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Preface

This book entitled Differential Game Theory with Applications to Missiles and
Autonomous Systems Guidance is an outgrowth of many years of the author’s experi-
ence in missile guidance and control research and development in aerospace and defense
organizations in the UK, the USA and Australia. Some of the material included in the
book is the result of courses taught to undergraduate and post-graduate students in uni-
versities in the USA and Australia. The purpose of this book is to bring to the attention
of researchers and engineers working in the field of aerospace guidance and control
systems recent developments in the field. There are a number of excellent books on
the topic of classical missile guidance theory. In this book the author has endeavored
to approach the topic of missile guidance from the optimum game theory perspective.
It is shown that the classical guidance approach is closely linked to this approach; in
fact, it is demonstrated in Chapter 3 that the classical approach is simply a special case
of the modern optimal game theory. This approach offers researchers and engineers a
wider choice of system analysis and synthesis options to effectively deal with continu-
ously evolving challenges of current and future missile and aircraft combat scenarios.

As noted in Chapter 1, the game theory has its origins in the field of economics, busi-
ness, politics and social sciences. These developments have found their way into solv-
ing complex and challenging problems in engineering, operations research, and combat
mission systems. Readers and practitioners in fields other than engineering will also find
this book useful, particularly Chapter 2 which lays down formal mathematical foun-
dations of the differential game theory. This should provide a useful background for
readers whose interests encompass economics, business or other areas. Game theory
approaches to problem solving, algorithms and their applications to various fields are
progressing rapidly; evolutionary and quantum game theories, stochastic games, and
diagnostic medicine applications are some examples of this trend. This book has been
written to provide a formal and integrated text on the topic of differential game theory
and should provide essential background to undergraduate and postgraduate research
students in engineering, mathematics and science subjects. Missile guidance simulation
examples are given in Chapter 6 and a simulation demonstration website (MATLAB,
∗.m files) is included with this book (program listing is given in the addendum). This
resource should provide the reader with hands-on experience and with a tool to rein-
force learning in topics covered in the book.

While this book is focussed on the application of the differential game theory to
the missile guidance problem, there are other applications which are closely linked
to this and are currently the subject of intense research. These applications include



xii Preface

autonomous and intelligent vehicle control; unmanned vehicle formation strategies;
UAV and aircraft collision avoidance; surveillance and reconnaissance; and electronic
counter-measure and counter-countermeasure deployment. It is hoped that students,
researchers and practicing engineers in industry and government as well as interested
readers in other fields will find this text both interesting and challenging.

Farhan A. Faruqi



xiii

Acknowledgments

I gratefully acknowledge the opportunity, support and encouragements by the Defence
Science and Technology (DST) Group, Australia, in making the writing of this book
possible. I would also like to thank the Chief of Weapon and Combat Systems Division
(WCSD) and the staff for their support in completing this work. Many other people have
helped me and offered advice that has made this book possible. In this regard I wish to
thank Jim Repo (formerly DST Group staff) and Arvind Rajagopalan (DST Group) for
their help, advice and suggestions that contributed much to the book, particularly the
guidance simulation test bed. I would like to thank the many staff members working
with guidance and control technology at DST Group and with whom I have worked
in the past and learnt much from them. I would like to thank Dr Sanjeev Arulampalam,
Dr Mark Krieg and Mr Paul Heuer of DST Group for reviewing the technical contents of
the book and for their comments and suggestions. I would also like to thank the many
academics from the University of South Australia, and others from the University of
Adelaide, for useful discussions and inspirational ideas on the topic of game theory.
Finally I would like to thank my daughter Nasheed Qamar for taking on the unenviable
task of editing this book and for her suggestions and advice.

Dr Farhan A. Faruqi

Senior Research Scientist
Information Processing and Human Systems Group
Combat and Mission Systems, WCSD
DST Group, Edinburgh, South Australia

Adjunct Professor
ITEE Division, University of South Australia
Mawson Lakes Campus, South Australia



xv

About the Companion Website

Don’t forget to visit the companion website for this book:

www.wiley.com/go/faruqi/game

There you will find valuable material designed to enhance your learning, including:
� MATLAB codes
� DEMO content

http://www.wiley.com/go/faruqi/game






Differential Game Theory and Applications to Missile Guidance

Nomenclature

k: is the epoch (in a discrete time game).
P: is the set of players in a game.
U: is the set of strategies available to all the players.
Ui: is the set of strategies available to player i.
Jij(⋯): is the objective function for players i and j.
Xk: is the set of current state of a game at epoch k.
Uk: is the set of strategies available to a player at epoch k.
uij(k): is the strategy vector (input vector) available to player i against player j at

epoch k.
Ck: is the set of constraints at epoch k.
Gk: is the set of elements of a discrete-time game.
t: is the time in a continuous time (differential) game.
Xt: is the set of states of a game at time t.
Ut: is the set of strategies at time t.
uij(t): is the strategy vector (input vector) available to player i against player j at

time t.
Ct: is the set of constraints at time t.
Gt: is the set of elements of a continuous time (differential) game.
xij(t): is the relative state vector of player i w.r.t. player j at time t.
ui(t): is the strategy vector (input vector) of player i.
F: is the state coefficient matrix.
G: is the input coefficient matrix.
Q: is the PI weightings matrix on the current relative states.
S: is the PI weightings matrix on the final relative states.
{Ri, Rj}: are PI weightings matrices on inputs.

Differential Game Theory with Applications to Missiles and Autonomous Systems Guidance, First Edition.
Farhan A. Faruqi.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
Companion Website: http://www.wiley.com/go/faruqi/game
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Abbreviations

APN: augmented PN
CF: cost function
LQPI: linear system quadratic performance index
OF: objective function
PI: performance index
PN: proportional navigation
UF: utility function
4-DOF: four degrees of freedom
w.r.t.: with respect to

. Introduction

Over the last few decades a great deal of material has been published covering some
of the major aspects of game theory. The well-known publications in this field include
“Games and Economic Behaviour” by John von Neumann and Oskar Morgenstern.[1]

Since then there has been a significant growth in publication on both the theoret-
ical results and applications. A total of eight Nobel Prizes were given in Economic
Sciences for work primarily in game theory, including the one given in 1994 to John
Harsanyi, John Nash, and Reinhard Selten for their pioneering work in the analysis
of non-cooperative games. In 2005, the Nobel Prizes in game theory went to Robert
Aumann and Thomas Schelling for their work on conflict and cooperation through
game-theory analysis. In 2007, Leonid Hurwicz, Eric Maskin, and Roger Myerson were
awarded the Nobel Prize for having laid the foundations of mechanism design theory.
These and other notable works on game theory are given in the references.[2–7]

Cooperative game theory application to autonomous systems with applications to
surveillance and reconnaissance of potential threats, and persistent area denial have
been studied by a number of authors; useful references on this and allied topics are
given at the end of this chapter.[8–15] Usually, the (potential) targets and threats in
a battlefield are intelligent and mobile, and they employ counter-strategies to avoid
being detected, tracked, or destroyed. These action and counteraction behaviors can
be formulated in a game setting, or more specifically, by pursuit/evasion differential
games (with multiple players). It is noteworthy that application of differential games
to combat systems can be considered to have been started by Rufus P. Isaacs when he
investigated pursuit/evasion games.[8] However, most of the theoretical results focus
on two-player games with a single pursuer and a single evader, which has since been
extended to a multi-player scenarios.

1.1.1 Need for Missile Guidance—Past, Present, and Future

Guided missiles with the requirement to intercept a target (usually an aircraft) at a long
range from the missile launch point have been in use since WWII. Guidance systems for
missiles are needed in order to correct for initial aiming errors and to maintain inter-
cept flight trajectory in the presence of atmospheric disturbances that may cause the
missile to go off course. Traditionally, the use of the so-called proportional navigation
(PN) guidance (law) provided the means to enable an attacking missile to maintain its
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intercept trajectory to its target. As aircraft became more agile and capable of high-g
maneuvers, which they could use for evading an incoming threat, the PN guidance law
was upgraded to the augmented PN (APN) guidance law that compensated for target
maneuvers. Zarchan[24] gives a comprehensive explanation of PN and APN guidance
implementation and performance. With advances in missile hardware and computer
processing (on-board target tracking sensor and processors), most modern missiles now
use the APN guidance. Rapid advances in autonomous system technologies have opened
up the possibility that next generation aircraft will be pilotless and capable of perform-
ing “intelligent” high-g evasive maneuvers. This potential development has prompted
missile guidance designers to look at techniques, such as game theory-based guidance
and “intelligent” guidance to outwit potential adversaries.

Earlier reported research[16–27] on the application of game theory to the missile guid-
ance problem has concentrated on engagement scenarios that involve two parties, com-
prising an attacking missile (pursuer) aimed against another missile or aircraft referred
to as a target or an evader. In this book, the above approach is extended to a three-party
engagement scenario that includes the situation where an attacking missile may have
dual objectives—that is, to evade a defending missile and then continue its mission to
engage its primary designated high-value target. The role of the defending missile is only
to intercept the attacking missile; the attacking missile, on the other hand, must perform
the dual role, that of evading the defending missile, as well as subsequently intercepting
its primary target—the aircraft. Since participants in this type of engagement are three
players (the aircraft target, the attacking missile, and the defending missile), involved in
competition, we shall refer to this type of engagement scenario as a three-party game.

Game theory-based linear state feedback guidance laws are derived for the parties
through the use of the well-known linear system quadratic performance index (LQPI)
approach. Guidance commands generated are lateral accelerations that parties can
implement in order either to intercept a target, or to evade an attacker. A missile/target
engagement model has been developed, and feedback gain values are obtained by solving
the matrix Riccati differential equation. Preliminary simulation results to demonstrate
the characteristics of intercept and evasion strategies are included in Chapter 6. Simple
(rule-based) intelligent strategies are also considered for enhancing evasion by a target
or for improving the chances of intercept for an attacker.

. Game Theoretic Concepts and Definitions

Game theory is concerned with studying and characterizing the dynamics of interac-
tions between players involved in a collective and competitive activity or contest, where
each player is required to make decisions regarding his/her strategy, and implement
this strategy in order to gain an advantage. These decision makers will be referred to
as players or parties. Each player’s choice of the strategy, and the advantage gained by
implementing this strategy, is defined through an objective function (OF), which that
player tries to maximize. The OF in this case is also referred to as a utility function (UF),
or pay-off. If a player sets out to minimize the objective function, it is referred to as
a cost function (CF) or a loss function. The objective function of a player depends on
the strategies (control or input variable) that a player implements in order to optimize
the objective function. This involves action of at least one or more players involved in a
game. The strategy that each party implements determines the strategies that the other
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players involved in a game are required to implement in order to achieve optimization
of the objective function. This is particularly true of a competitive or non-cooperative
game. In the case of a cooperative game, some or all of the parties may enter into a
cooperative agreement so that the strategies selected provide collective advantage to
parties in the coalition. A non-cooperative game is a non-zero-sum game if the sum of
the player’s objective function remains non-zero. If, however, the objective function can
be made zero then the non-cooperative game will be called a zero-sum game. As far as
the nature of the optimum solution is concerned it is a requirement that this solution
be such that if all the players except one, and only one, execute optimum strategies, the
pay-off for the player that deviates from the optimum would result in a disadvantage to
this player. The optimum solution where none of the players can improve their pay-off
by a unilateral move will be referred to as a non-cooperative equilibrium also known as
the Nash equilibrium.[3]

A game can be either finite or infinite depending on the number of choices (moves)
for the strategies available for the players. A finite game provides for a finite number of
choices or alternatives in the strategy set for each player; however, if the choices in the
strategy set are infinite then the game is an infinite game. For an infinite game, if the
players’ objective functions are continuous with respect to (w.r.t.) the action variables
(strategies) of all players, then it is known as a continuous-time game. The evolution
(transition or progression) of a game can be defined by the state variable (or the state of
the game), which represents changes in the game environment as the players involved
in the game implement their strategies. The state is a function of the prior state and the
actions implemented that causes a change in the game environment. This functional
relationship will be referred to as the game dynamics or the game dynamical model.
We shall refer to a game as deterministic if the nature of the game dynamics model, the
strategies (control variables), and the objective functions are such as to uniquely deter-
mine the outcome (the optimum solution). However, if the dynamics model, control
variable, or the objective function associated with at least one of the players is defined
via a probability function then the game will be referred to as a stochastic game. Stochas-
tic games are not considered in this book. A dynamic game is said to be a differential
dynamic game if the evolution of the states and of the decision process is defined through
a continuous-time process, involving a set of differential equations. Where the evolu-
tion of the states and the decision occurs over discrete time intervals then the game is
called a discrete-time game.

. Game Theory Problem Examples

In order to develop a formal structure for the game theory problem and enable its
subsequent solution in a manner that allows many of the control systems techniques
to be used, we consider the following examples that have played a major role in the
development of the game theory.

1.3.1 Prisoner’s Dilemma

The prisoner’s dilemma is a good example of a simple game that can be analyzed using
the game theory principles. It was originally framed by Flood and Dresher in 1950[29]
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and later formalized by Tucker,[28] who named it the “prisoner’s dilemma.” We consider
a situation where two prisoners A and B, are being interrogated, separately, about their
role in a particular crime. Each prisoner is in solitary confinement with no means of
communicating with the other. The interrogator, in order to induce A and B to betray
each other and confess to their role in the crime, offers the following incentive to the
prisoners:
� If A and B each betray the other, each of them serves two years in prison,
� If A betrays B but B remains silent, A will be set free and B will serve three years in

prison (and vice versa),
� If A and B both remain silent then both of them will only serve one year in prison (on

a lesser charge).

Using the above scenario, we can construct a strategy/pay-off table for each prisoner as
shown in Table 1.3.1 below, with the pay-off shown as (A’s pay-off, B’s pay-off):

Table .. Strategy Versus Pay-Off.

Strategies A betrays B A keeps silent

B betrays A (2, 2) (3, 0)
B keeps silent (0, 3) (1, 1)

Assuming that both the prisoners play an optimum strategy that minimizes each pris-
oner’s pay-off then it follows that the “best strategy” from each player’s perspective is
to betray the other. Any other strategy would not necessarily lead to the minimum pay-
off solution. For example, if B keeps silent hoping that A will also keep silent then this
may not necessarily turn out to be the case, because A (motivated by self-interest) may
decide to betray B and achieve a reprieve from imprisonment.

1.3.1.1 Observations and Generalization From the Above Example
We can make the following observations arising out of the above example regarding the
elements of the game theory as follows.

(a) A game must have players (in the particular case of the above example: A and B)—in
general, however, there could be more than two players; we shall therefore define
the set of players in a game as the set:

P = {pi; i = 1, 2,… , n} (1.3.1)

where

pi; i = 1, 2,… , n: are players involved in a game.

(b) A game must have strategies (in the particular case of the example above, there were
two strategies available to each player: keep silent or betray the other player). In
general for more than two players involved in a game, there could be a number of
different strategies; we shall define the strategy set as:

U = {Ui; i = 1, 2,… , n} (1.3.2)
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where

Ui = {uij; j = 1, 2,… , j− 1, j+ 1,… , n}; i = 1, 2,… , n: is the set of strategies
available to player i against player j.

Note that each strategy subset includes strategies of player i that he/she is able to
exercise against another player j. In fact, player i can exercise multiple strategies
against player j.

As we shall see later, when we consider the topic of missile guidance uij can be
either a scalar or a vector.

(c) A game has a cost function or a pay-off that the players either minimize or maximize
in order to achieve their objectives. For this example the objective function (OF) may
be written as:

Jij(⋯) = f(uij) (1.3.3)

That is, the OF is a function of players’ strategies. We shall further qualify the nature
of an OF later in this chapter, since in general the OF is also a function of the states
of the game.

(d) The game considered in this example has only one move and will be referred to as a
game with single epoch. In the next example we shall consider a game with multiple
epochs.

For the particular example of the prisoner’s dilemma it is seen that:

P = {p1, p2};
[

uT
12

uT
21

]

=

[
u1

12 u2
12

u1
21 u2

21

]

, here the superscripts (1,2) indicate the two

components of a vector, representing two strategies.

Also J12(⋯) =
[

(2, 2) (3, 0)
(0, 3) (1, 1)

]
; J21(⋯) =

[
(2, 2) (0, 3)
(3, 0) (1, 1)

]
.

1.3.2 The Game of Tic-Tac-Toe

We now turn our attention to the well-known game of “Tic-tac-toe” (T3), which will
enable us to introduce other aspects of the game theory. A generalization of this T3 game
will give us a framework for formulating the game theory problem as a control systems
problem, which will allow us to exploit the well-developed techniques of the optimal
control. Tic-tac-toe (also known as Noughts and Crosses or O’s and X’s) is designed for
two players, A and B, who take turns marking the spaces in a 3×3 grid. The player who
succeeds in placing three of their marks in a horizontal, vertical, or diagonal row (com-
binations) wins the game. Let us designate player A’s move with a O and B’s move with an
X; and the move (i.e., the position on the 3×3 grid) that a player selects to make is desig-
nated by (i, j):i = 1, 2, 3; j = 1, 2, 3 (see Figure 1.3.1). We shall assume that A moves first.
We will also refer to a move position on the grid as the “state” of the game. The author
of this book has encapsulated a possible strategy (algorithm) for the play (moves) as a
game theory problem where each player makes a move so as to maximize the objective
function defined by the following expression:

J(k)= JA(k)= JB(k)={n1(k)+ 2n2(k)+ 6n3(k)+ 12n4(k)} (1.3.4)
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(2, 2) (2, 3)

(1, 1) (1, 2) (1, 3)

(2, 1)

(3, 1) (3, 2) (3, 3)

(a) States of the game

O

(b) Move: A;  k=1; J=4

O

X

Move: B; k=1; J=6

O

X O

(d) Move: A; k=2; J=13

O

X O

X

(e)  Move: B; k=2; J=23

O

X O

O

X

Move: A; k=3; J=26

O X

X O

O

X

Move: B; k=3; J=29
Tic-Tac-Toe Further Moves: 

moves can be made by inspection,

e.g. the game outcome will be a 

A(k=4)→with: draw O(1,2), 

B(k=4)→ X(3,2),

A(k=5)→ O(3,3)

Figure .. Moves for the Tic-Tac-Toe (T3) Game.

where

n1(⋯): is the total number of a player’s own potential winning combinations with single
entries, as a result of the move k.

n2(⋯): is the total number of opponent’s potential winning combinations with single
entries that are blocked by the move k.

n3(⋯): is the total number of player’s own potential winning combinations with double
entries, as a result of the move k.

n4(⋯): is the total number of opponent’s potential winning combinations with double
entries that are blocked by the move k.

JA(⋯); JB(⋯ ): are objective function values for players A and B respectively at epoch k.
k: is the move number or epoch.

It follows from (1.3.4) that maximizing the above OF for each move (epoch) is equivalent
to maximizing the sum of the OF over all of the moves, that is the OF can also be written
as:

J(N) =
N∑

k=1
{n1(k)+ 2n2(k)+ 6n3(k)+ 12n4(k)} (1.3.5)
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1.3.2.1 Observations and Generalization From the Tic-Tac-Toe Example
A set of moves that occur through the maximization of the objective function (1.3.4) is
shown in Figure 1.3.1; the values obtained from the OF are also given there. We make
the following observations gleaned from the T3 game considered here:

(a) A T3 game may be regarded as a discrete (and a finite) game since each move is made
at each epoch, which is not continuous.

(b) The value of the elements of the OF ni; i = 1, 2, 3, 4 depend on the strategy (move)
that a player utilizes. This, in turn, depends on the current state of the game and the
current strategy; thus, we may regard the OF to be a function of the strategy and the
current state of the game. That is, in general we may write:

J(N) =
N∑

k=1
f[X(k), U(k), k] (1.3.6)

where

X(k): is the set of states of a game at epoch k.
U(k): is the set of strategies available to players at epoch k.

(c) Obviously a player cannot make a move to a state (position on the grid) that is
already occupied by its own previous moves or those of the opponent’s moves. We
will regard this as state constraints.

. Game Theory Concepts Generalized

From observations made in the previous section we can now define the class of game
theory problems that we shall consider in this book. The main theme in this book will
be the continuous-time (differential) game theory and its application to missile guid-
ance. We shall also give a formal definition of the discrete-time games for the sake of
completeness.

1.4.1 Discrete-Time Game

(a) A discrete game has a set of states Xk defined as the set:

Xk = {x(k); k = 1, 2,… , N} (1.4.1)

where

x(k): is the state vector of a game that depends on epoch k.
k = 1, 2,… , N: are game epochs.

Note that in cases where we talk about relative states we adopt the notation: xij(k).
(b) A discrete game has a set of players P given by:

P = {pi; i = 1, 2,… , n} (1.4.2)

(c) A discrete game has a set of strategies Uk given by:

Uk = {uij(k); k = 1, 2,… , N}; i, j = 1, 2,… , n; i ≠ j; (1.4.3)
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where

uij(k): is the strategy vector (input vector) available to player i against player j in a
game.

(d) A discrete game has an objective function J(⋯) given by:

Jk(⋯) = J[x(k), uij(k), k] (1.4.4)

(e) A discrete game can have rules or constraints Ck given by:

Ck = C[x(k + 1), x(k), uij(k), k] = 0 (1.4.5)

Based on definitions (1.4.1) through (1.4.5), we may define a discrete-time game Gk as
the set:

Gk = {Xk, P, Uk, Ck, k} (1.4.6)

A typical example of an OF and constraints for a discrete game may be written as follows:

J(⋯) = 𝛉[x(N)]+
N∑

k=1
𝛟[x(k), uij(k), k] (1.4.7)

Where

𝛉[⋯]; 𝛟[⋯]: are scalar cost functions.

The dynamic constraint is given by

x(k + 1)−𝛙[x(k), uij(k), k] = 0 (1.4.8)

1.4.2 Continuous-Time Differential Game

A differential game is analogous to the discrete game with the exception that the game
evolves in continuous time t and will be defined as follows:

(a) A differential game is assumed to have a set of states Xt defined as a set:

Xt = {x(t); t0 ≤ t ≤ tf} (1.4.9)

where

x(t): is the state vector of a game, which is a function of time t; with start time t0 and
end (final) time tf , with t0 ≤ t ≤ tf .

(b) A differential game has a set of players P given by:

P = {pi; i = 1, 2,… , n} (1.4.10)

(c) A differential game has a set of strategies Ut given by:

Ut = {uij(t); t0 ≤ t ≤ tf} (1.4.11)

where

uij(t): is the strategy vector (input vector) available to player i against player j in a
game.
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(d) A differential game has an objective function J(⋯) given by:

Jt(⋯) = J[x(t), uij(t), t] (1.4.12)

(e) A differential game can have rules or constraints C given by:

Ct = C(ẋ(t), x(t), uij(t), t) = 0 (1.4.13)

Based on definitions (1.4.9) through (1.4.13), we may define a differential game Gt as the
set:

Gt = {Xt, P, Ut, Ct, t} (1.4.14)

A typical example of an OF and constraints for a differential game may be written as
follows:

J(⋯) = 𝛉[x(t)]+
tf

∫
t0

𝛟[x(t), uij(t), t]dt (1.4.15)

with the dynamic constraint given by:

ẋ(t)− g[x(t), uij(t), t] = 0 (1.4.16)

. Differential Game Theory Application to Missile Guidance

The application of the differential game theory to the missile guidance problem requires
describing the trajectory of a missile or missile dynamics as a set of differential equations
of the type given in (1.4.16). The guidance objectives that a designer aims to meet can
be expressed as an objective function of the type (1.4.15), which has to be optimized in
order to determine guidance strategies (inputs) for missiles/aircraft involved in a given
combat situation. Chapters 3, 4, and 6 are dedicated to developing the differential equa-
tions (also referred to as the system dynamics model) and the objective functions (also
referred to as a performance index). In this book we shall confine ourselves to a linear
system dynamical model and a performance index, which is a scalar quadratic function
of system states and inputs and can be written, in a general form, respectively as:

ẋij(t) = Fxij(t)+Gui(t)−Guj(t) (1.5.1)

and

J(⋯) = 1
2

xT
ij (tf )Sxij(tf )+ 1

2

tf

∫
t0

[
xT

ij Qxij + uT
i Riui − uT

j Rjuj

]
dt (1.5.2)

where

xij(t) = xi(t)− xj(t): is the relative state of player i w.r.t. player j.
ui(t): is the input of player i.
uj(t): is the input of player j.
F: is the state coefficient matrix.
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G: is the input coefficient matrix.
Q: is the PI weightings matrix on the current relative states.
S: is the PI weightings matrix on the final relative states.
{Ri, Rj}: are PI weightings matrices on inputs.

The structure of the dynamical model (1.5.1) and that of the objective function (1.5.2)
will be applicable to the game theory guidance problems considered in this book.

. Two-Party and Three-Party Pursuit-Evasion Game

Consider a situation where a number of different parties are involved in a pursuit-
evasion game, where each party endeavors, through the application of the game theory-
based strategy to maximize its advantage as reflected in some pre-specified metric or
pay-off. A typical example of a pursuer-evader game involves two parties {p1, p2}, where
the objective of the pursuer p1 is to catch up and intercept p2, whereas the evader p2 has
the objective of avoiding the intercept. Clearly, one obvious objective function that both
parties can use is the relative separation (projected miss-distance) between them. Let
us further assume that both parties are moving w.r.t. each other in a given reference
frame (e.g., the inertial frame). It can be assumed that both parties have the capability
to change directions of their respective motions (maneuver capability), which they can
exercise in order to achieve their objectives—p1 tries to minimize the projected miss-
distance, whereas p2 tries to maximize it. This objective can be taken to be some (pos-
itive) function of the relative distance between the parties and the maneuver (input)
capability, which each party can employ. One also needs to consider the extent of the
manueverability of each party and the motion dynamics involved.

The above problem may be extended to a scenario where there are three or more par-
ties involved in a pursuit-evasions game. Let us consider a situation involving three par-
ties and specify these as {p1, p2, p3}. An example of this type of game is the following
(it is considered in some detail in later chapters of this book):

(a) {p3, p1} to represent the engagement where p3 is the pursuer and p1is the evader,
(b) {p2, p3} to represent the engagement where p2 is the pursuer and p3 is the evader,
(c) {p1, p2} to represent the engagement where p1 and p2 are coalition partners (i.e.,

neither party is a pursuer or an evader w.r.t. each other).

The particular ordering of the indices is immaterial, as long as there is no confusion as
to which party is the pursuer and which one is the evader. In general, we may envisage
a scenario in which the pair {pi, pj} implies {pi vs. pj} and where each party can be con-
sidered to be employing dual strategies of pursuit as well as evasion. Problems of this
type can be considered under the framework of the LQPI problem.

. Book Chapter Summaries

In Chapter 2, the subject of optimum control is dealt with in some detail, and results that
are important in many problems of practical interest are derived. Derivations consid-
ered in this chapter rely heavily on the calculus of variation and necessary and sufficient
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conditions for optimality are developed for a generalized scalar cost function subject to
equality constraints defined by a non-linear dynamical system model. A simple scalar
cost function involving system states and control input variables is used to introduce
the reader to the steady-state (single-stage decision) optimization problem utilizing the
Euler-Lagrange multiplier and the Hamiltonian. The dynamic optimum control prob-
lem is then considered, where the cost function is in the form of an integral over time,
of a scalar function of system states and control (input) vectors plus a scalar function of
the final system states. The optimum control problem involving a linear dynamical sys-
tem model, where the cost function is a time integral of a scalar quadratic function of
state and control vectors is also considered in this chapter. It is shown that the solution
of this problem leads to the well-known matrix Riccati differential equation, which has
to be solved backward in time. The application of the optimum control results to two-
party and three-party game theory problems is considered, and conditions for optimality
and convergence of the Riccati equation are given. The nature of the equilibrium point
is investigated and conditions for the existence of a minimum, a maximum or a sad-
dle point are derived. Extension of the differential game theory to multi-party (n-party)
games is also described.

Chapter 3 considers the application of the differential game theory to the missile guid-
ance problem. The scenario considered involves engagement between an attacker (inter-
ceptor/pursuer) and a target (evader), where the objective of the former is to execute a
strategy (or maneuvers) so as to achieve intercept with the target, whereas the objective
of the latter is to execute a strategy (maneuver) so as to evade the attacker and avoid or
at least delay the intercept. Differential game approach enables guidance strategies to be
derived for both the attacker and the target so that objectives of the parties are satisfied.
Interceptor/target relative kinematics model for a 3-D engagement scenario is derived
in state space form, suitable for implementing feedback guidance laws through mini-
mization/maximization of the performance index (PI) incorporating the game theory
based objectives. This PI is a generalization of those utilized by previous researchers in
the field and includes, in addition to the miss-distance term, other terms involving inter-
ceptor/target relative velocity terms in the PI. This latter inclusion allows the designer to
influence the engagement trajectories so as to aid both the intercept and evasion strate-
gies. Closed-form expressions are derived for the matrix Riccati differential equations
and the feedback gains that allow the guidance strategies of the interceptor and the tar-
get to be implemented. Links between the differential game theory based guidance, the
optimal guidance, the proportional navigation (PN) and the augmented PN guidance
are established. The game theory-based guidance technique proposed in this chapter
provides a useful tool to study vulnerabilities of existing missile systems against current
and future threats that may incorporate “intelligent” guidance. The technique can also
be used for enhancing capabilities of future missile systems.

In Chapter 4 we consider a three-party differential game scenario involving a target,
an attacking missile, and a defending missile. We assume that this scenario involves an
aircraft target that on becoming aware that it is being engaged by an attacking missile,
fires a defending missile against this attacker, and itself performs a maneuver to escape
the attacking missile. In order to engage the aircraft, the attacking missile performs both
an evasive maneuver to defeat (evade) the defending missile and a pursuit maneuver
to engage the aircraft target. A three-party game theoretic approach is considered for
this scenario that uses a linear quadratic performance index optimization technique to



1 Differential Game Theory and Applications to Missile Guidance 

obtain guidance strategies for the parties involved. The resulting guidance laws are then
used in four degrees of freedom (4-DOF) engagement kinematics model simulation, to
study the characteristics of the resulting intercept and evasion strategies. Simple (rule-
based) AI techniques are also proposed in order to implement additional maneuvers to
enable the parties to enhance their evasion/survival, or, in the case of the attacker, to
evade the defender and subsequently achieve intercept with the target.

Chapter 5 is concerned with the development of the dynamics simulation model for
performance analysis of guidance laws for missiles. This model uses a fixed-axis system
convention under the assumption that the missile trajectory during an engagement can
vary significantly from the collision course geometry. These models take into account
autopilot lags and lateral acceleration limits, and while the guidance commands are
computed in fixed axis, these are subsequently converted to body axis. This latter fact
is particularly relevant in cases of engagements where the target implements evasive
maneuvers, resulting in large variations of the engagement trajectory from that of a
collision course. A linearized model is convenient for deriving the guidance laws (in
analytical form); however, the study of their performance characteristics still requires a
non-linear model that incorporates changes in body attitudes, and implements guidance
commands in body axis rather than the fixed axis. In this chapter, a 4-DOF mathemat-
ical model for multi-party engagement kinematics is derived, suitable for developing,
implementing, and testing modern missile guidance systems. The model developed
here is suitable for both conventional and more advanced optimal intelligent guidance,
particularly those based on the game theory guidance techniques. These models accom-
modate changes in vehicle body attitude and other non-linear effects (such as limits on
lateral acceleration) and may be extended to include other aerodynamic affects.

Chapter 6 considers a simulation study of game theory-based missile guidance devel-
oped in Chapters 3, 4, and 5. The scenario considered involves an aircraft target, which
is being engaged by a ground-launched missile and fires a defending missile against
this attacker and itself performs a maneuver to escape the attacking missile. In order
to engage the aircraft, the attacking missile first performs an evasive maneuver to defeat
(evade) the defending missile and then an intercept maneuver to engage the aircraft
target. Differential game approach is proposed that utilizes a linear quadratic perfor-
mance index optimization technique to obtain guidance strategies for the parties; guid-
ance strategies obtained are used in a 4-DOF simulation, to study the characteristics
of the resulting intercept and evasion strategies. A simple (rule-based) AI technique is
proposed for implementing additional maneuvers to enable the parties to enhance their
evasion/survival or in the case of the attacker to achieve intercept.

The addendum of this chapter includes the MATLAB listing of the simulation pro-
gram and a CD containing the ∗.m files: faruqi dgt DEMO.m and kinematics3.m.

1.7.1 A Note on the Terminology Used In the Book

In this book a missile has been referred to as an attacker or a defender, depending on
role that it plays in an engagement; the generic term vehicle is also used for a missile
or an aircraft. The term target is used to specify an aircraft target in a three-party game
scenario considered; a missile can be a target if it plays this particular role. Also, while
the book mostly talks about missiles, all the synthesis techniques considered in this
text apply equally to “autonomous systems.” The term performance index (PI) is used to
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signify an objective function (OF). Terms such as a utility function (UF) and a cost func-
tion (CF) are also used, provided it is clear whether maximization or minimization of
this function is considered. Terms such as kinematics model, dynamic model, or system
model are used interchangeably. Terms such as input, control, or control inputs, guid-
ance inputs/commands are used to mean the same; the term strategy is a generic term
for these.
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Optimum Control and Differential Game Theory

Nomenclature

x = (x1 x2 ⋯ xn)T: is the (n × 1) system state vector.
u = (u1 u2 ⋯ um)T: is the (m × 1) input vector.
f(x, u)T: is the (n × 1) vector function of state and input vectors.
𝛌 = (𝛌1 𝛌2 ⋯ 𝛌n)T: is the (n × 1) Euler–Lagrange multiplier vector.
F: is the (n × n) system coefficient matrix.
G: is the (n ×m) input coefficient matrix.
Q: is the (n × n) symmetric positive semi-definite matrix for PI

weightings on current states.
S: is the (n × n) symmetric positive semi-definite matrix for PI

weightings on final states.
R: is the (m ×m) symmetric positive definite matrix for PI

weightings on inputs.
𝛈T(t)𝚲(t)𝛈(t) = ‖𝛈‖2

𝚲: is the scalar quadratic function and defines a weighted norm
of a vector 𝛈(t).

xij: is the (nij × 1) relative state vector for {pi, pj}.
uij: is the (mij × 1) input vector for {pi, pj}.
Fij: is the (nij × nij) state coefficient matrix for {pi, pj}.
Gij: is the (nij ×mij) input coefficient matrix for {pi, pj}.
tfij

: is the termination (final) time for an engagement.
Qij: is the (nij × nij) symmetric positive semi-definite matrix for

PI weightings on current states.
Sij: is the (nij × nij) symmetric positive semi-definite matrix for

PI weightings on final states.
Rij: is the (mij ×mij) symmetric positive definite matrix for PI

weightings on inputs.
{ij}: are subscript pairs for the set {12, 23, 31} corresponding to

the three players involved in a three-party game.
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Abbreviations

EL: Euler–Lagrange
LHS: left-hand side
LQPI: linear system quadratic performance index
MRDE: matrix Riccati differential equations
PMP: Pontryagin’s Minimum Principle
RHS: right-hand side
VRDE: vector Riccati differential equations

. Introduction

This chapter is dedicated to the development of the optimum control theory, which
forms the basis of control systems analysis and design for a large number of problems
and those that occur in differential game theory. Theoretical developments presented
here are aimed at optimization of a general, non-linear cost function (performance index)
where the evolution of the states is defined by a set of non-linear differential equations.
The problems that we will be most interested in are those that admit cost functions
that are scalar quadratic functions of system states and control variables and where the
dynamical system is linear. The generalized optimum theory developed is then applied
to the linear dynamical system case. The application of the optimum control technique
for a scalar quadratic cost function and linear dynamical system is utilized to develop a
differential game theory solution for two-party (pursuer-evader) and three-party game
scenarios. Formulation of a multi-party non-cooperative game is also given. A brief dis-
cussion of the principles of the differential game theory was included in Chapter 1; in
this chapter those principles are invoked in order to develop optimum control tech-
niques for two-, three- and multi-party games. The development of the optimal control
theory relies heavily on the calculus of variation. A review of vector/matrix algebra and
the associated differential calculus is given in the appendix. Material presented in this
chapter will also prove useful to practitioners in fields other than engineering (e.g., eco-
nomics and business applications).

In Section 2.2 we introduce the use of the Euler–Lagrange (EL) multiplier for incorpo-
rating equality constraints, and the construction of the Hamiltonian for deriving opti-
mum control strategies for parties involved in a game. The reader is referred to the
references[1–4] for further reading on the material presented in this section.

In Section 2.3, we consider the dynamic optimization problem utilizing the Bolza
formulation and use variational calculus to derive necessary and sufficient conditions
for optimality. Dynamic optimization implies that the cost function (also referred to
as a functional) is optimized over a time interval and the evolution of system states is
governed by a dynamical systems model. The Pontryagin’s Minimum Principle (PMP)
is explained, which is useful in solving a certain class of optimum problems with state
and/or control constraints. The Hamilton-Jacobi canonic equations are derived, which
lead to the necessary and sufficient conditions for optimality. Dynamic optimization
problems with different initial and final conditions (the so-called transversality con-
ditions) are considered. Much of the material presented in this section is now well
established, and the references[5–10] provide useful insights into the techniques used in
this section.
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In Section 2.4, optimum control principles are applied to the optimization of a scalar
quadratic cost function for a linear dynamical system model. This type of optimiza-
tion problem is often referred to as the linear system with quadratic performance index
(LQPI) problem. The solution of this problem leads to the well-known matrix Riccati dif-
ferential equation (MRDE), which requires solving backward in time. For further read-
ings on this topic the reader is directed to the references.[11–16]

In Section 2.5, we consider the application of the LQPI problem to two-party and
three-party differential game guidance problems. These will be recognized as the
pursuer-evader games. Solutions of these types of problems also lead to state feedback
guidance laws. Necessary and sufficient conditions for the existence of the solution are
also derived. Stability and convergence of the solution is considered and the nature of the
equilibrium is also discussed. For further reading, the references may be useful.[17–23]

. Calculus of Optima (Minimum or Maximum) for a Function

Function optimization problems that commonly occur in control systems and conse-
quently in game theory can be solved using the “calculus of optima,” which leads to a
procedure for obtaining the optimal values of a given cost function and parameter val-
ues on which this cost function depends. In this section, calculus of optima is developed
for a scalar valued cost function of several variables or a vector, and necessary and suf-
ficient conditions are derived. This approach will in turn allow us to set up a framework
that will enable us to consider more complex cases. The method of Lagrange multipliers
is introduced and used to solve constrained optimum control problems for a single-stage
decision process.

2.2.1 On the Existence of the Necessary and Sufficient Conditions for an Optima

Here we set up, in a formal way, the objectives of the optimal problem. Material pre-
sented provides a quick overview of the basics and sets up an environment for develop-
ing a framework that will be used for solving more complex optimization problems. The
general optimization problem may be stated as follows.

Given a real valued scalar cost function 𝛉(x) defined for n variables x = (x1 x2 ⋯
xn)T, then it has a relative minimum (or maximum) at x = x̂ = (x̂1 x̂2 ⋯ x̂n)T, if
and only if there exists a positive number 𝛅 > 0, such that:

𝚫𝛉(x) = 𝛉(x̂ + 𝚫x)− 𝛉(x̂) > 0 (2.2.1)

(In the case of a maximum 𝚫𝛉(x) = 𝛉(x̂ + 𝚫x)− 𝛉(x̂) < 0); for all 𝚫x = x − x̂, provided

that 𝛉(x̂+ 𝚫x) exists in the region 0 < ‖𝚫x‖ < 𝛅. Furthermore, if
𝛛𝛉(x)
𝛛x exists and is con-

tinuous at x = x̂, then 𝛉(x̂) can be an interior minimum (or maximum) if:

𝛛𝛉(x)

𝛛x

|||||x=x̂
= 0 (2.2.2)

If in addition, the second derivative
𝛛2𝛉(x)

𝛛x2

||||||x=x̂

is continuous, (2.2.3)
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saddle point

minimum

maximum
θ(x)

xx̂1 x̂1 + Δx1 x̂2 x̂2 + Δx2 x̂3 x̂3 + Δx3

Figure .. Nature of function optimum values.

then the nature of the optimal value of the cost function (i.e., whether it is a minimum
or a maximum or a saddle-point) can be determined (see Figure 2.2.1). In fact it can be
shown that if:

𝛛2𝛉(x)

𝛛x2

||||||x=x̂

=
⎧
⎪
⎨
⎪
⎩

> 0 then θ has a relative minimum
< 0 then θ has a relative maximum
= 0 then θ has a stationary (saddle) point

(2.2.4)

2.2.2 Steady-State Optimum Control Problem with Equality Constraints Utilizing
Lagrange Multipliers

The approach to optimizing a cost function, with equality constraints, is to make adjust-
ments to independent variables (e.g., the states) by using an adjustable parameter,
referred to as the Euler–Lagrange (EL) multiplier. This allows us to form a new cost func-
tion by adjoining the constraints of the original function through EL multiplier and opti-
mizing the new modified cost function using the method developed in Section 2.2.1. For
the optimum control problem, where both state and control variables are present in the
cost function, the object of the optimization problem is to find the values of control vari-
ables (or inputs) as a function of states that minimize the given cost function. In order
to demonstrate the use of the EL multiplier and to develop the necessary and sufficient
conditions for optimality, we consider the problem that occurs in steady-state control
(single-stage decision) as shown below. Here, we consider the optimization (minimiza-
tion or maximization) of a scalar cost function J given by:

J = 𝛉(x, u) (2.2.5)

Subject to equality constraints:

f(x, u) = 0 (2.2.6)

where

x = (x1 x2 ⋯ xn)T: is the (n × 1) system state vector.
u = ( u1 u2 ⋯ um )T: is the (m × 1) input vector.
f(x, u) = [ f1(x, u) f2(x, u) ⋯ fn(x, u) ]T: is the (n × 1) vector function of state and

input vectors.



 Differential Game Theory with Applications to Missiles and Autonomous Systems Guidance

In the sequel, the terminology “state variable” and “state vector” or simply “state” will be
used synonymously; similarly, “control (input) variable” and “control (input) vector” or
simply “control (input)” will be taken to mean the same. Scalar state and control variable
will imply a single variable/element instead of a vector. The terminology “vector func-
tion” or simply “function” are used in the sequel to mean the same algebraic structure.
As a general rule vector quantities are characterized by an underscore in the variable
name, for example, x, whereas a scalar does not have an underscore, for example, J.

We now adjoin the equality constraint (2.2.6) to the cost function (2.2.5) through
(n × 1) vector, the EL multiplier 𝛌, in order to form a scalar quantity referred to as the
Hamiltonian:

H(x, u, 𝛌) = 𝛉(x, u)+ 𝛌Tf(x, u) (2.2.7)

where

𝛌 = (𝛌1 𝛌2 ⋯ 𝛌n)T: is the (n × 1) EL multiplier vector.

Necessary conditions for optimality are obtained by setting the first order variation 𝛅H,
of H due to variations in x and u, to zero. Writing (replacing x and u by) x = x + 𝛅x
and u = u+ 𝛅u, and expanding the terms on the RHS of (2.2.7) using Taylor series and
including only first order terms, we get:

𝛅H(x, u, 𝛌) =
[𝛛H(x, u, 𝛌)

𝛛x

]T

𝛅x +
[𝛛H(x, u, 𝛌)

𝛛u

]T

𝛅u⋯

=
[𝛛𝛉(x, u)

𝛛x
+
𝛛fT(x, u)

𝛛x
𝛌
]T

𝛅x +
[𝛛𝛉(x, u)

𝛛u
+
𝛛fT(x, u)

𝛛u
𝛌
]T

𝛅u

(2.2.8)

For optimality: 𝛅H(x, u, 𝛌) = 0; which gives us the necessary conditions (for optimum
solution) as:

𝛛H(x, u, 𝛌)

𝛛x
=
𝛛𝛉(x, u)

𝛛x
+
𝛛fT(x, u)

𝛛x
𝛌 = 0 (2.2.9)

𝛛H(x, u, 𝛌)

𝛛u
=
𝛛𝛉(x, u)

𝛛u
+
𝛛fT(x, u)

𝛛u
𝛌 = 0 (2.2.10)

where (see Appendix A1.3):

𝛛H
𝛛x

=
( 𝛛H
𝛛x1

𝛛H
𝛛x2

⋯
𝛛H
𝛛xn

)T
: and

𝛛𝛉
𝛛x
=
( 𝛛𝛉
𝛛x1

𝛛𝛉
𝛛x2

⋯
𝛛𝛉
𝛛xn

)T
: are (n × 1) vectors.

𝛛H
𝛛u

=
( 𝛛H
𝛛u1

𝛛H
𝛛u2

⋯
𝛛H
𝛛um

)T
: and

𝛛𝛉
𝛛u
=
( 𝛛𝛉
𝛛u1

𝛛𝛉
𝛛u2

⋯
𝛛𝛉
𝛛um

)T
: are (m × 1) vectors.
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(𝛛fT

𝛛x

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛛f1

𝛛x1

𝛛f2

𝛛x1
⋯

𝛛fn

𝛛x1
𝛛f1

𝛛x2

𝛛f2

𝛛x2
⋯

𝛛fn

𝛛x2
⋮ ⋮ ⋱ ⋮
𝛛f1

𝛛xn

𝛛f2

𝛛xn
⋯

𝛛fn

𝛛xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

: is the (n × n) Jacobian matrix.

(𝛛fT

𝛛u

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛛f1

𝛛u1

𝛛f2

𝛛u1
⋯

𝛛fn

𝛛u1
𝛛f1

𝛛u2

𝛛f2

𝛛u2
⋯

𝛛fn

𝛛u2
⋮ ⋮ ⋱ ⋮
𝛛f1

𝛛um

𝛛f2

𝛛um
⋯

𝛛fn

𝛛um

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

: is the (m × n) Jacobian matrix.

In order to determine whether equations (2.2.9) and (2.2.10) yield a minimum or a max-
imum value (sufficient condition for optimality), we examine the second order variation
𝛅2H, of H. From equation (2.2.8), it follows:

𝛅2H = 1
2
𝛅xT
⎡⎢⎢⎣
𝛛
𝛛x

(
𝛛H
𝛛x

)T

𝛅x + 𝛛
𝛛u

(
𝛛H
𝛛x

)T

𝛅u
⎤⎥⎥⎦
⋯

+ 1
2
𝛅uT
⎡⎢⎢⎣
𝛛
𝛛x

(
𝛛H
𝛛u

)T

𝛅x + 𝛛
𝛛u

(
𝛛H
𝛛u

)T

𝛅u
⎤⎥⎥⎦

(2.2.11)

If we now define the composite vector 𝛅z = (𝛅xT 𝛅uT )T, then equation (2.2.11) can
be written as:

𝛅2H(x, u, 𝛌) = 1
2
𝛅zT

⎡⎢⎢⎢⎢⎢⎣

𝛛
𝛛x

(
𝛛H
𝛛x

)T
𝛛
𝛛u

(
𝛛H
𝛛x

)T

𝛛
𝛛x

(
𝛛H
𝛛u

)T
𝛛
𝛛u

(
𝛛H
𝛛u

)T

⎤⎥⎥⎥⎥⎥⎦
𝛅z = 𝛅zT[U]𝛅z (2.2.12)

where

[U] =

⎡⎢⎢⎢⎢⎢⎣

𝛛
𝛛x

(
𝛛H
𝛛x

)T
𝛛
𝛛u

(
𝛛H
𝛛x

)T

𝛛
𝛛x

(
𝛛H
𝛛u

)T
𝛛
𝛛u

(
𝛛H
𝛛u

)T

⎤⎥⎥⎥⎥⎥⎦
: is (n+m) × (n+m) Hessian matrix.

The condition for a minimum value for the cost function may be written as:

𝛅2H = 𝛅zT[U]𝛅z ≥ 0, or that the matrix [U] be positive semi-definite (2.2.13)
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Similarly, for a maximum value for the cost function may be written as:

𝛅2H = 𝛅zT[U]𝛅z < 0, or that the matrix [U] be negative definite (2.2.14)

Equations (2.2.9), (2.2.10) along with (2.2.13), (2.2.14) give the necessary and sufficient
conditions for optimality.

2.2.3 Steady-State Optimum Control Problem for a Linear System with Quadratic
Cost Function

Given a linear system:

f(x, u) = Fx +Gu+ d = 0 (2.2.15)

We wish to find the control vector u so as to minimize the cost function:

J = 𝛉(x, u) = 1
2
‖x‖2

Q +
1
2
‖u‖2

R (2.2.16)

where

x: is the (n × 1) system state vector.
u: is the (m × 1) input (control) vector.
d: is the (n × 1) fixed disturbance vector.
F, G: are respectively (n × n) and (n ×m) state and input coefficient matrices.
Q, R: are respectively (n × n) and (m ×m) PI weightings matrices, that are at least pos-

itive semi-definite.‖𝛈‖2
𝚲: is an abbreviation for a scalar quadratic function 𝛈T𝚲𝛈.

The Hamiltonian in this case can be written as:

H(x, u, 𝛌) = 1
2

xTQx + 1
2

uTRu+ 𝛌T(Fx +Gu+ d) (2.2.17)

Necessary conditions for minimization are given by:
𝛛H
𝛛x

= Qx + FT𝛌 = 0; 𝛛H
𝛛u

= Ru+GT𝛌 = 0 (2.2.18)

where 𝛌 is determined such that the equality constraint:

Fx +Gu+ d = 0 (2.2.19)

From (2.2.18) it follows that:

𝛌 = −F−TQx (2.2.20)

u = −R−1GT𝛌 = R−1GTF−TQx (2.2.21)

Note that for equation (2.2.21) to hold, matrix R has to be positive definite. It is also
possible to express u as a function of d as follows. Combining equations (2.2.18) and
(2.2.20), we get:

Ru = −GT𝛌 = GTF−TQx (2.2.22)

Substituting for x from equation (2.2.19), that is, x = −F−1(Gu+ d), we may write equa-
tion (2.2.22) as:

Ru = −GTF−TQF−1(Gu+ d) (2.2.23)
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x − u = 1

u = −

u

1
2

1
2

x =

x

1
2

J =

Figure .. Example 2.2.1.

After some straightforward algebraic manipulation of equation (2.2.23) it can be shown
that:

u = −(R+GTF−TQF−1G)−1GTF−TQF−1d (2.2.24)

Equation (2.2.24) gives the optimum value for u vector; however it requires that F−1

exists. In order to verify that the solution in fact gives a minimum, we construct the
matrix [U] defined in equation (2.2.13). For our present problem:

[U] =
[

Q 0
0 R

]

This is positive semi-definite if Q is positive semi-definite and R is positive definite,
which is what was assumed for the problem. Thus the solution to the optimum problem
in this case results in a minimum value for the cost function.

Example 2.2.1 Let us assume the following parameters for the above problem with the
cost function and system equation given by: J = 1

2 x2 + 1
2 u2; x − u = 1; then: u = −1

2 ;
x = 1

2 ; J = 1
4 . Figure 2.2.2 illustrates the solution.

. Dynamic Optimum Control Problem

2.3.1 Optimal Control with Initial and Terminal Conditions Specified

A dynamic optimization control (Bolza) problem is characterized by a cost function
(functional), which is of the form:

J(x, tf ) = 𝛉[x(t), t]|tf
t0
+

tf

∫
t0

𝛟[x(t), u(t), t]dt (2.3.1)

where the state and input variables (vectors) x(t) and u(t) satisfy the non-linear vector
differential equation, also referred to as the control system dynamic model, given by:

ẋ(t) = f[x(t), u(t), t] (2.3.2)
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where

x(t): is the (n × 1) system state vector with an initial condition: x(t0) = x0 and the final
condition x(tf ) = xf .

u(t): is the (m × 1) input (control) vector.
f[x(t), u(t), t]: is the (n × 1) vector function of state and input vectors.

More general boundary conditions may be specified as M(t0)x(t0) = m0 and
N(tf )x(tf ) = nf ; here: m0 is an (r × 1) vector and nf is a (q × 1) vector, r, q ≤ n; and
M(⋯), N(⋯): are respectively (r × n) and (q × n) matrices.

The object here is to determine the control vector u(t) so as to optimize the cost func-
tion (2.3.1) subject to the constraint defined by the differential equation (2.3.2). In order
to include this equality constraint in the cost function we utilize the EL multiplier, men-
tioned earlier. This gives us a modified cost function, which is given by:

J(x) = 𝛉[x(t), t]|tf
t0
+

tf

∫
t0

{𝛟[x(t), u(t), t]+ 𝛌T(t)[f(x(t), u(t), t)− ẋ(t)]}dt (2.3.3)

We now define a scalar function, the Hamiltonian as:

H[x(t), u(t), t] = 𝛟[x(t), u(t), t]+ 𝛌T(t)f[x(t), u(t), t] (2.3.4)

Using equation (2.3.4), we can write the cost function (2.3.3) as:

J(x) = 𝛉[x(t), t]|tf
t0
+

tf

∫
t0

{H[x(t), u(t), t]− 𝛌T(t)ẋ(t)}dt (2.3.5)

Integrating the last term in the integrand of (2.3.5), we get:

J(x) = {𝛉[x(t), t]− 𝛌T(t)x(t)}|||
tf

t0
+

tf

∫
t0

{H[x(t), u(t), t]+ ̇𝛌T(t)x(t)}dt (2.3.6)

Considering the variations 𝛅x(t) = x(t)− x̂(t) and 𝛅u(t) = u(t)− û(t) about the opti-
mal trajectory x̂(t), û(t) we get for first order variation of the cost function (2.3.6) the
following:

𝛅J =
[
𝛅xT

(
𝛛𝛉
𝛛x
− 𝛌
)]||||||

tf

t0

+
tf

∫
t0

[
𝛅xT

(
𝛛H
𝛛x
+ ̇𝛌
)
+ 𝛅uT

(
𝛛H
𝛛u

)]
dt (2.3.7)

Note that for convenience the notation of explicit dependence on time t is dropped. The
necessary condition for optimality can be obtained by setting 𝛅J = 0 for arbitrary 𝛅x and
𝛅u; which gives us:

𝛅xT

(
𝛛𝛉
𝛛x
− 𝛌
)
= 0, for t = t0, tf (2.3.8)

̇𝛌T = −𝛛H
𝛛x

(2.3.9)



2 Optimum Control and Differential Game Theory 

ẋ = f(x, u, t) = 𝛛H
𝛛𝛌

(2.3.10)

𝛛H
𝛛u

= 0 (2.3.11)

2.3.2 Boundary (Transversality) Conditions

(i) For problems where the terminal state is not defined and where the initial state is
specified, the boundary (transversality) condition may be written as:

x(t0) = x0, 𝛌(tf ) =
𝛛𝛉[x(tf ), tf ]

𝛛x(tf )
(2.3.12)

Since x(t0) is fixed, therefore, 𝛅x(t0) = 0, and 𝛅x(tf ) is arbitrary. This situation is
depicted in Figure 2.3.1(a).

(ii) In problems where both x(t0) and x(tf ) are fixed, that is, 𝛅x(t0) = 𝛅x(tf ) = 0, we get
a two point boundary value problem. This situation is depicted in Figure 2.3.1(b).

(iii) In problems where 𝛉 = 0, and both x(t0), x(tf ) are arbitrary, that is, 𝛅x(t0),
𝛅x(tf ) ≠ 0 then equation (2.3.8) gives us: 𝛌(t0) = 𝛌(tf ) = 0 as boundary conditions.
This situation is depicted in Figure 2.3.1(c).

(iv) If the initial condition is fixed, that is, x(t0) = x0, while the terminal condition is
specified by, say, ‖x(tf )‖2 = c, then it follows from this equality and equation (2.3.8)
that the boundary conditions are given by:

𝛅xT(tf )x(tf ) = 0; 𝛅xT(tf )𝛌(tf ) = 0 (2.3.13)

In many applications the initial and terminal conditions are defined in a more general
way, through a manifold specified as follows:

m[x(t0), t0] = m0 = 0 (2.3.14)

n[x(tf ), tf ] = nf = 0 (2.3.15)

where m[x(t0), t0] is a (r × 1) vector and n[x(tf ), tf ] is a (q × 1) vector; r, q ≤ n.

