which also generates the Fig. 2.25.

Figure2.25 shows the probability density information (the same information given
by Fig. 2.24) via contour plot, and it clearly highlights that the contours are inclined
ellipses: the inclination is due to the cross terms in the covariance matrix.

56 2 Statistical Aspects

Fig. 2.24 Example of
bivariate Gaussian PDF

Fig. 2.25 Example of
bivariate Gaussian PDF

1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

Program 2.22 Bivariate normal PDF

% Bivariate normal PDF
x1=0:0.02:6;
x2=0:0.02:6;
N=length(x1);
%the PDF
mu1=3; mu2=3;
C=[0.4 0.1;
0.1 0.6];
D=det(C);
K=1/(2*pi*sqrt(D)); Q=(C(1,1)*C(2,2))/(2*D);
ypdf=zeros(N,N); %space for the PDF
for ni=1:N,

for nj=1:N,
aux1=(((x1(ni)-mu1)^2)/C(1,1))+...
+(((x2(nj)-mu2)^2)/C(2,2))...

2.5 More Types of PDFs 57

-(((x1(ni)-mu1).*(x2(nj)-mu2)/C(1,2)*C(2,1)));
ypdf(ni,nj)= K*exp(-Q*aux1);

end;
end;
%display
figure(1)
mesh(x1,x2,ypdf);
title('Bivariate Gaussian: 3D view');
figure(2)
contour(x1,x2,ypdf);
axis([1 5 1 5]);
title('Bivariate Gaussian PDF: top view');

2.5.4 Discrete Distributions

Discrete distributions, [46], are related to counting discrete events. Although we
continue using the term PDF, it should be considered as a discrete version.

2.5.4.1 The Binomial PDF

If an event occurs with probability q, and we make n trials, then the number of times
m that it occurs is:

m =
(

n
j

)
qj (1 − q)n−j (2.39)

An example of binomial PDF is given in Fig. 2.26 generated with Program 2.23,
which uses the binomial() (*ST) function.

Program 2.23 Binomial PDF

% Binomial PDF
n=20;
ypdf=zeros(1,n);
for k=1:n,

ypdf(k)=binomial(n,k);
end;
stem(ypdf,'k'); %plots figure
xlabel('values'); title('Binomial PDF');

58 2 Statistical Aspects

Fig. 2.26 Example of
binomial PDF

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

values

2.5.4.2 The Poisson PDF

Suppose there is a particular event you are counting along a given time interval T .
It is known that the expected count is λ. For instance you know that on average the
event occurs 5 times every minute, and T = 20min; then λ = 5 × 20 = 100.

The Poisson PDF has the following mathematical expression:

f (k) = λk e−λ

k ! (2.40)

This expression gives the probability that the actual count is k (integer values).
The Poisson distribution is of practical importance. It is used to predict the number

of telephone calls, access to a web page, failures of a production chain, performance
of a communication channel or a computer network, etc.

Figure2.27 shows an example of Poisson PDF. It has been generated with the
Program 2.24, which uses the poisspdf() (*ST) function.

Program 2.24 Poisson PDF

% Poisson PDF
lambda=20;
N=50;
ypdf=zeros(1,N);
for nn=1:N,

ypdf(nn)=poisspdf(nn,lambda);
end;
stem(ypdf,'k'); %plots figure
axis([0 N 0 0.1]);
xlabel('values'); title('Poisson PDF');

2.5 More Types of PDFs 59

Fig. 2.27 Example of
Poisson PDF

0 5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

values

Fig. 2.28 Example of
geometric PDF

-1 0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

values

2.5.4.3 The Geometric PDF

The geometric distribution is a discrete analog of the exponential distribution. As
an example, k could be the number of consecutive heads when repeatedly flipping a
coin. The probability of heads in each attempt is p (might be 0.5).

The geometric PDF has the following mathematical expression:

f (k) = (1 − p)k · p 0 < p ≤ 1 (2.41)

Figure2.28, which has been generated with the Program 2.25, shows an example of
geometric PDF. The program uses the geopdf() (*ST) function.

60 2 Statistical Aspects

Program 2.25 Geometric PDF

% Geometric PDF
P=0.5;
N=10;
ypdf=zeros(1,N);
for nn=0:N,

ypdf(nn+1)=geopdf(nn,P);
end;
stem(0:N,ypdf,'k'); %plots figure
axis([-1 10 0 0.6]);
xlabel('values'); title('Geometric PDF');

2.6 Distribution Estimation

Given a data set, we would like to estimate its probability distribution. This section
presents some of the available methods for this purpose, [6, 55, 83] (see also [1, 62]
for theWeibull distribution). In general, one tries reasonable distribution alternatives
(hypotheses), until getting a satisfactory solution.

2.6.1 Probability Plots

There are some graphical representation methods that help to determine an appro-
priate distribution fitting for a given random signal.

2.6.1.1 Normal Probability

Let us generate with the simple Program 2.26, a random signal with normal PDF,
and let us use the function normplot() (*ST) to plot the signal data set in a special
way. Figure2.29 shows the result. The signal data, represented with plus signs, look
grouped along a straight line: this fact confirms that the signal approximately has a
normal PDF.

Program 2.26 Normal probability plot

% Normal probability plot
N=200; %200 values
y=randn(N,1); %random signal with normal PDF
normplot(y); % the normal probability plot

2.6 Distribution Estimation 61

-3 -2 -1 0 1 2

0.003

0.01
0.02

0.05
0.10

0.25

0.50

0.75

0.90
0.95

0.98
0.99

0.997

Data

P
ro

ba
bi

lit
y

Fig. 2.29 Normal probability plot

2.6.1.2 Weibull Probability

Like in the case of the normal PDF, let us now generate with a few MALAB lines,
the Program 2.27, a random signal with Weibull PDF and then plot in a special way
the signal data using the function weibplot() (*ST). Figure2.30 shows the result.
Again the signal data, represented with plus signs, look grouped along a straight
line, confirming that the signal has a Weibull PDF.

Program 2.27 Weibull probability plot

% Weibull probability plot
N=200; %200 values
y=weibrnd(2,0.5,N,1); %random signal with Weibull PDF
weibplot(y); % the Weibull probability plot

2.6.2 Histogram

Most times, the first thing to do is to look at the histogram of the random data, since
it gives a lot of fundamental information.

Supposing there seems to be a good distribution PDF candidate to fit the data, it
is convenient first to normalize the histogram. Recall that the area covered by a PDF
is one, and so the area of the normalized histogram must be one.

62 2 Statistical Aspects

10
-6

10
-4

10
-2

10
0

0.003

0.01

0.02

0.05

0.10

0.25

0.50

0.75
0.90
0.96
0.99

Data

P
ro

ba
bi

lit
y

Fig. 2.30 Weibull probability plot

In order to normalize the histogram, it must be divided by the following factor:

r = N h (2.42)

where N is the number of data, and h is the width of each histogram bin.
The normalized histogram is called the density histogram.
A typical problem is to decide how many bins to use for the histogram. There are

several published rules. One of them, the Normal Reference Rule is the following:

h =
(
24σ3

√
3

n

)1/3

≈ 3.5 · σ · N−1/3 (2.43)

For skewed distributions, Scott proposed the following correction factor:

h ≈ 3.5 · s · N−1/3 (2.44)

s = 21/3 σ

exp(5σ2

4) (σ2 + 2)
√

(exp(σ2) − 1)
(2.45)

2.6 Distribution Estimation 63

2.6.3 Likelihood

Suppose you have a set of data
⇀
x = (x1, x2, . . . , xn) with a certain PDF. This PDF

is characterized by a parameter set
⇀

θ = (θ1, θ2, . . . , θk). For instance, in the case
of a Gaussian PDF, the parameters are μ and σ.

Let us express the PDF as f (
⇀
x|⇀θ).

We are interested in finding the PDF that is most likely to have produced the data.

We define the ‘likelihood function’ by reversing the roles of
⇀
x and

⇀

θ:

L(
⇀

θ) = f (
⇀
x | ⇀

θ) (2.46)

The problem is: given the data, find the PDF parameters.

The maximum likelihood estimate (MLE) of
⇀

θ is that value of
⇀

θ that maximises

L(
⇀

θ), [57, 98].
Supposing the random data are mutually independent, the likelihood function can

be expressed as a product:

L(
⇀

θ) = f (x1 | ⇀

θ) · f (x2 | ⇀

θ) · · · f (xn | ⇀

θ) (2.47)

It is usual, in this context, to use natural logarithms. The log-likelihood function is:

l(
⇀

θ) =
∑

i

log (f (xi |
⇀

θ)) (2.48)

For instance, the log-likelihood function corresponding to the Gaussian distribution
is:

l(μ, σ) = −n

2
log(2πσ2) − 1

2σ2

∑

i

(xi − μ)2 (2.49)

Figure2.31 shows examples of the log-likelihood function of the Gaussian distribu-
tion. We supposed a constant value of the variance, equal to one. The figure has been
generated with the Program 2.28, which explores 100 different values of the PDF
parameter μ (the mean). The function values have been computed using N random
data generated with the randn() MATLAB function, using μ = 5. Four values of N
have been chosen. Notice that as the number of data increases the curve is sharper.
The peak of the curve, the maximum, corresponds to the mean equal to 5.

Program 2.28 Likelihood example

% Likelihood example
sig2=1;
%constant
r=1/(2*sig2);
Lh=zeros(4,101); %reserve space

64 2 Statistical Aspects

0 5 10
-2000

-1500

-1000

-500

0

0 5 10
-2000

-1500

-1000

-500

0

0 5 10
-2000

-1500

-1000

-500

0

0 5 10
-2000

-1500

-1000

-500

0

N=20
N=60

N=200
N=500

Fig. 2.31 The log-likelihood of the Gaussian distribution, using 20, or 60, or 200, or 500 data
values

for ni=1:4,
switch ni

case 1, N=20;
case 2, N=60;
case 3, N=200;
case 4, N=500;

end;
%N is number of data
%data generation with normal distribution,
% mean=5, sigma=1
x=5+randn(1,N);
K=(-N/2)*log(2*pi*sig2);
aux=0;
for nm=1:101,

mu=(nm-1)/10; %mean
aux=(x-mu).^2;
Lh(ni,nm)=K-(r*sum(aux)); %Log-Likelihood

end;
end;
%display
ex=0:0.1:10;
figure(1)
for ni=1:4,
subplot(2,2,ni),
plot(ex,Lh(ni,:),'k');
axis([0 10 -2000 0]);
end;

2.6 Distribution Estimation 65

The maximum of the log-likelihood can be analytically determined, using
derivatives, [36]. For instance, in the case of the Gaussian PDF:

∂l(
⇀

θ)

∂μ
= 0 → μ = 1

n

n∑

i=1

xi (2.50)

∂l(
⇀

θ)

∂σ
= 0 → σ2 = 1

n

n∑

i=1

(xi − μ)2 (2.51)

The log-likelihood of the gamma PDF is:

l(α, β) =
∑

i

(
(α − 1) log xi − xi

β
− α log β − log Γ (α)

)
(2.52)

The log-likelihood of the exponential PDF is:

l(α, β) =
∑

i

(
−xi

β
− log β

)
(2.53)

The log-likelihood of the Weibull PDF is:

l(α, m) =
∑

i

(
m + (m − 1) log xi − xm

i

α
− log α

)
(2.54)

The log-likelihood of the Poisson PDF is:

l(λ) =
∑

i

(ki log λ − λ − log (ki!)) (2.55)

The log-likelihood of the geometric PDF is:

l(p) =
∑

i

(ki log (1 − p) + log p) (2.56)

2.6.4 The Method of Moments

Let us recall from (2.7) the definition of moment:

μ′
′k = E(yk), k = 1, 2, 3 . . . (2.57)

66 2 Statistical Aspects

As in the last sub-section, suppose you have a set of data
⇀
y = (y1, y2, . . . , yn) with

a certain PDF. Based on these data, an estimate of the moments can be obtained:

μ̂′k = 1

n

∑

i

(yk
i) (2.58)

Assume that the PDF parameters,
⇀

θ = (θ1, θ2, . . . , θk), can be written as functions
of the moments. For instance, θ1 = h (μ1, μ2,μ3).

Now, the idea for the estimation of the parameters is just to use the estimated
moments. Continuing with the example: θ̂1 = h (μ̂1, μ̂2, μ̂3).

Honouring its name, the moment generating function can be used to actually
generate moments, [37]:

dΓ

dυ
(0) = E(y); d2Γ

dυ2
(0) = E(y2); . . .; dnΓ

dυn
(0) = E(yn) (2.59)

For instance, in the case of the Poisson distribution the moment generating function
is:

Γ (υ) =
∑

k

eυ k λk

k ! e−λ = e−λ eλ exp(υ) = Q (2.60)

Taking derivatives:
dΓ

dυ
= λ eυ Q (2.61)

d2Γ

dυ2
= λ eυQ + λ2 e2υQ (2.62)

The evaluation at 0 gives:
E(y) = λ (2.63)

E(y2) = λ + λ2 (2.64)

Clearly, the estimation of the firstmoment, using the data, is enough for the estimation
of λ.

Consider another example: the gamma distribution. Themoment generating func-
tion is:

Γ (υ) =
(

1/β

(1/β) − 1

)α

(2.65)

Taking derivatives and evaluating at 0:

dΓ

dυ
(0) = E(y) = α β (2.66)

2.6 Distribution Estimation 67

d2Γ

dυ2
(0) = E(y2) = α (α + 1)β2 (2.67)

Using the estimated first and second moments, we have two equations and the values
of α and β can be obtained.

2.6.5 Mixture of Gaussians

A popular way to approximate the PDF of a given random data set, is by using a
mixture of well-know PDFs. It can be written as follows:

f̂ (x) =
∑

k

pk fk(x) (2.68)

where f̂ (x) is the estimated PDF, fk(x) are PDFs (the components of the mixture),
and pk sets the proportions of the mixture (the sum of the pk is one).

Depending on the a priori knowledge on the data, different types of PDFs could
be combined: Weibull, beta, Rayleigh, etc.

Nowadays, the use of Gaussians is predominant for many applications, [92]. They
are universal approximators of continuous densities given enough Gaussian compo-
nents.

The use of mixtures is most appropriate for multi-modal PDFs. This is the case
chosen for the next example, treated with the Program 2.29. It is a simple example
with a bimodal PDF (two peaks).

As it can be seen in the Program 2.29, the random data have been generated by
interleaving data from two Gaussian distribution, according with the proportions
defined by p.

Figure2.32 shows the density histogram (the normalized histogram) of the gener-
ated data. The figure also shows the shape of the estimated PDF, which is a mixture
of two Gaussian PDFs.

Program 2.29 Mixture of 2 Gaussians

% Mixture of 2 Gaussians
v=-6:0.02:10; %value set
mu1=0; sigma1=1.5; %parameters of Gaussian 1
mu2=5; sigma2=1; %"""Gaussian 2
ypdf1=normpdf(v,mu1,sigma1); %PDF1
ypdf2=normpdf(v,mu2,sigma2); %PDF2
p=0.4; %mix parameter
%mixed Gaussian PDF
ypdf=(p*ypdf1)+((1-p)*ypdf2);
%random data generation
N=5000;
y=zeros(1,N); %reserve space
for nn=1:N,

r=rand(1); %uniform PDF

68 2 Statistical Aspects

Fig. 2.32 Bimodal
distribution and mixture of
Gaussians

-6 -4 -2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

values

if r<p,
y(nn)=mu1+(sigma1*randn(1)); %PDF1

else
y(nn)=mu2+(sigma2*randn(1)); %PDF2

end;
end;
%histogram normalization
nB=100; %number of bins
h=16/100; %bin width
k=N*h;
%display
figure(1)
[nh,xh]=hist(y,100);
plot(xh,nh/k,'k'); hold on; %density histogram
plot(v,ypdf,'r'); %multi-modal PDF
xlabel('values');
title('Mix of 2 Gaussians: histogram and PDF');

Anexample of bimodal distribution is shown in Fig. 2.33. It corresponds towaiting
times (minutes) between successive eruptions of the Old Faithful geyser at Yellow-
stone National Park. See the Resources section for the web address of data. The
figure with the histogram has been generated using the Program 2.30.

Program 2.30 Histogram of Bimodal distribution

%Histogram of Bimodal distribution
% Geyser eruption data (time between eruptions)
%read data
fer=0;
while fer==0,
fid2=fopen('Geyser1.txt','r');
if fid2==-1, disp('read error')

2.6 Distribution Estimation 69

Fig. 2.33 Bimodal
distribution example

40 50 60 70 80 90 100 110
0

5

10

15

20

25

30

35

else
y1=fscanf(fid2,'%f \r\n'); fer=1;
end;
end;
fclose('all');
%display
hist(y1,30); colormap('cool');
title('Time between Geyser eruptions');

2.6.6 Kernel Methods

Again, suppose you have a set of data
⇀
x = (x1, x2, . . . , xn) with a certain PDF. It

was suggested by Parzen (1962) to use the following estimation of the PDF:

f̂ (x) = 1

n

n∑

i=1

K(x − xi) (2.69)

where K() is the Parzen window, which is a rectangular window:

K(u) =
{

1
2h for |u| < h
0 otherwise

(2.70)

70 2 Statistical Aspects

Fig. 2.34 Parzen estimation
of PDF

xxxxxx xxxxxxxxxx xxxxxxxx

The idea of the Parzen estimation is represented in the Fig. 2.34 for an example
having only a few data. It is similar to the histogram. A rectangle of height 1/2h and
width 2h is placed over each datum; heights are added in overlapping zones.

The idea has been extended and refined, choosing other functions—kernel
functions—for K(), [81, 102].

A popular choice is the Gaussian PDF:

K(u) = 1√
2πh

exp(−u2/2h2) (2.71)

Some other choices of kernels are the following:

• Triangular:

K(u) = 1 −
∣∣∣
u

h

∣∣∣ for
∣∣∣
u

h

∣∣∣ < 1; 0 otherwise (2.72)

• Biweight:

K(u) = 15

16
(1 − (u/h)2)2 for

∣∣∣
u

h

∣∣∣ < 1; 0 otherwise (2.73)

• Epanechnikov:

K(u) = 0.75 · (1 − 0.2 · (u/h)2)√
5

for
∣∣∣
u

h

∣∣∣ <
√
5; 0 otherwise (2.74)

The main problem with the kernel methods is to choose an adequate value for the
bandwidth h.

Figure2.35 shows an example of PDF estimation using a series of Gaussian PDFs
with the same bandwidth. The number of Gaussians is given by the number of data
points.

2.6 Distribution Estimation 71

Fig. 2.35 Kernel-based
estimation of PDF

-4 -2 0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

values

Program 2.31 Kernel method example

% Kernel method example, using Gaussian kernel
v=-4:0.02:10; %set of values
L=length(v); %number of values
% random data:
X=[0.1, 0.25, 1, 1.6, 2.1, 3, 4, 5.2, 5.9, 6.5];
N=length(X); %number of data points
Kpdf=zeros(N,L); % reserve space
h=1; %bandwidth
q=1/(sqrt(2*pi)*h); %constant
for np=1:N,

for nv=1:L,
Kpdf(np,nv)=(q/N)*exp((-(v(nv)-X(np))^2)/(2*(h)^2));

end;
end;
%total PDF
ypdf=sum(Kpdf);
%display
figure(1)
for np=1:N,

plot(v,Kpdf(np,:),'k'); hold on; %PDF components
end;
plot(v,ypdf,'r'); %total PDF
plot(X,zeros(1,N),'bd'); %the data
axis([-4 10 0 0.18]);
xlabel('values');title('PDF estimation with Kernel method');

72 2 Statistical Aspects

2.7 Monte Carlo Methods

Randomvariables could conveniently be used for several computation and evaluation
purposes. An illustrative example is given in the next subsection about Monte Carlo
integration. The other subsections extend and apply the basic ideas.

Before going into next topics it is convenient to rewrite a small modification of
Eq. (2.6), to obtain the expected value of a function g(x):

E(g(x)) =
∞∫

−∞
g(v) fx(v) dv (2.75)

Although the Monte Carlo methods will be introduced here using one-dimensional
examples, the real advantage of the methods take place in multi-dimensional prob-
lems where deterministic numerical approximations stumble upon combinatorial
explosion, [47].

The nameMonte Carlowas suggested byNicolasMetropolis in 1949.This name is
linked with gambling, Monaco and all that. Statistical simulation has some similarity
with it. A little more history on Monte Carlo methods, together with an illustrative
tutorial, is given by [50]; a frequently cited introduction is [52].

2.7.1 Monte Carlo Integration

The Monte Carlo integration methodology has proved to be effective in difficult or
complicated cases. Let us introduce a series of approaches in this context, [3, 65,
73].

2.7.1.1 A Basic Method

Consider the following example, as represented in Fig. 2.36. There is a curve, given
by a certain function g(x), with x between 0 and 10. It is asked to determine the area
A covered by the curve.

Program 2.32 Curve and area

% Curve and area
%the curve
x=0:0.1:10;
y=0.5+(0.3*sin(0.8*x));
plot(x,y,'k'); hold on;
axis([0 10 0 1]);
for vx=1:1:10,

nx=vx*10;
plot([vx vx],[0 y(nx+1)],'g','linewidth',2);

2.7 Monte Carlo Methods 73

Fig. 2.36 Area covered by a
curve

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Fig. 2.37 Same as previous
figure, but with random
points

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

end;
xlabel('x'); ylabel('y');
title('area covered by a curve');

Let us generate with the simple Program 2.33 a series of random points on the
x−y plane, with x uniformly random between 0 and 10, and y uniformly random
between 0 and 1. Figure2.37 shows these points on the same plane as Fig. 2.36.

Program 2.33 Monte Carlo points, and area approximation

% Monte Carlo points, and area approximation
%the curve
x=0:0.1:10;
y=0.5+(0.3*sin(0.8*x));
%the random points

74 2 Statistical Aspects

N=500; %number of points
px=10*rand(1,N); %uniforma distribution
py=rand(1,N); %"""
plot(x,y,'k'); hold on;
plot(px,py,'b.');
axis([0 10 0 1]);
xlabel('x');ylabel('y');
title('curve and random points');
%area calculation
na=0; %counter of accepted points
for nn=1:N,

xnn=px(nn); ynn=0.5+(0.3*sin(0.8*xnn));
if py(nn)<ynn, na=na+1; end; %point accepted

end;
%print computed area
%the plot rectangle area is 10
A=(10*na)/N

Denote the area of the plane (10 × 1 = 10) as S. The total number of random
points is N . Count the na points inside A.

Then, one can approximate the area A as follows:

A

S
∼= na

N
→ A ∼= na

N
· S (2.76)

This is an example of Monte Carlo integration. Notice that we have accepted nb
points, and rejected the rest of the points. Notice that the last part of Program 2.33
provides an implementation of Monte Carlo integration. The last sentence prints the
area computation result.

2.7.1.2 Using Expected Values

Suppose one has a certain function q(x) such that:

q(x) ≥ 0, x ∈ (a, b)∫ b
a q(x) dx = M < ∞ (2.77)

Now, let:

p(x) = q(x)

M
(2.78)

Then p(x) satisfies the conditions for being a PDF. The value M could be obtained
using the basic integration method just explained.

If we have to integrate the following:

y =
∫ b

a
g(x) q(x) dx (2.79)

2.7 Monte Carlo Methods 75

Fig. 2.38 Example of
integral of the product
g(x) · p(x)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

1.2

x

p(x)

g(x)

This is equivalent to:

y =
∫ b

a
M · g(x) p(x) dx = M · E(g(x)) (2.80)

(recall expression (2.26) with the expected value)
According to the common practice for the computation of expected values, the

integral can be approximated with:

y ≈ M · 1

n

n∑

i=1

g(xi) (2.81)

One draws a set of xi samples from the p(x) PDF, and then computes the sum of
g(xi).

An example of the integration technique is presented in the Fig. 2.38. To simplify
the example, a p(x) has been chosen that directly can be represented with the exp-
pdf() (*ST) function; that is, p(x) is an exponential function. Likewise, the function
random(‘exp’,..) has been used to generate samples from p(x) as PDF. This can be
seen in the Program 2.34, which generates the figure. The other function g(x) has
been chosen as a fragment of sinusoidal signal. The figure includes a plot of the
product p(x) g(x), adding some vertical lines to visualize the area which should be
the result of the integral.

76 2 Statistical Aspects

Program 2.34 Integration as expected value

% Integration as expected value
% integral of g(x)*p(x), where p(x) can be taken as a PDF
% the integrand functions
x=0:(pi/100):(1.5*pi); %domain of the integral
g=(0.8*sin(x)).^2; % the function g(x)
mu=1; %parameter of the exponential distribution
p=exppdf(x,mu); %the function p(x) (exponential PDF)
%Deterministic approximation of the integral
aux=abs(g.*p);
disp('deterministic integral result:');
DS=sum(aux)*(pi/100) %print result
%display of the integrand functions
figure(1)
plot(x,g,'k'); hold on;
plot(x,p,'r');
plot(x,aux,'b');
for vx=10:10:151, %mark the integral area

l=(vx*pi)/100;
plot([l l],[0 aux(vx)],'g','linewidth',2);

end;
axis([0 1.5*pi 0 1.2]);
title('Integral of the product g(x)p(x)');
xlabel('x');
%Monte Carlo Integration------------------------------------
%draw N samples from p(x) as PDF
N=3000; %number of samples
x=random('exp',mu,1,N); %the samples
%evaluate g(x) at the samples
nv=0; %counter of valid data points
L=1.5*pi; %limit of the integral
for nn=1:N,

if x(nn)<=L, g(nn)=(0.8*sin(x(nn)))^2; nv=nv+1;
else
g(nn)=0; %the value of x is outside integral domain
end;

end;
%integral
disp('Monte Carlo integral result:');
S=(sum(g)/nv) %print result

TheProgram2.34 also computeswith a deterministic simple approach the integral.
For comparison purposes, both the deterministic and the Monte Carlo results are
printed when executing the program. Notice that the program includes a protection
against trying to operate outside the integral domain.

Coming now to a simpler case:

y =
∫ b

a
f (x) dx (2.82)

Let us take:

2.7 Monte Carlo Methods 77

g(x) = f (x)

p(x)
(2.83)

Therefore:

y =
∫ b

a
g(x) p(x) dx (2.84)

Which can be approximated as follows:

y ≈ · 1
n

n∑

i=1

g(xi) (2.85)

2.7.1.3 Importance Sampling

In the previous approximations a certain p(x) has been used. It is an arbitrary PDF.
Several alternatives have been proposed for choosing a p(x) in order to speed up the
convergence (some literature refers to it as variance reduction).

A key observation is that in:

y ≈ · 1
n

n∑

i=1

f (xi)

p(xi)
(2.86)

it is convenient that p(x) ≈ f (x) in order to avoid negligible terms. If this is done,
most samples of f (x) will be taken where f (x) is larger, and so it is termed as
importance sampling, [19].

Let us put an example of not using importance sampling. The example is repre-
sented in Fig. 2.39. A uniform PDF is chosen for p(x) along a wide range. What we
see on this figure is that a large part of p(x) is of no use since there are many samples
with f (xi) = 0.

Figure2.39 is useful also for noticing a possible problem. If p(x)was narrowed so
it fits inside f (x) there would be samples where:

f (xi)

p(xi)
≈ ∞ (2.87)

This should be avoided. In general, the advice is to use p(x) with long tails.
A better option for p(x) is shown in Fig. 2.40. It is clear that p(x) is similar to the

f (x) to be integrated, and that it covers the tails of f (x). The case has been treated
with the Program 2.35. Notice that the program includes a protection against division
by zero. In this example, the function p(x) corresponds to a beta PDF, so one can use
MATLAB (*ST) functions. The program also prints, for comparison, the results of
the deterministic and the importance sampling integrations.

78 2 Statistical Aspects

Fig. 2.39 Example of
un-importance sampling

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

f(x)

p(x)

Fig. 2.40 Example of f(x),
and p(x) for importance
sampling

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

x

f(x)

p(x)

Program 2.35 Integration as expected value: Importance sampling

% Integration as expected value: Importance sampling
% integral of f(x), an appropriate p(x) PDF is taken
% the integrand functions
x=0:(pi/100):(0.25*pi); %domain of f(x)
xx=0:(pi/100):1; %domain of p(x)
f=25*(x.^3).*cos(2*x); %the function f(x)
alpha=4; beta=3; %parameters of the PDF
p=betapdf(xx,alpha,beta); %the function p(x) (beta PDF)
%Deterministic approximation of the integral
disp('deterministic integral result:');
DS=sum(f)*(pi/100) %print result

2.7 Monte Carlo Methods 79

%display of f(x) and p(x)
figure(1)
plot(x,f,'k'); hold on;
plot(xx,p,'r');
axis([0 1 0 2.5]);
title('importance sampling: f(x) and p(x)');
xlabel('x');
%Monte Carlo Integration------------------------------------
%draw N samples from p(x) PDF
N=2000; %number of samples
x=random('beta',alpha,beta,1,N); %the samples
%evaluate g(x) at the samples
nv=0; %counter of valid data points
g=0; %initial value
for nn=1:N,

if x(nn)>0, %avoid division by zero
if x(nn)<=(0.25*pi), %values inside f() domain

f=25*(x(nn).^3).*cos(2*x(nn)); %evaluate f() at xi
else

f=0;
end;
p=betapdf(x(nn),alpha,beta);
g=g+(f/p); %adding
nv=nv+1;
end;
end;
%integral
disp('Monte Carlo integral result:');
S=(g/nv) %print result

Let us consider again the integration of:

y =
∫ b

a
g(x) p(x) dx (2.88)

It can be written as:

y =
∫ b

a
g(x)

p(x)

h(x)
h(x) dx (2.89)

Denote:

w(x) = p(x)

h(x)
(2.90)

as ‘weight function’.
Then, the approximation is:

y ≈ · 1
n

n∑

i=1

(g(xi) · w(xi)) (2.91)

80 2 Statistical Aspects

The function h(x) is a proposed PDF, as close as possible to p(x), and the samples
xi are drawn from the h(x) PDF.

2.7.2 Generation of Random Data with a Desired PDF

Several PDFs, provided by MATLAB, have been presented in this chapter. With the
function random() (*ST) it is possible to select a PDF among a set of alternatives,
and then use the function to generate random numbers from the selected PDF.

In order to be open for more options, it is convenient to study how to generate
random numbers from any desired PDF, [27, 91].

In this subsection, two methods will be introduced: the first is based on inversion
of the distribution function, [66]; the second is based on rejection. Other methods
will be described later on, in the section on Markov processes.

2.7.2.1 Inversion Sampling

For easier description, let us denote distribution functions as F(x) (recall Sect. 2.2.1).
The value of a distribution function is in the range 0..1 and increases or keep cosntant
as x increases.

In our case, we wish to obtain a set of samples obeying to a desired distribution
F(x). Denote as F−1 the inverse of F.

Let us draw a set of samples U with values between 0 and 1 from a uniform PDF.
Then, the set of samples:

Z = F−1(U) (2.92)

obeys to the desired distribution
Figure2.41 depicts the idea of sample generation.
Therefore the procedure is: (a) draw a sample yi from uniform PDF; (b) compute

zi = F−1(yi); and go back to (a), until sufficient data have been obtained.
For example, it is desired to generate a set of samples with a sinusoidal distrib-

ution function as depicted on the left part of Fig. 2.42. The corresponding PDF (the
derivative) is depicted on the right part of this figure.

In this example, it is easy to analytically obtain the inverse of the distribution
function: the inverse of sin(x) is arc sin(x). Moreover, MATLAB actually provides
the asin() function.

The inversion procedure is implemented with the Program 2.36. It generates the
set of samples with the desired distribution, and displays Figs. 2.42 and 2.43. This
last figure is an histogram of the generated data.

2.7 Monte Carlo Methods 81

Fig. 2.41 The inversion
procedure

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

se
rie

s
U

series Z

F

Fig. 2.42 Example of
desired distribution function
and PDF

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

desired
 distribution function

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

desired PDF

Program 2.36 Generation of random data with a desired PDF

% Generation of random data with a desired PDF
% using analytic inversion
% example of desired distribution function
x=0:(pi/100):(pi/2);
F=sin(x); %an always growing curve
pf=cos(x); %PDF=derivative of F
% generation of random data
N=2000; %number of data
y=rand(1,N); %uniform distribution
% random data generation:
z=asin(y); %the inverse of F
figure(1)

82 2 Statistical Aspects

Fig. 2.43 Histogram of
random data generated using
analytical inversion

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

20

40

60

80

100

120

x

subplot(1,2,1)
plot(x,F,'k');
xlabel('x'); title('desired distribution function');
subplot(1,2,2)
plot(x,pf,'k');
xlabel('x'); title('desired PDF');
figure(2)
hist(z,30); colormap('cool');
xlabel('x');title('histogram of the generated data');

Here is a set of analytical inverses of distribution functions.

Exponential:

PDF F F−1

e−x , x > 0 (1 − e−x) log(1
U)

Weibull (simple version):

PDF F F−1

m xm−1 · e−xm
, x > 0 (1 − e−xm

)
(
log(1

U)
)1/m

Cauchy:

PDF F F−1

1
π(1+x2)

(12 + 1
π arctan x) tan(π U)

2.7 Monte Carlo Methods 83

Pareto:

PDF F F−1

a
xa+1 , a > 0, x > 1 (1 − a

xa) (1
U1/a)

In case of difficulty with the analytical inversion, it is still possible to numerically
obtain the inversion. Program 2.37 gives an example of it, continuing with the pre-
vious example. Figure2.44 compares the numerical result with the analytical result:
they are essentially the same.
Program 2.37 Numerical inversion of a function

% Numerical inversion of a function
% example of F=sin(x), in the growing interval
M=1001;
y=0:0.001:1; %F between 0 and 1
x=zeros(1,M);
%incremental inversion
aux=0; dax=0.001*pi;
for ni=1:M,

while y(ni)>sin(aux),
aux=aux+dax;

end;
x(ni)=aux;

end;
plot(y,asin(y),'gx'); hold on; %analytical inversion
plot(y,x,'k'); %result of numerical inversion
xlabel('y'); ylabel('x');
title('numerical and analytical inversion of F');

To complete the example, the Program 2.38 obtains a set of samples with the
desired PDF, using numerical inversion. Figure2.45 shows the histogram.

Fig. 2.44 Generation of
random data with a certain
PDF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

y

x

84 2 Statistical Aspects

Fig. 2.45 Histogram of
random data generated using
numerical inversion

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

20

40

60

80

100

120

z

Program 2.38 Generation of random data with a desired PDF

% Generation of random data with a desired PDF
% using numerical inversion
%first: a table with the inversion of F
M=1001;
y=0:0.001:1; %F between 0 and 1
x=zeros(1,M);
%incremental inversion
aux=0; dax=0.001*pi;
for ni=1:M,

while y(ni)>sin(aux),
aux=aux+dax;

end;
x(ni)=aux;

end;
%second: generate uniform random data
N=2000; %number of data
ur=rand(1,N); %uniform distribution
%third: use inversion table
z=zeros(1,N);
for nn=1:N,

%compute position in the table:
pr=1+round(ur(nn)*1000);
z(nn)=x(pr); %read output table

end;
%display histogram of generated data
hist(z,30); colormap('cool');
xlabel('z');
title('histogram of the generated data');

2.7 Monte Carlo Methods 85

Fig. 2.46 Example of
desired f(x) PDF and
proposal g(x) PDF

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

c g(x)

f(x)

--pi

2.7.2.2 Rejection Sampling

The desired PDF is f (x). A proposal g(x) PDF is chosen, such that:

f (x)

g(x)
≤ c for all x (2.93)

where c is a positive constant. Figure2.46 shows an example, and illustrates the
procedure explained below.

The procedure is: (a) generate a sample vi from the g(x) PDF; (b) generate a
sample ui from uniform PDF on (0, 1); (c) if:

pi = ui · c · g(vi) < f (vi) (2.94)

then accept vi, else reject; (d) back to (a) until sufficient data have been obtained,
[82].

Program 2.39 provides an implementation of the rejection procedure, with the
same desired sin() PDF as before. Figure 2.47 shows an histogram of the generated
data.

Program 2.39 Generation of random data with a desired PDF

% Generation of random data with a desired PDF
% Using rejection method
% example of desired PDF
x=0:(pi/100):pi;
dpf=0.5*sin(x); % desired PDF
% example of proposal PDF
xp=0:(pi/100):pi+3;
ppf=raylpdf(xp,1.5);

86 2 Statistical Aspects

Fig. 2.47 Histogram of
random data generated using
the rejection method

0 0.5 1 1.5 2 2.5 3 3.5
0

20

40

60

80

100

120

x

%factor
c=1.5;
% generation of random data
N=2000; %number of data
z=zeros(1,N); %space for data to be generated
for nn=1:N,

accept=0;
while accept==0,

v=raylrnd(1.5,1,1); %Rayleigh distribution
u=rand(1,1); %uniform distribution
if v<=pi, %v must be inside dpf domain

P=u*c*raylpdf(v,1.5);
L=0.5*sin(v);
if P<L, z(nn)=v; accept=1; end; %accept

end;
end;

end;
figure(1)
plot(x,dpf,'k'); hold on;
plot(xp,c*ppf,'r');
xlabel('x'); title('desired PDF and proposal PDF');
figure(2)
hist(z,30); colormap('cool');
xlabel('x');title('histogram of the generated data');

2.7 Monte Carlo Methods 87

2.7.2.3 Other Methods

There are a number of transformations that can be used to generate random variables
with a desired PDF.

For instance, the method of Box and Müller obtains a pair of Gaussian variables
as follows, [13]:

X =
√

log

(
1

U1

)
· cos(2π U2) (2.95)

Y =
√

log

(
1

U1

)
· sin(2π U2) (2.96)

where U1 and U2 are independent uniform [0, 1] random variables.
The random cosine is also used by other methods, which are called polar methods,

[33, 80]. A symmetric beta distribution (with α = β) is obtained using:

X = 1

2
(1 +

√
1 − UV

1 · cos(2π U2)) (2.97)

where: V = 2
2α−1 .

The Student’s t distribution can be obtained using:

X =
√

a(U−2/a
1 − 1) · cos(2π U2) (2.98)

2.8 Central Limit

There are twomain alternative formulations of theCentral Limit Theorem (CLT). The
first alternative is related to the distribution of means; while the second alternative
is related to sums of random data sets. In both cases, one has several random data
sets of size n: X1, X2, . . . , XK . The data sets are independent with equal distribution.
The variances of the data set are finite. Suppose K tends to infinity, then:

1. Take themeansμ1, μ2, . . . , μK of each data set. CLT establishes that thesemeans
form a random data set with normal (Gaussian) distribution.

2. The sum of X1, X2, . . . , XK is also a random data set with normal (Gaussian)
distribution.

It does not matter what the distribution of the data sets X1, X2, . . . , XK is.
The reader is invited to repeatedly convolve any PDF with itself (recall 2.3.3,

about the characteristic function), the result always tend to a Gaussian PDF. Perhaps
the most dramatic example is when you use a uniform PDF for this exercise.

88 2 Statistical Aspects

In the case of products of positive random data sets, the logarithm will tend to a
normal distribution, and the product itself will tend to a log-normal distribution.

For the interested reader it is recommended to examine the topic of stable distri-
butions, [12, 61]. Particular cases of stable distributions are the normal distribution,
the Cauchy distribution and the Lévy distribution. If the random data sets have not
finite variance (this can be observed on the PDF tails), the sum may still tend to a
stable distribution.

There are some variants of the CLT, [79]. In particular, the Lyapunov CLT and the
Lindeberg CLT require the random data sets to be independent but not necessarily
to have the same PDF.

Consider again X1, X2, . . . , XK ; each data set has a mean μiand variance σ2
i .

Define s2n = ∑
i

σ2
i and Yi = Xi − μi. If there exists δ > 0 such that:

lim
n→∞

1

s2+δ
n

n∑

i=1

E(|Yi|2+δ) = 0 (2.99)

then the sum of Yi/sn tends to a normal distribution. This is the Lyapunov CLT.
The Lindenberg CLT is similar, [41], but using as condition that for every ε > 0:

lim
n→∞

1

s2n

n∑

i=1

E(|Yi|2 I(| Yi| ≥ ε sn)) = 0 (2.100)

where I() is the indicator function.
Both are sufficient conditions. The Lyapunov condition is stronger than the Lin-

denberg condition.
In the next chapters some sound files will be used for several purposes. These

sounds are quite different: music, animal sounds, sirens… The Program 2.40 just
reads a set of 8 sounds, and adds the corresponding data. Figure2.48 shows a his-
togram of the result: it exhibits a Gaussian shape, as predicted by the central limit
theorem. The final sentence of the Program let you hear the accumulated signal.

Program 2.40 Central limit of wav sounds

%Central limit of wav sounds
%read a set of sound files
[y1,fs]=wavread('srn01.wav'); %read wav file
[y2,fs]=wavread('srn02.wav'); %read wav file
[y3,fs]=wavread('srn04.wav'); %read wav file
[y4,fs]=wavread('srn06.wav'); %read wav file
[y5,fs]=wavread('log35.wav'); %read wav file
[y6,fs]=wavread('ORIENT.wav'); %read wav file
[y7,fs]=wavread('elephant1.wav'); %read wav file
[y8,fs]=wavread('harp1.wav'); %read wav file
%Note: all signals have in this example fs=16000
N=25000; %clip signals to this length
y=zeros(8,N); %signal set
y(1,:)=y1(1:N)'; y(2,:)=y2(1:N)';

2.8 Central Limit 89

Fig. 2.48 Histogram of sum
of signals

-15 -10 -5 0 5 10 15
0

500

1000

1500

2000

2500

3000

y(3,:)=y3(1:N)'; y(4,:)=y4(1:N)';
y(5,:)=y5(1:N)'; y(6,:)=y6(1:N)';
y(7,:)=y7(1:N)'; y(8,:)=y8(1:N)';
%normalization
for nn=1:8,

s=y(nn,:); s=s-mean(s); %zero mean
vr=var(s); s=s/sqrt(vr); %variance=1
y(nn,:)=s;

end;
%sum of signals
S=sum(y);
%histogram
figure(1)
hist(S,30); colormap('cool');
title('histogram of the sum of signals');
%sound of the sum
soundsc(S,fs);

2.9 Bayes’ Rule

According with the Stanford Encyclopedia of Philosophy (web site cited in the
Resources section), “the most important fact about conditional probabilities is
undoubtedly Bayes’ Theorem,whose significancewas first appreciated by theBritish
cleric Thomas Bayes (1764)”.

90 2 Statistical Aspects

Nowadays, the recognition given to the Bayes approach is rapidly extending in
several methodologies and fields of activity, like estimation, modelling, decision
taking, etc.

A reference book on Bayesian Theory is [10]. In addition, [30] provides a detailed
history of how the Bayesian methodology has evolved.

This section has three parts, following a logical order. First, the concept of con-
ditional probability is introduced. Then, the Bayes’ rule is enounced, and illustrated
with the help of some figures. Finally, a brief introduction of Bayesian networks is
made.

2.9.1 Conditional Probability

Let us introduce the concept of conditional probability using an example.
There was a factory producing hundreds of a certain device. The products were

tested before going to the market.
Each device could be ‘good’ or ‘bad’ (it works well, or not). The situation is that

2% of the devices are bad. Then, there are two probabilities:

P(good) = 0.98 ; P(bad) = 0.02 (2.101)

The test says ‘accept’ or ‘reject’. Sometimes the test is erroneous:

• In the case of good devices there are two probabilities:

P(accept |good) = 0.99 ; P(reject |good) = 0.01 (2.102)

• In the case of bad devices there are two probabilities:

P(accept |bad) = 0.03 ; P(reject |bad) = 0.97 (2.103)

Conditional probability is expressed as P (A|B): the conditional probability of A
given B.

Unconditional probability P(A) of the event A, is the probability of A regardless
of what happens with B. The unconditional probability is also denoted as ‘prior’ or
‘marginal’ probability, and also ‘a priori’.

The conditional probability P (A|B) could also be denoted as ‘posterior’, or ‘a
posteriori’ probability.

Notice in the example of the device that good or bad refers to the state of the device,
and accept or reject pertains to measurements. This point of view is important in the
context of Kalman filters.

2.9 Bayes’ Rule 91

The joint probability is the probability of having both A and B events together.
The joint probability is denoted as P (A∩B) (or P (AB), or P(A, B)). Recall that two
events A and B are independent if:

P(A ∩ B) = P(A) P(B) (2.104)

2.9.2 Bayes’ Rule

The conditional probability and the joint probability are related by the formula:

P(A|B) = P(A ∩ B)

P(B)
(2.105)

Likewise:

P(B|A) = P(A ∩ B)

P(A)
(2.106)

Combining the two equations:

P(A|B) P(B) = P(A ∩ B) = P(B|A) P(A) (2.107)

Therefore:

P(A|B) = P(B|A) P(A)

P(B)
(2.108)

This is the famous Bayes’ rule.
Let us return to the devices example. There will be four cases:

(a) P(accept ∩ good) = P(accept| good) P(good) = 0.9702

(b) P(accept ∩ bad) = P(accept| bad) P(bad) = 0.0006

(c) P(reject ∩ good) = P(reject| good) P(good) = 0.0098

(d) P(reject ∩ bad) = P(reject| bad) P(bad) = 0.0194

The rejected devices are:

P(reject) = P(reject ∩ good) + P(reject ∩ bad) = 0.0292 (2.109)

And the probability of a rejected device to be a good device:

P(good|reject) = P(good ∩ reject)

P(reject)
= 0.0098

0.0292
= 0.335 (2.110)

Now, let us introduce conditional PDFs. Given two random variables x1 and x2, the
conditional PDF of x1 given x2 is:

92 2 Statistical Aspects

Fig. 2.49 The PDFs of two
variables A and B

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

x

y

A (beta)

B (normal)

f (x1|x2) = f (x1 ∩ x2)

f (x2)
(2.111)

The Bayes’ rule can be generalized to conditional PDFs.

f (x1|x2) = f (x2|x1) f (x1)

f (x2)
(2.112)

Here is the Chapman-Kolmogorov equation about the product of two conditional
PDFs:

f (x1|(x2 ∩ x3 ∩ x4)) f ((x2 ∩ x3) |x4) = f ((x1 ∩ x2 ∩ x3)|x4) (2.113)

In order to illustrate the Bayes’ rule in the PDF context, a simple example is now
presented. Figure2.49 shows the case: two random variables A and B. The variable
A has a beta PDF; the variable B a normal PDF. There is a region where both PDFs
overlap.

The two products of interest for the Bayes’ rule are shown in Fig. 2.50. In both
cases, the product is plotted: it is a low hill at the bottom. Clearly, the result of the two
products is the same. Notice that the conditional probability f(A|B) is zero outside
the domain of B, and similarly with f(B|A) and A.

It is also clear that the result of the products considered in Fig. 2.50 can also be
obtained by simple product of the two PDFs, as it is shown in Fig. 2.51. The joint
PDF, f (A, B) is also equal to this product.

2.9 Bayes’ Rule 93

Fig. 2.50 The two products
of interest

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

f(A|B) * f(B)

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

f(B|A) * f(A)

Fig. 2.51 The product of the
two PDFs

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

f(A,B)=f(A)*f(B)

Program 2.41 Two overlapped PDFs

% Two overlapped PDFs
x=0:0.01:2.5;
%densities
alpha=5; beta=3;
Apdf=betapdf(x,alpha, beta); %beta PDF
mu=1.3; sigma=0.3;
Bpdf=normpdf(x,mu,sigma); %normal pdf
%product of PDFs at intersection zone
piz=Apdf(50:100).*Bpdf(50:100);
%display
figure(1)
plot(x,Apdf,'r'); hold on;
plot(x,Bpdf,'b');
title('Two random variables A and B: their PDFs')

94 2 Statistical Aspects

xlabel('x'); ylabel('y');
figure(2)
subplot(2,1,1)
plot(x,Bpdf,'b'); hold on;
plot(x(50:100),Apdf(50:100),'r')
plot([x(50) x(50)],[0 Apdf(50)],'r--');
plot(x(50:100),piz,'k');
title('f(A|B) * f(B)');
subplot(2,1,2)
plot(x,Apdf,'r'); hold on;
plot(x(50:100),Bpdf(50:100),'b')
plot([x(100) x(100)],[0 Bpdf(100)],'b--');
plot(x(50:100),piz,'k');
title('f(B|A) * f(A)');
figure(3)
join=Apdf.*Bpdf;
plot(x(50:100),join(50:100),'k'); hold on;
plot(x,Apdf,'r'); hold on;
plot(x,Bpdf,'b');
title('f(A,B)=f(A)*f(B)')

More details on the Bayes’ rule can be found in [64]. Some examples of applica-
tions are given in [11]. A more extensive exposition on Bayesian probability topics
is [16].

2.9.3 Bayesian Networks. Graphical Models

One convenientway for the study of probabilistic situations is offered by theBayesian
networks, [8, 21, 89]. These are graphical models that represent probabilistic rela-
tionships among a set of variables.

A very simple model is shown in Fig. 2.52. It refers to two random variables A
and B. We would say that A is a parent of B, B is a child of A.

According with Fig. 2.52 one has:

P(A ∩ B) = P(A) P(B|A) (2.114)

Both the Bayes network of Fig. 2.52 and Eq. (2.35) can represent the four cases (a,
b, c, d) of the devices example. For instance, the case a) is:

Fig. 2.52 A simple Bayes
network

A B

2.9 Bayes’ Rule 95

Fig. 2.53 Another example
of Bayes network

A

B

C

Fig. 2.54 Two parents in a
Bayes network

A

B

C

P(A = good ∩ B = accept) = P(A = good) P(B = accept|A = good) (2.115)

In some cases, the variables A and B can take only two values: true or false (good
or bad, etc.). In other cases, the variables can take any value.

Figure2.53 represents another situation. In this figure, C is independent of A and
B; while B depends on A.

Concerning Fig. 2.53, one has:

P(A ∩ B ∩ C) = P(A) P(B|A) P(C) (2.116)

A typical example of the situation depicted in Fig. 2.54 is that A and C are the
results of flips of two coins (two possible values: T or H). B is true if the values of
A and C coincide.

Now:
P(A ∩ B ∩ C) = P(B|A ∩ C) P(A) P(C) (2.117)

Suppose that, in the example of the coins, we know that B is true (we got evidence
on this), then:

P((A = H ∩ C = H) | B = true) = 1

2
(2.118)

On the other hand:

P(A = H | B = true) P(C = H | B = true) = 1

2
· 1
2

= 1

4
(2.119)

96 2 Statistical Aspects

Therefore, once we know B is true, A and C are not independent (Eqs. (2.38) and
(2.39) give different results).

The literature related with Bayesian networks (BN) is becoming particularly
extensive. In general, BN are used for the study of scenarios with several alter-
natives, like medical diagnosis, planning and decision making, etc. The description
of a situation in terms of a BN would be quite useful for forward or backward infer-
ence; and also for illustrating the complexity and the internal structure of the problem
at hand.

Most cited books are [59] on BN and decision graphs, [43] on BN and Bayesian
Artificial Intelligence, or [58] on learning BN. This last subject, learning, has deep
interest for a number of reasons, being one of them the possibility of automatic
construction of BN by learning mechanisms, instead of direct human work.

With respect to learning BN, [34] offers a tutorial, [26] presents some BN learning
approaches, and [54] treats in academic detail learning from data.

A related topic is ‘belief networks’. Representative references are [22] for classifier
systems, and the tutorial of [45].

There are many published applications, like some papers connecting BN and GIS.
The acronymGISmeans Geographic Information System, which, for instance, could
be related with the prediction of flooding or avalanches, etc. Examples of this kind
of applications are [86] on BN and GIS based decision systems, and [87] on BN,
GIS and planning in marine pollution scenarios.

Other illustrative applications are, [17] for meteorology, [5, 51, 60] for medical
diagnosis and prediction, [99] for risk analysis and maintenance, [68] for natural
resources management, and [32] for financial analysis. See the book [70] for more
types of applications.

2.10 Markov Process

A stochastic process (or random process) with state space S, is a collection of indexed
random variables. Usually the index is time. The state space could be discrete or
continuous. Likewise, the index (time) could be discrete or continuous. Hence, there
are four general types of stochastic processes. There are many books on stochastic
processes, like [63, 67]. In addition, there are also brief academic introductions, like
[14, 44].

Consider any state Si of the stochastic process. The next state could be any of the
states belonging to S. There are state transition probabilities. The Markov property
is that these probabilities only depend on the present state, and not on past states.

AMarkov chain is a discrete-state random process with theMarkov property. The
chain could be discrete-time or continuous time.

The first part of this section focuses on Markov chains, [42]. The section then
continues with the generation of random data using Markov chain Monte Carlo
(MCMC).

2.10 Markov Process 97

2.10.1 Markov Chain

In a Markov chain the transition probability from Sn to Sn+1 is:

P(Sn+1 | Sn, Sn−1, . . . , Sn−m) = P(Sn+1 | Sn) (2.120)

which is the Markov property.
The transition probabilities could be written as a table. For instance, in a process

with three states A, B and C:

after
A B C

A 0.65 0.20 0.15
before B 0.3 0.24 0.46

C 0.52 0.12 0.36

Notice that row sums are equal to 1.
Also, the transition probabilities could be written in matrix form:

T =
⎡

⎣
0.65 0.20 0.15
0.30 0.24 0.46
0.52 0.12 0.36

⎤

⎦ (2.121)

In writing these numbers we are supposing the Markov chain is time-homogeneous,
that is: the probabilities keep constant along time.

A graphical expression of the Markov chain could be done as a stochastic finite
state machine (FSM). For instance, continuing with the example (Fig. 2.55):

The process starts with an initial probability vector:
⇀

X0 = [x1(0), x2(0), , xk(0)]

Fig. 2.55 An example of
Markov chain FSM

A

B

C

0.20

0.20

0.46

0.340.65

0.12

0.52
0.15

0.36

A

B

C

0.20

0.20

0.46

0.340.65

0.12

0.52
0.15

0.36

98 2 Statistical Aspects

For instance, it could be [0.25, 0.40, 0.35] for the three states example we are
considering (therefore, the initial probabilities are: P(A) = 0.25, P(B) = 0.40,
P(C) = 0.35).

The probability vector after one transition is:

⇀

X1 = ⇀

X0 T (2.122)

And, after n transitions:
⇀

X1 = ⇀

X0 T n (2.123)

There are many applications of this framework. Like for instance the study of certain
system evolutions: market preferences, voting, population components (the case of
several types of trees in a forest), transportation options, etc. We recommend [94],
as it describes the five greatest applications of Markov Chains, including Shannon’s
information theory, web searching (Google), computer performance evaluation, etc.
Another interesting text is [35], with a connection between Markov chains and game
theory.

A transition matrix is regular if for some k, all the entries tij ∈ Tk are positive;
that is: 0 < tij < 1. For example:

T =
⎡

⎣
0.35 0.65 0
0 0.30 0.7
0.75 0.25 0

⎤

⎦ (2.124)

T 2 =
⎡

⎣
0.1225 0.4225 0.4550
0.5250 0.2650 0.2100
0.2625 0.5625 0.1750

⎤

⎦ (2.125)

For k = 2, all entries are positive; the matrix is regular.
If the matrix T is regular, then for any initial probability vector

⇀
z , it happens that

as the number of transitions increases, the probability vector tends to a unique vector
⇀

V :
⇀
z Tn = ⇀

V (2.126)

This vector
⇀

V is denoted as the equilibrium vector, or the fixed vector, or the steady
state vector. This last name refers to the fact that:

⇀

V T = ⇀

V (2.127)

Therefore, the studies on system evolutions may well end with a constant,
equilibrium population.

2.10 Markov Process 99

It is important to study the eigenvalues of the transition matrix. If the transition
matrix is regular, the largest eigenvalue is 1, and the rest of eigenvalues are |λ1| < 1.
Let us express a 3× 3 transition matrix in diagonal form:

T = ⇀
v

⎡

⎣
1 0 0
0 λ2 0
0 0 λ3

⎤

⎦ ⇀
v

−1
(2.128)

Then, as n increases:

Tn = ⇀
v

⎡

⎣
1 0 0
0 λn

2 0
0 0 λn

3

⎤

⎦ ⇀
v

−1 → ⇀
v

⎡

⎣
1 0 0
0 0 0
0 0 0

⎤

⎦ ⇀
v

−1
(2.129)

Therefore, the matrix Tn converges to a constant matrix we shall denote as Te.
Notice that Eq. (2.127) gives the left eigenvector corresponding to an eigenvalue

equal to 1. This eigenvector is
⇀

V . All the rows of matrix Te are equal to
⇀

V . For

instance, if
⇀

V = [0.13 , 0.42, 0.45], then:

Te =
⎡

⎣
0.13 0.42 0.45
0.13 0.42 0.45
0.13 0.42 0.45

⎤

⎦ (2.130)

Another type of Markov chain is the absorbing Markov chain. One or more of
the diagonal entries tii of T is equal to 1, so the transition matrix is not regular. The
states corresponding to such entries are absorbing states. Once the process enters in
an absorbing state, it is not possible to leave.

Program B.1, which has been included in the Appendix for long programs, con-
siders a simple weather prediction model with three states: Clouds (‘C’), Rain (‘R’),
or Sun (‘S’). We take the same values depicted in Fig. 2.55. The program departs
from a vector of initial probabilities, and depicts in Fig. 2.56 the transitions between
states.

The Program B.1 also prints the series of consecutive states as a string of charac-
ters, like: CCSRCRR…

2.10.2 Markov Chain Monte Carlo (MCMC)

Let us consider again the generation of random data with a desired PDF, p(x). The
MCMC methods do use a Markov chain that converges to a stationary distribution
with the desired p(x). Therefore, once the chain has converged, the chain is used to
get draws from p(x), although they would be correlated.

This convergence occurs regardless of the starting point. Usually, one throws out
a certain number of initial draws. This is known as the ‘burn-in’ of the algorithm

100 2 Statistical Aspects

Fig. 2.56 Example of
Markov Chain result

0 10 20 30 40 50 60

1

1.5

2

2.5

3

n

The research has already provided a number of methods for driving the chain to
the desired PDF. See for instance the handbook [15]. The key contribution to start
all this activity was the Metropolis algorithm, which is recognized as one of the ten
most influential algorithms proposed in the 20th century [7]. According with [28],
one could tell of a MCMC revolution. A brief history of this revolution is reported
in [77], and with more extension in [75].

As background literature on MCMC, a brief introduction is [95], while a more
extended introduction is [4]. Details of the rationale behind MCMC can be found in
[23]. More extended texts are [9, 84, 93]. In addition, the academic literature from
[76, 90] includes MATLAB programs.

2.10.2.1 Metropolis Algorithm

The goal is to draw samples from some p(x) PDF, where p(x) = f (x) / K , and K is
not known.

According with the algorithm introduced by Nicholas Metropolis in 1953, a pro-
posal distribution (also called jumping distribution) q(y|x) is chosen. This distribution
corresponds to the transition probabilities of a Markov chain.

The generation of samples starts from an initial value x0,

(a) Draw a sample from q(y|x) → x1
(b) Compute:

α = p(x1)

p(x0)
= f (x1)

f (x0)
(2.131)

(the constant K cancels out)

2.10 Markov Process 101

(c) If α >1 accept x1 as new sample;
else, with probability α accept x1,

else reject it and take x1 = x0 as new sample
(d) Back to (a) until sufficient number of samples has been obtained.

Unlike rejection sampling, when a sample is rejected we do not try again until
one is accepted, we just let x1 = x0 and continue with the next time step.

The Metropolis algorithm uses a symmetric proposal distribution:

q(y|x) = q(x|y) (2.132)

2.10.2.2 Metropolis–Hastings Algorithm

Hastings generalized in 1970 the Metropolis algorithm, taking an arbitrary q(y|x),
possibly non-symmetric, and using the following acceptance probability:

α = min

(
f (x1) q(x1|x0)
f (x0) q(x0|x1) , 1

)
(2.133)

(the Metropolis algorithm takes: α = min(f (x1)
f (x0)

, 1))
See [23], and references therein, for different implementation strategies for the

Metropolis–Hastings algorithm.

2.10.2.3 Example

Let us consider for example a desired PDF with a half-sine shape. We choose a
Gaussian PDF for the proposal distribution. Figure 2.57 depicts the scenario with the
desired (D) PDF and the proposal (P) PDF.

Program 2.42 provides an implementation of the Metropolis algorithm for the
example just described. Two figures are generated. The first is Fig. 2.57 with the
desired and the proposal PDFs. The second is Fig. 2.58 that shows the histogram of
draws obtained by the Metropolis algorithm, which agrees with the desired PDF.

Program 2.42 Generation of random data with a desired PDF

% Generation of random data with a desired PDF
% Using MCMC
% Metropolis algorithm
% example of desired PDF
x=0:(pi/100):pi;
dpf=0.5*sin(x); % desired PDF
% example of proposal PDF (normal)
xp=-4:(pi/100):4;
sigma=0.6; %deviation
q=normpdf(xp,0,sigma);

102 2 Statistical Aspects

Fig. 2.57 The case
considered in the Metropolis
example

-2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

P
D

Fig. 2.58 Histogram of
random data generated by
the Metropolis algorithm

0 0.5 1 1.5 2 2.5 3 3.5
0

50

100

150

200

250

x

% generation of random data
N=5000; %number of data
z=zeros(1,N); %space for data to be generated
x0=pi/2; %initial value
for nn=1:N,

inr=0;
while inr==0, %new value proposal (Markovian transition)

x1=x0+(sigma*randn(1)); %normal distribution (symmetric)
if (x1<pi) & (x1>0),

inr=1; %x1 is valid (is inside dpf domain)
end;

end;
f1=0.5*sin(x1);

2.10 Markov Process 103

f0=0.5*sin(x0);
alpha=f1/f0;
if alpha>=1

z(nn)=x1; %accept
else
aux=rand(1);
if aux<alpha,

z(nn)=x1; %accept
else
z(nn)=x0;
end;

end;
x0=x1;
end;
nz=z(1000:5000); %eliminate initial data
figure(1)
plot(x,dpf,'k'); hold on;
plot(xp,q,'r');
axis([-2 4, 0 0.8]);
xlabel('x'); title('desired PDF and proposal PDF');
figure(2)
hist(nz,30); colrmap('cool');
xlabel('x');title('histogram of the generated data');

TheMATLABStatistics Toolbox includes themhsample() and slicesample() func-
tions for using MCMC.

2.10.3 Hidden Markov Chain (HMM)

Consider the case of a Markov chain where states emit certain observable variables.
Figure 2.59 shows a simplistic model of speech, the Markov chain has two states:
(1) wovel and (2) consonant. When the process is in state 1, it could emit one of the
three consonants W, H, or T, or a spacing _. When the process is in state 2, it could
emit one of the four wovels A, E, O, U. The emission of any observable is made with
an assigned probability.

Hence, in this example, there is a ‘hidden Markov chain’ (HMM) with two states,
and eight observables. The fundamental reference on HMM is [72]. Brief introduc-
tions are given in [29, 85].

This kind of process is being useful for the study of languages, genetics (bioin-
formatics), and other important fields, [24, 31, 48, 100].

Program B.2 implements the HMM process depicted in the previous diagram
(Fig. 2.59). The results of one experiment running this program is shown in Fig. 2.60,
with two subplots. The subplot on top corresponds to the hidden Markov chain
transitions. The other subplot goes through four possible states (1, 2, 3, 4), according
with the obervables emitted during the experiment.

The Program B.2 has been included in the Appendix for long programs. The
program also prints the ‘synthetic speech’ generated by theHMM. It is possible, from
public domain, to obtain data on transition probabilities of real human languages.

104 2 Statistical Aspects

1 2

H

0.7

0.5

0.2

0.50.3

0.2

0.3
0.3

0.2

consonant wovel

T O

W

_ EA

U

0.2

0.3 0.3

Fig. 2.59 An example of HMM (speech generator)

0 10 20 30 40 50 60

1

1.5

2

2.5
HMM (synthetic speech): the hidden states

n

0 10 20 30 40 50 60

1

2

3

4

5 the emissions

n

Fig. 2.60 Results of HMM example

In order to give a more complete idea of HMM, Fig. 2.61 shows another diagram.
It is about the habits of someone, as the day is sunny or there is rain. Notice that for
instance, this person like to walk under the Sun, and also (not so much) to walk in
the rain.

The description of an HMM can be made with the transition matrix of the hidden
Markov chain and with a matrix of observation probabilities. Continuing with the
example, this last matrix corresponds to the following table:

Observations
(1)Swim (2)Walk (3)Shop (4)TV

States 1 0.2 0.5 0.3 0
2 0 0.2 0.4 0.4

2.10 Markov Process 105

Fig. 2.61 Another HMM
example

1 2

Swim

0.5

0.4

0.4

0.60.5

0.4

Sun Rain

TVWalk Shop

0.2 0.5 0.3 0.2

1 2

Swim

0.5

0.4

0.4

0.60.5

0.4

Sun Rain

TVWalk Shop

0.2 0.5 0.3 0.2

Fig. 2.62 An experiment
with the HMM example

(S1=1)

(O1=2)

(S4=1)

(O2=3) (O3=3) (O4=4)

(S2=1) (S3=2)

Fig. 2.63 A generic HMM
path

S1

O1

S2 S3 S4

O2 O3 O4

S1

O1

S2 S3 S4

O2 O3 O4

Figure2.62 shows an example of experiment running the HMM. The process
advances through the Markov chain states, and it is observed by a sequence of
emissions.

For example, suppose you are studying a series of archaeological strata, from
a series of observables you might be interested in guessing if there were climate
changes along certain epochs.

Figure2.63 depicts a more abstract diagram showing the general behavior of the
HMM along time. When you give values to states and observables, you describe a
particular path of the process.

An interesting set of HMM application examples is given in [74]. Other published
applications are, [88] on video background modeling, [20] on folk music classifica-
tion, and [25] on classification of continuous heart sound signals.

106 2 Statistical Aspects

2.11 MATLAB Tools for Distributions

The MATLAB Statistics Toolbox provides an interactive graph of PDF for many
probability distributions. In response to the MATLAB prompt, the user writes:

disttool

And the screen shown in Fig. 2.64 will appear.
The user may select one of the many types of distributions included in the tool,

and choose the visualization of the CDF or the PDF. Distribution parameters can be
changed in order to observe their effects.

Another tool of interest is:

randtool

In response to this, the screen shown in Fig. 2.65 will appear.
The randtool will obtain samples of the PDF selected by the user, and visualize

the corresponding histogram.
In other order of things, it is convenient to mention the interest of the MATLAB

function boxplot() for the display of statistical box plots. See the web site (https://
plot.ly/matlab/box-plots/) for interesting examples.

Fig. 2.64 Initial disttool screen

https://plot.ly/matlab/box-plots/
https://plot.ly/matlab/box-plots/

2.11 MATLAB Tools for Distributions 107

Fig. 2.65 Initial randtool screen

Figure2.66 shows an example of box plot. The figure has been generated with the
Program 2.43, which also contains the data being visualized.

Each box is used to indicate the position of the upper and lower quartiles. There
is a crossbar inside the box that indicates the median. The extrema of the distribution
are indicated with dashed lines and markers. See [69] for more details.

Program 2.43 Example of box plots

%Example of box plots
data=[1 5 8 3;
3 2 1 5;
5 4 8 1;
9 12 1 3;
14 0 2 2;
7 9 1 3];
median(data) %median of each column
mean(data) %mean of each column
std (data) % standard deviation of each column
figure(1)
boxplot(data)
title('box plot example')

108 2 Statistical Aspects

Fig. 2.66 Example of box
plot

1 2 3 4

0

2

4

6

8

10

12

14

V
al

ue
s

Column Number

2.12 Resources

2.12.1 MATLAB

2.12.1.1 Toolboxes

• Exploratory Data Analysis Toolbox (EDA):
http://cda.psych.uiuc.edu/martinez/edatoolbox/Docs/Contents.htm

• Bayes Net Toolbox:
https://code.google.com/p/bnt/

• Bayes Net Toolbox for Student Modeling:
http://www.cs.cmu.edu/~listen/BNT-SM/

• Markov Decision Processes (MDP) Toolbox:
http://www7.inra.fr/mia/T/MDPtoolbox/

• MCMC Toolbox for Matlab:
http://helios.fmi.fi/~lainema/mcmc/

• MCMC Methods for MLP and GP and Stuff (Aalto Univ.):
http://becs.aalto.fi/en/research/bayes/mcmcstuff/

• Hidden Markov Model (HMM) Matlab Toolbox:
http://nuweb.neu.edu/bbarbiellini/CBIO3580/HW7.html

• Mendel HMM Toolbox for Matlab:
http://www.math.uit.no/bi/hmm/

• Stochastic Processes Toolkit for Risk Magement:
http://www.damianobrigo.it/toolboxweb.pdf

• CompEcon Toolbox for Matlab (economics and finance):
http://www4.ncsu.edu/~pfackler/compecon/toolbox.html

http://cda.psych.uiuc.edu/martinez/edatoolbox/Docs/Contents.htm
https://code.google.com/p/bnt/
http://www.cs.cmu.edu/~listen/BNT-SM/
http://www7.inra.fr/mia/T/MDPtoolbox/
http://helios.fmi.fi/~lainema/mcmc/
http://becs.aalto.fi/en/research/bayes/mcmcstuff/
http://nuweb.neu.edu/bbarbiellini/CBIO3580/HW7.html
http://www.math.uit.no/bi/hmm/
http://www.damianobrigo.it/toolboxweb.pdf
http://www4.ncsu.edu/~pfackler/compecon/toolbox.html

2.12 Resources 109

2.12.1.2 Links to Toolboxes

• Van Horn (Bayesian statistical inference):
http://ksvanhorn.com/bayes/free-bayes-software.html

• Graphical Models (Bayesian):
http://fuzzy.cs.uni-magdeburg.de/books/gm/tools.html

• Tools (Bayesian matters):
http://www.cs.iit.edu/~mbilgic/classes/fall10/cs595/tools.html

2.12.1.3 Matlab Code

• Educational MATLAB GUIs (demos):
http://users.ece.gatech.edu/mcclella/matlabGUIs/

• Advanced Box Plot for Matlab (Alex Bikfalvi):
http://alex.bikfalvi.com/research/advanced_matlab_boxplot/

• Bayesian Statistics:
http://www2.isye.gatech.edu/~brani/isyebayes/programs.html

• Matlab listings for Markov chains (Renato Feres):
http://www.math.wustl.edu/~feres/Math450Lect04.pdf

• Matlab Code: Tutorial 1: Creating a Bayesian Network:
https://dslpitt.org/genie/wiki/Matlab_Code:_Tutorial_1:_Creating_a_Bayesian
_Network

• CGBayesNets (Gaussian Bayesian networks):
http://www.cgbayesnets.com/

• Monte Carlo Methods (G. Gordon):
http://www.cs.cmu.edu/~ggordon/MCMC/

• MCMC (Kevin Murphy):
http://www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall06/reading/mcmc.pdf

• Handbook of Monte Carlo Methods (D.P. Kroese et al.):
http://www.maths.uq.edu.au/~kroese/montecarlohandbook/

2.12.2 Web Sites

• Stanford Encyclopedia of Philosophy (Bayes’ Theorem):
http://plato.stanford.edu/entries/bayes-theorem/

• STAT 504 PennState Univ.:
https://onlinecourses.science.psu.edu/stat504

• scikit-learn:
http://scikit-learn.org/dev/index.html

• Graphics_Examples (sample data for graphics demonstrations):
https://people.sc.fsu.edu/~jburkardt/m_src/graphics_examples/graphics
_examples.html

http://ksvanhorn.com/bayes/free-bayes-software.html
http://fuzzy.cs.uni-magdeburg.de/books/gm/tools.html
http://www.cs.iit.edu/~mbilgic/classes/fall10/cs595/tools.html
http://users.ece.gatech.edu/mcclella/matlabGUIs/
http://alex.bikfalvi.com/research/advanced_matlab_boxplot/
http://www2.isye.gatech.edu/~brani/isyebayes/programs.html
http://www.math.wustl.edu/~feres/Math450Lect04.pdf
https://dslpitt.org/genie/wiki/Matlab_Code:_Tutorial_1:_Creating_a_Bayesian_Network
https://dslpitt.org/genie/wiki/Matlab_Code:_Tutorial_1:_Creating_a_Bayesian_Network
http://www.cgbayesnets.com/
http://www.cs.cmu.edu/~ggordon/MCMC/
http://www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall06/reading/mcmc.pdf
http://www.maths.uq.edu.au/~kroese/montecarlohandbook/
http://plato.stanford.edu/entries/bayes-theorem/
https://onlinecourses.science.psu.edu/stat504
http://scikit-learn.org/dev/index.html
https://people.sc.fsu.edu/protect unhbox voidb@x penalty @M {}jburkardt/m_src/graphics_examples/graphics_examples.html
https://people.sc.fsu.edu/protect unhbox voidb@x penalty @M {}jburkardt/m_src/graphics_examples/graphics_examples.html
https://people.sc.fsu.edu/protect unhbox voidb@x penalty @M {}jburkardt/m_src/graphics_examples/graphics_examples.html

110 2 Statistical Aspects

• Probvis; K. Potter (visualization of distribution functions.):
https://people.sc.fsu.edu/~jburkardt/

• John Burkardt (Matlab codes, examples, etc.):
https://people.sc.fsu.edu/~jburkardt/

• Bayes Nets:
http://www.bayesnets.com/

• The Gaussian Processes Web Site:
http://www.gaussianprocess.org/

• Belief Networks:
https://www.cis.upenn.edu/~ungar/KDD/belief-nets.html

References

1. M.A. Al-Fawzan, Methods for Estimating the Parameters of TheWeibull Distribution (King
Abdulaziz City for Science and Technology, Saudi Arabia, 2000). http://interstat.statjournals.
net/YEAR/2000/articles/0010001.pdf

2. S.J. Almalki, S. Nadarajah, Modifications of the Weibull distribution: A review. Reliab. Eng.
Syst. Saf. 124, 32–55 (2014)

3. E. Anderson, Monte Carlo Methods and Importance Sampling. Lecture Notes, UC Berkeley
(1999). http://ib.berkeley.edu/labs/slatkin/eriq/classes/guest_lect/mc_lecture_notes.pdf

4. C. Andrieu, N. De Freitas, A. Doucet, M.I. Jordan, An introduction to MCMC for machine
learning. Mach. Learn. 50(1–2), 5–43 (2003)

5. G. Arroyo-Figueroa, L.E. Suear, A temporal Bayesian network for diagnosis and prediction,
in Proceedings 15th Conference Uncertainty in Artificial Intelligence (Morgan Kaufmann
Publishers Inc, 1999), pp. 13–20

6. A. Assenza, M. Valle, M. Verleysen, A comparative study of various probability density
estimation methods for data analysis. Int. J. Comput. Intell. Syst. 1(2), 188–201 (2008)

7. I. Beichl, F. Sullivan, The Metropolis algorithm. Comput. Sci. Eng. 2(1), 65–69 (2000)
8. I. Ben-Gal, Bayesian networks, in Encyclopedia of Statistics in Quality & Reliability, ed. by

F. Faltin, R. Kenett, F. Ruggeri (Wiley, Chichester, 2007)
9. M. Bergomi, C. Pedrazzoli, Bayesian Statistics: Computational Aspects. Lecture Notes, ETH

Zurich (2008). http://www.rw.ethz.ch/dmath/research/groups/sfs-old/teaching/lectures/FS_/
seminar/8.pdf

10. J.M. Bernardo, A.F.M. Smith, Bayesian Theory (Wiley, New York, 2000)
11. G. Bohling, Applications of Bayes’ Theorem. Lecture Notes, Kansas Geological Surveys

(2005). http://people.ku.edu/~gbohling/cpe940/BayesOverheads.pdf
12. S. Borak, W. Härdle, R. Weron, Stable distributions, in Statistical Tools for Finance and

Insurance (2005), pp. 21–44
13. G.E. Box, M.E. Muller, A note on the generation of random normal deviates. Ann. Math. Stat.

29, 610–611 (1958)
14. L. Breuer. Introduction to Stochastic Processes. Lecture Notes, Univ. Kent (2014). https://

www.kent.ac.uk/smsas/personal/lb209/files/notes1.pdf
15. S. Brooks, A. Gelman, G.L. Jones, X.-L. Meng, Handbook of Markov Chain Mote Carlo

(Chapman and Hall/CRC, Boca Raton, 2011)
16. H. Bruyninckx, Bayesian Probability. Lecture Notes, KU Leuven, Belgium (2002). http://

www.stats.org.uk/bayesian/Bruyninckx.pdf
17. R. Cano, C. Sordo, J.M. Gutiérrez, Applications of Bayesian networks in meteorology, in

Advances in Bayesian Networks, ed. by J.A. Gamez, et al. (Springer, Berlin, 2004), pp. 309–
328

https://people.sc.fsu.edu/~jburkardt/
https://people.sc.fsu.edu/~jburkardt/
http://www.bayesnets.com/
http://www.gaussianprocess.org/
https://www.cis.upenn.edu/~ungar/KDD/belief-nets.html
http://interstat.statjournals.net/YEAR/2000/articles/0010001.pdf
http://interstat.statjournals.net/YEAR/2000/articles/0010001.pdf
http://ib.berkeley.edu/labs/slatkin/eriq/classes/guest_lect/mc_lecture_notes.pdf
http://www.rw.ethz.ch/dmath/research/groups/sfs-old/teaching/lectures/FS_/seminar/8.pdf
http://www.rw.ethz.ch/dmath/research/groups/sfs-old/teaching/lectures/FS_/seminar/8.pdf
http://people.ku.edu/~gbohling/cpe940/BayesOverheads.pdf
https://www.kent.ac.uk/smsas/personal/lb209/files/notes1.pdf
https://www.kent.ac.uk/smsas/personal/lb209/files/notes1.pdf
http://www.stats.org.uk/bayesian/Bruyninckx.pdf
http://www.stats.org.uk/bayesian/Bruyninckx.pdf

References 111

18. A.N. Celik, A statistical analysis of wind power density based on the Weibull and Rayleigh
models at the southern region of Turkey. Renew. Energy 29(4), 593–604 (2004)

19. V. Cevher, Importance Sampling. Lecture Notes, Rice University (2008). http://www.ece.rice.
edu/~vc3/elec633/ImportanceSampling.pdf

20. W. Chai, B. Vercoe, Folk music classification using hidden Markov models, in Proceedings
of International Conference on Artificial Intelligence, vol. 6, no. 4 (2001)

21. E. Charniak, Bayesian networks without tears. AI Mag. 12(4), 50–63 (1991)
22. J. Cheng, R. Greiner, Learning bayesian belief network classifiers: algorithms and system, in

Advances in Artificial Intelligence, ed. by M. Stroulia (Springer, Berlin, 2001), pp. 141–151
23. S. Chib, E. Greenberg, Understanding the Metropolis-Hastings algorithm. Am. Stat. 49(4),

327–335 (1995)
24. K.H. Choo, J.C. Tong, L. Zhang, Recent applications of hidden Markov models in computa-

tional biology. Genomics Proteomics Bioinf. 2(2), 84–96 (2004)
25. Y.J. Chung, Classification of continuous heart sound signals using the ergodic hiddenMarkov

model. Pattern Recogn. Image Anal. 563–570 (2007)
26. R. Daly, Q. Shen, S. Aitken, Learning Bayesian networks: approaches and issues. Knowl.

Eng. Rev. 26(2), 99–157 (2011)
27. L. Devroye, Sample-based non-uniform random variate generation, inProceedings ACM 18th

Winter Conference on Simulation (1986), pp. 260–265
28. P. Diaconis, TheMarkov chainMonte Carlo revolution. Bull. Am.Math. Soc. 46(2), 179–205

(2009)
29. S.R. Eddy, What is a hidden Markov model? Nat. Biotechnol. 22(10), 1315–1316 (2004)
30. S.E. Fienberg, When did Bayesian inference become “Bayesian”? Bayesian Anal. 1(1), 1–40

(2006)
31. M. Gales, S. Young, The application of hidden Markov models in speech recognition. Found.

Trends Sig. Process. 1(3), 195–304 (2008)
32. J. Gemela, Financial analysis using Bayesian networks. Appl. Stoch. Models Bus. Ind. 17(1),

57–67 (2001)
33. M. Haugh,Generating Random Variables and Stochastic Processes. Lecture Notes, Columbia

Univ (2010). http://www.columbia.edu/~mh2078/MCS_Generate_RVars.pdf
34. D. Heckerman,A Tutorial on Learning with Bayesian Networks (Springer, Netherlands, 1998)
35. C.C. Heckman, Matrix Applications: Markov Chains and Game Theory. Lecture Notes, Ari-

zona State Univ (2015). https://math.la.asu.edu/~checkman/MatrixApps.pdf
36. S. Holmes, Maximum Likelihood Estimation. Lecture Notes, Stanford Univ. (2001). http://

statweb.stanford.edu/~susan/courses/s200/lect11.pdf
37. S. Holmes, The Methods of Moments. Lecture Notes, Stanford Univ. (2001). http://statweb.

stanford.edu/~susan/courses/s200/lect8.pdf
38. R.J. Hoppenstein, Statistical Reliability Analysis on Rayleigh Probability Distributions

(2000). www.rfdesign.com
39. S. Intajag, S. Chitwong, Speckle noise estimation with generalized gamma distribution, in

Proceedings of IEEE International Joint Conference SICE-ICASE (2006), pp. 1164–1167
40. D. Joyce, Common Probability Distributions. Lecture Notes, Clark University (2006)
41. K. Knight.Central Limit Theorems. Lecture Notes, Univ. Toronto (2010). www.utstat.toronto.

edu/keith/eco2402/clt.pdf
42. T. Konstantopoulos, Markov Chains and Random Walks. Lecture Notes (2009). http://159.

226.43.108/~wangchao/maa/mcrw.pdf
43. K.B. Korb, A.E. Nicholson, Bayesian Artificial Intelligence (CRC Press, Boca Raton, 2010)
44. M. Kozdron, The Definition of a Stochastic Process. Lecture Notes, Univ. Regina (2006).

http://stat.math.uregina.ca/~kozdron/Teaching/Regina/862Winter06/Handouts/revised_
lecture1.pdf

45. M.L.Krieg,A tutorial onBayesian belief networks. Technical ReportDSTO-TN-0403 (2001).
http://dspace.dsto.defence.gov.au/dspace/handle/1947/3537

46. D.P. Kroese, A Short Introduction to Probability. Lecture Notes, Univ. Queensland (2009).
http://www.maths.uq.edu.au/~kroese/asitp.pdf

http://www.ece.rice.edu/~vc3/elec633/ImportanceSampling.pdf
http://www.ece.rice.edu/~vc3/elec633/ImportanceSampling.pdf
http://www.columbia.edu/~mh2078/MCS_Generate_RVars.pdf
https://math.la.asu.edu/~checkman/MatrixApps.pdf
http://statweb.stanford.edu/~susan/courses/s200/lect11.pdf
http://statweb.stanford.edu/~susan/courses/s200/lect11.pdf
http://statweb.stanford.edu/~susan/courses/s200/lect8.pdf
http://statweb.stanford.edu/~susan/courses/s200/lect8.pdf
www.rfdesign.com
www.utstat.toronto.edu/keith/eco2402/clt.pdf
www.utstat.toronto.edu/keith/eco2402/clt.pdf
http://159.226.43.108/~wangchao/maa/mcrw.pdf
http://159.226.43.108/~wangchao/maa/mcrw.pdf
http://stat.math.uregina.ca/~kozdron/Teaching/Regina/862Winter06/Handouts/revised_lecture1.pdf
http://stat.math.uregina.ca/~kozdron/Teaching/Regina/862Winter06/Handouts/revised_lecture1.pdf
http://dspace.dsto.defence.gov.au/dspace/handle/1947/3537
http://www.maths.uq.edu.au/~kroese/asitp.pdf

112 2 Statistical Aspects

47. D.P. Kroese, T. Brereton, T. Taimre, Z.I. Botev, Why the Monte Carlo method is so important
today. Wiley Interdisciplinary Reviews: Computational Statistics 6(6), 386–392 (2014)

48. A. Krogh, M. Brown, I.S. Mian, K. Sjölander, D. Haussler, Hidden Markov models in com-
putational biology: applications to protein modeling. J. Mol. Biol. 235(5), 1501–1531 (1994)

49. E. Limpert, W.A. Stahel, M. Abbt, Log-normal distributions across the sciences: keys and
clues. Bioscience 51(5), 341–352 (2001)

50. R. Linna, Monte Carlo Methods I. Lecture Notes, Aalto University (2012). http://www.lce.
hut.fi/teaching/S-114.1100/lect_9.pdf

51. P. Lucas, Bayesian Networks in Medicine: A Model-based Approach to Medical Decision
Making. Lecture Notes, Univ. Aberdeen (2001). http://cs.ru.nl/~peterl/eunite.pdf

52. D.J. MacKay, Introduction to Monte Carlo methods, in Learning in Graphical Models, ed.
by M.I. Jordan (Springer, Berlin, 1998), pp. 175–204

53. V. Manian, Image Processing: Image Restoration. Lecture Notes, Univ. Puerto Rico (2009).
www.ece.uprm.edu/~manian/chapter5IP.pdf

54. D.Margaritis, LearningBayesianNetworkModel Structure fromData. Ph.D. thesis, USArmy
(2003)

55. W.L. Martinez, A.R. Martines, Computational Statistics Handbook with MATLAB (Chapman
& Hall/CRC, Boca Raton, 2007)

56. G.M. Masters, Renewable and Efficient Electric Power Systems (Wiley, New York, 2013)
57. I.J. Myung, Tutorial on maximum likelihood estimation. J. Math. Psychol. 47(1), 90–100

(2003)
58. R.E. Neapolitan, Learning Bayesian Networks, vol. 38 (Prentice Hall, Upper Saddle River,

2004)
59. T.D. Nielsen, F.V. Jensen, Bayesian Networks and Decision Graphs (Springer Science &

Business Media, New York, 2009)
60. D. Nikovski, Constructing bayesian networks for medical diagnosis from incomplete and

partially correct statistics. IEEE T. Knowl. Data Eng. 12(4), 509–516 (2000)
61. J.P. Nolan, Stable Distributions, Chap1. Lecture Notes, American University (2014). http://

academic2.american.edu/~jpnolan/stable/chap1.pdf
62. F.N. Nwobi, C.A. Ugomma, A comparison of methods for the estimation of Weibull distrib-

ution parameters. Adv. Method. Stat./Metodoloski zvezki 11(1), 65–78 (2014)
63. P. Olofsson, M. Andersson, Probability, Statistics, and Stochastic Processes (Wiley, Chich-

ester, 2012)
64. B.A. Olshausen, Bayesian Probability Theory. Lecture Notes, UC. Berkeley (2004). http://

redwood.berkeley.edu/bruno/npb163/bayes.pdf
65. A.B. Owen, Monte Carlo Theory, Methods and Examples. Lecture Notes, Stanford Univ.

(2013). Book in progress. http://statweb.stanford.edu/~owen/mc/
66. C. Pacati, General Sampling Methods. Lecture Notes, Univ. Siena (2014). http://www.econ-

pol.unisi.it/fineng/gensampl_doc.pdf
67. M. Pinsky, S. Karlin, An Introduction to Stochastic Modeling (Academic Press, Cambridge,

2010)
68. C.A. Pollino, C. Henderson, Bayesian Networks: A Guide for Their Application in Natural

Resource Management and Policy. Technical Report 14, Landscape Logicpp. (2010)
69. K. Potter, Methods for Presenting Statistical Information: The Box Plot. Lecture Notes, Univ.

Utah (2006). http://www.kristipotter.com/publications/potter-MPSI.pdf
70. O. Pourret, P. Naïm, B. Marcot (eds.), Bayesian Networks: A Practical Guide to Applications,

vol. 73 (Wiley, Chichester, 2008)
71. R forge distributionsCore Team.Aguide on probability distributions. Technical report (2009).

http://dutangc.free.fr/pub/prob/probdistr-main.pdf
72. L. Rabiner, A tutorial on hidden markov models and selected applications in speech recogni-

tion. Proc. IEEE 77(2), 257–286 (1989)
73. R. Ramamoorthi, Monte Carlo Integration. Lecture Notes, U.C. Berkeley (2009). https://inst.

eecs.berkeley.edu/~cs/fa09/lectures/scribe-lecture4.pdf

http://www.lce.hut.fi/teaching/S-114.1100/lect_9.pdf
http://www.lce.hut.fi/teaching/S-114.1100/lect_9.pdf
http://cs.ru.nl/~peterl/eunite.pdf
www.ece.uprm.edu/~manian/chapter5IP.pdf
http://academic2.american.edu/~jpnolan/stable/chap1.pdf
http://academic2.american.edu/~jpnolan/stable/chap1.pdf
http://redwood.berkeley.edu/bruno/npb163/bayes.pdf
http://redwood.berkeley.edu/bruno/npb163/bayes.pdf
http://statweb.stanford.edu/~owen/mc/
http://www.econ-pol.unisi.it/fineng/gensampl_doc.pdf
http://www.econ-pol.unisi.it/fineng/gensampl_doc.pdf
http://www.kristipotter.com/publications/potter-MPSI.pdf
http://dutangc.free.fr/pub/prob/probdistr-main.pdf
https://inst.eecs.berkeley.edu/~cs/fa09/lectures/scribe-lecture4.pdf
https://inst.eecs.berkeley.edu/~cs/fa09/lectures/scribe-lecture4.pdf

References 113

74. N. Ramanathan, Applications of Hidden Markov Models. Lecture Notes, University of Mary-
land (2006). http://www.cs.umd.edu/~djacobs/CMSC828/ApplicationsHMMs.pdf

75. M. Richey, The evolution of Markov chain Monte Carlo methods. Am. Math. Mon. 117(5),
383–413 (2010)

76. B.D. Ripley, Computer-Intensive Statistics. Lecture Notes, Oxford Univ (2008). http://www.
stats.ox.ac.uk/~ripley/APTS2012/APTS-CIS-lects.pdf

77. C. Robert, G. Casella, A short history of Markov chain Monte Carlo: Subjective recollections
from incomplete data. Stat. Sci. 26(1), 102–115 (2011)

78. S. Stahl, The evolution of the normal distribution. Math. Mag. 79(2), 96–113 (2006)
79. F.W. Scholz, Central Limit Theorems and Proofs. Lecture Notes, Univ. Washington (2011).

http://www.stat.washington.edu/fritz/DATAFILES394_/CLT.pdf
80. R. Seydel, Tools for Computational Finance (Springer, Berlin, 2012)
81. S.J. Sheather, Density estimation. Stat. Sci. 19(4), 588–597 (2004)
82. K. Sigman,Acceptance-Rejection Method. LectureNotes, ColumbiaUniversity (2007). www.

columbia.edu/~ks20/4703-Sigman-Notes-ARM.pdf
83. B.W. Silverman, Density Estimation for Statistics and Data Analysis (2002). https://ned.ipac.

caltech.edu/level5/March02/Silverman/paper.pdf
84. M. Sköld, Computer Intensive Statistical Methods. Lecture Notes, Lund University (2006)
85. M. Stamp, A Revealing Introduction to Hidden Markov Models. Lecture Notes,

San Jose State University (2012). http://gcat.davidson.edu/mediawiki-1.19.1/images/2/23/
HiddenMarkovModels.pdf

86. A. Stassopoulou, M. Petrou, J. Kittler, Application of a Bayesian network in a GIS based
decision making system. Int. J. Geogr. Inf. Sci. 12(1), 23–46 (1998)

87. V. Stelzenmüller, J. Lee, E. Garnacho, S.I. Rogers, Assessment of a Bayesian belief network-
GIS framework as a practical tool to support marine planning. Mar. Pollut. Bull. 60(10),
1743–1754 (2010)

88. B. Stenger, V. Ramesh, N. Paragios, F. Coetzee, J.M. Buhmann, Topology free hiddenMarkov
models: Application to background modeling, in Proceedings of IEEE International Confer-
ence on Computer Vision, vol. 1 (2001), pp. 294–301

89. T.A. Stephenson, An introduction to bayesian network theory and usage. Technical report,
IDIAP Research, Switzerland (2000). http://publications.idiap.ch/downloads/reports/2000/
rr00-03df

90. M. Steyvers,Computational Statistics with MATLAB. Lecture Notes, UC Irvine (2011). http://
www.cidlab.com/205c/205C_v4.pdf

91. D.B. Thomas, W. Luk, P.H. Leong, J.D. Villasenor, Gaussian random number generators.
ACM Comput. Surv. (CSUR) 39(4), 11 (2007)

92. C. Tomasi, Estimating Gaussian Mixture Models with EM. Lecture Notes, Duke University
(2004). https://www.cs.duke.edu/courses/spring04/cps196.1/handouts/EM/tomasiEM.pdf

93. B. Vidakovic, MCMC Methodology. Lecture Notes, Georgia Tech (2014). http://www2.isye.
gatech.edu/~brani/isyebayes/bank/handout10.pdf

94. P.VonHilgers,A.N.Langville, Thefivegreatest applications ofMarkovchains, inProceedings
of the Markov Anniversary Meeting (Boston Press, Boston, 2006)

95. R. Waagepetersen, A quick introduction to Markov chains and Markov chain Monte Carlo
(revised version). Aalborg Univ. (2007). http://people.math.aau.dk/~rw/Papers/mcmc_intro.
pdf

96. C. Walk, Hand-book of statistical distributions for experimentalists. Technical report, Uni-
versity of Stockholm (2007). Internal Report

97. G. Wang, Q. Dong, Z. Pan, X. Zhao, J. Yang, C. Liu, Active contour model for ultrasound
images with Rayleigh distribution.Mathematical Problems in Engineering, ID 295320 (2014)

98. J.C. Watkins, Maximum Likelihood Estimation. Lecture Notes, University of Arizona (2011).
http://math.arizona.edu/~jwatkins/o-mle.pdf

99. P. Weber, G. Medina-Oliva, C. Simon, B. Iung, Overview on Bayesian networks applications
for dependability, risk analysis andmaintenance areas. Eng.Appl. Artif. Intell. 25(4), 671–682
(2012)

http://www.cs.umd.edu/~djacobs/CMSC828/ApplicationsHMMs.pdf
http://www.stats.ox.ac.uk/~ripley/APTS2012/APTS-CIS-lects.pdf
http://www.stats.ox.ac.uk/~ripley/APTS2012/APTS-CIS-lects.pdf
http://www.stat.washington.edu/fritz/DATAFILES394_/CLT.pdf
www.columbia.edu/~ks20/4703-Sigman-Notes-ARM.pdf
www.columbia.edu/~ks20/4703-Sigman-Notes-ARM.pdf
https://ned.ipac.caltech.edu/level5/March02/Silverman/paper.pdf
https://ned.ipac.caltech.edu/level5/March02/Silverman/paper.pdf
http://gcat.davidson.edu/mediawiki-1.19.1/images/2/23/HiddenMarkovModels.pdf
http://gcat.davidson.edu/mediawiki-1.19.1/images/2/23/HiddenMarkovModels.pdf
http://publications.idiap.ch/downloads/reports/2000/rr00-03df
http://publications.idiap.ch/downloads/reports/2000/rr00-03df
http://www.cidlab.com/205c/205C_v4.pdf
http://www.cidlab.com/205c/205C_v4.pdf
https://www.cs.duke.edu/courses/spring04/cps196.1/handouts/EM/tomasiEM.pdf
http://www2.isye.gatech.edu/~brani/isyebayes/bank/handout10.pdf
http://www2.isye.gatech.edu/~brani/isyebayes/bank/handout10.pdf
http://people.math.aau.dk/~rw/Papers/mcmc_intro.pdf
http://people.math.aau.dk/~rw/Papers/mcmc_intro.pdf
http://math.arizona.edu/~jwatkins/o-mle.pdf

114 2 Statistical Aspects

100. B.J. Yoon, Hidden Markov models and their applications in biological sequence analysis.
Curr. Genomics 10(6), 402–415 (2009)

101. G.A. Young, M2S1 Lecture Notes. Lecture Notes, Imperial College London (2011). www2.
imperial.ac.uk/~ayoung/m2s1/M2S1.PDF

102. A.Z. Zambom, R. Dias, A Review of Kernel Density Estimation with Applications to Econo-
metrics (2012). arXiv preprint arXiv:1212.2812

103. L. Zhang, Applied Statistics I. Lecture Notes, University of Utah (2008). http://www.math.
utah.edu/~lzhang/teaching/3070summer/DailyUpdates/jul1/lecture_jul1.pdf

www2.imperial.ac.uk/~ayoung/m2s1/M2S1.PDF
www2.imperial.ac.uk/~ayoung/m2s1/M2S1.PDF
http://arxiv.org/abs/1212.2812
http://www.math.utah.edu/~lzhang/teaching/3070summer/DailyUpdates/jul1/lecture_jul1.pdf
http://www.math.utah.edu/~lzhang/teaching/3070summer/DailyUpdates/jul1/lecture_jul1.pdf

Part II
Filtering

Chapter 3
Linear Systems

3.1 Introduction

Many times signal filtering is donewith linear filters, which are an important instance
of linear systems.We are going to study first the linear systems,with special emphasis
in system response to input signals. The next two chapters will be devoted to different
types of linear filters.

Linear systems are those systems that satisfy the properties of superposition and
scaling, [12].

The transfer function is a popular alternative for the representation of linear sys-
tems, [5, 26]. Another way of representation is by using state-space equations, which
can easily deal with multivariable systems, [8, 20, 23]. In cases where a statisti-
cal approach is opportune, the time-series framework provides a convenient sys-
tem representation, [11, 25, 27]. Therefore, we have three main system modelling
approaches that will be considered in this chapter.

Some of the MATLAB functions that will be used in our examples belong to the
Control System Toolbox. We shall indicate this with (*C).

3.2 Examples About Transfer Functions

3.2.1 A Basic Low-Pass Electronic Filter

Abasic example of electronic filter is shown in Fig. 3.1. This example will be denoted
as “example A”.

The behaviour of the circuit can be easily analyzed in the time domain: first we
write the following differential equation:

R C
d Vo

dt
= Vi − Vo (3.1)

© Springer Science+Business Media Singapore 2017
J.M. Giron-Sierra, Digital Signal Processing with Matlab Examples, Volume 1,
Signals and Communication Technology, DOI 10.1007/978-981-10-2534-1_3

117

118 3 Linear Systems

Fig. 3.1 Example of
electronic filter

R

CVi Vo

R

CVi Vo

Fig. 3.2 Solution of
equation (3.1)

seconds

V
o

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
From: U(1)

To
: Y

(1
)

then we find the analytical solution of (3.1)

Vo(t) = Vi (1 − e−t/RC) (3.2)

Figure3.2 plots this solution: it is an exponential curve that approaches asymptoti-
cally the input value Vi, with a time constant Ta = RC. The curve depicts the typical
process of capacitor charging.

By using the Laplace transform (see Appendix A), Eq. (3.1) can be transformed
to:

R C s Vo(s) = Vi(s) − Vo(s) (3.3)

From this equation in the complex s variable, we can obtain the transfer function (an
output/input relationship) of the electronic filter:

G(s) = Vo(s)

Vi(s)
= 1

1 + RCs
(3.4)

The solution given by (3.2) can also be obtained departing from (3.4) and using tables
of Laplace transforms.

For the analysis ofmore complex circuits it is convenient to useLaplace transforms
of the impedances of the components:

3.2 Examples About Transfer Functions 119

• The impedance of R (resistor) is R
• The impedance of L (inductance) is Ls
• The impedance of C (capacitor) is 1/(Cs)

For instance, continuing with the same example we can write:

Vi(s) = R I(s) + (1/(Cs)) I(s) (3.5)

Vo(s) = (1/(Cs)) I(s) (3.6)

Now, from (3.5) and (3.6), we obtain the transfer function:

G(s) = Vo(s)

Vi(s)
= 1/Cs

R + 1/Cs
= 1

1 + RCs
(3.7)

In the next section it will be shown that this transfer function corresponds to a low-
pass filter.

3.2.2 A Basic Resonant Electronic Filter

Another basic example of electronic filter is depicted in Fig. 3.3. It includes an induc-
tance L and a capacitor C; the combinations of these two components are the heart of
many oscillator circuits and put on scene the resonance phenomenon. This example
will be denoted as “example B”.

Let us establish the transfer function of the electronic filter; first we write the
following equations:

Vi(s) = Ls I(s) + (1/(Cs)) I(s) + R I(s) (3.8)

Vo(s) = R I(s) (3.9)

Fig. 3.3 Another example
of electronic filter

R

C

Vi Vo

L

R

C

Vi Vo

L

120 3 Linear Systems

Like in the previous example, now, from (3.8) and (3.9), we obtain the transfer
function:

G(s) = Vo(s)

Vi(s)
= R

Ls + 1/Cs + R
= RCs

LCs2 + RCs + 1
(3.10)

In the next section it will be shown that this transfer function corresponds to a band-
pass filter.

3.3 Response of Continuous Linear Systems

In this section the response of continuous linear systems to different types of inputs
is considered. The transfer function provides a straight way to study this main issue.
The output Y(s) of the systemwith transfer function G(s) to any inputU(s), is simply
given by:

Y(s) = G(s) U(s) (3.11)

The section is divided into two parts: first we look at the frequency domain, and
then we look at the time domain. Before that, it is opportune to note that a transfer
function can be expressed in function of the numerator and denominator roots as
follows:

G(s) = K (s − z1) (s − z2) ... (s − zm)

(s − p1) (s − p2) ... (s − pn)
(3.12)

where z1, z2…zm are the zeros of G(s), and p1, p2, …, pn are the poles of G(s).
Suppose for example that you are handling the following transfer function:

G(s) = s2 + 5s + 3

s3 + 3s + 25
(3.13)

In order to use MATLAB for the study of this G(s), the first step is to specify this
transfer function in MATLAB terms:

G = tf ([1 5 3], [1 0 3 25]);

We used the tf() (*C) function, specifying into brackets the numerator and the
denominator of G(s) (notice, in these brackets, the spaces between numbers).

Now we can write a MATLAB program (Program 3.1) to plot on the complex
plane, Fig. 3.4, the poles and zeros of G(s). The program uses the pzmap() (*C)
function: poles are represented with x, zeros are represented with small circles.

3.3 Response of Continuous Linear Systems 121

Fig. 3.4 Visualization of
poles and zeros of G(s) on
the complex plane

Real Axis

Im
ag

 A
xi

s

-5 -4 -3 -2 -1 0 1 2
-3

-2

-1

0

1

2

3

Program 3.1 Pole-zero map of G(s)

% Pole-zero map of G(s)
G=tf([1 5 3],[1 0 3 25]); %the transfer function G(s)
pzmap(G); %pole-zero map on the complex plane
title(‘pole-zero map’);

3.3.1 Frequency Response

Let us apply a sinusoidal input u = sin (ωt) to the system with transfer function
G(s). It can be shown that, once the steady-state has been reached, the output of the
system would be:

y = |G(jω)| · sin(ω t + ϕ) (3.14)

where G(jω) is obtained from G(s) by changing s by jω in the expression of G(s).
The phase φ is given by:

tg ϕ = Im G(jω)

Re G(jω)
(3.15)

In words: the output of G(s) is another sinusoidal signal with the same frequency as
the sinusoidal input; input and output having a difference in phase. Amplitude and
phase of the output is determined by G(jω).

The complex function G(jω) is called the “frequency response” of the system.
Figure3.5 shows on top a sinusoidal input to a linear system G(s), and below

the corresponding output. We marked with an arrow the delay between sine peaks,

122 3 Linear Systems

0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995 1
-1

-0.5

0

0.5

1

in
pu

t

0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995 1
-0.01

-0.005

0

0.005

0.01

ou
tp

ut

seconds

Fig. 3.5 Comparison of sinusoidal input and output

which corresponds to the phase lag of the output signal with respect to the input
signal. Notice that amplitudes of input and output are different.

There are two traditional ways to visualize the frequency response of a system:

1. Two plots: one with 20 log |G(jω| versus log ω, the other with φ versus log ω.
2. Im G(jω) versus Re G(jω) (a polar plot).

The alternative (a) is called “the Bode plot”, in honour of H.W. Bode. The magni-
tude 20 log |G(jω)| is in decibels (dB). Figure3.6 shows, according with alternative
(a), the frequency response of the filter example A, with transfer function (3.4) and
R = 1, C = 0.1. The figure has been obtained with the Program 3.2. The curve in
decibels is the amplification of the system in function of frequency. It decreases at
high frequencies. This curve shows that the circuit in Fig. 3.1 is a low-pass filter.

Program 3.2 Frequency response of example A

% Frequency response of example A
R=1; C=0.1; %values of the components
num=[1]; % transfer function numerator;
den=[R*C 1]; %transfer function denominator
w=logspace(-1,2); %logaritmic set of frequency values
G=freqs(num,den,w); %computes frequency response
AG=20*log10(abs(G)); %take decibels
FI=angle(G); %take phases (rad/s)
subplot(2,1,1); semilogx(w,AG,’k’); %plots decibels
grid;
ylabel(’dB’); title(’frequency response of example A’)
subplot(2,1,2); semilogx(w,FI,’k’); %plots phases
grid;
ylabel(’rad.’); xlabel(’rad/s’)

3.3 Response of Continuous Linear Systems 123

10
-1

10
0

10
1

10
2

-25

-20

-15

-10

-5

0

dB

10
-1

10
0

10
1

10
2

-1.5

-1

-0.5

0

ra
d.

rad/s

Fig. 3.6 Visualization of the frequency response of example A

Figure3.7 has been obtained with the Program 3.3 and depicts the frequency
response of the same filter example A, according with alternative (b). The amplitude
of the output, which is given by |G(jω)|, can bemeasured for any particular frequency
ωx as the distance from the corresponding curve point G(jωx) to the origin. It can be
seen again that |G(jω)|, decreases as ω increases (the curve tends to the origin).

Program 3.3 Frequency response of example A

% Frequency response of example A
R=1; C=0.1; %values of the components
num=[1]; % transfer function numerator;
den=[R*C 1]; %transfer function denominator
w=logspace(-1,2); %logaritmic set of frequency values
G=freqs(num,den,w); %computes frequency response
FI=angle(G); %take phases (rad.)
polar(FI,abs(G)); %plots frequency response
title(’frequency response of example A’)

Now let us study the frequency response of example B with R= 0.5, L=C= 0.1.
Figure3.8 has been generated by the Program 3.4 and shows this frequency response,
using the first representation alternative.

124 3 Linear Systems

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

Fig. 3.7 Alternative visualization of the frequency response of example A

10
-1

10
0

10
1

10
2

10
3

-50

-40

-30

-20

-10

0

dB

10
-1

10
0

10
1

10
2

10
3

-2

-1

0

1

2

ra
d.

rad/s

Fig. 3.8 Visualization of the frequency response of example B

Program 3.4 Frequency response of example B

% Frequency response of example B
R=0.5; C=0.1; L=0.1; %values of the components
num=[R*C 0]; % transfer function numerator;
den=[L*C R*C 1]; %transfer function denominator

3.3 Response of Continuous Linear Systems 125

Fig. 3.9 Alternative
visualization of the
frequency response of
example B

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

w=logspace(-1,3); %logaritmic set of frequency values
G=freqs(num,den,w); %computes frequency response
AG=20*log10(abs(G)); %take decibels
FI=angle(G); %take phases (rad)
subplot(2,1,1); semilogx(w,AG,’k’); %plots decibels
grid;
ylabel(’dB’); title(’frequency response of example B’)
subplot(2,1,2); semilogx(w,FI,’k’); %plots phases
grid;
ylabel(’rad.’); xlabel(’rad/s’)

The other frequency response representation alternative, for the example B, is
shown in Fig. 3.9, which has been obtained with the Program 3.5.

Program 3.5 Frequency response of example B

% Frequency response of example B
R=0.5; C=0.1; L=0.1; %values of the components
num=[R*C 0]; % transfer function numerator;
den=[L*C R*C 1]; %transfer function denominator
w=logspace(-1,3); %logaritmic set of frequency values
G=freqs(num,den,w); %computes frequency response
FI=angle(G); %take phases (rad.)
polar(FI,abs(G)); %plots frequency response
title(’frequency response of example B’)

126 3 Linear Systems

Figures3.8 and 3.9 show that the example B corresponds to a band-pass filter.
There is a maximum peak value of |G(jω)|, for a frequency (Hz) given by:

ωr = 1

2π
√

L C
(3.16)

At this frequencyωr the circuit enters into resonancewith the input. The amplification
of the filter rapidly decreases for frequencies up and downωr : the pass band is narrow.
Notice that φ = 0 at ωr : that corresponds to a pure resistive behaviour (the circuit
behaves at frequency ωr as a resistor).

3.3.2 Time Domain Response

3.3.2.1 Convolution

The y(t) time domain response of a linear system to any input u(t) (with u(t) = 0
for t < 0), is given by:

y(t) =
∫ t

0
g(τ) u(t − τ) dτ (3.17)

The expression in (3.17) is called the “convolution” of u and g,[4]. The function g(t)
is the “impulse response” of the system, being the response of the system to an input
δ(t). The function δ(t) is zero everywhere except at t = 0 and is such that:

∫ a

−a
δ(t) f (t) dt = f (0), for all a > 0 (3.18)

where f (t) is any continuous function.
The Laplace transform of the impulse response g(t) of a linear system is G(s),

the transfer function of the system.

3.3.2.2 Step Response

A typical input test signal is the unit step: u(t) = 0 for t < 0, u(t) = 1 for t ≥ 0. This
signal is rich in harmonics and is able to excite most interesting aspects of systems
dynamical behaviour.

Let us apply the MATLAB step() (*C) function. This function computes and
displays the y(t) response of the system with transfer function G(s), when an unit
step is applied to the system input.

3.3 Response of Continuous Linear Systems 127

Fig. 3.10 Step response of
filter example A

Time (sec.)

A
m

pl
itu

de

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
From: U(1)

To
: Y

(1
)

Figure3.10 shows the step response of the filter example A (with R= 1, C= 0.1),
the figure has been generated by the Program 3.6.

Program 3.6 Step response of example A

% Step response of example A
R=1; C=0.1; %values of the components
num=[1]; % transfer function numerator;
den=[R*C 1]; %transfer function denominator
G=tf(num,den); %transfer function
step(G,’k’); %step response of G
title(’step response of example A’)

Now, let us see the step response of the filter example B (with R= 1, L=C= 0.1).
This response is shown in Fig. 3.11, which has been generated by the Program 3.7.

Program 3.7 Step response of example B

% Step response of example B
R=0.5; C=0.1; L=0.1; %values of the components
num=[R*C 0]; % transfer function numerator;
den=[L*C R*C 1]; %transfer function denominator
G=tf(num,den); %transfer function
step(G,’k’); %step response of G
title(’step response of example B’)

128 3 Linear Systems

Fig. 3.11 Step response of
filter example B

Time (sec.)

A
m

pl
itu

de

0 0.5 1 1.5 2 2.5
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
From: U(1)

To
: Y

(1
)

3.3.2.3 Stability

In general the system response to a step has a transient, immediately following the
step, and after some time it may converge to a steady-state value. If it happens –
that the response reaches a steady-state value- the system is “stable”. If the response
becomes larger and larger, with no convergence to a steady-state value, the system is
“unstable”. There is a third possibility: the response becomes a sustained sinusoidal
oscillation; in this case the system is “marginally stable”.

The Laplace transform of a unit step is U(s) = 1/s. In consequence, the step
response of a system G(s) is given by:

Y(s) = G(s)

s
(3.19)

In cases similar to example A, with one pole, the stability can be clearly analyzed.
Let us consider a system with G(s) = −a/(s−a); its step response is:

Y(s) = −a

s (s − a)
(3.20)

Using partial fraction expansion:

Y(s) = 1

s
− 1

s − a
(3.21)

And directly using a table of Laplace transforms, we can obtain the time domain step
response:

y(t) = (1 − eat) (3.22)

3.3 Response of Continuous Linear Systems 129

stable G(s)
-1 0 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

marginally
stable G(s)

-1 0 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

unstable G(s)
-1 0 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 3.12 Three cases of zero-pole maps

In Eq. (3.22) if the pole a < 0, then y(t) converges to 1, so we can say that the system
G(s) is stable. However, if the pole a > 0, then y(t) goes to −∞ (does not converge
to a steady-state value), so we can say that the system G(s) is unstable.

