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Preface

I have taught a course called “Bayesian Statistics” at the University of Iowa every
academic year since 1998–1999. This book is intended to fit the goals and audience
addressed by my course. The “Course Objectives” section of my syllabus reads:

Through hands-on experience with real data from a variety of applications, students will
learn the basics of designing and carrying out Bayesian analyses, and interpreting and
communicating the results. Students will learn to use software packages including R and
OpenBUGS to fit Bayesian models.

The course is intended to be intensely practical, focussing on building under-
standing of the concepts and procedures required to perform Bayesian analysis of
real data to answer real questions. Emphasis is given to such issues as determining
what data is needed to address a particular question; choosing an appropriate
probability distribution for sample data; quantifying already-existing knowledge in
the form of a prior distribution on model parameters; verifying that the posterior
distribution will be proper if improper prior distributions are used; and when and
how to specify hierarchical models. Interpretation and communication of results are
stressed, including differences from, and similarities to, classical approaches to the
same problems.

WinBUGS and OpenBUGS currently are the dominant software in applied
use of Bayesian methods. I have chosen to introduce OpenBUGS as the primary
data analysis software in this textbook because, unlike WinBUGS, OpenBUGS is
undergoing continuing development and has versions that run natively under Linux
and Macintosh operating systems as well as Windows. Although some background
is provided on the Markov chain Monte Carlo sampling procedures employed by
WinBUGS and OpenBUGS, the emphasis is on those tasks that a user must carry
out correctly for reasonably trustworthy inference. These include using appropriate
tools to assess whether and when a sampler has converged to the target distribution,
deciding how many iterations are needed for acceptable accuracy in estimation, and
how to report results of a Bayesian analysis conducted with OpenBUGS. Caveats
about the fallibility of convergence diagnostics are emphasized.
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viii Preface

Students of different levels and disciplines take the course, including: undergrad-
uate mathematics and statistics majors; master’s students in statistics, biostatistics,
statistical genetics, educational testing and measurement, and engineering; and
PhD students in economics, marketing, psychology, and geography as well as the
previously listed fields. In addition, several practicing statisticians employed by the
University of Iowa and American College Testing (ACT) have taken the course.

The goal of the course, and of this book, is to provide an introduction to Bayesian
principles and practice that is clear, useful, and unintimidating to motivated students
even if they do not have an advanced background in mathematics and probability.
I emphasize intuitive insight without sacrificing mathematical correctness. Prereq-
uisites are one or two semesters of calculus-based probability and mathematical
statistics (at least at the Hogg and Tannis level) and one or two semesters of classical
statistical methods, including linear regression (David Moore’s Basic Practice of
Statistics level). Elementary integral and differential calculus is occasionally used
in lectures and homework. Linear algebra is not required.

Coralville, Iowa Mary Kathryn Cowles
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Chapter 1
What Is Bayesian Statistics?

1.1 The Scientific Method (But It Is Not Just for Science. . . )

In almost every field of human activity, people use data to further their learning
and to guide decision-making and action. The following steps, paraphrased from
Berry (1996), have been described as “the scientific method.” However, they are
equally appropriate for use by a biologist seeking to better understand the behavior
of monarch butterflies, the marketing director of a grocery store chain determining
where to open a new store, or a new university graduate deciding whether to accept
a particular job offer.

1. Define the question or problem to be addressed.
2. Assess the relevant information already available. Decide whether it is sufficient

for the purpose at hand.

a. If yes, draw appropriate conclusions, make appropriate decisions, and take
appropriate action.

b. If no, proceed to step 3.

3. Determine what additional information is needed and design a study or experi-
ment to attempt to obtain it.

4. Carry out the study designed in step 3.
5. Use the data obtained in step 4 to update what was previously known. Return to

step 2.

Statistics is central to steps 2, 3, and 5. Bayesian statistics is particularly well
suited to steps 2 and 5, because it provides a quantitative framework for representing
current knowledge and for rationally integrating new information.

M.K. Cowles, Applied Bayesian Statistics: With R and OpenBUGS Examples,
Springer Texts in Statistics 98, DOI 10.1007/978-1-4614-5696-4 1,
© Springer Science+Business Media New York 2013
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1.2 A Bit of History

One could argue that the Great Fire of London in 1666 sparked the philosophy and
methods that now are called Bayesian statistics. Destroying over 13,000 houses, 89
churches, and dozens of public buildings, the Great Fire led to the rise of insurance
protection as we understand it today. The following year, one Nicholas Barbon
opened an office to insure buildings, and in 1680, he established the first full-fledged
fire insurance company in England. By the early eighteenth century, the idea of life
insurance as well as property insurance was taking hold in England. However, lack
of adequate vital statistics and of probability theory led to the failure of many early
life insurers.

Enter Thomas Bayes. Born in London in 1702, Bayes became an ordained
Presbyterian minister by profession and a mathematician and scientist by avocation.
He applied his mind to the questions urgently raised by the insurers and laid out
his resulting theory of probability in his Essay towards solving a problem in the
doctrine of chances. After Bayes’ death in 1761, his friend Richard Price sent the
paper to the Royal Society of London.The paper was published in the Philosophical
Transactions of the Royal Society of London in 1764.

Bayes’ conclusions were accepted enthusiastically by Pierre-Simon Laplace and
other contemporary leading probabilists. However, George Boole questioned them
in his 1854 treatise on logic called Laws of Thought. Bayes’ method became
controversial in large part because mathematicians and scientists did not yet know
how to treat prior probabilities (a topic that we will deal with throughout this book!).
In the first half of the twentieth century, a different approach to statistical inference
arose, which has come to be called the frequentist school. However, Bayesian
thinking continued to progress with the works of Bruno de Finetti in Italy, Harold
Jeffreys and Dennis Lindley in England, Jimmy Savage in the USA, and others.

Until about 1990, the application of Bayesian methods to statistical analysis
in real-world problems was very limited because the necessary mathematical
computations could be done analytically only for very simple models. In the
early 1990s, the increasing accessibility of powerful computers, along with the
development of new computing algorithms for fitting Bayesian models, opened
the door to the use of Bayesian methods in complex, real-world applications. The
subsequent explosion of interest in Bayesian statistics has led not only to extensive
research in Bayesian methodology but also to the use of Bayesian methods to
address pressing questions in diverse application areas such as astrophysics, weather
forecasting, health-care policy, and criminal justice.

Today, Bayesian statistics is widely used to guide learning and decision-making
in business and industry as well as in science. For example, software using
Bayesian analysis guides Google’s driverless robotic cars (McGrayne 2011a), and
Bayesian methods have attained sufficiently wide acceptance in medical research
that, in 2006, the United States Food and Drug Administration (FDA) put into
place a set of guidelines for designing clinical trials of medical devices using
Bayesian methods (“Guidance for the Use of Bayesian Statistics in Medical Device
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Clinical Trials”, http://www.fda.gov/medicaldevices/deviceregulationandguidance/
guidancedocuments/ucm071072.htm). McGrayne (2011b) offers a lively introduc-
tion to the history and current status of Bayesian statistics.

1.3 Example of the Bayesian Method: Does My Friend Have
Breast Cancer?

The National Cancer Institute recommends that women aged 40 and above should
have mammograms every one to two years. A mammogram produces x-ray images
of tissues and structure inside the breast and may help detect and identify cancerous
tumors, benign cysts, and other breast conditions. A mammogram administered to
a woman who has no signs or symptoms associated with breast cancer is called a
“screening mammogram.”

A friend of mine recently was referred by her physician for her first screening
mammogram. My friend does not have a family history of breast cancer, and before
being referred for the screening mammogram, she had given no thought whatsoever
to breast cancer as something that could conceivably happen to her. However, as
the date of the mammogram approached, she began to wonder about her chances of
being diagnosed with breast cancer. She was at step 1 of the scientific method—she
had defined a question that she wanted to address. In other words, she was uncertain
about her status with respect to breast cancer and wanted to learn more about it.

In the next sections, we will couch my friend’s learning process in the framework
of the simplest possible application of Bayes’ rule within the scientific method. We
will introduce the notion of using probabilities to quantify knowledge or uncertainty
and of using data to update such probabilities in a rational way.

1.3.1 Quantifying Uncertainty Using Probabilities

In science, business, and daily life, people quantify uncertainty in the form of
probabilities. The weather forecaster says there is a 30% probability of precipitation
today; the seismologist says that there is a 21% chance of a major earthquake along
the San Andreas fault by the year 2032; a doctor may tell a cancer patient that she
has a 50% chance of surviving for 5 years or longer. Two different interpretations of
probability are in common use.

1.3.1.1 The Long-Run Frequency Interpretation of Probability

In previous statistics or math classes, you undoubtedly have encountered the long-
run frequency interpretation of the probability of an event. For example, Moore
(2007, page 248) says:

The probability of any outcome of a random phenomenon is the proportion of the times the
outcome would occur in a very long series of repetitions.

http://www. fda.gov/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm071072.htm
http://www. fda.gov/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm071072.htm
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Coin flipping is an obvious example of this interpretation of probability. Saying that
the probability of a fair coin coming up heads is 0.5 means that we expect to get a
head about half the time if we flip the coin a huge number of times under exactly
the same conditions.

Although this interpretation is useful (and the frequentist or classical approach
to statistics is based on it), it has serious shortcomings. Trying to use the long-run
frequency interpretation as a definition of probability results in a circular argument;
see Woodworth (2004, page 25) for a summary of the mathematical issue. From
a more intuitive standpoint, the frequency interpretation is limited to situations in
which a sequence of repeatable experiments is possible (or at least imaginable). No
frequency interpretation is possible for probabilities of many kinds of events about
which we would like to quantify uncertainty. For example, in the winter of 2007–
2008, editorial writers were assessing the probability that the United States economy
was headed for a major recession. Thousands of homes purchased in the previous
several years were in foreclosure, and some mortgage companies had gone bankrupt
due to bad loans. The price of oil was over $100 a barrel. Although everyone
certainly wanted to know the probability that a recession was coming, obviously,
the question could not be couched as the proportion of the time that countries facing
exactly the economic, social, and political conditions that then existed in the USA
would go into recession.

1.3.1.2 Subjective Probability

The subjective interpretation of probability is:

A probability of an event or of the truth of a statement is a number between 0 and 1 that
quantifies a particular person’s subjective opinion as to how likely that event is to occur (or
to have already occurred) or how likely the statement is to be true.

This interpretation of probability clearly is not limited to repeatable events. Note
that the subjective interpretation was of “a” probability, not “the” probability, of
an event or statement. Not only may different people have different subjective
probabilities regarding the same event, but the same person’s subjective probability
is likely to change as more information becomes available. (As we will see shortly,
these updates to a person’s subjective probability are where the mathematical
identity called Bayes’ rule comes in.)

Some people object to admitting that there is any place for subjectivity in science.
However, that does not make it any less true that two different scientists can look at
the same data (experimental results, observational results, or whatever) and come to
different conclusions because of their previously acquired knowledge of the subject.

Here is a hypothetical example in which your own life experience and knowledge
of the world might lead you to different conclusions from identical experimental
results obtained from different applications. Suppose that I tell you that I have
carried out a study consisting of 6 trials. Each trial has only two possible outcomes,
which I choose to call “success” and “failure.” I believe that the probability of
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success was the same for each trial and that the six trials were independent. I tell
you that the outcome was six successes in six trials, and I ask you to predict the
outcome if I carry out a seventh trial of my experiment.

After you think about this for a while, I offer to tell you what the experiment
was. I explain that I randomly selected six dates from the 2011 calendar year, and
on each of those dates, I looked out the window at 11:00 a.m. If I saw daylight, I
recorded a success; if it was completely dark outside, I recorded a failure. (By the
way, I live in Iowa, not in the extreme northerly or southerly latitudes.) Does this
information affect your prediction regarding the outcome of a seventh trial?

Suppose that, instead, I explained my study as follows. Over the last 10 years, a
family in my neighborhood has had six children. Each time a new baby was born,
I asked the mother whether it was a boy or a girl. If the baby was a girl, I recorded
a success; if a boy, I recorded a failure. (Obviously the choice of which gender
to designate a “success” and which a “failure” is completely arbitrary!) Now the
mother is pregnant again. Would your assessment of whether the seventh trial is
likely to be another success be different in this case compared to the previous case
of observing daylight?

1.3.1.3 Properties of Probabilities

To help my friend assess her chances of being diagnosed with breast cancer, we
must recall two of the elementary properties of probability. Regardless of which
interpretation of probability is being used, these must hold:

• Probabilities must not be negative. If A is any event and P(A) denotes “the
probability that A occurs,” then

P(A)≥ 0

• All possible outcomes of an experiment or random phenomenon, taken together,
must have probability 1.

1.3.2 Models and Prior Probabilities

For my friend, there are two possible true states of the world:

1. She has breast cancer.
2. She does not have breast cancer.

We may refer to these statements as models or hypotheses—statements about a
certain aspect of the real world, which could predict observable data.

Before obtaining any data specifically about her own breast cancer status, it
would be rational for my friend to figure that her chance of being discovered to
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Table 1.1 Models and prior
probabilities

Model Prior probability

Breast cancer 0.0045
No breast cancer 0.9955

have breast cancer is similar to that of a randomly selected person in the population
of all women who undergo screening mammograms. Her physician tells her that
published studies (Poplack et al. 2000) have shown that, among women who have a
screening mammogram, the proportion who are diagnosed with breast cancer within
1 year is about 0.0045 (4.5 per 1,000).

Therefore, my friend assigns the following prior probabilities to the two models
(Table 1.1).

Note that at this point, my friend has carried out step 2 in the scientific method
from Sect. 1.1. Prior probabilities refer to probabilities assessed before new data are
gathered in step 3.

1.3.3 Data

By actually having the mammogram, my friend will go on to step 3: She will
collect data. Although there are several specific possible results of a mammogram,
they may be grouped into just two possible outcomes: A “positive” mammogram
indicates possible or likely cancer and results in a recommendation of further
diagnostic procedures, and a “negative” mammogram does not give any evidence
of cancer or any need for further procedures. We will use the notation D+ (D−) to
represent the event that a person has (does not have) breast cancer and M+ (M−) to
indicate the event that the person has a positive (negative) mammogram result.

The probabilities of the two possible mammogram outcomes are different
depending on whether a person has breast cancer or not—that is, depending on
which model is correct. In this case, these probabilities are properties of the
particular test being used. A perfect screening test would always have a positive
result if the person had the disease and a negative result if not. That is, for a perfect
test, P(M+ |D+) would equal 1, and P(M+ |D−) would equal 0. (In this standard
notation for conditional probability, the vertical bar is read “given” or “conditional
on.”) However, perfect tests generally do not exist. A study (Poplack et al. 2000)
of tens of thousands of people who received screening mammograms found that,
if a person does have breast cancer (i.e., has a confirmed diagnosis of breast
cancer within 1 year after the mammogram), then the probability that the screening
mammogram will be positive is about 0.724. That is, P(M + |D+) = 0.724. This
is called the sensitivity of a screening mammogram. Furthermore, for screening
mammograms, P(M+ |D−) = 0.027. The probabilities of a negative test under the
two models are P(M−|D−) = 0.973 and P(M−|D+) = 0.276.

We can summarize all of this in Table 1.2. [These and subsequent tables are
similar in structure to tables in Albert (1997).]
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Table 1.2 Models, prior probabilities, and conditional probabilities of out-
comes

Model Prior Probabilities P(M+ | Model) P(M− | Model)

Breast cancer 0.0045 0.724 0.276
No breast cancer 0.9955 0.027 0.973

Table 1.3 Bayes’ rule to go from prior probabilities to posterior probabilities

Model
Prior
Probabilities Likelihood for M+ Prior × Likelihood

Posterior
Probabilities

Breast cancer 0.0045 0.724 0.0033 0.107
No breast cancer 0.9955 0.0274 0.0273 0.893

1.3.4 Likelihoods and Posterior Probabilities

Bayes’ rule is the mathematical rule for using data to update one’s probabilities
about models in a rational, systematic way. The likelihood associated with a
particular model is the probability of the observed data under that model. Bayes’
rule combines the prior probabilities with the likelihood to compute posterior
probabilities for the respective models. Posterior probabilities are available only
after the data are observed.

In its simplest form, Bayes’ rule states:

P(Model | Data) ∝ P(Model)×P(Data | Model)

or in words, the posterior probability of a model is proportional to the prior prob-
ability times the likelihood. Again, the symbol “|” is read “given” or “conditional
on.” The symbol “∝” means “is proportional to.”

My friend’s mammogram came out positive (M+). Naturally, she was frightened
and suspected that this meant she had breast cancer. However, she put the observa-
tion of the positive mammogram into the table and continued with the calculations
for applying Bayes’ rule.

The entries in the “Prior × likelihood” column are not probabilities. Since
“Breast cancer” and “No breast cancer” are the only possible states of the world,
their probabilities must sum to 1. Bayes’ rule says the posterior probabilities are
proportional to, rather than equal to, the product of the prior probabilities and the
likelihoods. To convert the products to probabilities, we must normalize them—
divide each one by the sum of the two (0.0306 in this example). The result is shown
in the “Posterior probabilities” column of Table 1.3.

The information from the mammogram increased my friend’s probability that
she had breast cancer by a factor of 24. Although the actual probability was
still fairly small (a bit over 1/10), it was far too large to ignore. At her doctor’s
recommendation, my friend underwent a procedure called stereotactic core needle
biopsy (SCNB).
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Table 1.4 Updated posterior probabilities

Prior Likelihood Prior × Posterior
Model Probabilities for S- Likelihood Probabilities

Breast cancer 0.107 0.11 0.012 0.014
No breast cancer 0.893 0.94 0.839 0.986

1.3.5 Bayesian Sequential Analysis

SCNB is a procedure in which mammographic methods are used to guide the
placement of a hollow needle into the suspicious part of the breast. Cells are drawn
out through the needle and are examined under a microscope. If cancerous cells
are observed, the test is considered positive (S+) and surgery is indicated. If no
abnormal cells are observed, the test is negative (S−). According to Bauer et al.
(1997), the sensitivity, or Pr(S+ |D+), of SCNB is 0.89 while the specificity, or
Pr(S − |D−), is 0.94. It is possible for even a highly skilled microbiologist to
mistakenly identify normal cells as cancerous, leading to a probability of a false
positive of Pr(S+ |D−) = 0.06 (this is 1—specificity). Similarly, the probability of
a false negative is Pr(S−|D+)= 0.11, which is 1—sensitivity.

In deciding to undergo SCNB, my friend was returning to step 2 of the scientific
method, determining that the current information was insufficient and that she must
obtain more data. We will assume that, conditional on her true disease status, the
results from the two different tests are independent. This probably is a reasonable
assumption in this setting. (We will revisit this topic in the next chapter when we
discuss independence in more detail.)

After the mammogram, my friend’s current probabilities were the posterior
probabilities based on the mammogram. These became her prior probabilities with
respect to the new data obtained from the SCNB. A Bayesian analysis in which
accumulating information is incorporated over time, with the posterior probabilities
from one step becoming the prior probabilities for the next step, is called a Bayesian
sequential analysis.

The SCNB procedure on my friend showed no cancerous cells. The use of
Bayes’ theorem to update her probabilities regarding her disease status is shown
in Table 1.4.

After incorporating the data from the SCNB, the posterior probability that my
friend had breast cancer was only 0.014. Her doctor recommended no immediate
surgery or other treatment but scheduled her for a follow-up mammogram in a year.

1.4 Calibration Experiments for Assessing
Subjective Probabilities

Sometimes, we need to quantify our subjective probability of an event occurring
in order to make a decision or take an action. For example, suppose that you have
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been offered a job as a statistician with a marketing firm in Cincinnati. In order
to decide whether to accept the job and move to Cincinnati, you wish to quantify
your subjective probability of the event that you would like the job and would like
Cincinnati.

A tool used to assess a person’s degree of belief that a particular event will
happen (or that it has already happened if the person is not in a position to know
that) is the calibration experiment. This is a hypothetical random experiment, the
possible outcomes of which are equally likely in the opinion of the person whose
subjective probability is being quantified. For example, imagine that I promise to
buy you dinner if you correctly call a coin flip. If you have no preference for heads
or tails, then for you, the two possible outcomes are equally likely. Calibration
experiments may be useful if either the person is not knowledgeable or comfortable
with probability or the person is uncertain as to his or her opinion about the event.

The central idea of a calibration experiment to assess someone’s subjective
probability of an event is that the person is offered a hypothetical choice between
two games that provide a chance at winning a desirable prize: a realization of the
calibration experiment with known probability of success or through the occurrence
of the event of interest. Which game the person chooses brackets his or her
subjective probability within a particular interval. The games are imaginary—
no prizes actually change hands. Based on the person’s choice at one step, the
calibration experiment is adjusted, and a new pair of games offered.

The following example illustrates the procedure. You are thinking about the
representation of women among university faculty in the mathematical and physical
sciences, and you begin to wonder how many women are on the faculty of the
Department of Physics at Florida State University (FSU). Let’s use the symbol A
to represent the event that the FSU physics department has more than two female
faculty members and Ps(A) to represent your subjective probability that this event
has occurred (i.e., that the statement is true). (If you attend FSU or have knowledge
of its physics faculty, please think of another example for yourself—and don’t give
away the answer to your classmates!)

The calibration experiment will be flipping one or more coins, which you believe
to be fair (i.e., each coin has a 50/50 chance of coming up heads when flipped). We
don’t need to try to determine the exact value of Ps(A)—perhaps it will be accurate
enough if we can produce an interval no wider than 0.125 (1/8) that contains this
subjective probability. The monetary prizes mentioned in the games are purely
imaginary (sorry!).

For step 1, in assessing Ps(A), you are given a choice of the following two
(hypothetical!) games through which you may try to win $100.00:

Game 1 A neutral person will flip one coin. I will pay you $100 if the coin comes
up heads. I will pay you nothing otherwise.

Game 2 I will pay you $100 if the physics department at FSU has more than two
female faculty. I will pay you nothing if it has two or fewer.

If you choose Game 1, then I conclude that

0 < Ps(A) < 0.5
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Now, the most efficient way to construct the steps in assessing subjective
probability (i.e., the method that produces the shortest interval in the fewest steps) is
to design the calibration experiment at each step so that the probability of winning
through the calibration experiment is the midpoint of the interval produced at the
previous step. (If you are familiar with the notion of a binary search, you will
recognize this strategy.) Accordingly, I will set up step 2 in assessing Ps(A) so that
your chance of winning the $100 prize through coin flipping is 0.25. Here is the
choice of games at step 2:

Game 1 A neutral person will flip two fair coins. I will pay you $100 if both coins
come up heads. I will pay you nothing otherwise.

Game 2 I will pay you $100 if the physics department at FSU has more than two
female faculty. I will pay you nothing if it has two or fewer.

If you choose Game 2, then I conclude that your

0.25 < Ps(A)< 0.50

Since this interval is wider than our goal of 0.125, we need to proceed to step 3.
In Exercise 1.5, you will verify that the calibration experiment in Game 1 below
gives you a 0.375 probability (the midpoint of the interval from step 2) of winning
the (imaginary) money. Here are the choices for step 3:

Game 1 A neutral person will flip three fair coins. I will pay you $100 if exactly
two of them come up heads. I will pay you nothing otherwise.

Game 2 I will pay you $100 if the physics department at FSU has more than two
female faculty. I will pay you nothing if it has two or fewer.

If you choose Game 1, then I conclude that

0.25 < Ps(A)< 0.375

We have succeeded in finding an interval of width 1/8 that traps your subjective
probability of event A. If we hadn’t set a target of this interval width, we could keep
on going with more steps until it became too difficult for you to choose between two
offered games.

In this example, we could just go to the Internet and look up the FSU physics
department to find out whether there are more than two women faculty members.
However, because the prizes are just imaginary, calibration experiments can be
used to assess subjective probabilities of events, the occurrence of which cannot
be verified.

1.5 What Is to Come?

This chapter has provided a brief introduction to the scientific method, subjective
probability, and how the Bayesian approach uses data to update people’s knowledge.
The example of my friend’s mammogram and subsequent follow-up, in which there
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were only two possible states of the world and two possible data outcomes for each
test, illustrated the simplest form of Bayes’ rule.

In the next chapter, we will review basic concepts of probability. In the remainder
of the book, we will build on these foundations in order to understand Bayesian
modeling and inference for increasingly realistic problems.

Problems

1.1. Give an example of an event, the probability of which would be useful to know
but for which the long-frequency interpretation of probability is not applicable.

1.2. What if the result of the mammogram instead had been negative? Write out a
table like Table 1.3 for a negative mammogram. What is the posterior probability
that my friend will be diagnosed with breast cancer in this case?

1.3. What if the results of both the mammogram and the SCNB had been positive?
Write out a table like Table 1.4 for a positive SCNB. What is the posterior
probability that my friend has breast cancer in this case?

1.4. Understanding the tables

(a) In Tables 1.1–1.3, must the numbers in the “Prior probability” column sum to
1, or is that just a coincidence? Explain briefly.

(b) In Tables 1.2–1.3, should the numbers in the “Likelihood for +” column sum to
1? Why is this necessary or not necessary?

1.5. Suppose that three fair coins are flipped independently. What is the probability
that exactly two of them come up heads?

1.6. Find a partner who is willing to play a question-and-answer game with you.
The person may be an adult or a child, a friend, a spouse, or a classmate—whoever.
(This can work well and be fun for a child, by the way.) Your mission is to use a
calibration experiment to assess your partner’s subjective probability of some event
or of the truth of some statement. Think of an event or statement (call it D) that
the person will understand but will be unlikely to know for sure whether it will
happen (or has happened) in the case of an event or whether it is true in the case
of a statement. For a young child, you might choose something like “Your teacher
will be wearing red tomorrow” or “Your soccer team will win its next game.” For an
adult, you might choose something like “The population of South Carolina is larger
than the population of Monaco.” In any case, use a method like that described in
Sect. 1.4 to assess his or her PS(D). Design your questions so as to bracket PS(D) in
an interval of width 1/8 in the fewest possible steps.

Your answer to this problem should describe the person briefly (“my daughter,”
“my roommate,” etc.), identify the event or statement, and detail all of your
questions and the person’s responses. In addition, report the interval produced at
each step.



Chapter 2
Review of Probability

2.1 Review of Probability

In this section, we will review some basic principles of probability and introduce
terminology and notation that will be used throughout the book. In the process,
we will derive Bayes’ rule for discrete events, which we have already applied in
Chap. 1.

2.1.1 Events and Sample Spaces

Statisticians and probabilists use the term event to refer to any outcome or set
of outcomes of a random phenomenon. Events are the basic elements to which
probability can be applied. Capital letters near the beginning of the alphabet are
the conventional symbols for events.

For example, suppose the random phenomenon consists of drawing a patient
at random from a huge database of patients insured by a health maintenance
organization (HMO). To draw an item at random from a set of items means to draw
in such a way that every item in the set has the same probability of being the one
drawn. A common way of saying this is that all the items are equally likely to be
drawn. In the case of drawing a record from a database of thousands of records,
drawing “at random” would be done by a computer and would actually be based
on “pseudorandom” numbers, which, although not truly random, behave closely
enough to true randomness to serve this purpose adequately.

Let’s define event A as an outcome of the random draw such that the patient we
draw is under 6 years of age. As in Chap. 1, we will denote the probability of event
A as P(A).

M.K. Cowles, Applied Bayesian Statistics: With R and OpenBUGS Examples,
Springer Texts in Statistics 98, DOI 10.1007/978-1-4614-5696-4 2,
© Springer Science+Business Media New York 2013
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The sample space is the set of all possible outcomes of a random phenomenon.
A commonly used symbol for it is S. If a random phenomenon occurs, one of the
outcomes in S has to happen. Thus,

P(S) = 1.

2.1.2 Unions, Intersections, Complements

The intersection of two events A and B is the event “both A and B,” which is
represented by A

⋂
B. For example, if event B is the event that the patient we draw

weighs at least 150 pounds, then A
⋂

B is the event that the patient we draw is under
6 years of age and weighs at least 150 pounds.

The union of two events A and B is the event “either A or B or both,” or, in
symbols, A

⋃
B. In our patients-in-the-database example with A and B defined as

above, A
⋃

B is the event that the patient we draw either is under 6 years of age, or
weighs at least 150 pounds, or both.

A set of events is said to be exhaustive if, taken together, the events encompass
the entire sample space. Using the notation . . . to mean “continuing in like manner,”
we may write this in symbols as: A set of events A1,A2,A3, . . . is exhaustive if

A1

⋃
A2

⋃
A3

⋃
. . .= S

Continuing the patients-in-the-database example, let’s define A1 as the event that the
patient we draw is under 6 years of age, A2 as the event that the patient is at least
6 years but under 21 years of age, and A3 as the event that the patient is at least 21
years old. Since, if we do draw a patient, one of these three events must occur, they
are exhaustive.

The complement of an event A is the event “everything else that could possibly
happen except A,” notated AC or Ā. Clearly, A

⋃
Ā = S.

The null event, represented by the symbol /0, is an event that can never happen.
Two events A and B are disjoint or equivalently mutually exclusive if they cannot

occur together. If A and B are mutually exclusive, then A
⋂

B = /0. This is the case,
for example, if A is the event that the patient we draw from the database is under 6
years of age, and B is the event that the patient is 6–11 years of age. A set of more
than two events are mutually exclusive if no two of them can happen together. For
example, the three events A1, A2, and A3 defined a few paragraphs back are mutually
exclusive as well as exhaustive.
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2.1.3 The Addition Rule

The addition rule of probability states that if two events A and B are mutually
exclusive, then the probability that one or the other happens is just the sum of the
probabilities of each event individually:

P(A
⋃

B) = P(A)+P(B)

Since any event A and its complement Ā are mutually exclusive by definition, and
A
⋃

Ā is the sample space S, one implication of the addition rule is P(Ā) = 1−P(A).

2.1.4 Marginal and Conditional Probabilities

For any two events A and B, the conditional probability of B given A or P(B|A), is
the probability that event B will occur given that we already know that event A has
occurred.

The marginal probability of an event is the probability of the event without
conditioning on the occurrence or nonoccurrence of any other events. When we
have spoken of P(A), P(B), etc., those have all been marginal probabilities.

To obtain an algebraic formula for a conditional probability, we can begin
with the multiplicative rule of probability, which says that the probability of the
intersection of two events is the product of the marginal probability of the first and
the conditional probability of the second times the first:

P(A
⋂

B) = P(A)P(B|A)

P(A
⋂

B) = P(B)P(A|B)
Thus, if P(A) �= 0, the conditional probability of event B given event A may be

calculated as

P(B|A) = P(A
⋂

B)
P(A)

P(A)> 0 (2.1)

To illustrate these concepts, we return to the patients-in-the-database example.
Imagine that there were 10,000 patients in the database, and recall that our computer
software is able to draw a patient using a procedure that gives each patient in
the database an equal probability (1/10,000) of being the one drawn. Thus, the
probability of drawing a patient with a particular characteristic is simply the
proportion of patients in the database that have that characteristic. Table 2.1 cross-
tabulates the 10,000 by age category and weight category.
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Table 2.1 Patients
cross-tabulated by age and
weight

< 150 pounds ≥ 150 pounds Total

under 6 798 2 800
≥ 6 4,702 4,498 9,200

Total 5,500 4,500 10,000

Recall that we have been letting A denote the event that the patient that we draw is
under 6 years of age. Then P(A)—the marginal probability of event A—is 800

10,000 =
0.08. Similarly, with B defined as the event that the patient we draw weighs over
150 pounds, the marginal probability of event B is P(B) = 4,500

10,000 = 0.45.
Now imagine that we have drawn our patient and have observed that the age

given in his record is 5 years. Thus, we know event A has occurred. We have not yet
looked at the weight recorded in the record, and we want to determine the probability
that the patient weighs at least 150 pounds, given that we already know he is under
6 years of age—that is, we want to evaluate P(B|A). Since we know event A has
occurred, we can restrict our attention to the first row of the table and can take the
number of patients in that row who weigh at least 150 pounds divided by the row
total: P(B|A) = 2

800 = 0.0025.
To verify that formula (2.1) says the same thing, we find the probability of

drawing a patient who both is less than 6 years of age and weighs at least 150
pounds: P(A

⋂
B) = 2

10,000 = 0.0002. Then

P(B|A) = P(A
⋂

B)
P(A)

=
0.0002

0.08

= 0.0025

2.1.4.1 Independence

Two events are independent if the occurrence (or nonoccurrence) of one of them
does not affect the probability that the other one occurs. That is, events A and B are
independent if

P(A|B) = P(A)

P(B|A) = P(B)

In the database represented in Table 2.1, obviously events A and B are not
independent! The conditional probability that a patient will weigh at least 150
pounds given that he is under 6 years of age (P(B|A) = 0.0025) is far from equal
to the marginal probability that a randomly selected patient will weigh at least 150
pounds (P(B) = 0.45).



2.2 Putting It All Together: Did Brendan Mail the Bill Payment? 17

Table 2.2 Patients
cross-tabulated by eye color
and weight

< 150 pounds ≥ 150 pounds Total

Green eyes 440 360 800
Not green 5,060 4,140 9,200

Total 5,500 4,500 10,000

2.1.5 The Multiplication Rule

There is a special form of the multiplicative rule of probability for independent
events. If A and B are independent, then

P(A
⋂

B) = P(A)P(B)

Table 2.2 gives a different cross-tabulation of the patients in the database, this
time by eye color (green or not green) and weight category.

Of course the marginal probability of drawing a patient who weighs at least
150 pounds is unchanged—P(B) = 4,500

10,000 = 0.45. Let C represent the event that
a patient drawn at random has green eyes. What about P(B|C)—the conditional
probability that the patient drawn weighs at least 150 pounds, given that it is known
that the patient has green eyes. Well, according to Table 2.2, the marginal probability
of drawing a patient with green eyes is P(C) = 800

10,000 = 0.08. Furthermore, the
probability of drawing a patient who both has green eyes and weighs at least
150 pounds is P(B

⋂
C) = 360/10,000 = 0.036. Thus, the conditional probability

P(B|C) = P(B
⋂

C)
P(C) = 0.036

0.08 = 0.45 = P(B). Thus, for this situation, events B and C
are independent.

2.2 Putting It All Together: Did Brendan Mail the Bill
Payment?

2.2.1 The Law of Total Probability

The law of total probability comes into play when you wish to know the marginal
(unconditional) probability of some event, but you only know its probability under
some conditions. Here’s an example. I have asked my husband Brendan to mail our
credit card bill payment. We will incur a late fee if the payment isn’t received at the
payment center within three days. I want to calculate P(A), the probability of the
event that the payment gets there on time. I believe that P(M), the probability that
Brendan will remember to mail the letter today or tomorrow, is 0.60.

Furthermore, I believe that if he mails the letter today or tomorrow, the
probability that the postal service will deliver it to the addressee within the next
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3 days is 0.95. This is a conditional probability:

P(A|M) = 0.95

I believe there’s only 1 chance in 10,000 that the letter will get there somehow if
Brendan forgets to mail it. (Maybe he drops it on the sidewalk and a kind passerby
picks it up and puts it in a mailbox.) In any case, I believe that

P(A|M̄) = 0.0001

In preparing to use the law of total probability to find P(A), note that for any
events A and M, the event A is the union of two events: the intersection of A with M
and the intersection of A with M̄. In symbols,

A = (A
⋂

M)
⋃

(A
⋂

M̄)

Since events (A
⋂

M) and (A
⋂

M̄) are disjoint, the addition rule applies:

P(A) = P(A
⋂

M) + P(A
⋂

M̄)

Applying the multiplication rule to both terms on the right hand side yields

P(A) = P(A|M)P(M) + P(A|M̄)P(M̄)

For the example

P(A) = (0.95)(0.60)+ (0.0001)(0.40)

= 0.57004

Uh-oh, there’s only a little better than a 50/50 chance that the bill payment will
arrive on time.

2.2.1.1 Generalized Law of Total Probability

The law of total probability may be generalized to the situation in which there are
more than two different conditions under which the event of interest could occur. If
M1,M2,M3, . . . are mutually exclusive and exhaustive events, then

P(A) = P(A|M1)P(M1)+P(A|M2)P(M2)+P(A|M3)P(M3)+ . . .
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2.2.2 Bayes’ Rule in the Discrete Case

My prior probability that Brendan would remember to mail the bill payment was
P(M) = 0.60. The data is that the payment actually arrived within 3 days! Bayes’
rule calculates my posterior probability that Brendan mailed the payment given the
data, that is,

P(M|A)

when we know P(A|M),P(A|M̄), and P(M).
By the definition of conditional probability,

P(M|A) = P(M
⋂

A)
P(A)

Using the multiplication rule to expand the numerator and the law of total
probability to expand the denominator gives Bayes’ rule:

P(M|A) = P(A|M)P(M)

P(A|M)P(M)+P(A|M̄)P(M̄)

For the example, this is

P(M|A) = 0.95(0.60)
0.95(0.60)+ (0.0001)(0.40)

=
0.57

0.57004
= 0.99993

Thus, given that the payment arrived on time, it is almost certain that Brendan
remembered to mail it.

2.2.2.1 Generalized Bayes’ Rule

Corresponding to the generalized law of total probability, generalized Bayes’
rule holds if event A could happen conditional on one of a number of different
other events, M1,M2,M3, . . .. To apply generalized Bayes’ rule, we must know
the conditional probabilities P(A|M1), P(A|M2), etc., as well as the marginal
probabilities P(M1), P(M2), etc. After the event A has occurred, we want to assess
the conditional probability of one of the events Mj, P(Mj|A).
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If M1,M2,M3, . . . are mutually exclusive and exhaustive events, then

P(Mj|A) = P(A|Mj)P(Mj)

P(A|M1)P(M1)+P(A|M2)P(M2)+P(A|M3)P(M3)+ . . .

2.3 Random Variables and Probability Distributions

As further preparation for Bayesian statistics, we need to review notions of
probability beyond those applicable to discrete events. A random variable may be
informally defined as a function that assigns one real number to each outcome in
the sample space of a random phenomenon. The outcomes in the sample space
of the original random phenomenon may or may not be numeric to begin with.
Capital letters near the end of the alphabet are the conventional symbols for random
variables, with the corresponding lower case letters being used to represent specific
numeric values they can take on.

For a simple example, consider a coin toss, in which the sample space consists
of the two possible outcomes, head and tail. We may define a random variable, say
X , which takes on the value 1 if the outcome of a flip is a head, and the value 0 if
the outcome is a tail. If we flip the coin and get a head, we express the outcome in
terms of a value of the random variable as x = 1.

Similarly, our random experiment might consist of drawing a household at
random from among all the households in Johnson County, Iowa, and recording
the number of people living in the household. The sample space of this random
experiment is numeric, consisting of the integers 1,2, . . .. In cases like this, in which
the sample space is numeric, often statisticians don’t explicitly differentiate between
the sample space of the random experiment and the space of the associated random
variable. Instead, they may say something like “Define the random variable Y as the
number of people in the randomly selected household.” In these examples, X and
Y are discrete random variables because each has a discrete set of possible values
that it can take on. The set of possible values that a random variable can assume is
called the space of the random variable. The space of the random variable X in the
coin flip example is {0,1}, and the space of the random variable Y in the household
example is {1,2, . . .}.

By contrast, a continuous random variable is not restricted to a discrete set of
possible values, but instead may take on any value in a continuum. For example,
we might define the random variable W as the height of a woman drawn at random
from among female first year students at the University of Iowa. Although we might
choose to measure this random variable only to the nearest quarter inch, in fact, the
underlying actual height could take on any value within a wide interval. That is, the
space of the random variable W is this interval. The exact endpoints of the interval,
which in this example might be on the order of 4 feet and 7 feet, are not critical in
understanding the concept of continuous random variables.
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Probability distributions describe the behavior of random variables. The probability
distribution of a discrete random variable identifies the possible values the variable
can take on and associates a numeric probability with each. Each of these proba-
bilities must be between 0 and 1, and the probabilities of all the possible values
in the space of the random variable must sum to 1. One way of presenting the
probability distribution of a discrete random variable is by means of a table that lists
each possible value in the space of the random variable, along with its associated
probability. For the fair coin toss example, such a table for the random variable X
would look like

x Pr(X=x)
0 0.5
1 0.5

The probability distributions of certain discrete random variables can be de-
scribed succinctly using a probability mass function or pmf —a mathematical
function that can be evaluated at each value in the space of the random variable to
yield the probability that the random variable takes on that value. We will make use
of several families of pmfs, including the binomial and Poisson, in future chapters.

Describing the behavior of continuous random variables is more subtle. Because
there are an infinite number of individual values in any interval, the probability that
a continuous random variable takes on any specific numeric value is zero. Instead,
we talk about the probability that a continuous random variable takes on a value in
a particular interval of interest. Such a probability is expressed as the integral of an
appropriate probability density function or pdf over that interval.

We will study pdfs in much more detail in future chapters and will make extensive
use of several families of pdfs, including the beta, the gamma, and the normal
families.

Problems

2.1. An experiment consists of flipping a fair coin three times independently. Let
event A be “at least one of the results is a head.” Let event B be “all three results are
the same.”

(a) List the sample space of the experiment.
(b) List the outcomes in B, and find P(B).
(c) List the outcomes in A∩B, and find P(A∩B).
(d) List the outcomes in A∪B, and find P(A∪B).
(e) Are the events A and B independent? Show why or why not.
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2.2. This problem is based on problems 4.8 and 5.17 in Berry (1996). Suppose the
following statements are true for Minneapolis on January 15:

1. The probability that it snows both today and tomorrow is 0.2.
2. The probability that it snows today but not tomorrow is 0.1.
3. The probability that it snows tomorrow but not today is 0.1.
4. The probability that it snows neither today nor tomorrow is 0.6.

Find the probability that:

1. It will snow today.
2. It will snow either today or tomorrow or both.
3. It will snow tomorrow.
4. It will snow tomorrow, given that it has snowed today.

2.3. This problem is based on a an example on pages 9–11 of Gelman et al. (2004).
Hemophilia is a rare hereditary bleeding disorder caused by a defect in genes that
control the body’s production of blood-clotting factors. It occurs almost exclusively
in males. However, women may be carriers of the hemophilia gene. Female carriers
of the hemophilia gene usually show no physical symptoms of hemophilia. A
son born of a woman who is a hemophilia carrier and a man who does not have
hemophilia has a 0.5 probability of inheriting hemophilia from his mother. A son
born of a woman who is not a carrier and a man who does not have hemophilia has
zero probability of inheriting hemophilia.

Danielle is a young married woman. Her husband does not have hemophilia.
Because Danielle’s mother is known to be a carrier of hemophilia, there is a 0.5
probability that Danielle inherited a hemophilia gene from her mother and is also a
carrier. We may consider two possible “models”: Danielle is a carrier, and Danielle
is not a carrier.

Danielle gives birth to three sons. None of them are identical twins, and we will
consider their hemophilia outcomes to be independent conditional on her carrier
status. For each of the sons, we will define a random variable Yi that takes on the
value 1 if the son has hemophilia and 0 if he does not.

(a) Use the information given above to determine

(1) Prior probabilities for the two possible “models” (carrier and not carrier)
evaluated before Danielle gives birth to her first son

(2) Two different sets of likelihood probabilities, one for each model
Using the notation above, for the ith son, yi = 0 indicates the son is not

affected by hemophilia; yi = 1 indicates that he is affected. For each model,
you will need

Pr(yi = 0|model)

and
Pr(yi = 1|model)
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(b) Now you learn that the three outcomes are:

y1 = 0

y2 = 1

y3 = 0

Do a sequential Bayesian analysis in which you compute the posterior
probability that the woman is a carrier using the data from each son one
at a time. For each step, use Bayes’ rule and make a table with columns
for model, prior probabilities, likelihood given observed data, product, and
posterior probabilities.

(c) Also answer the following questions:

(1) What was the posterior probability that the woman was a carrier after the
first son’s status became known?

(2) Did the posterior probability change based on the data from the second son?
Why or why not?

(3) Did the posterior probability change based on the data from the third son?
Why or why not?

2.4. The following facts described the students who took my Bayesian statistics
class in a recent year:

• 35% of the students were statistics grad students.
• 25% of the students were biostatistics grad students.
• 40% of the students were undergraduates or grad students from other depart-

ments.
• 60% of the statistics grad students were women.
• 75% of the biostatistics grad students were women.
• 40% of the students in other categories were women.

(a) You drew a student at random from my class list for that year. What is the
probability that the student you drew is a woman?

(b) Suppose that the student you drew was a woman. What is the probability that
she was not a statistics grad student and not a biostatistics grad student, given
that she was a woman?

2.5. Identify each of the random variables below as discrete or continuous, and
specify its space.

(a) A die as described in Problem 2.1 is rolled. Define a random variable Y as the
number on the face that comes up.

(b) A county in the state of Nebraska is selected at random. Define a random
variable X as the number of homicides reported in that county in the year 2011.

(c) A nutritionist is studying the effect of a dietary supplement on the growth rate
of baby rats. She gives this supplement daily to 150 newborn rats and records
their weights at birth and at 30 days of age. Let the random variable W represent
the weight change in grams of a baby rat from birth to age 30 days.



Chapter 3
Introduction to One-Parameter Models:
Estimating a Population Proportion

3.1 What Proportion of Students Would Quit School
If Tuition Were Raised 19%: Estimating a Population
Proportion

On March 15, 2002, the Iowa City Press Citizen carried an article about the intended
19% tuition increase to go into effect at the University of Iowa (UI) for the next
academic year. Let’s revisit that time and suppose that you wish to send the regents
and the state legislature some arguments against this idea. To support your argument,
you would like to tell the regents and legislators what proportion of current UI
students are likely to quit school if tuition is raised that much.