(a)

x3

x(t)

x2

t0 tf t

x1

(b) (c)

x3

x(t)

x2

t0 tf t

x1

x3

x(t)

x2

t0 tf t

x1

Figure .. Boundary (transversality) conditions.
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These boundary conditions can be incorporated in the optimum problem by including
them in the cost function by means of EL multipliers 𝛏 and 𝛍 as follows:

J(x)= 𝛉[x(t), t]|||
tf

t0
+𝛍Tn[x(tf ), tf ]−𝛏Tm[x(t0), t0]+

tf

∫
t0

{H[x(t), u(t), t]−𝛌T(t)ẋ(t)}dt

(2.3.16)
The first variation of the cost function, in this case is given by:

𝛅J =
[
𝛅xT

(
𝛛𝛉
𝛛x
− 𝛌
)]||||||

tf

t0

+ 𝛅xT

(𝛛n

𝛛x

)T

t=tf

𝛍 − 𝛅xT

(𝛛m

𝛛x

)T

t=t0

𝛏⋯

+
tf

∫
t0

[
𝛅xT

(
𝛛H
𝛛x
+ ̇𝛌
)
+ 𝛅uT

(
𝛛H
𝛛u

)]
dt

(2.3.17)

Setting 𝛅J = 0, we obtain conditions for optimality as follows:

̇𝛌T = −𝛛H
𝛛x

(2.3.18)

ẋ = f(x, u, t) = 𝛛H
𝛛𝛌

(2.3.19)

𝛛H
𝛛u

= 0 (2.3.20)

The boundary (transversality) conditions are given by:

⎡⎢⎢⎣
𝛛𝛉
𝛛x
+
(𝛛m

𝛛x

)T

𝛏 − 𝛌
⎤⎥⎥⎦
= 0, for t = t0 (2.3.21)

⎡⎢⎢⎣
𝛛𝛉
𝛛x
+
(𝛛n

𝛛x

)T

𝛍 − 𝛌
⎤⎥⎥⎦
= 0, for t = tf (2.3.22)

along with the boundary conditions (2.3.14) and (2.3.15).
Equation (2.3.18) will be referred to as the adjoint equation. Equation (2.3.19) provides

the coupling between the original system dynamics (2.3.2) and the adjoint operator 𝛌.
Note that for equation (2.3.20) to be valid, 𝛅u must be completely arbitrary. For the
case where 𝛅u is not completely arbitrary (e.g., in the case of control constraints) then
equation (2.3.20) will not hold. To solve optimum control problems where 𝛅u is bounded
(constrained), Pontryagin’s Minimum Principle can be used as discussed later.

Example 2.3.1 Given the following cost function to be minimized and a (scalar) sys-
tem dynamic model:

J = 1
2

sx2(tf )+ 1
2

tf

∫
t0

(qx2 + ru2)dt (2.3.23)

ẋ = fx + gu (2.3.24)
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For convenience, we shall assume that the parameters (s, q, r, f, g) are constants, and
q ≥ 0, r > 0.

Case 1: Assume that the boundary conditions are specified by x(t0) = x0 and x(tf )
unspecified:

Then the Hamiltonian is given by:

H = 1
2

(qx2 + ru2)+ 𝛌(fx + gu) (2.3.25)

And equations (2.3.18) through (2.3.20) give us:

− ̇𝛌 = 𝛛H
𝛛x

= qx + f𝛌 (2.3.26)

ẋ = 𝛛H
𝛛𝛌

= fx + gu (2.3.27)

𝛛H
𝛛u

= 0 = ru+ g𝛌 (2.3.28)

which must satisfy the boundary condition (2.3.8):

𝛌(tf ) = sx(tf ) (2.3.29)

Assuming that 𝛌(t) is of the form: 𝛌(t) = p(t)x(t), then it can be shown that equa-
tions (2.3.26) through (2.3.28) may be combined to give us:

(ṗ+ 2pf − p2g2r−1 + q)x(t) = 0 (2.3.30)

Since (2.3.30) must hold for all x(t), hence, the solution of the optimization problem
requires that the following differential equation must be solved:

ṗ+ 2pf − p2g2r−1 + q = 0; with the boundary condition p(tf ) = s (2.3.31)

This is the Riccati equation, which must be solved backward in time t from tf to t0.
The value of p(t) can be substituted in (2.3.28) to construct u(t). This case is further
considered in Section 2.4.

Case 2: Assume that the boundary conditions are specified by x(t0) = x0 and
x(tf ) = xf ; and the cost function to be minimized is:

J = 1
2

tf

∫
t0

u2dt (2.3.32)

Then the Hamiltonian is given by:

H = 1
2

u2 + 𝛌(fx + gu) (2.3.33)

And equations (2.3.18) through (2.3.20) give us:

− ̇𝛌 = 𝛛H
𝛛x

= f𝛌 (2.3.34)

ẋ = 𝛛H
𝛛𝛌

= fx + gu (2.3.35)

𝛛H
𝛛u

= 0 = u+ g𝛌 (2.3.36)
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In this case 𝛅x(t0) = 𝛅x(tf ) = 0, since both x(t0) = x0, x(tf ) = xf are fixed, and 𝛌(t0),
𝛌(tf ) are arbitrary. Equations (2.3.35) and (2.3.36) may be combined to give us:

ẋ = fx − g2𝛌 (2.3.37)

whose general solution may be written as [see Appendix A1.9]:

x(t) = ef(t−t0)x0 −
t

∫
t0

ef(𝛕−t0)g2𝛌(𝛕)d𝛕 (2.3.38)

Also, the general solution of (2.3.34) may be written as:

𝛌(𝛕) = e−f(𝛕−t0)𝛌(t0) (2.3.39)

Equations (2.3.38) and (2.3.39) may be combined to give us:

x(t) = ef(t−t0)x0 − g2𝛌(t0)(t− t0) (2.3.40)

Note that for (tf − t0) and (xf − x0) bounded, then 𝛌(t0) is also bounded; in fact:

𝛌(t0) =
ef(tf−t0)x0 − xf

g2(tf − t0)
(2.3.41)

and:

u(t) = ge−f(t−t0)𝛌(t0) (2.3.42)

For the case of a cost function of the type: J = 1
2

tf∫
t0

(qx2 + ru2)dt, the solution to the

problem with x(t0) = x0, x(tf ) = xf , becomes a two-point boundary problem for which
there is no closed form solution, and requires an iterative technique such as a dynamic
or a differential dynamic technique to obtain a solution (e.g., see references).[3, 4]

Example 2.3.2 Given the following cost function to be minimized and the system
dynamic model as:

J = 1
2

tf

∫
t0

u2dt (2.3.43)

and:

ẋ1 = x2; ẋ2 = u (2.3.44)

The boundary conditions are defined by initial and final manifolds:

m[x(t0)] = 1
2

[x1
2(t0)+ x2

2(t0)]− c0 = 0 (2.3.45)

n[x(tf )] = 1
2
[
x1

2(tf )+ x2
2(tf )

]
− cf = 0 (2.3.46)
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The Hamiltonian is given by:

H = 1
2

u2 + 𝛌1x2 + 𝛌2u (2.3.47)

The necessary conditions (2.3.9) through (2.3.11) for optimality are given by:

̇𝛌1 = −
𝛛H
𝛛x1

= −𝛌1; ̇𝛌2 = −
𝛛H
𝛛x2

= 0 (2.3.48)

ẋ1 =
𝛛H
𝛛𝛌1

= x2; ẋ2 =
𝛛H
𝛛𝛌2

= u (2.3.49)

𝛛H
𝛛u

= 0 = u+ 𝛌2; ➔ u = −𝛌2 (2.3.50)

The boundary conditions (2.3.14) through (2.3.15) and (2.3.21) through (2.3.22) are
given by:

[x1
2(t0)+ x2

2(t0)]− 2c0 = 0 (2.3.51)[
x1

2(tf )+ x2
2(tf )

]
− 2cf = 0 (2.3.52)

𝛌1(t0) = x1(t0)𝛏; 𝛌2(t0) = x2(t0)𝛏 (2.3.53)

𝛌1(tf ) = x1(tf )𝛍; 𝛌2(tf ) = x2(tf )𝛍 (2.3.54)

Although the differential equations (2.3.48) through (2.3.50) are linear, however, once
we take into account the boundary conditions (2.3.51) through (2.3.54), the solution
becomes non-linear and somewhat complicated and requires iterative techniques to
solve the problem.

2.3.3 Sufficient Conditions for Optimality

In order to investigate the nature of the optimum solution (i.e., minimum, maximum,
or a saddle point) we need to examine the second variation of J(..) in equation (2.3.6),
given that the first variation of (2.3.2) is zero, that is:

𝛅ẋ −
( 𝛛f

𝛛x

)T

𝛅x −
( 𝛛f

𝛛u

)T

𝛅u = 0 (2.3.55)

We consider the second order variation of equation (2.3.6) (see Appendix, Sections A2.3
to A2.5) which gives us:

𝛅2J = 1
2

[
𝛅xT

(
𝛛2𝛉
𝛛x2

)
𝛅x
]||||||

tf

t0

+⋯

1
2

tf

∫
t0

⎡⎢⎢⎣
𝛅xT

(
𝛛2H
𝛛x2

)
𝛅x + 𝛅xT

(
𝛛2H
𝛛x𝛛u

)
𝛅u+ 𝛅uT

(
𝛛2H
𝛛u2

)
𝛅u+ 𝛅uT

(
𝛛2H
𝛛u𝛛x

)T

𝛅x
⎤⎥⎥⎦

dt
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which may be written, in matrix notation, as:

𝛅2J= 1
2

[
𝛅xT

(
𝛛2𝛉
𝛛x2

)
𝛅x
]||||||

tf

t0

+ 1
2

tf

∫
t0

⎧⎪⎪⎨⎪⎪⎩
[𝛅xT 𝛅uT ]

⎡⎢⎢⎢⎢⎢⎣

(
𝛛2H
𝛛x2

) (
𝛛2H
𝛛x𝛛u

)

(
𝛛2H
𝛛u𝛛x

) (
𝛛2H
𝛛u2

)
⎤⎥⎥⎥⎥⎥⎦

[
𝛅x
𝛅u

]⎫⎪⎪⎬⎪⎪⎭
dt

(2.3.56)

or equivalently:

𝛅2J = 1
2

(
𝛅xT 𝛛2𝛉

𝛛x2
𝛅x
)||||||

tf

t0

+ 1
2

tf

∫
t0

{𝛅zT[U]𝛅z}dt (2.3.57)

where

𝛅z = (𝛅xT 𝛅uT)T

[U] =

⎡⎢⎢⎢⎢⎢⎣

(
𝛛2H
𝛛x2

) (
𝛛2H
𝛛x𝛛u

)

(
𝛛2H
𝛛u𝛛x

) (
𝛛2H
𝛛u2

)
⎤⎥⎥⎥⎥⎥⎦

(2.3.58)

This implies that both the matrices ( 𝛛
2𝛉
𝛛x2 )|tf

t0
and the one inside the square bracket [U]

in equation (2.3.58) must be positive semi-definite for a minimum value for the cost
function (and negative definite for a maximum value), and “mixed” (i.e., has both positive
and negative eigenvalues) for a saddle point.

2.3.4 Continuous Optimal Control with Fixed Initial Condition and Unspecified
Final Time

In this section we consider the problem where the initial time and states are specified
while the terminal time is unspecified, and the terminal state vector is defined via a ter-
minal manifold. The development considered in the previous sections can be extended
to this case. Accordingly, we consider the problem of optimizing the cost function:

J(x, tf ) = 𝛉[x(tf ), tf ]+
tf

∫
t0

𝛟[x(t), u(t), t]dt (2.3.59)

for the dynamical system described by the differential equation:

ẋ = f[x(t), u(t), t], x(t0) = x0 (2.3.60)

where t0 is fixed, and the terminal time t = tf is unspecified; the final state satisfies the
condition given by the (q × 1) vector manifold:

n[x(tf ), tf ] = 0 (2.3.61)
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As in previous sections, we use EL multipliers 𝛌 and 𝛍 in order to adjoin the equality
constraints (2.3.60) and (2.3.61) to the cost function as follows:

J(x, tf ) = 𝛉[x(tf ), tf ]+ 𝛍Tn[x(tf ), tf ]⋯

+
tf

∫
t0

{𝛟[x(t), u(t), t]+ 𝛌T(t)[f(x(t), u(t), t)− ẋ(t)]}dt
(2.3.62)

If we now define the Hamiltonian as:

H[x(t), u(t), t] = 𝛟[x(t), u(t), t]+ 𝛌T(t)f[x(t), u(t), t] (2.3.63)

Then (2.3.62) may be written as:

J = 𝛉[x(tf ), tf ]|+ 𝛍T(tf )n[x(tf ), tf ]+
tf

∫
t0

{H[x(t), u(t), t]− 𝛌T(t)ẋ(t)}dt (2.3.64)

Integrating by parts the second term inside the integrand, we get:

J = 𝛉[x(tf ), tf ]+ 𝛍T(tf )n[x(tf ), tf ]− 𝛌T(tf )x(tf )+ 𝛌T(t0)x(t0)⋯

+
tf

∫
t0

{H[x(t), u(t), t]+ ̇𝛌T(t)x(t)}dt
(2.3.65)

Consider first order variations of the above expression by making the following substi-
tutions:

J = J+ 𝛅J (2.3.66)
x(t) = x(t)+ 𝛅x(t) (2.3.67)
u(t) = u(t)+ 𝛅u(t) (2.3.68)
tf = tf + 𝛅tf (2.3.69)

Substituting (2.3.66) through (2.3.69) in equation (2.3.65) it is seen that:

J+ 𝛅J = 𝛉[x(tf + 𝛅tf )+ 𝛅x(tf + 𝛅tf ), tf + 𝛅tf ]⋯

+𝛍T(tf + 𝛅tf )n[x(tf + 𝛅tf )+ 𝛅x(tf + 𝛅tf ), tf + 𝛅tf ]⋯

−𝛌T(tf + 𝛅tf )[x(tf + 𝛅tf )+ 𝛅x(tf + 𝛅tf )]+ 𝛌T(t0)x(t0)⋯

+
tf+𝛅tf

∫
t0

{H[x(t)+ 𝛅x(t), u(t)+ 𝛅u(t), t]+ ̇𝛌T(t)[x(t)+ 𝛅x(t)]}dt

(2.3.70)

Terms that occur in (2.3.70) of the type: x(tf + 𝛅tf )+ 𝛅x(tf + 𝛅tf ) may be further sim-
plified as follows:

x(tf + 𝛅tf )+ 𝛅x(tf + 𝛅tf ) = x(tf )+ ẋ(tf )𝛅t+ 𝛅x(tf )+ 𝛅ẋ(tf )𝛅tf
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t
tft0 tf + δtf

x + δx

x

x(t)

Δx

Figure .. Unspecified final time.

By considering only the first order terms, this reduces to:

x(tf + 𝛅tf )+ 𝛅x(tf + 𝛅tf ) = x(tf )+ ẋ(tf )𝛅t+ 𝛅x(tf ) = x(tf )+ 𝚫x(tf ) (2.3.71)

where

𝚫x(tf ) = ẋ(tf )𝛅t+ 𝛅x(tf ), 𝛅ẋ(tf )𝛅tf = 0 (see Figure 3.2.1).

Hence we may write (2.3.70) as:

J+ 𝛅J = 𝛉[x(tf )+ 𝚫x(tf ), tf + 𝛅tf ]+ 𝛍Tn[x(tf )+ 𝚫x(tf ), tf + 𝛅tf ]⋯

−𝛌T(tf + 𝛅tf )[x(tf )+ 𝚫x(tf )]+ 𝛌T(t0)x(t0)⋯

+
tf

∫
t0

{H[x(t)+ 𝛅x(t), u(t)+ 𝛅u(t), t]+ ̇𝛌T(t)[x(t)+ 𝛅x(t)]}dt⋯

+
tf+𝛅tf

∫
tf

{H[x(t)+ 𝛅x(t), u(t)+ 𝛅u(t), t]+ ̇𝛌T(t)[x(t)+ 𝛅x(t)]}dt

(2.3.72)

It will be easier (for the reader) to follow the subsequent development if we consider one
term at a time on the RHS of (2.3.72), thus:

The first term: ➔

𝛉[x(tf )+ 𝚫x(tf ), tf + 𝛅tf ] = 𝛉[x(tf ), tf ]+ 𝚫xT(tf )
𝛛𝛉[x(tf ), tf ]

𝛛x
+ 𝛅tf

𝛛𝛉[x(tf ), tf ]

𝛛tf

(2.3.73)

The second term: ➔

𝛍Tn[x(tf )+ 𝚫x(tf ), tf + 𝛅tf ] = 𝛍Tn[x(tf ), tf ]

+𝚫xT(tf )
𝛛{𝛍Tn[x(tf ), tf ]}

𝛛x
+ 𝛅tf

𝛛
{
𝛍Tn[x(tf ), tf ]

}
𝛛tf

(2.3.74)

The third term: ➔

𝛌T(tf + 𝛅tf )[x(tf )+ 𝚫x(tf )] = 𝛌T(tf )x(tf )+ 𝚫xT(tf )𝛌(tf )+ 𝛅tf [ ̇𝛌T(tf )x(tf )]
(2.3.75)
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The fourth term: ➔

tf

∫
t0

{H[x(t)+ 𝛅x(t), u(t)+ 𝛅u(t), t]+ ̇𝛌T(t)[x(t)+ 𝛅x(t)]}dt

=
tf

∫
t0

⎧⎪⎪⎨⎪⎪⎩

H[x(t), u(t), t]+ 𝛛xT(t)
{𝛛H[x(t), u(t), t]

𝛛x
+ ̇𝛌(t)

}
⋯

+ ̇𝛌T(t)x(t)+ 𝛅uT(t)
𝛛H[x(t), u(t), t]

𝛛u

⎫⎪⎪⎬⎪⎪⎭
dt

(2.3.76)

And the fifth term: ➔

tf+𝛅tf

∫
tf

{H[x(t)+ 𝛅x(t), u(t)+ 𝛅u(t), t]+ ̇𝛌T(t)[x(t)+ 𝛅x(t)]}dt

= {H[x(tf ), u(tf ), tf ]+ ̇𝛌T(tf )x(tf )}𝛅tf

(2.3.77)

It is now a straightforward matter to verify, by comparing the expression for J given in
equation (2.3.65) and the expression for (J+ 𝛅J) given in equation (2.3.70) (utilizing the
expansion of the variational terms given in equations (2.3.73) through (2.3.77)), that:

𝛅J = 𝚫xT(tf )
𝛛𝛉[x(tf ), tf ]

𝛛x
+ 𝛅tf

𝛛𝛉[x(tf ), tf ]

𝛛tf
⋯

+𝚫xT(tf )
𝛛{𝛍Tn[x(tf ), tf ]}

𝛛x
+ 𝛅tf

𝛛{𝛍Tn[x(tf ), tf ]}

𝛛tf
⋯

−𝚫xT(tf )𝛌(tf )+
tf

∫
t0

⎧⎪⎪⎨⎪⎪⎩

𝛛xT(t)
[𝛛H[x(t), u(t), t]

𝛛x
+ ̇𝛌T(t)

]
⋯

+𝛅uT(t)
[𝛛H[x(t), u(t), t]

𝛛u

]
⎫⎪⎪⎬⎪⎪⎭

dt⋯

+{H[x(tf ), u(tf ), tf ]}𝛅tf

(2.3.78)

Making the substitution:

𝚿[x(tf ),𝛍, n, tf ] = 𝛉[x(tf ), tf ]+ 𝛍Tn[x(tf ), tf ]

It follows that equation (2.3.78) may be written as:

𝛅J = 𝛅tf

{
H[x(tf ), u(tf ), tf ]+ 𝛛

𝛛tf
𝚿[x(tf ),𝛍, n, tf ]

}
⋯

+𝚫xT(tf )
{
𝛛
𝛛x
𝚿[x(tf ),𝛍, n, tf ]− 𝛌(tf )

}
⋯

+
tf

∫
t0

{
𝛛xT(t)[𝛛H

𝛛x
+ ̇𝛌T(t)]+ 𝛅uT(t)[𝛛H

𝛛u
]
}

dt

(2.3.79)
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Necessary conditions for optimality are derived by setting 𝛅J = 0 in equation (2.3.79).
Examining the integrand in (2.3.79), we may now write the (necessary) conditions for
optimality, which are given by:

H[x(t), u(t), t] = 𝛟[x(t), u(t), t]+ 𝛌T(t)f[x(t), u(t), t] (2.3.80)
𝛛H
𝛛𝛌

= ẋ = f[x(t), u(t), t] (2.3.81)

𝛛H
𝛛x

= − ̇𝛌T(t) =
𝛛𝛟[x(t), u(t), t]

𝛛x
+
𝛛fT[x(t), u(t), t]

𝛛x
𝛌(t) (2.3.82)

𝛛H
𝛛u

= 0 =
𝛛𝛟[x(t), u(t), t]

𝛛u
+
𝛛fT[x(t), u(t), t]

𝛛u
𝛌(t) (2.3.83)

Equations (2.3.81) through (2.3.82) represent 2n differential equations in (ẋ, ̇𝛌) as a two-
point boundary value problem, with the initial condition:

x(t0) = x0 (2.3.84)

and terminal conditions given by [see equation (2.3.79)]:

𝛌(tf ) = 𝛛𝚿
𝛛x(tf )

= 𝛛𝛉
𝛛x(tf )

+
[ 𝛛nT

𝛛x(tf )

]
𝛍; since 𝚫x(tf ) is arbitrary (2.3.85)

n[x(tf ), tf ] = 0 (2.3.86)

H[x(tf ), u(tf ), tf ]+ 𝛛
𝛛tf
𝚿[x(tf ),𝛍, n, tf ]⋯

= H[x(tf ), u(tf ),𝛍(tf ), tf ]+ 𝛛𝛉
𝛛tf

+
(𝛛nT

𝛛tf

)
𝛍 = 0

(2.3.87)

since 𝛅tf is arbitrary.
Equation (2.3.85) defines n conditions with q EL multipliers𝛍 to be determined. Equa-

tion (2.3.86) provides q equations to eliminate the EL multipliers; equation (2.3.87)
provides one further equation to determine the final time.

Example 2.3.3 We consider the following cost function and the dynamical system
given by:

J = tf +
1
2

tf

∫
0

ru2dt (2.3.88)

and

ẋ1 = x2; ẋ2 = u (2.3.89)

The boundary conditions are defined by the initial and final conditions: x1(0) =
x2(0) = 0, and x1(tf ) = 1. For this problem [see equations (2.3.59) and (2.3.61)]:

𝛉 = tf ,𝛟 = 1
2

ru2, and n1[x1(tf ), tf ] = x1(tf )− 1 = 0
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The Hamiltonian is given by:

H = 1
2

ru2 + 𝛌1x2 + 𝛌2u (2.3.90)

Conditions for optimality (canonical equations) are:

𝛛H
𝛛𝛌1

= ẋ1 = x2; 𝛛H
𝛛𝛌2

= ẋ2 = u (2.3.91)

𝛛H
𝛛x1

= − ̇𝛌1 = 0; 𝛛H
𝛛x2

= − ̇𝛌2 = 𝛌1 (2.3.92)

𝛛H
𝛛u

= 0 = ru+ 𝛌2; ➔ u = −r−1𝛌2 (2.3.93)

The boundary conditions are given by [see equations (2.3.85) through (2.3.87)]:

𝛌1(tf ) = 𝛍1; 𝛌2(tf ) = 𝛍2 (2.3.94)

n1[x1(tf ), tf ] = x1(tf )− 1 = 0 (2.3.95)

−1
2

r−1𝛌2
2(tf )+ 1 = 0; ➔ 𝛌2(tf ) = ±

√
2r (2.3.96)

Examination of equation (2.3.92) gives us: 𝛌1 = c0 = a constant; 𝛌2(t) = −c0t, with

c0 = ∓
𝛌2(tf )

tf
. Hence 𝛌2(t) = ±

√
2r × t

tf
; and u = ∓

√
2
r ×

t
tf

. In view of the final con-

dition: x1(tf ) = 1, we must select the positive sign for u, that is, 𝛌2(t) = −
√

2r × t
tf

; and

u =
√

2
r ×

t
tf

.
Examination of equation (2.3.91), after appropriate substitutions for known val-

ues, gives us: x2(t) =
√

1
2r ×

t2

tf
; x1(t) =

√
1
2r ×

t3

3tf
, which gives us the value for tf as

tf
2 = 3

√
2r.

2.3.5 A Further Property of the Hamiltonian

Here we derive one further property of the Hamiltonian that will prove useful in solv-
ing many optimum problems particularly those involving control constraints [see Sec-
tion 2.3.3].

Differentiating the Hamiltonian of equation (2.3.80) w.r.t. t yields:

dH
dt

=
𝛛𝛟
𝛛t
+ ẋT

[
𝛛𝛟
𝛛x
+
(𝛛fT

𝛛x

)
𝛌
]
+ u̇T

[
𝛛𝛟
𝛛u
+
(𝛛fT

𝛛u

)
𝛌
]
+ ̇𝛌T(t)f + 𝛌T(t)

𝛛f

𝛛t
(2.3.97)

Using the relations given in equation (2.3.82) and (2.3.83), and noting that: ẋT
̇𝛌 = ̇𝛌Tf ,

equation (2.3.97) may be written as:

dH
dt

=
𝛛𝛟
𝛛t
+ u̇T 𝛛H

𝛛u
+ 𝛌T(t)

𝛛f

𝛛t
(2.3.98)
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We note that if 𝛟 and f are not explicit functions of time t, then the Hamiltonian is
constant along the optimal trajectory where 𝛛H

𝛛u = 0; in fact, it can also be shown that
Hamiltonian is constant along the optimal trajectory even if we are unable to show that
𝛛H
𝛛u = 0. This will be used in Example 2.3.4.

2.3.6 Continuous Optimal Control with Inequality Control Constraints—the Pontryagin’s
Minimum (Maximum) Principle

In the previous section we considered the Bolza problem where there were no con-
straints on control variables in which case first variation of u(t), that is, 𝛅u(t) is unre-
stricted, and we were justified in setting 𝛛H

𝛛u = 0. However, there is a large class of prob-
lems where the control variables are subject to inequality constraints, for example, the
case where there may be maximum and minimum limits on the control (g-limits on
vehicle acceleration, for example). In such cases, u(t) and 𝛅u(t) are restricted and we are
no longer justified to set 𝛛H

𝛛u = 0. In order to solve such problems we need to establish
the optimality conditions through the use of the Pontryagin’s Minimum (Maximum)
Principle (PMP). Accordingly, we shall, in this section, consider the following problem.

Here we wish to optimize the cost function:

J(x, tf ) = 𝛉[x(tf ), tf ]+
tf

∫
t0

𝛟[x(t), u(t), t]dt (2.3.99)

for the system described by the vector differential equation:

ẋ = f[x(t), u(t), t], x(t0) = x0 (2.3.100)

where t0 is fixed and where at the unspecified terminal time t = tf ; the (q × 1) vector
manifold for the final state is given by:

n[x(tf ), tf ] = 0 (2.3.101)

and where the control variable u(t) ∈ 𝛀 is restricted to the set 𝛀 which contains func-
tions in u that satisfy a condition of the type:

g[u(t), t] ≤ 𝛂 (2.3.102)

In a general case g is a function of [x(t), u(t), t], however, for problems considered here
constraints given in equation (2.3.102) are appropriate. In fact, we can afford to be some-
what more specific as in many problems of practical interest, control constraints may
be written as: ‖u(t)‖ ≤ 𝛂. As in previous sections we define the Hamiltonian as:

H[x(t), u(t), t] = 𝛟[x(t), u(t), t]+ 𝛌T(t)f[x(t), u(t), t] (2.3.103)

A detailed derivation of PMP is given in the references.[13] Here we shall state the PMP
as follows: The Hamiltonian (canonical) equations that minimize a cost function J and
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determine the optimum state and control vectors: x(t) = x̂(t), and u(t) = û(t), satisfy
the condition that:

H[x̂(t), û(t), t] ≤ H[x(t), u(t), t]
u(t)∈𝛀

(2.3.104)

and that:

𝛛H
𝛛x

= − ̇𝛌T(t) =
𝛛𝛟[x(t), u(t), t]

𝛛x
+
𝛛fT[x(t), u(t), t]

𝛛x
𝛌(t) (2.3.105)

𝛛H
𝛛𝛌

= ẋ = f[x(t), u(t), t] (2.3.106)

Subject to the boundary conditions:

x(t0) = x0 (2.3.107)

𝛌(tf ) = 𝛛𝚿
𝛛x

= 𝛛𝛉
𝛛x
+
𝛛nT

𝛛x
𝛍; t = tf (2.3.108)

n[x(tf ), tf ] = 0 (2.3.109)

H[x(tf ), u(tf ), tf ]+ 𝛛𝛉
𝛛tf

+
𝛛nT

𝛛tf
𝛍 = 0; t = tf (2.3.110)

The variables and notations used in the above equations are the same as those introduced
earlier in this chapter. An example of this type of problem (minimum time problem) is
where the boundary conditions are given by:

x(t0) = x0

n[x(tf ), tf ] = x(tf ) = 0;𝛟[x(t), u(t), t] = 0; 𝛉[x(tf ), tf ] = tf

In this case it is easily verified that: 𝛌(tf ) = 0, H = −1 at t = tf ; and we are required to
solve the following differential equations for t0 ≤ t ≤ tf :

H[x(t), u(t), t] = 𝛌T(t)f[x(t), u(t), t] (2.3.111)

𝛛H
𝛛x

= − ̇𝛌T(t) =
𝛛fT[x(t), u(t), t]

𝛛x
𝛌(t) (2.3.112)

𝛛H
𝛛𝛌

= ẋ = f[x(t), u(t), t] (2.3.113)

Example 2.3.4 (The minimum time problem): We consider the following cost function
and the dynamical system given by:

J = tf (2.3.114)
ẋ = Fx +Gu; x(t0) = x0 (2.3.115)

where the admissible set u(t) ∈ 𝛀 implies:

‖u(t)‖ ≤ 1. (2.3.116)
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The Hamiltonian is given by:

H(x, u, 𝛌; t) = 𝛌T(Fx +Gu) (2.3.117)

In order to minimize the value of H w.r.t. u we assume:

u =
−GTu

‖GTu‖ (2.3.118)

Note that this choice of u satisfies the minimum condition for (2.3.117). The canonical
equations are:

𝛛H
𝛛𝛌

= ẋ = Fx +Gu; 𝛛H
𝛛x

= − ̇𝛌 = 𝛌TF (2.3.119)

The boundary conditions are: x(t0) = x0, x(tf ) = 0, and tf is determined by equa-
tion (2.3.110), which gives:

H[x(tf ), u(tf ), 𝛌(tf )] = −1 (2.3.120)

Using equation (2.3.98) it can be shown that dH
dt = 0, since H does not depend explicitly

on t; hence:

H[x(t), u(t), 𝛌(t)] = −1 = 𝛌T(t)[Fx(t)+Gu(t)] ∀t0 ≤ t ≤ tf (2.3.121)

This provides the additional condition required to determine tf .

. Optimal Control for a Linear Dynamical System

2.4.1 The LQPI Problem—Fixed Final Time

In this section we consider the optimum control problem commonly referred to as the
linear system quadratic performance index (LQPI); the terms “performance index” and
“cost function” will be taken to mean the same. Accordingly, we now consider derivation
of the optimal feedback control law for a linear dynamical system model defined by the
following vector differential equation:

ẋ(t) = f[x(t), u(t), t] = F(t)x(t)+G(t)u(t); x(t0) = x0 (2.4.1)

where

t: is the time with t0 ≤ t ≤ tf ; t0 is the initial time and tf is the final time.
x = ( x1 x2 ⋯ xn )T: is the (n × 1) state vector.
u = ( u1 u2 ⋯ um )T: is the (m × 1) input (control) vector.
F: is the (n × n) state coefficient matrix.
G: is the (n ×m) input coefficient matrix.

We wish to minimize the cost function, which is a quadratic scalar function of states
and control given by:

J = 1
2

[xT(tf )Sx(tf )]+ 1
2

tf

∫
t0

[xT(t)Q(t)x(t)+ uT(t)R(t)u(t)]dt (2.4.2)
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where

Q: is the (n × n) symmetric positive semi-definite current-state PI weightings matrix.
S: is the (n × n) symmetric positive semi-definite final-state PI weightings matrix.
R: is the (m ×m) symmetric positive definite control PI weightings matrix.
𝛈T(t)𝚲(t)𝛈(t) = ‖𝛈‖2

𝚲: is the scalar quadratic function and defines a weighted norm of
a vector 𝛈(t).

The term 1
2 is inserted for convenience as will become evident later. Scalar quadratic

terms in (2.4.2) imply that minimization of the cost function is equivalent to minimizing
deviations of system states and control inputs from a nominal value (zero in this case).
The elements of the [S, Q, R] matrices will be referred to as “weightings” on state and
control variables. The requirement that S, Q, R be symmetric is quite general whereas
the requirement that Q, S be positive semi-definite and R be positive definite is neces-
sary in order for a solution to the minimization problem to exist.

We see that equation (2.4.2) has the same form as (2.3.1) used earlier in general deriva-
tions with the following substitutions:

𝛉[x(tf ), tf ] = 1
2

[xT(tf )Sx(tf )] ≥ 0 (2.4.3)

𝛟[x(t), u(t), t] = 1
2

[xT(t)Q(t)x(t)+ uT(t)R(t)u(t)] > 0 (2.4.4)

The Hamiltonian in this case may be written as:

H[x(t), u(t), t] = 1
2

[xT(t)Q(t)x(t)+ uT(t)R(t)u(t)]+ 𝛌T(t)[F(t)x(t)+G(t)u(t)]

(2.4.5)

As shown in Section 2.3, equations (2.3.60) through (2.3.62), necessary conditions for
minimization for this case, require that:

𝛛H
𝛛x

= − ̇𝛌(t) = Q(t)x(t)+ FT(t)𝛌(t) (2.4.6)

𝛛H
𝛛u

= 0 = R(t)u(t)+GT(t)𝛌(t) (2.4.7)

𝛛H
𝛛𝛌

= ẋ = F(t)x(t)+G(t)u(t) (2.4.8)

With terminal conditions:

𝛌(tf ) = 𝛛𝛉
𝛛xf

= Sx(tf ) (2.4.9)

Equation (2.4.7) yields:

u(t) = −R−1(t)GT(t)𝛌(t) (2.4.10)

In order to convert this expression for the input into a feedback form, we assume a
solution for 𝛌 of the form:

𝛌(t) = P(t)x(t) (2.4.11)
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Substituting this value of u in equation (2.4.1) gives us:

ẋ(t) = F(t)x(t)+G(t)R−1(t)GT(t)P(t)x(t) (2.4.12)

Substituting for 𝛌 into equation (2.4.6) gives us:

− ̇P(t)x(t)− P(t)ẋ(t) = Q(t)x(t)+ FT(t)P(t)x(t) (2.4.13)

Combining equation (2.4.12) with equation (2.4.13) it is easily verified that:
[
̇P(t)+ P(t)F(t)+ FT(t)P(t)− P(t)G(t)R−1(t)GT(t)P(t)+Q(t)

]
x(t) = 0 (2.4.14)

Since this equation is true for all x, it follows that:

̇P(t)+ P(t)F(t)+ FT(t)P(t)− P(t)G(t)R−1(t)GT(t)P(t)+Q(t) = 0 (2.4.15)

Equation (2.4.15) is the well-known MRDE with the terminal condition that:

P(tf ) = S(tf ) (2.4.16)

From examination of the structure of the MRDE it follows that P(t) is a (n × n) sym-
metric matrix. For a solution of equation (2.4.15) to exist with the terminal condition
given by equation (2.4.16) matrix P(t) must be positive definite. It can be shown that
this solution of the MRDE converges to a steady-state value as tf ➔ −∞. If we com-

pute the second derivative then it can be shown that: [U] = [ Q 0
0 R ]; which is positive

semi-definite, since [S, Q, R] were all taken to be at least positive semi-definite, indi-
cating that the solution of the optimization problem considered in this section gives a
minimum value for the cost function J. The feedback control law may be written as:

u(t) = −R−1(t)GT(t)P(t)x(t) = K(t)x(t) (2.4.17)

where

K(t) = −R−1(t)GT(t)P(t): is referred to as the feedback gain (matrix).

It is shown in the Appendix that the second variation matrix equation (A1.8.4) has a set
of eigenvalues which are positive, leading to the conclusion that the optimum solution
gives a minimum value for the cost function.

. Optimal Control Applications in Differential Game Theory

In this section we shall consider the application of the optimal control theory devel-
oped thus far to game theory-based guidance involving two or more players (parties).
Game theory application to a two-party game is quite straightforward and is considered
in Section 2.5.1. The approach adopted is similar to the LQPI problem considered in
Section 2.4. A good example of this application is the well-known pursuit-evasion game
involving an interceptor launched against a target. Here the interceptor tries to minimize
the miss-distance in order to achieve an intercept while the target tries to maximize the
miss-distance in order to escape and thus avoid intercept. Both parties in this scenario
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need to generate control (guidance) strategies that are usually the commanded lateral
accelerations applied to vehicles such as missiles or aircraft or appropriate maneuvers
in order to achieve their objectives.

In the case of a three-party (or multi-party) game the situation is somewhat more
complex. In Section 2.5.2, we shall consider a three-party game scenario amongst the
players {p1, p2, p3} in engagements involving pairs {p1, p2}, {p2, p3} and {p3, p1}. Later
in Chapters 4 and 6 we shall look at a special case of the three-party game where the set
{p1, p2} represents a neutral set, that is, neither party is the pursuer or the evader w.r.t.
to the other. On the other hand, for the pair {p2, p3}, p2 represents the pursuer and p3 is
the evader; and for the pair {p3, p1}, p3 represents the pursuer and p1 is the evader. Such
a scenario will be referred to as a cooperative three-party game, since parties {p1, p2}
are cooperating with each other.

The case of one party attacking two other parties or two parties attacking one party
gives rise to stochastic game theory problem and is outside the scope of the current
text. Theoretical developments given in this section are general enough such that
the methodology developed here may be applied to fields other than missiles and
autonomous systems.

2.5.1 Two-Party Game Theoretic Guidance for Linear Dynamical Systems

In this section we consider derivation of the optimal feedback control (guidance) laws
(control strategies) u12 and u21 for the parties {p1, p2} respectively, in a non-cooperative
game such that the state evolution of the game can be represented by a linear dynamical
system model defined by the following vector differential equation:

ẋ12 == F12x12 +G12u12 +G21u21; x12(t0) = x120
(2.5.1)

where

x12 = ( x1 x2 ⋯ xn12 )T: is the (n12 × 1) state vector, which represents common
(relative) state vector of the players (adversaries) in a game.

u12 = ( u1 u2 ⋯ um12 )T: is the (m12 × 1) input vector of player p1 against p2.
u21 = ( u1 u2 ⋯ um21 )T: is the (m21 × 1) input vector of player p2 against p1.
F12: is the (n12 × n12) state coefficient matrix.
G12: is the (n12 ×m12) input coefficient matrix for p1.
G21: is the (n12 ×m21) input coefficient matrix for p2.

Remarks:
� Here, we have selected the relative states to represent the relative positions and veloc-

ities of the parties in Cartesian coordinates, along x, y, z directions. The control or the
input variables are taken to be the demanded accelerations (lateral accelerations) also
directed along x, y, z.

� For the two-party game considered in this section, we shall assume that p1 is the
pursuer and p2 is the evader. Thus we minimize the cost function, which repre-
sents relative separation between p1 and p2, w.r.t. to the control effort u12 applied
by p1, and maximize this same cost function w.r.t. to the control effort u21 applied
by p2.
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The general non-cooperative two-party game theoretic optimization problem may be
stated as follows: Given a cost function of the form:

J = 𝛉(x12, tf )+
tf

∫
t0

𝛟(x12, u1, u2, t)dt (2.5.2)

where

t: is the time with t0 ≤ t ≤ tf ; t0, with tf the final time assumed fixed.

We desire to find control strategies {u12, u21} of players {p1, p2} respectively, so as to
minimize J w.r.t. to u12 and maximize J w.r.t. to u21. That is, given that the state evolution
of the game can be defined by (2.5.1), we wish to find {u12, u21} such that the following
conditions are satisfied:

J∗ = Min
u12

Max
u21

{J} = Min
u12

Max
u21

⎧⎪⎨⎪⎩
𝛉(x12, tf )+

tf

∫
t0

𝛟(x12, u12, u21, t)dt
⎫⎪⎬⎪⎭

(2.5.3)

As in the previous section, a convenient cost function to use, particularly in conjunc-
tion with a linear dynamical system model, is a quadratic scalar function of states and
controls. Since we wish to minimize the cost function w.r.t. u12 (the pursuer) and maxi-
mize this same function w.r.t. u21 (the evader), we can simplify the problem by treating
it as that of minimizing the cost function J, where the quadratic term involving u21 has
a negative sign as shown below:

J = 1
2

(
x12

TS12x12

)||||t=tf

+ 1
2

tf

∫
t0

(
x12

TQ12x12 + u12
TR12u12 − u21

TR21u21

)
dt

(2.5.4)

where

Q12: is the (n12 × n12) symmetric positive semi-definite current-state PI weightings
matrix.

S12: is the (n12 × n12) symmetric positive semi-definite final-state PI weightings matrix.
R12: is the (m12 ×m12) symmetric positive definite input PI weightings matrix for p1.
R21: is the (m21 ×m21) symmetric positive definite input PI weightings matrix for p2.

By including the quadratic term u21
TR21u21 in the cost function, with a negative sign,

the optimization problem J∗ = Min
u12

Max
u21

{J} reduces to that of simply minimizing J of

equation (2.5.4), that is:

J∗ = Min
u12,u21

{J} (2.5.5)

Let us form the Hamiltonian as:

H(x12, u12, u21, t) = 1
2

(
x12

TQ12x12 + u12
TR12u12 − u21

TR21u21

)
⋯

+𝛌12
T(F12x12 +G12u12 +G21u21)

(2.5.6)
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As shown in Section 2.4.1 (equations (2.4.4) through (2.4.7)), necessary conditions for
minimization require that:

𝛛H
𝛛x12

= − ̇𝛌12 = Q12x12 + F12
T𝛌12 (2.5.7)

𝛛H
𝛛u12

= 0 = R12u12 +G12
T𝛌12 (2.5.8)

𝛛H
𝛛u21

= 0 = −R21u21 +G21
T𝛌12 (2.5.9)

𝛛H
𝛛𝛌12

= ẋ12 = F12x12 +G12u12 +G21u21 (2.5.10)

with the terminal condition:

𝛌12(tf ) =
(
𝛛𝛉
𝛛x12

)
t=tf

= S12x12(tf ) (2.5.11)

Equations (2.5.8) and (2.5.9) yield:

u12 = −R12
−1G12

T𝛌12 (2.5.12)

u21 = R21
−1G21

T𝛌12 (2.5.13)

In order to convert this control into a state feedback form, we assume a solution for 𝛌12
of the form:

𝛌12 = P12x12 (2.5.14)

This gives us expressions for u1 and u2 as functions of x12 (the feedback control):

u12 = −R12
−1G12

TP12x12 (2.5.15)

u21 = R21
−1G21

TP12x12 (2.5.16)

Substituting these values of u12, u21 in equation (2.5.1) gives us:

ẋ12 = F12x12 −G12R12
−1G12

TP12x12 +G21R21
−1G21

TP12x12 (2.5.17)

Substituting for 𝛌12 into equation (2.5.7) gives us:

− ̇P12x12 − P12ẋ12 = Q12x12 + F12
TP12x12 (2.5.18)

Combining equation (2.5.17) with equation (2.5.18) we get:[
̇P12 + P12F12 + F12

TP12 ⋯

−P12
(

G12R12
−1G12

T −G21R21
−1G21

T)P12 +Q12

]
x12 = 0 (2.5.19)

Since this equation is true for all x12, it follows that:

̇P12 + P12F12 + F12
TP12 − P12

(
G12R12

−1G12
T −G21R21

−1G21
T)P12 +Q12 = 0

(2.5.20)
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Figure .. Two-party feedback control block
diagram.

Equation (2.5.20) is the MRDE with the terminal condition given by:

P12(tf ) = S12(tf ) (2.5.21)

As in the previous section, the matrix Riccati equation (2.5.21) has to be solved back-
ward in time, with P12 being (n12 × n12) symmetric positive definite matrix. The solu-
tion converges to a steady-state value as tf ➔ −∞. For a stable solution to exist for the
MRDE (2.5.20):(

G12R12
−1G12

T −G21R21
−1G21

T)must be positive definite (2.5.22)

State feedback controls (guidance laws) for p1 and p2 may be written as feedback, respec-
tively as:

u12 = K12x12 (2.5.23)
u21 = K21x12 (2.5.24)

where

K12 = −R12
−1G12

TP12 (2.5.25)
K21 = R21

−1G21
TP12 (2.5.26)

It is shown in the Appendix that the second variation matrix equation (A1.8.18) has a set
of eigenvalues which are both negative and positive, leading to the conclusion that the
optimum solution gives a saddle point. This is to be expected in the case of the (unbi-
ased) game theoretic optimization problem. A block diagram for the implementation of
control laws is given in Figure 2.5.1.

2.5.2 Three-Party Game Theoretic Guidance for Linear Dynamical Systems

In this section we consider the derivation of optimal control (guidance) laws for a three-
party game between the pairs: {p1, p2}, {p2, p3} and {p3, p1} respectively, associated
with the three parties {p1, p2, p3}. The notation used here is that the control variables
{uij, uik} represent strategies for pi engaged in the play with pj and pk respectively. Note
that the total control effort that pi can exercise is: ui = uij + uik; thus for every engage-
ment that pi is involved in, both control variables uij and uik appear in the associated
dynamic model. Similarly, notation for the common relative state xij is used in conjunc-
tion with the engagement involving the pair {pi, pj}.
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In view of remarks made above, a three-party game yields three dynamical models,
which may be written as:

ẋ12 = F12x12 +G12u12 +G13u13 +G21u21 +G23u23 (2.5.27)
ẋ23 = F23x23 +G23u23 +G21u21 +G32u32 +G31u31 (2.5.28)
ẋ31 = F31x31 +G31u31 +G32u32 +G13u13 +G12u12 (2.5.29)

The initial conditions are given by: x12(t0) = x120
; x23(t0) = x230

; x31(t0) = x310
.

where

The subscript pair {ij} is an element of the set of subscripts {12, 23, 31} that correspond
to parties involved in a particular engagement.

xij = ( x1 x2 ⋯ xnij )T: is the (nij × 1) state vector for {pi, pj}.
uij = ( u1 u2 ⋯ umij )T: is the (mij × 1) input vector (control) for {pi, pj}.
Fij: is the (nij × nij) state coefficient matrix for system dynamics relating to {pi, pj}.
Gij: is the (nij ×mij) input coefficient matrix for system dynamics relating to {pi, pj}.

Remarks:

� Note that the first kinematics equation (2.5.27) contains control terms {u12, u13},
{u21, u23} corresponding to {p1, p2}; the second equation (2.5.28) contains control
terms {u21, u23}, {u31, u32} corresponding to {p2, p3}; and the third equation (2.5.29)
contains control terms {u31, u32}, {u12, u13}, corresponding to {p3, p1}. The reader is
also referred to Chapter 1 for further discussion on three-party game constructs.

� The situation considered above is a general one where each party is applying control
effort against the other two parties. Here, it is assumed that the following simultane-
ous pursuit and evasion games take place between the three parties:
◦ p1 is the pursuer against p2 who is trying to evade p1—hence u12 represents the

pursuit strategy of p1, and u21 represents the evasion strategy of p2.
◦ p2 is the pursuer against p3 who is trying to evade p2—hence u23 represents the

pursuit strategy of p2, and u32 represents the evasion strategy of p3.
◦ p3 is the pursuer against p1 who is trying to evade p3—hence u31 represents the

pursuit strategy of p3 and u13 represents the evasion strategy of p1.
� As noted in the previous section, we have selected the relative states to represent the

relative positions and velocities of the parties in Cartesian coordinates, along x, y, z
directions. The control or the input variables are taken to be the demanded accelera-
tions (lateral accelerations) also directed along x, y, z.

� For the three-party game considered in this section, we shall assume that p1 is the
pursuer and p2 is the evader. Thus we minimize the cost function, which represents
relative separation between p1 and p2, w.r.t. to the control effort u12 applied by p1,
and maximize this same cost function w.r.t. to the control effort u21 applied by p2.
Similar considerations hold for pairs {u23, u32}, and {u31, u13}.

The optimization problem to be considered in this section requires three cost functions,
one for each engagement (play) that has to be optimized. The relative state and control
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vectors and the cost function correspond to the parties involved in the play. The three
cost functions may be written as:

J12 =
1
2

(
x12

TS12x12

)||||tf12

+ 1
2

tf12

∫
t0

(
x12

TQ12x12 + u12
TR12u12 − u21

TR21u21

)
dt

(2.5.30)

J23 =
1
2

(
x23

TS23x23

)||||tf12

+ 1
2

tf23

∫
t0

(
x23

TQ23x23 + u23
TR23u23 − u32

TR32u32

)
dt

(2.5.31)

J31 =
1
2

(
x31

TS31x31

)||||tf31

+ 1
2

tf31

∫
t0

(
x31

TQ31x31 + u31
TR31u31 − u13

TR13u13

)
dt

(2.5.32)

where

tfij
: is the final/termination time for an engagement.

Qij: is the (nij × nij) symmetric positive semi-definite current-state PI weightings
matrix.

Sij: is the (nij × nij) symmetric positive semi-definite final-state PI weightings matrix.
Rij: is the (mij ×mij) symmetric positive semi-definite input PI weightings matrix.

As noted in the previous section, since the cost functions above have one of the quadratic
terms in control variable with a negative sign the min/max problem reduces to a mini-
mization problem. Control variables that occur in both the dynamical model as well as
in the related cost function are used to derive the state feedback control (guidance) law,
whereas control variables that appear in the dynamical model but not in the related cost
function are treated as disturbance inputs. Thus, for example, if we examine the dynam-
ical model (2.5.27) and the related cost function (2.5.30), we notice that control vari-
ables {u12, u13, u21, u23} appear in the dynamic model but only {u12, u21} are present in
the cost function; hence these control variables yield the state feedback control portion
while {u13, u23}, which are regarded as disturbance inputs, have to be computed using
the vector Riccati differential equations (VRDE) as shown in this section.

Expression for the three Hamiltonians may be written as follows:

H12 (..) = 1
2

(
x12

TQ12x12 + u12
TR12u12 − u21

TR21u21

)
⋯

+𝛌12
T
(

F12x12 +G12u12 +G13u13 +G21u21 +G23u23

) (2.5.33)

H23 (..) = 1
2

(
x23

TQ23x23 + u23
TR23u23 − x32

TR32u32

)
⋯

+𝛌23
T
(

F23x23 +G23u23 +G21u21 +G32u32 +G31u31

) (2.5.34)

H31 (..) = 1
2

(
x31

TQ31x31 + u31
TR31u31 − x13

TR13u13

)
⋯

+𝛌31
T
(

F31x31 +G31u31 +G32u32 +G13u13 +G12u12

) (2.5.35)
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Necessary conditions for minimization of the Hamiltonian H12 require that:

𝛛H12

𝛛x12
= − ̇𝛌12 = Q12x12 + F12

T𝛌12 (2.5.36)

𝛛H12

𝛛u12
= 0 = R12u12 +G12

T𝛌12 (2.5.37)

𝛛H21

𝛛u21
= 0 = −R21u21 +G21

T𝛌12 (2.5.38)

𝛛H12

𝛛𝛌12
= ẋ12 = F12x12 +G12u12 +G13u13 +G21u21 +G23u23 (2.5.39)

with the terminal condition:

𝛌12

(
tf12

)
= S12x12

(
tf12

)
(2.5.40)

Here, we shall regard {u12, u21} as the direct inputs and {u13, u23} as indirect inputs.
Similarly, for the optimization problem involving H23 we get:

𝛛H23

𝛛x23
= − ̇𝛌23 = Q23x23 + F23

T𝛌23 (2.5.41)

𝛛H23

𝛛u23
= 0 = R23u23 +G23

T𝛌23 (2.5.42)

𝛛H23

𝛛u32
= 0 = −R32u32 +G32

T𝛌23 (2.5.43)

𝛛H23

𝛛𝛌23
= ẋ23 = F23x23 +G23u23 +G21u21 +G32u32 +G31u31 (2.5.44)

with the terminal condition:

𝛌23

(
tf23

)
= S23x23

(
tf23

)
(2.5.45)

Here {u23, u32} are the direct inputs and {u21, u31} are indirect inputs.
For the optimization problem defined by H31 we get:

𝛛H31

𝛛x13
= − ̇𝛌31 = Q31x31 + F31

T𝛌31 (2.5.46)

𝛛H31

𝛛u31
= 0 = R31u31 +G31

T𝛌31 (2.5.47)

𝛛H31

𝛛u13
= 0 = −R13u13 +G13

T𝛌31 (2.5.48)

𝛛H31

𝛛𝛌31
= ẋ31 = F31x31 +G31u31 +G32u32 +G13u13 +G12u12 (2.5.49)
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with the terminal condition:

𝛌31

(
tf31

)
= S31x31

(
tf31

)
(2.5.50)

Here {u13, u31} are the direct inputs and {u12, u32} are indirect inputs.
Equations (2.5.37) and (2.5.38); (2.5.42) and (2.5.43); and (2.5.47) and (2.5.48) give:

u12 = −R12
−1G12

T𝛌12 (2.5.51)

u21 = R21
−1G21

T𝛌12 (2.5.52)

u23 = −R23
−1G23

T𝛌23 (2.5.53)

u32 = R32
−1G32

T𝛌23 (2.5.54)

u31 = −R31
−1G31

T𝛌31 (2.5.55)

u13 = R13
−1G13

T𝛌31 (2.5.56)

In order to convert the above control expressions to state feedback control, we assume
a solution for 𝛌ij of the form:

𝛌12 = P12x12 + 𝛏12
(2.5.57)

𝛌23 = P23x23 + 𝛏23
(2.5.58)

𝛌31 = P31x31 + 𝛏31
(2.5.59)

Thus the feedback control expressions using equations (2.5.25) through (2.5.30) may be
written as:

u12 = −R12
−1G12

TP12x12 − R12
−1G12

T𝛏
12

(2.5.60)

u21 = R21
−1G21

TP12x12 + R21
−1G21

T𝛏
12

(2.5.61)

u23 = −R23
−1G23

TP23x23 − R23
−1G23

T𝛏
23

(2.5.62)

u32 = R32
−1G32

TP23x23 + R32
−1G32

T𝛏
23

(2.5.63)

u31 = −R31
−1G31

TP31x31 + R31
−1G31

T𝛏
31

(2.5.64)

u13 = R13
−1G13

TP31x31 − R13
−1G13

T𝛏
31

(2.5.65)

Substituting these feedback values for control components into system dynamics equa-
tions, we get:

ẋ12 = F12x12 −
(

G12R12
−1G12

T −G21R21
−1G21

T)P12x12 ⋯

−
(

G12R12
−1G12

T −G21R21
−1G21

T) 𝛏
12
+G13u13 +G23u23

(2.5.66)

ẋ23 = F23x23 −
(

G23R23
−1G23

T −G32R32
−1G32

T)P23x23 ⋯

−
(

G23R23
−1G23

T −G32R32
−1G32

T) 𝛏
23
+G21u21 +G31u31

(2.5.67)

ẋ31 = F31x31 −
(

G31R31
−1G31

T −G13R13
−1G13

T)P31x31 ⋯

−
(

G31R31
−1G31

T −G13R13
−1G13

T) 𝛏
31
+G32u32 +G12u12

(2.5.68)
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Substituting for 𝛌12, 𝛌23, 𝛌31 from equations (2.5.57) through (2.5.59) into (2.5.36),
(2.5.42), and (2.5.46), respectively, gives us:

− ̇P12x12 − P12ẋ12 −
̇𝛏
12
= Q12x12 + F12

TP12x12 + F12
T𝛏

12
(2.5.69)

− ̇P23x23 − P23ẋ23 −
̇𝛏
23
= Q23x23 + F23

TP23x23 + F23
T𝛏

23
(2.5.70)

− ̇P31x31 − P31ẋ31 −
̇𝛏
31
= Q31x31 + F31

TP13x13 + F31
T𝛏

31
(2.5.71)

Substituting for ẋ12, ẋ13, ẋ23 from (2.5.66) through (2.5.68) into (2.5.69) through (2.5.71),
we get:[
̇P12 + P12F12 + F12

TP12 − P12
(

G12R12
−1G12

T −G21R21
−1G21

T)P12 +Q12
]

x12 ⋯

+FT
12𝛏12

− P12
(

G12R12
−1G12

T −G21R21
−1G21

T) 𝛏
12

⋯ (2.5.72)

+P12G13u13 + P12G23u23 +
̇𝛏
12
= 0

[
̇P23 + P23F23 + F23

TP23 − P23
(

G23R23
−1G23

T −G32R32
−1G32

T)P23 +Q23
]

x23 ⋯

+FT
23𝛏23

− P23
(

G23R23
−1G23

T −G32R32
−1G32

T) 𝛏
23

⋯ (2.5.73)

+P23G21u21 + P23G31u31 +
̇𝛏
23
= 0

[
̇P31 + P31F31 + F31

TP31 − P31
(

G31R31
−1G31

T −G13R13
−1G13

T)P31 +Q31
]

x31 ⋯

+F31
T𝛏

31
− P13

(
G31R31

−1G31
T −G13R13

−1G13
T) 𝛏

31
⋯ (2.5.74)

+P31G32u32 + P31G12u12 +
̇𝛏
31
= 0

The above equations must hold for all x12, x13, x23; thus, one way to satisfy this condition
is to require that:
̇P12 + P12F12 + F12

TP12 − P12
(

G12R12
−1G12

T −G21R21
−1G21

T)P12 +Q12 = 0
(2.5.75)

̇P23 + P23F23 + F23
TP23 − P23

(
G23R23

−1G23
T −G32R32

−1G32
T)P23 +Q23 = 0

(2.5.76)
̇P31 + P31F31 + F31

TP31 − P31
(

G13R13
−1G13

T −G31R31
−1G31

T)P31 +Q31 = 0
(2.5.77)

with terminal conditions: P12 (tf12
) = S12, P23 (tf23

) = S23, P31 (tf31
) = S31

Also
̇𝛏
12
+
[
F12

T − P12
(

G12R12
−1G12

T −G21R21
−1G21

T)] 𝛏
12

⋯

+P12G12u13 + P12G21u23 = 0
(2.5.78)

̇𝛏
23
+
[
F23

T − P23
(

G23R23
−1G23

T −G32R32
−1G32

T)] 𝛏
23

⋯

+P23G21u21 + P23G31u31 = 0
(2.5.79)

̇𝛏
31
+
[
F31

T − P31
(

G31R31
−1G31

T −G13R13
−1G13

T)] 𝛏
31

⋯

+P31G32u32 + P31G12u12 = 0
(2.5.80)

with terminal conditions: 𝛏
12

(tf12
) = 𝛏

23
(tf12

) = 𝛏
31

(tf31
) = 0.
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In Chapter 4, these equations are solved in order to obtain closed form solutions for
MRDE and VRDE to enable us to construct state feedback guidance laws for the parties
involved in three-party pursuit and evasion.

