DEVELOPER ™
TESTING

BuiLDING QUALITY INTO SOFTWARE

ALEXANDER TARLINDER

Forewords by JEFF LANGR
and LISA CRISPIN

DEVELOPER TESTING

This page intentionally left blank

‘ DEVELOPER TESTING

BUILDING QUALITY INTO SOFTWARE

ALEXANDER TARLINDER

vvAddison-Wesley

Boston « Columbus « Indianapolis « New York San Francisco « Amsterdam « Cape Town
Dubai « London « Madrid « Milan « Munich e Paris « Montreal « Toronto « Delhi « Mexico City

Sao Paulo « Sydney « Hong Kong « Seoul « Singapore « Taipei « Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our corporate
sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact intlcs@pearson.com.
Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2016944434

Copyright © 2017 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected

by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding per-
missions, request forms and the appropriate contacts within the Pearson Education Global
Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-429106-2

ISBN-10: 0-13-429106-9

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
1 16

http://www.pearsoned.com/permissions/

To my grandfather Romuald, who taught me about books.

This page intentionally left blank

CONTENTS

Foreword by Jeff Langr
Foreword by Lisa Crispin
Preface
Acknowledgments

About the Author

Chapter 1 Developer Testing
Developers Test
Developer Testing Activities
What Developers Usually Don’t Do
Defining Developer Testing
Developer Testing and the Development Process
Summary

Chapter 2 Testing Objectives, Styles, and Roles
Testing and Checking
Testing Objectives
Testing Styles
Your Quality Assurance and Developer Testing

Summary

Chapter 3 The Testing Vocabulary
Errors, Defects, Failures
White Box and Black Box Testing
Classifying Tests
The Agile Testing Quadrants
Some Other Types of Testing
Summary

Xiii

XV

Xvii

XXiii

XXV

coO N N U N =

O

10
11
18
19

21

22
22
23
32
33
36

vii

viii Contents

Chapter 4 Testability from a Developer’s Perspective 37
Testable Software 37
Benefits of Testability 39
Testability Defined 43
Summary 55

Chapter 5 Programming by Contract 57
Contracts Formalize Constraints 57
Implementing Programming by Contract 60
Enforcing Contracts 62
Summary 65

Chapter 6 Drivers of Testability 67
Direct Input and Output 68
Indirect Input and Output 68
State 70
Temporal Coupling 71
Data Types and Testability 72
Domain-to-Range Ratio 77
Summary 78

Chapter 7 Unit Testing 79
Why Do It? 79
What Is a Unit Test? 81
The Life Cycle of a Unit Testing Framework 83
Naming Tests 85
Structuring Tests 88
Assertion Methods 89
Testing Exceptions 99
Behavior-driven Development-Style Frameworks 102
Summary 105

Chapter 8 Specification-based Testing Techniques 107
Equivalence Partitioning 107
Boundary Value Analysis 110
Edge Cases and Gotchas for Some Data Types 111
State Transition Testing 113
Decision Tables 115

Summary 116

Contents ix

Chapter 9 Dependencies 9
Relations between Objects 119
System Resource Dependencies 125
Dependencies between Layers 129
Dependencies across Tiers 132
Summary 133
Chapter 10 Data-driven and Combinatorial Testing 135
Parameterized Tests 138
Theories 139
Generative Testing 141
Combinatorial Testing 145
Summary 149
Chapter I Almost Unit Tests 151
Examples 152
Impact 156
Summary 157
Chapter 12 Test Doubles 159
Stubs 159
Fakes 162
Mock Objects 164
Spies 170
Dummies 171
Verify State or Behavior? 173
Summary 176
Chapter 13 Mocking Frameworks 177
Constructing Test Doubles 177
Setting Expectations 179
Verifying Interactions 183
Misuse, Overuse, and Other Pitfalls 185
Summary 189
Chapter 14 Test-driven Development—Classic Style 191
Test-driving a Simple Search Engine 192
Order of Tests 204
Red- to Green-bar Strategies 205

Contents

Challenges
Test First or Test Last?
Summary

Chapter 15 Test-driven Development—Mockist Style
A Different Approach
Double-loop TDD
Summary

Chapter 16 Duplication
Why Duplication Is Bad
Taking Advantage of Duplication
Mechanical Duplication
Knowledge Duplication
Summary

Chapter 77 Working with Test Code

Commenting Tests
Deleting Tests
Summary

Chapter 18 Beyond Unit Testing

Tests that Aren’t Unit Tests

Characteristics of Tests that Aren’t Unit Tests
Pointers and Practices

Deciding on a Developer Testing Strategy
Summary

Chapter 19 Test Ideas and Heuristics

High-level Considerations
Low-level Considerations
Summary

Appendix A Tools and Libraries

Appendix B Source Code

Test Doubles
Data-driven and Combinatorial Testing

206
209
210

213

213
220
223

225

225
227
228
232
235

237
237
241
243

245
245
257
263
267
269

7

271
274
276

277

279

279
279

Contents

Xi

Test-driven Development 282

Beyond Unit Testing 287

Bibliography 289
Index

295

This page intentionally left blank

FOREWORD BY JEFF LANGR

Ten years ago, I became the manager and tech lead for a small development team at a
local, small start-up after spending some months developing for them. The software
was an almost prototypically mired mess of convoluted logic and difficult defects. On
taking the leadership role, I began to promote ideas of test-driven development (TDD)
in an attempt to improve the code quality. Most of the developers were at least willing
to listen, and a couple eventually embraced TDD.

One developer, however, quit two days later without saying a word to me. I was
told that he said something to the effect that “I'm never going to write a test, that’s not
my job as a programmer.” I was initially concerned that I'd been too eager (though I'd
never insisted on anything, just attempted to educate). I no longer felt guilty after see-
ing the absolute nightmare that was his code, though.

Somewhat later, one of the testers complained to me about another developer—a
consultant with many years of experience—who continually submitted defect-riddled
code to our QA team. “It’s my job to write the code; it’s their job to find the prob-
lems with it.” No amount of discussion was going to convince this gentleman that he
needed to make any effort to test his code.

Still later and on the same codebase, I ended up shipping an embarrassing defect
that the testers failed to catch—despite my efforts to ensure that the units were well
tested. A bit of change to some server code and an overlooked flipping of a bool-
ean value meant that the client—a high-security chat application—no longer rang the
bell on an incoming message. We didn’t have comprehensive enough end-to-end tests
needed to catch the problem.

Developer tests are tools. They’re not there to make your manager happy—if that’s all
they were, 1, too, would find a way to skip out on creating them. Tests are tools that give
you the confidence to ship, whether to an end customer or to the QA team.

Thankfully, 10 years on, most developers have learned that it’s indeed their job
to test their own code. Few of you will embark on an interview where some form of
developer testing isn’t discussed. Expectations are that you're a software development
professional, and part of being a professional is crafting a high-quality product. Ten
years on, I'd squash any notions of hiring someone who thought they didn’t have to
test their own code.

Developer testing is no longer as simple as “just do TDD,” or “write some inte-
gration tests,” however. There are many aspects of testing that a true developer must
embrace in order to deliver correct, high-quality software. And while you can find
a good book on TDD or a good book on combinatorial testing, Developer Testing:

xiii

xiv Foreword by Jeff Langr

Building Quality into Software overviews the essentials in one place. Alexander sur-
veys the world of testing to clarify the numerous kinds of developer tests, weighing in
on the relative merits of each and providing you with indispensable tips for success.

In Developer Testing, Alexander first presents a case for the kinds of tests you
need to focus on. He discusses overlooked but useful concepts such as programming
by contract. He teaches what it takes to design code that can easily be tested. And
he emphasizes two of my favorite goals: constructing highly readable specification-
based tests that retain high documentation value, and eliminating the various flavors
of duplication—one of the biggest enemies to quality systems. He wraps up the topic
of unit testing with a pragmatic, balanced approach to TDD, presenting both classical
and mockist TDD techniques.

But wait! There’s more: In Chapter 18, “Beyond Unit Testing,” Alexander pro-
vides as extensive a discussion as you could expect in one chapter on the murky world
of developer tests that fall outside the range of unit tests. Designing these tests to be
stable, useful, and sustainable is quite the challenge. Developer Testing doesn’t disap-
point, again supplying abundant hard-earned wisdom on how to best tackle the topic.

I enjoyed working through Developer Testing and found that it got even better as
it went along, as Alexander worked through the meaty coding parts. It’s hard to come
up with good examples that keep the reader engaged and frustration free, and Alex-
ander succeeds masterfully with his examples. I think you’ll enjoy the book too, and
you'll also thank yourself for getting a foundation of the testing skills that are critical
to your continued career growth.

FOREWORD BY LISA CRISPIN

The subtitle says it all—“Building Quality into Software.” We’ve always known that
we can’t test quality in by testing after coding is “done.” Quality has to be baked in.
To do that, the entire delivery team, including developers, has to start building each
feature by thinking about how to test it. In successful teams, every team member has
an agile testing mind-set. They work with the delivery and customer teams to under-
stand what the customers need to be successful. They focus on preventing, rather
than finding, defects. They find the simplest solutions that provide the right value.

In my experience, even teams with experienced professional testers need devel-
opers who understand testing. They need to be able to talk with designers, product
experts, testers, and other team members to learn what each feature should do. They
need to design testable code. They need to know how to use tests to guide coding,
from the unit level on up. They need to know how to design test code as well as—or
even better than—production code, because that test code is our living documenta-
tion and our safety net. They need to know how to explore each feature they develop
to learn whether it delivers the right value to customers.

I've encountered a lot of teams where developers are paid to write production
code and pushed to meet deadlines. Their managers consider any time spent testing
to be a waste. If these organizations have testers at all, they’re considered to be less
valuable contributors, and the bugs they find are logged in a defect tracking system
and ignored. These teams build a mass of code that nobody understands and that is
difficult to change without something breaking. Over time they generally grind to a
halt under the weight of their technical debt.

I've been fortunate over the years to work with several developers who really
“get” testing. They eagerly engage in conversations with business experts, design-
ers, testers, analysts, data specialists, and others to create a shared understanding of
how each feature should behave. They’re comfortable pairing with testers and hap-
pily test their own work even before it’s delivered to a test environment. These are
happy teams that deliver solid, valuable features to their customers frequently. They
can change direction quickly to accommodate new business priorities.

Testing’s a vast subject, and we’re all busy, so where do you start? This book deliv-
ers key testing principles and practices to help you and your team deliver the qual-
ity your customers need, in a format that lets you pick up ideas quickly. You’'ll learn
the language of testing so you can collaborate effectively with testers, customers, and
other delivery team members. Most importantly (at least to me), you’ll enjoy your
work a lot more and be proud of the product you help to build.

XV

This page intentionally left blank

PREFACE

I started writing this book four years ago with a very clear mental image of what I
wanted it to be and who my readers were going to be. Four years is quite a while, and
I've had to revise some of my ideas and assumptions, both in response to other work
in the field and because of deepening understanding of the subject. The biggest thing
that has happened during the course of those years is that the topic has become less
controversial. Several recent books adopt a stance similar to this one, and there’s some
reassuring overlap, which I interpret as being on the right track.

Why | Wrote This Book

I wrote this book because this was the book I should have read a decade ago! Ten years is
a long time, but believe it or not, I still need this book today—although for other reasons.

Roughly 10 years ago I embarked on a journey to understand software quality. I
wasn’'t aware of it back then; I just knew that the code that I and my colleagues wrote
was full of bugs and made us sad and the customers unhappy. I was convinced that
having testers execute manual routines on our software wouldn’t significantly increase
its quality—and time has proven me right! So I started reading everything I could find
about software craftsmanship and testing, which led to two major observations.

First, to my surprise, these topics were often totally separated back then! Books
about writing software seldom spoke of verifying it. Maybe they mentioned one or
two testing techniques, but they tended to skip the theory part and the conceptual
frameworks needed for understanding how to work systematically with testing in dif-
ferent contexts. That was my impression at least. On the other hand, books on testing
often tended to take off in the direction of a testing process. Books on test-driven
development focused on test-driven development. This applied to blogs and other
online material too.

Second, writing testable code was harder than it initially appeared, not to men-
tion turning old legacy monoliths into something that could be tested. To get a feel-
ing for it, I had to dive deep into the areas of software craftsmanship, refactoring,
legacy code, test-driven development, and unit testing. It took a lot of deliberate
practice and study.

Based on these observations and my accumulated experience, I set some goals for
a book project:

xvii

xviii Preface

= Make the foundations of software testing easily accessible to developers, so
that they can make informed choices about the kind and level of verifica-
tion that would be the most appropriate for code they’re about to ship. In my
experience, many developers don’t read books or blogs on testing, yet they
keep asking themselves: When have I tested this enough? How many tests
do I need to write? What should my test verify? I wanted these to become
no-brainers.

® Demonstrate how a testing mind-set and the use of testing techniques can
enrich the daily routines of software development and show how they can
become a developer’s second nature.

B Create a single, good enough body of knowledge on techniques for writing test-
able code. I realized that such a work would be far from comprehensible, espe-
cially if kept concise, but I wanted to create something that was complete enough
to save the readers from plowing through thousands of pages of books and online
material. I wanted to provide a “map of the territory,” if you will.

This is why I should have had a book written with these goals in mind a decade
ago, but why today? Hasn’t the world changed? Hasn't there been any progress in the
industry? And here comes the truly interesting part: this book is just as applicable
today as it would have been 10 years ago. One reason is that it’s relatively technol-
ogy agnostic. Admittedly it is quite committed to object-oriented programming,
although large parts hold true for procedural programming, and some contents apply
to functional programming as well. Another reason is that progress in the field it cov-
ers hasn’t been as impressive as in many others. True, today, many developers have
grasped the basics of testing, and few, if any, new popular frameworks and libraries
are created without testability in mind. Still, I'd argue that it’s orders of magnitude
easier to find a developer who’s a master in writing isomorphic JavaScript applica-
tions backed by NoSQL databases running in the cloud than to find a developer who’s
really good at unit testing, refactoring, and, above all, who can remain calm when the
going gets tough and keep applying developer testing practices in times of pressure
from managers and stressed-out peers.

Being a consultant specializing in software development, training, and men-
toring, I've had the privilege to work on several software development teams and to
observe other teams in action. Based on these experiences, I'd say that teams and
developers follow pretty much the same learning curve when it comes to quality
assurance. This book is written with such a learning curve in mind, and I've done my
best to help the reader overcome it and progress as fast as possible.

Preface Xix

Target Audience

This is a book for developers who want to write better code and who want to avoid
creating bugs. It’s about achieving quality in software by acknowledging testability
as a primary quality attribute and adapting the development style thereafter. Readers
of this book want to become better developers and want to understand more about
software testing, but they have neither the time nor support from their peers, not to
mention from their organizations.

This is not a book for beginners. It does explain many foundations and basic
techniques, but it assumes that the reader knows how to work his development envi-
ronment and build system and is no stranger to continuous integration and related
tooling, like static analysis or code coverage tools. To get the most out of this book,
the reader should have at least three years of experience creating software profession-
ally. Such readers will find the book’s dialogues familiar and should be able to relate
to the code samples, which are all based on real code, not ideal code.

I also expect the reader to work. Even though my ambition is to make lots of
information readily available, I leave the knowledge integration part to the reader.
This is not a cookbook.

About the Examples

This book contains a lot of source code. Still, my intention was never to write a pro-
gramming book. I want this to be a book on principles and practices, and as such, it’s
natural that the code examples be written in different languages. Although I'm trying
to stay true to the idioms and structure used in the various languages, I also don’t
want to lose the reader in fancy details specific to a single language or framework;
that is, I try to keep the examples generic enough so that they can be read by anyone
with a reasonable level of programming experience. At times, though, I've found this
stance problematic. Some frameworks and languages are just better suited for certain
constructs. At other times, I couldn’t decide, and I put an alternative implementation
in the appendix. The source code for the examples in the book and other related code
are available on the book’s companion website—http://developertesting.rocks.

How to Read This Book

This book has been written with a very specific reader in mind: the pressed-for-time
developer who needs practical information about a certain topic without having to
read tons of articles, blogs, or books. Therefore, the underlying idea is that each chap-
ter should take no more than one hour to read, preferably less. Ideally, the reader
should be able to finish a chapter while commuting to work. As a consequence, the

http://developertesting.rocks

XX

Preface

chapters are quite independent and can be read in isolation. However, starting with
the first four chapters is recommended, as they lay a common ground for the rest of
the material.

Here’s a quick overview of the chapters:

Chapter 1: Developer Testing—Explains that developers are engaged in a lot
of testing activities and that they verify that their programs work, regardless
of whether they call it testing or not. Developer testing is defined here.

Chapter 2: Testing Objectives, Styles, and Roles—Describes different
approaches to testing. The difference between testing to critique and testing
to support is explained. The second half of the chapter is dedicated to describ-
ing traditional testing, agile testing, and different versions of behavior-driven
development. Developer testing is placed on this map in the category of sup-
porting testing that thrives in an agile context.

Chapter 3: The Testing Vocabulary—This chapter can be seen as one big
glossary. It explains the terms used in the testing community and presents
some commonly used models like the matrix of test levels and test types and
the agile testing quadrants. All terms are explained from a developer’s point
of view, and ambiguities and different interpretations of some of them are
acknowledged rather than resolved.

Chapter 4: Testability from a Developer’s Perspective—Why should the
developer care about testability? Here the case for testable software and its
benefits is made. The quality attribute testability is broken down into observ-
ability, controllability, and smallness and explained further.

Chapter 5: Programming by Contract—This chapter explains the benefits

of keeping programming by contract in mind when developing, regardless of
whether tests are being written or not. This technique formalizes responsibili-
ties between calling code and called code, which is an important aspect of
writing testable software. It also introduces the concept of assertions, which
reside at the core of all testing frameworks.

Chapter 6: Drivers of Testability—Some constructs in code have great impact
on testability. Therefore, being able to recognize and name them is critical.
This chapter explains direct and indirect input/output, state, temporal cou-
pling, and domain-to-range ratio.

Chapter 7: Unit Testing—This chapter starts by describing the fundamen-
tals of xUnit-based testing frameworks. However, it soon moves on to more
advanced topics like structuring and naming tests, proper use of assertions,
constraint-based assertions, and some other technicalities of unit testing.

Preface XXxi

Chapter 8: Specification-based Testing Techniques—Here the testing
domain is prevalent. Fundamental testing techniques are explained from the
point of view of the developer. Knowing them is essential to being able to
answer the question: “How many tests do I need to write?”

Chapter 9: Dependencies—Dependencies between classes, components, lay-
ers, or tiers all affect testability in different ways. This chapter is dedicated to
explaining the different kinds and how to deal with them.

Chapter 10: Data-driven and Combinatorial Testing—This chapter explains
how to handle cases where seemingly many similar-looking tests are needed.
It introduces parameterized tests and theories, which both solve this problem.
It also explains generative testing, which is about taking test parameteriza-
tion even further. Finally, it describes techniques used by testers to deal with
combinatorial explosions of test cases.

Chapter 11: Almost Unit Tests—This book relies on a definition of unit tests
that disqualifies some tests that look and run almost as fast as unit tests from
actually being called by that name. To emphasize the distinction, they’re
called “fast medium tests”. They typically involve setting up a lightweight
server of some kind, like a servlet container, mail server, or in-memory data-
base. Such tests are described in this chapter.

Chapter 12: Test Doubles—This chapter introduces typical test doubles like
stubs, mocks, fakes, and dummies, but without using any mocking frame-
works. The point is to understand test doubles without having to learn yet
another framework. This chapter also describes the difference between state-
based and interaction-based testing.

Chapter 13: Mocking Frameworks—Here it gets very practical, as the mock-
ing frameworks Mogq, Mockito, and the test double facilities of Spock are used
to create test doubles for different needs and situations—especially stubs and
mocks. This chapter also includes pitfalls and antipatterns related to the use
of mocking frameworks.

Chapter 14: Test-driven Development— Classic Style—Here, classic test-
driven development is introduced through a longer example. The example
is used to illustrate the various details of the technique, such as the order in
which to write tests and strategies for making them pass.

Chapter 15: Test-driven Development—Mockist Style—There’s more than one
way to do test-driven development. In this chapter, an alternative way is described. It’s
applicable in cases where test driving the design of the system is more important than
test driving the implementation of a single class or component.

xxii

Preface

Chapter 16: Duplication—This chapter explains why code duplication is bad
for testability, but sometimes a necessary evil to achieve independence and
throughput. Two main categories of duplication are introduced and dissected:
mechanical duplication and duplication of knowledge.

Chapter 17: Working with Test Code—This chapter contains suggestions on
what to do before resorting to comments in test code and when to delete tests.

Chapter 18: Beyond Unit Testing—Unit testing is the foundation of devel-
oper testing, but it’s just one piece of the puzzle. Software systems of today are
often complex and require testing at various levels of abstraction and granu-
larity. This is where integration, system, and end-to-end tests come in. This
chapter introduces such tests through a series of examples and discusses their
characteristics.

Chapter 19: Test Ideas and Heuristics—This final chapter, on the border of
being an appendix, summarizes various test heuristics and ideas from the book.

Register your copy of Developer Testing at informit.com for convenient access to
downloads, updates, and corrections as they become available. To start the
registration process, go to informit.com and log in or create an account. Enter
the product ISBN (9780134291062) and click Submit. Once the process is complete,
you will find any available bonus content under “Registered Products.”

ACKNOWLEDGMENTS

Writing a book is a team effort. The author is the one who writes the text and spends
the most time with it, but many people make their contributions. This book is no excep-
tion. My first thanks go to Joakim Tengstrand, an expert in software development with a
unique perspective on things, but above all, my friend. He’s been giving me continual and
insightful feedback from very early stages of writing to the very end.

Another person who needs a special mention is Stephen Vance. He helped me by
doing a very exhaustive second-pass technical review. Not only did he offer extensive
and very helpful feedback, he also found many, if not all, places where I tried to make
things easy for myself. In addition, he helped me broaden the book by offering alter-
natives and perspectives.

As a matter of fact, this entire book wouldn’t exist in its present form without
Lisa Crispin’s help. She’s helped me to get it published, and she has supported me
whenever I needed it throughout the entire process. I'm honored to have her write one
of the forewords. Speaking of which, Jeff Langr also deserves my deepest gratitude
for writing a foreword as well and for motivating me to rewrite an important section
that I had been postponing forever. Mike Cohn, whom I've never had the pleasure of
meeting, has accepted this book into his series. I can’t even express how grateful I am
and what it means to me. Thanks!

While on the topic of publication, I really need to thank Chris Guzikowski at
Addison-Wesley. He’s been very professional throughout the process and, above all,
supportive beyond all limits. I don’t know how many e-mails I started with some-
thing akin to: “Thanks for your patience! There’s this thing I need to do before hand-
ing in the manuscript . . .” During the process of finalizing the book, I've had the
pleasure to work with very professional and accommodating people, who really made
the end of the journey interesting, challenging, and quite fun. Many thanks to Chris
Zahn, Lisa McCoy, Julie Nahil, and Rachel Paul.

My reviewers, Mikael Brodd, Max Wenzin, and Mats Henricson, have done a
huge job going through the text while doing the first-pass technical review.

Carlos Blé deserves special thanks for taking me through a TDD session that
ended up producing a solution quite different from the one in the chapter on TDD.
It sure gave me some things to think about, and it eventually led to a rewrite of the
entire chapter. Ben Kelly has helped me enormously in getting the details of the test-
ing terminology right, and he didn’t let me escape with dividing some work between
developers and testers. Dan North has helped me get the details straight about BDD
and ATDD. Frank Appel has helped me around the topic of unit testing and related

xxiii

XXiv Acknowledgments

material. His well-grounded and thorough comments really made me stop and think
at times. Many thanks. Alex Moore-Niemi has widened the book’s scope by provid-
ing a sidebar on types, a topic with which I'm only superficially familiar.

I'd also like to extend my thanks to Al Bagdonas, my first-pass proofreader and
copy editor for his dedication to this project.

In addition, I'd like to thank other people who have helped me along the way
or served as inspiration: Per Lundholm, Kristoffer Skjutare, Fredrik Lindgren, Yassal
Sundman, Olle Hallin, Jérgen Damberg, Lasse Koskela, Bobby Singh Sanghera, Gojko
Adzic, and Peter Franzen.

Last, but not least, I'm joining the scores of authors who thank their wives and
families. Writing a book is an endeavor that requires a lot of passion, dedication, and
above all, time away from the family. Teresia, thanks for your patience and support.

ABOUT THE AUTHOR

Alexander Tarlinder wrote his first computer program around the age of 10, some-
time in the early nineties. It was a simple, text-based role-playing game for the Com-
modore 64. It had lots of GOTO statements and an abundance of duplicated code.
Still, to him, this was the most fantastic piece of software ever conceived, and an
entry point to his future career.

Twenty-five years later, Alexander still writes code and remains a developer at
heart. Today, his professional career stretches over 15 years, a time during which
he shouldered a variety of roles: developer, architect, project manager, Scrum-
Master, tester, and agile coach. In all these roles, he has gravitated toward sus-
tainable pace, craftsmanship, and attention to quality, and he eventually got test
infected around 2005. In a way, this was inevitable, because many of his projects
involved programming money somehow (in the banking and gaming industry),
and he always felt that he could do more to ensure the quality of his code before
handing it over to someone else.

Presently, Alexander seeks roles that allow him to influence the implementa-
tion process on a larger scale. He combines development projects with training
and coaching, and he shares technical and nontechnical aspects of developer test-
ing and quality assurance in conferences and local user groups meetings.

XXV

This page intentionally left blank

Chapter 1
DEVELOPER TESTING

Working in cross-functional teams has broadened the responsibilities of software
professionals. Few have the dubious luxury of performing the same narrow tasks
day after day without having to care about what the team delivers as a whole. This
makes the daily work both more dynamic and interesting, but it also requires that
each person be prepared to work in areas that may have “belonged” to a different role
in the past. For developers, this manifests itself as taking ownership of the quality of
the produced code, instead of expecting that someone else will test it. This is by no
means anything new, but frequent deliveries, maybe as frequent as several times a
day, accentuate the need for development practices that strive to eliminate the defects
even before they are introduced. Because quality cannot be tested in, it has to be built
in, and this path leads through the field of testing.

Developers Test

Developers have and will always test their software. Imagine the beginners writing
their first “Hello, World” program. No doubt they will execute it to verify that it actu-
ally outputs the everlasting words that have been echoed decade after decade by thou-
sands of programmers around the globe (see Figure 1.1).

Developers don’t need to be testing experts. Some types of testing require specific
skills or some distance from the tested software in order to mitigate any bias its cre-
ators may be subject to. This is why testing is a separate area of expertise.

Before embarking further into the field, let’s pause for a moment and get the
meaning of the word “developer” clarified. In some teams, most notably the ones
doing Scrum, all members of the development team are developers, and they spe-
cialize in programming, testing, interface design, or architecture (Sutherland &
Schwaber 2013). In this book the word “developer” refers to a person whose primary
responsibility is to write source code.

Regardless of whether all testing is done within the team or by someone from
outside, the output of the developers should be working software, not just something
that compiles. To either fulfill the quality standards set by the team or to avoid that
whoever does the final testing gets handed software of inferior quality, developers
must ensure the correctness of their code. In order to do that, they have to write their
code in a way that makes verification possible. Enter developer testing!

2 Chapter 1 = Developer Testing

066 COMMODORE 64 BASIC VU2 »06x
64K RAM SYSTEM 38911 BASIC BYTES FREE

ADY .
PRINT "HELLO WORLD'*'
LO WORLD'!

FIGURE11 Ad hoc testing of a well-known program running in a nostalgic environment.

Developer Testing Activities

How much testing-related work does a developer do on a daily basis? In the next
chapter we’ll see that defining testing isn’t entirely trivial. In this chapter we’ll stay a
bit informal, make some simplifications, and ignore some dimensions. For now, let’s
think of testing as an activity performed to ensure correctness and quality of soft-
ware. When adopting this perspective, quite a few activities can be viewed in the light
of developer testing.

Unit Testing

Developers write unit tests. It’s their easiest, fastest, and most consistent way to verify
their assumptions about the code they produce. Either they do it before writing the
code to drive its design, or they do it after having written the code to verify that it
works as expected. In the first case, the testing and verification aspect may not be as
apparent as in the second. Nevertheless, unit tests are 100 percent developer-owned.

Integration Testing

In this chapter, the exact definition of the term “integration test” will remain a bit
vague (it’ll be defined in Chapter 3, “The Testing Vocabulary”). For now, let’s just
acknowledge that some tests are more complex than unit tests and benefit from being
written by developers. Such tests require more sophisticated setup and may execute

Developer Testing Activities 3

significantly slower. Running them manually would be both hard, because of their
coupling to the source code and implementation details, and impractical because of
their sheer number.

Maintenance

That the majority of a system’s life cycle is about maintenance isn’t a closely guarded
secret in the industry. It’s a well-known fact. Once a piece of software has been rolled
out into production, it goes into maintenance, which falls into either of two categories:

= Maintenance of a system under development—The system is already run-
ning in production while new features are being added to it.

Adding features to collectively owned code that’s constantly in flux can
be quite tricky. Parts of the codebase are being refactored, and others are
being extended. The final result will hopefully be verified somehow, but no
sooner than when most of the functionality is implemented. In the meantime,
the code must be intact enough to allow the entire team to work on it.
Guaranteeing that the software will remain in working condition in the flurry
of collective ownership and maintenance is developer work.

= Patching and bug fixing—The system has been stable for quite a while and
requires relatively little intervention, but once in a while a defect pops up and
a bug fix is required.

Changes are introduced carefully, and their scope is limited to addressing
the defect, while leaving everything else intact. A well-proven technique for
fixing bugs is restraining oneself from rushing ahead to implement a fix, and
first writing a test that’ll fail because of the bug’s presence. In the absence of
the bug, that test would pass. Once the test is in place, the bug is fixed. If the
fix is correct, the test passes. That test is now in the codebase and ensures the
presence and correctness of the fix. This is also developer work.

Both types of maintenance require that the code be written with testability in
mind. The opposite—code that turns all attempts to change it into a mixture of one
part guessing game and one part nightmare—is called legacy code. Michael Feathers,
the author of Working Effectively with Legacy Code, defines legacy code as code with-
out tests.

A safe way of working with legacy code is adding tests to it retroactively to pin
down its behavior before making any changes. Such tests are called characterization
tests (Feathers 2004). Doing this is time consuming, sometimes hard, and not always

4 Chapter T = Developer Testing

a very exciting activity, but the alternative is reading the code carefully before making
any changes and wishing that nothing breaks.'
Adding the missing tests and making the actual changes fall on the developers.

Continuous Integration

Continuous integration (CI) is the practice of integrating frequently and always keep-
ing the main build stable (Duvall, Matyas & Glover 2007). There are two sides to this
practice—the technical side and the social side. The technical side of continuous inte-
gration is made up of the process and infrastructure needed to achieve an automated
stable build:

® Before committing anything to the version control system, the developer
fetches the latest version of the code, merges it with his local changes, and
runs the test suite on his machine—unit tests in practice.

= Tfall tests pass, the developer commits the new code to the version control
system. The build server picks up the changes, fetches the latest version of the
code, compiles it, and runs its unit tests. This is bare-bones CI, practiced by
teams that have just started out.?

® Long-running tests and analysis of the code (for example, code coverage or
coding convention violations) are run either nightly or as often as the load on
the CI server(s) permits.

The social dimension is about following the practices to the letter by actually run-
ning the tests locally before committing, by committing frequently, and, above all, by
reacting to broken builds and fixing them immediately before committing any other
work. This requires discipline and a dedicated team pulling in the same direction.
Getting this right is often harder than setting up the infrastructure and automation.

1. Actually, legacy code can be attacked by pair programming or working with reviews or formal
code inspections. However, they are only as good as the moment they are performed in. Tests
live longer and can be run over and over again.

2. Continuous integration can get arbitrarily complex depending on the type of system and the
expertise of the team. Experienced teams include deployment of a new version of the system
and end-to-end tests that require the system to be up and running in their CI build. This is
where continuous integration starts becoming continuous delivery (CD). For a more in-depth
description of continuous delivery, see Humble and Farley (2010).

What Developers Usually Don’t Do 5

So where do developers come in? They’re the ones writing and running the tests
before committing, and they’re the ones fixing the build if it breaks. More often than
not, they’ll be the ones to set up the CI server, especially when they need to run the
unit and integration tests.

Test Automation

In many cases, test automation is a developer activity. Only time and imagination set
the bounds for what kind of work we can automate: test data and environment gen-
eration, scripted execution, or automated checking, to name a few examples.

Acceptance test-driven development is also a good example, because it boils
down to authoring a test that’s readable to nontechnical users, implementable by
developers, and executable by a dedicated framework. There are different opinions
on exactly who should write the test, using what format and what tool. However, from
the developer’s point of view, these differences can be thought of as minor. In the
end, it’s the developer’s job to provide the infrastructure that will execute the tests.
In many cases it’s quite a body of code. The same goes for the other aforementioned
automation activities.

What Developers Usually Don’t Do

The examples in the previous section don’t mention usability testing, security testing,
and performance testing. These are all important types of testing, but they tend to
require skills that are quite separate from a developer’s. In practice, we can expect the
professional developer to have read some user interface design guidelines; to know
about file traversal vulnerabilities, SQL injections, buffer overflows, and cross-site
scripting; and to be familiar with the time complexity of the most popular algorithms.

Then there’s exploratory testing, which can be performed by developers in a
cross-functional team. My experience is that this can work well, especially if they
refrain from running exploratory sessions on functionality they have implemented
themselves and focus on helping their colleagues instead. Again, this is a good thing,
but it’s not what this book is about.

Finally, there are the activities associated with the (in)famous “tester mind-set.”
It’s safe to say that developers usually don’t spend their working hours coming up
with the really nasty test cases. Neither do they focus on fault injections, creating race
conditions, or messing with their software’s state in other ways if there are profes-
sional testers on the team.

6 Chapter 1 = Developer Testing

Nasty Test Cases

What's a nasty test case? It's a test case that attempts to do something
unusual and unexpected, especially from a developer’s point of view. In my
experience, testing for I/O-related errors makes a good example. How often
do developers test code that writes to a file or stores data in a database
for the possibility of the disk being full? These days many languages handle
this quite gracefully with exceptions. Superficially tested applications tend to
handle such exceptions quite poorly. In many cases they'll display a technical
error message, like “1/O error,” to the user. But wouldn't a user want a more
specific error message, one that indicates that the system understands that
the disk is full? A tester would certainly test for that and would probably
create a small disk partition and fill it up, leaving just a few bytes of available
space, before launching the application to see how it would respond. In some
circumstances, this would be a critical test.

In other circumstances, the same tester would show judgment and
prioritize other tests, especially if disk I/O wasn't critical or there was little risk
of the system running out of space. Anyhow, testers would most likely be
more qualified to do such testing and make the trade-offs.

Due to the complexity of both professions, it’s impossible to say exactly when
developer work becomes tester work. That depends entirely on the context and on
factors like application domain, complexity, legal regulations, or team composition.
However, there are cases where it’s quite clear that a developer’s verification yields
diminishing returns.

Defining Developer Testing

So far, T've given examples of testing activities that I consider to be the developer’s
responsibility. I've also drawn, albeit fuzzy, a line of demarcation between developer
work and tester work. What remains is defining developer testing.

Developer testing is an umbrella term for all test-related activities a developer
engages in. This particular book is about building quality into the code (and in the
longer run, the software), which narrows the scope. The relation to traditional testing
is a defining trait of developer testing. Much of the material in this book is directly
derived from and related to the basics of testing, which is why testing terminology
and testing techniques keep appearing throughout the text.

When working in various companies on different projects, I've noticed that devel-
opers who start taking an increasing responsibility for quality often follow a similar
learning curve and ask the same questions. The following questions have helped me

Developer Testing and the Development Process 7

to refine the theory and practices underlying developer testing even further. Here are
some of them:
= How much, if any, testing should developers do?

= What kind of testing will give the best return on investment for this particu-
lar system?

= Why is testability important, and how can it be achieved?

= Why does a method/class/component seem untestable, and how can it be
made testable?

= What’s “testable” code anyway?

= How “good” should test code be?

® When is a method/class/component sufficiently covered by tests?

= How should tests be named?

® When should a certain kind of test-double be used?

= What’s the best way to break this particular kind of dependency?

® Who checks the arguments to a method? The caller or the callee?

= How should test code be structured to avoid duplication, and is all duplication bad?
® In test-driven development, what’s the next test to write?

= How does one test-drive an enterprise system with many delegating layers?

= How does one avoid combinatorial explosions in test code and still feel
confident?

m What factors determine the number of assertions in a test?
® Should tests target state or behavior?

In order to answer these questions, effective developers need to do their share of
test-related work, and they need to develop specific skills to do it well.

Developer Testing and the Development Process

Developer testing as such is quite independent of the development process. Waterfall,
ad hoc, agile—regardless of how the software is being developed, applying developer
testing practices will result in better software. Having said that, the whole idea of
blending development and testing practices into something big enough to fill a book

8 Chapter T = Developer Testing

came from my ambition to strengthen developers in cross-functional teams. There-
fore, this book recurrently returns to the topic of collaboration between team mem-
bers who are better at writing the code and team members who are better at testing it.
It also assumes that there’s an ambition to ship the software relatively frequently; that
is, it doesn’t have to function correctly upon one delivery—it must function correctly
upon multiple deliveries, and it should be prepared for many more to come.

Summary

Developers perform activities related to verification and quality assurance more often
than they may realize. In addition to running their code to check that it seems to
behave correctly, they

® Write unit tests

®m Write integration tests

® Perform maintenance

= Implement continuous integration

Provide the infrastructure for test automation

Each of these activities will benefit from the developer having some fundamental
testing knowledge and sKkills.

Developer testing is everything developers do to test their code, and this book
describes helpful behaviors, activities, and tools related to building quality into the code.

Although developers can and should do as much as possible to ensure the cor-
rectness and quality of their software, some testing-related activities are still best
performed by someone with a skill set slightly different from the developer’s. Such
activities include

® Performance testing

® Security testing

® Usability testing

® Testing the untypical and pathological cases

Nothing prevents the developer from doing any of these activities, but they aren’t
covered in this book.

Chapter 2

TESTING OBJECTIVES,
STYLES, AND ROLES

Organizations may differ enormously in their views on testing and development and
above all, in their opinions on how these two activities should be combined. In this
chapter we’ll take a quick look at what testing and quality assurance may look like in
different settings and see how developer testing fits into the picture.

Testing and Checking

It’s not uncommon to make a distinction between testing and checking to empha-
size the difference between an activity that requires curiosity, flexibility, and the
ability to draw conclusions and a tedious process that compares the outcome of per-
forming some action to an expected result. In most cases, the latter is best left to
a machine. Thus, a person using her skills and knowledge of software testing, the
business domain, and any other relevant experience will obviously produce results
different from a tool that somehow automates checking. James Bach and co-author
Michael Bolton put it quite eloquently: “Testing is the process of evaluating a prod-
uct by learning about it through exploration and experimentation, which includes to
some degree: questioning, study, modeling, observation, inference, etc.” (Bach 2013).

Tools can be used in numerous ways to aid in the process, but they’ll operate
within the boundaries of their functionality and programming. Admittedly, some
tool-based techniques, like model-based testing or generative testing, may discover
new defects on their first run, but generally tests performed by tools seldom uncover
new bugs or produce new insights. They’re better at finding regressions and verifying
existing assumptions. Still, tests executed by tools beat a human tester in the disci-
pline of repetitive and tedious verification—and what’s even more important, they let
developers express their assumptions about the code they write.

From the perspective of testing and checking, developer testing is largely about
making developers write code with automated checks constantly in mind, so that
testing time needn’t be wasted on checking. In organizations where developers spend
too little time testing and verifying their code, the testing activities, whatever they
may be, often have to compensate for the inferior development process by focusing
primarily on rudimentary checking.

10 Chapter 2 = Testing Objectives, Styles, and Roles

Motivation Behind Developer Testing

Developer testing turns human checking into machine checking, thus, by definition,
resulting in testable (“checkable”) software and freeing up time for more interesting
and intellectually demanding testing activities.

Testing Objectives

Another way to look at testing is to examine its underlying objectives. At the extremes,
there are two fundamental approaches to testing: critiquing and supporting. They
come with different objectives and different vocabularies. Few, if any, organizations
operate in either extreme, but one of the perspectives usually dominates and gives
rise to the processes and the in-house vocabulary.

Testing to Critique

Testing to critique means to test something that’s finished and needs evaluating.
Once the software to be tested exists, the objective of the testing is to obtain informa-
tion about it. Such information can be used to answer questions like: “Does it deviate
from the specification?” or “Are there any defects in it?” In many people’s eyes, this is
the archetype of testing: verifying that something works.

If the information gathering happens in a wider scope and targets areas beyond
defects and deviations from the specification, questions like the following may be
answered:

= Will the users be delighted by the software?
® [s the scope of the software reasonable?
® Has any functionality been forgotten?

® Does the software run fast enough? Or does it run slow, but in a way that isn’t
perceived as annoying by the user?

® s the software compliant with legal regulations?

The vocabulary of testing to critique includes the tester mind-set and the devel-
oper mind-set, according to which developers want to build and testers want to break.
After all, the majority of a tester’s time and skill set is spent investigating how the
product might fail, whereas the developer’s energy is channeled into constructing it.
As a consequence, developers may fall victims to viewing their code as an extension
of themselves. If so, they will work very hard to prove that the code is correct, even
though it’s full of obvious bugs. If a bug is found, theyre imperfect—they may suf-
fer from cognitive dissonance, a psychologically inconvenient state, and try to reduce

Testing Styles 1

that dissonance by producing explanations as to why the software (i.e., themselves)
isn’t faulty (Weinberg 1998). A simpler way to put this is to say that they suffer from
author bias, the inability to see faults in one’s own creation. Common phrases like
“nobody would ever do that,” “works on my machine,” and “I didn’t even touch that
bit of code” illustrate this quite well. This is why independent testing is in the critiqu-
ing testing vocabulary.

Reducing risk is also an important objective of critique-based testing. Defects in
the software present varying degrees of risk, and by inspecting it critically, risks may
be mitigated.

Testing to Support

Testing to support is about safety, sustainable pace, and the team’s ability to work fast
and without fear of introducing defects during development. Its purpose is to pro-
vide feedback and help the team achieve immediate and constant confidence in the
software it produces. To gain such confidence, the team, and especially those whose
primary responsibility is to be quality champions, will sometimes perform testing
activities that critique. That said, their emphasis won’t be on obtaining information
based on supposedly completed software, but rather on obtaining information as
quickly as possible in parallel with the ongoing implementation. So, although infor-
mation gathering does take place and defects are being found, these activities are part
of the team’s quality feedback loop, which ultimately supports the whole team’s devel-
opment effort.

Test automation, test-driven development, and activities that aim at stabilizing
the development process and introducing fail-safes also belong in the domain of sup-
port testing.

By now it should be obvious that developer testing, as described in this book, is
testing meant to support.

Testing Styles

In some environments the style of testing is more noticeable than the underlying
objectives. Certain testing styles are more coupled to specific processes than others.

Traditional Testing

Traditionally, testing is thought of as a verification phase occurring after a construc-
tion phase. First something gets built and then it’s verified to make sure that it works.
What “built” and “verified” mean and how much effort these phases require vary
between industries and products.

12 Chapter 2 = Testing Objectives, Styles, and Roles

This view often goes hand in hand with the building metaphor for systems and
their architectures. It assumes that there’s a master blueprint or specification to guide all
aspects of the construction (see Figure 2.1). Given this assumption, it makes perfect sense
to have a verification phase after the construction phase. Because a lot of effort has been
put into creating the blueprint,' building the system should be only about following it. In
that sense, traditional testing is an embodiment of testing to critique.

While theoretically guaranteeing independent testing and immunity to all forms
of author bias, this setup comes with an inherent risk of fragmentation and conver-
gence. Because of the clear division of labor, employing traditional testing may create
an environment where developers and testers develop quite an adversarial view of
each other. Therefore, it’s not uncommon that developers and testers start using the
blueprint in isolation from each other and with very little communication between
the groups. While the developers try to implement it or create some kind of design
document out of it, the testers start deriving test cases from it. Once all features are
implemented, the resulting system is tested, and it comes as a surprise that the blue-
print has diverged and that there’s a mismatch between the produced software, the
test cases, and the original intent.

Well-defined processes are crucial for traditional testing to work. One such process
is the fundamental test process, which involves the following activities (ISTQB 2011):

® Test planning and control

® Test analysis and design

® Test implementation and execution

® Evaluating exit criteria and reporting

m Test closure activities

My experience is that organizations that structure their quality assurance as
described earlier tend to do it in a way that decouples testing from development.
Therefore, from the developer’s point of view, the outcome of the aforementioned
activities tends to result in written defect reports or tickets in a bug-tracking tool.
This is a little disheartening, because the structure of the fundamental test process
can actually reflect the way developers would go about writing and implementing
their tests.

If youre a developer and you work in an organization that adheres to a process
that resembles the fundamental test process, youre probably only expected to write
unit tests. You may even write some integration tests disguised as unit tests. Most

1. Business analysts (BAs), architects, and customer representatives have spent many meeting
hours in creating an exhaustive specification.

Testing Styles 13

Business Analyst Customer Architect

¢ .

v23.01A

Developer

Specification

~
/ \‘ Test Plan

via

FIGURE2.1 Traditional testing.

likely, that will be the extent of your verification activities, apart from reading bug
reports created by a separate quality assurance (QA) group or department. I'd argue
that nothing in the process says that it has to be this way, but my experience is that
this is how it plays out.

Agile Testing

Agile testing is testing that enables agile development. In essence, it’s about empower-
ing the tester and increasing collaboration within the team and with external stake-
holders (Gregory & Crispin 2008). In agile testing, the role of the tester is shifted from

14 Chapter 2 = Testing Objectives, Styles, and Roles

reactive to proactive. Instead of writing test cases, waiting for something to test, or
executing manual tests, the tester becomes the team’s quality champion and contrib-
utes to a successful release in any way she can. For example, by helping the customer
or product owner to specify desired functionality, by making sure that testing activi-
ties are taken into account during planning and estimation meetings, by educating
and assisting the developers in test design and test automation, or by pair program-
ming or pair testing. Thus the tester’s role blends with the developer’s in the sense
that both take part in the development process, but from different angles. Having
testing experts on the development team provides several immediate advantages:

= No testing crunch—Testing activities are planned alongside development
activities.” The team’s delivery succeeds if, and only if, the software is imple-
mented and tested. The mere presence of a tester tends to result in the team
asking: “How do we test this?,” which in turn leads to testable software.

= No handovers—Defect reports and bug-tracking tools become less signifi-
cant, because the testers may report their findings directly to the developer
who wrote the code. Such conversations not only lead to bugs being fixed,
they also help in creating a common “language of quality” in the team.

® Local testing expertise—Testers increase the team’s focus on quality and can
teach developers testing techniques that may help in their programming.

= Ljttle or no mind-numbing work—Developers and testers work on test
automation together. Automating some repetitive tasks or tedious tests that
have to be run over and over frees up testers to engage in more valuable and
interesting work, like exploratory testing.

Everyone on an agile team is responsible for turning the functionality requested by
the customer into software. However, testers are usually the ones who spend more time
with the customer, because it’s a natural part of their role to help clarify requirements and
to design test cases, which may depend on intimate knowledge of business rules.

Adopting agile testing in the team affects the kinds of testing activities the devel-
opers engage in. The developer will collaborate with her tester colleague on auto-
mated acceptance tests and test automation in general. They also work together to
cover areas like usability testing and security testing, especially if no one on the team
is an expert in these areas. The tester may report bugs, especially toward the end
of the iteration, but they won’t come as anonymous tickets in a bug-tracking tool.

2. The wording is important here. In traditional testing, tests are supposed to be planned and
created in parallel with the development. The difference is that collaboration, joint planning,
and common success/completion criteria aren’t emphasized.

Testing Styles 15

Instead, developers will likely be notified about any errors they’ve introduced as soon
as they’re found.

Developers will still write unit tests, but they always have a colleague to ask about test
design. Imagine always being able to ask: “How will you test this?” or “What else will you
test?” Such an environment stimulates learning about testing and quality assurance.

In the Absence of Collaboration

Systems can be developed without many of the important questions being asked.

However, the result will be incomplete, and cases outside the happy path may be handled

in very creative (bad) ways. Developers are clever and try to infer requirements to their

best ability. Either that, or they pick the solution that seems the most interesting.
Planning testing early and collaboratively within the team will help prevent this

from happening, or at least reduce the likelihood.

BDD, ATDD, and Specification by Example

As part of their development process, mature agile teams tend to adopt a set of prac-
tices that help them build the right product. These practices go by different names,
and historically there are some minor differences between them. Behavior-driven
development (BDD, North 2006), acceptance test-driven development (ATDD, Pugh
2011), and specification by example (Adzic 2011) all address the problem of different
stakeholders using different vocabularies, which in turn results in incorrect interpre-
tation of requirements and discrepancies between code, tests, and customer expecta-
tions. In addition, Behavior-driven development offers advice on the actual design of
the code, thus becoming a design technique.

All three practices incorporate the following elements to a lesser or greater extent:
Before starting to implement a story, the team makes sure that everybody is on the
same page. This is done by having it examined jointly by the customer (who may con-
sult many other stakeholders outside the team), a tester, and a developer—and some-
times even the entire team. The participants of the conversation may vary, which is
perfectly fine, as long as the story is covered from a business, quality, and technical
perspective. Having different stakeholders discuss the story leads to a shared under-
standing (see Figure 2.2), adds new perspectives, and enables questions to be raised as
soon as possible. Later down the road, it eliminates handovers.

Ordinarily, the conversations take place in workshops before or at the very begin-
ning of the iteration, but nothing prevents them from happening whenever they’re
needed. A critical element of such conversations is that the language of the customer
be retained and used, and that it be done all the time and by everybody. Such a lan-
guage is often called the ubiquitous language (Evans 2003), and using it consistently

16 Chapter 2 = Testing Objectives, Styles, and Roles

and constantly allows tests, or sometimes® even source code, to be written in such a
way that nontechnical stakeholders can verify them.

A ubiquitous language is one pillar of shared understanding; concrete examples
are another. They replace the vague language often seen in specifications that make
too much use of words like “shall,” “must,” and “should.” The team will use the exam-
ples in its conversations, workshops, and planning meetings to uncover assumptions,
corner cases, ambiguities, and inconsistencies that would remain hidden behind the
high-level wording of a user story or requirements document.

Concrete examples are either written as textual scenarios:

Given that I'm a loyal customer
When my order exceeds $99

I get a free gift

Or in tabular form:

Purchases made so far | Purchase amount Get gift
1 100.00 No
1 150.00 No
1 150.00 No
2 100.00 No
3 99.00 No
S 99.01 Yes
10 99.01 Yes
10 99.00 No

Here we see that a seemingly trivial story can contain magic words like “loyal
customer” and “exceeds,” which are easily clarified using actual values. In this case,
customers are considered loyal if they’ve placed at least three orders in the past, and
they qualify for gifts if they exceed the $99 threshold by as little as one cent.

Concrete examples can easily evolve into tests, which will serve to enforce the
acceptance criteria. If the new functionality behaves as illustrated by the examples

3. One of my reviewers suggested that I get rid of this “sometimes.” I wish that I could, but
unfortunately, using a ubiquitous language and having a shared understanding don’t prevent
us from messing up the code. On the other hand, teams that have successfully embraced these
practices are likely to have good coding practices as well.

Testing Styles 17

Customer

{]
B
Developer P S Tester
& @

Examples

a
Executable
Specifications

FIGURE 2.2 Building a shared understanding. Translation between different vocabularies
is no longer necessary.

after having been implemented, it’s most likely correct. Therefore, the next step is
to turn the examples into executable specifications. This is done using tools like Fit-
Nesse, Concordion, Cucumber, or SpecFlow, which all allow binding a textual arti-
fact—a scenario or table—to executable code. The tests run from outside the system,
or at least against the business layer, which is why they are often called automated
acceptance tests. Their function is to provide a receipt of the new functionality being
implemented, and they’re written ahead of the production code.

Who's the Customer?

This is not a book on agile methodologies, so it makes some simplifications about a
topic to which other books devote several chapters. In this book, the word “customer”
simply refers to a stakeholder who wants certain functionality in the software. In
Scrum, for instance, such stakeholders are represented by the Product Owner role.

18 Chapter 2 = Testing Objectives, Styles, and Roles

Your Quality Assurance and Developer Testing

By now we’ve explored how some common ways of working with software quality
mix and match with developer testing. The processes described so far have been
rather generic, and you may feel that your reality is slightly different. Maybe your
daily struggles are more along these lines:

= Nobody speaks of quality assurance, neither in terms of a “process,” nor as
something the team does.

® There are no people who are experts in testing.

® There are people who perform independent testing, but they’re across the
globe in a different time zone, and they communicate only by e-mail.

® There’s no sense of pride and craftsmanship in the team or the organization.
= Everything should have been delivered “yesterday.”
® The codebase is all legacy.

= You're a solo developer.

You know what? None of these factors really matter. If you're the only developer,
or your team doesn’t have any testers, or youre being rushed by others, or the system
is old and crappy, your quality assurance process is the only one you have, and it will
make or break your software.

Conversely, if your code will be tested by someone else, do you want that person to
find obvious and plainly stupid bugs in it? Do you want to waste that person’s time and
your employer’s money by turning trivial checks that are easily automated into manual
test cases or subjects of an exploratory testing session? Probably not. For many develop-
ers, the harsh reality is that professional testers who know their craft are a rare com-
modity, which is why we don’t want to waste their time and effort by creating software
that’s flawed by design and full of bugs that could easily have been avoided.

Every organization, team, and project is different, and provocative as it may sound,
that shouldn’t affect how the developers work. At the end of the day, it’s you who’ll make
changes to the software and fix the bugs, irrespective of the quality assurance process.
Therefore, it’s in your interest that the software be both testable and tested.

Summary 19

Summary

There’s a difference between testing and checking. The former assumes curiosity and
creativity, whereas the latter is mechanical and can safely be delegated to a computer.

Testing can be performed either to critique or to support. The contents of the
developer role and tester role are greatly affected by the organizational culture and
beliefs about what the two roles are about and how they should contribute. In cross-
functional teams, smaller companies, or agile-minded organizations, the developers
will be more involved in quality assurance, either by collaborating with testers on a
daily basis or by doing the verification and other QA activities themselves.

In larger companies or in companies that separate testing from development, the
developer may be at the mercy of the QA or testing department. There will be test
plans, and bugs will be called defects in a bug-tracking tool.

Most organizations will most likely adapt one of the following stances on testing:

® Traditional—Process-oriented, independent, formal

= Agile testing—Proactive, integrated, collaborative

Implementing behavior-driven development helps a team to collaboratively clar-
ify requirements by using concrete examples, to know when a feature is truly imple-
mented, and to create a living documentation. Regardless of a team’s situation and
access to professional testers, the fact remains that developers always have tested and
always will test their software. After all, running the main method of a program or
poking around in the user interface after making some changes is nothing but ad hoc
testing. When the dust settles, it’s the developers who reap the benefits of building in
quality and verifying it continually.

This page intentionally left blank

Chapter 3
THE TESTING VOCABULARY

What do people mean when they say that software should be tested? What activities,
performed when, and by whom do they refer to? The previous chapter described the
objectives and styles of testing. This chapter will get more concrete and take on
actual testing activities and the vocabulary of testing. Unfortunately, the language
of testing is quite elusive and the terminology rather ambiguous at times. The use
of terms and employment of techniques vary not only across different organiza-
tions, but chances are that as soon a new person enters your team, that person may
attach a different meaning to some of the words that you use when you speak about
testing and quality assurance.

This chapter is organized as a taxonomy of different types of testing and a dic-
tionary of some terms frequently used by testers. As a developer, it’s crucial to be well
familiar with the nuances of this vocabulary. There’s a high probability that it has
affected the way your colleagues approach quality assurance, so you’d better know
where the stuff in the walls comes from. This is especially true in organizations in
which development and testing have been, or still are, disconnected.

In addition, knowing about various types of testing gives a developer a more
solid understanding of the work needed to ensure correctness and other desirable
properties of the software. Thus, it helps to decompose the mystical task of testing
into very concrete activities, some of which are performed by developers, and some
by team members with other specialties. Estimating testing activities gets easier and
it becomes clear when the software is “good enough.”

Putting this material together was challenging, because getting just one pre-
cise definition of a certain type of test is hard and maybe not even meaningful. The
important fact to be aware of is that there are variations and differences. As you read
this chapter, please keep this in mind: what’s really important is that you agree on
the terminology in your organization. Ideally, your team decides on how its testing
is conducted and how it uses the vocabulary, after which it documents the results so
that they’re visible to everybody, like on a poster in the team’s room. In a not so ideal
world, an architect or test manager makes these decisions and writes them down in a
document (where they’ll likely never be found and read).

21

22 Chapter 3 = The Testing Vocabulary

Errors, Defects, Failures

All developers sometimes make mistakes. These are known as errors in the language
of testing. Errors lead to defects in the software. A more frequently used term for
defect is bug,' named for the insect that got trapped in the bowels of prehistoric hard-
ware. Defects/bugs may lead to software failures. Not all of them do, though. A defect
in code that’s never executed won’t cause a failure. Conversely, environmental condi-
tions, like moisture, overheating, magnetic fields, or other events, may do so. So can
incorrect or unintended use or abuse of the software.

White Box and Black Box Testing

Testing takes on fundamentally different forms depending on whether or not we
have access to the tested artifact’s internals—most notably its source code. White
box testing refers to testing where we do have access to the source code and are
able to inspect it, either for verification or inspiration for new tests. Black box
testing is the opposite. We only have access to the tested artifact’s external inter-
face, whatever that might be. When doing black box testing, there’s no way to
inspect the internal state. Instead, the result of the tests is observed in the arti-
fact’s output or by some other indirect means.

Because of how many companies organize their testing activities, testers tend to
work from the black box angle, which means that they have to resort to techniques
that don’t assume they know everything about the system theyre testing. Not only
has this constraint given rise to various testing methods and techniques, but a black
box approach imposes an emotional distance from the target of the test.

Black Box Development

This is a good place to halt the terminology tour and reflect on practices. Even
when developers can inspect and access everything in the codebase, they should
keep the black box approach in mind. Not only does it reduce coupling between
test and production code, viewing the component or system as a black box helps
when defining its contract and behavior. | strongly suggest that the following
questions be raised for each method, class, component, or other artifact:

1. According to lore, Rear Admiral Grace Murray Hopper found a moth trapped in a relay of a
Mark II computer.

Classifying Tests 23

® \What is its interface to the outside world?

®m \What inputs does it take? (Have all allowed values been specified?)
® How does it communicate success or failure?

® How does it react to bad input? (Does it recover or crash?)

® Does it surprise by doing something unexpected or unusual?

Thinking in terms of contracts and behavior is both a fundamental and
very usable design technique, and it leads to software that can readily be tested.
Programming by contract and test-driven development, two technigues that will
be introduced later in the book, both favor this kind of outside-in perspective.

Classifying Tests

There are numerous ways to test software. Depending on the type of information
we want to discover about it and the kind of feedback were interested in, a certain
way of testing may be more appropriate than another. Tests are traditionally classified
along two dimensions: test level and test type (see Figure 3.1). Combining them into a
matrix provides a helpful visualization of the team’s testing activities.

Test Levels

A test level can be thought of as expressing the proximity to the source code and the foot-
print of the test. As an example, unit tests are close to the source code and cover a few
lines. On the contrary, acceptance tests aren’t concerned about implementation details
and may span over multiple systems and processes, thus having a very large footprint.

Unit Test

Unit testing refers to authoring fast, low-level tests that target a small part of the sys-
tem (Fowler 2014). Because of their natural coupling to the code, theyre written by
developers and executed by unit testing frameworks.

24 Chapter 3 = The Testing Vocabulary

Type =
Nonfunctional

F>.) Functional Performance Security Regression
(05}
- Unit

Integration

System
Acceptance

FIGURE 3.1 Test levels and types covered in this chapter.

This sounds simple enough, but the term comes with its gray areas: size and scope
of a unit of work, collaborator isolation, and execution speed. Where the boundary of
a unit is drawn depends on the programming language and type of system. A unit
test may exercise a function or method, a class, or even a cluster of collaborating
classes that provide some specific functionality. This description may seem fuzzy, but
given some experience, it’s easy to spot unit tests that don’t make sense or are too
complicated. Collaborator isolation, along with speed of execution, is subject to more
intense debate. There are those who mandate that a unit test isolate all collaborators
of the tested code. Others strive for a less ascetic approach and isolate only collabora-
tors that, when invoked, would make the test fail because of unavailable or unreach-
able resources or external hosts. In either case, execution speed isn’t an issue. Finally,
some people argue that unit tests don’t have to replace slower collaborators at all as
long as the test is otherwise simple and to the point. This book uses a definition of
unit testing that fits the second of the three aforementioned variants.

When doing research for this book, I found that some sources used the terms
unit and component more or less interchangeably, in which case both referred to a
rather small artifact that can be tested in isolation. To a developer, a unit and a com-
ponent mean different things. As stated previously, a unit of work is a small chunk
of functionality that can be tested in a meaningful way. Components have a more
elusive definition, but the authors of Continuous Delivery—Reliable Software Deliv-
ery through Build, Test, and Deployment Automation nail it quite well: . . . a rea-
sonably large-scale code structure within an application, with well-defined API, that
could potentially be swapped out for another implementation” (Humble & Farley
2010). This definition happens to coincide with how components are described in the

Classifying Tests 25

literature about software architecture. Thus, components are much larger than units
and require more sophisticated tests.

Integration Test

The term integration test is unfortunately both ambiguous and overloaded. The
ambiguity comes from the fact that “integration” may refer to either two systems or
components talking to each other via some kind of remote procedure call (RPC), a
database, or message bus; or it may mean “an integration test is that which is not a
unit test and not a system test.”

Actually there’s a point in maintaining this distinction. Testing whether two sys-
tems talk to each other correctly is a black box activity. Because the systems com-
municate through a (hopefully) well-defined interface, that communication is most
likely to be verified using black box testing. Traditionally, this would fall into the tes-
ter’s domain.

It’s the second definition, encountered frequently enough, that gives rise to the
overloading. The common reasoning goes something like the following, where Tracy
Tester and David Developer argue about a test:

Tracy: Have you tested that the complex customer record is written correctly to
the database?

David: Sure! I wrote a unit test where I stubbed out the database. Piece of cake!

Tracy: But the database contains both some triggers and constraints that could
affect the persistence of the customer record. I don’t think your unit test can
account for that.

David: Then it’s your job to test it! You're responsible for the system tests.

Tracy: I'm not sure whether the database is a “system.” After all it’s your way of
implementing persistence. And besides, wouldn’t you want to be certain that
persisting the complex customer record won’t be messed up by somebody else
on the team? Sure, I can test this manually, but there are only so many times I
can do it.

David: You're right, I guess. I need a test that runs in an automated manner, like
a unit test, but more advanced. It must talk to the database. Hmm . .. Let’s
call this an integration test! After all, we’re integrating the system with the
database.

Tracy:...

Based on the preceding logic, a test that opens a file to write “Hello world” to it
or just outputs the same string on the screen isn’t a unit test. Because it’s definitively

26 Chapter 3 = The Testing Vocabulary

not a system test, it must be an integration test by analogy. After all, something is
integrated with the file system. Confused yet?

Integration tests, as per the second definition, are often intimately coupled to
the source code. Given that the line where a test stops being a unit test and becomes
something else is blurry and debated, many integration tests will feel like advanced or
slower unit tests. Because of this, it shouldn’t be controversial that integration testing
really is a developer’s job. The hard part is defining where that job starts and ends.

System Test

Systems are made up of finished and integrated building blocks. They may be compo-
nents or other systems. System testing is the activity of verifying that the entire system
works. System tests are often executed from a black box perspective and exercise inte-
grations and processes that span large parts of the system. A word of caution about
system testing: if the individual systems or components have been tested in isolation
and have gone through integration testing, system testing will actually target the
overall functionality of the system. However, if the underlying building blocks have
remained untested, system tests will reveal defects that should have been caught by
simpler and cheaper tests, like unit tests. In the worst cases, organizations with infe-
rior and immature development processes, that is, where the developers just throw
code over the wall for testing, have to compensate by running only system tests by
dedicated QA people.?

Acceptance Test

In its traditional meaning acceptance testing refers to an activity performed by the
end users to validate that the software they received conforms to the specifications
and their expectations and is ready for use. Alas, the term has been kidnapped. Now-
adays the aforementioned activity is called user acceptance testing (UAT) (Cimper-
man 2006), whereas acceptance testing tends to refer to automated black box testing
performed by a framework to ensure that a story or part of a story has been correctly
implemented. The major acceptance test frameworks gladly promote this definition.

Test Types

Test type refers to the purpose of the test and its specific objective. It may be to verify
functionality at some level or to target a certain quality attribute. The most prevalent
distinction between test types is that between functional and nonfunctional testing.
The latter can be refined to target as many quality attributes as necessary. Regression

2. This is, by the way, the opposite of building quality in.

Classifying Tests 27

testing is also a kind of testing that can be performed at all test levels, so it makes
sense to treat it as a test type.