Your research question is as follows: What is the unknown population parameter
π—the proportion in the entire population of UI students who would be likely to
quit school if tuition is raised 19%?

You do not have the time or resources to locate and interview all 28,000+
students, so you cannot evaluate π exactly. Instead, you will pick a simple random
sample of n = 50 students from the student directory and ask each of them whether
she or he would be likely to quit school if tuition were raised by 19%. You wish to
use your sample data to estimate the population proportion π and to determine the
amount of uncertainty in your estimate.

3.2 The First Stage of a Bayesian Model

When planning to use data to estimate population parameters, the statistician must
identify a probability distribution from which the data to be collected may plausibly
be considered to be drawn. This probability model forms the first stage of the
Bayesian model.

M.K. Cowles, Applied Bayesian Statistics: With R and OpenBUGS Examples,
Springer Texts in Statistics 98, DOI 10.1007/978-1-4614-5696-4 3,
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3.2.1 The Binomial Distribution for Our Survey

Before you select the students in your sample and interview them, you can regard
each student’s potential response as a Bernoulli random variable. A Bernoulli or
binary random variable can take on one of only two values. One value is arbitrarily
called a “success” (numerical representation 1), the other a “failure” (numerical
representation 0). We’ll choose to call a “yes” answer a success.

The unknown population proportion π in Sect. 3.1 is also the probability that a
randomly selected student from this population would answer “yes.” Because we
know nothing about the people in your sample except that they will come from the
student directory, it is reasonable to assume that they all have the same probability
of saying yes to your question—namely, the population proportion π . That is, we
assume that the observations will be exchangeable. If we knew more about each
student in the sample (e.g., whether she or he is a senior or a freshmen, how wealthy
she or he is), this assumption would not be reasonable.

We also will assume, because you will draw a simple random sample, that
the responses from the individual students are independent. This would not be
reasonable if you chose 25 pairs of roommates or sets of siblings, or used any other
sampling scheme such that the responses of any subset of the sample would be
expected to be more similar to each other than to those of other members of the
sample.

Define a random variable Y as the count of the number of successes in your
sample. Y meets the definition of a binomial random variable—it is the count of
the number of successes in n-independent Bernoulli trials, all with the same success
probability. We can write

Y ∼ Binomial(n,π)

What are the possible values of Y? (Of course, you won’t find out the value that
Y takes on in your own survey until you actually draw the n = 50 students and
interview them.)

If we knew π , we could use the binomial probability mass function to compute
the probability of obtaining any one of the possible values y that the random variable
Y could take on in our sample:

p(y|π) =
(

n
y

)

πy(1−π)n−y, y = 0,1, . . . ,n (3.1)

Here
(n

y

)
(pronounced “n choose y”) means the number of possible combina-

tions of y items that could be chosen out of n total items. It is shorthand for n!
y!(n−y)! .

We are thinking of the expression in (3.1) as the probability mass function of
Y—a probability distribution on the possible values of Y in random samples of size
n drawn from a population in which the parameter π has some specified value.
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For example, if we magically knew that π = 0.1, then the probability of getting
y = 4 yesses among the respondents in a random sample of 50 students would be

p(Y = 4|π = 0.1) =

(
50
4

)

0.14 0.946 = 0.181

3.2.2 Kernels and Normalizing Constants

In Bayesian statistics, we often want to distinguish between the kernel of a function
and the normalizing constant. The kernel includes all terms that will change in
value for different values of the variable of interest. When considering (3.1) as
the probability mass function for a random variable Y , we must consider all terms
that contain a y as part of the kernel, because these will change with the different
possible values of Y that are plugged in. Thus, every term in (3.1) is part of the
kernel.

3.2.3 The Likelihood Function

But we don’t know π .
Instead, after you interview the 50 students, you will know how many said yes.

That is, you will know which value y the random variable Y actually took on.
Suppose this number turns out to be y = 7. We will want to use this information
to estimate π . In this case, we may change perspective and regard the expression in
(3.1) as a function of the unknown parameter π given the now known (fixed) data
value y. When viewed in this way, the expression is called the likelihood function.
If y were 7, it would look like

L(π) =

(
50
7

)

π7(1−π)43, 0 < π < 1 (3.2)

We could compute this likelihood for different values of π . Intuitively, values of
π that give larger likelihood evaluations are more consistent with the observed data.

Figure 3.1 is a graph of the likelihood function for a binomial sample with 7
successes in 50 trials. The range of possible values of π—the interval (0,1)—is on
the x axis, and the curve represents evaluation of (3.2) over this interval.

Note that the interpretation of kernel versus constant differs for (3.1) versus (3.2).
Now we are interested in evaluating the likelihood (3.2) for changing values of π ,

not of y. Consequently, the
(50

7

)
is now considered just a constant, and only the

π7(1−π)43, which varies with π , is the kernel. That is, we can write

L(π ;y) ∝ π7(1−π)43, 0 < π < 1
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Fig. 3.1 Binomial likelihood function; 7 successes in 50 trials

or more generically

L(π ;y) ∝ πy(1−π)n−y, 0 < π < 1 (3.3)

3.3 The Second Stage of the Bayesian Model: The Prior

To carry out a Bayesian analysis to learn about the unknown population propor-
tion π , we need to assess our previous knowledge or belief about π before we
observe the data from the survey.

As you might guess after reading Sect. 1.3.1.2, the Bayesian approach to
expressing prior knowledge about a population parameter is to put a probability
distribution on the parameter—that is, to treat the unknown population parameter
as if it were a random variable. Note that this does not mean that Bayesians believe
that the value of the parameter of interest is a moving target that varies in a random
way. It simply provides a mathematical way of describing what is already known
about the parameter (recall Step 2 of the scientific method in Sect. 1.1).

Because it is a proportion, the parameter π hypothetically could take on any value
in the interval (0, 1), although most of us realize that some ranges of values are
much more likely than others. Because π can take on any of a continuum of values,
we quantify our knowledge or belief most appropriately by means of a probability
density function. This is different from the problems in Sect. 1.3.2, which involved
a discrete set of models, to each of which we assigned a prior probability.

A person who has little or no knowledge about university students might consider
all values in (0, 1) equally plausible before seeing any data. A uniform density on
(0,1) describes this belief (or state of ignorance!) mathematically and graphically
(Fig. 3.2):
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Fig. 3.2 Uniform density on (0,1)

π ∼U(0,1)

p(π) = 1, 0 < π < 1

This continuous uniform distribution is called a “vague” or “noninformative”
prior. It says that if we pick any two intervals within (0,1) that are of equal width—
say (0.2,0.31] and (0.85,0.96]—there is equal probability that π lies in each of them.

3.3.1 Other Possible Prior Distributions

If a person has knowledge or belief regarding the value of π , his or her prior
will be informative. We will look at only a few of the innumerable kinds of prior
distributions that could be used. For example, Fig. 3.3 shows two different possible
priors expressing the belief that π most likely lies between 0.1 and 0.25.

Figure 3.4 depicts an example of a histogram prior. Such a prior distribution is
constructed by first dividing the support of the parameter into intervals. Above each
interval, one then draws a bar, the area of which represents the prior probability
that the parameter falls into the interval. For a valid histogram prior, the areas of
all the bars must sum to one. Often subject-matter experts who are not experts in
probability and statistics are more comfortable trying to describe their knowledge
about a parameter through a histogram prior than through some of the other, more
mathematical, types of priors we will discuss. The histogram prior in Fig. 3.4
represents the prior belief that the probability that π lies in the interval [0,0.1) is
0.25, in [0.1, 0.2) is 0.5, etc. It places no probability mass on values of π greater
than 0.4.
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Fig. 3.3 Two densities with most of their mass on (0.1, 0.25)
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Fig. 3.4 A histogram prior

All of the prior distributions we have mentioned so far treat the unknown
parameter π as if it were a continuous random variable. In some applications, even
though the parameter of interest may in reality take on any value over a continuum,
if very exact inference is not required, a discrete prior may be simpler to work with
and may adequately express available prior information. For example, it probably
wouldn’t make any difference to us (or presumably to the Regents) if the true
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Fig. 3.5 A discrete uniform prior on π

population proportion of students who would quit school was 0.18 or 0.20 or 0.22—
all of those are around 1/5, far too large a fraction of the student body to lose. In
such a situation, a discrete prior distribution, which simply selects certain specific
possible values of the parameter of interest and puts a “lump” of prior probability
mass on each, might be used. For example, the prior distribution depicted in Fig. 3.5
is a discrete uniform distribution; it specifies seven possible values of π and places
equal prior probability on each:

p(π) =
1
7
, π = 0.1,0.125,0.15,0.175,0.20,0.225,0.25

Of course, the probabilities assigned to all the distinct parameter values under a
discrete prior must sum to 1.

3.3.2 Prior Probability Intervals

One way of summarizing a prior probability distribution is in terms of an interval
that traps a specified proportion of the prior probability mass. The most commonly
considered prior probability intervals are 95% central intervals. If we say that the
interval [l,u] is a 95% central prior probability interval for π , we mean that the prior
mass on values less than l is 0.025 and on values greater than u is also 0.025; the
remaining 0.95 prior probability is on the interval [l,u]. Another way to say the same
thing is that l is the 0.025 quantile of the probability distribution, and u is the 0.975
quantile. Central prior intervals with other probability levels are also used.

Figuring out the endpoints of the 95% central prior interval under the continuous
uniform prior in Fig. 3.2 is particularly easy. As shown in Fig. 3.6, since the height
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Fig. 3.6 The 95% central prior interval under a uniform prior on π

of the density is 1 over (0,1), the area under the density above (0.025, 0.975) is 0.95,
so (0.025, 0.975) is the 95% central interval with this prior. The 90% central interval
would be 0.05, 0.95, etc.

In Sect. 3.6.2, we will learn to use functions in the statistical software called R to
determine quantiles (and other characteristics) of other densities.

When using a discrete prior probability mass function, a prior “interval” is
actually a set of consecutive discrete values of the random variable. Often such a
set cannot be constructed so as to have exactly the desired total probability mass. In
such cases, the smallest “interval” that traps at least the required probability mass
is used. For example, suppose that we wanted a 95% prior interval based on the dis-
crete prior in Fig. 3.5. The total prior mass on all seven specified possible values of
π is 1.0. But if we omit either the smallest or the largest value (0.1 or 0.25), the total
probability mass on the remaining six values is 6/7 = 0.857, so the interval doesn’t
cover points with enough total probability. Thus, the best 95% probability interval
available with this prior is the set {0.1,0.125,0.15,0.175,0.20,0.225,0.25}. This
would also be the best 90% prior interval.

3.4 Using the Data to Update the Prior: The Posterior
Distribution

The possible ways of choosing a prior for an unknown proportion are endless. In
Sect. 3.5, we will consider one common way of thinking about this question and
will look at the effects of different prior specifications.

For the moment, let’s see what happens if we use the “noninformative” continu-
ous uniform prior for our analysis.
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Fig. 3.7 Posterior density p(π |y) with uniform prior

At last, you may select your sample and conduct your survey! It turns out that 7
of the 50 students say they would quit school if tuition were raised 19%.

Thus, the sample proportion of yesses in your observed data is π̂ = 7
50 = 0.14.

Note that this is the value of π at which the likelihood function in Fig. 3.1 attained
its maximum.

You have already applied Bayes’ theorem in Sect. 1.3.4 to use data to update
from prior probabilities to posterior probabilities in the case of discrete models or
events. Bayes’ theorem for probability density functions analogously states that the
posterior density function is proportional to the prior density times the likelihood
function. For the population proportion π ,

p(π |data) ∝ p(π) L(π ;y)

For the quitting-school example and binomial likelihood, combining the prior
density on π with the likelihood in (3.3) yields

p(π |y) ∝ p(π) πy(1−π)n−y, 0 < π < 1

Having chosen the uniform prior, p(π) = 1, 0 < π < 1, and having observed
y = 7 “successes” out of n = 50 people surveyed

p(π |y) ∝ 1 × π7(1−π)43, 0 < π < 1

We can graph this function to see what the posterior density p(π |y) looks like
(Fig. 3.7).

Note that the mode (highest peak) is at π = 0.14, and most of the area under the
curve is above values of π in the interval (0.05, 0.35). Section 3.5 will show how to
make more specific inferences about π .
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3.5 Conjugate Priors

A common way to construct a prior distribution is to designate that the prior is
a member of a particular parametric family of densities. One then chooses the
parameters of the prior density so as to reflect as closely as possible his or her beliefs
about the unknown parameter being studied. When possible, it is very convenient
analytically to choose the prior from a parametric family that has the same functional
form as the likelihood function. Such a prior is called a conjugate prior.

Regarding the binomial example, recall that π must lie between 0 and 1, and
note how the parameter π appears in the binomial likelihood (3.2). There π is
raised to a nonnegative power, and (1− π) also is raised to a nonnegative power.
The beta family of densities matches this treatment of π in the two required ways:
The beta density has support on the interval (0,1); furthermore, in a beta density,
the random variable and one minus the random variable each appear raised to a
nonnegative power.

A beta family of densities, with fixed parameters α and β and with the random
variable called π would be written as follows:

π ∼ Beta(α, β )

or

p(π) =
Γ (α +β )

Γ (α) Γ (β )
πα−1 (1−π)β−1

∝ πα−1 (1−π)β−1, 0 < π < 1 (3.4)

Here the term Γ (α+β )
Γ (α) Γ (β ) is a normalizing constant, because it does not change for

different values of π . The kernel of the beta density is πα−1 (1−π)β−1.

3.5.1 Computing the Posterior Distribution
with a Conjugate Prior

Recall the relationship of the posterior distribution to the prior and likelihood:

p(π |y) ∝ p(π) L(π ;y)

So in the case of a beta prior and a binomial likelihood,

p(π |y) ∝ πα−1(1−π)β−1πy(1−π)n−y

= πα+y−1 (1−π)β+n−y−1
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This is the kernel of another beta density!

p(π |y) = Beta(α + y, β + n− y)

Since the beta family of priors is conjugate for the binomial likelihood, the
posterior distribution is also beta—a member of the same parametric family as
the prior distribution. We will encounter many other pairings in which a particular
family of densities is conjugate for a particular likelihood family. In each case,
the resulting posterior density will be in the same family as the prior. This is the
implication of conjugacy.

3.5.2 Choosing the Parameters of a Beta Distribution to Match
Prior Beliefs

Here are several ways to think about choosing the parameters of a beta distribution
to express prior beliefs or knowledge about an unknown proportion:

Strategy 1: Graph some beta densities until you find one that matches your beliefs.
Strategy 2: Note that a beta(α, β ) prior is equivalent to the information contained

in a previously observed dataset with α − 1 successes and β − 1 failures. (To
see this, compare the binomial likelihood in (3.3) with the beta density in (3.4),
considering each as a function of π .)

Strategy 3: Solve for the values of α and β that yield:

• The desired mean (The mean of a beta(α, β ) density is α
α + β ).

• The desired equivalent prior sample size, which for a beta(α,β ) prior is α +
β − 2. When you use this method, you are saying that your knowledge about
π is as strong as if you’d seen a previous sample consisting of α −1 successes
and β − 1 failures.

Strategy 4: Choose values of α and β that produce a prior probability interval that
reflects your belief about π .

Strategy 5: Think about what you would expect to see in the data that you are
going to collect, and choose a prior density for π that would make such future
data likely. We will postpone consideration of this strategy until after we have
discussed predictive distributions in Sect. 4.4.

The new data must not be used in any way in constructing the prior density! We’ll
see shortly why that would make inference invalid.

We will apply the first four strategies to the quitting-school-because-of-rising-
tuition example. We are attempting to construct a reasonable prior before we see the
results of the actual survey of 50 UI students. (Forget Sect. 3.4—you have not yet
collected your data!)

We wish to use any relevant data available before we do our survey. Suppose that
we read that such a survey has already been taken at Iowa State University (if you’re
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not from Iowa, you will just have to imagine the degree of rivalry between UI and
ISU!) in which:

• 50 students were interviewed.
• 10 said they would quit school; 40 said they would not.

By strategy 2, this might suggest a beta(11, 41) prior. However, we need to be
very cautious here because the sample on which the prior distribution is to be based
was not drawn from the same population (UI students) in which we are interested
and from which we will draw our sample. The question is whether ISU students
might be different from UI students in ways that would be likely to affect their
probability of dropping out in response to a tuition increase—that is, is a sample
of ISU students exchangeable with a sample of UI student for our purposes? Some
relevant facts are that the UI has a medical school and a law school, which ISU
does not, while ISU has a veterinary school and a College of Agriculture, which UI
does not. At the UI, the majority of the student body (53.5%) are women, whereas
at ISU, only 43.5% of students are women. Undergraduate tuition is a bit higher at
the UI ($6,544 for Iowa residents, $20,658 for nonresidents) than at ISU ($6,360
and $17,350) for the 2008–2009 year. These and other factors suggest that, for
drawing inference about UI students, the information in a sample of ISU students is
not equivalent to the information contained in a sample of the same number of UI
students. Thus, the beta(11,41) prior most likely is not appropriate.

On the other hand, there presumably is some relevant information for us in the
ISU survey. We want to make use of that, but give it less weight than we would
give to 50 observations from the UI population. One of many valid approaches to
specifying a prior in this case is to say that we want a prior mean of 0.2, the same
as the sample proportion π̂ISU from the ISU data, but an “equivalent prior sample
size” (remember, for a beta prior that is α − 1+β − 1) that is smaller than 50. One
possibility is to look at the graphs of several different beta distributions, all with
the same mean 0.2 but with smaller and smaller equivalent prior sample sizes, and
seek one that matches our beliefs. The first plot in Fig. 3.8 represents a prior belief
that the unknown value of the population parameter π is close to 0.2; this belief is
as strong as if we had seen a previous sample from the population of interest (UI
students) of size 48 with 9 successes and 39 failures. The fourth plot also represents
a prior belief that π is near 0.2, but in this case, the belief is only as strong as if we
had seen a previous (hypothetical!) sample of size 4.25 with 0.25 successes and 4
failures.

Note that when the sum of the two parameters of the beta distribution is larger
as in the first plot, the density curve is fairly concentrated (tall and thin) over an
interval near 0.2. The smaller the sum (α +β ), the more the beta prior spreads out
the probability over larger intervals within (0,1)—that is, the larger the variance, or
uncertainty, in the prior density.

We can also consider whether the central prior intervals produced by any of these
prior densities match our knowledge. Figure 3.9 gives the numeric endpoints of
these intervals and shows them on the density plots. As we should have expected,
the smaller the parameter values, the wider the corresponding prior interval.
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Fig. 3.8 Beta densities with different parameter values
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Fig. 3.9 95% prior intervals for beta densities with different parameter values
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3.5.3 Computing and Graphing the Posterior Distribution

Suppose you chose the beta(10,40) prior because it best represented your beliefs.
You then gathered your own data on n = 50 UI students, and, as we found out in
Sect. 3.2.3, you got y = 7 “successes” and n−y= 43 “failures.” Then your posterior
distribution of π given your beta prior and the new data is

p(π |y) ∝ πα+y−1 (1−π)β+n−y−1

π17−1 (1−π)83−1

This is the kernel of a beta(17, 83) density.
If the beta(1.25, 5) prior better represented my previous knowledge, then

my posterior distribution for π , given my prior and your data, would be a
beta(8.25, 48).

3.5.4 Plotting the Prior Density, the Likelihood,
and the Posterior Density

The plots in Fig. 3.10 show the result of combining the data (y = 7 successes and
n−y= 43 failures) with each of the four beta prior densities from Fig. 3.8 to produce
four different posterior densities for π . In these plots, the likelihood function has
been normalized (multiplied by the factor that causes the area under the curve to be
1) to make it comparable to the prior and posterior densities.

Note that in all cases, the posterior density is more concentrated than either the
prior density or the likelihood. This makes sense: When we combine our previous
knowledge with the additional information in the current data, our knowledge
becomes more precise than when we consider either one of the two sources alone.
The posterior density always is in some sense a compromise between the prior
density and the likelihood. The less informative the prior is (in the case of a beta
prior, the smaller its parameter values), the more the data, as expressed in the
likelihood, dominates the posterior density. We will make these notions much more
precise in Sect. 4.2.1.

3.6 Introduction to R for Bayesian Analysis

R (R Core Development Team 2008) is a computer language and environment for
statistical analysis and graphics. All of the graphics and many of the numeric results
in this book have been produced using R.
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Fig. 3.10 Prior densities, normalized likelihoods, and resulting posterior densities

R is available for Windows, Linux, and Macintosh operating systems and
may be downloaded for free from the web site: www.cran.r-project.org. Excellent
manuals and other documentation can be viewed or downloaded at the same site.
An additional recommended resource for using R for Bayesian analysis is Albert
(2007).

R has hundreds of built-in functions for plotting and analyzing data, summarizing
probability distributions, performing mathematical calculations, and many other
purposes. In addition, R is a programming language, so you can write functions
of your own. Furthermore, special-purpose add-on libraries of functions called
“packages” have been developed, tested, and contributed by users. These can be
downloaded and installed along with R to extend its capabilities.

3.6.1 Functions and Objects in R

I am assuming that you have access to a computer on which R is installed and that
you know how to start R. You will be confronted by a window with prompt

>

If you type something after the prompt and press “Enter,” R will interpret it. For
example, if you type

> 4 + 6

www.cran.r-project.org
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R will respond

[1] 10

The [1] is there because R thinks of numbers in vectors; the 10 is the first (and
only!) element in the vector.

We can use R’s sequence operator, the colon, to quickly instruct R to display a
vector of consecutive integers:

> 3:55
[1] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

22 23 24 25 26 27
[26] 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

47 48 49 50 51 52
[51] 53 54 55

Here R showed us the index of the element of the vector that appeared at the
beginning of each row of the display.

So far R has just displayed output on the screen. Nothing has been saved in R’s
memory. We can use R’s assignment operator—an arrow typed in two characters,
a less-than sign, and a hyphen—to assign values to named objects. The following
creates an object called myvect and stores a sequence of integers to it.

> myvect <- 3:55
>

It looks as if nothing has happened—we just got another prompt when we pressed
“Enter.” However, if we now enter the name of the object, R will display its value.

> myvect
[1] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27
[26] 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

44 45 46 47 48 49 50 51 52
[51] 53 54 55

Now we can use built-in R functions to carry out all kinds of operations on
this named vector of numbers. To run an R function, type its name followed by
parentheses. Usually you will need to put some values, called arguments, inside the
parentheses to tell the function what to operate on. For example, sd is the name of
the R function to calculate standard deviations:

> sd(myvect)
[1] 15.44345

We can also use the concatenation operator, c, to create vectors with entries that
we specify:

> vect2 <- c(3.2, 1.97, -6.45)
> vect2
[1] 3.20 1.97 -6.45



3.6 Introduction to R for Bayesian Analysis 41

R functions are also objects. If we type the name of the function without
parentheses, R displays the content of the function itself:

> sd
function (x, na.rm = FALSE)
{

if (is.matrix(x))
apply(x, 2, sd, na.rm = na.rm)

else if (is.vector(x))
sqrt(var(x, na.rm = na.rm))

else if (is.data.frame(x))
sapply(x, sd, na.rm = na.rm)

else sqrt(var(as.vector(x), na.rm = na.rm))
}
<environment: namespace:stats>

R has a built-in help facility. You can type the keyword help followed by the name
of a function in parentheses, and R will display documentation for the function. For
example, if you type

> help(sd)

a window will open containing the following:

sd(stats) R Documentation

Standard Deviation

Description

This function computes the standard deviation of the
values in x.

If na.rm is TRUE then missing values are removed
before

computation proceeds. If x is a matrix or a data
frame, a vector

of the standard deviation of the columns is returned.

Usage
sd(x, na.rm = FALSE)

Arguments
x a numeric vector, matrix or data frame.
na.rm logical. Should missing values be removed?

In the “Usage” section, we are told that the sd function has two arguments. The
user must provide a value for the first argument, x. However, the second argument
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Table 3.1 Probability
distributions in R

Distribution R abbreviation

Beta beta
Cauchy cauchy
Chisquare chisq
Exponential exp
F f
Gamma gamma
Logistic logis
lognormal lnorm
Normal norm
t t
Uniform unif
Weibull weibull
Poisson pois
Binomial binom

Table 3.2 R functions for each probability distribution

Prefix Function Example

d Density or probability mass function dbeta, dbinom
p Cumulative density or cumulative probability mass function pbeta, pbinom
q Quantiles qbeta, qbinom
r Random sample generation rbeta, rbinom

has a default value of FALSE, which the function will use if the user doesn’t specify
a second argument.

3.6.2 Summarizing and Graphing Probability
Distributions in R

R has built-in functions for extracting characteristics of the following probability
distributions shown in Table 3.1:

For each of the distributions, four functions are available, which differ only by
their first letter shown in Table 3.2:

You can get detailed documentation on all four of the functions for any of the
distributions by entering “help(name of one of the functions)”. For example,

help(dgamma)

will produce documentation on all four of the functions for the gamma distribution.
The quantile functions can be used to calculate the endpoints of probability

intervals. For example, I used the qbeta function to calculate the prior probability
intervals Sect. 3.5.2. Here is code to obtain the endpoints of a 95% central
probability interval under a beta(10,40) prior:

> qbeta( c(0.025,0.975), 10, 40)
[1] 0.1024494 0.3202212
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We can use the density functions in combination with R’s plot function to get
density plots. At minimum, the plot function requires a vector of x coordinates
and a vector of y-coordinates as its arguments. An optional type argument can be
used to tell it to plot a line instead of points. Enter help(plot) for further details
on the plot function.

The following code creates a vector x of 100 regularly spaced points on the
interval [0.005,0.995], creates a vector y with the evaluations of the beta(10,40)
density at the values in x, and plots the pairs as a line plot:

x <- seq(0.005,0.995,length=100)
y <- dbeta(x, 10, 40)
plot(x,y,type="l")

If we want to be fancier, we can specify the labels for the x and y axes and a main
title for the plot:

plot(x, y, type="l", xlab=expression(pi),
ylab="Density",

main = "Beta(10,40)")

When plotting beta densities, I always restrict the x-axis to the interval [0.005,
0.995] because some beta densities become unbounded at 0 and/or 1. (Try entering
qbeta(c(0,1), 0.5, 0.5)).

What about a density, such as the normal or gamma, that has unbounded support?
We can use the relevant quantile function in R to choose an appropriate range of x
values over which to plot such a density. Here’s code to plot a normal density with
mean 20 and standard deviation 5 over the interval between its 0.005 and 0.995
quantiles.

x <- seq( qnorm( 0.005, 20,5 ), qnorm( 0.995, 20, 5),
length = 100)

y <- dnorm( x, 20, 5)
plot( x,y, type="l")

3.6.2.1 Parameterizations in Statistical Software

Different statistical software packages use different parameterizations for prob-
ability distributions. It is your responsibility as the user of statistical software
to check the documentation (or experiment with the software) to find out which
parameterization is being used. For example, much statistical software expects the
normal distribution to be specified in terms of the mean and variance, whereas R
expects the mean and standard deviation—check help(dnorm). WinBUGS and
OpenBUGS—statistical software for fitting Bayesian models that we will employ
extensively in this book—use still another parameterization. If you are thinking in
terms of one parameterization but your software is using another, all of your results
will be wrong.
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3.6.3 Printing and Saving R Graphics

If you are running R under Windows, when you have completed a plot, you can use
R’s File menu to print it or to save it to disk in your choice of graphics file format.
It is also possible to copy an R graph into a Word document. Right click on the plot
window; then select “Copy as bitmap.” Then paste into an open Word document.

If you are running R under Linux, you can use the dev.print function to print
graphics. To save a graphic to disk, first create the graphic on the screen so you
have the exact code. Then run the pdf function or the postscript function to
direct the output to a file of the desired format. Then rerun the code to produce the
graphic. Note: You can use the up-arrow key on your keyboard to step back through
previously run lines of R code and re-execute them. If you are running R under
Linux, use the built-in R help to learn how to use these functions.

3.6.4 R Packages Useful in Bayesian Analysis

The functions in R are grouped into components called packages. Those that provide
the essential functionality in R (math, statistics, probability, basic graphics, etc.) are
included in the basic R installation and are automatically loaded whenever R is
run. Hundreds of additional packages have been developed to perform specialized
functions that not all users need. A listing of these packages, with brief descriptions
and download access to their documentation, is available at the Comprehensive R
Archive Network website, http://cran.r-project.org.

If you are using R on a Windows or Macintosh computer with Internet ac-
cess (and you are authorized to install software on the computer), the easiest
way to download and install contributed packages is to use the packages pull-
down menu right in R. If you are running R under Linux, you can use the
install.packages function.

To see a list of the packages that have been loaded and so are currently available
in your R session, enter

library()

To load a package that has been installed on your system but is not automatically
made active whenever R is started, use the name of the package as the argument of
the library function. For example,

library(survival)

would load the survival package (assuming that it was installed on the com-
puter).

In this session, we will use an R package that has been written specifically to help
in learning Bayesian statistical concepts and elementary procedures. Later on in the
course, we will use other R packages that perform more sophisticated Bayesian data
analyses.

http://cran.r-project.org
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Fig. 3.11 Output of triplot function in LearnBayes package

3.6.4.1 LearnBayes

The LearnBayes package (Albert 2008) was written by Jim Albert to accompany
his textbook Bayesian Computation with R (Albert 2007). Releases 2.0 and higher
of LearnBayes include a function called triplot, which makes plots similar
to those in Fig. 3.10. Assuming that the LearnBayes package is installed on the
computer on which you are working, the following code will load the package and
get documentation of the triplot function:

library(LearnBayes}
help(triplot, package="LearnBayes")

Note that the function requires two arguments: a vector of length two giving the
parameters of the beta prior and a vector of length two giving the number of
successes and number of failures in the observed data. An optional third argument
may be provided to control placement of the legend in the plot area. The following
function call will create the plot for the beta(2.5, 10) prior and the survey data with
7 yesses and 43 noes:

triplot( c(2.5, 10), c(7,43) )

The result is in Fig. 3.11.
To move the legend from the default position (upper right corner of the plot) to

the middle, we could add the third argument as follows:

triplot( c(2.5, 10), c(7,43), "center")
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3.6.5 Ending a Session

R maintains what it calls the “workspace,” in which it stores any functions or other
objects that have been created during a given session. If you exit from R without
saving the workspace image, then any new work you have done will be lost. If you
are working on a lab computer and wish to save your work to a flash drive or other
external storage device so that you can reload it into R on another computer later,
use the “File” menu (in Windows) or the chgwd() function (in Linux) to change
the working directory to the desired device before leaving R.

To exit from R, enter

> q()

You will be asked whether you want to save the workspace image. If you respond
“No,” then any new objects created during this session will be lost. If you are
working on your own computer, and you want all objects you created to remain
associated with R, choose “Yes.”

Problems

3.1. For the beta density with parameters α = 2 and β = 7, do the following:

1. Referring to Table A.2, calculate the mean and mode as functions of the
parameters.

2. Use an R function to determine the median and a 90% central interval.
3. Plot the density.

3.2. To see some of the different shapes that beta densities may take on, plot each
of the following densities:

1. Beta(0.5, 0.5)
2. Beta(10.2, 1.5)
3. Beta(1.5, 10.2)
4. Beta(100, 62)

3.3. The uniform distribution is a special case of the beta distribution.

1. What are the numeric values of its parameters? That is,

U(0, 1) = Beta(?, ?)

2. What is the equivalent prior sample size for a U(0, 1) prior?

3.4. [This problem is loosely based on examples from Chap. 4 of Albert (1997)].
You are the assistant coach of the women’s softball team at a Midwestern college.
The head coach has asked you to assess a new first year player who is joining the
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team. As a high school student, she was at bat 120 times and got 40 hits. You wish
to estimate θ , her underlying true probability of getting a hit in any at bat as a
college-level player.

1. Specify a beta prior that seems appropriate to capture your knowledge or
uncertainty about θ before the new player plays in any college-level games.
Use any information you have that seems important—her high school record,
anything you know about college-level women’s softball, etc. Use R functions as
needed. Explain in a few sentences (supplemented with plots and/or R output)
how you chose the values of α and β .

There is no one right answer here—I want to see how you think about this and
what procedure you use.

2. Specify a beta prior that you think might reflect the player’s mother’s beliefs
about θ . This may be similar to, or quite different from, your prior. Again, justify
your choice with graphical or numeric R output.

3. Suppose the player now plays eight college-level games, has thirty at bats, and
gets 5 hits. Thus, the data are

y = 5, n = 30

We will use a binomial likelihood for these data. This requires the assumption
that, conditional on θ , each at bat is an independent Bernoulli trial with success
probability θ . There are several reasons why independence might actually not be
a reasonable assumption in this problem. Give one.

Note: For our present purposes, we’ll use a binomial likelihood anyway. We’ll
come up with a better model when we talk about hierarchical models later in the
semester.

4. Obtain the following characteristics of the posterior distribution p(θ |y)
a. Name of posterior distribution and its parameter values
b. Posterior density plot
c. A plot showing the prior density, the likelihood, and the posterior density, all

on the same axes

based on the data from the college-level games under each of three priors:

a. Your prior from part 1
b. The mother’s prior from part 2
c. A uniform (noninformative) prior

This problem will be continued at the end of Chap. 4.



Chapter 4
Inference for a Population Proportion

Statistical inference is drawing conclusions about an entire population based on
data in a sample drawn from that population. From both frequentist and Bayesian
perspectives, there are three main goals of inference: estimation, hypothesis testing,
and prediction. Estimation and hypothesis testing deal with drawing conclusions
about unknown and unobservable population parameters.

Prediction is estimating the values of potentially observable but currently unob-
served quantities. For example, we might want to predict the number of “yesses” in
a future survey of 50 UI students. Prediction in statistical inference isn’t restricted to
predicting future observations, however. It may refer to estimating values that have
already occurred but were not measured. For example, we may want to use values
of acid rain deposition measured from rain gauges at specific sites to predict acid
rain deposition at other locations that have no rain gauges.

Before investigating how the Bayesian uses the posterior distribution of a
population parameter to make inference, we will review the approach usually
undertaken by frequentists so that we are ready to make comparisons.

4.1 Estimation and Testing: Frequentist Approach

4.1.1 Maximum Likelihood Estimation

When trying to estimate the unknown value of a population parameter, the frequen-
tist statistician, like the Bayesian, begins by specifying the distribution of the data,
given the unknown parameter(s). In the case of our data consisting of independent
yes/no responses to the survey questions, this will be the binomial probability mass
function, first given in (3.1) and repeated here:

M.K. Cowles, Applied Bayesian Statistics: With R and OpenBUGS Examples,
Springer Texts in Statistics 98, DOI 10.1007/978-1-4614-5696-4 4,
© Springer Science+Business Media New York 2013
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p(y|π) =
(

n
y

)

πy(1−π)n−y, y = 0,1, . . . ,n

Then the statistician switches perspective and views the same expression as a
function of the unknown parameter, given known data values. The frequentist does
not treat the parameter as if it were a random variable and does not specify a prior
distribution to summarize other information not contained in the current dataset.

One goal of frequentist estimation is to obtain a point estimate of a population
parameter. The point estimate may be thought of as the best single-number guess
of the value of the population parameter, based solely on the current data. The
most commonly used method of frequentist point estimation is maximum likelihood
estimation—finding the value of the parameter that would give the largest possible
evaluation of the likelihood. Intuitively, this is the value of the parameter that would
have made the observed data the most likely.

A maximum likelihood estimate is the numeric value calculated for a particular
dataset. A maximum likelihood estimator is the formula for calculating maximum
likelihood estimates for a given form of the likelihood. When the likelihood is a
continuous function of the unknown parameter, as is the case with the binomial
likelihood, we can use calculus to find the maximum likelihood estimator. It is
usually easier to do this for the log of the likelihood instead of the likelihood in
its original form. Since the log transformation is monotonic, the same value will
maximize both. The steps should be familiar: Take the first derivative of the log
likelihood with respect to the parameter; set the first derivative equal to 0 and
solve for the parameter in terms of the data; verify that the second derivative of
the log likelihood is negative at this point (i.e., that we have a maximum rather
than a minimum—a minimum likelihood estimator wouldn’t be very useful!). We’ll
go through the process for the binomial likelihood here, in part, because the same
calculus steps will be needed later on when we study Jeffreys priors.

The log of the binomial likelihood is

l(π) = log

(
n
y

)

+ y log(π)+ (n− y)log(1−π),

0 < π < 1

The first derivative with respect to π is

dl(π)
dπ

=
y
π
− n− y

1−π

Setting this equal to 0 and solving for π show that the sample proportion is the
maximum likelihood estimator of the population proportion:

π̂ =
y
n
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In our example, the m.l.e. is π̂ = 7
50 = 0.14.

We can verify that this is a maximum rather than a minimum by taking the second
derivative of the log likelihood:

d2l(π)
dπ2 =− y

π2 −
n− y

(1−π)2

Evaluating this at π̂ = y
n gives −n3

y(n−y) , which is strictly negative (although
undefined unless there are at least 1 success and 1 failure in the sample). Yes, we
have a maximizer.

4.1.2 Frequentist Confidence Intervals

In addition to obtaining a point estimate, the frequentist needs some measure of how
good the point estimate is. The estimate, based on a limited sample, is very unlikely
to be exactly equal to the true population parameter.

Recall that the frequentist approach to statistics is so named because it is based
on the long-run frequency interpretation of probability. The way that the frequentist
addresses the question of how good the point estimate is likely to be is by asking
another question: What would happen if we drew many, many, many random
samples, all of the same size, from the same population, and calculated the sample
proportion for each one? Different samples would be likely to produce different
numbers of “yesses,” and thus different sample proportions π̂ . The sampling
distribution of an estimator is the distribution of the values it would take on over all
possible random samples of the chosen size drawn from the population of interest.

Frequentist confidence intervals are intervals that we have some reason to believe
contains the true value of the unknown population parameter. Frequentist procedures
for calculating confidence intervals depend on data values in the sample at hand.
Therefore, different samples will produce not only different point estimates but
different confidence intervals as well. The fundamental idea behind frequentist
confidence intervals is that the procedure performs as claimed under repeated
sampling. For example, the procedure for computing intervals with confidence level
95% will produce an interval that actually does contain the true parameter value
when applied to 95% of simple random samples drawn from the population of
interest.

We have only one sample. We have no way of knowing for sure whether our
particular sample is one of the lucky 95% of all possible samples that do produce
an interval that contains the true value of π , or whether we instead by bad luck got
one of the 5% of samples that produce 95% confidence intervals that don’t contain
the true value.

R includes several built-in functions that can be used for frequentist estimation
and hypothesis testing regarding population proportions. The binom.test func-
tion can be used to compute the maximum likelihood estimate π̂ and a confidence
interval for the population proportion π . The syntax is
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binom.test( number of successes, total sample size,
conf.level )

To get the point estimate and a 90% confidence interval for π based on our survey
data with 7 success in 50 trials, we would enter

binom.test( 7, 50, conf.level=.90 )

The output is

Exact binomial test

data: 7 and 50
number of successes = 7, number of trials = 50,
p-value = 2.099e-07

alternative hypothesis: true probability of success
is not equal to 0.5

90 percent confidence interval:
0.0675967 0.2469352

sample estimates:
probability of success

0.14

Thus, π̂ = 0.14, and the frequentist is 90% confident that the true value of π is in
the interval (0.0676, 0.2469).

This is very different from saying that the probability that π is in the interval is
0.90. π has some fixed value. If that value is 0.07, it’s in the interval. If it’s 0.06,
it isn’t. Once we have selected our sample and computed numeric values of the
interval endpoints, there’s no more probability involved.

4.1.3 Frequentist Hypothesis Testing

Hypothesis testing is appropriate when different courses of action would be taken
given different values of an unknown population parameter. In our student survey
example, if we had evidence that the population proportion of all UI students who
would quit school because of a 19% tuition increase was very small, we would not
want to take our argument to the regents. On the other hand, if we were convinced
that the proportion was more substantial, say larger than 10%, we might indeed want
to go before the regents to argue against the tuition increase.

Recall that a statistical hypothesis is a statement about an unknown population
parameter. Hypothesis tests involve setting up two such statements, which are
mutually exclusive.

Thus, we might want to test the following hypotheses regarding π :
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H0 : π <= 0.1

Ha : π > 0.1

The frequentist uses the p-value to evaluate the evidence in the data against the
null hypothesis H0 and in favor of the alternative Ha. The concept of the p-value
again is rooted in the question of what would happen under repeated sampling,
specifically, assuming that H0 is true, if we draw many, many simple random
samples, what is the probability of getting a sample with as much evidence against
H0 as our actual sample has, or even more. That is, the p-value most definitely is not
the probability that H0 is true. Instead, it is based on the assumption that H0 is true
and states a probability about data results under repeated sampling. The smaller the
p-value, the less likely it would have been to draw a sample like ours if H0 were true.
Thus, small p-values indicate that the data is inconsistent with the null hypothesis.

The R function binom.test can be used to test hypotheses about a population
proportion. To test H0 : π ≤ 0.1 versus Ha : π > 0.1, we would enter

binom.test( 7, 50, p = .1, alternative="greater")

and the output is

Exact binomial test

data: 7 and 50
number of successes = 7, number of trials = 50,
p-value = 0.2298
alternative hypothesis: true probability of success

is greater than 0.1
95 percent confidence interval:
0.0675967 1.0000000

sample estimates:
probability of success

0.14

The critical part of the output for the hypothesis test is that the p-value is 0.2298.
Since the null hypothesis says that π is small (less than or equal to 0.1), large
numbers of successes in the sample would provide evidence against the null. In this
case, “as much evidence against the null as our sample provides, or more” means 7
or more successes. Hence, this p-value is the probability of getting a random sample
of size 50 with 7 or more successes, if the true value of π is 0.1. Thus, we would
have had between a one-in-five and a one-in-four chance of getting a random sample
of size 50 with at least 7 “yesses” even if the population proportion of yesses was as
small as 0.1.
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4.2 Bayesian Inference: Summarizing the Posterior
Distribution

All Bayesian inference is based on the posterior distribution, which contains all the
current information about the unknown parameter. Although a plot of the posterior
density gives a full graphical description, numeric summaries of the posterior are
needed as well.

4.2.1 The Posterior Mean

The mean of the posterior distribution is often used as the Bayesian point estimate
of a parameter. For a beta prior and binomial likelihood, the posterior mean is

E(π |y) =
α + y

α + y+β + n− y
=

α + y
α +β + n

In our example, with the beta(10, 40) prior

E(π |y) =
17

100
= 0.17

For a beta prior and binomial likelihood, the posterior mean is always between the
prior mean and the value y

n computed from the current data.
In our example, the prior mean was 0.20, and y

n = 0.14. In our example, if we
instead had used the beta(1.25, 5) prior

E(π |y) =
8.25

56.25
= 0.147

More specifically, the posterior mean is a weighted average of the prior mean and
the m.l.e. π̂ . If we denote the posterior mean by μpost , then

μpost =
α + y

α +β + n

= w
α

α +β
+ (1−w)

y
n

where w = α+β
α+β+n . Bayesians refer to this weighted averaging as “shrinkage” —in

calculating the posterior mean, the observed sample proportion π̂ is “shrunk” toward
the prior mean α

α+β . The weight placed on the prior mean α
α+β is proportional to the

sum of the two prior parameters, and the weight placed on the m.l.e. is proportional
to the sum of the number of successes and number of failures in the observed data.
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Fig. 4.1 Uniform prior and binomial likelihood

4.2.2 Other Bayesian Point Estimates

The posterior median and posterior mode are sometimes used instead of the
posterior mean as Bayesian point estimates. We will investigate different point
estimates in the context of the posterior distribution produced with a U(0, 1) prior
and a binomial likelihood:

p(π |y) = Beta(1+ y, 1+ n− y)

∝ πy (1−π)n−y,

which is proportional to the likelihood, as we noted in Sect. 3.4 and illustrated in
Fig. 4.1.

The posterior mean is not equal to the m.l.e. π̂ . From Table A.2, observe that
the mode of a Beta(α, β ) distribution is α−1

α+β−2 . Thus, with a uniform prior, the

mode of the posterior distribution given above is y
n = π̂ . Again, this makes sense:

If the posterior density is proportional to the likelihood, then the same value will
maximize both—that is, the posterior mode equals the m.l.e.
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Fig. 4.2 Illustration of conflict between the prior and the data

4.2.2.1 The Posterior Variance

The posterior variance is one summary of the spread of the posterior distribution.
The larger the posterior variance, the more uncertainty we still have about the
parameter, even after learning from the current data. See Table A.2 for the formula
for the variance of a random variable with a beta distribution. For an informative
beta prior and a binomial likelihood, the posterior variance is almost always smaller
than the prior variance. This makes intuitive sense: When we add the information
contained in the current data, we have more precise knowledge (less uncertainty)
than what was expressed in the prior alone.

In our school-quitting example, with the uniform prior, the prior variance = 1
12 =

0.083, and posterior variance = 0.00246. If we instead used the beta(10, 40) prior,
the prior variance = 0.00314 and the posterior variance = 0.00140. As we would
expect, the posterior variance is smaller with the informative beta(10,40) prior than
with the noninformative uniform prior.

