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Robust Control of Uncertain Dynamic Systems has been an active area of research
in the last two decades within the control systems community. During the 1980s and
1990s, it even occupied a central role among many areas of control systems research
with impressive and significant contributions from many researchers. It has reached
a stage of maturity with many universities now offering graduate- level courses in
robust control, resulting in authorship of many textbooks from various viewpoints.
Essentially, these research results can be broadly categorized as frequency domain
transfer function based results and time domain state space based results. Majority
of the textbooks in the current literature focus on topics such as p synthesis,
Hoo control, LQG/LTR, mixed H2/H theory, quantitative feedback theory,
polynomial methods (inspired by Kharitonov theorem), and quadratic stability.
Textbooks that emphasize methods specifically addressing real parameter variations
as the modeling error have been relatively scarce. This book intends to fill that
gap. This book thus emphasizes time domain state space methods with uncertainty
characterized as real parameter variations. It is intended as a textbook for first-year
graduate-level students in the area of multivariable robust control.

This book is an outgrowth of my sustained interest and contributions to the
robust control field which resulted in the coeditorship of an IEEE monograph
(with an esteemed colleague and mentor late Prof. Peter Dorato) as well as a
short course given in IEEE CDC in 1992 (with another respected senior colleague
and friend Prof. George Leitmann). Over the years, the class notes prepared for
a series of courses on robust control offered at the Ohio State University helped
pave the way for embarking on this task of preparing a textbook on this subject.
The prerequisite for understanding the material covered in this book is some basic
knowledge of linear control systems, especially linear state space theory and good
background of some fundamental matrix theory. The material covered in this book
is suitable for a one-semester course or a two-quarter course sequence. Some
selected topics from the chapters can be suitable for a single-quarter course. The
first chapter, Introduction and Perspective, covers some basic notions of uncertainty
characterization and various robustness concepts. The second chapter is one of
the main chapters of the book, thoroughly covering the topic of perturbation
bounds for robust stability of linear state space models (i.e., stability robustness
analysis). Chapter 3 covers the aspect of performance robustness analysis by casting
the problem as a robust root clustering (or robust D-stability) problem, thereby
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viii Preface

addressing the robust stability of discrete-time systems. Chapter 4 addresses the
aspect of robust control design (i.e., synthesis of controllers for robust stability).
In this chapter on robust stabilization issue, control design methods using various
approaches such as design by perturbation bound analysis, quadratic stabilization
under matching and mismatched conditions, robust microstructure assignment,
and guaranteed cost control are discussed. In Chap.5, few application examples
which use the methods discussed before are presented. Finally Chap. 6 presents an
overview of some related topics such as simultaneous stabilization and some new
directions of research using ecological sign (qualitative) stability. An Appendix
covers a brief summary of some fundamental matrix theory concepts and results
used in the chapters.

It is interesting and important to realize that, in this internet (Google) age, the
proliferation of research articles on a single topic is simply overwhelming. Thus, it
is almost impossible to acknowledge all the possible references in any given subject.
Hence, it is inevitable that the literature citation is based on a complicated mixture
of author’s familiarity, the impact of an article, and the relevance of it to the scope
of this particular book, among many other things. As such, every effort is made
to highlight the early, impacting articles with all others acknowledged indirectly
through the references within the references of this book. I, at the very outset,
apologize for any omission or oversight of some important articles and their authors.
It is appreciated if this is taken in the right spirit. It is also essential to keep in
mind that this book is aimed at budding future researchers at the level of a first-
year graduate student, and as such only the most critical and fundamental content is
presented with as much exposure to the various aspects of state space based robust
control theory as possible, leaving most proofs and other details for further reading.

I would like to take this opportunity to express my sincere thanks to my many
professional peers with whose association I benefitted immensely in understanding
and exploring this exciting area of research. In particular, colleagues such as Bob
Barmish, Shankar Bhattacharyya, Bob Skelton, Drago Siljak, Peter Dorato, George
Leitmann, Kris Hollot, Mohammed Mansour, Lee Keel, Ian Petersen, Minyue
Fu, Roberto Tempo, Rajni Patel, Li Qiu, Bahram Shafai, Martin Corless, Dennis
Bernstein, Kemin Zhou, Pramod Khargonekar, Faryar Jabbari, and Mathukumalli
Vidyasagar deserve special mention. It was a pleasure to interact with and learn
from them.

I am also delighted to have an opportunity to acknowledge the sponsorship
provided by various federal agencies such as AFRL, ARO, NASA, and NSF for
carrying out my research, which forms part of the contents of this book. In particular,
I would like to offer personal thanks to Dr. Siva Banda, currently the Chief Scientist
at AFRL, and Dr. Jerry Newsom of NASA Langley for their support and guidance
in the initial but important phases of my career.

Finally, I would like to thank all my former and current graduate students
who helped immensely in the preparation of this book and provided moti-
vation, encouragement, and incentive to undertake this task. They include
former students Dr. Kolla, Dr. Liu, Dr. Ashokkumar, Dr. Diwekar, Dr. Wei,
Dr. Kwak, Dr. Huang, Dr. Li, Dr. Devarakonda, Dr. Belapurkar, Mr. Dande,
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and Ms. Bhattacharyya and the current students Mr. Mulay, Mr. Saluru,
Mr. Chandavarkar, Mr. Behera, and Ms. Sar. In particular, I would like to give
additional thanks to Dr. Nagini Devarakonda, Mr. Ketan Dande, Mr. Deepak Saluru,
Mr. Santosh Behera, Mr. Rohan Chandavarkar, and Ms. Preeti Sar for their help,
advice, and support in the direct preparation of the manuscript. Finally, I would like
to thank my wife, Sreerama, and sons, Vivek and Pavan, without whose help and
sacrifice, this book would not have materialized.

Columbus, OH, USA Rama K. Yedavalli
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This introductory chapter provides a brief perspective on the different types of
modeling errors in the mathematical models of engineering systems and establishes
a platform for the specific modeling error of real parameter variations. Then
it presents various real parameter uncertainty characterizations and robustness
measures for setting the stage for their elaborate discussion in future chapters.
Finally it explores both the robustness analysis and robust control design aspects
to be discussed thoroughly in later chapters.

1.1 Basic Background and Motivation

In model-based control systems analysis and design, it is customary to describe the
mathematical model of a dynamic system by the equation

x = f(p.x). (1.1)

where X is a vector of the states of the system and p is the vector of parameters
assumed to have a nominal value p = p. It is well known that uncertainties
in the mathematical models of real physical systems can severely compromise
the resulting control design. The modeling errors (perturbations or uncertainties)
associated with the mathematical models of physical systems may be broadly cate-
gorized as (1) real parameter variations, (2) neglected nonlinearities, (3) unmodeled
dynamics (errors in the model order), and (4) neglected or incorrectly modeled
external disturbances [1]. It is the inevitable presence of these errors in the model
used for design that eventually limits the performance attainable from the control
system designs produced by either classical or modern control theory. The primary
limitation of the current control design methods is their reliance on the absolute
fidelity of the model used for control design. The area of robust control is devoted to
improvising the control design and analysis methodologies with due consideration
given to one or more of these modeling errors. Specifically the impetus of this book

R.K. Yedavalli, Robust Control of Uncertain Dynamic Systems: A Linear State 1
Space Approach, DOI 10.1007/978-1-4614-9132-3_1,
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2 1 Introduction and Perspective

is directed towards accommodating these modeling errors into the control analysis

and design processes which are centered around time domain state space control

theory. Let us elaborate on the nature of these modeling errors individually:

1. Real parameter variations: While modeling a system, certain physical parame-
ters such as mass are assumed to be of a certain value. However, these parameters
may differ from the actual values due to either inaccuracy in determination or
change over a period of time. Such a variation in the real parameters can be
considered as an uncertainty or perturbation in a dynamic system.