. Extension of the Differential Game Theory to Multi-Party
Engagement

In this section, we lay down the foundations of the optimum game theory for the case
where n-players (parties) are involved in a non-cooperative game. As before, we assume
that the system dynamical model is linear and the cost function is of quadratic form,
and hence for player pairs: {pi, pi + 1}, we may write the dynamic model as:

ẋi(i+1) = Fi(i+1)xi(i+1) +Gi(i+1)ui(i+1) +Gi(i−1)ui(i−1) ⋯

+G(i+1)iu(i+1)i +G(i+1)(i+2)u(i+1)(i+2)
(2.6.1)

where

i = 1, 2,… , n, modulo(n).
(xjk, ujk): are state and input vectors.
(Fjk, Gjk): are state and input coefficient matrices.

We can, as indicated in the three-party game, construct the quadratic cost functions and
the corresponding Hamiltonian for i = 1, 2,… , n, modulo(n) as follows:

Ji(i+1) =
1
2

[
xi(i+1)

TSi(i+1)xi(i+1)

]||||tfi(i+1)

⋯

+1
2

tfi(i+1)

∫
t0

[xi(i+1)
TQi(i+1)xi(i+1) + ui(i+1)

TRi(i+1)ui(i+1) ⋯

−u(i+1)i
TR(i+1)iu(i+1)i

]
dt

(2.6.2)

Hi(i+1) =
1
2

[ xi(i+1)
TQi(i+1)xi(i+1) + ui(i+1)

TRi(i+1)ui(i+1) ⋯

−u(i+1)i
TR(i+1)iu(i+1)i

]
⋯

+𝛌i(i+1)
TFi(i+1)xi(i+1) +Gi(i+1)ui(i+1) +Gi(i−1)ui(i−1) ⋯

+G(i+1)iu(i+1)i +G(i+1)(i+2)u(i+1)(i+2)

(2.6.3)

Weighting matrices {Sij; Qij; Rij} are defined in the same way as before.
The solution for this case will proceed in the same way as for the three-party case, and

is left as an exercise for the reader.

. Summary and Conclusions

In this chapter the subject of optimum control has been dealt with in some detail and
results that are important in many cases of practical interest have been derived. Calcu-
lus of variation was utilized and the necessary and sufficient conditions for optimality
derived for a generalized scalar cost function subject to the (equality) constraints. A
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simple scalar cost function involving system state and control is used to introduce the
reader to the steady-state (single-stage decision) optimization problem in Section 2.2.
The EL multiplier was used to incorporate equality constraints. The Hamiltonian func-
tion was used to generate necessary and sufficient conditions for optimality.

The dynamic optimum control (Bolza) problem was considered in Section 2.3. The
cost function used was an integral over time involving a scalar function of system state
and control vectors plus a scalar function of the final system states. Boundary conditions
were defined via initial and terminal state manifolds and the system model was defined
by a vector differential equation. In this development as in the previous, the EL multi-
plier and the Hamiltonian were used to derive the necessary and sufficient conditions
for optimality. The problem where the initial conditions are defined but the final time
is unspecified was also considered in Section 2.3. The topic of Pontryagin’s Minimum
Principle as it applies to the optimum control problem was also considered.

The optimum control problem involving linear dynamical systems where the cost
function was a scalar quadratic function was considered in Section 2.4; it was shown that
the solution of this problem leads to the well-known matrix Riccati differential equation
that has to be solved backward in time. This type of problem constitutes an important
class that has application to linear regulator control design and as shown in this chapter
provided a template for solving problems in differential game theory.

Section 2.5 of this chapter was dedicated to the application of the optimal control
concepts to two-party and three-party game theory. Conditions for optimality and con-
vergence of the MRDE were given and the nature of the equilibrium point was inves-
tigated to show that saddle point conditions were satisfied. In Section 2.6, we briefly
presented an extension of the differential game theory to a multi-party (n-party) game
scenario.

Note: Section 2.2.3, and Examples: 2.2.1, 2.3.1, 2.3.2, 2.3.3 taken from the book: SAGE &
WHITE, OPTIMUM SYSTEM CONTROL, 2nd Edition, © 1977; reprinted by permis-
sion of Pearson Education, Inc., Upper Saddle River, NJ.
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Appendix
Vector Algebra and Calculus

A. A Brief Review of Matrix Algebra and Calculus

This Appendix is intended to highlight the various vector-matrix operations used in the
text.

(a) The order of closed brackets used in equations or mathematical expressions will
generally be: {[(⋯)]}; on a few occasions, however, for reasons of clarity and where
there is no confusion this order is not followed.

(b) A vector is written as a lower case bold letter with an underscore, for example, x or
𝛂 etc.

(c) A scalar function or a scalar is written as a lower or upper case letter without an
underscore, for example, H, a or 𝛃; if a scalar is a function of other variables, these
may or may not appear inside a bracket following the variable, for example, H(x, t)
or H(⋯), and so on.

(d) A matrix will be denoted by a capital letter or a bracketed capital letter, for example,
F, F12, [F], 𝚲, and so on, or a capital letter with arguments within the bracket and
where required with letter or number subscripts for example, F12, Axx(x̂, û); letter
subscripts signify partial differential operations.

(e) Transpose of a matrix or a vector is denoted by a superscript (T), for example, FT or
xT and an inverse matrix is denoted by a superscript (−1), for example, F−1, and so
on.

(f ) If an algebraic equation continues beyond a single line the continuation of this equa-
tion is indicated by three dots as (⋯).

It is assumed that the reader is familiar with basic matrix operations such as
matrix transpose, matrix addition, subtraction, multiplication, and inversion. Other
matrix/vector operations utilized in the text are the following.

A. Characteristic Equations and Eigenvalues

The characteristic matrix of (n × n) matrix A with constant elements is given by
the matrix [C] = [𝛌I− A]. The equation |C| = |𝛌I− A| = 0 (where 𝐝𝐞𝐭[C] = |C|)
will be referred to as the characteristics equation of [A]. The roots of this charac-
teristic equation are the eigenvalues 𝛌i(A) or simply 𝛌i, i = 1, 2,… , n of matrix A. A
matrix A is positive definite (semi-definite) if: 𝛌i(A) > 0 (𝛌i(A) ≥ 0)∀i = 1, 2,… , n.
Similarly, A is negative definite (semi-definite) if: 𝛌i(A) < 0 (𝛌i(A) ≤ 0)∀i = 1,
2,… , n.
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A. Differential of Linear, Bi-Linear, and Quadratic Forms

(a) Given a vector function: z = A(t)y(x, t), then its differential w.r.t. the vector x is
defined as:

dz

dx
=
⎛⎜⎜⎝

dyT

dx

⎞⎟⎟⎠
A (A2.3.1)

The differential w.r.t. a scalar t is defined as:

dz

dt
=
(𝛛A
𝛛t

)
y + A

⎛⎜⎜⎝
𝛛yT

𝛛x

⎞⎟⎟⎠
dx

dt
(A2.3.2)

(b) Given a scalar function: c = yT(x, t)A(t)z(x, t), then its differential w.r.t. a vector is
given by:

dc
dx
=
⎛⎜⎜⎝
𝛛yT

𝛛x

⎞⎟⎟⎠
Az+

(𝛛zT

𝛛x

)
ATy (A2.3.3)

dc
dt
=
⎡⎢⎢⎣
⎛⎜⎜⎝
𝛛yT

𝛛x

⎞⎟⎟⎠
Az+

(𝛛zT

𝛛x

)
ATy
⎤⎥⎥⎦

T
dx

dt
+ zTAT

(𝛛y

𝛛t

)
+ yTA

(𝛛z

𝛛t

)
+ yT

(𝛛A
𝛛t

)
zT

(A2.3.4)

A. Partial Differentiation of Scalar Functions w.r.t. a Vector

Given a scalar function: a(x, u), then their partial differential w.r.t. vectors x, u are given
by:

[𝛛a(x, u)

𝛛x

]
= [ax(x, u)] =

( 𝛛a
𝛛x1

𝛛a
𝛛x2

⋯
𝛛a
𝛛xn

)T
(A2.4.1)

[𝛛a(x, u)

𝛛u

]
= [au(x, u)] =

( 𝛛a
𝛛u1

𝛛a
𝛛u2

⋯
𝛛a
𝛛um

)T
(A2.4.2)

where

[
𝛛a(x,u)
𝛛x ] = [ax(x, u)]: is the (n × 1) vector defined in (A2.4.1).

[
𝛛a(x,u)
𝛛u ] = [au(x, u)]: is the (m × 1) row vector defined in (A2.4.2).

x = ( x1 x2 ⋯ xn )T: is the (n × 1) state vector.
u = ( u1 u2 ⋯ um )T: is the (m × 1) input vector.
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A. Partial Differentiation of Vector Functions w.r.t. a Vector

Given a vector function: b(x, u) of vectors x, u then the corresponding Jacobian matri-
ces: [Bx(x, u)] and [Bu(x, u)] are given by:

[Bx(x, u)] =
[𝛛bT(x, u)

𝛛x

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛛b1

𝛛x1

𝛛b2

𝛛x1
⋯

𝛛bn

𝛛x1
𝛛b1

𝛛x2

𝛛b2

𝛛x2
⋯

𝛛bn

𝛛x2
⋮ ⋮ ⋱ ⋮
𝛛b1

𝛛xn

𝛛b2

𝛛xn
⋯

𝛛bn

𝛛xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

: is a (n × n) matrix. (A2.5.1)

[Bu(x, u)] =
[𝛛bT(x, u)

𝛛u

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛛b1

𝛛u1

𝛛b2

𝛛u1
⋯

𝛛bn

𝛛u1
𝛛b1

𝛛u2

𝛛b2

𝛛u2
⋯

𝛛bn

𝛛u2
⋮ ⋮ ⋱ ⋮
𝛛b1

𝛛um

𝛛b2

𝛛um
⋯

𝛛bn

𝛛um

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

: is a (m × n) matrix. (A2.5.2)

where

b = (b1 b2 ⋯ bn)T: is a (n × 1) vector.

A. The Hessian Matrix

Consider the matrices given in (A2.5.1) and (A2.5.2), then the corresponding Hessian
matrices: [Axx(x, u)], [Auu(x, u)], [Axu(x, u)] and [Aux(x, u)], which are matrices of sec-
ond partial derivatives, are given by:

[Axx(x, u)] =
[𝛛2a(x, u)

𝛛x2

]
=
⎧⎪⎨⎪⎩
𝛛
𝛛x

[𝛛a(x, u)

𝛛x

]T⎫⎪⎬⎪⎭
⋯

=
⎡⎢⎢⎣
𝛛ax

T(x, u)

𝛛x

⎤⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛛2a
𝛛x1

2
𝛛2a
𝛛x1𝛛x2

⋯
𝛛2a

𝛛x1𝛛xn
𝛛2a
𝛛x2𝛛x1

𝛛2a
𝛛x2

2
⋯

𝛛2a
𝛛x2𝛛xn

⋮ ⋮ ⋱ ⋮

𝛛2a
𝛛xn𝛛x1

𝛛2a
𝛛xn𝛛x2

⋯
𝛛2a
𝛛xn

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

: is a (n × n) matrix. (A2.6.1)
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The (m ×m) matrix: [Auu(x, u)] = [
𝛛2a(x,u)
𝛛u2 ] = { 𝛛𝛛u [

𝛛a(x,u)
𝛛u ]

T
} = [

𝛛au
T(x,u)

𝛛u ], can similarly
be constructed. Thus:

[Axu(x, u)] =
[𝛛2a(x, u)

𝛛x𝛛u

]
=
⎧⎪⎨⎪⎩
𝛛
𝛛x

[𝛛a(x, u)

𝛛u

]T⎫⎪⎬⎪⎭
⋯

=
⎡⎢⎢⎣
𝛛au

T(x, u)

𝛛x

⎤⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛛2a
𝛛x1𝛛u1

𝛛2a
𝛛x1𝛛u2

⋯
𝛛2a

𝛛x1𝛛um
𝛛2a

𝛛x2𝛛u1

𝛛2a
𝛛x2𝛛u2

⋯
𝛛2a

𝛛x2𝛛um
⋮ ⋮ ⋱ ⋮

𝛛2a
𝛛xn𝛛u1

𝛛2a
𝛛xn𝛛u2

⋯
𝛛2a

𝛛xn𝛛um

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

: is a (n ×m) matrix. (A2.6.2)

The (m × n) matrix: [Aux(x, u)] = [
𝛛2a(x,u)
𝛛u𝛛x ] = { 𝛛𝛛u [

𝛛a(x,u)
𝛛x ]

T
} = [

𝛛ax
T(x,u)

𝛛u ], can similarly
be constructed.

A. Partial Differentiation of Scalar Quadratic and Bilinear
Functions w.r.t. a Vector

Given vector functions: b(x, u), c(x, u) and a scalar bilinear function a(x, u), with:

a(x, u) = bT(x, u)c(x, u) (A2.7.1)

then[𝛛a(x, u)

𝛛x

]
= [ax(x, u)] =

[𝛛bT(x, u)

𝛛x

]
c(x, u)+

[𝛛cT(x, u)

𝛛x

]
b(x, u)⋯

= [Bx(x, u)]c(x, u)+ [Cx(x, u)]b(x, u)
(A2.7.2)

[𝛛a(x, u)

𝛛u

]
= [au(x, u)] =

[𝛛bT(x, u)

𝛛u

]
c(x, u)+

[𝛛cT(x, u)

𝛛u

]
b(x, u)⋯

= [Bu(x, u)]c(x, u)+ [Cu(x, u)]b(x, u)
(A2.7.3)

where

c = ( c1 c2 ⋯ cn )T: is a (n × 1) vector.

[
𝛛cT(x,u)
𝛛x ] = [Cx(x, u)]: is the (n × n) Jacobian matrix.

[
𝛛cT(x,u)
𝛛u ] = [Cu(x, u)]: is the (m × n) Jacobian matrix.



2 Optimum Control and Differential Game Theory 

A. First and Second Variations of Scalar Functions

Given a scalar function: a(x, u) of vectors x, u; then the scalar valued first variation
𝛅a(x, u) is given by:

𝛅a(x, u) =
[𝛛a(x̂, û)

𝛛x

]T

𝛅x +
[𝛛a(x̂, û)

𝛛u

]T

𝛅u⋯

=
[

ax
T(x̂, û)

]
𝛅x +

[
au

T(x̂, û)
]
𝛅u

=
n∑

i=1

𝛛a
𝛛xi
𝛅xi +

m∑
j=1

𝛛a
𝛛uj
𝛅uj

(A2.8.1)

where

𝛅x = x − x̂
𝛅u = u− û
𝛅a(x, u) = a(x̂ + 𝛅x, û+ 𝛅u)− a(x̂, û)

[
𝛛a(x̂,û)
𝛛x ] = [ax(x̂, û)]: is the (n × 1) vector of first partial derivatives of a(⋯) w.r.t. x [see
equation (A2.7.2)] evaluated at x̂, û.

[
𝛛a(x̂,û)
𝛛u ] = [au(x̂, û)]: is (m × 1) row vector of first partial derivatives of a(⋯) w.r.t. u [see
equation (A2.7.3)] evaluated at x̂, û.

The scalar valued second variation 𝛅2a(x, u) is given by:

𝛅2a(x, u) = 1
2

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝛅xT
⎡⎢⎢⎣
𝛛ax

T(x̂, û)

𝛛x

⎤⎥⎥⎦
𝛅x + 𝛅uT

⎡⎢⎢⎣
𝛛ax

T(x̂, û)

𝛛u

⎤⎥⎥⎦
𝛅x⋯

+𝛅xT
⎡⎢⎢⎣
𝛛au

T(x̂, û)

𝛛x

⎤⎥⎥⎦
𝛅u+ 𝛅uT

⎡⎢⎢⎣
𝛛au

T(x̂, û)

𝛛u

⎤⎥⎥⎦
𝛅u

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(A2.8.2)

or in matrix notation:

𝛅2a(x, u) = 1
2
[
𝛅xT ⋮ 𝛅uT ]

[
Axx(x̂, û) Axu(x̂, û)
Aux(x̂, û) Auu(x̂, û)

][ 𝛅x
𝛅u

]
(A2.8.3)

[Axx(x̂, û)] = [
𝛛ax

T(x̂,û)

𝛛x ]: is the (n × n) matrix of second partial derivatives of ax(⋯) w.r.t.
x evaluated at x̂, û.

[Aux(x̂, û)] = [
𝛛au

T(x̂,û)

𝛛x ]: is the (m × n) matrix of second partial derivatives of au(⋯)
w.r.t. x evaluated at x̂, û.

[Axu(x̂, û)] = [
𝛛ax

T(x̂,û)

𝛛u ]: is the (n ×m) matrix of second partial derivatives of ax(⋯)
w.r.t. u evaluated at x̂, û.
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[Auu(x̂, û)] = [
𝛛au

T(x̂,û)

𝛛u ]: is the (m ×m) matrix of second partial derivatives of au(⋯)
w.r.t. u evaluated at x̂, û.

[U] =
[

Axx(x̂, û) Axu(x̂, û)
Aux(x̂, û) Auu(x̂, û)

]
: is the [(n+m) × (n+m)] Hessian matrix. (A2.8.4)

A. Properties of First and Second Variations for Determining
the Nature (Min/Max Values) of Scalar Functions

Given that a stationary point, say x̂, û, exists for a scalar quadratic function, then the
eigenvalues of the Hessian matrix [U] [equation (A2.7.4)] of this function can be used
to determine the nature of the stationary point (i.e., maximum, minimum or a saddle
point). That is:

(a) If all the eigenvalues of [U] are≥ 0 (i.e., the Hessian is at least positive semi-definite),
then the stationary point is a relative (local) minimum.

(b) If all the eigenvalues of [U] are ≤ 0 negative (i.e., the Hessian is at least negative
semi-definite), then the stationary point is a relative (local) maximum.

(c) If the eigenvalues of [U] are both ≥ 0 and ≤ 0, then the stationary point is a saddle
point.

Example A2.9.1 (see Section 2.4.1): Consider the following Hamiltonian from (2.4.5):

H(x, u, t) = 1
2

(
xTQx + uTRu

)
+ 𝛌T

(
Fx +Gu

)
(A2.9.1)

Now:

𝛛H
𝛛x

= Hx = Qx + FT𝛌;
⎛⎜⎜⎝
𝛛Hx

𝛛x

⎞⎟⎟⎠

T

= Hxx = Q;
⎛⎜⎜⎝
𝛛Hx

𝛛u

⎞⎟⎟⎠

T

= Hxu = 0 (A2.9.2)

and:

𝛛H
𝛛u

= Hu = Ru+GT𝛌;
⎛⎜⎜⎝
𝛛Hu

𝛛u

⎞⎟⎟⎠

T

= Huu = R;
⎛⎜⎜⎝
𝛛Hu

𝛛x

⎞⎟⎟⎠

T

= Hux = 0 (A2.9.3)

which gives us:

𝛅2H = 1
2
[
𝛅xT 𝛅uT ] [Q 0

0 R

] [ 𝛅x
𝛅u

]
(A2.9.4)

and 𝛅2H ≥ 0 if matrix Q is positive semi-definite and R is at least positive definite.
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A2.9.1 Extension to Multi-Vector Case

Given any a(x1, x2,… , xp; u1, u2,… , uq) which is a scalar function of vec-
tors xi; i = 1, 2,⋯p and uj; j = 1, 2,⋯q; then the scalar valued first variation:
𝛅a(x1, x2,… , xp; u1, u2,… , uq) is given by:

𝛅a(⋯) =
p∑

i=1

[
𝛛a(⋯)
𝛛xi

]T

𝛅xi +
q∑

i=1

[
𝛛a(⋯)
𝛛ui

]T

𝛅uj ⋯

=
p∑

i=1

[
axi

(⋯)
]T
𝛅xi +

q∑
i=1

[
aui

(⋯)
]T
𝛅ui

(A2.9.5)

where

a(⋯) = a(x̂1, x̂2,… , x̂p; û1, û2,… , ûq) .

𝛅xi = xi − x̂i; xi; i = 1, 2,⋯p.
𝛅u = u− û; uj; j = 1, 2,⋯q.

𝛅a(xi, uj) = a(x̂i + 𝛅xi, ûj + 𝛅uj)− a(x̂i, ûj).

The scalar valued second variation 𝛅2a(⋯) is given by:

𝛅2a(⋯) = 1
2

p∑
i=1

⎧⎪⎨⎪⎩

p∑
k=1

𝛅xk
T
⎡⎢⎢⎣
𝛛axi

T(⋯)

𝛛xk

⎤⎥⎥⎦
⎫⎪⎬⎪⎭
𝛅xi +

1
2

p∑
i=1

⎧⎪⎨⎪⎩

q∑
k=1

𝛅uk
T
⎡⎢⎢⎣
𝛛axi

T(⋯)

𝛛uk

⎤⎥⎥⎦
⎫⎪⎬⎪⎭
𝛅xi ⋯

+1
2

q∑
i=1

⎧⎪⎨⎪⎩

p∑
k=1

𝛅xk
T
⎡⎢⎢⎣
𝛛aui

T(⋯)

𝛛xk

⎤⎥⎥⎦
⎫⎪⎬⎪⎭
𝛅ui +

1
2

q∑
i=1

⎧⎪⎨⎪⎩

q∑
k=1

𝛅uk
T
⎡⎢⎢⎣
𝛛aui

T(⋯)

𝛛xk

⎤⎥⎥⎦
⎫⎪⎬⎪⎭
𝛅ui

(A2.9.6)

Example A2.9.2 Consider equation (A2.9.6) with p = 1, q = 2, then we get:

𝛅2a(⋯) = 1
2

⎧⎪⎨⎪⎩
𝛅x1

T
⎛⎜⎜⎝
𝛛ax1

T

𝛛x1

⎞⎟⎟⎠
𝛅x1

⎫⎪⎬⎪⎭
+ 1

2

⎧⎪⎨⎪⎩
⎡⎢⎢⎣
𝛅u1

T
⎛⎜⎜⎝
𝛛ax1

T

𝛛u1

⎞⎟⎟⎠
+ 𝛅u2

T
⎛⎜⎜⎝
𝛛ax1

T

𝛛u2

⎞⎟⎟⎠
⎤⎥⎥⎦
𝛅x1

⎫⎪⎬⎪⎭
⋯

+1
2

⎧⎪⎨⎪⎩
𝛅x1

T
⎛⎜⎜⎝
𝛛au1

T

𝛛x1

⎞⎟⎟⎠
𝛅u1 + 𝛅x1

T
⎛⎜⎜⎝
𝛛au2

T

𝛛x1

⎞⎟⎟⎠
𝛅u2

⎫⎪⎬⎪⎭
+1

2

⎧⎪⎨⎪⎩
⎡⎢⎢⎣
𝛅u1

T
⎛⎜⎜⎝
𝛛au1

T

𝛛u1

⎞⎟⎟⎠
+ 𝛅u2

T
⎛⎜⎜⎝
𝛛au1

T

𝛛u2

⎞⎟⎟⎠
⎤⎥⎥⎦
𝛅u1 +

⎡⎢⎢⎣
𝛅u1

T
⎛⎜⎜⎝
𝛛au2

T

𝛛u1

⎞⎟⎟⎠
+ 𝛅u2

T
⎛⎜⎜⎝
𝛛au2

T

𝛛u2

⎞⎟⎟⎠
⎤⎥⎥⎦
𝛅u2

⎫⎪⎬⎪⎭

(A2.9.7)
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which may be written as:

𝛅2a(⋯) = 1
2

{
𝛅x1

TAx1x1
𝛅x1

}
+ 1

2

{
𝛅u1

TAx1u1
𝛅x1 + 𝛅u2

TAx1u2
𝛅x1

}
⋯

+1
2

{
𝛅x1

TAu1x1
𝛅u1 + 𝛅x1

TAu2x1
𝛅u2

}

+1
2

{[
𝛅u1

TAu1u1
+ 𝛅u2

TAu1u2

]
𝛅u1 +

[
𝛅u1

TAu2u1
+ 𝛅u2

TAu2u2

]
𝛅u2

}(A2.9.8)

where

Ax1x1
=
⎛⎜⎜⎝
𝛛ax1

T

𝛛x1

⎞⎟⎟⎠
; Ax1uj

=
⎛⎜⎜⎝
𝛛ax1

T

𝛛uj

⎞⎟⎟⎠
; j = 1, 2; Auiuj

=
⎛⎜⎜⎜⎝

𝛛auj

T

𝛛ui

⎞⎟⎟⎟⎠
; i = 1, 2; j = 1, 2.

Equation (A2.9.8) in matrix notation may be written as:

𝛅2a(⋯) = 1
2

[
𝛅x1

T 𝛅u1
T 𝛅u2

T] ⎡⎢⎢⎢⎣

Ax1x1
Au1x1

Au2x1
Ax1u1

Au1u1
Au2u1

Ax1u2
Au1u2

Au2u2

⎤⎥⎥⎥⎦
⎡⎢⎢⎣
𝛅x1
𝛅u1
𝛅u2

⎤⎥⎥⎦
(A2.9.9)

For optimization problems considered in this book, the following hold: Au1x1
=

Ax1u1
= 0; Au2x1

= Ax1u2
= 0; Au1u2

= Au2u1
= 0.

Example A2.9.3 (see Section 2.5.1): Consider the following Hamiltonian from equa-
tion (2.5.6):

H
(

x12, u12, u21, t
)
= 1

2

(
x12

TQ12x12 + u12
TR12u12 − u21

TR21u21

)
⋯

+𝛌12
T
(

F12x12 +G12u12 +G21u21

) (A2.9.10)

Now:
𝛛H
𝛛x12

= Hx12
= Q12x12 + F12

T𝛌12 (A2.9.11)

which gives us:

Hx12x12
= Q12; Hx12u12

= 0; Hx12u21
= 0 (A2.9.12)

and:

Hu12
= R12u12 +G12

T𝛌12 (A2.9.13)

which gives us:

Hu12u12
= R12; Hu12u21

= 0; Hu12x12
= 0 (A2.9.14)

Also:

Hu21
= −R21u21 +G21

T𝛌12 (A2.9.15)
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which gives us:

Hu21u21
= −R21; Hu21u12

= 0; Hu21x12
= 0 (A2.9.16)

Hence the second variation 𝛅2H(⋯) is given by:

𝛅2H(⋯) = 1
2
[𝛅x12

T 𝛅u12
T 𝛅u21

T ]
⎡⎢⎢⎢⎣

Hx12x12
Hu12x12

Hx12u21
Hx12u12

Hu12u12
Hu21u12

Hx21u21
Hu12u21

Hu21u21

⎤⎥⎥⎥⎦
⎡⎢⎢⎣
𝛅x12
𝛅u12
𝛅u21

⎤⎥⎥⎦
(A2.9.17)

which gives us:

𝛅2H(⋯) = 1
2
[𝛅x12

T 𝛅u12
T 𝛅u21

T ] ⎡⎢⎢⎣
Q12 0 0

0 R12 0
0 0 −R21

⎤⎥⎥⎦
⎡⎢⎢⎣
𝛅x12
𝛅u12
𝛅u21

⎤⎥⎥⎦
(A2.9.18)

Thus, 𝛅2H ≥ 0 for matrix Q12 ≥ 0 (positive semi-definite) and matrices R12, R21 > 0
(positive definite).

Example A2.9.4 (see Section 2.5.2): Consider the following Hamiltonian from equa-
tions (2.5.33) through (2.5.35):

H12 (..) = 1
2

(
x12

TQ12x12 + uT
12R12u12 − uT

21R21u21

)
⋯

+𝛌T
12

(
F12x12 +G12u12 +G13u13 +G21u21 +G23u23

) (A2.9.19)

H13 (..) = 1
2

(
x13

TQ13x13 + u13
TR13u13 − x31

TR31u31

)
⋯

+𝛌13
T
(

F13x13 +G12u12 +G13u13 +G31u31 +G32u32

) (A2.9.20)

H23 (..) = 1
2

(
x23

TQ23x23 + u23
TR23u23 − u32

TR32u32

)
⋯

+𝛌23
T
(

F23x23 +G21u21 +G23u23 +G31u31 +G32u32

) (A2.9.21)

It can easily be verified that the scalar valued second variations 𝛅2H12(⋯), 𝛅2H13(⋯),
and 𝛅2H23(⋯) are given by:

𝛅2H12(⋯) = 1
2
[𝛅x12

T 𝛅u12
T 𝛅u21

T ] ⎡⎢⎢⎣
Q12 0 0

0 R12 0
0 0 −R21

⎤⎥⎥⎦
⎡⎢⎢⎣
𝛅x12
𝛅u12
𝛅u21

⎤⎥⎥⎦
(A2.9.22)

𝛅2H13(⋯) = 1
2
[𝛅x13

T 𝛅u13
T 𝛅u31

T ] ⎡⎢⎢⎣
Q13 0 0

0 R13 0
0 0 −R31

⎤⎥⎥⎦
⎡⎢⎢⎣
𝛅x13
𝛅u13
𝛅u31

⎤⎥⎥⎦
(A2.9.23)

𝛅2H23(⋯) = 1
2
[𝛅x23

T 𝛅u23
T 𝛅u32

T ] ⎡⎢⎢⎣
Q23 0 0

0 R23 0
0 0 −R32

⎤⎥⎥⎦
⎡⎢⎢⎣
𝛅x23
𝛅u23
𝛅u32

⎤⎥⎥⎦
(A2.9.24)
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𝛅2Hij ≥ 0 provided matrix Qij ≥ 0 (positive semi-definite), and Rij, Rji > 0 (positive
definite).

A. Linear System Dynamical Model

In many applications linear system dynamical models provide a sufficiently accurate
representation of a practical system for control analysis and synthesis. Linear models
will form the basis of missiles and autonomous systems for which we shall consider
implementing the differential game theory-based guidance strategies. Such a dynamical
model is characterized by the following vector differential equation:

ẋ(t) =
dx

dt
= F(t)x(t)+G(t)u(t); x(t0) = x0 (A2.10.1)

For F, G and u(t) piecewise continuous in t, the vector differential equation (A2.10.1)
has a unique solution given by:

x(t) = 𝚽
(

t, t0
)

x(t0)+
t

∫
t0

𝚽 (t, 𝛕) G(𝛕)u (𝛕) d𝛕 (A2.10.2)

where the system transition matrix satisfies the matrix differential equation:
𝛛
𝛛t
𝚽 (t, 𝛕) = G(𝛕)𝚽 (t, 𝛕) ∀t, 𝛕 (A2.10.3)

The transition matrix𝚽(t, 𝛕) has the following properties:

(i) 𝚽(𝛕, 𝛕) = I, ∀𝛕
(ii) 𝚽−1(t, 𝛕) = 𝚽(𝛕, t), ∀t, 𝛕

(iii) 𝚽(t0, t1)𝚽(t1, t2) = 𝚽(t0, t2), ∀t0, t1, t2

In particular, if F(t) = F, a constant coefficient matrix is then:

𝚽 (t, 𝛕) = eF(t−𝛕) = I+ F (t− 𝛕)+
F2(t− 𝛕)2

2!
+

F3(t− 𝛕)3

3!
+⋯ (A2.10.4)

and

x(t) = eF(t−t0)x(t0)+
t

∫
t0

eF(t−𝛕)G(𝛕)u (𝛕) d𝛕 (A2.10.5)
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Differential Game Theory Applied to Two-Party Missile
Guidance Problem

Nomenclature

xi: is the x position of vehicle i in fixed axis.
yi: is the y position of vehicle i in fixed axis.
zi: is the z position of vehicle i in fixed axis.
ui: is the x velocity of vehicle i in fixed axis.
vi: is the y velocity of vehicle i in fixed axis.
wi: is the z velocity of vehicle i in fixed axis.
axi

: is the x acceleration of vehicle i in fixed axis.
ayi

: is the y acceleration of vehicle i in fixed axis.
azi

: is the z acceleration of vehicle i in fixed axis.
xij = xi − xj: is the x position of vehicle i w.r.t. j in fixed axis.
yij = yi − yj: is the y position of vehicle i w.r.t. j in fixed axis.
zij = zi − zj: is the z position of vehicle i w.r.t. j in fixed axis.
uij = ui − uj: is the x velocity of vehicle i w.r.t. j in fixed axis.
vij = vi − vj: is the y velocity of vehicle i w.r.t. j in fixed axis.
wij = wi − wj: is the z velocity of vehicle i w.r.t. j in fixed axis.
axij

= axi
− axj

: is the x acceleration of vehicle i w.r.t. j in fixed axis.
ayij

= ayi
− ayj

: is the y acceleration of vehicle i w.r.t. j in fixed axis.
azij

= azi
− azj

: is the z acceleration of vehicle i w.r.t. j in fixed axis.
xi = (xi yi zi)T: is the (3× 1) position vector of vehicle i in fixed axis.
ui = (ui vi wi)T: is the (3× 1) velocity vector of vehicle i in fixed axis.
ai = (axi

ayi
azi

)T: is the (3× 1) acceleration vector of vehicle i in fixed axis.
xij = (xij yij zij)T: is the (3× 1) position vector of vehicle i w.r.t. j in fixed axis.
uij = (uij vij wij)T: is the (3× 1) velocity vector of vehicle i w.r.t. j in fixed axis.
aij = (axij

ayij
azij

)T: is the (3× 1) acceleration vector of vehicle i w.r.t. j in fixed axis.
y

ij
= (xij uij)

T: is the (6× 1) relative state vector between vehicle i w.r.t. j in fixed
axis.

Differential Game Theory with Applications to Missiles and Autonomous Systems Guidance, First Edition.
Farhan A. Faruqi.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
Companion Website: http://www.wiley.com/go/faruqi/game
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F: is a (6× 6) state coefficient matrix.
G: is a (6× 3) control (input) coefficient matrix.
S: is a 6× 6 final state PI weightings matrix.
I: is a 3× 3 unity matrix.
Q: is a 6× 6 state PI weightings matrix.
Rp: is the 3× 3 pursuer’s demanded acceleration PI weightings

matrix.
Re: is the 3× 3 evader’s demanded acceleration PI weightings

matrix.
J(⋯): is the PI or the objective function.
H(⋯): is a Hamiltonian.
P: is the matrix Riccati differential equation solution.
T = (tf − t): is the time-to-go.
Kp

1 , Kd
1: are interceptor (pursuer) state feedback disturbance input

gains.
Ke

2, Kd
2: are target (evader) state feedback and disturbance input gains.

𝛏(t) = 𝛈(T): is the vector Riccati differential equation solution.

Abbreviations

3-D: three dimensions
AI: artificial intelligence
APN: augmented proportional navigation
GTG: game theoretic guidance
MRDE: matrix Riccati differential equation
OF: objective function
OG: optimum guidance
PI: performance index
PN: proportional navigation
VRDE: vector Riccati differential equation

. Introduction

Tactical missiles have been in use since WWII and their guidance systems have pro-
gressively evolved from those employing proportional navigation (PN) and augmented
proportional navigation (APN) to those employing optimal guidance (OG) and game
theoretic guidance (GTG). One reason for this development is the fact that the imple-
mentation hardware/software for the guidance system has evolved over the years and
now offers greater flexibility to a guidance system designer to implement advanced algo-
rithms for missile navigation, guidance and control. Developments in the area of IR/RF
missile-borne seekers, strap-down navigation systems, and airborne processors have
prompted guidance engineers to explore techniques that are more suited for contin-
uously evolving and relatively more complex battlefield scenarios. With the advent of
state estimation techniques such as the Kalman Filter and others, it is now possible to
implement the OG, GTG, and GTG plus AI (artificial intelligence) guidance on practical
missile systems.
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It is noteworthy that the PN and APN are still being used in a large number of modern
missile systems. The PN and APN guidance performance has been studied by a num-
ber of authors.[1–5] It is also interesting to note that both PN and APN guidance can be
derived using the optimum guidance theory and state space representation of the inter-
ceptor and target kinematics model. Thus, we may regard both PN and APN as special
cases of OG and GTG; this connection is explored in this chapter. Given the desire to
reduce weapon life-cycle cost, and at the same time extend the operational envelope
to cope with complex engagement scenarios that require the capability to adapt to an
adversary’s “intelligent” engagement tactics, it is necessary to consider OG and GTG
guidance approaches for future tactical missiles. Augmentation of these guidance tech-
niques with those that have evolved in the field of AI also needs to be considered.

Application of the differential game theory to missile guidance has been considered
by a number of authors.[6–13] Shinar et al.[7] presented an analysis of a complex combat
scenario involving two parties (two aircraft), both equipped with interceptor missiles.
The objective of each party was to shoot down the opponent’s aircraft without their own
aircraft being intercepted (hit) by their opponent’s missile. Such a scenario, where the
strategy of each party is for its missile to intercept the opponent’s aircraft and perform
evasion maneuvers of its own aircraft so as to avoid being hit by the opponent’s missile,
is typical of engagement scenarios where the game theoretic approach to missile
guidance can be used. Shinar refers to this situation as a “non-cooperative differential
game,” which can also be classed as a “game of a kind.” Encounter between the two
aircraft (blue and red), under the above conditions, results in one of the following
outcomes:

(a) Win for blue (red alone is shot down)
(b) Win for red (blue alone is shot down)
(c) Mutual kill (both red and blue are shot down)
(d) Draw (both red and blue escape)

Shinar goes on to consider further combat strategies that can arise out of the above
scenario and suggests the application of artificial intelligence (AI) augmentation to the
differential game guidance. This latter aspect can be considered from the perspective of
augmenting the GTG with a “rule-based” AI—for switching the performance index (PI)
weighting parameters and/or for applying additional maneuvers to evade the pursuer. In
this chapter, our main focus will be on the formulation and solution of the GTG problem
involving two parties where the objective of one party (pursuer) is to implement a strat-
egy to intercept, while the objective of the other (evader) is to implement a strategy to
evade the former. Ben-Asher et al.[8] considered the application of the differential game
theory to missile guidance and utilized the linear system quadratic PI (LQPI) approach
in order to derive guidance strategies (in terms of guidance acceleration commands) for
the pursuer and the evader in a two-party game scenario. This approach was based on
defining the interceptor and target kinematics in linear state space form and the PI that
included a scalar quadratic function of states and controls (the so-called LQPI problem).
The above authors considered engagement kinematics in 2-D and the PI, which included
the miss-distance; in this chapter we have generalized this problem to a 3-D case and
a PI that could include relative velocity terms and thus allow greater control of vehicle
flight trajectories.
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The two-party GTG problem can be stated in a general form as follows. Given the
following state space (relative kinematics) model:

d
dt

y
12
= Fy

12
+G

(
ap

1 − ae
2

)
+G

(
ad

1 − ad
2

)
; y

12
(0) = y

120
(3.1.1)

where

y
12
= (x12 u12)T: is the relative state (position and velocity in fixed axis) vector

between the interceptor 1 and target 2.
xij = (xij yij zij)T: is the (3× 1) position vector of vehicle i w.r.t. j in fixed axis.
uij = (uij vij wij)T: is the (3× 1) velocity vector of vehicle i w.r.t. j in fixed axis.

(ap
1 , ae

2): are commanded acceleration vectors respectively of the interceptor 1 (pursuer)
and the target 2 (evader).

(ad
1 , ad

2): are additional (prespecified) disturbance vectors respectively of the interceptor
and the target. These are included to admit additional evasion and/or pursuit maneu-
vers that the players might implement.

The guidance problem is, therefore, that of computing interceptor and target accelera-
tions (ap

1 , ae
2), such that the optimum value of the PI J∗(ap

1 , ae
2) is given by:

J∗
(

ap
1, ae

2

)
= Min

ap
1

Max
ae

2

J
(

ap
1, ae

2

)
(3.1.2)

If we assume a scalar quadratic PI then we can convert the above Min/Max problem to
just a minimization problem by changing the sign of the quadratic term involving the
input for evasion (ae

2), in the PI to negative as given below:

J(⋯) = 1
2

(
y

12
TSy

12

)
t=tf

+ 1
2

tf

∫
0

(
apT

1 Rpap
1 − aeT

2 Reae
2

)
dt (3.1.3)

where

S: is a positive semi-definite matrix that defines the PI penalty weightings on the final
relative state.

Rp, Re: are positive definite matrices that define the PI penalty weightings on the inputs.

Ben-Asher[8] solved the problem (3.1.1) through (3.1.3) for a special case of 2-D with
a PI consisting of miss-distance term only. In this current chapter we shall consider
engagement in 3-D (azimuth and elevation planes) and define a PI that incorporates the
miss-distance term as well as additional terms consisting of relative velocities that may
allow us to shape the engagement trajectory and more effectively deal with large heading
errors, unfavorable engagement geometries and severe interceptor and target maneu-
vers. It must be pointed out that, in general, the game outcome depends upon which
of the parties “plays first”;[7, 8] however, if we assume that both parties apply optimum
strategies (guidance commands) “almost simultaneously” and that the PI optimization
solution satisfies the “saddle point” condition then the outcome becomes independent
of the order of the play.
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Both OG and GTG are derived in this chapter, based on optimizing a performance
(PI) that is a function of system states and controls. In the case of the OG, which can be
regarded as a special case of the GTG, it is assumed that the target does not implement
any evasion strategy while the interceptor implements the intercept strategy. Thus, with
a slight modification, the objective function (3.1.3) may be used to derive the OG law.
This yields a linear state feedback guidance law involving gain terms derived by solving
the well-known, matrix Riccati differential equation (see Section 3.3). This approach
has been adopted in this chapter to solve the GTG and the OG problems. In both cases,
closed form solutions of the Riccati equation and of the resulting feedback gains are
derived as a function of time to go. While the emphasis in this chapter is on two-party
games involving one interceptor against one target, the development of the kinematics
equations and the guidance law derivation is general enough to be extended to three-
party and multi-party game situations (see Chapters 2 and 4).

Intercept and evasion strategies, implemented by the parties involved, are based on
their knowledge of relative states (i.e., the parties learn from the environment) and on the
optimization of an objective function (i.e., the decision-making criteria). Rule-based AI
can also be used that will allow adaptively changing the PI weightings and/or implement-
ing additional maneuvers (ad

1 , ad
2). Section 3.2 of this chapter presents the development

of a 3-D engagement kinematics model in state space form. Section 3.3 presents the for-
mulation of the PI and the solution of the GTG problem. Solutions of the matrix Riccati
differential equation (MRDE) and the vector Riccati differential equation (VRDE) are
considered in Section 3.4, along with the feedback implementation of the guidance law.
Relationships between the OG and GTG and the conventional PN and APN guidance
are explored in Sections 3.5 and 3.6. Section 3.7 contains conclusions resulting from the
material presented in this chapter. Further useful reading on the subject is given in the
references.[10–14]

. Development of the Engagement Kinematics Model

Typical two-vehicle engagement geometry is shown in Figure 3.2.1 (T is the target and
I is the interceptor); this scenario may be extended to the case of m targets and n

Line of Sight

ui

xi
zi

yi

yj

Y

I

T

zj

−Z

X

xj

I: Interceptor

T: Target

u_j

Figure .. Interceptor/target engagement geometry.
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interceptors; that is N = n+m vehicles. The engagement kinematics model in this
chapter is derived with this in mind. The motion (kinematics) of each vehicle can be
described by a set of first order differential equations representing states of the vehi-
cles (i.e., position, velocity and acceleration) defined in fixed (e.g., inertial) frame. The
kinematics equations may be written as:

d
dt

xi = ui;
d
dt

yi = vi;
d
dt

zi = wi (3.2.1)

d
dt

ui = axi
; d

dt
vi = ayi

; d
dt

wi = azi
(3.2.2)

where

The above variables are functions of time t.
xi: is the x position of vehicle i in fixed axis.
yi: is the y position of vehicle i in fixed axis.
zi: is the z position of vehicle i in fixed axis.
ui: is the x velocity of vehicle i in fixed axis.
vi: is the y velocity of vehicle i in fixed axis.
wi: is the z velocity of vehicle i in fixed axis.
axi

: is the x acceleration of vehicle i in fixed axis.
ayi

: is the y acceleration of vehicle i in fixed axis.
azi

: is the z acceleration of vehicle i in fixed axis.

A flat-earth assumption is made and that Z-axis is assumed positive down.

3.2.1 Relative Engage Kinematics of n Versus m Vehicles

We now consider relative states of the vehicles; the kinematics equations may be written
as follows:

d
dt

xij = uij;
d
dt

yij = vij;
d
dt

zij = wij (3.2.3)

d
dt

uij = axij
= axi

− axj
; d

dt
vij = ayij

= ayi
− ayj

; d
dt

wi = azij
= azi

− azj
(3.2.4)

where

xij = xi − xj: is the x position of vehicle i w.r.t. j in fixed axis.
yij = yi − yj: is the y position of vehicle i w.r.t. j in fixed axis.
zij = zi − zj: is the z position of vehicle i w.r.t. j in fixed axis.
uij = ui − uj: is the x velocity of vehicle i w.r.t. j in fixed axis.
vij = vi − vj: is the y velocity of vehicle i w.r.t. j in fixed axis.
wij = wi − wj: is the z velocity of vehicle i w.r.t. j in fixed axis.
axij

= axi
− axj

: is the x acceleration of vehicle i w.r.t. j in fixed axis.
ayij

= ayi
− ayj

: is the y acceleration of vehicle i w.r.t. j in fixed axis.
azij

= azi
− azj

: is the z acceleration of vehicle i w.r.t. j in fixed axis.

For the engagement between an interceptor against a target (two-party engagement), we
may regard suffix i to represent the interceptor and suffix j to represent the target. In the
derivation of the optimal guidance law it will be useful to represent the above equations
in vector/matrix notation.
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3.2.2 Vector/Matrix Representation

We can write equations (3.2.1) and (3.2.2) as:

d
dt

xi = ui;
d
dt

ui = ai (3.2.5)

Similarly we can write the relative kinematics equations (3.2.3) and (3.2.4) as:

d
dt

xij = uij;
d
dt

uij = ai − aj (3.2.6)

where

xi = (xi yi zi)T: is the (3× 1) position vector of vehicle i in fixed axis.
ui = (ui vi wi)T: is the (3× 1) velocity vector of vehicle i in fixed axis.
ai = (axi

ayi
azi

)T: is the (3× 1) acceleration vector of vehicle i in fixed axis.
xij = (xij yij zij)T: is the (3× 1) position vector of vehicle i w.r.t. j in fixed axis.
uij = (uij vij wij)T: is the (3× 1) velocity vector of vehicle i w.r.t. j in fixed axis.
aij = (axij

ayij
azij

)T = ai − aj: is the (3× 1) acceleration vector of vehicle i w.r.t. j in
fixed axis.

Equation (3.2.6) may be combined together to give us:

d
dt

[
xij
uij

]
=
[

0 I
0 0

][ xij
uij

]
+
[

0
I

]
ai −

[
0
I

]
aj (3.2.7)

This can be written as:
d
dt

y
ij
= Fy

ij
+Gai −Gaj (3.2.8)

where

y
ij
= ( xij uij )T: is the (6× 1) relative state vector between vehicle i w.r.t. j in fixed axis.

F =
[

0 I
0 0

]
: is the (6× 6) state coefficient matrix; I is the identity matrix.

G =
[

0
I

]
: is the (6× 3) control (input) coefficient matrix, and I is the identity matrix.

In this chapter, the guidance algorithm is derived on the basis of a linear engagement
kinematics model defined in fixed axis (e.g., inertial axis); the guidance commands are
also generated in fixed axis. For testing and performance of the guidance strategies
derived in this chapter, a non-linear engagement kinematics model was used for the sim-
ulation model; this is developed in Chapter 5. The guidance commands are applied in the
vehicle body axis (through appropriate transformation), which accounts for changes in
body attitude; also the autopilot dynamics and the maximum and minimum acceleration
limits are included in the simulation model. Several authors[5] have included autopilot
lags in the guidance law derivations and the material presented in this chapter may be
extended to this case.
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. Optimum Interceptor/Target Guidance for a Two-Party Game

Here we address the problem of a target, that is being engaged by an interceptor, imple-
menting a guidance strategy to avoid intercept, whereas the interceptor implements a
strategy to try to intercept the target. These strategies are implemented via the appli-
cation of guidance (lateral) acceleration commands. The interceptor i = 1 utilizes its
guidance input command a1 to effect intercept of the target, this is specified by ap

1 ; in
addition, it may, if required, perform additional prespecified maneuver ad

1 . The total
interceptor acceleration in this case may be written as:

a1 = ap
1 + ad

1 (3.3.1)

The target (j = 2), on the other hand, applies an evasive maneuver ae
2 and an additional

prespecified (disturbance) maneuver ad
2 ; this latter component could be, for example, a

random maneuver or a maneuver of a periodical wave form. With these maneuvers, the
total evader acceleration is of the form:

a2 = ae
2 + ad

2 (3.3.2)

The modified form of the kinematics model (3.2.8), including the above maneuvers, may
be written as:

d
dt

y
12
= Fy

12
+G

(
ap

1 + ad
1

)
−G

(
ae

2 + ad
2

)
(3.3.3)

We shall compute the evasion and pursuit guidance commands ae
2, ap

1 , which satisfy the
specified criteria. We shall consider the application of the differential game and the opti-
mum control principles developed in Chapter 2, to derive evasion and pursuit guidance
strategies.

3.3.1 Construction of the Differential Game Performance Index

In formulating the differential game-based guidance problem, the following assump-
tions are made.

(a) Both parties have all the necessary information of the relative states, with respect to
each other, to enable the parties to implement the necessary guidance laws. Coun-
termeasures designed to conceal states of the parties involved are not considered.

(b) If a seeker/tracker is used to construct system relative states using seeker informa-
tion (e.g., utilizing a Kalman Filter), then state estimation errors and processing delay
have to be included. However, for the purpose of our current considerations it is
assumed the system states are exact and are available to both parties almost instan-
taneously.

(c) The maximum and the minimum accelerations achievable by the vehicles involved
in the game are limited. For our current derivation constraints on the accelerations
are considered to be “soft”; that is, the change in acceleration and acceleration rate
is gradual in the neighborhood of the maximum/minimum values. This type of con-
straint can be implemented in the PI through the use of “penalty weightings” associ-
ated with the demanded accelerations. This approach leads to a relatively easy solu-
tion for implementing these constraints.
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(d) In the derivation of the guidance laws, autopilot lags are ignored. These may be
included in the actual simulation studies in order to assess the guidance performance
including the autopilot.

Under the above assumptions we can proceed to construct the PI that the parties
to the game will need to minimize or maximize in order to derive their respective
strategies. The PI selected for the problem under consideration includes interceptor/
target states that represent the miss-distance as well as other states that influence this.
In the past, most authors[8, 10] have used miss-distance and demanded accelerations
terms to construct the PI. In this chapter, we shall generalize the objective function
by including terms in relative position and relative velocity as well as demanded
accelerations.

We shall assume the PI that we wish to minimize is given by:

J(⋯) = 1
2

[(
x12

TS1x12

)
+ 2

(
x12

TS2u12

)
+
(

u12
TS3u12

)]
t=tf

⋯

+1
2

tf

∫
0

[(
apT

1 Rpap
1

)
−
(

aeT

2 Reae
2

)]
dt

(3.3.4)

where

J(⋯): is the PI.
(x12

TS1x12): is a weighted square of the relative separation between the interceptor and
the target.

(x12
TS2u12): is a weighted projection of the relative velocity on to the relative range.

(u12
TS3u12): is a weighted square of the relative velocity of the interceptor w.r.t. the

target.
(apT

1 Rpap
1): is a weighted square of the interceptor acceleration.

(aeT

2 Reae
2): is a weighted square of the target acceleration.

(S1, S2, S3): are PI weightings matrix on the final values of states.
(Rp, Re): are PI weightings matrix on demanded accelerations.

By varying the relative values of the PI weightings (Si, Rp, Re), constraints on system
final state and on control can be implemented. Note that this PI contains the following
terms.

(a) Weighted interceptor/target relative position term: (x12
TS1x12); at the final time

t = tf is the miss-distance squared for S1 = I.
(b) Weighted interceptor/target relative position and velocity terms: (x12

TS2u12) and
(u12

TS3u12); these terms represent engagement trajectory shaping terms.

(c) Weighted interceptor/target demanded acceleration terms: (apT

1 Rpap
1) and

(aeT

2 Reae
2); these terms allow soft constraints on controls (demanded accelera-

tions) to be implemented.
(d) Relative values of penalty weightings: (S1, S2, S3) and (Rp, Re) determine soft con-

straints on states and control variables.
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The objective function J(..) as given in equation (3.3.4) can be minimized w.r.t. ap
1 in

order to derive the intercept guidance commands, and maximized w.r.t. ae
2. By virtue of

the negative sign associated with (aeT

2 ae
2) we simply minimize the PI. It will be convenient

to write the PI (also referred to as the objective function – OF) as:

J(⋯) = 1
2
‖‖‖‖y

12

‖‖‖‖
2

S

|||||t=tf

+ 1
2

tf

∫
0

{
+ ‖‖‖ap

1
‖‖‖

2

Rp −
‖‖‖ae

2
‖‖‖

2

Re

}
dt (3.3.5)

where

S =
[

S1 S2
S2 S3

]
: is a 6× 6 final state function penalty weighting matrix.

Rp: is a 3× 3 pursuer’s demanded acceleration function penalty weighting matrix.
Re: is a 3× 3 evader’s demanded acceleration function penalty weighting matrix.

We shall define: ‖𝛂‖2
𝚲 ≡ 𝛂T𝚲𝛂.

The game theoretic guidance problem can be stated as that of minimizing the follow-
ing PI:

Min
ap

1,ae
2

J(⋯) = Min
ap

1,ae
2

⎧⎪⎨⎪⎩
1
2
‖‖‖‖y

12

‖‖‖‖
2

S

|||||t=tf

+ 1
2

tf

∫
0

(‖‖‖ap
1
‖‖‖

2

Rp −
‖‖‖ae

2
‖‖‖

2

Re

)
dt
⎫⎪⎬⎪⎭

(3.3.6)

For a minimum or a maximum of the PI to exist, it is a requirement that the matrix
S be at least positive semi-definite, and matrices Rp and Re be positive definite. That
is, the determinants: |S| ≥ 0 and |Rp| > 0, |Re| > 0. These conditions imply that (see
Appendix A3.1):

s1, s2 ≥ 0, and
(

s1s3 − s2
2

) ≥ 0, s2 can be positive or negative (3.3.7)

3.3.2 Weighting Matrices S, Rp, Re

For the solution of the game theory guidance problem considered in this chapter the
following types of Si, Rp, Re (diagonal matrix) structures are utilized:

S1 =
⎡⎢⎢⎢⎣

s11 0 0
0 s22 0
0 0 s33

⎤⎥⎥⎥⎦
; S2 =

⎡⎢⎢⎢⎣

s14 0 0
0 s25 0
0 0 s36

⎤⎥⎥⎥⎦
; S3 =

⎡⎢⎢⎢⎣

s44 0 0
0 s55 0
0 0 s66

⎤⎥⎥⎥⎦
(3.3.8)

Rp =
⎡⎢⎢⎢⎣

rp
11 0 0
0 rp

22 0
0 0 rp

33

⎤⎥⎥⎥⎦
; Re =

⎡⎢⎢⎢⎣

re
11 0 0
0 re

22 0
0 0 re

33

⎤⎥⎥⎥⎦
(3.3.9)

In the sequel we also will need the combined matrix R, which is defined as:

R−1 = (Rp)−1 − (Re)−1 (3.3.10)
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It can easily be verified that if we write R as:

R =
⎡⎢⎢⎣

r11 0 0
0 r22 0
0 0 r33

⎤⎥⎥⎦
; then R−1 =

⎡⎢⎢⎢⎢⎢⎣

1
r11

0 0

0 1
r22

0

0 0 1
r33

⎤⎥⎥⎥⎥⎥⎦
(3.3.11)

and

r11 =
rp

11re
11(

re
11 − rp

11

) ; r22 =
rp

22re
22(

re
22 − rp

22

) ; r33 =
rp

33re
33(

re
33 − rp

33

) (3.3.12)

Matrices of the type shown in (3.3.8) and (3.3.12) are used to derive the general solu-
tions to the MRDE and VRDE. The following special cases will also be considered that
will enable us to derive certain useful results, which will be used later in this and other
chapters.