The exceptional cases, when the posterior variance is not smaller than the prior
variance, occur when the prior and the data are in direct conflict. Figure 4.2
illustrates a worst-case scenario of this type. The beta prior density has mean 0.1,
while the sample proportion in the data is 0.9. The posterior density is a compromise
between the prior and the likelihood, but the posterior variance is not smaller than
the prior variance.
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4.2.3 Bayesian Posterior Intervals

Intervals called “credible sets” also are used as numeric posterior summaries. There
are two commonly used kinds.

4.2.3.1 Equal-Tail Posterior Credible Sets

You have already encountered equal-tail prior intervals in Sect. 3.3.2. The same
logic can be applied to produce a posterior central interval with a specified
probability of containing the true parameter value. For example, the endpoints of
a 95% equal-tail credible set are the 0.025 and the 0.975 quantiles of the posterior
distribution. We can use built-in R functions to calculate them. For our quitting-
school problem with the beta(10,40) prior, the posterior density was beta(17, 83),
and the qbeta function in R can be used as follows:

> qbeta( c(0.025, 0.975), 17, 83 )
[1] 0.1033333 0.2491463

This interval is shown graphically in Fig. 4.3.
If we had instead used a uniform prior, so that the posterior was beta(8,44), then

the 95% equal-tail credible set would be

> qbeta( c(0.025, 0.975), 8,44)
[1] 0.07024083 0.26255154

This interval is shown in Fig. 4.4.
Note that this interval is wider than that obtained with the beta(10, 40) prior.
The meaning of “equal tail” is that the same amount of area under the posterior

density curve is excluded from the interval on the low end as on the high end. Equal-
tail credible sets are the most commonly reported Bayesian posterior intervals. (If
an author doesn’t identify what kind of posterior interval is being reported, you
can assume that it is equal tail.) Equal-tail intervals are easy to compute and easy
to understand. Their disadvantage is that, unless the posterior density is symmetric
and unimodal, there may be points outside the interval that have higher posterior
density than some points inside the interval. Figure 4.5 shows an extreme example.
The posterior density depicted is bimodal with widely separated modes. The equal-
tail credible set includes the region around 5, where the posterior density is much
smaller than it is immediately outside the interval.

4.2.3.2 Highest Posterior Density Regions

The other kind of Bayesian posterior interval is the highest posterior density region,
or HPD region. The posterior density at any point inside such an HPD region is
greater than the density at any point outside it. The HPD region also is the shortest
possible interval trapping the desired probability. HPD regions are preferable to
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equal-tail credible sets when the posterior is highly skewed or multimodal. However,
they are generally difficult to compute.

The intuition behind the computation of an HPD region is as follows. Suppose
that we want a 95% posterior probability region. We begin by placing a horizontal
line just touching the posterior density curve at its mode. We then slide the line
downwards toward the x-axis until it cuts the density curve at points such that the
area under the density curve between these points is exactly 0.95. As illustrated in
Fig. 4.6, the HPD region may not even be an interval. In this case, it is the union of
two disjoint intervals—the intervals where the horizontal dashed line lies below the
curve; the low-probability region in the middle is not part of the HPD region.

4.2.3.3 Interpretation of Bayesian Intervals

Recall that the posterior distribution represents our updated subjective probability
distribution for the unknown parameter. Thus, for us, the interpretation of the 95%
credible set is that the probability that the true π is in that interval is 0.95. For
example, if the beta(10,40) had been a true representation of our prior beliefs or
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knowledge about the parameter π , then after seeing our survey data, we would
believe that

P(0.103 < π < 0.249) = 0.95

This is precisely the kind of statement that the frequentist cannot make about
confidence intervals. This is one of the implications of the difference between the
long-run frequency interpretation of probability and the subjective interpretation of
probability.

4.3 Using the Posterior Distribution to Test Hypotheses

We now revisit our test of the following hypotheses, this time from a Bayesian
perspective:

H0 : π <= 0.1

H1 : π > 0.1
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Fig. 4.5 Equal-tail credible set for a bimodal density
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Fig. 4.6 HPD region for a bimodal density is two disjoint intervals—the interval between the two
left more vertical lines and the one between the two right more vertical lines

We simply need the posterior probabilities of these two ranges of values for π .
Suppose that the beta(10, 40) had been our true prior, so our posterior distribution
is beta(17, 83). We can use a built-in R function to obtain P(π ≤ 0.1 | y).
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> pbeta(.1, 17, 83)
[1] 0.01879825

With this prior, we would conclude that P(π ≤ 0.1 | y) = 0.019.
If we instead had used the uniform prior, so our posterior was beta(8, 44),

> pbeta( .1, 8, 44)
[1] 0.1329079

With this prior, we would conclude that P(π ≤ 0.1 | y) = 0.133. Note that
different people, approaching the question with different prior information, will end
up with different (subjective) posterior probabilities on H0. Different people also
will have different views on how small P(π ≤ 0.1|y) has to be in order for it to be
appropriate to go before the regents.

The interpretation of a Bayesian posterior probability is totally different from that
of a frequentist p-value. Recall that a frequentist p-value is the probability, evaluated
under the assumption that the null hypothesis is true, of drawing a random sample
that contained as much evidence against the null as, or more than, the dataset we
actually have. A frequentist p-value cannot be interpreted as the probability that the
null hypothesis is true.

4.4 Posterior Predictive Distributions

In many studies, the research question of interest is predicting values of a future
sample from the same population. Statisticians speak of estimating unobservable
population parameters but of prediction values of potentially observable, but not yet
observed, quantities.

For example, suppose we are considering interviewing another sample of 50 UI
students in the hope of getting more evidence to present to the regents, and we
would like to get an idea of how it is likely to turn out before we go to the trouble
of doing so!

More generally, we are considering a new sample of sample size n∗ and want to
estimate the probability of some particular number y∗ of successes in this sample.
If, based on the already-completed study, we actually knew the true value of the
population proportion π , we’d just use the binomial probability:

p(y∗|π) =

(
n∗

y∗

)

πy∗ (1−π)n∗−y∗ , y∗ = 0, . . . ,n∗

But of course, we still have uncertainty about π even after observing the original
sample, so this won’t work. We need the probability of getting y∗ successes in a
future sample given the information in our current data y, not given some particular
value of π . Recall that all of our current knowledge about π is contained in the
posterior distribution obtained using the original survey. Thus, we must integrate
the binomial probability mass function for y∗ given π over the posterior density of
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π . Thus, the posterior predictive probability of getting some particular value of y∗
in a future sample of size n∗ is

p(y∗ | y) =

∫ 1

0
p(y∗ | π) p(π | y) dπ , y∗ = 0, . . . ,n

where y denotes the data from the original sample and p(π | y) is the posterior
distribution based on that sample. This is particularly easy to compute if n∗ = 1, in
which case the probability of getting 1 success is π , so

Pr(y∗ = 1|y) =
∫ 1

0
Pr(y∗ = 1|π) p(π |y) dπ

=

∫ 1

0
π p(π |y) dπ

= E(π |y)

because, by definition, the expected value of a random variable is obtained by
integrating the random variable over its density. This is just the posterior mean of
π . If we had used the beta(10,40) prior, resulting in the posterior density being
beta(17,83), then Pr(y∗ = 1|y) = 17

17+83 = 0.17.
In general, if a Bayesian analysis has been done to estimate a population

proportion π , using a beta(α,β ) prior and a dataset with y successes in a sample of
size n, then the posterior density p(π |y) is beta(αpost ,βpost), where αpost = α + y
and βpost = β + n− y, and the predictive probability of getting y∗ successes in a
future sample of size n∗ is

p(y∗ | y) =
∫ 1

0

(
n∗

y∗

)

πy∗ (1−π)n∗−y∗ Γ (αpost +βpost)

Γ (αpost)Γ (βpost)
παpost−1(1−π)βpost−1dπ

=

(
n∗

y∗

)
Γ (αpost +βpost)

Γ (αpost)Γ (βpost)

∫ 1

0
πy∗+αpost−(1−π)n∗−y∗+βpost−1dπ

The expression inside the integral is the kernel of yet another beta density—
beta(y∗+αpost ,n∗−y∗+βpost)—so we can easily figure out to what it will integrate.
Remember that the normalizing constant of a density makes the density integrate
to 1 over its entire support. Thus, the unnormalized density must integrate to

1
normalizing constant . So the posterior predictive probability will be

p(y∗ | y) =

(
n∗

y∗

)
Γ (αpost +βpost)

Γ (αpost)Γ (βpost)

Γ (y∗+αpost)Γ (n∗ − y∗+βpost)

Γ (αpost +βpost + n∗)
(4.1)
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The following property of gamma functions can be used to simplify (4.1):

Γ (x+ 1) = xΓ (x)

for any x > 0.
The function pbetap in the R package LearnBayes calculates predictive

probabilities. The arguments are a vector containing α and β parameters of the
beta posterior distribution based on the current data, the size of the future sample,
and a vector of the numbers of successes in the future sample for which we want
probabilities. For example, suppose our posterior distribution based on our existing
survey data is beta(8, 44) and we are planning a new survey with sample size
n∗ = 25. We can get the probabilities of obtaining 3, 4, 5, or 6 “yesses” in that
future sample by entering

library(LearnBayes)
pbetap( c( 8, 44), 25, 3:6 )

The output is

0.18597889 0.17310343 0.13631895 0.09376436

We could make the output more readable by assigning the results of pbetap
to an object and then displaying the requested numbers of successes and their
corresponding predictive probabilities in two columns:

pprobs <- pbetap( c( 8, 44), 25, 3:6 )
cbind(3:6, pprobs)

pprobs
[1,] 3 0.18597889
[2,] 4 0.17310343
[3,] 5 0.13631895
[4,] 6 0.09376436
}

Problems

4.1. This is a continuation of Problem 3.4 in Chap. 3.

1. Obtain the following characteristics of the posterior distribution p(θ |y)
a. Posterior mean and mode
b. 95% posterior interval for θ
c. Posterior probability that θ > 0.25

based on the data from the college-level games under each of three priors:
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a. Your prior
b. The mother’s prior
c. A uniform prior

4.2. During the severe floods in the Midwest in the summer of 2008, the adjacent
towns of Iowa City and Coralville in Johnson County, Iowa, were hit hard. Despite
sustained efforts at sandbagging throughout the community, hundreds of homes,
businesses, churches, and university buildings were damaged or destroyed. Major
roads and bridges were closed for weeks. Less than a year later, with parts of both
towns still recovering from the flood, a vote was held on a proposal to impose a local
sales tax of one cent on the dollar to pay for flood-prevention and flood-mitigation
projects. A few days before the actual vote, a local newspaper reported in its online
edition, The Gazette Online (http://www.gazetteonline.com), on May 2, 2009:

“The outcome of Tuesday’s local-option sales tax election in Johnson County
appears too close to call, based on results from a Gazette Communications poll
of voters.
The telephone survey of 327 registered voters in Johnson County, conducted
April 27–29, shows 40% in favor of the 4-year 1% sales tax. . . ”

(Forty percent of 327 respondents is 131.)
A member of a local organization called “Ax the Tax” claims that this means

that under half of all registered voters in the county support the local-option sales
tax. She would like to use the sample survey data of the newspaper to test the two
hypotheses:

H0 : π ≥ 0.5

Ha : π < 0.5

where π represents the proportion of all Johnson County registered voters who
support the sales tax.

1. A frequentist method of testing these hypotheses is based on the p-value. The
p-value is the probability of observing the sample result obtained, or something
more extreme, if indeed exactly half of the registered voters in Johnson County
supported the sales tax; that is,

p− value = Pr(y ≤ 131|π = 0.5)

where y is a binomial random variable with sample size n = 327 and success
probability π = 0.5. Compute the p-value for this example (use of an R function
will make this easy). If this probability is small, then one concludes that there is
significant evidence in support of hypothesis Ha : π < 0.5.

2. Now, consider a Bayesian approach to testing these hypotheses. Suppose that a
uniform prior is assigned to π . Find the posterior distribution of π and use it to
compute the posterior probabilities of H0 and H1.

http://www.gazetteonline.com
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4.3. Referring to the previous problem, again suppose that a uniform prior is placed
on the proportion π , and that from a random sample of 327 voters, 131 support the
sales tax. Also suppose that the newspaper plans on taking a new survey of 20 voters.
Let y∗ denote the number in this new sample who support the sales tax.

1. Find the posterior predictive probability that y∗ = 8.
2. Find the 95% posterior predictive interval for y∗. Do this by finding the predictive

probabilities for each of the possible values of y∗ and ordering them from largest
probability to smallest. Then add the most probable values of y∗ into your
probability set one at a time until the total probability exceeds 0.95 for the first
time.



Chapter 5
Special Considerations in Bayesian Inference

5.1 Robustness to Prior Specifications

In statistics, an inference is described as robust if it is not affected substantially
by changing the assumptions used in drawing it. Frequentists as well as Bayesians
must worry about robustness of their inferences. One concern for both camps is that
assumptions regarding the form of the likelihood can affect inference. For example,
suppose that our data are scores obtained by 100 undergraduates on a calculus
exam, and that we wish to use these data to estimate the mean of the scores that
would have been obtained if all undergraduates who took calculus I that year had
taken this exam. We might get very different estimates under each of the following
assumptions:

1. The 100 scores are independent draws from a normal distribution.
2. The population of scores is likely to include extreme outliers, so the 100 scores

are independent draws from a t distribution with 5 degrees of freedom.
3. Students who took the same calculus class are likely to have more similar scores

than students in different classes; thus, rather than treating the 100 scores as
independent, the likelihood must account for correlation within classes.

Furthermore, frequentists make assumptions about characteristics of the population
of interest when they perform power and sample-size calculations during the design
of a study.

In addition to all the robustness issues encountered by frequentist statisticians,
the Bayesian must consider whether inference is robust to different prior specifica-
tions. Would different choices of parametric family for the prior lead to different
inference? How sensitive is inference to different values of prior parameters within
a particular parametric family of priors?

A valuable tool in addressing these kinds of questions is a sensitivity analysis—
an explicit comparison of important characteristics of the posterior distribution
obtained under all plausible prior distributions under consideration.

M.K. Cowles, Applied Bayesian Statistics: With R and OpenBUGS Examples,
Springer Texts in Statistics 98, DOI 10.1007/978-1-4614-5696-4 5,
© Springer Science+Business Media New York 2013
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Table 5.1 Posterior summaries for binomial likelihood, data = 17 successes and 43
failures, under different prior specifications

Prior density Pr(π > 0.10|y) E(π |y) 95% equal tail credible set

U(0,1) 0.867 0.154 (0.070, 0.263)
Beta(1.25,5) 0.842 0.147 (0.068 0.249)
Beta(2.5,10) 0.884 0.152 (0.075, 0.250)
Beta(5,20) 0.937 0.160 (0.087, 0.250)
Beta(10,40) 0.981 0.170 (0.103, 0.249)

Returning to the example of the quitting-school survey from Chap. 6, Table 5.1
presents a sensitivity analysis of the effects of the five different beta prior specifica-
tions that we entertained on posterior inference about π .

Note that whether inference is “affected substantially” by changes in assumptions
is a subjective determination that depends upon the primary purpose of the analysis.
Usually a statistical study will involve many different analyses of a particular
dataset, but one research question will be of the greatest importance. For example,
in a clinical trial comparing two treatment regimens for a particular disease, many
different variables are measured and recorded on each patient, but one of them is
designated as the primary endpoint, and a particular statistical procedure performed
on this variable is the primary analysis of the study.

Since the main purpose of the quitting-school survey is to make a compelling
argument to the Regents that a substantial proportion of students would drop out if
tuition were increased, we might designate the test of the hypothesis that π > 0.10 as
our primary analysis. In that case, I would conclude that the analysis was sensitive
(not robust) to the different prior specifications, because I would consider a 98%
chance that π > 0.10 is much more convincing than an 84% chance (and I suspect
that most Regents would agree).

On the other hand, if we had determined that the primary purpose of our analysis
was to obtain a point estimate and 95% credible set for π , we instead might conclude
that the analysis was robust to the different prior specifications since these posterior
summaries are quite similar under all five priors.

If a sensitivity analysis indicates that important aspects of inference are very
sensitive to different prior specifications, the appropriate course of action for the
Bayesian is to report the results obtained under all plausible prior distributions, thus
enabling the consumer of the data analysis to draw his or her own conclusions.
Since it may be infeasible to repeat a complex analysis with many different prior
specifications (and reporting too many different results may simply confuse the
reader or listener), reporting results obtained with a small number of carefully-
chosen prior densities is standard practice. Often these will be the prior that the study
investigators actually believe, and a noninformative prior (such as the uniform prior
used for a binomial likelihood). Another choice (recommended by Spiegelhalter et
al. (1993) in the context of clinical trials comparing a new treatment with standard
treatment) is to compare results with an enthusiastic prior (consistent with the
belief that the new treatment is clearly superior to the old treatment) to those
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produced with a skeptical prior (expressing the belief that the new treatment is no
better than the old one). Other approaches to assessing robustness in clinical trails
are presented in Greenhouse and Waserman (1995) and Carlin and Sargent (1996).

5.2 Inference Using Nonconjugate Priors

As discussed in Sect. 3.3.1, the choice of prior distributions for any given Bayesian
model is unlimited. While conjugate priors are convenient for simple models, they
may not adequately represent prior beliefs. Furthermore, for most complex real-
world models, no conjugate family exists. Bayes’ rule for updating from prior to
posterior applies with nonconjugate priors as well. Let’s examine how that works in
the context of our binomial model.

5.2.1 Discrete Priors

Recall from Sect. 3.3.1 that a discrete prior distribution may be used even for an
inherently continuous-valued parameter like the success probability π . For people
without a background in probability (i.e., for most people including Regents!),
discrete priors are easier to understand than probability densities.

In the survey problem, suppose we chose to put all prior probability on a discrete
set of values such as

P(π = p) = 0.1, p = 0.02,0.06,0.10,0.14,0.18,0.22,0.26,0.30,0.34,0.38
(5.1)

The probability distribution in (5.1) is a discrete uniform prior, because the same
probability mass, 0.1, is assigned to each specified possible value of π . Any set of
probabilities that matched our prior beliefs about π could be used, as long as they
summed to 1.

In this case, the generic form of Bayes’ rule—posterior ∝ prior × likelihood—
takes the following form:

P(π = p|y) ∝
{

0.1× py (1−p)n−y p = 0.02,0.06,0.10,0.14,0.18,0.22,0.26,0.30,0.34,0.38
0× py (1− p)n−y otherwise

}

Obviously, regardless of the likelihood, the posterior probability will be 0 for all
values of π except those given positive prior mass. More generally, a discrete prior
will always give rise to a discrete posterior distribution.
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Table 5.2 Computing posterior probabilities with a discrete prior

Prior Likelihood Posterior
p P(π = p) py(1− p)n−y Product P(π = p|y)
0.02 0.1 5.369e−13 5.369e−14 0.0001
0.06 0.1 1.957e−10 1.957e−11 0.0399
0.10 0.1 1.078e−09 1.078e−10 0.2196
0.14 0.1 1.608e−09 1.608e−10 0.3276
0.18 0.1 1.205e−09 1.205e−10 0.2455
0.22 0.1 5.715e−10 5.715e−11 0.1164
0.26 0.1 1.913e−10 1.913e−11 0.0390
0.30 0.1 4.776e−11 4.776e−12 0.0097
0.34 0.1 9.136e−12 9.136e−13 0.0019
0.38 0.1 1.353e−12 1.353e−14 0.0003
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Fig. 5.1 Posterior probability mass function with discrete prior

The final step in calculating posterior probabilities is to normalize them so they
sum to one. With y = 7 successes and n = 50, the calculation of the posterior
probabilities for each possible value of π proceeds as in Table 5.2 [which is similar
in structure to tables in Albert (1997)].

Figure 5.1 depicts this calculation graphically. In the upper panel, the ps
represents the discrete prior, the smooth curve the likelihood, and the dots the
posterior probabilities. The lower panel is a detail view of the bottom part of the
upper graph; it makes it possible to see the prior and posterior mass points clearly.
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5.2.2 A Histogram Prior

In Sect. 3.3.1, we mentioned histogram priors, which, like discrete priors, may be
easier for nonstatisticians to understand and specify. Other advantages of histogram
priors are that they do not require any parametric assumptions and provide great
flexibility in specifying prior beliefs.

To construct a histogram prior for a success probability, one begins by dividing
the interval (0,1) into predefined, nonoverlapping subintervals. Making the subinter-
vals of equal length simplifies the process, but if some other partition works better
for the particular problem, that’s fine. The next step is to assign a probability to each
interval in accordance with one’s prior belief that the population proportion lies in
that interval.

For example, someone might define a histogram prior for π in the quitting-school
example as follows:

Interval Prior probability
(0, 0.1] 0.25

(0.1, 0.2] 0.50
(0.2, 0.3] 0.20
(0.3, 0.4] 0.05
> 0.4 0.00

Figure 5.2 represents this histogram prior graphically.
As always, the posterior distribution will be calculated by multiplying these prior

probabilities times the binomial likelihood and normalizing the result. Because
of the discontinuities in the histogram prior, the graph of the posterior density in
Fig. 5.3 also has discontinuities.
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5.3 Noninformative Priors

Noninformative prior distributions are useful in Bayesian analysis when we want
inference to be unaffected by information apart from the current data. We have
already mentioned that an analysis using a noninformative prior should be included
in a sensitivity analysis so as to evaluate the influence of other priors on posterior
inference.

Noninformative priors also are appropriate when we truly have little previous
knowledge compared to the information contained in the new data. For example, we
would not bother to carry out a difficult and expensive scientific experiment unless
we thought it was going to increase our knowledge substantially. In such cases, we
expect and want the likelihood to dominate the prior.

For many statistical models, there are several different choices of priors that carry
little information.

5.3.1 Review of Proper and Improper Distributions

Recall that a probability density is valid only if it integrates to one over the support
of the random variable. Any strictly positive function that integrates to a positive,
finite number over a specified support can be normalized so that it integrates to one
and becomes a valid density. Sometimes it is useful to treat a function as if it were
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an unnormalized density even if its integral over the indicated support is not finite.
When this is done, the function is referred to as an improper density. For example,

p(σ) =
1
σ
, 0 < σ < ∞

In an effort to introduce the least possible amount of external information into a
Bayesian analysis, improper densities sometimes are used as priors. This must be
done with great care. Using a proper prior guarantees that the posterior also will be
proper, but an improper prior may produce an improper posterior. If the posterior
density is improper, it doesn’t exist, so no valid inference can come out of it. Thus,
if you choose to use an improper prior, you must verify that the resulting posterior
is proper. This is an extremely important point, and throughout this book, we will
examine how to do this verification for different kinds of models.

5.3.2 A Noninformative Prior for the Binomial Likelihood

We have already encountered one choice of noninformative prior density for the
binomial likelihood, U(0,1). Compared to other probability density functions,
the uniform density is relatively easy for nonstatisticians to understand, and it
is intuitively obvious that a uniform prior does not favor any particular range of
possible values of the parameter π .

5.3.3 Jeffreys Prior

5.3.3.1 Invariance Under Transformation

A disadvantage of the uniform prior is that it is not “invariant under transformations”—
that is, if we needed inferences about some transformation of π instead of π itself,
performing the mathematically appropriate adjustment to the uniform prior would
not produce a corresponding noninformative prior on the transformed parameter.

For example, the logit transformation of the binomial success probability π is
used in epidemiological case-control studies, as well as in logistic regression (which
we will study in Sect. 10.3). Letting φ denote the logit of π , the logit transformation
is given as:
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φ = g(π) = log

(
π

1−π

)

It is a one-to-one function, so it has an inverse:

π = g−1(φ) =
exp(φ)

1+ exp(φ)

The binomial probability mass function can be written in terms of φ :

p(y|φ) =
(

n
y

)(
exp(φ)

1+ exp(φ)

)y ( 1
1+ exp(φ)

)n−y

Such a process of writing an equivalent form of the distribution of the data after
transforming the parameter(s) is called reparameterization . In different problems,
reparameterization can have many different benefits—improving interpretability of
parameters, simplifying computation of frequentist maximum likelihood estimators
and confidence intervals, and improving the performance of some algorithms for
sampling-based Bayesian inference.

If we reparameterize the likelihood, the prior must be adjusted appropriately.
Since we are treating the parameter in the likelihood as if it were a random variable,
this is a transformation-of-variables problem. Recall the transformation of variables
procedure from your mathematical statistics class: If y = g(x) is a one-to-one
transformation of x, then x = g−1(y). Let pX (x) denote the density function of x.
Then the density function of y, pY (y) is

pY (y) = pX(g(y))

∣
∣
∣
∣
dx
dy

∣
∣
∣
∣

If we transform the uniform prior on the binomial parameter π into a prior on
φ = logit(π) (Exercise 5.3), the result is the logistic density:

pφ (φ) =
exp(φ)

[1+ exp(φ)]2
, −∞ < φ < ∞ (5.2)

This is a symmetric, bell-shaped density centered at 0 that resembles a t-distribution.
A systematic approach to deriving noninformative priors that are invariant to

transformation was one of innumerable contributions to Bayesian statistics by Sir
Harold Jeffreys (1891–1989), a British mathematician, statistician, geophysicist,
and astronomer. In Jeffreys (1946), he proposed a procedure that has come to be
known as Jeffreys prior. It is based on the Fisher information.
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5.3.3.2 The Fisher Information

First, recall the Fisher information, a quantity used by frequentists in computing
the asymptotic variance of maximum likelihood estimators. Let p(y|θ ) denote the
probability density function of a realization of a random variable Y given the
unknown parameter θ . The British statistician Sir R.A. Fisher (1890–1962) defined
the information about a parameter provided by an experiment as

I(θ |y) = −E
∂ 2(log(p(y|θ )))

∂θ 2

The expectation is taken over possible values of y for fixed θ . Since the information
is an expectation, it depends on the distribution of Y , not on any observed value, y.

Since the log-likelihood log(L(θ |y)) differs from log(p(y|θ ) only by a constant,
all their derivatives are equal. Thus, the information can equivalently be defined as

I(θ |y) = −E
∂ 2log(L(θ |y))

∂θ 2

If there are n independent observations y = y1,y2, . . . ,yn, then the probability densi-
ties multiply and the log-likelihoods add. Thus, the Fisher information becomes

I(θ |y) = −E
∂ 2(log(L(θ |y))

∂θ 2 = n I(θ |y)

Finally, as is shown in any mathematical statistics text,

I(θ |y) = E

(
∂ log(L(θ |y))

∂θ

)2

What happens to the Fisher information if we transform the unknown parameter
θ to φ = g(θ )? Then

∂ log(L(φ |y))
∂φ

=
∂ log(L(θ |y))

∂θ
∂θ
∂φ

Squaring and taking expectations over values of y (note that ∂θ
∂φ does not depend

on y), we get

I(φ |y) = I(θ |y)
(

∂θ
∂φ

)2

5.3.3.3 Jeffreys’ Recipe

Clearly,
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√
I(φ |y) =

√
I(θ |y)

∣
∣
∣
∣
∂θ
∂φ

∣
∣
∣
∣

That is, the square root of the Fisher information is invariant to transformations in
the following sense. Suppose we specify a likelihood using a particular form of the
parameter (which we’ll call θ ), derive the Fisher information, and take the square
root, obtaining

√
I(θ |y). Then we decide we want to work with a transformation of

θ , namely, φ . The square root of the Fisher information for φ can be computed from√
I(θ |y) by multiplying by the Jacobian ∂θ

∂φ . The result will be exactly the same as
if we’d started by specifying the (reparameterized) likelihood in terms of φ and had
calculated the square root of the Fisher information for φ .

To obtain this invariance property for prior densities, Jeffreys proposed using the
square root of the Fisher information as a prior:

p(θ ) ∝
√

I(θ |y)

The resulting expression is called the Jeffreys prior for the given likelihood.
The Jeffreys prior is probably the most commonly used noninformative prior

in Bayesian practice. It depends on the form of the likelihood but not on the
current observed data. Compared to other possible noninformative priors, it has the
invariance property: no matter what scale we choose for measuring the unknown
parameter, the same prior results when the parameter is transformed to any other
scale.

However, the Jeffreys prior has disadvantages as well. For some families of
likelihoods (e.g., Cauchy), the Fisher information does not exist. For multiparameter
models, there is disagreement about exactly how to derive Jeffreys priors. Jeffreys
prior for some likelihood families is improper, necessitating extra care in using it in
Bayesian analysis (see Sect. 5.3.4).

5.3.3.4 Example: Jeffreys Prior for the Binomial Likelihood

To derive the Jeffreys prior for the binomial likelihood, we begin with the log
likelihood

log(L(π |y)) = y logı + (n− y) log(1−π) + constant

The second derivative of the log likelihood is

∂ 2log(L(π |y))
∂π2 = − y

π2 − n− y
(1−π)2

Taking the expectation of this expression with respect to y is easy because
y appears only linearly (no functions of y like y2 or ey that complicate taking
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Fig. 5.4 Density plot of
Jeffreys prior for the binomial
success probability

expectations). Thus, we can just plug in E(y|π) for y. If y ∼ Binomial(n,π), then
E(y|π) = nπ . Thus,

I(π |y) =
n

π (1−π)
Taking the square root and removing the constant n gives

p(π) ∝ π− 1
2 (1−π)−

1
2 , 0 < π < 1

We recognize this density as Beta( 1
2 ,

1
2 ). Thus, in the case of the binomial

likelihood, the Jeffreys prior is a member of the conjugate family. As shown in
Fig. 5.4, the plot of this density is bathtub-shaped. Although the visual impression
may be that this prior contains more information than the uniform prior, in fact the
variance is larger ( 1

8 versus 1
12 ) and the equivalent prior sample size smaller (1 versus

2, 0 versus 1, or even −1 versus 0, depending on which definition of equivalent prior
sample size for the beta distributions you use) for the Jeffreys prior than the uniform
prior. Thus, Jeffreys prior for π is even less informative than the uniform prior.

5.3.4 Verifying the Propriety of the Posterior Distribution
When Using an Improper Prior

So far, we have discussed two choices of noninformative prior densities for the
binomial likelihood: Uniform(0,1) and Beta( 1

2 ,
1
2 ).

A third version is sometimes used:
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p(π) ∝ π−1(1−π)−1, 0 < π < 1

This looks like the kernel of a beta density, except it would be Beta(0,0). This is
an improper density, because both parameters must be strictly positive in order for a
Beta density to be proper. This prior may be appealing because it yields the mle, y

n ,
as the posterior mean. However, since it is improper, there is no guarantee that the
posterior density is proper, and if the posterior is improper, none of its characteristics
(including the posterior mean) exist! Thus, if you choose to use this prior, you must
make sure that your data have the necessary properties to produce a proper posterior
density. Recall that for a binomial likelihood and a beta prior with parameters α and
β , the posterior density p(π |y) is Beta(α +y,β +n−y). If both α and β are 0, then
p(π |y) is beta(y,n−y). In order for this to be a proper beta density, both y and n−y
must be strictly positive; that is, there must be at least one success and one failure
in the data.

Problems

5.1. This is a continuation of Problem 4.1 in Chap. 4. Perform two additional
Bayesian analyses of the softball player data, one with Jeffreys prior and one
with the improper Beta(0,0) prior. Obtain the same posterior summaries as in
Problem 4.1. Verify that the posterior density obtained with the improper prior is
proper.

5.2. Do a sensitivity analysis to assess the sensitivity of your inference in Prob-
lems 4.1 and 5.1 to the five prior densities. Comment on whether or not your
inference is robust.

5.3. Verify analytically that a uniform prior on π induces the density in (5.2) as the
prior on φ = logit(π).

5.4. Suppose that a trucking company owns a large fleet of well-maintained trucks
and assume that breakdowns appear to occur at random times. The president of the
company is interested in learning about the daily rate λ at which breakdowns occur.
(Realistically, each truck would have a breakdown rate that depends possibly on its
type, age, condition, driver, usage, etc. The breakdown rate for the whole company
can be viewed as the sum of the breakdown rates of the individual trucks.) For a
given value of the rate parameter λ , it is known that the number of breakdowns y on
a particular day has a Poisson distribution with mean λ :

p(y|λ ) =
e−λ λ y

y!
, y = 0,1,2, . . .

1. Suppose that one observes the number of truck breakdowns for n consecutive
days—denote these numbers by y1, . . . , yn. If one assumes that these are
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exchangeable measurements (conditionally independent given λ ), find the joint
probability distribution of y1, . . . , yn.

2. The numbers of breakdowns for 5 days are recorded to be 2, 5, 1, 0, and 3.
Find the likelihood function L(λ ) of the rate parameter λ for these observations.
Graph this function. (You may either use R or do it “by hand” by calculating the
likelihood for the values R = 0.1,0.5,1,2,4,8, and 16 and connecting the points
with a smooth curve.)

3. Use calculus to find the mle of λ . Then use the poisson.test function in R
to confirm the mle and to obtain a 95% frequentist confidence interval for λ .

5.5. The president of the company has some knowledge about the location of
the Poisson rate parameter λ based on the observed number of breakdowns from
previous years. His prior beliefs about λ are represented in the following:

p(λ ) ∝ λ 3 exp(−2λ ), λ > 0

1. Is this prior a member of a particular parametric family? If so, what family and
what are the prior parameters?

2. Plot this prior density, either using software or by picking a few values at which to
evaluate it as in the previous problem. Based on the plot, describe the president’s
prior beliefs about the rate parameter λ .

3. Write out the mathematical form of the unnormalized posterior density. Identify
its parametric family and parameters.

4. Find the posterior mean and 95% central credible set for λ based on this posterior.
5. Was the president’s prior from a conjugate family for the Poisson likelihood?

How could you tell?

5.6. A new employee of the trucking firm wishes to learn about the breakdown rate.
She does not have the previous information available to the president, so she wishes
to assign a noninformative prior density.

1. Derive the Jeffreys prior that goes with the Poisson likelihood.
2. Compute the resulting posterior distribution using this prior and the data given

earlier for the 5 days.
3. Find the posterior mean and 95% central credible set for this posterior.
4. Compare the Bayesian point and interval estimates with the classical estimates

found in the first exercise.
5. Compare the new employee’s estimates with the president’s estimates.
6. Suppose the employee has a personal rule that she would not drive for a company

whose fleet of trucks had a daily breakdown rate > 2. Based on her analysis with
the Jeffreys prior, what is her posterior probability that λ > 2 for this company?

7. Contrast this with the president’s posterior probability that λ > 2.

5.7. Show that if a Beta(0,0) prior is used with a binomial likelihood, the posterior
mean E(π |y) is equal to the frequentist mle, y

n .



Chapter 6
Other One-Parameter Models and Their
Conjugate Priors

6.1 Poisson

You encountered the Poisson distribution in problems at the end of the previous
chapter. The Poisson distribution is useful when the random variable is a count of
the number of rare events occurring per unit time, unit volume, unit distance, etc.
For example, the number of new cases of rhabdomyosarcoma (a rare form of cancer)
occurring in Johnson County, Iowa, each year might be represented as a Poisson
random variable. So might the number of flaws in each 1,000 feet of yarn produced
by a spinning machine. A Poisson random variable can take on only nonnegative
integer values.

In order for the Poisson distribution to be appropriate, there is a constant
average rate at which the events occur, and the numbers of events in disjoint
intervals (different years, different segments of yarn, etc.) must be independent.
In our examples, this implies that if there were an unusually large number of new
rhabdomyosarcoma cases in Johnson County in one particular year, that would not
affect the probability distribution for the number of new cases in the following year.
Thus, the Poisson distribution would not be appropriate for counts of a contagious
disease.

6.2 Normal: Unknown Mean, Variance Assumed Known

So far, we have been considering discrete data—binary responses to survey
questions and integer counts of rare events. Thus, the distributions of the random
variables of interest, and the resulting likelihoods, have been probability mass
functions. Now we will begin to consider cases in which the data are realizations of
continuous random variables, which are described by probability density functions
(pdfs).

M.K. Cowles, Applied Bayesian Statistics: With R and OpenBUGS Examples,
Springer Texts in Statistics 98, DOI 10.1007/978-1-4614-5696-4 6,
© Springer Science+Business Media New York 2013

81



82 6 Other One-Parameter Models and Their Conjugate Priors

As you know, there are many parametric families of continuous pdfs. Both
frequentists and Bayesians must use care in choosing the density that is likely to
best describe the population of values from which their sample data is going to be
drawn.

The normal (also called the Gaussian) density is one of the most commonly used
pdfs, and I am sure you are familiar with its bell-shaped density curve. The normal
density is a good model for data when the random variable is continuous-valued,
the distribution of values in the population is likely to be symmetric around a single
mode, and the tails of the distribution are not heavy. It is a good choice for many
variables that are measurements on living things, like weights, body temperatures,
or heart rates of a species of mammals. The normal density is not appropriate
for variables for which the population distribution is likely to be skewed, such as
household incomes.

You should be familiar with the normal probability density function, here shown
for a random variable Y from a normal density with mean μ and population
variance σ2:

Y ∼ N(μ ,σ2)

p(y|μ ,σ2) =
1√

2πσ
exp

(

− (y− μ)2

2σ2

)

, −∞ < y < ∞

6.2.1 Example: Mercury Concentration in the Tissue
of Edible Fish

You probably are aware that the US Food and Drug Administration has recom-
mended that pregnant women, nursing mothers, and young children avoid eating
certain types of fish and limit their consumption of others. In addition, state and
local governments sometimes issue advisories to limit consumption of fish caught in
particular local rivers or lakes. Both of these kinds of advisories occur because some
fish and shellfish contain high levels of mercury, which can harm the developing
nervous systems of fetuses, infants, and young children.

Mercury is a chemical element that occurs naturally in the environment and can
also be emitted into the air by certain industrial processes. Rain washes mercury
out of the air and deposits it on the ground, from which it can run off into lakes
and rivers. Bacteria in the water convert elemental mercury into methyl mercury
(meHG), the form of mercury that has neurotoxic effects. The bacteria are eaten by
plankton, which are eaten by small fish, which in turn are eaten by larger fish. With
each ascending level of the food chain, the concentration of meHG increases, so that
the concentration of meHG in the tissues of large fish may be thousands of times as
high as the concentration of mercury in the water. The human body can eliminate
meHG only slowly. If a woman ingests meHG from fish at a higher rate than her
body can eliminate it, the level of meHG builds up in her tissues. Methyl mercury
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can cross the blood–brain barrier. Thus, high levels of mercury in the tissue of a
pregnant woman or nursing mother can be transmitted to her infant’s brain through
her blood or breast milk.

In this book, we will use Bayesian methods to examine the issue of mercury
in fish from two perspectives. In the present chapter, we will study the levels of
mercury found in samples of fish tissue, and in a future chapter, we will apply
Bayesian modeling to investigate mercury deposition from rainfall in the continental
United States.

Our first example dataset includes mercury concentrations in parts per million
(ppm) measured on 21 tissue samples from common carp caught at a particular
site on the Des Moines River in Madison County, Iowa. The data are taken
from a database of over 100,000 fish tissue mercury records collected by the
Environmental Mercury Mapping, Modeling, and Analysis (EMMMA) project
of the US Geological Survey (http://emmma.usgs.gov/datasets.aspx). Since data
on concentrations of chemicals often are right skewed, the log transformation
frequently is used to symmetrize their distributions. We will follow that practice
with this dataset.

According to the Natural Resources Defense Council (http://www.nrdc.org/
health/effects/mercury/guide.asp) the concentrations of mercury in fish tissue fall
into the following categories:

• Least mercury: Less than 0.09 parts per million (−2.41 on the log scale)
• Moderate mercury: From 0.09 to 0.29 parts per million (−2.41 to −1.24 on the

log sale)
• High mercury: From 0.29 to 0.49 parts per million (−1.24 to −0.71 on the log

scale)
• Highest mercury: More than 0.49 parts per million (more than −0.71 on the log

scale)

We wish to estimate the mean μ of log-transformed mercury concentration in the
tissue of the population of all fish caught in the Des Moines River at the location
represented by our data. In addition, we wish to estimate the probability that μ falls
into each of these four categories.

6.2.2 Parametric Family for Likelihood

Since we plan to use the normal density as the distribution of the observed data, we
should check whether the sample values look like draws from a normal population.
However, we don’t want to actually look at the numeric values of the data until
after we have specified the prior because we don’t want to let the current data
influence our prior in any way. Figure 6.1 is a histogram of the log-transformed
concentrations—without showing the actual range of values covered by the data.
Although the histogram is not perfectly symmetrical and bell shaped, for a sample
of only 21 observations, it is about as close as real data gets.

http://emmma.usgs.gov/datasets.aspx
(http://www.nrdc.org/health/effects/mercury/guide.asp)
(http://www.nrdc.org/health/effects/mercury/guide.asp)
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When, as here, there are more than one observation in the dataset, we must begin
constructing our Bayesian model by specifying the joint distribution of all the data.
The issue of exchangeability, which we have met in previous chapters, arises again.
Are we comfortable with the assumption that the observations in the dataset are
random draws from the same normal distribution? If we don’t have information
that would lead us to expect some observations, or groups of observations, to
be systematically different from others, then the assumption of exchangeability is
reasonable.

If we consider observations in a sample exchangeable, we typically specify their
joint distribution by treating the observations as conditionally independent given one
or more shared parameters. That means that we can write the joint density simply
as the product of the densities of the individual observed values:

p(y1,y2, . . .yn|μ ,σ2) =
18

∏
i=1

1√
2πσ2

exp

(

− (yi − μ)2

2σ2

)

=
1

(2πσ2)
n
2

exp

(

−∑n
i=1(yi − μ)2

2σ2

)

=
1

(2πσ2)
n
2

exp

(

−∑n
i=1(yi − ȳ)2

2σ2

)

exp

(

−n (ȳ− μ)2

2σ2

)

(6.1)
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Exchangeability is sometimes defined as “invariance to permutations of the
indices.” It is easy to see what this means in this case. The indices are the subscripts
on the y’s. If for some reason we decided to swap y2 with y9, the product in (6.1)
would be unchanged because the same μ and σ2 are involved in the terms for all
they’s.

In Problem 6.1, you will show how the last line in (6.1) was obtained.

6.2.3 Likelihood for μ Assuming that Population
Variance Is Known

We will perform our first analysis of the mercury concentration data under an
unrealistic assumption: that the exact numeric value of the population variance σ2

is known. Of course this is impossible. We could not know the exact value of σ2

unless we had measured every fish that had ever swum the Des Moines River in
Madison County, and if we had done that, we would also know the exact value of μ
and would not need to use a sample to draw inference! However, studying Bayesian
analysis with a normal likelihood as if it were a one-parameter problem (with only
μ unknown) is a worthwhile learning experience, because such models will form
the building blocks of more complex and realistic models and of the computational
methods for fitting them.

If σ2 is assumed to be a known constant, then (6.1) may be viewed as a likelihood
for the only unknown parameter, μ :

L(μ |y) ∝ exp

(

−n (ȳ− μ)2

2σ2

)

(6.2)

That is, the expression in (6.2) is viewed as a function of μ , for a fixed (observed)
value of ȳ and a fixed (unrealistically assumed known) value of σ2. The other terms
in (6.1) do not contain μ , so with respect to a likelihood for μ , they are just constants
and can be dropped.

6.2.4 Sufficient Statistics

Note that ȳ appears in the likelihood instead of all the individual values yi from
each observation. Recall that a statistic is a number that can be calculated from
sample data just by arithmetic. We do not need to know the values of any unknown
parameters to calculate a statistic. ȳ is a statistic. When, as in this case, a statistic
contains all the information in the data that is useful in estimating the unknown
parameter of interest, the statistic is called a sufficient statistic. Using sufficient
statistics when they exist makes Bayesian computation much easier.
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6.2.5 Finding a Conjugate Prior for μ

Just as was the case when we were dealing with a binomial likelihood and the
unknown parameter was the success probability π , there are an infinite number
of ways of specifying a prior for the unknown mean μ of a normal distribution.
However, a conjugate prior simplifies posterior calculations, so we will identify the
parametric family that is conjugate to the likelihood for a normal mean and see
whether there is a member of the conjugate family that adequately expresses our
prior information.

In seeking a family of densities that is conjugate to the normal likelihood, we are
looking for a density in which the random variable appears in the same functional
form as μ appears in the normal likelihood. Note that in (6.2), we can reverse the
positions of μ and ȳ without changing the value of the expression at all:

exp

(

−n (ȳ− μ)2

2σ2

)

= exp

(

−n (μ − ȳ)2

2σ2

)

(6.3)

So we are looking for a density in which the random variable appears in the same
form as μ appears on the right hand side of (6.3). But the right hand side of (6.3) is
the kernel of a normal density! So the normal density is the conjugate prior for μ in
the normal likelihood when σ2 is assumed known.

If we express the likelihood in terms of the sufficient statistic ȳ, then we can write
the Bayesian normal model as

ȳ | μ ,σ2 ∼ N

(

μ ,
σ2

n

)

μ ∼ N
(
μ0, σ2

0

)

In Sect. 6.2.7 we will discuss how to select numeric values for the prior parameters
μ0 and σ2

0 to express our prior knowledge about μ .
Recall that the important implication of conjugacy is that the posterior density

will be in the same parametric family as the prior. Thus, in the normal prior/normal
likelihood case, the posterior density p(μ |ȳ) will also be normal.

6.2.6 Updating from Prior to Posterior in the Normal–Normal
Case

I have emphasized that the same density can be parameterized in different ways.
It turns out that in Bayesian statistics, writing the normal density in terms of the
mean and precision instead of the mean and variance simplifies calculation of the
posterior density for μ .
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6.2.6.1 Precisions

The precision is the inverse of the variance. The more spread out a distribution is
(larger variance), the less precise it is (smaller precision). When reading Bayesian
literature or using Bayesian software, you must always make sure whether normal
distributions are parameterized in terms of the variance or the precision.