In general there will be real and/or complex poles. Using pzmap() we can plot
these poles in the complex plane. A system G(s) is stable if none of its poles is on
the right hand semiplane. Figure3.12, obtained with Program 3.8, shows three cases
of zero-pole maps, with no zeros and two complex poles. It corresponds to:

G(s) = 1

(s + a + jb) (s + a − jb)
(3.23)

The case 1 has the two poles on the left hand semiplane (a < 0; the system G(s)
is stable). The case 2 has the two poles on the imaginary axis; it can be checked that
the step response is a steady sinusoidal oscillation (a = 0; in this case, the system
G(s) is marginally stable). The case 3 has the two poles on the right hand semiplane
(a > 0; the system G(s) is unstable).

Program 3.8 Pole-zero maps of three G(s) cases

% Pole-zero maps of three G(s) cases
% on the complex plane
G1=tf([1],[1 1 1]); %the transfer function G1(s)
subplot(1,3,1); pzmap(G1);

130 3 Linear Systems

Fig. 3.13 Response of
example A to sinusoidal
input

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

-0.05

0

0.05

0.1

0.15

seconds

xlabel(’stable G(s)’);
G2=tf([1],[1 0 1]); %the transfer function G2(s)
subplot(1,3,2); pzmap(G2);
xlabel(’marginally stable G(s)’);
G3=tf([1],[1 -1 1]); %the transfer function G3(s)
subplot(1,3,3); pzmap(G3);
xlabel(’unstable G(s)’);

3.3.2.4 Response to Any Input Signal

The lsim() (*C) function is able to compute and plot the output of the system G(s)
in response to any input signal. Let us exploit this powerful function to visualize in
the time domain some interesting aspects of the response of linear systems.

If a system has energy storage, such a circuit having capacitors and inductances,
there will be charging and discharging processes taking some time to be achieved:
that is the cause of transients in the response of a system to changes in the input. Let
us show this with two examples.

Figure3.13, which has been generated with the Program 3.9, shows the response
of the system example A to a sinusoidal input. During the first 0.5 s, the envelop of
the output curve follows an exponential decay until it reaches the horizontal: this is
an initial transient stage of the response.

Program 3.9 Time-domain response to sine, example A

% Time-domain response to sine, example A
R=1; C=0.1; %values of the components
num=[1]; % transfer function numerator;
den=[R*C 1]; %transfer function denominator
G=tf(num,den); %transfer function

3.3 Response of Continuous Linear Systems 131

Fig. 3.14 Response of
example B to sinusoidal
input

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

seconds

% Input sine signal
fu=20; %signal frequency in Hz
wu=2*pi*fu; %signal frequency in rad/s
fs=2000; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(1-tiv); %time intervals set (1 second)
u=sin(wu*t); %input signal data set
[y,ty]=lsim(G,u,t); %computes the system output
plot(t,y,’k’); %plots output signal
xlabel(’seconds’);
title(’time-domain response to sine, example A’);

Now, let us consider the same experiment with system example B. Figure3.14,
which has been generated with the Program 3.10, shows the response of example
B to a sinusoidal input. Again it can be noticed an initial transient that makes the
envelop of the output curve to be oscillatory during the first 1.4 s.

Program 3.10 Time-domain response to sine, example B

% Time-domain response to sine, example B
R=0.5; C=0.1; L=0.1; %values of the components
num=[R*C 0]; % transfer function numerator;
den=[L*C R*C 1]; %transfer function denominator
G=tf(num,den); %transfer function
% Input sine signal
fu=20; %signal frequency in Hz
wu=2*pi*fu; %signal frequency in rad/s
fs=2000; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(2-tiv); %time intervals set (2 seconds)
u=sin(wu*t); %input signal data set
[y,ty]=lsim(G,u,t); %computes the system output
plot(t,y,’k’); %plots output signal
xlabel(’seconds’);
title(’time-domain response to sine, example B’);

132 3 Linear Systems

0 2 4 6 8 10 12 14 16 18 20
-1

-0.5

0

0.5

1

in
pu

t

0 2 4 6 8 10 12 14 16 18 20
-1

-0.5

0

0.5

1

ou
tp

ut

seconds

Fig. 3.15 Response of example B to a square signal

Another interesting aspect can be visualized by using a square wave as the input
signal. This signal is like a chain of successive steps being applied to the system
input. If enough time is allowed between the square signal transitions, the complete
transient can develop, so the output would be a chain of step responses. Figure3.15,
generated by the Program 3.11, shows the result of applying a low-frequency square
signal input to the system example B.

Program 3.11 Time-domain response to square signal, example B

% Time-domain response to square signal, example B
R=0.5; C=0.1; L=0.1; %values of the components
num=[R*C 0]; % transfer function numerator;
den=[L*C R*C 1]; %transfer function denominator
G=tf(num,den); %transfer function
% Input square signal
fu=0.2; %signal frequency in Hz
wu=2*pi*fu; %signal frequency in rad/s
fs=2000; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(20-tiv); %time intervals set (20 second)
u=square(wu*t); %input signal data set
[y,ty]=lsim(G,u,t); %computes the system output
subplot(2,1,1); plot(t,u,’k’); %plots input signal
axis([0 20 -1.2 1.2]);
ylabel(’input’);
title(’time-domain response to square, example B’);
subplot(2,1,2); plot(t,y,’k’); %plots output signal
ylabel(’output’); xlabel(’seconds’);

3.3 Response of Continuous Linear Systems 133

Fig. 3.16 Response of
example B to a
high-frequency square signal

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

seconds

Using the same Program 3.11, with a change in the signal frequency fu (from 0.2
Hz to 10 Hz), we obtain the Fig. 3.16. There is a substantial change in the signal
look: now it becomes similar to Fig. 3.14, with the difference that now the shape of
the output signal is triangular.

Figure3.16 can be explained by considering the Fourier decomposition of signals
into sinusoidal harmonics. In Fig. 3.8, which depicts the frequency response of filter
example B, there is a peak at 10 rad/s (1.6 Hz). What happens with Fig. 3.16 is that at
frequencies well higher than 1.6 Hz the filter attenuates high-frequency harmonics
of the square signal, making its shape to tend to the signal fundamental sinusoidal
harmonic.

3.4 Response of Discrete Linear Systems

Filters made with digital processors or computers are discrete systems.
The “z transform” provides a way to still be using transfer functions, [6], so the

output of a discrete linear system with “discrete transfer function” G(z) is given by:

Y(z) = G(z) U(z) (3.24)

where U(z) is the z transform of the input signal, and Y(z) is the z transform of the
system output signal.

134 3 Linear Systems

Fig. 3.17 Step response of a
discrete system

Time (sec.)

A
m

pl
itu

de

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
From: U(1)

To
: Y

(1
)

The function freqz() can be used to compute the frequency response of a discrete
system.

In the time domain it is possible to apply a simple algorithm to obtain the system
response to any input, since it is given by the following discrete convolution:

y(nT) =
m=+∞∑

m=−∞
g(mT) u(nT − mT) (3.25)

Figure3.17 has been obtained with the Program 3.12 and shows an example of step
response, for the system G(z) = 1/(z − 0.5).

Program 3.12 Step response of a discrete system

% Step response of a discrete system
%transfer function numerator and denominator:
num=[1]; den=[1 -0.5];
Ts=0.1; %sampling period
G=tf(num,den,Ts); %transfer function
step(G,’k’); %step response of G
title(’step response of discrete system’)

In the case of discrete systems, G(z) is stable if none of its poles is outside a unit
circle in the complex plane. When using pzmap() for discrete system, you can add
zgrid() to visualize the unit circle on the zero-polemap. Figure3.18 shows an example
of zero-pole map and the grid with the unit circle; the figure has been generated with
the Program 3.13.

Program 3.13 Pole-zero map of a discrete system

% Pole-zero map of a discrete system
%transfer function numerator and denominator:
num=[1 -0.5]; den=[1 0.55 0.75];

3.4 Response of Discrete Linear Systems 135

Fig. 3.18 Example of
zero-pole map for a discrete
system

Real Axis

Im
ag

 A
xi

s

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Ts=0.1; %sampling period
G=tf(num,den,Ts); %transfer function
pzmap(G); %pole-zero map
zgrid

If any pole is outside the unit circle, the system is unstable. If all poles are inside
the unit circle, the system is stable. In case any or all poles were on the unit circle,
the system is marginally stable.

3.5 Random Signals Through Linear Systems

The cross-correlation of two random signals x(t) and y(t) is defined as:

Rxy(t1 , t2) = E(x(t1)y
∗(t2)) (3.26)

If a random signal u(t) is applied to the input of a linear system G(s), the output of
the system is another random signal y(t) which is correlated with the input u(t). If
u(t) is stationary white noise, then:

Ruy(τ) = k · g(τ) (3.27)

This result is convenient for system control purposes, since in certain situations the
first problem is to experimentally determine the transfer functionG(s) (or the impulse
response g(t)) of the plant to be controlled.

The power spectrum of y(t) and the power spectrum of u(t) are related by:

Sy(ω) = Su(ω) |G(ω)|2 (3.28)

136 3 Linear Systems

0 10 20 30 40 50 60 70 80 90 100
-26

-24

-22

-20

-18

-16

Frequency (Hz)

in
pu

t

0 10 20 30 40 50 60 70 80 90 100
-40

-35

-30

-25

-20

-15

Frequency (Hz)

ou
tp

ut

Fig. 3.19 PSD of u(t), and PSD of y(t)

Figure3.19 compares the PSD of y(t) and the PSD of u(t), for G(s) = 100/(s+100).
The figure has been made with the Program 3.14.

Program 3.14 PSDs of random u(t) and output y(t)

%PSDs of random u(t) and output y(t)
G=tf([100],[1 100]); %the linear system
fs=200; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(8-tiv); %time intervals set (800 values)
N=length(t); %number of data points
u=randn(N,1); %random input signal data set
[y,ty]=lsim(G,u,t); %random output signal data set
nfft=256; %length of FFT
window=hanning(256); %window function
numoverlap=128; %number of samples overlap
%PSD of the input:
subplot(2,1,1); pwelch(u,nfft,fs,window,numoverlap);
title(’PSDs of input and output’); ylabel(’input’);
%PSD of the output:
subplot(2,1,2); pwelch(y,nfft,fs,window,numoverlap);
title(’’); ylabel(’output’);

Another interesting relationship between input and output is the following:

Suy(ω) = G(ω) Su(ω) (3.29)

where Suy (ω) is the cross power spectrum, defined as:

3.5 Random Signals Through Linear Systems 137

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

th
e

sy
st

em

Hz

0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

1.2

Hz

th
e

es
tim

at
e

Fig. 3.20 Real and estimated frequency responses of G(s)

Suy(ω) =
∞∫

−∞
Ruy(τ) e− j ωt dτ (3.30)

From Eq. (3.29) we can obtain the transfer function of the system:

G(ω) = Suy(ω)

Su(ω)
(3.31)

Program 3.15 applies the tfe() function to obtain an estimate of G(s) from y(t) and
u(t). This program generates the Fig. 3.20, which compares the frequency response
of G(s) = 100/(s + 100) with the estimated frequency response of G(s).

Program 3.15 Estimate of the transfer function from random input u(t) and output y(t)

%Estimate of the transfer function from random input u(t)
and output y(t)
num=100; den=[1 100];
G=tf(num,den); %the linear system
fs=200; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(8-tiv); %time intervals set (1600 values)
N=length(t); %number of data points
u=randn(N,1); %random input signal data set
[y,ty]=lsim(G,u,t); %random output signal data set
nfft=256; %length of FFT
window=hanning(256); %window function
numoverlap=128; %number of samples overlap
%Frequency response of the system G(s):

138 3 Linear Systems

Hz=0:0.1:100; w=2*pi*Hz; %frequencies
G=freqs(num,den,w); %frequency response of the system
%plot of frequency response of the system:
subplot(2,1,1); plot(Hz,abs(G));
title(’Real and estimated frequency response of G(s)’);
ylabel(’the system’); xlabel(’Hz’)
%Frequency response of the transfer function estimate:
%frequency response estimate:
[GE,FE]=tfe(u,y,nfft,fs,window,numoverlap);
%plot of estimated frequency response of the system
subplot(2,1,2); plot(FE,abs(GE));
title(’’); xlabel(’Hz’); ylabel(’the estimate’);

3.6 State Variables

As said in the introduction, it is also possible to represent linear systems in terms of
state variables, which are able to describe multiple input-multiple output (MIMO)
systems. The system itself has one or more state variables.

Actually two types of philosophies are found in system representation, so one
could speak of external or internal views. The transfer function is an example of
external representation: the system is considered as a black box, and we use only a
relationship between output and input. In the case of internal representations the box
is opened, and the internal states of the system are taken into account.

The next equations are an example of state space model. There is a vector of states
x̄(t), a vector of inputs ū(t) and a vector of outputs ȳ(t):

˙̄x(t) = A x̄(t) + B ū(t)
ȳ(t) = C x̄(t) + D ū(t)

(3.32)

In the state space model, A, B, C and D are matrices. MATLAB has been originally
developed to deal with matrices and vectors.

Figure3.21 depicts a diagram corresponding to a state space model.
There is a discrete time version of the state model, as follows:

x̄(n + 1) = a x̄(n) + b ū(n)

ȳ(n) = c x̄(n) + d ū(n)
(3.33)

Fig. 3.21 State space model
diagram

x(n) y(n)u(n)− − −

3.6 State Variables 139

Fig. 3.22 A two-tank
system example

h1

h2
R1

R2

u

h1

h2
R1

R2

u

With simple iteration loops, it is easy to develop MATLAB programs to see what is
the behaviour of the system described by such a model.

Consider an example. It is a two tank system, as depicted in Fig. 3.22. Both tanks
communicate through a pipe with resistance R1. The input is liquid that falls into
tank1, the output is liquid that leaves tank2 through a pipe with resistance R2.

Next equations are a simplistic model of the system, which is enough for illustra-
tion purposes.

A1
dh1
dt = 1

R1
(h2 − h1) + u(t)

A2
dh2
dt = − 1

R1
(h2 − h1) − 1

R2
h2

(3.34)

where A1 = 1, A2 = 1, R1 = 0.5, R2 = 0.4.
From these equations, we can write the state space model using the following

matrices:

A =
(− 1

R1A1

1
R1A1

1
R1A2

1
A2

(1
R1

+ 1
R2

)

)
B =

(1
A1

0

)

C = (0 1)

(3.35)

The states are h1(t) and h2(t).
In many cases, it is convenient to study the behaviour of a system let alone from an

initial state not at the origin. There is no input (input equal to zero). This is denoted as
autonomous behaviour. For example, let us see how the two tank system goes empty,
starting from some initial state. Figure3.23 shows the evolution of h1(t) and h2(t).
This figure has been generated with the Program 3.16, which includes a conversion
from continuous state model to discrete time model. The reader is invited to change
initial states and see what happens.

140 3 Linear Systems

Fig. 3.23 System state
evolution

0 5 10 15 20 25 30 35 40
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

sampling periods

Program 3.16 System example

%system example
%state space system model (2 tank system):
A1=1; A2=1; R1=0.5; R2=0.4;
A=[-1/(R1*A1) 1/(R1*A1); 1/(R1*A2) -(1/A2)*((1/R1)+(1/R2))];
B=[1/A1; 0]; C=[0 1]; D=0;
Ts=0.1; %sampling period
csys=ss(A,B,C,D); %setting the continuous time model
dsys=c2d(csys,Ts,’zoh’); %getting the discrete-time model
[a,b,c,d]=ssdata(dsys); %retrieves discrete-time model matrices
% system simulation preparation
Nf=40; %simulation horizon
x1=zeros(1,Nf); % for x1(n) record
x2=zeros(1,Nf); % for x2(n) record
x=[1;0]; % state vector with initial tank levels
u=0.1; %constant input
%behaviour of the system after initial state
% with constant input u
for nn=1:Nf,

x1(nn)=x(1); x2(nn)=x(2); %recording the state
xn=(a*x)+(b*u); %next system state
x=xn; %state actualization

end;
% display of states evolution
figure(1)
plot([0 Nf],[0 0],’b’); hold on; %horizontal axis
plot([0 0],[-0.2 1.2],’b’); %vertical axis
plot(x1,’r-x’); %plots x1
plot(x2,’b-x’); %plots x2
xlabel(’sampling periods’);
title(’system states’);

The standard procedure for matrix diagonalization uses eigenvalues and eigen-
vectors. MATLAB provides the function eig() to obtain these elements. It can be
shown that the eigenvalues of the matrix A of the state space model, are equal to the

3.6 State Variables 141

poles of the system. Therefore, the stability of the system is linked to the eigenvalues.
In particular, in the case of discrete time systems, the module of all eigenvalues of
the matrix a must be ≤1 for the system to be stable.

The MATLAB function tf2ss() obtains from the transfer function of a system an
equivalent state space representation (it gives the four matrices). The reverse is also
possible with the function ss2tf().

3.7 State Space Gauss–Markov Model

Usually, in real filtering applications there are noise and perturbations. Depending
on the case, it would be recommended to study in which way the filter responds to
these elements. The examples studied in this section would show that the perturbed
behaviourmay have increasing variance along transients, which can become an issue.

It should be said that there are special filter designs that take into account noise
and perturbations, in order to adapt internal parameters for optimal behaviour. A
representative example of this is the Kalman filter, which is out of the scope of this
chapter. In any case, the simple examples to be studied next, do have illuminating
aspects of interest for sophisticated filter designs.

The section is divided into two subsections. In the first subsection, the simplest
state space model is used to gain insight. This model is a scalar model with only one
state variable. The second subsection generalizes the results to more dimensions, and
the Gauss–Markov model is introduced.

Along the next pages, the study will focus on discrete-time state variables. Model
parameters are constant.

3.7.1 A Scalar State Space Case

Consider the following scalar state space model:

x(n + 1) = a · x(n) + b · u(n)

y(n) = c · x(n)
(3.36)

with |a| ≤1.

3.7.1.1 Autonomous and Forced Responses

Let us first see the autonomous response, putting u(t) to zero and taking a nonzero
initial state. Figure3.24 shows the behaviour of the system, for a = 0.6 and x(0) = 5.
The figure has been generated with the Program 3.17. The reader may explore the
consequences of choosing values |a| ≥1, which implies an unstable situation.

142 3 Linear Systems

Fig. 3.24 Autonomous
behaviour of the system

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

samples

st
at

e

Fig. 3.25 Forced response
of the system, unit step input

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

samples

st
at

e

Program 3.17 Deterministic state evolution

% Deterministic state evolution
%example of state dynamics model
% xn=0.6 xo
%initial state
X0=5;
Ns=10; %number of samples along time
X=zeros(1,Ns); %reserve space
X(1)=X0;
for nn=2:Ns,

X(nn)=0.6*X(nn-1);
end;
figure(1)
plot(X,’k*-’); hold on;
xlabel(’samples’); ylabel(’state’);
title(’Autonomous behaviour’);

3.7 State Space Gauss–Markov Model 143

Now, let us apply a step input, setting u(t) to one and taking x(0) = 0 as initial
state. The value of b is 0.7. Figure3.25, obtained with the Program 3.18, shows the
result:

Program 3.18 Deterministic state evolution

% Deterministic state evolution
%example of state dynamics model
% xn=0.6 xo + 0.7 u
%initial state
X0=0;
Ns=10; %number of samples along time
X=zeros(1,Ns); %reserve space
u=1; %step input
X(1)=X0;
for nn=2:Ns,

X(nn)=0.6*X(nn-1)+ 0.7 *u;
end;
figure(1)
plot(X,’k*-’); hold on;
xlabel(’samples’); ylabel(’state’);
title(’Step response’);

3.7.1.2 Perturbations on the Initial State

Suppose that there are perturbations on the initial state, or that there is some uncer-
tainty about its value. Assume also that this situation can be represented with a
random state with a Gaussian distribution. It is intriguing to see how it influences
the autonomous behaviour of the system; or, in other words, how the perturbation
propagates along time.

The Program 3.19 has been prepared for this case, using a Gaussian perturbation
and propagating 500 trajectories. The result is shown in Fig. 3.26.

Program 3.19 Propagation of uncertainty on initial state

% Propagation of uncertainty on initial state
%example of state dynamics model
% xn=0.6 xo
%initial state (with some Gaussian uncertainty)
X0=5+(0.5*randn(500,1));
Ns=10; %number of samples along time
X=zeros(500,Ns); %reserve space
X(:,1)=X0;
for nn=2:Ns,

X(:,nn)=0.6*X(:,nn-1);
end;
figure(1)
for np=1:500,

plot(X(np,:),’g-’); hold on;
end;
xlabel(’samples’); ylabel(’state’);
title(’Autonomous behaviour, uncertain initial state’);

144 3 Linear Systems

Fig. 3.26 Propagation of
initial state perturbations

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

samples

st
at

e

The evolution of mean and variance of the states, in absence of input, is given by:

μx(n + 1) = a μx(n) (3.37)

varx(n + 1) = a2 varx(n) (3.38)

Figure3.27, which has been generated with the Program 3.20, shows the evolution
of the mean and variance of state for the example previously considered.

Program 3.20 Evolution of state mean and variance

% Evolution of state mean and variance
%initial state
X0=5;
Ns=10; %number of samples along time
mX=zeros(1,Ns); %reserve space
varX=zeros(1,Ns); %"""
mX(1)=X0;
varX(1)=0.5;
for nn=2:Ns,

mX(nn)=0.6*mX(nn-1);
varX(nn)=(0.6^2)*varX(nn-1);

end;
figure(1)
subplot(2,1,1)
plot(mX,’k*-’);
xlabel(’samples’); ylabel(’state mean’);
title(’Autonomous behaviour’);
subplot(2,1,2)
plot(varX,’k*-’);
xlabel(’samples’); ylabel(’state variance’);

3.7 State Space Gauss–Markov Model 145

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

samples

st
at

e
m

ea
n

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

samples

st
at

e
va

ria
nc

e

Fig. 3.27 Evolution of mean and variance of the state for the previous example

3.7.1.3 State Perturbations Along Time

The states of a systemmay be subject to perturbations, like for instance a shipmoving
in rough seas. Additive perturbations can be included in the system equations as
follows:

x(n + 1) = a · x(n) + p · w(n) (3.39)

where w(n) represents the perturbation, also denoted as ‘process noise’.
Continuingwith the example, let us include someprocess noise. Figure3.28 shows

the autonomous behaviour of the system in the presence of this noise, using Gaussian
noise and the propagation of 1000 trajectories. The figure has been generated with
the Program 3.21.

Program 3.21 Influence of Gaussian process noise

% Influence of Gaussian process noise
%example of state dynamics model
% xn=0.6 xo + 0.5 w;
%autonomous behaviour with process noise---------------
Ns=10; %number of samples along time
X=zeros(1000,Ns); %reserve space
for np=1:1000,
X(np,1)=5; %initial state
for nn=2:Ns,

X(np,nn)= 0.6*X(np,nn-1)+ 0.5*randn(1); %with process noise
end;
end;
figure(1) %trajectories

146 3 Linear Systems

Fig. 3.28 Influence of
process perturbations

1 2 3 4 5 6 7 8 9 10
-3

-2

-1

0

1

2

3

4

5

samples

st
at

e

nf=1:Ns;
for ns=1:1000,

plot(nf,X(ns,nf),’g-’); hold on;
end;
title(’Autonomous behaviour, with process noise’);
xlabel(’samples’); ylabel(’state’);

The evolution of mean and variance of the states in the presence of state noise,
and with no input, is given by:

μx(n + 1) = a μx(n) (3.40)

varx(n + 1) = a2 varx(n) + p2 varw(n) (3.41)

Figure3.29, which has been generated with the Program 3.22, shows the evolution
of the mean and variance of state for the example with state noise and a fixed initial
state (no uncertainty here). It has been assumed that the state noise has constant
variance along time.

Program 3.22 Evolution of state mean and variance

% Evolution of state mean and variance
% in the presence of process noise
%initial state
X0=5;
Ns=10; %number of samples along time
mX=zeros(1,Ns); %reserve space
varX=zeros(1,Ns); %"""
mX(1)=X0;
varX(1)=0;
varW=1;
for nn=2:Ns,

3.7 State Space Gauss–Markov Model 147

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

samples

st
at

e
m

ea
n

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

samples

st
at

e
va

ria
nc

e

Fig. 3.29 Evolution of mean and variance of the state for the example with process noise

mX(nn)=0.6*mX(nn-1);
varX(nn)=(0.6^2)*varX(nn-1)+(0.5^2)*varW;

end;
figure(1)
subplot(2,1,1)
plot(mX,’k*-’);
xlabel(’samples’); ylabel(’state mean’);
title(’Autonomous behaviour’);
subplot(2,1,2)
plot(varX,’k*-’);
xlabel(’samples’); ylabel(’state variance’);

It is interesting to observe in more detail what happens in the transition from one
to the next state. In particular, let us show the histograms of states x(2) and x(3), and
the histogram of the process noise. This has been depicted in Fig. 3.30.

Program 3.23 Propagation of Gaussian state noise: details of states x(2) and x(3)

% Propagation of Gaussian state noise:
% details of states X2 and X3
% example of state dynamics model
% xn=0.6 xo + 0.5 w;
%autonomous behaviour with process noise---------------
Ns=10; %number of samples along time
X=zeros(5000,Ns); %reserve space
for np=1:5000,

X(np,1)=5; %initial state
for nn=2:Ns,

X(np,nn)= 0.6*X(np,nn-1)+ 0.5*randn(1); %with process noise
end;

end;

148 3 Linear Systems

Fig. 3.30 Histograms of
x(2), x(3) and process noise

-2 -1 0 1 2 3 4 5
0

50

100

150

200

250

300

350

400

450

w

x(2)

x(3)

Fig. 3.31 A beta PDF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

values

[Y2,V2]=hist(X(:,2),40);
[Y3,V3]=hist(X(:,3),40);
R=0.5*randn(5000,1);
[YR,VR]=hist(R,40);
figure(1)
plot(V2,Y2,’k’); hold on;
plot(VR,YR,’b’);
plot(V3,Y3,’r’)
title(’transition from X(2) to X(3)’);

The process noise may be non-Gaussian. Let us briefly study this case, using
the same example but changing the process noise. Instead of a zero mean Gaussian
noise, a beta distribution is chosen as a non-zero mean asymmetrical distribution.
Figure3.31 depicts the PDF of the beta distribution selected for our example

3.7 State Space Gauss–Markov Model 149

Fig. 3.32 Influence of
process perturbations

1 2 3 4 5 6 7 8 9 10
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

samples

st
at

e

Program 3.24 A beta PDF

% A beta PDF
v=0:0.01:1; %values set
alpha=7; beta=2; %random variable parameters
ypdf=betapdf(v,alpha,beta); %beta PDF
plot(v,ypdf,’k’); %plots figure
xlabel(’values’); title(’beta PDF’);

The influence of the non-Gaussian process noise is shown in Fig. 3.32. It has been
generated with the Program 3.25.

Notice that x(10) has non-zeromean. Figure3.33, also generatedwith the Program
3.25, compares two histograms. The histogram on top corresponds to the process
noise. The other histogram corresponds to state x(10). As a consequence of the
central limit, this last histogram should tend to be Gaussian. This is because along
the system trajectory, random variables (state x(n) and noise) are iteratively added.

Program 3.25 Propagation of non-Gaussian process noise

% Propagation of non-Gaussian process noise
% state evolution
% histograms of noise and X(10)
%example of state dynamics model
% xn=0.6 xo + 0.5 w;
%autonomous behaviour with process noise---------------
Ns=10; %number of samples along time
X=zeros(500,Ns); %reserve space
for np=1:500,

X(np,1)=5; %initial state
for nn=2:Ns,

%with beta process noise:
X(np,nn)= 0.6*X(np,nn-1)+ 0.5*random(’beta’,7,2,1,1);

end;
end;
R=0.5*random(’beta’,7,2,500,1);
figure(1) %trajectories

150 3 Linear Systems

Fig. 3.33 Histograms of
process noise and x(10)

0 0.5 1 1.5
0

10

20

30

40

histogram of process noise

0 0.5 1 1.5
0

10

20

30

40

histogram of x(10)

nf=1:Ns;
for ns=1:500,

plot(nf,X(ns,nf),’g-’); hold on;
end;
title(’Autonomous behaviour, with beta process noise’);
xlabel(’samples’); ylabel(’state’);
figure(2)
subplot(2,1,1)
hist(R,40); title(’histogram of process noise’);
axis([0 1.5 0 40]);
subplot(2,1,2)
hist(X(:,10),40); title(’histogram of x(10)’)
axis([0 1.5 0 40]);

3.7.1.4 Measurement Noise Along Time

The outputs of the system may be subject to additive measurement noise. This situ-
ation can be modeled with the following equation:

y(n) = c · x(n) + v(n) (3.42)

where v(n) is the ‘measurement noise’.
As a first case, let us consider that both the process noise and the measurement

noise are Gaussian. An example of this has been implemented with the Program 3.26,
which generates Figs. 3.34 and 3.35. These figures correspond to the system output
y. The histogram has approximately a Gaussian shape, with zero mean.

3.7 State Space Gauss–Markov Model 151

Fig. 3.34 Influence of the
process and the measurement
noises

1 2 3 4 5 6 7 8 9 10
-4

-2

0

2

4

6

8

10

samples

ou
tp

ut

Fig. 3.35 Histograms of
y(10)

-4 -3 -2 -1 0 1 2 3 4
0

10

20

30

40

50

60

70

Program 3.26 Influence of Gaussian process noise and measurement noise

% Influence of Gaussian process noise and measurement noise
%example of state dynamics model
% xn=0.6 xo + 0.5 w;
% yn=1.2 xn + 0.8 v;
%autonomous behaviour with process noise---------------
Ns=10; %number of samples along time
X=zeros(1000,Ns); %reserve space
Y=zeros(1000,Ns); %"""
for np=1:1000,

X(np,1)=5; %initial state
for nn=2:Ns,

X(np,nn)= 0.6*X(np,nn-1)+ 0.5*randn(1); %with process noise
end;
for nn=1:Ns,

Y(np,nn)=1.2*X(np,nn) + 0.8*randn(1); %with meas. noise

152 3 Linear Systems

Fig. 3.36 Influence of the
process and the measurement
noises

1 2 3 4 5 6 7 8 9 10
-2

-1

0

1

2

3

4

5

6

7

8

samples

ou
tp

ut

end;
end;
figure(1) %trajectories
nf=1:Ns;
for ns=1:1000,

plot(nf,Y(ns,nf),’g-’); hold on;
end;
title(’System output for autonomous behaviour’);
xlabel(’samples’); ylabel(’output’);
figure(2) %histogram
hist(Y(:,Ns),40);
title(’Histogram of final measurement’);

As a second case, let us consider a non-Gaussian measurement noise, while the
process noise continues being Gaussian.

Program 3.27 uses a strong measurement noise with beta distribution. The effects
are visible in Figs. 3.36 and 3.37. The histogram corresponding to y has now a beta-
alike shape (it mixes one Gaussian PDF and one beta PDF), and has non-zero mean
(an important fact for certain applications).

Program 3.27 Influence of Gaussian process noise

% Influence of Gaussian process noise
% and non-Gaussian measurement noise
%example of state dynamics model
% xn=0.6 xo + 0.5 w;
% yn=1.2 xn + 1.8 v;
%autonomous behaviour with process noise---------------
Ns=10; %number of samples along time
X=zeros(1000,Ns); %reserve space
Y=zeros(1000,Ns); %"""
for np=1:1000,

X(np,1)=5; %initial state
for nn=2:Ns,

3.7 State Space Gauss–Markov Model 153

Fig. 3.37 Histograms of
y(10)

-2 -1 0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

X(np,nn)= 0.6*X(np,nn-1)+ 0.5*randn(1); %with process noise
end;
for nn=1:Ns,

%with beta measurement noise:
Y(np,nn)=1.2*X(np,nn) + 0.8*random(’beta’,7,2,1,1);

end;
end;
figure(1) %trajectories
nf=1:Ns;
for ns=1:1000,

plot(nf,Y(ns,nf),’g-’); hold on;
end;
title(’System output for autonomous behaviour’);
xlabel(’samples’); ylabel(’output’);
figure(2) %histogram
hist(Y(:,Ns),40);
title(’Histogram of final measurement’);

3.7.2 General State Space Case

The general state space model including process noise and measurement noise is the
following:

x̄(n + 1) = A x̄(n) + B ū(n) + w̄(n) (3.43)

ȳ(n) = C x̄(n) + v̄(n) (3.44)

where ⇀
w(n) is the process noise, ⇀

v(n) is themeasurement noise, and the capital letters
represent matrices.

154 3 Linear Systems

Under certain conditions (Gaussian noises, etc.), this state space model belongs
to the family of Gauss–Markov models, [13, 22]. Its Markovian nature is clear: the
next state only depends on the present state.

3.7.2.1 Propagation of Mean and Variance

The propagation of mean and variance of the states obey to the following equations,
[10]:

µx(n + 1) = Aµx(n) + B u(n) (3.45)

Σx(n + 1) = A Σx(n) AT + Σw(n) (3.46)

And the propagation of mean and variance of the output is given by:

µy(n) = C µx(n) (3.47)

Σy(n) = C Σx(n) CT + Sv(n) (3.48)

3.7.2.2 An Important Lemma

Suppose a set of Gaussian random variables. Let us take the following partition:

x =
(
x1
x2

)
(3.49)

With:

µx =
(
µx1
µx2

)
; Sx =

(
S11S12
S21S22

)
(3.50)

Then the conditional distribution of
⇀

x1(n), given a
⇀

x2(n) = ⇀

x
∗
2(n) is Gaussian with:

mean = µx1 + S12 S−1
22 (x2 − µx2) (3.51)

cov = Σ11 − Σ12 Σ−1
22 Σ21 (3.52)

This is an important lemma for the development of adaptive filters, [10], and in
particular for the already mentioned Kalman filter, [21].

3.8 Time-Series Models 155

3.8 Time-Series Models

Time-series models are popular in economy; in particular for prediction purposes,
[14, 15]. Typically they belong to a statistical context. The archetypical time-series
model is the ARMA model, where AR means auto-regressive, and MA means
moving-average. Historically, the fundamental book that confirmed the interest of
time-series models is [3] (modernized version).

This section is a short introduction to time-series models, departing from time
domain expressions and the corresponding z-transforms.

3.8.1 The Discrete Transfer Function in Terms
of the Backshift Operator

Suppose a discrete linear system with one input u and one output y. Let us write a
general expression relating output to input:

y(t) + a1 y(t − 1) + a2 y(t − 2) + · · · + an y(t − n) =
= b0u(t) + b1 u(t − 1) + b2 u(t − 2) + · · · + bm u(t − m)

(3.53)

Now, using the z-transform:

(1 + a1 z−1 + a2 z−2 + · · · + an z−n) Y(z) =
= (b0 + b1 z−1 + b2 z−2 + · · · + bn z−m) U(z)

(3.54)

The equation can be written in a shorter way:

A(z−1) Y(z) = B(z−1) U(z) (3.55)

The discrete transfer function of the system is:

G(z) = Y(z)

U(z)
= B(z−1)

A(z−1)
(3.56)

Now, let us introduce the (time-domain) ‘backshift operator’ q−k :

q−k y(t) = y(t − k) (3.57)

Using this operator, the same model (3.55) can be written as:

A(q−1) y(t) = B(q−1) u(t) (3.58)

where:

156 3 Linear Systems

Fig. 3.38 Behaviour of a
DARMA model example

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

n

A(q−1) = 1 + a1 q−1 + a2 q−2 + · · · + an q−n

and,
B(q−1) = b0 + b1 q−1 + b2 q−2 + · · · + bm q−m

In the book [10], expression (3.58) is called the DARMA model, where D stands
for ‘deterministic’. This is not a firmly recognized name: other authors use DARMA
to mean a Discrete ARMA model, others use DARMA to mean a de-seasonalized
ARMA model, etc.

A simple example of DARMA model has been considered in the Program 3.28.
The model combines a second order A(q−1) and a first order B(q−1). The chosen
input is a constant value u(t) = 1; the reader is invited to change this input to
any other alternative, like for instance a sinusoidal function. The program is a basic
implementation of the algorithm implicit in the DARMA model. Figure3.38 shows
the behaviour of y(t) in response to the constant input u(t) = 1.

Program 3.28 Example of DARMA behaviour

%Example of DARMA behaviour
%coeffs. of polynomials A and B
a1=0.5; a2=0.7; b0=1; b1=0.7;
%variable initial values
y=0; y1=0; y2=0; u=0; u1=0;
Ni=24; %number of iterations
ry=zeros(1,Ni); %for storage of y values
%iterations
for nn=1:Ni,

u=1; %test value (edit)
y=(b0*u+b1*u1)-(a1*y1+a2*y2); %according with the model
ry(nn)=y;
y2=y1; y1=y; u1=u; %memory update

end;

3.8 Time-Series Models 157

figure(1)
stem(ry,’k’);
xlabel(’n’);title(’evolution of model output’);

From the point of view of digital filters, which will be studied in Chap.5, the
expression (3.58) corresponds to an IIR filter unless A(q−1) = 1, in which case one
has:

y(t) = B(q−1) u(t) (3.59)

that corresponds to a FIR filter.
Actually, the behaviour of the DARMA model can be studied using the filter ()

function of the MATLAB SPT. The reader can easily confirm that the Program 3.29
obtains the same results of the Program 3.28 already listed. Evidently, the Program
3.29 is shorter, because it uses filter(). More details on this function are presented in
the next chapter.

Program 3.29 Example of DARMA behaviour

%Example of DARMA behaviour
% now using filter()
%coeffs. of polynomials A and B
a=[1 0.5 0.7]; b=[1 0.7];
Ni=24;
u=ones(24,1); %test value
y=filter(b,a,u);
figure(1)
stem(y,’k’);
title(’evolution of model output’);
xlabel(’n’);

Specialists in control systems frequently use the backshift operator q−k . Other
authors, mostly statisticians, prefer to use the ‘lag operator’ Lk , which is equivalent
to the backshift operator. The polynomial:

h(L) = 1 + h1 L + h2 L2 + · · · + hn Ln

would be called a ‘lag polynomial’.
Of course, linear discrete-time models can be written in several ways: using dif-

ference equations, or backshift operator, or lag operator, etc.
Since two types of mentalities have been just mentioned, linked to control systems

or to statistics, it seems convenient to make a remark on zeros of polynomials. If you
consider the following polynomial:

p(z) = 1 + β1 z + β2 z2 + · · · + βnzn (3.60)

the polynomial will have a series of zeros: λ1, λ2, . . . ,λn.
Supposing that the polynomial p(z) was the denominator of a discrete transfer

function, these zeros must be inside the unit circle for the transfer function to be
stable.

http://dx.doi.org/10.1007/978-981-10-2534-1_5

158 3 Linear Systems

Take now the following polynomial:

r(z−1) = 1 + β1 z−1 + β2 z−2 + · · · + βnz−n (3.61)

the zeros of this polynomial will be: η1, η2, . . . , ηn. These zeros correspond to values
of z−1 that make r(z−1) be zero, and will be the reciprocals of λ1, λ2, . . . ,λn.

Supposing again that r(z−1) was the denominator of a transfer function, the zeros
η1, η2, . . . , ηn must be outside the unit circle for the transfer function to be stable.

This remark is particularly relevantwhen one uses the backshift or the lag operator.

3.8.2 Considering Random Variables

Typically time-series models are used in scenarios with random variables. For exam-
ple in financial or marketing studies, weather forecasting, earthquake prediction,
electroencephalography, etc.

The following model considers random variables:

A(q−1) y(t) = B(q−1) u(t) + C(q−1) e(t) (3.62)

where e(t) is white noise.
This is an ARMAX model. The X refers to exogenous inputs. In this case, the

exogenous input is u(t).
Notice that y(t) would be a random variable.
Important particular cases are the following:

• AR (auto-regressive) model: A(q−1) y(t) = e(t) (3.63)
• MA (moving-average) model: y(t) = C(q−1) e(t) (3.64)

The ARMA model is a combination:

A(q−1) y(t) = C(q−1) e(t) (3.63)

If there is a pure delay d:

A(q−1) y(t) = q−dB(q−1) u(t) + C(q−1) e(t) (3.64)

3.8.2.1 Stationary Time-Series. Wold’s Decomposition

Let us now introduce a main reason for the ARMA models to be so relevant; in
particular for a certain class of processes.

A process is said to be ‘covariance-stationary’, or ‘weakly-stationary’, if the first
and second moments are time invariant. In other words: the values of the mean, the

3.8 Time-Series Models 159

variance, and all autocovariances (Cov(yt, yt−k) = γk, ∀ t, ∀ k) do not depend on
time t.

A stationary process {xt, t = 1, 2, . . .} is deterministic if xt can be predicted
with zero error based on the entire past xt−1, xt−2, Notice that xt could be a
random variable, [24].

The Wold decomposition theorem states that any covariance stationary process
can be decomposed into two mutually uncorrelated processes:

• One is a MA process
• The other is a deterministic process.

In mathematical terms, the covariance stationary process xt can be written as:

xt = dt +
∑

j

cjet−j (3.65)

One of the implications of this theorem is that any purely non-deterministic covari-
ance stationary process can be arbitrarily well approximated by an ARMA process,
[24]. See the review of [18] for more aspects of the Wold’s decomposition.

3.8.2.2 Frequency Domain Study

The definition of ‘spectral density’ of a time-series with autocovariances satisfying∑
k

|γk| < ∞, is the following:

f (ω) =
∞∑

k=−∞
γke−j2π ω k (3.66)

The spectral density is the Fourier transform of the autocovariance function. It pro-
vides a frequency domain approach for the study of time-series.

Another approach for frequency domain studies is based on the Discrete Fourier
Transform applied to the time-series. A popular way of graphical representation
of frequency components is the ‘periodogram’, which plots the already mentioned
power spectral density (PSD) of the time-series. The MATLAB SPT provides the
function periodogram().

A typical example of time-series data is Sunspot activity. There is a web page that
provides data on this (see the Resources section). Figure3.39 shows the smoothed
number of Sunspots along 459 periods, each period being six months.

Figure3.40 shows the periodogram of the Sunspot data. A simple pre-processing
of the data has being done by differentiation. There is a peak around a frequency of
0.05, which corresponds to a peak of Sunspot activity every 10–11 years approxi-
mately. Both Figs. 3.39 and 3.40 have been obtained with the Program 3.30.

160 3 Linear Systems

Program 3.30 Periodogram of Sunspots

%Periodogram of Sunspots
% Read data file
%
fer=0;
while fer==0,

fid2=fopen(’sunspots.txt’,’r’);
if fid2==-1, disp(’read error’)
else

Ssp=fscanf(fid2,’%f \r\n’);
fer=1;

end;
end;
fclose(’all’);
% differenced data
x=diff(Ssp);
N=length(x);
M=N/2;
figure(1)
plot(Ssp,’k’); %plots Sunspot data
title(’Sunspots’); xlabel(’index’);
figure(2)
P=periodogram(x);
Pn=P/(2*sqrt(N));
freq=(0:M)/N;
plot(freq,Pn(1:M+1),’k’)
title(’Periodogram’);
xlabel(’freq’);

Fig. 3.39 Semi-annual
Sunspot activity

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160

180

200

index

3.8 Time-Series Models 161

Fig. 3.40 Periodogram of
semi-annual Sunspot activity

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

freq

3.8.2.3 Details of the MA Model

A first remark, [16], is that in the case of the MA model, y(t) is a filtered version of
white noise.

The simplest MA model is MA(1) (first order model), with the following expres-
sion:

y(t) = e(t) + c1e(t − 1) (3.67)

This process is the sum of two stationary processes, and therefore is stationary for any
value of the parameter c1. The mean of the process is 0. The variance is (1 + c21)σ

2
e .

The autocovariances are:
γ0 = (1 + c21)σ

2
e

γ1 = c1 σ2
e

γ−1 = c1 σ2
e

γk = 0 , |k| > 1

The spectral density function is:

f (ω) = σ2
e |1 + c1 exp(j 2π ω)|2 (3.68)

For a MA model of order q, MA(q), we have again a stationary process (the sum of
stationary processes). Themean is again 0. The variance is (1+c21+ c22+· · ·+c2q)σ

2
e ;

and the autocovariances:

162 3 Linear Systems

γm

⎧
⎪⎪⎨

⎪⎪⎩

(1 + c21 + c22 + · · · + c2q)σ
2
e , m = 0

σ2
e

q−m∑
k=0

ck ck+|m| , |m| ≤ q

0, |m| > q

(3.69)

The model MA(∞) is stationary if the coefficients are absolute summable, that is:
the sum of their absolute values converges.

The spectral density function is:

f (ω) = σ2
e |1 + c1 exp(j 2π ω) + · · · + cq exp(j 2π qω)|2 (3.70)

It can be inferred from (3.69), [16], that the MA process cannot have sharp peaks,
unless q is large.

A characteristic of MA processes is that covariances become zero for |m| > q.
For this reason, MA models are regarded as having short memory.

Coming back to the MA(1) model, it is possible, by successive substitutions [16],
to derive the following expression:

∞∑

j=0

(c1)
jy(t − j) = e(t) (3.71)

If |c1| < 1 this expression converges. In this case, an AR model has been obtained,
being equivalent to the MA(1) model. It is said that the MAmodel has been inverted
(so an equivalent AR model was derived).

Notice that the zero of the lag polynomial (right-hand side of MA(1) model) is
−1/c1, which is outside the unit circle. This is a general result that can be shown
for MA(q): the condition for a MA(q) model to be invertible is to have all the lag
polynomial zeros outside the unit circle.

Next three figures correspond to an example of MA(3) model. The model has
been simulated with the Program 3.31, which generates these figures.

Figure3.41 shows the behaviour of y(t) along 200 samples. It is evident that y(t)
is a random variable.

Figure3.42 depicts the roots of the lag polynomial. The three roots are outside of
the unit circle, so the MA process is invertible.

The two plots included in Fig. 3.43 show the covariances of the MA process.
The plot on top includes all covariances corresponding to 200 samples. The plot
at the bottom is a zoom on a few covariances around the index 0. Notice how the
covariances corresponding to 0, ±1, ±2, and 1±3, are non-zero.

Program 3.31 Example of MA behaviour

%Example of MA behaviour
%coeffs. of polynomial C
c0=1; c1=0.8; c2=0.5; c3=0.3;
%variable initial values
y=0; e1=0; e2=0; e3=0;

3.8 Time-Series Models 163

Ni=200; %number of iterations
ry=zeros(1,Ni); %for storage of y values
ee=randn(1,Ni); %vector of random values
%iterations
for nn=1:Ni,

e=ee(nn);
y=(c0*e+c1*e1+c2*e2+c3*e3); %according with MA model
ry(nn)=y;
e3=e2; e2=e1; e1=e; %memory update

end;
figure(1)
plot(ry,’k’);
title(’evolution of model output’);
xlabel(’n’);
LP=[c3 c2 c1 c0]; %lag polynomial
R=roots(LP); %roots of the lag polynomial
figure(2)
plot(0,0,’y.’); hold on
line([-2 1.5],[0 0]); line([0 0],[-2 2]); %axes
m=0:(pi/100):2*pi; plot(cos(m),sin(m),’k’); %circle
plot(real(R),imag(R),’kx’,’MarkerSize’,12); %roots
axis([-2 1.5,-2 2]);
title(’Roots of lag polynomial, and the unit circle’)
figure(3)
subplot(2,1,1)
[cv,lags]=xcov(ry,’biased’);
plot(lags,cv,’k’);
title(’covariances’)
subplot(2,1,2)
stem(lags(Ni-6:Ni+6),cv(Ni-6:Ni+6),’k’); hold on;
plot([-6 6],[0 0],’k’);
title(’zoom around index 0’);

Fig. 3.41 Behaviour of an
MA process

0 20 40 60 80 100 120 140 160 180 200
-4

-3

-2

-1

0

1

2

3

4

n

164 3 Linear Systems

-2 -1.5 -1 -0.5 0 0.5 1 1.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Fig. 3.42 Roots of the lag polynomial

-200 -150 -100 -50 0 50 100 150 200
-0.5

0

0.5

1

1.5

2

covariances

-6 -4 -2 0 2 4 6
-0.5

0

0.5

1

1.5

2

zoom around index 0

Fig. 3.43 Covariances

3.8.2.4 Details of the AR Model

The simplest AR model is AR(1), with the following expression:

y(t) + a1 y(t − 1) = e(t) (3.72)

This process is stationary if |a1| < 1.

3.8 Time-Series Models 165

Fig. 3.44 Behaviour of an
AR process

0 20 40 60 80 100 120 140 160 180 200
-4

-3

-2

-1

0

1

2

3

4

n

The zero of the lag polynomial (left-hand side of the AR(1) model) is −1/a1.
For the process to be stationary, this zero must be outside the unit circle. It is also
a condition for the AR model to be invertible, so an equivalent MA model can be
obtained.

In general, the lag polynomial zeros must be outside the unit circle for the AR(q)
model to be invertible.

The spectral density function of an AR(q) process is:

f (ω) = σ2
e

1

|A(ej 2πω)|2 (3.73)

According with this equation, the AR process could have sharp peaks, [16].
The AR(q) processes usually are a mixture of exponents, which corresponds to

real zeros, and sinusoids, due to complex zeros. Usually, AR processes have many
non-zero autocovariances that decay with the lag, and so they are regarded as long
memoryprocesses.Becauseof the sinusoids,ARprocessesmayhave aquasi-periodic
character.

As in the case of MA(3), a series of three figures have been obtained, correspond-
ing now to an example of AR(3) model. Notice that we selected the same model
parameters as in MA(3), The model has been simulated with the Program 3.32.

Figure3.44 shows the behaviour of y(t) along 200 samples. Compared with
Fig. 3.41, there are much more sharp oscillations of y(t).

Figure3.45 confirms that the roots of the lag polynomial are the same as before.
The AR(3) process would be invertible, and stable.

The two plots included in Fig. 3.46 show the covariances at two levels of detail.

166 3 Linear Systems

-2 -1.5 -1 -0.5 0 0.5 1 1.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Fig. 3.45 Roots of the lag polynomial

-200 -150 -100 -50 0 50 100 150 200
-1

0

1

2

covariances

-6 -4 -2 0 2 4 6
-1

0

1

2

zoom around index 0

Fig. 3.46 Covariances

Program 3.32 Example of AR behaviour

%Example of AR behaviour
%coeffs. of polynomial A
a1=0.8; a2=0.5; a3=0.3;
%variable initial values
y=0; y1=0; y2=0; y3=0;
Ni=200; %number of iterations
ry=zeros(1,Ni); %for storage of y values
ee=randn(1,Ni); %vector of random values
%iterations

3.8 Time-Series Models 167

for nn=1:Ni,
e=ee(nn);
y=e-(a1*y1+a2*y2+a3*y3); %according with AR model
ry(nn)=y;
y3=y2; y2=y1; y1=y; %memory update

end;
figure(1)
plot(ry,’k’);
title(’evolution of model output’);
xlabel(’n’);
LP=[a3 a2 a1 1]; %lag polynomial
R=roots(LP); %roots of the lag polynomial
figure(2)
plot(0,0,’y.’); hold on
line([-2 1.5],[0 0]); line([0 0],[-2 2]); %axes
m=0:(pi/100):2*pi; plot(cos(m),sin(m),’k’); %circle
plot(real(R),imag(R),’kx’,’MarkerSize’,12); %roots
axis([-2 1.5,-2 2]);
title(’Roots of lag polynomial, and the unit circle’)
figure(3)
subplot(2,1,1)
[cv,lags]=xcov(ry,’biased’);
plot(lags,cv,’k’);
title(’covariances’)
subplot(2,1,2)
stem(lags(Ni-6:Ni+6),cv(Ni-6:Ni+6),’k’); hold on;
plot([-6 6],[0 0],’k’);
title(’zoom around index 0’);

Many time series data grow or decrease along time. For example the rise of prices
due to persistent inflation.

A very simple case can be illustrated with the following model:

y(t) = k + y(t − 1) (3.74)

The constant term will cause a linear growth if k > 0, or linear decreasing if
k < 0. This phenomenon is called ‘drift’.

Another simple case is the following:

y(t) = (k · t) + y(t − 1) (3.75)

Now one has a quadratic growth or decrease, depending on the sign of k. In this case
we have a ‘trend’. The trend can be also k · t2, or any other function of time.

The two plots in Fig. 3.47 depict on top the effects of drift, and at the bottom the
effects of a k · t trend.

Program 3.33 Drift and trend

% Drift and trend
%drift
y1=0; y1_old=0;
ry1=zeros(500,1);
for nn=1:500,

168 3 Linear Systems

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

n

dr
ift

0 50 100 150 200 250 300 350 400 450 500
0

500

1000

1500

n

tre
nd

Fig. 3.47 Drift and trend

ry1(nn)=y1;
y1=0.5+y1_old;
y1_old=y1;

end;
%trend
y2=0; y2_old=0; t=0;
ry2=zeros(500,1);
for nn=1:500,

ry2(nn)=y2;
y2=(0.5*t)+y2_old;
y2_old=y2;
t=t+0.02;

end;
figure(1)
subplot(2,1,1)
plot(ry1,’k’);
xlabel(’n’);
ylabel(’drift’);
subplot(2,1,2)
plot(ry2,’k’);
xlabel(’n’);
ylabel(’trend’);

3.8.2.5 Yule–Walker Equations

Given a real process, one wants to establish an AR model for this process. The
question is how to estimate its coefficients.

3.8 Time-Series Models 169

Consider a zero-mean AR(q) model:

y(t) + a1y(t − 1) + a2y(t − 2) + · · · + aqy(t − q) = e(t) (3.76)

If one multiplies both sides by y(t − k), and takes expectations:

E
(
(y(t) + a1y(t − 1) + a2y(t − 2) + · · · + aqy(t − q)) · y(t − k)

) =
= E (e(t) · y(t − k))

(3.77)

The result for k = 0 would be:

γ0 + a1 γ1 + a2 γ2 . . . + aqγq = σ2
e (3.78)

and for k > 0:
γk + a1 γk−1 + a2 γk−2 . . . + aqγk−q = 0 (3.79)

Since γp = γ−p, the set of equations can be expressed as follows:
⎡

⎢⎢⎢⎢⎢⎣

γ0 γ1 γ2 . . . γq

γ1 γ0 γ1 . . . γq−1

γ2 γ1 γ0 . . . γq−2
...

...
...

...

γq γq−1 γq−2 . . . γ0

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

1
a1
a2
...

aq

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

σ2
e

0
0
...

0

⎤

⎥⎥⎥⎥⎥⎦
(3.80)

These are called the ‘Yule–Walker equations’, published by G.U. Yule and Sir G.
Walker in 1931. The equations can be used to obtain the values of a1, a2, . . . , aq

from the autocovariances γ0, γ1, γ2, . . . , γq, or vice-versa. A recursive algorithm for
problems with a Toeplitz matrix, such is the case with the Yule–Walker equations,
was introduced in [29].

For an AR(1) model, the Yule–Walker equations are:

γ0 + a1 γ1 = σ2
e , k = 0 (3.81)

γ1 + a1 γ0 = 0 , k = 1 (3.82)

Therefore, [16]:

γ0 = σ2
e

1 − a2
1

; γ1 = (−a1) · σ2
e

1 − a2
1

(3.83)

For an AR(2), the Yule–Walker equations are, [19]:

170 3 Linear Systems

⎡

⎣
γ0 γ1 γ2
γ1 γ0 γ1
γ2 γ1 γ0

⎤

⎦

⎡

⎣
1
a1
a2

⎤

⎦ =
⎡

⎣
a2 a1 1 0 0
0 a2 a1 1 0
0 0 a2 a1 1

⎤

⎦

⎡

⎢⎢⎢⎢⎣

γ2
γ1
γ0
γ1
γ2

⎤

⎥⎥⎥⎥⎦
=

=
⎡

⎣
1 a1 a2
a1 1 + a2 0
a2 a1 1

⎤

⎦

⎡

⎣
γ0
γ1
γ2

⎤

⎦ =
⎡

⎣
σ2

e
0
0

⎤

⎦

(3.84)

Later on, in the chapter of digital filters, we will meet again the Yule–Walker method,
and a related MATLAB function.

3.8.2.6 Details of the ARMA Model

The ARMA model is a straight combination of AR and MA models. It is a more
parsimonious model compared to the AR model, which means that it requires less
parameters for modeling.

A theorem establishes that the ARMA model is stationary provided the zeros of
the AR lag polynomial lie outside the unit circle.

According with [1], one of the reasons in favor of the ARMA model is that
summing AR processes results in an ARMA process.

The spectral density function of an ARMA process is:

f (ω) = σ2
e

|C(ej 2πω)|2
|A(ej 2πω)|2 (3.85)

The Yule–Walker equations are:

γk + a1 γk−1 + a2 γk−2 . . . + aqγk−q =
⎧
⎨

⎩
σ2

e

p∑
j=k

cjηj−k , k = 0, . . . , p

0 , k > p
(3.86)

where the ARMA model combines an AR(q) model and a MA(p) model; and the η
are the coefficients of C(z)/A(z).

Figure3.48 shows the behaviour of the output y(t) of an ARMAmodel along 200
samples. The figure has been generated with the Program 3.34, which implements a
simple simulation based on the model.

Program 3.34 Example of ARMA behaviour

%Example of ARMA behaviour
% ARMA model coeefs
%coeffs. of polynomial A
a1=0.05; a2=0.1;
%variable initial values
y=0.1; y1=0; y2=0;

3.8 Time-Series Models 171

Fig. 3.48 Behaviour of an
ARMA model

0 20 40 60 80 100 120 140 160 180 200
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

n

%coeffs. of polynomial C
c0=0.6; c1=0.4; c2=0.3;
%variable initial values
e1=0; e2=0;
Ni=200; %number of iterations
ry=zeros(1,Ni); %for storage of y values
ee=randn(1,Ni); %vector of random values
%iterations
for nn=1:Ni,

e=ee(nn);
% ARMA model:
y=(c0*e+c1*e1+c2*e2)-(a1*y1+a2*y2);
ry(nn)=y;
% memory update:
y2=y1; y1=y;
e2=e1; e1=e;

end;
figure(1)
plot(ry,’k’),
xlabel(’n’);
title(’evolution of model output’);

3.8.2.7 Unit Roots. ARIMA Model

Consider the following simple process:

y(t) = y(t − 1) + e(t) (3.87)

Although this equation looks quite innocent, it has been studied by several famous
scientists. The process described by this equation is a ‘random walk’. It happens that
the variance of y(t) is:

172 3 Linear Systems

V ar(y(t)) = (t − t0)σ2
e (3.88)

where t0 is the time when the process started. As you can see, the variance increases
along time. That means that the random walk is a non-stationary process.

Notice that the lag polynomial corresponding to the random walk has one zero,
which lies on the unit circumference. This is called a unit root.

Denote as Δy(t) = y(t) − y(t − 1). The operator Δ is the single lag difference
operator. Using this operator, the random walk can be described as follows:

Δy(t) = e(t) (3.89)

which is a stationary process.
In a more general situation, one may have the following model (where L is the

lag operator):
g(L) y(t) = h(L) e(t) (3.90)

where g(L) has a unit root. Then the model can be factorized as follows:

g∗(L))(1 − L) y(t) = h(L) e(t) (3.91)

Or, equivalently:
g∗(L))Δy(t) = h(L) e(t) (3.92)

This last equation is anARMAmodel. AndEq. (3.87) is anARIMAmodel: an autore-
gressive integrated moving average model; it describes a non-stationary process.

In general, ARIMAmodels have a number of unit roots, so they can be factorized
as follows:

g∗(L))(1 − L)d y(t) = h(L) e(t) (3.93)

An ARMA model can be obtained from (3.89) by using d times the differentiation.
Indeed, there is much more to be said about time-series processes. Some books

and Toolboxes on this topic have been cited in the Resources section.

3.8.2.8 Examples

Let us consider for a first example the following time-series data: the weekly sales
of Ultra-Shine toothpaste in units of 1000 tubes. The case is studied in [2] and some
other academic literature (for instance [28]).

As shown in the left hand side of Fig. 3.49, the data are not stationary. By simple
differencing, the data are transformed to a process that could be regarded as stationary.
In other words, we are supposing that there is one unit root. These differenced data
are shown o the right hand side of Fig. 3.49. The figure has been generated with the
Program 3.35.

3.8 Time-Series Models 173

0 50 100
200

300

400

500

600

700

800

900

1000

1100

weeks

To
ot

hp
as

te

0 50 100
0

2

4

6

8

10

12

14

16

18

weeks

di
ffe

re
nc

es

Fig. 3.49 Weekly toothpaste sales: (left) data, (right) increments

Program 3.35 Example of weekly toothpaste sales

%Example of weekly toothpaste sales
% Display of data
% read data file
fer=0;
while fer==0,

fid2=fopen(’Tpaste.txt’,’r’);
if fid2==-1, disp(’read error’)
else

TP=fscanf(fid2,’%f \r\n’);
fer=1;

end;
end;
fclose(’all’);
x=diff(TP); %data differencing
figure(1)
subplot(1,2,1)
plot(TP,’k’),
xlabel(’weeks’); ylabel(’Toothpaste’)
title(’weekly toothpaste sales’);
subplot(1,2,2)
plot(x,’k’)
xlabel(’weeks’); ylabel(’differences’);

It can be noticed that the differenced data have non-zero mean. Then, it is conve-
nient to subtract the mean, and also to divide by the standard deviation, to obtain a
normalized data series. The cited literature recommends to choose a simple AR(1)
model for this series.

174 3 Linear Systems

Fig. 3.50 An AR(1) process
simulation

0 10 20 30 40 50 60 70 80 90 100
-4

-3

-2

-1

0

1

2

3

n

Then, we apply the aryule() function, which belongs to the MATLAB System
Identification Toolbox, to estimate just one parameter: the one free coefficient of
the AR(1) model. Program 3.36 implements this approach, and uses the model to
generate simulated model outputs. Figure3.50 shows an example of the results of
the simulation. Each time one runs the program, one obtains a different plot, since
ARMA models are of stochastic nature.

Program 3.36 AR(1) model of weekly toothpaste sales

% AR(1) model of weekly toothpaste sales
% read data file
fer=0;
while fer==0,

fid2=fopen(’Tpaste.txt’,’r’);
if fid2==-1, disp(’read error’)
else

TP=fscanf(fid2,’%f \r\n’);
fer=1;

end;
end;
fclose(’all’);
x=diff(TP); %data differencing
D=std(x);
M=mean(x);
Nx=(x-M)/D; %normalized data
A=aryule(Nx,1); %AR(1) parameter estimation
%AR model simulation
%coeffs. of polynomial A
a1=A(2);
%variable initial values
y=0; y1=0;
Ni=100; %number of iterations
ry=zeros(1,Ni); %for storage of y values
ee=randn(1,Ni); %vector of random values
%iterations

3.8 Time-Series Models 175

for nn=1:Ni,
e=ee(nn);
y=e-(a1*y1); %according with AR model
ry(nn)=y;
y1=y; %memory update

end;
figure(1)
plot(ry,’k’);
title(’evolution of model output’); xlabel(’n’);

A second example is the US quarterly personal consumption expenditure, in bil-
lions of US dollars. We focus on the percentage change from trimester to trimester.
The model recommended in OTexts (web address in the Resources section) for this
data series is a MA(3).

Figure3.51 shows on the left the original data, and on the right the corresponding
percentage change. This figure has been generated with the Program 3.37. The final
part of the program uses the armax() function from the MATLAB System Identifi-
cation Toolbox, for estimating theMA(3) model parameters. The last sentence of the
program is intended for printing on screen the model parameter estimation result.

Program 3.37 Quarterly US personal consumption expediture

% Quarterly US personal consumption expediture
% Display of data
% read data file
fer=0;
while fer==0,

fid2=fopen(’consum.txt’,’r’);

0 100 200
0

2000

4000

6000

8000

10000

12000

14000

trimester

C
on

su
m

pt
io

n

0 100 200
-3

-2

-1

0

1

2

3

4

5

6

7

8

trimester

pe
rc

en
ta

ge
 c

ha
ng

e

Fig. 3.51 Quarterly US personal consumption expenditure: (left) data, (right) increments

176 3 Linear Systems

if fid2==-1, disp(’read error’)
else

CM=fscanf(fid2,’%f \r\n’);
fer=1;

end;
end;
fclose(’all’);
x=diff(CM); %data differencing
L=length(CM)-1;
nn=1:L;
d(nn)=x(nn)./CM(nn);
p=d*100; %percentage change
figure(1)
subplot(1,2,1)
plot(CM,’k’),
xlabel(’trimester’); ylabel(’Consumption’)
title(’US personal consumption’);
axis([0 L+1 0 14000]);
subplot(1,2,2)
plot(p,’k’)
xlabel(’trimester’)
ylabel(’percentage change’);
axis([0 L+1 -3 8]);
% MA(3) parameter estimation:
D=std(p);
M=mean(p);
Np=((p-M)/D)’; %column format
model=armax(Np,[0 3]);
% extract info from model structure
[A,B,C,D,F,LAM,T]=th2poly(model);
% print vector of MA(3) coeffs:
C

The third example is monthly gold prices. An interval of time, from 2001-1-1 to
2012-12-1, has been selected. The leftmost plot in Fig. 3.52 shows the price data in
US dollars per ounce.

By taking natural logarithms, it can be noticed that the price evolution approx-
imately follows an exponential growth. This is confirmed by the central plot in
Fig. 3.52, which shows the logarithm of the gold price data, being almost a straight
line.

Again, one uses differences to obtain the data to be modeled by an ARMAmodel.
In this case, the differences of the logarithm of the data (called ‘returns’ in finance)
are computed; the rightmost plot in Fig. 3.38 shows the result.

After generating Fig. 3.52, the Program 3.38 continues with a last part devoted
to the estimation of an ARMA model for the returns. As recommended by [7], an
ARMA(7 10) model was chosen. The result of parameter estimation is printed on
screen when executing the program.

Program 3.38 Gold prices

% Gold prices
% Display of data
% read data file
fer=0;

3.8 Time-Series Models 177

0 50 100
200

400

600

800

1000

1200

1400

1600

1800

month

pr
ic

e

0 50 100
5.5

6

6.5

7

7.5

month

lo
ga

rit
hm

 o
f p

ric
e

0 50 100

-0.1

-0.05

0

0.05

0.1

0.15

month
re

tu
rn

s

Fig. 3.52 Gold prices (monthly): (left) data, (center) log(data), (right) increments of log(data)

while fer==0,
fid2=fopen(’gold.txt’,’r’);
if fid2==-1, disp(’read error’)
else

GL=fscanf(fid2,’%f \r\n’);
fer=1;

end;
end;
fclose(’all’);
lgGL=log(GL); %logarithm of the data
x=diff(lgGL); %differencing of log(data)
L=length(x);
figure(1)
subplot(1,3,1)
plot(GL,’k’),
xlabel(’month’)
ylabel(’price’)
title(’Gold price’);
axis([0 L+1 200 1900]);
subplot(1,3,2)
plot(lgGL,’k’)
xlabel(’month’)
ylabel(’logarithm of price’);
axis([0 L+1 5.5 7.5]);
subplot(1,3,3)
plot(x,’k’)
xlabel(’month’)

178 3 Linear Systems

ylabel(’returns’);
axis([0 L -0.15 0.15]);
% MA(3) parameter estimation:
D=std(x);
M=mean(x);
Nx=((x-M)/D);
model=armax(Nx,[7 10]);
% extract info from model structure
[A,B,C,D,F,LAM,T]=th2poly(model);
% print vector of ARMA(7 10) coeffs:
A
C

It is not a surprise that the monthly demand of ice cream is higher in summer.
Likewise, coats demand is higher inwinter; etc. Seasons have influence onmany time
series data sets. Actually, much literature is devoted to seasonal ARIMA models.

A possibleway of attack for obtaining amodel is classical additive decomposition.
The data series is decomposed into three data series: an appropriate regression curve,
a seasonal oscillating curve, and a random data remainder.

For example, consider the monthly production of beer in Australia. Figure3.53
shows the evolution of this production from 1956-01 to 1980-12., inmillions of litres.
the peaks correspond to summer, the valleys to winter.

The classical decomposition has been implemented with the Program 3.39. As
a first step, it fits a straight line to the data, since an approximate linear growth of
the mean production can be visually noticed in Fig. 3.53. Then, the line is subtracted
from the data. Let us denote the result as the data series sB.

The fitting of the line is obtained with the MATLAB polyfit() function. Higher
degree polynomials could also be fitted.

The second step is to fit a cosine periodic curve to sB. The period of the cosine is
assumed to be 12 months. For the fitting of cosine amplitude and phase, a searching
optimization procedure has been used, bymeans of theMATLAB fminbnd() function.

Fig. 3.53 Monthly beer
production in Australia

0 50 100 150 200 250 300
60

80

100

120

140

160

180

200

220

months

pr
od

uc
tio

n

3.8 Time-Series Models 179

0 50 100 150 200 250 300
0

100

200

month

B
ee

r p
rd

uc
tio

n

0 50 100 150 200 250 300
0

100

200

month

gr
ow

th
 li

ne

0 50 100 150 200 250 300
-50

0

50

month

co
si

ne
 c

om
po

ne
nt

0 50 100 150 200 250 300
-50

0

50

month

ra
nd

om
 c

om
po

ne
nt

Fig. 3.54 Classical decomposition: (top) beer production, (below) linear drift, (next below) cosine
component, (bottom) residual

The random remainder is obtained by subtracting the cosine periodic curve from
sB.

Figure3.54 shows the components obtained by the decomposition. The plot on
top corresponds to the beer production data. Immediately below is the plot of the
fitted straight line. Below this, another plot shows the fitted cosine periodic curve.
The plot at the bottom shows the random data remainder.

Figure3.55 shows in more detail how is the fitting of the cosine curve to sB. All
three Figs. 3.53, 3.54 and 3.55, have been obtained with the Program 3.39.

The last part of the program put the focus on the estimation of an ARMA model
of the random remainder data.

Program 3.39 Australian Beer production

% Australian Beer production
% Display of data

180 3 Linear Systems

Fig. 3.55 Cosine fitting

0 50 100 150 200 250 300
-60

-40

-20

0

20

40

60

month

co
s(

)
fit

tin
g

% read data file
fer=0;
while fer==0,

fid2=fopen(’beer.txt’,’r’);
if fid2==-1, disp(’read error’)
else

BR=fscanf(fid2,’%f \r\n’);
fer=1;

end;
end;
fclose(’all’);
N=length(BR);
t=(1:N)’;
% estimate growth line
[r,s]=polyfit(t,BR,1);
gl=r(2)+r(1).*t;
%subtract the line
sB=BR-gl;
%fit a sinusoid
y=sB;
f=0.2288;
%function to be minimised by x:
ferror=inline(’sum(abs(y-x*cos(f+(t*2*pi/12))))’);
%find x for minimum error;
[ox ferrorx]=fminbnd(ferror,5,40,[],f,t,y);
ye=ox*cos(f+(t*2*pi/12)); %estimated cos()
%subtract the sinusoid
nB=sB-ye;
% display -----------
figure(1)
plot(BR,’k’);
xlabel(’months’); ylabel(’production’);
title(’Australia beer production’);
figure(2)
subplot(4,1,1)
plot(BR,’k’),
xlabel(’month’); ylabel(’Beer production’)

3.8 Time-Series Models 181

title(’Beer production’);
axis([0 N 0 250]);
subplot(4,1,2)
plot(gl,’k’)
xlabel(’month’); ylabel(’growth line’);
axis([0 N 0 250]);
subplot(4,1,3)
plot(ye,’k’)
xlabel(’month’); ylabel(’cosine component’);
axis([0 N -50 50]);
subplot(4,1,4)
plot(nB,’k’)
xlabel(’month’); ylabel(’random component’);
axis([0 N -50 50]);
figure(3)
plot(sB,’k’); hold on; plot(ye,’r’);
xlabel(’month’); ylabel(’cos() fitting’);
title(’cos() fitting’);
% ARMA parameter estimation:
D=std(nB);
M=mean(nB);
Ny=((nB-M)/D);
model=armax(Ny,[1 12]);
% extract info from model structure
[A,B,C,D,F,LAM,T]=th2poly(model);
% print vector of ARMA(1 12) coeffs:
A
C

Seasonal data are treated in a number of ways, including additive or multiplicative
decompositions. One could think of something similar to the product of two signals
(as depicted in Fig. 1.10), where one acts as the envelope of the other, the envelope
corresponding to seasonality.

By the way, in the case of the sunspot data, [9] proposes an ARMA(3, 2) model.
However, there is a lot of discussion on good models for these data. In particular,
[17] alludes to a nonlinear oscillation mechanism in the Sun that could justify the
observed behaviour.

3.9 Resources

3.9.1 MATLAB

3.9.1.1 Toolboxes

• The Large Time/frequency Analysis Toolbox (LTFAT):
http://ltfat.sourceforge.net/

• Control System Toolbox:
http://es.mathworks.com/products/control/

http://dx.doi.org/10.1007/978-981-10-2534-1_1
http://ltfat.sourceforge.net/
http://es.mathworks.com/products/control/

182 3 Linear Systems

• LTPDA Toolbox:
http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/whatis.html/

• ARMASA Toolbox (ARMA modeling):
http://www.mathworks.com/matlabcentral/linkexchange/links/792-armasa
-toolbox

• MATLAB Econometrics Toolbox (time-series):
http://es.mathworks.com/products/econometrics/

• State Space Models Toolbox, SSM (time-series):
http://sourceforge.net/projects/ssmodels/

• Econometrics Toolbox, J.P. LeSage (time-series):
http://www.spatial-econometrics.com/

• E4 Toolbox (time-series):
http://pendientedemigracion.ucm.es/info/icae/e4/

3.9.1.2 Links to Toolboxes

• Statistical and Financial Econometrics Toolboxes (time series):
https://matlab11.wordpress.com/toolboxes/

• Kevin Sheppard page (time series):
https://www.kevinsheppard.com/Main_Page/

3.9.1.3 Matlab Code

• Educational MATLAB GUIs (demos):
http://users.ece.gatech.edu/mcclella/matlabGUIs/

• John Loomis, Convolution Demo:
http://www.johnloomis.org/ece202/notes/conv/

• Convolution Demo 1:
http://www.mathworks.com/matlabcentral/fileexchange/48662-convolution
-demo-1

• Animated Convolution:
http://www.mathworks.com/matlabcentral/fileexchange/4616-animated
-convolution

• Andrew Patton (time-series):
http://public.econ.duke.edu/ap172/code.html

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/whatis.html/
http://www.mathworks.com/matlabcentral/linkexchange/links/792-armasa-toolbox
http://www.mathworks.com/matlabcentral/linkexchange/links/792-armasa-toolbox
http://es.mathworks.com/products/econometrics/
http://sourceforge.net/projects/ssmodels/
http://www.spatial-econometrics.com/
http://pendientedemigracion.ucm.es/info/icae/e4/
https://matlab11.wordpress.com/toolboxes/
https://www.kevinsheppard.com/Main_Page/
http://users.ece.gatech.edu/mcclella/matlabGUIs/
http://www.johnloomis.org/ece202/notes/conv/
http://www.mathworks.com/matlabcentral/fileexchange/48662-convolution-demo-1
http://www.mathworks.com/matlabcentral/fileexchange/48662-convolution-demo-1
http://www.mathworks.com/matlabcentral/fileexchange/4616-animated-convolution
http://www.mathworks.com/matlabcentral/fileexchange/4616-animated-convolution
http://public.econ.duke.edu/ap172/code.html

3.9 Resources 183

3.9.2 Web Sites

• S. Boyd, Convolution listening demo:
https://web.stanford.edu/boyd/ee102/conv_demo.html

• Statwiki, Google site (books and data sets):
https://sites.google.com/a/crlstatistics.net/crlstatwiki/statwiki-home

• STAT 510 (Time-series Analysis, PennState):
https://onlinecourses.science.psu.edu/stat510

• OTexts (Forecastig tutorial):
https://www.otextsorg/

• Statsoft STATISTICA (time-series tutorials)
http://www.statsoft.com/Textbook/Time-Series-Analysis

• Vincent Arel-Bundock (data sets):
http://arelbundock.com/

• Time Series Data Library (data sets):
https://datamarket.com/data/list/?q=provider%3Atsdl

• Some time-series data sets (DUKE):
https://stat.duke.edu/mw/ts_data_sets.html

• Links to time-series data sets:
http://www.stats.uwo.ca/faculty/aim/epubs/datasets/default.htm

• FRED, Economic Research (economic data sets):
https://research.stlouisfed.org/fred2/release?rid=53

• Economic time-series data sets:
http://www.economagic.com/

• dataokfn.org (Gold prices):
http://data.okfn.org/data/core/gold-prices

• Climate data sets
http://climate.geog.udel.edu/climate/html_pages/download.html

• SILSO (Sunspot data files):
http://www.sidc.be/silso/home

References

1. A.M. Alonso, C. Garcia-Martos, Time Series Analysis, Lecture Presentation (Univer-
sity of Carlos III, Madrid, Spain, 2012). http://www.etsii.upm.es/ingor/estadistica/Carol/
TSAtema4petten.pdf

2. H. Bowerman, Forecasting and Time Series (South Western College Publishing, 2004)
3. G.E.P. Box, G.M. Jenkins, Time-Series Analysis: Forecasting and Control (Wiley, New Jersey,

2008)

https://web.stanford.edu/boyd/ee102/conv_demo.html
https://sites.google.com/a/crlstatistics.net/crlstatwiki/statwiki-home
https://onlinecourses.science.psu.edu/stat510
https://www.otextsorg/
http://www.statsoft.com/Textbook/Time-Series-Analysis
http://arelbundock.com/
https://datamarket.com/data/list/?q=provider%3Atsdl
https://stat.duke.edu/mw/ts_data_sets.html
http://www.stats.uwo.ca/faculty/aim/epubs/datasets/default.htm
https://research.stlouisfed.org/fred2/release?rid=53
http://www.economagic.com/
http://data.okfn.org/data/core/gold-prices
http://climate.geog.udel.edu/climate/html_pages/download.html
http://www.sidc.be/silso/home
http://www.etsii.upm.es/ingor/estadistica/Carol/TSAtema4petten.pdf
http://www.etsii.upm.es/ingor/estadistica/Carol/TSAtema4petten.pdf

184 3 Linear Systems

4. S. Boyd, Transfer Functions and Convolution, Lecture Presentation (Stanford University, Cal-
ifornia, 2002). https://web.stanford.edu/boyd/ee102/tf.pdf

5. J.H. Braslavsky, Mathematical Description of Systems, Lecture Notes, Lec.2 (University
of Newcastle, Newcastle, 2003). http://www.eng.newcastle.edu.au/jhb519/teaching/elec4410/
lectures/Lec02.pdf

6. M. Cannon, Discrete Systems Analysis, Lecture Presentation (Oxford University, Oxford,
2014). http://www.eng.ox.ac.uk/conmrc/dcs/dcs-lec2.pdf

7. R. Davis, V.K. Dedu, F. Bonye, Modeling and forecasting of gold prices on financial markets.
Am. Int. J. Contemp. Res. 4(3), 107–113 (2014)

8. B. Demirel, State-Space Representations of Transfer Function Systems, Lecture
Notes (KTH, Sweden, 2013). https://people.kth.se/demirel/State_Space_Representation_of_
Transfer_Function_Systems.pdf

9. P. Faber, Sunspot Activity Modeling, Time Series Student Project (2010). http://tempforum.
neas-seminars.com/Attachment4364.aspx

10. G.C. Goodwin, K.S. Sin, Adaptive Filtering Prediction and Control (Dover, New York, 2009)
11. J. Grandell, Time Series Analysis, Lecture Notes (KTH, Sweden, 2000). http://www.math.kth.

se/matstat/gru/sf2943/ts.pdf
12. D. Heeger, Signals, Linear Systems, and Convolution, Lecture Notes (New York University,

New York, 2000). http://www.cns.nyu.edu/david/handouts/convolution.pdf
13. J. Huang, J.A. Bagnell, Gauss-Markov Models, Lecture Notes (Carnegie-Mellon Univer-

sity, Pittsburgh, 2000). http://www.cs.cmu.edu/./16831-f12/notes/F11/16831_gaussMarkov_
jonHuang.pdf

14. G. Kitagawa, Introduction to Time Series Modeling (Chapman and Hall, CRC, 2010)
15. H. Madsen, Time-series Analysis (Chapman & Hall, CRC, 2008)
16. H.J. Newton, ARMA Models, Lecture Notes (Texas A&M University, Texas, 2014). https://

www.stat.tamu.edu/jnewton/stat626/topics/lectures/topic11.pdf
17. M. Paluš, D. Novotna, Sunspot cycle: a driven nonlinear oscillator? Phys. Rev. Lett. 83(17),

1–4 (1999)
18. A. Papoulis, Predictable processes and wold’s decomposition: a review. IEEE Trans. Acoust.

Speech Signal Process. 33(4), 933–938 (1985)
19. D.S.G. Pollock, Lectures in the City, Lecture Notes (The University of London, London, 2007).

http://www.le.ac.uk/users/dsgp1/COURSES/BANKERS/PROBANK.HTM
20. D. Rowell, State-space Representation of LTI Systems, Lecture Notes (MIT Press, Cambridge,

2002). http://www.web.mit.edu/2.14/www/Handouts/StateSpace.pdf
21. H. Sandberg,Kalman Filtering, Lecture Presentation (Caltech, 2006). https://www.cds.caltech.

edu/murray/wiki/images/4/46/L_Kalman.pdf
22. N. Shimkin, Derivations of the Discrete-Time Kalman Filter, Lecture Notes (Technion, Israel,

2009). http://webee.technion.ac.il/people/shimkin/Estimation09/ch4_KFderiv.pdf
23. R. Smith, System Theory: Controllability, Observabiliy, Stability; Poles and Zeros, Lecture pre-

sentation (ETH Zurich, Zurich, 2014). http://control.ee.ethz.ch/ifa_cs2/RS2_lecture7.small.
pdf

24. U. Triacca, The Wold Decomposition Theorem, Lecture presentation (University of dell’Aquila,
Italy, 2000). www.phdeconomics.sssup.it/documents/Lesson11.pdf

25. R.S. Tsay, ARMA Models (University Chicago: Booth, Chicago, 2008). http://faculty.
chicagobooth.edu/ruey.tsay/teaching/uts/lecpdf

26. Transfer Functions and Bode Plots, Lecture Notes (Georgia Institute of Technology, Atlanta,
2005). http://users.ece.gatech.edu/mleach/ece3040/notes/bode.pdf

27. R. Weber, Time Series, Lecture Notes (University of Cambridge, Cambridge, 2000). http://
www.statslab.cam.ac.uk/rrw1/timeseries/t.pdf

28. W.-C.Yu,Forecasting Methods, LectureNotes (WinonaStateUniversity,Winona, 2011). http://
course1.winona.edu/bdeppa/FIN335/Handouts/Ch5 Computing Handout in JMP and R.docx

29. E.Y. Zhang, X.F. Zhu, The recursive algorithms of Yule–Walker equation in generalized sta-
tionary prediction. Adv. Mater. Res. 756, 3070–3073 (2013)

https://web.stanford.edu/boyd/ee102/tf.pdf
http://www.eng.newcastle.edu.au/jhb519/teaching/elec4410/lectures/Lec02.pdf
http://www.eng.newcastle.edu.au/jhb519/teaching/elec4410/lectures/Lec02.pdf
http://www.eng.ox.ac.uk/conmrc/dcs/dcs-lec2.pdf
https://people.kth.se/demirel/State_Space_Representation_of_Transfer_Function_Systems.pdf
https://people.kth.se/demirel/State_Space_Representation_of_Transfer_Function_Systems.pdf
http://tempforum.neas-seminars.com/Attachment4364.aspx
http://tempforum.neas-seminars.com/Attachment4364.aspx
http://www.math.kth.se/matstat/gru/sf2943/ts.pdf
http://www.math.kth.se/matstat/gru/sf2943/ts.pdf
http://www.cns.nyu.edu/david/handouts/convolution.pdf
http://www.cs.cmu.edu/./16831-f12/notes/F11/16831_gaussMarkov_jonHuang.pdf
http://www.cs.cmu.edu/./16831-f12/notes/F11/16831_gaussMarkov_jonHuang.pdf
https://www.stat.tamu.edu/jnewton/stat626/topics/lectures/topic11.pdf
https://www.stat.tamu.edu/jnewton/stat626/topics/lectures/topic11.pdf
http://www.le.ac.uk/users/dsgp1/COURSES/BANKERS/PROBANK.HTM
http://www.web.mit.edu/2.14/www/Handouts/StateSpace.pdf
https://www.cds.caltech.edu/murray/wiki/images/4/46/L_Kalman.pdf
https://www.cds.caltech.edu/murray/wiki/images/4/46/L_Kalman.pdf
http://webee.technion.ac.il/people/shimkin/Estimation09/ch4_KFderiv.pdf
http://control.ee.ethz.ch/ifa_cs2/RS2_lecture7.small.pdf
http://control.ee.ethz.ch/ifa_cs2/RS2_lecture7.small.pdf
www.phdeconomics.sssup.it/documents/Lesson11.pdf
http://faculty.chicagobooth.edu/ruey.tsay/teaching/uts/lecpdf
http://faculty.chicagobooth.edu/ruey.tsay/teaching/uts/lecpdf
http://users.ece.gatech.edu/mleach/ece3040/notes/bode.pdf
http://www.statslab.cam.ac.uk/rrw1/timeseries/t.pdf
http://www.statslab.cam.ac.uk/rrw1/timeseries/t.pdf
http://course1.winona.edu/bdeppa/FIN 335/Handouts/Ch5
http://course1.winona.edu/bdeppa/FIN 335/Handouts/Ch5

Chapter 4
Analog Filters

4.1 Introduction

Signal filtering is one of themain applications of signal processing, so textbooks usu-
ally include important chapters on this functionality. There are also books specifically
devoted to analog filters, like [4, 9, 13].

Filters are used formany purposes. For example, the case of radio tuning: a narrow
band-pass filter is used to select just one among the many radio stations that you can
find across a large range of electromagnetic frequencies. In other applications, the
desire could be to let pass low or high frequencies, or, complementary, to attenuate
high or low frequencies. To avoid interferences notch filters, which reject a certain
frequency band, are used. There are cases that require a combination of attenuations
in certain frequency bands and amplification in other frequency bands.

The filtering desires can be specified in several ways. For instance in terms of
stable transfer functions. Alternatively, ideal (non feasible) filtering can be initially
stated, and then approximated in a certain manner.

Filters can be implemented in several contexts, such as mechanic systems,
hydraulic systems, etc., [2, 10, 11]. Before computers were born, the electronic
circuits context was the main protagonist of filter developments, [4]. The synthesis
of circuits that implement desired filter transfer functions is a large traditional topic,
with many successful results.

Now that filters can be implemented using computers, it is still important to have
previous ideas from the classical approach with analog circuits. This is the purpose
of this chapter, which paves the way for the next chapter on digital filters.

4.2 Basic First Order Filters

The term “first order” refers to having a transfer function with just one pole. A basic
first order filter was already considered in the chapter before. This was a low-pass

© Springer Science+Business Media Singapore 2017
J.M. Giron-Sierra, Digital Signal Processing with Matlab Examples, Volume 1,
Signals and Communication Technology, DOI 10.1007/978-981-10-2534-1_4

185

186 4 Analog Filters

filter, made with a simple R-C circuit. Let us include again a diagram of the circuit,
Fig. 4.1.

As reflected in Fig. 4.1 the idea is to short-circuit the high frequency signals trough
the capacitor, so these signals are eliminated: only low frequencieswould pass. Recall
that the transfer function of this circuit is:

G(s) = Vo(s)

Vi(s)
= 1

1 + RCs
(4.1)

Figure4.2 shows the frequency response of the low-pass filter. Two straight lines
were added, which represent a simple manual approximation to the real frequency
response. The intersection of these lines determines a certain frequency ωc, which is
called a “corner frequency”. This allows for a simplified viewof the filter: frequencies
below the corner frequency will pass; frequencies over the corner frequency will be
attenuated. The corner frequency coincides with the transfer function pole; at this
frequency the manual approximation and the real frequency response differ by 6 dB.

Figure4.3 shows the circuit of a high-pass filter. The idea is to provide a direct
way for the high frequency signal to cross the circuit, through the capacitor, while
low frequency signals are attenuated by this capacitor.

Fig. 4.1 A first order
low-pass filter

R

CVi Vo

Fig. 4.2 Frequency
response of the first order
low-pass filter

10
-1

10
0

10
1

10
2

-30

-25

-20

-15

-10

-5

0

5

10

dB

rad/s

4.2 Basic First Order Filters 187

Fig. 4.3 A first order
high-pass filter

R

C

Vi Vo

The transfer function of the Fig. 4.2 circuit is deduced as follows:

Vi(s) = R I(s) + (1/(Cs)) I(s) (4.2)

Vo(s) = R I(s) (4.3)

G(s) = Vo(s)

Vi(s)
= R

R + 1/Cs
= Cs

1 + RCs
(4.4)

Figure4.4, generated by Program 4.1, shows the frequency response of the high-pass
filter with R = 1 and C = 0.1. Like before, two straight lines were added as a simple
manual approximation. Again, the intersection of these lines determines a corner
frequency ωc. Now the simplified view of the filter is: frequencies over the corner
frequency will pass; frequencies below the corner frequency will be attenuated.

Fig. 4.4 Frequency
response of the first order
high-pass filter

10-1 100 101 102
-30

-25

-20

-15

-10

-5

0

5

10

dB

rad/s

188 4 Analog Filters

Program 4.1 Frequency response of high-pass filter

% Frequency response of high-pass filter
R=1; C=0.1; %values of the components
num=[C 0]; % transfer function numerator;
den=[R*C 1]; %transfer function denominator
w=logspace(-1,2); %logaritmic set of frequency values
G=freqs(num,den,w); %computes frequency response
AG=20*log10(abs(G)); %take decibels
semilogx(w,AG,'k'); %plots decibels
axis([0.1 100 -30 10]);
grid;
ylabel('dB'); xlabel('rad/s');
title('frequency response of high-pass filter');

There is another interesting point of view that deserves a comment, on the basis
of the two filters just seen. In Fig. 4.3 the slope of the inclined straight line is
–20dB/decade, this corresponds to high frequencies. At high frequencies the trans-
fer function (4.1) tends to 1/RCs, which corresponds to an integrator. In Fig. 4.4 the
slope of the inclined straight line is 20dB/decade, and that corresponds to deriva-
tion. Integration or derivation behaviour can be observed looking at the steady-state
responses to a square signal, provided the frequency of this signal falls into the range
of the inclined slope.

Let us take the low-pass filter with R = 1 and C = 0.1, and a square signal with a
frequency over ωc = 1/RC = 10 rad/s. Using the Program 4.2 we compute and plot,
in Fig. 4.5, the response of the filter to this square signal.

The area integral of the squares are triangles. The signal in Fig. 4.5 is almost
triangular, reflecting the integration done by the filter at low frequencies. From other
perspective, it can be noticed that the signal shows a repeated pattern: a partial charge
and then discharge of the capacitor.

Fig. 4.5 Response of the
first order low-pass filter to a
square signal

1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

seconds

4.2 Basic First Order Filters 189

Program 4.2 Response to square signal, low-pass filter

% Response to square signal, low-pass filter
R=1; C=0.1;%values of the components
num=[1]; % transfer function numerator;
den=[R*C 1]; %transfer function denominator
G=tf(num,den); %transfer function
% Input square signal
fu=7; %signal frequency in Hz
wu=2*pi*fu; %signal frequency in rad/s
fs=2000; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(2-tiv); %time intervals set (2 seconds)
u=square(wu*t); %input signal data set
[y,ty]=lsim(G,u,t); %computes the system output
%plots last 1/2 second of output signal:
plot(t(3001:4000),y(3001:4000),'k');
xlabel('seconds');
title('response to square signal, low-pass filter');

Now, let us take the high-pass filter with R = 1 and C = 0.1, and a square signal
with a frequency below ωc = 1/RC = 10 rad/s. The response of the filter to this
square signal is shown in Fig. 4.6, which has been generated by the Program 4.3.

The derivative of an ideal square signal should have very large spikes, since if
the transitions from one to other amplitude were instantaneous, the corresponding
derivatives were infinite. The spikes in Fig. 4.6 show the derivative action of the filter
at low frequencies.

Fig. 4.6 Response of the
first order high–pass filter to
a square signal

20 25 30 35 40 45 50 55 60
-3

-2

-1

0

1

2

3

seconds

190 4 Analog Filters

Program 4.3 Response to square signal, high-pass filter

% Response to square signal, high-pass filter
R=1; C=0.1;%values of the components
num=[C 0]; % transfer function numerator;
den=[R*C 1]; %transfer function denominator
G=tf(num,den); %transfer function
% Input square signal
fu=0.1; %signal frequency in Hz
wu=2*pi*fu; %signal frequency in rad/s
fs=100; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(60-tiv); %time intervals set (60 seconds)
u=square(wu*t); %input signal data set
[y,ty]=lsim(G,u,t); %computes the system output
%plots last 40 seconds of output signal:
plot(t(2001:6000),y(2001:6000),'k');
axis([20 60 -3 3]);
xlabel('seconds');
title('response to square signal, low-pass filter');

Circuits having only R, L, C components are passive. Their transfer functions
are always stable. Passive circuits do not amplify; in consequence their frequency
response amplitude is always ≤0dB (0dB corresponds to gain = 1). The examples
considered in this section were passive circuits.

4.3 A Basic Way for Filter Design

Themanual approximation just introduced with the examples in the previous section,
can be extended for more complex frequency responses and may be useful for an
initial specification of the desired transfer function. This manual approximation is
acceptable for well separated poles and zeros.

Readers familiar with the Bode diagram may already know how to approximate
frequency responses by straight lines. In any case, it is interesting to consider some
examples pertaining to filters.

Suppose we want a low-pass filter, with a corner frequency ωa = 10. Let us draw
amanual approximation as in Fig. 4.7. The procedure for manual approximation is to
proceed from left to right (from low frequency to high frequency), when you arrive to
a pole you start a new straight line adding –20dB/decade to the slope of the previous
straight line, when you arrive to a zero you do the same but adding +20dB/decade
to the slope.

Looking at Fig. 4.7 the corresponding transfer function is:

G(s) = 10

s + 10
(4.5)

This transfer function has a pole p = −10 (the desired corner frequency is ωa = 10).

4.3 A Basic Way for Filter Design 191

Fig. 4.7 A desired low-pass
frequency response

10-1 100 101 102
-20

-15

-10

-5

0

5

10

dB

rad/s

wa

Fig. 4.8 A desired high-pass
frequency response

10
0

10
1

10
2

10
3

10
4

-20

-15

-10

-5

0

5

10

dB

rad/s

wa

Now we want a high-pass filter, with a corner frequency ωa = 100. We draw a
manual approximation as in Fig. 4.8.

Looking at Fig. 4.8 the corresponding transfer function is:

G(s) = s

s + 100
(4.6)

This transfer function has a zero at the origin and a pole p = −100 (the desired corner
frequency is ωa = 100). The zero at the origin causes the initial leftmost straight
line to have 20dB/decade slope.

Suppose we want a band-pass filter, with the band Δω between ωa = 10 and
ωb = 100. Figure4.9 shows a manual approximation.

192 4 Analog Filters

Fig. 4.9 A desired
band-pass frequency
response

10
0

10
1

10
2

10
3

-20

-15

-10

-5

0

5

10

dB

rad/s

wa wb

Fig. 4.10 A desired
band-stop frequency
response

10
0

10
1

10
2

10
3

-20

-15

-10

-5

0

5

dB

rad/s

wa wb

Now, looking at Fig. 4.9 we can write the corresponding transfer function:

G(s) = 100 s

(s + 10) (s + 100)
(4.7)

Since we want to reject a band Δω between ωa = 10 and ωb = 100, we want a
band-stop filter (a notch filter). Figure4.10 shows a manual approximation.

Based on Fig. 4.10 we write the corresponding transfer function:

G(s) = (s + 25) (s + 40)

(s + 10) (s + 100)
(4.8)

4.3 A Basic Way for Filter Design 193

Fig. 4.11 A desired
frequency response:
approximation and reality

10
-2

10
-1

10
0

10
1

10
2

10
3

-25

-20

-15

-10

-5

0

5

dB

rad/s

The values of the zeros in this last example can be modified, depending on howmuch
attenuation is needed in the stop band. Likewise, it could be convenient to modify
the values of the poles to expand their mutual distance.

Now let us check our approach considering a more complex example, as repre-
sented in Fig. 4.11. From the figure we obtain the corresponding transfer function:

G(s) = (s + 0.1) (s + 25) (s + 40)

(s + 1) (s + 10) (s + 100)
(4.9)

We plot on the same Fig. 4.11 the real frequency response |G(jω)| in decibels,
obtained with the Program 4.4, to be compared with the manual approximation.

Program 4.4 Abstract design, desired filter

% Abstract design, desired filter
% transfer function numerator:
num1=conv([1 0.1],[1 25]); num=conv(num1,[1 40]);
%transfer function denominator:
den1=conv([1 1],[1 10]); den=conv(den1,[1 100]);
w=logspace(-2,3); %logaritmic set of frequency values
G=freqs(num,den,w); %computes frequency response
AG=20*log10(abs(G)); %take decibels
semilogx(w,AG,'--b'); %plots decibels
axis([0.01 1000 -25 5]);
grid;
ylabel('dB'); xlabel('rad/s');
title('frequency response of desired filter');

Along this section only simple, real and negative poles and zeros have been spec-
ified. Negative poles ensure stability. Transfer functions with zeros in the right hand
semiplane are called “non-minimum-phase” transfer functions. This type of transfer
functions are a source of difficulty in he context of control systems. We prefer to

194 4 Analog Filters

specify “minimum-phase transfer functions”, which have no zeros in the right hand
semiplane. Multiple poles (several poles having the same value) and complex poles
cause larger errors of the manual approximation with respect to the real frequency
response, so we do not use them.

Up to now this section was taking into consideration only |G(jω)| specifications,
without looking at phases. As a matter of fact, the complete manual approximation
procedure includes phases: when you add +20dB/decade to the gain slope you
also increase the phase by 90◦ (along a sigmoid curve vs. frequency); and when
you add –20dB/decade to slope, you add –90◦ to phase along a sigmoid. In other
words: the specification of |G(jω)| includes implicitly the specification of phases:
both specifications are connected.

The implementation of a transfer function using an active electronic circuit can
be done in several ways. For instance by partial fraction expansion, using as many
operational amplifiers as fractions, and then adding the outputs of the amplifiers.
Or by using Sallen-Key active circuit topologies, [5, 8]. Passive circuits may be
preferred, but they have limitations. Let us comment some details about passive
circuits.

Suppose you depart from a circuit like the one represented in Fig. 4.12. The design
should focus on the impedance Z(s). The theory of network synthesis, [12], offer
several important results concerning impedances implemented with passive circuits.
Let us mention some of them:

• When s → ∞, Z(s) tends to Ks, or K , or K/s. In other words, if

Z(s) = Ksm + b1 sm−1 + · · ·
sn + a1 sn−1 + · · · .

(4.10)

then m and n cannot differ in more than 1

• None of the Z(s) poles and zeros are in the right hand semiplane
• There are no multiple poles nor multiple zeros
• Z(s) is a positive real function, that is:

Fig. 4.12 A filter structure

R

Z(s)

Vi Vo

4.3 A Basic Way for Filter Design 195

Re Z(jω) ≥ 0 , ∀ω (4.11)

Since it is a positive real function, if we represent Z(jω) on the complex plane, the
corresponding curve will lay on the right hand semiplane.

The power dissipation of the impedance is given by:

Re Z(jω) · I2 (4.12)

If we use a passive circuit with only L and C components, the circuit is not
dissipative andRe Z(jω) = 0. In this case when s → ∞, Z(s) tends toKs, orK/s. The
poles and zeros of L-C circuits are interleaved: between every two poles there must
be one zero, and vice-versa. The synthesis of lossless impedances can systematically
be done according with Foster forms, Fig. 4.13, or with Cauer forms, Fig. 4.14.

L1 L2 Ln

C1 C2 Cn

C0

C1L1

C0

C2L2

Ln Cn

(a)

(b)

Fig. 4.13 Foster forms

196 4 Analog Filters

C1

L1

Cn

Ln

L1

C1

Ln

Cn

(a)

(b)

Fig. 4.14 Cauer forms

Circuits with only R and C components are dissipative. In this case when s → ∞,
Z(s) tends to K , or K/s. All poles are simple, negative and real. The root nearest to
the origin is a pole. The poles and zeros of R-C circuits are interleaved. The synthesis
of this kind of impedances can also be done according with Foster or Cauer forms
(substitute L by R).

Circuits with only R and L components are also dissipative. In this case when
s → ∞, Z(s) tends to Ks, or K . All poles are simple, negative and real. The root
nearest to the origin is a zero. The poles and zeros of R-L circuits are interleaved.
Again, the synthesis of this kind of impedances can be done with Foster or Cauer
forms (substitute C by R).

Abrief practical synthesis of network theory is given in [6]. The article [1] contains
a review of LC circuit design methods and a modern treatment of this topic. It would
be also recommended to read the interesting article of Darlington on the history of
passive circuit theory, [3].

In general this section contributes to highlight the importance of digital processors
in the field of signal filtering, since they give more design freedom. Anyway, it is
interesting to show some filter structures, because in part they introduce certain
filtering algorithms.

4.4 Causality and the Ideal Band-Pass Filter 197

4.4 Causality and the Ideal Band-Pass Filter

Real, physical systems are causal. Effects follow causes: a ball moves after being
kicked. Circuits made with real components are causal. Filters made with computers
maybe not.

Linear causal systems have an impulse response g(t) such that:

g(t) = 0 , t < 0 (4.13)

It is important to consider that linear causal systems satisfy the Paley–Wiener con-
dition: +∞∫

−∞

| ln |G(jω)||
1 + ω2

dω < ∞ (4.14)

This condition means that |G(jw)| can be zero at some frequencies but cannot be
zero over a finite band of frequencies. Other consequences are the following:

• |G(jw)| cannot have an infinitely sharp cut-off from pass-band to stop-band
• ReG(jw) and ImagG(jw) are interdependent, so therefore |G(jw)| and φ(jω)
are also interdependent (in other words: |G(jw)| and φ(jω) cannot be arbitrarily
chosen)

Now let us consider again the example given in the chapter introduction: the radio
tuning. The problem will be illustrated with a figure. But before, it is pertinent to add
some considerations about signals.

The energy of a signal y(t) is given by:

E =
+∞∫

−∞
|f (t)|2 dt (4.15)

The following concerns finite-energy signals. A signal y(t) is band-limited (BL) if
its Fourier transform is zero outside a finite frequency interval. That also means that
the PSD of the signal is zero outside a finite frequency band, which we call the
“bandwidth” of the signal. A signal y(t) is time-limited (TL) if y(t) = 0 for |t| > τ .

Paley and Wiener also showed that a time-limited signal cannot be band-limited,
and vice-versa. See [7] (Chap.5), for more details.

The particular case of the impulse δ(t), which is instantaneous, is illustrative. The
spectrum of this signal is flat: it extends with amplitude 1 to infinite frequency. In
practical terms, spikes are signals with a powerful interfering capability: you hear
in your car radio the spikes of neighbour cars (if they do not have anti-interference
devices), no matter the station frequency you are tuning.

To avoid mutual interference radio stations limit the bandwidth of the signals they
transmit. Figure4.15 shows on top a certain radio band, and several radio stations r1,

http://dx.doi.org/10.1007/978-981-10-2534-1_5

198 4 Analog Filters

Radio band
Δωr1 Δωr2 Δωr5

Δωr2

Filter

Signal

Fig. 4.15 Radio tuning with an ideal filter

r2, etc. are using parts of this band, with bandwidths Δωr1, Δωr2, etc. In the middle
of Fig. 4.15 we represent an ideal filter which is used to extract from the radio band
the bandwidth of interest, for instance Δωr2, which belongs to r2. Below the ideal
filter, the Fig. 4.15 shows the effect of the filter: to extract the signal y(t) transmitted
by r2.

As shown in Fig. 4.15 the ideal filter should have a flat amplitude response in a
certain bandwidth –the pass-band-, have zero response outside this bandwidth –the
stop-bands-, and have vertical transitions from the pass-band to the stop-bands. In
view of the Paley–Wiener condition this is impossible with a causal filter, but we can
approximate this target.

4.5 Three Approximations to the Ideal Low-Pass Filter

In this section three relevant approximations to the ideal low-pass filter are described.
It suffices with the study of the low-pass case, since it can be easily translated to the
ideal band-pass or high-pass filters. Actually, there existMATLABSignal Processing
Toolbox routines for such purposes.

In order to use the functions of the MATLAB Signal Processing Toolbox related
with ideal filter approximations, it is important to know how these approximations
are specified. Figure4.16 shows the frequency response amplitude of a low-pass
filter. Some lines are added to indicate parameters of interest.

In general the frequency response amplitude of the filters to be studied in this
section has a pass-band part and a stop-band part. Each of the bands can bemonotonic
(no oscillations) or have ripple (oscillations). These bands can bemore or less narrow,
their wide being specified in decibels. The transition between bands should be sharp.

There is a trade-off between the flatness of the bands and the sharpness of the
transition. The Butterworth filter is maximally flat, with monotonic pass and stop
bands. The Chebyshev type 1 filter allows ripple only in the pass-band, getting a
faster roll-off. Alternatively, the Chebyshev type 2 filter allows ripple only in the

4.5 Three Approximations to the Ideal Low-Pass Filter 199

Fig. 4.16 Specification of a
low-pass filter

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

G
ai

n

rad/s

pass-band

stop-band

stop-band, obtaining also a good roll-off. The elliptic filter has ripple in both the pass
and the stop bands, providing the fastest roll-off.

Let us describe in detail the filters just mentioned.

4.5.1 Butterworth Filter

The Butterworth filter provides the best Taylor series approximation to the ideal low-
pass filter. The Butterworth filter has n poles and no zeros. The order of the filter is
n. According with the filtering needs, the designer decides a value for n. The slope
of the roll-off, in a logarithmic plane, is –20 ndB/decade: the larger n the steeper the
roll-off (however, large values of n can cause numerical difficulties). The transfer
function for order n is such that:

|G(jω)|2 = 1

1 + (ω/ωc)2n
(4.16)

The cut-off frequency ωc of the Butterworth filter is that frequency where the mag-
nitude response of the filter is

√
1/2.

The denominator of the transfer function is a Butterworth polynomial. Here is a
table of the first polynomials:

200 4 Analog Filters

n polynomial
1 (s + 1)
2 s2 + 1.4142 s + 1
3 (s + 1)(s2 + s + 1)
4 (s2 + 0.7654 s + 1) (s2 + 1.8478 s + 1)
5 (s + 1) (s2 + 0.6180 s + 1) (s2 + 1.9319s + 1)

Figure4.17 shows the frequency response of a Butterworth filter with n = 5. Note
that the magnitude has been represented in a linear scale.

The Fig. 4.17 has been obtained with the Program 4.5, which uses the butter()
function. The cut-off frequency we have specified is 10 rad/s.

Program 4.5 Frequency response of Butterworth filter

% Frequency response of Butterworth filter
wc=10; % desired cut-off frequency
N=5; % order of the filter
%analog Butterworth filter:
[num,den]=butter(N,wc,'s');
w=logspace(0,2); %logaritmic set of frequency values
G=freqs(num,den,w); %computes frequency response
semilogx(w,abs(G),'k'); %plots linear amplitude
axis([1 100 0 1.1]);
grid;
ylabel('Gain'); xlabel('rad/s');
title('frequency response of 5th
Butterworth filter');

Figure4.18 depicts the poles (plotted as diamonds) of the Butterworth filter on
the complex plane. The poles are placed on a semi-circumference of radius ωc at
equally spaced points.

Fig. 4.17 Frequency
response of 5th order
Butterworth filter

100 101 102
0

0.2

0.4

0.6

0.8

1

G
ai

n

rad/s

4.5 Three Approximations to the Ideal Low-Pass Filter 201

Fig. 4.18 Poles of 5th order
Butterworth filter

-12 -10 -8 -6 -4 -2 0 2
-10

-8

-6

-4

-2

0

2

4

6

8

10

The Fig. 4.18 has been generated by the Program 4.6. Instead of using the pzmap()
function, we opted for a more flexible coding, using the pole() function, in order to
show a dashed circumference arc and the poles in the form of diamonds.

Program 4.6 Pole-zero map of Butterworth filter

% Pole-zero map of Butterworth filter
wc=10; % desired cut-off frequency
N=5; % order of the filter
%analog Butterworth filter:
[num,den]=butter(N,wc,'s');
G=tf(num,den); %transfer function
P=pole(G); %find the poles of G
alfa=-(pi/2):-0.1:-(3*pi/2); %set of angle values
%plots half a circumference:
plot(wc*cos(alfa),wc*sin(alfa),'--');
hold on;
plot(P,'dk'); %pole map
title('pole-zero map of 5th Butterworth filter');

Figure4.19, which has been obtained with the Program 4.7, shows the step
response of the 5th Butterworth filter. The step response has moderate overshoot
and ringing.

Program 4.7 Step response of Butterworth filter

% Step response of Butterworth filter
wc=10; % desired cut-off frequency
N=5; % order of the filter
%analog Butterworth filter:
[num,den]=butter(N,wc,'s');
G=tf(num,den); %transfer function
step(G,'k'); %step response of G
title('step response of 5th Butterworth filter');

202 4 Analog Filters

Fig. 4.19 Step response of
5th order Butterworth filter

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

A
m

pl
itu

de

Fig. 4.20 Effect of n on the
frequency response of the
Butterworth filter

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

G
ai

n

rad/s

2

4

6
8

Program 4.8 has been used to generate the Fig. 4.20 in which we compare several
frequency responses of Butterworth filters, to visualize the effect of the order of the
filter. Using n = 4 instead of n = 2 has a dramatic effect; for larger values of n the
improvements are less and less visible.

Program 4.8 Comparison of frequency response of Butterworth filters

% Comparison of frequency response
% of Butterworth filters
wc=10; % desired cut-off frequency
N=2; % order of the filter
%analog Butterworth filter:
[num,den]=butter(N,wc,'s');
w=logspace(0,2); %logaritmic set of frequency values
G=freqs(num,den,w); %computes frequency response
semilogx(w,abs(G),'k'); %plots linear amplitude
hold on;
axis([1 100 0 1.1]);
grid;
ylabel('Gain'); xlabel('rad/s');
title('frequency response of Butterworth filter');

4.5 Three Approximations to the Ideal Low-Pass Filter 203

Fig. 4.21 Response of 5th

order Butterworth filter to a
square wave

0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5

seconds

for N=4:2:8, % more orders of the filter
%analog Butterworth filter:
[num,den]=butter(N,wc,'s');
G=freqs(num,den,w); %computes frequency response
semilogx(w,abs(G),'k'); %plots linear amplitude
end;

To complete our review of the Butterworth filter, Fig. 4.21 shows the response of
the filter when it filters a square wave. The frequency of the square wave is 1Hz,
so the signal is inside the low-pass band. The effect of the filter is to extract the
fundamental sinusoidal harmonic of the signal, attenuating the rest of the harmonics.
Figure4.21 has been obtained with the Program 4.9.

