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Preface

The technology revolution has resulted in that already today we are living and

working in a digital world surrounded by the modern technology infrastructure –

the multiple devices (computers, mobile phones, cameras and robots) being inte-

grated within networks are a commodity of our lives now. In the near future,

however, not only humans and computers but also everyday life items will be

interconnected to create the new computing infrastructure – the Internet of Things
(IoT). This move from the ‘interconnected computers’ to the ‘interconnected
things’ is a great challenge for the ICT workers, computer scientists and society

on the whole. It is most likely that there will be the need for changes in computer

science (CS) curricula to provide the adequate knowledge to support the develop-

ment of new applications and services.

On the other hand, today there is also an evident shift in learning paradigms. The

e-learning community commonly agrees on the need of moving from the teacher-
centred learning towards the student-centred learning. What are the signs of this

paradigm change in teaching CS topics? First, there is the ever-increasing number

of publications and discussions at all levels. Second, there is the clear understanding

of ever-growing challenges to teach CS in the twenty-first century at all levels:

primary, high school and university. Those challenges are widening and sharpening

continuously under the technological advances, social demand and market pressure.

Third, there is an extremely high interest in the interdisciplinary teaching based on

the STEM (Science, Technology, Engineering and Mathematics) concepts. Fourth,

the MOOC concept (Massive Open Online Courses) is also at the door of CS lecture

rooms. Finally, there are signs of the student mind-sets changing. Now, the students

want to be more independent in teaching and learning. They want to win more with

less in planning and carrying out activities to support the future careers.

What should be done to respond to those challenges? The first thing is clear

understanding at all levels what is happening in the field and around the related

areas now. Having in mind the recent initiatives in Europe and worldwide on

advanced teaching and learning in CS, it is possible to state that this understanding
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already exists, perhaps not yet at all levels. Next, the real breakthrough in advanced

CS learning and teaching is hardly possible without new concepts, innovative

methodologies and better understanding of both the pedagogical and technological

issues. I agree with those researchers who argue that the currently existing capa-

bilities of technology are not yet exploited in e-learning as fully as that could

be. There is still a big gap between technological capabilities and pedagogical

approaches. The seamless integration of both technology and pedagogy should be

seen as the primary concern with advancing CS education. Therefore, a great deal

of research effort is still needed to close the gap. Our research on the meta-

programming-based generative learning objects (GLOs) and the use of educational

robots in teaching CS topics aims at integrating different technologies with the

known pedagogical approaches.

This book is a monograph representing the current state of our research on this

topic. The word ‘smart’ in the title should be understood (1) as our efforts to extend
generative and adaptive (i.e. context-aware) capabilities of the GLOs using meta-

programming, (2) as our efforts to add more and more functions to educational

robots in solving CS teaching tasks and (3) as our efforts to integrate the applied

technologies and pedagogical approaches as seamlessly as possible.

What are the most distinguishing attributes of the book? To my best knowledge,

the CS education modelling at the higher level of abstraction using feature-based

modelling approaches (borrowed from Software Engineering) is applied and

presented for the first time here. Next, the meta-programming-based GLOs with

advanced features (such as preprogrammed context-aware and multistage represen-

tation for the content adaptation) have been proposed by the author (again, to my

best knowledge for the first time). Therefore, it was possible to recall the previously

researched GLOs and here treat them as smart LOs by providing extended research

on those advanced features. This book also provides the more extensive study on

the feature model transformations as compared to the book ‘Meta-Programming

and Model-Driven Meta-Program Development’ (V. Štuikys and R. Damaševičius,

Springer, 2013). Finally, the proposed methodology is not just an innovative

proposal. The methodology, as a case study, has been already approved, tested

and evaluated in the real setting to teach programming fundamentals.

How has the book been written? It was written as a result of reconsidering,

generalizing, extending and integrating the concepts that can be found in our

published papers during the years 2007–2014. During that period, our research

group was involved, among other themes, in researching the methodology based on

using meta-programming for the e-learning domain. The accumulated experience,

the continuous discussions with my Ph.D. students and the research group members

had also been for me the source of new ideas that are reflected in the book.

What is the content of the book? I have divided the content into two parts. Part I

first deals with the challenges of CS education in the twenty-first century, motivates

the needs for innovations and then outlines the reuse-based context of the book

topics and introduces CS e-learning modelling concept on which basis it was

possible to specify, to create and to test the so-called smart LOs. Part I also presents

a background of smart LOs from the teacher’s perspective. Part II deals with the
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theoretical background of smart LOs (SLOs) from the designer’s perspective in

order it would be possible to create the authoring tools for designing and

transforming SLOs to support adaptation in learning. Part II also presents a meth-

odology of creating smart educational environments using robots and SLOs and the

use of the methodology in real setting to teach CS (programming).

Part I includes (1) A Vision of Smart Teaching in CS (Chap. 1); (2) Understand-

ing of LO Domain Through Its Taxonomies (Chap. 2); (3) Reuse Framework of the

LO Domain (Chap. 3); (4) Modelling of CS Teaching and Learning in Large

(Chap. 4); (5) Model-Driven Specification in Designing Smart LOs (Chap. 5);

(6) Smart LOs Design: Higher-Level Coding and Testing Aspects (Chap. 6);

(7) Enhanced Features of SLOs: Focus on Specialization (Chap. 7); and

(8) Context-Aware Adaptation of Smart LOs (Chap. 8). Part II includes (1) Back-

ground to Design Smart LOs and Supporting Tools (Chap. 9); (2) Authoring Tools

to Design Smart LOs (Chap. 10); (3) Authoring Tools to Specialize and Adapt

Smart LOs (Chap. 11); (4) Robot-Based Smart Educational Environments to Teach

CS: A Case Study (Chap. 12; co-author Renata Burbaitė); and (5) Smart Education

in CS: A Case Study (Chap. 13; co-author Renata Burbaitė); Term Index; What Is

on the Horizon?

Who could be the potential reader of the book? The book is dedicated in the first

place to the CS researchers; researchers in CS education, especially to those who

are interested in using robots in learning and teaching; course designers; educa-

tional software; and tools developers. The CS teachers should also be highly

interested not only in reading but in studying the adequate chapters as their

advanced teaching material. I hope that the content of the book will be understand-

able to anybody who has enough skill in programming. Therefore, students study-

ing CS-related courses, especially master-level and Ph.D. students, are also seen as

potential readers. As the book includes the wider context (e.g. reusability aspects of

e-learning, the whole LO research activities), the other e-learning community

members might be interested in the reading of the book as well (especially the

modelling of CS education and the integrative aspects of technology and

pedagogy).

How should the book be read?

There is no specific algorithm in selecting and prioritizing the chapters to be

read. Nevertheless, this depends on the reader’s status, previous knowledge and his
or her intention. The book is composed using the sequence that it is possible to

select easily the chapter or chapters of interest from the title. But I recommend

using the following scheme. The senior researchers and policymakers should first

read Chap. 1 and, perhaps, all introductions in each chapter and then to move to the

ending sections in each chapter. After that the readers will have the possibility to

make the relevant choice for the in-depth studies of what is presented within the

chapters. Experts and knowledgeable researchers first could read the introduction

and concluding parts of each chapter or some selected chapters depending on the

reader’s flavour. If they will find interesting ideas, they could be involved in more

intensive studies within a particular chapter or even go through the referenced

sources. The readers who will select some material as own research topic should
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also go through the research and exercise questions given at the end of each chapter

before the list of references.

What is about the CS teachers and students? For those readers, the book’s
content should be used differently. Chapters 12 and 13 are mainly dedicated to

the secondary (high) school teachers and students. For example, Sect. 12.5 presents

the full scenarios on how to use smart LOs and educational robot-based environ-

ments to teach and learn CS topics at the school level. The university-level

educators and students should use the book content with regard to their teaching/

learning topics. For example, Chap. 4 is relevant to teach and learn the feature-

based modelling methodology; Chaps. 5, 6, 7, 8, 9, 10 and 11 better fit for teaching

and learning the model transformation topics. The educators of CS teachers should

use the book entirely.

I hope that the book will be a beneficial methodological instrument (through the

use of multiple illustrative examples and case studies) for those educators who are

ready to provide the innovative models and methods in CS education.

Kaunas, Lithuania Vytautas Štuikys
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Part I

SLOs Advent Context and Basics of Their
Model-Driven Development

The aim of Part I is twofold: (1) to outline the context of themain topics to be discussed

in the book and (2) to define and deal with the creation of smart learning objects

(SLOs) from the CS teachers’ and researchers’ perspective. Here, by the context, I

mean the following issues: (a) consideration of the challenges in CS education for the

twenty-first century; (b) motivation of the need to introduce the new approach based

on the smart LOs (SLOs) and robot-based smart education environment; (c) analysis

of CS e-learning and LO research in order to provide links with the topics of the book;

and (d) analysis of reuse in e-learning as well in SW engineering (SWE); both are seen

as a source of the proven decisions to provide the further innovations toward the

creation of SLOs and smart education. The first three chapters are about the context.

Knowing the context is beneficial for all flavours of the potential book readers.

Chapter 4 introduces the feature-based modelling approach taken from SWE but

adapted for using in CS education. The feature-based models serve as a means (1) to

represent the whole CS teaching domain abstractly and (2) to specify CS learning

variability to define SLOs at the early stage of their design. Therefore, this chapter

is about the model-driven approach that should fit better to those researchers who

aim at researching reuse-based SWE approaches and applying them to the CS

education. However, the CS teachers who intend to accept the SLOs as the tool

for representing CS teaching resources will also find the useful information here.

The remaining chapters of Part I are devoted (1) to the development of the SLO

specifications, (2) to coding the specifications using meta-programming techniques

and (3) to adapting the executable SLO specification to the context of their use.

All these require a series of transformations. Those are the topics of Chaps 5, 6, 7 and

8. The topics include (a) abstract of the CS feature models’ transformation into the

concrete feature models to define the CS learning variability; (b) SLO design by

transforming (mapping) the variability onto the models that define meta-program-

ming; and (c) specializing the initial SLO specification for adaptation. All together,

they are treated as a model-driven design of SLOs on the basis of properties and rules

described for both the problem domain (i.e. CS learning variability) and the solution

domain (i.e. meta-programming).

http://dx.doi.org/10.1007/978-3-319-16913-2_4
http://dx.doi.org/10.1007/978-3-319-16913-2_5
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http://dx.doi.org/10.1007/978-3-319-16913-2_7
http://dx.doi.org/10.1007/978-3-319-16913-2_8


Chapter 1

A Vision of Smart Teaching in CS

1.1 Introduction

The aim of this chapter is twofold. The first aim is to describe the context to ease the

understanding of the subsequent topics. Here, by the context, I mean the analysis of

research trends in the e-learning and learning object domains (the latter is treated as

a very significant branch of e-learning) so that the reader could be able first to

understand the essence of the domain and then be aware of the intention of our

approach which focuses on two novel concepts, smart learning object and smart
educational environment, to teach computer science. The second aim is to present

the primary knowledge on those smart items to be considered in detail later

throughout the book.

Therefore, I address two interrelated tasks in this chapter as follows: (1) under-

standing the LO research evolution from the original learning object concept, its

maturity and consolidation (through standardization initiatives, digital library cre-

ation, research expansion, etc.) and the introduction of the generative learning

concept to meta-programming-based learning objects and, finally, to smart learning

objects and (2) understanding the educational environment evolution in the context

of technology advances and the expansion of learning object research and e-

learning in the whole.

At the very beginning, one should accept the following abbreviations of the

terms widely used in the literature: CS, computer science; LO or LOs, learning

object(s); and GLO or GLOs, generative LO (LOs). I start our discussion by

addressing some challenges in CS teaching in the information age as follows.

© Springer International Publishing Switzerland 2015
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1.2 Challenges to Teaching CS in the Twenty-First Century

To understand the challenges, we need first to resolve some terminological issues

and then to clarify the content of the subject as follows. There are two closely

interrelated terms, informatics and computer science, interchangeably used in the

literature to deal with topics on various aspects of computing, including educational

computing. The first term is more popular in Europe, while the second in the USA.

However, despite of some terminological issues and differences in the topic’s scope
and content the terms intend to describe, the two are often regarded as synonymous.

I do the same and use the abbreviation CS to denote the second term throughout the

book. As there is no precise and unified definition of the subject CS (due to the

historical, methodological, technological and other reasons), I present some of them

below.

The Dictionary.com, for example, defines CS as ‘the science that deals with the

theory and methods of processing information in digital computers, the design of

computer hardware and software, and the applications of computers’.
The Linux Information Project defines CS as ‘the study of the storage, transfor-

mation and transfer of information’. The source continues: ‘the field encompasses

both the theoretical study of algorithms (including their design, efficiency and

application) and the practical problems involved in implementing them in terms

of computer software and hardware’.
The Free Encyclopaedia provides the following definition: CS is ‘the systematic

study of the feasibility, structure, expression, and mechanization of the methodical

processes (or algorithms) that underlie the acquisition, representation, processing,

storage, communication of, and access to information, whether such information is

encoded in bits and bytes in a computer memory or transcribed engines and protein

structures in a human cell’.
The ACM Model Curriculum for K-12 Computer Science [TMD+06] provides a

highly useful definition for high school educators. This model emphasizes that CS is

neither programming nor computer literacy. Rather, it is ‘the study of computers

and algorithmic processes, including their principles, their hardware and software

design, their applications, and their impact on society’. In the context of CS teacher

certification, the report [CSTA08] identifies 14 areas CS includes (programming,

hardware design, networks, graphics, databases and information retrieval, computer

security, software design, programming languages, logic, programming paradigms,

translation between levels of abstraction, artificial intelligence, the limits of com-

putations, applications in IT and IS and social issues). If we look at the ACM

Computing Classification System [ACM12], we find even a much wider spectrum

of topics’ subcategories within each area ranging from hardware, networks, soft-

ware, some robotics aspects, etc., to human-machine interaction, information secu-

rity, privacy and education.

Thus, CS spans the theory and practice of computer hardware and software as

well as computer-based systems practised in all aspects of their design and use.

Therefore, CS requires computational thinking both in abstract terms and in

4 1 A Vision of Smart Teaching in CS



concrete terms. Nowadays, the practical side of computing can be seen everywhere

because practically everyone is a computer user and many professions require a

programming skill to support their activities.

CS can be also seen on a higher level, as a science that supports and links to
other sciences for problem solving in quite different domains, where the main focus

are modelling, decision making, design and development methodologies. CS has a

long history and evolves extremely rapidly. Its evolution curve follows the tech-

nology advances over more than 60 years. As a result, technology advances have

stimulated the growth of CS by filling the field with new problems and challenges.

The technology revolution has resulted in that we already now live and work in a

digital world surrounded by the modern technology infrastructure – the multiple

devices integrated within networks (computers, mobile phones, cameras and

robots) are a commodity of our lives now. In the near future, however, not only

humans and computers but also everyday life items will be interconnected to create

the new computing infrastructure – The Internet of Things (IoT). This move from

‘interconnected computers’ to ‘interconnected things’ is a great challenge for the

ICT workers, computer scientists and society in the whole [AIM10]. It is most

likely that there will be the need for changes in CS curricula to provide the adequate

knowledge to support the development of new applications and services.

Yet another aspect should be highlighted in the context of CS role in the

information society. As a result of the technological revolution, there are evident

signs of the extremely rapid growth of the application system diversity, system
complexity and software content within systems, especially in the context of the

embedded system sector. As a consequence, the demand of CS workplaces, per-

haps, will grow adequately. According to estimates [MSD13], the field of computer

and mathematical sciences is expected to grow dramatically through 2018. The

Bureau of Labor Statistics in the USA, for example, projects that there will be a

25.6 % increase in demand in this field.

Therefore, changes of the social context, which are due to technology expanses,

the nature of the CS content and its role to further enhancing computing opportu-

nities in the digital world have enabled us to formulate some challenges directly or

indirectly related to teaching CS as follows:

• Understanding the impact of ICT technology in general and CS as its funda-

mental part in particular to the society today and in the near future.

• Understanding that (i) CS brings fundamental knowledge and computational

thinking [FL09, BC11] for many separate fields such as software engineering,

hardware engineering, game industry and educational technology to name a few

(ii) and understanding the interplay among those technologies and education. On

this account, for example, Drake [Dra13] notices that ‘many – perhaps most –

computer scientists grew up sharpening their brains on games. Computer science

has returned the favour, providing the foundations for an extremely robust

electronic game industry’.
• Understanding the history and trends of technology-enhanced learning that

‘reflects an evolution from individual toward community learning, from
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content-driven learning toward process-driven approaches, from isolated media

toward integrated use, from presentation media toward interactive media, from

learning settings dependent on place and time toward ubiquitous learning, and

from fixed tools toward handheld devices’ [Low14]. This understating and

realization of that in practice, even partially in some concrete setting, could be

understood as a contribution to smart learning.

• In the context of ICT advances, understanding the e-learning paradigm shift

from traditional e-learning to m-learning and u-learning (meaning ubiquitous

learning) [LH10, VMO+12].

• Understanding the specific role of CS [BEP+09, BC11] because the discipline

stands for the fundamental piece of knowledge and can be aligned along with

natural sciences such mathematics, physics or chemistry. On the other hand, CS

is a cross-disciplinary subject.

• CS-related courses are provided at different levels at both schools and univer-

sities; there is a need of broad spectrum knowledge, skill and competencies

bringing additional challenges.

• The wideness of CS topics, which tends to be continuously enlarged, results in

the need of cross-disciplinary views and approaches. The audience to be edu-

cated is extremely large and diverse that includes (i) technology-literate citizens

for the twenty-first century, (ii) cross-disciplinary engineers and scientists work-

ing in the variety of fields and (iii) CS professionals responsible for the further

enlargement of the IT sector.

• CS content of the topics is abstract in nature; thus it requires various forms of

transformations (social, pedagogical, technological) to acquire knowledge in the

field.

• The rapid technology advances stimulate the need to continuously reconsider,

renew and reevaluate the content, teaching approaches and methodology [FL09].

As a result, there are the challenges of integrating technologies for learning

[ECE+10].

• There is the need for changes in attitudes to accept innovations in CS teaching

(inspired by the ICT and educational theories) at all levels: government politics,

administrative (institutional), teachers and students.

• There is a gap between educational theories and teaching methodologies and

ever-increasing capabilities of technologies.

• There is a contradiction between the tendency of the enrolment decrease to study

CS and the demand increase of CS-oriented specialties [CSTA08].

• There is the need for more extensive research in CS and more effective learning

and teaching methods due to the stated challenges and the ever-growing market

pressure.

Finally, I summarize the previously formulated challenges by the need of trans-

formations in learning as they are formulated by the title of the book [THE09] and

by the call of the first International Congress for Advanced Research in Education

(ICARE’2014): Reshaping Learning: Transforming Education through the Fusion
of Learning and Technology.
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Though CS teaching, with respect to the help of technology innovations and

educational theories aside, is a separate field, there are many aspects common to the

very broad and extensively explored domain known as e-learning. In the next

section, the aim is to outline those common features.

1.3 E-Learning Domain in Large: A Framework
to Understand It

In the literature on education, there is a long list of kindred terms used to describe

technology-driven educational activities. Examples are technology-enhanced learn-

ing, Internet-based training, multimedia learning, online education and virtual

education to name a few. However, e-learning stands for the more general term

which refers to the use of any kind of electronic media and any kind of information

and communications technology (ICT) in education. There are also specific forms

of e-learning such as distance learning, m-learning (meaning mobile learning),

blended learning, long-life learning, etc. The variety of terms indicates on the

obvious fact – the importance and the extremely wide stream of research in the

domain. How should this intensively explored domain be understood in the context

of the topics we consider in this book?

Though there are a variety of approaches to analyse the domain from various

perspectives [McG04, RJR+05, Had09, HLR11], the process-based view seems to

be the most relevant to understand the domain in the whole and in our context in

particular. Figure 1.1 outlines a structural framework, revised from [ŠBD13] for

this purpose. At the very abstract level, we can identify a set of components inherent

Learning
content

Knowledge 
transfer 

channels

Tools, 
Environ-
ments

Technology-
driven 

processes

Pedagogy-
driven 

activities

Learning 
outcomes

Fig. 1.1 A framework to

understand e-learning in

large
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to the field as follows: pedagogy-driven activities, technology-driven processes,
knowledge transfer channels with actors involved, a set of tools used (they can also
be identified as a technology and, when implemented in a concrete setting, it is also

known as the educational environment), teaching/learning content and the peda-
gogical/learning outcome.

The introduced framework reflects at least two important attributes of e-learn-

ing: (i) high heterogeneity of the domain and (ii) and extremely diverse interplay

between the components or their constituents. Indeed pedagogy-driven activities

indicate on the interplay among e-learning, pedagogy and educational theories.

Technology-driven processes describe how the information induced by other com-

ponents is transformed and processed using educational tools to achieve the pre-

scribed learning objectives. The tools serve as a means to ensure the functionality

and efficiency of the whole system. The knowledge transfer channels with two

actors (student and teacher) at different ends of the channels are the core of the

education process as a pure social activity.

The teaching/learning content plays a specific role in e-learning. First, content is
neutral with respect to the technological and social aspects of the domain. Second,

from the pure functionality viewpoint, content stands for data basis to fuel other

components with the information to start the processes, to initiate and to support the
functioning of the components and the whole system. As a result of the two, content

can be seen as an intermediate link to connect and integrate the different nature

domains – social and technological. Finally, the pedagogical (teaching/learning)

outcome can be seen as a measure (in a social sense) to reason on how the

component interaction was relevant to prespecified objectives, what bottlenecks

might or could be identified within components and what improvements might or

could be introduced in the future.

In this context, there are some observations important to state as follows:

1. The interplay among components specifies the functionality of a learning/teach-

ing process. We can model this functionality through component attributes.

Though those attributes differ in semantics, when specified for modelling pur-

poses, they can be evaluated using the adequate measures specific to each

component and then expressed uniformly (we will show that later).

2. The interplay between components is to be harmonized with respect to the

prescribed learning and teaching objectives. From the pure technological per-

spective, the harmonization should be correct, meaning that the interaction

model is correct and the prespecified constraints are taken into account.

3. The space for modelling functionality (the interplay between components) can

be significantly enlarged if we take into account the possible values of different

attributes for each component. As these values are expressed uniformly, we are

able to integrate and specify that as a single content-based specification.

I hope that the introduced framework provides the reader with a good and

sufficient context to understand the essence of e-learning. I believe that this

framework is generic enough. I use it as a tool to understand the essence of CS e-

learning here, and later I will extend the framework accordingly to the aims of

subsequent chapters. The next section is about the teaching content.
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1.4 The LO Concept and Its Evolution

In the scientific literature on e-learning, there is another term, learning object (LO),
which stands for specifying teaching/learning content. Research on LOs is a very

wide and rapidly evolving subdomain of e-learning now. This term is accepted and

widely used in CS research and education as well [see, e.g. GA03, JB07, MHC12].

With regard to analysis and general understating of the subdomain (further

domain), I present a few important observations below.

1. There was a well-founded intent or idea of introducing the term (due to

W. Hodgins in 1994) – to resolve the problems related to systematization,
interoperability and reuse of the learning resources.

2. Fuelled by this event, now research topics on LOs are very broad, ranging from

design, evaluation and use of instructional theories, standardization initiatives

and the evolution of e-learning per se ([McG04, Nor07, ECE+10]).

3. There is the abundance of the kindred terms to characterize the domain now.

Indeed, one can meet terms in the literature as follows:

• Knowledge object [Mer98].

• Reusable learning object [Boy03, Pol03].
• Generic learning object [KH07, AM10].

• Generative learning object [MLB05, Old08].

• Testable, reusable unit of cognition or TRUC [Mey06].

• Online resource [Nas05].
• Mobile learning object [AC08].
• Customized learning object [GA03].
• Learning object generator [For04].
• Interactive LO [LLR06].

• The ontology of instructional objects (OIO) [Ull08].
• Others are asset, unit of learning, media object, component, learning

resources, etc. (see, e.g. [Fri04]).

Though each term has some specific meaning and a concrete context of use

(e.g. OIO [Ull08] stands for the item to characterize the courseware generation

of Web-based learning), all those can be treated as derivatives from the basic

term ‘learning object’.
4. There is no unique definition of the term LO. Though the role of the concept is

well understood in the e-learning community, the understanding of what is

meant by LO in essence, however, is still poor with various definitions proposed.

For example, IEEE provides the most general definition stating that LO is ‘any
entity, digital or non-digital, which can be used, re-used or referenced during

technology supported learning’ [IEEE00]. Another definition identifies LO as

the ‘aggregation of one or more digital assets, incorporating metadata, which

represent an educationally meaningful stand-alone unit’ [Dal02]. For other

definitions, see [McG04, RJR+05, Wil00, Pol03, SH04]. Note that the list of

references is far from being exhaustive.
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5. There are a variety of taxonomies [KP05, LP04, Red03, SMS08, TLW+08] and
standards [RJR+05, McG04, IEEE00, SCORM04] related to the LO domain to

name a few.

6. There might be identified the latest evolutionary periods or significant events

(meaning the appearance of novel approaches) within the domain as follows:

• Introduction of the term by W. Hodgins in e-learning in 1994 (though the

origin of the term learning object can be tracked to the seventeenth century as
Zuckerman indicates in his report [Zuc06]).

• Consolidation of the concept/standardization of LO and introduction to LO

instructional design theories [Wil00] (2000–. . .); here dots mean a continu-

ation of research.

• Adding generative aspects – the introduction of generative LOs (GLOs) due

to the contribution of Boyle, Morales and their colleagues (2003–. . .).
• Introduction of the concept learning through generation [Ker04] (2004–. . .).
• Introduction of ontology instructional objects (OIO) [Ull04], agent-based

LOs [SGV06] and knowledge-based GLOs [ŠD07] to move the domain

toward a higher level of intelligence (2004–. . .).
• Introduction of meta-programming-based GLOs [ŠD08, DŠ08] and

parameterizable LOs [HK09] (2008–. . .).
• Evolution of GLOs by connecting generative aspects [ŠDB+08] with product

line engineering (PLE), the well-known concept in SWE [CN02] (2008–. . .).
• Adding interactive features to LO generation [Kra09] (2009–. . .).
• Further evolution of GLOs by introducing the context model and multistage

architecture [ŠB12] (2012–. . .).

It is possible to identify the beginning of the periods exactly (e.g. according to

the first publication date), whereas the ending boundary of the period does not exist

at all due to the research continuation. Nevertheless, the aforementioned scheme is

useful and serves us as a framework to analyse the related work as follows here and

also in other chapters.

1.5 Related Work

As there is an extremely large stream of research topics, here I present a roadmap to
reviewing the related work relevant to the CS education only. I will extend the

proposed scheme by more intensive studies later in the adequate chapters. The aim

of the presented scheme is to extract the most important facts to motivate the tasks

we consider in this chapter. I have excluded three large categories of the topics as

follows: challenges in teaching CS (Sect. 1.5.1), learning models (Sect. 1.5.2) and

educational environments for teaching in CS (Sect. 1.5.3).
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1.5.1 Challenges to Teach CS Topics

In Sect. 1.3, I have discussed overall challenges as they are related to technology

expanses, social demand and impact on society in a long perspective. Here, I focus

on local challenges to teaching in CS. A great deal of research papers focuses on

problems and difficulties to teach programming for novices. In this aspect, it is

possible to formulate the following interrelated groups of problems:

• Pedagogical problems (e.g. the used learning models do not correspond to the

learner’s needs [SSH+09, LY11]); often it is difficult to personalize learning

[GM07, SGM10]; problems of selecting the relevant teaching context [Fig06,

KS08, CC10]; learner’s motivation problems [KPN08, JCS09, CTT10, GGL

+12, AG13, SHL13])

• Cognitive problems (e.g. the use of high-level abstractions [GM07, Chu07, CMF

+09, CTT10]; the need to keep trade-offs between the theoretical knowledge and

practice [RRR03, GM07, PSM+07, CMF+09, SSH+09, LY11, SPJ+11]; differ-

ences in programming paradigms such as structural and object-oriented ones

[Sch02, MR02, RRR03, SH06, CMF+09, CTT10]; syntax of programming

languages is oriented to the professional use [GM07, CMF+09, CTT10]; the

need for creativity enhancement [KR08])

• Learning content problems (e.g. often static materials are used, though program-

ming is a highly dynamic course [GM07, PSM+07, NS09, VBH13]; difficulties

in a content adaptation to the learner‘s context [AG03, GA03, LYW05,

AHH12]; content visualization problems [Chu07, MV07, KPN08, R€oß10,
AHH11, MT12])

• Technical problems (e.g. a lack of tools to provide adaptation and generalization
[AG03, PSM+07, CMF+09]; traditional learning management systems (LMS)

do not cover all contexts needed for teaching in programming [CMF+09, ADP

+11]; interactive learning in programming has many obstacles due to pedagog-

ical and cognitive problems and lack of technical support [BBC04, GC06,

MV07, GM07, CMF+09, BB09, LLY10, APH+11, CAL12, DAB12])

1.5.2 Learning Models

Motivation models, among many others, stand for the most essential and compli-

cated arguments to describe human behaviour aspects of teaching. On the other

hand, there is a common understanding in the domain that the models are also the

most influential factors to achieving learning performance and efficiency. Here, I

consider only those models that, in my view, to the largest extent correspond to the

aims of this chapter. They are as follows:

• Pedagogical frameworks combining the theory and practice of teaching in CS

[Sch02]

• Game-based learning models [JCS09, SHL13]
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• Program behaviour visualization models [Chu07, Pea10]
• Pair-programming models [DSS+08, SMG11]

• Robot use-based models [CAC12, HS12, Tou12]

1.5.3 Educational Environments for Teaching in CS

First, one needs to know the main characteristics that define an effective educa-

tional environment. According to [GM07], they are as follows: (1) identification of

the learner’s knowledge level and also identification of dominating learning style to

make learning more personalized, (2) the use of models to construct the program,

(3) the use of elements of gaming to enforce capabilities in problem solving and (4)

the use of tools within an environment that are dedicated to constructing algorithms.

Kelleher’s and Pausch’s taxonomy [KP05] categorizes programming and lan-

guage environments into two groups: (1) teaching systems and (2) empowering
systems. The first aims at taking the support for learning programming per se;

usually those systems contain programming kits that highlight the essential aspects

of the programming process. Teaching systems have many common or similar

features with general-purpose languages and relate to mechanics of programming
(such as a simplification of programming language, automatic repair of syntactic

errors, presenting of alternatives for coding, learning support, networked interac-

tion, etc.).

There are also mobile environments to support m-learning. Researchers, how-

ever, take the exclusive role of the robot-based educational environments in teach-

ing CS and other related topics. The main reasons for that are as follows:

• Possibility to transform the abstract items (such as a data structure, algorithm,

program) into physically visible processes, enabling to better understand the

essence of programming and its practical benefits.

• The paradigm introduces the way for interdisciplinary teaching.

• There is the support of real (physical) visualization through robots’ moves and

actions.

• Educational robots can be also treated as gaming tools to significantly enforcing

the learner’s motivation to learn and the engagement in the process.

• There is a wide room for the experimentation and exploratory learning.

• All these can be easily connected with learning styles and models.

I assume that the presented statements provide enough arguments to start a

discussion in Sect. 1.8. In the next section, I continue our discussion on LOs.
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1.6 Specificity of CS LOs

Here, I try to draw a distinguishing line between e-learning in general and e-

learning in CS (with respect to LO research only) to identify what is common and

what is different for both. We first look at the existing discrepancies in terminology

as related to the teaching content in e-learning, and then, we discuss how well-

known initiatives in e-learning such as standardization are accepted, interpreted or

enhanced by the CS research community.

Metadata is a principal attribute that is independent upon the subject to

prespecify the field of LOs. In general, metadata is structured data that describe

characteristics of information-bearing entities to aid in the identification, classifi-

cation, discovery, assessment and management of those entities. Since their intro-

duction in the 1970s, metadata has been the object of systematic research in such

areas as data warehouse managing andWWW. Often, metadata is shortly defined as

descriptions of data [Sol99].

In the context of e-learning, the information-bearing entities are learning

resources, i.e. LOs. Metadata provides attributes to describe LOs. The approved

standard [IEEE00] defines the overall structure – syntax and semantics – of the

metadata schema for LOs.

What are the main attributes to define LOs and processes pertained to them? As

there is a variety of attributes (they are defined by the standard), we enlist only a few

ones: granularity, compositionality and semantic density. One can learn more on

that from the indicated or other standards.

The paper [Mat06] highlights benefits of using LOs in CS teaching. On the other

hand, the CS content and its delivery as LOs are specific with respect to many

attributes as follows:

1. The large body of teaching content in CS are programs (algorithms) or their parts

such as data structures.

2. Program as an LO is abstract. The essence of the topic to be learned is hidden

and the cognition process requires a good understanding of other topics such as

the computer architecture, operating system (OS) and Internet. Therefore, stu-

dents, especially novices, have difficulties in comprehending the essence to be

taught.

3. In contrast to the other type of LOs, program is an executable specification with

the well-formed internal structure. The program can produce not only data as a

result of calculation but also the other program as a new LO.

4. The program is a soft thing. There are practically unlimited opportunities for its

change, modification and adaptation or even for visualization of the algorithm

behaviour. Transferring to the different e-learning environments is easy.

5. For the learning purposes, programs can be incorporated into other things (such

as educational toys, robots, etc.) to enable them to perform the real-life processes

(such as the physical items moving, carrying or finding by robot, etc.).
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6. Teaching in CS (e.g. programming) can be seen as problem solving (as it takes

place, e.g. in mathematics) to enable the creation of a flexible means to the

testing and self-testing of the acquired knowledge.

7. LOs to teaching in CS can be also viewed as a tool to provide researching with

the nearly unlimited possibility for experimentation in various domains such as

design, automation, gamification and many more.

As the topic overlaps with the challenges formulated in Sect. 1.2, there are no

reasons to continue the discussion. Rather, it is more important to convince the

reader of knowing two findings. The first is that there are many attributes hindering
the learning and teaching in CS topics. The second is that there are also many

attributes facilitating the process, if those attributes are correctly understood and

properly applied. I leave the room as a research task for the reader to extend the list
of the hindering and facilitating attributes.

I summarize this short discussion with the following statements:

1. No matter of the existing efforts and a variety of contributions to improve and to

enhance teaching in CS (see Sect. 1.5), there is still enough room for the further

innovations in this field.

2. The formulated specificity (both hindering and facilitating attributes, presented

explicitly or left undisclosed) might be seen as a driving force to discover the

new solutions, the new innovations and the new technologies.

In the next section, I try to describe that conceptually.

1.7 What Is Smart LO?

The term ‘smart’ is used in different contexts. There are smart people who, in

comparison to others, are able to perform a prescribed activity as well and effec-

tively as possible. There are smartphones that possess extra characteristics not

inherent to the traditional phones. Now are emerging smart things – items of the

Internet of Things (IoT), which are interconnected and able to communicate among

themselves or to send messages to humans [AIM10]. Therefore, the term ‘smart-

ness’ reflects the evolutionary aspects (in the context of technological capability

and market demand expanses) of items to which it pertains. Indeed, if we look at the

functional characteristics of smartphones or objects of the IoT more carefully and

will compare those characteristics with traditional ones, we can observe the aug-

mentation of their features, functionality and capabilities.

Here, for the initial understanding of the smart LOs, I apply this principle along

with a descriptive framework. The framework includes:

1. A context that has contributed to the emergence of this new concept

2. Predecessor of the concept (or what is a start position to deal with the concept)

3. The extended definition by features of the smart LOs (SLOs) as they are seen in

practice already now

4. How SLO might look in the nearest future
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1.7.1 Reusability: The Context to Understand SLO

In fact, we have already started the discussion with the reader on this topic in Sect.

1.5, where it was shown that reusability was the primary objective of the introduc-

tion of the LO concept and also the context for the concept further evolution. Here,

our aim is to extend the discussion by highlighting new reuse aspects that are

directly relevant to the context of SLO.

For a long time in e-learning (and this time is not over yet), reusability and

usability of teaching resources were understood as a ‘library concept’. The latter

can be described from a user perspective in the simplified form as four activities as

follows:

• To find the resource (meaning within a library or repository)

• To understand the resource

• To modify the resource (if needed)
• To apply the resource in a new teaching context

The concept is so powerful that it is widely exploited and further evolves not

only in e-learning. The library concept, due to its methodological soundness, is

widely applied in practice in two different ways: either as an internal library of a

variety of tools (such as compilers, design tools, etc.) or as an external repository to
store and share information asset in a variety of domains for wide-scale reuse (e.g.

software reuse libraries [Big94], digital libraries for teaching and learning

[TMV04], design reuse repositories [Mar04], databases) to name a few.

Now we look at the reuse concept as it is understood in SW engineering (SWE). I

do that due to two reasons: (1) systematic reuse research provided in SWE for more

than three decades has contributed to the creation of powerful design methodolo-

gies such as object oriented, product line, etc., and (2) the e-learning domain has

borrowed and adopted many ideas from SWE in the past and this process is

continuing till now.

There are two general aspects to deal with and understand reuse in the field:

managerial (social) and technological. The first encompasses a long list of human-

based and organizational-oriented activities ranging from the strategy formulation

and planning to standards and legal issues [Lim98]. The second includes two

technological approaches: component-based reuse and generative reuse.
In general, it is possible to characterize the component-based reuse by two

different models: black-box model (meaning the use of components in the mode

use-as-is) and white-box model (meaning the use with adaptation). Both support the

library concept mentioned before. In this approach, the item for reuse is usually

represented as an instance ready for use without intent for the explicit automation.

Generative reuse, in contrast to the first approach, focuses on either producing
components automatically or integrating components into a system also automat-

ically. Thus, generative reuse deals with the automatic generation of instances. This

approach requires developing the specification from which instances are to be

derived. The tool such as a language processor that uses the specification as the
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input to produce instances on demand is called component or program generator.

The program generator, if it is designed correctly and is used properly, among other

possibilities, ensures a higher productivity and quality. The program generator can

be viewed as a component too, if we look at its structure using the black-box model

(without the interest of the internal implementation and functional possibilities). In

such a case, the program generator may reside in a digital library as a component

with a specific mode of use.

Now we are able to make a conceptual juxtaposition of two systems: repositories

of SW components and LO repositories. Conceptually, both are similar systems,

though they are built for quite different purposes and may be with the different

internal organization. If we take into account the fact that the same items such as

data structures or sorting programs could be found in both repositories, the simi-

larity would be even more evident. We are also able to extend such a juxtaposition

of reusability aspects widely exploited in two different domains (SW design and e-

learning). This enables us to raise the following question: (1) Are reusability

aspects understood to the same extent in CS learning (or in e-learning in general)

as they are understood in SWE? Or in other words, are the reuse maturity levels

roughly the same in the two domains? The answer is that the maturity of reuse is

much higher in SWE due to many reasons such as historical, industry support, etc.

Knowing the fact (and not only that), it becomes clear why the e-learning commu-

nity (where computer scientists are important actors) seeks to adopt the suitable

approaches from SWE. There is a plethora of examples to motivate that (see, e.g.

[CNC12, DDA12] to name a few).

In this context, another question can be raised as follows: what were the critical

problems already met in SW reuse that might also emerge for LO reuse? Take for

example the SW reuse library scaling problem that already was raised by

Biggerstaff in 1994 [Big94]. The essence of the problem is that there is a great

amount of similar component instances to be stored in the library. In this case, the

procedures of classifying, storing, searching and recognizing what instance is

actually needed are becoming indeed difficult. The space limits are also evident.

This problem was partially solved using generative reuse instead of applying the

pure component instance reuse. The solution is due to applying of program gener-

ators as library entities as much as possible.

Though in the LO domain we are still needed to live up this level of maturity, the

introduction of GLOs, and especially the meta-programming-based GLOs, gives a

good direction for dealing with and solving a variety of content reuse-related
problems in teaching and learning as it will be shown throughout the book.

In summary, I argue that the capabilities of generative reuse are a main objective

(if not to say more – the tool) to define the context for the emerging of the new kind

of LO which I call smart LO (SLO).

16 1 A Vision of Smart Teaching in CS



1.7.2 SLO Predecessors

As it is stated in the previous section, conceptually, an SLO predecessor might be

regarded the GLO concept proposed by Boyle and his colleagues. They nominated

this innovation as a ‘next-generation’ learning object [BLC04]. By introducing such
a concept, they have sent an evident sign to the e-learning community to move from

the component-based reuse model to the generative reuse model in the field. The

Boyle’s GLO and the authoring tool [www.glomaker.org] is an example of how to

apply generative reuse for e-learning. As it was also noticed in Sect. 1.7.1, there

might be a variety of technologies (preprocessing, templates, various kinds of meta-

programming) to implement the generative approach. The template-based approach

is the basic technology on which the authoring tool was built.

To our best knowledge, we were first who suggested to applying meta-program-

ming as a generative technology to specify GLO [ŠD08]. Therefore, from the

technology-based perspective, it is possible to regard the paper [DŠ08], where the

feature diagrams were used to specify GLO at a higher-level of abstraction and

meta-programming was applied to implement the specification, as a predecessor of

SLO. It is also needed to state that there were a lot of proposals very close to our

approach as I have disclosed partially in Sect. 1.5.

Now it is possible to summarize the discussion presented in this and previous

sections as follows: generative reuse brings the generification idea as a basic

attribute to start defining SLO. As generative reuse has many dimensions, the

generification of GLO can be developed and extended in a variety of ways as it

will be shown firstly in the next subsection and be enforced later.

1.7.3 SLO: An Extended Generification of GLO

So far I have introduced two generative approaches: Boyle et al.’s GLO model

along with their authoring tool [Boy03, BLC04, www.glomaker.org] and meta-

programming-based GLOs [ŠD08, DŠ08]. The background of the two lies in the

model describing the interaction among the technology and content. The difference

in the interaction model enables to view a principal distinction between those

approaches. In the first approach, the model takes the priority to technology and

tool to proposing a template for the users to construct the content by themselves.

The tool, such as the GLOMaker, gives the guidance and the GLO structure to be

filled in by the user-provided content. Thus, it is the only tool that introduces

generative aspects automatically.

In the second approach, the generative aspects are preprogrammed within the

content in advance, while the supporting tool is standard, i.e. a processor (compiler)

of the language using which the generative aspects are specified. This approach

requires the introduction of two essential innovations. The first concerns with

changes in the GLO model. Two explicit structural units appear in this GLO
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model: internal metadata and meta-body. In fact, the internal metadata is the

interface containing high-level parameters to specify the generative aspects. Meta-

data is seen as new capabilities for annotation learning artefacts.
The meta-body specifies the implementation of the generative aspects. The

second innovation refers to the introduction of a prespecified learning variability
[ŠBD13]. The latter means not only the content variants but also the learning
context variants (social, pedagogical, etc.). The learning variability has to be

identified in advance (e.g. through the domain modelling similarly as it is done in

SW engineering using some domain analysis methods [CHW98]). When meta-

programming is used as a generative technology, we are able to represent the

learning variability uniformly and express it explicitly through parameters within

the GLO specification. This specification is, in fact, a meta-program to be

interpreted by the meta-language processor to produce a content variant or variants

on demand automatically.

In summary, the underlying concept of our approach is the primary focus on the

learning content and context variability and implementation of the variability

within the preprogrammed specification using meta-programming techniques.

Now we are able to define the meta-programming-based (MPGB) GLO as follows.

The GLO is a higher-level specification from which the lower-level LOs are

generated. What features of such GLOs are treated as smart to define SLOs?

The technology we use to implement the GLO is meta-programming. Though

there are many slightly different approaches which might be treated as meta-

programming, we use heterogeneous meta-programming in the structured program-

ming mode [ŠD13]. This technology is smart in the following aspects:

• It is a generative technology.

• It is independent upon the type of the target language and meta-language used.

• It supports well the conceptual (structural) model which is flexible and extensi-

ble to constructing the different MPGB GLO architectures for adaptation,

maintenance and evolution.

• It enables to express the different types of learning variability (pedagogical

variability, social variability, content variability, technology variability and

interaction among the variability constituents) through parameters uniformly
[ŠBD13].

• It ensures a flexible management of learning variability first through selecting

the adequate parameter values and then through the generation process which is

supported by the meta-language processor.

This is possible due to the uniform representation of the different variability
constituents. The latter we specify in advance first through modelling. Then, using

meta-programming techniques, we are able to express them through parameters

uniformly [ŠD08, ŠDB+08].

At the use time, by selecting the adequate parameter values, the user is able to

generate the learning content (i.e. LO) on demand automatically.

At this point, some questions can be raised as follows:
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1. To which extent are we able to define and extract the learning variability?

2. Is the enlargement of the variability space (meaning the augmentation of the

number of parameters and their values within the specification) induces ‘smart-

ness’ of GLO?

From the pure technological perspective, there are no limitations to use analysis

methods, for example, borrowed from SWE to extract variability [CHW98]. The

limitations may appear with regard to our restricted ability and lack of knowledge to

understand the e-learning domain due to its heterogeneity and complexity. The

course designer or a group of designers should possess enough competence to cover

the complexity issues in modelling. All limitations along with other requirements to

design SLOs should be stated in the requirement document.

The answer to the second question is positive because the space prespecifies the

functionality (we are able first to represent and then to generate more slightly

different variants for choice in teaching); however, there are also some limitations

related to the implementation. By enlarging the variability space, when

implemented, the SLO specification may become too much abstract and too much

complicated to understand, due to the so-called overgeneralization problem

[Sam97]. It is especially true in the case when some changes are to be introduced.

As the enlargement of the variability space also means the increase of the gener-

alization level, a balance should be kept between the need of generalizing (to ensure

generative features) and overgeneralization. The designer should solve this prob-

lem, because the SLO users (teachers and students) usually apply the SLO speci-

fication as a black-box entity.

Thus, so far, I have defined the SLO as a MPGB GLO with extended generative

features. Is it possible to extend this generation-based model with some other

important features? In the paper [ŠBB14], we have proposed the approach which

concerns with (semi)automatic adaptation of the generated LO to the context of use.

The approach extends the former GLO model with the context model to support

adaptation. We describe the context model by parameter priorities (such as high,

intermediate, low) as a part of the enhanced GLO model. To implement the

automatic adaptation, there is the need to introduce some essential changes in the

structural model described above. In the paper [ŠB12], we have presented the two-

stage GLO model and later we have generalized this model as the multistage GLO

model. Using the developed refactoring tool [BBŠ14] and some predefined adap-

tation rules incorporated within the tool, it is possible to connect stages with the

priority-based context and automatically generate the adapted lower-level GLOs or

LO instances.

The short description of the introduced innovations indeed is smart as compared

to the previous MPGB GLOs.

Now it is possible to define the concept SLO as it stands at the current level of

the development and understanding.

Smart LO (SLO) is such the MPGB GLO structure that:

(i) Enables to implement generative aspects through the explicit representation of
learning variability
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(ii) Allows the use of the priority-based context model [ŠBB14] as an extension of
the learning variability model

(iii) Allows the use of the multistage model [ŠB12] for adaptation purposes of

specifying the models as multistage meta-programs to support automatic

adaptation (through the use of the refactoring tool [BBŠ14])

(iv) Does not contain restrictions for using different teaching environments (e.g.

stand-alone PC, Internet-PC setting, PC-robot, etc.)

The implementation of the smart features is hidden from the user (teacher,

student); the user communicates with the environment containing the smart LO

through the user-friendly interface; the latter presents metadata to select the param-

eter values.

Note that the presented concepts are not only theoretically possible solutions, but

they were realized in the real CS teaching setting as it was described by case studies

in our published papers [ŠBD13, ŠB12, BBD+14], though there are many research

problems we need yet to resolve in this monograph. No matter what technology we

use, GLO is a starting position to define SLO in this context. Thus, the generative

attribute is at the core of our approach. But first the principal question should be

dealt with before applying the generative approach: either we will focus on the tool

that brings generative technology or we need to focus on the internal structure of the

content and change it so that it would be possible to apply generative reuse. Also,

the following questions might be raised as follows: what are the dimensions of

generative attributes and why are they important? I postpone a more thorough

discussion on the what and why aspects. I do not consider the how aspects at all

here. This is a matter of subsequent chapters.

As a summarizing result, I present the following two statements:

1. Smart LO (SLO) is a generative LO with the enhanced generative reuse capa-
bilities. The latter is incorporated within the pedagogically sound SLO specifi-
cation to support flexibility, adaptability, reusability and interoperability in CS
education.

2. I argue that SLO could be seen as an engine to drive advanced CS education in
the twenty-first century.

How does the SLO look already now and might look in the near future? That is

the topic to be considered in the monograph.

1.8 A Primary Understanding: What Is Smart
Environment to Teach CS?

As it has been shown by the review of the related work, there are a variety of tools to

construct e-learning environments; however, the educational robot-based environ-

ments prevail in CS teaching due to the reasons indicated in Sect. 1.5. On the other

hand, we argue that the potential of using educational robots in teaching is not yet
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exploited as fully as possible so far (neither in CS teaching, nor in other disciplines).

Therefore, we accept that educational robots such as Lego Mindstorms NXT

[Ben12] or Arduino-based ones [Rob10] should be at the core, e.g. as a primary

concept, to construct the smart environments. The presence of a robot within

education environments (due to the capability of it to perform a variety of tasks)

predefines the possibility to construct and investigate various constructivist-based

teaching models. There are some important features of educational robots to

support smartness of the concept as follows.
First, most educational robots (such as NXT) are constructed on the Lego

principles; their architecture is simple and reconfigurable. Such reconfiguration

can be easily done by teachers, depending on the context of use and teaching

objectives. Students may also be involved in that activity as apprentices due to

the attractiveness of the activity, its nearness to gaming and the extremely high

level of self-motivation. When students are constructing environments for them-

selves on the basis of self-motivation, such a process should be treated as smart (the
social and pedagogical perspectives).

Second, the robot’s functionality can also be extended by adding extra external
components such as cameras to send graphical views for monitoring what is going

on in the robot’s surrounding within the classroom or outside. The use of cameras

enlarges the functionality of the robot-based environments significantly. In this

case, it is possible not only to make the learning process more attractive and more

effective. It is possible also to introduce elements of new forms of teaching such as

distance teaching (e.g. in the case of disability or illness).

In most cases, it is enough to use a single educational robot in the smart

environment to demonstrate a relatively simple task solving [BSM12]. In this

case, the robot stands for a stand-alone teaching facility, but with the external

support of the Internet and PC. Both ensure the preparation of control programs and

then transfer them to the robot’s environment.

Third, the robot’s functionality can be extremely enlarged in creating smart

environments, if we make essential architectural changes moving from the use of a

single robot to the cooperating robots [BSD13]. For more complicated tasks, where

the physical processes are concerned with simultaneous activities, the need of using

ensembles of robots may arise. For example, the teaching of parallel programming

concepts may be just the case. The move from the single robot use to the robot

ensembles in creating teaching environments is indeed the challenging (smart)

problem in both technological and methodological aspects.

So far, with regard to the concept of the smart environment, I have outlined three

possibilities to improve the functionality of the robot-based CS teaching on the

basis of the structural changes. At this level, those changes should be interpreted as

purely hardware oriented. Further, I should outline the software-oriented capabil-

ities to define the smartness of such environments.

The flexibility in using robots by changing their control programs, thus enforcing

robots to perform different tasks, opens new ways for innovations and improve-

ments. Indeed, the preprogrammed control is a great potential to support mainte-

nance and evolution of environments aiming at their adaptation to various teaching
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objectives. It is possible, for example, to flexibly change the functionality of the

environment only by means of changing the robot control programs. Furthermore,

the robot itself is able to accept information through sensors out of the operating

environment and, in this way, to change own behaviour. Of course, such a possi-

bility should be preprogrammed in advance. Nevertheless, this possibility largely

contributes to the flexibility in managing functionality of the environment in the

whole.

With regard to flexibility aspects, it should be remembered the role and potential

of using SLOs. From the pure technological perspective, SLOs are control program

generators. A particular generator, for example, enables to produce an instant of the
control program on demand automatically. As computational resources of robots

are limited, the generator usually resides in a remote server. Nevertheless, one is

able to gain a great deal of flexibility through the fast regenerating and reloading of

a new instance to control the task. Here, the SLO-generating tool, the tool for

adapting SLO to the context of use, should be viewed as components of the smart

environments, though I omit considering such features here.

In summary, the flexible features of a single educational robot, the integrative

features of a single robot with other external components to enhance the function-

ality of the environment, the integrative features in the context of using SLOs and

their supporting tools and, finally, the integrative features of robots’ ensembles with

the rest part of the e-learning environment are indicative features to define a smart
e-learning environment. In other words, putting together specific features of robots

in some well-established way with other tools, even if those features and tools are

not so much smart in separation, we are able to construct a smart e-learning
environment. This statement is not a pure theoretic prediction. The statement has

already been approved in practice, though in the only one real teaching setting with

the restricted extent of experience and testing (see Chaps. 12 and 13). The first

results, both theoretical and practical, enable us to formulate the concept of smart e-

learning environments here. In PART II of the book, the concept will be extended

through the thorough investigation.

1.9 Driving and Hindering Forces to Advancing Learning
in CS

The reader should accept this short section as a summary of some (in my view is the

most important) statements which were discussed previously. Here, however, I look

at those statements from the other perspective, trying to draw a relationship

between driving and hindering forces. In my vision, there are no pure driving and

pure hindering forces to advancing learning in CS. Both are highly underpinned.

Nevertheless, for methodological purposes, I consider them separately.

As it was stated, now ICT is the main driver of progress in the modern society.

As a consequence, ICT underpins innovation and competitiveness across a broad
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range of private and public markets. ICT is also the main enabler of scientific

progress in all disciplines. In this context, learning is seen as the most important

social activity now. As CS brings fundamental knowledge about computing – the

conceptual framework – needed to understand ICT, the latter can be seen as a main

driver to advancing learning in CS too. Therefore, I present some list of factors (it is

by no means full) that might be regarded as driving forces to advancing in this field

as follows:

1. Advances in ICT and social understanding of the CS role to further progress of

ICT per se are regarded as the most important factors.

2. The ever-growing requirements for more effective and more advanced learning

as a social order and demand in general and in CS in particular (perhaps

requirements are growing, or they should be growing, at the similar rate as

ICT advances do).

3. The extremely broad front of research in CS education (that might be measured,

e.g. by the number of conferences, scientific journals and publications) is also an

important factor in advancing CS learning.

4. The great deal of the formulated challenges such as the interdisciplinary char-

acter of CS adds new stimulus for the improvements and innovations.

5. Migration of more mature ideas, models and solutions from other fields makes a

positive impact on advancing e-learning in general and on education in CS in

particular (e.g. adaptation of software reuse-based models, such as GLO, white-

box LO, glass-box LO to e-learning domain and many more).

6. There is a long list of organizational activities that aim at enforcing and

stimulating the engagement of young generation in computational sciences.

Examples are organized worldwide Olympiads in programming, the Interna-

tional Contest on Informatics and Computer Literacy, local Olympiads and other

forums within separate countries and ‘Hour of Code’ to name a few. The latter

was provided by ACM (from December 9 to 15, 2013) as a part of the Computer
Science Education Week that ‘aims to introduce more than 10 million students of

all ages to the basics of coding and to underscore the critical role of computing in

all careers’.
7. I believe and hope that the smart LOs and smart educational robot-based

environments, to be discussed throughout the book in the context of CS educa-

tion, should also be a significant contribution in this field.

Below I present some hindering factors as related to CS education. Again, this

list is by no means comprehensive. Many of those items could also be regarded

either as challenges or at the same time as stimulating factors. This depends upon

the fact from what perspective one is dealing with the problem.

In my understanding, the hindering factors are as follows:

1. There is no precise definition of CS and informatics.

2. There are no clear distinguishing lines between CS topics and related teaching

topics such as IT, SW engineering and informatics. On this account, Syslo and

Kwiatkowska [SK08] wrote: ‘Today, many people, among them policy makers
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(even some in education), teachers, academics and parents do not consider

computer science as an independent science and, therefore, as a separate school

subject. The fundamental problem is that they do not distinguish between using

computer and network technology and studying the general principles of
computing’.

3. Though the interdisciplinary character of CS topics extends the scope of knowl-

edge in positive sense, it is also affecting negatively teachers to concentrate their

focus on fundamentals of computing.

4. Specificity of CS may be seen to some extent as a hindering factor.

5. In most cases, the level of teacher preparation to teach CS is far from being

relevant to challenges that currently exist in the field [CSTA08, BC11].

1.10 The Topics This Book Addresses

This book is about the novel approach to teach CS. The book is, in fact, a

monograph, in which I have summarized and generalized our research on the

meta-programming-based generative learning objects as well as the research of

my former Ph. D. students. One of them, Renata Burbaitė, has made a significant

contribution to the book. Therefore, she is a coauthor of Chaps. 12 and 13.

What is the content of the book? I have divided the content of the book into two

parts. PART I first deals with the challenges of CS education in the twenty-first

century, motivates the needs for innovations and then outlines the context of the

book topics and introduces CS e-learning modelling concept on which basis we are

able to specify, create and test the so-called smart LOs (SLOs). PART I also

presents a background of SLOs from the teacher’s perspective. PART II deals

with the theoretical background of SLOs from the designer’s perspective in order

that it would be possible to create the authoring tools for designing and

transforming SLOs to support adaptation in learning. PART II also presents a

methodology of creating smart educational environments using robots and SLOs

and the use of the methodology in real setting to teach CS (programming).

PART I includes (1) A Vision of Smart Teaching in CS (this chapter), (2)

Understanding of LO Domain Through Its Taxonomies (Chap. 2), (3) Reuse

Framework of the LO Domain (Chap. 3), (4) Modelling of CS Teaching and

Learning in Large (Chap. 4), (5) Model-Driven Specification in Designing Smart

LOs (Chap. 5), (6) Smart LOs Design: Higher-Level Coding and Testing Aspects

(Chap. 6), (7) Enhanced Features of SLOs: Focus on Specialization (Chap. 7) and

(8) Context-Aware Adaptation of Smart LOs (Chap. 8).

PART II includes (1) Background to Design Smart LOs and Supporting Tools

(Chap. 9), (2) Authoring Tools to Design Smart LOs (Chap. 10), (3) Authoring

Tools to Specialize and Adapt Smart LOs (Chap. 11), (4) Robot-Based Smart

Educational Environments to Teach CS: A Case Study (Chap. 12) and (5) Smart

Education in CS: A Case Study (Chap. 13); What Is on the Horizon?
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1.11 Summary and Concluding Remarks

At this point, it is possible to summarize our discussion as follows. Though

reusability aspects in e-learning research dominate at least a decade or so, in my

view, the reuse potential in e-learning, no matter in which subject and no matter

from what perspective, is not yet exploited as it might be. Though the notion

of reuse was introduced (initially implicitly, i.e. without the use of the word)

almost from the emergence of computer science (CS), it still has to live up to its

promises: higher productivity and quality through the library concept and automa-
tion. A major stumbling block to achieving the promised benefits in e-learning

is the understanding and learning the reuse-based approaches. One reason

may be that we do not yet thoroughly understand the fundamental concepts that

define reusability. The other reason may be the lack of understanding of how the

concepts should migrate across different fields such CS, software, hardware

and education. The difficulties with reuse-based approaches relate to the following

stages: (1) understanding, (2) adoption and (3) application. For example,

meta-programming – the powerful technology or methodology to support genera-

tive reuse we use in different domains [ŠD13] – does not allow achieving its

promises at once. Rather, it demands a thorough domain analysis, investment into

the creation of meta-programming tools such as meta-language processors,

refactoring/transformation tools, development of generic component libraries and

code generators, etc. The payoff will come only after some time, and designers

will have to accept that. Adoption of generative reuse also requires some shift of

attitudes and mindset of educational software developers as well as CS educators.

Currently, a majority of programmers and designers are accustomed to produc-

ing specific solutions and applications for a particular domain such as e-learning.

They like to reuse the existing software artefacts (meta-programming-based GLO

and SLO are really domain-specific programs, i.e. valuable assets or artefacts), but

not much is done and invested into designing for reuse. If the design with reuse in e-
learning is understood well enough, the design for reuse is still in its infancy in the

domain.

In this introduction, I have motivated the benefits of two novel concepts – smart
LO and smart educational environment – to teach CS. The aim is to achieve at least

two objectives. The first is the enhancement and widening of generative reuse

through focusing on design for reuse and exploiting its potential for advancing

CS learning and teaching. The second is to respond to some existing challenges and
bottlenecks in teaching CS (such as semi-automatic adaptability, personalization,
visualization of reality, exploratory learning). I believe and hope that those con-

cepts will attract attention within the educational research community. Our vision is

to combine the two concepts as seamlessly as possible and open the way for smart
learning in CS. To present this vision as thoroughly as possible to the reader, it is

the main task to be considered throughout the book.
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1.12 Research and Exercise Questions

1.1. Draw a distinguishing line among disciplines CS, SWE and informatics.

What aspects are in common?

1.2. Draw a distinguishing line among disciplines CS, educational technology and

gaming technology. What aspects are in common?

1.3. Define CS from two perspectives: (1) as it is understood at the school level

and (2) at the university level.

1.4. What are the consequences of challenges formulated in Sect. 1.2?

1.5. Invent new challenges to CS teaching as regarded to the appearance of the

Internet of Things – the new paradigm in computing.

1.6. Develop a framework to analyse and evaluate the reuse paradigm in

e-learning.

1.7. Outline the basic trends in CS education research.

1.8. Why are there so many definitions of the term LO? What is the definition

most relevant to your research?

1.9. What is generative LO (GLO)? Compare two models: Boyle et al.’s and

meta-programming-based GLO.

1.10. What is meta-programming? Why is it needed? Study the basics (definitions

and taxonomy) of the paradigm more thoroughly from [ŠD13].

1.11. What is smart LO? Why it is possible to ‘transform’ the meta-programming-

based GLO into smart LO through the augmentation of generative aspects

(parameters) and by adding a new functionality?

1.12. What is the smart educational environment? What are the components of the

environment? Why might educational robots be regarded as central

components?

1.13. Outline the driving and hindering forces to advancing learning in CS in your

concrete context.

1.14. Outline your view: how might SLOs look in the nearest future?
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Chapter 2

Understanding of LO Domain Through Its
Taxonomies

2.1 Introduction

The aim of this chapter is to introduce and discuss a taxonomy-based framework to

understand the CS LO domain in large. I motivate the need of such a framework by

the following reasons: (1) LO domain is commonly recognized as the heart of

e-learning in general; (2) the LO concept is accepted and its role well understood

for teaching CS as well; (3) the LO domain is continuously evolving in horizontal

(meaning in general) and vertical dimensions (meaning in CS); and (4) a taxonomy-

based approach is fundamental in many aspects (knowledge and artefacts system-

izing, standardizing, sharing, gaining and teaching). Here, within the introduced

framework, we highlight and consider (to some extent only) the following tasks:

(1) concept-based modelling and experimentation using a restricted database of

literature sources (about 500) and (2) creation of ontology-based models among

those concepts that are most likely relevant to our approach.

All these are supported by facts extracted through an extensive literature review.

We (I mean also readers) start the discussion with definitions, role and the general

principles along with the introduced taxonomies as Sect. 2.2 states.

2.2 What Is Taxonomy and What Is Its Role?

Taxonomy is the science of classification according to a predetermined system. The

Webster Online Dictionary defines taxonomy more precisely as follows:

A systematic arrangement of objects or concepts showing the relations between them,

especially one including a hierarchical arrangement of types in which categories of objects

are classified as subtypes of more abstract categories, starting from one or a small number

of top categories, and descending to more specific types through an arbitrary number of

levels.
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Taxonomy plays a significant role in the cognition of any domain, any discipline

or even any process and artefacts because ‘there is nothing more basic than

categorization to our thought, perception, action and speech’ [Lak87, Dav97].
Now look more carefully at the aforementioned definition. Two important

aspects are highlighted there, though not directly. The first is ‘A systematic

arrangement of objects or concepts’ also implies their definition. The second is

the statement of basic principle – the use of a hierarchy and abstraction levels – on
which the categorization is to be formed. The e-learning community actors know

well the following fact – there is the abundance of definitions of the term LO (see

also Sect. 2.4).

In this regard, one may ask: (1) What are the aspects the definitions cover?

(2) What are the relationships among those definitions? (It will be clarified in Sect.

2.4.) The next question arises: (3) what are the course designers and planners doing

in designing LOs? The course plan, roughly speaking, is taxonomy. Many other

examples might be provided to motivate the role of taxonomy. Knowing that and

also knowing principles on which taxonomy is formed, the following framework is

helpful for analysing and better understanding the LO domain.

2.3 A Framework to Outline LO Domain

As the LO domain is very dynamic and extremely large (e-learning might be

considered as a super domain of the first), the knowledge systemization in the

field is of great importance. The importance can be seen at least from two perspec-

tives: theoretical (e.g. educational research, instructional design) and practical

(e.g. the development of educational environments and the use of LOs within

teaching settings). As, in many aspects, CS has a tight relationship (including

teaching) with software engineering (SWE), where the term domain is widely

used, we need first to define the term domain itself (meaning independently upon

LOs). Note that there are many efforts to introduce SWE concepts and design

principles into the LO domain (see, e.g. [Boy03]).

In SWE, the domain is treated as a really existing space of data, and knowledge

for extracting artefacts is needed to develop a SW system. SWE investigates

domains systematically. Though there is no unified definition, the following defi-

nitions might be relevant in our context. Domain is an ‘area of activity or knowl-

edge containing applications that share common capabilities and data’
[Sam97]. Domain is ‘a set of objects or entities bearing a common terminology’.
Domain is ‘an area of knowledge or activity characterized by a set of concepts and

terminology understood by practitioners in that area’ [BCD+99]. What is a general

framework to deal with and understand domains? In our view, such a framework

could be described by three interrelated attributes: domain scope identified by its
boundary, domain context (what is outside of the boundary?) and subdomains
within a domain (what are entities within the boundary?). This view is known
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since 1990 when the SWE Institute of Carnegie Mellon University (USA) has

introduced the FODA (Feature-Oriented Domain Analysis) method [KCH+90].

I apply this SWE-based approach in our case as follows. I consider e-learning as

a context of the whole LO domain (in other words, e-learning is a super domain,

while the LO domain is a subdomain of the first). It is possible to exclude within the

LO domain three subdomains (we do that implicitly). The first subdomain is the

known definitions and types of LOs extracted from the literature. We present it as an

evolutionary-based taxonomy. The second subdomain is the models to characterize
LOs. As there are a variety of proposals to deal with LO models, we also analyse

their taxonomies. The third subdomain is the relationship among main concepts

that characterize the LO domain itself. They are structural units defined as category
classes, their properties and processes pertained with those classes. I define such a

relationship as ontology of the domain under consideration. Finally, I consider the
scope of the domain we analyse in this chapter as overall aspects to which the

aforementioned three subdomains pertain. Figure 2.1 summarizes the introduced

framework.

The top layer is characterized by the following attributes: e-learning domain,

learning objects (LOs), LO repositories and courseware designs. Each bottom

division (having the form of trapezium in Fig. 2.1) is to be understood as a

subdomain of the upper division. The topics we are concern in the book cover the

middle and bottom layers. The topic of this chapter is marked by the darkened

trapezium.

Now we need to characterize the top layer as the super domain (or, in terms of

domain analysis [KCH+90], as a context and the boundary) to our domain of

interest. Here, I focus on the paper [Str06], which presents the generic

multidimensional reference model (MRM) for e-learning standards as the main

outcome. First, the paper states the tasks of interoperability as well as quality

development and their relationship. In e-learning their connection and

interdependence are evident: interoperability is one basic requirement for quality

development. It is shown how standards and specifications are supporting these

crucial issues. Then the MRM is evaluated according to e-learning standardization

committees and initiatives (ISO/IEC JTC1 SC36, IEEE LTSC, IMS and ADL) and

their published standards and specifications. As a conclusion, the paper outlines the

challenges and potentials for e-learning standardization for the future. Three types

of e-learning standards are differentiated:

• Implementation standards for ensuring the interoperability within all domains of

e-learning

• Conceptual standards offering generic and theoretical solutions to compare and

harmonize the entities and objects corresponding to the standard

• Level standards to define the quality level that should be reached by the

application of the e-learning

These three types of e-learning standards can be attributed to the two main

purposes and functions of e-learning standardization, i.e. interoperability and qual-

ity development. The differentiation of the implementation standards (and their
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corresponding conceptual standards) is not so easy. Depending on their focus, many

different types of implementation standards can be identified: metadata standards,

architecture standards, infrastructure standards, interface standards, etc.

There are six main domains of e-learning with relevance to standards:

• Meaning (that focuses on the general understanding and deals with the disci-

plines semiotics, pragmatics and semantics)

• Quality (that covers all aspects of the development, assurance and management

of quality and deals with results, processes and potentials)

• Didactics (that deals with all pedagogical questions and issues concerning

methods, learners and environments)

• Learning technology (that includes all technological solution especially devel-

oped for learning objectives and purposes and deals with data exchange, inter-

faces, accessibility questions, etc.)