Rewriting our likelihood and prior using precisions yields:

ȳ | μ ,τ2 ∼ N
(

μ ,
n
τ2

)

μ ∼ N

(

μ0,
1

τ2
0

)

where τ2 = 1
σ 2 and τ2

0 = 1
σ 2

0
.

6.2.6.2 The Posterior Density

Bayes’ rule applies here in the usual way: the posterior density is proportional to the
prior times the likelihood. Thus,

p(μ |y) ∝
√

nτ√
2π

exp

(

−nτ2(μ − ȳ)2

2

)
τ0√
2π

exp

(

−τ2
0 (μ − μ2

0 )
2

2

)

∝ exp

(

−nτ2(μ − ȳ)2

2
− τ2

0 (μ − μ2
0 )

2

2

)

∝ exp

(

− (nτ2 + τ2
0 )μ2 + 2μ(nτ2ȳ+ τ2

0 μ0)

2

)

= exp

⎛

⎜
⎝−

(nτ2 + τ2
0 )(μ

2 − 2μ nτ2 ȳ+τ2
0 μ0

(nτ2+τ2
0 )

2

⎞

⎟
⎠

∝ exp

⎛

⎜
⎝−

(nτ2 + τ2
0 )(μ − nτ2 ȳ+τ2

0 μ0

(nτ2+τ2
0 )

)2

2

⎞

⎟
⎠ (6.4)

The last line in (6.4) is the kernel of a normal density:

μ |y ∼ N

(
nτ2ȳ + τ2

0 μ0

nτ2 + τ2
0

,
1

nτ2 + τ2
0

)
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The posterior mean is a weighted average of ȳ and the prior mean. The weights
are proportional to the respective precisions, nτ2 and τ2

0 .

Equivalent Prior Sample Size

Determining the equivalent prior sample size is easy in this simplified normal model
with the data precision τ2 assumed known. Since n real data observations have
weight proportional to nτ2, we may think of the prior precision as

τ2
0 = n0τ2

Thus, the prior contains the same amount of information as n0 =
τ2

0
τ2 observations.

Posterior Precision and Posterior Variance

Similarly, the posterior precision is the sum of the precisions from the prior and
the likelihood. This makes intuitive sense. A density with a larger precision reflects
more information (less uncertainty) about the random variable. The posterior density
combines the information from both the prior and the current data, so it contains
more information than either of them taken separately. Thus, the posterior precision
should be larger than either the prior precision or the precision of ȳ.

The posterior variance of μ is the inverse of the precision:

Var(μ |y) =
1

nτ2 + τ2
0

=
σ2

0 σ2

nσ2
0 +σ2

(6.5)

6.2.7 Specifying Prior Parameters

We saw in Sect. 3.5.2 that there were many strategies for picking the parameter
values for a beta prior to go with a binomial likelihood. Similar approaches work
for specifying the parameters of a normal prior for a normal mean. Often we will
have some degree of knowledge about where the normal population is centered, so
choosing the mean of the prior distribution for μ usually is less difficult than picking
the prior variance (or precision). Workable strategies include:

1. Graph normal densities with different variances until you find one that matches
your prior information

2. Identify an interval which you believe has 95% probability of trapping the true
value of μ , and find the normal density that produces it

3. Quantify your degree of certainty about the value of μ in terms of equivalent
prior sample size
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6.2.8 Mercury in Fish Tissue

6.2.8.1 Specifying the Prior Parameters

To complete our Bayesian model, we need to choose numeric values for the
parameters μ0 and τ2

0 of the normal prior on μ . Recall that our data are log-
transformed concentrations of mercury in fish tissue and that the units of the
untransformed observations were parts per million. I am not an expert on mercury
contamination of fish in Iowa rivers, but I do have a source of information.

First, the Iowa Department of Natural Resources web page says that fish caught
in Iowa are generally safe to eat and that only occasionally are advisories issued due
to mercury levels. Therefore, I expect that fish caught in the Des Moines River will
fall into the lowest category of mercury concentrations given in Sect. 6.2.1. On the
log scale, the upper bound of that category is −2.41. Based on these facts, my best
guess for the population mean of log-transformed mercury concentrations is −2.45,
so I will use that for the prior mean μ0.

Now we need the prior precision, τ2
0 . Recall that we are assuming that we

magically know the exact value of the population variance (and therefore of the
population precision) of log-transformed mercury concentrations in all fish from the
Des Moines River. Suppose we know that τ2 = 2.5. Now I don’t have a very strong
belief in my choice of −2.45 for the prior mean; I am only as confident as I would
be if I had seen three previous tissue samples from the Des Moines River. Thus, my
equivalent prior sample size is n0 = 3. I should set τ2

0 = n0τ2 = 3(2.5) = 7.5.
Thus, my prior is

μ ∼ N(−2.45,1/7.5)

where 7.5 is the prior precision. I will verify that this setting matches my prior
knowledge by looking at the 95% prior interval for μ produced by this specification.
Here are R code and output:

> qnorm( c(0.025, 0.975), -2.45, sqrt( 1/7.5) )
[1] -3.165678 -1.734322

Since it is easier to think about concentrations than about log-concentrations, I’ll
transform the interval endpoints back to the concentration scale:

> exp(qnorm( c(0.025, 0.975), -2.45, sqrt( 1/7.5) ))
[1] 0.04218554 0.17651978

Hmm, those endpoints seem too high. I’ll try again with a Normal (−2.75, 1/7.5)
density.

> exp(qnorm( c(0.025, 0.975), -2.75, sqrt( 1/7.5) ))
[1] 0.03125182 0.13076907
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The statement that there is 95% probability that exp(μ) is in the interval (0.031,
0.131) is consistent with my prior belief, so I will use the Normal (−2.75, 1/7.5)
density as my prior for μ .

6.2.8.2 Computing the Posterior Density

Now that we have completed our prior specification, we finally can look at the data.
Figure 6.2 is the histogram with x-axis labels included:

Furthermore, the sample mean ȳ =−2.563 and the sample size n = 21.
Therefore, the posterior precision is 21(2.5)+7.5 = 60, and the posterior mean

is 21(2.5)(−2.563)+7.5(−2.75)
60 − =−2.586. That is,

μ |ȳ ∼ N(−2.586,1/60)

This density is shown in Fig. 6.3.
Note that p(μ |ȳ) and p(μ |y) are equivalent and both notations are correct, since

the sufficient statistic ȳ contains all the information regarding μ from the entire
vector of data values y.
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Fig. 6.3 Posterior density
for μ

6.2.8.3 Using the Posterior Density to Perform Inference

As in all Bayesian analyses, the posterior density contains all of our current
information about the parameter of interest and will provide the basis for all
inference. We stated in Sect. 6.2.1 that we wanted to estimate the population mean
μ and to determine the probabilities that μ lies in each of the four mercury-
contamination categories specified by the Natural Resources Defense Council. We
have already calculated a Bayesian point estimate of μ , the posterior mean:

E(μ |ȳ) =−2.586

We can complete the estimation procedure by finding a 95% equal-tail posterior
credible set for μ :

> qnorm( c(0.025, 0.975), -2.586, sqrt(1/60) )
[1] -2.839030 -2.332970

Thus, a person who agreed with my prior, after seeing the current data, would
believe that there is 95% probability that μ is in the interval (−2.839, −2.333).

We can exponentiate the endpoints of the interval to obtain the corresponding
95% interval on the original (not log-transformed) scale:

> exp(qnorm( c(0.025, 0.975), -2.586, sqrt(1/60) ))
[1] 0.05848235 0.09700723
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Note that when we use a monotonic transformation such as the log transfor-
mation, we can obtain quantiles on the original scale by applying the reverse
transformation to quantiles obtained on the transformed scale. We cannot do the
same thing with means. A well-known inequality in mathematics called Jensen’s
inequality (Jensen 1906), applied to the special case of the log function, states

log(E(Y )) �= E(log(Y ))

The pnorm function in R can help us find the posterior probabilities that μ lies
in each of the categories defined by the NRDC.

> pnorm( c(-2.41, -1.24,-0.71), -2.586, sqrt(1/60) )
[1] 0.9136045 1.0000000 1.0000000

Thus, Pr(μ < −2.41|ȳ) = 0.914 and Pr(−2.41 < μ < −1.24) is about 0.086.
The posterior probability that μ is in either of the highest two categories of log
concentration is close to zero—good news for consumers of fish caught in the Des
Moines River!

6.2.9 The Jeffreys Prior for the Normal Mean

It can be shown that the Jeffreys prior for the normal mean when σ2 is assumed
known is

p(μ) ∝ 1, −∞ < μ < ∞

This obviously is an improper prior, since the integral
∫ ∞
−∞ 1dμ is not finite. It can

be thought of as the limiting case of an N(μ0,σ2
0 ) density as the prior variance σ2

0
goes to ∞. Equivalently, it is the limit of an N(μ0,τ2

0 ) density as the prior precision
τ2

0 goes to 0. As both interpretations make clear, it contains no prior information at
all. To say the same thing a third way, since the prior precision τ2

0 = 0, the equivalent
prior sample size n0 must also be zero: this prior contains the same amount of
information as a data sample with 0 observations!

When the Jeffreys prior is combined with a normal likelihood, in the posterior
density calculations in (6.4), all the terms that are multiples of τ2

0 drop out, leaving
the posterior density (expressed in terms of its precision):

μ |ȳ ∼ N
(

ȳ,
n
τ2

)
(6.6)

That is, the posterior looks just like the likelihood, with the roles of μ and ȳ reversed.
In this case, the Bayesian posterior mean will equal the frequentist maximum
likelihood estimate, and the endpoints of frequentist confidence intervals for each
confidence level will be the same as those of Bayesian credible sets with the same
posterior probability level. Of course, the interpretations of the two types of intervals
will be different.
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If we had used a Jeffreys prior in our analysis of the mercury concentration data,
the resulting posterior density would have been

μ |ȳ =−2.563 ∼ N

(

−2.563,
1

52.5

)

Note that the posterior precision is smaller this time than when we used an
informative prior. As expected, the posterior credible sets (on the log scale and
original scale, respectively) also will be wider:

> qnorm( c(0.025, 0.975), -2.563, sqrt(1/52.5) )
[1] -2.833501 -2.292499
> exp(qnorm( c(0.025, 0.975), -2.563, sqrt(1/52.5) ))
[1] 0.05880663 0.10101369

In addition, the posterior probabilities that μ lies in each of the four intervals
would have been 0.866, 0.134, 0, and 0, respectively.

6.2.10 Posterior Predictive Density in the Normal–Normal
Model

Suppose we wish to predict concentrations of mercury in future samples of tissue
from fish caught in the Des Moines River. We encountered the concept of a posterior
predictive distribution in the context of our survey data example when we wished
to predict the number of “yesses” in a future survey sample. In that case, in which
the data were realizations of a binomial random variable, the posterior predictive
distribution was discrete and provided a probability for each of the possible numbers
of successes in the future sample.

In our current problem, the data are realizations of a continuous-valued random
variable, so the posterior predictive distribution will be a density rather than a set of
probabilities. However, the same logic is used to obtain it. Since we are assuming
that the population of log-transformed mercury concentration values is normal with
variance known to be 2.5 log ppm and if μ were known, the density of any possible
future value would be

p(ynew|y,μ ,σ2) =
1√

2πσ
exp

(

− (y− μ)2

2σ2

)

(6.7)

Since μ is not known exactly, and all of our knowledge about it is contained in
the posterior density p(μ |y), we must integrate (6.7) over the posterior density to
obtain the posterior predictive density:

p(ynew|y =

∫ ∞

−∞

1√
2πσ

exp

(

− (y− μ)2

2σ2

)
1√

2πσ1
exp

(

− (μ − μ1)
2

2σ2
1

)

dμ (6.8)
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where μ1 and σ2
1 , respectively, denote the posterior mean and variance of μ as

given in (6.4) and (6.5). If we do the integral, we find that the posterior predictive
distribution is normal, with mean equal to the posterior mean of μ and variance
equal to the sum of the posterior variance of μ and the (supposedly known)
population variance σ2, that is,

ynew|y ∼ N(μ1,σ2
1 +σ2) (6.9)

This conclusion also makes intuitive sense. The larger the variance in a distribution,
the more uncertainty it reflects. Our uncertainty about a future individual value of y
includes all the uncertainty we have about the value of the population mean μ and
all the variability between individual members of the population.

We can use (6.9) to obtain the posterior predictive density of the log mercury
concentration in future tissue samples of fish from the Des Moines River. Let’s
continue the analysis with the Jeffreys prior, begun in Sect. 6.2.9. Rewriting the
posterior density in terms of its variance, we have

μ |ȳ ∼ N

(

−2.563,
1

52.5
= 0.019

)

Furthermore, in the population of individual tissue samples, the variance of log
mercury concentration is assumed known to be 1

2.5 = 0.4.
Therefore, the posterior predictive density for a future measurement ynew is

ynew|y ∼ N(−2.563,0.419)

The qnorm function in R will give us a 95% posterior predictive interval for a
new observation:

> qnorm( c(0.025, 0.975), -2.563, sqrt(0.419) )
[1] -3.831689 -1.294311

Thus, based on a Bayesian analysis using the noninformative Jeffreys prior,
we would say that there is 95% probability that the log concentration in a
future individual tissue sample will lie between −3.83 and −1.29. Again, we can
exponentiate these interval endpoints to get the interval on the original (not log-
transformed) scale:

> exp(qnorm( c(0.025, 0.975), -2.563, sqrt(0.419) ))
[1] 0.02167298 0.27408659

6.3 Normal: Unknown Variance, Mean Assumed Known

Usually when we use a normal likelihood in either a frequentist or a Bayesian
analysis, the unknown parameter of primary interest is the population mean μ .
However, sometimes interest centers instead on the spread of the population
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distribution—that is, its variance σ2. Quality control in industry is a real-world
setting in which assessing variance is crucial. For example, if a manufacturing plant
produces bullets for a particular caliber of gun, not only the mean diameter of the
bullets must be correct but also the variance in bullet diameters must be sufficiently
small in order for all bullets to fit and fire correctly.

As we did with the normal mean, we first will study Bayesian inference for the
normal variance under the unrealistic assumption that the other parameter (in this
case μ) is a known number. This “single-parameter” model, too, is an important
building block of realistic models that we will encounter later.

Recall the joint distribution of n observations modeled as conditionally in-
dependent draws from a normal population with known mean μ and unknown
variance σ2:

p(y1, . . . ,yn|μ ,σ2) =
n

∏
i=1

1√
2πσ

exp

[

− (yi − μ)2

2σ2

]

∝
1

(σ2)
n
2

exp

[

−∑n
i=1(yi − μ)2

2σ2

]

The sufficient statistic for σ2 is the single number ∑(yi−μ)2

n . We can rewrite the
joint distribution using this sufficient statistic, represented by the symbol v, this way:

p(y|σ2) ∝
1

(σ2)
n
2

exp
[
− nv

2σ2

]

Again, our next step in inference is to change our perspective to one in which
the data have been observed, so the sufficient statistic has a fixed, known value, and
we wish to evaluate the expression as a function of changing values of the unknown
parameter σ2. The likelihood of σ2 is

L(σ2;y) ∝
1

(σ2)
n
2

exp
[
− nv

2σ2

]
, 0 < σ2 < ∞ (6.10)

6.3.1 Conjugate Prior for the Normal Variance,
μ Assumed Known

In preparation for a conjugate Bayesian analysis, we must identify the parametric
family of prior densities for σ2. We need a density for a random variable with
support on the positive real line, in which the random variable appears in the same
functional form as in (6.10)—in a denominator raised to a power and again in the
denominator of an exponent. Before reading any further, see whether you can find
such a family in Tables A.1, A.2, or A.3
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The conjugate family is inverse gamma. A conjugate prior for σ2 would be

p(σ2) =
β α

Γ α
1

(σ2)α+1 exp

(

− β
σ2

)

, 0 < σ2 < ∞ (6.11)

There are several strategies for specifying the parameters of an inverse gamma prior
density to express our knowledge or opinion about a normal variance. We could:

1. Plot inverse gamma densities with different parameter values until we found one
that matched our prior knowledge.

2. Decide on appropriate numeric values for the mean and variance of the prior
distribution for σ2 and solve the expressions for mean of an inverse gamma
density and variance of an inverse. gamma density for α and β (See table of
distributions in the appendix).

3. Use an R function to find values of α and β that produce a prior probability
interval that matches our prior knowledge.

Strategy 3 is a little trickier with inverse gamma densities than with the other
densities that we have studied so far, because R does not have a built-in set of
functions for inverse gamma densities. (Some R packages do offer such functions,
but we can do what we need here without them). As you will prove in Problem 6.3,
if X and Y are two random variables such that 0 < X ,Y < ∞ and Y = 1

X , if
X ∼ Gamma(α, β ), then Y ∼ Inverse Gamma(α, β ), 0 < X ,Y < ∞.

We know that R does have functions for gamma random variables. Furthermore,
for any strictly positive values x and y, the inverse function is monotonic: if
x < y, then 1

x > 1
y . The same principle concerning monotonic transformations and

endpoints that we used in Sect. 6.2.8.3 helps us here. Specifically, suppose we want
the 0.025 and 0.975 quantiles of an IG(3, 6) density. These will be the inverses of the
0.975 and 0.025 quantiles of the Gamma(3,6) density, obtained with R as follows:

> 1 / qgamma( c(0.975, 0.025), 3, 6)
[1] 0.8304857 9.6981903

6.3.2 Obtaining the Posterior Density

As always, the posterior density will be proportional to the prior times the
likelihood:

p(σ2|y) ∝
1

(σ2)α+1 exp

(

− β
σ2

)

× 1

(σ2)
n
2

exp
[
− nv

2σ2

]
, 0 < σ2 < ∞

∝
1

(σ2)
n
2+α+1

exp

[

− 1
σ2

(nv
2
+β

)]

, 0 < σ2 < ∞ (6.12)
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Sure enough, this is the kernel of another inverse gamma density:

σ2|y ∼ IG
(

α +
n
2
,β +

nv
2

)
(6.13)

The form of the posterior density reveals another strategy for specifying an inverse
gamma prior, involving the equivalent prior sample size. Clearly the α parameter in
the prior is analogous to the data sample size n divided by 2. Similarly, β from the
prior corresponds to n times the average squared distance of the data values yi from
the supposedly known value μ . Thus, we may think of the parameters of an inverse
gamma prior for a normal variance this way:

σ2 ∼ IG

(
n0

2
,

n0σ2
0

2

)

(6.14)

contains the same information as if we had seen a previous real data sample of size
n0 in which the average squared distance of the observations from μ was σ2

0 .

6.3.3 Jeffreys Prior for Normal Variance, Mean Assumed
Known

It can be shown that the Jeffreys prior for a normal variance is

p(σ2) ∝
1

σ2 , 0 < σ2 < ∞ (6.15)

It is an improper prior, since
∫ ∞

0
1

σ 2 dσ2 is not finite. This is the limit of an inverse
gamma prior as both parameters go to 0.

An inverse gamma density is proper only if both of its parameters are strictly
positive. The Jeffreys prior can be used for inference regarding a normal variance
only if, when combined with the likelihood, the posterior produced is a proper
inverse gamma. Consider (6.13) in the case in which α and β from the prior were
both equal to 0. The data would have to fill two requirements in order for both
parameters in the posterior inverse gamma density to be strictly positive: the sample
size n would have to be at least 1, so that n

2 > 0, and at least one observed data
point yi in the dataset would have to have value not equal to the known μ so that

v = ∑n
i=1(yi−μ)2

n > 0. Needless to say, these criteria are met in virtually all datasets.

6.4 Normal: Unknown Precision, Mean Assumed Known

Since the precision parameter in a normal density is just the inverse of the variance,
if we do inference on one, we can easily derive the corresponding inference for the
other. Specifically, if
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τ2 =
1

σ2 ,

and the prior on σ2 is specified as

σ2 ∼ IG(α,β )

then the equivalent prior induced on τ2 is

τ2 ∼ G(α,β )

and the resulting posterior density for τ2 is

τ2|y ∼ G
(

α +
n
2
,β +

nv
2

)

6.4.1 Inference for the Variance in the Mercury Concentration
Problem

Suppose now that we magically knew that the mean μ of log-transformed mercury
concentration in tissue from fish caught in the Des Moines River was −2.5 log
ppm, and we wanted to use our data to infer about the population variance σ2.
We would have had to define our prior on σ2 before seeing that data. Perhaps an
expert on mercury contamination told us that he was 95% sure that the variance
was between 0.25 and 0.75. To find the parameters of an inverse gamma density for
which those are the 0.025 and 0.975 quantiles, respectively, I can use trial and error
with the qgamma function. I know that the mean of an inverse gamma density is

β
α−1 , so I will begin with an α and a β for which that ratio is around 0.5. After some
experimentation, I arrive at:

> 1/qgamma( c(0.975, 0.025), 13.3,5.35)
[1] 0.2506642 0.7492485

So my prior on σ2 is IG(13.3, 5.35). Now in the real data, n = 21 and v = 0.371.
Thus, the posterior density obtained is

σ2|y ∼ IG(23.8,9.25)

The posterior mean E(σ2|y) = 0.406 and a 95% equal tail posterior credible set is

> 1/qgamma( c(0.975, 0.025), 23.8, 9.25)
[1] 0.2699072 0.6078543
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Problems

6.1. We used the following identity in deriving the likelihood for the mean μ of a
normal distribution. Verify that it is true.

n

∑
i=1

(yi − μ)2 =
n

∑
i=1

(yi − ȳ)2 + n (ȳ− μ)2

6.2. The observed weights (in grams) of 20 pieces of candy randomly sampled from
candy-making machines in a certain production area are as follows:

46 58 40 47 47 53 43 48 50 55 49 50 52 56 49
54 51 50 52 50

Assume that weights of this type of candy are known to follow a normal
distribution, and that the mean weight of candies produced by machines in this area
is known to be 51 g. We are trying to estimate the variance, which we will now
call θ .

1. What is the conjugate family of prior distributions for a normal variance (not
precision) when the mean is known?

2. Suppose previous experience suggests that the expected value of θ is 12 and the
variance of θ is 4. What parameter values are needed for the prior distribution to
match these moments?

3. What is the posterior distribution p(θ |y) for these data under the prior from the
previous step?

4. Find the posterior mean and variance of θ .
5. Comment on whether the assumptions of known mean or known variance are

likely to be justified in the situation in Problem 6.1.

6.3. Consider two random variables X and Y, 0 < X ,Y < ∞, where Y = 1
X . Show

that if X ∼ Gamma(α, β ), then Y ∼ Inverse Gamma(α, β ), 0 < X ,Y < ∞.



Chapter 7
More Realism Please: Introduction to
Multiparameter Models

Real-world problems nearly always require statistical models with more than one
unknown quantity. However, usually only one, or a few, parameters or predictions
are of substantive interest. Our analysis of mercury concentrations in fish tissue
provides a simple, but nevertheless typical, example. We may be primarily interested
in the population mean of log mercury concentration, but of course we don’t really
know the value of the population variance σ2. Therefore, in a realistic model, we
must treat σ2 as an unknown parameter along with μ .

Frequentists often refer to unknown parameters that are not of substantive
interest as “nuisance parameters.” Bayesian statistics provides a sound mathematical
framework for handling them and appropriately quantifying the uncertainty about
the parameters of interest that is induced by our lack of knowledge about the other
unknown model parameters.

Bayesian analysis seeks the posterior marginal distribution of the parameter or
parameters of interest—that is, the distribution of those parameters conditional only
on the observed data (not on any other unknown parameters). In the example of the
normal model, the posterior marginal density of μ is p(μ |y).

The general Bayesian approach is to obtain the joint posterior distribution of all
unknown quantities in the model and then to integrate out the one(s) in which we
are not interested.

As our example, let’s reconsider Bayesian analysis of sample data drawn from
a normal population, this time realistically admitting that we don’t know either the
population mean or the population variance. In this case, we will need to specify a
joint prior on both of the unknown parameters.

M.K. Cowles, Applied Bayesian Statistics: With R and OpenBUGS Examples,
Springer Texts in Statistics 98, DOI 10.1007/978-1-4614-5696-4 7,
© Springer Science+Business Media New York 2013
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7.1 Conventional Noninformative Prior for a Normal
Likelihood with Both Mean and Variance Unknown

Suppose we have no prior information or that we want our analysis to depend only
on the current data. We need to construct a noninformative joint prior density for μ
and σ2.

The standard noninformative prior in this case arises by considering μ and σ2

a priori independent. A priori independence may be a reasonable assumption here.
It means that if we had prior knowledge about the center of the population distri-
bution (μ), that wouldn’t tell us anything about the spread of the population
distribution (represented by σ2), and conversely, prior information about the spread
wouldn’t tell us anything about the center.

Recall that, if two random variables are independent, then their joint density
is simply the product of their individual marginal densities. Thus, the standard
noninformative prior that we are seeking is simply the product of the standard
noninformative priors for μ when σ2 is assumed known and for σ2 when μ is
assumed known:

p(μ , σ2) ∝
1

σ2 , −∞ < μ < ∞, 0 < σ2 < ∞ (7.1)

You will recognize 1
σ 2 as the Jeffreys prior on σ2 when μ is assumed known.

Multiplying the expression in (7.1), there is an invisible “1,” which is the flat prior
on μ . Note that this joint prior distribution is improper. If we use it, we must make
sure that the data have the necessary properties to produce a proper joint posterior
distribution. With this prior and a normal likelihood, the data must consist of at least
two observations, and at least two observed data values must be unequal. Needless
to say, most datasets satisfy these minimal requirements.

With observed data vector y, the joint posterior is proportional to

p(μ , σ2|y) ∝ p(μ ,σ2)× p(y|μ ,σ2) (7.2)

∝
1

σ2 × 1

(σ2)
n
2

exp

(

− 1
2 σ2

n

∑
i=1

(yi − μ)2

)

=
1

(σ2)
n
2+1

exp

(

− 1
2 σ2

[
n

∑
i=1

(yi − ȳ)2 + n(ȳ− μ)2

])

=
1

(σ2)
n
2+1

exp

(

− 1
2 σ2

[
(n− 1) s2 + n(ȳ− μ)2]

)

(7.3)

where s2 is the sample variance of the yis, calculated as s2 = 1
n−1 ∑n

i=1(yi − ȳ)2. As
in the normal model with σ2 assumed known, ȳ is the sufficient statistic for μ . Here
s2 is the sufficient statistic for the unknown σ2.
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Since our primary interest is in the population mean μ , we must integrate σ2 out
of the joint posterior density to obtain the posterior marginal density of μ given y.
Note that the expression in (7.2) is unnormalized. Before we do the integration, we
want to find the normalizing constant of p(μ ,σ2|y). This identity from conditional
probability will get us there:

p(μ ,σ2|y) = p(μ |σ2, y)p(σ2|y)

So if we can find p(μ |σ2,y) and p(σ2|y) (including their normalizing constants),
then their product is the normalized joint posterior. Let’s do the second component
first. We simply need to integrate μ out of (7.2) and identify the result as the kernel
of a density that we know:

p(σ2|y) ∝
∫ ∞

−∞

1

(σ2)
n
2+1

exp

(

− 1
2 σ2

[
(n− 1) s2 + n(ȳ− μ)2]

)

dμ

∝
1

(σ2)
n+1

2

exp

(

− (n− 1)s2

2σ2

)∫ ∞

−∞

1
σ

exp

(

− n(μ − ȳ)2

2σ2

)

dμ

∝
1

(σ2)
n+1

2

exp

(

− (n− 1)s2

2σ2

)√
2π
n

∝
1

(σ2)
n+1

2

exp

(

− (n− 1)s2

2σ2

)

(7.4)

We immediately recognize the last line of (7.4) as the kernel of an inverse gamma

density with parameters n−1
2 and (n−1)s2

2 . Therefore, its normalizing constant has to

be

(
(n−1)s2

2

) n−1
2

Γ ( n−1
2 )

.

To obtain the conditional posterior distribution of μ given σ2 and y, we use what
we already know [from expression (6.6) in Chap. 6] about the posterior distribution
of μ with known variance and a flat prior on μ :

μ | σ2,y ∼ N

(

ȳ,
σ2

n

)

So the normalized joint posterior distribution is the product:

p(μ ,σ2|y) =
(
(n−1)s2

2

) n−1
2

Γ ( n−1
2 )

1

(σ2)
n+1

2

exp

(

− (n− 1)s2

2σ2

)

×
√

n√
2πσ

exp

(

−n(μ − ȳ)2

2σ2

)

(7.5)
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Now the marginal posterior distribution of μ can be obtained by direct integration:

p(μ | y) =
∫

(
(n−1)s2

2

) n−1
2

Γ ( n−1
2 )

1

(σ2)
n+1

2

exp

(

− (n− 1)s2

2σ2

) √
n√

2πσ
exp

(

−n(μ − ȳ)2

2σ2

)

dσ2 =

(
(n−1)s2

2

) n−1
2

Γ ( n−1
2 )

√
n√

2π

∫
1

(σ2)
n
2+1

exp

(

− (n− 1)s2 + n(μ − ȳ)2

2σ2

)

dσ2

=

(
(n−1)s2

2

) n−1
2

Γ ( n−1
2 )

√
n√

2π
Γ

(
n
2

)

[
(n−1)s2+n(μ−ȳ)2

2

] n
2

=

(
(n−1)s2

2

) n−1
2

Γ ( n−1
2 )

√
n√

2π
Γ

(
n
2

)

(
(n−1)s2

2

)n/2
[

1+ 1
(n−1)

(
μ−ȳ
s/
√

n

)2
]n/2

=
Γ

(
n
2

)

Γ
(

n−1
2

)√
(n− 1)πs/

√
n

[

1+ 1
(n−1)

(
μ−ȳ
s/
√

n

)2
]n/2

(7.6)

Compare the last line of (7.6) to the pdf of a student’s t distribution given in Table
A.2. Yes, this is a t distribution with

• mean ȳ
• scale parameter s2

n
• degrees of freedom n− 1

Recall that there is a whole family of student’s t distributions. All members are
symmetric and bell shaped like the normal density, but t densities are less peaked
and more spread out than normal densities. The larger the degrees of freedom of a t
density, the more similar in shape it is to the normal.

7.1.1 Example: The Mercury Concentration Data

We now reanalyze the data on log-transformed mercury concentrations. Although
estimating the population mean μ is our primary aim, we recognize that the variance
σ2 is also unknown. We first carry out the Bayesian analysis using the improper
noninformative prior described in the previous section.



7.1 Conventional Noninformative Prior for a Normal Likelihood with Both Mean. . . 105

In this dataset, the sample mean ȳ = −2.563, the sample variance s2 = 0.385,
and the sample size n = 21. Thus, the marginal posterior density of μ is

μ |y ∼ t20(−2.563,0.018)

The posterior mean is E(μ |y) = ȳ = −2.563. The 95% equal tail posterior
credible set based on the posterior t distribution can be obtained using the qt
function in R, which gives the quantiles of a t distributions with mean 0 and scale
parameter 1:

> qt(c(0.025, 0.975), 20)
[1] -2.085963 2.085963

The required credible set is calculated by multiplying each of these quantiles by
the square root of the scale parameter and adding the mean:

> -2.5629 + qt(c(0.025, 0.975), 20) * sqrt( 0.018 )
[1] -2.845341 -2.280459

Notice that this posterior credible set is wider than the one we calculated in
Sect. 6.2.9 when assuming that σ2 was known. Our uncertainty about σ2 in the
present reanalysis is reflected appropriately in greater uncertainty about μ .

We expect that the current analysis with the standard noninformative joint prior
on μ and σ2 will give results that match a frequentist analysis. We can verify this
by using the R function t.test to calculate the frequentist point estimate and 95%
confidence interval:

> t.test( logiowafish)

One Sample t-test

data: logiowafish
t = -18.9193, df = 20, p-value = 3.11e-14
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-2.845479 -2.280328

sample estimates:
mean of x
-2.562904

Yes, the results agree up to three digits to the right of the decimal point. The
differences are due to my having rounded along the way in the Bayesian analysis.

Note that this Bayesian analysis was not conjugate. The joint prior density was
the product of a normal density times an inverse gamma density (improper limiting
forms of each), but the joint posterior density was not a product of those two
families. Yes, the marginal posterior density of σ2 was inverse gamma, but the
marginal posterior density of μ was t, not normal.
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7.2 Informative Priors for μ and σ2

When prior information is available about the unknown mean and variance parame-
ters of a normal population, we will wish to incorporate it into the Bayesian analysis.
Common practice is to assume a priori independence between μ and σ2 and to
specify the joint prior as the product of a proper normal prior on μ and a proper
inverse gamma prior on σ2.

In this case, neither of the marginal posterior densities p(μ |y) and p(σ2|y)
will be of a standard parametric form. The joint posterior density p(μ ,σ2|y) most
certainly does not factor into the product of a normal density times and inverse
gamma density. Thus, this is not a conjugate analysis.

The term semi-conjugate is often used for a prior specification such as this, in
which the prior specified for each unknown model parameter would have been
conjugate if all other model parameters were assumed known, but the entire joint
prior is not conjugate.

Because the marginal posterior densities of interest are not of known parametric
families, obtaining posterior means, credible sets, or other numeric summaries of
interest is not as straightforward as it was. Simulation-based methods of Bayesian
model fitting enable us to perform Bayesian inference for nonconjugate models.
These methods are the topic of the next chapter.

7.3 A Conjugate Joint Prior Density for the Normal Mean
and Variance

Interestingly, a conjugate prior does exist for the normal likelihood with both mean
and variance parameters unknown. It relies on the somewhat counterintuitive notion
that the precision of our prior knowledge about the population mean parameter μ
depends on the value of the unknown population variance σ2. Now that simulation-
based methods are conveniently available for Bayesian model fitting, this joint
prior density is not commonly used for inference in simple models with a normal
likelihood. However, it is worth knowing about because of both its historical use
and its current usefulness as a building block in more complex models.

The conjugate joint prior density—the normal-inverse gamma density—is con-
structed as the product of a marginal inverse gamma prior density on σ2 and a
conditional normal density for μ given σ2:

p(μ ,σ2) = p(σ2)p(μ |σ2)

= IG(α,β )×N(μ0,
1
κ

σ2) (7.7)

The four prior parameters that must be specified are α and β from the inverse
gamma prior on σ2, the mean μ0 of the prior density on μ , and κ . The conditional
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prior variance of μ given the unknown parameter σ2 is σ2 divided by the prior
parameter κ .

In pdf format, the normal-inverse gamma prior looks like this:

p(μ ,σ2) =
β α

Γ (α)

1
(σ2)α+1 exp

(

− β
σ2

)

×
√

κ√
2πσ2

exp

(

−κ(μ − μ0)
2

2σ2

)

(7.8)

Once the current data, n observations y1, y2, . . . ,yn with sample mean ȳ, have
been observed, of course the posterior density is proportional to the joint prior times
the normal likelihood. If we factor the likelihood in the same way as in (7.2), we
can derive the posterior as follows:

p(μ ,σ2|y) ∝
β α

Γ (α)

1
(σ2)α+1 exp

(

− β
σ2

)

×
√

κ√
2πσ2

exp

(

−κ(μ − μ0)
2

2σ2

)

×

1

(σ2)
n
2

exp

(

− (n− 1)s2

2σ2

)√
n

σ
exp

(

−n(ȳ− μ)2

2σ2

)

∝
1

(σ2)α+ n
2+1

exp

(

− 1
σ2

(

β +
(n− 1)s2

2

))

×
√

κ
σ

exp

(

−κ(μ − μ0)
2 + n(μ − ȳ)2

2σ2

)

(7.9)

Now let’s do a little algebra with the numerator of the last expression inside an
exponent in (7.9):

κ(μ − μ0)
2 + n(μ − ȳ)2 = κ(μ2 − 2μμ0 + μ2

0)+ n(μ2 − 2μ ȳ+ ȳ2)

= (κ + n)μ2 − 2μ(κμ0 + nȳ)+κμ2
0 + nȳ2

= (κ + n)

[

μ2 − 2μ(κμ0 + nȳ)
κ + n

+

(
κμ0 + nȳ

κ + n

)2
]

− (κμ0 + nȳ)2

κ + n
+κμ2

0 + nȳ2

= (κ + n)

(

μ − κμ0 + nȳ
κ + n

)2

+
κn(ȳ− μ0)

2

κ + n
(7.10)

Note that we got from line 2 to line 3 by in (7.10) completing the square—

specifically, by adding and subtracting (κμ0+nȳ)2

κ+n . Now finally we can integrate the
result from (7.10) into (7.9) to obtain
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p(μ ,σ2|y) ∝
1

(σ2)α+ n
2+1

exp

[

− 1
σ2

(

β +
(n− 1)s2

2
+

κn(ȳ− μ0)
2

2(κ + n)

)]

×

√
κ

σ
exp

⎡

⎢
⎣−(κ + n)

⎛

⎜
⎝

(
μ − κμ0+nȳ

κ+n

)2

2σ2

⎞

⎟
⎠

⎤

⎥
⎦ (7.11)

Ah hah, we can recognize the joint posterior density in (7.11) as normal-inverse
gamma:

μ ,σ2|y ∼ IG

(

α +
n
2
,β +

(n− 1)s2

2
+

κn(ȳ− μ0)
2

2(κ + n)

)

×

N

(
κμ0 + nȳ

κ + n
,

σ2

κ + n

)

(7.12)

Indeed, the normal-inverse gamma prior density was conjugate for the normal
likelihood, since the resulting posterior density is in the same family as the prior.

Recall that the parameters of the inverse gamma density can be thought of as α =
n0
2 and β =

n0σ 2
0

2 . With that reparameterization, the joint posterior density becomes

μ ,σ2|y ∼ IG

(
n0

2
+

n
2
,

n0σ2
0

2
+

(n− 1)s2

2
+

κn(ȳ− μ0)
2

2(κ + n)

)

×

N

(
κμ0 + nȳ

κ + n
,

σ2

κ + n

)

(7.13)

It is clear that n0 is the equivalent prior sample size with respect to the variance,
and κ is the equivalent prior sample size with respect to the mean μ .

By an integration process analogous to that in (7.6), we can find that the posterior
marginal density p(μ |y) is a t density with:

• mean κμ0+nȳ
κ+n

• scale parameter
n0σ 2

0+(n−1)s2+
κn(ȳ−μ0)

2

(κ+n)
(κ+n)(n0+n)

• degrees of freedom n+ n0

7.3.1 Example: The Mercury Contamination Data

Let’s use the same prior information that we had in Chap. 6 regarding mercury
contamination in fish, but this time we will represent it by the conjugate joint prior.
Our best guess for the mean (on the log scale) was −2.75, and we had about as
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much belief in that value as if we had seen three previous observations. Thus, for
the conjugate prior, μ0 will be −2.75, and κ will be 3.

In our analysis with just the variance unknown, we specified an inverse gamma
prior with parameters α = 13.3 and β = 5.35. In the joint conjugate setting, this
would be equivalent to n0 = 27 and σ2

0 = 0.402.
Recall that the sample mean in the fish concentration data is ȳ = −2.563, the

sample variance s2 = 0.385, and the sample size n = 21. Combining these data
values with the specified prior parameters yields the following posterior marginal
densities:

σ2|y ∼ IG(23.8,9.24)

μ |y ∼ t48(−2.586,0.0162) (7.14)

For σ2, the posterior mean is 9.24
23.8−1 = 0.405, and the 95% equal tail credible set

can be found using R in the same way as we did in Sect. 6.4.1:

> 1/qgamma( c(0.975, 0.025), 23.8, 9.24)
[1] 0.2696154 0.6071971

The posterior mean of μ , E(μ |y), is −2.586 log units. We can use R to find the
95% credible set as follows:

> -2.586 + qt( c(0.025, 0.975), 48) * sqrt( 0.0162)
[1] -2.841912 -2.330088

This credible set is a bit narrower than the one we calculated when using the
standard noninformative joint prior in Sect. 7.1.1. This is because this time we
incorporated additional information through an informative prior.

7.3.2 The Standard Noninformative Joint Prior as a Limiting
Form of the Conjugate Prior

The standard noninformative prior discussed in Sect. 7.1 actually is an improper
limiting form of the conjugate joint prior, in which α goes to −1/2 and both β and
κ go to 0. Equivalently, n0 goes to −1, and σ2

0 and κ go to 0. With κ = 0, the value
of μ0 can be arbitrary. When thought of in this way (rather than as the product of an
improper inverse gamma prior on σ2 times an independent improper normal prior
on μ), the conventional noninformative joint prior can be considered a conjugate
prior.
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Problems

7.1. Reanalyze the candy-weight data from Problem 6.2. This time, acknowledge
that both μ and σ2 are unknown, and use the standard noninformative prior given
in (7.1).

1. Find p(μ |y), the posterior marginal density of μ . Name it; give the values of its
parameters; and use it to find the posterior mean and 95% credible set for μ .

2. Suppose that the population variance σ2 was the parameter of primary interest.
Find its posterior marginal density. Give numeric values of the posterior mean
E(σ2|y) and the 95% posterior credible set for σ2.

7.2. Repeat Problem 7.1 using the conjugate prior from Sect. 7.3. Use the same
inverse gamma prior for σ2 that you used in Problem 6.2. For the conditional normal
prior on μ , specify a mean of 51 and an equivalent prior sample size of 10.

1. Find the joint posterior density as a product of two densities. Give numeric values
of their parameters.

2. Find p(μ |y), the posterior marginal density of μ . Name it; give the values of its
parameters; and use it to find the posterior mean and 95% credible set for μ .

3. Suppose that the population variance σ2 was the parameter of primary interest.
Find its posterior marginal density. Give numeric values of the posterior mean
E(σ2|y) and the 95% posterior credible set for σ2.

7.3. Show that the normal-inverse gamma prior produces the conventional nonin-
formative prior if n0 goes to −1 and κ and σ2

0 both go to 0.

7.4. Fill in the details of the integration in (7.6). Be sure to explain how line 3 was
obtained from line 2.



Chapter 8
Fitting More Complex Bayesian Models:
Markov Chain Monte Carlo

So far we have been dealing primarily with simple, conjugate Bayesian models
for which it was possible to perform exact posterior inference analytically. In
more realistic and complex Bayesian models, such analytical calculations gen-
erally are not feasible. This chapter introduces the sampling-based methods of
fitting Bayesian models that have transformed Bayesian statistics over the last
20 years.

8.1 Why Sampling-Based Methods Are Needed

As we already have discussed, the goals of Bayesian analysis are to make in-
ference about unknown model parameters and to make predictions about unob-
served data values. The computationally challenging aspects of these tasks involve
integration. In this section, we will see why integration is an essential element in
Bayesian analysis and will investigate the limitations of some popular methods of
integration.

8.1.1 Single-Parameter Model Example

The challenge of integration arises even in single-parameter models with non-
conjugate priors—for example, the model with a histogram prior on a binomial
success parameter π discussed in Sect. 5.2.2. Let’s see what is required to
carry out the following standard inferential procedures: Plot the posterior density
p(π |y) as in Fig. 5.3, calculate the posterior mean E(π |y), and obtain poste-
rior predictive probabilities for the number of successes in a future sample of
size 20.

M.K. Cowles, Applied Bayesian Statistics: With R and OpenBUGS Examples,
Springer Texts in Statistics 98, DOI 10.1007/978-1-4614-5696-4 8,
© Springer Science+Business Media New York 2013
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8.1.1.1 Plotting the Posterior Density

As long as we can write down the likelihood and the prior(s) in mathematical
form, we always can obtain an expression proportional to the resulting posterior
distribution. (This is just Bayes’ theorem, and it is true regardless of how many
parameters there are in the model.) However, in order to plot a density, we need
the normalizing constant, so that the area under our density plot will be 1. When
the prior is nonconjugate and the posterior density is not of a recognizable family,
the normalizing constant must be obtained by integration: We must find out to
what numeric value the unnormalized density integrates, and then the normalizing
constant is just its inverse.

In the example from Sect. 5.2.2, the required integral is

∫ 1

0
π7(1−π)43p(π)dπ (8.1)

where the histogram prior p(π) is as given below. The third column shows the
normalized prior densities, such that the areas of the histogram bars sum to 1.

Interval Prior probability Prior density

(0, 0.1] 0.25 2.5
(0.1, 0.2] 0.50 5.0
(0.2, 0.3] 0.20 2.0
(0.3, 0.4] 0.05 0.5
> 0.4 0.00 0.0

In this case, doing the integral analytically is possible (but tedious, since the
integrand is a 44-term polynomial). Since the prior density is 0 for π > 0.4, the
posterior will also be 0 there, and hence, the integral needs to be evaluated only
over (0.0, 0.4).

8.1.1.2 Calculating the Posterior Mean

Remember that the posterior mean of a continuous-valued parameter θ in a one-
parameter Bayesian model is calculated as

E(θ |y) =

∫ b

a
θ p(θ |y)dθ

where p(θ |y) is the normalized posterior density and a and b are the limits of its
support. Thus, two integrations are required: one to obtain the normalizing constant
of the posterior density and the other to calculate the expectation.
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8.1.1.3 Calculating Posterior Predictive Probabilities

Similarly, as discussed in Sect. 4.4, posterior predictive probabilities are calculated
by integrating the likelihood over the posterior density, so two integrations are
required.

8.1.2 Numeric Integration

When analytic integration isn’t feasible, numeric integration —deterministic com-
puter algorithms for approximating integrals—sometimes can produce acceptably
accurate numeric results. I will give only a brief introduction here. Consult a
textbook on numeric analysis, such as Chap. 4 of Burden and Faires (2011), for
more details.

