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Preliminaries

1 Introduction

In the past two decades, there has been a growing interest in the class of stochastic
systems known asMarkov jump linear systems (MJLS). MJLS has received attention
due to its capability of modeling processes subject to abrupt variations—examples
spam in the literature, such as in the control of paper mills [1], robotics [2, 3],
economy [4, 5], networks [6], just to cite a few.

A strong research community has emerged over the last years, with scholars
improving progressively the knowledge about MJLS; for instance, the books [7],
[8], and [9] are key references on the topic. Besides, papers containing results for
stability, control, and other properties of MJLS can be found in the literature; for a
brief account, see [1, 2, 4, 5, 10–27].

Notwithstanding the large number of contributions on control of MJLS, most of
the available results deal with the case in which the controller has complete access
to the Markov state. Even in the context of partial information, most results focus
on the jump mode observation, see for instance [28, 29]. In practice, this signifies
that the controller has a built-in sensor or a similar measurement instrument that
determines exactly and instantaneously, at each instant of time, the active jumpmode.
However, such a device can be costly or it may not be even feasible. In principle,
optimal control in the situation with no mode observation can be dealt with the
theory of dynamic programming with imperfect state information, however, for the
problem we are dealing with, this would lead to a nonlinear and high-dimensional
optimization problem involving the information vector, also called the information
state [30, 31]. Thus, it is reasonable to consider a control policy that is not a function
of the active jumpmode, andminimizes a suitable quadratic performance index. This
is the scenario under investigation in this book.

The setup of MJLS with no mode observation is studied in the papers [5, 16, 22],
and in the monograph [7, Sect. 3.5.2]. Notice that all of these approaches do not
consider additive noise input, i.e., it is assumed that wk ≡ 0. The paper [5] presents a

© The Author(s) 2016
A.N. Vargas et al., Advances in the Control of Markov Jump Linear Systems
with No Mode Observation, SpringerBriefs in Control, Automation and Robotics,
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2 Preliminaries

necessary optimal condition for the control problem in the receding horizon context
with no noise; the papers [16, 22] deal with theH2 control problem but the techniques
based on LMI assure a guaranteed cost only; themonograph [7, Sect. 3.5.2] considers
the stabilization problem taking the MJLS with no noise. Our results expand the
knowledge of MJLS with additive noise input, and in this noisy setup, a method to
compute the necessary optimal condition for the corresponding control problem is
obtained.

The MJLS considered in this book is as follows. Let (Ω,F , {Fk},P) be a fixed
filtered probability space, and consider the discrete-time system

xk+1 = Aθk xk + Bθk uk + Hθkwk, ∀k ≥ 0, x0 ∈ Rr, θ0 ∼ π0, (1)

where xk , uk , andwk represent processes taking values in appropriately defined vector
spaces. The noisy input {wk} forms an i.i.d. process with zero mean and stationary
covariance matrix equals to the identity; and the process {θk} represents a discrete-
time homogeneous Markov chain and takes values in the setS = {1, . . . , σ }.

The state of the system is formed by the pair (xk, θk), and uk denotes the control
variable. The matrices Aθk , Bθk , andHθk , k ≥ 0, have compatible dimensions, and for
each k ≥ 0,

(Aθk ,Bθk ,Hθk ) ∈ {(A1,B1,H1), . . . , (Aσ ,Bσ ,Hσ )}.

Figure1 illustrates the working scheme of the jumps over the system. Note that
the Markov chain θk drives the value of the system state xk+1 for all k ≥ 0, according
to (1).

Designing the control input uk plays an important role in the theory of MJLS.
In the MJLS literature, most of the results assume that the controller has complete
and instantaneous access to the Markov state, but this assumption can fail in many
real-time applications because the task of monitoring the Markovian mode requires
a built-in sensor or a similar measurement instrument that might be expensive and
difficult or even impossible to implement. In this case, a reasonable strategy is to use
controllers whose implementation is irrespective of the Markov state. The design of
optimal control for systems that do not have access to the Markovian mode is the
central theme of this book.

Fig. 1 Jumping scheme: at
each instant k ≥ 0, just only
one mode θk = i ∈ S
remains actived



1 Introduction 3

Seeking for simplicity and aiming at practical control applications, we assume
that the controller has linear state feedback format with no mode observation, as in
[7, p. 59], [5]:

uk = G(k)xk, k ≥ 0. (2)

Note in (2) that the gain matrixG(k) does not depend on theMarkov state θk or on
the conditional distribution P(θk|x0, . . . , xk), k ≥ 0, partly because the conditional
distribution leads to a nonlinear filter that can be hard to implement, and partly
because we seek for a sequence of gains G(k) that can be precomputed offline.

Here, we are interested in evaluating the long-run behavior of the MJLS in (1);
namely, for any given control input sequence (u0, u1, . . .), we introduce the long-run
average cost

J(u0, u1, . . .) = lim sup
N→∞

1

N

N−1∑

k=0

Ex0,π0 [x′
kQθk xk + u′

kRθk uk], (3)

where Ex0,π0 [·] ≡ E[·|x0, π0] represents the expected value operator, andQθk and Rθk

are positive semidefinite, symmetric matrices.
The control problem under study in this monograph is defined as follows.

J∗ = min
u0,u1,...

J(u0, u1, . . .) s.t. (1) and (2). (4)

To thebest of the authors’ knowledge, the problem in (4) remains opened.Actually,
this monograph presents an algorithm that attempts to solve the problem in (4).

The proposed algorithm assuredly computes a control that satisfies a necessary
optimality condition for (4). This finding signifies that the control attains a local
minimum, which could differ from the global minimum. How to attain the global
minimum remains an open topic for research.

The main contribution of this monograph is twofold. First, it presents a numeri-
cal method that computes the necessary optimal condition for the control problem
posed in (4). The method is based on a monotone strategy, iterated at each step
by a variational approach, that produces the convergence to a set of gain matrices
G = {G(0), . . . ,G(N)}, N > 0, that satisfies the optimality condition.

The second contribution is the application of the gain sequence G to control
the speed of a real DC motor device subject to abrupt power failures. The laboratory
device is adapted to suffer power failures according to a homogeneousMarkov chain.
These elements constitute the main novelty of Chap.2.

In Chap.3, we deal with the approximating control problem. The idea behind this
method is as follows. Suppose that f = {f0, . . . , fk, . . .} is a policy (control function).
(see [32, 33]). If F denotes the set of all feasible policies f , then the associated

http://dx.doi.org/10.1007/978-3-319-39835-8_2
http://dx.doi.org/10.1007/978-3-319-39835-8_3


4 Preliminaries

problem of N stages is defined as

J∗
N = min

f∈F
JN .

The long-run average cost is defined as

J = lim sup
N→∞

JN
N

.

and the corresponding average cost problem is

J
∗ = min

f∈F
J.

Chapter 3 then contributes by showing the conditions under which the approxi-
mation

J∗
N/N → J

∗
as N → ∞

holds true.
The results of Chaps. 2 and 3 are combined so as to solve the control problem (4).
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Finite-Time Control Problem

1 Finite-Time Control Problem: Variational Method

Recall the Markov jump linear system (see (1))

xk+1 = Aθk xk + Bθk uk + Hθk wk, ∀k ≥ 0, x0 ∈ Rr, θ0 ∼ π0,

where xk , uk , andwk represent the state, control input, and noisy disturbances, respec-
tively.

Consider the standard N th horizon quadratic cost

JN (x0, π0) := Ex0,π0

[ N−1∑

k=0

(x′
kQθk xk + u′

kRθk uk) + x′
N FθN xN

]
, (1)

In view of the identity in (7), we have

JN (x0, θ0) = 〈L(0), X(0)〉 + π(0)′ω(0). (2)

Thus, the stochastic control problem posed in (36) can be recast as that of minimizing
the deterministic functional in (2) with respect to the gain sequenceG ∈ G . This fact
lead us to focus the remaining analysis on the deterministic expression of (2).

2 Definitions and Basic Concepts

LetRr denote the usual rth dimensional Euclidean space, and letM r,s (M r) repre-
sent the linear space formed by all r × s (r × r) real matrices. LetS r represent the
normed linear subspace ofM r of symmetric matrices such as {U ∈ M r : U = U ′},
where U ′ denotes the transpose of U. Consider also S r0 (S r+) its closed (open)

© The Author(s) 2016
A.N. Vargas et al., Advances in the Control of Markov Jump Linear Systems
with No Mode Observation, SpringerBriefs in Control, Automation and Robotics,
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8 Finite-Time Control Problem

convex cone of positive semidefinite (definite) matrices {U ∈ S r : U ≥ 0 (> 0)}.
Let S := {1, . . . , σ } be a finite set, and let Mr,s denote the linear space formed by
a number σ of matrices such thatMr,s = {U = (U1, . . . , Uσ ) : Ui ∈ M r,s, i ∈ S };
alsoMr ≡ M

r,r .Moreover,we setSr = {U = (U1, . . . , Uσ ) : Ui ∈ S r, i ∈ S }, and
we write Sr0 (Sr+) when Ui ∈ S r0 (∈ S r+) for all i ∈ S .

We employ the orderingU > V (U ≥ V ) for elements of Sr , meaning thatUi − Vi

is positive definite (semi-definite) for all i ∈ S , and similarly for other mathematical
relations. Let tr{·} be the trace operator. When applied for some U ∈ S

n, the operator
tr{U} signifies (tr{U1}, . . . , tr{Uσ }). Define the inner product on the space Mr,s as

〈U, V〉 =
σ∑

i=1

tr{U ′
i Vi}, ∀ V , U ∈ M

r,s,

and the Frobenius norm ‖U‖22 = 〈U, U〉.
The transition probability matrix is denoted by P = [pij], for all i, j ∈ S . The

state of the Markov chain at a certain time k is determined according to an associated
probability distribution π(k) on S , namely, πi(k) := Pr(θk = i). Considering the
column vector π(k) = [π1(k), . . . , πσ (k)]′, the state distribution of the chain, π(k),
is defined asπ(k) = (P′)kπ(0).GivenU ∈ M

r,s andπ(k) ∈ Rσ , k ≥ 0,we letπ(k)U
represent the operation (π1(k)U1, . . . , πσ (k)Uσ ).