2. Neglected nonlinearities: When dynamic systems are linearized using Taylor
series expansion, nonlinear effects occurring in the form of higher order terms are
neglected in order to obtain the linear model. This leads to discrepancy between
the actual physical system and the mathematical model, and this discrepancy is
treated as a perturbation to the nominal dynamic system. Another way modeling
errors arise in this category is that we may simply neglect the nonlinear terms
in the mathematical models of dynamic systems even when we know or model
those terms, especially at the design stage, for various practical reasons.

3. Unmodeled dynamics: Discrepancies that occur when certain states are not
considered or included in the dynamic model (such as those occurring in model
reduction techniques) are considered as uncertainties and classified as unmodeled
dynamics. Also in some cases, it is possible that it is quite difficult to model
complex phenomenon in a mathematical framework and that is how unmodeled
dynamics-based modeling error may manifest.

4. Neglected external disturbances: Every dynamic system in the real world is
constantly subject to disturbances that cannot always be modeled. In the absence
of modeled disturbances, their effect is considered to be an uncertainty classified
as external disturbance.

It is to be emphasized that there is a completely different school of thought
in which uncertainty is treated in a stochastic framework using probability theory
concepts. This viewpoint leads to the concepts such as “stochastic robustness” [2]
and “probabilistic robustness” [3, 4]. However, this book specifically focuses only
on the deterministic treatment of uncertainty.

In this book, we mostly focus on the modeling error labeled as real parameter
variation, highlighted in Fig. 1.1. During the 1960s and 1970s, there was more
emphasis on optimality with very little attention paid to the robustness issue.
However, since the onset of application in industry, beginning from the 1980s, there
has been significant interest in evaluating the robustness of dynamic systems for
stability and performance. In that period, robustness to real parameter variations
was indirectly addressed using the concepts of parameter sensitivity. In particular,
considerable research was carried out to analyze the parameter sensitivity of linear
quadratic regulator (LQR) controllers using the concepts of trajectory sensitivity and
cost sensitivity. In the sensitivity theory framework, conceptually only infinitesimal
variations in the parameters are considered [5].

Subsequently, there was considerable effort expended on addressing the issue
of robustness of systems to finite parameter variations. The subjectof analysis
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Fig. 1.1 Classification of . av_ 3 e
uncertainties Uncertainties in Dynamic Systems

Real parameter External

variations disturbances
Neglected Unmodeled
nonlinearities dynamics

of stability and performance of dynamic systems to finite parameter variations
has come to be labeled as robustness and robust control in contrast to parameter
sensitivity and sensitivity theory.

Characterization of these modeling errors in turn depends on the representation
of dynamic system, namely, whether it is a frequency domain transfer function
framework or time domain state space framework. In fact, some of these modeling
errors can be better captured in one framework than in another. For example,
it can be argued convincingly that real parameter variations are better captured
in time domain state space framework than in frequency domain transfer function
framework. Similarly, it is intuitively clear that unmodeled dynamics errors can be
better captured in the transfer function framework. By similar lines of thought, it
can be safely agreed that while neglected nonlinearities can be better captured in
state space framework, neglected disturbances can be captured with equal ease in
both frameworks. Most of the robustness studies of uncertain dynamic systems
with real parameter variations are being carried out in time domain state space
framework using matrix theory-based approaches as well as in frequency domain
transfer function framework using polynomial theory-based approaches. In fact, the
robustness studies using polynomial-based approaches have become quite popular
spurred by the seminal Kharitonov four-polynomial result, and many textbooks have
already been authored using this approach [6,7]. Hence, to complement those books,
this book is specifically devoted to robustness studies in time domain state space
framework using exclusively matrix theory-based approaches.

Stability and performance are two fundamental characteristics of any feedback
control system. Accordingly, stability robustness and performance robustness are
two desirable (sometimes necessary) features of a robust control system. Since
stability robustness is a prerequisite for performance robustness, it is natural to
address the issue of stability robustness first and then the issue of performance
robustness. Thus, in this book, Chap. 2 focuses on stability robustness, and Chap. 3
deals with performance robustness. Then Chap.4 addresses the issue of robust
control design and presents methods of controller design for stability robustness
as well as performance robustness. Chapter 5 presents few application examples
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that illustrate the theory of the previous chapters, and finally Chap. 6 briefly touches
upon few related and emerging topics of research.

1.2  Uncertainty Characterization and Robustness Measures

The problem of maintaining the stability of a nominally stable linear time-invariant
system subject to perturbations has been an active topic of research for quite some
time. The recent published literature on this “robust stability” problem can be
viewed mainly from two perspectives, namely, (1) transfer function (input/output)
viewpoint and (2) state space viewpoint. In the transfer function approach, the
analysis and synthesis are essentially carried out in frequency domain [8-12],
whereas in the state space approach, it is basically carried out in time domain.
Another perspective that is especially germane to this book is that the frequency
domain treatment involves the extensive use of “polynomial” theory, while that of
time domain involves the use of “matrix” theory.

Even though in typical control problems, these two theories are intimately related
and qualitatively similar, it is also clear that there are noteworthy differences
between these two approaches (“polynomial” vs “matrix”), and this section high-
lights the use of the direct matrix approach in the solution to the robust stability
problem.

One factor which clearly influences the treatment given to the stability robustness
problem for linear state space systems is the characterization of “perturbation.”
Since stability tests are different for time-varying systems and time-invariant sys-
tems, it is important to pay special attention to the nature of perturbations, namely,
time-varying perturbations vs time-invariant perturbations, where it is assumed that
the nominal system is a linear time-invariant system. Typically, stability of linear
time- varying systems is assessed using Lyapunov stability theory using the concept
of quadratic stability, whereas that of a linear time invariant system is determined
by the Hurwitz stability, i.e., by the negative real part eigenvalue criterion. This
distinction about the nature of perturbation profoundly effects the methodologies
used for stability robustness analysis.

Let us consider the following linear, homogeneous, time-invariant asymptotically
stable system in state space form subject to nonlinear perturbations:

x(1) = [Ao + f(0)]x(1): x(0) = xo, (1.2)

where Ay is an n by n asymptotically stable matrix and x is the initial condition.

It is of interest to get bounds on || f(x)|| such that the perturbed system continues
to be stable, and this issue is addressed in the next chapter. Then, we consider the
linear perturbations as follows:

x(1) = [Ao + E]x(1):  x(0) = xo, (1.3)
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where E is the error matrix. The three aspects of characterization of the perturbation
matrix £ which have significant influence on the scope and methodology of any
proposed analysis and design scheme are:

1. The temporal nature of E

2. The boundedness nature of £

3. Complex vs real nature of E

Specifically, we can have the following scenario:
1. Temporal nature of E

Time-invariant error ~ Time-varying error
E = constant E=E({)

2. Boundedness nature of £

Unstructured Structured
Norm bounded  Elemental bounded

3. Complex vs real nature of £

Complex Real
E € (gnxn E € f%an

The stability robustness problem for linear time-invariant systems in the presence of
linear, time-invariant, complex (real) perturbations (i.e., robust Hurwitz invariance
problem) is basically addressed by testing for the negativity of the real parts
of the eigenvalues (either in frequency domain or in time domain treatments),
whereas the time-varying perturbation case is known to be best handled by the
time domain Lyapunov stability analysis. The robust Hurwitz invariance problem
for real perturbations has been widely discussed in the literature essentially using
the polynomial approach [6, 7, 10]. In this book, while discussing these different
characterizations, we put more emphasis on the general time-varying, real pertur-
bation case, mainly motivated by the fact that any methodology which treats the
real, time-varying case can always be specialized to the real, time-invariant case
but not vice versa. However, we pay a price for the same, namely, conservatism
associated with the results when applied to the real, time-invariant perturbation case.
A methodology specifically tailored to real, time-invariant perturbations will also
be discussed in later parts of the chapters. Similarly, the connection between these
various characterizations from robust stability point of view is brought out in [13],
and this aspect is examined in more detail in a later chapter.