Functional Testing

Functional testing constitutes the core of testing. In a striking majority of cases, say-
ing that something will need testing will refer to functional testing. Functional test-
ing is the act of executing the software and checking whether its behavior matches
explicit expectations, feeding it different inputs and comparing the results with the
specification,’ and exploring it beyond the explicit specification to see if it violates
any implicit expectations. Depending on the scope of the test, the specification may
be an expected value, a table of values, a use case, a specification document, or even
tacit knowledge. At its most fundamental, functional testing answers the questions:

m Does the software do what it was intended to do?

m Does it not do what it was not intended to do?

Developers will most often encounter functional tests at the unit test level, simply
because they create many more of such tests in comparison to other types of tests.
However, functional testing applies to all test levels: unit, integration, system, and
acceptance.

Behavior

You will see the word behavior many times in this book. One reviewer, Frank Appel,
pointed out that this term is used very often in the industry without really being
defined. He suggested defining a component’s behavior as the outcome produced by its
functionality under certain preconditions.

I think this is a great definition that captures the meaning of this elusive term.
Because this is a chapter on terminology, I feel obliged to warn about the use of the
word component, though. Later in the book, I introduce the term program element,
which I think is a better fit.

3. Here the word specification doesn’t need to refer to a thick document. It could mean a user story
or any other way of expressing what the software should do.

28 Chapter 3 = The Testing Vocabulary

Nonfunctional Testing

Nonfunctional testing, which by the way is a very unfortunate name, targets a solu-
tion’s quality attributes such as usability, reliability, performance, maintainability,
and portability, to name a few. Some of them will be discussed further later on.

Quality attributes are sometimes expressed as nonfunctional requirements,
hence the relation to nonfunctional testing.

Functional versus Nonfunctional Testing

A good way of memorizing the difference between functional and nonfunctional tests
is remembering that functional tests target the what, whereas nonfunctional tests
target the how. For example, a functional unit test of a sorting algorithm would verify
that the input is indeed sorted. A nonfunctional unit test would time it to make sure
that it runs within a specified time constraint.

Performance Testing

Performance testing focuses on a system’s responsiveness, throughput, and reliabil-
ity given different loads. How fast does a web page load? If a user clicks a button on
the screen, are the contents immediately updated? How long does it take to process
10,000 payment transactions? All of these questions can be asked for different loads.

Under light or normal load, they may indeed be answered by a performance
test. However, as the load on the system is increased—let’s say by more and more
users using the system at the same time, or more transactions being processed per
second—we’re talking about load testing. The purpose of load testing is to determine
the system’s behavior in response to increased load. When the load is increased
beyond the maximum “normal load,” load testing turns into stress testing. A special
type of stress testing is spike testing, where the maximum normal load is exceeded
very rapidly, as if there were a spike in the load. Running the aforementioned tests
helps in determining the capacity, the scaling strategy, and the location of the
bottlenecks.

Performance testing usually requires a specially tailored environment or soft-
ware capable of generating the required load and a way of measuring it.

Security Testing

This type of testing may require a very mixed set of skills and is typically performed
by trained security professionals. Security testing may be performed as an audit, the
purpose of which is to validate policies, or it may be done more aggressively in the
form of a penetration test, the purpose of which is to compromise the system using
black hat techniques.

Classifying Tests 29

N 2
Q X
L/ o
S Data and
services
Availability

FIGURE 3.2 The CIA security triad.

There are various aspects of security. The security triad known as CIA is a com-
mon model that brings them all together (Stallings & Brown 2007). Figure 3.2 pro-
vides an illustration of the concepts in the triad. They include the following:

® Confidentiality
= Data confidentiality—Private or confidential information stays that way.

= Privacy—You have a degree of control over what information is stored
about you, how, and by whom.

= Integrity
® Data integrity—Information and programs are changed by trusted sources.
= System integrity—The system performs the way it’s supposed to without
being compromised.
= Availability

= Resources are available to authorized users and denied to others.

Each leg of the CIA triangle can be subject to an infinite number of attacks.
Whereas some of them will assume the shape of social engineering or manipu-
lation of the underlying operating system or network stack, many of them will
make use of exploits that wouldn’t be possible without defects in the software (devel-
oper work!). Therefore, it follows that knowing at least the basics of how to make an
application resilient to the most common attacks is something that a developer should
know by profession.

30 Chapter 3 ® The Testing Vocabulary

Security for Developers 101

Security is an incredibly broad field, and this book will not even attempt to
address it. However, | couldn’t resist including this short list.

® Most network protocols are not secure, and sending sensitive data over
the network is usually a bad idea.

m Searching for Joe accounts, that is, accounts with easily guessed
credentials, is a common practice among digital villains.

m Computers are fast; cracking a simple password may take minutes or
even seconds.

® SQL injections wouldn't be possible without developer ignorance, or
most likely laziness.?

® The same is true for various file system traversal vulnerabilities.

m |f your program contains a fixed-size buffer for user input and that input
isn't truncated, someone will send too much of it and either crash the
program or escalate privileges.

® People can get very creative in attempts to put JavaScript code in HTML
forms, which is known as cross-site scripting (XSS).

@ Evenin 2013, SQL injections were still the number-one threat according to the OWASP
top 10 list (OWASP 2015).

The way security testing has been described so far really makes it sound like non-
functional testing. However, there does exist a term like functional security testing
(Bath & McKay 2008). It refers to testing security as performed by a “regular” tester.
A functional security test may, for example, be about logging in as a nonprivileged
user and attempting to do something in the system that only users with administra-
tive privileges are allowed to do.

Normally, when we talk about security testing, we refer to the nonfunctional kind.

Regression Testing

How do we know that the system still behaves like it’s supposed to once we’ve changed
some functionality or fixed a bug? How do we know that we haven’t broken anything?
Enter regression testing.

The purpose of regression testing is to establish whether changes to the system
have broken existing functionality or caused old defects to resurface. Traditionally,
regression testing has been performed by rerunning a number of, or all, test cases
on a system after changes have been made. In projects where tests are automated,

Classifying Tests 31

regression testing isn’t much of a challenge. The test suite is simply executed once
more. In fact, as soon as a test is added to an automated suite of tests, it becomes a
regression test.

The true challenge of regression testing faces organizations that neither have a
traditional QA department or tester group, nor automate their tests. In such organi-
zations, regression testing quickly turns into the Smack-a-Bug game.

Putting Test Levels and Types to Work

Maintaining a clear distinction between the various test levels and types may sound
quite rigid and academic, but it can have its advantages.

The first advantage is that all cards are on the table. The team clearly sees what
activities there are to consider and may plan accordingly. Some testing will make it
to the Definition of Done for every story, some testing may be done on an iteration
basis, and some may be deferred to particular releases or a final delivery.* Some might
call this “agreeing on a testing strategy.” If this isn’t good enough and the team has
decided on continuous deployment, having a chart of what to automate and in what
order helps the team make informed decisions. Combinations of test levels and types
map quite nicely to distinct steps in a continuous delivery pipeline.

A second positive effect is that the team gets to talk about its combined skill set,
as the various kinds of tests require different levels of effort, time, resources, train-
ing, and experience. Relatively speaking, unit tests are simple. They take little time to
write and maintain. On the other hand, some types of nonfunctional tests, like per-
formance tests, may require specific expertise and tooling. Discussing how to address
such a span of testing work and the kind of feedback that can be gained from it should
help the team reach shared learning and improvement goals.

Third, we shouldn’t neglect the usefulness of having a crystal-clear picture of
what not to do. For example, a team may decide not to do any nonfunctional integra-
tion testing. This means that nobody will be blamed if an integration between two
components is slow. The issue still needs to be resolved, but at least it was agreed that
testing for such a problem wasn’t a priority.

Finally, in larger projects where several teams are involved, being explicit about
testing and quality assurance may help to avoid misunderstandings, omissions,
blame, and potential conflicts. Again, a simple matrix of test levels and test types may
serve as the basis for a discussion.

4. Ideally your team can perform all its testing always, constantly, and continually. In my
experience, such cases are rare. Even great cross-functional teams may lack competence or
resources to perform certain kinds of nonfunctional testing.

32 Chapter 3 = The Testing Vocabulary

The Agile Testing Quadrants

A chapter on testing terminology wouldn’t be complete without the Agile Testing
Quadrants® shown in Figure 3.3.

Instead of focusing on levels and types, this model emphasizes the difference
between business-facing and technology-facing tests. Business-facing tests are tests that
make sense to a person responsible for business decisions. A typical example could be:

If a customer uses direct bank payments to pay for our product and pays too
much, does he or she get a refund, or is the excess amount stored and used in

the next transaction?

Technology-facing tests are expressed using technical terms and imple-
mented by the developers:

If validation of the credit card fails, the transaction enclosing the purchase is
rolled back, nothing is stored in the database, and the event is logged.

Another dimension of the testing quadrants is the distinction between tests that
guide development, like tests written by developers to ensure that the produced code
is correct, and tests that critique the product. The latter are directed toward the fin-
ished product and attempt to find deficiencies in it.

In my opinion, this is one of the most usable models in the domain of software
testing. No, it’s the most usable. It facilitates teamwork by turning testing into a coop-
erative activity, instead of an adversarial one, while at the same time reminding us
of the duality of guiding/supporting testing and the critiquing kind. The model also
tells us that in order for a team to deliver a product that functions correctly, delights
the users, and solves the business problem, it must view its testing activities from sev-
eral disparate perspectives.

When projected onto the Agile Testing Quadrants, developer tests cover the
whole of the lower left quadrant, large parts of the upper left quadrant, and a fair
share of the lower right quadrant.

5. The model was originally created by Brian Marick (2003) and has been popularized by Lisa
Crispin and Janet Gregory (2008). It has been challenged, adapted, and revised, so there’s plenty
of material available online. Gojko Adzic’s (2013) and Michael Bolton’s (2014) work on the topic
are good entry points to this material.

Some Other Types of Testing 33

Business facing

Examples Exploratory testing
A/B tests Workflows
Story tests (written first) System integration
< UX (user experience) testing (business oriented) @)
g Prototypes Usability testing =
8‘ Simulations User acceptance testing 'c%
© Q2 Q3 =
3 @
9 Q1 Q4 5
[I}
ke a
(3 Unit tests Performance testing S
Component tests (code level) Load testing
Testing connectivity Security testing

Quality attributes (... ilities)

Technology facing

FIGURE 3.3 Agile Testing Quadrants as presented in the book More Agile Testing by Lisa
Crispin and Janet Gregory (2014).

Some Other Types of Testing

The vocabulary of testing is indeed rich and plentiful. Next follow some terms that
get thrown around frequently enough and that are related to developer testing in one
way or another.

Smoke Testing

The term smoke testing originated from engineers testing pipes by blowing smoke
into them. If there was a crack, the smoke would seep out through it. In software
development, smoke testing refers to one or a few simple tests executed immediately
after the system has been deployed. The “Hello World” of smoke testing is logging
into the application.® Trivial as it may seem, such a test provides a great deal of infor-
mation. For example, it will show that

® The application has been deployed successfully

= The network connection works (in case of network applications)

6. Because the “Hello World” of applications is an application that requires logging in.

34 Chapter 3 = The Testing Vocabulary

® The database could be reached (because user credentials are usually stored in
the database)

® The application starts, which means that it isn’t critically flawed

Smoke tests are perfect candidates for automation and should be part of an automated
build/deploy cycle. Earlier we touched on the subject of regression tests. Smoke tests
are the tests that are run first in a regression test suite or as early as possible in a con-
tinuous delivery pipeline.

End-to-End Testing

Sometimes we encounter the term end-to-end testing. Most commonly, the term
refers to system testing on steroids. The purpose of an end-to-end test is to include
the entire execution path or process through a system, which may involve actions
outside the system. The difference from system testing is that a process or use case
may span not only one system, but several. This is certainly true in cases where the
in-house systems are integrated with external systems that cannot be controlled. In
such cases, the end-to-end test is supposed to make sure that all systems and subsys-
tems perform correctly and produce the desired result.

What’s problematic about this term is that its existence is inseparably linked to
one’s definition of a system and system boundary. In short, if we don’t want to make
a fuss about the fact that our e-commerce site uses a payment gateway operated by a
third party, then we’re perfectly fine without end-to-end tests.

Characterization Testing

Characterization testing is the kind of testing you’re forced to engage in when chang-
ing old code that supposedly works but it’s unclear what requirements it’s based on,
and there are no tests around to explain what it’s supposed to be doing. Trying to
figure out the intended functionality based on old documentation is usually a futile
attempt, because the code has diverged from the scribblings on a wrinkled piece of
paper covered with coffee stains long ago.” In such conditions, one has to assume
that the code’s behavior is correct and pin it down with tests (preferably unit tests),
so that changing it becomes less scary. Thus, the existing behavior is “characterized.”

7. My experience is that truly old specifications always come in paper form only! It’s not that they
predate text files, but the original document has been lost forever in a disk crash, reorganization
of the shared network drive, or somebody’s project directory cleanup frenzy.

Some Other Types of Testing 35

Characterization tests differ from regression tests in that they aim at stabilizing exist-
ing behavior, and not necessarily the correct behavior.

Positive and Negative Testing

The purpose of positive testing is to verify that whatever is tested works as expected
and behaves like it’s supposed to. In order to do so, the test itself is friendly to the
tested artifact. It supplies inputs that are within allowed ranges, in a timely fashion,
and in the correct order. Tests that are run in such a manner and exercise a typical
use case are also called happy path tests.

The purpose of negative testing is to verify that the system behaves correctly if
supplied with invalid values and that it doesn’t generate any unexpected results. What
outcome to expect depends on the test level. At the system level, we generally want the
system to “do the right thing™ either reject the faulty input in a user-friendly manner,
or recover somehow. At the unit level, throwing an exception may be the right thing
to do. For example, if a function exercised with a unit test expects a positive number
and throws an IllegalArgumentException or ArgumentOutOfRange-
Exception in a negative test that may be fine. What’s important is that the devel-
oper has anticipated the scenario.

Small, Medium, and Large Tests

When it comes to pruning terminology, Google may serve as a source of inspiration.
To avoid the confusion between terms like end-to-end test, system test, functional
test, Selenium?® test, or UT test, the engineers at Google divided tests into only three
categories—small, medium, and large (Stewart 2010).

= Small tests—Correspond closely to unit tests; they’re small and fast. They’re
not allowed to access networks, databases, file systems, and external systems.
Neither are they allowed to contain sleep statements or test multithreaded
code. They must complete within 60 seconds.

= Medium tests—May check the interactions between different tiers of the
application, which means that they can use databases, access the file system,
and test multithreaded code. They should stay away from external systems
and remote hosts, though, and should execute for no longer than 300 seconds.

m Large tests—Not restricted by any limitations.

8. Selenium is a browser automation framework.

36 Chapter 3 = The Testing Vocabulary

Summary

Many of the terms in this chapter have multiple meanings and can be interpreted dif-
ferently in different contexts. The purpose of this chapter is to bring to light several
key terms that are used during discussions about software development and testing.

Human mistakes are called errors in testing speak. Errors frequently lead to soft-
ware defects—bugs. Bugs may lead to software failures.

White box testing assumes having access to the source code and targets the inter-
nal structure of a system, whereas black box testing is done “from the outside” and
targets the functionality.

Unit tests ensure that a small unit of code, like a function, a class, or a group
of classes, works as expected. Integration tests verify that components/systems can
talk to each other, but sometimes the term is used to describe tests that are some-
where between unit tests and system tests. System tests are run to verify an entire
system. Finally, acceptance tests are performed by the customer to make sure that the
expected system has been delivered, whereas automated acceptance tests are written
by the team and executed by a testing framework to verify that a story or scenario has
been implemented.

The Agile Testing Quadrants is a model that divides tests into dimensions of tech-
nology versus business oriented, as well as guiding the development versus critiquing
the product.

Classifying tests can clarify discussions about responsibility and what to test,
when, and how. The important thing is to use a classification that everybody in the
organization agrees on (or at least is familiar with).

Chapter 4

TESTABILITY FROM A
DEVELOPER'S PERSPECTIVE

Testability means different things to different people depending on the context. From
a bird’s eye view, testability is linked to our prior experience of the things we want to
test and our tolerance for defects: the commercial web site that we’ve been running
for the last five years will require less testing and will be easier to test than the insu-
lin pump that we’re building for the first time. If we run a project, testability would
be about obtaining the necessary information, securing resources (such as tools and
environments), and having the time to perform various kinds of testing. There’s also
a knowledge perspective: How well do we know the product and the technology used
to build it? How good are our testing skills? What’s our testing strategy? Yet another
take on testability would be developing an understanding of what to build by having
reliable specifications and ensuring user involvement. It’s hard to test anything unless
we know how it’s supposed to behave.!

Before breaking down what testability means to developers, let’s look at why
achieving it for software is an end in itself.

Testable Software

Testable software encourages the existence of tests—be they manual or automatic.
The more testable the software, the greater the chance that somebody will test it, that
is, verify that it behaves correctly with respect to a specification or some other expec-
tations, or explore its behavior with some specific objective in mind. Generally, peo-
ple follow the path of least resistance in their work, and if testing isn’t along that path,
it’s very likely not going to be performed (Figure 4.1).

That testable software will have a greater chance of undergoing some kind of
testing may sound really obvious. Equally apparent is the fact that lack of testability,
often combined with time pressure, can and does result in bug-ridden and broken
software.

Whereas testable software stands on one side of the scale, The Big Ball of Mud
(Foote & Yoder 1999) stands on the other. This is code that makes you suspect that

1. For an in-depth breakdown of testability, I recommend James Bach’s work on the subject (2015).

37

38 Chapter 4 = Testability from a Developer’s Perspective

Probability of
being tested

A

Easy!

I'll just...

No Way! v

First, Id

have fto...

@

>

Testability

FIGURE 4.1 Is untestable software going to be tested?

the people who wrote it deliberately booby-trapped it with antitestability constructs
to make your life miserable. A very real consequence of working with a system that’s
evolved into The Big Ball of Mud architecture is that it’ll prevent you from verifying
the effects of your coding efforts. For various reasons, such as convoluted configura-
tion, unnecessary start-up time, or just the difficulty to produce a certain state or
data, you may actually have a hard time executing the code you've just written, not to
mention being able to write any kinds of tests for it!

For example, imagine a system that requires you to log in to a user interface (UT)
and then performing a series of steps that require interacting with various graphical
components and then navigating through multiple views before being able to reach
the functionality you’ve just changed or added and want to verify. To make things
more realistic (yes, this is a real-life example), further imagine that arriving at the
login screen takes four minutes because of some poor design decisions that ended up
having a severe impact on start-up time. As another example, imagine a batch pro-
gram that has to run for 20 minutes before a certain condition is met and a specific
path through the code is taken.

Honestly, how many times will you verify, or even just run, the new code if you
have to enter values into a multitude of fields in a UT and click through several screens

Benefits of Testability 39

(to say nothing of waiting for the application to start up), or if you must take a coffee
break every time you want to check if your batch program behaves correctly for that
special almost-never-occurring edge case?

Testers approaching a system with The Big Ball of Mud architecture also face a
daunting task. Their test cases will start with a long sequence of instructions about
how to put the system in a state the test expects. This will be the script for how to
fill in the values in the UT or how to set the system up for the 20-minute-long batch
execution. Not only must the testers author that script and make it detailed enough,
they must also follow it . . . many times, if they are unlucky. Brrr.

Benefits of Testability

Apart from shielding the developers and testers from immediate misery, testable soft-
ware also has some other appealing qualities.

Its Functionality Can Be Verified

If the software is developed so that its behavior can be verified, it’s easy to confirm
that it supports a certain feature, behaves correctly given a certain input, adheres to a
specific contract, or fulfills some nonfunctional constraint. Resolving a bug becomes
a matter of locating it, changing the code, and running some tests. The opposite of
this rather mechanical and predictable procedure is playing the guessing game:

Charlie: Does business rule X apply in situation Y?

Kate: Not a clue! Wasn’t business rule X replaced by business rule Z in release
5.21 by the way?

Charlie: Dunno, but wasn’t release 5.2 scrapped altogether? I recall that it was
too slow and buggy, and that we waited for 5.4 instead.

Kate: Got me there. Not a clue.

Such discussions take place if the software’s functionality isn’t verifiable and is
expressed as guesses instead. Lack of testability makes confirming these guesses hard
and time consuming. Therefore, there’s a strong probability that it won’t be done.

And because it won't be done, some of the software’s features will only be found
in the lore and telltales of the organization. Features may “get lost” and, even worse,
features may get imagined and people will start expecting them to be there, even
though they never were. All this leads to “this is not a bug, it’s a feature” type of argu-
ments and blame games.

40 Chapter 4 = Testability from a Developer’s Perspective

It Comes with Fewer Surprises

Irrespective of the methodology used to run a software project, at some point some-
body will want to check on its progress. How much work has been done? How much
remains? Such checks needn’t be very formal and don’t require a written report with
milestones, toll gates, or Gantt charts. In agile teams, developers will be communicat-
ing their progress at least on a daily basis in standup meetings or their equivalents.

However, estimating progress for software that has no tests (because of poor test-
ability) ranges between best guesses and wishful thinking. A developer who believes
he is “95 percent finished” with a feature has virtually no way of telling what fraction of
seemingly unrelated functionality he has broken along the way and how much time it’ll
take to fix these regressions and the remaining “5 percent”. A suite of tests makes this
situation more manageable. Again, if the feature is supposedly “95 percent finished”
and all tests for the new functionality pass, as well as those that exercise the rest of the
system, the estimate is much more credible. Now the uncertainty is reduced to poten-
tial surprises in the remaining work, not to random regressions that may pop up any-
where in the system. Needless to say, this assumes that the codebase is indeed covered
by tests that would actually break had any regression issues taken place.

It Can Be Changed

Software can always be changed. The trick is to do it safely and at a reasonable cost.
Assuming that testable software implies tests, their presence allows making changes
without having to worry that something—probably unrelated—will break as a side
effect of that change.

Changing software that has no tests makes the average developer uncomfort-
able and afraid (and it should). Fear is easily observed in code. It manifests itself as
duplication—the safe way to avoid breaking something that works. When doing code
archaeology, we can sometimes find evidence of the following scenario:

At some point in time, the developer needed a certain feature. Alas, there wasnt
anything quite like it in the codebase. Instead of adapting an existing concept, by gener-
alizing or parameterizing it, he took the safe route and created a parallel implementa-
tion, knowing that a bug in it would only affect the new functionality and leave the rest
of the system unharmed.

2. Aslight variation of this is nicely described in the book Pragmatic Unit Testing by Andrew Hunt
and David Thomas (2003). They plot productivity versus time for software with and without
tests. The productivity is lower for software supported by tests, but it’s kept constant over time.
For software without tests, the initial productivity is higher, but it plummets after a while and
becomes negative. Have you been there? I have.

Benefits of Testability 11

This is but one form of duplication. In fact, the topic is intricate enough to deserve
a chapter of its own.

Why Care about Testability

Ultimately, testable software is about money and happiness. Its stakeholders can roll
out new features quickly, obtain accurate estimates from the developers, and sleep
well at night, because they’re confident about the quality. As developers working with
code every day, we, too, want to be able to feel productive, give good estimates, and be
proud of the quality of our systems. We also want our job to feel fulfilling; we don’t
want to get stuck in eternal code-fix cycles, and, above all, we don’t want our job to be
repetitive and mind numbing. Unfortunately, unless our software is testable, we run
that risk. Untestable software forces us to work more and harder instead of smarter.

Tests Are Wasteful
by Stephen Vance

This may sound heretical in a book on developer testing and from the author of
another book on code-level testing, but bear with me. Agile methods attempt
to improve the software we write, or more generally, the results of our
knowledge work. I'm very careful to phrase this in a way that highlights that
the results are more important than the methods. If some magical Intention
Machine produced the software we want without programming, this entire
book would be academic. If we could achieve the results without software
altogether at the same levels of speed and convenience, our entire discipline
would be irrelevant. In some sense, as advanced as we are compared to the
course of human history, the laborintensive-approach trade we ply is quite
primitive. Before we wither at the futility of it all, we realize we can only
achieve this magical future through improvement.

Most Agile methods have some basis in the thinking that revolutionized
manufacturing at the end of the twentieth century. Lean, Total Quality
Management, Just-in-time, Theory of Constraints, and the Toyota Production
System from the likes of Juran, Deming, Ohno, and Goldratt completely
changed the state of manufacturing. Agile methods take those insights and
apply them to a domain of inherent invention and variability. Although the
principles must be significantly adapted, most of them still apply.

A key principle is the elimination of waste. The Toyota Production System
even has three words for waste, muda, mura, and muri, and mura has at

42

Chapter 4 = Testability from a Developer’s Perspective

least seven subcategories captured in the acronym TIMWOOD. Much of our
testing focuses on the waste of defects, but does so by incurring inventory
and overprocessing.

We incur inventory waste when we invest capital (i.e., coding time)
in product that has not yet derived value. Since tests are never delivered,
they are eternal inventory. They are an investment with no direct return, only
indirect through the reduction and possible prevention of defects.

We incur overprocessing waste by spending the extra attention required to
write the tests as compared to the raw production code. The extra attention may
pay off compared to the debugging time to get it right at first, the rework for the
defects we don't catch, and the refamiliarization on each maintenance encounter.
It is clearly additional to getting the code right naturally from the start.

The previous alternatives clearly show that tests are better than the
problems they address. That just means they're the best thing we have, not
the best we can do. Ultimately, we care about correctness, not tests. WWe need
to keep looking for better ways to ensure the correctness of our software.

I haven't found the answer yet, but there are some interesting candidates.

Domain-Specific Languages

Domain-specific languages (DSLs) have promise. They simplify the work for
their users and avoid the repetitive creation of similar code. They bring us
closer to being able to say exactly what we mean in the language of the
problem we are solving by encapsulating potentially complex logic in a higher
order vocabulary. If the author guarantees the correctness of the elements of
the DSL, whole layers of code are correct before we try to use them.

However, good DSLs are notoriously hard to write. Arguably, almost
every APl we use should be a good DSL, but how many are? Creating a good
DSL requires not only taking the time to understand the domain, but also
playing with different models of the domain and its interactions to optimize
its usability and utility. Additionally, there may be multiple characteristic
usage patterns, differing levels of relevant abstractions, varying levels of user
expertise, and impactful technological changes over time.

Take, for example, the Capybara acceptance test framework for Ruby,
often cited as an example of a well-crafted DSL in the context of its host
language. With a set of actions like visit, fill in, click button and
matchers like have content, itis well suited to static web pages. Under the
covers, it has adapted to the rapid evolution of underlying tools like Selenium,
but not without challenges at times. However, it still has difficulty dealing with
the dynamic, time-dependent behaviors of single-page applications.

Formal Methods

Formal methods sound good. They provide formal proof of the correctness
of the code. Unfortunately, we have had a hard time adapting them to larger

Testability Defined 43

problems, they are very labor intensive, and most programmers I've met
prefer not to deal in that level of mathematical rigor. The research continues,
but we're not there yet.

Types

Types bridge the gap between mainstream languages and formal methods in
my opinion. By using a subset of formal specification, they help you ensure
correctness by cleanly and compactly expressing your illegal “corner cases”
in the context they can be most readily applied.

Others

Other approaches provide partial, complex, or laborious solutions. If you're so
inclined, maybe you can find that great breakthrough. Until then, keep testing.

Testability Defined

Testability is a quality attribute among other “ilities” like reliability, maintainability,
and usability. Just like the other quality attributes, it can be broken down into more
fine-grained components (Figure 4.2). Observability and controllability are the two
cornerstones of testability. Without them, it’s hard to say anything about correctness.
The remaining components described next made it to the model based on my practi-
cal experience, although I hope that their presence isn’t surprising or controversial.

When a program element (see “Program Elements”) is testable, it means that it
can be put in a known state, acted on, and then observed. Further, it means that this
can be done without affecting any other program elements and without them inter-
fering. In other words, it’s about making the black box of testing somewhat transpar-
ent and adding some control levers to it.

Program Elements

From time to time T'll be using the term program element. The meaning of the term
depends on the context. Sometimes it’s a function, sometimes a method, sometimes a
class, sometimes a module, sometimes a component, or sometimes all of these things.
I use the generic term to avoid clumsy sentences.

Using a catch-all term also solves the problem of emphasizing the difference
between programming paradigms. Although the book favors object-oriented code,
many techniques apply to procedural and functional constructs too. So instead of
writing “class” and “method” everywhere, I can use “program element” and refer to
“function” or “module” as well, like a C file with a bunch of related functions.

44 Chapter 4 = Testability from a Developer’s Perspective

»‘ Observability
—» Isolability
Testabilty | > Controllabiity —— > Deployabilty

—» Singularity

»‘ Smallness | ——» Level of abstraction

—» Efficiency

L Reuse

FIGURE 4.2 The testability quality attribute decomposed.

Observability

In order to verify that whatever action our tested program element has been subjected
to has had an impact, we need to be able to observe it. The best test in the world isn’t
worth anything unless its effects can be seen. Software can be observed using a vari-
ety of methods. One way of classifying them is in order of increasing intrusiveness.

The obvious, but seldom sufficient, method of observation is to examine whatever
output the tested program element produces. Sometimes that output is a sequence of
characters, sometimes a window full of widgets, sometimes a web page, and some-
times a rising or falling signal on the pin of a chip.

Then there’s output that isn’t always meant for the end users. Logging statements,
temporary files, lock files, and diagnostics information are all output. Such output is
mostly meant for operations and other more “technical” stakeholders. Together with
the user output, it provides a source of information for nonintrusive testing.

To increase observability beyond the application’s obvious and less obvious out-
put, we have to be willing to make some intrusions and modify it accordingly. Both
testers and developers benefit from strategically placed observation points and vari-
ous types of hooks/seams for attaching probes, changing implementations, or just
peeking at the internal state of the application. Such modifications are sometimes
frowned upon, as they result in injection of code with the sole purpose of increasing
observability. At the last level, there’s a kind of observability that’s achievable only by

Testability Defined 45

developers. It’s the ability to step through running code using a debugger. This cer-
tainly provides maximum observability at the cost of total intrusion. I don’t consider
this activity testing, but rather writing code. And you certainly don’t want debugging
to be your only means of verifying that your code works.

Too many observation points and working too far from production code may
result in the appearance of Heisenbugs—bugs that tend to disappear when one tries to
find and study them. This happens because the inspection process changes something
in the program’s execution. Excessive logging may, for example, hide a race condition
because of the time it takes to construct and output the information to be logged.

Logging, by the way, is a double-edged sword. Although it’s certainly the easiest
way to increase observability, it may also destroy readability. After all, who hasn’t
seen methods like this:

void performRemoteReboot (String message) {
if (log.isDebugEnabled()) {
log.debug ("In performRemoteReboot:" + message);
}
log.debug ("Creating telnet client");
TelnetClient client = new TelnetClient ("192.168.1.34");
log.debug ("Logging in");
client.login ("rebooter", "secretd2");
log.debug ("Rebooting") ;
client.send("/sbin/shutdown -r now '" + message + "'");
client.close();
log.debug ("done") ;

As developers, we need to take observability into account early. We need to think
about what kind of additional output we and our testers may want and where to add
more observation points.

Observability and information hiding are often at odds with each other. Many
languages, most notably the object-oriented ones, have mechanisms that enable them
to limit the visibility of code and data to separate the interface (function) from the
implementation. In formal terms, this means that any proofs of correctness must rely
solely on public properties and not on “secret” ones (Meyer 1997). On top of that, the
general opinion among developers seems to be that the kind of testing that they do
should be performed at the level of public interfaces. The argument is sound: if tests
get coupled to internal representations and operations, they get brittle and become
obsolete or won't even compile with the slightest refactoring. They no longer serve as
the safety net needed to make refactoring a safe operation.

46 Chapter 4 = Testability from a Developer’s Perspective

Although all of this is true, the root cause of the problem isn’t really information
hiding or encapsulation, but poor design and implementation, which, in turn, forces
us to ask the question of the decade: Should I test private methods??

Old systems were seldom designed with testability in mind, which means that
their program elements often have multiple areas of responsibility, operate at differ-
ent levels of abstraction at the same time, and exhibit high coupling and low cohesion.
Because of the mess under the hood, testing specific functionality in such systems
through whatever public interfaces they have (or even finding such interfaces) is a
laborious and slow process. Tests, especially unit tests, become very complex because
they need to set up entire “ecosystems” of seemingly unrelated dependencies to get
something deep in the dragon’s lair working.

In such cases we have two options. Option one is to open up the encapsulation by
relaxing restrictions on accessibility to increase both observability and controllabil-
ity. In Java, changing methods from private to package scoped makes them accessible
to (test) code in the same package. In C++, there’s the infamous friend keyword,
which can be used to achieve roughly a similar result, and C# has its Internals-
VisibleTo attribute.

The other option is to consider the fact that testing at a level where we need to
worry about the observability of deeply buried monolithic spaghetti isn’t the course
of action that gives the best bang for the buck at the given moment. Higher-level tests,
like system tests or integration tests, may be a better bet for old low-quality code that
doesn’t change that much (Vance 2013).

With well-designed new code, observability and information hiding shouldn’t be
an issue. If the code is designed with testability in mind from the start and each pro-
gram element has a single area of responsibility, then it follows that all interesting
abstractions and their functionality will be primary concepts in the code. In object-
oriented languages this corresponds to public classes with well-defined functionality
(in procedural languages, to modules or the like). Many such abstractions may be
too specialized to be useful outside the system, but in context they’re most meaning-
ful and eligible for detailed developer testing. The tale in the sidebar contains some
examples of this.

Testing Encapsulated Code

Don't put yourself in the position where testing encapsulated code becomes an issue. If
you're already there and can’t escape in the foreseeable future, test it!

3. Or functions, or modules, or any program element, the accessibility to which is restricted by the
programming language to support encapsulation.

Testability Defined

47

The Tale of the Math Package

Let's assume that we're setting out to build a math package with a user
interface. Users will enter different expressions or equations somehow, and
the software will compute the result or perform a mathematical operation like
differentiation or integration.

If built iteratively in increments, possibly in a test-driven manner, the
entire application may initially start in a single class or module, which will
do everything: accept input, parse it, evaluate it, and eventually output the
results. Such a program can easily be tested via its public interface, which
would be somewhere around accepting unparsed input and returning the
results of the computation. Maybe like so:

DisplayableResult evaluate (String userInput)

However, as the code grows, new program elements will be introduced
behind this public interface. First a parser may appear, then something that
evaluates the parsed input, then a bunch of specialized math functions,
and finally a module that presents the output somehow—either graphically
or using some clever notation. As all these building blocks come into
existence, testing them through only the first public entry point becomes
ceremonious, because they're standalone abstractions with well-defined
behavior. Consequently, all of them operate on their own data types and
domains, which have their own boundary values and equivalence partitions
(see Chapter 8, “Specification-based Testing Techniques”) and their own
kind of error and exception handling. Ergo, they need their share of tests.
Such tests will be much simpler than the ones starting at the boundary of
the public interface, because they'll hit the targeted functionality using its
own domains and abstractions. Thus, a parsing module will be tested using
strings as input and verified against some tree-like structure that represents
the expression, whereas an evaluation module may be tested using this tree-
like representation and returning something similar. If the underlying math
library contains a tailormade implementation of prime number factorization,
that, too, will need specific testing.

If built with some degree of upfront design (be it detailed or rough), that
design will reveal some interesting actors, like the parser or the evaluation
engine, and their interfaces from the start. At this stage it will be apparent
that these actors need to work together correctly, but also exhibit individual
correctness. Enter tests of nonpublic behavior . . .

48 Chapter 4 = Testability from a Developer’s Perspective

So what happens if, let's say, the parsing code is replaced with a third-
party implementation? Numerous tests will be worthless, because the new
component happens to be both well renowned for its stability and correctness
and well tested. This wouldn’t have happened if all tests targeted the initial
public interface. Well, this is the “soft” in software—it changes. The tests that
are going to get thrown away once secured the functionality of the parser,
given its capabilities and implementation. The new parsing component comes
with new capabilities, and certainly a new implementation, so some tests will
no longer be relevant.

Controllability

Controllability is the ability to put something in a specific state and is of paramount
importance to any kind of testing because it leads to reproducibility. As developers,
we like to deal with determinism. We like things to happen the same way every time,
or at least in a way that we understand. When we get a bug report, we want to be able
to reproduce the bug so that we may understand under what conditions it occurs.
Given that understanding, we can fix it. The ability to reproduce a given condition in
a system, component, or class depends on the ability to isolate it and manipulate its
internal state.

Dealing with state is complex enough to mandate a section of its own. For now,
we can safely assume that too much state turns reproducibility, and hence control-
lability, into a real pain. But what is state? In this context, state simply refers to what-
ever data we need to provide in order to set the system up for testing. In practice, state
isn’t only about data. To get a system into a certain state, we usually have to set up
some data and execute some of the system’s functions, which in turn will act on the
data and lead to the desired state.

Different test types require different amounts of state. A unit test for a class that
takes a string as a parameter in its constructor and prints it on the screen when a
certain method is called has little state. On the other hand, if we need to set up thou-
sands of fake transactions in a database to test aggregation of cumulative discounts,
then that would qualify as a great deal of state.

Deployability

Before the advent of DevOps, deployability seldom made it to the top five quality attri-
butes to consider when implementing a system. Think about the time you were in a
large corporation that deployed its huge monolith to a commercial application server.
Was the process easy? Deployability is a measure of the amount of work needed to
deploy the system, most notably, into production. To get a rough feeling for it, ask:

Testability Defined 49

“How long does it take to get a change that affects one line of code into production?”
(Poppendieck & Poppendieck 2006).

Deployability affects the developers’ ability to run their code in a production-like
environment. Let’s say that a chunk of code passes its unit tests and all other tests on
the developer’s machine. Now it’s time to see if the code actually works as expected in
an environment that has more data, more integrations, and more complexity (like a
good production-like test environment should have). This is a critical point. If deploy-
ing a new version of the system is complicated and prone to error or takes too much
time, it won’t be done. A typical process that illustrates this problem is manual deploy-
ment based on a list of instructions. Common traits of deployment instructions are that
they’re old, they contain some nonobvious steps that may not be relevant at all, and
despite their apparent level of detail, they still require a large amount of tacit knowledge.
Furthermore, they describe a process that’s complex enough to be quite error prone.

Manual Deployment Instructions

A list of instructions for manual deployment is a scary relic from the past, and
it can break even the toughest of us. It's a sequence of steps written probably
five or more years ago, detailing the procedure to manually deploy a system.
It may look something like this:

1. Log in to prod.mycompany.com using ssh with user root, password
secretl23.

2. Navigate to the application server directory:
cd /data/opt/extras/appserver/jboss
3. Stop the server by running the following:
./stop_server vl 7.sh
4. On your local machine, run the build script:
cd c:\projects\killerapp, ant package

5. Use WInSCP version 1.32 to copy killerapp.ear to the deployment
directory.

6. Remove the temporary files in /tmp/killerapp.
7. Clear the application cache:

rm -rf server/killerapp/cache*)

8. More steps . . .

50 Chapter 4 = Testability from a Developer’s Perspective

Being unable to deploy painlessly often punishes the developers in the end. If
deployment is too complicated and too time consuming, or perceived as such, they
may stop verifying that their code runs in environments that are different from their
development machines. If this starts happening, they end up in the good-old “it works
on my machine” argument, and it never makes them look good, like in this argument
between Tracy the Tester and David the Developer:

Tracy: I tried to run the routine for verifying postal codes in Norway. When I
entered an invalid code, nothing happened.

David: All my unit tests are green and I even ran the integration tests!

Tracy: Great! But I expected an error message from the system, or at least some
kind of reaction.

David: But really, look at my screen! I get an error message when entering an
invalid postal code. I have a Norwegian postal code in my database.

Tracy: I notice that you're running build 273 while the test environment runs
269. What happened?

David: Well .. . I didn’t deploy! It would take me half a day to do it! I'd have to
add a column to the database and then manually dump the data for Norway.
Then I'd have to copy the six artifacts that make up the system to the
application server, but before doing that I'd have to rebuild three of them. . . .
I forgot to run the thing because I wanted to finish it!

The bottom line is that developers are not to consider themselves finished with
their code until they’ve executed it in an environment that resembles the actual pro-
duction environment.

Poor deployability has other adverse effects as well. For example, when prepar-
ing a demo at the end of an iteration, a team can get totally stressed out if getting the
last-minute fixes to the demo environment is a lengthy process because of a manual
procedure.

Last, but not least, struggling with unpredictable deployment also makes critical
bug fixes difficult. I don’t encourage making quick changes that have to be made in a
very short time frame, but sometimes you encounter critical bugs in production and
they have to be fixed immediately. In such situations, you don’t want to think about
how hard it’s going to get the fix out—you just want to squash the bug.

What about Automated Deployment?

One way to ensure good deployability is to commit to continuous integration and
then adapt the techniques described in the book Continuous Delivery. Its authors often
repeat: “If it’s painful, do it more often” (Humble & Farley 2010), and this certainly
refers to the deployment process, which should be automated.

Testability Defined 51

Isolability

Isolability, modularity, low coupling—in this context, they’re all different sides of the
same coin. There are many names for this property, but regardless of the name, it’s
about being able to isolate the program element under test—be it a function, class,
web service, or an entire system.

Isolability is a desirable property from both a developer’s and a tester’s point of
view. In modular systems, related concepts are grouped together, and changes don’t
ripple across the entire system. On the other hand, components with lots of depen-
dencies are not only difficult to modify, but also difficult to test. Their tests will
require much setup, often of seemingly unrelated dependencies, and their interac-
tions with the outside world will be artificial and hard to make sense of.

Isolability applies at all levels of a system. On the class level, isolability can be
described in terms of fan-out, that is, the number of outgoing dependencies on other
classes. A useful design rule of thumb is trying to achieve a low fan-out. In fact, high
fan-out is often considered bad design (Borysowich 2007). Unit testing classes with
high fan-out is cumbersome because of the number of test doubles needed to isolate
the class from all collaborators.

Poor isolability at the component level may manifest itself as difficulty setting
up its surrounding environment. The component may be coupled to other compo-
nents by various communication protocols such as SOAP or connected in more indi-
rect ways such as queues or message buses. Putting such a component under test may
require that parts of it be reimplemented to make the integration points interchange-
able for stubs. In some unfortunate cases, this cannot be done, and testing such a
component may require that an entire middleware package be set up just to make it
testable.

Systems with poor isolability suffer from the sum of poorness of their individ-
ual components. So if a system is composed of one component that makes use of an
enterprise-wide message bus, another component that requires a very specific direc-
tory layout on the production server (because it won’t even run anywhere else), and a
third that requires some web services at specific locations, you're in for a treat.

Smallness

The smaller the software, the better the testability, because there’s less to test. Simply
put, there are fewer moving parts that need to be controlled and observed, to stay
consistent with this chapter’s terminology. Smallness primarily translates into the
quantity of tests needed to cover the software to achieve a sufficient degree of con-
fidence. But what exactly about the software should be “small”? From a testability
perspective, two properties matter the most: the number of features and the size of
the codebase. They both drive different aspects of testing.

52 Chapter 4 = Testability from a Developer’s Perspective

Feature-richness drives testing from both a black box and a white box perspec-
tive. Each feature somehow needs to be tested and verified from the perspective of the
user. This typically requires a mix of manual testing and automated high-level tests
like end-to-end tests or system tests. In addition, low-level tests are required to secure
the building blocks that comprise all the features. Each new feature brings additional
complexity to the table and increases the potential for unfortunate and unforeseen
interactions with existing features. This implies that there are clear incentives to keep
down the number of features in software, which includes removing unused ones.

A codebase’s smallness is a bit trickier, because it depends on a number of fac-
tors. These factors aren’t related to the number of features, which means that they’re
seldom observable from a black box perspective, but they may place a lot of burden on
the shoulders of the developer. In short, white box testing is driven by the size of the
codebase. The following sections describe properties that can make developer testing
cumbersome without rewarding the effort from the feature point of view.

Singularity

If something is singular, there’s only one instance of it. In systems with high singu-
larity, every behavior and piece of data have a single source of truth. Whenever we
want to make a change, we make it in one place. In the book The Pragmatic Program-
mer, this has been formulated as the DRY principle: Don’t Repeat Yourself (Hunt &
Thomas 1999).

Testing a system where singularity has been neglected is quite hard, especially
from a black box perspective. Suppose, for example, that you were to test the copy/
paste functionality of an editor. Such functionality is normally accessible in three
ways: from a menu, by right-clicking, and by using a keyboard shortcut. If you
approached this as a black box test while having a limited time constraint, you might
have been satisfied with testing only one of these three ways. You’d assume that the
others would work by analogy. Unfortunately, if this particular functionality had
been implemented by two different developers on two different occasions, then you
wouldn’t be able to assume that both are working properly.

The tester sees . . . The developer implemented . . .

EditorUtil.copy

Copy currentEditorPanel.performCopy

A third version?

This example is a bit simplistic, but this scenario is very common in systems that
have been developed by different generations of developers (which is true of pretty
much every system that’s been in use for a while). Systems with poor singularity

Testability Defined 53

appear confusing and frustrating to their users, who report a bug and expect it to be
fixed. However, when they perform an action similar to the one that triggered the bug
by using a different command or accessing it from another part of the system, the
problem is back! From their perspective, the system should behave consistently, and
explaining why the bug has been fixed in two out of three places inspires confidence
in neither the system nor the developers’ ability.

To a developer, nonsingularity—duplication—presents itself as the activity of imple-
menting or changing the same data or behavior multiple times to achieve a single
result. With that comes maintaining multiple instances of test code and making sure
that all contracts and behavior are consistent.

Level of Abstraction

The level of abstraction is determined by the choice of programming language and
frameworks. If they do the majority of the heavy lifting, the code can get both smaller
and simpler. At the extremes lie the alternatives of implementing a modern applica-
tion in assembly language or a high-level language, possibly backed by a few frame-
works. But there’s no need to go to the extremes to find examples. Replacing thread
primitives with thread libraries, making use of proper abstractions in object-oriented
languages (rather than strings, integers, or lists), and working with web frameworks
instead of implementing Front Controllers* and parsing URLs by hand are all exam-
ples of raising the level of abstraction. For certain types of problems and constructs,
employing functional or logic programming greatly raises the level of abstraction,
while reducing the size of the codebase.

The choice of the programming language has a huge impact on the level of
abstraction and plays a crucial role already at the level of toy programs (and scales
accordingly as the complexity of the program increases). Here’s a trivial program
that adds its two command-line arguments together. Whereas the C version needs to
worry about string-to-integer conversion and integer overflow . . .

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argvl[])
{
int augend = atoi(argv[1l]);
int addend

atoi (argvi[2]);

// Let's hope that we don't overflow...
printf ("*drum roll* ... %d", augend + addend);

4. https://en.wikipedia.org/wiki/Front_Controller_pattern

https://en.wikipedia.org/wiki/Front_Controller_pattern

54 Chapter 4 = Testability from a Developer’s Perspective

. .. its Ruby counterpart will work just fine for large numbers while being a little more
tolerant with the input as well.

puts "*drum roll* ... #{ARGV[0].to i + ARGV[1l].to i}"

From a developer testing point of view, the former program would most likely
give rise to more tests, because they’d need to take overflow into account. Gener-
ally, as the level of abstraction is raised, fewer tests that cover fundamental building
blocks, or the “plumbing,” are needed, because such things are handled by the lan-
guage or framework. The user won't see the difference, but the developer who writes
the tests will.

Efficiency

In this context, efficiency equals the ability to express intent in the programming lan-
guage in an idiomatic way and making use of that language’s functionality to keep the
code expressive and concise. It’s also about applying design patterns and best prac-
tices. Sometimes we see signs of struggle in codebases being left by developers who
have fought valorously reinventing functionality already provided by the language or
its libraries. You know inefficient code when you see it, right after which you delete
20 lines of it and replace them with a one-liner, which turns out idiomatic and simple.

Inefficient implementations increase the size of the codebase without providing
any value. They require their tests, especially unit tests, because such tests need to
cover many fundamental cases. Such cases wouldn’t need testing if they were handled
by functionality in the programming language or its core libraries.

Reuse

Reuse is a close cousin of efficiency. Here, it refers to making use of third-party com-
ponents to avoid reinventing the wheel. A codebase that contains in-house implemen-
tations of a distributed cache or a framework for managing configuration data in text
files with periodic reloading’ will obviously be larger than one that uses tested and
working third-party implementations.

This kind of reuse reduces the need for developer tests, because the functionality
isn’t owned by them and doesn’t need to be tested. Their job is to make sure that it’s
plugged in correctly, and although this, too, requires tests, they will be fewer in number.

5. Now this is a highly personal experience, but pretty much all legacy systems that I've seen have
contained home-grown caches and configuration frameworks.

Summary 55

Mind Maintainability!

All of the aforementioned properties may be abused in a way that mostly hurts
maintainability. Singularity may be taken to the extreme and create too tightly
coupled systems. Too high a level of abstraction may turn into some kind of “meta
programming” Efficiency may turn into unmotivated compactness, which hurts
readability. Finally, reuse may result in pet languages and frameworks being brought
in, only to lead to fragmentation.

A Reminder about Testabhility

Have you ever worked on a project where you didn’t know what to implement until
the very last moment? Where there were no requirements or where iteration planning
meetings failed to result in a shared understanding about what to implement in the
upcoming two or three weeks? Where the end users weren’t available?

Or maybe you weren’t able to use the development environment you needed and
had to make do with inferior options. Alternatively, there was this licensed tool that
would have saved the day had but somebody paid for it.

Or try this: the requirements and end users were there and so was the tooling, but
nobody on the team knew how to do cross-device mobile testing.

After having dissected the kind of testability the developer is exposed to the most, 'm
just reminding that there are other facets of testability that we mustn’t lose sight of.

Summary

If the software is designed with testability in mind, it will more than likely be tested.

When software is testable, we can verify its functionality, measure progress while

developing it, and change it safely. In the end, the result is fast and reliable delivery.
Testability can be broken down into the following components:

® Observability—Observe the tested program element in order to verify that it
actually passes the test.
® Controllability—Set the tested program element in a state expected by the test.

= Smallness—The smaller the system or program element—with respect to the
number of features and the size of the codebase—the less to test.

This page intentionally left blank

Chapter 5
PROGRAMMING BY CONTRACT

Structuring code so that it’s testable, whereby increasing its probability of being
tested isn’t the only way to aim for correct software. Another approach would be to
go down the road of formal methods, that is, mathematical proofs. In this chapter,
we examine yet another alternative, which is modeling the software as transactions
between a client and supplier, who agree on a contract that forces them to uphold
certain obligations to each other (see Figure 5.1). In exchange, both get some benefits.
If the contract is violated, the application stops. For such an approach to be effective,
the contract must be constantly checked at runtime, as opposed to running a suite of
tests now and then or proving a fact about the program on paper.

When software is written in this way, we’re talking about Programming by Con-
tract.! This technique is quite characteristic for Eiffel, where it’s built right into the
language.” However, even without full language support it’s still quite usable.

Contracts Formalize Constraints

Contracts define constraints that apply throughout the execution of an applica-
tion. The life span of a constraint depends on its type. Some must be satisfied upon
entering or exiting a method; others must be upheld during the entire lifetime of the
application.

If a constraint is violated, the application should abort execution with an excep-
tion or error that’s not meant to be caught or handled; it should be unrecoverable,
the reason being that a violation should happen as a result of exceptional conditions.
In practice, this turns contracts into the last line of defense and a complement to the
application’s validation logic and test suite. Relying solely on contracts is neither fea-
sible nor practical, and not even languages that have full support for them encourage
that they replace validation and common sense in programming.

1. Actually, the more well-known term is “Design by Contract,” but the term is trademarked and
won’t be used in this book.

2. According to Wikipedia, roughly 15 languages have built-in contract support (http://en
.wikipedia.org/wiki/Design_by_contract).

57

http://en.wikipedia.org/wiki/Design_by_contract
http://en.wikipedia.org/wiki/Design_by_contract

58 Chapter5 ® Programming by Contract

Invocation contract

<Calling code>, henceforth known as “Client”, and <method/function>, henceforth known
as “Supplier”, enter into this agreement of representation for the lifetime of the system.

The Supplier will provide service to the Client upon invocation.
Furthermore, the Supplier and Client agree to these obligations:

» The Client promises to send valid parameters to the Supplier
- The Supplier works according to specification

Whereupon they are entitled to the following benefits:

- The Client gets a valid result without surprises
» The Supplier gets valid parameters and doesn’t need to verify them

Client name Client sighature

Supplier name Supplier signature

In the nomenclature of contract programming, the caller of a method/function
is its client and the callee is the supplier (because it supplies some chunk of work).

Contracts Formalize Constraints 59

Contract Building Blocks

In the language of Programming by Contract a caller of a method/function is a client,
and the callee is a supplier. The basic building blocks of contracts are preconditions,
postconditions, and class invariants.

Preconditions are constraints that need to be met when calling the supplier. They
are typically a function of the supplied arguments and any internal state of the sup-
plier. If the constraint isn’t met, the supplier terminates before executing. Precon-
ditions are short lived. They are checked upon entering a method. Some possible
examples include the following:

= When retrieving an element from an indexed collection, is the index positive or
zero?

= When popping a stack, is the stack non-empty?

® When computing a checksum for a given input, is the input’s format correct?

Postconditions are constraints on the supplier’s internal state and often the return
value. They need to be met prior to returning from a call to the supplier. If such a
constraint isn’t met, the supplier terminates before returning. Postconditions are also
short lived. They apply only when returning to the calling client. All of the following
would make reasonable postconditions:

® When transferring funds between accounts, the same amount is added to one
account and subtracted from the other.

® When creating an object, its member variables have all been initialized to
legal values.

® When adding an element to a linked list, the new element becomes the list’s
head and it points to the previous head of the list.

Invariants are the third building block of contracts. Two common types of invari-
ants are class invariants and loop invariants. Class invariants are constraints that are
always upheld for a class’s internal state. For example, if we have a class that repre-
sents time and uses integers to store hours and minutes, a reasonable class invariant
would require that they be in the ranges 0-23 and 0-59. Constraints upheld by class
invariants can live as long as the executing program. For example, consider a class
invariant on a collection of bank accounts stating that the sum of all transactions
must equal the total balance.

60 Chapter5 ® Programming by Contract

Contracts in Eiffel

The following routine, written in Eiffel, uses preconditions to check that its
parameters are valid and a postcondition to verify that the return value is
reasonable. As we see, contract checking is clearly supported by the language.

Seconds_in 24h: INTEGER = 86400

to_seconds (hour, minute: INTEGER): INTEGER
require

hour >= 0 and hour < 24

minute >= 0 and minute < 60

do

Result := hour * 3600 + minute * 60
ensure

Result >= 0 and Result <= Seconds in 24h
end

Implementing Programming by Contract

Full-fledged Programming by Contract is one strategy among several to achieve soft-
ware correctness and constitutes a strong complement to testing at any level. That
said, the most popular programming languages only partially, if at all, support it. On
the other hand, the technique has much to offer, regardless of whether it’s 100 per-
cent supported by the programming language or if we have to make do with bits and
pieces of it. In this section, we’ll explore what to take away from contract program-
ming and how.

Thinking in Contracts

Irrespective of your favorite language’s support for contracts, the major shift when
employing them comes from having to think about the produced code in terms of cli-
ents and suppliers and the consequences of formalizing responsibilities. In languages
where contracts are supported natively, specifying the contract prior to writing any
code is an established design practice.

Establishing preconditions, postconditions, and maybe even invariants for the
program elements that we create slows us down—but in a good way. We need to think
about where responsibilities lie and which part of the code should do what. Whether
we strive to uphold the contract at runtime or not is secondary in my opinion. Speci-
fying the contract is the critical aspect of this technique.

Implementing Programming by Contract 61

This may sound obvious, but think about this: How many times have you had to
consider where to put the responsibility for ensuring that the arguments passed to a
method/function/routine are valid? In the majority of systems that I've worked with,
this question has been ignored or subject to heated debate, thereby producing the full
spectrum of possibilities:

= The caller ensures that the arguments are correct—This stance is typically
taken by libraries and reusable components, which are supposed to be clean
and easy to understand, as opposed to sprinkled with various null and range
checks. Routines in such libraries may crash badly if incorrect arguments are
supplied. Thus, the contracts are clearly stated, but not enforced.

® The callee checks the arguments—It’s perfectly logical for the callee to check
the values of the input parameters (and, in fact, a must) in code exposed to
public use. Publicly available remote procedure calls (RPCs) or web services
make good examples. Because they don’t know the intentions of the caller,
whose objective may be to crash the callee for fun or privilege escalation, they
must take their own protective measures. Routines that are to be called by
unknown and potentially malicious clients should be crafted appropriately
and apply additional checks to their input parameters. Common vulnerabili-
ties like buffer overflows and SQL injections are often a result of missing or
too lenient parameter checking.

Legacy systems maintained by generations of developers, where nobody
can trust anything, are another example. Such systems tend to have islands
where defensive programming has been applied and where arguments are
checked more thoroughly. The person who wrote the code probably thought:
“Everything is so buggy. I can’t trust anything, but at least I can make sure that
my routine doesn’t swallow the garbage without a fight” This is a brave attempt
to enforce some kind of contract.

= The responsibility isn’t formalized—Different generations of developers and
programming styles, combined with lack of conventions, typically lead to a
clear absence of argument checking, duplicated effort, or mishmash of the
two preceding strategies.

Contracts, be they part of the language or just a mental model, blend naturally
with object-oriented design. If it’s clear what kind of contract each object honors,
especially its construction logic, many tedious and verbose checks and validations
may be omitted. Suppose that we implement the classic time difference function:
given two dates, it returns the time difference between them. A naive implementa-
tion using integers as arguments would have to start by checking that the arguments
indeed are valid dates—for example, that they follow the format yyyymmdd. On the

62 Chapter5 ® Programming by Contract

other hand, if the same function would accept two date objects, it could stop wor-
rying about validating them and just perform the computation. In other words, the
contract of the class representing the date would save the date difference function
from performing extraneous checks. In fact, this example also illustrates how con-
tracts can help us to follow the Single Responsibility Principle (Martin 2002) by tak-
ing validation and parameter checking off the table.

Enforcing Contracts

Once we decide to actually adopt contracts as a design technique, we have multiple
options at our disposal for how to enforce them. Our choice will be affected by the
availability of the technique in question in our current programming language and
our intention to aim for runtime enforcement, in contrast to expressing the intention
of contracts and more indirect means of enforcement.

Assertions

Assertions are by far the most common way to achieve contract verification. They’re
runtime checks that verify a boolean condition and make the program terminate
with a diagnostic message if that condition isn’t satisfied. A feature of assertions is
that they can be turned off, which means that code executed in them mustn’t be criti-
cal to the execution of the program.

Warning: Don't Try This at Home!

Assertions can be turned off, so executing code in them, like incrementing a
counter, is a very bad idea.

assert (important++ < MAGIC NUMBER) ;

The fact that failed assertions terminate in a way that aborts the execution of
the application without further ado makes them totally inappropriate for verifying
parameters to public functions or input supplied by the user. This is, by the way, in
line with the philosophy of Programming by Contract, according to which contract
checking should be preceded by normal validation logic. Imagine a typical construc-
tor for a simple time class:

public Time (int hour, int minute) {
assert hour >= 0 && hour < 24 : "Hour out of range";
assert minute >= 0 && minute < 60 : "Minute out of range";

Enforcing Contracts 63

this.hour = hour;
this.minute = minute;

Using assertions like this would be incorrect, because we don’t want the program
to crash just because invalid parameters have been passed to a public constructor.
Also, we don’t want the constructor to start accepting arbitrary values just because we
decided to deactivate assertions.

In short, precondition verification and assertions apply to situations where we
want to guard against programming errors and incorrect caller behavior, which isn’t
the case for public APIs. Such APIs should use normal error or exception handling to
reject bad input.

public Time (int hour, int minute) {

if (hour < O || hour > 23) {

throw new IllegalArgumentException ("Hour out of range: " + hour);
}
if (minute < O || minute > 59) {

throw new IllegalArgumentException ("Minute out of range: " + minute);
}

this.hour = hour;
this.minute = minute;

Assertions have a slight impact on performance. The cost varies from language to
language and platform to platform, but we can expect at least an additional condi-
tional to be executed for every assertion.’

Libraries that Support Contracts

Many libraries are available that help in implementing contract programming in one
form or another. Two are quite popular: Guava and Code Contracts.

Google’s Guava libraries, available for Java developers, contain a collection of
static utility methods for checking preconditions. Given that roughly a dozen meth-
ods are available and that they only support verifying preconditions, this might seem
rather thin.* However, the design of these methods makes them interesting. The

3. Saving nanoseconds at the cost of turning off assertions may be a bad idea, but the point of this
argument is that we don’t want assertions that aren’t used. They use up the few nanoseconds,
but they also clutter the code if used incorrectly and in excess.

4. There are dedicated Programming by Contract libraries for Java, like Cofoja, but I haven’t seen
them used in practice.

64 Chapter 5 ® Programming by Contract

methods go by names like checkArgument, checkState, or checkNotNull
and expect booleans or the value to be checked for null as arguments. The interest-
ing thing about their design is that they throw catchable runtime exceptions, which
means that they can not only be used to verify contracts in the strictest sense, but also
to perform validation.

Using Guava’s utility methods, the constructor for a time class would look like
the following:

public Time (int hour, int minute) {
checkArgument (hour >= 0 && hour <= 23, "Valid hours are between 0 and 23");
checkArgument (minute >= 0 && minute <= 59, "Valid minutes are between 0 and 59");
this.hour = hour;

this.minute = minute;

In my opinion, this better shows the intent and is more readable than if state-
ments. In addition, it indicates the presence of a contract and its preconditions.

C# developers have a more versatile tool at their disposal in Code Contracts,
which is a package that adds pretty much full-fledged contract support to C# (RiSE
2015). This highly configurable package allows verifying the different building blocks
of contracts at both runtime and to some extent statically.

Discussing the full functionality of Code Contracts is beyond the scope of this
book, but as a teaser, the following snippet shows that the library can be used to both
validate arguments by throwing a developer-specified runtime exception and to
truly enforce a precondition by throwing an unrecoverable ContractException
(Microsoft 2013):

public Time (int hour, int minute)

{
Contract.Requires<ArgumentException> (hour >= 0 && hour <= 23);
Contract.Requires (minute >= 0 && minute <= 59);
this.hour = hour;

this.minute = minute;

Unit Tests

My personal experience is that neither assertions nor specialized libraries have had
a major breakthrough or have reached the large masses. Hopefully, it’s not because
developers don’t know or care about these techniques and building blocks, but
because they specify and verify their contracts with unit tests. Using tests to express
a contract is an indirect means of enforcement, but that doesn’t make the technique
less effective. After all, unit tests are perfectly capable of verifying preconditions,
postconditions, and invariants once the hard work—specifying them—has been

Summary 65

done. Obviously, the test-based approach takes away the runtime checking and, more
important, the explicit documentation of the contract in the production code, but in
spite of these drawbacks, it’s the most popular choice.

Static Analysis

If runtime enforcement of contracts is at one side of a scale, static analysis is on the
other. Still, static analysis together with type metadata can be used to express the
intention of a contract. When using languages that allow annotating types somehow,
we can make the IDE or a static analysis tool help us to uphold some rudimentary
constraints for variables, method arguments, and return values (depending on which
of these can be annotated). This can be considered a method of enforcing, or at least
expressing, contracts in a way, but it’s limited to the level of sophistication of the type
metadata and compile-time checking.’

The flagship of this technique is some form of null check, like the @Nonnull
or @NotNull annotations in Java (JCP 2006) and the [NotNull] attribute in C#°
While other annotations exist, this is the one that seems to have caught on the most
at the time of writing.

Summary

Programming by Contract is a technique complementary to testing and is about run-
time verification of constraints defined by contracts. Such constraints may be pre-
conditions, postconditions and different types of invariants. The constraints ensure
that calls are made using valid parameters and that the program is in a sound state. A
constraint violation is an unrecoverable error.

Methods designed with a contract in mind (either explicitly enforced or just as a
design aid) will have clearer responsibilities and will be easier to understand. This, in
turn, simplifies testing.

The majority of languages don’t support contracts directly; rather, they use asser-
tions to achieve the effect of contract checking. Caution should be exercised in such
cases, because assertions don’t necessarily make it into production.

The big takeaway from this chapter is that designing program elements with con-
tracts in mind helps give these elements clear responsibility and helps determine what
kinds of tests, and how many, we need in order to verify that a contract is indeed sup-
ported. Once a contract has been defined, we can verify it using secondary techniques
like unit testing or static analysis.

5. Actually, one can use aspect-oriented programming to provide runtime checks, but I've never
seen it done in practice.

6. This attribute comes from the JetBrains.Annotations package and is interpreted by ReSharper
(JetBrains 2016).

This page intentionally left blank

Chapter 6
DRIVERS OF TESTABILITY

Some constructs and behaviors in code have great impact on its testability. This chap-
ter is about exploring and harnessing them. Let’s start by looking at two snippets of
code. The first one—matrix multiplication—is a typical programming exercise for
fresh computer science students.

static multiply(double[][] ml, double[][] m2) {
if (ml1[0].length != m2.length) {
throw new IllegalArgumentException (
"width of ml must equal height of m2"

final int rh ml.length

final int rw = m2[0].length

double[][] result = new double[rh] [rw]
for (int y = 0; y < rh; y++) {
for (int x = 0; x < rw; x++) {
for (int xy = 0; xy < m2.length; xy++) {
result[y][x] += ml[y][xy] * m2[xy] [x]

}

return result

The second snippet could easily be found in any enterprise codebase.

public void dispatchInvoice (Invoice invoice) {
TransactionId transactionId = transactionIdGenerator.generateld() ;
invoice.setTransactionId(transactionId);
invoiceRepository.save (invoice);
invoiceQueue.enqueue (invoice) ;

processedInvoices++;

67

68 Chapter 6 = Drivers of Testability

If your brain is wired like mine, you’ll find the second snippet more readable and
easier to understand. However, from a testability point of view, the differences aren’t
in the variable names, nested loops, and opportunities for off-by-one errors. What
truly makes these snippets different is the amount of direct and indirect input and
output in each of them and how they handle state.