Probably the simplest numeric algorithm for one-dimensional integrals is the
composite midpoint rule . Suppose we want to approximate the integral

∫ b

a
f (x)dx

where (a,b) is a finite interval and f has a bounded first derivative on (a,b). The
composite midpoint rule involves dividing the interval (a,b) into n subintervals of
equal length h = b−a

n . Denote the endpoints of these intervals by xi = a+ ih for
i = 0, . . . ,n, so that the ith interval is (xi−1,xi). Then the function is evaluated at
the midpoint of each subinterval, and a little rectangle of that height is constructed
above the subinterval. The integral is approximated by the sum of the areas of the n
little rectangles:

∫ b

a
f (x)dx ≈ b− a

n

n

∑
i=1

f

(
xi−1 + xi

2

)

In general, larger numbers of subintervals produce more accurate approximations.
The composite midpoint rule is the simplest member of a group of numeric

integration algorithms called Newton–Cotes algorithms, all of which require evalu-
ating the integrand at equally spaced points. Other numeric integration algorithms
exist that choose points at which to evaluate the integrand in such a way as
to approximate the integral with greater accuracy while requiring fewer function
evaluations. One of these algorithms, called Gaussian quadrature , was very popular
in Bayesian statistics in the 1960s. It is implemented in the R function integrate.

8.1.2.1 Using Numeric Integration in the Single-Parameter Example

We have to be careful with integration in the example with a histogram prior for a
binomial success parameter. The discontinuities in the prior produce discontinuities
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in the unnormalized posterior as well. The problem can be avoided by performing
a separate numeric integration over each of the four intervals over which the
unnormalized posterior is continuous—(0,0.1), (0.1,0.2), (0.2,0.3), and (0.3,0.4)—
and adding up the results. (Since the prior is 0 for π > 0.4, we already know that the
posterior is 0 there as well, so we don’t have to bother with that part of the integral.)

Let’s begin by defining an R function to calculate the unnormalized posterior
given a value of π and the applicable prior density evaluation at that value of π :

unnormpost <- function(pi, pr)
{

like <- piˆ7 * (1-pi)ˆ43
like * pr

}

Here’s what this function produces for π = 0.15, for which the prior value is 5:

> unnormpost( .15, 5 )
[1] 7.88175e-09

We can provide more than one value of π , and unnormpost will evaluate the
unnormalized posterior for all of them. In the code below, mypis is a vector of
10 values, all in the interval (0.1,0.2). In fact, it is a vector of the midpoints of 10
subintervals of width 0.01. The same value of the prior—5—goes with all of them.

> mypis <- seq(0.105, 0.195, by = .01)
> mypis
[1] 0.105 0.115 0.125 0.135 0.145 0.155 0.165 0.175

0.185 0.195
> unnormpost(mypis, 5)
[1] 5.966033e-09 6.956896e-09 7.650439e-09

7.998324e-09 7.999981e-09
[6] 7.693614e-09 7.142924e-09 6.423269e-09

5.609825e-09 4.769086e-09

Now that we know how to use the unnormpost function, we can set up to use it to
approximate the normalizing constant using the composite midpoint rule. Note that
the output of the unnormpost function provides the heights of the little rectangles.
To approximate the integral over (0.1,0.2), all we need to do is multiply each height
by the subinterval width and add up the areas.

> mypis <- seq(0.105, 0.195, by = .01)
> heights <- unnormpost(mypis, 5)
> sum( heights * 0.01)
[1] 6.821039e-10

Here is an R function to calculate the entire integral by performing the above
procedure for each of the component intervals and accumulating the total.
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function()
{
endpoints <- c(0, 0.1, 0.2, 0.3, 0.4)
prior <- c(2.5, 5.0, 2.0, 0.5)
h <- 0.001 # width of subintervals

integral <- 0 # initialize variable to accumulate
total integral

for( i in 1:4)
{

mypis <- seq( endpoints[i] + h/2, endpoints[i+1]
- h/2, by=h)
heights <- unnormpost(mypis, prior[i])
integral <- integral + sum( heights * h)

}
integral
}

The numeric result is:

[1] 8.126965e-10

Figure 8.1 shows the results of using this procedure multiple times to approxi-
mate the integral in (8.1) using different numbers of subintervals ranging from 10 to
1,000. (The numbers of subintervals shown span the whole interval (0,1), not each of
the intervals over which the separate numeric integrations are performed.) The true
area under the curve and the approximated area based on the numeric integration
are shown in the legends. As the number of subintervals used for the composite
midpoint rule increases, the approximation gets closer and closer to the true integral
value.

We can plot the normalized posterior this way (Fig. 8.2):

plot(pi, prior * like / integral, type="l",
ylab="normalized posterior")

Now that we have the normalizing constant for the posterior, we can use a second
numeric integration to approximate the posterior mean.

E(π |y) =
∫ 1

0
π p(π |y)dπ

=
1

8.126965e− 10

∫ 1

0
ππ7(1−π)43p(π)dπ

=
1

8.126965e− 10

∫ 1

0
π8(1−π)43p(π)dπ (8.2)
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Fig. 8.1 Applying the composite midpoint rule to approximate an integral. The solid line is the
true curve. The dashed line is the approximation based on n rectangles spanning (0,1)

So a slight change to our previous R code for the composite midpoint rule will
do the trick.

function()
{

expec <- function(p, pr)
{

hold <- pˆ8 *(1-p)ˆ43 # Note pˆ8 instead of pˆ7
pr * hold

}

normconst <- 8.126965e-10 # normalizing constants

endpoints <- c(0, 0.1, 0.2, 0.3, 0.4)
prior <- c(2.5, 5.0, 2.0, 0.5)



8.1 Why Sampling-Based Methods Are Needed 117

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

pi

po
st

er
io

r 
de

ns
ity

Fig. 8.2 The normalized
posterior

h <- 0.001 # width of subintervals

integral <- 0 # initialize variable to accumulate
total integral

for( i in 1:4)
{

mypis <- seq( endpoints[i] + h/2, endpoints[i+1]
- h/2, by=h)
heights <- expec(mypis, prior[i])
integral <- integral + sum( heights * h)/normconst
# divide by normalizing const

}
integral
}

The approximate posterior mean is:

> postmean
[1] 0.1493313

We could obtain very similar results by Gaussian quadrature using R’s
integrate function.
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8.1.2.2 Limitations of Numeric Integration

Obviously numeric integration is a very useful tool in Bayesian analysis
(and innumerable other fields). However, its applicability in Bayesian analysis
is limited by a phenomenon popularly called “the curse of dimensionality.” To
understand this phrase, consider two situations. Suppose first that we have a
model with three parameters, say θ1, θ2, θ3. To obtain the normalizing constant
of the three-dimensional joint posterior density, we would need to perform a three-
dimensional numeric integration of the unnormalized posterior:

∫ ∫ ∫

p( y|θ1, θ2, θ3)π(θ1, θ2, θ3)π(θ1, θ2, θ3)dθ1dθ2dθ3

To apply the multidimensional composite midterm rule to approximate this
integral, we would divide the support along each dimension into subintervals, so
that the whole three-dimensional support was divided into little rectangular solids.
If we used 10 subintervals in each dimension, we would have 103 = 1,000 little
rectangular solids in which to evaluate the integrand. If we needed greater accuracy,
we might use 100 subintervals in each dimension, resulting in 1003 = 1,000,000
integrand evaluations. Unless the integrand is very complicated, this would be a
reasonable task using a contemporary desktop computer. However, suppose that our
model had not three but 3,000 parameters. We would need to perform a 3,000-
dimensional integration to get the normalizing constant and a 2,999-dimensional
integration to get the mean of the marginal posterior density of any individual
parameter of interest. If we tried to use the composite midterm rule with 10
subintervals in each dimension, the computer would have to perform 103,000 (i.e., 1
with 3,000 zeroes after it!) function evaluations. The computation would take way
too long to be practical, and most likely would produce an inaccurate result to boot.

Bayesian models with tens or hundreds of thousands of parameters are in
common use today in application areas such as weather forecasting, climate
modeling, marketing, and econometrics. Although there are numeric integration
algorithms that scale better to higher dimensions than the composite midpoint
rule, even they become infeasible before we even reach twenty dimensions. Thus,
numeric integration is hardly an adequate solution to the integration issues in
realistic Bayesian models.

8.1.3 Monte Carlo Integration

Numeric integration methods are deterministic—given the same inputs, a par-
ticular numeric integration algorithm will produce the same results every time.
Another broad class of computer-based integration methods is called Monte Carlo
integration—methods based on (pseudo-) random sampling from probability dis-
tributions. To approximate an integral, numeric integration requires evaluating



8.1 Why Sampling-Based Methods Are Needed 119

the integrand at a fixed set of points, whereas Monte Carlo integration involves
evaluating the integrand at a randomly generated set of points.

Let’s redo the above example of the binomial likelihood and histogram prior, this
time using Monte Carlo integration. To approximate the integral of the unnormalized
posterior within the interval (0.1, 0.2), we need to generate random values of pi from
the uniform density on this interval, evaluate the unnormalized posterior density at
each one, take the average, and multiply by the width of the interval.

> mypis <- runif( 100, 0.1, 0.2 )
> heights <- unnormpost(mypis, 5)
> mean(heights) * 0.1
[1] 6.754542e-10

Because the input values mypis are randomly generated, we will get a slightly
different answer each time we run this code.

Here is a function to calculate the entire integral by using Monte Carlo integration
within each interval:

> mcinteg <- function()
{
endpoints <- c(0, 0.1, 0.2, 0.3, 0.4)
prior <- c(2.5, 5.0, 2.0, 0.5)
nrand <- 100 # number of random points in each

interval
integral <- 0 # initialize variable to accumulate

total integral

for( i in 1:4)
{

mypis <- runif(nrand, endpoints[i], endpoints[i+1])
heights <- unnormpost(mypis, prior[i])
integral <- integral + mean( heights) * (endpoints
[i+1] - endpoints[i])

}
integral
}

And here is the result of running it:

> mcinteg()
[1] 8.267407e-10

The result is close to that obtained with numeric integration in the previous section.
An excellent introduction to Monte Carlo integration is provided in Chap. 3

of Robert and Casella (2010).
Monte Carlo integration has limitations similar to those of numeric integration.

Just as the midpoint rule may require a large number of subintervals (and therefore
of function evaluations) for accurate approximation of a complicated integral,
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Monte Carlo integration may require evaluating the function at a large number
of sampled values. For multidimensional integrals, uniform random samples of
coordinates in the support of the function are required. In even moderate dimensions
(5 or 6), the number of such sets of coordinates required for reasonable accuracy
may be in the tens or hundreds of thousands or more. If the function is complicated
and slow to evaluate, computing time becomes infeasible. Needless to say, Monte
Carlo integration is not the solution to fitting complex, high-dimensional Bayesian
models.

8.2 Sampling-Based Methods

Because of the limitations of analytic, numeric, and Monte Carlo integration,
Bayesian statisticians turned to sampling-based methods of fitting Bayesian models.
The idea is to draw samples from the joint posterior distribution of unknown
quantities in the model. We know how to use samples to estimate characteristics of
distributions (we are statisticians after all!)—sample means to estimate theoretical
means, empirical quantiles to estimate theoretical quantiles, etc.

8.2.1 Independent Sampling

For some simple models, drawing independent samples from the posterior distribu-
tion of unknown parameters is straightforward. To assess whether the independent-
sampling method works, we will revisit two examples that we previously have
approached analytically.

8.2.1.1 One-Parameter Model: The Survey Regarding Quitting School

Recall the example from Chap. 3 in which the parameter of interest was a binomial
success probability π and we used a conjugate beta prior, resulting in a beta
posterior. When the prior was uniform (Beta(1,1)) and the data were 7 successes
in 50 trials, the posterior density p(π) was Beta(8,44). Recalling that the mean of
a Beta(α,β ) density is α

α+β , we used R to obtain the posterior mean E(π |y) to be
0.154 and a 95% posterior credible set to be (0.070, 0.263):

> 8/(8+44)
[1] 0.1538462
> qbeta( c(0.025, 0.975), 8, 44)
[1] 0.07024083 0.26255154

Now let’s try drawing samples from the posterior density of π and using them to
estimate the same posterior summaries:
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> postsamp <- rbeta( 50, 8, 44 )
> mean(postsamp)
[1] 0.1505567
> quantile( postsamp, c(0.025, 0.975))

2.5% 97.5%
0.08326764 0.22745452

Hmm, the estimate of the mean isn’t bad, but the quantiles needed for the
95% credible set are estimated poorly. That was with 50 samples drawn from the
posterior. Let’s see what happens with a larger sample:

> postsamp <- rbeta( 500, 8, 44 )
> mean(postsamp)
[1] 0.1550475
> quantile( postsamp, c(0.025, 0.975))

2.5% 97.5%
0.0726649 0.2424132

That’s better! We can improve the accuracy by drawing a still larger sample from
the posterior:

> postsamp <- rbeta( 5000, 8, 44 )
> mean(postsamp)
[1] 0.1532853
> quantile( postsamp, c(0.025, 0.975))

2.5% 97.5%
0.06823506 0.26647570

8.2.1.2 Two Parameter Model: Normal-Inverse Gamma Model for the
Mercury Contamination Data

In Sect. 7.3.1, we used a normal-inverse gamma model for the normal mean and
variance in the mercury contamination problem. Our prior parameter values were
κ = 3, μ0 = −2.45, n0 = 27, and σ2

0 = 0.402. The summary statistics from the
dataset were ȳ =−2.563, s2 = 0.385, and n = 21.

We can use a two-step process to draw independent samples from this joint
posterior density. First we’ll draw random samples from the inverse gamma
posterior density p(σ2|y). Then we’ll use those sampled values of σ2 in draw-
ing from the conditional posterior density p(μ |σ2,y). Here are the code and
results:

> kappa <- 3
> mu0 <- -2.75
> n0 <- 27
> sigsq0 <- 0.402
> ybar <- -2.563
> ssq <- 0.385
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> n <- 21
> sigsq <- 1/ rgamma( 1000, (n0+n)/2, (n0* sigsq0

+ (n-1) * ssq)/2 )
# In the next line of code, these 1000 values of

sigsq appear in the
# standard deviation for drawing random normals.
# This means that each of the values of mu will be

drawn from a normal
# density with a different standard deviation.
> mu <- rnorm( 1000, (kappa * mu0 + n * ybar)

/(kappa+n), sqrt( sigsq / (kappa+n) ) )

> mean(sigsq)
[1] 0.4033241
> quantile(sigsq, c(0.025, 0.975))

2.5% 97.5%
0.2719035 0.6036209
> mean(mu)
[1] -2.584575
> quantile(mu, c(0.025, 0.975) )

2.5% 97.5%
-2.852751 -2.327061

These results agree closely with the posterior means and credible sets obtained in
Sect. 7.3.1. Note that drawing the μs from normal densities, all with the same mean
but each conditioning on a different value of σ2, was equivalent to drawing from
the marginal t distribution for μ .

8.2.1.3 More on Independent Sampling

These simple examples, in which we can compare Bayesian estimation based on
independent sampling from the posterior density to results obtained analytically,
suggest that sampling-based methods may work well. Unfortunately, in most realis-
tically complex Bayesian models, independent sampling from the posterior density
is not straightforward at all. Much statistical research has focused on development
of methods for drawing independent samples from nonstandard densities.

Unfortunately, when the joint posterior is very high dimensional, independent-
sampling methods generally become computationally infeasible, just as happened
with numeric and Monte Carlo integration.
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8.3 Introduction to Markov Chain Monte Carlo Methods

Because of the shortcomings of the other approaches described above, Markov
chain Monte Carlo (MCMC) methods have become the predominant computational
strategy for fitting Bayesian models. MCMC makes it possible to draw samples from
very high-dimensional joint posterior densities. The downside is that the samples are
not independent, which requires extra care on the part of the statistician who wishes
to use them for inference.

For more details on MCMC and other Monte Carlo methods, see Robert and
Casella (2010).

8.3.1 Markov Chains

In this book, we are concerned only with the class of Markov chains called
homogeneous discrete-time Markov chains with continuous state spaces. When I
refer to “Markov chains,” I will mean this particular class.

Markov chains are random variables that are generated sequentially over time.
A Markov chain is said to start at “time 0” at some initial value. At time 1, the chain
moves to a random value generated from a probability distribution whose parameters
depend on the initial value from time 0. At each successive time point, the chain
again moves to a new random value generated from the same form of probability
distribution, but with parameters depending on the value from the immediately
preceding time point.

We think of Markov chains as potentially running until arbitrarily large times.
Common notation for a Markov chain is {Xt}∞

t=0, where Xt represents the random
variable at time t, and once time t has been reached, xt denotes the realized value.
The value xt is called the state of the chain at time t. The time points t at which
a Markov chain generates new values are often referred to as iterations and the
generated values xt as iterates. The values of a Markov chain may be either scalars or
vectors, but for a given Markov chain, all the iterates will be of the same dimension.

The support from which all the random variables Xt are drawn is called the state
space of the Markov chain. The probability distribution from which the state at
each time t is drawn, conditional on the state from the previous time, is called the
transition kernel of the chain and may be denoted p(Xt |Xt−1 = xt−1).

The defining characteristic of Markov chains is the Markov property which is
that

p(Xt |Xt−1 = xt−1, Xt−2 = xt−2, . . . , X0 = x0) = p(Xt |Xt−1 = xt−1)

In words, the Markov property says that, conditional on the value at the time
point immediately before it, the value observed at any time t is independent of all
the earlier values. Another way to say this is that, if we know the value of xt−1, then
the values x0 through xt−2 contain no further information about Xt .
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Under certain regularity conditions that are beyond the mathematical scope of
this course, the draws generated by a Markov chain will converge in distribution to
draws from a target probability distribution. This means that if a Markov chain is
allowed to run for long enough (and it meets the regularity conditions), then this
“convergence” occurs and all the subsequent iterates are draws from this target
distribution. Another way to say the same thing is that the Markov chain eventually
“forgets” its initial value and that Markov chains started from different initial
values but having the same transition kernel will end up drawing from the same
target distribution.

Even after a Markov chain has converged, the subsequent iterates still are
dependent. We can see that from the fact that the transition kernel doesn’t change—
each new value is generated from a probability distribution that depends on the
values from the preceding iteration. Statistical methods appropriate for correlated
samples are required for using MCMC output.

8.3.2 Markov Chains for Bayesian Inference

Markov chains are important in Bayesian statistics because it generally is possible
to construct a Markov chain (i.e., to define its transition kernel) in such a way
that the target distribution is the joint posterior distribution of all the unknown
parameters in the Bayesian model of interest! Even for very high-dimensional
models in which it is infeasible to draw samples directly from the joint posterior, it
often is straightforward to define a transition kernel that draws conditionally, given
an existing draw from the joint posterior. Thus, Markov chain Monte Carlo methods
provide a way of drawing samples from the joint posterior distribution in realistic,
high-dimensional Bayesian models.

MCMC had been known for decades before its implications for Bayesian
statistical modeling were fully recognized. One way of defining transition kernels
for model fitting, now called the Metropolis algorithm, was first published in 1953
in Metropolis et al. (1953). The method was generalized in Hastings (1970). Image
processing is a field in which the potential of MCMC was recognized early (Geman
and Geman 1984).

The seminal reference describing the application of MCMC to fitting Bayesian
models is Gelfand and Smith (1990). Since its publication, MCMC has become
the primary computational approach for Bayesian inference and has enabled the
fitting of realistic, complex, high-dimensional Bayesian models to address research
questions in diverse fields such as weather forecasting, climatology, psychometrics,
and econometrics.

The Gibbs sampling algorithm is one particular way of constructing a transition
kernel to produce a Markov chain with the desired target distribution. It is the
method described in Gelfand and Smith (1990), and the algorithms used in
WinBUGS (Lunn et al. 2000) and OpenBUGS (Lunn et al. 2009) are based on it.
We will discuss the Gibbs sampling algorithm in detail in Chap. 9.
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Using MCMC output for Bayesian inference places extra responsibility on the
statistician. In particular, before basing posterior inference on MCMC samples, the
statistician must attempt to assess three aspects of convergence:

1. At what time (or iteration) does convergence in distribution to the target
distribution occur? There is no way to gauge this exactly, so we are seeking a
point at which the iterates have become draws from a distribution close enough
to the true target that our inference will be valid. The values from iterations
preceding this point, commonly referred to as burn-in, need to be discarded. Then
characteristics (sample means, medians, quantiles, etc.) of the remaining iterates
for each model unknown are used to estimate the corresponding characteristics
of the posterior marginal distributions of the unknown model quantities.

2. Do the post-burn-in samples that we have retained represent the entire support
of the joint posterior distribution? Because MCMC samples exhibit serial
dependence, it is possible for an MCMC chain to “get stuck” in one region of the
parameter space and never visit some other parts. This risk is greatest when the
target distribution is multimodal, with regions of very low posterior probability
separating the modes.

3. After discarding the burn-in iterations, are there enough samples remaining to
enable our estimation regarding the posterior to be as precise as we require?

In point of fact, only mathematical analysis can guarantee that a Markov chain
has converged to its target distribution, and such analysis is generally prohibitively
difficult for realistically complex models. This book presents practical procedures
that are commonly used to attempt to assess MCMC convergence by running more
than one chain for each model and examining the samples produced. While none
of these methods offer guarantees, they can help to identify problems with MCMC
samplers and provide some protection against invalid inference.

8.4 Introduction to OpenBUGS and WinBUGS

WinBUGS (Lunn et al. 2000) and OpenBUGS (Lunn et al. 2009) are the most
widely used software packages for fitting Bayesian models using MCMC. Both
grew out of the BUGS (Bayesian inference using Gibbs sampling) project that
began in the early 1980s under David Spiegelhalter at the Medical Research Council
Biostatistics Unit in Cambridge, UK.

WinBUGS and OpenBUGS enable the user to specify a Bayesian model
(likelihood and prior(s)) in a simple language that resembles R. The software then
uses artificial intelligence to devise the transition kernel for a Markov chain whose
target distribution is the posterior that results from the user’s model specification.
The user must input the number of Markov chains to run for the model and a set of
initial values for each chain, and must request for how many iterations the chains are
to be run. The software then generates the Markov chains. In addition, WinBUGS
and OpenBUGS provide graphical and numeric functions for assessing convergence
of the chains and summarizing posterior inference.
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Both WinBUGS and OpenBUGS are, and always have been, freely available for
download. However, WinBUGS is not open source. Development of OpenBUGS,
an open-source version of WinBUGS, began in 2004. Today all development
efforts are going into OpenBUGS, while WinBUGS remains available in its
well-known and stable form. Downloads, documentation, examples, and discussion
of WinBUGS are available from: http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/
contents.shtml, while the same items for OpenBUGS are at: http://www.openbugs.
info/w/. If you choose use WinBUGS, be sure to install the patch and the key from
the download web page in order to obtain its full functionality.

WinBUGS and OpenBUGS are designed to run under Windows. However, they
also run, complete with graphical user interface, under wine in Linux. A command-
driven version (no graphics) runs natively in Linux and probably also on Macintosh.

This textbook shows examples run in OpenBUGS. The code, data, and initial
values will work equally well in WinBUGS. The graphical user interfaces in Win-
BUGS and OpenBUGS are almost identical, with some differences of placement
of items in pull-down menus. The differences between WinBUGS and OpenBUGS
are likely to grow in the future, as more and more new capabilities are added to
OpenBUGS.

The next sections provide an elementary introduction to OpenBUGS, by using
it for simple models that we have already encountered. More detailed discussion of
the convergence assessment and output analysis capabilities of OpenBUGS follows
in the next chapter in the context of hierarchical models, for which these features
are needed. Other introductory textbooks with many worked examples in WinBUGS
are Congdon (2001, 2003) and Gill (2002).

8.4.1 Using OpenBUGS for the Problem of Estimating a
Binomial Success Parameter

Figure 8.3 shows the graphical user interface in OpenBUGS, with the necessary
code, data, and initial values to fit the survey-data problem from Chap. 3.

OpenBUGS has very extensive documentation available online as part of the
software itself. Note the tabs for “Manuals” and “Help.” Under the “Examples”
tab are several volumes of worked examples, complete with code, data, and
detailed explanations.

To type a new model into OpenBUGS, click the “File” pull-down menu and
choose “New.”

OpenBUGS requires three kinds of input from the user in order to fit a Bayesian
model: the code specifying the model, the data, and initial values for the unknown
random variables in the model (as many sets of initial values as there are Markov
chains to be run).

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml
http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml
http://www.openbugs.info/w/
http://www.openbugs.info/w/
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Fig. 8.3 OpenBUGS screenshot

8.4.2 Model Specification

The code for model specification must begin with the keyword model. The entire
body of the code must be enclosed in curly braces. At minimum, the code must
specify the likelihood (in the form of the distribution of the data values given
the model) and the priors for all model parameters. The OpenBUGS symbol for
“is distributed as” is the tilde, ∼. A list of all the probability mass functions and
densities built into OpenBUGS is provided under the “Help” tab (the similar list in
WinBUGS is inside the user manual).

For the survey problem, the complete model specification is:

model
{

y ˜ dbin(pi, n)
pi ˜ dbeta( alpha, beta)

}

8.4.3 Data and Initial Values Files

For OpenBUGS, not only the observed data values but all other constants must be
provided as data. Data may be input to OpenBUGS either in list format or tabular
format. The following is the data for our survey problem in list format. The keyword
list is required, followed by a listing of the name and value of each quantity,
enclosed in parentheses.

list(y = 7, n = 50, alpha = 0.5, beta = 0.5)
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Which prior did I choose to use for the binomial success parameter π? (Note that
the parameters of the beta prior are given in the data list as 0.5 and 0.5.)

In addition to the data, the user must give OpenBUGS initial values with which to
start off each Markov chain. For reasons detailed in the next chapter, I recommend
always running several Markov chains for each model and starting them from very
different initial values. For the example here, I want OpenBUGS to run three Markov
chains. The only unknown quantity in the model is π , so the initial values will be
provided in three separate lists, each containing a different value for π .

list(pi = 0.1)
list(pi = 0.5)
list(pi = 0.9)

8.4.3.1 MCMC Initial Values Are Not Like Priors!

Priors are part of the model specification. Priors must not be derived from the
current dataset.

Initial values are part of the computing process. They do not contribute
information about the model parameters. Basing the choice of initial values on a
preliminary analysis of the current dataset is perfectly acceptable. For example,
one possible way of choosing overdispersed initial values for MCMC chains for
a Bayesian model is to first fit a frequentist model with the same likelihood as the
Bayesian model. Then use the maximum likelihood estimates from the frequentist
analysis as the initial values for one chain, the m.l.e.s minus three or four standard
errors as the initial values for a second chain, and the m.l.e.s plus three or four
standard errors as the initial values for a third chain.

8.4.4 Running the Model

The following steps are required to run a model in OpenBUGS or WinBUGS:

1. Use the mouse to highlight the word “model” at the beginning of the model
section of your code. Then select the “Model” menu and from it select “Spec-
ification” and then “check model.” See Fig. 8.4. Watch for a message at the
bottom of the OpenBUGS window either confirming the validity of the model
or reporting errors as in Fig. 8.5.

2. Highlight the word “list” at the beginning of your data listing as in Fig. 8.6.
From the “Specification tool” box select “load data.” Again check for a message
confirming data loading or errors.

3. The number of parallel chains to be run must be set before compiling the model.
In the “Specification tool” box, change the number of chains from 1 to 3 as in
Fig. 8.7.
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Fig. 8.4 Preparing to check the model

Fig. 8.5 Model is syntactically correct

4. In the “Specification tool” box, click “Compile.” This is the point at which
OpenBUGS evaluates whether your model is logically sound and whether it can
find a way to construct a Markov chain with the joint posterior distribution of the
model unknowns as its target distribution. In Fig. 8.8, the model has compiled
successfully. Check for the message at the bottom left of the OpenBUGS window.
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Fig. 8.6 Preparing to load the data

Fig. 8.7 Setting the number
of chains

5. Highlight the word “list” at the beginning of your initial values section. Select
the “Model” menu and from it select “load inits.”

Again check for a message. You will get a message that some nodes are
uninitialized, as in Fig. 8.9. Continue to load initial values for each of the other
two chains until all are initialized (Fig. 8.10).

In this model, there is only one unknown parameter. In more complex models
with many parameters, you may not wish to specify initial values for all of
them. OpenBUGS and WinBUGS are capable of automatically generating initial
values for some parameters. The user requests this by clicking the “Gen inits”
button if the message about uninitialized nodes remains after the user-provided
initial values have been loaded for all chains. Since OpenBUGS and WinBUGS
generate initial values by drawing from the prior densities specified for the
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Fig. 8.8 Compiling

Fig. 8.9 Initial values for chain 1 loaded

parameters, this cannot be done if the priors are improper or extremely vague.
Furthermore, OpenBUGS and WinBUGS are not capable of auto-generating
initial values for precision parameters.

6. By default, OpenBUGS/WinBUGS does not save the values of the MCMC
iterates that it generates. The user must specify for which model unknowns the
sampled values should be stored and reported. To do this, select the “Inference”
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Fig. 8.10 All initial values loaded

Fig. 8.11 Turning on sample monitors

menu and “Samples” from it. In the window in the prompt box, type the name of
each parameter whose posterior distribution you want to study (this will be just
pi in this simple example), and click on “set” after each one. See Fig. 8.11.

7. At last we can actually run the chains! Select the “Model” menu and “Update.”
You will be prompted for how many iterations you want to run the sampler. For
now, accept the default of 1,000, and click “Update.” OpenBUGS will report that
it has completed the updates and the amount of time they took (Fig. 8.12).
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Fig. 8.12 Updating

8. Before inspecting the OpenBUGS output, go to the Model menu, and under the
“Input/Output options” submenu, change the setting from “window” to “log.”
This will cause all the output we are about to request to go into a single
window instead of creating a bazillion small windows cluttering up the screen.
(In WinBUGS, the choice of output to window or log appears in a separate pull-
down menu called “Options.”)

9. Now we will use OpenBUGS graphical and numeric facilities for assessing
MCMC sampler convergence. Go back to the “Sample monitor” box and select
the desired parameter in the node box. Entering an asterisk requests all monitored
nodes. Then, one at a time, click “history,” “autocorr,” and “GRdiag.” The output
is described and interpreted in Sect. 8.4.5.

8.4.5 Assessing Convergence in OpenBUGS

The simple one-parameter model that we have fit results in an MCMC sampler with
no convergence problems whatsoever. Therefore, in this section, you get to see the
ideal in each convergence assessment. You rarely will see MCMC output plots as
perfect as these. These may be used as a benchmark with which to compare the
MCMC output from more complex models.

8.4.5.1 History or Trace Plots

History plots are one of the oldest methods of qualitatively assessing MCMC
sampler performance. The MCMC iteration number is on the x-axis and the value of
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Fig. 8.13 OpenBUGS history plot

the parameter drawn at each iteration is on the y-axis. Successive values are joined
by a line. OpenBUGS produces a separate history plot for each parameter. When
more than one chain has been run, the lines from all chains are plotted in different
colors in the same panel.

Figure 8.13 shows the history plot for the parameter pi from three chains run for
1,000 iterations. Despite the fact that we started the three chains from widely spread
initial values, they immediately settle into drawing from the same range of values.
Furthermore, they look like white noise—just random noodling around in that range,
without any consistent pattern. These are hallmarks of rapid MCMC convergence.

We can see the white-noise phenomenon more clearly by restricting the history
plot to output from a single chain. To obtain this plot, with output only from chain
1, return to the Sample monitor tool. In the section that says “chain 1 to 3,” change
the 3 to a 1. Then click “History.” The resulting plot is in Fig. 8.14.

8.4.5.2 Autocorrelation Plots

We have mentioned that there usually is dependence in the samples produced by
a Markov chain. Autocorrelation is a quantitative measure of this dependence.
You should be familiar with correlation as a measure of association between two
quantitative variables measured on the same subjects. For example, we might
calculate the correlation between weights and heights of a sample of people. As you
know, the prefix “auto“ means “self,“ so autocorrelation literally is correlation with
self. Like any correlation, autocorrelation values must fall between −1 (signifying
perfect negative correlation) and +1.
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Fig. 8.14 History plot from first chain

Lag 1 autocorrelation in MCMC output is the correlation between samples from
the same chain drawn 1 iteration apart. In our example, in which samples are drawn
from the posterior density of π , we might call the values drawn from successive
iterations π1, π2, π3, and so on. Then to calculate the lag 1 autocorrelation,
we would pair up π1 with π2, π2 with π3, π3 with π4, etc. Similarly, the lag k
autocorrelation is the correlation between samples drawn k iterations apart.

In an autocorrelation plot, lags are on the x-axis and the height of each bar
represents the magnitude of the autocorrelation at that lag. The first bar—for lag
0—always has a height of 1 (think about why this has to be true); it provides a
visual scale with which to compare the heights of the remaining bars.

Usually in MCMC output, the lag 1 autocorrelation is positive, and the autocor-
relation decreases as the lag increases until it reaches a threshold lag beyond which
it is essentially 0. A Markov chain in which autocorrelation is large at lag 1 and
decays slowly as the lag increases is said to be mix slowly, and it will converge
slowly in all three senses: It will take a long time to find its stationary distribution;
once in the stationary distribution, it will take many iterations to explore the entire
support of the distribution; and a very large number of iterates will be needed in
order to obtain usefully precise estimation of the characteristics of the posterior
distribution.

Our simple one-parameter model causes none of these issues for MCMC. Like
the history plots, the OpenBUGS plot of autocorrelation (Fig. 8.15 for chain 1) for
this model shows the ideal—that is, from lag 1 on, the autocorrelation is arbitrarily
close to zero. This is the pattern that we always wish to see in MCMC output but
rarely do. It is consistent with the white noise that we saw in the history plots.
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Fig. 8.15 OpenBUGS autocorrelation plot from the first chain

Fig. 8.16 OpenBUGS autocorrelation plot from all three chains

Figure 8.16 shows the autocorrelation plots for all three chains superimposed.
It was obtained by changing the setting in the Sample monitor tool back to “chains
1 to 3” and then clicking the “Autocorr” button.

8.4.5.3 The Brooks, Gelman, and Rubin Diagnostic

In the early 1990s, when MCMC was becoming known as a computational method
for fitting Bayesian models, a number of statistical methodologists sought to develop
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Fig. 8.17 OpenBUGS Brooks, Gelman, and Rubin diagnostic plot

quantitative methods that could be applied to the output of MCMC samplers to try
to determine how many initial iterations needed to be discarded as burn-in. Gelman
and Rubin (1992) proposed a diagnostic that required that two or more parallel
chains be run from very different initial values. Brooks and Gelman (1998) corrected
and generalized the Gelman and Rubin diagnostic. WinBUGS and OpenBUGS
incorporate one of Brooks and Gelman’s diagnostics, which may be obtained with
the “bgrdiag” button on the Samples monitor tool.

The BGR diagnostic is not helpful for models like our one-parameter beta-
binomial, for which MCMC samplers converge instantly. It will be discussed in
much more detail in Chap. 9, in the context of hierarchical models for which it can
provide very useful insight. For completeness, the plot of the BGR diagnostic for
the beta-binomial example is shown in Fig. 8.17.

8.4.5.4 The Monte Carlo Error (MC error)

The table of summary statistics of the MCMC output is produced with the “Stats”
button on the Sample Monitor tool. Before using this table for inference, we need
to use it for one more convergence check. The column called MC_error refers
to the Monte Carlo error , which is a measure of the performance of the Markov
chain (not an estimate of a characteristic of the posterior distribution!). Note that
the first column in the table, labeled mean, is the estimated mean of the posterior
distribution of the parameter, with the estimation based on the MCMC samples.
The MC error measures the amount of uncertainty in this sampling-based estimate
of the posterior mean. The MC error is much like the standard error of the mean,
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Fig. 8.18 OpenBUGS node statistics table

which you should be familiar with from frequentist statistics, except the MC error
is adjusted for the autocorrelation in the MCMC sampler output. The interpretation
of MC error is that the estimate of the posterior mean probably is accurate to within
about ± twice the MC error. If a more precise estimate of the posterior mean is
needed, then the MCMC chains need to be run for more iterations.

A rule of thumb (stated, e.g., in the user manual included with OpenBUGS) is
that an MCMC sampler should be run long enough after convergence that the MC
error is less than 1

20 as large as the estimated posterior standard deviation of the
parameter. The estimate of the posterior standard deviation is in the sd column.
You may need greater precision for a particular inferential purpose.

In our example (Fig. 8.18), the MC error is given as 9.056E−4, which is
0.0009056. This is only about 1/50th as large as the estimated standard deviation
(0.0504). Thus, the rule of thumb is satisfied.

8.4.6 Posterior Inference Using OpenBUGS

We saw no evidence that our OpenBUGS chains failed to converge, so we can
proceed to use their output for Bayesian inference.

As already mentioned, the table of node statistics exemplified in Fig. 8.18
provides estimates of the posterior mean and standard deviation. It also shows
estimates of the posterior median and the endpoints of the 95% credible set, based
on the 0.5, 0.025, and 0.975 empirical quantiles of the MCMC samples.

Let’s check the performance of an OpenBUGS sampler by comparing the results
in Fig. 8.18 to the exact analytic results for this model. The prior density on
π was Beta(0.5,0.5), and the data was 7 successes in 50 trials. Thus, the exact
posterior density is Beta(7.5,43.5). Table 8.1 compares the OpenBUGS sampling-
based estimates with the corresponding characteristics of the exact beta posterior
density.

The sampling-based approximations are accurate to two digits to the right of the
decimal point. The estimate of the posterior mean is off by about twice the MC error
(0.002), so that seems to be working correctly.
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Table 8.1 Comparison of
exact and OpenBUGS
estimates based on 1,000
iterations

Exact OpenBUGS
Mean 0.147 0.149
sd 0.049 0.050
Median 0.142 0.144
95% credible set (0.065, 0.255) (0.067, 0.262)

Fig. 8.19 Plot of estimated posterior density of pi

OpenBUGS and WinBUGS can also produce plots of the approximate marginal
posterior density of each monitored parameter. These plots—essentially smoothed
histograms of the MCMC samples—are obtained by clicking the “density” button
on the Sample monitor tool. With 3,000 total samples (1,000 from each chain), the
density plot in Fig. 8.19 is rough, but the right-skewed shape is clear.

8.4.6.1 More Precise Estimation from MCMC

To get more precision in posterior estimation (and a smoother density plot), we
may return to the “Update” tool and request additional samples. The table of node
statistics in Fig. 8.20 and the density plot in Fig. 8.21 were produced after 9,000
more iterations were run. Before examining these results, let’s think about what to
expect. The posterior mean, standard deviation, and quantiles are characteristics of
the posterior distribution. We determined that they had been estimated reasonably
well based on the pooled first 1,000 samples from the three chains. Thus, the
estimates based on pooling 10,000 samples from each chain probably will not
be substantially different, although they are likely to be slightly closer to the true
values. On the other hand, the MC error is a measure of the uncertainty in the
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Fig. 8.20 Node statistics from 10,000 iterations in three chains

Fig. 8.21 Plot of estimated posterior density of pi based on 10,000 MCMC samples from three
chains

MCMC-based estimate of the posterior mean, and it should decrease systematically
with increasing numbers of iterations—it should be roughly proportional to one over
the square root of the number of MCMC iterations. Thus, we should expect the MC
error to be only about 1/3 as large in the table in Fig. 8.20 as in Fig. 8.18. And the
plot of the estimated posterior density should be smoother when it is based on more
samples.

To print the content of any window, click on that window and then select the
“File” menu and “Print.” If you wish, you may copy and paste graphical and tabular
output from the “Sample monitor” windows into a single window for compact
printing.

8.4.7 OpenBUGS for Normal Models

We will conclude this first introduction to OpenBUGS with code for performing
posterior inference and prediction in models with a normal likelihood.
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First, we will use OpenBUGS to work the example from Sect. 6.2.8, in which
we sought to estimate the population mean of the log of mercury contamination in
fish from the Des Moines River. Assuming that the population distribution of log
mercury concentration was normal and that the precision was known to be 2.5 log
units, we specified a normal prior on μ and performed Bayesian inference. Model 1
below expresses this model. Note that WinBUGS and OpenBUGS parameterize the
normal density in terms of the mean and the precision.

There are 21 observations in the dataset. In order to estimate the posterior
predictive distribution for a future observation from the same population, I have
added an “NA” to the end of the data list. Like R, OpenBUGS and WinBUGS
use “NA” to denote a missing value. They will treat this missing data value as
another unknown quantity in the model and will draw a value for it at each iteration
of the sampler. These draws are draws from the posterior predictive density. The
OpenBUGS/WinBUGS node statistics for the missing data node (in this example
y[22]) estimate the characteristics of the posterior predictive distribution.

Notice the for loop in Model 1 below. Since N is assigned as the constant value
of 22 in the data list, the line y[i] ˜ dnorm( mu, tausq) inside the curly
braces says that each of the 22 ys (including the missing value) is a draw from
the normal density with mean mu and precision tausq. Since tausq is given a
constant value in the data list, it is being treated as a known parameter.

# Model 1
# Assuming data are draws from a normal population

with known precision
# Population mean mu is unknown parameter
# We can also estimate the posterior predictive

distribution
# by monitoring y[22]

model
{

# likelihood
for (i in 1:N) {

y[i] ˜ dnorm( mu, tausq )
}
# priors
mu ˜ dnorm(-2.75, 7.5)

}

#data
list(y=c(-2.526, -1.715, -1.427, -2.12, -2.659,

-2.408, -3.219, -1.966,
-2.526, -1.833, -2.813, -1.772, -2.813, -2.526,
-3.219, -2.526,
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-2.813, -2.526, -3.507, -2.996, -3.912, NA), N=22,
tausq= 2.5)

#inits for model 1
list(mu = -5)
list(mu = -2.5)
list(mu = 0)

In Model 2, below, both mu and tausq are treated as unknown parameters, and
a close approximation to the improper noninformative joint prior from Sect. 7.1
is specified. The dflat() prior is the improper prior that is proportional to a
constant over the whole real line. Because OpenBUGS and WinBUGS do not allow
the improper Gamma prior with both parameters approaching 0, a common practice
is to approximate it with a Gamma prior with very small values of both parameters,
as was done her.

Note the line sigmasq <-1\tausq. The symbol <- in OpenBUGS and
WinBUGS indicates deterministic calculation. When running the MCMC sampler
for this model, at each iteration, OpenBUGS will draw a new value of the precision
tausq and then will calculate its inverse. By monitoring the node sigmasq, the
user can obtain an estimate of the posterior marginal distribution of the population
variance. This is an illustration of a very powerful feature of the use of MCMC for
Bayesian model fitting—the ability to obtain estimates of the posterior marginal
distribution of any function of model parameters, simply by calculating such
functions at each iteration of the sampler.

Model 2 also illustrates an alternate way of providing data to WinBUGS and
OpenBUGS. Vector and matrix data may be entered in a columnar format, the first
row of which provides the variable names followed by square brackets to indicate
that they are vectors. The last row in the table of data must be the keyword END in all
capitals, followed by a carriage return (the invisible character obtained by pressing
the Enter key.)

The data for Model 2 must be loaded in two steps: The list component is loaded
as usual by highlighting the keyword list and then clicking “Load data.” Then the
row of column headings for the tabular data (in this case, just y[]) is highlighted,
and “Load data” is clicked again.

# Normal sampling density for data
# Both mu and tausq unknown

# model 2
model
{

# likelihood
for (i in 1:N) {

y[i] ˜ dnorm( mu, tausq )
}
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# priors
mu ˜ dflat()
tausq ˜ dgamma( 0.0001, 0.0001)
sigmasq <- 1/tausq

}

Here is a different way to give data to WinBUGS.

data
list(N = 22 )

additional data
y[]
-2.526
-1.715
-1.427
-2.12
-2.659
-2.408
-3.219
-1.966
-2.526
-1.833
-2.813
-1.772
-2.813
-2.526
-3.219
-2.526
-2.813
-2.526
-3.507
-2.996
-3.912
NA
END

inits for model 2
list(mu = 0, tausq = 1)
list(mu = 20, tausq = 100)
list(mu = 40, tausq = 1000)

Model 3 below shows how to code the conjugate prior from Sect. 7.3 in
OpenBUGS. WinBUGS and OpenBUGS syntax does not permit doing calculations
as parameters in density functions. Thus we cannot write:
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mu ˜ dnorm( -2.75, 3 * tausq)

Instead we have to do the calculation first and put the named result into the density
function, like this:

tausq0 <- 3 * tausq
mu ˜ dnorm( -2.75, tausq0)

# Normal sampling density for data
# Both mu and tausq unknown
# Conjugate joint prior

# model 3
model
{

# likelihood
for (i in 1:N) {

y[i] ˜ dnorm( mu, tausq )
}
# priors
tausq0 <- 3 * tausq
mu ˜ dnorm( -2.75, tausq0)
tausq ˜ dgamma( 13.3, 5.35)
sigmasq <- 1/tausq

}

8.5 Exercises

8.1. Section 8.1.3 includes a function for using Monte Carlo integration to approx-
imate the integral of the unnormalized posterior in the example problem with a
binomial likelihood and a histogram prior. Write an R function to approximate the
posterior mean of π in this example using Monte Carlo integration. Compare your
results with those obtained by numeric integration.