It is also appropriate to discuss, at this point, the characterization with regard to
the boundedness of the perturbation. In the so-called “unstructured” perturbation, it
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is assumed that one cannot clearly identify the location of the perturbation within
the nominal matrix and thus one has simply a bound on the norm of the perturbation
matrix. In the “structured” perturbation, one has information about the location(s) of
the perturbation, and thus one can think of having bounds on the individual elements
of the perturbation matrix. This approach can be labeled as “elemental perturbation
bound analysis (EPBA).” Whether “unstructured” norm-bounded perturbation or
“structured” elemental perturbation is appropriate to consider depends very much
on the application at hand. However, it can be safely argued that “structured” real
parameter perturbation situation has extensive applications in many engineering
disciplines as the elements of the matrices of a linear state space description contain
parameters of interest in the evolution of the state variables and it is natural to
look for bounds on these real parameters that can maintain the stability of the
state space system. It is also interesting to note that, for time-varying perturbations,
the conditions for robust stability are dependent on the type of perturbation norm
used [14].

Finally, we address the issue of treating the perturbation as a complex vari-
able/function motivated by the transfer function approach. The underlying principle
in this viewpoint is that any methodology that is valid for complex case can also be
applied to the real parameter case, treating real case as a special case of complex
case. However, the price we pay for this viewpoint is that when we apply these
methods to the real parameter variation case, the developed conditions may lose the
necessity. In fact, that is the reason as to why developing necessary and sufficient
conditions for real parameter variation case continues to be a challenging task.

1.3 Robustness Analysis and Robust Control Design Aspects

The above development of uncertainty characterization and robustness measures
can be used for both robustness analysis and robust control design purposes. While
analysis and design are intertwined, in this book we treat each of these aspects
separately. In the robustness analysis framework, we assume a stable nominal
linear system and pose the question of as to how much uncertainty it can tolerate
or accommodate. For this, as described in the previous section, we make use of
the various robustness measures to assess the stability robustness of a nominal
system. The higher these robustness indices, the more robust the system is to
the real parameter perturbations. In that vein, the notions of “unstructured” and
“structured” perturbations become important in the robustness analysis. The idea
behind “structured” perturbation is that the more we know about the structure and
nature of the perturbation, the better bound we can give to maintain the stability.
Within this analysis framework, we can think of two ways of problem formulations,
namely, Problem A and Problem B. In Problem A framework, we assume a nominal
stable system and simply ask the question of as to how much real parameter
perturbation can it tolerate to maintain stability. In this problem formulation, the
resulting bounds would be functions of the nominal system information. In Problem
B formulation, we assume a nominal stable system along with given bounds
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(in either a norm sense or elemental sense) on the real parameter perturbations
and ask the question of as to whether the perturbed system is stable or not within
the given parameter perturbation ranges. Clearly, in this formulation, the nominal
system is a member within the prescribed uncertainty bounds. In other words, in
this formulation, we have a “family” of systems in a continuous domain, and the
“nominal” system becomes a member of that family. As such, the assumption of
stability of the “nominal” system becomes a necessary condition for the robust
stability of the “family” of the systems. In this latter formulation, the conditions
of robust stability utilize the uncertainty bound information. A typical example for
Problem B formulation is the robust stability analysis of “interval matrix” family in
which we are given the individual lower and upper bounds on the elements of the
matrix that are subject to perturbation and we ask the question of whether the entire
“hyper-rectangle” matrix family is stable or not. Obviously, in this formulation, we
start with the assumption that all “vertex” matrices are stable, which is a necessary
condition for the stability of the entire matrix family. Chapter 2 delves deep into
these issues and provides various fascinating results available on these issues.

The performance of a control system is typically assessed in the form of either
transient or steady-state time response measures such as damping ratio and natural
frequencies, settling time and rise time and other time response specifications, and
disturbance rejection capabilities. Many of these specifications are typically met in
the form of eigenvalue and eigenvector placement, and thus eigenvalue placement
in a specified region in the complex plane for uncertain systems is a performance
robustness issue. This is labeled as the robust D-stability problem in this book.
In this robust D-stability problem, when the region of complex plane for eigenvalue
placement is the unit circle around the origin, it amounts to addressing the robust
Schur stability issue for uncertain discrete-time systems. We address the issue of
developing robustness bounds for robust D-stability in Chap.3. Similarly, since
time response is affected by eigenvector placement, along with the placement of
eigenvalues, analysis for robust eigenstructure assignment is an important topic
of research which is addressed in this chapter as well. In particular, in optimal
control problems, minimization of the performance index cost being the objective,
this performance index cost is typically an important measure of performance.
In this framework, stability robustness typically becomes a prerequisite for assessing
performance robustness.

While robustness analysis is important in its own right, a more important question
of interest to the control systems designer is to ask the question of as to how
to synthesize or design (we use the words synthesis and design synonymously)
a controller to improve or even impart robustness to the closed-loop system.
Clearly this robust control design problem is of paramount importance in many
practical engineering applications. The robust control design problem is admittedly
a challenging task for the control systems engineer. Fortunately, there are many
useful control design procedures available in the literature addressing this issue.
However, some design methods are more complicated requiring special tools
than others. Similarly, some design techniques are specifically tailored to a given
framework, such as PID controllers in transfer function framework, while others
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such as Lyapunov- and Riccati-based techniques and linear matrix inequality (LMI)
techniques are carried out in time domain state space framework. Also, some
techniques such as H,, Hso, mixed H, and Hs, and p synthesis start out with
transfer function/transfer matrix description but eventually provide controller design
solutions in the form of state space matrix theory equations, thanks to the now
famous award-winning paper [15], popularly known as the DGKF paper. Still, these
control design techniques are more amenable for handling unstructured uncertainty
in frequency domain framework. Then techniques such as Structured Singular
Value-based p synthesis were developed to handle structured uncertainty, albeit
treating real parameter variation as a special case of complex perturbation. For
this reason, these techniques become conservative when used for real parameter
perturbation problem. Since many textbooks already exist that present the above
mentioned techniques [8] in an elaborate way, this book does not intend to revisit
those control design techniques. Instead, this book focuses on control design
techniques specifically catering to real parameter perturbations. Majority of the
control design techniques for real parameter perturbations use the Lyapunov- and
Riccati-based procedures based on quadratic stability concept. Robust control
design for eigenstructure assignment and guaranteed cost control design form
important robust control design tools. These robust control design techniques are
presented in Chap. 4.