Direct Input and Output

When a program element’s behavior is affected solely by values that have been passed
in via its public interface, it’s said to operate on direct input. In the case of a function
like multiply, it means that whatever the function operates on is supplied as argu-
ments. This notion can be taken further: other program elements, like entire classes
or even components, may depend only on direct input, but for practical purposes,
let’s confine the discussion to methods/functions.

Reliance on only direct input is quite a desirable property.! From a testing per-
spective, it means that the largest concern is to find relevant inputs to pass in as argu-
ments to the tested method, without caring about any other actors or circumstances
that may affect its behavior.

Direct output is analogous to direct input. Output is said to be direct if it’s observ-
able through the program element’s public interface. This, too, has a great impact on
testability. It means that tests only need to query whatever the tested program ele-
ment exposes. In the case of a method, it would be its return value.

In summation, multiply operates only on direct input and output, and testing
it from a black box perspective would amount to finding good equivalence classes
and boundary values.?

Indirect Input and Qutput

Conversely, let’s have a look at the dispatchInvoice method. Unless you multiply
matrices for a living, it’s easier to grasp than multiply. On the other hand, testing
it is harder. One of the differences is its reliance on indirect input and on the indirect
output it produces. Input is considered indirect if it isn’t supplied using the program
element’s public interface. An easy way to spot indirect input is to put the black box testing
hat on and ask: “Would I be able to test this without having access to the source code?” If
the answer is “no,” then we’re most likely dealing with indirect input.

1. It’s one of those properties that comes with trade-offs, however. In some cases, relying on only
direct input may conflict with object-oriented design and encapsulation.

2. Equivalence classes and boundary values are mentioned a few times in this chapter, but are
properly introduced in Chapter 8, “Specification-based Testing Techniques.”

Indirect Input and Output 69

The indirect input to dispatchInvoice is the result of transactionId-
Generator.generateId(). The generated identifier is certainly not modifiable
through the public interface, but constitutes input that’s critical to the operation of
the method. This makes testing harder, because the test must gain control of that
input and make it predictable.

In the previous example, a collaborating object is the source of indirect input, but
there are many other possible sources. Static variables/methods, system properties,
files, databases, queues, and the system clock are all sources of indirect input. The
notorious Singleton pattern is shunned for being the mother source of indirect input.

Finally, indirect output is any kind of output that isn’t observable through the
public interface. In the case of dispatchInvoice there are two such outputs™: first
the saving of the updated invoice, then the enqueuing (what these actions actually
result in isn’t relevant here). In addition, dispatchInvoice doesn’t return any-
thing, so it clearly signals that if it produces any output, then it certainly is indirect.

Pure Functions and Side Effects

The two previous methods can be analyzed from a different perspective—in
terms of pureness and side effects. A function is pure if

1. It's consistent—Given the same set of input data, it always returns the
same output value, which doesn’t depend on any hidden information,
state, or external input.

2. It has no side effects—The function doesn’t change any variables or
data of any type outside of the function. This includes output to 1/O
devices.

Given this definition, functions that have no indirect input or output are
pure. As for side effects, these typically involve

Changing the value of a variable outside the scope of the function

Modifying data referenced by a parameter (call by reference)

Throwing an exception

Doing some 1/O

For testing purposes, there's no real difference between pure functions
and functions that only operate on direct input and output. However, given
the popularity of functional languages, it doesn’t hurt to clarify the relation
between these two terms.

3. Actually, we can count three. A counter is incremented too, but this will be treated later.

70 Chapter 6 = Drivers of Testability

State

Let’s return to the dispatchInvoice method once more. Its last line, where a
counter is incremented, presents a challenge in itself when it comes to testing. The
code is written so that we don’t know whether processedInvoices is a class
variable or a member variable, but we do know that some state is changed. The coun-
ter may have numerous uses, spanning from plain simple logging to triggering some
critical business rule.

What if the last line of dispatchInvoice were changed to this instead:

if (++processedInvoices == BATCH SIZE) {
invoiceRepository.archiveOldInvoices();
invoiceQueue.ensureEmptied() ;

Suddenly the state triggers something important, and any tests written against
the method need to take that into account. A test that wants to trigger the condition
needs to do one of the following:

® Access the processedInvoices variable directly and modify it; some-
thing that many people would argue would break encapsulation.

® Start by making BATCH SIZE - 1 callstodispatchInvoice toarrive
at the correct state (given that we know when processedInvoices is
Z€r0).

= Force some kind of refactoring that would enable modifying or ignoring
the value of processedInvoices without making the code significantly
worse.

None of these options are trivially obvious. You have to make the trade-off between
violating encapsulation, writing a more complex test, or reworking the code. Do keep
in mind that the example was about something as simple as a class or member vari-
able and that there are many more elaborate and intricate ways to introduce state.

Databases, by nature, are piles of state. If you've ever had to debug an invoicing
algorithm that applied a myriad of business rules to tens of thousands of customers,
all of which had unique purchasing histories, you know the meaning of both state
and pain. The same goes for reports, network-aware applications, page navigation,
and so on.

The point is that all but the most trivial applications will have state, and we need
to take that into account when designing testable code. The question we must ask
ourselves is: “How do I set up a test so that I reach the correct state prior to verify-
ing the expected behavior?” Or a better question may in fact be: “How do I keep the

Temporal Coupling 71

amount of state down and isolated so that I don’t have to ask myself the former ques-
tion too often?”

Temporal Coupling

Temporal coupling is a close cousin of state. “Temporal” means that something has to
do with time. In this case, it’s the time of invocation or, more specifically, the order of
invocation. Given a program element with functions f; and f,, there exists a temporal
coupling between them if, when f, is called, it expects that f; has been called first—
that is, it relies on state set up by f;.

Imagine the multiply function from the example at the beginning of this
chapter being moved to a class and the parameters being set using an old-fashioned
initializer method.

class MatrixMultiplier {

private double[][] ml
private double[][] m2
def initialize(double[][] ml, double[][] m2) {

if (ml[0].length != m2.length) {
throw new IllegalArgumentException (
"width of ml must equal height of m2"

this.ml = ml
this.m2

m2

double[][] multiply () {
// Same as before, but with member variables

This change, deliberately crude to get your attention, introduces temporal cou-
pling. A call to multiply now requires first calling initialize. Otherwise, it
will reward you with a NullPointerException. Code in the wild will be just as
ruthless. It will either crash if things are called out of order or perform some convo-
luted initialization spanning different layers of abstraction while violating a whole
host of design practices and all forms of logic—all to make it impossible for you to
even dare move a single line within a method.

In essence, temporal coupling arises as soon as one program element needs some-
thing to have happened in another program element in order to function correctly.

72 Chapter 6 = Drivers of Testability

Usually, this isn’t the end of the world. In many cases, it’s quite apparent that there’s
some kind of life cycle or otherwise intuitive order of execution. Temporal coupling
becomes dangerous if the succession of invocations isn’t apparent and if calling a
method out of order puts the application in an invalid state or results in some kind of
error, likeaNullPointerException.

Temporal coupling is quite common. Many libraries, especially those written in
procedural languages, rely on it for initialization. Knowing what it looks like, there’s
no glory in creating more of it, especially in object-oriented languages that have
constructors.

Data Types and Testability

Consider the simplest possible age check, the type you perform to make sure that
people are of legal age and are allowed to engage in financial transactions.

public void signup(String firstName, String lastName, int age, ...) {

if (age < 18) {
throw new UnderAgedException (age);

}
// Rest of the code that performs the signup

Integers in modern languages are usually 32-bit numbers ranging from roughly
minus 2 billion to plus 2 billion. This means that the age parameter needs some
more thorough checking to make sure that the value stored in the oversized data type
is reasonable. How about this?

public void signup(String firstname, String lastname, int age, ...) {
if (age < 0 || age >= 120) {
throw new IllegalArgumentException ("Invalid age: " + age);

} else 1if (age < 18) {
throw new UnderAgedException (age);

}
// Rest of the code that performs the signup

Now the code ensures that the business rule is applied to a reasonable value. This
needs to be done at every place in the code where age is used.* But what about valida-
tion? Sure, validating age someplace else would do the trick, provided that it is done

4. Actually it doesn’t, but would you feel comfortable about people of age 432544 years passing the
check?

Data Types and Testability 73

everywhere that age is being checked, but this introduces temporal coupling between
the validation and any logic that relies on age. Now, given that validation usually
resides in another layer and may be written in a different language by—heaven
forbid—another person, this type of coupling isn’t something you want to rely on.

The age example may seem trivial, so let’s list some other candidates for this type
of behavior:

m Currency
m National identification numbers
m Date of birth

® Date/time

These are typical building blocks of standard business applications, and my
experience is that they’re passed around as numbers or strings more often than one
would care to admit. As a consequence, the codebase gets sprinkled with random
checks and conditionals, which, in turn, results in incomplete validation and trivial
bugs. The problem is that the data type is either too large or just not appropriate for
the value it stores. Reading code is also harder. If everything is just a number or
a string, you need to keep track of what operations you can perform on each. For
example, if a national identification number is stored as an integer, what happens if
you multiply it by —1?

Object-oriented languages offer a natural solution to this problem. By creating a
class that enforces all invariants and business rules for the type, we move the respon-
sibility of upholding them to that one place. In the previous chapter we have seen that
some languages have that mechanism built in.

public class Age {
private int years;

public Age (int years) {

if (years < 0 || years >= 120) {

throw new IllegalArgumentException ("Invalid age: " + age);
}
this.years = years;

This class can be extended to handle comparisons with other age objects or inte-
gers, and in some designs putting an 1sOfLegalAge method there would make
real sense.

74

Chapter 6 = Drivers of Testability

What about Languages that Aren’t Object Oriented?

In languages that aren’t object oriented but statically typed, we can at least choose
the data type that matches the expected range of a variable’s value as much as
possible. In C, we would probably store age as an unsigned short or, even better,
uint8 t. Actually, C allows defining new types, and supplementing the new type
with a library of functions makes it almost look like a class (but without inheritance
and polymorphism, of course).

When working with languages that are dynamically typed and offer no functionality
for upholding contracts, all we can do is write a lot of unit tests to ensure that they do
what we want them to.

How Can Types Take the Place of Tests?
by Alex Moore-Niemi

Consider this proscription from a page of Eiffel's Design by Contract
documentation?®

A routine body should never test for the precondition.

It's incredibly common, however, to see several patterns violating that
assertion in code: switch statements, a guard clause, inspection on the object
to ensure it receives a method, etc. Even in Eiffel, | always felt a bit like it was
cheating on this goal. Here's a snippet:

class CHECK

feature -- Divy up.
split by (num of people: INTEGER) -- Split a check by diners.
require

non negative: num of people >= 1
do
split it up here ...
ensure
split checks: check count = old check count + 1
end

Isn't require inside the routine body? Technically no, because the routine
body starts with do. It still seemed weird to me, though, semantically, to have
the precondition anywhere but immediately before the feature name.

Better yet, | wondered: Can | get this precondition entirely out of my
function definition?

Looking again at our precondition num_of people >= 1, it's nothing
magical, just a predicate. How else can we encode a predicate instead of as
a precondition inside a function? In Eiffel, the answer would be to encode in

Data Types and Testability

75

another class. In other words, num_of people wouldn't be an integer; it
would become a new, more constrained class that wraps integers. So num
of people: INTEGER would become num of people: DINERS, and
the DINERS class would constrain its possible values to nonzero ones in its
constructor.

This is an effective strategy for encoding guarantees into programs, but
how can it be improved? | think statically typed functional programming offers
some worthwhile enhancements. In functional programming we operate
with basically two entities, functions and data, and they have one thing in
common: types.? At a minimum, types define sets of values; depending on
language, types may also define a set of operations that can be performed
in common on a set of values. Classes, then, are just a type coupled with
its constructor function (and commonly some kind of inheritance, too). In
functional programming, we gain composability and genericism by keeping
functions separate from the data they will operate on. But then on what basis
do we know a function is applicable to some data? By its type.

An operation on a value can transform its type,® and that's where the
power and the danger come in. In the useful case, we may transform values
from something like type FormData to type Customer. But in the
dangerous case, the operation “breaks” its value outside of its original type,
or any useful type, into an error type. Dividing by zero is an example of this:
what starts as an operation on two integers results in an undefined value.
If we have a type representing positive integers and restrict the function of
division to that type, then we know we'll never hit the undefined value.

Types are a powerful machinery for validating your program by shaping
data. Used well, types can constrain what's possible to “say"” in your program
from the get-go so that we never “say” invalid things. Or, as Yaron Minsky put
it in an articled on ML:

Make illegal states unrepresentable.

Via types, we construct which states are “legal” for our program. Just like
with our classes that constrain values by their constructors, a value becoming
“well typed” means it has also been verified to meet the precondition of its
definition. These can be checked at compile time, which gives us a different
and faster feedback mechanism than usual unit testing. (Unit testing, after all,
requires a runtime.) In a robust type system, we'll also get a way to implicitly
define first-order logical predicates in our type system. That sounds a bit
academic, but we can see it in practical action.

Let's found a start-up for processing 19 forms. To verify that an employee
is eligible to work in the United States, you need a document from List A or
two documents from Lists B and C on the form. How do we encode that
restriction via types? Let's try it in F#:

Chapter 6 = Drivers of Testability

type Federalld = Federalld of string
type StateId = StateId of string
type ListA =

| PassportOnly of FederallId
type ListB =

| DriversLicenseOnly of StatelId
type ListC =

| SocialSecurityCardOnly of FederallId
type Identification =

| PrimaryId of ListA A>

| TwoValidForms of ListB * ListC
type Employee =

{

identification: Identification;

}
let fedIdNumber = FederalId "C00001549"
let passport = PassportOnly fedIdNumber
let primaryId = PrimaryId passport
let employee = { identification = primaryId }

Now we don't need to test for each case because it's literally impossible
in our system to be an employee and not have the necessary ID.® Instead,
we incrementally build valid data, always guaranteed to have a “legal” state.
Essentially we have implicit preconditions living in our types. How? It's
hiding right in plain sight: we actually have logical operators operating on
our types! In F#, sum types are represented with | and product types are
represented with *. These correspond to the logical operators Vv (or) and A
(and), respectively.

The more you work in this way, the easier it becomes to see how to
encode valuable business logic out of preconditions in functions, or out of
functions entirely, and into our data types. Does this remove the need for unit
tests entirely? In my experience, no. But the more logic you move into your
type system, the less you will need to test.

8 https://docs.eiffel.com/book/method/et-design-contract-tmassertions-and-exceptions.

b Even functions have types because in a functional language you have higher order
functions that operate on other functions!

¢ Formally, not all operations are “closed under” a type
4 https://blogs.janestreet.com/effective-ml-revisited;.

®You may ask: What if we need to represent people who aren't yet employees? (And
thus don't have ID.) You'd create a new type!

https://docs.eiffel.com/book/method/et-design-contract-tmassertions-and-exceptions
https://blogs.janestreet.com/effective-ml-revisited/

Domain-to-Range Ratio 77

Domain-to-Range Ratio

Speaking of data types and their ranges naturally takes us to this chapter’s last piece
of theory. How would we test a function, f, that supposedly says whether a number is
odd or even and returns 0 if it’s odd and 1 if it’s even?

Given that we accept that 0 is an even number, the first test that comes to mind
is calling the function with 0 and comparing the result to 0. Next, we’d probably
call it with a 1, and expect 1 in return. Then what? Is f(10) = 0 a good test? Or
maybe f(9999) = 1? That depends.

Let’s leave the world of software and go for a more mathematical definition. f
maps the set of natural numbers to [0, 1]. This means that we no longer have to con-
cern ourselves with things like f("hello world"). The range of f is the set consisting of
0 and 1, whereas its domain is the set of natural numbers. Given these definitions,
the domain-to-range ratio (DRR) can be introduced. It’s the quotient of the number
of possible inputs over the number of different outputs. In a more mathematical lan-
guage, we can state this as the cardinality of the function’s domain over the cardinal-
ity of its range (Woodward & Al-Khanjari 2000):

DRR =H

[R]

Why is that interesting? Let’s reduce the size of our problem and replace the infi-
nite set of natural numbers with the set of numbers from 1 to 6. Thus, the size of
the domain is 6, which makes the Domain-to-Range Ratio equal to 6/2. The measure
tells us something about the information loss that occurs when multiple values in the
input map to the same output. In the example, three input values map to the same
output value, three to another. It would be tempting to create only two test cases for
this scenario; after all, there are two reasonable equivalence classes here—odd and
even numbers.
Now, suppose that flooks like this:

f(1)=1
f(2) =0
f3) =1
f4)=1
f(5)=1
f6)=0

It’s almost a function that determines whether a number is even or odd, but it has
an exception built in. If there’s no test for f(4), we're in for a surprise. This is an exam-
ple of how bugs can creep into areas that suffer from information loss. The problem

78 Chapter 6 = Drivers of Testability

is amplified if the input domain (and consequently the DRR) grows. Without getting
too formal, we can say that the DRR is a measure of risk; the higher it is, the more
unsafe it’ll be to have very few tests.

The previous example illustrates how a trivial function with obvious equivalence
partitions can include surprises that may remain unfound, unless the DRR isn’t con-
sidered. Naturally this doesn’t mean that we should throw equivalence partitioning
out the window. Rather, it means that we should be careful both in situations involv-
ing discontinuous large input domains that cannot be easily partitioned and in
situations where there’s information loss (as indicated by the DRR). It’s also yet
another reason for keeping data type sizes close to the range of the variable that
they hold and to introduce abstractions that uphold invariants and keep the size
of the domain down.

Summary

Several constructs and behaviors in code affect testability. Direct input/output is
observable through a program element’s public interface. This makes testing easier,
because the tests need only be concerned about passing in interesting arguments and
checking the results, as opposed to looking at state changes and interactions with
other program elements.

Conversely, indirect input/output cannot be observed through the public inter-
face of a program element and requires tests to somehow intercept the values coming
in to and going out from the tested object. This usually moves tests away from state-
based testing to interaction-based testing.

The more complex state a program element allows, the more complex the tests
need to become. Therefore, keeping state both minimal and isolated leads to simpler
tests and less error-prone code.

Temporal coupling arises if one method requires another method to be invoked
first. Typical examples are initializer methods. Temporal coupling is actually state in
disguise and should therefore be avoided if possible.

The Domain-to-Range Ratio is a measure of information loss in functions that
map large input domains to small output domains, which may hide bugs. It’s yet
another tool when determining what abstractions to use and how many tests there
should be.

Chapter 7
UNIT TESTING

Unit testing is the professional developers’ most efficient strategy for ensuring that they
indeed complete their programming tasks, that the code they write works in accor-
dance with their assumptions,' and that it can be changed by them and their peers.

A hobby hack written and used by one person doesn’t need to have unit tests. One
person suffers the consequences of bugs, and if any refactorings take more time than
necessary or totally break the project, that’s probably fine too. If the project is more
about coding for fun than producing something that an actual customer is willing to
pay money for and that can be developed and maintained by more than one person
for a longer period of time, having no unit tests is a viable strategy.

Why Do It?

Why should you invest time in writing unit tests when working with software profes-
sionally? Here are a couple of reasons. Some of them echo arguments made previously
in the book, but it doesn’t make them less true. Unit tests

= Enable scaling—Software development simply doesn’t scale without the code
being supported by various types of tests, of which unit tests are the base.
It’s hard to have collective code ownership without unit tests. Having several
people or teams working on a codebase that’s not covered by tests leads to
accidental overwriting of code, regression defects, and us-and-them type of
conflicts between teams, at worst, and long release cycles prolonged by days
of manual testing, at best.

= Lead to better design— Code written so that it can undergo unit testing can’t
get totally rotten. When developers exercise a unit of work with a test, they’ll
tend to make it small and to the point, and they’ll be mindful of its depen-
dencies. The mere existence of unit tests, or even just the awareness of what
it takes to achieve testability at the unit level, will save the code from some of
the following:

1. It’s tempting to write “works correctly” instead of “works in accordance with their assump-
tions,” but proving that a program is correct is impossible, except for simplistic snippets used in
a university course on formal methods.

79

80

Chapter 7 = Unit Testing

Methods with too many parameters

= Monster methods

Global state (in static classes and singletons)
= Excessive dependencies
= Side effects

Such constructs tend to make developers’ lives miserable in the world of
untestable legacy code.

Enable change—Adding and removing features to software requires redesign
and refactoring, as do smaller changes. Whoever makes the changes to one
part of a system has to know what other parts need to be re-executed to verify
that it hasn’t been broken. This effectively stops developers that are new on
the team from making changes to critical areas of the system, because they
can’t possibly know what to retest or rerun. Not only that, but even more
seasoned developers will refrain from changing and refactoring code if they
risk breaking it in some unforeseen manner. Automated tests, and among
them unit tests, provide the safety net needed to make changes without fear of
unexpected breakdowns.

Prevent regressions—In the absence of tests, the only practical way to verify
that the software seems to be working is by running it. There are some down-
sides to this approach. First, running the software over and over again to
verify that a certain part of it seems to work (the part that’s just been written
or modified) is monotonous and boring. Second, as pointed out previously,
it’s not always obvious what to rerun. Third, time is not unlimited. As the sys-
tem grows, manual testing will be able to cover a smaller and smaller fraction
of its functionality, and doing exhaustive regression testing will be impos-
sible. A suite of unit tests executed by the developer while changing the code,
along with a build server running the tests on a continuous basis, will catch
regressions in areas covered by tests almost as soon as defects are introduced.

Provide a steady pace of work—Writing unit tests is a way to achieve and
maintain a steady pace of work. Code written in tandem with tests tends to
lead to fewer surprises or last-minute problems. If everything implemented
up to a point is passing unit tests, it most likely works on a functional level at
least. Furthermore, if a bug is found in code with unit tests, fixing it is a mat-
ter of adding yet another unit test and adjusting the code without the drama
and potential delays of last-minute manual regression testing.

Free up time for testing—Unit tests are the simplest, fastest, and cheapest
way to perform fundamental checking like verification of boundary values,

What Is a Unit Test? 81

input validation, or invocation of the happy path. This allows testing performed
manually to uncover things that are far more interesting than, let’s say, off-by-
one errors. Conversely, teams and organizations that lack unit tests will have to
compensate by manual means, which translates into manual checking.

= Specify behavior and document the code—Ideally, a unit test is a descrip-
tion of some behavior of the tested code; that is, an example of how the code
should work or implement a specific business rule. It’s documentation. And
what documentation tends to actually get read—a dryly written, autogen-
erated method description or working code?

Making People Responsible for Code

One strategy for trying to control change and regression is making a person or a team
truly responsible for an area of the system. This strategy suffers from some obvious
drawbacks, like people going on vacation, quitting their jobs, or just becoming
bottlenecks. It will also encourage some individuals to keep information to themselves
as a means of work protection.

If you really want to walk down this path, I suggest seeking inspiration in open-
source projects, which have many contributors, who supply changes and patches,
and few committers, who review these and commit them to the trunk. Because the
contributors deliver complete change sets, the committers only have to review them, in
contrast to implementing the changes themselves. This makes them less of a bottleneck.

Just a reminder, though: this way of working also comes with unit tests. They
simplify the committer’s job and prevent regressions.

What Is a Unit Test?

As we’ve seen in Chapter 3, “The Testing Vocabulary,” nailing testing terminology
down is hard. Defining the exact meaning of unit test is no different. Many details
and technicalities can easily be debated. In this book, I've chosen to combine several
sources” to provide a definition of unit test that, although probably not unchallenged
in some circles, should be quite acceptable to the developer community.

A unit test is a piece of code that tests a unit of work—a method, class, or clus-
ter of classes that implement a single logical operation, which is accessible through a
public interface.? Unit tests have the following properties:

2. The following definition is inspired by Osherove (2009); Langr, Hunt, and Thomas (2015); and
Feathers (2004).

3. This is one of these rules that has exceptions, but stop and think before testing encapsulated,
nonpublic behavior.

82 Chapter 7 = Unit Testing

= They’re fully automated—Unit tests can be executed with minimal effort
whether through an IDE, a build script, or by using a specialized tool. Driver
programs that are executed manually aren’t unit tests.

= They’re self-verifying—A unit test doesn’t just execute code; it verifies that
the code behaves as expected (by the test) and communicates that result.

= They’re repeatable and consistent—They provide the same inputs and
expect the same results for every run and can be executed as many times as
necessary.

= They test a single logical concept—One unit test should verify one thing
only about the tested code.

= They run in isolation—A test is not a unit test if
= Tt talks to the database
= It communicates across the network
= It touches the file system
= It can’t run at the same time as any of your other unit tests

® You have to do special things to your environment (such as editing
configuration files) to run it.

= They’re fast—One unit test takes a few milliseconds to run; an entire suite
of thousands of such tests takes at most a few minutes. Together with the
requirement of isolation, this disqualifies tests that require accessing slow
resources, such as networks and databases, and algorithmically complex tests.

The last two points are sometimes subject to debate, but in this book they’re part
of the definition.

Fundamental Truth of Tests

Tests that take a long time to run or are somehow cumbersome to execute won't be
executed!

When writing a test that adheres to the preceding definition, it’s quite hard to
make it complex. Another good reason for following the aforementioned constraints
is environment independence (portability). Unit tests have to be portable across all
developers” environments. They also have to be runnable in environments used for
continuous integration. Such environments will most likely be quite different from
the average developer machine. They may run another operating system, establish

The Life Cycle of a Unit Testing Framework 83

network connections to other hosts, use a different directory layout, and so on. For
these reasons it’s vital that unit tests don't involve external resources.

All Tests Executed by a Unit Testing Framework Aren’t Unit Tests
Don't fall into the trap of believing that a test is automatically a unit test because it’s
being executed by a framework like JUnit or MSTest.

A unit testing framework is a very good vehicle for launching arbitrarily complex
tests. This means that integration tests that may do everything a unit test isn't allowed
to and possibly automated acceptance tests will also make use of such a framework.
That doesn’t make them unit tests!

The Life Cycle of a Unit Testing Framework

Figure 7.1 illustrates the life cycle of an xUnit-based testing framework. All such
frameworks follow the same model of execution. They execute methods marked as
tests and treat them as successful if no assertions (see later) are violated and no run-
time errors occur. Thus, an empty test method will count as a passed test if executed.

Test Methods

Different frameworks use different mechanisms for test discovery. If the program-
ming language in which the tests are written supports metadata (such as annotations
or attributes), this mechanism tends to be the first choice. Such is the case for JUnit
4.x, NUnit, and MSTest, to mention just a few. In other cases, the framework relies
on naming conventions. Methods prefixed with "test" are considered tests in JUnit
3.x, Ruby’s Test::Unit, PHPUnit,* and XCTest for Objective-C and Swift. Finally, in
some frameworks everything must be done “by hand,” like in CUnit, where the test
methods are added to the test suite programmatically. In general, the frameworks
make no guarantees about the order of execution of the individual test methods, and
some even randomize the execution order on purpose. This is a good thing, because it
makes it virtually impossible to create tests that are coupled to each other.

Test Initializers and Cleanups

In order to become repeatable and consistent, unit tests must be executed from a
known state. A fixed state of program elements that the test depends on is called a
test fixture, and it’s the purpose of a test initializer method to set it up. The need for
initializers becomes apparent once the test class/module contains three or more tests

4. Actually PHPUnit uses a hybrid approach. It relies on naming conventions, but also supports
annotations.

84 Chapter 7 = Unit Testing

Test class initializer
, S— /
/

/
/

Test initializer

/

/

Executed once per test class / Test method I Executed for every test

\\\ \Test cleanuu '/

Test class cleanup
\ /

Other cleanu p?

FIGURE 7.1 The life cycle of a unit testing framework. Most frameworks don’t provide the
outermost initializers/cleanup methods.

that run the same or very similar setup code. Moving such code to a common initial-
izer eliminates duplication and enhances readability. Think of this initializer as the
tests” constructor.

There’s one downside to test initializers: they spread out a test’s code across dif-
ferent locations. When reading a test, you must also take the code in the initializer
into account, and if it doesn’t fit on the screen together with the test’s code, you’ll
need to scroll back and forth. For many tests this won’t matter, whereas some will
really suffer. I can’t give a general pointer, but consider extracting common setup
code to well-named methods and call them at the beginning of the test if you feel that
it makes the test more readable and easier to understand.

After each test a cleanup method, commonly called teardown, is called (again
analogous to a destructor). A good rule of thumb is to avoid using cleanup methods
when writing unit tests. Since unit tests are supposed to run in isolation, the mere
presence of a cleanup method should raise suspicion, especially when working with a
language that has automatic garbage collection.

Naming Tests 85

Initializer methods are called once per test, although many unit testing frame-
works support initializers that are called once per class or even less frequently.” Such
initializers are rarely needed by unit tests and are meant for tests that require lengthy
setup, like connecting to a database or setting up some lightweight server. Such tests
are, by this book’s definition, not unit tests.

Test Classes without Common Setup Code
Sometimes test classes just don’t contain common setup code that should be run
before every test method. Half of the tests wouldn’t use it, and it would just create
confusion. This is often a sign to split the test class in two (or more) new classes. There’s
no golden rule that says you must have only one test class. Maybe half of the tests focus
on interactions and require setting up test doubles, whereas the other half exercises an
algorithmic aspect that requires setting up a data structure.

Then again, this might be a sign of the tested code violating the Single
Responsibility Principle (Martin 2002) and a reason to do some redesign.

Constructors and Destructors

If the language running the test framework is object oriented, the test class’s con-
structor will obviously be invoked sometime. This often happens before the test ini-
tializer method is called. Most frameworks don’t speak of the test class’s constructor,
and therefore no assumptions whatsoever should be made about when and how many
times it’s invoked (Fowler 2004). The same goes for destructors. Just don’t use them!
Put any common setup code in the designated initializer or directly in the test.

There are exceptions to every rule! The xUnit.net framework lacks initializers/
cleanup methods and relies on the constructor of the test class and an implemen-
tation of IDisposable.Dispose for cleanup, so the previous advice obviously
doesn’t apply. However, frameworks that operate like this are in the minority at the
time of writing.

Naming Tests

Naming tests is difficult. Coming up with a name that conveys both what’s specific
about the test and an expected outcome may often be quite a challenge. Furthermore,
the name of a test should make it distinguishable from other tests in the same suite or
category.

5. For example, MSTest supports the AssemblyInitialize attribute, which enables calling
an initializer method once for an entire assembly.

86 Chapter 7 = Unit Testing

Most test names you’ll encounter will be influenced by one of the following nam-
ing conventions, or a variation thereof (see Kumar [2014] for more naming schemes).

Mandated by the Framework

Test frameworks that don’t or can’t make use of language features like annotations
or attributes to discover tests have to rely on naming conventions. In practice this
means that test method names have to start with a prefix like “test” or “t "

Using a special prefix isn’t that bad. It’s just mandatory white noise. What is
bad, though, is adopting the following style: test MethodName. A name like that
doesn’t say anything about what to expect from the test and creates some other
problems as well.

= It steers the developer toward thinking in terms of methods instead of
behavior—Imagine the simplest possible case: a testAdd method. Whoever
sees that method gets biased toward thinking about what to do with the add
method and not about the outcome of an addition.

= Jtleads to silly names—To test even something as simple as addition, more
than one test is required. If the name testAdd has been used, what’s the
next test going to be called? Should it be testAdd2?

Therefore, just pretend that the prefix isn’t there and use one of two remaining
naming conventions after the prefix.

Behavior-driven Development Style

This convention is based on the sentence template: “the class should do some-
thing” (North 2006). It’s supposed to keep the developer focused on the fact that a
specific class is being tested, like “a calculator should add numbers together.” If you
can’t express the behavior youre about to test so that it fits this template, it most
likely means that the behavior belongs in another class. Starting the test name with
“should” also encourages you to think about the test’s premises and assumptions, and
it helps you make a claim about what you think the system should be doing in a given
situation, like

ShouldAlertUserIfAccountBalancelsExceeded
or

ShouldFailForNegativeAmount

Naming Tests 87

Unit of Work, State under Test, Expected Behavior

This naming style acknowledges that a unit test may exercise more than a single
method. The first part, the unit of work, may indeed correspond to a method, but it
may also start in a public method and span several other methods, or even classes. It
may end with a value being returned, a state change, or a call to a collaborating object
(Osherove 2005).

The second part of the name should describe the action performed—what’s being
done, what’s passed in, what’s interesting in this test? This is the state under test. Finally,
the last part of the name should convey an expectation—what’s supposed to happen? What
result is expected: a value or an error? For example, Atm NegativeWithdrawal
FailsWithMessageorDivide DenominatorIsZero ExceptionThrown.

Picking a Naming Standard

If you've worked on several projects and maybe in different organizations, then no
doubt you have seen traces of all the preceding styles. Still, I’d like to offer some tips
and pointers:

= Don't get trapped by mandatory prefixes! If your framework mandates that
test method names start with a prefix like “test” (and you can’t swap it for
another or upgrade), then don’t turn this into an excuse for writing bad test
names. The prefix has to be there, but the rest of the name should be as good
as they come.

= Ifyoure quite new to unit testing and just need a “do like this” pointer, then
use the third naming style. It forces you to think about both what makes the
test interesting (state under test) and the expected outcome.

= Combine! After having written some tests you'll realize that the rigid form
of the third naming style may not actually be the best for the type of test
youre about to write, and you may start questioning the rationale behind the
“should” (“what if it doesn’t?”). I often find that the best test names are defini-
tive statements about the conditions of the test and the outcome. See the next
code snippet—the one about the magic hat—for an example.

® Let the context decide. Often, the type of code that you're writing tests for
and their design will push you toward a preferred naming standard for these
particular tests. Don’t be surprised if other code and tests in the same code-
base will make you want to choose another naming convention.

88 Chapter 7 = Unit Testing

Experiment!

Don't be afraid of experimenting with test names. I certainly wasn’t when writing
the sample code for this book. I ended up using different naming conventions and
variations on purpose throughout the book to illustrate how they play out.

Structuring Tests

A common way of organizing code in a test method is following the “triple A” struc-
ture: Arrange. Act. Assert. It helps in dividing a test into three distinct phases, where
the first is dedicated to setting things up, the second to executing the code to be
tested, and the third to verifying the outcome.

[TestMethod]
public void MagicHatConvertsRedScarfIntoWhiteRabbit ()

{
// Arrange
var magicHat = new MagicHat ()
magicHat.PutInto (new Scarf (Color.Red));

// Act
magicHat.TapWithMagicWand () ;
var itemFromHat = magicHat.PullOut();

// Assert
var expectedItem = new Rabbit (Color.White);
Assert.AreEqual (expectedItem, itemFromHat) ;

The previous example raises a question. Does magicHat.TapWithMagic-
Wand really belong in the “Act” section, or is it really about arranging? In this case,
it’s not really important. The Arrange-Act-Assert structure is about protecting the
test from doing a little setup first, then doing some asserting, then executing some-
thing, then asserting again, then changing some value and executing something
again ... You get the picture.

More Names for the Three Phases

Arrange-Act-Assert is one name for the idea of organizing tests into three phases.
There are others. You may come across names like Build-Operate-Check, Given-
When-Then, or Setup-Execute-Verify-Teardown. The last name includes cleanup,
which the others don’t.

Assertion Methods 89

You might want to agree on the terminology in your team or organization, but the
important thing is the structure, not the name, especially because the words seldom
make it to the tests.

Assertion Methods

Because unit tests are self-verifying, they must somehow communicate success or
failure. Assertion methods provide a standardized way to express the outcome of
the test so that the checking can be automated by the test framework, while the test
remains readable to the developer (Meszaros 2007). An assertion method that fails
will make the framework fail the test—and produce the dreaded red bar in the major-
ity of frameworks. For a test to pass, none of its assertions® may fail.

Types of Assertions

Assertions come in different flavors. The types and number of assertions vary from
framework to framework. Table 7.1 presents a lowest common denominator of one C#
and one Java-based framework.

Functionality starts to differ beyond this minimal subset, so it’s always worth-
while to read the framework’s documentation. For example, some frameworks have

TABLE71 Comparison of assertions from MSTest and JUnit.

Assertion type MSTest JUnit

Object equality AreEqual assertEquals
AreNotEqual

Object identity AreSame assertSame
AreNotSame assertNotSame

Boolean IsFalse assertTrue
IsTrue assertFalse

Null check IsNull assertNull
IsNotNull assertNotNull

Fail test Fail fail

6. From now on the term assertion will be used instead of assertion method. Although it clashes
with how the word was used in Chapter 5, “Programming by Contract,” it does make the text
more fluent.

90 Chapter 7 = Unit Testing

more “core” assertions, whereas others make use of helper classes, like MSTest’s
CollectionAssert and StringAssert classes. What’s important is that you
should use the assertions from your framework that best communicate your intent.

Finally, although assertion methods have been around from the dawn of time and
are the foundations of an absolute majority of unit testing frameworks, you can get
away without using them. Groovy’s Spock Framework (or just “Spock”) is designed
around blocks, such as given:, when:, then:, or expect:. This structure allows
it to treat everything in the then: and expect: blocks as assertions, which means
that Spock tests use normal comparisons (or any kind of predicates) where an xUnit
framework would employ an assertion method. The subsequent chapters contain
some tests written using Spock, but here’s a sneak peek:

def "Magic hat converts red scarf into white rabbit" () {
given: "A magic hat with a red scarf in it"
def magicHat = new MagicHat ()
magicHat.putInto (new Scarf (Color.RED))

when: "The hat is tapped with the magic wand"
magicHat.tapWithMagicWand ()

then: "A white rabbit is pulled out"
magicHat.pullOut () == new Rabbit (Color.WHITE)

How Many Assertions per Test?

A unit test should verify one specific piece of functionality, and it should fail for one
specific reason. The easiest way to achieve this is to have it end with a single assertion.
Such tests will only fail if the assertion fails or if there’s an error. Thus, ending tests
with a single assertion helps in error localization.

As with many rules of thumb and guidelines, there are some exceptions. The first
is guard assertions (Meszaros 2007). These are safety checks used to avoid conditional
logic that protects a test from runtime errors. The simplest one is the null check.

var orderDetails = new OrderRepository () .FindOrderById(1234567);

Assert.IsNotNull (orderDetails);

Assert.AreEqual (customerAddress.StreetName,
orderDetails.ShippingAddress.StreetName) ;

Another common guard assertion is checking the size of a collection before examin-
ing its contents. For example, before examining some property of the second element
of a tested collection, a guard assertion is used to ensure that the collection indeed
contains two elements.

Assertion Methods 91

Failures and Errors

Some frameworks like to keep separate counters for failures and errors. A test is
considered failed if an assertion fails. If a test crashes because the tested code threw
an exception or failed unexpectedly, then this is counted as an error. This difference is
slightly academic. After all, the test doesn’t pass!

The second exception is more of a clarification. As stated in the previous para-
graph, the reason for having a single assertion is to have the test fail for a single rea-
son. However, that single reason may not be captured by merely one assertion. In such
cases we need to make a distinction between syntax and semantics. Let’s say that we
want to test something like the classic split function. Semantically, splitting strings is
one concept. Syntactically, it may require several assertions:

String[] parts = "Adam,Anderson,21".Split(',");
Assert.AreEqual ("Adam", parts[0]);
Assert.AreEqual ("Anderson", parts[l]);
Assert.AreEqual ("21", parts[2]);

Then again, it may not:

String[] parts = "Adam,Anderson,21".Split(',");
CollectionAssert.AreEqual (new String[] {"Adam", "Anderson", "21"}, parts);

This example illustrates how one semantic concept may or may not require sev-
eral assertions depending on the syntax. In just a few paragraphs, I'll describe the
AssertThat mechanism, which allows lumping together arbitrarily complex logic
into a single assertion. This is yet another reason for not striving for ending a test
with a single assertion slavishly.

A pragmatic developer may identify a third category of exceptions to the “one
assertion per test” guideline—the tedious tests, those that don’t exercise an intricate
piece of logic or a clever algorithm. Such tests are necessary, because they protect
from copy and paste mistakes, off-by-one errors, and other bugs easily introduced
when working with repetitive patterns. Theyre usually not software engineering
masterpieces and may contain multiple assertions without suffering too much. Often
these tests verify one thing semantically, but the syntactic implementation may be
quite offending.

[TestMethod]

public void CreatePersonEntityFromTransferObject ()

{
var dto = new PersonDIO { FirstName = "Brian", LastName = "Brown", Age = 25 };
var newkEntity = PersonCreator.CreateEntity(dto);
Assert.IsNotNull (newEntity.Id);

92 Chapter 7 = Unit Testing

Assert.AreEqual ("Brian", newEntity.FirstName) ;
Assert.AreEqual ("Brown", newEntity.LastName) ;
Assert.AreEqual (25, newEntity.Age);
Assert.AreEqual (DateTime.Now.ToShortDateString(),
newEntity.Created.ToShortDateString());

Verbosity of Assertions

Did you notice how the values of the names and the age were repeated in the previous
example? Due to their very nature, tests tend to contain some duplicated code. Con-
sider the following test of a method that loops through a list of people and puts their
first names in a comma-separated list:

[TestMethod]
public void CollectFirstNames ThreePersons ResultContainsThreeNames ()

{

var adam = new Person { FirstName = "Adam", LastName = "Anderson" };
var brian = new Person { FirstName = "Brian", LastName = "Brown" };
var cecil = new Person { FirstName = "Cecil", LastName = "Clark" };

var actual = NameUtils.CollectFirstNames (new
List<Person>() { adam, brian, cecil });

var expected = "Adam,Brian,Cecil";

Assert.AreEqual (expected, actual);

Notice that the first names appear in both the setup code and the verification.
Is this duplication annoying? Sometimes we might feel tempted to rewrite the test
to eliminate such duplication. In the preceding example, the line containing the
expected value could be rewritten to:

var expected = adam.FirstName + "," + brian.FirstName + "," +
cecil.FirstName;

Surely this would eliminate the duplication, but it would introduce another prob-
lem. It so happens that the tested method looks like this:

public static string CollectFirstNames (List<Person> persons)

{

return String.Join(",", ©persons.Select(p => p.FirstName));

Now, suppose that some time passes and in a few weeks another developer
decides to modify the method so that it also capitalizes the first names. Ignorant of

Assertion Methods 93

Command/Query Separation principle (Meyer 1997), lazy, or just human, that devel-
oper adds a line of seemingly clever code—and introduces a bug by modifying the
incoming names!

public static string CollectFirstNames (List<Person> persons)

{
persons.ForEach(p => p.FirstName = p.FirstName.ToUpper());
return String.Join(",", persons.Select(p => p.FirstName));

This modification doesn’t break the test, because the value of the expected
variable is a result of concatenating all first names after they have been accidentally
modified. With this behavior, the test is dubious at best, or simply utterly wrong. In
this particular case, putting the assignment of expected prior to the call would
repair the situation. This, however, would introduce temporal coupling in the test.
Instead, by allowing a small amount of duplication, we can protect the test from code
that introduces side effects that may fool the verification.

Is allowing a degree of duplication a rule then? No! At the end of the day, it boils
down to communicating intent. In some tests, it’s better to use constants in both
input and expected values to highlight correlated values, whereas others may be made
more readable and understandable by some duplication.

Asserting Equality

The most commonly used assertion is by far that which checks for object equality. In
many cases this is very unproblematic. For example:

Assert.AreEqual ("Hello World", String.Join(" ", new[] { "Hello", "World" }));
Assert.AreEqual (3, 1 + 2);
Assert.AreEqual (3.5, 1.5 + 1.99, 0.01);

But what would happen if we had to assert that two Person objects from one of
the previous examples were equal?

[TestMethod]
public void TwoPersonsWithIdenticalAttributesAreldentical ()

{

var aPerson = new Person { FirstName = "Adam",
LastName = "Anderson", Age = 21};

var anotherPerson = new Person { FirstName = "Adam",
LastName = "Anderson", Age = 21};

Assert.AreEqual (aPerson, anotherPerson);

94 Chapter 7 = Unit Testing

Does the previous test succeed or fail? Whether it succeeds depends entirely on
whether the Person class has an Equals method with a reasonable implementa-
tion; one that tells whether two persons are equal in the context of the domain. For-
getting to provide the Equals method or its equivalent is an extremely common
source of errors in unit tests.

In some rare cases’ we can’t implement the equality method in a way that makes
it usable for testing. In other cases, initializing an object just to make a comparison,
as in the preceding example, seems to defeat the very purpose of the test. If the Per-
son class contained 10 more fields, like gender, address, and some flags that some-
how always make it to such classes, it would do more harm than good to set up such
an object and then rely on one assertion. In such cases, having multiple assertions per
test is quite acceptable. Or it could be an opportunity to make use of more sophisti-
cated assertions.

Constraints and Matchers

At this point, it’s time to introduce the most powerful of the assertion methods:
AssertThat. Compared to the very narrow methods presented so far, like Are-
Equal or IsTrue, it offers next to endless possibilities. Instead of asserting some-
thing very specific, it lets us provide our own predicate that will determine the
outcome of the assertion. In NUnit, such predicates are called constraints; in JUnit
they’re called matchers. Providing custom predicates opens up new interesting verifi-
cation opportunities.

Specialized Assertions

Remember the Person class from the previous examples? It contained an Age attri-
bute. What if you wanted to test whether a person is an adult, that is, not underage or
retired? As a first test, an example with a reasonable adult age would do fine®:

[Test]
public void PersonAged45 IsAnAdult ()
{
var person = new Person { Age = 45 };
Assert.IsTrue (person.Age >= 18 && person.Age < 65);

7. 'm mostly thinking of objects that are persisted in a database and where the database generates
a surrogate key. In such cases “equality” may become the subject of debate: Are the objects
equal if all their fields are equal, or are they equal if their “primary keys” are the same?

8. At the time of writing, Microsoft’s unit testing framework didn’t support custom constraint
assertions, so the tests in this section are written with NUnit.

Assertion Methods 95

But what if you wanted to make your test even more explicit? How about chang-
ing the test to this?

[Test]

public void PersonAged45 TIsAnAdult ()

{
var person = new Person { Age = 45 };
Assert.That (person, Aged.Adult);

When this test fails, it’s going to fail with a message like:

Expected: a person of age 18 to 65
But was: a person aged 12

To get this rather detailed output, some work is required. First, we need a con-
straint based on the Constraint class.

public class IsAdultConstraint : Constraint

{
public override void WriteDescriptionTo (MessageWriter writer)
{

writer.Write ("a person of age 18 to 65");

public override void WriteActualValueTo (MessageWriter writer)
{

if (actual is Person)

{

writer.Write("a person aged " + ((Person)actual) .Age);

}

else

{

base.WriteActualValueTo (writer) ;

public override bool Matches (object actual)
{
base.actual = actual;
if (actual is Person)
{
var person = (Person) actual;
return person.Age >= 18 && person.Age < 65;

96 Chapter 7 = Unit Testing

}

return false;

At this point, we can write an assertion like this:
Assert.That (person, new IsAdultConstraint());
Second, to get to Aged.Adult a small helper is required.

public static class Aged

{
public static IsAdultConstraint Adult

{

get { return new IsAdultConstraint(); }

In Java and JUnit 4, constructs with assertThat and matchers come out even
nicer. Because of static imports, the assertion would look like the following, given
that there was a Person object at hand:

assertThat (person, isAdult());
To get to this form, a simple factory class would be required.

public class MatcherFactory {
public static IsAdult isAdult () {
return new IsAdult();

The implementation of IsAdult is very similar to the previous C# version but
would be based on the org.hamcrest.BaseMatcher class.

Syntactic sugar or not, specialized assertions is one area of use for custom
constraints/matchers.

Fluent Assertions

Specialized assertions aren’t the most popular use of custom constraints. Most of us
actually start out by using fluent assertions. The fluency is achieved by switching the

Assertion Methods 97

order of arguments’ in the call to Assert.That style of assertions and the kind of
syntactic sugar we’ve seen so far. So

Assert.AreEqual (10, quantity);
becomes
Assert.That (quantity, Is.EqualTo(10));

Apart from increasing readability, which becomes evident when combining sev-
eral constraints, the fluent syntax produces better messages.

Assert.IsTrue ("Hello World!".Contains ("Worlds")) ;
fails with

Expected: True
But was: False

whereas
Assert.That ("Hello World!", Is.StringContaining("Worlds"));
fails with

Expected: String containing "Worlds"
But was: "Hello World!"

Different unit testing frameworks come with different fluent assertions. As the pre-
ceding example shows, they may contain some quite convenient features.

Tip

There are specialized fluent assertions libraries! In C#, extension methods provide a
very elegant way of implementing fluent assertions, which are utilized by the Fluent
Assertions library. In Java, Assert] provides a set of custom assertThat methods
that return assertion objects with methods that can be chained to form fluent assertions.

9. To be precise, not all unit testing frameworks want the expected value as the first parameter
and the actual value as the second parameter to the assertion. In some, the order is the opposite,
and some don’t document any preference.

98 Chapter 7 = Unit Testing

“Partial” Verification

A third area of use for custom constraints could be described as “partial” verification.
In an earlier example, a Person object was constructed by copying values from a
data transfer object (DTO). Then a GUID and a date were added. The test that veri-
fied the object had been constructed correctly coped with these two fields by using
rather loose assertions. The code is repeated here for convenience:

Assert.IsNotNull (newEntity.Id);

Assert.AreEqual ("Adam", newEntity.FirstName) ;

Assert.AreEqual ("Anderson", newEntity.LastName) ;

Assert.AreEqual (21, newEntity.Age);

Assert.AreEqual (DateTime.Now.ToShortDateString(),
newEntity.Created.ToShortDateString());

This code looks the way it does because there’s virtually no way to construct
a Person object that would be equal to the object created by the factory.'” The
GUID is “random” and there’s a time instance. On the other hand, these values may
not be very interesting from the perspective of the test. At least that’s what the test
indicates by just checking for a non-null GUID and performing coarse matching of
the creation time.

In such cases, a custom constraint might come in handy. Because we can’t make
persons equal (not in the sense of an equality method), we can at least try to make
them “similar.” The following test shows how to achieve that by ignoring the Id and
Created attributes in the comparison.

[Test]
public void AllValuesAreCopiedFromPersonDtoToNewEntity ()

{

var personDto = new PersonDTO { FirstName = "Adanm",
LastName = "Anderson", Age = 21};

var expectedPerson = new Person { FirstName = "Adam",
LastName = "Anderson", Age = 21};

Assert.That (PersonCreator.CreateEntity (personDto),
new IsSamePersonConstraint (expectedPerson)) ;

The Matches method of the constraint is implemented the way one would
expect:

10. Of course, PersonCreator, the factory, could be “opened up” and its GUID and timestamp
functions controlled by the unit test in one way or another, but that’s not the point here.

Testing Exceptions 929

public override bool Matches (object actual)
{

base.actual = actual;

if (actual is Person)

{

var person = (Person)actual;
return expected.FirstName == person.FirstName
&& expected.LastName == person.LastName
&& expected.Age == person.Age;
}

return false;

This technique and variations of it can be applied in many situations. Candidates
for partial verification are

® Objects with tricky attributes that are irrelevant to the test
® Objects that are created in a way that we cannot control

® Large/compound objects where only a few fields out of the object graph are
interesting

Testing Exceptions

Error conditions change the execution flow and must therefore be tested. Most lan-
guages used these days use exceptions to communicate that an error has occurred.
Not only has this the benefit of actually altering the flow of control so that there’s no
question whether the operation has succeeded or not, it also saves the developer from
clunky checks of return values, calling things like GetLastError, inspecting the
value of errno," or the like.

The generic way to test for an exception is:

[TestMethod]
public void OperationBlowsUpWithADramaticException ()
{
try
{
DoSomethingThatBlowsUp () ;

11. GetLastError is a function in the Win32 API that returns the last-error code value on the
calling thread, whereas errno is a global variable or function used in UNIX C programs for
the same purpose.

100 Chapter 7 = Unit Testing

Assert.Fail ("Expected an exception");
}

catch (CrashBoomBangException e) { }

This is the oldest way of verifying that an exception has been thrown, and this
technique still has two benefits:

= Jt'll always work. Because nothing in the test uses any fancy features of the
unit testing framework, this technique can be applied in Java, C#, C++, Java-
Script, PHP, and Ruby (with slightly different keywords), to mention some
widely used languages.

= [t’s still the most flexible and intuitive way if you need to scrutinize the
caught exception, if you need to verify the exception message in a sophisti-
cated way, if you need to inspect a chain of nested exceptions, or if the excep-
tion carries some payload, like the offending object.

That said, this is the oldest way, and there are better options for most cases. Nowa-
days, frameworks come with annotations like @Test (expected=), [Expected-
Exception(...)], or @expectedExeption, which enable condensing tests of
exception code to something like this:

[TestMethod]
[ExpectedException (typeof (CrashBoomBangException))]
public void OperationBlowsUpWithADramaticException ()

{
DoSomethingThatBlowsUp () ;

Because this book contains a lot of Java code, I feel obliged to mention that JUnit
has taken things in the right direction by introducing the ExpectedException
rule,'* which brings back the flexibility to do more advanced processing of the caught
exception (the second benefit of the generic approach). For example:

@Rule
public ExpectedException thrownException

= ExpectedException.none () ;

@Test

12.http://junit.org/apidocs/org/junit/rules/ExpectedException.html

http://junit.org/apidocs/org/junit/rules/ExpectedException.html

Testing Exceptions 101

public void operationBlowsUpWithADramaticException() {
thrownException.expect (CrashBoomBangException.class) ;
thrownException.expectCause (isA(IllegalStateException.class));
thrownException.expectMessage (startsWith ("Oocops!"));

doSomethingThatBlowsUp () ;

This test not only verifies that the CrashBoomBangException has been
thrown, but also that the exception causing it is I1legalStateException and
that the exception message starts with a specific string. Because Hamcrest matchers
are used, arbitrarily sophisticated analysis of the exception is possible—something
that’s lost or limited when using an annotation.

Finally, languages that support higher-order functions offer yet another option.
In such languages you can pass a block of code that’s expected to fail with an excep-
tion to a function that will execute that block in a surrounding try-catch. This is what
the technique would look like if implemented by hand.

[TestMethod]
public void OperationBlowsUpWithADramaticException ()

{
ExpectCrashBoomBang (() => DoSomethingThatBlowsUp()) ;

public static void ExpectCrashBoomBang (Action action)
{
try
{
action();
Assert.Fail ("Expected an exception");
}
catch (CrashBoomBangException) { }

We don’t need to sweat, though. Many testing frameworks contain assertions
that work like this out of the box. NUnit’s Assert.Throws, Groovy’s GroovyAs—
sert.shouldFail, and JUnit’s Assertions.assertThrows all make use of
mechanics similar to that of the preceding example (but allow specifying the expected
exception, of course). So, the preceding test would look like this in JUnit'3:

13. At the time of writing, this assertion was in the alpha version of JUnit 5, so the final version
may differ somehow.

102 Chapter 7 = Unit Testing

@Test
public void operationBlowsUpWithADramaticException() {
assertThrows (CrashBoomBangException.class, () ->
doSomethingThatBlowsUp()) ;

Behavior-driven Development-Style Frameworks

Most of the material in this chapter applies to all unit testing frameworks. However,
there’s a family of frameworks that T'll refer to as BDD-style frameworks that dif-
fers from the popular xUnit frameworks in certain ways and therefore needs some
additional treatment. In some languages, like Ruby or JavaScript, such frameworks
are often used for unit testing, regardless of whether the actual development style is
behavior-driven design or not.

Test Structure

BDD-style frameworks use a test structure that reminds the developer about focus-
ing on the behavior, rather than the details of the tested implementation. RSpec for
Ruby and Jasmine and Mocha for JavaScript do this by enclosing tests in a function
called it.

it ("specifies a test", function() {
expect (["Hello", "world!"].join(" ")) .toEqual ("Hello world!");
1)

Tests are grouped together by wrapping them in a describe function. The
frameworks discussed in this book allow nesting calls to describe to provide
nested contexts. In RSpec there’s even a method called context, which is syntacti-
cally equivalent to describe. Nested contexts can be used to create a separation
between various states or variants when testing the same functionality.

describe "pay order" do
let (:order to pay) { create(:order, :standard order) }

context "credit card" do
Credit card tests go here
end

context "direct bank transfer" do
Bank transfers are tested here
end

Behavior-driven Development-Style Frameworks 103

context "Bitcoin" do
And digital currency here
end
end

Each context provides its own scope, and thus variables declared in differ-
ent contexts get different lifetimes relative to the tests. The order to pay vari-
able is created once and outlives the three payment method contexts and any tests
that would execute within them. Powerful as this may seem, I urge you to count to
12 before constructing a complex hierarchy of nested contexts with tests that depend
on different variable scopes. Not only is it easy to introduce temporal coupling in this
way, but such tests are hard to read and understand.

Test initializers also exist in BDD-style frameworks. They work quite similarly to
those of xUnit frameworks (per test method and per test class initialization). In addi-
tion, there are two caveats to keep in mind:

= How does initialization/fixture setup interact with nested contexts?

= Some frameworks provide more options for fixture initialization.'*

Naming Tests

Using the it function encourages naming the tests in a certain way. Look at the test
name and the output of the framework to decide whether the name makes sense.
Because the name is just a string, it can contain whitespace and punctuation characters.
This isn’t the place to get too creative though. The test name should succinctly commu-
nicate the expected behavior, given the conditions that are specific to the test. If the name
becomes too long, we can consider using contexts to make them more concise.

Matchers

To make tests pass or fail, BDD-style frameworks use functions that are more verbose
and often read in a more natural way than assertion methods. To illustrate, T'll revisit the
test of a simple utility function that just picks out the first names of the supplied persons.

14. RSpec, for example, provides two methods called subject and let, both of which in essence
evaluate a block and store the result between tests. subject is used to initialize the tested
object. This functionality is most useful when used implicitly, like in the coming magic wand
example, in which the magic wand becomes the subject. 1et may be used to change the context
of each test. This is a very superficial treatment of two quite powerful concepts, but the point is
that they can both compete with and complement initialization methods. This has the potential
to make the fixture setup very advanced and very complicated.

104 Chapter 7 = Unit Testing

describe ("NameUtils", function() {
describe ("collectFirstNames ()", function() {
it ("creates a comma-separated list of first names", function/()

{

var adam = new Person ("Adam", "Anderson");

var brian = new Person("Brian", "Brown");

var cecil = new Person("Cecil", "Clark");

expect (NameUtils.collectFirstNames ([adam, brian,
cecil])) .toEqual ("Adam,Brian,Cecil");

Just as xUnit testing frameworks come with a library of assertion methods, so
do BDD-style frameworks; but they come with matchers—functions/methods that
compare an expected value with the actual value. In Table 7.2, I present a handful of
matchers that are similar between two widely used BDD-style frameworks. The pur-
pose of Table 7.2 is to show how matchers differ from assertion methods syntactically.

Notice how a fluent syntax is achieved by combining expect with the matcher.

TABLE 7.2 Some matchers in Jasmine and RSpec.

Matcher type Jasmine RSpec

Expected value expect(actual). expect(actual).to
(a matcher) (a matcher)

Negation expect(actual).not. expect(actual).not to
(a matcher) (a matcher)

Object equality toEqual(expected) eq(expected)

Object identity toBe(expected) (¥) be(expected)

Boolean toBeTrue() be true
toBeFalse() be false

Null check toBeNull() be nil

(*) Object equality without type conversion.

Summary 105

More Fluent Syntax

BDD-style frameworks are typically found in the land of dynamic languages,
which gives them some cool features. The RSpec test that follows not only
creates a matcher on the fly, but also a very descriptive failure message.

class MagicWand
def doing magic?
false
end
end

describe MagicWand do
it { is_expected.to be doing magic }

end

It fails with the following message:

1) MagicWand should be doing magic
Failure/Error: it { is_expected.to be_doing magic }
expected #<MagicWand:0x000000027d1200>.doing magic? to return true, got false

BDD-style frameworks aren’t that different from xUnit family frameworks, espe-
cially when it comes to unit test design and implementation. They’re built around a
different terminology and encourage thinking about behavior rather than implemen-
tation, but at the end of the day, they execute a comparison between an actual value
and an expected value.

Summary

Unit tests are created to

= Allow scaling
® Lead to better design
® Enable change

® Prevent regressions

106 Chapter 7 = Unit Testing

® Provide a steady pace of work
® Free up time for testing

® Specify behavior and document the code

If code can be unit tested, it can’t be too poor. Some bad constructs will simply
not make it into the codebase if unit tests are in place. Ultimately, if a feature isn’t
testable, it won’t be tested.

Defining unit tests isn’t uncontroversial. In this book, unit tests are fully auto-
mated, self-verifying, repeatable, consistent, and fast. They test a single logical con-
cept and run in isolation.

There are three common naming standards for test methods:

= Mandated by the framework—Test names must start with a mandatory prefix.
Don't let it ruin them.

® BDD style—Test names should read like spoken sentences in the domain
language, and the program elements should do something.

= Unit of work, state under test, expected behavior—A solid template that con-
tains everything needed to accurately describe a test.

Using Arrange-Act-Assert protects from arbitrarily complex test methods and
gives all tests a similar structure.

Assertion methods provide a standardized way to express the outcome of a test.
In addition, the majority of the unit testing frameworks provide some kind of “assert
that,” which enables custom constraints and fluent assertions.

Forgetting to implement an equality method is a very common error, which pro-
duces confusing messages from assertEquals, Assert.AreEqual, or the like.

BDD-style frameworks are used for unit testing in some languages. They use
matchers instead of assertion methods and use a slightly different test structure in
comparison to xUnit frameworks.

Chapter 8

SPECIFICATION-BASED
TESTING TECHNIQUES

Every profession has its fundamental techniques. Software testing is by no means
an exception. A tester will check for certain things and fall back on a range of well-
established techniques when designing and executing tests. Obvious to the tester, and
seemingly intuitive once familiar, these techniques somehow don’t always make it
into developer literature or tests written by developers. In my experience, one of the
first questions developers who are new to unit testing (or to any kind of testing, for
that matter) ask is:

Okay, I know how to write a unit test, but what should I test?

My hope is that this chapter will serve as a source of inspiration when the time
comes for you to decide what to verify with your next test. The techniques covered
here usually go by the name specification-based techniques, because the specification
is their foundation. Variations of them can be applied at all test levels, but I've found
them especially useful when writing unit tests and integration tests. They are basic
techniques, and by keeping them in mind while developing code and tests, you will
increase the quality of your code and save your testing colleagues from tedious and
boring work. Ain’t that a win-win?

Another reason for keeping these techniques in mind is that if developers and
testers have different opinions on how certain features of the application should work,
then discussions involving specification-based techniques will typically shed some
light on the differences.

Equivalence Partitioning

Let’s say that you're facing the daunting task of implementing an integer-based calcu-
lator—the kind of program one would write in an introductory programming class.
When it comes to checking that it works, is it meaningful to test whether it can com-
pute the sum of 5 + 5 if it computes the sums of 3 + 3 and 4 + 4 correctly? Or 10,000 +
20,0007 Probably not, but why?

107

108 Chapter 8 m Specification-based Testing Techniques

There’s a similarity between 3, 4, 5, 10,000, and 20,000 in the context of a calcula-
tor that operates solely on integers." All these numbers are in the same equivalence
partition. Equivalence partitions, sometimes called equivalence classes, are subsets of
data in which all values are equivalent to each other. The equivalence relation depends
on the context. In this case, they are equivalent to each other from the perspective of
integer addition, so adding two numbers together is sufficient to inspire confidence
that addition will work within the equivalence class of integers of reasonable size.

For an integer calculator, reasonable partitions would be one for positive integers
and one for negative integers, and two partitions just outside the positive and negative
ranges of the data type to catch overflow errors.

Another partitioning could treat both negative and positive integers as one parti-
tion. Would such a partitioning be more correct? Now, here’s the difference between
how testers and developers would approach partitioning in the absence of a shared
specification. A developer would know the range of the data type and base the parti-
tioning on that, whereas the tester would probably think more about the domain and
partition from that viewpoint. This could lead to different partitioning (see Figure 8.1).

Nothing says that equivalence partitions must consist of consecutive values.
Mathematical functions or arbitrary predicates may be used to define equivalence, as
well as sets of values that are considered equivalent in some context. Does this sound
too abstract? Think of an average enterprise system that stores customer information.
Depending on the context, some equivalence classes could be

® Males/females

= Those aged 0 to 17, 18 to 28, 29 to 44, 45 to 69, and 70 to 110

® Those whose national identification number is known

® Those registered in the system before the year 2000 and those after

® Prospects, regular, or premium customers

= Those who pay with Visa, MasterCard, or PayPal

® Those who have returned some merchandise and those who haven’t

There are pretty much endless possibilities, and it’s the specification and test sce-
nario that should guide the choice of relevant equivalence partitions.