Program 4.9 Response of Butterworth filter to square signal

% Response of Butterworth filter to square signal
wc=10; % desired cut-off frequency
N=5; % order of the filter
%analog Butterworth filter:
[num,den]=butter(N,wc,'s');
G=tf(num,den); %transfer function
% Input square signal
fu=1; %signal frequency in Hz
wu=2*pi*fu; %signal frequency in rad/s
fs=100; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(6-tiv); %time intervals set (6 seconds)
u=square(wu*t); %input signal data set
[y,ty]=lsim(G,u,t); %computes the system output
plot(t,y,'k'); %plots output signal
axis([0 6 -1.5 1.5]);
xlabel('seconds');
title('response to square signal,

5th Butterworth filter');

204 4 Analog Filters

Fig. 4.22 Frequency
response of 5th order
Chebyshev 1 filter

100 101 102
0

0.2

0.4

0.6

0.8

1

G
ai

n

rad/s

4.5.2 Chebyshev Filter

There are two types of Chebyshev filters: type 1 has ripple in the pass-band and is
monotonic in the stop-band, type 2 has ripple in the stop-band and is monotonic in
the pass-band. In both type the order of the filter is n, with n being the number of
poles. Like in the Butterworth filter, the larger n the steeper the roll-off, but large
values of n can cause numerical difficulties.

From this point on, this section repeats the Programs 4.5, 4.6, 4.7, 4.8 and 4.9,
with only small changes in an initial fragment which is equal for all of them. Let us
denote this fragment as “FrB” for the case of Butterworth filter. The fragment FrB
is the following:

Fragment 4.10 FrB

wc=10; % desired cut-off frequency
N=5; % order of the filter
%analog Butterworth filter:
[num,den]=butter(N,wc,'s');
G=tf(num,den); %transfer function

To generate the next Figs. 4.22, 4.23, 4.24, 4.25 and 4.26 we just substituted in the
corresponding programs the fragment FrB by another fragment, that we call “FrC1”,
devoted to the Chebyshev type 1 filter. The fragment FrC1 is the following:

Fragment 4.11 FrC1

wc=10; %desired cut-off frequency
N=5; %order of the filter
R=0.5; %decibels of ripple in the pass band
%analog Chebyshev 1 filter:
[num,den]=cheby1(N,R,wc,'s');

4.5 Three Approximations to the Ideal Low-Pass Filter 205

Fig. 4.23 Poles of 5th order
Chebyshev 1 filter

-10 -8 -6 -4 -2 0 2
-15

-10

-5

0

5

10

15

Fig. 4.24 Step response of
5th order Chebyshev 1 filter

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

A
m

pl
itu

de

Thus, it is not necessary to include the listings of the programs for the figures
concerning the Chebyshev type 1 filter.

The idea of the fragment substitution will be re-used for the rest of filters in this
section.

4.5.2.1 Type 1

The Chebyshev type 1 filter minimizes the absolute difference between the ideal
and actual magnitude of the frequency response over the complete pass-band, by
incorporating an equal ripple in this band. Its transfer function for order n is such
that:

|G(jω)|2 = 1

1 + ε2 T 2
n (ω/ωp)

(4.17)

206 4 Analog Filters

Fig. 4.25 Effect of n on the
frequency response of the
Chebyshev 1 filter

100 101 102
0

0.2

0.4

0.6

0.8

1

G
ai

n

rad/s

2

4

68

Fig. 4.26 Response of 5th

order Chebyshev 1 filter to a
square wave

0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5

seconds

where Tn() is a Chebyshev polynomial of the nth order. These polynomials may be
generated recursively by using the relationship:

Tn+1(ω) = 2ω Tn(ω) − Tn−1(ω) (4.18)

4.5 Three Approximations to the Ideal Low-Pass Filter 207

Here is a table of the first Chebyshev polynomials:

n polynomial
1 ω

2 2 ω2−1
3 4ω3− 3ω
4 8ω4− 8ω2 +1

Along the pass-band T 2
n () oscillates between 0 and 1, and this causes |G(jω)| to

oscillate between 1 and 1 /
√

1 + ε2. Thus, the peak-to-peak value of pass-band
ripple in decibels, is:

RP = 20 log

(
1

1/
√
1 + ε2

)
= 10 log (1 + ε2) (4.19)

The MATLAB function cheby1() recommends to specify a value of Rp of 0.5dB.
The smaller Rp, the wider is the transition from pass-band to stop-band.

The Chebyshev type 1 filter has n poles and no zeros. The cut-off frequency ωp

of the Chebyshev filter is the frequency at which the transition from pass-band to
stop-band has the value − − Rp dB.

The fragment FrC1 uses the cheby1() function. The cut-off frequency we have
specified is 10 rad/s.

Figure4.22 shows the frequency response of a Chebyshev filter with n = 5. Note
that the magnitude has been represented in a linear scale.

Figure4.23 depicts the poles (plotted as diamonds) of the Chebyshev type 1 filter
on the complex plane. The figure keeps for reference a semi-circumference of radius
ωc . The poles are placed on a semi-ellipse. The eccentricity of the ellipse depends
on ε.

Figure4.24 shows the step response of the 5th Chebyshev type 1 filter. This step
response has more ringing than the Butterworth filter step response.

Several frequency responses of the Chebyshev type 1 filter, for different values
of n, are compared in Fig. 4.25. Again, using n = 4 instead of n = 2 has a dramatic
effect; values of n > 8 do not get much improvements.

Figure4.26 shows the response of the Chebyshev type 1 filter when it filters a
square wave. The frequency of the square wave is 1Hz being inside the pass-band.
The effect of the filter is to extract the fundamental harmonic.

4.5.2.2 Type 2

The Chebyschev type 2 filter minimizes the absolute difference between the ideal
and actual magnitude of the frequency response in the stop-band, having equal ripple
in this band. The pass-band is monotonic. The transfer function of this filter for order
n is such that:

208 4 Analog Filters

|G(jω)|2 = 1

1 + (1/ε2 T 2
n (ωs/ω))

(4.20)

Along the stop-band T 2
n () oscillates between 0 and 1, and this causes |G(jω)| to

oscillate between 0 and 1 /
√
1 + 1/ ε2. Thus, the peak-to-peak value of stop-band

ripple in decibels, is:

RP = 20 log

(
1

1/
√
1 + 1/ε2

)
= 10 log (1 + 1/ε2) (4.21)

The MATLAB function cheby2() recommends to specify a value of Rs of 20dB. The
smaller Rs, the wider is the transition from pass-band to stop-band.

The Chebyshev type 2 filter has both poles and zeros. The cut-off frequency ωs of
the Chebyshev type 2 filter is the frequency at which the transition from pass-band
to stop-band crosses the value Rs dB over the bottom.

To generate the next Figs. 4.27, 4.28, 4.29, 4.30 and 4.31 we substituted in the
corresponding programs (Butterworth filter) the fragment FrB by another fragment,
that we call “FrC2”, devoted to the Chebyshev type 2 filter. The fragment FrC2 is
the following:

Fig. 4.27 Frequency
response of 5th order
Chebyshev 2 filter

100 101 102
0

0.2

0.4

0.6

0.8

1

G
ai

n

rad/s

4.5 Three Approximations to the Ideal Low-Pass Filter 209

Fig. 4.28 Poles and zeros of
5th order Chebyshev 2 filter

-18 -16 -14 -12 -10 -8 -6 -4 -2 0 2
-15

-10

-5

0

5

10

15

Fig. 4.29 Step response of
5th order Chebyshev 2 filter

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

A
m

pl
itu

de

Fragment 4.12 FrC2

wc=10; %desired cut-off frequency
N=5; %order of the filter
R=20; %decibels of ripple in the stop band
%analog Chebyshev 2 filter:
[num,den]=cheby2(N,R,wc,'s');

Notice that the fragment FrC2 uses the cheby2() function. Like in the previous
filters we have specified a cut-off frequency of 10 rad/s.

Figure4.27 shows the frequency response of a Chebyshev type 2 filter with n = 5.
Note that the magnitude has been represented in a linear scale.

Figure4.28 depicts the poles (plotted as diamonds) and zeros (plotted as circles)
of the Chebyshev type 2 filter on the complex plane. The figure keeps a a semi-
circumference of radius ωc to serve as reference.

The Fig. 4.28 has been generated by the Program 4.13, using the pole() function
and the zero() function.

210 4 Analog Filters

Fig. 4.30 Effect of n on the
frequency response of the
Chebyshev 2 filter

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

G
ai

n

rad/s

2 4 6

8

Fig. 4.31 Response of 5th

order Chebyshev 2 filter to a
square wave

0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5

seconds

Program 4.13 Pole-zero map of Chebyshev 2 filter

% Pole-zero map of Chebyshev 2 filter
wc=10; % desired cut-off frequency
N=5; % order of the filter
R=20; %decibels of ripple in the stop band
%analog Chebyshev 2 filter :
[num,den]=cheby2(N,R,wc,'s');
G=tf(num,den); %transfer function
P=pole(G); %find the poles of G
Z=zero(G); %find the zeros of G
alfa=-(pi/2):-0.1:-(3*pi/2); %set of angle values
%plot half a circunference:
plot(wc*cos(alfa),wc*sin(alfa),'--');
hold on;

4.5 Three Approximations to the Ideal Low-Pass Filter 211

plot(P,'dk'); %pole map
axis([-18 2 -15 15]);
hold on;
plot(Z,'ok'); %zero map
title('pole-zero map of 5th Chebyshev 2 filter');

Figure4.29, shows the step response of the 5th Chebyshev type 2 filter.
The frequency responses of Chebyshev type 2 filters, with several values of n,

are compared in Fig. 4.30. Similar comments as in previous responses comparisons
apply.

Figure4.31 shows the response of the filter when it filters a 1Hz square wave. The
distortion near the peaks is apparent. This is due to the stop-band ripples, which let
pass some high harmonics of the signal.

4.5.3 Elliptic Filter

Elliptic filters have equalized ripple in both the pass-band and the stop-band. The
amount of ripple in each band is independently adjustable. Elliptic filters minimize
transition width. They frequently are the best option, needing less filter order to
achieve most usual requirements. The transfer function of elliptic filters are such
that:

|G(jω)|2 = 1

1 + ε2 R2
n(ζ, ω/ωc)

(4.22)

where Rn() is the nth order elliptic rational function, ε is the ripple factor and ζ is the
selectivity factor. The ripple factor specifies the pass-band ripple, and a combination
of the ripple factor and the selectivity factor specify the stop-band ripple. As the
ripple in the stop-band approaches zero, the filter tends to become a Chebyshev type
1 filter; as the ripple in the pass-band approaches zero, the filter tends to become a
Chebyshev type 2 filter. If both pass-band and stop-band ripples approach zero, then
the filter tends to become a Butterworth filter.

The elliptic rational functions are as follows:

R1(ζ, x) = x

R2(ζ, x) = (t + 1) x2 − 1
(t −1) x2 + 1

R3(ζ, x) = x
(1− x2p) (x2 − x2z)

(1− x2z) (x2 − x2p)

R4(ζ, x) = R2(R2(ζ, ζ), R2(ζ, x))

(4.23)

212 4 Analog Filters

Fig. 4.32 Frequency
response of 5th order elliptic
filter

100 101 102
0

0.2

0.4

0.6

0.8

1

G
ai

n

rad/s

Fig. 4.33 Poles of 5th order
elliptic filter

-10 -8 -6 -4 -2 0 2
-15

-10

-5

0

5

10

15

where
t = √

1 − 1/ζ2

G = √
4 ζ2 + (4ζ2(ζ2 − 1))2/3

x2p = 2 ζ2
√

G√
8 ζ2(ζ2 + 1) + 12Gζ2 − G3 − √

G3

x2z = ζ2/x2p

(4.24)

The elliptic filter has both poles and zeros. The cut-off frequency ωc of this filter
is the frequency at which the transition from pass-band to stop-band has the value
− − Rp dB.

To generate the next Figs. 4.32, 4.33, 4.34, 4.35 and 4.36 we substituted in the
corresponding programs (Butterworth filter) the fragment FrB by another fragment,
that we call “FrE”, devoted to the elliptic filter. The fragment FrE is the following:

4.5 Three Approximations to the Ideal Low-Pass Filter 213

Fig. 4.34 Step response of
5th order elliptiic filter

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

A
m

pl
itu

de

Fig. 4.35 Effect of n on the
frequency response of the
elliptic filter

100 101 102
0

0.2

0.4

0.6

0.8

1

G
ai

n

rad/s

2

4

6

8

Fig. 4.36 Response of 5th

order elliptic filter to a
square wave

0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5

seconds

214 4 Analog Filters

Fragment 4.14 FrE

wc=10; %desired cut-off frequency
N=5; %order of the filter
Rp=0.5; %decibels of ripple in the pass band
Rs=20; %decibels of ripple in the stop band
%analog elliptic filter:
[num,den]=ellip(N,Rp,Rs,wc,'s');

Notice that the fragment FrE uses the ellip() function. Like in the previous filters
we have specified a cut-off frequency of 10 rad/s.

Figure4.32 shows the frequency response of a elliptic filter with n = 5. Note that
the magnitude has been represented in a linear scale.

Figure4.33 depicts the poles (plotted as diamonds) and the zeros (plotted as cir-
cles) of the elliptic filter on the complex plane. We keep the semi-circumference of
radius ωc for reference.

Program 4.15 Pole-zero map of elliptic filter

% Pole-zero map of elliptic filter
wc=10; % desired cut-off frequency
N=5; % order of the filter
Rp=0.5; %decibels of ripple in the pass band
Rs=20; %decibels of ripple in the stop band
%analog elliptic filter:
[num,den]=ellip(N,Rp,Rs,wc,'s');
G=tf(num,den); %transfer function
P=pole(G); %find the poles of G
Z=zero(G); %find the zeros of G
alfa=-(pi/2):-0.1:-(3*pi/2); %set of angle values
%plot half a circunference:
plot(wc*cos(alfa),wc*sin(alfa),'--');
hold on;
plot(P,'dk'); %pole map
hold on;
plot(Z,'ok'); %zero map
title('pole-zero map of 5th elliptic filter');

Figure4.34, shows the step response of the 5th elliptic filter. Notice the light
attenuation of the oscillations.

We compare in Fig. 4.35 several frequency responses of elliptic filters, to visualize
the effect of the order of the filter. Now the effect of using n = 4 instead of n = 2 is
more impressive; while for n > 6 changes are difficult to notice.

As shown by Fig. 4.36 the response of the filter to a square wave exhibit some
distortion near the peaks. Like in the case of Chebyshev type 2 filter, this is due to
the stop-band ripples.

4.5 Three Approximations to the Ideal Low-Pass Filter 215

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1
G

ai
n

rad/s

Butterworth

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

G
ai

n

rad/s

Chebyshev
 1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

G
ai

n

rad/s

Chebyshev
 2

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

G
ai

n

rad/s

Elliptic

Fig. 4.37 Comparison of the frequency response of the four filters

4.5.4 Comparison of Filters

Let us summarize the main characteristics of the four filters just studied.With respect
to the frequency domain, an important aspect is the sharpness of the transition from
the pass-band to the stop-band. Figure4.37 shows a view of the frequency responses
of the four filters in the same figure, to facilitate the visual comparison. The elliptic
filter has the fastest roll-off, but the price to pay is ripples in the pass-band and the
stop-band.

Program 4.16 Comparison of frequency response of the 4 filters

% Comparison of frequency response of the 4 filters
wc=10; %desired cut-off frequency
N=5; %order of the filter
Rp=0.5; %decibels of ripple in the pass band
Rs=20; %decibels of ripple in the stop band
%analog Butterworth filter:
[num,den]=butter(N,wc,'s');
w=logspace(0,2); %logaritmic set of frequency values
G=freqs(num,den,w); %computes frequency response

216 4 Analog Filters

%plots linear amplitude:
subplot(2,2,1); semilogx(w,abs(G),'k');
axis([1 100 0 1.1]); grid;
ylabel('Gain'); xlabel('rad/s');
title('Butterworth');
%analog Chebyshev 1 filter:
[num,den]=cheby1(N,Rp,wc,'s');
G=freqs(num,den,w); %computes frequency response
%plots linear amplitude:
subplot(2,2,2); semilogx(w,abs(G),'k');
axis([1 100 0 1.1]); grid;
ylabel('Gain'); xlabel('rad/s');
title('Chebyshev 1');
%analog Chebyshev 2 filter:
[num,den]=cheby2(N,Rs,wc,'s');
G=freqs(num,den,w); %computes frequency response
%plots linear amplitude:
subplot(2,2,3); semilogx(w,abs(G),'k');
axis([1 100 0 1.1]); grid;
ylabel('Gain'); xlabel('rad/s');
title('Chebyshev 2');
%analog elliptic filter:
[num,den]=ellip(N,Rp,Rs,wc,'s');
G=freqs(num,den,w); %computes frequency response
%plots linear amplitude:
subplot(2,2,4); semilogx(w,abs(G),'k');
axis([1 100 0 1.1]); grid;
ylabel('Gain'); xlabel('rad/s');
title('Elliptic');

Figure4.38 plots in the same figure the step response of the four filters, in order
to compare the time domain behaviour of the filters.

Program 4.17 Comparison of step response of the 4 filters

% Comparison of step response of the 4 filters
wc=10; % desired cut-off frequency
N=5; % order of the filter
Rp=0.5; %decibels of ripple in the pass band
Rs=20; %decibels of ripple in the stop band
%analog Butterworth filter:
[num,den]=butter(N,wc,'s');
G=tf(num,den); %transfer function
subplot(2,2,1); step(G,'k'); %step response of G
title('Butterworth');
%analog Chebyshev 1 filter:
[num,den]=cheby1(N,Rp,wc,'s');
G=tf(num,den); %transfer function
subplot(2,2,2); step(G,'k'); %step response of G
title('Chebyshev 1');
%analog Chebyshev 2 filter:
[num,den]=cheby2(N,Rs,wc,'s');
G=tf(num,den); %transfer function
subplot(2,2,3); step(G,'k'); %step response of G
title('Chebyshev 2');
%analog elliptic filter:

4.5 Three Approximations to the Ideal Low-Pass Filter 217

Time (sec.)

A
m

pl
itu

de
Butterworth

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5
From: U(1)

To
: Y

(1
)

Time (sec.)

A
m

pl
itu

de

Chebyshev 1

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5
From: U(1)

To
: Y

(1
)

Time (sec.)

A
m

pl
itu

de

Chebyshev 2

0 0.5 1 1.5 2
0

0.5

1

1.5
From: U(1)

To
: Y

(1
)

Time (sec.)

A
m

pl
itu

de
Elliptic

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5
From: U(1)

To
: Y

(1
)

Fig. 4.38 Comparison of the step response of the four filters

[num,den]=ellip(N,Rp,Rs,wc,'s');
G=tf(num,den); %transfer function
subplot(2,2,4); step(G,'k'); %step response of G
title('Elliptic');

4.5.5 Details of the MATLAB Signal Processing Toolbox

The MATLAB Signal Processing Toolbox offers an interesting and useful set of
functions related with the optimal filters. Let us include a concise view of these
functions.

218 4 Analog Filters

Fig. 4.39 Frequency
response of a band-pass 5th

order Butterworth filter

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

G
ai

n

rad/s

4.5.5.1 Band-Pass, High-Pass, Band-Stop

If we specify wb = [wlwh] and then use butter(N, wb, ‘s’), we obtain a Butterworth
band-pass filter. Program 4.18 provides an example, which generates Fig. 4.39.

Program 4.18 Frequency response of band-pass Butterworth filter

% Frequency response of band-pass Butterworth filter
wl=10; % desired low cut-off frequency (rad/s)
wh=100; %desired high cut-off frequency (rad/s)
wb=[wl wh]; %the pass band
N=10; % order of the filter (5+5)
%analog band-pass Butterworth filter:
[num,den]=butter(N,wb,'s');
w=logspace(0,3); %logaritmic set of frequency values
G=freqs(num,den,w); %computes frequency response
semilogx(w,abs(G),'k'); %plots linear amplitude
axis([1 1000 0 1.1]);
grid;
ylabel('Gain'); xlabel('rad/s');
title('frequency response of 5th band-pass

Butterworth filter');

If we use butter(N, wc, ‘high’, ‘s’), we get a Butterworth high-pass filter.
Figure4.40 shows an example, corresponding to the Program 4.19.

Program 4.19 Frequency response of high-pass Butterworth filter

% Frequency response of high-pass Butterworth filter
wh=100; %desired high cut-off frequency
N=5; % order of the filter
%analog high-pass Butterworth filter:
[num,den]=butter(N,wh,'high','s');
w=logspace(1,3); %logaritmic set of frequency values

4.5 Three Approximations to the Ideal Low-Pass Filter 219

Fig. 4.40 Frequency
response of a high-pass 5th

order Butterworth filter

101 102 103
0

0.2

0.4

0.6

0.8

1

G
ai

n

rad/s

Fig. 4.41 Frequency
response of a band-stop 5th

order Butterworth filter

100 101 102 103
0

0.2

0.4

0.6

0.8

1

G
ai

n

rad/s

G=freqs(num,den,w); %computes frequency response
semilogx(w,abs(G),'k'); %plots linear amplitude
axis([10 1000 0 1.1]);
grid;
ylabel('Gain'); xlabel('rad/s');
title('frequency response of 5th high-pass

Butterworth filter');

Finally, if we use butter(N, wc, ‘stop’, ‘s’), we get a Butterworth band-stop filter.
Figure4.41 shows an example, corresponding to the Program 4.20.

Program 4.20 Frequency response of band-stop Butterworth filter

% Frequency response of band-stop Butterworth filter
wl=10; % desired low cut-off frequency

220 4 Analog Filters

wh=100; %desired high cut-off frequency
wb=[wl wh]; %the stop band
N=10; % order of the filter (5+5)
%analog band-stop Butterworth filter:
[num,den]=butter(N,wb,'stop','s');
w=logspace(0,3); %logaritmic set of frequency values
G=freqs(num,den,w); %computes frequency response
semilogx(w,abs(G),'k'); %plots linear amplitude
axis([1 1000 0 1.1]);
grid;
ylabel('Gain'); xlabel('rad/s');
title('frequency response of 5th band-stop

Butterworth filter');

The same kind of specifications (using [wl wh], or ‘high’, or ‘stop’) apply for the
cheby1(), cheby2() and ellip() functions.

4.5.5.2 Filter Order

Bymeans of the buttord(wp, ws, Rp, Rs, ‘s’) functions you can obtain the lowest order
of the analog Butterworth filter that has the pass-band and stop-band characteristics
you specified.

The same can be done with respect to the other filters, using the functions
cheb1ord(), cheb2ord(), and ellipord().

4.5.5.3 About Normalization

It is usual to consider normalized frequencies, so the cut-off frequency is 1. When
the cut-off frequency you have is not 1, the normalization consists in a change of
variable, from ω to ω’ = ω/ ωc.

The function buttap(n), returns the zeros, poles and gain of a normalized analog
Butterworth filter of order n.

The functions cheb1ap(), cheb2ap(), ellipap(), do the same concerning the other
filters.

The function lp2lp(num, den, wc)uses the numerator anddenominator of a normal-
ized low-pass filter, and obtains the numerator and denominator of a “de-normalized”
low-pass filter (having wc cut-off frequency).

The function lp2bp() transforms the low-pass filter to a band-pass filter. The
function lp2hp() transforms the low-pass filter to a high-pass filter. And the function
lp2bs() transforms the low-pass filter to a band-stop filter.

4.6 Considering Phases and Delays 221

4.6 Considering Phases and Delays

In certain applications it is important to consider the “group delay”. If φ(jω) is the
phase of a filter G(jω), the group delay is:

τg(ω) = − d ϕ(jω)

d ω
(4.25)

In order to avoid distortion of signal shape, it is important to have the group delay
as constant as possible with respect to frequency.

In fact, a pure delay τ d is modelled as exp (−s τ d) in the Laplace domain. That
means φ(jω) is equal to − jω τ d . If we apply (4.25) to this case, we obtain a constant
group delay τ d . A pure delay does not distort signals.

4.6.1 Bessel Filter

The Bessel filter (or Thompson filter) has a maximally flat group delay at zero
frequency and has almost constant group delay across the pass-band. The effect of
this is that the filter preserves well the wave shape of filtered signals. The transfer
function of a nth order Bessel filter take the following form:

G(s) = θn(0)

θn(s/ωc)
(4.26)

where θn(s) is a reverse Bessel polynomial. These polynomials can be defined by a
recursion formula:

ϑ0(x) = 1
ϑ1(x) = x + 1
ϑn(x) = (2 n − 1)ϑn−1(x) + x2 ϑn−2(x)

(4.27)

The cut-off frequency ωc of the Bessel filter is that frequency where the magnitude
response of the filter is

√
1/2.

To generate the next Figs. 4.32, 4.33, 4.34, 4.35 and 4.36 we substituted in the
corresponding programs (Butterworth filter) the fragment FrB by another fragment,
that we call “FrT”, devoted to the Bessel filter. The fragment FrT is the following:

Fragment 4.21 FrT

wc=10; % desired cut-off frequency
N=5; % order of the filter
[num,den]=besself(N,wc); %analog Bessel filter

222 4 Analog Filters

Fig. 4.42 Frequency
response of 5th order Bessel
filter

100 101 102
0

0.2

0.4

0.6

0.8

1

G
ai

n

rad/s

Fig. 4.43 Poles of 5th order
Bessel filter

-10 -8 -6 -4 -2 0 2
-10

-8

-6

-4

-2

0

2

4

6

8

10

Notice that the fragment FrT uses the besself() function. Like in the previous
filters we have specified a cut-off frequency of 10 rad/s.

Figure4.42 shows the frequency response of a Bessel filter with n = 5. Note that
the magnitude has been represented in a linear scale.

Figure4.43 depicts the poles (plotted as diamonds) of the Bessel filter on the
complex plane.

Figure4.44 shows the step response of the 5th Bessel filter.
Figure4.45 compares several frequency responses of Bessel filters, to visualize

the effect of the order of the filter.
Figure4.46 shows the response of the filter when it filters a square wave. The

frequency of the square wave is 10 rad/s.

4.6 Considering Phases and Delays 223

Fig. 4.44 Step response of
5th order Bessel filter

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

A
m

pl
itu

de

Fig. 4.45 Effect of n on the
frequency response of the
Bessel filter

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

G
ai

n

rad/s

2

4

6
8

Finally, Fig. 4.47 compares the phase of the frequency response of the Bessel
filter for various values of the filter order n. Figure4.47 has been obtained with the
Program 4.22.

Program 4.22 Comparison of frequency response phase of Bessel filters

% Comparison of frequency response phase
% of Bessel filters
wc=10; % desired cut-off frequency
N=2; % order of the filter
[num,den]=besself(N,wc); %analog Bessel filter
w=logspace(-1,3); %logaritmic set of frequency values
G=freqs(num,den,w); %computes frequency response
ph=angle(G); %phase
semilogx(w,180*unwrap(ph)/pi,'r'); %plots phase
hold on;
axis([0.1 1000 -800 90]);
grid;
ylabel('Phase'); xlabel('rad/s');
title('frequency response phase of Bessel filter');

224 4 Analog Filters

for N=4:2:8, % more orders of the filter
[num,den]=besself(N,wc); %analog Bessel filter
G=freqs(num,den,w); %computes frequency response
ph=angle(G); %phase
semilogx(w,180*unwrap(ph)/pi,'k'); %plots phase
end;

4.6.2 Comparison of Filter Phases and Group Velocities

Let us compare phase behaviours of the five filters. All filters are of 5th order.

Fig. 4.46 Response of 5th

order Bessel filter to a square
wave

0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5

seconds

Fig. 4.47 Effect of n on the
frequency response phase of
the Bessel filter

10-1 100 101 102 103
-800

-700

-600

-500

-400

-300

-200

-100

0

P
ha

se

rad/s

2

4

6

8

4.6 Considering Phases and Delays 225

Fig. 4.48 Frequency
response phases of the five
5th filters

10-1 100 101 102 103
-500

-400

-300

-200

-100

0

P
ha

se

rad/s

B

C1

T

C2
E

Figure4.48 compares the phase of the five filters. The figure has been obtained
with the Program 4.23. Notice the use of the unwrap() function to avoid strange
jumps in the phase curves.

As shown in Fig. 4.48, the phases of Butterworth (labelled as B) filter and the
Bessel (T) filter are similar, while the phase of Chebyshev type 1 filter (C1) is
different. The filters with zeros, the Chebyshev type 2 (C2) filter and the elliptic (E)
filter, have two jumps, which correspond to the zeros.

Program 4.23 Frequency response phases of the five filters

wc=10; %desired cut-off frequency
N=5; %order of the filter
Rp=0.5; %decibels of ripple in the pass band
Rs=20; %decibels of ripple in the stop band
%analog Butterworth filter:
[num,den]=butter(N,wc,'s');
%logaritmic set of frequency values:
w=logspace(-1,3,500);
G=freqs(num,den,w); %computes frequency response
ph=angle(G); %phase
semilogx(w,180*unwrap(ph)/pi,'k'); %plots phase
hold on;
axis([0.1 1000 -500 90]);
grid;
ylabel('Phase'); xlabel('rad/s');
title('comparison of frequency response phase

of the filters');
%analog Chebyshev 1 filter:
[num,den]=cheby1(N,Rp,wc,'s');
G=freqs(num,den,w); %computes frequency response
ph=angle(G); %phase
semilogx(w,180*unwrap(ph)/pi,'r'); %plots phase
%analog Chebyshev 2 filter:
[num,den]=cheby2(N,Rs,wc,'s');
G=freqs(num,den,w); %computes frequency response

226 4 Analog Filters

ph=angle(G); %phase
semilogx(w,180*unwrap(ph)/pi,'g'); %plots phase
%analog elliptic filter:
[num,den]=ellip(N,Rp,Rs,wc,'s');
G=freqs(num,den,w); %computes frequency response
ph=angle(G); %phase
semilogx(w,180*unwrap(ph)/pi,'b'); %plots phase
%analog Bessel filter:
[num,den]=besself(N,wc);
G=freqs(num,den,w); %computes frequency response
ph=angle(G); %phase
semilogx(w,180*unwrap(ph)/pi,'m'); %plots phase

Polar plots ofG(jω) provide an interesting view of the combined behaviour of gain
and phase. Figure4.49 shows the polar plots corresponding to the frequency response
of the Butterworth filter (B), the Chebyshev type 1 filter (C1) and the Bessel filter
(T). This figure has been obtained with the Program 4.24.

Program 4.24 Comparison of frequency response phase of Butterworth, Chebyshev 1 and Bessel
filters in polar plane

% Comparison of frequency response phase of
% Butterworth, Chebyshev 1 and
% Bessel filters in polar plane
wc=10; %desired cut-off frequency
N=5; %order of the filter
Rp=0.5; %decibels of ripple in the pass band
Rs=20; %decibels of ripple in the stop band
%analog Butterworth filter:
[num,den]=butter(N,wc,'s');
%logaritmic set of frequency values:

Fig. 4.49 Polar plot of
frequency response of 5th

Butterworth, Chebyshev 1
and Bessel filters

 0.5

 1

30

210

60

240

90

270

120

300

150

330

180 0

rad/s

P
ha

se

C1
B

T

4.6 Considering Phases and Delays 227

w=logspace(-1,3,500);
G=freqs(num,den,w); %computes frequency response
ph=angle(G); %phase
polar(ph,abs(G),'k'); %polar plot
hold on;
ylabel('Phase'); xlabel('rad/s');
title('comparison of frequency response phase');
%analog Chebyshev 1 filter:
[num,den]=cheby1(N,Rp,wc,'s');
G=freqs(num,den,w); %computes frequency response
ph=angle(G); %phase
polar(ph,abs(G),'r'); %polar plot
%analog Bessel filter:
[num,den]=besself(N,wc);
G=freqs(num,den,w); %computes frequency response
ph=angle(G); %phase
polar(ph,abs(G),'m'); %polar plot

Let us study in more detail what happens with the filters having zeros. Figure4.50
shows the polar plots corresponding to the frequency response of the Chebyshev type
2 filter (C2) and the elliptic filter (E). The frequency response of the Butterworth filter
(B) has been added for reference. This figure has been obtained with the Program
4.25.

Program 4.25 Comparison of frequency response phase of Butterworth, Chebishev 2 and elliptic
filters in polar plane

% Comparison of frequency response phase of
% Butterworth, Chebishev 2 and
% elliptic filters in polar plane

Fig. 4.50 Polar plot of
frequency response of 5th

Chebyshev 2, elliptic and
Butterworth filters

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

rad/s

P
ha

se

E

B

C2

228 4 Analog Filters

Fig. 4.51 Zoom in of the
polar plot of frequency
response of 5th Chebyshev 2,
elliptic and Butterworth
filters 0.2

rad/s

P
ha

se

E

B

C2

wc=10; %desired cut-off frequency
N=5; %order of the filter
Rp=0.5; %decibels of ripple in the pass band
Rs=20; %decibels of ripple in the stop band
%analog Butterworth filter:
[num,den]=butter(N,wc,'s');
%logaritmic set of frequency values:
w=logspace(-1,3,2000);
G=freqs(num,den,w); %computes frequency response
ph=angle(G); %phase
polar(ph,abs(G),'k'); %polar plot
hold on;
ylabel('Phase'); xlabel('rad/s');
title('comparison of frequency response phase');
%analog Chebyshev 2 filter:
[num,den]=cheby2(N,Rs,wc,'s');
G=freqs(num,den,w); %computes frequency response
ph=angle(G); %phase
polar(ph,abs(G),'g'); %polar plot
%analog elliptic filter:
[num,den]=ellip(N,Rp,Rs,wc,'s');
G=freqs(num,den,w); %computes frequency response
ph=angle(G); %phase
polar(ph,abs(G),'b'); %polar plot

Perhaps, looking at Fig. 4.50, the reader may wonder what happened with the
jumps that appear in Fig. 4.48. That is whywe zoomed on the central zone of Fig. 4.50
to obtain Fig. 4.51 and to see in detail around the origin. Both Chebyshev type 2 (C2)
and elliptic (E) filters have two loops before their final trend to the origin. These two
loops cause the jumps in Fig. 4.48.

4.6 Considering Phases and Delays 229

Fig. 4.52 Comparison of the
group delay of the five 5th

order filters

100 101 102
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

gr
ou

p
de

la
y

rad/s

E

T

C1
C2

B

By means of an Euler approximation of the derivative, we can obtain a visualiza-
tion of the group delay of the five filters. An elimination sentence has been added
in the case of the Chebyshev type 2 filter and the elliptic filter, to avoid the effect
of their jump discontinuities. Figure 4.52 shows a comparison of the group delay of
the five filters. This figure has been obtained with the Program B.3, which has been
included in Appendix B.

As expected, Fig. 4.52 shows an almost flat profile of the group delay curve of
the Bessel filter (T). Likewise, the group delay of the Butterworth filter (B) is fairly
smooth. The other three filters have “mountains”, being very significant in the case
of the elliptic filter (in fact the figure crops its peak).

4.7 Some Experiments

After the descriptionof the analogfilters,with special emphasis of the approximations
to the ideal filter, it is convenient to do some experiments, to gain still more insight.

4.7.1 Recovering a Signal Buried in Noise

The first experiment is to mix noise and a sinusoidal signal, and then apply a filter
to recover the sinusoidal signal. This is done with the Program B.4, which uses a 5th

Butterworth band-pass filter. Notice the value N = 10 we specified for the butter()
function; this is due to N = 5 for the left cut-off transition and N = 5 for the right
cut-off transition of the filter pass-band. Figure4.53 shows the result: after a filter

230 4 Analog Filters

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-2

-1

0

1

2

si
gn

al
+n

oi
se

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-2

-1

0

1

2

seconds

ex
tra

ct
ed

 s
ig

na
l

Fig. 4.53 Recovering a signal buried in noise

transient an almost sinusoidal signal is obtained, mixed with a little noise. Sound
has been included in the program, so you can hear first the signal + noise, and after
some seconds the de-noised signal.

The Program B.4 has been included in Appendix B.

4.7.2 Adding and Extracting Signals

Let us take the following signal:

y(t) = sin(ωt) + 0.5 sin(3ωt) + 0.3 sin(5ωt) (4.28)

We want to extract from y(t) the three sinusoidal components of the signal. This has
been done with the Program B.5, using three 5th Butterworth filters. One of the filters
is low-pass, the other is band-pass and the third is high-pass. The program demon-
strates the use of these three types of filters, and generates two figures: Figs. 4.54 and
4.55. Transients are different for each type of filter.

After the extraction of the three components, we add them trying to get a recon-
struction of y(t). Figure4.55 shows the result: y(t) is on top and the reconstructed
signal is below. Clearly, the shape of the two signals is not the same due to differences
in gains and phases of the three filters.

The Program B.5 has been included in Appendix B.

4.7 Some Experiments 231

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-2

0

2

co
m

po
un

d
si

gn
al

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-1

0

1

y0

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-1

0

1

y3

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-0.5

0

0.5

y5

seconds

Fig. 4.54 Extracting components from a compound signal

4.7.3 Near Cut-off Frequency

Now let us investigate what happens around the transition from pass-band to stop-
band in a low-pass filter. In this experiment three square signals are used. The filter
has a cut-off frequency of 10 rad/s. One of the square signals has 5 rad/s. frequency,
the other has 10 rad/s. frequency and the third has 15 rad/s. frequency. All five filters
are tested.

Let us begin with the 5th Butterworth filter. Figure4.56, which has been generated
with the Program 4.26, shows the output of the filter for the three square signals.
The shape of all signals look sinusoidal (the fundamental harmonic of the square
signals).

Program 4.26 Response of Butterworth filter to square signal near cut-off

% Response of Butterworth filter to square signal
% near cut-off
wc=10; % desired cut-off frequency
N=5; % order of the filter
%analog Butterworth filter:
[num,den]=butter(N,wc,'s');
G=tf(num,den); %transfer function
fs=100; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(6-tiv); %time intervals set (6 seconds)

232 4 Analog Filters

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-2

-1

0

1

2

co
m

po
un

d
si

gn
al

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-2

-1

0

1

2

ys
um

seconds

Fig. 4.55 Original and reconstructed signals

0 1 2 3 4 5 6

-1

0

1

5
ra

d/
s

0 1 2 3 4 5 6

-1

0

1

10
 ra

d/
s

0 1 2 3 4 5 6

-1

0

1

15
 ra

d/
s

seconds

Fig. 4.56 The three filtered square signals when using 5th Butterworth filter

4.7 Some Experiments 233

0 1 2 3 4 5 6

-1

0

1

5
ra

d/
s

0 1 2 3 4 5 6

-1

0

1

10
 ra

d/
s

0 1 2 3 4 5 6

-1

0

1

15
 ra

d/
s

seconds

Fig. 4.57 The three filtered square signals when using 5th Chebyshev 1 filter

% Input square signal 1
wu=5; %signal frequency in rad/s
u=square(wu*t); %input signal data set
[y,ty]=lsim(G,u,t); %computes the system output
subplot(3,1,1); plot(t,y,'k'); %plots output signal
axis([0 6 -1.5 1.5]); ylabel('5 rad/s')
title('response to square signal, 5th

Butterworth filter');
% Input square signal 2
wu=10; %signal frequency in rad/s
u=square(wu*t); %input signal data set
[y,ty]=lsim(G,u,t); %computes the system output
subplot(3,1,2); plot(t,y,'k'); %plots output signal
axis([0 6 -1.5 1.5]); ylabel('10 rad/s')
% Input square signal 3
wu=15; %signal frequency in rad/s
u=square(wu*t); %input signal data set
[y,ty]=lsim(G,u,t); %computes the system output
subplot(3,1,3); plot(t,y,'k'); %plots output signal
axis([0 6 -1.5 1.5]); ylabel('15 rad/s')
xlabel('seconds');

Now let us apply 5th Chebyshev type 1 filter. Figure4.57 shows the output of the
filter for the three square signals. It is easy to create the program to generate this
figure, by simple substitutions of a few lines. The shape of all signals look sinusoidal,
and the attenuation in the stop band is significant.

If we use the 5th Chebyshev type 2 filter, we obtain the results shown in Fig. 4.58.
The signals show distortion and ripple.

234 4 Analog Filters

0 1 2 3 4 5 6

-1

0

1

5
ra

d/
s

0 1 2 3 4 5 6

-1

0

1

10
 ra

d/
s

0 1 2 3 4 5 6

-1

0

1

15
 ra

d/
s

seconds

Fig. 4.58 The three filtered square signals when using 5th Chebyshev 2 filter

Using the 5th elliptic filter the results, as shown in Fig. 4.59, are somewhat dis-
torted.

Finally, using the 5th Bessel filter sinusoidal signals are obtained as shown in
Fig. 4.60.

0 1 2 3 4 5 6

-1

0

1

5
ra

d/
s

response to square signal, 5th elliptic filter

0 1 2 3 4 5 6

-1

0

1

10
 ra

d/
s

0 1 2 3 4 5 6

-1

0

1

15
 ra

d/
s

seconds

Fig. 4.59 The three filtered square signals when using 5th elliptic filter

4.7 Some Experiments 235

0 1 2 3 4 5 6

-1

0

1

5
ra

d/
s

0 1 2 3 4 5 6

-1

0

1

10
 ra

d/
s

0 1 2 3 4 5 6

-1

0

1

15
 ra

d/
s

seconds

Fig. 4.60 The three filtered square signals when using 5th Bessel filter

4.8 Resources

4.8.1 MATLAB

4.8.1.1 Toolboxes

◦ Filter Design Toolbox
http://antikafe-oblaka.ru/online-archive/download-mathworks-filter-design-tool
box-v42-for-matlab-v75-x64.html

◦ Analog Filter Design Toolbox:
http://www.mathworks.com/matlabcentral/fileexchange/9458-analog-filter-des
ign-toolbox/

◦ AFD MATLAB Toolbox:
http://home.etf.rs/~tosic/afdmlall.htm

http://antikafe-oblaka.ru/online-archive/download-mathworks-filter-design- toolbox-v42-for-matlab-v75-x64.html
http://antikafe-oblaka.ru/online-archive/download-mathworks-filter-design- toolbox-v42-for-matlab-v75-x64.html
http://www.mathworks.com/matlabcentral/fileexchange/9458-analog-filter-design-toolbox/
http://www.mathworks.com/matlabcentral/fileexchange/9458-analog-filter-design-toolbox/
http://home.etf.rs/~tosic/afdmlall.htm

236 4 Analog Filters

4.8.1.2 Interactive Tools

◦ FDATool (Filter Design and Analysis Tool):
www.mathworks.com/help/signal/ref/fdatool.html

4.8.1.3 MATLAB Code

◦ Wilamowski, B. M., Gottiparthy, R. (2005). “Active and passive filter synthesis
using Matlab”.
http://www.InternationalJournalofEngineeringEducation, v.21, n.4, pp.561-571.

◦ Audio Filter GUI Demo:
http://www.mathworks.com/matlabcentral/fileexchange/19683-audio-filter-gui-
demo/

◦ MATLAB Audio Processing Examples:
http://www.ee.columbia.edu/ln/rosa/matlab/

◦ Digital Signal Processing ELEN E4810 (Columbia Univ.):
https://www.ee.columbia.edu/~dpwe/e4810/matscripts.html/

4.8.2 Web Sites

◦ Deepa Kundur (Univ. Toronto):
http://www.comm.utoronto.ca/~dkundur/course/.

References

1. A.J. Casson, E. Rodriguez-Villegas, A review and modern approach to LC ladder synthesis. J.
Low Power Electr. Appl. 1(1), 20–44 (2011)

2. M.Z. Chen, M.C. Smith, Electrical and mechanical passive network synthesis, in Recent
Advances in Learning and Control (2008), pp. 30–50

3. S.Darlington,A history of network synthesis and filter theory for circuits composed of resistors,
inductors, and capacitors. IEEETrans.Circuits Syst. I Fundam.TheoryAppl.46(1):4–13 (1999)

4. H.G. Dimopoulos, Analog Electronic Filters (Springer, Heidelberg, 2012)
5. J. Karki, Analysis of the Sallen-Key architecture, Technical report, Texas Instruments (2002)
6. Z. Leonowicz. Selected Problems of Circuit Theory 1. Lecture Notes, Electrical Engineering of

Wroclaw University of Technology, Poland (2008). http://zet10.ipee.pwr.wroc.pl/record/274?
ln=en

7. B. Ninness, Fundamentals of Signals, Systems and Engineering. University of Newcastle,
Australia (2000). http://www.sigpromu.org/brett/elec2400/

8. O. Oz, J. Choma, Second Order Frequency Domain Effects of the Sallen–Key Filter. Technical
report, #07-1106 University of Southern California (2006)

www.mathworks.com/help/signal/ref/fdatool.html
http://www.InternationalJournalofEngineeringEducation
http://www.mathworks.com/matlabcentral/fileexchange/19683-audio-filter-gui-demo/
http://www.mathworks.com/matlabcentral/fileexchange/19683-audio-filter-gui-demo/
http://www.ee.columbia.edu/ln/rosa/matlab/
https://www.ee.columbia.edu/~dpwe/e4810/matscripts.html/
http://www.comm.utoronto.ca/~dkundur/course/
http://zet10.ipee.pwr.wroc.pl/record/274?ln=en
http://zet10.ipee.pwr.wroc.pl/record/274?ln=en
http://www.sigpromu.org/brett/elec2400/

References 237

9. L.D. Paarmann, Design and Analysis of Analog Filters: A Signal Processing Perspective
(Kluwer, 2003)

10. M.C. Smith, Synthesis ofmechanical networks: the inerter. IEEETrans.Autom.Control 47(10),
1648–1662 (2002)

11. M.C. Smith, T.H. Hughes, J. Z. Jiang, A Survey of Classical and Recent Results in RLC Circuit
Synthesis. Presentation at theWorkshop on Dynamics and Control in Networks (2014). https://
www.lccc.lth.se/media/LCCC/WorkshopNetwork/mcs_lund_oct2014.pdf

12. C.L. Wadwha. Network Analysis and Synthesis (Anshan Publishers, 2008)
13. L. Wanhammar, Analog Filters Using MATLAB (Springer, Heidelberg, 2009)

https://www.lccc.lth.se/media/LCCC/WorkshopNetwork/mcs_lund_oct2014.pdf
https://www.lccc.lth.se/media/LCCC/WorkshopNetwork/mcs_lund_oct2014.pdf

Chapter 5
Digital Filters

5.1 Introduction

This chapter covers a central aspect of digital signal processing: digital filters. The
digital signal processing systems use samples of input signals, which constitute series
of numbers. The result may be also series of numbers, to be used as output signals.
The signal processing computations usually take into account a record of recent
values of the input and output samples. In the case of linear digital filters, the output
y(n) in the instant n, is computed as a linear combination of the input u(n) and
previous samples of input and output signals. For instance, the MATLAB filter(B,
A, U) function, uses the vectors of coefficients A and B and the vector of signal
input samplesU to implement a linear digital filter, which creates the filtered output
according with the following equation:

a1 y(n) = b1 u(n) + b2u(n − 1) + b3 u(n − 2) + · · · + bnb+1 u(n − nb)−
− a2 y(n − 1) − a3 y(n − 2) − · · · − ana+1 y(n − na)

(5.1)

Taking the z transform of Eq. (5.1) and rearranging the expression, the following
discrete transfer function is obtained:

H(z) = Y (z)

U (z)
= b1 + b2 z−1 + b3 z−2 + · · · + bnb+1 z−nb

a1 + a2 z−1 + a3 z−2 + · · · + ana+1 z−na
(5.2)

The transfer function can be also expressed in terms of positive z exponents (multiply
and divide H(z) by zm ; if nb >≥ na then m = nb, else m = na).

The frequency response of the digital filter is given by:

H(ω) = H(z)|z=e jω (5.3)

© Springer Science+Business Media Singapore 2017
J.M. Giron-Sierra, Digital Signal Processing with Matlab Examples, Volume 1,
Signals and Communication Technology, DOI 10.1007/978-981-10-2534-1_5

239

240 5 Digital Filters

Given the transfer function of the digital filter, we can obtain by inverse z transform
the impulse response sequence h(n) of the filter. Now, in the time domain, the output
y(n) of digital filter can be computed by discrete convolution:

y(n) =
∞∑

m=−∞
h(m) u(n − m) (5.4)

Notice that we introduced a slight change of nomenclature with respect to the chapter
on linear systems, denoting the filter transfer function as H(z) instead of G(z). It
happens that most literature on digital filters use H(z), while the literature on linear
systems (and control) commonly uses G(z). There is also another issue regarding
equations and indexes; recall that MATLAB arrays, like for instance x , starts with
x(1), but theoretical expressions usually start with x(0). As we try to make easy the
use of MATLAB, this has been taken into account where possible; for instance in
Eq. (5.1), the first b coefficient is b1, and the first a coefficient is a1.

There are threemain alternatives for the structure of a linear digital filter, according
with the values of na and nb in Eq. (5.1):

• nb > 0, na = 0
• nb = 0, na > 0
• nb > 0, na > 0

These three alternatives give two types of digital filters: finite impulse response
filters (FIR filters), corresponding to na = 0, or infinite impulse response filters (IIR
filters), corresponding to na > 0.

The filter designer may start with the design of an analog filter, translating it to
a digital filter in a second step, or may keep the design effort always in the digital
domain.

In general the digital domain offers a more generous space for design freedom and
ingenuity. For example, this chapter considers multi-band filters and also non-causal
filters. Coming to an even wider perspective, note that the digital signal processing
would be based on a computer program, with decisions, iterations, subroutines, etc.,
so a lot of possibilities can be opened. For instance, the digital signal processing used
in car mobile phones can attenuate traffic and car noise, cancel internal voice echoes
in the car, and make more understandable the human voice.

Compared with analog filters made with electronic circuits, digital filters can be
better regarding flatness, good roll-off and stop-band attenuation. However analog
electronic circuits have also advantages, such speed, more amplitude dynamic range,
and more frequency dynamic range.

In part this chapter can be seen as a simple continuation of the previous chapter.
In particular, the MATLAB functions butter(), cheby1(), cheby2(), ellip(), are also
used for IIR digital filters. This said, there are still several new aspects to be treated
in this chapter, specifically belonging to the digital domain such is the case of FIR
filters.

5.2 From Analog Filters to Digital Filters 241

5.2 From Analog Filters to Digital Filters

Suppose you have an analog filter that fits well to your needs and you want a digital
version of the filter. There are several alternatives to do so. MATLAB offers two
functions for filter discretization: bilinear() for bilinear transformation, and impvar()
for the impulse invariance method [1]. A brief explanation follows, and then an
example is considered.

The bilinear transformation is a mapping from the s-plane to the z-plane. Given
the transfer function G(s) of an analog filter, the digital filter counterpart H(z) is
obtained by the following substitution:

s = 2

Ts

1 − z−1

1 + z−1
(5.5)

where Ts is the sampling period.
The idea of the impulse invariance method is to obtain the discrete impulse re-

sponse h(n) of the digital filter by sampling of the impulse response g(t) of the
analog filter:

h(n) = g(nTs) (5.6)

Consider an example: we want a digital version of the following analog filter:

G(s) = 63

s + 63
(5.7)

Figure5.1 shows the frequency response of this low-pass analog filter; the figure has
been obtained with the Program 5.1. The corner frequency is 63 rad/s (aprox. 10Hz).

Program 5.1 Frequency response of analog filter example

% Frequency response of analog filter example
%Analog filter (wc= 63rad/s = 10Hz.):
num=[63]; % transfer function numerator;
den=[1 63]; %transfer function denominator
%logaritmic set of frequency values in rad/s:
w=logspace(0,3);
G=freqs(num,den,w); %computes frequency response
AG=20*log10(abs(G)); %take decibels
FI=angle(G); %take phases (rad)
f=w/(2*pi); %frequencies in Hz.
subplot(2,1,1); semilogx(f,AG,'k'); %plots decibels
grid; axis([1 100 -25 5]);
ylabel('dB');
title('frequency response of analog filter example')
subplot(2,1,2); semilogx(f,FI,'k'); %plots phases
grid;axis([1 100 -1.5 0]);
ylabel('rad.'); xlabel('Hz.')

242 5 Digital Filters

10
0

10
1

10
2

-25

-20

-15
-10

-5

0

5

dB

10
0

10
1

10
2

-1.5

-1

-0.5

0

ra
d.

Hz.

Fig. 5.1 Frequency response of the analog filter example

Let us apply the bilinear transformation to obtain a digital filter counterpart. This is
done with the Program 5.2, which obtains the discrete transfer function and generates
the frequency response of the digital filter (Fig. 5.2).

Program 5.2 uses the freqz() function to compute the frequency response of the
digital filter. There are several ways to specify the contents of the parenthesis in
this function. For instance the format H= freqz(numd, dend, w) uses normalized
frequency w. This frequency can take values between 0 and π radians/sample. The
value π corresponds to the Nyquist frequency (one half the sampling frequency). For
our example we prefer to use the signal frequency and the sampling frequency, both
in Hertz.

Program 5.2 Bilinear transformation from analog filter to digital filter

% Bilinear transformation
% from analog filter to digital filter
%Analog filter (wc= 63rad/s = 10Hz.):
num=[63]; % transfer function numerator;
den=[1 63]; %transfer function denominator
%Digital filter
fs=1200; %sampling frequency in Hz.
%bilinear transformation:
[numd,dend]= bilinear(num,den,fs);
%logaritmic set of frequency values in Hz:
f=logspace(-1,2);
G=freqz(numd,dend,f,fs); %computes frequency response
AG=20*log10(abs(G)); %take decibels
FI=angle(G); %take phases (rad)

5.2 From Analog Filters to Digital Filters 243

subplot(2,1,1); semilogx(f,AG,'k'); %plots decibels
grid;axis([1 100 -25 5]);
ylabel('dB');
title('frequency response for

the bilinear transformation')
subplot(2,1,2); semilogx(f,FI,'k'); %plots phases
grid;axis([1 100 -1.5 0]);
ylabel('rad.'); xlabel('Hz.')

Figure5.2 is very similar to Fig. 5.1. But, let us see what happens if we decrease
the sampling frequency (a simplemodification of one line in Program 5.2). Figure5.3
shows the frequency response of the filter using a sampling frequency fs=100 (Hz);
things are clearly different.

Comparing Figs. 5.2 and 5.3 it can be seen that increasing the sampling frequency
makes the frequency response of the discretized version of the analog filter be closer
to the frequency response of the original analog filter. It is also important to consider
that there will be aliasing if we try to filter signals with frequency above the Nyquist
frequency.

Now, let us apply the impulse invariance method to obtain a digital filter counter-
part for the same analog filter example. The Program 5.3 obtains the discrete transfer
function and represents in Fig. 5.4 the frequency response of the digital filter.

10
0

10
1

10
2

-25

-20

-15
-10

-5

0

5

dB

10
0

10
1

10
2

-1.5

-1

-0.5

0

ra
d.

Hz.

Fig. 5.2 Frequency response of the digital filter obtained with bilinear transformation and
fs=1200Hz

244 5 Digital Filters

10
0

10
1

10
2

-50

-40

-30

-20

-10

0

dB

10
0

10
1

10
2

-2

-1

0

1

2

ra
d.

Hz.

Fig. 5.3 Frequency response of the digital filter obtained with bilinear transformation and
fs=100Hz

10
0

10
1

10
2

-25

-20

-15
-10

-5

0

5

dB

10
0

10
1

10
2

-1.5

-1

-0.5

0

ra
d.

Hz.

Fig. 5.4 Frequency response of the digital filter obtained with the impulse invariance method and
fs=1200Hz

5.2 From Analog Filters to Digital Filters 245

Program 5.3 Invariant impulse transformation from analog filter to digital filter

% Invariant impulse transformation
% from analog filter to digital filter
%Analog filter (wc= 63rad/s = 10Hz.):
num=[63]; % transfer function numerator;
den=[1 63]; %transfer function denominator
%Digital filter
fs=1200; %sampling frequency in Hz.
%invariant impulse transformation:
[numd,dend]= impinvar(num,den,fs);
%logaritmic set of frequency values in Hz:
f=logspace(-1,2);
G=freqz(numd,dend,f,fs); %computes frequency response
AG=20*log10(abs(G)); %take decibels
FI=angle(G); %take phases (rad)
subplot(2,1,1); semilogx(f,AG,'k'); %plots decibels
grid;axis([1 100 -25 5]);
ylabel('dB');
title('frequency response for impulse

invariance method')
subplot(2,1,2); semilogx(f,FI,'k'); %plots phases
grid; axis([1 100 -1.5 0]);
ylabel('rad.'); xlabel('Hz.')

10
0

10
1

10
2

-10

-5

0

5

dB

10
0

10
1

10
2

-1

-0.5

0

0.5

1

ra
d.

Hz.

Fig. 5.5 Frequency response of the digital filter obtained with the impulse invariance method and
fs=100Hz

246 5 Digital Filters

As before, let us see what happens if the sampling frequency decreases. With a
simple modification of the Program 5.3 we obtain the Fig. 5.5 that shows the result
for fs=100 (Hz).

Notice the marked differences compared with previous figures.
In general the advice for filter discretization is to check the results, with a visual-

ization of the frequency response of the digital filter that has been obtained.

5.3 FIR Digital Filters

The finite impulse response (FIR) digital filters compute the output y(n) in function
of the input u(n) according with the following equation:

y(n) = b1 u(n) + b2u(n − 1) + b3 u(n − 2) + · · · + bnb+1 u(n − nb) (5.8)

The implementation of this filter requires no feedback, so FIR filters are always
stable.

There are several approaches to determine the filter coefficients bi [23]. Indeed,
the reference is the ideal filter; in consequence, it is convenient to start this section
with some comments about duality and “brickwall” shapes in the frequency and the
discrete time domains.

5.3.1 Duality and Brickwall Shapes

With the help of the Fourier transform, it is easy to see an interesting duality between
two specific shapes. One of these shapes is a rectangle, a “brickwall”, such is the
case of the frequency response of an ideal filter. The other shape corresponds to the
sinc function:

sin c(x) = sin (x)

x
(5.9)

Figure5.6 shows a plot of this function, which has a well-known shape.

Program 5.4 The sinc function

% The sinc function
x=-10:0.01:10;
y=sinc(x); %the sinc function
plot(x,y,'k'); %plots the function
hold on;
plot([-10 10],[0 0],'--k'); %horizontal dotted line
xlabel('x'); title('sinc function')

5.3 FIR Digital Filters 247

Fig. 5.6 The sinc(x)
function

-10 -8 -6 -4 -2 0 2 4 6 8 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

The Fourier transform of a function y(t) is the following:

Y (ω) =
∞∫

−∞
y(t) e− jω t dt (5.10)

The inverse Fourier transform is:

y(t) = 1

2 π

∞∫

−∞
Y (ω) e jω t dω (5.11)

Suppose that Y (w) has a brickwall shape, so for instance:

Y (ω) =
{
1, −ωc ≤ ω ≤ ωc

0, ωc < |ω| (5.12)

The corresponding to Y(ω) in the time domain is:

y(t) = 1

2 π

∞∫
−∞

Y (ω) e jω t dω = 1

2 π

ωc∫
−ωc

e jω t dω =

= 1

2 π

1

j t
(e j ωc t − e− j ωc t) = 1

π t
sin (ωct) =

= ωc

π

sin(ωct)

ωct
= ωc

π
sinc(ωct)

(5.13)

Now suppose a symmetrical situation: y(t) has a brickwall shape, according to:

y(t) =
{
1, −tc ≤ t ≤ tc
0, tc < |ω| (5.14)

248 5 Digital Filters

The corresponding to y(t) in the frequency domain is:

Y (ω) =
∞∫

−∞
y(t) e− jω t dt =

tc∫
−tc

e− jω t dt = −1
j ω

(e− j ω tc − e j ω tc) =
= 2

ω
sin (ω tc) = 2tc

sin(ω tc)
ω tc

= 2tc sinc(ω tc)
(5.15)

In consequence, when there is a brickwall shape in the time or frequency domain,
there is a sinc shape in the other domain.

Let us consider now the digital filters.
Based on the discrete inverse Fourier transform, the impulse response sequence

h(n) of a digital filter can be obtained with the following equation:

h(n) = 1

2 π

π∫

−π

H(ω) e jω n dω (5.16)

The ideal low-pass filter has a “brickwall” shape in the frequency domain, using
(5.16) the corresponding h(n), with n from −∞ to +∞, is found to be:

h(n) = sin(ωc n)

n π
= ωc

π
sinc (

ωc

π
n) (5.17)

Given the impulse response sequence h(n) of a digital filter, the frequency response
of the filter is:

H(ω) =
∞∑

n = −∞
h(n) e− jω n (5.18)

The equivalent to h(t) having a brickwall shape is a sequence h(n) of ones (or any
other constant). Figure5.7, which has been generated with the Program 5.5, shows
the frequency response of a digital filter having as h(n) a sequence of 7 ones. The
sequence h(n) is shown on the left, and the frequency response H(w) on the right
(the normalized frequency runs from –π to π).

Program 5.5 h(n)=7 ones, H(w) of the digital filter

% h(n)= 7 ones, H(w) of the digital filter
n=-3:1:3; %sample times
h=ones(7,1); % vector of 7 ones
subplot(1,2,1); stem(n,h,'k'); %plots h(n)
axis([-4 4 0 1.2]); title('h(n)'); xlabel('n');
%discrete Fourier transform:
H1=real(fft(h,512)); Hf=H1/max(H1);
w=-pi:(2*pi/511):pi;
subplot(1,2,2); plot(w,fftshift(Hf),'k'); %plots H(w)
axis([-pi pi -0.3 1]); title('H(w)');
xlabel('normalized frequency');
hold on;
plot([-pi pi],[0 0],'--k'); %horizontal dotted line

5.3 FIR Digital Filters 249

-4 -2 0 2 4
0

0.2

0.4

0.6

0.8

1

1.2

h(n)

n
-2 0 2

-0.2

0

0.2

0.4

0.6

0.8

1

H(w)

normalized frequency

Fig. 5.7 Frequency response of filter with h(n)=ones(7,1)

If we add more ones to h(n) the main lobe of H(ω) becomes narrower, meaning
that the corner frequency of the digital filter decreases. Figure5.8, obtained with the
Program 5.6, shows the frequency response corresponding to h(n) being a series of
13 ones.

Program 5.6 h(n)=13 ones, H(w) of the digital filter

% h(n)= 13 ones, H(w) of the digital filter
n=-6:1:6; %sample times
h=ones(13,1); % vector of 13 ones
subplot(1,2,1); stem(n,h,'k'); %plots h(n)
axis([-7 7 0 1.2]); title('h(n)'); xlabel('n');
%discrete Fourier transform:
H1=real(fft(h,512)); Hf=H1/max(H1);
w=-pi:(2*pi/511):pi;
subplot(1,2,2); plot(w,fftshift(Hf),'k'); %plots H(w)
axis([-pi pi -0.3 1]); title('H(w)');
xlabel('normalized frequency');
hold on;
plot([-pi pi],[0 0],'--k'); %horizontal dotted line

The number of peaks in the frequency response is equal to the number of ones in
the corresponding h(n).

250 5 Digital Filters

-5 0 5
0

0.2

0.4

0.6

0.8

1

1.2

h(n)

n
-2 0 2

-0.2

0

0.2

0.4

0.6

0.8

1

H(w)

normalized frequency

Fig. 5.8 Frequency response of filter with h(n)=ones(33,1)

5.3.2 Truncation and Time-Shifting

Notice that the series of ones has been plotted in Figs. 5.7 and 5.8 as symmetrical
about n = 0. This deserves an important comment about symmetry of the impulse
response sequence h(n).

The idea is to take advantage of:

e− jω n + e jω n = 2 cos (ω n) (5.19)

In the case of h(n) being a series of 2N + 1 ones, with symmetry about n = 0, the
corresponding frequency response is:

H(ω) =
N∑

n =−N

e− jω n = 2 cos (ωN) + 2 cos (ω(N − 1))+

+ 2 cos (ω(N − 2)) + · · · + 1 (5.20)

This frequency response is real. In consequence has zero phase.
In the case of h(n) being a series of 2N + 1 bk coefficients, with symmetry about

n = 0, the corresponding frequency response is:

5.3 FIR Digital Filters 251

H(ω) =
N∑

n = −N

bn e
− jω n = b0 + 2

N∑

k = 1

bk cos (ωN) (5.21)

Again, this frequency response is real, with zero phase. This is the advantage of
symmetry in h(n).

Let us look closely to the ideal filter, with h(n), −∞ ≤ n ≤ ∞, given by (5.17).
There are two main difficulties about this digital filter. One is that we cannot handle
infinite length h(n) sequences. The other is that we do not know about the future
as would be required by (5.4). These difficulties derive from the ideal filter being
non-causal.

But we can approximate the ideal filter. First we can truncate h(n), and second we
can apply a time shift of N samples, so we know and use N samples of “the future
input”. This implies a pure delay of the filter: τ = N .Ts , which means a linear phase
in the frequency response. Figure5.9 illustrates the ideas.

Part of h(n) of the ideal filter is shown on top of Fig. 5.9. The truncation of h(n)

is shown in the middle of Fig. 5.9; we obtain a truncated impulse response sequence
ht(n)with 51 terms. Thenwe apply a time shift of 25 sampling periods, and we obtain
the hf(n) shown at the bottom of Fig. 5.9; hf(n) is the impulse response sequence of
a causal digital filter.

It is important to note that the filter with hf(n) has the same frequency response
amplitude as the filter with ht(n).

Figure5.9 has been obtained with the Program 5.7. Notice the use of ifft() to
compute h(n) as the inverse Fourier transform of an ideal filter.

-60 -40 -20 0 20 40 60

0

0.02

0.04

0.06

no
n-

ca
us

al
 h

(n
)

-60 -40 -20 0 20 40 60

0

0.02

0.04

0.06

h(
n)

 tr
un

ca
tio

n

-60 -40 -20 0 20 40 60

0

0.02

0.04

0.06

h(
n)

 ti
m

e-
sh

ift

n

Fig. 5.9 h(n) truncation and time-shift

252 5 Digital Filters

Program 5.7 Truncation and time shifting

% Truncation and time shifting
N=7;
%points of H(w):
H=[ones(N,1);zeros(128-N,1);

zeros(128-N,1);ones(N,1)]';
h1=ifft(H,128); %inverse Fourier transform
h=ifftshift(h1); %compose symmetrical plot
h=real(h);
subplot(3,1,1);
n=-64:1:63; %number of plotted h(n)terms
stem(n,h,'k'); %plots h(n)
axis([-65 65 -0.015 0.06]);
ylabel('non-causal h(n)');
title('h(n) truncation and time-shift');
subplot(3,1,2);
n=-25:1:25; %number of truncated ht(n)terms
ht=h((64-25):(64+25)); %truncation of h(n)
stem(n,real(ht),'k'); %plots ht(n)
axis([-65 65 -0.015 0.06]);
ylabel('h(n) truncation');
subplot(3,1,3);
n=0:1:50; %time-shift of 25 samples
hf=ht;
stem(n,real(hf),'k'); %plots hf(n)
axis([-65 65 -0.015 0.06]);
ylabel('h(n) time-shift'); xlabel('n');

The result of the truncation and time shifting is a causal digital filter that approx-
imates well the desired frequency response, but with significant ripple. Figure5.10
shows an example of frequency response (we draw a symmetrical version, for −ω
and +∞). This figure has been generated by the Program 5.8.

Fig. 5.10 Frequency
response of truncated causal
filter

-3 -2 -1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

H
 (w

)

normalized frequency

5.3 FIR Digital Filters 253

Program 5.8 Frequency response of the truncated filter

% Frequency response of the truncated filter
N=100;
%points of H(w)
H=[ones(N,1);zeros(256-N,1);

zeros(256-N,1);ones(N,1)]';
h1=ifft(H,512); %inverse Fourier transform
h=ifftshift(h1); %compose symmetrical plot
h=real(h);
hf=h((256-15):(256+15)); %truncation of h(n)
%discrete Fourier transform:
H1=abs(fft(hf,512)); Hf=H1/max(H1);
w=-pi:(2*pi/511):pi;
plot(w,fftshift(Hf),'k'); %plots H(w)
axis([-pi pi -0.1 1.1]); title('H(w)');
xlabel('normalized frequency');

Thus far, the predominant context for the study has been provided by the Fourier
transform. But let us briefly consider a complementary point of view: weighted
averaging.

Taking a causal FIR filter, its time domain response can be computed by convo-
lution between h(n) and u(n):

y(n) = h(1) u(n) + h(2) u(n − 1) + h(3) u(n − 2) + · · · + h(N + 1) u(n − N)

(5.22)
If h(1) = 1, h(2) = 1…h(N + 1) = 1, (h(n) has a brickwall shape), then:

y(n) = (N + 1) ū(n) (5.23)

where ū(n) is the average of the last N + 1 values of u(n). We say the filter is a
moving-average filter.

Apart from the simple averaging, some weighting can be applied. For instance,
older inputs could be less considered as more recent inputs (some sort of forgetting
factors).

Note that since the delay of the filter is (N/2)Ts , the output of the filter corresponds
to what was the input N/2 sampling periods ago.

Looking again at the bottom of Fig. 5.9, the peak of the truncated causal filter
gives the highest weight to u(n − N/2),and gives less weights to the past and the
future inputs u(n) with respect to u(n − N/2).

5.3.3 Windows

When you try to narrow the time limits of a signal, its bandwidth expands, and
vice-versa. The problem with a sharp truncation of the ideal h(n) is that it causes
significant lobes both sides of the main lobe in the frequency response. A traditional
way to alleviate this problem is tomultiply the ideal h(n) by another sequence hw(n),

254 5 Digital Filters

which has finite length and an special shape to obtain a better frequency response.
This multiplication tries to get a smoothed truncation of h(n). Denote as Hw(ω) the
frequency response corresponding to hw(n).The multiplication in the time domain
corresponds to a convolution in the frequency domain, so the windowed FIR filter
has the following frequency response:

HF (ω) = H(ω) ∗ Hw(ω) (5.24)

where the symbol * denotes convolution.
Indeed the truncation depicted in Fig. 5.9 can be considered as a windowed filter,

using a brickwall window.
Filter designers have created many different windows, taking into account several

objectives and trade-offs [3, 6, 10, 12, 15, 21, 22]. We shall confine our study to the
windows already implemented in the MATLAB Signal Processing Toolbox.

5.3.3.1 Triangular and Bartlett Windows

A simple design for a smoother truncation is a triangular window. The coefficients
of the MATLAB triangular window are:

For N odd:

hw(n) =
{

2 n
N + 1 , 1 ≤ k ≤ N+1

2
2 (N−n +1)

N+1 , N+1
2 ≤ k ≤ N

(5.25)

For N even:

hw(n) =
{

2 n−1
N , 1 ≤ k ≤ N

2
2 (N−n) +1

N , N
2 + 1 ≤ k ≤ N

(5.26)

The Bartlett window is similar to a triangular window, only that the Bartlett window
ends with zeros at n = 1 and n = N , while the triangular window is nonzero at those
points. The coefficients of the MATLAB Bartlett window are:

For N odd:

hw(n) =
{

2 (n −1)
N − 1 , 1 ≤ k ≤ N+1

2

2 − 2 (n −1)
N−1 , N+1

2 ≤ k ≤ N
(5.27)

For N even:

hw(n) =
{

2 (n −1)
N − 1 , 1 ≤ k ≤ N

2
2 (N−n)

N−1 , N
2 + 1 ≤ k ≤ N

(5.28)

Figure5.11 shows the sequence hw(n) of a triangular window with 51 terms, and
the frequency response HF (ω) of the 50th corresponding windowed filter. The digital
FIR filter has been designed for a corner frequency of 10Hz. The figure has been
obtained with the Program 5.9. The sequence hw(n) is obtained with the triang()

5.3 FIR Digital Filters 255

0

0.2

0.4

0.6

0.8

1

1.2
hw(n)

n 10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

G
ai

n

Hz.

Hf(w)

Fig. 5.11 Triangular window and frequency response of the windowed FIR filter

function, and the numerator of the transfer function of the FIR windowed filter is
obtained with the fir1() function. The denominator is 1.

Program 5.9 hw(n) of triangular window, and frequency response Hf(w) of windowed filter

% hw(n) of triangular window, and
% frequency response Hf(w)of windowed filter
fs=130; %sampling frequency in Hz.
fc=10/(fs/2); %cut-off at 10 Hz.
N=50; %even order
hw=triang(N+1);
numd=fir1(N,fc,hw); %transfer function numerator
dend=[1]; %transfer function denominator
subplot(1,2,1)
stem(hw,'k'); %plots hw(n)
axis([1 51 0 1.2]);
title('triangle hw(n)'); xlabel('n');
subplot(1,2,2)
%logaritmic set of frequency values in Hz:
f=logspace(0,2);
G=freqz(numd,dend,f,fs); %computes frequency response
semilogx(f,abs(G),'k'); %plots gain
grid; axis([1 100 0 1.1]);
ylabel('Gain'); xlabel('Hz.');
title('Hf(w) 50th windowed filter')

256 5 Digital Filters

5.3.3.2 The Hamming and Other Cosine-Based Windows

The window should keep the main lobe of h(ω)while trying to attenuate lateral lobes
in the filter frequency response. There are several windows that are based on a raised
cosine concept, according with the following general expression:

hw(n) = a − b cos

(
2π

n

N + 1

)
, n = 1, 2, . . . , N (5.29)

The parameters a and b raise the sequence hw(n) over zero. For instance the window
of von Hann (the Hanning window) has the following expression:

hw(n) = 0.5 − 0.5 cos

(
2π

n

N + 1

)
, n = 1, 2, . . . , N (5.30)

The Hamming window is a further improvement, with the following parameters:

hw(n + 1) = 0.54 − 0.46 cos

(
2π

n

N − 1

)
, n = 1, 2, . . . , N − 1 (5.31)

The Hamming window is most usual, being the default windowwhen using the fir1()
function.

The Blackman window improves the stop-band attenuations, at the expense of
widening the transition from pass-band to stop-band. This window has the following
expression:

hw(n) = 0.42 − 0.5 cos

(
2π

n − 1

N − 1

)
+ 0.08 cos

(
4π

n − 1

N − 1

)
, n = 1, 2, . . . , N

(5.32)

Figure5.12 shows the sequence hw(n) of a Hamming window with 51 terms, and
the frequency response HF (ω) of the 50th corresponding windowed filter. The figure
has been obtained with the Program 5.10, which is very similar to the Program 5.9.

Program 5.10 hw(n) of Hamming window, and frequency response Hf(w) of windowed filter

% hw(n) of Hamming window, and
% frequency response Hf(w) of windowed filter
fs=130; %sampling frequency in Hz.
fc=10/(fs/2); %cut-off at 10 Hz.
N=50; %even order
hw=hamming(N+1);
numd=fir1(N,fc,hw); %transfer function numerator
dend=[1]; %transfer function denominator
subplot(1,2,1)
stem(hw,'k'); %plots hw(n)

5.3 FIR Digital Filters 257

axis([1 51 0 1.2]);
title('Hamming hw(n)'); xlabel('n');
subplot(1,2,2)
%logaritmic set of frequency values in Hz:
f=logspace(0,2);
G=freqz(numd,dend,f,fs); %computes frequency response
semilogx(f,abs(G),'k'); %plots gain
grid; axis([1 100 0 1.1]);
ylabel('Gain'); xlabel('Hz.');
title('Hf(w) 50th windowed filter')

Figure5.13 compares the frequency response Hf(ω) of six Hamming FIR filters
with order N between 10 and 60.

Figure5.14, which has been obtained with the Program 5.11, compares the se-
quences hw(n) of the Hanning (Hn), Hamming (Hm) and Blackman (B) windows.

0

0.2

0.4

0.6

0.8

1

1.2
 hw(n)

n 10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

G
ai

n

Hz.

Hf(w)

Fig. 5.12 Hamming window and frequency response of the windowed FIR filter

258 5 Digital Filters

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Hz.

H
f (

w
)

Fig. 5.13 Comparison of Hamming filter frequency response Hf(ω) for several orders N of the
filter

Fig. 5.14 Comparison of
hw(n) of Hanning, Hamming
and Blackman windows

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1 hw(n)

n

Blackman
Hamming

Hanning

5.3 FIR Digital Filters 259

Program 5.11 Comparison of hw(n) of Hanning, Hamming and Blackman windows

% Comparison of hw(n) of Hanning, Hamming
% and Blackman windows
N=50; %even order
hw=hanning(N+1); %Hanning window
plot(hw,'k'); hold on;
hw=hamming(N+1); %Hamming window
plot(hw,'r');
hw=blackman(N+1); %Blackman window
plot(hw,'b'); hold on;
axis([1 51 0 1.1]);
title('hw(n) of 50th Hanning, Hamming and Blackman');
xlabel('n');

Figure5.15 compares the frequency response Hf (ω) of the 50th FIR windowed
filter, using the Hanning (Hn), Hamming (Hm) and Blackman (B) windows. It is
hard to appreciate differences between the Hanning and Hamming windowed filters.

Program 5.12 Comparison of Hf(w) of Hanning, Hamming and Blackman windowed filters

% Comparison of Hf(w) of Hanning, Hamming
% and Blackman windowed filters
fs=130; %sampling frequency in Hz.
fc=10/(fs/2); %cut-off at 10 Hz.
N=50; %even order
%logaritmic set of frequency values in Hz:
f=logspace(0,2);
dend=[1]; %transfer function denominator
hw=hanning(N+1); %Hanning window
numd=fir1(N,fc,hw); %transfer function numerator
G=freqz(numd,dend,f,fs); %computes frequency response
semilogx(f,abs(G),'k'); %plots gain
hold on;
hw=hamming(N+1); %Hamming window
numd=fir1(N,fc,hw); %transfer function numerator
G=freqz(numd,dend,f,fs); %computes frequency response
semilogx(f,abs(G),'r'); %plots gain
hw=blackman(N+1); %Blackman window
numd=fir1(N,fc,hw); %transfer function numerator
G=freqz(numd,dend,f,fs); %computes frequency response
semilogx(f,abs(G),'b'); %plots gain
axis([1 100 0 1.1]);
grid;
ylabel('Gain'); xlabel('Hz.');
title('Hf(w) of 50 th Hanning, Hamming and

Blackman windowed filter')

Figure5.16 compares the frequency response Hw(ω) corresponding to the win-
dows themselves. Notice the ripples in the stop-band of the Hanning window (Hn).
Also note that the Blackman window (B) has a slower transition from pass-band to
stop-band.

260 5 Digital Filters

Fig. 5.15 Comparison of
Hf(ω) of Hanning, Hamming
and Blackman windowed
filters

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

G
ai

n

Hz.

Hf(w)

B

Hm
Hn B

Fig. 5.16 Comparison of
Hw(ω) of Hanning,
Hamming and Blackman
windows

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Hw(w)

Hz.

B

Hn

Hm

B

Program 5.13 Comparison of Hw(w) of Hanning, Hamming and Blackman windows

% Comparison of Hw(w) of Hanning, Hamming
% and Blackman windows
fs=130; %sampling frequency in Hz.
N=50; %even order
%logaritmic set of frequency values in Hz:
f=logspace(0,2,200);
dend=[1]; %transfer function denominator
hw=hanning(N+1); %Hanning window
numd=2*hw/N; %transfer function numerator
G=freqz(numd,dend,f,fs); %computes frequency response
semilogx(f,abs(G),'k'); %plots gain
hold on;
hw=hamming(N+1); %Hamming window

5.3 FIR Digital Filters 261

numd=2*hw/N; %transfer function numerator
G=freqz(numd,dend,f,fs); %computes frequency response
semilogx(f,abs(G),'r'); %plots gain
hw=blackman(N+1); %Blackman window
numd=2*hw/N; %transfer function numerator
G=freqz(numd,dend,f,fs); %computes frequency response
semilogx(f,abs(G),'b'); %plots gain
axis([1 100 0 1]);
title('Hw(w) of Hanning, Hamming and

Blackman windows');
grid; xlabel('Hz.');

The next table compares values of the side-lobe amplitude of Hw(ω), and the
transitionwidth and stop-band attenuation of the correspondingfilter response H f (ω)

for the three cases considered.

window Side lobe (dB) Transition width Stop-band attenuation (dB)
Hanning -31 3.1/N+1 -44
Hamming -41 3.3/N+1 -53
Blackman -57 5.5/N+1 -74

Figure5.17 shows in more detail what happens in the stop-band of Hw(ω) for the
three windows.

10
0

10
1

10
2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Hanning

10
0

10
1

10
2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Hamming

10
0

10
1

10
2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Blackman

Hz.

Fig. 5.17 Detail of the stop-band in the Hanning, Hamming and Blackman windows

262 5 Digital Filters

Program 5.14 Comparison of stop-band of Hw(w) of Hanning, Hamming and Blackmanwindows

% Comparison of stop-band of Hw(w) of Hanning,
% Hamming and Blackman windows
fs=130; %sampling frequency in Hz.
N=50; %even order
%logaritmic set of frequency values in Hz:
f=logspace(0,2,200);
dend=[1]; %transfer function denominator
hw=hanning(N+1); %Hanning window
numd=2*hw/N; %transfer function numerator
G=freqz(numd,dend,f,fs); %computes frequency response
subplot(1,3,1);semilogx(f,abs(G),'k'); %plots gain
axis([1 100 0 0.04]); title('Hanning');
grid;
hw=hamming(N+1); %Hamming window
numd=2*hw/N; %transfer function numerator
G=freqz(numd,dend,f,fs); %computes frequency response
subplot(1,3,2); semilogx(f,abs(G),'r'); %plots gain
axis([1 100 0 0.04]); title('Hamming');
grid;
hw=blackman(N+1); %Blackman window
numd=2*hw/N; %transfer function numerator
G=freqz(numd,dend,f,fs); %computes frequency response
subplot(1,3,3); semilogx(f,abs(G),'b'); %plots gain
axis([1 100 0 0.04]); title('Blackman');
grid; xlabel('Hz.');

5.3.3.3 The Kaiser Windows

There is a trade-off betweenmain lobewidth and side-lobe amplitude in the frequency
response of the windows themselves. Kaiser developed a family of windows with a
parameter β that controls this trade-off. The expression of a Kaiser window is the
following:

hw(n) = Io (β
√

(1 − ((n − 1 − α)/α)2)

Io(β)
, 1 ≤ n ≤ N + 1 (5.33)

where α = (N + 1)/2, and Io() is a zero-th order modified Bessel function:

Io(x) = 1 +
∞∑

k = 1

(
(x / 2)k

k!
)2

(5.34)

As β increases, the stop-band attenuation of the Kaiser windowed filter improves.
The next table compares values of the side-lobe amplitude of Hw(ω), and the transi-
tion width and stop-band attenuation of the corresponding filter response Hf (ω) for
several values of β.

5.3 FIR Digital Filters 263

Fig. 5.18 Comparison of
hw(n) of Kaiser window for
several values of β

0

0.2

0.4

0.6

0.8

1

1.2
hw(n)

n

β Side lobe (dB) Transition width Stop-band attenuation (dB)
2 -19 1.5 -29
3 -24 2 -37
4 -30 2.6 -45
5 -37 3.2 -54
6 -44 3.8 -63
7 -51 4.5 -72
8 -59 5.1 -81

Figure5.18, which has been obtained with the Program 5.15, compares the se-
quences hw(n) of the Kaiser window for values of β from 1 to 8.

Program 5.15 Comparison of hw(n) of Kaiser window

% Comparison of hw(n) of Kaiser window
fs=130; %sampling frequency in Hz.
N=50; %even order
beta=1; %filter parameter
hw=kaiser(N+1,beta); %Kaiser window
plot(hw,'k'); %plots hw(n)
hold on;
for beta=2:8,
hw=kaiser(N+1,beta); %Kaiser window
plot(hw,'k'); %plots hw(n)
end
axis([1 51 0 1.2]);
title('50th Kaiser hw(n)'); xlabel('n');

Figure5.19 compares the frequency response Hf (ω) of the 50th FIR windowed
filter, using the Kaiser window with values of β from1 to 6.

264 5 Digital Filters

Program 5.16 Comparison of Hf(w) of Kaiser window

% Comparison of Hf(w) of Kaiser window
fs=130; %sampling frequency in Hz.
fc=10/(fs/2); %cut-off at 10 Hz.
N=50; %even order
%logaritmic set of frequency values in Hz:
f=logspace(0,2);
dend=[1]; %transfer function denominator
for beta=1:6,
hw=kaiser(N+1,beta); %Kaiser window
numd=fir1(N,fc,hw); %transfer function numerator
G=freqz(numd,dend,f,fs); %computes frequency response
subplot(2,3,beta);semilogx(f,abs(G),'k'); %plots gain
axis([1 100 0 1.2]);
grid;
end
title('Hf(w) of 50th Kaiser windowed filter');
xlabel('Hz.');

Figure5.20 shows in more detail the stop band of Hw(ω) of the Kaiser window
itself, for values of β from 1 to 6.

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Hz.

 H
f (

w
)

beta=1 beta=2 beta=3

beta=4 beta=5 beta=6

Fig. 5.19 Frequency response of the Kaiser windowed filter for several values of β

5.3 FIR Digital Filters 265

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

10
0

10
1

10
2

10
0

10
1

10
2

10
0

10
1

10
2

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

Hz.

H
w

 (w
)

beta=1 beta=2 beta=3

beta=4 beta=5 beta=6

Fig. 5.20 Detail of the stop-and in the Kaiser window for several values of β

Program 5.17 Comparison of Hw(w) of Kaiser window

% Comparison of Hw(w) of Kaiser window
fs=130; %sampling frequency in Hz.
N=50; %even order
%logaritmic set of frequency values in Hz:
f=logspace(0,2);
dend=[1]; %transfer function denominator
for beta=1:6,
hw=kaiser(N+1,beta); %Kaiser window
numd=2*hw/N; %transfer function numerator
G=freqz(numd,dend,f,fs); %computes frequency response
subplot(2,3,beta);semilogx(f,abs(G),'k'); %plots gain
axis([1 100 0 0.5]);
grid;
end
title('stop-band of Hw(w) of 50th Kaiser window');
xlabel('Hz.');

266 5 Digital Filters

Fig. 5.21 A typical
frequency response of a
digital filter

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

G
ai

n

Hz.

Frequency response of a filter

passband ripple

stopband ripple

transition width
wp ws

5.3.4 Optimization

The design of the digital FIR could be guided by optimization criteria. Depending
on these criteria, windows can still be used or other type of solutions should be
adopted [15].

A typical digital filter frequency response is depicted in Fig. 5.21. There are three
frequency ranges, Δp [0..ωp],Δt [ωp..ωs],Δs [ωs ..π], corresponding to the pass-
band, the transition, and the stop-band respectively. Most concerns of filter designers
are related to ripple in the stop-band, looking for instance at the amplitude of the
side-lobe adjacent to the main lobe. Usually the filter design enters in a multiobjec-
tive scenario, trying to get good compromises of several interdependent targets. For
example, ripple and transition width are related: smaller ripple can be obtained at
the expense of a wider transition.

Measurable criteria to be optimized can be specified by considering the difference
(the error) between the ideal filter frequency response HD(ω) and the frequency
response of the actual filter H(ω):

E(ω) = H(ω) − HD(ω) (5.35)

Notice that in Δp and Δs E(ω) is the ripple of the frequency response of the actual
filter. In Δt E(ω) has non-zero value except possibly for a few zeros.

In general the pass-band ripple and the stop-band ripple in windowed FIR filters
are mutually dependent. There are no-window FIR filters that allow for independent
specification of both ripples. In this part of the chapter, optimal windowed FIR filters
are first considered, and then optimal no-window FIR filters are studied.

5.3 FIR Digital Filters 267

5.3.4.1 Boxcar and Chebyshev Windows

The boxcar() window provided by the MATLAB Signal Processing Toolbox has a
brickwall shape: it consists of a series of ones. Using boxcar() for a windowed FIR
filter, despite the ripples it introduces, gives the least squares error ē for the entire
frequency range. In other words, this filter minimizes the L2-norm of the error:

ē = ‖E(w)‖2 =
⎛

⎝ 1

2π

π∫

−π

|E(w)|2
⎞

⎠
1/2

(5.36)

According with the Parseval’s Theorem, Eq. (5.36) is equal to:

ē =
(∞∑

n=−∞
|h(n) − hD(n)|2

)1/2

(5.37)

and:

ē =
(

N∑

n=−N

|h(n) − hD(n)|2 +
−N−1∑

n=−∞
h2D(n) +

∞∑

n=−N+1

h2D(n)

)1/2

(5.38)

Since using the boxcar window, h(n) = hD(n) for −m ≤ n ≤ m, then we get a
minimal value of ē:

ē =
(−N−1∑

n=−∞
h2D(n) +

∞∑

n=N+1

h2D(n)

)1/2

(5.39)

Figure5.22 shows the sequence hw(n) of the boxcar window, a series of ones, and
the frequency response HF (ω) of the 50th corresponding windowed filter. The figure
has been obtained with the Program 5.10, similar to the Program 5.9.

Program 5.18 hw(n) of boxcar window, and frequency response Hf(w) of windowed filter

% hw(n) of boxcar window, and frequency
% response Hf(w)
% of windowed filter
fs=130; %sampling frequency in Hz.
fc=10/(fs/2); %cut-off at 10 Hz.
N=50; %even order
hw=boxcar(N+1);
numd=fir1(N,fc,hw); %transfer function numerator
dend=[1]; %transfer function denominator
subplot(1,2,1)
stem(hw,'k'); %plots hw(n)
axis([0 52 0 1.2]);
title('boxcar hw(n)'); xlabel('n');
subplot(1,2,2)

268 5 Digital Filters

%logaritmic set of frequency values in Hz:
f=logspace(0,2);
G=freqz(numd,dend,f,fs); %computes frequency response
semilogx(f,abs(G),'k'); %plots gain
axis([1 100 0 1.2]); grid;
ylabel('Gain'); xlabel('Hz.');
title('Hf(w) 50th windowed filter')

The integral inside parenthesis in Eq. (5.36) can be considered as the ‘energy’
of the error. This energy is distributed into pass-band and stop-band ripple, and the
transition. This is why smaller ripple can be obtained with a wider transition. In the
case of the boxcar filter, the transition is very rapid, as depicted in Fig. 5.22, and so
ripple is significant in Δp and Δs .

Another optimization criterion can be to focus on the ripple peaks, and try to have
all peaks under a minimal bound. Of course, it is enough to see what happens with
the maximum ripple peak. This is related to the L∞-norm of the error:

‖E(ω)‖∞ = maxω∈Δ |E(ω)| (5.40)

Thus the optimization target is to minimize the L∞-norm of the error in a certain
frequency range. The case belongs to the general topic of minimax optimization.

0

0.2

0.4

0.6

0.8

1

1.2
hw(n)

n 10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

1.2

G
ai

n

Hz.

Hf(w)

Fig. 5.22 Boxcar window and frequency response of the corresponding windowed FIR filter

5.3 FIR Digital Filters 269

0

0.2

0.4

0.6

0.8

1

1.2

hw(n)

n 10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

G
ai

n

Hz.

Hf(w)

Fig. 5.23 Chebyshev window and frequency response of the corresponding windowed FIR filter

Using the chebwin() window (the name refers to Chebyshev), the side-lobe mag-
nitude can be specified to be R dB below the main lobe magnitude (this is a minimal
bound). Actually all side-lobes in this filter are of equal height. The filter has the
smallest transition width compared to other windowed filters [13, 16]. This is one of
the MATLAB windows for FIR filters that are adjustable, instead of being fixed.

Figure5.23, generated with the Program 5.19, shows the sequence hw(n) of the
chebwin window for R = 20 dB, and the frequency response HF (ω) of the 50th

corresponding windowed filter.

Program 5.19 hw(n) of Chebyshev window, and frequency response Hf(w) of windowed filter

% hw(n) of Chebyshev window, and frequency
% response Hf(w)of windowed filter
fs=130; %sampling frequency in Hz.
fc=10/(fs/2); %cut-off at 10 Hz.
N=50; %even order
R=20; %ripple (dB)
hw=chebwin(N+1,R); %Chebyshev window
numd=fir1(N,fc,hw); %transfer function numerator
dend=[1]; %transfer function denominator
subplot(1,2,1)
stem(hw,'k'); %plots hw(n)
axis([1 51 0 1.2]);
title('Chebyshev hw(n)'); xlabel('n');
subplot(1,2,2)
%logaritmic set of frequency values in Hz:
f=logspace(0,2,200);
G=freqz(numd,dend,f,fs); %computes frequency response

270 5 Digital Filters

semilogx(f,abs(G),'k'); %plots gain
axis([1 100 0 1.1]); grid;
ylabel('Gain'); xlabel('Hz.');
title('Hf(w) 50th windowed filter')

5.3.4.2 The Parks–McLellan Filter

A procedure for solving the minimax optimization of a digital filter weighted error
was proposed in 1972 by Parks and McClellan. It is based on the Chebyshev alterna-
tion theorem, and it uses the Remez exchange algorithm to get the optimal solution
[17, 25]. The FIR digital filter which is obtained is a no-window filter.

Recall Eq. (5.35). Now, the following weighted error is considered:

E(ω) = W (ω) [H(ω) − HD(ω)] (5.41)

whereW(ω) is a positive weighting function. It is used to specify a trade-off between
the ripple amplitudes in the pass-band Δp and the stop-band Δs (small ripple in the
stop-band is frequently desired). Let us take as ripple amplitudes ± δ p in Δp, and
δs in Δs . ThenW(ω) can be chosen either as 1 in Δp and (δp/ δs) in Δs , or (δs/ δp)

in Δp and 1 in Δs .
The problem is to design a FIR digital filter that minimizes the weighted error.

Usually the transition band Δt is taken as a ‘don’t care region’, so the minimization
focus on the ripple inΔp andΔs . Denote F as the union ofΔp andΔs, and L = N/2
(N is the order of the filter).

The alternation theorem states that a necessary and sufficient condition for a filter
to be the optimal solution, is that there are at least L + 2 alternations of the weighted
error E(ω) in F.

That means there must be at least L + 2 extremal frequencies, ω0< ω1 < · · ·
< ωL+1 in F such that:

E(ω j) = −E(ω j+1) and
∣∣E(ω j)

∣∣ = maxω∈F |E(ω)| (5.42)

Notice that the alternation theorem establishes that the optimum filter is equi-ripple.
From the alternation theorem and (5.21), equalling derivatives to zero, a set of

equations can be written, one equation for each extremal frequency.
The function remez() uses the Remez exchange algorithm to solve the set of

equations, obtaining the optimal FIR filter.
In practice, the filter design begins by using the function remezord() as follows:

[N , f o,mo, w] = remezord(f,m, dev, f s]

where f = [ωp ωp] specifies the transition band (both frequencies in Hz);m contains
the desired magnitude response values at the pass-band and stop-band of the filter,

5.3 FIR Digital Filters 271

-0.05

0

0.05

0.1

0.15

0.2

h(n)

n 10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Hz.

 Hf(w)

Fig. 5.24 Impulse response h(n) and frequency response H(ω) of a 50th Parks–McClelland FIR
filter

so usuallym = [10]. The vector dev has the same number of entries asm; it specifies
the maximum ripple magnitude at the pass-band and the stop-band. The sampling
frequency fs is given in Hz. After running remezord() the filter is obtained with:

b = remez(N , f o,mo)

where N is the order of the filter, fo is a vector with the frequency band edges
(frequencies from 0 to 1; 1 corresponds to half fs), andmo is a vector with amplitudes
of the frequency response at the pass-band and the stop-band.

Figure5.24 shows the impulse response and the frequency response of a 50th

Parks–McClellan filter, obtained with the Program 5.20. Previously remezord() was
used to confirm the values specified in remez().

Program 5.20 h(n) and Hf(w) of (Remez) Parks–McClellan filter

% h(n) and Hf(w) of (Remez) Parks-McClellan filter
fs=130; %sampling frequency in Hz.
fc=10/(fs/2); %cut-off at 10 Hz.
N=50; %even order
%low-pass filter piecewise description:
F=[0 fc fc+0.05 1];
A=[1 1 0 0]; % " " "
numd=remez(N,F,A); %transfer function numerator
dend=[1]; %transfer function denominator
subplot(1,2,1)

272 5 Digital Filters

stem(numd,'k'); %plots h(n)
axis([1 51 -0.05 0.2]);
title('h(n)'); xlabel('n');
subplot(1,2,2)
%logaritmic set of frequency values in Hz:
f=logspace(0,2,200);
G=freqz(numd,dend,f,fs); %computes frequency response
semilogx(f,abs(G),'k'); %plots gain
axis([1 100 0 1.1]); grid;
xlabel('Hz.');
title('50th Parks-McClelland filter Hf(w)')

It is interesting to compare Figs. 5.23 and 5.24. The Parks–McClelland filter is
equi-ripple and the Chebyshev windowed filter is almost equi-ripple. The reader is
invited to make graphical comparisons in more detail.

5.3.4.3 The Least-Squares Error Filter

The firls() function computes a FIR filter that minimizes the L2-norm of the weighted
error in F [2]. The filter obtained, which is a no-windowfilter, has less ripple ‘energy’
than any equi-ripple filter of the same order.

Figure5.25 shows the impulse response and the frequency response of a 50th least-
squares FIR filter. The figure has been obtained with the Program 5.21; notice in this
program that the filter has been specified like in the case of the Parks–McClelland
filter.

Program 5.21 h(n) and Hf(w) of least-squares error filter

% h(n) and Hf(w) of least-squares error filter
fs=130; %sampling frequency in Hz.
fc=10/(fs/2); %cut-off at 10 Hz.
N=50; %even order
%low-pass filter piecewise description:
F=[0 fc fc+0.05 1];
A=[1 1 0 0]; % " " "
numd=firls(N,F,A); %transfer function numerator
dend=[1]; %transfer function denominator
subplot(1,2,1)
stem(numd,'k'); %plots h(n)
axis([1 51 -0.05 0.2]);
title('h(n)'); xlabel('n');
subplot(1,2,2)
%logaritmic set of frequency values in Hz:
f=logspace(0,2,200);
G=freqz(numd,dend,f,fs); %computes frequency response
semilogx(f,abs(G),'k'); %plots gain
axis([1 100 0 1.1]); grid;
xlabel('Hz.');
title('50th least-squares error filter Hf(w)')

5.3 FIR Digital Filters 273

5.3.5 Other FIR Filters

5.3.5.1 Raised Cosine Filters

A raised cosine filter is a low-pass filter which is typically used for pulse shaping in
digital data transmission systems, like in the case of modems [4, 11]. The frequency
response of this filter is flat in the pass-band; it sinks in a cosine curve to zero in the
transition region; and it is zero outside the pass-band. The equations that define the
filter are the following:

H(ω) =
⎧
⎨

⎩

1, f or ω < ωc(1 − β)
1
2 (1 + cos (

π (ω −ωc (1−β))

2 β ωc
)) , f or ωc(1 − β) < ω < ωc(1 + β)

0, f or ωc(1 + β) < ω

(5.43)

where H(ω) is the frequency response of the filter, and β is a parameter denoted as
the ‘roll-off factor’. The roll-off factor can take values between 0 and 1. Figure5.26
shows several profiles of H(ω) for different values of the roll-off factor (0, 0.25,
0.5, 0.75, 1). The figure is obtained with the Program 5.22, which uses the firrcos()
function. Notice that for β = 1 the frequency response has a cosine profile raised
over zero level; this is the origin of the filter name.

-0.05

0

0.05

0.1

0.15

0.2
h(n)

n 10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Hz.

Hf(w)

Fig. 5.25 Impulse response h(n) and frequency response H(ω) of a 50th least-squares FIR filter

274 5 Digital Filters

Fig. 5.26 Frequency
responses H(ω) of a 50th
raised cosine FIR filter

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

1.2

G
ai

n

Hz.

Hf(w)

beta=1

beta=0

Program 5.22 Frequency response of raised cosine filter

% frequency response of raised cosine filter
fs=130; %sampling frequency in Hz.
fc=10; %cut-off at 10 Hz.
N=50; %even order
beta=0; %roll-off factor
%transfer function numerator:
numd=firrcos(N,fc,beta,fs,'rolloff');
dend=[1]; %transfer function denominator
%logaritmic set of frequency values in Hz:
f=logspace(0,2,200);
G=freqz(numd,dend,f,fs); %computes frequency response
semilogx(f,abs(G),'k'); hold on; %plots gain
axis([1 100 0 1.2]); grid;
ylabel('Gain'); xlabel('Hz.');
title('Hf(w) 50th raised-cosine filter')
for beta=0.25:0.25:1,
%transfer function numerator:
numd=firrcos(N,fc,beta,fs,'rolloff');
G=freqz(numd,dend,f,fs); %computes frequency response
semilogx(f,abs(G),'k'); %plots gain
end

Notice that the bandwidth of the filter is determined by ωc(1 + β), which marks
the beginning of the stop-band.

Some pages before (in Sect. 5.3.3.2, about the Hamming and other cosine-based
windows) we mentioned a raised cosine concept. This was then applied to the win-
dows of FIR windowed filters. Now the concept is being applied to H(ω), the fre-
quency response of the cosine-raised filter, which is a non-window FIR filter.

Figure5.27, obtained with the Program 5.23, shows several profiles of the impulse
response of the cosine-raised filter for different values of β (0, 0.25, 0.5, 0.75, 1).
The important detail to observe is that all profiles have the same zero amplitude

5.3 FIR Digital Filters 275

Fig. 5.27 Impulse responses
h(n) of a 50th raised cosine
FIR filter

5 10 15 20 25 30 35 40 45 50

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16 Impulse response

beta=0

beta=1

crossings, at n = L , 2L , 3L , . . .; where L = fs/(2 fc), fs is the sampling frequency
and fc the cut-off frequency of the filter.

Program 5.23 Impulse response of raised cosine filter

% Impulse response of raised cosine filter
fs=130; %sampling frequency in Hz.
fc=10; %cut-off at 10 Hz.
beta=0; %roll-off factor
N=50; %even order
%transfer function numerator:
numd=firrcos(N,fc,beta,fs,'rolloff');
dend=[1]; %transfer function denominator
plot(numd,'-xk'); hold on; %plots impulse response
axis([1 51 -0.05 0.18]);
title('Impulse response of 50th raised

cosine filter');
for beta=0.25:0.25:1,
%transfer function numerator:
numd=firrcos(N,fc,beta,fs,'rolloff');
plot(numd,'-xk'); %plots impulse response
end

Consider a signal with frequency fu and period Tu . If the signal is sampled with
frequency fs , with fs > fu , we obtain Ns = fs/ fu samples for each period Tu of the
signal. Figure5.28, obtained with the simple Program 5.24, shows a train of impulses
with a frequency fu . This series of impulses may correspond to digital data to be
transmitted. A sampler is synchronized with the data, so the impulses are translated
to Ns samples between impulses, containing the impulses themselves as shown in
Fig. 5.28.

276 5 Digital Filters

Fig. 5.28 Train of impulses

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

seconds

Program 5.24 Train of impulses

% train of impulses
fs=130; %sampling frequency in Hz.
fu=10; %signal frequency in Hz.
Ns=fs/fu; %number of samples per signal period
tiv=1/fs; %time intervals between samples
nsm=ceil(Ns/2);
%impulse in the middle of zeros:
u1=zeros(1,Ns); u1(nsm)=1;
u=[u1,u1,u1,u1,u1]; %signal with 5 periods
t=0:tiv:((5/fu)-tiv); %time intervals set (5 periods)
stem(t,u,'kx'); %plot impulse train
title('train of impulses'); xlabel('seconds');
axis([0 0.5 0 1.2]);

The idea now is to make fc = fu . The filter will eliminate high frequency noise.
Since the input of the filter is a series of separated impulses, the output of the filter will
be a series of separated impulse responses. Due to the zero crossings of the impulse
responses at n = L , 2L , 3L , . . ., the successive impulse responses do not interfere
with each other. Thismakes easy to recover at the end of the transmission channel, the
original data. For this reason the raised cosine filter is used in telecommunications.
Figure5.29, obtained with the Program 5.25, shows the train of impulse responses
given by the filter output; notice the effect of the filter delay.

Program 5.25 Response of the raised cosine filter to the train of impulses

% response of the raised cosine filter
% to the train of impulses
fs=130; %sampling frequency in Hz.
fu=10; %signal frequency in Hz.
Ns=fs/fu; %number of samples per signal period
tiv=1/fs; %time intervals between samples

5.3 FIR Digital Filters 277

Fig. 5.29 Response of the
50th raised cosine FIR filter
to the train of impulses

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

seconds

% the train of impulses
nsm=ceil(Ns/2);
%impulse in the middle of zeros:
u1=zeros(1,Ns); u1(nsm)=1;
u=[u1,u1,u1,u1,u1]; %signal with 5 periods
t=0:tiv:((5/fu)-tiv); %time intervals set (5 periods)
% the filter
fc=fu; %cut-off frequency
beta=0.5; %roll-off factor
N=50; %even order
%transfer function numerator:
numd=firrcos(N,fc,beta,fs,'rolloff');
dend=[1]; %transfer function denominator
% the filter output
y=filter(numd,dend,u);
plot(t,y,'-kx')
title('raised cosine filter response');
xlabel('seconds');

Figure5.30 shows the output of the filter if we make fc = 2 fu , to separate more
the impulse responses. The reader may wish to explore what happens with 3 fu , 4 fu ,
etc.

5.3.5.2 Savitzky–Golay Filter

In 1964 Savitzky and Golay proposed a filter that has found many applications, for
de-noising or smoothing caseswhere transients in signals or borders in images should
be highlighted [24]. For instance in chemical analysis using spectra, it is important
to make clear peak heights and line widths, while suppressing random noise. In fact,
the Savitzky–Golay filter can be used to estimate derivatives of the signal.

278 5 Digital Filters

Fig. 5.30 Response of the
50th raised cosine FIR filter
with 2 fu cut-off frequency to
the train of impulses

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

seconds

The smoothing strategy of the filter is a least square fitting of a lower order
polynomial to a number of consecutive points (let us denote this set of points as a
frame). Given a data point A, a polynomial is fitted using A and surrounding points,
and then the value B of the polynomial is computed at A. Then the value B is taken
as the new smoothed data point. This is repeated for all data points. It was found
that a matrix of pre-computed coefficients can be obtained for the polynomials.
Consequently, the filter just uses pre-computed tables or routines that generate these
tables. Therefore is more computationally efficient than least square algorithms.

Let us take for example a frame of 7 data points and a polynomial order of 3.
Using the sgolay() function, MATLAB finds the 7 fitting polynomials and computes
the coefficients for a time-varying FIR filter. Figure5.31, obtained with the Program
5.26, shows these coefficients in 7 plots. Each of the plots corresponds to a row of
the matrix obtained by the function sgolay(). The first 3 rows, on top of the figure,
are to be applied to the signal during the terminal transient. The last 3 rows, at the
bottom of the figure, are to be applied to the signal during the startup transient. And
the center row is to be applied to the signal in the steady state.

Program 5.26 FIR filter coefficients with Savitzky–Golay filter

% FIR filter coeeficients with Savitzky-Golay filter
K=3; %polynomial order
FR=7; %frame size
numd=sgolay(K,FR); %numerator rows
dend=[1]; %denominator
for rr=1:FR,
subplot(FR,1,rr);
plot(numd(rr,:),'-kx');
axis([0 FR+1 -0.3 1]);
end

The sgolayfilt() function automatically does all the filtering work. Figure5.32
shows the output of the Savitzky–Golay filter for a noisy signal input. This input

5.3 FIR Digital Filters 279

0 1 2 3 4 5 6 7 8

0

0.5

1

0 1 2 3 4 5 6 7 8

0

0.5

1

0 1 2 3 4 5 6 7 8

0

0.5

1

0 1 2 3 4 5 6 7 8

0

0.5

1

0 1 2 3 4 5 6 7 8

0

0.5

1

0 1 2 3 4 5 6 7 8

0

0.5

1

0 1 2 3 4 5 6 7 8

0

0.5

1

Fig. 5.31 FIR filter coefficients to be applied, according with the Savitzky–Golay strategy

signal has been obtained adding random noise to a sawtooth periodic signal. The
user is invited to experiment, in the Program 5.27, with the order of the polynomial,
K, and the size of the frame, FR (K must be less than FR). Notice that the filtered
signal preserves an approximation of the sawtooth brisk changes.

Program 5.27 Frequency response of sgolay filter

% frequency response of sgolay filter
fs=300; %sampling frequency in Hz.
K=6; %polynomial order
FR=25; %frame size
%input signal
fu=3; %signal frequency in Hz
wu=2*pi*fu; %signal frequency in rad/s
tiv=1/fs; %time intervals between samples
t=0:tiv:(1-tiv); %time intervals set (1 seconds)
nn=length(t); %number of data points
us=sawtooth(wu*t); %sawtooth signal

280 5 Digital Filters

Fig. 5.32 On top, the pure
sawtooth signal. Below, the
sawtooth+noise input signal
and the response of the
Savitzky–Golay filter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

-1

0

1

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

-1

0

1

2

seconds

ur=randn(nn,1); %random signal
u=us+0.16*ur'; %the signal+noise
%filter output
y=sgolayfilt(u,K,FR); %filter output signal
%figure
subplot(2,1,1)
plot(t,us,'k');
axis([0 1 -2 2]);
title('Savitzky-Golay filter')
subplot(2,1,2)
plot(t,u,'b'); hold on;
plot(t,y,'r')
axis([0 1 -2 2]);
xlabel('seconds');

5.3.5.3 Interpolated FIR Filters (IFIR)

There have been several design techniques created for reducing the computational
complexity of FIR filters. One of these techniques is the interpolated FIR filter. The
basic idea is to decompose the filter into two FIR filter sections, as represented in
Fig. 5.33.

Suppose you choose an ‘stretching factor’ L = 4. What will happen is that in the
first block the input signal is filtered by a narrowband filter, and then zero padding is

Fig. 5.33 Block diagram of
an IFIR filter F(zL) I(z)

5.3 FIR Digital Filters 281

applied with three zeros between every signal sample. The output of the first block
is four times the length of the input signal. Now, the second block performs an
interpolation between non-zero samples, obtaining the desired filtered output.

MATLAB SPT provides the function intfilt() for a band-limited interpolator. The
example of use given by SPT, includes several steps:

1. Design of an interpolation filter, specified for a band limit factor alpha= 0.5,
meaning half the Nyquist frequency:
alpha= 0.5; h1=intfilt(4,2,alpha);

2. Given an input signal uof 200 samples, apply a narrowband FIR filter:
z= filter(fir1(40,0.5),1,u);

3. Insert three zeros between every sample:
N = length(z);
r = reshape ([z zeros(N,3)]’, 4*N,1);

4. Interpolate using the interpolation filter designed in (1):
y= filter(h1,1,r);

The literature reports savings of around 72% of computational effort (much less
multipliers) [8].

The key references for this technique are [18, 19].

5.3.6 Details of FIR Filters in the MATLAB Signal
Processing Toolbox

Concerning FIR filters, threemain types can be differentiated in theMATLABSignal
ProcessingToolbox.One is thewindow-based FIRfilters, another is least square error
filters, and the other is equi-ripple filters. For each of the three types, the Toolbox
offers interesting options.

For instance, constraints can be specified for the least square error filter, using the
filter fircls1(), so the approximation to the ideal response cannot go out from these
constraints.

Recall from Programs 5.20 and 5.21 that a multi-band description of the desired
frequency response was used, in terms of a vector of frequencies and another vector
of response amplitudes. This is a feature thatMATLAB extends to several FIR filters:

• For window-based FIR filters, there is the filter fir2(), that includes a multi-band
description.

• For least square error filters, there is the constrained multi-band filter fircls().
• In the case of equi-ripple filters, remez() is already multi-band, and there is the
version cremez() that can handle non-linear phase filters with possibly complex
frequency responses.

The optimization procedure applied by remez() and cremez(), does consider tran-
sitions between bands as ‘don’t care’ regions, where no optimization is tried.