Another specific issue that distinguishes various robust control design techniques
is the assumption on the controller structure, namely, whether the controller is a full
state feedback or a measurement (output) feedback or an estimator (observer)-based
feedback. The relative pros and cons of these various controller structures are well
known in the control systems literature, and accordingly the same considerations
affect the robust control design paradigm as well. In this direction, it is interesting to
see how the uncertainty structure affects the existence and performance of a derived
robust controller. For example, if the uncertainty structure in the system plant matrix
is such that it satisfies the “matching condition,” then the existence of a full state
feedback controller that accommodates the entire parameter perturbation range is
guaranteed. Issues such as these in the robust control design task are thoroughly
discussed in Chap. 4, which is entirely devoted to the robust control design aspect.
Measures of utility and success of a practical control design methodology are its
ease of implementation, computational simplicity, and applicability to large-order
systems. In that sense, a practical robust control design methodology specifically
tailored to real parameter variation case is still an active area of research.

It is interesting to notice that, in terms of the volume of literature, the literature
on robust control design for real parameter variations, such as those covered in
Chap. 4 of this book, is relatively sparse and may be viewed as “old-fashioned” and
“outdated” by a section of the readership, but that is exactly one of the motivations
for authoring this book, namely, to bring attention to this rather old-fashioned
but elegant and theoretically rigorous body of literature aimed specifically at real
parameter variations. In some sense, this author’s passion for the “real parameter
variation” research is what forms the backbone for the authorship of this book, even
at the risk of being branded as a book with a “narrow” scope, even though the author
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does not quite agree with that viewpoint with the defense and justification that every
specialized subject can be viewed as “narrow” in scope. But for completeness sake
and to be more useful as a textbook, the author briefly reviews the above mentioned
“popular” techniques in Chap. 6.

It may be noted that there are many noteworthy textbooks available in the current
literature in the general robust control area [6—12, 16-46]. However, majority of
them address mostly frequency domain-based techniques from polynomial, transfer
function viewpoint, while few other books deal with time domain state space
viewpoint, all with various degrees of emphasis on these two frameworks. Within
that scenario, this book attempts to explicitly focus and highlight the specifics of
time domain state space and matrix theory-based robustness analysis and design
techniques for real parameter perturbations thereby filling the void existing in
the current textbook literature. In particular, this book aims to complement and
supplement the contents of the two specific books by Barmish [6] and Bhattacharyya
etal. [7].

1.4 Exercises

Problem 1: Give mathematical description of each of the four modeling errors
discussed in the chapter in the context of uncertain dynamic systems.

Problem 2: [llustrate the discussed modeling errors with examples.

Problem 3: Compare and contrast various nondeterministic robustness concepts
such as “stochastic robustness” and “probabilistic robustness”.

1.5 Notes and Related Literature

Research on sensitivity theory introduced concepts such as trajectory sensitivity
and cost sensitivity. In particular, in the context of optimal LQR theory, their
interrelationship was discussed in [47]. Applications of these concepts in the field
of large flexible space structures were presented in [48, 49]. With regard to the
four types of modeling errors discussed, while each modeling error has its own
detrimental effect on a dynamic system’s stability and performance, the two most
important modeling errors that attracted considerable attention from researchers are
the real parameter variation error and the unmodeled dynamics error. While this
book is explicitly devoted to discuss the aspect of real parameter perturbations
in later chapters, few observations with regard to the unmodeled dynamics error
are in order. The unmodeled dynamics modeling error attracted much attention of
the controls community with the “spillover” phenomenon pioneered by Balas in
the field of large flexible structures [50]. Later, the havoc played by unmodeled
dynamics in the adaptive control area are well documented in [51]. Similarly, while



10 1 Introduction and Perspective

the Hy, control design was originally offered as a “nominal” design technique
in frequency domain framework as a controller that minimizes the Hy norm
(maximum amplitude) of a transfer function, it turns out that it also occupies a place
in robust control theory as that minimized norm provides a bound to the unmodeled
dynamics error for robust stability [8].

In reality, it can be argued that all the four modeling errors together are present in
any model-based analysis and design framework, but it is almost impossible to come
up with any analysis and/or design technique which promises to accommodate all
the four modeling errors together simultaneously. One can hope for accommodating
any two in any analysis and/or design technique, as otherwise there will be an
inevitable trade-off in meeting various design specifications. For example, in [52]
efforts are made to capture and accommodate both unmodeled dynamics and real
parameter uncertainty in a single theoretical framework.
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In this chapter, which is also one of the main chapters of the book, we address
the issue of robust stability analysis for uncertain linear dynamic systems. We first
present a rigorous mathematical formulation of the problem, mainly focusing on
continuous-time systems. Then, we consider various characterizations of uncer-
tainty discussed in the previous chapter and present corresponding bounds on the
perturbations for robust stability. It is interesting to note that all these bounds are
obtained as a sufficient condition for robust stability with necessary and sufficient
conditions being available only for very special cases, which in turn underscores the
challenging nature of this robust stability problem.

2.1 Background and Perspective

For about two decades in the 1980s and 1990s, the aspect of developing “measures
of stability robustness” for linear uncertain systems with state space description has
received significant attention [1-15]. For a discussion on this topic for nonlinear
systems, one may refer to [16]. The several results available in the literature for
the linear system case can be categorized, as mentioned in the previous chapter,
according to the characterization of the uncertainty, such as “structured” and
“unstructured,” “time-varying” and “time-invariant,” and “complex” and ‘“real”
parameters. Also, the stability robustness bounds developed do depend on the type
of parameter space region specified (such as hyper- rectangle and sphere). In the next
section, we attempt to summarize the results available in the recent literature based
on the above considerations.

In the present-day applications of linear systems theory and practice, one of the
challenges the designer is faced with is to be able to guarantee “acceptable” behavior
of the system even in the presence of perturbations. The fundamental “acceptable”
behavior of any control design for linear systems is “stability,” and accordingly, one
of the important tasks of the designer is to assure stability of the system subject to
perturbations.

R.K. Yedavalli, Robust Control of Uncertain Dynamic Systems: A Linear State 13
Space Approach, DOI 10.1007/978-1-4614-9132-3_2,
© Springer Science+Business Media, LLC 2014
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In particular, as discussed in the introduction, we concentrate on ‘“parameter
uncertainty” as the type of the perturbation acting on the system. This chapter
thus addresses the analysis of “stability robustness” of linear systems subject to
parameter uncertainty.

2.2  Robust Stability Analysis Problem Formulation
for Continuous-Time Systems with Nonlinear Uncertainty

The starting point for the problem at hand is to consider a linear uncertain state
space system described by

X(1) = Aox(1) + f(x.0); x(0) = xo, 2.1

where Ay is an (n x n) asymptotically stable matrix, xy is the initial condition, and
f(x,1) is the perturbation.

This type of problem occurs in the linearization of nonlinear state space equation.
The aim is to get bounds on || f'||. We use Lyapunov method to solve this problem.

Bound Using Lyapunov Method
The system considered in (2.1) is stable if [10]

A1 omn(@) _ o2
||X|| Omax (P)

where P is the solution to the Lyapunov equation

PAy+ ATP +20 =0 (2.3)

Going forward, we label the above matrix P as the “Lyapunov Solution Matrix”
to distinguish it from the “Lyapunov matrix” to be defined in a later section of this
chapter.