Equivalence partitioning is a very helpful tool for the developer. Suppose we want
to ensure that a function that computes the risk premium for insured drivers works

1. Let’s not get academic and dig out some ancient 8-bit integer type. Let’s think 32-bit.

Equivalence Partitioning 109

int.MinValue 0 int.MaxValue
int.MinValue 0 int.MaxValue

FIGURE 8.1 Two ways of partitioning input to an integer calculator. Is there a way to
reach the partitions outside the range of the integer type? There could be, if the calculator
accepted its input as strings that would be converted to integers.

correctly. According to this function, young drivers run a higher risk of accidents, the
middle-aged have mastered driving, and older drivers tend to start getting involved
in accidents again. A simple version of this function could look like the following:

public double getPremiumFactor (int age) {
if (age >= 18 && age < 24) {
return 1.75;
} else if (age >= 24 && age < 60) {
return 1;
} else if (age >= 60) {
return 1.35;

Armed with a new tool, we immediately see three valid partitions, hence three
tests. We also spot two partitions with illegal input. Ages below 18 and above, say,
100, don’t make any sense. Thus this particular function needs at least five tests.

Another benefit of this technique is that it allows us to think about input
visually, which hopefully lets us discover partitions that haven’t been covered by
tests yet. Sometimes drawing the input and partitions on paper or a whiteboard
really helps (see Figure 8.2).

Parentheses and Brackets

When expressing intervals, square brackets next to values mean “in the interval” and
parentheses mean “outside the interval” So the interval of integers [0, 11) includes
numbers 0 to 10, but not 11.

Dividing data into equivalence partitions will only get us so far. In order to
achieve reliable test coverage, tests at the boundaries of the partitions are required.

110 Chapter 8 m Specification-based Testing Techniques

(. © ©)
¥,
" s
®
Underage Hot Shot Mature Driver Grandpa Century+

| | 1824y | 24600 | [60,100] | |

FIGURE 8.2 Dividing input into equivalence partitions can sometimes be quite a visual
technique. Here, each partition has been illustrated with an avatar that could evolve into a
persona in other test cases.

Boundary Value Analysis

Boundary values are values that occur at the boundary of an equivalence partition. If
no equivalence partitions have been identified, think of boundary values as occurring
at the edges of the domain of allowed input. Such values may also be called edge cases.
Many software bugs lurk at the boundaries, which is why fortifying them with tests
is crucial.

Let’s look at the car driver premium example again. One of its equivalence parti-
tions contained ages for mature drivers, 24 to 59 years. A boundary value analysis
would suggest checking the values 23, 24, 59, and 60—two values at the very edge and
two values outside the equivalence partition. Some authors suggest that checking 25
and 58 is also a good idea, even though they’re in the partition (Bath & McKay 2008).

Just like equivalence partitions, boundary values can be derived from the specifi-
cation, the size of a data type, or common sense. Checking boundary values is some-
thing testers do in their sleep, but unfortunately still manually to some extent. If the
program contains an input field that the specification says accepts numbers from 1
to 10, one of the obvious first tests would be to type in the 0 and 11 to verify that val-
ues just around the edges of allowed input aren’t accepted. The next step would most
likely be to verify the accepted range by typing in 1 and 10.

Keeping boundary values in mind is crucial for developers, because having other
people finding bugs around boundaries, be they testers, or, even worse, users, is sim-
ply embarrassing. When writing code, developers have both access to a specification
and knowledge about the ranges of the data types they’re using. There are simply no
excuses for not checking something as obvious as edge cases.

Edge Cases and Gotchas for Some Data Types 11

Edge Cases and Gotchas for Some Data Types

We don’t always need to resort to strict boundary value analysis and equivalence par-
titioning. These techniques do help us find values that are interesting to check, as well
as edge cases, but for scenarios involving the most common data types, applying a set
of heuristics may be sufficient.

Numbers

Finding boundary values for numbers is rather easy. If your input is valid for the
range m-n, check what happens at m — 1, m, n, and n + 1. In some cases, try m + 1,
and n — 1. Using 0 might or might not be a boundary value, but it’s usually a good
idea to investigate what happens around it.

For primitive integer types, it usually pays to look at what happens near the max-
imum represented by the data type, such as 231 — 1 or 2% - 1, and the minimum,
like —2*! or —2%, while remembering that the sign bit causes an asymmetry between
them. For certain types of programs, nasty bugs can be introduced because of integer
overflow.

Many languages have constants that represent minimum and maximum values
for their data types, for example, Integer.MAX VALUE in Java and int.Max—
Value in C#. Use them or introduce your own with care if the language doesn’t have
them. Don’t put yourself in a position where you have to remember whether the max-
imum value of a signed 32-bit integer is 2! — 1 or 2°% - 1.

In the case of floats, verify that a reasonable precision is used. A partition may
change as the precision of the floating point number is adjusted.

Strings

The empty string is an obvious edge case. It can usually be traced back to blank user
input or fixed-record file formats. It has a cousin called nu11? that may be returned
from many standard libraries or functions in your legacy application. Irrespective of
your personal feeling about nulls, you have to be prepared for them. Whereas one
half of the code you're working with may go to great lengths to avoid nulls by using
Null Objects and exceptions in creative ways, the other half, written by that other guy,
won’t exhibit this property and will throw nulls right in your face. Hence, add null
to your list of edge cases.

In languages where strings are allocated directly on the stack or stored in fixed-
size buffers on the heap, developers have to worry about memory corruption and buf-
fer overflow. In newer languages the developer doesn’t need to worry about strings

2. Ornil orundef.

112 Chapter 8 m Specification-based Testing Techniques

overwriting part of the heap that belongs to another process, but checking around
maximum input length is still a good idea.

Strings, especially in Unicode, may contain all sorts of characters. But in an aver-
age system, the partition of allowed characters is rather small in comparison to the
entire Unicode character set. The challenge usually lies in the encoding. UTF-8, the
most widely used encoding on the Web,” uses one byte to encode standard ASCII, but
may use up to four bytes when encoding less common Unicode characters. Make sure
that your parsing and string routines take this into account.

Dates and Time

Dates are difficult. If you don’t agree, think back to the year 2000 bug. By their very
nature they require careful boundary checking. Depending on the type of applica-
tion, you may have different ambitions regarding your date boundaries. Regardless of
ambition, if the dates can be either entered manually by a user or read from a file (in
fact, any place where their format isn’t enforced), be sure to hand the date over to a
data type or date library to avoid boundary-related errors.

Remember that an unexpected locale can mess up date parsing and presentation
and that the system’s time zone can affect date arithmetic. The classic gotcha here
are time zones without and with daylight saving time (DST), in which some days
may have 23 and 25 hours. Cross—time zone tests may be necessary to understand the
behavior of a client and a server on different continents.

Also, be explicit about the time of day component of the date—is it used or not?
Should hours, minutes, and seconds be reset when working with just dates, or should
they simply be ignored? Date precision also affects boundary values.

Choosing Date Pickers

When you decide on a date picker component, see what it does when you first select
January 31 and then change the month to February.

Collections

The empty collection is a common edge case worth checking (because you do use
empty collections and not nulls, right?). Too often, we encounter code that really
relies on a collection actually having one element, like this archetypal piece of older
code using Hibernate.

3. According to Wikipedia, 85 percent of all web pages were encoded using UTF-8 in 2015 (https://
en.wikipedia.org/wiki/UTE-8).

https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8

State Transition Testing 113

Query query = session.createQuery ("from Customer where id = :id ");
query.setParameter ("id", "12345678");
Customer customer = (Customer) query.list().get(0);

This code will fail miserably when there’s no customer with an id equal to
12345678. Also, there be dragons where developers balance on the edge between
fetching and iterating over a collection. A close cousin to the preceding code, the iter-
ation over a multivalued collection may at least have a fighting chance.

Query query = session.createQuery ("from Customer where dob > :dob ");
query.setParameter ("dob", 19750101);
for (Customer customer

Collections.checkedCollection (query.list (), Customer.class)) {

// Do something interesting with the customer...

Constructs like the above aren’t really a problem if you check the sizes of your collec-
tions or just iterate over them (while being prepared for the fact that they may actu-
ally be empty), but even if you do this, then somebody else won’t have done it in the
legacy code that you're maintaining. Ergo, paying extra attention to empty collections
and those with one element usually pays off. Iterations over collections may also suf-
fer from off-by-one errors if they rely on indexes and the collection’s size. All of this is
best summarized as 0-1-many.
For some more ideas, see Hendrickson, Lyndsay, and Emery (2006).

State Transition Testing

Some applications or parts of a system are nicely modeled as state machines. Typi-
cal examples are various flows like “wizards” and navigation between pages. Other
examples are control systems that depend on a sequence of known inputs. Many
embedded systems run in devices that have a number of buttons that can be pressed
in different order to achieve different things. The most trivial example is a digital
clock that can be set with two buttons. A more mission-critical application would be
software for controlling things in planes and cars.

Once we've decided that our problem is indeed best modeled as states and transi-
tions, the next step is to draw a state diagram (see Figure 8.3) to get an overview of
how the application should behave. The diagram is most helpful in identifying miss-
ing or invalid states and transitions.

Apart from states and transitions, a state transition model also includes events
and actions. Events cause transitions. In the previous example, most events repre-
sent clicks on a button in the user interface, such as Next, or Accept license, with the

114 Chapter 8 m Specification-based Testing Techniques

[Start
installation
\
\ Next J— Next ~ Accept license - Next
\
S Welcome | ' License CESmEIE \
- —» ——p» directory ——P» Installed
screen screen \ \
screen)
I I /
| / /» ,»"/ . .
Cancel | Don't accept license / Cancel / ~— Insufficient disk space
,* /S S
- /, P -
S _ o
Aborted @#————

FIGURE 8.3 A simple installation wizard modeled as a state machine. In reality, there
would be more states before Installed.

exception of a disk space check performed by the installer. Actions are the result of
transitions. Again, in the example, most actions consist of showing a certain screen to
the user, except for the final action, in which files are copied and some configuration
is stored in the system.

Sometimes it may be helpful to rewrite the state transition diagram into a table.
Personally, I've always found the diagram more understandable, but for exhaustive
testing, a table might help.

State diagrams can be drawn at different levels of abstraction. That’s probably the
greatest strength of this technique. On one end, there’s the detailed diagram depict-
ing transitions between states in a regular expression matcher, where each encounter
with a letter is a state transition. On the other end is the huge business application
modeled with three states: logged in, working, and logged out. This flexibility trans-
lates directly to developer testing. Detailed, low-level state transitions fit nicely in unit
tests. A diagram will help determine what tests to write. Sometimes the number of
states and transitions will require using parameterized tests or theory tests (described
in Chapter 10, “Data-driven and Combinatorial Testing”) to avoid repetition. Coarse-
grained state diagrams help when developing high-level tests, like browser-based UI
tests, or just doing manual testing.

When working with state transition testing, we encounter the term switch cover-
age. 0-switch coverage refers to testing the individual transitions, 1-switch coverage
means that pairs of transitions are tested, and so on. Exercising various switch cover-
ages exhaustively may be very helpful in weeding out race conditions.

Decision Tables 115

Decision Tables

Let’s revisit the car insurance premium example one last time. This time the premium
is also affected by the driver’s gender. After all, statistics show women to be safer driv-
ers. In addition, certain combinations of age and gender trigger a fraud investigation
in the event of a claim.

To get an overview of these business rules, we can use decision tables, which cap-
ture all combinations of variables and possible outcomes.

Age 18-23 18-23 24-59 24-59 60+ 60+
Gender Male Female Male Female Male Female
Premium N N N v N N
factor 1

Premium

factor 1.05 bt it v b b n
Premium

factor 1.25 N N N N N Y
Premium

factor 1.35 b bt . it v i
Premium

factor 1.65 N Y N N N N
Premium

factor 1.75 v bt b b . i
Fraud N N Y Y Y N
Investigation

Formally, a decision table is made up of conditions, condition alternatives, actions,
and action entries. In the preceding table, the variables Age and Gender are condi-
tions, whereas the different premium factors and Fraud investigation are actions. The
values of Age and Gender are the condition alternatives. Finally, the Ys and Ns are the
action entries.

The example already seems complicated enough due to the repetitive actions cor-
responding to the different premium factors. Personally, I don’t think that experi-
menting with the notation is very dangerous, especially if it results in increased
readability:

116 Chapter 8 ® Specification-based Testing Techniques
Age 18-23 18-23 24-59 24-59 60+ 60+
Gender Male Female Male Female Male Female
Premium 1.75 1.65 1.05 1 1.35 1.25
factor
AR N N Y Y Y N
|nvest|gat|on

Why should developers care about decision tables? Obviously they can show gaps
or inconsistencies in business rules, but there’s another reason. Remember that the
different flavors of behavior-driven development emphasize shared understanding
and concrete examples. Tables, and among them decision tables, are a good format
for capturing such concrete examples. Hence, a good decision table, or parts thereof,
can be fed right into a tool like FitNesse, Concordion, or Cucumber as a first building
block of an automated acceptance test.

At the unit test level,* turning the contents of a decision table into arguments to a
parameterized test is a good foundation for achieving exhaustive coverage of a busi-
ness rule.

Summary

Specification-based techniques are a great source of inspiration for developer tests. By
being aware that such techniques will constitute the first wave of testing, developers
can build software that is prepared to handle these tests. This increase in quality lets
testers engage in more high-value testing.

The key specification-based techniques to consider when developing software are

® Equivalence partitioning—Divide the input into partitions where each parti-
tion contains data that’s equivalent from the perspective of the test.

® Boundary value testing—Check the values at the edges of the partitions, as
well as common edge cases.

® State transition testing—Model the target of the test with a state diagram to
discover test scenarios.

4. I recommend running parameterized tests at the unit level only, because of their execution
time. We don’t want a slow test running off a huge table of values.

Summary 117

® Testing based on decision tables—Capture all combinations of relevant vari-
ables to uncover missing and interesting test cases and to achieve full cover-
age if need be.

Just as the name implies, specification-based techniques provide the fuel for
discussions about concrete examples when doing specification by example (pun
intended) or behavior-driven development.

This page intentionally left blank

Chapter 9
DEPENDENCIES

Developers who are new to unit testing and have just grasped its mere basics soon hit
a barrier. From their perspective, the systems they encounter bear no resemblance to
the examples in an introductory text or online tutorial on unit testing or test-driven
development. In my experience, this can be very demoralizing and lead to conclu-
sions like: “Our system can’t be tested” or “Unit testing/test-driven development only
works in green field projects.” There are numerous reasons for such beliefs, some
being a complex or botched architecture, inconsistent design, or simply code written
with everything but testability in mind. However, in the majority of cases, the prob-
lem is much simpler and is spelled dependencies. Different parts of a system depend
on each other in different ways, and the exact nature of these dependencies affects
testability.

A white box developer test—most often a unit test—exercises a very small part of
the system. It does this by creating the object it wants to exercise and calling meth-
ods on it. In object-oriented systems, the tested object will make use of other objects,
from now on called collaborators, to provide its services.! Some collaborators are
heavyweight and deeply entrenched in the system; others are simple and provide very
narrow functionality. When dealing with either kind, we turn to test doubles, the
topic of Chapter 12, “Test Doubles,” but before skipping ahead, let’s look at different
kinds of dependencies and what challenges they present.

Relations between Objects

The dependency that first comes to mind is the relation between two objects. Such rela-
tions are fundamental to object-oriented programs. Modern systems are usually com-
posed of thousands of classes, and their instances form intricate webs of relations between
collaborating objects. Not much is needed for things to get interesting from the unit test-
ing point of view; just let one object create another, like in this Raffle class.

1. If the language isn’t object oriented, there will obviously be no objects and no collaborating
objects. However, a tested function will still call code from other modules or libraries. Such
dependencies will have to be dealt with within the constraints and functionality of the language
in question. Michael Feathers touches on this topic in Working Effectively with Legacy Code
(Feathers 2004).

119

120 Chapter 9 = Dependencies

public class Raffle
{
private ISet<int> tickets;

public int TicketCount
{

get { return tickets.Count; }

public Raffle()
{
tickets = new HashSet<int> { 3, 10, 6 };

Okay, I confess. This isn’t much of a raffle, but it’s my way of trying to make a
three-element set wrapped by another class appear exciting. An actual abstraction of
a raffle would most likely shuffle its tickets, assign prizes to them somehow, and do the
drawing. Here, I simplify all of this to just creating a fixed set of tickets and count-
ing them. The point here is to make the constructor create another object, and
thus rely on indirect input, to produce a class that’s small and yet hard to test. By
“hard to test,” I mean that there’s no way to write a unit test that would be able to
establish a relation between the object created in the constructor and the class’s public
interface—in this case the TicketCount property. So, although it’s plain to see that
three tickets are created, writing a test that would expect three tickets would be a bad
idea due to the nonexistent controllability.

In this example, there’s no obvious way to control the indirect input; the code
lacks a seam—a place in which the behavior of the code can be altered without editing
it (Feathers 2004). The bulk of making code testable is dealing with such constructs
in the most appropriate manner by adding seams at which dependencies can be bro-
ken. There are some generic ways of doing this, all of which can be applied to this
particular piece of code with varying degrees of success and complications. To gain
control of this dependency we need to make it explicit, which would involve one of
the following:

® Pass in the collaborating object
m Create a factory method? that can be overridden

® Provide an external factory or builder’

2. See the Factory Method pattern in Gamma et al. (1994).
3. See the Builder pattern in Gamma et al. (1994).

Relations between Objects 121

Let’s explore all three and learn what costs, benefits, and trade-offs each approach
brings to the table.

Passing in Collaborators

Making collaborators explicit by passing them around is the simplest and most obvi-
ous way to increase testability. The downside is the increase in complexity and some-
times decrease in intuitiveness, especially in trivial cases. In the current example,
instead of creating the set of tickets in the constructor, we can pass it as an argument.
Alternatively, it can be provided using a setter* (property or method).

public class Raffle
{

private ISet<int> tickets;

public int TicketCount
{

get { return tickets.Count; }

public Raffle(ISet<int> tickets)

{
this.tickets = new HashSet<int> (tickets);

Now the test becomes trivial.

[TestMethod]
public void RaffleHasFiveTickets ()
{
var testedRaffle = new Raffle
(new HashSet<int> { 1, 2, 3, 4, 5 });
Assert.AreEqual (5, testedRaffle.TicketCount);

Passing in collaborators using constructors or setters is usually appropriate when
the dependent object isn’t short lived and is at the same level of abstraction as the
object that uses it.

4. One of my reviewers pointed out that this creates temporal coupling. This is usually not a
problem, unless youre working with legacy spaghetti code, where it may be hard to find a good
spot for calling that setter.

122 Chapter 9 = Dependencies

Using Factory Methods

Instead of having the constructor create the tickets, it could be made to call a factory
method that would do the creating.

public class Raffle
{

private ISet<int> tickets;

public int TicketCount
{

get { return tickets.Count; }

public Raffle()
{

tickets = CreateTickets();

protected virtual ISet<int> CreateTickets ()
{

return new HashSet<int> { 1, 2, 3 };

The factory method would be made overridable so that any test code would be
able to provide its own implementation.

[TestClass]
public class RaffleWithFactoryMethodTest
{
[TestMethod]
public void RaffleHasFiveTickets ()
{
var testedRaffle = new FiveTicketRaffle();
Assert.AreEqual (5, testedRaffle.TicketCount);

class FiveTicketRaffle : Raffle
{
protected override ISet<int> CreateTickets|()

{
return new HashSet<int> { 1, 2, 3, 4, 5 };

Relations between Objects 123

This approach often saves the day in legacy code, as it turns out to be a reasonable
trade-off between complexity and readability. In this case, though, it may become
catastrophic. Calling overridable methods from a constructor is bad practice because
such methods can easily reference uninitialized member variables and crash the
application by doing so. A static analysis tool would warn about this. That said, it’s
a fantastic example of constraints to think about when dealing with dependencies.
In classes with more functionality, this wouldn’t usually be a problem; the factory
method would be called after the object has been created.

Controversy Warning
Some people feel very strongly about any changes to code that are made solely to simplify
testing, such as changing the accessibility of some methods. In some cases, especially in
legacy code, this sometimes has to be done. Whenever I do this, I remind myself that the
code has two clients: the system that runs in production and the test code.

However, like everything else, this approach may be misused and lead to code
where everything is public or protected, which virtually makes access modifiers
meaningless.

Providing an External Factory or Builder

This approach is in a way a combination of the two aforementioned approaches.
Instead of passing in the collaborating object directly to the constructor (or via a set-
ter), pass in a factory or a builder. This may seem like overkill, and in many cases it
will be. However, some designs will improve considerably when employing this tech-
nique. As a matter of fact, it wouldn’t be unreasonable for a more sophisticated
Raffle class to externalize the creation of its tickets if its other responsibilities
included assigning prizes and drawing tickets. Here’s what a factory-based solution
would look like (just showing the constructor for brevity):

public Raffle(TicketsFactory ticketsFactory)

{
this.tickets = ticketsFactory.CreateTickets();

The accompanying factory and the test:

public class TicketsFactory

{

private int numberOfTickets;

public TicketsFactory(int numberOfTickets)
{

this.numberOfTickets = numberOfTickets;

124 Chapter 9 = Dependencies

public ISet<int> CreateTickets () {
return new HashSet<int> (Enumerable.Range (1, numberOfTickets));

[TestMethod]

public void RaffleHasFiveTickets()

{
var testedRaffle = new Raffle(new TicketsFactory(5));
Assert.AreEqual (5, testedRaffle.TicketCount);

Finally, for our tiny set of integers representing ticket numbers, employing the
Builder pattern would be way off target, but here’s what it would look like.”

public class TicketsBuilder
{
private int start = 100;
private int end = 199;

public TicketsBuilder StartingAt (int start)
{

this.start = start;

return this;

public TicketsBuilder EndingWith (int end)
{

this.end = end;

return this;

public ISet<int> Build()
{

return new HashSet<int> (Enumerable.Range(l, end - start + 1));

In the test, we set up the builder to give us five tickets.

5. This builder is slightly more elaborate than it needs to be. A minimal builder could have its
defaults set to starting at 1 and stopping at 5, but what’s the fun in using a builder if we’re just
going with the defaults?

System Resource Dependencies 125

[TestMethod]

public void RaffleHasFiveTickets ()

{
var builder = new TicketsBuilder () .StartingAt (1) .EndingWith(5);
Raffle testedRaffle = new Raffle (builder);
Assert.AreEqual (5, testedRaffle.TicketCount);

Obviously, the small class with a three-element set didn’t improve from throw-
ing an external builder at it, so what designs do? Factories and builders are both cre-
ational patterns (Gamma et al. 1994). We normally turn to them when we need to
construct complex objects.

The previous examples have illustrated that the basic relation between two
objects can be handled in a number of ways. The solution will depend on the type
and complexity of the objects and their exact relation. In addition, this kind of depen-
dency will most likely be managed differently in new code, written with seams and
testability in mind, and legacy code.

System Resource Dependencies

System resources tend to make a mess out of tests. In this context, the term system
resource refers to an abstraction of an operating system artifact, most notably a file,
the system clock, a network socket, or something similar. Although such resources are
abstracted away in classes or other appropriate language constructs, they still have an
impact on unit tests. Even though the test sees a seemingly simple abstraction, its use
could trigger behavior and side effects way outside the test harness, like writes to disk or
blocking reads. Let’s look at a couple of examples.

Files

Nowadays not too many programs actually require direct access to files. Being Web
applications, mobile apps, or cloud friendly, they tend to fetch their data or configura-
tion in a different way. However, there are still lots of batch applications out there that
read and write raw files.

Consider the first lines of a method that parses a file containing some payment
transactions. Being written without testability in mind, it presents a tricky kind of file
dependency—a filename.

public List<Payment> readPaymentFile (String filename) throws IOException {
File paymentFile = new File(filename) ;
BufferedReader reader

126 Chapter 9 = Dependencies

= new BufferedReader (new FileReader (paymentFile));

String line;
while ((line = reader.readLine()) != null) {
// Logic for parsing the file goes here...

Passing in a filename to a method is providing input to indirect input (read
this sentence again). The paymentFile variable is indirect input, whereas the
filename parameter is its input. This doesn’t help when writing unit tests. A
small improvement here would be to pass in a File object instead, but the prob-
lem would remain.

Two generic solutions work in the majority of programming languages for the
problem of file dependencies.

Provide Your Own Abstraction

This solution is almost too generic, but will always do the trick. We can always just
introduce another layer of indirection around the thing that’s hard to test (in this
case, the file I/O). When doing this, we have infinite freedom at the cost of having to
test the new abstraction.

Imagine that we introduced a simple abstraction called PaymentFile that
wrapped an instance of File to improve readability and testability of the read-
PaymentFile method:

public List<Payment> readPaymentFile (PaymentFile file) throws IOException
{
while (file.hasMoreLines()) {
String line = file.readLine();
// Logic for parsing the file goes here...

This new abstraction may even hide the fact that there’s a file involved at all.
Although line is used as the abstraction (as in lines in a file) it could just as well be
changed to unparsed payment.

Test the Data Handled by the 1/0 Operation

As soon as a file has been opened, our programming language provides us with a
convenient abstraction of its contents. In many cases it’s a stream object, and if not,
it’s some kind of array or list of the file’s contents. All these can easily be controlled by
a unit test. In fact, splitting the pure file I/O from whatever’s done with the contents
of the file is a good refactoring that not only benefits testability, but also promotes
separation of concerns. Here’s an example:

public List<Payment> readPaymentFile (String filename) throws

System Resource Dependencies 127

IOException {
return readFileContents (new FileInputStream(filename)) ;

List<Payment> readFileContents (InputStream inputStream) throws IOException {
List<Payment> parsedPayments = new ArrayList<>();
BufferedReader reader = new BufferedReader (

new InputStreamReader (inputStream))

String line;
while ((line = reader.readLine()) != null) {
String[] values = line.split(";");
parsedPayments.add (new Payment (parseReference (values([0]),
parseAmount (values[1l]),
parseDate (values[2])));

}

return parsedPayments;

The corresponding test would set up the file contents as a string and create a
stream from it:

@Test
public void parselineIntoPayment () throws Exception {
String line = "912438784;1000.00;20151115\n";

List<Payment> payments = new PaymentFileReader () .readFileContents (
new ByteArraylInputStream(line.getBytes()));

Payment expectedPayment = new Payment ("912438784",
new BigDecimal (1000.00,
new MathContext (2, RoundingMode.CEILING)),
LocalDate.of (2015, Month.NOVEMBER, 15));
assertEquals (expectedPayment, payments.get(0));

A Newer Version

This solution looks roughly the same in any language that has an I/O stream
library, which is why I presented it here. Had this been a Java book, I'd have the
readFileContents method take a Stream<String> instead, and the test
would start with the following:

String line = "912438784;1000.00;20151115";
List payments = new PaymentFileReader ()
.readFileContents (Arrays.stream(new String[]{line}));

128 Chapter 9 = Dependencies

The System Clock

I said earlier that pretty much every dependency can be solved by introducing an
abstraction around it. Code that depends on the system clock is no different. The
routine that follows could easily be a part of the batch payment handling program
listed previously. In its present form, it’s hard to verify that the payment will indeed
be treated as if arriving on time, because the system time is sampled directly, that is, it
constitutes uncontrolled indirect input.

public void DispatchPayment (Payment payment)
{

var now = DateTime.Now;

if (now.Date.Equals (payment.DueDate))

{

ReceiveOnTimePayment (payment) ;

}

else

{

// Handle late and possibly incorrect payments

The standard way of dealing with this kind of dependency is introducing a sim-
ple “time source” that wraps the class that provides the time.

public interface ITimeSource
{
DateTime Now {
get;

public ITimeSource TimeSource { get; set; }

public void DispatchPayment (Payment payment)
{

var now = TimeSource.Now;

if (now.Date.Equals (payment.DueDate))

{

ReceiveOnTimePayment (payment) ;

}

else

{

// Handle late and possibly incorrect payments

Dependencies between Layers 129

A test making use of such a time source would just set its date to match the date
of the payment. As always, there’s the price of complexity. Adding an interface and a
trivial implementation just to make code testable may increase the overall complex-
ity of the program. Depending on the implementation language and platform, there
may be other options. Ruby, for example, has several gems® for controlling its primary
time abstraction, the Time class. In Java, testing of time-dependent code has finally
been simplified as of JDK 1.8 with the appearance of the abstract Clock class. The
purpose of this class is to make providing different clock implementations easy, and it
has been introduced with testing in mind. In the absence of such alternatives, intro-
ducing an abstraction for the time source is a simple technique, which will nearly
always work.

Watch for Options . ..

. and their cost. Although generic methods work well, there might be some
alternatives. Testing the DateTime class is actually the “Hello World” program for
Microsoft’s Fakes framework. This framework can replace calls to system components
“under the hood” in runtime (Microsoft 2016a), which is ideal for a class like a time
source. In older versions of Java, PowerMock could be used to achieve a similar
outcome.

I'm rather cautious when it comes to using such frameworks, because they may
help in postponing the pain of taking on untestable legacy code, instead of helping you
to get rid of it. However, being aware of options is always a good thing.

Other System Resource Dependencies

With file and system clock dependencies out of the way, few other system resources
should give us trouble. Code that uses raw sockets can usually be refactored in the
same way as code that works on files. A stream or a byte array can be used instead.
The same goes for different abstractions of memory.

Where more specific strategies fail, the more generic ones described earlier will
work. Often the secret to handling system resource dependencies in any form is sepa-
rating the pure I/O stuff from the processing of data resulting from the I/O operation.

Dependencies between Layers

An application doesn’t have to grow large to get divided into layers. In fact, it’s harder
these days to find an application without layers than with layers.

6. The most widely used being Timecop.

130 Chapter 9 = Dependencies

Layers present a twofold challenge to developer testing. The first problem is inter-
twining. For various reasons, often best summarized as technical debt, layers never
stack nicely on top of each other, as they would do in a design document.

Although a truly layered architecture enforces strict separation between the lay-
ers and dependencies in one direction, Id say that in the majority of cases, such archi-
tectures tend to be more “flexible” and contain some bypasses (see Figure 9.1). Typical
examples are the circumvented business layer or the data access layer that knows the
workings of the presentation layer to the last bit.

For instance, consider the following data access method. Like pretty much every
single example in this book, this one is also “based on a true story.” In fact, it’s typical

legacy code, a decade old, and with more problems than just layer violations. What
kind of dependency is this?

public List<String> getCustomers () throws SQLException {
Connection conn = null;
PreparedStatement ps = null;
ResultSet rs = null;
List<String> customers = new ArrayList<String>();
try {
conn = getConnection();
ps conn.prepareStatement ("SELECT name FROM customers") ;
rs = ps.executeQuery();
while (rs.next()) {
customers.add ("<1li class=\"clist\">"
+ fixHtml (rs.getString("name"))
+ "</1i>");

}
return customers;
} finally {

Presentation layer ‘ Presentation layer
Wl ;
. L;% . ,_Controllers B
Business layer He 2
8[3| Services 2
\Depﬂsﬁ]’J g E Depends on (sort of) E
: ? \
Data access layer ‘ Data access layer I

FIGURE9.1 The layers of a typical Web application: To the left, a textbook version. To the
right, something that resembles reality.

Dependencies between Layers 131

DbUtils.closeQuietly (rs);
DbUtils.closeQuietly (ps);
DbUtils.closeQuietly (conn) ;

Nasty, isn't it? This old DAO knows that the customers will be presented in an
HTML list.

The second problem is that the quality of how layers are connected to each other
may vary greatly. Sometimes decoupling layers from each other will be a walk in the
park, and sometimes it’ll require extensive refactoring.

A way that I wholeheartedly recommend to save convoluted and fragile layered
designs is to start applying the Dependency Inversion Principle in conjunction with
conservative use of dependency injection. This is where dependency injection frame-
works come in handy. Such frameworks are put to best use when wiring together
components from different layers or even tiers (if the technology permits it). Although
dependency injection is a great pattern and the frameworks that support it are good
tools, they can be overused.

Don't Overuse Dependency Injection

Wiring together classes for the sake of doing so or “because it’s done in other places in
the application” may lead to overcomplicated code that’s hard to read and understand.

Dependency Inversion—A Short Introduction

Traditional layered architectures rely on one-way dependencies. Upper layers
consume services from lower layers. If truly adhered to, such architectures
present no special problems to testing, as long as the lower layers expose
interfaces. The weakness of such architectures is that changes to interfaces
in lower layers break the upper layers.

Dependency Inversion is a solution to this. When following this principle,
higher-level layers only depend on interfaces that they own. These interfaces
describe operations that are expected of lowerlevel services, which own and
provide the implementation of these operations. Thus, the direction of the
dependency is “inverted.”

In the example in Figure 9.2, Upper wants a message from Lower. This
will work as long as the getMessage method'’s signature remains untouched.
If dependency inversion is applied, Upper will depend only on an interface,
and Lower will provide the implementation that returns the message.

132 Chapter 9 = Dependencies

Upper Upper |—b— Message Interface

+getMessage(): string

Lower ZS:

+getMessage(): string Lovluer

+getMessage(): string

FIGURE 9.2 A layered version of “Hello World” implemented without and with
dependency inversion.

Dependencies across Tiers

When an application is split across several physical machines, where each machine
provides a different service, it’s said to be multitiered. The archetypes for multitiered
applications are the old client-server architecture and architectures where there’s a
presentation tier (Web servers), some kind of processing tier (application servers),
and a data tier (database).

Because of the physical separation, the communication between tiers is per-
formed using various network protocols (although many technologies try to hide this
fact by using local proxies for abstracting remote endpoints). Typical ingredients in
multitiered applications are databases, web services, message buses and queues, and
various kinds of RPC technologies.

Micro-services, which can run in different tiers, are a more recent example of an
architecture that introduces dependencies between components that communicate
over a network. Micro-services are also typically distributed over different hosts for
better scalability and availability, which increases the complexity of the dependencies
and introduces the need for load and fail-over testing.

Dependencies across tiers may suffer from the same problems as dependencies
across layers: they may be convoluted and intertwined, or secretly hidden in code
where they don’t belong. However, they differ from layer dependencies in the way
that they almost exclusively either require initialization that may be very hard to do
in a unit test (and it shouldn’t be done), or they introduce a side effect that causes the
test to crash. In the eyes of the inexperienced, such side effects tend be interpreted as
“untestable code.” Often they are easily fixed by refactoring and introducing proper
abstractions and separations, and they can be avoided in the long run by some archi-
tecture work.

Summary 133

Summary

Various kinds of dependencies may make systems seem untestable. The trick is to rec-
ognize them and handle them in the right manner. This chapter speaks of four kinds
of dependencies:

= Between collaborating objects—These are the fundamental relations
between objects in an object-oriented program. This is where indirect input
and output become a challenge. The key to handling these dependencies is to
make them explicit. This can be done by injecting the collaborators directly
(using constructors or setters), using factory methods, or passing in builders
or factories.

® On system resources—These are simple dependencies on program elements
that abstract a system resource that produces some kind of side effect or
uncontrollable behavior. The canonical examples are files and the system
clock. When testing on a unit level, files are best handled by separating code
that performs the file I/O from code that works with the resulting data.
Classes that represent the system clock can be wrapped in another abstraction
that can be controlled. Please note that this is a generic method for handling
dependencies.

= Between layers—Most applications are layered. Each layer has responsibility
for some specific functionality, like presentation or business logic. Depen-
dencies between layers are just dependencies between program elements
and can be handled in the same way. Layers become challenging when they
are violated and bypassed. A good way of wiring layers together that often
ensures testability is using dependency inversion and a dependency injection
framework.

® Across tiers—Applications that are physically split across tiers live on differ-
ent machines. Dependencies between tiers tend to be more indirect and come
in the form of various network-related protocols and technologies. From the
programming point of view, the drivers and proxies are just abstractions.
However, such abstractions may have quirky interfaces and produce side
effects that aren’t desirable from a unit testing point of view and that can be
difficult even for some integration tests.

Working with dependencies can be emotional. Sometimes code has to be changed
to facilitate testability at the cost of increased complexity or a slight accessibility vio-
lation. This is seldom required in code written with testability in mind, but may be
the fastest, or only, way when working with older code.

This page intentionally left blank

Chapter 10

DATA-DRIVEN AND
COMBINATORIAL TESTING

Occasionally we end up writing a lot of tests that look strikingly similar. It almost
feels like we've turned a table containing inputs and expected outputs into identi-
cal test cases. In Chapter 8, “Specification-based Testing Techniques,” in the “Bound-
ary Value Analysis” section, there was an example of logic for computing a factor
that would determine the cost of car insurance premiums. It was a discontinuous
function, which means that thorough testing of it would involve several equivalence
classes and strict boundary values. Here’s the function again:

Age interval Premium factor
18-23 1.75
24-59 1.0

60+ 1.35

Given the importance age has on the final premium factor and the fact that the
devil is in the details, it would seem rather prudent to focus some tests on the bound-
aries of the age intervals. However, doing it with normal unit tests would just produce
a bunch of similar-looking examples and would quickly become repetitive and prone
to error.

To illustrate how this would play out, let’s revisit a slightly less trivial version of
the car insurance premium calculation engine. This time, it’s been extended to take
gender into account, but it still remains very simple:

public double getPremiumFactor (int age, Gender gender) {
double genderMultiplier = gender == Gender.FEMALE ? 0.9 : 1;
if (age >= 18 && age < 24) {
return 1.75 * genderMultiplier;
} else if (age >= 24 && age < 60) {
return 1 * genderMultiplier;
} else if (age >= 60) {
return 1.35 * genderMultiplier;

135

136 Chapter 10 = Data-driven and Combinatorial Testing

throw new IllegalArgumentException ("Age out of range");

In this form, careful reading could provide enough confidence in the code. On
the other hand, most rule engines don’t come as 10-line methods, and their rules and
parameters tend to change. Assuming that the computed factor has a significant impact
on the final premium a customer would pay, off-by-one errors and simple arithmetic
miscalculations aren’t tolerated. Therefore, we would duly start by writing a test:

@Test
public void maleDriversAgedl8 () {
assertEquals(1.75, new PremiumRuleEngine ()
.getPremiumFactor (18, Gender.MALE), 0.0);

It wouldn’t be completely unreasonable to verify that male drivers aged 23 also
get the same premium factor. After all, 23 is a boundary value.

@Test
public void maleDriversAged23 () {
assertEquals(1.75, new PremiumRuleEngine ()
.getPremiumFactor (23, Gender.MALE), 0.0);

At this point, an observant reader may have noticed that the test names don’t
follow any of the naming conventions presented previously. Figuring that the tested
function only returns a floating point number with no special significance, I felt that
adding some expectation to the test name would feel contrived.

Actually, things got interesting already. When writing the second test, I stopped
for a second, thinking about whether it shouldn’t be something like this:

@Test
public void maleDriversAged23HaveTheSameFactorAsMaleDriversAgedl8 () {
PremiumRuleEngine prl = new PremiumRuleEngine () ;
assertEquals (prl.getPremiumFactor (18, Gender.MALE),
prl.getPremiumFactor (23, Gender.MALE), 0.0);

This approach would have the superficial advantage of explicitly tying the two
factors together. Conversely, it could also lead to a cascade of bugs if the boundaries
were to change. In addition, it would hide the fact that the essence of the function is
to provide a numerical value.

Data-driven and Combinatorial Testing 137

Now, what about female drivers? They have a lower premium factor, which could
be expressed as yet another test, but would start to feel awkward because of the dupli-
cation and similar structure of the tests. Here, it could be tempting to dodge the “one
assert per test guideline” by grouping similar assertions into one test:

@Test
public void driversAgedl8 () {
PremiumRuleEngine prl = new PremiumRuleEngine () ;

assertEquals (1.75, prl.getPremiumFactor (18, Gender.MALE), 0.0);
assertEquals (1.575, prl.getPremiumFactor (18, Gender.FEMALE), 0.0);

A better way of doing this—and this was done in times when unit testing frame-
works didn’t support parameterized tests—is to extract the code that’s common to
all test cases and let the tests contain only the different arguments and expectations:

@Test
public void maleDriversAgedl8 () {
verifyPremiumFactor (1.75, 18, Gender.MALE);

@Test

public void maleDriversAged23 () {
verifyPremiumFactor (1.75, 23, Gender.MALE) ;

}

@Test

public void femaleDriversAgedl8 () {
verifyPremiumFactor (1.575, 18, Gender.FEMALE) ;

private void verifyPremiumFactor (double expected, int age,
Gender gender) {
assertEquals (expected, new PremiumRuleEngine ()
.getPremiumFactor (age, gender), 0.0);

The invocation of the tested method is a one-liner, which makes this approach
overkill. However, the example illustrates the technique and applies equally to
cases where a bigger chunk of code is extracted into a parameterized method. This
technique can be used in practically any testing framework to achieve a degree of
parameterization.

138 Chapter 10 = Data-driven and Combinatorial Testing

Parameterized Tests

Nowadays many unit testing frameworks come with support for parameterized tests

out of the box. Using Spock, a test that would cover 10 different premium factors
would look like this:

@Unroll ("""A #gender driver of #age has a premium factor
of #expectedPremiumFactor""")

def "Verify premium factor" () {

expect:

new PremiumRuleEngine () .getPremiumFactor (age, gender) ==
expectedPremiumFactor

where

age | gender | | expectedPremiumFactor

18 | Gender.MALE 'l 1.75

23 | Gender .MALE 'l 1.75

24 | Gender.MALE '] 1.0

59 | Gender .MALE] 1.0

60 | Gender .MALE '] 1.35

18 | Gender.FEMALE || 1.575

23 | Gender.FEMALE || 1.575

24 | Gender.FEMALE || 0.9

59 | Gender.FEMALE || 0.9

60 | Gender.FEMALE || 1.215

This test works by expanding the table into 10 separate test instances (which is
made explicit through the @Unroll annotation). As illustrated, the values fed to
the test may be both primitive types and objects, and may be generated by arbitrary
Groovy constructs. The JUnit equivalent is much more verbose and clunky, which is
why I put it in the appendix.

NUnit’s implementation is also quite elegant. The unnamed parameters of the
TestCase attribute are fed directly to the method it annotates, and that method’s
return value is compared with the ExpectedResult parameter.

[TestCase (18, Gender.MALE, ExpectedResult = 1.75)]
[TestCase (23, Gender.MALE, ExpectedResult = 1.75)]
[TestCase (24, Gender.MALE, ExpectedResult = 1.0)]

//

public double VerifyPremiumFactor (int age, Gender gender)

{

Theories 139

return new PremiumRuleEngine () .GetPremiumFactor (age, gender);

Theories

Parameterized tests are ideal when a bunch of inputs can be compared to a bunch
of known expected results. For example: 1 + 1 =2,2 +3 =5,4 + 8 = 12, and so on.
The same was true for the premium factor computation, where it was quite easy to
determine the expected value. Thus, parameterized tests help in expressing tabular
examples in a compact way, but are constrained by the number of available examples
(rows in the parameter table).

Theories, on the other hand, offer a different approach. Instead of focusing on
parameters and expected results, they provide a way of verifying a statement about the
tested code (Saff & Boshernitsan 2006). This is extremely useful when the expected
result is unknown, hard to compute, or just irrelevant. In such cases, verifying a state-
ment, as opposed to an exact value, may be the most effective thing to do. Whereas
normal tests and parameterized tests rely on singular examples, theories express “for
all instances of . . .” type of reasoning.

So, how is the input determined? In reality, proving a theory on the entire input
domain can be time consuming and unnecessary. Doing exhaustive testing also
defeats the purpose of using equivalence classes. In practice, a theory test is executed
on a number of data points that represent interesting values for which proving the
theory is particularly important. It should be no surprise that boundary values make
good data points.

Running an unconstrained theory test on parameters from different input
domains is equivalent to verifying a statement on their Cartesian product.

Children from Europe, the United States, and Asia, blue-eyed, green-eyed, and
brown-eyed, both boys and girls, like candy.

This example talks about three inputs: countries (three of them), eye colors (three
as well) and genders (two). This theory would result in 3 x 3 x 2 = 18 verifications. It’s
unconstrained, because all combinations are tried. Conversely, expressing this seem-
ingly trivial test as a parameterized test would end up in a long and repetitive param-
eter table.

How would a theory test be applicable in the case of the premium factors? Let’s
assume that we want to verify that the premium factor always remains between 0.5
and 2.0 for a number of ages between 18 and 100 and for both genders. This would
be done by choosing some data points and running a theory test that matches all ages
with both genders and checks that the premium factor remains valid.

For example, if we sampled age at 18, 24, and 99 years, running a theory test
would result in the following combinations being checked:

140 Chapter 10 = Data-driven and Combinatorial Testing

Gender Age
FEMALE 18
FEMALE 24
FEMALE 99

MALE 18
MALE 24
MALE 99

Both JUnit and N'Unit support theory tests and both use the same nomenclature.
Theories rely on data points and use assumptions to establish conditions under which
the theory is relevant (i.e., to constrain input).

public class PremiumFactorsWithinRangeTest
{

[Datapoints]

public Gender[] genders

= new Gender|[] {Gender.FEMALE, Gender.MALE, Gender.UNKNOWN} ;

[Datapoints]
public int[] ages
= new int([]{17, 18, 19, 23, 24, 25,59, 60, o061, 100, 101};

[Theory]
public void PremiumFactorsAreBetweenO 5and2 O (Gender gender, int age)
{
Assume.That (age, Is.GreaterThanOrEqualTo (18));
Assume.That (age, Is.LessThanOrEqualTo (100));
Assume.That (gender == Gender.Female || gender == Gender.Male);
var premiumFactor = new PremiumRuleEngine ()
.GetPremiumFactor (age, gender) ;

Assert.That (premiumFactor, Is.InRange (0.5, 2.0));

Generative Testing 141

This example illustrates a theory that will be applied 18 times; there are nine valid
values for age and two genders."' Sometimes not all combinations of data points make
sense, or we want to filter out input that’s irrelevant to the tested theory or handled in
a way that would break the test (i.e., the tested code throws an exception). This would
correspond to the case of the tested premium rule engine throwing exceptions if too
low or too high ages were supplied. By the same token, we don’t want to pass in null
or unknown genders to the tested algorithm.

Assumptions are used to achieve this kind of filtering. Syntactically they look
like assertions, but instead of failing a test, they just prevent it from running. Notice
that the data points in the example contain values that will immediately be filtered
out by the assumptions. This doesn’t make sense if there’s only one theory test that
runs against one set of data points, although it’s quite useful if different tests make
use of the same data. We could, for instance, write a negative theory test that would
“assume out” all valid ages and just run on the invalid ones and expect exceptions to
be thrown. Alternatively, assumptions also protect from combinations of parameters
that make no sense. Finally, one could also argue that stating the tested theory’s pre-
conditions as assumptions documents the test.

Assumptions are not unique to theory tests. They can be used whenever there’s
need to state a nonfailing precondition in a test.

Test Result Reporting

From a test execution perspective, parameterized tests and theory tests produce
multiple instances of a test. For the sake of reporting, each instance is treated as a single
test, so if a parameterized test with 10 different parameters fails once, most frameworks
and IDEs will report nine successful tests and one failure. For theory tests, this worked
slightly worse in Java than in C# at the time of writing, but it was still easy to find the
offending combination of data points for a failing test.

Generative Testing

Theory tests are quite powerful. Still, they’re limited by the number of data points
and the way they’re selected. If bad data points are chosen, a theory test will do little

1. Thecodewould translate directlyto Java/JUnitif [Datapoints] wereswappedfor @DataPoints,
[Theory] for @Theory, and the class was annotated with @RunWith(Theories.class).
Adjusting Assume and Assert should be easy for the keen reader. If were willing to
implement our own annotations, we can get rid of @DataPoints altogether. An example of
this can be found in the appendix.

142 Chapter 10 = Data-driven and Combinatorial Testing

good. Suppose that we want to verify that an encryption algorithm works correctly. Ifit’s a
symmetric algorithm,” it can be verified by checking that decrypting encrypted plaintext
produces the plaintext again. Testing an algorithm like this by using a parameterized test
would require putting together a table of examples of interesting inputs.

Plaintext decrypt(encrypt(plaintext))

an empty string an empty string

a very long string a very long string

A A

BB BB
ccccceeccece cccccecececece
Hello world! Hello world!
()=P.-@%< ()=P.-@%<

Using a theory test would look more compact and mathematical, but would still
suffer from the limitations imposed by selecting a few samples.

= Data points: empty string, a very long string, A, BB, CCC CCC CCC, Hello
World!, /()=A.-@%<

® Theory: Given the data points, plaintext = decrypt(encrypt(plaintext)

In any case, when would we feel that we’ve provided enough samples to achieve
confidence in the algorithm? What are the equivalence classes and boundary values?
Does the mathematical nature of the algorithm require testing some inputs extra
carefully?

Besides parameterized tests and theory tests, there’s a third option: keep the the-
ory, but let the computer generate the data points. Tell it how many, using what con-
straints, and whether they should be generated deterministically (so that the test can
be repeated) or randomly (to cover different inputs for each test run).

@Test
public void encryptionRoundTrip () {
Generator<String> plainTextGenerator
= strings (integers (1, 128), characters());

2. Symmetric encryption algorithms use the same key to turn plaintext into ciphertext and vice
versa.

Generative Testing 143

for (int 1 = 0; 1 < 100; i++) {
String plainText = plainTextGenerator.next();
assertEquals (plainText, MyFancyCipher
.decrypt (MyFancyCipher.encrypt (plainText))) ;

In this example, a Java version® of QuickCheck (Claessen & Hughes 2016) has
been used. In essence, this implementation of QuickCheck provides a simple way to
generate values, often randomized, in a convenient and controlled way. The test uses
a generator in conjunction with a loop to generate 100 random strings that will be
encrypted and decrypted.

A generator provides values in accordance with some rules, like minimum/
maximum length or size, range, or statistical distribution. The preceding test com-
bines three generators to produce randomized strings. The strings generator will
generate strings of the specified length using the supplied character generator. An
integers generator is used to produce a random value between 1 and 128, which
will determine each string’s length. The character generator will produce ran-
dom characters from the latinl character set, unless configured differently. There are
many other generators in the library. There’s also another library called junit-quick-
check that extends JUnit theory tests with generator annotations.

Trying a similar approach on the premium rule engine example would make lit-
tle sense. After all, there are only roughly 80 interesting ages and two genders. Still,
this is what it would look like in N'Unit, which has rudimentary support for data gen-
eration out of the box and can manage without extra libraries.

[Test]

public void PremiumFactorsAreBetween(0 5and2 0(
[Values (Gender.Female, Gender.Male)] Gender gender,
[Random (18, 100, 100)] int age)

double premiumFactor = new PremiumRuleEngine ()
.GetPremiumFactor (age, gender) ;
Assert.That (premiumFactor, Is.InRange (0.5, 2.0));

Verifying the Results

Alluring as this kind of testing might seem, it should be used with caution. In many
cases, relying on examples will be more than enough—as long as they’re selected
with care. Adding randomness to tests makes them nondeterministic. This is usually

3. https://bitbucket.org/blob79/quickcheck

https://bitbucket.org/blob79/quickcheck

144 Chapter 10 = Data-driven and Combinatorial Testing

something we don’t want, because we want to be able to rerun a test if it fails. On the
other hand, generative testing is a powerful technique, provided that we know how to
verify the results of tests that are based on generated values. Here are some strategies:

= Using inverse functions—An inverse function is a function that produces the
“reverse” of another function.* Symmetric key encryption, mentioned previ-
ously, is an archetypal example. If you know the inverse function of the func-
tion you want to test, verifying the results is usually very easy: just apply the
inverse function on the value produced by the tested function and compare
the result to the input (the generated value).

® Verifying general properties—Sometimes we can get away with less accu-
racy by just verifying a general property of the result of the computation.
The test in the section on theories is an example of this. In that test, the exact
result wasn’t as important as the fact that it was within a certain range, that is,
the premium factor remained between 0.5 and 2.0, regardless of the input age.
Checks like this may be good enough in many cases. Here are some examples:

= [s the result always positive?

Is the result within a certain range?

Is all input handled gracefully without errors and exceptions?

Is the result always non-null?

® Using oracles—This is the most demanding way of verifying results produced
by generative testing. Without being too formal about the actual definition,
we can say that an oracle is a black box that knows the answer to a problem.
In this particular case, the oracle knows the correct result of the computation
verified by the generative test. How does it know? You program it to!

Yes, an oracle is an alternative implementation of the tested algorithm.

For it to be useful, it has to be separated from the tested code somehow so that
bugs and biases aren’t repeated in both versions. One way is to have a different
person or team implement the oracle. Another way could be to implement
it in a different programming language—one that’s fundamentally different
from the language used to implement the tested algorithm. Naturally, these
approaches can be mixed to achieve a higher degree of independence.

4. In mathematical jargon this is written as f’l (f(x))=x, for all x.

Combinatorial Testing 145

Combinatorial Testing

Until now, the assumption has been that executing tests in large numbers—in the
form of parameterized tests, theory tests, or with generated values—would be useful
and feasible. This would certainly be true for unit tests and a reasonable number of
test runs. Not all tests are unit tests, though! Some tests will remain manual, whereas
some tests written by developers may involve a slow resource, like a database, a file
system, or a network connection. In such cases the kind of close-to-exhaustive test-
ing presented so far in this chapter won’t work, which is why choosing which and how
many tests to run becomes the real issue.

To illustrate the point, let’s continue building on the premium rule engine exam-
ple and make it more realistic by having it take yearly mileage, car model, safety fea-
tures, and driving record into account. At this point the actual implementation isn’t
relevant. What’s relevant is the fact that bringing in more parameters increases the
complexity of the rule engine. To deal with this increased complexity, the new vari-
ables are divided into equivalence classes, just as the age was.

® Yearly mileage

= Only owner: 0 km
Sunday driver: 1-1000 km
Casual driver: 1001-3000 km
Car enthusiast: 3001-6000 km

Professional driver: 6001+ km

m Safety features
For the sake of the example, they’re constrained to five classes:

No safety features

Airbag

Antilock Brake System (ABS)
= Head Injury Protection (HIP)

= Two or more safety features from the previous list
= Car models
In a real application there would be hundreds; in this example only six:
= Nissan
= Volvo
= Ferrari

= Toyota

146 Chapter 10 = Data-driven and Combinatorial Testing

= Ford
= Volkswagen
= Driving record

Analyzing a driving record can be arbitrarily complex. Here, just a few simple
equivalence partitions are considered:

= Model Driver (MD): no parking fines, no accidents, no other violations

= Average Joe (A]): 1-5 parking fines, no other violations, no accidents

= Unlucky Ursula (UU): 1-2 parking fines, 1-2 accidents, no other violations
= Bad Judgment Jed (BJJ): 1-2 parking fines, no accidents, drunk driving

= Dangerous Dan (DD): >5 parking fines or >2 accidents or several cases of

drunk driving or any other car-related violation.

This slightly more realistic rule engine would produce quite a few test cases if we
went for total coverage:

Variable # values

Gender 2

Age interval

Yearly mileage

Safety features

Car model

o | o (o1 | 01| W

Driving record

In total, there are 2 X 3 x 5 x 5 x 6 x 5= 4,500 variations. At this point exhaustive
testing usually isn’t an option, so we need a way to reduce the number of tests, while
remaining confident in the results. Fortunately, some facts and techniques may help.

Single-mode Faults

A single-mode fault is a fancy name for a bug that occurs if a single variable’s state
isn’t handled correctly. In this context, it could mean that the rule engine froze when-
ever Volvos were fed to it, or it returned a negative value for drivers aged 75. To guard

Combinatorial Testing 147

against such faults, we need to ensure that every possible value is tried at least once.
This can be done by just listing all parameters and their values in a table. It’s usually
easier to put the ones with the largest number of possible values to the left.

Driving Safety
Car model record Mileage | features Age Gender
Nissan MD 0 No 18-23 Male

features
Volvo AJ 1-1000 Airbag 24-59 Female
Ferrari uu 1001-3000 ABS 60+ -
Toyota BJJ 3001-6000 HIP - -
Ford DD 6000+ Two or _ _
more

Volkswagen - - - - -

The table shows what combinations of parameters are needed to test for single-
mode faults (which is also called “achieving all singles”), and it says that six tests
are required to do it. Had there been no Volkswagens in the example, only five tests
would be required (because the last row only contains a value for the car model vari-
able—Volkswagen). This technique may seem painfully obvious, but tends to be for-
gotten in the heat of battle.

Double-mode Faults

Often enough a combination of two parameters triggers a bug. Not surprisingly, this
is called double-mode faults. Testing for double-mode faults is equivalent to testing
all pairs of values; hence the name of the technique is pairwise testing (Bolton 2007).

Finding all pairs is cumbersome in all but the simplest cases, and even a relatively
straightforward scenario, like the premium rule engine, would necessitate the help of
a computer. For instance, if we started out with Nissans as car models, we would need
to ensure that they were paired with all driving record types, mileage intervals, safety
features, and so on.

For a few variables with few values, finding all pairs can be done by hand. Let’s
look at this table made up of three binary variables, V1, V2, and V3:

148 Chapter 10 = Data-driven and Combinatorial Testing

row | V1 V2 V3
1 A X Q
2 A X R
3 A Y Q
4 A Y R
5 B X Q
6 B X R
7 B Y Q
8 B Y R

To find all pairs, let’s start from the top of the table and see how many rows can
be removed. The pairs in the first row, (A, X), (A, Q), and (X, Q), can be found in rows
2,3, and 5, so row 1 can be deleted. Row 2 must remain, because there’s no other row
that contains the pair (A, X) once row 1 has been deleted. The pair (A, Y) is in both
rows 3 and 4, and (Y, Q) can be found in rows 3 and 7. However, (A, Q) only remains
in row 3 after row 1 has been dropped, so row 3 has to stay. Row 4 can be dropped.
(A,Y) has been kept in row 3, (A, R) in row 2, and (Y, R) can be found in row 8. Row
5 has to stay; after removing row 1, there’s no other row with (X, Q). Following this
procedure, rows 6 and 7 can be dropped. The final table looks like this:

row Vi1 V2 V3

oo |w| M~
w| W |>|>
<|x|=<|x
T | Oo|O0|=

This isn’t the only solution. If the same algorithm were applied from the bot-
tom of the table going up, different rows would remain (1, 4, 6, 7). Doing this exer-
cise by hand for a small table, like this one, quickly convinces us that performing
this for bigger tables (like the one for the extended premium rule engine) is a task
for the computer.

Writing a program to compute all pairs for larger tables is a fun exercise, but
if that isn’t what you want to spend your time doing, there’s both commercial and

Summary 149

free software that will do it for you. Two freely available programs are James Bach’s
pairwise.pl and ACTS from the National Institute of Standards and Technology.
Running these two tools on the updated premium rule engine reveals that somewhere
between 30 and 40 tests are needed to capture all pairs of variables. Compared to the
initial 4,500 tests, it makes quite a difference! Armed with yet another tool, we see
how valuable it is to be able to give parameterized tests a reasonably sized parameter
table or a theory test a manageable number of data points. In this light, finding all
singles and all pairs isn’t only a technique for keeping down the number of manual
tests, but also a technique for data selection in developer tests.

Beyond Double-mode Faults and All Pairs

Double-mode faults and pairs of variables aren’t the end of the road. Obviously, tri-
ple-mode faults also occur, so finding all triplets and turning the solution into test
cases wouldn’t be wrong. This could go on and on. On the other hand, let’s be practi-
cal. What’s important in the context of this book is that pairwise testing is a well-doc-
umented technique, and it can be applied to both manual testing and when choosing
parameters for developer tests. Going beyond all pairs does provide additional confi-
dence, but is computationally more expensive and starts touching on an overly aca-
demic subject. In many applications, testing for single-mode and double-mode faults
gives high enough confidence at a reasonable price (Kuhn, Kacker, & Lei 2010).

Summary

This chapter is about scenarios that require executing many tests. The first, more tool-
oriented part, talks about some features of the more mature unit testing frameworks.

Parameterized tests help when the tests are mainly about matching input values
with predefined expected values.

A theory is a statement about a property of the program. Theories answer the
question: “Given a function f(x), is property p true for some different values of x?”
Data points are used to provide the different values. Specialized libraries exist to sup-
ply generators that produce values for either theory tests or just normal unit tests. The
values can be randomized or deterministic.

The second part of the chapter describes what to do when not everything can be
tested. Single-mode faults occur when the handling of a single variable’s state fails.
Double-mode faults occur when a combination of two variables is handled incorrectly.

Pairwise testing is a technique for dealing with combinatorial explosions in sce-
narios where all combinations of several unrelated variables must be tested. In such
cases, testing only the unique pairs of variables tends to give a rather high payoff.

This page intentionally left blank

Chapter 11
ALMOST UNIT TESTS

Developers must do more than just write unit tests to ensure that their code indeed
works. In the first chapter, I mentioned several other activities, two of which were
to write integration tests and to automate tests in general. Such tests, which I'll refer
to as “higher-level tests,” are discussed later in the book. In the meantime, it’s time to
visit a family of tests that shares some characteristics with unit tests and some with
higher-level tests, which tends to cause confusion and discussions among developers.
A common trait of such tests is that they’re not unit tests—at least not according to
the definition advocated by this book, but they execute just fast enough—in the range
of 1 to 2 seconds—to make it into the unit test suite. If it were up to me, I'd call them
“bastard tests,” the reason being that they look deceivingly simple and are fast, but
they’re often integration tests, or even system tests. In Google’s nomenclature,' they’d
be typical “Medium” tests, although they’d execute far below the upper time bound-
ary, which is recommended to be 300 seconds for such tests. Therefore, I believe that
it’s only fair to call them fast medium tests. How do they make it into the unit test
suite? Here are some plausible reasons:

m Tests are not classified—Unfortunately, not every developer cares about
whether a test is a unit test, an integration test, or an end-to-end test (or sim-
ply doesn’t know). If no attention is paid to how and when different tests are
executed, some will end up in unexpected places.

m The test suite is small—If the test suite consists of a 100 unit tests in total,
does it matter if 30 of them take a few extra seconds to run?

® Laziness—When this book was being written, it still took a certain amount
of effort to make a build tool distinguish between different types of tests.
This effort translated into reading up a little on the build tool and tweaking
the build script accordingly. On the other hand, running all tests as unit tests
requires practically no effort.

® Hurry—Sometimes you want to go really fast, especially at the beginning of
a project. Maybe you just want to create a spike” or prove that the product has

1. Google’s nomenclature has been covered in Chapter 3, “The Testing Vocabulary.”
2. http://www.extremeprogramming.org/rules/spike.html

151

http://www.extremeprogramming.org/rules/spike.html

152 Chapter 11 = Almost Unit Tests

the potential to be commercially viable. In such cases, growing into a more
advanced build as you go along isn’t a bad idea. In this stage, fast medium
tests may live in the unit test suite.

Examples

The easiest way to get a feeling for what the tests I speak of look and feel like is to look
at some concrete examples. There are plenty to be found out there, and these are the
ones that have been popping up rather consistently in my projects over the years.

Tests Using In-memory Databases

Several SQL-compliant in-memory database implementations exist that are very fast.
Not only do they perform reads/writes much faster than databases that make use of
disk storage, they’re also easier to set up, because they require virtually no instal-
lation and provide programmatic APIs for configuration (including executing DML
and DDL). Such databases are quite usable for tests that require a data source that
doesn’t make use of vendor-specific functionality, which is why you may encounter
something like this in your test suite:

@Shared
private Connection conn

def setupSpec () {
Class.forName ("org.hsqgldb. jdbc.JDBCDriver")
conn = DriverManager.getConnection ("jdbc:hsgldb:mem:db", "SA", "")
Sgl.newInstance (conn) .execute (
"CREATE TABLE users (id BIGINT IDENTITY, " +
"name VARCHAR (255), "+
"password hash VARCHAR (255))")

def "Authenticate user" () {
given:
Sgl.newInstance (conn) .execute ("INSERT INTO users " +

" (id, name, password hash) VALUES (NULL, 'joe', '$Gjk!4/P") ")

expect:
new AuthenticationManager (conn) .authenticate ("joe", "secret")

Examples 153

This test assumes that whatever database is being used can be swapped out for
HSQLDB, a database that can run in memory only and is implemented in Java. This
is quite convenient if your code just relies on standard SQL statements without mak-
ing use of vendor-specific features and extensions.

Given that the authentication is complicated, this is quite a good test. It shows
that the AuthenticationManager class uses the database correctly and that
password hashing seems to work as expected. However, it’s not a unit test. It loads
classes, starts a database, and establishes a connection to it. At the time of writing, it
ran in less than a second.

Test-specific Mail Servers

The next test starts a simple mail server, which actually binds to the SMTP port.
What's really convenient about setting up an entire server is that it doesn’t require
any seams in the code; only the server address needs to be specified. A test like this
takes a mere second. Although definitely not the only way to test delivery of e-mails,
a test like the following would be common enough (and look quite similar in both C#
and Java®).

private SimpleSmtpServer smtpServer;

[TestInitialize]
public void Setup ()
{
smtpServer = SimpleSmtpServer.Start (25);

[TestCleanup]
public void TearDown ()
{

smtpServer.Stop () ;

[TestMethod]
public void CompanyInformationIsPresentInEmail ()
{
MailService testedService = new MailService ("localhost");
testedService.SendMail (new MailAddress ("user@test.local"),
"Dear customer", "We care!");

3. This example uses the Dumbster library, which is available in both Java and C# See Appendix A,
“Tools and Libraries.”

154 Chapter 11 = Almost Unit Tests

Assert.AreEqual (1, smtpServer.ReceivedEmailCount) ;

SmtpMessage sentMail = (SmtpMessage)smtpServer.ReceivedEmail([0];

Assert.AreEqual ("support@company.local",
sentMail.FromAddress.ToString());

StringAssert.Contains (sentMail.Data, "Company Support");

Tests Using Lightweight Containers

Why settle for stripped-down test servers when you can run a full-blown implemen-
tation? Jetty is a very popular web server and servlet container. One of its features is
that it can run embedded. This means that an entire web application can be launched
using just a few lines of code. Powerful and relatively fast, the next test should defi-
nitely not live among unit tests.

private static Server server;

@BeforeClass

public static void setUpOnce () throws Exception {
server = new Server (8080) ;
final String pathToWarFile = "/tmp/myapp.war";

server.setHandler (new WebAppContext (pathToWarFile, "/webapp")):
server.start () ;

@Test
public void applicationIsUp () throws Exception {
HtmlPage mainPage = new WebClient ()
.getPage ("http://localhost:8080/webapp") ;

assertEquals ("Fancy application", mainPage.getTitleText ());
}
@AfterClass
public static void tearDownOnce () throws Exception {

server.stop (),

This test is even “worse” than the previous two. Here an entire server is started,
a web application of arbitrary complexity contained in myapp.war is deployed, and
an HTTP request is made using HtmlUnit. On the other hand, these few lines of code
are sufficient to verify the deployment of an entire web application. In fact, it’s a great

http://localhost:8080/webapp"

Examples 155

test, but it’s just not a unit test. At the time of writing, this test took no more than two
seconds to execute.