282 5 Digital Filters

Once the numerator coefficients are obtained, with any of the FIR alternatives,
the output of the filter for a given input can be computed with filter(), which uses a
difference equation, or computed with fftfilt(), which uses an efficient Fast Fourier
Transform (FFT) method of overlap-add. Actually it is faster to use this method
instead of the direct convolution provided by filter(), when the length nb of the filter
is greater than 60. The overlap and add method breaks the input sequence u(n) into
segments of length L . Then it implements the following procedure:

y = i f f t (f f t (u(i : i + L − 1), N). ∗ f f t (b, N)); (5.44)

where N is the length of the FFT. The function fftfilt() chooses the values of N and
L for you. The procedure goes to the frequency domain via FFT, and then comes
back to the time domain with the inverse FFT. The complete output y(n) is built
by adding successive y(n) segments of length L + nb − 1 making them overlap by
nb − 1 points.

5.4 IIR Digital Filters

IIR filters offer more design freedom, usually with transfer functions having numer-
ator and denominator polynomials of moderate degree. However in general there is
no linear phase, and there is the risk of being unstable.

There are twomainways to obtain IIR digital filters. One is the classical approach,
with reference to analog filters. The other approach is the direct design.

5.4.1 Classical Approach

In the previous chapter, the Butterworth, Chebyshev, and elliptic filters were studied.
The MATLAB Signal Processing Toolbox offers digital versions of all these filters.

Recall that:

• The Butterworth filter, function butter(), has a maximally flat magnitude response
in the pass-band.

• The Chebyshev type 1 filter, function cheby1(), is equi-ripple in the pass-band.
• The Chebyshev type 2 filter, function cheby2(), is equi-ripple in the stop-band.
• The elliptic filter, function ellip(), is equi-ripple in both the pass- and stop-bands.

For comparison purposes, the frequency responses of the four filters just cited are
presented in Fig. 5.34. As can be seen in this figure, the frequency responses of the
digital filters are similar to their analog version. All the filters are of 5th order, much
less than the order of the FIR filters used in Sect. 5.3. Notice that the horizontal axis
is in Hz. This figure has been generated with the Program 5.8.

5.4 IIR Digital Filters 283

Program 5.28 Comparison of frequency response of the 4 digital filters

% Comparison of frequency response
% of the 4 digital filters
fs=130; %sampling frequency in Hz
fc=10/(fs/2); %cut-off at 10 Hz
N=5; %order of the filter
Rp=0.5; %decibels of ripple in the pass band
Rs=20; %decibels of ripple in the stop band
%digital Butterworth filter:
[numd,dend]=butter(N,fc);
%logaritmic set of frequency values in Hz:
F=logspace(0,2);
G=freqz(numd,dend,F,fs); %computes frequency response
%plot linear amplitude:
subplot(2,2,1); semilogx(F,abs(G),'k');
axis([1 100 0 1.1]); grid;
ylabel('Gain'); xlabel('Hz'); title('Butterworth');
%digital Chebyshev 1 filter:
[numd,dend]=cheby1(N,Rp,fc);
G=freqz(numd,dend,F,fs); %computes frequency response
%plot linear amplitude:
subplot(2,2,2); semilogx(F,abs(G),'k');
axis([1 100 0 1.1]); grid;
ylabel('Gain'); xlabel('Hz'); title('Chebyshev 1');

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

G
ai

n

Hz

Butterw.

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

G
ai

n

Hz

Cheby1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

G
ai

n

Hz

Cheby2

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

G
ai

n

Hz

Elliptic

Fig. 5.34 Comparison of frequency response of the four digital filters

284 5 Digital Filters

0 10 20 30 40
-0.05

0

0.05

0.1

0.15

0.2

Butterw.

0 10 20 30 40
-0.1

0

0.1

0.2

0.3

Cheby1

0 10 20 30 40
-0.05

0

0.05

0.1

0.15

Cheby2

0 10 20 30 40
-0.1

-0.05

0

0.05

0.1

0.15

Elliptic

Fig. 5.35 Comparison of impulse response of the four digital filters

%digital Chebyshev 2 filter:
[numd,dend]=cheby2(N,Rs,fc);
G=freqz(numd,dend,F,fs); %computes frequency response
%plot linear amplitude:
subplot(2,2,3); semilogx(F,abs(G),'k');
axis([1 100 0 1.1]); grid;
ylabel('Gain'); xlabel('Hz'); title('Chebyshev 2');
%digital elliptic filter:
[numd,dend]=ellip(N,Rp,Rs,fc);
G=freqz(numd,dend,F,fs); %computes frequency response
%plots linear amplitude:
subplot(2,2,4); semilogx(F,abs(G),'k');
axis([1 100 0 1.1]); grid;
ylabel('Gain'); xlabel('Hz'); title('Elliptic');

Figure5.35 shows the impulse response of the previous 5th order digital filters.
The figure has been generated with the Program 5.29, which makes use of function
impz() to compute the impulse responses.

Program 5.29 Comparison of impulse response of the 4 digital filters

% Comparison of impulse response
% of the 4 digital filters
fs=130; %sampling frequency in Hz
fc=10/(fs/2); %cut-off at 10 Hz

5.4 IIR Digital Filters 285

nsa=50; %number of samples to visualize
N=5; %order of the filter
Rp=0.5; %decibels of ripple in the pass band
Rs=20; %decibels of ripple in the stop band
%digital Butterworth filter:
[numd,dend]=butter(N,fc);
%plot impulse response:
subplot(2,2,1); impz(numd,dend,nsa);
title('Butterworth');
%digital Chebyshev 1 filter:
[numd,dend]=cheby1(N,Rp,fc);
%plot impulse response:
subplot(2,2,2); impz(numd,dend,nsa);
title('Chebyshev 1');
%digital Chebyshev 2 filter:
[numd,dend]=cheby2(N,Rs,fc);
%plot impulse response:
subplot(2,2,3); impz(numd,dend,nsa);
title('Chebyshev 2');
%digital elliptic filter:
[numd,dend]=ellip(N,Rp,Rs,fc);
%plot impulse response:
subplot(2,2,4); impz(numd,dend,nsa);
title('Elliptic');

The digital filters are stable if all their poles are inside the unit circle in the z-
plane. Figure5.36, which has been obtained with the Program B.6, shows that all the
previous 5th digital filters are stable. The four filters have five zeros and five poles.
In the cases of Butterworth and Chebyshev1, the five zeros are almost coincident,
so they cannot be distinguished in the figure. There exists the function pzmap() to
draw pole-zero maps, but we preferred a personal way of doing the same, in order
to introduce larger marks for poles and zeros. The grid draw by zgrid() is helpful to
study the damping and natural frequencies corresponding to the poles.

The Program B.6 has been included in Appendix B.
Another classical way for the design of digital IIR filters is to use discretization

methods, based on bilinear transformation or based on impulse invariance. This was
already studied in Sect. 5.2.

5.4.2 Direct Design

There is a number of direct methods to obtain digital IIR filters, departing from
a known desired frequency response, or from a known desired impulse response.
Notice that using the discrete inverse Fourier transform, ifft(), one can obtain the
impulse response from the frequency response.

The target of the IIR design is to obtain the discrete transfer function of the
IIR filter. The degree of the denominator is na, and the degree of the numerator is

286 5 Digital Filters

nb. There are two types of IIR filters: the all-pole IIR filters, with nb = 0, and the
recursive IIR filters, with nb > 0.

5.4.2.1 Frequency Domain Specification

Suppose there is a desired frequency response described with a vector F of frequen-
cies, and a vector M of response amplitudes.

Departing from F and M , the function yulewalk() designs recursive IIR filters,
using modified Yule-Walker equations and a computation algorithm involving time
and frequency domains [9]. The algorithm performs a least square fit to the specified
frequency response. The result is a discrete transfer function with na = nb.

Figure5.37 shows an example of IIR design via approximation with yulewalk()
to a desired frequency response profile. We selected an order of 8 for the IIR filter.
The figure has been generated with the Program 5.30. Notice that frequencies are
specified in a normalized way from 0 to 1 (1 corresponds to half the sampling rate).

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
Butterw.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
Cheby1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
Cheby2

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
Elliptic

Fig. 5.36 Comparison of pole-zero maps of the four digital filters

5.4 IIR Digital Filters 287

Fig. 5.37 Frequency
response amplitude of a
Yule–Walker filter
approximating desired
frequency response
amplitude (dotted line)

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

G
ai

n

Hf(w)

Hz.

Program 5.30 Frequency response of IIR yulewalk filter

% frequency response of IIR yulewalk filter
fs=130; %sampling frequency in Hz.
%frequency response specification (0 to 1):
F=[0 0.3 0.5 0.7 1];
M=[1 1 0 1 1]; %" "" ""
N=8; %order of the digital IIR filter
[numd,dend]=yulewalk(N,F,M); %filter computation
%linear set of frequency values in Hz:
f=linspace(0,65);
G=freqz(numd,dend,f,fs); %computes frequency response
plot(F*fs/2,M,'--k'); hold on;
plot(f,abs(G),'k'); %plots gain
axis([0 60 0 1.2]);
ylabel('Gain'); title('Hf(w) 5th yulewalk filter')
xlabel('Hz.');

It is interesting to examine the location of poles and zeros of the IIR filter just
being computed. Using the Program 5.31 we obtain the Fig. 5.38, in which the pole-
zero map of the IIR filter is depicted in the z-plane with the unit circumference. It is
clear that all poles are inside the unit circle, so the filter is stable.

Program 5.31 Pole-zero map of IIR yulewalk filter

% pole-zero map of IIR yulewalk filter
fs=130; %sampling frequency in Hz.
%frequency response specification (0 to 1):
F=[0 0.3 0.5 0.7 1];
M=[1 1 0 1 1]; %" "" ""
N=8; %order of the digital IIR filter
[numd,dend]=yulewalk(N,F,M); %filter computation
theta=0:.1:2*pi; nn=length(theta); ro=ones(1,nn);
polar(theta,ro,'--k'); hold on; %draw a circumference
fdt=tf(numd,dend);
pzmap(fdt); %pole-zero map

288 5 Digital Filters

Fig. 5.38 Pole-zero map of
the obtained IIR filter

Real Axis

Im
ag

 A
xi

s

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

It is also opportune to see how the phase of the IIR filter just obtained looks like.
It has been computed with the Program 5.32, and the result is shown in Fig. 5.39.

Program 5.32 Phase of the frequency response of IIR yulewalk filter

% phase of the frequency response
% of IIR yulewalk filter
fs=130; %sampling frequency in Hz.
%frequency response specification (0 to 1):
F=[0 0.3 0.5 0.7 1];
M=[1 1 0 1 1]; %" "" ""
N=8; %order of the digital IIR filter
[numd,dend]=yulewalk(N,F,M); %filter computation
%linear set of frequency values in Hz:
f=linspace(0,65);
G=freqz(numd,dend,f,fs); %computes frequency response
plot(f,angle(G),'k'); %plot phases
ylabel('Phase (rad)');
title('Hf(w) 8th yulewalk filter')
xlabel('Hz.'); grid;

There are situations where a complex frequency response is desired. This is a
common case in automatic control applications, where amplitude and phase of the
system response are important. In this case, the function invfreqz() obtains IIR filters
that corresponds to a given complex frequency response. The result is a discrete
transfer function with possibly different values of na and nb.

The same desired frequency response amplitude in Fig. 5.37 has been chosen for
the invfreqz() design. A desired frequency response phase specification has been
added. After trying several values of na and nb, a reasonable approximation of the
specified frequency response was obtained, as shown in Fig. 5.40. This figure has

5.4 IIR Digital Filters 289

Fig. 5.39 Phase of the
frequency response of the
obtained IIR filter

0 10 20 30 40 50 60 70
-1.5

-1

-0.5

0

0.5

1

1.5

P
ha

se
 (r

ad
)

Hf(w)

Hz.

Fig. 5.40 Amplitude and
phase of the frequency
response of the obtained IIR
filter approximating desired
amplitude and phase

0 10 20 30 40 50 60 70
0

0.5

1

1.5

G
ai

n

Hf(w)

0 10 20 30 40 50 60 70
-2

-1

0

1

2

P
ha

se

Hz.

been generated with the Program 5.33. Notice that invfreqz() needs the frequency
specification in rad/s. Recall from Sect. 4.4. that amplitude and phase are interdepen-
dent. A better specification of the desired frequency response phase (following the
guide of Fig. 5.39), would give the opportunity to more precise approximations.

Program 5.33 Frequency response of IIR invfreqz filter

% frequency response of IIR invfreqz filter
fs=130; %sampling frequency in Hz.
%frequency response specification (0 to 1):
F=[0 0.3 0.5 0.7 1];
A=[1 1 0 1 1]; %amplitude
PH=[0 -0.5 -1 0.5 0]; %phase in rad
W=F*pi; %frequencies in rad/s
%complex frequency response:
H=(A.*cos(PH))+(A.*sin(PH))*i;

http://dx.doi.org/10.1007/978-981-10-2534-1_4

290 5 Digital Filters

%degree of the digital IIR filter numerator
%and denominator
Nnum=2; Nden=4;
%filter computation:
[numd,dend]=invfreqz(H,W,Nnum,Nden);
%linear set of frequency values in Hz:
f=linspace(0,65);
%compute frequency response:
G=freqz(numd,dend,f,fs);
subplot(2,1,1)
plot(F*fs/2,A,'--k'); hold on;
plot(f,abs(G),'k'); %plots gain
ylabel('Gain'); title('Hf(w) invfreqz filter')
subplot(2,1,2)
plot(F*fs/2,PH,'--k'); hold on;
plot(f,angle(G),'k'); %plots gain
ylabel('Phase');
xlabel('Hz.');

Figure5.41, obtained with the Program 5.34, shows the pole-zero map of the IIR
filter.

Program 5.34 Pole-zero map of IIR invfreqz filter

% pole-zero map of IIR invfreqz filter
fs=130; %sampling frequency in Hz.
%frequency response specification (0 to 1):
F=[0 0.3 0.5 0.7 1];
A=[1 1 0 1 1]; %amplitude
PH=[0 -0.5 -1 0.5 0]; %phase in rad
W=F*pi; %frequencies in rad/s
%complex frequency response:
H=(A.*cos(PH))+(A.*sin(PH))*i;
%degree of the IIR filter numerator and denominator
Nnum=2; Nden=4;
%filter computation:
[numd,dend]=invfreqz(H,W,Nnum,Nden);
theta=0:.1:2*pi; nn=length(theta); ro=ones(1,nn);
polar(theta,ro,'--k'); hold on; %draw a circumference
fdt=tf(numd,dend);
pzmap(fdt); hold on; %pole-zero map

5.4.2.2 Time Domain Specification

Now suppose there is a desired impulse response, described by a vector h of numbers.
The transfer function of a corresponding IIR filter must be determined. This problem
can be seen in the context of signal identification, which tries to obtain a model of
a given signal (perhaps a noisy signal, or just noise). In our case, the signal is the
impulse response.

A main branch of signal identification methods is centred in time-series models
(already introduced in the chapter on linear systems), such auto-regressive (AR)
models, moving-average (MA) models, and ARMA (combining AR and MA)

5.4 IIR Digital Filters 291

Fig. 5.41 Pole-zero map of
the obtained IIR filter

Real Axis

Im
ag

 A
xi

s

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

models. Using the z transform, discrete transfer functions can be obtained, corre-
sponding to these models. Then, it can be seen that:

• FIR filters correspond to MA models
• IIR all-pole filters correspond to AR models
• IIR recursive filters correspond to ARMA models.

Given a signal, in our case the impulse response, MATLAB provides several
alternatives to obtain an AR model (an IIR all-pole filter). For instance, arcov() and
armcov(), using a covariance based approach, aryule(), with Yule-Walker equations,
and arburg(), which is the Burg’s method [5, 20, 29].

Figure5.42 shows the frequency response amplitude and the impulse response of
a simple all-pole IIR digital filter. It has been generated by the Program 5.35. The
impulse response will be used as the desired impulse response of the IIR filters to be
designed next.
Program 5.35 Reference IIR filter: frequency and impulse responses

%Reference IIR filter:frequency and impulse responses
fs=256; %sampling frequency in Hz
fmx=128; %input bandwidth in Hz
F=0:1:fmx-1; %response frequencies 0,1,2...Hz
%reference IIR filter
numd=1;
dend=[1 -0.5 0.1 0.5];
H=freqz(numd,dend,F,fs); %IIR frequency response
[h,th]=impz(numd,dend,64,fs); %impulse response
subplot(1,2,1)
plot(F,abs(H),'-rx'); hold on;
title('frequency response'); xlabel('Hz');
subplot(1,2,2)
plot(th,h,'-rx'); hold on;
axis([-0.02 0.25 -0.6 1.2]);
title('impulse response'); xlabel('seconds');

292 5 Digital Filters

0 50 100 150
0.5

1

1.5

2

2.5

3

3.5

4

4.5
frequency
response

Hz
0 0.05 0.1 0.15 0.2

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
impulse

 response

seconds

Fig. 5.42 Frequency response amplitude and impulse response of a digital all-pole IIR filter

Let us check for instance the arburg() method. Figure5.43, generated with the
Program5.36, compares the desired frequency and impulse responses,with the results
of arburg(). On the right hand side of Fig. 5.43 slight divergences can be observed
between the reference impulse response (in x-marks) and the model obtained by
arburg() (in solid curve). Consequently, the frequency response of the IIR filter
given by arburg() (in solid curve), somewhat differs from the reference frequency
response (in x-marks), as can be seen on the left hand side.

Program 5.36 IIR from impulse response, using arburg

%IIR from impulse response, using arburg
fs=256; %sampling frequency in Hz
fmx=128; %input bandwidth in Hz
F=0:1:fmx-1; %response frequencies 0,1,2...Hz
numd=1;
dend=[1 -0.5 0.1 0.5];
H=freqz(numd,dend,F,fs); %IIR frequency response
[h,th]=impz(numd,dend,64,fs); %impulse response
subplot(1,2,1)
plot(F,abs(H),'rx'); hold on;
N=2; %IIR denominator degree
mdend=arburg(h, N); %IIR filter modelling
mnumd=1;
%IIR model frequency response:
HM=freqz(mnumd,mdend,F,fs);
plot(F,abs(HM),'k');
title('frequency response'); xlabel('Hz');
subplot(1,2,2)
plot(th,h,'rx'); hold on;

5.4 IIR Digital Filters 293

0 50 100 150
0

1

2

3

4

5

6

7

frequency
 response

Hz
0 0.05 0.1 0.15 0.2

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

impulse
response

seconds

Fig. 5.43 Comparison of all-pole IIR desired and modelled response, for the arburg() case

[mh,mth]=impz(mnumd,mdend,64,fs);
plot(mth,mh,'k');
axis([-0.02 0.25 -0.8 1.2]);
title('impulse response'); xlabel('seconds');

Figure5.44, generated by Program 5.37, compares the results of the four men-
tioned methods, when modelling the impulse response of Fig. 5.42. Only frequency
responses of the obtained IIR filters are shown. Both arcov() and aryule() are really
successful, giving the same denominator coefficients as the IIR filter being used to
generate Fig. 5.42.

Program 5.37 IIR from impulse response, the four methods

%IIR from impulse response, the four methods
fs=256; %sampling frequency in Hz
fmx=128; %input bandwidth in Hz
F=0:1:fmx-1; %response frequencies 0,1,2...Hz
numd=1;
dend=[1 -0.5 0.1 0.5];
figure(1)
H=freqz(numd,dend,F,fs); %IIR frequency response
[h,th]=impz(numd,dend,64,fs); %impulse response
subplot(2,2,1)
plot(F,abs(H),'rx'); hold on
N=3; %IIR denominator degree
mdend=arcov(h, N); %IIR filter modelling
mnumd=1;

294 5 Digital Filters

0 50 100 150
0

1

2

3

4

5
arcov()

modelling

Hz
0 50 100 150

0

2

4

6

8

10
armcov()
modelling

Hz

0 50 100 150
0

2

4

6

8
arburg()

 modelling

Hz
0 50 100 150

0

1

2

3

4

5
aryule()

 modelling

Hz

Fig. 5.44 Comparison of all-pole IIR desired and modelled responses, for the four methods

%IIR model frequency response:
HM=freqz(mnumd,mdend,F,fs);
plot(F,abs(HM),'k');
title('arcov() modelling'); xlabel('Hz');
subplot(2,2,2)
plot(F,abs(H),'rx'); hold on
N=6; %IIR denominator degree
mdend=armcov(h, N); %IIR filter modelling
mnumd=1;
%IIR model frequency response:
HM=freqz(mnumd,mdend,F,fs);
plot(F,abs(HM),'k');
title('armcov() modelling'); xlabel('Hz');
subplot(2,2,3)
plot(F,abs(H),'rx'); hold on
N=2; %IIR denominator degree
mdend=arburg(h, N); %IIR filter modelling
mnumd=1;
%IIR model frequency response:
HM=freqz(mnumd,mdend,F,fs);

5.4 IIR Digital Filters 295

plot(F,abs(HM),'k');
title('arburg() modelling'); xlabel('Hz');
subplot(2,2,4)
plot(F,abs(H),'rx'); hold on
N=3; %IIR denominator degree
mdend=aryule(h, N); %IIR filter modelling
mnumd=1;
%IIR model frequency response:
HM=freqz(mnumd,mdend,F,fs);
plot(F,abs(HM),'k');
title('aryule() modelling'); xlabel('Hz');

The function lpc() of the Signal Processing toolbox makes a linear prediction
that is coincident with the result of aryule(), since both use the same Yule-Walker
equations for the same kind of model.

There are also functions to perform ARMAmodelling (IIR recursive filters). That
is the case of prony(), which uses the classical Prony’s method, [7, 26], and stmcb(),
which uses the Steiglitz–McBride iteration [27, 28].

Program 5.38 provides an example of using prony() to determine a model (the
transfer function of a recursive IIR filter) based on an impulse response. The pro-
gram begins by setting an example of impulse response, corresponding to a certain
IIR desired filter with numerator numd and denominator dend. Then the program
proceeds to use prony(). Notice that prony() requires a specification of the numerator
and denominator degrees to be tried in the modelling effort. The real life case is
to have a certain impulse response with no idea of the numerator and denominator
degrees. The Program 5.38 generates the Fig. 5.45, in which a good modelling result
is confirmed.

Program 5.38 IIR from impulse response, using prony

%IIR from impulse response, using prony
fs=256; %sampling frequency in Hz
fmx=128; %input bandwidth in Hz
F=0:1:fmx-1; %response frequencies 0,1,2...Hz
%desired IIR response:
numd=[1 0.5 1];
dend=[1 -0.5 0.1 0.5];
H=freqz(numd,dend,F,fs); %IIR frequency response
[h,th]=impz(numd,dend,64,fs); %impulse response
subplot(1,2,1)
plot(F,abs(H),'rx'); hold on;
na=3; %IIR denominator degree
nb=2; %IIR numerator degree
[mnumd,mdend]=prony(h, nb,na); %IIR filter modelling
%IIR model frequency response:
HM=freqz(mnumd,mdend,F,fs);
plot(F,abs(HM),'k');
title('frequency response'); xlabel('Hz');
subplot(1,2,2)
plot(th,h,'rx'); hold on;
[mh,mth]=impz(mnumd,mdend,64,fs);
plot(mth,mh,'k');
axis([-0.02 0.25 -1.2 1.6]);
title('impulse response'); xlabel('seconds');

296 5 Digital Filters

0 50 100 150
0

1

2

3

4

5

6

7

8

frequency
response

Hz
0 0.05 0.1 0.15 0.2

-1

-0.5

0

0.5

1

1.5
impulse
response

seconds

Fig. 5.45 Comparison of recursive IIR desired and modelled response, for the prony() case

Program 5.39 offers an example of using stmcb(). It is similar to Program 5.38,
except for small changes in the IIR desired filter that were introduced only to avoid
repetition. The program generates the Fig. 5.46, which also shows a good modelling
result.

Program 5.39 IIR from impulse response, using stmcb

%IIR from impulse response, using stmcb
fs=256; %sampling frequency in Hz
fmx=128; %input bandwidth in Hz
F=0:1:fmx-1; %response frequencies 0,1,2...Hz
%desired IIR response:
numd=[1 0.5 1];
dend=[1 -0.9 0.1 0.2];
H=freqz(numd,dend,F,fs); %IIR frequency response
[h,th]=impz(numd,dend,64,fs); %impulse response
subplot(1,2,1)
plot(F,abs(H),'rx'); hold on;
na=3; %IIR denominator degree
nb=2; %IIR numerator degree
[mnumd,mdend]=stmcb(h, nb,na); %IIR filter modelling
%IIR model frequency response:
HM=freqz(mnumd,mdend,F,fs);
plot(F,abs(HM),'k');
title('frequency response'); xlabel('Hz');
subplot(1,2,2)
plot(th,h,'rx'); hold on;
[mh,mth]=impz(mnumd,mdend,64,fs);

5.4 IIR Digital Filters 297

0 50 100 150
0

1

2

3

4

5

6

7

8
frequency
 response

Hz
0 0.05 0.1 0.15 0.2

-0.5

0

0.5

1

1.5

2

2.5
impulse

 response

seconds

Fig. 5.46 Comparison of recursive IIR desired and modelled response, for the stmcb() case

plot(mth,mh,'k');
axis([-0.02 0.25 -0.5 2.5]);
title('impulse response'); xlabel('seconds');

5.4.3 Details of IIR Filters in the MATLAB Signal
Processing Toolbox

5.4.3.1 Generalized Butterworth Digital Filter

The MATLAB Signal Processing Toolbox offers a generalized Butterworth filter
design, using the function maxflat(). The degree of the numerator and denominator
of the IIR filter can be specified, and maxflat() obtains the IIR maximally flat filter.

Program 5.40 gives an example of using maxflat(). Figure5.47 has been obtained
with this program. On the left hand side of the figure the flatness of the IIR filter can
be clearly observed. The pole-zero map of the IIR filter is shown on the right hand
side.

298 5 Digital Filters

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

G
ai

n
Hf(w)

Hz. Real Axis

Im
ag

 A
xi

s
-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 5.47 Frequency response and pole-zero map of maxflat() filter example

Program 5.40 Frequency response of IIR maxflat filter

% frequency response of IIR maxflat filter
fs=130; %sampling frequency in Hz.
fc=10; %cut-off at 10 Hz
wc=2*fc/fs; %normalized cut-off frequency (0 to 1)
%degree of the digital IIR filter numerator and
%denominator
Nnum=2; Nden=4;
%filter computation:
[numd,dend]=maxflat(Nnum,Nden,wc);
subplot(1,2,1)
%logaritmic set of frequency values in Hz:
f=logspace(0,2);
G=freqz(numd,dend,f,fs); %computes frequency response
semilogx(f,abs(G),'k'); %plots gain
axis([1 100 0 1.1]);
ylabel('Gain'); title('Hf(w) maxflat filter')
xlabel('Hz.'); grid;
subplot(1,2,2)
theta=0:.1:2*pi;
%draw a circunference:
plot(cos(theta),sin(theta),'--k'); hold on;
fdt=tf(numd,dend);
pzmap(fdt); hold on; %pole-zero map

5.4 IIR Digital Filters 299

Fig. 5.48 Comparison of
filter() and filtfilt() effects

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-1

-0.5

0

0.5

1

1.5
cheby1() and filter() result

seconds

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-1

-0.5

0

0.5

1

1.5
cheby1() and filtfilt() result

seconds

5.4.3.2 A Digital Filter with no Delay

In field applications, filters work usually in real time, for instance to improve the
sound of a telephone. However the study with MATLAB is frequently done off-line.
In this case the complete u(n) input sequence is at our disposal. Taking advantage of
this fact, the function filtfilt() can compute the output of a filter using both past and
future input data, obtaining no delay. This is contrast with the delay inherent to the
use of filter().

Figure5.48 compares the effect of filter() and the effect of filtfilt() using as input
example a sawtooth signal filtered with a Chebyshev1 IIR filter. The figure has been
made with the Program 5.41. On top of the figure the delay of the filter() output with
respect to the input can be clearly observed. At the bottom of the figure, where the
effect of filtfilt() is depicted, there is no delay.

Program 5.41 Comparing filter() with filtfilt()

% comparing filter with filtfilt
fs=130; %sampling frequency in Hz.
fc=10; %cut-off at 10 Hz
wc=2*fc/fs; %normalized cut-off frequency (0 to 1)
% a chebyshev1 IIR filter
N=6; %order of the filter
R=0.5; %ripple in the passband
[numd,dend]=cheby1(N,R,wc); %filter computation
%sawtooth input signal
fu=8; %signal frequency in Hz
wu=2*pi*fu; %signal frequency in rad/s
tiv=1/fs; %time intervals between samples
t=0:tiv:(0.5-tiv); %time intervals set (0.5 seconds)
u=sawtooth(wu*t); %sawtooth signal
subplot(2,1,1)

300 5 Digital Filters

y=filter(numd,dend,u); %filter output
plot(t,u,'r'); hold on
plot(t,y,'k');
title('cheby1() and filter() result');
xlabel('seconds')
subplot(2,1,2)
z=filtfilt(numd,dend,u); %filtfilt output
plot(t,u,'r'); hold on
plot(t,z,'k');
title('cheby1() and filtfilt() result');
xlabel('seconds')

5.4.3.3 Special Filters

Both remez() and cremez() functions have options for the design of Hilbert filters
and differentiator filters. MATLAB recommends not to use filtfilt() to compute the
effect of these filters.

The Hilbert filter is related with the Hilbert transform (there is a function, de-
noted hilbert(), which computes this transform). The Hilbert filter, also denoted as
quadrature filter, shifts 90◦ the phase of the input signal, so if for example the in-
put is a cosine the output is a sine. Suppose that u(t) is the signal input, and û(t)
is the filter output, so û(t) is just u(t) shifted 90◦; the Hilbert transform of u(t) is
g+(t) = u(t) + j û(t). It is clear how the filter can be used to obtain the Hilbert trans-
form. There are important applications of the Hilbert transform that will be studied
in the next chapter.

Figure5.49 shows the response of theHilbert filter to a sinusoidal input. The figure
has been generated with the Program 5.43, which makes use of the function remez()
with the option ‘Hilbert’. The input curve has x-marks. Notice how, after the filter
transient, the output is shifted 90◦ with respect to the input.

The filter has amplitude=1 along all its bandwidth. This has been taken into
account in the Program 5.42. Also, the filter has a sharp transition at 0Hz so the
bandwidth specified in the Program 5.42 avoids it.

Program 5.42 Effect of Hilbert filter

% effect of hilbert filter
fs=130; %sampling frequency in Hz.
N=50; %even order
F=[0.01 1]; %specification of frequency band
A=[1 1]; %specification of amplitudes
%transfer function numerator:
numd=remez(N,F,A,'hilbert');
dend=[1]; %transfer function denominator
fu=5; %signal frequency in Hz
wu=2*pi*fu; %signal frequency in rad/s
tiv=1/fs; %time intervals between samples
t=0:tiv:(1-tiv); %time intervals set (1 seconds)
u=sin(wu*t); %signal data set
y=filter(numd,dend,u); %response of the filter

5.4 IIR Digital Filters 301

plot(t,u,'-xr'); hold on;
plot(t,real(y),'k')
axis([0 1 -1.2 1.2]);
title('response of Hilbert filter');
xlabel('seconds')

Figure5.50 shows the response of a differentiator filter to a square wave input.
The figure has been generated with the Program 5.43, using remez() with the option
‘differentiator’. After the filter transient, the output of the filter shows the peaks
corresponding to the high values of signal derivative in the transitions of the square
wave; this is the expected effect of a differentiator.

Fig. 5.49 Input (with
x-marks) and output of
Hilbert filter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.5

0

0.5

1

1.5 response of Hilbert filter

seconds
Fig. 5.50 Input (with
x-marks) and output of a
differentiator

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.5

0

0.5

1

1.5
response of a differentiator

seconds

302 5 Digital Filters

Program 5.43 Effect of a differentiator

% effect of a differentiator
fs=130; %sampling frequency in Hz.
N=50; %even order
F=[0.01 1]; %specification of frequency band
A=[0.01 1]; %specification of amplitudes
%transfer function numerator:
numd=remez(N,F,A,'differentiator');
dend=[1]; %transfer function denominator
fu=5; %signal frequency in Hz
wu=2*pi*fu; %signal frequency in rad/s
tiv=1/fs; %time intervals between samples
t=0:tiv:(1-tiv); %time intervals set (1 seconds)
u=square(wu*t); %signal data set
y=filter(numd,dend,u); %filter response
plot(t,u,'-xr'); hold on;
plot(t,real(y),'k')
axis([0 1 -1.2 1.2]);
title('response of a differentiator');
xlabel('seconds');

5.5 Experiments

In the first experiment, a signal y(t) is made by adding three sinusoidal signals with
three different frequencies, then the three components are extracted from y(t) using
IIR digital filters, and finally y(t) is reconstructed adding the responses of the three
filters. The function filtfilt() is used to get no delay.

In the second experiment two wav files with two piano notes are used as desired
IIR impulse responses. With these ‘responses’ and using stmcb() IIR models were
obtained. The experiment let us hear the original and the modelled sounds.

5.5.1 Adding and Extracting Signals

As in the previous chapter, in Sect. 4.7.2., let us take the following signal:

y(t) = sin(ωt) + 0.5 sin(3ωt) + 0.3 sin(5ωt) (5.45)

We want to extract from y(t) the three sinusoidal components of the signal. In
Sect. 4.7.2. analog filters were used for this purpose, and signal reconstruction prob-
lems appeared because of filtering delays. Now, digital filters are used, and the filters
response is computed using filtfilt(), to get no delays. This has been done with the
Program B.7, using three 5th Butterworth filters. One of the filters is low-pass, the
other is band-pass and the third is high-pass. Slight changes in the corner frequencies,

http://dx.doi.org/10.1007/978-981-10-2534-1_4
http://dx.doi.org/10.1007/978-981-10-2534-1_4

5.5 Experiments 303

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-2

0

2

co
m

po
un

d
si

gn
al

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-1

0

1
y0

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-1

0

1

y3

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-0.5

0

0.5

y5

seconds

Fig. 5.51 Extracting components from a compound signal

with respect to the corner frequencies in the Program B.5, have been introduced for
better results. Figure5.51 shows the response of the three filters, in extracting the
three harmonics of the input signal (represented on top of the figure).

After the extraction of the three components, we add them trying to get a recon-
struction of y(t). Figure5.52 shows the result: y(t) is on top and the reconstructed
signal is below. Now the signals are similar since all three filters have no delay.

The Program B.7 has been included in Appendix B.

5.5.2 Modelling a Piano Note

From Internet two wav files were downloaded, with the sound of two piano notes.
Using wavread() the Program 5.44 obtains data files of these sounds. Now, let us
suppose these files represent the impulse response of two IIR filters. By using for
instance stmcb() we could try to model these sounds, that is: to obtain IIR transfer
functions with a similar impulse response.

The computation process takes time, patience. To alleviate this effort, the input
data set is reduced by 1/3, using the function decimate() that according with our
specification (R = 3) takes oneof every three samples. Figure5.53 shows the impulse
response of the IIR models we obtained.

304 5 Digital Filters

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-2

-1

0

1

2

co
m

po
un

d
si

gn
al

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-2

-1

0

1

2

ys
um

seconds

Fig. 5.52 Original and reconstructed signals

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0.015

-0.01

-0.005

0

0.005

0.01

G6 model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

-0.05

0

0.05

0.1

C6 model

Fig. 5.53 IIR models of G6 and C6 piano notes

5.5 Experiments 305

Program 5.44 Piano note modelling, using stmcb

%Piano note modelling, using stmcb
[y1,fs1]=wavread('piano-G6.wav'); %read wav file
R=3;
y1r=decimate(y1,R); %decimate the audio signal
soundsc(y1r);
[y2,fs2]=wavread('piano-C6.wav'); %read wav file
R=3;
y2r=decimate(y2,R); %decimate the audio signal
soundsc(y2r);
disp('computing G6 model');
% y1r is considered as the impulse response
% of a IIR filter
% let us get a model of this "filter"
na=40; %IIR denominator degree
nb=40; %IIR numerator degree
[mnumd,mdend]=stmcb(y1r,nb,na); %IIR filter modelling
%impulse response of the IIR model:
[h1,th1]=impz(mnumd,mdend,length(y1r),fs1/R);
subplot(2,1,1); plot(th1,h1); title('G6 model');
soundsc(h1); %hearing the impulse response
disp('computing C6 model');
% y2r is considered as the impulse
% response of a IIR filter
% let us get a model of this "filter"
na=40; %IIR denominator degree
nb=40; %IIR numerator degree
[mnumd,mdend]=stmcb(y2r,nb,na); %IIR filter modelling
%impulse response of the IIR model:
[h2,th2]=impz(mnumd,mdend,length(y2r),fs2/R);
subplot(2,1,2); plot(th2,h2); title('C6 model');
soundsc(h2); %hearing the impulse response
pause(1);
for n=1:5,
soundsc(h1); %hearing the impulse response
pause(0.4);
soundsc(h2); %hearing the impulse response
pause(0.4);
end

5.6 A Quick Introduction to the FDATool

The MATLAB SPT includes a very convenient interactive tool for the design and
analysis of filters. The target of this section is to introduce this tool.

Once MATLAB is working, you enter:
>>fdatool
An initial screen will appear, as shown in Fig. 5.54.

306 5 Digital Filters

Fig. 5.54 FDATool initial screen

Notice that the default settings of the initial screen are:

• Response type: Lowpass
• Design Method: FIR Equiripple
• Filter Order: Minimum order
• Frequency Specifications: Hz, Fs=48000, Fpass=9600, Fstop=12000
• Magnitude Specifications: dB, Apass=1; Astop=80

The main panel, corresponding to Filter Specifications, indeed depicts these de-
fault specifications.

If you click on the magnitude response button (the 12th button from the left, near
the Help entry), a FIR filter is designed and the magnitude of its frequency response
is depicted, as shown in Fig. 5.55.

By clicking on the 13th , 14th , etc., buttons you can see other aspects of the filter
design results, like phase response, or the filter coefficients, etc.

The density factor refers to how accurately the equiripple filter’s coefficients will
be designed.

Now, if you open theFile sub-menu, and you click onExport to Simulink Model,
you will see the screen depicted in Fig. 5.56.

Then, you click on Realize Model (bottom of the screen), wait, and a Simulink
panel will appear with a block called ‘Digital Filter’, that is the FIR filter you de-
signed. This block can be used as part of any Simulink system you wish to build and
test.

5.6 A Quick Introduction to the FDATool 307

Fig. 5.55 Result of the defaults FIR filter design

Fig. 5.56 Prepare for export to simulink model

308 5 Digital Filters

You can choose several types of FIR filters: equiripple, least-squares, maximally
flat, etc. In case ofwindowed FIRfilter, it can be triangular, Hamming,Hann, Bartlett,
Kaiser, etc.

In addition, you can choose several types of IIR filters: Butterworth, Chebyshev
I, Chebyshev II, elliptic, etc.

Other functions, like the Hilbert transform, the differentiator, the arbitrary group
delay, etc., are also available.

Graph windows can be open to send there the graphs generated by the tool. This
is useful for comparing several filter designs. Several graphs can be accumulated on
the same window.

The tool can be used in combination with the Filter Design Toolbox, being able
to control quantization aspects involved in the hardware realization of the filters.

There are many other features, which the reader is invited to explore. The tool is
supported by ample documentation (see also the Appendix A of [14]).

5.7 Resources

5.7.1 MATLAB

5.7.1.1 Toolboxes

• Filter Design Toolbox
http://antikafe-oblaka.ru/online-archive/download-mathworks-filter-design-tool
box-v42-for-matlab-v75-x64.html

• FIR Toolbox:
http://www.swmath.org/software/5132

• LTPDA-LISA Toolbox:
www.lisa.aei-hannover.de/ltpda/

• ERPLAB Toolbox (Electroencephalography):
http://erpinfo.org/erplab

5.7.1.2 Interactive Tools

• FDATool (Filter Design and Analysis Tool):
www.mathworks.com/help/signal/ref/fdatool.html

5.7.1.3 Matlab Code

• Matlab FIR Filter:
https://developer.mbed.org/handbook/Matlab-FIR-Filter

http://antikafe-oblaka.ru/online-archive/download-mathworks-filter-design-toolbox-v42-for-matlab-v75-x64.html
http://antikafe-oblaka.ru/online-archive/download-mathworks-filter-design-toolbox-v42-for-matlab-v75-x64.html
http://www.swmath.org/software/5132
www.lisa.aei-hannover.de/ltpda/
http://erpinfo.org/erplab
www.mathworks.com/help/signal/ref/fdatool.html
https://developer.mbed.org/handbook/Matlab-FIR-Filter

5.7 Resources 309

• Digital Signal Processing ELEN E4810 (Columbia Univ.):
https://www.ee.columbia.edu/~dpwe/e4810/matscripts.html/

5.7.2 Web Sites

• Introduction to Digital Filters (Stanford Univ.):
https://ccrma.stanford.edu/~jos/filters/

• FIR filter tools (miniDSP):
http://www.minidsp.com/applications/advanced-tools/fir-filter-tools

• dspGuru:
http://www.dspguru.com/dsp/links/digital-filter-design-software

• 101science.com (links):
http://101science.com/dsp.htm

• The Lab Book Pages (FIR filters):
http://www.labbookpages.co.uk/audio/firWindowing.html

References

1. J. Bilmes, Filter Design: Impulse Invariance and Bilinear Transform. Lecture Notes, EE518,
University ofWashington (2001). http://ssli.ee.washington.edu/courses/ee518/notes/lec16.pdf

2. C.S. Burrus, A.W. Soewito, R.A. Gopinath, Least squared error FIR filter design with transition
bands. IEEE Trans. Signal Process. 40(6), 1327–1340 (1992)

3. S.Chakraborty,Advantages ofBlackmanwindowoverHammingwindowmethod for designing
FIR filter. Int. J. Comput. Sci. Eng. Technol. (IJCSET) 4(8), 1181–1189 (2013)

4. E. Cubukcu, Root Raised Cosine (RRC) Filters and Pulse Shaping in Communication Systems
(2012)

5. M.J.L. De Hoon, T.H.J.J. Van der Hagen, H. Schoonewelle, H. Van Dam, Why Yule–Walker
should not be used for autoregressive modeling. Ann. Nuclear Energy 23(15), 1219–1228
(1996)

6. L. Deneire, FIR Filter Approximations. Lecture Presentation, Univ. Nice Sophia Antipols
(2010). http://www.i3s.unice.fr/~deneire/filt_cours_4.pdf

7. J.A. Dickerson, Signal Modeling. Lecture Notes, EE524, Iowa State Univ. (2006). http://home.
engineering.iastate.edu/~julied/classes/ee524/LectureNotes/l7b.pdf

8. F. Espic, A Survey about IFIR Filters and Their More Recent Improvements (2010). http://
felipeespic.com/depot/docs/DSP_CS1.pdf

9. B. Friedlander, B. Porat, The modified Yule–Walker method of ARMA spectral estimation.
IEEE Trans. Aerosp. Electr. Syst. 20(2), 158–173 (1984)

10. H.A. Gaberson, A comprehensive windows tutorial. Sound Vibration 40(3), 14–23 (2006)
11. K. Gentile, The care and feeding of digital pulse-shaping filters. RFDesign 25(4), 50–58 (2002)
12. G. Heinzel, A. Rüdiger, R. Schilling, Spectrum and Spectral Density Estimation by the Discrete

Fourier Transform (DFT), Including aComprehensive List ofWindowFunctions and SomeNew
At-top Windows (2002). http://www.holometer.fnal.gov/GH_FFT.pdf

13. P.Kabal, Timewindows for linear prediction of speech. Technical report, Electrical&Computer
Engineering, McGill University (2003)

14. S.M. Kuo, W.-S.S. Gan, Digital Signal Processors: Architectures, Implementations, and Ap-
plications (Prentice Hall, Upper Saddle River, 2004)

https://www.ee.columbia.edu/~dpwe/e4810/matscripts.html/
https://ccrma.stanford.edu/~jos/filters/
http://www.minidsp.com/applications/advanced-tools/fir-filter-tools
http://www.dspguru.com/dsp/links/digital-filter-design-software
http://101science.com/dsp.htm
http://www.labbookpages.co.uk/audio/firWindowing.html
http://ssli.ee.washington.edu/courses/ee518/notes/lec16.pdf
http://www.i3s.unice.fr/~deneire/filt_cours_4.pdf
http://home.engineering.iastate.edu/~julied/classes/ee524/LectureNotes/l7b.pdf
http://home.engineering.iastate.edu/~julied/classes/ee524/LectureNotes/l7b.pdf
http://felipeespic.com/depot/docs/DSP_CS1.pdf
http://felipeespic.com/depot/docs/DSP_CS1.pdf
http://www.holometer.fnal.gov/GH_FFT.pdf

310 5 Digital Filters

15. R.A. Losada, Practical FIR Filter Design in MATLAB (2003). http://in.mathworks.com/
matlabcentral/fx_files/3216/1/firdesign.pdf

16. P. Lynch, The Dolph–Chebyshev window: a simple optimal filter. Mon. Weather Rev. 125(4),
655–660 (1997)

17. J.H.McClellan, T.W. Parks, A personal history of the Parks–McClellan algorithm. IEEE Signal
Process. Mag. 22(2), 82–86 (2005)

18. A.Mehrnia, A.N.Willson Jr., On optimal ifir filter design, inProceedings of IEEE International
Symposium Circuits and Systems, ISCAS’04, vol. 3, pp. 133–136 (2004)

19. Y. Neuvo, D. Cheng-Yu, S.K. Mitra, Interpolated finite impulse response filters. IEEE Trans.
Acoust. Speech Signal Process. 32(3), 563–570 (1984)

20. S.J. Orfanidis, Optimum Signal Processing: An Introduction (Collier Macmillan, London,
1988)

21. E. Punskaya, Design of FIR Filters. University of Columbia (2005). http://www.sigproc.eng.
cam.ac.uk/~op205

22. M.A. Samad, A novel window function yielding suppressed mainlobe width and minimum
sidelobe peak (2012). arXiv:1205.1618

23. T. Saramaki, Finite impulse response filter design, inHandbook for Digital Signal Processing,
ed. by S.K. Mitra, J.F. Kaiser (Wiley, New York, 1993), pp. 155–278

24. R.W. Schafer, What is a Savitzky–Golay filter? (Lecture Notes). IEEE Signal Process. Mag.
28(4), 111–117 (2011)

25. I. Selesnick, The Remez Algorithm. Lecture Notes, EL 713, NYU Polytechnic School of Engi-
neering (2011). http://eeweb.poly.edu/iselesni/EL713/index.html

26. S. Singh, Prony Analysis (2007). http://www.engr.uconn.edu/~sas03013/docs/PronyAnalysis.
pdf

27. K. Steiglitz, L.E. McBride, A technique for the identification of linear systems. IEEE Trans.
Autom. Control 10(4), 461–464 (1965)

28. P. Stoica, T. Soderstrom, The Steiglitz–McBride identification algorithm revisited-convergence
analysis and accuracy aspects. IEEE Trans. Autom. Control 26(3), 712–717 (1981)

29. K. Vos, A Fast Implementation of Burg’s Method (2013). https://opus-codec.org/docs/vos_
fastburg.pdf

http://in.mathworks.com/matlabcentral/fx_files/3216/1/firdesign.pdf
http://in.mathworks.com/matlabcentral/fx_files/3216/1/firdesign.pdf
http://www.sigproc.eng.cam.ac.uk/~op205
http://www.sigproc.eng.cam.ac.uk/~op205
http://arxiv.org/abs/1205.1618
http://eeweb.poly.edu/iselesni/EL713/index.html
http://www.engr.uconn.edu/~sas03013/docs/PronyAnalysis.pdf
http://www.engr.uconn.edu/~sas03013/docs/PronyAnalysis.pdf
https://opus-codec.org/docs/vos_fastburg.pdf
https://opus-codec.org/docs/vos_fastburg.pdf

Part III
Non-stationary Signals

Chapter 6
Signal Changes

6.1 Introduction

Signal changes along time canhave ameaning. There aremany electronic instruments
made for the monitoring of signal changes. For instance, the monitoring of heart
pace and other biomedical signals, the detection of intruders by means of infrared
sensors, etc. But there is not only interest from data acquisition applications; humans
do use signal changes along time for communication purposes, through modulation
techniques. Needless to say how important communications and data acquisition are
nowadays.

This chapter is devoted to signal changes along time, from the point of view
of data acquisition and processing. The intention of the chapter is to awake some
curiosity, in order to prepare for the next chapter, which introduces a series of analysis
methodologies for the study of non-stationary signals.

Along this chapter and the next one, the Hilbert transform will frequently appear.
Suppose we are measuring a signal y = Acos ωt, the Hilbert transform of y(t) is:

g(t) = A cos ωt + j A sin ωt = e jω t (6.1)

Note that:

|g(t)| = A ,
d |g(t)|
dt

= Aω (6.2)

In consequence, through g(t) we can determine the instantaneous amplitude and
frequency of a measured signal.

See [18, 21, 24, 52] for background information on the Hilbert transform. A basic
discrete version is introduced in [20]. For more insight it would be recommended to
read [31] and, for a generalization (monogenic signals), the article [14].

The MATLAB SPT hilbert() function provides an approximation to the Hilbert
transform. It would be useful in the frequency ranges where the approximation is
good enough.

© Springer Science+Business Media Singapore 2017
J.M. Giron-Sierra, Digital Signal Processing with Matlab Examples, Volume 1,
Signals and Communication Technology, DOI 10.1007/978-981-10-2534-1_6

313

314 6 Signal Changes

Indeed the Fourier transform will be extensively used in this chapter. Let us write
again (recall Eq. 5.10) the expression of the Fourier transform of a signal y(t).

Y (ω) =
∞∫

−∞
y(t) e− jω t dt (6.3)

Y(ω) is also known as the spectral density function of y(t). It should be represented
versus ω, with ω taking negative and positive values. In many cases there is a mirror
symmetry with respect to the vertical axis, so it is sufficient to represent Y(ω) versus
ω, with ω taking only positive values. Also, for short, Y(ω) is denoted simply as the
spectrum of y(t).

Some books that would be recommended for this chapter are [4] on biomedical
signals, [48] on spectral analysis and [34] as general background using MATLAB.

6.2 Changes in Sinusoidal Signals

From the perspective of the Fourier decomposition of signals into sinusoids, the
sinusoidal signals are of fundamental interest.

Consider a generic sinusoidal signal:

y(t) = A sin(ω t + α) (6.4)

The three parameters that can change along time are A, ω and α.

6.2.1 Changes in Amplitude

Changes in amplitude A results in certain shapes of the signal envelope.
For instance, a typical envelope shape is the exponential decay, where A =

exp(−Kt). Figure6.1 shows an example. The figure has been obtained with the
Program 6.1.

Program 6.1 Sine signal with decay

% Sine signal with decay
fy=40; %signal frequency in Hz
wy=2*pi*fy; %signal frequency in rad/s
fs =2000; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(1-tiv); %time intervals set (1 seconds)
KT=3; %decay constant
y=exp(-KT*t).*sin(wy*t); %signal data set
plot(t,y,'k'); %plots figure
axis ([0 1 -1.1 1.1]);
xlabel('seconds'); title('sine signal with decay');

http://dx.doi.org/10.1007/978-981-10-2534-1_5

6.2 Changes in Sinusoidal Signals 315

Fig. 6.1 Sine signal with
decay

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

seconds

Fig. 6.2 Audio sine signal
with decay

0 0.5 1 1.5 2 2.5 3 3.5 4
-1.5

-1

-0.5

0

0.5

1

1.5

seconds

In this chapter, examples with sound will be frequently included, since it helps
for intuitive feeling. One of these examples is associated with Fig. 6.2, which has the
same kind of pattern of the previous figure: an exponential decay. As it can be easily
noticed in the Program 6.2, the changes with respect to Program 6.1 are just about
sound (the MATLAB function sound()).

Program 6.2 Sound of a sine signal with decay

% Sound of a sine signal with decay
fy =500; %signal frequency in Hz
wy=2*pi*fy; %signal frequency in rad/s
fs =5000; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;

316 6 Signal Changes

t=0:tiv:(4-tiv); %time intervals set (4 seconds)
KT=0.7; %decay constant
y=exp(-KT*t).*sin(wy*t); %signal data set
sound(y,fs); %sound
plot(t,y,'g'); %plots figure
axis ([0 4 -1.5 1.5]);
xlabel('seconds');
title('sound of sine signal with decay');

When running the program and hearing the sound, it makes think about a sound
source that is moving away.

Often the analysis of measured signals pays special attention to the signal
envelopes. One of the uses of the Hilbert transform is for obtaining the envelope
of a signal. For example, let us apply the hilbert() function to the sinusoidal signal
with decay depicted in Fig. 6.1. The result is shown in Fig. 6.3, generated with the
Program 6.3. The function hilbert()makes an approximation to theHilbert transform,
and the result, as shown in the figure, is a satisfactory approximation to the envelope
of the signal. This envelope can be easily analyzed to estimate the decay constant of
the signal.

Program 6.3 Hilbert and the envelope of sine signal with decay

%Hilbert and the envelope of sine signal with decay
fy=40; %signal frequency in Hz
wy=2*pi*fy; %signal frequency in rad/s
fs =2000; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(1-tiv); %time intervals set (1 seconds)
KT=3; %decay constant
y=exp(-KT*t).*sin(wy*t); %signal data set
g=hilbert(y); %Hilbert transform of y
m=abs(g); %complex modulus
plot(t,y,'b'); hold on; %plots figure

Fig. 6.3 Envelope of the
sine signal with decay

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

seconds

6.2 Changes in Sinusoidal Signals 317

plot(t,m,'k',t,-m,'k'); %plots envelope
axis ([0 1 -1.1 1.1]);
xlabel('seconds');
title('envelope of sine signal with decay');

6.2.2 Changes in Frequency

Changes in signal frequency ω are also of interest. For instance it may be caused by
theDoppler effect. There are radars, flowmeters, speedmeters, and other instruments
that use this effect. Likewise, the measurement of red shift - which is an example of
Doppler effect- of stars and galaxies is very important.

Figure6.4, generated with the Program 6.4, shows an example of sinusoidal signal
with frequency variation. The program uses vco(), which is a voltage-controlled
oscillator.
Program 6.4 Sine signal with frequency variation

% Sine signal with frequency variation
fy=15; %signal central frequency in Hz
fs =2000; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(1-tiv); %time intervals set (1 seconds)
x=(2*t)-1; %frequency control ramp (-1 to 1)
y=vco(x,fy ,fs); %signal data set
plot(t,y,'k'); %plots figure
axis ([0 1 -1.1 1.1]);
xlabel('seconds');
title('sine signal with frequency variation');

Fig. 6.4 Sine signal with
frequency variation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

seconds

318 6 Signal Changes

Fig. 6.5 Audio sine signal
with frequency variation

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

seconds

Let us again have an audio version.A soundwith increasing frequency is generated
by the Program 6.5. The Fig. 6.5, also generated by the Program 6.5, shows the audio
signal.

Program 6.5 Sound of sine signal with frequency variation

% Sound of sine signal with frequency variation
fy =600; %signal central frequency in Hz
fs =6000; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(4-tiv); %time intervals set (4 seconds)
x=(t/2)-1; %frequency control ramp (-1 to 1)
y=vco(x,fy ,fs); %signal data set
sound(y,fs); %sound
plot(t,y,'k'); %plots figure
axis ([0 0.5 -1.1 1.1]);
xlabel('seconds');
title('sound of sine signal with
frequency variation');

The derivative of the Hilbert transform can also be used to estimate the instanta-
neous frequency of the signal.

The Program 6.6 uses hilbert() to compute the instantaneous frequency of the
signal in Fig. 6.4 (it can be also applied, in the same way, for the audio signal in
Fig. 6.5).

Figure6.6, made with the Program 6.6, shows on top the signal having frequency
variation, and below the instantaneous frequency. Although there are some diver-
gences in the corners of the frequency range, most of the plot offers good information
on the frequency variation of the signal along time.

6.2 Changes in Sinusoidal Signals 319

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1

seconds

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

seconds

frequency of the sine signal in Hz

Fig. 6.6 Sine signal with frequency variation

Program 6.6 Hilbert and the frequency of sine signal with frequency variation

% Hilbert and the frequency of sine signal
% with frequency variation
fy=15; %signal central frequency in Hz
fs =2000; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(1-tiv); %time intervals set (1 seconds)
x=(2*t)-1; %frequency control ramp
y=vco(x,fy ,fs); %signal data set
g=hilbert(y); %Hilbert transform of y
dg=diff(g)/tiv; %aprox. derivative
w=abs(dg); %frequency in rad/s
v=w/(2*pi); %to Hz
subplot (2,1,1)
plot(t,y,'k'); %plots the signal
axis ([0 1 -1.1 1.1]);
xlabel('seconds')
title('sine with frequency variation');
subplot (2,1,2)
plot(t(2:fs),v,'k'); %plots frequency
axis ([0 1 0 30]);
xlabel('seconds');
title('frequency of the sine signal in Hz');

In the next figure, the spectrogram will be used to estimate the evolution of signal
frequency along time. The spectrogram makes use of successive windowed Fourier
analysis. The window moves along several positions of the signal time.

320 6 Signal Changes

Fig. 6.7 Spectrogram of the
sine signal with frequency
variation

Time

Fr
eq

ue
nc

y

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

Program 6.7 Spectrogram of sine signal with frequency variation

% Spectrogram of sine signal with frequency variation
fy=30; %signal central frequency in Hz
fs =500; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(10-tiv); %time intervals set (10 seconds)
x=((2*t)/10) -1; %frequency control ramp (-1 to 1)
y=vco(x,fy ,fs); %signal data set
specgram(y,256,fs); %plots spectrogram
axis ([0 8 0 70]);
title('spectrogram of the sine signal with
frequency variation');

Figure6.7, generated with the Program 6.7, shows an spectrogram of a sinusoidal
signal having frequency variation. The successive positions of the Fourier analysis
windows can be observed. The figure shows a ramp, corresponding to the linear
increase of frequency along time in this example.

In general the spectrogram is intended for complicated signals. It provides a tool
for time-frequency studies. Usually the spectrogram has some fuzzyness, which is
due to the uncertainty principle in signal processing: this will be a topic to be treated
in the next chapter.

6.3 Two Analytical Tools

The changes of signals along time call for analytic tools capable to move in a
joint time-frequency domain. Currently this is the objective of active and successful
research. As it has been just commented, the spectrogram is one of these tools. Let

6.3 Two Analytical Tools 321

us now introduce some other interesting techniques. Later on, in the next chapter,
this topic will be extended.

6.3.1 Cepstral Analysis

Seismic records may contain a mix of main waves and echoes. It is convenient to
detect this fact, and try to extract and separate all components. In the 1960s Bogert
et al. introduced the power cepstrum as a technique for finding echo arrival times in
a composite signal, [6].

Consider the simple case of a signal y(t) and one echo of this signal, the composite
signal z(t) is:

z(t) = y(t) + β y(t − τ) (6.5)

The power spectrum of a signal is the square of the Fourier transform of the signal.
Let us denote as Z(ω) the Fourier transform of z(t) and Y(ω) the Fourier transform
of y(t). Then:

|Z(ω)|2 = |Y (ω)|2 [
1 + β2 + 2β cos (ω τ)

]
(6.6)

The power spectrum of the composite signal has a sinusoidal envelope.
Taking logarithms, products are converted to sums. We obtain:

M(ω) = log |Z(ω)|2 = log |Y (ω)|2 + log
[
1 + β2 + 2β cos (ω τ)

]
(6.7)

NowM(ω) can be seen as a “signal” with some periodicity that can be analyzed with
its spectrum. In consequence we obtain the Fourier transform of M(ω). This is the
power cepstrum CP(q).

Bogert et al. [6], introduced several new words to describe the new technique.
For instance, cepstrum comes from spectrum by interchanging consonants. Also the
dominium q of CP(q) was called quefrency, and there are rahmonics, and liftering
(for filtering).

Let us put an example. Trying to resemble a seismic record, a colored noise is
generated, and an echo is obtained with a simple delay of 0.6 s. Figure6.8 obtained
with the Program 6.8, shows the two signals: the main signal and the echo.

Program 6.8 Coloured noise and echo

% Coloured noise and echo
Td=0.6; %time delay in seconds
%input signal
fs=30; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
tu=0:tiv:(39-tiv); %time intervals set (39 seconds)
Nu=length(tu); %number of data points
u=randn(Nu ,1); %random input signal data set
[fnum ,fden]= butter(2,0.4); %low -pass filter

322 6 Signal Changes

ur=filtfilt(fnum ,fden ,u); %noise filtering
%echo signal
NTd=Td*fs; %number of samples along Td
Ny=Nu+NTd;
yr=zeros(1,Ny);
yr((NTd +1):Ny)=ur(1:Nu); %y is u delayed Td seconds
%time intervals set (39+Td seconds):
ty=0:tiv :(39+Td -tiv);
%signal adding
z=ur+(0.7*yr(1:Nu))';
subplot (2,1,1)
plot(tu,ur ,'k'); %plots input signal
title('coloured noise signals'); ylabel('input');
subplot (2,1,2)
plot(ty,yr ,'k'); %plots echo signal
ylabel('echo signal'); xlabel('seconds');

A composite signal is obtained by adding the two signals shown in Fig. 6.8.
Using theProgram6.9, theFourier transformsof themain signal and the composite

signal are obtained. Figure6.9 shows the results: on top the Fourier transform of the
main signal, and at the bottom the Fourier transform of the composite signal. Notice
the sinusoidal oscillation in this last transform.

0 5 10 15 20 25 30 35 40
-2

-1

0

1

2

in
pu

t

0 5 10 15 20 25 30 35 40
-2

-1

0

1

2

ec
ho

 s
ig

na
l

seconds

Fig. 6.8 Coloured noise signals; the signal below is a delayed version of the signal on top

6.3 Two Analytical Tools 323

0 5 10 15
0

20

40

60

80

100

in
pu

t

0 5 10 15
0

50

100

150

200

co
m

po
si

te
 s

ig
na

l

Hz

Fig. 6.9 Fourier transforms of main signal and composite signal

Program 6.9 Spectra of input and composite signals

% Spectra of input and composite signals
Td=0.6; %time delay in seconds
%input signal
fs=30; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
tu=0:tiv:(39-tiv); %time intervals set (39 seconds)
Nu=length(tu); %number of data points
u=randn(Nu ,1); %random input signal data set
[fnum ,fden]= butter(2,0.4); %low -pass filter
ur=filtfilt(fnum ,fden ,u); %noise filtering
%echo signal
NTd=Td*fs; %number of samples along Td
Ny=Nu+NTd;
yr=zeros(1,Ny);
yr((NTd +1):Ny)=ur(1:Nu); %y is u delayed Td seconds
%signal adding
z=ur+(0.7*yr(1:Nu))';
ifr=fs/Nu; %frequency interval
fr=0:ifr:((fs/2)-ifr); %frequencies data set
subplot (2,1,1)
sur=fft(ur);
%plot input spectrum:
plot(fr,abs(sur (1:(Nu/2))),'k');
title('spectra'); ylabel('input');
subplot (2,1,2)
sz=fft(z);
%plot composite signal spectrum:
plot(fr,abs(sz(1:(Nu/2))),'k');
ylabel('composite signal'); xlabel('Hz');

324 6 Signal Changes

0 5 10 15 20 25 30 35 40
-4

-2

0

2

4

co
m

po
si

te
 s

ig
na

l

0 2 4 6 8 10 12 14 16 18 20
-0.5

0

0.5

1

1.5

2

re
al

 c
ep

st
ru

m

seconds

Fig. 6.10 The composite signal and its real cepstrum

Now let us apply the real cepstrum to the composite signal z(t). This is done
with the Program 6.10, which uses the MATLAB SPT rceps() function. Figure6.10
presents the result. On top the figure shows the composite signal. At the bottom, the
figure shows the real cepstrum. There is a spike, that we indicated with an arrow,
telling that there is an echo, with 0.6 s delay.

Program 6.10 Composite signal and cepstrum

% Composite signal and cepstrum
Td=0.6; %time delay in seconds
%input signal
fs=30; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
tu=0:tiv:(39-tiv); %time intervals set (39 seconds)
Nu=length(tu); %number of data points
u=randn(Nu ,1); %random input signal data set
[fnum ,fden]= butter(2,0.4); %low -pass filter
ur=filtfilt(fnum ,fden ,u); %noise filtering
%echo signal
NTd=Td*fs; %number of samples along Td
Ny=Nu+NTd;
yr=zeros(1,Ny);
yr((NTd +1):Ny)=ur(1:Nu); %y is u delayed Td seconds
%signal adding
z=ur+(0.7*yr(1:Nu))';
ifr=fs/Nu; %frequency interval
fr=0:ifr:((fs/2)-ifr); %frequencies data set
subplot (2,1,1)
plot(tu,z,'k'); %composite signal

6.3 Two Analytical Tools 325

title('composite signal and its cepstrum');
ylabel('composite signal');
subplot (2,1,2)
cz=rceps(z); %real cepstrum
plot(tu(1:(Nu/2)),cz(1:(Nu/2)),'k'); %plots cepstrum
ylabel('cepstrum'); xlabel('seconds');

The function rceps() computes the real cepstrum in the following way:

cz = real(ifft (log (abs (fft(z))))))

Also in the 1960s, unrelated to the work of Bogert et al. Oppenheim was devel-
oping an homomorphic filtering concept. The idea was to establish homomorphic
mappings between signal spaces where signals are nonadditively combined (convo-
lution, multiplication), and spaces where signals are added (and easily separated).
An example of homomorphic mapping for two convolved signals is the following
sequence: apply Fourier transform to get a product of transformed signals, apply a
complex logarithm to get a sum, apply inverse Fourier transform to go to quefrency
with the sum of two signals. All steps are with complex numbers, in order to pre-
serve the phase information. In this way, we obtain the complex cepstrum. After
the Oppenheim doctoral thesis on homomorphic systems, Schafer, then a student,
was introduced to Oppenheim and started to collaborate. The doctoral dissertation
of Schafer was on echo removal with the new technique. An account of this history
is given by Oppenheim and Schafer in the article [32]. Another, complementary his-
torical view, more related to cepstral analysis of mechanical vibrations, is described
in [39].

One of the main ways to deal with speech processing and recognition, [2], is to
represent the speech as the convolution of glottal pulses, an excitation signal, and
the vocal tract impulse responses, a filter. The cepstrum can be applied to separate
the glottal pulse shape from the tract impulse response.

When dealing with the human auditory system’s response, it is better to use the
so called ‘mel scale’ [47]. Based on this scale, a methodology called mel-frequency
cepstrum has been developed, see for instance [25, 29], with important practical
applications, including standards being used in mobile phones or MP3 encoded
music [45].

A classical guide for the use of cepstrum is [10]. Some recent contributions on
this methodology are [30, 40].

Several data bases of speech sounds are available from the web (see the Resources
section). For the next example an ‘I’ vowel, has been taken for illustrative purposes
from one of these data bases. Figure6.11 shows on top a view of the recorded signal,
and a zoomed view of this signal at the bottom. Two main harmonics are clearly
noticed. The figure can be used to estimate their periods.

326 6 Signal Changes

0 0.1 0.2 0.3 0.4 0.5 0.6

-0.5

0

0.5

si
gn

al

seconds

0.114 0.116 0.118 0.12 0.122 0.124 0.126 0.128 0.13

-0.5

0

0.5

si
gn

al

seconds

Fig. 6.11 The ‘I’ vowel

Program 6.11 Hear and plot vowel signal

%Hear and plot vowel signal
[y1 ,fs1]= wavread('i.wav'); %read wav file
soundsc(y1 ,fs1); %hear wav
Ny=length(y1);
tiv=1/fs1;
t=0:tiv:((Ny -1)* tiv); %time intervals set
figure (1)
subplot (2,1,1)
plot(t,y1 ,'k'); %plots the signal
axis ([0 (Ny*tiv) -0.8 0.8]);
title('vowel sound');
ylabel('signal'); xlabel('seconds')
subplot (2,1,2)
ta =5000; tb =5800;
%plot a zoom on the signal:
plot(t(ta:tb),y1(ta:tb),'k');
axis ([(ta*tiv) (tb*tiv) -0.8 0.8]);
ylabel('signal'); xlabel('seconds')

The spectrum of the ‘I’ signal, as depicted in Fig. 6.12, confirms the presence of
two main harmonics.

6.3 Two Analytical Tools 327

Fig. 6.12 Spectrum of the
‘I’ signal

0 100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

800

900

Hz

Program 6.12 Analyse vowel with spectrum

% Analyse vowel with spectrum
[y1 ,fs1]= wavread('i.wav'); %read wav file
Ny=length(y1);
sz=fft(y1); %spectrum
fiv=fs1/Ny;
fz=0:fiv :((0.5*fs1)-fiv); %frequency interval set
%plot part of the spectrum:
plot(fz(1:500) , abs(sz(1:500)) ,'k');
title('vowel sound spectrum');
xlabel('Hz')

Now let us apply the cepstrum. Figure6.13 shows the result. There is a little hill
around 0.0046s, which corresponds to the two harmonics (the glottal pulses), and a
decay profile in the left corner (the impulse response of the vocal tract).

Program 6.13 Analyse vowel with cepstrum

% Analyse vowel with cepstrum
[y1 ,fs1]= wavread('i.wav'); %read wav file
Ny=length(y1);
tiv=1/fs1;
t=0:tiv:((Ny -1)* tiv); %time intervals set
cz=rceps(y1); %real cepstrum
%plot the signal:
plot(t(1:300) , abs(cz(1:300)) ,'k');
title('vowel sound cepstrum'); xlabel('seconds');

328 6 Signal Changes

Fig. 6.13 Cepstrum of the
‘I’ signal

0 1 2 3 4 5 6 7

x 10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

seconds

Fig. 6.14 Spectrogram of a
quadratic chirp signal

Time

Fr
eq

ue
nc

y

0 2 4 6 8 10 12 14 16 18
0

50

100

150

200

250

300

6.3.2 Chirp Z-Transform

The research on non-stationary signals often take “chirp” signals as archetypical
cases. They are brief signals with a frequency that may increase or decrease along
time. This change of frequency could follow a linear, or quadratic, or any other law.

The signal shown in Fig. 6.4 is an example of chirp signal. It has been created
using the MATLAB chirp() function, which generates a swept-frequency cosine
signal. This function has an option to select the way frequency sweeps in function
of time: linear, quadratic, or logarithmic.

Figure6.14 shows the spectrogram of a quadratic chirp signal, as generated by
the Program 6.14.

6.3 Two Analytical Tools 329

Program 6.14 Spectrogram of a chirp

% Spectrogram of a chirp
f0=1; %initial frequency in Hz
f1 =200; %final frequency in Hz
fs =600; %sampling rate in Hz
t=0:(1/fs):20; %time intervals set (20 seconds)
t1=20; %final time;
y = chirp(t,f0 ,t1 ,f1 ,'quadratic'); %the chirp signal
specgram(y,256,fs); %the spectrogram
title('quadratic chirp spectrogram');

The word “chirp” is also used to designate a modification of the z-transform that
we are going to introduce now. It is called the “chirp z-transform”.

The z-transform of a discrete signal y(n) is given by:

Y (z) =
∞∑

n = −∞
y(n) z−n (6.8)

If the signal y(n) is zero for all n < 0, we can write:

Y (z) =
∞∑

n = 0

y(n) z−n (6.9)

The Discrete Fourier Transform (DFT) of a discrete signal y(n) with finite duration
of L samples, is given by:

Y (ω) =
L∑

n = 0

y(n) e− jω n (6.10)

Actually the MATLAB fft() function is a DFT.
The DFT can be considered as the evaluation of the z-transform along the unit

circumference exp(jω). In fact, this may be the basis for DFT computation.
The chirp z-transform evaluates the z-transform along a general spiral contour in

the z-plane. The contour starting point can be specified, and also the length of the
arc. This contour is a “chirp” in the z-plane. The equation of the contour is:

zk = AWk ; k = 0, 1, . . . , M (6.11)

where A is the starting point and the complex quantity W determines the spiralling
rate; if |W | >1, the contour spirals out, if |W | <1, it spirals in.

Notice that the DFT can be regarded as a particular case of the chirp z-transform;
when the chosen contour is the unit circumference.

The chirp z-transformwas introduced in 1969 by Rabiner et al. [35, 36]. In a short
article, [37], Rabiner comments how this transform was originated, with occasion of

330 6 Signal Changes

Fig. 6.15 The result of
adding 10 and 11Hz sine
signals

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

seconds

meeting the right people at the right place. One of the algorithms that can be used
for the computation of the chirp z-transform is due to Bluestein [5].

An interesting aspect is that the chirp z-transform is evaluated in a number of
points along the contour. This number can be specified for a coarse or fine grain
study. This is a main advantage when it is convenient to focus on certain frequency
regions, like in the case of speech studies. The next example focuses on this feature.

Consider the case of two added sine signals. The frequencies of the two signals
are similar: 10 and 11Hz. Figure6.15, obtained with the Program 6.15, depicts the
composite signal.

Program 6.15 Two added sines

% Two added sines
fs =200; %sampling rate in Hz
t=0:(1/fs):1; %time intervals set (1 seconds)
f1=10; %sine1 frequency in Hz
f2=11; %sine2 frequency in Hz
%sum of two sine signals:
y=sin(2*pi*f1*t)+sin(2*pi*f2*t);
Ny=length(y);
plot(t,y,'k')
title('two added sine signals'); xlabel('seconds');

As shown on top of the Fig. 6.16, the DFT specified in the program 6.16, cannot
discern the two sine signals. Instead, the chirp z-transform, as specified in the same
program, applies a zoom in the frequency zone of interest and make clear that there
are two different sine signals.

Notice that Program 6.16 uses the czt() function provided by the MATLAB SPT
for the chirp z-transform.

6.3 Two Analytical Tools 331

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

Fourier transform

Hz

5 10 15 20 25
0

50

100

150

chirp-z transform

Hz

Fig. 6.16 DFT and chirp-z transform of the composite signal

Program 6.16 Chirp-z transform of a signal

% Chirp -z transform of a signal
fs =200; %sampling rate in Hz
t=0:(1/fs):1; %time intervals set (1 seconds)
f1=10; %sine1 frequency in Hz
f2=11; %sine2 frequency in Hz
%sum of two sine signals:
y=sin(2*pi*f1*t)+sin(2*pi*f2*t);
Ny=length(y);
subplot (2,1,1)
fy=0:(fs/Ny):fs;
sy=fft(y); %the Fourier transform
plot(fy(1:50) , abs(sy(1:50)) ,'k');
title('Fourier transform'); xlabel('Hz');
subplot (2,1,2)
cf1=5; cf2 =25; %in Hz
m=128; %number of contour points
%ratio between contour points:
w=exp(-j*(2*pi*(cf2 -cf1))/(m*fs));
a=exp(j*(2*pi*cf1)/fs); %contour starting point
chy=czt(y,m,w,a); %the chirp -z transform
fhiv=(cf2 -cf1)/m; %frequency interval
fhy=cf1:fhiv:(cf2 -fhiv);
plot(fhy ,abs(chy),'k');
title('chirp -z transform'); xlabel('Hz');

332 6 Signal Changes

For an extended exposition of the chirp z-transform see [13]. A fast computation
method is proposed in [28]. A comparison with the Goertzel algorithm, in terms of
computational cost, is made by [38]. Medical diagnosis applications are described
in [19, 49].

6.4 Some Signal Phenomena

The field of signal analysis is wide, with many specific interests. People involved
in Astronomy, Earthquakes, Medicine, Electronics, etc., look at the signals from
different perspectives. It is the purpose of this section to present some introductory
examples to start an exploration that the reader may continue, according with the
topics of his/her interest.

Since there are changes in the signals, most examples belong to a joint time-
frequency view, so the spectrogram is helpful. Anyway, to put some order the section
begins with spectrum changes, and continues with time domain changes.

6.4.1 Spectrum Shifts

The Doppler effect is a well-known example of spectrum shift. Take the case of a
car blowing his horn, its sound spectrum is mostly constant all the time, but from an
external fixed ear this spectrum shifts as the car approaches and then passes by.

The Program 6.17 lets you hear the Doppler effect corresponding to the car exam-
ple just described. Figure6.17 shows the recorded signal.

Program 6.17 Hear and see car doppler WAV

% Hear & see car doppler WAV
[y1 ,fs1]= wavread('doppler.wav'); %read wav file
soundsc(y1 ,fs1); %hear wav
Ny=length(y1);
tiv=1/fs1;
t=0:tiv:((Ny -1)* tiv); %time intervals set
plot(t,y1 ,'g'); %plots the signal
axis ([0 (Ny*tiv) -1.2 1.2]);
title('car doppler sound');
ylabel('signal'); xlabel('seconds')

Let us determine the sound spectrum when the car approaches, and the sound
spectrum when the car goes away. Both spectra are heard from a fixed position, not
in the car. Figure6.18, obtained with the Program 6.18, shows both spectra. It is easy
to compare them and to see that peaks go to the left, to lower frequencies.

6.4 Some Signal Phenomena 333

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

si
gn

al

seconds

Fig. 6.17 Car Doppler signal

Program 6.18 Spectral densities of Doppler signal begin and end

%Spectral densities of Doppler signal begin and end
[y1 ,fs1]= wavread('doppler.wav'); %read wav file
Ny=length(y1);
tiv=R/fs1;
t=0:tiv:((Ny -1)* tiv); %time intervals set
subplot (2,1,1)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

500

1000

1500
first 1/3 of car Doppler: spectral density

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

500

1000

1500

2000

2500
last 1/3 of car Doppler: spectral density

Hz

Fig. 6.18 Spectrum shift due to Doppler effect

334 6 Signal Changes

y1beg=y1(1:Ny/3); %first 1/3 of signal
ff1=fft(y1beg ,fs1); %Fourier transform
plot(abs(ff1 (1:2000)) ,'k');
title('first 1/3 of car Doppler: spectral density');
subplot (2,1,2)
y1end=y1(2*Ny/3:Ny); %last 1/3 of signal
ff3=fft(y1end ,fs1); %Fourier transform
plot(abs(ff3 (1:2000)) ,'k');
title('last 1/3 of car Doppler: spectral density');
xlabel('Hz')

To complete the study, Fig. 6.19 shows the spectrogram, as computed with the
Program 6.19. The signal has been decimated to get a short data set to be analyzed.
The decimated signal can be heard, to feel how the main information to be analysed
was kept.

Program 6.19 Spectrogram of car doppler signal

%Spectrogram of car doppler signal
[y1 ,fs1]= wavread('doppler.wav'); %read wav file
R=12;
y1r=decimate(y1 ,R); %decimate the audio signal
soundsc(y1r ,fs1/R); %hear the decimated signal
specgram(y1r ,256,fs1/R); %spectrogram
title('spectrogram of 1/12 decimated
car Doppler signal')

Christian Doppler presented what is now called the Doppler effect in 1842 at a
scientific meeting in Prague. In this presentation, he predicted that the color of a
star would shift to red if the star moves away from Earth, and would shift to blue if
approaching the Earth. He was presuming that stars only emit pure white light. More
historical details on the Doppler effect and its applications can be found in [27].

From some time ago, astronomers were able to observe the chemical spectrum of
stars, and redshift phenomena have been confirmed, taking as reference the spectra

Fig. 6.19 Spectrogram of
the car Doppler signal

Time

Fr
eq

ue
nc

y

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

200

400

600

800

1000

1200

1400

1600

1800

6.4 Some Signal Phenomena 335

Fig. 6.20 Spectrogram of
siren signal

Time

Fr
eq

ue
nc

y

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

6000

7000

8000

of elements commonly found in the Universe. It is interesting to note that redshift
may be due to different causes, not only Doppler [3, 23, 26].

One of themethods formeasuring velocity is theDoppler effect. There areDoppler
radars being used for traffic, and for weather prediction. Also, there are flowmeters
based on Doppler effect, that can be used in industrial or home applications, or for
monitoring of blood circulation through the heart, arteries, etc., [12, 22, 33, 51].

Apart from the Doppler effect, there are other situations where spectrum shifts
appear. This is the case, for instance, when one applies modulation to a signal. As
example, we selected a type of car alarm.

The Program 6.20 lets you hear the siren, and then it computes the spectrogram,
which is shown in Fig. 6.20. The frequency modulating signal can be clearly recog-
nized. Thinking in terms of simple electronic circuits, the signal that modulates in
frequency the sound corresponds to an R-C charge-discharge oscillator.

Program 6.20 Spectrogram of siren signal

%Spectrogram of siren signal
[y1 ,fs1]= wavread('srn.wav'); %read wav file
soundsc(y1 ,fs1); %hear the signal
specgram(y1 ,256,fs1); %spectrogram
title('spectrogram of siren signal')

6.4.2 Changes in Spectrum Shape

Indeed, the spectrum of a sinusoidal electrical signal is quite simple: only one peak.
However, if the signal goes through a low-quality amplifier, saturation and nonlinear-
ities would change this scenario, and some harmonics would arise. Then, a change
of the spectrum shape occurs, and this reveals the presence of some problems.

336 6 Signal Changes

0 0.5 1 1.5 2
-0.4

-0.2

0

0.2

0.4

si
gn

al

seconds

0 0.01 0.02 0.03 0.04 0.05 0.06

-0.2

-0.1

0

0.1

0.2

si
gn

al

seconds

Fig. 6.21 Transformer sound

Consider the sound of a transformer. Figure6.21 shows a record of a transformer
sound, with a more detailed zoom view at the bottom. The figure has been obtained
with the Program 6.21. The program includes a sentence for hearing the sound.

Program 6.21 Hear and see transformer signal

%Hear & see transformer signal
[y1 ,fs1]= wavread('transformer1.wav'); %read wav file
soundsc(y1 ,fs1); %hear wav
Ny=length(y1);
tiv=1/fs1;
t=0:tiv:((Ny -1)* tiv); %time intervals set
subplot (2,1,1)
plot(t,y1 ,'k'); %plots the signal
axis ([0 (Ny*tiv) -0.4 0.4]);
title('transformer sound');
ylabel('signal'); xlabel('seconds')
subplot (2,1,2)
nyz=ceil(Ny /40); %zoom
%plot a zoom on the signal:
plot(t(1:nyz),y1(1:nyz),'k');
axis ([0 (nyz*tiv) -0.25 0.25]);
ylabel('signal'); xlabel('seconds')

The next figure (Fig. 6.22, obtained with the Program 6.22) shows the spectral
density of the transformer sound. A fundamental harmonic corresponding to the AC
frequency is clearly seen. There are other harmonics, which can mean nonlinearities
and energy losses.

6.4 Some Signal Phenomena 337

Fig. 6.22 Spectral density
of the transformer signal

0 50 100 150 200 250 300 350 400
0

500

1000

1500

2000

2500

Hz

Program 6.22 Spectral density of transformer signal

%Spectral density of transformer signal
[y1 ,fs1]= wavread('transformer1.wav'); %read wav file
Ny=length(y1);
tiv=1/fs1;
t=0:tiv:((Ny -1)* tiv); %time intervals set
ff1=fft(y1 ,fs1); %Fourier transform
plot(abs(ff1 (1:400)) ,'k');
title('spectral density');
xlabel('Hz')

See [50] for a review of condition assessment of transformers in service. An
overview of transformer monitoring based on frequency response is given by [15].
The online diagnosis of transformer state, based on time-frequency analysis, is
described in [44].

The study of mechanical vibrations has great practical importance. A main aspect
is related with fatigue and the health of machinery and structures. As it can be
observed from specialized journals and periodic meetings, there is a lot of research
activity on vibrations, involving also sound. In this field, spectral studies are quite
usual.

For example, there are machines that daily make many holes. This is the case
of printed circuit boards, which have hundreds of narrow holes. The drill degrades
along time and should be substituted after a while. A way to diagnose the drill state
is by analyzing the noise caused by the drill. Here it is important to detect significant
changes in the noise spectrum shape. See the reviews of [17, 41] for more details.

In general the spectrum shape and its changes can be used for monitoring, diag-
nosis and recognition purposes.

In other order of things, the spectrum shape is closely connected with the per-
sonality of musical instruments. In particular, we refer here to timbre. The timbre

338 6 Signal Changes

Fig. 6.23 A quack signal

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

si
gn

al

seconds

is given by specific proportions of harmonics in the instrument sound. There are
many kinds of instruments, and in many cases one could speak of spectral evolutions
during each note, [8].

Speaking of personality, animals, like dogs, parrots, sheep, etc., emit peculiar
sounds. In most cases, the spectrum shape of these sounds does change from begin-
ning to end. For example, the familiar ‘quack’ sound of ducks. Program 6.23 let us
hear this sound, and also shows the signal in Fig. 6.23.

Program 6.23 Hear and see quack WAV

%Hear & see quack WAV
[y1 ,fs1]= wavread('duck_quack.wav'); %read wav file
soundsc(y1 ,fs1); %hear wav
Ny=length(y1);
tiv=1/fs1;
t=0:tiv:((Ny -1)* tiv); %time intervals set
plot(t,y1 ,'k'); %plots the signal
axis ([0 (Ny*tiv) -1.2 1.2]);
title('duck quack sound');
ylabel('signal'); xlabel('seconds')

Let us see the signal spectrum at the beginning and at the end of the sound.
Figure6.24, obtained with the Program 6.24, shows the result. It is clear that the
shape of the spectrum changes.

6.4 Some Signal Phenomena 339

0 500 1000 1500 2000 2500
0

20

40

60

80
first 1/3 of quack: spectral density

Hz

0 500 1000 1500 2000 2500
0

5

10

15

20
last 1/3 of quack: spectral density

Hz

Fig. 6.24 Changes in the spectrum shape along the quack

Program 6.24 Spectral densities of quack signal begin and end

%Spectral densities of quack signal begin and end
[y1 ,fs1]= wavread('duck_quack.wav'); %read wav file
Ny=length(y1);
tiv=1/fs1;
t=0:tiv:((Ny -1)* tiv); %time intervals set
subplot (2,1,1)
y1beg=y1(1:Ny/3); %first 1/3 of signal
ff1=fft(y1beg ,fs1); %Fourier transform
plot(abs(ff1 (1:2500)) ,'k');
title('first 1/3 of quack: spectral density');
xlabel('Hz')
subplot (2,1,2)
y1end=y1(2*Ny/3:Ny); %last 1/3 of signal
ff3=fft(y1end ,fs1); %Fourier transform
plot(abs(ff3 (1:2500)) ,'k');
title('last 1/3 of quack: spectral density');
xlabel('Hz')

We will come back to animal sounds by the end of the chapter. By the way, it
happens that the antarctic minke whale also emits “quacks”, [43].

340 6 Signal Changes

6.4.3 Musical Instruments

Some words about musical instruments; since it is useful for the analysis of signals.
In particular let us focus now on the envelope.

6.4.3.1 Attenuation and Overlapping

When you hammer on a string or a bell, there is an initial louder sound and then an
attenuated prolongation of it. The Program 6.25 allows us to hear a triangle and to
see this signal in the Fig. 6.25. There is a long sound attenuation time.

Program 6.25 Triangle signal

%Triangle signal
[y1 ,fs1]= wavread('triangle1.wav'); %read wav file
soundsc(y1 ,fs1);
Ny=length(y1); %number of signal samples
tiv=1/fs1; %sampling time interval
t=0:tiv:((Ny -1)* tiv); %time data set
plot(t,y1 ,'g'); %plots the signal
title('triangle sound'); xlabel('seconds')

Now let us look at the Big Ben chime. Figure6.26, obtained with the Program
6.26, is the spectrogram of this chime.

Fig. 6.25 Triangle signal

0 1 2 3 4 5 6
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

seconds

6.4 Some Signal Phenomena 341

Fig. 6.26 Spectrogram of
the Big Ben chime

Time

Fr
eq

ue
nc

y

0 2 4 6 8 10 12 14 16
0

200

400

600

800

1000

1200

1400

1600

1800

Program 6.26 Spectrogram of Big-Ben signal

%Spectrogram of Big -Ben signal
%read wav file:
[y1 ,fs1]= wavread('chime_big_ben1.wav');
R=3;
y1r=decimate(y1 ,R); %decimate the audio signal
soundsc(y1r ,fs1/R); %hear the decimated signal
specgram(y1r ,512,fs1/R); %spectrogram
title('spectrogram of 1/3 decimated Big -Ben signal')

Notice in the Fig. 6.26 that the distinct notes of the bells along time are clearly
noticed. It is also clear how the harmonics of the first note are distributed (in a first
vertical band in the figure). But observe that there is an attenuation of the first note
that invades the vertical bands of the following notes, causing overlapping. This
phenomenon can be observed in all the subsequent notes.

Let us insist in the display of notes and attenuations. The Program 6.27 reproduces
the sound of an harp phrase. The phrase is like a musical siren. Figure6.27 shows the
spectrogram of this phrase. Notice that the way to plot the spectrogram is changed
with respect to the previous program; here we use the contour() function for a clearer
distinction of the notes.

Program 6.27 Spectrogram of harp signal

%Spectrogram of harp signal
[y1 ,fs1]= wavread('harp1.wav'); %read wav file
%soundsc(y1 ,fs1); %hear the signal
R=2;
y1r=decimate(y1 ,R); %decimate the audio signal
soundsc(y1r ,fs1/R); %hear the decimated signal
%spectrogram computation:
[sgy ,fy,ty]= specgram(y1r ,512,fs1/R);
contour(ty ,fy ,abs(sgy)); %plots the spectrogram
title('spectrogram of 1/2 decimated harp signal')
xlabel('seconds'); ylabel('Hz');
axis ([0 3 0 2000]);

342 6 Signal Changes

Fig. 6.27 Spectrogram of a
harp phrase

0 0.5 1 1.5 2 2.5 3
0

200

400

600

800

1000

1200

1400

1600

1800

2000

seconds

H
z

6.4.3.2 ADSR Envelope

In the early days of electronic music synthesizers, a way to imitate some character-
istics of conventional musical instruments was to use an ADSR envelope, [42]. The
idea is to generate a base sound, made with a mix of sinusoids to imitate a certain
instrument timbre, and then to impose a specified amplitude envelope to the sound.

The ADSR envelope has four connected segments: Attack-Decay-Sustain-
Release. The usual case is that the attack amplitude increases along time, while
the decay decreases to a certain level, then it comes a constant or quasi constant sus-
tain, and finally a release for the note attenuation. The Program 6.28 offers a simple
example. Figure6.28 shows the signal that is generated for a note; notice the ADSR
profile of the envelope. The reader is invited to change this profile. The program
plays three notes.

Program 6.28 ADSR synthesis of audio sine signal

% ADSR synthesis of audio sine signal
fs =30000; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(1-tiv); %time intervals set (1 second)
fC =440; %C note in Hz
fE =659; %E note in Hz
fG =784; %G note in Hz
%setting the ADSR envelope:
NA=fs/5; evA=zeros(1,NA); %evA during 0.2 seconds
for nn=1:NA ,
evA(nn)=2*(nn/NA); %evA linear increase
end
ND=fs/5; evD=zeros(1,ND); %evD during 0.2 seconds
for nn=1:ND ,
evD(nn)=2-(nn/ND); %evD linear decrease
end
NS=fs/5; evS=zeros(1,NS); %evS during 0.2 seconds

6.4 Some Signal Phenomena 343

Fig. 6.28 A synthesised
audio signal with ADSR
envelope

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

seconds

for nn=1:NS ,
evS(nn)=1; %evS constant
end
NR=2*fs/5; evR=zeros(1,NR); %evR during 0.4 seconds
for nn=1:NR ,
evR(nn)=1-(nn/NR); %evR linear decrease
end
evT=[evA ,evD ,evS ,evR]; %the total envelope
%C ADSR note
yC=evT.*sin(2*pi*fC*t);
%E ADSR note
yE=evT.*sin(2*pi*fE*t);
%G ADSR note
yG=evT.*sin(2*pi*fG*t);
%playing the notes
soundsc(yC ,fs);
pause(0.5);
soundsc(yG ,fs);
pause(0.5);
soundsc(yE ,fs);
plot(t,yC ,'g'); %plots the C ADSR signal
axis ([0 1 -2.2 2.2]);
xlabel('seconds'); title('ADSR sine signal');

6.4.4 Changes in Signal Energy

In certain monitoring systems it is important to detect changes in signal ‘sizes’
(variance). For instance this is a first aspect of interest while recording earthquakes.

Figure6.29 shows a real recording of an earthquake vertical acceleration signal
(in cm/sec2). The figure has been obtained with the Program 6.29, which reads an

344 6 Signal Changes

Fig. 6.29 Earthquake
vertical acceleration record

0 5 10 15 20 25 30
-500

-400

-300

-200

-100

0

100

200

300

400

500

seconds

earthquake record. When the earthquake takes place it would be pertinent to look at
the signal size. After, when opportune, scientists, and the reader, may process and
analyse this signal in search of certain hints.

Next chapter will devote more space to earthquakes and related databases.
Program 6.29 Read quake data file

% Read quake data file
fer=0;
while fer==0,

fid2=fopen('quake.txt','r');
if fid2==-1, disp('read error')
else quake1=fscanf(fid2 ,'%f \r\n'); fer=1;
end;

end;
fclose('all');
Ns=length(quake1);
t=0:0 .01:((Ns -1)*0 .01); %sampling times
%plot earthquake vertical acceleration:
plot(t,quake1 ,'k');
title('earthquake vertical acceleration
(cm/sec^2)');
xlabel('seconds');

As an example, Program 6.30 obtains the spectrum of the part of the quake signal
with more variance. Figure6.30 shows the result.

6.4 Some Signal Phenomena 345

Fig. 6.30 Spectrum of the
main part of quake signal

0 5 10 15 20 25
0

2000

4000

6000

8000

10000

12000

Hz

Program 6.30 Spectrum of central quake signal

%Spectrum of central quake signal
fer=0;
while fer==0,

fid2=fopen('quake.txt','r');
if fid2==-1, disp('read error')
else y1=fscanf(fid2 ,'%f \r\n'); fer=1;
end;

end;
fclose('all');
fs1 =100; %in Hz
y1central=y1 (300:1100); %central quake signal
ff1=fft(y1central ,fs1); %Fourier transform
plot(abs(ff1 (1:50)) ,'k');
title('central quake signal: spectral density');
xlabel('Hz')
axis ([0 25 0 13000]); grid;

6.4.5 Repetitions, Rhythm

Many natural phenomena are periodic or quasi periodic. In certain cases, repetition
with periods in a certain range could be critical. For instance respiration, heartbeat,
and other biorhythms. In the same vein, a typical characteristic of music is rhythm.

A way to detect periodicities in a signal is by means of the autocovariance. As
reference example, consider a 1Hz periodic impulse train, as it is shown on top of
Fig. 6.31. The same figure shows at the bottom the autocovariance of this signal. In
this case the autocovariance says that the impulse repeats every 1 s, every 2 s, every
3 s, etc.

346 6 Signal Changes

0 5 10 15 20 25

0

0.5

1

0 5 10 15 20 25
-10

0

10

20

30

seconds

autocovariance

Fig. 6.31 A periodic impulse train and its autocovariance

Program 6.31 Impulse train autocovariance

% Impulse train autocovariance
fs =200; %samplig frequency in Hz
tiv=1/fs; %time interval between samples
t=0:tiv:(25-tiv); %time intervals set (25 seconds)
Ns=25*fs; %number of signal samples (25 seconds)
yp1=[1,zeros (1 ,199)];
yp=yp1;
for nn=1:24,

yp=cat(2,yp ,yp1);
end
subplot (2,1,1) %signal plot
plot(t,yp ,'k')
axis ([0 25 -0.2 1.2]);
title('Periodic impulse train');
subplot (2,1,2) %autocovariance plot
av=xcov(yp); %signal autocovariance
%plot autocovariance:
plot(t(1:Ns),av(Ns :((2*Ns)-1)),'k');
xlabel('seconds'); title('autocovariance');

Figure6.32 shows a real electrocardiogram (ECG) record. It is important to see
how periodic is the heartbeat. The autocovariance of this ECG record is shown at the
bottom of the figure. It looks similar to the case of the periodic pulse train, confirming
the periodicity of the heartbeat. The figure has been generated with the Program 6.32
In addition, the program computes and displays in the MATLAB command window,
the heartbeat rate.

6.4 Some Signal Phenomena 347

0 5 10 15 20 25
6

7

8

9

10
normal ECG

0 5 10 15 20 25

-200

0

200

400

600

seconds

autocovariance

Fig. 6.32 An ECG record and its covariance

Program 6.32 Read ECG data file and compute autocovariance

% Read ECG data file and compute autocovariance
fs =200; %samplig frequency in Hz
tiv=1/fs; %time interval between samples
fer=0;
while fer==0,

fid2=fopen('ECGnormal.txt','r');
if fid2==-1, disp('read error')
else Wdat=fscanf(fid2 ,'%f \r\n'); fer=1;
end;

end;
fclose('all');
Ns=length(Wdat); %number of signal samples
t=0:tiv:((Ns -1)* tiv); %time intervals set
subplot (2,1,1) %signal plot
plot(t,Wdat ,'k');
axis ([0 25 6 10]);
title('normal ECG');
subplot (2,1,2) %autocovariance plot
av=xcov(Wdat); %signal autocovariance
fiv=1/fs; %frequency interval between harmonics
hf=0:fiv:((fs/2)-fiv); %set of harmonic frequencies
%plot autocovariance:
plot(t(1:Ns),av(Ns :((2*Ns)-1)),'k');
xlabel('seconds'); title('autocovariance');
axis ([0 25 -300 700]);
%find heart beat frequency:--------------------
%maximum (not DC) in autocovariance:

[M K]=max(av((Ns +10):(2* Ns)-1));

348 6 Signal Changes

0 5 10 15 20 25

4

6

8

10

12

ECG with problem

0 5 10 15 20 25
-1000

-500

0

500

1000

seconds

autocovariance

Fig. 6.33 ECG record showing problems

TW=hf(K); %period corresponding to maximum
FW=(1/TW)*60; %frequency of heart beat in puls/min
nfw=num2str(FW); %convert to string format
msg=['heart beat per min. = ',nfw];
disp(msg); %message

After some time, the ECG record from which the figure above has been depicted
showed clear changes. Figure6.33 depicts what happened. The autocovariance of
this part of the ECG, as shown at the bottom of the figure, also detects problems with
periodicity.

Program 6.33 Read ECG data file and compute autocovariance

% Read ECG data file and compute autocovariance
fs =200; %samplig frequency in Hz
tiv=1/fs; %time interval between samples
fer=0;
while fer==0,

fid2=fopen('ECGproblem.txt','r');
if fid2==-1, disp('read error')
else Wdat=fscanf(fid2 ,'%f \r\n'); fer=1;
end;

end;
fclose('all');
Ns=length(Wdat); %number of signal samples
t=0:tiv:((Ns -1)* tiv); %time intervals set
subplot (2,1,1) %signal plot
plot(t,Wdat ,'k');

6.4 Some Signal Phenomena 349

axis ([0 25 3 12]);
title('ECG with problem');
subplot (2,1,2) %autocovariance plot
av=xcov(Wdat); %signal autocovariance
%plot autocovariance:
plot(t(1:Ns),av(Ns :((2*Ns)-1)),'k');
xlabel('seconds'); title('autocovariance');
axis ([0 25 -1000 1200]);

6.5 Some Complex Sounds

6.5.1 Animal Sounds

From distance, in a Zoo or perhaps in Africa, you can tell that this is a lion roaring,
or and elephant, etc. Animals utter specific sounds, like signatures. It is a matter of
current research what is the purpose of these sounds, [11]. Actually, one could speak
of certain sound structural designs, which might obey to specific targets. Therefore
it seems interesting to include in this subsection some examples of animal songs.

The Program 6.34 reproduces an elephant trumpeting, so it can be heard on your
computer. This program also generates the Fig. 6.34 showing the spectrogram of the
elephant sound. Up to six harmonics can be observed all along the sound. Sweet
sounds, like the flute notes, are near sine signals, with almost no harmonics. Strident
sounds come from introducing saturations and corners on a basic sine (this is the
case of square signals). The elephant sound exhibit at least six harmonics, which can
be consistently observed all along the spectrogram; it is clearly a strident trumpet.

Fig. 6.34 Spectrogram of
elephant trumpeting

seconds

H
z

0 0.5 1 1.5 2 2.5
0

500

1000

1500

2000

2500

3000

3500

4000

350 6 Signal Changes

Fig. 6.35 The mooing of a
cow signal

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

si
gn

al

seconds

Program 6.34 Spectrogram of Elephant signal

%Spectrogram of Elephant signal
[y1 ,fs1]= wavread('elephant1.wav'); %read wav file
%soundsc(y1 ,fs1); %hear the signal
%spectrogram computation:
[sgy ,fy,ty]= specgram(y1 ,512,fs1);
colmap1; colormap(mapg1); %user colormap
%plot the spectrogram:
imagesc(ty ,fy ,log10 (1+abs(sgy))); axis xy;
title('spectrogram of elephant signal')
xlabel('seconds'); ylabel('Hz');
axis ([0 2.5 0 4000]);

Notice in the Program 6.34 that we defined a special colormap in order to get
more clear graphics.

The next example is the mooing of a cow. Figure6.35 shows the sound signal,
which has a relatively soft attack. The figure has been generated with the Program
6.35.

Program 6.35 Hear and see cow WAV

%Hear & see cow WAV
[y1 ,fs1]= wavread('cow1.wav'); %read wav file
soundsc(y1 ,fs1); %hear wav
Ny=length(y1);
tiv=1/fs1;
t=0:tiv:((Ny -1)* tiv); %time intervals set
plot(t,y1 ,'k'); %plots the signal
axis ([0 (Ny*tiv) -1.2 1.2]);
title('cow sound');
ylabel('signal'); xlabel('seconds')

The spectrogram of the mooing signal is shown in Fig. 6.36, which has been
obtained with the Program 6.36. The beginning of the signal follows a pitch rising

6.5 Some Complex Sounds 351

Fig. 6.36 Spectrogram of
cow sound

seconds

H
z

0 0.5 1 1.5
0

500

1000

1500

2000

2500

3000

profile. Then, in a second phase, a strident sustained sound is sent. It makes think
about certain ‘syntax’ of sounds, joining several basic pieces along time.

Program 6.36 Spectrogram of cow signal

%Spectrogram of cow signal
[y1 ,fs1]= wavread('cow1.wav'); %read wav file
%soundsc(y1 ,fs1); %hear the signal
%spectrogram computation:
[sgy ,fy,ty]= specgram(y1 ,512,fs1);
colmap1; colormap(mapg1); %user colormap
%plot the spectrogram:
imagesc(ty ,fy ,log10(0.3+abs(sgy))); axis xy;
title('spectrogram of cow signal')
xlabel('seconds'); ylabel('Hz');
axis ([0 1.57 0 3000]);

Background information on animal communication can be found in the books
[7, 16]. There is a web page on this topic (see the Resources section).

6.5.2 Music

Music has many aspects of interest from the time-frequency perspective. Let us just
write some remarks that could be relevant in certain signal analysis scenarios.

In a score there are bars indicating time intervals and rhythm. It is not necessary
repetitions of the signal to recognize rhythm.

Musical notes are events with duration. Time is divided into equal parts, and parts
are assigned to groups of notes.

In the time intervals peculiar grouping of notes may be noticed.

352 6 Signal Changes

There are complete sections of a melody that should be played aloud and others
lightly. This is part of the expression, changing the amplitude.

Scores only have notes, indication of rhythm, and expression. The timbre is not
specified, although there are pieces for piano, or violin, etc. Symphonies join the
sound of several instruments, according with some harmony purposes. It is a multi-
component sound.

There are several publications on time-frequency analysis of music signals, [Dor],
musical instruments, [1], and rhythm, [9].

With the advent of chaos theory and fractals, it was highlighted that in nature same
structures can appear at different scales. The profile of a coast may be composed of
arcs, and zooming into one of these arcs a composition of similar, smaller arcs may
appear. Human music usually is structured, discretized, and in some way repeats
patterns.

In recent years, a multi-resolution view of signals has been promoted. A signal
will be decomposed into pieces, in time and frequency domains, and each piece will
be again decomposed (more or less like music into notes), [46].

6.6 Resources

6.6.1 MATLAB

6.6.1.1 Toolboxes

• DESAM Toolbox (spectral analysis of music):
http://www.tsi.telecom-paristech.fr/aao/en/2010/03/29/
desam-toolbox

• Speech and Audio Processing Toolbox:
http://mirlab.org/jang/matlab/toolbox/sap/

• VOICEBOX Speech Processing Toolbox:
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html/

• XBAT: Bioacustics, animal sounds:
http://www.birds.cornell.edu/brp/software/xbat-introduction

• EEGLAB: Electrophysiological signal processing:
http://sccn.ucsd.edu/eeglab/

• The Open-Source Electrophysiological Toolbox:
http://spc.shirazu.ac.ir/products/Featured-Products/oset//

• Auditory Modeling Toolbox (AMT):
http://amtoolbox.sourceforge.net/

http://www.tsi.telecom-paristech.fr/aao/en/2010/03/29/
http://mirlab.org/jang/matlab/toolbox/sap/
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html/
http://www.birds.cornell.edu/brp/software/xbat-introduction
http://sccn.ucsd.edu/eeglab/
http://spc.shirazu.ac.ir/products/Featured-Products/oset//
http://amtoolbox.sourceforge.net/

6.6 Resources 353

6.6.1.2 Matlab Code

• Music Signal Processing (Univ. Michigan):
http://web.eecs.umich.edu/~fessler/course/100/l/l09-synth.pdf
http://web.eecs.umich.edu/~fessler/course/100/l/l10-synth.pdf

• Musical Analysis and Synthesis in MATLAB (M.R. Petersen):
http://amath.colorado.edu/pub/matlab/music/

• MATLAB Audio Processing Examples:
http://www.ee.columbia.edu/ln/rosa/matlab/

• ECG simulation using MATLAB:
www.azadproject.ir/wp-content/uploads/2014/04/ECG.pdf

• ECGSYN: ECG waveform generator:
http://www.physionet.org/physiotools/ecgsyn/

• Cardiovascular signals:
http://www.micheleorini.com/matlab-code/

• The BioSig Project:
http://biosig.sourceforge.net/

6.6.2 Internet

6.6.2.1 Web Sites

• James M. Hillenbrand (sound files):
http://homepages.wmich.edu/~hillenbr/

• William F. Katz (vowel database):
http://wwwpub.utdallas.edu/~wkatz/

• Middle Welsh Vowels:
http://www.personal.psu.edu/staff/e/j/ejp10/cymcanol/
alphabyw/vowel-alone.html/

• Kedija Kedir Idris (speech analysis):
https://sites.google.com/site/ikedija/projects/
speech-signal-analysis-with-matlab-2012

• Digital Sound (Music Tutorials):
http://csweb.cs.wfu.edu/~burg/CCLI/Templates/home.php

• PhysioBank Archive Index (electrocardiograms, etc.):
http://www.physionet.org/physiobank/database/

• MIT-BIH Database and Software Catalog (computational physiology):
http://ecg.mit.edu/dbinfo.html

• eHeart- an introduction to electrocardiograms:
http://www.ndsu.edu/pubweb/~grier/eheart.html

• Principles of Animal Communication (animal sounds):
http://sites.sinauer.com/animalcommunication2e/

http://web.eecs.umich.edu/~fessler/course/100/l/l09-synth.pdf
http://web.eecs.umich.edu/~fessler/course/100/l/l10-synth.pdf
http://amath.colorado.edu/pub/matlab/music/
http://www.ee.columbia.edu/ln/rosa/matlab/
www.azadproject.ir/wp-content/uploads/2014/04/ECG.pdf
http://www.physionet.org/physiotools/ecgsyn/
http://www.micheleorini.com/matlab-code/
http://biosig.sourceforge.net/
http://homepages.wmich.edu/~hillenbr/
http://wwwpub.utdallas.edu/~wkatz/
http://www.personal.psu.edu/staff/e/j/ejp10/cymcanol/
https://sites.google.com/site/ikedija/projects/
http://csweb.cs.wfu.edu/~burg/CCLI/Templates/home.php
http://www.physionet.org/physiobank/database/
http://ecg.mit.edu/dbinfo.html
http://www.ndsu.edu/pubweb/~grier/eheart.html
http://sites.sinauer.com/animalcommunication2e/

354 6 Signal Changes

• Vibrationdata:
http://www.vibrationdata.com

6.6.2.2 Link Lists

• Sam Kirkham:
http://samkirkham.com/scripts/index.html

• MATLAB Toolboxes:
http://stommel.tamu.edu/~baum/toolboxes.html

References

1. J.F. Alm, J.S. Walker, Time-frequency analysis of musical instruments. SIAM Rev. 44(3),
457–476 (2002)

2. M.A. Anusuya, S.K. Katti, Speech recognition by machine, a review (2010). arXiv:1001.2267
3. M.L. Bedran, A comparison between the doppler and cosmological redshifts. Am. J. Phys.

70(4), 406–408 (2002)
4. K.J. Blinowska, J. Zygierewicz, Practical Biomedical Signal Analysis Using MATLAB (CRC

Press, Boca Raton, 2012)
5. L.I. Bluestein, A linear filter approach to the computation of the discrete Fourier transform.

Northeast Electr. Res. Eng. Meet. Rec. 10, 218–219 (1968)
6. B.P. Bogert,M.J. Healy, J.W. Tukey, The quefrency alanysis of time series for echoes: cepstrum,

pseudo-autocovariance, cross-cepstrum and saphe cracking, in: Procedings of the Symposium
Time Series Analysis vol. 15 (1963), pp. 209–243

7. J. Bradbury, S. Vehrencamp, Principles of Animal Communication (Sinauer Press, Sunderland,
2011)

8. J.J. Burred, A. Robel, T. Sikora, Dynamic spectral envelope modeling for timbre analysis of
musical instrument sounds. IEEE Trans. Audio Speech Lang. Process. 18(3), 663–674 (2010)

9. X. Cheng, J.V. Hart, J.S.Walker, Time-frequency analysis of musical rhythm. Not. AMS 56(3),
356–372 (2009)

10. D.G. Childers, D.P. Skinner, R.C. Kemerait, The cepstrum: a guide to processing. Proc. IEEE
65(10), 1428–1443 (1977)

11. C. Clark Acoustic communication by animals, in Proceedings of the 3rd International Sympo-
sium on Acoustic Communication by Animals (2011)

12. K.Doi,Diagnostic imaging over the last 50 years: research and development inmedical imaging
science and technology. Phys. Med. Biol. 51(13), 5–27 (2006)

13. C.E. Felder, A real-time variable resolution chirp z-transform. Master’s thesis, Rochester Insti-
tute of Technology (2007)

14. M. Felsberg, G. Sommer, The monogenic signal. IEEE Trans. Signal Process. 49(12), 3136–
3144 (2001)

15. C. Gonzalez, J. Pleite, V. Valdivia, J. Sanz, An overview of the on line application of frequency
response analysis (FRA), in Proceedings of the IEEE International Symposium Industrial Elec-
tronics, ISIE (2007), pp. 1294–1299

16. S.L. Hopp, M.J. Owren, C.S. Evans, Animal Acoustic Communication (Springer, Heidelberg,
1998)

17. E. Jantunen, A summary of methods applied to tool condition monitoring in drilling. Int. J.
Mach. Tools Manuf. 42(9), 997–1010 (2002)

18. M. Johansson, The Hilbert Transform. Master’s thesis, Växjö University, Sweden (1999)

http://www.vibrationdata.com
http://samkirkham.com/scripts/index.html
http://stommel.tamu.edu/~baum/toolboxes.html
http://arxiv.org/abs/1001.2267

References 355

19. J. Kaffanke, T. Dierkes, S. Romanzetti, M. Halse, J. Rioux,M.O. Leach, N.J. Shah, Application
of the chirp z-transform to MRI data. J. Magn. Reson. 178(1), 121–128 (2006)

20. R. Kandregula, The basic discrete Hilbert transform with an information hiding application
(2009). arXiv:0907.4176

21. F.W. King, Hilbert Transforms (Cambridge University Press, Cambridge, 2015)
22. J.A. Kisslo, D.B. Adams, Principles of Doppler Echocardiography and the Doppler Examina-

tion #1 (Ciba-Geigy, London, 1987)
23. E. Komatsu, Three Distinctive Redshifts (University of Texas, Austin, 2006). www.as.utexas.

edu/astronomy/education/spring06/komatsu/secure/lecture14.pdf
24. F.R. Kschischang, The Hilbert Transform (University of Toronto, 2006). http://web.eecs.utk.

edu/~roberts/ECE342/hilbert.pdf
25. B. Logan, Mel frequency cepstral coefficients for music modeling, in Proceedings of the Inter-

national Symposium on Music Information Retrieval (ISMIR), pp. 1–11 (2000)
26. L. Marmet,On the Interpretation of Red-shifts: A Quantitative Comparison of Red-shift Mech-

anisms (2012). www.marmet.org/cosmology/redshift/mechanisms.pdf
27. D. Maulik, Doppler sonography: a brief history, in Doppler Ultrasound in Obstetrics and

Gynecology (Springer, Heidelberg, 2005), pp. 1–7
28. U. Meyer-Bäse, H. Natarajan, E. Castillo, A. García, Faster than the FFT: the chirp-z RAG-n

discrete fast fourier transform. Frequenz 60, 147–151 (2006)
29. S. Molau, M. Pitz, R. Schluter, H. Ney, Computing mel-frequency cepstral coefficients on the

power spectrum, in Proceedings of the International Conference Acoustics, Speech, and Signal
Processing (ICASSP 2001), vol. 1 (2001), pp. 73–76

30. L.Muda,M.Begam, I. Elamvazuthi, Voice recognition algorithms usingmel frequency cepstral
coefficient (MFCC) and dynamic time warping (DTW) techniques (2010). arXiv:1003.4083

31. C.T. Nguyen, J.P. Havlicek, AM-FM models, partial Hilbert transform, and the monogenic
signal, in Proceedings of the IEEE International Conference Image Processing, (ICIP) (2012),
pp. 2337–2340

32. A.V. Oppenheim, R.W. Schafer, From frequency to quefrency: a history of the cepstrum. IEEE
Signal Process. Mag. 21(5), 95–106 (2004)

33. M.A. Quiñones, C.M. Otto, M. Stoddard, A. Waggoner, W.A. Zoghbi, Recommendations for
quantification of doppler echocardiography: a report from the doppler quantification task force
of the nomenclature and standards committee of the american society of echocardiography. J.
Am. Soc. Echocardiogr. 15(2), 167–184 (2002)

34. A. Quinquis, Digital Signal Processing Using Matlab (Wiley, Hoboken, 2008)
35. L. Rabiner, R.W. Schafer, C.M. Rader, The chirp z-transform algorithm. IEEE Trans. Audio

Electroacoust. 17(2), 86–92 (1969)
36. L. Rabiner, R.W. Schafer, C.M. Rader, The chirp z-transform algorithm and its application.