Associated with the system (1)–(36), we defineA ∈ M
r ,B ∈ M

r,s,H ∈ M
r,q,Q ∈

S
r0, and R ∈ S

s+. In addition, we define the operatorsD = {Di, i ∈ S } : Sn0 �→ S
n0

and E = {Ei, i ∈ S } : Sn0 �→ S
n0, respectively, as

Di(U) :=
σ∑

j=1

pjiUj, Ei(U) :=
σ∑

j=1

pijUj, ∀i ∈ S , ∀U ∈ S
n0. (3)

The class of all admissible gain sequencesG = {G(0), . . . , G(N − 1)} as in (2) is
represented by G . Note that the corresponding closed-loop matrix sequence A(k) ∈
M

r satisfies

Ai(k) := Ai + BiG(k), ∀i ∈ S , k = 0, . . . , N − 1.

Let us define the conditional second moment matrix of the system state xk ,
k ≥ 0, as

Xi(k) = E[xkx′
k11{θk=i}], ∀i ∈ S , ∀k ≥ 0,

where 11{·} stands for the Dirac measure. Setting X(k) = {X1(k), . . . , Xσ (k)} ∈ S
n0

for every k ≥ 0, we obtain the recurrence [1, Proposition 3.35]

X(k + 1) = D
(
A(k)X(k)A(k)′ + π(k)HH ′), ∀k ≥ 0, (4)

http://dx.doi.org/10.1007/978-3-319-39835-8_1
http://dx.doi.org/10.1007/978-3-319-39835-8_1
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with Xi(0) = πi(0)x0x′
0 for each i ∈ S . In addition, let us define the sets L(k) ∈ S

r0

and ω(k) ∈ S
10, k = 0, . . . , N , from the coupled recurrence equations

Li(k) = Qi + G(k)′RiG(k) + Ai(k)′Ei(L(k + 1))Ai(k), Li(N) = Fi, ∀i ∈ S (5)

and

ωi(k) = Ei(ω(k + 1)) + tr{Ei(L(k + 1))HiH
′
i }, ωi(N) = 0, ∀i ∈ S . (6)

Lemma 2.1 GivenG ∈ G , the next set of identities hold for each k = 0, . . . , N − 1:

Ex0,π0

[ N−1∑

�=k

x′
�(Qθ�

+ G(�)′Rθ�
G(�))x� + x′

N FθN xN

]

=
N−1∑

�=k

σ∑

i=1

tr{(Qi + G(�)′RiG(�))Xi(�) + FiXi(N)}

= 〈
L(k), X(k)

〉 + π(k)′ω(k). (7)

Proof GivenG∈ G , let us define the randomvariableW(t, ·) for each t = 0, . . . , N as

W(t, xt, θt) = E

[ N−1∑

�=t

x′
�(Qθ�

+ G(�)′Rθ�
G(�))x� + x′

N FθN xN

∣∣∣∣ xt, θt

]
, (8)

with terminal condition W(N, xN , θN ) = x′
N FθN xN . Since the joint process {xt, θt} is

Markovian [1, p. 31], we can write the identity

W(t, xt, θt) = x′
t(Qθt + G(t)′Rθt G(t))xt

+ E

[
E

[ N−1∑

�=t+1

x′
�(Qθ�

+ G(�)′Rθ�
G(�))x�

+ x′
N FθN xN

∣∣∣∣ xt+1, θt+1

] ∣∣∣∣ xt, θt

]

= x′
t(Qθt + G(t)′Rθt G(t))xt + E[W(t + 1, xt+1, θt+1) | xt, θt]. (9)

Setting xt = x ∈ Rr and θt = i ∈ S , we now show by induction that

W(t, x, i) = x′Li(t)x + ωi(t), (10)

where L(t) ∈ S
r0 and ω(t) ∈ M

1, t = 0, . . . , N , satisfy (5) and (6), respectively.
Indeed, take t = N and it is immediate that

W(N, xN , θN ) = x′
N FθN xN = x′

N LθN (N)xN ,
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which shows the result for t = N . Now, suppose that (10) holds for t = m + 1, i.e.,
that

W(m + 1, xm+1, θm+1) = x′
m+1Lθm+1(m + 1)xm+1 + ωθm+1(m + 1)

is valid. We then get from (9) that

W(m, x, i) = x′(Qi + G(m)′RiG(m))x

+ E
[
x′

m+1Lθm+1(m + 1)xm+1 + ωθm+1(m + 1) | θm = i, xm = x
]
.

The right-hand side of the above identity is equal to

x′
(

Qi + G(m)′RiG(m) + Ai(m)′Ei(L(m + 1))Ai(m)
)

x + Ei(ω(m + 1))

+ E
[
tr{Lθm+1(m + 1)Hiw(m)w(m)′H ′

i } | θm = i, xm = x
]
.

Since the last term in this expression is equal to tr{Ei(L(m + 1))HiH ′
i }, we can con-

clude that

W(m, x, i) = x′
(

Qi + G(m)′RiG(m) + Ai(m)′Ei(L(m + 1))Ai(m)
)

x

+ Ei(ω(m + 1)) + tr{Ei(L(m + 1))HiH
′
i }

= x′Li(m)x + ωi(m),

which shows the result in (10) for t = m. This induction argument completes the
proof of (10). The result of Lemma 2.1 then follows from the conditional expectation
property together with (8) and (10). �

2.1 Main Results

For sake of clarity, let us represent by JG the cost JN (x0, θ0) when evaluated for
G ∈ G . The next result presents the necessary optimal condition for the considered
control problem.

Theorem 2.1 (Necessary optimal condition) Suppose that G = {G(0), . . . ,
G(N − 1)} ∈ G is such that JG = minK∈G JK. Then, for each k = 0, . . . , N − 1,

σ∑

i=1

[(Ri + B′
iEi(L(k + 1))Bi)G(k) + B′

iEi(L(k + 1))Ai]Xi(k) = 0, (11)

where X(k) ∈ S
r0 and L(k) ∈ S

r0 are as in (4) and (5), respectively.



2 Definitions and Basic Concepts 11

Proof For some k ≥ 0, let us assume that G(0), . . . , G(k − 1), G(k + 1), . . . ,
G(N − 1) are fixed optimal minimizers and G(k) is a free design variable. In this
case, both X(0), . . . , X(k) and L(k + 1), . . . , L(N) are fixed, and this allows us to
deduce from the identity of (7) that

argmin
G(k)

JG = argmin
G(k)

〈L(k), X(k)〉 + π(k)′ω(k).

Hence,

argmin
G(k)

JG = argmin
G(k)

[ σ∑

i=1

tr{[Qi + G(k)′RiG(k)

+ (Ai + BiG(k))′Ei(L(k + 1))(Ai + BiG(k))]Xi(k)}

+
σ∑

i=1

πi(k)
(
Ei(ω(k + 1)) + tr{Ei(L(k + 1))HiH

′
i }
) ]

.

Taking the differentiation with respect to G(k) in the expression within the last
brackets, we obtain the expression in (11) and the proof is completed. �

Remark 2.1 An interesting open question iswhether the necessary optimal condition
of Theorem 2.1 is also sufficient. Convexity can not be used to conclude sufficiency
because the optimization approach is not convex at all, as the next example illustrates.

Example 2.1 Consider the single-input single-output MJLS as in (1) with para-
meters A1 = 0.3, A2 = 0.1, B1 = −1, B2 = 1, Hi = 0, Qi = 0.4, Ri = 1, Fi = 0.5,
i = 1, 2, N = 2, x(0) = 2, and π0 = [0.25 0.75]. We consider the stochastic matrix
P = [pij], i, j = 1, 2 as p11 = 0.6, p12 = 0.4, p12 = 0.2, and p22 = 0.8. After some
algebraic manipulations on (2), one can rewrite the cost equivalently as

J{G(0),G(1)} = 1.6 + 4G(0)2 + (0.4 + G(1)2)(0.3 − G(0))2 + (1.2 + 3G(1)2)(0.1 + G(0))2

+ 0.3(0.3 − G(1))2(0.3 − G(0))2 + 0.2(0.1 + G(1))2(0.3 − G(0))2

+ 0.1(0.3 − G(1))2(0.1 + G(0))2 + 0.4(0.1 + G(1))2(0.1 + G(0))2. (12)

The functional in (12) is not convex as one can inspect in the contour plot of Fig. 1.
Note also in thefigure that the functionhas a uniqueminimumwithmultiple solutions.

Remark 2.2 It should benoted that the coupled equations (4), (5), and (11) are nonlin-
ear with respect to G = {G(0), . . . , G(N − 1)} ∈ G , and their evaluation represents
a challenge for analytical and numerical fronts. The method of the next section rep-
resents a contribution towards this direction since it computes G ∈ G that satisfies
simultaneously (4), (5), and (11).

http://dx.doi.org/10.1007/978-3-319-39835-8_1
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Fig. 1 Three-dimensional contour plot of the cost J{G(0),G(1)} as in Example 2.1

2.2 Numerical Method for the Necessary Optimal Condition

In this section, we provide amethod for evaluating the necessary optimal condition of
Theorem 2.1. The idea of the method is to employ a variational principle to produce
monotone cost functions. On the convergence, it provides a gain sequence G ∈ G
that satisfies the optimality condition of Theorem 2.1.

To present the method, we require some additional notation. Let η = 0, 1, . . . be
an iteration index. For some given sequence

G[η] := {G[η](0), . . . , G[η](N − 1)} ∈ G , η = 0, 1, . . . .

let us define

A[η]
i (k) := Ai + BiG

[η](k), Q[η]
i (k) := Qi + G[η](k)′RiG

[η](k),

∀i ∈ S , k = 0, . . . , N − 1.

Let us now consider the following algorithm.

• Step 1: Set the iterations counter η = 0. Pick an arbitrary initial sequence G[0] ∈
G .

• Step 2: For each k = 1, . . . , N , find X [η](k) ∈ S
r0, the solution of the following set

of equations:

X [η](k) = D
(

A[η](k − 1)X [η](k − 1)A[η](k − 1)′ + π(k − 1)HH ′
)
,

with X [η](0) = X(0). Set η = η + 1 and go to Step 3.
• Step 3: Set L[η](N) = F and k = N − 1. Let G[η](k) ∈ M s,r be defined by
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η∑

i=1

[(
Ri + B′

iEi

(
L[η](k + 1)

)
Bi

)
G[η](k) + B′

iEi

(
L[η](k + 1)

)
Ai

]
X[η−1]

i (k) = 0.