The New-School Approach to Embedded Containers
The preceding implementation is an old-school approach that you may encounter in

older test suites. A more recent way of starting embedded containers in Java is to use
Spring Boot (http://projects.spring.io/spring-boot/).

Tests of Web Services

Arguably, the previous examples may feel kind of specific, so I'm ending with a sce-
nario that few developers who write business applications these days have been able
to dodge—invoking a RESTful web service, and an interaction test thereof. In this
example, we want to test a class that monitors the stock market and sends a notifica-
tion if a fictitious stock’s price drops below a certain threshold. This would be useful
in cases where you don’t want your untested code to make actual financial transac-
tions for you using some broker’s API.

This particular test focuses on how the tested class interacts with two web ser-
vices to ensure that the APIs are used correctly.

@QRule
public WireMockRule wireMockRule = new WireMockRule ()

def "Notify by email when a monitored stock reaches threshold" () {

final double askPriceThreshold = 20.6
final String monitoredStock = "XYz"

given:
def notificationReceiver = new ContactInformation (
phoneNumber: '+1 202-555-0165"', email: 'stockfan@test.local')

stubFor (post (urlMatching ("/.*"))
.willReturn (aResponse () .withStatus (200)));

stubFor (get (urlPathEqualTo ("/quotes"))
.withHeader ("Accept", equalTo ("application/json"))
.withQueryParam("s", equalTo (monitoredStock))
.willReturn (aResponse ()
.withStatus (200)
.withHeader ("Content-Type", "application/json")

http://projects.spring.io/spring-boot/

156 Chapter 11 = Almost Unit Tests

.withBody ("{\"symbol\": \"XYZ\", \"bid\": 20.2, "
+ "\"ask\": 20.6}")))
and:
def testedStockMonitor = new StockMonitor ("localhost:8080")
testedStockMonitor.add (notificationReceiver, monitoredStock,
askPriceThreshold)

when:
testedStockMonitor.pollMarket ()

then:

verify (postRequestedFor (urlEqualTo ("/alert"))
.withRequestBody (containing ("stockfan@test.local"))
.withRequestBody (containing (monitoredStock
+ " is cheap enough")))

This creation packs quite some power into relatively few lines of code by testing
the following: On behalf of a user identified by an e-mail address and a phone num-
ber, the stock monitor queries a service that provides a price quote that’s attractive
enough to trigger a notification. The service exposed as /alert is then invoked to
notify the user somehow. The WireMock library allows invoking two fake REST end-
points in less than one and a half seconds and provides constructs for both stubbing
and mocking. This test will work beautifully until the local firewall is reconfigured or
it’s executed in an environment that already runs another server on port 8080 (which
is the current default).

Impact

Any nontrivial application hosts a multitude of opportunities to create tests that run
almost as fast as unit tests but require a degree of environmental coupling. I hope that
the aforementioned examples have been inspiring and given you a sense of what such
a test may look like. The least common denominator of this chapter’s tests is that they
all start a server somehow. However, that server took relatively little time to start, so
waiting has been acceptable. Still, I'd argue that running such tests as unit tests is a
bad idea. Here are some reasons:

= Slower developer feedback—These tests run fast, but they’re slower than unit
tests. Impatient developers, used to quick feedback, may stop running them
while writing code. This is not a good thing, especially if they abandon the
habit of using tests to get feedback about their code.

Summary 157

= Slower in a continuous integration (CI) environment—CI servers are often
slower than developer workstations, simply because there are more of them.
What they lack in raw computing power, they tend to compensate for through
availability. The difference in performance will be apparent when running
the tests, which will become not-so-fast tests on weaker machines.

= Shaky portability—All the preceding examples could easily be affected by
local permissions, disk space, firewall settings, or occupied sockets, which is
why unit tests avoid certain constructs.

= Confusing—Fast medium tests tend to blur the line between different types
of tests. Developers who are new on the team will wonder what goes where,
and there will be endless discussions.

= Sluggish unit test suite—One in-memory database test takes one second.
Ten such tests take two seconds.* Combine that with some other almost unit
tests, and the unit test suite will start getting sluggish. Not sluggish enough to
trigger any rework, but slow enough to annoy somebody on a bad day. If the
sluggishness passes a certain threshold, the tests will no longer be executed.
Alternatively, the developers will actually run the sluggish tests and task
switch to Dilbert strips or Reddit while waiting for them to finish before
checking in their code. Goodbye, flow.

Running tests that are almost unit tests along with actual unit tests isn’t the end
of the world, but they do make the test suite slower, more brittle, and more sensitive to
environment settings. In time, such suites risk crumbling under their own weight as
they grow, and they’ll be abandoned eventually. That said, such tests are usually rela-
tively simple to write and they may give great bang for the buck, although I strongly
suggest that they be kept separate from tests that can never fail because of environ-
mental issues.

Summary

Some tests run almost as fast as unit tests but do things unit tests shouldn’t do and
pay the price by environmental dependence. Unless monitored and eventually moved
to another suite, they’ll devour the unit test suite and make it slow, sensitive to the
executing environment, and possibly brittle.

4. The first test takes one second because of initialization. The following nine tests don’t suffer
from this delay.

This page intentionally left blank

Chapter 12
TEST DOUBLES

In Chapter 9, “Dependencies,” we learned how to expose and pass around collabora-
tors to make dependencies explicit and break them. It’s perfectly natural that program
elements, most notably objects, somehow depend on each other, but such relations
have to be controllable. In this chapter, the subject will be revisited and explored in
greater detail. Dependencies can be controlled in several ways, depending on what
part they play in a test. Sometimes collaborating objects should be ignored, which
may not be as easy as it sounds. Sometimes they’re of paramount importance and
must be surveilled with utmost scrutiny.

Test double' is a general term for an object that replaces a collaborator. Different
kinds of test doubles have different tasks, spanning from replacing the collaborator
and making it return predefined values, to monitoring every single call to it. Five
kinds of test doubles, with varying areas of use, will be described in this chapter:
stubs, fakes, mock objects, spies, and dummies. The next chapter follows up by illus-
trating how frameworks are used to implement some of them.

Stubs

The simplest and most generic test of an object that depends on another object looks
like what is shown in Figure 12.1.
This gives rise to an almost canonical test method:

[TestMethod]

public void CanonicalTest ()

{
var tested = new TestedObject (new Collaborator());
Assert.AreEqual (?, tested.ComputeSomething());

1. For more in-depth descriptions and more rigorous definitions of the various types of test doubles,
see XUnit Test Patterns: Refactoring Test Code by Gerard Meszaros (2007). In this chapter, I try to
follow his nomenclature, but I do make some slight deviations and sometimes emphasize differ-
ent things.

159

160 Chapter 12 = Test Doubles

1: Invocation

2: Invocation

Tested
object 3- Value Collaborator

4: Value

FIGURE12.1 1: The test code calls the tested object. 2: The tested object invokes its
collaborating object. 3: The collaborator performs a computation and returns a value.
4: The tested object uses that value and returns a result that can be derived from it.

The collaborator, conveniently implementing the ICollaborator interface, is
passed in to the constructor of the tested object, as has been described in Chapter 9.
However, we still can’t tell what the value of the first argument of AreEqual should
be (notice the question mark in place of a proper argument). The reason is that the
implementation of ComputeSomething looks like this:

public int ComputeSomething ()
{

return 42 * collaborator.ComputeAndReturnValue () ;

This is the simplest case, where the tested object just calls its collaborator,
which returns some value. That value is in turn refined somehow and returned to
the calling test. From previous chapters we know that the value supplied by the
collaborator is called indirect input. To keep the example simple, this value is just
multiplied by a number.

To take control of a dependency like this, a stub is needed. The primary moti-
vation behind stubbing is to control the tested object’s indirect input. Because the
collaborator is injected in the constructor of the tested object, creating a stub is very
straightforward. All that’s needed is an implementation that returns a hard-coded
value.

class CollaboratorStub : ICollaborator
{
public int ComputeAndReturnValue ()
{

return 10;

Stubs 161

This stub can now be used instead of the real object and the test can be rewritten
as follows:

[TestMethod]

public void CanonicalTestWithStub ()

{
var tested = new TestedObject (new CollaboratorStub());
Assert.AreEqual (420, tested.ComputeSomething());

Stub Flexibility

A stub that returns a single value is the least complicated, but also the least intelligent
kind. Sooner or later, another test will require a different value to be returned. This is
a crossroads. From here one can either decide to implement a new stub that returns
another hard-coded value or to extend the existing one:

class ParameterizedStub : ICollaborator
{
private int value;
public ParameterizedStub (int wvalue)
{

this.value = value;

public int ComputeAndReturnValue ()
{

return value;

Once embarking on this journey, the possibilities are endless. For example, if a
test requires an exception to be thrown, a tiny i f will save the day:

class ParameterizedStub : ICollaborator
{
private int value;
public ParameterizedStub (int wvalue)
{

this.value = value;

public int ComputeAndReturnValue ()
{

162 Chapter 12 = Test Doubles

if (value < 10)
{

throw new InvalidOperationException();

}

return value;

However, there is a danger to this. Although we feel very clever as we implement
increasingly complex stubs, we run the risk of mirroring business logic. Sooner or
later the intelligent stub will contain simplified versions of real business rules, and
when the original rules change, the stub will do more harm than good. It will con-
fuse those who aren’t familiar with the changes to the business rules and it will make
maintaining and keeping the rules up to date harder. Conversely, spawning hordes of
similar stubs just because a series of tests requires different values won’t make the test
suite particularly beautiful, or maintainable, for that matter. Using parameterized
stubs is fine, but conditional or otherwise complex logic in them should be avoided.
This guideline applies to stubs used in unit tests. When stubbing larger components
or systems, it’s often quite hard to avoid some kind of logic in the stub.

Stubbing to Get Rid of Side Effects

Apart from controlling indirect input, stubs may serve another purpose. Imagine a
variation of the simple test scenario outlined previously, with the twist that this time
the collaborator doesn’t return anything. Instead, it starts doing things that turn the
test into something other than a unit test, like writing or reading a file, establishing
a network connection, or updating a database. Figure 12.2 summarizes this scenario.

Assuming that side effects aren’t the focus of the test, we just need a way to get rid
of them. To do that, all we need to do is to implement an “empty” stub that replaces
the side effect-ridden code.

Fakes

In some cases, stubbing isn’t enough. The behavior that would be stubbed away is
required by the tested object. On the other hand, it comes with side effects and she-
nanigans that would break a unit test. In such cases, a fake object may be a reasonable
trade-off. Fake objects are lightweight implementations of collaborators, and their
primary purpose is to provide something that’s self-consistent from the perspective
of the caller.

In Figure 12.3, the tested object makes several calls to another object. These calls
not only affect its state, but also result in side effects. Afterward, the object expects a

Fakes 163

1: Invocation

Y

2: Invocation

Tested .
object Collaborator | 3: Side effect
4: Value

FIGURE12.2 1: The test code calls the tested object. 2: The tested object invokes its
collaborator. 3: The collaborator performs an operation that results in one or more
unobservable side effects. 4: The tested object returns a value that's relevant to the test,
butisn’t based on the interaction with the collaborating object.

1: Invocation 2: Invocation
: 3: Side effect
4: Invocation
Tested - >
e 6: Invocation Collaborator 5. oy cerect
8: Value 4%

FIGURE12.3 1: The test code calls the tested object. 2, 4: The tested object invokes its
collaborator. 3, 5: The collaborator performs an operation that results in one or more
unobservable side effects. 6: The tested object queries the collaborator. 7, 8: The result of
that query is based on the internal state of the collaborator and is passed on to the caller of
the tested object.

nontrivial result that is somehow based on those calls. A typical example fitting this
structure would be a sequence of operations that first persist and manipulate data some-
how and then query it. In an average business application, it could be this type of code:

public Invoice MakePurchase (Customer customer,
Product product, Discount discount)

var purchase = purchaseFacade.CreatePurchase (customer);
purchaseFacade.AddProduct (purchase, product);
var invoice = purchaseFacade.CreatelInvoice (purchase);

if (discount != null)
{

invoice.ApplyDiscount (discount) ;
}

return invoice;

CreatePurchase, AddProduct, and CreateInvoice all result in data
being created and persisted somehow. My intention behind putting them in a “facade”
was to simulate some nasty legacy persistence mechanism. Once all data related to

164 Chapter 12 = Test Doubles

making a purchase are persisted, a discount may optionally be applied. The Apply-
Discount method refreshes the invoice object based on the data in the database
and the supplied discount, and is thus equivalent to a query. Code like this usually
contains a lot of magic in a legacy system and makes a great candidate for faking. In
this example, purchaseFacade would be a fake implementation that would pro-
duce correct enough invoices, while avoiding persistence and all complicated busi-
ness rules that usually govern the creation of such entities.

Mock Objects

Stubs provide indirect input in a controlled manner. Fakes replace collaborators with
simpler self-consistent implementations. Given these, the missing piece of the puzzle
is the ability to verify indirect output. This is the purpose of a mock object, or more
commonly just “mock.”

Mock objects are game changers in a way, as they shift a test’s focus from state
to behavior. Tests that focus on state end with assertions that check return values or
somehow query the tested object’s state. They typically look like this:

assertEquals (expectedValue, tested.computeSomething())
or
Assert.AreEqual (expectedValue, tested.Value).

Behavior-based tests are fundamentally different. Their goal is to verify that
certain interactions have occurred between the mock object and the tested code or
another collaborator. Whereas the two preceding assertions care about what a method
returns and what value a property has, a behavior-based test making use of mock
objects would care about whether tested.computeSomething has been called,
and possibly how many times, and whether the Value property has been queried.

Verifying Indirect Output

Suppose that the tested object invokes a method on another object and gets nothing
back; that is, it calls a void method. Furthermore, that method may produce one or
more side effects that simply won’t work with unit tests. Such a dependency could just
be stubbed away, but in this case the goal of the test is to make sure that the col-
laborating object is actually called properly. To perform this kind of verification,
mock objects are preprogrammed with expectations on the interactions to come
(see Figure 12.4).

Mock Objects 165

1: Invocation
2: Invocation

\J

Tested

object Collaborator

FIGURE 12.4 1: The test code calls the tested object. 2: The tested object invokes its
collaborator, which may not return anything or possibly just produce a side effect.

This scenario illustrates the primary use of mock objects: verification of interac-
tions. The simplest case is determining whether an interaction actually has occurred.
A typical interaction test verifies the arguments to the mock objects to some degree,
whereas less typical tests may focus on counting the number of times the interaction
has happened.

Let’s assume that were modeling a shopping workflow, the kind that you go
through when buying things online: You pick the items you want to buy, identify
yourself, and finally you apply a discount code (if you have one) before checking out.
In code, this sequence could be implemented like so:

new PurchaseWorkflow (new BookslOPercentOffCampaign())
.addItem(Inventory.getBookByTitle ("Developer Testing"))
.usingExistingCustomer (12345678)
.enterDiscountCode ("DEAL") ;

Now, suppose that we want to test how this purchase flow interacts with the
object that represents a campaign.” We want to make sure that the campaign’s
applyDiscount method is indeed invoked and that its arguments are correct.
Thus, a test using a mock object instead of a real campaign object verifies the indi-
rect output of the PurchaseWorkflow class when applying a campaign discount.

The indirect output can be verified with a different amount of rigor, which will
be illustrated by three mock objects that become more and more elaborate. In this
chapter, these mock objects are implemented “by hand” to illustrate that there’s noth-
ing magic about interaction testing and that mocking frameworks aren’t mandatory.

2. The campaign object implements a simple interface, Campaign, which contains one
method—applyDiscount. When implemented, it’s responsible for modifying the price of
purchased items and updating the customer’s bonus points. In the preceding code snippet, the
name BookslOPercentOffCampaign suggests that the campaign applies a discount to
any purchased books.

166 Chapter 12 = Test Doubles

On Upcoming Test Names

The test names in the upcoming examples are meant to emphasize the type of mock
object used, rather than explaining what the test does. They clearly violate all guidelines
on test naming, and you may only use this naming style if you're writing a book chapter
on differences between different implementations of mock objects.

Scenario 1—Here we just want to verify that the PurchaseWorkflow class
indeed calls a campaign’s applyDiscount method.

@Test
public void uselenientMock () {
LenientMock campaignMock = new LenientMock() ;
new PurchaseWorkflow (campaignMock)
.addItem (getBookByTitle ("Developer Testing"))
.usingExistingCustomer (1234567)
.enterDiscountCode ("DEAL") ;
campaignMock.verify () ;

The corresponding mock object confirms the interaction without caring about
the parameters passed to applyDiscount. Note that the veri fy method contains
an assertion! This is the mock object’s way of telling that it knows what to verify.

private class LenientMock implements Campaign {
private boolean wasInvoked = false;

@Override

public void applyDiscount (Long customerNumber,
String discountCode,
Purchase purchase) {

wasInvoked = true;

public void verify() {
assertTrue (wasInvoked) ;

Scenario 2—Here we want to verify that the interaction takes place and that the
indirect output of PurchaseWorkflow is within reasonable bounds.

@Test
public void useAverageMock () {
Purchase expectedPurchase

Mock Objects 167

= new Purchase (getBookByTitle ("Refactoring"));
AverageMock campaignMock = new AverageMock (expectedPurchase);
new PurchaseWorkflow (campaignMock)

.addItem (getBookByTitle ("Refactoring"))

.usingExistingCustomer (1234567)

.enterDiscountCode ("WEEKEND DEAL") ;
campaignMock.verify () ;

The mock object verifies that the customer number is positive at least, that
the campaign code is propagated, and that the workflow actually adds items to the
purchase.

private class AverageMock implements Campaign {

private Purchase expectedPurchase;
private boolean wasInvoked;

private AverageMock (Purchase expectedPurchase) {
this.expectedPurchase = expectedPurchase;

@Override
public void applyDiscount (long customerNumber, String discountCode,
Purchase purchase) {
assertThat (customerNumber, greaterThan(0L));
assertEquals ("WEEKEND DEAL", discountCode) ;
assertEquals (expectedPurchase, purchase);
wasInvoked = true;

public void verify () {
assertTrue (wasInvoked) ;

Scenario 3—The final test performs rather rigorous checks on the parameters
passed to applyDiscount and it counts the number of invocations.

@Test
public void useDemandingMock () {
DemandingMock campaignMock = new DemandingMock () ;
new PurchaseWorkflow (campaignMock)
.usingExistingCustomer (12345678)
.addItem(getTraining ("TDD 101"))

168

Chapter 12 = Test Doubles

.addItem(getBookByTitle ("TDD from scratch"))

.enterDiscountCode ("DISCOUNT 123X")

.enterDiscountCode ("DISCOUNT 234Y")

.enterDiscountCode ("DISCOUNT 9992");
campaignMock.verify () ;

This last mock has very precise expectations: applyDiscount should have

been called exactly three times with customer numbers in the range [1000000,
9999999], the discount code matching a regular expression, and the purchase being

approved by a custom argument matcher.

3

private class DemandingMock implements Campaign {

private int timesInvoked;

@Override
public void applyDiscount (long customerNumber, String discountCode,
Purchase purchase) {
assertThat (customerNumber,
allof (greaterThanOrEqualTo (1000000L),
lessThanOrEqualTo (9999999L))) ;
assertTrue (discountCode.matches ("DISCOUNT \\d{3,10}[X-2]?"));

assertThat (purchase, new PremiumPurchaseMatcher());
timesInvoked++;

}

public void verify () {

assertEquals (3, timesInvoked);

Do these mock objects make sense? How useful are they? It depends. The mock

from the first scenario just verifies whether applyDiscount has been invoked.
This is a pure interaction test. If you trust everything else, this might suffice. The
second mock adds some basic sanity checks. This makes sense if many things happen
in the tested object before it produces its indirect output or if the quality of the code
is low and you want to be extra defensive in your test. However, a test using this mock
no longer only fails if the interaction doesn’t happen, but may also fail for many other
reasons. Finally, the third mock starts applying business rules to its verification, like
the format of the customer number and discount code, and the composition of the

3. The source code of this matcher is in Appendix B.

Mock Objects 169

purchase. Verification like this leads to brittle tests and usually indicates problems
with the tested code or other tests. In this particular example, if the format of the
customer number and discount code really were that important, then they probably
would deserve their own classes. The last matcher would probably only be useful if
the goal of the test was to verify indirect input supplied by another collaborator.

When using mock objects, it’s very tempting to verify as much as possible and
as strictly as possible. The general rule of thumb for maintainable tests is: Don’t. Or
rather, understand the trade-off between strict and thorough verification and the
test’s sensitivity to changes to the code. This topic will be covered in greater detail in
the next chapter.

Verifying Indirect Input Transformations

A special case of verifying the tested object’s indirect output is verifying how the
indirect input from its collaborators is transformed. Although slightly pedantic, this
distinction has been helpful to me many times, and I'd like to share it. Consider the
case depicted in Figure 12.5.

The actual form may vary, but the important part is that the collaborator is called
with a parameter that’s important enough to be verified by the test but that cannot
be set up directly by it. A possible case would be testing the update method of a
thermometer.

public void update () {

double temperature = sensor.getTemperature();
if (displayMode == DisplayMode.CELSIUS) {
) : Another
1: Invocation 2: nvocation collaborator
3: Value
Tested
object) 4: Computation
5: Value }

Collaborator

FIGURE12.5 1: The test code calls the tested object. 2-3: The tested object invokes a
collaborator (a test double or the actual implementation), which returns a value. 4: The
value is processed somehow by the tested object. 5: The value returned by the other
collaborator and processed by the tested object is used as a parameter when calling the
collaborator that’s of interest to the test.

170 Chapter 12 = Test Doubles

display.output (formatForDisplay (temperature)) ;
} else {
display.output (formatForDisplay (
celsiusToFahrenheit (temperature)));

private double celsiusToFahrenheit (double celsius) {
return celsius * 1.8 + 32;

private String formatForDisplay(double number) ({
return df.format (number) + " °" + displayMode.getSymbol () ;

The thermometer can be configured to display temperature in Fahrenheit or Cel-
sius, but it has a sensor that reads the temperature in Celsius only. If the update
method is to be tested, it’ll need to take both temperature conversion and formatting
into account, as the thermometer only displays one digit after the decimal point. The
temperature returned by the sensor is the indirect input provided by another collabo-
rator, whereas the formatting and temperature conversion are the computation.

Tests of update would most likely stub the sensor and verify the interaction
with a mock display. Depending on how the tests were set up, this single inspection
point would be able to tell both whether the temperature conversion is correct and
whether the output is correctly formatted.

Spies
The distinction between spies and mock objects is quite academic, in my opinion.
Whereas mock objects are implemented so that they fail a test if their expectations
aren’t met (I put various asserts in the mock objects in the previous section to empha-
size this), spies capture their interactions and the associated parameters for later use.
Mock objects are, in fact, spies too, because they record the behavior of the program
element involved in the interaction (Martin 2014). However, the difference is that the
mock itself uses the captured values to determine whether the interaction happened
correctly, whereas the spy leaves this decision to the test. As we’ll see in the next chap-
ter, this doesn’t necessarily apply to mocks created by a mocking framework. Spies
constructed dynamically by frameworks get less coupled to the tested code than do
mock objects, which reduces the likelihood of making tests brittle.

Time for an example. If the test making use of the “average” mock object were
rewritten to use a spy instead, it would look like this:

Dummies

171

@Test
public void demonstrateSpy () {
Purchase expectedPurchase
= new Purchase (getBookByTitle ("Refactoring")):;
CampaignSpy campaignSpy = new CampaignSpy () ;

new PurchaseWorkflow (campaignSpy)
.addItem (Inventory.getBookByTitle ("Refactoring"))
.usingExistingCustomer (1234567)
.enterDiscountCode ("WEEKEND DEAL") ;

assertThat (campaignSpy.customerNumber, greaterThan (0L));
assertEquals ("WEEKEND DEAL", campaignSpy.discountCode) ;
assertEquals (expectedPurchase, campaignSpy.purchase);

private class CampaignSpy implements Campaign {

public long customerNumber;
public String discountCode;
public Purchase purchase;

@Override
public void applyDiscount (long customerNumber,
String discountCode,
Purchase purchase) {
this.customerNumber = customerNumber;
this.discountCode = discountCode;
this.purchase = purchase;

The test looks strikingly similar to its mock counterpart, except for the place-
ment of the assertions. In cases where I can’t use a framework to create a mock object
and I have to craft it by hand, I always resort to the spy-based approach, the reason

being that it allows me to keep the assertions in the test.

Dummies

Dummy is the final term in the test double nomenclature. Dummies are values you
don’t care about from the perspective of the test. They’re typically passed as argu-
ments, although they can be injected or referenced statically at times. There’s little
science around dummies, but I'd like to point out two things about them. First,

172 Chapter 12 = Test Doubles

naming them appropriately often helps. If a test is all but trivial, its readability isn’t
increased by the presence of nulls, zeroes, or empty strings. It might be a matter of
taste, but personally I prefer:

[TestMethod, ExpectedException (typeof (ArgumentOutOfRangeException))]
public void ShouldFailForTooYoungCustomers ()
{
int age = 10;
string ignoredFirstName = "";
string ignoredLastName = "";
CustomerVerifier.Verify(age, ignoredFirstName,
ignoredLastName) ;

when testing something like this . . .

public static void Verify(int age, string firstName, string lastName)
{

if (age < 20)

{

throw new ArgumentOutOfRangeException ("Minimum age is 20");

// Method continues...
// Do something with the name parameters

. .. to the version following, or something similar with nulls instead of the empty
strings.

[TestMethod, ExpectedException (typeof (ArgumentOutOfRangeException))]
public void ShouldFailForTooYoungCustomers ()
{

CustomerVerifier.vVerify (10, "", "");

There is, of course, a middle ground, but it only works for strings:
CustomerVerifier.Verify (10, "NOT USED", "NOT USED");

Although one can guess that nulls and simple default values indicate a dummy, I
still think it’s worthwhile to highlight what’s not important. This is a matter of pro-
gramming language. If the language supports named arguments somehow, naming
dummies is less of an issue. Because the example happens to be C#, which happens to
support named arguments. . .

Verify State or Behavior? 173

CustomerVerifier.Verify(age: 10, firstName: "NOT USED",
lastName: "NOT USED");

Second, if you feel that youre using too many dummies and that it doesn’t feel
right, then your instincts probably serve you well. Overuse of dummies often indi-
cates that the tested code probably does too much or that the test verifies something
irrelevant, most likely the former.

Verify State or Behavior?

This chapter and the subsequent one often mention state/behavior testing or verifica-
tion. There’s an ongoing debate about which style is “better.” Both styles have their
advantages and disadvantages and, above all, uses.

State Verification

State verification is employed when the final outcome of interacting with the object
of the test is best observed by examining a value or a data structure produced by that
object. A state-based test performs one or more operations on the target object and
then queries it and possibly some of its collaborators to assess whether the outcome
of the operations was correct. In an object-oriented environment, the simplest case of
state verification is invoking a mutator followed by an accessor (which many would
consider “too simple to break”), whereupon the result is fed to an assertion.

given:
Car testedCar = new Car()

when:
testedCar.setSpeed (40)

then:
testedCar.getSpeed () == 40

Apart from confirming that the tested car has the ability to accelerate to 40 mph
instantaneously (hmm), this example also shows that the speed is stored in the tested
object and is thus part of its state. If such a state is made up of many variables’ values,
a state-based test may easily fall victim to checking too many seemingly unrelated
values or digging too deeply into the tested object. Consider this:

given:
Car testedCar = new Car()

when:

174 Chapter 12 = Test Doubles

testedCar.setSpeed (40)

then:

testedCar.getSpeed () == 40
testedCar.getGear () == 2
testedCar.getTachometer () .getValue () == 2000

This could be a characterization test attempting to pin down an arguably odd
creation, or it could be a test written by a developer who got seduced into adding a few
more assertions® while at it. In either case, the car seems to have quite a few peepholes
that may appear tempting for state-based peeking.

State verification feels most natural in cases where the tested operation returns
something, and, if that something looks right, then the implementation that created
it is judged to be correct.

Now, how about functions that don't affect any state? Is checking them state or
behavior testing?

assertEquals (10, new Calculator().add(6, 4));

I would say neither, as would functional programming aficionados, but it turns
out that verifying functions that don’t mutate any state falls in the category of state-
based testing. The reason is that the result of the operation is still best observed by
inspecting data produced by that operation.

Behavior Verification

When the expected outcome of an operation cannot be observed by querying the
object of the test, behavior verification is used instead. Most often behavior verifi-
cation is synonymous with using mock objects verifying interactions. At times, the
tested object may store much of its state in collaborating objects. In such cases, what
would normally be a state-based test can turn into a test of behavior.

Behavior verification feels most natural when the tested object exposes no state;
nothing is returned and few or no methods expose whatever state it may have. This
is usually true for code that contains many command type of calls (as in Command-
Query Separation; Fowler 2005). Hence, interaction tests are often encountered in
larger systems made up of several layers, where some of the layers contain little logic
or state and are mostly responsible for orchestrating calls to other layers and compo-
nents, like in this Bi11lingService class:

4. Although the framework used in this example, Spock, uses conditions rather than assertions.

Verify State or Behavior? 175

public void ChargeCustomer (CustomerId customerId,
IList<Product> products)

var customer = customerRepository.Find(customerId) ;
var invoice = CreatelInvoice (customer, products);
invoiceRepository.Save (invoice);
mailService.SendInvoice (customer, invoice);

private Invoice CreatelInvoice (Customer customer, IList<Product> products)

{

var invoice = new Invoice (customer.Id);
// Do something interesting with products here...

return invoice;

Unit-testing this method would amount to making sure that it indeed manages
to call SendInvoice for the correct customer with an invoice that reflects the sup-
plied products.

The Arguments

Those who argue against behavior testing will have a point when they say that such
tests won't detect algorithmic errors. After all, checking that an algorithm has been
called with certain parameters doesn’t guarantee that it’s been implemented correctly.
The SendInvoice method in the last example could be completely wrong. It could
send the invoice to a print shop using some batch file transfer mechanism instead
of e-mailing it to the customer. If mailService were a mock object, this blunder
would pass unnoticed.

Another case against behavior testing is about the tests knowing too much about
the internals of the tested code, that is, being too tightly coupled. After all, if interac-
tions are to be verified, the tests need to know about them. Should some of the inter-
actions change, the tests will break. This argument is similar to that of poking too
extensively into the internal representation of an object. It, too, may change. A way
of making behavior-based tests more stable is to keep them coarse-grained. The test
wants to know that mailService was indeed called, but it doesn’t have to dissect
the invoice passed to SendInvoice and verify that it’s correct to the last bit.

176 Chapter 12 = Test Doubles

Testing Behavior
The phrase “testing behavior” doesn’t always refer to verifying interactions using a
mock object. Instead, it refers to testing the actual behavior of a program element,
which was defined as “the outcome produced by its functionality under certain
preconditions” in an earlier chapter.

From this it follows that a program element’s behavior may be to return something
suitable for state verification, or to perform a number of invocations, which would be
tested by verifying interactions. Phew.

Summary

Different kinds of test doubles are used when dealing with dependencies in unit tests:

® Stubs are used to control indirect input and sometimes to get rid of side
effects.

® Fakes provide self-consistent implementations of collaborators, which in prac-
tice means that they’re lightweight implementations.

® Mock objects are used to verify indirect output and occasionally indirect input
from other collaborators.

m Spies record the interactions and their parameters for later checking.

® Dummies are values that are irrelevant to the test—usually arguments.

The discussion of stubs, fakes, and mocks brings into the foreground the dis-
tinction between state and behavior testing. State verification is about querying the
tested object’s (and possibly its collaborators’) state after having invoked some of its
operations. Behavior verification is about checking whether a certain interaction has
occurred between a mock object and the tested object or other collaborators.

State-based tests are good for finding algorithmic errors, but they run the risk
of being too invasive. Behavior-based tests won't find any algorithmic errors and
are vulnerable to being too coupled to the implementation. Both types of tests can
become brittle. State-based tests may look at too much state or dig too deeply into an
object, whereas behavior-based tests may be too strict when verifying the interaction.

Chapter 13
MOCKING FRAMEWORKS

Today the number of cases in which we want to implement test doubles by hand is
quite limited. Mocking frameworks have been evolving for several years and have
reached full maturity by now. At the time of writing, they’ve gone through genera-
tions of evolution and have reached a point where they offer very rich functionality
and truly simplify many aspects of interaction testing. A case in point is the fact that
mocking frameworks, despite their names, not only construct mock objects, but also
stubs and spies." My experience is that this versatility often leads to confusing tests,
where the role of the test double is ambiguous and unclear. That’s why I emphasize
the type of test double wherever possible. To avoid this confusion altogether, some
people prefer the term isolation frameworks, because the name carries with it the
promise that the frameworks may create different kinds of test doubles that isolate
the code under test from its collaborators.

Frills aside, mocking frameworks provide three fundamental kinds of operations:

m Test double construction

® Expectations setup

® Interaction verification

Different mocking frameworks implement these operations in different ways,
each of which has its strengths and weaknesses. Therefore, the first part of this chap-

ter is about familiarizing you with the variations to give you a sense of what a mock-
ing framework can do and what kind of code it will give rise to.

Constructing Test Doubles

Constructing test doubles is very simple in a modern mocking framework. In most
cases it amounts to one line of code that says: “give me a test double of this class.” The
simplest test doubles are based on interfaces; the framework creates a concrete class
that implements the interface.

1. Although the mocking framework may use the term spy differently from how it was described
in the previous chapter.

177

178 Chapter 13 = Mocking Frameworks

var dependencyStub = new Mock<IDependency> () ;

The two mocking frameworks used most prevalently in the examples in this sec-
tion don’t even distinguish between stubs and mocks during the construction stage.
This first example is based on Moq for C#. Using Java’s Mockito, the construction
would be almost identical.

Dependency dependencyStub = mock (Dependency.class);

A framework that does make the distinction between stubs and mocks is Spock,
but the syntax is still quite similar:

def dependencyStub = Stub (Dependency)

That’s it, if all we need is a stub that returns a simple default value, like O for
numerical types and null for objects. The previous one-liners indeed produce work-
ing stubs, and at this point only the variable name offers a clue about the type of
test double.

Mocking Framework Magic

Behind the scenes many of the frameworks make use of dynamic proxies. Proxies are
objects that act as a surrogate for another object by exposing the same interface as the
proxied object (Gamma et al. 1994). Often they delegate calls to the proxied object, but
they don’t have to. Callers are often not aware of whether they are talking to the actual
object or the proxy. When proxies are created at runtime, they’re dynamic.

Test double creation has advanced way beyond simple proxying and has, with
time, been sugarcoated with extra features like

Creating test doubles of concrete classes as opposed to interfaces only

Having the test double implement multiple interfaces
® Annotation-driven creation
= Automatic test double injection

The list of nifty features varies among frameworks and changes and evolves con-
stantly. Spend some time reading your favorite framework’s documentation.?

2. This book doesn’t contain any details about the mocking frameworks it uses. I don’t want the
contents to become obsolete because of some latest and greatest API changes.

Setting Expectations 179

Once a test double has been created, we need to decide whether we’ll use it as a
mock, a stub, or both. The third option isn’t encountered that frequently, because it
implies that the test double will serve as a provider of indirect input and as an observer
of indirect output/interactions at the same time. In the majority of cases, this is some-
thing you don’t want, though you may find yourself doing this when testing legacy
code (which, unconstrained by things like Command-Query Separation or the Single
Responsibility Principle, may pile interaction on interaction in long sequences).

Setting Expectations

An expectation is a statement that tells the test double how to respond to an invoca-
tion. Historically, setting up expectations was a crucial step in configuring a mock.
Older mocking frameworks relied on first setting up, or “recording,” a number of
expectations, then having the test interact with the mock, and finally verifying that
the expectations were fulfilled. Creating true mock objects, they immediately failed
the test if they encountered an interaction with the mock that didn’t match any
expectations. Reusing one of the examples (the one using the “average” mock) from
the previous chapter, an interaction test using a true mocking framework (jMock)
would look like this:

Mockery context = new Mockery();

@Test
public void discountCodeIsAppliedInThePurchaseWorkflow() {
final Campaign campaignMock = context.mock (Campaign.class);
final Purchase expectedPurchase
= new Purchase (getBookByTitle ("Refactoring")):;

context.checking (new Expectations () {{
oneOf (campaignMock) .applyDiscount (
with (greaterThan (0L)),
with (equal ("WEEKEND DEAL")),
with (equal (expectedPurchase)));

Ph) g

new PurchaseWorkflow (campaignMock)
.addItem(getBookByTitle ("Refactoring"))
.usingExistingCustomer (1234567)
.enterDiscountCode ("WEEKEND DEAL") ;

context.assertIsSatisfied();

180 Chapter 13 = Mocking Frameworks

This test would fail during the call to applyDiscount if the expectation weren’t
satisfied, that is, the parameters didn’t match, and it would fail during the verification
phase (context.assertIsSatisfied()) if the method wasn’t called at all.

Mockito, Moq, and Spock all construct mocks that behave like spies (or nice
mocks); that is, they just record the interactions and let them happen, which means
that no predefined expectations are required. Instead, the interactions are verified at
the end of the test. This will be apparent in the upcoming examples.

Strict and Nice Mocks
A mocking framework can produce up to three distinct flavors of mocks: normal, strict,
and nice. The terminology varies a little between different frameworks, but basically,
nice mocks won’t make the test fail if they encounter an unexpected interaction, whereas
strict and normal mocks will. Strict mocks want all interactions to happen exactly as
specified by the expectations; otherwise, they make the test fail. Some frameworks also
require that the interactions happen in a specific order with strict mocks.

Because this terminology is a bit fluid, you do want to look up the exact features
and definitions in your framework’s API documentation.

Stubbing

Expectations are typically associated with mocks, but I'll be using the word in a
broader sense, which will allow me to speak of expectations as a means of configur-
ing stubs. Being just a proxy created on the fly, a stub without any expectations only
returns default values—in practice zero—for methods that return a primitive numer-
ical data type, and nulls for methods that return objects (and maybe even empty
collections for methods that return collections). Invocations of methods that don’t
return anything will just pass through. To become more usable, the stub needs to be
told how to behave, which is equivalent to implementing logic in a hand-coded stub.

Methods that don’t take any arguments are quite easy to set up. Using Mogq, the
setup would look like the following:

dependencyStub.Setup (d => d.ComputeAndReturnValue()) .Returns (10);
And using Mockito, it would be almost identical:
when (dependencyStub.computeAndReturnValue ()) .thenReturn (10) ;

These expectations tell the stubs to return a fixed value and correspond to just
implementing a single line method with a return statement.

Setting Expectations 181

When the method to be stubbed takes one or more arguments, we have to start
thinking about what to do with them. Consider a single argument method. If “hand-
crafted,” it would look like this:

int ComputAndReturnAnotherValue (int arg)
{

return 10;

The argument is ignored. To achieve this in a mocking framework, it needs to be
instructed to do so, which is done by supplying a predicate that tells it how to react to
method arguments. Such predicates are called argument matchers.> They can become
almost arbitrarily complex, although they shouldn’t, because complex nested match-
ers imply too many assumptions about a collaborator (thus making the test sensitive
to changes to that collaborator) and make the test harder to read. Moq’s matchers are
static boolean methods in the It class.

dependencyStub.Setup (d => d.ComputeAndReturnAnotherValue (
It.IsAny<int>())) .Returns(10);

Mockito has its own methods for matching primitive data types and a simple
interface to Hamcrest matchers for more demanding cases. This gives developers the
freedom to implement any predicates they need.

when (dependencyStub.computeAndReturnValue (anyInt ())) .thenReturn (10) ;

Spock has the interesting capability to match any argument (or arguments), with-
out even caring about the type, which is quite powerful when you just want to get
your stub up and returning values.

dependencyStub.computeAndReturnValue() >> 10

The most common way of matching arguments is using the equals method. It’s
like saying: “if the method is called with an argument that is this value, then return
that value.” In fact, it’s so common that it’s implicit (in the frameworks used here at
least). To achieve the equivalent of

int ComputAndReturnAnotherValue (int arg)
{

3. It’s the same mechanism as that used by the AssertThat method and has been covered in
Chapter 7, “Unit Testing.”

182 Chapter 13 = Mocking Frameworks

return arg == 42 ? 10 : O;

no argument matcher is needed—the expectation is set up using the exact value. Note
that zero, expected in all cases except when arg is 42, will be returned as a result of
the stub’s default behavior.

dependencyStub. Setup (d => d.ComputeAndReturnAnotherValue (42)) .Returns (10) ;

Equality, or lack of implementation thereof, is probably the most common source
of errors when using mocking frameworks. It’s just like in the case of assertions. If we
fail to implement the equals method in the classes we create, the test double will start
behaving mysteriously. Will the assertion at the end of the next test succeed or fail?*

class Banana {

public String color = "yellow";

interface Monkey {
boolean likes (Banana banana);

@Test

public void monkeysLikeBananas () {
Monkey monkeyStub = mock (Monkey.class);
when (monkeyStub.likes (new Banana())) .thenReturn (true);
assertTrue (monkeyStub.likes (new Bananal()));

Sometimes—although less often than you might think—you need the stub to
return different values on consecutive calls. Mockito lets you stack thenReturn
directly:

when (dependencyStub.computeAndReturnValue (42))
.thenReturn (10) .thenReturn (99) ;

Moq needs you to swap Setup for SetupSequence to allow this kind of
stacking. When using Spock’s stubbing facilities, you just need to specify a list of val-
ues to return.

4. Hint: Are two banana objects equal if equals isn’t implemented?

Verifying Interactions 183

dependencyStub.computeAndReturnValue (42) >>> [21, 45]

Last, but not least, you’d want stubs to throw exceptions to allow you to verify
your waterproof error handling, right? Using Mockito’s short-hand syntax, a stub
that would throw an exception would be set up like so:

Dependency dependencyStub =
when (mock (Dependency.class) .computeAndReturnValue (42))
.thenThrow (new IllegalArgumentException ("42 isn't the answer!"))
.getMock() ;

Mogq’s syntax resembles Mockito’s original syntax (which you can find in the
documentation).

var dependencyStub = new Mock<IDependency> () ;
dependencyStub. Setup (d => d.ComputeAndReturnAnothervValue (42))
.Throws (new ArgumentException("42 isn't the answer!"));

And, for completeness—the Spock way:

def dependencyStub = Stub (Dependency)
dependencyStub.computeAndReturnValue (42) >>
{ throw new IllegalArgumentException("42 isn't the answer!") }

These are the basics of setting up expectations. One can construct infinitely com-
plex custom constraints/matchers to set up stubs that reply very intelligently to a vari-
ety of invocations. However, just like with stubs implemented by hand (which were
discussed in the previous chapter), keep it simple. Overly intelligent stubs are a sign
of danger.

Verifying Interactions

The main purpose of a mock object is to verify interactions. A fundamental building
block of all mocking frameworks is a verify operation. Whereas a test that focuses on
state will end with an assertion method, a test that revolves around a mock object will
end with a verification.

Verifications also use constraints or matchers to decide whether the parameters
passed to the mock’s method are correct enough to qualify the invocation as a suc-
cessful interaction. Because matchers have been covered already, we’ll go straight
on to examples and revisit the discount scenarios from the previous chapter. Let’s

184 Chapter 13 = Mocking Frameworks

see how they would be implemented using the three mock frameworks presented in
this chapter.

Scenario 1—Here we just want to verify that the PurchaseWorkflow class
indeed calls a campaign’s applyDiscount method. Mockito is used in this exam-
ple, whereas Moq and Spock equivalents have been put in Appendix B, “Source Code.”

@Test
public void useLenientMock () {
Campaign campaignMock = mock (Campaign.class);
new PurchaseWorkflow (campaignMock)
.addItem (getBookByTitle ("Developer Testing"))
.usingExistingCustomer (1234567)
.enterDiscountCode ("DEAL") ;

verify (campaignMock) .applyDiscount (anyLong (),

anyString (), any(Purchase.class));

Scenario 2—Here we want to verify that the interaction takes place and that the
indirect output of PurchaseWorkflow is within reasonable bounds. This time, it’s
Mogq’s time to shine, and Mockito and Spock have been deferred to Appendix B.

[TestMethod]
public void UseAverageMock () {
var campaignMock = new Mock<ICampaign>();
Purchase expectedPurchase = new Purchase (
Inventory.GetBookByTitle ("Refactoring"));

new PurchaseWorkflow (campaignMock.Object)
.AddItem(Inventory.GetBookByTitle ("Refactoring"))
.UsingExistingCustomer (1234567)
.EnterDiscountCode ("WEEKEND DEAL") ;

campaignMock.Verify (cm => cm.ApplyDiscount (
It.IsInRange(l, long.MaxValue, Range.Inclusive),
"WEEKEND DEAL",
It.Is<Purchase>(p => p.Equals (expectedPurchase))));

Misuse, Overuse, and Other Pitfalls 185

Scenario 3—This last test performs rather rigorous checks on the parameters to
applyDiscount and it counts the number of invocations. Spock is used to demon-
strate this scenario (Moq and Mockito are in Appendix B yet again).’

def "use demanding mock" () {
setup:

def campaignMock = Mock (Campaign)

when:

new PurchaseWorkflow (campaignMock)
.usingExistingCustomer (1234567)
.addItem(getTraining ("TDD for dummies (5 days)"))
.addItem(getBookByTitle ("TDD from scratch"))
.enterDiscountCode ("DISCOUNT 123X")
.enterDiscountCode ("DISCOUNT 234Y")
.enterDiscountCode ("DISCOUNT 9992");

then:
3 * campaignMock.applyDiscount (
{ it >= 1000000L && it <= 9999999L },
{ it =~ "DISCOUNT \\d{3,10}[X-Z]?" },
{ it.getPrice() > 1000 && it.getItemCount() < 5 })

These examples show some capabilities of modern (at the time of writing) mock-
ing frameworks and illustrate how similar they are. Many features have been left
out, especially the framework-specific gold plating. Spend time getting to know your
framework! Once you've done that, read the next section that talks about misuse,
overuse, and other pitfalls.

Misuse, Overuse, and Other Pitfalls

Mocking frameworks are potent tools that let you wield incredible power. However,
power nearly always corrupts. This section is devoted to describing some common
corruptions observed in tests in the wild.

5. T've dropped the PremiumPurchaseMatcher here in favor of closure-based matching,
which is more idiomatic in Spock and Groovy.

186 Chapter 13 = Mocking Frameworks

Oververifying

Every time a verification is executed on a mock object, the test gets coupled to the
internal implementation of a program element, thus becoming sensitive to changes
and refactorings of that program element. Instead of remaining green during refac-
toring and acting as a safety net, it will turn red and break for seemingly mysteri-
ous reasons. This is, in fact, an argument in favor of spy-like or nice mocks. By not
expecting every single detail about every single interaction, they make the tests less
coupled to the internals of the tested code, and thus less sensitive to it changing. On
the whole, verification of interactions had better be kept coarse grained.

Just as keeping the number of assertions down in a state-based test is usually a
good thing, the same goes for verify statements. As a rule of thumb, a test involving
a mock object should verify only one interaction, and that should be the focal point
of the test. Thus, if it breaks, it will be obvious that something vital and important
has stopped working. A corollary to this is that the test should employ as few mocks
as possible—preferably only one. However, just as multiple assertions may verify one
logical concept, so can verifying multiple interactions. Tests of typical orchestration
methods will most likely need both several mocks and multiple verifications. Over-
verification comes in several forms, as the following sections explain.

Too Many Verifications

Again, using the analogy of state-based tests, a test that has many assertions is most
likely a poor test because

® [t can break for many reasons

= Jt’s not apparent what it actually checks

The same goes for mock tests that verify too many interactions. When doing this,
they get coupled to multiple program elements, which makes them even more sensi-
tive to changes of those elements and makes error localization harder.

Tests that set up many expectations or engage in heavy verification may have a
hard time communicating their intent. A test that verifies this, then that, and finally
something else will probably just lock down the implementation while providing lit-
tle value.

Too Precise Verifications

Mocking frameworks make it easy to count the number of interactions with a mock.
We’ve seen an example of this in Scenario 3 a few paragraphs back. Verifying that one
thing calls another means locking down the implementation and introducing brittle-
ness. Adding constraints on how many times the call is allowed to be made is even
worse. Beware!

Misuse, Overuse, and Other Pitfalls 187

A similar argument goes for mocks that are configured to expect interactions to
occur in a specific order. Somewhere deep in the codebase, there may be a piece of
code that truly benefits from having the order of interactions verified; however, in all
other cases—an overwhelming majority—this is the equivalent of inviting a vampire
into your home.

Verifying that No Calls Have Been Made

Apart from having ways of verifying how many times an invocation has been made,
mocking frameworks also have the ability to verify that no interactions have hap-
pened with a specific mock. It means that the test says: “I swear and promise, cross
my heart, that object A has never called object B during this test.” When would that
be helpful? Hopefully not too often! There’s always the exception to the rule, when
it would be absolutely crucial to verify that an invocation has never happened, but
in a crushing majority of cases, this just pulls in irrelevant and confusing checks. A
developer who’s new on the team has no chance of knowing whether the must-never-
happen verification is relevant or not. Also, drawing a line for when not doing such
verifications once you've started is also very difficult. Finally, when developing code
test first, would verifying that something doesn’t happen before the code is even writ-
ten feel intuitive? For me it wouldn’t.®

Summary: How to Verify Expectations
This summary applies to both setting expectations and verifying them, depending on
where the majority of the work is done by the framework.

= Verify expectations sparingly.

= Stay away from constructs that make them stricter than necessary.

= Avoid surgically sharp verifications. They just provide a false sense of safety and
make changing code a pain because of all the tests that will break for the wrong

reasons.

Mocking Concrete Classes

Of all the functionality that mocking frameworks provide, one stands out: whether
the framework can mock concrete classes or not. If youre using such a framework,
an alarm should go off every time you mock something that’s not an interface. In
essence it means that you're replacing a class that has a concrete working implementa-
tion with one “reimplemented” by the mock object.

6. One of the creators of Mockito has written an interesting blog post on a similar topic (Faber 2008).

188 Chapter 13 = Mocking Frameworks

Interfaces for Mocking

Although mocking at the interface level and providing a mock collaborator
implementation feels quite intuitive, introducing artificial interfaces only for the sake
of mocking usually doesn’t. If this is an issue, take a step back and examine the design.
Do your abstractions make sense? Are the relations between the program elements
reasonable?

Mocking Value-holding Classes

The low threshold to creating mocks and stubs may lure developers into creating
more of them than necessary. This, in turn, may lead to mocks in the wrong places
and overly complex and brittle tests. The next example resembles something I've
seen more than once in different codebases. Consider a trivial value-holding class
like Person:

public class Person {
private String firstName;
private String lastName;
private int age;

// Accessors and mutators go here

Regardless of how an object of this class would be used in a test, a real object
should be created, not a mock. Sadly, this is what you might see instead:

Person person = mock (Person.class)
when (person.getFirstName ()) .thenReturn ("Charlie");

This doesn’t only look bad. More objective arguments against doing this might
include the following:

® Replacing simple working implementations with mocks or stubs may intro-
duce bugs. After all, working code is replaced with a test double. The produc-
tion code no longer gets tested in some contexts, because it’s been replaced.

m Setting up expectations turns simple object initialization into something
more complicated. Now you have to read the test thoroughly and sort the
stubs into two categories: the important ones and the artificial ones.

® Purely state-based tests now start feeling like behavior-based tests because of
the presence of the word “mock” in the initialization of the stub. There are
worse problems, but why confuse things if you don’t have to?

Summary 189

Mocks Returning Mocks

The Mockito documentation says that whenever a mock returns a mock, a fairy dies.”
I believe it to be true. Returning a mock from another implies transitive digging in
interactions between objects. Those who have written enough tests will have found
the one case in 500 where this is just the thing you want to do, but in all remaining
cases, please let the fairy live.

Summary

Creating stubs and mocks is easy with today’s frameworks. They host functionality
for test double creation, expectation setup, and interaction verification. Constraints or
argument matchers are important building blocks, because they determine whether a
stub will respond to a query and whether a mock counts an interaction as successful.
Mocks come as nice, normal, and strict. Nice mocks tolerate unexpected interactions,
whereas strict mocks don’t, and additionally require that all expected interactions
occur—sometimes in a specific order.

Mocking frameworks provide their own matchers, and adding new ones is easy.
However, too complex matchers may know too much about the interactions they ver-
ify and thus make the tests unnecessarily rigid.

Mock tests can easily be overspecified. Overly restrictive verification doesn’t
automatically imply correctness, but is often a sign of poor code; things that should
be tested somewhere else end up being matched during verification. On the whole,
constantly be aware of the trade-off between depth of verification and coupling to the
implementation.

Finally, mocking concrete classes and mocks returning mocks should sound your
alarm bells.

7. http://docs.mockito.googlecode.com/hg/latest/org/mockito/Mockito.htmI#RETURNS_DEEP_STUBS

http://docs.mockito.googlecode.com/hg/latest/org/mockito/Mockito.html#RETURNS_DEEP_STUBS

This page intentionally left blank

Chapter 14

TEST-DRIVEN DEVELOPMENT—
CLASSIC STYLE

Test-driven development (TDD) is the practice of driving the design of code with
tests. In contrast to the traditional “write code - verify code” workflow, TDD man-
dates that the first task in any development undertaking be to write a test. Only then
can the code that will make that test pass be written. If faithfully applied, no produc-
tion code will ever come into existence unless it’s preceded and accompanied by at
least one test. This doesn’t “auto-magically” guarantee correctness of the code, and
many people would claim that TDD has nothing to do with testing. That said, test-
driven code is, by definition, testable, and after reading the opening paragraphs of
Chapter 4, “Testability from a Developer’s Perspective,” you know that such code stands
a better chance of being tested—either by developers, who would add more tests to it to
cover all equivalence partitions, edge cases, and possible error scenarios, or testers, who
would be able to focus on an observable and controllable part of the system.

Test-driven development is performed in short cycles, each consisting of three
phases—red, green, refactor. Red and green refer to the color of the bar (or any other
visual indicator of failure or pass) displayed by many testing frameworks and IDEs
when the test is executed. These are the steps of the workflow:

1. Red—Write a test. The test will fail because the functionality needed to make
it pass doesn’t exist. Often the test won’t even compile, because it’ll include
references to program elements that haven’t been created yet.

2. Green—Make the test pass. Take any shortcuts necessary, even if they make
your eyes and heart bleed.

3. Refactor—Remove the badness introduced when making the test pass.

Working like this pushes us toward very short iterations—in the order of magni-
tude of minutes or even seconds—which consequently results in instantaneous feed-
back about the state of the code and our progress.

Actually, this is all there is to it, but test-driven development is one of those prac-
tices that are simple in theory but that explode into a bunch of questions and techni-
calities when applied in practice. To illustrate some of them, I'll use a TDD session
that happens to demonstrate different practical aspects of the technique.

191

192 Chapter 14 = Test-driven Development—Classic Style

Test-driving a Simple Search Engine

In this session, I wanted to build a simple search engine. It would search for a word
in a number of indexed documents and present the results ordered by the number of
occurrences of that word in each document. Thus, when searching for the word cat,
a document containing the word three times would be ranked higher than one con-
taining it only once. This isn’t the most sophisticated ranking scheme, but it should
be sufficient for the example.

To make this an actual search engine' and not just a toy program that loops
through files, I set the constraint that searching must be very fast,” whereas indexing
may be arbitrarily slow. This specification allowed me to test-drive the search engine
toward a certain design built on this simple idea:

® Each document has a unique ID.

® The index maps each word to a list of tuples containing the document ID and
the number of times the word occurs in the document with that ID—word
frequency.

® The list from the previous step is sorted on word frequency (see Figure 14.1).
This enables ranking.

The design guided my choice of implementation at some points, and it allowed
me to demonstrate how test-driving something toward specific requirements plays
out. Language-wise, I chose Groovy written so that it would read like Java or C#. It
gave me a powerful and very verbose assert method and a more compact notation
around lists. All tests are written in JUnit; however, working with Groovy, I couldn’t
resist putting their Spock equivalents in Appendix B.

Options and Variations Ahead!

A word of caution! I intentionally didn’t strive for a perfect example. There are plenty
of those online. I could easily have “discovered” some things earlier, changed the order
of tests, or written other tests altogether, but I wanted this session to be a typical TDD
session with human decisions and shortcomings. Hence, this session doesn’t reflect
the way of test-driving a simple search engine, but a way. Everybody will do test-
driven development differently depending on their strengths, weaknesses, preferences,
experience, and familiarity with the problem.

1. For the sake of the example, I decided on an in-memory implementation, although the design
would work for a disk-based solution as well with some adaptations.
2. “Very fast” means constant time with respect to the number of documents, that is, O(1).

Test-driving a Simple Search Engine

193

Index Documents

the: [3,1,2] -
quick: [1,3] e olich
—— brown fox id=3
= The lazy
- are the
jumped: [2] w2 Quick
over: [2] Jumped

- over
lazy: [2,3] the lazy
dog: [2] dog
quick: [3]

FIGURE14.1 A simple index. The article “the” occurs in all three documents: twice in the
third document and once in the other two. In the index, this is represented as “the: [3,1 2],”
where the document with the most occurrences of “the” comes first—document 3. Note

that there’s a clash between documents 1 and 2 that both contain “the” once. It's been

resolved by sorting the contending documents in ascending ID order.

Test 1: Discovering the API

For the first test, I chose the simplest search scenario I could think of—searching for
aword in an empty index. I was quite confident that I could make this test pass with-
out any problems.

@Test

void searchingWhenNoDocumentsAreIndexedGivesNothing () {
SearchEngine searchEngine = new SearchEngine ()
assert [] == searchEngine.find("fox")

The test obviously didn’t compile, because it referenced a class and a method that
didn’t exist. However, it forced me to express in code what a part of the API would
look like—searching returns a list of something. Now, to make this test pass, I just
added the class and a next-to-empty method.

class SearchEngine {
List<Integer> find(String word) {
return []

At this point the objective was to make the test pass, even in a way hurtful to the
eyes and the heart. I made it pass using a hard-coded empty list, and I had completed

194 Chapter 14 = Test-driven Development—Classic Style

two out of the three elements of the TDD cycle—write a failing test and make it pass.
Now it was time for refactoring. Alas, I didn’t find anything worth refactoring at this
point, so I moved on to the next test.

Test 2: Happy Path

Encouraged by my previous success, I went on to teasing out the full API of my search
engine. Besides, I wanted it to succeed in producing its first match.

@Test

void searchingForADocumentsOnlyWordGivesThatDocumentsId() {
SearchEngine searchEngine = new SearchEngine ()
searchEngine.addToIndex (1, "fox")
assert [1l] == searchEngine.find("fox")

Here I made a rather significant decision that would affect the entire example:
I chose to represent the supposed documents as just strings. If this code were to live
outside the pages of this example, it would most likely work on streams. In produc-
tion, these streams would be file streams; in tests, they’d be in-memory streams feed-
ing off strings. Acknowledging this, I decided that there was little to be learned from
juggling streams and strings at this point, and it would just hurt the readability of the
example code.

class SearchEngine {
def index = []
void addToIndex (int documentId, String contents) {
index << 1

List<Integer> find(String word) {
return index

Another hard coding, and index was coming into existence. Progress! This “pro-
duction” code didn’t offer too many opportunities for refactoring. The test code,
on the other hand, could be improved by removing the duplicated creation of the
searchEngine object. Because I had the feeling that every test would start with
this same line of code, I decided to move it to a test initializer method.

private SearchEngine searchEngine;

Test-driving a Simple Search Engine 195

@Before
void setUp () {
searchEngine = new SearchEngine ()

@Test

void searchingWhenNoDocumentsAreIndexedGivesNothing () {
assert [] == searchEngine.find("fox")

}

@Test

void searchingForADocumentsOnlyWordGivesThatDocumentsId () {
searchEngine.addToIndex (1, "fox")
assert [1] == searchEngine.find("fox")

Test 3: Searching in Multiple Documents

The hard coding bothered me and I wanted to get rid of it. After all, the code could
only handle a very specific case. My intention was to make it more generic, which
usually happens as more tests are added. I hoped that the next test would push the
solution in that direction.

@Test

void allIndexedDocumentsAreSearched () {
searchEngine.addToIndex (1, "fox")
searchEngine.addToIndex (2, "dog")
assert [2] == searchEngine.find("dog")

Changing the list to a map and adding the storing of a one-element list of docu-
ment IDs in that map did the trick. The test passed.

class SearchEngine {

def index = [:]
void addToIndex (int documentId, String contents) {
index[contents] = [documentId]

List<Integer> find(String word) {
return index|[word]

196 Chapter 14 = Test-driven Development—Classic Style

I was just getting ready to move on, so I ran the entire test suite to make sure that
I was on solid ground, and boom! It turned out that the first test was now failing. It
complained about null being returned when a word wasn’t present in the index. It was
easy to fix. The lookup in the £ind method needed to return something reasonable if
there were no matches, like an empty list.

List<Integer> find(String word) {
return index.get (word, [])

Test 4: More Sophisticated Documents

It was time to make the “documents” more sophisticated by allowing them to contain
more than one word. In this case, I decided that my intent with (as well as the seman-
tic concept in) the test was best expressed using two assertions.

@Test

void documentsMayContainMoreThanOneWord () {
searchEngine.addToIndex (1, "the quick brown fox")
assert [1] == searchEngine.find ("brown")
assert [l] == searchEngine.find("fox")

I didn’t even need to run this to know how miserably it would fail. There was no
reading multiple words in the code, so failure was imminent. The good news was that
it was easy to fix—just split the input up.

class SearchEngine {
def index = [:]
void addToIndex (int documentId, String contents) {
contents.split (" ").each { word -> index[word] = [documentId] }

List<Integer> find(String word) {
return index.get (word, [])

Anything to refactor? Not really, but I wanted to help myself by spelling out what
the index actually was, so I introduced the type: Map<String, List<Integer>>
index = [:].

Test-driving a Simple Search Engine 197

Test 5: Finding Words in Multiple Documents

So far, searching only produced empty results or a single document ID. With the next
test, I wanted the search engine to be able to find words in multiple documents.

@Test
void
searchingForAWordThatMatchesTwoDocumentsGivesBothDocumentsIds () {
searchEngine.addToIndex (1, "fox")
searchEngine.addToIndex (2, "fox")
assert [1l, 2] == searchEngine.find("fox")

This looked quite intimidating at first . . . anticlimax. Only one line of code
needed changing. Resolving words to lists put me one step closer to the envisioned
design.

class SearchEngine {
Map<String, List<Integer>> index = [:]
void addToIndex (int documentId, String contents) {
contents.split (" ").each { word ->
index.get (word, []) << documentId

List<Integer> find(String word) {
return index.get (word, [])

After having written the code, I realized that the test had passed out of sheer
luck. Nothing in the code implied any ordering of document IDs, so what I was get-
ting back was a list that reflected the insertion order. Had I started by adding “fox” to
the second document, the test would fail, because £ind would return [2, 1]. I had a
number of options here, ranging from a custom matcher that would ignore list order
to comparing the lists as sets, but I decided on the simplest one, which was to sort
the output before comparing. I just changed the assertion to assert [1, 2] ==
searchEngine.find("fox").sort()

Test 6: Removing Duplicate Matches

Closing in on the intended design, I could start preparing for ranking. For it to work,
the result of searching would have to consist of unique document IDs.

198 Chapter 14 = Test-driven Development—Classic Style

@Test
void multipleMatchesInADocumentProduceOneMatch () {
searchEngine.addToIndex (1,
"the quick brown fox Jjumped over the lazy dog")
assert [l] == searchEngine.find("the")

How does one implement uniqueness? My first idea was that sets can’t hold dupli-
cates, so I quickly rushed ahead and changed the implementation of the index.

class SearchEngine {
Map<String, Set<Integer>> index = [:]
void addToIndex (int documentId, String contents) {
contents.split (" ").each { word ->
index.get (word, [] as Set) << documentId

List<Integer> find(String word) {
def results = []
results.addAll (index.get (word, [1]))
return results

All tests passed! Now about refactoring . . . the transformation of a set into a list
in £ind didn’t turn out too beautiful. Should something be done about that? This
was one of the most difficult moments in this session. The tests were all green, but
based on the design, I knew that I wouldn’t be able to make this work using sets.’
Therefore, I decided to refactor, not so much in response to the current state of the
code, but to prepare for the things to come. As a side effect, the £ind method became
uncluttered again.

class SearchEngine {
Map<String, List<Integer>> index = [:]
void addToIndex (int documentId, String contents) {

contents.split (" ").each { word ->
def documentIds = index.get (word, [])
if (!documentIds.find {i -> i1 == documentId}) {

documentIds << documentId

3. Not with my understanding of the problem at that stage anyway.

Test-driving a Simple Search Engine 199

List<Integer> find(String word) {

return index.get (word, [])

Instead of using a set, I implemented the uniqueness “by hand” by only adding
a document ID to a word’s list of document IDs if it wasn’t already in that list. This
proved to be helpful in the upcoming step.