8.2. Go through the steps to use OpenBUGS for Model 1 for the fish mercury
data. Note that, since y[22] is an unknown quantity in the model, it needs an
initial value. The easiest approach is to leave the initial values lists as they are, and
then, after loading the initial values for the third chain, to click “Gen inits” to have
OpenBUGS generate its own initial values for y[22].

Compare your results to those obtained in Sect. 6.2.8.3.

8.3. Go through the steps to use OpenBUGS for Model 3 for the fish mercury data.
Compare your results to those obtained in Sect. 7.1.1.
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8.4. This problem is a continuation of Problem 6.2. Now use OpenBUGS or
WinBUGS to carry out the analysis. You will have to specify the model in terms
of the precision.

1. What is the conjugate family of prior distributions for a normal precision when
the mean is known? (You will then use the same parameters in this prior as you
used for the prior on the variance in Problem 6.3.)

2. Include the computation of the variance in your OpenBUGS/WinBUGS program.
3. Compare the posterior mean and variance obtained by OpenBUGS/WinBUGS

for the variance with what you obtained analytically.



Chapter 9
Hierarchical Models and More on Convergence
Assessment

So far, all of the Bayesian models that we have encountered have had only two
components—the likelihood, which describes the data as draws from a probability
distribution, and the prior, which specifies a probability distribution on the unknown
parameters in the likelihood. Such a simple model is inadequate for many (probably
most) real-world applications. As a result, more complex Bayesian models with
additional levels are very commonly used. Such models are called hierarchical
models.

Sometimes hierarchical models are needed because the structure of the data
itself is a hierarchy. For example, consider children’s scores on a standardized
test taken by some third graders across the USA. The individual children are in
classrooms; the classrooms are in schools; the schools are in school districts; the
school districts are in states, etc. In this case, a hierarchical model would enable us
to estimate parameters at each level of the hierarchy so as to address questions such
as: How variable are average test scores in different schools in the same school
district? How variable are average test scores in different school districts?

More generally, hierarchical models are appropriate when there are natural
groupings of observations in the data or of parameters in the model.

Early references on Bayesian hierarchical models are Box and Tiao (1973); Good
(1965). Chapter 5 of Gelman et al. (2004) offers an up-to-date discussion, including
computational aspects.

9.1 Specifying Bayesian Hierarchical Models Example:
A Better Model for the College Softball Player’s
Batting Average

In problems at the end of Chap. 3, you estimated a college softball player’s college-
career batting average from her number of hits in 30 at bats that occurred during
eight games. In answering Problem 3.3, you probably noted that considering each at
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bat an independent Bernoulli trial was not justified, because the outcomes of at bats
within a single game were likely to be correlated (since within the same game, the
player was facing the same opposing team, playing in the same stadium, etc.)

Now we will use a hierarchical model to estimate the player’s overall batting
average while appropriately accounting for the correlation structure of the data.
Specifically, we will assume that the at bats within each game are exchangeable—
that is, that their outcomes are conditionally independent given the player’s success
probability for that game. Furthermore, we will assume that the player’s probability
πi of getting a hit could be different in different games, i = 1, . . . ,8, but that all the
πi’s are random draws from the same probability distribution, with mean the true
overall batting average that is of primary interest. We also have secondary interest
in estimating the πi’s themselves.

To fit a model reflecting these assumptions, we need the numbers of hits and at
bats from the individual games, which are:

Game (i) at bats (ni) hits (yi)
1 1 5
2 0 4
3 1 3
4 1 5
5 1 3
6 0 4
7 1 4
8 0 2

9.1.1 The First Stage: The Likelihood

The levels of a Bayesian model are called stages. Regardless of the model’s
complexity, the first stage always is the likelihood—the stage that is closest to
the data.

With the assumptions stated above for the softball player example, the likelihood
will be the product of eight binomials:

p(y1, y2, . . . ,y8|π1, π2, . . . ,π8) =
8

∏
i=1

[(
ni

yi

)

πyi
i (1−πi)

ni−yi

]

We can write the likelihood as a product because, given the 8 parameters πi, the
yi’s are conditionally independent.

The yi’s are not exchangeable however. Remember that the formal definition of
exchangeability is “invariance to permutations of the indices.” In this example, that
would mean that the numeric evaluation of the likelihood would not be changed
if we decided to swap the subscripts on some of the data values—for example, if
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we decided to rename the pair (n6, y6) as (n3, y3) and vice versa without making
the same swap of subscripts of π6 and π2. This permuted likelihood would include
the following to two terms (using the original subscript numbering):

(
n6

y6

)

πy6
3 (1−π3)

n6−y6

and (
n3

y3

)

πy3
6 (1−π6)

n3−y3

Since data pairs here are matched up with the wrong π , the likelihood evaluation
would be different from in the unpermuted version.

9.1.2 The Second Stage: Priors on the Parameters
That Appeared in the Likelihood

The second stage of a hierarchical model consists of probability distributions for
some or all of the parameters that appeared in the likelihood. The important
difference between the second stage of a hierarchical model and the second
(and final) stage of the two-stage models we have studied previously is that the
parameters of the priors at the second stage of a hierarchical model are more
unknown parameters.

The softball player example illustrates why we do this. Recall that we want
to express the notion that the πi’s from different games are not all equal but
that they probably aren’t radically different (after all, they all pertain to the same
player) by modeling them as random draws from the same probability distribution.
The beta family is a natural choice of that probability distribution, since it would
be the conjugate family in a two-stage model. With this choice, the second-stage
prior is:

πi ∼ Beta(α,β ), i = 1, . . .8

Note that the mean of this beta distribution (let’s call it μ) is the mean of the πi’s
from all possible college games that this player will ever play—in other words, it’s
the unknown quantity we are trying to estimate using the data at hand. Now if we
filled in fixed, known numbers for the parameters α and β , we would be claiming
that we already knew the mean of the beta density—it would just be α

α+β . So we
must treat α and β as unknown model parameters—which means that they in turn
must have prior distributions. Since μ is a deterministic function of α and β , the
priors on α and β will induce a prior on μ as well.
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9.1.3 The Third Stage: Priors on Any Parameters That Do Not
Already Have Them

In a three-stage hierarchical model, the third (and last) stage specifies prior
distributions, with fixed numeric values of their parameters, for the remaining model
unknowns.

For the softball player problem, the third stage consists of priors for α and β .
There is no semi-conjugate family for the parameters of beta densities. Therefore,
we will just choose a familiar family that has the correct support. As the parameters
of a beta density, both α and β must be strictly positive. Continuous densities
with support on the positive real line include gamma, inverse gamma, exponential,
and chi-square. The last two are just special cases of gamma densities. Let’s place
gamma priors on both α and β . They must be proper densities in order for the
whole joint posterior to be proper, but we don’t want them to be very informative, as
we would like the data to dominate our inference. Specifying:

α ∼ Exp(1)

β ∼ Exp(0.33)

gives α a prior mean of 1 and β a prior mean of 3 and therefore suggests that μ may
be in the vicinity of 0.25.

9.1.4 The Joint Posterior Distribution in Hierarchical Models

Bayes’ rule is the same for hierarchical models as for simpler Bayesian models: the
posterior is proportional to the prior times the likelihood. To write an expression that
is proportional to the joint posterior distribution in a hierarchical model, we must
take the product of the likelihood and all the priors from all stages of the model.

In our hierarchical softball example, the procedure looks like this. The likeli-
hood is:

8

∏
i=1

[(
ni

yi

)

πyi
i (1−πi)

ni−yi

]

The second-stage prior is (note that we cannot drop the normalizing constant for
the beta density here because α and β are not constants—they are unknown model
parameters):

8

∏
i=1

[
Γ (α +β )
Γ (α)Γ (β )

πα−1
i (1−πi)

β−1
]
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and the third-stage prior is proportional to (we can drop the normalizing constants
here because they are indeed fixed, known numbers):

exp(−α)exp(−0.33β )

Multiplying everything together (and being very careful about which terms are
inside the product), we get the following for the joint posterior density:

p(π ,α,β |y) ∝
8

∏
i=1

[(
ni

yi

)

πyi
i (1−πi)

ni−yi
Γ (α +β )
Γ (α)Γ (β )

πα−1
i (1−πi)

β−1
]

exp(−α)exp(−0.33β )

=

[
Γ (α +β )
Γ (α)Γ (β )

]8 8

∏
i=1

[
πyi+α−1

i (1−πi)
ni−yi+β−1

]
exp(−α)

exp(−0.33β ) (9.1)

9.1.5 Higher-Order Hierarchical Models

For some applications, hierarchical models with more than three stages are needed.
In these cases, the third stage will specify probability distributions as priors for
the parameters of the second stage, but again will leave the parameters of these
third-stage priors as unknowns to be estimated. It is possible to specify higher and
higher stages of Bayesian models. For example, the test-scores data described in the
introduction to this chapter could well require at least a five-stage model. Regardless
of the number of stages, all unknowns in the model must be given priors, and
the parameters of the priors at the final stage of the model must be fixed numeric
values.

9.2 Fitting Bayesian Hierarchical Models

At the time of this writing, Markov chain Monte Carlo methods are almost
universally used for fitting Bayesian hierarchical models. It rarely is feasible to
determine analytically the marginal posterior distributions of the parameters of
inferential interest in complex hierarchical models. Consequently, we use MCMC
to draw samples from the joint posterior distribution.

WinBUGS/OpenBUGS code, data, and initial values for the hierarchical version
of the softball player example are as follows:
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model
{
for (i in 1:N) {

y[i] ˜ dbin( pi[i], n[i] ) # likelihood
pi[i] ˜ dbeta( alpha, beta ) # second-stage prior

}

alpha ˜ dgamma(1.0, 1.0) # third-stage prior
beta ˜ dgamma(1.0, 0.33 ) # third-stage prior

mu <- alpha /( alpha + beta) # calculate quantity
of interest

# (function of
parameters)

}

#data
list( y = c( 1,0,1,1,1,0,1,0), n = c(5,4,3,5,3,4,4,2),

N = 8)

# overdispersed initial values for 3 chains
list( alpha = 1, beta = 1, pi = c(.5, .5, .5, .5, .5, .

.5, .5, .5) )

list(alpha = 100, beta = 10, pi = c(.9, .9, .9, .9,
.9, .9, .9, .9) )

list(alpha = 10, beta = 100, pi = c(.1, .1, .1, .1,
.1, .1, .1, .1))

Note that since there are eight games, each with its own data value yi and success
probability πi, both the likelihood specification for the y’s and the second stage
prior on the πs are stated inside a loop. On the other hand, since there is only
one each of α and β , their third-stage prior specifications must be outside the
loop.

Recall that the <- symbol in WinBUGS/OpenBUGS represents deterministic
calculation. At every iteration of the Gibbs samplers, WinBUGS/OpenBUGS will
draw new values for all of the πs, α and β . It will then use the current values of α
and β to compute μ for that iteration. The resulting values of μ , from all iterations
after sampler convergence, are draws from the posterior marginal distribution of
μ and can be used for Bayesian inference. This ability to easily obtain samples
from the posterior marginal distribution of functions of model parameters is a major
advantage of MCMC.
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9.3 Estimation Based on Hierarchical Models

Hierarchical models enable us to draw inference about parameters associated with
individual observations or groups of observations (i.e., the parameters that appear in
the first stage) as well as about the parameters of the distributions from which the
first-stage parameters are drawn.

Output from our OpenBUGS sampler for the softball example is below. (Don’t
worry—I didn’t forget to assess MCMC convergence before making this table! That
process is examined in Sect. 9.4. We will note here that in the table below, all of the
MC_errors are less than one twentieth of the corresponding estimated posterior
standard deviations, so that aspect of convergence is satisfied.)

OpenBUGS> mean sd MC_error val2.5pc median val97.5pc start sample
alpha 1.207 0.6828 0.01375 0.31 1.071 2.94 1001 15000
beta 5.343 3.019 0.05326 1.281 4.743 12.81 1001 15000
mu 0.1971 0.07808 9.751E-4 0.07403 0.187 0.3766 1001 15000
pi[1] 0.194 0.1223 0.001112 0.02389 0.1716 0.4911 1001 15000
pi[2] 0.1109 0.1038 0.001152 4.54E-4 0.08195 0.3787 1001 15000
pi[3] 0.2424 0.1509 0.001463 0.02978 0.216 0.5971 1001 15000
pi[4] 0.1948 0.1232 0.001205 0.02321 0.1731 0.493 1001 15000
pi[5] 0.2407 0.1486 0.001441 0.03032 0.2146 0.5952 1001 15000
pi[6] 0.1121 0.1044 0.001138 5.045E-4 0.08299 0.3818 1001 15000
pi[7] 0.2156 0.1353 0.001253 0.02514 0.191 0.5355 1001 15000
pi[8] 0.1401 0.1282 0.001433 8.319E-4 0.1057 0.4682 1001 15000

We are particularly interested in marginal inference on μ—the mean of the
population distribution of the player’s game-specific success probabilities in all of
her college games. The posterior mean is 0.197, but the marginal posterior is quite
spread out, producing a 95% posterior credible set of (0.074, 0.377).

The terms shrinkage and borrowing strength are used to describe the effect
of hierarchical models on estimation of group-specific or observation-specific
parameters (such as the πs in this model). Recall that in Sect. 4.2.1, we saw that the
posterior mean of a parameter in a two-stage model was the result of “shrinking”
an estimate based on the data alone toward the prior mean of the parameter. In a
hierarchical model such as the softball model, in which the second stage is a prior
distribution on many parameters of the same kind that appear in the likelihood,
the shrinkage principle is expanded. In our example, the parameter πi for each
game could be estimated from the data from that game alone as the maximum
likelihood estimator π̂i =

yi
ni

. The posterior mean E(πi|y) is the result of shrinking
the individual-data-based value toward a common value determined by (a) all of the
data, (b) the form of the second-stage, and (c) the third-stage priors. The degree of
shrinkage (how far away each Bayesian posterior mean is from the corresponding
data-only estimate) is driven by two factors: How much information there is in the
data for estimating that parameter, and how far away the data-only estimate is from
the common value.

Table 9.1 shows how all this plays out in the softball example. The data for game
1 is y1 = 1 hit in n1 = 5 tries, for an m.l.e. of π̂1 = 0.2. OpenBUGS estimates the
posterior mean of π1 as 0.194, with an M.C. error estimate of 0.0011, suggesting
that the exact posterior mean is likely to be between 0.192 and 0.196. This is a
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Table 9.1 Maximum
likelihood estimates and
posterior means of πs

y n π̂i E(πi|y)
1 1 5 0.200 0.194
2 0 4 0.000 0.111
3 1 3 0.333 0.242
4 1 5 0.200 0.195
5 1 3 0.333 0.241
6 0 4 0.000 0.112
7 1 4 0.250 0.215
8 0 2 0.000 0.140

little smaller than the frequentist estimate based on the data from game 1 alone:
The posterior mean has been shrunk away from the m.l.e toward a common value
smaller than 0.20.

Now look at the results for game 2. Based on no hits in 4 tries, the m.l.e. is 0.
(Does this seem reasonable—should the fact that no successes were observed in
that game mean that the best estimate of the underlying success probability for that
game is exactly 0?) From OpenBUGS, E(π2|y) is estimated at 0.111, with an M.C.
error of 0.0012. In this case, the posterior mean is “shrunk” upward from the m.l.e.
to become more similar to the other π estimates. The difference between π̂2 and
E(π2|y) is larger than the difference between π̂1 and E(π1|y) because π̂1 is farther
away from the middle range of all the π̂s than π̂2 and because there is less data (4 at
bats rather than 5) on which to estimate π2 than π1.

Compare the OpenBUGS results for games 2 and 6. Since the data values are
identical and the second-stage prior doesn’t introduce any a priori differences
among the πis, the exact posterior means have to be equal. The small difference
in the third decimal digit of the OpenBUGS posterior means estimates is due solely
to random variability in MCMC sampling, and is smaller than twice the M.C. error
estimate for either of the posterior means.

Now compare the estimation results for game 8, in which there were y8 = 0 hits
in n8 = 2 at bats, with those for games 2 and 6. The frequentist m.l.e π̂8 again is
0, but the estimated value of E(π8|y) is 0.140, larger than those of games 2 and 6.
Since there was less data (2 trials for game 8 versus 4 for games 2 and 6), the
data offered less information to estimate π8, so the Bayesian model borrowed more
strength from the data for the other games.

Games 3 and 5 produce the two largest m.l.e.s—0.333. The Bayesian-estimated
posterior means are about 0.24. Again, we see that extreme values in either direction
are shrunk in toward the middle.

9.3.1 Prediction from Hierarchical Models

Hierarchical models enable prediction of both unobserved data values and their
associated parameters. We can illustrate this by further expanding our softball
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example. Suppose we want to predict the player’s success probability πnew at a
typical future game and to predict her number of hits ynew in three at bats at such
a game. Below is the WinBUGS/OpenBUGS code and data list with the necessary
additions:

model
{
for (i in 1:N) {

y[i] ˜ dbin( pi[i], n[i] ) # likelihood
pi[i] ˜ dbeta( alpha, beta ) # second-stage prior

}

alpha ˜ dgamma(1.0, 1.0) # third-stage prior
beta ˜ dgamma(1.0, 0.33 ) # third-stage prior

mu <- alpha /( alpha + beta) # calculate function of parameters
# that we wish to monitor

pinew ˜ dbeta( alpha, beta ) # draw from posterior predictive
# distribution of pis

ynew ˜ dbin( pinew, nnew) # draw from posterior predictive
# distribution of new data

}

# data
list( y = c( 1,0,1,1,1,0,1,0), n = c(5,4,3,5,3,4,4,2), N = 8, nnew=3)

Note that the constant value of nnew is provided in the data list. The initial values
list from the original model can be used with this expanded version; the GenInits
facility can be used to generate initial values for pinew and ynew. The OpenBUGS
posterior predictive summaries are below.

OpenBUGS> mean sd MC_error val2.5pc median val97.5pc start sample
pinew 0.1969 0.1773 0.001532 9.62E-4 0.1507 0.6527 1001 15000
ynew 0.5945 0.8153 0.006539 0.0 0.0 3.0 1001 15000

Now πnew is a parameter value drawn from a distribution with mean μ . Therefore,
the posterior mean of πnew should be identical to that of μ , and it is (except for the
small differences introduced by random MCMC sampling). However, the spread
of the posterior distribution of πnew should be larger than that of μ , because the
uncertainty about πnew includes all the uncertainty about μ plus the variability
between possible πs for different games. Sure enough, both the estimated posterior
standard deviation and the width of the 95% credible set for πnew are greater than
those for μ .

Finally, the posterior summaries for ynew describe the posterior predictive
distribution of the number of hits in a future game in which the player has three at
bats. This predictive distribution should be centered at approximately three times the
posterior mean of πnew (3×0.197= 0.591), and the value estimated by OpenBUGS
is very close to this. Besides the uncertainty already present in the posterior
distribution of πnew, the posterior predictive distribution of ynew also includes the
binomial sampling variability that would exist even if πnew were known exactly.
Thus, it is not surprising that the 95% posterior predictive interval for ynew spans
(0,3)—all possible values of a binomial random variable when there are three trials.
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9.4 More on Convergence Assessment
in WinBUGS/OpenBUGS

Hierarchical models provide more challenge to MCMC convergence than the simple
models for which we used OpenBUGS in Chap. 8. Although the OpenBUGS
samplers for the hierarchical softball example are well behaved, the plots and
diagnostics do not look quite as ideal as those from the previous chapter.

Figure 9.1 presents the history plots for the first 1,000 iterations of all three chains
for the hierarchical softball example. (Although I monitored all eight of the πs, I am
including only the first one in the plots and diagnostics shown here since the other
seven look very similar.) Here we can see the advantage of using very different
sets of initial values for the multiple chains, and then, for each model parameter,
plotting the trajectories of all chains on the same axes. Figure 9.1 shows that within
the first few iterations, all three chains for each parameter came together and started
drawing from the same range of values. Although this wasn’t instantaneous as in the
simple models in the previous chapter, it was very quick. Can you figure out why
the history plot for ynew looks so odd? It is just because ynew can take on only integer
values (0, 1, 2, or 3).

Figures 9.2 and 9.3 focus on a single chain (chain 2), so that we can see what
is happening in more detail. The plots for β are informative. Although the values
change freely, the history plot doesn’t look quite like white noise. There is some
tendency for values from close-together iterations to be similar. This is borne out
by the autocorrelation plot for β , which shows that the autocorrelation doesn’t drop
near zero until about 10 lags. We can get the numbers underlying an autocorrelation

Fig. 9.1 History plots from first 1,000 iterations of all chains for hierarchical softball example
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Fig. 9.2 History plots from first 1,000 iterations of chain 2 for hierarchical softball example

Fig. 9.3 Autocorrelation plots from first 1,000 iterations of chain 2 for hierarchical softball
example

plot in OpenBUGS by right-clicking on the plot, then clicking “Properties,” and then
“Data.” Here are the first lines from the resulting output for the β plot:

area under autocorrelation function up to lag 100
6.503

lag
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1 0.7247
2 0.53
3 0.3804
4 0.2997
5 0.2573
6 0.208
7 0.1637
8 0.1368
9 0.1352
10 0.1311
11 0.1133
12 0.07763
13 0.0548
14 0.02805
15 0.01069

This amount of autocorrelation in MCMC sampler output is no cause for worry.
It does mean that there will be less information in the sampler output than there
would be in independent samples and that we should keep a careful eye on the MC
error and make sure to run plenty of iterations.

9.4.1 The Brooks Gelman and Rubin Diagnostic

OpenBUGS and WinBUGS include one of Brooks and Gelman (1998) variants of
the popular convergence diagnostic first proposed by Gelman and Rubin (1992). It
can be used to decide how many early iterations to discard as burn-in.

The intuitive idea behind the diagnostic is that, if two or more MCMC chains
have run from overdispersed initial values, we can assess whether the chains have
escaped from their initial values and found the target distribution of the Markov
chain by comparing the variability within each chain’s output to the variability
of the pooled samples from all chains. Once all the chains have converged (at
least approximately) to the target distribution, then they are all drawing from the
same distribution and, for any given parameter, the variability within chains should
be approximately equal to the variability between chains. Prior to convergence,
while each chain is drawing from a different part of the parameter space, the within-
chain variability is likely to be smaller than the pooled-sample variability. Brooks
and Gelman (1998) suggested several different measures of variability that could
be used. The one implemented in OpenBUGS and WinBUGS is the widths of the
80% credible sets estimated from the samples. The numeric diagnostic, called R for
ratio, is the width of the pooled-sample credible set divided by the mean width of
the within-chain credible sets.

The OpenBUGS manual explains exactly what OpenBUGS calculates and plots
when the user clicks the “bgr diag” button on the “Samples” tool. The fol-
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Fig. 9.4 Example of BGR diagnostic plot from OpenBUGS manual

lowing excerpt, including the idealized example plot, (Fig. 9.4) is taken from
the Inference/Samples section of the user manual under the “Manuals“ tab for
OpenBUGS version 3.2.1.

bgr diag: calculates the Gelman-Rubin statistic, as modified by Brooks and Gelman (1998).
The basic idea is to generate multiple chains starting at overdispersed initial values and
assess convergence by comparing within- and between-chain variability over the second
half of those chains. We denote the number of chains generated by M and the length of
each chain by 2T. We take as a measure of posterior variability the width of the 100(1−a)%
credible interval for the parameter of interest (in OpenBUGS, a = 0.2). From the final T
iterations, we calculate the empirical credible interval for each chain. We then calculate
the average width of the intervals across the M chains and denote this by W. Finally,
we calculate the width B of the empirical credible interval based on all MT samples
pooled together. The ratio R = B / W of pooled to average interval widths should be
greater than 1 if the starting values are suitably overdispersed; it will also tend to 1 as
convergence is approached, and so we might assume convergence for practical purposes if
R < 1.05, say.

Rather than calculating a single value of R, we can examine the behavior of R over
iteration time by performing the above procedure repeatedly for an increasingly large
fraction of the total iteration range, ending with all of the final T iterations contributing
to the calculation as described above. Suppose, for example, that we have run 1,000
iterations (T = 500) and we wish to use the resulting sample to calculate 10 values of R
over iteration time, ending with the calculation involving iterations 501–1,000. Calculating
R over the final halves of iterations 1–100, 1–200, 1–300, . . . , 1–1,000, say, will give a
clear picture of the convergence of R to 1 (assuming the total number of iterations is
sufficiently large). If we plot against the starting iteration of each range (51, 101, 151,
. . . , 501), then we can immediately read off the approximate point of convergence, for
example,
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Fig. 9.5 BGR diagnostic plots for first 1,000 iterations for hierarchical softball example

OpenBUGS automatically chooses the number of iterations between the ends of successive
ranges: max(100, 2T / 100). It then plots R in red, B (pooled) in green, and W (average)
in blue. Note that B and W are normalized so that the maximum estimated interval width
is one—this is simply so that they can be seen clearly on the same scale as R. Brooks
and Gelman (1998) stress the importance of ensuring not only that R has converged
to 1 but also that B and W have converged to stability. This strategy works because
both the length of the chains used in the calculation and the start iteration are always
increasing. Hence, we are guaranteed to eventually (with an increasing sample size) discard
any burn-in iterations and include a sufficient number of stationary samples to conclude
convergence.

In the above plot, convergence can be seen to occur at around iteration 250.

To use the BGR diagnostic, examine the BGR plots for each model parameter.
Identify the plot that requires the greatest number of iterations for the value of the
BGR diagnostic (red line) to remain below 1.2 and the blue and green lines to come
together and become horizontal. The approximate convergence point in that plot is
the number of iterations to discard as burn-in. To tell WinBUGS or OpenBUGS to
ignore the burn-in iterations in calculating posterior summaries, simply enter the
iteration number at which you want the calculations to begin in the beg box in the
Sample monitor tool.

Figure 9.5 shows the BGR diagnostic plots for the hierarchical softball example.
For all parameters, the red line representing the ratio R begins near 1 and stays there.
However, for α and β , it is not clear that the blue and green lines have settled down
even for the last interval.

We can obtain a table of the plotted results for the β parameter by right-
clicking on the plot, then clicking “Properties,” and “Data.” The resulting table,
shown in Fig. 9.6, confirms that the widths of the within chain and pooled 80%
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Fig. 9.6 Table of values underlying BGR plot for first 1,000 iterations

Fig. 9.7 BGR diagnostic plot for 6,000 iterations

credible sets were still bouncing around as of iterations 451–900, but might have
settled down by iterations 501–1,000. More iterations are needed, so I ran an
additional 5,000.

The BGR plots for the extended chains (now 6,000 total iterations in each) are
in Fig. 9.7. For all parameters, everything looks great starting at approximately
iteration 1,000. Therefore, before producing the output to be used for inference (the
table of statistics and the posterior density plots in Sect. 9.3), I set the beginning
iteration in the sample monitor tool to 1,001 so that the first 1,000 burn-in iterations
would not be included.
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9.4.2 Convergence in the Hierarchical Softball Example
with a Vague Prior

We might want to do a sensitivity analysis to assess the effect of our third-stage
prior specification on the inference in the hierarchical softball example. Below is
OpenBUGS code for the same model as in the previous section, except that I have
commented out the original priors on α and β and replaced them with very vague
gamma priors. In order to emphasize the point of this section, I also made the initial
values for α and β more extreme.

model
{
for (i in 1:N) {

y[i] ˜ dbin( pi[i], n[i] ) # likelihood
pi[i] ˜ dbeta( alpha, beta ) # second-stage prior

}

alpha ˜ dgamma(0.001,0.001) # third-stage prior
beta ˜ dgamma(0.001, 0.001 ) # third-stage prior

#alpha ˜ dgamma(1.0, 1.0) # third-stage prior
#beta ˜ dgamma(1.0,0.33 ) # third-stage prior

mu <- alpha /( alpha + beta) # calculate function of parameters
# that we wish to monitor

pinew ˜ dbeta( alpha, beta )
ynew ˜ dbin( pinew, nnew)

}

# data
list( y = c( 1,0,1,1,1,0,1,0), n = c(5,4,3,5,3,4,4,2), N = 8, nnew=3)

# overdispersed initial values for 3 chains (used for first example in ch 9)
list( alpha = .2, beta = 1, pi = c(.5, .5, .5, .5, .5, .5, .5, .5) )
list(alpha = 100, beta = 500, pi = c(.9, .9, .9, .9, .9, .9, .9, .9) )
list(alpha = 200, beta = 1000, pi = c(.1, .1, .1, .1, .1, .1, .1, .1))

Running this version of the model illustrates a feature of OpenBUGS and
WinBUGS that we have not seen previously. During the first 500 iterations of the
update, there is a check mark by the word “Adapting” in the Update tool, as shown
in Fig. 9.8. This indicates that, at the beginning of the sampler run, OpenBUGS is
using a method of sampling that learns from the samples already generated how
to sample more efficiently as it goes along. The slice sampling algorithm Neal
(2003) as implemented in OpenBUGS and WinBUGS adapts in this way for the
first 500 iterations, then settles on a single updating scheme that is used for the
remaining iterations. Because the sampling method during the adaptation phase is
not strictly a Markov chain (see Atchade and Rosenthal (2005)), samples generated
during that phase should not be used for inference. OpenBUGS and WinBUGS
protect the user by refusing to include adaptation iterations in inference-related
results, such as the statistics table, posterior density plots, and the BGR diagnostic.
However, all samples can be included in history plots. The OpenBUGS/WinBUGS
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Fig. 9.8 Update Tool
showing adaptation phase

Fig. 9.9 History plots for first 1,000 iterations of model with vague priors

implementation of a different sampling algorithm, Metropolis–Hastings (Hastings
1970; Metropolis et al. 1953), by default adapts for the first 4,000 iterations.

Figure 9.9 presents the first 1,000 iterations of the hierarchical softball model
with vague priors. The last 600 iterations in these plots are post-adaptation and
reflect the behavior of the Markov chains. Figure 9.10 presents the corresponding
autocorrelation plots. Both sets of plots indicate extremely slow mixing and high
autocorrelation. The BGR diagnostic plots (representing iterations 501–1,000 only)
shown in Fig. 9.11 confirm that convergence has not occurred for at least some
parameters within the first 1,000 iterations.

The source of the convergence problems in this example is that, although the
data (the eight pairs ni and yi) contain some information about the average success
probability across games, they provide little information about the variability among
the πis for different games. In other words, the data inform about the ratio α

α+β
but not very much about α and β individually. In our first version of this model,
the prior densities on α and β provided enough additional information about these
parameters that they were not prohibitively difficult to estimate (although the 95%
posterior credible set for β shown in the table in Sect. 9.3 is quite wide). The vague
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Fig. 9.10 Autocorrelation plots for first 1,000 iterations of model with vague priors

Fig. 9.11 BGR diagnostic plot for first 1,000 iterations of model with vague priors

priors in the second version are not strong enough to compensate for the lack
of information in the data. Using MCMC makes estimation even more difficult,
because a chain can “get stuck” in a low-posterior-probability range of extreme
values of α and β , as long as the ratio they produce is reasonable.

I ran an additional 29,000 iterations, then 20,000 more, bringing the total to
50,000 per chain. Figures 9.12 and 9.13 are the history and BGR diagnostic plots.

It appears that these chains are not becoming better behaved. For α and β , the
sample paths continue to go on occasional extreme excursions, but the BGR plots
suggest that from approximately iteration 22,000 on, all three chains are traversing
the same parameter space.

I discarded the first 22,000 iterations as burn-in. Below are the autocorrelation
plots (Fig. 9.14) and table of statistics (Fig. 9.15) from iterations 22,001 to 50,000
for all chains. Although the autocorrelation has not dropped substantially compared
to what we saw in the first 1,000 iterations, the simple tactic of running many, many
iterations has decreased the MC errors. In a simple, low-dimensional model like
this (only ten actual parameters), despite poor mixing of the MCMC samplers, we
could easily run enough iterations to have reasonable confidence that the chains
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Fig. 9.12 History plots for 50,000 iterations of model with vague priors

Fig. 9.13 BGR diagnostic plot for 50,000 iterations of model with vague priors
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Fig. 9.14 Autocorrelation plots for iterations 22,001–50,000 of model with vague priors

had found their target distribution and had traversed the entire parameter space and
that we have run enough iterations to have a satisfactory degree of precision in our
estimation.

The inference resulting from this model is somewhat different from that obtained
with the more informative priors. The posterior marginal 95% credible sets for α and
β are very wide, indicating how little information is contained in the data and priors
about these parameters. However, the other parameters and functions of interest are
estimated more precisely. The posterior means of the eight πis are more similar in
this model than in the other version, and the posterior mean of μ is smaller.

Some important general principles are illustrated by this example:

1. Very weak priors at the final stage of a hierarchical model may lead to very
imprecise inference. In many cases, improper priors at the final stage produce an
improper joint posterior distribution, so that inference is not possible.

2. When an MCMC sampler runs very fast (usually the case with a small dataset
and a low-dimensional model), it may be possible to run enough iterations to
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Fig. 9.15 Node statistics for iterations 22,001–50,000 of model with vague priors

obtain reasonable inference even when convergence is slow. In other situations,
more challenging remedies for slow convergence may be needed.

3. Running a few MCMC samplers from carefully chosen overdispersed initial
values helps in detecting slow convergence.

9.5 Other Hierarchical Models

There are many possible hierarchical models with a three-stage structure similar
to the one in our example, but with different distributions at the three stages.
Volume 1 of the examples that come with WinBUGS and OpenBUGS includes two
such models, and I encourage you to study both of them carefully. “Pump” is a
hierarchical Poisson/gamma model. We will discuss it in the context of graphical
representation of Bayesian models in Sect. 9.6. The “Dyes” example is a hierarchical
normal model, which raises some interesting issues that are explored in the next
subsection.

9.5.1 Hierarchical Normal Means

A hierarchical normal model is considered when the data consist of two or more
groups of samples drawn from different normal subpopulations of a larger popula-
tion. The different subpopulations may have different means and/or variances, but
these means (or variances) are similar to each other, and that relationship may be
expressed by saying that they are draws from a common probability distribution.
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The observations in such data require two subscripts: yi j denotes the jth observation
in group i.

The “Dyes” example in WinBUGS/OpenBUGS is a problem taken from the
classic Bayesian textbook (Box and Tiao 1973). Here the subpopulations are batches
of product produced by a factory, and 5 items were randomly drawn from each of 6
batches. The model is constructed under the assumption that different batches have
different means μi, i = 1, . . . ,6 but that the between-item variability is the same
within all batches. If we denote the within-batch precision as τwith , the likelihood
looks like this:

yi j|μi,τwith ∼ N

(

μi,
1

τwith

)

, i = 1, . . . ,6, j = 1, . . . ,5

or

p(y|μ1, . . . ,μ6,τwith) =
6

∏
i=1

5

∏
i=1

√
τwith√
2π

exp

[

−τwith(yi j − μi)
2

2

]

(9.2)

9.5.1.1 Prior Specification at the Second and Third Stages

Standard practice in constructing hierarchical models is to have the second stage
consist of a prior or priors on set(s) of parameters of the same kind and to leave the
prior(s) on any one-of-a-kind parameters from the likelihood to the third stage.

In the Dyes example, the unknown parameters in the likelihood are the six μs and
the single τwith. The prior for the set of μs will comprise the second stage. Although
other choices certainly are possible, the most common choice of parametric
family for the second-stage prior on a set of normal means is the semi-conjugate
normal prior, and that was what Box and Tiao, and the WinBUGS/OpenBUGS
example, used:

μi|θ ,τbtw ∼ N

(

θ ,
1

τbtw

)

, i = 1, . . . ,6

This prior says that the μs are like draws from the population of all possible
μs (the means of all possible batches of product from the factory). The precision
parameter τbtw reflects how different the means of different batches are. The
parameter θ represents the overall mean of all possible batch means. Both of these
are unknown parameters to be estimated.

The third stage provides the priors on the unknown parameters from the
second stage, as well as τbtw from the likelihood. In the original version of the
WinBUGS/OpenBUGS example, vague semi-conjugate priors were specified on all
three of these parameters—gammas for the precisions and normal for θ . The code is
below:

model
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{
for(i in 1 : batches) {

mu[i] ˜ dnorm(theta, tau.btw)
for(j in 1 : samples) {

y[i , j] ˜ dnorm(mu[i], tau.with)
}

}
sigma2.with <- 1 / tau.with
sigma2.btw <- 1 / tau.btw
tau.with ˜ dgamma(0.001, 0.001)
tau.btw ˜ dgamma(0.001, 0.001)
theta ˜ dnorm(0.0, 1.0E-10)

}

9.5.1.2 Third-Stage Priors and Proper and Improper Posterior
Distributions

As you will see in Problem 9.5, the vague gamma prior on τbtw leads to very
poor MCMC sampler convergence for this model and to poor estimation of this
parameter even if tens of thousands of iterations are run. There is no problem
with a vague prior for τwith, because it is the precision of observable data values,
so the actual data provide a lot of information about it. On the other hand, τbtw

is the precision of unknown and unknowable parameters, so it is far harder to
estimate.

It is actually the case that an improper prior on τbtw will result in an improper joint
posterior density, so that no valid posterior inference is possible. The gamma(0.001,
0.001) prior used in the OpenBUGS example is proper, so the resulting posterior
actually is proper. However, it is just barely proper, and the additional uncertainty
introduced by the use of MCMC to fit the model causes the difficulty that you will
observe in Problem 9.5.

Typically the statistician will have little prior information about the variability
between the parameters modeled at the second stage of a hierarchical normal
model, so specifying a prior on τbtw presents a real challenge. Continuing Bayesian
methodological research seeks ways of specifying priors on the between-means
precision that contain little information but lead to better-behaved posterior densities
and MCMC samplers than do vague gammas. For this purpose, Gelman (2006)
recommends using a non-conjugate vague uniform prior on the between-means
standard deviation (i.e., on 1√τbtw

). At the time of this writing, this prior is included
as an alternative in the WinBUGS version of the Dyes example, but not in the
OpenBUGS version.
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9.6 Directed Graphs for Hierarchical Models

Graph theory is an area of mathematics and computer science that can offer
insight into statistical models. In this setting, a graph is a collection of vertices or
nodes representing some type of objects. Pairwise relationships among the nodes
are represented by edges connecting them. A graph may be either directed or
undirected.

The kinds of Bayesian models that OpenBUGS and WinBUGS can fit may
be expressed by a particular kind of graph called a directed acyclic graph or
DAG (Lauritzen and Spiegelhalter 1998). Each quantity in the model is represented
by a node in the graph. The edges connecting the nodes are shown as arrows pointing
into nodes from the nodes on which they depend directly.

The developers of WinBUGS and OpenBUGS recommend drawing DAGs while
developing Bayesian models and have included the “DoodleBUGS” feature to
facilitate this process. Not only does DoodleBUGS assist the user in drawing the
graph, but also, for models that are not too complicated, DoodleBUGS can translate
the graph into WinBUGS/OpenBUGS code which then can be run in the usual way.

9.6.1 Parts of a DAG

Figure 9.16—the DAG for the WinBUGS/OpenBUGS hierarchical Poisson/gamma
model called “Pump”—provides examples of the symbols used in directed acyclic
graphs.

The object that looks like a pile of papers is a set of plates. Plates show that there
are more than one of each of the objects drawn inside them and include a notation
of how many repetitions there are (the for i IN 1 : N in this example).

The different kinds of quantities in a Bayesian model are represented in a DAG
by the following kinds of nodes:

Constants (values fixed by the design of the study) are represented by single- or
double-edged rectangles. Since they are fixed, constants do not depend on any
other quantities in the model. Thus, they have no arrows running into them, but
do have arrows running out from them and into the nodes that depend on them.
Another way of saying this using the language of DAGs is that constants have no
parents but are the parents of other nodes. In the pump example, the t[i]s are
constants.
Stochastic nodes are variables that are given a distribution. They may be observed
data, whose probability distribution is given in the likelihood or unobservable
parameters whose distributions are given in later stages of the model. They
generally are children in the graph, with their parents characterizing their
distribution, but they may be parents as well. Stochastic nodes generally are
represented by circles or ovals, although observed data often are denoted by
single-edged rectangles. In the pump example, alpha, beta, the theta[i]s,
and the x[i]s are stochastic nodes.
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Fig. 9.16 The directed acyclic graph for the hierarchical Poisson/gamma Pump example

Deterministic nodes are calculated functions of other nodes. WinBUGS/
OpenBUGS refers to the functions as logical functions and to the resulting nodes
as logical nodes. Since one or more stochastic nodes usually are needed in the
calculations for a logical node, logical nodes are also represented by circles or
ovals.

Two kinds of dependence can be represented by arrows in a DAG:

Stochastic dependence is represented by a solid arrow. For example, in the
graph for the pump model, the solid arrows from alpha and beta into the
theta[i]s indicate that the thetas are random draws from a distribution
with parameters alpha and beta.
Deterministic dependence is represented by either dashed arrows or hollow
arrows. In the DAG for the pump model, the hollow arrows from theta[i]
and t[i] into lambda[i] indicate that the lambda[i]s are calculated
deterministically given the theta[i]s and the tt t[i]s.

9.7 *Gibbs Sampling for Hierarchical Models

Recall that a Markov chain is generated one iteration at a time and that the transition
kernel is the distribution from which the values for each iteration are drawn,
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conditional on the existing values from the previous iteration. The Gibbs sampling
algorithm is one way to construct a transition kernel to produce a Markov chain
whose stationary distribution is the joint posterior distribution in a Bayesian model.
The seminal references on Gibbs sampling are Gelfand and Smith (1990); Geman
and Geman (1984); Hastings (1970); Metropolis et al. (1953).

The key to Gibbs sampling is full conditional distributions. The full conditional
distribution for a model quantity is the distribution of that quantity conditional on
assumed known values of all of the other quantities in the model. For example, in a
simple normal model in which the two unknown parameters were the mean μ and
the variance σ2 and the observed data was y, there would be two full conditionals:

p(μ |σ2,y)

p(σ2|μ ,y)

The mathematical foundation of the Gibbs sampling algorithm is the fact that,
subject to regularity conditions (which unfortunately are outside the scope of
this course), a joint distribution is uniquely determined by the corresponding full
conditional distributions.

The Gibbs sampling algorithm can be described generically as follows. Suppose
that we have a Bayesian model with p unknown parameters, which we will call
θ1,θ2, . . . ,θp, and that the observed data are denoted y. Thus, the joint posterior
distribution is p(θ1,θ2, . . . ,θp|y. As with any Markov chain, the user must provide
initial values. I’ll indicate iteration numbers with superscripts in parentheses, so

the initial values are θ (0)
1 ,θ )0)

2 , . . . ,θ (0)
p . Then the Gibbs sampler draws the values

for each iteration in p steps by drawing a new value for each parameter from
its full conditional given the most recently drawn values of all other parameters.
In symbols, the steps for any iteration, say iteration k, are as follows:

• Draw θ (k)
1 from p(θ1|θ (k−1)

2 ,θ (k−1)
3 , . . . ,θ (k−1)

p )

• Draw θ (k)
2 from p(θ2|θ (k)

1 ,θ (k−1)
3 , . . . ,θ (k−1)

p )

•
...

• Draw θ (k)
p from p(θp|θ (k)

1 ,θ (k)
2 , . . . ,θ (k)

(p−1))

Thus, the difficult task of sampling from the possibly complicated, high-
dimensional joint posterior distribution is broken down into a large number of
simpler, feasible sampling tasks.

9.7.1 Deriving Full Conditional Distributions

But how can we figure out what probability distribution each full conditional is?
Here are the steps for the analytical procedure for deriving the full conditional
distribution of any individual unknown model quantity:
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1. Write the mathematical form of the (unnormalized) joint posterior distribution.
2. Pull out every term in the joint posterior that contains the quantity of interest.
3. Write the product of all the terms from step 2; this product is proportional to the

needed full conditional distribution.
4. If possible, identify the parametric family of which the full conditional is a

member.

Let’s find the full conditionals for each parameter in the hierarchical beta-
binomial softball example. The unknown parameters are π1,π2, . . . ,π8,α , and β .
We already did step 1, and the result is in (9.1.4), which is reproduced here.

p(π ,α,β |y)∝
[

Γ (α +β )
Γ (α)Γ (β )

]8 8

∏
i=1

[
πyi+α−1

i (1−πi)
ni−yi+β−1

]
exp(−α)exp(−0.33β )

To find the full conditional for any individual πi, i = 1, . . .8, we write the product
of all the terms in (9.1.4) that contain πi and then simplify. I will use the notation
π(−i) to represent all the πs except πi.

p(πi|π(−i),α,β ,y) ∝ πyi+α−1
i (1−πi)

ni−yi+β−1

We recognize this as the kernel of a beta density with parameters yi+α and ni−
yi+β . OpenBUGS/WinBUGS uses one of the well-known algorithms for sampling
from beta densities. Note that the other seven πs do not appear in this density.

How about α?

p(α|πi, i = 1, . . . ,8,β ,y ∝
[

Γ (α +β )
Γ (α)Γ (β )

]8 8

∏
i=1

[
πyi+α−1

i

]
exp(−α)

∝
[

Γ (α +β )
Γ (α)

]8 8

∏
i=1

[πα
i ]exp(−α)

Hmm, have you ever seen a density that looked like that? (Remember, α is
the random variable here.) No, this definitely is not any familiar density, and
OpenBUGS/WinBUGS will have to use one of their general-purpose algorithms
for sampling from nonstandard densities.