(13)
Evaluate the expression

(G[η](k) − G[η−1](k))X [η−1]
i (k) = 0 (14)

and setG[η](k) = G[η−1](k)only if (14) holds true for all i ∈ S . ComputeL[η](k) ∈
S

r0 and ω[η](k) ∈ S
1 from the recurrence

L[η](k) = Q[η](k) + A[η](k)′E (L[η](k + 1))A[η](k), L[η](N) = F, (15)

ω[η](k) = E (ω[η](k + 1)) + tr{E (L[η](k + 1))HH ′}, ω[η](N) = 0. (16)

Set k = k − 1; if k ≥ 0 then return to the beginning of Step 3.
• Step 4: Compute the cost JG[η] = 〈

L[η](0), X(0)
〉 + π(0)′ω[η](0). If the evaluation

of the difference JG[η−1] − JG[η] is sufficiently small, then stop the algorithm.
Otherwise, return to the beginning of Step 2.

Remark 2.3 The equation (13) can be transformed into a system of linear equations
of the form A w = b, whose solution can be obtained to a desired precision using
efficient numerical methods available in literature. In fact, by applying the Kronecker
product and the column stacking operator (denoted by ⊗ and vec, respectively) one
obtains w = vec

(
G[η](k)

)
,

A =
η∑

i=1

[
X [η−1]

i (k) ⊗ (
Ri + B′

iEi
(
L[η](k + 1)

)
Bi
) ]

,

and

b = −vec

[
η∑

i=1

[
B′

iEi
(
L[η](k + 1)

)
Ai
]
X [η−1]

i (k)

]
.

Remark 2.4 The algorithm can be implemented in a receding horizon framework. At
each time instant � ≥ 0, the gain sequence G(t), � ≤ t ≤ � + N − 1 is calculated and
only G(t), t = � is implemented. In order to compute this gain sequence, assuming
X(�) = M withM given, one can employ the algorithmwith a time displacement k =
t − �: set X(0) = M and obtain the gain sequence G(k), 0 ≤ k ≤ N − 1 as indicated
in the algorithm (producing G(t), � ≤ t ≤ � + N − 1). Note that only the covariance
matrix X(�) = M (or an estimate of it) is required at time instant � to obtain the
corresponding receding horizon gain.

Theorem 2.2 The gain sequences G[η] ∈ G , η = 0, 1, . . ., generated in the
algorithm of Steps 1–4, satisfy the monotone property JG[η] ≥ JG[η+1]. Moreover,
the limit G = limη→∞ G[η] exists and it satisfies the necessary optimal condition of
Theorem 2.1.
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Proof We divide the proof of Theorem 2.2 into two parts. The first part introduces
an evaluation for the cost corresponding to two different gain sequences, and the
second one proves that the cost corresponding to the gain sequences from Step 3
is monotonically non-increasing. As a byproduct, we get that the gain sequences
converge to a sequence that satisfies the optimality condition of Theorem 2.1.

To begin with, we need to introduce some additional notation. For a given gain
sequence G = {G(0), . . . , G(N − 1)} ∈ G , let us consider the operator

L k
i,G(U) := (Ai + BiG(k))′Ei(U)(Ai + BiG(k)),

k = 0, . . . , N − 1, ∀i ∈ S , U ∈ S
r,

so that we can write

Li,G(k) = Qi + G(k)′RiG(k) + L k
i,G(LG(k + 1)), k = 0, . . . , N − 1, ∀i ∈ S ,

with LG(N) = F.
After some algebraic manipulation (see Appendix for a detailed proof), we have

LG(k) − LK(k) = δk
G,K + L k

K

(
LG(k + 1) − LK(k + 1)

)
, k = 0, . . . , N − 1,

(17)
with both G and K belonging to G , where

δk
i,G,K := (G(k) − Zk

i )′Λk+1
i,G (G(k) − Zk

i ) − (K(k) − Zk
i )′Λk+1

i,G (K(k) − Zk
i ), ∀i ∈ S ,

(18)
with Λk

i,G := Ri + B′
iEi(LG(k))Bi and Zk

i := −(Λk+1
i,G )−1B′

iEi(LG(k + 1))Ai.
Moreover, if G = G[η] ∈ G is the gain sequence that satisfies (13) and X(k) =
X [η−1](k), k = 0, . . . , N , is the corresponding secondmoment trajectory from Step 2,
then we have [2, p. 1123]

〈X(k), δk
G,K〉 = ‖(Λk+1

G )
1
2 (G(k) − Zk)X(k)

1
2 ‖22 − ‖(Λk+1

G )
1
2 (K(k) − Zk)X(k)

1
2 ‖22

= −‖(Λk+1
G )

1
2 (G(k) − K(k))X(k)

1
2 ‖22. (19)

The expression of (19) will be useful on evaluating the quantity JG[η] − JG[η−1].
Indeed, we derive in the sequel the arguments to show that

JG[η] − JG[η−1] = 〈X(k), δk
G〉 = −‖(Λk+1

G )
1
2 (G(k) − K(k))X(k)

1
2 ‖22. (20)

This result is important because it enables us to conclude that the cost sequence
generated by Steps 1–4 is monotone, i.e., there holds JG[η−1] ≥ JG[η] for every η =
1, 2, . . ., thus showing the first statement of Theorem 2.2.

To show the identity in (20), let us define the sequences

G [η,k] := {G[η−1](0), . . . , G[η−1](k − 1), G[η](k), . . . , G[η](N)}, (21)
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for each k = 0 . . . , N , and set G [η] = G [η,0]. Recall the expression of the cost in (7),
and note that the last element of G [η,k], i.e., G[η](N), does not influence the value of
the cost, so that JG [η−1] = JG [η,N] .

Step 3 calculates G[η](k) backwards in time. Thus, when an iteration of Step 3
occurs, the element G[η−1](k) in G [η,k+1] is modified to G[η](k) in G [η,k], while the
other elements remain unchanged. This observation leads to

m > k ⇒ LG [η,k](m) = LG [η,k+1](m). (22)

Let us now define the recurrence

ωi,G(k) = Ei(ωG(k + 1)) + tr{Ei(LG(k + 1))HiH
′
i }, ωi,G(N) = 0, ∀i ∈ S .

(23)
It follows from (23) that

ωG [η,k](k) − ωG [η,k+1](k) = E
(
ωG [η,k](k + 1) − ωG [η,k+1](k + 1)

)

+ tr{E (
LG [η,k](k + 1) − LG [η,k+1](k + 1)

)
HH ′} (24)

withωG [η,k](N) = ωG [η,k+1](N) = 0. Since the rightmost term of (24) is null due to the
identity in (22), we can apply a simple induction argument on the resulting expression
from (24) to conclude that

ωG [η,k](k) = ωG [η,k+1](k), k = 0, . . . , N − 1. (25)

One can employ a similar reasoning for the recurrence in (4) to show that

k ≥ m ≥ 0 ⇒ XG [η,k](m) = XG [η,k+1](m). (26)

In particular, we can observe from Step 2 the validity of the identity

XG [η,k](k) = X [η−1](k), k = 0, . . . , N . (27)

Now, we are able to prove the identity in (20). Indeed, from (7), we have

JG [η,k] − JG [η,k+1] = 〈
XG [η,k](k), LG [η,k](k)

〉 + π(k)′ωG [η,k](k)

− 〈
XG [η,k+1](k), LG [η,k+1](k)

〉 − π(k)′ωG [η,k+1](k). (28)

Now substituting (25)–(27) into (28), we get

JG [η,k] − JG [η,k+1] = 〈
X [η−1](k), LG [η,k](k) − LG [η,k+1](k)

〉
,
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or equivalently, we can invoke the identity of (17) to obtain

JG [η,k] − JG [η,k+1]

= 〈
X [η−1](k), δk

G [η,k],G [η,k+1] + L k
G [η,k+1]

(
LG [η,k](k + 1) − LG [η,k+1](k + 1)

)〉
. (29)

But then we can employ (22) with m = k + 1 to conclude that

JG [η,k] − JG [η,k+1] = 〈
X [η−1](k), δk

G [η,k],G [η,k+1]
〉
. (30)

Hence, if we let

ξ(k) := ‖(Λk+1
G [η,k])

1
2 (G[η](k) − G[η−1](k))X [η−1](k)

1
2 ‖22, k = 0, . . . , N,

then we can combine (19) and (30) to write

JG [η,k] − JG [η,k+1] = −ξ(k), k = 0, . . . , N .

Since the matrix Λk+1
i,G [η,k] is positive definite for each i ∈ S , we have that ξ(k) = 0

if and only if (G[η](k) − G[η−1](k))X [η−1]
i (k) = 0 for all i ∈ S . In this case, Step 3

assures that G[η](k) = G[η−1](k), which in turn implies that ξ(k) = 0 if and only if
G[η](k) = G[η−1](k).