Proof. Specify a positive-definite Lyapunov function
V(x) =xTPx,
where P is a symmetric positive-definite matrix.
Then
V(x)=x"Px+x"Px

=(TAY + fTYPx +xTP(Aox + f)
=x"(ALP + PAy)x + fTP. +x"Pf
=—x"20x +2fTPx,

where Q is a symmetric positive-definite matrix.
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Now, V (x) is negative definite if 7 Px < xT Qx
But from Raleigh’s quotient, we have

. xTQx
Min 7
x#0 x'x

= Amin(Q)-
Therefore, V (x) is negative definite if Max(f7 Px) < Amin(Q)x7 x

e it IAIIPIIXT < Amin(Q)lIx|?

m < Amin(Q).
x|l Omax (P)

,L.e., if

Since Q and P are symmetric, positive definite,

Anmin(Q) = Omin(Q)
and Amax(P) = Umax(P)~

Therefore, the sufficient condition for stability is given by

171 _ omin(©) o
x|l Omax (P)
Lemma 2.1. The ratio Z‘r::;—(g)) is maximized when Q = I.
Thus, the eventual bound as given in [10] is
— (2.5)
Ko Umax(P) ’ '
where PAy+ Al P +21 =0. (2.6)

This bound is now well known as the Patel-Toda bound.
It is to be noted that this bound p,, is in turn bounded by the stability degree of
the nominal, stable system matrix Ao, i.e.,

[y = < —Max Re[4;(40)] = —a;. 27

Umax(P) -

where —a; is the stability degree of the system, which is a positive scalar.
When Ay is normal (4oAl = Ang), then

My = —ag. (2.8)
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Note that this method employs one single Lyapunov function to guarantee the
stability of the entire perturbed (as well as nominal) system. This is one reason for
conservatism of the results when this method is used for linear perturbations case.
We can also obtain another bound on the nonlinear perturbation using the
Bellman-Gronwall theorem, where the fact that the nominal system is a time-
invariant asymptotically stable system is utilized. This bound is presented next.

Bound Using Bellman-Gronwall Lemma (or Transition Matrix Approach)
The perturbed system in (2.1) is stable if

_ —MaX Re[ )t,‘ (A())]
ol —a _ M | 09

11l K K

where « is the condition number of the modal matrix of Ao, or k = |T||||T7"|
where A = TAoT~! = Diag[A;] (i.e., T is the modal matrix).

Proof. We know that the solution of (2.1) is

x(1) = e x(19) + f t e f(x(1), 1)dt

to
t
Ix@1 < e |lx (@)l +/ le 11 f (x(2), D)l|d T
to

Substituting (2.9) in the above, we have

t
Alt— o, Alt—
lx @] < le* ™| ]lx (10 —f/ e[ [lx(x)d T
fo

But
A —1)1([,A ,
eI < 1T e || = we™!
Therefore,

t
(0%
lx @) < ke x (1) — — / ke (0)d T
K

to

That is,

t
e x| < we™™"|x (1)l + / (—as)e™™ x(v)dr.
4]

Now, use the Bellman-Gronwall lemma, which says that when A(f) < ¢ +
t
J, k(@©h(r)dz
then
h(t) < celo*@dr,
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Using the Bellman-Gronwall lemma with k(t) = —a;, we have

1
e | x(1)]| < ke~ x (1) ]| el

—ato Jio —esdt _ . —asto —ag(t=10)
But «e lx (t0)] e’ = ke lx(t0)]le

Therefore, ||x(2)|| < «|lx (%)

Hence || x| is bounded.
O
So, we can clearly see that both Lyapunov and Bellman-Gronwall bounds
become equal to each other and are also maximized when the system matrix Ao
is a normal matrix. This is due to the fact that for normal matrices, k = 1. Thus, for
time-varying, unstructured (norm-bounded) perturbations, the robust stability bound
can never exceed the stability degree —o.

Extension to Closed-Loop Control Systems [17]

In this section, the above stability robustness analysis is extended to the case of
closed-loop control systems driven by full state feedback controllers as presented
in [17]. Consider

X = Ax 4+ Bu + E(x), x(0) = xo. (2.10)

It is assumed that the nominal part of (2.10) is controllable. The full state feedback
controller is given by
u=—Fx. 2.11)

The stability condition is based on a tight bound for the norm of the transition
matrix. The result is especially useful for systems whose norms of the transition
matrices are not monotonically decreasing as a function of time. An algorithm was
proposed in [17] for finding the robustly stabilizing state feedback gains.

Following the transition matrix approach as given in [17], the following bounds
are obtained.

Combining (2.10) and (2.11), we have the state equation of the closed-loop
system as

% = Aox + E(x), (2.12)

where (Ap = A — BF). Suppose F is selected such that Ay is asymptotically stable
and

le“P]| < e (2.13)

for some A > 0 and & > 0, from which some conservative robust stability condition
can also be derived.

We assume that the nonlinear uncertain part of (2.10) satisfies the following
inequality

IECON = Kllx]. (2.14)
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This is known in the literature as cone-bounded uncertainty, and k is the slope
boundary of the cone. Based on (2.14), we can derive the following result.

Assume the linear state feedback controller in (2.11) is selected such that (2.13)
is satisfied. Then, the closed-loop system (2.12) is asymptotically stable if

A > ka. (2.15)

For further extensions of this result, see [17].

Having established the case for nonlinear perturbation, we now turn our attention
to the more common case of linear perturbations. This case can be viewed from
two perspective problem formulations which we label as Problem A Formulation
and Problem B Formulation. In Problem A Formulation, we assume a ‘“nominal”
stable system and then provide bounds on the linear perturbation such that perturbed
system remains stable. In Problem B Formulation, we assume bounds on the linear
perturbation are given, and then we check for the robust stability of the perturbed
system within those bounds. Note that Problem A Formulation solution can be
used to answer the Problem B Formulation question, albeit in a sufficient condition
setting, but not vice versa. Hence, we first focus on results related to Problem A
Formulation and then discuss results in Problem B Formulation.

2.3  Problem A Formulation: Getting Bounds for Robust
Stability

2.3.1 Robust Stability of Linear State Space Models with Linear
Time-Varying Uncertainty

In linear state space systems, linear uncertainty is considered by the equation
X(t) = Aox(@) + E x(1), (2.16)

where x is an n dimensional state vector, asymptotically stable matrix and E is
the “perturbation” matrix. The issue of “stability robustness measures” involves
the determination of bounds on E which guarantee the preservation of stability of
(2.16). Evidently, the characterization of the perturbation matrix E has considerable
influence on the derived result. In what follows, we summarize a few of the available
results, based on the characterization of E. We address the following types of
uncertainty characterization and present bounds for these cases, mostly without
proofs.

Time-Varying, Real, Unstructured Perturbation

For this case, the perturbation matrix E is allowed to be time varying, i.e., E(t)
and a bound on the spectral norm [Opax (E (t))] where o(-) is the singular value
of [(-)] is derived. When a bound on the norm of E is sought, we refer to it as
“unstructured” perturbation. This norm produces a spherical region in parameter
space. The following result is available for this case [4, 10].
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The perturbed system (2.16) is stable if

1
Omax (E(1)) < o (P) = Up, (2.17)
where P is the solution to the Lyapunov matrix
PAo+ AP +21 =0. (2.18)

See [18, 19] for results related to this case. Note that the above bound was referred
to as the Patel-Toda bound before.

Time-Varying, Real, Structured Variation
In this case, the elements of the matrix £ are assumed to be independent of each
other such that

A A
Eij(t) <eij = YIE;j(0)lmax  and & = Maxey,

Denoting A as the matrix formed with ¢;;

A = [gj] (2.19a)
we write
A =¢U, (2.19b)
where
0=<U. =1 (2.19¢)

Case 1: Independent Variations (Sufficient Bound): [8, 9]
In [10], using the bound for unstructured perturbations, a bound for structured
perturbation was presented as

e < 2 (2.20)

where ), is as given in (2.17) and n is the dimension of the matrix Ao.