Test 7: Introducing Ranking

Next, I went ahead with a larger step. I wanted the search engine to rank its matches.

@Test

void documentsAreSortedByWordFrequency () {
searchEngine.addToIndex (1, "fox fox dog")
searchEngine.addToIndex (2, "fox fox fox")
searchEngine.addToIndex (3, "dog fox dog")
assert [2, 1, 3] == searchEngine.find("fox")

assert [3, 1] == searchEngine.find("dog")

This meant that the index had to store the number of times a word occurred
in a given document. The underlying data structure needed changing again. Here
I needed to stop. Even though I had just refactored the code in the previous step, I
decided that I needed another refactoring®; I wanted my implementation of the index
to support what I was about to do next. The good thing about this, though, was that
it allowed me to demonstrate an important aspect of TDD: Never refactor with a red
bar. Obediently, I @Ignored the failing test before proceeding.

Guided by my design idea, I knew roughly what to do. I wanted to store the word
frequencies somehow. I didn’t perceive the upcoming code change as entirely trivial,
so I implemented the most naive solution that I could think of: instead of just storing
the document ID for each word, I started storing two values—the document ID and

4. In hindsight, this turned out to be more of an application of incremental design than
refactoring, and not entirely in the spirit of purist TDD, because it was done in anticipation.

200 Chapter 14 = Test-driven Development—Classic Style

the number of times the current word has appeared in the document with that ID. I
chose to call this class WordFrequency.’

class SearchEngine {
Map<String, List<WordFrequency>> index = [:]
void addToIndex (int documentId, String contents) {

contents.split (" ").each { word ->
def wordFrequencies = index.get (word, [])
if (!wordFrequencies.find {wf => wf.documentId == documentId})

{

wordFrequencies << new WordFrequency (documentId, 1)

} else {
def wordFrequency = wordFrequencies.find
{ wf -> wf.documentId == documentId }
wordFrequency.count++

List<Integer> find(String word) {
return index.get (word, []).collect { wf -> wf.documentId }

class WordFrequency {
int documentId
int count

WordFrequency (int documentId, int count) {
this.documentId = documentId
this.count = count

Now the code reflected the design idea completely. It was neither aesthetically
pleasing nor efficient, but it worked! To implement ranking from this vantage point
was easy—all I had to do was to re-enable the test and sort the list of word fre-
quencies. I added the following line of code after the if-else in the addToIndex

method:

5. A smaller step here would be to represent the pair as an array. However, I've never been a

fan of arrays where the location of the element has a meaning, like it would here: arr[0] =
documentId, arr[l] = frequency.It’sjust confusing.

Test-driving a Simple Search Engine 201

wordFrequencies.sort { wfl, wf2 -> wf2.count <=> wfl.count }

Red, green, refactor. Now, here were opportunities. I started by removing the
obvious duplication of wordFrequencies.find. Restructuring the code that
added a new word frequency to the list of frequencies allowed me to simplify the Word-
Frequency class’s constructor by dropping the count parameter. Finally, I pulled out all
of this code into a new method that I called bumpWordFrequencyForDocument.

void addToIndex (int documentId, String contents) {
contents.split (" ").each { word ->
def wordFrequencies = index.get (word, [])
bumpWordFrequencyForDocument (wordFrequencies, documentId)
wordFrequencies.sort { wfl, wf2 -> wf2.count <=> wfl.count }

private void bumpWordFrequencyForDocument (List<WordFrequency> frequencies,
int documentId) {
def wordFrequency = frequencies.find
{ wf -> wf.documentId == documentId }
if (!wordFrequency) {
frequencies << (wordFrequency = new WordFrequency (documentId))
}

wordFrequency.count++

Next, I did something that some might call “premature optimization.” Yes, a part
of me really suffered inside because of the superfluous sorting that was taking place,
though the main reason was that I wanted better readability. I moved away the sort-
ing from the loop and put it into its own method (with some minor adjustments to
the target of the sorting). This change made the addToIndex method quite small
and readable. It also had the advantage of raising the level of abstraction of addTo-
Index. Instead of dealing with rather atomic operations on maps and lists, it now
started to communicate its intent quite clearly.

void addToIndex (int documentId, String contents) {

contents.split (" ").each { word ->
bumpWordFrequencyForDocument (index.get (word, []), documentId)

}
resortIndexOnWordFrequency ()

}

private void bumpWordFrequencyForDocument (List<WordFrequency>

frequencies, int documentId) {

202 Chapter 14 = Test-driven Development—Classic Style

def wordFrequency = frequencies.find
{ wf -> wf.documentId == documentId }

if (!wordFrequency) {
frequencies << (wordFrequency = new WordFrequency (documentId))

}

wordFrequency.count++

private resortIndexOnWordFrequency () {
index.each { k, wfs -> wfs.sort
{ wfl, wf2 -> wf2.count <=> wfl.count } }

Test 8: Ignoring Case

Now that I had implemented the intended design, I went for some finish. Making the
search engine treat uppercase and lowercase equally was one such detail. This would
keep the index to a manageable size and make lookups work in a reasonable way.
Thus, the next test was about mixing cases and making sure that it didn’t matter.

@Test

public void caseDoesNotMatter () {
searchEngine.addToIndex (1, "FOX fox FoX");
searchEngine.addToIndex (2, "foX FOx");
searchEngine.addToIndex (3, "FoX");
assert [1, 2, 3] == searchEngine.find("fox")
assert [1, 2, 3] == searchEngine.find ("FOX")

Making this pass wasn’t very exciting. It was a matter of adding toUpper-
Case() in two places. In my eyes it didn’t break the code enough to mandate any

refactoring.

void addToIndex (int documentId, String contents) {

contents.split (" ").each { word ->
bumpWordFrequencyForDocument (index.get (word.toUpperCase (), [1),
documentId)

}

resortIndexOnWordFrequency ()

List<Integer> find(String word) {
return index.get (word.toUpperCase(), []).collect {wf -> wf.documentId}

Test-driving a Simple Search Engine 203

Test 9: Dealing with Punctuation Marks

As a last step, I decided to strip away some punctuation marks from the index. After
all, they were guilty of introducing extraneous words into the index and messing up
lookups. For example, “quick,” and “quick;” were two separate index entries at this
point due to the splitting at word boundaries.

@Test

public void punctuationMarksAreIgnored() {
searchEngine.addToIndex (1, "quick, quick: quick.");
searchEngine.addToIndex (2, " (brown) [brown] \"brown\" 'brown'");

searchEngine.addToIndex (3, "fox; -fox fox? fox!");

assert [l] == searchEngine.find("quick")
assert [2] == searchEngine.find ("brown")
assert [3] == searchEngine.find("fox")

I let the test spell out what punctuation marks I cared about. Again, I went with
what I thought was the obvious solution. After all, test-driven development isn’t about
taking tiny steps all the time. It’s about being able to (Beck 2002).

void addToIndex (int documentId, String contents) {
contents.replaceAIl (" [\\., IAN\2:7 AN (NN) NN INNTAN=N"],)
.split (" ").each {
word -> bumpWordFrequencyForDocument (
index.get (word.toUpperCase (), []), documentId)
}

resortIndexOnWordFrequency ()

As soon as I had finished typing the regular expression for replacement, I saw
the refactoring I needed to do, but first I ran all tests and was rewarded with the
green bar. Now, what would the last refactoring of the session be? It struck me that I
had added similar logic in two different places. I had placed conversion to uppercase
after splitting the document into words, but for some reason, I had decided that the
stripping of punctuation marks should be done before breaking the document up into
words. Both of these operations are in fact preprocessing. I made that clear in code by
extracting them into a method.

void addToIndex (int documentId, String contents) {
preProcessDocument (contents) .split (" ") .each { word ->
bumpWordFrequencyForDocument (index.get (word, []), documentId)

204 Chapter 14 = Test-driven Development—Classic Style

}

resortIndexOnWordFrequency ()

private String preProcessDocument (String contents) {
return contents.replaceAll ("[\\., '\\2: 7 \N (AN NN IANTAN=N"TTY,)
.toUpperCase ()

This concludes this book’s TDD session. Now I'll bring in some TDD theory to
explain some decisions and turns I've made throughout it.

Note

All source code produced in this session can be found in Appendix B.

Order of Tests

Deciding in what order to write tests (and what tests to write) is often quite a chal-
lenge for developers new to test-driven development. Ironically, the order is rather
important. Your sequence of tests should not only help you make progress, but also
learn as much as possible and avoid the inherent risks of your implementation while
doing it. Conversely, if you have no strategy for picking the next test to write, youre
likely to start spinning around interesting or easy cases, or you run out of ideas. Next
time, try writing your tests in the following order:

1. Degenerate case—Start with a test that operates on an “empty” value like
zero, null, the empty string, or the like. It’ll help to tease out the interface
while ensuring that it can be passed very quickly.

2. One or a few happy path tests—Such a test/tests will lay the foundation for
the implementation while remaining focused on the core functionality.

3. Tests that provide new information or knowledge—Don’t dig in one spot.
Try approaching the solution from different angles by writing tests that exer-
cise different parts of it and that teach you something new about it.

4. Error handling and negative tests—These tests are crucial to correctness, but
seldom to design. In many cases, they can safely be written last.

Red- to Green-bar Strategies 205

Red- to Green-bar Strategies

Turning a red bar into a green bar is also an art. The intuitive reflex is often to type
what we believe is the correct solution. However, there are other ways, especially
if were not dead certain in which direction the solution is going. In his book Test-
driven Development by Example, Kent Beck (2002) offers three strategies for turning a
red bar into a green bar. The sample session includes them all.

® Faking—This is the simplest way to make a test pass. Just return or do
whatever the particular test expects. If the test expects a specific value, then
just hand it over. Tests that pass after faking usually break when the next test
wants something that isn’t a constant value or fixed behavior.
This technique is easy to spot. Hard-coded values, especially in the early
tests, are faked values. Remember the hard-coded lists in the first tests?

= The obvious implementation—Sometimes beating about the bush just isn’t
worth it. If we know what to type, then we should type it. The twist is that
seemingly obvious implementations may yield a red bar.

Using the obvious implementation usually implies taking slightly larger
steps. I did it several times in the example. However, notice that I never took
the technique to its limits by typing in the entire algorithm in one breath.
Doing this would actually probably not work, because it would force me to
implement every single detail correctly. Had I made a mistake doing it, I'd
have to resort to development by debugging, which is kind of regressing to
old, bad habits.

= Triangulation—Some algorithms can be teased out by providing a number
of examples and then generalizing. This is called triangulation and has its
roots in geometry. Reasonably, a single test may be made green by fak-
ing, whereas multiple tests with different parameters and expected results
will push the code in the direction of a general algorithm. The catch with
triangulation is that once the solution is teased out, some of the tests can
be deleted, because theyre redundant. This, however, would degenerate the
scenario to something that could be solved using a nongeneral algorithm or
even a constant.

206

Chapter 14 = Test-driven Development—Classic Style

Alternatives and Inspiration

In the beginning of this chapter, | made it sound like test-driven development
is very simple. In a way it is, but as this chapter has shown, there's a lot of
room for freedom and interpretation in the technique. In this light, I'd like to
point out that the style of TDD I've used here is easy to learn for beginners,
but it deviates slightly from what you may find in other books.

The greatest source of inspiration for my style of TDD is Kent Beck's book
Test-driven Development by Example (2002). This is where the red-green bar
patterns come from and where I've learned that the size of the steps we take
is dependent on our level of security and comfort. The difference between my
style and the style described in that book is around removal of duplication. In
Beck’s book, refactoring is about removing duplication. This is what drives the
design. My refactorings sometimes address duplication, but more often they
aim for conciseness and removal of particularly ugly code.

If you feel like getting more rigorous and keeping to small steps to make
sure that no code whatsoever will come into existence without a test, | suggest
that you read the chapter on TDD in Robert C. Martin's book The Clean Coder
(2011) and his online material. His way of doing TDD results in all steps being
as small as possible. He has also found a way to break TDD impasses in which
you feel that you need to take a big step without the support of the tests.
Read his work on the Transformation Priority Premise (Martin 2010).

Challenges

When adopting test-driven development, a team faces some challenges that it must
overcome rather quickly. If most of the issues 'm about to describe aren’t swiftly
resolved, they turn the adoption into a painful process and a team trauma. Not con-

vinced? Try this scenario and send me a penny for every line you've heard at work.

Imagine Monday morning. Positive Peter and Negative Nancy are just getting

their morning coffee from the machine. Barry Boss bouncesin . ..

Barry Boss: I went to this cool conference last week. They did TDD maaagic. So
must we! It’ll make us ten times as productive!

Positive Peter: Our team has been experimenting a little (without telling you),
but our codebase hasn’t been designed with testability in mind and is a mess.
We need to make some structural changes to it first, or start on a new system.

Barry Boss: What would that cost me?

Positive Peter: Well, we've always been rushing toward the next release and
accumulating technical debt without addressing it, so I'd say . . . a couple of weeks.

Challenges 207

Barry Boss: What? Weeks without productivity! Start doing this TDD thing on
the next project, which is due in eight months.

Positive Peter: (Sighs and starts walking away thinking about how to update his
resume)

Negative Nancy: That’s right! Our code is special. It’s like no other code in the
world. Our business rules are uniquely complex. Therefore, they cannot be
unit tested, so trying this test-driving thing is doomed to fail. Others can do
it, but their code isn’t as mission critical as ours.

Barry Boss (in a solemn voice): Indeed. Our code is special and mission critical.

Negative Nancy (feeling victorious): And besides, even if we had tried this thing,
it wouldn’t have given us complete testing anyway!

This short dialog embodies four very common challenges facing a team that’s on
its way to adopt TDD.

Our Code Can’t Be Tested

One of the most common challenges when introducing TDD is the demoralizing
and often truly challenging presence of legacy code. Many who return from a two-
day workshop on test-driven development aren’t able to fathom how what they’ve
learned in a controlled environment can be transferred to their system. They usu-
ally have a point.

Legacy code is code without tests, but more importantly, it’s code that isn’t
designed with testability in mind. Such code tends to be riddled with temporal cou-
pling and indirect input. It houses a multitude of monster methods,’® and its compo-
nents are intertwined in a bizarre web of dependencies that have spun out of control.
Adding any kind of test to such code may be no small feat.

Basically, there are two ways of introducing test-driven development into a legacy
codebase:

® Do it only on new classes, components, or subsystems—everything that can
be designed from scratch and isn’t tainted by the legacy code.

m Refactor the old code to make it testable enough so that it can be modified
and extended in a test-driven fashion. A big-bang refactoring of the whole
legacy codebase is pretty much always out of the question, so the work needs
to proceed incrementally. Only the code that’s closest to the functionality that
needs changing or extending is refactored. Sometimes even that is too great

6. Monster method: A complicated method of high cyclomatic complexity with many areas of
responsibility. Most likely, at least 100 lines long.

208 Chapter 14 = Test-driven Development—Classic Style

an undertaking. In such cases we can only opt for refactoring away one or
a few antitestability constructs and postpone 100 percent TDD for another
occasion. This is an incarnation of the Boy Scout Rule.”

Often, this challenge is of the chicken and the egg nature: in order to make code
testable, we need to write enough tests to get a feeling for what testable code looks
like. And conversely, in order to write tests, we need a testable codebase.

Our Code Is Special

This is a slight variation of “our code can’t be tested” and is by far the most common
argument against unit testing and test-driven development (in fact, any kind of qual-
ity measures performed by developers). It goes like this: “Other businesses’ code is test-
able by nature or simpler than ours. Therefore, they can test it. Our code, on the other
hand, is special and can’t be tested.”

This is simply not true. The only “special” thing about untestable code is that
it’s especially coupled, tangled, twisted, and intertwined. All of these properties are
endangering a successful adoption of test-driven development, but the attitude and
belief that the code really is special are even more damaging.

Test-driven Development Isn’t Complete Testing

In my experience, this argument is brought up in organizations where there’s a cul-
ture of spending lots of time thinking about perfect solutions in advance and trying
to implement them, or doing nothing at all (i.e., a combination of analysis paralysis
and an “all or nothing” attitude). It’s also reinforced by strong QA departments that
advocate separate testing phases and the unique and independent tester mind-set. In
such organizations it doesn’t “pay off” to do something that will inspire confidence
at one level but may need complementary techniques (such as end-to-end testing) to
provide a sufficient overall coverage and confidence. Furthermore, the fact that devel-
opers do some “testing” isn’t mildly looked upon either.

This argument goes against the very fundamental premise behind this book,
which is about developers doing as much as they can to ensure correctness. The fact
that unit testing needs to be complemented by other activities aimed at ensuring qual-
ity shouldn’t be controversial, but axiomatic. No single technique in itself is sufficient
to guarantee that a complex system works correctly. That’s why we rely on differ-
ent aspects of developer testing, static analysis, continuous integration, code reviews

7. Boy Scouts are supposed to leave the campground cleaner than they found it. So should
developers do with code.

Test First or Test Last? 209

and pair programming, sometimes formal methods, and eventually various types of
manual testing. Test-driven development, with its emphasis on unit tests, provides a
good foundation for many quality assurance activities.

Starting from Zero

Yet another challenge to adopting test-driven development is that the introduction
exposes various deficiencies and shortcomings in the organization’s way of working.
Often, the problem isn’t that the team or organization lacks the practice of test-driven
development. Rather, it’s that it lacks

® A suite of unit tests and the skills to develop it

= A CI environment that runs the tests

® Proficiency in testing frameworks and libraries

= Knowledge about what and how to test

® A codebase that’s designed with testability in mind

® The culture and interest to care about these things

(By the way, did you notice that this book just happens to be about these topics?)
In such circumstances, taking the step toward test-driven development is an enor-
mous challenge. Many practices have to be learned, revised, and improved at once.

Test First or Test Last?

Is code developed “test first” superior to code developed “test last” with good unit test-
ing discipline? A question of this magnitude deserves a diplomatic answer: it depends.

Testability depends on controllability and observability, not on time and prece-
dence. Knowing how to handle constructs that have an adverse impact on controlla-
bility and observability, we can safely write tests after having written the production
code. For example, if we happen to remember that the presence of the new operator
in the code we’re about to write will probably result in indirect input, then we obvi-
ously need to externalize this creation by using injection, a factory method, a factory
class, or some other construct that can be controlled by the test. If we think in terms
of contracts with reasonable preconditions and postconditions, our interfaces will be
just as good as if driven by tests. From this perspective, writing the test after the pro-
duction code doesn’t matter. To be perfectly clear: by “after,” I mean seconds or min-
utes after, not weeks or months!

210 Chapter 14 = Test-driven Development—Classic Style

However . ..

Learning what testable code looks and feels like takes quite some time. Also
learning it in theory may be hard; it’s best experienced in practice. In this regard,
starting with test-driven development offers a gentle and stepwise introduction. In
addition, the practice helps in maintaining the discipline to get the tests written. Tests
written supposedly after the production code may be forgotten or omitted in the heat
of battle. This will never happen when working test first.

Then there’s the issue of applying TDD to drive the design of the system, not
the individual modules. Test-driving at this level competes with old-school design
work. Yes, a developer experienced in producing good interaction protocols and
interfaces is likely to get them right to some extent, but that might be a gamble with
no feedback loops.

On the other hand . ..

Test-driven development requires being able to visualize both the solution and
how to test the solution, which can be an obstacle with technologies that are new or
unfamiliar to the developer.

To summarize, code following reasonable contracts written in a testable way
may be just as “good” as code written using test-driven development. However,
working test first definitely makes achieving testability, correctness, and good design
a lot easier.

Summary
Test-driven development is a way of using tests to drive the design of the code. By
writing the test before the code, we make the code decoupled and testable.

Test-driven development is performed in a three-phase cycle:

1. Write a failing test

2. Make it pass

3. Refactor

The refactoring stage is crucial to the technique’s success, because this is where
many principles of good design are applied. When adding tests, the following order of
doing it usually helps:

1. Degenerate case

2. One or more happy path tests

3. Tests that provide more information

4. Negative tests

Summary 211

There are three ways of making tests pass:

® Faking—Returning the expected value hard-coded to fake a computation

® The obvious implementation—Using the obvious code that would solve the
problem

® Triangulation—Teasing out the algorithm by providing example after exam-
ple of different inputs and expected results

Common challenges when introducing test-driven development are

® Our code can’t be tested—The misconception that legacy code is beyond
redemption

® Qur code is special—The misconception that the organization’s code is more
complex than others

m Test-driven development isn’t complete testing—The misconception that test-
driven development is useless because it must be complemented by other
means of quality assurance

m Starting from zero—The lack of fundamental practices that precede test-
driven development

There’s nothing magical about code created using test-driven development. Such
code can be crafted without writing tests first. However, doing this requires a lot of
experience.

This page intentionally left blank

Chapter 15

TEST-DRIVEN DEVELOPMENT—
MOCKIST STYLE

The kind of test-driven development that was presented in the prior chapter will get
us far, but truth be told, there are situations in which it’s hard to apply. Many devel-
opers work with large enterprise systems—often much larger than necessary due to
overinflated design and accidental complexity—composed of several layers. Test-
driving a new feature starting at the boundary of an enterprise system using the tech-
niques we’ve seen so far is challenging, even for seasoned TDD practitioners. This
type of complexity is also demoralizing to those who are just beginning to learn test-
driven development.

A Different Approach

Let’s say that we’ve been tasked with implementing a simple web service for register-
ing new customers and their payment details. Such functionality is common enough
in a typical customer-facing enterprise system. The overall requirements for this
first version of the solution are that customers should be able to pay with direct bank
transfers and the major credit cards (PayPal and Bitcoin will appear in version 2.0).

A quick session at the whiteboard reveals the design idea shown in Figure 15.1,
guided by the system’s existing architecture and design conventions.

Now, suppose that we want to test-drive a customer registration endpoint, which
happens to be a RESTful web service that interacts with other services, which, in
turn, call repositories' and client code that communicates with external parties.
What would the assertEquals of the first test look like? What if the customer
registration endpoint doesn’t even return anything except for HTTP status codes?
Fortunately, there is a solution.

The quick design session exposes a couple of components with different roles
and responsibilities. Some of them may already exist in the current system; some may
need adding. Nevertheless, the sketch tells us how the different objects should inter-
act and collaborate. From here we can test-drive this design, and the various interac-
tions between the objects, before getting to details such as persistence and external

1. Asin “repository pattern” from domain-driven design.

213

214 Chapter 15 = Test-driven Development—Mockist Style

Customer »| Customer »| Database
service repository
Customer /
registration
endpoint \
Payment »| Bank details
service repository \
Credit card A more
details »| secure
v repository database

]
]
[Credit card
| company integration

Outside world

External party
credit card company

FIGURE 151 Components required to implement customer registration, while staying true
to the system’s architecture and design guidelines.

integrations. The sketch also hints that the majority of operations are what one would
call “commands,” that is, instructions to do something, not to return something. In
other words, most of the design follows the “Tell, Don’t Ask” principle (or Law of
Demeter, if you will).

A situation like this is ideal for the mockist style of test-driven development,
which focuses on interfaces and interactions and favors the use of mock objects to do
so. It also encourages doing some design thinking before writing the tests.

Test-driving Customer Registration

In this style of test-driven development, we usually start as close to the system bound-
ary or the user as possible. We then write a test that would tease out the interactions
with the closest collaborators. Eager to get started, we avoid the technical complex-
ity around making the customer registration service some kind of network-aware

A Different Approach 215

endpoint, and focus on its interface and interactions with its closest collaborators
instead. Hence, the purpose of the first test is to drive these interactions.

@Test

public void personalAndCardDetailsAreSavedForCreditCardCustomers () {
CustomerRegistrationEndpoint testedEndpoint

= new CustomerRegistrationEndpoint();

CustomerService customerServiceStub = mock (CustomerService.class);
PaymentService paymentServiceMock = mock (PaymentService.class);
testedEndpoint.setCustomerService (customerServiceStub) ;
testedEndpoint.setPaymentService (paymentServiceMock) ;

RegistrationDetails details = new RegistrationDetails();
details.firstName = "Joe";

details.lastName = "Jones";

details.paymentType = "C";

details.cardType = "VISA";

details.cardNumber = "1111222233334444";

details.cvv2 = "123";

Customer customer = new Customer ("Joe", "Jones");
CustomerId newCustomerId = new CustomerId(12345);

when (customerServiceStub.registerCustomer (customer))
.thenReturn (newCustomerId) ;

testedEndpoint.registerCustomer (details) ;

CreditCardDetails cardDetails
= new CreditCardDetails (CreditCardType.VISA,
11112222333344441, 123);
verify (paymentServiceMock)
.registerCreditCard (newCustomerId, cardDetails);

This is a gigantic test (it took around 15 minutes to write). True, it could have
been simpler, but because we already have a design idea, we don’t need to strive for the
simplest thing that could possibly work. Given some building blocks and a general
feeling for the solution, aiming for an intuitive API feels more natural, to me at least.

In an actual system, some of the classes would already exist and there would be
less work putting everything together, but nonetheless, the test would still require a
lot of work. What can we deduce from this first test?

216

Chapter 15 = Test-driven Development—Mockist Style

just

= The method of invocation is established—The tested method is called with
an object of a class that only has public string fields. This indicates that we
expect RegistrationDetails to be populated by a framework that con-
verts XML or JSON into Java.

= The interface to the collaborators is specified—Both services have registration
methods that operate on domain objects (registerCustomer, register—
CreditCard). We've just determined how to call the collaborators.

= Domain classes are revealed—CustomerId, CustomerDetails,
CreditCardDetails,and the CreditCardType enum. As said before,
these classes may already be present in the system or may have just been
discovered.

= The order of interactions is specified—Not only have we specified which
objects to collaborate with, the test also tells us that we register the customer
first to get a customer ID, which is required to register the payment method.

Missing Fields
Some fields have been left out from the registration details, like address, maybe date of

birth, card holder’s name, and card expiration date. In real code they would be there,
but I wanted to keep the example short and relevant.

Now, notice that there’s only one verification, so to make this test pass, we could
use the simplest of the red-green bar strategies—faking (Beck 2002).

public class CustomerRegistrationEndpoint {

private CustomerService customerService;
private PaymentService paymentService;

public void registerCustomer (RegistrationDetails details) {
paymentService.registerCreditCard(new CustomerId(54321),
new CreditCardDetails (CreditCardType.VISA,
11112222333344441, 123));

public void setCustomerService (CustomerService customerService) {
this.customerService = customerService;

public void setPaymentService (PaymentService paymentService) {
this.paymentService = paymentService;

A Different Approach 217

This code will make the test pass; the customer details are completely ignored
and hard-coded credit card details are being registered. However, by initializing both
the registration details and customer details to consistent reasonable values in the
test, and by providing a stub of CustomerService that really uses them, I wanted
to create some maneuvering room for the upcoming production code.

Using faking to make the test pass is fine, but if you trust your design and are
comfortable with mock objects, I suggest nailing the entire chain of interactions in
one sweep.” After all, this style of test-driven development is best suited for driv-
ing the interactions between objects, and a well-written test should provide enough
groundwork for an obvious implementation (the second red-green bar strategy). In
this case, it would be along these lines:

public void registerCustomer (RegistrationDetails details) {
Customer customer = new Customer (details.firstName,
details.lastName) ;
CustomerId newCustomerId = customerService.registerCustomer (customer) ;
paymentService.registerCreditCard (newCustomerld,
new CreditCardDetails (CreditCardType.valueOf (details.cardType),

Long.parselong (details.cardNumber),
Long.parselong(details.cvv2)));

Not so scary, right? Nothing’s faked and all values are being faithfully shuffled
between the interacting objects. Still, this is pretty rough code. It contains no error
handling, and the parsing looks crude® (which means that CustomerRegistra-
tionEndpoint definitely needs some more tests). However, it does illustrate the
interactions needed for registering a customer who pays with a credit card. In the
refactoring stage, I'd probably move the creation of the CreditCardDetails
domain object to a separate method to get rid of the parsing, which looks out of place
because it’s on a different level of abstraction than the rest of the code. What’s more
interesting is the next test!

What that would be is far from obvious. It could be one of these:

® A test of CustomerRegistrationEndpoint with a customer who wants
to pay using direct bank transfers. This would detail more of the main flow.

m A test of CustomerService to discover the interaction with the customer
repository.

2. This again is a way of saying that we can take larger steps while doing test-driven development
if we feel secure.
3. So crude that one of my reviewers objected to even using the word parsing.

218 Chapter 15 = Test-driven Development—Mockist Style

m A test of PaymentService to explore the invocation of the code that inte-
grates with the credit card gateway and persists the result.

In the previous chapter, it was said that we should pick tests along the happy path
or tests that provide us with more information and knowledge. At this point, test-
ing registration of another payment type would provide little information. The design
sketch tells us that no new collaborators would be introduced (both services are already
used in the first test), so the test would be quite similar to the one for registering cus-
tomers paying with credit cards. Although it wouldn’t be wrong in any way to explore
that alley, going forward with one of the other tests should be more enlightening.

Discovering what persistence of insensitive data in the database would look like
seems easy enough, so a test of CustomerService itis.

@Test
public void validCustomerIsPersistedDuringRegistration() {
CustomerServiceImpl testedService = new CustomerServiceImpl () ;

CustomerRepository customerRepositoryMock

= mock (CustomerRepository.class);
testedService.setCustomerRepository (customerRepositoryMock) ;
Customer customer = new Customer ("Joe", "Jones");
testedService.registerCustomer (customer) ;
verify (customerRepositoryMock) .save (customer) ;

This is a typical “pass-through” test; it verifies that one layer calls another layer.
You'll be writing a lot of these in enterprise applications (which should really make
you start thinking about design and architecture). Still, it takes us in the right direc-
tion. It brings the CustomerServiceImpl* class to life and defines the interac-
tion between the service and the repository.

Because we're still concerned with credit card registrations, the next test would
tease out a concrete implementation of PaymentService, which would be of a
pass-through nature as well.

@Test

public void registerNewCardDetailsAndStoreSecureldentifier () {
final CustomerId customerId = new CustomerId(12345);
PaymentServiceImpl testedService = new PaymentServicelImpl () ;

4. Many people consider naming classes ending with “Impl” to be an antipattern, and I agree.
However, I'm not trying to present perfect code, but code that we’ve all seen time after time and
that we can relate to.

A Different Approach 219

CreditCardRepository cardRepositoryMock

= mock (CreditCardRepository.class);
CreditCardGateway creditCardGatewayStub

= mock (CreditCardGateway.class);

testedService.setCreditCardRepository (cardRepositoryMock) ;
testedService.setCreditCardGateway (CreditCardType.VISA,
creditCardGatewayStub) ;

CreditCardDetails cardDetails
= new CreditCardDetails (CreditCardType.VISA,
1111222233334444L, 123);
when (creditCardGatewayStub.registerCreditCard ("1111222233334444",
"123")) .thenReturn ("FA04BC12") ;

testedService.registerCreditCard (customerId, cardDetails);

verify (cardRepositoryMock) .save (
new SecureCreditCardId(customerId, "FA04BC1l2"));

Being more complex than the test for CustomerService, this test forces us to
start thinking about how data is represented. For example, the interface to the credit
card gateway seems to be string oriented, whereas our code uses domain objects like
SecureCreditCardId.

Adding More Tests

Had the example included more components, it would become quite apparent that
I've been adding tests in a breadth-first manner. It’s the most convenient approach
in systems where the various layers pretty much just delegate calls to lower-layer
components. But what do we do once we reach “fringe” classes like Customer-
Repository (see Figure 15.2), the nameless integration client, a domain class, or a
class that performs some computation?

We switch strategies! Testing such classes using mock objects makes little sense.
If the fringe class performs persistence or calls a remote system, an integration test of
some sort would probably be required.” Conversely, if it performs a computation, a
normal state-based unit test will suffice.

5. Actually, we could write a mock test here as well, but it would have to be accompanied by an
integration test.

220 Chapter 15 = Test-driven Development—Mockist Style

N
Second test LN Fourth test?
N \
First test M Customer \ 5| Customer
service \\ repository
Customer 1
- - \
csnliEislon Third test]
endpoint ’l
Payment I »| Bank details
service repository
Credit card
details
repository
Y
]
]
Credit card

company integration

FIGURE 15.2 When using the mockist style in a layered system, we are in practice adding
mock-based tests breadth first. Then, we switch strategy at the fringes.

Shunning Mockist TDD

In my opinion, many resources often make irrelevant comparisons between
mockist and classic TDD, especially the older ones. Often, they talk about
a purely algorithmic problem, try solving it using a mockist approach, and
judge it inferior. Such resources also often use words like always and never.
An argument could go like this: “A mockist TDD practitioner will always use
mocks. When test-driving a sorting algorithm, he will verify that elements are
swapped, but his test will never actually be able to tell whether the list has
indeed been sorted.”

There are drawbacks with interaction-based testing, and they've already
been covered in Chapter 12, “Test Doubles.” Used excessively, such tests will
lock down the implementation, but used with care, such tests will help in
discovering well-designed interactions. Therefore, use the style that's suitable
for the problem at hand, and don't be afraid of switching between classic and
mockist TDD.

Double-loop TDD

Developing code using only mock-based interaction tests should make you feel a little
uneasy. At the end of the day, such tests won’t determine whether the program works

Double-loop TDD 221

as a whole. It’s great that the design has been driven by tests and that all interactions
are verified, but does it all come together? Remember that each test only checks inter-
actions between collaborators in adjacent layers.

The authors of the book Growing Object-Oriented Software, Guided by Tests
describe a great solution to this (Freeman & Pryce 2009). Although they never use this
term themselves, if I recall correctly, they propose double-loop TDD.

Another Feedback Loop

Double loop TDD adds, as the name would suggest, another feedback loop to the
development cycle (see Figure 15.3). This is achieved by introducing an automated
“acceptance test,” which is created before writing the first unit test (targeting the
object closest to the system boundary). The test is written so that it exercises the fea-
ture to be implemented end to end. By writing such a test, we get three benefits:

® It lets us verify that all interaction tests, and any other unit tests for that mat-
ter, add up to a working solution.

® Tt tells us when a larger chunk of functionality is actually finished.

m [t forces us to deploy and invoke the new feature in a realistic way.

Depending on the type of application, “end-to-end” may mean different things.
Anyhow, the purpose of the test is to execute the system from the outside so that all of
it must be deployed somehow and so that the tested functionality will be accessed in
the same way a user or another system would access it. Given the various deployment
options and complexities of some application stacks, creating the first automated
end-to-end acceptance test will be a challenge, because it will require the entire infra-
structure to be in place before any production code is written. However, this places
the new functionality in a context and allows verifying the technology stack and its
components from the very beginning of the development effort. No more late-inte-
gration problems!

Do you remember the first example in this chapter, the customer registration
endpoint? Testing it by an end-to-end test would have you do the following:

1. Start the framework or container that would provide a web service for per-
forming the registration
2. Deploy/start the registration endpoint

3. Post registration details to the endpoint

6. I've put the words in quotes, because the test is technical and has little to do with user acceptance.

222 Chapter 15 = Test-driven Development—Mockist Style

Write end-to-end test ﬁ Write Make it
A unit test pass

Refactor

FIGURE 15.3 Double-loop TDD: The outer feedback loop consists of an end-to-end
“acceptance test,” and classic and mockist TDD provide the inner loop.

4. Verify the result

5. Shut everything down

Points 1, 2, and 5 are essential plumbing, although they force you to decide how
to deploy the endpoint.” To get past point 3, you'd have to figure out whether the
test should use a framework to invoke the service, or take a more “raw” approach,
like a hand-crafted HTTP POST request. Point 4 is the interesting one. How would
you verify the result? In an end-to-end test, querying the underlying database for the
secure identifier would be cheating under normal circumstances. However, because
it’s a secure identifier, it might be the only way (unless the test grows even larger to
include a call to the credit card gateway where the identifier is present). Such conun-
drums are the topic of Chapter 18, “Beyond Unit Testing.”

Closing the Circle

Back in Chapter 2, “Testing Objectives, Styles, and Roles,” I briefly mentioned BDD,
acceptance test-driven development, and specification by example—three techniques
all of which have one thing in common: they rely on automatic acceptance tests
derived from examples developed together with the customer. Hence, viewing these
techniques as double-loop TDD isn’t controversial in any way.

7. This is no easy decision by any means. Many options have become available in recent years.
First, you need to decide on whether to deploy to the cloud, a local virtual machine, or good old
bare metal. Second, you may decide on using a virtual machine manager, like Vagrant. Third,
you may go for a tool that does the provisioning, like Chef or Puppet, or to use lightweight
virtualization. Docker is the de facto standard at the time of writing. Then there’s the choice of
bootstrapping the application . ..

Summary 223

Summary

Mockist TDD is an alternative approach to test-driven development (in contrast to
“classic” TDD). This style primarily focuses on the design of the system, not the imple-
mentation of individual classes. As the name suggests, mock objects play a large role,
as they are used to drive the interactions and to establish interfaces between objects.

Double-loop TDD means that unit tests are preceded by automated end-to-end
acceptance tests, which require the entire infrastructure and deployment process of
the feature to be in place. Such tests will fail until the entire feature is implemented.
Adding this safety net to test-driven development is particularly helpful if the major-
ity of the tests are based on mock objects and it’s hard to decide whether the sum of
all interactions equals a correct implementation of the feature.

This page intentionally left blank

Chapter 16
DUPLICATION

Duplication is the root of many evils in software development and is particularly
harmful for testability, which was broken down into observability, controllability, and
smallness in Chapter 4, “Testability from a Developer’s Perspective,” where I claimed
that duplicated code presented an additional challenge to testing. The argument was
that there was no way to infer that if certain functionality was tested from one entry
point in the application, it would behave the same if accessed from another.

Why Duplication Is Bad

From a test-aware developer’s point of view, duplication is bad in several ways:

= Duplication breeds duplication—Now this may sound like a circular argu-
ment, but bear with me. Like many other bad programming practices, dupli-
cation is prone to the broken window syndrome.' It means that if there’s no
duplicated code in the system (no broken window), then everybody will think
twice before becoming the first to go wild on the keyboard shortcuts for copy
and paste. Conversely, if there are already heaps of duplicated code (the win-
dows are broken), then breaking yet another window doesn’t matter.

= There’s more of everything—Duplication adds to the existing mass of code.
In particular, programming by copy and paste results in more code to be
browsed, covered by tests, compiled, and packaged. IDEs that index the code
will also suffer performance-wise. More code results in more stress on the
developer’s short-term memory. Mental resources must be spent to keep track
of what duplicated version of the code you're looking at and how many more
there are.

= Duplication introduces bugs—There are special kinds of bugs that only arise
from duplicating things that shouldn’t be duplicated. Imagine a business
rule, or any kind of behavior, being duplicated across three different program

1. Broken window theory (short and simplified): An abandoned building will start getting
vandalized once one of its windows gets broken. The broken window signals that nobody cares
and invites to doing more damage.

225

226

Chapter 16 = Duplication

elements. Individually, these program elements may actually be covered by
tests. Now, should the business rule change, a very keen and thorough devel-
oper is required. That developer must locate all duplicated implementations of
that rule and change them. Not doing so, by leaving one implementation out,
results in a dialog like the following between Ursula the user and our devel-
oper David:

Ursula: Didn’t we lower the minimum age of customers from 20 to 18 last
week?

David: Yes, we did. Look here. When registering on our site, I can enter 18 as
age and get registered.

Ursula: True, and I've seen that we are sending promotions to such customers,
but they don’t appear in the CMS.

David (after browsing some code): Duh. I forgot to change that code.
Ursula: How about the reports then?
David: Let me check. ..

In my experience these conversations take place far too often. Usually, the
outcome is that the level of confidence in the software, and eventually the
developer’s ability, drops. A user doesn’t understand or care about the fact
that the developer has scattered duplicates of functionality and business rules
throughout the codebase and must maintain all of them.

Duplication messes up metrics—Apart from monitoring test coverage,
professional developers will use all sorts of metrics to gauge the quality of
their code: number of constructs that often cause bugs, number of viola-
tions of coding conventions and guidelines, and cyclomatic complexity, to
name a few. How does duplication mess this up? Consider a piece of code
that contains some particularly nasty nesting, which triggers warnings about
cyclomatic complexity. Duplicating this code will immediately double the
number of warnings. True, more code has been added, but no new code has
been written.

Duplication, and in particular copy and paste programming, affects
the reliability of various coverage metrics. What does 10 percent statement
coverage mean for a codebase where at least half of the code has been
duplicated by copy and paste programming? Fortunately, there’s a corollary
to this: the fastest way to increase test coverage is to remove duplicated code.
Code goes away; the amount of code covered by tests goes up. Ta-da!

Taking Advantage of Duplication 227

Metric Tip of the Day

Its been said in the preceding paragraph, but it’s worth repeating—
The fastest way to increase test coverage is to delete code!”

Taking Advantage of Duplication

Duplication can’t be only bad, because nobody would duplicate anything if there were
only downsides to it. What people usually pursue by duplicating is productivity. It
can indeed be achieved, but not in the manner it’s typically done.

Generally, programming by copying and pasting code is not a productive way of
working. Sadly, some organizations have a culture of admiring the quantity® of code
written—the person who produces the most code is the hero. I've seen developers
produce around 1,000 lines of code per day by “reusing” existing code. This worked
in the short run, as long as everything fit in one person’s head, but the systems pro-
duced in this fashion had to be scrapped rather quickly, because they were impossible
to maintain.

Then there are the exceptions. If you run a short online campaign each year that
requires a few adjustments to the previous year’s code, then maybe copying the entire
site from last year will save some time. Similarly, if your mobile game app is expected
to live for six months and never enter maintenance, maybe it’ll pay off to assemble
it from other existing game apps in a copy and paste manner. In short, developing
noncritical systems with short life spans may benefit from slapping together existing
pieces of code.

A more sustainable way to achieve productivity by allowing a degree of duplica-
tion would be to acknowledge that singularity, the opposite of duplication, introduces
bottlenecks and coupling. If nothing is duplicated, then testability is outstanding
from a singularity point of view. However, some hot spots in the code may lead to
queues and quarrels, as multiple teams struggle to work in these areas simultane-
ously, while trying to ensure that they don’t break anybody else’s functionality. By
relaxing the requirement on everything being totally singular and allowing paral-
lel implementations, we can increase throughput. The trick is to either build a very
loosely coupled system or partition it in such a way that this becomes natural and
doesn’t have too negative an impact on testability and consistency.

2. Then there’s the exception to the rule, as one of my reviewers pointed out. He followed this tip
once, and he removed the only code that had unit tests.
3. I'd wager that such organizations’ admiration of quality is proportionally inverse.

228 Chapter 16 = Duplication

Mechanical Duplication

There are several ways to introduce duplication into code and stress a developer’s
short-term memory. Mechanical duplication is my fancy term for copy and paste pro-
gramming, which may be performed in adjacent sections of the source code or across
different modules. The outcome is still the same: suddenly two or more instances of
the same code must be maintained. The results of working with these copies may
range from irritation and bugs (as in the case of Ursula and David) to confusion and
misunderstanding. In the following pages, some examples of such duplication are
provided, along with examples of typical bugs.

About the Upcoming Examples
The upcoming examples attempt to capture the soul and essence of legacy code to

better illustrate the various duplications. Therefore, they contain calls to deprecated
methods, old idioms, and generally funky logic.

Copy and Paste

This is the canonical form of the copy and paste operation. One or several lines of source
code have been duplicated. This is usually easily cured using “extract method” refactor-
ing. In the following example, depicting an average insertion method, the developer felt
compelled to copy the dubious validation logic to the update method as well.

public void create (Customer customer) ({
if (customer.getGender () == Gender.UNKNOWN
|| customer.getDateOfBirth() == null) {
throw new IllegalArgumentException (customer
+ " not fully initialized");

// More logic here

public void update (Customer customer) {
if (customer.getGender () == Gender.UNKNOWN
|| customer.getDateOfBirth () == null) {
throw new IllegalArgumentException (customer
+ " not fully initialized");

// More logic here

Mechanical Duplication 229

The obvious opportunity to introduce bugs here lies in changing one instance of
the duplicated code and not the other. Such simple bugs would normally be caught
by unit tests, but systems where this kind of duplication is practiced usually don’t
impress when it comes to unit test coverage.

Block Copy and Paste

This duplication refers to identical blocks of code occurring in several places in
the code. This phenomenon could also be described as the inverse of the “extract
method” of refactoring—in-lining. There’s no clear line between a normal copy and
paste and a block one, but if you get annoyed by blocks of similar code, then it’s prob-
ably the latter.

I decided to give this construct its own name after having seen classes with man-
ually written SQL queries that mapped the result set to objects in identical ways over
and over again. And while copying a few lines of code somewhere once in a while may
be forgivable, duplicating entire blocks never will be.

Building on the previous example, extending the validation logic to include age
would raise my block duplication warning flag:

public void create (Customer customer) {

if (customer.getGender () == Gender.UNKNOWN
|| customer.getDateOfBirth () == null) {
throw new IllegalArgumentException (customer
+ " not fully initialized");

LocalDate now = new LocalDate();
Period period = new Period(customer.getDateOfBirth(),
now, PeriodType.yearMonthDay())
if (period.getYears() < 18) {
throw new IllegalArgumentException(customer + " is underage");

// Equally scary logic for saving would go here...

}

public void update (Customer customer) {

if (customer.getGender () == Gender.UNKNOWN
|| customer.getDateOfBirth() == null) {
throw new IllegalArgumentException (customer
+ " not fully initialized");

LocalDate now = new LocalDate();

230 Chapter 16 = Duplication

Period period = new Period(customer.getDateOfBirth(),
now, PeriodType.yearMonthDay());
if (period.getYears() < 18) {
throw new IllegalArgumentException (customer + " is underage");

// More logic here...

Large blocks not only increase the chance of diverging implementations, but are
also tiring to read (both in source code and in a book).

Constructor Copy and Paste

Constructor copy and paste means that constructors are duplicated instead of calling
each other. Depending on the language, this may be an issue, or it may not. Because
of the way constructors tend to look, this gives rise to a particularly ugly kind of copy
and paste duplication and thus deserves a name of its own.

public NetworkInterface (Inet4Address ipAddress,

NetMask netMask,
Inet4Address broadcast,
Inet4Address defaultRoute) {

this.ipAddress = ipAddress;

this.netMask = netMask;

this.broadcast = broadcast;

this.defaultRoute = defaultRoute;

public NetworkInterface (Inet6Address ipV6Address,
NetMaskIpV6 ipVéNetMask,
Inet6Address ipVe6DefaultRoute) {
this.ipV6Address ipV6Address;
this.ipVeNetMask = ipVe6NetMask;
this.ipVé6DefaultRoute = ipV6DefaultRoute;

public NetworkInterface (Inet4Address ipAddress,
NetMask netMask,
Inet4Address broadcast,
Inet4Address defaultRoute,
Inet6Address ipV6Address,
NetMaskIpV6 ipVéNetMask,
Inet6Address ipV6DefaultRoute) {

Mechanical Duplication 231

this.ipAddress = ipAddress;

this.netMask = netMask;

this.broadcast = broadcast;
this.defaultRoute = defaultRoute;
this.ipV6Address = ipV6Address;
this.ipV6NetMask = ipVeéNetMask;
this.ipVé6DefaultRoute = ipV6DefaultRoute;

The more assignments in the duplicated constructors and the more constructors,
the greater the chance of forgetting an assignment in one of them.

Method Duplication

This could also be called “method copy and paste.” It means that a method has been
copied from one context to another. In object-oriented systems, the most obvious con-
text would be a class. However, a context may also be a namespace, module, or project.

Typically, “utility” methods become victims of this flavor of duplication. The
method in the following example is one such. It’s actually a reconstruction of some-
thing I once found in a codebase in eight different classes.

public static long diffTime (Date tl, Date t2) {
if (tl.getDate() != t2.getDate()) {
throw new IllegalArgumentException (
"Dates must be equal for comparison to work");
}
return (t2.getHours() - tl.getHours()) * 60;

The obvious problem here is divergence, and the danger lies in the methods having
the same name, while behaving differently. It’s not hard to imagine that someone
would try to “repair” the di f£Time method to look like this . . .

public static long diffTime revised(Date tl, Date t2) ({
if (tl.getDate() != t2.getDate()) {
throw new IllegalArgumentException (
"Dates must be equal for comparison to work");
}
return (t2.getHours() * 60 + t2.getMinutes/())
- (tl.getHours () * 60 + tl.getMinutes());

232 Chapter 16 = Duplication

... in seven out of eight places in the code. Imagine the kind of bugs this would give
rise to and how the end users would perceive the system’s behavior.

Knowledge Duplication

In contrast to mechanical duplication’s stamping of the same lines of code across the
system, knowledge duplication is the result of deliberate design decisions. It may be
the kind of duplication needed to achieve decoupling, independence, or maneuvering
space for redesign and rewriting. Unfortunately, it may also be a result of ignorance
and conflict, in which case the effects are the same as those of mechanical duplica-
tion, but on a larger scale.

Knowledge duplication is about reintroducing existing concepts and functional-
ity, but doing so not by copying existing code, but by writing new code. Such code
may use different names and abstractions, look different, be more testable, or just
better, but it still duplicates existing functionality. This has consequences for both
development and testing.

In codebases with true collective code ownership and teams taking turns work-
ing on different parts of the system depending on their current focus, developers
must both know about all instances and versions of the duplicated functionality and
actively choose how to act on this knowledge. Do they change or add things in one
instance or both? Do they try to delete one instance? Where do they write unit tests?
Not knowing of all the duplicates also has its costs, the obvious one being the risk of
introducing yet another one.

Testing of systems with a high degree of mental duplication also becomes harder,
especially from a black box perspective. Not knowing how many “solutions” there are
behind common functionality and implementation of business rules, more testing is
required—Ilike in the copy and paste example in Chapter 4.

Next follow some variations of knowledge duplication, starting with the simple
cases and progressing to the more sophisticated ones.

Similar Functionality in Different Methods

In a larger system that’s been around for a while, it’s inevitable that there’ll be meth-
ods that duplicate each other’s behavior. The overlapping won’t be complete, because
if it were, it would just be mechanical duplication. It’s more likely to be around 50
to 90 percent. In addition, the methods will probably live in separate contexts and
have different names that don’t necessarily sound similar. Different developers, develop-
ment styles, and architectural trends will have had that effect. Therefore, it shouldn’t be
surprising to find both a Customer.payInvoice() method and a PaymentUtils.
billCustomer () method doing roughly the same thing in the same system.

Knowledge Duplication 233

There are several reasons why such methods may come into being. Some are
good, some are bad.

= Deliberate partitioning—The system has been partitioned in a way that
allows certain duplication to make teams working in parts that mostly don’t
overlap independent of each other.

® Choice—The developer knew that there was a method that did something
similar to what he needed to accomplish but chose to ignore it because there
were design guidelines or a new architecture that required another solution.
(This is where methods should get deprecated.)

® Jgnorance—The developer wasn’t aware of the fact that there was a method
that accomplished the task at hand (probably because it was poorly named
and lived in an unintuitive context, or simply because it was the developer’s
first day on the job), so he* created a new one.

® Fear—The developer needed something that behaved like an existing
method, but only in four out of five cases. Dreading to break existing code,
he didn’t refactor the original method and introduced a new one instead.

® Laziness—Again, the developer needed something that behaved like an exist-
ing method most of the time, but not always. Instead of adapting the existing
method to handle more cases, he crafted a similar duplicate.

= Conflict—A bunch of developers couldn’t agree on the best way of imple-
menting something, so as an act of passive aggression one of them wrote a
new method that behaved exactly the way he thought it should.

When it comes to duplicated methods, my advice is this: keep the duplication
that’s been introduced on purpose. Sometimes some detective work may be required
to determine whether that’s the case. Get rid of the methods introduced by ignorance,
laziness, fear, or conflict, if you happen to touch that code, as they only add more
broken windows.

Similar Functionality in Different Classes

Just as methods may get created with overlapping functionality, so can classes. My
experience is that this is less common, probably because classes are based on nouns
and are easier to find. Of course, once competing classes entrench themselves in a

4. “He” refers to “he or she,” but is used for readability.

234 Chapter 16 = Duplication

system, they’re even harder to get rid of than overlapping methods. Classes leave a
larger footprint and may get deeply entangled via their methods.

The reasons for creating competing and overlapping classes are the same as those
for creating duplicated methods, but they lean more toward ignorance and deliberate
design choices. If a concept has a totally alien name in an older part of a system, then
surely a new developer might create a new class for it with a more intuitive name.

Competing Implementations

This duplication lies in solving a similar problem differently in the same system. It’s
easiest to spot on the architectural or design level. For example

= Module A uses this logging framework, and module B uses that logging
framework.

® Module C relies on handwritten SQL, whereas module D uses an O/R
mapper.

® Module E uses a date library, whereas date computations have been imple-
mented from scratch in module F.

® Module G performs client-side validation, whereas server-side validation is
preferred by module H.

This list easily grows. From the developer’s point of view, this switching can be
interesting, dreary, or just a fact of life. However, I'd argue that it has a certain impact
on testing. Would you test a system that you knew was built using an O/R mapper
differently from one that relied on handwritten SQL?

Using different frameworks or idioms across the system doesn’t automatically
have to decrease testability. Here maintainability and consistency are more of an
issue. If the system is really loosely coupled and there’s a deliberate strategy that says
that teams get to pick their own stacks, then roll with it. If the system is more of
a monolith containing four generations of logging frameworks, three unit testing
frameworks, five web frameworks, and two dependency injection frameworks, obvi-
ously starting a conscious effort to reduce this fragmentation will benefit maintain-
ability, performance, and most likely testability as well.

Competing Domain Models

This is the last and final form of knowledge duplication. It’s encountered in larger
systems that have been around for more than just a few years. They’ve grown and
evolved in directions that nobody could foresee at the time of their creation. Ten years

Summary 235

later, they no longer support the business model or the needs of their users. Still, they
keep a decade of data hostage, and there’s no way that they’re going to be rewritten.

In such cases starting afresh with a new domain model, new concepts, new tech-
nology, and new everything may save the system and allow the business to func-
tion without any interruptions. This comes at the cost of the ultimate duplication of
knowledge: everybody working with the system—at least from the internal point of
view—must be aware of what model they’re working with. So when a new business
rule is introduced, care must be taken to implement it in either both models or just
the new one while deprecating or deleting functionality in the old one.

Naturally, both models and their related concepts will require different kinds of
testing, because they’ll have been built by different people using different technolo-
gies, which, no doubt, will make them have their own different quirks.

My advice on competing domain model duplication is that it shouldn’t drag on
forever. The process of transition between domain models is a slow one—in large sys-
tems in particular—and you don’t want to be stuck in the middle. Being there has
certain distinct disadvantages. In terms of testability, youre most likely in a place
where you have to maintain two stacks of testing tools, and you have to be on your
toes when it comes to requirements: Which model supports which functionality?
Development-wise, all good things happen in the new code (both the production and
test code), and morale plummets when working with the old code. Bad morale is sel-
dom good for correctness. Therefore, make the transition as swift as possible.

Summary

From a testability point of view, duplication is the developer’s and the tester’s enemy.
It makes the codebase larger and more difficult to navigate, it breeds more duplica-
tion, it leads to specific kinds of bugs that are about changing something in x out of
y places—and forgetting about the remaining y — x instances—and it messes up met-
rics. Allowing a certain degree of duplication may increase a development organiza-
tion’s throughput, though, as bottlenecks may be removed.

Duplication can be divided into mechanical and knowledge. The former is the
result of copying and pasting code in various ways and is easy to fix. The latter is
about overlapping and competing concepts, and can be very challenging to get rid
of if unwanted, because it may reside in the very core of the system’s architecture.
Knowledge duplication may be fueled by ignorance, fear, laziness, conflict, or a com-
bination thereof. It may also be a result of deliberate actions taken to reduce a team’s
need for synchronization around hot spots in the code.

This page intentionally left blank

Chapter 17
WORKING WITH TEST CODE

Apart from following principles of good design, just like production code, test code
has an extra area responsibility—to explain and to describe what the production
code is supposed to be doing. Also, just as with production code, some people may
feel uncomfortable deleting it. This chapter contains some pointers about how to
work with existing test code, how to improve it, and when to delete it.

Commenting Tests

Should test code be commented? That depends. On one hand, the quality of the test
code should be on par with the quality of the production code. It should be well struc-
tured, follow all the principles of good design, and test names should be accurate and
descriptive (and so should the variable names) (Tarnowski 2010). On the other hand,
some tests will still be difficult to understand, even though they live in nicely named
methods with clean code and good variable names. In certain cases, cause-and-effect
relations cannot be deduced from good intent-revealing names alone. Sometimes
a specific combination of input and state will trigger a business rule that’s hard to
describe without using some well-placed comments. However, these cases should be
quite rare; if the production code is so cryptic that its test code must be commented to
explain the business rules, then some lights should go red.

Strategies for Comment Avoidance

Whenever your fingers start to itch to write a comment in your test code, take a deep
breath and think about whether you're actually trying to compensate for some prob-
lem in the code. Before resorting to comments, try the following strategies.

Adjust the Test's Name

Try conveying what’s specific about the test and its expected outcome. The nature of
the test should be apparent from the name. Experiment with the naming conventions
from Chapter 7, “Unit Testing,” and don’t be afraid to challenge them if it increases
readability and makes the intent more clear.

237

238 Chapter 17 = Working with Test Code

Use Variables and Constants to Clarify the Test

Code should never contain magic numbers. In test code, there’s another dimension—
well-named variables can carry just that additional piece of information needed to
explain the test’s workings and intention.

Instead of:

@Test

public void simpleMisspellingsAreTolerated () {
ParsedAddress address = addressParser.parse ("Sesame streat 123", 1);
assertEquals ("Sesame street", address.streetName);

Write:

@Test

public void simpleMisspellingsAreTolerated() {
String misspelledStreetAddress = "Sesame streat 123";
int toleratedNumberOfErrors = 1;
ParsedAddress address = addressParser.

parse (misspelledStreetAddress, toleratedNumberOfErrors) ;
assertEquals ("Sesame street", address.streetName);

Use Asserts with Messages

As a third line of defense, use assertion methods that allow specifying a message that
will be displayed if the assertion fails. By including an extra message, were packing
more information into the code and not into the comments.

Instead of:

// Verify that an IP address has been allocated
assertNotNull (IpAllocator.allocate());

Write:
assertNotNull ("Failed to allocate IP address", IpAllocator.allocate());

Needless to say, this can result in bloat as well. Adding obvious messages to asser-
tions just clutters the code, so pick your battles. Your general rule should be to use
neither comments nor assertion messages.

If you still really need an assertion message, make the test fail just to see what the
combined message looks like. Watch the phrasing to make sure that it’s informative

Commenting Tests 239

and that the string supplied by you concatenated with that of the assertion doesn’t
produce a confusing message. For example, this message

assertNotNull ("IP address", IpAllocator.allocate()):;
produces the following output:
java.lang.AssertionError: IP address

This isn’t helpful at all, and a better message would be needed to actually help
you understand why the assertion failed. As a final note, don’t get fancy with these
messages; plaintext only. No clever logic to construct the message string.

Use Factories or Builders

Data setup, especially of similar-looking data, usually yields comments that explain
the differences. Just as introducing explanatory variables and constants helps to
increase readability, using factory methods/classes or builders also removes the need
for comments.

Instead of:

@Test
public void productsInHistoryWithTotalPriceLessThanl00
NoFreeShipping () {
Customer customer = new Customer (1, "Mary", "King");

Purchase purchase = new Purchase();
// Not eligible for free shipping.
purchase.addProduct (new Product(l, "Product", new Money(99)));
customer.getPurchaseHistory () .add (purchase) ;
assertFalse (customer.hasFreeShipping());
}
@Test

public void productsInHistoryWithTotalPriceGreaterThanl00
GetFreeShipping () {
Customer customer = new Customer (1, "Mary", "King");
Purchase purchase = new Purchase();
// This time the customer has passed the threshold
// for free shipping by exceeding $100.
purchase.addProduct (new Product (1l,"Product", new Money (150)));
customer.getPurchaseHistory () .add (purchase) ;
assertTrue (customer.hasFreeShipping()) ;

240 Chapter 17 = Working with Test Code

Write:

@Test
public void productsInHistoryWithTotalPriceLessThanl00 NoFreeShipping() {
Customer customerWithoutFreeShipping
= customerWithTotalPurchaseAmount (99) ;
assertFalse (customerWithoutFreeShipping.hasFreeShipping());

@Test
public void productsInHistoryWithTotalPriceGreaterThanl00 GetFreeShipping() {
Customer customerWithFreeShipping
= customerWithTotalPurchaseAmount (150) ;
assertTrue (customerWithFreeShipping.hasFreeShipping());

private Customer customerWithTotalPurchaseAmount (double amount) {
Customer customer = new Customer (l, "Mary", "King");
Purchase purchase = new Purchase();
purchase.addProduct (new Product (1,"Product", new Money (amount)));
customer.getPurchaseHistory () .add (purchase) ;
return customer;

Factory methods, factory classes, and builders have certain effects on test code.
Occasional factory methods sprinkled throughout the codebase tend to introduce
duplication. Many tests will want to construct central objects or data structures in a
simple way, and you’'ll end up with 10 different factory methods doing pretty much
the same thing. This, if not sooner, is a good time to refactor the code and create one
factory or builder that will be used by all tests. On the other hand, such helper classes
may introduce coupling between previously unrelated tests. This shouldn’t be a prob-
lem, but rather an opportunity to think about the design of the test code and some
more refactoring.

Split Up Test Classes

Although we should strive to keep classes small, some nontrivial classes will require
quite a few tests. These tests may focus on different behavior and use different librar-
ies. A typical example is the test class in which half of the tests use mock objects,
whereas the other half don’t. This usually leads to apologetic comments in the setup
code and in the tests:

public class PaymentServiceTest {

Deleting Tests 241

private PaymentService testedService;
private PaymentRepository paymentRepositoryStub;

@Before
public void setUp() {
testedService = new PaymentService();

// The checksum and batch tests won't need

// this, but this mock won't break them.
paymentRepositoryStub = mock (PaymentRepository.class);
testedService.setPaymentRepository (paymentRepositoryStub) ;

Even if this isn’t the case and the problem isn’t in the comments, splitting a test
class that mixes state tests with interaction tests into at least two test classes is usually
a step toward better maintainability.

Deleting Tests

Test code being regular code, it should be quite apparent when to refactor, redesign, or
delete tests. There’s nothing about test code that gives it permission to ignore design
principles and patterns or to disregard guidelines such as those in the book Clean
Code (Martin 2008) or the like. If this were true of test code out there, this entire sec-
tion would be superfluous. However, this is not the case, and in my personal experi-
ence, there’s something about deleting test code that sparks arguments that wouldn’t
be brought up in a conversation about “regular” code. With this in mind, ’'m wrap-
ping up with some pointers about when to delete test code.

Prime Candidates for Deletion

Go ahead and delete tests in the following situations:

® Tests that haven’t kept up with refactoring—Every large codebase contains
some tests that haven’t caught up with ongoing or recent refactoring. The
code exercised there has been refactored many times and its semantics and
purpose have changed, but the tests have only been adjusted to compile and
pass, without any reflection on their true purpose. Such tests tend to look like
gibberish and should be removed or rewritten.

= Developer learning tests—Tests written by developers who have just started
writing unit tests often make good candidates for deletion, especially the ones
that test nothing. Such tests may come into existence when the developer

242

Chapter 17 = Working with Test Code

who wrote them was absorbed in ending the test with some kind of assertion
and forgot about actually testing anything useful. Such tests just confuse and
must go.

Tests that don’t compile—In some extreme cases that unfortunately exist,
some tests don’t even compile. This may not even be perceived as a problem,
because teams/organizations in which this happens usually don’t compile and
run their tests anyway. Such tests should be deleted. Making them compile is
often not worth the effort, because the compiled result will probably fall into
one of the preceding categories anyway.

Tests that are commented out—Do you keep code that’s commented out?
Then why keep tests that are?

Redundant tests—When two tests verify the same thing they are, by defini-
tion, redundant. Tests are usually not created redundant, but they become
redundant after rounds of refactoring and redesign. Compared to the earlier
points, this isn’t the worst that can happen to you. However, redundant tests
add to the overall number of tests and create a false feeling of safety. A bigger
concern is the fact that multiple tests may start failing because of a single bug.
Having many redundant tests in the codebase also encourages the existence
of tests that “test everything”—that is, that verify irrelevant state or inter-
actions because they can. After all, oververification is just another type of
redundancy. Needless to say, such tests are often useless for defect localiza-
tion. For these reasons, I really recommend that redundancy among tests be
reduced, which may imply refactoring, rewriting, or removing tests.

Possible Candidates for Deletion

Consider deleting tests in these situations:

® Ignored tests—Using a test framework’s ignore feature may be a way of

saying that the functionality needed to make the test pass isn’t in place yet
(which shouldn’t really happen in the case of unit tests), or it could be a fancy
way of commenting out tests that don’t pass. Keep your ignored tests under
observation, and delete them if they stay that way for too long.