Finally, the result of Theorem 2.2 then follows by summing up (30) with respect
to k, i.e.,

JG [η] − JG [η−1] =
N−1∑

k=0

(JG [η,k] − JG [η,k+1]) = −
N−1∑

k=0

ξ(k) ≤ 0,

which shows the monotone non-increasing property of the cost sequence JG [η] , η =
0, 1, . . .. As a byproduct, we have that JG [η−1] > JG [η] whenever G[η](k) �= G[η−1](k),
so that the limit limη→∞ G[η](k) exists for every k = 0, . . . , N − 1. This argument
completes the proof of Theorem 2.2. �

2.2.1 Remarks

The results of thismonograph can be quite easily extended to the scenario of clustered
observation of the Markov state [3], in which one observes the variable ψk taking
values in the set S = {1, . . . , σ } and satisfying ψk = i whenever θk ∈ Si, where
Si, 0 ≤ i ≤ σ , forms a partition of S . For example, if S = {1, . . . , 4}, S1 = {1}
andS2 = {2, . . . , 4}, thenψk = 2means that θk ∈ {2, . . . , 4}. Note that, if we define
the function

ψ(i) =
σ∑

j=1

j11{i∈Sj},
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thenψk = ψ(θk) a.s.We assume that the controller is in the form uk = G(k, ψ(θk))xk ,
hence the closed loop structure is now given by Ai(k) := Ai + BiG(k, ψ(i)), for all
i ∈ S and k = 0, . . . , N − 1, and the necessary condition for optimality reads as

σ∑

i=1

[(Ri + B′
iEi(L(k + 1))Bi)G(k, ψ(i)) + B′

iEi(L(k + 1))Ai]Xi(k) = 0. (31)

The algorithm is altered accordingly by substituting (13) by (31).
One interesting feature of (31) is that, assuming the cardinality of Sj is one for

some 0 ≤ j ≤ σ , that is, Sj = {r} for some 0 ≤ r ≤ σ , then ψ(�) = j only when
� = r, allowing to obtain from (31) an analytical expression for G(k, ψ(r))

G(k, ψ(r)) = −(Rr + B′
rEr(L(k + 1))Br)

−1B′
rEr(L(k + 1))Ar,

irrespectively of X(k) and the other gains G(k, ψ(i)) in (31). In one extreme, the
case when the mode is observed (complete observation) can be retrieved by setting
Sj = {j}, 0 ≤ j ≤ σ . In this situation, ψ(i) = i and the optimal gain is given by
G(k, i) = −(Ri + B′

iEi(L(k + 1))Bi)
−1B′

iEi(L(k + 1))Ai. The algorithm converges
in one iteration, and (16) is now equivalent to the well known Riccati difference
equation for the jump linear quadratic problem [1, Chap. 4]. This also serves as an
illustration that the dependence of the gains on the second moment matrices X(k)

in (31) is not a drawback of the methodology in this monograph, it is a feature of
the considered partial observation problem. In the other extreme, (31) and (13) are
equivalent if one setsS1 = S .

2.3 Numerical Example

This section presents an adapted example from [4], which consists of a continuous-
time uncertain system characterized by four different operating points. In [4], a time
discretization was performed, leading to four discrete-time linear systems given by

Ai =
⎡

⎣
ai
11 ai

12 ai
13

ai
21 ai

22 ai
23

0 0 0.2231

⎤

⎦ , Bi =
⎡

⎣
bi
1

bi
2

0.7769

⎤

⎦ ,

Qi = I, Ri = 1, Fi = 0, i = 1, 2, 3, 4,

where parameters ai
ij and bi

i are as listed in [4]. We set N = 4, x0 = [−0.27 1.2 2.1]′,
μ0 = [0.25 0.25 0.25 0.25]′, Hi = I, i = 1, 2, 3, 4, and P = [pii = 0.88, pij = 0.04,
∀i, j ∈ N , i �= j]. We shall assume here that the system can jump from one operating
point to another, according to a Markov chain, thus forming a MJLS. We employ
two distinct covariance matrix to observe the numerical sensitivity in the example.
The following matrices are adopted: Case 1: Σ = 0.25I; Case 2: Σ = I .
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Table 1 Optimal feedback gains and minimal cost

Case 1 Case 2

K0 0.024 –0.1067 –0.1867 0.0247 –0.1101 –0.1927

K1 0.1377 0.3069 –0.3235 0.0858 0.0255 –0.1772

K2 –0.0626 –0.0158 –0.32 –0.0413 –0.0229 –0.1509

K3 –0.0805 –0.0875 –0.249 –0.0772 –0.0952 –0.2354

JN
K 284.57 373.47

Fig. 2 Cost Evolution for Case 1 (above) and for Case 2 (below)

We use the MATLAB software to implement the algorithm proposed in Sect. 2.2.
We evaluate, for each case, the algorithm with 10,000 distinct initial sequences
G(0) ∈ K , and in every simulation the algorithm converges to the same minimal
cost. This result confirms the Theorem 2.2, and it is a strong indication that the
minimum achieved is the global minimum, since the result is independent of the
initial choice of G(0).

The results obtained for this example, for minimal cost JN
K and optimal sequence

{K0, K1, K2, K3}, are presented in Table1.
Figure2 shows the cost evolution JN

G(η) versus number of iterations η, for
Case 1 e Case 2. We can see that the value of the minimal cost in Case 2 is greater
than Case 1, due to a greater magnitude of the covariance matrix of the former.
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Fig. 3 Laboratory DC
Motor testbed used in the
experiments of Sect. 2.4

2.4 Experimental Results from a DC Motor Device

This section presents a real implementation of the underlying Markovian controller
for a DC motor device. In practical terms, we use the results of the previous section
to derive a strategy to control the speed of a real DC motor device subject to abrupt
failures. The equipment is altered to take these failures into account according to a
prescribed Markov chain.

The experimental testbed is based on the DC Motor Module 2208, made up by
Datapool EletronicaLtda,Brazil, using aNational InstrumentsUSB-6008 data acqui-
sition card to perform a physical link with the computer, see Fig. 3. The computer
calls MATLAB software to implement physically the controller and it makes use of
the gain sequence that was precomputed offline from Theorem 2.2.

It is known that the dynamics of DC motors can be satisfactorily represented by
second order linear systems [5–7]. In this case, the two system state variables are the
angular velocity of the motor shaft and the electrical current consumed by the motor,
which are represented in this project, respectively, by vk and ik , k ≥ 0. In practice, to
measure the angular velocity, we use the manufacturer-provided tachogenerator that
produces voltage proportional to the speed of the shaft; and to measure the electric
current, we introduce in series with the motor a simple circuit composed by a shunt
resistor connected with a pre-amplifier signal stage. First-order analog filters are
used in the circuit to reduce high-frequency noise from the experimental data. The
experiments of this project are conducted with a sampling period of 15.6118ms.

Abrupt failures on the power transmitted to the shaft play an important role in the
speed of motors, and this fact motivates us to adjust the apparatus in order to impose
power failures therein. Namely, we force the DC motor device to run under three
distinct operation modes, i.e., the normal, low, and medium power modes, and these
switching modes are programmed to occur according to a homogeneous Markov
chain.
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Under this failure scenario, we aim to control the speed of the DC motor so
as to track the constant input reference of one radian per second. As a byprod-
uct, we can assure that the steady-state error vanishes to zero. In fact, to accom-
plish this goal in practice, we modify the PI compensator schematic suggested in
[8, Sect. 10.7.3] to cope with the discrete-time MJLS. As a result, by setting the
system state as xk ≡ [vk ik x3,k]′ (where x3,k represents the integrative term written
as a discrete sum), we are able to model the DC motor device subject to failures as
the following discrete-time Markov jump linear system:

xk+1 = Aθk xk + Bθk uk + Hθk wk + Γθk rk, k ≥ 0, (32)

where the parameters

Ai =
⎡

⎣
a(i)
11 a(i)

12 0
a(i)
21 a(i)

22 0
a(i)
31 0 a(i)

33

⎤

⎦ , Bi =
⎡

⎣
b(i)
1

b(i)
2
0

⎤

⎦ , Γi =
⎡

⎣
0
0

γ (i)

⎤

⎦ , Hi = h(i), i = 1, 2, 3.

are given in Tables2 and 3. The sequence {wk} on R2 represents an i.i.d. noise
sequence with zero mean and covariance matrix equal to the identity matrix, {rk} on
R denotes the tracking reference signal, and {uk} onR stands for the controller.

The design objective of this project is to control the speed of the real DC motor
device when sudden power failures occur. The practical experiment in the laboratory
testbed implements the controller in the linear state-feedback form

uk = G(k)xk, ∀k ≥ 0. (33)

In the control design, we set the model (32) and (33) with r(k) ≡ 0 to get a
matrix gain sequence G = {G(0), . . . , G(N − 1)} from Theorem 2.2 satisfying the
necessary optimal condition of Theorem 2.1. This strategy is purposeful to improve
attenuation of the real input disturbancesω(·)with fast transient response for tracking

Table 2 Parameters of the discrete-time MJLS representing a real DC motor device as in Sect. 2.4

Parameters a(i)
11 a(i)

12 a(i)
21 a(i)

22 a(i)
31 a(i)

33

i = 1 −0.479908 5.1546 −3.81625 14.4723 0.139933 −0.925565

i = 2 −1.60261 9.1632 −0.5918697 3.0317 0.0740594 −0.43383

i = 3 0.634617 0.917836 −0.50569 2.48116 0.386579 0.0982194

Table 3 Parameters of the discrete-time MJLS representing a real DC motor device as in Sect. 2.4

Parameters b(i)
1 b(i)

2 h(i) γ (i)

i = 1 5.87058212 15.50107 0.1 0.11762727

i = 2 10.285129 2.2282663 0.1 −0.1328741

i = 3 0.7874647 1.5302844 1 0.1632125
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Table 4 Parameters for the experimental testbed of Sect. 2.4

Parameters q(i)
11 q(i)

12 q(i)
22 q(i)

33 Ri

i = 1 0.24 0.61 2.1 0.7 2

i = 2 0.8 −0.512 0.676 0.1 2

i = 3 0 0 0 0 1000

problems, see [7, 9, 10] for further details regarding deterministic systems. As a con-
sequence, these specifications can be taken into account in our practical experiments
designed for the tracking reference rk ≡ 1. Indeed, we will see in the sequence that
G engenders an interesting tracking behavior for the speed of the DC Motor device
when failures happen.

To perform the experiments, we set N = 1800, π0 = [1 0 0]′,

Qi =
⎡

⎢⎣
q(i)
11 q(i)

12 0

q(i)
12 q(i)

22 0

0 0 q(i)
33

⎤

⎥⎦ , and Fi = 02×2, i = 1, 2, 3,

with values shown in Table4.
The task of defining precisely the value of the stochastic matrix Pmay be cumber-

some in some circumstances [11–15]. In this project, however, we are able to define
P precisely as

P =
⎡

⎣
0.84 0.07 0.09
0.24 0.75 0.01
0.11 0.08 0.81

⎤

⎦ .

We can see in Fig. 4 the experimental and simulated data of the angular velocity
and electric current for some realization of the Markovian process. Notice in the
figure that the experimental and simulated data tend to overlap each other, which is a
strong indication that the MJLS model (32)–(33) provides a good representation of
the DC motor device subject to power failures. In addition, one can see that the DC
Motor speed vk follows the tracking reference rk ≡ 1 with success, even though the
power failures tend to deviate it from its reference target. The figure also presents
the states of the Markov chain with respect to the normal (θk = 1), low (θk = 2), and
medium (θk = 3) powermodes associatedwith the evolution of the system trajectory.