Bell Syst. Tech. J. 48(5), 1249–1292 (1969)
37. L. Rabiner, The chirp z-transform algorithm - a lesson in serendipity. IEEE Signal Process.

Mag. 21(2), 118–119 (2004)
38. P. Rajmic, Z. Prusa, C. Wiesmeyr, Computational cost of chirp z-transform and generalized

goertzel algorithm, in Proceedings of the IEEE 22 nd European Signal Processing Conference,
(EUSIPCO) (2014), pp. 1004–1008

39. R.B. Randall, A history of cepstrum analysis and its application to mechanical problems, in
International Conference on Surveillance 7, Chartres, France, October (2013), pp. 1–16

40. R.B. Randall, B. Peeters, J. Antoni, S.Manzato, New cepstral methods of signal pre-processing
for operational modal analysis, in Proceedings of ISMA (2012), pp. 755–764

41. A.G. Rehorn, J. Jiang, P.E. Orban, State-of-the-art methods and results in tool condition mon-
itoring: a review. Int. J. Adv. Manufact. Technol. 26(7–8), 693–710 (2005)

42. G. Reid, Synth Secrets (1999). http://www.soundonsound.com/sos/allsynthsecrets.htm
43. D. Risch, N.J. Gales, J. Gedamke, L. Kindermann, D.P. Nowacek, A.J. Read, A.S. Friedlaender,

Mysterious bio-duck sound attributed to theAntarcticminkewhale (Balaenoptera bonaerensis).
Biol. Lett. 10(4), 1–5 (2015)

http://arxiv.org/abs/0907.4176
www.as.utexas.edu/astronomy/education/spring06/komatsu/secure/lecture14.pdf
www.as.utexas.edu/astronomy/education/spring06/komatsu/secure/lecture14.pdf
http://web.eecs.utk.edu/~roberts/ECE342/hilbert.pdf
http://web.eecs.utk.edu/~roberts/ECE342/hilbert.pdf
www.marmet.org/cosmology/redshift/mechanisms.pdf
http://arxiv.org/abs/1003.4083
http://www.soundonsound.com/sos/allsynthsecrets.htm

356 6 Signal Changes

44. Y. Shao, Z. Rao, Z. Jin, Online state diagnosis of transformerwindings based on time-frequency
analysis. WSEAS Trans. Circ. Syst. 8(2), 227–236 (2009)

45. S. Sigurdsson, K.B. Petersen, T. Lehn-Schiøler, Mel frequency cepstral coefficients: an evalu-
ation of robustness of MP3 encoded music, in Proceedings of the Seventh International Con-
ference on Music Information Retrieval, (ISMIR) (2006)

46. L.M. Smith,AMultiresolution Time-Frequency Analysis and Interpretation ofMusical Rhythm.
Ph.D. thesis, University of Western Australia (2000)

47. S.S. Stevens, J. Volkmann, E.G. Newman, A scale for the measurement of the psychological
magnitude pitch. J. Acoust. Soc. Am. 8, 185–190 (1937)

48. P. Stoica, R. Moses, Spectral Analysis of Signals (Prentice Hall, Upper Saddle River, 2005)
49. R. Tong, R.W. Cox, Rotation of NMR images using the 2D chirp-z transform. Magn. Reson.

Med. 41(2), 253–256 (1999)
50. M. Wang, A.J. Vandermaar, K.D. Srivastava, Review of condition assessment of power trans-

formers in service. IEEE Electr. Insul. Mag. 18(6), 12–25 (2002)
51. M.M.Wood, L.E. Romine, Y.K. Lee, K.M. Richman, M.K. O’Boyle, D.A. Paz, D.H. Pretorius,

Spectral doppler signature waveforms in ultrasonography: a review of normal and abnormal
waveforms. Ultrasound Q. 26(2), 83–99 (2010)

52. B. Zhechev, Hilbert transform relations. Cybern. Inf. Technol. 5(2), 2–13 (2005)

Chapter 7
Time-Frequency Analysis

7.1 Introduction

This chapter is a logical continuation of the previous chapter on signal changes. The
consideration of non-stationary signals requires an assortment of analysis tools, to
highlight different aspects of importance. Many scientific and technical activities
are interested on such, for medical purposes, for earthquake study, for machine
maintenance, for astronomy, etc.

One of the analysis tools is the spectrogram. This tool has been already used in
the previous chapter, for several examples. It is really intuitive and useful. The spec-
trograms of the previous chapter speak clearly of the joint consideration of time and
frequency when signals are non-stationary. Now, in this chapter more analysis tools
will be introduced, covering their mathematical formulation and showing examples.
The spectrogram is included as a relevant tool, which also constitutes an archetype.

Since the joint time-frequency analysis is a vibrant research topic, there are many
initiatives and proposals of newmethods, tools and applications. This chapter focuses
on roots, fundaments, letting for the final sections some introduction to interesting
branches.

In particular, the chapterwill dealwith the short-termFourier transform, theGabor
transform, the continuous wavelet transform, the ambiguity function, the Wigner–
Ville transform, the chirplet transform, etc.

Some important aspects appear on the 2D time-frequency scene, like uncertainty
and localization. Perhaps this is surprising, but uncertainty, as in quantummechanics,
has to be considered.

Before entering into details, it is convenient to bring up some definitions and
properties.

Most of the analysis tools use the Fourier transform. There are Fourier transform
pairs like for instance the signal and its spectrum (also called the spectral density
function):

© Springer Science+Business Media Singapore 2017
J.M. Giron-Sierra, Digital Signal Processing with Matlab Examples, Volume 1,
Signals and Communication Technology, DOI 10.1007/978-981-10-2534-1_7

357

358 7 Time-Frequency Analysis

y(t) = 1

2π

∞∫

−∞
Y(ω) ejω t dω ⇔ Y(ω) =

∞∫

−∞
y(t) e−jω t dt (7.1)

(a double arrow has been included to represent the mutual relationship)
Another Fourier transform pair is the signal autocorrelation and the power spectral

density (PSD):

Ry(τ) = 1

2π

∞∫

−∞
Sy(ω) ejωτ dω ⇔ Sy(ω) =

∞∫

−∞
Ry(τ) e−jωτ dτ (7.2)

Where the autocorrelation is defined as:

Ry(τ) =
∞∫

−∞
y(t) y∗(t − τ) dτ (7.3)

(the asterisk means complex conjugate)
The Parseval–Plancherel theorem states that:

∞∫

−∞
x(t) y∗(t) dt = 1

2π

∞∫

−∞
X(ω) Y∗(ω) dω (7.4)

In particular:
∞∫

−∞
|y(t)| 2dt = 1

2π

∞∫

−∞
|Y(ω)|2 dω (7.5)

Both sides of Eq. (7.5) express the energy of the signal. The right-hand side can also
be written in function of the power spectral density, since:

∞∫

−∞
|Y(ω)|2 dω =

∞∫

−∞
Sy(ω) dω (7.6)

Among the properties of the Fourier transform, let us highlight the following two,
which correspond to a frequency shift (ω0) or a time shift (t0):

y(t) ejω0t ←
→ Y(ω − ω0) (7.7)

7.1 Introduction 359

(the arrows denote Fourier transform with respect to t or ω)

y(t − t0)
←
→ Y(ω) e−jω t0 (7.8)

Property (7.7) is important for amplitude modulation study.
The cornerstone for the analysis of linear systems response is convolution. Recall

that the response of a system with impulse response g(t) is given by:

y(t) =
t∫

0

g(τ) u(t − τ) dτ (7.9)

where u(t) is the input and y(t) the output.
The integral in (7.9) is the convolution of g(t) and u(t). Denote this convolution

as g(t)* u(t). There are two important properties of the Fourier transform concerning
convolution:

g(t) ∗ u(t)
←
→ G(ω) U(ω) (7.10)

g(t)u(t)
←
→ G(ω) ∗ U(ω) (7.11)

Let us now consider uncertainty and other aspects related to joint time-frequency
study.

7.2 Uncertainty

Variables that are Fourier transform duals of one-another, are denoted as ‘conjugate
variables’. The duality relation leads also to an uncertainty relation between them,
in the same vein as the Heisenberg uncertainty principle.

Examples of conjugate variables are time and frequency, time and energy, position
and momentum, angle and angular momentum, and Doppler and range in sonar or
radar applications.

Given two conjugate variables, say x and y, the uncertainty principle refers to a
product of errors in determining simultaneously x and y. If Δx is the error corre-
sponding to x, and Δy is the error corresponding to y, then ΔxΔy ≥ q (q being a
certain constant).

For example, let y(t) be a certain pulse with energy E that can be computed with
Eq. (7.5). Define the temporal and spectral centres of the signal as:

360 7 Time-Frequency Analysis

tc = 1

E

∞∫

−∞
t y(t)2 dt ; ωc = 1

2πE

∞∫

−∞
ω Y(ω)2 dω (7.12)

The variances around the above defined centres are:

σ2
y = 1

E

∞∫

−∞
(t − tc)

2 y(t)2 dt (7.13)

σ2
Y = 1

2πE

∞∫

−∞
(ω − ωc)

2 Y(ω)2 dω (7.14)

Then, using Fourier transform properties, it can be shown that:

σy σY ≥ 1

2
(7.15)

We can take variances as localization errors, so we could write:

Δt Δω ≥ 1

2
(7.16)

See [143] and references therein for mathematical details.
The constant at the right-hand side of Eq. (7.16) may change if other definitions

of errors are considered; see [121] for example, or the sampling limit of Gabor
(which will be treated later on, in Sect. 7.4.2). Anyway, the important point is that the
instantaneous time and frequency of a non-stationary signal cannot be simultaneously
exactly measured. This is one of the reasons to get somewhat blurry spectrograms.

Notice that if frequency is measured in Hz. and denoted as f , an expression
equivalent to (7.16) is ΔtΔf ≥ 1/4π.

An interesting signal is the ‘Gaussian pulse’:

y(t) = 1√
2π

e
−

(
t2

2

)

(7.17)

The Fourier transform of this pulse is:

Y(ω) = e
−

(
ω2

2

)

(7.18)

The Gaussian pulse achieves ΔtΔω = 1/2. Thus, it is a good balance of time
concentration and frequency concentration of the signal around its time and frequency
centres. Note that this signal is neither time-limited nor band-limited.

7.2 Uncertainty 361

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

-1

-0.5

0

0.5

1

seconds

Gaussian-modulated
sine signal

0 10 20 30 40 50 60 70 80
-0.05

0

0.05

Hz

signal spectrum

Fig. 7.1 GMP signal and spectrum

The MATLAB Signal Processing Toolbox provides the function gauspuls() to
generate a Gaussian-modulated sinusoidal pulse (GMP), which is a Gaussian pulse
multiplied by a cos(wct). Figure 7.1 (Program 7.1) depicts a GMP and its spectrum.

Program 7.1 GMP signal and spectrum

% GMP signal and spectrum
fy =100; %signal central frequency in Hz
bw=0.2; %signal relative bandwidth
fs =1000; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
%time intervals set (0.4 seconds):
t=-(0.2-tiv):tiv:(0.2 -tiv);
subplot (2,1,1)
y=gauspuls(t,fy ,bw); %signal data set
plot(t,y,'k'); %plots figure
axis([-0.2 0.2 -1.2 1.2]);
xlabel('seconds '); title('gauss pulse signal');
subplot (2,1,2)
Y=fft(y)/(fs/2); %Fourier transform of the signal
xf =0:1:(fs/2);
plot(xf(1:80) , real(Y(1:80)) ,'k'); %plots spectrum
axis ([0 80 -0.05 0.05]);
xlabel('Hz'); title('signal spectrum ');

362 7 Time-Frequency Analysis

7.3 Ambiguity

In simple words, the principle of sonar and radar is to send a pulse at time t0, wait
for the echo (that comes at time t1), and measure the time τ = t1 − t0 (τ is called
the time lag). From τ we can calculate distance to the target. It is always important
to check the coherency of pulses and echoes.

Suppose there are two targets at different distances. If the radar pulse was too
long, the echoes from the two targets would overlap making difficult to determine
both distances. Thus, it is most convenient to use very short pulses. For example, a
1 µs pulse provides a radio burst about 300 m long. If better distance resolution is
required, shorter pulses are needed.

Another important factor to consider is signal to noise ratio (SNR), since echoes
should be recognized against a noise background. It can be shown that this SNR
is proportional to the transmitted pulse energy, irrespective of the pulse duration or
bandwidth.

The signal received by the radar antenna is filtered to recover echoes. The linear
filter which maximizes the peak SNR is the so-called ‘matched-filter’. Denoting as
Y (ω) the radar signal spectrum, and Sn(ω) the PSD of the noise, the matched filter
for time instant tm is the following:

H(ω) = Y∗(ω)

Sn(ω)
e −j ω tm (7.19)

There is a conflict. Short pulses are needed. High energy should be put in the pulses.
However the shorter the pulse, the more difficult is to put enough energy in it. Chirp
signals provide a way of breaking this limitation. Note that bats do use voice chirps
as nature radar.

Given a chirp signal, an ‘antichirp’ matched filter can be devised that make the
signal into an impulse. This is also denoted as pulse compression. Thus, the complete
scheme is that the radar system sends a short pulse to the radio transmitter system
where the pulse is converted to a chirp signal with longer duration, so more energy
can be put in; the echo is received and processed by a matched filter, being converted
back to a short pulse with good resolution capabilities.

However if the target is moving, the Doppler effect induces degradation of the
matched filter output, and uncertainty increases. An important tool to determine
the position and velocity of a target from a narrow-band echo is the narrow-band
ambiguity function, defined as follows:

Ξy(τ , θ) =
∞∫

−∞
y(t) y∗(t − τ) e−jθ t dt (7.20)

where τ is the time lag and θ is the Doppler frequency shift.

7.3 Ambiguity 363

The wide-band ambiguity function is given by:

WΞy(τ , θ) = √
α

∞∫

−∞
y(t) y∗(α(t − τ)) dt (7.21)

with α = (c − v)/(c + v), where c is the radar wave celerity and v the radial velocity
of the target.

See [61] for a concise introduction of ambiguity functions. The book [112] pro-
vides a detailed treatment in the context of radar, with Matlab programs included.
The presentations [44, 94] offer opportune tutorials on radar. An extensive exposition
of radar is given in [52].

7.4 Transforms for Time-Frequency Studies

A typical way of attack in signal processing is the use of transforms, such for instance
the Fourier transform. The problems are translated to opportune domains for analysis,
processing and synthesis purposes. This methodology has been enriched with new
transforms that are useful for the time-frequency domain. The purpose of the section
is to introduce this area of signal processing, which is experimenting a great deal of
progress. The reader is invited to enlarge his view of this field, with the hints given
in this section.

It is convenient first to review some basic concepts and notation related to bases
and frames.

The inner product of two functions p(t) and q(t) is defined as follows:

〈p, q〉 =
∞∫

−∞
p(t) · q∗(t) dt (7.22)

for continuous-time functions, or

〈p, q〉 =
∞∑

k=−∞
p(k) q∗(k) (7.23)

for discrete-time functions.
Two functions are orthogonal if their inner product is zero.
In the case of an orthonormal base {gk(t)} of functions, which spans a function

space, any element of this space can be written as:

y(t) =
∑

k

ckgk(t) (7.24)

364 7 Time-Frequency Analysis

With:
〈y(t), gk(t)〉 = ck (7.25)

In the case of a frame {gk(t)}, we can still write:

y(t) =
∑

k

ckgk(t) (7.26)

But now
〈y(t), hk(t)〉 = ck (7.27)

Where {hk(t)} is a dual basis such that

〈gi(t), hk(t)〉 = δik (7.28)

We say that the system {gk(t)} and {hk(t)} is bi-orthonormal.
Equation (7.26) is called the synthesis equation, and {gk(t)} the synthesis function.

Equation (7.27) is called the analysis equation, and {hk(t)} the analysis function.
More details on bases and frames are given in [99]. The short article of [79]

gives intuitive insights concerning frames. It would be also interesting to browse the
presentation of [167].

7.4.1 The Short-Time Fourier Transform

Suppose you wish to determine the spectral contents (the frequencies) of a certain
sound y(t) during the time interval 1 ≤ t ≤ 2 s. A simple idea would be to compute
the Fourier transform of y(t) from t = 1 to t = 2, instead of t = −∞ to t = ∞.
That means to compute:

STY(ω) =
tc+h∫

tc−h

y(t) e−jω t dt (7.29)

with tc = 1.5 s and h = 0.5 s.
There is a problem, the Fourier transform would interpret the signal corners at

tc − h and tc + h as signal jumps, so large and undesired spectral high frequency
contents would appear. The problem can be mitigated introducing a smooth ‘window
function’ w(t − tc) covering the time interval of interest.

The short-time Fourier transform (STFT) is:

Fy(t,ω) =
∞∫

−∞
y(τ) w(τ − t) e−jω τ dτ (7.30)

7.4 Transforms for Time-Frequency Studies 365

For every tc, the STFT describes the local spectral contents using the window w(t)
centered at tc.

The spectrogram is:
SFy(t,ω) = ∣∣Fy(t,ω)

∣∣2 (7.31)

The STFT is usually discretized, with t = ntl, ω = mωl. Thus:

Fy(ntl, mωl) =
∞∫

−∞
y(τ) w(τ − ntl) e−jmωl τ dτ (7.32)

Accordingwith (7.32) the STFT takes the Fourier transformon a block by block basis.
The smaller tl the better the time resolution, but the poorer the frequency resolution.
The blocks could be overlapped or disjointed.

The Eq. (7.32) can be rewritten as inner product:

Fy(ntl, mωl) = 〈
y(t), wn,m(τ)

〉 =
∞∫

−∞
y(τ) w∗

n,m(τ) dτ (7.33)

where:
wn,m(τ) = w(τ − ntl) ej m ωlτ (7.34)

Several examples of spectrograms have been presented in previous sections in this
chapter.

Next two figures illustrate the uncertainty issue. A signal is built with 2 s of zeros,
6 s of pure 50 Hz.sinusoid, and finally 2 s of zeros. In total 10 s of a 3-component
signal. Figure7.2 shows the signal.

In a first attempt, one wished to get good precision about time, with no care about
frequency precision. Therefore, only 16 levels of frequency have been specified in

0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

2 sec. 6 sec. 2 sec.

Fig. 7.2 Sine signal for STFT testing

366 7 Time-Frequency Analysis

Fig. 7.3 STFT of 1-sine
signal and time fine precision

seconds

H
z

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

specgram(), in the Program 7.2. The result is shown in Fig. 7.3. The times of the
3 components of the signal have been well measured. However, there is noticeable
uncertainty about the signal frequencies.

Notice, in particular, the vertical lines on the band borders (approximately on time
= 2 s and time = 8 s). Since the sinusoidal signal is cut between 2 and 8 s, the cuts
mean a large continuum of frequencies well located in time.

Program 7.2 STFT of 1-sine signal

%STFT of 1-sine signal
fy=50; %signal frequency in Hz
fs =128; %sampling rate in Hz
tiv=1/fs; %time between samples
%time of first signal part (2 seconds):
t1=0:tiv:(2-tiv);
%time for yn (6 seconds):
tn=2:tiv:(8-tiv);
%time of last signal part (2 seconds):
t2=8:tiv:(10-tiv);
y1=0*exp(-j*2*pi*t1);
yn=exp(-j*2*pi*fy*tn);
y2=0*exp(-j*2*pi*t2);
y=[y1 yn y2]'; %complete signal (column vector)
t=[t1 tn t2]; %complete signal time set
f=0:1:((fs/2) -1); %frequency intervals set
%spectrogram computation:
[sgy ,fy,ty]= specgram(y,16,fs);
colmap1; colormap(mapg1); %user colormap
%plot the spectrogram:
imagesc(ty ,fy ,log10(0.1+abs(sgy))); axis xy;
title('Spectrogram of 1-sine packet ,
fine time precision ');
xlabel('seconds '); ylabel('Hz');

7.4 Transforms for Time-Frequency Studies 367

Fig. 7.4 STFT of 1-sine
signal and frequency fine
precision

seconds

H
z

-1 0 1 2 3 4 5 6 7
0

20

40

60

80

100

120

Next, one tries better precision about frequency, and so 512 levels of frequencies
are specified in specgram() in the Program 7.3. The result is shown in Fig. 7.4. The
frequency of the 50 Hz. sine, which is the second component of the signal, is well
determined at the price of error about the sine duration (according with the figure
from time = 1 s to time = 5 s).

Program 7.3 STFT of 1-sine signal

%STFT of 1-sine signal
fy=50; %signal frequency in Hz
fs =128; %sampling rate in Hz
tiv=1/fs; %time between samples
%time of first signal part (2 seconds):
t1=0:tiv:(2-tiv);
tn=2:tiv:(8-tiv); %time for yn (6 seconds)
%time of last signal part (2 seconds):
t2=8:tiv:(10-tiv);
y1=0*exp(-j*2*pi*t1);
yn=exp(-j*2*pi*fy*tn);
y2=0*exp(-j*2*pi*t2);
y=[y1 yn y2]'; %complete signal (column vector)
t=[t1 tn t2]; %complete signal time set
f=0:1:((fs/2) -1); %frequency intervals set
%spectrogram computation:
[sgy ,fy,ty]= specgram(y,512,fs);
colmap1; colormap(mapg1); %user colormap
%plot the spectrogram:
imagesc(ty ,fy ,log10(0.1+abs(sgy))); axis xy;
title(`Spectrogram of 1-sine packet ,
fine frequency precision ');
xlabel('seconds '); ylabel('Hz');

368 7 Time-Frequency Analysis

A general comment about the examples just given is that in the case of signals,
uncertainty can be macroscopic. It is not the kind of very small sizes in quantum
mechanics or atomic physics.

There are many sources of information on the STFT available on Internet. Like-
wise, most books on time-frequency analysis have sections devoted on STFT, like
for instance [144].

7.4.2 The Gabor Expansion

In his ‘Theory of Communication’, year 1946, D. Gabor introduced a method to
expand a signal in a series of elementary functions which are constructed from a
single block by time and frequency (modulation) translations [66]. Figure7.5 shows
a photograph of Mr. Gabor, who received the Nobel prize for his invention of holog-
raphy.

The Gabor expansion is as follows:

y(t) =
∑

n

∑

m

cn,m gn,m(t) (7.35)

where the elementary functions gn,m(t) are given by:

gn,m(t) = g(t − ntl) ej m ωl t (7.36)

The elementary functions gn,m(t) are called ‘logons’ and also a Weyl–Heisenberg
system.

The function g(t) is called ‘atom’ or the ‘synthesis window’. Gabor proposed to
use the following g(t):

g(t) = C ej ωc t e− k(t − tc)2 (7.37)

which is a complex GMP.

Fig. 7.5 Dennis Gabor

7.4 Transforms for Time-Frequency Studies 369

Fig. 7.6 Idea of the Gabor
expansion

time

fre
qu

en
cy

t l

w
l

The idea of the Gabor expansion is illustrated in the Fig. 7.6. The rectangles
correspond to the logons. The time-frequency plane is decomposed as a lattice,
spaced by tl and wl (the ‘lattice constants’). The origin is (tc, wc).

According with the Shannon sampling theorem two samples per signal period are
just enough for ulterior signal reconstruction (with an ideal filter). But in practical
applications, for good reasons, more signal samples are used. This is oversampling.
In a similar manner, looking at Fig. 7.5, it may be beneficial for signal processing to
use more density of rectangles, with more overlapping than in the figure.

Let us consider uncertainty again. Let be a basic kind of frequency measurement
in Hz., counting maxima of a signal along time, so frequency would be computed
as the number of maxima in an interval of time Δt. The shorter Δt that allows to
distinguish two frequencies f and f +Δf is such the maxima counts differ by at least
one:

(f + Δf)Δt − f Δt ≥ 1 (7.38)

Then:
Δf Δt ≥ 1 (7.39)

This is the Gabor uncertainty principle, that can be derived in a rigorous way defining
a nominal duration and a nominal bandwidth of a signal y(t). The nominal duration
of y(t) is the duration of a rectangle with the same area as y(t) and height equal to
y(0). The nominal bandwidth is the width of a rectangle with the same area as Y(f)
(Fourier transform of y(t)) and height equal to Y(0). Expression (7.39) is equivalent
to ΔtΔω ≥ 2π.

The Gabor original choice for tl and wl was such tl wl = 2π. Later on it has been
demonstrated that in this case the set {gn,m(t)} proposed by Gabor is not a frame. If
tl wl < 2π (oversampling) the set {gn,m(t)} is a frame and, recalling Eqs. (7.26) and

370 7 Time-Frequency Analysis

(7.27) we can obtain the cn,m coefficients of Eq. (7.35) by choosing a bi-orthonormal
set of functions, like the following:

hn,m(t) = h(t − ntl) ej m ωl t (7.40)

Thus:

cn,m = 〈
y, hn,m(t)

〉 =
∞∫

−∞
y(t) · h∗

n,m(t) dt (7.41)

Expression (7.41) is called the Gabor transform. The h(t) function is called the
‘analysis window’.

When using the STFT function provided by MATLAB, it is possible to select
a Hamming window, or a Blackman window, or a Hanning window, etc. From
Eqs. (7.41) and (7.32) one can see that the Gabor transform is a particular case
of STFT, with a Gaussian window. In fact, the first proposal of STFT was the Gabor
transform, as introduced in [66]. The book [56] is devoted to the Gabor transform
and its applications, and gives some historical details (see also [67]). Currently there
is a more general view of the Gabor transform, in a context of frames and using
other versions of the analysis and synthesis windows. Let us mention that some
authors recommend the use of the Zak transform to compute the Gabor expansions
[27, 73, 181].

In the case tl wl > 2π no frame is possible. However in the critical sampling
case tl wl = 2π frames and orthonormal bases are possible, but without good time-
frequency localization, as dictated by the Balian-Low theorem [20, 73].

Figure7.7 offers a 3D visualization of Gabor logons. Part of the code belonging
to programs of the next section, has been re-used here to obtain an energy density in
the time-frequency plane. The figure has been generated with the Program 7.4. This
program has three parts: the first one generates a GMP, the second fids the corre-

Fig. 7.7 Visualization of the
Gabor logons

7.4 Transforms for Time-Frequency Studies 371

sponding energy density in the time-frequency plane using the Wigner distribution
approach, the third part makes a simplistic reproduction of the 3D single GMP to
form the grid of mountains. Notice that the logons are larger than the minimum size
Gabor wished.

Program 7.4 Plot of 5x6 large logons

% Plot of 5x6 large logons; 1 basic GMP pulse
fy =100; %central frequency in Hz
fs =1000; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
%signal time intervals set (-0.2 to 0.2 seconds):
tp=-(0.2 -tiv):tiv:(0.2); %to get N even
Np=length(tp);
bw=50/fy; %relative bandwidth (DeltaF =50 Hz)
yr=gauspuls(tp ,fy ,bw);
t=0:tiv:(Np*tiv)-tiv; %time intervals
f=0:1:((fs/2) -1); %frequency intervals
y=hilbert(yr); %analytical signal
%Wigner:--
N=length(y);
%normalized frequencies set -pi..pi:
theta =((0:N-1)-N/2) '*2*pi/N;
tau =(0:N-1)-N/2; %normalized time
att=zeros(N); %intermediate NxN matrix
%matrix computation (theta(ii)*tau(jj)):
att=theta*tau/2;
ax1=exp(j*att); % NxN matrix
ax2=exp(-j*att); % NxN matrix
disp('step 1');
my1=zeros(N); %intermediate NxN matrix
my2=zeros(N); %intermediate NxN matrix
for ii=1:N, %rows ii

my1(ii ,:)=y(ii)*ax1(ii ,:); %along jj
my2(ii ,:)=y(ii)*ax2(ii ,:); %along jj

end;
disp('step 2');
Y1=fft(my1);
Y2=fft(my2);
kappa=Y1.*conj(Y2);
WD=fftshift(fft(kappa ,[] ,2));
%--
%GMP=abs(WD (222:260 ,184:216));
GMP=abs(WD (216:266 ,180:218));
G1=[GMP GMP GMP GMP GMP GMP]; %adding 6 matrices
GG=[G1;G1;G1;G1;G1]; %adding 5 rows of matrices
%3D plot with perspective:
mesh(GG);axis ([0 240 0 250]); view (30 ,70);
title('A 3D view of Gabor logons');
xlabel('x 0.1 sec'); ylabel('Hz');

372 7 Time-Frequency Analysis

7.4.3 The Continuous Wavelet Transform

In simple words, for a rough determination of frequency it is enough to take one
cycle of a signal. Analysis windows could be as narrow as one signal cycle. Higher
signal frequencies would require shorter duration windows.

Audio equalizers are frequently based on the use of constant-Q band-pass filters,
with:

Q = Δω

ωc
(7.42)

where ωc is the band centre and Δω is the bandwidth.
Constant-Q filters can mirror the structure of musical scales, so for instance it is

possible to make a filter for each piano note. Recall that the frequency for each note
doubles from one scale to the next, and so the bandwidth occupied by scales doubles
from one scale to the next [25, 28].

The larger Δω of a filter the shorter its impulse response h(t).
Notice that the analysis window in Eq. (7.32) is the impulse response of a filter.

It is possible to devise a variation of the STFT which changes the analysis window
length so that a constant number of periods are within the window at each frequency.
For instance, this idea was applied to music analysis in the 80s. Actually this is a
type of wavelet transform.

The continuous Wavelet transform is:

Wy(τ , s) = 〈y(t), ψ(t)〉 =
∞∫

−∞
y(τ)

1√|s|ψ
∗
(

t − τ

s

)
dt (7.43)

The original signal can be reconstructed with the inverse transform:

y(t) = 1

Cψ

∞∫

−∞

∞∫

−∞
Wy(τ , s)

1√|s|ψ
(

t − τ

s

)
dτ

ds

s2
(7.44)

where:

Cψ = 1

2π

∞∫

−∞

|Ψ (ω)|2
|ω| dω (7.45)

and Ψ is the Fourier transform of ψ.
The constant Cψ is called the admissibility constant. The inverse transform is

possible if (admissibility condition):

0 < Cψ < +∞ (7.46)

7.4 Transforms for Time-Frequency Studies 373

There is a ‘mother’ wavelet ψ. ‘Daughter’ wavelets are scaled and shifted copies of
the mother wavelet:

ψs,τ (t) = 1√|s| ψ

(
t − τ

s

)
(7.47)

The important variable is s, the scale variable, which corresponds to the inverse of
frequency; |s| >1 dilates the wavelet for low frequency analysis, |s| <1 compresses
the wavelet for high frequency analysis. When the scale is changed, the duration and
the bandwidth of the wavelet change but its shape remains the same (as in constant-Q
filters).

A typical wavelet combines the complex exponential and the Gaussian pulse, like
the GMP.

The admissibility condition implies that Ψ (0) = 0 (Ψ the Fourier transform of
ψ(t)), so ψ(t) has to oscillate.

One of the books that could be consulted for continuous wavelets is [bM]. There
is also a good tutorial on Internet [141]. See [3] for a more extended exposition.

The scalogram is:
SCy(τ , s) = ∣∣Wy(τ , s)

∣∣2 (7.48)

Extensive details on Wavelets will be considered in another book (a continuation of
this one).

Figure7.8 shows the scalogram corresponding to a square signal.

0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

sec

si
gn

al

samples

sc
al

es

10 20 30 40 50 60

50

100

150

200

Fig. 7.8 Scalogram of square signal

374 7 Time-Frequency Analysis

The figure has been generated with the Program 7.5. Instead of using the cwt()
function of the MATLABWavelet Toolbox, which computes the continuous wavelet
transform of a signal, we preferred to use own code to give a first idea of how to
compute and plot the scalogram. The cwt() function is, of course, much faster. We
also partially tried to accelerate our code, by doing some vectorization.

Program 7.5 Signal analysis by continuous wavelet transform

% Signal analysis by continuous wavelet transform
% Morlet Wavelet
% Plot of signal and scalogram
% Square signal
fy=1; %signal frequency in Hz
wy=2*pi*fy; %signal frequency in rad/s
duy=3; %signal duration in seconds
fs=20; %sampling frequency in Hz
Ts=1/fs; %time interval between samples;
t=0:Ts:(duy -Ts); %time intervals set
y=square(wy*t); %signal data set
ND=length(y); %number of data
CC=zeros(40,ND);
% CWT
nn=1:ND;
for ee=1:200 ,

s=ee*0.008; %scales
for rr=1:ND , %delays

a=Ts*(rr -1);
val=0;
%vectorized part
t=Ts*(nn -1);
x=(t-a)/s; %plug coeffs.
%wavelet:
psi =(1/ sqrt(s))*(exp(-(x. ^2)/2).*cos(5*x));
for j=1:ND ,

val=val+(y(j).*psi(j));
end;
CC(ee ,rr)=val;

end;
end;
figure (1)
subplot (2,1,1)
plot(t,y,'k');
axis ([0 duy min(y)-0.1 max(y)+0.1]);
xlabel('sec'); ylabel('signal');
title('wavelet analysis ');
subplot (2,1,2)
imagesc(CC);
colormap('jet');
xlabel('samples '); ylabel('scales');

7.5 Time-Frequency Distributions 375

7.5 Time-Frequency Distributions

In this section two important time-frequency distributions will be introduced: the
Wigner distribution and the Sussman ambiguity function (SAF). The section begins
with a subsection on basic concepts about distributions.

7.5.1 Densities

A two-dimensional density (or distribution) P(x, y) is a function that tells how a
quantity of interest distributes in the plane x − y. The total amount of the quantity
would be: ∞∫

−∞

∞∫

−∞
P(x, y) dx dy (7.49)

One-dimensional densities, also called ‘marginal distributions’, or simply ‘mar-
ginals’, are obtained with the following integrals:

M(x) =
∞∫

−∞
P(x, y) dx ; M(y) =

∞∫

−∞
P(x, y) dy (7.50)

In the case of signals, it is pertinent to study the energy density in the t − ω plane.
A good energetic distribution should satisfy several conditions. Here is a list of

some of the conditions:

• Positivity: the distribution should be positive everywhere
• Total energy should equal the total energy of the signal y(t):

∞∫

−∞

∞∫

−∞
P(t,ω) dt dω =

∞∫

−∞
| y(t)|2dt =

∞∫

−∞
| Y(ω)|2dω (7.51)

• Marginal distributions should satisfy the following equations:

∞∫

−∞
P(t,ω) dt = |Y(ω)|2 ;

∞∫

−∞
P(t,ω) dω = |y(t)|2 (7.52)

• Time and frequency shift invariance: shifting the signal in time or frequency by
a certain amount, should shift the distribution in time or frequency by the same
amount:

376 7 Time-Frequency Analysis

y1(t) = y(t − τ) ⇒ P1(t,ω) = P(t − τ , ω)

Y1(ω) = Y(ω − θ) ⇒ P1(t,ω) = P(t, ω − θ)
(7.53)

Both the Wigner and the SAF distributions, to be introduced next, are quadratic
(energetic) distributions, based on the local (instantaneous) auto-correlation function
(LACF):

ky(t, τ) = y
(

t + τ

2

)
y∗

(
t − τ

2

)
(7.54)

By means of the Fourier transforms, the Wigner and SAF distributions can also be
expressed in function of the transformed LACF:

χy(ω, θ) = Y

(
ω + θ

2

)
Y∗

(
ω − θ

2

)
(7.55)

The LACF provides a way to compute localized energy in the time-frequency plane.

7.5.2 The Wigner Distribution

Figure7.9 shows a photograph of Eugene Wigner, Nobel Laureate.

Fig. 7.9 Eugene Wigner

7.5 Time-Frequency Distributions 377

The Wigner (or Wigner–Ville) distribution is defined as follows:

W Dy(t,ω) =
∞∫

−∞
y
(
t + τ

2

)
y∗ (

t − τ
2

)
e−j ω τ dτ =

=
∞∫

−∞
ky(t, τ) e−j ω τ dτ

(7.56)

Using Fourier transform properties, the same Wigner distribution can be obtained
with:

W Dy(t,ω) = 1
2π

∞∫
−∞

Y
(
ω + θ

2

)
Y∗ (

ω − θ
2

)
ej t θ dθ =

= 1
2π

∞∫
−∞

χy(ω, θ) ej t θ dθ
(7.57)

7.5.2.1 Properties of the Wigner Distribution

Recall from the previous subsection the conditions for a good energetic distribution.
Due to its formulation, theWigner distribution is real-valued.With the only excep-

tion of the following family of signals:

y(t) =
(α

π

)4
exp

(
−α

t2

2
+ jβ

t2

2
+ jω0t

)
(7.58)

the Wigner distribution does not satisfies the positivity condition. Actually it must
go negative somewhere in the time-frequency domain.

Marginals are satisfied, and so we have:

∞∫

−∞
W Dy(t,ω) dt = |Y(ω)|2 ; 1

2π

∞∫

−∞
W Dy(t,ω) dω = |y(t)|2 (7.59)

The Wigner distribution is time and frequency covariant, that is: it preserves time
and frequency shifts:

y1(t) = y(t − τ) ⇒ W Dy1(t,ω) = W Dy(t − τ , ω)

Y1(ω) = Y(ω − θ) ⇒ W Dy1(t,ω) = W Dy(t, ω − θ)
(7.60)

The above property can be also named as translation covariance.
In addition, the Wigner distribution is dilation covariant:

y1(t) = √
ky(k t) , k > 0 ⇒ W Dy1(t,ω) = W Dy

(
k t,

ω

k

)
(7.61)

The instantaneous frequency of a signal can be obtained from the first conditional
moment in frequency:

378 7 Time-Frequency Analysis

(ω)t = 1

2π|y(t)|2
∞∫

−∞
ω W Dy(t,ω) dω (7.62)

Likewise, the group delay can be obtained from the first conditional moment in time:

(t)ω = 1

|Y(ω)|2
∞∫

−∞
t W Dy(t,ω) dt (7.63)

With respect to convolution, one has:

y(t) =
∞∫

−∞
h(t − τ) x(τ) dτ ⇒ W Dy(t,ω) =

=
∞∫

−∞
W Dh(t − τ ,ω) W Dx(τ ,ω) dτ

(7.64)

And with respect to modulation:

y(t) = p(t) x(t) ⇒ W Dy(t,ω) = 1

2π

∞∫

−∞
W Dp(t,ω − θ) W Dx(t, θ) dθ (7.65)

The Moyal’s formula is:

∣∣∣∣∣∣

∞∫

−∞
x(t) y∗(t) dt

∣∣∣∣∣∣

2

= 1

2π

∞∫

−∞

∞∫

−∞
W Dx(t,ω) W D∗

y (t,ω) dt dω (7.66)

More mathematical details of the Wigner transform and its properties can be found
in the books [26, 41, 120]. A brief introduction is given by [155], and a concise
tutorial is given by [174]. See [55] and references therein for the Moyal’s formula
and its relationship with other identities.

7.5.2.2 Example of Wigner Distribution

Figure7.10 shows a signal composed of two GMPs with different frequencies and
duration. This signal will be used to show examples of the Wigner distribution and
the SAF. The program also computes the signal energy.

7.5 Time-Frequency Distributions 379

Fig. 7.10 A test signal
composed of two different
GMPs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

seconds

Program 7.6 2 GMPs signal

% 2 GMPs signal
fy1 =40; %signal 1 central frequency in Hz
fy2 =80; %signal 2 central frequency
bw=0.2; %signal relative bandwidth
fs =300; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
%time intervals set (0.4 seconds):
tp=-(0.2 -tiv):tiv:(0.2-tiv);
Np=length(tp);
y1=gauspuls(tp ,fy1 ,bw); %signal 1 data set
y2=gauspuls(tp ,fy2 ,bw); %signal 2 data set
t=0:tiv:1; %complete time set (1 second);
Ny=length(t);
yn=zeros(1,Ny -(2*Np)); %intermediate signal
y=[y1 yn y2];
plot(t,y,'k'); %plots figure
%axis ([0 1.2 -1.2 1.2]);
xlabel('seconds '); title('2 GMPs signal');
%print signal energy (Parseval)
disp('signal energy:')
Pyt=tiv*sum((abs(y)).^2) %time domain computation
c=fft(y,fs)/fs;
PYW=sum(abs(c)).^2) %frequency domain computation

Figure7.11 shows theWigner distribution of the twoGMPs signal. There are three
ellipses in the picture. The ellipse in the centre corresponds to interference. The other
two correspond to the GMP pulses.

The Fig. 7.11 has been generated with the Program 7.7. The Fourier transform
property (7.7) has been used to compute the integrands according with Eq. (7.57). It
is always convenient to use the FFT for fast integrations. The signal to be analyzed

380 7 Time-Frequency Analysis

Fig. 7.11 Wigner
distribution of the previous
test signal

seconds

H
z

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

should be an analytical signal, so hilbert() has been used. A special scaling has been
applied in imagesc() to highlight the main picture components.

Program 7.7 Wigner distribution of 2 GMPs signal

% Wigner distribution of 2 GMPs signal
clear all
% 2 GMPs signal
fy1 =40; %signal 1 central frequency in Hz
fy2 =80; %signal 2 central frequency
bw=0.2; %signal relative bandwidth
fs =300; %sampling frequency in Hz
fN=fs/2; %Nyquist frequency
tiv=1/fs; %time interval between samples;
%time intervals set (0.4 seconds):
tp=-(0.2 -tiv):tiv:(0.2-tiv);
Np=length(tp);
y1=gauspuls(tp ,fy1 ,bw); %signal 1 data set
y2=gauspuls(tp ,fy2 ,bw); %signal 2 data set
t=0:tiv:1; %complete time set (1 second);
Ny=length(t); %odd number
yn=zeros(1,Ny -(2*Np)); %intermediate signal
yr=[y1 yn y2]'; %2 GMPs signal (column vector)
y=hilbert(yr); %analytical signal
%WIGNER ---
zerx=zeros(Ny ,1); aux=zerx;
lm=(Ny -1)/2;
zyz=[zerx; y; zerx]; %sandwich zeros -signal -zeros
%space for the Wigner distribution , a matrix:
WD=zeros(Ny ,Ny);
mtau =0:lm; %vector(used for indexes)
for nt=1:Ny ,

tpos=Ny+nt+mtau; %a vector
tneg=Ny+nt -mtau; %a vector
aux(1:lm +1)=(zyz(tpos).*conj(zyz(tneg)));
aux (1)=0.5*aux (1); %will be added 2 times

7.5 Time-Frequency Distributions 381

fo=fft(aux ,Ny)/Ny;
%a column (harmonics at time nt):
WD(:,nt)=2* real(fo);

end
%result display
figure (1)
fiv=fN/Ny; %frequency interval
f=0:fiv:(fN -fiv); %frequency intervals set
colmap1; colormap(mapg1); %user colormap
imagesc(t,f,log10(0.01+abs(WD))); axis xy;
xlabel('seconds '); ylabel('Hz');
title('Wigner distribution of the 2 GMPs signal');
%Marginals ---
margf=zeros(Ny ,1); %frequency marginal
for nn=1:Ny ,

margf(nn)=tiv*sum(WD(nn ,:));
end;
margt=zeros(1,Ny); %time marginal
for nn=1:Ny ,

margt(nn)=sum(WD(:,nn));
end;
figure (2)
plot(f,margf ,'k'); %frequency marginal
xlabel('Hz');
title('frequency marginal ');
figure (3)
plot(t,margt ,'k'); %time marginal
xlabel('seconds ');
title('time marginal ');
%print y signal energy
disp('signal energy:')
e1=tiv*sum(abs(margt))
e2=sum(abs(margf))

The Program 7.7 also computes time and frequency marginals according with
Eq. (7.52). The results are shown in Figs. 7.12 and 7.13. In this example, themarginals
clearly show the time and frequency localization of the signal components.

7.5.3 The SAF

The Sussman ambiguity function (SAF), is given by:

Ay(τ , θ) =
∞∫

−∞
y
(
t + τ

2

)
y∗ (

t − τ
2

)
e−j θ t dt =

=
∞∫

−∞
ky(t, τ) e−j θ t dt

(7.67)

382 7 Time-Frequency Analysis

Fig. 7.12 Frequency
marginal of the Wigner
distribution (2 GMP signal)

0 50 100 150
0

1

2

3

4

5

6

7
x 10-3

Hz

Fig. 7.13 Time marginal of
the Wigner distribution
(2 GMP signal)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

seconds

Using Fourier transform properties, the same SAF distribution can be obtained with:

Ay(τ , θ) = 1
2π

∞∫
−∞

Y
(
ω + θ

2

)
Y∗ (

ω − θ
2

)
ejτ ω dω =

= 1
2π

∞∫
−∞

χy(ω, θ) e−j τ ω dω
(7.68)

7.5 Time-Frequency Distributions 383

7.5.3.1 Properties of the SAF Distribution

The SAF is usually complex-valued. It has Hermitian even symmetry:

Ay(τ , θ) = A∗
y(−τ ,−θ) (7.69)

Recall from Eq. (7.3) the (time) autocorrelation Ry(τ) of the signal y(t). With the
SAF we have that:

Ry(τ) = Ay(τ , 0) (7.70)

which is the horizontal axis for Ay(τ , θ). Likewise, the spectral autocorrelation of
the signal y(t) is given by the vertical axis for Ay(τ , θ).

The value of the SAF at the origin, Ay(0, 0), is equal to the energy of the signal
y(t). This value is also the maximum value of the SAF modulus:

∣∣Ay(τ , θ)
∣∣ ≤ Ay(0, 0) , ∀ τ , θ (7.71)

For the cases of time and frequency shifting we have:

y1(t) = y(t − t0) ⇒ Ay1(τ , θ) = Ay(τ , θ) exp(−j t0 θ)
Y1(ω) = Y(ω − ω0) ⇒ Ay1(τ , θ) = Ay(τ , θ) exp (j ω0τ)

(7.72)

With respect to convolution, one has:

y(t) =
∞∫

−∞
h(t − τ) x(τ) dτ ⇒ Ay(τ , θ) =

∞∫

−∞
Ah(τ − t, θ) Ax(t, θ) dt (7.73)

And with respect to modulation:

y(t) = p(t) x(t) ⇒ Ay(τ , θ) = 1

2π

∞∫

−∞
Ap(τ , θ − ω) Ax(τ ,ω) dω (7.74)

More information on the SAF can be found in the books [26, 41]. It is also part of
the contents of [55].

7.5.3.2 Example of SAF Distribution

Figure7.14 shows the SAF distribution of the 2 GMPs signal. The two pulses overlap
at the same place, centre of the figure. The two ellipses correspond to the interference:
it is placed according with 1/2 of the temporal distance between the centres of pulses,
and 1/2 of the frequency difference of the pulses.

384 7 Time-Frequency Analysis

Fig. 7.14 SAF of the
previous test signal

seconds

H
z

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-60

-40

-20

0

20

40

60

The Fig. 7.14 has been generated with the Program 7.8, which is very similar to
the previous program, with some matrix elements reordering.

Since the pulses concentrate at the centre, and the interferences are clearly in
another place, a possible idea to eliminate the interferences is to filter out them over
the SAF, and then obtain the Wigner distribution from the filtered SAF. This idea
will be explored in Sect. 7.5.5.

Program 7.8 SAF of 2 GMPs signal

% SAF of 2 GMPs signal
clear all
% 2 GMPs signal
fy1 =40; %signal 1 central frequency in Hz
fy2 =80; %signal 2 central frequency
bw=0.2; %signal relative bandwidth
fs =300; %sampling frequency in Hz
fN=fs/2; %Nyquist frequency
tiv=1/fs; %time interval between samples;
%time intervals set (0.4 seconds):
tp=-(0.2 -tiv):tiv:(0.2-tiv);
Np=length(tp);
y1=gauspuls(tp ,fy1 ,bw); %signal 1 data set
y2=gauspuls(tp ,fy2 ,bw); %signal 2 data set
t=0:tiv:1; %complete time set (1 second);
Ny=length(t); % odd number
yn=zeros(1,Ny -(2*Np)); %intermediate signal
yr=[y1 yn y2]'; %2 GMPs signal (column vector)
y=hilbert(yr); %analytical signal
%SAF --
zerx=zeros(Ny ,1); %a vector
zyz=[zerx; y; zerx]; %sandwich zeros -signal -zeros
aux=zerx;
SAF=zeros(Ny , Ny); %space for the SAF , a matrix
nt=1:Ny; %vector (used for indexes)
md=(Ny -1)/2;

7.5 Time-Frequency Distributions 385

for mtau=-md:md ,
tpos=Ny+nt+mtau; %a vector
tneg=Ny+nt -mtau; %a vector
aux=zyz(tpos).*conj(zyz(tneg));
%a column (frequencies):
SAF(:,md+mtau +1)= fftshift(fft(aux ,Ny)/Ny);

end
%result display
figure (1)
fiv=fN/Ny; %frequency interval
freq=-fN/2:fiv:(fN/2)-fiv;
te=t (end); tim=-te/2:tiv:te/2;
colmap1; colormap(mapg1); %user colormap
imagesc(tim ,freq ,log10(0.005+abs(SAF))); axis xy;
xlabel('seconds '); ylabel('Hz');
title('SAF of the 2 GMPs signal');
%Energy and autocorrelations ----------------------
tcorr=zeros(1,Ny); %temporal autocorrelation
nt=1:Ny; %vector (for indexes)
for mtau=-md:md ,

aux=sum(zyz(Ny+nt).*conj(zyz(Ny+nt -(2* mtau))));
tcorr(md+mtau +1)= tiv*aux;

end;
fcorr=zeros(Ny ,1); %frequencial autocorrelation
zerf=zeros(Ny ,1);
YW=fft(y,Ny)/Ny; ZYWZ=[zerf;YW;zerf];
nf=1:fs; %vector (for indexes)
mf=fs/2;
for mtheta=-mf:mf ,

aux=sum(ZYWZ(fs+nf).*conj(ZYWZ(fs+nf -mtheta)));
fcorr(mf+mtheta +1)=(Ny/fs)*aux;

end;
of=(Ny +1)/2; ot=(Ny +1)/2; %SAF origin
figure (2) %frequencial autocorrelation
plot(freq ,abs(fcorr),'rx'); hold on;
plot(freq ,abs(SAF(:,ot)),'k');
xlabel('Hz');
title('frequencial autocorrelation ');
figure (3) %temporal autocorrelation
plot(tim ,abs(tcorr),'rx'); hold on;
plot(tim ,abs(SAF(of ,:)),'k');
xlabel('seconds ');
title('temporal autocorrelation ');
%print y signal energy
disp('signal energy:')
o1=SAF(of ,ot)

The Program 7.8 also computes time and frequency autocorrelations, and com-
pares the obtained curves with the SAF values along its horizontal and vertical axes
(recall Eq. (7.70)). The results are shown in Figs. 7.15 and 7.16. The comparison
shows very good agreement.

386 7 Time-Frequency Analysis

Fig. 7.15 Frequency
autocorrelation (2 GMP
signal)

-80 -60 -40 -20 0 20 40 60 80
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Hz

Fig. 7.16 Time
autocorrelation (2 GMP
signal)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

seconds

7.5.4 From Wigner to SAF and Vice-Versa

The Wigner distribution and SAF are a Fourier transform pair, through a 2-
dimensional Fourier transform. For instance:

Ay(τ , θ) = 1

2π

∞∫

−∞

∞∫

−∞
W Dy (t,ω) ej(� τ − θ t) dω dt (7.75)

7.5 Time-Frequency Distributions 387

Fig. 7.17 SAF obtained
from Wigner distribution
(2 GMP signal)

seconds

H
z

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-60

-40

-20

0

20

40

60

And,

W Dy(t,ω) = 1

2π

∞∫

−∞

∞∫

−∞
Ay (τ , θ) ej(θ t − ω τ) dθ dτ (7.76)

Notice that, by inverse Fourier transform:

ky(t, τ) = 1
2π

∞∫
−∞

W Dy(t,ω) ejω τ dω =

= 1
2π

∞∫
−∞

Ay(τ , θ) ej θ t dθ
(7.77)

The Program 7.9 provides an example of how to obtain a Wigner distribution from
a SAF. The case considered is the two GMPs signal. The result of the program is
shown in Fig. 7.17. Notice that we arrived to the same result shown in Fig. 7.14.

Program 7.9 SAF from Wigner distribution of 2 GMPs signal

% SAF from Wigner distribution of 2 GMPs signal
clear all
% 2 GMPs signal
fy1 =40; %signal 1 central frequency in Hz
fy2 =80; %signal 2 central frequency
bw=0.2; %signal relative bandwidth
fs =300; %sampling frequency in Hz
fN=fs/2; %Nyquist frequency
tiv=1/fs; %time interval between samples;
%time intervals set (0.4 seconds):
tp=-(0.2 -tiv):tiv:(0.2-tiv);
Np=length(tp);
y1=gauspuls(tp ,fy1 ,bw); %signal 1 data set
y2=gauspuls(tp ,fy2 ,bw); %signal 2 data set

388 7 Time-Frequency Analysis

t=0:tiv:1; %complete time set (1 second);
Ny=length(t); %odd number
yn=zeros(1,Ny -(2*Np)); %intermediate signal
yr=[y1 yn y2]'; %2 GMPs signal (column vector)
y=hilbert(yr); %analytical signal
%WIGNER ---
zerx=zeros(Ny ,1); aux=zerx;
lm=(Ny -1)/2;
zyz=[zerx; y; zerx]; %sandwich zeros -signal -zeros
%space for the Wigner distribution , a matrix:
WD=zeros(Ny ,Ny);
mtau =0:lm; %vector(used for indexes)
for nt=1:Ny ,

tpos=Ny+nt+mtau; %a vector
tneg=Ny+nt -mtau; %a vector
aux(1:lm +1)=(zyz(tpos).*conj(zyz(tneg)));
aux (1)=0.5*aux (1); %will be added 2 times
fo=fft(aux ,Ny)/Ny;
%a column (harmonics at time nt):
WD(:,nt)=2* real(fo);

end
pks=WD; %intermediate variable
ax1=ifft(pks ,[] ,2);
%SAF from Wigner distribution:
SAF=fftshift(fft(ax1 ,[],1)');
%result display
fiv=fN/Ny; %frequency interval
freq=-fN/2:fiv:(fN/2)-fiv;
te=t (end); tim=-te/2:tiv:te/2;
colmap1; colormap(mapg1); %user colormap
imagesc(tim ,freq ,log10(0.005+abs(SAF))); axis xy;
xlabel('seconds '); ylabel('Hz');
title('SAF of the 2 GMPs signal (from Wigner)');

To complete the example, now in the opposite sense the Program 7.10 provides
an example of how to obtain a SAF from a Wigner distribution. The case considered
is again the two GMPs signal. The result of the program is shown in Fig. 7.18. Notice
that we obtained the same result shown in Fig. 7.11.

Program 7.10 Wigner distribution from SAF, of 2 GMPs signal

% Wigner distribution from SAF , of 2 GMPs signal
clear all
% 2 GMPs signal
fy1 =40; %signal 1 central frequency in Hz
fy2 =80; %signal 2 central frequency
bw=0.2; %signal relative bandwidth
fs =300; %sampling frequency in Hz
fN=fs/2; %Nyquist frequency
tiv=1/fs; %time interval between samples;
%time intervals set (0.4 seconds):
tp=-(0.2 -tiv):tiv:(0.2-tiv);
Np=length(tp);
y1=gauspuls(tp ,fy1 ,bw); %signal 1 data set
y2=gauspuls(tp ,fy2 ,bw); %signal 2 data set
t=0:tiv:1; %complete time set (1 second);

7.5 Time-Frequency Distributions 389

Ny=length(t); % odd number
yn=zeros(1,Ny -(2*Np)); %intermediate signal
yr=[y1 yn y2]'; %2 GMPs signal (column vector)
y=hilbert(yr); %analytical signal
%SAF ---
zerx=zeros(Ny ,1); %a vector
zyz=[zerx; y; zerx]; %sandwich zeros -signal -zeros
aux=zerx;
SAF=zeros(Ny , Ny); %space for the SAF , a matrix
nt=1:Ny; %vector (used for indexes)
md=(Ny -1)/2;
for mtau=-md:md ,

tpos=Ny+nt+mtau; %a vector
tneg=Ny+nt -mtau; %a vector
aux=zyz(tpos).*conj(zyz(tneg));
%a column (frequencies):
SAF(:,md+mtau +1)= fftshift(fft(aux ,Ny)/Ny);

end
pks=ifftshift(SAF); %intermediate variable
ax=((ifft(pks ,[] ,1)));
%Wigner from SAF distribution:
WD=real((fft(ax ,[] ,2)) ');
%result display
fiv=fN/Ny; %frequency interval
f=0:fiv:(fN -fiv); %frequency intervals set
colmap1; colormap(mapg1); %user colormap
imagesc(t,f,log10(0.01+abs(WD))); axis xy;
xlabel('seconds '); ylabel('Hz');
title('Wigner dist. of 2 GMPs signal (from SAF)');

Fig. 7.18 Wigner
distribution obtained from
SAF, two GMPs signal

seconds

H
z

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

390 7 Time-Frequency Analysis

7.5.5 About Interferences

The Wigner distribution has a problem: there are interferences. Some examples will
be shown below, and then a short mathematical discussion of interferences will be
done.

It is possible to attenuate or even eliminate the interferences: some basic examples
will be also introduced in a second part of this subsection.

7.5.5.1 Examples of Interferences

Based on a simple modification of a part of the Program 7.2, a signal is built with
2 s of 10 Hz. sine, 6 s of zeros, and finally 2 s of 50 Hz. sine. In total 10 s of a
3-component signal. Figure7.19 shows the signal.

By means of the Program B.8, which has been listed in the Appendix B, we
obtain the Wigner distribution of the 2 sine signal. Figure7.20 shows the Wigner
distribution. There are 3 bands in the figure: on the left side a band corresponding to
10 Hz. sine, on the right a band corresponding to 50 Hz. Sine. The band in the centre
is interference.

The Program B.8 also generates the Figs. 7.21 and 7.22, which show the time and
frequency marginals.

Consider now the quadratic chirp signal shown in Fig. 7.23. The figure has been
generated with the Program 7.11.

0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

4 sec. 1 sec. 3 sec.

0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

10 Hz 50 Hz

Fig. 7.19 Signal with 2 sine components

7.5 Time-Frequency Distributions 391

Fig. 7.20 Wigner
distribution of the signal
with 2 sine components

seconds

H
z

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

Fig. 7.21 Frequency
marginal of the Wigner
distribution (2 sine signal)

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hz

Program 7.11 Quadratic chirp signal

%Quadratic chirp signal
f0=5; %initial frequency in Hz
f1=60; %final frequency in Hz
fs =5000; %sampling rate in Hz
tiv=1/fs; %time between samples
t1=2; %final time
t=0:tiv:(t1 -tiv); %time intervals set (10 seconds)
f=0:1:((fs/2) -1); %frequency intervals set
yr=chirp(t,f0 ,t1 ,f1 ,'quadratic ')'; %the chirp signal
plot(t,yr ,'k');
title('quadratic chirp signal'); xlabel('sec');

392 7 Time-Frequency Analysis

Fig. 7.22 Time marginal of
the Wigner distribution
(2 sine signal)

0 1 2 3 4 5 6 7 8
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

seconds

Fig. 7.23 Quadratic chirp
signal

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

sec

With little changes of the Program 7.7 we obtain the program B.9, also listed in
the Appendix B, to obtain the Wigner distribution of the quadratic chirp signal. The
result is shown in Fig. 7.24. There is noticeable interference attached to the expected
quadratic curve, and two ‘shadows’ (two arcs) both sides of the main spot.

If we consider a two-component signal:

y(t) = a(t) + b(t) (7.78)

7.5 Time-Frequency Distributions 393

Fig. 7.24 Wigner
distribution of the quadratic
chirp signal

seconds

H
z

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

the Wigner distribution of this signal is given by:

W Dy(t,ω) = W Da(t,ω) + W Db(t,ω) + W Dab(t,ω) + W Dba(t,ω) =
= W Da(t,ω) + W Db(t,ω) + 2Re(W Dab(t,ω))

(7.79)
where:

W Dab(t,ω) =
∞∫

−∞
a

(
t + τ

2

)
b∗

(
t − τ

2

)
e−j ω τ dτ (7.80)

is the cross-Wigner distribution.
The Eq. (7.79) contains an interference term, which is:

Iab(t,ω) = 2Re(W Dab(t,ω) (7.81)

The main observation is that the quadratic nature of the Wigner distribution causes
interference terms. The interference has a geometry. Suppose two interfering points,
the interference is placed at the midpoint of a line joining the two points, and the
interference include oscillations perpendicular to this line and with a frequency pro-
portional to the distance between the two interfering points.

Recall that in the case of the SAF, the interferences appear out from the centre,
and the true information is shown in the center.

There are papers with detailed studies of interference geometry [63, 153], and
even with applications to music dissonance [48].

394 7 Time-Frequency Analysis

7.5.5.2 Basic Elimination of Interferences

There is a crude and simple way for interference elimination. The idea is to obtain
the SAF of the signal, then multiply the SAF by a mask of ones and zeros, to filter
out the interference terms and let pass only the information at the centre. After that,
the Wigner distribution can be obtained from the filtered SAF, with no interferences.

This experiment has beenmade for the signalwith 2GMPs, Fig. 7.10.TheProgram
7.12 applies the SAF mask filtering and then obtains the Wigner distribution.

seconds

H
z

Filter window (kernel)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-50

0

50

seconds

H
z

Filtered SAF

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-50

0

50

Fig. 7.25 Kernel and filtered SAF for 2 GMP signal

Fig. 7.26 Filtered Wigner
distribution for 2 GMP signal

seconds

H
z

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

7.5 Time-Frequency Distributions 395

Figure7.25 shows on top themask, and the filtered SAF at the bottom. Essentially,
we are filtering Fig. 7.14. We applied the term ‘Kernel’ to the mask.

Figure7.26 shows the Wigner distribution we obtain from the filtered SAF. There
are no interferences.

Both Figs. 7.25 and 7.26 have been generated with the Program 7.12.

Program 7.12 WD of 2 GMPs signal, with no interference

% WD of 2 GMPs signal , with no interference
clear all
% 2 GMPs signal
fy1 =40; %signal 1 central frequency in Hz
fy2 =80; %signal 2 central frequency
bw=0.2; %signal relative bandwidth
fs =300; %sampling frequency in Hz
fN=fs/2; %Nyquist frequency
tiv=1/fs; %time interval between samples;
%time intervals set (0.4 seconds):
tp=-(0.2 -tiv):tiv:(0.2-tiv);
Np=length(tp);
y1=gauspuls(tp ,fy1 ,bw); %signal 1 data set
y2=gauspuls(tp ,fy2 ,bw); %signal 2 data set
t=0:tiv:1; %complete time set (1 second);
Ny=length(t); % odd number
yn=zeros(1,Ny -(2*Np)); %intermediate signal
yr=[y1 yn y2]'; %2 GMPs signal (column vector)
y=hilbert(yr); %analytical signal
%SAF --
zerx=zeros(Ny ,1); %a vector
zyz=[zerx; y; zerx]; %sandwich zeros -signal -zeros
aux=zerx;
SAF=zeros(Ny , Ny); %space for the SAF , a matrix
nt=1:Ny; %vector (used for indexes)
md=(Ny -1)/2;
for mtau=-md:md ,

tpos=Ny+nt+mtau; %a vector
tneg=Ny+nt -mtau; %a vector
aux=zyz(tpos).*conj(zyz(tneg));
%a column (frequencies):
SAF(:,md+mtau +1)= fftshift(fft(aux ,Ny)/Ny);

end
%A simple box distribution kernel
FI=zeros(Ny ,Ny);
%window vertical and horizontal 1/2 width:
HV=50; HH=70;
FI(md -HH:md+HH ,md -HV:md+HV)=1; %box kernel
%Product of kernel and SAF
fsaf=FI.*SAF;
pks=ifftshift(fsaf); %intermediate variable
ax=((ifft(pks ,[] ,1)));
%Wigner from SAF distribution:
WD=real((fft(ax ,[] ,2)) ');
%result display
figure (1)
fiv=fN/Ny; %frequency interval
freq=-fN/2:fiv:(fN/2)-fiv;

396 7 Time-Frequency Analysis

te=t (end); tim=-te/2:tiv:te/2;
colmap1; colormap(mapg1); %user colormap
subplot (2,1,1)
imagesc(tim ,freq ,log10(0.005+abs(FI))); axis xy;
xlabel('seconds '); ylabel('Hz');
title('Filter window (kernel)');
subplot (2,1,2)
imagesc(tim ,freq ,log10(0.005+abs(fsaf))); axis xy;
xlabel('seconds '); ylabel('Hz');
title('Filtered SAF');
%result display
figure (2)
fiv=fN/Ny; %frequency interval
f=0:fiv:(fN -fiv); %frequency intervals set
colmap1; colormap(mapg1); %user colormap
imagesc(t,f,log10(0.01+abs(WD))); axis xy;
xlabel('seconds '); ylabel('Hz');
title('Filtered Wigner distribution
of the 2 GMPs signal');

The experiment has been repeated for the quadratic chirp shown in Fig. 7.23.
Figure7.27 shows the mask to be applied and the filtered SAF in this case.

Figure7.28 shows the Wigner distribution obtained from the filtered SAF. The
most disturbing interferences have been eliminated.

The program for this experiment, Program B.10 (also in Appendix B), is very
similar to the Program 7.12.

seconds

H
z

Filter window (kernel)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-20

0

20

seconds

H
z

Filtered SAF

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-20

0

20

Fig. 7.27 Kernel and filtered SAF for chirp signal

7.5 Time-Frequency Distributions 397

Fig. 7.28 Filtered Wigner
distribution for chirp signal

seconds

H
z

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

An important comment here is that the mask has been tailored in each particular
case after looking at the SAF.Thatmeans a signal-dependentmethod.Other examples
of signals would require other masks.

7.5.6 Smoothing of the Wigner Distribution

In order to attenuate interferences of the Wigner distribution, a filter can be included
in the integrand. The filter can be unidimensional, or bidimensional.

7.5.6.1 1 D Filtering. Pseudo Wigner Distribution

A window h(τ), for instance a Hamming window, is simply put in the Wigner dis-
tribution integrand as follows:

PW Dy(t,ω) =
∞∫

−∞
h(τ) y

(
t + τ

2

)
y∗

(
t − τ

2

)
e−j ω τ dτ (7.82)

The result is called pseudo Wigner distribution. An alternative expression is the
following:

PW Dy(t,ω) = 1

2π

∞∫

−∞
H(ω − θ) W Dy(t, θ) dθ (7.83)

398 7 Time-Frequency Analysis

The effect of the filter H(ω), which is the Fourier transform of h(τ), is to attenuate
oscillating interferences.

7.5.6.2 2 D Filtering. Smoothed Wigner Distribution

Abidimensional filter can be included in theWigner distribution integrand as follows:

SW Dy(t,ω) = 1

2π

∞∫

−∞

∞∫

−∞
(ψ(t′ − t,ω′ − ω) W Dy (t′,ω′) dω′) dt′ (7.84)

where ψ(t,ω) is a low-pass filter in the time-frequency domain. The result is called
smoothed Wigner distribution.

In general low-pass 1 D or 2 D filtering can attenuate and even suppress interfer-
ences. But this will reduce the resolution.

Better control of the smoothing can be gained using a separable smoothing, so
that it is easy to specify time and frequency characteristics:

ψ(t,ω) = g(t) H(ω) (7.85)

And then:

SW Dy(t,ω) =
∞∫

−∞
h(τ)

∞∫

−∞
g(t′ − t) ky (t′, τ) dt′ e−jωτ dτ (7.86)

Some authors call this expression the smoothed-pseudo Wigner distribution (SPWD).
See [83, 144] and references therein for the SPWD and other schemes for inter-

ference attenuation.
An interesting example of separable smoothing is given by:

ψ(t,ω) = exp(−α t2 − βω2) (7.87)

It is shown that for αβ ≥ 1 the SPWD has non-negative values.
Recall from (7.30) and (7.31) that the spectrogram is the squared modulus of

the STFT, and that the STFT uses a window w(τ − t). The case just described, the
exponential with αβ = 1, is a possible spectrogram window. In general, it can be
shown using Moyal’s formula, that the spectrogram can be written as follows:

SFy(t,ω) = 1

2π

∞∫

−∞

∞∫

−∞
W Dw(t′ − t,ω′ − ω) W Dy (t′,ω′) dω′ dt′ (7.88)

7.5 Time-Frequency Distributions 399

where WDw is the Wigner distribution of the window. Therefore, the spectrogram is
a SWD.

Since the spectrogram is a smoothed Wigner distribution, it has less resolution
than the Wigner distribution.

It is also shown that the scalogram can be written in terms of the Wigner distrib-
ution, as follows:

Scy(τ , s) = 1

2π

∞∫

−∞

∞∫

−∞
W Dψ

(
t − τ

s
, sω

)
W Dy (t,ω) dω dt (7.89)

where ψ in W Dψ is the wavelet.

7.6 Signal Representation

Depending on the purposes of the study of a signal, one or another feature should be
highlighted. Recall what has been done in Sect. 2.6, where logarithmic axes where
used to decide whether a certain distribution was normal or Weibull. Likewise, we
could use change of variables or reference axes, perhaps in the time-frequency plane,
to have a clearer view of certain signal characteristics. In many cases, it is opportune
to use decomposition with a suitable basis of functions, in the vein of the Fourier
transform or the Gabor transform.

Therefore, one of the first questions in the study of a particular type of signals is
to select a suitable signal representation, according with the actual targets.

It is time to recapitulate about the previous sections, which already introduced
several analysis tools in the time-frequency domain. More tools, with similar spirit,
will be derived in the next section. Each of these analysis tools provides a signal
representation. It happens that due to uncertainty there are many alternatives to map
a signal into a time-frequency plane, to show frequency components at a time point
and to see during what time a frequency component exists.

7.6.1 Types of Representations

There are linear and nonlinear time-frequency representations (TFR) [82]. A partic-
ular case of nonlinear TFRs is quadratic TFRs. An important example of quadratic
TFR is the Wigner distribution.

http://dx.doi.org/10.1007/978-981-10-2534-1_2

400 7 Time-Frequency Analysis

7.6.1.1 Linear TFRs

Given a linear combination of two signals:

y(t) = c1 y1(t) + c2 y2(t) (7.90)

A linear TFR will possess the superposition property:

Ty(t,ω) = c1 Ty1(t,ω) + c2 Ty2(t,ω) (7.91)

Examples of linear TFR are the STFT, the Gabor transform, and the wavelet trans-
form.

7.6.1.2 Quadratic TFRs

Consider again a linear combination of two signals, as given in Eq. (7.90). A quadratic
TFR corresponding to the combined signal would be:

Ty(t,ω) = c21 Ty1(t,ω) + c22 Ty2(t,ω) + c1 c∗
2Ty1y2(t,ω) + c2 c∗

1Ty2y1(t,ω)

(7.92)

Then, in addition to components corresponding to y1(t) and y2(t) there would be
cross-term interferences. These interferences cause difficulties for the interpretation
of graphical results. We already have seen interferences in recent figures.

7.6.2 Analysis Approaches

In general, in the time-frequency (TF) analysis one wants to see the contribution of
each TF point to the signal y(t).A common approach—as in the linear TFRs already
seen—is to use the inner product of an analysis function ξp(t) and the signal:

< y, ξp(t) >=
∞∫

−∞
y(t) ξp(t) dt (7.93)

where p is a point of the TF plane.
Figure7.29 illustrates the approach. The analysis function ξp(t) has non-zero

values in a suitable (small) region.
Now, the idea is to use a family of analysis functions, corresponding to several

points in the TF plane. Two alternatives have been described so far:

7.6 Signal Representation 401

Fig. 7.29 Analysis in the TF
plane using inner product

time

fre
qu

en
cy

ξp
y

7.6.2.1 Frequency Shift + Time Shift of ξp(t):

See Fig. 7.30:
Examples of this approach are the STFT and the Gabor transform.

7.6.2.2 Scaling + Time Shift of ξp(t):

See Fig. 7.31:
An example of this approach is the wavelet transform.
The first alternative, frequency shift + time shift, corresponds to a tiling of the

TF plane with equal elements, as shown in Fig. 7.32.
The second alternative, scaling + time shift, corresponds in the case of discrete

wavelets (to be studied in detail in another chapter) to a tiling with Q-constant, same
area elements. Figure7.33:

Fig. 7.30 Frequency shift +
time shift of the analysis
function

time

fre
qu

en
cy

ξp0

ξp1

ξp2

402 7 Time-Frequency Analysis

Fig. 7.31 Scaling + time
shift of the analysis function

time

fre
qu

en
cy

ξp

ξp1

ξp2

Fig. 7.32 Tiling of the TF
plane corresponding to the
first alternative

time

fre
qu

en
cy

From amore general perspective, the signal representationmatters, and the associ-
ated techniques, has connections with modern physics (relativity, quantum mechan-
ics, orbits, etc.). Likewise it has an evident interest for mathematicians involved
in harmonic analysis and related topics. As we shall see in a moment, operators,
geometry, enter into scene.

7.6.3 Basic Time-Frequency Operators

Time shifting, frequency shifting, and scaling in the time-frequency domain can be
described with operators [73].

7.6 Signal Representation 403

Fig. 7.33 Tiling of the TF
plane corresponding to the
second alternative

time

fre
qu

en
cy

Let us introduce operators and notation:

• Denote as Tλ the translation operator:

(Tλ f)(x) = f (x − λ) (7.94)

• Denote as Mμ the modulation operator:

(Mμ f)(x) = ej μ xf (x) (7.95)

• And denote as Ds the dilation (or scaling) operator:

(Ds f)(x) = 1√|s| f
(x

s

)
(7.96)

In general, given an operator Q and a function f , the notation (Qf)(x) means the
transformed f evaluated at x.

With this notation, important Fourier transform properties can be expressed in a
very compact format. The Fourier transform of f (x) would be denoted as follows:

(F f)(x) = f̂ (x) (7.97)

404 7 Time-Frequency Analysis

Then (shortening the notation by assuming a certain x):

F (Tλf) = Mλ f̂ , F (Mμf) = Tμ f̂ (7.98)

And
F (Dsf) = D1/sf̂ (7.99)

In the equations above the Fourier transform is also an operator.
Notice in Eqs. (7.94)–(7.97) that x in f (x) could be as well time or frequency.
Shortening a bit more the notation, one can write, as equivalent to (7.98):

F Tλ = MλF , F Mμ = Tμ F (7.100)

7.6.4 Geometric Transformations

Coming back to the use of an analysis function ξp(t), the TF analysis can be inter-
preted like using a lens,with a certain shape, to examine in detail parts of theTFplane.
In order to move the lens, or perhaps the signal, it is beneficial to recall concepts
from geometric transformations in 2D.

7.6.4.1 Linear Transformations

Linear transformations of a vector x can be obtained with:

y = Ax

where A is a 2x2 matrix.

Examples of linear transformations:

• Clockwise rotation:

(
y1
y2

)
=

(
cos ϕ sinϕ
− sinϕ cosϕ

) (
x1
x2

)
(7.101)

• Scaling (enlarge or shrink):

(
y1
y2

)
=

(
s1 0
0 s2

) (
x1
x2

)
(7.102)

7.6 Signal Representation 405

• Shearing:

(
y1
y2

)
=

(
1 k
0 1

) (
x1
x2

)

parallel to the x axis

(
y1
y2

)
=

(
1 0
k 1

) (
x1
x2

)
(7.103)

parallel to the y axis

Linear transformations keep the origin fixed.

7.6.4.2 Affine Transformations

Affine transformations are important in the time-frequency context. In general, an
affine transformation is composed of some (or none) linear transformation, such as
rotation or scaling, and translation (shift). Therefore:

y = Ax + b (7.104)

Affine transformations map straight lines to straight lines.
Iff det|A| = 1 the transformation preserves area.
A particular case is the affine time transformation, which can be seen as a clock

change:
t → α t + β (7.105)

In the STFT, the analysis function ξp(t) (the window wnm(t)) is translated from the
point (t0,ω0) to the point (t1, ω1) according with:

(
t1
ω1

)
=

(
1 0
0 1

) (
t0
ω0

)
+

(
Δt
Δω

)
(7.106)

In the wavelet, the analysis function ξp(t) is moved according with:

(
t1
ω1

)
=

(
s 0
0 1/s

) (
t0
ω0

)
+

(
Δt
0

)
(7.107)

The affine transformation can be expressed in ‘homogeneous coordinates’, as fol-
lows: (

y
1

)
=

(
A b
0 0 1

) (
x
1

)
(7.108)

Equation (7.106) has the form of a linear transformation.

406 7 Time-Frequency Analysis

An interesting example of homogeneous coordinates is quaternions for 3D
applications.

7.6.5 Some Important Types of Matrices

There are two important types of matrices in the context of time-frequency studies:
unitary matrices and hermitian matrices.

A unitary matrix is a n × n complex matrix A such that:

A+ · A = A · A+ = I (7.109)

Which is equivalent to:
A−1 = A+ (7.110)

where I is the identity matrix, and A+ is the conjugate transpose (the adjoint) of A.
Every unitary matrix A can be decomposed as:

A = VBV (7.111)

With V unitary, and B diagonal and unitary.
Two important properties of unitary matrices are that:

| det A| = 1 (7.112)

‖Ax‖2 = ‖x‖2 (7.113)

According with the second property, A preserves length (isometry).
A hermitian matrix is a n × n complex matrix H such that:

H = H+ (7.114)

Example of hermitian matrix:

(
5 3 + 2i
3 − 2i 7

)
(7.115)

Numbers in the main diagonal are real. All matrix eigenvalues are real.
A hermitian matrix can be diagonalized by a unitary matrix.
Matrix diagonalization is related with:

Cvk = λk vk (7.116)

where vk are eigenvectors and λk are eigenvalues.

7.6 Signal Representation 407

7.6.6 Linear Operators

The transformations made with matrices constitute an intuitive introduction to
operators. Nevertheless, operators are more general: they can be associated to matri-
ces, but also to integrals, derivatives, etc.

Many time-frequency studies work on a Hilbert space: a complete linear space
with an inner product. In many cases the action of a linear operator H on x(t) is an
integral like the following:

H x(t) =
∫

h(t, τ) x(τ) dτ (7.117)

with h(t, τ) the kernel function (impulse response).
In some cases it is possible to establish an eigenequation with the form of (7.116),

and to obtain eigenvalues and eigenfunctions.
Given an operator H, the adjoint operator H+ is defined by:

< H x, y >=< x, H+y > (7.118)

Operators such that:
H = H+ (7.119)

are called self-adjoint.
Any self-adjoint operator has an orthonormal basis, formed by eigenfunctions, in

which the operator can be represented as a diagonal matrix. The diagonal is formed
with the eigenvalues, which are real numbers.

Self-adjoint operators are used in quantum physics, and denoted as hermitian
operators, for observables like position or momentum. Frequency is another observ-
able.

An inner product induces a norm:

‖x‖ = √
< x, x > (7.120)

Bounded linear operators satisfy:

‖H x‖ ≤ M ‖x‖ (7.121)

with finite M.
The bilinear form of an operator is given by:

QH(x, y) =< H x, y > (7.122)

408 7 Time-Frequency Analysis

Based on (7.117), the bilinear form can be written as follows:

QH(x, y) =
∫ ∫

h(t, τ) x(τ)y∗(τ) dτ (7.123)

In the case of y = x, the bilinear form is called quadratic form.
The quadratic form of a hermitian operator is always real-valued.
Unitary operator U is a bounded linear operator on a Hilbert space such that:

U+ · U = U · U+ = I (7.124)

Unitary operators preserve the inner product:

< Ux, Uy >=< x, y > (7.125)

Therefore:
‖U y‖2 = ‖y‖2 (7.126)

That is, unitary operators preserve energy.
It is important to stress here that the basic time-frequency operators mentioned in

Sect. 7.6.1. are unitary operators.
Any unitary operator can be written as:

U = exp(j H) (7.127)

where H is a hermitian operator.
The eigenvalues of unitary operators are complex numbers on the unit circle.
Projection operators are idempotent:

P2 = P (7.128)

If P is hermitian the projection is orthogonal, otherwise the projection is oblique.
Linear time-invariant systems are systems that commute with Tτ (time shift):

G Tτ = Tτ G (7.129)

The symplectic group Sp in a two-dimensional space consists of all matrices that
correspond to area-preserving linear geometric transformations, so detA = 1. The
corresponding group operation is matrix multiplication. Some examples of matrices
belonging to Sp are the following:

B =
(
1 b
0 1

)
,C =

(
1 0
c 1

)

Dd =
(
1/d 0
0 d

)
,R =

(
cos θ − sin θ
sin θ cos θ

) (7.130)

7.6 Signal Representation 409

AnymatrixA belonging to Sp can be written in at least one of the following products:

let A =
(

p r
s q

)

A = CD1/d B, with c = s

p
, b = r

p
(7.131)

A = C1 BC2, with c1 = q − 1

r
, c2 = p − 1

r
(7.132)

A = B1 CB2, with b1 = p − 1

s
, b2 = q − 1

s
(7.133)

A = BDd C, with b = r

q
, c = s

q
(7.134)

To each symplectic matrix A, one can associate a unitary operator:

U = μ(A) (7.135)

The mapping:
A → μ(A) (7.136)

is called a metaplectic representation of Sp. The operator U is called a metaplectic
operator.

Composition property:

μ(A1 A2) = μ(A1)μ(A2) (7.137)

Examples of metaplectic operators:

• The dilation operator, which corresponds to A = Dd.

• The Fourier transform

Recall the ‘clock change’ (7.105) (time affine transformation). This clock change
can be represented with an operator Uαβ . Notice that the composition of two clock
changes is another clock change: the set (α , β) is a group (an affine group) with
a group operation that corresponds to the composition of two clock changes. The
mapping to Uαβ is a unitary representation of this group.

The term ‘symplectic’ is associated with planetary mechanics, many-body prob-
lems, billiards in planetary or galactic systems, etc. The origins of symplectic maps
can be traced back to H. Poincaré, who proposed (with an incomplete proof) a the-
orem related to area preserving maps, one year before his death in 1912. The book
[70] on symplectic twist maps (existence of periodic orbits) includes more historical
detail. Besides, the symplectic group appears in Quantum mechanics, and comes by
the hands of Heisenberg and Gabor to our time-frequency field [73].

410 7 Time-Frequency Analysis

A brief academic text on linear symplectic transformations is offered by [85]. The
decomposition into products of matrices is treated in [21].

7.6.7 Covariance

Among the properties of the Wigner distribution, there was a mention to translation
covariance and dilation covariance (vid. Sect. 7.5.2). In preparation of next sections it
is convenient to consider covariance inmore detail. If the reader looks to the scientific
literature on time-frequency analysis, he might find some confusion about terms like
invariance or covariance, so our wish here is to clarify concepts.

It is interesting to note here connections with relativity theory, where covariant
and contravariant variables are considered.

Suppose there is a signal y(x), a transform S, and a parameterized operator Qα

acting on the signal.
The transform S is invariant to the operator Qα if:

(S Qα y)(x) = (S y)(x) (7.138)

(for instance: translation or dilation invariance).
Take a translation operator Tλ . The transform S is covariant to the operator Tλ if:

(S Tλ y)(x) = (S y) (x − λ) (7.139)

This translational covariance could refer as well to time-shift and to frequency-shift
covariance. In the case of translational covariance, a change of η in the variable
corresponds to a translation in the signal representation by η.

Let Pθτ be a translation operator causing a time-frequency shift. The transform S
is covariant to the operator Pθτ if:

(S Pθτ y)(t,ω) = (S y)(t − τ , ω − θ) (7.140)

Take a dilation operator Ds. The transform S is covariant to the operator Ds if:

(S Ds y)(x) = 1√|s| (S y)
(x

s

)
(7.141)

Covariance is important since signal changes, like for instance frequency shifts, are
pictured as noticeable position changes in the transform plot.

Other examples of invariance and covariance exist, like for instance rotation
covariance or translation invariance.

7.6 Signal Representation 411

There is an important observation: translation and modulation operators do not
commute:

(Tλ Mμ y)(x) = Tλ ejμ x y(x) = ejμ (x−λ) y(x − λ) =
= ejμ x e−jμ λ y(x − λ) = e−jμ λ ejμ x Tλ y(x) = e−jμ λ Mμ Tλ y(x)

(7.142)

This fact is significant or not, depending on the application. The magnitude of
exp(−jμλ) is 1, so it is not observed in many time-frequency plots (some authors
consider it as invariance to phase).

The short time Fourier transform STFT can be written as follows:

< y, m >=< y, Mθ Tτ w >=
∞∫

−∞
y(t) w∗(t − τ) e−jθ t dt (7.143)

(this expression has minor changes with respect to the expression in Sect. 7.4.1),
Denote as STF the STFT as operator. Then:

(STF Tτ y)(t,ω) = (STF y)(t − τ ,ω) e−jθ τ

(STF Mθ y)(t,ω) = (STF y)(t,ω − θ)
(7.144)

The STFT is covariant to the modulation operator, and to time-shift if phase is not
taken into account.

The continuous wavelet transform can be written as:

< y, l >=< y, Tτ Ds g >= 1√|s|

∞∫

−∞
y(t) g∗

(
t − τ

s

)
dt (7.145)

Denote as WLT the wavelet transform as operator. Then:

(W LT Tτ y)(t, s) = (W LT y)(t − τ , s)
(W LT Da y)(t, s) = (W LT y)

(
t
a , as

) (7.146)

The continuous wavelet transform is covariant to the dilation operator, and to time-
shift.

There is a number of interesting papers, published in the middle of the 90s, which
introduce the operator point of view together with covariance considerations, for
instance [81, 154]. Later on, [145] provides a settled view of this initiative.

Imposing covariance conditions to the quadratic time-frequency distributions, it
has been found that all quadratic distributions covariant to time-shift and frequency
shift belong to the Cohen’s class; and all quadratic distributions covariant to time-
shift and to dilation (scaling) belong to the affine class. The next section is devoted
to these two classes.

412 7 Time-Frequency Analysis

7.7 The Cohen’s Class and the Affine Class

In this section, two main types of quadratic time-frequency distributions will be
introduced, namely the Cohen’s class and the affine class. These distributions include
many particular cases, some of them already described in this chapter.

A suitable book for this section is precisely due to Cohen [bC].

7.7.1 The Cohen’s Class

Many types of distributions can be considered as particular cases of the Cohen’s class
of distributions.

Here are four equivalent expressions of the Cohen’s class

CDy(t,ω) =
∞∫

−∞

∞∫
−∞

(ϕ(t − t′, τ) ky (t′, τ) dt′) e−j ω τ dτ =

= 1
4π2

∞∫
−∞

∞∫
−∞

(Φ(ω − ω′, θ)χy (ω′, θ) dω′) ej t θ dθ =

= 1
2π

∞∫
−∞

∞∫
−∞

(ψ(t′ − t,ω′ − ω) W Dy (t′,ω′) dω′) dt′ =

= 1
2π

∞∫
−∞

∞∫
−∞

(Ψ (τ , θ) Ay (τ , θ) ej(θ t − � τ) dθ) dτ

(7.147)

Take for instance one of these expressions:

CDy(t,ω) = 1

2π

∞∫

−∞

∞∫

−∞
(Ψ (τ , θ) Ay (τ , θ) ej(θ t − � τ) dθ) dτ (7.148)

This expression corresponds to the basic way of interference elimination described
in Sect. 7.5.5.2. Inside the integral there is the multiplication of the kernel Ψ (τ , θ)
and the SAF.

If we choose the equivalent expression:

CDy(t,ω) = 1

2π

∞∫

−∞

∞∫

−∞
(ψ(t′ − t,ω′ − ω) W Dy (t′,ω′) dω′) dt′ (7.149)

This can be seen as a smoothed Wigner distribution, using as low-pass filter the
kernel ψ(t,ω).

The kernels of the four Cohen’s class expressions are Fourier transform pairs:

ϕ(t, τ) ⇔ Φ (ω, θ) ; ψ(t,ω) ⇔ Ψ (τ , θ) (7.150)

7.7 The Cohen’s Class and the Affine Class 413

φ(t,τ) Φ(ω,θ)

Ay

Ψ(τ,θ)

ψ(t,ω)
WDy

Ky χy

t
t

t

τ

τ

τ

ω

ω

ω

ωt

τθ

θ

θ

θ

Fig. 7.34 Fourier relationships between kernels (Cohen’s class)

Figure7.34 presents a diagram showing how the four kernels are connected by
Fourier transforms.

7.7.1.1 Properties of the Cohen’s Class

The actual properties of a member of the Cohen’s class depend on the kernel. Taking
for instance the kernel Ψ (τ , θ):

• Time covariance: Ψ (τ , θ) independent of t
• Frequency covariance: Ψ (τ , θ) independent of ω
• Real-valued: Ψ (τ , θ) = Ψ (−τ ,−θ)
• Time marginal: Ψ (0, θ) = 1
• Frequency marginal: Ψ (τ , 0) = 1
• Instantaneous frequency: Ψ (0, θ) = 1 and ∂

∂τ
Ψ (τ , θ)

∣∣
τ=0 = 0

• Group delay: Ψ (τ , 0) = 1 and ∂
∂θ

Ψ (τ , θ)
∣∣
θ=0 = 0

In many cases, some of the properties are sacrificed in favour of more attenuation
of interferences.

7.7.1.2 Members of the Cohen’s Class

All quadratic distributions covariant to time shift and frequency shift belong to the
Cohen’s class.

The Wigner distribution is a distinguished member. It corresponds to the kernel
Ψ (τ , θ) = 1.

414 7 Time-Frequency Analysis

The smoothedWigner distribution, the smoothed-pseudoWigner distribution, and
the spectrogram also belong to the Cohen’s class.

Although the first to derive its expression was Cohen, the distribution with the
following kernel is usually named as the Born–Jordan distribution:

Ψ (τ , θ) = sin(τθ/2)

(τθ/2)
(7.151)

The Choi–Williams distribution is obtained with the following kernel:

Ψ (τ , θ) = exp(−α (τθ)2) (7.152)

The distribution of Choi–Williams satisfies all the properties listed in Sect. 7.7.1.1.
The value of the kernel at the origin is 1. The parameter α controls the extension
of the kernel: for large values the extension is small, and the risk of loosing true
information increases. When α goes to zero, the distribution converges to Wigner.

The cone-shape distribution corresponds to the following kernel:

Ψ (τ , θ) = sin(τθ/2)

(τθ/2)
exp(−α τ 2) (7.153)

Again, in the cone-shape distribution the parameter α controls the extension of
the kernel. Unlike the Choi–Williams distribution, the cone-shape distribution sup-
presses values of the SAF on the horizontal axis. Signal components having their
centres on the same frequency, cause interferences that will appear on the SAF hor-
izontal axis: these interferences will be eliminated.

The Rihaczek distribution, also denoted as Kirwood distribution, corresponds to
the following complex kernel:

Ψ (τ , θ) = exp(j τθ/2) (7.154)

The Margenau–Hill distribution corresponds to the following kernel, which is the
real part of the Rihaczek distribution kernel:

Ψ (τ , θ) = cos(τθ/2) (7.155)

The Page distribution corresponds to the following kernel:

Ψ (τ , θ) = exp(j |τ | θ) (7.156)

7.7 The Cohen’s Class and the Affine Class 415

Fig. 7.35 The
Choi–Williams kernel

Figure7.35 shows a 3D view of the Choi–Williams kernel. The figure has been
generated with the Program 7.13: it is easy to play with changes in the parameter α
and the time and frequency variables to see how the kernel shape changes.

Program 7.13 The Choi–Williams kernel

% The Choi -Williams kernel
x=linspace (0,1)-0.5; %100 values between -0.5 and 0.5
theta=x*100*2* pi; %frequencies
tau=x*1; %delays
alpha=0.001; %parameter
Psi=zeros (100 ,100);
for n=1:100 ,

for m=1:100 ,
p=-alpha*(tau(n)^2)*(theta(m)^2);
Psi(n,m)=exp(p);

end;
end;
mesh(Psi); view (30 ,60); %3D plot
set(gca ,'XTickLabel ',
{'-0.5';'-0.3';'-0.1';'0.1'; '0.3'; '0.5'});
set(gca ,'YTickLabel ',
{' -50';' -30';' -10';'10'; '30'; '50'});
title('Choi -Williams kernel');
xlabel('sec'); ylabel('Hz');

416 7 Time-Frequency Analysis

7.7.2 The Affine Class

There are four equivalent expressions of the affine class

ADy(t,ω) = |ω|
2π

∞∫
−∞

∞∫
−∞

(ϕA(ω(t − t′),ωτ) ky (t′, τ) dt′) dτ =

= 1
2π|ω|

∞∫
−∞

∞∫
−∞

(
ΦA

(
ω′
ω

, θ
ω

)
χy (ω′, θ) dω′

)
ej t θ dθ =

= 1
2π

∞∫
−∞

∞∫
−∞

(
ψA

(
ω(t − t′), ω′

ω

)
W Dy (t′,ω′) dω′

)
dt′ =

= 1
2π

∞∫
−∞

∞∫
−∞

(
ΨA

(
ωτ , θ

ω

)
Ay (τ , θ) ejθ t dθ

)
dτ

(7.157)

The four kernels are connected by Fourier transforms in the same manner as in
Fig. 7.34.

7.7.2.1 Members of the Affine Class

All quadratic distributions covariant to scaling and to time shift belong to the affine
class.

A representative member of the affine class is the scalogram.
Notice that the scalogram can be seen as an affine smoothing of the Wigner

distribution.
Actually, a member of the affine class is the affine-smoothed pseudo Wigner

distribution (ASPWD):

ASPW Dy(t,ω) = 1

s

∞∫

−∞

∞∫

−∞
h

(τ

s

)
g

(
t′ − t

s

)
ky (t′, τ) dt′ dτ (7.158)

This distribution includes a separable kernel, as in the case of the SPWD (vid. 7.86).
The Wigner distribution itself is also a member of the affine class. That means

that there is an intersection set of distributions, belonging to the Cohen’s class and
to the affine class.

7.7.2.2 Localized Bi-frequency Kernel Distributions

There is a particular formulation of the affine class for the case inwhich it is opportune
to use a curve H(υ) in the local auto-correlation (we employ here the frequency υ in
Hz):

7.7 The Cohen’s Class and the Affine Class 417

ADy(t, υ) = 1

|s|
∞∫

−∞
G(υ) Y

(
H(υ) − (υ/2)

s

)
Y∗

(
H(υ) + (υ/2)

s

)
e −jυ t/sdυ

(7.159)
where G(υ) is any function.

The Bertrand distribution corresponds to:

G(υ) = υ/2

sinh(υ/2)
; H(υ) = υ

2
coth

(υ

2

)
(7.160)

An interesting field of application for this distribution is for signals with hyperbolic
group delay (the group delay is a hyperbola in the time-frequency plane). Nature is
wise: bats use this kind of signals, which are very appropriate for target localization.

The D-Flandrin distribution corresponds to:

G(ω) = 1 − (υ/4)2 ; H(υ) = 1 + (υ/4)2 (7.161)

This distribution is appropriate for signal with group delay proportional to 1/
√

υ.
The Time-Frequency Toolbox, and its companion tutorial [13] give more details

and pertinent references concerning the Bertrand and the D-Flandrin distributions.

7.7.3 Classification of TFRs

It seems opportune to summarize the last sections with a brief classification of the
TFRs we have seen.

There are two main groups: linear and non-linear.

7.7.3.1 Linear TFRs

• STFT
• Gabor
• Wavelet

7.7.3.2 Non-linear TFRs

• Cohen’s class:

– Wigner distribution
– SWD
– SPWD
– Spectrogram
– Born–Jordan distribution
– Choi–Williams distribution

418 7 Time-Frequency Analysis

– Cone-shape
– Rihaczec
– Margenau–Hill
– Page

• Affine class:

– Wigner distribution
– ASPWD
– Scalogram
– Bertrand distribution
– D-Flandrin

All these TFRs are signal-independent. There exist other analytic tools that adapt
to the signal.

Two important and extensive reviews of TFRs are [39, 82]. It is also worthwhile
to consult the tutorial [13] and play with the demos of the Time-Frequency Toolbox
(see the Resources section for the web site address).

7.8 Linear Canonical Transformation

The linear canonical transformation (LCT) is a general transform that includes as
particular cases many important operators and transforms. The particular cases are
specified by giving values to a set of parameters.

Pertinent references about the LCT are [35, 78, 80, 158]. A fast algorithm is
proposed in [36].

Let us write a 2x2 matrix:

M =
(

a b
c d

)
(7.162)

Then, if b is nonzero, the LCT is defined as follows:

(LM y)(u) =< y, C∗
M (u, x) >=

∞∫

−∞
y(x) CM(u, x) dx (7.163)

where the kernel is:

CM(u, x) =
√

1

j b
exp

{
j

2 b
(a x2 − 2x u + d · u2)

}
(7.164)

For b = 0, the LCT is defined as the limit for |b| →0, and therefore:

(LMy) (u) = √
d exp

{
j

2
(c d · u2)

}
y(d · u) (7.165)

7.8 Linear Canonical Transformation 419

7.8.1 Particular Cases

Let us give certain specific values to a, b, c, d. The results we are going to obtain
have evident connections with the geometric transformations in Sect. 7.9.1.

7.8.1.1 Fourier Transform

Take:

M =
(
0 1
−1 0

)
(7.166)

With these parameters, the LCT kernel is:

CM(u, x) =
√
1

j
exp

{
j

2
(−2x u)

}
=

√
1

j
e−j x u (7.167)

Substitution in (7.163) gives, with a factor, the Fourier transform.
The Fourier transform causes a rotation by 90◦ in the time-frequency plane. This

is coherent with the fact that the matrix M corresponds to a 90◦ rotation

7.8.1.2 Fractional Fourier Transform

Now choose:

M =
(
cos ϕ sinϕ
− sinϕ cosϕ

)
(7.168)

With these parameters, the LCT kernel is:

CM(u, x) =
√

1

j sinϕ
exp

{
j

2 sinϕ
(cosϕ · x2 − 2x u + cosϕ · u2)

}

(7.169)
Hence:

(LM y)(u) =
√

1

j sinϕ
exp

(
j

2
cot ϕ · u2

)
·

·
∞∫

−∞
exp

{
j

2 sinϕ
(cosϕ · x2 − 2x u)

}
· y(x) dx

(7.170)

This last expression is the fractional Fourier transform. This transform causes a
rotation by an arbitrary angle in the time-frequency plane.

420 7 Time-Frequency Analysis

The fractional Fourier transform is being successfully applied to optics and other
fields dealing with waves [4, 119, 130].

7.8.1.3 Fresnel Transform

Take:

M =
(
1 λ z

2π
0 1

)
(7.171)

where z is distance and λ is wavelength. The matrix corresponds to shearing.
With these parameters, the LCT kernel is:

CM(u, x) =
√

2π

j λ z
exp

{
j π

λ z
(x2 − 2x u + u2)

}
(7.172)

And then:

(LM y)(u) =
√

2π

j λ z

∞∫

−∞
exp

{
jπ

λ z
(u − x)2

}
· y(x) dx (7.173)

This last expression is, with a factor, the Fresnel transform. Actually, the Fresnel
transform is equal to:

exp(jπ z/λ)√
2π

(LM y)(u) (7.174)

Again, the connection with optics and waves is clear.

7.8.1.4 Scaling Operator

Take:

M =
(

s 0
0 1/s

)
(7.175)

Since b = 0,

(LMy) (u) = 1√
s

y
(u

s

)
(7.176)

Therefore, one obtains the dilation (scaling) operator.

7.8 Linear Canonical Transformation 421

7.8.1.5 Chirp Multiplication

Let us insist on b = 0:

M =
(
1 0
c 1

)
(7.177)

In this case:

(LMy) (u) = exp

(
j

2
c u2

)
· y(u) (7.178)

This is called chirp multiplication. Let us denote as CM the corresponding operator.

7.8.1.6 Chirp Convolution

This is similar to the Fresnel case:

M =
(
1 b
0 1

)
(7.179)

Then:

(LM y)(u) =
√

1

j b

∞∫

−∞
exp

{
j

2 b
(x − u)2

}
· y(x) dx (7.180)

This last expression is called chirp convolution, and it is also the Gauss–Weierstrass
transform. Let us denote as CC the corresponding operator.

7.8.2 Decomposition of the LCT

The matrix M, and thus the LCT, can be decomposed into:

M =
(

a b
c d

)
=

(
1 0
d−1

b 1

) (
1 b
0 1

) (
1 0
a−1

b 1

)
(7.181)

The central factor is a chirp convolution. The other two factors are chirp multiplica-
tions.

Therefore the LCT can be obtained with three steps, using a composition of
operators: CMk CC CMl (with k = (d − 1)/b, and l = (a − 1)/b).

422 7 Time-Frequency Analysis

There is an interesting alternative, as follows:

M =
(

a b
c d

)
=

(
1 0
d
b 1

) (
b 0
0 1

b

) (
0 1
−1 0

) (
1 0
a
b 1

)
(7.182)

In this factorization, there is a scaling matrix and a Fourier transform surrounded
by chirp multiplications. This is an operator composition: CMmDb F CMn (with
m = d/b, and n = a/b).

7.8.3 Effect on the Wigner Distribution

Suppose that the signal yL is obtained by transforming with the LCT the signal y(t).
Let us compare the Wigner distribution of y(t) and the Wigner distribution of yL.

It is found that:
(W D yL) (t′,ω′) = (W D y)(t,ω) (7.183)

where: (
t′
ω′

)
= M

(
t
ω

)
(7.184)

That means that the Wigner distribution is transformed by an affine transform. For
instance, a particular case is rotation (when the LCT is a fractional Fourier transform,
see [108]).

7.8.4 Comments

One of the LCT cases, the case d, is the scaling operator. It is interesting to note that
there are functions satisfying the following eigenequation:

y

(
t

s

)
= λ y(t) (7.185)

These functions are scaling-invariant, also denoted as self-similar or fractals. They
are eigenfunctions of the scaling operator.

Another LCT case is the fractional Fourier transform. Nowadays many other frac-
tional versions of traditional transforms—like Laplace transform, Hilbert transform,
etc.—have been formulated.

It is possible to apply a quadratic transform on the result of another quadratic
transform. For exampleWigner onWigner. The name of these compositions is quartic
transforms [128].

7.8 Linear Canonical Transformation 423

0 50 100 150 200 250 300 350 400 450
-1

-0.5

0

0.5

1

a cosine signal

0 50 100 150 200 250 300 350 400 450
-2

-1

0

1

2
Fractional Fourier transform (a=0.55)

Fig. 7.36 Fractional Fourier transform of one cosine cycle

7.8.5 Example of Fractional Fourier Transform

There are a few fractional Fourier transform (FrFT) implementations available on
Internet. The article [34] compares in detail two of these implementations, and the
web page of NALAG (K.U. Leuven) bring access to the corresponding MATLAB
codes. We followed in the next example, with some modifications, the alternative
proposed by [131]. The idea of the implementation is to apply a LCT decomposition
into chirpmultiplication – chirp convolution – chirpmultiplication.Due to bandwidth
needs, the implementation uses a sinc interpolation to increase the number of data
samples [34].

The example considered below is the FrFT of a cosine cycle. Figure7.36 presents
on top the signal, and below its fractional Fourier transform. The transform shows
two symmetrical modulated chirps, with zero amplitude where the cosine is zero.
The figure has been generated with the Program 7.14. Notice in the program how the
range of the exponent covers from 0 to 1.5.

Program 7.14 Fractional Fourier transform

%Fractional Fourier transform
%using decomposition
%choose parameter a (fractional power) 0<a<1.5
a=0.55; %for instance
% the signal to be transformed ----------------------
%cosine signal
t=0:0 .015 :2*pi;

424 7 Time-Frequency Analysis

y=cos(t);
Ny=length(y); %odd length
yin=y;
%changes for a<0.5
if (a<0.5),

shft = rem ((0:Ny -1)+ fix(Ny/2),Ny)+1;
sqN = sqrt(Ny);
a=a+1; y(shft)=ifft(y(shft))*sqN;

end;
alpha=a*pi/2;
%sinc interpolation for doubling signal data
zy=zeros (2*Ny -1 ,1);
zy (1:2:2*Ny -1)=y;
aux1=zy (1:2*Ny -1);
aux2=sinc ([-(2*Ny -3):(2*Ny -3)] '/2);
m=length ([aux1 (:); aux2 (:)]) -1;
P=2^ nextpow2(m);
%convolution using fft:
yitp=ifft(fft(aux1 ,P).*fft(aux2 ,P));
yitp=yitp (1:m);
yitp=yitp (2*Ny -2 :end -2*Ny+3); %interpolated signal
%sandwich
zz=zeros(Ny -1,1);
ys=[zz; yitp; zz];
% the fractional transform --------------------------
%chirp premultiplication
htan=tan(alpha /2);
aex=(pi/Ny)*(htan /4)*((-2*Ny +2:2*Ny -2)'.^2);
chr=exp(-j*aex);
yc=chr.*ys; %premultiplied signal
%chirp convolution
sa=sin(alpha);
cc=pi/Ny/sa/4;
aux1=exp(j*cc*(-(4*Ny -4):4*Ny -4)'.^2);
m=length ([aux1 (:);yc(:)]) -1;
P=2^ nextpow2(m);
%convolution using fft:
ym=ifft(fft(aux1 ,P).*fft(yc ,P));
ym=ym(1:m);
ym=ym(4*Ny -3:8*Ny -7)* sqrt(cc/pi); %convolved signal
%chirp post multiplication
yq=chr.*ym;
%normalization
yp=exp(-j*(1-a)*pi/4)*yq(Ny:2 :end-Ny+1);
% display -------------------------------------
figure (1)
subplot (2,1,1)
plot(t,yin ,'k');
axis ([0 2*pi -1.1 1.1]);
title('a cosine signal');
subplot (2,1,2)
plot(t,real(yp),'k');
axis ([0 2*pi -2 2]);
title('Fractional Fourier transform (a=0.55)');

7.8 Linear Canonical Transformation 425

A recent, new implementation of the FrFT is [32].
TheFrFTof a chirpwith rate cot(α), whereα = a·π/2, is a δ. This is an interesting

feature that can be used to detect chirps in multi-component signals. Actually, there
are FrFT applications that scan many different values of the exponent in order to
notice any FrFT peak.

Figure7.37 shows an example of FrFT response to the chirp with rate cot(α).
The Fig. 7.37 has been obtained with the Program B.11, that has been included in

Appendix B. The bottom plot corresponds to the absolute value of the FrFT.
The roots of the FrFT can be traced back to 1937. See [103] for an interesting and

concise history of FrFT, in which it is recognized that the articles [119, 130] marked
the origin of an expanding interest on this method. A convenient survey of FrFT,
including applications, is [33] (see also [158]). The reference book for this topic is
[132]. A most cited article is [7].

Some illustrative applications are optimal filtering [101], fingerprint verification
[93], separation of chirplets [38, 42, 110], medical ultrasound imaging [76], study
of marine mammals communication [107], etc.

More information on the FrFT can be obtained from the Fractional Fourier Trans-
form web page (related to [132]) (see the Resources section).

0 50 100 150 200 250 300 350 400 450 500
-1

-0.5

0

0.5

1

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

Fractional Fourier
transform (a=0.8)

Fig. 7.37 Fractional Fourier transform of a chirp which rate corresponds to the transform exponent

426 7 Time-Frequency Analysis

7.9 Adaptation and Decomposition for Better Signal
Representation

A main problem of quadratic TFRs is interference. Given two points of a signal,
interferences appear in the line joining these points. Therefore, signal arcs are accom-
panied by interferences external to the arcs, except for the case that the signal points
draw a straight line: mutual interferences lay on this same line. Therefore, sev-
eral signal representation approaches try to introduce changes to convert signal arcs
into straight lines. This could be done by axis changes, by signal manipulation—for
instance, modulation—, or by using different transforms. The Fourier transform uses
a basis of exp(jwt) functions, other transforms can be obtained by basis change.

Another point of view is related with compression. Suppose the case of a multi-
component signal with 3 s of 15 Hz. sinusoid, then 12 s of 22 Hz triangular, and then
8 s of 7 Hz square. Of course the signal could be sampled, and be saved as a sample
data file. But you can also describe it as SN(3, 15), TR(12, 22), SQ(8, 7). It would
be really compact, and accurate; and you can easily draw from it a TF plane with no
interferences. This is a decomposition using a dictionary of basis functions.

Consider a single sea wave. It may be considered as the superposition of sev-
eral sinusoidal harmonics. It happens that low frequency harmonics travel with high
speed, while high frequency harmonics travel with low speed. These speed differ-
ences make the wave profile to change as the wave propagates. This is a general
phenomenon in dispersive media. If you send an underwater chirped sound, starting
with low frequency and ending in high frequency, it is possible that harmonics become
coincident at a given distance, with large energy concentration. For the reverse case,
sending from high frequency to low frequency, propagation could get a linear fre-
quency evolution from an initial curved frequency evolution. Whales send sound
chirps. Bats do the same. There is a great deal of scientific interest on chirps, to the
point that they are candidates to be basis functions or to be included in a dictionary
of basis functions.

It has been found that phase information is useful for great improvements of linear
and quadratic TFRs. For instance, this information can be used for reassignment,
recognizing local ‘centres of gravity’ of signal energy in the TF plane.

In this section several proposals will be introduced for better signal representation.

7.9.1 The Chirplet Transform

Tilings with rectangular pieces have been used so far, like in the Gabor transform or
in the wavelet transform.