Tests using an older framework—Migrating between testing frameworks or
mocking frameworks isn’t that big a deal. Technology evolves. However, as
you migrate, make sure that you adjust your tests accordingly. If not, consider
deleting some of them. For maintenance reasons, you don’t want to be in a
situation where you're running two unit testing frameworks and three differ-
ent mocking frameworks in the same codebase (this has actually happened to

Summary 243

me). The difficulty lies in keeping the syntax and various quirks and oddi-
ties of the different frameworks in your head. Also, that’s demanding a lot
from developers that enter your team. So, if a dozen unit tests use EasyMock'
whereas several thousand rely on Mockito,” either fix the ones that chain you
to EasyMock or delete them (and drop EasyMock from the project entirely) to
achieve consistency.

= Qutgrown tests—This is an interesting category of tests. These are tests that
were once useful, but that have been replaced by more useful tests. This is
often true of tests that were created when using triangulation (described in
the chapter on test-driven development). When trying to triangulate the solu-
tion, a number of tests come into existence, and once the algorithm is found,
they may no longer be needed. They’re not really 100 percent redundant, but
they feel awkward. Some people prefer to delete such tests.

Why It's Important to Delete Tests

Apart from following software engineering practices, I can see several strong argu-
ments in favor of deleting tests, one being transparency and truthfulness. Codebases
that contain thousands of tests feel quite safe to refactor. However, if half of the tests
belong in the “prime candidates for deletion” category, does it feel equally safe to
refactor? At the end of the day, we want to be truthful to ourselves about the quality
of the test code, and keeping tests that add no value is neither transparent nor truth-
ful. Another reason is providing a good example. Although this shouldn’t be a valid
reason, it’s unfortunately still a fact that a fair number of developers still feel uncom-
fortable around test code. By keeping only tests that are well written, up to date, and
meaningful, we provide developers new to testing with good examples. Finally, there’s
simplicity. 've made a similar argument in Chapter 16, “Duplication.” If there’s less of
everything, including dead or irrelevant test code, we have a bigger chance of devel-
oping a true understanding of our system and we won’t waste time thrashing around
in its dark corners.

Summary

Test code follows the same conventions as production code and should be of equal
quality. Use comments sparingly and only in cases where a well-written test may not
illuminate some intricacies of the tested code.

Before commenting test code, try these strategies:

1. Which is an older mocking framework.
2. Which is newer than EasyMock.

244 Chapter 17 = Working with Test Code

Adjust the test’s name

Use variables and constants to clarify the test

® Use asserts with messages

Use factories or builders

Split up test classes
Delete tests that

= Haven’t kept up with refactoring

= Have been written by developers who were learning and that verify nothing
= Don’t compile

= Are commented out

= Are redundant
Consider deleting tests that

= Make use of the testing framework’s ignore functionality

® Are coupled to a framework that isn’t used widely throughout the codebase or
that has been abandoned in favor of a newer framework

® Once provided learning and information, but have been replaced by more
accurate or otherwise more suitable tests

Chapter 18
BEYOND UNIT TESTING

As you grow accustomed to writing unit tests, you’ll most likely appreciate the secu-
rity and feedback they provide, and you’ll want the same for bigger building blocks
and their interactions.

Until now, many topics have been illustrated with unit tests. It’s quite natural,
because they constitute the basis of developer testing and embody many of the prin-
ciples behind more complex tests. Besides, they can be kept small and to the point,
which is rather helpful when explaining a concept or technique. If you get the low-level
unit tests right, shifting toward higher-level tests, like integration tests or end-to-end
tests, is relatively easy. Still, there are some differences and pitfalls worth mentioning.

This closing chapter will get you started on the journey toward advanced devel-
oper testing, for unit tests are but the first step. A word of caution: the topics covered
in the following few pages can easily fill an entire book. I've tried my best to cherry-
pick and highlight things that I consider important and helpful to the reader at this
point to the best of my ability.

Tests that Aren’t Unit Tests

The different test levels were described in Chapter 3, “The Testing Vocabulary.” A
significant portion of that chapter was spent explaining that the tests at each level
aren’t easy to define and that there’s much room for interpretation and variation. Unit
tests are no exception, but tests that aren’t unit tests are even harder to classify. Such
tests may do everything that unit tests should stay clear of, and this opens up end-
less possibilities. This section contains examples of tests that aren’t unit tests and fall
somewhere between and including integration tests and end-to-end tests.! Some of
them contain details that are meant to be thought provoking on purpose. While read-
ing them, I want you to think about whether they would provide any value in your
current context.

1. Maybe settling for Medium and Large tests isn’t such a bad idea. ..

245

246 Chapter 18 = Beyond Unit Testing

Tests Enclosed in Transactions

Tests enclosed in transactions are among the simpler integration tests. Their pur-
pose is to exercise persistence operations that involve writes without messing up the
database,” which is why they typically appear around DAOs, repositories, or any other
abstractions that wrap persistence. Each test starts a transaction, performs whatever
operation that results in a write, checks the result, and rolls back the transaction.
For obvious reasons, the transaction is also rolled back if an error occurs during the
test. The transaction management can be implemented “by hand” or by a framework.
Note that such tests differ from those running against in-memory databases in that
they care about the state in which they leave the database. Tests that run in trans-
actions are typically employed if an in-memory database can’t be used, which isn’t
an uncommon scenario. The real database may use another SQL dialect and provide
some crucial vendor-specific functionality. It may also have different performance
characteristics or differ with respect to some other quality attribute.

Here’s an example of what a test like this would look like if implemented using
Java’s Spring framework. In the following code, I've lumped together all address fields
into one shippingAddress to keep the example brief.

@ContextConfiguration(classes = {TestContextConfiguration.class})
public class CustomerRepositoryTest extends
AbstractTransactionalJUnit4SpringContextTests {

@Autowired
private CustomerRepository customerRepository;

@Test
public void readBackStoredCustomer () {
long newCustomerId = customerRepository.nextIdentity();
Customer customer = new Customer (newCustomerId, "John", "Smith",
"john@smith.com", "100 Main St., Phoenix AZ 85236");
customerRepository.save (customer) ;

Customer savedCustomer =
customerRepository.findById (newCustomerId) ;
assertThat (savedCustomer, equalsIgnoringCreationDate (customer)) ;

2. Technically, such tests work for message queues or any other artifacts that support transactions,
but let’s keep to the most common case.

Tests that Aren’t Unit Tests 247

This test is quite benign. It verifies that a customer saved using the Customer-
Repository class can be read back by the same repository. If a persistence frame-
work is used, such tests give relatively little return on investment, because theyre
mostly testing that framework. They start making sense if the persistence opera-
tions are implemented by hand (which they were here using JdbcTemplate). I can
witness first-hand that even something as trivial as saving a few fields in a straight-
forward table is prone to error because of misplaced commas and missing values in
constructors. My personal failures aside, tests like this really start to shine when they
exercise logic that’s hard to test in other ways—methods that call stored procedures,
database triggers, or persistence abstractions that hide business logic. All of this can
happen within the confinement of a transaction and traces of it disappear upon roll-
back. The magic happens when the AbstractTransactionalJUnit4Spring-
ContextTests class is given a transaction manager and data source that references
the test database. Setting this up is the responsibility of the TestContextConfig-
uration class.

@Configuration
@ComponentScan ("repository")
public class TestContextConfiguration {

@Bean
public PlatformTransactionManager transactionManager (
DataSource dataSource) {
return new DataSourceTransactionManager (dataSource) ;

@Bean

public DataSource dataSource () {
DriverManagerDataSource dataSource

= new DriverManagerDataSource();

dataSource.setDriverClassName ("com.mysqgl.jdbc.Driver") ;
dataSource.setUrl ("jdbc:mysqgl://192.168.0.128/testdb") ;
dataSource.setUsername ("tester") ;
dataSource.setPassword ("secret") ;
return dataSource;

Short as it is, the test does rely on a database being available. On the whole, the actual
complexity of such tests usually lies in how the database is set up and what kind of
data it contains. This particular test is simple, because it doesn’t require any data to
be present in the database before it’s executed. In an actual integration test suite, such

248 Chapter 18 = Beyond Unit Testing

tests would be in the minority, and many tests would start by populating tables or
require that the database contain some base dataset.

Either way, the build that would run the integration test suite would be respon-
sible for orchestrating both the execution of the tests and the availability of the data-
base. Depending on the infrastructure and database type, this may be relatively easy
or quite challenging.

Tests that Exercise a Service or a Component

It’s not entirely uncommon for systems to be composed of building blocks that go by
the name of components or services. Such building blocks hopefully have one area
of responsibility and are readily accessible through some kind of public interface.
Technologies like COM, RMI, EJB, or web services (REST or SOAP) come to mind.
Tests that interact with such components must be able to orchestrate their start-up
and then access them somehow. This often involves starting a server or some kind of
platform that hosts the tested component or service.

These tests are common in projects where the team works with acceptance test-
driven development or specification by example, because they target business func-
tionality without bringing in the complexity of Ul logic. The following test echoes the
functionality of the previous example, but this time the customer is created by calling
a RESTful web service.

@SpringApplicationConfiguration (TestContextConfiguration.class)
@WebIntegrationTest
class CustomerServiceTest extends Specification {

@Autowired
private CustomerTestRepository customerTestRepository;
private RestTemplate restTemplate = new TestRestTemplate ()
def "Create a new customer" () {

given:

customerTestRepository.deleteAll ()

when:

def newCustomer = new Customer (firstName: "John",
lastName: "Smith",
email: "john@smith.com",

shippingAddress: "100 Main St., Phoenix AZ 85236")
URI location = restTemplate.postForLocation (
"http://localhost:8080/customers”, newCustomer)

Tests that Aren’t Unit Tests 249

then:

location.path =~ /.*\/customers\/\d+$/

and:

customerTestRepository.customerCount () == 1

class Customer {
String firstName
String lastName
String email
String shippingAddress

Here I almost feel like cheating. Again, I've used the Spring framework to start an
entire server running a RESTful service by using one line of code—@WebIntegration-
Test. On the other hand, wrestling with server start-up and service deployment
isn’t the key focus here. Instead, let me direct your attention to the fact that this test
makes use of a repository” tailored specifically for testing to delete all customers and
to count them. The implementation details of the deleteA11l method aren’t impor-
tant. Its purpose is to delete all customers and their data (customers being the aggre-
gate roots), so that observing creation of a new customer is easy.

When it comes to invoking the actual web service, the test is satisfied if the HTTP
response contains a Location header that seems to be containing the URL of a new
customer resource. In this case, the location is verified using a regular expression.
Other alternatives would be inspecting the body of the response (as it could contain
a representation of the new customer resource), the HTTP response code, walk the
extra mile and GET the new customer resource, or pull the customer out from the
database. What would be the right thing to do? Bear with me through some more
examples, and we’ll revisit this issue. (Although the short answer is: “it depends.”)

Tests that Interact with Other Systems

Few applications are homogeneous, self-contained monoliths these days. Often, part
of a system’s functionality is supplied by another system or a third party. Therefore,
it’s not surprising that there’ll be tests that exercise functionality spanning several
systems. Such tests may further be divided into two categories: the ones that operate

3. Of course, it doesn’t have to be domain-driven design like a repository. A good old DAO or a
helper class that digs around in the database will do.

250 Chapter 18 = Beyond Unit Testing

against an external party’s sandbox or test environment, and the ones that fake the
system they interact with. Both types come with their advantages and disadvantages.

Some types of services are best operated by vendors who have the know-how and
compliant environments. Payment gateways are a typical example. Not only is pro-
cessing of online payments most likely not the problem you want to solve, but stor-
ing card holder details also mandates compliance with a security standard called PCI
DSS,* which is rather cumbersome to implement. Therefore, it’s quite natural to turn
to a third-party payment gateway provider and use their API to process payments.
The vendor will most likely provide a test environment—a sandbox—against which
you can test your integration. The sandbox will be very similar to the production
environment, but will run on test data and be totally safe to interact with.

Tests that span across hops to external parties have to be prepared for interacting
with environments they can’t control. In practice it means that such tests may fail if
the vendor’s sandbox is down, and that they have to adapt to the quirks and mechan-
ics of the third party’s test environment and API. In other words, they run with lim-
ited controllability.

If the vendor’s API is well designed, both using it and testing it shouldn’t be hard.
Therefore, both the production code and test code may look quite harmless. Have a
look at this test that incorporates PayPal and executes a credit card payment to their
test sandbox system.

def test pay with visa using valid payment information
address = Address.new({:first name => "John",
:last name => "Smith",
:street => "100 Main St.", :city => "Phoenix",
:zip => "85236", :state=> "AZ"})

visa card = CreditCard.new('4417119669820331"', 1, 2020, 874)
tested method = PayPalPaymentMethod.new
payment id = tested method.make card payment (5.55, visa card, address)
assert match (/"PAY\-[\w\d]+/, payment id)

end

The test looks benevolent, and the code it tests isn’t much scarier:

def make card payment (amount, credit card, payer address)
payment = Payment.new ({
~20 LOC that construct a payment request from the arguments
})

if payment.create

4. https://www.pcisecuritystandards.org/pci_security/

https://www.pcisecuritystandards.org/pci_security/

Tests that Aren’t Unit Tests 251

payment.id
else
raise PaymentError, payment.error
end
end

However, PayPal’s API abstracts away a sequence of two calls to a REST end-
point. The first call retrieves an authorization token, whereas the second performs
the actual payment. In conclusion, the third-party API does all the heavy lifting.

In its present form, the test verifies that the request is constructed in a way that’s
acceptable to the endpoint and that the system that runs the test can establish a con-
nection to PayPal’s sandbox. Although it makes a succinct example, I'd probably
make use of its mechanics differently on a real project. Either I'd turn this into a
test that would ensure that PayPal’s API is called correctly—I'd have the tested code
return more than the ID and I'd check the response more thoroughly. Such a test
would protect from inadvertent changes to the PayPalPaymentMethod class and
the less likely scenario of PayPal changing its API. Or, I'd let this be the last phase
of an end-to-end test that would exercise an entire workflow ending with a PayPal
payment. In either case, the point is that nontrivial systems often need to contain
tests that are at the mercy of a third party and network connectivity with the outside
world. To further prove the point, I can reveal that this test timed out a few times
while I was trying it out.

Not all integrations will involve third-party systems beyond your control. Some
of the systems your application talks to will be other systems built in-house or third-
party software executed on premises. If a test touches code that invokes this kind of
external dependencies, they’ll have to be controlled somehow. Hence, the openness of
the protocol/API used for the integration will be of critical importance to the success
of such tests. If the protocol is open enough, the external system can be replaced by
something that the test can control. For instance, once I set out to emulate a physical
network switch in software to test code that provisioned it. In this case it was plain-
text over Telnet, so all I needed to do was write a server that responded to textual
commands.

When replacing an entire system with a test double, the wording becomes impor-
tant. It’s most likely going to be a fake in the terminology presented in the chapter on
test doubles, but it may equally well be a stub or a mock. If the interesting behavior is
confined to the tested component, the test double used to substitute the external sys-
tem will most likely be a stub. On the other hand, if it’s more important to verify how
the tested component interacts with the external system, the test double will obvi-
ously be implemented so that it records the interactions or behaves like a mock.

252 Chapter 18 = Beyond Unit Testing

Tests Running through the User Interface

These tests exercise the system by interacting with it as an actual user would do—by
entering data and clicking around in the user interface. They rely on libraries that
control the user interface somehow. Web applications and mobile applications are
natural candidates for such tests, although there are libraries for automating fat cli-
ents as well.

Tests that run through the UI are typically system tests or end-to-end tests
(although nothing prevents them from testing just the UI). Operating at the highest
level, they need pretty much the entire system to be up and running, likewise any
connections to external systems. If such tests are the only way to verify some critical
functionality, which may be the case in legacy systems, my suggestion is to at least put
some effort into getting rid of integrations with external systems by replacing them
with some kind of test double. Conversely, if the system is robust enough to allow
testing complex workflows and long-running transactions through the user interface,
then the tests should resemble actual execution as much as possible. That way, they’ll
replace tedious manual tests, at least.

Few tests have as bad a reputation as U tests; theyre often considered flaky
and expensive to maintain. In many cases, it might be true; however, most of the
time, the issue of stability can be solved. In my experience, Ul-based tests fail for
two major reasons:

1. They’re not good at dealing with asynchronicity and variable delays—Web
pages or mobile apps that rely on some external data take time to load. The
actual time will depend mostly on network latency and the load on the server
and the client (the browser or app). To deal with this variability, the test needs
to examine the state of the application periodically to determine whether it
has finished loading/updating, instead of just sleeping for a fixed period.” The
same goes for handling asynchronous updates.

2. They don’t control the data—Implementing UT tests without having them
control the data in the system is a futile endeavor. The typical failure case is
the test tries to access a specific entity through the interface, but that par-
ticular entity has been deleted or rendered unusable to the test somehow. Just

5. See the documentation of WebDriver’s WebDriverWait class to get a feeling for how
such waiting can be achieved (https://seleniumhgq.github.io/selenium/docs/api/java/
org/openqa/selenium/support/ui/ WebDriverWait.html).

https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/WebDriverWait.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/WebDriverWait.html

Tests that Aren’t Unit Tests 253

imagine a test that tries to find a customer that doesn’t exist, or a test that
attempts to log in to the application using a blocked account. Such tests usu-
ally don’t have the word “stable” written all over them.

This next test exercises an entire online purchase workflow on a fictitious web
site that markets and sells a book about WebDriver testing. It relies solely on the out-
put of the user interface to determine whether it succeeds. It simulates a user’s jour-
ney through four web pages: a start page and three pages where the user selects the
number of books to buy, enters the shipping address, and finally the payment details.
Halfway throughout, the test checks that the price was computed correctly, and at the
end it looks for a confirmation message in the page and compares the presented ship-
ping address with the address details it provided.

[TestInitialize]
private IWebDriver webDriver;

public void SetUp ()
{

webDriver = DriverFactory.NewHtmlUnitDriver () ;
webDriver.Url = "http://localhost:8080";

}

[TestMethod]

public void OrderThreeBooks ()
{

const int PricePerBook = 15;

string name = "John Smith";

string streetAddress = "100 Main St.";
string city = "Phoenix";

string state = "AZ";

string zip = "85236";

var mainPage = new MainPage (webDriver) ;
var selectNumberOfBooksPage = mainPage.ClickBuyNowButton () ;
selectNumberOfBooksPage.SelectNumberOfBooks (Quantity.Three) ;
var addressDetailsPage =
selectNumberOfBooksPage.ClickAddressDetailsButton () ;
addressDetailsPage.EnterFullName (name) ;
addressDetailsPage.EnterStreetAddress (streetAddress) ;
addressDetailsPage.EnterCity(city);
addressDetailsPage.EnterState (state);

254 Chapter 18 = Beyond Unit Testing

addressDetailsPage.EnterZip(zip) ;
var paymentDetailsPage = addressDetailsPage.ClickPaymentButton() ;

var expectedTotalPrice = (int)Quantity.Three * PricePerBook;
Assert.AreEqual (expectedTotalPrice, paymentDetailsPage.TotalPrice);

paymentDetailsPage.EnterCardNumber ("4417119669820331") ;
paymentDetailsPage.EnterCvv2 ("874") ;
paymentDetailsPage.SelectExpirationMonth (Month.January) ;
paymentDetailsPage.EnterExpirationYear ("2020") ;

var confirmationPage = paymentDetailsPage.ClickPayButton() ;

Assert.IsTrue (confirmationPage.PaymentSuccessFul) ;

string expectedAddress = String.Format ("{0}\n{1}\n{2}, {3} {4}",
name, streetAddress, city, state, zip);

Assert.AreEqual (expectedAddress, confirmationPage.Address);

[TestCleanup]
public void CleanUp ()
{

webDriver.Quit () ;

Being a WebDriver-based test, it relies heavily on Page Objects—abstractions of
a web page’s graphical elements and services. The Page Objects hide the gruesome
details of plowing through a page’s HTML markup to find individual elements and
interact with them. If implemented with some care, they can also shield a test from
the complexity of asynchronous communication, as well as changes to a page’s layout.
Notice that the test knows nothing about what the pages look like, only what input
fields they contain.

The tricky part here is that the test really requires the entire system to be up,
as well as integration with a credit card payment provider. This would typically be
ensured by the build process. By the way, do notice that this test doesn’t set up any
data, which would be rather untypical in reality.

Tests that Aren’t Unit Tests 255

Fast and Stable WebDriver Tests

I've included an interesting detail in this test: the use of Htm1UnitDriver.?
This particular driver makes the test run “headless’, that is, without using any
browser. This has several advantages:

m Tests can be executed in console-only environments, like Cl servers that
don't run a window system.

m Tests execute much faster, because they don't have to wait for a browser
to render the pages.

® The speed of such tests forces them to be written so that they handle
asynchronous behavior and potential race conditions during page loads
correctly, as they'll no longer be masked behind rendering delays. In
short, such tests will be stable!

The only downside is compatibility differences between the drivers.
Obviously, a headless driver and its JavaScript engine will perform a little
differently from a browser, but this seldom kills the show.

The DriverFactory class that creates the driver is in Appendix B..

Tests that Invoke a System

Not all systems are accessed via a web interface, a mobile app, or the cloud. There are
still systems out there that are accessed from a command shell. Unless the system
contains some kind of interface that blocks while waiting for the user to press
some keys, it can be tested by spawning the process we want to test and interact-
ing with it through the three streams—stdin (standard input), stdout (standard
output), and stderr (standard error). This is actually how you would test the classic
“Hello World” program.

Nowadays, few systems are executed like this (at least compared to the number
of mobile apps, web applications, or normal windowed applications). However, the
techniques for spawning processes and controlling their input and output are still rel-
evant in more complicated tests that may require that a system command be executed
in the middle of the test.

The next test demonstrates what it looks like when the Builder pattern is used
to produce complex data before running a test and what a test that spawns a process
(identified by the export.bin system property) and interacts with the file system
might typically do.

256

Chapter 18 = Beyond Unit Testing

def

def

setup () {
outputDirectory = new File(System.properties|['java.io.tmpdir'],
"outgoing")
if (outputDirectory.exists()) {
FileSystemUtils.deleteRecursively (outputDirectory)
}
if (!outputDirectory.mkdir()) {
throw new IllegalStateException (
"Couldn't create output directory")

"Only new orders are exported to address files" () {

def ordersToExport =
def ordersToIgnore = 1

given: "Two new orders and one cancelled"

def firstCustomer = new CustomerBuilder ()
.withStreetAddress ("42 Sesame Street") .build()

def firstCustomersOrder = new OrderBuilder (firstCustomer) .
build()

def secondCustomer = new CustomerBuilder ()
.withStreetAddress ("21 Jump Street") .build()

def secondCustomersOrder = new OrderBuilder (secondCustomer) .build()

def thirdCustomer = new CustomerBuilder ()
.withStreetAddress ("1428 Elm Street") .build()

def ignoredOrder = new OrderBuilder (thirdCustomer)
.withState (Order.State.CANCELLED) .build()

customerRepository.add (firstCustomer, secondCustomer,

thirdCustomer)

orderRepository.add (firstCustomersOrder, secondCustomersOrder,
ignoredOrder)

when: "Executing the export"

def process = "${System.properties|'export.bin']} ${outputDirectory}"
.execute ()

then: "The export succeeds"

def output = process.in.readLines ()

output [0] == "Exporting to ${outputDirectory}..."

output[1] == "${ordersToExport} order(s) exported, "

+ "${ordersToIgnore} order (s) ignored"

Characteristics of Tests that Aren’t Unit Tests 257

and: "Two files are created"
outputDirectory.list () .length ==

And There's More

The examples presented so far witness the variations that are possible when leaving
the confines of unit testing. Still, I haven’t included any examples of proper end-to-
end tests that would start multiple servers (like a frontend and a backend or some
micro-services), run different applications and exercise long-running transactions.

To keep the size of this chapter reasonable, I've also refrained from wrapping any
of the examples in a BDD framework (like Cucumber, FitNesse, or Concordion) to
get nice documentation, demonstrating model-based testing (using something like
NModel or GraphWalker), or showing a test that relies on image recognition (Sikuli
comes to mind).® Mobile applications, with their device quirks and challenges unique
to running in mobile networks and with limited battery power, also didn’t make this
chapter. Furthermore, to keep the scope manageable, I've kept the examples within
the domain of typical business applications.

Characteristics of Tests that Aren’t Unit Tests

By virtue of their many moving parts, more complex tests get their own characteris-
tics. Needless to say, they also require more time and effort to both create and main-
tain. Still, if implemented well, they’ll save a tremendous amount of time that would
otherwise be spent on regression testing, not to mention the additional confidence
that they provide.

The different characteristics of larger tests place new requirements on both the
development team and its closest stakeholders. Working with nontrivial tests requires
a specific mind-set from each and every one on the team. Everybody must buy into that
there’s an infrastructure that needs to be looked after. On green-field projects, such an
infrastructure can be built relatively easily, using lightweight virtualization and frame-
works that abstract away much of the plumbing (like I did in some of the examples).

Older systems may require considerably more work, which, although truly
rewarding once some of the decade-long pains have been alleviated, will eat a signifi-
cant chunk of the development team’s time, especially at the beginning of the jour-
ney. Therefore, it’s of critical importance that both managers and stakeholders who
have a say in the team’s prioritization, such as product owners or the like, understand
that not all of the team’s efforts will result in pixels on the screen. The developers

6. Appendix A contains links to all aforementioned tools.

258

Chapter 18 = Beyond Unit Testing

doing the actual maintenance of the suite should also agree that testing beyond unit

testing is valuable and must be allowed to take time.

So, in addition to understanding that a test infrastructure is required, a team
venturing into the fields of integration testing, system testing, workflow testing, or

end-to-end testing must also be prepared to tackle such tests’ quality attributes and

behavior, which will be different from that of unit tests.

Testing Brown-Field Business Applications

Systems that have been running for a while—say 5 to 15 years—usually don't
run the latest and greatest application stacks and libraries. Neither have they
been designed with reproducible deployment in mind. This poses an additional
challenge to running tests that require a working system, because such a
system may not be possible to deploy. Here's a list of things that usually need
doing to get a brown-field business application to a state where it's easy to
expose it to integration or end-to-end testing:

The one and only master database, which nobody dares to touch, needs
to be broken down and its (re)creation automated so that instances of
it, running with a minimal set of reference data, can be started at will in
various test environments.

The database needs to be versioned and changes to it handled automatically
and consistently, so that deploying changes is painless and all environments
run against similar databases.

Server and container configuration need to be understood and standardized,
so that setting up new instances is easy.

Other parts of the infrastructure, like messaging middleware, load balancers,
or log servers, may need tuning and cloning, so that they, too, become
disposable and easy to spawn when needed.

The preceding activities usually result in an overhaul of the deployment
process and finally its automation.

Last but not least, the system may need some rewrites so that its
configurability improves and so that it can start in different environments
and on different infrastructures.

These are all activities that fall in the domain of continuous delivery and
DevOps, so I'll leave in-depth treatment to other sources. However, do notice
that it's the need for testing that pushes a team in that direction.

Characteristics of Tests that Aren’t Unit Tests 259

Complexity

The further away from low-level tests on individual program elements, the greater the
complexity. Higher-level tests contain more of everything. Often, they rely on a non-
trivial build that performs orchestration of various resources, and they may require
entire libraries to perform some specific aspects of their functionality. Selenium Web-
Driver, which I made use of in the fourth example, is one such library, and mastering
it fully is a science in itself. So is setting up test data by repopulating databases and
constructing test-specific entity graphs or stubbing out entire systems, to name some
prevalent drivers of complexity. There are more.

This inherent complexity also affects the composition and competency profile of
the development team. To cope with tests that alter and rely on the environment and
infrastructure, the developers must be no strangers to command-line magic, database
administration, virtualization, and server/container configuration. This a rather rel-
evant factor when recruiting new team members.

Also, given the many moving parts of complex tests, it’s of vital importance that
they be well written and that the test suite has an architecture that supports it. A hap-
hazard, shantytown test suite may easily devour much-needed development time or
even topple the project. Therefore, working with high-level tests, or at least setting up
the structure of the test suite, is best left to the more senior members of team.

Stability

Tests that are more complex than unit tests tend to get much less stable. In the vari-
ous preceding examples, we’ve seen that they’re affected by things like the file system,
server and application state, database contents, and network connectivity. In other
words, they come with environmental preconditions. There are two generic ways to
fulfill such preconditions: code for them or nuke and pave. These strategies aren’t
mutually exclusive and it’s quite context dependent when to use either or both.

Coding for stability means that the tests contain code that checks whether the
environment is sane. Such checks may include examining the file system, inspecting
the data in the database, or verifying that a server is up and starting it if it isn’t. Such
actions are typically performed in the test initializer methods. The most fundamental
checks, such as verifying that a directory exists or that a database connection is avail-
able, don’t need to be performed for every test, so putting them in initializers that run
once per test class (or module) or even less frequently is a good idea, as it also has a
positive impact on performance.

Nuking and paving comes from a different angle. Instead of putting effort into veri-
tying the environment, we reach a known state by resetting it; servers are restarted,
databases emptied and loaded with known data, directories removed and re-created.
The context sets the limits for what and how to reset. This is often where provision-
ing and virtualization come in. If sufficiently many or sufficiently complex resources

260 Chapter 18 = Beyond Unit Testing

need to be reset, it may actually be simpler to fire up a fresh virtualized environment
containing ready-to-go versions of such resources. Lightweight virtualization” offers
a middle ground—the application and its dependencies run in a container, which isn’t
that demanding on the underlying operating system. To get to a known state, only the
container needs to be restarted (as opposed to restarting individual resources).

Error Localization

The more elaborate the test, the harder it is to achieve good error localization. The
reason is the decrease in observability, which is more or less unavoidable for tests of
increasing complexity. To be precise, the observability may still be quite adequate, but
the program logic needed to make sense of what’s actually happening may not. More
things can go wrong in a large heterogeneous application stack, and a computer may
have a hard time deciding what did. For example, let’s think of a few reasons for why
a test of a web application may fail:

® The web server hosting the web application is down.

® The application has been incorrectly deployed.

= A firewall is blocking access to the web server.

® Heavy load on the web server prevents the application from responding in time.

® The web server is missing some configuration or resource the application
requests at runtime.

® The application misses some data.

® The application actually contains a good, old-fashioned bug.

Most of these error conditions will make the web browser output an HTTP error
code, some kind of error message, or more frequently than we’d care to admit, a stack
trace. This gives a human user with some knowledge of networking and web applica-
tions a fighting chance to make an educated guess about the cause of the problem. An
automated test, on the other hand, would have a very hard time truly understanding
what went wrong. It would need to interpret HTTP codes, parse error messages (or
even worse, stack traces), and cope with time-outs and dropped connections to arrive
at some sort of verdict.

Building intelligent automated error interpretation is something I’d really advise
against. Sure, you can program arbitrarily complex diagnostics of the environment’s
and application’s state and health, but should you? No! Any test that does this will be

7. Docker being the most popular choice at the time of writing.

Characteristics of Tests that Aren’t Unit Tests 261

bloated with extra code, and if you push this to your test infrastructure, it, too, will
become very complex. Tests with many moving parts will fail for reasons that may
be hard to understand, at least programmatically. Instead, aim for the second best
thing: take your time inspecting what went wrong in the high-level test, and write a
lower-level test, preferably a unit test that catches the bug. Conversely, if the problem
lies in the environment, investing some time in improving its stability by means of a
better setup, virtualization, or a better build process will generate higher pay-off than
complex logic in individual tests.

Performance

Tests outside the domain of unit tests tend to pay the price in performance. Integra-
tion tests against small databases on fast networks may run relatively fast, whereas
tests that run through the user interface may become painfully slow, especially if they
start with lengthy data setup and then get caught doing round trips through all layers
of the system. Tests working on larger batches of data will perform accordingly.

These differences in execution speed prompt us to divide tests into suites and
hierarchies. There’s no point in running slow tests unless the faster ones succeed first.
Slower tests also run the risk of not being executed frequently enough, so keeping
down the execution time of both the individual tests and the whole test suite will
require deliberate effort: pruning redundant tests, making slow tests run faster (by
reducing their footprint on the system), or by parallelizing the suite.

The following facets of performance don’t affect unit tests (apart from CPU per-
formance), but they need to be taken into account when working with more complex
tests and larger test suites:

= Network performance—More complex tests will exercise several tiers, such
as databases and software running on different servers. Network throughput
and latency shouldn’t come in their way.

® Storage performance—Nuking and paving resources or repopulating data-
bases is disk intensive, especially in virtualized environments. Whatever the
storage solution, it may become a bottleneck.

® CPU performance—Higher-level tests generally tend to be I/O bound. How-
ever, sluggish CI servers or slow shared resources may easily cripple many of
them.

Environmental Dependence

The bigger a chunk of functionality a test exercises, the greater the chance that this
functionality will rely on components that in turn rely on the environment. Although
you can always strive to build platform-agnostic and highly configurable software, in

262 Chapter 18 = Beyond Unit Testing

truth, the average application usually makes assumptions about its execution envi-
ronment. What kind of database does it use? Is it a relational database, a document
database, or a key-value store? Does it rely on some vendor-specific functionality?
What services does the application’s server or container provide? Is some kind of
messaging technology involved, and how? What external resources does the applica-
tion access, and where are they located?

Even if you deploy the application to the cloud, you’ll still make assumptions
based on the quirks and capabilities of the particular cloud’s stack, unless the applica-
tion is very small or trivial.

All of this has a bearing on the tests. The more complex the execution environ-
ment, the more effort has to be put into making such an environment easily available
for testing. Then there’s the cost. It’s cheap to have a CI server running a couple of
agents capable of executing just unit tests; it’s a matter of virtualizing a simple setup.
At the other extreme are systems that contain a mainframe, a licensed database, and
a full stack with various integrations in between. End-to-end testing in such an envi-
ronment will be both complicated and costly.

Environmental dependence has direct impact on the breakdown of a team’s
work. Although a seasoned developer will crank out unit tests in tandem with pro-
duction code without even thinking about it, addressing the aforementioned issues
takes time, deliberate actions, and an understanding that writing tests that are more
complex than unit tests introduces new tasks and responsibilities.

Target Audience

Whereas unit tests live in symbiosis with the source code and are the developers’ pets,
tests that are further away from the code have the potential of attracting a broader
target audience. System and end-to-end tests (and integration tests to some extent)
verify behavior that nontechnical stakeholders understand. Stakeholders who care
about features and progress may feel very reassured by a human-readable suite of
tests that exercise functionality they can grasp. After all, who wouldn’t feel at least
somewhat secure if it were possible to determine whether the system supports busi-
ness rules like “when buying at least three books, the shopper is given a 20 percent
discount in the next campaign” or “direct bank payments with incorrect check digits
are sent to an error queue for manual inspection” at the click of a button? To get there,
you have two options:

= You commit to implementing specification by example, acceptance test-
driven development (ATTD), or behavior-driven development (BDD), all of
which have been described earlier.

Pointers and Practices 263

® You start by writing tests for important functionality that the stakeholders
care about and execute them using a BDD framework, which will produce
documentation® readable by anybody within the organization (provided that
some effort has been put into authoring understandable tests).

Using the second approach is less collaborative and doesn’t give many of the ben-
efits of working in a BDD-like manner, but in certain settings it may be a good way of
selling the advantages of automated acceptance testing to a broader audience.

Either way, the key is to present the tests and their results in such a way that
everybody in the organization can comprehend them. If managers, the CTO, and, in
a perfect world, the CEO understands the advantages of developers automating veri-
fication of critical functionality, youre more likely to get the support you need.

Pointers and Practices

Now that we’ve looked at some examples and characteristics of more advanced tests,
it’s time to distill the findings into some pointers and practices.

Test Independence

More complex tests should be independent of their surroundings and other tests, just
like unit tests. This rule of thumb comes with some caveats. Tests that require the sys-
tem or parts thereof to be available while they’re running will often be dependent on
the build that runs them. CI servers, with their plugins and scripts, are better suited
for orchestrating resources like databases, queues, or any other kind of middleware or
servers than home-grown utility classes in the test codebase.

Although this approach saves the tests from tinkering with peripheral, low-level
dependencies, it introduces certain coupling between the tests and the context in
which they run. In some of the examples, I avoided this to a degree by using Spring
Boot, but for older systems this won’t be an option.

Then there’s the issue of temporal coupling between tests. For tests that revolve
around some data’s life cycle, it may feel tempting to build a sequenced test suite:

® First run tests that create data.
= Then run tests that poke around in that data (query, update, etc.).

® Finally, run tests that delete data.

8. In the language of specification by example, this would be “living documentation.”

264 Chapter 18 = Beyond Unit Testing

I strongly advise against this. This approach makes the build complex and brittle,
and Kkills test isolation and independence. Then again, there are situations in which
this may be the only working approach. We had to do this once on a project where we
didn’t own the test database. We could neither empty it (because other teams relied
on it) nor insert tuples when we needed to, so this was the only way. On the whole, the
approach worked, but we paid the price in complexity.

Setup

A higher-level test’s setup is quite different from a unit test’s. It’s usually lengthier,
more elaborate, and may poke in several application layers. The exact steps will obvi-
ously be different for a business application that requires a lot of state in persistent
storage and a game that needs an interesting environment to verify some aspect of its
mechanics.

As said in the section on test independence, part of the setup may be performed
by the build that runs the tests, and it will hopefully ensure that the right environ-
ment is available when the test executes. From there, it’s the test’s responsibility to
produce the state it requires. Here are some tips.

Rely on Start-up, Not Cleanup

It may seem intuitive that a test that pollutes the environment somehow, by creating a
bunch of files and directories or data in some kind of database, should clean up after
itself. To do so, it may use its cleanup method, but this approach is best viewed as a
random act of kindness. If a test wants to stay decoupled from other tests, it should
never rely on another test’s cleanup to create its state. Instead, it should set everything
up before executing, thus making itself independent of other tests and explicit about
its preconditions.

Start with as Little State as Possible

If P'm writing a test that makes use of some kind of database,’ I go to lengths to ensure
that it only contains the bare minimum of state—data—needed by the tested func-
tionality to execute. A test usually needs two kinds of data: reference data and pos-
sibly some entity data. Setting up reference data, for example, valid postal codes,
country codes, product descriptions, various titles, or i18n strings, is the responsibil-
ity of the part of the build that creates the database. Unless something very interest-
ing is happening to the reference data, the tests should rely on it being there and not
concern themselves with its setup. As for entity data required for the test to run, see
the next point.

9. The kind doesn’t matter; relational, key-value, graph, etc.

Pointers and Practices 265

By running tests with empty databases (or files, or queues), we gain certain
advantages. One is speed. Empty or next-to-empty things are fast. Adding a record
to an empty table or file will most likely not trigger indexing, rebalancing, garbage
collection, or the like. Another advantage is simplicity. If the test needs to fetch some-
thing from a table or document that has only one record, it doesn’t even have to know
how to find it; it just has to fetch that single record. I made use of this in the second
example, where I just counted the number of tuples. A third advantage is that the data
footprint is easier to debug. Not that we want that, but should the imperfections of
reality force us to check the contents of a database or file during a debugging session,
it’s going to be a much more pleasant experience if there’s only one tuple to examine.

Invest in Data Helpers

Many tests may need a fair amount of entity data before being able to exercise the
functionality they’re checking. The archetype is the application that requires the user
(test) to log in before being able to do anything interesting. User credentials are entity
data,'® which needs to be there at the beginning of each test. There are two ways to
create such data: use the system’s services, or construct it using a parallel implemen-
tation—a test utility package for creating data. Business applications tend to contain
many services that create their typical entities, such as customers, orders, or invoices.
So, if the test wants to verify that changing a customer’s address works as expected,"
it’ll start by calling the component/service that creates a new customer. The first and
second examples in this chapter illustrate what such a service might look like. The
advantage of this is that existing functionality is used (and thus reused and tested yet
another time). The disadvantages are that

® The service may not be readily available to the test, which may be running
at another level of abstraction or lack access to the infrastructure needed to
invoke the service

® [f the setup necessitates the use of many different services, it quickly becomes
cumbersome and awkward

® The service is unable to create entities with certain properties

In such cases, using a parallel implementation in the form of a library of build-
ers or factories may be more advantageous. This is the same approach as described

10. Although some people may consider them “static” entity data and handle them like reference data.
11. It’s irrelevant whether this is done at the persistence abstraction level, UT level, or somewhere
between.

266 Chapter 18 = Beyond Unit Testing

in Chapter 9, “Dependencies,” with the constraint that the created object is an entity
that can be persisted. In fact, this is the technique I prefer to reusing existing services.

As always, there are trade-offs to be made. The obvious disadvantage of utilities
for creating data is that they add extra code. Depending on whether they reuse the
existing entity model or not, they may get coupled to the database. Suddenly chang-
ing something in the database requires an update to the entity model and the utilities.
In addition, independent implementations may create invalid data. They may forget
to apply a business rule or piece of validation logic, thus bringing to life entities that
would never have been created by the system. Finally, builders and factories may get
quite complicated. And yes, they need unit testing . . .

On the plus side, they make it easy to create arbitrary variations of data. Entities
produced by test factories or builders may reflect state that would be hard to reach.
For example, consider a builder that’s able to create a customer whose password has
expired. Such a customer may not even be possible to create using the application’s
existing services (and that’s a good thing), because expiration is most likely a result of
actual time passing. In this case, a snippet like this would save the day:

var customerForPasswordUpdate
= customerBuilder.withExpiredCredentials () .build();

They can also contain logic that allows setting up very complex state. Finally, I'd
say that a good implementation of data helpers will make the test very readable, ver-
bose, and explicit.

Verification

Whereas unit tests should strive to fail for a single reason, more complex tests may be
a bit more forgiving in that regard. Because they take longer to execute, a consider-
able amount of time may be saved if they’re allowed to check several different things
per test. The examples at the beginning of this chapter illustrated this in an almost
provocative manner.

Personally, I think it’s perfectly fine that more complex tests contain more asser-
tions and that these assertions may operate on different layers or components, as long
as they’re related to the same concept. If an order confirmation service returns a sta-
tus code, updates something in the database, and sends an e-mail, checking all three
may be the right thing to do, especially if no other tests do it. Likewise, if we test a
sequence of operations, adding a few guard assertions and intermediate checks here
and there does more good than harm. That said, authors of tests that have a lot going
on must always be mindful of the balance between error localization, test readability/
maintainability, and the execution time of the test suite. Just because we can touch
half of our system’s features with one gigantic test doesn’t mean that we should.

Deciding on a Developer Testing Strategy 267

Use of Test Doubles

In the context of system and integration tests, test doubles will most likely be stand-
ins for larger components or even entire systems. The PayPal example showed what
an integration with an external system might look like. Pretty much every nontrivial
system will have a number of such integrations, and they’ll need replacing with some
kind of test doubles.

On the positive side, configuring alternative endpoints for many types of inte-
grations should be relatively easy. In most cases, this is a matter of changing a URL,
especially if the application is designed with some testability in mind. Conversely,
providing fake or mock implementations of external systems that contain lots of
critical functionality may be complicated, time consuming, and not very effective.
Because the majority of the systems our in-house application talks to won’t come
with well-documented sandboxes, we’ll need to implement lightweight versions of
them ourselves. Just like with any redundancy and duplication, we run the risk of
implementing behavior that differs from that of the original system or component. In
addition, these test doubles will need testing, and they need to evolve along with the
systems that they replace. You probably see where I'm going with this. Whether this is
worth doing is one of many important decisions a team needs to make.

Deciding on a Developer Testing Strategy

Teams that have committed to developer testing will sooner or later have to agree
on a developer testing strategy. As the test suite grows to include tests that operate on
different levels of abstraction and in different scopes, so does the need for detailing
the boundaries and responsibilities of each type of test and, above all, deciding on
what tests to invest in and to what extent. Depending on the team’s situation and its
system’s characteristics, some types of tests will be critical, whereas some will be a
waste of time. The expected lifetime of the system, anticipated future functionality,
and current mix of tests also influence the contents of the testing strategy. As do the
software stack and the system’s age. The strategy itself doesn’t have to be something
formal chiseled into stone, but whatever the format, it needs to capture the team’s
decisions and guidelines on managing its combined testing.

A model that may provide a good starting point in the team’s discussions is the
test automation pyramid (Cohn 2009). This classic has been adapted and revised
many times, but at the core it consists of a three-tier pyramid with unit tests at the
bottom, “service” tests in the middle (tests that target functionality at the compo-
nent or service level without using the user interface), and UT tests at the top. Some
common adaptations are splitting the service test tier into two or three tiers to detail
the difference between integration tests and component/service/API tests, or adding
manual tests at the very top of the pyramid (see Figure 18.1).

268 Chapter 18 = Beyond Unit Testing

Manual

Service

Integration

Lo N T N

FIGURE 18.1 To the left: the classic test automation pyramid. To the right: one of many
adaptations.

Because a pyramid’s base is much larger than its top, the model implies that there
are many more unit tests than UT tests, the motivation being that the latter tend to
be brittle, expensive to write, and time consuming. The number of service tests lies
somewhere between those two. This model may help a team visualize the test types it
uses. An ambitious team that performs both integration testing and testing at the API
level and has some smoke tests that go through the user interface may depict this as a
four-tier pyramid (the bottom tier being the unit tests).

I've never seen anybody put any hard figures on the pyramid’s tiers in real life,
but obviously there will be a ratio between the various types of tests. My experience
is that the system’s age is the biggest influencing factor behind this ratio. On a green-
field project, a team with a testing strategy along the lines of “all new code is devel-
oped test-first and we use acceptance test-driven development” will produce tests
with a ratio that corresponds closely to what the automation test pyramid suggests.
Such a team will obviously have many unit tests, a fair number of tests at the middle
tier—such tests will be driven by the executable specifications—and a smaller num-
ber of, or maybe even no, tests that work through the user interface.

Conversely, a team that sets out to rejuvenate a convoluted intertwined legacy sys-
tem may not even be able to visualize its tests using a pyramid. (Or using an inverted
one perhaps.) For example, testing legacy systems where no attention has been paid to
testability with unit tests ranges from unfeasible to unpractical and expensive. Retro-
actively adding unit tests takes a lot of time and often requires major refactoring that
may break untested functionality, while providing little benefits within the nearest
time frame. Instead, the team may be better off securing the critical functionality
via tests that operate through the user interface (while learning how to make such
tests stable, easy to write, and relatively fast) before thinking about how to address the
issue of limited unit test coverage and what types of service-level tests would make
sense. Teams in that position tend to adopt the stance: “develop new code with unit
tests and refactor/redesign the old code when you're touching it to modify it.”

These are some of the bigger issues the developer testing strategy needs to
address, but there will be smaller ones too, which still need to be handled to avoid

Summary 269

diverging implementations and misunderstandings. Here are some questions that
may be helpful in reaching such an understanding:

Which tests give bang for the buck and which don’t?
What types of tests are we running and how do they overlap?
What types of tests are we avoiding (and why)?

How large should a test preferably be? (Size depends on the level of abstrac-
tion too.)

How many layers is a single test allowed to touch?

Do we optimize for speed of execution or test simplicity?
How do we handle test data and its setup?

How do we approach integrations with external systems?
What testing frameworks and libraries do we use?

What trade-offs are we willing to make in the spirit of working with
legacy code?

These are but examples, and I'm sure that your team can come up with many
more questions of this sort. Answering them will help you define the context and
boundaries for your tests, and no doubt a developer testing strategy will emerge.
Make it available on an information radiator, and revisit and revise at intervals or
when something interesting happens to the test suite or the system.

Summary

Tests that aren’t unit tests—more complex tests—include integration tests, system
tests, and end-to-end tests. In Google’s simplified terminology this would be Medium
and Large tests.

For typical business applications, these are fairly common types of complex tests:

Tests enclosed in transactions

Tests that exercise a service or a component
Tests that interact with external systems
Tests running through the Ul

Tests that invoke a system

270 Chapter 18 = Beyond Unit Testing

These test categories aren’t mutually exclusive.

Nonunit tests will be more complex, and we need to pay extra attention to their
stability, error localization, speed, and environmental dependence. They still need
to execute independently, and their setup will be more elaborate. To maintain their
independence of other tests, they should set the environment to a clean state before
running as opposed to cleaning up afterward. Execution time may be saved if they
perform verification at multiple points or across different components. When dealing
with integrations with other systems, high-level tests may require that entire systems
be replaced by test doubles.

Furthermore, the presence of more advanced tests requires that the team decides
on a developer testing strategy, which will guide the use of more complex tests and
the evolution of the combined test suite.

Chapter 19
TEST IDEAS AND HEURISTICS

In this final chapter, I gather advice and pointers about what to actually test in a com-
pact format. Bits and pieces of this information are scattered throughout the book,
but they usually appear in their own contexts, where other things may be the key
focus. Here’s the big picture. Hopefully, this material will help you to cherry-pick and
prioritize your tests, because there’s always time pressure on real projects, and “test-
ing everything” is practically impossible.

High-level Considerations

There are many decisions a team and the individual developers need to make when
choosing what to focus on when writing tests. This section should provide some fuel for
discussions about where to start and what to do, as well as some ideas about test design.

Test Effectiveness

Depending on the state of the system, a certain type of test may be more effective
than another.

® Unit tests, with or without the practice of test-driven development, are a
must when writing new code professionally, that is, being paid to do it with
other people in a way that makes it maintainable in the future. Their presence
ensures that the code is testable and they serve as a specification.

= Component/service tests will cover a lot of functionality, including correct-
ness of the persistence mechanism in systems that have isolable components
with well-defined responsibilities.

= End-to-end or system tests (possibly integration tests) may prove more effec-
tive, that is, provide coverage of critical functionality and catch regressions
sooner, when dealing with older systems with convoluted code that’s hard or
time consuming to unit-test or that lacks any distinguishable components.

271

272 Chapter 19 = Test ldeas and Heuristics

Test Recipe

A test recipe! helps you to pick what to test, and is especially helpful when working
with unit tests (because they contain the highest amount of detail). The three test
recipes in this section are phrased differently and maybe one of them will tickle your
fancy in particular. If so, I encourage you to pursue the original source to get an accu-
rate and exhaustive description of the recipe in question.

Recipe #1 (Vance 2013)

m Test the happy path
m Test alternative paths, that is, useful variations of the normal behavior
m Test the error paths

® Test data permutations
= Boundary conditions
= Data-driven execution

= Runtime and dynamic binding

m Test the defects

Recipe #2 (Langr, Hunt, &Thomas 2015)
Right BICEP:

® Are the results right?

= Boundary conditions

® Inverse relationships

® Cross-check using other sources of truth
® Error conditions

m Performance characteristics

Recipe #3 (Beck 2002)

For code that you have written, test

m Conditionals

= Loops

1. I've borrowed this term from Stephen Vance’s book Quality Code: Software Testing Principles,
Practices, and Patterns.

High-level Considerations 273

® QOperations

® Polymorphism

Level of Abstraction and Detail

Consider the level of abstraction at which your next test will operate and the amount
of detail it needs to be concerned with. What language does the test use?

® Unit tests (and possibly integration tests) should cover all low-level mechan-
ics, like different variations of input, boundary values, data-driven testing,
input validation, and exhaustive branch coverage. Such tests may use techni-
cal terminology in the test code, but they should still attempt to test behavior
that’s meaningful from a user’s point of view.

= System or end-to-end tests should exercise the bigger picture and make sure
that the system works as a whole. Such tests shouldn’t concern themselves
with details and variations. They should span scenarios or use cases and use
the language of the business.

Archetype
What format does the test follow, and how many cases does it cover?

® Single example—The test exercises some specific behavior and expects a
specific correct answer.

" Variant: Scenario—The test mimics a user’s interaction with the system.

= Tabular/data-driven—The test exercises the same logic using many different
values and expected results.

= Variant: Theory—The test runs different combinations of preselected input
values and verifies that the results satisfy some general statement(s).

= Variant: State transition—The test is one of several tests that exercise an
area of the system that’s best modeled as a state machine.

® Generative—The test generates the parameters to the tested code, possibly

many times.

Source of Truth

How does the test know that the result is correct?

® Single value—A single value is the only correct answer.

® Range—The correct value is within a known range or interval.

274 Chapter 19 = Test ldeas and Heuristics

® Set—There are multiple correct values, and they correspond to a set of finite size.

® Predicate—Whether the value is correct can be determined by a function
that says yes or no.

® Cross-check—An alternative implementation can be used to determine
whether the value is correct.

= Inverse function—Applying an inverse function to the result produced by the
tested code produces the input.

Low-level Considerations

This section contains things to be mindful of when working with some common ele-
ments of a program. The list is by no means exhaustive, but if you remember these
points, your tests should cover a good majority of cases.

Zero-one-many
Make sure that the tests cover the following:
= 0 instances—Empty collections/arrays, loops/conditional blocks that are
never entered, possibly nulls, etc.

= 1 instance—Collections/arrays with one element, queries that return a single
tuple, loops that execute once, etc.

= Multiple instances—Collections/arrays with multiple elements, queries that
return several tuples, loops that execute a number of times, etc.

Nulls

Stick null/nil/undef wherever you can if the type/array/collection permits it to
see what happens.

Ranges

For a range m-n, check the behavior at the following:

"om—1
" om
L]

o+]

Low-level Considerations 275

Collections

Consider the following:

= Empty

= With one element

With multiple elements

® Containing duplicates

Alternative ordering of elements

Exceptions and Errors
Think about the following:

m Exception type (class)
® Exception message
® Nested exception

® QOther exception parameters

Check all error codes (for code that you’ve written)

Numbers

Keep in mind the following:

m Zero

m Negative

= QOverflow of primitive types

= Floating point precision

® Other representations (like hexadecimal, octal, or scientific)

= Commas, periods, and spaces when represented as strings for parsing

Strings

Don't let this surprise you:

= Empty string (blank)

276 Chapter 19 = Test ldeas and Heuristics
® QOne space
m Several spaces
m Special characters like \n, \r, \t, etc.
® Heading/trailing whitespace or special characters
= HTML entities
® Non-ASCII characters
= Encoding
= Overflow of fixed-size string buffers
Dates

Be mindful of the following:

Different formats

Number of days in each month

Leap years

Time zones

Daylight saving time

Accuracy (does a date have a time component?)

Timestamp formats

Summary

When considering what test to implement next and how, think about the following:

What type of test will be the most effective?

Is there a recipe to guide the choice of the next test? What does it suggest?
What level of abstraction will the test operate at?

What's its style (archetype)?

What source of truth will it use?

Common data types and abstractions all come with their specific gotchas that
need to be addressed when authoring tests.

Appendix A
TOOLS AND LIBRARIES

Advanced Combinatorial Testing System (ACTS), http://csrc.nist.gov/groups/SNS/acts/
documents/comparison-report.html

ALLPAIRS Test Case Generation Tool, http://www.satisfice.com/tools.shtml
Assert], http://joel-costigliola.github.io/assertj/index.html

Capybara, https://github.com/jnicklas/capybara

Checker Framework, http://types.cs.washington.edu/checker-framework/
Chef, https://[www.chef.io/

Cofoja: Contracts for Java, https://code.google.com/p/cofoja/

Concordion, http://concordion.org/

Cucumber, https://github.com/cucumber

Docker, https://www.docker.com/

Dumbster Email Testing, http://quintanasoft.com/dumbster/

EasyMock, http://easymock.org/

FitNesse, http://fitnesse.org/

Fluent Assertions, http://www.fluentassertions.com/

GraphWalker, http://graphwalker.github.io/

Guava: Google Core Libraries for Java 1.6+, https://github.com/google/guava
HSQLDB, http://hsqldb.org/

HtmlUnit, http://htmlunit.sourceforge.net/

Jasmine, http://jasmine.github.io/

Jetty, http://www.eclipse.org/jetty/

jMock, http://www.jmock.org/

JUnit, http://junit.org/

277

http://csrc.nist.gov/groups/SNS/acts/documents/comparison-report.html
http://csrc.nist.gov/groups/SNS/acts/documents/comparison-report.html
http://www.satisfice.com/tools.shtml
http://joel-costigliola.github.io/assertj/index.html
https://github.com/jnicklas/capybara
http://types.cs.washington.edu/checker-framework/
https://www.chef.io/
https://code.google.com/p/cofoja/
http://concordion.org/
https://github.com/cucumber
https://www.docker.com/
http://quintanasoft.com/dumbster/
http://easymock.org/
http://fitnesse.org/
http://www.fluentassertions.com/
http://graphwalker.github.io/
https://github.com/google/guava
http://hsqldb.org/
http://htmlunit.sourceforge.net/
http://jasmine.github.io/
http://www.eclipse.org/jetty/
http://www.jmock.org/
http://junit.org/

278 Appendix A = Tools and Libraries

junit-quickcheck, https://github.com/pholser/junit-quickcheck
Mocha, https://mochajs.org/

Mockito, https://github.com/mockito/mockito

Mog, https://github.com/Moq/moq4

netDumbster, http://netdumbster.codeplex.com/

NModel, https://nmodel.codeplex.com/

NUnit, http://nunit.org/

PowerMock, https://github.com/jayway/powermock

Puppet, https://puppet.com/

QuickCheck, https://bitbucket.org/blob79/quickcheck/

RSpec, http://rspec.info/

Sikuli, http://www.sikuli.org/

Spec#, http://research.microsoft.com/en-us/projects/specsharp/
Specflow, http://www.specflow.org/

Spock Framework, https://github.com/spockframework/spock
Spring Boot, http://projects.spring.io/spring-boot/

Timecop, https://github.com/travisjeffery/timecop

Vagrant, https://www.vagrantup.com/

WireMock, http://wiremock.org/

xUnit.net, https://github.com/xunit/xunit

https://github.com/pholser/junit-quickcheck
https://mochajs.org/
https://github.com/mockito/mockito
https://github.com/Moq/moq4
http://netdumbster.codeplex.com/
https://nmodel.codeplex.com/
http://nunit.org/
https://github.com/jayway/powermock
https://puppet.com/
https://bitbucket.org/blob79/quickcheck/
http://rspec.info/
http://www.sikuli.org/
http://research.microsoft.com/en-us/projects/specsharp/
http://www.specflow.org/
https://github.com/spockframework/spock
http://projects.spring.io/spring-boot/
https://github.com/travisjeffery/timecop
https://www.vagrantup.com/
http://wiremock.org/
https://github.com/xunit/xunit

Appendix B
SOURCE CODE

Test Doubles

LISTING B.1 PremiumPurchaseMatcher: A custom matcher that matches specific
business rules.

import org.hamcrest.Description;
import org.hamcrest.TypeSafeMatcher;

public class PremiumPurchaseMatcher extends TypeSafeMatcher<Purchase> ({

@Override
public boolean matchesSafely (Purchase purchase) {
return purchase.getPrice() > 1000 && purchase.getItemCount () < 5;

@Override
public void describeTo (Description desc) {
desc.appendText ("A purchase with the " +
"total price > 1000 and fewer than 5 items");

Data-driven and Combinatorial Testing
LISTINGB.2 A JUnit-based implementation of a parameterized test.

@QRunWith (Parameterized.class)
public class PremiumAgeIntervalsTest ({

@Parameter (value = 0)
public double expectedPremiumFactor;

@Parameter (value = 1)
public int age;

@Parameter (value = 2)

279

280 Appendix B = Source Code

public Gender gender;

@Parameters (name = "Case {index}: Expected {0} for {1} year old {2}s")
public static Collection<Object[]> data() {
return Arrays.asList (new Object[][]{

{1.75, 18, Gender.MALE},
{1.75, 23, Gender.MALE},
{1.0, 24, Gender.MALE},
{1.0, 59, Gender.MALE},
{1.35, 60, Gender.MALE},
{1.575, 18, Gender.FEMALE},
{1.575, 23, Gender.FEMALE},
{0.9, 24, Gender.FEMALE},
{0.9, 59, Gender.FEMALE},
{1.215, 60, Gender.FEMALE}}

@Test
public void verifyPremiumFactor () {
assertEquals (expectedPremiumFactor, new PremiumRuleEngine ()
.getPremiumFactor (age, gender), 0.0);

LISTING B.3 Theory test with custom ParameterSupplier. This test uses both
a user-defined parameter supplier and @TestedOn (which is the only supplier that
comes with JUnit).

import org.junit.experimental.theories.Theories;

import org.junit.experimental.theories.Theory;

import org.junit.experimental.theories.suppliers.TestedOn;
import org.junit.runner.RunWith;

import util.supplier.AllGenders;

import static org.hamcrest.Matchers.*;
import static org.junit.Assert.assertThat;
import static org.junit.Assume.assumeThat;

@QRunWith (Theories.class)
public class PremiumFactorsWithinRangeTestUsingTestedOn {

@Theory
public void premiumFactorsAreBetweenO 5and2 0 (
@AllGenders Gender gender,

Data-driven and Combinatorial Testing 281

@TestedOn (ints = {17, 18, 19, 23, 24, 25,
59, 60, 61, 100, 101}) int age) {

assumeThat (age, greaterThanOrEqualTo (18));
assumeThat (age, lessThanOrEqualTo (100));
assumeThat (gender, isOneOf (Gender.FEMALE, Gender.MALE));

double premiumFactor

= new PremiumRuleEngine () .getPremiumFactor (age, gender);
assertThat (premiumFactor,

is(both(greaterThan(0.5)) .and(lessThan(2.0))));

LISTING B.4 Parameter supplier implementation.

import
import
import
import

import
import

domain.Gender;
org.junit.experimental.theories.ParameterSignature;
org.junit.experimental.theories.ParameterSupplier;
org.junit.experimental.theories.PotentialAssignment;

java.util.Arrays;
java.util.List;

import static org.junit.experimental.theories.PotentialAssignment.forValue;

public

class GenderSupplier extends ParameterSupplier {

@Override
public List<PotentialAssignment> getValueSources (

ParameterSignature sig) {
return Arrays.asList(
forvalue ("gender", Gender.MALE),
forvValue ("gender", Gender.FEMALE),
forvValue ("gender", Gender.UNKNOWN)) ;

LISTING B.5 Parameter supplier annotation.

import org.junit.experimental.theories.ParametersSuppliedBy;

import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

@Retention (RetentionPolicy.RUNTIME)

282 Appendix B = Source Code

@ParametersSuppliedBy (GenderSupplier.class)
public @interface AllGenders {
}

Test-driven Development

JUnit Version
LISTING B.6 The nine tests from the sample TDD session.

@Test
void searchingWhenNoDocumentsAreIndexedGivesNothing () {
assert [] == searchEngine.find("fox")

@Test

void searchingForADocumentsOnlyWordGivesThatDocumentsId () {
searchEngine.addToIndex (1, "fox")
assert [l] == searchEngine.find("fox")

@Test

void allIndexedDocumentsAreSearched () {
searchEngine.addToIndex (1, "fox")
searchEngine.addToIndex (2, "dog")

assert [2] == searchEngine.find("dog")

}

@Test

void documentsMayContainMoreThanOneWord () {
searchEngine.addToIndex (1, "the quick brown fox")
assert [1l] == searchEngine.find ("brown")
assert [l] == searchEngine.find("fox")

}

@Test

void

searchingForAWordThatMatchesTwoDocumentsGivesBothDocumentsIds () {

searchEngine.addToIndex (1, "fox")
searchEngine.addToIndex (2, "fox")
assert [1l, 2] == searchEngine.find("fox").sort ()

@Test
void multipleMatchesInADocumentProduceOneMatch () {

Test-driven Development 283

searchEngine.addToIndex (1,
"the quick brown fox jumped over the lazy dog")
assert [1l] == searchEngine.find("the")

@Test

void documentsAreSortedByWordFrequency () {
searchEngine.addToIndex (1, "fox fox dog")
searchEngine.addToIndex (2, "fox fox fox")
searchEngine.addToIndex (3, "dog fox dog")

assert [2, 1, 3] == searchEngine.find("fox")
assert [3, 1] == searchEngine.find("dog")

}

@Test

voild caseDoesNotMatter () {

searchEngine.addToIndex (1, "FOX fox FoX");
searchEngine.addToIndex (2, "foX FOx");
searchEngine.addToIndex (3, "FoX");

assert [1l, 2, 3] == searchEngine.find("fox")
assert [1l, 2, 3] == searchEngine.find ("FOX")

}

@Test

void punctuationMarksAreIgnored() {
searchEngine.addToIndex (1, "quick, quick: quick.");
searchEngine.addToIndex (2, " (brown) [brown] \"brown\" 'brown'");
searchEngine.addToIndex (3, "fox; -fox fox? fox!");
assert [1l] == searchEngine.find("quick")
assert [2] == searchEngine.find("brown")
assert [3] == searchEngine.find("fox")

LISTINGB.7 The searchEngine class.

class SearchEngine {
Map<String, List<WordFrequency>> index = [:]

void addToIndex (int documentId, String contents) {
preProcessDocument (contents) .split (" ") .each { word ->
bumpWordFrequencyForDocument (index.get (word, []), documentId)

}

resortIndexOnWordFrequency ()

284 Appendix B = Source Code

private String preProcessDocument (String contents) {
return contents.replaceAll ("[\\., I\\2:; \\ A\ AN LANTAN=N"T],
.toUpperCase ()

private void bumpWordFrequencyForDocument (List<WordFrequency>
frequencies, int documentId) {
def wordFrequency = frequencies.find
{ wf -> wf.documentId == documentId }
if (!'wordFrequency) {

frequencies << (wordFrequency = new WordFrequency (documentId))

}

wordFrequency.count++

private resortIndexOnWordFrequency () {
index.each { k, wfs -> wfs.sort
{ wfl, wf2 -> wf2.count <=> wfl.count } }

List<Integer> find(String word) {
return index.get (word.toUpperCase(), [])
.collect { wf -> wf.documentId }

LISTINGB.8 The WordFrequency class.

class WordFrequency {
int documentId
int count

WordFrequency (int documentId) {
this.documentId = documentId

Spock Version
LISTING B.9 The nine tests from the sample TDD session, using Spock this time.

def "searching when no documents are indexed gives nothing" () {
expect:
searchEngine.find ("fox") == []

def "searching for a document's only word gives that document's id" ()

{

Test-driven Development

285

def

def

def "

def

setup:

searchEngine.

expect:

searchEngine.