To clarify the influence of abrupt power failures on the DC motor device in prac-
tice, we carry out a Monte Carlo-based experiment. The idea of the Monte Carlo
experimentation is to operate the DCMotor device to work out one thousand distinct
random experiments, and the corresponding outcome is then used to obtain the mean
and standard deviation of both the angular velocity and electric current of the device,
see Fig. 5 for a pictorial representation. It is noteworthy that even in the real scenario
of failures, the designed controller is able to drive with success the mean value of
the DC Motor speed to the tracking reference value of one radian per second. The
experimental values of the standard deviation are bounded and this indicates that the
stochastic system is stable, cf. [1, Chap. 3], [16].
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Fig. 4 A sample-path of the angular velocity and electric current obtained from both real and
simulated data using the MJLS control strategy of Theorem 2.2. The corresponding state of the
Markov chain is depicted in the third picture

Fig. 5 Mean and standard deviation values of the angular velocity and electric current obtained
from Monte Carlo practical experiments. The MJLS control strategy of Theorem 2.2 is used to
generate the corresponding experimental data
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3 Finite-Time Control Problem: Descendent Methods

For sake of notational simplicity, we assume hereafter no noise in the system (1),
that is, (1) equals

xk+1 = Aθk xk + Bθk uk, ∀k ≥ 0, x0 ∈ Rr, θ0 ∼ π0. (34)

Seeking for simplicity and aiming at practical control applications, we assume that
the control law is in the linear static state-feedback format with no mode observation
as follows.

uk = Gxk, k ≥ 0. (35)

Notice that the gain G is stationary, hence it does not depend on the time index k.
The optimization control problem we deal with is that of finding some matrix G

that minimizes (1) subject to (1) and (35). Formally, if we let JN (G) be the cost (1)
for a given G, then we recast the optimization control problem as follows.

G∗ = argmin
G

JN (G). (36)

To the best of the authors’ knowledge, there is no method to compute the opti-
mal solution for the control problem in (36). A drawback for finding the optimal
solution of (36) is the fact that the nonlinear functional JN (G) may be non-convex
(see Sect. 2.4). A tentative method to overcome this difficulty, aiming at the optimal
solution, is to employ optimization techniques borrowed from the literature, although
these techniques are able to guarantee stationary points only (i.e., local minimum or
saddle points).

The main contribution of this section is twofold. First, we derive the expression of
the gradient of the optimization problem in (36). Second,we recall some optimization
techniques from the literature to compare their efficiency on achieving the solution
of (36) for a particular control problem.

3.1 Preliminaries

Define the inner product on the space Mr,s as

〈U, V〉 =
σ∑

i=1

tr{U ′
i Vi}, ∀ V , U ∈ M

r,s, (37)

and the Frobenius norm ‖U‖22 = 〈U, U〉.
If f : M s,r �→ R is a differentiable function on the domain M s,r , we denote

its partial derivative by ∂f (G)/∂G whenever G ∈ M s,r . Let tr{·} denote the trace
operator. We now recall some derivative rules for the trace operator. Considering

http://dx.doi.org/10.1007/978-3-319-39835-8_1
http://dx.doi.org/10.1007/978-3-319-39835-8_1
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U, V , Z , and G as matrices with compatible dimensions, we have [17, Sect. 10.3.2]

∂ tr{UGV}
∂G

= U ′V ′, ∂ tr{UG′V}
∂G

= VU,
∂ tr{UGVG′Z}

∂G
= U ′Z ′GV ′ + ZUGV . (38)

Let us define the conditional second moment matrix of the system state xk , k ≥ 0,
as

Xi(k) = E[xkx′
k11{θk=i}], ∀i ∈ S , ∀k ≥ 0,

where 11{·} stands for the Dirac measure. Using this definition, we can write the
identity [1, p. 31]

Ex0,π0 [x′
k(Qθk + G′Rθk G)xk]

=
σ∑

i=1

tr
{
(Qi + G′RiG)Ex0,π0 [xkx′

k11{θk=i}]
} = 〈Q + G′RG, X(k)〉, ∀k ≥ 0.

Thus, the N th horizon cost function JN (x0, π0) as in (1) can be written equivalently
as

JN (G) =
N∑

k=0

〈Q + G′RG, X(k)〉. (39)

To evaluate precisely the cost JN (G) as in (39), let us set X(k) = {X1(k), . . . ,

Xσ (k)} ∈ S
n0, k ≥ 0, and notice that it satisfies the recurrence [1, Proposition 3.1]

X(k + 1) = D
(
(A + BG)X(k)(A + BG)′

)
, ∀k ≥ 0, (40)

with Xi(0) = πi(0)x0x′
0 for each i ∈ S .

Finally, to complete the definition of recurrences required in the next results, let
us consider the sets W(k) ∈ S

r0, k = 0, . . . , N , generated as follows.

W(k + 1) = (A + BG)′E (W(k))(A + BG), k = 0, . . . , N − 1, and

W(0) = Q + G′RG. (41)

3.2 Main Results

Lemma 3.1 For each k = 0, . . . , N, there holds

∂ 〈Q + G′RG, X(k)〉
∂G

= 2

⎛

⎝
σ∑

j=0

RjGXj(k) +
k−1∑

�=0

σ∑

i=0

B′
iEi

(
W(k − 1 − �)

)
(Ai + BiG)Xi(�)

⎞

⎠ .
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Proof To prove the main result, it is necessary to introduce some auxiliary results.
To begin with, notice from the formulas (38) that we can write

U, V ∈ S r ⇒ ∂ tr{U(Ai + BiG)V(Ai + BiG)′}
∂G

= 2B′
iU(Ai + BiG)V ,

i = 1, . . . , σ. (42)

Let us now turn our attention to the recurrence (40). If we set k = 1 in (40), one
can verify that

Xi1(1) =
σ∑

i0=1

pi0i1(Ai0 + Bi0G)Xi0(0)(Ai0 + Bi0G)′, i1 = 1, . . . , σ.

With k = 2 in (40), we have

Xi2(2) =
σ∑

i1=1

σ∑

i0=1

pi0i1pi1i2(Ai1 + Bi1G)(Ai0 + Bi0G)

× Xi0(0)(Ai0 + Bi0G)′(Ai1 + Bi1G)′, i2 = 1, . . . , σ.

Proceeding similarly with k = � + 1 in (40), we obtain

Xi�+1(� + 1) =
σ∑

i�=1

· · ·
σ∑

i0=1

(
pi0i1 · · · pi�i�+1(Ai� + Bi�G) · · · (Ai0 + Bi0G)

× Xi0(0)(Ai0 + Bi0G)′ · · · (Ai� + Bi�G)′
)

, i�+1 = 1, . . . , σ.

(43)

Combining (37) and (43), we obtain the identity

∂ 〈Q + G′RG, X(� + 1)〉
∂G

=
σ∑

i�+1=1

∂

∂G
tr
{
(Qi�+1 + G′Ri�+1G)Xi�+1(� + 1)

}

=
σ∑

i�+1=1

· · ·
σ∑

i0=1

pi0i1 · · · pi�i�+1

[
∂

∂G
tr
{
(Qi�+1 + G′Ri�+1G)

× (Ai� + Bi�G) · · · (Ai0 + Bi0G)Xi0 (0)

× (Ai0 + Bi0G)′ · · · (Ai� + Bi�G)′
}]

. (44)
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On the other hand, the derivative chain rule [17, Sect. 10.3.1] states that

∂ 〈Q + G′RG, X(� + 1)〉
∂G

= ∂ 〈
variable︷ ︸︸ ︷

Q + G′RG,

fixed︷ ︸︸ ︷
X(� + 1)〉

∂G
+ ∂ 〈

fixed︷ ︸︸ ︷
Q + G′RG,

variable︷ ︸︸ ︷
X(� + 1)〉

∂G
. (45)

The first expression in the right-hand side of the equality (45) is identical to (see
(38))

σ∑

i=1

∂ tr{
variable︷ ︸︸ ︷

Qi + G′RiG,

fixed︷ ︸︸ ︷
Xi(� + 1)}

∂G
=

σ∑

i=1

2RiGXi(� + 1). (46)

To evaluate the second term in the right-hand side of (45), we start with (44)
taking Qi�+1 + G′Ri�+1G as a fixed term. The derivative chain rule will be useful in
this calculation. Indeed, the idea behind the derivative chain rule is to consider (44)
with (Ai0 + Bi0G) as variable and all of the other terms fixed, and after this we take
(Ai1 + Bi1G) as variable and all of the other terms fixed, and so on until the evaluation
of the term (Ai� + Bi�G) is accomplished.

Let us now start this procedure. Assume that U ∈ S r and V ∈ S r are fixed and
defined in (42) as

U = (Ai1 + Bi1G)′ · · · (Ai� + Bi�G)′(Qi�+1 + G′Ri�+1G)(Ai� + Bi�G) · · · (Ai1 + Bi1G),

V = Xi0 (0).

Thus, the term inside the brackets of (44) equals

∂

∂G
tr{U(Ai0 + Bi0G)V(Ai0 + Bi0G)′},

which yields

2B′
i0

[
(Ai1 + Bi1G)′ · · · (Ai� + Bi�G)′(Qi�+1 + G′Ri�+1G)

× (Ai� + Bi�G) · · · (Ai1 + Bi1G)

]
(Ai0 + Bi0G)Xi0(0).

Substituting this expression into (44), we obtain

σ∑

i0=1

2B′
i0

[ σ∑

i1=1

pi0i1(Ai1 + Bi1G)′ · · ·
σ∑

i�=1

pi�−1i� (Ai� + Bi�G)′

×
σ∑

i�=1

pi�i�+1(Qi�+1 + G′Ri�+1G)(Ai� + Bi�G) · · · (Ai1 + Bi1G)

]
(Ai0 + Bi0G)Xi0 (0).
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Notice that the term inside the brackets is identical to Ei0(W(�)). Hence, when (Ai0 +
Bi0G) is variable and all of the other terms remain fixed, we get that

∂ 〈Q + G′RG, X(� + 1)〉
∂G

=
σ∑

i0=1

2B′
i0Ei0(W(�))(Ai0 + Bi0G)Xi0(0).