One of the first papers on the chirplet transform [116], uses the followingmetaphor
to introduce this new transform: suppose one grabs the four corners of the rectangular

7.9 Adaptation and Decomposition for Better Signal Representation 427

Fig. 7.38 An oblique
perspective

tile andmoves wherever each corner, as one wishes. Chirplets are based on such tiles,
which may be rectangular or not. There is a mother chirplet, and babies [114].

Clearly, the STFT, the wavelet transform, etc., are particular cases of chirplet
transform.

Next photograph (Fig. 7.38), which is a view of the building where the author
of this book works, suggests that trapezoidal tiles would be a suitable approach for
block-by-block image processing taking into account the perspective. This is roughly
the idea of using chirplets in the time-frequency plane.

7.9.1.1 Types of Chirplets

There are several types of chirplets:

• Co-linear: 8 parameters, which are the time-frequency coordinates of each corner.
• Perspective: 7 parameters. For example the oblique photography of a brick-wall
(bricks are taken in perspective).

• Affine: 6 parameters, for shifting and shearing of the basic rectangular tile.
Figures7.38 and 7.39 show affine transformations of the rectangular tile.

• Symplectic: 5 parameters. Constant time-bandwidth product tiles.
• Time and frequency shear invariant: 4 parameters.

Figure7.39 shows in the time-frequency plane four affine transformations of the
basic rectangular tile.

Figure7.40 shows in the time-frequency plane, two more affine transformations
and two perspective projections of the basic rectangular tile.

Some authors have proposed to include also rotations for tiling changes [31].
According with [60], in general a chirp has the following form:

h(t) = a(t) · exp(j ϕ(t)) (7.186)

428 7 Time-Frequency Analysis

time

fre
qu

en
cy

time

fre
qu

en
cy

time

fre
qu

en
cy

time

fre
qu

en
cy

time-shift freq.-shift

dilation in time dilation in freq

Fig. 7.39 Four affine transformations of the rectangular tiling

time

fre
qu

en
cy

time

fre
qu

en
cy

time

fre
qu

en
cy

time

fre
qu

en
cy

perspective in time

shear in time shear in freq

perspective in freq

Fig. 7.40 Two more affine transformations, and two perspective projections

7.9 Adaptation and Decomposition for Better Signal Representation 429

Fig. 7.41 Wigner
distribution of prolate signal

0 20 40 60 80 100
0

20

40

60

80

100

where a(t) is a positive, low-pass and smooth amplitude function whose evolution is
slowcompared to the oscillations ofφ(t). Expression (7.186) canbe seen aswindowed
oscillating signal. The form of the window a(t) may rectangular, or Gaussian, or any
other alternative. The choice of window, and the choice of φ(t) originate several
categories of chirplets.

7.9.1.2 Illustration Using Prolate Function

An interesting way to illustrate the tiling transformations is bymeans of prolate func-
tions. This wasmade, for instance, in [116].With the term ‘prolate’ we schematically
refer to the Discrete Prolate Spheroidal Sequences, also denoted as Slepians. This
type of signals y(t) have most of the energy of y(t) and Y(ω) concentrated in a
time-frequency rectangle.

Figure7.41 shows the Wigner distribution of an example. The figure has been
generated with the Program 7.15 which uses the dpss() MATLAB SPT function to
generate the prolate signal. The program uses modulation to place the signal near
the centre of the figure (frequency-shift).

Program 7.15 Wigner distribution of prolate signal

%Wigner distribution of prolate signal
%The prolate signal for our example
[yy ,c]=dpss (1001 ,110);
ys=sum(yy ');
%frequency shift to center:
pp =(1:1001)/1001; ys=ys.*cos (300*2* pi*pp);
ym=ys (300:700); ym=ym -mean(ym);
zey=zeros (1 ,200);
yr=[zey ,ym ,zey];
y=hilbert(yr)';
Ny=length(y);

430 7 Time-Frequency Analysis

%WIGNER ---
zerx=zeros(Ny ,1); aux=zerx;
lm=(Ny -1)/2;
zyz=[zerx; y; zerx]; %sandwich zeros -signal -zeros
%space for the Wigner distribution , a matrix:
WD=zeros(Ny ,Ny);
mtau =0:lm; %vector(used for indexes)
for nt=1:Ny ,

tpos=Ny+nt+mtau; %a vector
tneg=Ny+nt -mtau; %a vector
aux(1:lm +1)=(zyz(tpos).*conj(zyz(tneg)));
aux (1)=0.5*aux (1); %will be added 2 times
fo=fft(aux ,Ny)/(Ny);
%a column (harmonics at time nt):
WD(:,nt)=2* real(fo);

end
t=0:(110/800):110; f=0:(110/800):110;
%result display
figure (1)
colmap1; colormap(mapg1); %user colormap
imagesc(t,f,log10(0 .0005+abs(WD))); axis xy;
title('Wigner distribution of prolate signal');

Figure7.42 shows the effect of frequency shear. The figure has been generated
with the Program 7.16, which is similar to Program 7.15 with the only difference of
some new lines devoted to frequency shearing.

Fig. 7.42 Wigner
distribution of prolate
function with frequency
shear

0 20 40 60 80 100
0

20

40

60

80

100

7.9 Adaptation and Decomposition for Better Signal Representation 431

Program 7.16 Wigner distribution of prolate signal with frequency shear

%Wigner distribution of prolate signal
% with frequency shear
%The prolate signal for our example
[yy ,c]=dpss (1001 ,110);
ys=sum(yy ');
%frequency shift to center:
pp =(1:1001)/1001; ys=ys.*cos (300*2* pi*pp);
ym=ys (300:700); ym=ym -mean(ym);
yc=hilbert(ym); %central signal
%frequency shear
fb=0; fe=40; tt =(1:401)/401;
M=fb+((fe -fb)*tt); %set of modulation frequencies
yx=yc.*exp(-(i*2*pi*M).*tt); %chirp modulation
zey=zeros (1 ,200);
y=[zey ,yx ,zey]';
Ny=length(y);
%WIGNER ---
zerx=zeros(Ny ,1); aux=zerx;
lm=(Ny -1)/2;
zyz=[zerx; y; zerx]; %sandwich zeros -signal -zeros
%space for the Wigner distribution , a matrix:
WD=zeros(Ny ,Ny);
mtau =0:lm; %vector(used for indexes)
for nt=1:Ny ,

tpos=Ny+nt+mtau; %a vector
tneg=Ny+nt -mtau; %a vector
aux(1:lm +1)=(zyz(tpos).*conj(zyz(tneg)));
aux (1)=0.5*aux (1); %will be added 2 times
fo=fft(aux ,Ny)/(Ny);
%a column (harmonics at time nt):
WD(:,nt)=2* real(fo);

end
t=0:(110/800):110; f=0:(110/800):110;
%result display
figure (1)
colmap1; colormap(mapg1); %user colormap
imagesc(t,f,log10(0 .0005+abs(WD))); axis xy;
title('Wigner distribution of prolate signal
with frequency shear');

7.9.1.3 Decomposition of the Chirplet Transform

Recall the effect of the LCT on Wigner (Sect. 7.8.3.). In a similar way, the chirplet
transform can be seen as a change of coordinates in the time-frequency plane. This
change can be decomposed into several steps. For example:

(
t′
ω′

)
=

(
1 0
−q 1

) (
1 − p
0 1

) (
e−a 0
0 ea

)
×

((
t
ω

)
−

(
τ
0

)
−

(
0
θ

))

(7.187)

432 7 Time-Frequency Analysis

From left to right, the decomposition in (7.187) reads: shearing in frequencydirection,
shearing in time direction, scaling, time-shift, frequency shift.

7.9.1.4 Gaussian Chirplets

Many research papers on signals observed in nature, like biomedical signals or
earthquake records, use chirplet transform on a basis of Gaussian chirplet atoms
[18, 124, 159].

A typical formulation of a Gaussian chirplet atom is the following:

hθ(t) = 1

(π d)1/4
· exp

(
− (t − t0)2

2 d

)
· exp

(
−j ·

[
ω0 + c

2
(t − t0)

]
(t − t0)

)

(7.188)
where t0 is location in time, ω0 is location in frequency, c is chirp rate, and d is
duration. The set of four parameters is denoted as θ= [t0,ω0, c, d].

The atoms satisfy that:
‖ h‖2 =< h , h >= 1 (7.189)

The chirplet transform of a signal y(t) is given by:

aθ =< y , hθ >=
∞∫

−∞
y(t) h∗

θ(t) dt (7.190)

Now, let us study in more detail the Gaussian chirplet atoms. Figure7.43 shows
an example corresponding to a particular selection of parameter values (see Program
7.17).

Program 7.17 Gaussian chirplet

% Gaussian chirplet
t0=5; w0=10; d=6; c=2; %chirplet parameters
t=0:0 .05 :12; %times vector
g=exp(-(0.5/d)*((t-t0).^2));
v=exp(-j*(w0+((0.5*c)*(t-t0))).*(t-t0));
h=(1/((pi*d)^0.25))*g.*v;
plot(t,real(h),'k');
title('Gaussian chirplet signal'); xlabel('sec');

Notice in Fig. 7.43 that the signal frequency changes linearly along time. For
this reason, sometimes the chirplet is denoted as linear FM chirplet. Note that when
chirp rate c > 0, the signal frequency increases, when is c < 0 the signal frequency
decreases.

Consider now the Wigner distribution of the chirplet atom example. It is shown
in Fig. 7.44 (the corresponding program is listed in Appendix B).

The Wigner representation of Gaussian chirplet atoms are straight lines. Using
these lines piecewise approximations of any signal can be done. This approximation

7.9 Adaptation and Decomposition for Better Signal Representation 433

Fig. 7.43 Example of
Gaussian chirplet atom

0 2 4 6 8 10 12
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

sec

Fig. 7.44 Wigner
distribution of a Gaussian
chirplet atom

ra
d/

s

seconds
0 2 4 6 8 10 12

0

10

20

30

40

50

60

can be expressed as a weighted sum of N chirplets:

ỹ(t) =
N∑

i=1

aθihθi(t) (7.191)

where θi are sets of parameters:
θ1 = [t01, ω01, c1, d1], θ2 = [t02, ω02, c2, d2],…, θN = [t0N, ω0N, cN , dN].

434 7 Time-Frequency Analysis

7.9.1.5 Other Chirplets

Coming back to Eq. (7.186) there are power-law chirps, with a(t) proportional to
|t| −p and with φ(t) = d|t|β .

As an extension of power-law chirps, there are hyperbolic chirps, with φ(t) =
dlog|t|. The hyperbolic chirplet transform is particularly useful for the analysis of
Doppler tolerant signals, like the chirps used by bats for echolocation.

In connection with radar and sonar, a version of chirplets that include the Doppler
effect equation has been proposed, with the name ‘dopplerlets’. Here is one of the
proposed equations for the dopplerlet:

hθ(t) = 1

(π d)1/4
· exp

(
− (t − t0)2

2 d

)
·

· exp
⎛

⎝−j · 2
λ

√

r20 +
[

L0 −
(

v0t + 1

2
a0t2

)]2
⎞

⎠
(7.192)

where λ is the wavelength of the transmitted signal, r0 is the miss distance, L0 is the
relative distance from transmitter to target, v0 and a0 are the velocity and acceleration
of the moving target.

The dopplerlets are used to analyse the radar echoes in order to estimate the target
motion parameters (see [183, 184] and references therein). Figure7.45, which has
been generated with the Program 7.18, shows an example of dopplerlet.

Fig. 7.45 Example of
dopplerlet

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

sec

7.9 Adaptation and Decomposition for Better Signal Representation 435

Program 7.18 Dopplerlet

% Dopplerlet
%chirplet parameters:
t0=0.3; d=0.01; landa=0.1; r0=10; L0 =1000;
v0 =500; ac=-20;
t=0:0 .005:0.8; %times vector
g=exp(-(0.5/d)*((t-t0).^2));
mx=L0 -((v0*t)+(0.5*ac*(t. ^2)));
me=sqrt(r0^2+(mx. ^2));
v=exp(-j*(2/ landa)*me);
h=(1/((pi*d)^0.25))*g.*v;
figure (1)
plot(t,real(h),'k');
title('dopplerlet signal'); xlabel('sec');

There are signals with periodic, or quasi-periodic, frequency fluctuations, like
for instance music tones with vibrato effect, radar echoes from sea waves or
mechanical vibrations. For these cases the so-called ‘warblets’ have been proposed
[9, 115, 177]. Here is an example of warblet expression,

hθ(t) = 1

(π d)1/4
· exp

(
− (t − t0)2

2 d

)
·

· exp (−j · [ω0 + α · sin(ω · (t − t0) + ϕ)] (t − t0))

(7.193)

Figure7.46 shows an example of warblet, and Fig. 7.47 shows the evolution of the
warblet instantaneous frequency. Clearly it is a case of sinusoidal FM. Both figures
have been generated with the Program 7.19.

Fig. 7.46 Example of
warblet

0 2 4 6 8 10 12
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

sec

436 7 Time-Frequency Analysis

Fig. 7.47 Instantaneous
frequency of the warblet
example

0 2 4 6 8 10 12
8

8.5

9

9.5

10

10.5

11

11.5

12

sec

ra
d/

s

Program 7.19 Warblet

% Warblet
%chirplet parameters
t0=5; w0=10; d=6; ma=2; mw=1; mf=0;
t=0:0 .05 :12; %times vector
g=exp(-(0.5/d)*((t-t0).^2));
insf=w0+(ma*sin((mw*(t-t0))+mf));
v=exp(-j*(insf.*(t-t0)));
h=(1/((pi*d)^0.25))*g.*v;
figure (1)
plot(t,real(h),'k');
title('warblet signal'); xlabel('sec');
figure (2)
plot(t,insf ,'k')
title('instantaneous frequency of warblet signal');
xlabel('sec'); ylabel('rad/sec');

Manyother types of chirplets have been proposed. For instance, harmonic versions
for audio signals, or versions based onmechanical wave physics, or based on damped
sinusoids, etc. A lot of efforts has been devoted to biomedical signals, and earthquake
signals, trying to match specific chirplet designs to the kind of expected signals in
each context; an interesting example is provided by evoked potentials and their use
for brain-machine interface.

7.9.1.6 Matching Pursuit, and Other Approximation Methods

In 1993 Mallat and Zhang proposed [113], an iterative method that they denoted as
matching pursuit, to decompose nonstationary signals into elementary components
(atoms). The algorithm selects atoms from a set of atoms denoted as Dictionary.

7.9 Adaptation and Decomposition for Better Signal Representation 437

Consider a signal y(t) to be decomposed into atoms. After the first M iterations
of the matching pursuit, one obtains:

y(t) =
M∑

i=1

Cihθi(t) + RMy (7.194)

where RMy is the residual of the approximation.
The algorithm starts withR0y = y(t), and it selects the best atom of the dictionary:

the atom which gives the largest inner product with the signal (7.190). Next, the
residual R1y is obtained (removing the identified component from the signal), and
a second best atom is selected, the one which gives the largest inner product <

R1y, hθ >. This second component is removed; a second residual is determined, and
so on.

The matching pursuit algorithm was introduced considering the use of Gabor
atoms. After some years it was proposed to use the algorithm for chirp atoms. The use
of an orthonormal basis of chirp atoms could be too inflexible for certain applications,
and redundant dictionaries could be a better alternative. Several improvements of the
algorithm have been proposed, like the ridge pursuit, for fast signal matching [72].
In general, there is a matter of obtaining hints from the signal, for better adaptation of
the dictionary. The research continues with several approaches: best basis selection,
heuristic optimization, analytic determination of best atoms, etc.

In general the dictionary should contain goodmatching candidates. In otherwords:
the dictionary should be built using a priori knowledge, guessing underlying models
of the signal components.

If there are good pieces for matching in the dictionary, good representations of
signals could be obtained with few parameters: this is denoted as sparse representa-
tions.

7.9.2 Unitary Equivalence Principle

Using unitary operators U, it is possible to obtain unitary equivalents of the opera-
tor A:

Ã = U−1 A U (7.195)

This expression can be used to build convenient operators, by composition of a
central operator and two unitary operators: one for pre-processing, and the other for
post-processing.

The unitary equivalence principlewas introduced in [16, 17] for the signal analysis
context. An illustrative example they proposed was the case of a triangular wave
subject to a FMmodulation. This signal suffers noise contamination. It is problematic
to try a filter for signal cleaning, since the FM modulation causes a large bandwidth
to let pass. A solution is to demodulate the signal, apply a conventional filter, and
then re-modulate the signal.

438 7 Time-Frequency Analysis

7.9.2.1 Example: Time-Warping

Another example is provided by scientists dealing with marine mammal signals [92].
The Wigner representation of these signals suffers from interferences. The proposal
for representation improvement is to use a time-warping technique, by means of a
time-warping operator:

(Ww y)(t) = √|ẇ(t)| y(w(t)) (7.196)

where w(t) is a time-warping function.
In general w(t) is chosen to linearize the behaviour of a signal, or to transform a

non-stationary characteristic of the signal into a stationary one.
To unwarp the signal, one uses:

C

(
w(t),

ω′

ẇ (w−1(t))

)
(7.197)

For instance, consider the signal:

y(t) = exp (j · θ · tK) (7.198)

Let us build a unitary time-warping operator. Select the following time-warping
function:

w(t) = t1/K (7.199)

Therefore:

ẇ(t) = 1

K
(t1−K)1/K (7.200)

Then, one applies the change of variables:

t′ = w−1(t) = tK

ω′ = ẇ(w−1(t)) · ω = ẇ(tK) · ω =
= 1

K

(
(tK)1−K)

)1/K · ω = 1
K (t1−K) · ω

(7.201)

The warped signal is:

(Ww y)(t) = (t1−K)1/(2K)

√
K

ejθ t (7.202)

The following figures have been obtained for the case θ = 5, K = 1.4.

7.9 Adaptation and Decomposition for Better Signal Representation 439

Fig. 7.48 The modulated
signal

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

seconds

Figure7.48 shows the original modulated signal (a chirp). The figure has been
generated with the Program 7.20.

Program 7.20 Modulated signal

% Modulated signal
fs =100; %sampling frequency in Hz
tiv=1/fs; %time between samples
%time intervals set (10 seconds)(t>0):
t=tiv:tiv :(10+ tiv);
fsig =5; %signal base frequency in Hz
wsig=fsig *2*pi; %signal base frequency in rad/s
K=1.4; %modulation exponent
y=exp(-i*wsig*(t.^K))'; %the modulated signal
yr=real(y);
plot(t,yr ,'k');
axis ([0 2 -1 1]);
title('Modulated signal (first 2 seconds)');
xlabel('seconds ');

Figure7.49 shows the Wigner distribution of the original signal. There are inter-
ferences.

The figure has been obtained with the Program B.13, which is similar to other
programs already listed. Hence, Program B.13 has been included in the Appendix B.

Now, let us apply the change of variables to obtain the warped signal.
Next three figures, which have been obtained with the Program 7.21, show impor-

tant aspects of the process.
Figure7.50 shows theWigner distribution of the warped signal. It is a straight line

corresponding to a constant frequency θ/K . No interferences.

440 7 Time-Frequency Analysis

Fig. 7.49 Wigner
distribution of the original
signal

seconds

H
z

1 2 3 4 5 6 7 8 9 10

5

10

15

20

25

Fig. 7.50 Wigner
distribution of the warped
signal

ba
se

 fr
eq

ue
nc

y

warped time
0 5 10 15 20 25

5

10

15

20

25

Program 7.21 Wigner distribution of a warped modulated signal

%Wigner distribution of a warped modulated signal
fs=50; %sampling frequency in Hz
tiv=1/fs; %time between samples
%time intervals set (10 seconds)(t>0):
t=tiv:tiv :(10+ tiv);
fsig =5; %signal base frequency in Hz
wsig=fsig *2*pi; %signal base frequency in rad/s
K=1.4; %modulation exponent
%the original modulated signal:
oy=exp(-i*wsig*(t.^K))';
Ny=length(oy); %odd number
fiv=fs/(2*Ny);
f=fiv:fiv:(fs/2); %frequencies set
Cex=(1-K)/(2*K);

7.9 Adaptation and Decomposition for Better Signal Representation 441

Cwp=(t.^Cex)/sqrt(K); %factor
y=(Cwp.*exp(-i*wsig*t))'; %warped signal
%WIGNER ---
zerx=zeros(Ny ,1); aux=zerx;
lm=(Ny -1)/2;
zyz=[zerx; y; zerx]; %sandwich zeros -signal -zeros
%space for the Wigner distribution , a matrix:
WD=zeros(Ny ,Ny);
mtau =0:lm; %vector(used for indexes)
for nt=1:Ny ,

tpos=Ny+nt+mtau; %a vector
tneg=Ny+nt -mtau; %a vector
aux(1:lm +1)=(zyz(tpos).*conj(zyz(tneg)));
aux (1)=0.5*aux (1); %will be added 2 times
fo=fft(aux ,Ny)/(Ny);
%a column (harmonics at time nt):
WD(:,nt)=2* real(fo);

end
wrt=zeros(Ny ,1); fcc=zeros(Ny ,1);
wrt=t.^K; %warped time
%frequency conversion coefficient :
fcc=(t.^(1-K))/K;
%result display
figure (1)
colmap1; colormap(mapg1); %user colormap
imagesc(wrt ,f,log10(0.1+abs(WD))); axis xy;
title('Wigner distribution of
the warped modulated signal');
ylabel('base frequency '); xlabel('warped time');
figure (2)
plot(t,wrt ,'k');
title('time warping '); grid;
xlabel('t'); ylabel('warped time');
figure (3)
plot(t,fcc ,'k');
title('frequency conversion along time'); grid;
xlabel('t'), ylabel('fcc');

Figure7.51 shows the time-warping.
The conversion of frequencies can be written as follows:

ω′ = 1

K
(t1−K) · ω = fcc · ω (7.203)

where we introduced the factor fcc. Figure7.52 shows the value of this factor along
time.

The next step is to invert the frequency conversion, directly on theWigner distribu-
tion. This is done in theProgram7.22, by changing imagematrix indexes. Figure7.53.
shows the result: a well localized Wigner distribution, with some dispersion due to
the matrix discretization.

442 7 Time-Frequency Analysis

Fig. 7.51 The time-warping
relationship

0 2 4 6 8 10 12
0

5

10

15

20

25

30

t

w
ar

pe
d

tim
e

Fig. 7.52 The frequency
conversion factor

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

t

fc
c

Program 7.22 Unwarping the Wigner distribution of the warped signal

%Unwarping the Wigner distribution of warped signal
clear all
fs=50; %sampling frequency in Hz
tiv=1/fs; %time between samples
%time intervals set (10 seconds)(t>0):
t=tiv:tiv :(10+ tiv);
fsig =5; %signal base frequency in Hz
wsig=fsig *2*pi; %signal base frequency in rad/s
K=1.4; %modulation exponent
%the original modulated signal:
oy=exp(-i*wsig*(t.^K))';
Ny=length(oy); %odd number
fiv=fs/(2*Ny);
f=fiv:fiv:(fs/2); %frequencies set

7.9 Adaptation and Decomposition for Better Signal Representation 443

Cex=(1-K)/(2*K);
Cwp=(t.^Cex)/sqrt(K); %factor
y=(Cwp.*exp(-i*wsig*t))'; %warped signal
%WIGNER ---
zerx=zeros(Ny ,1); aux=zerx;
lm=(Ny -1)/2;
zyz=[zerx; y; zerx]; %sandwich zeros -signal -zeros
%space for the Wigner distribution , a matrix:
WD=zeros(Ny ,Ny);
mtau =0:lm; %vector(used for indexes)
for nt=1:Ny ,
tpos=Ny+nt+mtau; %a vector
tneg=Ny+nt -mtau; %a vector
aux(1:lm +1)=(zyz(tpos).*conj(zyz(tneg)));
aux (1)=0.5*aux (1); %will be added 2 times
fo=fft(aux ,Ny)/(Ny);
WD(:,nt)=2* real(fo); %a column (harmonics at time nt)
end
wrt=zeros(Ny ,1); fcc=zeros(Ny ,1);
wrt=t.^K; %warped time
%frequency conversion coefficient:
fcc=(t.^(1-K))/K;
%Unwarping ----------------
UWD=zeros(Ny ,Ny);
for j=1:Ny , %times

kk=1; k=1;
while k<=Ny , %frequencies

kk=1+ round(k/fcc(j));
if kk <=Ny ,

UWD(kk ,j)=WD(k,j); %expansion
else

k=Ny;
end;
k=k+1;

end
end
%result display
figure (1)
colmap1; colormap(mapg1); %user colormap
imagesc(t,f,log10(0.1+abs(UWD))); axis xy;
xlabel('seconds '); ylabel('Hz');
title('Unwarped Wigner distribution ');

7.9.2.2 Some Application Alternatives

Notice that the Fourier transform is a unitary operator. Also, recall from Sect. 7.6.1.
that frequency-shift (modulation) and time-shift operators are unitarily equivalent:

Mμ = F−1Tμ F (7.204)

444 7 Time-Frequency Analysis

Fig. 7.53 Unwarped Wigner
distribution

seconds

H
z

1 2 3 4 5 6 7 8 9 10

5

10

15

20

25

In general, the warping operator can be written as:

(Ww y)(x) = √|ẇ(x)| y(w(x)) (7.205)

For the case of x being frequency, the operator is applied in the frequency domain
using Fourier transform: F−1 Ww F.

Examples of useful warpings are:

w(x) = |x|k · sgn(x) (7.206)

And,
w(x) = ex (7.207)

This last warping, in the frequency domain, is useful for hyperbolic chirps and similar
signals.

The previous detailed example of time-warping was centred on the Wigner distri-
bution. A similar process, for warping in general, could be applied for Cohen’s class
distributions, or affine class distributions (see [17]).

Frequency warping is a common technique in the context of speech processing,
[104, 134, 165].

7.9.3 The Reassignment Method

When one sees the spectrogram of a chirp, one could easily guess from the blurred
image how the curve goes. One could imagine that energy becomes dispersed around
a main narrow path, which corresponds to maximum energy. It would be beneficial,

7.9 Adaptation and Decomposition for Better Signal Representation 445

Fig. 7.54 Re-assigning idea

for the sake of recovering a neat curve, to counteract the energy dispersion by re-
assigning lower energy points to maximum energy points. Figure7.54, tries to illus-
trate the idea considering a zone of maximum energy surrounded by lower energy
zones; by re-assigning, all energy comes to the concentrated area.

Notice that the concentrated area is not at the centre of the region considered.
Then, it is not a matter of geometrical centre. Instead, it can be considered as a centre
of gravity (or energy).

Insisting a little bit more on the concept, Fig. 7.55 shows part of a spectrogram,
where a centre of maximum energy is surrounded by other lower energy rectangles.
After re-assignment, this part of the spectrogram reduces to the maximum energy
rectangle.

Recall that in Sect. 7.5.6, in Eq. (7.88) the spectrogram was expressed as follows:

SFy(t,ω) = 1
2π

∞∫
−∞

∞∫
−∞

W Dw(t′ − t,ω′ − ω) W Dy (t′,ω′) dω′ dt′

where WDw is the Wigner distribution of the window.
Notice that this expression means that the value of the spectrogram at any given

point (t,ω) is the sum of a whole energy distribution around its geometrical centre.

Fig. 7.55 A re-assigned spectrogram example

446 7 Time-Frequency Analysis

However, it would be better to compute the coordinates of the centre of gravity,
denoted as (t̂, ω̂). This can be done as follows [11]:

t̂(t,ω) = 1

2π SFy(t,ω)

∞∫

−∞

∞∫

−∞
t′ W Dw(t′ − t,ω′ − ω) W Dy (t′,ω′) dω′ dt′

ω̂(t,ω) = 1

2π SFy(t,ω)

∞∫

−∞

∞∫

−∞
ω′ W Dw(t′ − t,ω′ − ω) W Dy (t′,ω′) dω′ dt′

And then, the reassigned spectrogram would be:

rSFy(t,ω) = 1

2π

∞∫

−∞

∞∫

−∞
SFy(t

′,ω′) δ(t̂(t′,ω′) − t) δ(ω̂(t′,ω′) − ω)dω′ dt′

The first contributions on this approach related t̂ and ω̂ to the phase of the STFT.
After some years, it was shown [12] (see also [62]), that it is possible to obtain (t̂, ω̂)

using the normal STFT—that will be denoted as Fw
y to indicate that the window w

is employed—and two additional STFTs, as follows:

t̂(t,ω) = t − Re

{
Ft w

y

Fw
y

}

ω̂(t,ω) = t + Im

{
Fdw/dt

y

2π Fw
y

}

There is a number ofMATLAB implementations available from Internet, like the one
provided by Auger, or the code linked to the Thesis [127], or some of the functions
included in the LTFAT toolbox.

One of the applications of reassignment is in speech processing [64, 65]. The
article [64] includes a brief history of reassignment, with a mention to the important
contribution from Kodera et al. in the late 70s.

In order to give an example one of the signals included in the previous chapter, the
siren signal, has been chosen. Figure7.56 shows again the conventional spectrogram
of this signal.

The reassignment method has been applied, and the result is shown in Fig. 7.57.
A gray scale has been selected for a better view. Notice that the fine details of the
signal are now clearly visible.

7.9 Adaptation and Decomposition for Better Signal Representation 447

Fig. 7.56 Original
spectrogram of the siren
signal

Time

Fr
eq

ue
nc

y

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

6000

7000

8000

Fig. 7.57 Reassigned
spectrogram of the siren
signal

Time

Fr
eq

ue
nc

y

0.2 0.4 0.6 0.8 1 1.2

1000

2000

3000

4000

5000

6000

7000

8000

The Fig. 7.57 has been generated with the ProgramB.14, which has been included
in Appendix B. The implementation is based on the code available from the web page
of Kelly Fitz (see the Resources section).

7.10 Other Methods

Although our wish is not to embark on an exhaustive treatise of time-frequency
analysismethods, there are still some transforms that should be succinctlymentioned.

448 7 Time-Frequency Analysis

7.10.1 The Modified S-Transform

Accordingwith [169], the S-transform can be viewed as an intermediate step between
the STFT and the continuous wavelet. This transform was introduced by Stockwell
et al. in 1996 [162]. The literature refers to it as S-transform or Stockwell-transform,
and it is defined as follows:

S(τ , f) =
∞∫

−∞
y(t) w(τ − t, f) e−j 2π f tdt (7.208)

The window function w() is generally chosen to be positive and Gaussian:

w(τ − t, f) = |f |√
2π

exp

(
f 2(τ − t)2

2

)
(7.209)

This window is narrower at higher frequencies and wider at low frequencies. Com-
pared to theSTFT, theS-transformprovides better time resolution at high frequencies,
and better frequency resolution at low frequencies. It is invertible, and it does not
have cross-term interferences.

Several generalizations and extensions of the window have been proposed
[117, 118, 138, 139]. In particular [117] suggests using:

w(τ − t, f) = |f |
k
√
2π

exp

[
−1

2

(
f (τ − t)

k

)2
]

, k > 0 (7.210)

When k increases, the frequency resolution increases, while the time resolution
decreases.

In [10] a modification of the window is introduced. Instead of using a constant
value of k, it is made dependent on the frequency as: k = m f + q. In this way, an
improved progressive resolution is achieved.

In order to compare the S-transformwith the STFT, a linear chirp has been chosen.
Figure7.58 shows its spectrogram.

The modified S-transform of [10] has been applied to that linear chirp, obtaining
the result shown in Fig. 7.59. Obviously, it is less blurry than the spectrogram.

Both Figs. 7.58 and 7.59 have been generated with the Program 7.23, which is
based on the implementation due to K.S. Dash available from the Mathworks file
exchange site.

7.10 Other Methods 449

Fig. 7.58 Spectrogram of a
linear chirp

Time

Fr
eq

ue
nc

y

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

60

70

80

90

100

Fig. 7.59 Modified
S-transform of the linear
chirp

Time

Fr
eq

ue
nc

y

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

60

70

80

90

100

Program 7.23 Modified S-transform

%Modified S-transform ,example with linear chirp
% the signal
tiv=0.005;
t=0:tiv:(3-tiv);
fs=1/tiv;
yc=exp(-j*70*(t.^2));
y=real(yc);
Ny=length(y); %even length
m=Ny/2;
% The transform -------------------------------------
% preparation:
f=[0:m -m+1: -1]/Ny; %frequencies vector
S=fft(y); %signal spectrum
% Form a matrix of Gaussians (freq. domain)

450 7 Time-Frequency Analysis

q=[1./f(2:m+1)]';
k=1+(5* abs(f));
W=2*pi*repmat(f,m,1).*repmat(q,1,Ny);
for nn=1:m,
W(nn ,:)=k(nn)*W(nn ,:); %modified S-transform
end
MG=exp((-W. ^2)/2); % the matrix of Gaussians
% Form a matrix with shifted FFTs
Ss=toeplitz(S(1:m+1)',S);
Ss=[Ss(2:m+1 ,:)]; %remove first row (freq. zero)
% S-transform
ST=ifft(Ss.*MG ,[] ,2);
st0=mean(y)*ones(1,Ny); %zero freq. row
ST=[st0;ST]; %add zero freq. row
% display ---------------------------------------
figure (1)
specgram(y,64,fs);
title('spectrogram of the linear chirp');
figure (2)
Sf =0:(2* fs/Ny):(fs/2);
imagesc(t,Sf ,abs(ST)); axis xy;
%set(gca ,'Ydir ','Normal ');
title('S-transform of the linear chirp');
xlabel('Time'); ylabel('Frequency ');

Suppose you have a sinewave contaminatedwith some spikes (for instance, due to
false contacts). It was shown in [162] that the STFTwould have difficulties to capture
these spikes (islands on the time-frequency plane), while the S-transform would
clearly detect them. This suggests a method for power quality analysis [43]. Another
interesting scenario is the mix of several sine waves with different frequencies; the
S-transform is well suited for discerning these components; for example, in [118]
the S-transform is used for gear vibration decomposition.

Other applications of the S-transform are the classification of multichannel
electrocorticogram for brain-computer interfacing [176], the analysis of newborn
electroencephalographic (EEG) data [10], removing powerline interference frombio-
medical signals [87], denoising of seismograms [136], heart sound analysis [106],
study of soil and building oscillations [49], alcoholism-related analysis of EEG [95],
image compression [170], etc.

S-transform windows must satisfy the condition:

∞∫

−∞
w(τ − t, f) dτ = 1 (7.211)

This condition assures,[139], that averaging of S(τ , f) over all values of τ yields
Y(f), the Fourier transform of y(t):

7.10 Other Methods 451

∞∫
−∞

S(τ , f)dτ =
∞∫

−∞
y(t)e−j 2π f t ×

∞∫
−∞

w(τ − t, f) dτ dt =

=
∞∫

−∞
y(t)e−j 2π f t dt = Y(f)

(7.212)

Since fromY(f) the original signal y(t) canbe recovered, theS-transform is invertible.

7.10.2 The Fan-Chirp-Transform

The Fan-Chirp (FC) transform was introduced in 2006 [96]. See also [172] for more
details and a good discussion. This transform can be defined as:

X(f ,β) =
∞∫

−∞
y(t) ξ∗(t, f ,α) dt (7.213)

where ξ () is the basis of the transform, having the following expression:

ξ(t, f , α) = √|φ′
α(t)| exp(−j 2π f φα(t)) (7.214)

and:

φα(t) =
(
1 + 1

2
α t

)
· t (7.215)

where α is the chirp rate, and φ′
α(t) is the time derivative of φα(t).

The term “Fan” comes from the geometry on the T-F plane corresponding to
the transform. This geometry is depicted in Fig. 7.60, where a tilted chirp has been
sketched.

It happens that the Fan geometry is suitable for the analysis of speech and animal
song segments, and for music. The FC transform can be regarded as the Fourier
transform of a warped-time version of the signal [172].

Like before, a linear chirp has been chosen in order to compare with the STFT.
Figure7.61 shows the spectrogram of the linear chirp.

And Fig. 7.62 shows the result obtained with the Fan-Chirp transform, which is
clearly better.

Figures7.61 and 7.62 have been generated with a program that has been included
in Appendix B. The program is a simplified version of the code available from the
COVAREP speech processing project (web site address in the Resources section).

In addition to the examples of speech analysis included in [51, 96, 172], there
are other reported applications related to music, like [19, 37, 160]. Detailed acad-
emic treatment can be found in [166, 173]. The article [171] discusses several fast
implementations of the transform.

452 7 Time-Frequency Analysis

Fig. 7.60 Geometry
corresponding to the
Fan-Chirp transform

T

F

Fig. 7.61 Spectrogram of a
linear chirp

Time

Fr
eq

ue
nc

y

2 4 6 8 10 12 14 16
0

50

100

150

200

250

7.10.3 The Mellin Transform

It is easy to imagine that the wovel ‘a’ pronounced by a whoman would be shorter
than the ‘a’ pronounced by a man. Hence, it is natural for the speech processing
community to deal with time-warping, in order to recognize the same ‘a’, or any
other speech component, from different people. Although the main interest of the
Mellin transform belongs to a theoretical andmathematical context, it is also suitable
for time-warping (also called: scaling). An illustrative example of application is [46],
for vowel recognition.

The history of theMellin transform takes us to a classicworld.Afirst consideration
was due to Riemann (1876). Explicit formulations were given by Cahen (1894) and

7.10 Other Methods 453

Fig. 7.62 Fan-Chirp
transform of the linear chirp

Time

Fr
eq

ue
nc

y

2 4 6 8 10 12 14 16
0

50

100

150

200

250

Mellin (1896). The Mellin transform of a complex-valued continuous function f ()
is defined as:

M(f , a) =
∞∫

0

f (t) tp−1dt (7.216)

where p = a + jb. In general, the integral does exist only for a1 < a < a2; the
values of a1 and a2 depending on f ().These two constants form the strip of definition
S(a1, a2), which could extend to a half-plane or even the whole complex plane.

With the change of variable t = exp(−x), the Mellin transform can also be
expressed as:

M(f , a) =
∞∫

−∞
f (e−x) e−pxdx (7.217)

Denote as L() the two-sided Laplace transform. It can be shown that:

M(f (t), s) = L(f (e−x)) (7.218)

Also, denoting as F() the Fourier transform, then:

M(f (t), p = a + j 2πω) = F(f (e−x) e−ax) (7.219)

Notice that the Mellin transform can be obtained via Fourier transform. Actually,
[45, 47] proposes a fast Mellin transform by computing an exponential time warp-
ing, followed by multiplication of f () and exp(−ax), finally followed by Fourier
transform.

454 7 Time-Frequency Analysis

An important property is the following; given a function h(t) = f (β t), then:

M(h(t), a) = β−p M(f (t), a) (7.220)

It can be said that the Fourier transform is a restriction of the two-sided Laplace
transform, by taking s = jω. Similarly, the ‘scale transform’ is a restriction of the
Mellin transform on the vertical line p = −j c + (1/2).

Therefore, the scale transform is:

D(f (t)) =
∞∫

0

f (t) e(−jc−1/2) ln tdt (7.221)

(t is expressed as exp(ln t))
The most relevant property of the scale transform is its scale invariance. If a

function h(t) is a scaled version of f (t), it happens that the transform magnitude of
both functions is the same. In mathematical terms, given that h(t) = f (β t), then:

D(h(t)) = βjc D(f (t)) (7.222)

Hence:
|D(h(t))| = |D(f (t))| (7.223)

Recall that a scale modification is a compression or expansion of the time axis of the
original function [47]. In the 2D context—for instance, images—this invariance is
useful for keeping recognizable shapes at different sizes. This is a main reason for
the scale transform (sometimes confused with the Mellin transform) to be popular.

A formal mathematical exposition of the Mellin transform can be found in
[23, 40]. Two illustrative applications are [75] for monitoring of structure health,
usingultrasonic guidedwaves, and [161] for estimationof directional brain anisotropy
fromEEG signals. A fastMellin transform implementation can be found in the Time-
Frequency Toolbox, in which this transform has been used for the coding of wide-and
and narrow-band ambiguity functions, and for the coding of the Bertrand distribu-
tion [13, 129]. Other implementations of the transform have been proposed, like [47,
186].

Fractional versions of the Mellin transform can be found in [24, 71, 126]. They
are well suited to analyze signals subject to hyperbolic frequency modulation, like
for instance chirps that you see on the T-F plane as hyperbolic arcs.

7.10 Other Methods 455

7.10.4 The Empirical Mode Decomposition
and Hilbert–Huang Transform

The Fourier decomposition of signals uses exponentials as a fixed type of basis
functions.Wavelets do something similar. Instead, the empiricalmodedecomposition
(EMD) obtains with an algorithm oscillating components of a signal, the typology of
these components not being fixed a priori. The EMD components are called ‘intrinsic
mode functions’ (IMF).

7.10.4.1 The Empirical Mode Decomposition

Let us introduce the EMD algorithm in words, as in [111]. After that, a graphical
illustration is added for rapid understanding.

IMF functions are denoted as imf(), and residuals as r(). The signal to be decom-
posed is y(t). Here is the algorithm:

1. Initialize: r0(t) = y(t) , i = 1
2. Extract the i-th IMF:

(a) Initialize: h0(t) = ri(t) , j = 1
(b) Extract the local minima and maxima of hj−1(t)
(c) Interpolate the local maxima and the local minima by a cubic spline to obtain

upper and lower envelopes of hj−1(t)
(d) Compute the mean mj−1(t) of the two envelopes
(e) hj(t) = hj−1(t) − mj−1(t)
(f) go to (b) with j = j + 1, unless stopping criterion is met

3. imfi(t) = hj(t) ; ri(t) = ri−1(t) − imfi(t)
4. If ri(t) has at least 2 extrema then go to 2 with i = i + 1

Else, end of the algorithm with the residue ri(t)

Next example is taken from [97]. Suppose we sampled the following signal:

y(t) = 0.5 t + sin(π t) + sin(2π t) + sin(6π t) + η (7.224)

where η is noise.
Figure7.63 shows the signal, the first IMF and the first residue.
From the 1st residue one obtains the second IMF and the second residue, as shown

in Fig. 7.64.
Let us apply theEMDalgorithm.The localmaxima andminimamust be identified,

and cubic splines are used to create an upper and a lower envelope. Figure7.65 shows
the two envelopes.

Now, the mean of the two envelopes is obtained. The result is shown in Fig. 7.66.
It is a curve in the middle, between upper and lower envelopes.

456 7 Time-Frequency Analysis

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-5

0

5

the signal

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-5

0

5

1st IMF

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

0

2

4

1st residue

Fig. 7.63 A signal, its 1st IMF, and its 1st residue

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

0

2

4

1st residue

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-5

0

5

2nd IMF

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

0

2

4

2nd residue

Fig. 7.64 The 1st residue, the 2nd IMF, and the 2nd residue

7.10 Other Methods 457

Fig. 7.65 The upper and
lower envelopes

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-3

-2

-1

0

1

2

3

4

5

6
the two envelopes

Fig. 7.66 The mean of the
two envelopes

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-3

-2

-1

0

1

2

3

4

5

6

Next step is to subtract the mean from the signal. Both the mean and the signal
are shown in Fig. 7.67.

The result of the subtraction is the first IMF, Fig. 7.68, which is the component
with highest frequency.

The remaining signal r = y − imf1 is the first residue, and is less oscillated
than the original signal. The procedure for obtaining the second IMF starts from this
residue and uses the same steps just described.

Perhaps the example just considered might give the false impression that IMFs
are sinusoidal functions. Far from that, in general IMFs are not sinusoidal; instead,
they usually are non-stationary signals: next examples will give you an idea of how
they may look.

458 7 Time-Frequency Analysis

Fig. 7.67 The signal and the
mean of envelopes

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

-1

0

1

2

3

4

5

Fig. 7.68 The first IMF

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

Note also that, in general, the extraction of one IMF takes some iterations before
the stopping criterion cited in the 2(f) step of the algorithm is met. In the simple
example just described we found the first IMF in just one iteration, but this is not the
normal case.

The iterative procedure for extraction of a set of IMFs is called ‘sifting’. The
signal is sequentially decomposed into the highest frequency component imf1 to the
lowest frequency component imfn. The final result is that:

y(t) =
n∑

i=1

imfi(t) + rn(t) (7.225)

7.10 Other Methods 459

IMF functions must satisfy two conditions:

• The number of extrema and the number of zero crossings must be equal or differ
at most by one

• Themean value of the upper and the lower envelope of the IMF is zero everywhere

7.10.4.2 The Hilbert–Huang Transform

The Hilbert transform has already been introduced in the previous chapter, but it is
opportune to add some more details [111]. Given a real signal y(t), it is possible to
build the corresponding analytic signal (also called ‘complex trace’):

Y(t) = y(t) + j H(y(t)) (7.226)

where H(y(t)) is the quadrature signal obtained with the Hilbert transform:

H(y(t)) = 1

π
PV

(∫ ∞

−∞
y(t)

t − τ
dτ

)
(7.227)

where PV(
∫ ∞
−∞) is the Cauchy principal value of the integral.

The analytic signal can also be obtained by:

1. Taking the Fourier transform of y(t)
2. Zeroing he amplitude for negative frequencies and doubling the amplitude for

positive frequencies
3. Taking the inverse transform.

The analytic signal can be expressed as: X(t) = A(t) ejθ(t). Its instantaneous
frequency is defined as:

ω(t) = dθ(t)

dt
(7.228)

Suppose that a set of IMFs has been obtained using EMD. If one computes the
analytic signal corresponding to each IMF, one gets:

z1(t) = imf1(t) + j H(imf1(t)) = A1(t) exp(j θ1(t)) (7.229)

z2(t) = imf2(t) + j H(imf2(t)) = A2(t) exp(j θ2(t)) (7.230)

zn(t) = imfn(t) + j H(imfn(t)) = An(t) exp(j θn(t)) (7.231)

The expansion of the signal in terms of these functions is:

y(t) =
n∑

i=1

Ai(t) exp(j θi(t)) (7.232)

460 7 Time-Frequency Analysis

Based on this expansion, it is possible to build a 3D plot of the amplitude at a given
time and frequency. This can be also represented with pseudo-colors on the time-
frequency plane. The resulting distribution is called ‘the Hilbert spectrum, H(t,ω)’.

For computation purposes, it is interesting to consider that, given the analytic
signal Y(t) = y(t) + j H(y(t)), then:

• Instantaneous amplitude: A(t) = √
y(t)2 + H(y(t))2

• Instantaneous phase: θ(t) = arctan H(y(t))
y(t)

• Instantaneous frequency: f (t) = ω(t)
2π = 1

2π
d
dt θ(t)

The methodology just described was introduced in [90], year 1998. In 2003,
Dr. Huang received the NASA Government Invention of the Year award. The name
“Hilbert–Huang Transform (HHT)” was also coined by NASA.

The EMD and the HHT have attracted a lot of attention, the main articles on this
methodology being cited thousands of times. The number of reported applications is
quite large and varied. For instance, in the review of HHT applications to geophysical
studies [89], more than 120 contributions are cited. In the review of biomedical appli-
cations [105], 32 contributions are cited. There is a complete book on engineering
applications [88]. Another book [146], is devoted to the HHT analysis of hydrolog-
ical and environmental time series. The applications extend also to economic data
analysis

There is a number of published improvements and variants. Of special relevance
is the ‘Ensemble Empirical Mode Decomposition’ [175], which adds white noise to
the data, builds and ensemble, applies sifting, and treats the mean as the final true
result.

See the Resources section for interesting web sites related to EMD. It is also most
convenient to read the algorithmic details discussed in [148].

7.10.4.3 Examples

In a first example we will apply empirical mode decomposition to a normal electro-
cardiogram, which is shown in Fig. 7.69.

The first five IMFs found with EMD are shown in Fig. 7.70. Notice how the
frequencies of the IMFs decrease from one IMF to the next IMF. Pay attention to the
scales of each plot.

In order to present more details, concerning the lower frequency components, the
6th to 10th IMFs are also shown in Fig. 7.71.

The three figures of this example have been obtainedwith the Program7.24,which
is a slightly modified version of a program written by Ivan Magrin–Chagolleau,
available at the MIT web address cited in the Resources section.

7.10 Other Methods 461

200 400 600 800 1000 1200 1400
6

6.5

7

7.5

8

8.5

9

9.5

Fig. 7.69 The electrocardiogram

0 200 400 600 800 1000 1200 1400
-0.1

0

0.1

0 200 400 600 800 1000 1200 1400
-1

0

1

0 200 400 600 800 1000 1200 1400
-0.5

0

0.5

0 200 400 600 800 1000 1200 1400
-0.5

0

0.5

0 200 400 600 800 1000 1200 1400
-0.5

0

0.5

Fig. 7.70 The first five IMFs

462 7 Time-Frequency Analysis

0 200 400 600 800 1000 1200 1400
-0.5

0

0.5

0 200 400 600 800 1000 1200 1400
-0.5

0

0.5

0 200 400 600 800 1000 1200 1400
-0.5

0

0.5

0 200 400 600 800 1000 1200 1400
-0.5

0

0.5

0 200 400 600 800 1000 1200 1400
-0.2

0

0.2

Fig. 7.71 The 6th to 10th IMFs

Program 7.24 EMD example

% EMD example
% ECG signal
%read data file
fs =200;
fer=0;
while fer==0,

fid2=fopen('ECGa.txt ','r');
if fid2==-1, disp('read error')
else ecgdat=fscanf(fid2 ,'%f \r\n'); fer=1;
end;

end;
fclose('all');
y=ecgdat (1:1400) '; %select a signal segment
Ny=length(y);
% EMD decomposition --------------------------------
nim =10; %number of imfs to be found
Mimf=zeros(nim ,Ny);
for nn=1:nim ,
h=y; %initial signal
StD=1; %standard deviation (used for stop criterion)
while StD >0.3 ,
% find max/min points
D=diff(h); %derivative
popt =[]; %to store max or min points
for i=1:Ny -2,

if D(i)==0,

7.10 Other Methods 463

popt=[popt ,i];
elseif sign(D(i))~= sign(D(i+1));
popt=[popt ,i+1]; %the zero was between i and i+1

end;
end;
if size(popt ,2)<2 %got a final residue

break
end;
%distinguish maxima and minima
No=length(popt);
% if first one is a maximum
if popt(1)>popt(2),

pmax=popt (1:2:No);
pmin=popt (2:2:No);

else
pmax=popt (2:2:No);
pmin=popt (1:2:No);

end;
%force endpoints
pmax =[1 pmax Ny];
pmin =[1 pmin Ny];
%create envelopes using spline interpolation
maxenvp=spline(pmax ,h(pmax),1:Ny);
minenvp=spline(pmin ,h(pmin),1:Ny);
%mean of envelopes
m = (maxenvp+minenvp)/2;
oldh=h;
h=h-m; %subtract mean to h
%compute StD
ipsi=0 .0000001;
StD=sum(((oldh -h).^2)./(oldh. ^2+ ipsi));
end
Mimf(nn ,:)=h; %store IMF(nn)
y=y-h; %subtract the IMF from the signal
end
% display -------------------------------------
figure (1)
for jj=1:5,
subplot(5,1,jj)
plot(Mimf(jj ,:),'k');
end
figure (2)
for jj=6:10,
subplot(5,1,jj -5)
plot(Mimf(jj ,:),'k');
end
figure (3)
plot(ecgdat (1:1400) ,'k');
title('heartbeat signal')
axis ([1 1400 6 9.5]);

The second example takes a synthetic signal you can hear, which sounds as a
“boink”with a brisk strident beginning. Figure7.72 shows the first five IMFs obtained
by EMD.

464 7 Time-Frequency Analysis

0 500 1000 1500 2000 2500 3000
-1

0

1

0 500 1000 1500 2000 2500 3000
-1

0

1

0 500 1000 1500 2000 2500 3000
-0.5

0

0.5

0 500 1000 1500 2000 2500 3000
-0.2

0

0.2

0 500 1000 1500 2000 2500 3000
-0.1

0

0.1

Fig. 7.72 The first five IMFs

Fig. 7.73 The Hilbert
spectrum

As shown in Fig. 7.73, the Hilbert spectrum is composed of many points, which
tend to be dispersed; although one can recognize the frequency modulation of the
“boink” (it is like a damped oscillation). The spectrum has been generated with a
program that has been included in Appendix B. The first part of this program is

7.10 Other Methods 465

similar to Program 7.24. Probably, the dispersion of points is due to several factors:
numerical errors, too simplistic calculation of phase derivatives, etc. Some patience
is required for running this program, about one minute, while MATLAB generates
the image for the Hilbert spectrum.

7.10.5 More Transforms

A few more transforms are now briefly introduced. Most of them are intended for
specific areas of application.

7.10.5.1 The Constant-Q Transform

Consider a band-pass filter with a center frequency f and a bandwidthΔ, the Q factor
corresponding to this filter has the value:

Q = Δ

f
(7.233)

The discrete Fourier transform can be written as follows:

N−1∑

n=0

y(n) e−j 2π n k/N ; k = 0, 1, . . . , N − 1 (7.234)

One would say that this transform uses a set of N band-pass filters, with all filters
having the same bandwidthΔP = ΔT

N , whereΔT = fs
2 is the total bandwidth covered

by the transform. Each of the filters has a center frequency fi , i = 0, 1, . . . , N − 1.
If for example N = 5, and (fs/2) = 100, then the bandwidth of each filter would

be 20, and the center frequencies would be:

f1 = 10 , f2 = 30, f3 = 50, f4 = 70, f5 = 90.

Notice that each of the filters has a different value of Q.
The idea of the constant-Q transform is to use N filters having the same Q. In

music applications, the center frequencies are chosen as:

fi = f1 2
(k−1)/B (7.235)

where f1 is the lowest center frequency, and B is the number of filters per octave (the
piano has 12 notes per octave). The value of Q would be:

Q = 1/(21/B − 1) (7.236)

466 7 Time-Frequency Analysis

and the constant-Q transform is:

1

Nk

Nk−1∑

n=0

y(n)ω(n) e−j 2π n Q/Nk ; k = 0, 1, . . . , N − 1 (7.237)

where w(n) is some window function (for instance a Hamming window), and:

Nk = ceil

(
Q

fk
ΔT

)
(7.238)

Although the idea of constantQ transformwas around from the 70s, the practicalmise
en scène of this transformwas due to [28] in 1991, followed by an efficient algorithm
proposed in [30]. Some implementations in MATLAB are succinctly presented in
[25]. There is a toolbox for constant-Q transform for music [156]. A framework for
invertible constant-Q transform is introduced in [84].

7.10.5.2 The Harmonic Transform

Sinusoidal speech modelling uses a sum of sinusoids with time-varying amplitudes
and frequencies, being the frequencies harmonically related as multiples of a funda-
mental frequency.

The harmonic transform of a signal is defined as follows:

HTy(ω) =
∞∫

−∞
y(t) φ′

u(t) exp(−jω φu(t)) dt (7.239)

whereφu(t) is the unit phase function,which is the phase of the fundamental harmonic
divided by its instantaneous frequency. The derivative of this function is φ′

u(t).
The harmonic transform was introduced by [179] in 2004. A discrete version

is applied to speech decomposition in [185]. Background information on speech
analysis with an harmonics approach is given by [14].

7.10.5.3 The Hilbert Vibration Decomposition (HVD)

While the EMD extracts components from highest to lowest frequencies, the Hilbert
vibration decomposition uses the analytic form of a signal to extract its compo-
nents from highest to lowest instantaneous amplitude. The component with highest
instantaneous amplitude is called the dominant mode.

The signal is decomposed as follows:

y(t) = a (t) ejφ(t) =
∑

k

ak(t) exp(j φk(t)) (7.240)

7.10 Other Methods 467

The way used by HVD to extract the dominant mode is to low-pass the phase of the
signal, in order to remove the oscillations due to secondary components, so it only
remains the phase of the dominant mode. Using this phase, the dominant mode is
extracted by synchronous demodulation.

Once the dominant mode is extracted, the process is repeated with the residue.
The HVD method was proposed by Feldman in 2006 [57]. More recently, this

author has published a book on this topic [58], which includes pertinent algorithmic
and implementation details. An illustrative application of HVD is offered by [22].
In [137], the HVD method is compared with ensemble EMD and wavelets in a real
application.

We take this opportunity to recommend the article [59], which is a tutorial review
on the Hilbert transform in vibration analysis.

It is also quite interesting the proposed generalization of [50], called variational
mode decomposition, which, in contrast with EMD, is able to precisely separate any
pair of harmonics no matter how close their frequencies are.

7.10.5.4 Some Other Approaches

It seems appropriate for certain types of signals to use nonequispaced sampling.
This is an idea that has inspired some developments, like the nonequispaced DFT
proposed in [91]; see references therein for related work.

Following the main characteristic of EMD, which is to adapt the representation
basis to the signal itself, an empirical wavelet was proposed by [69]. Likewise, but
more in the context of dictionaries, [86] suggests a matching pursuit using IMFs of
the form a(t) cos(θ(t)).

In [68], a time-varying filter interpretation of the Fourier transform is introduced.
This perspective extends to warped variants of the transform.

7.10.5.5 Overviews

Useful overviews are [157] on T-F representations using energy concentrations, and
[150] on analysis techniques for non-stationary waveforms in power systems.

7.11 Experiments

Obviously, many experiments and exercises could be proposed on the basis of signal
phenomena described in the previous chapter, and the analysis methods just intro-
duced. The purpose of this section is to present some motivating examples. All the
programs developed for this section have been included in Appendix B.

468 7 Time-Frequency Analysis

7.11.1 Fractional Fourier Transform of a Rectangular Signal

The target of this experiment is to explore what happens when changing the exponent
of the FrFT. A rectangular signal has been chosen to this effect.

Figure7.74 shows the FrFT of the rectangular signal, using as exponents of the
transform 0.55, 0.7, 0.8, and 0.9. It is clear that the result is a symmetrical chirp that
narrows as the exponent tends to 1.

Figure7.75 shows the FrFT of the rectangular signal, when the FrFT exponent
is 0.99. It can be observed that the transform tends to the sinc signal (which is the
Fourier transform of the rectangle).

The Wigner analysis of the FrFT results for exponents 0.55, 0.7, 0.8, and 0.9
provides a visual explanation of the chirp narrowing that has been noticed in Fig. 7.74.
It is a matter of rotation on the time-frequency plane. As the exponent tends to 1, the
rotation tends to 90◦.

Figure7.76 shows the results of the Wigner analysis. A basic technique, thresh-
olding, has been applied to partially remove interferences.

0 50 100 150 200 250 300 350 400
0

0.5

1

0 50 100 150 200 250 300 350 400

-2

0

2

0 50 100 150 200 250 300 350 400

-2

0

2

a=0.7

0 50 100 150 200 250 300 350 400

-2

0

2

a=0.8

0 50 100 150 200 250 300 350 400

-2

0

2

a=0.9

a=0.55

Fig. 7.74 Fractional Fourier transforms of a rectangular signal, using different values of the
exponent

7.11 Experiments 469

180 190 200 210 220 230 240 250 260
-4

-2

0

2

4

6

8

Fig. 7.75 The fractional Fourier transform of the rectangle becomes close to the sinc signal for
a = 0.99

a=0.55

100 200 300 400

50

100

150

200

250

a=0.7

100 200 300 400

50

100

150

200

250

a=0.8

100 200 300 400

50

100

150

200

250

a=0.9

100 200 300 400

50

100

150

200

250

Fig. 7.76 Wigner analysis

7.11.2 Filtered Wigner Analysis of Nature Chirps

Since the term “chirp” was taken from a typical bird song, it seems opportune to do
some justice to birds by considering a brief T-F analysis of two examples.

470 7 Time-Frequency Analysis

7.11.2.1 Bat Chirps (Biosonar)

Radar and sonar are important pieces in our normal life, being used in airports and
aircrafts, ships, traffic, etc. The fact that some animals were also using echolocation
from long time before our inventions, awakes a lot of curiosity and, for good reasons,
an interest on learning more from Nature. It would be recommended to read [8] for a
detailed treatment of biosonars from the signal processing point of view. In addition,
some specific problems of the T-F analysis of such signals are studied in [74].

Indeed, bats are one of the archetypes when one thinks on animal echolocation.
The bat signal chosen for our example is commonly found in T-F toolboxes. It is also
found in a number of T-F related papers, like for instance [98, 149]. It seems that
bats are able to detect flying insects, taking also into account their wing oscillating
motion.

Figure7.77 shows the result of T-F analysis using filtered Wigner; where the
filtering was made with a rectangular mask in the SAF domain (like in Sect. 7.5.5).
Some interference was allowed in order to make visible a light fourth component
of the signal, on top of the other three components. The components are hyperbolic
arcs, so they are “Doppler tolerant” [135].

An interesting exercisewould be to try otherT-F analysismethods for interference-
free signal representation, like for instance [168]. Also, it would be challenging to
focus on echolocation in the water: dolphins, etc.

Fig. 7.77 Bat chirp

seconds

H
z

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

1.5

2

x 104

7.11 Experiments 471

7.11.2.2 Bird Tweet

Ornithology is a wide scientific field, which also attracts the attention of many
enthusiasts. There are important web sites and research centers for this field. The
particular case of bird songs presents some interesting research questions, like for
instance acoustic communication in birds [100], vocalization [125], etc.

A humble, simple bird tweet has been chosen for our example. Figure7.78 shows
the result of using filtered Wigner, with a program very similar to the program used
for the bat chirp. It looks like a linear chirp, so it would be suitable for a fractional
Fourier transform [5, 6].

As a matter of curiosity, let us mention the article [15] on cat auditory cortex
neurons and bird chirps.

7.11.3 Wavelet Analysis of Lung and Heart Sounds

The typical mental image of a pediatric doctor includes a phonendoscope. Surely,
auscultatory sounds are important for diagnosis of certain diseases, concerning res-
piration, heart, etc. Computers could help for the analysis of these sounds (see [53]
and references therein). Next examples focus on lung sounds and heart sounds.

In the three examples considered below a continuous wavelet (CWT) analysis was
applied, usingMorlet wavelet. The scalograms visualize information on frequencies,
normal behaviour, and peculiar events.

The files with lung sounds have been obtained from the R.A.L.E. repository
(web address in the Resources section). Next two examples consider normal, healthy
respiration, and another case with crackles.

Fig. 7.78 Bird tweet

seconds

H
z

0 0.05 0.1 0.15
0

500

1000

1500

2000

2500

3000

3500

472 7 Time-Frequency Analysis

7.11.3.1 Normal Respiration

Background information on the analysis of respiratory sounds can be obtained from
[147]. Known trackers are crackles, cough sound, rhonchs, snoring, squawk, stridor,
andwheeze. The use of computers for respiratory sound analysis is reviewed in [133].

The file with the bronchial sound of a normal respiration corresponds to a 26 year
old man. Figure7.79 shows the sound signal along 10 s.

Using the computer for zooming on different segments of this signal reveals details
of the diaphragm and lung combined work. There is a periodic triggering of air push-
pull, with different pressures and corresponding different sounds. The response of
the system to the triggering ressembles the step response of a second order system,
with attenuated oscillations at the beginning of the push or pull periods. It seems that
there are elastic phenomena.

Figure7.80 shows a segment of the signal corresponding to one air push and
pull cycle. The wavelets highlight the main oscillations. The second part of the
signal, inspiration, takes longer time. The first part, expiration, tends to lower sound
frequency.

The program used in this example includes a last sentence for you to hear the
signal segment.

7.11.3.2 Respiration with Crackles

This example uses a sound file corresponding to bronchial breathing of left lower
lung of a 16 year old boy with tuberculosis. Figure7.81 shows the sound signal along
10 s. When you hear this signal you immediately notice there are crackles.

Fig. 7.79 Sound of normal
respiration (10 s)

0 1 2 3 4 5 6 7 8 9 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

time

7.11 Experiments 473

0 0.5 1 1.5 2

-0.5

0

0.5

sec

si
gn

al

samples

sc
al

es

500 1000 1500 2000 2500 3000 3500 4000 4500

5

10

15

20

25

30

Fig. 7.80 Scalogram of a signal segment

Fig. 7.81 Sound of
respiration with crackles
(10 s)

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

1

time

Figure7.82 shows a signal segment and its corresponding scalogram, which is
clearly different to a normal respiration scalogram. The wavelets indicate now the
presence of crackles.

Like before, the program used in this example includes sound you can hear.

474 7 Time-Frequency Analysis

7.8 8 8.2 8.4 8.6 8.8 9 9.2 9.4
-0.5

0

0.5

1

sec

si
gn

al

samples

sc
al

es

500 1000 1500 2000 2500 3000 3500

10

20

30

Fig. 7.82 Scalogram of a signal segment

7.11.3.3 Heart Sound

This example focuses on heart sound, not to be confused with the electrocardiogram
(ECG).Background information on phonocardiogram signal processing can be found
in [1, 163].

Figure7.83 shows a signal segment and its scalogram. The segment captures
the sound of two consecutive beats. Notice how similar are the two beats on the
scalogram.

A typical problem in auscultation is that respiratory sounds are usually contam-
inated by heart sound. There is a number of research papers proposing methods to
overcome this difficulty, like for example [142]. In other order of things, it is interest-
ing to cooment that there are initiatives for using mobile phones as phonendoscopes,
for self-monitoring.

7.11.4 Fan-Chirp Transform of Some Animal Songs

The purpose of the next experiments is to take advantage of the Fan-Chirp transform
features, which are suitable for certain animal songs that match a fan geometry on
the T-F plane.

7.11 Experiments 475

0 0.5 1 1.5
-1

-0.5

0

0.5

1

sec

si
gn

al

samples

sc
al

es

1000 2000 3000 4000 5000 6000

5

10

15

20

25

Fig. 7.83 Scalogram of heart sound (2 beats)

7.11.4.1 Duck Quack

As a first case, the duck-quack has been selected. It is a short signal, only 0.16 s.
Figure7.84 shows the spectrogram, which is not very clear.

If you play a little with the Fan-Chirp transform, you will notice that it admits the
manual adjusting of some parameters, and the images obtained could include more
or less details as you consider them opportune for study.

Fig. 7.84 Spectrogram of
the quack

Time

Fr
eq

ue
nc

y

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

1000

2000

3000

4000

5000

476 7 Time-Frequency Analysis

Fig. 7.85 Fan-Chirp
transform of the quack

Time

Fr
eq

ue
nc

y

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

1000

2000

3000

4000

5000

Figure7.85 shows a result obtained with the Fan-Chirp transform of the quack,
using a version of the transform that uses a series of time-windows (like the spec-
trogram). The presence of a series of tilted chirps is clear. There are three evident
harmonics; the one on top having a curved shape. Curved shapes might correspond
to messages targeted to a certain distance.

The program for this example is quite similar to the program used before
(Sect. 7.10.2) for the Fan-Chirp transform of the linear chirp.

Fig. 7.86 Spectrogram of
the dog bark

Time

Fr
eq

ue
nc

y

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

2000

4000

6000

8000

10000

7.11 Experiments 477

7.11.4.2 Dog Bark

This example is an usual dog bark. Its spectrogram, as depicted in Fig. 7.86 shows
a kind of wou-aah–hou main structure inside a strident energetic cloud. Actually,
that structure of 3 segments has been described in the literature as having a “chevron
shape” [109, 123]. According with [109], the noisy cloud is part of the ‘canonical
bark’.

This sound seems to be not particularly well suited for a fan structure on the T-F
plane. Anyway, the Fan-Chirp transform has been applied, with the result shown in
Fig. 7.87.

There is controversy on why dogs bark, as can be noticed from the [178] introduc-
tory discussion. It seems that barking characteristics change in function of contexts,
like experiencing a disturbance or just playing. The contribution of [109] puts the
accent on mobbing, while extending the perspective to other animals that bark. An
interesting observation, being investigated in [140], is that repetitive vocalizations
can have internal variations that encodes some information content (for instance,
alarm calls telling about the species of a predator).

Besides barking, there are other types of canid songs. For instance, [122] studies
the differences on information content of coyote barks and howls. Howls, with his
tonal, frequency modulated, relatively long vocalizations, seem to be optimal for
long distance information transmission. Barks seem appropriate for alarm calls, for
acoustic ranging, and for orientation towards the sound source. Barks and howls
probably have complementary purposes.

Many of the recent papers on Nature signals do use time-frequency analysis tools,
and other contributions from signal processing and transmission theory and practice.

Fig. 7.87 Fan-Chirp
transform of the dog bark

Time

Fr
eq

ue
nc

y

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

2000

4000

6000

8000

10000

478 7 Time-Frequency Analysis

7.11.5 Modified S-Transform Analysis of Some Cases

As it was remarked in Sect. 7.10.1, one of the S-transform virtues is that it is adequate
for cases with sustained sinusoidal oscillations. The next two examples were selected
to exploit this feature.

7.11.5.1 Respiration with Wheezing

In this example, we come back to lung sounds, using the R.A.L.E. repository. Now,
the focus is put on wheezing.

Figure7.88 shows the respiration sound recorded over the right anterior upper
chest of an 8 year old boy with asthma. Wheezing occurs at several segments of the
signal. The middle plot in the figure zooms on a part of the signal where wheezing
appears as an increase of line width. Further zooming reveals, as depicted in the
bottom plot, the higher frequency oscillation corresponding to the wheeze.

Figure7.89 shows the spectrogram of the selected signal segment. It is a relatively
clear visualization that shows 2–3 harmonics that correspond to the wheeze.

After some easy adjusting, the modified S-transform obtains the result presented
in Fig. 7.90, which emphasizes, with better contrast and detail, relevant aspects.

0 1 2 3 4 5 6 7 8 9 10
-1

0

1

Respiration signal, complete

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
-0.5

0

0.5

selected signal segment

1.56 1.58 1.6 1.62 1.64 1.66 1.68 1.7 1.72 1.74 1.76
-0.1

0

0.1

zoom on wheezing part

Fig. 7.88 Respiration with wheezing, 3 levels of detail

7.11 Experiments 479

Fig. 7.89 Spectrogram of
the signal segment with
wheezing

Time

Fr
eq

ue
nc

y

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

200

400

600

800

1000

1200

Fig. 7.90 Modified
S-transform of the signal
segment with wheezing

Time

Fr
eq

ue
nc

y

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0

200

400

600

800

1000

1200

7.11.5.2 Whale Song

Some whale songs have a kind of mysterious, novelistic character. Perhaps this is
one of the reasons for the growing interest on thse songs; or perhaps another reason
could be better ways for acoustic underwater communication. There is a number of
web sites with whale and dolphin songs (web address in the Resources section).

A relatively long sound file has been selected for this experiment. It is a whale
moan call. Since the computer work takes a long time, the file has been divided into
two parts. Figure7.91 shows the spectrograms of this sound.

The modified S-transform has been applied to the sound file in the same manner,
dividing it into two parts. The result is presented in Fig. 7.92.

The program used for this experiment has a last sentence for you to hear the whale
call.

480 7 Time-Frequency Analysis

Time

Fr
eq

ue
nc

y

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

200

400

600

800

1000

1200

1400

1600

1800

Time

Fr
eq

ue
nc

y

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

200

400

600

800

1000

1200

1400

1600

1800

Fig. 7.91 Spectrogram of whale song (divided into 2 parts)

Time

Fr
eq

ue
nc

y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

200

400

600

800

1000

1200

1400

1600

1800

Time

Fr
eq

ue
nc

y

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
0

200

400

600

800

1000

1200

1400

1600

1800

Fig. 7.92 Modified S-transform of whale song (divided into 2 parts)

Anautomatic classificationof killerwhale vocalizations usingdynamic timewarp-
ing has been presented in [29]. Since whale sounds seems to be composed of several
components along time, a segmentation of the killer whale vocalization has been
proposed by [2]. The broadband social acoustic signalling of delphinids is studied
in [102]. Some aspects of dolphin’s signals are discussed by [152].

7.11.5.3 An Earthquake in the Gulf of California

A lot of scientific, engineering, technical, etc. efforts are devoted to earthquakes.
There is a vast literature on this field. The time-frequency methodology is a logical
choice for the study of some ground motion aspects.

There are important web sites with lots of information and data files (see the
Resources section). Background information on processing techniques in earthquake
seismology is available from an open access book [77]. In addition, [164] presents a
practical study of a real earthquake.

7.11 Experiments 481

There are twomain classes of seismicwaves: body and surfacewaves. Bodywaves
travel through the interior of the earth, and are of higher frequencies than surface
waves. A further decomposition into wave types is:

• Body waves:

– P-waves (primary waves), which are the fastest waves
– S-waves (secondary wave), which are the second arriving waves

P-waves are longitudinal waves, and S-waves are lateral and more destructive.

• Surface waves:

– Love waves, which move the ground from side to side, producing horizontal
motion

– Rayleigh waves are like ocean waves, producing vertical and horizontal motion
(in the same direction of the wave motion)

Thedelay between arrivals of Pwaves andSwaves provides important information
for geophysical analysis. For this reason the example we selected is one in which
both arrivals are clearly observed on the seismogram. It is the case of a 6.7 earthquake
in the Gulf of California, on 2010-10-21.

Images with the records obtained from 3-channel professional seismographs are
available from the IRIS Wilber web site. In addition, data files with seismograms
from educational entities can be obtained from the IRIS Seismographs in Schools
web site. In our case, we selected the record provided by the Oregon Shakes station
at Depoe Bay.

The standard format for earthquake data files is called “Seismic Analysis Code”.
Files are named with the extension “.sac”. Each file has a header with 3 matrices
of floating numbers, integer numbers, and characters. The series of data comes after
the header. The program made for this example reads a .sac file with the seismogram
data. More information on the SAC data file format is available from the web site
cited in the Resources section.

Figure7.93 shows the time history signal to be analyzed. Indications of the arrivals
of P waves, S waves, and surface waves have been added to the plot on top. For our
study we selected the main initial part of the signal (bottom plot).

The spectrogram of the selected signal segment, Fig. 7.94, is not very clear,
although it gives information on the frequencies.

The application of the modified S-transform reveals more details of the seismic
signal. Figure7.95. In particular, the three concentrations of energy corresponding
to the P waves, the S waves and the surface waves can be clearly discerned. It is also
interesting to observe the behaviour of the frequency ranges and boundaries.

As it was shown in [139], it is possible to extract a region of interest in the
S-transform result, using a mask (like the basic elimination of interference,
Sect. 7.5.5.). Then, by application of inverse S-transform one could recover the P-
wave or any other detectable component. With a similar technique, it is also possible
to denoise the earthquake signal.

482 7 Time-Frequency Analysis

0 2 4 6 8 10 12 14 16 18
-4

-2

0

2

4

sec

0 2 4 6 8 10 12
-5

0

5

sec

Fig. 7.93 The Earthquake signal at two detail levels

Fig. 7.94 Spectrogram of
the signal segment

Time

Fr
eq

ue
nc

y

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90

100

Taking the opportunity offered by the earthquake example, here is a demonstration
of how a T-F region can be extracted in order to obtain a signal of interest. By using
a rectangular mask, the region corresponding to the S wave has been selected, as
shown in Fig. 7.96.

7.11 Experiments 483

Fig. 7.95 Modified
S-transform of the signal
segment

Time

Fr
eq

ue
nc

y

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

100

Fig. 7.96 Extraction of a
T-F region of interest

500 1000 1500 2000

200

400

600

800

1000

1200

Now, if one applies the inverse S-transform to this region, one obtains the result
shown in Fig. 7.97 which would be an approximation to the S wave.

The programmade for this example contains a part with the S-transform inversion,
which is based on the istran() function available from MathWorks file exchange.

In relation with the analysis of earthquake data, it is worthwhile to refer to
[18, 54, 138, 151, 180, 182].

484 7 Time-Frequency Analysis

0 500 1000 1500 2000 2500
-1

-0.5

0

0.5

1

800 900 1000 1100 1200 1300 1400
-1

-0.5

0

0.5

1

Fig. 7.97 The extracted signal segment at two levels of detail

7.12 Resources

7.12.1 MATLAB

7.12.1.1 Toolboxes

• LTFAT: The Large Time-Frequency Analysis Toolbox:
http://ltfat.sourceforge.net/

• The Time-Frequency Toolbox:
http://tftb.nongnu.org/

• TFSAP: Time-Frequency Signal Analysis & Processing Toolbox:
http://time-frequency.net/tf/

• XBAT: Bioacoustics, animal sounds:
http://www.birds.cornell.edu/brp/software/xbat-introduction

• EEGLAB: Electrophysiological signal processing:
http://sccn.ucsd.edu/eeglab/

• Auditory Modeling Toolbox (AMT):
http://amtoolbox.sourceforge.net/

• WarpTB: Matlab Toolbox for Warped DSP:
http://legacy.spa.aalto.fi/software/warp/

http://ltfat.sourceforge.net/
http://tftb.nongnu.org/
http://time-frequency.net/tf/
http://www.birds.cornell.edu/brp/software/xbat-introduction
http://sccn.ucsd.edu/eeglab/
http://amtoolbox.sourceforge.net/
http://legacy.spa.aalto.fi/software/warp/

7.12 Resources 485

7.12.1.2 Matlab Code

• Discrete TFDs:
http://tfd.sourceforge.net/

• Fractional Fourier Transform (NALAG):
http://nalag.cs.kuleuven.be/research/software/FRFT/

• Reassignment (K. Fitz):
http://www.cerlsoundgroup.org/Kelly/timefrequency.html

• Reassignment (Boston Lab):
http://people.bu.edu/timothyg/styled-7/index.html

• Recursive Reassignment (G. K. Nilsen):
http://www.ii.uib.no/~geirkn/rrspec/

• COVAREP project (speech technologies):
https://github.com/covarep/covarep

• Cardiovascular signals:
http://www.micheleorini.com/matlab-code/

• Empirical Mode Decomposition (MIT):
http://www.mit.edu/~gari/CODE/HRV/emd.m

• Empirical Mode Decomposition (P. Flandrin):
http://perso.ens-lyon.fr/patrick.flandrin/emd.html

• Project SEIZMO (Earthquakes):
http://epsc.wustl.edu/~ggeuler/codes/m/seizmo/

• Geophysical, earthquakes, etc.:
http://geoweb.princeton.edu/people/simons/software.html

• Geophysical Wavelet Library:
http://users.math.uni-potsdam.de/~gwl/

7.12.2 Internet

An important source of knowledge and MATLAB code is the Time-Frequency Tool-
box of the gdr-isis.org.

7.12.2.1 Web Sites

• Steve Mann:
http://www.eecg.toronto.edu/~mann/

• The Fractional Fourier Transform (book):
http://kilyos.ee.billent.edu.tr/~haldun/wileybook.html

• The Chirplet Transform:
http://wearcam.org/chirplet.htm

• Empirical Mode Decomposition:
https://www.clear.rice.edu/elec301/Projects02/empiricalMode/

http://tfd.sourceforge.net/
http://nalag.cs.kuleuven.be/research/software/FRFT/
http://www.cerlsoundgroup.org/Kelly/timefrequency.html
http://people.bu.edu/timothyg/styled-7/index.html
http://www.ii.uib.no/~geirkn/rrspec/
https://github.com/covarep/covarep
http://www.micheleorini.com/matlab-code/
http://www.mit.edu/~gari/CODE/HRV/emd.m
http://perso.ens-lyon.fr/patrick.flandrin/emd.html
http://epsc.wustl.edu/~ggeuler/codes/m/seizmo/
http://geoweb.princeton.edu/people/simons/software.html
http://users.math.uni-potsdam.de/~gwl/
http://www.eecg.toronto.edu/~mann/
http://kilyos.ee.billent.edu.tr/~haldun/wileybook.html
http://wearcam.org/chirplet.htm
https://www.clear.rice.edu/elec301/Projects02/empiricalMode/

486 7 Time-Frequency Analysis

• PhysioBank Archive Index (Electrocardiograms, etc.):
http://www.physionet.org/physiobank/database/

• R.A.L.E. repository (Lung sounds):
http://www.rale.ca/Default.htm

• Ocean Mammal Institute (Whale songs):
http://www.oceanmammalinst.com/songs.html

• CornellLab (Whale sounds):
http://www.listenforwhales.org/page.aspx?pid=442

• IRIS Seismographs in Schools (Earthquake data files):
http://www.iris.edu/hq/ssn/events

• IRIS Wilber (Earthquake technical information):
http://ds.iris.edu/wilber3/find_event

• SAC Data File Format (format of Earthquake data files):
http://ds.iris.edu/files/sac-manual/manual/file_format.html

• Vibrationdata:
http://www.vibrationdata.com

• BIRDNET (birds):
http://www.nmnh.si.edu/BIRDNET/

• Song Bird Science:
http://songbirdscience.com/

• Tyson Hilmer’s website (sonar, spectrograms):
http://www.tysonhilmer.com/

7.12.2.2 Link Lists

• MATLAB Audio Processing:
http://www.ee.columbia.edu/ln/rosa/matlab/

• MATLAB Toolboxes
http://stommel.tamu.edu/~baum/toolboxes.html

References

1. A.K. Abbas, R. Bassam, Phonocardiography signal processing. Synth. Lect. Biomed. Eng.
4(1), 1–194 (2009)

2. O. Adam, Segmentation of killer whale vocalizations using the Hilbert-Huang transform.
EURASIP J. Adv. Signal Process. ID 245936, 1–10 (2008)

3. L. Aguiar-Conraria, M.J. Soares, The continuous wavelet transform. Technical report, NIPE
WP 16/2011 Universidade do Minho, Portugal (2011)

4. T. Alieva, V. Lopez, F. Agullo-Lopez, L.B. Almeida, The fractional Fourier transform in
optical propagation problems. J. Modern Opt. 41(5), 1037–1044 (1994)

5. O.A. Alkishriwo, The discrete linear chirp transform and its applications. Ph.D. thesis, Uni-
versity of Pittsburg (2006)

http://www.physionet.org/physiobank/database/
http://www.rale.ca/Default.htm
http://www.oceanmammalinst.com/songs.html
http://www.listenforwhales.org/page.aspx?pid=442
http://www.iris.edu/hq/ssn/events
http://ds.iris.edu/wilber3/find_event
http://ds.iris.edu/files/sac-manual/manual/file_format.html
http://www.vibrationdata.com
http://www.nmnh.si.edu/BIRDNET/
http://songbirdscience.com/
http://www.tysonhilmer.com/
http://www.ee.columbia.edu/ln/rosa/matlab/
http://stommel.tamu.edu/~baum/toolboxes.html

References 487

6. O.A.Alkishriwo, L.F. Chaparro, A.Akan, Signal separation in theWigner distribution domain
using fractional Fourier transform, in Proceedings of the 19th European Signal Processing
Conference (2011), pp. 1879–1883

7. L.B. Almeida, The fractional Fourier transform and time-frequency representations. IEEE
Trans. Signal Process. 42(11), 3084–3091 (1994)

8. R.A.Altes, Signal processing for target recognition in biosonar.NeuralNetw. 8(7), 1275–1295
(1995)

9. R. Ashino, M. Nagase, R. Vaillancourt, Gabor, wavelet and chirplet transforms in the study
of pseudodifferential operators (1998). http://shigi.cc.osaka-kyoiku.ac.jp/~ashino/pdf/2528.
pdf

10. S.Assous, B. Boashash, Evaluation of themodified S-transform for time-frequency synchrony
analysis and source localization. EURASIP J. Adv. Signal Process. 2012(49), 1–18 (2012)

11. F. Auger, Time-frequency reassignment (2001). http://perso.ens-lyon.fr/patrick.flandrin/
fapfecm.pdf

12. F. Auger, P. Flandrin, Improving the readability of time-frequency and time-scale represen-
tations by the reassignment method. IEEE Trans. Signal Process. 43(5), 1068–1089 (1995)

13. F. Auger, P. Flandrin, P. Goncalves, O. Lemoine, Time-frequency toolbox tutorial (1995).
http://tftb.nongnu.org/

14. E. Azarov, A. Petrovsky, M. Parfieniuk, High-quality time stretch and pitch shift effects for
speech and audio using the instantaneous harmonic analysis. EURASIP J.Adv. Signal Process.
ID 712749, 1–10 (2010)

15. O. Bar-Yosef, Y. Rotman, I. Nelken, Responses of neurons in cat primary auditory cortex to
bird chirps: effects of temporal and spectral context. J. Neurosci. 22(19), 8619–8632 (2002)

16. R.G. Baraniuk, D.L. Jones, Warped wavelet bases: unitary equivalence and signal processing.
Proc. IEEE Int. Conf. Acoust. Speech Signal Process. 3, 320–323 (1993)

17. R.G. Baraniuk, D.L. Jones, Unitary equivalence: a new twist on signal processing. IEEE
Trans. Signal Process. 43(10), 2269–2282 (1995)

18. T. Bardainne, P. Gaillot, N. Dubos-Sallée, J. Blanco, G. Sénéchal, Characterization of seismic
waveforms and classification of seismic events using chirplet atomic decomposition. Example
from the Lacq gas field (Western Pyrenees, France). Geophys. J. Int. 166(2), 699–718 (2006)

19. M.Bartkowiak,Application of the fan-chirp transform to hybrid sinusoidal+noisemodeling of
polyphonic audio, in Proceedings of the European Signal Processing Conference (EUSIPCO)
(2008), pp. 1–10

20. J.J. Benedetto, C. Heil, D.F. Walnut, Gabor systems and the Balian-Low theorem, in Gabor
Analysis and Algorithms (Birkhäuser, Boston, 1998), pp. 85–122

21. M. Benzi, N. Razouk, On the Iwasawa decomposition of a symplectic matrix. Appl. Math.
Lett. 20, 260–265 (2007)

22. M. Bertha, J.C. Golinval, Experimental modal analysis of a beam travelled by a moving mass
using Hilbert vibration decomposition, in Proceedings of the 9th International Conference on
Structural Dynamics, EURODYN (2014), pp. 2789–2795

23. J. Bertrand, P. Bertrand, J. Ovarlez, TheMellin transform, in The Transforms and Applications
Handbook, ed. by A.D. Poularikas (CRC Press, Boca Raton, 2000)

24. E. Biner, O. Akay, Digital computation of the fractional Mellin transform, in Proceedings of
the 13th European Signal Processing Conference (EUSIPCO’05) (2005), pp. 1–4

25. B. Blankertz, The constant Q transform (2005). http://doc.ml.tu-berlin.de/bbci/material/
publications/Bla_constQ.pdf

26. B. Boashash, Time Frequency Analysis (Elsevier, Amsterdam, 2003)
27. H. Bolcskei, F. Hlawatsch, Discrete Zak transforms, polyphase transforms, and applications.

IEEE Trans. Signal Process. 45(4), 851–866 (1997)
28. J.C. Brown, Calculation of a constant Q spectral transform. J. Acoust. Soc. Am. 89(1), 425–

434 (1991)
29. J.C. Brown, P.J. Miller, Automatic classification of killer whale vocalizations using dynamic

time warping. J. Acoust. Soc. Am. 122(2), 1201–1207 (2007)

http://shigi.cc.osaka-kyoiku.ac.jp/~ashino/pdf/2528.pdf
http://shigi.cc.osaka-kyoiku.ac.jp/~ashino/pdf/2528.pdf
http://perso.ens-lyon.fr/patrick.flandrin/fapfecm.pdf
http://perso.ens-lyon.fr/patrick.flandrin/fapfecm.pdf
http://tftb.nongnu.org/
http://doc.ml.tu-berlin.de/bbci/material/publications/Bla_constQ.pdf
http://doc.ml.tu-berlin.de/bbci/material/publications/Bla_constQ.pdf

488 7 Time-Frequency Analysis

30. J.C.Brown,M.S. Puckette,An efficient algorithm for the calculation of a constantQ transform.
J. Acoust. Soc. Am. 92(5), 2698–2701 (1992)

31. A. Bultan, A four-parameter atomic decomposition of chirplets. IEEE Trans. Signal Process.
47(3), 731–745 (1999)

32. A.Bultheel,A two-phase implementation of the fractional Fourier transform.Technical report,
TW 588, Department of Computer Science, K.U. Leuven (2011)

33. A. Bultheel, H. Martínez-Sulbaran, A shattered survey of the fractional Fourier transform.
Technical report, TW 337, Department of Computer Science, K.U. Leuven (2002)

34. A. Bultheel, H. Martínez-Sulbaran, Computation of the fractional Fourier transform. Appl.
Comput. Harmon. Anal. 16(3), 182–202 (2004)

35. A.Bultheel,H.Martínez-Sulbaran,Recent developments in the theory of the fractional Fourier
and linear canonical transforms. Bull. Belg.Math. Soc.-Simon Stevin 13(5), 971–1005 (2007)

36. R.G. Campos, J. Figueroa, A fast algorithm for the linear canonical transform. Signal Process.
91(6), 1444–1447 (2011)

37. P. Cancela, E. López,M. Rocamora, Fan chirp transform formusic representation, inProceed-
ings of the 13th International Conference on Digital Audio Effects DAFx10, Graz, Austria
(2010), pp. 1–8

38. C. Capus, Y. Rzhanov, L. Linnett, The analysis of multiple linear chirp signals, inProceedings
of the IEE Seminar on Time-Scale and Time-Frequency Analysis and Applications (2000), pp.
4/1–4/7

39. L. Cohen, Time-frequency distributions-a review. Proc. IEEE 77(7), 941–981 (1989)
40. L. Cohen, The scale representation. IEEE Trans. Signal Process. 41(12), 3275–3292 (1993)
41. L. Cohen, Time-Frequency Analysis (Prentice Hall, Englewood Cliffs, 1995)
42. D.M. Cowell, S. Freear, Separation of overlapping linear frequency modulated (LFM) sig-

nals using the fractional Fourier transform. IEEE Trans. Ultrason. Ferroelectr. Freq. Control
57(10), 2324–2333 (2010)

43. P.K. Dash, K.B. Panigrahi, G. Panda, Power quality analysis using S-transform. IEEE Trans.
Power Deliv. 18(2), 406–411 (2003)

44. M. Davis, Radar frequencies and waveforms. Conference presentation, Georgia Technology
(2003). http://www.its.bldrdoc.gov/media/31078/DavisRadar_waveforms.pdf

45. A.De Sena,D.Rocchesso,A fastMellin transformwith applications inDAFX, inProceedings
of the 7th International Conference on Digital Audio Effects (DAFx’04) (2004), pp. 65–69

46. A. De Sena, D. Rocchesso, A study on using the Mellin transform for vowel recognition, in
Proceedings of the 7th International Conference on Digital Audio Effects (DAFx’04) (2004),
pp. 5–8

47. A. De Sena, D. Rocchesso, A fast Mellin and scale transform. EURASIP J. Adv. Signal
Process. ID 89170, 1–9 (2007)

48. W.J. DeMeo, Characterizing musical signals with Wigner-Ville interferences. Proc. ICMC 2,
1–8 (2002)

49. R. Ditommaso, M. Mucciarelli, F.C. Ponzo, S-transform based filter applied to the analysis
of non-linear dynamic behaviour of soil and buildings, in Proceedings of the 14th European
Conference on Earthquake Engineering, vol. 30 (2010), pp. 1–8

50. K. Dragomiretskiy, D. Zosso, Variational mode decomposition. IEEE Trans. Signal Process.
62(3), 531–544 (2014)

51. R. Dunn, T.F. Quatieri, Sinewave analysis/synthesis based on the fan-chirp transform, in
Proceedings of the IEEE Workshop. Applications of Signal Processing to Audio and Acoustics
(2009), pp. 247–250

52. I.J.H. Ender, Introduction to Radar Part I. Ruhr-Universität Bochum (2011). Available on
Internet

53. T.H. Falk, E. Sejdic, T. Chau, W.Y. Chan, Spectro-temporal analysis of auscultatory sounds,
in New Developments in Biomedical Engineering, ed. by D. Campolo (INTECH, 2010)

54. J. Fan, P. Dong, Time-frequency analysis of earthquake record based on S-transform and its
effect on structural seismic response, in Proceedings of the IEEE International Conference
on Engineering Computation, ICEC’09 (2009), pp. 107–109

http://www.its.bldrdoc.gov/media/31078/DavisRadar_waveforms.pdf

References 489

55. D.C. Farden, L.L. Scharf, A unified framework for the Sussman,Moyal, and Janssen formulas.
IEEE Signal Process. Mag. 23(3), 124–125 (2006)

56. H.G. Feichtinger, T. Strohmer, Gabor Analysis and Algorithms: Theory and Applications
(Birkhäuser, Boston, 1998)

57. M. Feldman, Time-varying vibration decomposition and analysis based on the Hilbert trans-
form. J. Sound Vib. 295(3–5), 518–530 (2006)

58. M. Feldman, Hilbert Transform Applications in Mechanical Vibration (Wiley, New York,
2011)

59. M. Feldman, Hilbert transform in vibration analysis. Mech. Syst. Signal Process. 25, 735–802
(2011)

60. P. Flandrin, Time-frequency and chirps, in Proceedings of the SPIE-AeroSense’01 (2001).
http://perso.ens-lyon.fr/patrick.flandrin/publis.html

61. P. Flandrin, Ambiguity functions, in Time-Frequency Signal Analysis and Processing, ed. by
B. Boashash (Elsevier, Amsterdam, 2003), pp. 160–167

62. P. Flandrin, F. Auger, E. Chassande-Mottin, Time-frequency reassignment: from principles
to algorithms. Appl. Time-Freq. Signal Process. 5, 179–203 (2003)

63. P. Flandrin, P. Gonçalves, Geometry of affine time-frequency distributions. Appl. Comput.
Harmon. Anal. 3(1), 10–39 (1996)

64. S.A. Fulop, K. Fitz, Algorithms for computing the time-corrected instantaneous frequency
(reassigned) spectrogram, with applications. J. Acoust. Soc. Am. 119(1), 360–371 (2006)

65. S.A. Fulop, K. Fitz, Separation of components from impulses in reassigned spectrograms. J.
Acoust. Soc. Am. 121(3), 1510–1518 (2007)

66. D. Gabor, Theory of communication. Part 1: the analysis of information. J. Inst. Electr. Eng.-
Part III: Radio Commun. Eng. 93(26), 429–441 (1946)

67. R.X. Gao, R. Yan, From Fourier transform to wavelet transform: a historical perspective, in
Wavelets: Theory and Applications (Springer, New York, 2011), pp. 17–32

68. P.K. Ghosh, T.V. Sreenivas, Time-varying filter interpretation of Fourier transform and its
variants. Signal Process. 86(11), 3258–3263 (2006)

69. J. Gilles, Empirical wavelet transform. IEEETrans. Signal Process. 61(16), 3999–4010 (2013)
70. C. Golé, Symplectic Twist Maps: Global Variational Techniques, vol. 18 (World Scientific,

Singapore, 2001)
71. O. González-Gaxiola, J.A. Santiago, An α-Mellin transform and some of its applications. Int.

J. Contemp. Math. Sci. 7(45–48), 2353–2361 (2012)
72. R. Gribonval, Fast matching pursuit with a multiscale dictionary of Gaussian chirps. IEEE

Trans. Signal Process. 49(5), 994–1001 (2001)
73. K. Gröchenig, Foundations of Time-Frequency Analysis (Birkhäuser, Boston, 2001)
74. T. Gudra, K. Herman, Some problems of analyzing bio-sonar echolocation signals generated

by echolocating animals living in the water and in the air. J. Acoust. Soc. Am. 123(5), 3778–
3778 (2008)

75. J.B. Harley, Y. Ying, J.M. Moura, I.J. Oppenheim, L. Sobelman, J.H. Garrett, D.E. Chimenti,
Application of Mellin transform features for robust ultrasonic guided wave structural health
monitoring. Proc. AIP Conf.-Am. Inst. Phys. 1, 1551–1559 (2012)

76. S. Harput, Use of chirps in medical ultrasound images. Ph.D. thesis, University of Leeds
(2012)

77. J. Havskov, L. Ottemöller, Processing earthquake data (2009). ftp://ftp.geo.uib.no/pub/
seismo/SOFTWARE/DOCUMENTATION/processing_earthquake_data.pdf

78. J.J. Healy, J.T. Sheridan, Analytical and numerical analysis of ABCD systems. Proc. SPIE
6994, 402–1 (2008) (pp. 402 1–8)

79. C. Heil, A frame? Not. AMS 60(6), 748–750 (2013)
80. B.M. Hennelly, J.T. Sheridan, Generalizing, optimizing, and inventing numerical algorithms

for the fractional Fourier, Fresnel, and linear canonical transforms. J. Opt. Soc. Am. A 22(5),
917–927 (2005)

81. F. Hlawatsch, H. Bölcskei, Unified theory of displacement-covariant time-frequency analy-
sis, in Proceedings of the IEEE-SP International Symposium on Time-Frequency Time-Scale
Analysis (TFTS-94), Philadelphia (PA) (1994), pp. 524–527

http://perso.ens-lyon.fr/patrick.flandrin/publis.html
ftp://ftp.geo.uib.no/pub/seismo/SOFTWARE/DOCUMENTATION/processing_earthquake_data.pdf
ftp://ftp.geo.uib.no/pub/seismo/SOFTWARE/DOCUMENTATION/processing_earthquake_data.pdf

490 7 Time-Frequency Analysis

82. F. Hlawatsch, G.F. Boudreaux-Bartels, Linear and quadratic time-frequency signal represen-
tation. IEEE Signal Process. Mag. 9(2), 21–67 (1992)

83. F. Hlawatsch, T.G. Manickam, R.L. Urbanke, W. Jones, Smoothed pseudo-Wigner distribu-
tion, Choi-Williams distribution, and cone-kernel representation: ambiguity-domain analysis
and experimental comparison. Signal Process. 43(2), 149–168 (1995)

84. N. Holighaus, M. Dorfler, G.A. Velasco, T. Grill, A framework for invertible, real-time
constant-Q transforms. IEEE Trans. Audio Speech Lang. Process. 21(4), 775–785 (2013)

85. D.D. Holm, Notes on Linear Symplectic Transformations. Handout, Imperial College London
(2012) (Available on Internet)

86. T.Y. Hou, Z. Shi, Data-driven time-frequency analysis. Appl. Comput. Harmon. Anal. 35(2),
284–308 (2013)

87. C.C. Huang, S.F. Liang, M.S. Young, F.Z. Shaw, A novel application of the S-transform in
removing powerline interference frombiomedical signals. Physiol.Meas. 30(1), 13–27 (2009)

88. N.E. Huang, N.O. Attoh-Okine, The Hilbert-Huang Transform in Engineering (CRC Press,
Boca Raton, 2005)

89. N.E. Huang, Z. Wu, A review on Hilbert-Huang transform: method and its applications to
geophysical studies. Rev. Geophys. 46(2), 1–23 (2008)

90. N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, H.H. Liu, The empirical
mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series
analysis. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 454, 903–995 (1998)

91. J.J.Hwang, S.G.Cho, J.Moon, J.W.Lee,NonuniformDFTbased on nonequispaced sampling.
WSEAS Trans. Inf. Sci. Appl. 2(9), 1403–1408 (2005)

92. C. Ioana, A. Quinquis, Y. Stephan, Feature extraction from underwater signals using time-
frequency warping operators. IEEE J. Ocean. Eng. 31(3), 628–645 (2006)

93. R. Iwai, H. Yoshimura, High-accuracy and high-security individual authentication by the
fingerprint template generated using the fractional Fourier transform, in Fourier Transforms
– Approach to Scientific Principles, ed. by G. Nikolic (InTech Open, 2011)

94. D. Jenn, Radar fundamentals. Seminar presentation, Naval Postgraduate School, Monterey
(2011). http://faculty.nps.edu/jenn/Seminars/RadarFundamentals.pdf

95. K.A. Jones, B. Porjesz, D. Chorlian, M. Rangaswamy, C. Kamarajan, A. Padmanabhapil-
lai, H. Begleiter, S-transform time-frequency analysis of p300 reveals deficits in individuals
diagnosed with alcoholism. Clin. Neurophysiol. 117(10), 2128–2143 (2006)

96. M. Képesi, L. Weruaga, Adaptive chirp-based time-frequency analysis of speech signals.
Speech Commun. 48, 474–492 (2006)

97. D. Kim, Introduction to EMD (empirical mode decomposition) with application to a sci-
entific data. Seminar presentation (2006). http://dasan.sejong.ac.kr/~dhkim/main/research/
talks/EMDintroSeminar.pdf

98. Y. Kopsinis, E. Aboutanios, D.A. Waters, S. McLaughlin, Time-frequency and advanced
frequency estimation techniques for the investigation of bat echolocation calls. J. Acoust.
Soc. Am. 127(2), 1124–1134 (2010)

99. J. Kovacevic, A. Chebira, Life beyond bases: the advent of frames. IEEE Signal Process. Mag.
24, 86–104 (2007)

100. A. Kumar, Acoustic communication in birds. Resonance 8(6), 44–55 (2003)
101. M.A. Kutay, H.M. Ozaktas, O. Ankan, L. Onural, Optimal filtering in fractional Fourier

domains. IEEE Trans. Signal Process. 45(5), 1129–1143 (1997)
102. M.O. Lammers, W.W. Au, D.L. Herzing, The broadband social acoustic signaling behavior

of spinner and spotted dolphins. J. Acoust. Soc. Am. 114(3), 1629–1639 (2003)
103. K.G. Larkin, A beginner’s guide to the fractional Fourier transform, part 1. Aust. Opt. Soc.

News 9(2), 18–21 (1995)
104. L. Lee, R. Rose, A frequencywarping approach to speaker normalization. IEEETrans. Speech

Audio Process. 6(1), 49–60 (1998)
105. C.F. Lin, J.D. Zhu, Hilbert-Huang transformation-based time-frequency analysis meth-

ods in biomedical signal applications. Proc. Inst. Mech. Eng. Part H: J. Eng. Med.
0954411911434246 (2012)

http://faculty.nps.edu/jenn/Seminars/RadarFundamentals.pdf
http://dasan.sejong.ac.kr/~dhkim/main/research/talks/EMDintroSeminar.pdf
http://dasan.sejong.ac.kr/~dhkim/main/research/talks/EMDintroSeminar.pdf

References 491

106. G. Livanos,N.Ranganathan, J. Jiang,Heart sound analysis using the S-transform. Proceedings
IEEE Comput. Cardiol. 27, 587–590 (2000)

107. J. Locke, P.R. White, The performance of methods based on the fractional Fourier transform
for detecting marine mammal vocalizations. J. Acoust. Soc. Am. 130(4), 1974–1984 (2011)

108. A.W. Lohmann, Image rotation, Wigner rotation, and the fractional Fourier transform. J. Opt.
Soc. Am. A 10, 2181–2186 (1993)

109. K. Lord, M. Feinstein, R. Coppinger, Barking and mobbing. Behav. Process. 81(3), 358–368
(2009)

110. Y. Lu, A. Kasaeifard, E. Oruklu, J. Saniie, Fractional Fourier transform for ultrasonic chirplet
signal decomposition. Adv. Acoust. Vib. 2012, 1–13 (2012)

111. I. Magrin-Chagnolleau, R.G. Baraniuk, Empirical mode decomposition based frequency
attributes, in Proceedings of the 69th SEG Meeting (1999), pp. 1949–1952

112. B.R. Mahafza, Radar System Analysis and Design Using MATLAB (Chapman & Hall/CRC,
Boca Raton, 2005)

113. S.G.Mallat, Z. Zhang,Matching pursuit with time-frequency dictionaries. IEEETrans. Signal
Process. 41(12), 3397–3415 (1993)

114. S. Mann, S. Haykin, The chirplet transform: a generalization of Gabor’s logon transform. Vis.
Interface 91, 205–212 (1991)

115. S. Mann, S. Haykin, Adaptive chirplet transform: an adaptive generalization of the wavelet
transform. Opt. Eng. 31(6), 1243–1256 (1992)

116. S. Mann, S. Haykin, Time-frequency perspectives: the “chirplet” transform. Proc. IEEE Int.
Conf. Acoust. Speech Signal Process. 3, 417–420 (1992)

117. L. Masinha, R.G. Stockwell, R.P. Lowe, Pattern analysis with two-dimensional spectral local-
ization: applications of two-dimensional S-transforms. Phys. A 239, 286–295 (1997)

118. P.D. McFadden, J.G. Cook, L.M. Forster, Decomposition of gear vibration signals by the
generalised S-transform. Mech. Syst. Signal Process. 13(5), 691–707 (1999)

119. D.Mendlovic, H.M. Ozaktas, Fractional Fourier transforms and their optical implementation:
I. J. Opt. Soc. Am. A 10, 1875–1881 (1993)

120. A. Mertins, Signal Analysis: Wavelets, Filter Banks, Time-Frequency Transforms and Appli-
cations (Wiley, New York, 1999)

121. P.A. Millette, The Heisenberg uncertainty principle and the Nyquist-Shannon sampling the-
orem (2011). arXiv:1108.3135

122. B.R. Mitchell, M.M. Makagon, M.M. Jaeger, R.H. Barrett, Information content of coyote
barks and howls. Bioacoustics 15(3), 289–314 (2006)

123. E.S.Morton, Animal communication:What do animals say?Am. Biol. Teach. 45(6), 343–348
(1983)

124. A. Naït-Ali (ed.), Advanced Biosignal Processing (Springer, New York, 2009)
125. L. Neal, F. Briggs, R. Raich, X.Z. Fern, Time-frequency segmentation of bird song in noisy

acoustic environments, in Proceedings of the IEEE International Conference on Acoustic
Speech and Signal Processing (ICASSP) (2011), pp. 2012–2015

126. Y. Nikolova, α-Mellin transform and one of its applications. Math. Balk. 26(1–2), 185–190
(2012)

127. G.K. Nilsen, Recursive time-frequency reassignment. Master’s thesis, University of Bergen
(2007)

128. J.C. O’Neill, P. Flandrin, Virtues and vices of quartic time-frequency distributions. IEEE
Trans. Signal Process. 48(9), 2641–2650 (2000)

129. J.P.Ovarlez, J. Bertrand, P. Bertrand, Computation of affine time-frequency distributions using
the fast Mellin transform. Proc. IEEE Int. Conf. Acoust. Speech Signal Process. 5, 117–120
(1992)

130. H.M. Ozaktas, D. Mendlovic, Fourier transforms of fractional order and their optical inter-
pretation. Opt. Commun. 101, 163–169 (1993)

131. H.M. Ozaktas, M.A. Kutay, G. Bozdag, Digital computation of the fractional Fourier trans-
form. IEEE Trans. Signal Process. 44, 2141–2150 (1996)

http://arxiv.org/abs/1108.3135

492 7 Time-Frequency Analysis

132. H.M.Ozaktas, Z. Zalevsky,M.A.Kutay,The Fractional Fourier Transform (Wiley, NewYork,
2001)

133. R. Palaniappan, K. Sundaraj, N.U. Ahamed, A. Arjunan, S. Sundaraj, Computer-based respi-
ratory sound analysis: a systematic review. IETE Tech. Rev. 30(3), 248–256 (2013)

134. K. Paliwal, B. Shannon, J. Lyons, K.Wójcicki, Speech-signal-based frequencywarping. IEEE
Signal Process. Lett. 16(4), 319–322 (2009)

135. A. Papandreou, F. Hlawatsch, G.F. Boudreaux-Bartels, The hyperbolic class of quadratic
time-frequency representations. I. Constant-Q warping, the hyperbolic paradigm, properties,
and members. IEEE Trans. Signal Process. 41(12), 3425–3444 (1993)

136. S. Parolai, Denoising of seismograms using the S-transform. Bull. Seismol. Soc. Am. 99(1),
226–234 (2009)

137. L.I. Peng, Z.Yong, L.Hongtao, Z.Yong,D. Zhaobin,Analysis of non-stationary and nonlinear
low-frequency oscillation of a realistic bulk power system in a time-frequency perspective
(2010). http://geogin.narod.ru/hht/link01/readpdf

138. C.R. Pinnegar, Polarization analysis and polarization filtering of three-component signalswith
the time-frequency S-transform. Geophys. J. Int. 165(2), 596–606 (2006)

139. C.R. Pinnegar, L. Mansinha, The S-transform with windows of arbitrary and varying shape.
Geophysics 68(1), 381–385 (2003)

140. J. Placer, C.N. Slobodchikoff, J. Burns, J. Placer, R. Middleton, Using self-organizing maps
to recognize acoustic units associated with information content in animal vocalizations. J.
Acoust. Soc. Am. 119(5), 3140–3146 (2006)

141. R. Polikar, Thewavelet tutorial. Part III (2006). http://users.rowan.edu/~polikar/WAVELETS/
WTpart3.html

142. M.T. Pourazad,Z.Moussavi,G.Thomas,Heart sound cancellation from lung sound recordings
using time-frequency filtering. Med. Biol. Eng. Comput. 44(3), 216–225 (2006)

143. J. Prestin, E. Quak, H. Rauhut, K. Selig, On the connection of uncertainty principles for
functions on the circle and on the real line. J. Fourier Anal. Appl. 9(4), 387–409 (2003)

144. S.Qian, Introduction to Time-Frequency and Wavelet Transforms (PrenticeHall,Upper Saddle
River, 2002)

145. S. Qian, D. Chen, Joint time-frequency analysis. IEEE Signal Process. Mag. 16(2), 52–67
(1999)

146. A.R. Rao, E. Hsu, Hilbert-Huang Transform Analysis of Hydrological and Environmental
Time Series (Springer, New York, 2008)

147. S. Reichert, R. Gass, C. Brandt, E. Andrès, Analysis of respiratory sounds: state of the art.
Clin. Med. Circ. Respir. Pulm. Med. 2, 45–58 (2008)

148. G. Rilling, P. Flandrin, P. Goncalves, On empirical mode decomposition and its algorithms,
in Proceedings of the IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing,
vol. 3 (2003), pp. 8–11

149. B. Ristic, B. Boashash, Scale domain analysis of a bat sonar signal, in Proceedings of the
IEEE International Symposium on Time-Frequency and Time-Scale (1994), pp. 373–376

150. R.P. Rodrigues, P.M. Silveira, P.F. Ribeiro, A survey of techniques applied to non-stationary
waveforms in electrical power systems, in Proceedings of the IEEE 14th International Con-
ference on Harmonics and Quality of Power (2010), pp. 1–8

151. Z.E. Ross, Y. Ben-Zion, Automatic picking of direct P, S seismic phases and fault zone head
waves. Geophys. J. Int. 199(1), 368–381 (2014)

152. V. Ryabov, Some aspects of analysis of dolphins’ acoustical signals. Open J. Acoust. 1(2),
41–54 (2011)

153. N. Saulig, V. Sucic, B. Boashash, An automatic time-frequency procedure for interference
suppression by exploiting their geometrical features, in Proceedings of the 7th International
Workshop on Systems, Signal Processing and their Applications (WOSSPA) (2011), pp. 311–
314

154. A.M. Sayeed, D.L. Jones, On the equivalence of generalized joint signal representations, in
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Process-
ing, ICASSP-95, vol. 3 (1995), pp. 1533–1536

http://geogin.narod.ru/hht/link01/readpdf
http://users.rowan.edu/~polikar/WAVELETS/WTpart3.html
http://users.rowan.edu/~polikar/WAVELETS/WTpart3.html

References 493

155. D.P. Scarpazza, A brief introduction to the Wigner distribution. Report. Dipartimento di Elet-
tronica e Informazione, Politecnico di Milano (2003). www.scarpaz.com/attic/Documents/
TheWignerDistribution.pdf

156. C. Schörkhuber, A. Klapuri, Constant-Q transform toolbox for music processing, in Pro-
ceedings of the 7th Sound and Music Computing Conference, Barcelona, Spain (2010), pp.
3–6

157. E. Sejdiæ, I. Djuroviæ, J. Jiang, Time-frequency feature representation using energy concen-
tration: an overview of recent advances. Digit. Signal Process. 19(1), 153–183 (2009)

158. E. Sejdiæ, I. Djuroviæ, L. Stankovi, Fractional Fourier transform as a signal processing tool:
an overview of recent developments. Signal Process. 91(6), 1351–1369 (2011)

159. P.D. Spanos, A. Giaralis, N.P. Politis, Time-frequency representation of earthquake accelero-
grams and inelastic structural response records using the adaptive chirplet decomposition and
empirical mode decomposition. Soil Dyn. Earthq. Eng. 27(7), 675–689 (2007)

160. H. Spontón, Pitch content visualization for musical analysis using fan chirp transform (2013).
http://dx.doi.org/10.5201/ipol

161. C. Stamoulis, B.S. Chang, Estimation of directional brain anisotropy from EEG signals using
the Mellin transform and implications for source localization, in Proceedings of the IEEE
International Conference on Digital Signal Processing (DSP) (2011), pp. 1–6

162. R.G. Stockwell, L. Mansinha, R.P. Lowe, Localization of the complex spectrum: the S-
transform. IEEE Trans. Signal Process. 44(4), 998–1001 (1996)

163. Z. Syed, D. Leeds, D. Curtis, F. Nesta, R.A. Levine, J. Guttag, A framework for the analysis
of acoustical cardiac signals. IEEE Trans. Biomed. Eng. 54(4), 651–662 (2007)

164. B. Teymur, S.P.G. Madabhushi, D.E. Newland, Analysis of earthquake motions recorded
during the Kokaeli earthquake. Report CUED/D-Soils/TR312 (2000). www-civ.eng.cam.ac.
uk/geotech_new/publications/TR/TR312.pdf

165. S. Umesh, L. Cohen, N. Marinovic, D.J. Nelson, Scale transform in speech analysis. IEEE
Trans. Speech Audio Process. 7(1), 40–45 (1999)

166. M. Van der Seijs, Improvements on time-frequency analysis using time-warping and timbre
techniques. Master’s thesis, TU Delft (2011)

167. J. VanVerth,M.Ko, Intro to frames, dictionaries andK-SVD.Conference presentation (1999).
www.essentialmath.com/GDC2014/GDC14_frames.pdf

168. J.G. Vargas-Rubio, B. Santhanam, An improved spectrogram using the multiangle centered
discrete fractional Fourier transform, in Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP’05), vol. 4 (2005), pp. 505–508

169. S. Ventosa, C. Simon, M. Schimmel, J.J. Dañobeitia, A. Manuel, The S-transform from a
wavelet point of view. IEEE Trans. Signal Process. 56(7), 2771–2780 (2008)

170. Y. Wang, J. Orchard, On the use of the Stockwell transform for image compression Proc.
IS&T/SPIE Electron. Imaging, 724504 (2009)

171. L. Weruaga, M. Képesi, Speech analysis with the fast chirp transform, in Proceedings of the
EUSIPCO (2004), pp. 1011–1014

172. L. Weruaga, M. Képesi, The fan-chirp transform for non-stationary harmonic sounds. Signal
Process. 87, 1504–1522 (2007)

173. S.T. Wisdom, Improved statistical signal processing of nonstationary random processes using
time-warping. Master’s thesis, University of Washington (2014)

174. P. Wolfe, Quadratic Time-Frequency Representations. Lecture Presentation, Harvard Univer-
sity (2009). http://isites.harvard.edu/fs/docs/icb.topic541812.files/lec19_spr09.pdf

175. Z. Wu, N.E. Huang, Ensemble empirical mode decomposition: a noise-assisted data analysis
method. Adv. Adapt. Data Anal. 1(1), 1–41 (2009)

176. F. Xu, W. Zhou, Y. Zhen, Q. Yuan, Classification of ECoG with modified S-transform for
brain-computer interface. J. Comput. Inf. Syst. 10(18), 8029–8041 (2014)

177. Y. Yang, Z.K. Peng, G. Meng, W.M. Zhang, Characterize highly oscillating frequency modu-
lation using generalized warblet transform. Mech. Syst. Signal Process. 26, 128–140 (2012)

178. S. Yin, B. McCowan, Barking in domestic dogs: context specificity and individual identifica-
tion. Anim. Behav. 68(2), 343–355 (2004)

www.scarpaz.com/attic/Documents/TheWignerDistribution.pdf
www.scarpaz.com/attic/Documents/TheWignerDistribution.pdf
http://dx.doi.org/10.5201/ipol
www-civ.eng.cam.ac.uk/geotech_new/publications/TR/TR312.pdf
www-civ.eng.cam.ac.uk/geotech_new/publications/TR/TR312.pdf
www.essentialmath.com/GDC2014/GDC14_frames.pdf
http://isites.harvard.edu/fs/docs/icb.topic541812.files/lec19_spr09.pdf

494 7 Time-Frequency Analysis

179. F. Zhang, G. Bi, Y. Chen, Harmonic transform. IEE Proc. Vis. Image Signal Process. 151,
257–263 (2004)

180. H. Zhang, C. Thurber, C. Rowe, Automatic P-wave arrival detection and picking with mul-
tiscale wavelet analysis for single-component recordings. Bull. Seismol. Soc. Am. 93(5),
1904–1912 (2003)

181. M. Zibulski, Y.Y. Zeevi, Frame analysis of the discrete Gabor-scheme. IEEE Trans. Signal
Process. 42(4), 942–945 (1994)

182. D. Zigone, D. Rivet, M. Radiguet, M. Campillo, C. Voisin, N. Cotte, J.S. Payero, Triggering
of tremors and slow slip event in Guerrero, Mexico, by the 2010 mw 8.8 Maule, Chile,
earthquake. J. Geophys. Res.: Solid Earth 117(B09), 1–17 (2012)

183. H. Zou, Y. Chen, L. Qiao, S. Song, X. Lu, Y. Li, Acceleration-based dopplerlet transform-part
ii: Implementations and applications to passive motion parameter estimation of moving sound
source. Signal Process. 88(4), 952–971 (2008)

184. H. Zou, S. Song, Z. Liu, Y. Chen, Y. Li, Acceleration-based dopplerlet transform-part i: theory.
Signal Process. 88(4), 934–951 (2008)

185. P. Zubrycki, A. Petrovsky, Accurate speech decomposition into periodic and aperiodic compo-
nents based on discrete harmonic transform, inProceedings of the European Signal Processing
Conference EUSIPCO (2007), pp. 2336–2340

186. P.E. Zwicke, I. Kiss, A new implementation of the Mellin transform and its application to
radar classification of ships. IEEE Trans. Pattern Anal. Mach. Intell. 2, 191–199 (1983)

Chapter 8
Modulation

8.1 Introduction

Signal changes are introduced by man for communication purposes. Of course there
are many ways to communicate information at distance. For instance by using
coloured flags, or mirrors, etc. In this chapter we will refer to electric and to electro-
magnetic signals.