Case 1 For this case we assume that: s11 = s22 = s33 = s1, that is, S1 = s1I; s14 =
s25 = s36 = s2, i.e. S2 = s2I; s44 = s55 = s66 = s3, i.e. S3 = s3I.

and r11 = r22 = r33 = r; that is, R = rI, this last equality simply implies that: Rp =
rpI, Re = reI; that is: r = rpre

(re−rp) .

Case 2 For this case assume that: s11 = s22 = s33 = s1; s14 = s25 = s36 = s2 = 0;
s44 = s55 = s66 = s3 = 0 and r11 = r22 = r33 = r.

This is equivalent to setting the weightings on the velocity terms in the PI index to
zero; in which case the PI becomes only a function of the miss distance squared and the
terms involving interceptor and target accelerations.

3.3.3 Solution of the Differential Game Guidance Problem

In this section we present the solution to the problem of optimization of the PI (3.3.6)
subject to the condition that the kinematics model (3.3.3) holds. In doing so we shall fol-
low the technique described in Chapter 2. This involves the construction of the Hamil-
tonian, which is then minimized w.r.t. ap

1 and maximized w.r.t. ae
2. The Hamiltonian may

be written as:

H(⋯) = 1
2

[(
apT

1 Rpap
1

)
−
(

aeT

2 Reae
2

)]
+ 𝛌

[
Fy

12
+G

(
ap

1 + ad
1

)
−G

(
ae

2 + ad
2

)]
(3.3.13)

Necessary conditions for Min
(ap

1,ae
2)

H(⋯) are given by:

𝛛
𝛛ap

1

H = 0 (3.3.14)

𝛛
𝛛ae

2
H = 0 (3.3.15)

𝛛
𝛛y

12

H = − ̇𝛌 (3.3.16)
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The terminal condition for 𝛌 is given by: 𝛌(tf ) = Sy
12

(tf ). The corresponding sufficient
conditions are:

𝛛2

𝛛ap2

1

H ≥ 0 and 𝛛2

𝛛ae2

2

H ≤ 0 (3.3.17)

Now, applying the necessary conditions (3.3.14) and (3.3.15) to the Hamiltonian (3.3.13),
we get:

𝛛
𝛛ap

1

H = Rpap
1 +GT𝛌 = 0 (3.3.18)

𝛛
𝛛ae

2
H = −Reae

2 −GT𝛌 = 0 (3.3.19)

Equations (3.3.18) and (3.3.19) give us:

ap
1 = −(Rp)−1GT𝛌 (3.3.20)

ae
2 = −(Re)−1GT𝛌 (3.3.21)

Since we are interested in constructing the guidance commands as functions of system
relative states, we assume that 𝛌 is of the form:

𝛌 = Py
12
+ 𝛏 (3.3.22)

where

P: is a 6× 6 matrix, which will be later shown to be a solution of the matrix Riccati
differential equation (MRDE).

𝛏: is a 6× 1 vector, which will be later shown to be a solution of the vector Riccati differ-
ential equation (VRDE).

Thus

ap
1 = −(Rp)−1GTPy

12
− (Rp)−1GT𝛏 (3.3.23)

ae
2 = −(Re)−1GTPy

12
− (Re)−1GT𝛏 (3.3.24)

Since we are interested in state feedback guidance laws, we write these equations as:

ap
1 = −Kp

1y
12
− Kd

1𝛏 (3.3.25)

ae
2 = −Ke

2y
12
− Kd

2𝛏 (3.3.26)

where

Kp
1 = (Rp)−1GTP: is the feedback gain for a pursuer; and Kd

1 = (Rp)−1GT: is the pursuer
gain for the disturbance input.

Ke
2 = (Re)−1GTP: is the state feedback gain for the evader; and Kd

2 = (Re)−1GT: is the
evader gain for the disturbance input.

Now applying the necessary condition (3.3.16), we get, using equation (3.3.13):
𝛛
𝛛y

12

H(⋯) = FT𝛌 = − ̇𝛌 (3.3.27)
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where

̇𝛌 = ̇Py
12
+ Pẏ

12
+ ̇𝛏

Substituting for 𝛌, ̇𝛌, and ẏ
12

, and for ap
1 and ae

2, and after algebraic simplification (see
Appendix A3.2) it can be shown that equation (3.3.27) leads to:

{ ̇P+ PF+ FTP− PG[(Rp)−1 − (Re)−1]GTP}y
12

⋯

=
[
− ̇𝛏 − {F−G[(Rp)−1 − (Re)−1]GTP}T𝛏 − PG

(
ad

1 − ad
2

)] (3.3.28)

Since the solution of equation (3.3.28) must hold for all y
12

, it must satisfy the following
differential equations:

̇P+ PF+ FTP− PG[(Rp)−1 − (Re)−1]GTP = 0 (3.3.29)

− ̇𝛏 − {F−G[(Rp)−1 − (Re)−1]GTP}T𝛏 − PG
(

ad
1 − ad

2

)
= 0 (3.3.30)

With terminal conditions P(tf ) = S, and 𝛏(tf ) = 0. Equation (3.3.29) will be referred to
as the matrix Riccati differential equation (MRDE) and equation (3.3.30) will be referred
to as the vector Riccati differential equation (VRDE).

. Solution of the Riccati Differential Equations

3.4.1 Solution of the Matrix Riccati Differential Equations (MRDE)

In this section we consider the solution of the MRDE (3.3.29). We write this equation
as:

̇P+ PF+ FTP− PGR−1GTP = 0 (3.4.1)

where

R−1 = (Rp)−1 − (Re)−1

The approach adopted to solve the MRDE involves an inverse matrix technique, where
the solution of an inverse matrix version of the MRDE is first obtained and then by re-
inverting the resulting solution, the Riccati matrix P is obtained. This approach is given
in the Appendix, where an expression for E, the inverse MRDE solution, is first obtained.
This is re-inverted to obtain expressions for the elements of P. The general solution of
the MRDE is given in the Appendix, equations (A3.3.28) through (A3.3.36).

Case 1 For weighting parameters selected for this case: s11 = s22 = s33 = s1;
s14 = s25 = s36 = s2; s44 = s55 = s66 = s3 and r11 = r22 = r33 = r; and writing
T = (tf − t). The MRDE solution gives us [see (A3.3.28) through (A3.3.36)]:

p11 = p22 = p33 =
12r

[
rs1 +

(
s1s3 − s2

2

)
T
]

[
12r2 + 12rs3T+ 12rs2T2 + 4rs1T3 +

(
s1s3 − s2

2

)
T4
] (3.4.2)
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p44 = p55 = p66 =
4r
[

3rs3 + 6rs2T+ 3rs1T2 +
(

s1s3 − s2
2

)
T3
]

[
12r2 + 12rs3T+ 12rs2T2 + 4rs1T3 +

(
s1s3 − s2

2

)
T4
] (3.4.3)

p14 = p25 = p26 =
6r
[

2rs2 + 2rs1T+
(

s1s3 − s2
2

)
T2
]

[
12r2 + 12rs3T+ 12rs2T2 + 4rs1T3 +

(
s1s3 − s2

2

)
T4
] (3.4.4)

3.4.2 State Feedback Guidance Gains

The feedback gain matrix for the interceptor (pursuer) is given by:

Kp
1 =

1
rp GTP = 1

rp

⎡⎢⎢⎣
p14 0 0 p44 0 0
0 p25 0 0 p55 0
0 0 p36 0 0 p66

⎤⎥⎥⎦
(3.4.5)

The feedback gain matrix for the target (evader) is given by:

Ke
2 =

1
re GTP = 1

re

⎡⎢⎢⎣
p14 0 0 p44 0 0
0 p25 0 0 p55 0
0 0 p36 0 0 p66

⎤⎥⎥⎦
(3.4.6)

Case 2 One case of particular interest is when the following PI weightings are used.
Substituting: s11 = s22 = s33 = s1; s14 = s25 = s36 = s2 = 0; s44 = s55 = s66 = s3 = 0
and r11 = r22 = r33 = r in equations (3.4.2) through (3.4.4) gives us:

p11 = p22 = p33 =
3rs1

[3r+ s1T3]
(3.4.7)

p14 = p25 = p36 =
3rs1T

[3r+ s1T3]
(3.4.8)

p44 = p55 = p66 =
3rs1T2

[3r+ s1T3]
(3.4.9)

Note that:

⎡⎢⎢⎣
p44
p55
p66

⎤⎥⎥⎦
= T

⎡⎢⎢⎣
p14
p25
p36

⎤⎥⎥⎦
= T2

⎡⎢⎢⎣
p11
p22
p33

⎤⎥⎥⎦
(3.4.10)

Substituting for pij from (3.4.8) and (3.4.9), the feedback gain matrix for the pursuer in
this case is given by:

Kp
1 =

1
rp GTP =

3rs1T
rp[3r+ s1T3]

⎡⎢⎢⎣
1 0 0 T 0 0
0 1 0 0 T 0
0 0 1 0 0 T

⎤⎥⎥⎦
(3.4.11)
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The feedback gain matrix for the evader is given by:

Ke
2 =

1
re GTP =

3rs1T
re[3r+ s1T3]

⎡⎢⎢⎣
1 0 0 T 0 0
0 1 0 0 T 0
0 0 1 0 0 T

⎤⎥⎥⎦
(3.4.12)

3.4.3 Solution of the Vector Riccati Differential Equations (VRDE)

The VRDE given in equation (3.3.25) may be written as:

̇𝛏 = −[F−GR−1GTP]T𝛏 − PG
(

ad
1 − ad

2

)
(3.4.13)

Writing: 𝛏 = [ 𝛏1 𝛏2 𝛏3 𝛏4 𝛏5 𝛏6 ]T; equation (3.4.13) (in its decomposed form)
may be written as (see Appendix A3.4):

̇𝛏1 =
p14
r11
𝛏4 − p14

(
ad

x1
− ad

x2

)
(3.4.14)

̇𝛏2 =
p25
r22
𝛏5 − p25

(
ad

y1
− ad

y2

)
(3.4.15)

̇𝛏3 =
p36
r33
𝛏6 − p36

(
ad

z1
− ad

z2

)
(3.4.16)

̇𝛏4 = −𝛏1 +
p44
r11
𝛏4 − p44

(
ad

x1
− ad

x2

)
(3.4.17)

̇𝛏5 = −𝛏2 +
p55
r22
𝛏5 − p55

(
ad

y1
− ad

y2

)
(3.4.18)

̇𝛏6 = −𝛏3 +
p66
r33
𝛏6 − p66

(
ad

z1
− ad

z2

)
(3.4.19)

Unfortunately, it is not easily possible to obtain analytical solutions for equa-
tions (3.4.14) through (3.4.19), except for special cases where (ad

xi
, ad

xi
, ad

xi
), (ad

yi
, ad

yi
, ad

zi
)

and (ad
zi

, ad
zi

, ad
zi

), i = 1, 2 are constants. This case will be considered later on in this sec-
tion. In general, however, equations (3.4.14) through (3.4.19) have to be solved backward
in time. For this purpose we make the following substitutions.

Let T = tf − t, ➔ dT = −dt; 𝛏(t) = 𝛏(tf − T) = 𝛈(T); ad
𝛄i

(t) = ad
𝛄i

(tf − T) = 𝛂d
𝛄i

(T);
i = 1, 2; 𝛄 = x, y, z. Hence the above equations (3.4.14) through (3.4.19) may be writ-
ten as:

−
d𝛈1

dT
=

p14
r11
𝛈4 − p14

(
𝛂d

x1
− 𝛂d

x2

)
(3.4.20)

−
d𝛈2

dT
=

p25
r22
𝛈5 − p25

(
𝛂d

y1
− 𝛂d

y2

)
(3.4.21)

−
d𝛈3

dT
=

p36
r33
𝛈6 − p36

(
𝛂d

z1
− 𝛂d

z2

)
(3.4.22)

−
d𝛈4

dT
= −𝛈1 +

p44
r11
𝛈4 − p44

(
𝛂d

x1
− 𝛂d

x2

)
(3.4.23)
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−
d𝛈5

dT
= −𝛈2 +

p55
r22
𝛈5 − p55

(
𝛂d

y1
− 𝛂d

y2

)
(3.4.24)

−
d𝛈6

dT
= −𝛈3 +

p66
r33
𝛈6 − p66

(
𝛂d

z1
− 𝛂d

z2

)
(3.4.25)

These equations satisfy the boundary condition 𝛈(0) = 𝛏(tf ) = 0, and must be solved
backward in time, that is, T → 0. In the absence of an explicit closed form solution to
equations (4.4.20) through (4.4.25) we shall write the general solution as:

𝛈(T) = 𝛙
[

T, pij,
(
𝛂d

x1
− 𝛂d

x2

)
,
(
𝛂d

y1
− 𝛂d

y2

)
,
(
𝛂d

z1
− 𝛂d

z2

)]
(3.4.26)

3.4.4 Analytical Solution of the VRDE for the Special Case

Analytical solution of the VRDE is possible for Case 2, when: s11 = s22 = s33 = s1;
s14 = s25 = s36 = s2 = 0; s44 = s55 = s66 = s3 = 0; r11 = r22 = r33 = r; and 𝛂xi

,𝛂yi
,

𝛂zi
are constants. For this case (see Appendix A3.4), the solution of equations (3.4.20)

through (3.4.25) gives us:

𝛈1 =
1
2

[
3rs1T2

3r+ s1T3

](
𝛂d

x1
− 𝛂d

x2

)
(3.4.27)

𝛈2 =
1
2

[
3rs1T2

3r+ s1T3

](
𝛂d

y1
− 𝛂d

y2

)
(3.4.28)

𝛈3 =
1
2

[
3rs1T2

3r+ s1T3

](
𝛂d

z1
− 𝛂d

z2

)
(3.4.29)

𝛈4 =
1
2

[
3rs1T3

3r+ s1T3

](
𝛂d

x1
− 𝛂d

x2

)
(3.4.30)

𝛈5 =
1
2

[
3rs1T3

3r+ s1T3

](
𝛂d

y1
− 𝛂d

y2

)
(3.4.31)

𝛈6 =
1
2

[
3rs1T3

3r+ s1T3

](
𝛂d

z1
− 𝛂d

z2

)
(3.4.32)

Noting that: 𝛈(T) = 𝛏(tf − T), the feedback guidance terms for the disturbance term
may be written as:

Kd
1𝛈 = (Rp)−1GT𝛈 = 1

rp

⎡⎢⎢⎣
𝛈4
𝛈5
𝛈6

⎤⎥⎥⎦
= 1

2rp

[
3rs1T3

3r+ s1T3

]⎡⎢⎢⎢⎢⎢⎣

(
𝛂d

x1
− 𝛂d

x2

)
(
𝛂d

y1
− 𝛂d

y2

)
(
𝛂d

z1
− 𝛂d

z2

)

⎤⎥⎥⎥⎥⎥⎦
(3.4.33)

Kd
2𝛈 = (Re)−1GT𝛈 = 1

re

⎡⎢⎢⎣
𝛈4
𝛈5
𝛈6

⎤⎥⎥⎦
= 1

2re

[
3rs1T3

3r+ s1T3

]⎡⎢⎢⎢⎢⎢⎣

(
𝛂d

x1
− 𝛂d

x2

)
(
𝛂d

y1
− 𝛂d

y2

)
(
𝛂d

z1
− 𝛂d

z2

)

⎤⎥⎥⎥⎥⎥⎦
(3.4.34)
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3.4.5 Mechanization of the Game Theoretic Guidance

Using the expressions for the feedback guidance law equations (3.3.20) and (3.3.21),
and those for the feedback gains given in equations (3.4.5) and (3.4.6) and (3.4.33) and
(3.4.34), we get, for the general case, and with PI weightings of Case 1:

s11 = s22 = s33 = s1; s14 = s25 = s36 = s2; s44 = s55 = s66 = s3 and r11 = r22 =
r33 = r:

ap
1 = −Kp

1y
12
− Kd

1𝛈 = −
1
rp

⎡⎢⎢⎣
p14x12 + p44u12 + 𝛈4
p25y12 + p55v12 + 𝛈5
p36z12 + p66w12 + 𝛈6

⎤⎥⎥⎦
(3.4.35)

ae
2 = −Ke

2y
12
− Kd

2𝛈 = −
1
re

⎡⎢⎢⎣
p14x12 + p44u12 + 𝛈4
p25y12 + p55v12 + 𝛈5
p36z12 + p66w12 + 𝛈6

⎤⎥⎥⎦
(3.4.36)

For PI weighting parameters of Case 2:
s11 = s22 = s33 = 2s1; s14 = s25 = s36 = s2 = 0; s44 = s55 = s66 = 2s3 = 0 and

r11 = r22 = r33 = 2r; 𝛂xi
,𝛂yi

,𝛂zi
constants, we get [see equations (3.4.11) and (3.4.12)

and (3.4.33) and (3.4.34)]:

ap
1 = −Kp

1y
12
− Kd

1𝛈 =
−3rs1T

rp[3r+ s1T3]

⎡⎢⎢⎢⎢⎢⎢⎣

x12 + Tu12 +
T2

2

(
𝛂d

x1
− 𝛂d

x2

)

y12 + Tv12 +
T2

2

(
𝛂d

y1
− 𝛂d

y2

)

z12 + Tw12 +
T2

2

(
𝛂d

z1
− 𝛂d

z2

)

⎤⎥⎥⎥⎥⎥⎥⎦

(3.4.37)

ae
2 = −Ke

2y
12
− Kd

2𝛈 =
−3rs1T

re[3r+ s1T3]

⎡⎢⎢⎢⎢⎢⎢⎣

x12 + Tu12 +
T2

2

(
𝛂d

x1
− 𝛂d

x2

)

y12 + Tv12 +
T2

2

(
𝛂d

y1
− 𝛂d

y2

)

z12 + Tw12 +
T2

2

(
𝛂d

z1
− 𝛂d

z2

)

⎤⎥⎥⎥⎥⎥⎥⎦

(3.4.38)

Obviously, if neither party exercises its option of utilizing the disturbance maneuver,
then the last term in the above expressions becomes zero and the guidance law becomes:

ap
1 = −Kp

1y
12

; ae
2 = −Ke

2y
12

. Extension of the Game Theory to Optimum Guidance

The development of the optimum guidance not involving target evasion maneuvers can
proceed directly from the game theory development presented in earlier sections. For
this case, the PI takes the following form:

J(⋯) = 1
2

(s1‖y
12
‖2)t=tf

+ 1
2

tf

∫
0

rp‖ap
1‖2dt (3.5.1)

where

S =
[

s1I 0
0 0

]
: is a 6× 6 final state function penalty weighting matrix.

Rp = rpI: is a 3× 3 pursuer’s demanded acceleration function penalty weighting matrix.
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Note that in this case, the first term in the PI is only the miss distance and that the game
theory-based target evasion maneuver is not present. Similarly in the kinematics equa-
tions prespecified target acceleration ad

2 is present, whereas ad
1 is zero. The kinematics

model for the engagement, equation (3.3) may be written as:

d
dt

y
12
= Fy

12
+Gap

1 −Gad
2 (3.5.2)

Following the approach presented earlier it follows that the optimum guidance law for
the interceptor in this case is given by:

ap
1 = −(Rp)−1GTPy

12
− (Rp)−1GT𝛏 = −Kp

1y
12
− Kd

1𝛏 (3.5.3)

Or in terms of time-to-go (3.5.3) has the form:

ap
1 = −(Rp)−1GTPy

12
− (Rp)−1GT𝛈 = −Kp

1y
12
− Kd

1𝛈 (3.5.4)

Note that the MRDE and the VRDE are similar to those previously derived in Section 3.4.
That is:

̇P+ PF+ FTP− PG(Rp)−1GTP = 0 (3.5.5)
− ̇𝛏 − [F−G(Rp)−1GTP]T + PGad

2 = 0 (3.5.6)

As far as the solution of these equations (3.5.5) and (3.5.6) is concerned, these are identi-
cal to those derived earlier with r replaced by rp and s2 = s3 = 0. It can be easily verified
that, for this case [see equations (3.4.7) through (3.4.9)]:

p11 = p22 = p33 =
3rps1

[3rp + s1T3]
(3.5.7)

p14 = p25 = p26 =
3rps1T

[3rp + s1T3]
(3.5.8)

p44 = p55 = p66 =
3rps1T2

[3rp + s1T3]
(3.5.9)

The feedback gain matrix for the interceptor in this case is given by [see equa-
tion (3.4.11)]:

Kp
1 =

1
rp GTP =

3s1T
[3rp + s1T3]

⎡⎢⎢⎣
1 0 0 T 0 0
0 1 0 0 T 0
0 0 1 0 0 T

⎤⎥⎥⎦
(3.5.10)

The disturbance term for constant target maneuver ad
2 is given by [see equation (3.4.33)]:

Kd
1𝛈 = (Rp)−1GT𝛈 = 1

2rp

⎡⎢⎢⎣
𝛈4
𝛈5
𝛈6

⎤⎥⎥⎦
= −1

2
3s1

[3rp + s1T3]

⎡⎢⎢⎢⎣

𝛂d
x2

𝛂d
y2

𝛂d
z2

⎤⎥⎥⎥⎦
(3.5.11)
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The feedback guidance law may be written as:

ap
1 = −Kp

1y
12
− Kd

1𝛈 =
−3s1T

[3rp + s1T3]

⎡⎢⎢⎢⎢⎢⎢⎣

x12 + Tu12 −
T2

2
𝛂d

x2

y12 + Tv12 −
T2

2
𝛂d

y2

z12 + Tw12 −
T2

2
𝛂d

z2

⎤⎥⎥⎥⎥⎥⎥⎦

(3.5.12)

It is interesting to note that if rp → 0, then (3.5.12) becomes:

ap
1 = −Kp

1y
12
− Kd

1𝛈 = −3

⎡⎢⎢⎢⎢⎢⎣

x12

T2
+

u12

T
y12

T2
+

v12

T
z12

T2
+

w12

T

⎤⎥⎥⎥⎥⎥⎦
+ 3

2

⎡⎢⎢⎢⎣

𝛂d
x2

𝛂d
y2

𝛂d
z2

⎤⎥⎥⎥⎦
(3.5.13)

This relationship provides the “link” between the optimal guidance and the conventional
guidance such as PN and APN, and will be further elaborated in the next section.

. Relationship with the Proportional Navigation (PN) and the
Augmented PN Guidance

In order to establish a link between optimum guidance and the PN and APN guidance
we shall assume that the engagement trajectory is such that the azimuth and elevation
sightline angles: 𝛙21, 𝛉21, (Figure A3.1) remain small during engagement; that is, the
trajectory remains close to a collision course geometry. For this condition it follows that
the interceptor/target relative velocity is pointed approximately along the sight line and
is approximately equal to the closing velocity Vc. We write equation (3.5.13), the state
feedback guidance acceleration ap

1 , as:

ap
1 = −3Vc

⎡⎢⎢⎢⎢⎢⎢⎣

1
VcT2

x12 +
1

VcT
u12

1
VcT2

y12 +
1

VcT
v12

Vc
1

T2
z12 +

1
VcT

w12

⎤⎥⎥⎥⎥⎥⎥⎦

+ 3
2

⎡⎢⎢⎢⎣

𝛂d
x2

𝛂d
y2

𝛂d
z2

⎤⎥⎥⎥⎦
(3.6.1)

It is shown in Appendix A3.5, equations (A3.5.5) through (A3.5.7), that:

𝛙̇21 = −
( v12

VcT
+

y12

VcT2

)
; ̇𝛉21 = −

( w12

VcT
+

z12

VcT2

)
; and 1

VcT2
x12 +

1
VcT

u12 = 0

Thus equation (3.6.1) reduces to:

ap
1 = 3Vc

⎡⎢⎢⎣
0
𝛙̇21
̇𝛉21

⎤⎥⎥⎦
+ 3

2

⎡⎢⎢⎢⎣

𝛂d
x2

𝛂d
y2

𝛂d
z2

⎤⎥⎥⎥⎦
(3.6.2)
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This is the well-known APN guidance law when the target acceleration ad
2 maneuver is

constant. The navigation gain is 3Vc associated with the sightline rate, and 3
2 associated

with target acceleration. When there is no target maneuver we get the PN guidance,
which may be written as:

ap
1 = 3Vc

⎡⎢⎢⎣
0
𝛙̇21
̇𝛉21

⎤⎥⎥⎦
(3.6.3)

. Conclusions

This chapter was focused on the application of differential game theory to a two-party
game scenario, where the interceptor’s objective was to intercept the target while the
target’s strategy was to avoid intercept. Guidance laws derived in this chapter could
allow additional maneuvers to be implemented (say based on AI) through the distur-
bance inputs. It was further shown that OG was a special case of the GTG. Both these
guidance techniques follow similar procedures for deriving the state feedback guidance
laws and the PI are of the same form. A 3-D interceptor/target engagement was consid-
ered and guidance laws were derived that should give designers the flexibility to choose
guidance gains (by selecting appropriate PI weights) so as to meet their specific engage-
ment objectives. For a number of important cases closed form expressions have been
obtained for the feedback gains. Relationship between the GTG, the OG and the classi-
cal PN and APN has also been demonstrated.

The game theory-based guidance technique considered in this chapter provides a use-
ful tool to study vulnerabilities of existing missile systems against current and future
threat missile systems that may incorporate “intelligent” guidance. Also, it allows future
missile guidance design based on the game theory approach augmented by AI to be
implemented. Further research is required in this area in order to evaluate the perfor-
mance of the game theoretic guidance in realistic missile engagement environments.
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Appendix

A. Verifying the Positive Semi-Definiteness of Matrix [S]

Now, the determinant of partitioned matrix S may be written as:

|S| = ||||
S11 S12
S12 S22

|||| = |S11| |||S22 − S12
TS−1

11 S12
||| (A3.1.1)

For S to be positive semi-definite, we must have:

|S| = ||||
s1I s2I
s2I s3I

|||| = s1

||||||
s3I−

s2
2

s1
I
||||||
= s1

(
s3 −

s2
2

s1

)
≥ 0 (A3.1.2)

That is: s1 ≥ 0, and
(

s3 −
s2

2
s1

)
≥ 0 or s1s3 ≥ s2

2 (A3.1.3)

Note that: s2 can be either positive or negative.

A. Derivation of Riccati Differential Equations

Substituting for ap
1 and ae

2 from equations (3.3.20), (3.3.22) into equation (3.3.3) gives
us:

d
dt

y
12
= Fy

12
−G

[
(Rp)−1GTPy

12
+ (Rp)−1GT𝛏 − ad

1

]
⋯

+G
[

(Re)−1GTPy
12
+ (Re)−1GT𝛏 − ad

2

] (A3.2.1)

Using equation (3.3.22), equation (3.3.27) may be written as:

FT(Py
12
+ 𝛏) = − ̇𝛌 = − ̇Py

12
− Pẏ

12
− ̇𝛏 (A3.2.2)

Substituting for ẏ
12

from equation (A3.2.1) gives us:

FT(Py
12
+ 𝛏) = − ̇Py

12
− P

{
Fy

12
−G

[
(Rp)−1GTPy

12
+ (Rp)−1GT𝛏 − ad

1

]
⋯

+G
[

(Re)−1GTPy
12
+ (Re)−1GT𝛏 − ad

2

]}
− ̇𝛏

➔

FTPy
12
+ FT𝛏 = − ̇Py

12
− PFy

12
+ PG

[
(Rp)−1GTPy

12
+ (Rp)−1GT𝛏 − ad

1

]
⋯

−PG
[

(Re)−1GTPy
12
+ (Re)−1GT𝛏 − ad

2

]
− ̇𝛏

(A3.2.3)

Re-arranging the terms, equation (A3.2.3) can be written as:{
̇P+ PF+ FTP− PG

[
(Rp)−1 − (Re)−1]GTP

}
y

12
⋯

=
[
− ̇𝛏 −

{
F−G

[
(Rp)−1 − (Re)−1]GTP

}T 𝛏 − PG
(

ad
1 − ad

2

)] (A3.2.4)
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A solution of equation (A3.2.4) is obtained if both the LHS and the RHS are equal to
zero; that is:{

̇P+ PF+ FTP− PG
[
(Rp)−1 − (Re)−1]GTP

}
y

12
= 0[

− ̇𝛏 −
{

F−G
[
(Rp)−1 − (Re)−1]GTP

}T 𝛏 − PG
(

ad
1 − ad

2

)]
= 0

Since the above equations hold for all y
12

, we get:

̇P+ PF+ FTP− PGR−1GTP = 0 (A3.2.5)

− ̇𝛏 −
{

F−GR−1GTP
}T 𝛏 − PG

(
ad

1 − ad
2

)
= 0 (A3.2.6)

where for convenience we write: R−1 = (Rp)−1 − (Re)−1.
These differential equations satisfy the boundary conditions P(tf ) = S and 𝛏(tf ) = 0.

Equation (A3.2.5) will be referred to as the matrix Riccati differential equation (MRDE)
and equation (A3.2.6) will be referred to as the vector Riccati differential equation
(VRDE).

A. Solving the Matrix Riccati Differential Equation

Let us write the P matrix as:
P = E−1; then PE = I; and differential of this term gives: ̇PE+ P ̇E = 0; or

̇P = −E−1
̇EE−1 (A3.3.1)

Substituting for P in equation (A3.2.5), we obtain the inverse-MRDE for E as:

̇E = FE+ EFT −GR−1GT (A3.3.2)

We solve for E, the inverse Riccati matrix first, and then invert this to obtain the Riccati
solution for P. Because both P and E matrices are symmetric, we may write:

E =

⎡⎢⎢⎢⎢⎢⎢⎣

e11 e12 e13 e14 e15 e16
e12 e22 e23 e24 e25 e26
e13 e23 e33 e34 e35 e36
e14 e24 e34 e44 e45 e46
e15 e25 e35 e45 e55 e56
e16 e26 e36 e46 e56 e66

⎤⎥⎥⎥⎥⎥⎥⎦

(A3.3.3)

Terminal condition for matrix E(tf ) is given by: E(tf ) = S−1(tf ). We write the (parti-
tioned) S matrix as:

S =
[

S11 S12
S12 S22

]
=

⎡⎢⎢⎢⎢⎢⎢⎣

s11 0 0 s14 0 0
0 s22 0 0 s25 0
0 0 s33 0 0 s36

s14 0 0 s44 0 0
0 s25 0 0 s55 0
0 0 s36 0 0 s66

⎤⎥⎥⎥⎥⎥⎥⎦

(A3.3.4)
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where

[
S11
]
=
⎡⎢⎢⎣

s11 0 0
0 s22 0
0 0 s33

⎤⎥⎥⎦
;
[
S12
]
=
⎡⎢⎢⎣

s14 0 0
0 s25 0
0 0 s36

⎤⎥⎥⎦
;
[
S22
]
=
⎡⎢⎢⎣

s44 0 0
0 s55 0
0 0 s66

⎤⎥⎥⎦
A3.3.1 Inversion of S Matrix

We write the inverse of matrix S as:

S−1 = T =
[

T11 T12
T12 T22

]
(A3.3.5)

Since S is symmetric, then so is T = S−1 and for T to be the inverse of S, we must have:

SS−1 = ST =
[

S11 S12
S12 S22

] [
T11 T12
T12 T22

]
=
[

I 0
0 I

]

➔ [
(S11T11 + S12T12) (S11T12 + S12T22)
(S12T11 + S22T12) (S12T12 + S22T22)

]
=
[

I 0
0 I

]

The above equality implies that:

(S11T11 + S12T12) = I (A3.3.6)
(S11T12 + S12T22) = 0 (A3.3.7)
(S12T11 + S22T12) = 0 (A3.3.8)
(S12T12 + S22T22) = I (A3.3.9)

Equation (A3.3.8) gives us:

T11 = −S−1
12 S22T12 (A3.3.10)

Substituting equation (A3.3.10) into equation (A3.3.6) gives us:

T12 =
[

S12 − S11S−1
12 S22

]−1
(A3.3.11)

Substituting equation (A3.3.11) into equation (A3.3.10) gives us:

T11 = −S−1
12 S22

[
S12 − S11S−1

12 S22

]−1
(A3.3.12)

Also, equation (A3.3.7) gives us:

T22 = −S−1
12 S11T12 (A3.3.13)

Equations (A3.3.11) and (A3.3.13) give us:

T22 = −S−1
12 S11

[
S12 − S11S−1

12 S22

]−1
(A3.3.14)
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Now, it follows from (A3.3.4) that:

S−1
11 =

⎡⎢⎢⎢⎢⎢⎣

1
s11

0 0

0 1
s22

0

0 0 1
s33

⎤⎥⎥⎥⎥⎥⎦
; S−1

12 =

⎡⎢⎢⎢⎢⎢⎣

1
s14

0 0

0 1
s25

0

0 0 1
s36

⎤⎥⎥⎥⎥⎥⎦
; S−1

22 =

⎡⎢⎢⎢⎢⎢⎣

1
s44

0 0

0 1
s55

0

0 0 1
s66

⎤⎥⎥⎥⎥⎥⎦
Using expressions for Sij and S−1

ij , equations (A3.3.11), (A3.3.12), and (A3.3.14) give us:

T11 =

⎡⎢⎢⎢⎢⎢⎢⎣

s44(
s11s44 − s14

2) 0 0

0
s55(

s22s55 − s25
2) 0

0 0
s66(

s33s66 − s36
2)

⎤⎥⎥⎥⎥⎥⎥⎦

(A3.3.15)

T12 =

⎡⎢⎢⎢⎢⎢⎢⎣

−s14(
s11s44 − s14

2) 0 0

0
−s25(

s22s55 − s25
2) 0

0 0
−s36(

s33s66 − s36
2)

⎤⎥⎥⎥⎥⎥⎥⎦

(A3.3.16)

T22 =

⎡⎢⎢⎢⎢⎢⎢⎣

s11(
s11s44 − s14

2) 0 0

0
s22(

s22s55 − s25
2) 0

0 0
s33(

s33s66 − s36
2)

⎤⎥⎥⎥⎥⎥⎥⎦

(A3.3.17)

Inverse matrix S−1 = T =
[

T11 T12
T12 T22

]
can now be constructed using expressions for

T11, T12, T22.

A3.3.2 Solution of the Inverse Matrix Riccati Differential Equation

In this section we decompose equation (A3.3.2) in its elemental form to facilitate the
solution of the inverse MRDE for matrix E. Now:

F =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

; ➔ FT =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

(A3.3.18)
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and

G =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

; ➔ GT =
⎡⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎦
; and we write R =

⎡⎢⎢⎣
r11 0 0
0 r11 0
0 0 r11

⎤⎥⎥⎦

It follows from the above that:

FE =

⎡⎢⎢⎢⎢⎢⎢⎣

e14 e24 e34 e44 e45 e46
e15 e25 e35 e45 e55 e56
e16 e26 e36 e46 e56 e66
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

; EFT =

⎡⎢⎢⎢⎢⎢⎢⎣

e14 e15 e16 0 0 0
e24 e25 e26 0 0 0
e34 e35 e36 0 0 0
e44 e45 e46 0 0 0
e45 e55 e56 0 0 0
e46 e56 e66 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

(A3.3.19)

also

GR−1GT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1

r11
0 0

0 0 0 0 1
r22

0

0 0 0 0 0 1
r33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A3.3.20)

Hence the RHS of equation (A3.3.2) may be written as:

FE+ EFT −GR−1GT ⋯

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2e14 (e15 + e24) (e16 + e34) e44 e45 e46
(e15 + e24) 2e25 (e26 + e35) e45 e55 e56
(e16 + e34) (e26 + e35) 2e36 e46 e56 e66

e44 e45 e46 − 1
r11

0 0

e45 e55 e56 0 − 1
r22

0

e46 e56 e66 0 0 − 1
r33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A3.3.21)

Since E is a symmetric matrix, we need to consider only the elements of the upper tri-
angular matrix. Thus, using equation (A3.3.21), differential equation (A3.3.2) may be
written (in its elemental form) as:

ė11 = 2e14; ė12 = (e15 + e24); ė13 = (e16 + e34); ė14 = e44; ė15 = e45; ė16 = e46;
ė22 = 2e25; ė23 = (e26 + e35); ė24 = e45; ė25 = e55; ė26 = e56;
ė33 = 2e36; ė34 = e46; ė35 = e56; ė36 = e66;

ė44 = −
1

r11
; ė45 = 0; ė46 = 0

ė55 = −
1

r22
; ė56 = 0; ė66 = −

1
r33
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The terminal conditions given by E(tf ) = S−1, may be written as:

e11(tf ) =
s44(

s11s44 − s14
2) ; e22(tf ) =

s55(
s22s55 − s25

2) ; e33(tf ) =
s66(

s33s66 − s36
2) ;

e14(tf ) =
−s14(

s11s44 − s14
2) ; e25(tf ) =

−s25(
s22s55 − s25

2) ; e36(tf ) =
−s36(

s33s66 − s36
2) ;

e44(tf ) =
s11(

s11s44 − s14
2) ; e55(tf ) =

s22(
s22s55 − s25

2) ; e66(tf ) =
s33(

s33s66 − s36
2) .

Integrating the above differential equations with terminal conditions and writing:
T = (tf − t), time-to-go, we get expressions for eij; these are given in Table A3.1
below.

In view of Table A3.1, we may write:

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

e11 0 0 e14 0 0
0 e22 0 0 e25 0
0 0 e33 0 0 e36

e14 0 0 e44 0 0
0 e25 0 0 e55 0
0 0 e36 0 0 e66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A3.3.22)

Inversion of this E matrix to obtain P can proceed in the same way as shown earlier for
the inversion of S. Since P is a symmetric matrix, we write it as:

E−1 = P =
[

P11 P12

P12 P22

]
(A3.3.23)

where

E11 =
⎡⎢⎢⎢⎣

e11 0 0
0 e22 0
0 0 e33

⎤⎥⎥⎥⎦
; E12 =

⎡⎢⎢⎢⎣

e14 0 0
0 e25 0
0 0 e36

⎤⎥⎥⎥⎦
; E22 =

⎡⎢⎢⎢⎣

e44 0 0
0 e55 0
0 0 e66

⎤⎥⎥⎥⎦
and

E−1
11 =

⎡⎢⎢⎢⎢⎢⎢⎣

1
e11

0 0

0 1
e22

0

0 0 1
e33

⎤⎥⎥⎥⎥⎥⎥⎦

; E−1
12 =

⎡⎢⎢⎢⎢⎢⎢⎣

1
e14

0 0

0 1
e25

0

0 0 1
e36

⎤⎥⎥⎥⎥⎥⎥⎦

; S−1
22 =

⎡⎢⎢⎢⎢⎢⎢⎣

1
e44

0 0

0 1
e55

0

0 0 1
e66

⎤⎥⎥⎥⎥⎥⎥⎦
For P to be the inverse of E, we must have:

EP =
[

E11 E12

E12 E22

][
P11 P12

P12 P22

]
=
[

I 0
0 I

]
(A3.3.24)
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Table A. Solution of the inverse MRDE.

e66(tf ) = e66(t)− 1∕r33

tf

∫
t

d𝛔 = e66(t)−
(tf − t)

r33
; ➔ e66(t) = e66(tf )+

(tf − t)
r33

;

➔ e66(t) =
s33(

s33s66 − s2
36

) + (tf − t)
r33

; ➔ e66(t) =
⎡⎢⎢⎢⎣

r33s33 +
(

s33s66 − s2
36

)
T

r33

(
s33s66 − s2

36

)
⎤⎥⎥⎥⎦

e56(tf ) = e56(t); ➔ e56(t) = e56(tf ) = 0

e55(tf ) = e55(t)− 1
r22

tf

∫
t

d𝛔 = e55(t)−
(tf − t)

r22
; ➔ e55(t) = e55(tf )+

(tf − t)
r22

;

➔ e55(t) =
s22(

s22s55 − s2
25

) + (tf − t)
r22

; ➔ e55(t) =
⎡⎢⎢⎢⎣

r22s22 +
(

s22s55 − s2
25

)
T

r22

(
s22s55 − s2

25

)
⎤⎥⎥⎥⎦

e46(tf ) = e46(t); ➔ e46(t) = e46(tf ) = 0
e45(tf ) = e45(t); ➔ e45(t) = e45(tf ) = 0

e44(tf ) = e44(t)− 1∕r11

tf

∫
t

d𝛔 = e44(t)−
(tf − t)

r11
; ➔ e44(t) = e44(tf )+

(tf − t)
r11

;

➔ e44(t) =
s11(

s11s44 − s2
14

) + (tf − t)
r11

; ➔ e44(t) =
⎡⎢⎢⎢⎣

r11s11 +
(

s11s44 − s2
14

)
T

r11

(
s11s44 − s2

14

)
⎤⎥⎥⎥⎦

e36(tf ) = e36(t)+
tf

∫
t

e66 (𝛔) d𝛔 = e36(t)+
tf

∫
t

[
e66(tf )+ 1

r33

(
tf − 𝛔

)]
d𝛔

➔ e36(t) = e36(tf )− e66(tf )(tf − t)−
(tf − t)2

2r33

➔ e36(t) = −
s36(

s33s66 − s2
36

) − s33(
s33s66 − s2

36

) (tf − t)−
(tf − t)2

2r33

➔ e36(t) = −
⎡⎢⎢⎢⎣

2r33s36 + 2r33s33T+
(

s33s66 − s2
36

)
T2

2r33

(
s33s66 − s2

36

)
⎤⎥⎥⎥⎦

e35(tf ) = e35(t)+
tf

∫
t

e56 (𝛔)d𝛔 = e35(t); ➔ e35(t) = e35(tf ) = 0

e34(tf ) = e34(t)+
tf

∫
t

e46 (𝛔)d𝛔 = e34(t); ➔ e34(t) = e34(tf ) = 0
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Table A. (Continued)

e33(tf ) = e33(t)+ 2

tf

∫
t

e36 (𝛔)d𝛔

➔ e33(tf ) = e33(t)+ 2

tf

∫
t

[
e36(tf )− e66(tf )(tf − t)− 1

r33
(tf − t)2

]
d𝛔;

➔ e33(t) = e33(tf )− 2e36(tf )(tf − t)+ e66(tf )(tf − t)2 + 1
3r33

(tf − t)3;

➔ e33(t) =
s66(

s33s66 − s2
36

) + 2s36(tf − t)(
s33s66 − s2

36

) + s33(tf − t)2

(
s33s66 − s2

36

) + (tf − t)3

3r33

➔ e33(t) =
⎡⎢⎢⎢⎣

3r33s66 + 6r33s36T+ 3r33s33T2 +
(

s33s66 − s2
36

)
T3

3r33

(
s33s66 − s2

36

)
⎤⎥⎥⎥⎦

e26(tf ) = e26(t)+
tf

∫
t

e56 (𝛔)d𝛔 = e26(t); ➔ e26(t) = e26(tf ) = 0

e25(tf ) = e25(t)+
tf

∫
t

e55 (𝛔)d𝛔 = e25(t)+
tf

∫
t

[
e55(tf )+ 1

r22

(
tf − 𝛔

)]
d𝛔;

➔ e25(t) = e25(tf )− e55(tf )(tf − t)−
(tf − t)2

2r22

➔ e25(t) = −
s25(

s22s55 − s2
25

) − s22(tf − t)(
s22s55 − s2

25

) − (tf − t)2

2r22

➔ e25(t) = −
⎡⎢⎢⎢⎣

2r22s25 + 2r22s22T+
(

s22s55 − s2
25

)
T2

2r22

(
s22s55 − s2

25

)
⎤⎥⎥⎥⎦

e24(tf ) = e24(t)+
tf

∫
t

e45 (𝛔)d𝛔 = e24(t); ➔ e24(t) = e24(tf ) = 0

e23(tf ) = e23(t)+
tf

∫
t

[
e26 (𝛔)+ e35 (𝛔)

]
d𝛔 = e23(t); ➔ x23(t) = x23(tf ) = 0

e22(tf ) = e22(t)+
tf

∫
t

2e25 (𝛔)d𝛔

➔ e22(tf ) = e22(t)+
tf

∫
t

2
[

e25(tf )− e55(tf )
(

tf − 𝛔
)
− 1

2r22

(
tf − 𝛔

)2
]

d𝛔

➔ e22(t) = e22(tf )− 2e25(tf )(tf − t)+ e55(tf )(tf − t)2 +
(tf − t)3

3r22

➔ e22(t) =
s55(

s22s55 − s2
25

) + 2s25(tf − t)(
s22s55 − s2

25

) + s22(tf − t)2

(
s22s55 − s2

25

) + (tf − t)3

3r22

➔ e22(t) =
⎡⎢⎢⎢⎣

3r22s55 + 6r22s25T+ 3r22s22T2 +
(

s22s55 − s2
25

)
T3

3r22

(
s22s55 − s2

25

)
⎤⎥⎥⎥⎦
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Table A. (Continued)

e16(tf ) = e16(t); ➔ e16(t) = e16(tf ) = 0
e15(tf ) = e15(t); ➔ e15(t) = e15(tf ) = 0

e14(tf ) = e14(t)+
tf

∫
t

e44 (𝛔)d𝛔 = e14(t)+
tf

∫
t

[
e44(tf )+ 1

r11

(
tf − 𝛔

)]
d𝛔

➔ e14(tf ) = e14(t)+ e44(tf )(tf − t)+
(tf − t)2

2r11

➔ e14(t) = −
s14(

s11s44 − s2
14

) − s11(tf − t)(
s11s44 − s2

14

) − (tf − t)2

2r11

➔ e14(t) = −
⎡⎢⎢⎢⎣

2r11s14 + 2r11s11T+
(

s11s44 − s2
14

)
T2

2r11

(
s11s44 − s2

14

)
⎤⎥⎥⎥⎦

e13(tf ) = e13(tf )+
tf

∫
t

[
e16 (𝛔)+ e34 (𝛔)

]
d𝛔 = e13(tf ); ➔ e13(t) = e13(tf ) = 0

e12(tf ) = e12(tf )+
tf

∫
t

[
e15 (𝛔)+ e24 (𝛔)

]
d𝛔 = e12(tf ); ➔ e12(t) = e12(tf ) = 0

e11(tf ) = e11(t)+
tf

∫
t

2e14 (𝛔) d𝛔

➔ e11(tf ) = e11(t)+
tf

∫
t

2
[

e14(tf )− e44(tf )
(

tf − 𝛔
)
− 1

2r11

(
tf − 𝛔

)2
]

d𝛔

➔ e11(t) = e11(tf )− 2e14(tf )(tf − t)+ e44(tf )(tf − t)2 +
(tf − t)3

3r11

➔ e11(t) =
s44(

s11s44 − s2
14

) + 2s14(tf − t)(
s11s44 − s2

14

) + s11(tf − t)2

(
s11s44 − s2

14

) + (tf − t)3

3r11

➔ e11(t) =
⎡⎢⎢⎢⎣

3r11s44 + 6r11s14T+ 3r11s11T2 +
(

s11s44 − s2
14

)
T3

3r11

(
s11s44 − s2

14

)
⎤⎥⎥⎥⎦

Using expressions for Eij and E−1
ij above, it can be shown that:

P11 =

⎡⎢⎢⎢⎢⎢⎢⎣

e44(
e11e44 − e14

2) 0 0

0
e55(

e22e55 − e25
2) 0

0 0
e66(

e33e66 − e36
2)

⎤⎥⎥⎥⎥⎥⎥⎦

(A3.3.25)
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P12 =

⎡⎢⎢⎢⎢⎢⎢⎣

−e14(
e11e44 − e14

2) 0 0

0
−e25(

e22e55 − e25
2) 0

0 0
−e36(

e33e66 − e36
2)

⎤⎥⎥⎥⎥⎥⎥⎦

(A3.3.26)

P22 =

⎡⎢⎢⎢⎢⎢⎢⎣

e11(
e11e44 − e14

2) 0 0

0
e22(

e22e55 − e25
2) 0

0 0
e33(

e33e66 − e36
2)

⎤⎥⎥⎥⎥⎥⎥⎦

(A3.3.27)

where

P11 =
⎡⎢⎢⎣

p11 0 0
0 p22 0
0 0 p33

⎤⎥⎥⎦
; P12 =

⎡⎢⎢⎣
p14 0 0
0 p25 0
0 0 p36

⎤⎥⎥⎦
; P22 =

⎡⎢⎢⎣
p44 0 0
0 p55 0
0 0 p66

⎤⎥⎥⎦
Substituting for eij, from Table A3.1 we can derive expressions for pij, using equa-
tions (A3.3.25) through (A3.3.27). A detailed derivation is shown below:

p11 =
n11

d11
=

e44(
e11e44 − e2

14

)

where

n11 = e44(t) =

[
r11s11 +

(
s11s44 − s2

14

)
T
]

r11

(
s11s44 − s2

14

)

d11 =
(

e11e44 − e2
14

)
=
⎡⎢⎢⎢⎣

3r11s44 + 6r11s14T+ 3r11s11T2 +
(

s11s44 − s2
14

)
T3

3r11

(
s11s44 − s2

14

)
⎤⎥⎥⎥⎦

×
⎡⎢⎢⎢⎣

r11s11 +
(

s11s44 − s2
14

)
T

r11

(
s11s44 − s2

14

)
⎤⎥⎥⎥⎦
−
⎡⎢⎢⎢⎣

2r11s14 + 2r11s11T+
(

s11s44 − s2
14

)
T2

2r11

(
s11s44 − s2

14

)
⎤⎥⎥⎥⎦

2

which simplifies to:

p11 =
n11

d11
=

12r11

[
r11s11 +

(
s11s44 − s2

14

)
T
]

[
12r2

11 + 12r11s44T+ 12r11s14T2 + 4r11s11T3 +
(

s11s44 − s2
14

)
T4
]

(A3.3.28)
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By proceeding in the same manner as above it can be shown that:

p22 =
12r22

[
r22s22 +

(
s22s55 − s2

25

)
T
]

[
12r2

22 + 12r22s55T+ 12r22s25T2 + 4r22s22T3 +
(

s22s55 − s2
25

)
T4
]
(A3.3.29)

p33 =
12r33

[
r33s33 +

(
s33s66 − s2

36

)
T
]

[
12r2

33 + 12r33s66T+ 12r33s36T2 + 4r33s33T3 +
(

s33s66 − s2
36

)
T4
]
(A3.3.30)

Also writing:

p44 =
n44

d44
=

e11(
e11e44 − e2

14

)

where

n44 =
⎡⎢⎢⎢⎣

3r11s44 + 6r11s14T+ 3r11s11T2 +
(

s11s44 − s2
14

)
T3

3r11

(
s11s44 − s2

14

)
⎤⎥⎥⎥⎦

d44 =

⎧⎪⎨⎪⎩
12r2

11

(
s11s44− s2

14

)
+ 12r11s44

(
s11s44− s2

14

)
T+ 12r11s14

(
r11s44− s2

14

)
T2 ⋯

+ 4r11s11

(
r11s44− s2

14

)
T3+

(
s11s44− s2

14

)2
T4

⎫⎪⎬⎪⎭
12r2

11

(
s11s44 − s2

14

)2

It can be shown that the above expression gives us:

p44 =
4r11

[
3r11s44 + 6r11s14T+ 3r11s11T2 +

(
s11s44 − s2

14

)
T3
]

[
12r2

11 + 12r11s44T+ 12r11s14T2 + 4r11s11T3 +
(

s11s44 − s2
14

)
T4
]
(A3.3.31)

Similarly, it can be shown that:

p55 =
4r22

[
3r22s55 + 6r22s25T+ 3r22s22T2 +

(
s22s55 − s2

25

)
T3
]

[
12r2

22 + 12r22s55T+ 12r22s25T2 + 4r22s22T3 +
(

s22s55 − s2
25

)
T4
]
(A3.3.32)
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p66 =
4r33

[
3r33s66 + 6r33s36T+ 3r33s33T2 +

(
s33s66 − s2

36

)
T3
]

[
12r2

33 + 12r33s66T+ 12r33s36T2 + 4r33s55T3 +
(

s33s66 − s2
36

)
T4
]
(A3.3.33)

Further writing:

p14 =
n14

d14
=

−e14(
e11e44 − e2

14

)

where

n14 =
⎡⎢⎢⎢⎣

2r11s14 + 2r11s11T+
(

s11s44 − s2
14

)
T2

2r11

(
s11s44 − s2

14

)
⎤⎥⎥⎥⎦

d14 =

⎧⎪⎨⎪⎩
12r2

11

(
s11s44− s2

14

)
+ 12r11s44

(
s11s44− s2

14

)
T+ 12r11s14

(
r11s44− s2

14

)
T2 ⋯

+ 4r11s11

(
r11s44− s2

14

)
T3+

(
s11s44− s2

14

)2
T4

⎫⎪⎬⎪⎭
12r2

11

(
s11s44 − s2

14

)2

It can be shown that:

p14 =
6r11

[
2r11s14 + 2r11s11T+

(
s11s44 − s2

14

)
T2
]

[
12r2

11 + 12r11s44T+ 12r11s14T2 + 4r11s11T3 +
(

s11s44 − s2
14

)
T4
]
(A3.3.34)

Similarly, it can be shown that:

p25 =
6r22

[
2r22s25 + 2r22s22T+

(
s22s55 − s2

25

)
T2
]

[
12r2

22 + 12r22s55T+ 12r22s25T2 + 4r22s22T3 +
(

s22s55 − s2
25

)
T4
]
(A3.3.35)

p36 =
6r33

[
2r33s36 + 2r33s33T+

(
s33s66 − s2

36

)
T2
]

[
12r2

33 + 12r33s66T+ 12r33s36T2 + 4r33s33T3 +
(

s33s66 − s2
36

)
T4
]
(A3.3.36)
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A. Solution of the Vector Riccati Deferential Equation

Let us now consider equation (A3.2.6):

̇𝛏 = −
[
F−GR−1GTP

]T 𝛏 − PG
(

ad
1 − ad

2

)
(A3.4.1)

Now:

[
F−GR−1GTP

]T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
−p14
r11

0 0

0 0 0 0
−p25
r22

0

0 0 0 0 0
−p36
r33

1 0 0
−p44
r11

0 0

0 1 0 0
−p55
r22

0

0 0 1 0 0
−p66
r33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; PG =

⎡⎢⎢⎢⎢⎢⎢⎣

p14 0 0
0 p25 0
0 0 p36

p44 0 0
0 p55 0
0 0 p66

⎤⎥⎥⎥⎥⎥⎥⎦

(A3.4.2)

Writing: 𝛏 = [𝛏1 𝛏2 𝛏3 𝛏4 𝛏5 𝛏6]T; equation (A3.4.1) (in its decomposed form)
may be written as:

̇𝛏1 =
p14
r11
𝛏4 − p14

(
ad

x1
− ad

x2

)
(A3.4.3)

̇𝛏2 =
p25
r22
𝛏5 − p25

(
ad

y1
− ad

y2

)
(A3.4.4)

̇𝛏3 =
p36
r33
𝛏6 − p36

(
ad

z1
− ad

z2

)
(A3.4.5)

̇𝛏4 = −𝛏1 +
p44
r11
𝛏4 − p44

(
ad

x1
− ad

x2

)
(A3.4.6)

̇𝛏5 = −𝛏2 +
p55
r22
𝛏5 − p55

(
ad

y1
− ad

y2

)
(A3.4.7)

̇𝛏6 = −𝛏3 +
p66
r33
𝛏6 − p66

(
ad

z1
− ad

z2

)
(A3.4.8)

Unfortunately, it is not easily possible to obtain analytical solutions to equa-
tions (A3.4.3) through (A3.4.8), except for special cases where (ad

xi
, ad

xi
, ad

xi
), (ad

yi
, ad

yi
, ad

zi
)

and (ad
zi

, ad
zi

, ad
zi

), i = 1, 2 are constants. This case will be considered later on in this
Appendix. In general, equations (A3.4.3) through (A3.4.8) have to be solved backward
in time. For this purpose we make the substitutions:

Let: T = tf − t, ➔ dT = −dt; 𝛏(t) = 𝛏(tf − T) = 𝛈(T); ad
𝛄i

(t) = ad
𝛄i

(tf − T) = 𝛂d
𝛄i

(T);
i = 1, 2; 𝛄 = x, y, z. Hence, the above equations (A3.4.3) through (A3.4.8) may be
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written as:

−
d𝛈1

dT
=

p14
r11
𝛈4 − p14

(
𝛂d

x1
− 𝛂d

x2

)
(A3.4.9)

−
d𝛈2

dT
=

p25
r22
𝛈5 − p25

(
𝛂d

y1
− 𝛂d

y2

)
(A3.4.10)

−
d𝛈3

dT
=

p36
r33
𝛈6 − p36

(
𝛂d

z1
− 𝛂d

z2

)
(A3.4.11)

−
d𝛈4

dT
= −𝛈1 +

p44
r11
𝛈4 − p44

(
𝛂d

x1
− 𝛂d

x2

)
(A3.4.12)

−
d𝛈5

dT
= −𝛈2 +

p55
r22
𝛈5 − p55

(
𝛂d

y1
− 𝛂d

y2

)
(A3.4.13)

−
d𝛈6

dT
= −𝛈3 +

p66
r33
𝛈6 − p66

(
𝛂d

z1
− 𝛂d

z2

)
(A3.4.14)

These equations satisfy the boundary condition that 𝛈(0) = 𝛏(tf ) = 0, and must be
solved backwards in time, that is, T → 0. We shall regard 𝛈 as time-to-go equivalent
of 𝛏.