"all indexed

setup:

searchEngine.
searchEngine.

expect:

searchEngine.

"documents may contain more than one word" ()

setup:
searchEngine

expect:
searchEngine

// Slightly more strict than the JUnit version.

addToIndex (1,

find("fox") =

"fOX")

[1]

documents are searched" ()

addToIndex (1,
addToIndex (2,

.addToIndex (1,

.find (word) ==

find ("dog") ==

"fOX")
"dog")

[2]

"the quick brown fox")

[documentId]

{

where:

word << ["the", "quick", "brown", "fox"]

documentId << [1, 1, 1, 1]

searching for a word that matches two documents gives both documents' ids"() {
setup:

searchEngine.addToIndex (1, "fox")

searchEngine.addToIndex (2, "fox")

expect:

searchEngine.find ("fox") .sort () == [1, 2]

"multiple matches in a document produce one match" ()

setup:
searchEngine

"the quick brown fox Jjumped over the lazy dog")

expect:
searchEngine

.addToIndex (1,

.find("the") ==

[1]

Appendix

B =

Source Code

setup:

searchEngine.addToIndex (1, "fox fox dog")
searchEngine.addToIndex (2, "fox fox fox")
searchEngine.addToIndex (3, "dog fox dog")
expect:

searchEngine.find ("fox") = [2, 1, 3]
searchEngine.find ("dog") == [3, 1]

"case doesn't matter" () {

setup:

searchEngine.addToIndex (1, "FOX fox FoX");
searchEngine.addToIndex (2, "foX FOx");
searchEngine.addToIndex (3, "FoX");
expect:

searchEngine.find ("fox") = [1, 2, 3]
searchEngine.find ("FOX") [1, 2, 3]
"punctuation marks are ignored" () {
setup:

searchEngine.addToIndex (1,
searchEngine.addToIndex (2, " (brown) [brown]
searchEngine.addToIndex (3, "fox;

expect:

searchEngine.find ("quick") == [1]
searchEngine.find ("brown") == [2]
searchEngine.find ("fox") = [3]

def "documents are sorted by word frequency" ()

"quick, quick: quick.");

-fox fox? fox!");

Beyond Unit Testing 287

Beyond Unit Testing

LISTINGB.10 The DriverFactory class. Such classes hide the specifics of con-
structing various types of drivers from the tests. They're obviously more compli-
cated in real test suites, but even this simple implementation hides the use of a
directory (which would be configurable) and the fact that Htm1UnitDriver runs
through the RemoteWebDriver.

public class DriverFactory

{

public static IWebDriver NewChromeDriver ()

{

return new ChromeDriver (@"d:\drivers");

public static IWebDriver NewHtmlUnitDriver ()
{
return new
RemoteWebDriver (DesiredCapabilities.HtmlUnitWithJavaScript());

This page intentionally left blank

BIBLIOGRAPHY

Adzic, Gojko. 2011. Specification by Example: How Successful Teams Deliver the Right
Software. New York, NY: Manning Publications.

Adzic, Gojko. 2013. “Let’s Break the Agile Testing Quadrants.” http://gojko.net/
2013/10/21/lets-break-the-agile-testing-quadrants/.

Alspaugh, Thomas A. 2015. “Kinds of Software Quality (“Ilities”).” http://www
.thomasalspaugh.org/pub/fnd/ility.html.

Bach, James. 2013. “Testing and Checking Refined.” http://www.satisfice.com/blog/
archives/856.

Bach, James. 2015. “Heuristics of Software Testability.” http://www.satisfice.com/
tools/testable.pdf.

Bath, Graham and McKay, Judy. 2008. The Software Test Engineer’s Handbook: A
Study Guide for the ISTQB Test Analyst and Technical Analyst Advanced Level Certifi-
cates. Santa Barbara, CA: Rocky Nook.

Beck, Kent. 2002. Test-driven Development: By Example. Boston, MA: Addison-Wesley.

Beck, Kent and Andres, Cynthia. 2004. Extreme Programming Explained: Embrace
Change, 2nd ed. Boston, MA: Addison-Wesley.

Bolton, Michael. 2007. “Pairwise Testing (version 1.5, November, 2007).” http://www
.developsense.com/pairwiseTesting.html.

Bolton, Michael. 2014. “The REAL Agile Testing Quadrants (As We Believe They
Should Have Always Been).” http://www.slideshare.net/EuroSTARConference/
306284037-2014-06dublinrst-agiletesting.

Borysowich, Craig. 2007. “Design Principles: Fan-In vs Fan-Out.“ http://it.toolbox
.com/blogs/enterprise-solutions/design-principles-fanin-vs-fanout-16088.

Cimperman, Bob. 2006. UAT Defined: A Guide to Practical User Acceptance Testing.
New York, NY: Addison-Wesley.

Claessen, Koen and Hughes, John. 2016. “QuickCheck - Automatic Specification-
based Testing.” http://www.cse.chalmers.se/~rjmh/QuickCheck/.

289

http://gojko.net/2013/10/21/lets-break-the-agile-testing-quadrants/
http://gojko.net/2013/10/21/lets-break-the-agile-testing-quadrants/
http://www.thomasalspaugh.org/pub/fnd/ility.html
http://www.thomasalspaugh.org/pub/fnd/ility.html
http://www.satisfice.com/blog/archives/856
http://www.satisfice.com/blog/archives/856
http://www.satisfice.com/tools/testable.pdf
http://www.satisfice.com/tools/testable.pdf
http://www.developsense.com/pairwiseTesting.html
http://www.developsense.com/pairwiseTesting.html
http://www.slideshare.net/EuroSTARConference/306284037-2014-06dublinrst-agiletesting
http://www.slideshare.net/EuroSTARConference/306284037-2014-06dublinrst-agiletesting
http://it.toolbox.com/blogs/enterprise-solutions/design-principles-fanin-vs-fanout-16088
http://it.toolbox.com/blogs/enterprise-solutions/design-principles-fanin-vs-fanout-16088
http://www.cse.chalmers.se/~rjmh/QuickCheck/

290 Bibliography

Cohn, Mike. 2009. Succeeding with Agile: Software Development Using Scrum. Upper
Saddle River, NJ: Addison-Wesley.

Duvall, Paul M., Matyas, Steve, and Glover, Andrew. 2007. Continuous Integration:
Improving Software Quality and Reducing Risk. Upper Saddle River, NJ:
Addison-Wesley.

Evans, Eric. 2003. Domain-Driven Design: Tackling Complexity in the Heart of Software.
Boston, MA: Addison-Wesley.

Faber, Szczepan. 2008. “Should I Worry about the Unexpected?” http://monkeyisland
.pl/2008/07/12/should-i-worry-about-the-unexpected/.

Feathers, Michael C. 2004. Working Effectively with Legacy Code. Upper Saddle
River, NJ: Prentice Hall.

Foote, Brian and Yoder, Joseph. 1999. “Big Ball of Mud.” http://www.laputan.org/
mud/.

Fowler, Martin. 1999. Refactoring: Improving the Design of Existing Code. Boston,
MA: Addison-Wesley.

Fowler, Martin. 2004. “JUnit New Instance.” http://martinfowler.com/bliki/
JunitNewInstance.html.

Fowler, Martin. 2005. “Command Query Separation.” http://martinfowler.com/bliki/
CommandQuerySeparation.html.

Fowler, Martin. 2007. “Mocks Aren’t Stubs.” http://martinfowler.com/articles/
mocksArentStubs.html.

Fowler, Martin, 2014. “Unit Test.” http://martinfowler.com/bliki/UnitTest.html.

Freeman, Steve and Pryce, Nat. 2009. Growing Object-Oriented Software, Guided by
Tests. Upper Saddle River, NJ: Addison-Wesley.

Gamma, Erich, Helm, Richard, Johnson, Ralph, and Vlissides, John. 1994. Design
Patterns: Elements of Reusable Object-Oriented Software. Upper Saddle River, NJ:
Addison-Wesley.

Gregory, Janet and Crispin, Lisa. 2008. Agile Testing: A Practical Guide for Testers
and Agile Teams. Upper Saddle River, NJ: Addison-Wesley.

Gregory, Janet and Crispin, Lisa. 2014. More Agile Testing: Learning Journeys for the
Whole Team. Upper Saddle River, NJ: Addison-Wesley.

http://monkeyisland.pl/2008/07/12/should-i-worry-about-the-unexpected/
http://monkeyisland.pl/2008/07/12/should-i-worry-about-the-unexpected/
http://www.laputan.org/mud/
http://www.laputan.org/mud/
http://martinfowler.com/bliki/JunitNewInstance.html
http://martinfowler.com/bliki/JunitNewInstance.html
http://martinfowler.com/bliki/CommandQuerySeparation.html
http://martinfowler.com/bliki/CommandQuerySeparation.html
http://martinfowler.com/articles/mocksArentStubs.html
http://martinfowler.com/articles/mocksArentStubs.html
http://martinfowler.com/bliki/UnitTest.html

Bibliography 291

Hendrickson, Elisabeth, Lyndsay, James, and Emery, Dale. 2006. “Test Heuristics
Cheat Sheet, Data Type Attacks & Web Tests.” http://testobsessed.com/wp-content/
uploads/2011/04/testheuristicscheatsheetvl.pdf.

Humble, Jez and Farley, David. 2010. Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation, Upper Saddle River, NJ:
Addison-Wesley.

Hunt, Andrew and Thomas, David. 1999. Pragmatic Programmer: From Journeyman
to Master. Reading, PA: Addison-Wesley.

Hunt, Andrew and Thomas, David. 2003. Pragmatic Unit Testing: In Java with JUnit.
Raleigh, NC: The Pragmatic Programmers.

International Software Qualifications Board (ISTQB). 2011. “Foundation Level Syl-
labus.” http://www.istgb.org/downloads/finish/16/15.html.

Java Community Process (JCP). 2006. “JSR 305: Annotations for Software Defect
Detection.” https://jcp.org/en/jsr/detail?id=305.

JetBrains. 2016. “Code Quality Analysis - Code Annotations.” https://www.jetbrains
.com/resharper/features/code_analysis.html#Annotated_Framework.

Kaner, Cem, Bach, James, and Pettichord, Brat. 2001. Lessons Learned in Software
Testing: A Context-Driven Approach. New York, NY: Wiley.

Kuhn, D. Richard, Kacker, Ranghu N., and Lei, Yu. 2010. “Practical Combinatorial
Testing” NIST Special Publication 800-142. http://nvlpubs.nist.gov/nistpubs/Legacy/
SP/nistspecialpublication800-142.pdf.

Kumar, Ajitesh, 2014. “7 Popular Unit Test Naming Conventions.” https://dzone.com/
articles/7-popular-unit-test-naming.

Langr, Jeff, Hunt, Andy, and Thomas, Dave. 2015. Pragmatic Unit Testing in Java 8
with JUnit, Dallas: The Pragmatic Programmers.

Marick, Brian. 2003. “My Agile Testing Project.” http://www.exampler.com/old-blog/
2003/08/21/#agile-testing-project-1.

Martin, Robert C. 2002. Agile Software Development: Principles, Patterns, and
Practices. Upper Saddle River, NJ: Prentice Hall.

Martin, Robert C. 2008. Clean Code: A Handbook of Agile Software Craftsmanship.
Upper Saddle River, NJ: Prentice Hall.

Martin, Robert C. 2010. “The Transformation Priority Premise. “ http://
blog.8thlight.com/uncle-bob/2013/05/27/ TheTransformationPriorityPremise.html.

http://testobsessed.com/wp-content/uploads/2011/04/testheuristicscheatsheetv1.pdf
http://testobsessed.com/wp-content/uploads/2011/04/testheuristicscheatsheetv1.pdf
http://www.istqb.org/downloads/finish/16/15.html
https://jcp.org/en/jsr/detail?id=305
https://www.jetbrains.com/resharper/features/code_analysis.html#Annotated_Framework
https://www.jetbrains.com/resharper/features/code_analysis.html#Annotated_Framework
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-142.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-142.pdf
https://dzone.com/articles/7-popular-unit-test-naming
https://dzone.com/articles/7-popular-unit-test-naming
http://www.exampler.com/old-blog/2003/08/21/#agile-testing-project-1
http://www.exampler.com/old-blog/2003/08/21/#agile-testing-project-1
http://blog.8thlight.com/uncle-bob/2013/05/27/TheTransformationPriorityPremise.html
http://blog.8thlight.com/uncle-bob/2013/05/27/TheTransformationPriorityPremise.html

292 Bibliography

Martin, Robert C. 2011. The Clean Coder: A Code of Conduct for Professional
Programmers. Upper Saddle River, NJ: Prentice Hall.

Martin, Robert C. 2014. “The Little Mocker.” http://blog.8thlight.com/uncle-bob/
2014/05/14/TheLittleMocker.html.

Meszaros, Gerard. 2007. XUnit Test Patterns: Refactoring Test Code. Upper Saddle
River, NJ: Addison-Wesley.

Meszaros, Gerard. 2011. XUnit Test Patterns, http://xunitpatterns.com.

Meyer, Bertrand. 1997. Object-Oriented Software Construction, 2nd ed. New York,
NY: Prentice Hall.

Microsoft Corporation. 2013. “Code Contracts User Manual (August 14, 2013).”
http://research.microsoft.com/en-us/projects/contracts/userdoc.pdf.

Microsoft. 2016a. “Isolating Code Under Test with Microsoft Fakes.” http://msdn
.microsoft.com/en-us/library/hh549175.aspx.

Microsoft. 2016b. “Refactoring into Pure Functions.” http://msdn.microsoft.com/
en-us/library/bb669139.aspx.

North, Dan. 2006. “Introducing BDD.” http://dannorth.net/introducing-bdd.

Oracle, 2013, “The Java Language Specification: Java SE 7 Edition - section 14.10.”
http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.10.

Osherove, Roy. 2005. “Naming Standards for Unit Tests.” http://osherove.com/
blog/2005/4/3/naming-standards-for-unit-tests.html.

Osherove, Roy. 2009. The Art of Unit Testing: With Examples in .NET. Greenwich,
CT: Manning Publications.

OWASP, 2013. “OWASP Top 10—2013: The Ten Most Critical Web Application
Security Risks.” http://owasptopl0.googlecode.com/filessf OWASP%20Top%2010%20
-9%202013.pdf.

Palermo, Jeff. 2006. “Guidelines for Test-Driven Development.” http://msdn.microsoft
.com/en-us/library/aa730844(v=vs.80).aspx.

Poppendieck, Mary and Poppendieck, Tom. 2006. Implementing Lean Software
Development: From Concept to Cash. Upper Saddle River, NJ: Addison-Wesley.

Pugh, Ken. 2011. Lean-Agile Acceptance Test-Driven Development: Better Software
Through Collaboration. Upper Saddle River, NJ: Addison-Wesley.

RiSE (Microsoft). 2015. “Code Contracts for .NET.” http://visualstudiogallery.msdn
.microsoft.com/lec7db13-3363-46¢9-851f-1ce455f66970.

http://blog.8thlight.com/uncle-bob/2014/05/14/TheLittleMocker.html
http://blog.8thlight.com/uncle-bob/2014/05/14/TheLittleMocker.html
http://xunitpatterns.com
http://research.microsoft.com/en-us/projects/contracts/userdoc.pdf
http://msdn.microsoft.com/en-us/library/hh549175.aspx
http://msdn.microsoft.com/en-us/library/hh549175.aspx
http://msdn.microsoft.com/en-us/library/bb669139.aspx
http://msdn.microsoft.com/en-us/library/bb669139.aspx
http://dannorth.net/introducing-bdd
http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.10
http://osherove.com/blog/2005/4/3/naming-standards-for-unit-tests.html
http://osherove.com/blog/2005/4/3/naming-standards-for-unit-tests.html
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202013.pdf
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202013.pdf
http://msdn.microsoft.com/en-us/library/aa730844(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/aa730844(v=vs.80).aspx
http://visualstudiogallery.msdn.microsoft.com/1ec7db13-3363-46c9-851f-1ce455f66970
http://visualstudiogallery.msdn.microsoft.com/1ec7db13-3363-46c9-851f-1ce455f66970

Bibliography 293

Ritchie, Stephen D. 2011. Pro .Net Best Practices. Berkeley, CA: Apress.

Saff, David and Boshernitsan, Marat. 2006. “The Practice of Theories: Adding
“For-all” Statements to “There-Exists” Tests.” http://shareandenjoy.saff.net/tdd-
specifications.pdf.

Skeet, Jon. 2010. “Code Contracts in C#.” http://www.infoq.com/articles/
code-contracts-csharp.

Stallings, William and Brown, Lawrence. 2007. Computer Security - Principles and
Practice. Upper Saddle River, NJ: Prentice Hall.

Stewart, Simon. 2010. “Test Sizes.” http://googletesting.blogspot.se/2010/12/test-sizes
html.

Sutherland, Jeff and Schwaber, Ken. 2013. “The Scrum Guide (July 2013).” http://
www.scrumguides.org.

Tarnowski, Alexander. 2010. “Why Must Test Code Be Better than Production
Code.” Agile Record 4:24-25.

Vance, Stephen. 2013. Quality Code: Software Testing Principles, Practices, and
Patterns. Upper Saddle River, NJ: Addison-Wesley.

Weinberg, Gerald M. 1998. The Psychology of Computer Programming. New York,
NY: Dorset House.

Woodward, Martin R. and Al-Khanjari, Zuhoor A. 2000. “Testability, Fault Size and
the Domain-to-Range Ratio: An Eternal Triangle.” ACM SIGSOFT Software Engi-
neering Notes 25(5):168-172.

http://shareandenjoy.saff.net/tdd-specifications.pdf
http://shareandenjoy.saff.net/tdd-specifications.pdf
http://www.infoq.com/articles/code-contracts-csharp
http://www.infoq.com/articles/code-contracts-csharp
http://googletesting.blogspot.se/2010/12/test-sizes.html
http://googletesting.blogspot.se/2010/12/test-sizes.html
http://www.scrumguides.org
http://www.scrumguides.org

This page intentionally left blank

INDEX

A

Abstraction, level of
high-level considerations for testing, 273
programming language/frameworks
impacting, 53-54
Acceptance test-driven development (ATDD),
15-17
Acceptance tests
end-to-end, as double-loop TDD, 221-222
functional testing via, 27
overview of, 26
of services/components, 248-249
Accessor, in state verification, 173-174
Act, in Triple A test structure, 88-89
Actions
in decision tables, 115
in state transition model, 113-114
Activities, developer testing, 2-5
ACTS (Advanced Combinatorial Testing
System) tool, pairwise testing, 149
Age checks, data types and testability, 72-76
Agile testing
BDD, ATDD, and specification by
example, 15-17
summary, 19
understanding, 13-15
Agile Testing Quadrants, 32-33
Algorithmic errors, in behavior testing,
175-176
Almost unit tests
examples, 152
impact of, 156-157
overview of, 151-152
summary, 157
test-specific mail servers, 153-154
using in-memory databases, 152-153
using lightweight containers, 154-155
of web services, 155-156

APIs (application programming interfaces)
in components, 24
deciding on developer testing strategy, 268
discovering for simple search engine,
193-194
domain-specific languages for, 42
error/exception handling for public, 63
testing web services, 155-156
in tests using in-memory databases, 152
using/testing vendor payment gateways,
250-251
Archetype, considerations for testing, 273
Argument matchers, stubs in mocking
framework, 181-182
Arguments
contracts, 61
stubs in mocking framework, 181-182
Arrange-Act-Assert, Triple A test structure,
88-89
Assert, in Triple A test structure, 88-89
AssertEquals method
as assertion method, 89, 106
data-driven and combinatorial testing,
136-137, 280
generative testing, 143
implementing mockist style TDD, 213-214
mock objects, 164, 167-168
spies, 171
working with test code, 238
Assertions
assumptions vs., 141
constraints and matchers, 94-99
contract verification, 62-63
of equality, 93-94
exceptions to one per test, 90-92
fluent, 96-97

295

296 Index

Assertions (continued)
methods, 89-90
one per test, 90
overview of, 89
removing need for comments, 238-239
specialized, 94-96
in state-based tests, 173-174
test-driving search engine, 196-197
verbosity of, 92-93
verifying in more complex tests, 266
AssertThat method
data-driven and combinatorial testing,
280-281
defined, 91
fluent assertions, 97
mock objects, 167-168
specialized assertions, 96
spies, 171
tests enclosed in transactions, 246
Assumptions, theory testing, 140-141
Asynchronicity, UI tests failing, 252
ATDD (Acceptance test-driven development),
15-17
Attacks, CIA security triad for resilience to,
29
Audit, security testing as, 28
Authentication, in-memory database,
152-153
Author bias, critique-based testing and, 11
Automation
acceptance test, 17
agile testing, 14
of checks, 9-10
deployment, 50
providing infrastructure for, 5
smoke test, 34
as support testing, 11
unit test, 82
Availability
of CI servers, 157
in CIA security triad model, 29
enforcing contracts, 62
micro-services across tiers for, 132

B

Behavior
benefits of testable software, 39
in characterization testing, 34-35
defining component, 27
mock objects testing. See Mock objects
naming unit test for expected, 87
unit tests specifying tested code, 81
verification, 174-176
Behavior-driven development (BDD)
frameworks
double-loop TDD as, 222
matchers, 103-105
more fluent syntax of, 104
naming tests, 103
overview of, 102
test structure, 102-103
testing style, 15-17
unit testing in some languages with,
103-106
The Big Ball of Mud, testable software vs.,
37-39
Black box testing
implementing system tests, 26
integration test vs., 25
overview of, 22-23
when singularity has been neglected,
52-53
Block copy and paste, 229-230
Blocks, Spock framework, 90
Blueprint, construction phase in traditional
testing, 12
Boundary value testing
defined, 116
edge cases/gotchas for some data types,
111-113
specification-based technique, 110
Broken window syndrome, in duplication,
225,233
Brown-field business applications, testing,
258
Buffer overflow
developer understanding of, 5
from lenient/missing parameter
checking, 61
strings and, 111

Index 297

Bugs/defects
copy and paste introducing, 228-232
double-mode faults, 147-148
duplication introducing, 225-226
fixed by developers, 3-4
fixed in agile testing, 14-15
in language of testing, 22
leading to software failures, 22
regression testing and, 30-31
single-mode faults, 146-147
Builders
controlling dependency between
collaborators, 123-125
removing need for comments, 239-240
tests invoking systems via, 256-257
for tests that are not unit tests, 265-266
Business rules
for data types and testability, 72-76
decision tables showing gaps/
inconsistencies in, 115-116
verifying indirect output with mock
objects, 167-169
why duplication introduces bugs, 226

C

Canonical test method, 159-161, 228-229
Capybara acceptance test framework, Ruby,
42
Case insensitivity, creating search engine, 202
Challenges, of test-driven development,
206-209, 211
Change
benefits of testable software, 40
making people responsible for code, 81
oververifying in mocking frameworks,
186
unit tests enabling, 80
Characteristics of tests that are not unit tests
complexity, 258-259
environmental dependence, 261-262
error localization, 260-261
overview of, 257-258
performance, 261
stability, 259-260
target audience, 262-263

testing brown-field business applications,
258
Characterization testing
of legacy code, 3-4
overview of, 34-35
state verification with, 147
Checking
benefits of testable software, 40
developer testing vs., 9-10
CI. See Continuous integration (CI)
CIA security triad, 29
Class invariants, contracts, 59-60
Classes
avoid mocking concrete, 187-188
duplicating similar functionality in
different, 233-234
introducing test-driven development into
legacy code, 206
mocking value-holding, 188
removing need for comments by splitting
test, 240-241
removing need for comments using
factory, 239-240
Classic style TDD. See Test-driven
development (TDD) - classic style
Classification of tests
almost unit tests as unclassified tests, 151
overview of, 23
test levels, 23-26
test types. See Test types
The Clean Coder (Martin), 206
Cleanup methods (teardown), 84
Clients
contract building blocks and, 59-60
implementing contracts, 60-62
overview of, 57-58
Clock, dependencies of system, 127-128
Code Contracts, 63-64
Collaboration
absence of, 15
agile testing, 13-15
dependencies between objects, 119-125,
133
Collaborator isolation, 24
Collaborators
creating stubs in unit tests, 160

298 Index

Collaborators (continued)
defined, 119
fakes replacing, 162-164
implementing mockist style TDD,
215-216
objects replacing. See Test doubles
passing around, 121
verifying indirect input transformations,
169-170
Collections
as edge case worth checking, 112-113
low-level test considerations, 275
Combinatorial testing
beyond double-mode faults, 149
overview of, 145-146
single-mode faults, 146-147
summary, 149
Command/Query Separation principle, 93
Command shell, tests invoking systems via,
255-257
Commenting test code
adjusting test name vs., 237
deleting tests that are commented out, 242
overview of, 237
splitting up test classes vs., 240-241
using asserts with messages vs., 238-239
using factories or builders vs., 239-240
using variables/constant to clarify test vs.,
238
Compile, deleting tests that do not, 242
Complexity, tests that are not unit tests,
258-259
Components
defining behavior of, 27
elusive definition of, 24-25
implementing mockist style TDD, 213-214
introducing TDD into legacy code, 206
poor isolability of, 51
system test of, 26
tests exercising, 248-249, 271
Concrete classes, avoid mocking, 187-188
Condition alternatives, decision tables, 115
Conditions, decision tables, 115
Confidence of team, and testing, 11
Confidentiality, CIA security triad model, 29

Confusion, running almost unit tests with
unit tests, 156
Consistency
of pure functions, 69
of unit tests, 82
Constants, removing need for comments
with, 238
Constraints
assertion, 94-99
enforcing contracts with, 57-60, 62-65
parameterized tests, 139
search engine, 192
verifying interactions in mocking
framework, 183
Construction phase, in traditional testing,
11-13
Constructor
copy and paste, 230-231
creating stubs in unit tests, 160
passing in collaborators, 121
unit testing frameworks, 85
Containers
almost unit tests using lightweight,
154-155
new school approach to embedded, 155
testing brown-field business applications,
258
Context method, BDD-style test
framework, 102-103
Context, naming standard and, 87
Continuous Delivery—Reliable Software
Delivery through Build, Test, and
Deployment Automation (Humble &
Farley), 24
Continuous integration (CI)
developers implementing, 4-5
running almost unit tests with unit tests
and, 155-156
running unit tests in environment of, 82
TDD exposing deficiencies in, 209
in traditional testing, 12-13
Contracts, Programming by Contract
Controllability
defined, 55
deployability and, 48-50

Index 299

increasing through encapsulation in old
systems, 46
isolability and, 51
overview of, 48
test first or test last and, 209-210
as testability quality attribute, 48-51
UT tests failing, 252
Convergence, as traditional testing risk, 12
Copy and paste programming
of blocks of code, 229-230
breeding duplication, 225-226
of constructors, 230-231
example of, 228-229
generally the wrong thing to do, 227
as mechanical duplication, 228
messing up metrics, 226
method duplication, 231-232
when to use, 227
Coupling
behavior tests introducing, 175-176
black box reducing, 22
singularity introducing, 227
temporal, 71-72
test independence introducing, 263-264
during verification of mock object, 186
CPU performance, 261
Critique
Agile Testing Quadrants for product,
32-33
testing to, 10-11
Cross-checks, high-level tests, 274
Cross—time zone tests, 112
CUnit unit testing framework, 83
Custom constraints, assertions, 94-99
Customer
in BDD, ATDD, and specification by
example, 15-17
registration in mockist style TDD,
214-219
use of term in this book, 17
using ubiquitous language of, 15-17

D

Data
CIA security triad model for, 29

dividing into equivalence partitions,
107-110
UI test failure to control, 252-253
Data-driven and combinatorial testing
beyond double-mode faults/all pairs, 149
and combinatorial testing, 145-149
generative testing, 141-144
high-level considerations on format, 273
overview of, 135-137
parameterized tests, 138-139
source code, 279-282
summary, 149
theories, 139-141
Data helpers, complex tests, 265-266
Data points, in theory tests, 140-142
Data types
edge cases/gotchas for some, 111-113
and testability, 72-76
Databases
almost unit tests using in-memory;,
152-153
as piles of state, 70
testing brown-field business applications,
258
tests enclosed in transactions, 247
Date pickers, choosing, 112
Dates
boundary values for, 112
low-level test considerations, 276
Daylight saving time (DST), 112
Debuggers, 44-45
Decision tables, 115-117
Decoupling layers, 131
Defects. See Bugs/defects
Degenerate case, order of tests in TDD, 85
Deleting tests, 241-243
Dependencies
across tiers, 132
between collaborating objects, 119-125
isolability as fan-out of, 51
between layers, 129-132
overview of, 119
summary, 133
on system resources, 125-129
test doubles dealing with. See Test doubles
unit test. See Test doubles

300 Index

Dependency injection frameworks, 131
Dependency inversion, between layers,
131-132
Deployment
adverse effects of poor, 49-50
automated, 50
double-loop TDD forcing, 222
manual instructions for, 49
overview of, 48-49
testing brown-field business applications,
258
Describe function, BDD-style test
framework, 102
Design
duplicating similar functionality in
different classes, 234
duplicating similar functionality in
different methods by, 233
efficiency in patterns of, 54
unit tests for better, 79-80
Destructors, 85
Detail, high-level considerations for test, 273
Developer, clarifying meaning of, 1
Developer mind-set, 10
Developer testing
activities, 2-5
BDD, ATDD, and specification by
example, 15-17
defining, 6-7
deleting learning tests in, 241-242
development process and, 7-8
high-level considerations, 271-274
low-level considerations, 274-276
overview of, 1-2
quality assurance and, 18
strategy for, 267-269
summary, 8
what they usually do not do, 5-6
Development process, 7-8, 32-33
Diagrams, state, 114
Direct input
as drivers of testability, 68
pure functions having no, 69
stubs controlling, 160
Direct output
as drivers of testability, 68

pure functions having no, 69
Document IDs, test-driving search engine
design phase, 192-193
finding words in multiple documents, 197
introducing ranking, 199-202
searching more sophisticated documents,
196-197
searching multiple documents, 195-196
Domain classes, mocKkist style TDD, 215-216
Domain models, competing duplication in,
234-235
Domain-specific languages (DSLs), testing
with, 42
Domain-to-range ratio (DRR), as driver of
testability, 77-78
Double-loop TDD, 220-222
Double-mode faults, 147-149
Drivers of testability
data types and testability, 72-76
direct input and output, 68
domain-to-range ratio, 77-78
indirect input and output, 68-69
overview of, 67-68
state, 70-71
summary, 68
temporal coupling, 71-72
DRR (domain-to-range ratio), as driver of
testability, 77-78
DRY principle: Don’t Repeat Yourself, 52
DSLs (domain specific languages), 42
DST (daylight savings time), 112
Dummies, 171-173, 176
Duplication
assertions introducing, 92-93
breeding, 225
factory classes introducing, 240
knowledge, 232-235
mechanical, 228-232
overview of, 225
singularity vs., 53
summary, 235
taking advantage of, 227
testable software and, 40-41
why it is bad, 225-227
Dynamic proxies, mocking frameworks, 178

Index 301

E

E-mails, testing delivery, 153-154
Edge cases, 110, 111-113
Effectiveness, high-level considerations for
test, 271
Efficiency, testability and, 54
Eiffel, 60, 74-76
Elimination of waste, 41-42
Embedded containers, 155
Encapsulated code, 46-47
End-to-end tests
effectiveness of, 271
of features, 52
level of abstraction/detail, 273
overview of, 34
preparing brown-field business
applications for, 258
UI tests as, 252-254
End users
acceptance testing by, 26
observability of output for, 44
Enforcing contracts, 62-65
Environmental dependence, tests that are not
unit tests, 261-262
Equality
in BDD-style frameworks, 104
errors in mocking frameworks, 182
in unit tests, 93-94
Equals method, 93-94, 181-182
Equivalence partitioning, 107-110, 116
Errors
exceptions in unit tests, 99-102
forgetting equals method in unit tests,
93-94
in language of testing, 22
low-level test considerations, 275
order of tests in TDD, 85
temporal coupling, 72
for tests that are not unit tests, 260-261
in unit testing frameworks vs., 90
from violation of contracts, 57
Events, state transition model, 113-114
Exceptions
in copy/paste programming, 227
low-level test considerations, 275
in number of assertions per test, 89-90

stubs in mocking framework, 183

in unit tests, 99-102
Execution speed

critique-based testing of, 10

in tests that are not unit tests, 261

unit testing and, 24, 82
Expectations

configuring stubs, 180-183

setting, 179-180

verifying, 186-187
Expected behavior, naming unit tests, 87
ExpectedException rule, JUnit, 100-101
Experimenting, with test names, 88
Exploratory testing, cross-functional teams, 5
External factory, 123-125
Extract method of refactoring, 229-230

F

Factory classes, removing need for
comments, 239-240
Factory methods
controlling dependency between
collaborators, 122-123
as data helpers for tests outside domain of
unit tests, 265-266
removing need for comments, 239-240
Fail-safe activities, as support testing, 11
Failures
errors in unit tests vs., 90
software bugs/defects leading to. See Bugs/
defects
Faking
in classic style TDD, 211
defined, 176
in mockist style TDD, 216-217
overview of, 205
as test double, 162-164
tests interacting with other systems via,
250-251
Fan-out, isolability as, 51
Fast medium tests, 151
Features
added complexity of, 52
BDD-style frameworks, 105
benefits of testability for, 39-41

302 Index

Features (continued)
double-loop TDD verifying new, 222
fluent assertion, 97
mocking framework, 178
smallness with respect to number of,
52,55
unit tests enabling change of, 80
Feedback
benefits of double-loop TDD, 221-222
running almost unit tests with unit tests,
155
with short iterations in TDD, 191
File dependencies, 125-127
Find method
discovering API, 193
finding words in multiple documents, 197
happy path, 194-195
removing duplicate matches, 198-199
searching more sophisticated documents,
196-197
searching multiple documents, 195
Floating point numbers, boundary values,
111
Fluent assertions, 96-97
Format, high-level considerations on test, 273
4.x unit testing framework, 83
Fragmentation, as risk in traditional testing,
12
Frameworks
BDD, Behavior-driven development
(BDD) frameworks
dependency injection, 131
mocking. See Mocking frameworks
possibly deleting tests using older,
242-243
TDD exposing deficiencies in testing, 209
test method names mandated by, 83-84,
86
unit testing. See Unit tests
Functional testing
black box testing similar to, 36
nonfunctional testing vs., 28
overview of, 27
security testing as, 30
Functionality
benefits of testable software, 39-40

critique-based testing of, 10

double-loop TDD verifying finished, 222

duplication of different classes with
similar, 233-234

duplication of different methods with
similar, 232-233

efficiency for, 54

environmental dependence of tests that
are not unit tests, 261-262

testing in old systems, 46

tests exercising across several systems,
249-251

Functions

encoding business logic out of
preconditions, 74-76

measuring information loss, 77-78

pure functions vs., 69

state verification of, 174

testing exceptions in higher-order, 101

Fundamental test process, 12

G

General properties, generative test results,
144
Generative testing
defined, 149
high-level considerations on format, 273
overview of, 141-143
verifying results, 143-144
Generators, QuickCheck test, 143
Green bar, test-driven development
defined, 191
implementing mockist style TDD, 216-217
inspiration for, 206
turning from red bar to, 205
Groovy, 90, 101
Growing Object-Oriented Software, Guided by
Tests (Freeman & Price), 221
Guard assertions, 90
Guava, contract programming, 63-64

H

Handovers, agile testing with no, 14
Happy path tests

Index 303

order of tests in TDD, 85
as positive testing, 35
search engine design, 194-195
Heisenbugs, 45
“Hello World” of smoke testing, 33
Heuristics. See Test ideas and heuristics
High-level test considerations, 271-274
How, nonfunctional tests targeting, 28
HtmlUnitDriver, WebDriver testing, 253,
255
HTTP
tests exercising services/components,
248-249
tests that are not unit tests, 260

I/O-related errors, nasty test cases, 6
Ignorance, duplicating similar functionality,
233,234

Ignored tests, deleting, 242
IllegalStateException, 101,256
Implementation

in classic style TDD, 205, 211

competing duplication in, 234
In-memory databases

almost unit tests using, 152-153

almost unit tests with unit tests and, 156

tests enclosed in transactions vs. tests of,

246

Index, search engine

creating case insensitivity, 203

dealing with punctuation marks, 203

designing, 192-193

discovering API, 193-194

happy path, 194-195

introducing ranking, 199-202
Indirect input

pure functions having no, 69

testability driven by, 68-69

verifying transformations, 169-170
Indirect output

mock objects verifying, 164-169

pure functions having no, 69

testability driven by, 68-69
Information

hiding, 45-46
order of tests in TDD, 85
Initializer, lifecycle of unit tests, 83-85
Inspiration, TDD, 206
Integration. See Continuous integration (CI)
Integration tests
developer testing via, 2-3
functional tests at level of, 27
increasing observability in old code, 46
preparing brown-field business
applications for, 258
specification-based techniques for. See
Specification-based testing techniques
test level of, 25-26
for tests enclosed in transactions, 246-248
Integrity, CIA security triad model for, 29
Interaction tests
double-loop TDD verifying all, 221-222
test double response to expectations,
179-180
tests of web services, 155-156
verifying indirect output, 164-169
Interactions
arguments against behavior testing,
175-176
in mockist style TDD, 215-217
oververifying in mocking framework,
186-187
spies capturing, 170-171
verifying in mocking framework, 183-185
Interface
mocking, 188
mockist style TDD, 215-216
Intertwining layers, dependencies, 130
Invariants, enforcing contracts, 64-65
Inventory waste, in testing, 42
Inverse functions, 144, 274
Invocation
mocKkist style TDD, 215-216
test double response to expectations,
179-180
Isolability, 51
Isolation, unit tests, 82, 84

304 Index

It function, naming BDD-style framework
tests, 103
Iterations, 113, 191

J

Jasmine, 104
Jetty, 154-155
JMock, setting expectations, 179-180
JUnit testing framework
exception testing, 101-102
ExpectedException rule, 100-101
matchers determining outcome of
assertions, 94-96
MSTest assertions vs., 89-90
source code, sample TDD session,
282-284
test methods, 83
theory tests, 140

K

Knowledge duplication
competing domain models, 234-235
competing implementations, 234
overview of, 232
similar functionality in different classes,
233-234
similar functionality in different methods,
232-233
summary, 235
Knowledge, order of tests in TDD, 85

L

Large tests, 35
Layers

dependencies, 129-133

using mockist style TDD with, 219-220
Laziness

duplicating functionality in different

methods, 233

reasons for almost unit tests, 151
Legacy code

controlling dependency using factory, 123

defining, 3

developer testing strategy for, 268-269
enforcing contracts in, 61
faking, 163-164
information hiding/observability in,
45-46
introducing TDD into, 206-207
safe way of working with, 3-4
using test double, 179
Level of abstraction, testability and, 53-54
Libraries
as data helpers for more complex tests,
265-266
implementing contract programming,
63-64
resources, 277-278
specialized fluent assertion, 97
TDD exposing deficiencies in, 209
in tests that are not unit tests, 259
U tests relying on, 252-254
Lifecycle, unit testing framework, 83-85
Lightweight containers, 154-155
Load balancers, 258
Load testing, performance, 28
Log servers, 258
Logging, increasing observability via, 45
Logical concept, unit tests testing single, 82
Login, smoke tests for, 33-34
Low coupling, isolability and, 51
Low-level tests, 52, 274-276

M

Mail servers, in almost unit tests, 153-154
Maintenance
by developers, 3-4
nonfunctional testing of, 28
patching/bug fixing for, 3-4
smallness of test for, 55
Manual testing, of features, 52
Master database, 258
Matchers
assertions in unit tests, 94-99
BDD-style test framework, 103-105
verifying interactions in mocking
framework, 183
Matching arguments, stubs in mocking
framework, 181-182

Index 305

Math package, testing, 47-48
Maximum values for data types, 111
Mechanical duplication
block copy and paste, 229-230
constructor copy and paste, 230-231
copy and paste, 228-229
method duplication, 231-232
overview of, 228
summary, 235
Medium tests, 35, 151
Memory corruption, 111
Messaging middleware, 258
Metadata, unit test methods via, 83
Method duplication, 231-232
Methods
assertion, 89-90
cleanup, 84
controlling dependency using factory,
122-123
duplication of similar functionality in
different, 232-233
limitations of testing with formal, 42-43
test, 83-84
Metrics, duplication messing up, 226
Micro-services, dependencies across
tiers, 133
Mind-set, in critique-based testing, 10-11
Minimum values for data types, 111
Mirroring business logic, complex stubs, 162
Misuse, of mocking framework, 185-189
Mobile applications, UI tests for, 252-254
Mocha for Java Script, BDD-style test, 102
Mock objects
for behavior verification, 174
defined, 176

implementing with mocking frameworks.

See Mocking frameworks

oververifying in mocking frameworks,
186-187

response to expectations, 179-180

returning mocks, 189

spies vs., 170-171

as test doubles, 164-170

verifying interactions in mocking
framework, 183-185

Mocking frameworks
constructing test doubles, 177-179

misuse, overuse, and other pitfalls, 185
mocking concrete classes, 187-188
mocking value-holding classes, 188
mocks returning mocks, 189
oververifying, 186-187
overview of, 177
setting expectations, 179-180
stubbing, 180-183
summary, 189
verifying interactions, 183-185
Mockist style TDD. See Test-driven
development (TDD) - mockist style
Mockito, 180-184
Modifications, increasing observability, 44
Modularity, isolability and, 51
Moq for C#
configuring stubs in mocking framework,
180-183
constructing test doubles, 178
mocks behaving like spies in, 180
verifying interactions in mocking
framework, 184
MSTest unit testing framework, 83, 89-90
Multitiered applications, dependency across,
133
Mutator, state-based tests, 173-174

N

Naming conventions
BDD-style tests, 103
duplication of similar functionality in
different methods, 232-233
method duplication dangers, 231
removing need for comments, 237
Naming conventions, unit tests
behavior-driven development-style, 86
mandated by framework, 86
overview of, 85-86
picking naming standard, 87-88
structuring unit tests, 88-89
test methods using, 83
unit of work, state under test, expected
behavior, 87
Nasty test cases, 5, 6
Negative testing, 35, 85
Nested contexts, RSpec for Ruby, 102-103

306 Index

Network performance, tests outside domain
of unit tests, 261
Nice mocks, 180
Nomenclature, contract programming, 58
Nonfunctional testing, 28, 30
Normal mocks, 180
Nuking, coding stability for tests that are not
unit tests, 259
Null check, enforcing contracts, 65
Null value, boundary values for strings, 111
Nulls
indicating dummy, 172
low-level test considerations, 274
Numbers
finding boundary values for, 111
low-level test considerations, 275
NUnit testing framework
constraints and assertions, 94-96
exception testing, 101
parameterized tests, 138-139
test methods, 83
theory tests, 140

0
Object equality
asserting in BDD-style tests, 104
unit test assertion checking for, 93-94
Object-oriented languages
contracts blending with, 61
data types/testability in, 72-73
data types/testability in non, 74-76
raising level of abstraction, 53
temporal coupling in, 72
Objectives. See Testing objectives
Objects, dependencies between collaborating,
119-125, 133
Observability
defined, 55
test first or test last, 209-210
as testability quality attribute, 44-48
Obvious implementation, classic style TDD,
205, 211
Optimization, ranking, 201-202
Oracles, 144
Order of tests, TDD, 204

Outcome, naming unit tests to convey
expected, 85
Outgrown tests, deleting, 243
Output
of developers, 1
observability via developer, 44
Overprocessing waste, incurring in
testing, 42
Overuse, mocking framework, 185-189
Overuse, of dummies, 173
Oververifying, in mocking frameworks,
186-187

P

Page Objects, Ul tests, 254
Pair programming, and legacy code, 4
Pairwise testing
beyond, 149
for combinatorial explosions, 147-149
defined, 149
Pairwise.pl program, 149
Parallel implementations, 227
Parameterized tests
defined, 149
overview of, 138-139
reporting results from, 141
theories vs., 139-141
using parameterized stubs, 161-162
Parentheses, expressing intervals, 109
Partial verification, unit tests, 98-99
Partitioning
boundary value analysis of, 110
equivalence, 107-110
knowledge duplication with deliberate,
233
Pass-through tests, mockist style TDD,
218-219
Patching, by developers, 3-4
Paving, 259-260
Payment gateways, 250-251
PCI DSS security standard, 250
Penetration tests, 28
Performance testing
impact of assertions on, 63
nonfunctional testing of, 28

Index 307

not usually done by developers, 5
overview of, 28
of tests that are not unit tests, 261
Persistence operations, tests enclosed in
transactions, 246-248
PHPUnit unit testing framework, 83
Pitfalls, of mocking frameworks, 185-189
Portability
nonfunctional testing of, 28
running almost unit tests with unit tests,
156
of unit tests across all environments, 82
Positive testing, 35
Postconditions, enforcing contracts, 59,
64-65
The Pragmatic Programmer, 52
Pragmatic Unit Testing (Hunt & Thomas), 40
Preconditions
as contract building block, 59
encoding business logic out of, 74-76
enforcing contracts with assertions, 62
enforcing contracts with Guava, 63-64
enforcing contracts with unit tests, 64-65
for tests that are not unit tests, 259
Predicates
configuring stubs in mocking framework,
181-182
determining outcome of assertions, 94
high-level test considerations, 274
Prefixes, naming tests, 86, 87
Primitive integer types, boundary values, 111
Privacy, in CIA security triad model, 29
Proactive role, of tester in agile testing, 14
Processes, traditional testing requiring well-
defined, 12
Program elements, testable, 43
Programming by Contract
contract building blocks, 59-60
contracts defining constraints, 57-58
enforcing with assertions, 62-63
enforcing with specialized libraries, 63-64
enforcing with static analysis, 65
enforcing with unit tests, 64-65
implementing, 60-62
overview of, 57
summary, 65

Programming languages

efficiency (intent) of, 54

level of abstraction, 53-54

minimum and maximum values in, 111
Properties, unit test, 81-82
Provisioning, in tests that are not unit tests,

259-260

Proxies, dynamic, 178
Punctuation marks, search engine, 203
Pure functions, side effects, 69

Q
Quality

attributes, 28, 43-44

developer testing for, 6-7

why we care about testability, 41
Quality assurance

developer testing and, 18

in traditional testing, 12-13
QuickCheck, using test generator, 143

R

Randomness, making tests nondeterministic,
143-144
Range, test considerations, 273, 274
Ranking, test-driving search engine
designing, 192-193
introducing, 199-202
removing duplicate matches to prepare
for, 197-198
Readability, logging and, 45
Red bar, test-driven development
defined, 191
implementing mockist style TDD, 216-217
inspiration for, 206
never refactor in, 199
turning into green bar, 205
Redundant tests, deleting, 242
Refactoring
deleting tests that have not kept up
with, 241
oververifying in mocking frameworks,
186

308 Index

Refactoring, test-driven development
dealing with punctuation marks, 203
defined, 191
introducing ranking, 199-202
legacy code, 206-207
order for adding tests, 210
removing duplicate matches, 198

Regression testing, 30-31, 35

Regression, unit tests preventing, 80, 81

Regulations, critique-based testing of, 10

Relations between objects, dependency as,

119-125, 133
Reliability, performance tests targeting, 28
Repeatability, of unit tests, 82
Reproducibility, controllability paramount
to, 48

Resources, CIA security triad model for
availability of, 29

Responsiveness, performance tests targeting,
28

RESTful web service, 155-156, 248-249

Rewrites, testing brown-field business
applications, 258

Risk, 11, 12

Role, of tester in agile testing, 13-14

Rollbacks, tests enclosed in transactions,

246-247
RSpec for Ruby, BDD-style tests, 102-105

S

Safety, testing for, 11
Scaling, unit tests enabling, 79
Scope
critique-based testing of, 10
in functional testing, 27
unit testing and, 24
Seams, breaking dependencies, 120
Search engine, test-driving
dealing with punctuation marks, 203-204
designing, 192-193
discovering API, 193-194
finding words in multiple documents, 197
happy path, 194-195
ignoring case, 202
introducing ranking, 199-202

more sophisticated documents, 196
removing duplicate matches, 197-199
searching in multiple documents, 195-196
Security, payment gateways, 250
Security testing, 5, 28-30
Semantics, number of assertions per unit
test, 91
Server configuration, 258
Service tests, 248-249, 267-269, 271
Setters, passing in collaborators with, 121
Setup, of higher-level tests, 264-266
Should, starting test name with, 86
Side effects
faking, 162-163
implementing empty stub to get rid of, 162
pure functions and, 69
Simplicity, deleting tests for, 243
Single-mode faults, 146-147, 149
Single Responsibility Principle, 85
Single value, high-level test considerations,
273
Singleton pattern, 69
Singularity
bottleneck/coupling in, 227
testability and, 52-53
Small tests, 35
Smallness
defined, 55
efficiency and, 54
level of abstraction and, 53-54
maintenance and, 55
reuse and, 54
singularity and, 52-53
of test suite in almost unit tests, 151
as testability quality attribute, 51-52
Smoke testing, 33-34
SMTP port, almost unit tests using mail
servers, 153-154
Social dimension, of continuous integration,
4-5
Source code
beyond unit testing, 287
data-driven and combinatorial testing,
279-282
integration tests coupled to, 26
JUnit version, TDD, 282-284

Index 309

Spock version, TDD, 284-287
test doubles, 279
test levels express proximity to, 23-26
white box vs. black box testing, 22
Special code, in test-driven development, 207
Specialized assertions, unit tests, 94-96
Specification-based testing techniques
based on decision tables, 115-116
boundary value analysis, 110
edge cases/gotchas for some data types,
111-113
equivalence partitioning, 107-110
overview of, 107
state transition testing, 113-114
summary, 116-117
Specification by example
as double-loop TDD, 222
testing style, 15-17
as tests exercising services/components,
248-249
Speed. See Execution speed
Spies
defined, 176
implementing with mocking frameworks,
177
as test doubles, 170-171
Spike testing, performance, 28
Spock framework
differentiating stubs and mocks, 178
mocks behaving like spies in, 180
parameterized tests, 138
source code for TDD, 284-287
using blocks as assertions, 90
verifying interactions in mocking
framework, 185
Spring Boot, starting embedded containers,
155
SQL-compliant in-memory databases,
152-153, 156
Square brackets, expressing intervals, 109
Stability, tests that are not unit tests, 259-260
Stacking, stubs in mocking framework, 182
Startup, complex test, 264
State
controllability and, 48
as driver of testability, 70-71

mock objects shifting focus to, 164
setting up higher-level tests, 264-265
temporal coupling vs., 71-72
unit testing from known, 83-84
verification of, 173-174, 176
State-based tests, 173-174
State transition testing, 113-114, 116
State under test, 87
Statements, verifying tested code with
theories, 139-141
Static analysis, contracts, 65
Stderr (standard err), 255
Stdin (standard input), 255
Stdout (standard output), 255
Steady pace of work, in unit tests, 80
Storage performance, tests outside domain of
unit tests, 261
Stored procedures, tests enclosed in
transactions, 247
Stress testing, of performance, 28
Strict mocks, 180
Strings
finding boundary values for, 111-112
low-level test considerations, 275-276
Structuring
BDD-style tests, 102-103
unit testing frameworks, 88-89
Stubs
configuring in mocking framework,
180-183
defined, 176
flexibility of, 161-162
getting rid of side effects with, 162
implementing with mocking frameworks,
177-179
as test doubles, 159-162
Subsystems, TDD for legacy code, 206
Suppliers, in contract programming
contract building blocks and, 59-60
implementing contracts, 60-62
overview of, 57-58
Support, testing to, 11
Switch coverage, state transition testing, 114
Syntax
BDD-style frameworks with fluent, 105
number of assertions per unit test, 91-92

310 Index

System
CIA security triad model for integrity of,
29
clock, 127-128
resource dependencies, 125-129, 133
System boundary, mockist style TDD,
214-215
System tests
considering effectiveness of, 271
considering level of abstraction/detail, 273
end-to-end testing vs., 34
of features, 52
functional tests at level of, 27
increasing observability in old code, 46
test level of, 26
UI tests as, 252-254
Systems
tests invoking, 255-257
tests that interact with other, 249-251

T

Tables
decision, 115-116
double-mode faults, 147-149
single-mode faults, 147
Tabular/data-driven tests, 273
Target audience, tests that are not unit tests,
262-263
TDD. See Test-driven development (TDD) -
classic style; Test-driven development
(TDD) - mockist style
Team
agile testing experts on development,
13-14
automated acceptance tests written by, 27
TDD exposing deficiencies in, 209
Teardown (cleanup methods), 84
Technical debt, of intertwining layers, 130
Technical side, of continuous integration, 4-5
Technology-facing tests, 32-33
Temporal coupling, 71-72, 263-264
Termination of failed assertions, 61
Test automation pyramid, 267-269
Test classes, lifecycle of unit tests, 84-85
Test code, working with

commenting tests, 237-241
deleting tests, 241-243
overview of, 237
summary, 243-244
Test coverage, deleting duplicated code to
increase, 226-227
Test doubles
behavior verification, 174-176
constructing with mocking frameworks.
See Mocking frameworks
dealing with dependencies in unit tests,
159
dummies, 171-173
fakes, 162-164
mock objects, 164-170
for more complex tests, 267
replacing entire system with, 251
source code, 279
spies, 170-171
state verification, 173-174
stubs, 159-162
summary, 176
Test-driven development (TDD) - classic style
alternatives and inspiration, 206
challenges, 206-209
order of tests, 204
overview of, 191
red to green bar strategies, 205
resources on, 206
Spock version source code, 284-287
summary, 210-211
switching between mockist and, 220
test-driving simple search engine. See
Search engine, test-driving
test first or test last, 209-210
Test-driven development (TDD)—mocKkist
style
adding more tests, 219-220
different approach to design, 213-214
double-loop TDD, 220-222
focusing on design of system, 213
summary, 223
switching between classic and, 220
test-driving customer registration,
214-219

Index 311

Test first or test last, TDD, 209-210
Test fixture, unit tests, 83-84
Test ideas and heuristics
high-level considerations, 271-274
low-level considerations, 274-276
overview of, 271
Test initializers
BDD-style frameworks, 103
for tests that are not unit tests, 259
unit tests, 83-85
Test levels
acceptance test, 26
defined, 23
integration test, 25-26
putting to work, 31
system test, 26
unit test, 23-25
Test recipes, high-level considerations, 272
Test types
defined, 26-27
functional testing, 27
nonfunctional testing, 28
performance testing, 28
putting to work, 31
regression testing, 30-31
requiring different amounts of state, 48
security testing, 28-30
Testability
benefits of, 39-43
from developer’s perspective, 37
reminder about, 55
summary, 55
test-driven development exposing
deficiencies in, 209
test first or test last, 209-210
testable software, 37-39
Testability, as quality attribute
controllability, 48-51
observability, 44-48
overview of, 43-44
program elements, 43
smallness, 51-55
Testable software, The Big Ball of Mud vs.,
37-39
Testdriven Development by Example (Beck),
205, 206

Tested object
in behavior verification, 174-175
creating fakes, 162-164
creating stubs in unit tests, 160
in state verification, 173-174
verifying indirect input transformations,
169-170
verifying indirect output with mock
objects, 165
Tester mind-set, 5, 10
Testing behavior, 176
Testing objectives
of test types. See Test types
testing to critique, 10-11
testing to support, 11
testing vs. checking, 9-10
Testing styles
Agile testing, 13-15
BDD, ATDD, and specification by
example, 15-17
traditional testing, 11-13
Tests enclosed in transactions, 246-248
Tests exercising services/components,
248-249
Tests invoking system, 255-257
Theory tests
adding generative testing to, 142-143
defined, 149
overview of, 139-141
reporting results from, 141
Third parties
reuse by implementing, 54
tests interacting with other systems,
250-251
Thread libraries, raising level of abstraction,
53
Throughput
and duplication, 227
performance tests targeting, 28
Tiers, dependencies across, 132, 133
Tight coupling, 175-176
Time
boundary values for, 112
unit tests freeing up testing, 80-81

312 Index

Tools
checking vs. testing, 9-10
resources for, 277-278
Toyota Production System, elimination of
waste, 41-42
Traditional testing, 11-13, 19
Transactions, tests enclosed in, 246-248
Transformation Priority Premise (Martin),
206
Transitions, state, 113-114
Transparency, deleting tests for, 243
Triangulation, 205, 211, 243
Triple A test structure, 88-89
Truthfulness
deleting tests for, 243
of test result, 273
Try-catch statement, testing exceptions in
higher-order functions, 101
Types, limitations of testing with, 43

U

UAT (user acceptance testing), 26
Ubiquitous language, 15-17
UI (user interface) tests, 252-254, 267-269
Unclassifed tests, almost unit tests as, 151
Unicode characters, strings, 112
Unit of work, 24, 87
Unit tests
in agile testing, 15
assertion methods, 89-99
with BDD-style frameworks, 102-105
characteristics of tests that are not,
257-263
in characterization testing, 34
data-driven. See Data-driven and
combinatorial testing
definition of, 81-83
developers writing, 2
effectiveness of, 271
enforcing contracts with, 64-65
for exceptions, 99-102
functional tests as, 27
level of abstraction/detail, 273
lifecycle of, 83-85
naming, 85-88

in old system, 46

overview of, 79

reasons to perform, 79-81

as small tests, 35

specification-based. See Specification-
based testing techniques

structuring, 88-89

summary, 105-106

system tests vs., 26

TDD exposing deficiencies in, 209

in test automation pyramid, 267-269

test level of, 23-25

tests that are almost. See Almost unit tests

in traditional testing, 12-13
unit testing frameworks not running only,
83
Unit tests, beyond
developer testing strategy decisions,
267-269
overview of, 245
pointers and practices, 263-267
source code, 287
summary, 269-270
test independence, 263-264
tests enclosed in transactions, 246-248
tests exercising services/components,
248-249
tests interacting with other systems,
249-251
tests invoking system, 255-257
tests running through user interface,
252-255
tests that are not unit tests, 257-263
@Unroll annotation, parameterized tests,
138
Usability testing
nonfunctional testing, 28
not usually done by developers, 5
User acceptance testing (UAT), 26
User interface (UI) tests, 252-254, 267-269
Users, critique-based testing of, 10
Utility methods, duplication, 231-232,
265-266

Index 313

vV

Validation, contracts not replacing, 57
Value-holding classes, 188
Values
dummies indicated by simple, default,
171-172
high-level test considerations, 273-274
stubs, 160, 161-162
Variable delays, UI tests failing, 252
Variables, removing need for comments, 238
Verbosity, of assertions in unit tests, 92-93
Verification. See also Developer testing
of behavior, 174-175
The Big Ball of Mud preventing, 38-39
of contracts, 62-63
in generative testing, 143-144
of indirect output with mock objects,
164-169
in mocking framework, 183-187
in more complex tests, 266
of state, 173-174
in testable software, 39
with theories, 139-141
in traditional testing, 11-13
in unit testing, 82, 98-99
Verify method, 164-169
Virtualization, tests that are not unit tests,
259-260
Vocabulary, test key terms
Agile Testing Quadrants, 32-33
black box testing, 22-23
characterization testing, 34-35
end-to-end testing, 34
errors, defects, and failures, 22
negative testing, 35

overview of, 21

positive testing, 35

putting test levels/test types to work, 31
small, medium, and large tests, 35
smoke testing, 33-34

summary, 36

test levels, 23-26

test types, 26-31

white box testing, 22-23

W

Waste, elimination of, 41-42
Wasteful, tests as, 41-43
Web applications
reality of layers in, 130
UT tests for, 252-254
Web frameworks, raising level of abstraction,
53
Web services, almost unit tests of, 155-156
WebDriver testing, 253-255, 259
“What,” functional tests targeting, 28
White box testing, 22-23, 52
Word frequency, and ranking, 200-202
Working Effectively with Legacy Code
(Feathers), 3

X

XCTest unit testing framework, 83
XUnit.net framework, 85

VA

Zero-one-many, test coverage of, 274

This page intentionally left blank

@
£

REGISTER YOUR PRODUCT at informit.com/register
Access Additional Benefits and SAVE 35% on Your Next Purchase

* Download available product updates.
e Access bonus material when applicable.

* Receive exclusive offers on new editions and related products.
(Just check the box to hear from us when setting up your account.)

* Get a coupon for 35% for your next purchase, valid for 30 days. Your code will
be available in your InformIT cart. (You will also find it in the Manage Codes
section of your account page.)

Registration benefits vary by product. Benefits will be listed on your account page
under Registered Products.

InformIT.com—The Trusted Technology Learning Source
InformIT is the online home of information technology brands at Pearson, the world’s foremost
education company. At InformIT.com you can

* Shop our books, eBooks, software, and video training.

* Take advantage of our special offers and promotions (informit.com/promotions).

e Sign up for special offers and content newsletters (informit.com/newsletters).

* Read free articles and blogs by information technology experts.

e Access thousands of free chapters and video lessons.

Connect with InformIT-Visit informit.com/community
Learn about InformIT community events and programs.

IO0nA
informit.com

the trusted technology learning source

Addison-Wesley + Cisco Press « IBM Press « Microsoft Press « Pearson IT Certification « Prentice Hall + Que + Sams » VMware Press

ALWAYS LEARNING PEARSON

http://www.informit.com/register
http://www.InformIT.com
http://www.InformIT.com
http://www.informit.com/promotions
http://www.informit.com/newsletters
http://www.informit.com/community
http://www.informIT.com

	Cover
	Title Page
	Copyright Page
	Contents
	Foreword by Jeff Langr
	Foreword by Lisa Crispin
	Preface
	Acknowledgments
	About the Author
	Chapter 1 Developer Testing
	Developers Test
	Developer Testing Activities
	What Developers Usually Don’t Do
	Defining Developer Testing
	Developer Testing and the Development Process
	Summary

	Chapter 2 Testing Objectives, Styles, and Roles
	Testing and Checking
	Testing Objectives
	Testing Styles
	Your Quality Assurance and Developer Testing
	Summary

	Chapter 3 The Testing Vocabulary
	Errors, Defects, Failures
	White Box and Black Box Testing
	Classifying Tests
	The Agile Testing Quadrants
	Some Other Types of Testing
	Summary

	Chapter 4 Testability from a Developer’s Perspective
	Testable Software
	Benefits of Testability
	Testability Defined
	Summary

	Chapter 5 Programming by Contract
	Contracts Formalize Constraints
	Implementing Programming by Contract
	Enforcing Contracts
	Summary

	Chapter 6 Drivers of Testability
	Direct Input and Output
	Indirect Input and Output
	State
	Temporal Coupling
	Data Types and Testability
	Domain-to-Range Ratio
	Summary

	Chapter 7 Unit Testing
	Why Do It?
	What Is a Unit Test?
	The Life Cycle of a Unit Testing Framework
	Naming Tests
	Structuring Tests
	Assertion Methods
	Testing Exceptions
	Behavior-driven Development–Style Frameworks
	Summary

	Chapter 8 Specification-based Testing Techniques
	Equivalence Partitioning
	Boundary Value Analysis
	Edge Cases and Gotchas for Some Data Types
	State Transition Testing
	Decision Tables
	Summary

	Chapter 9 Dependencies
	Relations between Objects
	System Resource Dependencies
	Dependencies between Layers
	Dependencies across Tiers
	Summary

	Chapter 10 Data-driven and Combinatorial Testing
	Parameterized Tests
	Theories
	Generative Testing
	Combinatorial Testing
	Summary

	Chapter 11 Almost Unit Tests
	Examples
	Impact
	Summary

	Chapter 12 Test Doubles
	Stubs
	Fakes
	Mock Objects
	Spies
	Dummies
	Verify State or Behavior?
	Summary

	Chapter 13 Mocking Frameworks
	Constructing Test Doubles
	Setting Expectations
	Verifying Interactions
	Misuse, Overuse, and Other Pitfalls
	Summary

	Chapter 14 Test-driven Development—Classic Style
	Test-driving a Simple Search Engine
	Order of Tests
	Red- to Green-bar Strategies
	Challenges
	Test First or Test Last?
	Summary

	Chapter 15 Test-driven Development—Mockist Style
	A Different Approach
	Double-loop TDD
	Summary

	Chapter 16 Duplication
	Why Duplication Is Bad
	Taking Advantage of Duplication
	Mechanical Duplication
	Knowledge Duplication
	Summary

	Chapter 17 Working with Test Code
	Commenting Tests
	Deleting Tests
	Summary

	Chapter 18 Beyond Unit Testing
	Tests that Aren’t Unit Tests
	Characteristics of Tests that Aren’t Unit Tests
	Pointers and Practices
	Deciding on a Developer Testing Strategy
	Summary

	Chapter 19 Test Ideas and Heuristics
	High-level Considerations
	Low-level Considerations
	Summary

	Appendix A: Tools and Libraries
	Appendix B: Source Code
	Test Doubles
	Data-driven and Combinatorial Testing
	Test-driven Development
	Beyond Unit Testing

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