• Learning content (that covers all aspects that are necessary for e-learning objects
and deals with the resources, their aggregation, their packaging, etc.)

• Context (that combines all other disciplines and information with regard to

e-learning and its given context and deals with, e.g. rights, laws and experiences)

The e-learning domain taxonomies include different aspects such as learning
styles [BCS+05], collaborative learning [Sal06], learning activities [Con07], etc.
The e-learning models and frameworks are discussed in [MF04, SVC12,

Nat12]. One can read and learn more on LO taxonomies from the following

sources: (1) Wiley LO [Wil00], (2) Redeker’s LO [Red03], (3) Finlay LO [Fin04]

and (4) Churchill LO [Chu07].

E-Learning Domain: Taxonomies, Models and 
Standards 

Learning Objects (LOs): Taxonomies 
and Standards

LO Repositories

Courseware Designs

Content & 
Pedagogical 
Activities

Learning 
processes

Top layer

Middle layer

Bottom layer

Scope, Complexity , Genericity

Applicability
Basic LO Concepts &

Models

Fig. 2.1 A framework to analyse and understand LO domain
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The LO standards and repositories are directed to higher level of reusability and

interoperability. The latter is related with the quality of metadata. The National
Information Standards Organization (NISO) defines metadata as structural infor-

mation that describes, explains, fixes or otherwise facilitates the search, use and

management of the learning resources [BC10]. Roy et al. [RSG10] carried out a

comparative analysis of LO metadata models and showed that the IEEE LOM,

Dublin Core and CanCore standards are used most frequently.

One can learn more on courseware designs from [Goo14, DPW11, RM13]. Now

we return to our topic of interest.

2.4 Taxonomy of LO Definitions

Here, we discuss the first subdomain of the LO domain as it was identified in Sect.

2.3. There was a great deal of efforts to introduce taxonomies to identify various

aspects of LOs through analysis of LO properties, structure, type and other attri-

butes such as similarities and differences given by different sources. As the LO

domain is highly heterogeneous, different taxonomies present different aspects. For

example, the Bloom’s taxonomies (there is a long list of the extensions of the base

taxonomy [Blo56] (see, e.g. [Kra02])) mainly focus on learning objective and

processes. Wiley’s taxonomy [Wil00] focuses on LO types and characteristics.

Redeker’s taxonomy [Red03] aims to conceptualize a didactical taxonomy of

LOs and provides a didactic metadata approach for the facilitation of reusable

instructional navigation patterns. More specifically, he presents an educational

taxonomy for LOs for the facilitation of generic sequencing strategies. The OSEL

taxonomy [CAM+06] represents the joint product of Redeker’s and Wiley’s taxon-
omies. Rossano et al. [RJR+05] provide a meta-analysis and present a taxonomy for

definitions and applications of LO as they were presented in the ICALT’05 papers.

Our taxonomy comprises a more durable period of time and is oriented to extract

not only definitions per se but also processes and activities applied to LOs (see

Table 2.1).

The presented summary provides readers with the following information. As I

have presented the definitions and main concepts in a strict chronological order, it is

possible to see the evolution of the LO concept definitions during about two

decades here. Sometimes authors try not to present a precise definition but rather

to emphasize a specific property the suggested LO has. On the basis of the proposed

scheme (it can be also treated as our taxonomy), it is possible to exclude three main

streams of works to determine the evolution trends.

The first stream defines LOs as the first-generation entities (the term was coined

by Boyle). According to this trend, LOs are seen as instances having a variety of

discriminating properties. Among those properties, the following ones prevail in

most cases: structure, behaviour, reusability, composition, adaptation and context.

In general, we can characterize the first-generation LOs either by the pure black-
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Table 2.1 LO taxonomy defined by the conceptual evolution since 1997 till 2014

Year, author: main focus Definitions

1997, L’Allier: compositional and structural
view combined with pedagogical attributes

Learning object (LO) is a ‘structural compo-

nent, which is defined as the smallest inde-

pendent instructional experience that contains

an objective, a learning activity and an

assessment’ [All97]

1998, Merrill A knowledge object is ‘a way to organize a

data base (knowledge base) of content

resources (text, audio, video, and graphics) so

that a given instructional algorithm

(predesigned instructional strategy) can be

used to teach a variety of different contents’
[Mer98]

1. LO as knowledge object

2. Structural and process-based view

2000, Wiley Learning objects ‘are elements of a new type

of computer-based instruction grounded in the

object-oriented (OO) paradigm of computer

science’ [Wil00]

1. Structural and process-based view

2. Relationship to OO

2000, Merrill: LO as knowledge object with
extended structural, process-based and
property-based views

The components of a knowledge object ‘are a
set of defined containers for information’,
including an entity or its part, property, action
triggered by the process, conditions and con-

sequences of executing the processes [Mer00]

2001: Ip et al.: pure structural view A learning object is a structure that ‘must have

at least 4 subcomponents: content, functions,

learning objectives and ‘look and feel”

[IMC01]

2001, IEEE std.: technology and reuse Any entity, digital or non-digital, which can be
used, re-used or referenced during technology
supported learning [LTSC01]

2002, Sosteric and Hesemeier: structure,
pedagogy and context

A learning object is a ‘digital file (image,

movie, etc.) intended to be used for pedagog-

ical purposes, which includes, either internally

or via association, suggestions on the appro-

priate context within which to utilize the

object’ [SH02]

2002, Orrill: structure of the process, interac-
tion and feedback

‘The learning object presents the information,

provides the student with an infinite amount of

practice, and provides a test that allows the

computer to provide feedback’ [Orr02]

2003, Polsani: independency, reuse and
context

A learning object is ‘an independent and self-

standing unit of learning content that is

predisposed to reuse in multiple instructional

contexts’ [Pol03]

2003, Gunawardena and Adamchik: cus-
tomization, integration

A customized learning object (CLO) is defined

as ‘an integrated module containing the core

text, code examples, review questions, and

other supplemental material’ [GA03]

(continued)
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Table 2.1 (continued)

Year, author: main focus Definitions

2003, Mohan and Greer: structure, process
and reuse

LO is ‘an item of content, a learning resource,

or an entity of learning capable of being

reused from one course to another’ [MG03]

2003, Paris: the learning and design perspec-
tives, with the latter being stemmed from the
object-oriented paradigm in CS

LOs are considered from (1) ‘the learning
perspective, with a focus on learning objec-

tives, content, and assessment in order to

derive small instructional components from

existing resources; (2) the object perspective,
with a focus on the development of small,

reusable components, which are characterized

in terms of accessibility, reusability, and

interoperability’ [Par03]

2003, Redeker: LO as the knowledge reduc-
tion in its essential unit

A learning object, at its most basic level, “is

made up of several knowledge units (KUs)

which may consist of texts, audio and video

presentations, or animation. At this point the

problem of granularity of learning objects

arises” [Red03]

2003, Boyle: design, composition and
repurposing aspects, introduction of SWE
principles to design LO

‘A compound object consists of two or more

independent learning objects that are linked to

create the compound, to provide pedagogical

richness and a significant basis for

re-purposing’ [Boy03]

2004, Leeder et al.: composition, interactivity
and assessment

‘A reusable learning object (RLO) is based on

a single learning objective, comprising a

stand-alone collection of three components:

(1) Content: a description of the concept, fact,

process, principle or procedure to be under-

stood by the learner in order to support the

learning objective; (2) Interaction: something

the learner must do to engage with the content

in order to better understand it; (3) Assess-
ment: a way in which the learner can apply

their understanding and test their mastery of

the content’ [LDH04]

2004, McGreal: reuse and composition ‘Any reusable digital resource that is encap-

sulated in a lesson or an assemblage of lessons

grouped in units, modules, courses, and even

programs’ [McG04]

2004, Sicilia et al.: as digital information on
the Web

The authors consider learning objects to be

digital entities – the resources in the Web –

which represents ‘information bearing things
that contain digitally coded information read-

able by a computer’ [SGS+04]

2004, Silveira et al.: focus on interaction
among LOs and LOs and other agents aiming
at improving adaptability through intelligence

Intelligent learning objects (or pedagogical

agents) are those to ‘improve adaptability and

interactivity of complex learning environ-

ments built with this kind of components by

the interaction between the learning objects

(continued)
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Table 2.1 (continued)

Year, author: main focus Definitions

and between learning objects and other agents

in a more robust conception of communication

than a single method invocation as the object

oriented paradigm used to be’ [SGP+04]

2004, Garcı́a-Valdez et al.: structure, context,
process and adaptability

An adaptive learning object (ALO) is the one

that ‘inherits from the Learning Object type

and is associated with the following adaptive

components: Knowledge Domain Model

(KDM), User Model (UM), Session (S), Con-

text Model’ [GRC+04]

2005, Stamey and Saunders: customization
through intelligence

Intelligent learning objects are those enabling

to ‘extend the idea of Learning Objects (LOs)

whereby the learner receives customized

training like that found in Intelligent Learning

Environments’ [SS05]

2005, Morales et al.: based on concept sepa-
ration with the focus on quality and
productivity

The concept of generative learning objects

(GLOs) is based on separating the learning

design from the surface instantiation of a

learning object. This gives a number of

advantages: (i) focuses attention on the quality
of the learning design that is at the heart of the
GLO; (ii) provides a basis for a marked
improvement in productivity [MLB05]

2005, Oliver et al.: LOs are able to support
specific outcomes (rules, facts, etc.)

In such cases, when the developers set very

firm guidelines for size, form, assessment and

pedagogy, ‘learning objects in these instances

take the form of discrete elements able to

support very targeted learning outcomes,

e.g. rules, facts, procedures’ [OWW+05]

2006, Chitwood: structural, knowledge units
causing learning

A Wisc-Online learning object is (i) ‘A dif-

ferent way of thinking about learning content;

(ii) Small, independent chunks of knowledge

or interactions stored in a database; (iii) Based

on a clear instructional strategy – intended to

cause learning through internal processing

and/or action; (iv) Self-contained – each

learning object can be taken independently’
[Chi06]

2006, Mierlus-Mazilu: focus on visualizing,
aiming at understanding programming struc-
ture more easily

The Codewitz learning objects ‘are interac-
tive visualizations of program code examples

or programming tasks. . . can cover any spe-

cific programming problem in any program-

ming language. The problem-solving logic at

the algorithmic level. A learning object

focuses on one specific learning goal. Each

learning object has to be independent, without

links to other objects or resources’ [Mie06]

(continued)
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Table 2.1 (continued)

Year, author: main focus Definitions

2006, Boyle: structure and design principles to
develop GLO. The basic idea is the separation
of concerns (surface form from the content)
and template-based approach

Boyle (one of the pioneers of GLOs) describes

the GLOs design process as follows

‘The first step in developing generative learn-

ing objects is the separation of surface form

from content. Unlike the first generation

approach, the primary focus here is to make

forms reusable rather than the content

(although the content may be reusable as well)

– an approach hinted at by Wiley. At its most

basic level, this leads to a ‘template-based’
approach. This separates the surface structure

from the specific content and captures this as a

template. Tutors can load content into these

reusable RLO forms. This could be particu-

larly useful in areas such as statistics, where

there is a common statistical pattern, but users

want content adapted to their specific subject

area. The next stage in articulating a concep-

tual structure for generative learning objects is

to elucidate the underlying hierarchical struc-

ture of learning objects’ [Boy06]

2007, Štuikys and Damaševičius: GLO as
learning variability mapping on generative
technology (meta-programming)

The authors extend the known concept of

GLOs by connecting commonality-variability

analysis in the domain with heterogeneous

meta-programming techniques for generating

LO instances on demand from the generic LO

specification [ŠD07]

2008, Khierbek et al.: explicit metadata,
reusability and composition

The authors define ‘RLOs as the basic build-
ing blocks of a learning content that are well-

defined by metadata and can be easily com-

bined to be reused in different learning con-

texts’ [KST08]

2008, Štuikys and Damaševičius: further dis-
cussion on meta-programming- based GLOs,
GLO as a mini library

‘A GLO is a specification describing a family

of the related LO instances. It has the user

manageable metadata for deriving instances

on demand. A particular GLO can be seen as a

mini repository of LOs providing the possi-

bility to automatically generate from the

repository a concrete LO instance on demand

depending on the metadata values that the user

identifies. A GLO may be a member of a

conventional LOs repository too, but each LO

instance of GLOmust be first generated before

using’ [ŠD08]

2009, Han and Krämer: interactivity and
parameterization

The authors use Bloom’s taxonomy to qualify

and relate learning tasks and activities and

combine them with different instances of

content. They call this ‘pedagogical parame-
terization of information objects’ [HK09]

(continued)

2.4 Taxonomy of LO Definitions 41



Table 2.1 (continued)

Year, author: main focus Definitions

2009 Villalobos et al.: interactivity and gen-
eration of programming skill

The authors present interactive learning

objects (ILOs) as one of the components that

reinforce their ‘pedagogical model, by

supporting the generation of high-level pro-

gramming skills’ [VCJ09]

2009, Boyle: further discussion on GLO design
using GLO-maker tools

‘The idea of capturing successful learning

designs and making these the basis for reuse,

rather than content, is at the core of the con-

cept of generative learning objects (GLOs).

The authoring and adaptation of generative

learning objects is achieved through a spe-

cially developed authoring tool called

GLOMaker. Crucially, tutors can also use the

tool to adapt existing GLO based learning

objects to suit the local needs of their students’
[Boy09]

2010, Men and Jin: focus on dynamic context.
The concept ‘smart LO’ has been met for the
first time

The authors take the learning object ‘as a
chunk of information with the description of

its context. This means the learning object is

passive, but with a description about context

information which is dynamic. This is differ-

ent from the smart learning object, which
targets to ‘perform many of the tasks typically

associated with the LCMS” [MJ10]

2012, Vlachos: LO is characterized as a bun-
dle of various media elements (text, image,
video, multimedia, podcast, animation, glos-
sary, assessment, etc.) of related state and
behaviour

‘The ‘wrapper’ around this digital learning

material describes the structure of the LO and

includes the descriptive metadata; the ways

that a LO can be managed, linked and

searched. This encapsulation is liable for the

increase in efficiency of a LO each time it is

adapted and reused in a learning activity. In

accordance to a programming object, a LO

should be small – less contextual – and per-

form few tasks in order to be applied easier.

LOs are typically small content components.

Despite that fact, for measuring the granular-

ity, or aggregation level, of a LO we consider

the approach based on the nature of its’ con-
tent as important as the media-centric one,

which is based on the size of its media’
[Vla12]

2012, Alharbi et al.: focus on student-centred
learning through the context, adaptation and
learning styles

The main objective of the research presented

in this paper was to design learning objects to

support students in their self-regulated learn-

ing of programming language concepts based

on the theory of learning styles [AHH12]

2012, Štuikys and Burbaitė: focus on
refactoring of GLO to produce two-stage GLOs
to support adaptation

Structural and functional models of one-stage

and two-stage GLO to support the following
issues: (i) complexity management and

(ii) reuse and adaptability [ŠB12]

(continued)
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box model (meaning the use of LOs as is, i.e. without adaptation) or a ‘weak’white-
box model (meaning the use with manual adaptation).

The second stream defines the so-called generative LOs (GLOs). Boyle treats

them as the ‘next-generation’ LOs. The main intention of introducing this kind of

LOs was to enhance the previously mentioned properties of the first-generation LOs

through the new property such as the ability to generate the content. This new

property requires focusing more in-depth on two aspects: design processes and

technology to support the design and use of this kind of LOs through the generation
process. Here, the technology plays a significant role because it predefines the

capabilities of designing and generating processes. Boyle and his colleagues use the

template-based approach to construct their GLOs by means of the tools called GLO

Maker [Boy10]. One can track the evolution of this approach using the given

extracts taken from their papers published in between 2003 and 2012. In general,

we can characterize the second stream by generative reuse model, i.e. a more

advanced white-box model which focuses on semi-automatic generation.

The third stream of research on LOs concerns with the new kind of GLOs,

namely, meta-programming-based GLOs. Meta-programming is a powerful gener-

ative technology, enabling to automatically transform and generate the content

from the preprogrammed specifications called meta-programs [ŠD13]. Meta-

programs is seen as a programs generator (along with a meta-language processor).

Therefore, the technology enables semi-automatic or even automatic adaptation if

the initial preprogrammed specification has additional information such as context

for adaptation (we will discuss that in detail later).

Table 2.1 (continued)

Year, author: main focus Definitions

2013, Burbaitė et al.: focus on the use of robots
as physical LOs in CS education

Robots as physical learning objects (PLO) are

considered; that extends the notion of a tradi-

tional LO beyond the virtual domain

(e-content, web page) to a physical domain

(robot hardware and physical processes that

are demonstrated by the hardware). A PLO is a

smart thing (e.g. a mobile robot) that has sen-

sors and/or actuators to interact with its envi-

ronment and content (a control program) to

control its behaviour [BDŠ13]

2014, Burbaitė et al. focus on a new type

context-aware GLOs; the use of refactoring

tool to transform and adapt multistage GLOs

Context-aware generative learning objects

(GLOs) aim at supporting wide-scale reus-

ability and automatic adaptability through

refactoring-based transformations to produce

adapted LO to teach computer science

(CS) topics within the educational Arduino-

based environment [BBD+14]
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2.5 Taxonomy of LO Models

Since there are a variety of the slightly different definitions of LOs, so is with their

models. However, I have selected only a few models treating them as most

representative ones to our context. CISCO Systems [CISCO03] propose a structural

LO model to support reuse. This model consists of five components (objective,

metadata, content, practice and assessment; see Fig. 2.2). Content may be static and

interactive and may contain practice as a separate component.

The model aims at achieving one learning objective. The quality of the LO

model is measured by evaluating whether or not the objective was achieved. The

interior of the content is created from the text, audio, video, animation fragments

and Java code applets. The model is described using metadata for storing and

searching to support reuse.

Verbert and Duval [VD04] first present the overview of Learning Object Content

Models and then suggest their own model (see Fig. 2.3). The overview includes the

Learnativity Content Model of Duval and Hodgins, 2003, SCORM Content Aggre-

gation Model, CISCO RLO/RIO Model and NETg Learning Object Model

(L’Allier 1997).
In this model, the authors distinguish between the content fragments, content

objects and learning objects as follows. Content fragments are learning content

elements in their most basic form, such as text, audio and video. They represent

individual resources not combined with any other. A further specialization of this

level will need to take into account the different characteristics of time-based media

(audio, video and animation) and static media (photo, text, etc.). Content objects are

sets of content fragments. They aggregate content fragments and add navigation.

Content fragments are instances, whereas content objects are abstract types. The

authors argue that it is possible to extend content fragments with activities and

people and analogously content objects with activity types and roles.

Meyer [Mey06] proposes the TRUC model as testable, reusable unit of cogni-
tion, which consists of concepts, skill and assessment. The following attributes

characterize the model:

Learning object

Objective
Metadata

Assessment

Content Practice

Fig. 2.2 LO structural

model (According to

[CISCO03])
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1. TRUC components are created on the clearly defined concept.

2. TRUC components are clearly defined and oriented to multiple uses.

3. TRUC has one or more assessment criteria.

4. The scope of the TRUC use covers a few lessons.

5. TRUC is grouped into a hierarchical structure.

The Boyle’s GLO structural model (Fig. 2.4a) contains the deep structure and

surface structure [Boy06]. The behavioural model of the GLO consists of authoring
tool, XML file and player program (see Fig. 2.4b). As the main merit of the model,

Boyle emphasizes the opportunity to change the XML file, flexibly, using the

authoring tool in order to create instances from the template-based GLO.

LO models are to be considered at the different representation levels. In this

regard, the aggregation of the content parts, along with learning objectives, stands

as a primary concern [SAA+07]. Furthermore, the relationships between the

resource type, granularity levels and reusability aspects play a significant role

[BMO08]. On this basis, we have summarized the relationships as it is outlined in

Table 2.2.

The presented LO model taxonomy is by no means exhaustive. We do that

consciously, having in mind the following: (a) here we have presented those models

that are either general enough or, to some extent, relate to our models to be

presented later and (b) the reader is asked to provide research on LO model

taxonomy in Sect. 2.8.

Content
Objects

Learning
Objects

objective

Content
Fragments

navigation

navigation

Fig. 2.3 General learning object content model (Adapted from [VD04])
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2.6 Keyword-Based Description of CS Education Research

Here, the aim is clarifying two issues: (1) What are the basic concepts used in the

scientific literature to characterize research in CS education? (2) What are relation-

ships among those concepts? In order to receive an answer, we have provided the

following research experiment. First, we have created the initial database for our

research. It included about 500 scientific papers on e-learning and CS education.

The papers were published in journals, books and proceedings of worldwide

conferences, symposiums or workshops during the years 1998–2013. Next, we

have selected 126 papers that were regarded as strongly related to the CS education

research. By the word strongly, we mean the following here: there was mentioned

in the title and/or keywords of the papers either the term CS education (and

synonymous, such as learning, teaching) or programming teaching-related terms

Fig. 2.4 Template-based GLOmodels: structural (a) and behavioural (b) (Adapted from [Boy06])

Table 2.2 Relationship model among content type, granularity level, aggregation level and scope

of reuse [BS11]

Element type of LO

Granularity

level

Aggregation

level Reusability

Raw media: images, audio-

video files, text snippets

Very fine Low Reused on the ‘use-as-is’ basis

Anything that focuses on a

single piece of information

Fine Low Reused as self-contained units.

Can be disassembled in order

to reuse their content assets

A collection of information

objects that are assembled to

teach a single learning

objective

Medium Medium Reused as self-contained units.

Can be disassembled in order

to reuse their information

objects or content assets

Lessons, courses and general

learning resources composed

by multiple LOs with multiple

learning objectives

Coarse Medium Entirely reused, but coarse

granularity reduces reuse

potential

Learning environment – com-

bination of content and tech-

nology with which a learner

interacts

Very coarse High Reused depending on the

coupling they maintain among

them
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(such as algorithms, computer languages, programming, etc.). The great deal of

selected papers was published in recent years (see Fig. 2.5).

After that, on the basis of intuition and experience, we have created a list of

generalized keywords and have identified the scope of their meaning by presenting

either synonyms or those words that were very close in meaning. In Table 2.3, we

summarize those keywords and the scope of their meaning (here, by ‘we’ I mean the

help of Renata Burbaitė). Finally, we have calculated the frequency of those

keywords in each paper of the list. In Fig. 2.6, we present the results of the

calculation ordered by the value (in percent).

What can one learn from this diagram? Though the experiment was not exhaus-

tive, nevertheless, the trend is clear: there are terms that define the field best,

i.e. most frequently used (e.g. pedagogical features, evaluation, visualization,

learning environment, LO and contextualized learning). There are also terms that

define the field exceptionally rarely (e.g. LO sequencing, interdisciplinary learning,

adaptive e-learning, experimental validation).

It should not be thought that those research areas by no means are less important.

On the contrary, it might be thought that the areas are more complicated and

researchers should pay more attention to that. But on the other hand, we need to

take into account the strong correlation between the different generalized key-

words. Having this in mind, the results of the interdependency of the keywords

are more informative (see Table 2.4).

1 1
3

1 1
3

6

9

16

11

21

17

22

4

1998 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Fig. 2.5 The number of the selected papers strongly related to CS education being published in

1998–2013
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2.7 Summary and Concluding Remarks

In this chapter, I have analysed the LO research domain in general and in CS

education in particular. As this domain, indeed, is very dynamic and extremely

large, the knowledge systemization in the field is of great importance. The LO

domain and discussed topics here should be treated as the essential part of the

context of our main topic – smart LOs. To provide the analysis systematically, first I

have introduced a framework. To describe the framework, I have used concepts

borrowed from SW engineering (i.e. a domain understanding through its model-

ling). Next, I have introduced LO taxonomy by providing basically the original

Table 2.3 Generalized keywords and their synonym used in the experiment

# Generalized keywords Scope of their meaning and synonyms

1. Adaptive e-learning

(AEL)

Adaptability, adaptive course, adaptive e-learning

2. Artificial intelligence

(AI)

Agents, artificial intelligence, knowledge based

3. Contextualized CS

learning (CCSL)

Contextualized learning, contextualized programming learning,

learning context, etc.

4. Evaluation (E) Evaluation of CS education in large, assessment

5. Experimental validation

(EV)

Experimental validation in large

6. Interdisciplinary learn-

ing (IL)

STEM (science, technology, engineering, mathematics)

paradigm support

7. Learning design (LD) Teaching-learning processes that take place in a unit of learning

8. Learning environment

(LE)

Learning environments for CS education: adaptive, robot based,

game based, etc.

9. Learning object (LO) Learning resources for CS education: adaptive LO, customized

LO, LO as patterns, generative LO, dynamic LO, etc.

10. Learning object

sequencing (LOS)

Connecting LO to LD and LE

11. Metadata and LO

repositories (MR)

Available LO metadata and repositories

12. Modelling (M) Pedagogical, technological and content models of CS science

education domain

13. Pedagogical features

(PF)

Learning objectives, motivation, learning theories, learner’s
preferences, pedagogical assessment aspects, learning

activities, scenarios, etc.

14. Reusability (RS) Creation and using reusable learning objects for CS education

15. Robotics (R) Robot-based environments for CS education, robots

programming, etc.

16. Simulation (S) Interactive algorithm, data structure, program visualization

17. Software engineering

(SE)

Software engineering methods and principles for modelling CS

education domain, LO specification

18. Visualization (V) Algorithm, data structure, program visualization (interactive

+real)
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definitions, their main focus, in the perspective of conceptual evolution of the term.

Additionally, I have discussed taxonomy of LO models. Finally, I have presented

the keyword-based description of CS research aiming at identifying what terms are

most frequently used to characterize this research field.

All extracted facts are treated as the boundary and the context to the main topics

to be introduced in the subsequent chapters.

11%

14%

15%

16%

16%

22%

25%

28%

29%

33%

34%

37%

41%

48%

50%

53%

66%

95%

LO sequencing

Interdisciplinary learning

Adaptive e-learning

Experimental validation

Software engineering

Modelling

Learning design

Artificial intelligence

Reusability

Robotics

Metadata and LO repositories

Simulation

Contextualised CS learning

Learning object

Learning environment

Visualization

Evaluation

Pedagogical features

Fig. 2.6 The frequency of using the generalized terms in the selected sources

Table 2.4 Interdependencies between generalized keywords
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2.8 Research and Exercise Questions

2.1. Outline the role of taxonomies for the analysis of various subjects and under-

standing of items within the subjects and connect those with learning and

knowledge gaining.

2.2. Why it is possible to consider domain analysis as a process of learning?

2.3. Evaluate the taxonomy of LO definitions by comparing with the other taxon-

omies. Extend the given taxonomy accordingly, taking into account the newest

(or missed) references.

2.4. Repeat the same with the LO model taxonomies.

2.5. Consider the ACM and IEEE classification schemes and basic terms to char-

acterize the educational CS research.

2.6. Repeat the experiment we have carried out in identifying the frequency of used

terms to characterize the CS educational research.
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Chapter 3

Reuse Framework of the LO Domain

3.1 Introduction

The aim of this chapter is to discuss the LO reusability aspects to the much broader

extent that it was done so far. There are many reasons for that. Let us remind some

of them. First, reuse principles are universal and general to be applicable in many

fields. Reuse experience taken from the other domains with a higher maturity level

(e.g. hardware, software) can be easily transferred and adapted to e-learning.

Second, reuse is a very promising approach because of well-defined objectives to

design software-oriented educational systems (higher productivity, better quality,

shorter time to market). Third, reuse might be seen as a very simple and attractive

subject if it is considered at the individual level (say a teacher or learner) as the

following paradigms: copy-paste and use-as-is. Fourth, reuse is a very complicated

area if it is considered at the organization or cross-organizational levels because

there should be taken into account both the technical and non-technical (social,

pedagogical, economical, organizational, etc.) reuse aspects. These aspects are

extremely broad and complex, indicating on managerial, social, technical and

other issues.

Finally, it is worth to mention yet another important fact. As a consequence of

the aforementioned facts, till now, reuse stands for the area of the extremely

intensive study and research in software engineering (see, e.g. the content of tracks

in ICSEA 2014 or related events). The latter field might be seen as a source of

approved approaches to be applied in e-learning. Therefore, the reuse-based ideas,

principles and approaches are also at the focus of CS and educational research

communities. If reuse is so important, now the essential question can be raised as

follows: how should reuse be first understood in a wider scale to enable then more
systematic studies in CS e-learning reuse? Here, I argue again that, for this purpose,
there is the need of some framework as a guideline. The next section provides such

a framework. I also use the framework in analysis of the related work.
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3.2 A Framework to Better Understanding of Reuse Issues
in E-Learning

What is reuse in e-learning? What are the dimensions and scope of reuse in CS

education? What are the items we seek to make reusable: models, processes, LOs or

a combination of all? When do we need to start taking into account the reuse

aspects: before LO design, during instructional design or at the use time only? How
can we measure reusability and then, on this basis, be able to enhance it? Despite of

intuitiveness of the term itself, the answers to these questions are not as simple as

might be seen from the first glance. Therefore, I first analyse the known reuse
definitions in the field and then introduce the reuse framework and discuss some

issues outlined by the framework. After that, using the framework, I analyse the

related work trying to reveal the current state of the field and to identify those topics

that are needed for further research with LO reusability in mind as it is stated by the

formulated questions.

In this context, we need to extract knowledge to understand the current level of

reuse maturity models in three dimensions (strategic, methodological and techno-

logical). Such a vision is helpful because (1) LO domain is commonly recognized as

the heart of e-learning in general, (2) the LO concept is accepted and its role well

understood for CS teaching too, (3) the LO domain is continuously evolving in

horizontal (meaning in general) and vertical dimensions (meaning in CS) and (4) a

framework can be seen as a taxonomy-based approach; therefore, it is fundamental

in many aspects (knowledge and artefacts systemizing, standardizing, sharing,

gaining and teaching).

3.2.1 Definition of the Terms

Though reusability is gaining ever-increasing focus in different disciplines to

develop systems or provide training (software engineering, system engineering

[WVF10], knowledge engineering [SBF98], e-learning engineering [MH05],

etc.), however, the concept reuse is often poorly understood, and the practice has

not been as effective as expected. Thus, we need to look at the concept itself more

thoroughly. One can meet in the literature the use of three related words with the

same prefix and root as follows: reuse, reusable and reusability. The first is the

general term having two forms: as verb ‘use again or more than once’ and as a noun
‘the action of using something again’ (English Oxford Dictionary). The word

‘reusable’ usually pertains to an artefact or asset (object, component, model,

process, framework, etc.). The word ‘reusability’ defines the property as related

to a reusable artefact.

Prieto-Diaz [Pri89], one of the software reuse guru, defines reuse as ‘the use of
previously acquired concepts or objects in a new situation, it involves encoding

development information at different levels of abstraction, storing this

56 3 Reuse Framework of the LO Domain



representation for future reference, matching of new and old situations, duplication

of already developed objects and actions, and their adaptation to suit new require-

ments’. In other words, software reuse is the process of incorporating into a new

product any of the previously developed assets: tested code, developed require-

ments specifications, test plans, data and procedures. This process can be summa-

rized as follows: recognition, decomposition/abstraction, classification, selection/

retrieval, specialization/adaptation and composition/deployment [Hem93]. Reuse

engineering can be described as the application of a disciplined, systematic, quan-

tifiable approach to the development, operation and maintenance of software where

reuse is a primary consideration.

I have consciously started defining reusability terms on the software ground. The

main reason is as follows. In e-learning, there is a great belief that reusable LOs will

bring to education and instructional design the same improvements (in terms of

quality and productivity) as object-oriented programming did in software develop-

ment [Dou01]. Even more, Jones has observed yet in 2005 the shift of the e-learning

community toward creating an LO economy [Jon05]. In the sense of this shift,

highly reusable LOs stand for the ground to create the truly LO economy through

the development of a worldwide market. As a consequence, the reusability concepts

are extremely popular and widely discussed in e-learning. However, to give precise

definitions of the used terms is not an easy task, though a great deal of efforts and

trials were taken by many respective authors.

Below I present a scheme that suggests not so much achieving precision in

definitions; rather it focuses more on attributes of the terms (reuse, reusability,

reusable) to which the terms pertain. In our view, we need to focus on general

attributes such as what-why-how (of course, to some degree). Depending on the

concrete context of reusability understanding, we need to ask what is an item to be

reusable: LO itself, the process where an LO is to be used and reused or both? Why
do we need reuse or what is the purpose of reuse: only the search and then use-as-is
of the retrieved items or the use through adaptation and modification? How can we

achieve reuse objectives having in mind a set of influential attributes: LO models,

structural characteristics (granularity level), context, pedagogy, environments and

reuse scope (individual or organizational level)? How can reuse truly ensure the

great promises of productivity and quality?

We have developed the scheme first on the basis of our experience in teaching

and researching reuse-based approaches in CS [ŠD13]. Furthermore, we have also

found an approval of this vision (though implicitly) in the plethora of e-learning

papers. Here, I have selected only the two as the most representative papers to

support our vision.

The first considers LO reuse as a four-tier model using the triad of terms: use-
reuse-repurpose [HP05]. Huddlestone and Pike give the following definitions of the
terms [HP05]:

• Use – the application or employment of a learning object within a learning
event, for the purpose it was originally designed
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• Reuse – the use of an existing object in a new learning event without any
modification to its instructional treatment, context or content

• Repurpose – the use of an existing object in a new learning event with little to no
modification to its instructional treatment, context or content.

We will discuss their model in another context later.

Pitkänen and Silander (authors of the second selected paper [PS04]) present a

slightly different vision as compared to the first paper. They discuss criteria for

pedagogical reusability of LOs enabling the adaptation and individualized learning
process. They do not make the distinction between reuse and repurpose treating the

modification or adaptation similarly as the reuse activity in software (see definitions

above). Their understanding of the LOs reusability model focuses on the

multidimensional vision: content, context, pedagogical context, technical context

and learning situation. On this basis, by introducing 3 levels for each constituent,

the authors have formulated and approved 9 criteria to define pedagogical reusabil-

ity of LOs.

Now, having a multidimensional vision to LO reusability, we are able to move in

more details of the reuse framework.

3.2.2 Three-Layered Reuse Framework

The first observation is that in e-learning there is no unified view to the reusability

issues. Therefore, systematization (e.g. through introducing some frameworks) is

important. In our view, such a framework should specify at least two extremes:

holistic perspective and individualistic perspective. Figure 3.1 outlines the three-

layered model to define the holistic perspective. Here, reuse is seen as a strategy at

the highest level, as a methodology at the middle level and as a technology at the

lowest level. The highest level aims at describing and evaluating not only the

current state and trends in the field, but it also provides a road map of how the

Reuse space
for strategy

Reuse sub-space
for methodology

Reuse sub-space
for technology

Sub-space to
implement e-learning
settings with reuse in

mind

Fig. 3.1 Three-layered

framework to deal with

reuse in e-learning
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e-learning and LO domains should evolve in the long-term period by considering

and evaluating as many aspects as possible. The holistic vision, among other things,

includes the already known initiatives with many bodies and organizations involved

worldwide. The vision is about a systematic reuse in the way to creating the truly

LO economy for the social activity such as learning and teaching.

The intermediate level of the introduced model should be considered in a

broader sense, that is, with software engineering in mind. There are a variety of

methodologies that can be called as reuse driven. Here, I name only the two as more

popular ones: model-driven engineering [Sch06] and product line engineering

(PLE) [Bos00] (also known as software product families). The basis of the first

methodology is the OMG approach [OMG03]. It uses the object as a primary

concept and focuses more on high-level modelling and model transformations,

whereas the second typically operates with features (i.e. externally visible charac-

teristics of programs that can be recombined in different ways to achieve different

versions of program functionality), uses the feature concept and feature-based

models and focuses more on architectural aspects of software products as systems

of systems [AK09].

The PLE methodology focuses on maximizing reuse in software product lines

(i.e. families of programs that share common assets). First, the architecture of the

product family is created based on product commonalities and planned variabilities.

Then, different product variants are derived from this architecture by reusing

components and structures as much as possible and using a variety of component-

based and generative reuse techniques [BBC+01].

Though both methodologies are not mutually exclusive with many common

features, they are treated as separate approaches in the literature. To achieve the
benefits of systematic reuse in creating new systems, the approaches (especially the

second one) appeal to the thorough understanding of domains to be implemented

through analysis and modelling. The latter is seen as a systematic activity to extract

artefacts and knowledge needed for creating new systems. Sometimes domain

analysis is treated as a continuous process of learning to gain and transfer knowl-

edge. In this social aspect, learning in schools or universities is just the same as

acquiring knowledge about a domain by an engineer or analyst. Of course, in each

case, there are different goals, different actors and different products.

Thus, why not try to use ideas and features (models, methods) from the software

domain that are common or might be treated as common, for example, after some

adaptation for e-learning? The aim is to enrich and enforce the e-learning domain

with well-proven models taken from the related fields, which are relevant to e-

learning. Though this process has been started far ago and is continuously

expanding, in our view, till now such potential is not yet exploited as fully as it

might be. Therefore, this is also a reason why we are speaking about the reuse

framework here.

The LO domain is relatively new. It is highly heterogeneous. There is no

consensus on some important methodological issues such as the definition of the

LO, taxonomies on the LO reuse attributes and inconsistency of LO repositories.

There are also a variety of learning theories to be taken into account with LO use

and reuse. There are a huge number of proposals of LO models to enforce
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reusability. There is a diversity of LO types and instructional design approaches

used. The community working on those issues is extremely wide. In the large, the

intermediate layer can be seen as the source to provide reuse-based knowledge for

the rest of the layers as it will be shown in more details in Sect. 3.6.2.

Now we approach to the third component of our framework model. Here, by

reuse as a technology, I mean the educational technology-driven processes that are

supported by adequate tools. As the e-learning domain is indeed heterogeneous and

the learning services hold the unquestable priority in the various societies world-

wide, there is a huge field of educational tools. Often we refer to a kit of educational

tools used in e-learning as an educational environment. The educational processes

and tools are highly reusable items. When educational tools are being mastered by

teachers and learners, the tools can be used and reused in multiple ways in multiple

contexts to support learning. They are so reusable and to such a high reusability

extent that we usually stop talking about them as reusable items. We do that because

we use tools as black boxes taking into account the external view, that is, we focus

on input-output data only with the full ignorance of what is within the boxes. This

level, when first being adequately mastered and then properly applied, is the truly
matured reuse level.

Finally, we return to the individualistic reuse perspective. In contrast to holistic

reuse, by introducing the term individualistic reuse, we aim at narrowing the reuse

scope to the level of individual or small groups of individuals. We do that knowing

the following facts. Let us ask any individual (course designer, teacher or even a

studious learner) how many times he/she was changing, adapting, simplifying or

extending – simply speaking, improving – his/her previous or new teaching mate-

rials (coursework for students) over some period of time? For teachers, for example,

this period might be measured in a dozen of years and by many trials to repeat the

process seeking for improvements. Therefore, one should clearly understand that

those activities are reuse activities. The individuals are involved in doing so

through intuition, and thus they accept reuse in an ad hoc manner, even without

any primary knowledge of the reuse potential. Another question is how much

efforts were needed for an actor to achieve some prescribed objectives of the

activities?

I hope that this vision will be helpful to community researchers (basically to

those who are not so much reuse-based littered) to gaining a more systematic

interest in studying and researching his/her field with reuse perspective in mind.

We will continue our discussion on the introduced model more extensively in the

three subsequent subsections.

3.3 Reuse as a Strategy

We refer to this reuse understanding level as a wide-scale or horizontal reuse. As it
covers the whole e-learning domain and all activities performed by the huge

communities, it is reasonable to narrow the topic by introducing the term vertical
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reuse (also borrowed from software reuse [Sam97]). Here, by vertical reuse, we

mean reusability aspects within a concrete organization providing educational

activities such as CS learning and teaching, educational research in CS or LOs.

Note that vertical reuse is more relevant to the intermediate layer of the introduced

framework as it will be detailed later. Note also that there is an evident interaction
between horizontal and vertical reuse (e.g. many artefacts are equally spreading in

both horizontal and vertical dimensions through conferences and other forums;

there are also many CS LOs that reside within the general-purpose repositories; we

treat the latter as a product of the horizontal reuse processes here).
Now we are able to formulate the aim of this analysis. It is not our intention to

consider horizontal reuse in detail. Rather, our aim is (1) to summarize main

activities and their products as they are seen and referenced in the literature on e-

learning and (2) to outline general issues to characterize the LO domain from the

reuse perspective as compared to reuse understanding in SWE. We do that because,

at the very abstract conceptual level, we see some analogy between LOs and

software products (later this vision will be supported by references). The book

[Lim98], for example, presents software reuse as two large sub-domains: non-

technical and technical (it will be discussed later). The first sub-domain includes

a long list of fields contributing to reuse as follows: adoption, economics, strategy,
personnel, organization, metrics, marketing, legal and manufacturing. Though all

these are referred to as activities at an organizational level, many of them can be

moved to a higher level, that is, cross-organizational, and considered as a topic of

horizontal reuse.

Now let us return to the e-learning domain. As our literature review shows (see

Sect. 3.6), currently many small to medium educational and research organizations

do not declare on having explicit reuse plans as a strategy to implement their e-

learning initiatives. Therefore, their reuse maturity model could be regarded as

restricted by ad hoc reuse only. Only large worldwide organizations such as IEEE

Learning Technologies Standard Committee, IMS Global E-Learning Consortium,

Cisco Systems and Advanced Distributed Learning (ADL) initiative by the US

Department of Defense (to name a few) are capable of providing activities for

creating a truly LO economy as envisioned by Downes [Dow02] and have achieved

the reuse maturity level that might be treated, perhaps to some extent only, as

systematic reuse as we could reason from our restricted analysis.
In general, systematic reuse can be seen as a strategic goal for both organizations

and cross-organizational levels. To achieve this goal in e-learning, the previously

stated list of SWE activities might be helpful. However, trying to adapt these

activities for e-learning, we first need to take into account not only similarities,

but also differences of the two domains. Social aspects, such as extremely wide

learner profiles, and a variety of psychology-driven pedagogic theories used in e-

learning are two most important factors that enable to make a clear distinction of e-

learning from other (e.g. software) domains.

The most evident activities at the strategical level are initiatives to creating and

maintaining LO-related standards, researching to resolve some inconsistency
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among different standards, creating LO repositories to support wide-scale reuse,

researching interoperability issues and many others. Various organizations along

with numerous volunteers are involved in those activities. In large, this level being

independent upon a concrete context governs the whole e-learning domain (see

Sect. 3.6.1, for more details).

3.4 Reuse as a Methodology

Researchers and other actors within the community show an increasingly high

effort and attention to the role of reusability aspects. However, again, there is no

consensus on different reuse aspects. The main reason of the situation is that we so

far, perhaps, do not thoroughly understand the reuse potential.

As in case of software, the methodological support should cover all processes to
which LOs reusability pertains. Roughly, these reuse-based processes can be

categorized into two large groups: content oriented and social oriented (they are

also seen at the strategical level). In order to gain the actual benefits of reuse at the

methodological level, both activities should be harmonized adequately. On this

account, Sloep wrote [Slo04]: ‘If we manage to embed reusable resource into

reusable scenarios, then we’ve made a significant step toward creating a flourishing

LO economy’. By reusable scenario the author means the creation of a pedagogical
meta-language to describe such categories as ‘activities’, ‘environments’, ‘roles’,
‘properties’ and ‘plays’.

To emphasize the role and complexity of LO reuse at a wider methodological

level, the same author concludes: ‘This is a first step. It will certainly not suffice to

guarantee success. It takes actual people, instructional designers, developers and

teachers, to get out and travel on the reuse road. People need incentives and rewards

to get moving. They need to overcome their fears and anxieties. Organizations need

to adapt. We’ve only just started to survey these social, economical, psychological

and organization issues, let alone solve them. There still is a long way to go’.
Indeed, the understanding of overall LO reusability aspects is a great challenge

for all players (strategy makers, instructional designers and teachers). However, this

understanding may come through well-planned activities such as analysis and

modelling of the LO domain, specification of LO for reuse and with reuse in

mind (meaning creation and use of LO repositories, local libraries), instructional

design for reuse and instructional design with reuse, development of the paradigms

with quality and reusability measurements and assessments, deployment of the

paradigms and evaluation of the impact of reusable LO on teaching and learning

processes in the whole. This support, in fact, comes from two main sources: from

the related domains such as software and from the internal activities within the e-

learning community (individual and organized research, conferences, journal pub-

lications, forums on methodological issues at different levels, etc.). The first source
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has been already outlined to some extent. It should be clearly understood that the

real value of the applied methodology comes only if it is implemented in the tools,

and those tools are used in real teaching and learning settings.

3.5 Reuse as a Technology

By the term reuse as a technology, we mean tools that support effective reusability
in searching, designing, generating, adapting and using LOs. As the LO domain is

highly heterogeneous, the technological support is even more diverse. Due to this

diversity, it is very difficult or even impossible to overview the aspects of educa-

tional tools that might be considered as effective instruments to support reusability.

Therefore, I restrict myself only with those tools that, to the largest extent, relate to

our approach. The concept we discuss throughout the book relates to generative

reuse (this kind of reuse forms the technological basis of smart LOs as it was stated

in Chap. 1). My vision is based on two strategic reuse goals:

1. To write manually a new code as less as possible
2. To use the existing code and tools as much as possible

Here, I use the term code as an LO to teach CS topics. What are the basic tools

that support this strategic vision? In other words, what are basic tools that support

generative reuse? I restrict the dealing with only those tools that are directly related

and used to support the smart LO (SLO) concept. I categorize them into two large

groups: (A) code-manipulating tools and (B) model-manipulating or transformation

tools. This categorization, in fact, is relative because models are or should be

expressed by some descriptive code in order to be executable (otherwise, the

value of models would be highly restricted). Nevertheless, there is a clear, discrim-

inating line between those categories. Typically category A represents tools that

operate with objects which are represented at the lower level of abstraction, while

tools of category B operate with objects represented at the higher level of abstrac-

tion. This categorization reflects the general trend of computational technologies:

the evident shift to the higher level of abstraction in representing systems due to

their continuous complexity growth. Category A includes parsers, analysers, com-
pilers, code generators and program partial evaluation tools (specializers) to name

a few. Category B includes compiler-compilers, various modelling and transfor-
mation tools. The latter class of tools is highly dependent upon the model types,

transformation goals, specification languages used, etc.

The key to study these approaches is first to look at the program transformation

taxonomy [Win04] and model transformation taxonomy [MCG06]. This is left as a

separate research topic.
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3.6 Literature Review: How the Introduced Reuse
Framework Is Supported?

3.6.1 Context and Reuse

To be reusable the item first should be usable. Thus, reusability can be thought of as

a property that extends the scope of usability. The extension of usability depends on

multiple factors. Perhaps context stands for one of the most influential factors in this

process. Context can be seen as a mediator or the source of additional information

that is important for a larger usability and reuse. Intuitively, we can think about and

deal with any item (object, process, component, etc.) as if it is the structure

containing two parts: the base part and the context part.
Due to the importance of the context in e-learning and also due to the wideness

of applications, where context is at the focus, there is no common understanding

what is the essence of the term with multiple definitions proposed so far. Also, there

is an observable trend to define context either independently upon the application

domain [Dey01] or, on the contrary, introducing some context aspects that are

relevant to a particular application. As stated in [VMO+12], one of the most cited

definitions of context is the definition of Dey et al. [Dey01]. The definition treats

context as ‘any information that can be used to characterize the situation of an

entity. An entity is a person, place or object that is considered relevant to the

interaction between a user and an application, including the user and applications

themselves’.
This definition is referenced extensively within various application domains,

including researchers in technology-enhanced learning (TEL) [Sch07, VMO+12].

Dourish, for example, indicates that context has a dual origin: (1) technical and (2)

social science based [Dou04]. From a social perspective, Dourish argues that

context is not something that describes a setting or situation, but rather a feature

of interaction. Researchers in TEL argue that this user-centred emphasis on factors

affecting an activity is precisely what makes this notion of context meaningful for

learning. From a technical perspective, there is a need to define context in a more

specific way as an operational term [Win01]. To operationalize context, there are

attempts [SAW94, DAS01] to define context by enumerating categories as follows:

computing context (such as network connectivity, communication costs, commu-

nication bandwidth, etc.), user context (such as the user’s profile, location, social
situation, etc.), physical context (such as noise level, traffic condition, etc.), time-
related context and task-related context [VMO+12]. The Zimmermann et al.

[ZLO07] operational view to the context lists the following fundamental context

categories: individuality, activity, location, time and relations. Individuality is

subdivided into four elements: natural entity, human entity, artificial entity and

group entity. This definition is perhaps one of the most comprehensive context

definitions to date.

In TEL, such enumerations have also been proposed as an attempt to define the

context of the learner or teacher as an operational term. Many enumerations are
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defined for mobile learning applications. For example, Berri et al. [BBA06]

distinguish between technical and learner context elements. The first category

deals with the technical aspects of mobile devices, their operational environment

and constraints. The second category defines the learner context elements (e.g. aims

and objectives of the learner, prerequisites, background, current level of under-

standing and subject domain). It is also essential to capture interactions between the
environment, the user, their tasks and other users. The environment constitutes

computing, time and physical context characteristics.

3.6.2 Context, Reuse Models and Processes

Desmoulins and Azouaou [DA06] aim at defining a context ontology of the

teacher’s personal annotation, in order to use it in a context-aware annotation tool

‘MemoNote’. They define the uses of active and passive contexts in the tool

(annotation ontologies selection, annotation memorization and pattern definition

and selection) to develop the complete teacher’s context annotation ontology using

the classical method specified for Protégé.

The content granularity and context information are related. Both are important

factors to the efficiency and reusability of learning objects (LOs). The context

information, for example, is necessary to facilitate the discovery and reuse of LOs

stored in global repositories or local libraries. Typically, LOs are incorporated into

repositories without the context information. Users have to do some extension of

the LO descriptions to fit their special use. Therefore, Man and Jin [MJ10] introduce

a context-rich paradigm, the related service-driven tagging strategy and a context

model of LOs. Their context model realizes the adaptive granularity of the content

object to support the evolution from resource objects to LOs.

Huddlestone and Pike introduce a four-tier reusability model for making reuse

happen in practice within organizations [HP05]. They argue that the factors affect-

ing the viability of object reuse are the properties of the object itself (such as

structural reuse and contextual reuse) and the organization’s preparedness to under-
take LO reuse (operational reuse and strategic reuse). They define structural
reusability as a function of how the object has been engineered. Contextual
reusability is determined by the applicability of the object to new learning events

that are influential on the potential audience size. Operational reusability has

dependencies on organizational culture, personnel, procedures and technology.

Strategic reusability is defined as a function of organizational strategy that may

favor systematic or opportunistic reuse of objects. In fact, the four-tier reuse model

covers all layers of our framework; however, do it differently as follows: strategic

layer, partially; methodological layer, fully (with some extensions such as contex-

tual reusability); and technological level, implicitly.

Jones and Boyle [JB07] introduce the concept of LO patterns borrowed from

design patterns, the well-known design technique in SWE. They show how existing

LOs, that have previously proved to be successful, can be used to derive patterns
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that could be reused in the design of new LOs to master of computer programming

by learners who had had no previous experience in the subject. Thus, the reuse of

successful LO design has the potential for real pedagogical benefits. In a similar

way to their use in object-oriented software design, patterns for the design of LOs

can be derived from successful existing learning resources; these patterns can then

be reused in the design of the new ones. This paper describes the LOs that were

designed to aid new computer programmers and how patterns were extracted from

those LOs. This results in a small LO pattern catalogue that has the potential for

reuse in the construction of new LOs.

In another paper, Jones [Jon05] argues that in order for the process of

constructing courses from LOs to be feasible, first they are to be designed for

reuse. He also states that there is little done in designing LOs for reuse. Aspects of

cohesion, coupling and freedom from specific contexts can be used in designs to

help ensuring that LOs are reusable, and these aspects can be captured as the design
patterns that may be employed to produce reusable designs for LOs. On the other

hand, the requirements for reuse may be in conflict with those for effective learning.

Therefore, the patterns used must ensure that the LOs constructed are adaptable to
different contexts and remain pedagogically sound within those contexts. The paper

shows how patterns can be used to create learning resources that are both reusable
and adaptable.

Merriënboer and Boot formulate two kinds of obstacles that limit the reuse

potential: the relatively small obstacles for reuse and relatively large obstacles
for reuse [MB05]. The first group relates to the metadata problem, the arrangement

problem and the exchange problem. The second relates to the context problem, the

pedagogical function problem and the correspondence problem. As a possible

solution to overcome both small and large obstacles to reuse, the authors propose

an integrative approach that highlights (i) re-editing instead of reuse, (ii) interme-
diate instead of final products, (iii) templates instead of instantiations and (iv)

technical automation of what can be automated. Finally, they suggest reconciling

the fields of learning technologies and instructional design.

Mierlus-Mazilu [Mie06] analyses the Codewitz LOs as reusable items to help

students to understand programming structures more easily. A Codewitz LO can

cover any specific programming problem in any programming language as well as

the problem-solving logic at the algorithmic level. Any LO focuses on one specific

learning goal. Each LO has to be independent, without links to other objects or

resources to ensure the real reusability of the LO.

The exploratory study [AHH11] aims at getting the insights into the character-

istics of CS LOs and to study different factors related to them. These factors include

growth over time, user ratings and personal collections. The initial source for the

study is the MERLOT (Multimedia Educational Resource for Learning and Online

Teaching) repository which contains many LOs under different disciplines. The

study concludes with recommendations on the need for improving the quality of CS

LOs.

Allen and Mugisa [AM10] focus on challenges related to the learning resource

reusability and interoperability. In regard to the challenges, they present a theory of
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LOs, including the Object-Oriented Generic Learning Object Model – OOGLOM.

Also, they propose the UML-based models to illustrate OOGLOM as well as to

illustrate how it provides interoperability.

The paper [BS11] analyses LOs from the reusability perspective, aiming to

better understand the reuse dimension in e-learning and how to handle some

reuse issues of LOs more effectively. The paper introduces feature-based modelling

concepts borrowed from SWE for analysis, which outlines dominating factors

(features) and the way they affect reusability of LOs. The content/context forming

factors, such as content granularity, context independence, multiple content/context

mappings and accumulative and flexible content updating and changing, are also at

the focus. Based on knowledge extracted from the analysis, authors reconsider

feature-based context and content models to analyse and to understand LOs

research.

Cardinaels [Car07] introduces a reuse-based dynamic learning object life cycle
for the courseware development, in which the dynamic character of the metadata is

the key issue. Those metadata help to enhance the LO reusability because the

metadata can contain much richer information. The paper also proposes a frame-

work of automatic metadata generation for LOs to overcome the problems with

manual indexing. Within this framework, metadata is generated automatically

taking into account different sources of information that are available in the

different phases of the life cycle. Examples are the LOs themselves, user feedback,

relationships with other LOs and so on. At the core of this framework is a formal

model of LO metadata. This model defines how metadata can be associated with

LOs and how the metadata from different sources can be combined to overcome

conflicts between sources. The formal model includes the notion of context aware-

ness of LO metadata.

To be effective, a learning process must be adapted to the student’s context. The
latter should be described at least from the pedagogical, technological and learning

perspectives. In this regard, Abarca et al. [AAB+06] state that the current e-learning

approaches either fail to provide learning experiences within rich contexts, thus

hampering the learning process, or provide extremely contextualized content that is

highly coupled with context information, barring their reuse in some other context.

Therefore, they discuss the context decoupling from the content as much as possible

so that the latter can be reused and adapted to the context changes. This approach

extends the LOM standard by enriching the content context, thereby allowing e-

learning platforms to dynamically compose, reuse and adapt the content provided

by third parties (i.e. providers of LOs). The paper also presents three context models

along with a multi-agent-based e-learning platform that composes and adapts

extended LOs according to learner’s context changes.
To be possible to reuse LO, it is necessary to know its context of use and what

learning outcomes can be achieved with it. Otherwise, LO reuse will be limited to

the LO developers who know how to successfully apply it. To avoid that limitation,

Azevedo et al. [ACC08] present a framework that describes the LO in relation to

one or more learning scenarios that incorporate it. Teachers can then choose the

most suitable scenario for a particular learning situation.
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3.6.3 Reuse and Quality

Though the meaning of LO reuse can be captured easily, it is not so with the reuse

definition and measurement. The paradigm of LO aims at facilitating the manage-

ments of the massive amount of educational resources available. Enabling users

relying on this paradigm to use high-quality pieces of knowledge within different

contexts represents a key challenge. Therefore, when designing LOs, reusability

and quality must be a key consideration. Also, metrics to help measuring the quality

and reusability represent a major issue. In this regard, Cuadrado and Sicilia [CS05]

discuss the applicability of metrics borrowed from the field of SWE, providing

analogies for several metrics that can be given an interpretation in terms of LOs.

The other paper [CLF+09] expects the appearance of specific metrics for LOs that

should be probably based on extended and improved metadata. In the meantime,

authors attempt to bridge this gap by analysing and developing adapted metrics for

LOs, based on existing metrics used in SWE.

The major bottleneck for end users is finding an appropriate LO in terms of

content quality and usage. Chawla et al. [CGS12] state that the existing various

approaches for evaluating LOs in the form of evaluation tools and metrics are either

qualitative, i.e. based on human review, or are not supported by the empirical

evidence. Therefore, they study the impact of current evaluation tools and metrics

on quality of LOs and propose a new quantitative system LOQES that automatically

evaluates the LO in terms of defined parameters so as to give assurance regarding

quality and value.

Another paper [ANK10] considers a framework to evaluate the information

quality of e-learning systems to support the needs of the systems designers, pro-

viders and users. The framework includes (i) 14 information quality attributes that

are grouped in three quality dimensions, intrinsic, contextual representation and

accessibility, (ii) original questionnaire data and (iii) factor analysis to support

conclusions.

3.6.4 Generative LO Reuse vs. Component-Based LO Reuse

As it was stated, in SWE two general reuse approaches, namely, generative reuse

and component-based reuse, are widely discussed and researched. Before the

appearance of works of Boyle, Morales and their colleagues, there was the only

one reuse vision (i.e. component-based reuse) in e-learning domain. Since the years

2003–2004, due to the mentioned contribution, we can speak explicitly about

generative reuse in the e-learning domain too. The generative LOs is not something

exclusive and denying component-based LOs, rather they extend the component-

based reuse with new technological capabilities in creating the content semi-

automatically or even automatically. We do not continue the discussion on this

topic here, because (1) this topic was already was discussed in Sect. 3.2.2 and (2) it

will be discussed in the subsequent chapters in the other contexts.
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3.6.5 Systematic Reuse vs. Ad Hoc Reuse

In the paper [DLP+12], Drira et al. introduce a model-driven approach (MDA) to

construct the technology-enhanced learning (TEL) systems. They argue that the

approach addresses the limits of Learning Technology Standards (LTS), such as

SCORM and IMS-LD. Although these standards ensure the interoperability of TEL

systems across different learning management systems (LMS), they are generic and

lack expressiveness. In addition, the use of LTS limits designers to using a com-

pliant LMS. MDA addresses these limits by allowing pedagogic modelling based
on specific modelling languages and by ensuring interoperability across LMS based
on model transformations. Authors propose the system, named ACoMoD, to help

designers to bridge the gap between pedagogic modelling and LMS specifications

based on graphic and interactive model transformations. Their approach,

implemented with a tool called Gen-COM, enables designers to choose more

effective LMS tools, based on a contextual recommendation of the best practice

for the LMS tool use.

Fernandes et al. [FLD+12] consider how to improve students’ performances on

the basis of detection and adjustment of students’ learning styles. They present an

innovative approach for student modelling through probabilistic learning style

combination. Their approach gradually and constantly adjusts the student model,

taking into account students’ performances, obtaining a fine-tuned student model.

The next two representative papers reflect the common trend in e-learning to use

advanced software engineering techniques. For example, Dalmon et al. [DBB+12]

propose the system to create Interactive Learning Modules (iLM) which provide

key functionalities to facilitate the teacher’s work. To build the system, the domain

engineering approach (DEA) in the form of the software family is applied. Further-
more, this paper presents the core features of existing systems and describes the

method used to produce an application framework and how to instantiate it.

Restructuration of existing iLM using the proposed DEA is reported with initial

high gains in productivity and system quality.

Diez et al. [DDA12] consider reusability as one of the most important qualities

of e-learning systems. The paper recognizes that ‘reusability refers to prospective

and future usage scenarios’, resulting in difficulties to manage and achieve reuse

without the use of a systematic approach. Therefore, their approach focuses on the

Domain Analysis (DA) paradigm. DA relies on the definition of an information

model that compiles knowledge from different information sources in order to

address the analysis of a new system in the domain. The application of DA to a

specific context, such as e-learning systems, requires explicit design artefacts that

lead the domain-modelling process. This paper presents an approach, based on

feature modelling, specially conceived to apply the DA paradigm to the e-learning

context.
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3.7 Summary, Evaluation and Conclusion

Reuse is a buzzword in the literature. It can be met in a variety of disciplines such as

software and computer engineering. It gained a huge popularity in e-learning too,

almost since the introduction and use of the learning object concept. Though the

meaning of the term reuse can be conceived intuitively, the understanding of its

actual weight and role is not a simple and easy task as it might be seen from the first

glance. The evidence of that comes, for example, if one tries to look at (or to study

with some specific focus) a huge amount of papers and books on reuse. Therefore,

the first question (after the initial intuitive understanding of the term itself) that

could be asked by anyone who starts the journey in this field is as follows: What is

the main reuse goal and objectives? The answer perhaps is the same for any

discipline in which reuse is at the focus. We present the answer taken from the

software domain: reuse aims at better quality, higher productivity and shorter time
to market of products created using the reuse-based approaches. In pursuing the

goal and trying to describe reuse in large, we have proposed a framework to

understand the reuse issues. We have presented this reuse vision as the 3R para-

digm: reuse as a strategy, reuse as a methodology and reuse as a technology.
Reuse as a strategy refers to the vision that defines the known cross-organiza-

tional worldwide activities such as standardization and systematization toward

creating the truly LO economy. Reuse as a Methodology comprises activities at

the intermediate level, i.e. those activities that are carried out within large organi-

zations providing systematic researching and teaching activities in e-learning with

reuse in mind. Finally, Reuse as a Technology is understood as the use of adequate

tools that support a variety of reuse-oriented processes related to e-learning and

teaching. In fact, all parts of the framework are dependent in the following sense:

Strategy also includes Methodology and the latter also includes Technology. In

other words, the framework describes two-way information streams: from the

highest level to the lowest one and vice versa.

Though the analysis was restricted, I hope that (1) it gave some evidence for the

reader on the correctness and usefulness of the introduced framework; (2) the

analysis also has shown the direction toward which e-learning community is

moving now and how it interprets reusability. This road leads to the systematic

reuse (i.e. planned, predetermined, pursuing strategic goals, involving not only a

solitary actor, but the related groups of actors and perhaps different organizations

and bodies). Researchers within the e-learning community already recognize the

role and the need of applying the domain analysis and domain modelling
approaches. There is no other way to implement a systematic reuse as using these

approaches. The e-learning domain analysis and modelling is not only the techno-

logical activity, but to the larger extent, the social activity. It can be also seen as a

continuous learning process carried out on the basis of extracting, approving,
representing, applying and sharing new knowledge through analysis.
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With respect to the aim of the book, the topic of this chapter completes the

motivation of our approach, because it is highly reuse driven. Therefore, I start the

next stage of Part One with the analysis and modelling of the CS teaching domain.

3.8 Research and Exercise Questions

3.1. Explain the meaning of the terms: reuse, reusability and reusable.

3.2. Analyse the following items as candidates for reuse: LOs, LO models,

learning scenarios and processes. What is the tool reusability about?

3.3. Learn what is the role of LO granularity in reuse.

3.4. Explain the meaning of the terms: design for reuse and design with reuse as

they are understood in software engineering, for example, using the literature

[Sem98] or any other available.

3.5. Discuss and research the applicability of terms design-for-reuse and design-
with-reuse terms in e-learning domain to teach CS.

3.6. Once again analyse the introduced framework. Extract more information to

support each part of the framework: reuse as strategy, reuse as methodology

and reuse as technology.

3.7. Research modelling paradigms in CS learning and teaching.

3.8. Research analysis paradigms in CS learning and teaching.

3.9. What is the scope of reuse in e-learning and in CS teaching and learning?

3.10. What is the essence of component-based reuse in e-learning?

3.11. What is the essence of generative reuse in e-learning?

3.12. Explain why more and more software-based approaches migrate and are

adapted to e-learning domain.
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[ŠD13] Štuikys V, Damaševičius R (2013) Meta-programming and model-driven meta-

program development. Springer, London

[Slo04] Sloep PB (2004) Reuse, portability and interoperability of learning content. Online

education using learning objects, p 115

[VMO+12] Verbert K, Manouselis N, Ochoa X, Wolpers M, Drachsler H, Bosnic I, Duval E

(2012) Context-aware recommender systems for learning: a survey and future chal-

lenges. IEEE Trans Learn Techn 5(4):318–335

[Win01] Winograd T (2001) Architectures for context. Hum Comput Interact 16(2):401–419

[Win04] Winter VL (2004) Program transformation: what, how and why. In: Wah BW (ed)

[WVF10] Wang G, Valerdi R, Fortune J (2010) Reuse in systems engineering. Syst J IEEE 4

(3):376–384

[ZLO07] Zimmermann A, Lorenz A, Oppermann R (2007) An operational definition of

context. In: Modeling and using context. Springer, Berlin/Heidelberg, pp 558–571

References 73

http://aisel.aisnet.org/cgi/viewcontent.cgi?article=1194&context=pacis2005
http://aisel.aisnet.org/cgi/viewcontent.cgi?article=1194&context=pacis2005


Chapter 4

Modelling of CS Teaching and Learning
in Large

4.1 Introduction

In previous chapters (see Chaps. 1 and 2), I have outlined the most general issues of

e-learning and CS teaching on the basis of the LO concept. The main focus was

given to understanding of the issues through conceptual analysis of the domain

literature at the level of LO concepts and their taxonomies. In Chap. 3, I have

analysed all these with the emphasis on pedagogical reusability using the software

reuse approaches. In this chapter, I provide more in-deep analysis of modelling CS

learning and teaching using a systematic approach which is a synthetic product of

some domain analysis methods well known in SWE as well as in e-learning

domains. In general, the aim of modelling, as it is conceived in the large, for

example, in software engineering, is to extract and represent artefacts and knowl-

edge needed to build a software system. As a rule, the extracted artefacts from the

domain to be modelled should be represented at a higher level of abstraction. Often

we refer to those artefacts as a domain model. Modelling is a primary stage in

developing systems.

The aim of this chapter is similar, i.e. to devise a set of models for the CS e-

learning domain to be applied to meet our ultimate objectives – to present a

systematic approach to build, analyse, evaluate and use the smart LOs. As it is

impossible to achieve the ultimate objectives at once, this chapter should be

considered as a bridge to connect the previous chapters with the remaining ones

of the book. The reader should also accept the topics of this chapter as a part of the

theoretical background of the approach we deal with in the book. Note that we

perform modelling not so much at the CS content level, but to the larger extent on

the whole domain level. Here, by the domain I mean CS learning and teaching

processes as they were identified in Fig. 1.1 in Chap. 1. I start from the literature

review to motivate our approach to be introduced later on.
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4.2 Literature Review

First, I introduce two categories of the relevant works, and then I analyse them

separately in each category. The first stream represents the model-driven approach

as they are known and understood in software engineering. A great deal of selected

papers considers the feature concept as the basis for a feature-oriented modelling.

The reason is that the intensive research and developments around formal seman-

tics, reasoning techniques and tool support make feature models a de facto standard

to model and manage variability now [BSC10, CW07, SHT+07, TBK09]. Further-

more, the OMG standard for variability modelling, the Common Variability Lan-

guage, is also based on feature models [CVL14].

The second stream focuses on those works from the e-learning research domain,

which already recognize the importance and relevancy of using feature modelling

concepts. Unfortunately, this recognition is not yet widely spread. This stream also

includes works on e-learning modelling developed within that domain as well as

those references that are able to bring us pedagogy-driven artefacts and knowledge

to synthesize our approach considered in this chapter. Note that to make the reading

independable upon the previous chapters, it is need to repeat some sources that have

been already analysed previously.