Let us now assume that the term (Ai1 + Bi1G) is variable and all of the others are
fixed. Since (44) can be rewritten as

σ∑

i�+1=1

· · ·
σ∑

i1=1

pi1i2 · · · pi�i�+1

[
∂

∂G
tr
{
(Qi�+1 + G′Ri�+1G)

× (Ai� + Bi�G) · · · (Ai1 + Bi1G)Xi1(1)(Ai1 + Bi1G)′ · · · (Ai� + Bi�G)′
}]

,

one can repeat the previous reasoning, taking (Ai1 + Bi1G) as variable and all of the
other terms fixed, to show that

∂ 〈Q + G′RG, X(� + 1)〉
∂G

=
σ∑

i1=1

2B′
i1Ei1(W(� − 1))(Ai1 + Bi1G)Xi1(1).

Finally, summing up the elements from this argument, we obtain

∂ 〈
fixed︷ ︸︸ ︷

Q + G′RG,

variable︷ ︸︸ ︷
X(� + 1)〉

∂G
=

σ∑

i0=1

2B′
i0Ei0(W(�))(Ai0 + Bi0G)Xi0(0)

+
σ∑

i1=1

2B′
i1Ei1(W(� − 1))(Ai1 + Bi1G)Xi1(1)

...

+
σ∑

i�=1

2B′
i�Ei� (W(0))(Ai� + Bi�G)Xi� (�). (47)

The desired result then follows from (45), (46), and (47). �

The next result is an immediate consequence of Lemma 3.1 and the expression
for the cost in (39).

Theorem 3.1 Let ϕ : M s,r �→ M s,r be the gradient of the cost JN (G) as in (39).
Then, it satisfies

∂ JN (G)

∂G
= ϕ(G), (48)



28 Finite-Time Control Problem

where

ϕ(G) := 2
N∑

k=0

⎛

⎝
σ∑

j=0

RjGXj(k) +
k−1∑

�=0

σ∑

i=0

B′
iEi

(
W(k − 1 − �)

)
(Ai + BiG)Xi(�)

⎞

⎠ , (49)

and X(k) ∈ S
r0 and W(k) ∈ S

r0 satisfy (40) and (41), respectively.

The next result is immediate from Theorem 3.1 and [18, Corollary p. 185].

Corollary 3.1 (Necessary optimal condition) If Ḡ ∈ M s,r is a local minimum, then
ϕ(Ḡ) = 0.

3.3 Methodology

The aimof this section is to describe themethodologyweuse to evaluate the necessary
optimal condition of Corollary 3.1. For this purpose, let us consider the gradient of
(39), evaluated at a point G, as

ϕ(G) = ∂ JN (G)

∂G

∣∣∣∣
G=G

. (50)

We focus our study on conjugate gradient and quasi-Newton methods [18–24], and
all of these algorithms are based on the following three steps.

Step 1. Choose ε > 0 and some initial point G0. Set k = 0.
Step 2. Find an appropriate descent direction dk and compute the scalar αk such
that

αk := argmin
α>0

JN (Gk + αdk).

Step 3. Set Gk+1 = Gk + αkdk and k = k + 1. Return to Step 2 if ‖ϕ(Gk)‖ ≥ ε.

Notice that Steps 1–3 produce a sequence of points G0,G1, . . . ,Gk, . . ., and
hopefully we can choose a subsequence Gn0 ,Gn1 , . . . ,Gnk , . . . from it such that

ϕ(Gnk ) → 0 as k → ∞. (51)

An accumulation pointG∞ := limk→∞ Gnk satisfies the necessary optimal condition
for (39) (Corollary 3.1), i.e.,

ϕ(G∞) = 0.

As a consequence, G∞ realizes a local minimum or a saddle point for (39). Notice
that a local minimum may coincide with the global one, and in this case we have
G∞ = G∗.
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We select in our analysis the following ten optimization algorithms due to their
wide use in practice, good speed of convergence, and general acceptance in the
literature:

• Steepest descent (SD), see [19, Sect. 8.5], [18, Sect. 8.6];
• Davidon-Fletcher-Powell (DFP), see [19, Sect. 8.6], [24, Sect. 5.1];
• Fletcher-Reeves (FR), see [19, Sect. 8.6], [18, p. 278];
• Zangwill (Z), see [19, Sect. 8.6];
• Broyden-Fletcher-Goldfarb-Shanno (BFGS), see [24, Sect. 5.4.1];
• Hestenes-Stiefel (HS), see [24, Sect. 4.2.1];
• Perry (P), see [22, 23];
• Dai-Yuan (DY), see [25];
• Liu-Storey (LS), see [26].

Remark 3.1 The expression of the gradient function ϕ(·) as in (49) is the key to
evaluate the conjugate gradient and quasi-Newton methods (SD), (DFP), (FR), (Z),
(BFGS), (HR), (P), (DY), and (LS). The sequence of descent directions

(d0,d1, . . . ,dk, . . .)

in Step 2 requires the computation of the gradient ϕ(Gk) for every pointGk ∈ M s,r ,
k ≥ 0, cf. [18–20, 24].

3.4 Numerical Evaluations

The main goal of this section is to illustrate the efficiency of the ten selected opti-
mization algorithms (SD), (DFP), (FR), (Z), (BFGS), (HR), (P), (DY), and (LS).

In the numerical evaluations, we consider the same values used in the example
in Sect. 2.4. In addition, we use the expressions in (39) and (40) to evaluate the
optimization algorithms (SD), (DFP), (FR), (Z), (BFGS), (HR), (P), (DY), and (LS)
according to the Steps 1–3 with initial point G0 = [0 0 0]. All of these algorithms
converge successfully to the same point G∞ given by

G∞ = [0.0104 0.10832 − 0.28469]. (52)

One can check that ϕ(G∞) � 0, so that G∞ is a candidate for a local minimum
according to Corollary 3.1.

To evaluate the efficiency of the optimization algorithms, we check the number of
iterations required by each algorithm to converge to the stationary point G∞ within
a tolerance of ε = 10−3 (i.e., ‖ϕ(G∞)‖ < ε).

Despite the fact that the number of iterations required for the convergence vary
drastically from one method to another, a relevant conclusion we can take is that all
of the algorithms converges successfully to the same point of minimum (Table5). In
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Table 5 Results obtained from an evaluation of nine selected optimization algorithms according
to the numerical example of Sect. 3.4

Method Num. Iter. ‖ϕ(Gk)‖ JN (Gk)

(SD) 786 9.79277 × 10−4 2.7198609489860 × 10−2

(DFP) 45 8.79546 × 10−4 2.7198609489800 × 102

(FR) 106 6.09576 × 10−4 2.7198609489785 × 102

(Z) 620 9.21772 × 10−4 2.7198609489860 × 102

(BFGS) 99 8.80098 × 10−4 2.7198609489745 × 102

(HS) 141 9.34734 × 10−4 2.7198609489762 × 102

(P) 101 9.58184 × 10−4 2.7198609489763 × 102

(DY) 173 4.77101 × 10−4 2.719860948974 × 102

(LS) 294 9.93084 × 10−4 2.719860948988 × 102

The results indicate that the DFP algorithm is the quickest in the convergence to a local minimum

addition, the (DFP) algorithm is the quickest one to reach a local minimum point,
while (SD) is the slowest one. As a byproduct, G∞ is a stabilizing gain in the mean
square sense [1, Theorem 3.9, p. 36].

3.5 Concluding Remarks

In this chapter, we have shown two methods to calculate the optimal solution of the
Markov jump control problem. Using controllers with no mode observation, we have
developed two strategies to calculate the necessary optimality conditions (i.e., point
of local minimizers): variational method and gradient descendent method.

Both methods guarantee local minimizers for the control problem, and they will
be useful in the design of a method to calculate the long-run average cost.

In Sect. 2.4, the derived control strategy satisfying the optimal condition is applied
in practice to control the speed of a real DC motor device subject to abrupt power
failures. The contribution of this approach is reinforced by the Monte Carlo exper-
iment, which shows that even in the case with sudden power failures, the proposed
MJLS controller with no mode observation is able to control the speed of the DC
motor device.

4 Next Chapter: Approximation Method

Recall the Markov jump linear system (see (1))

xk+1 = Aθk xk + Bθk uk + Hθk wk, ∀k ≥ 0, x0 ∈ Rr, θ0 ∼ π0, (53)

http://dx.doi.org/10.1007/978-3-319-39835-8_1
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where xk , uk , andwk represent the state, control input, and noisy disturbances, respec-
tively.

The control applies in the linear state feedbackwith noMarkovmode observation,
i.e., it assumes the format

u(k) = g(k)x(k), ∀k ≥ 0, (54)

where g(k) stands for a matrix of dimension m × n. Substituting (54) into (53) yields

xk+1 = (Aθk + Bθk g(k))x(k) + Hθk w(k), ∀k ≥ 0. (55)

Given any sequence of gains g = {g(0), g(1), . . .}, we can calculate the long-run
average cost associated with the system (53), as follows:

J(g) = lim sup
N→∞

1

N

N−1∑

k=0

E[x(k)′Qθk x(k) + u(k)′Rθk u(k)] s.t. (54). (56)

Let G be the set made up of all admissible sequences g = {g(0), g(1), . . .}. The
control problem we are interested in solving is defined next.

J∗ = min
g∈G

J(g) s.t. (53) and (54).

The next chapters advance in a method to compute the optimal value J∗. The main
idea behind the method is as follows. Consider the N th stage control problem

J∗
N = min

g∈G

(
N−1∑

k=0

E
[
x(k)′(Qθk + g(k)′Rθk g(k))x(k)

]
)

. (57)

With the method to be developed in the next chapter, we present conditions to
assure the validity of the approximation

J∗
N/N → J∗ when N → ∞, (58)

for any initial condition x0 and π(0).
Note that if any algorithm attains the global minimizer g∗

N = {g∗(0), . . . ,
g∗(N − 1)} of J∗

N from (57), then g∗
N can be used to calculate J∗ through (58).

To the best of the authors’ knowledge, there is no algorithm that assuredly com-
putes the global minimizer g∗

N ; however, the algorithm of Steps 1–4 generates a
candidate for the global minimizer g∗

N . In other words, this algorithm generates a
local minimum, which could differ from the global minimum. To assure that the local
and global minimum coincide, we introduce the next conjecture.
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Conjecture 4.1 The optimal control problem in (57) has a unique minimum, and
the corresponding local minimizers coincide with the global minimizer.