However, the above bound does not fully exploit the structure of the perturbation.
By taking advantage of the structural information of the nominal as well as
perturbation matrices, improved measures of stability robustness are presented in
[8,9] as

1
g < — U, = uy. 2.21
Y O'max(PmUe)s v K1 ( )
or
&< Uy,
where
1
Ky =

Umax(Pm Ue)s
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and P satisfies (2.18) and U,;; = ¢;;/¢. For cases when ¢;; are not known, one can
take Ueij = |Aoij|/|A0ij|max- (-)m denotes the matrix with all modulus elements
and (-); denotes the symmetric part of (-).

Proof. Assume, as before, a Lyapunov function

V(x) = x" Px,

where P is a symmetric positive-definite matrix.

O
Then,
V(x)=x"Px +x"Px
=x"(Ay + ETYPx + x" P(Ao + E)x
= x"(AL P + PAy)x + x"(ETP + PE)x
=—x"2I,x +xT(ETP + PE)x.
Now let
1
EL —m—m
Umax(PmUe)s

= Omax(Pmd)s <1

= Omax((PE),,)s <1

= Omax(PE), <1 (from Results 4 and 5 of Sect. A.5 of Appendix)
= [AMPE)|max < 1

= L ((PE)s — I,) <0 (note that the argument matrix is symmetric)
= —I, + (PE), is negative definite

= —21I, + ET P + PE is negative definite

= (A 4 E) is stable.

Remark. From (2.19a)-(2.19c¢), it is seen that g;; are the maximum modulus
deviations expected in the individual elements of the nominal matrix Ag. If we
denote the matrix A as the matrix formed with &;;, then clearly A is the “majorant”
matrix of the actual error matrix E(¢). It may be noted that U, is simply the matrix
formed by normalizing the elements of A (i.e., &;;) with respect to the maximum of
gij (e, e):

i.e., A =¢eU, absolute variation. (2.22)

Thus, ¢;; here are the absolute variations in Ag;;. Alternatively one can express

A in terms of percentage variations with respect to the entries of Ao;;. Then one can
write

A = 8Ap, relative (or percentage) variation, (2.23)
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where Aomi; = |Aoij| for all those i, j in which variation is expected and Ag,,;; = 0

for all those i, j in which there is no variation expected and J;; are the maximum

relative variations with respect to the nominal value of Ag;; and § = max;;. Clearly,
i.j

one can get a bound on § for robust stability as

1
<— 5
Omax(PmAOm)

where P is as given in (2.18).

The main point behind this bound which takes the structure of the uncertainty
into consideration is that the resulting stability bound on any particular uncertainty
element in the matrix very much depends on its location in the matrix. The above
stability robustness analysis for “structured time-varying uncertainty” was used in
[20] to give bounds for stability on the parameters in the Mathieu’s equation that
occurs in linear time-varying systems. Another following example demonstrates
the utility of using the structural information about the uncertainty thereby getting
stability robustness bounds that incorporate the location of the uncertainty in the
computation of the stability robustness bounds.

Let
-3 -2
Ay =
=[]

Table 2.1 Effect of location of perturbation on perturbation bound
Elements of Ay in which perturbation is assumed
All aijj an Ol’lly apn Ol'lly asy only ann only a“&alz Ll]l&azz a“&a21
11 10 01 00 00 11 10 10
11 00 00 10 01 00 01 10
ny 0.236 1.657 1.657 0.655 0.396 1.0 0.382 0.48
ap&ay ap&ay an&ayp apapax andpd addy d1daxn
01 01 00 11 11 10 01
10 01 11 10 01 11 11

ny 0.5 0.324 0.3027  0.397 0.311 0.273 0.256

S

S

Case 2: Linear Dependent Variation: (Sufficient Bounds [11])

In this case, we assume the elements of the perturbation matrix may depend on each
other in a linear way through some other primary uncertain parameters, which we
label them as §;. In other words, we assume

E@t) =) Bi(E;, (2.24)

i=l1
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where E; are constant, given matrices and §; are the uncertain parameters. For this
case, we have the bound for robust stability given by [11]

1

1Bil < B (2.25)
wherei = 1,2,...,r and
= PELED _ (o,
As mentioned before (-),, denotes the matrix with all modulus elements.
It may be noted that the bound in [11] can be simplified to
1B1l < L (2.26)
Omax (P1)

when r = 1. This was not explicitly stated in [11].

This is a hyper-rectangle region in parameter () space.
It is also possible to give slightly different conditions for other shapes of parameter
space. For example, if it is a diamond-shaped region in B space, the following
stability condition holds:

> 1B omax(P) < 1. 2.27)

i=1

Similarly if it is a spherical region in B space, the following condition holds:

d 1
2
> B < Ty (2.28)

i=1

where P, = [P P>... P,].

Reduction in Conservatism by State Transformation

The proposed stability robustness measures presented in the previous section were
basically derived using the Lyapunov stability theorem, which is known to yield
conservative results. One novel feature of the above bounds is that the proposed
bound exploits the “structural” information about the perturbation. Clearly, one
avenue available to reduce the conservatism of these bounds is to exploit the
flexibility available in the construction of the Lyapunov function used in the
analysis. In this section, a method to further reduce the conservatism on the element
bounds (for structural perturbation) is proposed by using state transformation as
originally reported in [18]. This reduction in conservatism is obtained by exploiting
the variance of the “Lyapunov criterion conservatism” with respect to the basis of
the vector space in which function is constructed. The proposed transformation
technique seems to almost always increase the region of guaranteed stability and
thus is found to be useful in many engineering applications.
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State Transformation and Its Implications
It may be easily shown that the linear system (2.16) is stable if and only if the system

£ = A@) 20). (2.29a)

where (1) = M~'x(t), AGt) = M~'A()M (2.29b)

is stable. Note that M is a nonsingular time-invariant matrix.

The implication of this result is, of course, important in the proposed analysis.
The concept of using state transformation to improve bounds based on a Lyapunov
approach has been in use for a long time as given in [21] where Siljak applies
this to get bounds on the interconnection parameters in a decentralized control
scheme using vector Lyapunov functions. The proposed scheme here is similar
to this concept in principle but considerably different in detail when applied to
a centralized system with parameter variations. In this context, in what follows,
the given perturbed system is transformed to a different coordinate frame, and
stability conditions are derived in the new coordinate frame. However, realizing
that in doing so even the perturbation gets transformed, an inverse transformation
is performed to eventually give a bound on the perturbation in original coordinates
and show with the help of examples that it is indeed possible to give improved
bounds on the original perturbation, with state transformation as a vehicle. Now, the
use of transformation on the bounds for both unstructured perturbations (U.P.) and
structured perturbations (S.P.) is investigated.

Unstructured Perturbations (U.P.)
Theorem 2.1. The system of (2.16) is guaranteed to be stable if

Ay

E s — Omax M= M-
IE@Is = omal EOl < 3= T,

= ,LL;, (2.30)

where
1

" ma(P)

~

Hp
and P satisfies
PAg+ ATP +21,=0
Ay =M""AM, E@)=MTEM,

where || E(¢)||5 is the spectral norm of the matrix E(z).

Note that ||E(Z)||S < IM7YNE@®)|s|IM]s and Wy, = ’fx—" where « is a
scalar given as a function of the transformation matrix M. In this case, « is the
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condition number. Also, it is to be noted that the stability condition in transformed
coordinates is
Omax[E(0)] < 1. 2.31)

Thus, fi, is the bound on |E|;, whereas % is the bound on [|E||, after
transformation.