A3.4.1 Analytic Solution of the VRDE—Case 2

Analytical solution of the VRDE is possible for the case when: s11 = s22 = s33 = s1;
s14 = s25 = s36 = s2 = 0; s44 = s55 = s66 = s3 = 0 and r11 = r22 = r33 = r. For this
case:

p11 = p22 = p33 =
3rs1[

3r+ s1T3] (A3.4.15)

p14 = p25 = p26 =
3rs1T[

3r+ s1T3] (A3.4.16)

p44 = p55 = p66 =
3rs1T2

[
3r+ s1T3] (A3.4.17)

Multiplying both sides of equations (A3.4.9) through (A3.4.11) respectively by ( p44
p14

),
( p55

p25
), ( p66

p36
); we get:

−
(p44

p14

) d𝛈1

dT
=

p44
r
𝛈4 − p44

(
𝛂d

x1
− 𝛂d

x2

)
(A3.4.18)

−
(p55

p25

) d𝛈2

dT
=

p55
r
𝛈5 − p55

(
𝛂d

y1
− 𝛂d

y2

)
(A3.4.19)

−
(p44

p14

) d𝛈3

dT
=

p66
r
𝛈6 − p66

(
𝛂d

z1
− 𝛂d

z2

)
(A3.4.20)

−
d𝛈4

dT
= −𝛈1 +

p44
r
𝛈4 − p44

(
𝛂d

x1
− 𝛂d

x2

)
(A3.4.21)
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−
d𝛈5

dT
= −𝛈2 +

p55
r
𝛈5 − p55

(
𝛂d

y1
− 𝛂d

y2

)
(A3.4.22)

−
d𝛈6

dT
= −𝛈3 +

p66
r
𝛈6 − p66

(
𝛂d

z1
− 𝛂d

z2

)
(A3.4.23)

Subtracting equations (A3.4.18) through (A3.4.20) respectively from equations
(A3.4.21) through (A3.4.23) and rearranging the terms, we get:

d𝛈4

dT
= 𝛈1 +

(p44
p14

) d𝛈1

dT
= 𝛈1 + T

d𝛈1

dT
= d

dT
(

T𝛈1
)

d𝛈5

dT
= 𝛈2 +

(p55
p25

) d𝛈2

dT
= 𝛈2 + T

d𝛈2

dT
= d

dT
(

T𝛈2
)

d𝛈6

dT
= 𝛈3 +

(p66
p36

) d𝛈3

dT
= 𝛈3 + T

d𝛈3

dT
= d

dT
(

T𝛈3
)

which gives us:

𝛈4 = T𝛈1;𝛈5 = T𝛈2;𝛈6 = T𝛈3 (A3.4.24)

Substituting from equation (A3.4.24) into equations (A3.4.9) through (A3.4.11), with
r11 = r22 = r33 = r, gives us:

−
d𝛈1

dT
=

p14
r

T𝛈1 − p14

(
𝛂d

x1
− 𝛂d

x2

)

−
d𝛈2

dT
=

p25
r

T𝛈2 − p25

(
𝛂d

y1
− 𝛂d

y2

)

−
d𝛈3

dT
=

p36
r

T𝛈3 − p36

(
𝛂d

z1
− 𝛂d

z2

)

And substituting for p14, p25, p36 from (A3.4.15) through (A3.4.17) gives us:

d𝛈1

dT
= −

3s1T2

[
3r+ s1T3]𝛈1 +

3rs1T[
3r+ s1T3]

(
𝛂d

x1
− 𝛂d

x2

)
(A3.4.25)

d𝛈2

dT
= −

3s1T2

[
3r+ s1T3]𝛈2 +

rs1T[
3r+ s1T3]

(
𝛂d

y1
− 𝛂d

y2

)
(A3.4.26)

d𝛈3

dT
= −

3s1T2

[
3r+ s1T3]𝛈3 +

3rs1T[
3r+ s1T3]

(
𝛂d

z1
− 𝛂d

z2

)
(A3.4.27)

After some algebraic manipulation we get:

d
dT
[(

3r+ s1T3)𝛈1
]
= 3rs1T

(
𝛂d

x1
− 𝛂d

x2

)
=
(
𝛂d

x1
− 𝛂d

x2

) d
dT

(3
2

rs1T2
)

(A3.4.28)

d
dT
[(

3r+ s1T3)𝛈2
]
= 3rs1T

(
𝛂d

y1
− 𝛂d

y2

)
=
(
𝛂d

y1
− 𝛂d

y2

) d
dT

(3
2

rs1T2
)

(A3.4.29)

d
dT
[(

3r+ s1T3)𝛈3
]
= 3rs1T

(
𝛂d

z1
− 𝛂d

z2

)
=
(
𝛂d

z1
− 𝛂d

z2

) d
dT

(3
2

rs1T2
)

(A3.4.30)
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Assuming𝛂xi
,𝛂yi

,𝛂zi
are constants, then equations (A3.4.28) through (A3.4.30) give us:

𝛈1 =
1
2

[
3rs1T2

3r+ s1T3

](
𝛂d

x1
− 𝛂d

x2

)
(A3.4.31)

𝛈2 =
1
2

[
3rs1T2

3r+ s1T3

](
𝛂d

y1
− 𝛂d

y2

)
(A3.4.32)

𝛈3 =
1
2

[
3rs1T2

3r+ s1T3

](
𝛂d

z1
− 𝛂d

z2

)
(A3.4.33)

and it follows from (A3.4.24) that:

𝛈4 =
1
2

[
3rs1T3

3r+ s1T3

](
𝛂d

x1
− 𝛂d

x2

)
(A3.4.34)

𝛈5 =
1
2

[
3rs1T3

3r+ s1T3

](
𝛂d

y1
− 𝛂d

y2

)
(A3.4.35)

𝛈6 =
1
2

[
3rs1T3

3r+ s1T3

](
𝛂d

z1
− 𝛂d

z2

)
(A3.4.36)

Finally, the disturbance term in the feedback guidance may be written as:

Kd
1𝛈 = (Rp)−1GT𝛈 = 1

rp

⎡⎢⎢⎣
𝛈4
𝛈5
𝛈6

⎤⎥⎥⎦
= 1

2rp

[
3rs1T3

3r+ s1T3

]⎡⎢⎢⎢⎢⎢⎣

(
𝛂d

x1
− 𝛂d

x2

)
(
𝛂d

y1
− 𝛂d

y2

)
(
𝛂d

z1
− 𝛂d

z2

)

⎤⎥⎥⎥⎥⎥⎦
(A3.4.37)

Kd
2𝛈 = (Re)−1GT𝛈 = 1

re

⎡⎢⎢⎣
𝛈4
𝛈5
𝛈6

⎤⎥⎥⎦
= 1

2re

[
3rs1T3

3r+ s1T3

]⎡⎢⎢⎢⎢⎢⎣

(
𝛂d

x1
− 𝛂d

x2

)
(
𝛂d

y1
− 𝛂d

y2

)
(
𝛂d

z1
− 𝛂d

z2

)

⎤⎥⎥⎥⎥⎥⎦
(A3.4.38)

A. Sight Line Rates for Small Angles and Rates

In order to establish the connection between the optimal guidance and the PN and APN
we shall assume that the engagement trajectory is such that the azimuth and elevation
sightline angles (𝛙21, 𝛉21) (Figure A3.5.1) remain small during engagement, that is, the
trajectory remains close to collision close geometry. For this condition it follows that
the interceptor/target relative velocity is pointed approximately along the sight line and
is approximately equal to the closing velocity Vc.

In Figure A3.5.1, we define the sightline angles as follows: (𝛙21, 𝛉21) are respectively
the azimuth and elevation sightline angles of the target w.r.t. interceptor.



 Differential Game Theory with Applications to Missiles and Autonomous Systems Guidance

xi
zi

yi

yj

r12

θ21

Ψ21

Y

I

T

zj

−Z

X

xj

I: Interceptor

T: target

u_j

u_i

Figure A.. Interceptor/target engagement geometry.

Now for 𝛙21 small, we get:

x21 ≈ 𝛒21 ≈ VcT; and d
dT

x21 ≈
d

dT
𝛒21 ≈ Vc; ẋ21 = −

d
dT

x21 = −Vc (A3.5.1)

where

𝛒12 = (x2
12 + y2

12)
1
2 : is the projection of separation range on to the x-y plane.

Also for 𝛉21 small, we get:

𝛒21 ≈ r21 ≈ VcT; and d
dT
𝛒21 ≈

d
dT

r21 ≈ Vc; 𝛒̇21 = −
d

dT
𝛒21 = −Vc (A3.5.2)

r12 = (x2
12 + y2

12 + z2
12)

1
2 : is the separation range between the interceptor and the target.

It follows that:

𝐭𝐚𝐧𝛙21 =
y21
x21

; ➔ 𝛙̇21 𝐬𝐞𝐜2𝛙21 =
(

ẏ21
x21

−
y12ẋ21

x2
21

)

➔

𝛙̇21 =
(

ẏ21x21

𝛒2
21

−
y21ẋ21

𝛒2
21

)
; ➔ 𝛙̇21 =

( v21

VcT
+

y21

VcT2

)
(A3.5.3)

and

𝐭𝐚𝐧 𝛉21 =
z21
r21

; ➔ ̇𝛉21 𝐬𝐞𝐜2 𝛉21 =
(

ż21
𝛒21

−
z21𝛒̇21

𝛒2
21

)

➔

̇𝛉21 =
(

ż21𝛒21

r2
21

−
z21𝛒̇21

r2
21

)
; ➔ ̇𝛉21 =

( w21

VcT
+

z21

VcT2

)
(A3.5.4)
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From equation (A3.5.1) we get:
u21

VcT
+

x21

VcT2
= − 1

T
+ 1

T
= 0 (A3.5.5)

Noting that: x12 = −x21; y12 = −y21; z12 = −z21; u12 = −u21; v12 = −v21;
w12 = −w21. Hence,

𝛙̇21 = −
( v12

VcT
+

y12

VcT2

)
(A3.5.6)

𝛙̇21 = −
( v12

VcT
+

y12

VcT2

)
(A3.5.7)
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

Three-Party Differential Game Theory Applied to Missile
Guidance Problem

Nomenclature

xi = (xi yi zi)T: is the position vector of vehicle i in fixed axis.
ui = (ui vi wi)T: is the velocity vector of vehicle i in fixed axis.
ai = (axi

ayi
azi

): is the acceleration vector of vehicle i in fixed axis.(
ae

1, ae
3
)

: are respectively (evasion) acceleration commands by target 1
against attacker 3 and by attacker 3 against defender 2.(

ap
2, ap

3
)

: are respectively (pursuit) acceleration commands by defender 2
against attacker 3 and by attacker 3 against target 1.

xij = xi − xj: is the relative position vector of vehicle i w.r.t. vehicle j.
uij = ui − uj: is the relative velocity vector of vehicle i w.r.t. vehicle j.
y

31
= (x31 u31)T: is the relative state (position and velocity) vector of attacker 3 w.r.t.

target 1.
y

23
= (x23 u23)T: is the relative state (position and velocity) vector of defender 2

w.r.t. attacker 3.
F: is the state coefficient matrix.
G: is the input coefficient matrix.
Ji(⋯): is the scalar quadratic performance index (PI).
Pi: is the symmetric positive definite matrix solution to matrix Riccati

differential equation.
Qi: is a positive semi-definite matrix of PI weightings on current

states.{
Re

1, Rp
2, Rp

3, Re
3
}

: are positive-definite matrices of PI weightings on (control) inputs
for target 1, defender 2 and attacker 3.

Si: is the positive semi-definite matrix of PI weightings on final states.
Hi,j(⋯): is the Hamiltonian.
𝛌i: is the Euler–Lagrange operators used in a Hamiltonian.
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Companion Website: http://www.wiley.com/go/faruqi/game

http://www.wiley.com/go/faruqi/game


4 Three-Party Differential Game Theory Applied to Missile Guidance Problem 

Abbreviations

3-D: three dimension
4-DOF: four degrees of freedom
AI: artificial intelligence
LQPI: linear system quadratic performance index
MD: miss distance
MRDE: matrix Riccati differential equation
PI: performance index
VRDE: vector Riccati differential equation

. Introduction

Reported research[1–9] on the application of differential game theory to the missile
guidance problem has concentrated on engagement scenarios that involve two parties,
comprising an attacking missile (pursuer) aimed against another missile or an aircraft
referred to as an evader (or a target). The objective of the attacker is to intercept the
target, whereas the objective of the target is to execute maneuvers designed to evade
the attacking missile. In this chapter, the above approach is extended to an engagement
scenario that involves three parties. The particular scenario that we shall concern our-
selves with consists of a primary target (e.g., an aircraft) that on becoming aware that it
is being engaged by an attacking missile, fires a defending missile to engage and inter-
cept the attacking missile, and in addition, it performs maneuvers to evade the latter.
The role of the defending missile is only to intercept the attacking missile; the attacking
missile on the other hand must perform a dual role, that of evading the defending missile
as well as intercepting its primary target. Since participants in this type of engagement
consist of three players (the aircraft/ship target, the attacking missile and the defending
missile), with mutually conflicting objectives, we shall refer to this type of engagement
scenario as a three-party game.

In the references[1] the author used a linear quadratic performance index (LQPI)
approach to formulate a two-party game theoretic guidance problem. The solution
required minimization and maximization of the performance index (PI). The author
also showed that in a 2-D engagement case, explicit analytic solutions could be obtained
for guidance commands, which were shown to be functions of LQPI weightings and
the time-to-go to intercept: T = tf − t. This author also considered the case of engage-
ments involving multiple stationary targets. Two-party game theory application to mis-
sile guidance was also considered in the references.[2, 3] The LQPI approach was used
here as well, and a closed-form analytical solution was obtained for the Riccati equa-
tion and for the resulting feedback guidance gains. In Chapter 3, we looked at the gen-
eralization of the above works and undertook detailed derivations that underpin the
underlying theoretical basis for a two-party game. In this chapter we extend this to a
three-party engagement scenario, and put into context some of the ideas developed in
earlier papers. We will also explain some of the salient features of the three-party dif-
ferential game theory as they apply to the missile guidance problem. A 3-D engagement
kinematics model is developed and a solution to the guidance problem is obtained in
terms of the matrix Riccati equation solution. This chapter also discusses ways in which
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additional inputs may be used in the guidance law to implement rule-based artificial
intelligence (AI) derived inputs to further enhance evasion and/or pursuit strategies by
the parties.

In Section 4.2, an engagement kinematics model is derived, which is used in Section
4.3 to set up a mathematical framework for a three-party game theory optimization
problem. Utilizing the LQPI approach, it is shown that the solution of this problem
leads to the well-known matrix Riccati equation, which allows us to construct feedback
guidance laws for a three-party game scenario. Solutions of matrix Riccati differential
equations are considered in Section 4.4. A discussion on the material presented in this
chapter is given in Section 4.5 along with the conclusions. We have used the results and
procedures that were considered in detail in Chapter 3, and the reader may want to refer
to these when reading this chapter.

. Engagement Kinematics Model

In this section, we consider the engagement kinematics model for a three-party game
under consideration. Kinematics variables are defined in a fixed axis system depicted in
Figure 4.2.1. Differential equations for the position, velocity and acceleration for vehicle
i (in our case i = 1, 2, 3) may be written as:

d
dt

xi = ui (4.2.1)

d
dt

yi = vi (4.2.2)

d
dt

zi = wi (4.2.3)

Y

(z1, z2)

z3

y3

x3

X

P23

P
31

Z

(y1, y2)

(x1, x2)

u_1
u_2

u_3

Figure .. Engagement geometry for the target, the
attacker, and the defender.
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d
dt

ui = axi
(4.2.4)

d
dt

vi = ayi
(4.2.5)

d
dt

wi = azi
(4.2.6)

where

xi = (xi yi zi)T: is the position vector of vehicle i in fixed axis.
ui = (ui vi wi)T: is the velocity vector of vehicle i in fixed axis.
ai = (axi

ayi
azi

): is the acceleration vector of vehicle i in fixed axis.

Equations (4.2.1) through (4.2.6) may be written in state space form as follows:

d
dt

⎡⎢⎢⎣
xi
⋅⋅⋅⋅
ui

⎤⎥⎥⎦
=

⎡⎢⎢⎣
0 : I
⋅⋅⋅⋅ : ⋅⋅⋅⋅
0 : 0

⎤⎥⎥⎦
⎡⎢⎢⎣

xi
⋅⋅⋅⋅⋅
ui

⎤⎥⎥⎦
+
⎡⎢⎢⎣

0
⋅⋅⋅⋅⋅

I

⎤⎥⎥⎦
[ai] (4.2.7)

It follows from equation (4.2.7) that relative kinematics for vehicle j w.r.t. vehicle i may
be written as:

d
dt

⎡⎢⎢⎢⎣

xij
⋅⋅⋅⋅
uji

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎣
0 : I
⋅⋅⋅⋅ : ⋅⋅⋅⋅
0 : 0

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

xij
⋅⋅⋅⋅⋅
uij

⎤⎥⎥⎥⎦
+
⎡⎢⎢⎣

0
⋅⋅⋅⋅⋅

I

⎤⎥⎥⎦
ai −

⎡⎢⎢⎣
0

⋅⋅⋅⋅⋅
I

⎤⎥⎥⎦
aj (4.2.8)

where

xij = xi − xj: is the (3×1) relative position vector of vehicle i w.r.t. vehicle j in fixed axis.
uij = ui − ui: is the (3×1) relative position vector of vehicle i w.r.t. vehicle j in fixed axis.
I: is a (3×3) identity matrix; and j ≠ i.

4.2.1 Three-Party Engagement Scenario

For the current problem, we shall assume that for the engagement between an attacker
(pursuer) and a target (evader), the target (an aircraft for example) is designated j = 1,
and the attacking missile is designated i = 3. For the engagement between the attacking
missile and a defending missile fired by the aircraft to defend itself, the attacker (which
is now the evader) is designated j = 3, and the defender (which is now the pursuer) is
designated i = 2. In this scenario we are interested in the following relative kinematic
states:

(a) the states of attacker 3 w.r.t. target 1 are: (x31 u31), with guidance inputs (accelera-
tion commands) given by (a3 a1) respectively. Here a1 includes an evasion maneu-
ver ae

1 executed by target 1, and a3 which includes a pursuit maneuver ap
3 executed

by attacker 3.
(b) the states of defender 2 w.r.t. attacker 3 are: (x23 u23), with guidance inputs

(a2 a3) respectively. Here a3 includes an evasion maneuver ae
3 executed by attacker

3, and a2 which includes a pursuit maneuver ap
2 executed by defender 2.
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Clearly, a1 includes solely target 1 evasion maneuver ae
1, whereas a2 includes solely

defender 2 pursuit maneuver ap
2 designed to intercept attacker 3. The maneuver a3, on

the other hand, is designed to evade defender 2, as well as achieving an intercept with
target 1. Thus a3 includes both ap

3 and ae
3.

Here we also propose that additional disturbance inputs, say (ad
1, ad

3), be added on
to the evasion maneuvers of 1 and 3 respectively. These additional disturbance inputs
(maneuvers) are useful, as they could provide added flexibility toward an evasion strat-
egy, for example, building in some simple rule-based artificial intelligence (AI) for
scheduling additional maneuvers.

In order to accommodate the above situation and to clearly distinguish between the
guidance commands designed for intercept and those designed for evasion, we shall
write:

a1 = ae
1 + ad

1; a2 = ap
2; and a3 = ap

3 + ae
3 + ad

3 (4.2.9)

where
(

ae
1, ae

3
)

: denote acceleration commands (3×1-vectors) designed to achieve evasive
maneuvers for 1 and 3 respectively.(

ap
2, ap

3
)

: denote acceleration commands (3×1-vectors) designed to achieve intercept
maneuvers for 2 and 3.(

ad
1, ad

3
)

: denote disturbance acceleration commands (3×1-vectors) designed for addi-
tional maneuvers for 1 and 3.

Using equation (4.2.8), engagement kinematics model for attacker 3 and target 1 for
0 ≤ t ≤ tf1

, where tf1
is the final engagement time, may be written as:

d
dt

⎡⎢⎢⎣
x31
⋅⋅⋅⋅⋅
u31

⎤⎥⎥⎦
=

⎡⎢⎢⎣
0 : I
⋅⋅⋅⋅ : ⋅⋅⋅⋅
0 : 0

⎤⎥⎥⎦
⎡⎢⎢⎣

x31
⋅⋅⋅⋅⋅
u31

⎤⎥⎥⎦
+
⎡⎢⎢⎣

0
⋅⋅⋅⋅⋅

I

⎤⎥⎥⎦
(

ap
3 + ae

3 + ad
3

)
−
⎡⎢⎢⎣

0
⋅⋅⋅⋅⋅

I

⎤⎥⎥⎦
(

ae
1 + ad

1

)

(4.2.10)

This equation is of the form:

d
dt

y
31
= [F]y

31
+ [G]

(
ap

3 − ae
1

)
− [G]

(
ad

1 − ae
3 − ad

3

)
(4.2.11)

Note that the inputs in equation (4.2.11) contain pursuit and evasion inputs by vehicle
3, and an evasion input by vehicle 1. Inputs shown as (ap

3 − ae
1) will be instrumental

in determining the strategies for the target and the attacking missile, and are lumped
together. The inputs (ad

1 − ae
3 − ad

3) have been lumped together as “additional” inputs
as these do not directly affect the state feedback portion of the optimum pursuit and
evasion guidance commands for parties 3 and 1; they, however, appear in the vector
Riccati differential equations and affect the additional input portion of the guidance law.
This fact will become clear in the next section, when we consider the Hamiltonian and
the necessary conditions for optimization of the PI.
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Engagement kinematics model for defender 2 and attacker 3 for 0 ≤ t ≤ tf2
, where

tf2
is the final engagement time, may be written as:

d
dt

⎡⎢⎢⎣
x23
⋅⋅⋅⋅⋅
u23

⎤⎥⎥⎦
=

⎡⎢⎢⎣
0 : I
⋅⋅⋅⋅ : ⋅⋅⋅⋅
0 : 0

⎤⎥⎥⎦
⎡⎢⎢⎣

x23
⋅⋅⋅⋅⋅
u23

⎤⎥⎥⎦
+
⎡⎢⎢⎣

0
⋅⋅⋅⋅⋅

I

⎤⎥⎥⎦
(

ap
2

)
−
⎡⎢⎢⎣

0
⋅⋅⋅⋅⋅

I

⎤⎥⎥⎦
(

ap
3 + ae

3 + ad
3

)

(4.2.12)

This equation is of the form:

d
dt

y
23
= [F]y

23
+ [G]

(
ap

2 − ae
3

)
− [G]

(
ad

3 + ap
3

)
(4.2.13)

For reasons already given above w.r.t. equation (4.2.11), (ap
2 − ae

3), which contains pur-
suer inputs by vehicle 2 and evasion inputs by vehicle 3, are lumped together; (ad

3 + ap
3)

have been lumped together in equation (4.2.13) and will be treated as additional inputs
where

y
31
= (x31 u31)T: is the (6×1) relative state vector between interceptor 3 and target 1.

y
23
= (x23 u23)T: is the (6×1) relative state vector between defender 2 and attacker 3.

[F]: is the (6×6) state coefficient matrix.
[G]: is the (6×3) input coefficient matrix.

. Three-Party Differential Game Problem and Solution

The three-party game theoretic guidance problem may be stated as follows: Given
the dynamical system (4.2.11) and (4.2.13) with initial state, y

31
(t0) = y

31
(0);

y
23

(t0) = y
23

(0), and a scalar quadratic PI:

J1(⋯) = 1
2
‖‖y

31
(tf1

)‖‖2
S1
+ 1

2

tf1

∫
t0

[‖‖y
31
‖‖2

Q1
+ ‖‖‖ap

3
‖‖‖

2

Rp
3
− ‖‖‖ae

1
‖‖‖

2

Re
1

]
dt (4.3.1)

J2(⋯) = 1
2
‖‖y

23
(tf2

)‖‖2
S2
+ 1

2

tf2

∫
t0

[‖‖y
23
‖‖2

Q2
+ ‖‖‖ap

2
‖‖‖

2

Rp
2
− ‖‖‖ae

3
‖‖‖

2

Re
3

]
dt (4.3.2)

where

[S1, S2]: are (6×6) (at least) positive semi-definite matrices that define the weightings on
final-states.

[Q1, Q2]: are (6×6) (at least) positive semi-definite matrices that define the PI weightings
on current-states.[

Re
1, Rp

2, Rp
3, Re

3
]
: are (3×3) positive-definite matrices that define the PI weightings on

respective guidance (control) inputs. These matrices define “soft constraints” on input
commands.
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In this chapter we are interested in the case when [Qi] = [0]; [Si] =
diag[s1 s2 s3 0 0 0]. s1 = s2 = s3 = s; i = 1, 2, 3. In this particular case,
the first terms in equations (4.3.1) and (4.3.2) become:‖y

31
(tf1

)‖S1
= s‖x31(tf1

)‖ and ‖y
23

(tf1
)‖S2

= s‖x23(tf1
)‖, and represent weighted

final miss-distances between vehicles 3 and 1, and vehicles 2 and 3 respectively.
Matrices [Re

1, Rp
2, Rp

3, Re
3] represent “soft” constraints on the control effort applied by

the evader and the pursuer. In our current presentation we shall assume that;
[Re

1 = re
1I; Rp

2 = rp
2I; Rp

3 = rp
3I; Re

3 = re
3I], where [re

1, rp
2, rp

3, re
3] are scalars. This

assumption is valid for a wide class of guidance problems. However, the guidance engi-
neer must exercise his judgment in selecting these values to suit his particular design cri-
teria. As will be noted later in this chapter (Section 4.4), it is one of the requirements for
a meaningful solution of the min./max. optimization problem that: [re

1 > rp
3; re

3 > rp
2].

The object is to derive guidance commands (ae
1, ap

2, ap
3, ae

3), such that an optimum
value J∗(⋯) of the PI is achieved. Note that in the PI (4.3.1), the quadratic term contain-
ing ae

1 appears with a negative sign. Similarly, the quadratic term containing ae
3 in (4.3.2)

also appears as a negative term. The max./min. optimum problem therefore reduces to
simply a minimization problem. That is:

J∗1(⋯) = Min
(ap

3,ae
1)

J1; J∗2(⋯) = Min
(ap

2,ae
3)

J2(⋯) (4.3.3)

Note that

Min
(ap

3,ap
2,ae

1,ae
3)

[J1(⋯)+ J2(⋯)] = Min
(ap

3,ae
1)

J1 + Min
(ap

2,ae
3)

J2(⋯) (4.3.4)

Generally, the engagement time for parties 2 and 3 (tf = tf2
) will be different to the

engagement time for parties 3 and 1 (tf = tf1
). This was certainly the case for the

problem under consideration (see Chapter 6) where for the selected initial engage-
ment geometry start times were the same but the final times were different for the two
engagements.

It will be assumed that all parties have access to full information regarding relative
system states, {xji(t); ∀t0 ≤ t ≤ tf} are known to all three parties. In order to cater for
imperfect information where the full state information may have to be constructed, a
time delay and/or noise may have to be introduced in applying the guidance commands.
Certainly, implementation of a state estimator would be an ideal technique, as it would
provide an assessment of delays and state estimation errors on the performance.

The guidance commands (ap
3, ap

2) define the actions of pursuers and are such as to
minimize the PI Ji(⋯); the guidance commands (ae

3, ae
1), on the other hand, define the

actions of evaders and are such as to maximize Ji(⋯). This has been achieved by putting a
minus sign with the terms representing the evasive control, and considering the problem
as a minimization problem.
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In order to obtain solutions to the optimum problem posed in (4.3.1) and (4.3.2) above
we shall follow closely the LQPI approach such as the one suggested in Chapters 2 and
3. Constructions of Hamiltonians H1(⋯), H2(⋯) are given below:

H1(⋯) = 1
2

{‖‖‖aP
3
‖‖‖

2

RP
3
− ‖‖‖ae

1
‖‖‖

2

Re
1

}
⋯+

𝛌T
1

{
[F]y

31
+ [G]

(
ap

3 − ae
1

)
− [G]

(
ad

1 − ae
3 − ad

3

)} (4.3.5)

H2(⋯) = 1
2

{‖‖‖aP
2
‖‖‖

2

RP
2
− ‖‖‖ae

3
‖‖‖

2

Re
3

}
⋯

+𝛌T
2

{
[A]y

23
+ [G]

(
ap

2 − ae
3

)
− [G]

(
ad

3 + ap
3

)} (4.3.6)

Necessary conditions for optimality for (4.3.5) and (4.3.6) are obtained by setting the
first partial derivatives of the Hamiltonians w.r.t. the inputs to zero, which gives us:

𝛛H1

𝛛ae
1
= −

[
Re

1

]
ae

1 − [G]T𝛌1 = 0 (4.3.7)

𝛛H1

𝛛ap
3

=
[

Rp
3

]
ap

3 + [G]T𝛌1 = 0 (4.3.8)

𝛛H1

𝛛ae
3
= −[G]T𝛌1 = 0 (4.3.9)

𝛛H2

𝛛ap
2

=
[

Rp
2

]
ap

2 + [G]T𝛌2 = 0 (4.3.10)

𝛛H2

𝛛ae
3
= −

[
Re

3

]
ae

3 − [G]T𝛌2 = 0 (4.3.11)

𝛛H2

𝛛ap
3

= −[G]T𝛌2 = 0 (4.3.12)

We note the fact that equation (4.3.9) does not yield an optimum value for ae
3 and that

equation (4.3.12) does not yield an optimum value for ap
3 . Optimum solutions for these

terms are, in fact, defined in equations (4.3.11) and (4.3.8). Hence, in the derivation of the
Riccati equation arising out of equations (4.3.7) through (4.3.9), the variable ae

3 will be
regarded as additional input; similarly, for the Riccati equation derived using equations
(4.3.10) through (4.3.12), the variable ap

3 will be regarded as an additional input. The
existence of minimum and maximum values for the Hamiltonians can easily be verified
by noting the signs (positive or negative) of the second derivative of the Hamiltonian
(see Chapter 2).

The optimization conditions for the Hamiltonian also yields the following relation-
ships:

𝛛H1

𝛛y
31

= − ̇𝛌1 = [F]T𝛌1 (4.3.13)

𝛛H2

𝛛y
23

= − ̇𝛌2 = [F]T𝛌2 (4.3.14)
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The boundary condition is given by: 𝛌1(tf1
) = [S1]y

31
(tf1

) and 𝛌2(tf2
) = [S2]y

23
(tf2

). Let
us assume: 𝛌1 = [P1]y

31
+ 𝛏

1
and 𝛌2 = [P2]y

23
+ 𝛏

2
, then equations (4.3.7) and (4.3.8)

and (4.3.10) and (4.3.11) give:

ae
1 = −

[
Re

1

]−1
[G]T

(
[P1]y

31
+ 𝛏

1

)
(4.3.15)

ap
3 = −

[
Rp

3

]−1
[G]T

(
[P1]y

31
+ 𝛏

1

)
(4.3.16)

ap
2 = −

[
Rp

2

]−1
[G]T

(
[P2]y

23
+ 𝛏

2

)
(4.3.17)

ae
3 = −

[
Re

3

]−1
[G]T

(
[P2]y

23
+ 𝛏

2

)
(4.3.18)

where [Pi]: is a (6×6) Riccati matrix and 𝛏
i
: is a (6×1) Riccati vector i = 1, 2.

Substituting for (𝛌1, 𝛌2) in equations (4.3.13) and (4.3.14) and utilizing equations
(4.2.11) and (4.2.13), as well as equations (4.3.15) through (4.3.18), it can be shown
(requires some straightforward matrix algebra manipulation—see Appendix Section
A4.1) that the following Riccati differential equations are obtained for [Pi]: and 𝛏

i
,

i = 1, 2:

[ ̇P1]+ [P1][F]+ [F]T[P1]− [P1][G][R31]−1[G]T[P1] = 0 (4.3.19)
̇𝛏
1
+
{

[F]T − [P1][G][R31][G]T} 𝛏
1
− [P1][G]

(
ad

1 − ae
3 − ad

3

)
= 0 (4.3.20)

and

[ ̇P2]+ [P2][F]+ [F]T[P2]− [P2][G][R23]−1[G]T[P2] = 0 (4.3.21)
̇𝛏
2
+
{

[F]T𝛏
2
− [P2][G][R23][G]T

}
𝛏

2
− [P2][G]

(
ad

3 + ap
3

)
= 0 (4.3.22)

where

[R31]−1 =
([

Rp
3

]−1
−
[

Re
1

]−1)
and[R23]−1 =

([
Rp

2

]−1
−
[

Re
3

]−1)

The above differential equations satisfy the boundary conditions P1(tf1
) = S1,

P2(tf2
) = S2 and 𝛏

1
(tf1

) = 0, 𝛏
2

(tf2
) = 0. In the sequel, equations (4.3.19) and (4.3.21)

will be referred to as the matrix Riccati differential equations (MRDE) and equations
(4.3.20) and (4.3.22) will be referred to as the vector Riccati differential equations
(VRDE).

Remarks:

It will be shown in Chapter 6 that in many cases of practical interest it is possible
to work with guidance laws that are obtained from the solution of the MRDE alone.
While this will yield a sub-optimal solution, it can be augmented by additional
maneuvers derived using rule-based AI algorithms.
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. Solution of the Riccati Differential Equations

4.4.1 Solution of the Matrix Riccati Differential Equation (MRDE)

In Chapter 3, we considered the Riccati equations for the particular case: [Qi] = [0];
[Si] = diag[s1 s2 s3 0 0 0]; s1 = s2 = s3 = s; i = 1, 2; and [R31] = r31I,
[R23] = r23I; where r31, r23 are scalars. Analytical solutions are obtained which are
functions of time to go; these are given below (for details see also Chapter 3, Appendix
Section A3.3; derivation of the full solution of the Riccati matrix Pi):

[Pi] =

⎡⎢⎢⎢⎢⎢⎢⎣

p11i
0 0 p14i

0 0
0 p22i

0 0 p25i
0

0 0 p33i
0 0 p36i

p14i
0 0 p44i

0 0
0 p25i

0 0 p55i
0

0 0 p36i
0 0 p66i

⎤⎥⎥⎥⎥⎥⎥⎦

(4.4.1)

In equation (4.4.1), i = 1 is the solution of the MRDE (4.3.19), and i = 2 is the solution
of the MRDE (4.3.21).

where

p11i
= p22i

= p33i
=

[
3𝛄i

3𝛄i + T3
i

]

p14i
= p25i

= p36i
=

[
3𝛄iTi

3𝛄i + T3
i

]

p44i
= p55i

= p66i
=

[ 3𝛄iT2
i

3𝛄i + T3
i

]

[Re
1] = re

1I; [Rp
2] = rp

2 I; [Rp
3] = rp

3I; [Re
3] = re

3I; and (re
1, rp

2, rp
3, re

3) are scalars.

𝛄1 = r31 =
rp

3re
1

(re
1−rp

3)
; 𝛄2 = r23 =

rp
2re

3
(re

3−rp
2)

; Ti = (tfi
− t); i = 1, 2, is the time-to-go.

Note that:

p14i
= p25i

= p36 = Tip11i
= Tip22i

= Tip33i

p44i
= p55i

= p66i
= Tip14i

= Tip25i
= Tip36i

Both r31 and r23 must be positive, that is re
1 > rp

3 , and re
3 > rp

2 , which means that the
PI weightings on the evasion commands must be greater than those on the pursuit
commands. If this is not the case then the existence of the Riccati solution cannot be
guaranteed.

If we examine the optimum guidance inputs given in equations (4.3.15) through
(4.3.18), we see that it consists of state feedback terms, that is, the first term involv-
ing the states: (y

31
, y

23
) and a second term involving vectors (𝛏

1
, 𝛏

2
). We can now define
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the state feedback gain matrix for the guidance commands as follows:[
Ke

1

]
= 1

re
1

[G]T[P1] (4.4.2)

[
Kp

3

]
= 1

rp
3

[G]T[P1] (4.4.3)

[
Kp

2

]
= 1

rp
2

[G]T[P2] (4.4.4)

[
Ke

3

]
= 1

re
3

[G]T[P2] (4.4.5)

where

[G]T[P1] =
[

3r31T1

3r31 + T3
1

]⎡⎢⎢⎣
1 0 0 T1 0 0
0 1 0 0 T1 0
0 0 1 0 0 T1

⎤⎥⎥⎦
(4.4.6)

[G]T[P2] =
[

3r23T2

3r23 + T3
2

]⎡⎢⎢⎣
1 0 0 T2 0 0
0 1 0 0 T2 0
0 0 1 0 0 T2

⎤⎥⎥⎦
(4.4.7)

4.4.2 Solution of the Vector Riccati Differential Equation (VRDE)

We repeat our comments made in Chapter 3 that in general, closed form analytical
solution for the VRDE equations (4.3.20) and (4.3.22) is not possible without certain
assumptions regarding the terms (ad

1 − ad
3 − ae

3) and (ad
3 + ap

3) that are present in these
equations. In order to solve the VRDE (4.3.20), we make the following substitutions; we
let:

Ti = tfi
− t → dTi = −dt

Thus

𝛏
i
(t) = 𝛏

i
(tfi
− Ti) = 𝛈i

(Ti) = 𝛈i
; i = 1, 2

where

𝛈
i
= (𝛈1i

𝛈2i
𝛈3i

𝛈4i
𝛈5i

𝛈6i
)T

Note that i = 1 refers to the solution of the VRDE (4.3.20), whereas i = 2 refers to the
VRDE (4.3.22). We shall further make the following substitutions:

ad
1(t) = ad

1(tf1
− T) = 𝛂d

1(T1)
ae

3(t) = ae
3(tf1

− T) = 𝛂e
3(T1)

ad
3(t) = ad

3(tf1
− T) = 𝛂d

3(T1)

It is shown in the Appendix Section A4.4 that assuming (𝛂d
1,𝛂e

3,𝛂d
3) are piecewise con-

stant for the interval T1,k ≥ T1 ≥ T1,k+1, then we may write:
𝛂d

1,k
= 𝛂d

1(T1,k), 𝛂d
3,k
= 𝛂d

3(T1,k), 𝛂e
3,k
= 𝛂e

3(T1,k), which may be assumed to be
constants.
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It can be shown that for the interval T1,k+1 ≤ T1 ≤ T1,k, the solution to the VRDE
equation (4.3.20) [see (A4.4.8) through (A4.4.13)] satisfies:

𝛈11
=

[ 3r31T2
1

3r31 + T3
1

](
𝛂d

x1,k
− 𝛂e

x3,k
− 𝛂d

x3,k

)
(4.4.8)

𝛈21
=

[ 3r31T2
1

3r31 + T3
1

](
𝛂d

y1,k
− 𝛂e

y3,k
− 𝛂d

y3,k

)
(4.4.9)

𝛈31
=

[ 3r31T2
1

3r31 + T3
1

](
𝛂d

z1,k
− 𝛂e

z3,k
− 𝛂d

z3,k

)
(4.4.10)

𝛈41
=

[ 3r31T3
1

3r31 + T3
1

](
𝛂d

x1,k
− 𝛂e

x3,k
− 𝛂d

x3,k

)
(4.4.11)

𝛈51
=

[ 3r31T3
1

3r31 + T3
1

](
𝛂d

y1,k
− 𝛂e

y3,k
− 𝛂d

y3,k

)
(4.4.12)

𝛈61
=

[ 3r31T3
1

3r31 + T3
1

](
𝛂d

z1,k
− 𝛂e

z3,k
− 𝛂d

z3,k

)
(4.4.13)

where

𝛂d
1(T1) =

(
𝛂d

x1
𝛂d

y1
𝛂d

z1

)T

𝛂e
3(T1) =

(
𝛂e

x3
𝛂e

y3
𝛂e

z3

)T

𝛂d
3(T1) =

(
𝛂d

x3
𝛂d

y3
𝛂d

z3

)T

Furthermore, for the VRDE (3.4.22), writing:
ap

3(t) = ae
3(tf2

− T) = 𝛃p
3

(T2); ad
3(t) = ad

3(tf2
− T) = 𝛃d

3
(T2), it can be shown (see

Appendix Section A4.4) that assuming 𝛃d
3,k
= 𝛃d

3
(T1,k), 𝛃p

3,k
= 𝛃p

3
(T1,k) are piecewise

constant, for the interval T2,k ≥ T2 ≥ T2,k+1, then:

𝛈12
=

[ 3r23T2
2

3r23 + T3
2

](
𝛃p

x3,k
+ 𝛃d

x3,k

)
(4.4.14)

𝛈22
=

[ 3r23T2
2

3r23 + T3
2

](
𝛃p

y3,k
+ 𝛃d

y3,k

)
(4.4.15)

𝛈32
=

[ 3r23T2
2

3r23 + T3
2

](
𝛃p

z3,k
+ 𝛃d

z3,k

)
(4.4.16)

𝛈42
=

[ 3r23T3
2

3r23 + T3
2

](
𝛃p

x3,k
+ 𝛃d

x3,k

)
(4.4.17)
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𝛈52
=

[ 3r23T3
2

3r23 + T3
2

](
𝛃p

y3,k
+ 𝛃d

y3,k

)
(4.4.18)

𝛈62
=

[ 3r23T3
2

3r23 + T3
2

](
𝛃p

z3,k
+ 𝛃d

z3,k

)
(4.4.19)

where

𝛃p
3

(T2) =
(
𝛃p

x3
𝛃p

y3
𝛃p

z3

)T

𝛃d
3

(T2) =
(
𝛃d

x3
𝛃d

y3
𝛃d

z3

)T

Guidance disturbance inputs from equations (A4.4.8) through (A4.4.19) are given by:

ke
1 = −

[
Re

1

]−1
[G]T𝛏

1
= − 1

re
1

[ 3r31T3
1

3r31 + T3
1

]⎡⎢⎢⎢⎢⎢⎣

(
𝛂d

x1,k
− 𝛂e

x3,k
− 𝛂d

x3,k

)
(
𝛂d

y1,k
− 𝛂e

y3,k
− 𝛂d

y3,k

)
(
𝛂d

z1,k
− 𝛂e

z3,k
− 𝛂d

z3,k

)

⎤⎥⎥⎥⎥⎥⎦
(4.4.20)

kp
3 = −

[
Re

1

]−1
[G]T𝛏

1
= − 1

rp
3

[ 3r31T3
1

3r31 + T3
1

]⎡⎢⎢⎢⎢⎢⎣

(
𝛂d

x1,k
− 𝛂e

x3,k
− 𝛂d

x3,k

)
(
𝛂d

y1,k
− 𝛂e

y3,k
− 𝛂d

y3,k

)
(
𝛂d

z1,k
− 𝛂e

z3,k
− 𝛂d

z3,k

)

⎤⎥⎥⎥⎥⎥⎦
(4.4.21)

kp
2 = −

[
Rp

2

]−1
[G]T𝛏

2
= − 1

rp
2

[ 3r31T3
2

3r31 + T3
2

]⎡⎢⎢⎢⎢⎢⎣

(
𝛃p

x3,k
+ 𝛃d

x3,k

)
(
𝛃p

y3,k
+ 𝛃d

y3,k

)
(
𝛃p

z3,k
+ 𝛃d

z3,k

)

⎤⎥⎥⎥⎥⎥⎦
(4.4.22)

ke
3 = −

[
Rp

2

]−1
[G]T𝛏

2
= − 1

re
3

[ 3r31T3
2

3r31 + T3
2

]⎡⎢⎢⎢⎢⎢⎣

(
𝛃p

x3,k
+ 𝛃d

x3,k

)
(
𝛃p

y3,k
+ 𝛃d

y3,k

)
(
𝛃p

z3,k
+ 𝛃d

z3,k

)

⎤⎥⎥⎥⎥⎥⎦
(4.4.23)

Remarks:
� In the theoretical development presented in this chapter, the guidance commands (for

both the pursuer and the evader) are derived in fixed axis coordinate system; in prac-
tice, the guidance commands (lateral accelerations) are applied w.r.t. the vehicle body
axis. Also, most missiles are capable of achieving high lateral accelerations that can
be controlled, but the longitudinal acceleration is not easily varied; a zero longitudi-
nal acceleration is generally assumed for missiles. The above consideration implies
that the guidance commands, although derived using optimization theory, are in fact
“sub-optimal” when we consider the guidance commands actually applied in vehicle
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body axis. Inclusion of the transformation matrix is possible, either through the kine-
matics model or incorporated in the PI. The difficulty with both these methods is that
the resulting Riccati equations become functions of states, and pose problems when
a closed form solution is sought.

� The autopilot lags have not been included in the derivation of the optimum guidance.
This inclusion can be considered in the derivation, but it increases the order of the
state model, and can be considered within the methodology presented in this chapter.
A state space engagement kinematics model that includes the autopilot time constants
with guidance commands applied in body axis was used in the simulation (Chapter 6)
but not in the derivation of the optimum guidance problem considered here.

� Another requirement for ensuring that the game theoretic guidance is meaningful is
to consider engagement scenarios that are challenging in the sense that initial con-
ditions are such as to generate unbiased engagement from a game theory perspec-
tive. This may not always be possible and one then will have to accept the game out-
come with adversaries of different maneuver capabilities, speeds, and autopilot time-
responses.

� Evasion maneuvers in the form of disturbance input (such as constant or sinusoidal
acceleration or a jinking type maneuver) applied by evading players may be included
in the model to account for predetermined disturbance.

4.4.3 Further Consideration of Performance Index (PI) Weightings

We write the PI (4.3.1) and (4.3.2) as:

J1(⋯) = 1
2
‖y

31
(tf1

)‖2 + 1
2

tf1

∫
t0

[
rp

3
‖‖‖ap

3
‖‖‖

2
− re

1
‖‖‖ae

1
‖‖‖

2
]

dt (4.4.24)

J2(⋯) = 1
2
‖y

23
(tf2

)‖2 + 1
2

tf2

∫
t0

[
rp

2
‖‖‖ap

2
‖‖‖

2
− re

3
‖‖‖ae

3
‖‖‖

2
]

dt (4.4.25)

Here we have set: Q1 = Q2 = 0; S1 = S2 = I; and [Re
1 = re

1I; Rp
2 = rp

2I;
Rp

3 = rp
3I; Re

3 = re
3I].

Making the substitution: re
1 = 𝛂rp

3; re
3 = 𝛃rp

2; 𝛂,𝛃 > 1 we can write the PIs as
follows:

J1(⋯) = 1
2
‖y

31
(tf1

)‖2 + 1
2

tf1

∫
t0

rp
3

(‖‖‖ap
3
‖‖‖

2
− 𝛂 ‖‖‖ae

1
‖‖‖

2
)

dt (4.4.26)

J2(⋯) = 1
2
‖y

23
(tf2

)‖2 + 1
2

tf2

∫
t0

rp
2

(‖‖‖ap
2
‖‖‖

2
− 𝛃 ‖‖‖ae

3
‖‖‖

2
)

dt (4.4.27)

Assuming that (rp
3, rp

2) are sufficiently less than one (this is to allow sufficiently high
weighting on the final miss) and remain fixed at this value then, in general we would
expect that:
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(a) 𝛂,𝛃≫ 1➔ we have an engagement with negligible evasion by parties 1 and 3; and
we get essentially an intercept trajectory for target 1 and attacker 3, and for attacker
3 and defender 2.

(b) 𝛂,𝛃 > 1➔ we have an engagement with both intercept and evasion by parties 1, 2,
and 3; the nature of the engagement would very much depend on the initial engage-
ment geometry, and the values chosen for 𝛂,𝛃.

(c) 𝛂≫ 1𝛃 ≈ 1➔ we have an engagement with no evasion by party 1; the nature of the
engagement between parties 2 and 3 would again depend on the initial engagement
geometry and the values chosen for 𝛂,𝛃.

(d) 𝛃≫ 1𝛂 ≈ 1➔ we have an engagement with no evasion by party 3; the nature of the
engagement would again depend on the initial engagement geometry and the values
for 𝛂,𝛃.

4.4.4 Game Termination Criteria and Outcomes

The game termination criteria will be taken to be the minimum miss distance (MD)
(minimum separation) between the parties. In our particular (three-party game) sce-
nario, there are two miss distances involved—that is, between defender 2 and attacker
3—MD23, and between attacker 3 and aircraft target 1—MD31. For our particular
engagement scenario, MD23 condition will be reached first followed by MD31. Once
MD23 is reached (t = tf2

) the outcome for this part of the engagement (win/lose)
depends on the value of MD23; defender 2 wins if this MD is less than the lethal radius
of its warhead and loses if the MD is greater than this value. A win for defender 2
implies that attacker 3 has lost (and by implication party 1 also wins, in this case, because
with the threat by party 3 eliminated, party 1 can escape). However, if defender 2 loses,
that is, attacker 3 is able to evade party 2 and continue with its attack on aircraft 1, then
once the termination condition MD31 is reached, the game is deemed to be finally over
(t = tf1

), and the lethality radius of party 3 will determine the success or failure of its
mission. Clearly, if party 3 wins then party 1 loses and vice versa.

. Discussion and Conclusions

This chapter considered an engagement scenario consisting of a high value target (e.g.,
an aircraft), that on becoming aware that it is being attacked by a missile (attacker), fires
a defending missile to engage and intercept this attacking missile and itself performs
an evasive maneuver to escape the attacker. For this scenario, the role of the defending
missile is only to intercept the attacking missile; the attacking missile on the other hand
performs a dual role, that of evading the defending missile as well as intercepting the pri-
mary target. Since the participants in this type of engagement are three players and one
or more of the players have conflicting objectives, we shall refer to this type of engage-
ment scenario as a three-party game. In the development of optimum (game theoretic)
guidance strategies, it is seen that the three-party game approach, for type of engage-
ment considered, is coupled (i.e., any strategy or action by one party affects the strategy
or action of all other parties). In the context of the missile guidance problem considered
in this chapter, strategy means the lateral acceleration demanded for implementing the
guidance law (pursuit or evasion strategies).
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Three-party pursuit and evasion guidance strategies were derived using differential
game theory for a 3-D engagement. Analytical solutions were derived for the resulting
Riccati differential equations and for the guidance feedback gains. The guidance laws are
shown to contain a state feedback component and a component that takes into account
any additional maneuvers that the evading parties may perform as well as cross coupling
acceleration terms. Use of a rule-based AI scheme, such as time-to-go initiated addi-
tional maneuvers (e.g., a step, sinusoidal or random accelerations), can be considered,
primarily to enhance evasion performances of an attacker as well as a target. Rule-based
AI techniques (derived on the basis of time-to-go and miss-distance) can also be used
for the performance index weighting switching designed to deceive the adversay.

Further work is required to test this type of guidance for (a) different PI weightings,
(b) different aircraft, attacker, and defender characteristics (such as velocities, accel-
eration capabilities, and autopilot bandwidths), (c) situations where the parties have
limited access to state information or inaccurate time-to-go information. Finally, it
would be useful to study the application of the differential game based guidance using a
3-D simulation platform (see Chapter 5) to test out the performance and study sen-
sitivity/robustness issues. The game theory-based guidance technique proposed pro-
vides a useful tool to study vulnerabilities of existing missile systems against current and
future threats that may incorporate “intelligent” guidance or for enhancing the capabil-
ity of future missiles by implementing (game theory-based) intelligent guidance. Further
research is required in this area in order to evaluate the performance of the game theo-
retic guidance in realistic combat environment.
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Appendix

A. Derivation of the Riccati Equations

Substituting for ap
3 and ae

1 from equations (4.3.15) and (4.3.16) into equation (4.2.11)
gives us:

d
dt y

31
= [F]y

31
− [G]

([
Rp

3

]−1
GTP1y

31
+
[

Rp
3

]−1
GT𝛏

1

)
⋯

+ [G]
([

Re
1

]−1
GTP1y

31
+
[

Re
1

]−1
GT𝛏

1

)
− [G]

(
ad

1 − ae
3 − ad

3

)(A4.1.1)

Similarly, substituting for ap
2 and ae

3 from equations (4.3.17) and (4.3.18) into equation
(4.2.13) gives us:

d
dt y

23
= [F]y

23
− [G]

([
Rp

2

]−1
GTP2y

23
+
[

Rp
2

]−1
GT𝛏

2

)
⋯

+ [G]
([

Re
3

]−1
GTP2y

23
+
[

Re
3

]−1
GT𝛏

2

)
− [G]

(
ad

3 + ap
3

) (A4.1.2)

Substituting for 𝛌, equation (4.3.13) and (4.3.14) may be written as:

FT([P1]y
31
+ 𝛏

1
) = − ̇𝛌1 = −[ ̇P1]y

31
− [P1]ẏ

31
− ̇𝛏

1
(A4.1.3)

FT([P2]y
23
+ 𝛏

2
) = − ̇𝛌2 = −[ ̇P2]y

23
− [P2]ẏ

23
− ̇𝛏

2
(A4.1.4)

Substituting for ẏ
31

and ẏ
23

from equations (A4.1.3) and (A4.1.4) into equations (A4.1.1)
and (A4.1.2) gives us:

FT([P1]y
31
+ 𝛏

1
) = −[ ̇P1]y

31
− [P1][F]y

31

+ [P1][G]
([

Rp
3

]−1
GTP1y

31
+
[

Rp
3

]−1
GT𝛏

1

)

− [P1][G]
([

Re
1

]−1
GT[P1]y

31
+
[

Re
1

]−1
GT𝛏

1

)

+ [P1][G]
(

ad
1 − ae

3 − ad
3

)
− ̇𝛏

1

and

FT([P2]y
23
+ 𝛏

2
) = −[ ̇P2]y

23
− [P2][F]y

23

+ [P2][G]
([

Rp
2

]−1
GTP2y

23
+
[

Rp
2

]−1
GT𝛏

2

)

− [P2][G]
([

Re
3

]−1
GT[P2]y

23
+
[

Re
3

]−1
GT𝛏

2

)

+ [P2][G]
(

ad
3 + ap

3

)
− ̇𝛏

2
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Simplifying the above equations and rearranging the terms gives us:{
[ ̇P1]y

31
+ [P1][F]y

31
+ [F]T[P1]y

31
− [P1][G]

([
Rp

3

]−1
−
[

Re
1

]−1)
GTP1y

31

}
{

̇𝛏
1
+ [F]T𝛏

1
− [P1][G]

([
Rp

3

]−1
−
[

Re
1

]−1)
GT𝛏

1
− [P1][G]

(
ad

1 − ae
3 − ad

3

)}
= 0

(A4.1.5)

and{[
̇P2
]

y
23
+ [P2][F]y

23
+ [F]T[P2]y

23
− [P2] [G]

([
Rp

2

]−1
−
[

Re
3

]−1)
GTP2y

23

}
{

̇𝛏
2
+ [F]T𝛏

2
− [P2][G]

([
Rp

2

]−1
−
[

Re
3

]−1)
GT𝛏

2
− [P2][G]

(
ad

3 + ap
3

)}
= 0

(A4.1.6)

Since the above equations must hold for all values of y
31

and y
23

, solutions of equations
(A4.1.5) and (A4.1.6) can be obtained by setting the terms in the curly brackets equal to
zero, which gives us the following relationships:

[ ̇P1]+ [P1][F]+ [F]T[P1]− [P1][G]
([

Rp
3

]−1
−
[

Re
1

]−1)
GTP1 = 0 (A4.1.7)

̇𝛏
1
+ [F]T𝛏

1
− [P1][G]

([
Rp

3

]−1
−
[

Re
1

]−1)
GT𝛏

1
− [P1][G]

(
ad

1 − ae
3 − ad

3

)
= 0

(A4.1.8)

and
[ ̇P2]+ [P2][F]+ [F]T[P2]− [P2][G]

([
Rp

2

]−1
−
[

Re
3

]−1)
GTP2 = 0 (A4.1.9)

̇𝛏
2
+ [F]T𝛏

2
− [P2][G]

([
Rp

2

]−1
−
[

Re
3

]−1)
GT𝛏

2
− [P2][G]

(
ad

3 + ap
3

)
= 0

(A4.1.10)

These differential equations satisfy the boundary conditions P1(tf1
) = S1, P2(tf2

) = S2
and 𝛏

1
(tf ) = 0, 𝛏

2
(tf2

) = 0. Equations (A4.1.7) and (A4.1.9) will be referred to as the
matrix Riccati differential equation (MRDE) and equations (A4.1.8) and (A4.1.10) will
be referred to as the vector Riccati differential equation (VRDE). For convenience we
shall write: [R31]−1 = ([Rp

3]−1 − [Re
1]−1) and [R23]−1 = ([Rp

2]−1 − [Re
3]−1). With this

substitution equations (A4.1.7) through (A4.1.10) are given in the main text as equa-
tions (4.3.19) through (4.3.22).