Theorem 4.1 Under Conjecture 4.1, a gain sequence g∗
N = {g∗(0), . . . , g∗(N − 1)}

realizes the minimum in (57) if and only if g∗
N satisfies necessary optimality conditions

for J∗
N .

Remark 4.1 The result of Theorem 4.1 guarantees that any gain satisfying necessary
optimality conditions is the optimal solution of the control problem in (57). This result
is important because it allows us to use the algorithm of Steps 1–4 to solve the N th
stage problem in (57), see Theorem 2.2 in connection.
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Approximation of the Optimal Long-Run
Average-Cost Control Problem

1 Preliminaries

Consider a discrete-time stochastic linear system defined in a filtered probability
space (Ω,F , {Fk},P) as follows.

xk+1 = A(gk)xk + Ewk, gk ∈ G , x0 ∈ R
n, ∀k = 0, 1, . . . , (1)

where xk and wk, k = 0, 1, . . . are processes taking values, respectively, in R
n and

R
q, which represent the system state, and additive noisy input, respectively. The

noisy input {wk} forms an iid process with zero mean and covariance matrix equal to
the identity for each k ≥ 0. The matrix E, of dimension n× q, is given. The variable
gk , at the kth stage, represents the control action and belongs to a prescribed set G .
We assume that A is a continuous operator, possibly nonlinear, that maps G to the
space of real matrices of dimension n × n.

Let us consider the cost of N stages

JN =
N−1∑

k=0

E[x′
kQ(gk)xk], (2)

where E[·] denotes the mathematical expectation andQ is a given operator that maps
G to the space of nonnegative symmetric matrices of dimension n × n.

Associated with (1), we consider the second moment of the system state xk as

Xk = E[xkx′
k], ∀k ≥ 0. (3)

The control action gk ∈ G applied in (1) and (2) is assumed to be a function of
the second moment only, i.e., it takes the deterministic feedback form gk = fk(Xk)

© The Author(s) 2016
A.N. Vargas et al., Advances in the Control of Markov Jump Linear Systems
with No Mode Observation, SpringerBriefs in Control, Automation and Robotics,
DOI 10.1007/978-3-319-39835-8_3
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for each k ≥ 0. Note that this special form suggests simplicity of solutions, since it
turns valid the identity

E[x′
kQ(gk)xk] = 〈Q(gk),Xk〉,

where 〈·, ·〉 represents the usual Frobenius inner product. As a matter of fact, the
main reason for adopting this particular feedback structure is that the system state
xk may not be available for gk . This situation occurs, for instance, if gk is a gain
matrix. Moreover, if gk is taken to be a gain matrix in (1)–(2), then some important
control problems can be represented by means of (1)–(2) indeed involving feedback.
One interesting situation that can be handled in that way is the simultaneous state-
feedback control problem (see [1–6] for a small account). Recall that a simultaneous
state-feedback control system with different operating points can be represented as

ϕi(k + 1) = (Ai + Big(k))ϕi(k) + Eiωi(k), i = 1, . . . , σ, (4)

where g(k) is a design gain matrix that does not depend on the mode i, and ϕi(·)
and ωi(·) represent the simultaneous system state and additive noise input for the ith
mode, respectively. The cost of N stages is given by

JN =
N−1∑

k=0

σ∑

i=1

E[ϕi(k)
′(Qi + g(k)′Rig(k))ϕi(k))], (5)

where the positive-semidefinite matrices Qi and Ri are given.
We state that (4)–(5) can be rewritten as (1)–(2). Indeed, if we set

dim(Ai) = n × n, dim(Bi) = n × r, and dim(Ei) = n × q,

then the admissible set G is Rr×n and

A(g) = diag(A1 + B1g, . . . ,Aσ + Bσg),

Q(g) = diag(Q1 + g′R1g, . . . ,Qσ + g′Rσg), ∀g ∈ G ,

and E = diag(E1, . . . ,Eσ ). The claimed correspondence between (4)–(5) and (1)–
(2) follows by simply stacking the simultaneous system state and additive noise input,
respectively, in the form

xk =
⎡

⎢⎣
ϕ1(k)

...

ϕσ (k)

⎤

⎥⎦ ∈ R
σn, and wk =

⎡

⎢⎣
ω1(k)

...

ωσ (k)

⎤

⎥⎦ ∈ R
σq.



1 Preliminaries 37

Hence,we can conclude that the study of themodel in (1)–(2)may provide insights
on how to solve some relevant control problems, see Sect. 3 for an application in the
average cost simultaneous control problem.

The approximating control problem we deal with is as follows. The feedback
functions fk , k ≥ 0, specify a policy f = {f0, . . . , fk, . . .} (see [7, 8]). If F denotes the
set of all feasible policies f , then the associated problem of N stages is defined as

J∗
N = min

f∈F
JN .

The long-run average cost is defined as

J = lim sup
N→∞

JN
N

.

and the corresponding average cost problem is

J
∗ = min

f∈F
J.

The main contribution of this chapter is on determining conditions under which

J∗
N/N → J

∗
as N → ∞. (6)

We recall that results similar to (6) are available in the Markov decision process
(MDP) literature, for instance, under an equicontinuous assumption on {J∗

N } and
Borel state space in [8, Chap. 5, p. 102]; a countable action space together with
some technical assumptions on the relative value functions in [9, Theorem 3.1]; and
a bounded cost-by-stage condition and countable state space in [10, Corollary 4.2].
On the other hand, when compared with MDP, our approach is simpler to verify
because we take advantage of the particular structure of (1)–(2). To assure (6), we
require a controllability condition together with a condition that the last element of
the second moment trajectory, corresponding to the optimal N-stage cost, does not
increase faster than N , see Theorem 3.1 in connection.

The system (1)–(2) associated with the long-run average cost was studied in
[11–13]. These papers, basically, present conditions to assure the existence of an
optimal stationary policy for the average cost problem. Here, we advance on the
investigation by deriving an approximation method to evaluate the optimal average
cost by means of finite N stage optimal costs.

The chapter is organized as follows. Section2 presents the necessary notation, def-
initions, assumptions, and the main result. The main result concerning the approx-
imation method is presented in Theorem 3.1. Section3 is dedicated to apply the
approximation result to the simultaneous state-feedback control problem. Section4
contains the proofs, and some concluding remarks are presented in Sect. 5.
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2 Notation and Main Results

The real and natural numbers are denoted by R and N, respectively. The set of
nonnegative real numbers is denoted by R+, and Rn,m is used to represent the space
of all n × m real matrices. The superscript ′ indicates the transpose of a matrix. Let
S
n+ be the closed convex cone {U ∈ R

n,n : U = U ′ ≥ 0}; and ‖ · ‖ will denote either
the standard Euclidean norm in R

n or the Frobenius norm for matrices. We say that
a matrix sequence {Uk; k ≥ 0} is bounded if supk∈N ‖Uk‖ < ∞.

The following definitions and conventions will apply throughout this chapter.

(i) X andG are given sets referred to as state space and control space, respectively.
In particular, we assume that X ⊆ S

n+ and G are Borel spaces.
(ii) For each X ∈ X , there is given a nonempty measurable subset G (X) of G . The

set G (X) represents the set of feasible controls or actions when the system is
in state X ∈ X , and with the property that the graph

Gr := {(X, g)|X ∈ X , g ∈ G (X)} (7)

of feasible state-action pairs is measurable.
(iii) (inf-compactness [8, p. 28]). Let Q : G → S

n+ be a lower semi-continuous
function. The one-stage cost functional C : Gr → R+ is defined as follows:

C (X, g) = 〈X,Q(g)〉, ∀(X, g) ∈ Gr. (8)

Moreover, for each X ∈ X and λ ∈ R+, the set {g ∈ G (X)|C (X, g) ≤ λ} is
compact.

(iv) A policy f = {f0, f1, . . .} is made up by a sequence of measurable functions
fk : X → G , k ≥ 0, and the set of all policies is denoted by F. Elements of F
of the form f = {f , f , . . .} are referred to as stationary policies.

From the assumption on the process {wk}, k ≥ 0, and for a given policy f =
{fk} ∈ F, the second moment matrix Xk ∈ X from (3) satisfies the recurrence (cf.
[14, Chap. 2])

Xk+1 = A(gk)XkA(gk)
′ + Σ, ∀k ≥ 0, ∀X0 = X ∈ X , (9)

with Σ := EE′, where the control obeys the rule

gk = fk(Xk), ∀k ≥ 0. (10)

Sometimes we use the notation X(f)
k to stress that the recurrence (9) depends on a

specific f . Accordingly, we represent the kth stage cost by

C (f)
k := C (X(f)

k , gk) = 〈X(f)
k ,Q(gk)〉, ∀k ≥ 0.
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The cost of N stages is defined by

JN (f,X) :=
N−1∑

k=0

C (f)
k , ∀N ≥ 1, (11)

and the correspondingN th stage control problem is of finding a sequence of feedback
control functions ψ∗

N := {f0, . . . , fN−1} such that

J∗
N (X) := JN (ψ∗

N ,X) = inf
f∈F

JN (f,X). (12)

The existence of ψ∗
N , N = 1, 2, . . . is assured by the inf-compactness assumption,

see [8, Chap. 3].
The long-run average cost is defined by

J(f,X) := lim sup
N→∞

1

N

N−1∑

k=0

C (f)
k , (13)

and the corresponding control problem is of finding a policy f∗ ∈ F such that

J
∗
(X) := J(f∗,X) = inf

f∈F
J(f,X). (14)

A policy f∗ satisfying (14) is referred to as average cost optimal.

2.1 Discounted Criterion and the Main Result

One of our assumption is based on the behavior of the discounted criteria with
discounts tending to one. Formally, for each α ∈ (0, 1), the discounted criterion we
shall deal with is defined as

Vα(f,X) :=
∞∑

k=0

αkC (f)
k , ∀f ∈ F, ∀X0 = X ∈ X , (15)

where α denotes the discount factor. The associated control problem is of finding
f∗
α ∈ F such that

V∗
α (X) := Vα(f∗

α,X) = inf
f∈F

Vα(f,X), ∀X0 = X ∈ X . (16)

The existence of a policy f∗
α ∈ F that satisfies (16) is assured by the inf-compactness

assumption [8, Chap. 3].
The next definition simplifies the notation to be used in the sequel.
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Definition 3.1 For some policy f = {fk} ∈ F and X0 = Σ fixed, let {Xk} and {gk}
be defined as in (9) and (10), respectively. We define the transition matrix from Σ ,
Φ(f) : N → M

n,n as

Φ(f)(k) = A(gk−1) . . .A(g0), k ≥ 1,

with Φ(f)(0) being the identity matrix. Similarly, we define Q(f)
k = Q(gk) for each

k ≥ 0.