By proper selection of the transformation matrix M, it is possible to obtain u; >
1 as shown by the following example:

Consider the same example considered in [18]. The nominally asymptotically
stable matrix Ay is given by

Ay = —-3-2 . With M = 0.99964 —0.28217
1 0 0.0266 0.95937

the bounds are obtained as

np =0.382  — Bound before transformation

u; = 0.394 — Bound after transformation

Structured Perturbations (S.P.)

Similar to the unstructured perturbation case, it is possible to use a transformation
to get better bounds on the structured perturbation case also. In finding the
transformation to get better bounds on the structured perturbation, it may be possible
to get higher bounds even with the use of diagonal transformation. Hence, in what
follows, we consider a diagonal transformation matrix M for which it is possible to
get the bound in terms of the elements of M.

Theorem 2.2. Given
M = Diag[my,my, ms, ..., my]

the system of (2.16) with the structured perturbation described in (2.19a)—(2.19¢)
is stable if

€ij < W%g = u;Upjj (2.32a)
or
e<uy = & (2.32b)
where *
fls = S — (2.32¢)
Omax (P Ue)s
and

PAg+ ATP +21,=0 (2.32d)
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and N
) . m;
Ue,‘j = —F and Eij = —¢&ij (2326)
P
and « is a function of the transformation matrix elements m;.

Example.

Ay = _3_2; Let U, = 10; with M = Lo
1 0 10 00.22

the bounds are obtained as

Hs = 0.4805 — Bound before transformation

uy = 0.6575 — Bound after transformation

The use of transformation to reduce conservatism of the bound for structured
perturbations and its application to design a robust controller for a VTOL aircraft
control problem is presented in Chap. 5 on Applications.

Determination of (Almost) “Best” Transformation

As seen from the previous section, in order to get a better (higher) bound, it is crucial
to select an appropriate transformation matrix M. Obviously, the question arises:
How can we find a transformation that gives a better bound than the original one or
even the “best” among all possible choices for the transformation? In this section,
we attempt to address this question for the special case of diagonal transformation
to be used in the structured perturbation case.

“Best” Diagonal Transformation for S.P.
Recall from (2.32) the expression for p;. Without loss of generality, let us look for
my >0, (k =1,2,...,n) such that .} is maximized.

From (2.32) the matrix P satisfies

P(M™'AgM) + (M~ AgM)T P = —-21,. (2.33)
Since M is diagonal, MT = M and the above equation gives
MT'PM YA+ AT (M PM~Y =2(M 712, (2.34)
Letting R
P*2 M 'PM (e, pij = plymim;).

Then, the above equation becomes

P*Ag+ AL P* =2(M ™12
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The above matrix equation contains n(n + 1)/2 scalar equations from which the
elements of the matrix P* can be expressed as functions of m; and p;"j can then be
expressed as functions of m; . Thus, one can express the bound of u’: as a function of
m;. We need to find m; that maximize u} by determining the first-order derivatives
and equating them to zero. However, u} contains the spectral norm of (13,,, Ue) s
which is difficult to express in terms of m;. Hence, using the fact that ||(})||; <
()]l 7, we choose to maximize

1
2
Zi,j (P Ue).%i_/ I:I\CI?X(,’Z—; Ueij)i|

with respecttom; = 1,2,...,n.
The algorithm is best illustrated by following example:

L2

(2.35)

Example.
-3-2 10
Ay = ; L = ;
= [T e =)

For simplicity, let us select M = Diag[1, m].
Carrying out the steps indicated above, we observe that the minimum value of

1 AA m; 2
+=>(P U)E,»-[MaX(—U )}
L zX/: m oy

R I,
= P%l + 517122

=0.333 + 1.667 ! 2+1 Ly
- ’ m? 2\ 2m
occurs at m — 00, and thus, Linax = 3 < uf — pf = 3.
Hence, Liax =3 < uf — uy =3.
Note that before transformation, u; = 1.657. Thus, there is an 81% improvement

in the bound after transformation. In fact, in this special case, it is seen that the bound
obtained happens to be the maximum possible necessary and sufficient bound.

2.3.2 Robust Stability Under Linear Complex (Real) Perturbations

Now, we focus our attention to the case where the perturbation matrix is treated as
a complex matrix.



2.3 Problem A Formulation: Getting Bounds for Robust Stability 27

Unstructured Case
For this case, the bound is given by [5]

1 —
sup [|(jol — Ao)~'|

w>0

IE] < Ik. (2.36)

Here ||(-)|| can be any operator norm. Hinrichsen and Pritchard label r; as the
“stability radius.” When E is real, it is called the “Real Stability Radius” and is
denoted by rz. Note that when E is complex, ry = r. is a necessary and sufficient
bound, whereas when E is real, rg becomes a sufficient bound. However, with A,
being a 2 x 2 matrix and E being real, rg becomes a necessary and sufficient bound
and is given by

rr(Ao)axa = Min[—Trace(Ay), Omin(Ao)]. 2.37)

The following case is in a way a hybrid situation. Hinrichsen and Pritchard [5]
considered the perturbation matrix to be of the form

E = BDC,

where D is the “uncertain” matrix and B and C are known scaling matrices defining
the “structure” of the perturbation. With this characterization of E which can be
complex, they give a bound on the norm of D, which is || D||. They call this bound
“structured stability radius.” Notice that E as above does not capture the entire class
of structured perturbation, which would only be covered by

p
E =Y B:DC. (2.38)
i=1
But, Hinrichsen and Pritchard do not consider the case of (2.38). Hence, we label
the result of [5] as belonging to norm-bounded complex, semi-structured variation,
and present the bound as follows:

Norm-Bounded Semi-structured Variation
For this case, the robust stability bound is given by [5]

1
D]l < : ——-
sup [C(jwl — Ag)™ B||

w=>0

(2.39)

Again, when E is complex, the bound above is a necessary and sufficient bound,
whereas for real E, it is only a sufficient bound.

Time-Invariant, Structured Perturbation

Case 1a: Semi-structured Variation [22, 23]: (Sufficient Bounds)
For this case, E can be characterized as

E = S\DS,, (2.40)
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where S| and S, are constant, known matrices and |D;;| < d,;d with d;; > 0 are
given and d > 0 is the unknown. Let U be the matrix with elements U;; = d;;.
Then the bound on d is given by [23]

1
< -
sup p([S2(jwl — Ag) ' S1]1mU)

w>0

Hi = [g. (2.41)

Here p(:) is the spectral radius of (-).

Notice that the bounds for time-invariant perturbation matrix involve the spectral
radius, whereas for the time-varying case, the bounds involve the norm of a matrix.
This is due to the fact that in the time-invariant case, the determinant of the involved
matrix plays a role in deriving the robust stability condition.

Case 1b: Independent Variations (Frequency Domain-Based Formula)

Now we consider the case of independent variations described before. For this case,
the bounds on ¢;; are obtained in [8,9] by a Lyapunov-based approach and in [22,23]
by a frequency domain-based approach. In this section, we are interested in the
frequency domain-based approach and hence reproduce the expressions given in
[22,23] for the above notation. The stability robustness bounds on ¢;; are given by
[22,23] ([23] considers a more general structure also).

< ! .
sup ,0([(]0)1 - AO)_I]m Ue)

w>0

Ueij or &< [ing, (2.42)

where [],, denotes the absolute matrix (i.e., matrix with absolute values of the
elements) and p(-) denotes the spectral radius of the matrix (-) and w;,4 denotes
the bound for independent variations.