1. The development of modern complex software systems or their components is

practically impossible without the representation of the domain concepts at

multiple levels of abstraction, wide-range reuse and automatic program gener-

ation. Thus, in recent years two competing software development methodologies

have been widely researched and used for this purpose. The first is Model-

Driven Engineering (MDE) [Sch06], and the second is product line engineering

(PLE) [Bos00]. It is also known as program families, or the development system

of systems. The second methodology focuses on maximizing reuse in software

product lines (i.e. families of programs that share common assets) and mainly

operates with features (i.e. externally visible characteristics of programs that can

be recombined in different ways to achieve different versions of program

functionality). First, the architecture of the product family is created based on

product commonalities and planned variabilities. Then, different product vari-

ants are derived from this architecture by reusing components and structures as

much as possible and using a variety of component-based and generative reuse

techniques [BBC+01].

The MDE methodology, on the other hand, advocates for the use of domain

models (i.e. abstractions of domain concepts), which are independent upon the

characteristics of technological platforms, as the key artefacts in all phases of the

development process. Such models can be introduced at the multiple levels of

abstraction, i.e. also above other models, thus leading to the multilevel modelling

hierarchies. Models are created using concepts defined in a meta-model that

represents domain concepts, relationships and semantics. Domain models are then

transformed into the platform-specific models using transformation rules, which are
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defined by meta-model concepts: a rule (rules) transforms (transform) source model

elements, which conform to a source meta-model, into target model elements,

which conform to a target meta-model [OMG03].

In this context, one aspect should be highlighted separately – the importance of

the term separation of concepts. The term has its roots in early works of Parnas

[Par72] and Dijkstra and relates to information hiding. For example, Dijkstra

applied the information hiding and separation of concepts to describe structural

programming [Dij72]. We have widely discussed its role to formulate the basics of

meta-programming [ŠD13]. The concept refers to the establishment of logical

boundaries to define and delineate purpose typically expressed through concepts

(in our case, they could be treated as features). The concept is fundamental and we

fully agree with the statement of Greer that separation of concepts is both ‘a
principle and a process’ [Gre08]. According to Greer, the principle of separation

of concepts might be stated as the premise that entities (e.g. in our case, concepts

related to LOs such as models) should contain the essential attributes and behav-

iours inherent to their nature, but should be void of attributes and behaviours not

inherent to their nature.

Over the decades of software evolution, the separation of concepts has played a

significant role in devising new ideas, methods, approaches and methodologies (e.g.

FODA (feature-oriented domain analysis) [KCH+90], SCV (scope-commonality-

variability) analysis [CHW98], generative programming [CE00], to name a few).

The e-learning community also recognizes the role [CBS+11], though in most cases

implicitly uses other terms close in meaning such as classification. We use separa-

tion of concepts to motivate our approach to be discussed later in this chapter. The

reader should be aware the fact that this term can be met in the literature under

different names: orthogonalization of concepts (e.g. in hardware domain), divide
and conquer and separation of concerns [CL13].

Now we return to the previously mentioned methodologies (MDE and PLE).

What is common to both approaches is that they focus on using models, model-

driven processes and variability modelling. What is different is the difference of

using different concepts and therefore different model types. The background of the

first approach is the object as a main concept and object-oriented modelling. The

background of the second approach is the feature as a main concept and feature-

based modelling. Note that there is a separate research stream aiming at combining

two approaches (PLE and MDE) (see http://featuremapper.org/).

Variability modelling is the heart in the development software systems using

both approaches. Further, however, I provide more extensive analysis of feature-

based modelling. Note also that here I introduce some new terms which can be

understood literally. Later on, I present their definitions in a separate section. In

general, feature modelling is a family of notations and an approach for modelling

commonality and variability in product families [KCH+90]. In the early stages of

the system family development, feature models provide the basis for scoping the

system family by recording and assessing information such as which features are

important to enter a new market or remain in an existing market, which features

incur a technological risk, what is the projected development cost of each feature,
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etc. [BS99]. Later, feature models play a central role in the development of a system

family architecture, which has to realize the variation points specified in the feature

models [Bos00, CE01]. In application engineering, which is the process of building

individual systems based on assets supplied by the system family development,

feature models can drive requirement elicitation and analysis as well as model

transformations [LC09, SHT06]. Knowing which features are available in the

system family may help the customer to decide about the features his or her system

should support. In particular, knowing which of the desired features are provided by

the system family and which have to be custom-developed helps to better estimate

the time and cost needed for developing the system.

Currently, there are many variability management methodologies used as fol-

lows: feature-based modelling (FBM), scope-commonality-variability (SCV) anal-

ysis [CHW98], COVAMOF [SDN+04] and formal concept analysis (FCA)

[Sne96]. More recent ones are FAMILIAR (FeAture Model scrIpt Language for

manIpulation and Automatic Reasoning) [CL13] and SPLOT (Software Product

Line Online Tools) [SPL09], to name a few.

SCV analysis [CHW98] uses a theory of sets for modelling variability. It defines

commonality as an assumption held uniformly across a given set of objects (S).
Frequently, such assumptions are attributes with the same values of all elements of

S. Conversely, variability is defined as an assumption true of only some elements of

S, or an attribute with different values for at least two elements of S. SCV analysis

can be applied with different implementation paradigms, which determine different

strategies for implementing variability, e.g. in object-oriented design, S is a collec-

tion of classes, C is the code common to all classes in S (this code is placed in the

base class), and V is the ‘uncommon’ code in S (this code is placed in the

subclasses).

2. I start dealing with references within this stream from our publications because,

to our best knowledge, we were pioneers in suggesting to use the feature

diagrams (shortly FDs, they represent feature models) as the useful instrument

in e-learning. In the paper [ŠD08], we consider the use of FDs as tools to specify

generative LOs first and, then, to implement them using meta-programming

techniques. In the paper [ŠDB+08], we analyse the possibility of FDs to specify

ontology as a type of knowledge for e-learning. The paper [DS09] discusses the

use of FDs as applied to the sequencing problem. In the paper [BS11], we

analyse the LO research in the large using feature-based models. Papers of

other proponents of feature models within the e-learning research community

started to appear only recently [CNC12, DDA12].

The next package of papers deals with the descriptive and modelling aspects in

education [BDB+06, CLA06, LC06, PLL+06, RM04]. The paper [RM04], for

example, presents a framework with reference to the language PALO as a cogni-

tive-based approach to Educational Modelling Languages (EML). The PALO

Language, thus, provides a layer of abstraction for the description of learning

material, including the description of learning activities, structure and scheduling.
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The framework makes the use of the domain and pedagogical ontology as a

reusable and maintainable way to represent and store instructional content.

Another paper [BDB+06] reviews the state of the art in the development,

application and research concerning the use of design languages in education and

e-learning. As a basis for further research, the authors propose a taxonomy of design

languages and a framework for possible application of design languages in instruc-

tional design and e-learning practices.

The paper [LC06] discusses a teacher-centered approach for the specification of
learning scenarios (design), as well as the comprehension of learning scenarios
(reuse), by focusing on the application of theory and results from the Model-Driven
Engineering and Model-Driven Re-engineering domains. As it is clear from the
analysis of the works of the first stream, this approach is, in fact, the other
illustration on how SWE approaches are beneficial to e-learning. The paper

[CLA06] presents a separation of concerns approach to EML proposing to structure

these languages in a way different from the one proposed by the IMS learning
design (LD) specification, currently considered as the standard EML. The authors

argue that the LD specification is too complex to be applicable in and run time

applications and to produce EML-educational materials.
The paper [PLL+06] presents a general graphical language and a knowledge

editor to support the construction of learning designs compliant with the IMS-LD

specification. The authors move up one step in the abstraction scale, showing that

the process of constructing learning designs can itself be viewed as a unit of

learning (or a ‘unit of design’): designers can be seen as learning by constructing

learning designs, individually, in teams and with staff support.

The e-learning domain to be modelled with success, it should be first represented

explicitly. The paper [KM09] provides a useful framework TRACK with three

main components of teachers’ knowledge to represent the domain: content, peda-

gogy and technology. We use this framework for representing CS teaching and

learning domain too.

I summarize the analysis with the following basic findings:

1. Researchers within the e-learning community recognize the importance of

higher-level modelling on the basis of Educational Modelling Languages and

higher-level models. The series of approaches have been proposed for that

purpose so far. There are also efforts to introduce model-driven approaches

taken from SWE to enhance the modelling capabilities.

2. The feature-oriented modelling concepts and languages represent useful facili-

ties to be applied to the e-learning domain due to the following reasons:

simplicity, graphical notation easily transformable to the textual one, intuitive-

ness to grasp and learn main structures, ability to represent subdomains at

different levels of abstraction and the universality of the concept feature to

model different aspects of any e-learning subdomain.

3. Feature diagrams can be seen as counterparts of the known Educational Model-

ling Languages. The following sections will show that in detail.
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4.3 Background of the Proposed Modelling Method

As it was stated in Sect. 4.1, our intention is to propose a method suitable for

analysis and modelling of the CS teaching and learning domain. Here, modelling

means the extraction from the domain a set of higher-level models as input data to

enable then the creation of SLOs through transformations. As our method to be

proposed is a compound of ideas taken from the different known methods, first it is

helpful to state the basic principle on which this compound is built and then to

provide the reader with the basics (essence) of the selected methods. After that the

proposed method will be described.

4.3.1 Some Principles Used to Construct the Method

We use (as many other researchers do) the dual fundamental principles known in

SWE as ‘separation of concepts’ and ‘integration of concepts’ to construct our

method. The term dual means that the principles are typically applied both:

separation first and integration next. Most researchers, however, do not emphasize

the integration explicitly assuming that this action is a consequence of the first.

More generally, the principles perhaps can be treated similarly as analysis and

synthesis used in designing systems.

Note that the previously considered domain analysis methods (FODA, SCV,

etc.) are actually built upon the explicit use of separation and integration of

concepts. Though in e-learning this term is not so much popular, for the CS

researchers, the term is well known and pretty understood.

With what examples (about the concept separation) readers will encounter in

further readings? Examples are separation of content features from the pedagogical

features, the base domain (say the content features) from the technological features

and the base domain from its context, to name a few.

We apply yet another principle – the analogy. We see an analogy between the

educational course design and the Product Line SW system design. Indeed, the

course structure has some resemblance with the SW architecture. The selected

features model the SW components within the architecture. In the similar way, a

collection of LOs models separate topics within the given course. Furthermore, it is

possible to define a smart LO (i.e. SLO) as a set of related LO instances to form

different topics. To support the principle of analogy, one can take many other

examples.

4.3.2 Basic Requirements

Below we formulate basic requirements (R) for the modelling method to be

described later as well as some requirements for feature models themselves:
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1. As CS learning and teaching is highly heterogeneous, the scope of the domain,

its boundary should be clearly stated.

2. For flexibility reasons, the scope and domain boundaries might be changed

depending on analysis objectives.

3. As a result of R1 and R2, the domain should be represented as a set of adequate

models relevant to general objectives.

4. Various manipulations on creating models (e.g. merging, splitting, feature

counting, etc.) should be taken into account and used.

5. All newly created models and those devised through manipulations should be

correct; therefore, the model verification should be at the focus.

6. Drawing of feature diagrams and manipulating operations should be supported

by adequate tools.

7. Before creating a feature model, first the objectives and role of the model

should be defined.

8. For ease of handling and managing, it is useful to introduce model hierarchies

for representing them at the different granularity levels.

9. Knowing the role of context in teaching and learning (perhaps it is true for any

other domain), the following vision should be taken into account: it is reason-

able to consider a feature model as a pair of the base model and its context
model. In that sense a priority relation is a useful mechanism.

10. Context model may appear in two forms: implicit or explicit. Depending on the

concrete situation, try to use the explicit context model because the explicit

representation is more powerful.

4.3.3 Basics of Methods Used to Construct Our Approach

As it was already stated, we define our domain (i.e. CS learning and teaching) using

the TPACK framework [KM09] (see Fig. 4.1). We use, however, additional arte-

facts taken from other sources so that we could be able to present the framework in

more details. Such sources as those to specify teaching objectives, learners’ moti-

vation approaches, learner profiles, etc., were discussed in previous chapters.

We apply three basic FODA principles: (1) domain boundaries and context

identification, (2) modelling of the context by features and (3) modelling of

subdomains within the boundaries of features. We also use the SCV analysis to

identify the domain variability in the large. We describe the basics of feature

modelling in the next section.

4.3.4 Basics of Feature Modelling

Feature diagrams (FDs) are a graphical language used for representing and model-

ling variability at a higher level of abstraction, usually at the early design stages,
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such as formulation of requirements for software product line designs. As there are

slightly different notions and interpretations of elements of FDs, it is possible to

consider FDs as a set of graphical languages (though FDs have also a textual

representation [ACL+13]). We refer to an FD representing some domain as its

feature model. Below, we present basic definitions and syntax and semantics of the

conceptualized FDs.

From the perspective of software engineering, it is commonly accepted that a

domain can be analysed and modelled at a higher abstraction level using feature-

based approaches. Informally, a feature is a prominent characteristic of a system,

entity or concept in a domain. Since there is no consensus in the software engi-

neering literature on what a feature is, we deliver some definitions of the term. With

regard to different visions, feature is:

1. End-user visible characteristic of a system or a distinguishable characteristic of a

concept that is relevant to some stakeholder [KCH+90]

2. A logic unit of behaviour that is specified by a set of functional and quality

requirements [Bos00]

3. Qualitative property of a concept [CE01]

4. A functional requirement, a reusable product line (PL) requirement or a charac-

teristic that is provided by one or more members of a software PL [WG04]

5. An increment of program functionality [AK09]

This list is by no means full. The survey [AK09], for example, presents ten

slightly different definitions. The fact per se is very important. It actually defines the

scope of feature modelling possibilities to interpret the feature concept as the user

wants. This is yet another motivation of the benefits of using feature models in the

e-learning domain.
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Fig. 4.1 The TPACK framework to define CS domain (Adapted from [KM09])
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Feature modelling is the activity of modelling the common and the variable

properties of concepts and their interdependencies in a domain and organizing them

into a coherent model referred to as a feature model [CE01]. The intention of a

feature model is to represent and model a domain or its subdomains using the

feature concept. Specifically, this activity can be seen as part of the domain analysis

process, for example, as it is described by FODA [KCH+90]. The advantage of

feature models is the provision of an abstract, implementation-independent, concise

and explicit representation of the variability present in the software [HHU08].

A feature model represents the common and variable features of concept

instances (sub-features) and the dependencies and relationships between the vari-

able features. The model delivers the intention (usually implicitly) of a concept,

whereas the set of instances it describes is referred to as an extension, which

narrows the meaning and scope of the concept. This extension is often referred to

as a hierarchy of features with variability [CKK06]. The primary purpose of a

hierarchy is to represent a potentially large number of features into multiple levels

of increasing detail. Variability defines what the allowed combinations of features

are. To organize a hierarchy as an allowed combination of features, the identifica-

tion of feature types is essential. Feature types are the inherent part of the feature

model. They are discussed below.

There are three basic types of features: mandatory, optional and alternative.
Mandatory features allow us to express common aspects of the concept (usually

they are referred to as commonality [CHW98]), whereas optional and alternative

features allow us to express variability. All basic features may appear either as a

solitary feature or in groups. If all mandatory features in the group are derivatives

from the same parent in the parent-child relationship, we can speak about the AND

relationship among those features (see also Table 4.1). An optional feature is the

one which may be included or not if its parent is included in the feature model.

Alternative features, when they appear in groups as derivatives from the same

parent, may have the following relationships: OR, XOR, CASE, etc. The XOR

relationship also can be treated as a constraint (see Table 4.1) if the relationship is

identified for features derived from different parents.

4.3.5 Formal Definition of Features and Constraints

It is possible to express features not only graphically but also formally using the

notation of the propositional logic [Bat05, CHE05, TBK09].

Let P be the parent feature and the sets {C1, . . .,Cn} are children features of P.
Then we can specify the feature relationships as follows (see also Table 4.1):

P ) ^i2MCið Þ ^ _1�i�nCi ) Pð Þ; M � 1; . . . ; nf g (AND relationship)
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P , _1�i�nCið Þ^i< j ØCi _ ØC j

� � ðXOR relationshipÞ
P , _1�i�nCi ðOR relationshipÞ
ØK _ ØF (constraint<mutex>)

ØK _ F (constraint<Require>)

We have presented the basic features and their formal relationships. More

advanced subtypes of alternative features are grouped constraints, attributes, clon-

ing and additional constraints [CKK06]. Though the feature-based representation is

attractive from various viewpoints, however, there is also some inconsistency of the

graphical notation. The existing discrepancies in representing and interpreting

graphical elements of feature models are mostly due to the lack of standardization

and inconsistency of the available tools. The next section is about the graphical

notation used in [CL13].

4.3.6 FAMILIAR-Based Feature Diagram Notation

Domain modelling is to be supported by the adequate tools. The modelling aim is to

build domain models, to be aware of their correctness and to know their basic

Table 4.1 Feature diagram notation in GPFT [CE01]

Feature types and

constraints Definition Graphical notation

Mandatory (AND

relationship)

If A, then B

If A, then B and C

Optional If A, then B or none

If A, then C or D or none

Alternative (OR

decomposition)

If A, then any of (B, C, D)

Alternative (XOR

decomposition)

If A, then (B but not C) or (C but not

B)

Constraint<mutex> Feature K excludes feature F and

vice versa

Constraint<Require> Feature K requires feature F

© With kind permission from Springer Science+Business Media from [ŠD13]

84 4 Modelling of CS Teaching and Learning in Large



characteristics. We have selected FAMILIAR feature language and tools [CL13] to

provide modelling activities in modelling the CS domain and building models to

create SLO. To verify the created models, we use SPLOT tools [http://www.splot-

research.org] because they are mutually consistent. Therefore, we need to introduce

these notations (see Table 4.2).

4.4 Description of the Proposed Modelling Approach

Figure 4.2 presents an overall view of the modelling methodology. We describe it

as a logical sequence of high-level processes along with their outcomes. Here, by

the domain we mean CS learning and teaching. We assume that it is highly

heterogeneous. Here, in more details, we describe each process as a goal driven

input-output relationship, according to the following scheme: Why-What-How-
What. The interpretation of the scheme is, in fact, the answer to the adequate

question as follows:

Why a process is needed?
What are input data?
How does a process work?

What is the outcome of a process?

As here we also speak about the context in modelling, we provide the following

definitions of the term:

The context is that ‘which constrains something without intervening in it explic-

itly’ [BP99]. The paper [Bre05] extends the previous definition and identifies three

main elements being important to the focus of an actor: (1) context is relative to the

focus; (2) as the focus evolves, its context evolves too; and (3) context is highly

domain dependent.

Process 1

WHY The aim is to set initial conditions for the remaining processes. As the

FODA and SCV methods indicate (see Sect. 4.3.3), the identification of

boundaries is the important precondition of modelling because it

specifies the scope of the activity.

WHAT The attribute IN1 is the answer, i.e. external input data IN1 includes

FODA instructions, SCV instructions and TPACK framework (see

Fig. 4.1).

HOW This attribute can be fulfilled through analysis of TPACK (the latter is

treated as the base domain here) by an analyser (modeller); the basis is

his/her competence in the field; the use of some instructional materials

and documents such as standard specifications, relevant papers, etc., is

important.
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Table 4.2 Juxtaposing of FAMILIAR and SPLOT notations

Features and 
relationships 

Notation Feature tree (XML 
fail fragment) FAMILIAR SPLOT 

Mandatory
(AND) 

FM ( A : B  C  ; ) 

<feature_tree> 
:r A(_r0) 
 :m B(_r1) 
 :m C(_r2) 
</feature_tree> 

Optional

FM ( A : [B]  [C]  ; )

<feature_tree> 
:r A(_r0) 
 :o B(_r1) 
 :o C(_r2) 
</feature_tree> 

XOR group 
[1..1] 

FM ( A : (D|B|C) ; )

<feature_tree> 
:r A(_r0) 
 :g [1,1] 

 : D(_r1) 

 : B(_r2) 

 : C(_r3) 
</feature_tree> 

OR group 
[1..*] 

FM ( A : (D|B|C)+ ; )

<feature_tree> 
:r A(_r0) 
 :g [1,*] 

 : D(_r1) 

 : B(_r2) 

 : C(_r3) 
</feature_tree> 

Constraint 
<Exclude >

FM ( A : [D]  [B]  [C]   ;(D -
> !B) ; )

<feature_tree> 
:r A(_r0) 
 :o B(_r1) 
 :o C(_r2) 
 :o D(_r3) 
</feature_tree> 
<constraints> 
C0:~_r3 or ~_r1 
</constraints> 

Constraint 
<Requires >

FM ( A : [D]  [B]  [C]   ;(B -> 
C) ; )

<feature_tree> 
:r A(_r0) 
 :o B(_r1) 
 :o C(_r2) 
 :o D(_r3) 
</feature_tree>
<constraints>
C0:~_r1 or _r2
</constraints>

A

A

B

B

A

A

A

A

D

D

D

B

B

B

C

C

C

D B C

(D->!B)

(B->C)

CONSTRAINTS:

CONSTRAINTS:

C

C
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WHAT Context model is the outcome here. We can describe the model by

encountering such domains or their influential attributes, which are close

in terms of the importance and their relationships with the base domain.

Having in mind the TRACK framework (see Fig. 4.1), the context model

can be specified as (i) teaching theories for the pedagogical knowledge,
(ii) educational environments for the technological knowledge and (iii)

CS curriculum for the content knowledge.

1. Identification of domain
boundaries

Domain context model

2. Identification of sub-
domains within the domain

Sub-domain context models

3. Analysis and relevant
artefacts extraction

Data for building
sub-domains models

4. Feature-based modelling
and representation

Feature-based models

5. Model verification Statistics and evaluation

TRUE

6. Manipulation on
models

Modified
models 7. Model improvement

FALSE

Improved
models

8. Model verification Statistics and evaluation

Resulting model or models 9. Model
improvement

Improved
model

Legend: - Process; - Outcome; -Input/Output; - (IN) External INPUT data for each
process

TRUE FALSE

IN1

IN2

IN3

IN4

IN5

IN6

IN8

Fig. 4.2 Overall view of the proposed methodology [Bur14]
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Process 2

WHY The aim is to identify what is within the boundaries and also the context

model narrowing to simplify modelling. It is an evident application of

separation of concepts.

WHAT External input data IN2 includes FODA instructions, SCV instructions,

TPACK framework and principles (separation of concepts, analogy).

HOW The process is fulfilled by reconsidering TRACK and by formulating

aims to modelling each subdomain (pedagogy, technology, content).

WHAT More narrow (concrete) context models (e.g. robots for technology).

Process 3

WHY To obtain and extract the artefacts that are relevant to modelling aims.

WHAT External input data IN3 includes methods, tools and actors (knowledge

and competence of analyser) for finding artefacts, knowledge, solutions,

tasks, requirements, etc.

HOW Through activities performed by analyser on the basis of his/her

knowledge or knowledge borrowed from domain experts. Activities may

include reading, collecting, interviewing, classifying, pruning and

verifying data.

WHAT Set of data as an initial model of the subdomains.

Process 4

WHY Aim is to have more abstract and precise representation of models.

WHAT External input data IN4 includes feature-based language and tools such

as FAMILIAR, knowledge and competence of the analyser.

HOW The process is realized through the identification of relationships (parent-

child) and constraints, drawing and testing feature diagrams (FDs) with

the help of FAMILIAR tools.

WHAT A set of output models (FDs).

Process 5

WHY FM correctness checking and gathering statistics on the models.

WHAT External input data IN5 includes FM verification tools (SPLOT) and

modeller knowledge.

HOW Model validation is achieved through the use of the SPLOT tools.

WHAT Statistics on model characteristics and properties.
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Process 6

WHY To know for which purposes the combined models will be used.

WHAT External input data IN6 includes statement of precise requirements for

manipulation and FAMILIAR.

HOW By applying FAMILIAR tools

WHAT Some combined models.

Process 8 is the same as Process 5, and Process 9 is the same as Process 7 (they

ensure the correctness of improved models). In Sect. 4.7, we present and evaluate

the models created using the approach.

4.5 Analysis and Evaluation of Created Feature Models

Here, we present some modelling results obtained with the use of the proposed

approach to model the CS teaching and learning domain. Some models or their parts

are independent upon the teaching subject. For example, the model to describe the

learning objective (Fig. 4.3) can be applied (partially or entirely) to any other

subject because the model is based on Bloom’s taxonomy. Our model was created

using the Bloom’s taxonomy as it is interpreted in [SMS08]. We treat our model as

a concrete because, in our case, the leaves are atomic features, though, in the other

context, some leaves might be decomposed in the smallest features (see Property

4.14, in Sect. 4.6).

Another model represents the motivation model (see Fig. 4.4). As it largely

relates to teaching theories, it is regarded as the important subdomain in e-learning.

The model can be treated as independent on the teaching subject too (except the

Learning
objectives

Phase

Produce Explain

Recall
Applica-

tion
Synthesis Evaluation

Analy-
sis

Compre-
hension

Level

Beginner ExpertIntermediate

Mandatory

Optional

OR

Requires

Fig. 4.3 Concrete feature model (FD) to specify learning objectives (created using [SMS08,

Bur14])
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children features of the ‘instrument’ parent feature). The model has been devised on

the basis of the following list of papers studied: [Ala12, CAC12, Chu07, DSS+08,

HS12, JCS09, LLY10, Pea10, SHL+13, SMG11, Tou12].

The CS content model (Fig. 4.5) is the abstract model because it should be

further refined if we aim to implement it in practice as a part of the smart LO. Note

that the content model relates to the use of educational robots in teaching CS (see

Chap. 12, for more details). Note that this model was devised partially (we mean the

features ‘algorithm’ and ‘data types’) on the basis of [KP05] and partially (we mean

the feature ‘task’) using [BSM12, ŠBD13].

The next sample model specifies technology (Fig. 4.6). As the feature ‘technol-
ogy’ describes a very large domain, this model is abstract too. Therefore, it includes

features also relevant to other teaching subjects. This model has been constructed

on the following background: [LH10], for ‘hardware’ features; [KP05], for ‘soft-
ware’ features; and [BDB+06], for ‘modelling’ features (partially).

In Table 4.3, we summarize the syntax-related characteristics of the devised

models: pedagogy-oriented, content-oriented and technology-oriented ones. In

Table 4.4, we summarize quality-based characteristics of the models. All charac-

teristics were obtained as a result of using FAMILIAR (Table 4.3) and SPLOT

Motivation

Intrinsic
factors

Extrinsic
factors

Individual
attitude and
expectation

Goals
and

emotions

Clear
direction

Reward and
recognition

Punish-
ment

Social
pressure and
competition

Instruments

Game-based
learning
models

Code
visualization

Pair-pro-
gramming

model

Robot-based
environ-
ments

Fig. 4.4 Abstract feature model to specify learning motivation [Bur14]

Content

Task Algorithm
Data
types

Line
Follower

Color
Sorter

Traffic
light

Other Common
Condi-
tional

Loop-
based

Sim-
ple

Nes-
ted

Assigne-
ments Additional

Mandatory

Optional

OR

Requires

Alternative

Fig. 4.5 Abstract feature model to specify CS teaching content [Bur14]
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(Table 4.4) tools. At the bottom, we provide definitions of some derivative

characteristics.

Variability degree is the number of valid configurations divided by 2n, where n is
a number of features in the model.

In CS, a binary decision diagram (BDD) or branching program, like a negation
normal form (NNF) or a propositional directed acyclic graph (PDAG), is a data

structure that is used to represent a Boolean function. On a more abstract level,

Technology

Development of LO
Teaching/learning

environments

Component-based
technology

Generative
technology

Template-
based

Meta-program-
ming-based

Modelling

EML UML FD PC
Note-
book

Internet-
supported devices

Mobile
devices

Sensor tech-
nologies

Hardware Software

General-purpo-
se languages

Domain-speci-
fic languages

Mandatory OptionalOR Requires

EML – Educational Modeling Language
UML – Unified Modeling Language
FD – Feature Diagrams

Fig. 4.6 Abstract FD to specify technology used in CS e-learning [Bur14]

Table 4.3 FM statistics obtained using metrics from http://www.splot-research.org/

#

Parameters

characteristics

Pedagogy (M, motivation; LObj, learning

objectives, TLM, teaching/learning model;

A, assessment; L, learner)

Content TechnologyM LObj TLM A L

1 # Features 14 14 37 17 24 13 20

2 # Optional 0 0 0 0 0 0 2

3 # Mandatory 7 2 10 0 5 3 7

4 # Grouped 6 11 26 16 18 9 10

5 # OR groups 2 4 10 4 4 2 2

6 # XOR groups 0 0 0 1 0 1 1

7 # (CTC) 9 6 3 3 3 2 4

8 CTCR (%) 0.50 0.64 0.11 0.18 0.25 0.23 0.30

9 #CTC DV 7 9 4 3 6 3 6

10 CTC CD 1.29 0.67 0.75 1.00 0.50 0.67 0.67

11 Tree depth 3 5 9 6 3 3 4

CTC cross-tree constraints

DV distinct variables

CTCR CTC representativeness calculated as the number of variables in the CTC divided by the

number of features in the feature diagram

CTC clause density is the number of constraints divided by the number of variables in the CTC

CTC CD CTC clause density
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BDD can be considered as a compressed representation of sets or relations. Unlike

other compressed representations, operations are performed directly on the com-

pressed representation, i.e. without decompression.

4.6 Properties of Feature Models of CS Teaching Domain

In this section, we generalize our discussion given in the previous sections by

presenting some essential properties. We formulate them with the emphasis not so

much on syntax-based attributes, but rather on the models’ semantics, i.e. as they

are seen from the benefits for learning and teaching. Of course, we also provide

those properties which we use later, in subsequent chapters.

Property 4.1 As CS learning and teaching (similarly to any other subject) is the

heterogeneous domain, we need to use multiple feature models aiming to represent

the domain at a higher level of abstraction due to (i) ever-increasing requirements,

(ii) complexity growth of the domain itself, (iii) needs for reuse enhancement and

(iv) automation purposes.

Property 4.2 A set of feature models presented in Sect. 4.5 has the same semantics

as the selected papers on e-learning describe, from which the feature has been

extracted. The benefits of models are preciseness, correctness, conciseness (if we

take into account the ability to present complex models at different abstraction

levels) and reusability.

Property 4.3 Feature models are highly reconfigurable items. The following

operations (merging, splitting, changing, etc.) enable to perform the adequate

reconfiguring on demand.

Property 4.4 From the perspective of the understanding of modelling, two essen-

tial types of feature models (base and contextmodels) and their relationships enable

a great deal of flexibility in modelling.

Property 4.5 Context model is treated as having a higher priority with respect to

its base model. Both models, due to their (re)configurability, can be represented

either as the uniform model or as a set of models. What mode to use? It depends on

the purpose in a concrete situation.

Property 4.6 In the case of using multiple models, their priority relation can be

modelled by the priority levels, e.g. highest, intermediate, low and no priority.

Charnecki et al. [CHE05] use the term staged model which is the same in meaning

as the prioritized model.

Property 4.7 Models can change their roles (e.g. context model can become base

model and vice versa). This may happen due to the reconfiguration, changes of

modelling aims or changing the representation level.
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Property 4.8 It is possible to invent the unified generic model for the whole CS

learning and teaching domain (in terms of predefined scope), for example, for

further modelling and better understanding.

As there are some difficulties to represent a large FD (e.g. to be readable, it

should be represented onto one page), we can split some nodes, thus splitting the FD

into parts. This node should be marked with a reference to the remaining part of the

diagram. If there are some splitting points, we can build a reference FD to link all

separated parts of the FD.

Property 4.9 Mandatory features model the domain commonality. Variant points
(i.e. grouped alternative features) and variants (i.e. children of a variant point)

model the domain variability. Constraints among features (such as requires and

excludes) model the feature interaction. Therefore, we are able to specify the

domain under consideration abstractly or even formally (if features and their

relationships are expressed using the notion of the propositional logic) by com-

monality-variability relationships.

Further, we make the difference between two views on the feature model

correctness: domain-based and feature-based semantics, meaning adherence to

the accepted notion (further we refer to it as semantic correctness).

Property 4.10 The developed feature models are correct with regard to domain-
based correctness under the following assumptions: (1) the model designer has

used initial data to specify models, which were created by domain experts, (2) the

designer has applied allowable manipulations on the domain initial data (e.g.

merging some attributes of initial data to form one representative feature for

conciseness, moving attributes from one branch to another for clearness) and (3)

relationships and constraints were formed on the basis of expert knowledge.

Property 4.11 The developed feature models are semantically correct because the
following conditions hold: (1) the models are specified using the notion accepted by

the FAMILIAR language and tools; (2) the tool SPLOT we use supports the formal

verification of models devised with the help of FAMILIAR.

Property 4.12 There is no unique attribute to characterize feature models; rather

multiple characteristics should be applied. The list of characteristics to evaluate

models may be as follows: number of models, complexity, degree of variability,
relevance to the requirements of a specific task such as implementation and

characteristics obtained by the tools used.

Property 4.13 The developed models specify and model the CS learning and

teaching domain to the extent relevant to the predefined scope and aims of

modelling.

Property 4.14 We refer to the feature diagram as an abstract feature model if there
are some leave features that, in the other context, could be further split into smallest

ones. We refer to the feature diagram as a concrete feature model if all leaves are
atomic features. The atomic feature is a value of its parent feature.
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Note that the concrete feature model can be derived from a set of abstract

features first by selecting the adequate leaves from a given set, then splitting

them and finally merging sub-models to form a concrete feature model to specify

a concrete task. We explain that in detail in Chap. 5.

4.7 Discussion and Evaluation of the Approach

Modelling and model-based approaches are recognized to be a very powerful

instrument for extracting knowledge from domains at the early stages in

constructing software systems. Now the model-driven approaches prevail in system

developments. The benefits of the approaches are evident: they enable to represent

designs at a higher level of abstraction. Such a vision makes possible to share

design knowledge among groups of shareholders and enables to extend the scope of

reuse through automation, meaning higher productivity, better quality and shorter
time to market. We were focusing on feature-based modelling aspects, as they are

represented within the SWE domain, and some modelling aspects discussed in e-

learning. On this basis, we have proposed an approach for analysis and modelling of

the e-learning domain. More specifically, the proposed method enables to build

feature-based models to support CS teaching and learning.

We have provided feature-based modelling (the methodology has been

borrowed from SWE) aiming to create the space of abstract models within the
anticipated scope of modelling to cover the most likely situations in teaching CS.

This space specifies feature models at a higher level of abstraction aiming to

support wide-scale reuse. We have created and evaluated the models of the follow-

ing subdomains: pedagogy (the latter defines the motivation, learning objective,

assessment and learner’s social aspects in teaching CS), CS teaching content and
technology used. Though some models within the space may have the concrete

feature values, the others usually are abstract models. Here, the abstract models

should be understood as the ones which represent the most common features

without the identification of their concrete values for the concrete situation of

use. Therefore, the abstract models are to be refined or concretized to the given

context of use. We will discuss that in Chap. 5.

The abstract models we have created are correct models in terms of the defined

feature-related concepts, specified properties, and identified basic characteristics

using modelling language and tools (i.e. FAMILIAR) and model verification tools

(i.e. SPLOT).

What are the benefits of the approach for different actor (CS researchers,

educational system designers, CS teachers, students)?

For all actors, the approach can be seen as a methodological instrument or

guidelines to obtain a new knowledge and to represent it in a systematic way.

Indeed, the principle ‘separation of concepts’, the process-based view and the focus
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on input-output relationships, on which basis the method has been constructed and

represented, are general enough to be applicable in many other contexts. The

feature models selected to represent the domain artefact could be attractive for all

actors too, because of clearness and intuitiveness of the feature concept per se. The

possibility of the concept to be interpreted freely enough, on the other hand, might

respond to the different actors’ flavours.
As feature-oriented modelling is constantly expanding, CS researchers are able

to broaden their research topics and themes. They are able, for example, to bring

their own contribution to further formalizing and systemizing knowledge in the

higher-level modelling and feature-oriented programming. The feature-based

modelling may contribute to merging the close research fields such as knowledge

representation and reasoning, ontology-based modelling and fuzzy logic-based

modelling, to name a few.

The benefits to the educational system designers are also evident – they are able

to accept from the SW designers the accumulated experience (e.g. theories, meth-

odologies, approaches and tools) in designing educational software. From the larger

perspective, the feature-based approaches might play the same or similar role as

UML-based approaches did so far for industry, academia, research and teaching.

There are many signs to claim that (industrial support, broad stream of research,

variability language [CVL14] with OMG contribution, a variety of tools, initiatives

for standardization).

What are benefits for teachers? Teachers should be educated with the focus on

higher-level abstractions, models, their transformations and higher-level modelling

because (i) all these approaches have evolved incrementally over the long history of

computing to reach the current level; (ii) from the pure computing perspective,

there is no other way to manage complexity as to use model-based transformations;

and (iii) there is an urgent necessity to respond to CS learning and teaching

challenges stated in Chap. 1.

The visualization, intuitiveness and syntactic simplicity make the models

discussed here acceptable for CS students as well.

What tasks the feature-based approach is able to support? They usually are useful

in the requirement statement (formal or semiformal), explicit representation of the

learning variability and the task specification at a higher level of abstraction. Having

in mind Property 4.14, we can see a feature model as a tool to specify smart LO at a

higher level of abstraction. We will discuss all these topics in detail in Chap. 5.

What are bottlenecks of the approach? There are some discrepancies in syntax

graphical elements of the notion. That hinders formalization and standardization.

The notation is further evolving. There are different textual representations. As so

far there are no standard tools to model and verify feature models, one should select

the appropriate language notation and available tools.
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4.8 Summary and Concluding Remarks

We have introduced the basics of feature-oriented modelling to model the CS

learning and teaching domain. To do that systematically with the focus on large-

scale reuse, we have combined the artefacts and knowledge from two fields:

learning and teaching concepts from CS e-learning and feature-based concepts

from SWE. In terms of the general understanding of CS, the first can be viewed

as a task domain, while the second as a solution domain. On this basis, we have

proposed a methodology, which formally can be seen as a mapping of the problem
domain onto the solution domain. We have represented the methodology on how

the CS teaching and learning artefacts are extracted and then represented using the

feature-based notation as a solution domain. The methodology was presented as a

sequence of the adequate processes to specify the input-output relationships.

As the methodology also includes the use of the proven tools such as FAMILIAR

and SPLOT, the refined models are correct. This methodology should be seen as a

primary step to define the background of higher-level modelling in creating smart

learning objects. We will extend this background in the subsequent chapters.

4.9 Research and Exercise Questions

4.1. Provide a more extensive overview of the Educational Modelling Languages

(EMLs), the latter treating as a separate research topic.

4.2. Clarify the meaning and the role of the term ‘separation of concepts’ (also
known as ‘separation of concerns’) in terms of analysis of EMLs and also in

other contexts. If you are a teacher, outline how you can use this term in your

practice.

4.3. What is the difference between two terms: explicit separation of concepts and
implicit separation of concepts? Take examples from your field of interest

(we also recommend to read Chap. 3 in the book [ŠD13]).

4.4. On the basis of results obtained in Sect. 4.1, invent taxonomy for this area of

knowledge.

4.5. Analyse the possible views to essentials of feature modelling by comparing

different definitions of the term feature, for example, taken from [AK09].

4.6. Define other terms that are used to specify feature diagrams as graphical

modelling language. Focus on feature types, parent-children relations and

constrains. Why feature diagrams can be seen as a domain-independent

modelling language.

4.7. Provide a comparative study of different modelling languages: EML-, UML-

and FODA-based feature diagrams. Draw a distinguishing line among those

languages and provide their advantages and drawbacks.

4.8. What is the difference between the abstract feature diagram and the concrete

feature diagram?
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4.9. What is a variant point, variant within a feature diagram?What is the learning

variability in terms of variant points and their variants? (See also Chap. 5.)

4.10. Learn the properties of the abstract and concrete feature diagrams separately.

4.11. Draw the feature diagrams of some process of your everyday activity.

4.12. Discuss the benefits and limitations of feature-based modelling.

4.13. If you have decided that the feature-based notion is your cup of tea, learn and

use, say, the FAMILIAR language and tools as a case study for receiving a

great pleasure as if drinking your tea.
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Chapter 5

Model-Driven Specification in Designing
Smart LOs

5.1 Introduction

In the previous chapter, I have presented a systematic approach to analyse CS

learning and teaching as a research domain. The analysis has been provided through

modelling of the domain. The result of modelling was a set of the devised models.

Those models, in fact, bring an important knowledge, though it is not enough to

define and investigate the new kind of LOs called smart LOs. In this chapter, my

aim is to extend the theoretical background of smart LOs directly.
Here, the word ‘directly’ means that feature modelling is also a part of the

theoretical background, which was presented in Chap. 4 implicitly, i.e. without
using the term SLO. As computer science (CS) deals with the relevant problem

solving, at the very abstract level, the field can be viewed as the mapping of the

problem domain onto the solution domain. The reader should not be confused by

the use of these two terms again (they have been introduced in Sect. 4.8). Aiming at

presenting the reader with the understanding of the topics to be considered here, two

questions are important: (1) what is the problem domain? And (2) what is the

solution domain in terms of our intention to introduce smart LOs as a basic topic of

the book?

The answer to the first question is very clear – CS learning and teaching has been

our problem domain already represented by the abstract feature models in Chap. 4.

Here, however, the reader should interpret the CS learning and teaching domain

also as learning variability, i.e. as some model that represents the domain. We will

provide the formal definition of the term later.

An attentive reader may give a general answer to the second question easily as

follows: the solution domain is a set of approaches used to implement the tasks of

the problem domain. In a wider context, this set can be viewed as a methodology,

while in the narrow sense, it can be treated as a technology. In our case, meta-
programming is just the implementation technology.
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The aim of this chapter is to present the model-driven and transformation-driven
view in designing smart LOs. This view, in fact, has been borrowed from the SW

engineering domain. In our case, the learning variability serves as a bridge to

connect the problem domain models with the solution domain models through the

adequate meta-model and model transformations. Here, the term meta-model
should be understood as a model that specifies the other models. Therefore, here

we present both the problem and solution domains abstractly at three levels: meta-

model, model and model elements.

Now, at the very beginning, it is possible to define smart LOs (SLOs) by adding

new attributes as complementary to the ones given in Chap. 1.

Definition 5.1 Smart LO is the meta-level specification that implements the CS

learning variability using meta-programming as a technology to automatically

generate and adapt the learning content on demand according to the

preprogrammed context and needs of the user.

This definition better fit to our aim of this chapter. The highlighted terms within

the definition require a separate intensive discussion. The latter will be introduced

gradually, starting from Sect. 5.2. Therefore, the reader should be patient with

respect to the extent of understanding of our approach.

5.2 Literature Review

As usual, after presenting the introduction, I start considering the topic by

reviewing the relative work. As it is clear from the given definition, we need to

focus on two subjects here: model-driven CS learning variability and relevant

implementation technology. The related work of the first subject was thoroughly

discussed in Chap. 4, though without the explicit use of the term learning variabil-
ity (in Sect. 4.2, variability was discussed explicitly from the perspective of SW

engineering). Therefore, we focus more on the second subject here. As there is a

wide spectrum of technological issues, we ignore the standard (well-adapted)

technologies, such as the Internet and also technologies needed to build e-learning

and teaching environments (in our case robot based).

Two main technologies, namely, the generative and agent-based ones, are

treated as most relevant to implement SLOs. As both technologies have a much

wider context of use, we restrict ourselves on only those aspects, which are relevant

to our aims. Here, by technology, we mean facilities for representing, transferring

and processing the content and knowledge to support the SLO concept. Context-

based modelling also should be at the focus as the given SLO definition claims.

However, this topic is more relevant to Chap. 7. Therefore, this review is restricted

because the relevant topics are considered in the other chapters.

First, we analyse some essential features of SLO as compared to the other well-

known kinds of LOs as follows:
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1. Similarly to the generative LO (shortly GLO), introduced by Boyle, Leeder, and

Morales [BLC04, MLB05], SLO is the executable specification; in [GLO14], for
example, GLO is defined as an articulated and executable learning design that
produces a class of learning objects.

2. Similarly to the meta-programming-based GLO (introduced in our papers

[ŠD08, DŠ08]), SLO is the high-level executable specification.
3. Similarly to the agent-based LO [Sto08] and recommended systems for e-

learning (introduced in paper [VMO+12]), SLO is the context-aware specifica-
tion, though the context is treated as a static item.

4. Unlikely to the GLO [ŠD08], SLO is a highly reusable specification, i.e. it
implements learning variability using the strategy ‘design for reuse and design

with reuse’ along with modelling and model transformation capabilities.

5. Unlikely to the GLO of both kinds [BLC04, ŠD08], SLO is the context-aware

specification containing the preprogrammed context for adaptation to the user’s
needs on demand [BBD+14].

We introduce the additional features (such as a more precise description of

context awareness and others) to define the SLO later in Chap. 7, 8 and 12. Next,

we present some of the most relevant publications for more extensive studies of the

topics we will discuss in this chapter. The book [ABK+14] focuses on the devel-

opment, maintenance and implementation of product line variability along with a

broad classification of tools and techniques for all stages of the development

process and a detailed discussion of trade-offs. The reader can learn more about

generative programming from the book [CE00]. Meta-programming might be seen

as a methodology that combines different views on model and program trans-

formations. More on the topics can be learned from [ŠD13]. A very concise

introduction into the GLO context awareness topic can be found in our recent

paper [BBD+14]. Our paper [ŠBB+14] deals next with the GLO specialization

problem. We present the other related references in the adequate places of this

chapter.

5.3 A Framework to Design Smart LOs

The bases of defining and presenting this framework are the following issues: (1)

reuse-based design strategy and modelling of learning variability, (2) the modelling

approach and the CS teaching domain models devised in Chap. 4 and (3) creating

concrete high-level models for both the problem domain (i.e. CS teaching and

learning in a concrete situation) and the solution domain (i.e. meta-programming to

specify SLO). Below we discuss the issues in more detail.

5.3 A Framework to Design Smart LOs 105

http://dx.doi.org/10.1007/978-3-319-16913-2_7
http://dx.doi.org/10.1007/978-3-319-16913-2_8
http://dx.doi.org/10.1007/978-3-319-16913-2_12
http://dx.doi.org/10.1007/978-3-319-16913-2_4


5.3.1 Modelling and Reuse-Based Design Strategy

This section is written mainly using the ideas presented in our published papers

[ŠBD13, BBD+14], as well as the adequate reuse-oriented papers borrowed from

the SW engineering domain.

At the very abstract level, the e-learning process can be identified as an interac-

tion among the following components with the tightly integrated feedback links: (i)

pedagogy-driven activities, (ii) technology-driven processes, (iii) knowledge trans-
fer channels with the actors involved, (iv) a set of tools used (they can also be

treated as technology) and (v) the pedagogical outcome [ŠBD13]. Any form of LO

(stand-alone instance, GLO, SLO) stands for an instrument to supply the teaching

content. The latter, in fact, enables the interfacing, integrating and functioning of

the components as the whole e-learning system. No matter what form we are able to

select for representing the teaching content, the whole cycle includes the following

processes: to design, to search, to adapt and to use the content. With respect to

reusability in mind (this vision prevails in e-learning; see Chap. 3), the processes

should be handled and managed as effectively as possible. Here, for this purpose,

we introduce and apply the reuse-based framework as a strategy borrowed from the

SWE domain, which is known as design for reuse (DfR) and design with reuse
(DwR) [Sam97]. We have adapted it to our aims (see Fig. 5.1). Note that there are

different terms of the framework (such as a twin life-cycle model [Sam97], product

line engineering [PBL05] or software families [Par76]) to express the similar

meaning).

Here, we focus mainly on the top level of the framework, i.e. on DfR. In fact, the
part of this framework called ‘learning domain analysis and modelling’ (see

Fig. 5.1) summarizes the activities we have described in Chap. 4. We will discuss

the lower-level part (i.e. DwR) of the framework later, in Chaps. 7, 8 and 11. DfR
aims at understanding the e-learning domain (e.g. CS in our case) through its

modelling. The modelling should be guided by the clearly stated goal with the

use of the well-defined approach. In our case, the goal is to extract the relevant data

and represent them into some generic form (e.g. feature diagram usually considered

as a domain model (see Chap. 4) to facilitate the construction of SLOs). At this

level, the domain model describes two general aspects: domain commonality and

domain variability (the terms are coined from [CHW98]; see also Property 4.9 in

Sect. 4.6). In [ŠBD13], we have introduced the e-learning variability (LV) as a

composition of the pedagogical variability (PV), social variability (SV), content
variability (CV), technological variability (TV) and interaction variability (IV).

Abstractly, we can express LV as follows:

LV ¼ PV ∘ SV∘CV ∘ TV ∘ IV: ð5:1Þ

Here, variability is understood as an attribute to indicate the existence of variants in
the subject (pedagogy, sociality, etc.), and ‘�’ means some kind of composition.
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In Eq. (5.1), we consciously omitted the explicit context. The explanation of that

is as follows. We define the context as an implicit or explicit factor influencing to
delivering the content for teaching. As the PV and SV, in fact, are those factors, we

accept them as a teaching context here. The basic assumption is that the context

may have variants too (e.g. types of the pedagogical model such as problem based
and project based, student social variability such as beginner and intermediate,
etc.). Therefore, we can speak also about the context variability as well. However,

there is also a specific context to specify a relation among different variability

aspects such as content and social issues (we will discuss this later as feature

priority).

As any kind of variability we are able to express through higher-level features

(see Chap. 4, for details), the DfR activity results in context-aware SLO models. As

learning variability is a relatively new term, we provide a more extensive discussion

on this and related topics (relevant to our context) in the next section.

5.3.2 Analysis of Learning Variability by Example

We do that (using the example taken from [ŠBD13]) because the term is the

conceptual basis to understand our approach in general and the further sections in

particular. For the CS researchers and, perhaps, for the knowledgeable CS teachers

and students, an SLO is a higher-level program. Otherwise, it is a meta-program,

because it generates other programs (meaning lower-level ones) automatically (see

Definition 5.1 in Sect. 5.1). For less knowledgeable readers (because GLOs and

SLOs need still to live up their promises to become more widely accepted in the e-

learning domain), we explain the variability concept as a basis to understand the

meta-programming-based SLOs more thoroughly.

Df R
Learning domain
analysis & modelling

Context-aware SLO
specification

DwR
SLO Refactoring on
context awareness

Derivation /generation
of context-sensitive

Approaches
identified in Chap. 4

Abstract
problem domain
models

Adapted SLOs
& LOs

User requirements
& Tools

Models (languages)
of the solution
domain Sect. 5. 4

Fig. 5.1 A framework to

adapt the known reuse

paradigm (DfR/DwR) for e-
learning domain (Adapted

from [BBD+14])
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Let us have a very simple object, such as the linear equation (y= ax+ b), and
interpret it from the variability perspective in different domains (mathematics, CS

and e-learning). In mathematics, for example, the equation is a canonical form

meaning the general representation with the explicit statement of eligible values for

the argument (x), function (y) and coefficients (a, b) is as follows: x, y, a, b2 ℝ. In a
particular case, however, some specific variants (a> 0, a< 0, a= 0, b 6¼ 0, etc.) may

be excluded and considered separately. All these are variability in that domain,

though this term is not exploited here. The function is formally defined as a

mapping of the argument (variable) eligible domain D onto the function value

space R, that is, f: D ! R. The elegance and beautifulness of the mathematical

language is its potential to express the items (objects, categories) uniformly and as

general and short representations as possible.

In CS (programming), the equation can be easily transformed into a computer

program to calculate y values for the predetermined space of values for x, a and b.
The space in this case, however, is much narrower as compared to the mathematical
representation due to the limited computational resources. Variability (if one

realizes the program) could be seen in part explicitly and in part implicitly within

the program source code. Now we summarize the discussion (see Table 5.1) and

explain the difference between the program and the meta-program-based SLO

using some rationale and the same example. From the outcome (i.e. program

execution) perspective, a program (if it is correct and terminates) always returns a

concrete value as a result of the calculation (e.g. y= 51 when a = 2, x= 20 and

b= 11), while the meta-program returns the other program (programs) as a value (e.
g. y:= 2*x +11;) when both higher-level parameters a and b are equal to 2 and 11

adequately. As the parameters a and b are used to model variability, we need to

express them through meta-functions (abstractly they are denoted as f(p1) and f(p2)
in Table 5.1).

This subtle difference opens the way to extend reusability and generate the

program instance on demand and use it as a subject for reuse (use-as-is, transfer

for other contexts with or without modification).

E-learning is not a homogeneous domain; rather it is a combination of the

following subdomains: pedagogy, information sciences, IT-based technology and

sociology, psychology and computer science (sometimes also called informatics;

actually it is also a combination of the others). As a consequence, the e-learning

variability (LV) is also not a homogeneous item; rather it is a set of the constituents

as it is defined by Eq. (5.1).

We hope that the introduced framework and provided example to explain the

learning variability concept as a basis to develop SLOs will be helpful for the reader

to better understand the processes and tasks we consider in the following sections.

In the next section, we define the design tasks and processes used within the top-

level part (i.e. DfR) of the introduced framework.
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5.3.3 Meta-Level Processes and SLO Design Tasks

First, we define the high-level (i.e. meta-level) processes to design SLOs. The

modelling process and approaches discussed in Chap. 4 are regarded as the primary
processes to design SLOs. The primary processes result in creating the abstract
feature models (see Property 4.14, in Sect. 4.6) applicable to the whole CS topics as

it is depicted in Fig. 4.1. To make the abstract models suitable in a concrete

situation (i.e. to create SLO), we need to derive the concrete model instances.
This procedure is based on feature selecting and manipulating on the abstract

feature models. In Sect. 5.4, we present the approach to create the concrete model

instance for the development of SLO using the model-driven paradigm. Typically,

the paradigm can be seen as the process of derivation of (i) a meta-model from its

Table 5.1 Running example of a smart LO: conceptual level with comparisons

Domain

Domain

instance

Objects of the

instance

Properties and

variability values

Result of

manipulation

Mathematics

(algebra)

Function Function, vari-
able, constants,
operations,
relation

x, y, a, b2R Representation

form; cognition of

algebra laws by

learners

y=ax+b Algebra laws:

Operation prior-

ity, commutative

law

Programming Program Variable, con-
stants, opera-
tions, statement

a2[2..10] A value of y defined
by the computer

program, e.g.
y=51, when a=2,
b=11 and x=20

y:=a*x+b; b2[11..30]
L={y, :=, a, *,
x, +, b}

x2[20..40]
a, b and x are
variability for
lower-level
calculation

L: program

language

Meta-

programming

Meta-program Meta-objects:
Parameters,

Elements of A program

instance, defined by

the L2 processor, i.

e.

y:= f(p1)*x + f
(p2);

{‘y’, ‘:=’, ‘*’, ‘x’,
‘+’} are

commonality;
y:= 2*x +11;

parameter
values,

when
a and b are vari-
ability with vari-
ants for a2[2..10]

f(p1)=2
functions (f(p1,L1={‘y’, ‘:=’,

‘*’, ‘x’, ‘+’}
f(p2)= 11

L2={f(p1),
f(p2)}

f(p2)) substitut-
ing a parameter
by its value

and

p1, p2 –

parameters

b2[11..30] for
higher-level
calculationL1: target

language
L2:

meta-language
(alphabets)
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meta-meta-model and (ii) a model element from its meta-model, which we repre-

sent by the Y-chart in Fig. 5.2 taken from [ŠD13].

Here, we use the only intermediate part of the Y-chart, which is outlined by the

rectangle. The latter describes two common design processes at the model level:

specification of the problem domain model instance (left branch of the chart; see

Fig. 5.2) and specification of the solution domain model instance (right branch of

the chart). Both processes are the high-level processes. Note that the CS learning

variability is the problem domain, whereas meta-programming (MPG) is the solu-

tion domain. The concrete languages (meta-language and target language) are

treated as instances of the solution domain. Note also that we are able to specify

both domains abstractly using the same formalism, i.e. feature-based notation if the

basic terms of the domains are predefined (see Sects. 5.4.1 and 5.5). Later we

describe the meta-meta models for both problem and solution domains.

Now, using the model-driven paradigm, we are able to formulate the SLO design

tasks at the high level of abstraction as follows.

Task 1 is to develop the feature-based specification of the problem domain instance

(see Sect. 5.4). The problem domain instance (which is represented by the

feature model) is derived from the problem domain meta-model (denoted as

PD MM in Fig. 5.2, and its full specification using the meta-meta model is given

in Fig. 5.3).

PD MM

Instance
(model) of

PD MM

Elements of
instance (i.e. PD

model)

SD MM

Instance
(model) of

SD MM

Elements of
instance (i.e. SD

model)

Abstraction
level

lowering

raising raising

Problem domain (PD)
abstractions (i.e. CS learning

variability - LV)

Solution domain (SD) abstractions
(i.e. meta-programming - MPG)

Legend:
PD MM – Problem Domain Meta-Model
SD MM – Solution Domain Meta-Model
MPG – Meta-Programming (as SD)
LV – Learning Variability (CS learning as PD)

Fig. 5.2 Representation of the paradigm using Y-chart (© With kind permission from Springer

Science + Business Media from [ŠD13])
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Task 2 is to develop the feature-based specification of the solution domain instance

(see Sect. 5.5). The solution domain instance (which also should be represented

by the feature model) is derived from the solution domain meta-model (denoted

as SD MM in Fig. 5.2, and its full specification is the same meta-meta model

given in Fig. 5.3).

Task 3 is to map the problem domain model, i.e. the specification defined by Task 1,
onto the solution domain model, i.e. the specification defined by Task 2 (see

Sect. 5.5). Task 3, in fact, is the transformation task, in which elements of the

problem domain model are transformed into the adequate elements of the

solution domain model using the prescribed transformation rules. All those

issues we will discuss later in detail in Chap. 6.

Now, in the following sections, we continue our discussion on designing the

high-level specifications for both domains (problem and solution).

5.4 Feature Selecting and Manipulating to Form Concrete
Model Instance for the Problem Domain

The aim is to derive the concrete model instance from a set of abstract feature

models constructed in Chap. 4 for the problem domain (i.e. CS learning and

teaching). As it will be shown later (see Sect. 5.4.1), the concrete model instances

Root feature
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has-a has-a
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[1,*]
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[1,1]

has-a
[0,*]

Fig. 5.3 Feature diagram (FD) meta-model (© With kind permission from Springer Science +

Business Media from [ŠD13])
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have the variant points. The latter is defined by variants that appear in the model as

an atomic feature (i.e. terminal node). Furthermore, as the concrete model is to be

composed from different abstract models, we also need to describe the composite

manipulations on the abstract models. Thus, to do that, we need a systematic

procedure. It will be described in Sect. 5.4.2. But first we define the basic terms

that are related to the procedure.

5.4.1 Definition of Learning Variability Terms

In order to understand better definitions given below, we recommend the reader to

refresh knowledge on more detailed definitions of feature models and their exam-

ples given in Chap. 4.

Definition 5.2 Learning variability (LV) is the composition of the following

constituents: pedagogical variability (PV), social variability (SV), content variabil-

ity (CV), technological variability (TV) and interaction variability (IV) as it is

defined by Eq. (5.1) plus specific context variability (SCV) to define a relation

among other kinds of variability.

Definition 5.3 Pedagogical variability (PV) model is the concrete feature diagram
(FDPV) constructed using the feature-based language, the adequate abstract feature
models (such as learning objective, motivation, teaching model; see Sect. 4.5 for the

first two) and tools to specify the models and provide modelling.

Definition 5.4 Social variability (SV) model is the concrete feature diagram
(FDSV) constructed using the feature-based language and tools to specify this

kind of variability to support modelling.

Examples are learner’s gender (male, female), previous knowledge (low, good,

very good) and learner’s profile (beginner, intermediate, advanced) to name a few.

Definition 5.5 Content variability (CV) model is the concrete feature diagram
(FDCV) constructed using the feature-based language and tools to specify this kind

of variability to support modelling.

For the concrete example of the content variability (though it is presented

informally for three domains), see Table 5.1 in Sect. 5.3.2.

Definition 5.6 Technological variability (TV) model is the concrete feature dia-
gram (FDTV) to specify technological characteristics of the educational environ-

ment (such as robot based).

Definition 5.7 Interaction variability (IV) model is a part of the concrete feature

diagram (FDLV) to specify constraints (requires and excludes) among other kinds of

variability.
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Definition 5.8 Specific context variability (SCV) model is a concrete node within
the feature diagram FDLV to specify the context along with the constraint requires
identified among the context node and the adequate nodes (e.g. pedagogical, social

or content ones).

We consider the real illustrative example of the models IV and SCV in Fig. 5.4.

Here, we present a concrete FD to specify the robot’s straight-line movement using

the FAMILIAR notation (see Sect. 4.3.6, Table 4.2). The task implements the linear

algorithm. Two features time and speed are the content features. They are also

treated as variant points, each having three variants. The feature priority level, in
fact, is the SCV model. Thus, we model the context by the priority levels here as

follows: {low, high, intermediate}. The model IV is described by the feature

CONSTRAINTS: time requires high priority and speed requires low priority.
Note that the model (Fig. 5.4) is the aggregation (composition) of three models:

content, context (i.e. SCV) and interaction variability (IV). Note also that we will

consider the context model more thoroughly in Chap. 7.

Definition 5.9 Learning variability model is the concrete feature diagram (FDLV)

specifying this kind of variability as it is specified by Eq. (5.2):

FDLV ¼ FDPVð Þ o FDSVð Þ o FDCVð Þ o FDTVð Þ o FDSCVð Þ: ð5:2Þ

Here, ‘o’ means an operator to aggregate (integrate) feature-based models. Note

that the interaction variability (IV) has no specific node within the model (if we

consider a standard representation, but not the FAMILIAR-based one; see Fig. 5.4).

As a result, there is no separate FD in Eq. (5.2). Note also that all kinds of variability

components of Eq. (5.2) are modelled by the adequate variant points and variants.

StraightLineMovement

Time

1000

Legend:

3000

- mandatory; - XOR group; - OR group; -> - requires

5000 30 70 50 Low High Intermediate (Speed-> Low)

Speed PriorityLevel CONSTRAINTS:

(Time->High)

Fig. 5.4 FD instance to specify the robot’s straight-line movement task
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5.4.2 A Procedure to Obtain the Concrete Model Instance

We present the procedure as a set of the sequential processes and their outcomes in

Fig. 5.5. We provide the description in the similar way as it was done previously in

Chap. 4 to devise abstract feature models (see Sect. 4.4 and Fig. 4.2). As now the

reader is aware about the form of representing the topic, we omit many descriptive

details here.

The external input IN1 (see Fig. 5.5) includes the following items: identification

of concrete teaching method, concrete teaching theme, concrete student profile and

technology to be used. The external input IN2 includes: task selection and require-

ments for the concrete tasks. The external input IN3 includes: selected features for

concrete tasks (see Figs. 5.6 and 5.4). The external input IN4 includes FAMILIAR

tools for manipulating to create a concrete feature model. And finally, the external

input IN5 includes SPLOT tools to verify the concrete model.

1. Identification of a set of
abstract FDs

Selected FDs

2. Selecting of relevant
features

Set of features

3. Spliting features to form
cocrete sub-models

Sub-models

4.Aggregating sub-models Concrete FD

5. Model verification Statistics and evaluation

6. Model
improvement

Improved
models

TRUE

Correct concrete FD

IN – External INPUT
data for each action

Legend: -Action -Outcome; - ; -

IN1

IN2

IN3

IN4

IN5

In /Ou t

FALSE

Fig. 5.5 Scheme to derive concrete models from abstract models
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5.5 Definitions of the Solution Domain

The aim is to define the solution domain, i.e. heterogeneous meta-programming

abstractly at the model level (without specific details), so that the reader could be

able to understand the essence of the programming paradigm. We seek that the

reader would be prepared for dealing with the deeper insights into the domain to be

presented later. In fact, we have already started the introduction of this paradigm

(see the conceptual reasoning on meta-programming in Sect. 5.3.2). With regard to

the stated tasks in Sect. 5.3.3, this section is about the way of solving Task 2.

Once again, we want to remind the reader the general property of SLO. Syntac-

tically, SLO and meta-program are, in fact, the same items; however, semantically

they are quite different structures. SLO specifies the learning variability that

describes heterogeneous features of the CS learning domain. Meta-programs, on

the other hand, if they are treated as abstract entities, specify the domain variability
without the specific insights into the domain semantics. Next, we start with the

definition of the basic terms of heterogeneous meta-programming (He MPG).

5.5.1 Definitions of Basic Meta-Programming Terms and
SLO

Definition 5.10 Meta-programming (MPG) is a higher-level programming para-

digm to support generative reuse by creating generalized programs called meta-

programs.

The generalization can be achieved using the two kinds of meta-programming:

homogeneous and heterogeneous (He). One can learn more on homogeneous meta-

programming from [ŠD13] or other related sources. As He MPG is the basis to

implement SLOs, we define this technology in more detail as follows.
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Fig. 5.6 A slightly modified abstract FD given in Fig. 4.6 (see Chap. 4)
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Definition 5.11 He MPG is such a paradigm which uses at least two languages to
develop meta-programs. The first is a target language serving for expressing the

base functionality of a domain. The second is ameta-language aiming to expressing

generalization through parameters that describe variability of the domain.

Definition 5.12 The heterogeneous meta-program is a program generator to pro-

duce target program instances automatically from the meta-program specification.

Definition 5.13 Structural model of the heterogeneous meta-program is the struc-

ture containing two interrelated components: meta-interface (simply interface) and

meta-body (simply body).

Definition 5.14 Interface is the declaration of a set of parameters, their values and

variability interaction among the values. In terms of the FD notion, variability

interaction is defined as constraints posed on some kinds of features.

Definition 5.15 Meta-body (further body) is the implementation of the declaration

given in the interface. The implementation specifies the detailed relationship among

the interface items (i.e. parameters) and the base domain functionality using two

languages (meta- and target).

Definition 5.16 Meta-program parameters are syntax-driven variables (within the

interface and body of a meta-program) to express and represent the domain
variability independently on the domain semantics.

We first remind the given informal definitions (see Table 5.1 in Sect. 5.3.2) and

then provide formal definitions of the adequate terms as follows.

Definition 5.17 Computational (behavioural) model of the heterogeneous meta-

program is the process within the meta-language environment to process the

specification to produce the target program instances.

Definition 5.18 Meta-programming-based smart LO (further SLO) is the hetero-
geneous meta-program, assuming that the latter implements learning variability to

express the CS learning and teaching concepts and computational model (Definition

5.17).

Definition 5.19 Structurally, SLO is the structure containing two elements: (i)

interface expressed through parameters and (ii) meta-body expressed through

(meta-) functions of a meta-language to specify the content variants expressed in

a target language.

The list of the presented definitions is by no means full. Here, we have defined

the only basic terms that are needed to achieve the goal of this section, i.e. to

express the terms through features and their relationships. We have omitted, for

example, the contextualization aspects in defining of SLO here (see Definition

5.18). We will provide a more thorough discussion on context issues later (see

Chap. 7, where we focus on adaptation problem). As we have presented the

definitions abstractly, some debate on the topic is needed. We provide such a

discussion in the next section.
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5.5.2 More on Meta-Programming and SLO

For the CS educators and course designers, the following questions are always at

the focus: (1) which programming language is to be used in teaching and (2) how it

should be delivered to students?

There are many debates on the topics (see, e.g. [KP05]). As SLO is the execut-

able specification, which contains within constructs that are represented by at least
two languages, the linguistic aspects are extremely important – if not to say more –

they predefine both a methodology of creating SLOs and using them as a teaching

material. Note that, in terms of SLO and meta-programming, the target language is
also the teaching language. Note also that He MPG is independent upon the use of a

target language [ŠD13]. Therefore, this programming paradigm does not restrict in

selecting of the teaching language. What is about the meta-language? We have also

shown that any programming language (we have investigated C++, Java, C# and

PHP) can be used in the role of a meta-language. We will provide a more extensive

discussion on the topic in Chap. 9.

Here, we aim to explain the actual meaning of the phrase at least two languages
(see Definition 5.11) from the learning and teaching perspective. The simplest and

most typical explanation might be as follows. Suppose you have an SLO as a meta-

program. Now you want to send this SLO to a server (in fact, now all teaching

materials and the SLO, as one of that sort, are or should be available online). Before

doing so, you need to add yet another specification level by describing the item with

HTML. It is just the third language, though its role is quite different as compared to

those used within the SLO specification.

The next example is more complicated, but also it relates to the Internet. Say, CS

students are studying the Internet-based programming. In order to program the

application task, they need to use a set of target languages (HTML, XML, SSL,

PHP or the like) to represent the basic domain functionality. If they want to have a

generic specification for the task, they need to apply a meta-programming-based

approach to code the task by a meta-language (for more details, see [ŠD13]).

This short discussion may serve as a hint to considering the following problem:

whether or not the multi-language specifications might be the teaching topics in the

CS curricular. We left this topic as a research and exercise question (Sect. 5.7).