In the case of radio waves, through the space, sinusoidal signals are used, and
the information is translated to changes in these signals. It is said that a signal is
modulated, via specific intentional signal changes. In a previous chapter the generic
sinusoidal signal was considered:

y(t) = A sin(ω t + α) (8.1)

and it was highlighted that the three parameters that one can change along time are
A, ω and α. There are three main ways of modulation: amplitude, frequency or phase
modulation.

There will be a sender station where the signal is modulated with information,
and another distant receiver station where the signal is demodulated to recover the
information.

When the communication is established with cable or fibre optics, pulses can be
employed instead of sinusoidal signals. Pulses have some advantages, in terms of
easy recognition in the presence of noise and distortions. In this case, changes in the
pulses can be used for transmission of information. This is modulation of pulses.

This chapter has two main sections, devoted to modulation of sinusoidal signals
and to modulation of pulses. There are another final sections with complementary
aspects: multiplexing, experiments, etc.

There are many books that can be used as basic bibliography, like for instance
[10, 11, 23].

© Springer Science+Business Media Singapore 2017
J.M. Giron-Sierra, Digital Signal Processing with Matlab Examples, Volume 1,
Signals and Communication Technology, DOI 10.1007/978-981-10-2534-1_8

495

496 8 Modulation

8.2 Modulation and Demodulation of Sinusoidal Signals

This section studies amplitude and frequencymodulation of sinusoidal signals. Radio
and TV stations use these alternatives. Also, modulation phenomena can be observed
in nature and human artefacts, like musical instruments. The main idea is to transmit
informationusingvariations of amplitudeor frequencyof a high-frequency sinusoidal
signal.

The first radio transmission of audio signals took place on December 1904 from a
radio tower at Brant Rock, Massachusetts. It was a first example of using amplitude
modulation. Figure8.1 shows a photograph of the tower and the man who created
the transmission system, Reginald Fessenden.

See on Internet (web page cited in the Resources section at the end of this chapter)
more historical details of this pivotal event.

8.2.1 Amplitude Modulation and Demodulation

The topic of amplitudemodulation will be introducedwith two examples. Then some
formal aspects will be treated. Demodulation is next. Finally some extensions of the
topic will be covered.

Figure8.2 depicts a block diagram that conceptually represents the radio trans-
mission scheme. By means of modulation and demodulation the information can
be transmitted on the air using electromagnetic waves. Of course, it can be also
transmitted through fibre optics, cable, ultrasound, etc.

Since products of sinusoids appear frequently in modulation, let us recall two
useful relationships:

cos ω1t cos ω2t = 1

2
cos(ω1 + ω2) t + 1

2
cos(ω1 − ω2) t (8.2)

Fig. 8.1 The Brant Rock radio tower, and Mr. R. Fessenden

8.2 Modulation and Demodulation of Sinusoidal Signals 497

Fig. 8.2 Radio transmission can be done using modulation and demodulation

cos2 ω t = 1 + cos 2ω t

2
(8.3)

8.2.1.1 Double Sideband Modulation

Consider a signal −1 < a(t) < 1 to be transmitted. There is also another signal
c(t) = cos(ωct) that will be used as carrier. For instance, c(t) may be translated
to a radio-frequency electromagnetic signal, able to travel long distances. Let us
modulate the amplitude of c(t), obtaining another signal y(t) that inherits the long
distance capabilities of c(t):

y(t) = (1 + μ a(t)) c(t) = (1 + μ a(t)) cos(ωct) (8.4)

where μ can take values from 0 to 1; this parameter sets the modulation depth.
Figure8.3 shows the signals involved in the AM modulation.
Suppose that a(t) = cos(wat), with wa noticeably less than wc. Figure8.4 shows

an example of y(t). What can be observed is a sinusoidal signal with frequency wc

having amplitude variations. These amplitude variations, the envelope, correspond
to a(t). In this way we printed the information we want to transmit, a(t), on the
carrier c(t). Now the signal y(t) is ready for transmission.

Fig. 8.3 AM modulation
diagram

498 8 Modulation

Fig. 8.4 Amplitude
modulation of sine signal

0 0.005 0.01 0.015 0.02 0.025 0.03
-1.5

-1

-0.5

0

0.5

1

1.5

seconds

For the case that a(t) = cos(wat), the mathematical expression of y(t) is:

y(t) = cos(ωct) + 1

2
μ cos(ωa + ωc) t + 1

2
μ cos(ωa − ωc) t (8.5)

The Fig. 8.4 has been obtained with the Program 8.1. There is a parameter MD in
the program that can be modified to produce more or less modulation depth on the
signal y(t). The reader is invited to change this parameter and see the results. MD
can have values between 0 and 1.

Notice in the Fig. 8.4 that the same information appears duplicated on the mod-
ulated signal. In fact it is easy to observe a(t) on top, and −a(t) at the bottom, as
envelopes.

Program 8.1 Amplitude modulation of sine signal
% Amplitude modulation of sine signal
fa=80; %signal frequency in Hz
wa=2*pi*fa; %signal frequency in rad/s
fc =1500; %carrier frequency in Hz
wc=2*pi*fc; %carrier frequency in rad/s
fs =30000; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
%time intervals set (0.03 seconds):
t=0: tiv :(0.03 -tiv);
MD=0.4; %modulation depth
A=1+(MD*sin(wa*t)); %amplitude
y=A.*sin(wc*t); %modulated signal data set
plot(t,y,'k'); %plots modulated signal
axis ([0 0.03 -1.5 1.5]);
xlabel('seconds ');
title('amplitude modulation of sine signal ');

8.2 Modulation and Demodulation of Sinusoidal Signals 499

Fig. 8.5 Amplitude
modulation of audio sine
signal

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-1.5

-1

-0.5

0

0.5

1

1.5

seconds

By means of the Program 8.2 an audio version of the amplitude modulation is
provided. Perhaps the pitch is too strident, take care. The reader is invited to change
the signal frequency fa in the program, and hear the results. Figure8.5 shows a
view (quite dense) of the modulated signal In musical terms, the effect we hear is
reverberation.

Program 8.2 Amplitude modulation of audio sine signal
% Amplitude modulation of audio sine signal
fa=5; %signal frequency in Hz
wa=2*pi*fa; %signal frequency in rad/s
fc =1500; %carrier frequency in Hz
wc=2*pi*fc; %carrier frequency in rad/s
fs =30000; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0: tiv :(0.5 -tiv); %time intervals set (0.5 seconds)
MD=0.5; %modulation depth
A=1+(MD*sin(wa*t));
y=A.*sin(wc*t); %modulated signal data set
plot(t,y,'g'); %plots modulated signal
axis ([0 0.5 -1.5 1.5]);
xlabel('seconds ');
title('amplitude modulation of sine signal ');
t=0: tiv:(3-tiv); %time intervals set (3 seconds)
A=1+(MD*sin(wa*t));
y=A.*sin(wc*t); %modulated signal data set
sound(y,fs)

500 8 Modulation

8.2.1.2 Modulation and Signal Spectrum

Let Y (ω) be the spectral density function of y(t). One of the properties of the Fourier
transform is the following:

F(y(t) e jωct) = Y (ω − ωc) (8.6)

where F denotes Fourier transform.
Therefore multiplying y(t) by exp(jωct) causes the spectral density of y(t) to be

translated in frequency by wc rad/s.
In particular, in the case of:

y(t) = b(t) cos (ωc t) (8.7)

The spectral density of y(t) is:

Y (ω) = 1

2
B(ω + ωc) + 1

2
B(ω − ωc) (8.8)

where B(ω) is the spectral density of b(t). The curve B(ω) versus ω has mirror
symmetry about the vertical axis.

Consequently, in this case, if we depict Y (ω) versusω, we obtain two symmetrical
curves, one is B(ω + ωc) and the other B(ω − ωc).

Notice that b(t) could be (1+μa(t)). This is interesting because of the amplitude
modulation Eq. (8.4).

Figure8.6 shows on top the spectral density function of a square wave (this is
A(ω)). In the middle this square signal is used to modulate in amplitude a sine signal
(the modulated signal is y(t)). At the bottom the spectral density function of the
modulated signal (Y (ω)) is shown. This spectral density function consists in two
symmetrical frequency shifted versions of A(ω). For this reason, we speak of double
sideband (DSB) modulation. The figure has been generated with the Program 8.3.
The reader is invited to modify MD and see the results.

Program 8.3 Amplitude modulation of sine signal and spectra
% Amplitude modulation of sine signal and spectra
fa=80; %signal frequency in Hz
wa=2*pi*fa; %signal frequency in rad/s
fc =1500; %carrier frequency in Hz
wc=2*pi*fc; %carrier frequency in rad/s
fs =16*1024; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
%time intervals set (0.03 seconds):
t=0: tiv :(0.03 -tiv);
a=square(wa*t); %modulating signal a(t) (square wave)
MD=0.4; %modulation depth
A=1+(MD*a); %amplitude
y=A.*sin(wc*t); %modulated signal data set
subplot (3,1,1)

8.2 Modulation and Demodulation of Sinusoidal Signals 501

ffa=fft(a,fs); %Fourier transform of a(t)
sa=fftshift(real(ffa));sa=sa/max(sa);
w1=-fs/2: -1; w2=1:fs/2; w=[w1 w2];
%w=(-63*80):80:(64*80);
plot(w,sa); %plots spectral density of a(t)
axis ([-1500 1500 -1 1]);
xlabel('Hz'); title ('A(w)');
subplot (3,1,2);
plot(t,y,'k'); %plots modulated signal
axis ([0 0.03 -1.5 1.5]);
xlabel('seconds '); title('y(t)');
subplot (3,1,3)
ffy=fft(y,fs); %Fourier transform of y(t)
sy=fftshift(real(ffy));sy=sy/max(sy);
plot(w,sy); %plots spectral density of y(t)
axis ([-3000 3000 -1 1]);
xlabel('Hz'); title('Y(w)');

It is clear that having a double sideband modulation is a waste of energy for
communication. As it shall be treated later on, it is possible to generate a single
sideband modulation (SSB).

Fig. 8.6 Spectral density
and amplitude modulation

-1500 -1000 -500 0 500 1000 1500
-1

-0.5

0

0.5

1

Hz

A(w)

0 0.005 0.01 0.015 0.02 0.025 0.03

-1

0

1

seconds

y(t)

-3000 -2000 -1000 0 1000 2000 3000
-1

-0.5

0

0.5

1

Hz

Y(w)

502 8 Modulation

8.2.1.3 Demodulation of Double Sideband Modulated Signals

Let us take the case of a radio signal y(t) captured with an antenna and a
pass-band filter. Each radio station uses a carrier with a specified frequency. Two
radio stations in the same territory use different carrier frequencies. The pass-band
filter is used in the receiver to isolate the carrier of interest, to hear one preferred
radio station. Suppose that y(t) is a DSB amplitude modulated signal. We want to
recover the modulating signal a(t) that comes as envelopes of y(t). This process is
called demodulation.

There are several alternative methods for demodulation. For instance, the Hilbert
transform can be used to get the envelope a(t). This can be done with digital process-
ing. Another alternative is to multiply the incoming signal by
cosωct, to obtain the following:

d(t) = (1 + μ a(t)) cos(ωct) cos(ωct) = (1 + μ a(t)) cos2(ωct) =

= (1 + μ a(t)) ∗ 1+ cos 2ωc t
2 = 0.5 + 0.5μ a(t) + 1

2 (1 + μ a(t)) cos 2ωc t
(8.9)

Now, a(t) can be extracted from d(t) filtering out the term with cos2ωct ; this can be
done with a low-pass filter (the DC term, 0.5, can also be easily eliminated).

In electronics practice, it is usual to demodulate the signal by using a diode
followed by a simple low-pass filter with one resistance and one capacitor in parallel.

Program 8.4 tries a simulation of the diode+ RC circuit, to obtain how the output
looks like. Figure8.7 shows the result. The diode rectifies the modulated signal
y(t) obtaining the top positive half of the signal d1(t). The rectified signal d1(t) is
depicted on top of the figure. The effect of the RC filter is depicted at the bottom of
the figure. This is the demodulated signal. It is an approximation of a(t) having some
ripple. In reality the ripple is quite small, because the carrier frequency is usually
much higher than in our simulation.

Program 8.4 Demodulation of a DSB signal
% Demodulation of a DSB signal
fa=80; %signal frequency in Hz
wa=2*pi*fa; %signal frequency in rad/s
fc =2000; %carrier frequency in Hz
wc=2*pi*fc; %carrier frequency in rad/s
fs =30000; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
%time intervals set (0.03 seconds):
t=0: tiv :(0.03 -tiv);
%the DSB signal
MD=0.4; %modulation depth
A=1+(MD*sin(wa*t)); %amplitude
y=A.*sin(wc*t); %modulated signal data set
%demodulation
N=length(t); d1=zeros(1,N);
%diode simulation

8.2 Modulation and Demodulation of Sinusoidal Signals 503

for tt=1:N,
if y(tt)<0

d1(tt)=0;
else

d1(tt)=y(tt);
end;

end;
%the R-C filter
R=1000; C=0 .000003;
fil=tf([R],[R*C 1]); %transfer function
d2=lsim(fil ,d1 ,t); %response of the filter
subplot (2,1,1)
plot(t,d1 ,'k'); %plots diode output
xlabel('seconds ');
title('rectified modulated signal ');
subplot (2,1,2)
plot(t,d2 ,'k'); %plots filter output
xlabel('seconds '); title('demodulated signal ')

The action of the diode is clearly nonlinear. The same can be said about
multiplication. In linear systems, output frequencies are the same as input frequen-
cies. In nonlinear system this is different; there are differences between input and
output frequency contents. Modulation and demodulation are nonlinear processes.

The method of multiplication (Eq. (8.9)) requires synchronization of frequencies:
it is needed to determine the frequency of y(t) to generate cosωct . In practice this
is not trivial. One of the electronics methods in radio receivers is based on the use
of phase-locked loops (PLL), which include a voltage controlled oscillator (VCO)
that tries to generate a sine signal in synchrony with the input signal; differences in
phase are compensated in real time with a feedback loop acting on the VCO.

Fig. 8.7 Diode
demodulation of DSB
amplitude modulated signal

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.5

1

1.5

seconds

rectified modulated
 signal

0 0.005 0.01 0.015 0.02 0.025 0.03
0

100

200

300

400

500

seconds

demodulated signal

504 8 Modulation

Fig. 8.8 Suppressed carrier
amplitude modulation of sine
signal

0 0.005 0.01 0.015 0.02 0.025 0.03
-1.5

-1

-0.5

0

0.5

1

1.5

seconds

8.2.1.4 Variants of Amplitude Modulation

Consider a simple amplitude modulation scheme, by just multiplication:

y(t) = a(t) cos (ωc t) (8.10)

where a(t), with values between −1 and 1, is the modulating signal and coswc t
is the carrier. Figure8.8, made with Program 8.5, shows an example of this kind of
modulation. Both a(t) and y(t) were superposed. It can be seen that the modulating
signal comes from one to the other signal side again and again. If the diode based
demodulation was applied, the results obtained would be wrong.

Program 8.5 Suppressed carrier amplitude modulation of sine signal
% Suppressed carrier amplitude modulation
% of sine signal
fa=80; %signal frequency in Hz
wa=2*pi*fa; %signal frequency in rad/s
KD=50; %decay constant
fc =1500; %carrier frequency in Hz
wc=2*pi*fc; %carrier frequency in rad/s
fs =30000; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
%time intervals set (0.03 seconds):
t=0: tiv :(0.03 -tiv);
%modulating signal (damped oscillation):
A=exp(-KD*t).*sin(wa*t);
y=A.*sin(wc*t); %modulated signal data set
plot(t,y,'b'); hold on; %plots modulated signal
plot(t,A,'k'); %plots modulating signal
axis ([0 0.03 -1.5 1.5]);

8.2 Modulation and Demodulation of Sinusoidal Signals 505

The modulation considered in Eq. (8.10) is called suppressed carrier DSB
amplitude modulation. To demodulate a signal with such modulation, a multipli-
cation scheme can be applied, like in Eq. (8.9). In this case, we obtain:

d(t) = a(t) cos(ωct) cos(ωct) = a(t) cos2(ωct) =

= a(t) 1+ cos 2ωc t
2 = 0.5 a(t) + 1

2 a(t) cos 2ωc t
(8.11)

and a(t) can be recovered by filtering out the term with cos 2ωct .
Using the orthogonality of sines and cosines makes it possible to transmit two

different signals a1(t) and a2(t) on the same carrier. This is called quadrature mul-
tiplexing. The modulated signal can be:

y(t) = a1(t) cos ωct + a2(t) sin ωct (8.12)

The two signals can be recovered by multiplication based demodulation:

y(t) cosωct = 0.5 a1(t) + 1

2
a1(t) cos 2ωct + 1

2
a2(t) sin 2ωct (8.13)

y(t) sinωct = 0.5 a2(t) − 1

2
a2(t) cos 2ωct + 1

2
a1(t) sin 2ωct (8.14)

Let us focus on single sideband (SSB) amplitude modulation. Consider again the
expression (Eq. (8.4)), of amplitude modulation with a(t) = cos(ωat):

y(t) = cos(ωct) + 1

2
μ cos(ωa + ωc) t + 1

2
μ cos(ωa − ωc) t (8.15)

We want to transmit just the term with cos(ωa + ωc)t , which is one of the bands.
To obtain this term we can use the Hilbert transform, to get two complex signals:
exp(jωat) and exp(jωct). If we multiply both signals:

e jωa t e jωct = e j (ωa+ωc)t (8.16)

Now, if we take the real part, we obtain the desired term:

Re (e j (ωa+ωc)t) = cos (ωa + ωc) t (8.17)

The modulation procedure can be generalized to any a(t): multiply the Hilbert trans-
form of a(t) by the carrier, and take the real part.

The SSB amplitude modulation signal can be demodulated multiplying it by
cosωct.

Figure8.9, generated by the Program 8.6, shows on top a sawtooth modulating
signal, and below the corresponding SSB amplitude modulated signal. Since the

506 8 Modulation

Fig. 8.9 SSB amplitude
modulation with a sawtooth
signal

0.01 0.015 0.02 0.025 0.03 0.035 0.04
-1

-0.5
0

0.5

1

a(
t)

0.01 0.015 0.02 0.025 0.03 0.035 0.04
-3
-2
-1
0
1
2
3

seconds

y(
t)

Hilbert transform take infinite values in the discontinuities of the signal, there are
large values of the modulated signals near the corners of the sawtooth. In general
it is convenient to smooth the modulating signal in case of using SSB amplitude
modulation [2].

Program 8.6 SSB amplitude modulation of sine signal
% SSB amplitude modulation of sine signal
fa=80; %signal frequency in Hz
wa=2*pi*fa; %signal frequency in rad/s
fc =1500; %carrier frequency in Hz
wc=2*pi*fc; %carrier frequency in rad/s
fs =30000; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
%time intervals set (0.05 seconds):
t=0: tiv :(0.05 -tiv);
A=sawtooth(wa*t); %modulating signal
%Hilbert transform of modulating signal:
gA=hilbert(A);
C=cos(wc*t); %carrier signal
gC=hilbert(C); %Hilbert transform of carrier
gSSB=gA.*gC; %multiplication
y=real(gSSB); %real part
subplot (2,1,1)
plot(t,A,'k'); %plots modulating signal
axis ([0 .01 0.04 -1.2 1.2]);
ylabel('a(t)');
title('SSB amplitude modulation
with sawtooth signal ')
subplot (2,1,2)
plot(t,y,'k'); %plots modulated signal
axis ([0 .01 0.04 -3 3]);
xlabel('seconds '); ylabel('y(t)');

8.2 Modulation and Demodulation of Sinusoidal Signals 507

8.2.2 Frequency Modulation and Demodulation

Following the same structure of the previous part, frequency modulation will be
introduced with two examples. Then some formal aspects, demodulation, and some
extensions of the topic will be treated.

Frequency modulation is a particular case of angle modulation:

y(t) = A cos(ωc t + ϕ(t)) (8.18)

The anglemodulation is introduced through variations ofϕ(t).The particular relation
of ϕ(t) with the modulating signal a(t) can take several forms. For instance:

ϕ(t) = K a(t), phase modulation

ϕ(t) = K
t∫

−∞
a(τ) dτ , frequency modulation

The second expression takes into account that the instantaneous frequency devi-
ation is given by dϕ/dt . Frequency modulation has better properties than phase
modulation. Therefore let us focus on frequency modulation.

8.2.2.1 Frequency Modulation

Like in amplitude modulation, consider a signal −1 < a(t) < 1 to be transmitted.
There is also another signal c(t) = cos(ωct) that will be used as carrier. Let us
modulate the frequency of c(t), obtaining another, modulated, signal y(t).

y(t) = A cos

⎛

⎝ωc t + K

t∫

−∞
a(τ) dτ

⎞

⎠ (8.19)

In the particular case that a(t) = cos(ωat), the modulated signal can be expressed
as follows:

y(t) = A cos (ωct + β sin ωat) (8.20)

The FM radio transmission was invented by Mr. E.H. Armstrong. In 1933 he had a
working prototype. Before that, he also contributed with other inventions, like the
application of positive feedback for regeneration, and the superheterodyne receiver.
Figure8.10 shows a photograph of Armstrong, and another photograph with his wife
(the “portable” superheterodyne radio was built by Armstrong as a present for her).

Like before, we cite in the Resources section a web page with more historical
details.

Figure8.11 shows an example of frequency modulated signal, with a(t) =
cos(ωat). The figure has been generated by the Program 8.7.

508 8 Modulation

Fig. 8.10 Mr. Armstrong, his wife and a superheterodyne radio

0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1
-1.5

-1

-0.5

0

0.5

1

1.5

seconds

Fig. 8.11 Frequency modulation of sine signal

8.2 Modulation and Demodulation of Sinusoidal Signals 509

Fig. 8.12 Frequency of FM
modulated signal in audio
example

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
400

450

500

550

seconds

Program 8.7 Frequency modulation of sine signal
% Frequency modulation of sine signal
fa=40; %signal frequency in Hz
wa=2*pi*fa; %signal frequency in rad/s
fc =1000; %carrier frequency in Hz
wc=2*pi*fc; %carrier frequency in rad/s
fs =30000; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0: tiv :(0.1 -tiv); %time intervals set (0.1 seconds)
beta =20; %modulation depth
%modulated signal data set:
y=cos((wc*t)+(beta*sin(wa*t)));
plot(t,y,'k'); %plots modulated signal
axis ([0 .05 0.1 -1.5 1.5]);
xlabel('seconds ');
title('frequency modulation of sine signal ');

Another frequency modulation example is offered by the Program 8.8. Frequen-
cies have been specified in order tomake audible results. The effect is like a traditional
siren alarm sound. Figure8.12 has been also generated with the Program 8.8. Using
the derivative of the Hilbert transform, the program obtains the instantaneous fre-
quency of the modulated signal, and depicts it in the figure. The reader is invited to
use also the spectrogram.

510 8 Modulation

Program 8.8 Frequency modulation of audio sine signal
% Frequency modulation of audio sine signal
fa=2; %signal frequency in Hz
wa=2*pi*fa; %signal frequency in rad/s
fc =500; %carrier frequency in Hz
wc=2*pi*fc; %carrier frequency in rad/s
fs =3000; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0: tiv:(5-tiv); %time intervals set (5 seconds)
beta =20; %modulation depth
%modulated signal data set:
y=cos((wc*t)+(beta*sin(wa*t)));
%instantaneous frequency estimation
gy=hilbert(y);
dg=diff(gy)/tiv;
w=abs(dg);
v=w/(2*pi);
Nv=length(v);
%plot frequency of modulated signal:
plot(t(2:Nv+1),v,'k');
axis ([0 .05 5 400 550]);
xlabel('seconds ');
title('frequency of modulated signal ');
%5 seconds of sound
sound(y,fs);

8.2.2.2 Frequency Modulation and Signal Spectrum

The spectral density of frequency modulated signals is usually complicated. To give
an idea it is better to consider the simplest case: the modulating signal is a sinusoidal
signal, so we can use Eq. (8.22). Let us expand this equation:

y(t) = A cos (ωct + β sin ωat) =
= A [cos ωct cos (β sin ωat) − sinωct sin (β sin ωat)]

(8.21)

It is well known that

cos (β sin ωat) = Jo(β) +
∞∑

ne even

2 Jn(β) cos n ωa t (8.22)

sin (β sin ωat) =
∞∑

ne odd

2 Jn(β) sin n ωa t (8.23)

where Jn (β) are Bessel functions. Using the bessel() MATLAB function one can
see the expression of any of these Jn(β).

If we substitute in Eq. (8.21), accordingwith Eqs. (8.22) and (8.23), andwith some
development:

8.2 Modulation and Demodulation of Sinusoidal Signals 511

Fig. 8.13 Spectral density of
frequency modulated signal

-3000 -2000 -1000 0 1000 2000 3000
-1

0

1

be
ta

=1
-3000 -2000 -1000 0 1000 2000 3000
-1

0

1

be
ta

=5

-3000 -2000 -1000 0 1000 2000 3000
-1

0

1

Hz

be
ta

=1
0

y(t) = A Jo(β) cos ωct+
+

∞∑
ne even

AJn(β) [cos (ωc + n ωa) t + cos (ωc − n ωa) t] +

+
∞∑

ne odd
AJn(β) [cos (ωc + n ωa) t − cos (ωc − n ωa) t]

(8.24)

Notice that y(t) contains an infinite number of harmonics. Figure8.13, generated
with the Program 8.9, shows three examples of spectral densities of the frequency
modulated signal, corresponding to three example values of β. It is clear that the
bandwidth occupied by the frequency modulated signal increases as β increases.

The following equation gives an approximation of the modulated signal band-
width:

Δωy = 2 (β + 2)Δωa (8.25)

where Δωa is the modulating signal bandwidth.

Program 8.9 Spectra of frequency modulated signals
% Spectra of frequency modulated signals
% frequency modulation of sine signal
fa=40; %signal frequency in Hz
wa=2*pi*fa; %signal frequency in rad/s
fc =1000; %carrier frequency in Hz
wc=2*pi*fc; %carrier frequency in rad/s
fs =30000; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0: tiv :(0.1 -tiv); %time intervals set (0.1 seconds)
%vector of frequencies for spectra:
w1=-fs/2: -1; w2=1:fs/2; w=[w1 w2];
beta =20; %modulation depth
%modulated signal data set:
y=cos((wc*t)+(beta*sin(wa*t)));

512 8 Modulation

subplot (3,1,1)
beta =1; %modulation depth
%modulated signal data set:
y=cos((wc*t)+(beta*sin(wa*t)));
ffy=fft(y,fs); %Fourier transform of y(t)
sy=fftshift(real(ffy));sy=sy/max(sy);
plot(w,sy); %plots spectral density of y(t)
axis ([-3000 3000 -1 1]);
ylabel('beta=1'); title('Y(w)');
subplot (3,1,2)
beta =5; %modulation depth
%modulated signal data set:
y=cos((wc*t)+(beta*sin(wa*t)));
ffy=fft(y,fs); %Fourier transform of y(t)
sy=fftshift(real(ffy));sy=sy/max(sy);
plot(w,sy); %plots spectral density of y(t)
axis ([-3000 3000 -1 1]);
ylabel('beta=5');
subplot (3,1,3)
beta =10; %modulation depth
%modulated signal data set:
y=cos((wc*t)+(beta*sin(wa*t)));
ffy=fft(y,fs); %Fourier transform of y(t)
sy=fftshift(real(ffy));sy=sy/max(sy);
plot(w,sy); %plots spectral density of y(t)
axis ([-3000 3000 -1 1]);
xlabel('Hz'); ylabel('beta =10');

8.2.2.3 Demodulation of Frequency Modulated Signal

Frequency modulated signals can be demodulated via the Hilbert transform, as it has
been done by the Program 8.8 with the audio example. An alternative in terms of
electronic circuits is given by phase-locked-loop schemes.

8.2.3 Digital Modulation of Sine Signals

The same modulation methods already described can be applied for the transmission
of digital information. We want to transmit a series a(n) of bits.

Figure8.14 depicts the approach. The carrier is a sine signal with suitable fre-
quency.

Figure8.15 shows examples of the three basic modulation methods being used
for the transmission of series of bits. There is a specific terminology for these mod-
ulations, Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK) and Phase
Shift Keying (PSK).

The Fig. 8.15 has been generated with the ProgramB.30, which has been included
in Appendix B. Other ways of generating this figure are possible, but it was preferred

8.2 Modulation and Demodulation of Sinusoidal Signals 513

Fig. 8.14 Pulse modulation
of sine signal

Fig. 8.15 ASK, FSK and
PSK modulation of sine
signal

0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

bi
ts

 m
es

sa
ge

0 0.05 0.1 0.15 0.2 0.25
-1

0

1

A
S

K

0 0.05 0.1 0.15 0.2 0.25
-1

0

1

FS
K

0 0.05 0.1 0.15 0.2 0.25
-1

0

1

P
S

K

seconds

for tutorial purposes to build the signals by pieces. The cat() function was used for
concatenation of pieces. Notice the following details:

• The amplitude modulation ASK was done by switching between the full carrier
(bit = 1) or just zero signal (bit = 0).

• The frequency modulation FSK was done by switching between two carriers with
different frequencies.

• The phase modulation PSK was done by switching between 0◦ carrier phase or
180◦ carrier phase.

514 8 Modulation

0 0.5 1
x 10-3

-1

-0.5

0

0.5

1

0
ph

as
e

seconds
0 0.5 1

x 10-3

-1

-0.5

0

0.5

1

1
ph

as
e

seconds

0 0.5 1
x 10-3

-1

-0.5

0

0.5

1

2
ph

as
e

seconds
0 0.5 1

x 10-3

-1

-0.5

0

0.5

1

3
ph

as
e

seconds

Fig. 8.16 The four basic pieces of 4_PSK modulation

Comparing the three modulation methods, it is PSK the method that is more
energy-constant along time (supposing the more frequency the more energy in the
signal).

In the 1970s, an audio FSK standard, called the Kansas City standard, was used to
store data on audio cassettes. The Bell 202 modem uses a 1200 Hz. tone for mark (1)
and 2200 Hz. for space (0). The Bell 202 standard is used for caller ID in a number
of systems.

The phase modulation, PSK, admits several versions as the 360◦ of phase can be
divided into N equal parts. For instance, let us take N= 4 and suppose that we divide
bit messages into groups of two bits. Also suppose that we employ just one sine cycle
to transmit one pair of bits. Then we could transmit 00 with one 0◦ phase cycle, 01
with one 90◦ phase cycle, 10 with one 180◦ phase cycle, and 11 with 270◦ phase
cycle. Figure8.16, generated with the Program B.20, shows the four sine cycles that
we can use.

Program 8.10 Pieces of 4-PSK
% Pieces of 4-PSK
fc =1000; %carrier frequency in Hz
ns=20; %number of samples per carrier cycle
fs=ns*fc; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
%time intervals set , 1 sine period:
t=0: tiv :((1/fc)-tiv);
%carrier signals for 1 bit time
c1=sin (2*pi*fc*t);

8.2 Modulation and Demodulation of Sinusoidal Signals 515

c2=sin ((2*pi*fc*t)+(pi /2));
c3=sin ((2*pi*fc*t)+(pi));
c4=sin ((2*pi*fc*t)+(3*pi /2));
%plots of the four modulated PSK pieces
subplot (2,2,1)
plot(t,c1 ,'k'); %plots 0 phase modulated signal
ylabel('0 phase'); xlabel('seconds ');
title('pieces of 4-PSK modulation of sine signal ');
axis ([0 1/fc -1.2 1.2]);
subplot (2,2,2)
plot(t,c2 ,'k'); %plots 1 phase modulated signal
ylabel('1 phase'); xlabel('seconds ');
axis ([0 1/fc -1.2 1.2]);
subplot (2,2,3)
plot(t,c3 ,'k'); %plots 2 phase modulated signal
ylabel('2 phase'); xlabel('seconds ');
axis ([0 1/fc -1.2 1.2]);
subplot (2,2,4)
plot(t,c4 ,'k'); %plots 3 phase modulated signal
ylabel('3 phase'); xlabel('seconds ');
axis ([0 1/fc -1.2 1.2]);

Using the four modulated cycles, messages can be decomposed into bit pairs and
then be transmitted. Figure8.17 shows an example of message and the corresponding
4-PSK modulated signal. This figure has been obtained with the Program 8.11.

Fig. 8.17 Example of
4-PSK modulation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 10-3

0

0.5

1

m
es

sa
ge

seconds

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 10-3

-1

-0.5

0

0.5

1

4-
P

S
K

 s
ig

na
l

seconds

516 8 Modulation

Program 8.11 A message via 4-PSK
% A message via 4-PSK
% the pulses (bits):
%the modulating signal (bits):
a=[0 1 0 0 1 0 1 1 0 1];
Nb=length(a); %number of message bits
fc =1000; %carrier frequency in Hz
%number of samples per carrier cycle
% (also per bit -pair):
ns=20;
fs=ns*fc; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
%time intervals set , 1 sine period (1 bit -pair):
t=0: tiv :((1/fc)-tiv);
%time intervals set for the complete message:
tmsg =0: tiv :((Nb/(2*fc))-tiv);
%carrier signals for bit -pair time
c1=sin (2*pi*fc*t);
c2=sin ((2*pi*fc*t)+(pi /2));
c3=sin ((2*pi*fc*t)+(pi));
c4=sin ((2*pi*fc*t)+(3*pi /2));
subplot (2,1,1)
xx=Nb /(10* fc); %for vertical lines
us1=ones(1,ns/2); %vector of ns/2 ones
as=a(1)* us1;
for nn=2:Nb ,

as=cat(2,as ,a(nn)*us1);
end
%plot modulating signal:
plot(tmsg ,as ,'k'); hold on;
for nn=1:4,

plot([nn*xx nn*xx],[-0.2 1.2],':b');
end
axis ([0 Nb/(2*fc) -0.2 1.2]);
ylabel('message '); xlabel('seconds ');
title('4-PSK modulation ');
subplot (2,1,2)
cs=c2; %first two bits of a: (0 1)
cs=cat(2,cs ,c1); %append 2nd two bits of a: (0 0)
cs=cat(2,cs ,c3); %append 3rd two bits of a: (1 0)
cs=cat(2,cs ,c4); %append 4th two bits of a: (1 1)
cs=cat(2,cs ,c2); %append 5th two bits of a: (0 1)
plot(tmsg ,cs ,'k'); hold on; %plots modulated signal
for nn=1:4,
plot([nn*xx nn*xx],[-1.2 1.2],':b');
end
axis ([0 Nb/(2*fc) -1.2 1.2]);
ylabel('4-PSK signal '); xlabel('seconds ');

Indeed N can take any desired value, giving rise to N-PSK modulation schemes.
Care is needed for large values of N, since the recognition of different phases can
become difficult due to noise and distortion.

There are many digital communication schemes using the basic modulation meth-
ods ASK, FSK or PSK, as the basis for multiplexing techniques. The topic of mul-
tiplexing will be treated in a later section of this chapter.

8.2 Modulation and Demodulation of Sinusoidal Signals 517

There are many books and other publications on digital communication systems,
like for instance [16]. The web page of Mathworks on digital communication books
contains a list of those that include MATLAB programs; in particular, let us mention
[15, 20, 21]. Other papers of interest are [3, 8].

8.2.4 Details of the MATLAB Signal Processing Toolbox

The MATLAB Signal Processing Toolbox provides two main functions to deal with
modulation issues:modulate() and demod(). These functions offer options for several
modulation methods:

• Modulation of sinusoid signal: amplitude (SSB, DSB, and quadrature), frequency,
phase

• Modulation of pulses: width, time.

Until now, the functionsmodulate() and demod() have not been used in the exam-
ples. The reader is invited to use them to check the results already presented. For
example, the Program 8.12 uses modulate() to generate the same results of Fig. 8.4,
as it can be seen in Fig. 8.18.

Fig. 8.18 Amplitude
modulation of sine signal

0 0.005 0.01 0.015 0.02 0.025 0.03

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

seconds

518 8 Modulation

Program 8.12 Amplitude modulation of sine signal, using modulate()
% Amplitude modulation of sine signal ,
% using modulate ()
fa=80; %signal frequency in Hz
wa=2*pi*fa; %signal frequency in rad/s
fc =1500; %carrier frequency in Hz
fs =30000; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
%time intervals set (0.03 seconds):
t=0: tiv :(0.03 -tiv);
a=sin(wa*t);
y=modulate(a,fc ,fs ,'amdsb -tc');
plot(t,y,'k'); %plots modulated signal
axis ([0 0.03 -2.2 2.2]);
xlabel('seconds ');
title('amplitude modulation of sine signal ');

8.3 Modulation and Demodulation of Pulses

Pulses have the advantage of fitting well with digital electronics. So they offer a
convenient way for cable or fibre optic transmission.

Pulse trains can be used as carriers for analog signals, viamodulation of the pulses.
Likewise digital information can be translated to pulse codification for serial

transmission.

8.3.1 Sampling. Demodulation of modulated pulses

Analog signals can be properly sampled to obtain a series of numbers—the samples—
from which the original analog signals can be recovered. These numbers can be used
to modulate pulses, one pulse per sample.

The demodulation process is a reconstruction process, obtaining the series of
numbers from themodulated pulses,which is amatter ofmeasuring, and then filtering
to get the recovered continuous time analog signal.

When speaking of sampling, the evident reference is the sampling theorem
enounced by Mr. C.E. Shannon in 1949 [13], which is a milestone of historical rele-
vance. It was preceded by a first statement from H. Nyquist in 1928. A photograph
of Shannon is reproduced in Fig. 8.19.

For the interested reader, a short history of the origins of the sampling theorem
is offered by [9], and a good introductory book on Information Theory is [5]. It is
also quite interesting the article [18] titled “Sampling—50 years after Shannon”. It
would also be recommended to read new views of sampling in [1, 19].

With respect to Information Theory, another very important reference is again due
to Shannon, in a very readable article published in 1948 [12] and which has been

8.3 Modulation and Demodulation of Pulses 519

Fig. 8.19 C.E. Shannon

reprinted with corrections in 2001 [14]. This article has been cited more than 72,000
times.

8.3.2 Modulation of Pulses

Pulses can be modulated in amplitude (PAM), in width (PWM), and in phase (PPM)
(this is also called pulse time modulation, PTM).

Figure8.20 depicts a diagram of the modulation of pulses for transmission pur-
poses.

Figure8.21, shows from top to bottom, a sinusoid modulating signal, a PWM
modulated signal, and a PTM modulated signal. The figure has been generated with
the Program8.13,which usesmodulate(). The plot of PTMmodulated signal includes
a reference non-modulated signal to highlight the PTM phase shifts.

Fig. 8.20 Modulation of
pulses

520 8 Modulation

Fig. 8.21 Analog
modulation of pulses

0 0.005 0.01 0.015 0.02 0.025
0

0.5

1

m
od

ul
at

in
g

 s
in

e

0 0.005 0.01 0.015 0.02 0.025
0

0.5

1

P
W

M

0 0.005 0.01 0.015 0.02 0.025
0

0.5

1

P
TM

seconds

Program 8.13 Modulation of pulses
% Modulation of pulses
% the modulating signal is a sine
fa=40; %signal frequency in Hz
wa=2*pi*fa; %signal frequency in rad/s
nsc=8; %number of samples per signal period
fs=nsc*fa; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
%time intervals set (0.03 seconds):
t=0: tiv :(0.03 -tiv);
%sampling the modulating signal
a=0.5+0.3*sin(wa*t);
subplot (3,1,1);
plot(t,a,'k');
ylabel('modulating sine');
title('analog modulation of pulses ');
axis ([0 0.025 -0.2 1.2]);
%PWM modulation
[PWMy ,ty]= modulate(a,fa ,fs ,'pwm','centered ');
subplot (3,1,2)
plot(ty/nsc ,PWMy ,'k');
ylabel('PWM');
axis ([0 0.025 -0.2 1.2]);
%PTM modulation
[PTMy ,ty]= modulate(a,fa ,fs ,'ptm',0.3);
subplot (3,1,3)
b=0.5*ones(1,length(a));
[PTMb ,tb]= modulate(b,fa ,fs ,'ptm',0.3);
plot(tb/nsc ,PTMb ,'-.r'); hold on; %reference pulses
plot(ty/nsc ,PTMy ,'k'); %modulated pulses
ylabel('PTM');
axis ([0 0.025 -0.2 1.2]);
xlabel('seconds ');

8.3 Modulation and Demodulation of Pulses 521

Fig. 8.22 Demodulation of
pulses

0 0.005 0.01 0.015 0.02 0.025
0

0.5

1

m
od

ul
at

in
g

 s
in

e

0 0.005 0.01 0.015 0.02 0.025
0

0.5

1

P
W

M

0 0.005 0.01 0.015 0.02 0.025
0

0.5

1

P
TM

seconds

In order to check the function demod(), Program 8.14 repeats themodulation alter-
natives previously seen, and then demodulates the results of eachmodulationmethod
(PWM and PTM). Figure8.22 shows the demodulation results, to be compared with
the original modulating signal on top of the figure. Notice that the sampling rate
(nsc in the program) has been increased, and that the value of the default PTM pulse
width has been changed from 0.3 to 0.1.

See [17] for an extensive treatment of PWM techniques.
The Program 8.14 is useful for testing the effects of sampling rate on the signal

recovery quality.

Program 8.14 Demodulation of pulses
% Demodulation of pulses
% the modulating signal is a sine
fa=40; %signal frequency in Hz
wa=2*pi*fa; %signal frequency in rad/s
nsc =20; %number of samples per signal period
fs=nsc*fa; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
%time intervals set (0.03 seconds):
t=0: tiv :(0.03 -tiv);
%sampling the modulating signal
a=0.5+0.3*sin(wa*t);
subplot (3,1,1);
plot(t,a,'k');
ylabel('modulating sine');
title('demodulation of pulses ');
axis ([0 0.025 -0.2 1.2]);
%PWM modulation
[PWMy ,ty]= modulate(a,fa ,fs ,'pwm','centered ');
%PWM demodulation
PWMa=demod(PWMy ,fa ,fs ,'pwm','centered ');
subplot (3,1,2)
plot(t,PWMa ,'k');
ylabel('PWM');

522 8 Modulation

axis ([0 0.025 -0.2 1.2]);
%PTM modulation
[PTMy ,ty]= modulate(a,fa ,fs ,'ptm',0.1);
%PTM demodulation
PTMa=demod(PTMy ,fa ,fs ,'ptm');
subplot (3,1,3)
plot(t,PTMa ,'k');
ylabel('PTM');
axis ([0 0.025 -0.2 1.2]);
xlabel('seconds ');

8.3.3 Coding

Practical sampling of analog signals is done with analog to digital converters. That
means that samples are discretizations, or quantifications, of analog values. For
instance, if a 8 bit analog to digital converter is used, continuous analog values
are discretized into 255 possible values, represented by 8 bit words. Thus samples
are converted into bit sets. The bit sets can be transmitted in serial format, using a
carrier or directly pulses. The generic term for this kind of process is Pulse-Code
Modulation (PCM).

A simple way to compress the information coding is to take relative values instead
of absolute values in each signal sample. That is, only the difference between the
present sample and the previous sample is quantized and transmitted. This is called
Differential Pulse-code Modulation (DPCM). When smooth changes in signals are
guaranteed, the differences can be coded with just two bits (0, <, or >, with respect
to previous sample), this is Delta Modulation (DM).

8.3.4 Inter-symbol Interference

Pulses occupy a large bandwidth. Pulse shaping is commonly applied for band-
limited communication channels. At the same time, the pulse shaping focuses on
avoiding inter-symbol interference (ISI). This interference takes place when pulses
deformations along the communication channel end-upwith overlapping andmixing.

Raised-cosine digital filters have been considered in the previous chapter. This
kind of filter is appropriate to avoid ISI problems. In practice, two square-root raised-
cosine filters are used, one in the sender side and the other in the receiver side. In
this case, the receiver filter has an impulse response that matches the received signals
(they are also impulse responses of the same kind of filter). Consequently, it is said
that matched filters are used.

The firrcos() function has an option (‘sqrt’) to work as a square root raised-cosine
filter.

8.4 Transmission Media. Multiplexing 523

8.4 Transmission Media. Multiplexing

Every radio station is assigned a carrier frequency. Radio bands, like for instance
AM, offer a determined bandwidth that has to be divided into sub-bands, one per
radio station.

If pulses were used as carriers, the same radio station would appear in several
different sub-bands, because pulses include several harmonics (Fourier decomposi-
tion). This is highly undesirable. Only sinusoid signals appear in just one sub-band.
Consequently, carriers for radio waves are sinusoids.

The situation is different when cables or fibre optic are used. In this case, pulses
(conveniently shaped) could be used as the transmission signals.

Once a communication channel has been established, every effort is done to exploit
the channel for more and more independent message signals being transmitted at the
same time. This is multiplexing.

In part, the multiplexing topic was already introduced in Eq. (8.12), using two
orthogonal signals, sine and cosine, to transmit two analog signals in the same channel
(quadrature modulation).

There are two main alternatives for multiplexing: frequency domain or time
domain.

8.4.1 Frequency Domain Multiplexing

With frequency division multiplexing (FDM) several carriers with different frequen-
cies are used; it is like having several senders and several receivers, each pair being
tuned to one of the available frequencies.

A sketch of the concept is presented in Fig. 8.23.
Bluetooth, for example, operates in the 2.4 GHz band and uses FDM with 79

channels from 2.402 GHz to 2.480 GHz.
The Global System forMobile Communications protocol (GSM) uses FDM, with

124 uplink and 124 downlink channels, see [7] for a MATLAB implementation.
The Orthogonal FDM (OFDM) uses several channels, and each channel utilizes

multiple sub-carriers. Each sub-carrier is orthogonal to one another. Some of the
flavours of WiFi are OFDM.

Two interesting papers on wireless communications are [6, 22]; a Thesis on ultra-
wideband systems is [4].

8.4.2 Time Domain Multiplexing

Imagine a motorized rotary switch with N positions. There are N message signals
connected to the N inputs of the switch. The output of the switch would be a series of

524 8 Modulation

Fig. 8.23 Frequency division multiplexing

interleaved samples of the N signals: mxa = a1(t1), a2(t2) . . . aN (t N), This
function can be done with solid state electronics. The signal mxa can be transmitted
by cable, fiber optics, etc. Time domain multiplexing is called TDM.

Figure8.24 shows a sketch of TDM.
AmainTDMtrend is characterized by the use of digitalmodulation of sine signals.

For example, quite a lot of practical research has been directed towards multiplexing
with PSK versions, like quadrature PSK (QPSK) and others that may use a set of
distinct phase shifts.

Fig. 8.24 Time division multiplexing

8.5 Experiments 525

8.5 Experiments

Let us do some experiments dealing with modulation and communications. The first
one will become relatively long, since it considers three alternatives. The second is
much shorter and responds to a curiosity.

8.5.1 Communication and Noise

Amain concern of communication systems is the quality degrading due to the influ-
ence of noise in the communication channel. In the case of data communication this
may represent a serious problem of data integrity.

The situation being considered is depicted in Fig. 8.25.
Let us simulate a complete communication system, with a sender, a communi-

cation channel, and a receiver. In this scenario, three different modulation methods
will be studied for comparison. One period of sine signal is being transmitted. The
reader is invited to modify aspects of the programs, such for instance the level of
noise added in the channel.

8.5.1.1 AM Communication

Figure8.26, obtained with the Program 8.15 shows the results with AMmodulation.
The signal sent is represented on top. The plot in the middle is the modulated signal.
The plot at the bottom is the demodulated signal.

Notice the ripple in the demodulated sine signal.

Fig. 8.25 Noisy communication

526 8 Modulation

Fig. 8.26 AM
communication in the
presence of noise

0 0.005 0.01 0.015 0.02 0.025
-1

0

1

m
od

ul
at

in
g

 s
in

e

0 0.005 0.01 0.015 0.02 0.025
-2

0

2

co
m

m
. s

ig
na

l

0 0.005 0.01 0.015 0.02 0.025
-1

0

1
de

m
od

ul
at

ed
 s

in
e

seconds

Program 8.15 AM and noise in the communication channel
% AM and noise in the communication channel
% the modulating signal is a sine
fa=40; %signal frequency in Hz
wa=2*pi*fa; %signal frequency in rad/s
fc =1500; %carrier frequency in Hz
fs =30000; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
%time intervals set (0.03 seconds):
t=0: tiv :(0.03 -tiv);
%modulating signal
a=sin(wa*t);
subplot (3,1,1);
plot(t,a,'k');
title('noise in the AM communication ');
ylabel('modulating sine');
axis ([0 0.025 -1.2 1.2]);
%AM modulation
y=modulate(a,fc ,fs ,'amdsb -tc');
Nnu=length(y); %number of data points
nu=randn(Nnu ,1); %random noise signal data set
%adding noise to communication channel:
yn=y+(0.2*nu)';
subplot (3,1,2)
plot(t,yn ,'k');
ylabel('comm. signal ');
axis ([0 0.025 -2.4 2.4]);
%PTM demodulation
da=demod(yn ,fc ,fs ,'amdsb -tc',0.5);
subplot (3,1,3)
plot(t,da ,'k');
ylabel('demodulated sine');
axis ([0 0.025 -1.2 1.2]);
xlabel('seconds ');

8.5 Experiments 527

8.5.1.2 PWM Communication

Figure8.27, obtained with the Program 8.16, shows the results with PWM
modulation. The demodulated signal is smoother than the result of the AM system.

Program 8.16 PWM and noise in the communication channel
% PWM and noise in the communication channel
% the modulating signal is a sine
fa=40; %signal frequency in Hz
wa=2*pi*fa; %signal frequency in rad/s
nsc =60; %number of samples per signal period
fs=nsc*fa; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
%time intervals set (0.03 seconds):
t=0: tiv :(0.03 -tiv);
%sampling the modulating signal
a=0.5+0.3*sin(wa*t);
subplot (3,1,1);
plot(t,a,'k');
ylabel('modulating sine');
title('noise in the PWM communication ');
axis ([0 0.025 -0.2 1.2]);
%PWM modulation
[PWMy ,ty]= modulate(a,fa ,fs ,'pwm','centered ');
Nnu=length(ty); %number of data points
nu=randn(Nnu ,1); %random noise signal data set
%adding noise to communication channel:
PWMyn=PWMy +(0.2*nu)';
subplot (3,1,2)
plot(ty/nsc ,PWMyn ,'k');
ylabel('comm. signal ');
axis ([0 0.025 -0.8 1.8]);
%PWM demodulation
PWMa=demod(PWMyn ,fa ,fs ,'pwm','centered ');
subplot (3,1,3)
plot(t,PWMa ,'k');
ylabel('demodulated sine');
axis ([0 0.025 -0.2 1.2]);
xlabel('seconds ');

8.5.1.3 PTM Communication

Now, Fig. 8.28, obtained with the Program 8.17, shows the results with PTM
modulation. The demodulated signal is also generally smooth, but it shows some
errors due to the noise.

528 8 Modulation

Fig. 8.27 PWM
communication in the
presence of noise

0 0.005 0.01 0.015 0.02 0.025
0

0.5

1

m
od

ul
at

in
g

 s
in

e

0 0.005 0.01 0.015 0.02 0.025
-0.5

0
0.5

1
1.5

co
m

m
. s

ig
na

l

0 0.005 0.01 0.015 0.02 0.025
0

0.5

1
de

m
od

ul
at

ed
 s

in
e

seconds

Fig. 8.28 PTM
communication in the
presence of noise

0 0.005 0.01 0.015 0.02 0.025
0

0.5

1

m
od

ul
at

in
g

 s
in

e

0 0.005 0.01 0.015 0.02 0.025
-0.5

0
0.5

1
1.5

co
m

m
. s

ig
na

l

0 0.005 0.01 0.015 0.02 0.025
0

0.5

1

de
m

od
ul

at
ed

 s
in

e

seconds

Program 8.17 PTM and noise in the communication channel
% PTM and noise in the communication channel
% the modulating signal is a sine
fa=40; %signal frequency in Hz
wa=2*pi*fa; %signal frequency in rad/s
nsc =60; %number of samples per signal period
fs=nsc*fa; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
%time intervals set (0.03 seconds):
t=0: tiv :(0.03 -tiv);
%sampling the modulating signal
a=0.5+0.3*sin(wa*t);
subplot (3,1,1);
plot(t,a,'k');
ylabel('modulating sine');
title('noise in the PTM communication ');

8.5 Experiments 529

axis ([0 0.025 -0.2 1.2]);
%PTM modulation
[PTMy ,ty]= modulate(a,fa ,fs ,'ptm',0.1);
Nnu=length(ty); %number of data points
nu=randn(Nnu ,1); %random noise signal data set
%adding noise to communication channel:
PTMyn=PTMy +(0.2*nu)';
subplot (3,1,2)
plot(ty/nsc ,PTMyn ,'k');
ylabel('comm. signal ');
axis ([0 0.025 -0.8 1.8]);
%PTM demodulation
PTMa=demod(PTMyn ,fa ,fs ,'ptm');
subplot (3,1,3)
plot(t,PTMa ,'k');
ylabel('demodulated sine');
axis ([0 0.025 -0.2 1.2]);
xlabel('seconds ');

8.5.2 Cepstrum of Analog AM Modulation

Let us see the cepstrum of an AM modulated signal. Figure8.29, obtained with
the Program 8.18, shows the result. On top a weighted sum of the message signal
and the carrier has been plotted for comparison purposes. The cepstrum of the AM
modulated signal is depicted at the bottom of the figure. It shows a composition of
signals corresponding to the message signal and to the carrier.

Fig. 8.29 Cepstrum of AM
modulated signal, compared
with added signals on top

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

2

4

6
added signals

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.1

0.2

0.3
cepstrum of AM signal

seconds

530 8 Modulation

Program 8.18 Analyze AM modulation with cepstrum
%analyze AM modulation with cepstrum
% AM sine signal
fa =100; %signal frequency in Hz
wa=2*pi*fa; %signal frequency in rad/s
fc =1000; %carrier frequency in Hz
wc=2*pi*fc; %carrier frequency in rad/s
fs =10000; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
%time intervals set (0.5 seconds):
t=0: tiv :(0.1 -tiv);
Nt=length(t);
MD=0.5; %modulation depth
A=1+(MD*sin(wa*t)); %amplitude
y=A.*sin(wc*t); %modulated signal data set
subplot (2,1,1)
ysum=1.5*A+real(y); %signals adding
%plot added signals:
plot(t(2:Nt/2),ysum (2:Nt/2),'k');
title('added signals ');
axis ([0 0.05 0 6]);
subplot (2,1,2)
cz=rceps(y); %real cepstrum
%plot the cepstrum:
plot(t(2:Nt/2),abs(cz(2:Nt/2)),'k');
title('cepstrum of AM signal '); xlabel('seconds ');
axis ([0 0.05 0 0.3]);

8.6 Resources

8.6.1 MATLAB

8.6.1.1 Toolboxes

• Communications System Toolbox:
http://www.mathworks.com/products/communications

• Modulation Toolbox for MATLAB:
http://isdl.ee.washington.edu/projects/modulationtoolbox/

8.6.1.2 Matlab Code

Almost all books listed in theMathworks web page on digital communication books,
contain Matlab codes.

• Overview of Communication Topics:
http://web.cecs.pdx.edu/~ece2xx/ECE223/Slides/Communications.pdf

http://www.mathworks.com/products/communications
http://isdl.ee.washington.edu/projects/modulationtoolbox/
http://web.cecs.pdx.edu/~ece2xx/ECE223/Slides/Communications.pdf

8.6 Resources 531

• fsk example:
http://www.mathworks.com/matlabcentral/fileexchange/33688-fsk/content/
fsk.m

• Matlab simulated signals (University of Oulu):
https://www.ee.oulu.fi/research/ouspg/MATLAB/simulated/signals

• ask, psk, fsk, etc. :
www.srmuniv.ac.in/sites/default/files/files/comm_lab_manual_final.pdf

• Matlab intro/refresher, flat-top PAM, PCM (Colorado):
http://ecee.colorado.edu/~mathys/ecen4652/pdf/lab01.pdf

8.6.2 Internet

8.6.2.1 Web Sites

• Digital Communication Systems using Matlab and Simulink (D. Silage):
http://astro.temple.edu/~silage/digitalcommMS.htm

• Early Radio & Vintage Crystal Sets:
http://debyclark.blogspot.com.es/2013/02/early-radio-vintage-crystal-sets.html

• Invention History: The Father of FM:
http://inventorspot.com/father_of_fm

References

1. A. Aldroubi, K. Gröchenig, Nonuniform sampling and reconstruction in shift-invariant spaces.
SIAM Rev. 43(4), 585–620 (2001)

2. A. Basit, W. Aziz, F. Zafar, Implementation of ssb modulation/demodulation using Hilbert
transform in matlab. J. Expert Syst. 1(13), 79–83 (2012)

3. M. Boulmalf, Y. Semmar, A. Lakas, K. Shuaib, Teaching digital and analog modulation to
undergradute information technology students using matlab and simulink, in Proceedings of
the IEEE Education Engineering (EDUCON) (2010), pp. 685–691

4. L.P. Christensen, Signal processing for ultra-wideband systems. Ph.D. thesis, Technical Uni-
versity of Denmark (2003)

5. T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 2006)
6. R. Cristi,Wireless Communications withMatlab and Simulink. Lecture Presentation.Monterey

Naval Postgraduate School (2009)
7. N. Deshpande, Matlab implementation of GSM traffic channel. Ph.D. thesis, University of

South Florida (2003)
8. J. Feng, Digital Communications and Signal Processing - with Matlab Examples. Lecture

Notes. University of Warwick (2007)
9. H.D. Lüke, The origins of the sampling theorem. IEEE Commun. Mag. 37(4), 106–108 (1999)
10. U.Madhow, Introduction toCommunication Systems (CambridgeUniversity Press,Cambridge,

2014)
11. J.G. Proakis,M. Salehi, G. Bauch,Contemporary Communication SystemsUsingMatlab (Cen-

gage Learning, Boston, 2013)

http://www.mathworks.com/matlabcentral/fileexchange/33688-fsk/content/fsk.m
http://www.mathworks.com/matlabcentral/fileexchange/33688-fsk/content/fsk.m
https://www.ee.oulu.fi/research/ouspg/MATLAB/simulated/signals
www.srmuniv.ac.in/sites/default/files/files/comm_lab_manual_final.pdf
http://ecee.colorado.edu/~mathys/ecen4652/pdf/lab01.pdf
http://astro.temple.edu/~silage/digitalcommMS.htm
http://debyclark.blogspot.com.es/2013/02/early-radio-vintage-crystal-sets.html
http://inventorspot.com/father_of_fm

532 8 Modulation

12. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423
(1948)

13. C.E. Shannon, Communication in the presence of noise. Proc. IRE 37(1), 10–21 (1949)
14. C.E. Shannon, A mathematical theory of communication. ACM SIGMOBILE Mob. Comput.

Commun. Rev. 5(1), 3–55 (2001)
15. D. Silage,Digital Communication Systems Using MATLAB and Simulink (Bookstand Publish-

ing, Gilroy, 2009)
16. B. Sklar,Digital Communications: Fundamentals and Applications (Prentice Hall, Englewood

Cliffs, 2001)
17. P.H. Tran, Matlab/simulink implementation and analysis of three pulse-width-modulation

(PWM) techniques. Ph.D. thesis, Boise State University (2012)
18. M. Unser, Sampling-50 years after Shannon. Proc. IEEE 88(4), 569–587 (2000)
19. M. Vetterli, P. Marziliano, T. Blu, Sampling signals with finite rate of innovation. IEEE Trans.

Signal Process. 50(6), 1417–1428 (2002)
20. M. Viswanathan, V.Mathuranathan, Simulation of Digital Communication Systems UsingMat-

lab. eBook (2013)
21. Y.S. Yang, W.Y. Cho, W.G. Jeon, J.W. Lee, J.H. Paik, J.K. Kim, M.H. Lee, K.S. Woo, Mat-

lab/Simulink for Digital Communication (A-Jin Publishing, 2009)
22. Y. Zeng, Adaptive modulation schemes for optical wireless communication systems. Ph.D.

thesis, University of Warwick (2010)
23. R.E. Ziemer, W.H. Tranter, Principles of Communication Systems (Wiley, New York, 2015)

Appendix A
Transforms and Sampling

A.1 Introduction

Along the book, the pertinent theory elements have been invoked when directly
linked with the topic being studied. It seems also convenient to have an appendix
with a summary of the essential theory, which could be consulted as reference at any
moment.

It is clear that the main focus should be put on the Fourier transform, and on
sampling. Other transforms are also of interest.

Indeed, this appendix could become quite long if all formal mathematics was
considered, together with extensions, applications, etc. There are books, which will
cited in this appendix, that treat in detail these aspects. Our aim here is more to
summarize main points, and to provide reference materials.

Tables of common transform pairs are provided by [29].

A.2 The Fourier Transform

The origins of the Fourier transform can be dated at 1807. It was included in the
Fourier’s book on heat propagation. We would recommend to see [28] in order to
grasp the history of harmonic analysis, up to recent times.

A recent book on the Fourier transform principles and applications is [11]. Besides
it, there are many other books that include detailed expositions of the Fourier trans-
form.

© Springer Science+Business Media Singapore 2017
J.M. Giron-Sierra, Digital Signal Processing with Matlab Examples, Volume 1,
Signals and Communication Technology, DOI 10.1007/978-981-10-2534-1

533

534 Appendix A: Transforms and Sampling

A.2.1 Definitions

A.2.1.1 Fourier Series

Fourier series have the form:

y(t) = a0 +
∞∑

n=1

an cos (n · w0 t) +
∞∑

n=1

bn sin(n · w0 t) (A.1)

This series may not converge. It is possible to be sure of convergence by com-
plying with the Dirichlet conditions. These conditions are sufficient conditions for
a periodic, real-valued function f (t) to be equal to its Fourier series at each point
where f () is continuous. The conditions are:

• f (x) be absolutely integrable (L1) over a period
• f (x) must have a finite number of extrema in any given bounded interval
• f (x) must have a finite number of finite discontinuities in any given bounded
interval

• f (x) must be bounded

A brief lecture note from [35] or [18] would give you more details of the Fourier
series convergence issues.

Supposing that f (t) can be represented with a Fourier series, and that f (t) =
f (t + 2π), the coefficients of the corresponding expression can be computed as
follows:

a0 = 1

π

∫ π

−π

f (t) dt (A.2)

an = 1

π

∫ π

−π

f (t) cos(nt) dt (A.3)

bn = 1

π

∫ π

−π

f (t) sin(nt) dt (A.4)

It is convenient to remark that there are square integrable functions (L2) that are
not integrable (L1), [16].

Given a periodic signal f (t), if:

• f (−t) = f (t), then it is an even signal
• f (−t) = − f (t), then it is an odd signal

The product of two signals z(t) = x(t) · y(t) has the following result:

Appendix A: Transforms and Sampling 535

x(t) y(t) z(t)
even even even
even odd odd
odd even odd
odd odd even

In the case of an even signal f (t):

∫ π

−π

f (t) dt = 2 ·
∫ π

0
f (t) dt (A.5)

and in the case of an odd signal f (t):

∫ π

−π

f (t) dt = 0 (A.6)

Suppose f (t) is even, then:

an = 1

π

∫ π

−π

f (t) cos(nt) dt = 2

π

∫ π

0
f (t) cos(nt) dt (A.7)

since both f (t) and cos() are even functions.
On the other hand:

bn = 1

π

∫ π

−π

f (t) sin(nt) dt = 0 (A.8)

since sin() is an odd function and the product with f (t) will render also an odd
function.

In the case of an odd signal f (t), there is a reverse situation: the an coefficients
are zero, while bn coefficients can be non-zero.

There are other equivalent expressions for the Fourier series, using only sines or
only cosines (in both cases the harmonic terms have amplitude and phase), or using
complex exponentials.

A.2.1.2 Fourier Integral

Given an aperiodic function f (t), it can be supposed to be periodic with period =
infinity. As the period tends to infinity, the summations of the Fourier series tend to
integrals.

The Fourier transform of a function f (t) is the following:

F(ω) =
∞∫

−∞
f (t) e− jω t dt (A.9)

536 Appendix A: Transforms and Sampling

The inverse Fourier transform is:

f (t) = 1

2 π

∞∫

−∞
F(ω) e jω t dω (A.10)

Dirichlet conditions also apply in this context.
Part of the literature prefers to use Hz instead of radians/s for the frequency. In

this case, the transforms are:

F(ν) =
∞∫

−∞
f (t) e− j2π ν t dt (A.11)

and,

f (t) =
∞∫

−∞
F(ν) e j2π ν t dω (A.12)

where we used ν for the frequency in Hz.
There are the following relationships:

f (t) F(ν)

real F(−ν) = |F(ν)|∗
imaginary F(−ν) = −|F(ν)|∗
even F(−ν) = F(ν)

odd F(−ν) = −F(ν)

In addition:

f (t) F(ν)

real and even F(ν) real and even
real and odd F(ν) imaginary and odd
imaginary and even F(ν) imaginary and even
imaginary and odd F(ν) real and odd

Two functions are orthogonal if and only if their Fourier transforms are orthogonal.

A.2.1.3 Discrete Fourier Transform (DFT)

The Discrete Fourier Transform (DFT) of a discrete signal f (n) with finite duration
of N samples, is given by:

Appendix A: Transforms and Sampling 537

F(ω) =
N−1∑

n = 0

f (n) e− jω n (A.13)

Usually, one considers a discretized frequency, so the DFT becomes:

F(ωk) = Fk =
N−1∑

n = 0

f (n) e− jωk n =
N−1∑

n = 0

f (n) e− j2π n k/N ; k = 0, 1, . . . , N − 1

(A.14)
The DFT can be expressed in matrix form:

⎛

⎜⎜⎜⎜⎜⎜⎝

F0

F1

F2

.

.

FN−1

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

W 0
N W 0

N W 0
N . . . W 0

N

W 0
N W 1

N W 2
N . . . W N−1

N

W 0
N W 2

N W 4
N . . . W 2 (N−1)

N
.

. . . .

W 0
N W N−1

N W (N−1) 2
N . . . W (N−1)(N−1)

N

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

f (0)
f (1)
f (2)
.

.

f (N − 1)

⎞

⎟⎟⎟⎟⎟⎟⎠

(A.15)
where:

WN = e
− j 2π

N (A.16)

Then, in compact form, the DFT is:

Ȳ = W ȳ (A.17)

The matrix W is symmetric, that is, WT = W. Also, the matrix W has the first row
and the first column all ones. The matrix W can be pre-computed and stored or put
into firmware.

The inverse DFT can be written as:

ȳ = 1

N
W∗ Ȳ (A.18)

where W* is the complex conjugate of W, obtained by conjugating every element
of W. No matrix inversion is required.

A.2.2 Examples

Let us obtain some interesting results concerning a selection of signals frequently
found in practical applications.

538 Appendix A: Transforms and Sampling

A.2.2.1 Square Wave

Consider the square wave depicted in Fig. A.1.
It is an odd signal with period 2π. The sine coefficients of its Fourier series can

be computed as follows:

bn = 2

π

∫ π

0
f (t) sin(nt) dt = 2

π

[− cos nt

n

]π

0

= 2

π

{
2

1
,
0

2
,
2

3
,
0

4
,
2

5
, . . .

}

(A.19)

A.2.2.2 Single Pulse

Let us study the single pulse depicted in Fig. A.2.
Suppose that T = 1. The Fourier transform of this signal is:

∫ 1/2

−1/2
e− jω t dt =

[
e− j ω t

− j ω

]1/2

−1/2

= e jω/2 − e− jω/2

jω
= sin(ω/2)

ω/2
= sinc(ω)

(A.20)

A.2.2.3 Single Triangle

Consider now the single triangle depicted in Fig. A.3.
The signal is:

Fig. A.1 Square wave

Fig. A.2 Single pulse

Appendix A: Transforms and Sampling 539

Fig. A.3 Single triangle

f (t) =
{
1 − |t |, |t | < 1
0 , |t | ≥ 1

(A.21)

The Fourier transform of this signal is:

∫ ∞
−∞ f (t) e− jω t dt = 2 · ∫ 1

0 (1 − t) cos(ω t) dt = 2
ω
sin(ω) − 2

ω

∫ 1
0 t d(sin(ω t))

= 2
ω

[
sin(ω) − (t sin(ω))|10 − ∫ 1

0 sin(ω t) dt
]

= 2
ω2 cos(ω t)|10 =

= 2
ω2 (1 − cos(ω)) = (

2
ω

)2
sin2(ω/2) = sinc2(ω)

(A.22)
Since the triangle can be built as the convolution of two rectangular signals, the

result above can be also obtained as follows:

F{tr iangle(t)} = F{rect (t) ∗ rect (t)} = sinc(ω) · sin c(ω) = sinc2(ω)

(A.23)
This approach is convenient for the treatment of splines, which can be obtained

by convolutions of rectangles.

A.2.3 Properties

Both the direct and the inverse Fourier transforms are linear operators, so the trans-
form of a sum of functions is equal to the sum of transforms of these functions.

Next table shows a first set of properties, playing with time and frequency.
A second table show results related to differentiation, convolution, and

conjugation.

Property Signal Fourier transform
time shifting f (t − to) e− jω to F(ω)

frequency shifting e jωo t f (t) F(ω − ωo)

scaling f (t/α) |α| · F(α ω)

time shift and scaling f ((t − to)/α) |α| · e− jω to F(α ω)

frequency shift and scaling |α| e jωo t f (α t) F((ω − ωo)/α)

time reversal f (−t) F(−ω)

540 Appendix A: Transforms and Sampling

Operation Signal Fourier transform
t-Differentiation d

dt f (t) j ω · F(ω)

ω-Differentiation t · f (t) d
dω F(ω)

t-Convolution x(t) ∗ y(t) X (ω) Y (ω)

ω-Convolution x(t) y(t) X (ω) ∗ Y (ω)

Conjugation f (t) F(−ω)

A.2.4 Theorems

The following theorem was proposed, in a primitive version, by Parseval in 1799 for
periodic functions. In 1910 it was extended by Plancherel for the real line. It states
that: ∞∫

−∞
x(t) y∗(t) dt = 1

2π

∞∫

−∞
X (ω) Y ∗(ω) dω (A.24)

In particular, for x(t) = y(t), the theorem establishes that:

∞∫

−∞
|y(t)| 2dt = 1

2π

∞∫

−∞
|Y (ω)|2 dω (A.25)

Both sides of Eq. (A.11) express the energy of the signal. The right-hand side can
also be written in function of the power spectral density, since:

∞∫

−∞
|Y (ω)|2 dω =

∞∫

−∞
Sy(ω) dω (A.26)

In cases where the power spectral density Sy(ω) is defined, the Wiener-Khinchin
theorem says it can be obtained from the autocorrelation Ry(τ) as follows:

Sy(ω) =
∞∫

−∞
Ry(τ) e− jωτ dτ (A.27)

If one assumes that Sy(ω) and Ry(τ) satisfy the conditions for valid Fourier inversion,
then both functions form a Fourier transform pair:

Ry(τ) = 1

2π

∞∫

−∞
Sy(ω) e jωτ dω ⇔ Sy(ω) =

∞∫

−∞
Ry(τ) e− jωτ dτ (A.28)

Appendix A: Transforms and Sampling 541

Where the autocorrelation is defined as:

Ry(τ) =
∞∫

−∞
y(t) y∗(t − τ) dτ (A.29)

(the asterisk means complex conjugate)
Norbert Wiener enounced this theorem for deterministic functions in 1930. A.

Khinchin obtained a similar result for wide-sense stationary random processes in
1934. In [17] this result is extended for non-wide sense stationary random processes.

A.2.5 Tables of Fourier Transforms

Here is a table with the Fourier transforms of some functions of interest.

Function Fourier transform
δ(t) (Dirac) 1
e j ω0 t 2πδ(ω − ω0)

sgn(t) 2/jω
j/πt sgn(ω)

cos(ω0t) π[δ(ω − ω0) + δ(ω + ω0)]
sin(ω0t) π

j [δ(ω − ω0) − δ(ω + ω0)]
e−α |t | 2α

α2+ω2

u(t) (unit step) π δ(ω) + 1
jω

u(t) e−α t 1
α+ jω

A.2.6 The Fast Fourier Transform (FFT)

The FFT is not a new transform; it is just a fast algorithm to compute the DFT. It
obeys to a divide and conquer strategy. The basic idea is to compute the DFT of
length N using the DFT of two sub-series of length N/2. In turn, each sub-series
can be sub-divided into two, and so on.

Then, while the brute-force computation of the DFT would be an O(N 2) process,
the FFT would be an O(N log2 N) process. For example, a DFT taking 2 weeks of
computation, would take 30 s if using the FFT.

The main observation was made by Danielson and Lanczos in 1942, and was
expressed as the following lemma:

542 Appendix A: Transforms and Sampling

Fk =
N−1∑
n = 0

f (n) e− j2π n k/N =

=
N/2−1∑
n = 0

f (2n) e− j2π (2n)k/N +
N/2−1∑
n = 0

f (2n + 1) e− j2π (2n+1)k/N =
N/2−1∑
n = 0

f (2n) e− j2π n k/(N/2) + Wk

N/2−1∑
n = 0

f (2n + 1) e− j2π nk/(N/2) =
= Fe

k + Wk Fo
k

(A.30)

where Fk is the k-th term of the DFT. As you can see, the idea is to consider separately
the even and the odd terms, so the complete DFT can be obtained by computing N/2
length DFTs. Most conveniently, the idea can be recursively applied for each DFT.

Suppose you have 106 samples. The direct computation of the DFT would need
(N)2 = 1012 multiplications. If, however, you choose the decomposition into twoN/2
length DFTs, the computation of the complete DFT would take N + 2 · (N/2)2 ≈
N 2/2 = 5 · 1011 multiplications. Nevertheless, the memory required for the algo-
rithm recursions would be quite large, in the order of n . 102Mb. Fortunately, there
are means to reduce it to about 10Mb.

A main path for work saving is to exploit symmetries and to avoid redundancies.
For example, the WN factors, which are also called “twiddle factors” or “phase
factors”, being roots of unity. These factors have the following properties:

• Symmetry: W k+N/2
N = −W k

N

• Periodicity: W k+N
N = W k

N

• Recursion: W 2
N = WN/2

Now, we are going to propose some examples. A simplified expression of the
DFT would be used, in the following terms:

Fk =
N−1∑

n=0

W kn
N fn (A.31)

Suppose that N = 4. Then, WN = e− jπ/2 = − j . The result of the DFT would be:

Fk = f0 + (− j)k f1 + (− j)2k f2 + (− j)3k f3 =
= f0 + (− j)k f1 + (−1)k f2 + j k f3

(A.32)

To save computations, we could re-arrange terms as follows:

F0 = (f0 + f2) + (f1 + f3) (A.33)

F1 = (f0 − f2) − j (f1 − f3) (A.34)

F2 = (f0 + f2) − (f1 + f3) (A.35)

Appendix A: Transforms and Sampling 543

Fig. A.4 Basic diagram

Fig. A.5 The N = 4 DFT computation procedure

F3 = (f0 − f2) + j (f1 − f3) (A.36)

Then, the computation can proceed in two steps: first the terms in parenthesis, and
second adding the results. This scheme implies a drastic reduction of memory usage.

It is convenient to describe the procedure using Butterfly diagrams. The basic one
is shown in Fig. A.4.

Figure A.5 shows a complete Butterfly diagram for the N = 4 DFT computation:
In the case of N = 8, the DFT would be obtained by a decomposition into three

stages, as depicted in Fig. A.6.
Again, a Butterfly diagram helps to describe the computational procedure for

N = 8. This is shown in Fig. A.7.
Notice the order of the inputs to the Butterfly diagram. This corresponds to bit-

reversal, as described in the following table:

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111
000 100 010 110 001 101 011 111
0 4 2 6 1 5 3 7

544 Appendix A: Transforms and Sampling

Fig. A.6 The N=8 DFT decomposition into 3 stages

Fig. A.7 The N = 8 DFT computation procedure

The FFT algorithm just described was introduced by Cooley and Tukey in 1965,
in a heavily cited article [5]. Later on, it was recognized that C.F. Gauss, the famous
mathematician, already introduced the algorithm in 1805.

More examples could be added for N = 16, N = 32, and in general for N = 2n ,
which will be solved by a similar decomposition strategy, with 4, 5,…, n stages. This
type of algorithm belongs to radix-2 algorithms. See [4] for an extensive treatment
of theory and implementation of FFT. In addition, the books [37, 38] provide an
intuitive and practical view.

Appendix A: Transforms and Sampling 545

An interesting academic contribution is [9], in which, besides a good
description of the FFT accompanied with a MATLAB implementation, one finds
a set of applications for image processing.

There are other FFT approaches, like those briefly described in [12]. One of the
books that deals in detail with the FFT is [23].

A.2.7 Fourier in Two Dimensions

A.2.7.1 2D DFT

The 2D DFT is defined as follows:

Fk,l =
M−1∑

m=0

N−1∑

n = 0

f (m, n) e− j 2πk m/M · e− j 2π ln /N (A.37)

The inverse 2D DFT is:

f (k, l) = 1

M

1

N

M−1∑

m=0

N−1∑

n = 0

Fm,n · e j 2πk m/M e j 2π ln /N (A.38)

A.2.7.2 2D Fourier Integral

In 2D the Fourier transform of a function f (x1, x2) is the following:

F(ω1,ω2) =
∞∫

−∞

∞∫

−∞
f (x1, x2) e− j (ω1 x1+ω2 x2) dx1dx2 (A.39)

The inverse Fourier transform is:

f (x1, x2) =
∞∫

−∞

∞∫

−∞
F(ω1,ω2) e j (ω1 x1+ω2 x2) dω1dω2 (A.40)

A.2.8 Other Aspects

There are other aspects related to the Fourier transform that deserve at least a brief
consideration.

546 Appendix A: Transforms and Sampling

A.2.8.1 Uncertainty Principle

In the field of harmonic analysis, there is an uncertainty principle saying that it is not
possible to localize at the same time the value of a function and its Fourier transform,
since we have that:

(∫ ∞

−∞
x2| f (x)|2dx

)
·
(∫ ∞

−∞
ω2|F(ω)|2dw

)
≥ ‖ f (x)‖42

16π2
(A.41)

Thus, at least one of f () or F() must not be too concentrated near the origin. Other
formulations exist that imply that for any pair of points a and b, then F() cannot be
concentrated around b if f () is concentrated around a.

This formulation can be related to the Heisenberg’s principle, and also with the
sampling theorem of Shannon [19].

The theorem of Benedicks [3], establishes that the set of points where f () is
non-zero and the set of points where F() is non-zero cannot both be finite. This is a
generalization of the fact that a signal cannot be both time-limited and band-limited.

Another uncertainty principle, elicited by Hardy in 1933, can be intuitively
expressed as follows: it is not possible for f () and F() to both be rapidly decreasing.
Specifically, given to positive constants p and q and assuming that for some positive
constant C :

| f (x)| ≤ C e−px2
, |F(ω)| ≤ C e−qx2

(A.42)

Then:

• f () = 0, i f pq > 1/4
• f () = A e−p x2

, i f pq = 1/4, where A is some constant
• there are infinitely many f () , i f pq < 1/4

Intuitively, one would say that if one of f () or F() has brisk decays, the other
must be smooth.

See [25] and references therein for more details. The article [13] presents a survey
of the various forms of the uncertainty principle an some new interpretations.

A.2.8.2 Scientific Activity. Applications

Although this is an appendix, it is still a suitable occasion for mentioning important
scientific activities and applications that live because of the Fourier transform. Most
of the items to be introduced next, have web pages with much more information.
The addresses of these pages are included in the Resources section at the end of this
appendix.

Harmonic analysis is a very alive scientific field, involving many publications,
conferences, and other research activities. One representative node is the Norbert
Wiener Center for Harmonic Analysis. In Europe, there is a vigorous initiative of the

Appendix A: Transforms and Sampling 547

European Science Foundation, establishing a Research Network for Harmonic and
Complex Analysis.

Another center of activity is the Numerical Harmonic Analysis Group, NuHAG,
at the University of Wien, Austria.

As it can be easily guessed, vibrations are a clear target for the application of
Fourier. A review of this type of applications is made in [34]. Since this is a subject
of industrial interest, like for example machine condition monitoring, there is a
significant number of books combining theory and technical aspects, like [10, 26,
31]. There are also academic approaches for dynamic structures, like the Thesis [36].

Seismic waves are also a suitable target for Fourier analysis, including waves
induced by Jupiter [20], or more usual cases in the form of earthquakes [27, 32]. See
[15] for an interesting proposal of using local time-frequency decompositions.

In other order of things, a short tutorial on Fourier and Laplace is given by one of
the Berkely Science Books on Internet, vol. 4 on Good Vibrations.

A.3 Sampling

The sampling theorem was published in 1949 in a scientific article of C.E. Shannon,
[25].

The sampling theorem can be expressed in several ways. One of these formula-
tions, [8], is given next.

If f(t) is L1 and band-limited to a frequency W in Hz, then it can be expanded as:

f (t) =
∞∑

n=−∞
f (nT) sinc

(
t − nT

T

)
(A.43)

with T= 1/(2W).

The expression above implies that the signal f (t) can be recovered from its
samples.

It happens that the Fourier transform of sinc(t/T) is equal to T for |ν| < W and 0
for |ν| > W . Then, one has the following Fourier pair:

sinc

(
t − nT

T

)
↔

{
T · e− j 2π ν nT , f or |ν| < W
0, f or |ν| > W

(A.44)

A direct way to prove the theorem is included in [8], as follows:

• By time-frequency symmetry, we have also a Fourier series expansion in the fre-
quency domain:

F(ν) =
∞∑

n=−∞
Fn e− j 2π ν T , −W ≤ ν ≤ W (A.45)

548 Appendix A: Transforms and Sampling

• Taking now the inverse Fourier transform:

f (t) =
∞∑

n=−∞

Fn

T
sinc

(
t − nT

T

)
(A.46)

it can be seen, by evaluating both sides at t=nT, that Fn/T = u(nT).
It is now convenient to simplify the notation, in order to consider an interesting

aspect. Denote:

ψn(t) = sinc

(
t − nT

T

)
(A.47)

Then, one has the following result:

∞∫

−∞
ψn(t)ψm(t) dt =

{
0, f or n
= m
T, f or n = m

(A.48)

Therefore, the functions inside the integral are orthogonal. In consequence, the expan-
sion considered in the sampling theorem is an orthogonal expansion.

Other aspects, like aliasing, oversampling, and an interpretation of the FFT in
view of the sampling theorem, are considered in [14].

For those interested on Information Theory, it would be recommended to read the
classic book of Pierce [22]. Another book on this topic, in a tutorial style is [30].

A.4 Other Transforms

Besides the Fourier transform, other transforms have been employed in this book. In
particular, the Laplace transform and the z-transform. This section is mainly devoted
to these two transforms. Both are related with the Fourier transform.

In the third subsection, a more general view of transforms will be considered.

A.4.1 The Laplace Transform

The history of the Laplace transform involves contributions from Euler, Lagrange,
Laplace and others. It could be situated around 1785.

The book [6] provides an introduction to the Laplace transform and the Fourier
series. A classic book on the Laplace transform is [24].

An important use of the Laplace transform is directly related with the represen-
tation via transfer functions of continuous time linear systems.

Appendix A: Transforms and Sampling 549

The Laplace transform of a real-valued function f (t) is a unilateral transform
defined by:

F(s) =
∞∫

0

f (t) e−s t dt (A.49)

where s is a complex variable:
s = σ + j ω (A.50)

A brief notation to represent the transform is: L{ f }.
There is also a bilateral Laplace transform:

F(s) =
∞∫

−∞
f (t) e−s t dt (A.51)

Notice that if you only take the imaginary part of s, this bilateral transform is the
Fourier transform. Then, the Fourier transform can be considered as a particular case
of the bilateral Laplace transform.

The Laplace transform is a linear operator, that is:

L{ f (t) + g(t)} = L{ f (t)} + L{g(t)} = F(s) + G(s) (A.52)

L{α f (t)} = α L{ f (t)} = α F(s) (A.53)

The properties of the Laplace transform are similar to those of the Fourier transform.
With respect to time and frequency, a succinct account is given in the following

table:

Property Signal Laplace transform
time shifting f (t − to)h(t − to) e−s to F(s)
frequency shifting eα t f (t) F(s − α)

scaling f (t/α), α > 0 α · F(α s)

where h(t − to) is the Heaviside function.
Next table shows results related to differentiation, convolution, and conjugation

Operation Signal Laplace transform
t-Differentiation d

dt f (t) s · F(s) − f (0)
ω-Differentiation t · f (t) − d

ds F(s)
t-Convolution x(t) ∗ y(t) X (s) Y (s)
Conjugation f (t) F(s∗)

550 Appendix A: Transforms and Sampling

The initial value theorem says:

f (0+) = lim
s→∞ s F(s) (A.54)

And the final value theorem is:

f (∞) = lim
s→0

s F(s) (A.55)

Next table includes the Laplace transforms of some functions of interest.

A.4.2 The z Transform

The name “z-transform” was coined by Ragazzini and Zadeh in 1952. An advanced
z-transform was developed, later on, by E.I. Jury.

Like the Laplace transform in continuous time systems, an important use of the
z-transform is related to the representation of discrete time systems via discrete
transfer functions. The book [7] gives extensive information on the z-transform.

Function Laplace transform
1 1/s
δ 1
t 1/s2

eα t 1
s−α

cos(ωt) s
s2+ω2

sin(ωt) ω
s2+ω2

e−α t cos(ω t) s+α
(s+α)2+ω2

e−α t sin(ω t) ω
(s+α)2+ω2

The bilateral z-transform of a discrete signal f (n) is given by:

F(z) =
∞∑

n = −∞
f (n) z−n (A.56)

where z is a complex number:

z = A e jΦ = A (cosΦ + j sinΦ) (A.57)

If the signal f (n) is zero for all n < 0, we can write:

F(z) =
∞∑

n = 0

f (n) z−n (A.58)

Appendix A: Transforms and Sampling 551

which is the unilateral z-transform.
Notice that the DFT can be obtained from the unilateral z-transform by the

following change of variable:
z = e jω (A.59)

The z-transform is a linear operator. Its properties are summarized in the next two
tables:

Property Signal z-transform
time shifting f (n − k) z−k F(z)
z-scaling αn f (n) F(z/α)

time reversal f (−n) F(z−1)

Operation Signal z-transform

Accumulation
∞∑

k=−∞
f (n) 1

1−z−1 F(z)

z-Differentiation n · f (n) −z d
dz F(z)

t-Convolution x(n) ∗ y(n) X (z) Y (z)
Conjugation f (n) F(z∗)

The initial value theorem:

f (0) = lim
z→∞ F(z) (A.60)

The final value theorem:

f (∞) = lim
z→1

(z − 1) F(z) (A.61)

Here is a table with the z-transforms of some functions of interest.

Function z-transform
δ 1
u(t) z

z−1
t T z

(z−1)2

e−α t z
z−e−αT

cos(ωt) z(z−cosωT)

z2−2 z cosωT +1
sin(ωt) z sinωT

z2−2 z cosωT +1

e−α t cos(ω t) z2−z e−αT cosωT
z2−2 z e−αT cosωT +e−2αT

e−α t sin(ω t) z e−αT sin ωT
z2−2 z e−αT cosωT +e−2αT

552 Appendix A: Transforms and Sampling

A.4.3 Transforms in General

Any vector in 3D can be represented on an orthonormal basis of vectors. Roughly
speaking, it is possible to do something similar in function spaces, using bases of
orthonormal functions. The Fourier transform provides one of these bases, madewith
functions of the form e jω t .

A suitable mathematical framework for this perspective—function spaces- is
Hilbert space [21]. There is abundant scientific literature on this field. One of the
aspects covered refers to different orthonormal bases. For example, there are Legen-
dre polynomials, Laguerre functions, Hermite functions, orthonormal polynomials,
wavelets, etc. Corresponding to these bases, there aremany transforms that one could
use.

There is a voluminous text on Internet, [1] more than 100 Mb, with tables of
integral transforms.Another set of books, [2], complete the scenewith a compendium
of higher transcendental functions.

An important observation is that linear dynamical systems can be described with
derivatives and integrals. The derivative of an exponential function is again an expo-
nential function. The same happens with integrals. More formally, it happens that
exponential functions are eigenfunctions of the linear dynamical systems. This is an
important reason for adopting the Laplace transform or the Fourier transform.

Of course, there are other scientific areas where other transforms are more appro-
priate; like in the case of dealing with spherical geometries (for instance, the Earth
as a geode).

Another aspect of interest in the Hilbert space framework is operator theory. The
Fourier transform is a unitary operator, which represents an important archetype. It
seems opportune to highlight some properties of the Fourier transform as operator.

If one takes the Fourier transform of the Fourier transform, one obtains:

2π f (−t) =
∞∫

−∞
F(ω) e− jω t dω (A.62)

(time-reversed, multiplied by a constant).
The result above is still simpler if one uses frequency in Hz and so there is no 2π

constant. It also happens that:
F F F = F−1 (A.63)

Three times the Fourier transform is just the inverse transform. And,

F F F F = I (A.64)

Four times the Fourier transform is the identity operator.
An interesting Fourier transform pair is the following:

Appendix A: Transforms and Sampling 553

f (t) = e−t2/2 ⇔ F(ω) = √
2π e−ω2/2 (A.65)

Notice that f (t) and F(ω) have the same shape, the shape of a Gaussian. Many other
examples of functions with the same shape in time and frequency domains can be
built, as shown in [33] (see also [27] for some motivating connections).

A.5 Resources

A.5.1 MATLAB

A.5.1.1 Toolboxes

• Signal Processing Toolbox:
http://www.mathworks.com/products/signal/

• Control System Toolbox:
http://www.mathworks.com/products/control/

A.5.1.2 Matlab Code

• SFTPACK:
http://people.sc.fsu.edu/~jburkardt/m_src/sftpack/sftpack.html

• Digital Signal Processing Demos (Purdue University):
https://engineering.purdue.edu/VISE/ee438/demos/Demos.html

• MATLAB Demos:
http://fourier.eng.hmc.edu/e59/matlabdemos/

• Digital Signal Processing (Spectrograms):
http://cnx.org/contents/a806bd3a-194f-4ed2-9609-9436b4ced26e@2.44:31/
Digital_Signal_Processing:_A_U

• Audio Signal Processing Basics:
http://www.cs.tut.fi/sgn/arg/intro/basics.html

• Sound Processing:
http://www.numerical-tours.com/matlab/audio_1_processing/

• Speech Processing:
http://cvsp.cs.ntua.gr/~nassos/resources/speech_course_2004/Online
SpeechDemos/speechDemo_2004_Part1.html

http://www.mathworks.com/products/signal/
http://www.mathworks.com/products/control/
http://people.sc.fsu.edu/~jburkardt/m{_}src/sftpack/sftpack.html
https://engineering.purdue.edu/VISE/ee438/demos/Demos.html
http://fourier.eng.hmc.edu/e59/matlabdemos/
http://cnx.org/contents/a806bd3a-194f-4ed2-9609-9436b4ced26e@2.44:31/Digital_Signal_Processing:_A_U
http://cnx.org/contents/a806bd3a-194f-4ed2-9609-9436b4ced26e@2.44:31/Digital_Signal_Processing:_A_U
http://www.cs.tut.fi/sgn/arg/intro/basics.html
http://www.numerical-tours.com/matlab/audio{_}1{_}processing/
http://cvsp.cs.ntua.gr/~nassos/resources/speech_course_2004/OnlineSpeechDemos/speechDemo_2004_Part1.html
http://cvsp.cs.ntua.gr/~nassos/resources/speech_course_2004/OnlineSpeechDemos/speechDemo_2004_Part1.html

554 Appendix A: Transforms and Sampling

A.5.2 Internet

A.5.2.1 Web Sites

• The Fourier Transform:
http://www.thefouriertransform.com/

• Mathematics of the DFT (Stanford University):
https://ccrma.stanford.edu/~jos/st/

• FFTW:
http://www.fftw.org/
Sparse Fast Fourier Transform:
http://groups.csail.mit.edu/netmit/sFFT/index.html

• Educational MATLAB GUIs:
http://users.ece.gatech.edu/mcclella/matlabGUIs/

• The Norbert Wiener Center for Harmonic Analysis and Applications:
http://www.norbertwiener.umd.edu/About/index.html

• Harmonic and Complex Analysis and its Applications (European Science Foun-
dation):
http://org.uib.no/hcaa/

• Numerical Harmonic Analysis Group:
http://www.univie.ac.at/nuhag-php/home/

• Speech Spectrogram:
https://www.projectrhea.org/rhea/index.php/Speech_Spectrogram

• A Wavelet Tour of Signal Processing (includes Fourier):
http://cas.ensmp.fr/~chaplais/Wavetour_presentation/Wavetour_presentation_
US.html\#dyadique

• Good Vibrations, Fourier Analysis and the Laplace Transform (Berkeley):
http://berkeleyscience.com/synopsis4.htm

• Earthquakes:
https://quakewatch.wordpress.com/2012/11/15/magnitude-6-0-guerrero-
mexico-15-nov-12/

A.5.2.2 Link Lists

• D.W. Simpson:
https://www.dwsimpson.com/fourieranalysis.html

• Math Archives
http://archives.math.utk.edu/topics/fourierAnalysis.html

http://www.thefouriertransform.com/
https://ccrma.stanford.edu/~jos/st/
http://www.fftw.org/
http://groups.csail.mit.edu/netmit/sFFT/index.html
http://users.ece.gatech.edu/mcclella/matlabGUIs/
http://www.norbertwiener.umd.edu/About/index.html
http://org.uib.no/hcaa/
http://www.univie.ac.at/nuhag-php/home/
https://www.projectrhea.org/rhea/index.php/Speech{_}Spectrogram
http://cas.ensmp.fr/~chaplais/Wavetour_presentation/Wavetour_presentation_US.html#dyadique
http://cas.ensmp.fr/~chaplais/Wavetour_presentation/Wavetour_presentation_US.html#dyadique
http://berkeleyscience.com/synopsis4.htm
https://quakewatch.wordpress.com/2012/11/15/magnitude-6-0-guerrero-mexico-15-nov-12/
https://quakewatch.wordpress.com/2012/11/15/magnitude-6-0-guerrero-mexico-15-nov-12/
https://www.dwsimpson.com/fourieranalysis.html
http://archives.math.utk.edu/topics/fourierAnalysis.html

Appendix A: Transforms and Sampling 555

References

1. H. Bateman, in Tables of Integral Transforms (1954), http://authors.library.
caltech.edu/43489/

2. H. Bateman,W.Magnus, F. Oberhettinger, F.G. Tricomi,Higher Transcendental
Functions (McGraw-Hill, New York, 1955)

3. M. Benedicks, On Fourier transforms of functions supported on sets of finite
Lebesgue measure. J. Math. Anal. Appl. 106(1), 180–183 (1985)

4. C.S.S. Burrus, T.W. Parks, DFT/FFT and Convolution Algorithms: Theory and
Implementation (Wiley, New York, 1991)

5. J.W. Cooley, J.W. Tukey, An algorithm for the machine calculation of complex
fourier series. Math. Comput. 19(90), 297–301 (1965)

6. P. Dyke, An Introduction to Laplace Transforms and Fourier Series (Springer,
Berlin, 2014)

7. T.S. ElAli. Discrete Systems and Digital Signal Processing with Matlab (CRC
Press, Boca Raton, 2011)

8. R. Gallager, The Sampling Theorem (Handout, ETH Zurich, 1991), www.nari.
ee.ethz.ch/teaching/wirelessIT/handouts/sampling.pdf.

9. R. Gil, Effective algorithms in harmonic analysis and applications to signal
processing. Master’s thesis, Universitat de Barcelona (2011)

10. S. Goldman, Vibration Spectrum Analysis (Industrial Press, Inc., New York,
1999)

11. E.W. Hansen, Fourier Transforms: Principles and Applications (Wiley, New
York, 2014)

12. G. Hiary, FFT and It’s Applications. Lecture Notes in Mathematics, vol. 5603,
The Ohio State University (2014), https://people.math.osu.edu/hiary.1/5603_
F14_notes/Math_Project.pdf.

13. P. Jaming,Uncertainty principles for orthonormal bases (2006), arXiv:math/0606396
14. G. Lerman, The Shannon sampling theorem and its implications. Lecture Notes

in Mathematics, vol. 467, University of Minnesota (2006), www.math.umn.edu/
~lerman/math5467/shannon_aliasing.pdf

15. Y. Liu, S. Fomel, Seismic data analysis using local time-frequency decomposi-
tion. Geophys. Prospect. 61(3), 516–525 (2013)

16. K. Long. Math 5311 – A Short Introduction to Function Spaces. Lecture
Notes, Texas Tech University (2009), www.math.ttu.edu/~klong/5311-Spr09/
funcSpace.pdf.

17. W. Lu, N. Vaswani, TheWiener-Khinchin theorem for non-wide sense stationary
random processes, (2009), arXiv:0904.0602

18. R.J. McEliece, On the Convergence of Fourier Series and Transforms. Lecture
Notes, EE32a, Caltech (2001), www.systems.caltech.edu/EE/Courses/EE32a/
handout/FS_Convergence.pdf.

19. P.A. Millette, The Heisenberg uncertainty principle and the Nyquist-Shannon
sampling theorem, (2011), arXiv:1108.3135

http://authors.library.caltech.edu/43489/
http://authors.library.caltech.edu/43489/
www.nari.ee.ethz.ch/teaching/wirelessIT/handouts/sampling.pdf
www.nari.ee.ethz.ch/teaching/wirelessIT/handouts/sampling.pdf
https://people.math.osu.edu/hiary.1/5603{_}F14{_}notes/Math{_}Project.pdf
https://people.math.osu.edu/hiary.1/5603{_}F14{_}notes/Math{_}Project.pdf
http://arxiv.org/abs/0606396
www.math.umn.edu/~lerman/math5467/shannon{_}aliasing.pdf
www.math.umn.edu/~lerman/math5467/shannon{_}aliasing.pdf
www.math.ttu.edu/~klong/5311-Spr09/funcSpace.pdf
www.math.ttu.edu/~klong/5311-Spr09/funcSpace.pdf
http://arxiv.org/abs/0904.0602
www.systems.caltech.edu/EE/Courses/EE32a/handout/FS{_}Convergence.pdf
www.systems.caltech.edu/EE/Courses/EE32a/handout/FS{_}Convergence.pdf
http://arxiv.org/abs/1108.3135

556 Appendix A: Transforms and Sampling

20. B. Mosser, J.P. Maillard, D. Mékarnia, New attempt at detecting the Jovian
oscillations. Icarus 144(1), 104–113 (2000)

21. J. Muscat, Functional Analysis (Springer, Berlin, 2014)
22. J.R. Pierce, An Introduction to Information Theory: Symbols, Signals and Noise

(Dover, New York, 1980)
23. K.R. Rao, D.N. Kim, J.J. Hwang, Fast Fourier Transform – Algorithms and

Applications (Springer, Berlin, 2010)
24. J.L. Schiff, The Laplace Transform (Springer, Berlin, 1991)
25. C.E. Shannon, Communication in the presence of noise. Proc. IRE 37(1), 10–21

(1949)
26. J.K. Sinha, Vibration Analysis, Instruments, and Signal Processing (CRC Press,

New York, 2014)
27. L.R. Soares, H.M. de Oliveira, R.J.S. Cintra, R.C. de Souza, Fourier eigenfunc-

tions, uncertainty Gabor principle and isoresolution wavelets, in Anais do XX
Simpósio Bras. de Telecomunicações, Rio de Janeiro (2003)

28. R.S. Stankovic, J.T. Astola, M.G. Karpovsky, Remarks on history of abstract
harmonic analysis. Presentation (2002), www.cs.tut.fi/~jta/computing-history-
material/fourierhistory.pdf

29. M.Ph. Stoecklin, Tables of Common Transform Pairs (2012), www.mechmat.
ethz.ch/Lectures/tables.pdf

30. J.V. Stone, Information Theory: A Tutorial Introduction. (Sebtel Press, Sheffield,
2015)

31. J.I. Taylor, The Vibration Analysis Handbook (Vibration Consultants, Florida,
2003)

32. H. Thráinsson, A.S. Kiremidjian, S.R. Winterstein, Modeling of earthquake
ground motion in the frequency domain. Technical report, John A. Blume Earth-
quake Engineering Center (2000)

33. P.P. Vaidyanathan, Eigenfunctions of the Fourier transform. IETE J. Educ. 49(2),
51–58 (2008)

34. R. Wald, T. Khoshgoftaar, J.C. Sloan, Fourier transforms for vibration analy-
sis: a review and case study, in Proceedings IEEE International Conference on
Information Reuse and Integration (IRI), pp. 366–371 (2011)

35. W. Xu. Pointwise Convergence of Fourier Series: The Theorems of Fejér and
Dirichlet. Lecture Notes, MA, vol. 433, University of Warwick (2014), www2.
warwick.ac.uk/fac/sci/maths/people/staff/weijun_xu/ma433_14/pointwise.pdf

36. X. Zhang, The Fourier Spectral Element Method for Vibration Analysis of Gen-
eral Dynamic Structures. PhD thesis, Wayne State University, 2011.

37. A.E. Zonst, Understanding FFT Applications (Citrus Press, Titusville, 2003)
38. A.E. Zonst, Understanding the FFT (Citrus Press, Titusville, 2003)

www.cs.tut.fi/~jta/computing-history-material/fourierhistory.pdf
www.cs.tut.fi/~jta/computing-history-material/fourierhistory.pdf
www.mechmat.ethz.ch/Lectures/tables.pdf
www.mechmat.ethz.ch/Lectures/tables.pdf
www2.warwick.ac.uk/fac/sci/maths/people/staff/weijun{_}xu/ma433{_}14/pointwise.pdf
www2.warwick.ac.uk/fac/sci/maths/people/staff/weijun{_}xu/ma433{_}14/pointwise.pdf

Appendix B
Long Programs

B.1 Introduction

Some of the programs developed for the chapters of this book are long. In order to
simplify the use of the book, it has been preferred to assemble these programs in the
present appendix.

Small version of the figures generated by the programs have been added, to help
identifying each program.

B.2 Chapter 2: Statistical Aspects

B.2.1 Markov Chain (2.10.1.)

Weather prediction model with three states (Fig.B.1).

Program B.1 Example of Markov Chain (weather prediction)

% Example of Markov Chain
% with 3 states
%transition matrix
T=[0.65 0.20 0.15;
0.30 0.24 0.46;
0.52 0.12 0.36];
%initial probabilities
pC=0.5; pS=0.4; pR=0.1;
%initial state
rand('state',sum (100* clock));
u=rand (1);
if u<pC, X=1;

elseif u<pC+pS , X=2;
else X=3;

end;
%initialize result R

© Springer Science+Business Media Singapore 2017
J.M. Giron-Sierra, Digital Signal Processing with Matlab Examples, Volume 1,
Signals and Communication Technology, DOI 10.1007/978-981-10-2534-1

557

http://dx.doi.org/10.1007/978-981-10-2534-1_2

558 Appendix B: Long Programs

Fig. B.1 Weather prediction
model with three states
(Fig. 2.55)

0 10 20 30 40 50 60

1

1.5

2

2.5

3

n

if X==1, R='C'; end; %clouds
if X==2, R='S'; end; %Sun
if X==3, R='R'; end; %rain
rX=zeros (1 ,60); %for state historic
rX(1)=X;
%run the process ---------------
for nn=2:60,

u=rand (1);
%state transitions
if X==1,

if u<T(1,1), X=1;
elseif u<(T(1 ,1)+T(1,2)), X=2;
else X=3;

end;
end;
if X==2,

if u<T(2,1), X=1;
elseif u<(T(2 ,1)+T(2,2)), X=2;
else X=3;

end;
end;
if X==3,

if u<T(3,1), X=1;
elseif u<(T(3 ,1)+T(3,2)), X=2;
else X=3;

end;
end;
rX(nn)=X; %store result
%concatenation
if X==1, R=[R,'C']; end; %clouds
if X==2, R=[R,'S']; end; %sunny
if X==3, R=[R,'R']; end; %rain

end;
disp(R);
plot(rX,'k');
axis ([0 60 0.8 3.2]);

http://dx.doi.org/10.1007/978-981-10-2534-1_2

Appendix B: Long Programs 559

0 10 20 30 40 50 60

1

1.5

2

2.5
HMM (synthetic speech): the hidden states

n

0 10 20 30 40 50 60

1

2

3

4

5
the emissions

n

Fig. B.2 Simple HMM model of speech (Fig. 2.59)

title('3 states Markov Chain: transitions');
xlabel('n');

B.2.2 Hidden Markov Chain (HMM) (2.10.2.)

A simplistic model of speech (Fig.B.2).