Let us now consider the following assumption.

Assumption 3.1 (Controllability to the origin, [12]). The following two statements
hold.

(i) There exists a natural number N and a finite sequence of control actions
{gc0 , . . . , gcN } such that

A(gcN ) . . .A(gc0) = 0.

(ii) There exist a constant M ≥ 0 such that

lim sup
α↑1

∞∑

k=0

αk
〈
Φ(f∗α )(k)′Q(f∗α )

k Φ(f∗α )(k) , Sc
〉
≤ M,

where f∗
α ∈ F satisfies (16) and the matrix Sc is defined as

Sc = A(gc0)ΣA(gc0)
′ + A(gc1)A(gc0)ΣA(gc0)

′A(gc1)
′

+ . . . + A(gcN−1) . . .A(gc0)ΣA(gc0)
′ . . .A(gcN−1)

′. (17)

Now, we are able to present the main result of this chapter.

Theorem 3.1 Suppose that Assumption 3.1 holds. Let ψ∗
N , N ≥ 1, be a sequence of

feedback functions satisfying (12). If

lim
N→∞ ‖X(ψ∗

N )

N ‖/N = 0, (18)

then there exists a constant ρ (which does not depend on X ∈ X ) such that

J∗
N (X)/N → ρ = J

∗
(X) as N → ∞, (19)

for all X ∈ X .

The proof of Theorem 3.1 will be given in Sect. 4.
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3 Numerical Example

For sake of a numerical evaluation, we recast the uncertain system presented in [15]
as a simultaneous state feedback one in (4). We consider the simultaneous system in
(4) with four different operating points

Ai =
⎡

⎢⎣
ai11 a

i
12 ai13

ai21 a
i
22 ai23

0 0 0.2231

⎤

⎥⎦ , Bi =
⎡

⎢⎣
bi1
bi2

0.7769

⎤

⎥⎦ , i = 1, 2, 3, 4,

where the parameters aiij and b
i
i are as listed in [15]. We adopt Ei = [0 0 1]′, Qi = I ,

Ri = 1, and xi(0) = [−0.27 1.2 2.1]′ for each i = 1, 2, 3, 4.
Now,we show thatAssumption 3.1 holds. Indeed, after rewriting the simultaneous

system in the form of (1)–(2), we obtain

A(g)E = diag(A1 + B1g, . . . ,A4 + B4g) · diag(E1, . . . ,E4).

If
gc = [0 0 −0.2231/0.7769],

then A(gc)E = 0, so that

A(gc)EE
′A(gc)

′ = A(gc)ΣA(gc)
′ = 0.

It follows from (17) that Sc = 0 and Assumption 3.1 is satisfied trivially.
To evaluate the result of Theorem3.1, it remains to show that the limit in (18) holds

true. For this purpose, we use a variational method based on the one described in
[16, 17] to compute a matrix gain sequence that is candidate for the optimal solution
of the N th stage control problem J∗

N (X0). In other words, the variational method
guarantees local minimizers only but they may coincide with the global ones.

Hereafter, we use the conjecture that the local minimizer is also a global one in
order to compute J∗

N (X0) and the corresponding optimal gain sequence. From Fig. 1,

we can see that the sequence {‖X(ψ∗
N )

N ‖} is bounded, thus the limit in (18) holds. Thus,
under the conjecture, Theorem 3.1 assures that the finite horizon optimal cost J∗

N (X0)

asymptotically approximates the optimal long-run average cost ρ = J
∗
(X) for any

X ∈ X , i.e., for each ε > 0 there holds

|J∗
N (X0)/N − J

∗
(X)| < ε, ∀X ∈ X ,

for sufficiently large values of N . Moreover, the optimal value from this approxima-
tion is (see Fig. 2 in connection)

ρ = J
∗
(X) = 202.05, ∀X ∈ X .
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Fig. 1 Plot of the sequence

{‖X(ψ∗
N )

N ‖} in the example of
Sect. 3

Fig. 2 Plot of the optimal
cost J∗

N (X0) divided by the
number of stages N in the
example of Sect. 3.

4 Proof of Theorem 3.1

To prove Theorem 3.1, we introduce some preliminary results.

Proposition 3.1 ([12]) If Assumption 3.1 holds, then there exists a sequence of
discount factors αn ↑ 1 such that:

(H1) There exists a constant c > 0 such that

(1 − αn)V
∗
αn

(0) ≤ c, ∀n ≥ 0. (20)

(H2) There exist two positive constants c1, c2 such that

0 ≤ hαn(X) ≤ c1‖X‖ + c2, ∀X ∈ X , ∀n ≥ 0, (21)
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where hαn(X) := V∗
αn

(X) − V∗
αn

(0).

We note that (H1) and (H2) are conditions frequently required in Markov deci-
sion processes to deal with average cost problems, see for instance [8, Chap. 5],
[9, 18, 19].

Proposition 3.2 ([8, Theorem5.4.3, p. 88, and Remark4, p. 95]). If both (H1) and
(H2) are valid, then

(i) There exist a sequence of discount factors αn ↑ 1 and a constant ρ such that

lim
n→∞(1 − αn)V

∗
αn

(X) = ρ, ∀X ∈ X . (22)

(ii) By defining the function h : X → R+ as

h(X) := lim inf
n→∞ hαn(X), ∀X ∈ X , (23)

we have 0 ≤ h(X) ≤ c1‖X‖ + c2, for all X ∈ X .
(iii) There exists a feedback function f ∈ F such that

ρ + h(X) ≥ min
g∈G (X)

[
C (X, g) + h

(
A(g)XA(g)′ + Σ

)]

= C (X, f (X))

+ h
(
A(f (X))XA(f (X))′ + Σ

)
, ∀X ∈ X . (24)

Moreover, the stationary policy f = {f , f , . . .} ∈ F satisfies

ρ = J
∗
(X) = J(f,X), ∀X ∈ X .

The next well-known result will be useful in the sequel.

Proposition 3.3 ([8, Theorem 4.2.3, p. 46], [19, Theorem 2.1]) Under inf-
compactness and stabilizability, there holds

V∗
α (X) = min

g∈G (X)

[
C (X, g) + αV∗

α

(
A(g)XA(g)′ + Σ

)]
,

for each α ∈ (0, 1) and X ∈ X .

The next important result states that Assumption 3.1 assures an average cost
optimality equation.

Lemma 3.1 If Assumption 3.1 holds, then

ρ + h(X) = min
g∈G (X)

[
C (X, g) + h

(
A(g)XA(g)′ + Σ

)]
, ∀X ∈ X , (25)

where ρ > 0 and h(·) are as in Proposition 3.2.
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Proof Let αn ↑ 1 be the sequence of discount factors satisfying Proposition 3.2.
Combining hαn(X) = V∗

αn
(X) − V∗

αn
(0) and Proposition 3.3, we can write

(1 − αn)V
∗
αn

(0) + hαn(X) = min
g∈G (X)

[
C (X, g) + αn · hαn

(
A(g)XA(g)′ + Σ

)]
,

which in turn implies that

(1 − αn)V
∗
αn

(0) + hαn(X)

≤ C (X, g) + αn · hαn

(
A(g)XA(g)′ + Σ

)
, ∀g ∈ G . (26)

Passing the limit inferior in (26) with respect to αn ↑ 1, and using (22) and (23), we
obtain

ρ + h(X) ≤ C (X, g) + h
(
A(g)XA(g)′ + Σ

)
, ∀g ∈ G .

This implies that

ρ + h(X) ≤ min
g∈G (X)

[
C (X, g) + h

(
A(g)XA(g)′ + Σ

)]
,

which combined with (24) yield the desired result.

At this point, we are able to introduce the main argument to prove Theorem 3.1.

4.1 Proof of Theorem 3.1 Continued

We now show the result in (19). Applying an induction argument on (25) we see that

nρ + h(X0) ≤
n−1∑

k=0

C (f)
k + h

(
X(f)
n

)
, ∀f ∈ F.

We have in particular from this inequality that

nρ + h(X0) ≤ J∗
n (X0) + h

(
X

(ψ∗
n )

n

)
, (27)

where ψ∗
n represents the n-stage optimal policy that satisfies Jn(ψ∗

n ,X0) = J∗
n (X0).

From (H2) in Proposition 3.1, we have

0 ≤ h(X
(ψ∗

n )
n ) ≤ c1‖X(ψ∗

n )
n ‖ + c2. (28)
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The limit in (18) assures that, for each ε > 0, there exists a natural number n0(ε)
such that

n ≥ n0(ε) ⇒ (c1‖X(ψ∗
n )

n ‖ + c2)/n < ε. (29)

Hence, we get from (27)–(29) that

n ≥ n0(ε) ⇒ ρ < J∗
n (X0)/n + ε. (30)

On the other hand, it follows fromProposition 3.2 (iii) that there exists a stationary
policy f = {f , f , . . .} such that

nρ + h(X0) ≥
n−1∑

k=0

C (f)
k + h(X(f)

n ), ∀n ≥ 1.

But then, since
∑n−1

k=0 C
(f)
k ≥ J∗

n (X0) and h(X(f)
n ) ≥ 0, we have

nρ + h(X0) ≥ J∗
n (X0), ∀n ≥ 1.

From this inequality, we have that there is a natural number n1(ε) such that

n ≥ n1(ε) ⇒ ρ + ε > J∗
n (X0)/n. (31)

As a result of combining (30) and (31) we get that

n ≥ max{n0(ε), n1(ε)} ⇒ −ε < ρ − J∗
n (X0)/n < ε,

which yields the result in (19). �

5 Concluding Remarks

This chapter presents conditions for which the N-stage optimal cost J∗
N , divided by

the number of stages, asymptotically approximates the optimal long-run average cost
J

∗
(see Theorem 3.1), i.e.,

J∗
N/N → J

∗
as N → ∞.

We have indicated that some interesting control problems can be solved in the
setup developed here. The possible solution of the problem of simultaneous feedback
was shown to satisfy the required assumptions, thus illustrating the usefulness of our
approach.
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