Now we are ready to discuss the feature-based vision of meta-programming and

SLO concepts at the higher level of abstraction by introducing the concept of meta-
model.

5.5.3 Meta-Model of Meta-Program and SLO

The aim of the feature-based representation is twofold. The first is the understand-

ability issues. As feature models have the well-defined graphical notation (e.g.

within accepted and used tools such as FAMILIAR and SPLOT), the models can be
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grasped and understood intuitively. The visual representation is the smart repre-
sentation. Therefore, the SLO feature models might be seen as a generalized

teaching material at the higher level of abstraction. The users of such models

might be the course designers and the adequate educational tool designers in the

first place. The models might also be beneficial for the CS teachers, for example, to

accept and accommodate ‘the higher-level computational thinking’, to present, to

disseminate the advanced teaching concepts, etc.

The second aim is more concrete: we need to formalize uniformly the solution of

the transformation task, i.e. Task 3 (see also Chap. 6, for details). How can we move

from the abstract definitions to the feature-based definitions of the solution domain?

Again, we need first to return to the definition of the term feature. The variety of

definitions means universality and independence of the use of the approach in

different situations. Next, what we need to do is to analyse the definitions presented

in Sect. 5.5.1 (and perhaps the full specification of a meta-program) and then to

recognize the aspects to treat them as features. One can identify at least the

following aspects: linguistic, structural and relationship based. Finally, we need

to decompose the aspects into smaller ones, to treat them as features, to introduce a

hierarchy of the features and to present them by the adequate feature diagram.

Therefore, the feature-based reasoning can be also applied to the solution domain.

With respect to the model-driven approach, we are able to generalize the

solution domain by presenting its meta-model. In fact, this meta-model has already

been introduced along with the Y-chart we discussed in Sect. 5.3.3. Here, the meta-

program meta-model (MPG MM) is indicated in the right branch on the highest

level (see Fig. 5.2). In general, a meta-model specifies the other models. Here, by

the meta-model we mean a description that specifies all theoretically possible

variants of meta-programs, which are indicated by the meta-model. To specify

the meta-model, we use the object-oriented notation proposed by OMG. The

notation uses two kinds of items: objects (denoted by rectangular) and relationships

(denoted by arrows) along with the explanation text and labels denoted as [. . .]. For
example, the label [1, *] means that the object to which the label relates may have at

least one item. Note that here we do not make the distinction between the meta-

model of SLO and meta-program.

The specification of that meta-model contains two types of entities, i.e. <meta-
interface model> and<meta-body model>, and entities that are used to construct

these two models (see Fig. 5.7). For example, the<meta-interface model> is

constructed of meta-parameters. They are described using meta-constructs derived

from a meta-language. The<meta-body> is constructed of two parts: modifica-

tion/change model and program instance model. The latter is derived from a domain

language. The structure of the meta-model should be interpreted as follows. All

entities in the description (see Fig. 5.7) are abstractions of the solution domain, i.e.

meta-programming per se. By adding the word model to any entity, we intend to

specify any entity of that kind, but not its concrete instance. For example, the

modification/change model describes all possible changes within the meta-model.

A set of domain languages means that a concrete target language is yet not specified
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at this level. The same relates to meta-languages. We consider the instantiation of

the meta-model in the next subsection.

5.5.4 Instance of SLO Derived from Its Meta-Model

Formally, the model instance of SLO is created through the instantiation process

using its meta-model (Fig. 5.7) that is one-level higher than the instance model

itself (see also Fig. 5.2). The instance of the SLO meta-model is given in Fig. 5.8.

This description differs from the previous one (see Fig. 5.7) in the following: (a) the

target language instance (in other words, teaching language) is derived from the set
of target languages (in Fig. 5.7 they are described implicitly as the item target
language); (b) themeta-language instance is derived from the set of meta-language

(in Fig. 5.7 they are described implicitly as the item meta-language); (c) modifica-

tion/change model is substituted by the concrete algorithm to implement changes

prespecified by the given requirements; (d) SLO instance, parameters and interface

are also concretized in the same way.

In order to create an instance of a modification algorithm, however, we need to

know the requirements for change in developing SLO. Though the requirements are

formulated by the user or/and the domain analyst at the level that is higher than the

model, we have included requirements for change in the description of the model

for clearness. We describe all that in detail in Chap. 6.
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Fig. 5.7 Specification of meta-program meta-model (© With kind permission from Springer

Science + Business Media from [ŠD13])
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5.6 Summary, Discussion and Concluding Remarks

We have focused on the high-level design aspects in designing SLO here. By high-

level design aspects, we mean the reuse-based strategy that, in general terms, has

been presented as design for reuse and design with reuse. We have only discussed

the first part of this framework, leaving the space of discussing the second part in

the subsequent chapters. We have borrowed this paradigm from the SW engineer-

ing (SWE) domain; however, we have applied it with the specific focus on CS

learning, aiming to specify SLO for this domain. We have presented the SLO

specification tasks abstractly using the model-driven and model-driven transforma-

tion concepts, again borrowed from SWE.

The basis of this design vision is the learning variability concept. Though this

new term (we mean the e-learning domain only, but not SWE) can be grasped and

understood intuitively, we have presented the term and related topics from different

perspectives: by analysing a simple illustrative example, by defining the term

formally and by showing its role to the model-driven transformations.

We have considered SLO specification tasks as the high-level transformations

that include, first, the development of the concrete feature models of the problem

domain (i.e. CS teaching) and, second, the identification models and base notation

for the solution domain (i.e. meta-programming). Our aim was to present both

domains as abstractly and generally as possible. Therefore, we have introduced

some concepts of meta-modelling (such as meta-meta-model, meta-model and

derivation of the lower-level models or their parts from the higher-level ones).

We have found the Y-chart representation (taken from [ŠD13]) of the concepts as a

relevant means to describe the model-driven transformations. We have specified

two model-based specifications in designing SLO: learning variability feature

SLO as a
meta-program

SLO interface SLO
meta-body

Parameter Learning variability LO instance

Instance of
meta-language

Meta-construct
Instance of target

language

has-a has-a

has-a has-a

has-a

has-a

has-a
has-a

1
1

[1,*]

has-a

LO
Interface

LO
Functionality

is-a

is-a

[1,*]

[1,*]

[1,*]

[1,*]

[1,*]

Requirements
(forchange)

Describes

has-a

[1,*]

Data

has-a
is-a[1,*]

[1,*]

Fig. 5.8 Instance of SLO (meta-program) model derived from its meta-model (© With kind

permission from Springer Science + Business Media from [ŠD13])
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models and meta-programming-based models. What has been left to the further

discussion about this approach in Chap. 6 is the concrete procedure of mapping CS

learning variability feature models onto the meta-programming-based models.

As the complexity of systems or their components grows in all dimensions

(technological, methodological, market requirements, etc.), the model-driven per-

spective in designing the modern systems prevails now. The CS teaching domain

with own challenges stated in Chap. 1 should not be departed from the other

domains in which the model-driven approaches are widely used and are matured

enough. Having in mind this perspective, we hope that the presented approach not

only serves for our particular aim to specify SLO at the higher level of abstraction.

We believe in the soundness and applicability of the discussed issues in a much

wider context of the e-learning community. This expectation is due to the hetero-

geneity of the e-learning domain in which there are evident signs and efforts to

introduce the respective ideas and approaches from more matured domains such as

computer science and SW engineering.

5.7 Research and Exercise Questions

5.1. Discuss the actual meaning of the paradigm ‘design for reuse and design with
reuse’ using, for example, the sources [Sam97, ABK+14]. Draw a

distinguishing line between design for reuse and design with reuse.

5.2. Define and discuss more thoroughly the actual meaning of the term variabil-

ity using the following sources [CHW98, CBK13].

5.3. Discuss the commonality-variability issues in your domain of interest.

5.4. Define the basic terms of feature modelling once again.

5.5. What is the difference between the abstract and concrete feature models?

5.6. Define the commonality-variability model in your domain of interest using

feature-based notation.

5.7. Draw a distinguishing between the following terms: model, meta-model and

meta-meta-model.

5.8. Define the essence of meta-modelling. What is the essence of the model-

driven transformative approach?

5.9. Learn more about the Y-chart representation. Might it be useful to represent

your problem and solution domain?

5.10. Explain the essence of the statement: Design as a mapping of the problem
domain onto the solution domain.

5.11. Discuss and present your vision on teaching multi-language specifications in

CS courses.
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[ŠD13] Štuikys V, Damaševičius R (2013) Meta-programming and model-driven meta-

program development: principles, processes and techniques. Springer, London/Hei-

delberg/New York/Dordrecht

[VMO+12] Verbert K, Manouselis N, Ochoa X, Wolpers M, Drachsler H, Bosnic I, Duval E

(2012) Context-aware recommender systems for learning: a survey and future chal-

lenges. IEEE Trans Learn Technol 5(4):318–335

122 5 Model-Driven Specification in Designing Smart LOs

http://www.rlo-cetl.ac.uk/whatwedo/glos/whatareglos.php
http://www.rlo-cetl.ac.uk/whatwedo/glos/whatareglos.php
http://www.rlo-cetl.ac.uk/whatwedo/glos/whatareglos.php


Chapter 6

Smart LOs Design: Higher-Level Coding
and Testing Aspects

6.1 Introduction

So far we have discussed smart LOs (SLOs) mainly from two perspectives:

(1) conceptual understanding which focuses on definitions (examples) only

(Chaps. 3, 4) and (2) model-driven specification with the focus on variability

aspects. Though the model-driven view provides the reader with the fundamental

knowledge on SLOs, this knowledge was presented at a higher level of abstraction

with many details missed. Knowledge representation and knowledge gaining on

SLOs are the different processes. As, according to Bloom’s taxonomy, teaching and

learning (roughly knowledge gaining) are most effective when learners are

involved in doing something, here accordingly we try to involve the reader in the

process of constructing SLOs. Therefore, the aim of this chapter is to deliver the

next part of the design methodology, i.e. how the SLOs should be coded, tested and

redesigned (if needed).

The reader should not be confused by the methodological approach we use

throughout the book. We try to present items (we treat them as being complex to

understand completely at once) for the discussion gradually, i.e. to the extent

needed to understand the topic in a particular place, with regard to the stated

aims. We describe the same topic in the other place later, with some new details

or more precisely according to the other aims. For example, in Chap. 6, we re-define

the basic terms (e.g. SLO interface, SLO body, learning variability, etc.) which so

far (i.e. in Chap. 5) were defined either informally or incompletely.
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6.2 Related Work

Here, we preset a restricted analysis of the related work. The reason of that is simple

– the reader can find the adequate references in the other chapters as follows. We

have discussed the relevant sources on feature models in Chaps. 4 and 5. We have

analysed meta-programming-related issues in Chap. 5. We will provide more on

that topic in Chap. 9. Nevertheless, we indicate on the main approaches that are

relevant to the topics of this chapter.

The model-driven development and engineering is further evolving. The essence

of model-driven development is the use of the following principle: separating the

description of abstract properties and logic of an application from a description of

its platform-specific implementation and then the automation of the transformation

of the former into the latter using model transformation tools. At present, the most

mature formulation of this vision is the OMG’s model-driven architecture

[KWB03]. It refers to a high-level description of an application as a platform-

independent model and a more concrete implementation-oriented description as a

platform-specific model. The model transformation is at the core of this approach

when one or more source models are transformed to one or more target models,

based on the meta-models of each of these models. Such transformations are

defined by transformation/mapping rules and can be summarized as taxonomy

[MCG06, Sch06] that can help developers in deciding which model transformation

approach is best suited to deal with a particular problem.

In model-driven development (also known as product line engineering), the

feature-based modelling prevails now. The basis of feature modelling is the com-

monality-variability relationships [CHW98]. The paper [JK07] presents a formal-

ized feature modelling meta-model to support reasoning about feature models,

feature trees and their configurations. Another paper [WC09] describes a formal

description of multi-variant models, presents transformation processes of such

models including change and product configuration and discusses the construction

and representation of models incorporating multiple variants. The paper [ECH+09]

describes a formal model of change-oriented programming based on feature dia-

grams, in which features are seen as sets of changes (or high-level transformations)

that can be applied to a source program. Another paper [BBC+01] considers the use

of generative techniques in designing product lines. The reader can find more on the

feature-oriented software product line concepts in [ABK+14] and variability man-

agement in [CBK13].

Also the reader can learn more on the model-driven approach as applied to the

meta-program development in our book [ŠD13]. Here, we apply this approach too,

however with the extension and adaptation to the specific context in designing

smart LOs (SLOs).
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6.3 Background of SLO Coding and Testing

The framework includes the following topics: (1) formal formulation of the trans-

formation task, (2) conceptual vision of model-driven transformation at the models’
element level, (3) formal definition of meta-program elements, (4) parameter-

dependency model, (5) formulation of transformation rules, (6) SLO coding rules,

(7) SLO testing procedure and (8) SLO redesign with evidence and users.

6.3.1 SLO Design Task (Formal) Formulation

On the basis of the statements and results obtained in Chap. 5, now we are able to

formulate the SLO design task formally. Indeed, we already have three items: (1)

the model-driven transformation vision as applied to the lowest level (see Fig. 6.1

and also Fig. 5.2 in Chap. 5), (2) feature model instance of an application task (i.e. a

task of the problem domain) and (3) feature model instance of the solution domain

(i.e. meta-programming).

Here, we are speaking about the designing of SLO at a high level (HL) of

abstraction. Taking that and the specified models into account, we can define the

PD MM

Instance
(model) of

PD MM

Elements of
instance (i.e. PD

model)

SD MM

Instance
(model) of

SD MM

Elements of
instance (i.e. SD

model)

Abstraction
level

lowering

raising raising

Problem domain (PD)
abstractions (i.e. CS learning

variability - LV)

Solution domain (SD) abstractions
(i.e. meta-programming - MPG)

Legend:
PD MM – Problem Domain Meta-Model
SD MM – Solution Domain Meta-Model
MPG – Meta-Programming (as SD)
LV – Learning Variability (CS learning as PD)

Transformation Rules

SLO as a result of
transformation

Fig. 6.1 Y-chart applied to the intermediate and the lowest transformation levels (Adapted from

[ŠD13] and Fig. 5.2 © Copyright 2013 Springer)

6.3 Background of SLO Coding and Testing 125

http://dx.doi.org/10.1007/978-3-319-16913-2_5
http://dx.doi.org/10.1007/978-3-319-16913-2_5
http://dx.doi.org/10.1007/978-3-319-16913-2_5


design procedure at this level as the process of mapping the learning variability

model(s) onto the heterogeneous meta-programming domain model(s). Formally,

we can write

SLOHL ¼ FDLV � FDMP ð6:1Þ

where SLOHL is high level SLO model (see Definitions 5.10–5.13); FDLV is

learning variability model expressed through the concrete feature diagram (FD)

instance, specifying pedagogy, social aspects and content; FDMP is FD to express

the meta-program (MP) model; and ‘�’ means mapping.

After mapping, i.e. after the execution of the process defined by Eq. (6.1), we

will obtain the meta-programming-based SLOMPG. Its structure is defined by Eq.

(6.2):

SLOMPG ¼ Interface� Body ð6:2Þ

(Here, MPG means meta-programming and ‘�’ means mapping).

6.3.2 Formal Definition of Meta-Program and SLO Elements

There are two basic elements of a meta-program: interface (see Definition 5.14 in

Sect. 5.5.1) and body (see Definition 5.15 in Sect. 5.5.1). Now we define those terms

formally for both items, the meta-program and SLO, though the difference between

these terms lies in semantics only, but not in the structural representation. The

formal definition is needed, first, to identify the essential properties and then to state

the transformation rules to design coding of SLOs.

Definition 6.1 In terms of the set-based notion, the interface model μ(MI) of a

heterogeneous meta-program is the n-dimensional non-empty space P of abstract

parameters as it is defined by Eq. (6.3):

μ MIð Þ ¼ P; ð6:3Þ

where P¼ P;Vf g; P is the full set of abstract parameter names; n is the number

of the parameters, i.e. n ¼ Pj j;V is the ordered set of all parameter values; andMI is

the meta-program interface.

As each parameterPi Pi 2 Pð Þhas its own set of values vi1 ; vi2 ; . . . ; viq
� � � V, we

can write

Pi :¼ Vi ¼ vi1 ; vi2 ; . . . ; viq
� � 2 V; ð6:4Þ

where iq is the number of values of the parameter Pi. The symbol ‘:=’ means ‘is
defined’.
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We explain the actual meaning of the words abstract parameter introduced into

the definition. This term means that the parameters and their values do not represent

any concrete entity and therefore are independent upon the application domain.

Definition 6.2 Structurally, the SLO interface model has the identical structure as

it is defined by Eqs. (6.3) and (6.4); however, the parameters and their values have a

well-defined semantics – they express different aspects of the learning variability

(see Eq. (5.1) in Sect. 5.3.1).

Definition 6.3 Two parameters Pi and Pj (Pi,P j � P i 6¼ jð Þ ) are said to be

independent upon the choice of their values, if any pair of values vid ; v jt

� �
�
vid 2 Pi, v jt 2 P j, where d 2 1; iq

� �
and t 2 1; jm½ �) can be selected to correctly

evaluate the SLO specification, when it is executed. Otherwise, the parameters are

dependent upon the choice of their values.

Sometimes dependent parameters are treated as interacting (especially in terms

of aspects or features [Bat05]). In our case, we use parameter dependency as a

means to express the interaction variability (see also Eq. (5.1) in Sect. 5.3.1). Note

that we provide a more precise definition of the parameter interaction in Chap. 9

(where more details are needed because there we will discuss the SLO tool

designer’s vision).
Note also that this definition defines the one-to-one dependency in making a

choice of parameter values. The whole space is used to construct the parameter

dependency graph G(P,U) as follows. The set of nodes P of the graph corresponds

to the parameters. The set of edges U is defined as follows: for all i and j ui j ¼ 1

(meaning the edge exists) iff two parameters Pi and Pj are dependable according to

Definition 6.3, otherwise ui j ¼ 0 (meaning the edge does not exist) (Pi,Pj 2 P, ui j
¼ Pi;P j

� � 2 U).

Definition 6.4 In terms of the graph-based notion, the graph G(P,U) is the

interface model μ*(MI) defined by Eq. (6.3) of both the meta-program and SLO:

μ* MIð Þ ¼ G P;Uð Þ ð6:5Þ

Firstly, μ*(MI) is the derivative model that has been derived from Eq. (6.1) (it

follows from Definitions 6.3 and 6.4). Secondly, the model μ*(MI) is more precise

(as compared to Eqs. (6.3) and (6.4)) because it specifies the parameter dependency

explicitly. As it will be clear later, this attribute is the key to identify some useful

properties in devising formal transformation rules as well as to state the background

of developing the SLO design tool (see Chap. 9). Therefore, the creation of the

graph G(P,U) requires a separate attention and explanation with the concrete

example. We do that in Sect. 6.3.3.

Now we define the second element of SLO, that is, its body without the explicit

referencing to meta-programming.
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Definition 6.5 Body of the SLO is a pre-ordered set of meta-language functions

inserted into some LO-related text (i.e. a teaching program) according to prescribed

format and rules, whereas the text is presented by the target (i.e. teaching) language

constructs.

Here, we do not provide more details on the SLO body because, from the teacher

or learner perspective, it always can be seen as a black-box entity. Furthermore, this

vision is enough to define SLO here. We will provide more details on the body later

(see Chap. 9). Here, however, it is more important to give the possible interpretation

of the given SLO definition (see Definition 5.18) as it is stated in the next definition.

Definition 6.6 SLO is the high-level specification (i.e. meta-specification) that

contains a set of the related LO instances (structural view); SLO is also the input

data of the meta-language processor; the latter is a generator to automatically

generate LO instances on demand, depending on the selected parameter values

from the SLO interface (behavioural or process-based view).

At this point, the reader should compare Definition 6.6 with Definition 5.1 (see

Chap. 5). We leave the comparison result open as a research task (see task 6.1 in

Sect. 6.6).

This definition also enables to realize the following vision of using SLOs in

practice. Suppose the teacher has a set of the SLOs to cover the whole teaching

course. This set can be treated as the teacher’s local library in which each item is

represented in a compactly packaged way (we mean the meta-specification)

according to the introduced structural view (i.e. as a group of related LO instances

to use for a specific topic). Instead of searching the needed LO (if all possible LO

instances would be saved as library items), the teacher first identifies what SLO is

needed (in fact, the needed topic) and then generates the needed instance on

demand from that meta-specification.

6.3.3 Parameter Dependency Model

As it is stated in Sect. 6.3.2 (see Definition 6.3 and also the formal definition of the

graph G(P,U)), some parameters may interact among themselves while the others

not. We express the interaction through the dependencies of the parameter values.

The interaction between the parameters may appear in two ways: (1) two param-

eters are interacting in nature (e.g. when a prespecified value of one parameter

requires of a specific value of the other parameter); (2) by changing the value or

adding new ones. As the latter case is more interesting, we present the following

illustrative example. Let us have the generic logic equation as a very simplified

SLO:

Y ¼ X1 < logicoperator > X2 < logicoperator > . . . < logicoperator > Xn:
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There are two generic parameters: (1)< logic operator> (further P1) and (2) n –

the number of arguments (further P2). Let us have the following values of the

parameters P1 = {AND, OR} and P2 = {2, 3, 4}. The parameters are independent, i.

e. not interacting, because any value of P1 and any value of P2 can be chosen in

deriving the concrete instance from the generic equation. The possible number of

the instances is equal to 6. They are as follows:

Y ¼ X1 AND X2 Y ¼ X1 OR X2

Y ¼ X1 AND X2 AND X3 Y ¼ X1 OR X2 OR X3

Y ¼ X1 AND X2 AND X3 AND X4 Y ¼ X1 OR X2 OR X3 OR X4:

The parameter dependency graph G(P,U) is the null graph (see Fig. 6.2a).

Now we change the parameter values as follows: P1 = {NOT, AND, OR} and

P2 = {1, 2, 3, 4}. As a result, now we have the interaction among the parameters,

because ‘NOT’ requires ‘1’ only. The parameter dependency graph G(P,U) is the
connected graph, i.e. tree in this case (see the graph G(P,U) in Fig. 6.2b). In the

general case, some components of G(P,U) are the null subgraphs while the others
the connected subgraphs (typically trees). For example, if we introduce yet another

parameter P3 = {Y, V, Z} to denote the other name of the equation (function), we

will have the model just of that kind (see Fig. 6.2c).

Here we do not consider how the graph G(P,U) should be constructed formally.

We return to this problem later in Chap. 9.

As a result of this discussion, one can conclude that we express the task

variability aspects through parameters. The parameters are elements of a meta-

program to represent SLO. This observation is very important to understand the

transformation rules to be presented in Sect. 6.3.4.

6.3.4 Transformation Rules to Design SLO

First, we need to return to Fig. 6.1. Here, one can see the conceptual view of

transformations again. We define the design process at the lowest (coding) level as

the process for connecting the elements of the problem domain model with the

),( UPG

P1

P2

),( UPG

P1

P2

),( UPG

P1

P2

P3

a b cFig. 6.2 Parameter

dependency: (a) no
interaction; (b) interaction;
(c) mixed case
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adequate elements of the solution domain model elements according to Eq. (6.1).

Now we have the elements of both domains. We have specified the elements for the

first domain in Chap. 5. We have identified the elements for the second domain in

Chap. 6. Nevertheless, we need to explain that by the examples before stating the

transformation rules.

Let we change a bit the example (y:= a*x+ b) considered in Chap. 5 (see Table

5.1). The variability of the problem domain was expressed through the parameters a
and b. Now we want to hold a, b and ‘:=’ as the commonality features (C_Features,
see Fig. 6.3) and the remaining four items of the equation (y, *, x, +) as the

variability features (V_Features, see Fig. 6.3). Typically, to present feature models

(FMs), we express the variability features through variant points (vp). In Fig. 6.3,

the variant points (vp0, vp1, vp2, vp3) model or represent the items (y, *, x, +),
respectively. We have introduced the following variants or values for each variant

point adequately: vp0 = {z, x, y}; vp1 = {*, /}; vp2 = {x, x*x, z*z*z}; vp3 = {+, �}.

What is the result of this reasoning? First, we have constructed the feature model

of the problem domain exposing the elements of the model evidently. Next, we

have enlarged the variability space significantly (now it can be defined as

3*3*2*2 = 36, though there are conflicting variants which we have defined through

constraints of the type excludes (denoted by the dotted lines and labels xor in

Fig. 6.3)). Finally, the changed and enlarged variability space enables us to specify

the process of deriving equations of the quite different classes (in fact polynomials

instead of the linear equations). For example, if we select the following variants for

each variant point adequately (y, z*z*z, *, +), we will be able to derive (though

intuitively) the following equation from the feature model FMP: y:=a*z*z*z + b;
Now accordingly, we present the feature model of the solution domain, i.e. meta-

programming (Fig. 6.4). We treat the model as abstract because neither the param-

eters and their values nor languages are concrete. Though the basic features of this

model have been derived from its meta-model (Fig. 5.7), some features are

represented with more details (e.g. abstract parameter values are added, metalan-

guage (ML) is represented by the base constructs of structural programming, target

language (TL) is presented by the set of scenarios). One feature (meta-body) should

be discussed separately. Here, we have decomposed this feature into a set of

functions {f1, f2,. . .,fm}. The parameters and elements of the TL (scenarios) serve

as arguments of the functions to implement the meta-program functionality through

the modification algorithm indicated in meta-model (see Fig. 5.7 again). In Fig. 6.4,

z x y
xor

+

FMP

C_Features V_Features

a :=

x * /x*x z*z*z -

b vp2 vp1 vp3vp0

xor

Fig. 6.3 An instance of

feature model of the

problem (P) domain
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we represent this relationship by the constraints requires (see dotted lines). The

following features (any parameter, meta-body, ML, TL) of the model are variant
points with at least one mandatory variant to be selected when transformation rules

are applied.

The rules we present below, in fact, describe the mapping of the model FMP onto

the model FMS as it is stated by Eq. (6.1). We present the result of this mapping in

Fig. 6.5. Therefore, the reader should interpret the rules along with looking at the

mapping result. This result is the model of the concrete SLO (though illustrative).

Here, we present the only content or task variability features for simplicity and

understandability. What are missed in Fig. 6.5 are the relationships (constraints)

among the meta-body and the languages. We can represent those relationships (in

fact, SLO model) as follows:

f 1 P1ð Þ :¼ a f 2 P2ð Þ f 3 P3ð Þ f 4 P4ð Þb;

Here: P1 = {x, y, z}; P2 = {*, /}; P3 = {x, x*x, z*z*z}; P4 = {+, �}; fi = meta-

functions (i = [1,4]).

Note also that the rules are formulated for the general case and, as a result, there

are some discrepancies as compared to what we see in the represented feature

models.

FMs

Interface Meta-body Languages

Parameters Relationships f1 ML TL...f2 fm

P1 Requires Excludes =, file if loop

v11

...P2 Pn ...Scenario1 Scenariok

...v12 v1p

- mandatory; -  OR; - requires- alternative;Legend: - optional;
... ...

Fig. 6.4 Abstract feature diagram to represent meta-programming as solution domain

f2(p2) f3(p3) f4(p4)

FMs (SLO)

Meta-body LanguagesInterface

f1(p1) ML TLP1

=, file

P2 P3

y := a * x + b

P4

z x y
xor

+x * /x*x z*z*z -
xor

a :=b

Fig. 6.5 Feature-based SLO specification after mapping of FMP onto FMS
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Rule 1 Variant point (vp) of the problem domain feature model FMP (see Fig. 6.3)

corresponds to a parameter name (P) of the solution domain feature model FMS

(see Fig. 6.4).

Rule 2 Variants of a variant point of FMP correspond to the parameter values of

FMS.

Rule 3 The format of a simple assignment statement within the interface is as

follows:

< parameter >¼< parameter value set > :

Rule 4 The format of a conditional assignment statement within the interface is as
follows:

if <parameter1><condition><parameter2> then <parameter1>=

<parameter_value_set>

The conditional assignment statement appears if and only if the adequate variant

point has constraints< requires> or< excludes> .

Rule 5 The number of parameters in the model FMS must be equal to the number

of variation points in the model FMP.

Rule 6 The parameters in the interface of the SLO are to be arranged according to

their priorities given in the context model.

Note that we do not illustrate this rule in our example here because of simplicity

reasons (the context model we will discuss in Sect. 7.4 and 7.6 (see Chap. 7)).

Rule 7 To form the meta-body, the following set of functions of the meta-language

is used:

assignment ‘ ¼ ’ð Þ, OPEN-WRITE-CLOSE, conditional, loopsf g:

Note that here we use the full names of the functions as compared to those given

in Fig. 6.5.

Having the transformation rules and the models, the SLO designer is able to start

the coding procedure. As the models and rules are evident and can be grasped

intuitively, the CS teacher or even CS knowledgeable students can be designers of

SLOs (we claim that having in mind our practice).

6.3.5 SLO Coding Rules as Recommendations

Again, coding rules are not so much dependable upon the use of the concrete target

and meta-language. Therefore, we discuss the coding rules here. We will discuss

the topic of selecting languages later in Sect. 9.3.2 (see Chap. 9). The majority of
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the rules stated below should be treated as recommendations. They reflect the use of

a good style in writing programs. Therefore, the rules are enumerated anew.

Rule 1 The description of the target language (TL) and the meta-language (ML)

should be represented as the separate well-designed documents (in the paper and

electronic formats). The documents may include also feature-based representations

enriched with the annotated examples.

Rule 2 Parameter names should be meaningful to express the domain semantics

explicitly.

Rule 3 Each parameter must contain a priority variable or constant (also treated as
fuzzy variable to be discussed in detail later in Chap. 8). Parameter priority is coded

as the obligatory comment followed after the parameter in the SLO interface

specification (see Fig. 6.6). In fact, this is the rule, but not the recommendation.

Also note that the parameter priorities are not shown in feature models given in

Sect. 6.3.4 (for simplicity reasons, however, the priorities appear in Figs. 6.6 and

6.7 to illustrate Rule 3).

Rule 4 The comments should be supplied by the specific format that enables to

distinguish clearly the comments from the machine-oriented commands.

Rule 5 The comments are to be included in only those places where the essential

decisions are made.

Rule 6 The comments should be as much clear and concise as possible.

Rule 7 The structural units of SLO (interface and meta-body) should be clearly

identifiable in the meta-specification document.

Rule 8 The interface should be coded first and then the meta-body. Parameters

should be ordered in the interface according to their roles (priorities, see Fig. 6.6).

Note that the editors (such as Notepad++) that highlight the different language

elements with the different colours are highly recommended to use.

Fig. 6.6 SLO interface of

our example in PHP after

assignment parameter

values
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Rule 9 When the SLO interface is coded, the elements of the representation

language HTML should be included (see also Figs. 6.7 and 6.9) in order for us to

be able to see the graphical interface in the Internet browser (see Fig. 6.8).

The list of rules we presented here is oriented to the case of manual design (the

only ML processor is used). More rules will be added to develop the design tools as

it will be done in Chap. 9.

6.3.6 SLO Testing Procedure

As SLO is a meta-program in the syntactical sense, it should be tested similarly to

any other computer program. On the other hand, semantically SLO differs from the

meta-program because of the pedagogical and social value. Therefore, in the case of

SLO, we can speak about syntactic testing and pedagogy-oriented testing. SLO
should be pedagogically sound. The pedagogy-oriented aspects have been already

introduced in the feature models (see Chap. 4). Those aspects were extracted from

Fig. 6.7 SLO interface of

our example with parameter

dependency and HTML

fragments
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the approved sources that take into account teaching-learning theories and expert

knowledge. Therefore, the models are pedagogically sound. As we then verify the

models using the verification tools that are based on the formal background, it is

found that our models are also syntactically sound.
However, the whole SLO design process (from modelling to coding) is long and

complex enough; thus, it requires the human skill. The human’s intervention may

cause some errors. The source of errors may occur at the model level (e.g. when we

are moving from the abstract to concrete models, at the mapping of the models) and

at the coding level. How can we obtain the errors and correct the SLO specification?

The use of the tools (such as SPLOT as it was discussed previously; see Chaps. 4

and 5) after each phase of manipulating on models enables to avoid the syntactic

errors. Obtaining and removing of the semantic errors of the models is the respon-

sibility of the designer and domain expert (we do not exclude that both actors are or

might be the same person). The development of SLO specifications at the lower

level (we mean the use of transformation rules and coding) may be performed either

manually or using the adequate tools as well. In the first case, errors are unavoid-

able. However, to minimize their occurrence, we apply two procedures: (1) SLO

redesign with evidence (see Sect. 6.3.7) and (2) first deriving LOs from the SLO

specification and then analysing their content. In the second case, the use of the

SLO design tool enables to facilitate the whole design process, including testing.

We discuss the issues in designing SLO in Chap. 9 and the use of the designing

tools in Chaps. 11 and 12.

6.3.7 SLO Redesign with Evidence and Users

Here, the basic assumption is that the CS teacher is also the SLO designer. Also, we

assume that the use of transformation rules and coding is manual. What is the actual

meaning of the phrase “design with evidence”? The meaning is that we need to

apply the principle of the evolutionary design (sometimes it also can be seen as a

rapid prototyping). In general, developing meta-programs is a hard programming

activity. However, it might be simplified significantly if the designer works in the

following manner. He/she applies the transformation and coding rules gradually,

fully interpreting one parameter at a time, i.e. as if the SLO (meta-program)

contains the only one parameter. After that, the testing procedure follows. Next,

Fig. 6.8 Generated SLO graphical interface with the sequenced (prioritized) parameters and their

selected values

6.3 Background of SLO Coding and Testing 135

http://dx.doi.org/10.1007/978-3-319-16913-2_4
http://dx.doi.org/10.1007/978-3-319-16913-2_5
http://dx.doi.org/10.1007/978-3-319-16913-2_9
http://dx.doi.org/10.1007/978-3-319-16913-2_11
http://dx.doi.org/10.1007/978-3-319-16913-2_12


the designer repeats the full design and testing cycle until all parameters are

included into the interface and are implemented within the meta-body.

Such a procedure is very useful, especially for designers who have not so much

experience in writing meta-programs. In fact, the procedure specifies the way of

getting knowledge and gaining better understanding of meta-programming per se.

As a result of using the procedure, the first version of SLO is created. However, the

evidence of design correctness should also be tested in the real setting. What is the

possibility to change the SLO specification in this case?

There are a few possibilities: (1) deleting some parameter and its values; (2)

adding new parameter values without changing the number of parameters; and (3)

adding a new parameter and its values without changing the other parameters and

their values. The first possibility requires first obtaining the location of the param-

eter within the interface and its meta-function within the body and then removing

both (if the parameter does not interact with the remaining ones, see Sect. 6.3.3).

Otherwise, the interaction should be taken into account in removing the needed

parts.

The second possibility requires a simple intervention into the interface only

(without introducing changes into the meta-body) if, again, the introduced new
value does not affect the values of the remaining parameters (i.e. there is no

interaction among parameters; see Sect. 6.3.3). The third possibility requires a

more extensive redesign in both parts (interface and meta-body). This case is the

same as one cycle of the procedure discussed above.

Is it possible to involve students into the SLO design process? The answer is no

for novices and yes for the advanced students, but not for all. The practice and the

experience gained in using the approach (we discuss that in Chap. 13) show that the

most knowledgeable students can act as the teacher’s apprentices in designing and

redesigning SLOs.

6.4 Analysis of SLO Specifications

6.4.1 Analysis of SLO Properties

As this topic (if to consider it fully) is premature, nevertheless we found the

necessity to include it here for the completeness of the design procedure. Therefore,

here we are able to highlight the most essential aspects from the user perspective

only.

The interface (when SLO is used) is treated as a glass-box entity visible to the

user for selecting parameter values. Meta-body (when SLO is used) is treated as the

black-box item (the reader will find more on that in Chap. 7 and in the remaining

ones). In spite of the fact that the SLO interface and meta-body are separate units,

the meta-specification is presented as the one uniform file. This meta-specification

is the item of the CS teacher’s local library accessible online. In fact, there are three
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layers in representing SLO (ML boundary layer, representation layer and functional

layer as can be seen in Fig. 6.9).

What new aspects can the reader learn from Fig. 6.9? Explicitly multi-linguistic

aspects are seen. We need to use three languages to specify SLO for the practical

use in the real setting: one language (HTML) is the representational language for

the Internet browser and the remaining two for implementing meta-programming.

We do not consider the issues related to the SLO local library here. We will discuss

that in the ending chapters of the book.

6.4.2 Merits and Demerits of the SLO Specifications

At this point of reading Chap. 6, the reader may ask two essential questions: (1)

What are the merits of the designed SLOs? (2) What are demerits of those items?

Merits include:

1. SLO is the teaching content generator. The meta-language processor stands for

that role. From the reuse perspective, we have the case of generative reuse;

therefore, we are able to achieve the highest productivity level in creating the

teaching content as compared to component-based reuse.

2. From the user perspective, SLO is used as a black-box item (if there is no need of

redesigning). SLO contains the user-friendly graphical interface; therefore, the

user’s communication with the system is simple and intuitive.

3. No matter that the model-driven and transformation-based approach is complex,

it is systematic and there are also designing procedures and tools that make it

possible to overcome the design complexity.

Meta-language (ML)
layer to define

boundaries of the meta-
specification

SLO interface

Representation layer
HTML + ML

SLO meta-body

Functional layer
Target Language (TL)

Constructs + ML

Fig. 6.9 SLO layered

structure
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4. As it will be shown in Chap. 8, if the SLO is designed properly, it also contains

the flexible means for adaptation.

5. SLO being an item of the local library may be also prepared and packed

adequately for saving into external repositories (this is not the topic of the book).

6. SLO specification could also be as a teaching content for the CS students too (e.

g. in the compiler constructing course).

Later (after dealing with topics of remaining chapters) we will be able to extend

the list of the merits.

Demerits include:

1. The multi-language specification requires additional efforts of the designer and

teacher in the development phase. That means the actor should have competence

in some different languages to be able to manipulate them at once. This approach

requires some experience in meta-programming.

2. Complexity management in designing (using model-driven approach) and devel-

opment phases is also an issue to be taken into account. Therefore, the design

and development tools are treated as a highly important decision (we will

consider that topic later in Chaps. 9 and 10).

3. Deriving the concrete feature models from the abstract ones, there are no

supporting tools at the moment (to our best knowledge).

4. In developing specifications, the consequences of the so-called overgenera-

lization problem might appear in terms of too large number of parameters and

the human’s restricted ability to remember them for interpreting in terms of the

magic 7 problem [Mil56].

6.5 Summary and Concluding Remarks

We have introduced the model-driven and transformation-based approach to design

smart LO. We have presented the description of the approach gradually to intensify

the cognitive load to the reader in each subsequent chapter, starting from Chap. 4. In

fact, the material of this chapter has been delivered to the reader so that it was

possible to learn the essence of the approach systematically and get the knowledge

to manually design SLO. Therefore, this chapter is regarded as an introduction in

developing the tool to design and use SLO. That will be considered later.

Here, we have also introduced the formalism in specifying and describing SLO

abstractly and, to some extent formally, using the set-based and graph-based

notations. By doing so, we were aiming, first, to prepare the reader for more

intensive studies of the topics to be given in Chap. 9 and, next, to provide the

background of transformation rules. We have also discussed the testing and

redesigning problems in designing SLO along with the analysis and evaluation of

the approach. The stated merits and demerits are by no means full. They will be

extended later. However, the reader should also know that the use of the develop-

ment tools enables significantly to diminish the effect of the limitations and

demerits of the approach.
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6.6 Research and Exercise Questions

6.1. Compare two definitions (Definition 6.6 and Definition 5.1 given in Chap. 5)

and draw the discriminating features. Define the value of both.

6.2. Compare the definitions of meta-programming terms given in Chap. 5 with

the ones given in this chapter. What is the value of formal definitions?

6.3. Compare two terms: heterogeneous meta-program and SLO. Interpret their

semantic difference.

6.4. Compare two generic equations as simple SLOs: logic (presented in

Sect. 6.3.3) and algebraic (presented in Sect. 5.3.2; see Chap. 5). Introduce

more variability features (parameters) into the algebraic equation and draw

the parameter dependency graph.

6.5. Define the variability interaction formally. What is the value of parameter

interaction graph?

6.6. Define once again the relationship among the commonality features and

variability features. Learn more on that, for example, from the sources

[CHW98, ŠD13].

6.7. Learn more on the feature-based and model-driven development (e.g. using

the following sources: [Sch06, TBD07].

6.8. Introduce the problem domain of your interest. Take the simplified examples

from your domain and devise feature models for the selected tasks.

6.9. Analyse the feature model to represent the solution domain, i.e. meta-pro-

gramming (see Fig. 6.4). Learn the way it was created (see Chap. 5).

6.10. Perform the mapping procedure of problem domain model devised in task 6.8

onto the model given in Fig. 6.4.

6.11. Explain the essence of transformation rules and coding rules. What is the

style in writing programs? In what aspects the style is different from the

meta-program coding style?

6.12. What are testing procedures? Learn more on rapid prototyping in designing

computer programs and meta-programs.
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Chapter 7

Enhanced Features of SLOs: Focus
on Specialization

7.1 Introduction

Smart LOs being reusable items in terms of generative capabilities may also offer

new opportunities to create individual and highly adaptable content for learning

processes. As it was shown in the previous chapters, reusability is a central topic in

LO research. However, reusability cannot be generally understood without the

educational context. The main goal of reusability is to adapt the teaching content

to the context of use in some learning processes. The adaptive aspects of reusability

should be discussed from a wider perspective than it was done so far. We need to

have a framework enabling to connect reuse issues with the educational context in

order we could be able first to specialize SLO and then having the specialized SLO

to consider the adaptability problem in some well-defined manner. Therefore, the

aim of this chapter is to introduce such a framework and discuss the SLO special-
ization problem.

The program specialization (also known as partial evaluation) is a matured

subfield in CS research. It deals with the transformation of the program’s structure
without affecting functionality aiming to achieve some objectives. They might be

quite different such as those: automating compiler design, improving program

performance and program obfuscation or increasing the communication security.

As SLOs are, in fact, also programs (more precisely meta-programs), we are able to

apply the theoretical background of program specialization research for the SLO

specialization. In our case, specialization aims to make an automatic adaptation of

SLO possible. Since both tasks, i.e. specialization and adaptation, are complex

enough, we consider them separately. We discuss the first in this chapter and the

second in the next.

The main assumption is that the SLO we intend to specialize should be designed
for reuse, i.e. the following property holds: SLO implements a wide-scale learning

variability. We argue that learning variability is a reuse driver in the following

sense: the more learning features we introduce into a learning specification, the
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wider extent of possible reuse and adaptation we will have. But the reuse space

enlargement should be managed adequately because of the negative effect of the

overgeneralization problem (here meaning excessive learning variability). SLO

specialization enables not only to avoid the negative consequences of the

overgeneralization problem but also to provide an instrument for adaptation. In

general, the specialization problem we discuss here can be called as specialization
for adaptation that formulates the goal of specialization.

7.2 Literature Review

We present two streams of the related work here. The first deals with program

transformation-specialization research. The second considers only those learning

aspects which enable to form criteria for the SLO specialization task. We will

provide more extensive analysis of the most influential e-learning attributes (e.g.

context, cognitive aspects, learner’s profile, etc.) as they relate to SLO specializa-

tion for adaptation in Chap. 8. Thus, this review is by no means exhaustive. Our aim

is to introduce a new terminology and basic principles in order readers would be

prepared to understand and be more motivated to accept our approach.

As our approach, in fact, exploits the principles and techniques borrowed from

the model and program specialization research, we need to introduce basic ideas of
this field. There are three interrelated terms (partial evaluation, specialization and

refactoring) that are interchangeably used to determine a specific kind of program

and model transformations. At the very general understanding level, their meaning

actually is the same or very close. It is the reason why all the terms can be met in

three subfields (program manipulation as a subfield of pure CS; see, e.g. [ACM13]),

feature modelling and model transformation (both CS and SWE subfields; see, e.g.

[CHE05]) and partially in the SW system design and maintenance (pure SWE

subfield; see, e.g. [HT08, FBB+99]). Now we present some definitions of the terms.

Program specialization or partial evaluation is the technique that makes it

possible to automatically transform a program into a specialized version, according

to the context of use (adapted from [JGS93, MLC02]). Initially partial evaluation

has been used to the compiler generator’s design [JSS85] and later as a source-to-

source transformation technique whose aim was to improve program performance
[Jon96]. Now, however, there are many more applications which include program

obfuscation [GJI12], model transformation [HT08, TBK09, GMB11, ACL+12],

security improving [Mur12] and many more (see also [MLC02, ACM13]).

Refactoring is the transformation process that takes an existing program and

transforms it into an improved new version. Refactoring is changing the program’s
structure only, without affecting its external behaviour [FBB+99]. The improve-

ments typically eliminate redundancy and bad smell of code, improve maintain-

ability and may improve performance and reduce space [MT04, Tho05]. This

definition manifests the explicit structural changes, but preserving the same func-

tionality of a program, while the previous definition focuses on the transformation
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aims. The first definition, however, also implies (though implicitly, e.g. through in-

deep analysis of the problem) that both the original program and its specialized

version have the same functionality. Now the fact that three terms (specialization,

partial evaluation and refactoring) are used interchangeably becomes clear. For

consistency, further, we prefer the use of the first term.

Program specialization also relates to stage programming and meta-program-
ming, especially in logic programming research [She01, TM03]. Shortly, it can be

summarized as multistage programming, i.e. the development of programs in

several different stages. Taha was the first to provide a formal description for a

multistage programming language [Tah99, Tah04]. Staging is a program transfor-

mation that involves reorganizing the program execution into stages. He treats the

use of the formal language MetaML to develop meta-programs as multistage

programming. The concept relates to the fundamental principle of information

hiding through the introduction of a set of abstraction levels (stages) aiming at

gaining a great deal of flexibility in managing the program construction process. In

fact, a program specializer performs the specialization process in two stages. The

first is early computations (when some program variables are evaluated at the

compile time). The second is late computations (when the remaining variables

are evaluated at the run time).

As a specialization of SLO should be pedagogically sound, we need to focus on

pedagogical reuse, LO design principles and priorities or roles of learning activities.

The study [IJL+03] presents the principles and models for designing learning

objects (LOs). Among others, this study explicitly formulates some priorities in
designing LOs such as the one: ‘the learning goals are defined first and then the
appropriate principles will be applied’. Priorities and relations are also seen within
the ontology of instructional objects (see Fig. 4.2 on p. 50, in [Ull08]). Even more,

they are visible within pedagogical objectives because ‘they exist on different

levels of abstraction’ or at the processes to achieve the objectives using the system

PAIGOS to teach mathematics [Ull08]:

Discover: Discover and understand fundamentals in depth.

Rehearse: Address weak points.

trainSet: Increase mastery of a set of fundamentals by training.

guidedTour: Detailed information, including prerequisites.

trainWithSingleExercice: Increase mastery using a single exercise.

illustrate: Improve understanding by a sequence of examples. illustrateWithSin-
gleExample: Improve understanding using a single example.

One can also see the priority relation in the intelligent educational environment

such as the Intelligent Web Teacher [CGS+11]. Here, this relation, called concept
labelling relation, labels each concept (of a domain learning model) with one or

more contexts. The hierarchic representation of some concept through levels (e.g.

context levels: profile context, preference context, infrastructure context, learning
context [DBC+10]) can be thought of as an implicit priority relation where values

are not identified. The discussed issues enable to introduce criteria for managing the

SLO specialization as it will be clear later.
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7.3 SLO Specialization Task

Here, we formulate the SLO adaptation problem as a meta-program specialization

(partial evaluation) task without the adaptation context (we will introduce that

later). However, first we need to look at the program specialization task. Futamura

[Fut00], for example, formulates this task as a transformation process π as follows:

π c1
0
; c2

0
; . . . ; cm

0
; r1

0
; r2

0
; . . . ; rn

0
� �

¼ α π; c1
0
; c2

0
; . . . ; cm

0
� �

r1
0
; r2

0
; . . . ; rn

0
� �

:

ð7:1Þ

The left side of Eq. (7.1) presents the state of a program to be evaluated before

specialization. Here, the values (c1
0, c20, . . ., cm0, r10, r20, . . ., rn0) of variables (c1,

c2, . . ., cm, r1, r2, . . ., rn) of the program are split into two subsets: the constants as
compile time values (denoted by c0 with the adequate index) and variables as run-
time values (denoted by r0 with the adequate index). The right side of the equation

specifies the state of the program after specialization using the ‘specialization
algorithm’ α, which evaluates (c1

0, c20, . . ., cm0) in the first stage and then evaluates

r1
0, r20, . . ., rn0 in the second stage, though the stages are not defined explicitly. The

higher-level program that implements the ‘specialization algorithm’ is called

specializer. The specializer, in fact, is a meta-program, because it generates a

specialized program through the process π.
For clearness, below we present a simple example taken from [Fut00]: (a) the

original program and (b) its specialized version with respect to the variable x value
(x= 1) of the given function f[x, y] = x*(x*x+ x+ y+ 1) + y*y, where y varies from 1

to k by step 1.

(a) x:= 1; for y:= 1 step 1 until k do f [x,y]:= x*(x*x + x+ y+ 1) + y*y;
(b) for y:= 1 step 1 until k do f [1,y]:= 1*(3 + y) + y*y;

It is clear that the specialized version (b) is more effective in terms of perfor-

mance. We are able to interpret the right side of Eq. (7.1) as follows. It is thought of

as a function α with two lists of parameters, where the first includes also the

computational model π.
Now we are able to formulate the meta-program specialization problem

(it is the same as SLO). Let we have a set of parameters P =

p1; p2; . . . ; pmð Þ; pmþ1; pmþ2; . . . ; pn
� �� �

of a meta-program, where the space P

is decomposed into two subsets under the following constraint: dependent param-
eters (if any, see Sect. 6.3.3 in Chap. 6) have to appear in the same subset in order
to be evaluated correctly. Similarly to Eq. (7.1), we formulate the problem as the
two-stage specialization task as follows:

π p1; p2; . . . ; pm; pmþ1; . . . ; pn
� � ¼ α π; p1; . . . ; pmð Þ pmþ1; . . . ; pn

� �
: ð7:2Þ

Here, parameters (p1, . . ., pm) are evaluated in stage 2, thus being treated as con-

stants, while the remaining parameters pmþ1; . . . ; pn
� �

are treated as variables
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(accordingly to x and y in the previous program (b)). By stage 2 (it is treated as the

highest here) we mean a subprocess of π. To be evaluated in stage 2, parameters

(p1, . . ., pm) have to be active (meaning their usual role in the meta-program), while

the remaining parameters have to be passive (meaning not yet been evaluated).
Note that programming languages (e.g. C++, PHP, to name a few) have a very

simple mechanism to change the state from active to passive. For example, the

record ‘\ p’ denotes that the parameter p is passive in some context when it is

processed or evaluated.

It is the role of a specializer (formally denoted as α), among others, to

preprogram the change of states so that the parameters pmþ1; . . . ; pn
� �

would be

passive at stage 2 (which describes evaluation of (p1, . . ., pm) only) and they would

be active at stage 1 (which describes evaluation of pmþ1; . . . ; pn
� �

).

Equation (7.2) can be generalized by introducing the concept of multistage (e.g.

k-stage) specialization. Indeed, we can ‘think’ in terms of recursion, i.e. to apply

‘specialization’ by partitioning the remaining parameters pmþ1; . . . ; pn
� �

under the

stated constraint in two subsets again and again until some of remaining parameters
will be evaluated (k �1) times. Therefore, we can write:

π p1; p2; . . . ; pm; pmþ1; . . . ; pn
� � ¼ α π; p1; . . . ; pmð Þ pmþ1; . . . ; pn

� �
α π; pmþ1; ::; pi
� �

piþ1; ::; pn
� �

. . . α π; piþ1; . . . ; p j

� �
p jþ1 . . . , pn

� �
. . .

ð7:3Þ

For increasing readability and stage visibility, we use a column-based representa-

tion of staging Eq. (7.4), where the top of the right-side equation represents the

highest k-stage, the next represents (k-1)-stage and so on till 1-stage.

π p1; p2; . . . ; pm; pmþ1; . . . ; pn
� � ¼ α π; p1; . . . ; pmð Þ pmþ1; . . . ; pn

� �
α π; pmþ1; ::; pi
� �

piþ1; ::; pn
� �

. . .
α π; piþ1; . . . ; p j

� �
p jþ1 . . . , pn

� �
. . .

ð7:4Þ

Equations 7.2, 7.3, and 7.4, in fact, describe the specialization not a meta-program

itself but its model expressed as a parameter set. According to the realization of the

learning variability concept [ŠBD13] (see also Sect. 1.7, Chap. 1), the context and

content parameters are expressed uniformly in the initial specification. With respect

to specialization through staging, however, the parameters of different types should

be evaluated differently. For example, pedagogical context should be evaluated

first, the student’s context next and then the content [IJL+03]. In the next section,

we discuss on how this semantics should be recognized and evaluated.

7.4 SLO Specialization Adaptability Context

In the previous section, the SLO specialization task was formulated without explicit
adaptation context, i.e. all parameters were treated as being of the same rank. Note

that the task itself can be considered in this way; however, the number of solutions
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would be too large and benefits of that would be unclear. As it was already stated,

parameters have quite different semantics despite the fact that they are represented

uniformly within the SLO specification. As specialization, in fact, means evalua-

tion, the sequence of parameter evaluation should be strongly ordered.

Now we need to return to learning and teaching domain. Looking at it in the

context of the specialization problem in large, we formulate the following

hypothesis:

Hypothesis 1 In general, features extracted from the e-learning domain (i.e. CS
teaching) are not always of the same rank (priority); rather there are some strong
priority relations that are important to focus with the possible manipulation, such
as SLO specialization, in mind.

(Note that the term features is a counterpart to parameters within SLOs; see

Chap. 5 for details.)

To approve this statement, let us consider principles and models for designing

learning objects (LOs) as they are presented in [IJL+03]: ‘Learning principles are

very close to the goals of learning. Learning principles emphasize certain learning

activities and these activities support, especially, certain goals. For this reason,

applying learning principles in designing LOs means that the learning goals are
defined first and then the appropriate principles will be applied’. From this cited

extract, we are able to derive the following priority relation (denoted as ‘≺’ here):

< learning goals > ≺ < learning principles > ≺ < learning activities > ð7:5Þ

The meaning of this relation is as follows: learning goals have a higher priority with

regard to learning principles, and the latter has a higher priority with regard to

learning processes when all these are to be evaluated in the same setting. As

learning activities are impossible without the use of content, we can extend Eq.

(7.5) as it is presented by Eq. (7.6):

< learning goals > ≺ . . .≺ < learning activities > ≺
< learning content > ð7:6Þ

The papers [Ull08, DBC+10, CGS+11] discussed in Sect. 7.2 also serves for

motivating the hypothesis. To this end, we can also look at the programming

(language) domain in which priorities are well understood, though they are not

always expressed explicitly. Take, for example, such features (categories) as type,
constant, variable, statement or class of arithmetic operations (*, /, +,�). Using the

introduced notion, we can write:

type≺ constant≺ variable≺ statement ð7:7Þ
multiplication�division≺addition�subtraction ð7:8Þ

Here, the sign ‘�’ means the same priority. The relationship Eq. (7.7) follows from
the logic of using those categories in writing programs. But it, perhaps, has been
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rarely stated explicitly. Another relationship Eq. (7.8) signals that some features

may have the same priority. But there are also cases when items with the same

priority have to be prioritized in some specific context. A good example of such a

mechanism is the use of parenthesis in presenting priorities in the arithmetic or

other expressions in programming languages.

The previous discussion motivates the need for the explicit prioritizing of

parameters within the SLO specification. For this purpose, we introduce a new

term, fuzzy variable (it has been coined from [BNR+10]), to manage the parameter

priority relations. We define a fuzzy variable by its value taken from the set: {HP,
IP, LP}, where HP means high priority, IP intermediate priority and LP low
priority.

Simply speaking, a fuzzy variable is a weight assigned to the parameter to

provide additional information on the semantic role of the parameter. As the

pedagogical context should be evaluated first, the student’s context next and then

the content [IJL+03], we are able to prioritize the adequate parameters as follows.

The parameters that express the pedagogical context should be weighted by HP,
and the student context parameters should be evaluated by IP and the content

parameters by LP. Though this reasoning is pedagogically sound, the accuracy

may not always be sufficient. There might be various cases and different reasons to

provide a more precise interpretation of the fuzzy variables (we explain that in more

detail later).

The aim of the further discussion is to show how fuzzy variables are to be coded

in the initial SLO specification. Let us consider the task to teach sequential
algorithms using the NXT robot. The task is to generate the control program in

RobotC for the straight-line movement. We introduce fuzzy variables by a straight-
forward comment written in the textual interface of the SLO either before the

parameter specification statement or after as it is illustrated below in the textual

interface (see the top of Fig. 7.1). Note that there is also the graphical interface (see

<?php
//here is Textual Interface of MP
$Motors=AC; // HP- high priority
$Time = 3000; // LP- low priority
$Speed = 50; // LP – low priority
// Below is Graphical Interface

Fig. 7.1 Parameters

weighted by fuzzy variables

(above) and selected values

(below)
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the upper part of Fig. 7.1) used by the user only, while the textual interface is only

for the designer’s use.
Here, our interest is to consider the technological parameters (motor’s type, time

and speed) only. In fact, they represent the teaching content. Note that this example

is illustrative. It does not include the pedagogical context. Nevertheless, it is clear

intuitively from the pure technological viewpoint that the motor’s type has a higher
priority with respect to the remaining parameters (i.e. we are able to evaluate the

time and speed only if the motor’s type has been indicated first). It is the content

designer’s responsibility to specify the fuzzy values for the parameters; however,

there might be needed the expert’s knowledge to specify the actual values. For

example, an expert on the educational robots can confirm that the values of fuzzy

variables have been indicated correctly, i.e. the motors should be evaluated first and
then the speed and time.

Now we postpone the more deep discussion (till Sect. 7.6) on the role of fuzzy

variables to solving the specialization task for adaptation. We do that because we

need first to explain the basic idea of the approach to solve the task. In Sect. 7.5, we

explain that from the user’s perspective without technological details.

7.5 The Basic Idea of the Approach: User’s View

We describe the approach from the user’s perspective, using the specializer tool

(MP-ReTool – stands for ‘meta-program refactoring tool’) we have developed

[BBŠ13]. We will discuss the background on which the tool has been designed

later, in Chap. 9. The tool transforms a heterogeneous meta-program (He MP)

coded in PHP into the equivalent multistage representation through specialization

or refactoring. We are able to use the tool for SLO specialization because they, in

fact, are He MPs. We use SLOs to automatically generate LOs to teach CS

(programming). The tool accepts the initial SLO specification along with the

consistent SLO parameter model as input data. The basic assumption to correctly

interpret the approach is that the initial SLO should be designed for reuse. The latter
means that the SLO implements the enhanced learning variability [ŠBD13]. The

latter includes pedagogical, social, content and specific technological variability.
Therefore, the concrete context of the SLO use requires its specialization before

being adapted and used.

The tool implements the user-tool communication model to solve the speciali-

zation problem. There are two modes of using the tool. In mode 1, the user

(typically teacher) indicates (through the communication model) on how SLO

parameters are to be allocated to stages. In mode 2, the tool works fully automat-

ically. In this case, however, parameters are to be supplied with nonredundant
weights (for details, see Eq. (7.6) and Table 7.1) introduced by the SLO designer

(teacher) when the specification is coded. We explain the approach schematically in

Fig. 7.2. Here, SLOR should be read as ‘designed for reuse’ and SLOS as ‘special-
ized for adaptation’. The adequate SLO models are expressed through the set of
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Table 7.1 Characteristics of the initial SLO (ornament drawing by robot)

Characteristics of SLO

Name of parameters (in bold) and their values (in

brackets); for abbreviations and meaning, see legend

below

Context-based parameters CO (LN); LA (CT; PS); LL (BG; IT; AD)

Content-based parameters S (AB; AC; BC); V1 (10; 30; 50)

V2 (10; 30; 50); T (1000; 3000; 5000)

P (4; 5; 7); D1 (10; 30); D2 (10; 30)

T1 (200; 500); P1 (1, 2; 3)

Parameters’ interaction model (line

means interaction/dependency)

(a)

HP HP

LP(L4,L5,L6)

CO LA

LL PP1

LP(L4,L5,L6) LP(L4,L5,L6)

IP(L1)

S

IP(L2)

V1

IP(L2)

V2

IP(L3)

T

IP(L2)

D1

IP(L2)

D2

IP(L3)

T1

Bloom’s taxonomy levels (BTLs)

L1: remember

L2: understand

L3: apply

L4: analyse

L5: evaluate

L6: create

(b)

HP HP

LP(L4,L5,L6)

CO LA

LL PP1

LP(L4,L5,L6) LP(L4,L5,L6)

IP(L1,L2)

S V1 V2

IP(L3)

T

D1 D2

IP(L3)

T1

IP(L1,L2)

IP(L1,L2) IP(L1,L2)

IP(L1,L2)

HP: highest priority

IP: intermediate priority as a function

of BTLs

LP: lowest priority

© With kind permission from Springer Science +Business Media from [ŠBB14]

Legend used in this table Teacher’s context: CO, curriculum objective (LN loops and nested

loops), LA learning activity (case study (given by teacher), CT practice (done by learner), PS), S
selected motor (AB, BC, AC), V1, V2 drawing velocity of motors (pen on the paper), T robot’s
drawing time, P number of ornament’s parts, D1, D2 moving velocity of motors (pen over paper),

T1 robot’s moving time and P1, number of ornaments. LL learner’s previous knowledge level (BG
beginner, IT intermediate, AD advanced)

SLOR

T(S)

MP-ReTool
SLOS

k

PM

{P}R

k
2
1 {P}S

a

b

Fig. 7.2 Specialization phase: (a) tool’s level and (b) SLO models before and after transformation

(see right side) represented as equivalent parameter spaces (©With kind permission from Springer

Science +Business Media from [ŠBB14])
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parameters {P} and outlined graphically in Fig. 7.2a. Here, T(S) should be read as

‘transformation through specialization’, PM consistent parameter model described

as a specific textual data structure, k number of stages, {P}R – SLO model before

specialization and {P}S – SLO model after specialization in terms of parameter

space.

In Fig. 7.3, we present the simplified real task to explain the approach in some

more details. The task has already been introduced (see Fig. 7.1). It is the straight-

line movement of the educational NXT robot [Gra03] to model (teach) linear (i.e.

sequential) algorithms in RobotC. In terms of meta-programming, the latter is

treated as a target (teaching) language. Three parameters (pairs of motors, move-

ment time and speed) along with their values characterize the initial SLO specifi-

cation of the task (see Fig. 7.3a, b on left side). In general, the weights (fuzzy

variables) are not seen for the learners; however, the teacher, working with the tool

in mode 1, has the possibility either to change fuzzy variables or to indicate the

needed stage for a parameter manually.

The right side of Fig. 7.3 illustrates the state of the task after specialization (i.e.

after the use of the tool, when the number of stages is equal to 2). This state is

visible through the use of the other tool (PHP compiler) to interpret SLOs when the

use of the specialized SLO takes place. Here, the parameter p1 (pairs of motors) is at

stage 2 (it is visible for the user), while the remaining parameters p2 and p3 are at

stage 1 (they are invisible at stage 2).

We have revealed the only one aspect of our approach, i.e. the essence of the

specialization task (without the pedagogical context of adaptation, because there

are the only technological parameters in the given example). The other aspect is the

specialization process itself. In fact, the k-stage SLO is a generator of the other

SLO, i.e. (k�1)-stage SLO and so on. In this context, the PHP processor is the

generator that accepts the k-stage SLO as input and produces a (k�1)-stage SLO as

output (see Chap. 9, for more details).

p1 p2 p3

Values

p1 p2 p3

T(S)

MP-ReTool

k=2

2

1

a

b

c

Fig. 7.3 Abstract interfaces of SLOR and SLOS models (a); user’s view of the SLOR and SLOS

interfaces (b); abstract view of specialization (c) (© With kind permission from Springer Science

+Business Media from [ŠBB14])
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We can summarize the task as follows: SLO k-stage specialization is the

partitioning of the whole parameter space into k subsets first without intersecting

using the adequate prescribed rules, such as prescribed constraints, and then,

assigning the subsets to stages with respect to predefined priorities for the param-

eters. The technological aspects of transformation such as parameter deactivation

are hidden for the user.

7.6 Pedagogical Aspects of SLO Specialization for
Adaptation

In our approach, we aim at performing specialization so that automatic adaptation

of the content to the user’s context would be possible. There are two kinds of users

(due to SLO reusability): teachers and learners. Therefore, SLO should be special-

ized for adaptation for both categories of actors. Having a pedagogically sound

specialization of an SLO, the teacher should first make the adaptation to his context

and later to allow the learners to make the adaptation by themselves in their

contexts. The teacher’s context has to be separated from the learner’s context

(such as learner’s profile, etc.), when the adaptation takes place. The content

adaptation to the learner’s context, on the other hand, should be the self-guided

process. Such an adaptation is a cognitive process or, more precisely, the early
stage of the knowledge gaining in the learning process.

In general, Bloom’s taxonomy levels [AK01] predefine the cognitive process.

We present the levels as L1, remember; L2, understand; L3, apply; L4, analyse; L5,
evaluate and L6, create. Now we are able to connect Bloom’s taxonomy levels with

the needed number of stages from the pedagogical perspective. As it was stated in

Sect. 7.4, fuzzy variables {HP, IP, LP}, being the parameter weights, serve for

managing the stage selection. So far, all the variables were treated as constants (see

Fig. 7.1). However, this vision is too simplified. Indeed, the value HP is relevant to

teacher’s context parameters; therefore, HP can be treated as a constant because the

teacher knows the teaching context. But this is not the case for the other kinds of

parameters.

As we want to make content adaptation to the learner’s context as flexible as

possible, we need to accept that the values IP and LP are not constants but the

functions of Bloom’s taxonomy levels. The basis of the assumption is that a learner

should have the possibility to move gradually (in a step-by-step manner) from the

lowest level to the highest, when self-selecting of the content for learning takes

place. Thus, we can write:

HP ¼ constant; IP ¼ f λð Þand LP ¼ f * λð Þ: ð7:9Þ

In Eq. (7.9), both f and f* are different functions, but their arguments are subsets

defined on the same set λ � L1; . . . ; L6f g; Li is a level of Bloom’s taxonomy. Note
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that what levels we need to treat as arguments of the functions depend on the task

and teacher’s intention. It is the reason why we left the possibility for the teacher to
reason about the actual values of IP and LP (see Table 7.1, in Sect. 7.7) before using

the tool MP-ReTool in mode 1. However, the precise definition of IP and LP values

enables first to calculate the needed number of stages and then to assign parameters

to stages automatically, when the tool is used in mode 2 (e.g. for our task k = 5; see
Table 7.2 in Sect. 7.7).

The introduced functions enable us to reason also about the theoretically possi-
ble number of stages (i.e. the upper bound of stages calculated from the pedagogical

perspective). Let us denote it as kmax(p). Then we can write Eq. (7.10), taking into

account Eq. (7.9):

kmax pð Þ ¼ 6þ the number of teacher � related stages: ð7:10Þ

In practice, however, there is no need to consider all six levels as separate units to

represent the student context and the teaching content (see models (a) and (b) in

Table 7.1).

Now we are able to combine technological (t) and pedagogical (p) aspects in
calculating the upper bound of stages km(p, t) to make specialization correctly as

follows:

km p; tð Þ ¼ min kmax tð Þ, kmax pð Þf g: ð7:11Þ

Here, kmax(t) is the upper bound of stages calculated from the pure technological

viewpoint. This bound is equal to the number of independent parameter groups

Table 7.2 Characteristics of SLO (ornament drawing by robot) obtained by using MP-ReTool

Specialization for teacher

Teacher’s context parameters CO; LA Stage 5

Specialization for learner

Level: category

of Bloom’s tax-
onomy (BT)

BT description uses the

verb subsets from

[MVS+10]

Visible parameters at current stage

and already evaluated parameters at

previous stages (blacken) as they

are seen in the specialized

specification

Stages for

adaptation

by learners

L1: remember Recognize, recall S = {AB, BC, AC}a Stage 4

L2: understand Interpret, exemplify,

classify, summarize,

infer, compare, explain

S; V1; V2; D1; D2 Stage 3

L3: apply Execute, implement S; V1; V2; D1; D2; T; T1 Stage 2

L4: analyse Differentiate, organize,

attribute

S; V1; V2; D1; D2; T; T1; P; P1-LL Stage 1

L5: evaluate Check, critique

L6: create Generate, plan,

produce

© With kind permission from Springer Science +Business Media from [ŠBB14]
aLearner should have previous knowledge about Lego NXT robot
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(e.g. kmax(t) =11 in our case study; see Fig. 7.4). For more details on technological

aspects of staging, see Chap. 9. To this end, we summarize the main result of this

section as follows.