A. Analytical Solution for Riccati Differential Equations

In Chapter 3, we considered the Riccati equations for the particular case (Case 2), where
the following PI weightings were considered:

[Si] = diag[s1 s2 s3 0 0 0]; s1 = s2 = s3 = s; i = 1, 2; [R31] = r31I [R23] = r23I;
where r31, r23 are scalars. Analytical solution of the MRDE was obtained which were
functions of time-to-go; these are given below.
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Following the procedure developed in Chapter 3, Appendix Section A3.3, the solution
[Pi] for Riccati equations (4.3.19) and (4.3.21) for i = 1, 2, is given by:

[Pi] =

⎡⎢⎢⎢⎢⎢⎢⎣

p11i
0 0 p14i

0 0
0 p22i

0 0 p25i
0

0 0 p33i
0 0 p36i

p14i
0 0 p44i

0 0
0 p25i

0 0 p55i
0

0 0 p36i
0 0 p66i

⎤⎥⎥⎥⎥⎥⎥⎦

(A4.2.1)

where

p11i
= p22i

= p33i
=

[
3𝛄i

3𝛄i + T3
i

]
(A4.2.2)

p44i
= p55i

= p66i
=

[ 3𝛄iT2
i

3𝛄i + T3
i

]
(A4.2.3)

p14i
= p25i

= p36i
=

[
3𝛄iTi

3𝛄i + T3
i

]
(A4.2.4)

where
[Re

1] = re
1I; [Rp

2] = rp
2 I; [Rp

3] = rp
3I; [Re

3] = re
3I; and (re

1, rp
2, rp

3, re
3) are scalars.

𝛄1 = r31 =
rp

3re
1

(re
1−rp

3)
; 𝛄2 = r23 =

rp
2re

3
(re

3−rp
2)

; and, is the time-to-go. Ti = (tfi
− t); i = 1, 2.

Note that
p44i

= p55i
= p66i

= Tip14i
= Tip25i

= Tip36i
; p14i

= p25i
= p36i

= Tip11i

= Tip22i
= Tip33i

.

Note also that both r31 and r23 must be positive, which implies that re
1 > rp

3 , and re
3 > rp

2 ;
that is, the PI weightings on the evasion commands must be greater than those on the
pursuit commands. If this is not the case then the existence of the Riccati solution cannot
be guaranteed.

A. State Feedback Gains

The state feedback gain matrices for the guidance commands are given by [see equations
(4.4.2) through (4.4.5)] the following relationships:

Ke
1y

31
=

[
Re

1

]−1
[G]T[P1]y

31
(A4.3.1)

Kp
3y

31
=

[
Rp

3

]−1
[G]T[P1]y

31
(A4.3.2)

Kp
2y

23
=

[
Rp

2

]−1
[G]T[P2]y

23
(A4.3.3)

Kp
2y

23
=

[
Re

3

]−1
[G]T[P2]y

23
(A4.3.4)
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where

[
Ke

1

]
=

[
Re

1

]−1
[G]T[P1] = 1

re
1

[
3r31T1

3r31 + T3
1

]⎡⎢⎢⎣
1 0 0 T1 0 0
0 1 0 0 T1 0
0 0 1 0 0 T1

⎤⎥⎥⎦
(A4.3.5)

[
Kp

3

]
=

[
Rp

3

]−1
[G]T[P1] = 1

rp
3

[
3r31T1

3r31 + T3
1

]⎡⎢⎢⎣
1 0 0 T1 0 0
0 1 0 0 T1 0
0 0 1 0 0 T1

⎤⎥⎥⎦
(A4.3.6)

[
Kp

2

]
=

[
Rp

2

]−1
[G]T[P2] = 1

rp
2

[
3r23T2

3r23 + T3
2

]⎡⎢⎢⎣
1 0 0 T2 0 0
0 1 0 0 T2 0
0 0 1 0 0 T2

⎤⎥⎥⎦
(A4.3.7)

[
Ke

3

]
=

[
Rp

2

]−1
[G]T[P2] = 1

re
3

[
3r23T2

3r23 + T3
2

]⎡⎢⎢⎣
1 0 0 T2 0 0
0 1 0 0 T2 0
0 0 1 0 0 T2

⎤⎥⎥⎦
(A4.3.8)

A. Disturbance Inputs

As indicated in Chapter 3, in general, closed form analytical solutions for equa-
tions (4.3.20) and (4.3.22) are not possible without certain assumptions on the terms
(ad

1 − ad
3 − ae

3) and (ad
3 + ap

3) that are present in these equations. In order to solve equa-
tions (4.3.20) and (4.3.22), we make the following substitutions:

Let: Ti = tfi
− t ➔, dTi = −dt; and 𝛏(t) = 𝛏(tfi

− Ti) = 𝛈(Ti) = 𝛈i
; i = 1, 2.

𝛈
i
= (𝛈1i

𝛈2i
𝛈3i

𝛈4i
𝛈5i

𝛈6i
)T

Note that i = 1 refers to the solution of the VRDE (4.3.20), whereas i = 2 refers to the
VRDE (4.3.22). We shall further make the following substitutions:

ad
1
(t) = ad

1
(tf1

− T) = 𝛂d
1
(T1); ae

3
(t) = ae

3
(tf1

− T) = 𝛂e
3
(T1); ad

3
(t) = ad

3
(tf1 − T) = 𝛂d

3
(T1).

Following the procedure shown in Chapter 3, Appendix Section 3.4, equations (A3.4.24)
through (A3.4.27), we get:

𝛈4i
= Ti𝛈1i

; 𝛈5i = Ti𝛈2i
; 𝛈6i

= Ti𝛈3i
; i = 1, 2 (A4.4.1)

For i = 1 [i.e., for equation (4.3.20)], we get:

d𝛈11

dT1
= −

3T2
1[

3r31 + T3
1

]𝛈11
+

6r31T1[
3r31 + T3

1

] (
𝛂d

x1
− 𝛂e

x3
− 𝛂d

x3

)
(A4.4.2)

d𝛈21

dT1
= −

3T2
1[

3r31 + T3
1

]𝛈21
+

6r31T1[
3r31 + T3

1

] (
𝛂d

y1
− 𝛂e

y3
− 𝛂d

y3

)
(A4.4.3)

d𝛈31

dT1
= −

3T2
1[

3r31 + T3
1

]𝛈31
+

6r31T1[
3r31 + T3

1

] (
𝛂d

z1
− 𝛂e

z3
− 𝛂d

z3

)
(A4.4.4)
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where

𝛂d
1(T1) =

(
𝛂d

x1
𝛂d

y1
𝛂d

z1

)T

𝛂e
3(T1) =

(
𝛂e

x3
𝛂e

y3
𝛂e

z3

)T

𝛂d
3(T1) =

(
𝛂d

x3
𝛂d

y3
𝛂d

z3

)T

Assuming that (𝛂d
1,𝛂e

3,𝛂d
3) are piecewise constant, that is, for T1,k ≥ T1 ≥ T1,k+1 (since

as t increases, T1 decreases),𝛂d
1,k
= 𝛂d

1(T1,k),𝛂d
3,k
= 𝛂d

3(T1,k),𝛂e
3,k
= 𝛂e

3(T1,k) are con-
stants. Then for T1,k+1 ≤ T1 ≤ T1,k equations (A4.4.2) through (A4.4.4) satisfy:

d
dT1

[(
3r31 + T3

1

)
𝛈11

]
= 6r31T1

(
𝛂d

x1,k
− 𝛂e

x3,k
− 𝛂d

x3,k

)
⋯

=
(
𝛂d

x1,k
− 𝛂e

x3,k
− 𝛂d

x3,k

)
d

dT1

(
3r31T2

1

) (A4.4.5)

d
dT1

[(
3r31 + T3

1

)
𝛈21

]
= 6r31T1

(
𝛂d

y1,k
− 𝛂e

y3,k
− 𝛂d

y3,k

)
⋯

=
(
𝛂d

y1,k
− 𝛂e

y3,k
− 𝛂d

y3,k

)
d

dT1

(
3r31T2

1

) (A4.4.6)

d
dT1

[(
3r31 + T3

1

)
𝛈31

]
= 6r31T1

(
𝛂d

z1,k
− 𝛂e

z3,k
− 𝛂d

z3,k

)
⋯

=
(
𝛂d

z1,k
− 𝛂e

z3,k
− 𝛂d

z3,k

)
d

dT1

(
3r31T2

1

) (A4.4.7)

which gives us:

𝛈11
=

[ 3r31T2
1

3r31 + T3
1

](
𝛂d

x1,k
− 𝛂e

x3,k
− 𝛂d

x3,k

)
(A4.4.8)

𝛈21
=

[ 3r31T2
1

3r31 + T3
1

](
𝛂d

y1,k
− 𝛂e

y3,k
− 𝛂d

y3,k

)
(A4.4.9)

𝛈31
=

[ 3r31T2
1

3r31 + T3
1

](
𝛂d

z1,k
− 𝛂e

z3,k
− 𝛂d

z3,k

)
(A4.4.10)

Using (A4.4.1), we get:

𝛈41
=

[ 3r31T3
1

3r31 + T3
1

](
𝛂d

x1,k
− 𝛂e

x3,k
− 𝛂d

x3,k

)
(A4.4.11)

𝛈51
=

[ 3r31T3
1

3r31 + T3
1

](
𝛂d

y1,k
− 𝛂e

y3,k
− 𝛂d

y3,k

)
(A4.4.12)

𝛈61
=

[ 3r31T3
1

3r31 + T3
1

](
𝛂d

z1,k
− 𝛂e

z3,k
− 𝛂d

z3,k

)
(A4.4.13)
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We now consider the solution of the VRDE (4.3.22). Writing ap
3(t) = ae

3(tf2
− T) =

𝛃p
3

(T2); ad
3(t) = ad

3(tf2
− T) = 𝛃d

3
(T2), and following the same procedure as above, it can

be shown that for (𝛃p
3

,𝛃d
3

) piecewise constant; that is, 𝛃d
3,k
= 𝛃d

3
(T1,k); 𝛃p

3,k
= 𝛃p

3
(T1,k)

constants for T2,k ≥ T2 ≥ T2,k+1:

𝛈22
=

[ 3r23T2
2

3r23 + T3
2

](
𝛃p

x3,k
+ 𝛃d

x3,k

)
(A4.4.14)

𝛈22
=

[ 3r23T2
2

3r23 + T3
2

](
𝛃p

y3,k
+ 𝛃d

y3,k

)
(A4.4.15)

𝛈32
=

[ 3r23T2
2

3r23 + T3
2

](
𝛃p

z3,k
+ 𝛃d

z3,k

)
(A4.4.16)

𝛈42
=

[ 3r23T3
2

3r23 + T3
2

](
𝛃p

x3,k
+ 𝛃d

x3,k

)
(A4.4.17)

𝛈52
=

[ 3r23T3
2

3r23 + T3
2

](
𝛃p

y3,k
+ 𝛃d

y3,k

)
(A4.4.18)

𝛈62
=

[ 3r23T3
2

3r23 + T3
2

](
𝛃p

z3,k
+ 𝛃d

z3,k

)
(A4.4.19)

where

𝛃p
3

(T2) =
(
𝛃p

x3
𝛃p

y3
𝛃p

z3

)T

𝛃d
3

(T2) =
(
𝛃d

x3
𝛃d

y3
𝛃d

z3

)T

A. Guidance Disturbance Inputs

Guidance disturbance inputs from equations (A4.4.8) through (A4.4.13) and (A4.4.14)
through (A4.4.19) are given by:

ke
1 = −

[
Re

1

]−1
[G]T𝛏

1
= − 1

re
1

[ 3r31T3
1

3r31 + T3
1

]⎡⎢⎢⎢⎢⎢⎣

(
𝛂d

x1,k
− 𝛂e

x3,k
− 𝛂d

x3,k

)
(
𝛂d

y1,k
− 𝛂e

y3,k
− 𝛂d

y3,k

)
(
𝛂d

z1,k
− 𝛂e

z3,k
− 𝛂d

z3,k

)

⎤⎥⎥⎥⎥⎥⎦
(A4.5.1)

kp
3 = −

[
Re

1

]−1
[G]T𝛏

1
= − 1

rp
3

[ 3r31T3
1

3r31 + T3
1

]⎡⎢⎢⎢⎢⎢⎣

(
𝛂d

x1,k
− 𝛂e

x3,k
− 𝛂d

x3,k

)
(
𝛂d

y1,k
− 𝛂e

y3,k
− 𝛂d

y3,k

)
(
𝛂d

z1,k
− 𝛂e

z3,k
− 𝛂d

z3,k

)

⎤⎥⎥⎥⎥⎥⎦
(A4.5.2)
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kp
2 = −

[
Rp

2

]−1
[G]T𝛏

2
= − 1

rp
2

[ 3r31T3
2

3r31 + T3
2

]⎡⎢⎢⎢⎢⎢⎣

(
𝛃p

x3,k
+ 𝛃d

x3,k

)
(
𝛃p

y3,k
+ 𝛃d

y3,k

)
(
𝛃p

z3,k
+ 𝛃d

z3,k

)

⎤⎥⎥⎥⎥⎥⎦
(A4.5.3)

ke
3 = −

[
Rp

2

]−1
[G]T𝛏

2
= − 1

re
3

[ 3r31T3
2

3r31 + T3
2

]⎡⎢⎢⎢⎢⎢⎣

(
𝛃p

x3,k
+ 𝛃d

x3,k

)
(
𝛃p

y3,k
+ 𝛃d

y3,k

)
(
𝛃p

z3,k
+ 𝛃d

z3,k

)

⎤⎥⎥⎥⎥⎥⎦
(A4.5.4)
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

Four Degrees-of-Freedom (DOF) Simulation Model for Missile
Guidance and Control Systems

Nomenclature

xij = xi − xj: is the x position of vehicle i w.r.t. j in fixed axis.
yij = yi − jj: is the y position of vehicle i w.r.t. j in fixed axis.
zij = zi − zj: is the z position of vehicle i w.r.t. j in fixed axis.
uij = ui − uj: is the x velocity of vehicle i w.r.t. j in fixed axis.
vij = vi − vj: is the y velocity of vehicle i w.r.t. j in fixed axis.
wij = wi − wj: is the x velocity of vehicle i w.r.t. j in fixed axis.
axij

= axi
− axj

: is the x acceleration of vehicle i w.r.t. j in fixed axis.
ayij

= ayi
− ayj

: is the y acceleration of vehicle i w.r.t. j in fixed axis.
azij

= azi
− azj

: is the z acceleration of vehicle i w.r.t. j in fixed axis.
(xi, ui, ai): are respectively the position, velocity, and acceleration vectors of vehi-

cle i in fixed axis.
(xij, uij, aij): are respectively the position, velocity, and acceleration vectors of vehi-

cle i w.r.t. j in fixed axis.
Rij: is the separation range of vehicle i w.r.t. j.
Vcij

: is the closing velocity of vehicle i w.r.t. j.
𝛙ij, 𝛉ij: are line-of-sight (LOS) angles of vehicle i w.r.t. j in azimuth and eleva-

tion planes respectively.(
ab

xi
, ab

yi
, ab

zi

)
: are the (x, y, z) accelerations by vehicle i in body axis.(

ab
xid

, ab
yid

, ab
zid

)
: are the demanded (x, y, z) accelerations by vehicle i in body axis.

(𝛙i, 𝛉i,𝛟i): are (yaw, pitch, and roll) angles respectively, of vehicle i w.r.t. the fixed
axis.[

Tf
b
]

i: is the transformation matrix from body axis to fixed axis.
Vi: is the velocity of vehicle i.
𝛕xi

: is the autopilot longitudinal time-constant for vehicle i.
𝛕yi

, 𝛕zi
: are autopilot lateral time-constants for vehicle i.

𝛚sij
: is the line-of-sight (LOS) rotation vector of vehicle i w.r.t. j.
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𝛚i = (Pi, Qi, Ri): is the body rotation rate vector for vehicle i in fixed axis.
𝛚b

i = (pi, qi, ri): is the body rotation rate vector for vehicle i in body axis.
𝛚id

,𝛚b
id

: are demanded body rotation vectors for vehicle i in fixed axis and in
body axis respectively.

Abbreviations

4-DOF: four degrees-of-freedom
APN: augmented PN
PN: proportional navigation

. Introduction

In the past,[1, 2] linear kinematics models, based on the assumption that the engagement
geometry remains close to collision course, have been used for development and perfor-
mance analysis of guidance laws for missiles. The model developed in this chapter also
utilizes a linear kinematics model, but since this model takes into account vehicle body
rotation it can accommodate large variations in engagement geometries. This latter fact
is particularly relevant in cases where the target implements evasive maneuvers, result-
ing in large variations of the engagement trajectory from that of the collision course.[3]

Linearized models are convenient for deriving guidance laws (in analytical form), but the
study of their performance characteristics still requires non-linear models that incorpo-
rate changes in body attitudes and implementation of guidance commands in body axis
rather than a fixed axis.

In this chapter a mathematical model for multi-party engagement kinematics is
derived suitable for developing, implementing, and testing modern missile guidance sys-
tems. The model developed here is suitable for both conventional and more advanced
optimal intelligent guidance, particularly those based on the game theory guidance
techniques. The model accommodates changes in vehicle body attitude and other non-
linear effects such as limits on lateral acceleration and may be extended to include aero-
dynamic effects. Body incidence is assumed to be small and is neglected. The model
presented in this chapter will be found suitable for computer simulation analysis of
multi-party engagements. Section 5.2 of this chapter considers, in some detail, the
derivation of engagement dynamics, whereas in Section 5.3, derivations of some of the
well-known conventional guidance laws, such as the proportional navigation (PN) and
the augmented PN (APN), are given. The model derived in this chapter will be referred
to as the four degrees-of-freedom model as it includes three degrees (x, y, z) of transla-
tional motion and one degree of rotational motion.

. Development of the Engagement Kinematics Model

5.2.1 Translational Kinematics for Multi-Vehicle Engagement

A typical two-vehicle engagement geometry is shown in Figure 5.2.1; we shall utilize
this to develop the translational kinematics differential equations that relate positions,
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Figure .. Vehicle engagement geometry.

velocities, and accelerations in x, y, z-planes of individual vehicles as well as the relative
positions, velocities, and accelerations. We define the following variables:

(xi, yi, zi): are the (x, y, z) positions respectively of vehicle i in fixed axis.
(ui, vi, wi): are the (x, y, z) velocities respectively of vehicle i in fixed axis.
(axi

, ayi
, azi

): are the (x, y, z) accelerations respectively of vehicle i in fixed axis.

The above variables as well as others utilized in this chapter are functions of time t. The
engagement kinematics involving n interceptors (often referred to as pursuers) and m
targets (referred to as the evaders) (i = 1, 2,… , n +m), in fixed axis (e.g., inertial axis)
is given by the following set of differential equations:

d
dt

xi = ui (5.2.1)

d
dt

yi = vi (5.2.2)

d
dt

zi = wi (5.2.3)

d
dt

ui = axi
(5.2.4)

d
dt

vi = ayi
(5.2.5)

d
dt

wi = azi
(5.2.6)

In order to develop relative kinematics equations for multiple vehicles i, j involved in an
engagement (i : i = 1, 2,… , n; j = 1, 2,… , m; j ≠ i), we shall write the relative states as:

xij = xi − xj: is the x position of vehicle i w.r.t. j in fixed axis.
yij = yi − jj: is the y position of vehicle i w.r.t. j in fixed axis.
zij = zi − zj: is the z position of vehicle i w.r.t. j in fixed axis.
uij = ui − uj: is the x velocity of vehicle i w.r.t. j in fixed axis.
vij = vi − vj: is the y velocity of vehicle i w.r.t. j in fixed axis.
wij = wi − wj: is the x velocity of vehicle i w.r.t. j in fixed axis.
axij

= axi
− axj

: is the x acceleration of vehicle i w.r.t. j in fixed axis.
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ayij
= ayi

− ayj
: is the y acceleration of vehicle i w.r.t. j in fixed axis.

azij
= azi

− azj
: is the z acceleration of vehicle i w.r.t. j in fixed axis.

5.2.2 Vector/Matrix Representation

It will be convenient for model development to write equations (5.2.1) through (5.2.6)
in vector notation as follows:

d
dt

xi = ui (5.2.7)

d
dt

ui = ai (5.2.8)

where

xi = [xi yi zi]T: is the position vector of vehicle i in fixed axis.
ui = [ui vi wi]T: is the velocity vector of vehicle i in fixed axis.
ai = [axi

ayi
azi

]T: is the acceleration vector of vehicle i in fixed axis.

Corresponding differential equations for relative kinematics in vector notation are
given by:

d
dt

xij = uij (5.2.9)

d
dt

uij = ai − aj (5.2.10)

where

xij = [xij yij zij]T: is the position vector of vehicle i w.r.t. j in fixed axis.
uij = [uij vij wij]T: is the velocity vector of vehicle i w.r.t. j in fixed axis.
aij = [axij

ayij
azij

]T = ai − aj: is the acceleration vector of vehicle i w.r.t. j in fixed
axis.

The above formulation admits consideration of one-one engagement as well as many-
on-many.

5.2.3 Rotational Kinematics: Relative Range, Range Rates, Sightline Angles, and Rates

In this section, we develop rotational kinematics equations involving range and range
rates, and sight-line (LOS) angle and angular rate. Measurements of these variables are
generally obtained directly from an on-board seeker (radar or IR) or derived from an
on-board navigation system or by other indirect means.

5.2.3.1 Range and Range Rates
The separation range Rij of vehicle i w.r.t. j may be written as:

‖xij‖ = Rij =
(

x2
ij + y2

ij + z2
ij

) 1
2 =

(
r2

ij + z2
ij

) 1
2 =

(
xT

ij xij

) 1
2 (5.2.11)
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Expressions for range rate ̇Rij may be obtained by differentiating the above equations,
and are given by:

d
dt

Rij = ̇Rij =
xijuij + yijvij + zijwij

Rij
=

(
xT

ij uij

)
Rij

(5.2.12)

Another quantity that is often employed in the study of vehicle guidance is the “closing
velocity” Vcij

, which is given by:

Vcij
= − ̇Rij (5.2.13)

As noted above, the range and range rate measurements Rij, ̇Rij are either directly avail-
able or indirectly computed from other available information [(or estimated using, e.g.,
a Kalman Filter (KF)]. To account for errors in these values, we may write:

̂Rij = Rij + 𝚫Rij (5.2.14)
̇

̂Rij = ̇Rij + 𝚫 ̇Rij (5.2.15)

where
̂Rij: is the estimated/measured value of the relative range.
̇

̂Rij: is the estimated/measured value of the relative range rate.
𝚫Rij: is the measurement error in relative range.
𝚫 ̇Rij: is the measurement error in relative range rate.

5.2.3.2 Sightline Rates
The sightline rotation vector 𝛚sij

(see Figure 5.2.2) is related to the relative range and
velocity xij, uij as follows:

uij = 𝛚sij
× xij (5.2.16)

where

𝛚sij
= [𝛚1ij

𝛚2ij
𝛚3ij

]T: is the LOS rotation vector of vehicle i w.r.t. j as defined in (as
seen in) fixed axis.

X

Z

Y

ψij

ω3ij

ω_sij

ω2ij

ω1ij

θij

u_ij

x_ij

Figure .. Line-of-sight rotation.
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It is well known that the vector triple product, which is the cross-product of a vector
with the result of another cross-product, is related to the dot product by the follow-
ing formula[4]: a × b × c = b(a.c)− c(a.b). Taking the cross-product of both sides of
(5.2.16) by xij and applying this rule, we get:

xij × uij = xij ×
(
𝛚sij

× xij
)
= 𝛚sij

(xij.xij)− xij
(

xij.𝛚sij

)
(5.2.17)

Since xij and 𝛚sij
are mutually orthogonal, therefore (xij.𝛚sij

) = 0; hence:

xij × uij = 𝛚sij
(xij.xij) = 𝛚sij

(
xT

ij xij

)
➔

𝛚sij
=

xij × uij

xT
ij xij

= 1
xT

ij xij

⎡⎢⎢⎣
0 wij −vij
−wij 0 uij

vij −uij 0

⎤⎥⎥⎦
⎡⎢⎢⎣
xij
yij
zij

⎤⎥⎥⎦
= 1

xT
ij xij

⎡⎢⎢⎣
(yijwij − zijvij)
(zijuij − xijwij)
(xijvij − yijuij)

⎤⎥⎥⎦
(5.2.18)

If sightline rate values are required in body frame then equation (5.2.18) has to be
transformed to body axis to obtain sightline rates in body axis. The measurement 𝛚̂sij
obtained from the seeker used to construct the guidance commands is given by:

𝛚̂sij
= 𝛚sij

+ 𝚫𝛚sij
(5.2.19)

where

𝚫𝛚sij
: is the seeker LOS rate measurement error.

The above relationships (5.2.11) through (5.2.19) will also be referred to as the seeker
model.

. Vehicle Navigation Model

The vehicle navigation part of the model is concerned with developing equations that
allow the angular rotation of the vehicle body to be generated and subsequently com-
puting the elements of the transformation (direction cosine) matrix. We shall utilize the
quaternion algebra[4] to achieve this.

Let us define the following:(
ab

xi
, ab

yi
, ab

zi

)
: are (x, y, z) body axis accelerations achieved by vehicle i.

The transformation matrix from fixed to body axis [Tb
f

]i for vehicle i is given by (see
Figure 5.3.1):

⎡⎢⎢⎢⎣

ab
xi

ab
yi

ab
zi

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎣

(c𝛉ic𝛙i) (c𝛉is𝛙i) (−s𝛉i)
(s𝛟is𝛉ic𝛙i − c𝛟is𝛙i) (s𝛟is𝛉is𝛙i + c𝛟ic𝛙i) (s𝛟ic𝛉i)
(c𝛟is𝛉ic𝛙i + s𝛟is𝛙i) (c𝛟is𝛉is𝛙i − s𝛟ic𝛙i) (c𝛟ic𝛉i)

⎤⎥⎥⎦
⎡⎢⎢⎣
axi
ayi
azi

⎤⎥⎥⎦
(5.3.1)

Abbreviations s and c are used for sin and cos of angles, respectively.
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θi

ϕi ϕi
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zi

zb

ri

Figure .. Axis rotation convention𝛙→ 𝛉 → 𝛟.

This equation may also be written as:

⎡⎢⎢⎢⎣

ab
xi

ab
yi

ab
zi

⎤⎥⎥⎥⎦
=
[
Tb

f
]

i

⎡⎢⎢⎣
axi
ayi
azi

⎤⎥⎥⎦
(5.3.2)

In vector/matrix notation this equation, along with its companion (inverse) transforma-
tion, may be written as:

ab
i =

[
Tb

f
]

iai (5.3.3)

ai =
[
Tf

b
]

ia
b
i (5.3.4)

where

(𝛙i, 𝛉i,𝛟i): are respectively yaw, pitch, and roll (Euler) angles of vehicle i w.r.t. the fixed
axis.

ab
i =

[
ab

xi
ab

yi
ab

zi

]
: is the acceleration vector of vehicle i in its body axis.[

Tf
b
]

i =
[
Tb

f
]T

i =
[
Tb

f
]−1

i : is the transformation matrix from body axis to fixed axis for
vehicle i.

5.3.1 Application of Quaternion to Navigation

A fuller exposition on quaternion algebra is given in[4]; in this section, the main results
are utilized for the navigation model for constructing the transformation matrix. We
define the following quantities, referred to as the quaternions, for vehicle i as follows:

q1i
= 𝐜𝐨𝐬

𝛟i
2
𝐜𝐨𝐬

𝛉i
2
𝐜𝐨𝐬

𝛙i
2
+ 𝐬𝐢𝐧

𝛟i
2
𝐬𝐢𝐧
𝛉i
2
𝐬𝐢𝐧
𝛙i
2

(5.3.5)

q2i
= 𝐬𝐢𝐧

𝛟i
2
𝐜𝐨𝐬

𝛉i
2
𝐜𝐨𝐬

𝛙i
2
− 𝐜𝐨𝐬

𝛟i
2
𝐬𝐢𝐧
𝛉i
2
𝐬𝐢𝐧
𝛙i
2

(5.3.6)
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q3i
= 𝐜𝐨𝐬

𝛟i
2
𝐬𝐢𝐧
𝛉i
2
𝐜𝐨𝐬

𝛙i
2
+ 𝐬𝐢𝐧

𝛟i
2
𝐜𝐨𝐬

𝛉i
2
𝐬𝐢𝐧
𝛙i
2

(5.3.7)

q4i
= 𝐜𝐨𝐬

𝛟i
2
𝐜𝐨𝐬

𝛉i
2
𝐬𝐢𝐧
𝛙i
2
− 𝐬𝐢𝐧

𝛟i
2
𝐬𝐢𝐧
𝛉i
2
𝐜𝐨𝐬

𝛙i
2

(5.3.8)

It can be shown that the transformation matrix [Tb
f

]i for vehicle i may be written as:

[
Tb

f
]

i =
⎡⎢⎢⎣
t11i

t12i
t13i

t21i
t22i

t23i
t31i

t32 t33i

⎤⎥⎥⎦
(5.3.9)

where
The elements of [Tb

f
]i = [Tb

f
(q

i
)] are functions of the quaternions and are given by the

following relations:

t11i
=
(

q2
1i
+ q2

2i
− q2

3i
− q2

4i

)
(5.3.10)

t12i
= 2

(
q2i

q3i
+ q1i

q4i

)
(5.3.11)

t13i
= 2

(
q2i

q4i
− q1i

q3i

)
(5.3.12)

t21i
= 2

(
q2i

q3i
− q1i

q4i

)
(5.3.13)

t22i
=
(

q2
1i
− q2

2i
+ q2

3i
− q2

4i

)
(5.3.14)

t23i
= 2

(
q3i

q4i
+ q1i

q2i

)
(5.3.15)

t31i
= 2

(
q2i

q4i
+ q1i

q3i

)
(5.3.16)

t32i
= 2

(
q3i

q4i
− q1i

q2i

)
(5.3.17)

t33i
=
(

q2
1i
− q2

2i
− q2

3i
+ q2

4i

)
(5.3.18)

The time-evolution of quaternion is given by the following differential equation:

d
dt

⎡⎢⎢⎢⎣

q1i
q2i
q3i
q4i

⎤⎥⎥⎥⎦
= 1

2

⎡⎢⎢⎢⎣

0 −pi −qi −ri
pi 0 ri −qi
qi −ri 0 pi
ri qi −pi 0

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

q1i
q2i
q3i
q4i

⎤⎥⎥⎥⎦
(5.3.19)

In vector notation equation (5.3.19) may be written as:

d
dt

q
i
=
[
𝛀b

i
]
q

i
(5.3.20)

where

[
𝛀b

i
]
= 1

2

⎡⎢⎢⎢⎣

0 −pi −qi −ri
pi 0 ri −qi
qi −ri 0 pi
ri qi −pi 0

⎤⎥⎥⎥⎦
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q
i
= [q1i

q2i
q3i

q4i
]T: is the quaternion vector for vehicle i.

𝛚b
i = [pi qi ri]T: is the rotation vector of vehicle i w.r.t. to the fixed axis as seen in
the body axis (also referred to as body rate vector).

The Euler angles, in terms of the elements of the transformation matrix, may be writ-
ten as:

𝛟i = 𝐭𝐚𝐧−1

(
t23i

t33i

)
(5.3.21)

𝛉i = 𝐬𝐢𝐧−1
(
−t13i

)
(5.3.22)

𝛙i = 𝐭𝐚𝐧−1

(
t12i

t11i

)
(5.3.23)

𝛉i ≠ 90◦

. Vehicle Body Angles and Flight Path Angles

Vehicle (absolute) velocity in fixed axis (which is the same as the absolute velocity in
body axis) is given by:

Vi =
(

u2
i + v2

i + w2
i

) 1
2 =

(
uT

i ui

) 1
2 =

(
ubT

i ub
i

) 1
2 = Vb

i (5.4.1)

where

ub
i = [ub

i vb
i wb

i ]T: is a velocity vector of vehicle i in body axis.
Vb

i = Vi: is the velocity of vehicle i in body axis.

Given that the body incidence angles in pitch and yaw are (𝛂i,𝛃i), the flight path angles in
pitch and yaw (i.e., angles that the velocity vector makes with the fixed axis) are respec-
tively (𝛉i − 𝛂i) and (𝛙i − 𝛃i).

where

𝛂i = 𝐭𝐚𝐧−1 wb
i

ub
i

: is the body pitch incidence (angle).

𝛃i = 𝐭𝐚𝐧−1 vb
i

ub
i

: is the body yaw incidence (side-slip angle).

Assuming that (vb
i , wb

i ) ≪ ub
i lends justification to the assumption that (𝛂i,𝛃i) are small.

Furthermore differentiating expressions for (𝛂i,𝛃i) and simplifying gives us:

𝛂̇i =
ẇb

i ub
i − u̇b

i wb
i(

ub2

i + wb2

i

) (5.4.2)

̇𝛃i =
v̇b

i ub
i − u̇b

i vb
i(

ub2

i + vb2

i

) (5.4.3)
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For (v̇b
i , ẇb

i , u̇b
i ) ≈ 0, we get (𝛂̇i, ̇𝛃i) ≈ 0. In this chapter we shall assume that the inci-

dence angles (𝛂i,𝛃i) and the rates (𝛂̇i, ̇𝛃i) are small and hence can be ignored; and the
vehicle body may be assumed to be aligned to the velocity vector.

5.4.1 Computing Body Rates (pi, qi, ri)

We now consider equations (A5.2.1) through (A5.2.3), from Appendix A5.2, for vehicle
i, which we write as:

ab
xi
= u̇b

i + qwb
i − rvb

i (5.4.4)

ab
yi
= v̇b

i + rub
i − pwb

i (5.4.5)

ab
zi
= ẇb

i + pvb
i − qub

i (5.4.6)

In matrix notation equations (5.4.4) through (5.4.6) may be written as:

⎡⎢⎢⎢⎣

ab
xi

ab
yi

ab
yi

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

u̇b
i

v̇b
i

ẇb
i

⎤⎥⎥⎥⎦
+
⎡⎢⎢⎣

0 −ri qi
ri 0 −pi
−qi pi 0

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

ub
i

vb
i

wb
i

⎤⎥⎥⎥⎦
(5.4.7)

This equation is of the form:

ab
i = u̇b

i +𝛚
b
i × ub

i (5.4.8)

If it is assumed that ab
i results in only a rotation of the velocity vector, then the velocity

and rotation vectors are orthogonal to ab
i , and ab

i ,𝛚b
i , ub

i can be assumed to be mutually
orthogonal, that is:(

ab
i .u

b
i

)
=
(

ab
i .𝛚

b
i

)
=
(
𝛚b

i .u
b
i

)
= 0 (5.4.9)

Taking the cross-product of equation (5.4.8) with ub
i , applying the triple cross-product

rule, and noting the fact that (𝛚b
i .u

b
i ) = 0, we get:

ub
i × ab

i = ub
i × u̇b

i + ub
i × 𝛚

b
i × ub

i = ub
i × u̇b

i +𝛚
b
i

(
ub

i .u
b
i

)
(5.4.10)

which gives:

𝛚b
i =

ub
i × ab

i

ub
i .u

b
i

−
ub

i × u̇b
i

ub
i .u

b
i

(5.4.11)

Assuming that the missile body is always aligned with the velocity vector, then it implies
that ub

i × u̇b
i = 0; it follows that the second term on the RHS of (5.4.11) is zero, which

gives us:

𝛚b
i =

ub
i × ab

i

ubT

i ub
i

=

[(
vb

i ab
zi
− wb

i ab
yi

) (
wb

i ab
xi
− ub

i ab
zi

) (
ub

i ab
yi
− vb

i ab
xi

)]

ubT

i ub
i

T

(5.4.12)
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. Vehicle Autopilot Dynamics

Assuming a first order lag for the autopilot, we may write for vehicle i:
d
dt

ab
xi
= − 1

𝛕xi

ab
xi
+ 1
𝛕xi

ab
xid

(5.5.1)

d
dt

ab
yi
= − 1

𝛕yi

ab
yi
+ 1
𝛕yi

ab
yid

(5.5.2)

d
dt

ab
zi
= − 1

𝛕zi

ab
zi
+ 1
𝛕zi

ab
zid

(5.5.3)

In vector/matrix notation equations (5.5.1) through (5.5.3) may be written as:
d
dt

ab
i = [−𝚲i]ab

i + [𝚲i]ab
id

(5.5.4)

where

𝛕xi
: is vehicle i autopilot’s longitudinal time-constant.

𝛕yi
: is vehicle i autopilot’s (lateral) yaw-plane time-constant.

𝛕zi
: is vehicle i autopilot’s (lateral) pitch-plane time-constant.

[𝚲i] =

⎡⎢⎢⎢⎢⎢⎢⎣

1
𝛕xi

0 0

0 1
𝛕yi

0

0 0 1
𝛕zi

⎤⎥⎥⎥⎥⎥⎥⎦
ab

xid
: is the x acceleration demanded by vehicle i in its body axis.

ab
yid

: is the y acceleration demanded by vehicle i in its body axis.

ab
zid

: is the z acceleration demanded by vehicle i in its body axis.

ab
id
=
[

ab
xid

ab
yid

ab
zid

]T
: is the demanded acceleration vector of vehicle i in body axis.

. Aerodynamic Considerations

Generally, the longitudinal acceleration ab
xid
= 𝛅Ti−𝛅Di

mi
of a missile is not varied in

response to the guidance commands and may be assumed to be zero. However, the nom-
inal acceleration values, which define the steady-state flight conditions, written as:

ab
xi
=

(Ti −Di)
mi

− g 𝐬𝐢𝐧 𝛉i; ab
zi
=

Yi
mi
+ g 𝐜𝐨𝐬 𝛉i 𝐬𝐢𝐧 𝛟i and ab

zi
=

Zi
mi
+ g 𝐜𝐨𝐬 𝛉i 𝐜𝐨𝐬 𝛟i

where

Xi = (Ti −Di): is the nominal value of aerodynamic force in yb
i -direction; (Ti, Di) are

respectively the thrust and drag values.
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Yi: is a nominal value of the aerodynamic force in yb
i -direction.

Zi: is a nominal value of the aerodynamic force in zb
i -direction.

(𝛙i 𝛉i 𝛟i): are yaw, pitch, and roll (Euler) angles of vehicle i.
mi: is the mass of vehicle i.
g: is the gravitational acceleration.

The aerodynamic forces change due to changes in flight conditions. For the current ver-
sion of the simulation model it is assumed that X is a constant (and zero). The variations
in lateral accelerations: 𝛅ab

y =
𝛅Y
m = 𝛅̃Y, 𝛅ab

z =
𝛅Z
m = 𝛅̃Z, on the other hand, provide the

necessary control effort required for guidance; the limits on these may be implemented
as follows (see Appendix A5.2):

‖‖‖‖ab
yid

‖‖‖‖ ≤ 𝛍ay𝐦𝐚𝐱 and
‖‖‖‖ab

zid

‖‖‖‖ ≤ 𝛍az𝐦𝐚𝐱 .

. Conventional Guidance Laws

5.7.1 Proportional Navigation (PN) Guidance

There are at least three versions of PN guidance laws that the author is aware of; in this
section we consider two of these, which are (for interceptor i—the pursuer against a
target j—the evader):

5.7.1.1 PN Version 1
This implementation is based on the principle that the demanded body rate of the
attacker i is proportional to LOS rate to the target j that is:

𝛚id
= [N]i𝛚sij

(5.7.1)

where

𝛚id
= [Pid

Qid
Rid

]T: is the demanded body rotation vector of vehicle i in the fixed
axis.

[N]i = diag(N1i
N2i

N3i
): are the navigation constants attached to the respective

demand channels. If the longitudinal acceleration is not a variable (as is the case in
most missiles), then N1i

= 0.

The acceleration demanded of vehicle i is given by:

aid
= 𝛚id

× ui = [N]i𝛚sij
× ui (5.7.2)

Since the guidance commands are applied in body axis, we need to transform equation
(5.7.2) to body axis, thus:

ab
id
=
[
Tb

f
]

i

(
[N]i𝛚sij

× ui

)
(5.7.3)
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Assuming that the longitudinal acceleration in response to the guidance commands is
zero, we get:

ab
xid
=
𝛅Ti − 𝛅Di

mi
= 0 (5.7.4)

5.7.1.2 PN Version 2
This implementation is based on the principle that the demanded lateral acceleration of
the attacker i is proportional to the acceleration normal to the LOS, caused by the LOS
rotation. Now, the LOS acceleration is given by:

anij
= 𝛚sij

× uij

➔

aid
= [N]ianij

= [N]i𝛚sij
× uij (5.7.5)

Transforming to body axis gives us:

ab
id
=
[
Tb

f
]

i

(
[N]i𝛚sij

× uij

)
(5.7.6)

Once again, assuming that the longitudinal acceleration in response to the guidance
commands is zero, we get:

ab
xid
=
𝛅Ti − 𝛅Di

mi
= 0 (5.7.7)

where

anji
: is the normal LOS acceleration.

Note that the difference between the PN guidance (5.7.3) and (5.7.6) is that the vector
ui the missile velocity vector in (5.7.3) is replaced by the relative velocity vector uij in
(5.7.6).

5.7.2 Augmented Proportional Navigation (APN) Guidance

Finally, a variation of the PN guidance law is the APN that includes the influence of the
target acceleration, and can be implemented as follows:

ab
id
=
[

PN-guidance
(

N,𝛚sij

)]
+
[
Tb

f
]

i([N]aj) (5.7.8)

where

[N]: is the (target) acceleration navigation constant.
(PNG): is the proportional navigation guidance law given in (5.3.1) through (5.3.7)

5.7.3 Optimum Guidance and Game Theory-Based Guidance

The optimum guidance and the game theory based guidance were considered in Chap-
ters 3 and 4 and may be implemented in the model derived this chapter.
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. Overall State Space Model

The overall non-linear state space model (e.g., for APN guidance) that can be used for
sensitivity studies and for non-linear or Monte-Carlo analysis is given below:

d
dt

xij = uij (5.8.1)

d
dt

uij =
[

Tf
b

]
i
ab

i − aj (5.8.2)

𝛚sij
=

xij × uij

xT
ij xij

(5.8.3)

ab
id
=
[

PNG
(

N,𝛚sij

)]
+
[
Tb

f
]

i[N]aj (5.8.4)

d
dt

ab
i = [−𝚲i]ab

i + [𝚲i]ab
id

(5.8.5)

𝛚b
i =

ub
i × ab

i

ubT

i ub
i

(5.8.6)

d
dt

q
i
=
[
𝛀b

bf

]
q

i
(5.8.7)

The overall state space model that can be implemented on the computer is given in
Table A5.1, and a block diagram is given in Figure A5.1.1.

. Conclusions

In this chapter, a mathematical model is derived for multi-vehicle guidance, navigation,
and control suitable for developing, implementing, and testing modern missile guidance
systems. The model allows for incorporating changes in body attitude in addition to
autopilot lags, vehicle acceleration limits, and aerodynamic effects. This model will be
found suitable for studying the performance of both the conventional and the modern
guidance such as those that arise from game theory and intelligent control theory. The
flight dynamic model developed in this chapter was implemented as the guidance and
control simulation test-bed using MATLAB and included in Chapter 6. It was used to
undertake simulation studies for the game theory-based guidance laws. The following
are considered to be the main contributions of this chapter:

� A 4-DOF multi-vehicle engagement model is derived for the purposes of developing,
testing, and carrying out guidance performance studies.

� The model incorporates non-linear effects including large changes in vehicle body
attitude, autopilot lags, acceleration limits, and aerodynamic effects.

� The model can easily be adapted for multi-run non-linear analysis of guidance per-
formance and for undertaking Monte Carlo analysis.
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� Method for calculating the collision course heading and heading error is also derived
and included in Appendix A5.3. This may be used to study the guidance performance
for different heading errors.
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Appendix

A. State Space Dynamic Model

Table A. State space dynamics model for navigation, seeker, guidance, and autopilot.

ALGORITHM MODULE

1 d
dt

xi = u
i

d
dt

u
i
= a

i

x
ij
= x

i
− x

j
u

ij
= u

i
− u

j
a

ij
= a

i
− a

j

Translational Kinematics

2 Rij =
(

xT
ij xij

) 1
2

̂Rij = Rij + 𝚫Rij

d
dt

Rij = ̇Rij =

(
xT

ij u
ij

)
Rij

̇

̂Rij = ̇Rij + 𝚫 ̇Rij

Vcij
= − ̇

̂Rij

𝛚
sij
=

xij × u
ij

xT
ij xij

𝛚̂
sij
= 𝛚

sij
+ 𝚫𝛚

sij

Rotational Kinematics
(Seeker Model)

3 3.1 ab
id
=
[

Tb
f

]
i
[N]i𝛚̂sij

× u
i

3.2 ab
id
=
[

PNG
(

N, 𝛚̂
sij

)]
+
[

Tb
f
(qi)

]
i
[N]â

j

ab
xid
=
𝛅Ti − 𝛅Di

mi
= 0

Guidance Laws

4 d
dt

ab
i
= [−𝚲i]ab

i
+ [𝚲i]ab

id
Autopilot

5 5.1 Quaternions:

q1i
= 𝐜𝐨𝐬

𝛟i

2
𝐜𝐨𝐬

𝛉i

2
𝐜𝐨𝐬

𝛙i

2
+ 𝐬𝐢𝐧

𝛟i

2
𝐬𝐢𝐧

𝛉i

2
𝐬𝐢𝐧

𝛙i

2

q2i
= 𝐬𝐢𝐧

𝛟i

2
𝐜𝐨𝐬

𝛉i

2
𝐜𝐨𝐬

𝛙i

2
− 𝐜𝐨𝐬

𝛟i

2
𝐬𝐢𝐧

𝛉i

2
𝐬𝐢𝐧

𝛙i

2

q3i
= 𝐜𝐨𝐬

𝛟i

2
𝐬𝐢𝐧

𝛉i

2
𝐜𝐨𝐬

𝛙i

2
+ 𝐬𝐢𝐧

𝛟i

2
𝐜𝐨𝐬

𝛉i

2
𝐬𝐢𝐧

𝛙i

2

q4i
= 𝐜𝐨𝐬

𝛟i

2
𝐜𝐨𝐬

𝛉i

2
𝐬𝐢𝐧

𝛙i

2
+ 𝐬𝐢𝐧

𝛟i

2
𝐬𝐢𝐧

𝛉i

2
𝐜𝐨𝐬

𝛙i

2
5.2 Quaternion Evolution:

d
dt

q
i
=
[
𝛀b

i

]
q

i
; 𝛚b

i
=

ub
i × ab

i

ubT

i ub
i

5.3 The Transformation Matrix:
t11i

=
(

q2
1i
+ q2

2i
− q2

3i
− q2

4i

)

Navigation Model

(Continued)
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Table A. (Continued)

ALGORITHM MODULE

t12i
= 2(q2i

q3i
+ q1i

q4i
)

t13i
= 2(q2i

q4i
− q1i

q3i
)

t21i
= 2(q2i

q3i
− q1i

q4i
)

t22i
=
(

q2
1i
− q2

2i
+ q2

3i
− q2

4i

)
t23i

= 2(q3i
q4i
+ q1i

q2i
)

t31i
= 2

(
q2i

q4i
+ q1i

q3i

)
t32i

= 2
(

q3i
q4i
− q1i

q2i

)
t33i

=
(

q2
1i
− q2

2i
− q2

3i
+ q2

4i

)
[

Tb
f

]
i
=
⎡⎢⎢⎣
t11i

t12i
t13i

t21i
t22i

t23i
t31i

t32 t33i

⎤⎥⎥⎦
;
[

Tf
b

]
i
=
[

Tb
f

]T

i

a
i
=
[

Tf
b

]
i
ab

i

Seeker

Guidance

Module

Kinematics

Autopilot

Navigation

+

+
+ +

−

−

ω_sji

ω_b
i

u_ji

a_i

a_id
a_i

b
da_i

b

a_i
b

a__i
b

a_̇i
b

u_̇i
b

q_̇i
q_  i

a_j
a_ji

x_ji

Ṙji

[Λi]

[Λi]

[Ωb
i]

[Tf
b]i [Tb

f]i
Σ

Σ ∫ ∫

∫

∫

Σ

[Ωb
i]

Ṙji

+
−

u_b
i

√x_ji · x_ji

x_ji · u_ji

√x_ji · x_ji

x_ji × u_ji

x_ji · x_ji

Σ ∫
x_i

b
 × a_i

b

u_b
i · u_b

i

Figure A.. Guidance and control block diagram.
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A. Aerodynamic Forces and Equations of Motion

For a symmetrical body (Izx = 0; Iy = Iz), the equations of motion for an aerodynamic
vehicle are given by (see Figure A5.2.1):[4]

u̇b + qwb − rvb = X
m
− g 𝐬𝐢𝐧 𝛉 = ab

x (A5.2.1)

v̇b + rub − pwb = Y
m
+ g 𝐜𝐨𝐬 𝛉 𝐬𝐢𝐧𝛟 = ab

y (A5.2.2)

ẇb + pvb − qub = Z
m
+ g 𝐜𝐨𝐬 𝛉 𝐜𝐨𝐬 𝛟 = ab

z (A5.2.3)

ṗ+ qr
(Iz − Iy)

Ix
= L

Ix
(A5.2.4)

q̇ + rp
(Ix − Iz)

Iy
= M

Iy
(A5.2.5)

ṙ+ pq
(Iy − Ix)

Iz
= N

Iz
(A5.2.6)

where

(ub, vb, wb): are vehicle velocities in body axis.
(ab

x, ab
x, ab

x): are vehicle accelerations in body axis.
(p, q, r): are vehicle body rotation rates w.r.t. fixed axis defined in body axis.
(X, Y, Z): are aerodynamic forces acting on vehicle body defined in body axis.
(L, M, N): are aerodynamic moments acting on vehicle body defined in body axis.
(Ix, Iy, Iz): are vehicle body inertias.
m: is the vehicle mass.
(𝛙, 𝛉,𝛟): are Euler angles w.r.t. fixed axis.

M, Y
, q

L, X, V, p

N, Z, r

Figure A.. Aerodynamic forces and rotations.
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For a non-rolling vehicle: ṗ = p = 𝛟 = 0; this assumption enables us to decouple the
yaw and pitch kinematics. Equations (A5.2.1) through (A5.2.6) give us:

u̇b + qwb − rvb = X
m
− g 𝐬𝐢𝐧 𝛉 (A5.2.7)

v̇b + rub = Y
m

(A5.2.8)

ẇb − qub = Z
m
+ g 𝐜𝐨𝐬 𝛉 (A5.2.9)

L = 0 (A5.2.10)

q̇ = M
Iy

(A5.2.11)

ṙ = N
Iz

(A5.2.12)

The accelerations about the vehicle body center of gravity (CG) is given by:

ab
x = u̇b + qwb − rvb = X

m
− g 𝐬𝐢𝐧 𝛉 (A5.2.13)

ab
y = v̇b + rub = Y

m
(A5.2.14)

ab
z = ẇb − qub = Z

m
+ g 𝐜𝐨𝐬 𝛉 (A5.2.15)

where (ab
x, ab

y , ab
z ): are body accelerations.

If we consider perturbation about the nominal, we get:

ab
x + 𝛅ab

x =
(X+ 𝛅X)

m
− g(𝐬𝐢𝐧 𝛉 + 𝐜𝐨𝐬 𝛉 𝛅𝛉)

ab
y + 𝛅ab

y =
(Y + 𝛅Y)

m

ab
z + 𝛅ab

z =
(Z+ 𝛅Z)

m
+ g(𝐜𝐨𝐬 𝛉 − 𝐬𝐢𝐧 𝛉 𝛅𝛉)

A5.2.1 Yaw-Plane Equations

For yaw-plane kinematics only, we assume that: 𝛉 = 0; 𝛅𝛉 = 0 (i.e., zero pitch motion),
therefore, the X and Y-plane steady-state equations (in body axis) may be written as:

ab
y =

Y
m
= ̃Y (A5.2.16)

ab
x =

X
m
=

(T−D)
m

= (̃T− ̃D) (A5.2.17)

here we define: Y
m = ̃Y; X

m = (T−D)
m = (̃T− ̃D). Also, the total thrust is defined as:

T = T+ 𝛅T, and the total drag is defined as: D = D+ 𝛅D.
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For “nominal flight” condition in the yaw-plane Y = 0; and the perturbation equations
are given by:

𝛅ab
y =

𝛅Y
m
= 𝛅̃Y (A5.2.18)

𝛅ab
x =

𝛅X
m
=

(𝛅T− 𝛅D)
m

= (𝛅̃T− 𝛅̃D) (A5.2.19)

where
𝛅ab

y : is the body axis lateral acceleration.
𝛅ab

x: is the body axis longitudinal acceleration.

During guidance maneuver (𝛅̃T, 𝛅̃D) are not directly controlled, hence we may assume
𝛅ab

x to be zero.

A5.2.2 Pitch-Plane Kinematics Equations

Unlike the previous case, for pitch-plane kinematics, we get:

ab
z =

Z
m
+ g 𝐜𝐨𝐬 𝛉 = ̃Z+ g 𝐜𝐨𝐬 𝛉 (A5.2.20)

ab
x =

X
m
− g 𝐬𝐢𝐧 𝛉 =

(T−D)
m

− g 𝐬𝐢𝐧 𝛉 = (̃T− ̃D)− g 𝐬𝐢𝐧 𝛉 (A5.2.21)

The X, Z (pitch)-plane perturbation kinematics (in body axis) is given by:

𝛅ab
z =

𝛅Z
m
= 𝛅̃Z (A5.2.22)

𝛅ab
x =

(𝛅T− 𝛅D)
m

= (𝛅̃T− 𝛅̃D) (A5.2.23)

where
𝛅ab

z : is the body axis lateral acceleration.

As in the case of the yaw-plane, during guidance (𝛅̃T, 𝛅̃D) are not directly controlled,
hence we may assume 𝛅ab

x to be zero. The reader will recognize that in the main text of
this chapter:

ab
xdi

≡ 𝛅ax, ab
ydi

≡ 𝛅ay ab
zdi

≡ 𝛅az (A5.2.24)

A5.2.3 Calculating the Aerodynamic Forces

For the purposes of the simulation under consideration we may assume that the vehi-
cle thrust profile T(t), say as a function of time, is given; then the drag force D, which
depends on the vehicle aerodynamic configuration, is given by:

D =
(

1
2
𝛒V

2
S
)

CD(𝛂,𝛃) (A5.2.25)

Y =
(

1
2
𝛒V

2
S
)

CL(𝛃) = 0 (A5.2.26)

Z =
(

1
2
𝛒V

2
S
)

CL(𝛂) = −g 𝐜𝐨𝐬 𝛉 (A5.2.27)
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where the term in the bracket is the dynamic pressure; 𝛒 being the air density, S is the
body characteristic surface area and V is the steady-state velocity. CD is the drag coeffi-
cient and CL is the lift coefficient.

(𝛂,𝛃) represent respectively the pitch- and the yaw-plane nominal (steady-state) inci-
dence angles. Contributions to thrust and/or drag due to control deflections are small
and ignored. Also:

𝛅Y =
(1

2
𝛒V2S

)
CL(𝛅𝛃) = 0 (A5.2.28)

𝛅Z =
(1

2
𝛒V2S

)
CL (𝛅𝛂) = −g 𝐬𝐢𝐧 𝛉𝛅𝛉 (A5.2.29)

(𝛅𝛂, 𝛅𝛃) represent respectively the variation in pitch- and yaw-plane incidence angles as
a result of control demands; these are assumed to be small. Note that for a given (𝛅𝛂, 𝛅𝛃),
𝛅Y, 𝛅Z ∝ V2, the maximum/minimum acceleration capability of a vehicle is rated at the
nominal velocity V, then the maximum/minimum acceleration at any other velocity V
is given by:

‖‖‖ab
yd

‖‖‖ ≤ 𝛍ab
y𝐦𝐚𝐱

; ‖‖‖ab
zd

‖‖‖ ≤ 𝛍ab
z𝐦𝐚𝐱

; where : 𝛍 =
(

V

V

)2

A5.2.4 Body Incidence

The body incidence angles (𝛂,𝛃) are given by (vb, wb ≪ ub):

𝛂 = 𝐭𝐚𝐧−1
(

wb

ub

)
≈ wb

ub
; 𝛃 = 𝐭𝐚𝐧−1

(
vb

ub

)
≈ vb

ub
;

Vb = Vi =
(
=
√

u2
b
+ v2

b
+ w2

b

)
; angles (𝛂,𝛃)

represent the angle that the body makes w.r.t. “flight path” or with the direction of the
total velocity vector V. In this chapter we shall assume that these angles are small and
may be ignored, in which case the body can be assumed to be aligned with the velocity
vector.