Now for β :

p(β |πi, i = 1, . . . ,8,α,y ∝
[

Γ (α +β )
Γ (β )

]8 8

∏
i=1

[
(1−πi)

ni−yi+β−1
]

exp(−0.33β )

∝
[

Γ (α +β )
Γ (β )

]8 8

∏
i=1

[
(1−πi)

β
]

exp(−0.33β )
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This is another nonstandard density. Note that the data (y and n) do not appear in
the full conditionals for α or β .

There is another method of deriving full conditional distributions, which is based
on directed acyclic graphs. Here are the steps:

1. Draw a directed graph of your complete model.
2. Identify the “parents” and “children” of the parameter of interest.
3. Write the product of the conditional distributions of

• the parameter given its parents
• the children given their parents.

You will have a chance to try this method in some of the exercises for this chapter.
No Bayesian inference can be directly based on full conditional distributions.

They are useful only as part of the computing methods for fitting Bayesian models.
Fifteen or more years ago, Bayesian statisticians often had to code their own Gibbs
samplers to fit models that they developed. Today BUGS, WinBUGS, OpenBUGS,
and R packages for Bayesian model fitting are available and can handle most
Bayesian data analysis needs, so the skills of deriving full conditionals and coding
MCMC samplers are rarely needed.

9.8 Recommendations for Using MCMC to Fit Bayesian
Models

Here are some general comments and recommendations for using MCMC to fit
Bayesian models.

9.8.1 How Many Chains

There is controversy over whether it is better to run a single long MCMC chain, or
multiple shorter ones. Obviously it is wasteful to run more than one chain, because
burn-in iterations have to be discarded from all of them. On the other hand, if you
run only one chain, you have no way of knowing whether there are parts of the
parameter space that it never visited. My recommendation is to run a small number
(three to five) of chains with initial values selected to give you information about
sampler performance.

9.8.2 Initial Values

Students often confuse initial values with prior parameters, but they are totally
different. Priors are part of the model specification. Priors must not be derived from
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the current dataset. Initial values are part of the computing process. Initial values
can be derived from the current dataset.

Here are some comments on specifying initial values:

• Initial values may be randomly generated from priors.
• If it is possible to fit a frequentist model that is similar to your Bayesian model,

then initial values may be based on frequentist estimates. For example, you might
initialize one chain with the maximum likelihood estimates for all parameters,
one chain with the m.l.e.s minus 4 standard errors, and one with the m.l.e.s plus
4 standard errors.

• Initial values may be chosen systematically to represent extreme regions of the
parameter space to aid in assessing convergence.

• Initial values must be specified for variance components. WinBUGS/OpenBUGS
usually can automatically generate initial values for other parameters, but it’s
often advantageous to specify even those that can be auto-generated.

9.8.3 General Advice

Learn as much as possible about your model before ever running an MCMC sampler.
Fit an analogous frequentist model. Fit a simple Bayesian model first; then gradually
add complexity. These steps will enable you to recognize whether your MCMC
sampler output is giving reasonable inference.

To assess MCMC sampler convergence, monitor all model parameters, not only
the parameters of substantive interest. If your model has too many parameters to
permit individual monitoring of all of them, then least monitor examples of all types
of parameters. For example, if there are 6,000 random effects, monitor a half dozen
or so of them as well as all precision parameters in a model. Examine history plots,
autocorrelation plots, BGR plots, and MC errors. Be aware that there is no guarantee
that any or all of these methods will detect convergence failure.

For more detail on MCMC convergence diagnostics and their use, see Cowles
and Carlin (1996).

9.9 Exercises

9.1. Draw a directed acyclic graph of the hierarchical model for the softball
problem. You may either use DoodleBUGS or draw it freehand.

9.2. For the “pump” example in WinBUGS/OpenBUGS, write an expression to
which the joint posterior distribution of all the model parameters is proportional.

9.3. Derive the posterior full conditional distributions that would be used in a Gibbs
sampler for the pump model. First, start from your joint posterior in the previous
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problem to extract each full conditional. Then check whether you get the same
results if you start from the directed acyclic graph.

9.4. Modify the WinBUGS/OpenBUGS code for the pump model to create nodes
representing (a) the mean of the distribution from which the individual pumps’
failure rates are drawn, (b) the failure rate of a new pump that is not part of the
current dataset, and (c) the number of failures of the new pump in 1,000 h. Run the
expanded model, monitoring your new nodes, and comment on the results.

9.5. Consider the “Dyes” example in the first set of WinBUGS/OpenBUGS exam-
ples. At the time of this writing, the versions of this example are slightly different in
the two software packages. The WinBUGS version includes three different choices
of prior on the between-groups precision parameter, while the OpenBUGS version
has only one choice (the choice that is not recommended by WinBUGS!).

1. Under this model, are all the yi j’s (the yields for all the different samples in
different batches) considered exchangeable? Why or why not?

2. Under this model, are all the y2 j’s (the yields for all the samples in batch 2)
considered exchangeable?

3. Under this model, are the μi’s considered exchangeable?
4. Run three parallel chains for 15,000 iterations to fit the model as given in the

example. If you are using WinBUGS, use the third prior (the one that is not
recommended). If you are using OpenBUGS and there is only one prior, use it.

• For one chain, use the initial values provided in the example.
• For another chain, use

list(mu = c(1,525, 1,525, 1,525, 1,525, 1,525, 1,525), theta = 1,525, tau.btw
= 10,000, tau.with = 0.001)

• For another chain, set the mu’s equal to values that are very different from
each other and from theta, and reverse the values of tau.between and tau.within
given previously.

• Monitor θ , μ , taubetween, tauwithin, σ2
between, and σ2

within, beginning with the
first iteration.

• Obtain autocorrelation plots, history plots, Gelman and Rubin diagnostics,
and output statistics. Look at plots based on each chain individually as well
as on the combined chains. You do not have to print and turn in all the plots!
Choose a few typical ones to print and comment on.

5. Run another 15,000 iterations and obtain the same output. Do the autocorrelation
plots change much with additional iterations? Does the Monte Carlo error
decrease with additional iterations?

6. The use of very vague priors on both of the variance components, as shown in
the example, is a bad idea. If an improper prior is placed on τbetween , the posterior
will be improper as well. The priors on τwithin and τbetween are so vague that this
is almost the case here. That is the reason why so many iterations were required
in the sampler run.
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Replace the vague prior on τbetween with an informative prior. Choose its
parameters this way. You want an inverse gamma prior on σ2

between (the variance
of batch means) that has a mean of 2,000 and a variance of 250,000. Find the
correct values of the parameters α and β . Now in WinBUGS, put a gamma prior
with the same values of α and β on τbetween (the precision).

7. Repeat steps (4) and (5) above with your modified model, answering the same
questions. In addition, compare the autocorrelation plots and Monte Carlo errors
between the original model and the model with the informative prior. (Again,
you don’t have to print out many of the plots. Summarize the comparison in a
few sentences.)

8. If you are working from code with three choices of prior, repeat step (4):

• using Prior 1 in the example
• using Prior 2 in the example

Again, summarize what you see in history plots, autocorrelation plots, and
BGR diag plots.



Chapter 10
Regression and Hierarchical Regression Models

Linear regression is one of the most commonly used methods in both classical and
Bayesian statistics.

10.1 Review of Linear Regression

Recall that in regression analysis, we have two or more variables that can be
measured on the same subjects. We wish to use one or more of them—the predictor
variables (also called independent variables or covariates)—to explain or predict
a response variable (also called an outcome variable or a dependent variable).
How we define which variable is the response and which are predictors depends
on our research question. In linear regression, the response variable is quantitative.
In simple linear regression, there is only one predictor variable, and the relationship
between the response variable and the predictor is roughly linear.

Typically, the notation Y is used for the response variable and X for a predictor,
so that yi and xi denote the observed values of the response and the predictor for the
ith subject in a dataset.

The population regression equation with one covariate is

Yi = β0 +β1Xi + εi

where β0 is the intercept (usually defined as the expected value of Y when X
= 0) and β1 is the slope (the expected difference between two Y values whose
corresponding X values differ by one unit).

A crucial assumption underlying linear regression is that the expected values
of the Y variable, when plotted against the values of the X variable, lie on a
straight line. The εs represent the random differences between individual observed
Y values and their expected values on the regression line. The term for these random
differences is errors, but with no implication that they are mistakes or wrong in
any way.

M.K. Cowles, Applied Bayesian Statistics: With R and OpenBUGS Examples,
Springer Texts in Statistics 98, DOI 10.1007/978-1-4614-5696-4 10,
© Springer Science+Business Media New York 2013
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A second regression assumption, which is needed in frequentist analysis to
calculate p-values and confidence intervals, is that the errors follow a normal
distribution with zero mean. Thus, the three unknown parameters in simple linear
regression are β0, β1, and the variance σ2 of the normal distribution of the errors.
The slope β1 is usually of greatest interest, since it captures the relationship between
the two variables.

10.1.1 Centering the Covariate

When all of the possible values of the covariate are of the same sign and lie far
away from zero, the mathematical definition of the intercept may not make sense
substantively. For example, suppose the population of interest is adult males, the
covariate is height in inches, and the response variable is weight in pounds. Then,
although the intercept is a perfectly valid mathematical construct and it is needed
to make the line lie in the right place, the notion of an adult with height 0 inches is
nonsensical.

In such cases, a common practice is to center the covariate before using sample
data to estimate the regression coefficients and variance. Centering simply means
calculating the sample mean of the covariate, and subtracting this mean from each
covariate value. In symbols, before centering, the model being fit is

Yi = β0 +β1Xi + εi

but with centering, it becomes

Yi = β ∗
0 +β1(Xi − X̄)+ εi (10.1)

The interpretation and value of the slope β1 are unchanged by centering.
However, centering gives the intercept a different meaning and usually a very
different value. We can see this by rearranging the right side of (10.1).

Yi = β ∗
0 −β1X̄ +β1Xi + εi

The intercept in the centered model is the expected value of the response variable
when the centered covariate is 0—that is, when the covariate on the original scale
has the typical value X̄ rather than the unreasonable value of 0. Thus, it has a
meaningful interpretation.

An additional advantage of centering covariates for Bayesians is that centering
can improve convergence of MCMC samplers for fitting complicated Bayesian
regression models.

10.1.2 Frequentist Estimation in Regression

In frequentist linear regression, the maximum likelihood estimates of the intercept
and slope are calculated by a method called ordinary least squares (OLS), which
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chooses the best-fitting line by minimizing the sum of the squared differences
between each data point and the fitted line. Using the notation yi i = 1, . . . ,n for
the observed values of the response variable and xi i = 1, . . . ,n for the observed
values of the covariate, the formulas for the m.l.e.s of the coefficients in simple
linear regression with covariate centering are as follows:

β̂0 = ȳ

β̂1 =
∑i(xi − x̄)(yi − ȳ)

∑i(xi − x̄)2

β̂0 and β̂1 are the sufficient statistics for β0 and β1.
To provide more notations that we will use throughout this chapter, the fitted

values ŷi are
ŷi = β̂0 + β̂1xi

and the residuals ri are the differences between the observed values and the fitted
values:

ri = yi − ŷi

The sum of the squared residuals

SSR = ∑
i

(
yi − β̂0 − β̂1(xi − x̄)

)2

is the sufficient statistic for σ2. The unbiased estimator of σ2 when there is only one
covariate is

∑i

(
yi − β̂0 − β̂1(xi − x̄)

)2

n− 2
=

∑i r2
i

n− 2

10.1.3 Example: Mercury Deposited by Precipitation Near
the Brule River in Wisconsin

As we mentioned in Sect. 6.2.1, eating fish contaminated with mercury is a
health hazard, particularly to infants and children. Mercury gets into fish through
the following cycle. Mercury is emitted into the atmosphere from both human
and natural sources. Then rain washes mercury out of the air and deposits it on
land and in surface water. Such deposition is the major way that mercury gets into
lakes and rivers. Fish ingest mercury from their food sources in the water in which
they live.

The Mercury Deposition Network (MDN) (http://nadp.sws.uiuc.edu/mdn/) has
monitored mercury deposition in precipitation at locations in the United States and

http://nadp.sws.uiuc.edu/mdn/
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Canada since 1996. MDN is a part of the National Atmospheric Deposition Program
(NADP), a cooperative monitoring effort involving governmental, academic, tribal,
and private organizations. Currently MDN operates over 100 sites from which
precipitation is collected and analyzed weekly following rigorous quality assurance
procedures. The resulting data is publicly available at http://nadp.sws.uiuc.edu/
MDN/mdndata.aspx. These data can be used to assess trends in mercury deposition
over time and space, and to predict deposition levels at unsampled locations or future
times.

I was interested in assessing whether there was a systematic change in mercury
concentration levels in the Midwest during the decade and a half of MDN’s
existence. I decided to begin by looking at the time trend at a single site, and
to expand the analysis to include multiple sites as a later step. There are no
MDN sites in Iowa. I chose the Brule River site in nearby Wisconsin as the first
location to study. The weekly Brule station data spans the last half of 1996 through
the beginning of 2011. Both mercury emissions and precipitation are known to have
seasonal patterns that were not the focus of my interest, so I decided to aggregate
that data into annual averages. Furthermore, the distribution of the raw weekly
concentrations was highly right skewed. For these reasons, I first log transformed
the weekly mercury concentrations, then averaged all valid measurements within
each year. I discarded the 1996 and 2011 values, because they did not include the
full years. This process produced annual values for 14 years, 1997–2010, which
are plotted in Fig. 10.1. The figure suggests a somewhat linear relationship, with a
slightly negative slope. We need to use statistics to determine whether this apparent
relationship is more than would be likely to occur by chance.

Specifically, we will use frequentist methods to estimate the slope—the annual
rate of change of mean log mercury concentration, and to test the null hypothesis
that the slope is greater than or equal to 0.

H0 : β1 >= 0

H1 : β1 < 0

Yet another assumption in linear regression is that the errors are uncorrelated.
We need to check that assumption carefully in data like this, in which the mea-
surements were taken sequentially over time. Autocorrelation would be visible
in the scatterplot if adjacent values of the Y variable tended to be very similar.
The raw weekly data exhibited high autocorrelation, but we see much less evidence
in the aggregated annual data. We will proceed with our analysis, but will check
again after we have fit the regression model and have estimates of the errors in the
form of the residuals.

The covariate is the year, with all strictly positive values far away from 0. If we
don’t center the covariate, the interpretation of the intercept would be the expected
value of mean log mercury concentration in the year 0, which has little meaning. So
we will center the covariate. This will not change the estimated slope, but now the
intercept will be the expected value of Y in the middle of the year 2003.

http://nadp.sws.uiuc.edu/MDN/mdndata.aspx
http://nadp.sws.uiuc.edu/MDN/mdndata.aspx
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Fig. 10.1 Scatterplot of mean log mercury concentration at the Brule River MDN site versus year

Below is R code for fitting the regressions, first without centering and then with
centering. The values of the response variable are in a vector called brulemeanLog
HgConcYr. The lm function is used to store all the regression calculations from
each model into an object (brulelmout for the analysis with uncentered covariate
and brulelmout2 for the analysis with centering). We can then summarize or plot
aspects of these objects.

# uncentered covariate
> x <- 1997:2010
> brulelmout <- lm(brulemeanLogHgConcYr ˜ x)

# centered covariate
> xcent <- x - mean(x)
> brulelmout2 <- lm(brulemeanLogHgConcYr ˜ xcent)

Before interpreting the results, we should perform some diagnostic checks. The
residual plot (residuals ri on the y-axis and the fitted values ŷi on the x-axis) in
Fig. 10.2 is reassuring: it looks like a random scatter of points with no curvature,
no clustering of points, and no systematic change of spread from left to right. Thus,
it provides no evidence of violation of the assumptions of linearity, uncorrelated
errors, and equality of variance.
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Fig. 10.2 Residual plot for regression of mean log mercury concentration at the Brule River MDN
site versus year

plot( brulelmout2$fitted.values,
brulelmout2$residuals)

The normal QQ plot of the residuals (Fig. 10.3) also shows no clear violation of
the normality assumption.

Finally, we use the Durbin–Watson test in the R package lmtest to check
numerically that the residuals do not exhibit autocorrelation:

> library(lmtest)
> dwout <- dwtest( brulelmout2,

alternative=‘‘two.sided’’)
> dwout

Durbin--Watson test

data: brulelmout2
DW = 1.7589, p-value = 0.4232
alternative hypothesis: true autocorrelation is not 0

This output says that we would have had better than a 40% chance of getting
sample data that produced residuals with as much serial autocorrelation as those in
our dataset even if the true population lag 1 autocorrelation is 0. While this certainly
does not prove that the population autocorrelation really is 0, it suggest that we don’t
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Fig. 10.3 Normal QQ plot of residuals from regression of mean log mercury concentration at the
Brule River MDN site versus year

need to specifically account for temporal correlation in our analysis—the simple
linear regression model probably is adequate.

Let’s examine the regression output.

# uncentered

> summary(brulelmout)

Call:
lm(formula = brulemeanLogHgConcYr ˜ x)

Residuals:
Min 1Q Median 3Q Max

-0.20183 -0.08267 0.02307 0.07616 0.18046

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 48.385393 17.031873 2.841 0.0149 *
x -0.023006 0.008501 -2.706 0.0191 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Residual standard error: 0.1282 on 12 degrees of
freedom
Multiple R-squared: 0.379, Adjusted R-squared: 0.3273
F-statistic: 7.324 on 1 and 12 DF, p-value: 0.01909

> confint(brulelmout)
2.5 % 97.5 %

(Intercept) 11.27613049 85.494656439
x -0.04152854 -0.004484178

# centered

> summary(brulelmout2)

Call:
lm(formula = brulemeanLogHgConcYr ˜ xcent)

Residuals:
Min 1Q Median 3Q Max

-0.20183 -0.08267 0.02307 0.07616 0.18046

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.292155 0.034269 66.888 <2e-16 ***
xcent -0.023006 0.008501 -2.706 0.0191 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.1282 on 12 degrees of
freedom

Multiple R-squared: 0.379, Adjusted R-squared: 0.3273
F-statistic: 7.324 on 1 and 12 DF, p-value: 0.01909

> confint(brulelmout2)
2.5 % 97.5 %

(Intercept) 2.21749013 2.366820717
xcent -0.04152854 -0.004484178

As expected, the estimates of the slope are the same in both models: β̂1 =
−0.0230, implying that the annual mean of log mercury concentration drops by
about −0.023 log units per year on average. The 95% confidence interval for the
slope is (−0.0415,−0.0045).
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The sign of the estimated slope is negative—consistent with the alternative
hypothesis in our one-sided test. The lm function in R automatically reports the
p-value for a two-sided test of the null hypothesis that the slope is zero. To get
the frequentist p-value for our one-sided hypothesis test, we can halve the reported
p-value: 0.0191/2 = 0.0096. Thus, for the frequentist, the result is statistically
significant at any reasonable significance level. The data provide strong evidence
of a negative slope at this site.

Also as expected, the estimates of the intercept differ between the two models.
For the uncentered model, the point estimate is 48.39 log units, and the 95%
confidence interval is extremely wide—(11.28, 85.49). The data contains little
information about what would be going on in the year 0, so there is huge uncertainty
in estimating the intercept in the uncentered model. In the model with covariate
centering, the point estimate of the intercept is 2.292, and the 95% confidence
interval is narrow—(2.217, 2.367).

The residual standard error, 0.1282 in both models, is the point estimate of σ—
the standard deviation of points around the regression line. The unbiased estimate
of σ2 is 0.12822 = 0.0164.

10.2 Introduction to Bayesian Simple Linear Regression

Bayesian simple linear regression is closely related to the normal models that we
encountered in Chap. 7. The difference is that instead of a single population mean,
each observation i has its own mean that depends on the regression coefficients
and the ith covariate value. Detailed descriptions of Bayesian linear regression are
presented in Box and Tiao (1973); Gelman et al. (2004); Lee (2004); Zellner (1971).

In what follows, we will assume that the covariate has been centered, as that
simplifies some calculations.

The likelihood can be written distributionally as follows:

yi|xi,β0,β1,σ2 ∼ N
(
β0 +β1(xi − x̄),σ2) , i = 1, . . . ,n

The parameter of greatest interest in Bayesian simple linear regression usually is
the slope, β1. Thus, we need to find the joint posterior density of all three regression
parameters and then integrate out β0 and σ2 to get the posterior marginal density
of β1.

10.2.1 Standard Noninformative Prior

We will consider first the standard noninformative prior that yields Bayesian
inference analogous to the frequentist results. As in the models with normal
likelihood and both mean and variance unknown, the standard noninformative prior
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in Bayesian regression is the product of independent improper priors on the means-
related parameters and the variance parameter. The parameters related to the means
are the regression coefficients β0 and β1. Multiplying flat priors (proportional to a
constant over the whole real line) on both coefficients times an inverse gamma prior
with both parameters going to 0 for σ2 yields

p(β0,β1,σ2) ∝
1

σ2 , −∞ < β0,β1 < ∞, 0 < σ2 < ∞

We approximate this prior in WinBUGS with either vague normal (or “dflat()”)
priors on β0 and β1 and a very vague gamma prior on the precision parameter.

The three sufficient statistics simplify deriving the joint and marginal posterior
distributions of the regression parameters.

β̂0 = ȳ

β̂1 =
∑i(xi − x̄)(yi − ȳ)

∑i(xi − x̄)2

SSR = ∑
i

(
yi − β̂0 − β̂1(xi − x̄)

)2

Also recall that the sample variance in regression is s2 = SSR
n−2 .

With the standard noninformative prior and a centered covariate, the joint
posterior density is

p(β0,β1,σ2| y) ∝
1

σ2

1

(σ2)(
n
2 )

exp

[−∑i(yi −β0 −β1(xi − x̄))2

2σ2

]

=
1

(σ2)(
n+2

2 )
exp

[

−SSR+ n(β0− β̂0)
2 +∑(xi − x̄)2(β1 − β̂1)

2

2σ2

]

If we integrate β1 out of the joint posterior, we get

p(β0,σ2|y) ∝
1

(σ2)(
n+1

2 )
exp

[

−SSR+ n(β0− β̂0)
2

2σ2

]

To obtain the posterior marginal density of β0, we must integrate σ2 out of the
preceding expression which, after some algebra, produces

β0|y ∼ t

(

β̂0,
s2

n
,n− 2

)

at distribution with mean β̂0, scale parameter s2

n , and degrees of freedom n− 2.
A similar pair of integrations lead to the posterior marginal density that is our
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primary concern:

β1|y ∼ t

(

β̂1,
s2

∑((xi − x̄)2 ,n− 2

)

Based on these t distributions, the Bayesian credible sets for β0 and β1 will have
exactly the same endpoints as the frequentist t confidence intervals for the same
parameters.

And finally,

σ2|y ∼ IG

(
n− 2

2
,

SSR
2

)

10.2.1.1 Verifying that the Posterior Density Is Proper

Recall that whenever a statistician uses an improper prior, he or she must verify
that the data provides sufficient information to make the posterior density proper.
In the case of simple linear regression and the standard improper joint prior, the
data requirements are that the sample size n must be strictly greater than two, and
that not all the covariate values are equal.

10.2.2 Bayesian Analysis of the Brule River Mercury
Concentration Data

Here is OpenBUGS code for a simple Bayesian linear regression analysis of the
Brule River mercury concentration data using a close approximation to the standard
noninformative prior for linear regression. Note that the covariate can be centered
by the WinBUGS/OpenBUGS code itself, as in the for loop at the beginning of the
model program.

model
{
for( i in 1:N) {

xcent[i] <- x[i] - mean(x[])
}
for (i in 1:N) {

mu[i] <- beta0 + beta1 * xcent[i]
y[i] ˜ dnorm( mu[i], tausq )

}
beta0 ˜ dflat()
beta1 ˜ dflat()
tausq ˜ dgamma( 0.001, 0.001)
sigma <- 1 / sqrt(tausq) # regression standard

deviation
}
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Fig. 10.4 OpenBUGS results from regression of mean log mercury concentration at the Brule
River MDN site versus year

#data
list( x = c(1997, 1998, 1999, 2000, 2001, 2002, 2003,

2004, 2005, 2006, 2007, 2008, 2009, 2010),
y = c(2.2952, 2.3435, 2.5512, 2.5531, 2.3918,

2.1546, 2.3596,
2.2431, 2.1725, 2.3162, 2.3504, 2.1926,
1.9638, 2.2025),

N = 14)

# inits
list( beta0 = 0, beta1 = 0, tausq = 1)

Convergence of OpenBUGS samplers for simple linear regression models is
almost instantaneous. You will verify that for this example in an exercise. For now,
we will move on to examine the output.

The OpenBUGS posterior summaries from 3,000 iterations from a single chain
are shown in Fig. 10.4. The posterior means for the regression coefficients are
close to the frequentist m.l.e.s, as we would expect for parameters with symmetric
posterior marginal densities since we are using the noninformative prior. The
posterior densities of tausq and sigma are right skewed, so their posterior means
are larger than their posterior modes; it is the latter that would correspond to the
frequentist m.l.e.s for these parameters.

We can expand our OpenBUGS program to do further inference and prediction.
In the model code below, I have inserted the line

postprob <- step(beta1)

to carry out the Bayesian test of the null hypothesis that β1 ≥ 0. The Win-
BUGS/OpenBUGS step function returns 0 if its argument is negative and 1 if
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its argument is 0 or greater. Thus, the posterior mean of the node postprob will
estimate the posterior probability of the null hypothesis.

In order to predict the value of mean log mercury concentration for the year
2011, I added 2011 to the end of the vector of covariate values and an NA to the
end of the vector of response variable values. Accordingly, I changed N from 14 to
15. I still wanted to center the covariate around the mean of the covariate values
corresponding to the observed response variables (i.e., the first 14 observations in
the dataset); notice the change in the first for loop that makes OpenBUGS ignore
the fake 15th observation when computing the mean.

model
{
for( i in 1:N) {

xcent[i] <- x[i] - mean(x[1:14])
}
for (i in 1:N) {

mu[i] <- beta0 + beta1 * xcent[i]
y[i] ˜ dnorm( mu[i], tausq )

}
beta0 ˜ dflat()
beta1 ˜ dflat()
tausq ˜ dgamma( 0.001, 0.001)
sigma <- 1 / sqrt(tausq)
postprob <- step(beta1) # count the

iterations in which
beta1

}

#data
list( x = c( 1997, 1998, 1999, 2000, 2001, 2002, 2003,

2004, 2005, 2006, 2007, 2008, 2009,
2010, 2011),

y = c(2.2952, 2.3435, 2.5512, 2.5531, 2.3918,
2.1546, 2.3596, 2.2431, 2.1725, 2.3162,
2.3504, 2.1926, 1.9638, 2.2025,NA),

N = 15)

# inits
list( beta0 = 0, beta1 = 0, tausq = 1)

The OpenBUGS posterior summaries from 3,000 iterations from a single chain
are shown in Fig. 10.5.

The statistics for postpred indicate that Pr(β1 ≥ 0|y) is about 0.0089.
Furthermore, the results for y[15] show that the prediction interval for the mean
log mercury concentration in the year 2011 is (1.803, 2.432).
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Fig. 10.5 OpenBUGS results from regression of mean log mercury concentration at the Brule
River MDN site versus year

10.2.3 Informative Prior Densities for Regression Coefficients
and Variance

What if we have prior information that we would like to include in our Bayesian
model? The simplest (and probably most commonly used) procedure is to assume
a priori independence among β0, β1, and σ2 and to place independent proper
normal priors on β0 and β1 and a proper inverse gamma prior on the variance σ2

(or equivalently, a gamma prior on the precision). The product of these three prior
densities is not a conjugate prior, because the resulting posterior density will not
factor into three independent densities from the same families.

10.3 Generalized Linear Models

There are many kinds of response variables for which linear regression based on
a normal likelihood won’t work. The most common example is binary response
variables.

As a concrete application, let’s revisit the telephone survey regarding a sales tax
to support flood prevention measures in Iowa City and Coralville, first introduced
in Problem 4.2. The main question asked whether the person supported the sales
tax; responses could be coded 1 for “yes” and 0 for “no.” The survey also included
demographic questions, such as how long the person had lived in the area.

Suppose we want to model the relationship between years lived in the area
(predictor variable X) and support/nonsupport of the sales tax (response variable Y ).
Two problems with trying to do this with normal linear regression immediately
become obvious. Our model would look like
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E(Yi) = β0 +β1Xi

Since all Yis are zeroes and ones, E(Yi) actually is the probability πi that Yi equals 1,
given the value of Xi. Now, if we fit a frequentist linear regression model, the fitted
values would be

ŷi = β̂0 + β̂1xi

We would hope that the fitted values would be between 0 and 1. However, suppose
that β̂1 is negative (implying that longer residence in the area is associated with
lower probability of supporting the sales tax). It is almost certain that for some very
large values of xi, the corresponding ŷis would be negative. On the other hand, if β̂1

turned out to be positive, very large xis would produce ŷis that were greater than 1.
Furthermore, an assumption of normal linear regression is that the errors follow

a normal distribution. Recall that the errors εi are the differences between the actual
values of the Y variable and the values predicted by the true population regression
equation.

εi = Yi −β0 −β1Xi

If all the Yis are zeroes and ones, subtracting a linear function of the predictor
variable from each is not likely to produce draws from a normal density.

Binary data are not the only kind of response variables for which normal
linear regression is a poor choice. Count data, which might arise from a Poisson
distribution, are another common example.

A class of models that works well in these cases is called generalized linear
models or GLMs McCulloch and Nelder (1989); Nelder and Wedderburn (1972).
The idea is that, instead of modeling the expected value of the response variable
directly, we model a transformation of it.

For binary response variables, several transformations work well for this pur-
pose, but by far, the most commonly used is the logit transformation, which we
encountered in Sect. 5.3.3.1.

logit(πi) = log

(
πi

1−πi

)

While a probability πi must lie in the interval [0,1], a logit may be anywhere on
the whole real line. (Verify this for yourself by attempting to evaluate logit(0),
logit(0.5), and logit(1)). Thus, the first problem with regression with a binary
response variable is eliminated. Binary regression using the logit transformation
is called logistic regression. An excellent textbook on frequentist logistic regression
is Hosmer and Lemeshow (2000).

WinBUGS and OpenBUGS provide a simple but surprising syntax for fitting
Bayesian logistic regression models, as illustrated in the “Beetles” program in
Volume II of WinBUGS/OpenBUGS examples.

The data (first published in Bliss 1935) involves eight groups of approximately
60 beetles each that were exposed to different doses of an insecticide. The variables
for each group i are as follows: ri is the number of beetles killed, xi is the log of the
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insecticide dose, and ni is the number of beetles in the group. Below is the code, to
which I have added comments on the most important lines.

model
{

for( i in 1 : N ) {
# likelihood: each r[i] is a draw from a binomial
# distribution with success probability p[i] and
# number of trials n[i]

r[i] ˜ dbin(p[i],n[i])
# the logit of p[i] is a linear function of the
# centered log dose x[i]

logit(p[i]) <- alpha.star + beta * (x[i] - mean(x[]))
#probit(p[i]) <- alpha.star + beta * (x[i] - mean(x[]))
#cloglog(p[i]) <- alpha.star + beta * (x[i] - mean(x[]))
rhat[i] <- n[i] * p[i]

}
alpha <- alpha.star - beta * mean(x[])
beta ˜ dnorm(0.0,0.001)
alpha.star ˜ dnorm(0.0,0.001)

}

The parameter of greatest interest is the slope β . A positive slope is expected,
indicating that higher doses of insecticide are associated with higher probabilities
of beetles being killed. The interpretation of the slope β in logistic regression with
a single covariate is that, for each one-unit increase in the value of the predictor
variable, we expect a β -unit change in the log odds of the response variable Y being
equal to 1. An equivalent statement that is a little bit more understandable is the for
each one-unit increase in the value of the predictor variable, the odds in favor of
Y = 1 are multiplied by exp(β ).

The results reported in the Beetles example in WinBUGS/OpenBUGS is that the
posterior mean of the slope on log of insecticide dose is 34.29. This means that each
increase of one log unit in insecticide dose multiplies the log of the odds in favor of
beetles being killed by 34.29.

The two lines that are commented out code other choices of transformations that
can be used in regression with binary response variables, the probit transformation
and the complementary log-log transformation. Like the logit transformation, both
of these map the interval [0,1] to the whole real line. You will work with this
example in Problem 11.4 in Chap. 11.

For an in-depth discussion of Bayesian generalized linear models, see Chap. 16
of Gelman et al. (2004).

10.4 Hierarchical Normal Linear Models

Hierarchical normal linear models combine the principles of hierarchical models
and Bayesian regression. They are needed when we want to use regression
to relate covariates and response variables, but the problem we are consider-
ing is inherently hierarchical in structure and/or the observations in our dataset
are grouped. Early presentations of Bayesian hierarchical normal linear models
are (Lindley and Smith 1972; Novick et al. 1972).
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10.4.1 Example: Estimating the Slope of Mean Log Mercury
Concentration Throughout North America Using Data
from Multiple MDN Sites

I would like to use the MDN data to estimate the overall mean slope on year
of log mercury concentration for all of North America, and I would like to
assess the variability among slopes in different locations. For this purpose, I will
randomly select one site from each of six regions in North America: northeastern,
southeastern, north central, south central, northwestern, and southwestern.

What would be wrong with combining the annual mean log mercury concentra-
tion data from all six sites together and doing a simple linear regression (Bayesian or
frequentist) to estimate the intercept and slope on year? The problem is that, due to
differing conditions of climate, emissions, etc. at each site, the observations within
each site are likely to be correlated—to be more similar to each other than to the
observations at other sites. For example, perhaps a site in Pennsylvania always has
higher mercury concentrations in rainfall than the Brule River site. Such clustering
violates the independence assumption of linear regression. If we analyze data as if
they are independent when they are not, we tend to underestimate the uncertainty in
our inference.

One possible way of modeling the correlation among repeated measurements at
the same site is to let each site have its own pair of regression coefficients—its own
intercept and its own slope on year. We might be able to assume that, given the site-
specific regression coefficients, the observations within each site are conditionally
independent of each other and of the observations at other sites. We might consider
the intercept–slope pairs from the six sites in our dataset as random draws from the
population of the intercept–slope pairs from all possible locations in North America
where MDN rain gauges could be placed. The mean of the population distribution
of slopes is our parameter of greatest interest.

10.4.2 Stages of a Hierarchical Normal Linear Model

As always, the first stage of the model provides the distribution of the data given
certain model parameters. Let yi j represent the observed value of mean log mercury
concentration at site i in year ti j, i = 1, . . . ,N = 6 and j = 1, . . . ,14. Then the
likelihood may be expressed as

yi j|α0i,α1i,τ2
y ∼ N

(

α0i +α1iti j,
1
τ2

y

)

where τ2
y is the precision of the points around the site-specific regression line, and

α0i and α1i are the site-specific intercept and slope. This model assumes that all sites
share the same precision parameter; other assumptions could be made.
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There are at least two different ways of formulating the second stage of the
model. Both assume that the site-specific intercepts α0,i and α1,i are draws from
normal densities centered at the overall mean intercept and slope for North America,
represented by β0 and β1.

10.4.3 Univariate Formulation of the Second Stage

In the univariate formulation, the second-stage prior consists of independent normal
densities for the site-specific intercepts and slopes:

α0i|β0,τ2
α0

∼ N

(

β0,
1

τ2
α0

)

α1i|β1,τ2
α1

∼ N

(

β1,
1

τ2
α1

)

Here the precision parameter τ2
α0

captures the variability among intercepts at
different sites. If this precision is small (so its inverse, the between-intercept
variance, is large), then the intercepts at different sites tend to be very different from
one another. Similarly, the precision parameter τ2

α1
captures how different the slopes

on year are at different sites. As expected in a hierarchical model, the parameters in
the second-stage priors (β0, β1, τ2

α0
, and τ2

α1
) are all unknown quantities that we

wish to estimate.

10.4.4 Bivariate Formulation of the Second Stage

The univariate formulation described in the previous section generally works fairly
well. However, it does not include any parameter that captures correlation between
intercepts and slopes. A bivariate normal joint prior on the intercept–slope pairs is
needed to do that:

[
α0i

α1i

]

|
[

β0

β1

]

,Σα ∼ N2

([
β0

β1

]

,Σα

)

Here Σα is the variance–covariance matrix of the bivariate normal prior density.
The upper left hand entry is the variance of the site-specific intercepts; the lower
right-hand entry is the variance of the site-specific slopes, and the off-diagonal
entries are the covariance between the site-specific intercepts and slopes. If sites
with larger intercepts tend also to have larger slopes, then the covariance will be
positive; if the opposite is the case, it will be negative. The inverse of the variance–
covariance matrix is the precision matrix. As you might guess, WinBUGS and
OpenBUGS parameterize multivariate normal densities in terms of their means and
precision matrices.
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This bivariate formulation has one more parameter (the covariance) than the
univariate version. Thus, it is a bit more complicated, but it also gives more
information about the relationship between site-specific intercepts and slopes.

10.4.5 Third Stage: Univariate Formulation

The third stage consists of prior distributions for all the remaining unknown param-
eters. The conventional, semi-conjugate priors are as follows (with the symbols on
the right-hand side of each representing fixed, known numbers):

β0 ∼ N

(

μ0,
1

τ2
0

)

β1 ∼ N

(

μ1,
1

τ2
1

)

τ2
y ∼ G(ay,by)

τ2
α0

∼ G(aα0 ,bα0)

τ2
α1

∼ G(aα1 ,bα1)

The prior on τ2
y can be very vague, because the observed data values make

estimation of this precision parameter quite easy. However, τ2
α0

and τ2
α1

are the
precisions of unknown and unobservable parameters. If we put improper gamma
priors on them, the joint posterior density of all the model unknowns would be
improper. Even vague proper priors on τ2

α0
and τ2

α1
can lead to model instability and

slow convergence of an MCMC sampler for model fitting.

10.4.6 Third Stage: Bivariate Formulation

If the bivariate formulation is used at the second stage of the hierarchical normal
linear model, the corresponding semi-conjugate third-stage priors are as follows:

[
β0

β1

]

|
[

μ0

μ1

]

,Σ0 ∼ N2

([
μ0

μ1

]

,Σ0

)

τ2
y ∼ G(ay,by)

Σ−1
α ∼ Wishart(R[2,2],ρ)
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The Wishart density is new to us, and we will devote an entire subsection to it
and its implementation in WinBUGS/OpenBUGS.

10.4.7 The Wishart Density

The Wishart distribution is the conjugate prior for the precision matrix of a
multivariate normal distribution with known mean. It is the standard choice of prior
for precision matrices in realistic multivariate normal-based models with means
(and possibly many other parameters) unknown because it leads to a Wishart full
conditional distribution for the precision matrix that simplifies MCMC-based model
fitting. The two parameters of the Wishart distribution are a mean matrix and a scalar
parameter called the degrees of freedom.

We have mentioned elsewhere in this textbook that many common distributions
are parameterized differently by different authors and software packages. This is
certainly (and confusingly) the case with the Wishart density. If X denotes a p× p
symmetric, positive definite random matrix, R is a fixed p× p symmetric, positive
definite matrix, ν is a strictly positive scalar, and the p.d.f. of X is

p(X |R,ν) ∝ |R| ν
2 |X | ν−p−1

2 exp

[

−1
2

tr(RX)

]

(10.2)

then the references below define the two parameters as follows:

Reference Parameterization

Spiegelhalter et al. (1995) X ∼ dwish(R,ν)
Anderson (1984)
Carlin and Louis (2000) X ∼ dwish(R−1,ν)
Gelman et al. (2004)
Robert (2007)

Box and Tiao (1973) X ∼ dwish(R−1,ν − p+ 1)

In this textbook, we will use the WinBUGS/OpenBUGS parameterization. The
Wishart distribution is proper if ν (the degrees of freedom) is ≥ p (the dimension of
the matrix on which we are placing the Wishart prior). If X ∼ dwish(R,ν), and Xi j

is the entry in the ith column and j row of X , then the moments are as follows:

E(Xi j) = ν(R−1)i j

Var(Xi j) = ν
[
(R−1)2

i j +(R−1)ii(R
−1) j j

]

Cov(Xi j,Xkl) = ν
[
(R−1)ik(R

−1) jl +(R−1)il(R
−1) jk

]

Note that the gamma distribution is a special (one-dimensional) case of the
Wishart. If X and R are scalars, and the p.d.f. of X is proportional to x

ν
2 −1exp

(−Rx
2

)

then
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W (R,ν) = G

(
ν
2
,

R
2

)

WinBUGS and OpenBUGS do not allow the use of their Wishart distribution with
one-dimensional matrices, however.

If X ∼ dwish(R,ν), then X−1 has an inverse Wishart distribution: X−1 ∼
IW (R,ν), where

E
(

X−1
i j

)
=

Ri j

ν − p− 1

The inverse Wishart distribution is always proper; however, it has a degenerate
form if ν < p, and obviously the first moment is negative or infinite unless ν > p+1.

Since statisticians and subject-matter experts tend to be better able to think
in terms of variances and correlations rather than elements of precision matrices,
the following way of specifying a prior on a covariance matrix, say Σ , in Win-
BUGS/OpenBUGS is attractive:

1. Let S equal your prior guess for the mean of the p × p variance/covariance
matrix Σ .

2. Choose a degrees-of-freedom parameter ν (> p+ 1) that roughly represents an
“equivalent prior sample size”—your belief in S as the value of Σ is as strong as
if you had seen ν previous vectors with sample covariance matrix S.

3. Define a matrix Ω = (ν − p− 1)S.
4. In WinBUGS, put a Wishart(Ω ,ν) prior on the corresponding precision ma-

trix Σ−1:

Sigmainv[1:p,1:p] ˜ dwish( Omega[,], nu )

Then

• E(Σi, j) = Si, j.
• The larger ν is, the smaller the prior variance is.
• E(Σ−1

i, j ) =
ν

ν−p−1(S
−1)i, j .

If you have used the above procedure and you wish to monitor the elements of
the variance/covariance matrix Σ , then you must add a line to your program that
uses the inverse function to invert the precision matrix:

Sigma[1:p,1:p] <- inverse(Sigmainv[,])

10.5 WinBUGS Examples for Hierarchical Normal Linear
Models

The volumes of examples provided in the drop-down menus in WinBUGS and
OpenBUGS include examples of hierarchical normal linear models with both the
univariate and the bivariate formulations of the second and third stages. Their
example dataset, used in Gelfand and Smith (1990), has the weights in grams of 30
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baby rats who were weighed every 7 days from age 8 days to 36 days. The covariate
is age in days at time of each weighing. The model gives each baby rat his or her
own regression line (called a growth curve in this context) defined by an intercept
and a slope. The parameter of greatest interest is the population mean growth rate
(in grams per day) of baby rats of the species of interest being fed the diet used in
the study. In my notation in Sects. 10.4.3 and 10.4.4, this parameter is β1.

10.5.1 Example with Univariate Formulation at Second and
Third Stages

Below are the code, data, and initial values given in the WinBUGS Volume 1
example called “Rats.” I am quoting it in full here because as of this writing (January
2012), the version included in OpenBUGS does not include the alternative priors at
the third stage.

model
{

for( i in 1 : N ) {
for( j in 1 : T ) {

Y[i , j] ˜ dnorm(mu[i , j],tau.c)
mu[i , j] <- alpha[i] + beta[i] * (x[j] - xbar)

}
alpha[i] ˜ dnorm(alpha.c,tau.alpha)
beta[i] ˜ dnorm(beta.c,tau.beta)

}
tau.c ˜ dgamma(0.001,0.001)
sigma <- 1 / sqrt(tau.c)
alpha.c ˜ dnorm(0.0,1.0E-6)

# Choice of prior of random effects variances
# Prior 1: uniform on SD
sigma.alpha˜ dunif(0,100)
sigma.beta˜ dunif(0,100)
tau.alpha<-1/(sigma.alpha*sigma.alpha)
tau.beta<-1/(sigma.beta*sigma.beta)

#Prior 2: (not recommended)
#tau.alpha ˜ dgamma(0.001,0.001)

beta.c ˜ dnorm(0.0,1.0E-6)

alpha0 <- alpha.c - xbar * beta.c
}

Data
list(x = c(8.0, 15.0, 22.0, 29.0, 36.0), xbar = 22, N = 30, T = 5,

Y = structure(
.Data = c(151, 199, 246, 283, 320,

145, 199, 249, 293, 354,
147, 214, 263, 312, 328,
155, 200, 237, 272, 297,
135, 188, 230, 280, 323,
159, 210, 252, 298, 331,
141, 189, 231, 275, 305,
159, 201, 248, 297, 338,
177, 236, 285, 350, 376,
134, 182, 220, 260, 296,
160, 208, 261, 313, 352,
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143, 188, 220, 273, 314,
154, 200, 244, 289, 325,
171, 221, 270, 326, 358,
163, 216, 242, 281, 312,
160, 207, 248, 288, 324,
142, 187, 234, 280, 316,
156, 203, 243, 283, 317,
157, 212, 259, 307, 336,
152, 203, 246, 286, 321,
154, 205, 253, 298, 334,
139, 190, 225, 267, 302,
146, 191, 229, 272, 302,
157, 211, 250, 285, 323,
132, 185, 237, 286, 331,
160, 207, 257, 303, 345,
169, 216, 261, 295, 333,
157, 205, 248, 289, 316,
137, 180, 219, 258, 291,
153, 200, 244, 286, 324),

.Dim = c(30,5)))

#inits
# for model with prior 1
list(alpha = c(250, 250, 250, 250, 250, 250, 250, 250, 250,

250, 250, 250, 250, 250, 250,
250, 250, 250, 250, 250, 250, 250, 250, 250,
250, 250, 250, 250, 250, 250),

beta = c(6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6),

alpha.c = 150, beta.c = 10,
tau.c = 1, sigma.alpha = 1, sigma.beta = 1)

#for model with prior 2
list(alpha = c(250, 250, 250, 250, 250, 250, 250, 250, 250,

250, 250, 250, 250, 250, 250,
250, 250, 250, 250, 250, 250, 250, 250, 250,
250, 250, 250, 250, 250, 250),

beta = c(6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6),

alpha.c = 150, beta.c = 10,
tau.c = 1, tau.alpha = 1, tau.beta = 1)

In the WinBUGS symbols for the model, each baby rat has his or her own
intercept and slope, αi and βi. Since the baby rats in the study are considered a
random sample from the population of this type of rat fed the diet used in the study,
the individual intercepts αi are modeled as random draws from the population of
intercepts of all such rats. Similarly, the individual slopes βi are modeled as random
draws from the population of slopes (growth rates) of all such rats. The mean of the
population distribution of slopes, called βc in the WinBUGS code, is the parameter
of greatest interest.