If the number of stages k of the specialized SLO satisfies the following condition

1 < k � km p; tð Þ, then the specialization is both technologically and pedagogically
sound.

To approve this statement and to introduce the evidence in calculating fuzzy

variables according to the extended view on those variables, we need to present the

following study of the SLO specialization task.

7.7 Case Study

The aim is to demonstrate the specialization process of the real learning task using

NXT robot environment [CCh11] and to reveal more practical details on the SLO

specialization. We have selected the ‘ornament drawing by robot’ task. The learn-
ing objective was to teach nested loops written in RobotC [Rob07]. The SLO

specification, as teaching content for reuse, has been written manually in advance.

PHP has been used as a meta-language and RobotC as a target language. Using the

tool MP-ReTool, we were able to extract the dependency (interaction) models from

the given specification (see graphs in Fig. 7.4 and in Table 7.1, for more details).

The legend below Table 7.1 explains the meaning of all parameters and their values

for the task.

In Fig. 7.4, we present the model of the task expressed through parameter names

without weights (a) and the value interaction model for parameters LL and P1 (b).

The parameters’ value interaction model (values are within circles; lines specify the

constraints require here being defined in terms of feature modelling [CHE05]). The

model, for example, should be read as follows: ‘It is required to draw the only one

ornament with the robot’s help for the beginner (BG), while for the advanced

CO LA

LL PP1

S V1 V2 T

D1 D2 T1

BG IT

1

AD

32

LL

P1

a b

Fig. 7.4 Model of SLO ‘ornament drawing by robot’: (a) parameter model and (b) value

interaction model of parameters LL and P1 (© With kind permission from Springer Science

+Business Media from [ŠBB14])
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learner (AD) it is required to draw 2 or 3 ornaments’. As parameters LL and P1

interact among themselves, they are treated as dependent; while there is no inter-

action (or dependency) among the other parameters (see Fig. 7.4a). With regard to

the parameter dependency, we have the interaction among the social parameter

(LL) and the content parameter (P1) here (cp. this with the interaction given in Fig.

6.2; see Sect. 6.3.3 in Chap. 6).

To understand the task, learners should have previous knowledge on robot

architecture and functionality. For example, learners know that there are three

motors (A, B, C) used in pairs (AB, AC, BC), and there are two kinds of velocity

(drawing velocity and idle move).

In Table 7.1 (see graphs at right), we present the task models in more details.

There are two variants (a) and (b) of the SLO model. They differ by the assigned

weights introduced by the teacher. Weights are functions of Bloom’s taxonomy

levels. They describe the semantics for adaptation. The made assignment enables

the tool to calculate the number of needed stages. Note that for this task kmax pð Þ
¼ 6þ 1 = 7; kmax tð Þ ¼ 11 (the number of independent parameter groups – see the

model (a)) and km p; tð Þ ¼ min 11; 7f g ¼ 7 (see Eqs. (7.10) and (7.5). Thus, the

identified numbers of stages (4 and 5) are valid for both models (a) and (b).

For example, for the model (a), five stages are needed (see Table 7.2). For the

model (b), four stages are needed (stage 4 contains CP and LA; stage 3 contains S,

V1, V2, D1 and D2; stage 2 contains T and T1; stage 1 contains LL-P1 and P).

Note that the variants (a) and (b) provide slightly different possibilities for adapta-

tion (knowledge levels to be gained already at the adaptation phase). Note that this is

the ‘surface knowledge’ in terms of ‘surface learning and deep learning’ [SHD09,
BPB13]. The more stages we have, the more steps the adaptation includes. But the

needed number of stages should be linked with the task semantics. The latter dictates

the teacher’s intention. For more details on that and adaptation semantics, see Sects.

8.5 and 8.6 in Chap. 8.

Table 7.2 summarizes the specialized task for adaptation (model (a); see

Table 7.1) given from the users’ viewpoint, where the teacher’s and learner’s
specializations are separated. The criteria for the learner specialization are levels

of Bloom’s taxonomy. We will provide a more extensive discussion on adaptation

semantics in Sect. 8.7 (see Chap. 8).

In Fig. 7.5, we present the results of solving the ornament drawing task: the

generated instance, according to the given parameter values (a) and the robot’s view
to run the task (b). Here, the values of the pure content parameters (P and P1) are 7

and 1 adequately.

7.8 Discussion and Evaluation of the Approach

We have described the specialization task and a process to transform the initial SLO

into its multistage format using the specializer tool we have developed. For this

purpose, we have applied the theoretical background borrowed from two research
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fields: program partial evaluation and stage-based meta-programming. The aim of

specialization through staging is to let flexible (automatic) adaptation when the

specialized SLO specification is used.

Our domain is not homogeneous and includes subdomains such as CS teaching

content (curricular), pedagogy, programming languages, educational robotics, etc.

We specify the domain abstractly as learning variability. As by using meta-pro-

gramming techniques, we are able to uniformly and explicitly express the essential

variability aspects through parameters (with regard to teaching aims), and we treat

the developed initial SLO specification as the product of design for reuse (to

support that, we have developed the other tool; see Chap. 10). As the initial SLO

may preprogram a large number of possible variations (LOs), first SLO should be

specialized for adaptation. To make the learning variability easy manageable in the

stage-based specialization, we have enriched parameters with priorities using fuzzy
variables (HP, IP, LP). The variables enable to separate roles of parameters

(pedagogical from social, social from content, etc.) and, in this way, to manage

the process.

The practical needs for specialization have come from our extensive experi-

ments in using the NXT and other educational robots in the real setting (school) to

teach CS topics. Aiming at the efficiency to preparing the content and ensuring

flexibility of its continuous changes (by both teacher and students), we have

described the SLOs as meta-programs. Because of the extremely wide e-learning

context (social, pedagogical, etc.), SLOs may contain a large number of parameters.

Because of the necessity of managing changeability and adaptation of the teaching

content to the context of use, we have found the specialization through staging as a

task main(){
//Preparation for painting 

motor[motorB] = 50;
wait1Msec(100);
motor[motorB] = 0;

//Painting
for (int j=0; j<7; j++){

motor[motorC] = 30;
motor[motorA] = 30;
wait1Msec(1000);
motor[motorC] = -30;
motor[motorA] = 0;
wait1Msec(1000);

}
//Painting of ornament is 
finished

motor[motorB] = -50; 
wait1Msec(100);
motor[motorB] = 0;

}

a b

Fig. 7.5 The derived instance in RobotC (a); (b) the ornament drawing task by NXT robot (©
With kind permission from Springer Science +Business Media from [ŠBB14])
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relevant and beneficial technology, though the details of this technology have not

yet been revealed.

The benefits of the approach are: (a) it provides a theoretical background to

develop SLO (i.e. meta-program) specializers, or in other words refactoring tools;

(b) it enables to construct a set of the lower-level SLO generators; (c) staging of

SLO also contributes to better understanding of the heterogeneous meta-program-

ming domain; and (d) it extends generative reuse, though in a narrow and specific

way. Furthermore, the initial SLO implements learning variability, which we have

presented formally by the parameter dependency graph. In fact, the graph repre-

sents the essential domain knowledge (fundamental concepts and relationships

among them). In terms of domain ontology (see, e.g. [VIK13]), the graphs (in a

narrow sense) can be seen as ontology models to model and understand a particular

domain (in our case CS e-learning based on using robots).

The approach has some limitations too. First, there are some difficulties in

manual changing of the staged SLO (if such a need arises after automatic special-

izing when the number of stages is more than 3). The reason is the significant

decrease of readability of such meta-specifications (meta-designer’s view). It is

difficult to form the precise criteria for specialization due to the task complexity,

context and content dependency and fuzzy variable identification. Some debates

may arise due to the identification of fuzzy variables for the parameters. In the

simplest case, they are constants with three values (HP, for teacher’s parameters;

IP. for student’s parameters; and LP, for content’s parameters). As the adaptation of

teaching content should be oriented to students’ needs, a more precise specification

is needed. Though Bloom’s taxonomy levels are helpful in this case; however, such

an approach requires additional efforts and expert’s intervention in defining the

more precise values.

7.9 Summary and Conclusion

The graph-based approach enriched by concepts and principles of program partial

evaluation research has been found as a relevant theoretical basis for approving the

solution of the SLO specialization problem. The problem itself has been formulated

taking into account the CS learning variability and parameter priorities so that the

solution, being also the input specification of the SLO adaptation problem, enables
the automatic content adaptation. Fuzzy variables are an instrument to make

assignments of parameters to stages automatically in the specialization process.

The variables enable to discriminate the context-based parameters from the rest (i.e.

content based). Therefore, they introduce context awareness in managing the

specialization process for adaptation. In fact, fuzzy variables specify criteria

(requirements) for SLO adaptation at the specialization phase.

We have developed the tool and are using it to specialize (automatically) the real

SLOs for teaching CS topics within the robot-based environment. From the user’s
(i.e. teacher’s and learner’s) perspective, SLO specialization raises the abstraction
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level of transformations because, at a higher stage, he/she uses a less amount of

information to be presented in the user-friendly manner.

As SLOs, in fact, are meta-programs, it is possible to evaluate the approach in

the broader context, i.e. from different perspectives as follows: (i) specialization by

staging is design with reuse, while meta-program developing to provide input data

for the specialization is design for reuse; (ii) the specialization is a generalization

process by narrowing, while the meta-program development is a generalization

process by widening; (iii) the specialization is a partial evaluation of a heteroge-

neous meta-program in terms of the program partial evaluation research in CS; and

(iv) specialization is also refactoring of a heterogeneous meta-program in terms of

the software refactoring research.

7.10 Research and Exercise Questions

7.1. Define the following terms: program specialization, partial evaluation and

program refactoring. In what aspects are they similar? In what aspects are

they different?

7.2. Provide a more extensive overview of research in two fields: software

refactoring and program partial evaluation.

7.3. What is heterogeneous meta-programming? What is stage-based meta-pro-

gramming? Explain the role of languages and parameterization in those

paradigms (use [ŠD13] as a guide). Provide simple examples of meta-pro-

grams and SLO.

7.4. Explain the similarity and difference between two terms: SLO and heteroge-

neous meta-program.

7.5. Why is SLO specialization needed?

7.6. What is stage-based specialization of SLO (meta-program)?

7.7. Explain the essence of SLO specialization.

7.8. What is the SLO model? What is the parameter dependency model? How can

it be specified? What is the constraint required?

7.9. What is the role of fuzzy variables in the stage-based specialization of SLO?

How can values of fuzzy variables be specified?

7.10. Why can we use Bloom’s taxonomy levels in defining fuzzy variable values?

7.11. What are influential factors in defining the number of stages in stage-based

specialization of SLO?

7.12. How can the upper bound of stages for a given (initial) SLO be defined?

7.13. Select some examples of SLO from previous chapters or from [ŠD13] extend

them with fuzzy variables {HP, IP, LP} and then using the tool MP-ReTool

provide specialization with different number of stages.
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Chapter 8

Context-Aware Adaptation of Smart LOs

8.1 Introduction

We consider adaptation as a bridge to connect generative reuse aspects with the

educational context to create opportunities for adaptive personalized learning. To

achieve this aim, we have already made an essential move – we have created

conditions for that. Indeed the learning variability discussed at the modelling

level in Chap. 4 can be seen also as the conceptual background (in terms of creating

a space of possible variants) for adaptive personalized learning on the basis of using

SLOs. Even more, the specialized SLO considered in the previous chapter is the

methodological background for automatic adaptation.

This chapter starts dealing with supplementary generative features such as adapt-

ability, which make a given SLO actually smart. In general, adaptability is the ability

to change the LO’s structure or behaviour (or both) under the change of external

conditions such as context or agent. Adaptability is the property that also pertains with

reusability. If a resource is easy to adapt, this also means the support for reusability.

Here, we focus on the automatic preprogrammed adaptation. It is possible if we have

the already specialized SLOs prepared using the approach discussed in Chap. 7. This

approach was evaluated in the previous chapter as specialization for adaptation. The
approach we consider in this chapter can be treated as adaptation with specialization.
This framework we continue to discuss here is, in fact, the modified paradigm known

in SWE as design for reuse and design with reuse [Sam97].

Furthermore, the adaptation in our approach is self-guided for both teacher and

student, if SLO specialization has been made adequately. Indeed, specialization

through staging enables to distribute (classify) teacher-oriented parameters at the

highest stages and student context parameters at intermediate stages, while content

parameters are allocated at the lowest stage. Because of this property, adaptation is

a multilevel process. First, the teacher makes adaptation to his/her teaching context,

and then learners are able to manage self-adaptation of the content to own context

of use.
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8.2 Literature Review

As LO reusability issues were extensively discussed in the previous chapters, here

we focus to the larger degree on pedagogical context awareness and adaptability

problems. In general, the adaptability problem is not as simple as it might be

thought of. There are many attributes to characterize the problem such as context,

learner’s profile, capabilities of a system used, etc. There are also a variety of

factors influencing its understanding (e.g. content representation forms, cognitive

aspects, structure and model of LO, etc.). As a result, one can meet a diversity of

related terms in the literature to characterize the problem: adaptive learning,
personalized learning [MKS10, BVV+10], adaptable LO, personalized LO
[BCW+08], adaptive granularity [MJ10], adaptive learning scenarios [BS08],

adaptive learning path [BSS+12], etc.

All above-stated facts require introducing a scheme to review the related work in

some systematic way. As this research field is indeed very broad, we restrict

ourselves presenting the review with our vision and our approach in mind only.

First, we focus on context issues as the most influential factor to adaptability. Next,

we analyse the adaptability problem from the external (i.e. the environment) and

internal (i.e. the content model) views. Finally, in the next section, we summarize

the analysis by introducing a framework which, in our view, gives the better

understanding the essence, broadness and complexity of the problem.

We start from definitions and interpretations of the term context as it is under-
stood in general and in the e-learning literature in particular. Context-related issues

have been intensively researched, especially in the computer-human interaction and

technology-enhanced learning. As it is emphasized by Zimmermann et al.

[ZLO07], in the area of CS, there are a number of definitions of the term context
and context awareness. The vast majority of the earliest definitions of the term

context can be categorized into two groups: definition by synonyms (e.g. applica-

tion’s environment context or situation context) and definition by example (e.g.

enumeration context elements like location, identity, time, temperature, noise and

the beliefs and intentions of the human).

Dey [Dey01] defines context as ‘any information that can be used to characterize

the situation of an entity’. In the other paper [DAS01], Dey et al. extend the

previous definition by stating that context is ‘a person, place, or object that is

considered relevant to the interaction between a user and an application, including

the user and applications themselves’. This can be viewed as an application-centric

definition which clearly states that the context is always bound to an entity and that

information that describes the situation of an entity is context. The paper [LCW

+09] defines the learning context as ‘information to identify the state of the item, i.e.

learner’s location, learning activities, the used tools and LOs’. Dourish [Dou04]

emphasizes a dual origin of the context: technical and social based aspects. From a

social viewpoint, the author argues that context is not something that describes a

setting or situation, but rather a feature of interaction. From a technical viewpoint,

researchers try to define context in a more specific way as an operational term
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[Win01, ZLO07, VMO+12], i.e. by enumerating categories of the term. The main

contribution of the paper [ZLO07] is the introduction of a context definition that

comprises three canonical parts: a definition per se in general terms, a formal

definition describing the appearance of context and an operational definition char-

acterizing the use of context and its dynamic behaviour.

The paper [VMO+12] provides extensive analysis of context definitions with

regard to designing recommendation systems to support technology-enhanced

learning (TEL). The latter aims to design, develop and test socio-technical innova-

tions that will support and enhance learning practices of both individuals and

organizations. With respect to our aims, one important result of this paper is the

framework that summarizes the known so far definitions of the term context and

presents how these definitions relate to each other.

We formulate the following finding of this short analysis as follows:

1. Context is a multidimensional category that, in general, may include the follow-

ing features: special time, physical conditions, computing, resource, user, activ-
ity and social.

2. As many of these features are overlapping (see [VMO+12]), it is reasonable to

combine some of them in a concrete situation such as teaching with the use of

SLOs. Thus, we will focus on three context dimensions: computing/resource,

user (learner/teacher)/social and activity/task/content. Comparing these dimen-

sions with pedagogical reusability as it is proposed in [PS04], we are able to

connect a learning situation with the three context categories we will use later

respectively: technical context, pedagogical context and content context.
3. Context, in fact, creates conditions or brings important information to provide

actions for adaptation.

Now we move more closely to the adaptability problem. It can be analysed and

understood at least from two perspectives: external and internal. The first approach
means constructing an adaptive system to make LOs adaptive or contributing to the

adaptability problem in somewhat way. The second approach focuses on incorpo-

rating adaptive features within the structure of LO itself. To support the first vision,

Pitkanenen and Silander [PS04] propose the criteria for pedagogical reusability of

LOs as a basis for designing an adaptive system or for the use within a learning

content management system. The paper [HMM+05] describes the ontology-based

system, OntAWare, which provides an environment comprising a set of software

tools that support learning content authoring, management, the semi-automatic

generation of standard e-learning and other courseware elements (learning objects),

adaptation and delivery.

The approach [AAB+06] enriches the content context, thereby allowing e-

learning platforms to dynamically compose, reuse and adapt educative content

provided by third parties (learning objects). Three context models are presented

together with a multi-agent-based e-learning platform that composes and adapts

extended learning objects according to learner’s context changes. The paper

[AGL11] proposes ontological representations of learning environment and a

memetic distributed problem-solving approach to generate the best learning
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presentation and, at the same time, minimize the computational efforts necessary to

compute optimal learning experiences.

Assuming that learning style is a useful model for quantifying user characteris-

tics for effective personalized learning, the paper [BBF+09] presents two case

studies that provide rigorous and quantitative evaluations of learning-style-adapted

e-learning environments. These studies indicate a limited usefulness in terms of

learning styles for user modelling and suggest that alternative characteristics or

techniques might provide a more beneficial experience to users.

There are efforts to adapt system functionality, e-learning scenarios or learning

styles to learner’s behaviour [EAJ+10, FLD+12, KVI+11]. Some systems provide

recommendation on how to create adaptive learning objects by modelling ant

colony behaviour [YW09] (more on recommendation systems can be learnt from

[VMO+12]), by adaptive retrieval of LOs through learning styles [MS06].

The next package of papers discusses some aspects of internal adaptation. As
internal adaptation directly relates also with design, Boyle and Ravenscroft [BR12]

suggest combining the context with the so-called deep design in designing the

reusable content. Jones [Jon05] proposes to use patterns to support adaptability in

constructing LOs. He states that requirements for reusability may be in conflict with

those for effective learning. So the proposed patterns must ensure that the LOs

constructed are adaptable to different contexts and remain pedagogically sound

within those contexts. Patterns can be used to create learning resources that are both

reusable and adaptable. Han and Kramer [HK09] propose generating interactive

learning object produced from configurable samples.

Internal adaptation also relates to visualization. Visualization-based approaches

have been shortly discussed in Sect. 7.2 (see Chap. 7). In general, visualization is

defined as a transformation process that takes abstract data and gives it a form

suitable for visual presentation [CBK13]. What is the role of visualization in the

case of SLO, reader had the opportunity to learn from examples given in Chap. 7.

How all those briefly discussed topics relate to our approach in more details will

be clear later. In the next subsection, we extend the discussion on adaptability

problem.

8.3 Understanding the Adaptation Problem in Large

Here, we are aiming to extend and summarize analysis of the relevant work given

before. For this reason, we present a framework by formulating some related

questions along with possible answers in order we could be able first to better

understand the adaptation problem itself and then to tackle it with respect to the

capabilities of our approach. We do that because, as it is also clear from the

previous analysis, adaptation is the cross-disciplinary problem. It is why we need

also to look at this problem from different perspectives (e.g. SWE, CS and e-

learning). Some questions raised below, in some other context, can also be regarded

as separate research questions. We do not pretend to give an exhaustive explanation
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or answer the questions posed; rather we seek to show the relationship of crosscut-

ting aspects and a holistic nature of the adaptation problem.

1. What is adaptation in large (e.g. in SWE and CS) and in e-learning?
In SWE, adaptation is conceived of as ‘any process which modifies or

extends the implementation or behaviour of a subsystem to enable or improve

its interactions, or synonymously, its communication with the surrounding

parts of the system (which is its environment)’ [Kel08]. Here, ‘communication’
is understood not only as dynamic interactions at run time but also as interac-

tions occurring statically, at compile time. In CS, the term adaptation refers ‘to
a process, in which an interactive system adapts its behaviour to individual

users based on information acquired about its user(s) and its environment’.
Furthermore, the term adaptability ‘refers to users that can substantially cus-

tomize the system through tailoring activities by themselves’ [see free ency-

clopaedia]. In e-learning, adaptation is thought of as the customization of the

system ‘to the cognitive characteristics of the students and implies the study

and conjunction of technical and pedagogical aspects’ [RDS+08]. Based on

earlier research, the paper [BMM+05] defines adaptation as ‘the adjustments in

an educational environment aiming to (1) accommodate learners’ needs, goals,
abilities, and knowledge, (2) provide appropriate interaction, and (3) person-

alize the content’. Further, we accept both definitions as the most relevant to

our approach. The definitions, in fact, identify the holistic nature of the

adaptation problem, because those indicate on the explicit integration of tech-

nological, pedagogical, social and content-based aspects and consequences of

the integration such as interaction.

2. What are adaptation objectives in e-learning? There is no unified or single

objective, rather a set of different objectives as follows:

(a) Increasing learning outcome and learning performance and attractive-

ness and minimizing time spent by students in learning [CG10]

(b) Easing understandability of the content and its presentation

(c) Enriching the adaptation functionality of e-learning environments being

able to evaluate context data from personal profiles, learning domain and

technological situation [PDM+12]

(d) Accommodation of the educational environment to learners’ needs,

goals, abilities and knowledge [BMM+05]

(e) Enhancing learning content interoperability and creating learning design

spaces (e.g. through meta-design [FGS+04, FG06])

However, all these can be combined under the same umbrella – the efforts by

the research community to enhance reuse through adaptability [Qui07, BS11].

3. What are or might be strategies for adaptation? Here, by strategy we mean the

far-reaching objectives. Thus, the answer has much in common with the

previous question: e-learning domain modelling for extending reuse dimension

(e.g. modelling with learning variability in mind [ŠBD13]), meta-design and

participatory design in creating e-learning systems [FGS+04], moving from the
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traditional classroom-based learning paradigm to the learner’s centred and

collaborative learning, enhancing the capabilities of active learning [GD95]

and contributing to STEM initiatives [Kri14].

4. Who are or might be adaptation providers? This question is due to understand-
ing the relationship among other stated questions. Therefore, on the basis of the

previous analysis, we are able to state: all actors involved in the process (i.e.

learning domain experts, designers of educational environments, instructional

designers, teachers and learners) are or might be adaptation makers; however,

their possibilities to do that are quite different and depend on many factors

which are implicitly or explicitly seen in other questions. We do not neglect

that teachers and even learners could also be adaptation makers.

5. What are items or objects among which adaptation should be provided? The

adaptation item might be (i) e-learning system to learners’ behaviour ([GMB

+04] defines an adaptation system as ‘an environment of software modules,

which comprises a set of features for adaptivity and adaptability’), (ii) content
to environment, (iii) content to tool’s characteristics (such as robots,

smartphones), etc.

6. What are types of adaptation? The comprehensive answer can be found in

[BTK06]. Some types of adaptation are considered in [CG10]: system-driven

adaptation and user-driven adaptation, static (i.e. at compile time) and dynamic

(i.e. at run time).

7. What criteria should be used for adaptation? The answer is (i) user’s profile,
(ii) learning styles, (iii) user’s motivation measurements [ERB12], content

visualization, content (program) transformation into the physical process such

as the educational robot movement, etc. Again, all these can be combined under

the same umbrella – context in large, meaning to support teachers’ and

learners’ needs, though to the different extent.

8. When adaptation has to be started: at the design time as a specific requirement,
at the use time only or at the whole life cycle (meaning design and use)? There
is no a single answer. That depends mainly upon the strategy and goals and

technological capabilities. This requires a separate investigation.

9. What is the scope or granularity level of adaptation: the whole educational
environment, some system/tool, either stand-alone LO, course-level LOs or
some combination of items enumerated above?

There might be various cases as it was previously discussed. This question

requires a specific altitude and separate investigation too.

10. What are possible mechanisms and techniques to support adaptation? Again, a
variety of possibilities may support that, including pure technological (e.g.
interfaces, parameterization, LO models [Jon05], program specialization

[BN02], program transformation to name a few), pure social (e.g. frameworks

for social learning [Jar10]) and mixed ones (e.g. methods for learning path (i.e.

sequence of LOs and learning activities used to achieve predefined learning

goals) identification [BM07], REAL – Rich Environments for Active Learning

[GD95]). Though the discussion on REAL has been provided two decades ago,

the raised problems there are still of great importance nowadays, especially in
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the context of STEM solutions and the needs for improving CS education

[Kri14]. In our context, the use of specialized SLO within education robot

environments might be seen as a way for implementing active learning and

contributing to STEM solutions in teaching CS.

We summarize the discussion as follows. Adaptation in e-learning is a holistic

cross-disciplinary process. It can be also seen as a reuse-based activity within some

educational environment aiming at changing the structure, the functionality (behav-

iour) of an item (LO) or both so that the predefined objectives or requirements of the

learning context can be fulfilled. The provided analysis enables us to outline the

scope of the adaptation problem to be considered in the next sections.

8.4 Adaptation Task Using SLO and Educational Robots

Now we are able to formulate the adaptation task in our context using SLO and

NXT robots as a part of the educational environment as follows. Let be given the

educational environment that includes the following components: (i) specialized
SLO oriented to using NXT robots (see Sect. 7.7), (ii) PHP processor to interpret the

SLO, (iii) RobotC programming environment and (iv) ready-for-use NXT hard-

ware. The task is to initiate and perform the user-guided multistage processes that
include (i) the preprogrammed content (i.e. specialized SLO) adaptation to user’s
(i.e. teacher’s and learner’s) needs through selecting the adequate parameter values,

(ii) monitoring and evaluating the result of adaptation through the feedback, (iii)
adapting the intermediate result to the robot’s environment and (iv) creating active
learning through monitoring and evaluating robots’ actions with respect to teaching
goals as well as through discussions and experience exchange.

Before explaining the essence of the solution of the task, first we need to

highlight the main properties of the specialized SLO (further SLOS) once again

because they predefine the capabilities for adaptation. Below we make the distinc-

tion between properties that, to a larger extent, represent syntactic features and

those which focus more on semantic features. The properties of the first category

are as follows.

1. The stage-based SLOS is a specialized version of the initial (original) SLO that

was designed for reuse. The initial SLO implements a large scale of e-learning

variability that may include pedagogical variability, social variability, techno-

logical variability and content variability.

2. We express all kinds of variability uniformly through parameters and their

possible values. The parameter space predefines the reusable variants of LOs

derivable from the original SLO. It is supposed that among those variants there is

the most suitable LO in the preprogrammed context of use. Such a variant is

treated as a result of adaptation. As the number of LO variants may be very large,

it is difficult to generate the needed LO from the original SLO. Specialization for

adaptation enables to tackle this problem.
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3. Specialization is the structural transformation of the original SLO into its

specialized form without affecting the overall functionality of the original

SLO. Structural transformation is to be performed so that to facilitate the search

of the suitable variant as a result of adaptation.

4. Both the design of the original SLO and then its specialization are supported by

the adequate tools. Therefore, the user (typically teacher) can focus mainly on

managing issues in dealing with the processes.

5. The specialization process results in creating the multistage executable specifi-
cation SLOS that is coded as the k-stage heterogeneous meta-program. A

particular stage defines a subspace of the whole variability space.

6. There is a strong technological support of a meta-language to implement staging

at the current stage through deactivating of only those parameters that are to be

evaluated later, in the subsequent stages. The evaluated parameters at the current

stage yield the increment in specifying the subset of variants for adaptation. The
other increments are added in the subsequent stages.

7. The k-stage SLO specification (i.e. SLOS) along with the supporting tool is also a

(k-1)-stage SLO generator. In fact, (k-1)-stage SLO represents the narrowed

space for adaptation.

8. The processor of the meta-language in which the SLOS (and also the original

SLO) is coded is the generation tool as well as the adaptation tool.
9. The specification SLOS has the following important property due to the

specializer [BBŠ13]: after executing of SLOS at stage i (1< i< k), it is possible
to return to any previously executed stage j (i< j� k), to select the other

parameter values at this stage and then to continue the generation process, thus

creating a new path for adaptation.

The semantic-based properties are as follows.

1. Stages of SLOS differ not only structurally (syntactically) but also semantically.

Fuzzy variables carry this semantic load. They are added as parameter weights

within the original specification to reason about the semantic role of parameters.

We have linked fuzzy variables with Bloom’s taxonomy levels which define the

cognition process in knowledge gaining (see Sect. 7.6). Thus, fuzzy variables

enable to make the distinction between types of parameters.

2. Fuzzy variables, being the user invisible items, serve for managing information

to assign parameters to stages and, in this way, provide a means for managing

stage-based specialization.

3. Fuzzy variables indicate on the priorities of parameters and hierarchy of stages

to manage adaptation process. Typically, according to defined rules (semantics

of teaching), teacher-oriented parameters are at the top of the hierarchy (at the

highest stage). Learner-oriented parameters describing his/her context reside in

the middle stages. Content-based parameters are at the lowest stage.

4. Content adaptation is the user-guided process that includes user’s actions and
automatic processing by the tool. User (teacher or learner) exams the given

interface to recognize and supply his/her context parameter values. Then the
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automatic processing follows yielding more specialized variants to support

needs for adaptation.

5. Content adaptation is a part of the whole learning process being included

‘surface learning’ (along with its feedback) and ‘deep learning’ (along with its

feedback) (the terms will be defined later).

6. Technologically, the adaptation process is the staged forward transformation

with respect to the specialization process (the latter might be seen as the reverse

transformation).

8.5 Processes to Solve the Adaptation Task

At this point, we need to introduce and define some new terms such as surface
learning, deep learning and active learning.

In the paper [Hou04] Houghton defines surface learning as ‘accepting new facts

and ideas uncritically and attempting to store them as isolated, unconnected items’.
The same source defines deep learning as ‘examining new facts and ideas critically,

and tying them into existing cognitive structures and making numerous links

between ideas’. Active learning, as defined by [CRLT14], ‘is a process whereby

students engage in activities, such as reading, writing, discussion, or problem

solving that promote analysis, synthesis, and evaluation of class content’. The use
of educational robots promotes active learning due to the possibility of combining

cooperative learning, problem-based learning, the use of case studies and

simulations.

Now we are able to present our approach to solving the adaptation task in more

detail. In Fig. 8.1a, we outline the approach schematically as a multiple process

with different sorts of adaptation and feedbacks. There are three kinds of adaptation

scenarios: (i) stage-based (see also property 9 in Sect. 8.4), (ii) technological and

(iii) adaptation at the active learning phase.

According to the given definition, the stage-based content adaptation is a surface

learning because the user selects the parameter values (see ‘User action’ in Fig. 8.1b
on left) as ‘isolated, unconnected items’ (see also user interface in Fig. 8.2). We

present the overall stage-based content adaptation in Fig. 8.1b. Here, the user action

is combined with the automatic processing phases (P1, . . ., Pk) performed at each

stage by the PHP processor. The result of the processing at a higher stage is the

lower-level specialized SLO (denoted, e.g. as SLOS(i)). The result of the phase Pk is

the concrete LO as an intermediate result of adaptation.

Within each stage, the stage-based adaptation is automatic. It is also the user-

guided process running within the meta-language environment (PHP processor in

our case). The higher stages are for the teacher. The lower stages are for learners.

Here, however, we do not make the distinction between the teacher’s and learner’s
adaptation activities (we will focus on those actions later, see case study, Sect. 8.6).

The adaptation process as surface learning may follow two modes. In mode 1, there

is no feedback. The process goes through phases (stages) resulting in narrowing the
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space of variants smoothly (see Fig. 8.1b). In mode 2, it is possible to return to the

previous stages through feedback 1 for selecting the other parameter values for

adaptation, if the previous values do not satisfy the user’s needs. The tool that

performs specialization ensures the functionality of mode 2.

By technological adaptation we mean the compilation of the adapted LO (i.e.

robot’s control program (CP)) and uploading it into the robot’s flash memory. After

that, the robot is ready to solve the prescribed task, and learners are able to monitor

the robot’s actions and evaluate the characteristics comparing them with selected

parameters. Even more, the learners are able to analyse the CP and to investigate the

correspondence among the abstract parameter values (those that were previously

defined as the staging process) with the physical characteristics of the robot’s
actions. What is most important is the possibility to change the CP by the short
feedback 2 (meaning the change of CP and its recompilation and reloading) or by

the deep feedback 2 (meaning the selection of the other parameter values at the

stage-based adaptation).

Therefore, we have presented the whole adaptation process abstractly as a

sequence of the surface learning and deep learning with the multiple feedbacks.

In fact, surface learning is the user-guided content preparation-adaptation through

gradual staging and feedback between stages (i.e. user-oriented parameter selec-

tion). The adapted content and possible feedbacks enable to happen the active

(deep) learning. However, we are able to describe the whole adaptation process in

detail through a case study.
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Content
adaptation
at stage k

Technological
adaptation

Active
learning via
adaptation

Feedback 1

. . .
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adaptation
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Fig. 8.1 Adaptation scenarios (a) and stage-based adaptation subprocesses (b)
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8.6 A Case Study: Adaptation and Learning Paths

As the adaptation task is driven by the specialization process (i.e. using specialized

SLO), this case study should be connected to the one considered in Chap. 7.

Therefore, we have to consider the same task, the ‘ornament drawing by robot’,
though slightly modified. The learning objective is also the same – to teach nested

loops written in RobotC [Rob07]. The aim of this case study is to demonstrate the

adaptation process of the real learning task using NXT robot environment [CCh11]

and to reveal more practical details on the surface and deep learning through SLO

adaptation.

In Fig. 8.2, we present two different models of the same task aiming once again

to highlight that adaptation is dependent on specialization. Furthermore, here we

have slightly changed the task as compared to the one given in Chap. 7 (here,

curriculum objective (CO) is missed and time for the task (TT) is added). For

simplicity reasons, we also consider the parameter priorities as constants here. The

model (Fig. 8.2a) contains three stages. They might be interpreted, for instance, as

follows. The dependent parameters LA and TT represent the teacher’s context (are
at stage 3). The dependent parameters LL (the pure learner’s context) and P1 and P
(the pure content parameters) must appear on the same stage (stage 2 in this model).

An attentive reader can also notice some discrepancies of the parameter depen-

dency interpretation here as compared to the one given in Chap. 7 (see Sect. 7.7).

The rest parameters are pure technological parameters (representing the content in

the case of using robots). They are independent (there are no edges between nodes).

They are ordered according to the Bloom’s taxonomy levels (see Chap. 7) and be

shown for the learner at stage 1 in this order. Due to the large number of parameters,

however, there might be difficulties to ensure a flexible adaptation.

The second model (Fig. 8.2b) is more flexible because there is the additional

stage (i.e. the user’s interface) to select values for technological parameters. Using

LA TT

LL

S V1 V2

T1D1 D2 T

stage 3

a b

stage 2

stage 1

PP1

LA TT

P1

stage 5

stage 4 PLL

stage 3 S

V1stage 2 TV2

D1stage 1 T1D2

Fig. 8.2 Three-stage (a) and five-stage (b) models of the task ‘ornament drawing by robot’
LA learning activity, CT case study (given by teacher), PS practice (done by learner), TT time for

the task; S selected motor (AB, BC, AC); V1, V2 drawing velocity of motors (pen on the paper),

D1, D2 idle moving velocity of motors (pen over the paper), T robot’s drawing time, T1 robot’s
moving time for the next action, LL learner’s previous knowledge level (beginner (BG), interme-

diate (IT), advanced (AD)), P1 number of ornaments, P number of ornament’s parts
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this model, it is also possible to present the other interpretation of the context as

follows. If we allow students themselves to make a choice of learning activity (LA)

variants (CT, PS), as well as variants of the time for the task (TT), then the

dependent parameters LA and TT (stage 4) can be seen as the learner’s context.
Therefore, we have two stages (4 and 3) for the learner’s context (though stage 3 is

mixed due to the parameter dependency, i.e. it contains the context and content

parameters) and two stages (2 for the operating move and 1 for the idle move) to

represent the content parameters.

Further, we have selected the second model for more detailed analysis. Param-

eters at stages 2 and 1 are pure technological parameters, but they are transformed

into content-based ones, when the stage-based adaptation through generation takes

place. We illustrate this transformation in Fig. 8.3 (see right column). The second

column shows the user’s (learner’s) graphical interface to perform the adaptation

actions at each stage. The submission of user-defined values initiates the process,

and then, the processing tool creates the intermediate result of the adaptation at the

adequate stage. The third column illustrates on how the model of the task is

interpreted at each stage. The hidden parameters are not evaluated at the current

stage.

At stage 1, we have the LO, i.e. two nested loops written in RobotC. It is the

robot’s control program to be compiled into the executable code and downloaded

into the robot’s memory. The surface learning path starts at the stage-based

adaptation of the content to be generated by the learner’s initiative and guidance.

Next, the robot performs the preprogrammed actions which were coded within the

generated and compiled specification. Robot’s actions enable involving the learner

into deep learning through the series of activities. First, the learner is able to follow

and observe what is going on the robot’s action space. As there are a few robots

within the classroom with slightly different control programs, learners can com-

municate among themselves. It is possible to measure/evaluate visually (roughly)

the speed of robots and to observe how robots’ actions are changing from the

drawing state to the idle state. Students are not only able to observe the task solution

in action but also to compare the results (produced drawings).

Even more, it is possible to provide experimentation and research, for example,

to estimate the dependency among the robot speed and drawing accuracy. For this

purpose, of course, learners need to go through feedbacks and repeat the learning

path accordingly depending on the new scenarios (see Figs. 8.1a, 8.4 and 8.5).

However, the adaptation-based active learning path analysis requires a separate

attention and more deep focus. We present such an analysis in the next section.

8.7 Analysis of Active Learning Paths and Adaptation

On the basis of the previous analysis, below we present two possible scenarios of

adaptation-based learning that combines both surface and deep learning into the

whole process with the deep feedbacks. The first scenario (Fig. 8.4) includes the
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Fig. 8.3 Stage-based adaptation through parameter value selection and intermediate adaptation

result without feedback
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only one technological adaptation (i.e. compilation phase after executing genera-

tion at stage 1). The multiple feedbacks are possible on the stage-based adaptation

process because the learner is able to perform the adaptation not only by selecting

the parameter values but also by seeing the result of stage-based processing (see

Fig. 8.3). The visual monitoring of the result may cause the need for selecting the

other values and repeating the process through the feedbacks FB1.

Deep, i.e. active, learning starts when the robot executes the prescribed task

according to the fully prepared (complete) control program. The learner’s activity is
to follow the robot’s action, to remember what parameters have been chosen

previously and to reason about how they correspond to what is seen on the drawn

picture. On the whole, the learner has the possibility to make the reflection on what

is going on the robot’s action scene. After that, the learner can evaluate the reality of
the solved task. There is the possibility to change the control program manually (if

some inconsistency was observed) and repeat the process by feedback FB2. Even

more, it is possible to provide a wide-scale experimentation and research using the

deep feedback FB3. Taking into account all possible feedbacks (FB1, FB2 and

FB3), there is indeed a great deal of learning paths to accommodate the learner’s
adaptation preferences in gaining knowledge not only to construct gradually (in

step-by-step manner) the nested loops but also to be convinced on how the control

program constructs are transformed into physical entities such as velocity, time,

idle move, operating move to draw line fragments, etc.

The second scenario (see Fig. 8.5) provides much more capability as compared

to the first one. Those capabilities are due to the multiple compilations (executed

. . .
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Fig. 8.4 Adaptation scenario with one compiling phase (if the feedbacks are ignored)
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Fig. 8.5 The advanced adaptation-based scenario to define the paths of active learning
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after each adaptation stage) resulting in the partial robot’s actions followed by the

increased number of decision points and feedbacks at the surface learning phase. By

the partial robot action (denotes as RA in Fig. 8.5), we mean the state of SLO after

the adequate stage execution and then the compilation of the staged SLO and,

finally, the execution of the compiled code (i.e. RobotC). Physically, a partial

robot’s action shows a fragment (such as pen lifting, idle move, etc.) of the whole

task solution. In fact, the use of this scenario blurs the boundaries between the

surface learning and deep learning because of the deep fragmentation of processes

at the staging phase. Furthermore, the use of this scenario enables to perform the

examination and research of the processes using the feedbacks FB2 and FB3;

however, in this case, it is possible to exclude the multiple compilations (this

path is indicated by the adequate decision points on circles and broken arrowed

lines in Fig. 8.5). Note that the path that includes the broken arrows in fact indicates

the surface learning as it is described in the first scenario.

We treat the second scenario as advanced because of two reasons. One reason

has been already stated (the second scenario includes the first). The next reason is

that we have enriched the scenario by the teacher’s evaluation. The evaluation, for
example, can be done using the students’ ‘engagement levels’ as described by the

methodology given in [UV09]. This methodology evaluates the students’ engage-
ment levels through the following cognitive processes (ordered by cognitive deep-

ness from the lowest to the highest): viewing, responding, changing, constructing
and presenting.

In our case, viewing means the student’s passive monitoring of the robot’s
actions; responding means the student’s ability to answer a question given by the

teacher or the formulation of a question for the teacher; changing means the

student’s ability to modify the control program directly (i.e. using FB2; note that

this possibility can also be treated as a practice (PC), the learning activity (LA)

value; see Fig. 8.2); constructing means the conscious adaptation (through the use

of feedbacks FB2 or FB3; see Figs. 8.4 and 8.5); and finally, presenting means the

student’s ability to explain, to discuss with the teacher or other students on the

topics and to present the obtained and researched results either orally or in the

written form. The teacher’s task is to identify the length of cognition process path
for each student according to [UV09], i.e. to identify how many students are able to

go through all cognitive processes and how many students failed (at which point

and why).

8.8 Summary and Evaluation of the Approach

In this chapter, we have discussed the adaptation problem from two perspectives:

general and specific. The aim of the first was to better understand the essence of the

problem itself and, in this way, to outline the context for considering the second.

Indeed, our approach is specific. It is based on the internal structure of SLO, which

was identified as a multistage specialized specification for adaptation. We have
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described the approach from the user’s viewpoint (i.e. teacher’s and learner’s
perspective). In our case, adaptation is a user-guided semi-automatic generation

process with multiple feedbacks. We have made a distinction between three kinds

of adaptation (though they are related): the pure content adaptation, technological

adaptation and learning process adaptation. The multistage generation process

(along with feedbacks to higher stages) supports the user-guided content adaptation.

The content adaptation goes through stages so that the learner is able to monitor

gradually the result in creating the content through adaptation. Therefore, this kind

of adaptation can be also treated as a surface learning.
The technological adaptation is needed to link different environments (PHP and

NXT robots). The learning process adaptation is due to the robot’s operating actions

and the learner’s ability to monitor, to understand and to react to the robot’s action
through feedbacks to previous phases. The process is active, and we are able to

identify it as deep learning because of the presence of different learning paths. This

possibility is a background for the ‘smart learning’ to be considered later, in Chap. 12.
Here, we evaluate the approach from two perspectives: methodology (i.e. taking

into account analysis presented in Sect. 8.3) and technology. Note that in the overall

evaluation, the pedagogical view should be included. We will provide that later as a

part of ‘smart learning’ in Chap. 12. We summarize the first evaluation in Table 8.1.

Table 8.1 Characteristics as requirements for SLO adaptation

Characteristics Supported aspects in SLO Explanation

SLO adaptation

objectives

Enhancement reuse and active learning See our case study

Strategy used Design for reuse For more details, see Sect.

7.4Design with adaptation

Adaptation makers Course designers, teachers, students

What-to-what is

adapted?

SLO (LO) content to the contexts of use Pedagogical context:

teacher’s context, learner’s
profile

Adaptation type Automatic through generation User guided

Criteria used A set of stages {k, k-1, . . .1} The user selects one for

his/her context

When to start consid-

ering adaptation

problem?

At learning variability modelling See Chap. 4.

What is granularity

level?

Covers low and middle granularity

levels

To cover at least one or

more topics

Mechanisms used Parameterization, parameter priority

relation expressed through fuzzy

variables

See Chaps. 5 and 7.3 in

Chap. 7

Technologies applied Meta-programming, program speciali-

zation techniques

See Chaps. 5 and 7

Adaptation kind External (Ext) Ext: user’s view, compiler

time; Int: designer’s viewInternal (Int)

Supported processes Selecting, meta-generation and

generation

See Fig. 8.1
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The technological evaluation includes the statement of properties and capabil-

ities of the approach from the SWE and SC perspective. The basic assumption to

correctly interpret the approach is that SLOR should be design for reuse. As reuse in
designing of LO and in e-learning in general plays indeed the significant role, the

interpretation of this term might be different in the concrete context. In the context

of the proposed approach, design for reuse has the following meaning:

(a) SLO implements the enhanced learning variability; the latter includes peda-
gogical variability, social variability, content variability and specific techno-
logical variability.

(b) Variability features (parameters) are extracted through the use of the system-

atic approach such as feature-based modelling adapted from the product line

engineering, the well-known approach in SWE as well in CS.

(c) The result of modelling is the verified feature models that represent the

learning variability abstractly at the higher level of abstraction.

(d) The devised model (models) may be general enough, thus the narrowing of the

variability scope might be needed for the concrete case of use; it is possible to

implement through model specialization.

(e) The anticipated scope for each kind of variabilities (can be also treated as

reuse scope) should be clearly (explicitly) stated in the requirements for

designing SLOR and then implemented when the SLOR is coded.

The above stated can be achieved only if the adequate technological support is

available (a more thorough discussion on tools for learning variability model

constructing and SLOR design will be given in Chaps. 9 and 10). The SLOR

specification is a value per se because (a) it is the executable specification, (b) it

is pedagogically sound (i.e. SLO inherence to well-defined principles, learning

theories, models and requirements in designing LOs) and (c) it is socially oriented

(i.e. learner’s profile, learning activities, etc. are taken into account).

8.9 Conclusion

We have considered the teaching content (i.e. SLO) adaptation problem using the

concept of the preprogrammed stage-based adaptation. At the core of this adapta-

tion is the use of the program (meta-program) specialization techniques. The latter

uses the staged parameterization and predefines the capabilities of the approach.

The specialized SLO represents such a specification that enables the learners to

guide the adaptation process themselves. The process includes three phases: staging

(parameter selection for the required content generation), technological adaptation

and active learning driven by generating the user-guided content. The process

contains within multiple feedbacks (within staging) and as well within an active

learning to enable different adaptation paths. The staging phase is supported by the

meta-language processor which performs interpretation of the specialized SLO

under the user’s guidance. The learner’s task is to select the one that is most relevant
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to his/her context. Staging (which is expressed through parameter sequences and

the latter being shown to the learner) can also be seen as the internal sequencing of
knowledge chunks to be learned. Therefore, the proposed approach can be viewed

as a framework to generate paths (i.e. sequences of knowledge chunks) for adaptive

and active learning.

8.10 Research and Exercise Questions

8.1. Describe the framework to characterize the adaptation problem by identify-

ing (a) the scope of the problem and (b) the most influential factors and their

interactions.

8.2. Provide a specific insight and investigation into the role of the context to the

adaptation problem.

8.3. Draw the links (conceptual, model based) between reusability and adaptabil-

ity of the teaching and learning content.

8.4. Define the terms adaptation and adaptability using the results of previous

questions. Clarify what might be the object of adaptation.

8.5. What kinds of adaptations might be?

8.6. Draw the links among the learning process and content adaptation.

8.7. Consider the content adaptation problem from the pure technological per-

spective and provide the relevant technologies that might be helpful.

8.8. Provide research on program partial evaluation (specialization) for the pur-

pose of CS teaching.

8.9. Model the presented approach using the tool [BBŠ13] along with test cases

given there and identify the main properties of the approach.

8.10. Clarify how can model-driven and generative technologies contribute to

adaptation problem?

References

[AAB+06] Abarca MG, Alarcon RA, Barria R, Fuller D (2006) Context-based e-learning

composition and adaptation. In: On the move to meaningful internet systems 2006:

OTM 2006 workshops. Springer, Berlin/Heidelberg, pp 1976–1985

[AGL11] Acampora G, Gaeta M, Loia V (2011) Combining multi-agent paradigm and

memetic computing for personalized and adaptive learning experiences. Comput

Intell 27(2):141–165

[BBF+09] Brown EJ, Brailsford TJ, Fisher T, Moore A (2009) Evaluating learning style

personalization in adaptive systems: quantitative methods and approaches. IEEE

Trans Learn Technol 2(1):10–22
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Part II

Fundamentals of Authoring Tools to Design
SLOs, Environments and Smart Education

Case Study

So far, in Part I, our focus was given mainly to the context of the emerging e-

learning technology based on the smart LO (further SLO) concept. We were aiming

to provide the concept so that it would be understandable to those who are or might

be potential users (researchers in e-learning, CS teachers and to some extent

students studying CS-related courses). Here, the word ‘understandable’ has the

following meanings: the structural aspects (i.e. SLO models, including those with

multifaceted views such as pedagogy and social aspects along with content and

other features being represented at the high abstraction level), supporting technol-

ogy (such as heterogeneous meta-programming), properties and capabilities of SLO

(such as the ones for wide-scale reuse and adaptation) and use cases for practice as

they are seen, or might be seen, from the user perspective.

In Part II, we focus on three main topics: (1) background to design SLO, i.e. how

the concept of SLO looks like from the content and tool designer’s perspective; (2)
description of authoring tools to support the design, the adaptation and the main-

tenance of SLOs; and (3) analysis of integrative and usage aspects of SLOs to

provide the whole CS-related and robot-oriented teaching course, including the 3-

year experience of using the approach in the real teaching setting.

Note that the modelling of the CS learning domain (which we have discussed in

Part I) is also a part of the theoretical background to support the development of

SLOs (mainly related to the specification of SLOs). We have included the model-

ling aspects in Part I because they are, to a larger extent, relevant to general and

intuitive understanding of both CS learning domain and SLOs. On the other hand,

the concrete feature models are the input specifications to design SLO with the aid

of the adequate authoring tools. Thus, to understand feature models as they are

applied to the CS teaching domain, the reading of Chaps. 4 and 5 might be very

helpful for the designer, no matter what level of knowledge in feature modelling the

designer had so far.

Though the authoring tools were used in previous chapters, we provide an in-

depth study of the topics here. Mostly, we focus on the design process with the tool

support and provide architectures and functioning algorithms along with their main

http://dx.doi.org/10.1007/978-3-319-16913-2_4
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capabilities. Since we have discussed SLO as a separate (single) item throughout

the previous chapters, we also focus on the content sequencing problem (though

implicitly) to form the learning paths of the whole course here. We provide a

framework of the possible solution of the problem through the local (personal)

library concept. The latter enables to extract the needed content through the

generation process (because SLO is a content generator) and then to integrate the

entire CS course.
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Chapter 9

Background to Design Smart LOs
and Supporting Tools

9.1 Introduction

Here, by the designer’s perspective, we mean the representation of the data and

processes related to the functioning and design of smart LOs (SLOs) as fully and

abstractly as possible. As we use the model-driven approach for designing SLOs, a

formal definition and representation of the adequate models play a significant role.

Thus, our focus is directed to the precise and complete representation of the SLO

models here. The aim is to provide the motivated and sound background of the

approach. However, the educational software designers typically tend to work with

the informal scenarios of an application domain for its implementation. To resolve

this contradiction, we also use informal scenarios (motivating example) to explain

the essential details of the approach. Therefore, we hope that different forms of

representing the design models at the different level of abstraction are helpful for a

variety of designer flavours.

Apart from the educational software developer, who yet might be the SLO

designer or the adequate tool designer? We do not exclude the possibility that e-

learning researchers with the adequate technological background, computer scien-

tists or even knowledgeable CS teachers can act as SLO designers or as designers of

the authoring tools to support the SLO design processes. The designer’s vision, in
contrast to the user’s vision, should reveal all details needed to implement the SLO-

based approach. Indeed, when we were considering SLOs in the previous chapters,

the internal structure of SLOs has been hidden. In fact, the only interface of the SLO

was visible to the user.

Thus, the models and theoretical background we have considered so far were

incomplete and now should be extended. To do that, we need to repeat and extend

some definitions given in the previous chapters as well as to add new ones here.

Therefore, the reader should not be confused by some replication of the rules (they

are common for the manual design of SLOs as well for designing the design tool).
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We do that also due to the methodological reasons in order this chapter would be

complete for the independent reading.

The main tasks we consider in this chapter are as follows: (1) literature review

with the focus on linguistic aspects of representing SLO and LO to teach CS topics;

(2) SLO design preliminaries with motivating example, as well as the statement of

the design principles and requirements; and (3) model-driven theoretical back-

ground to design tools for developing SLO, including the stage-based design
perspective to support the context-aware adaptation.

9.2 Literature Review

In this review, we focus mainly on the linguistic aspects. We start with the

categorization of programming languages. There are two large categories of com-

puter programming languages: general purpose or conventional programming lan-

guages (shortly CPLs) and domain-specific languages (shortly DSLs). In the history

of programming languages, there were efforts to keep the count of the languages in

each category. As it is stated in [IEEE99], in 1991 there were known about a

hundred and a half of CPLs and about two thousand of DSLs (published in the

approved issues throughout the world). But later it was a very difficult task to keep

and maintain the list of the languages as precise as possible due to their rapid

evolution. Perhaps this is not so much important. What is more important is the

general trend of their evolution because programming languages have been under

development for years and will remain so for many years to come.

The evident fact is that over the time the scope of research and use of DSLs were

constantly increasing [IEEE99, Ous98, Hud98, DKV02]. There are a few reasons

for that. First, the ever-increasing technological potential requires the adequate

linguistic support with new capabilities (the evident example is the Internet-based

programming and a set of languages of that domain). Second, the software content

within modern systems is steadily increasing (due to the technology advances) with

the ever-growing computational potential in a variety of applications; therefore, we

need to cover the needs of end users of the extremely wide applications. Third, there

are two extreme trends in designing and using systems: (1) unification with the

focus on general solutions and standardization (e.g. UML standard) and (2) spe-
cializationwith the focus on the specific domains (e.g. VHDL for hardware design).

Typically, specialization enables to better satisfy the diverse needs of the very large

communities of end users.

Finally, taking into account various studies on DSL (e.g. earlier works [Ous98,

Hud98, DKV00, DKV02] or more recent works [KLB+08, OPH+09, KOM+10]), it

is possible to summarize the above-stated arguments by the following observation.

Today, as a rule, any matured domain of great importance has own DSL or even a

set of DSLs (e.g. Internet (HTML, XML, etc.), hardware design (Verilog, VHDL,

SystemC, etc.), robotics (BasicRobot, RobotC, etc.). The educational community

has also own languages known as the educational programming languages (EPL)
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[WLL11, MRR+10, SI11, BBH+13, K€ol10]. The languages can also be viewed as

DSLs because they are primarily designed as a learning instrument, but not so much

as a tool for writing the real-world programs.

What are the main similarities and differences among DSLs oriented to the

professional use and those dedicated for education? The similarity is that the great

deal of DSLs of both categories is created on the basis of the conventional

languages such as C, C++, FORTRAN, etc. However, there is the essential differ-

ence between those categories. Typically DSLs for the professional use are exten-

sions of CPL languages [Hud98], though there are languages designed from scratch

and have a specific functional model [DKV00, DKV02]. The CPLs and DSLs for

education, on the other hand, are used in the simplified manner (typically the basic

subset of a language) with the focus on visualization capabilities. The extensions of

DSLs include the constructs needed to cover the specific requirements of a partic-

ular domain to be more understandable and useful to the domain users. Another

important discriminating feature of EPLs is their orientation on the learner’s age
(for more details, see [Wiki14]).

Therefore, both categories of languages (CPLS and DSL) are researched and

studied not only by the researchers and professional users. The educational com-

munity also focuses on both categories of languages, however, with a specific

educational view. Here, we speak about both categories of the languages because

they are directly related to our approach. We use PHP as a meta-language and

RobotC as a target or teaching language (the first can be treated partially as a CPL

and partially as DSL, while the second is the DSL derived from the CPL C).

In teaching CS-related courses, the student profile and previous knowledge are

the main attribute in selecting the language. At the university level, the main focus

should be taken not so much to programming languages per se but to the algorith-

mic skill, the programming paradigms (such as structural, object-oriented or com-

ponent-based, parallel and distributed programming) and the tool construction

(such as compilers, processors, debuggers, graphical editors, etc.).

In this regard, Rodrı́guez-Cerezo et al. [RHS14] present a platform for the

development and debugging of language processors based on attribute grammar
specifications. They propose the visual debugger enabling students to design their

own language processors, solve design problems, improve the effectiveness and

efficiency of their language processors and understand their operations. Pereira et

al. [POC+13] propose a strategy based on DSLs where students have to develop a

language processor for a DSL for a specific domain attractive to the students.

Students develop the tool incrementally, in the step-by-step manner. Hu and Fred

[XL06] provide an approach of teaching compilers with the help of the embedded

robot controller. We do not provide a more extensive analysis on the topics of tool

design because (1) we use standard tools (PHP processor) and (2) the reader can find

more on the topic in Chaps. 3 and 7.
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9.3 Preliminaries to Design SLO

We will start from the initial point, formulating a summary of what we have learned

so far. Therefore, we enumerate the basic properties of SLOs. Those properties as

seen from the user perspective are as follows:

(i) Smart LO is meta-programming-based generative LO (GLO) with extended

features to support reusability.

(ii) The extended reuse features are either pure technological, pure pedagogical,
pure content or their combination also treated as learning variability (see

Chap. 5).

(iii) Smart LOs may implement a wide scale of learning variability.

(iv) With respect to the pure technological view, SLO is a hierarchical structure to

support both component-based and generative reuse. This structure should be

understood as follows: (1) SLO is the executable specification enabling (with

the aid of the adequate tools) to produce the LO instances (i.e. components)

automatically on demand; (2) SLO enables to represent the domain under

consideration with the wide scale of variability (due to parameterization).

(v) The extended reuse features also mean the flexibility for semi-automatic

adaptation of the learning content to the different contexts of use.

(vi) In the SLO model, the learning variability (i.e. pedagogical, social, content

and technological aspects or features) is represented uniformly through

parameters; the parameter semantics is defined and interpreted by the user

(learner or teacher) through the context, i.e. through the reading and

interpreting parameter values supplied by the system (meta-language proces-

sor) via the SLO interface.

(vii) SLO is a domain-specific meta-program that is oriented to implement CS

learning variability. The latter can be represented as the one-stage or multi-
stage structure. The multistage structure enables to implement the flexible

adaptation of the content in the different context of use.

9.3.1 Statement of Design Principles and Requirements

Now we are able to formulate the basic principles and requirements to develop a

single SLO. The principles are as follows:

(a) Adhere to the adequate teaching and learning theories of instructional design

such as the ones presented in [JH07, KRS+09].

(b) Tolerate the existing standards (internal, local and worldwide) within the

domain.

(c) Analyse the possible scenarios for clear understanding of the properties and

capabilities of SLO such as those considered in Sect. 9.2.
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(d) Apply the model-driven strategy through the use of analysis methods and

modelling approaches for representing the CS teaching domain and its

subdomains (i.e. content, pedagogy, technology, social context, etc.) at the

relevant abstraction level (see Chap. 4).

(e) Use the formal approaches (where they are applicable) to approve and verify

the design processes and models.

(f) Analyse the capabilities of the relevant technology or technologies that enable
to realize the SLO.

(g) Try to automate the design process with the aid of available tools as widely as

possible.

(h) Analyse various case studies for extracting the new knowledge and require-

ments for the improvement and redesign.

The virtual requirements as guidelines to design a single SLO might be as they

are described below. Here, we use the term ‘virtual’ because of immaturity of the

approach and, as a result, a wide scale of experiments and research yet to be

provided.

1. With regard to (a), the teaching goal should be identified first. The goal should

be related to the social context (student’s previous knowledge, abilities to learn,
preferences of learning, etc.), the organizational context (strategy of education

within the organization, its relevance to the governmental strategy of education

within the country, role of the course with respect to the others) and the

pedagogical context (e.g. methods and theories).

2. The teaching model should be predefined in accordance with the identified

teaching and learning goals.

3. The functionality of a single SLO should cover not a single topic but a series of

the related topics (due to the managing aspects, such as producing, storing,

sharing, etc.).

4. The identification of the scope of CS teaching and learning subdomains and

then extracting (or creating) models separately for each subdomain with

respect to the needs of the variability extent to support reuse should be

provided. The basic requirement is the use of the feature models and feature

modelling approaches. The identification of the concrete feature models should
be given with respect to the identified modelling scope (use the methodology

described in Chap. 4).

5. A specific focus should be taken in choosing of languages (meta-language and

target) to realize the SLO as a meta-program. The selection should be provided

in accordance with the requirements of the teaching strategy, goals and models.

Those requirements (to a higher extent) relate to the choice of the target
language because it is also the teaching language in which LOs (teaching

content) are specified (for details, see Sect. 9.3.2).

6. Requirements for the choice of the meta-language are less restrictive. The

reason is that any programming language or a dedicated language may be

used as a meta-language [ŠD13]. The requirements should or might be also

connected to teaching goals, teacher’s preferences and availability of the tool

support (see Sect. 9.3.2).
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7. Guidelines for coding SLO specifications with regard to the chosen languages

should be developed. Two cases should be taken into account: manual coding

and semi-automatic coding with the aid of adequate tools. A special focus

should be taken to the SLO interface coding. Many aspects of good coding can

be inherited from the software domain. The basic requirement is clearness

(keeping the coding rules, where comments are at the focus).

8. Apart from the requirements of the functionality, the specific requirements of

coding the SLO interface should be also taken into account.

9. Guidelines for testing, packaging and storing for dissemination also might be

provided.

10. The adequate design paradigms that take into account reusability, adaptability

and related aspects such as complexity issues and tool support should also be

provided (see Sects. 9.3.3, 9.3.4 and 9.3.5).

9.3.2 Choice of Languages to Specify SLO

The linguistic aspects in teaching CS courses are of great importance. What

language to teach and how in the concrete situation? This is a wide topic for debate.

Some issues can be found in the short discussion given in Sect. 9.2. And there is no

uniform answer. The preference should be taken to the capabilities of the language

to realize teaching goals and models. The most influential factors might be the

functionality of the language to realize the visualization and active learning and the

possibility to deal with the real-world tasks. In that sense, the preference should be

taken to the domain-specific languages (DSLs), such as robot programming

languages.

On the other hand, the modern programming paradigms (such as object oriented,

component based, graphical, etc.) cannot be ignored too. Thus, in general, teaching

should be harmonized with the trends of computing technology. Where is the key

for making the solution? In our view, the meta-programming paradigm, as the basis

to realize SLO, may provide the acceptable solution. In essence, meta-program-

ming is the multi-language paradigm with respect to two aspects. The first is a

standard definition of the paradigm. We define heterogeneous meta-programming

as the paradigm that uses at least two languages (meta- and target) to code a meta-

program. The second aspect is more interesting in the case of choosing the target

language. We can, in many cases, use a few target (teaching) languages for coding

the same algorithm. This is possible, for example, to realize the computational

tasks, data manipulation and other tasks using different languages that support

different paradigms (Java, C++� object-oriented and Pascal – structured program-

ming). The realization (through the use of SLO approach) of the same algorithm by

a few target languages might be seen as one aspect of the content variability
realization.

The most influential factor in choosing the target (teaching) language is the

educational environment because it predefines the learning strategy and models.
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Thus, the target language within the SLO specification should conform to (be the

same) as the one used for teaching within the given educational environment. There

might be a variety of educational environments to support different teaching models

and tasks (computational, control based, etc.). Therefore, in general, a wide spec-

trum of target languages can be chosen to realize the SLO approach, when used. As,

in the most case studies, we have provided in the book the educational environ-

ments are robot oriented, it is easy to understand why we use RobotC as a target

language. In other words, the selection of the target language depends on the

domain we try to automate.

The choice of the meta-language is independent upon the domain. As it has been

shown by the study [ŠD13], any programming language in the mode of structured
programming can be used as a meta-language. In practice, however, a decisive

point might be the authoring tools to design meta-programs (SLO in our case). The

tools are highly dependable on the language the tools are implemented. For

example, we use the authoring tools that are specifically targeted for PHP. Thus,

we use PHP as a meta-language to code SLO specifications.

The following questions may also be the topic for debate: can the meta-language

be used as a teaching language? Should the meta-programming paradigm be taught

and in which cases? We have left the answers as separate research and exercise

questions (see Task 9.12 in Sect. 9.6).

9.3.3 SLO Design Paradigms

As it was discussed in Chap. 3, nowadays the reuse vision prevails in e-learning in

general and in the content design in particular (see, e.g. [JH07]). The key reuse

processes are as follows: to design, to search, to adapt and to use the content.

Therefore, with respect to reusability in mind, the processes should be handled and

managed as effectively as possible. Here, for this purpose, we apply the reuse-based
framework borrowed from the SWE domain, which is known as design for reuse
(DfR) and design with reuse (DwR) [Sam97]. This framework has been already

introduced in Chap. 7, however, here we have extended the representation of the

framework with added details (see Fig. 9.1). Note that there are different terms of

the framework (such as a twin life-cycle model [Sam97], product line engineering

[PBL05] or software family [Par76]) to express the similar meaning). Note that

similarly to software families, SLO can be also viewed as a family of the related

LOs.

DfR aims at understanding the e-learning domain (e.g. CS) through its model-

ling. The modelling should be guided by the clearly stated goal. In our case, the goal

is to extract the relevant data and represent them into some generic form (e.g.

feature diagram usually considered as a domain model to facilitate the construction

of SLOs; for details, see Chap. 4). The initial models are to be designed with the

expert’s knowledge using some well-defined scheme such as TPACK (should be

read as Technological, Pedagogical and Content Knowledge [KM09]).
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At this level, the domain model describes two general aspects: domain common-
ality and domain variability. In the context of SLOs, we consider the learning
variability. The latter has been already discussed in Chap. 5 where it was defined as
a composition of pedagogical (PV), social (SV), content (CV), technological (TV)

and interaction (IV) variability:

LV= PV � SV � CV � TV � IV.

Here, the learning variability is understood as an attribute to indicate the

existence of variants in the subject (pedagogy, sociality, etc.), and ‘�’ means

some kind of composition (see also our papers [ŠBD13, BBD+14]). Both the

learning commonality and learning variability are components that characterize

reusability, though differently. Here, by the learning commonality, we mean those

learning aspects that have no tendency to be changed in a given context. As an

example of learning commonality, we may consider the priority relations (such as

those considered in Chap. 8: ‘perhaps always, the pedagogical aspects have a

higher priority with respect to the teaching content’). It is clear from the common

sense that the learning commonality poses less reusability problems as compared to

the learning variability. That is due to the following fact: once defined, the learning

commonality can be applied in the mode ‘use-as-is’ in the different use contexts,

whereas the learning variability is more influential on generative reuse aspects and

potential for adaptations. Note that in practice there is no neither pure commonality

nor pure variability. Typically, they coexist and appear together to represent the

domain models.
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context-sensitive SLO

Design tool (MePAG);
Models (languages) of
the solution domain

Modelling (FAMILIAR) and
verification (SPLOT)tools

DwR

DfR

CS education domain
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Context-aware SLO
specification

Design of SLOs
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SLO
as Meta-program

Specialized SLO

MP-
ReTool

Legend:

– Data;

– Tools support;

– Explanation;

– Process;

– Model;

Fig. 9.1 A reuse-based
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design and specialize SLOs

192 9 Background to Design Smart LOs and Supporting Tools

http://dx.doi.org/10.1007/978-3-319-16913-2_5
http://dx.doi.org/10.1007/978-3-319-16913-2_8


We define the context as an implicit or explicit factor influencing to delivering
the content for teaching. As the PV and SV, in fact, are those factors, we accept

them as a teaching context here. The basic assumption is that the context may have

variants too (e.g. types of the pedagogical model such as problem based and project
based, student social variability such as beginner and intermediate, etc.). Therefore,
we can speak also about the context variability as well. We are able to model the

context variability, for instance, through the use of fuzzy variables {HP, IP, LP}. In

the simplest case, the variables are constants. We can gain a much more flexibility

and expressive power in the context representation, when the fuzzy variables are

treated as functions of Bloom’s taxonomy levels (see Chap. 8, for details).