A. Computing Collision Course Missile Heading Angles

A5.3.1 Computing (𝛃TS) Given (VT,𝛙T, 𝛉T,𝛙S, 𝛉S)

Here we wish to compute 𝛃TS, the angle between the target velocity vector and the (mis-
sile/target) sightline vector measured in (VT × RTM × VM − plane), given the following
data:

(𝛙T, 𝛉T): are target velocity vector azimuth and elevation angles respectively.
(𝛙S, 𝛉S): are LOS velocity vector azimuth and elevation angles respectively.
VT: is the target velocity vector.
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Now the unit vector along the target body evT and the unit LOS vector esMT may be
written as:

eT = [𝐜𝐨𝐬 𝛉T 𝐜𝐨𝐬𝛙T 𝐜𝐨𝐬 𝛉T 𝐬𝐢𝐧𝛙T 𝐬𝐢𝐧 𝛉T] (A5.3.1)
eS = [𝐜𝐨𝐬 𝛉S 𝐜𝐨𝐬𝛙S 𝐜𝐨𝐬 𝛉S 𝐬𝐢𝐧𝛙S 𝐬𝐢𝐧 𝛉S] (A5.3.2)

where

eT: is the unit vector along the target velocity.
eS: is the unit vector along the target/missile sightline (LOS).

It follows from equations (A5.3.1) and (A5.3.2) that the (scalar) dot product of (eT, eS)
may be written as:

(eT.eS) = 𝐜𝐨𝐬 𝛃TS ⋯

= 𝐜𝐨𝐬 𝛉T 𝐜𝐨𝐬𝛙T 𝐜𝐨𝐬 𝛉S 𝐜𝐨𝐬𝛙S + 𝐜𝐨𝐬 𝛉T 𝐬𝐢𝐧𝛙T 𝐜𝐨𝐬 𝛉S 𝐬𝐢𝐧𝛙S + 𝐬𝐢𝐧 𝛉T 𝐬𝐢𝐧 𝛉S
(A5.3.3)

Equation (A5.3.3) gives us:

𝛃TS = 𝐜𝐨𝐬−1
(
𝐜𝐨𝐬 𝛉T 𝐜𝐨𝐬𝛙T 𝐜𝐨𝐬 𝛉S 𝐜𝐨𝐬𝛙S ⋯
+𝐜𝐨𝐬 𝛉T 𝐬𝐢𝐧𝛙T 𝐜𝐨𝐬 𝛉S 𝐬𝐢𝐧𝛙S + 𝐬𝐢𝐧 𝛉T 𝐬𝐢𝐧 𝛉S

)
(A5.3.4)

where

𝛃TS: is the angle between the target velocity vector and the target/missile sightline vector
measured in (VT × RTM × VM − plane).

A5.3.2 Computing (𝛃MS)cc Given (VM, 𝛃TS)

Here we wish to compute: (𝛃MS)cc, the angle between the missile collision course veloc-
ity vector and the sightline vector in (VT × RTM × VM − plane), given the following data:

VM: is the target velocity vector.
𝛃TS: as computed as shown in the previous section.

Consideration of collision course engagement in (VM × VT × RMT − plane) gives us:

VM 𝐬𝐢𝐧 𝛃MS = VT 𝐬𝐢𝐧 𝛃TS (A5.3.5)

Equation (A5.3.5) gives us:

𝛃MS = (𝛃MS)cc = 𝐬𝐢𝐧−1
{ VT

VM
𝐬𝐢𝐧 𝛃TS

}
(A5.3.6)

where

𝛃MS: is the angle between the missile velocity vector and the sightline vector in (VT ×
RTM × VM − plane).

A5.3.3 Computing the Closing Velocity (VC) and Time-to-Go (Tgo)

We shall define:

VC = VM 𝐜𝐨𝐬(𝛃MS)cc − VT 𝐜𝐨𝐬 𝛃TS (A5.3.7)
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Figure A.. Interceptor/target collision course engagement geometry.

Also, the target/missile range-to-go (RMT) is defined as:

RMT =
[
(XM − XT)2 + (YM − YT)2 + (ZM − ZT)2] 1

2 (A5.3.8)

then

Tgo =
RMT

VC
(A5.3.9)

where

VC: is the collision course closing velocity of the missile w.r.t. the target. Note that the
collision course velocity is along the range vector RMT.

Tgo: is time-to-go (to intercept).
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A5.3.4 Computing the Collision Course Missile (Az. and El.) Heading: (𝛉M)cc; (𝛙M)cc

Now the components of the relative position vector of the missile w.r.t. the target may
be written as:

XM − XT = (VC × 𝐜𝐨𝐬 𝛉TS × 𝐜𝐨𝐬𝛙TS) × Tgo
=
[
VM 𝐜𝐨𝐬(𝛉M)cc 𝐜𝐨𝐬(𝛙M)cc − VT 𝐜𝐨𝐬 𝛉T 𝐜𝐨𝐬𝛙T

]
× Tgo

(A5.3.10)

YM − YT = (VC × 𝐜𝐨𝐬 𝛉TS × 𝐬𝐢𝐧𝛙TS) × Tgo
=
[
VM 𝐜𝐨𝐬(𝛉M)cc 𝐬𝐢𝐧(𝛙M)cc − VT 𝐜𝐨𝐬 𝛉T 𝐬𝐢𝐧𝛙T

]
× Tgo

(A5.3.11)

ZM − ZT = (VC × 𝐬𝐢𝐧 𝛉TS) × Tgo
=
[
VM 𝐬𝐢𝐧(𝛙M)cc − VT 𝐬𝐢𝐧 𝛉T

]
× Tgo

(A5.3.12)

where

(𝛙M)cc: is a missile collision course azimuth heading, measured w.r.t. the fixed axis.
(𝛉M)cc: is a missile collision course elevation heading, measured w.r.t. the fixed axis.

Equations (A5.3.10) through (A5.3.12) give us:

𝐜𝐨𝐬(𝛉M)cc 𝐜𝐨𝐬(𝛙M)cc =
(

VC
VM

𝐜𝐨𝐬 𝛉TS 𝐜𝐨𝐬𝛙TS +
VT

VM
𝐜𝐨𝐬 𝛉T 𝐜𝐨𝐬𝛙T

)
(A5.3.13)

𝐜𝐨𝐬(𝛉M)cc 𝐬𝐢𝐧(𝛙M)cc =
(

VC
VM

𝐜𝐨𝐬 𝛉TS 𝐬𝐢𝐧𝛙TS +
VT

VM
𝐜𝐨𝐬 𝛉T 𝐬𝐢𝐧𝛙T

)
(A5.3.14)

𝐬𝐢𝐧(𝛉M)cc =
(

VC
VM

𝐬𝐢𝐧 𝛉TS +
VT

VM
𝐬𝐢𝐧 𝛉T

)
(A5.3.15)

Equation (A5.3.15) gives us:

(𝛉M)cc = 𝐬𝐢𝐧−1
(

VC
VM

𝐬𝐢𝐧 𝛉TS +
VT

VM
𝐬𝐢𝐧 𝛉T

)
(A5.3.16)

Similarly equations (A2.13) and (A2.14) (after some straightforward algebraic manipu-
lation) give us:

(𝛙M)cc = 𝐭𝐚𝐧−1
⎧⎪⎨⎪⎩

(
VC
VM
𝐜𝐨𝐬 𝛉TS 𝐬𝐢𝐧𝛙TS +

VT
VM
𝐜𝐨𝐬 𝛉T 𝐬𝐢𝐧𝛙T

)
(

VC
VM
𝐜𝐨𝐬 𝛉TS 𝐜𝐨𝐬𝛙TS +

VT
VM
𝐜𝐨𝐬 𝛉T 𝐜𝐨𝐬𝛙T

)
⎫⎪⎬⎪⎭

(A5.3.17)

A5.3.5 Example: Computing 2-DOF Collision Course Missile Heading Angles

Vertical Plane (X × Z-plane) Engagement:
For this case (𝛙T = 𝛙M = 𝛙S = 0) and 𝛃TS = (𝛉T − 𝛉S), 𝛃MS = (𝛉M − 𝛉S); hence, uti-
lizing equation (A5.3.16) we get:

[
(𝛉M)cc − 𝛉S

]
= 𝐬𝐢𝐧−1

{ VT

VM
𝐬𝐢𝐧(𝛉T − 𝛉S)

}
(A5.3.18)

➔

(𝛉M)cc = 𝛉S + 𝐬𝐢𝐧−1
{ VT

VM
𝐬𝐢𝐧(𝛉T − 𝛉S)

}
(A5.3.19)
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Horizontal Plane (X × Y-plane) Engagement:
For this case (𝛉T = 𝛉M = 𝛉S = 0) and 𝛃TS = (𝛙T −𝛙S), 𝛃MS = (𝛙M −𝛙S); hence, uti-
lizing (A5.3.16) we get:

(𝛙M)cc = 𝛙S + 𝐬𝐢𝐧−1
{ VT

VM
𝐬𝐢𝐧(𝛙T −𝛙S)

}
(A5.3.20)
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Three-Party Differential Game Missile Guidance
Simulation Study

Nomenclature

xi = (xi yi zi)T: is the (3×1) position vector of vehicle i in fixed axis.
ui = (ui vi wi)T: is the (3×1) velocity vector of vehicle i in fixed axis.
ai = (axi

ayi
azi

)T: is the (3×1) acceleration vector of vehicle i in fixed axis.
xij = xi − xj: is the (3×1) relative position vector of vehicle i w.r.t. vehicle j in

fixed axis.
uij = ui − uj: is the (3×1) relative position vector of vehicle i w.r.t. vehicle j in

fixed axis.
I: is the (3×3) identity matrix.
S: is the final-state PI weightings matrix.
F: is the state coefficient matrix.
G: is the input coefficient matrix.
y

ij
= (xij uij)

T: is the combined relative state vector for vehicle i w.r.t. j.
a3 = ap

3 + ae
3: is the attacker 3 guidance input vector.

a2 = ap
2: is the defender 2 guidance input vector.

a1 = ae
1: is the target 1 guidance input vector.(

Re
1, Rp

2, Re
3, Rp

3
)

: are input PI weightings matrices for target, defender, and
attacker respectively.

Abbreviations

4-DOF: four degrees-of-freedom
6-DOF: six degrees-of-freedom
AI: artificial intelligence
PI: performance index
w.r.t.: with respect to
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Farhan A. Faruqi.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
Companion Website: http://www.wiley.com/go/faruqi/game
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. Introduction

Earlier reported research[1–12] on the application of game theory to the missile guid-
ance problem has concentrated on engagement scenarios that involve two parties.
The scenarios are composed of an attacking missile (pursuer) aimed against another
missile, or an aircraft referred to as the evader, whose objective is to execute maneuvers
designed to evade the attacking missile. In this chapter, the above approach is extended
to a three-party engagement, which includes the situation where one of the parties,
such as an attacking missile, has a dual objective—that is, to evade the pursuer (e.g., a
defending missile) and then continue on its mission to attack its designated target.

The particular scenario that we shall consider here consists of an aircraft target, which
on becoming aware that it is being engaged by an attacking missile, fires a defending mis-
sile to engage and intercept this attacking missile and perform evasive maneuvers. The
role of the defending missile is only to intercept the attacking missile; the attacking mis-
sile, on the other hand, must perform the dual role that includes evading the defending
missile and intercepting its primary target—that is, the aircraft. Since the participants
in this type of engagement consist of three players (an aircraft target, an attacking mis-
sile, and a defending missile), we shall refer to this type of engagement scenario as a
three-party game.

In the references,[1] the author used a linear quadratic performance index (LQPI)
approach to formulate the game theoretic guidance problem and showed that in a 2-D
engagement case, explicit analytical solution may be obtained for guidance feedback
gains (the guidance law). The feedback gains involve parameters of the LQPI weightings
and the time-to-go: T = (tf − t). The author also considered the case of engagements
that involve a single pursuer against multiple stationary targets.

Application of the differential game theory to a three-party scenario (involving a tar-
get, a missile, and a defender) was considered in the references.[11, 13, 14] A linear state
feedback guidance law was derived for guidance commands (lateral accelerations) of
the parties using the LQPI approach. This current chapter considers the case where the
attacking missile may be required to perform both evasion and intercept maneuvers dur-
ing the engagement. Kinematics models are developed and a solution to the problem is
obtained in terms of the Riccati differential equations, which admit a wide choice of per-
formance index (PI) weightings. Preliminary simulation results are included in order to
demonstrate the characteristics of intercept and evasion strategies of the parties. Simple
(rule-based) artificial intelligence-based avoidance strategies are also implemented for
enhancing evasion by the aircraft target and for intercept by the attacking missile.

. Engagement Kinematics Model

In this section we consider the engagement kinematics model for the three parties under
consideration, in a fixed-axis coordinate system, depicted in Figure 6.2.1. Differential
equations for position, velocity, and acceleration for a vehicle i (in our case: i = 1, 2, 3)
may be written as:

d
dt

xi = ui;
d
dt

yi = vi;
d
dt

zi = wi (6.2.1)

d
dt

ui = axi
; d

dt
vi = ayi

; d
dt

wi = azi
(6.2.2)
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Figure .. Collision course engagement geometries for
target (1), attacker (3), and defender (2). Pij –intercept
point.

where

xi = (xi yi zi)T: is the (3×1) position vector of vehicle i in fixed axis.
ui = (ui vi wi)T: is the (3×1) velocity vector of vehicle i in fixed axis.
ai =

(
axi

ayi
azi

)T: is the (3×1) acceleration vector of vehicle i in fixed axis.

Equations (6.2.1) through (6.2.2) may be written in state space form as follows:

d
dt

⎡⎢⎢⎣
xi
.......

ui

⎤⎥⎥⎦
=

⎡⎢⎢⎣
0 : I
.... : ....

0 : 0

⎤⎥⎥⎦
⎡⎢⎢⎣

xi
.......

ui

⎤⎥⎥⎦
+
⎡⎢⎢⎣

0
........

I

⎤⎥⎥⎦
[ai] (6.2.3)

It follows from equation (6.2.3) that relative kinematics for vehicle i w.r.t. vehicle j may
be written as:

d
dt

⎡⎢⎢⎢⎣

xij
....

uij

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎣
0 : I
.... : ....

0 : 0

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

xij
.....

uij

⎤⎥⎥⎥⎦
+
⎡⎢⎢⎣

0
.....

I

⎤⎥⎥⎦
ai −

⎡⎢⎢⎣
0
.....

I

⎤⎥⎥⎦
aj (6.2.4)

where

xij = xi − xj: is the (3×1) relative position vector of vehicle i w.r.t. vehicle j in fixed axis.
uij = ui − uj: is the (3×1) relative velocity vector of vehicle i w.r.t. vehicle j in fixed axis.
j ≠ i
[I]: is a (3×3) identity matrix.

For the current problem we shall assume that the states of a high-value target (an aircraft,
for example) are defined by: i = 1, and that it is being engaged by a ground-launched
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attacking missile defined by j = 3. It is further assumed that a defending missile is fired
from the high-value target to defend itself against the attacking missile. In this scenario
we are interested in the following relative states: that of the attacker 3 against the high-
value target 1; states of the target relative to the attacker are (x31, u31) with guidance
inputs given by (a1, a3). In this case a1 includes the evasion maneuver ae

1 executed by
the high-value target 1, and a3 includes the intercept (pursuit) guidance command ap

3
of the attacking missile 3. States of the engagement model for the defending interceptor
2 fired against the attacker missile 3 are taken to be (x23, u23), with intercept guidance
input to 2 given by ap

2 ; the evasion maneuver by party 3 in this case is included in a3 and
is given by ae

3. In order to accommodate this situation and to clearly distinguish between
the guidance commands designed for intercept and those designed for evasion, we shall
write:

a3 = ap
3 + ae

3, a1 = ae
1, and a2 = ap

2 (6.2.5)

As given in equation (6.2.5), we note that that the high-value target executes only an eva-
sive maneuver and the defender executes only a pursuit maneuver; the attacker on the
other hand executes an evasive maneuver to avoid the attacker, and a pursuit maneuver
to engage the high-value target.

Using equation (6.2.5), the relative engagement kinematics model for target 1 and
attacker 3 may be written as:

d
dt

⎡⎢⎢⎣
x31
.....

u31

⎤⎥⎥⎦
=

⎡⎢⎢⎣
0 : I
.... : ....

0 : 0

⎤⎥⎥⎦
⎡⎢⎢⎣

x31
.....

u31

⎤⎥⎥⎦
+
⎡⎢⎢⎣

0
.....

I

⎤⎥⎥⎦
ap

3 −
⎡⎢⎢⎣

0
.....

I

⎤⎥⎥⎦
ae

1 (6.2.6)

This equation is of the form:

d
dt

y
31
= [F]y

31
+ [G]ap

3 − [G]ae
1 (6.2.7)

Note that the inputs in equation (6.2.7) contain evasion inputs by vehicle 1 and pursuer
inputs by vehicle 3. Similarly, relative engagement kinematics model for interceptor 2
and attacker 3 may be written as:

d
dt

⎡⎢⎢⎣
x23
.....

u23

⎤⎥⎥⎦
=

⎡⎢⎢⎣
0 : I
.... : ....

0 : 0

⎤⎥⎥⎦
⎡⎢⎢⎣

x23
.....

u23

⎤⎥⎥⎦
+
⎡⎢⎢⎣

0
.....

I

⎤⎥⎥⎦
ap

2 −
⎡⎢⎢⎣

0
.....

I

⎤⎥⎥⎦
ae

3 (6.2.8)

This equation is of the form:

d
dt

y
23
= [F]y

23
+ [G]ap

2 − [G]ae
3 (6.2.9)

where

[F] =
[

0 I
0 0

]
; [G] =

[
0
I

]
; y

ij
=

[
xij
uij

]
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. Game Theory Problem and the Solution

The three-party game theoretic problem may be stated as follows: Given the dynami-
cal system (6.2.7) and (6.2.9), with initial states, y

31
(t0) = y

31
(0); y

23
(t0) = y

23
(0) and

scalar quadratic performance indices (PIs) given by:

J1 =
1
2
‖‖‖‖y

31
(tf )

‖‖‖‖
2

S
+ 1

2

tf

∫
t0

{‖‖‖ap
3
‖‖‖

2

Rp
3
− ‖‖‖ae

1
‖‖‖

2

Re
1

}
dt (6.3.1)

J2 =
1
2
‖‖‖‖y

23
(tf )

‖‖‖‖
2

S
+ 1

2

tf

∫
t0

{‖‖‖ap
2
‖‖‖

2

Rp
2
− ‖‖‖ae

3
‖‖‖

2

Re
3

}
dt (6.3.2)

where

[S]: is the (6×6) (at least) positive semi-definite matrix that defines the PI weightings (or
soft constraints) on the final relative states.‖𝛂‖2
𝚲 = 𝛂

T𝚲𝛂(
Re

1, Rp
2, Re

3, Rp
3
)

: are (3×3) positive-definite matrices that define the PI weightings on
inputs.

The object here is to derive the guidance commands: (ae
1, ae

3), (ap
2, ap

3), such that optimum
values J∗(⋯) of the PIs are achieved in the sense that:

J∗1(⋯) = Min
(ap

3)
Max

(ae
1)

J1(⋯) (6.3.3a)

J∗2(⋯) = Min
(ap

2)
Max

(ae
3)

J2(⋯) (6.3.3b)

The engagement time (i.e., the flight time for a minimum separation or the “miss-
distance”) for parties 2 and 3, given by: (tf = tf2

), will generally be different to the engage-
ment time for parties 3 and 1, given by: (tf = tf1

). This certainly was the case for the
simulation problem considered in this chapter.

Remarks:
� In this chapter we consider the case where S = diagonal(s s s 0 0 0), with s a

scalar; so that the first terms in the PI indices are simply weighted final miss distances:‖y
31

(tf )‖2
S = s‖x31(tf )‖2 and, ‖y

23
(tf )‖2

S = s‖x23(tf )‖2

� The PI index for the problem under consideration may be viewed as that of minimizing
the final miss w.r.t. the pursuer inputs and maximizing this quantity w.r.t. to the evader
input, subject to “soft constraints” on the inputs of the vehicles involved. Further, we
assume that R = (Re

1 = re
1I, Rp

2 = rp
2I, Re

3 = re
3I, Rp

3 = rp
1I). The choice of S and R

affects the Riccati solution.
� It will be assumed that all parties have access to full information regarding all of the

system states, that is {y
31

, y
23

; ∀t0 ≤ t ≤ tf}, are known to all parties. It is suggested
in the references[1] that in order to cater for imperfect information, full state infor-
mation may have to be constructed, and a time delay may have to be introduced in
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applying the guidance commands. Implementation of a state estimator would be an
ideal approach, as it would provide an assessment of the effects of delays and state
estimation errors on the guidance performance.

� The guidance commands (ap
2, ap

3) define the actions of pursuers and are such as to
minimize the PI Ji(⋯) while the guidance commands (ae

1, ae
3) define the actions of

the evaders and are such as to maximize Ji(⋯). These conflicting requirements are
achieved by putting minus signs with the terms representing the evasive maneuvers.

In order to obtain a solution to the problem posed above we shall follow closely the
LQPI approach such as the one suggested in Chapters 3 and 4. The Hamiltonians
H1(⋯), H2(⋯) for this problem may be written as:

H1(⋯) = 1
2

{‖‖y
31

(tf )‖‖2
S + ‖‖ap

3
‖‖2

Rp
3
− ‖‖ae

1
‖‖2

Re
1

}
+ 𝛌T

1
{

[F]y
31
+ [G]ap

3 − [G]ae
1
}

(6.3.4)

H2(⋯) = 1
2

{‖‖y
23

(tf )‖‖2
S + ‖‖ap

2
‖‖2

Rp
2
− ‖‖ae

3
‖‖2

Re
3

}
+ 𝛌T

2
{

[A]y
23
+ [G]ap

2 − [G]ae
3
}

(6.3.5)

Remark:

� In the simulation study presented in this chapter, the final miss distance has been com-
puted for a single (run) initial condition w.r.t. the heading error value and the engage-
ment geometry. For a multiple run study for assessing the effects of a large number
of different heading errors and engagement geometries, the Monte Carlo technique
could be used.

Necessary conditions for optimality for the above equations are given by:

𝛛H1

𝛛ae
1
= −

[
Re

1
]
ae

1 − [G]T𝛌1 = 0 (6.3.6)

𝛛H1

𝛛ap
3

=
[
Rp

3
]
ap

3 + [G]T𝛌1 = 0 (6.3.7)

𝛛H2

𝛛ap
2

=
[
Rp

2
]
ap

2 + [G]T𝛌2 = 0 (6.3.8)

𝛛H2

𝛛ae
3
= −

[
Re

3
]
ae

3 − [G]T𝛌2 = 0 (6.3.9)

and
𝛛H1

𝛛y
31

= − ̇𝛌1 = [F]T𝛌1 (6.3.10)

𝛛H2

𝛛y
23

= − ̇𝛌2 = [F]T𝛌2 (6.3.11)

The boundary conditions are given by: 𝛌1(tf ) = [S]y
31

(tf ) and 𝛌2(tf ) = [S]y
23

(tf ).
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Let us assume: 𝛌1 = [P1]y
31

and 𝛌2 = [P2]y
23

then equations (6.3.6)–(6.3.9) give us:

ae
1 = −

[
Re

1
]−1[G]T[P1]y

31
(6.3.12)

ap
3 = −

[
Rp

3
]−1[G]T[P1]y

31
(6.3.13)

ap
2 = −

[
Rp

2
]−1[G]T[P2]y

23
(6.3.14)

ae
3 = −

[
Re

3
]−1[G]T[P2]y

23
(6.3.15)

where

[Pi]: are (6×6) Riccati matrices.

Using equations (6.3.10) through (6.3.15) along with equations (6.2.7) and (6.2.9), it can
be shown (requires some matrix algebra, see Chapters 3, 4) that the following Riccati
differential equations are obtained for [Pi], i = 1, 2:

−[ ̇P1] = [P1][F]+ [F]T[P1]− [P1][G]
([

Rp
3
]−1 −

[
Re

1
]−1)[G]T[P1] (6.3.16)

−[ ̇P2] = [P2][F]+ [F]T[P2]− [P2][G]
([

Rp
2
]−1 −

[
Re

3
]−1)[G]T[P2] (6.3.17)

with the boundary condition: [Pi(tf )] = [S]; i = 1, 2.

Remarks:

� Equations (6.3.12) through (6.3.15) define the state feedback guidance commands
(guidance law), which are used to generate the evasion and pursuit strategies.

� The Riccati equations (6.3.16) and (6.3.17) must be solved backward in time to obtain
their solution. Analytical solution is also possible using the procedure similar to the
one used in Chapters 3 and 4.

� In the theoretical development presented in this chapter, the guidance commands (for
both the pursuer and the evader) are derived in fixed-axis coordinate system; however,
these are applied in the vehicle body axis. Also, most missiles are capable of achieving
high lateral accelerations that can be controlled, but the longitudinal acceleration is
not easily varied; a zero longitudinal acceleration is generally assumed for missiles and
even aircraft. The above consideration implies that the guidance commands, although
derived using optimization theory, are in fact “sub-optimal” when we consider the
guidance commands applied in body axis. Inclusion of the transformation matrix,
either in the kinematics model or incorporated in the PI, would allow us to directly
solve the optimum guidance problem with guidance accelerations applied in vehicle
body axis. The difficulty with both these methods is that the resulting Riccati equation
becomes a function of states, and may pose problems in its solution.

� Autopilot lags were not included in the derivation of the optimum guidance. How-
ever, these have been accommodated in the simulation model. Inclusion of autopilot
dynamics in the guidance law derivation increases the order of the system dynamics
model, and can be considered within the methodology presented in this book. An
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engagement kinematics model that includes the autopilot time constants and guid-
ance commands applied in body axis was used in the simulation program developed
in Chapter 5.

. Discussion of the Simulation Results

6.4.1 Game Theory Guidance Demonstrator Simulation

In this section we discuss the results of the differential game-based guidance simula-
tion obtained via the MATLAB-based simulation program (faruqi dgt DEMO). A disk
containing the ∗.m files of this program is included with this book. The program was
developed and tested using the MATLAB versions 2011a and 2014a. It is the author’s
understanding that in later versions of MATLAB, certain modifications have been made
to the software that may cause the graphics of the simulation to be affected. The author
cannot give warranties that the output graphics will work as originally intended by the
author. Also, while the author has taken every care to verify the code no warranty is
given as to correctness of the code.

Missile guidance simulation parameters used for the simulation are shown in the list-
ing in the addendum. For convenience, these parameters are also given in Table 6.4.1
below.

The simulation run output plots are shown in Figures 6.4.1(a) through (d), where

Plot (a): shows the elevation versus down-range (Z versus X) trajectories.
Plot (b): shows the elevation versus cross-range (Z versus Y) trajectories.
Plot (c): shows the cross-range versus down-range (Y versus X) trajectories.

In these plots the trajectory for the target is shown as a “continuous line,” for the attacker
is shown as a “dashed line,” and for the defender is shown as a “dotted line.”

Table .. Key parameter values used in the DEMO simulation.

Parameters Values

Target, defender, and attacker velocities
in body axis.

640 m/s; 960 m/s; 960 m/s.

Target, defender, and attacker starting
x, y, z positions w.r.t. the origin in
fixed axis.

(5000 m, 5000 m, −8000 m);
(5000 m, 5000 m, −8000 m);
(15000 m, 5000 m, 0.0 m).

El., Az. heading errors for the attacker
and the defender.

5 degrees in both El. and Az. for both.

Game theory guidance PI parameters: s1 = 1; s2 = 1; s3 = 1; s4 = 0; s5 = 0; s6 = 0;
r1 bar = 0.00011; r2 = .0001;
r3 bar = 0.00011; r3 = .0001.

Lateral (y, z) acceleration g-limits:
Longitudinal acceleration = 0 g.

Target: ±8g; Defender: ±40g;
Attacker: ±40g

Lateral autopilot bandwidth: 3 sec−1

Other simulation parameters: as shown in the program listing.
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Plot (d): shows the projected miss-distance (MD) values as a function of time for attacker
3 w.r.t. target 1 (dashed line) and defender 2 w.r.t. attacker 3 (dotted line). The mini-
mum value is the miss-distance achieved; this value is also given on this plot. Vertical
lines shown mark the times for minimum separation (miss-distance) of the vehicles.

Symbols: (circle, asterisk) mark the closest approach of the attacker and the target, and
(box, asterisk) mark the closest approach of the attacker and the defender.

The reader can observe the characteristic behaviors of the three parties (target, defender,
and attacker) involved the target (continuous-line trajectory), the attacker (dashed-line
trajectory) and the defender (dotted-line trajectory), given in Figures 6.4.1(a), (b), and
(c). Weave-like trajectories characterize pursuit and evasion tactics employed by the par-
ties. Projected miss-distance plots are given in Figure 6.4.1(d). Here, Miss31 is the miss
between the attacker and the target (dashed line) and Miss23 (dotted line) is the miss
between the defender and the attacker. This plot shows that Miss23 of 161.04 m occurs
at 7.77 s, suggesting that the attacker has managed to evade the defender in their first
encounter. First miss between the attacker and the target Miss31 of 513 m occurs
at 10.49 s. This would suggest that the target has safely evaded the attacker in the first
encounter; perhaps because the attacker, in order to evade the defender, had its pursuit
trajectory diverted to a degree where it was unable to intercept the target successfully.
It is further seen from plot (d) that the attacker closes in on the target during the first
and subsequent encounters; however, the closest approach (145 m at 16.56 s) is large
enough to class it as a miss.
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6.4.2 Game Theory Guidance Simulation Including Disturbance Inputs

Further simulation studies were undertaken to study the characteristics of the optimum
game theory guidance developed in this chapter, including disturbance inputs derived
on rule-based AI-based guidance schemes. The results are shown in Figures 6.4.2(a, b,
and c); plots (a) show the separation range whose minimum value is the miss distance
achieved (MD). In the plots MD31 is the miss distance between attacker 3 and aircraft
target 1, and MD23 is the miss distance between defender 2 and attacker 3; plots (b)
show the (Z-X plane) elevation engagement trajectories, and plots (c) show the (Z-Y
plane) engagement trajectories. The PI weightings were obtained through preliminary
simulations, such as to yield “unbiased engagements” (i.e., the weightings were selected
so as not to give any one party an advantage over the others) and to display salient fea-
tures of the guidance performance. Of course, fine tuning of these parameters is pos-
sible depending on particular requirements. Sub-Figure 6.4.1(a, b, c) show the case of
engagements when there is no evasion and the parties are expending all their energies
for interception. In this case, the defender successfully intercepts the attacker (MD23 =
0.604, at 6.18s). However, as shown in the plots, if we continue the simulation, then the
attacker also intercepts the target, first time at (MD31 = 0.166, at 7.56s) and a second
time at about 26s.

For the cases discussed above, it appears that attacker 3 is unable to get through to
target 1; clearly, the defender has managed to get in between the aircraft target and the
attacker and has managed to achieve intercept (low miss-distances) with the attacker.
We therefore considered implementation of additional maneuvers initiated (through
rule-based logic) in order to enhance the ability of the attacker to evade the defender and



6 Three-Party Differential Game Missile Guidance Simulation Study 

2

4

6

8

10

9

8

7

6

5

4

3

2

1

0

Range-to-go vs. Time ; No Evasion Z vs. X ; No Evasion Z vs. Y ; No Evasion
R

an
ge

-t
o-

go
 (

m
*1

,0
00

)

A
lti

tu
de

 (
m

*1
,0

00
)

9

10

8

7

6

5

4

3

2

1

6

5

4

3
A

lti
tu

de
 (

m
*1

,0
00

)

2

1

0
3000 4000 5000 6000 7000 8000

6

5

4

3

A
lti

tu
de

 (
m

*1
,0

00
)

2

1

0
6000

R
an

ge
-t

o-
go

 (
m

*1
,0

00
)

A
lti

tu
de

 (
m

*1
,0

00
)

A
lti

tu
de

 (
m

*1
,0

00
)

R
an

ge
-t

o-
go

 (
m

*1
,0

00
)

0

2

4

6

8

10

0 5 10 15 8000 10000 12000 14000 16000

0

A
lti

tu
de

 (
m

*1
,0

00
)

0
0 5 10

Time (s) ; Fig. 1a

Range-to-go vs. Time ; Evasion & Intercept Z vs. X ; Evasion & Intercept Z vs. Y ; Evasion & Intercept

Range-to-go vs. Time ; Intl. Target Manoeuvre Z vs. X ; Intl. Target Manoeuvre Z vs. Y ; Intl. Target Manoeuvre

Down-Range (m) ; Fig. 1b Cross-Range (m) ; Fig. 1b

Time (s) ; Fig. 2a

0
0

2

4

6

8

10

5 10 15
Time (s) ; Fig. 3a

Down-Range (m) ; Fig. 2b

6000 8000 10000 12000 14000 16000
Down-Range (m) ; Fig. 3b

Cross-Range (m) ; Fig. 2c

6

5

4

3

2

1

0

6

5

4

3

2

1

0
3000 4000 5000 6000 7000 8000

Cross-Range (m) ; Fig. 3c

15 20 25 5000 4000 5000 6000 7000 8000 900010000 15000 20000

Target
Defender
Attacker

Target
Defender
Attacker

Target
Defender
Attacker

Target
Defender
Attacker

Trgt 1
Def. 2
Attck. 3

Trgt 1
Def. 2
Attck. 3

M23 = 0.6043 (m)
T23 = 6.1835 (s)
M31 = 0.1663 (m)
T31 = 7.567 (s)

Trgt/Attck
Def/Attck

M23 = 666.3531 (m)
T23 = 6.4545 (s)
M31 = 0.13032 (m)
T31 = 17.2495 (s)

Trgt/Attck
Def/Attck

M23 = 666.3531 (m)
T23 = 6.4545 (s)
M31 = 21.4301 (m)
T31 = 14.99 (s)

Trgt/Attck
Def/Attck

Figure .. Simulation Results with Disturbance Inputs. Source: Faruqi 2012.[10] Reproduced with
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to enhance the ability of the aircraft target to get away from the attacker. This is shown
in sub-Figure 6.4.2(a, b, c). In this case, the attacker is allowed to disengage the evasion
after the first minimum separation from the defender and apply only the intercept guid-
ance against the target. It is shown that the attacker is able to achieve intercept with
the target in this case (miss MD31=0.13m, at 17.24 s). Sub-Figure 6.4.3(a, b, c) shows
the case where the aircraft target applies additional maneuvers (constant-8g in both
pitch and yaw planes at 10s into the engagement). In this case the miss MD31=21.4m at
15s is achieved, and the aircraft is able to evade the attacker. The maneuver times were
obtained through multiple simulation sensitivity studies; further work is required in this
area in order to obtain optimum time and the g-level for evasion maneuvers. It is left
to the reader to try other combinations of PI parameters to see if it is possible for the
attacker to evade the defender and achieve intercept with the target without the need to
implement additional (rule-based) maneuvers.

A listing of the MATLAB code used for the 4-DOF simulation model is included in
the addendum of this chapter and a CD containing the MATLAB ∗.m files used in gen-
erating the plots in Figures 6.4.1 and Figure 6.4.2 is included in this book. The program
allows the user to change the engagement geometries and the PI parameters in order to
simulate different engagement scenarios.

. Conclusions

In this chapter, three-party evasion and intercept guidance are derived using differen-
tial game theory for 3-D engagements using the 4-DOF simulation model developed
in Chapter 5. Analytical solutions are derived for Riccati differential equations and for
the guidance feedback gains that are required for implementing the optimum game the-
ory missile guidance. Simulation results are given and discussed for a set of engage-
ments between an aircraft target, an attacking ground-based missile, and a defending
missile fired from the aircraft. Use of rule-based AI for initiating additional maneuvers
(e.g., a step-acceleration) is also considered in the simulations. This is used primarily
to enhance the (evasion) performance of the attacking missile and also that of the air-
craft target. For engagement scenarios considered it has been shown that the attacking
missile can be countered by the defending missile utilizing a differential game-based
guidance. The simulation program allows the attacker to utilize additional maneuvers
applied using rule-based AI logic. The simulations suggest that if an engagement is con-
tinued after missing the first time, the attacker is successfully able to intercept the target
subsequently. Simulation results also indicate that the evasion and intercept trajectories
are reactive (coupled), that is, the behavior of the evasion trajectory affects the inter-
cept trajectory and vice versa. Further work is required to test game theory guidance for
(a) different PI weightings, (b) different aircraft, attacker, and defender characteristics
(e.g., velocities, acceleration capabilities, and autopilot bandwidths). Finally, it would
be useful to study the application of the differential game-based guidance using a full
6-DOF simulation platform that allows for high order and non-linear aircraft and mis-
sile system models.

6.5.1 Useful Future Studies

There are a number of options available for the target, the attacker and/or the defender
to implement additional maneuvers to gain advantage toward meeting their objectives.
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The author proposes that this can be achieved by applying additional maneuvers (dis-
turbance inputs) or switching the performance index weightings as a function of time
to go. That is, “rules” can be implemented within the guidance structures that enable
the parties to trigger these changes based on time to go. The current chapter, along with
Chapters 3 and 4, considered the implementation of additional maneuvers, where the
attacker, once it achieves a minimum range w.r.t. the defender, triggers such a maneu-
ver to get away from the defender. Time-to-go value at which this occurs can be deter-
mined through multiple runs of the simulation. Research is ongoing to study alternative
methods of switching the PI weights or applying additional maneuvers as well as formal
structures for implementing AI rules.
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Appendix

A. Analytical Solution for Riccati Equations

A detailed discussion of the game theory-based feedback guidance laws along with var-
ious different expressions for the guidance gains was given in Chapters 3 and 4. It was
shown that the solution for the Riccati equations may be written as:

[Pi] =

⎡⎢⎢⎢⎢⎢⎢⎣

p11i
0 0 p14i

0 0
0 p22i

0 0 p25i
0

0 0 p33i
0 0 p36i

p14i
0 0 p44i

0 0
0 p25i

0 0 p55i
0

0 0 p36i
0 0 p66i

⎤⎥⎥⎥⎥⎥⎥⎦

; i = 1, 2 (A6.1.1)

For the case: [S] = diag[s s s 0 0 0]; [Rp
i ] = rp

i [I]; i = 2, 3; [Re
i ] = re

i [I];
j = 1, 3.

p11i
= p22i

= p33i
=

[ 3𝛄i

3𝛄i + T3

]
(A6.1.2)

p44i
= p55i

= p66i
=

[
3𝛄iT2

3𝛄i + T3

]
(A6.1.3)

p14i
= p25i

= p36i
=

[ 3𝛄iT
3𝛄i + T3

]
(A6.1.4)

where

𝛄1 =
re

1rp
3(

re
1 − rp

3
) ; 𝛄2 =

re
3rp

2(
re

3 − rp
2
) ; T = (tf − t) (A6.1.5)

Table A. Selection of the PI weightings for Figure 6.4.2.

Run No. s1, s2, s3 re
1, rp

2, re
3, rp

3

1 (a, b, c) 1, 1, 1 103, 10−3, 103, 10−3

2 (a, b, c) 1, 1, 1 1.1 × 10−3, 10−3,
1.1 × 10−3, 10−3

3 (a, b, c) 1, 1, 1 1.1 × 10−3, 10−3,
1.1 × 10−3, 10−3
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Addendum

1. Listing for fauqi dgt DEMO.m
This program was developed and run on MATLAB 2011a, 2014at; the author of this
book cannot guarantee its compatibility with other versions of MATLAB.

%%*************************faruqi_dgt_DEMO*********************************
% ************AIR-AIR MULTI PARTY GAME SIMULTION **************************
% Creator: F.Faruqi
% Single Run Version
% Includes Autopilot:
% Version-1: October 2012; Updated: July 2015; Data for Wiley DEMO
% While the Author has verified the accuracy of the program; no
% guarantee/warranty is expressed or implied. The user should verify the
% correctness of this simulation for his particular application.
% *************************************************************************
% *************************************************************************
%%=========================================================================
% 10.10.10: Simulation Parameters Values ==============================+===
% =========================================================================
t0=0; % Simulation start time
tf=30; % Simulation final time.Test 1-7.
del_t=.0005; % Simulation integration step (Trapeziodal Rule Implemented).
t=t0:del_t:tf; % Simulation time.
T_index=length(t);
%==========================================================================
%%=========================================================================
% 10.10.20: Number of Vehicles Values =====================================
% +++++++++++==============================================================
i_num=3; % Number of vehicles involved in the engagement.
j_num=3; % Number of vehicles involved in the engagement.
% For this simulation (3-party Game Simuulation), the following definition
% is used:
% VEHICLE INDEX 1: High Value (Aircraft) Target;
% VEHICLE INDEX 2: Defender (Missile) or Pursuer; with the purpose of
% intercepting the attcker-2.
% VEHICLE INDEX 3: Attacker (Missile) evader against the defender-2, while
% attacking the high value target-1, while evading the defender.
%==========================================================================
%%=========================================================================
% 10.10.30: Set Up Vehicle Body-Axis States ===============================
%==========================================================================
%10.10.30.10: Position Vector:
x_b=zeros(i_num,T_index);
y_b=zeros(i_num,T_index);
z_b=zeros(i_num,T_index);

% 10.10.30.20: Velocity Vector:
u_b=zeros(i_num,T_index);
v_b=zeros(i_num,T_index);
w_b=zeros(i_num,T_index);

% 10.10.30.30: Acceleration Vector:
ax_b=zeros(i_num,T_index);
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ay_b=zeros(i_num,T_index);
az_b=zeros(i_num,T_index);

% 10.10.30.40: Acceleration Deritivr Vector:
ax_b_dot=zeros(i_num,T_index);
ay_b_dot=zeros(i_num,T_index);
az_b_dot=zeros(i_num,T_index);

% 10.10.30.50: Demanded Acceleration Vector(Autopilot Input):
ax_b_dem=zeros(i_num,T_index);
ay_b_dem=zeros(i_num,T_index);
az_b_dem=zeros(i_num,T_index);

% Body-Axis Rotation Rate Vector:
p_b=zeros(i_num,T_index);
q_b=zeros(i_num,T_index);
r_b=zeros(i_num,T_index);

% Total-Body Axis Velocity and Acceleration:
V_b=zeros(i_num,T_index);
V_b_sq=zeros(i_num,T_index);

A_b_sq=zeros(i_num,T_index);
A_b=zeros(i_num,T_index);

%% INPUT VALUES===========================================================
% Body-Axis Velocity Vector Values:
u_b(1,1) = 660.0000; %Baseline
u_b(2,1) = 990.0000; %Baseline
u_b(3,1) = 990.0000; %Baseline

v_b(1,1) = 0.0;
v_b(2,1) = 0.0;
v_b(3,1) = 0.0;

w_b(1,1) = 0.0;
w_b(2,1) = 0.0;
w_b(3,1) = 0.0;

% Body-Axis Acceleration Vector Values:
ax_b(1,1)=0.0;
ax_b(2,1)=0.0;
ax_b(3,1)=0.0;

ay_b(1,1)=0.0;
ay_b(2,1)=0.0;
ay_b(3,1)=0.0;

az_b(1,1)=0.0;
az_b(2,1)=0.0;
az_b(3,1)=0.0;

% Body-AxisRotation Vector Values:
p_b(1,1)=0.0;
q_b(2,1)=0.0;
r_b(3,1)=0.0;
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%==========================================================================
% Compute Body Axis Total Velocity, Acceleration & Body Rates:
for i=1:i_num;

V_b(i,1)=sqrt(u_b(i,1)*u_b(i,1)+v_b(i,1)*v_b(i,1)+w_b(i,1)*w_b(i,1));
V_b_sq(i,1)=V_b(i,1)*V_b(i,1);

A_b_sq(i,1)=(ax_b(i,1)*ax_b(i,1)+ay_b(i,1)*ay_b(i,1)+az_b(i,1)*az_b(i,1));
A_b(i,1)=sqrt(A_b_sq(i,1));

end

for i=1:i_num;
p_b(i,1)=(v_b(i,1)*az_b(i,1)-w_b(i,1)*ay_b(i,1))/V_b_sq(i,1);
q_b(i,1)=(w_b(i,1)*ax_b(i,1)-u_b(i,1)*az_b(i,1))/V_b_sq(i,1);
r_b(i,1)=(u_b(i,1)*ay_b(i,1)-v_b(i,1)*ax_b(i,1))/V_b_sq(i,1);

end

%% 10.30. Vehicle Heading (Euler) Angles and Quaternions*******************
phi=zeros(i_num,T_index);
theta=zeros(i_num,T_index);
psi=zeros(i_num,T_index);

% INPUT VALUES============================================================+
phi(1,1)=0*pi/180;
phi(2,1)=0*pi/180;
phi(3,1)=0*pi/180;

psi(1,1)=0*pi/180;
theta(1,1)=0*pi/180;

psi(2,1)=0*pi/180;
theta (2,1)=0*pi/180;

psi(3,1)=0*pi/180;
theta(3,1)=0*pi/180;

%% 10.40. Vehicle Fixed_Axis States ***************************************
% Fixed-Axis Position Vector:
x_i=zeros(i_num,T_index);
y_i=zeros(i_num,T_index);
z_i=zeros(i_num,T_index);

% Fixed-Axis Velocity Vector:
u_i=zeros(i_num,T_index);
v_i=zeros(i_num,T_index);
w_i=zeros(i_num,T_index);

% Fixed-Axis Acceleration Vector:
ax_i=zeros(i_num,T_index);
ay_i=zeros(i_num,T_index);
az_i=zeros(i_num,T_index);

% Fixed Axis Demanded Acceleration (Guidance Demands)
ax_i_dem=zeros(i_num,T_index);
ay_i_dem=zeros(i_num,T_index);
az_i_dem=zeros(i_num,T_index);
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% Fixed-Axis Rotation Rate Vector:
p_i=zeros(i_num,T_index);
q_i=zeros(i_num,T_index);
r_i=zeros(i_num,T_index);

% Fixed-Axis Total Range, Velocity and Acceleration:
R_i_sq=zeros(i_num,T_index);
R_i=zeros(i_num,T_index);

V_i_sq=zeros(i_num,T_index);
V_i=zeros(i_num,T_index);

A_i_sq=zeros(i_num,T_index);
A_i=zeros(i_num,T_index);

% INPUT VALUES=============================================================
x_i(1,1)=5000.0000; %target Baseline
x_i(2,1)=5000.0000; %defender Baseline
x_i(3,1)=15000.0000; % target Baseline

y_i(1,1)=5000.0000;
y_i(2,1)=5000.0000;
y_i(3,1)=5000.0000;

z_i(1,1)=-8000.0000;
z_i(2,1)=-8000.0000;
z_i(3,1)=-0000.0000;

%==========================================================================
%% 10.50. Vehicle Fixed-Axis Relative States ******************************
rel_x_i=zeros(i_num,j_num,T_index);
rel_y_i=zeros(i_num,j_num,T_index);
rel_z_i=zeros(i_num,j_num,T_index);

rel_u_i=zeros(i_num,j_num,T_index);
rel_v_i=zeros(i_num,j_num,T_index);
rel_w_i=zeros(i_num,j_num,T_index);

rel_ax_i=zeros(i_num,j_num,T_index);
rel_ay_i=zeros(i_num,j_num,T_index);
rel_az_i=zeros(i_num,j_num,T_index);

rel_R1_i_sq=zeros(i_num,j_num,T_index);
rel_R1_i=zeros(i_num,j_num,T_index);

rel_R_i_sq=zeros(i_num,j_num,T_index);
rel_R_i=zeros(i_num,j_num,T_index);

rel_V_i_sq=zeros(i_num,j_num,T_index);
rel_V_i=zeros(i_num,j_num,T_index);

rel_A_i_sq=zeros(i_num,j_num,T_index);
rel_A_i=zeros(i_num,j_num,T_index);

rel_R1_i_dot=zeros(i_num,j_num,T_index);
rel_R_i_dot=zeros(i_num,j_num,T_index);
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% Relative Azimuth, Elevation LOS Angles & Closing Velocity:
rel_theta_los_i=zeros(i_num,j_num,T_index);
rel_psi_los_i=zeros(i_num,j_num,T_index);

rel_theta_los_i_dot=zeros(i_num,j_num,T_index);
rel_psi_los_i_dot=zeros(i_num,j_num,T_index);

clos_vel=zeros(i_num,j_num,T_index);

% Compute Relative Positons & LOS Angles:
for i = 1:i_num;

for j =1:j_num;
if(i~=j);

rel_x_i(i,j,1) = x_i(i,1)-x_i(j,1);
rel_y_i(i,j,1) = y_i(i,1)-y_i(j,1);
rel_z_i(i,j,1) = z_i(i,1)-z_i(j,1);

rel_R1_i_sq(i,j,1)=(rel_x_i(i,j,1)*rel_x_i(i,j,1)+…
rel_y_i(i,j,1)*rel_y_i(i,j,1));

rel_R1_i(i,j,1)=sqrt(rel_R1_i_sq(i,j,1));

rel_R_i_sq(i,j,1)=(rel_R1_i_sq(i,j,1)+rel_z_i(i,j,1)*rel_z_i(i,j,1));
rel_R_i(i,j,1)=sqrt(rel_R_i_sq(i,j,1));

rel_psi_los_i(i,j,1) = atan2(rel_y_i(i,j,1),rel_x_i(i,j,1));
rel_theta_los_i(i,j,1) = atan2(-rel_z_i(i,j,1),rel_R1_i(i,j,1));

end
end

end

%% 10.60. Collision Course Headings ***************************************
beta = zeros(i_num,j_num,T_index);
beta_cc = zeros(i_num,j_num,T_index);

cos_cos_cc = zeros(i_num,j_num,T_index);
cos_sin_cc = zeros(i_num,j_num,T_index);

VC_cc = zeros(i_num,j_num,T_index);

theta_cc = zeros(i_num,j_num,T_index);
psi_cc = zeros(i_num,j_num,T_index);

theta_he=zeros(i_num,T_index);
psi_he=zeros(i_num,T_index);

% INPUT VALUES
% =========================================================================
defender_cc_override=0;
%==========================================================================

% Heading Error Values for Computing Collision Course:

theta_he(3,1)=5*pi/180; %Baseline
psi_he(3,1)=5*pi/180; %Baseline
theta_he(2,1)=5*pi/180; %Baseline
psi_he(2,1)=5*pi/180; %Baseline
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% Compute Collision Course Headings (Attacker):
for i_target= 1:2;

if(i_target==1);
j=1; % target
i=3; % attacker

end
% Compute Collision Course Headings (Defender):
if(i_target==2);

j=3;
i=2;
%Compute Defender Heading Based on Attacker's HE
psi(3,1) = psi_cc(3,1,1)+psi_he(3,1);
theta(3,1) = theta_cc(3,1,1)+theta_he(3,1);

end
A=cos(theta(j,1))*cos(psi(j,1))*cos(rel_theta_los_i(j,i,1))*…

cos(rel_psi_los_i(j,i,1));
B=cos(theta(j,1))*sin(psi(j,1))*cos(rel_theta_los_i(j,i,1))*…

sin(rel_psi_los_i(j,i,1));
C=sin(theta(j,1))*sin(rel_theta_los_i(j,i,1));
D=A+B+C;
beta(j,i,1)=acos(D);
beta_cc(i,j,1) = asin(u_b(j,1)*sin(beta(j,i,1))/u_b(i,1));
VC_cc(i,j,1) = u_b(i,1)*cos(beta_cc(i,j,1))-u_b(j,1)*…

cos(beta(j,i,1));
theta_cc(i,j,1) = asin((VC_cc(i,j,1)/u_b(i,1))*…

sin(rel_theta_los_i(j,i,1))+(u_b(j,1)/u_b(i,1))*…
sin(theta(j,1)));

cos_cos_cc(i,j,1) = (VC_cc(i,j,1)/u_b(i,1))*…
cos(rel_theta_los_i(j,i,1))*cos(rel_psi_los_i(j,i,1))+…
(u_b(j,1)/u_b(i,1))*cos(theta(j,1))*cos(psi(j,1));

cos_sin_cc(i,j,1) = (VC_cc(i,j,1)/u_b(i,1))*…
cos(rel_theta_los_i(j,i,1))*sin(rel_psi_los_i(j,i,1))+…
(u_b(j,1)/u_b(i,1))*cos(theta(j,1))*sin(psi(j,1));

psi_cc(i,j,1)=atan2(cos_sin_cc(i,j,1),cos_cos_cc(i,j,1));
xxx=1;

end

% Heading Error Values for Defender Post-Collision Course Computation:
theta(2,1) = theta_cc(2,3,1)+theta_he(2,1);
psi(2,1) = psi_cc(2,3,1)+psi_he(2,1);

if(defender_cc_override==1);
theta(2,1) = theta(1,1)+theta_he(2,1);
psi(2,1) = psi(1,1)+psi_he(2,1);

end

%% 10.70. Compute Quaternions:*********************************************
% Compute Quaternion Definition and Transformation Matrix (DCM):
quat1=zeros(i_num,T_index);
quat2=zeros(i_num,T_index);
quat3=zeros(i_num,T_index);
quat4=zeros(i_num,T_index);
quat_sq=zeros(i_num,T_index);
quat=zeros(i_num,T_index);

t11_bi=zeros(i_num,T_index);
t12_bi=zeros(i_num,T_index);
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t13_bi=zeros(i_num,T_index);
t21_bi=zeros(i_num,T_index);
t22_bi=zeros(i_num,T_index);
t23_bi=zeros(i_num,T_index);
t31_bi=zeros(i_num,T_index);
t32_bi=zeros(i_num,T_index);
t33_bi=zeros(i_num,T_index);

for i=1:i_num;
quat1(i,1)=cos(phi(i,1)/2)*cos(theta(i,1)/2)*cos(psi(i,1)/2)…

+sin(phi(i,1)/2)*sin(theta(i,1)/2)*sin(psi(i,1)/2);
quat2(i,1)=sin(phi(i,1)/2)*cos(theta(i,1)/2)*cos(psi(i,1)/2)…

-cos(phi(i,1)/2)*sin(theta(i,1)/2)*sin(psi(i,1)/2);
quat3(i,1)=cos(phi(i,1)/2)*sin(theta(i,1)/2)*cos(psi(i,1)/2)…

+sin(phi(i,1)/2)*cos(theta(i,1)/2)*sin(psi(i,1)/2);
quat4(i,1)=cos(phi(i,1)/2)*cos(theta(i,1)/2)*sin(psi(i,1)/2)…

-sin(phi(i,1)/2)*sin(theta(i,1)/2)*cos(psi(i,1)/2);

quat_sq(i,1)=quat1(i,1)*quat1(i,1)+quat2(i,1)*quat2(i,1)+…
quat3(i,1)*quat3(i,1)+quat4(i,1)*quat4(i,1);

quat(i,1)=sqrt(quat_sq(i,1));

quat1(i,1)=quat1(i,1)/quat(i,1);
quat2(i,1)=quat2(i,1)/quat(i,1);
quat3(i,1)=quat3(i,1)/quat(i,1);
quat4(i,1)=quat4(i,1)/quat(i,1);

end

% Compute Transformation Matrix form Body to Fixed (DCM):
for i = 1:i_num

t11_bi(i,1)=quat1(i,1)*quat1(i,1)+quat2(i,1)*quat2(i,1)…
-quat3(i,1)*quat3(i,1)-quat4(i,1)*quat4(i,1);

t12_bi(i,1)=2*(quat2(i,1)*quat3(i,1)-quat1(i,1)*quat4(i,1));
t13_bi(i,1)=2*(quat2(i,1)*quat4(i,1)+quat1(i,1)*quat3(i,1));
t21_bi(i,1)=2*(quat2(i,1)*quat3(i,1)+quat1(i,1)*quat4(i,1));
t22_bi(i,1)=quat1(i,1)*quat1(i,1)-quat2(i,1)*quat2(i,1)…