Program B.2 Example of HMM (synthetic speech)

% Example of HMM (synthetic speech)
% with 2 states
% each state has 4 emission alternatives
%transition matrix (probabilities)
T=[0.3 0.7;
0.5 0.5];
%emissions from state 1 (probabilities)
E1=[0.2 0.3 0.2 0.3];
%emissions from state 2 (probabilities)
E2=[0.3 0.3 0.2 0.2];
%initial probabilities
pC=0.6; %consonant (X=1)
pW=0.4; %wovel (X=2)
%initial state
rand('state',sum (100* clock));
u=rand (1);

http://dx.doi.org/10.1007/978-981-10-2534-1_2

560 Appendix B: Long Programs

X=2;
if u<pC, X=1; end;

%initial emission
u=rand (1);
if X==1,

if u<E1(1), EM=1; R='W';
elseif u<(E1(1)+E1(2)), EM=2; R='H';
elseif u<(E1(1)+E1(2)+E1(3)), EM=3; R='T';

else EM=4; R='_';
end;

end;
if X==2,

if u<E2(1), EM=1; R='A';
elseif u<(E2(1)+E2(2)), EM=2; R='E';
elseif u<(E2(1)+E2(2)+E2(3)), EM=3; R='O';

else EM=4; R='U';
end;

end;
rX=zeros (1 ,60); %for state record
rE=zeros (1 ,60); %for emission record
rX(1)=X;
rE(1)=EM;
%run the process -------------------
for nn=2:60,
u=rand (1);
%state transitions
if X==1,

X=2;
if u<T(1,1), X=1; end;

end;
if X==2,

X=1;
if u<T(2,2), X=2; end;

end;
%emission
u=rand (1);
if X==1,

if u<E1(1), EM=1; R=[R,'W'];
elseif u<(E1(1)+E1(2)), EM=2; R=[R,'H'];
elseif u<(E1(1)+E1(2)+E1(3)), EM=3; R=[R,'T'];

else EM=4; R=[R,'_'];
end;

end;
if X==2,

if u<E2(1), EM=1; R=[R,'A'];
elseif u<(E2(1)+E2(2)), EM=2; R=[R,'E'];
elseif u<(E2(1)+E2(2)+E2(3)), EM=3; R=[R,'O'];

else EM=4; R=[R,'U'];
end;

end;
rX(nn)=X; %store result
rE(nn)=EM;
end;
disp(R); %print result
%display
subplot (2,1,1)
plot(rX,'k');
title('HMM (synthetic speech): the hidden states');

Appendix B: Long Programs 561

xlabel('n');
axis ([0 60 0.8 2.2]);
subplot (2,1,2)
plot(rE,'k');
axis ([0 60 0.5 4.5]);
title('the emissions');
xlabel('n');

B.3 Chapter 4: Analog Filters

B.3.1 Comparison of Filter Phases and Group Velocities
(4.6.2.)

A comparison of the group delay of the five analog 5th order filters (Fig.B.3).

Program B.3 Comparison of group delay of 5 filters

% Comparison of group delay of 5 filters
wc=10; %desired cut -off frequency
N=5; %order of the filter
Rp=0.5; %decibels of ripple in the pass band
Rs=20; %decibels of ripple in the stop band
%analog Butterworth filter:
[num ,den]= butter(N,wc ,'s');
%logaritmic set of frequency values:
w=logspace (0 ,2 ,500);
%computes frequency response:
G=freqs(num ,den ,w);
ph=angle(G); ph=unwrap(ph); %phase
npp=length(w); gd=zeros(npp ,1);

Fig. B.3 Comparison of the
group delay of the five 5 th

order filters (Fig. 4.52)

100 101 102
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

gr
ou

p
de

la
y

rad/s

E

T

C1
C2

B

http://dx.doi.org/10.1007/978-981-10-2534-1_4
http://dx.doi.org/10.1007/978-981-10-2534-1_4

562 Appendix B: Long Programs

for np=2:npp ,
gd(np)=(ph(np)-ph(np -1))/(w(np)-w(np -1));

end;
semilogx(w(2:npp),-gd(2:npp),'k'); %plots group delay
hold on;
axis ([1 100 0 2]);
grid;
ylabel('group delay'); xlabel('rad/s');
title('comparison of group delay of the filters');
%analog Chebyshev 1 filter:
[num ,den]= cheby1(N,Rp ,wc ,'s');
G=freqs(num ,den ,w); %computes frequency response
ph=angle(G); ph=unwrap(ph);%phase
for np=2:npp ,

gd(np)=(ph(np)-ph(np -1))/(w(np)-w(np -1));
end;
semilogx(w(2:npp),-gd(2:npp),'r'); %plots group delay
%analog Chebyshev 2 filter:
[num ,den]= cheby2(N,Rs ,wc ,'s');
G=freqs(num ,den ,w); %computes frequency response
ph=angle(G); ph=unwrap(ph);%phase
for np=2:npp ,

gd(np)=(ph(np)-ph(np -1))/(w(np)-w(np -1));
%elimination of discontinuity:
if gd(np)>1, gd(np)=gd(np -1); end;

end;
semilogx(w(2:npp),-gd(2:npp),'g'); %plots group delay
%analog elliptic filter:
[num ,den]= ellip(N,Rp ,Rs ,wc ,'s');
G=freqs(num ,den ,w); %computes frequency response
ph=angle(G); ph=unwrap(ph);%phase
for np=2:npp ,

gd(np)=(ph(np)-ph(np -1))/(w(np)-w(np -1));
%elimination of discontinuity:
if gd(np)>1, gd(np)=gd(np -1); end;

end;
semilogx(w(2:npp),-gd(2:npp),'b'); %plots group delay
[num ,den]= besself(N,wc); %analog Bessel filter
G=freqs(num ,den ,w); %computes frequency response
ph=angle(G);ph=unwrap(ph); %phase
for np=2:npp ,

gd(np)=(ph(np)-ph(np -1))/(w(np)-w(np -1));
end;
semilogx(w(2:npp),-gd(2:npp),'m'); %plots group delay

B.3.2 Recovering a Signal Buried in Noise (4.7.1.)

Recovering a sinusoidal signal buried in noise (Fig.B.4).

Program B.4 Recovering a sinusoid buried in noise

% Filtering the sine+noise signal
fs =4000; %sampling frequency in Hz

Appendix B: Long Programs 563

tiv=1/fs; %time interval between samples;
t=0:tiv:(4-tiv); %time intervals set (4 seconds)
N=length(t); %number of data points
yr=0.5*randn(N,1); %random signal data set
fy =400; %sinusoidal signal frequency (400 Hz)
ys=sin(fy*2*pi*t); %sinusoidal signal
y=ys+yr'; %the signal+noise
%plot sine+noise (first 0.1 sec):
subplot (2,1,1); plot(t(1:400) ,y(1:400) ,'k');
axis ([0 0.1 -2 2]);
ylabel('signal+noise');
title('filtering the sine+noise signal');
fl=370; % desired low cut -off frequency in Hz
fh =430; % desired high cut -off frequency in Hz
wl=fl*2*pi; wh=fh*2*pi; % to rad/s
wb=[wl wh]; %the pass band of the filter
N=10; % order of the filter (5+5)
%analog Butterworth filter:
[num ,den]= butter(N,wb ,'s');
G=tf(num ,den); %transfer function of the filter
yout=lsim(G,y,t); %filter output
%plot extracted signal (first 0.1 sec.):
subplot (2,1,2); plot(t(1:400) , yout (1:400) ,'k');
axis ([0 0.1 -2 2]);
xlabel('seconds'); ylabel('extracted signal');
sound(y,fs); %sound of sine+noise
pause (5);
sound(yout ,fs); %sound of extracted signal

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-2

-1

0

1

2

si
gn

al
+n

oi
se

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-2

-1

0

1

2

seconds

ex
tra

ct
ed

 s
ig

na
l

Fig. B.4 Recovering a signal buried in noise (Fig. 4.53)

http://dx.doi.org/10.1007/978-981-10-2534-1_4

564 Appendix B: Long Programs

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-2

0

2

co
m

po
un

d
si

gn
al

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-1

0

1

y0

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-1

0

1

y3

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-0.5

0

0.5

y5

seconds

Fig. B.5 Extracting components from a compound signal (Fig. 4.54)

B.3.3 Adding and Extracting Signals (4.7.2.)

Extract the 3 sinusoidal signals, which previously have been added into one signal
(Figs.B.5 and B.6).

Program B.5 Adding and recovering experiment

% Adding and recovering experiment
fs =4000; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(0.1 -tiv); %time intervals set (0.1 seconds)
fu0 =100; %base sinusoidal signal frequency (100 Hz)
u0=sin(fu0*2*pi*t); %fundamental harmonic
u3=sin(3*fu0*2*pi*t); %3rd harmonic
u5=sin(5*fu0*2*pi*t); %5th harmonic
u= u0 + (0.5*u3) + (0.3*u5); %input signal
% extracting the fundamental harmonic
fh =120; %desired cut -off of a low -pass filter
wh=fh*2*pi; % to rad/s
N=5; % order of the filter
%analog low -pass Butterworth filter:
[num ,den]= butter(N,wh ,'s');
G=tf(num ,den); %transfer function of the filter
y0=lsim(G,u,t); %response of the low -pass filter

http://dx.doi.org/10.1007/978-981-10-2534-1_4

Appendix B: Long Programs 565

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-2

-1

0

1

2

co
m

po
un

d
si

gn
al

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-2

-1

0

1

2

ys
um

seconds

Fig. B.6 Original and reconstructed signals (Fig. 4.55)

% extracting the 3rd harmonic
fl =280; % desired low cut -off frequency in Hz
fh =320; % desired high cut -off frequency in Hz
wl=fl*2*pi; wh=fh*2*pi; % to rad/s
wb=[wl wh]; %the pass band of the filter
N=10; % order of the filter (5+5)
%analog band -pass Butterworth filter:
[num ,den]= butter(N,wb ,'s');
G=tf(num ,den); %transfer function of the filter
y3=lsim(G,u,t); %response of the band -pass filter
% extracting the 5th harmonic
fh =480; % desired high cut -off frequency in Hz
wh=fh*2*pi; % to rad/s
N=5; % order of the filter
%analog high -pass Butterworth filter:
[num ,den]= butter(N,wh ,'high','s');
G=tf(num ,den); %transfer function of the filter
y5=lsim(G,u,t); %response of the high -pass filter
figure (1)
subplot (4,1,1); plot(t,u,'k'); %the complete signal
ylabel('compound signal');
title('adding and recovering experiment');
%the recovered fundamental harmonic:
subplot (4,1,2); plot(t,y0 ,'k');
ylabel('y0');
%the recovered 3rd harmonic
subplot (4,1,3); plot(t,y3 ,'k');
ylabel('y3');
%the recovered 5th harmonic
subplot (4,1,4); plot(t,y5 ,'k');
ylabel('y5');

http://dx.doi.org/10.1007/978-981-10-2534-1_4

566 Appendix B: Long Programs

xlabel('seconds');
%------------------------
ysum=y0+y3+y5; %adding recovered harmonics
figure (2)
%the complete input signal:
subplot (2,1,1); plot(t,u,'k');
ylabel('compound signal');
title('adding and recovering experiment');
%the added harmonics:
subplot (2,1,2); plot(t,ysum ,'k');
ylabel('ysum');
xlabel('seconds');

B.4 Chapter 5: Digital Filters

B.4.1 Classical Approach (IIR Filters) (5.4.1.)

Pole-zero maps of the four IIR filters (Fig.B.7).

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
Butterw.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
Cheby1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
Cheby2

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
Elliptic

Fig. B.7 Comparison of pole-zero maps of the four digital filters (Fig. 5.36)

http://dx.doi.org/10.1007/978-981-10-2534-1_5
http://dx.doi.org/10.1007/978-981-10-2534-1_5

Appendix B: Long Programs 567

Program B.6 Comparison of pole-zero maps of the 4 digital filters

% Comparison of pole -zero maps of
% the 4 digital filters
fs =130; %sampling frequency in Hz
fc =10/(fs/2); %cut -off at 10 Hz
N=5; %order of the filter
Rp=0.5; %decibels of ripple in the pass band
Rs=20; %decibels of ripple in the stop band
[numd ,dend]= butter(N,fc); %digital Butterworth filter
tfd=tf(numd ,dend);
[P,Z]= pzmap(tfd); %poles and zeros of the filter
subplot (2,2,1);
%plots pole -zero map
plot(P,'kx','Markersize',10); hold on;
plot(Z,'ko','Markersize',8);
zgrid; axis([-1.1 1 -1 1]);
title('Butterworth');
%digital Chebyshev 1 filter:
[numd ,dend]= cheby1(N,Rp ,fc);
tfd=tf(numd ,dend);
[P,Z]= pzmap(tfd); %poles and zeros of the filter
subplot (2,2,2);
%plots pole -zero map
plot(P,'kx','Markersize',10); hold on;
plot(Z,'ko','Markersize',8);
zgrid; axis([-1.1 1 -1 1]);
title('Chebyshev 1');
%digital Chebyshev 2 filter:
[numd ,dend]= cheby2(N,Rs ,fc);
tfd=tf(numd ,dend);
[P,Z]= pzmap(tfd); %poles and zeros of the filter
subplot (2,2,3);
%plots pole -zero map
plot(P,'kx','Markersize',10); hold on;
plot(Z,'ko','Markersize',8);
zgrid; axis([-1.1 1 -1 1]);
title('Chebyshev 2');
%digital elliptic filter:
[numd ,dend]=ellip(N,Rp,Rs ,fc);
tfd=tf(numd ,dend);
[P,Z]= pzmap(tfd); %poles and zeros of the filter
subplot (2,2,4);
%plots pole -zero map
plot(P,'kx','Markersize',10); hold on;
plot(Z,'ko','Markersize',8);
zgrid; axis([-1.1 1 -1 1]);
title('Elliptic');

B.4.2 Adding and Extracting Signals (5.5.1.)

Extract the 3 sinusoidal signals, which previously have been added into one signal
(Figs.B.8 and B.9).

568 Appendix B: Long Programs

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-2

0

2

co
m

po
un

d
si

gn
al

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-1

0

1
y0

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-1

0

1

y3

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-0.5

0

0.5

y5

seconds

Fig. B.8 Extracting components from a compound signal (Fig. 5.51)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-2

-1

0

1

2

co
m

po
un

d
si

gn
al

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-2

-1

0

1

2

ys
um

seconds

Fig. B.9 Original and reconstructed signals (Fig. 5.52)

http://dx.doi.org/10.1007/978-981-10-2534-1_5
http://dx.doi.org/10.1007/978-981-10-2534-1_5

Appendix B: Long Programs 569

Program B.7 Adding and recovering with filtfilt experiment

% Adding and recovering experiment
fs =4000; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
t=0:tiv:(0.1 -tiv); %time intervals set (0.1 seconds)
fu0 =100; %base sinusoidal signal frequency (100 Hz)
u0=sin(fu0*2*pi*t); %fundamental harmonic
u3=sin(3*fu0*2*pi*t); %3rd harmonic
u5=sin(5*fu0*2*pi*t); %5th harmonic
u= u0 + (0.5*u3) + (0.3*u5); %input signal
% extracting the fundamental harmonic
fh =120/(fs/2); %desired cut -off of a low -pass filter
N=5; % order of the filter
%digital low -pass Butterworth filter:
[numd ,dend]= butter(N,fh);
%response of the low -pass filter:
y0=filtfilt(numd ,dend ,u);
% extracting the 3rd harmonic
fl =220/(fs/2); % desired low cut -off frequency
fh =380/(fs/2); % desired high cut -off frequency
fb=[fl fh]; %the pass band of the filter
N=10; % order of the filter (5+5)
%digital band -pass Butterworth filter:
[numd ,dend]= butter(N,fb);
%response of the band -pass filter:
y3=filtfilt(numd ,dend ,u);
% extracting the 5th harmonic
fh =420/(fs/2); % desired high cut -off frequency in Hz
N=5; % order of the filter
%digital high -pass Butterworth filter:
[numd ,dend]= butter(N,fh ,'high');
%response of the high -pass filter:
y5=filtfilt(numd ,dend ,u);
figure (1)
subplot (4,1,1); plot(t,u,'k'); %the complete signal
ylabel('compound signal');
title('adding and recovering experiment');
%the recovered fundamental harmonic:
subplot (4,1,2); plot(t,y0 ,'k');
ylabel('y0');
%the recovered 3rd harmonic:
subplot (4,1,3); plot(t,y3 ,'k');
ylabel('y3');
%the recovered 5th harmonic:
subplot (4,1,4); plot(t,y5 ,'k');
ylabel('y5');
xlabel('seconds');
%------------------------
ysum=y0+y3+y5; %adding recovered harmonics
figure (2)
%the complete input signal:
subplot (2,1,1); plot(t,u,'k');
ylabel('compound signal');
title('adding and recovering experiment');

570 Appendix B: Long Programs

%the added harmonics:
subplot (2,1,2); plot(t,ysum ,'k');

ylabel('ysum');

xlabel('seconds');

B.5 Chapter 7: Time-Frequency Analysis

B.5.1 Interferences in the Wigner Distribution (7.5.5.)

Wigner distribution of a signal with 2 sine components (Fig.B.10).

Program B.8 Wigner distribution of a 2-sine signal

%Wigner distribution of a 2-sine signal
clear all
% 2-sine signal
f1=10; %initial frequency in Hz
f2=50; %final frequency in Hz
fs =128; %sampling rate in Hz
fN=fs/2; %Nyquist frequency
tiv=1/fs; %time between samples
%time of first signal part (4 seconds):
t1=0:tiv:(4-tiv);
tn=4:tiv:5; %time inter -signal parts (1 seconds)
%time of last signal part (3 seconds):
t2=5:tiv:(8-tiv);
y1=exp(-j*2*pi*f1*t1); y2=exp(-j*2*pi*f2*t2);
yn=0*exp(-j*2*pi*tn);

Fig. B.10 Wigner
distribution of a 2 sine signal
(Fig. 7.20)

seconds

H
z

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

http://dx.doi.org/10.1007/978-981-10-2534-1_7
http://dx.doi.org/10.1007/978-981-10-2534-1_7

Appendix B: Long Programs 571

y=[y1 yn y2]'; %complete signal (column vector)
t=[t1 tn t2]; %complete signal time set
Ny=length(y); %odd number
%WIGNER ---
zerx=zeros(Ny ,1); aux=zerx;
lm=(Ny -1)/2;
zyz=[zerx; y; zerx]; %sandwich zeros -signal -zeros
%space for the Wigner distribution , a matrix:
WD=zeros(Ny ,Ny);
mtau =0:lm; %vector(used for indexes)
for nt=1:Ny ,

tpos=Ny+nt+mtau; %a vector
tneg=Ny+nt -mtau; %a vector
aux(1:lm +1)=(zyz(tpos).*conj(zyz(tneg)));
aux (1)=0.5*aux (1); %will be added 2 times
fo=fft(aux ,Ny)/(Ny);
%a column (harmonics at time nt):
WD(:,nt)=2* real(fo);

end
%result display
figure (1)
fiv=fN/Ny; %frequency interval
f=0:fiv:(fN -fiv); %frequency intervals set
colmap1; colormap(mapg1); %user colormap
imagesc(t,f,log10(0.1+abs(WD))); axis xy;
xlabel('seconds'); ylabel('Hz');
title('Wigner distribution of a two -sine signal');
%Marginals ---
margf=zeros(Ny ,1); %frequency marginal
for nn=1:Ny ,

margf(nn)=tiv*sum(WD(nn ,:));
end;
margt=zeros(1,Ny); %time marginal
for nn=1:Ny ,

margt(nn)=sum(WD(:,nn));
end;
figure (2)
plot(f,margf ,'k'); %frequency marginal
xlabel('Hz');
title('frequency marginal');
figure (3)
plot(t,margt ,'k'); %time marginal
xlabel('seconds');
title('time marginal');
%print y signal energy
disp('signal energy:')
e1=tiv*sum(abs(margt))
e2=sum(abs(margf))

Wigner distribution of a chirp signal (Fig.B.11).

Program B.9 Wigner distribution of a chirp signal

%Wigner distribution of a chirp signal
clear all;
% chirp signal
f0=5; %initial frequency in Hz

572 Appendix B: Long Programs

Fig. B.11 Wigner
distribution of a chirp signal
(Fig. 7.24)

seconds

H
z

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

f1=60; %final frequency in Hz
fs =128; %sampling rate in Hz
fN=fs/2; %Nyquist frequency
tiv=1/fs; %time between samples
t1=2; %final time
t=0:tiv:t1; %time intervals set (10 seconds)
yr=chirp(t,f0 ,t1 ,f1 ,'quadratic')'; %the chirp signal
y=hilbert(yr); %analitical signal
Ny=length(y); %odd number
%WIGNER ---
zerx=zeros(Ny ,1); aux=zerx;
lm=(Ny -1)/2;
zyz=[zerx; y; zerx]; %sandwich zeros -signal -zeros
%space for the Wigner distribution , a matrix:
WD=zeros(Ny ,Ny);
mtau =0:lm; %vector(used for indexes)
for nt=1:Ny ,

tpos=Ny+nt+mtau; %a vector
tneg=Ny+nt -mtau; %a vector
aux(1:lm +1)=(zyz(tpos).*conj(zyz(tneg)));
aux (1)=0.5*aux (1); %will be added 2 times
fo=fft(aux ,Ny)/(Ny);
%a column (harmonics at time nt):
WD(:,nt)=2* real(fo);

end
%result display
figure (1)
fiv=fN/Ny; %frequency interval
f=0:fiv:(fN -fiv); %frequency intervals set
colmap1; colormap(mapg1); %user colormap
imagesc(t,f,log10(0.5+abs(WD))); axis xy;
xlabel('seconds'); ylabel('Hz');
title('Wigner distribution of a chirp signal');

http://dx.doi.org/10.1007/978-981-10-2534-1_7

Appendix B: Long Programs 573

B.5.2 Filtering the SAF to Eliminate Interferences (7.5.5.)

Example of chirp signal (Figs.B.12 and B.13).

seconds

H
z

Filter window (kernel)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-20

0

20

seconds

H
z

Filtered SAF

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-20

0

20

Fig. B.12 Kernel and filtered SAF for chirp signal (Fig. 7.27)

Fig. B.13 Filtered Wigner
distribution for chirp signal
(Fig. 7.28)

seconds

H
z

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

http://dx.doi.org/10.1007/978-981-10-2534-1_7
http://dx.doi.org/10.1007/978-981-10-2534-1_7

574 Appendix B: Long Programs

Program B.10 WD of chirp signal, with no interference

% WD of chirp signal , with no interference
clear all
% chirp signal
f0=5; %initial frequency in Hz
f1=60; %final frequency in Hz
fs =128; %sampling rate in Hz
fN=fs/2; %Nyquist frequency
tiv=1/fs; %time between samples
t1=2; %final time
t=0:tiv:t1; %time intervals set (10 seconds)
yr=chirp(t,f0 ,t1 ,f1 ,'quadratic')'; %the chirp signal
y=hilbert(yr); %analitical signal
Ny=length(y); %odd number
%SAF ---
zerx=zeros(Ny ,1); %a vector
zyz=[zerx; y; zerx]; %sandwich zeros -signal -zeros
aux=zerx;
SAF=zeros(Ny , Ny); %space for the SAF , a matrix
nt=1:Ny; %vector (used for indexes)
md=(Ny -1)/2;
for mtau=-md:md ,

tpos=Ny+nt+mtau; %a vector
tneg=Ny+nt -mtau; %a vector
aux=zyz(tpos).*conj(zyz(tneg));
%a column (frequencies):
SAF(:,md+mtau +1)= fftshift(fft(aux ,Ny)/Ny);

end
%A simple box distribution kernel
FI=zeros(Ny ,Ny);
%window vertical and horizontal 1/2 width:
HV=30; HH=40;
FI(md -HH:md+HH ,md -HV:md+HV)=1; %box kernel
%Product of kernel and SAF
fsaf=FI.*SAF;
pks=ifftshift(fsaf); %intermediate variable
ax=((ifft(pks ,[] ,1)));
%Wigner from SAF distribution:
WD=real((fft(ax ,[],2))');
%result display
figure (1)
fiv=fN/Ny; %frequency interval
freq=-fN/2:fiv:(fN/2)-fiv;
te=t (end); tim=-te/2:tiv:te/2;
colmap1; colormap(mapg1); %user colormap
subplot (2,1,1)
imagesc(tim ,freq ,log10(0.05+abs(FI))); axis xy;
xlabel('seconds'); ylabel('Hz');
title('Filter window (kernel)');
subplot (2,1,2)
imagesc(tim ,freq ,log10(0.1+abs(fsaf))); axis xy;
xlabel('seconds'); ylabel('Hz');
title('Filtered SAF');
%result display
figure (2)
fiv=fN/Ny; %frequency interval
f=0:fiv:(fN -fiv); %frequency intervals set
colmap1; colormap(mapg1); %user colormap

Appendix B: Long Programs 575

0 50 100 150 200 250 300 350 400 450 500
-1

-0.5

0

0.5

1

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

Fractional Fourier
transform (a=0.8)

Fig. B.14 Fractional Fourier transform of a chirp which rate corresponds to the transform exponent

imagesc(t,f,log10 (1+abs(WD))); axis xy;
xlabel('seconds'); ylabel('Hz');
title('Filtered Wigner distribution of
the chirp signal');

B.5.3 Example of Fractional Fourier Transform (7.8.5.)

Example of FrFT response to the chirp with rate cot(α) (Fig.B.14).

Program B.11 Fractional Fourier transform (chirp signal)

%Fractional Fourier transform
%using decomposition
%Example of chirp signal
%choose parameter a (fractional power) 0<a<1.5
a=0.9; %for instance
alpha=a*pi/2;
% the signal to be transformed -----------------------
%chirp signal
Ny =501; %odd length
aex=(pi/Ny)*cot(alpha)*((0:Ny -1)'.^2);
ch1=exp(-j*aex);
y=ch1;
yin=y;
%changes for a<0.5
if (a<0.5),
shft = rem ((0:Ny -1)+ fix(Ny/2),Ny)+1;
sqN = sqrt(Ny);

576 Appendix B: Long Programs

a=a+1; y(shft)=ifft(y(shft))*sqN;
end;
%sinc interpolation for doubling signal data
zy=zeros (2*Ny -1 ,1);
zy (1:2:2*Ny -1)=y;
aux1=zy (1:2*Ny -1);
aux2=sinc ([-(2*Ny -3):(2*Ny -3)]'/2);
m=length ([aux1 (:); aux2 (:)]) -1;
P=2^ nextpow2(m);
%convolution using fft:
yitp=ifft(fft(aux1 ,P).*fft(aux2 ,P));
yitp=yitp (1:m);
yitp=yitp (2*Ny -2 :end -2*Ny+3); %interpolated signal
%sandwich
zz=zeros(Ny -1,1);
ys=[zz; yitp; zz];
% the fractional transform ---------------------------
%chirp premultiplication
htan=tan(alpha /2);
aex=(pi/Ny)*(htan /4)*((-2*Ny +2:2*Ny -2)'.^2);
chr=exp(-j*aex);
yc=chr.*ys; %premultiplied signal
%chirp convolution
sa=sin(alpha);
cc=pi/Ny/sa/4;
aux1=exp(j*cc*(-(4*Ny -4):4*Ny -4)'.^2);
m=length ([aux1 (:);yc(:)]) -1;
P=2^ nextpow2(m);
%convolution using fft:
ym=ifft(fft(aux1 ,P).*fft(yc ,P));
ym=ym(1:m);
ym=ym(4*Ny -3:8*Ny -7)* sqrt(cc/pi); %convolved signal
%chirp post multiplication
yq=chr.*ym;
%normalization
yp=exp(-j*(1-a)*pi/4)*yq(Ny:2 :end-Ny+1);
% display -------------------------------------
figure (1)
subplot (2,1,1)
plot(real(yin),'k');
axis ([0 Ny -1.1 1.1]);
title('a chirp signal');
subplot (2,1,2)
plot(abs(yp),'k');
axis ([0 Ny -1 25]);
title('Fractional Fourier transform (a=0.8)');

B.5.4 The Chirplet Transform (7.9.1.)

Example of Wigner distribution of chirplet atom (Fig.B.15).

Appendix B: Long Programs 577

Fig. B.15 Wigner
distribution of a Gaussian
chirplet atom (Fig. 7.44)

ra
d/

s

seconds
0 2 4 6 8 10 12

0

10

20

30

40

50

60

Program B.12 Wigner distribution of Gaussian chirplet

% Wigner distribution of Gaussian chirplet
t0=5; w0=10; d=6; c=2; %chirplet parameters
t=0:0 .05 :12; %times vector
g=exp(-(0.5/d)*((t-t0).^2));
v=exp(-j*(w0+((0.5*c)*(t-t0))).*(t-t0));
h=(1/((pi*d)^0.25))*g.*v;
y=h';
Ny=length(y);
%WIGNER ---
zerx=zeros(Ny ,1); aux=zerx;
lm=(Ny -1)/2;
zyz=[zerx; y; zerx]; %sandwich zeros -signal -zeros
%space for the Wigner distribution , a matrix:
WD=zeros(Ny ,Ny);
mtau =0:lm; %vector(used for indexes)
for nt=1:Ny ,

tpos=Ny+nt+mtau; %a vector
tneg=Ny+nt -mtau; %a vector
aux(1:lm +1)=(zyz(tpos).*conj(zyz(tneg)));
aux (1)=0.5*aux (1); %will be added 2 times
fo=fft(aux ,Ny)/(Ny);
%a column (harmonics at time nt):
WD(:,nt)=2* real(fo);

end
%result display
Ts=0.05; %sampling period
ws=(2*pi)/Ts; wiv=ws/(2*Ny);
w=0:wiv:((ws/2)-wiv);
figure (1)
colmap1; colormap(mapg1); %user colormap
imagesc(t,w,log10(0.01+abs(WD))); axis xy;
title('Wigner distribution of Gaussian chirplet');
ylabel('rad/s'); xlabel('seconds');

http://dx.doi.org/10.1007/978-981-10-2534-1_7

578 Appendix B: Long Programs

Fig. B.16 Wigner
distribution of the original
signal (Fig. 7.49)

seconds

H
z

1 2 3 4 5 6 7 8 9 10

5

10

15

20

25

B.5.5 Unitary Equivalence Principle (7.9.2.)

Example of time-warping (Fig.B.16).

Program B.13 Wigner distribution of a modulated signal

%Wigner distribution of a modulated signal
fs=50; %sampling frequency in Hz
tiv=1/fs; %time between samples
%time intervals set (10 seconds)(t>0):
t=tiv:tiv :(10+ tiv);
fsig =5; %signal base frequency in Hz
wsig=fsig *2*pi; %signal base frequency in rad/s
K=1.4; %modulation exponent
y=exp(-i*wsig*(t.^K))'; %the modulated signal
Ny=length(y); %odd number
%WIGNER ---
zerx=zeros(Ny ,1); aux=zerx;
lm=(Ny -1)/2;
zyz=[zerx; y; zerx]; %sandwich zeros -signal -zeros
%space for the Wigner distribution , a matrix:
WD=zeros(Ny ,Ny);
mtau =0:lm; %vector(used for indexes)
for nt=1:Ny ,

tpos=Ny+nt+mtau; %a vector
tneg=Ny+nt -mtau; %a vector
aux(1:lm +1)=(zyz(tpos).*conj(zyz(tneg)));
aux (1)=0.5*aux (1); %will be added 2 times
fo=fft(aux ,Ny)/(Ny);
%a column (harmonics at time nt):
WD(:,nt)=2* real(fo);

end
%result display
fiv=fs/(2*Ny);
f=fiv:fiv:(fs/2); %frequencies set

http://dx.doi.org/10.1007/978-981-10-2534-1_7

Appendix B: Long Programs 579

figure (1)
colmap1; colormap(mapg1); %user colormap
imagesc(t,f,log10(0.1+abs(WD))); axis xy;
xlabel('seconds'); ylabel('Hz');
title('Wigner distribution of a modulated signal');

B.5.6 The Reassignment Method (7.9.3.)

Example of siren signal (Figs.B.17 and B.18).

Fig. B.17 Original
spectrogram of the siren
signal (Fig. 7.56)

Time

Fr
eq

ue
nc

y

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

6000

7000

8000

Fig. B.18 Reassigned
spectrogram of the siren
signal (Fig. 7.57)

Time

Fr
eq

ue
nc

y

0.2 0.4 0.6 0.8 1 1.2

1000

2000

3000

4000

5000

6000

7000

8000

http://dx.doi.org/10.1007/978-981-10-2534-1_7
http://dx.doi.org/10.1007/978-981-10-2534-1_7

580 Appendix B: Long Programs

Program B.14 Reassigned STFT

% Reassigned STFT
% Example of siren
clear all;
[y,fs]= wavread('srn.wav'); %read wav file
Ny=length(y);
% Reassignment --------------------------------------
%original spectrogram
nft =256; %FFT length
Nw =256; %window length
m=Nw/2;
W=hamming(Nw);
SY=specgram(y,nft ,fs ,W,m);
sqm=abs(SY).^2;
nzix=find(sqm >0); %non -zero elements
%build reassignment windows
m=Nw/2;
%frequency ramp
framp =[(0:m-1),(-m:-1)]'+0.5;
framp=framp/Nw;
Wx=-imag(ifft(framp.*fft(W)));
Wdt=Wx*fs;
%time ramp
tramp=(-m:m-1)'+0.5;
Wx=tramp.*W;
Wt=Wx/fs;
%compute auxiliary spectrograms
SYdt=specgram(y,nft ,fs,Wdt ,m);
SYt=specgram(y,nft ,fs ,Wt ,m);
%compute freq. corrections
[nr ,nc]=size(SY);
fcorrect=zeros(nr ,nc);
fcorrect(nzix)=-imag(SYdt(nzix).*conj(SY(nzix)))...
./sqm(nzix);
%analysis bin freqs (Hz)
Fb =((0:nr -1)'*fs/nft)*ones(1,nc);
rF=Fb+fcorrect; %reassigned freqs
%compute time corrections
tcorrect=zeros(nr ,nc);
tcorrect(nzix)=real(SYt(nzix).*conj(SY(nzix)))...
./sqm(nzix);
%analysis frame times (sec)
framets =(((Nw -1)/2)+(ones(nr ,1)*(0:nc -1))*(Nw -m))/fs;
rT=framets+tcorrect; %reassigned times (sec)
%image plot preparation ----------------------------
%crop & threshold
fmax=0.5*fs; fmin =0;
tmax=Ny/fs; tmin =0;
thr=-50; %threshold in dB (edit!)--------
Smax=max(abs(SY (:)));
Mx=20* log10(abs(SY)/Smax);
inzone=find(rF <fmax & rF >fmin & rT <tmax & rT >tmin);
ax=find(Mx >thr);
vdx=intersect(inzone ,ax);
cSY=SY(vdx); %it is a vector
cF=rF(vdx);
cT=rT(vdx);

Appendix B: Long Programs 581

%create image
nh=max(500, size(SY ,2)*2);
nv=max(400, size(SY ,1)*2);
Tmax=max(cT); Tmin=min(cT);
dt=(Tmax -Tmin)/(nh -2);
nmax=ceil(Tmax/dt); nmin=floor(Tmin/dt);
Tn=Tmin+(dt*(0:nmax -nmin));
Fmax=max(cF); Fmin=min(cF);
df=(Fmax -Fmin)/(nv -2);
kmax=ceil(Fmax/df); kmin=floor(Fmin/df);
Fk=Fmin+(df*(0:kmax -kmin));
% Z
Z=zeros(nv ,nh);
for nn=1: length(cSY),

n=1-nmin+(cT(nn)/dt);
k=1-kmin+(cF(nn)/df);
alpha=n-floor(n); beta= k-floor(k);
kf=floor(k); kc=ceil(k); nf=floor(n); nc=ceil(n);
Z(kf ,nf)=Z(kf ,nf)+((1- alpha)*(1- beta)*cSY(nn));
Z(kc ,nf)=Z(kc ,nf)+((1- alpha)*(beta)*cSY(nn));
Z(kf ,nc)=Z(kf ,nc)+((alpha)*(1- beta)*cSY(nn));
Z(kc ,nc)=Z(kc ,nc)+((alpha)*(beta)*cSY(nn));

end;
% applying the threshold

Zmin =10^(0 .05*thr);
Zbak =10^(0 .05*(thr -10)); %background

aux=find(abs(Z)<=Zmin);
%background includes values below threshold:

Z(aux)=Zbak;
% display --

figure (1)

specgram(y,nft ,fs);

title('spectrogram of siren , before reassignment');

figure (2)

imagesc(Tn ,Fk ,20* log10(abs(Z)));

axis([min(Tn),max(Tn),min(Fk),max(Fk)]); axis xy;

colormap(1-gray); %gray scale

title('Reassigned spectrogram of the siren signal');

xlabel('Time'); ylabel('Frequency');

B.5.7 The Fan-Chirp Transform (7.10.2.)

Example of linear chirp (Figs.B.19 and B.20).

Program B.15 Short Time Fan-Chirp transform

% Short Time Fan -Chirp transform
% (as a spectrogram)
%example with linear chirp
% transform parameters

582 Appendix B: Long Programs

Fig. B.19 Spectrogram of a
linear chirp (Fig. 7.61)

Time

Fr
eq

ue
nc

y

2 4 6 8 10 12 14 16
0

50

100

150

200

250

Fig. B.20 Fan-Chirp
transform of the linear chirp
(Fig. 7.62)

Time

Fr
eq

ue
nc

y

2 4 6 8 10 12 14 16
0

50

100

150

200

250

nft =256; %FFT length
nsf =32; %number of signal segments
Ny=nft*nsf; %signal length , even
nw=65; %window size , odd
nov =60; %overlapping
mo=nw -nov; %must be positive
win=hamming(nw); %window
win=win./sum(win);
% the signal
tiv=0.002;
t=0:tiv:(Ny -1)* tiv;
fs=1/tiv;
yc=exp(-j*30*(t.^2));
y=real(yc)';
% reference estimated frequencies
tr=0:0 .050 :21;

http://dx.doi.org/10.1007/978-981-10-2534-1_7
http://dx.doi.org/10.1007/978-981-10-2534-1_7

Appendix B: Long Programs 583

fr=0:0 .50 :210;
Fc=fs*(0: nft /2)/ nft; %frequency centers
% time centers:
Tc=[]; idx=1; kk=1;
while idx (end) <=Ny ,
idx=((kk -1)*mo)+(1:nw);
if idx (end) <=Ny ,
Tc=[Tc (idx((nw -1)/2+1) -1)/ fs];
end
kk=kk+1;
end
% interpolated estimated frequencies
fe=interp1(tr ,fr ,Tc ,'linear','extrap');
nTc=length(Tc);
aux=ones(nTc ,1);
FT=zeros(nft/2+1,nTc);
for kk=1:nTc ,

idx=((kk -1)*(mo))+(1: nw);
% derivative approximation:
if kk==1 || kk==nTc ,

A=0;
else
A=(1/fe(kk))+(fe(kk+1)-fe(kk -1)) ...
/(Tc(kk+1)-Tc(kk -1));

end
A=A/fs;
aslp(kk)=A;
% the FCh transform for the signal frame:
z=y(idx).*win; %signal windowed segment
M=length(z); N=nft;
ks=(-N/2+1:N/2)';
ks=[ks(N/2 :end); ks(1:N/2 -1)];
nn=-(M -1)/2:(M -1)/2;
aux=(-2*pi/N).*ks *((1+0 .5*A*nn).*nn);
E=exp(j*aux);
q=ones(N,1);
FTx=sum(q*(z'.*sqrt(abs ((1+A*nn)))).*E,2);
FT(:,kk)=FTx(1 :end /2+1);
end
% display ---
figure (1)
specgram(y,nft ,fs ,win ,nov);
figure (2)
imagesc(Tc ,Fc ,abs(FT)); axis xy;
%imagesc(Tc ,Fc ,20* log10(abs(FT)),[-100 -20]);
% axis xy;
xlabel('Time'); ylabel('Frequency');

B.5.8 The Empirical Mode Decomposition and
Hilbert-Huang Transform (7.10.4.)

Example of boink signal (Figs.B.21 and B.22)

584 Appendix B: Long Programs

0 500 1000 1500 2000 2500 3000
-1

0

1

0 500 1000 1500 2000 2500 3000
-1

0

1

0 500 1000 1500 2000 2500 3000
-0.5

0

0.5

0 500 1000 1500 2000 2500 3000
-0.2

0

0.2

0 500 1000 1500 2000 2500 3000
-0.1

0

0.1

Fig. B.21 The first five IMFs (Fig. 7.72)

Fig. B.22 The Hilbert
spectrum (Fig. 7.63)

http://dx.doi.org/10.1007/978-981-10-2534-1_7
http://dx.doi.org/10.1007/978-981-10-2534-1_7

Appendix B: Long Programs 585

Program B.16 EMD and Hilbert Spectrum example

% EMD and Hilbert Spectrum example "boink" signal
%read data file
[yin ,fin]= wavread('boink.wav'); %read wav file
%select a signal segment and decimate by 1/2:
y=yin (1:2:6000)';
fs=fin/2;
sy=y; %for sound
Ny=length(y);
% EMD decomposition --------------------------------
nim=5; %number of imfs to be found
Mimf=zeros(nim ,Ny);
for nn=1:nim ,

h=y; %initial signal
%standard deviation (used for stop criterion):
StD=1;
while StD >0.3 ,

% find max/min points
D=diff(h); %derivative
popt =[]; %to store max or min points
for i=1:Ny -2,

if D(i)==0,
popt=[popt ,i];

elseif sign(D(i))~= sign(D(i+1));
%the zero was between i and i+1:
popt=[popt ,i+1];

end;
end;
if size(popt ,2) <2 %got a final residue
break
end;
%distinguish maxima and minima
No=length(popt);
% if first one is a maximum
if popt(1)>popt(2),

pmax=popt (1:2:No);
pmin=popt (2:2:No);

else
pmax=popt (2:2:No);
pmin=popt (1:2:No);

end;
%force endpoints
pmax =[1 pmax Ny];
pmin =[1 pmin Ny];
%create envelopes using spline interpolation
maxenvp=spline(pmax ,h(pmax),1:Ny);
minenvp=spline(pmin ,h(pmin),1:Ny);
%mean of envelopes
m = (maxenvp+minenvp)/2;
oldh=h;
h=h-m; %subtract mean to h
%compute StD
ipsi=0 .0000001;
StD=sum(((oldh -h).^2)./(oldh. ^2+ ipsi));

end
Mimf(nn ,:)=h; %store IMF(nn)
y=y-h; %subtract the IMF from the signal

586 Appendix B: Long Programs

end
% Prepare the Hilbert spectrum image
Fq=zeros(nim ,Ny); %frequencies
Am=zeros(nim ,Ny); %amplitudes
kk =1/(2* pi);
for ni=1:nim ,

X=hilbert(Mimf(ni ,:));
Am(ni ,:)= abs(X);
Ph=atan2(imag(X),real(X));
Fq(ni ,2 :end)=kk*diff(Ph); %frequencies

end
%build a picture , selecting some imfs
kk=floor(Ny/2);
Phht=zeros(kk ,Ny);
% find TF points and associate Amplitude
for nn=1:Ny ,

for ni=1:3, %choose imf (1) ,(2) and (3)
%find a freq. point:
aux=1+ floor(Ny*abs(Fq(ni ,nn)));
Phht(aux ,nn)=Am(ni,nn);

end;
end;
% display -------------------------------------
figure (1)
for jj=1:nim ,

subplot(nim ,1,jj)
plot(Mimf(jj ,:),'k');

end
disp('please wait for second figure')
figure (2)
L=1400; %number of selected image lines
q=2*L/Ny; %corresponding max freq.
tiv=1/fs; fiv=fs/Ny;
t=0:tiv:(Ny -1)* tiv;
f=0:fiv:(q*fs/2)-fiv;
colormap('gray');
AA=Phht (1:L,:)>0.08; %visualization threshold
contourf(t,f,1-AA);
title('Hilbert Spectrum');

xlabel('Time'); ylabel('Hz');

soundsc(sy ,fs)

B.5.9 Fractional Fourier Transform of a Rectangular Signal
(7.11.1.)

Examples for several values of a (Figs.B.23 and B.24).

Appendix B: Long Programs 587

0 50 100 150 200 250 300 350 400
0

0.5

1

0 50 100 150 200 250 300 350 400

-2

0

2

0 50 100 150 200 250 300 350 400

-2

0

2

a=0.7

0 50 100 150 200 250 300 350 400

-2

0

2

a=0.8

0 50 100 150 200 250 300 350 400

-2

0

2

a=0.9

a=0.55

Fig. B.23 Fractional Fourier transforms of a rectangular signal, using different values of the expo-
nent (Fig. 7.74)

Fig. B.24 The fractional
Fourier transform of the
rectangle becomes close to
the sinc signal for a = 0.99
(Fig. 7.75)

180 190 200 210 220 230 240 250 260
-4

-2

0

2

4

6

8

http://dx.doi.org/10.1007/978-981-10-2534-1_7
http://dx.doi.org/10.1007/978-981-10-2534-1_7

588 Appendix B: Long Programs

Program B.17 Fractional Fourier transform of a rectangle signal

%Fractional Fourier transform using decomposition
%Study for a set of exponents
% the signal to be transformed -----------------------
%rectangular signal
y=[zeros (70 ,1); ones (301 ,1); zeros (70 ,1)];
Ny=length(y); %odd length
ry=zeros(5,Ny); %room for outputs
for nn=1:5,

%choose parameter a (fractional power) 0.5 <a<1.5
if nn==1, a=0.55; end;
if nn==2, a=0.7; end;
if nn==3, a=0.8; end;
if nn==4, a=0.9; end;
if nn==5, a=0.99; end;
alpha=a*pi/2;
%sinc interpolation for doubling signal data
zy=zeros (2*Ny -1 ,1);
zy (1:2:2*Ny -1)=y;
aux1=zy (1:2*Ny -1);
aux2=sinc ([-(2*Ny -3):(2*Ny -3)]'/2);
m=length ([aux1 (:); aux2 (:)]) -1;
P=2^ nextpow2(m);
%convolution using fft:
yitp=ifft(fft(aux1 ,P).*fft(aux2 ,P));
yitp=yitp (1:m);
yitp=yitp (2*Ny -2 :end -2*Ny+3); %interpolated signal
%sandwich
zz=zeros(Ny -1 ,1);
ys=[zz; yitp; zz];
% the fractional transform ----------------------
%chirp premultiplication
htan=tan(alpha /2);
aex=(pi/Ny)*(htan /4)*((-2*Ny +2:2*Ny -2)'.^2);
chr=exp(-j*aex);
yc=chr.*ys; %premultiplied signal
%chirp convolution
sa=sin(alpha);
cc=pi/Ny/sa/4;
aux1=exp(j*cc*(-(4*Ny -4):4*Ny -4)'.^2);
m=length ([aux1 (:);yc(:)]) -1;
P=2^ nextpow2(m);
%convolution using fft:
ym=ifft(fft(aux1 ,P).*fft(yc ,P));
ym=ym(1:m);
ym=ym(4*Ny -3:8*Ny -7)* sqrt(cc/pi); %convolved signal
%chirp post multiplication
yq=chr.*ym;
%normalization
yp=exp(-j*(1-a)*pi/4)*yq(Ny:2 :end-Ny+1);
%result recording
aux=real(yp);
ry(nn ,:)= aux(:)';

end;
% display -------------------------------------
figure (1)

Appendix B: Long Programs 589

subplot (5,1,1)
plot(y,'k');
axis ([0 Ny -0.1 1.1]);
title('a rectangular signal');
subplot (5,1,2)
plot(ry(1,:),'k'); axis ([0 Ny -3 3]);
title('Fractional Fourier transform (a=0.55)');
subplot (5,1,3)
plot(ry(2,:),'k'); axis ([0 Ny -3 3]);
title('a=0.7');
subplot (5,1,4)
plot(ry(3,:),'k');axis ([0 Ny -3 3]);
title('a=0.8');
subplot (5,1,5)
plot(ry(4,:),'k');axis ([0 Ny -3 3]);
title('a=0.9');
figure (2)
plot(ry(5,:),'k');
axis ([180 Ny -180 -4 9]);
title('Fractional Fourier transform (a=0.99)');

Wigner analysis of the fractional Fourier transform results (for the rectangular
signal) (Fig.B.25).

a=0.55

100 200 300 400

50

100

150

200

250

a=0.7

100 200 300 400

50

100

150

200

250

a=0.8

100 200 300 400

50

100

150

200

250

a=0.9

100 200 300 400

50

100

150

200

250

Fig. B.25 Wigner analysis (Fig. 7.6)

http://dx.doi.org/10.1007/978-981-10-2534-1_7

590 Appendix B: Long Programs

Program B.18 Wigner analysis of FFR of rectangle signal

%Fractional Fourier transform
%using decomposition
% the signal to be transformed -----------------------
%rectangular signal
y=[zeros (70 ,1); ones (301 ,1); zeros (70 ,1)];
Ny=length(y); %odd length
ry=zeros(4,Ny ,Ny); %room for outputs
for nn=1:4,

%choose parameter a (fractional power) 0.5 <a<1.5
if nn==1, a=0.55; end;
if nn==2, a=0.7; end;
if nn==3, a=0.8; end;
if nn==4, a=0.9; end;
alpha=a*pi/2;
%sinc interpolation for doubling signal data
zy=zeros (2*Ny -1 ,1);
zy (1:2:2*Ny -1)=y;
aux1=zy (1:2*Ny -1);
aux2=sinc ([-(2*Ny -3):(2*Ny -3)]'/2);
m=length ([aux1 (:); aux2 (:)]) -1;
P=2^ nextpow2(m);
%convolution using fft:
yitp=ifft(fft(aux1 ,P).*fft(aux2 ,P));
yitp=yitp (1:m);
yitp=yitp (2*Ny -2 :end -2*Ny+3); %interpolated signal
%sandwich
zz=zeros(Ny -1 ,1);
ys=[zz; yitp; zz];
% the fractional transform ------------------------
%chirp premultiplication
htan=tan(alpha /2);
aex=(pi/Ny)*(htan /4)*((-2*Ny +2:2*Ny -2)'.^2);
chr=exp(-j*aex);
yc=chr.*ys; %premultiplied signal
%chirp convolution
sa=sin(alpha);
cc=pi/Ny/sa/4;
aux1=exp(j*cc*(-(4*Ny -4):4*Ny -4)'.^2);
m=length ([aux1 (:);yc(:)]) -1;
P=2^ nextpow2(m);
%convolution using fft:
ym=ifft(fft(aux1 ,P).*fft(yc ,P));
ym=ym(1:m);
ym=ym(4*Ny -3:8*Ny -7)* sqrt(cc/pi); %convolved signal
%chirp post multiplication
yq=chr.*ym;
%normalization
yp=exp(-j*(1-a)*pi/4)*yq(Ny:2 :end-Ny+1);
%Wigner analysis
yh=hilbert(yp);
zerx=zeros(Ny ,1); aux=zerx;
lm=(Ny -1)/2;
zyz=[zerx; yh; zerx]; %sandwich zeros -signal -zeros
%space for the Wigner distribution , a matrix:
WD=zeros(Ny ,Ny);

Appendix B: Long Programs 591

mtau =0:lm; %vector(used for indexes)
for nt=1:Ny ,

tpos=Ny+nt+mtau; %a vector
tneg=Ny+nt -mtau; %a vector
aux(1:lm+1)=(zyz(tpos).*conj(zyz(tneg)));
aux (1)=0.5*aux (1); %will be added 2 times
fo=fft(aux ,Ny)/Ny;
%a column (harmonics at time nt):
WD(:,nt)=2* real(fo);

end
% using a threshold for interference attenuation
msx=(abs(WD)>0.14); %matrix of 0 or 1 entries
fWD=WD.*msx; %select SAF entries over threshold
ry(nn ,:,:)=fWD; %for figure 1

end;
% display -------------------------------------
aux=zeros(Ny ,Ny); k=10; hh=1:Ny; vv=1:Ny -150;
figure (1)
subplot (2,2,1)
aux(:,:)=ry(1,:,:);
imagesc(log10(k+abs(aux(vv ,hh)))); axis xy;
title('a=0.55');
subplot (2,2,2)
aux(:,:)=ry(2,:,:);
imagesc(log10(k+abs(aux(vv ,hh)))); axis xy;
title('a=0.7');
subplot (2,2,3)
aux(:,:)=ry(3,:,:);
imagesc(log10(k+abs(aux(vv ,hh)))); axis xy;
title('a=0.8');
subplot (2,2,4)
aux(:,:)=ry(4,:,:);
imagesc(log10(k+abs(aux(vv ,hh)))); axis xy;
title('a=0.9');

B.5.10 Filtered Wigner Analysis of Nature Chirps (7.11.2.)

Bat chirps (biosonar) (Fig.B.26).

Program B.19 Filtered (mask) WD of Bat signal

% Filtered (mask) WD of Bat signal
% the signal
[yin ,fs]= wavread('bat1.wav'); %read wav file
yo=yin (3900:8500); %select the part with sound
tiv=1/fs;
fN=fs/2; %Nyquist freq.
% force odd length
aux=mod(length(yo),2);
if aux==0, yo=yo(1:(end -1)); end;
y=hilbert(yo);
Ny=length(y);
t=0:tiv:(Ny -1)* tiv;

592 Appendix B: Long Programs

Fig. B.26 Bat chirp
(Fig. 7.7)

seconds

H
z

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

1.5

2

x 104

%SAF ---
zerx=zeros(Ny ,1); %a vector
zyz=[zerx; y; zerx]; %sandwich zeros -signal -zeros
aux=zerx;
SAF=zeros(Ny , Ny); %space for the SAF , a matrix
nt=1:Ny; %vector (used for indexes)
md=(Ny -1)/2;
for mtau=-md:md ,

tpos=Ny+nt+mtau; %a vector
tneg=Ny+nt -mtau; %a vector
aux=zyz(tpos).*conj(zyz(tneg));
%a column (frequencies):
SAF(:,md+mtau +1)= fftshift(fft(aux ,Ny)/Ny);

end
%A simple box distribution kernel
FI=zeros(Ny ,Ny);
%window vertical and horizontal 1/2 width:
HV =100; HH =200;
FI(md -HH:md+HH ,md -HV:md+HV)=1; %box kernel
%Product of kernel and SAF
fsaf=FI.*SAF;
pks=ifftshift(fsaf); %intermediate variable
ax=((ifft(pks ,[] ,1)));
%Wigner from SAF distribution:
WD=real((fft(ax ,[],2))');
%display --
figure (1)
fiv=fN/Ny; %frequency interval
f=0:fiv:(fN -fiv); %frequency intervals set
colmap1; colormap(mapg1); %user colormap
imagesc(t,f,log10(abs(WD)),[-6 0]); axis xy;
xlabel('seconds'); ylabel('Hz');
title('Filtered Wigner distrib. of the Bat signal');

http://dx.doi.org/10.1007/978-981-10-2534-1_7

Appendix B: Long Programs 593

Fig. B.27 Bird tweet
(Fig. 7.78)

seconds

H
z

0 0.05 0.1 0.15
0

500

1000

1500

2000

2500

3000

3500

Bird tweet (Fig.B.27).

Program B.20 Filtered (mask) WD of Bird signal

% Filtered (mask) WD of Bird signal
% the signal
[yo ,fs]= wavread('bird.wav'); %read wav file
tiv=1/fs;
fN=fs/2; %Nyquist freq.
% force odd length
aux=mod(length(yo),2);
if aux==0, yo=yo(1:(end -1)); end;
y=hilbert(yo);
Ny=length(y);
t=0:tiv:(Ny -1)* tiv;
%SAF --
zerx=zeros(Ny ,1); %a vector
zyz=[zerx; y; zerx]; %sandwich zeros -signal -zeros
aux=zerx;
SAF=zeros(Ny , Ny); %space for the SAF , a matrix
nt=1:Ny; %vector (used for indexes)
md=(Ny -1)/2;
for mtau=-md:md ,

tpos=Ny+nt+mtau; %a vector
tneg=Ny+nt -mtau; %a vector
aux=zyz(tpos).*conj(zyz(tneg));
%a column (frequencies):
SAF(:,md+mtau +1)= fftshift(fft(aux ,Ny)/Ny);

end
%A simple box distribution kernel
FI=zeros(Ny ,Ny);
%window vertical and horizontal 1/2 width:
HV =100; HH =200;
FI(md -HH:md+HH ,md -HV:md+HV)=1; %box kernel
%Product of kernel and SAF
fsaf=FI.*SAF;
pks=ifftshift(fsaf); %intermediate variable

http://dx.doi.org/10.1007/978-981-10-2534-1_7

594 Appendix B: Long Programs

ax=((ifft(pks ,[] ,1)));
%Wigner from SAF distribution:
WD=real((fft(ax ,[],2))');
%display --
figure (1)
fiv=fN/Ny; %frequency interval
f=0:fiv:(fN -fiv); %frequency intervals set
colmap1; colormap(mapg1); %user colormap
imagesc(t,f,log10(abs(WD)),[-3 0]); axis xy;
xlabel('seconds'); ylabel('Hz');
title('Filtered Wigner distrib. of the Bird signal');

B.5.11 Wavelet Analysis of Lung and Heart Sounds (7.11.3.)

Normal respiration (Figs.B.28 and B.29).
Program B.21 Signal analysis by Morlet continuous wavelet transform

% Signal analysis by continuous wavelet transform
% Morlet Wavelet
% Lung study: normal
% the signal
[yin ,fin]= wavread('bronchial.wav'); %read wav file
yo=yin(:,1); %one of the 2 stereo channels
ndc=5; %decimation value
yo=yo(1:ndc :end); %signal decimation
fs=fin/ndc;
wy=2*pi*fs; %signal frequency in rad/s
Ts=1/fs; %time interval between samples;
% plot preparation
L=length(yo);

Fig. B.28 Sound of normal
respiration (10s) (Fig. 7.79)

0 1 2 3 4 5 6 7 8 9 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

time

http://dx.doi.org/10.1007/978-981-10-2534-1_7

Appendix B: Long Programs 595

Fig. B.29 Scalogram of a
signal segment (Fig. 7.80)

0 0.5 1 1.5 2

-0.5

0

0.5

sec

si
gn

al

samples

sc
al

es

500 1000 1500 2000 2500 3000 3500 4000 4500

5
10
15
20
25
30

to=0:Ts:((L-1)*Ts);
%extract signal segment -----------------------------
ti=0; %initial time of signal segment (sec)
duy=2.2; %signal segment duration (sec)
tsg=ti:Ts:(duy+ti); %time intervals set
Ni=1+(ti*fs); %number of the initial sample
ND=length(tsg); %how many samples in signal segment
y=yo(Ni:(Ni+ND -1)); %the signal segment
%CWT algorithm --------------------------------------
CC=zeros(30,ND);
% CWT
nn=1:ND;
for ee=1:30,

s=ee*0.004; %scales
for rr=1:ND , %delays

a=Ts*(rr -1);
val=0;
%vectorized part
t=Ts*(nn -1);
x=(t-a)/s; %plug coeffs.
%wavelet:
psi =(1/ sqrt(s))*(exp(-(x. ^2)/2).*cos(5*x));
for j=1:ND ,

val=val+(y(j).*psi(j));
end;
CC(ee ,rr)=val;

end;
end;
%display ---
figure (1)
plot(to,yo ,'k')
axis ([0 10 -1 1]);
title('Complete respiration signal')
xlabel('time');
figure (2)

http://dx.doi.org/10.1007/978-981-10-2534-1_7

596 Appendix B: Long Programs

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

1

time

Fig. B.30 Sound of respiration with crackles (10 s) (Fig. 7.81)

subplot (2,1,1)
plot(tsg ,y,'k');
axis([ti ti+duy min(y)-0.1 max(y)+0.1]);
xlabel('sec'); ylabel('signal');
title('Respiration signal , a segment');
subplot (2,1,2)
imagesc(CC);
colormap('jet');
title('wavelet analysis')
xlabel('samples'); ylabel('scales');
%sound
soundsc(y,fs);

Respiration with crackles (Figs.B.30 and B.31).

Program B.22 Signal analysis by Morlet continuous wavelet transform

% Signal analysis by continuous wavelet transform
% Morlet Wavelet
% Lung study: crackles
% the signal
[yin ,fin]= wavread('crackles.wav'); %read wav file
yo=yin(:,1); %one of the 2 stereo channels
ndc=5; %decimation value
yo=yo(1:ndc :end); %signal decimation
fs=fin/ndc;
wy=2*pi*fs; %signal frequency in rad/s
Ts=1/fs; %time interval between samples;
% plot preparation
L=length(yo);
to=0:Ts:((L-1)*Ts);
%extract signal segment -----------------------------
ti=7.8; %initial time of signal segment (sec)

http://dx.doi.org/10.1007/978-981-10-2534-1_7

Appendix B: Long Programs 597

7.8 8 8.2 8.4 8.6 8.8 9 9.2 9.4
-0.5

0

0.5

1

sec

si
gn

al

samples

sc
al

es

500 1000 1500 2000 2500 3000 3500

10

20

30

Fig. B.31 Scalogram of a signal segment (Fig. 7.82)

duy=1.6; %signal segment duration (sec)
tsg=ti:Ts:(duy+ti); %time intervals set
Ni=1+(ti*fs); %number of the initial sample
ND=length(tsg); %how many samples in signal segment
y=yo(Ni:(Ni+ND -1)); %the signal segment
%CWT algorithm --------------------------------------
CC=zeros(30,ND);
% CWT
nn=1:ND;
for ee=1:30,

s=ee*0.004; %scales
for rr=1:ND , %delays

a=Ts*(rr -1);
val=0;
%vectorized part
t=Ts*(nn -1);
x=(t-a)/s; %plug coeffs.
%wavelet:
psi =(1/ sqrt(s))*(exp(-(x. ^2)/2).*cos(5*x));
for j=1:ND ,
val=val+(y(j).*psi(j));

end;
CC(ee ,rr)=val;

end;
end;
%display ---
figure (1)
m=L/2; %only the first half of the signal (10 sec.)
plot(to(1:m),yo(1:m),'k')
title('Complete respiration signal')
xlabel('time');

http://dx.doi.org/10.1007/978-981-10-2534-1_7

598 Appendix B: Long Programs

0 0.5 1 1.5
-1

-0.5

0

0.5

1

sec

si
gn

al

samples

sc
al

es

1000 2000 3000 4000 5000 6000

5

10

15

20

25

Fig. B.32 Scalogram of heart sound (2 beats) (Fig. 7.83)

figure (2)
subplot (2,1,1)
plot(tsg ,y,'k');
axis([ti ti+duy min(y)-0.1 max(y)+0.1]);
xlabel('sec'); ylabel('signal');
title('Respiration signal , a segment');
subplot (2,1,2)
imagesc(CC);
colormap('jet');
title('wavelet analysis')
xlabel('samples'); ylabel('scales');
%sound
soundsc(y,fs);

Heart sound (Fig.B.32).

Program B.23 Signal analysis by Morlet continuous wavelet transform

% Signal analysis by continuous wavelet transform
% Morlet Wavelet
% Heart sound: normal
% the signal
[yin ,fin]= wavread('heart1.wav'); %read wav file
ndc=5; %decimation value
yo=yin(1:ndc :end); %signal decimation
fs=fin/ndc;
wy=2*pi*fs; %signal frequency in rad/s
Ts=1/fs; %time interval between samples;
% plot preparation
L=length(yo);
to=0:Ts:((L-1)*Ts);

http://dx.doi.org/10.1007/978-981-10-2534-1_7

Appendix B: Long Programs 599

%extract signal segment -----------------------------
ti=0; %initial time of signal segment (sec)
duy=1.5; %signal segment duration (sec)
tsg=ti:Ts:(duy+ti); %time intervals set
Ni=1+(ti*fs); %number of the initial sample
ND=length(tsg); %how many samples in signal segment
y=yo(Ni:(Ni+ND -1)); %the signal segment
%CWT algorithm --------------------------------------
CC=zeros(25,ND);
% CWT
nn=1:ND;
for ee=1:25,

s=ee*0 .0005; %scales
for rr=1:ND , %delays

a=Ts*(rr -1);
val=0;
%vectorized part
t=Ts*(nn -1);
x=(t-a)/s; %plug coeffs.
%wavelet:
psi =(1/ sqrt(s))*(exp(-(x. ^2)/2).*cos(5*x));
for j=1:ND ,

val=val+(y(j).*psi(j));
end;
CC(ee ,rr)=val;

end;
end;
%display ---
figure (1)
subplot (2,1,1)
plot(tsg ,y,'k');
axis([ti ti+duy min(y)-0.1 max(y)+0.1]);
xlabel('sec'); ylabel('signal');
title('Respiration signal , a segment');
subplot (2,1,2)
imagesc(CC);
colormap('jet');
title('wavelet analysis')
xlabel('samples'); ylabel('scales');
%sound
soundsc(y,fs);

B.5.12 Fan-Chirp Transform of Animal Songs (7.11.4.)

Duck quack (Figs.B.33 and B.34).

600 Appendix B: Long Programs

Fig. B.33 Spectrogram of
the quack (Fig. 7.84)

Time

Fr
eq

ue
nc

y

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

1000

2000

3000

4000

5000

Fig. B.34 Fan-Chirp
transform of the quack
(Fig. 7.85)

Time

Fr
eq

ue
nc

y

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

1000

2000

3000

4000

5000

Program B.24 Short Time Fan-Chirp transform

% Short Time Fan -Chirp transform (as a spectrogram)
%example with quack
% the signal
[y,fs]= wavread('duck_quack.wav'); %read wav file
% transform parameters
nft =256; %FFT length
Ny=length(y); %signal length , even
nw=97; %window size , odd
nov =90; %overlapping
mo=nw -nov; %must be positive
win=hamming(nw); %window
win=win./sum(win);
% reference estimated frequencies
tr=0:0 .0002:0.2;
fr=40*tr;

http://dx.doi.org/10.1007/978-981-10-2534-1_7
http://dx.doi.org/10.1007/978-981-10-2534-1_7

Appendix B: Long Programs 601

Fc=fs*(0: nft /2)/ nft; %frequency centers
% time centers:
Tc=[]; idx=1; kk=1;
while idx (end) <=Ny ,
idx=((kk -1)*mo)+(1:nw);
if idx (end) <=Ny ,
Tc=[Tc (idx((nw -1)/2+1) -1)/ fs];
end
kk=kk+1;
end
% interpolated estimated frequencies
fe=interp1(tr ,fr ,Tc ,'linear','extrap');
nTc=length(Tc);
aux=ones(nTc ,1);
FT=zeros(nft/2+1,nTc);
for kk=1:nTc ,

idx=((kk -1)*(mo))+(1: nw);
% derivative approximation:
if kk==1 || kk==nTc ,

A=0;
else

A=(1/fe(kk))+(fe(kk+1)-fe(kk -1))/ ...
(Tc(kk+1)-Tc(kk -1));

end
A=A/fs;
aslp(kk)=A;
% the FCh transform for the signal frame:
z=y(idx).*win; %signal windowed segment
M=length(z); N=nft;
ks=(-N/2+1:N/2)';
ks=[ks(N/2 :end); ks(1:N/2 -1)];
nn=-(M -1)/2:(M -1)/2;
aux=(-2*pi/N).*ks *((1+0 .5*A*nn).*nn);
E=exp(j*aux);
q=ones(N,1);
FTx=sum(q*(z'.*sqrt(abs ((1+A*nn)))).*E,2);
FT(:,kk)=FTx(1 :end /2+1);

end
% display --
figure (1)
specgram(y,nft ,fs);
title('spectrogram of duck quack')
figure (2)
imagesc(Tc ,Fc ,20* log10(abs(FT)),[-40 -1]); axis xy;
title('Fan -Chirp transform of duck quack')
xlabel('Time'); ylabel('Frequency');

Dog bark (Figs.B.35 and B.36).

602 Appendix B: Long Programs

Fig. B.35 Spectrogram of
the dog bark (Fig. 7.86)

Time

Fr
eq

ue
nc

y

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

2000

4000

6000

8000

10000

Fig. B.36 Fan-Chirp
transform of the dog bark
(Fig. 7.87)

Time

Fr
eq

ue
nc

y

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

2000

4000

6000

8000

10000

Program B.25 Short Time Fan-Chirp transform

% Short Time Fan -Chirp transform (as a spectrogram)
%example with dog bark
% the signal
[y,fs]= wavread('dog1.wav'); %read wav file
% transform parameters
nft =256; %FFT length
Ny=length(y); %signal length , even
nw =137; %window size , odd
nov =110; %overlapping
mo=nw -nov; %must be positive
win=hamming(nw); %window
win=win./sum(win);
% reference estimated frequencies
tr=0:0 .0004:0.44;
fr=20*tr;

http://dx.doi.org/10.1007/978-981-10-2534-1_7
http://dx.doi.org/10.1007/978-981-10-2534-1_7

Appendix B: Long Programs 603

Fc=fs*(0: nft /2)/ nft; %frequency centers
% time centers:
Tc=[]; idx=1; kk=1;
while idx (end) <=Ny ,
idx=((kk -1)*mo)+(1:nw);
if idx (end) <=Ny ,
Tc=[Tc (idx((nw -1)/2+1) -1)/ fs];
end
kk=kk+1;
end
% interpolated estimated frequencies
fe=interp1(tr ,fr ,Tc ,'linear','extrap');
nTc=length(Tc);
aux=ones(nTc ,1);
FT=zeros(nft/2+1,nTc);
for kk=1:nTc ,

idx=((kk -1)*(mo))+(1: nw);
% derivative approximation:
if kk==1 || kk==nTc ,

A=0;
else

A=(1/fe(kk))+(fe(kk+1)-fe(kk -1))/ ...
(Tc(kk+1)-Tc(kk -1));

end
A=A/fs;
aslp(kk)=A;
% the FCh transform for the signal frame:
z=y(idx).*win; %signal windowed segment
M=length(z); N=nft;
ks=(-N/2+1:N/2)';
ks=[ks(N/2 :end); ks(1:N/2 -1)];
nn=-(M -1)/2:(M -1)/2;
aux=(-2*pi/N).*ks *((1+0 .5*A*nn).*nn);
E=exp(j*aux);
q=ones(N,1);
FTx=sum(q*(z'.*sqrt(abs ((1+A*nn)))).*E,2);
FT(:,kk)=FTx(1 :end /2+1);

end
% display --
figure (1)
specgram(y,nft ,fs);
title('spectrogram of dog bark')
figure (2)
imagesc(Tc ,Fc ,20* log10(abs(FT)),[-50 0]); axis xy;
title('Fan -Chirp transform of dog bark')
xlabel('Time'); ylabel('Frequency');
soundsc(y,fs);

B.5.13 Modified S-Transform Analysis of Some Cases
(7.11.5.)

Respiration with wheezing (Figs.B.37, B.38 and B.39).

604 Appendix B: Long Programs

0 1 2 3 4 5 6 7 8 9 10
-1

0

1

Respiration signal, complete

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
-0.5

0

0.5

selected signal segment

1.56 1.58 1.6 1.62 1.64 1.66 1.68 1.7 1.72 1.74 1.76
-0.1

0

0.1

zoom on wheezing part

Fig. B.37 Respiration with wheezing, 3 levels of detail (Fig. 7.88)

Fig. B.38 Spectrogram of
the signal segment with
wheezing (Fig. 7.89)

Time

Fr
eq

ue
nc

y

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

200

400

600

800

1000

1200

Program B.26 Modified S-transform

% Modified S-transform. Lung sound: wheezing
% the signal
[yin ,fin]= wavread('wheezing.wav'); %read wav file
ndc=4; %decimation value
yo=yin(1:ndc :end); %signal decimation
No=length(yo);
fs=fin/ndc;
wy=2*pi*fs; %signal frequency in rad/s
Ts=1/fs; %time interval between samples;

http://dx.doi.org/10.1007/978-981-10-2534-1_7
http://dx.doi.org/10.1007/978-981-10-2534-1_7

Appendix B: Long Programs 605

Fig. B.39 Modified
S-transform of the signal
segment with wheezing
(Fig. 7.90)

Time

Fr
eq

ue
nc

y

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0

200

400

600

800

1000

1200

to=0:Ts:(No -1)*Ts;
%extract signal segment -----------------------------
ti=1.1; %initial time of signal segment (sec)
duy=0.8; %signal segment duration (sec)
tsg=ti:Ts:(duy+ti); %time intervals set
Ni=1+(ti*fs); %number of the initial sample
aux=length(tsg); %how many samples in signal segment
y=yo(Ni:(Ni+aux -1))'; %the signal segment (transpose)
%force even length
if mod(aux ,2)>0,
y=y(1 :end -1);
tsg=tsg(1 :end -1);
end;
Ny=length(y); %length of signal segment
m=Ny/2;
% The transform -------------------------------------
% preparation:
f=[0:m -m+1: -1]/Ny; %frequencies vector
S=fft(y); %signal spectrum
% Form a matrix of Gaussians (freq. domain)
q=[1./f(2:m+1)]';
k=1+(5* abs(f));
W=2*pi*repmat(f,m,1).*repmat(q,1,Ny);
for nn=1:m,

W(nn ,:)=k(nn)*W(nn ,:); %modified S-transform
end
MG=exp((-W. ^2)/2); % the matrix of Gaussians
% Form a matrix with shifted FFTs
Ss=toeplitz(S(1:m+1)',S);
Ss=[Ss(2:m+1 ,:)]; %remove first row (freq. zero)
% S-transform
ST=ifft(Ss.*MG ,[] ,2);
st0=mean(y)*ones(1,Ny); %zero freq. row
ST=[st0;ST]; %add zero freq. row
% display ---
figure (1)
subplot (3,1,1)

http://dx.doi.org/10.1007/978-981-10-2534-1_7

606 Appendix B: Long Programs

plot(to,yo ,'k')
axis ([0 10 -1.1 1.1]);
title('Respiration signal , complete')
subplot (3,1,2)
plot(tsg ,y,'k');
title('selected signal segment')
subplot (3,1,3)
%signal specific (edit):
plot(tsg (1300:1800) ,y(1300:1800) ,'k');
axis ([1.56 1.76 -0.12 0.12]);
title('zoom on wheezing part')
figure (2)
specgram(y,256,fs);
title('Respiration signal ,a segment');
figure (3)
Sf =0:(2* fs/Ny):(fs/2);
imagesc(tsg ,Sf ,20* log10(abs(ST)),[-70 0]); axis xy;
title('S-transform of the signal segment');
xlabel('Time'); ylabel('Frequency');

Whale song (Figs.B.40 and B.41).

Time

Fr
eq

ue
nc

y

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

200
400
600
800

1000
1200
1400
1600
1800

Time

Fr
eq

ue
nc

y

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

200
400
600
800

1000
1200
1400
1600
1800

Fig. B.40 Spectrogram of whale song (divided into 2 parts) (Fig. 7.91)

Time

Fr
eq

ue
nc

y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

200
400
600
800

1000
1200
1400
1600

1800

Time

Fr
eq

ue
nc

y

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
0

200
400
600
800

1000
1200
1400
1600

1800

Fig. B.41 Modified S-transform of whale song (divided into 2 parts) (Fig. 7.92)

http://dx.doi.org/10.1007/978-981-10-2534-1_7
http://dx.doi.org/10.1007/978-981-10-2534-1_7

Appendix B: Long Programs 607

Program B.27 Modified S-transform of Whale signal

% Modified S-transform of Whale signal
% the signal
[yin ,fin]= wavread('whale1.wav'); %read wav file
ndc=6; %decimation value
yo=yin(1:ndc :end); %signal decimation
fs=fin/ndc;
Ts=1/fs; %time interval between samples;
%extract signal segment -----------------------------
ti=2.1; %initial time of signal segment (sec)
duy=2; %signal segment duration (sec)
tsg=ti:Ts:(duy+ti); %time intervals set
Ni=1+(ti*fs); %number of the initial sample
aux=length(tsg); %how many samples in signal segment
y=yo(Ni:(Ni+aux -1))'; %the signal segment (transpose)
%force even length
if mod(aux ,2)>0,
y=y(1 :end -1);
tsg=tsg(1 :end -1);
end;
Ny=length(y); %length of signal segment
m=Ny/2;
% The transform -------------------------------------
% preparation:
f=[0:m -m+1: -1]/Ny; %frequencies vector
S=fft(y); %signal spectrum
% Form a matrix of Gaussians (freq. domain)
q=[1./f(2:m+1)]';
k=1+(20* abs(f));
W=2*pi*repmat(f,m,1).*repmat(q,1,Ny);
for nn=1:m,

W(nn ,:)=k(nn)*W(nn ,:); %modified S-transform
end
MG=exp((-W. ^2)/2); % the matrix of Gaussians
% Form a matrix with shifted FFTs
Ss=toeplitz(S(1:m+1)',S);
Ss=[Ss(2:m+1 ,:)]; %remove first row (freq. zero)
% S-transform
ST=ifft(Ss.*MG ,[] ,2);
st0=mean(y)*ones(1,Ny); %zero freq. row
ST=[st0;ST]; %add zero freq. row
% display ---
figure (1)
specgram(y,256,fs);
title('Whale signal ,a segment');
figure (2)
Sf =0:(2* fs/Ny):(fs/2);
imagesc(tsg ,Sf ,20* log10(abs(ST)),[-60 0]); axis xy;
%set(gca,'Ydir','Normal ');
title('S-transform of the signal segment');
xlabel('Time'); ylabel('Frequency');
soundsc(yo ,fs);

El Centro earthquake (Figs.B.42, B.43 and B.44).

608 Appendix B: Long Programs

0 2 4 6 8 10 12 14 16 18
-4

-2

0

2

4

sec

0 2 4 6 8 10 12
-5

0

5

sec

Fig. B.42 The Earthquake signal at two detail levels (Fig. 7.93)

Fig. B.43 Spectrogram of
the signal segment
(Fig. 7.94)

Time

Fr
eq

ue
nc

y

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90

100

Program B.28 Modified S-transform (Earthquake)

% Modified S-transform
% taking an Earthquake SAC file
%read SAC file -----------------------------------
F=fopen('1010211753 osor.sac', 'r','ieee -be');
if (F==-1)
disp('file access error');
pause

http://dx.doi.org/10.1007/978-981-10-2534-1_7
http://dx.doi.org/10.1007/978-981-10-2534-1_7

Appendix B: Long Programs 609

Fig. B.44 Modified
S-transform of the signal
segment (Fig. 7.95)

Time

Fr
eq

ue
nc

y

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

100

end
% read header:
head1=fread(F, [5, 14], 'float32');
head2=fread(F, [5, 8], 'int32');
head3=fread(F, [24, 8], 'char');
% read data:
yin=fread(F,'single'); %read signal data
fclose(F);
Tin=0.01*head1 (1); %sampling period (sec)
fin=1/Tin;
%preparation for analysis -------------------------
ndc=3;
yd=yin(1:ndc :end); % decimate by ndc
fs=fin/ndc; Ts=Tin*ndc;
yo=(yd/100)'; %the signal
No=length(yo);
wy=2*pi*fs; %signal frequency in rad/s
to=0:Ts:(No -1)*Ts;
%extract signal segment -----------------------------
ti=0; %initial time of signal segment (sec)
duy =12; %signal segment duration (sec)
tsg=ti:Ts:(duy+ti); %time intervals set
Ni=1+(ti*fs); %number of the initial sample
aux=length(tsg); %how many samples in signal segment
y=yo(Ni:(Ni+aux -1))'; %the signal segment (transpose)
%force even length
if mod(aux ,2)>0,
y=y(1 :end -1);
tsg=tsg(1 :end -1);
end;
Ny=length(y); %length of signal segment
m=Ny/2;
% The transform -------------------------------------
% preparation:
f=[0:m -m+1: -1]/Ny; %frequencies vector
S=fft(y); %signal spectrum

http://dx.doi.org/10.1007/978-981-10-2534-1_7

610 Appendix B: Long Programs

% Form a matrix of Gaussians (freq. domain)
q=[1./f(2:m+1)]';
k=1+(5* abs(f));
W=2*pi*repmat(f,m,1).*repmat(q,1,Ny);
for nn=1:m,

W(nn ,:)=k(nn)*W(nn ,:); %modified S-transform
end
MG=exp((-W. ^2)/2); % the matrix of Gaussians
% Form a matrix with shifted FFTs
Ss=toeplitz(S(1:m+1)',S);
Ss=[Ss(2:m+1 ,:)]; %remove first row (freq. zero)
% S-transform
ST=ifft(Ss.*MG ,[] ,2);
st0=mean(y)*ones(1,Ny); %zero freq. row
ST=[st0;ST]; %add zero freq. row
% display ---
figure (1)
subplot (2,1,1)
plot(to,yo ,'k')
axis ([0 to (end) -4 4]);
title('Earthquake signal , complete')
xlabel('sec')
subplot (2,1,2)
plot(tsg ,y,'k');
xlabel('sec')
title('selected signal segment')
figure (2)
specgram(y,64,fs);
title('Earthquake signal ,a segment');
figure (3)
Sf =0:(2* fs/Ny):(fs/2);
imagesc(tsg ,Sf ,20* log10(abs(ST)),[-40 -10]); axis xy;
%set(gca,'Ydir','Normal ');
title('S-transform of the signal segment');
xlabel('Time'); ylabel('Frequency');

Extraction of a zone of interest (Figs.B.45 and B.46).

Program B.29 Inversion of Modified S-transform (Earthquake)

% Inversion of Modified S-transform
% taking an Earthquake SAC file
% and using a mask to extract a seismic wave
%read SAC file -----------------------------------
F=fopen('1010211753 osor.sac', 'r','ieee -be');
if (F==-1)
disp('file access error');
pause
end
% read header:
head1=fread(F, [5, 14], 'float32');
head2=fread(F, [5, 8], 'int32');
head3=fread(F, [24, 8], 'char');
% read data:
yin=fread(F,'single'); %read signal data
fclose(F);
Tin=0.01*head1 (1); %sampling period (sec)

Appendix B: Long Programs 611

500 1000 1500 2000

200

400

600

800

1000

1200

Fig. B.45 Extraction of a TF region of interest (Fig. 7.96)

0 500 1000 1500 2000 2500
-1

-0.5

0

0.5

1

800 900 1000 1100 1200 1300 1400
-1

-0.5

0

0.5

1

Fig. B.46 The extracted signal segment at two levels of detail (Fig. 7.97)

fin=1/Tin;
%preparation for analysis -------------------------
ndc=3;
yd=yin(1:ndc :end); % decimate by ndc
fs=fin/ndc; Ts=Tin*ndc;
yo=(yd/100)'; %the signal
No=length(yo);
wy=2*pi*fs; %signal frequency in rad/s
to=0:Ts:(No -1)*Ts;
%extract signal segment -----------------------------
ti=0; %initial time of signal segment (sec)

http://dx.doi.org/10.1007/978-981-10-2534-1_7
http://dx.doi.org/10.1007/978-981-10-2534-1_7

612 Appendix B: Long Programs

duy =12; %signal segment duration (sec)
tsg=ti:Ts:(duy+ti); %time intervals set
Ni=1+(ti*fs); %number of the initial sample
aux=length(tsg); %how many samples in signal segment
y=yo(Ni:(Ni+aux -1))'; %the signal segment (transpose)
%force even length
if mod(aux ,2)>0,
y=y(1 :end -1);
tsg=tsg(1 :end -1);
end;
Ny=length(y); %length of signal segment
m=Ny/2;
% The transform -------------------------------------
% preparation:
f=[0:m -m+1: -1]/Ny; %frequencies vector
S=fft(y); %signal spectrum
% Form a matrix of Gaussians (freq. domain)
q=[1./f(2:m+1)]';
k=1+(5* abs(f));
W=2*pi*repmat(f,m,1).*repmat(q,1,Ny);
for nn=1:m,

W(nn ,:)=k(nn)*W(nn ,:); %modified S-transform
end
MG=exp((-W. ^2)/2); % the matrix of Gaussians
% Form a matrix with shifted FFTs
Ss=toeplitz(S(1:m+1)',S);
Ss=[Ss(2:m+1 ,:)]; %remove first row (freq. zero)
% S-transform
ST=ifft(Ss.*MG ,[] ,2);
st0=mean(y)*ones(1,Ny); %zero freq. row
ST=[st0;ST]; %add zero freq. row
% creating a mask
MK=zeros (1+m,Ny);
MK (40:260 ,900:1300)=1;
% extract TF region with the mask
XR=ST.*MK;
% inverse S-transform
IS=zeros(1,m);
% averaging along time for each freq
for nn=1:m,

IS(nn)=sum(XR(nn ,:));
end;
% change the sign of imaginary part
ISr=real(IS); ISi=imag(IS);
ISi=-1*ISi;
IS=ISr+(i*ISi);
% obtain selected signal
sy=real(ifft(IS));
% resample for original length
ry=resample(sy ,2,1);
% display ---
figure (1)
imagesc (20* log10(abs(XR)),[-40 -10]); axis xy;
title('extracted TF region')
figure (2)
subplot (2,1,1)
plot(ry,'k');

Appendix B: Long Programs 613

title('the selected signal segment')
subplot (2,1,2)
plot(ry,'k');
axis ([800 1400 -1 1]);
title('zoom on signal segment');

B.6 Chapter 8: Modulation

B.6.1 Digital Modulation of Sine Signals (8.2.3.)

Example of digital modulation methods applied to a sine signal (Fig.B.47).

Program B.30 Pulse modulations of sine signal

% Pulse modulations of sine signal
% the pulses (bits):
%the modulating signal (bits):
a=[0 1 0 1 1 0 1 0 0 1];
fa=40; %signal frequency in Hz

0 0.05 0.1 0.15 0.2 0.25

0

0.5

1

bi
ts

 m
es

sa
ge

0 0.05 0.1 0.15 0.2 0.25
-1

0

1

A
S

K

0 0.05 0.1 0.15 0.2 0.25
-1

0

1

FS
K

0 0.05 0.1 0.15 0.2 0.25
-1

0

1

P
S

K

seconds

Fig. B.47 ASK, FSK and PSK modulation of sine signal (Fig. 8.15)

http://dx.doi.org/10.1007/978-981-10-2534-1_8
http://dx.doi.org/10.1007/978-981-10-2534-1_8

614 Appendix B: Long Programs

wa=2*pi*fa; %signal frequency in rad/s
fc=6*fa; %carrier frequency in Hz
wc=2*pi*fc; %carrier frequency in rad/s
fs=10*fc; %sampling frequency in Hz
tiv=1/fs; %time interval between samples;
%sampling the modulating signal
nsa=fs/fa; %number of samples per bit
Nb=length(a); %number of bits in a
%number of samples in the complete message:
nsmsg=Nb*nsa;
tmsg=nsmsg*tiv; %time for the message
t=0:tiv:(tmsg -tiv); %time intervals set
%time for a bit
tb=1/fa;
t1=0:tiv:(tb -tiv);
%carrier signal for 1 bit time
c1=sin(2*pi*fc*t1);
%modulating signal samples
us1=ones(1,nsa); %a vector of nsa ones
as=a(1)* us1;
for nn=2:Nb ,

as=cat(2,as ,a(nn)*us1);
end
subplot (4,1,1)
plot(t,as ,'k'); %plots the modulating signal
ylabel('bits message');
title('digital modulation of sine signal');
axis ([0 0.25 -0.2 1.2]);
%ASK modulation
%modulated signal samples
ASKy=a(1)*c1; %carrier signal for first bit
for nn=2:Nb ,

ASKy=cat(2,ASKy ,a(nn)*c1);
end
subplot (4,1,2)
plot(t,ASKy ,'k');
axis ([0 0.25 -1.2 1.2]);
ylabel('ASK');
%FSK modulation
fc1=4*fa; fc2=8*fa; %two fcarrier frequencies
c1=sin(2*pi*fc1*t1); %carrier for bit=0
c2=sin(2*pi*fc2*t1); %carrier for bit=1
%modulated signal samples
%carrier signal for the first bit:
if a(1)==0 , FSKy=c1; else FSKy=c2; end;
for nn=2:Nb ,

if a(nn)==0,
FSKy=cat(2,FSKy ,c1);

else
FSKy=cat(2,FSKy ,c2);

end;
end
subplot (4,1,3)
plot(t,FSKy ,'k');
axis ([0 0.25 -1.2 1.2]);
ylabel('FSK');
%PSK modulation

Appendix B: Long Programs 615

pc1=0; pc2=pi; %two fcarrier phases
c1=sin ((2*pi*fc*t1)+pc1); %carrier for bit=0
c2=sin ((2*pi*fc*t1)+pc2); %carrier for bit=1
%modulated signal samples
%carrier signal for the first bit:
if a(1)==0 , PSKy=c1; else PSKy=c2; end;
for nn=2:Nb ,

if a(nn)==0,
PSKy=cat(2,PSKy ,c1);

else
PSKy=cat(2,PSKy ,c2);

end;
end
subplot (4,1,4)
plot(t,PSKy ,'k');
axis ([0 0.25 -1.2 1.2]);
ylabel('PSK'); xlabel('seconds');

Index

A
ADSR envelope, 342
Affine transformations, 405
Affine-smoothed pseudo Wigner distribu-

tion (ASPWD), 416
Alias, 23, 25
AM modulation, 497
Ambiguity, 362
Angle modulation, 507
arburg(), 291, 292
arcov(), 291
ARIMA model, 172
ARMA model, 155, 158
ARMAX model, 158
armax(), 175
armcov(), 291
aryule(), 174
aryule(), 291
Autocorrelation, 40, 541
Autocovariance, 41, 345
Auto-regressive, AR, 155
Average power, 41

B
Backshift operator, 155
Balian-Low theorem, 370
Band-limited signal, 197
Band-pass filter, 191
Band-stop filter, 192
Bartlett window, 254
Basic time-frquency operators, 402
Bat chirps (biosonar, 470
Bayes’rule, 89
Bayesian networks, 94
Belief networks, 96
Bell 202 standard, 514

Bertrand distribution, 417
Bessel analog filter, 221
bessel(), 510
besself(), 222
Beta PDF, 50
betapdf(), 51
Bilinear form (operators), 407
Bilinear transformation, 241
bilinear(), 241
Binomial PDF, 57
binomial(), 57
Bi-orthonormal system, 364
Bird tweet, 471
Bit reversal, 543
Bivariate Gaussian PDF, 55
Biweight kernel, 70
Blackman window, 256
Bluetooth, 523
Bode plot, 122
Born-Jordan distribution, 414
Box and Müller method, 87
Boxcar windowed FIR filter, 267
boxcar(), 267
boxplot(), 106
buttap(n), 220
butter(), 200, 282
Butterfly diagrams, 543
Butterworth analog filter, 199
buttord(), 220

C
Cauer forms, 195
Central limit theorem, 34, 87
Central moments, 39
Cepstral analysis, 321
Cepstrum of an AM modulated signal, 529

© Springer Science+Business Media Singapore 2017
J.M. Giron-Sierra, Digital Signal Processing with Matlab Examples, Volume 1,
Signals and Communication Technology, DOI 10.1007/978-981-10-2534-1

617

618 Index

Chabyshev analog filters, 204
Chapman-Kolmogorov equation, 92
Characteristic function, 42
cheb1ap(), 220
cheb1ord(), 220
cheb2ap(), 220
cheb2ord(), 220
chebwin(), 269
cheby1(), 207, 282
cheby2(), 208, 282
Chebyshev alternation theorem, 270
Chebyshev windowed FIR filter, 268
Chi-square PDF, 50
chi2pdf(), 50
Chirp convolution, 421
Chirp multiplication, 421
chirp(), 328
Chirp-z transform, 329
Choi-Williams distribution, 414
Classical decomposition, 178
Communication system simulation, 525
Conditional probability, 30, 90
Conjugate variables, 359
Constant-Q band-pass filters, 372
Continuous Wavelet transform, 372
Convolution, 126, 359
Cooley and Tukey, 544
Corner frequency, 186
Covariance-stationary, 158
Covariant transform, 410
cremez(), 281
Cross-correlation, 135
Cross power spectrum, 136
cwt(), 374
czt(), 330

D
2D DFT, 545
D-Flandrin distribution, 417
Danielson and Lanczos, 541
DARMA model, 156
Decomposition of the chirplet transform,

431
Delta modulation (DM), 522
demod(), 517
Demodulation of DSB modulated signals,

502
Demodulation of frequency modulated sig-

nal, 512
Density histogram, 62
Dictionary of atoms, 436
Differential pulse-code modulation

(DPCM), 522

Differentiator filter, 301
Digital amplitude modulation ASK, 513
Digital frequency modulation FSK, 513
Digital phase modulation PSK, 513
Dilation covariance, 377
Dilation operator, 409
Discrete convolution, 134, 240
Discrete Fourier transform (DFT), 329, 536
Discrete transfer function, 133, 239
Dissipative circuits, 196
disttool, 106
Dog bark, 477
Doppler effect, 332
Dopplerlets, 434
dpss(), 429
Drift, 167
Dual basis, 364
Duck quack, 475

E
Earthquake, 343, 480
eig(), 140
Electrocardiogram (ECG), 346
ellip(), 214, 282
ellipap(), 220
ellipord(), 220
Empirical mode decomposition, 455
Epanechnikov kernel, 70
Even signal, 16, 534
Expected value, 39
Exponential PDF, 49
exppdf(), 75

F
Fan-Chirp transform of some animal songs,

474
Fast Fourier transform, 15
FDATool, 305
fft(), 15, 329
fftfilt(), 282
Filter optimization criteria, 266
filter(), 157, 239, 282
filtfilt(), 299
Final value theorem (Laplace trf.), 550
Final value theorem (z-transf), 551
FIR filter, 240, 246
fir1(), 255
fir2(), 281
fircls(), 281
fircls1(), 281
firls(), 272
firrcos(), 273, 522

Index 619

First order filter, 185
fminbnd(), 178
Foster forms, 195
Fourier series, 13
Fourier transform, 41, 247, 314, 419
Fourier transform pair, 357
Fractional Fourier transform, 419
Frame, 364
Frequency division multiplexing (FDM),

523
Frequency domain multiplexing, 523
Frequency modulation, 507
Frequency response, 121
Frequency response of a digital filter, 239
Frequency warping, 444
freqz(), 242
Fresnel transform, 420

G
Gabor expansion, 368
Gabor transform, 370
Gabor uncertainty principle, 369
Gamma function, 47
Gamma PDF, 48
gampdf(), 48
gauspuls(), 361
Gaussian chirplets, 432
Gaussian pulse, 360
Generalized Butterworth digital filter, 297
Generating function, 41
Geometric PDF, 59
geopdf(), 59
Global System for Mobile Communications

protocol (GSM), 523
Group delay, 221

H
Half-wave symmetry, 18
Hamming window, 256
Hanning window, 256
Heart sound, 474
Hermitian matrix, 406
Hermitian operator, 407
Hidden markov chain (HMM), 103
High-pass filter, 187
Hilbert-Huang transform, 459
Hilbert space, 407
Hilbert transform, 313
hilbert(), 300, 313
hist(), 33
Histogram, 33
Hyperbolic chirps, 434

I
Ideal filter, 198
Ideal filter approximations, 199
ifft(), 251, 285
IIR design based on ARMA modelling, 295
IIR filter, 240, 282
IIR filter design based on time domain specs,

290
IIR filter design using invfreqz(), 288
IIR filter designwithYule-Walker equations,

286
Importance sampling, 77
Impulse invariance method, 241
Impulse response, 126
Impulse response of a digital filter, 240
Impulse response sequence (digital filter),

248
impvar(), 241
impz(), 284
Independent random events, 29, 91
Initial value theorem (Laplace trf.), 550
Initial value theorem (z-transf), 551
Inner product, 363
Instantaneous frequency of the modulated

signal, 509
Inter-symbol interference (ISI), 522
Interpolated FIR filters, 280
intfilt(), 281
Intrinsic mode functions (IMF), 455
Invariant transforms, 410
Inverse 2D DFT, 545
Inverse DFT, 537
Inverse Fourier transform, 247
Inverses of distribution functions, 82
Inversion sampling, 80
invfreqz(), 288
istran(), 483

J
Joint probability, 91

K
Kaiser window, 262
Kansas City standard, 514
Kirwood distribution, 414

L
Lag operator, 157
Lag polynomial, 157
Laplace transform, 41, 118

620 Index

LCT decomposition, 421
Least-Squares error filter, 272
Likelihood function, 63
Lindenberg CLT, 88
Linear canonical transformation (LCT), 418
Linear geometric transformations, 404
Linear phase filter, 251
L2-norm of the error, 267
L ∞-norm of the error, 268
Local auto-correlation function (LACF), 376
Localized bi-frequency kernel distributions,

416
Log-likelihood function, 63
Log-normal PDF, 36
lognpdf(), 37
lognrnd(), 36
Logons, 368
Low-pass filter, 186
lp2bp(), 220
lp2bs(), 220
lp2hp(), 220
lp2lp(), 220
lpc(), 295
lsim(), 130
Lung sounds, 478
Lyapunov CLT, 88

M
Margenau-Hill distribution, 414
Marginal distributions, 375
Marginally stable, 128
Markov chain, 96, 97
Markov chain Monte Carlo (MCMC), 99
Markov process, 96
Markov property, 97
Matched filter (radar), 362
Matching pursuit, 436
maxflat(), 297
Mean, 39
mean(), 41
Measurement noise, 150
Median, 39
median(), 41
Mel scale, 325
Metaplectic representation, 409
Method of moments, 65
Metropolis algorithm, 100
Metropolis–Hastings algorithm, 101
mhsample(), 103
MIMO systems, 138
Minimum-phase, 194
Mixture of Gaussians, 67

Mode, 39
Modified S-transform analysis of some

cases, 478
modulate(), 517
Modulation and demodulation of pulses, 518
Moment generating function, 41
Moments, 39
Monte Carlo, 72
Monte Carlo integration, 72
Moving-average filter, 253
Moving-average, MA, 155
Moyal’s formula, 378
Multivariate Gaussian PDF, 55
Music synthesizers, 342

N
Narrow-band ambiguity function, 362
Network synthesis theory, 194
Noncausal digital filter, 299
Nonequispaced DFT, 467
Non-minimum phase, 193
Normal (Gaussian) PDF, 33
Normal Reference Rule (for histograms), 62
Normalized frequency, 242
normpdf(), 34
normplot(), 60
Notch filter, 192
N-PSK modulation schemes, 516
Nyquist frequency, 242

O
Odd signal, 14, 534
Operator theory, 552
Orthogonal FDM (OFDM), 523
Orthogonal functions, 363, 536
Orthonormal base of functions, 363

P
Page distribution, 414
Paley–Wiener condition, 197
Parks-McLellan filter, 270
Parseval, 540
Parseval-Plancherel theorem, 358
Parzen estimation, 70
Parzen window, 69
Passive circuits, 190
Periodogram, 159
periodogram(), 159
Phase factors, 542
Phase modulation, 507
Plancherel, 540

Index 621

Poisson PDF, 58
poisspdf(), 58
Polar methods, 87
pole(), 201
polyfit(), 178
Power cepstrum, 321
Power spectral density (PSD), 43
Power spectrum, 43
Power spectrum of a signal, 321
Probability density, 30
Probability distribution, 30
Process noise, 145
Projection operator, 408
Prolate functions, 429
prony(), 295
Prony’s method, 295
Pseudo Wigner distribution, 397
4-PSK modulated signal, 515
Pulse amplitude modulation (PAM), 519
Pulse compression (radar), 362
Pulse phase modulation (PPM), 519
Pulse time modulation,(PTM), 519
Pulse train signal, 19
Pulse width modulation (PWM), 519
Pulse-code modulation (PCM), 522
Pure delay (of filter), 251
pwelch(), 43
pzmap(), 120, 285

Q
Quadratic form (operators), 408
Quadrature filter, 300
Quadrature multiplexing, 505
Quadrature PSK (QPSK), 524

R
Radio transmission scheme, 496
Radix-2 algorithms, 544
Raised cosine filter, 273
rand(), 31
randn(), 34
Random walk, 171
random(), 80
randtool, 106
Rayleigh PDF, 54
raylpdf(), 54
rceps(), 324
Rejection sampling, 85
Remez exchange algorithm, 270
remez(), 270
remezord(), 270

Respiratory sounds, 472
Response to any input signal, 130
Reverberation, 499
Ridge pursuit, 437
Rihaczek distribution, 414

S
Sallen-Key, 194
Sampling frequency, 22
Sampling rate and signal recovery quality,

521
Savitzky-Golay filter, 277
sawtooth(), 8
Scale variable, 373
Scaling operator, 420
Scalogram, 373
Seismic Analysis Code, 481
Seismic waves, 481
Self-adjoint operator, 407
sgolay(), 278
sgolayfilt(), 278
Shannon’s sampling theorem, 518
Shannon’s theorem, 25
Short-time Fourier transform (STFT), 364
Sifting, 458
sin(), 5
Sinc function, 246
sinc(), 21
Single sideband amplitude modulation

(SSB), 505
Slepians, 429
slicesample(), 103
Smoothed Wigner distribution, 398
Smoothed-pseudo Wigner distribution

(SPWD), 398
Sound attenuation, 340
sound(), 10, 315
Sparse representation, 437
specgram(), 366
Spectral density, 159
Spectral density function, 314
Spectrogram, 320, 365
Spectrum of the AM modulated signal, 500
Spectrum of the FM modulated signal, 510
Spectrum shape, 335
Splines, 539
square(, 7
ss2tf(), 141
Stability, 128
Standard deviation, 33, 41
State space Gauss–Markov model, 141
State variables, 138

622 Index

std(), 41
Steiglitz-McBride iteration, IIR filters, 295
Step response, 126
step(), 126
stmcb(), 295
Stochastic finite state machine (FSM), 97
Stochastic process, 96
Strict-sense stationary, 41
Student’s t PDF, 52
Sunspot activity, 159
Suppressed carrier DSB amplitude modula-

tion, 505
Sussman ambiguity function (SAF), 381
Symplectic group, 408

T
tf(), 120
tf2ss(), 141
tfe(), 137
The affine class, 416
The chirplet transform, 426
The Cohen’s class, 412
The constant-Q transform, 465
The Fan-Chirp-transform (FC), 451
The harmonic transform, 466
The Hilbert spectrum, 460
The Hilbert vibration decomposition

(HVD), 466
The Mellin transform, 452
The modified S-transform, 448
The reassignment method, 444
The scale transform, 454
Thompson analog filter, 221
Tiling of the TF plane, 401
Timbre (sound), 337
Time-domain multiplexing (TDM), 523
Time-frequency representations, 399
Time-limited signal, 197
Time-warping, 438
tpdf(), 52
Transfer function, 118
Translation covariance, 377, 410
Tremolo, 12
Trend, 167
triang(), 254
Triangular kernel, 70
Triangular signal, 18
Triangular window, 254
Truncated impulse response, 251
Twiddle factors, 542
Two-dimensional density, 375

Types of chirplets, 427

U
Uncertainty principle, 359, 546
Unconditional probability, 90
Uniform PDF, 31
unifpdf(), 32
Unitary equivalence principle, 437
Unitary matrix, 406
Unitary operator, 408
unwrap(), 225

V
var(), 41
Variance, 41
Variational mode decomposition, 467
vco(), 317

W
Warblets, 435
Wavelet analysis of lung and heart sounds,

471
Weakly-stationary, 158
weibplot(), 61
Weibull PDF, 53
Weighted averaging, 253
weibpdf(), 53
Weyl-Heisenberg system, 368
Whale song, 479
White noise, 42
Wide-band ambiguity function, 363
Wiener-Khinchin theorem, 540
WiFi, 523
Wigner-Ville distribution, 377
Windowed FIR filters, 253
Wold’s decomposition, 158

Y
Yule–Walker equations, 168
yulewalk(), 286

Z
Z transform, 133, 329
Zak transform, 370
zero(), 209
zgrid(), 134, 285

	Preface
	Contents
	List of Figures
	Listings
	Part I Signals and Data
	1 Periodic Signals
	1.1 Introduction
	1.2 Signal Representation
	1.3 Generation of Periodic Signals
	1.3.1 Sinusoidal
	1.3.2 Square
	1.3.3 Sawtooth

	1.4 Hearing the Signals
	1.5 Operations with Signals
	1.5.1 Adding Signals
	1.5.2 Multiplication

	1.6 Harmonics. Fourier
	1.6.1 Odd Signals
	1.6.2 Even Signals
	1.6.3 Half Wave Symmetry
	1.6.4 Pulse Train

	1.7 Sampling Frequency
	1.8 Suggested Experiments and Exercises
	1.9 Resources
	1.9.1 MATLAB
	1.9.2 Web Sites

	References

	2 Statistical Aspects
	2.1 Introduction
	2.2 Random Signals and Probability Density Distributions
	2.2.1 Basic Concepts
	2.2.2 Random Signal with Uniform PD
	2.2.3 Random Signal with Normal (Gaussian) PDF
	2.2.4 Random Signal with Log-Normal PDF

	2.3 Expectations and Moments
	2.3.1 Expected Values, and Moments
	2.3.2 Mean, Variance, Etc.
	2.3.3 Transforms
	2.3.4 White Noise

	2.4 Power Spectra
	2.4.1 Basic Concept
	2.4.2 Example of Power Spectral Density of a Random Variable
	2.4.3 Detecting a Sinusoidal Signal Buried in Noise
	2.4.4 Hearing Random Signals

	2.5 More Types of PDFs
	2.5.1 Distributions Related with the Gamma Function
	2.5.2 Weibull and Rayleigh PDFs
	2.5.3 Multivariate Gaussian PDFs
	2.5.4 Discrete Distributions

	2.6 Distribution Estimation
	2.6.1 Probability Plots
	2.6.2 Histogram
	2.6.3 Likelihood
	2.6.4 The Method of Moments
	2.6.5 Mixture of Gaussians
	2.6.6 Kernel Methods

	2.7 Monte Carlo Methods
	2.7.1 Monte Carlo Integration
	2.7.2 Generation of Random Data with a Desired PDF

	2.8 Central Limit
	2.9 Bayes' Rule
	2.9.1 Conditional Probability
	2.9.2 Bayes' Rule
	2.9.3 Bayesian Networks. Graphical Models

	2.10 Markov Process
	2.10.1 Markov Chain
	2.10.2 Markov Chain Monte Carlo (MCMC)
	2.10.3 Hidden Markov Chain (HMM)

	2.11 MATLAB Tools for Distributions
	2.12 Resources
	2.12.1 MATLAB
	2.12.2 Web Sites

	References

	Part II Filtering
	3 Linear Systems
	3.1 Introduction
	3.2 Examples About Transfer Functions
	3.2.1 A Basic Low-Pass Electronic Filter
	3.2.2 A Basic Resonant Electronic Filter

	3.3 Response of Continuous Linear Systems
	3.3.1 Frequency Response
	3.3.2 Time Domain Response

	3.4 Response of Discrete Linear Systems
	3.5 Random Signals Through Linear Systems
	3.6 State Variables
	3.7 State Space Gauss--Markov Model
	3.7.1 A Scalar State Space Case
	3.7.2 General State Space Case

	3.8 Time-Series Models
	3.8.1 The Discrete Transfer Function in Terms of the Backshift Operator
	3.8.2 Considering Random Variables

	3.9 Resources
	3.9.1 MATLAB
	3.9.2 Web Sites

	References

	4 Analog Filters
	4.1 Introduction
	4.2 Basic First Order Filters
	4.3 A Basic Way for Filter Design
	4.4 Causality and the Ideal Band-Pass Filter
	4.5 Three Approximations to the Ideal Low-Pass Filter
	4.5.1 Butterworth Filter
	4.5.2 Chebyshev Filter
	4.5.3 Elliptic Filter
	4.5.4 Comparison of Filters
	4.5.5 Details of the MATLAB Signal Processing Toolbox

	4.6 Considering Phases and Delays
	4.6.1 Bessel Filter
	4.6.2 Comparison of Filter Phases and Group Velocities

	4.7 Some Experiments
	4.7.1 Recovering a Signal Buried in Noise
	4.7.2 Adding and Extracting Signals
	4.7.3 Near Cut-off Frequency

	4.8 Resources
	4.8.1 MATLAB
	4.8.2 Web Sites

	References

	5 Digital Filters
	5.1 Introduction
	5.2 From Analog Filters to Digital Filters
	5.3 FIR Digital Filters
	5.3.1 Duality and Brickwall Shapes
	5.3.2 Truncation and Time-Shifting
	5.3.3 Windows
	5.3.4 Optimization
	5.3.5 Other FIR Filters
	5.3.6 Details of FIR Filters in the MATLAB Signal Processing Toolbox

	5.4 IIR Digital Filters
	5.4.1 Classical Approach
	5.4.2 Direct Design
	5.4.3 Details of IIR Filters in the MATLAB Signal Processing Toolbox

	5.5 Experiments
	5.5.1 Adding and Extracting Signals
	5.5.2 Modelling a Piano Note

	5.6 A Quick Introduction to the FDATool
	5.7 Resources
	5.7.1 MATLAB
	5.7.2 Web Sites

	References

	Part III Non-stationary Signals
	6 Signal Changes
	6.1 Introduction
	6.2 Changes in Sinusoidal Signals
	6.2.1 Changes in Amplitude
	6.2.2 Changes in Frequency

	6.3 Two Analytical Tools
	6.3.1 Cepstral Analysis
	6.3.2 Chirp Z-Transform

	6.4 Some Signal Phenomena
	6.4.1 Spectrum Shifts
	6.4.2 Changes in Spectrum Shape
	6.4.3 Musical Instruments
	6.4.4 Changes in Signal Energy
	6.4.5 Repetitions, Rhythm

	6.5 Some Complex Sounds
	6.5.1 Animal Sounds
	6.5.2 Music

	6.6 Resources
	6.6.1 MATLAB
	6.6.2 Internet

	References

	7 Time-Frequency Analysis
	7.1 Introduction
	7.2 Uncertainty
	7.3 Ambiguity
	7.4 Transforms for Time-Frequency Studies
	7.4.1 The Short-Time Fourier Transform
	7.4.2 The Gabor Expansion
	7.4.3 The Continuous Wavelet Transform

	7.5 Time-Frequency Distributions
	7.5.1 Densities
	7.5.2 The Wigner Distribution
	7.5.3 The SAF
	7.5.4 From Wigner to SAF and Vice-Versa
	7.5.5 About Interferences
	7.5.6 Smoothing of the Wigner Distribution

	7.6 Signal Representation
	7.6.1 Types of Representations
	7.6.2 Analysis Approaches
	7.6.3 Basic Time-Frequency Operators
	7.6.4 Geometric Transformations
	7.6.5 Some Important Types of Matrices
	7.6.6 Linear Operators
	7.6.7 Covariance

	7.7 The Cohen's Class and the Affine Class
	7.7.1 The Cohen's Class
	7.7.2 The Affine Class
	7.7.3 Classification of TFRs

	7.8 Linear Canonical Transformation
	7.8.1 Particular Cases
	7.8.2 Decomposition of the LCT
	7.8.3 Effect on the Wigner Distribution
	7.8.4 Comments
	7.8.5 Example of Fractional Fourier Transform

	7.9 Adaptation and Decomposition for Better Signal Representation
	7.9.1 The Chirplet Transform
	7.9.2 Unitary Equivalence Principle
	7.9.3 The Reassignment Method

	7.10 Other Methods
	7.10.1 The Modified S-Transform
	7.10.2 The Fan-Chirp-Transform
	7.10.3 The Mellin Transform
	7.10.4 The Empirical Mode Decomposition and Hilbert--Huang Transform
	7.10.5 More Transforms

	7.11 Experiments
	7.11.1 Fractional Fourier Transform of a Rectangular Signal
	7.11.2 Filtered Wigner Analysis of Nature Chirps
	7.11.3 Wavelet Analysis of Lung and Heart Sounds
	7.11.4 Fan-Chirp Transform of Some Animal Songs
	7.11.5 Modified S-Transform Analysis of Some Cases

	7.12 Resources
	7.12.1 MATLAB
	7.12.2 Internet

	References

	8 Modulation
	8.1 Introduction
	8.2 Modulation and Demodulation of Sinusoidal Signals
	8.2.1 Amplitude Modulation and Demodulation
	8.2.2 Frequency Modulation and Demodulation
	8.2.3 Digital Modulation of Sine Signals
	8.2.4 Details of the MATLAB Signal Processing Toolbox

	8.3 Modulation and Demodulation of Pulses
	8.3.1 Sampling. Demodulation of modulated pulses
	8.3.2 Modulation of Pulses
	8.3.3 Coding
	8.3.4 Inter-symbol Interference

	8.4 Transmission Media. Multiplexing
	8.4.1 Frequency Domain Multiplexing
	8.4.2 Time Domain Multiplexing

	8.5 Experiments
	8.5.1 Communication and Noise
	8.5.2 Cepstrum of Analog AM Modulation

	8.6 Resources
	8.6.1 MATLAB
	8.6.2 Internet

	References

	Appendix A Transforms and Sampling
	Appendix B Long Programs
	Index