As we are able to express any kind of variability through higher-level parame-

ters, the DfR activity results in designing the context-aware SLOs. Further, when it

is appropriate, we refer to context-aware SLOs as the SLOs for simplicity.

In fact, the first part of the framework (i.e. DfR) summarizes all activities that are

needed to create a smart LO. Those activities are complex undertakings with the use

of a variety of methods, models and tools. The activities result in the creation of the

executable specification along with the preprogrammed context to support wide-

range reuse and context-aware adaptation. Within the introduced framework, we

treat this specification as the context-aware SLO. As, indeed, it is a complex

structure, its complexity should be measured and evaluated in somewhat way in

the course of design. We will describe that later (see Sect. 9.3.4).

The second part of the framework (i.e. DwR, see Fig. 9.1) is about adaptation. In
general, the content adaptation is a big problem in e-learning. Even the well-

designed content, for example, extracted from digital libraries, requires adaptation

to the new context of use. There are many reasons for that as follows: rapidly

changing the social context and the need to introduce innovations in the syllabus, to

transfer the content from one learning environment to another, to be a more

competitive teacher/educator, to enforce the students’ engagement, etc. Especially

it is true for CS teaching.

Our adaptation model has two phases. We implement the first phase using the

automatic refactoring tool MP-ReTool managed by the context. It aims at

narrowing the context-aware SLO by refactoring or specializing (structural trans-

formations only) it into the so-called multistage SLOs. This phase, in fact, is the

adaptation to the teacher’s context. We refer to the stage as an abstraction to

rearrange the structure of an SLO so that to enable its partial evaluation by staging

when processed. The teacher, before using the tool, identifies the number of stages

needed, i.e. identifies a strategy for adaptation. The tool, on the basis of the
preprogrammed context for staging and preliminary teacher’s needs, produces the
k-stage SLO. The k-stage SLO is a (k-1)-stage SLO generator, i.e. a high-level

specification containing information to support the adaptation by staging, i.e.

narrowing the space for selecting variants (for more details, see Sect. 9.4.3).

In the second phase, using a refactored SLO (we can also use the term special-
ized SLO; to motivate that, see Sect. 8.2) as an input of the meta-language processor

(PHP compiler in our case), the teacher or student is able to automatically derive the

needed LO. Before doing that, the adequate parameter values should be identified
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and submitted by the user. Therefore, the adaptation is a two-phase process: firstly,

we create a multistage SLO which is seen as a higher-level (or deep [BR12])

adaptation to the teacher’s needs, and secondly, the lower-level adaptation by

deriving the concrete LO to the student’s needs.
At the end, we are able to present the following concluding observation: (1) DfR

is the higher-level activity to design the highly reusable structures such as context-

aware SLOs. (2) DwR is the low-level activity or process to design highly adaptable

SLOs for teachers and adaptable LOs for students. (3) There are the following tools

(FAMILIAR, SPLOT, MePAG) available to support the DfR processes. There are

the following tools (MP-ReTool, PHP processor, target language compiler) avail-

able to support the DwR processes.

9.3.4 Complexity Issues in Designing SLO

As it has been stated previously, when we try to extend the reuse dimension,

typically, this action results in the growth of complexity of the product designed

for reuse. Therefore, the designer has to have measures to evaluate the complexity

of SLOs. As they, in fact, are meta-programs, it is possible to apply the methodol-

ogy and metrics presented in [ŠD13]. Those metrics include: (1) relative Kolmo-

gorov complexity (in fact measuring the content variability), (2) meta-language

richness (measuring the complexity of the meta-level specification), (3) cyclomatic

complexity (measuring the interface complexity), (4) normalized difficulty (it is the

algorithmic complexity of a meta-program) and (5) cognitive difficulty (CD)

(meaning the cognitive understandability of a meta-program). The latter is defined

as follows: CD=max (|P|, N1, N2) (where |P| is the number of parameters, N1 is the

number of meta-functions and N2 is the number of the respective arguments of the

functions within a meta-program). It has been devised using Miller’s work [Mil56]

(stating that humans hold 7 (�2) chunks of information in their short-term memory

at one time) and Keating’s observation [Kea00], who claims that the number of

modules at any level of the software hierarchy must be 7 (�2).

Therefore, the introduced metrics enable to define the complexity boundaries,

such as simple, moderate, complex and overcomplex, from various perspectives in

designing SLOs.

9.3.5 Staging and Context Awareness: A Rationale
for Adaptation

Before introducing the formal definition and a methodology for designing tools, we

first aim at presenting a rationale to understand the technical aspects of adaptation
here. This, in fact, is the motivation of the adaptation concept and the key for the
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primary understanding of the functionality of the adaptation tools. Staging can be

viewed as a process to define stages, either logically (when multistage SLO is

specified) or physically (when user is working with the MP-ReTool). Staging is also

seen as splitting the whole into pieces, i.e. categorizing the learning variability. As

‘there is nothing more basic than categorization to our thought, perception, action

and speech’ (Lakoff, taken from [Dav97]), it is much easier to understanding the

role of staging for adaptation. It is so because, by staging, we are able to diminish

the complexity in interpreting the SLO interface by the user, when he/she works

with the stage-based specification (which has been shown in Chap. 8).

On what ground we are talking about the splitting or categorization here? More

formally, it is about the parameter assignments to stages within the interface and

making the adequate changes within the meta-body, as it will be discussed in more

detail later. What is the base mechanism to provide the meaningful assignments?

Here, we describe this mechanism as context awareness (expressed by the param-

eter context model). As it was already stated, we express the context by the fuzzy

weights to interpret the parameters within the interface meaningfully. Our context

model is simple: it is based on parameter priorities. The pedagogy-oriented param-

eters have the highest priority (HP). The social-oriented parameters have the

intermediate priority (IP). This group of parameters may have a priority to be

represented as a constant (imply IP – intermediate priority) or as a function with

arguments that are levels (from 1 to 6) of Bloom’s taxonomy. The pure content and

technological parameters have the lowest priorities (LP). In the case of interacting

parameters, however, their priority is defined by the special rules.

Note that the context model should be predefined in advance, along with the

SLO, and integrated within this specification. As the context model, in fact,

describes the domain expert’s knowledge, it is not the designer’s responsibility to

change or modify the model. For the tool designer, this model is the input data to be

used ‘as-is’. However, the designer of tools has to foresee the possibility for the

teacher to adapt the context model to his/her needs.

Technologically, the SLO adaptation tool should implement the adequate con-

nection (among stages, parameters and context model) to make the adaptation

possible. As indeed this connection is not a simple task, we need first to define

and study more thoroughly the basic concepts, models, properties and rules (restric-

tions). Therefore, the next two subsections provide the background to support the

SLO design and adaptation processes and tools.

9.4 Background of Smart LOs to Develop Authoring Tools

Here, by authoring tools, we mean the two: (1) tool for developing SLOs (semi-

automatic or even automatic) and (2) tool for transforming (refactoring) an initial

SLO (developed for reuse either manually or with the aid of the first tool) into its

multistage representation for the adaptation purposes. As it was stated before, we

are proponents of the model-driven design. We apply the approach in designing
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both tools. The approach focuses on creating and dealing with models at the

different levels of abstraction. In the first case (i.e. in designing the first tool), we

exclude two base levels of the models: SLO design specification and coding. We

use the feature-based models to specify SLO at the specification level. The formal

and semiformal definition of the models has been already discussed (see Chap. 4).

Two important kinds of feature models should be highlighted here: abstract and
concrete models. Abstract feature models describe the CS teaching domain for

general representation and analysis. The concrete models are derivatives from the

abstract models. The basis for the SLO specification is the concrete models. Thus,

the theoretical background of the specification level is a feature-based modelling (i.
e. model creation, aggregation and verification).

The theoretical background of the coding level is meta-programming, compu-

tational models, transformation rules and algorithms for implementing the models

and rules. Below, we define meta-programming as a base technology/methodology

to implement SLO using the formal notations. We use, in fact, three notations for

representing meta-programming concepts: the set-based one (for concise represen-

tation and general understanding because this form is more popular in the mathe-

matical sense), the graph-based one (for visual representation of interdependencies

among the adequate items) and the feature-based one (for connecting the specifi-

cation and coding tasks through model transformations). The reader should not be

confused by the use of those notions because they are not so much different (feature

models, in fact, are graphs with adequate semantics and both use the set formalism).

In the second case (i.e. in designing the second tool), we use also the feature

models to specify the meta-programming level concepts, meta-program specializa-

tion (in other words, partial evaluation or refactoring) techniques, graph theory and

stage meta-programming as a theoretical background. For better understanding the

main concepts of the background, we illustrate them with the same example that

was already introduced in Chap. 5 (see Table 5.1). Here, however, we introduce

new features into this illustrative example, according to the specific context.

9.4.1 Definition of Meta-Programming Concepts and SLO

In this section, we define the meta-programming and SLO-related concepts more

precisely as it was done so far (see Sect. 6.3.2 in Chap. 6). To illustrate them, we

also provide illustrative examples. We use the same examples (generic Boolean

equation and generic algebraic equation as simplified instances of SLOs) that were

already introduced in Chap. 6. Here, however, the examples are extended in order

we could be able to explain the additional aspects. For readability and conciseness,

we use a simplified representation of the languages (meta- and target).

Definition 9.1 Heterogeneous meta-program (He MP) is the higher-level execut-

able specification, which is coded using at least two languages (meta-language LM
and target language LT) to specify and generate a set of the target program

instances.
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Further LT and LM stand for the formal notation (L1 and L2 stand for the informal

notation; see Table 9.1) of the target and meta-languages, respectively. Note that

the LM processor is the transformation tool to generate programs in LT from the He

MP (MP for short).

Definition 9.2 MP model μ(M) is the structure μ Mð Þ ¼ μ MIð Þ [ μ MBð Þ, where
μ(MI) and μ(MB) are the interface and meta-body models, respectively.

Definition 9.3 In terms of the set-based notion, interface model μ(MI) is the n-
dimensional non-empty space of parameters and their values defined as: μ MIð Þ
¼ P;Vf g; where P is the full set of n parameter names, i.e. n ¼ Pj j; and V is the

ordered set of all parameter values.

As each parameter Pi Pi 2 Pð Þ has its own set of values as follows:

νi1 ; νi2 ; . . . ; νiq
� � � V. Thus, we can write: Pi :¼ Vi ¼ νi1 ; νi2 ; . . . ; νiq

� � 2 V; iq –

the number of values of parameter Pi. The symbol ‘:¼’ means ‘is defined’.

Definition 9.4 Two parameters Pi and Pj (Pi,P j � P i 6¼ jð Þ ) are said to be

dependent upon the choice of their values, if there exists a pair of values

vid ; v jt

� � �
vid 2 Pi, v jt 2 P j, where d 2 1; iq

� �
and t 2 1; jm½ �; q, m – the number

of values adequately) such that the following condition holds:

vid requires v jt

� �
or vid excludes v jt

� � ¼ true ð9:1Þ

Otherwise (i.e. if Eq. (9.1) is false for all values of Pi and Pj), the parameters are

independent upon the choice of their values.

Table 9.1 Running example of a meta-program as SLO: conceptual level with comparisons

Domain Domain instance Objects of the instance

Properties

and values

Result of

manipulation

Programming Program:
y:=a*x+ b;
L = {y, :=, a, *,
x, +, b}
L: program

language

Variable, constants,
operations, statement

a2[2..10]
b2[11..30]
x2[20..40]

A value of y
defined by the

computer

program, e.g.
y = 51, when
a = 2, b= 11
and x= 20

Meta-

programming

Meta-program:
y:= af(p1)f(p2)f
(p3)b;
L1 = {a, b, y, :=}
L2 = {f(p1), f(p2),
f(p3)}
L1: target lan-

guage

L2: meta-language

(in fact, alphabets)

Meta-objects: parame-
ters, parameter values,
functions substituting
a parameter by its value

f(p1)! p12
{*, /}

f(p2)! p22
{x, x*x,
z*z*z}
f(p3)! p32
{+, �}

A program

instance,

defined by the

L2 processor,

i.e.

y:=a*z*z*z
+ b;
when

f(p1)=’*’
f(p2) = z*z*z
f(p3)=’+’
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Definition 9.4 as compared to Definition 6.4 expresses the interaction formally

by Eq. (9.1). This enables us to formulate the property using which it is possible to

define rules of constructing the parameter dependency graph G(P,U).
In general, the graphG(P,U) is defined as follows: P is the set of parameters;U is

the set of parameter dependency, i.e. ui j ¼ 1 if and only if Pi and Pj are dependent

according to Definition 9.4 and ui j ¼ 0 otherwise (Pi,P j � P i 6¼ jð Þ).
How the graph is constructed? For this purpose, we need to return to the generic

Boolean equation that was given in Sect. 6.3.3. Two cases were discussed here:

Case 1 when P1 = {AND, OR} and P2 = {2, 3, 4} (parameter P1 specifies generic

operation and P2 specifies the number of arguments for the generic operation) and

Case 2 when P1 = {NOT, AND, OR} and P2 = {1, 2, 3, 4} (there parameter values

are slightly changed as compared to Case 1).
Now we illustrate (see Fig. 9.2) how the parameter dependency graph G(P,U) is

actually constructed for our generic equation, using the value interaction graph.
The latter is the bipartite graph defined as H((Vi,Vj),E), where Vi is the set of

values of parameter Pi, Vj is the set of values of parameter Pj (Pi,P j � P i 6¼ jð Þ) and
E is relationships among Vj and Vj.

In Fig. 9.2a, we illustrate Case 1. Here, the parameters P1 and P2 are indepen-
dent (graph G(P,U) is the null graph), because the value interaction graph H is the

complete bipartite graph (meaning Eq. (9.1) is false). In Fig. 9.2b, we illustrate

Case 2. Here, on the contrary, the parameters P1 and P2 are dependent (graph G(P,
U) is the connected), because the value interaction graph H is the non-complete
bipartite graph (meaning Eq. (9.1) holds, i.e. true).

Therefore, we are able to describe the interface model using either the set-based

notion (Definitions 9.3 and 9.4) or the graph-based notion (i.e. the parameter

),( UPG

P1

P2

)),,(( EVVH ji is complete 

bipartite graph
AND OR

2 3 4

P1 values : 

P2 values :

Relationships

),( UPG

P1

P2

)),,(( EVVH ji is non-complete

bipartite graph
AND ORNOT

2 3 41

P1 values:

P2 values:

Relationships 

a

b

Fig. 9.2 Example

illustrating the construction

of parameter dependency

graphG(P,U): (a) Case 1 (H
is the complete bipartite

graph) and (b) Case 2 (H is

non-complete)
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dependency graph G and parameter value interaction graph H; the latter serves for
constructing the first). As the graph-based representation is complete, we use it in

the subsequent formal reasoning.

Definition 9.5 The meta-body model is an ordered set of functions: μ MBð Þ ¼
f k a j

� �� �
; where fk(aj) 2 LM; a j 2 P or/and fragments of LT.

Note that the ordering of the functions depends on the syntax and semantic of the

target language LT and requirements of the meta-program itself. All these can be

learnt from our running example (see Table 9.1).

Definition 9.6 SLO is the heterogeneous meta-program that specifies the learning
variability along with the preprogrammed context to express the variability seman-

tics for adaptation.

The reader can also interpret the given formal definitions along with informal or

semiformal examples taken in Table 9.1 (note that here the meta-program example

is interpreted in the same way as it was done in Chap. 6). As the MP (i.e. SLO)

model can be also defined using the feature-based notation, we provide this

representation in Table 9.2. Note that, in terms of features, the interacting param-

eters are typically expressed through the constraints of the type excludes or requires
(see Table 9.2) and the meta-body is expressed through functions (cp. Definition 9.5

and adequate features in Table 9.2).

We illustrate the meaning of Definition 9.5 in Table 9.3. Note that here the

learning variability is presented by two components (content and context) only. The

pedagogical context is missed due to the reasons of simplicity.

Next, we present the formal definition of feature models.

Table 9.2 Meta-program specification level: SLO interface model

Domain

instance

Meta-program (MP) represented by feature

diagram

Interface

elements

Interface

model without

the context

Meta-program
f(p0):= af(p1)f
(p2)f(p3)b;
L1 = {a, b, :=}
L2 = {f(p0), f
(p1), f(p2), f
(p3)}
L1: target

language

L2: meta-

language

(In fact, alpha-

bets of the

languages)

f (p0)! p0 = {y, x, z};

z x y
xor

+

MP

L1Features L2Features

a :=

x * /x*x z*z*z -

b f(p2) f(p1) f(p3)f(p0)

xor

...2 10 ...11 30

p0 p2

p1 p3

p0

p1

p2

p3

xor
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9.4.2 Fundamentals of Feature Models

Definition 9.7 Base domain feature model is the compound:

FM ¼ G;Emand;Gxor;Gor;REQ;EXh i;
where G ¼ F;E; rð Þ is a rooted tree, F is a finite set of features, E � F� F is a

finite set of edges, r 2 F is the root feature, Emand � E is a set of edges that define

mandatory features with their parents,Gxor � P Fð Þ � F;andGor � P Fð Þ � Fdefine

alternative and optional feature groups and are sets of pairs of child features

together with their common parent feature, and REQ and EX are finite sets of

constraints requires and excludes (adopted from [ACL+13], see also Table 9.3).

Definition 9.8 Priority feature model (PFM) is the context model expressed

through fuzzy variables that are treated as features taken from the set {HP, IP,

LP} along with adequate constraints of the type requires, where HP is high priority,

IP is intermediate priority and LP is low priority (see the node-feature p4 in

Table 9.3).

Note that priorities are defined at the analysis phase by a domain expert. In fact,

fuzzy variables are parameter weights helpful to sequencing parameters in

constructing the MP interface (see Property 9.2 in Sect. 9.4.5).

Definition 9.9 Extended domain feature model (EFM) is the aggregation of the

base feature and priority models: EFM ¼ FM
L

PFM; ‘
L

’ means the aggregation

operator (in Table 9.3, in fact, there is shown the aggregated model).

Definition 9.10 Meta-program feature model is defined byDefinition 9.7 so that all
components of FM are taken from the meta-programming domain (see concepts

definition in Sect. 9.4.1).

Table 9.3 SLO as a meta-program specification with the context-aware interface model

Domain instance

SLO feature diagram, where the feature p4 models the

context (here, p means priority)

Interface

model

with the

context

SLO as a meta-

program without

pedagogical fea-

tures

f(p0):= af(p1)f(p2)
f(p3)b
L1= {a, b, :=}
L2 = {f(p0), f(p1),
f(p2), f(p3), p4}

z x y
xor +

SLO

L1Features L2Features

a :=

x
* /

x*x z*z*z
-

b f(p2) f(p1) f(p3)f(p0)

xor

p4

LP IP HP
requires

requires

requires

...2 10 ...11 30

p0

p1

p2

p3

HP HP

IP LP

xor
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9.4.3 Stage Meta-Programming and Stage SLO Concepts

This part gives the formalized background to develop tools (see Chaps. 8 and 10)

for designing the highly adaptive SLOs. This background is rooted on the stage-

based meta-programming concept. The latter is about the specification of meta-

meta-programs [ŠBB14]. To specify the functional model in designing meta-meta-

programs, we need to introduce additionally new technological terms such as the

ones: deactivating label, active/passive meta-construct, deactivating index, stage
and k-stage meta-program. Their definitions follow.

Definition 9.11 Deactivating label is the sign (usually denoted as ‘\’) written

before a language construct.

Note that modern high-level languages (such as Java, C++, PHP, etc.) have the

deactivating labels to control and change the role of the language constructs during

their compilation. Here, we use the label in the other context – to change the role of

meta-constructs of the meta-language, when it is interpreted by the meta-language

processor.

Definition 9.12 Meta-construct of a meta-language is the parameter, the function
or both. The meta-construct is said to be active if it performs the prescribed action

defined by the meta-language at the current stage of meta-program execution.

Simply, the active meta-construct has no deactivating label.

Definition 9.13 Meta-construct is said to be passive if it contains the deactivating
label (labels) written before the meta-construct (e.g. the construct $x= a is active;

the construct \$x= a is passive; here, $x is treated as a variable of PHP (i.e.

meta-language) and a as a variable of a target language).

Note that the passive meta-construct is treated as a target language text at the

current stage of meta-program execution.

Definition 9.14 Deactivating index is the adequate number of deactivating labels

written before a meta-construct. The value of the index depends on the meta-

construct’s stage and meta-language used (Rule 12 to be considered in Chap. 11,

Sect. 11.3.4 indicates how to calculate the index value).

Definition 9.15 Stage is the state of the meta-program defined by the active meta-

constructs.

Definition 9.16 Deactivating process is the multistage process (in terms of k-stage
processing) to reducing the deactivating index by 1 or changing the state of a meta-

construct from the passive state to the active state.

The meta-language processor performs the deactivating process reducing the

deactivating index by 1 at the given stage. Note also that the deactivating process

does not affect semantics (functionality or behaviour) of the meta-construct. The

process affects its state only.
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Definition 9.17 A k-stage meta-program is the specification, where parameters are

assigned to stages so that the following conditions are valid:

(i) Each stage has at least one parameter.

(ii) At stage j (1 	 j 	 k
�
, all parameters assigned to this stage and all functions of

the stage are active, while the remaining meta-constructs (i.e. parameters and

functions of the meta-language) are passive.
(iii) There are specific rules and constraints to support the deactivating mechanism

at the adequate stage.

Definition 9.18 Structural model of the stage meta-program is the hierarchic

structure, where j stage (1 	 j 	 k
�
has the interface and meta-body that both are

embedded into the j+ 1 stage (see Fig. 9.3).

Definition 9.19 Stage-based meta-program is the meta-meta-program. If there are

k stages, we treat the meta-meta-program as the k-stage meta-program.

Note that the initial meta-program is the one-stage meta-program.

Definition 9.20 Stage-based SLO is the stage-based meta-program that represents

learning variability through stages of the model (Fig. 9.3).

How looks the complete implementation of the stage-based SLO in PHP, one

can learn from the running example (see Fig. 9.4a, b). Here, for simplicity reasons,

we present the two-stage SLO (Fig. 9.4b) to specify the generic Boolean equation
(see also Sect. 6.3.3 in Chap. 6) with three parameters (P1 = {^, _} defines a set of
possible operations; P2 = {2, 3, 4} defines the number of arguments; the arguments

are represented as X1, X2,. . .; P3 = {Y, Z} defines the set of names of the right side

function (equation)). Parameters are prioritized according to their role in the

equation.

In this section, we continue the discussion on the designer’s view and present a

background that may contribute to context-aware adaptation tool development
using the SLO approach. Here, we discuss the SLO model aspects in more details

along with most significant properties that enable to develop and validate the tool.

Interface of k-stage meta-program

Meta-body of k-stage meta-program

Meta-body of 2-stage meta-program

Interface of 1-stage meta-program

Meta-body of 1-stage meta-program

Interface of 2-stage meta-program

. . .

Fig. 9.3 Structural model

of the k-stage meta-program

and SLO
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9.4.4 Properties of SLO-Based Models

Property 9.1 In terms of the graph-based notion, the graph G(P,U) is the interface
model of a meta-program (or SLO).

This property follows from theDefinition 9.3 andDefinition 9.4 (see Sect. 9.4.1).
This property defines the interface model more precisely because it, in fact,

combines the Definition 9.3 and Definition 9.4 and, additionally, explicitly states

the interaction among the parameter values with the aid of the graph H. The next

property generalizes the issues discussed in Sect. 9.4.3 (see Figs. 9.3 and 9.4).

The model is said to be weighted and denoted as G(Pw,U) if a parameter within

the specification is labelled by the fuzzy variable w 2 HP; IP; LPf g. The latter

represents a priority of the parameter (see also Sect. 7.5, for more details). Fuzzy

variables play two roles: (1) they are a helpful instrument to make parameter

sequencing in designing interfaces of SLO because parameters differ in semantics,

and (2) they represent the context of adaptation to allocating parameters to stages

when the task of creating the multistage SLO is considered.

Property 9.2 Context-aware interface model of SLO is the weighted graph G(Pw,

U) whose nodes are labelled by the fuzzy variable w ( w 2 HP; IP; LPf g� to

represent the context for adaptation.
As the weights are not influential to the properties considered below, for

simplicity, we omit the symbol w in representing the model here.

<?php
//here is interface of SLO
$P1 = V; //PH-High Priority
$P2 = 3; //PI-Intermediate Priority
$P3 = Y; //PL-Low Priority

<?php
//here is Interfaceof stage 2
$P1 = "V";
$P2 = 3;

//here is the MB of stage 2
echo "<?\n";
echo "\$P3 = Y;\n";
echo "echo \" \$P3 = X\".\"1\";\n";
echo "for(\$i=2;\$i<=$P2;\$i++)\n";
echo "echo \" $P1 X\".\$i;\n";
echo "?>\n";
?>

//here is meta-body (MB) of SLO
echo "$P3 = X"."1";
for($i=2; $i<=$P2; $i++)
echo " $P1 X".$i;
?>

a b

Fig. 9.4 Initial one-stage SLO coded in PHP (a), two-stage SLO specification in PHP (b)
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Property 9.3 The parameter dependency graphG(P,U) of the SLO specification is

the null graph iff for each pair of parameters Pi,Pj2 P (i 6¼ j) their value interaction
graphs are complete bipartite graphs, i.e. formula (9.2) holds:

8b Hb Vi;V j

� �
;E

� �
is complete

� � ¼ true; ð9:2Þ

where (b 2 1; Bj j½ �; Bj j ¼ C2
n); and B – the number of different parameter pairs.

How many different parameter pairs should be examined in practice? This is left

to the reader as a scientific problem (see Sect. 9.6, task 9.11).

Property 9.4 The parameter dependency graph G(P,U) is disconnected (i.e.

containing a set of connected components) iff the following relation holds:

∃b Hb Vi;V j

� �
;E

� �
is non� complete

� � ¼ true: ð9:3Þ

The parameter dependency graph can be expressed as:

G P;Uð Þ ¼ [g
i¼1

Gi, Gi \ G j ¼ ∅; Gi,G j � G
�� � ð9:4Þ

i 6¼ jð Þ, g is the number of connected components, including isolated nodes (g> 1).

Property 9.5 The connected components Gi � G P;Uð Þ and i ¼ 1; g½ �ð Þ (see Eq.

(9.4) represent the groups of independent parameters.

Property 9.6 The upper bound of the eligible number of stages kmax to perform

specialization of the given correct SLO specification into its k-stage format is

defined by inequality (formula (9.5)):

kmax 	 g ð9:5Þ

To illustrate Property 9.5 and Property 9.6, in Fig. 9.5, we present an abstract

example (adapted from [ŠBB14]) that contains possible variants of Gi � G P;Uð Þ.

g=6 g=3 g=3 g=1
a b c d

Fig. 9.5 Variants ofGi � G P;Uð Þ: (a) Gi as 6 isolated nodes; (b)Gi as two isolated nodes and one

group of dependent parameters; (c) two groups of dependent parameters and one isolated node; (d)
one dependent group
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Property 9.7 Property 9.4 and Property 9.5 hold also for the graph G(Pw,U) and
its components Gw

i � G Pw;Uð Þ. As a result, all nodes (i.e. parameters) of a

connected subgraph Gw
i have the same weight w.

9.4.5 Formal Statement of SLO Design and Refactoring
Tasks

Here, we formulate two tasks. Task 1 is to design a reusable context-aware SLO (in

terms of the paradigm DfR, see Fig. 9.1). Task 2 is to apply the refactoring
transformation and to produce (from the context-aware SLO) the stage-based
specification for the purposes of adaptation. Task 2 is seen as a result of using

the DwR paradigm (again, see Fig. 9.1).

Typically, computer scientists define a design task as the process of mapping the

problem domain onto the solution domain [CBK13]. In our case, CS teaching and

learning is the problem domain, and meta-programming is the solution domain. In

terms of the model-driven design, we represent each domain by the adequate

feature models. Furthermore, it is possible to express our problem domain through

the learning variability (see Chap. 5). Thus, we are able to reformulate the SLO

design task at the feature model level as follows:
The Task 1 is to map the learning variability feature model onto the meta-

programming feature model.
Formally, we can write:

FDSLO ¼ FDLV � FDMPG; ð9:6Þ

where FD (feature diagram) is the adequate feature model, LV is the learning

variability and MPG is the meta-programming.

In Chap. 10, we will discuss how to develop the authoring tools and how to solve

Task 1 and Task 2 (semi-)automatically using the tools. Note that we apply the

model-driven design approach, where the model transformation rules, computa-
tional models and algorithms to realize them are at the focus (Chap. 10).

Task 2, in fact, has been already stated in Chap. 7 as the SLO specialization task
through the formal permutation of parameters within stages. That was enough to the

user to understand the essence of the task. Some important details to realize the

stage-based SLO, however, were omitted there. Now, we are able to fulfil this gap,

because we have specified more precise models here. Note that here we use the term

refactoring instead of specialization as it was previously. Though both have the

same meaning (see discussion in Sect. 7.2), the first is more relevant to the SW

engineering domain (we treat the SLO design tools as a subject just of this domain).

The second is more relevant to the CS domain (we treat the use of SLO as a subject

of CS as it follows from Sect. 7.2).
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Suppose, we have a correct initial SLOR specification (here, R means reuse, i.e.

design for reuse; see Fig. 9.1). We seek to obtain the stage-based specification,

denoted as SLOS (here, S stands for stage or specialization through staging; see also
Fig. 9.1). Now the formal statement of Task 2 is as follows:

To perform refactoring transformation according to the relationship 9.7:

SLOR !T Skð Þ
SLOS; ð9:7Þ

where !T Skð Þ
stands for refactoring transformation by staging (Sk) and k – the number

of required stages.

Now we are able to formulate the theoretical statement important to design

SLOS. The statement formulates the existence of the solution to the problem.

Statement Transformations SLOR !T Skð Þ
SLOS; 1 < k 	 kmaxð Þ exist iff the param-

eter dependency graph G(Pw,U) of SLOR is disconnected, i.e. it is defined by Eq.

(9.4).

The proof is based on Properties 9.1, 9.2, 9.3 and 9.4 (see also Fig. 9.5d).

In practice, however, the graph G(Pw,U), as a rule, is disconnected, and there are
many possible solutions. The interesting question is how much? Theoretically, i.e.

if we neglect the role of the weights w and consider the model G(P,U), the number

of possible solutions depends on two variables k and g (k is the number of required

stages and g is the number of disconnected components of G(P,U)). Therefore, the
number of possible transformations can be calculated by Eq. (9.3) (when k= 2) and
by Eq. (9.4) (when k= 3) as follows [ŠBB14]:

T Skð Þj j ¼ 2g � 2; ð9:8Þ

T Skð Þj j ¼ 3g �
Xg

i¼1

3*2 i�1ð Þ: ð9:9Þ

Here, |T(Sk)| is the number of possible transformations. The number defines the

adaptation space. For example, there are 130 transformations or possible variants

of adaptations, when k = 3 and g= 5 (the case of a simple SLO in terms of

complexity measures, see Sect. 9.3.4). In practice, however, the real tasks have a

much larger space of adaptation. Therefore, the weights provide the context-aware

information, enabling to narrowing the search space in dealing with the adaptation

problem, as it will be discussed later in Chap. 10.

Now, we summarize the basic result of this chapter as follows.

9.5 Summary, Discussion and Conclusion

In Chap. 9, first, we have outlined the preliminary statements that are important to

the SLO designers and to the designers of authoring tools. We have formulated the

basic principles and requirements to design smart LOs (SLOs). We have treated
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those requirements as being virtual, i.e. independent upon a concrete situation as

much as possible. We have also focused on the linguistic aspects, i.e. on the

problem of choosing languages (meta- and target) in coding the SLO specifications.

s. We have described the reuse-based design paradigms (i.e. design for reuse and

design with reuse that we have adopted from SW engineering) as they are applied in

our case to design and adapt SLOs. Note that we have also considered those

paradigms, however, in another context in Chap. 4. As designers, before starting

their activities, should be aware the complexity issues, we have also shortly

discussed the complexity measures to evaluate the designs.

Next, we have provided the theoretical background to design smart LOs and

transform them to the stage-based specifications aiming to adapt them to the user’s
contexts of use. We have specified more precise models (as it was done so far, for

example, in Chap. 7) for the motivated solving of the tasks. We have used the set-

based (graph-based), feature-based and meta-programming-based concepts and

notions to specify our models. We have formulated the basic properties of the

analysed models. The properties are the basis to define the other (i.e. realization-
level) properties, transformation rules, computational models and algorithms to

specify the functioning of the authoring tools.

9.6 Research and Exercise Questions

9.1. Describe the framework to characterize the adaptation problem by identify-

ing (a) the scope of the problem and (b) the most influential factors and their

interactions.

9.2. Provide a specific insight and investigation into the role of the context to the

adaptation problem.

9.3. Draw the links (conceptual, model based) between reusability and adaptabil-

ity of the teaching and learning content.

9.4. Define the terms adaptation and adaptability using the results of previous

questions. Clarify what might be the object for adaptation.

9.5. What kinds of adaptations might be?

9.6. Draw the links among the learning process and content adaptation.

9.7. Consider the content adaptation problem from the pure technological per-

spective and provide the relevant technologies that might be helpful.

9.8. Provide research on program partial evaluation (specialization) for the pur-

pose of CS teaching.

9.9. Model the presented approach using the tool [BBŠ13] along with test cases

given there and identify the main properties of the approach.

9.10. Clarify how can model-driven and generative technologies contribute to

adaptation problem?
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9.11. Investigate the parameter value interaction model specified by the bipartite

graphs in Sect. 9.4.4 (see Properties 9.3 and 9.4) as a separate research task.

9.12. Investigate the linguistic aspects of the meta-programming paradigm.

Motivate the need of multilinguistic teaching in CS courses.
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Chapter 10

Authoring Tools to Design Smart LOs

10.1 Introduction

Nowadays the teaching and learning processes are widely supported by the ade-

quate authoring tools. In general, the aim of using the tools is to gain the techno-

logical value in the first place, i.e. efficiency, flexibility, etc. (of course, the

pedagogical value comes together if the tools are applied properly). Our approach

is different in many aspects from those analysed throughout the book. The main

distinguishing feature is the realization of the concept of producing and adapting
the teaching content automatically. The automation, however, never comes for free.

The process of developing smart LOs (SLOs) is the time-consuming and error-

prone activity. It requires specific knowledge, competency and some experience of

working with meta-programming. Of course, it is possible to write the meta-

programming-based SLO specifications manually (by the knowledgeable CS

teacher or even by knowledgeable students). Our practice shows that, at the initial

phase of adoption of the approach, it is even recommended to apply the manual

development. On the other hand, the human efforts are highly dependable on the

complexity of SLOs (simply, it might be measured by the number of parameters and

their dependency, i.e. model complexity). The more complex SLOs are, the more

efforts to develop them are needed. In this case, the use of the adequate tools is

highly desirable. Such a situation is with the development of SLOs.

With regard to the redesign and refactoring (i.e. specialization of SLOs for the

adaptation purposes), however, the situation is quite different. The refactoring of

SLOs, aiming to support the needs for adapting the content to the context of use, is a

much more complicated task to the user. This is because of the complexity issues,

i.e. due to an extremely low level of readability and understandability in analysing

the meta-program texts. Especially it is true, when the number of stages of adap-

tation is larger than 2. Therefore, in the course of the provided research activities in

the field, we found the necessity to develop the experimental tools to support both

processes – the SLO design and refactoring (i.e. specialization for adaptation).
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In this chapter, we address tasks related to the development and functioning of

the tool, namely, MePAG (Meta-Program Automatic Generator). Though the the-

oretical foundation and conceptual framework to develop the tools have been

suggested by the book’s author, the practical implementation has been completely

provided by my Ph.D. student, Kristina Bespalova. Again, my sincere thanks for her

nice work.

10.2 Literature Review

As, in this chapter, we focus on presenting processes and tools specifically oriented

to support teaching and learning in CS with regard to using an SLO, we categorize

the related work into two groups: A, authoring tools used in CS teaching but not so

much related to our approach, and B, processes and tools that relate to the devel-

opment of an SLO.

Group A Here, we focus on the more general aspects of tools such as their

taxonomies, their attributes that support teaching in programming, visualization

capabilities, etc. Kelleher and Pausch [KP05], for example, categorize environ-

ments in teaching programming (the main topic of CS) into two groups: teaching
systems and empowering systems. The first group focuses mainly on the program-
ming mechanics. To deal with the problems of this sort, the following techniques

are applied: (1) simplifying the programming language to be learned, (2) applying

the language to the specific domain problems, (3) introducing automatic syntax

error detection and eliminating, (4) using graphical objects to construct programs,

(5) applying a means to support program’s structuring and (6) using facilities to

observe the program’s running process. Typically, the teaching process is supported
through the networked interaction.

The second group of facilities and tools have more capabilities in constructing

and realizing programs. The main attributes of these systems are as follows:

(1) support of the programming style, (2) representation of the code, (3) construction

of programs, (4) support to understand programs, (5) preventing syntax errors,

(6) designing accessible languages and (7) communication support.

The paper [GM07] provides the main characteristics of environments and tools

that have the essential effect on learning and teaching. They are as follows:

(1) identification of the learner’s previous knowledge and indicating on the ade-

quate learning style, (2) use of programming models, (3) introduction of elements

of gaming and (4) use of facilities to create algorithms. Dillon et al. [DAB12]

categorize the systems to teach programming according to their assistive level taken
to the learner. There are the low assistive, moderately assistive and highly assistive
systems. In the first case, the learner writes the textual code and uses independent

compilation, processors and text editors. The debugging of the program is manual.

In the second case, there are additional facilities such as syntax highlighting, error
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highlighting, autocompletion and integrative debugging. In the third case, there are
already means of visualization.

The learning and teaching tools also follow the main technological trend such as

mobility. Therefore, there are systems enabling learning and teaching programming

with the use of mobile devices [MP10, TMH+12]. The program visualization and

game-based learning of programming are specific topics which are not considered

here. Note that the program visualization tools are discussed in [SFP+12]. The

reader of this paper, for example, can learn more on the taxonomy of such tools and

systems.

Finally, one kind of tools should be mentioned with particular respect and

attention. We have in mind the authoring tools GLOMaker. The system has been

developed to support the design of the teaching and learning content based on the

original concept of GLO proposed by Boyle, Leeder and Morales et al. [LBC04],

the pioneers of the concept. The tool has been built using the template-based

generative technology. Though the GLOMaker is not specifically dedicated to

teaching CS, it has played and continues to play a significant role in the formation

and consolidation of the new direction in LO research. We have accepted this new

concept and connected it with the meta-programming-based approach to develop a

new kind of GLOs, more suitable to teach CS topics. Further, our research on the

meta-programming-based GLOs has paved the way to the arrival of smart LOs – the

main topic of this monograph.

Group B As we use the model-driven approach in designing SLO, we focus more

on processes to transform models and code. Furthermore, as the tool design is not so

much related to the teaching process itself, we need to focus more on research in

relative domains, i.e. CS and SWE.

It is commonly agreed that the analysis and manipulation of a program source

code are regarded as one of the most important computing aspects [Har10]. At

present, however, there is an evident shift from the program code transformation

towards the program model transformation, i.e. computational models are to be

considered at a higher level of abstraction [BMR11]. The reasons for that are at

least two: the ever-increasing software content within modern IT-based systems

and the continuous growth of complexity of both programs and systems

[Men12]. As a response to the complexity challenges, model-driven approaches

have been proposed and widely researched in recent years. Among those

approaches, feature-based modelling prevails now with the focus on software

product line (SPL) engineering (also known as software families) to a larger extent

enabling reuse and automation [CBK13].

The basic idea is first to determine the features that are domain abstractions

relevant to stakeholders and, then, to devise feature models to support modelling

and high-level transformations. In Chap. 10, we have adopted feature-based model-

ling to build the tools for the semi-automatic development of heterogeneous meta-

programs. They are, in fact, domain program generators [ŠD13]. Though they

cannot be created in any case and for any domain, their role is growing continu-

ously. The ability to design program generators should be directly connected with a
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domain variability modelling and managing. As variability modelling is the main

focus now [CBK13], the meta-programming-based approaches follow the same

trend too.

A great deal of the reviewed papers considers the feature concept as the basis for
feature-oriented modelling. There is no unified definition of the term feature

[AK09]. Slightly different definitions, in fact, mean universality of the approach.

As a result, the intensive research and developments around formal semantics,

reasoning techniques and tool support make feature models (FMs) a de facto

standard to model and manage variability now [AK09, CL13, SHT06, CW07,

TBK09]. Furthermore, the OMG standard for variability modelling [OMG13], the

common variability language, is also based on FMs [CVL14]. Acher et al. [AHC

+13] present a comprehensive, tool-supported process for the reverse engineering

architectural FMs to extract and combine different variability descriptions of the

architecture along with alignment and reasoning techniques to integrate the archi-

tect knowledge. The paper [ACL+13] proposes a DSL FAMILIAR (FeAtureModel

script Language for manIpulation and Automatic Reasoning) that is dedicated to the
management and manipulations of FMs to realize a non-trivial scenario in which

multiple SPLs are managed.

Mendonca et al. [MBC09] introduce SPLOT, a Web-based reasoning and

configuration system for SPLs. The system benefits from mature logic-based

reasoning techniques such as SAT solvers and binary decision diagrams to provide

efficient reasoning and interactive configuration services to SPL researchers and

practitioners. Abbasi et al. [AHH11] address the issues of complex FM configura-

tion processes, enabling to extend a feature-based configurator with multi-view

support and by integrating it with a workflow management tool.

Meta-programming (MPG) is a higher-level programming paradigm which deals

on how to manipulate programs as data. The result of the manipulation is the lower-

level programs. There are many different views to understand and study this

approach. For example, meta-programming can be viewed as a technology to

implement the domain variability given by feature models (for details, see

[ŠD13]). According to Veldhuizen [Vel06], MPG can be seen as a program

generalization and generation technique. The MPG taxonomies [ŠD13, Pas04,

She01] provide a systemized knowledge on the topic. In large, the MPG is the

domain to research model transformations too. Mens et al. [MCG06] state in this

regard that the term ‘model transformation’ encompasses the term ‘program trans-

formation’ since a model can range from the abstract analysis models, over more

concrete design models, to very concrete models of the source code. Visser [Vis05]

presents a taxonomy that considers two major groups of transformations: transla-

tion and rephrasing. Winter [Win04] identifies seven major bidirectional goals of

program transformation: clarity, efficiency, computability, simplicity, functional-

ity, translation and computation. Cordy and Sarkar [CS04] demonstrate that meta-

programs can be derived from higher-level specifications using second-order source

transformations. Trujillo et al. [TAD07] describe ideas to generate meta-programs

from abstract specifications of synthesis paths. Finally, Batory [Bat06] formulates

fundamental ideas and vision to connect the following fields: multilevel models in
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MDE, product lines and MPG. Guerra et al. [GLW+13] propose a declarative

language for the specification of visual contracts, enabling the verification of

transformations defined with any transformation language.

With respect to refactoring transformations, a specific interest should be taken to

multistage programming and multistage meta-programming. One can learn more

about that from [Tah99, Tah04, TBD06, ŠD13].

Though we have analysed only the small part of the available sources on the

transformation processes and tools, we hope that the presented ideas create a pretty

good context to discuss the topics in the remaining sections.

10.3 Process-Based Framework of the Design Tools

First, we present a framework that gives the general understanding of the proposed

approach for developing SLO design tools. Here, we focus on describing the

structural and functioning aspects of the series of tools (selected and newly devel-

oped) along with the processes the tools support. Later we present more details

(such as functioning algorithm) on how to develop the tools to design SLOs. Note

that the material of Chaps. 4 and 9 stands for the theoretical basis of the framework.

To understand the structural and functioning aspects, it is convenient to apply the

process-based view. Therefore, the framework includes a series of transformative

processes with possible feedbacks as it is presented in Fig. 10.1. Processes are

driven either by the external data to be supplied by the user or the internal data

created by the processes themselves. Data are also the source to create models as it

will be discussed in detail later. As there are different models, the processes differ

also.

We consider two kinds of processes: general and task-specific ones. General

processes include the specification and verification of the developed feature

models. Task-specific processes include model transformation to produce meta-

programs (i.e. SLOs) and generation of target program instances (i.e. LOs). The

processes are to be supported by the adequate tools. As it is not an easy task to

develop new tools, designers and researchers typically prefer to use the well-proven

existing tools in the first place. However, such a selection is not always possible

either due to the task specificity or due to the unsatisfactory characteristics and

functionality of the existing tools. Very often, the solution is in the middle as it is in

our case. To support more general processes, we use the known and proven tools,

whereas to support the task-specific processes, we have developed new tools.

The selection of tools highly depends on the processes and models used. As we

use feature models to model our tasks, we have selected the freely available feature-

oriented tools FAMILIAR [ACL+13] and SPLOT [MBC09]. The first supports the

specification and modelling of feature models. In terms of model transformations,

the FAMILIAR tools enable to perform two types of model-to-model (M2M)

transformations: (1) transformation lowering the abstraction level and (2) transfor-

mation preserving approximately the same abstraction level. The FAMILIAR tool’s
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editor supports the first transformation that, in fact, is the specification process, in

which the input model is described by the informal requirements of a domain task

and the output model is represented formally by feature diagrams. The FAMILIAR

modelling facilities support the modelling process in which we are able to perform

some needed manipulations (e.g. feature aggregation, merging, etc.) on input

models that were created through the specification process (see Chap. 5). Manip-

ulations do not change the abstraction level the models are presented.

The important property of the used tools is that the specification yields the

graphical representation of the output model(s), whereas the modelling processes

use the textual language and yield the textual representation of the output model

(s) in the XML format (in fact SXML- an alternative syntax for writting XML data).

As both tools (FAMILIAR and SPLOT) are compatible (i.e. they use the same

textual representation of feature models), we are able to use the straightforward

connection of the tools (see Fig. 10.1). We use SPLOT tools for the verification in

creating models. Furthermore, the SPLOT tools possess facilities to provide model-

ling metrics. The latter is regarded as very helpful information to reason about the

models’ properties and correctness.

Now we put some ideas on the task-specific processes. There are also two

processes (see right part of Fig. 10.1): transformation and generation. The tool

MePAG (Meta-Program Automatic Generator) supports the model-to-meta-pro-
gram transformation (shortly M2MP). This kind of transformation lowers the

abstraction level. The transformation process uses the semiformal model, because

not all input data used we are able to present formally. The reason is that we use the

heterogeneous meta-programming (MPG) paradigm [ŠD13], in which the metalan-

guage (ML) and the target language (TL) are both abstract (not formal). Further-

more, not always it is possible (or reasonable) to synthesize a meta-program

(MP) fully automatically.

A standard ML-processor (e.g. PHP-processor in our case, though other lan-

guages such as C++ and Java can be used in the role of an ML (see, e.g. [ŠD03]))

serves as a generating tool to provide the experimental validation of the synthesized

MP. This process may be multicycle with a possible feedback. This may happen

Transformation GenerationSpecification/
Modeling

Verification

FAMILIAR SPLOTTools

General Task-specific

Initial
data

Output/
input data

Legend:
MePAG – Meta-Program Automatic Generator; MP – meta-program; ML – meta-language;
PI – target program instance(s); FB1 – feedback for verification (dotted line); FB2 – feedback
for validation (dotted line); –point for decision making; – process sequencing.

Processes

MePAGXML

Input
data

Output
data

(model
characteristics)

ML
processor PIMP

Output/
input data

Output
data

FB1

Data

FB2

Fig. 10.1 Process-based framework to understand SLO (LO) creation

216 10 Authoring Tools to Design Smart LOs

http://dx.doi.org/10.1007/978-3-319-16913-2_5


due to some semantic or syntactic inconsistency introduced by the designer, when

such an interleaving is needed. The technique enables to develop a higher-level

executable specification (i.e. meta-program) from which the target program

instances are generated on demand automatically at the use phase.

10.3.1 The Extended Process-Based Description

The tool MePAG implements the model-driven approach in designing meta-

programs (i.e. SLOs). At the core of the approach are models and model transfor-

mation processes. In Fig. 10.2, we present the model-process relationship the tool

implements. This relationship can be also seen as architecture, because processes

are created by the adequate components. The tool enables to realize two functional

modes: automatic (Fig. 10.2a) and semi-automatic (Fig. 10.2b). The ASM engine is
the central component that performs the transformation processes (ASM stands for

abstract state machine).

The tool synthesizes heterogeneous meta-programs from two input feature
models and supplementary data, such as constructs of the meta-language

(ML) and the target language generic instance (TLGI). Two feature models,

namely, FMP and TLGIP (see Fig. 10.2a), represent the problem domain (PD),

whereas the other feature models, namely, FMS and ML functions or MLFS (see

Fig. 10.2a), represent the solution domain (SD). Thus, we formulate our task

formally as mapping the problem domain onto the solution domain: PD!SD (see

also Eq. (9.5) in Sect. 9.4.6). Both feature models are correct because they have

passed through the formal verification (see Fig. 10.1). Here, the model FMS should

be conceived as a meta-program structural model. The model consists of the

interface and meta-body models that do not contain linguistic features. Those are

being delivered by the models MLFS and TLGIP. Two additional properties of the

input models are important to state: (1) it is possible to create TLGIP easily (for not
complex tasks) and (2) there are difficulties in creating TLGIP for the real-world

tasks since the efforts of developing the model TLGIP are roughly the same as

manual coding of the meta-body. We present the model later along with the full

implementation of the running example that was constructed using the tool.

Typically, the first mode means that we are able to develop the relatively simple

meta-programs (i.e. SLO) automatically. The second mode is more general and

specifies the real-world tasks for which we are not always able to develop MPs

automatically, or such a case is merely unreasonable due to the complexity issues as

defined previously. We depict this situation graphically in Fig. 10.2a.

There is some difference among the models FMP and FMS in terms of their mode

of use. The first model is created anew for each new problem task to be solved,

whereas the second model is common for all domain tasks considered in the given

context. Because of this property, we are able to represent the model FMS within the

transformation engine as a fixed data structure while the model FMP should be

always supplied to the engine as the external input model (see Fig. 10.2a, b).
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Yet another fact is important to highlight here. The format of the internal

representation of models within the MePAG might be compatible with the inter-

nal/external format of FAMILIAR (SPLOT) or not. As the latter format has yet not

been standardized, here we have accepted that those formats are incompatible; thus

the additional transformation (T) is needed. This transformation results in

transforming the format of FMP into the intermediate model code (IMCP) of the

problem domain.

The remaining components of the transformation engine are the abstract state

machine (ASM) engine and ASM-based transformation rules (ATR). We present

more details on that as well on some meta-programming-based and feature model

aspects in Sect. 10.3.3. In the next section, we provide more details on LO

generation process.

10.3.2 LO Generation Process from SLO

As it is depicted in Fig. 10.2, the designer goes through the generation processes to

validate the SLO to be designed. When the design is complete, the correct SLO

Transformation
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IMCP. . . FB1

FB2

Transformation

ASM engine

Template
filling

Generation

FB3

Task
data (TL)

Data
on ML

FMS

LO

TFMP ATR

ML
processor

IMCP

MP (SLO)
Template

Designer’s
actions

SLO

. . . FB1

Legend:
Graphical symbols: – model; – automatic process (component);

– semi-automatic process; – point for decision making; – initial data;
FM –feature model; P- problem domain; S –solution domain; TLGI – Target-
language generic instance; IMC – intermediate code; T – FMp transformation;
ASM – Abstract State Machine; ATR – ASM-based transformation rules;
MLF – meta-language functions; TL – target-language; MP – meta-program;
LO – target program instance(s); FB – feedback for correction (dotted lines).

. . .
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Fig. 10.2 Two modes of MePAG functioning: (a) automatic; (b) semi-automatic MP synthesis
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serves as the input data to produce LO on demand automatically. In Fig. 10.3, we

explain the generation process from the user’s perspective. The user, by reading the
graphical interface and introducing initial data, is able to specify what LO features

are most relevant to his/her context. The generation process is similar to the one the

SLO designer provides; however, the aims of the process and actions to be

performed are quite different. If the designer, in fact, is able to make any changes

within the internal structure of SLO, the user cannot provide the changes. He/she is

able to manage the different paths in creating LOs only.

From the user’s perspective, there are seen two subprocesses (see Fig. 10.3):

(1) interface generation and (2) instance generation. The meta-language processor

reads the textual MP (SLO) interface and transforms it into the user-friendly

graphical representation. Next, the user’s actions follow, i.e. the user selects

(from the graphical boxes) the parameter values needed. After that, the instance

generation follows. The typical generation path is 1-2-3-4-5. If there is the need to

change parameter values, the feedback follows and the new path follows to create a

more relevant LO.

10.3.3 ASM-Based Transformation Rules

As it was stated previously, two key formalisms (i.e. feature models of the problem

domain and feature models of the solution domain) form the background of the

developed tools. But we need to use yet another formal model in order to combine

the first two models into the coherent structure. This action has been identified as

the mapping of the problem domain onto the solution domain (see Sect. 9.4.5 in

Chap. 9). Therefore, the mapping procedure requires of using some computational

model. We have selected the abstract state machine (ASM) as the computational

model to specify the behaviour and functionality of our tool. Though there are many

slightly different interpretations of this computational model (e.g. in mathematics

MP Interface
generation

Instance
generation

Graphical
interface

PI

1 2

ML-processor

Initial data
3

4

5
6

for change & adaptation
Legend:
MP – meta-program; ML – meta-language; PI – target program instance(s); paths:
1-2-3-4-5 – typical, without change; 1-2-3-4-5-6-3-4-5-6... – with possible changes.

From library, from
MeAPG,

or created manually
anew

Fig. 10.3 Functional model (user’s perspective): instance generation paths
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and especially in CS), we have adapted the model viewing it as FSM (interpretation

in CS as the most suitable in our case). Following the notation proposed in [B€or99]
and extending it for all states, we can present the ASM model as follows:

8
i, j i 6¼ jð Þ

�
FSM i, if cond then rule, jð Þ ¼
if ctl�state ¼ i and cond then

rule
ctl�state :¼ j

�
;

ð10:1Þ

where i is the current state, j is the next state, i, j 2 Σ is a set of all possible

deterministic states, ctl_state is the variable to denote a control state, cond is a set of
conditions affecting the rule selection and rule is the transformation rule used at the
current stage to produce an adequate element of the meta-program.

To implement this computation model, we need to use the full list of transfor-

mation rules. Note that the model and the transformation rules are also presented in

[ŠBB14]. ©2014 IEEE. Reprinted, with permission, from [ŠBB14].

Note that there are some methodological issues: we need to repeat the same

examples given before for clearness. Below we present the set of transformation

rules to define ASM.

Rule 1 Variant point in the feature model FMP (see Fig. 10.4) corresponds

(is equal) to a parameter name in the feature model FMS (see Fig. 10.5b).

Rule 2 Variants of a variant point within the feature model FMP correspond (are

equal) to parameter values in the feature model FMS (see Fig. 10.5a).

Property 2 The priority feature within the model FMP plays the specific role to

define the priorities to sequencing parameters in designing the MP interface. The

constraints ‘requires’ indicate the correspondence among the variant points and

priority values (see feature pf in Fig. 10.4 and also Rule 1).

Rule 3 The format of a simple assignment statement within the interface of the

meta-program is as follows:

<parameter>¼<parameter_value_set>;

Rule 4 The format of a conditional assignment statement within the interface is as
follows:

<parameter1> <condition> <parameter2> <parameter1> ¼
<parameter_value_set>;

The conditional assignment statement appears if and only if the adequate variant

point has constraints requires or excludes.
Note that the assignment statements can be also substituted by input statements

of the selected meta-language. The full list of meta-language constructs (i.e. PHP)

to realize the task is defined by the feature ‘ML constructs’ (see Fig. 10.5b).
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The used target language constructs (in our case Pascal is used as a TL) are defined

by the feature ‘TL constructs’ (see Fig. 10.5b).

Rule 5 The number of parameters extracted from the model FMs is equal to the

number of variation points extracted from the model FMP to be transferred to the

engine to form the interface according to Rule 3 or Rule 4.

Rule 6 The ASM engine orders parameters (identified by Rules 1, 2 and 5)

according to their priorities (note that the priority feature is represented as a

parameter weight but not as the parameter itself; see Rule 1).

Rule 7 The ASM engine presents the values of the priority parameters as a

comment (/* ..*/) before each simple assignment statement (see lines 3–5 in

Fig. 10.6).

Rule 8 The ASM engine builds the MP interface according to Rules 1–7 (see lines

2–53 in Fig. 10.6).

Rule 9 To form the meta-body, the following set of functions of the meta-language

is used: {Operation (assignment (‘¼”), OPEN-WRITE-CLOSE), conditional,

loops} (see Definition 9.5, Chap. 9).

z x y
xor +

FMP

C_Features V_Features

a :=

x
* /

x*x z*z*z
-

b vp2 vp1 vp3vp0

xor

pf

LP IP HP
requires

requires

requires

Legend: C –commonality V- variability, vp –variant point, pf –priority feature; LP – low
priority; IP – intermediate priority; HP – high priority; xor – the constraint ‘excludes’

Fig. 10.4 Feature model of the problem domain task y:¼a*x+ b (see Table 9.1 in Sect. 9.3)

AFMS

Interface Meta-Body

P1 Pn

11
v

q
v1

1n
v gn

v
[1,*] [1,*]

ML 
constructs

TL 
constructs

1f

[1,*]

mf

FMS

Interface Meta-Body

P0
ML 

constructs
TL 

constructsP1 P2 P3

fopen fwrite fclose = if var read := writeln

a b

Fig. 10.5 Solution domain models: (a) abstract feature model (AFM) and (b) concrete feature

model as applied to the given task
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Fig. 10.6 Full specification of SLO in PHP and Pascal
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Rule 10 Target language generic instance (TLGIP, if any) should be always written
by the designer with the clear specification of the location, where parameters have

to appear (see Fig. 10.7).

Rule 11 In the case of the TLGIP presence, the ASM engine performs parsing,

i.e. syntactic analysis of the item, and builds the meta-body automatically (see

Figs. 10.2a, 10.7).

Rule 12 If there is no TLGIP, ASM provides the meta-body template for its filling

in by the designer (see Fig. 10.2b).

Now, having the transformation rules, we are able to present the algorithm of the

tool MePAG.

10.3.4 ASM-Based Functioning Algorithm of the Tool
MePAG

The following algorithm determines the tools implementation on the ASM basis.

Note that the ASM states are modelled by steps as it is described below.

Algorithm ©2014 IEEE. Reprinted, with permission, from [ŠBB14]

Step 1. if <IMCP exists> then Read data; /* Rule 5; value of n (n � 1) is

defined */

Step 2. if n >1 then Sort parameters according to their priorities; /

*Rule 6 */

Step 3. Create the MP file /*MP.php*/ to store MP’s statements;

Step 4. Write a comment to denote the beginning of the interface; /* for

template filling in*/

Step 5. for i ¼ 1 to n do

Read data for the parameter i; /*Rule 1 & Rule 2*/

if <parameter independence exists> then Create the

parameter value selection form; /* Rule 3 & Rule 7*/

else Create the parameter value selection form with

the conditional branching; /* Rule 4 & Rule 7*/

end;

Step 6. Create a comment to denote the beginning of the meta-body; /* for

template filling in*/

Step 7. if <TLGIP not exists> then do Create comments for the user;

Create the MP completion statements; end do; /*Rule 12 */

else do Read the TLGIP and make the parser’s initialization; /*Rule

10; value of m (m >1) is defined */

for i ¼ 1 to m do

Perform parsing the line i within TLGIP;
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Find the parameter locations in the line and create parameter

variables; /*Rule 11*/Create the meta-body line; /*Rule 9*/

end;

Create the MP completion statements;

end do;

Step 8. end.

10.4 An Example of Meta-Program Constructed Using
the Tool MePAG

We present the same example (task) as it was given in Sect. 6.3.5 (see Fig. 6.6, in

Chap. 6). Here, the tasks has been solved not manually but using the tool to design

meta-programs. We use the term meta-program (instead of SLO) because (1) there

are no pedagogy-based features and (2) the tool is not oriented for the e-learning

domain only: it enables to construct meta-programs for any other domain in which

PHP is used as a meta-language. We present the example in Fig. 10.6. It was

developed using the tool MePAG in the automatic mode. For doing so, the target

language generic instant (TLGIP, see Fig. 10.2a) has to be constructed first. It

always is constructed manually (see Fig. 10.7). We present the graphical interface

of the task along with the derived LO (i.e. the program in Pascal which was used as

a target language) in Fig. 10.8.

As it was already highlighted in Sect. 10.3.1, there are some issues with the

model TLGIP. The first is the manual effort needed. The second is the representation

language. It should be a simple descriptive language that fits for both the internal

(i.e. system) and the external (i.e. designer) representation. For this purpose, we

have adapted the Pascal-like language. The language contains only conditional and

loop operators specified as follows:

@ if <condition> then begin

<TL constructs>

@ end

@ for <variable name> ¼ <initial value> to <end value> div <step>

do begin

<TL constructs>

@ end

Figure 10.7 presents the model, which is described using the language. By

comparing this model with the meta-body specification (see lines 58–71 in

Fig. 10.6), it is easy to conclude that both are of a similar complexity. In other

words, the efforts of manual coding of the meta-body (in semi-automatic design
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mode) are roughly the same as to develop the TLGIP model. It is so, because the

TLGIP model is, in fact, the meta-program.

10.5 Main Characteristics of the Tool

In Table 10.1, we summarize the main characteristics of the developed tool.

Fig. 10.7 TLGIP model to

support automatic SLO

design of the task (legend:
@ – the mark to denote the

beginning of a meta-

language construct; var_ –

the placeholder for a

parameter)

Instance:
program Function; 
var x, y, a, b : integer;
begin 
read(x, a, b); 
y:= a * x*x + b; 
writeln (y); 
end.

b

a

Fig. 10.8 SLO interface (a) and LO instance in Pascal (b) derived from the SLO specification

10.5 Main Characteristics of the Tool 225



10.6 Experimental Validation of the SLOs and Tool
MePAG

As we use the model-driven approach in designing SLOs, first we need to specify

tasks at the model level. The feature models (FMs) of the selected tasks are input

data to design SLOs either manually or with the aid of the developed tool. In

Table 10.2, we present the main characteristics of the investigated models of the

real tasks. Real tasks were selected so that to enable to cover all topics of teaching

CS (programming) at the secondary school (gymnasium) level. The model charac-

teristics obtained using the adequate tools look like the pure technological ones,

because all features of SLOs are expressed uniformly independently upon their role

and meaning. For details on the feature model (FM) metrics, see [ACL+13] and also

Chap. 4. Note also that those FMs are concrete models derived from the abstract

subdomain models (see Tables 4.3 and 4.4 in Chap. 4) and aggregated with the

content models of tasks.

Next, we present a methodology of the provided experiments and results

obtained applying the manual development and using the developed tool. We

carried out experiments with the real tasks to investigate both SLO and the tool.

The used methodology includes the following activities:

(i) Identification of actors involved in the experiments provided

(ii) Identification of the aim and scope of experiments

(iii) Formulation of activities and methodology for the manual development

Table 10.1 Main functional characteristics of the tool MePAG

# Characteristics Value Relationships Evaluation metrics

1 Status Experimental All Low maturity

2 Design lan-

guages and OS

PHP, HTML Windows 3–7 Conventional,

widely approved

3 Design

approach

Model driven 4–8 # of processes and

tools

4 Input models

and data

Domain variability, target lan-

guage-based scenarios

2, 3 Complexity

5 Output data MP and MP template 2–4, 6–7 Complexity mea-

sures [ŠD13]

6 Theoretical

background

Feature models, MP- models,

meta-programming

2–5 Conciseness, preci-

sion, consistency

7 User

interfaces

User-friendly 2, 4 Intuitiveness,

readability

8 Other tools

used

FAMILIAR, SPLOT Dream

viewer

3 # of supplied

characteristics

9 Functionality Transformation on the basis of the

ASM computational model

All Expressed by the

stated requirements

10 Use modes Semi-automatic, automatic All For real tasks, for

illustrative tasks

226 10 Authoring Tools to Design Smart LOs

http://dx.doi.org/10.1007/978-3-319-16913-2_4
http://dx.doi.org/10.1007/978-3-319-16913-2_4


T
a
b
le

1
0
.2

C
h
ar
ac
te
ri
st
ic
s
o
f
p
ro
b
le
m

d
o
m
ai
n
F
M
s
o
b
ta
in
ed

u
si
n
g
F
A
M
IL
IA

R
an
d
S
P
L
O
T

M
o
d
el

m
et
ri
cs

T
as
k

R
o
b
o
t
ca
li
b
ra
ti
o
n

L
in
e
fo
ll
o
w
er

O
rn
am

en
t
d
es
ig
n

S
cr
o
ll
in
g
te
x
t
o
n
L
C
D

L
ig
h
t
fo
ll
o
w
er

T
ra
ffi
c
li
g
h
t

1
2

3
4

5
6

#
o
f
fe
at
u
re
s

3
8

4
4

5
1

2
7

4
1

4
4

#
o
f
m
an
d
at
o
ry

fe
at
u
re
s

1
1

1
0

1
5

7
1
0

1
2

#
o
f
co
re

fe
at
u
re
s

1
5

1
4

2
0

8
1
1

1
4

#
o
f
X
O
R
g
ro
u
p
s

8
8

1
1

5
7

8

#
o
f
O
R
g
ro
u
p
s

1
1

2
2

1
2

#
o
f
cr
o
ss
-t
re
e
co
n
st
ra
in
ts

1
8

1
2

2
1

1
2

7
1
4

C
T
C
R
,
%

0
.5
3

0
.5
7

0
.4
3

0
.6
3

0
.2
4

0
.3
9

T
re
e
d
ep
th

3
3

3
3

3
5

V
al
id

co
n
fi
g
u
ra
ti
o
n
s

1
,2
9
6

8
,6
4
0

6
2
,2
0
8

1
,4
4
0

8
7
,4
8
0

9
7
,2
0
0

V
ar
ia
b
il
it
y
d
eg
re
e,
%

4
.7
1
4
8

4
.9
1
1
3

2
.7
6
2
6

1
.0
7
2
9

3
.9
7
8
1

5
.5
2
5
2

E
-7

E
-8

E
-9

E
-3

E
-6

E
-7

©
2
0
1
4
IE
E
E
.
R
ep
ri
n
te
d
,
w
it
h
p
er
m
is
si
o
n
,
fr
o
m

[Š
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(iv) Creation of instructions for using the tool MePAG in the SLO development

(v) Collection, analysis and evaluation of the outcomes

First we characterize the actors being involved in the experiments (see

Table 10.3). Three designers carried out the experiments. One of them is charac-

terized as a domain expert in robot-based programming and CS teaching. Her

experience was about 20 years in teaching programming and about 5 years in

robot-based programming and meta-programming. The other two experimenters

were the experienced and inexperienced programmers. The activities provided by

the actors are also outlined in Table 10.3.

Note also that TLGI, in fact, is a generalization of the initial robot control

program (CP) written in RobotC to specify the learning content variability.

Next, we outline the aim, scope, modes and some results of experiments

provided (see Table 10.4). The aim was twofold: to test the correctness of SLOs

and to test the correct functionality of the tool MePAG through solving real-world

tasks (i.e. SLOs used in the real setting to teach CS topics). Furthermore, from the

scientific point of view, it was very interesting to obtain the experimental data to

compare the efforts needed in the manual, semi-automatic and automatic SLO

design activities.

Though it was enough to consider six tasks (6 SLO) in order to cover the whole

CS curriculum (secondary/gymnasium level), the scope of experiments was about

45 slightly different SLO versions created and tested only during the years 2013–

2014. In Table 10.4, we also present the size of the latest SLO versions for all tasks

(separately for interface (I) and meta-body (MB)). The size of a program or meta-

program (i.e. SLO), which is typically measured by code lines or KB, is the

practical metric to evaluate the complexity. However, the internal complexity of

meta-programs has more accurate metrics. We will return to the complexity issues

later to discuss the technological and pedagogical (cognitive) complexity in

Chap. 12 in more detail.

As the intermediate code (ITC) and target language generic instance (TLGI)

play a significant role for implementing the design automation (see Fig. 10.2a), we

also provide the size (see Table 10.5) and efforts needed to develop those items (see

Table 10.6).