+quat3(i,1)*quat3(i,1)-quat4(i,1)*quat4(i,1);
t23_bi(i,1)=2*(quat3(i,1)*quat4(i,1)-quat1(i,1)*quat2(i,1));
t31_bi(i,1)=2*(quat2(i,1)*quat4(i,1)-quat1(i,1)*quat3(i,1));
t32_bi(i,1)=2*(quat3(i,1)*quat4(i,1)+quat1(i,1)*quat2(i,1));
t33_bi(i,1)=quat1(i,1)*quat1(i,1)-quat2(i,1)*quat2(i,1)…

-quat3(i,1)*quat3(i,1)+quat4(i,1)*quat4(i,1);
end

%% 10.80. Compute Other Fixed Axis States**********************************
% Compute Fixed-Axis velocity & Acceleration:
for i=1:i_num;

u_i(i,1)=t11_bi(i,1)*u_b(i,1)+t12_bi(i,1)*v_b(i,1)+t13_bi(i,1)*w_b(i,1);

v_i(i,1)=t21_bi(i,1)*u_b(i,1)+t22_bi(i,1)*v_b(i,1)+t23_bi(i,1)*w_b(i,1);

w_i(i,1)=t31_bi(i,1)*u_b(i,1)+t32_bi(i,1)*v_b(i,1)+t33_bi(i,1)*w_b(i,1);

ax_i(i,1)=t11_bi(i,1)*ax_b(i,1)+t12_bi(i,1)*ay_b(i,1)+t13_bi(i,1)*az_b(i,1);
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ay_i(i,1)=t21_bi(i,1)*ax_b(i,1)+t22_bi(i,1)*ay_b(i,1)+t23_bi(i,1)*az_b(i,1);

az_i(i,1)=t31_bi(i,1)*ax_b(i,1)+t32_bi(i,1)*ay_b(i,1)+t33_bi(i,1)*az_b(i,1);

% Fixed_Axis Total Range,Velocity, Acceleration & Body Rates:
R_i_sq(i,1)=(x_i(i,1)*x_i(i,1)+y_i(i,1)*y_i(i,1)+z_i(i,1)*z_i(i,1));
R_i(i,1)=sqrt(R_i_sq(i,1));

V_i_sq(i,1)=(u_i(i,1)*u_i(i,1)+v_i(i,1)*v_i(i,1)+w_i(i,1)*w_i(i,1));
V_i(i,1)=sqrt(V_i_sq(i,1));

A_i_sq(i,1)=(ax_i(i,1)*ax_i(i,1)+ay_i(i,1)*ay_i(i,1)+az_i(i,1)*az_i(i,1));
A_i=sqrt(A_i_sq(i,1));

p_i(i,1)=(v_i(i,1)*az_i(i,1)-w_i(i,1)*ay_i(i,1))/V_i_sq(i,1);
q_i(i,1)=(w_i(i,1)*ax_i(i,1)-u_i(i,1)*az_i(i,1))/V_i_sq(i,1);
r_i(i,1)=(u_i(i,1)*ay_i(i,1)-v_i(i,1)*ax_i(i,1))/V_i_sq(i,1);

end

%% Compute Relative Positons, LOS Angles & Closing:
for i = 1:i_num;

for j =1:j_num;
if(i~=j);

rel_u_i(i,j,1) = u_i(i,1)-u_i(j,1);
rel_v_i(i,j,1) = v_i(i,1)-v_i(j,1);
rel_w_i(i,j,1) = w_i(i,1)-w_i(j,1);

rel_ax_i(i,j,1) = ax_i(i,1)-ax_i(j,1);
rel_ay_i(i,j,1) = ay_i(i,1)-ay_i(j,1);
rel_az_i(i,j,1) = az_i(i,1)-az_i(j,1);

rel_R1_i_dot(i,j,1)=(rel_x_i(i,j,1)*rel_u_i(i,j,1)…
+rel_y_i(i,j,1)*rel_v_i(i,j,1))/rel_R1_i(i,j,1);

rel_R_i_dot(i,j,1)=(rel_x_i(i,j,1)*rel_u_i(i,j,1)…
+rel_y_i(i,j,1)*rel_v_i(i,j,1)…
+rel_z_i(i,j,1)*rel_w_i(i,j,1))/rel_R_i(i,j,1);

rel_V_i_sq(i,j,1)=(rel_u_i(i,j,1)*rel_u_i(i,j,1)+…
rel_v_i(i,j,1)*rel_v_i(i,j,1)+…
rel_w_i(i,j,1)*rel_w_i(i,j,1));

rel_V_i(i,j,1)=sqrt(rel_V_i_sq(i,j,1));

rel_A_i_sq(i,j,1)=(rel_ax_i(i,j,1)*rel_ax_i(i,j,1)+…
rel_ay_i(i,j,1)*rel_ay_i(i,j,1)+…
rel_az_i(i,j,1)*rel_az_i(i,j,1));

rel_A_i(i,j,1)=sqrt(rel_A_i_sq(i,j,1));

rel_psi_los_i_dot(i,j,1)=(rel_x_i(i,j,1)*rel_v_i(i,j,1)…
-rel_y_i(i,j,1)*rel_u_i(i,j,1))/rel_R1_i_sq(i,j,1);

rel_theta_los_i_dot(i,j,1)=(rel_w_i(i,j,1)*rel_R1_i(i,j,1)…
-rel_z_i(i,j,1)*rel_R1_i_dot(i,j,1))/rel_R_i_sq(i,j,1);

end
end

end
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%% 10.90. Autopilot Parameters ********************************************
% Autopilot Bandwidth & Input Limit Values:
bw_ax=zeros(i_num);
bw_ay=zeros(i_num);
bw_az=zeros(i_num);

limit_ax=zeros(i_num);
limit_ay=zeros(i_num);
limit_az=zeros(i_num);

bw_ax(1)=.1; bw_ax(2)=.1; bw_ax(3)=.1;
bw_ay(1)=3; bw_ay(2)=3; bw_ay(3)=3;
bw_az(1)=3; bw_az(2)=3; bw_az(3)=3;

%Set values for g-limits
lim_max_x=zeros(i_num);
lim_min_x=zeros(i_num);
lim_max_y=zeros(i_num);
lim_min_y=zeros(i_num);
lim_max_z=zeros(i_num);
lim_min_z=zeros(i_num);

%INPUT VALUES==============================================================
lim_max_x(1)=0; lim_min_x(1)=0;
lim_max_x(2)=0; lim_min_x(2)=0;
lim_max_x(3)=0; lim_min_x(3)=0;

lim_max_y(1)=80; lim_min_y(1)=-80;
lim_max_y(2)=400; lim_min_y(2)=-400;
lim_max_y(3)=400; lim_min_y(3)=-400;

lim_max_z(1)=80; lim_min_z(1)=-80;
lim_max_z(2)=400; lim_min_z(2)=-400;
lim_max_z(3)=400; lim_min_z(3)=-400;

%==========================================================================
%% 10.100 PN. APN Guidance-Law Parameters *********************************

nav_const_los=zeros(i_num);
nav_const_ax=zeros(i_num);
nav_const_ay=zeros(i_num);
nav_const_az=zeros(i_num);

miss_dist=zeros(i_num,j_num);
miss_flag=zeros(i_num,j_num);
flight_time=zeros(i_num,j_num);

for i=1:i_num;
for j=1:j_num;

if(i~=j);
miss_dist(i,j)=rel_R_i(i,j,1);

end
end

end
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%% 10.110. Optimum Guidance Parameters*************************************

T_1=zeros(1,T_index);
T_2=zeros(1,T_index);

rand_x=zeros(i_num,T_index);
rand_y=zeros(i_num,T_index);
rand_z=zeros(i_num,T_index);

ax_b_bias=zeros(i_num,T_index);
ay_b_bias=zeros(i_num,T_index);
az_b_bias=zeros(i_num,T_index);

sigma_1=0;
sigma_2=0;
sigma_3=0;
mean_1=0;
mean_2=0;
mean_3=0;

%% 10.120. TRIAL PARAMETER VALUES *****************************************
factor1=1;
factor2=1;
factor3=1;
factor4=1;

T_1_factor=1;
T_2_factor=1;

del_T_1=0;
del_T_2=0;

% INPUT VALUES=============================================================
% TEST 2 values
% s1 =1; s2=1; s3=1; s4=0; s5=0; s6=0;
% r1_bar=0.1001; r3=0.1;r3_bar=0.1001; r2=0.1;

%**************************************************************************
% PN TEST Values
% s1 =10; s2=10; s3=10; s4=0; s5=0; s6=0;% PN Test
% r1_bar=1000; r2=.0001; r3_bar=1000; r3=.0001; % PN Test

%**************************************************************************
%TEST 1 Values
% r1_bar=1.001; r3=1.0;r3_bar=1.001; r2=1.0; %exp. r values
% s1 =1; s2=1; s3=1; s4=0; s5=0; s6=0; %experiment 3.1

%**************************************************************************
%TEST BASELINE
s1 =1; s2=1; s3=1; s4=0; s5=0; s6=0; %BASELINE
r1_bar=0.00011; r2=.0001; r3_bar=0.00011; r3=.0001; %BASELINE

%==========================================================================
r_diff_1=(r1_bar*r3)/(r1_bar-r3);
r_diff_2=(r3_bar*r2)/(r3_bar-r2);
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% Calculate Guidance Gains:
T_1(1,1)=T_1_factor*abs(rel_R_i(3,1,1)/rel_R_i_dot(3,1,1))+del_T_1;
T_2(1,1)=T_2_factor*abs(rel_R_i(2,3,1)/rel_R_i_dot(2,3,1))+del_T_2;

T_1_sq=T_1(1,1)*T_1(1,1);
T_1_cube=T_1_sq*T_1(1,1);
T_1_fourth=T_1_cube*T_1(1,1);

T_2_sq=T_2(1,1)*T_2(1,1);
T_2_cube=T_2_sq*T_2(1,1);
T_2_fourth=T_2_cube*T_2(1,1);

% Gains for vehicle 3 against 1:
den_1=(12.0*r_diff_1*r_diff_1+12.0*s4*r_diff_1*T_1(1,1)+…

4.0*s1*r_diff_1*T_1_cube+s1*s4*T_1_fourth);
den_2=(12.0*r_diff_1*r_diff_1+12.0*s5*r_diff_1*T_1(1,1)+…

4.0*s2*r_diff_1*T_1_cube+s2*s5*T_1_fourth);
den_3=(12.0*r_diff_1*r_diff_1+12.0*s6*r_diff_1*T_1(1,1)+…

4.0*s3*r_diff_1*T_1_cube+s3*s6*T_1_fourth);

num_14=6.0*s1*r_diff_1*T_1(1,1)*(2.0*r_diff_1+s4*T_1(1,1));
num_25=6.0*s2*r_diff_1*T_1(1,1)*(2.0*r_diff_1+s5*T_1(1,1));
num_36=6.0*s3*r_diff_1*T_1(1,1)*(2.0*r_diff_1+s6*T_1(1,1));
num_44=4.0*r_diff_1*(3.0*s4*r_diff_1+3.0*s1*r_diff_1*T_1_sq+s1*s4*T_1_cube);
num_55=4.0*r_diff_1*(3.0*s5*r_diff_1+3.0*s2*r_diff_1*T_1_sq+s2*s5*T_1_cube);
num_66=4.0*r_diff_1*(3.0*s6*r_diff_1+3.0*s3*r_diff_1*T_1_sq+s3*s6*T_1_cube);

% Interceptor (3) intercept gains against Target (1)
g31_1=(num_14/den_1)/r3;
g31_2=(num_25/den_2)/r3;
g31_3=(num_36/den_3)/r3;
g31_4=(num_44/den_1)/r3;
g31_5=(num_55/den_2)/r3;
g31_6=(num_66/den_3)/r3;

% target (1) evasion gains against attacker (3)
g13_1=(num_14/den_1)/r1_bar;
g13_2=(num_25/den_2)/r1_bar;
g13_3=(num_36/den_3)/r1_bar;
g13_4=(num_44/den_1)/r1_bar;
g13_5=(num_55/den_2)/r1_bar;
g13_6=(num_66/den_3)/r1_bar;

% Gains for vehicles 2 against 3:
den_1=(12.0*r_diff_2*r_diff_2+12.0*s4*r_diff_2*T_2(1,1)+…

4.0*s1*r_diff_2*T_2_cube+s1*s4*T_2_fourth);
den_2=(12.0*r_diff_2*r_diff_2+12.0*s5*r_diff_2*T_2(1,1)+…

4.0*s2*r_diff_2*T_2_cube+s2*s5*T_2_fourth);
den_3=(12.0*r_diff_2*r_diff_2+12.0*s6*r_diff_2*T_2(1,1)+…

4.0*s3*r_diff_2*T_2_cube+s3*s6*T_2_fourth);

num_14=6.0*s1*r_diff_2*T_2(1,1)*(2.0*r_diff_2+s4*T_2(1,1));
num_25=6.0*s2*r_diff_2*T_2(1,1)*(2.0*r_diff_2+s5*T_2(1,1));
num_36=6.0*s3*r_diff_2*T_2(1,1)*(2.0*r_diff_2+s6*T_2(1,1));
num_44=4.0*r_diff_2*(3.0*s4*r_diff_2+3.0*s1*r_diff_2*T_2_sq+s1*s4*T_2_cube);
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num_55=4.0*r_diff_2*(3.0*s5*r_diff_2+3.0*s2*r_diff_2*T_2_sq+s2*s5*T_2_cube);
num_66=4.0*r_diff_2*(3.0*s6*r_diff_2+3.0*s3*r_diff_2*T_2_sq+s3*s6*T_2_cube);

% defender (2) intercept gains against attacker (3)
g23_1=(num_14/den_1)/r2;
g23_2=(num_25/den_2)/r2;
g23_3=(num_36/den_3)/r2;
g23_4=(num_44/den_1)/r2;
g23_5=(num_55/den_2)/r2;
g23_6=(num_66/den_3)/r2;

% attacker (3) evasion gains against defender (2)
g32_1=(num_14/den_1)/r3_bar;
g32_2=(num_25/den_2)/r3_bar;
g32_3=(num_36/den_3)/r3_bar;
g32_4=(num_44/den_1)/r3_bar;
g32_5=(num_55/den_2)/r3_bar;
g32_6=(num_66/den_3)/r3_bar;

%Guidance demands in Fixed Axis:

ax_i_dem(1,1)=factor1*(g13_1*rel_x_i(1,3,1)+g13_4*rel_u_i(1,3,1));
ax_i_dem(2,1)=factor2*(g23_1*rel_x_i(3,2,1)+g23_4*rel_u_i(3,2,1));
ax_i_dem(3,1)=factor3*(g31_1*rel_x_i(1,3,1)+g31_4*rel_u_i(1,3,1)…

+factor4*(g32_1*rel_x_i(3,2,1)+g32_4*rel_u_i(3,2,1)));

ay_i_dem(1,1)=factor1*(g13_2*rel_y_i(1,3,1)+g13_5*rel_v_i(1,3,1));
ay_i_dem(2,1)=factor2*(g23_2*rel_y_i(3,2,1)+g23_5*rel_v_i(3,2,1));
ay_i_dem(3,1)=factor3*(g31_2*rel_y_i(1,3,1)+g31_5*rel_v_i(1,3,1)…

+factor4*(g32_2*rel_y_i(3,2,1)+g32_5*rel_v_i(3,2,1)));

az_i_dem(1,1)=factor1*(g13_3*rel_z_i(1,3,1)+g13_6*rel_w_i(1,3,1));
az_i_dem(2,1)=factor2*(g23_3*rel_z_i(3,2,1)+g23_6*rel_w_i(3,2,1));
az_i_dem(3,1)=factor3*(g31_3*rel_z_i(1,3,1)+g31_6*rel_w_i(1,3,1)…

+factor4*(g32_3*rel_z_i(3,2,1)+g32_6*rel_w_i(3,2,1)));

%Convert to Demands in Body Axis
for i=1:i_num;

ax_b_dem(i,1)=t11_bi(i,1)*ax_i_dem(i,1)+t21_bi(i,1)*ay_i_dem(i,1)+…
t31_bi(i,1)*az_i_dem(i,1);

ay_b_dem(i,1)=t12_bi(i,1)*ax_i_dem(i,1)+t22_bi(i,1)*ay_i_dem(i,1)+…
t32_bi(i,1)*az_i_dem(i,1);

az_b_dem(i,1)=t13_bi(i,1)*ax_i_dem(i,1)+t23_bi(i,1)*ay_i_dem(i,1)+…
t33_bi(i,1)*az_i_dem(i,1);

end
%% g-constraints
ax_b_dem(1,1)=0;
ax_b_dem(2,1)=0;
ax_b_dem(3,1)=0;

if ay_b_dem(1,1)<lim_min_y(1); ay_b_dem(1,1)=lim_min_y(1); end
if ay_b_dem(1,1)>lim_max_y(1); ay_b_dem(1,1)=lim_max_y(1); end
if ay_b_dem(2,1)<lim_min_y(2); ay_b_dem(2,1)=lim_min_y(2); end
if ay_b_dem(2,1)>lim_max_y(2); ay_b_dem(2,1)=lim_max_y(2); end
if ay_b_dem(3,1)<lim_min_y(3); ay_b_dem(3,1)=lim_min_y(3); end
if ay_b_dem(3,1)>lim_max_y(3); ay_b_dem(3,1)=lim_max_y(3); end
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if az_b_dem(1,1)<lim_min_z(1); az_b_dem(1,1)=lim_min_z(1); end
if az_b_dem(1,1)>lim_max_z(1); az_b_dem(1,1)=lim_max_z(1); end
if az_b_dem(2,1)<lim_min_z(2); az_b_dem(2,1)=lim_min_z(2); end
if az_b_dem(2,1)>lim_max_z(2); az_b_dem(2,1)=lim_max_z(2); end
if az_b_dem(3,1)<lim_min_z(3); az_b_dem(3,1)=lim_min_z(3); end
if az_b_dem(3,1)>lim_max_z(3); az_b_dem(3,1)=lim_max_z(3); end

% Vehicles Additional Manoeuvres
ax_b_bias(1,1)=0;
ay_b_bias(1,1)=0;
az_b_bias(1,1)=0;

ax_b_bias(2,1)=0;
ay_b_bias(2,1)=0;
az_b_bias(2,1)=0;

ax_b_bias(3,1)=0;
ay_b_bias(3,1)=0;
az_b_bias(3,1)=0;

%% ************************ END INITIALISATION BLOCK **********************

%% ************************************************************************
% 20. START MAIN SIMULATION LOOP::
% ************************************************************************
%% 20.10. Update Inertial_Axis Position, Velocity & Acceleration:

for T=1:T_index-1;
for i=1:i_num;

[x_i(i,T+1),y_i(i,T+1),z_i(i,T+1),u_i(i,T+1),v_i(i,T+1),…
w_i(i,T+1),ax_i(i,T+1),ay_i(i,T+1),az_i(i,T+1),…
quat1(i,T+1),quat2(i,T+1),quat3(i,T+1),quat4(i,T+1),…
t11_bi(i,T+1),t12_bi(i,T+1),t13_bi(i,T+1),t21_bi(i,T+1),…
t22_bi(i,T+1),t23_bi(i,T+1),t31_bi(i,T+1),t32_bi(i,T+1),…
t33_bi(i,T+1)]=…
kinematics3(x_i(i,T),y_i(i,T),z_i(i,T),u_i(i,T),v_i(i,T),…
w_i(i,T),quat1(i,T),quat2(i,T),quat3(i,T),quat4(i,T),…

p_b(i,T),q_b(i,T),r_b(i,T),ax_b(i,T),ay_b(i,T),az_b(i,T),del_t);

R_i_sq(i,T+1)=(x_i(i,T+1)*x_i(i,T+1)+y_i(i,T+1)*y_i(i,T+1)+…
z_i(i,T+1)*z_i(i,T+1));

R_i(i,T+1)=sqrt(R_i_sq(i,T+1));

V_i_sq(i,T+1)=(u_i(i,T+1)*u_i(i,T+1)+v_i(i,T+1)*v_i(i,T+1)+…
w_i(i,T+1)*w_i(i,T+1));

V_i(i,T+1)=sqrt(V_i_sq(i,T+1));
A_i_sq(i,T+1)=(ax_i(i,T+1)*ax_i(i,T+1)+ay_i(i,T+1)*ay_i(i,T+1)+…

az_i(i,T+1)*az_i(i,T+1));
A_i(i,T+1)=sqrt(A_i_sq(i,T+1));

p_i(i,T+1)=(v_i(i,T+1)*az_i(i,T+1)-w_i(i,T+1)*ay_i(i,T+1))/V_i_sq(i,T+1);
q_i(i,T+1)=(w_i(i,T+1)*ax_i(i,T+1)-u_i(i,T+1)*az_i(i,T+1))/V_i_sq(i,T+1);
r_i(i,T+1)=(u_i(i,T+1)*ay_i(i,T+1)-v_i(i,T+1)*ax_i(i,T+1))/V_i_sq(i,T+1);

end
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%% 20.20. Update Inertial_Axis Relative States************************
for i = 1:i_num;

for j =1:j_num;
if(i~=j);

rel_x_i(i,j,T+1) = x_i(i,T+1)-x_i(j,T+1);
rel_y_i(i,j,T+1) = y_i(i,T+1)-y_i(j,T+1);
rel_z_i(i,j,T+1) = z_i(i,T+1)-z_i(j,T+1);

rel_u_i(i,j,T+1) = u_i(i,T+1)-u_i(j,T+1);
rel_v_i(i,j,T+1) = v_i(i,T+1)-v_i(j,T+1);
rel_w_i(i,j,T+1) = w_i(i,T+1)-w_i(j,T+1);

rel_ax_i(i,j,T+1) = ax_i(i,T+1)-ax_i(j,T+1);
rel_ay_i(i,j,T+1) = ay_i(i,T+1)-ay_i(j,T+1);
rel_az_i(i,j,T+1) = az_i(i,T+1)-az_i(j,T+1);

rel_R1_i_sq(i,j,T+1)=(rel_x_i(i,j,T+1)*rel_x_i(i,j,T+1)+…
rel_y_i(i,j,T+1)*rel_y_i(i,j,T+1));

rel_R1_i(i,j,T+1)=sqrt(rel_R1_i_sq(i,j,T+1));

rel_R_i_sq(i,j,T+1)=(rel_R1_i_sq(i,j,T+1)+…
rel_z_i(i,j,T+1)*rel_z_i(i,j,T+1));

rel_R_i(i,j,T+1)=sqrt(rel_R_i_sq(i,j,T+1));

rel_V_i_sq(i,j,T+1)=(rel_u_i(i,j,T+1)*rel_u_i(i,j,T+1)+…
rel_v_i(i,j,T+1)*rel_v_i(i,j,T+1)+…
rel_w_i(i,j,1)*rel_w_i(i,j,1));

rel_V_i(i,j,T+1)=sqrt(rel_V_i_sq(i,j,T+1));

rel_A_i_sq(i,T+1)=(rel_ax_i(i,j,T+1)*rel_ax_i(i,j,T+1)+…
rel_ay_i(i,j,T+1)*rel_ay_i(i,j,T+1)+…
rel_az_i(i,j,T+1)*rel_az_i(i,j,T+1));

rel_A_i(i,j,T+1)=sqrt(rel_A_i_sq(i,j,T+1));

% Update Range, LOS Angle and Rates:
rel_R1_i_dot(i,j,T+1)=(rel_x_i(i,j,T+1)*rel_u_i(i,j,T+1)…

+rel_y_i(i,j,T+1)*rel_v_i(i,j,T+1))/rel_R1_i(i,j,T+1);
rel_R_i_dot(i,j,T+1)=(rel_x_i(i,j,T+1)*rel_u_i(i,j,T+1)…

+rel_y_i(i,j,T+1)*rel_v_i(i,j,T+1)…
+rel_z_i(i,j,T+1)*rel_w_i(i,j,T+1))/rel_R_i(i,j,T+1);

rel_psi_los_i_dot(i,j,T+1)=(rel_x_i(i,j,T+1)*…
rel_v_i(i,j,T+1)-rel_y_i(i,j,T+1)*rel_u_i(i,j,T+1))…
/rel_R1_i_sq(i,j,T+1);

rel_theta_los_i_dot(i,j,T+1)=(rel_w_i(i,j,T+1)*…
rel_R1_i(i,j,T+1)-rel_z_i(i,j,T+1)*…
rel_R1_i_dot(i,j,T+1))/rel_R_i_sq(i,j,T+1);

rel_psi_los_i(i,j,T+1) = atan2(rel_y_i(i,j,T+1),…
rel_x_i(i,j,T+1));

rel_theta_los_i(i,j,T+1) = atan2(-rel_z_i(i,j,T+1),…
rel_R1_i(i,j,T+1));

end
end

end
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%% 20.30. Autopilot Loop Dynamics**************************************
% Update Body-Axis Velocities & Accelerations
for i=1:i_num

ax_b_dot(i,T+1)=-bw_ax(i)*ax_b(i,T)+bw_ax(i)*ax_b_dem(i,T);
ay_b_dot(i,T+1)=-bw_ay(i)*ay_b(i,T)+bw_ay(i)*ay_b_dem(i,T);
az_b_dot(i,T+1)=-bw_az(i)*az_b(i,T)+bw_az(i)*az_b_dem(i,T);

ax_b(i,T+1)=ax_b(i,T)+ax_b_dot(i,T+1)*del_t;
ay_b(i,T+1)=ay_b(i,T)+ay_b_dot(i,T+1)*del_t;
az_b(i,T+1)=az_b(i,T)+az_b_dot(i,T+1)*del_t;

u_b(i,T+1)=u_b(i,T);
v_b(i,T+1)=v_b(i,T);
w_b(i,T+1)=w_b(i,T);

end

% Update Body_Axis Velociy, Acceleration and Rates:
for i=1:i_num;

V_b(i,T+1)=sqrt(u_b(i,T+1)*u_b(i,T+1)+v_b(i,T+1)*v_b(i,T+1)+…
w_b(i,T+1)*w_b(i,T+1));

V_b_sq(i,T+1)=V_b(i,T+1)*V_b(i,T+1);
A_b(i,T+1)=sqrt(ax_b(i,T+1)*ax_b(i,T+1)+ay_b(i,T+1)*ay_b(i,T+1)+…

az_b(i,T+1)*az_b(i,T+1));
p_b(i,T+1)=(v_b(i,T+1)*az_b(i,T+1)-w_b(i,T+1)*ay_b(i,T+1))/V_b_sq(i,T+1);
q_b(i,T+1)=(w_b(i,T+1)*ax_b(i,T+1)-u_b(i,T+1)*az_b(i,T+1))/V_b_sq(i,T+1);
r_b(i,T+1)=(u_b(i,T+1)*ay_b(i,T+1)-v_b(i,T+1)*ax_b(i,T+1))/V_b_sq(i,T+1);

end

%% 20.40. Guidance Law Implementation**********************************

T_1(1,T+1)=T_1_factor*abs(rel_R_i(3,1,T+1)/rel_R_i_dot(3,1,T+1))+del_T_1;

T_2(1,T+1)=T_2_factor*abs(rel_R_i(2,3,T+1)/rel_R_i_dot(2,3,T+1))+del_T_2;

if(T_1(1,T+1)>T_1(1,T));T_1(1,T+1)=T_1(1,T);
end
if(T_2(1,T+1)>T_2(1,T));T_2(1,T+1)=T_2(1,T);
end

T_1_sq=T_1(1,T+1)*T_1(1,T+1);
T_1_cube=T_1_sq*T_1(1,T+1);
T_1_fourth=T_1_cube*T_1(1,T+1);

T_2_sq=T_2(1,T+1)*T_2(1,T+1);
T_2_cube=T_2_sq*T_2(1,T+1);
T_2_fourth=T_2_cube*T_2(1,T+1);

time=T*del_t;
if(time>6);

factor4=0;
end

% Guidance Gains - Target(1)/Attacker(3):
den_1=(12.0*r_diff_1*r_diff_1+12.0*s4*r_diff_1*T_1(1,T+1)+…

4.0*s1*r_diff_1*T_1_cube+s1*s4*T_1_fourth);
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den_2=(12.0*r_diff_1*r_diff_1+12.0*s5*r_diff_1*T_1(1,T+1)+…
4.0*s2*r_diff_1*T_1_cube+s2*s5*T_1_fourth);

den_3=(12.0*r_diff_1*r_diff_1+12.0*s6*r_diff_1*T_1(1,T+1)+…
4.0*s3*r_diff_1*T_1_cube+s3*s6*T_1_fourth);

num_14=6.0*s1*r_diff_1*T_1(1,T+1)*(2.0*r_diff_1+s4*T_1(1,T+1));
num_25=6.0*s2*r_diff_1*T_1(1,T+1)*(2.0*r_diff_1+s5*T_1(1,T+1));
num_36=6.0*s3*r_diff_1*T_1(1,T+1)*(2.0*r_diff_1+s6*T_1(1,T+1));

num_44=4.0*r_diff_1*(3.0*s4*r_diff_1+3.0*s1*r_diff_1*T_1_sq+s1*s4*T_1_cube);

num_55=4.0*r_diff_1*(3.0*s5*r_diff_1+3.0*s2*r_diff_1*T_1_sq+s2*s5*T_1_cube);

num_66=4.0*r_diff_1*(3.0*s6*r_diff_1+3.0*s3*r_diff_1*T_1_sq+s3*s6*T_1_cube);

g31_1=num_14/den_1/r3;
g31_2=num_25/den_2/r3;
g31_3=num_36/den_3/r3;
g31_4=num_44/den_1/r3;
g31_5=num_55/den_2/r3;
g31_6=num_66/den_3/r3;

g13_1=num_14/den_1/r1_bar;
g13_2=num_25/den_2/r1_bar;
g13_3=num_36/den_3/r1_bar;
g13_4=num_44/den_1/r1_bar;
g13_5=num_55/den_2/r1_bar;
g13_6=num_66/den_3/r1_bar;

% Guidance Gains - Target(3)/Defender(2):
den_1=(12.0*r_diff_2*r_diff_2+12.0*s4*r_diff_2*T_2(1,T+1)+…

4.0*s1*r_diff_2*T_2_cube+s1*s4*T_2_fourth);
den_2=(12.0*r_diff_2*r_diff_2+12.0*s5*r_diff_2*T_2(1,T+1)+…

4.0*s2*r_diff_2*T_2_cube+s2*s5*T_2_fourth);
den_3=(12.0*r_diff_2*r_diff_2+12.0*s6*r_diff_2*T_2(1,T+1)+…

4.0*s3*r_diff_2*T_2_cube+s3*s6*T_2_fourth);

num_14=6.0*s1*r_diff_2*T_2(1,T+1)*(2.0*r_diff_2+s4*T_2(1,T+1));
num_25=6.0*s2*r_diff_2*T_2(1,T+1)*(2.0*r_diff_2+s5*T_2(1,T+1));
num_36=6.0*s3*r_diff_2*T_2(1,T+1)*(2.0*r_diff_2+s6*T_2(1,T+1));

num_44=4.0*r_diff_2*(3.0*s4*r_diff_2+3.0*s1*r_diff_2*T_2_sq+s1*s4*T_2_cube);

num_55=4.0*r_diff_2*(3.0*s5*r_diff_2+3.0*s2*r_diff_2*T_2_sq+s2*s5*T_2_cube);

num_66=4.0*r_diff_2*(3.0*s6*r_diff_2+3.0*s3*r_diff_2*T_2_sq+s3*s6*T_2_cube);

% Attacker Gains
g23_1=num_14/den_1/r2;
g23_2=num_25/den_2/r2;
g23_3=num_36/den_3/r2;
g23_4=num_44/den_1/r2;
g23_5=num_55/den_2/r2;
g23_6=num_66/den_3/r2;
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% Evader gains
g32_1=num_14/den_1/r3_bar;
g32_2=num_25/den_2/r3_bar;
g32_3=num_36/den_3/r3_bar;
g32_4=num_44/den_1/r3_bar;
g32_5=num_55/den_2/r3_bar;
g32_6=num_66/den_3/r3_bar;
% Guidance Acceleration Demands in Fixed_Axis:

ax_i_dem(1,T+1)=factor1*(g13_1*rel_x_i(1,3,T+1)+g13_4*rel_u_i(1,3,T+1));

ax_i_dem(2,T+1)=factor2*(g23_1*rel_x_i(3,2,T+1)+g23_4*rel_u_i(3,2,T+1));

ax_i_dem(3,T+1)=factor3*(g31_1*rel_x_i(1,3,T+1)+g31_4*rel_u_i(1,3,T+1))…
+factor4*(g32_1*rel_x_i(3,2,T+1)+g32_4*rel_u_i(3,2,T+1));

ay_i_dem(1,T+1)=factor1*(g13_2*rel_y_i(1,3,T+1)+g13_5*rel_v_i(1,3,T+1));

ay_i_dem(2,T+1)=factor2*(g23_2*rel_y_i(3,2,T+1)+g23_5*rel_v_i(3,2,T+1));

ay_i_dem(3,T+1)=factor3*(g31_2*rel_y_i(1,3,T+1)+g31_5*rel_v_i(1,3,T+1))…
+factor4*(g32_2*rel_y_i(3,2,T+1)+g32_5*rel_v_i(3,2,T+1));

az_i_dem(1,T+1)=factor1*(g13_3*rel_z_i(1,3,T+1)+g13_6*rel_w_i(1,3,T+1));

az_i_dem(2,T+1)=factor2*(g23_3*rel_z_i(3,2,T+1)+g23_6*rel_w_i(3,2,T+1));

az_i_dem(3,T+1)=factor3*(g31_3*rel_z_i(1,3,T+1)+g31_6*rel_w_i(1,3,T+1))…
+factor4*(g32_3*rel_z_i(3,2,T+1)+g32_6*rel_w_i(3,2,T+1));

%Convert Demands to Body_Axis
for i=1:i_num;

ax_b_dem(i,T+1)=t11_bi(i,T+1)*ax_i_dem(i,T+1)+t21_bi(i,T+1)*…
ay_i_dem(i,T+1)+t31_bi(i,T+1)*az_i_dem(i,T+1);

ay_b_dem(i,T+1)=t12_bi(i,T+1)*ax_i_dem(i,T+1)+t22_bi(i,T+1)*…
ay_i_dem(i,T+1)+t32_bi(i,T+1)*az_i_dem(i,T+1);

az_b_dem(i,T+1)=t13_bi(i,T+1)*ax_i_dem(i,T+1)+t23_bi(i,T+1)*…
ay_i_dem(i,T+1)+t33_bi(i,T+1)*az_i_dem(i,T+1);

end

%Additional Vehicle Manoeuvres:
for i = 1:i_num;

ax_b_dem(i,T+1)=ax_b_dem(i,T+1)+ax_b_bias(i,T+1);
ay_b_dem(i,T+1)=ay_b_dem(i,T+1)+ay_b_bias(i,T+1);
az_b_dem(i,T+1)=az_b_dem(i,T+1)+az_b_bias(i,T+1);

end

%% g-constraints
ax_b_dem(1,T+1)=0;
ax_b_dem(2,T+1)=0;
ax_b_dem(3,T+1)=0;
if ay_b_dem(1,T+1)<lim_min_y(1); ay_b_dem(1,T+1)=lim_min_y(1); end
if ay_b_dem(1,T+1)>lim_max_y(1); ay_b_dem(1,T+1)=lim_max_y(1); end
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if ay_b_dem(2,T+1)<lim_min_y(2); ay_b_dem(2,T+1)=lim_min_y(2); end
if ay_b_dem(2,T+1)>lim_max_y(2); ay_b_dem(2,T+1)=lim_max_y(2); end
if ay_b_dem(3,T+1)<lim_min_y(3); ay_b_dem(3,T+1)=lim_min_y(3); end
if ay_b_dem(3,T+1)>lim_max_y(3); ay_b_dem(3,T+1)=lim_max_y(3); end
if az_b_dem(1,T+1)<lim_min_z(1); az_b_dem(1,T+1)=lim_min_z(1); end
if az_b_dem(1,T+1)>lim_max_z(1); az_b_dem(1,T+1)=lim_max_z(1); end
if az_b_dem(2,T+1)<lim_min_z(2); az_b_dem(2,T+1)=lim_min_z(2); end
if az_b_dem(2,T+1)>lim_max_z(2); az_b_dem(2,T+1)=lim_max_z(2); end
if az_b_dem(3,T+1)<lim_min_z(3); az_b_dem(3,T+1)=lim_min_z(3); end
if az_b_dem(3,T+1)>lim_max_z(3); az_b_dem(3,T+1)=lim_max_z(3); end

% Check for Miss Distance *********************************************
if(rel_R_i(2,3,T+1)<miss_dist(2,3));

miss_dist(2,3)=rel_R_i(2,3,T+1);
miss_flag(2,3)=0;

else
if(miss_flag(2,3)==0);

miss_flag(2,3)=1;
Miss23=miss_dist(2,3)
flight_time(2,3)=(T+1)*del_t;
Flight_time23=flight_time(2,3)

end
end

if(rel_R_i(3,1,T+1)<miss_dist(3,1));
miss_dist(3,1)=rel_R_i(3,1,T+1);
miss_flag (3,1)=0;

else
if(miss_flag(3,1)==0);

miss_flag(3,1)=1;
Miss31=miss_dist(3,1)
flight_time(3,1)=(T+1)*del_t;
Flight_time31=flight_time(3,1)

end
end
% if(miss_flag(2,3)==1 && miss_flag(3,1)==1);
% break
% end

if T==1 % Only for the first simulation step
%% Miss distances
decreasing_3_1 = true;
decreasing_2_3 = true;

misses23 = [];
misses31 = [];

%% Incremental plotting during run
res = 500; %Plot every "res" simulation steps
rescount = 1;

% Calculate locations for 3 figures in top half of screen
ss = get(0,'ScreenSize');
windw = ss(3)/3;
windh = (ss(4)-28)/2;
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% Format figures and plot first point
f25 = figure(25); hold on
set(f25, 'OuterPosition', [1 29+windh windw windh], 'MenuBar', ' none',
'Toolbar', 'figure');
f25p1 = plot(x_i(1,1),-z_i(1,1),'k');
f25p2 = plot(x_i(2,1),-z_i(2,1),':k');
f25p3 = plot(x_i(3,1),-z_i(3,1),'- -k');
a25 = gca;
title('Z vs. X; 1=blk, 2=…, 3=- - -');
xlabel('Down-Range (m)');
ylabel('Altitude (m)');

f26 = figure(26); hold on
set(f26, 'OuterPosition', [1+windw 29+windh windw windh], 'MenuBar',
' none', 'Toolbar', 'figure');
f26p1 = plot(y_i(1,1),-z_i(1,1),'k');
f26p2 = plot(y_i(2,1),-z_i(2,1),':k');
f26p3 = plot(y_i(3,1),-z_i(3,1),'- -k');
a26 = gca;
title('Z vs. Y; 1=blk, 2=…, 3=- - -');
xlabel('Cross-Range (m)');
ylabel('Altitude (m)');

f27 = figure(27); hold on
set(f27, 'OuterPosition', [1+2*windw 29+windh windw windh], 'MenuBar',
' none', 'Toolbar', 'figure');
f27p1 = plot(x_i(1,1),y_i(1,1),'k');
f27p2 = plot(x_i(2,1),y_i(2,1),':k');
f27p3 = plot(x_i(3,1),y_i(3,1),'- -k');
a27 = gca;
title('Y vs. X; 1=blk, 2=…, 3=- - -');
xlabel('Down-Range (m)');
ylabel('Cross Range (m)');

f36 = figure(36); hold on
set(f36, 'OuterPosition', [1+2*windw 29 windw windh], 'MenuBar', ' none',
'Toolbar', 'figure');
set(gca, 'xlim', [0,tf]);
rel_R_i_3_1 = zeros(length(rel_R_i),1);
rel_R_i_3_1(1) = rel_R_i(3,1,1);
rel_R_i_3_1(2) = rel_R_i(3,1,2);
f36p1 = plot(t(1),rel_R_i_3_1(1),'- -k');
rel_R_i_2_3 = zeros(length(rel_R_i),1);
rel_R_i_2_3(1) = rel_R_i(2,3,1);
rel_R_i_2_3(2) = rel_R_i(2,3,2);
f36p2 = plot(t(1),rel_R_i_2_3(1),':k');
a36 = gca;
y_lim = get(gca, 'ylim');
set(gca, 'ylim', [0 y_lim(2)]);
y_lim = get(gca, 'ylim');
title('Range-to-go vs. Time');
xlabel('Time (s)');
ylabel('Range-to-go (m)');

%% Pause and quit buttons
choice=0;
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hd = dialog('WindowStyle', 'normal', 'Name', '', 'OuterPosition',
[1 29+windh-100 270 90]);

but1=uicontrol(hd,'Style','pushbutton','String','Pause','Callback','choice=1;');

but2=uicontrol(hd,'Style','pushbutton','String','Continue','Position',
[100 20 60 20],'Callback','choice=2;');

but3=uicontrol(hd,'Style','pushbutton','String','Quit','Position',
[180 20 60 20],'Callback','choice=3;');

else % For every simulation step except the first
%% Miss distances
if (rel_R_i(2,3,T+1) <= rel_R_i_2_3(T)) % Decreasing range

if(~decreasing_2_3)
decreasing_2_3 = true; % Change to decreasing

end
else % Increasing range

if(decreasing_2_3)
decreasing_2_3 = false; % Change to increasing
misses23 = [misses23; t(T) rel_R_i_2_3(T)];
plot(a25, x_i(3,T+1),-z_i(3,T+1),'*b');
plot(a25, x_i(2,T+1),-z_i(2,T+1),'sb');
plot(a26, y_i(3,T+1),-z_i(3,T+1),'*b');
plot(a26, y_i(2,T+1),-z_i(2,T+1),'sb');
plot(a27, x_i(3,T+1),y_i(3,T+1),'*b');
plot(a27, x_i(2,T+1),y_i(2,T+1),'sb');
plot(a36, [t(T), t(T)], y_lim, '-b');

end
end
if (rel_R_i(3,1,T+1) <= rel_R_i_3_1(T)) % Decreasing range

if(~decreasing_3_1)
decreasing_3_1 = true; % Change to decreasing

end
else % Increasing range

if(decreasing_3_1)
decreasing_3_1 = false; % Change to increasing
misses31 = [misses31; t(T) rel_R_i_3_1(T)];
plot(a25, x_i(1,T+1),-z_i(1,T+1),'or');
plot(a25, x_i(3,T+1),-z_i(3,T+1),'*r');
plot(a26, y_i(1,T+1),-z_i(1,T+1),'or');
plot(a26, y_i(3,T+1),-z_i(3,T+1),'*r');
plot(a27, x_i(1,T+1),y_i(1,T+1),'or');
plot(a27, x_i(3,T+1),y_i(3,T+1),'*r');
plot(a36, [t(T), t(T)], y_lim, '-r');

end
end
rel_R_i_3_1(T+1) = rel_R_i(3,1,T+1);
rel_R_i_2_3(T+1) = rel_R_i(2,3,T+1);

%% Incremental plotting during run
rescount = rescount+1;
if rescount>=res

rescount = 0;
set(f25p1,'xdata',x_i(1,1:T),'ydata',-z_i(1,1:T));
set(f25p2,'xdata',x_i(2,1:T),'ydata',-z_i(2,1:T));
set(f25p3,'xdata',x_i(3,1:T),'ydata',-z_i(3,1:T));
set(f26p1,'xdata',y_i(1,1:T),'ydata',-z_i(1,1:T));
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set(f26p2,'xdata',y_i(2,1:T),'ydata',-z_i(2,1:T));
set(f26p3,'xdata',y_i(3,1:T),'ydata',-z_i(3,1:T));
set(f27p1,'xdata',x_i(1,1:T),'ydata',y_i(1,1:T));
set(f27p2,'xdata',x_i(2,1:T),'ydata',y_i(2,1:T));
set(f27p3,'xdata',x_i(3,1:T),'ydata',y_i(3,1:T));
set(f36p1,'xdata',t(1:T),'ydata',rel_R_i_3_1(1:T));
set(f36p2,'xdata',t(1:T),'ydata',rel_R_i_2_3(1:T));
drawnow;

end
end

%% Pause and quit buttons
while choice==1

set(but1,'String','Step');
waitforbuttonpress;
choice=2;
if choice==2

set(but1,'String','Pause');
end

end
if choice==3

delete(hd);
clear('hd');
break

end
end
%% Pause and quit buttons. Delete buttons if they still exist
if exist('hd', 'var')

delete(hd);
clear('hd');

end

%% Incremental plotting
% Plot last point on graphs
set(f25p1,'xdata',x_i(1,1:T),'ydata',-z_i(1,1:T));
set(f25p2,'xdata',x_i(2,1:T),'ydata',-z_i(2,1:T));
set(f25p3,'xdata',x_i(3,1:T),'ydata',-z_i(3,1:T));
set(f26p3,'xdata',y_i(3,1:T),'ydata',-z_i(3,1:T));
set(f27p1,'xdata',x_i(1,1:T),'ydata',y_i(1,1:T));
set(f27p2,'xdata',x_i(2,1:T),'ydata',y_i(2,1:T));
set(f27p3,'xdata',x_i(3,1:T),'ydata',y_i(3,1:T));
set(f36p1,'xdata',t(1:T),'ydata',rel_R_i_3_1(1:T));
set(f36p2,'xdata',t(1:T),'ydata',rel_R_i_2_3(1:T));

% Show 2 minimum miss distances on graph 36
figure(36);
% Stretch series to fill X axis
set(gca, 'xlim', [0,ceil(t(T))]);
% Plot vertical near miss lines
% yl = get(gca, 'ylim');

empty = true;
str={};
str{1} = ' Time Distance';
if ~isempty(misses31)

empty = false;
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misses31 = sortrows(misses31,2);
for i=1:size(misses31,1)

% plot([misses31(i,1),misses31(i,1)], yl, '-r');
str = [str; 'Miss31 : ', num2str(misses31(i,:))];
if (i==2)

break
end

end
end
if ~isempty(misses23)

empty = false;
misses23 = sortrows(misses23,2);
for i=1:size(misses23,1)

% plot([misses23(i,1),misses23(i,1)], yl, '-b');
str = [str; 'Miss23 : ', num2str(misses23(1,:))];
if (i==2)

break
end

end
end
if ~empty
text(.55,.95,str,'EdgeColor','black','VerticalAlignment','top','units',
'normalized');

drawnow;
end

2. Listing for kinematics3.m

%% ************************************************************************
%% This subroutine updates the direction cosine matrix using quaternions
%% Transform the vehicle acceleration from body to fixed axis
%% Updates the fixed axis vehicle position and velocities
%% ************************************************************************

function[x_i,y_i,z_i,u_i,v_i,w_i,ax_i,ay_i,az_i,quat1,quat2,quat3,quat4,…
t11_bi,t12_bi,t13_bi,t21_bi,t22_bi,t23_bi,t31_bi,t32_bi,t33_bi]=…
kinematics3(x_i,y_i,z_i,u_i,v_i,w_i,quat1,quat2,quat3,quat4,p,q,r,…
ax_b,ay_b,az_b,del_t)

%% 1. Position,Velocity & Acceleration Vectors Update:
%% 1.1. Update Quaternions:
quat1_dot= -0.5*(quat2*p+quat3*q+quat4*r);
quat2_dot= 0.5*(quat1*p-quat4*q+quat3*r);
quat3_dot= 0.5*(quat4*p+quat1*q-quat2*r);
quat4_dot= -0.5*(quat3*p-quat2*q-quat1*r);

quat1=quat1+quat1_dot*del_t;
quat2=quat2+quat2_dot*del_t;
quat3=quat3+quat3_dot*del_t;
quat4=quat4+quat4_dot*del_t;

quat_sq=quat1*quat1+quat2*quat2+quat3*quat3+quat4*quat4;
quat=sqrt(quat_sq);
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quat1=quat1/quat;
quat2=quat2/quat;
quat3=quat3/quat;
quat4=quat4/quat;

%% 1.2. Construct DCM;
t11_bi=quat1*quat1+quat2*quat2-quat3*quat3-quat4*quat4;
t12_bi=2*(quat2*quat3-quat1*quat4);
t13_bi=2*(quat2*quat4+quat1*quat3);
t21_bi=2*(quat2*quat3+quat1*quat4);
t22_bi=quat1*quat1-quat2*quat2+quat3*quat3-quat4*quat4;
t23_bi=2*(quat3*quat4-quat1*quat2);
t31_bi=2*(quat2*quat4-quat1*quat3);
t32_bi=2*(quat3*quat4+quat1*quat2);
t33_bi=quat1*quat1-quat2*quat2-quat3*quat3+quat4*quat4;

%% 1.3. Construct:ax_i,ay_i,az_i, from ax_b,ay_b,az_b:
ax_i=t11_bi*ax_b+t12_bi*ay_b+t13_bi*az_b;
ay_i=t21_bi*ax_b+t22_bi*ay_b+t23_bi*az_b;
az_i=t31_bi*ax_b+t32_bi*ay_b+t33_bi*az_b;

%% 1.4. Update Position & Velocity;

u_i=u_i+ax_i*del_t;
v_i=v_i+ay_i*del_t;
w_i=w_i+az_i*del_t;

x_i =x_i+u_i*del_t;
y_i =y_i+v_i*del_t;
z_i =z_i+w_i*del_t;
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navigation

Augmented proportional navigation (APN)
guidance 3, 65, 137
PN and 81–82

b
Bilinear functions w.r.t. vector, partial

differentiation of 56
Body incidence 145

c
Calculus of optima (minimum/maximum)

for function
equality constraints utilizing Lagrange

multipliers, steady state with
19–22

linear system with quadratic cost
function, steady state for
22–23

necessary and sufficient conditions
for 18–19

CF. See Cost function
Characteristics eigenvalues 53
Characteristics equations 53
Collision course missile heading angles

145–149

Continuous-time differential game 4,
9–10

Continuous-time game 4
Cost function (CF) 3

d
Differential game theory

application to missile guidance 10–11
to multi-party engagement 50
optimal control applications in 40–41

three-party game theoretic guidance
for linear dynamical systems
44–50

two-party game theoretic guidance for
linear dynamical systems 41–44

optimum control and 17–51
three-party, to missile guidance

problem 102–117
two-party, to missile guidance problem

63–82
Discrete-time game 4, 8–9
Disturbance inputs 121–123
Dynamic games 4
Dynamic problem, optimum control for

with boundary (transversality) conditions
25–29

with fixed initial condition and
unspecified final time 30–35

Hamiltonian property and 35–36
with inequality control constraints

36–38
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Dynamic problem, optimum control for
(Continued)

with initial and terminal conditions
specified 23–25

with sufficient conditions for
optimality 29–30

e
Eigenvalues, characteristics 53
Engagement kinematics model,

development of 67–68
multi-vehicle engagement, translational

kinematics for 126–128
of n versus m vehicles 68
rotational kinematics

range and range rates 128–129
sightline rates 129–130

for three parties 151–153
vector/matrix representation 69

Equations
characteristics 53
of motion

and aerodynamic forces 141–145
Euler Lagrange (EL) multiplier 19

f
Finite game 4
Flight path angles 133–134
Four degrees-of-freedom simulation model,

for missile guidance 125–139
aerodynamic considerations 135–136
augmented proportional navigation

guidance 137
engagement kinematics model,

development of
multi-vehicle 126–128
rotational kinematics 128–130
vector/matrix representation

128
flight path angles 133–134
game theory-based guidance 137
optimum guidance 137
overall state space model 138
proportional navigation

guidance 136–137
vehicle autopilot dynamics 135
vehicle body angles 133–134

vehicle navigation model 130–131
quaternion, application of 131–133

g
Game of Tic-tac-toe 6–8
Games

continuous-time 4
discrete-time 4
dynamic 4
dynamics 4
evolution of 4
finite 4
infinite 4
players 3
stochastic 4
two-/three-party pursuit-evasion 11

Game theoretic guidance (GTG) 64–67
mechanization of 79

Game theory 2
concepts 3–4
continuous-time differential game 9–10
definitions 3–4
differential, application of 10–11
discrete-time game 8–9
to missile guidance problem 3
to optimum guidance, extension

of 79–81
problem examples 4

game of Tic-tac-toe 6–8
prisoner’s dilemma 4–6

GTG. See Game theoretic guidance
Guidance disturbance inputs 123–124
Guided missiles 2–3

h
Hamilton-Jacobi canonic equations 17
Hessian matrices 55–56

i
Infinite game 4
Interceptor/target guidance for two-party

game 70
differential game guidance problem,

solution of 73–75
differential game performance

index 70–72
weighting matrices S, Rp, Re 72–73
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l
Lagrange multipliers 18

equality constraints and 19–22
optimum control problems 18–22

Linear, bi-linear, and quadratic forms,
differential of 54

Linear dynamical systems
optimum control for LQPI problem (fixed

final time) 38–40
three-party game theoretic guidance

for 44–50
two-party game theoretic guidance

for 41–44
Linear system dynamical models

62
Linear system quadratic performance index

(LQPI) 3, 151
problem 18, 38–40
for two-party game theoretic guidance

problem 65
Loss function. See Cost function (CF)
LQPI. See Linear system quadratic

performance index

m
MATLAB-based simulation program 157,

162, 165–187
Matrix algebra and calculus 53
Matrix Riccati differential equations

(MRDE) 18
solution of 75–76, 85–95, 111–112

Missile guidance
differential game theory application

to 10–11
four degrees-of-freedom simulation

model for 125–139
need for 2–3
problem

game theory to 3
three-party differential game theory

to 102–117
two-party differential game theory

to 63–82
MRDE. See Matrix Riccati differential

equations
Multi-vehicle engagement, translational

kinematics for 126–128

n
Nash equilibrium. See Non-cooperative

equilibrium
Non-cooperative equilibrium 4

o
Objective function (OF) 3

in infinite game 4
of players 3–4

OF. See Objective function
OG. See Optimal guidance
Optimal guidance (OG) 64, 67

game theory to 79–81
for two-party game 70–75

Optimum control theory
calculus of optima (minimum or

maximum) for function 18–23
equality constraints utilizing Lagrange

multipliers, steady state with
19–22

linear system with quadratic cost
function, steady state for 22–23

necessary and sufficient conditions
for 18–19

differential game theory and 17–51,
40–41

three-party game theoretic guidance
for linear dynamical systems
44–50

two-party game theoretic guidance
for linear dynamical systems
41–44

for dynamic problem
with boundary (transversality)

conditions 25–29
with fixed initial condition and

unspecified final time 30–35
Hamiltonian property and 35–36
with inequality control constraints

36–38
with initial and terminal conditions

specified 23–25
with sufficient conditions for

optimality 29–30
for linear dynamical system

LQPI problem (fixed final
time) 38–40
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p
Parties. See Players
Performance index 10
Pitch-plane kinematics equations 144
Players 3

in cooperative game 4
objective function of 3–4
pay-off for 4

PMP. See Pontryagin’s minimum principle
PN. See Proportional navigation
Pontryagin’s minimum principle (PMP)

17, 36–38
Positive semi-definiteness of matrix [S] 84
Prisoner’s dilemma, game theory problem

example 4–6
Proportional navigation (PN) guidance

law 2–3, 65, 136–137
APN and 81–82

q
Quaternion, in navigation 131–133

r
Riccati differential equation 12, 27

analytical solution for 119–120, 164
derivation of 84–85, 118–119
MRDE, solution of 75–76, 85–95

s
Scalar functions

first and second variations of 57–58
nature (min/max-values) of 58–62
partial differentiation of 54

Scalar quadratic w.r.t. vector, partial
differentiation of 56

Sightline angles 99–101
Sightline rates 99–101
State feedback guidance gains 76–77,

120–121
State space dynamics model 140–141
Stochastic games 4

t
Three-party game 3

differential game missile guidance
simulation study 150–151

engagement kinematics model
151–153

game theory problem and solution
154–157

simulation results 157–162
differential theory to missile guidance

problem 102–104
engagement kinematics model for

104–107
game termination criteria 116
MRDE, solution for 111–112
performance index (PI) weightings

for 115–116
and solution 107–110
VRDE, solution for 112–115

theoretic guidance for linear dynamical
systems 44–50

Two-party game
interceptor/target guidance for 70

differential game guidance problem,
solution of 73–75

differential game performance index
70–72

weighting matrices S, Rp, Re 72–73
theoretic guidance for linear dynamical

systems 41–44
Two-party missile guidance problem,

differential game theory to
63–67

engagement kinematics model,
development of 67–69

feedback guidance gains 76–77
game theory to optimum guidance,

extension of 79–81
mechanization of game theoretic

guidance 79
MRDE, solution of 75–76
optimum interceptor/target guidance

70–75
PN and APN guidance, relationship

with 81–82
VRDE

analytical solution of 78
solution of 77–78

Two-/three-party pursuit-evasion games
11



Index 

u
UF. See Utility function
Utility function (UF) 3

v
Vector Riccati differential equations

(VRDE) 75
analytical solution of 78
solution of 77–78, 96–99, 112–115

Vehicle autopilot dynamics 135
Vehicle body angles 133–134

VRDE. See Vector Riccati differential
equations

w
Weighting matrices S, Rp, Re 72–73

y
Yaw plane equations 143–144

z
Zero-sum game 4
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