Note that the covariate, age, is centered in this model. Thus, the intercept
parameters (the αs and αc) relate to the weights at the mean of the covariate values,
which is 22 days.

In the WinBUGS notation, τα and τβ are the precision parameters in the
normal priors on the αis and βis, respectively. As mentioned in Sect. 10.4.5,
placing very vague gamma priors on the precision parameters of these unobserved
regression parameters leads to an almost improper posterior density and poor



202 10 Regression and Hierarchical Regression Models

MCMC convergence. Therefore, in the WinBUGS example, an alternative prior—
specified on the standard deviations rather than on the precisions themselves—is
recommended.

Note that using different parameterizations in the third-stage priors requires
different sets of initial values. Initial values must be provided for parameters that
have priors—not for deterministic transformations of those parameters. Thus, the
first set of initial values given above, which goes with “Prior 1,” has initial values
for the standard deviations σα and σβ , whereas the second set of initial values (for
“Prior 2”) has initial values for τα and τβ .

10.5.2 Example with Bivariate Formulation at Second
and Third Stages

The “Birats” example from Volume 2 of WinBUGS/OpenBUGS examples uses the
same dataset on baby rats but illustrates the bivariate formulation of the priors in the
second and third stages. Below are code, initial values, and data from this example,
which is the same in both WinBUGS and OpenBUGS:

model
for( i in 1 : N ) {

beta[i , 1:2] ˜ dmnorm(mu.beta[], R[ , ])
for( j in 1 : T ) {

Y[i , j] ˜ dnorm(mu[i , j], tauC)
mu[i , j] <- beta[i , 1] + beta[i , 2] * x[j]

}
}

mu.beta[1:2] ˜ dmnorm(mean[],prec[ , ])
R[1:2 , 1:2] ˜ dwish(Omega[ , ], 2)
tauC ˜ dgamma(0.001, 0.001)
sigma <- 1 / sqrt(tauC)

}

# Inits
list(mu.beta = c(0,0), tauC = 1,

beta = structure(
.Data = c(100,6,100,6,100,6,100,6,100,6,

100,6,100,6,100,6,100,6,100,6,
100,6,100,6,100,6,100,6,100,6,
100,6,100,6,100,6,100,6,100,6,

100,6,100,6,100,6,100,6,100,6,
100,6,100,6,100,6,100,6,100,6),
.Dim = c(30, 2)),

R = structure(.Data = c(1,0,0,1), .Dim = c(2, 2)))

#Data

list(x = c(8.0, 15.0, 22.0, 29.0, 36.0), N = 30, T = 5,
Omega = structure(.Data = c(200, 0, 0, 0.2), .Dim = c(2, 2)),
mean = c(0,0),
prec = structure(.Data = c(1.0E-6, 0, 0, 1.0E-6),

.Dim = c(2, 2)),
Y = structure(

.Data = c(151, 199, 246, 283, 320,
145, 199, 249, 293, 354,
147, 214, 263, 312, 328,
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155, 200, 237, 272, 297,
135, 188, 230, 280, 323,
159, 210, 252, 298, 331,
141, 189, 231, 275, 305,
159, 201, 248, 297, 338,
177, 236, 285, 350, 376,
134, 182, 220, 260, 296,
160, 208, 261, 313, 352,
143, 188, 220, 273, 314,
154, 200, 244, 289, 325,
171, 221, 270, 326, 358,
163, 216, 242, 281, 312,
160, 207, 248, 288, 324,
142, 187, 234, 280, 316,
156, 203, 243, 283, 317,
157, 212, 259, 307, 336,
152, 203, 246, 286, 321,
154, 205, 253, 298, 334,
139, 190, 225, 267, 302,
146, 191, 229, 272, 302,
157, 211, 250, 285, 323,
132, 185, 237, 286, 331,
160, 207, 257, 303, 345,
169, 216, 261, 295, 333,
157, 205, 248, 289, 316,
137, 180, 219, 258, 291,
153, 200, 244, 286, 324),

.Dim = c(30,5)))

In this code, the ith baby rat’s intercept–slope pair is denoted beta[i,1:2].
This means that WinBUGS considers all these pairs as a matrix with 30 rows
(the number of rats) and 2 columns. The likelihood defines the probability density
function of each data point Y[i,j] given the individual rat’s intercept and slope
and the common precision tauC.

for( i in 1:N ) {

for( j in 1 : T ) {
Y[i , j] ˜ dnorm(mu[i , j], tauC)
mu[i , j] <- beta[i , 1] + beta[i , 2] * x[j]

}
}

The second-stage prior on the βis is expressed in the lines

for (i in 1:N) {
beta[i , 1:2] ˜ dmnorm(mu.beta[], R[ , ])

}

dmnorm is the WinBUGS/OpenBUGS name for the multivariate normal density.
mu.beta is the vector containing the population mean intercept and slope, so
mu.beta[2] is the population slope of greatest substantive interest. R[ , ] is
the precision matrix of the multivariate normal prior. Note that the dimension(s)
of vectors or matrices must be specified for the quantity on the left side of the ∼
character and are not needed for quantities on the right side. In this line of code,
the “1:2” in beta[i,1:2] tells WinBUGS that each beta[i, ] is a vector of
length 2, so the mean of its multivariate normal density (mu.beta[]) must also be
of length 2, and the precision matrix R[ , ] must be 2 by 2.
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The third-stage prior densities are expressed in the following lines (which are
outside of any for loop):

mu.beta[1:2] ˜ dmnorm(mean[],prec[ , ])
R[1:2 , 1:2] ˜ dwish(Omega[ , ], 2)
tauC ˜ dgamma(0.001, 0.001)

Since this is the last stage of the model, all of the parameters in these priors must be
known constants. The easiest way to assign constant values to vectors and matrices
in OpenBUGS/WinBUGS is to put those numbers in the data list rather than the
model code. That is what was done in this example, in the following lines from the
data list:

Omega = structure(.Data = c(200, 0, 0, 0.2), .Dim = c(2, 2)),
mean = c(0,0),
prec = structure(.Data = c(1.0E-6, 0, 0, 1.0E-6), .Dim = c(2, 2)),

Note how a matrix is defined within a structure function. The .Data
component contains the numeric values in order row by row. The .Dim component
provides the number of rows followed by the number of columns.

In choosing the numeric values for the Omegamatrix, the authors of the example
did not follow the procedure that I recommended in Sect. 10.4.7. Instead they opted
to make their prior as noninformative as possible while still keeping it proper;
therefore, they set the degrees-of-freedom parameter equal to 2—the same as the
dimension of the matrix. The combination of this minimally informative prior with
the lack of covariate centering leads to slow convergence of the MCMC sampler for
this problem.

Problems

10.1. Rerun the WinBUGS/OpenBUGS Bayesian regression from Sect. 10.2.2.
Run 3 parallel chains (make up your own additional sets of initial values), and run
them for at least 5,000 iterations.

1. Verify that convergence is immediate using the convergence-assessment methods
that you know.

2. Compare your Bayesian estimates of the regression coefficients to the frequentist
results given in Sect. 10.1.3.

3. Compare your estimate posterior probability that β1 > 0 to the frequentist
p-value. In a one-sided hypothesis test like this one, when the standard nonin-
formative prior is used in the Bayesian analysis, these two probabilities should
be equal. Explain how their interpretations differ.

10.2. Carry out a new Bayesian regression analysis of the Brule River MDN data,
this time with informative priors on the regression coefficients. Assume that you had
previous information that the population intercept is likely to be in the interval (1.5,
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2.5) and the population slope in the interval (−0.5, 0.5). Convert this information
into normal prior densities on the appropriate parameters. Use a vague prior on the
precision. Run the new model, and comment on how results differ from those in the
previous problem.

10.3. The data for this problem, in WinBUGS/OpenBUGS format, may be down-
loaded from the textbook web page. The file is called MDN6sites.txt. It presents
annual means of log mercury concentration for 6 sites monitored by the Mercury
Deposition Network for each year in 1997 through 2010. Because the sites are
hundreds of miles apart (one in each of 6 regions of the U.S.), we do not need
to worry about spatial correlation among the values.

Use WinBUGS or OpenBUGS to fit a hierarchical normal linear model to
these data, giving each site its own intercept and slope on year. You may use the
WinBUGS examples discussed in Sect. 10.5 as templates. Your instructor will tell
you whether to use the univariate formulation (the “Rats” example) or the bivariate
formulation (the “Birats” example).

You will need to choose different initial values and possibly different priors for
your analysis from those that worked for the baby rats data.

1. Fit a hierarchical normal linear model to the data. Turn in your code, data list,
and initial values list.

2. Assess convergence in the ways that you have learned. You do not have to print
any plots; just write a few sentences telling what you did.

3. Produce estimated posterior means and 95% credible sets for the following
quantities:

a. The estimated population intercept of mean log mercury concentration for
all sites at the beginning of the observation period—1997. (If you center the
covariate, think about how to do this.)

b. The estimated population slope of mean log mercury concentration on year
for the entire continent.

c. The standard deviation of mean log mercury concentration around the site-
specific regression lines.

d. The standard deviation that captures between-site variability in slopes.
e. The individual intercept and slope for site 2.



Chapter 11
Model Comparison, Model Checking,
and Hypothesis Testing

“All models are wrong. Some models are useful.” This well-known quotation by the
statistician George E. P. Box captures one challenge facing the applied statistician:
how to determine whether the statistical model(s) entertained to address a particular
research question is not wrong in ways that lead to useless or incorrect conclusions
regarding important aspects of the question at hand.

In most real data analysis situations, researchers consider several statistical
models that might be appropriate for the application. They establish criteria
for determining which of the candidate models is best, and whether even that
model is good enough to use as the basis for inference. This chapter explores
Bayesian methods of comparing models, testing hypotheses, and assessing model
adequacy. Specifically, we look at two Bayesian tools for model comparison—
Bayes factors (Kass and Raftery 1995) and the more recently proposed Deviance
Information Criterion (Spiegelhalter et al. 2002). We then see how to apply posterior
predictive model checking (Gelman et al. 1996) to determine whether a chosen
model is adequate for the research purpose.

11.1 Bayes Factors for Model Comparison
and Hypothesis Testing

We first will investigate Bayes factors, which have a long history in Bayesian model
comparison and hypothesis testing.

11.1.1 Bayes Factors in the Simple/Simple Case

Let’s first consider the most straightforward application of Bayes factors—that of
making a decision between two models for the state of the world, or equivalently,

M.K. Cowles, Applied Bayesian Statistics: With R and OpenBUGS Examples,
Springer Texts in Statistics 98, DOI 10.1007/978-1-4614-5696-4 11,
© Springer Science+Business Media New York 2013
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Table 11.1 Prior likelihood, and posterior probabilities

Prior Likelihood Prior × Posterior
Model probabilities for M+ likelihood probabilities

M0 No breast cancer 0.9955 0.0274 0.0273 0.893
M1 Breast cancer 0.0045 0.724 0.0033 0.107

between two simple hypotheses about an unknown parameter. Recall that a simple
hypothesis is a statement that a parameter takes on a specific value.

As an example, let’s revisit the breast cancer problem from Chap. 1. Recall that
the two possible states of the world (or models) were that my friend had breast
cancer and that she did not have breast cancer (with prior probabilities 0.0045
and 0.9955, respectively). Furthermore, the probability of a positive screening
mammogram was 0.724 for a woman who has breast cancer and 0.0274 for a
woman who does not. Table 11.1 is a rearrangement of Table 1.3, in which we used
Bayes’ theorem to move from the prior probabilities of the two models, through the
likelihood, to the posterior probabilities.

Since the model (breast cancer or not) determines the probability of a positive
mammogram, this problem can be cast equivalently as a hypothesis test about
the parameter representing this probability. If we call the parameter π , then the
hypotheses would be written as

H0 : π = 0.0274

H1 : π = 0.7240

The prior probabilities on the two models can also be interpreted as the prior
probabilities on the two possible values of π and hence on the null and alternative
hypotheses. Both H0 and H1 are simple hypotheses, because each states that the
unknown parameter is equal to a single numeric value.

11.1.1.1 Prior Odds and Posterior Odds

The notion of odds is needed as preparation for Bayes factors. In probability as in
horse racing, the odds in favor of any event or statement is a ratio—the probability
that the event occurs (or the statement is true) over the probability that the event
does not occur (or the statement is false).

In a Bayesian analysis in which there are only two possible states of the world,
M0 and M1 (or equivalently, two simple hypotheses, H0 and H1) to compare, the
prior probability Pr(M0) = 1− Pr(M1). Thus, the prior odds in favor of M1 (or
H1) are

Pr(M1)

Pr(M0)
=

Pr(H1)

Pr(H0)
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In the mammogram example, the prior odds in favor of my friend having
breast cancer (or of the probability of her mammogram coming out positive being
0.7240) are

Pr(M1)

Pr(M0)
=

Pr(H1)

Pr(H0)
=

0.0045
0.9955

= 0.00452

The posterior odds in favor of a model or a hypothesis are the analogous ratio of
posterior probabilities:

Pr(M1|y)
Pr(M0|y) =

Pr(H1|y)
Pr(H0|y)

where y represents the observed data.
In the mammogram example, the posterior odds in favor of my friend having

breast cancer (or of π = 0.7240) are

Pr(M1|+)

Pr(M0|+)
=

Pr(H1|+)

Pr(H0|+)
=

0.107
0.893

= 0.120

where “+” indicates that the data value was a positive test.

11.1.1.2 The Bayes Factor

The Bayes factor in favor of a model or hypothesis is the ratio of the posterior odds
to the prior odds. Thus, the Bayes factor in favor of Model 1 versus Model 0 is

BF1,0 =

Pr(M1|y)
Pr(M0|y)
Pr(M1)

Pr(M0)

(11.1)

In the simple/simple case, (11.1) simplifies:

BF1,0 =

Pr(M1|y)
Pr(M0|y)
Pr(M1)

Pr(M0)

=

Pr(M1)Pr(y|M1)

Pr(M0)Pr(y|M0)

Pr(M1)

Pr(M0)

=
Pr(y|M1)

Pr(y|M0)
(11.2)
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That is, in the simple/simple case, the Bayes factor is the ratio of the likelihoods
under the two competing models or hypotheses. In other words, it is the evidence
contained in the data alone (uninfluenced by the prior) in favor of one model or the
other.

In the mammogram example, (11.1) yields the following value of the Bayes
factor in favor of Model 1:

BF1,0 =
0.120

0.00452
= 26.5

while (11.2) gives

BF1,0 =
0.0724
0.0274

= 26.4

The small difference is due to rounding error.

11.1.2 Interpreting a Bayes Factor

Recall that BF1,0 in the simple/simple case is the weight of evidence contained in the
data alone in favor of M1 versus M0. Thus, it ignores any evidence provided by the
prior. (In the mammogram example, the prior information concerns the extremely
small proportion of women who actually have breast cancer when they have their
first screening mammogram). The Bayes factor usually is reported on the log10

scale. A review paper by Kass and Raftery (1995) recommends the interpretations
of intervals of values of the Bayes factor shown in Table 11.2:

For example, the Bayes factor in the mammogram problem would provide strong
evidence against the null hypothesis of no breast cancer.

11.1.3 The Bayes Factor in More General Models

In general Bayesian models, calculation of the Bayes factor is usually conceptually,
but not computationally, straightforward.

First, remember that, in general models, Bayes rule, stated in terms of equality
rather than proportionality, says

p(θ |y) =
p(θ )p(y|θ )

∫
p(θ )p(y|θ )dθ

where θ denotes the vector of unknown parameters in the model.
The denominator—the normalizing constant required to make the joint posterior

density integrate to 1—is
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∫

p(θ )p(y|θ )dθ

=

∫

p(θ ,y)dθ

= p(y)

This denominator is called the marginal likelihood. It does not depend on any
parameter values, since the parameters have been integrated out. The numeric value
of the marginal likelihood is determined by the data and the entire Bayesian model
(the form of the likelihood and all levels of priors). It is intuitively clear that if two
different Bayesian models are fit to the same data, the model with the larger marginal
likelihood is more consistent with the data.

Suppose we wish to compare models M1 and M0 for the same data. The two
models may have different likelihoods, different numbers of unknown parameters,
etc. For example, we might want to compare a model with a normal likelihood and
priors on the unknown mean and variance to a model with a t likelihood and priors
on the unknown mean, scale parameter, and degrees of freedom parameter, or we
might want to compare two non-nested regression models.

The Bayes factor in the general case is the ratio of the marginal likelihoods under
the two candidate models. That is, if θ1 and θ0 denote parameters under models M1

and M0 respectively, then

p(y|M1) =

∫

p(θ1)p(y|θ1)dθ1

p(y|M0) =

∫

p(θ0)p(y|θ0)dθ0

BF10 =
p(y|M1)

p(y|M0)

In this case, the Bayes factor cannot be interpreted as the evidence in the data
alone, because clearly the priors affect each marginal likelihood and therefore the
Bayes factor itself.

In realistically complex models, the integrations required to calculate marginal
likelihoods (and therefore, Bayes factors for model comparison) analytically are
infeasible. Some approaches to using MCMC output to approximate marginal
likelihoods and Bayes factors are discussed in Carlin and Chib (1995); Chib (1995);
Chib and Jeliazkov (2001), and Cowles (2003). Carlin and Chib’s method, the
only one of these that can be implemented straightforwardly in WinBUGS/Open
BUGS, is illustrated in the “Pines” example from Volume III of the examples
included in OpenBUGS and on the webpage http://www.mrc-bsu.cam.ac.uk/bugs/
documentation/exampVol2/node20.html.

http://www.mrc-bsu.cam.ac.uk/bugs/documentation/exampVol2/node20.html
http://www.mrc-bsu.cam.ac.uk/bugs/documentation/exampVol2/node20.html
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11.2 Bayes Factors and Bayesian Hypothesis Testing

The more general form of the Bayes factor also can be used in Bayesian hypothesis
testing. Here, only one model is being considered, and the goal is to compare
two different sets in which the parameter or parameters could lie. Generically,
if θ represents the parameter of interest in a model and Θ0 and Θ1 are two
nonoverlapping regions that cover the entire possible range of values of θ , then

H0 : θ ∈Θ0

H1 : θ ∈Θ1

Carrying out this Bayesian hypothesis test involves calculating posterior proba-
bilities:

P(θ ∈Θ0|y)
P(θ ∈Θ1|y)

To illustrate, we revisit the simplified example of mercury in fish tissue from
Sect. 6.2.8, for which the Bayes factor can be computed easily. Recall that we had
data on log-transformed concentrations of mercury in 21 samples of tissue from
fish caught in the Des Moines River. Furthermore, the Natural Resources Defense
Council defines low mercury concentration in fish as less than 0.09 parts per million,
or less than−2.41 on the log scale. We wish to use our data to test the null hypothesis
that the population mean μ of mercury concentration in fish in the Des Moines River
falls into that “low” category. Thus, our hypotheses are

H0 : μ ≤−2.41

H1 : μ > 2.41

In Sect. 6.2.8, we assumed that our sample data yi, i = 1, . . . ,21 were draws from
a normal distribution with unknown mean μ and known variance σ2 = 1

2.5 . Thus,
the likelihood could be expressed as

ȳ|μ ∼ N

(

μ ,
1

21× 2.5

)

We specified a conjugate normal prior on μ :

μ ∼ N

(

−2.75,
1

7.5

)

This prior density induces prior probabilities on the two hypotheses:
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Table 11.2 Kass and
Raftery’s table for
interpreting Bayes factors

log10(B10) B1,0 Evidence against H0 (or M0)

0 to 1/2 1 to 3.2 Not worth more than bare mention
1/2 to 1 3.2 to 10 Substantial
1 to 2 10 to 100 Strong
>2 >100 Decisive

Pr(H0) = Pr(μ <−2.41) = 0.8241

Pr(H1) = Pr(μ ≥−2.41 = 0.1759

These probabilities can be obtained with R:

> pnorm( -2.41, -2.75, sqrt(1/7.5) )
[1] 0.8241064
> 1- pnorm( -2.41, -2.75, sqrt(1/7.5) )
[1] 0.1758936

Combining the observed data ȳ = −2.563 with the prior produces the following
posterior density:

μ |y N

(

2.586,
1

60

)

The posterior probabilities on the two hypotheses also can be calculated in R:

pnorm( -2.41, -2.586, sqrt(1/60) )
[1] 0.9136045
> 1-pnorm( -2.41, -2.586, sqrt(1/60) )
[1] 0.08639554

giving

Pr(H0|y) = Pr(μ ≤−2.41|y) = 0.9136

Pr(H1|y) = Pr(μ >−2.41|y) = 0.0864

The conclusion is that, given the prior information and the current data, the
probability that μ <−2.41 log units is 0.914.

The Bayes factor is calculated by dividing the posterior odds by the prior odds:

BF0,1 =
0.9136
0.0864
0.8241
0.1759

= 2.257

According to Table 11.2, this result is worth only a bare mention: Incorporating
the data did little to strengthen the evidence already present in the prior regarding
the hypotheses.

Note that if an improper prior is used, it is impossible to calculate the prior odds
needed in computing the Bayes factor.
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11.2.1 Obtaining Posterior Probabilities
from WinBUGS/OpenBUGS

The step function in WinBUGS and OpenBUGS makes it easy to estimate the
posterior probability that a model parameter is above or below a value of interest.
This function returns 1 if its argument is greater than or equal to 0 and returns 0
otherwise.

The code below fits the model from Sect. 11.2 and estimates the posterior
probability Pr(H0|y) = Pr(μ < −2.41|y). This is the OpenBUGS program called
“Model 1” in Sect. 8.4.7 with one additional line:

probH0 <- step( -2.41 - mu ) # test H0: mu <= -2.41

At each iteration of the MCMC sampler, the current draw for μ is subtracted from
−2.41, and the value 1 is assigned to probH0 if the result is 0 or greater; 0 is
assigned otherwise. Thus, the mean of probH0 will be the proportion of the
iterations in which μ was less than or equal to −2.41.

# Model 1
# Assuming data are draws from a normal
# population with known precision
# Population mean mu is unknown parameter

model
{

# likelihood
for (i in 1:N) {

y[i] ˜ dnorm( mu, tausq )
}
# priors
mu ˜ dnorm(-2.75, 7.5)
probH0 <- step( -2.41 - mu ) # test H0: mu <=

-2.41
}

#data
list(y=c(-2.526, -1.715, -1.427, -2.12, -2.659,

-2.408, -3.219,
-1.966, -2.526, -1.833, -2.813, -1.772, -2.813,

-2.526, -3.219,
-2.526, -2.813, -2.526, -3.507, -2.996, -3.912, NA),

N=22,
tausq= 2.5)
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Fig. 11.1 OpenBUGS statistics showing posterior probability of null hypothesis

#inits for model 1
list(mu = -5)
list(mu = -2.5)
list(mu = 0)

The OpenBUGS statistics show the posterior probability of H0 as 0.917 (Fig. 11.1).
The small difference between this value and the value obtained from R (0.914) is
due to MCMC random sampling variability.

11.2.2 Bayesian Viewpoint on Point Null Hypotheses

Two-sided hypothesis testing, typically with a point null hypothesis, is very common
in frequentist statistical practice. Here, the null hypothesis is that the unknown pa-
rameter has some particular numeric value of interest, and the alternative hypothesis
is that it does not. Generically

H0 : θ = θ0

H1 : θ �= θ0

where θ is the unknown parameter and θ0 is a number. For example, I was taught in
elementary school health class that the normal body temperature for healthy adults
is 98.6 ◦F. To test whether this was true, I might let μ represent the population mean
body temperature in healthy adults. I might measure the temperatures of a random
sample of healthy people and use the data to test the hypotheses:

H0 : μ = 98.6

H1 : μ �= 98.6

Bayesians observe that the point null hypothesis actually is unlikely to be of
substantive interest. Almost certainly there is an interval of values around θ0—say,
[θ0−ε,θ0+ε] for some small, positive value of ε—such that, if the parameter θ lies
in that interval, it “might as well be equal” to θ0. Exactly how the relevant interval is
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defined depends entirely on the research question of interest. For example, regarding
the body temperature question, if the true values of μ were between 98.55 and 98.65,
I certainly wouldn’t feel that my health class teacher had been lying!

From the Bayesian perspective, there also is a mathematical problem with testing
point null hypotheses. If the parameter of interest is being treated as if it were
a continuous random variable, then the probability that it is exactly equal to any
specific numeric value is 0. In the body temperature example, if a normal prior was
placed on μ , then the prior probability that μ = 98.6 would be 0. We wouldn’t even
have to collect any data—we would already know that the null hypothesis was false!

To demonstrate how different frequentist p-values are from Bayesian posterior
probabilities, in (Berger, 1985, Sect. 4.10), Berger describes a procedure that
enables Bayesian two-sided tests of point null hypotheses. The idea is to divide
the prior probability mass into two parts that sum to one: a discrete part that is a
lump of probability mass on the value specified in H0, and continuous part for the
rest of the support of the unknown parameter. This procedure is not often used in
Bayesian practice and is not further explored here.

11.3 The Deviance Information Criterion

Since MCMC is the most frequently used computational approach to fitting
Bayesian models, Bayesian statisticians need a model-comparison method that
is based on MCMC output. The Deviance Information Criterion Spiegelhalter et
al. (2002) meets that requirement, and in fact, can be calculated within Win-
BUGS/OpenBUGS for most models. The following section of the WinBUGS
webpage gives details about the DIC and its implementation in WinBUGS and
OpenBUGS:
http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/dicpage.shtml.

The goal of the DIC is to compare candidate models with respect to their ability to
predict new data of the same kind. The DIC protects against overfitting (excessive
model complexity driven by peculiarities of the particular dataset being used) by
penalizing models with larger numbers of effective parameters. The number of
effective parameters is essentially a count of the number of unknown parameters in
the model, except that highly correlated parameters and parameters that are strongly
influenced by their priors count for less than one each. When comparing different
candidate models for the same data, smaller values of DIC suggest better predictive
ability. It is not possible to interpret whether a single DIC value for one model in
isolation is “good” or “bad.”

The DIC can be used for many kinds of comparisons including regression models
with completely different sets of predictor variables, generalized linear models with
different link functions, and Bayesian models with different numbers of stages. One
restriction is that the data (in the case of regression models, the response variable)
must have the same form in all models being compared. For example, the DIC could
not be used to compare a regression model in which the response variable was

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/dicpage.shtml
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log transformed with a regression model for the same data in which the response
variable was not transformed.

Computation of the DIC requires two quantities, both of which are easily
approximated using MCMC sampler output. Let D(y,θ ) denote −2 times the
log likelihood conditioned on a particular value of the model parameters—that
is, −2logp(y|θ ), where θ is the vector of all unknown parameters in the model.
Define

• D̂avg(y): D averaged over the posterior distribution of θ
• Dθ̂ (y): D evaluated at the posterior mean of θ

Then the effective number of parameters is estimated as

pD = D̂avg(y)−Dθ̂ (y)

and the DIC is

DIC = D̂avg(y)+ pD

= 2D̂avg(y)−Dθ̂ (y)

The “Dyes” problem that you encountered in Problem 9.5 provides a good
example of how the DIC works. Recall that the data consisted of measurements on
five samples from each of six batches of dyestuff. The question of interest was how
the variability within batches compared to the variability between batches. We will
use the DIC to compare the hierarchical model given in the WinBUGS/OpenBUGS
example with a simple two-stage normal model that ignores the grouping of the
observations.

Here are the code, data, and initial values as they appear in the OpenBUGS Dyes
example:

model
{

for(i in 1 : batches) {
mu[i] ˜ dnorm(theta, tau.btw)
for(j in 1 : samples) {

y[i , j] ˜ dnorm(mu[i], tau.with)
}

}
sigma2.with <- 1 / tau.with
sigma2.btw <- 1 / tau.btw
tau.with ˜ dgamma(0.001, 0.001)
tau.btw ˜ dgamma(0.001, 0.001)
theta ˜ dnorm(0.0, 1.0E-10)

}

# data
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Table 11.3 DIC for the
hierarchical model for the
Dyes data

Dbar Dhat DIC pD

y 323.4 316.9 329.9 6.463
Total 323.4 316.9 329.9 6.463

list(batches = 6, samples = 5,
y = structure(
.Data = c(1545, 1440, 1440, 1520, 1580,

1540, 1555, 1490, 1560, 1495,
1595, 1550, 1605, 1510, 1560,
1445, 1440, 1595, 1465, 1545,
1595, 1630, 1515, 1635, 1625,
1520, 1455, 1450, 1480, 1445), .Dim = c(6, 5)))

# initial values
list(theta=1500, tau.with=1, tau.btw=1)
list(theta=3000, tau.with=0.1, tau.btw=0.1)

Let’s count how many parameters there are in this model. This means how many
quantities have prior distributions at any level of the model. It does not include
quantities that are deterministically computed. The answer is one overall mean
parameter (theta), six batch means parameters (the mus), and two precisions
(tau.with and tau.btw), for a grand total of nine parameters.

To obtain the Deviance Information Criterion in WinBUGS or OpenBUGS, one
must first run the chains for the model until it appears that they have converged. Then
one selects “DIC” from the “Inference” pull-down menu, and clicks the “Set” button
to turn it on. Then one runs additional iterations, after which one clicks “Stats” on
the DIC Tool window to get the values.

I ran two chains for 25,000 iterations, then started the DIC and ran 25,000
additional iterations. The results are in Table 11.3.

Note that the DIC is calculated for every quantity that WinBUGS/OpenBUGS
interprets as data. Then the columns are totaled. Since y is our only data vector, the
total is the same as the entry for y. The estimated effective number of parameters,
pD, is 6.463—smaller than the total number that we counted. This is because each
of the mus is counted as less than one parameter because of the influence of their
second-stage prior. The value that will be used for model comparison is the DIC
itself—329.9.

Below is a simple, two-stage model for the same data:

model
{

for(i in 1 : batches) {
for(j in 1 : samples) {

y[i , j] ˜ dnorm(theta, tau.with)
}

}
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Table 11.4 DIC for the
simplified model for the Dyes
data

Dbar Dhat DIC pD

y 334.8 332.7 336.8 2.027
Total 334.8 332.7 336.8 2.027

sigma2.with <- 1 / tau.with
tau.with ˜ dgamma(0.001, 0.001)
theta ˜ dnorm(0.0, 1.0E-10)

}

# inits
list(theta=1500, tau.with = 0.1)
list(theta = 0, tau.with = 10)

The DIC results obtained from iterations 2,001–4,000 are in Table 11.4:
In a simple model like this, in which there are no groups of parameters all drawn

from the same prior, the number of effective parameters pD is almost exactly equal
to the actual number of parameters in the model (2 in this case). The DIC for this
simple model, 336.8, is larger than the DIC obtained for the hierarchical model.
That means that even though the hierarchical model is penalized more heavily for
complexity (larger pD than the simpler model), its predictive ability is deemed to be
so much greater that it is still preferred. In a hierarchical model like this, the DIC
is evaluating how well the model would predict new data in the same groupings, so
the result is not surprising.

11.4 Posterior Predictive Checking

As we mentioned at the beginning of this chapter, almost no model is ever
truly “correct.” There always are predictor variables that we did not know about,
characteristics of the population distribution that cannot be captured by any standard
parametric family, etc. Thus, even after we have identified the “best” model among
a set of candidate models, we still must attempt to determine whether the selected
model has flaws that will threaten the validity of the inference that we wish to make.

Posterior predictive model checking Gelman et al. (2004, 1996) is a method of
assessing whether a model is inconsistent with the data in ways that are likely to
affect the conclusions drawn. It is easily carried out in WinBUGS or OpenBUGS.
The idea is to determine whether datasets generated by the model resemble the real
dataset in crucial ways. The specific steps are as follows:

1. Identify a discrepancy measure (also called a test quantity) . This is a quantity
that (a) can be calculated from data values (or possibly from data and parameter
values) and (b) would be expected to have systematically different values in data
that met important model assumptions compared to data that did not.
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2. Calculate the value of the discrepancy measure from the real dataset that is being
analyzed. Denote this value by T (y).

3. Fit the Bayesian model of interest to the real data, and simulate a large number of
replicate datasets from the posterior predictive distribution. A replicate dataset
has the same number of observations as the real dataset. If the model of interest
involves a response variable and predictor variables, then each replicate dataset
has the same values of the predictor variables that appeared in the real dataset,
and new values are simulated only for the response variable. Denote the ith
replicate dataset by yrep

i .
4. Calculate the value of the discrepancy measure T (yrep

i ) (for each replicate
dataset).

5. Determine the proportion of the T (yrep
i ) values that are smaller than T (y). This

proportion is an estimate of the Bayesian posterior predictive p-value .

Intuitively, if the model is consistent with the data, then the discrepancy measure
value from the real data, T (y), will be typical of discrepancy measure values from
datasets drawn from the posterior predictive density—that is, in a histogram of the
T (yrep

i )s, T (y) will not fall near the extreme low end nor the extreme high end.
In other words, a posterior predictive p-value close to either 0 or 1 is evidence of
serious disagreement between the data and the model: It indicates that a better model
is needed for trustworthy inference.

Different discrepancy measures will be appropriate for assessing data and model
characteristics in different problems. For example, to check whether outliers in a
dataset are too extreme to justify the use of a normal likelihood, the range of the
data (maximum minus minimum) could be an effective discrepancy measure. Below,
we devise a discrepancy measure to assess whether the assumption of independent
errors in linear regression is violated.

In Sect. 10.1.3, we performed linear regression using data on mean log mercury
concentration measured in each of 14 consecutive months. The fact that the data
were collected sequentially in time raised the question of whether there would be
autocorrelation in the errors, thus violating the assumption of independent errors.
In Sect. 10.1.3, we used the Durbin–Watson test to do a frequentist check for
autocorrelation. Here we use posterior predictive checking to perform a similar
check from a Bayesian perspective. The lag 1 autocorrelation of the residuals
is an ideal discrepancy measure for this purpose, and it can be calculated in
WinBUGS/OpenBUGS code with a little effort. Recall that a sample Pearson
correlation coefficient can be calculated from the formula

r =
1

(N − 1)sxsy

N

∑
i=1

(xi − x̄)(yi − ȳ)

where N is the sample size, x̄ and ȳ are the sample means, and sx and sy

are the sample standard deviations of the two variables of interest. For a lag
1 autocorrelation, the X variable values are observations 1 to N − 1, and the
Y variable values are observations 2 to N of the same vector. WinBUGS and
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OpenBUGS have built-in functions (mean and sd) for calculating sample means
and standard deviations. Here is an expanded version of the OpenBUGS program
from Sect. 10.2.2, which provides a Bayesian posterior predictive p-value for
checking whether the autocorrelation in the residuals from the real data “looks like”
what we would find in data generated by the simple linear regression model:

model
{
# center covariate
for( i in 1:N) {

xcent[i] <- x[i] - mean(x[])
}

# likelihood
for (i in 1:N) {

mu[i] <- beta0 + beta1 * xcent[i]
y[i] ˜ dnorm( mu[i], tausq )
resid[i] <- y[i] - mu[i]

# draw a replicate dataset
yrep[i] ˜ dnorm(mu[i], tausq)
residrep[i] <- yrep[i] - mu[i]

}

# calculate lag 1 autocorrelation in residuals from
real data

mean1 <- mean( resid[1:(N-1) ])
mean2 <- mean( resid[2:N] )
for(i in 1:(N-1)) {

summand[i] <- (resid[i] - mean1) *
(resid[i+1] - mean2 )

}
lag1auto <- sum( summand[] ) / ( (N-1) *

sd( resid[1:(N-1)]) * sd( resid[2:N] ))

# calculate lag 1 autocorrelation in replicate dataset

mean1rep <- mean( residrep[1:(N-1) ] )
mean2rep <- mean( residrep[2:N] )
for(i in 1:(N-1)) {

summandrep[i] <- (residrep[i] - mean1rep) *
residrep[i+1] - mean2rep )

}
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Fig. 11.2 Posterior predictive p-value for the regression model for mercury concentrations in
precipitation

lag1autorep <- sum( summandrep[] ) / ( (N-1) *
sd( residrep[1:(N-1)] )* sd( residrep[2:N] ))

# is lag1auto > lag1autorep?
pppval <- step(lag1auto - lag1autorep)

beta0 ˜ dflat()
beta1 ˜ dflat()
tausq ˜ dgamma( 0.001, 0.001)
sigma <- 1 / sqrt(tausq) # regression standard

deviation
}

#data
list( x = c( 1997, 1998, 1999, 2000, 2001, 2002, 2003,

2004, 2005, 2006,
2007, 2008, 2009, 2010),

y = c(2.2952, 2.3435, 2.5512, 2.5531, 2.3918,
2.1546, 2.3596,
2.2431, 2.1725, 2.3162, 2.3504, 2.1926,
1.9638, 2.2025),

N = 14)

# inits
list( beta0 = 0, beta1 = 0, tausq = 1)

Figure 11.2 shows the results for the quantities needed for the posterior predictive
check (from the last 1,000 iterations of a 2,000-iteration chain). The autocorrelation
in the residuals from the real data is generally positive but small, while the auto-
correlation in the residuals from replicate datasets centers around 0 (as expected).
The mean of pppval is 0.762, indicating that about 76% of the replicate datasets
produced residuals with smaller autocorrelation than the corresponding residuals
from the real dataset. Although a value closer to 0.5 would be preferred, 0.76 is not
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extreme—the real data is not atypical of data generated from this model. A value
greater than 0.90 or 0.95 would have indicated a need to expand the model to account
for autocorrelation in the data.

11.5 Exercises

11.1. This question is a continuation of your first homework for this class.
Refer to question 2.3 in this textbook. The question of interest is whether or not

the woman is a carrier of the hemophilia gene.
Suppose the woman has 1 son, whose hemophilia status is y= 0. (This is different

from the outcomes discussed in this book.)
Compute:

1. Prior odds in favor of θ = 0 versus θ = 1
2. Bayes factor in favor of θ = 0 versus θ = 1
3. Posterior odds in favor of θ = 0 versus θ = 1

11.2. Attached is WinBUGS code and output for the Dyes example, which you
know from a previous homework. I have added 4 lines to the program. You will
need to look up the ranked function in the WinBUGS or OpenBUGS manual
to understand what it does. Refer to the code and output to answer the following
questions (just a sentence or two for each):

1. Explain the meaning of the following new nodes:

a. ypred
b. resid
c. presid
d. pppv

2. What could you learn by monitoring “pppv”?
3. Does the output suggest any problems with model fit?

model
{

for( i in 1 : batches ) {
m[i] ˜ dnorm(theta, tau.btw)
for( j in 1 : samples ) {

y[i , j] ˜ dnorm(m[i], tau.with)
ypred[i,j] ˜ dnorm(m[i], tau.with)
resid[i,j] <- abs(y[i,j] - m[i])
presid[i,j] <- abs(ypred[i,j] - m[i])

}
large[i] <- ranked(resid[i,], samples)
largepred[i] <- ranked(presid[i,], samples)
pppv[i] <- step(large[i] - largepred[i])

}
sigma2.with <- 1 / tau.with
sigma2.btw <- 1 / tau.btw
tau.with ˜ dgamma(0.001, 0.001)
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tau.btw ˜ dgamma(0.001, 0.001)
theta ˜ dnorm(0.0, 1.0E-10)

}

MC 2.5
node mean sd error % median 97.5% start sample
m[1] 1515.0 20.31 0.4391 1472.0 1517.0 1550.0 10001 40000
m[2] 1528.0 18.62 0.2291 490.0 1527.0 1566.0 10001 40000
m[3] 1548.0 22.12 0.5962 1512.0 1547.0 1594.0 10001 40000
m[4] 1511.0 21.42 0.5458 1466.0 1513.0 1547.0 10001 40000
m[5] 1569.0 30.38 1.143 1517.0 1572.0 1624.0 10001 40000
m[6] 1495.0 27.22 0.953 1443.0 1494.0 1544.0 10001 40000

pppv[1] 0.561 0.4963 0.005088 0.0 1.0 1.0 10001 40000
pppv[2] 0.1466 0.3537 0.003352 0.0 0.0 1.0 10001 40000
pppv[3] 0.3195 0.4663 0.003411 0.0 0.0 1.0 10001 40000
pppv[4] 0.6383 0.4805 0.006751 0.0 1.0 1.0 10001 40000
pppv[5] 0.5282 0.4992 0.003993 0.0 1.0 1.0 10001 40000
pppv[6] 0.2517 0.434 0.004228 0.0 0.0 1.0 10001 40000

sigma2.btw 2125.0 3716.0 65.35 0.004705 1237.0 9942.0 10001 40000
sigma2.with 3083.0 1125.0 31.27 1571.0 2855.0 5842.0 10001 40000

11.3. Use the DIC to compare the fits of two different models for the data involving
growth of baby rats. First use the model, data, and initial values exactly as given in
the “Rats” example in Volume 1 of WinBUGS or OpenBUGS examples. Then use
the model, data, and initial values as given in the “Birats” example in Volume 2. In
both cases, run at least 1,000 burn-in iterations before you set the DIC. Then use
output for the DIC based on at least 10,000 additional iterations. Turn in the tables
of DIC results for both models, and answer the following questions:

1. What is the estimated number of free parameters in the “Rats” model? In the
“Birats” model? What could explain the difference between the two estimates?

2. Is one model strongly preferred over the other after the penalty for model
complexity is taken into account? Justify your answer.

11.4. Refer to the Beetles example in Volume II of the OpenBUGS/WinBUGS
examples. Use the DIC to compare the fits of the three models with three
transformations (logit, probit, and complementary log–log). This is a comparison
that a frequentist deviance analysis could not make since the models are not nested.
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Table A.1 Discrete distributions

Probability
Distribution mass function Mean Mode Variance

Binomial p(y|π) =
(

n
y

)

πy(1−π)n−y nπ (n+1)π� nπ(1−π)

Y ∼ Bin(n,π) y = 0,1, . . . ,n
0 < π < 1

Poisson p(y|λ ) = exp(−λ )λ y

y! λ λ� λ
Y ∼ Pois(λ ) y = 0,1, . . .
λ > 0

M.K. Cowles, Applied Bayesian Statistics: With R and OpenBUGS Examples,
Springer Texts in Statistics 98, DOI 10.1007/978-1-4614-5696-4,
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Table A.2 Univariate continuous distributions

Mean
Distribution Density Mode Variance

Beta p(y|α ,β ) = Γ (α+β )
Γ (α)Γ (β ) yα−1(1− y)β−1 α

α+β
αβ

(α+β )2(α+β+1)

Y ∼ Beta(α ,β ) 0 < y < 1 α−1
α+β−2

α ,β > 0

Gamma p(y|α ,β ) = β α

Γ α yα−1 exp(−β y) α
β

α
β 2

Y ∼ Gamma(α ,β ) 0 < y < ∞ α−1
β , α ≥ 1

α ,β > 0

Inverse gamma p(y|α ,β ) = β α

Γ (α)
1

yα+1 exp(− β
y )

β
α−1 , α > 1 β 2

(α−1)2(α−2)
, α > 2

Y ∼ IG(α ,β ) 0 < y < ∞ β
α+1

α ,β > 0

Normal p(y|μ ,σ 2) = 1√
2πσ2 exp(− (y−μ)2

2σ2 ) μ σ 2

Y ∼ N(μ ,σ 2) −∞ < y < ∞ μ
σ 2 > 0

Student’s t p(y|μ ,σ 2,ν) = Γ ( ν+1
2 )

Γ ( ν
2 )

√
νπσ2

1

(1+ 1
ν ( y−μ

σ )2)
ν+1

2
μ , ν > 1 ν

ν−2 σ 2, ν > 2

Y ∼ t(μ ,σ 2,ν) −∞ < y < ∞ μ
σ 2 > 0,ν ≥ 1

Uniform p(y|a,b) = 1
b−a

b−a
2

(b−a)2

12
Y ∼U(a,b) a ≤ y ≤ b none

Table A.3 Multivariate continuous distributions

Mean
Distribution Density Mode Variance

Normal p(y|μ ,Σ ) = 1

(2π)
d
2 |Σ | 1

2
exp(− (y−μ)T Σ−1(y−μ)

2 ) μ Σ

Y ∼ Nd(μ ,Σ ) y a vector of length d μ
Σ pos def symm

matrix

Wishart p(T |S,ν) ∝ |T ||S| ν
2 ν−d−1

2 exp(− tr(ST )
2 ) E(Ti j) = νS−1

i j

T ∼Wd(S,ν) T pos def symm matrix
S pos def symm

matrix
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