In Table 10.6, we have provided the average efforts expressed by the time

dimension. The actual meaning of the term ‘average’ should be interpreted with

respect to the designers’ activities indicated in Table 10.3. For example, the average

efforts for creating TLGI should be interpreted as the evaluation of some trials

needed by the same designer to develop the model for the same task. Therefore, we

found the necessity to split the efforts into three parts: (1) those needed for input

models (IMC and TLGI), (2) those needed for the pure manual development and

(3) those needed to design SLOs using the tool. Note that the input models are part

of the tool itself (IMS is used in both modes of the tool; TLGI is used in the

automatic mode only). Note that the manual development of SLOs was provided

under the following conditions: (1) there was used the consistent feature models
prepared in advance; (2) there was used the SLO evolutionary design methodology
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treated as ‘SLO redesign with evidence’ (see Sect. 6.3.7 in Chap. 6); (3) the only

two designers were involved in the manual development with the different inten-

tion. The practical intention of the domain expert (she is identified as designer 1 in

Table 10.3) was to create the real SLOs for the real use in teaching before the tool

design is completed. The practical intention of designer 2 was twofold: to better

understand the domain and to better understand the requirements of the tool to be

designed. For both the designer 1 and designer 2, there was a great scientific interest

to repeat the design process also using the tool.

Table 10.4 Size of SLOs of the latest version developed manually and using MePAG

Task

SLO attributes

# of versions

created

manually by

two designers

Interface

(I) created

manually

(LOC/KB)

Meta-body

(MB) created

manually

(LOC/KB)

Interface

(I) generated

by MePAG

(LOC/KB)

Meta-body

(MB)

generated by

MePAG

(LOC/KB)

Robot

calibration

5 + 2 190/7.74 69/2.68 194/8.11 71/2.69

Line

follower

6 + 4 279/12.8 138/4.81 287/13 144/4.94

Ornament

design

11 + 2 328/14.5 131/5.5 336/14.8 134/5.5

Scrolling

text on

LCD

4+ 1 125/5.19 74/2.86 125/5.32 76/2.87

Light

follower

4 + 1 176/7.54 109/2.89 176/7.71 112/2.91

Traffic

light

4 + 1 221/9.98 91/3.33 221/10.2 93/3.34

Scope of
tool test-
ing (total
SLO)

45

Legend: LOC lines of code in PHP; the tool MePAG is available to test from the Website (see

[BBŠ14])

Table 10.5 Size of IMC and TLGI models for the latest versions of SLO

Task

SLO attributes

IMC (LOC/KB) TLGI for automatic mode only (LOC/KB)

Robot calibration 14/0.6 62/1

Line follower 19/0.8 137/4.5

Ornament design 21/0.7 128/3.6

Scrolling text on LCD 8/0.3 67/2.3

Light follower 10/0.4 100/2.3

Traffic light 12/0.4 85/2.1
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Note also that the task specification (i.e. feature models) was developed by the

domain experts using also adequate modelling and verification tools. The given

effort estimations do not include the efforts needed for the task specification and

modelling. Typically the latter efforts highly exceed the efforts needed for the SLO

design and coding. On the other hand, however, the task specification feature

models are highly reusable items diminishing efforts in redesigning and reusing.

In Table 10.7, we present the needed efforts to design SLO in three modes

(manual design, semi-automatic design and automatic design) for the same (latest)

version for all selected tasks.

What main conclusion can be made from the provided experiments and out-

comes obtained? We are able to summarize the discussed results as follows:

1. The use of the model-driven approach (partially for the manual design and fully

in the tool design and design with the tool) as well as the well-defined method-

ology has ensured the reliability and correct SLO specifications.

2. For all tasks, there was obtained the increase of the SLO size by using the tool as

compared to the pure manual SLO design. The increase is about (2–4) %.

Furthermore, the increase of the interface size as compared to the size of the

meta-body is more notable (see Table 10.4). The increase is due to the human’s
ability to optimize the code by not duplicating the repeating fragments of the

code while the tool lacks of that possibility.

3. With respect to the automation issues and the scientific value, we have obtained

the comparative evaluation of the needed efforts in three categories: (i) the semi-

automatic development of SLOs is more efficient by 30–46 % as compared to the

Table 10.6 Efforts needed to create models (IMC and TLGI) and SLOs (the latest versions): the
manual development vs. the use of MePAG

Task

SLO attributes

Average

efforts

needed to

create input

models

(in minutes)

Average efforts needed to create SLO (in minutes)

Manually

(I +MB)

By MePAG (semi-

automatic) (I +MB)

By MePAG

(automatic) (I +MB)IMC TLGI

Robot

calibration

6 34 74 (34

+ 40)

About (2 + 40) About 2

Line follower 9 64 112 (43

+ 69)

About (2 + 69) About 2

Ornament

design

11 45 125 (71

+ 54)

About (2 + 54) About 2

Scrolling text

on LCD

4 20 43 (19

+ 24)

About (2 + 24) About 2

Light

follower

5 34 68 (29

+ 39)

About (2 + 39) About 2

Traffic light 7 25 64 (36

+ 28)

About (2 + 28) About 2
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pure manual development (see Table 10.7); (ii) the automatic development is

more efficient by 33–54 % as compared to the automatic development; (iii) the

automatic mode gains vs. the semi-automatic mode is evaluated by 6–13 %.

Note also that the figures in Table 10.7 were estimated under the following

condition: the previously developed versions for each task were not used. It is

expected that the efficiency of using the tool in the reuse mode (for introducing

changes and redesigning) should be always higher.

10.7 Summary, Discussion and Conclusion

We have presented the main issues on how, using the well-founded background, to

develop the experimental tool that supports the SLO design. We have also

discussed the main characteristics of the developed and investigated tool. The

theoretical background introduced and discussed here consists of the following

components: feature-based models of both the problem and solution domains and

the FSM-based computation model to connect the domains on the basis of trans-

formation rules. Though we were using the development tool in designing SLO, the

tool is not specifically dedicated to this application only. The tool is oriented to the

wider use – to develop heterogeneous meta-programs coded in PHP, which could be

applied to other domains too. The use of PHP as a meta-language is not a restriction

of using the tool in other domains because the target language (it defines the

selected domain) can be any. In other words, the tool is not only application domain

independent, but it is also meta-language dependent. That was the reason why we

were using more frequently the term meta-program rather than SLO throughout

Chap. 10.

In fact, we have discussed the outlined topic at two levels of abstraction:

fundamental (i.e. model based) and process based. The latter, being based on the

Table 10.7 Efforts needed to create models (IMC and TLGI) and SLO of the latest version
manually vs. the use of MePAG

Task

Operating mode

Total efforts, in minutes Comparison

Manual

(M)

Semi-

automatic (S)

Automatic

(A)

M vs. S

(%)

M vs. A

(%)

S vs. A

(%)

Robot calibration 74 48 42 35 43 13

Line follower 112 80 75 29 33 6

Ornament design 125 67 58 46 54 13

Scrolling text on

LCD

43 30 26 30 40 13

Light follower 68 46 41 32 40 11

Traffic light 64 37 34 42 47 8
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first, is oriented to the designer (fully) and user (partially). The approach has been

developed using the following well-grounded principles:

(i) Conceptual analogy among the software product line approach (where prod-

uct feature variability and configurability management are the main focuses)

and heterogeneous meta-programming (where parameter-driven variability to

specify a family of related program instances is the main focus)

(ii) Explicit separation of concerns at multiple levels (domains, domain models,

features within a model, roles of languages, meta-program structure)

(iii) Adaptation of the abstract state machine as a computational model to specify

model-to-model (M2M) and model-to-meta-program (M2MP) transformation

rules in designing the tools.

The theoretical value of the approach is the lifting of meta-programming to the

meta-meta level using feature-based models and the ASM-based computational

model. The practical value is the extension of the generative reuse dimension by

semi-automatic generation of program generators, i.e. meta-programs (smart LO in

our case).

The approach has some limitations too: (1) though the developed tool is inde-

pendent upon the target language, it is meta-language dependent (in our case the

developed tool is specifically targeted to PHP); (2) the maturity level of the

approach is low and more extensive research is needed.

Therefore, model-driven transformations by mapping problem domain models

onto the solution domain model is a higher-level computational meta-program-

ming. The ASM computational model has been proven as a relevant abstraction at

both feature model and meta-program levels. The effectiveness of the approach

(tools) has been proven not only through scientific experiments we have carried out

but also in the real use (in the robot-based educational settings, where meta-

programs are smart learning objects to provide the content for teaching CS topics

as it will be discussed in detail later in Chap. 12).

10.8 Research and Exercise Questions

10.1. Define the following terms (model, feature, feature model, model-driven

design) on the basis of your current knowledge. Compare yours definitions

with the ones taken from the references [ACL+13, CBK13].

10.2. Define the meta-programming terms, analyse the example of the simplified

meta-program and then write another simplified meta-programs.

10.3. Clarify the role of the variability concept in model-driven design.

10.4. Learn more on the feature-based model-driven design approaches from the

references [ACL+13, CBK13].

10.5. Explain the statement ‘At the model level, design is the mapping of the
problem domain model onto the solution domain model’. Illustrate that

using a concrete example.
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10.6. Learn the transformation rules to support the model mapping.

10.7. What is the computational model in programming? What is the computa-

tional model in model transformations? Define abstract state machine

(ASM) as a computational model.

10.8. How does the ASM model relate to the algorithm that performs model

transformations?

10.9. Define input models needed to construct the SLO (meta-program).

10.10. Learn the structure and functionality of the MePAG tool.

10.11. Use the tool MePAG to create meta-programs of your tasks using the

instructions given in [BBŠ14].
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Chapter 11

Authoring Tools to Specialize and Adapt
Smart LOs

11.1 Introduction

The main distinguishing feature of the smart LO approach is the realization of the

concept of producing and adapting the teaching content semi-automatically, or

even automatically. The automation never comes for free. On the other hand, the

use of the SLO design tool enables us to develop the highly reusable entities. At the

development stage, for example, we are able to ensure reusability due to the use of

the design paradigm known as design for reuse and design with reuse (see Chap. 9).
In this chapter, design with reuse can be technologically interpreted as the SLO
adaptation problem. As the designed SLO, in fact, is the context-driven meta-

specification implementing a wide scale of learning variability, indeed there is a

large space for adaptation. In the pure technological sense, the adaptation is a

specific transformation process. In the case of using SLO specification, we are

able to carry out adaptation through refactoring or specialization (see the discussion

on the term issues in Sect. 7.2).

Refactoring of SLOs, aiming to support the needs for adapting the content to the

context of use, is a much more complicated task to the user as compared to the

design of SLO itself. This is because of the complexity issues, i.e. due to an

extremely low level of the readability and understandability issues in analyzing

the meta-program texts. Especially it is true, when the number of stages of adap-

tation is larger than 2. Therefore, in the course of the provided research activities in

the field, we found the necessity to develop the experimental tools to support both

processes – the SLO design and refactoring (i.e. specialization for adaptation).

In this chapter, we address tasks related to the development and functioning

of the tool, namely MP-ReTool (Meta-Program Refactoring Tool). Though the

theoretical foundation and conceptual framework to develop the tool has been

suggested by the book’s author, the practical implementation has been completely

provided by my Ph.D. student, Kristina Bespalova. Again, there are my sincere

thanks for her nice work.

© Springer International Publishing Switzerland 2015
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Here, we extend the discussion on the adaptation problem (already initiated in

Chaps. 7 and 8), however, now from the designer’s perspective. The tasks we

consider in this chapter are presented in the similar way as that was done so far.

First, we provide the literature review aiming to bring the basic knowledge to the

reader (and as well as to the designer) to motivate and understand our approach.

Next, we provide a more extensive discussion on our context-aware model which,

in fact, is the basis of the context-driven adaptation. We also extend the theoretical

background of the stage-based refactoring. The latter enables us to formulate the

adequate refactoring transformation rules, to apply them within the ASM-based

computational model and to realize the model through the rule-based computational

algorithm to specify the tool’s functionality. Finally, we discuss the architectural

aspects, main characteristics, processes within the tool and experiments we carried

out with the aid of the tool.

11.2 Literature Review

Here, we have selected two research topics, which, in our view to a larger extent,

are relevant to that we will discuss in this chapter. The first topic (further identified

as Group A) is the context awareness in teaching in general and learning and

teaching in CS in particular. The second topic (further identified as Group B) is

the processes and tools that relate to SLO refactoring and specializing. This review

is by no means comprehensive. There are a few reasons for that: (1) both topics are

wide enough and deserve a separate discussion in another context; (2) we have

already started this discussion in Chaps. 7 and 8; and (3) meta-program refactoring

is a specific case of the model and program transformations, and the latter has been

discussed in Sect. 10.2.

Group A At the very beginning, the following observation is important to state.

Any entity, any process, any design and any systemwe want to study or explore have

the base part and its context. The context typically enables us to extract the

additional knowledge to better understand the base system. Such a vision can be

gained by studying the related literature from different domains (see [BR12, LK10]

to name a few). Our topic is not the exclusion from this general rule. Therefore, we

start this review from the context-related analysis. The next note is pure method-

ological: we have already analyzed the context in Chap. 7. To make the reading of

this chapter independent on the previous ones, we have included some works

already analyzed and added also the others relevant to this topic.

As it was stated previously, there are many attributes to characterize the context.

There are also a variety of factors influencing its understanding (e.g. content

representation forms, cognitive aspects, structure and model of LO, etc.). Further-

more, a diversity of related terms characterizes the context-related problem in

learning: adaptive learning, personalized learning [MKS10, BVV+10], adaptable
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LO, personalized LO [BCW+08], adaptive granularity [MJ10], adaptive learning
scenarios [BS08], adaptive learning path [BSS+12], etc.

All above-stated facts require an introduction of a scheme to review the related

work in some systematic way. As this research field is indeed very broad, we restrict

ourselves presenting the review with our vision and our approach in mind only.

First, we focus on context issues as the most influential factor to adaptability. Next,

we analyze the adaptability problem from the external (i.e. the environment) and

internal (i.e. the content model) views. Finally, in the next section, we summarize

the analysis by introducing a framework which, in our view, gives the better

understanding of the essence, broadness and complexity of the problem.

We start from definitions and interpretations of the term context as it is under-
stood in general and in the e-learning literature. Context-related issues have been

intensively researched, especially in the computer-human interaction and technol-

ogy-enhanced learning. As it is emphasized by Zimmermann et al. [ZLO07], in the

area of CS there are a number of definitions of the term context and context
awareness. The vast majority of the earliest definitions of the term context can be

categorized into two groups: definition by synonyms (e.g. application’s environ-

mental context or situation context) and definition by example (e.g. enumeration

context elements like location, identity, time, temperature, noise, as well as the

beliefs and intentions of the human).

Dey [Dey01] defines context as ‘any information that can be used to characterize

the situation of an entity’. In the other paper, Dey et al. extend the previous

definition by stating that ‘an entity is a person, place, or object that is considered
relevant to the interaction between a user and an application, including the user
and applications themselves’. This can be viewed as an application-centric defini-

tion which clearly states that the context is always bound to an entity and that

information that describes the situation of an entity is context. The paper [LCW

+09] defines the learning context as ‘information to identify the state of the item, i.e.

learner’s location, learning activities, the used tools and LOs’. Dourish [Dou04]

emphasizes a dual origin of the context, i.e. technical and social-based aspects.

From the social viewpoint, the author argues that context is not something that

describes a setting or situation, but rather a feature of interaction. From the

technical viewpoint, researchers try to define context in a more specific way as an

operational term [Win01, ZLO07, VMO+12], i.e. by enumerating categories of the

term. The main contribution of the paper [ZLO07] is the introduction of a context

definition that comprises three canonical parts: a definition per se in general terms, a

formal definition describing the appearance of context and an operational definition

characterizing the use of context and its dynamic behaviour. The paper [HSK09]

presents a literature review of the context-aware systems from 2000 to 2007 and a

classification framework on the topic using a keyword index and article title search.

Dey defines the context-aware system as follows: ‘A system is context-aware if it

uses context to provide relevant information and/or services to the user, where

relevancy depends on the user’s task’.
The paper [VMO+12] provides extensive analysis of context definitions with

regard to designing recommendation systems to support technology-enhanced
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learning (TEL). The latter aims to design, develop and test socio-technical innova-

tions that will support and enhance learning practices of both individuals and

organizations. With respect to our aims, one important result of this paper is the

framework that summarizes the known so far definitions of the term context and

presents how these definitions relate to each other.

As it was stated previously, the feature-based models are the core of a great body

of research in domain analysis and modelling, especially as applied to PLE. The

feature commonality-variability modelling is at the focus, where context plays also

a significant role [LK10]. One important aspect of variability modelling is also the

use of ontology and context to model the base domain features. Ontology enables to

extract and represent variability dependencies and interaction [LKS+07]. The paper

[LK10], for example, uses the context to configure and select features for the

product family of embedded software. Sometimes context modelling is treated as

a service. The paper [TLL10] proposes the context-based ontology whose property

is to reason and describe the rules in e-learning using Protégé software. The paper

[JGK+07] presents an ontological framework aimed at the explicit representation of

context-specific metadata derived from the actual usage of learning objects and

learning designs.

The paper [BBH+10] provides an extensive study on context modelling along

with reasoning techniques. Here, the authors discuss the requirements, a variety of

context information types and their relationships, situations as related to abstrac-

tions of the context information facts, histories and uncertainty of the context

information. This discussion also provides a comparison of the current context

modelling and reasoning techniques and a lesson learned from this comparison.

Based on the existing context-aware e-learning systems, the paper [DBC+10] pre-

sents a model and taxonomy of context parameters from the learner’s situation.
We reformulate the following finding of this short analysis taken from Chap. 7 as

follows:

1. Context is a multidimensional category that, in general, may include the follow-

ing features: special time, physical conditions, computing, resource, user, activ-
ity and social.

2. As many of these features are overlapping (see [VMO+12]), it is reasonable to

combine some of them in a concrete situation such as teaching with the use of

SLOs. Thus, we will focus on three context dimensions: computing/resource,

user (learner/teacher)/social and activity/task/content. Comparing these dimen-

sions with pedagogical reusability as it is proposed in [PS04], we are able to

connect a learning situation with the three context categories we will use later,

respectively, technical context, pedagogical context and content context. All
these were the basis to propose our context model to be further discussed in

Sects. 11.3.1, 11.3.2 and 11.3.3.

Group B Source code analysis and manipulation is an important topic in program

transformation research [Har10]. Refactoring is a specific kind of program trans-

formation aiming at improving the program’s structure. The reader can learn more

on this topic from the book [FBB+13] and a comprehensive survey [MT04].
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Thomas [Tho05] tries to identify links between refactoring and MPG in using the

object-oriented paradigm. The paper [TBD06] considers the refactoring problem at

the level of feature models. Another paper [RSA10] presents a novel approach

based on role models to specify generic refactorings. Role models support the

declaration of roles which have to be played in a certain context. Assigned to

generic refactoring, the contexts are different refactorings and roles are the partic-

ipating elements. The approach is supported by the Refactory tool using the Eclipse

Modelling Framework and is evaluated using multiple modelling languages and

refactorings.

Mens et al. [MTR07] represent refactorings as graph transformations and pro-

pose the technique of critical pair analysis to detect the implicit dependencies

between refactorings. The results of this analysis can help the developer to make

an informed decision of which refactoring fits best in a given context and why.

Porres [Por05] discusses how to define and execute model refactorings as rule-

based transformations in the context of using the UML and MOF.

Lopez-Herrejon et al. [LME11] present some experience in refactoring features

based on the requirement specifications and identify eight refactoring patterns that

describe how to extract the elements of features which were subsequently

implemented using the Feature-Oriented Software Development (FOSD). As

refactoring often requires non-trivial program analysis, the tool support to deal

with this task is highly desirable. A wide discussion on this topic can be found in

[ACM08]. The paper [KF09], for example, compares some refactoring tools with

respect to the automation and coverage, reliability, configurability, scalability and

discoverability, thus providing guidelines for the appropriate tool selection. The

paper [KKB07] proposes a tool that helps automating tedious tasks of refactoring

legacy applications into features, as applied to the PLE approach.

The theoretical basis of meta-program transformation (refactoring) can be

tracked from the early works of Taha [Tah99, Tah04] on multistage programming

(see also Chaps. 7 and 9). Thus, the extracted facts, ideas, models and approaches

form a pretty good background to extend the refactoring concept to the MPG

domain as follows.

11.3 Models and Processes to Develop Refactoring Tool for
SLO Adaptation

In this section, we present the second tool already introduced in Chap. 7. Here,

however, we will discuss it from the designer’s perspective. Note that Chap. 9 is the
background for such a discussion. We present the discussion in a similar way as it

was done in Sect. 10.3. We need, however, first to highlight two additional issues:

(1) to put more light on the context model and (2) to describe informally the tight

relationship between the context-aware parameters and meta-program stages. We

do that in Sect. 11.3.1 and Sect. 11.3.2, respectively. Next, in Sect. 11.3.3, we
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formulate the rules to support refactoring transformation. They form the basis of the

ASM-oriented computation model, the algorithm and the tool itself.

11.3.1 More About the Model to Realize Context Awareness

In general, context modelling is an extremely important and a very complicated

issue in learning. Therefore, there are multiple views and models proposed (see

Sect. 7.2). In our case, the context modelling plays also a significant role in both the

design and use of SLOs. In Chaps. 7, 8 and 9, we have already introduced the

context-related models as applied to our approach. In the previous discussion,

however, we were focused more on the syntactic aspects of the context model,

though we have outlined the connection between the context-related weights

(identified as fuzzy variables) and the cognitive levels (identified from the Bloom’s
taxonomy; see Chap. 7).

Here, we continue this discussion and present more details on the context model

semantics. So far, assuming that weight values {HP, IP,LP} are constants, we have
presented the context along with the SLO interface model as the weighted graph G
(Pw,U),w 2 HP; IP; LPf g (see Property 9.2). As the weight wmodels the context of

dependent parameter groups, we can rewrite Eq. (9.4) (see Chap. 9) as follows:

G Pw;Uð Þ ¼ [g
i¼1

Gw
i ,

�
Gw

i \ Gw
j ¼ ∅,Gw

i ,G
w
j � G Pw;Uð Þ i 6¼ jð Þ� ð11:1Þ

g is the number of connected components, including isolated nodes (g> 1).

What is the semantics of this model? In other words, a few questions should be

raised for analysis as follows: (1) How to select the weight from the list

w 2 HP; IP; LPf g aiming to assign the weight to a group of the dependent param-

eters (i.e. subgraph Gw
i )? (2) What is the actual meaning of parameter dependency?

(3) Who is responsible to take this activity in designing SLO?

The values HP, IP and LP (meaning high, intermediate and low priority,

respectively) have been introduced to model the three different groups of domain

features (or parameters): pedagogy related, social related and content related. In the

case of using robots, there are also technology-related features (such as velocity,

moving time, etc.); sometimes, e.g. for simplicity, we can treat them as content-

related features because they, in fact, are closely related. We present the possible

cases of the relationship among the priority weights and domain features (param-

eters) in Fig. 11.1. There are four groups of domain parameters or features (in terms

of feature models): P, pedagogy related (e.g. teaching goal, teaching model such as

problem based, project based, etc.); S, social related (e.g. student’s profile, previous
knowledge, gender, etc.); T, technology related (e.g. robot’s speed, moving time

from point A to point B, etc.); and C, content related (e.g. data, operations,

fragments of an algorithm, etc.).
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The context models (see Fig. 11.1a, b) represent the ideal case, i.e. we assume

that there is no interaction among the parameters P, S, T and C. Why P is modelled

by HP, S is modelled by IP and T (C) is modelled by LP? It is clear from the general

understanding of the domain and the thorough discussion (see Chap. 7). Where such

models are helpful? That is helpful for sequencing parameters within the interface

in designing SLO, i.e. the parameters should appear as the sequence P!S!T!C

(such is the learning and teaching logic). As the SLO is typically used by the

teacher, the relation P!HP can be seen as the teacher’s context with respect to the

remaining part of the interface, i.e. (S!T!C). Similarly, the relation S!IP can be

seen as the student’s context with respect to the remaining part of the interface, i.e.

(T!C). Therefore, the context information is evaluated first, and only after that, it

is possible to evaluate the content. The latter leads to the creation of a concrete LO

according to the teacher’s and learner’s contexts being specified a priory.

The context model (Fig. 11.1c) specifies the case when the parameters from the

different groups interact among themselves (i.e. they are dependent). Three of the

most typical variants of interacting are in the focus: P and S, S and T and S and C.

We admit that the interactions (P and C (T) or P and S and C) are not the case. What

context weights are to be allocated to the adequate groups of parameters in

constructing the context model? There are two alternatives for each group of

parameters. Which is most relevant (see Fig. 11.1c): 3 or 4 to the group P and S,

5 or 6 to the group S and T and 7 or 8 to the group S and C?

The solution (3, 5 and 8) looks like the best. But we need to take into account

three extra facts: (a) there might be also solitary parameters in each group (to those

parameters the relationship parameter-weight is clear; see Fig. 11.1a); (b) the SLO

HP

IP

LP

P

S

C(T)

HP

IP

LP

P S

S T

S C

3

4

5

6

7

8

HP

IP

LP

P

S
1

2 T

C

Legend:
HP – High Priority
IP – Intermediate Priority
LP – Low Priority
P –Teacher-based parameters
S –Student-based parameters
T – Technology-based parameters
C – Content-based parameters

a b

c

Fig. 11.1 Context models as a parameter-weight relation: case of independent parameters (a, b)
and dependent parameters (c)
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is to be used in the mode ‘use-as-is’, i.e. without refactoring; and (c) most likely the

designed SLO should be specialized later (at use time) aiming at more flexible

adaptation. In our view, taking into account what was stated above, the designer

should act as follows. He/she should follow the recommendation of the teacher or

domain expert in choosing the context-related weights. This recommendation, for

instance, might be connected to Bloom’s taxonomy levels, where the highest

cognitive levels (analyze, evaluate, create) require the content to be presented

explicitly. On the other hand, there is the possibility to change the weights at use
time easily without the impact on the functionality, because they are written as

comments within the interface specification.

So far, we have discussed the relatively simple context models of the SLO to be

designed. Though the weights were considered as constants, nevertheless, they are

applicable also in the case of the SLO refactoring (specializing) for deeper adap-

tation. As it has been already shown in Chap. 7, it is possible to gain more flexibility

in adaptation if we express some weights as functions whose arguments are the

cognitive levels of Bloom’s taxonomy. Here, we return to the model (b) given in

Table 7.1 (see Chap. 7) and present it again in Fig. 11.2 to provide deeper analysis.

The parameters CO and LA are of the type P (see legend in Fig. 11.1). The

parameter LL is of the type S. The parameters S*, V1, V2, D1, D2, T* and T1 are of

the type T. Finally, the parameters P* and P1 are of the type C (i.e. they define the

pure content stating the tasks explicitly). The solution has been made by the expert

(i.e. by the teacher with the 3-year experience of using educational robots in

teaching CS). It is possible to achieve higher or the highest cognition levels in

learning if the learner works with the content explicitly. This happens at the final

stage of producing LO from the SLO specification. As it was difficult to take a

HP HP

LP(L4,L5,L6)

CO LA

LL P*P1

LP(L4,L5,L6) LP(L4,L5,L6)

IP(L1,L2)

S* V1 V2

IP(L3)

T*

D1 D2

IP(L3)

T1

IP(L1,L2)

IP(L1,L2) IP(L1,L2)

IP(L1,L2)

Legend: Teacher’s context: CO – curriculum objective (LN
– loops and nested loops), LA   – learning activity (Case study
(given by Teacher)- CT; Practice (done by Learner) – PS); S*
– selected motor (AB, BC, AC),  V1, V2– drawing velocity of
motors (pen on the paper), T* – robot’s drawing time, P *–
number of ornament’s parts, D1, D2 – moving velocity of
motors (pen over paper), T1 – robot’s moving time, P1 –
number of ornaments LL – learner‘s previous knowledge
level (Beginner-BG;  Intermediate – IT; Advanced – AD).
L1: Remember (the lowest cognition level), L2: Understand
L3: Apply, L4: Analyze, L5: Evaluate, L6: Create (the
highest cognition level according to Bloom’s taxonomy)

Fig. 11.2 Context-aware model as a part of the SLO interface model

Legend – teacher’s context: CO curriculum objective (LN, loops and nested loops), LA learning

activity (case study (given by teacher), CT; practice (done by learner), PS), S* selected motor

(AB, BC, AC), V1, V2 drawing velocity of motors (pen on the paper), T* robot’s drawing time, P*
number of ornament’s parts, D1, D2 moving velocity of motors (pen over paper), T1 robot’s
moving time, P1 number of ornaments and LL learner’s previous knowledge level (beginner, BG;
intermediate, IT; advanced, AD). L1 remember (the lowest cognition level), L2 understand, L3
apply; L4 analyse, L5 evaluate and L6 create (the highest cognition level according to Bloom’s
taxonomy)
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priority to the levels L4, L5 and L6, the context-related weights for the parameters

LL, P1 and P* have been defined as a function of all the levels. The remaining

functions have been defined taking into account (1) the models given in Fig. 11.1

and (2) the parameter relevance to Bloom’s taxonomy levels.

On the other hand, there might be some debates on how to define the context

weights as functions with arguments of the Bloom’s taxonomy levels. Indeed, this

has been already shown as the variant (a) in Table 7.1 (see Chap. 7). Here, it is

recommended for the reader to compare variants (a) and (b) given in Table 7.1 once

again.

Furthermore, it is not always evident the fact of the parameter interaction if the

parameters belong to the different types (categories). The reason is that there is the

difficulty in defining relationships (exclude or require) among different values of

parameters. Very often (especially in the case of the relationships P-S, P-C), the

intuitive decision can be made by the expert. What will happen if the decision

would be questionable from the other viewpoint? As it is not a pure content

relationship, perhaps, there would be the other semantic interpretation of SLO,

but not the syntax error of the generated program. Of course, if the interaction has

been missed in designing meta-programs, that most likely will cause an erroneous

program (i.e. LO).

11.3.2 Relationship Among Stages and Context-Aware
Model

At this point, the reader should have a clear understanding of two items: (1) what is

a meta-specification (i.e. meta-program or SLO) and (2) in which aspects it differs

from the stage-based meta-specification of the same functionality. Heterogeneous

meta-programming is such a paradigm that aims at developing the executable meta-

specification, in which we express the domain variability through parameters and

the higher-level manipulations on those parameters using meta-functions. When

processed, all parameters are evaluated and processed along with the adequate

meta-functions at once, in the same processing phase or stage. On the contrary,

the stage-based meta-program is such a meta-specification, in which the parameter

or parameters and its (their) meta-functions are evaluated and processed not at once

but rather gradually, i.e. strictly in the sequential phases, called stages. Such an

approach brings a great deal of flexibility and variation in interpreting meta-

specifications. From the user perspective, for example, it is easier to understand

the stage-based meta-specification. Typically, by splitting the whole into pieces, we

are able to diminish the complexity and achieve a better understanding of the

whole.

In learning, there is a specific term such as the content granularity to fix and

manage the content complexity. In our case, on the other hand, we are able to

achieve even more – we can deal with the content adaptation problem to the context
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of use automatically, or almost automatically. For this purpose, however, we need

to focus on the context model we have already discussed. Here, our aim is to outline

the relationship among stages and the weighted parameters of the context-aware

model. This is important to better understand the functionality of the processes

within the tool and the tool itself.

The main question is the knowing of howmany stages the user (i.e. the teacher or

learner) needs and which parameters might be allocated to the particular stage from

the pedagogical viewpoint. That is, the relationship model should be pedagogically
sound. The theoretical background of stage-based programming (mostly from the

technology viewpoint) has been outlined in Chap. 9. Here (see Fig. 11.3), we

present the stage-context relationship model. The feasible stages are numerated in

the order from the highest (k) to the lowest (1), i.e. as the sequence: k, (k-1), . . .,1
(k> 1). This sequence is always the same, except the fact that the value kmay vary.

There are two possibilities: either the user indicates the value (mode 1) or the

system (i.e. the tool) calculates it on the basis of the context information (mode 2,
see Fig. 11.3). There are two modes, because it is not always easy to define as

precisely as possible the weights that define the context awareness. This is espe-

cially true in the case when the weights are functions of the Bloom’s taxonomy

levels. Note that L6 is the highest cognitive level and L1 is the lowest cognitive
level (see Fig. 11.3).

11.3.3 Strength and Weakness of the Parameter Context
Model

As context models are of the immense importance, we need to evaluate our model

too. First, we define the features that might be considered as strengths of the model.

They are as follows:

(s1) Explicit representation of the model.

(s2) The model is easily separable from the base functionality.

P*(w=HP)

P*(w=IP(L’))

P*(w=IP(L”))

P*(w=LP(L’))

P*(w=LP(L”))

k

k-1

2

1

. . .

Legend:
P*Ì P (full sef of parameters)
w – fuzzy variables
HP – High Priority
IP – Intermediate Priority
LP – Low Priority
L’={L1, L2, L3}
L”={L4, L5, L6}
k>3
k – highest stage
1 – lowest stage

– sound relationship
– most likely relationship

Fig. 11.3 Possible relationships between stage and priority, the latter being expressed as a

function of Bloom’s taxonomy levels (L1–L6)
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(s3) Representation of the model is simple.

(s4) It is both computer readable and human readable.

(s5) It is easy to express both the teacher-related and student-related aspects.

(s6) It is a preprogrammed entity to carry out adaptation automatically.

(s7) It is easy to change and modify the model according to the use cases.

(s8) It is pedagogically sound in terms of using Bloom’s taxonomy levels to

express the student’s ability to achieve the adequate cognition in interpreting

the content pieces.

(s9) Formal representation of the model by weighted graphs makes it possible to

consider the model for representing knowledge.

There are also a few limitations that we present as the weaknesses of the model

here. They are as follows:

(w1) It is too specific to be applicable to other tools in the mode ‘use-as-is’, though
conceptually it might be helpful in other situations as well.

(w2) It is not an easy task to define fuzzy variables as functions of Bloom’s
taxonomy levels; there might be a few reasons for that: dependability on

the task, different interpretations of the task by different actors and high

abstraction level of representing the content aspects by parameters to which

we need to supply the context weights.

(w3) It is difficult to compare the model with other models due to the specificity, e.

g. relationship among context variables and the prespecified hierarchy of

stages.

(w4) There is a gap between the designer’s technological knowledge to develop the
tool and representing the context model as the pedagogically sound entity; to

close the gap, the expert’s knowledge is needed; as a result, it is not always

possible to carry out the adaptation automatically.

(w5) The context model is locked within the SLO specification and, therefore, the

model serves for the internal transformation, but not for the external commu-

nication among different SLOs.

11.3.4 Rules to Perform Refactoring Transformation

Rule 1 Checking the condition defined by Eq. (9.4) (see Property 9.6 in Chap. 9). If

the condition holds, the refactoring transformation is valid; otherwise, the

refactoring is impossible (see also the Statement on the problem solvability in

Sect. 9.4.5).

Rule 2 The parameters and their context information are extracted from the

context-aware interface model G(Pw,U),w 2 HP; IP; LPf g (see Property 9.2, Prop-
erty 9.4 and Eq. (9.4) in Chap. 9 and also Eq. (11.1) in Sect. 11.3.1). The

information is to be represented in a separate file.
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Rule 3 The structure of the file has to represent the parameter-dependent parts

separately as it is specified by Eqs. 9.1, 9.2 and 9.3 (see Properties 9.3–9.5 in Sect.

9.4.4, Chap. 9).

Rule 4 Parameters of the dependent (interacting) group always should appear on

the same stage (it is based on Properties 9.3–9.5 given in Chap. 9).

As a result of this rule, the following property holds:

Property All nodes within the connected subgraphGi P
w0 ;Uð Þmust have the same

weight w0 (see also Property 9.7 in Sect. 9.4.4).

Rule 5 A stage is not empty, i.e. it has at least one parameter group or a separate

parameter.

Rule 6 The group of parameters with the highest priority (HP) should appear at the

higher stages.

Rule 7 The group of parameters with the intermediate priority (IP) or with the

lower priority (LP) should appear at the lower stages.

Note that the stage which should be treated as higher or lower is to be either

calculated by the system on the basis of the values of weights or identified by the

user of the tool (system).

Rule 8 The number of stages and the parameters’ group allocation to stages are

performed automatically according to the context information (i.e. according to the

parameter priorities). If the context information is not sufficient, or the context

model is incorrect, the model should be corrected manually by the designer (domain

expert). This rule is used in mode 1 (see Fig. 11.4).

Rule 9 The number of stages and the allocation of the parameters to stages can be

also performed by the user. This rule is used in mode 2 (see Fig. 11.4).

Rule 10 Rule 8 and Rule 9 are mutually exclusive.

Rule 11 When the parameter allocating process runs at the stage i (Rule 8 or Rule
9), all parameters are to be deactivated by the deactivating index at stages (i-1) . . . 1
(see Rule 12 and Rule 14).

Rule 12 Deactivating index is defined by the following formula [ŠBB14]:

Index = 0 for stage i; 1 for stage (i-1), etc.; and
Xi�2

a¼0

2a for stage 1.

We explain the use of this rule with examples (see Table 11.1). Here, PHP is the

meta-language to code the 3-stage specification, where parameter P1 appears in

stage 3, parameter P2 in stage 2 and parameter P3 in stage 1.

Note that Rules 1–12 are used to perform refactoring of the meta-program

interface.
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Rule 13 Each deactivated parameter requires the deactivating of the meta-function

(within the meta-body) with the same deactivating index, in which this parameter

appears.

Rule 14 Processing of the k-stage meta-program at stage i (k> i> 1) results in

diminishing the deactivating index by the value defined for this stage.

In Table 11.2, we illustrate Rule 14 with the same example.

Table 11.1 Examples of calculating and using deactivating index for PHP

Where applied Examples in PHP Index value

In stage 3 $P1 = "AND"; 0

In stage 2 echo "\$P2 = 3;"; 1

In stage 1 echo "echo \"\\\$P3 = Y;\";"; 3

Table 11.2 State of stages 2 and 1 after processing 3-stage meta-program

After processing at stage 3 Examples in PHP Index value

Stage 2 $P2 = 3; 0

Stage 1 echo " \$P3 = Y;"; 1

1
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Parameter allocation 
to stages
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parsing

MB
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Reverse transformation

Semi- automatic

MI
refactoring

MB
refactoring

Parameter         Meta-construct
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M – Meta-program, MI – (meta-) interface, MB – meta-body, M k – k-stage meta-program
           data,             control (sequence),  working modes: 1- semi-automatic; 2- automatic
D1– parameter dependency graph and contextual information (parameter priority)
D2 – parameter – meta-construct dependency; meta-construct location (addres)
D3 – transformed MI model into k-stage model
D4 – transformed MB model into  its k-stage model

Automatic

D1 D4

D2

Fig. 11.4 Refactoring-based architecture of the tool MP-ReTool
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11.4 Process-Based Architecture and Algorithm to
Perform Refactoring Transformation

We describe the refactoring process along with the simplified architecture. The

input data are (1) a correct initial meta-program designed either manually or with

the aid of the MePAG tool and (2) design information supplied by the user. The

latter may include the number of required stages or a pre-allocation of parameters to

stages if the user wants to prespecify his/her refactoring strategy for adaptation. The

output is the k-stage meta-program (k – the number of stages). It can be created

either semi-automatically (if the user wants to introduce the adaptation strategy

anew and, perhaps, aims to change the context model) or fully automatically (if the

user accepts the context model as the use-as-is structure, i.e. as a preprogrammed

entity).

The architecture (Fig. 11.4) consists of five basic components. Two first com-

ponents implement parsing of the given meta-program. There are two components

to implement refactoring. One component is responsible for managing the param-

eter allocation to stages. As the structure of the (meta-) interface and meta-body

differs, there are needed two separate components for parsing, as well as for

refactoring. The parsing results in extracting two different models D1 and D2

(see legend in Fig. 11.4). The first model supplies the information to provide the

parameter allocation to stages, whereas the second gives the adequate information

to perform refactoring of the meta-body.

The parameter allocation to stages enables to realize two operating modes: semi-

automatic (mode 1) and automatic (mode 2). Mode 1 ensures (1) flexibility of the

process because of some weakness of the context model (see Sect. 11.3.3) and (2)

feedback if there is the need to repeat the refactoring process of the same initial

meta-program.

Below we present an algorithm that implements the functionality of the tool. The

basis to implement the algorithm and the tool itself is as follows:(1) the previously

formulated rules, (2) the concept of multistage meta-programming (see Chap. 9 and

[ŠD13]) and (3) the ASM model [B€or99], in fact, the same as it was presented in

Sect. 10.3.3 (see also Eq. (10.1)).

Step 1. Choose the operating mode; /* mode 1 or mode 2*/

Step 2. Read the (meta-)interface model; /* Rule 2, Rule 3; the model is

created by MePAG */

Step 3. Read the meta-body;

Step 4. if <mode 1> then do Initiate parameters’ assignments to stages;

/* Using Rule 8 */

if n >1 then Sort parameters according to their priorities; /*n � the

number of parameters*/

Identify the number of required stages; /*according to the priority

values from the set: {HP; IP (L1); IP (L2); IP (L3); LP (L4, L5, L6)}

see Fig. 11.2*/
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Allocate parameters to stages; /* according to the parameter

priority values; Rule 4; Rule 5; Rule 6; Rule 7*/

If <there is no refactoring feasibility> then Print error message

‘correct the model, i.e. change the priority values and start from

the beginning*/

end;

Step 5. if <mode 2> then do Initiate parameters’ assignments to stages;

/*Rule 9 */

Choose the number k; /* k is # of required stages */

if k >g then Print message ‘refactoring impossible: reduce k ’;

/* Rule 1; g – the maximum number of stages*/

if n >1 then Sort parameters according to their priorities;

Allocate parameters to stages; */ according the user’s choice; the

priority values from the set: {HP; HP or IP; IP; IP or LP; LP}; Rule

4, Rule 5, Rule 6, Rule 7 */

If < allocation is incorrect> then Print error message: allocate

parameters anew;

end;

Step 6. Perform the meta-interface refactoring as follows;

for i = 1 to n do

Read data of the parameter i;

Fix the parameter to the given stage (which will be used);

if <parameter i is independent > then Create the simple interface

form for this stage; /* the parameter i de-activation; Rule 11 and

12 */

else Create the branching interface form for this stage; /* the

parameter i de-activation; Rule 11 and 12 */

end;

Step 7. Perform the meta-body refactoring as follows;

for j = 1 to m do (m � the number of meta-body code lines)

Perform parsing of the meta-body line j;

if <any parameter in the line j exists> then

Fix the parameter stage from the staged interface; /* it has

already been formed at Step 6 */

if <the parameter stage is less (<) than k> then

De-activate the parameter and its all functions; /* Rule 12, Rule

13*/

else Rewrite the line j without changes;

else; Rewrite the line j without changes;

end;

Step 8. end.

Note. Rule 14 (see Sect. 11.3.4) is not the entity of this algorithm. The rule has

the sense in the generating process only.
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11.5 Main Characteristics of the Tool

Again, we need to remind the reader that the tool has been designed not only to

support SLO refactoring. As SLOs, in fact, are meta-programs, we can use the tool

for the refactoring of the PHP-based heterogeneous meta-programs taken from

other applications. To do that, we need to change the context model within the

meta-specification. As the context model is presented as PHP comments, the

change does not affect the functionality. Furthermore, the simplest case of the

context model (when it is expressed through fuzzy variables as the constants of

the set {HP, IP, LP}) is general enough and is not so much dependable on

applications.

We present the main functional characteristics of the tool MP-ReTool in

Table 11.3.

11.6 Experimental Validation

The aim of the experiments was (1) to test the tool MP-ReTool by creating the

specialized SLOs for adaptation (i.e. stage-based meta-programs), (2) to test the

created items and (3) to obtain some characteristics of the specialized SLO

designed with the help of the tool. The scope of experiments (we have carried out

during the writing of this chapter) in terms of tested variants was 273 = (225 + 48)

(see also Table 11.3, line 15). The majority of created variants were real tasks. The

initial one-stage SLOs were created either manually or using the tool MePAG (see,

Sect. 10.6 and Table 10.4 in Chap. 10).

In Table 11.4, we present the characteristics of the line follower task for the NXT
robot. The task was implemented as a meta-program with the indicated character-

istics (read legend to understand the meaning of parameters). In Fig. 11.5, we

present the context-based interface model. In Fig. 11.6, we outline the parameter

value interaction model. The latter serves to construct the first model. The initial

meta-program is the input of the refactoring tool.

In the development phase, we have presented the context-based information at

two abstraction levels: learning process (a higher abstraction level) and implemen-
tation (a lower abstraction level). We treat the context at the first level as a set of

pedagogical approaches to be delivered to learners along with the content. We have

selected five basic parameters from [DCS10] as the most relevant ones to our

objectives to define the context at this level. We present the context model at the

process specification level using the feature-based notation (see Fig. 11.7).

At the implementation level, we have presented the context as priority-based

relations within the weighted parameter dependency graph. Note that this graph

represents also the context-aware interface model. We have constructed the graph

and priority relations on the basis of the physical task semantics and designer’s
knowledge of the domain. For example, from the e-learning understanding
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viewpoint, it is clear that context-based parameters (such as pedagogical

approaches) are of higher (or at least of the same) priority as compared to the

content-based parameters. Furthermore, all nodes of a subgraph have the same

weight (priority relations) due to Property 9.7 (see Sects. 9.4.4 and 11.3.4). The

priority-based relations serve for allocating parameters to stages automatically by

the refactoring tool.

Table 11.3 Characteristics of MP-ReTool and their relationships

# Characteristics Value Relationships

Evaluation

metrics

1. Status Experimental (number of users, 5) 15 # of user

2. Accessibility Free online network tools 9, 10 No

3. Theoretical

background

Feature models, meta-programming,

program specialization, design for reuse
(DfR), design with reuse (DwR), ASM
computational model

6, 7, 8, 13 Complexity

metrics

[ŠD13]

4. Refactoring

basis

Context awareness, stage meta-pro-

gramming, user needs

3, 7, 9 # of stages

5. Design lan-

guage and OS

PHP, HTML, Windows 9, 10, 13, 14 No

6. Design

approach

Model-driven transformation 3, 4 No

7. Input models

and data

Meta-interface model, MP model, MP 3, 4, 8, 9 Variability

level

8. Output data k-stage MP (specialized SLO) All Complexity

measures

9. User

interfaces

User-friendly graphical interfaces (�7 ) 4–7 # of

interfaces

10. Other tools

used

Dreamweaver, Web browser Indirect No

11. Constraints Only for PHP as meta-language, max #

of stages = 5

5, 8, 9, 12 # of

constraints

12. Refactoring

characteristics

# of stages, parameter priority values,

preprogrammed context model

9 Numbers

and values

13. Complexity of

tool’s
algorithm

O(m) m – the number of code lines of a

meta-program

Internal Linear

complexity

14. Compatibility

with other

tools

MePAG, PHP processor, TL tool inde-

pendent, Web browser

5, 10 # of tools

15. Current matu-

rity levela
(45*5 = 225) variants of SLO

(3*4*2*2 = 48) variants of other meta-

programs

All: 1–14 # of

explored

items
aThe current maturity level means the time of writing this chapter; figures are continually varying

in the course of extending the scope of experiments; here, (see line 15) 45, the number of variants

of real SLO tasks tested (see Table 10.4, Column 2); 5, the number of variants of stage-based SLOs

for each variant of tested real tasks
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Table 11.4 Line follower task: meta-level characteristics of the initial SLO

MP (SLO) characteristics

Name of parameters (in bold) and their values (in

brackets); for abbreviations and meaning, see

legend below

Context-based parameters CO (LC); LA (CT; PS; AK); LL (BG; IT; AD);

M (PR, PB); LP (SL, MD, F)

Content-based parameters A (OI; OB; ST; TI) [Gra13]; L (S1; S2; S3; S4;

S1 and S2; S1 and S3; S1 and S4; S2 and S3; S2

and S4; S3 and S4); S (AB; AC; BC); V (10; 20;

30; 40)

Parameters’ dependency model (see

Fig. 11.5; Line means an interaction/

dependency)

Parameter value interaction model (values within

circle; line, the relationships, e.g. SL-BG is of

type requires and SL-IT is of type excludes; see
Fig. 11.6)

Possible # of target programs (i.e. RobotC

programs as LO)

1*3*2*32*3*4 = 2,304

Legend. Learning process context-based parameters: CO curriculum objective (loop-based and

conditional algorithms, LC), LA learning activity (case study (given by Teacher), CT; practice
(done by learner), PS; assessment of knowledge, AK), LL learner’s previous knowledge level

(beginner, BG; intermediate, IT; advanced, AD), LP learning pace (slow, SL; medium, MD; fast,

F) and M learning method (project based, PR; problem based, PB). Content-based parameters: A
algorithm (one inside, OI; one bounce, OB; straddle, ST; two inside, TI) [Gra13], L light sensors’
inputs, S selected motor and V velocity of motors in %. Other characteristics:MIT/MIG textual and

graphical meta-interface, respectively, MB meta-body and LOC lines of code (practical complex-

ity measure)

HP HP/IP

IP IP

LP

CO LA

A

S

IP

L

HP/IP

IP

LP

M

LP

V

LL

Fig. 11.5 Graph G (Pw, U)
as context-based interface

model (Note: LP within

circle means ‘learning
pace’, whereas LP out the

circle means ‘lower
priority’)

SL

BG

OBOI

MD

IT

ST

LP

LL

A

F

AD

TI

S1 S2 S3 S4L S1,
S2

S1,
S4

S2,
S3

S2,
S4

S3,
S4

S1,
S3

Fig. 11.6 Parameter value

interaction
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To identify physical characteristics of educational robots, that is, content-based

parameter values, we need to provide an experimental investigation of the robot’s
behaviour (in fact to solve the robot’s calibration task), a prior to designing its meta-

specification (see Sect. 12.5.1 in Chap. 12, for details). Parameters may interact

among themselves. The interaction depends on the tasks, i.e. on parameters and

their values. For example, for the line follower task, the interaction is among

parameters A, LL, LP and L (see also Table 11.4). To identify the interaction

among context-based parameters as precisely as possible, the designer (if he/she is

not a teacher) should rely on the expert’s (teacher’s) knowledge and experience.

In Table 11.5, we present size-related characteristics of the stage-based SLOs for

adaptation that were obtained using the refactoring tool MP-ReTool for the selected

task. In fact, there is reflected the size dependency of the specialized SLO for

adaptation upon the number of stages and the number of parameters within stages.

The more stages are required, the larger created items are. The more parameters are

at the highest stage, the shorter created items are.

In Table 11.6, we present data that illustrate some structural characteristics of the

same task (line follower), but from the adaptation perspective. The overall number

of instances (target programs in RobotC) that could be generated from any stage-

based specification (4 stage, 3 stage and 2 stage) is the same (see the ending line in

Table 11.6) because the refactoring is semantic-preserving transformation. What is

different is the other location of an instance within the whole space.

In Fig. 11.8, we present the results of solving the line follower task: the robot’s
view to run the task along with the specified parameter values (Fig. 11.8a) and the

generated instance (Fig. 11.8b) according to the given values.

Note also that we have presented the partial results of our experiments. More

results (for all tasks and other characteristics) will be provided in Chap. 12.

Context

Learning 
goals Motivation Pedagogical 

methods Assessment Learner‘s 
profile

Content Pedagogical Technological

Legend:
– Mandatory – Requires

Fig. 11.7 Feature-based context model at the specification level
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11.7 How Does the Tool Support Paradigm Change in E-
Learning?

The tool enables to specializing the given SLO to the context of use. The initial

SLO is to be designed for reuse and adaptation. Adaptation, in fact, is a specific kind

of the reuse process. The tool provides a technological support for adaptation only

through the specialization of the initial SLO according to the predesigned context

model. The context model, in fact, defines the capability to provide adaptation. The

model is seen as the adaptation driver: to which extent it specifies the teacher’s and
learner’s context and to the same extent the adaptation is possible with the aid of the

tool. Therefore, the raised question in the title should be answered as follows.

The tool supports the technological side of adaptation only. Which side of

adaptation, either teacher’s or learner’s should be stronger, depends on the context

model and the needs of adaptation. Bringing all together, i.e. the tool’s capability,
the selected task, the SLO predesigned features for reuse and adaptation and the

embedded context model within the original (initial) SLO specification, we will

have a means of the flexible choice to ensure the shift from teacher-centric learning

to student-centric learning.

Table 11.7 presents a comparison of the paradigms: teacher centred vs. learner

centred. The criteria are adapted from [All04] (1–6 criteria) and [HF00] (7–14

criteria).

Table 11.5 Line follower specialization task results obtained using MP-ReTool: SLO size

dependency on the number of stages and parameter allocation

Parameters CO, LA, M, LP, LL, A, L, S, V

Initial stage 1 SLO size (COL/KB) 431/17,4 (see Table 10.4 Line 2 in Sect. 10.6 (431 = 287 + 144))

Variants of parameter allocation to

stages (k = 4)

Stage 4: CO

Stage 3: LA, M

Stage 2: LP, LL, A, L

Stage 1: S, V

Stage 4: CO, LA

Stage 3: M

Stage 2: LP, LL, A,

L

Stage 1: S, V

Stage 4: CO,

LA, M

Stage 3: LP,

LL, A, L

Stage 2: S

Stage 1: V

Stage 4 SLO size (KB) 39 38, 8 31, 8

Variants of parameter allocation to

stages (k = 3)

Stage 3: CO

Stage 2: LA, M, LP, LL,

A, L

Stage 1: S, V

Stage 3: CO, LA, M

Stage 2: LP, LL, A,

L

Stag 1e: S, V

Stage 3: CO,

LA, M,

LP, LL, A, L

Stage 2: S

Stage 1: V

Stage 3 SLO size (KB) 27, 6 25, 5 22, 5

Variants of parameter allocation to

stages (k = 2)

Stage 2: CO

Stage 1: LA, M, LP, LL,

A, L, S, V

Stage 2: CO, LA, M

Stage 1: LP, LL, A,

L, S, V

Stage 2: CO,

LA, M,

LP, LL, A, L

Stage 1: S, V

2 stage SLO size (KB) 25, 5 22, 6 18, 4

Legend: k the number of stages, COL code of lines in PHP and KB kilobyte, for the parameter name

and meaning, see the legend below Table 11.3
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11.8 Summary, Discussion and Conclusion

We have presented the main issues on how, using the well-founded background, to

develop the meta-program refactoring tool that supports the adaptation of smart

LOs to the context of their use. In fact, we have discussed the outlined topic at two

levels of abstraction: fundamental (i.e. model based) and process based. We have

started the presentation of the first level already in Chap. 9, where we have specified

the fundamentals of meta-program transformations. In this chapter, we have

focused on those models which are close to the refactoring tool realization. Those

models include (1) transformation rules as a part of the ASM-based computational

model and (2) the extended specification of the context model.

The process-based view gives the essential information to design the tool. The

information includes the (1) architecture consisting of the base components to

realize the adequate processes and (2) algorithm that implements the computation

model to describe the functionality of the tool. We have also discussed the main

characteristics of the developed and investigated tool. The tool (MP-ReTool) uses

meta-programs as input data to provide the adaptation through refactoring. The

latter is driven by the preprogrammed parameter context information. The

preprogrammed context predefines the functionality to enable the refactoring trans-

formations flexibly. The flexibility comes from two sources: (1) the user is able to

//Curriculum objective: 
//Loop-based_and_conditional_algorithms
//Learning activity: Case_study
//Learning method: Project-based
//Learner's level: Beginner
//Learning pace: Slow
#pragma config(Sensor, S1, lightSensorleft,
sensorLightActive)
task main()
{  nMotorEncoder[motorA] = 0;

nMotorEncoder[motorC] = 0;
while(true) {

float i = SensorValue(lightSensorleft);
if (i < 45)
{  motor[motorA] = 0;

motor[motorC] = 30;
}
else
{  motor[motorA] = 30;

motor[motorC] = 0;
}

}
motor[motorA] = 0;
motor[motorC] = 0;

}

Light sensor Line that is
followed 

LEGO NXT Robot‘s Arena

Parameters (Name – Value):
CO – LC, LA – CT , M – PR,
LL – BG, LP – SL, A – OI, L – S1,
S – AC, V – 30

a b

Fig. 11.8 NXT robot in operating mode with specified parameter values (a) and the derived

instance in RobotC (b)
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Table 11.7 Teacher-centred vs. learner-centred paradigm comparison

# Criteria Teacher-centred learning Learner-centred learning

1. Teaching

goals

T1 Cover the subject L1.1 How to use subject

L1.2 How to integrate subjects

L1.3 Core learning objectives: com-

munication and information literacy

skills

2. Organization

of curriculum

T2 Courses in catalogue L2 Cohesive program with opportu-

nities to synthesize, practise and

develop new ideas and skills

3. How students

learn

T3.1 Listening

T3.2 Reading

T3.3 Independent learning

L3.1 Learners construct knowledge by

integrating new learning into what they

already know

L3.2 Learning is a cognitive and social

act

4. Pedagogy T4 Based on delivery of

information

L4 Based on engagement of students

5. Course

delivery

T5.1 Lecture

T5.2 Assignments and exams

L5.1 Active learning

L5.2 Assignments for formative pur-

poses

L5.3 Collaborative learning

L5.4 Community service learning

L5.5 Cooperative learning

L5.6 Self-directed learning

L5.7 Problem-based learning

6. Faculty role T6 Sage on the stage L6 Designer of learning environments

7. Knowledge

transmission

T7 From teacher to learners L7 Learners construct knowledge

through gathering and synthesizing

information and integrating it with the

general skills of inquiry, communica-

tion, critical thinking, problem solving

8. Learners’ role T8 Passively receive

information

L8 Are actively involved

9. Teacher’s
role

T9 To be the primary informa-

tion supplier and the primary

evaluator

L9.1 To be the coach and consultant

L9.2 To be the team to evaluate learn-

ing together

10. Context role T10 Acquisition of knowledge

outside the context in which it

will be used

L10 Using the communicating knowl-

edge to address enduring and emerging

issues and problems in real-life

contexts

11. Teaching and

assessing

T11 Are separate L11 Are intertwined

12. Assessment’s
role

T12 To monitor learning L12 To promote and diagnose learning

13. Emphasis T13 Right answers L13 Generating better questions and

learning from errors

14. Focus T14 A single subject L14 Interdisciplinary learning
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change the parameter context model either by selecting more relevant values of

context-based fuzzy variables or by indentifying the number of suitable stages and

their content for adaptation in his/her context and (2) all crucial transformations are

carried out by the tool itself automatically.

Furthermore, we have provided an intensive discussion on the parameter context

model. The context role is important, for example, for the parameter sequencing in

designing the interface of a meta-program (SLO). In the case of the meta-program

refactoring, however, the context role is much higher because, in fact, refactoring is

the context-driven transformation.

Our parameter context model introduced and discussed here is based on using

fuzzy variables to mark the parameter’s role, such as HP (high priority), IP

(intermediate priority) and LP (low priority). Our vision is that the context should

be preprogrammed in advance along with the problem domain (i.e. learning vari-

ability) within the SLO meta-specification. In the simplest case, i.e. when we need

to use two or three refactoring stages (e.g. for the content adaptation purposes), it is

enough to have the context model with three-valued fuzzy variables (the values are

regarded as constants). To provide means of the deeper adaptation, however, we

need to have a more complex parameter context models. We have suggested also

the extended context-based model, which exploits fuzzy variables as functions of

the Bloom’s taxonomy levels.

A majority of experiments we have carried out with the tool were dedicated to

the learning and teaching CS using educational robots and SLOs. As SLOs are, in

fact, meta-programs, the tool is applicable to other applications as well if their two

main constraints are held: (1) the specification is written using PHP as a metalan-

guage and (2) the parameter context model is expressed through fuzzy variables

which are treated as constants. There are the following consequences of refactoring

transformations: (1) transformation changes the complexity of the resulting spec-

ifications; (2) as there are different complexity metrics, the complexity changes of

the resulting specification also differ; for example, cognitive difficulty of the stage-

based specification increases when the number of stages is increased; and (3)

adaptation is a sequential process that is modelled through stage-based manipula-

tions – first the user makes self-adaptation by selecting the relevant parameters at all

stages starting from the highest k followed by processing to produce (k-1) specifi-
cation; then the process repeats until the final product (adapted program or LO) is

received.

11.9 Research and Exercise Questions

11.1. Address the following terminological issues: What is the similarity between

the terms partial evaluation (of a program or meta-program), specialization
and refactoring? What is the difference between these terms? Find and

discuss the relevant papers on the topics.
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11.2. Motivate why the adequate research findings in program partial evaluation

(specialization, refactoring) are adaptable to meta-programming domain.

11.3. Research the specialization and refactoring transformations at the level of

feature models in your domain of interest.

11.4. Make the juxtaposition of the following terms: design for reuse vs. design
for adaptation and design with reuse vs. design with adaptation.

11.5. Analyze the context definitions taken from [VMO+12] and select the one

which is most relevant to your domain or domains of interest.

11.6. Build a context model with respect to the aims of your research domain.

11.7. Analyze the presented context models (usability, strength, weakness).

11.8. Learn the basic terms, rules and models related to meta-program refactoring.

11.9. Devise a meta-program as simple as possible (say, having the only two

parameters to making two changes within a bit string or text string).

Introduce a context model to this specification. Rewrite (manually) the

devised meta-program as a two-stage specification, using PHP as the

meta-language.

11.10. Lean more on how to use the MP-ReTool from [BBŠ14].

11.11. Use MP-ReTool to obtain the two-stage specification automatically for the

task 11.9.

11.12. Research and solve more refactoring tasks using the MP-ReTool.

References

[ACM08] Second ACM Workshop on Refactoring Tools (WRT’08). http://refactoring.info/
WRT08/. Accessed August 2013

[All04] Allen MJ (2004) Assessing academic programs. Anker Publishing, Boston

[BBH+10] Bettini C, Brdiczka O, Henricksen K, Indulska J, Nicklas D, Ranganathan A, Riboni

D (2010) A survey of context modelling and reasoning techniques. Pervas Mob

Comput 6(2):161–180
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Chapter 12

Robot-Based Smart Educational
Environments to Teach CS: A Case Study

12.1 Introduction

First, the term ‘smart educational environment’ should be defined. There are

standard educational environments that are based on using the Internet-based

technology along with some e-learning-oriented systems such as Moodle. In the
widest sense, the word ‘environment’ should be understood as the overall techno-

logical support (hardware, software and networking with remote terminals) and the

infrastructure of the methodological support, including databases or digital libraries

with the teaching content, management facilities and teaching instructions (for

teachers and students) to support e-learning. The base actors (teachers and stu-

dents), maintenance facilities and personnel might be also treated as components of

the environment. In the narrow sense, by the educational environment, we mean the

facilities for functioning e-learning processes to achieving teaching goals within the

teaching organization. Using the m-learning paradigm, for example, on the

smartphones basis, one can treat as being the smart environment too.

In our case, however, the smart educational environment means much more: the

use of smart LOs integrated along with the ‘smart’ educational robotic facilities.

The facilities, being the highly reconfigurable structures, enable to devise the

variety of usage modes. For example, in terms of the use logic, there might be a

variety of tasks with the pedagogical value (such as achieving teaching objectives

easier) and practical value (such as modelling the real-world situations). In terms of

the architectural choices, there might be the single robot with a PC, the robot

connected to the Internet, the ensembles of robots with sensors for the enlargement

of the functional capabilities, etc. We provide also a vision of the smart robot-based

In the case of citing, this chapter should be referenced as follows: Vytautas Štuikys and Renata
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Learning Objects for the Smart Education in CS (Theory, Methodology and Robot-Based
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educational environments as being the Thing of the Internet. Note also that the

acronym SMART in [Pro14] has a quite different meaning (student-centred, mul-

ticultural, active, real-world teaching).

The aim of this chapter is to present and analyse the robot-based smart educa-

tional environments that have been constructed, tested and used in the real teaching
setting to teach programming (the basic computer science course) by the second

author of this chapter.

12.2 Literature Review

Robotics is an exciting multidisciplinary area that is going to dominate in the

twenty-first century. The robotics industry is entering a new period of rapid growth

[SS12]. For example, the year of 2011 has been named as the most successful year

for industrial robots since 1961 [IFR12]. The current high school and university

students will live in a highly technologized society surrounded by industrial and

service robots at work, educational robots at educational institutions, assistive

robots at hospitals and care facilities and domestic/entertainment robots at home.

As we are living in an increasing digital world, children should be taught how it

works. Therefore, the educational priorities must shift toward teaching students

how to manipulate all digital devices (computers, robots, smart TVs, high-tech

gadgets, etc.) that surround them for their own needs [Bri11].

On the other hand, robots can be viewed as specialized computers with both

computational and mechanical facilities to perform physical movement-oriented

tasks. Robots allow demonstrating the capabilities of electronics technology and

providing students with opportunities for project-based learning. In the context of e-

learning, robots are increasingly seen as a means for enforcing engagement,

excitement and fun in learning; promoting interest in mathematics, engineering

and science career [PR04], increasing student achievement scores [BA07], encour-

aging problem solving [Mau01], and promoting cooperative learning [BCD99].

Recently, with the advance of technology, new technology-based models of

teaching and learning are becoming more popular. Learning is being transformed

from the traditional classroom-centred education to the education based on Web-

based resources (e-learning) [Wil00] and mobile devices (m-learning) [HTK02],

immersive learning in a context-aware ubiquitous learning environment (u-learn-

ing) [JJ04], a context-aware environment able to offer ubiquitous personalized

content (i-learning) [KSY11] and a context-aware system that overlays virtual

educational information on the real world based on the learner’s location and

needs (augmented learning) [Klo08, TKS14].

New learning models are usually based on the concept of a learning object (LO).

The latter is defined as ‘any digital entity, which can be used, reused or referenced

during technology-supported learning’ (adapted from [IEEE00]). In most cases, an

LO is a directly usable educational resource or a resource with the adaptation for

computer-aided teaching, such as an educational applet or a self-teaching module to
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be obtained from a DVD or a Web site. In a wider context, an LO per se is a model

to support reusability across large e-learning communities [Lib05], including

mechanisms to support automation of reuse [S-VNK+08]. With the advances in

learning technologies, however, traditional LO models such as metadata-content or

hierarchical models based on content granularity [BMB08] – are not enough.

That is because (1) e-learning is rapidly advancing and we need to have more

flexible, more adaptable, more personalized and more contextualized LOs to

support advanced e-learning and (2) e-learning has very wide choices of IT support

(mobility, networking, tools, etc.) which so far have been underutilized.

In the last two decades, educational robots offer new benefits by implementing

the most effective active learning methods and supporting tools for the teaching of

science, technology, engineering and mathematics (STEM).

As it is stated in [Ben12], researchers deal with problems of the field such as the

(a) use of robotics as an educational tool, (b) empirical testing of the effectiveness of

robots and (c) defining of future perspectives of the use of the robots. The paper also

summarizes the educational potential of robotics in schools and concludes the

following issues: (a) ‘most of the studies found are concentrated in areas related to

robotics’ per se (meaning robot construction, mechatronics, robot programming); (b)

a predominance of the use of Lego robots is observed (90 %); and (c) with regard to

the STEM concept, robotics tend to increase the learning achievements, especially in

schools – a great deal of applications is ‘descriptive in nature, based on reports of

teachers achieving positive outcomes with individual initiatives’.
The other publications consider the following topics: (1) a learner-centred robotic-

enhanced environment based on the constructivist approach and a methodology to

involve students to knowledge construction [FP09], (2) a simple programming

environment AiboConnect for robotics [CFW+06], (3) an introductory programming

environment based on the use of LegoMindstorms robots designed for CS learning to

program in C++ [Has08] and (4) a game-based learning system using robots, which

enhance students’ learning motivation and effectiveness [CLL+11].

This short analysis confirms the prediction that the constructing, testing and

using of the robot-based environments are the main focus in the case of interdisci-

plinary-oriented teaching such as STEM. On the other hand, it should be recognized

that there is a lack of publications about the learning environments associated with

the use of robots for advanced learning. Therefore, our research aims at fulfilling

this gap to some extent. Therefore, we consider the robot-based smart learning

environments along with SLOs as an important area of research.

12.3 Principles and Requirements for Creating Smart
Learning Environments

The learning environment (if it is properly constructed or chosen) helps to achieve

learning objectives. However, constructing the smart environment is not an easy

task. It requires the use of a systematic approach. Therefore, we start formulating
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some principles and requirements. But to do that, we first need to know the context.

We outline the context by introducing a slightly modified conceptual model (see

Fig. 12.1). In our case, smart LOs are treated as the root of the CS learning and

teaching conceptual model. Under the use of adequate tools, it is possible to ensure

the interaction of SLOs with pedagogical activities, technological processes,

knowledge transfer channels, tools and pedagogical outcomes.

Pedagogical activities are closely related to learning objectives, content, teach-

ing model, selection of the tools, formulation of the task and evaluation of the

pedagogical outcomes. Technological processes start with choosing the task. Those

processes allow creating SLO, but they depend on tools, programming languages

and algorithms that cover topics of the course. After the creation or selection of

SLOs from the library, the parameters’ selecting and content generating processes

occur. The user compiles and executes the generated program and performs the

control of the task’s solution.
Knowledge transfer channels connect pedagogical activities and technological

processes. The feedbacks among components ensure the flexibility of the content

regeneration, modification and knowledge extraction through learning scenarios.

Now we are able to formulate the basic principles and requirements to develop

the smart learning environment. Those principles and requirements were defined on

both the approved knowledge in the domain (extracted through the thorough

literature analysis) and our practical experience as follows:

Smart learning
objects

Knowledge
transfer
channels

Tools & Smart
environments

Technological
processes

Pedagogical
activities

Pedagogical
outcomes

Fig. 12.1 CS learning and teaching conceptual model (Revised from Fig. 1.1)
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(a) Analyse main components of the smart learning environment (the audience,

goals, resources and tools, relationships and networks, training and education,

the company and supervisor support aspects [LOM08]).

(b) Consider the possibility of incorporating all necessary components.

(c) Treat SLO as the obligatory component of the smart learning environment.

(d) Apply the verified teaching and learning methods and models [Sch02, Had09,

LY11, CAL12, SHL+13].

(e) Ensure an individualized learning as much as possible.

(f) Support the formal learning activities and active interpersonal connections

with respect to the learning context.

(g) Define the roles of actors in the ongoing feedback and coaching.

(h) Use collaborative technologies and other rapid development techniques

[Lom08].

(i) Identify priorities of each type of components.

(j) Evaluate the smart learning environment as a whole using technological

[KD09] and pedagogical [KSV04] evaluation criteria.

12.4 Architectural and Functional Aspects

12.4.1 A Generalized Framework

The smart learning environment includes three interrelated parts: teacher’s compo-

nent, learner’s component and server (see Fig. 12.2a). The teacher’s component

consists of the teacher’s computer with the software for creating SLOs (such as

FAMILIAR, SPLOT, MePAG, Mp-ReTool and PHP processor; see Chaps. 4, 10

and 11) and software of general use that ensures communication with the server

(Browsers, Client–server programs to transfer SLOs to/from the server, etc.) (see

Fig. 12.2b). Created SLOs are transferred to the SLOs repository located in the

server. We install software of general use on the learner’s computer to enable to

generate the LO according to the user’s needs. Moreover, programming language

environments that create an executable specification to be transferred to the edu-

cational robot or microcontroller must reside in the learner’s computer too (see

Fig. 12.2b).

In Fig. 12.2c, we present a behavioural model of the proposed environment.

Firstly, we create SLO’s specification and transfer it to the repository. The designer
can modify SLO at any moment.

The learner can find SLO in the repository by using software of general use. He/

she selects the values of parameters in the user’s meta-interface (SLO interface) and

generates LO. Later, the learner uploads it to the programming language environ-

ment and creates executable specification and after that transfers it into the robot or

a microcontroller.

The teacher ensures monitoring and flexible feedback.
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12.4.2 One-Robot System

When creating the smart one-robot environment, we highlight two stages: (1)

preparation for the operating mode and (2) creation of the working mode (see

Fig. 12.3).

In the first stage, we construct the educational robot that will solve the predefined

task. The next important step within the process is the measurement of technical

parameters of the robot, because these parameters are used for the robot control

program.

In the second stage, we create the robot control programs automatically and

transfer them into a robot, and then we implement visualization of the task.
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Fig. 12.2 The generalized structure of smart environment: (a) – conceptual model, (b) main

components, (c) behavioural model (Adapted from [Bur14])
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12.4.3 Collaborative Robot-Based Architecture

The architecture of the collaborative robot-based learning environment refers to a

classical master-slave model and includes additional components required for robot

orientation in its environment (sensors, wireless cameras), communication channels

to ensure the exchange of messages between communicating robots and support for

different communication protocols (Bluetooth, WiFi) and control hardware/soft-

ware (PC). In the master-slave model, slaves perform parallel computations and the

master does sequential computations. We control subprocesses using communica-

tion between the master and slaves either by a single node broadcast from the

master or by send/receive messages exchanged between the master and any slave.

The principle is similar to task decomposition so that the master-slave model itself

can be used as an illustrative example of practical implementation of task

decomposition.

Figure 12.4 presents a four-tiered framework to construct the collaborative

robot-based environment as follows:

1. Deliberative layer: Central Coordinator (CC) receives initial tasks for robots

from the teacher and then decomposes tasks into sub-tasks and uploads gener-

ated robot control programs (RCP) to the student PCs. In the simplest case, each

task is divided into two sub-tasks (Master! Slave), and also we have two

independent groups of students (GROUP1, GROUP2) assigned to work with

the same task.

2. Physical layer: tangible mobile robots with wheels driven by servo motors.

3. Reactive layer: sensors allow a robot to receive information about its environ-

ment and react to it changes.

4. Communication layer: exchange of messages between robots and provision of

feedback to teacher’s PC for monitoring and evaluation.

Robot
constructing

Measure-
ment of

technical
parameters

Calculation and
selection of technical

parameters

Robot control program
designing from SLO

Task‘s visualization

1 stage: Preparation for the operating

2 stage: Working mode

from SLO

to SLO
specification

Robot control
program

Fig. 12.3 Designing stages of educational one-robot environment
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On real setting, the number of collaborating robot groups depends on the

technical capabilities (the number of available robots and PCs in the classroom)

and educational needs (the number of students, teaching and learning objectives). In

order to ensure satisfaction of educational needs and improvement of technical

reliability, we provide a real-time ‘student-teacher’ feedback and monitoring of

collaborative behaviour of robots.

12.5 Case Study: A Support of Teaching/Learning Process
Using SLOs and Robot-Based Smart Learning
Environments

12.5.1 One-Robot-Based Smart Environment

The case study demonstrates the ability to solve and visually represent a set of

related graph-based tasks (given as LOs) in teaching programming (i.e. in infor-

matics or computer science). A particular LO adapted to the learning context is

derived from the SLOs automatically. We summarize the overall process below as

follows:

1. Learning/teaching subject: computer science.
2. CS topic: loops and nested loops in a computer program.

PC1÷PC4 – Student computers

Main
Coordinator

(Teacher’s PC)

Robot1 Robot2

GROUP1

Robot3 Robot4

GROUP2

PC1 PC2 PC3 PC4

Legend:
Distribution of sub-tasks
Control program upload and execution
Communication channel

Master MasterSlave Slave

Feedback 
“student-teacher”

Initial tasks

Monitoring of 
collaborative behaviour

Fig. 12.4 Framework of collaborative robots based environment for e-learning (Adapted from

[BSD13])
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3. E-learning environment: Lego-based drawbot (drawing robot).
4. Learning content: an LO derived from SLOs.
5. Learners: 10th–11th grade secondary school students.
6. Pedagogical model used: constructivist
7. Learning objectives: visualization of the process and learning content.
8. Process description by the teacher: (a) design and testing of the e-learning

environment, (b) testing of an existing SLO (or modifying if needed) and
designing of the new SLO (if needed, see http://www.proin.ktu.lt/

metaprogram/MePAG/help.pdf) and (c) testing-generating of LO instances
from the SLO to apply them in a different context of use.

9. A learning activity by students: (a) design of the robot mechanics under the
teacher guidance, (b) identification of robot characteristics relevant for teach-
ing tasks and (c) participation in the development of SLOs, including robot
control programs as SLOs and content visualization programs as LOs.

10. Learning evaluation: (a) the teacher observes and records the students’ activity
actions and feedback and on this basis evaluate the gained knowledge.

We analyse two SLOs here. The first is ‘robot calibration’ (see Fig. 12.5),

because these parameters are used for the robot control program. Motors are

controlled for specifying a power level to apply to the motor. The programming

language RobotC uses a parameter named ‘power level’. Power levels range from
�100 to +100. Negative values indicate reverse direction and positive values

indicate forward direction. For example, to move motor A forward at 30 % of full

power, we would use the following statement: motor[motorA] = 30;

task main() 
{ 
// Initial states of robot motors

motor[motorC] = 50; 
wait1Msec(100); 
motor[motorC] = 0;
// Straight movement of robot
motor[motorA] = 30; 
motor[motorB] = 30; 
wait1Msec(1000);

// Final states of robot motors 
motor[motorA] = 0;
motor[motorB] = 0;
motor[motorC] = -50; 
wait1Msec(100); 
motor[motorC] = 0; 

}

a
b

Fig. 12.5 (a) (Meta-)interface of SLO ‘robot calibration’, (b) generated instance as LO (©
Copyright 2013 by VU IMI)
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The distance driven by the robot per time depends on the motor‘s power level.
The movement of the robot depends on the robot‘s construction and motor’s
technical parameters. To ensure smooth movement, there are three operating

modes: (1) manual adjustment by the motor command ‘power level’ for the straight
robot’s move, (2) use of the PID (proportional-integral-derivative) speed control

algorithm and (3) use of the motor synchronization to ensure that both motors run at

the same speed.

Figure 12.6 presents drawbot’s distance-power level dependencies obtained

experimentally. They are needed for correct robot operating to solve a teaching

task (e.g. to smoothly make drawings).

Now we consider the second SLO, ‘ornaments drawing’, of our case study. It

deals with the task that responds to the requirement to ensure the possibility for

better students’ engagement in learning. The task (to teach loops in the program) is

about visualization of the result created by the program. The program is derived

from the SLO as an LO instance (see Fig. 12.7a). Then the instance runs within the

robot environment that makes drawing to realize the visualization (see Fig. 12.7b).
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Fig. 12.6 Drawbot’s distance-power level dependences: (a) straight line movement; (b) rotation
movement (full circle) (© Copyright 2012 by KTU)
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12.5.2 Collaborative Robot-Based Smart Environment

This section has been written on the basis of our two papers [BSM12] and [BSD13].

However, here we present much more detail, including new experiments. Further-

more, the figures of the papers were revised and adopted to the book’s format. This

section presents the e-learning environment that was elaborated in the high school

for teaching the CS course. The environment includes hardware, software and

communication facilities.

Hardware It includes educational robots, wireless Internet cameras and com-

puters. We use the heterogeneous Lego Mindstorms NXT robots, i.e. robots with

different sensors. There are two collaborative robots. In Fig. 12.8, we present their

general view. The robots are named according to the tasks to be performed as

follows:

1. Line follower (Fig. 12.8, left) is the master robot. Its function is to solve the line
follower task physically. The robot uses one colour sensor to follow a black line

on the arena and one ultrasonic sensor to observe the distance to any obstacle.

When an obstacle is obtained, the master sends a message to another robot called

drawbot.

2. Drawbot (Fig. 12.8, right) is the slave robot. Its function is to draw lines. On this

basis, it is possible to construct more complex drawings such as ornaments. The

latter action requires the use of an algorithm to be implemented, for example, as

task main()
{
//----------------------------------
// Preparation for drawing 

motor[motorB] = 50;
wait1Msec(100);
motor[motorB] = 0;
//-------------------------------
// Drawing 
for (int j = 0; j < 4; j++) {

motor[motorC] = 50;
motor[motorA] = 50;
wait1Msec(1000);
//----------------------------
motor[motorC] = -50;
motor[motorA] = 0;
wait1Msec(1000);

}
//-------------------------------
// Drawing is finished 
motor[motorB] = -50;
wait1Msec(100);
motor[motorB] = 0;
//-------------------------------

}

a

b

Fig. 12.7 (a) Generated LO instance (from SLO ‘ornaments drawing’) as motivating example to

cover ‘loops-teaching’, (b) result of LO execution as a material introduced by teacher for learning

at initial phase through problem solving (© Copyright 2013 by VU IMI)
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the loops or nested loops within the robot control programs to teach program-

ming. The slave robot receives messages from the line follower and draws lines

on the arena. Note that this new environment, in fact, is an extension of the one

described in [BSM12]. Therefore, both robots enable to demonstrate visually the

solution of the CS teaching tasks.

The teacher’s computer (see Fig. 12.9) is used for the delivery of the teaching

tasks, which include formulating the general task, splitting it into sub-tasks and then

distributing the sub-tasks to the student computers. Furthermore, the teacher’s
computer is equipped by the mydlink-enabled Wireless N Network Camera DCS

932-L to monitor the collaborative behaviour of the robots. Also the camera enables

to receive a qualitative ‘student-teacher’ feedback when students perform tasks

within the environment.

Software The software part of the system includes the (1) facilities for the general

use (they are in both teacher’s and student’s PC); (2) facilities to manage the

resources of the personal library where the SLOs reside (see Chap. 13, Sect.

13.5), the tools to adapt SLO to the educational context (MP-ReTool, see Chap.

Fig. 12.8 A full view of

line follower and drawbot

LINE FOLLOWER
master

DRAWBOT
slave

Student’s
PC

Student’s
PC

Teacher’s
PC

Wireless N
Network Camera

Fig. 12.9 Example of

environment with two

collaborating robots

276 12 Robot-Based Smart Educational Environments to Teach CS: A Case Study

http://dx.doi.org/10.1007/978-3-319-16913-2_13


11), the task decomposition and allocation software (all facilities are in the

teacher’s PC); and (3) RobotC environment and robot control programs as LOs

derived from the SLOs (both are in the student PCs).

Communication To carry out the communication activities, the NXT robots use

the Bluetooth application protocol called Serial Port Profile (SPP). It is

implemented on the top of a low-level RFCOMM (radio frequency communication)

protocol, which provides a simple reliable data stream to the user. The Bluetooth

protocol is used to ensure the following communication modes: (1) to ensure the

connection between PCs and Lego robots (up to three, but only with one at a time),

(2) to link the teacher and students’ PCs and (3) to connect the other Bluetooth-

enabled devices (e.g. mobile phones, tablet PC) into the educational environment.

When multiple robots or/and devices are connected together, a master-slave rela-

tionship is established. The master always creates the Bluetooth connection and

initiates communication. To ensure reliability of the Bluetooth connection, we

apply the rules formulated in [Tol06].

The architecture of the collaborative educational environment is shown in

Fig. 12.9. It presents how the components discussed previously interact among

themselves. The scenario of using the environment is as follows.

Using the line follower and drawbot, we have created a collection of the robot-

based SLOs for teaching and learning of the CS course topics such as ‘conditional
branching statements’, ‘loops’, ‘nested loops’, ‘task decomposition’ and ‘sub-task
aggregation’.

For the line follower robot, the students can select the line-following algorithms

out of the two (One Inside, One Bounce [Gra01]). Then students test the task and

observe the behaviour of the robot. After that, they need to modify the robot control

programs by adding new functions to ensure the communication between the line

follower and drawbot. The One Inside and One Bounce algorithms use one colour

sensor that detects the edge of the line.

For the drawbot, the students can select the preprogrammed ornament templates

(i.e. LOs) from the library, and then they need to choose the values of the template

parameters to generate the ornament drawing program, while the robot executes the

program and draws a figure on the arena using the pencil mounted into its gripper.

We illustrate the use of the environment to implement the tasks described below

(see Fig. 12.10).

Below we illustrate the pedagogical outcomes, using the collaborative learning

model. This model has been adapted from Reid et al. [RFC90]. The outcomes

include six phases as follows.

1. Engagement. The learners are introduced with the idea of the behaviour in

solving complex tasks. Typically, those tasks require the decomposition, allo-

cation and coordination among tasks in the process. We present the line follower

robot that has to follow a line and avoid obstacles at the same time. Using this

task, we are able to explain the principle of the task decomposition as a method

to solve complex problems. We are also able to explain the constraints and

conditions such as static obstacles vs. dynamic obstacles, priority of tasks, etc.
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2. Elaboration. The learners are working in groups. The groups are formed either by

the teacher or by themselves. The students within the group elaborate the task

using the information given by the teacher. The subproblems are identified by

students and required sub-tasks are formulated for the master and slave robots. The

tasks are as follows: line following, obstacle detection and message sending for the

master robot, roaming, message receiving and stopping for servicing the robot.

3. Transformation. Then the students analyse SLOs taken from the library. There-

fore, students generate the robot control programs as LOs and adapt their

suitable functions for implementing the sub-tasks. For example, the LO ‘obstacle
searching’ is adopted for the obstacle avoidance sub-task, and the LO ‘ornament

drawing’ is adopted for the roaming sub-task. Also the students select and adapt

the variant of the line-following algorithm and perform research on the robot’s
behaviour.

4. Research. Figure 12.10 presents the view of the researched environment.

Drawbot (in the centre) draws a selected ornamental figure bounded by a black

line, while line follower follows the black line and at the same time observes the

distance to drawbot. If the distance between robots becomes too big or too small,

line follower sends a message to drawbot to stop. Two different routes are used

(see Fig. 12.11): the elliptical (its radii are 21 and 32 cm) and rectangular

(lengths of the sides are 42 and 70 cm). A dotted line presents the real path of

line follower obtained experimentally. When the robot’s speed is 10–30 % of full

power, the robot trajectory coincides with the black line. When the robot’s speed
is larger than 40 % of full power, it is unable to follow the black line exactly and

consequently the robot deviates from it.

5. Presentation. After the task solving, students present the results of their team-

work. They are discussing on researching outcomes. Therefore, they receive the

feedback from the teacher and colleagues. As an example, Fig. 12.12 presents

the results of the accuracy comparison of the line-following algorithms. The

accuracy is calculated by estimating what part of the robot path overcomes

without leaving the black line while following the routes of different shape

Fig. 12.10 Collaborating

robots: drawbot (centre) and
line follower (above)
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and driving at different speeds (speed is expressed as a percentage of the max

power level of servomotors controlling the rotation of the robot wheels).

6. Reflection. Finally, students fill the surveys provided by the teacher and evaluate
the advantages and disadvantages of the course topic and its pedagogical deliv-

ery methods.

12.6 Evaluation of Learning Environments

In Tables 12.1 and 12.2, we present the evaluation (i.e. technological and pedagog-

ical) of the quality of created environments. The quality’s criteria are adapted from

[KD09] (technological) and [KSV04] (pedagogical).

Legend:
Robot movement’s start and finish position

Robot movement’s direction

Real robot’s movement’s trajectory, when speed is 40÷100 % of full power

Fig. 12.11 Elliptical and rectangular routes followed by line follower

70
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95

100

10 20 30 40 50 60 70 80 90 100

Speed, %

Accuracy, %
One Bounce (rectangular route) One Inside (rectangular route)
One Bounce (elliptical route) One Inside (elliptical route)

Fig. 12.12 Results of research on the line-following algorithm using elliptical and rectangular

routes
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12.7 How Does the Smart Environment Support the
Paradigm Change in CS Education?

In Table 12.3, we present an evaluation of the created smart learning environments

in relation to the teacher-centred and learner-centred paradigms. The evaluation

criteria are taken from Table 11.7 (see Chap. 11).

Table 12.1 Learning environments’ technological evaluationa [Bur14]

Environment A single

robot-based

The collaborative

robot-basedCriteria

Scalability 3 4

Modularity 2 3

Reasonable performance optimizations 3 3

Robustness and stability 3 2

Reusability and portability 3 3

Localizable user interface 4 4

Localization to relevant languages 4 4

Facilities to customize for the educational institution’s needs 3 3

Automatic adaptation to the individual user’s needs 3 3

Automatically adapted content 3 3

Additive utility function of technological criteria 31 32
aThe rate range is 0�4 (0 no support, 1 poor support, 2 fair support, 3 good support, 4 excellent

support)

Table 12.2 Learning environments’ pedagogical evaluationa,b [Bur14]

Environment A single

robot-based

The collaborative

robot-basedCriteria

Knowledge of learning content 3 3

Knowledge of learning process 4 4

Cognitive learning skills 4 4

Affective learning skills 4 4

Social learning skills 4 4

Transfer skills 4 4

Additive utility function of pedagogical criteria 23 23

Preparatory learning functions C, A, M C, A, M

Executive learning functions C, A, M C, A, M

Closing learning functions C, A, M C, A, M

Learning theory Constructivism Constructivism

Learners’ roles Cp, Cm (I) Cp, Cm
aThe rate range is 0�4 (0 no support, 1 poor support, 2 fair support, 3 good support, 4 excellent

support)
bC cognitive, A affective, M metacognitive, Cp cooperative, Cm competitive, I individual
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Table 12.3 Evaluation of smart learning environments in respect to the teacher-centred (T) and

learner-centred (L) paradigms

Criterion # and

name [All04,

HB00] One-robot system The collaborative robot system

1. Teaching

goals

T1 Cover the subject T1 Cover the subject

L1.1 How to use subject L1.1 How to use subject

L1.2 How to integrate subjects L1.2 How to integrate subjects

L1.3 Core learning objectives: communi-

cation and information literacy skills

L1.3 Core learning objectives:

communication and information

literacy skills

2. Organization

of curriculum

L2 Cohesive program with opportunities

to synthesize, practice and develop new

ideas and skills

L2 Cohesive program with

opportunities to synthesize,

practice and develop new ideas

and skills

3. How stu-

dents learn

T3.1 Listening T3.1 Listening

T3.2 Reading T3.2 Reading

T3.3 Independent learning T3.3 Independent learning

L3.1 Learners construct knowledge by

integrating new learning into what they

already know

L3.1 Learners construct knowl-

edge by integrating new learn-

ing into what they already know

L3.2 Learning is a cognitive and social act L3.2 Learning is a cognitive and

social act

4. Pedagogy L4 Based on the engagement of students L4 Based on the engagement of

students

5. Course

delivery

L5.1 Active learning L5.1 Active learning

L5.3 Collaborative learning L5.3 Collaborative learning

L5.5 Cooperative learning L5.4 Community service

learning

L5.6 Self-directed learning L5.5 Cooperative learning

L5.7 Problem-based learning L5.6 Self-directed learning

L5.7 Problem-based learning

6. Faculty role L6 Designer of learning environments L6 Designer of learning

environments

7. Knowledge

transmission

T7 From teacher to learners T7 From teacher to learners

L7 Learners construct knowledge through

gathering and synthesizing information

and integrating it with the general skills of

inquiry, communication, critical thinking,

problem solving

L7 Learners construct knowl-

edge through gathering and

synthesizing information and

integrating it with the general

skills of inquiry, communica-

tion, critical thinking, problem

solving

8. Learner’s
role

T8 Passively receives information L8 Are actively involved

L8 Are actively involved

9. Teacher’s
role

L9.1 To be the coach and consultant L9.1 To be the coach and

consultant

L9.2 To be the team to evaluate learning

together

L9.2 To be the team to evaluate

learning together

(continued)
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12.8 Discussion, Summary and Conclusion

Our research has confirmed the importance of using robot-based environments for

teaching that was known so far in the literature on e-learning. We have extended the

known approach: (a) by providing technical characteristics of the process to create

the e-learning environment for the real setting and (b) by smoothly integrating

different phases of the process and considering it into entirety. We have identified

that the robot-based e-learning environment extends highly the constructivist model

of learning and teaching. We have also identified some difficulties to implement the

approach. The main social barrier is the teacher’s determination and the need of

changing the mind in using the approach and the lack of previous knowledge.

The e-learning environment for collaborative learning (1) provides the interdis-

ciplinary aspects of teaching (the tasks considered are related to mechanics, phys-

ics, mathematics and computer science), (2) increases the student engagement in

learning, (3) develops the student abilities to critically analyse and compare differ-

ent problem-solving algorithms (e.g. line-following algorithms in our example) and

(4) contributes to the foundations of research and result presentation.

The e-learning environment introduces also two basic challenges: (1) the need of

the flexible communication infrastructure for groups of mobile robots and (2) the

complexity of specifying collaborative behaviour.

Future work will focus on the extension of the architecture of the e-learning

environment with multi-master/multi-slave model to allow using a larger number of

communicating robots for learning at the same time, thus allowing to deliver

teaching of more complex CS topics.

Table 12.3 (continued)

Criterion # and

name [All04,

HB00] One-robot system The collaborative robot system

10. Context

role

L10 Using the communicating knowledge

to address enduring and emerging issues

and problems in real-life contexts

L10 Using the communicating

knowledge to address enduring

and emerging issues and prob-

lems in real-life contexts

11. Teaching

and assessing

L11 Are intertwined L11 Are intertwined

12. Assess-

ment’s role
T12 To monitor learning T12 To monitor learning

L12 To promote and diagnose learning L12 To promote and diagnose

learning

13. Emphasis L13 Generating better questions and

learning from errors

L13 Generating better questions

and learning from errors

14. Focus L14 Interdisciplinary learning L14 Interdisciplinary learning
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12.9 Research and Exercise Questions

12.1. Define the term smart educational environment and explain its possible

interpretation.

12.2. Analyse the following research visions in educational robotics: (1) robot as a

tool, (2) robot as a motivator and (3) robot as a means for interdisciplinary

teaching.

12.3. Analyse and reconsider principles and requirements for creating smart

learning environments.

12.4. Identify the role and functionality of each component depicted in Fig. 12.2.

12.5. Explain why the preparation stage in robot-based systems is needed. Define

the main tasks of the stage.

12.6. Define the additional functional characteristics of collaborative robots as

compared to the one-robot system.

12.7. Define the essential features of the Lego NXT robot calibration program

(use data from Fig. 12.5).

12.8. Explain the physical parameter dependencies given in Fig. 12.6.

12.9. Explain the concept ‘collaborative robot as a learning object’. Identify its

role in the interdisciplinary education.

12.10. Analyse and prioritize the criteria to evaluate smart educational

environments.

12.11. Identify criteria that are more relevant to teacher-centred learning paradigm

as compared to learner-centred paradigm using (a) one-robot system and (b)

collaborative robot system.
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Chapter 13

Smart Education in CS: A Case Study

13.1 Introduction

Today, computer science (CS) is regarded as a fundamental course (similarly to

mathematics, physics, etc.), which is delivered in both universities and schools. Its

importance has been recognized far ago because it is a source of the primary and

fundamental knowledge needed for our lives and activities, which are highly

penetrated by the use of computers, the Internet and other modern technologies.

On the other hand, CS can be also seen as an interdisciplinary course, for example,

with respect to its relation to robotics and e-learning domains. Furthermore, com-

bining CS topics with the use of robots in learning adequately, it is possible to make

a significant contribution to the STEM (science, technology, engineering and

mathematics) paradigm, a new interdisciplinary approach to learning and teaching

for the twenty-first century. Though we have not considered this paradigm explic-

itly so far, in fact, by introducing and combining two novel approaches, smart LOs

and robot-based smart educational environments, we have paved a way for

researching and studying the STEM approach too. But first, we need to show how

smart LOs and smart educational environments interact among themselves and to

approve this interaction in the real learning and teaching setting.

Therefore, the aim of this chapter is summative. First, we aim at presenting the

real teaching processes based on the use of smart LOs within smart educational

environments. Next, we aim at extracting pedagogical and technological attributes

and data for evaluating the introduced approach from the methodological, social

and technological viewpoints. Finally, we aim at gaining stimuli and new knowl-

edge for future research in CS learning and teaching.

As it was done so far, we start with the analysis of the relevant literature.

This chapter should be referenced and cited as follows: Vytautas Štuikys and Renata Burbaitė.

Smart Education in CS: A Case Study. In Smart Learning Objects for the Smart Education in

Computer Science (Theory, Methodology and Robot-Based Implementation), Springer, 2015.

© Springer International Publishing Switzerland 2015
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13.2 Literature Review

CS deals with abstract topics and most secondary school students have difficulties

to understand and use basic concepts, such as data structures and algorithms, to

create programs that solve concrete problems. The following papers emphasize the

importance of at least two items in learning and teaching: (a) the choosing of the

relevant theory and model, educational methods, activities and environments and

(b) an adequate level of student engagement in the process [FME01, Lub11, PPL10,

Pea10, HLR11, CNO+12].

Usually the learning theory is introduced through educational methods, activities

and environments. There are three main categories of learning theories: behaviour-

ism, cognitivism and constructivism [Leo02, Smi03]. Behaviourism is based on

using an educational environment, which forms appropriate student’s behaviour

and correct responses. The reinforcement of behaviour is a central issue in the

learning process. According to the cognitivism, the student is an active goal-

oriented information receiver, processor and developer of new information, and

information processing is more important than the final result. The main idea of

constructivism is that the student constructs his/her own knowledge based on his/

her previous knowledge, own experience and learning context. According to this

approach, the main task of the teacher is to create a learning environment in which

the students could actualize previous knowledge and experience and could adopt

new information actively.

The constructivist-based approach dominates in CS teaching and learning [B-

A98, PPL10, Pea10, HLR11]. The approach highlights that ‘in this situation the

students stand in the centre of the learning process and the teacher only helps, gives

advises as a facilitator’. Jenkins [Jen01] indicates that the teaching environments,

learning activities and teaching methods have a significant impact on motivation. If

the above-listed items are chosen properly, the students can learn CS topics in the

most effective way.

Educational robots offer new benefits to implementing the most effective active

learning methods and supporting tools for the teaching of CS topics [FM02, AMA

+07, FPA+08, KKK+07]. In this context, the most commonly used learning

methods derived from the constructivism-based theory are as follows: problem-

based learning [MK06, TH07, AKP+10, CC10], project-based learning [SNH05,

APM11, JPM+11] and game-based learning [AMD08, LWC11, HS11]. The next

portion of recent works [GL11, GB11, BSM12, PB12] describes the learner-centred

robotic enhanced environments based on the constructivist approach and a meth-

odology to involve students to knowledge construction.

The other papers [FM02, WKK+07, KJ09] emphasize the need of representing

the CS content at different levels of education (primary school, secondary school,

university) and define the content, which can be learned by students using robot-

based environments. In this regard, for example, Sklar et al. [SPA07] argue that the

entire CS course can be covered and robotics-based curriculum constructed using

robot-enhanced environments. Also Adams et al. [AKP+10] report on developing
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the students’ skill by using the reusable learning objects (RLOs) and robots within a
virtual learning environment.

This analysis is by no means exhaustive. Nevertheless, it is sufficient to motivate

our vision of the smart CS education to be discussed in the remaining sections.

13.3 A Framework for Smart Education in CS

Our learning and teaching approach focuses on the constructivist-based learning

model (CBLM) [Leo02] and the empirical modelling paradigm [Har07]. According

to the constructivism, students are more successful in learning when they are given

the opportunity to explore and create knowledge dynamically while working with

projects that they are interested in and to explore and test their ideas [Pap93]. This

style of learning encourages students to create tools and environments that sustain

projects that are meaningful for students [DeL03]. Empirical modelling is

concerned with creating and using empirically developed computer models. The

word empirical here means that the learning process is guided by practical experi-

ence rather than theoretical knowledge [Har07].

In Fig. 13.1, we outline our framework as five basic components and their

interactions. As compared to our previous vision [ŠBD13], now we have slightly

modified the framework. The components within the framework are abstractly

Computer Science 
Teaching/Learning

Software 
facilities

Technological 
tools

Curriculum 
topics

Processes, 
activities and 

actors 

Assessment and 
pedagogical 
outcomes

Fig. 13.1 Generalized framework for smart CS education
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identified as pedagogy-driven activities, technology-driven processes and knowl-
edge transfer channels with the actors involved, a set of tools and facilities used and
the pedagogical outcomes. The latter is a final product that implements the learning

goals (objectives) through the use of the framework in the real e-learning and

teaching settings (in our case, in different classes at the gymnasium and university

levels to teach CS topics). Similarly to any other product, the achieved pedagogical

outcome has to be assessed. We anticipate three forms of the assessment: student

self-assessment, teacher assessment and expert assessment. The interaction among

components is specified through knowledge transfer and feedback channels.

In Fig. 13.2, we present a detailed view of the introduced framework. Here, one

can see the internal structure of the basic components and the outside data needed

for the functionality as well as the interaction among the components.

The interaction between components, in fact, specifies the functionality of the

whole system. We describe the interaction model by both the knowledge transfer
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channels and a set of possible feedbacks (FB1–FB5). The process starts with the

pedagogical-driven activities. The teacher, his/her assistants and partially knowl-

edgeable students in the role of assistants are actors at the initial stage of the process

(see Sect. 13.6.2, for details). After the initial stage, the technology-driven pro-

cesses follow. There are three main processes identified in Fig. 13.2 as (1) RASLO,

robot as smart LO; (2) the selecting of a task for the CS topic; and (3) RASLE, robot

as smart learning environment. In fact, the RASLO-based process is preparatory

and should be carried out in advance. Of course, the main actor to perform it is the

motivated teacher with the highly expressed determination to accept the challenges

of the smart CS education. If it is just the case (we mean our case here), then the

process will be successful with a greater degree of certainty.

Even more, the highly motivated teacher can involve students as apprentices.

Our experience has shown that a majority of students are very happy by being

involved in constructing educational robots under the teacher’s guidance. They see
this activity as a game with the evident gain (‘Oh, my robot is working!’).

The next preparatory work is to design the generalized robot control programs

(in fact meta-programs) treated as SLOs here. This activity (as one can conceive

from the previous chapters) requires the interdisciplinary knowledge and compe-

tence (not only the designer’s determination). The whole design cycle includes

three main phases: (1) the specification of robot tasks and algorithms to cover the

CS curriculum topics, (2) the development of feature models for the tasks and (3)

the design and testing of code-level specifications (i.e. SLO per se).

The most crucial part of this cycle is the phase 2, because it requires a great deal

of analysis of both the problem and solution domains. The problem domain is

highly heterogeneous and includes two main subdomains: pedagogy-oriented (such

as teaching methods, models, social context, etc.) and content-oriented context (i.e.

related to robot control tasks and algorithms). The solution domain of this phase is

feature modelling approaches, including the modelling and verification tools (see

Chaps. 4 and 5). The feature models created as a result of this phase are extremely

valuable intellectual property, because they predefine the success in designing the

code-level specifications at the final phase. The use of developed tools (such as

MePAG) governed by the created models at phase 2 and other models (such as

meta-programs) created at phase 3 simplifies the development of the code-level

specifications significantly.

Is it possible to involve students in designing SLO specifications? If so, then

there is a question: when, how and to which extent? Our experience is as follows.

The students who are highly motivated and engaged in studying programming as a

means for their future career typically are co-designers of the code-level specifica-

tions. However, there are or might be the only 2–3 students out of about 100–120

students of the whole enrolment. Typically, those students are able to accept this

role after completing studies on programming basics.

The RASLO-based process ends with the creation of SLOs. They are further

treated as items of the teacher’s personal library (we will discuss it later). Here, we

consider the process as the preparatory with regard to the remaining ones.
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13.4 The List of SLOs to Cover CS Curriculum Topics

As an example, in Fig. 13.3, we present the list of SLO-oriented tasks in the relation

with the curriculum modules to teach CS at the different grades (levels) in the

secondary school. Here, the arrows show which curriculum module or topic is

covered by which SLO. Note that the arrows indicate not the capability of an

environment to realize the topic but what topic was really implemented using the

given environment. Our smart environment is heterogeneous too, because we use

Lego NXT robots as well as Arduino-based controllers.

Why do we use two different environments? First, the Arduino-based environ-

ment enables to realize more complex tasks such as algorithms to control traffic

light. Next, the Arduino-based environment is more suitable for introducing knowl-

edge from the field of electronics, while the NXT robots relate more to mechanics

as their electronic facilities are deeply integrated within, i.e. hidden from the user.

Therefore, the heterogeneous environments fit better for interdisciplinary teaching

and have the opportunity to consider STEM-based teaching and to provide research

in the field.
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13.5 Personal Library as a Database of Smart
Environment

The personal library provides the educational and managerial support in storing,

updating and searching the content to realize the CS curriculum objectives and

tasks within the smart environment. Currently we treat the library as personal
because it was created by the CS teacher to satisfy the local needs of the teaching
institution only. With regard to the introduced framework (see Fig. 13.2), the library

is seen as the internal database to support the functionality of the smart educational

environment. However, we do not exclude the opportunity of extending the status

of the library use in the future.

Currently the creator of the library is also responsible for maintenance and

updating tasks. The users of the library are both teachers (there might also be

other teachers as library users within the institution) and students. However, the

access mode is different for the teacher-administrator, teachers as users and stu-

dents. The teacher-administrator holds the highest priority: all accessibility func-

tions are allowable. The overall structure of the library is shown in Fig. 13.4.

There are three basic components: (1) creating and updating facilities, (2) library

items and (3) search attributes. There are two types of items within the library: LOs

and SLOs. The set of LOs represents the traditional learning objects to be obtained

through linking to the external resources. They might be given in the form of text,

pictures, video, etc. (e.g. to support the theoretical part of the topic, or it is the other

additional material such as instructions to construct robots). Before the links are

3. Search attributes
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Topic
titles

Learning
activities

Learning
styles

Learners’
levels

2. Library items

Set of LOs Base set of SLOs

1. Creating and updating facilities

Metadata Content as LO
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(see Fig. 13.2)
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To process
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13.2)
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Fig. 13.4 Architecture of the personal library
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being stored into the library, those links (LOs) first are enriched with metadata to

enable their search procedure later in the use time.

There are also two kinds of SLOs within the library: base SLOs and versions of a

particular SLO. Versioning is not so much needed for the real teaching process but

to the larger extent for the experimentation and research (see Chaps. 10 and 11).

Note that metadata are applied for the external LO content and SLOs differently. In

the first case, the metadata is taken from the digital libraries or is accordingly

created by the library designer. In the second case, the metadata is incorporated in

the internal structure of an SLO as the pedagogical context parameters. Therefore,

the parameters serve for two roles at once: as the search attribute (in the context of

the content creating for the library) and as the generating mechanism to produce LO

(in the context of use).

What is about the stage-based SLOs within the personal library? As we use the

tool MP-ReTool to transform the initial SLO into its stage-based version, there are

no difficulties to derive those versions at any time. Therefore, we are able to

produce a stage-based SLO either from the base SLO or from its versions. There

are two possibilities in storing the stage-based SLOs. We can, for example, have a

separate section within the library for saving all staged SLOs for each task. Another

possibility is to treat a staged SLO as a particular version of a given task and keep

those items in the section of all versions.

Now we are able to continue our discussion on the remaining processes and

activities indicated in the introduced framework.

13.6 Processes and Activities

13.6.1 Technology-Driven Processes

Task Selection It is the intermediate activity to connect the RASLO and RASLE

processes. The teacher first initiates the task selection as a result of the pedagogy-

driven activity (see Sect. 13.6.2) with regard to the teaching goals. Next, the

adequate SLO should be identified and read from the library. What is to be done

before reading is knowing which item to select from the library. As it was stated in

Sect. 13.5, it is possible to select either the one-stage SLO or multistage SLO for the

already selected task. In this regard, the teacher should decide what teaching

paradigm he/she wants to realize: either the teacher-centric learning or the stu-

dent-centric learning. In the first case, the one-stage SLO is selected. In the second

case, multistage variant is selected. We need to remind the reader that the multi-

stage SLO enables to provide an adaptive learning (see Chap. 9). Note that we have

not reflected this process in our framework (Fig. 13.2) in order not to complicate the

presentation. There is, however, yet another reason for doing so: adaptive learning

follows the same line within the framework with one essential exception – there are

more feedbacks to support adaptive learning. In this regard, the reader should
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compare the sequence of actions reported in Figs. 8.4 and 8.5 (see Sect. 8.7 in Chap.

8) with the processes and actions indicated in Fig. 13.2. Further, we accept that the

teacher selects one-stage SLO (i.e. initial SLO and we omit this term).

RASLE Processes Now the learner is the main actor and he/she initiates the

process. Process 3.1 describes the derivation of LO from the SLO specification.

The operating environment in which the process takes place is the meta-language

processor (PHP processor in our case). Having the SLO (given by the teacher) and

the predefined operating environment, the student works with the interface of the

SLO and identifies the needed parameter values (this action already was described

multiple times in Chaps. 8 and 9). Those student’s actions result in creating LO

(robot control program to fuel its operation). This process is automatic (if we

neglect the parameter value selection).

The next process (Process 3.2 in Fig. 13.2) is treated as a self-learning one, because

the student deals with the generated LO, refreshes his/her knowledge about robot

programming, rereads the teaching goal (typically the generated LO contains that

information) and may communicate with the teacher or other students. Further-

more, the student may want to modify the created LO on the basis of his own

intention. But also the teacher may ask students to make some changes in the

generated program, for example, if the teacher applies the project-based teaching

paradigm. Note that the process of program changing is the way of its better

understanding – the core of any learning process. Also one should know the

following truth: to introduce the small changes (especially for teaching purposes,

meaning the anticipated changes) is not the same as to write the program from

scratch. Therefore, the automatic generation is the highly desirable action to

produce the initial version (or version) of the teaching program.

Finally, the possibly changed control program goes through the standard pro-

cedures: compiling (Process 3.3 within robot programming environment – RPE and

task solving (Process 3.4). Compiling and task running are well-known processes

for CS courses such as programming. Those processes are independent upon which

facilities are used in teaching: computer, robot or mobile phone. In our case, the

Processes 3.1, 3.2, 3.3, 3.4, and 3.5 create the technology-driven environment and

support for achieving the learning and teaching goals. We will discuss the way of

achieving that in the next section.

13.6.2 Pedagogical Outcomes

The student actions in carrying out processes 3.1–3.4 predefine the whole learning

process. Within the introduced framework, we define the learning process as the

overall communications: (1) student-teaching facilities through indicated feedback

(FB2), (2) student-teacher, (3) student-student, (4) monitoring what is going on the

robot’s scene, (5) self-reflection on what is going on the robot’s scene and (6)

decision making (researching) to form the adequate feedbacks. In fact, this space of
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actions prespecifies the pedagogical outcomes of learning and teaching. Feedback

links (FB2–FB4) are a very important part of the learning process because they

ensure a great deal of flexibility to regenerate the content, to modify the content and
to obtain knowledge through monitoring learning scenarios as they are seen in the

robot-based reality (but not in the virtual reality as it takes place when only the PC

and Internet as learning facilities are used).

In this way, after the completion of the communication session, the student is

able to form a self-assessment of what he/she did and what he/she gained and

experienced, because the final result is represented as the visual reality of the

robot’s actions. This reality may cause discussions and move forward to take

researching and to enforce the feeling of confidence on what was done. The teacher

may ask whether or not the student is satisfied with the achieved outcomes. It is also

interesting to know what are or might be disappointments. What expectations have

not been fulfilled? This is important for the teacher to take his/her assessment.

Furthermore, the external expert may also take part in the process and provide the

independent assessment.

13.6.3 Pedagogy-Driven Activities

The framework we suggest uses two learning models derived from the construc-

tivist-based pedagogical approach: problem-based learning [AKP+10, CC10,

MK06, TH07] and project-based learning [APM11, SNH05, JPM+11]. Though

there is a thin line among the models, nevertheless, we introduce them as slightly

different teaching scenarios (in other words, the models are integrated within the

scenarios) either explicitly or intuitively through the learning objective formula-

tion, teacher’s plans (such as curricular content) and smart teaching environment

(robot-based) and teaching task selection. The basic requirement for creating the

scenarios is to enforce the students’ involvement and engagement in the process.

All these are seen as predetermined pedagogical activities before starting the

teaching and learning process. One pedagogical activity, however, should be

highlighted separately here. We mean the formulation of requirements for the

SLO design. Here, we accept that the teaching content (defined by the standard or

enhanced CS teaching curricular program in schools) either partially or fully should

be implemented as an SLO or SLOs. The other activities are clear from Fig. 13.2.

In Table 13.1, we summarize the technology-driven processes (TP) in combina-

tion with pedagogical activities (PA).
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13.7 More on Pedagogical Outcomes: Assessment View

The assessment process involves some goals: (i) to improve learning (formative

assessment) and (ii) to provide data for grading (summative assessment) [CS07].

According to Harlen [Har13], formative assessment is also called ‘assessment for
learning’. The key activities and processes of the formative assessment practices

are as follows:

(i) Stimulating students in communicating their knowledge and skills.

(ii) Helping students understand their goals.

(iii) Introducing feedbacks: ‘teacher-student’, ‘student-student’ and ‘student-
teacher’ imply a view of learning as a process in which students are active

constructors of new knowledge.

(iv) Involving students in the self-assessment process.

(v) Providing dialogues between teacher and students to encourage reflection.

Summative assessment is also called ‘assessment of learning’. The key attributes
of the assessment are defined as follows [Har13]:

(i) The involvement of students in solving special tasks or tests.

(ii) Assessment takes place at certain times when achievement is to be reported,

not a cycle taking place as a regular part of learning.

(iii) The relation to the achievement of broad goals expressed in general terms

rather than the goals of particular learning activities.

(iv) Assessment involves the achievement of all students being judged against the

same criteria or mark scheme.

(v) Assessment requires some measures to assure reliability.

Table 13.1 Integrative vision to processes and activities

Item Details: TP/PA

Initial requirements Knowing of the pedagogical model (PA)

Knowing of the curriculum content (PA)

Robot readiness for the use (TP)

Guide Human guided, tool guided (TP/PA)

Automation level Automatic, semi-automatic (TP)

Activity Single activity, multiple reuse activity (PA)

Tool type Hardware, software (TP)

Degree of the teacher or stu-

dent involvement

Teacher-student, student-student measured by the number of

FBs, visualization, adaptability (PA/TP)

Constraints Initial knowledge and readiness of teacher (PA)

Functionality Described as the input/output specification (PA/TP)

Abstraction level How much detail relevant to teaching topic should be revealed

explicitly (PA)

Types of subprocesses Robot independent, robot dependent

Generative technology independent, generative technology

dependent (TP)
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(vi) Assessment provides limited opportunities for student self-assessment.

Simply speaking, the formative assessment is the result of learning with the

teacher’s and other student’s support, whereas the summative assessment evaluates

the student’s competences, knowledge and skills in the whole with respect to

predefined standards.

In fact, this view of the assessment expands the previously stated pedagogical

outcomes (see Fig. 13.2) as it is outlined in Fig. 13.5. Here, the formative assess-

ment includes the student’s self-assessment and the teacher’s assessment. The

summative assessment includes the teacher’s and/or expert’s assessment. As a

result, new forms of feedbacks occur, such as FB6 and FB7. Furthermore, a deeper

feedback takes place for the formative assessment and includes FB4–FB6 (cp. the

feedbacks with the ones from Fig. 13.2).
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13.8 Validation of the Approach Through Experiments in
Real Teaching Setting

In this section, we aim at providing more extensive research on evaluation and

validation of our approach. As smart LOs are indeed complex entities in both

pedagogical and technological dimensions, they should be evaluated from two

those perspectives: pedagogical and technological. Typically the designed items

(systems or components) are evaluated through measuring their complexity. Dif-

ferent domains (such as pedagogy and technology; the latter means programs

(meta-programs) or software here) have different complexity measures. Therefore,

we discuss the complexity issues separately for each domain, starting from the

technology-based view.

13.8.1 Complexity Evaluation of Smart LOs: Representation
and Comprehension View

Complexity is a difficult concept to define, and in the SW domain, there are various

definitions. IEEE Std. 610.12:1990, for instance, defines software complexity as

‘the degree to which a system or component has a design or implementation that is

difficult to understand and verify’ [IEEE90]. Therefore, the complexity relates to

both comprehension complexity and representation complexity. In general, the

complexity is the inherent property of an item (system, component, i.e. SLO in

our case), though the complexity can also be evaluated externally (e.g. by counting
lines of code (LOC) within the SLO specification as we did in Chaps. 11 and 12). In

this section, however, we consider the complexity of SLOs from the representation
perspective but with the focus on the inherent properties of the items.

Since the software complexity has multiple metrics, so is with the SLO repre-

sentation and comprehension complexity. As SLOs, in fact, are meta-programs, it is

the reason why we apply a set of metrics [ŠD13] to measure the complexity of SLOs

as follows: relative Kolmogorov complexity (RKC), meta-language richness (MR),

normalized difficulty (ND) and cognitive difficulty (CD).

In Table 13.2, we present RKC metric for our SLO samples using Eq. (13.1):

RKC ¼ C Mð Þk k
Mk k ð13:1Þ

Here, kMk is the size (in bytes) of the initial SLO treated as meta-program M or

k-stage meta-programMk (received after refactoring to support adaptation), and kC
(M)k is the size of the compressed meta-programs using a compression algorithm

BWT (Burrows-Wheeler transform; see GnuWin32). A high value of RKC means

that there are fewer capabilities for compression, i.e. there are less repeating parts

within the meta-program, and therefore this meta-program is regarded as being less
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complex. On the contrary, the more capabilities for compression are, the meta-

program content is regarded as being of higher complexity.

The content of Table 13.2 (as well as the remaining ones) should be read in two

directions: horizontal and vertical. In horizontal direction, we compare the com-

plexity changes of the initial handmade SLOs against the specialized (refactored)

SLOs. We have selected the handmade SLOs because they are more optimal (in

terms of LOC) as compared to those designed using the tool MePAG. As with the

growth of stages, there are more repeating parts within the SLO. Therefore, the

complexity evaluated by RKC tends to increase. The more stages within the SLO

structure are, the more complex this SLO is (this is valid for each task).

In the vertical dimension, we compare the complexity of different SLOs among

themselves. Therefore, the line follower and ornament design SLOs are more

complex and scrolling text on LCD is the least complex SLO.

The next measure MR (Eq. (13.2)) represents the meta-language richness:

MR ¼

X

m2M
mk k

Mk k ð13:2Þ

Here, kmk is the size of the domain language constructs (in our case RobotC or

Arduino C) that contain within the meta-language functions. A higher value of MR

means that a meta-program has more metadata and its description is more complex.

In Table 13.3, we present the results of calculating MR for the same tasks. Again, in

the horizontal dimension, the complexity increases. In the vertical dimension, the

line follower SLO stands for the most complex item among others.

We present the normalized difficulty (ND) metric by Eq. (13.3), meaning the

algorithmic complexity which was derived from Halstead metrics (Halstead 1977;

see also [ŠD13] and Table 13.4).

Table 13.2 Relative Kolmogorov complexity measures

Task

Complexity changes of the refactored SLO as compared to the initial

handmade SLO

Handmade 2-stage SLO 3-stage SLO 4-stage SLO

Lego NXT, RobotC

Robot calibration 0.23 0.22 0.16 0.11

Line follower 0.19 0.14 0.12 0.08

Ornament design 0.19 0.18 0.13 0.09

Arduino, Arduino C

Scrolling text on LCD 0.26 0.26 0.18 0.13

Light follower 0.22 0.18 0.13 0.10

Traffic light 0.21 0.19 0.13 0.10
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ND ¼ n1N2

N1 þ N2ð Þ n1 þ n2ð Þ ð13:3Þ

Here, the meaning of variables is as follows: n1, the number of the distinct meta-

language functions; n2, the number of distinct meta-program parameters; N1, the

total number of meta-functions; and N2, the total number of parameters. A high-

value calculation of the ND metric means that the meta-program is highly complex

in terms of time and effort required to understand it.

Finally, the cognitive difficulty (CD) metric (see Table 13.5) is calculated by Eq.

(13.4) as the maximal number of meta-level units:

CD ¼ max P;N1;N2ð Þ ð13:4Þ

Here, P is the number of distinct parameters, N1 the total number of meta-

functions and N2 the total number of parameters. CD evaluates cognitive under-

standability of a meta-program (i.e. SLO in our case).

In summary, the staged-based SLOs are more complex as compared to the initial

SLOs, with regard to all introduced metrics. The complexity increases when the

number of stages grows. Indeed the cognitive difficulty is very high; therefore, it is

Table 13.3 Meta-language richness measures

Task

Refactoring-based complexity changes

Handmade 2-stage SLO 3-stage SLO 4-stage SLO

Lego NXT, RobotC

Robot calibration 0.67 0.84 0.95 0.99

Line follower 0.75 0.94 0.96 0.99

Ornament design 0.60 0.88 0.96 0.99

Arduino, Arduino C

Scrolling text on LCD 0.69 0.75 0.98 0.98

Light follower 0.64 0.89 0.98 0.99

Traffic light 0.59 0.84 0.98 0.99

Table 13.4 Normalized difficulty measures

Task

Refactoring-based complexity changes

Handmade 2-stage SLO 3-stage SLO 4-stage SLO

Lego NXT, RobotC

Robot calibration 0.14 0.16 0.19 0.21

Line follower 0.16 0.19 0.21 0.28

Ornament design 0.11 0.15 0.17 0.17

Arduino, Arduino C

Scrolling text on LCD 0.18 0.21 0.21 0.21

Light follower 0.20 0.18 0.18 0.18

Traffic light 0.18 0.18 0.18 0.18
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practically impossible to develop a multistaged SLO manually when the number of

stages is higher than 2. To overcome this difficulty, we have developed MP-ReTool,

which we use to make a refactoring transformation (semi-)automatically. The

comparison of different SLOs among themselves enabled us to exclude the most

complex (i.e. line follower) and the least complex SLOs (i.e. traffic light) with

respect to all introduced metrics.

13.8.2 Pedagogical Evaluation of Created Smart LOs

Before giving the pedagogical evaluation, we need to state one important aspect

regarding the concept SLO itself. The SLOs (as they are presented here, i.e. as a

complete specification) were created through the 4-year long evolutionary process.

At the very beginning, all tasks were realized as a generative LO (GLO) with a

simplified model (i.e. simplified context model, simplified parameter value spaces,

one-stage structural model, etc.). At the end of the period, there were added

additional features that enabled to treat the enriched GLOs as smart LOs. Note

also that this evolution affected only the designer’s and teacher’s vision but not the

student’s vision because students always operate with concrete LO (i.e. robot

control program) derived from the GLO or SLO specification. In other words, the

capability space for adaptation, context awareness, functionality, etc. was contin-

uously expanding along with the increase of our experience and knowledge gained

during the time.

Pedagogical effectiveness of using SLOs can be evaluated by ‘engagement

levels’ using the methodology described in [UV09]. This methodology includes

the following phases:

1. Viewing: Students are viewing the programs given by the teacher passively, and

therefore, they are passive consumers of LOs (the latter are RobotC control

programs automatically derived from the SLO specification using PHP proces-

sor; see Fig. 10.3).

Table 13.5 Cognitive difficulty measures

Task

Refactoring-based complexity changes

Handmade 2-stage SLO 3-stage SLO 4-stage SLO

Lego NXT, RobotC

Robot calibration 185 350 559 811

Line follower 473 735 897 1227

Ornament design 246 506 775 1203

Arduino, Arduino C

Scrolling text on LCD 220 291 510 679

Light follower 262 457 748 972

Traffic light 213 368 605 920
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2. Responding: Students are observing the run of programs (i.e. the robot’s action
caused by the control program), and the process is the resource for taking and

answering questions given by the teacher; therefore, students are the active

consumers of LOs.

3. Changing: Students themselves are modifying programs first by changing the

parameter values within the SLO specification and then generating LOs; there-

fore, they are acting as designers of LOs.

4. Constructing: Students are creating their own programs (e.g. by introducing new

parameters into the SLO specification and defining their values), so they are

becoming the LO co-designers and testers; however, not all students are able to

do that.

5. Presenting: Students (again, only somebody of them) are presenting new pro-

grams to the audience for discussion and, therefore, they are acting as the SLO

co-designers.

In Fig. 13.6, we explain the assessment of the student engagement levels as a

result of the investigations provided by Renate Burbaitė. The results are also

presented in her doctoral theses [Bur14].

The pedagogical evaluation based on Bloom’s taxonomy engagement levels

enables to conclude that SLOs are most effective at the following levels: viewing,

constructing and presenting levels. The statistics obtained through experimental

research over 3–4 years (2011–2014) shows the increase of learning improvement

from 6 % to 15 %.

For the pedagogical cognitive complexity evaluation, we use the categories in

the cognitive domain of Bloom’s taxonomy [AK01] and extract the cognitive

processes as defined by [Mil56] for our learning tasks. We evaluate the processes

by a typical number of parameters for the task cognition and compare this number

with Miller’s cognitive complexity bounds derived from 7�2: <5 (easy), 5–7

(normal), 8–9 (complex) and >9 (overcomplex). The results are given in

Table 13.6.

13.9 How Does the Approach Support the Learning
Theories?

In Table 13.7, we summarize the relevance of our approach to the learning theories.

We have identified the relevance by the level of relevance with respect to questions
related to the known learning theories [EN13]. We measure the level using the

adequate values of fuzzy variables {H, I, L, H–I, I–L, U} (see legend below

Table 13.7). Though the values were defined on the basis of the personal experience

and intuition, nevertheless, they provide a systemized vision of effectiveness of our

approach.
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13.10 Summary, Discussion and Conclusion

In this ending chapter, we have summarized the topics we were discussing merely

throughout the book. Here, however, we have presented the summative aspects of

our approach from the other perspective – the real use of what was suggested,

invented and discussed so far. To do that in some well-formed manner, we first have
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suggested a framework according to which the smart education in computer science

has been provided and tested. In fact, by the computer science education, we mean

the education of programming fundamentals here. By the smart education, we mean

the use of smart learning objects (SLOs) within the smart educational environments

constructed, tested and used in the real teaching and learning setting.

We have presented the framework as a set of the following basic components:

pedagogy-driven activities, technology-driven processes, tools and facilities used

(including smart environments), pedagogical outcomes and knowledge transfer

channels along with the main actors involved (teachers and students). Yet another

important component – the personal library as a database to store and manage the

created SLOs – has been introduced and discussed. The external observer should

clearly understand the role of the introduced framework. It was the methodological

instrument to achieve two predefined objectives: (1) to introduce the smart educa-

tional methodology as a case study in some well-formed systematic way and (2) to

collect experimental data for our research and, on this basis, to evaluate our

approach from different perspectives.

Table 13.7 Relationships between proposed approach and learning theories [EN13]

Question/learning theory

What is supported?

To which level?

How does learning occur?

Behaviourism: black box-observable behaviour main focus Black box: H

Cognitivism: structured, computational Both: H–I

Constructivism: social, meaning created by each learner

(personal)

Social: H, H–I dependent on

social group

What factors influence learning?

Behaviourism: nature of reward, punishment, stimuli Stimuli: H, H–I

Cognitivism: existing schema, previous experiences Both: H, H–I

Constructivism: engagement (E), participation (P), social

(S), cultural (C)

E, P, S: H

What is the role of memory?

Behaviourism: influential Influential: U

Cognitivism: retrieval Retrieval: U

Constructivism: to current context Context: H, H–I

How does transfer occur?

Behaviourism: stimulus, response Both: I, I–L

Cognitivism: duplicating knowledge constructs of ‘knower’ U

Constructivism: socialization I

What types of learning are best explained by this theory?

Behaviourism: task-based learning H

Cognitivism: reasoning, clear objectives, problem solving H

Constructivism: social, vague (‘ill defined’) Social: I

Legend. Level measures: H high, I intermediate, L low, H–I between high and intermediate, I–L
between intermediate and low, U undefined
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As a result, we have provided and described the evaluation of the SLOs and the

smart education from three perspectives: (i) pure technological viewpoint, (ii)

pedagogical practice and (iii) pedagogical theory viewpoints. In the part of the

technology evaluation, we have presented the complexity evaluation of the SLOs,

using metrics taken from meta-programming domain because SLOs, in fact, are

meta-programs. We have evaluated the complexity of the SLOs among themselves.

This evaluation has enabled us to identify the most and the least complex SLOs

among the developed and used ones. Furthermore, using the introduced metrics, we

were able to identify the complexity changes of the multistage SLOs as compared

the initial handmade SLOs. The multistage SLOs (they support adaptive learning

using our approach) were obtained using the tool we have developed. With respect

to the introduced complexity metrics, the multistage SLOs are much complex items

as compared to the one-stage SLOs. It was obtained the extreme growth of

complexity with the increase of the number of stages.

In terms of the pedagogical practice, we have collected data to evaluate the

approach by measuring the student engagement level in the learning process using

the known methodology which is based on Bloom’s taxonomy. The statistics

obtained through experimental research over 3–4 years (2011–2014) have shown

the increase of learning improvement from 6% to 15 %.We have also evaluated the

SLOs using the pedagogical cognitive complexity evaluation that is based on the

cognitive domain of Bloom’s taxonomy and the Miller’s cognitive complexity
bounds derived from 7�2: <5 (easy), 5–7 (normal), 8–9 (complex) and >9

(overcomplex).

In terms of the pedagogical theories, we have identified the relevance of our

approach to the learning theories by the level of relevance with respect to questions
(stated by Ertmer and Newby 2013) related to the known learning theories (behav-

iourism, cognitivism and constructivism). We have measured the level of relevance

using the adequate values of fuzzy variables {H, high; I, intermediate; L, low; H–I;

I–L; U, undefined}.

In summary, we are able to state our results as follows:

1. Though the smart educational methodology has been introduced in a systematic

way, it should be treated as a case study only in respect to both smart LOs and

smart educational environments.

2. Though we have collected experimental data for our research and have evaluated

our approach from different perspectives, nevertheless, smart education in

computer science is still in its infancy and further intensive research is needed.

3. We hope that the introduced methodology is a good background to extend and

intensify the investigation in the following directions: (i) smart LOs, especially

multistage SLOs to support the adaptive learning in computer science, (ii) smart

educational environments using robots and collaborative learning on this basis

and (iii) interdisciplinary teaching to support the STEM paradigm.

13.10 Summary, Discussion and Conclusion 307



13.11 Research and Exercise Questions

13.1. Why should computer science as a teaching subject be regarded as a

fundamental course nowadays?

13.2. Provide the analysis of research in teaching with respect to the STEM

paradigm.

13.3. Define the role of using robots within the STEM paradigm.

13.4. What is the smart CS education? Evaluate and comment the framework

given in Fig. 13.1.

13.5. Study and assess the interaction of basic components within the framework

(see Fig. 13.2).

13.6. What are common and different topics within your CS curriculum as

compared to the one given in Fig. 13.3?

13.7. Study the basic characteristics of two robot-based educational environments

(Lego and Arduino) and compare their capabilities.

13.8. Describe the structure, the role and functionality of the personal library in

the context of the CS smart education.

13.9. Provide a thorough study of the processes and activities to define the smart

CS education.

13.10. Explain the role of the set of the indicated feedbacks to the overall func-

tionality of this teaching paradigm.

13.11. Clarify what the metrics are for the technological evaluation and those for

the pedagogical evaluation.

13.12. What is the pedagogical cognitive complexity of an SLO and how is it

measured?

13.13. Get or create an SLO and provide the technological evaluation using the

adequate metrics. Obtain the pedagogical cognitive complexity for the same

SLO.

References

[AK01] Anderson L, Krathwohl DA (2001) Taxonomy for learning, teaching and assessing: a

revision of Bloom’s taxonomy of educational objectives. Longman, New York

[AKP+10] Adams J, Kaczmarczyk S, Picton P, Demian P (2010) Problem solving and creativity

in engineering: conclusions of a three year project involving reusable learning

objects and robots. Eng Educ 5(2):4–17

[AMA+07] Alimisis D, Moro M, Arlegui J, Pina A, Frangou S, Papanikolaou K (2007) Robotics

& constructivism in education: the TERECoP project. In: Kalas I (ed) Proceedings of

the 11th European logo conference, Slovakia, Comenius University, pp 1–11

[AMD08] Atmatzidou S, Markelis I, Demetriadis S (2008) The use of LEGO mindstorms in

elementary and secondary education: game as a way of triggering learning. Work-

shop Proc SIMPAR 2008:22–30

[APM11] Arlegui J, Pina A, Moro M (2011) A paradox in the constructive design of robotic

projects in school. In: Proceedings of 2nd international conference on robotics in

education (RiE 2011), Vienna, pp 29–34

308 13 Smart Education in CS: A Case Study



[B-A98] Ben-Ari M (1998) Constructivism in computer science education. In: Proceedings of

SIGCSE’98, ACM, Atlanta, pp 257–261

[BSM12] Burbaite R, Stuikys V, Marcinkevicius R (2012) The LEGO NXT robot-based

e-learning environment to teach computer science topics. Electron Elect Eng

18(2):133–136
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[PB12] Petrovič P, Balogh R (2012) Deployment of remotely-accessible robotics laboratory.

Int J Online Eng 8(2):31–35

[Pea10] Pears AN (2010) Enhancing student engagement in an introductory programming

course. In: 40th Frontiers in education conference, ser. Proceedings of the frontiers in

education conference (No. 40)

[PPL10] Pap-Szigeti R, Pásztor A, Lakatos-T€or€ok E (2010) Effects of using model robots in

the education of programming. Inform Educ Int J 9_1:133–140

[Smi03] Smith MK (2003) Learning theory. The encyclopedia of informal education. www.

infed.org/biblio/b-learn.htm. Accessed 11 Apr 2014

[SNH05] Sucar EL, Noguez J, Huesca G (2005) Project oriented learning for basic robotics

using virtual laboratories and intelligent tutors. In: Frontiers in education. Proceed-

ings of 35th annual conference, Indianapolis, S3H-12

[SPA07] Sklar E, Parsons S, Azhar MQ (2007). Robotics across the curriculum. In: AAAI

Spring symposium on robots and robot venues: resources for AI education,

pp 142–147

[ŠD13] Štuikys V, Damaševičius R (2013) Meta-programming and model-driven meta-

program development: principles, processes and techniques. Springer, New York
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What Is on the Horizon?

Any approach, no matter to which extent it could be interpreted as innovative and

perfective, also has its own limitations. Our approach is not the exception from this

rule. What are the main limitations? We can consider them from three viewpoints:

(1) smart learning objects (SLOs) per se, (2) smart educational environments and

(3) smart education as an integrative ultimate process. Here, we consider the

limitations as a way to extend the research activities and to identify the new ones

in this regard.

1. Smart LOs, in fact, are static software agents.

A1. Indeed, the functionality of SLOs is based on the predefined heterogeneous

variability space of learning and teaching in CS. By heterogeneous variabil-

ity, we mean the unified representation of pedagogical, social, technological

and content aspects expressed through parameters and represented as meta-

programs. This space should be first predefined in advance, for example,

through high-level analysis and modelling and then transformed into the

executable meta-programming-based specification. The scope of the space

can be very large containing thousands or even hundreds of thousands of

variants of search through generation in order to select the one which suits

best in the given context. With regard to the search space in finding the best
solution according to the prespecified aim, SLOs indeed can be viewed as

being software agents. However, they differ from truly software agents in that

they lack of acting autonomously, i.e. deciding themselves what to do in a

concrete situation.

A2. Therefore, the other, i.e. the human agent (teacher or student), should accept

the decision when dealing with the space for search. On the other hand, SLO

has the well-designed interface for interacting with human beings as an agent.

But this interface is not dedicated to communicate among SLOs themselves.

Therefore, the current designs of SLO (as they were discussed in the book)

are treated as the simplest case of software agents, whose we can interpret as

static ones.
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A3. What should be done in order to enforce the existing and the other truly

agent-based features? In the context of the already introduced and discussed

concepts, one should take care on:

(i) Context models integrated with the specification

(ii) Improving and extending the interface

(iii) Adaptive learning within the introduced SLO paradigm

It can be treated as one direction to enhance SLO to make them acting as truly
SW agents.

The other direction can be linked with clarifying the relation of SLOs with the
needs of the STEM concept. The links among those concepts are already now

seen. What should be yet added in order to realize the STEM concept to a larger

extent? This requires a separate intensive investigation.

2. Smart educational environments based on using robots also can be seen as a

separate research branch, especially in combination with the other modern

technology, such as the wireless communication between robots. Also educa-

tional robots can be seen as the Smart Internet Things, because they may be

equipped with sensors to react to the environment. Therefore, researching of the

smart learning environments could be expended on the basis of the Internet of

Things (IoT) research.

3. Smart education processes, on the basis of the introduced technologies with the

focus on their seamless integration with the novel methodological and pedagog-

ical support, represent perhaps the most appealing challenges in researching and

reshaping CS education for the twenty-first century.

4. The integration of SLOs into the semantic web-based education paradigm can be

also seen as an important theme for the further advancing in CS education

research and practice.
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Glossary

ASM Abstract state machine

ATR Abstract state machine transformation rules

CBLM Constructivist-based learning model

CV Content variability

DA Domain analysis

DfR Design for reuse
DL Domain language

DSL Domain-specific language

DwR Design with reuse

EML Educational modelling language

FAMILIAR Feature model script language for manipulation and automatic

reasoning

FBM Feature-based modelling

FD Feature diagram

FM Feature model

FODA Feature-oriented domain analysis

GLO Generative learning object

He MP Heterogeneous meta-program

He MPG Heterogeneous meta-programming

HP High priority

IP Intermediate priority

IV Interaction variability

LO Learning object

LOC Lines of code

LP Low priority

LV Learning variability

M2MP Model to meta-program (transformation)

MB Meta-body

MDA Model-driven architecture

MDD Model-driven development
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MePAG Meta-program automatic generator

ML Meta-language

MMP Meta-meta-program

MP Meta-program

MPB GLO Meta-programming-based generative learning object

MPG Meta-programming

MP-ReTool Meta-program refactoring tool

PD Problem domain

PLE Product line engineering

PV Pedagogical variability

RASLO Robot as smart LO

RPE Robot programming environment

SD Solution domain

SLE Smart learning environment

SLO Smart learning object

SPL Software product lines

SPLOT Software product lines online tools

STEM Science, technology, engineering and mathematics

SV Social variability

TEL Technology-enhanced learning

TL Target language

TLGI Target language generic instance

TV Technological variability
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