Case 2: Linear Dependent Variation
For this case, E is characterized (as in (2.24) before), but by assuming j; are time
invariant,

p
E = Z B E; (2.43)
i=1
and bounds on |f;| are sought.

This type of representation represents a “polytope of matrices” as discussed in
[24]. In this notation, the interval matrix case (i.e., the independent variation case)
is a special case of the above representation where E; contains a single nonzero
positive element, at a different place in the matrix for different i. Note that in (2.43),
the matrices E; can have nonpositive but fixed entries.

For the time-invariant, real, structured perturbation case, there are no computa-
tionally tractable necessary and sufficient bounds either for polytope of matrices
or for interval matrices. Even though some derivable necessary and sufficient
conditions are presented in [25] for any general variation in E (not necessarily
linear dependent and independent case), there are no easily computable methods
available to determine the necessary and sufficient bounds at this point. So most of
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the research, at this point of time, seems to aim at getting better (less conservative)
sufficient bounds. We now extend the method of [22,26] to give sufficient bounds
for the linear dependent variation case as presented in [27].

In what follows, we consider the case where the uncertain parameters in £ are
assumed to enter linearly, as in (2.43). Our intention is to give a bound on |f;|.

We now present a bound on |B; | and show that the resulting bound specializes to
(2.42) for the independent variation case. The proposed bound is less conservative
than (2.42) when applied to the situation in which E is given by (2.43) and yields
the same bound as in (2.42) when applied to the independent variation case. This is
exactly the type of situation that arises in Zhou and Khargonekar [11] where they
consider the linear dependency case and specialize it to the independent variation
case of Yedavalli [9].

Remark. It should be mentioned at the outset that it is very important to distinguish
between the independent variation case and the dependent variation case at the
problem formulation stage. In the independent variation case, one gives bounds
on g; (and consequently on &), whereas in the dependent variation case, one
gives bounds on |B;|. This is particularly crucial in the comparison of different
techniques. Proper comparison is possible only when the basis, namely, whether
one is considering the dependent case or the independent case, is established
beforehand. It may be noted that the techniques aimed at the independent variation
case can accommodate the dependent variation situation, but at the expense of some
conservatism; whereas the technique aimed at the dependent case, while it gives not
only a less conservative bound for that case, can also accommodate the independent
variation case as a special case.

Theorem 2.3. Consider the system (2.16) with E as in (2.43). Then (2.16) is
stable if

1
1Bil < ; = gy for r>1 (2.44a)
su%p( > (Gl — Ao)—‘Ei]m)
wz i=1
d |pi] < ! fe 1 (2.44b)
an 1 ; - = Way for r=1, .
sup pl(jol — Ao) "Eq]

w>0
where p[.] is the spectral radius of the matrix [.].

Proof. Tt is known that the perturbed system given in (2.16) (where Ay is an
asymptotically stable matrix) is asymptotically stable if

sup p[(jwl — Ag) 'E] < 1 (2.45)

w=>0
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(For a proof of the above statement, see [22,23].) Let (jwl — Ap)~! = M(w). Now
with E given by

E =Y BE (2.46)
i=1

the perturbed system (2.16) is asymptotically stable if

sup,o[M(a))(Z,BiEi)} <1 (2.47)

020 i=1

but

> M@

i=l1

max s o[ 1@ E1] = sup
J w>0 w

> sg%p(Z(wiM(w)E,»n)

i=l1

= sup [ (o) (L )|

®20 i=1

The satisfaction of condition (2.44) implies the satisfaction of (2.45), and hence the
perturbed system is asymptotically stable.
For r = 1, we see that

Bi S‘iI())P[(M(w)El)] = sup pIM(w)(B1E1)].

Hence (2.44b) implies (2.45) and hence the result. O

It can be shown that the bound (2.42) becomes a special case of (2.44) when one
notes that in the independent variation case, each E; will contain a single element
and is given by

Eiwn-n+; = Uei_/eiejr, (2.48)

where ¢; is an n-dimensional column matrix with 1 in the i th entry and O elsewhere.
Note that U,;; is a scalar and eie/T is a matrix.

Remark. The bound of (2.44), when specialized to the independent variation case
(i.e., when each E; contains a single element, at a different place for different i),
will be denoted by ;4. Thus, ping = py = po.
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Example. Consider

-3 -2
Ao =
=[]

and let
11] ..
E=8 11 (i.e., dependent case)
Ho Iy Hay — ZK[11] My
0.329  0.329 1.0 1.0 0.236

If, instead, all the elements in E are assumed to vary independently, then we use

E = IO,EZ: 01 By = OO,E4: 00
00 00 10 01

in the expression (2.43) and get
|Eij| < pina = 0.329
which is, of course, the same bound as ;7 and pg.

In other words, (s and o do notrecognize the dependent nature of the variation
in the bound calculation, whereas ji4, recognizes it.

It may be noted that the bound 4, = 1.0 happens to be the necessary and
sufficient bound for this particular problem.

Example. Consider the same Ay as in the previous example and let

E=8 |:_01 (1):| . Then we have

Ho Ky HayZK [11]py
1.521.522.0 2.0 1.0

Example. Let us consider another example given in [11] in which the perturbed
system matrix is given by
2+ k 0 -1+ k
(Ao + BKC) = 0 —3+k 0
—1+ki—1+k —4+k
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Taking the nominally stable matrix to be
-2 0 -1
Ao=1]10 =30
—-1-1—-4

the error matrix with k; and k, as the uncertain parameters is given by

E =k E +keE,,

where
101 8(1’8
E1= 000 al’ldE2: 010
101

The following are the bounds on |k;| and |k,| obtained by [11] and the proposed
method. It may be noted that the bound g4, = 1.75 happens to be again the
necessary and sufficient bound for this particular problem.

Hy g = poZK [11] pay
0.815 0.875 1.55 1.75

2.3.3 Robust Stability Under Linear Time-Invariant Real
Perturbation

Until now, in the previous sections, the aspect of developing explicit upper bounds
on the perturbation of linear state space systems to maintain stability has been
studied. It is to be noted that in this analysis, the perturbation was allowed to be
either time varying or to be complex. This in turn implies that time-invariant real per-
turbations were treated as a special case of time-varying, complex perturbations. In
other words, no special attention was paid to the fact that the perturbation is real and
time invariant. It may be noted that till now the stability of the perturbed system is
ascertained via quadratic stability concept (meant for time-varying systems), which
is stronger than the Hurwitz stability (meant for time-invariant systems) as well as
frequency domain methods (assuming complex perturbations). However, what we
need for linear time-invariant real perturbations is the concept of Hurwitz stability,
namely, that of ascertaining the negativity of the real parts of the eigenvalues of the
matrix. The advantage of methods based on quadratic stability is that those bounds
can be applicable to the time-invariant real perturbation case. However, they turn
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out to be extremely conservative when applied to the constant, real perturbation
matrix case. Hence, we need to look for methods which provide less conservative
bounds tailored specifically to time-invariant real parameter perturbation case. One
such method is the guardian map approach, which involves the use of Kronecker-
based matrices. While some authors label this approach as guardian map approach,
others simply refer to the method as Kronecker-based matrix approach. Thus, in
what follows, these two labels are used interchangeably. In this quest for robust
stability analysis of perturbed systems involving time-invariant, real parameter
uncertainty, necessary and sufficient conditions for stability robustness are derived
by Tesi and Vicino in [25]. It is now well known that this problem essentially
involves the testing of positivity of a multivariate polynomial in real variables
that becomes computationally intensive for more than two to three parameters. An
explicit necessary and sufficient bound is presented by Fu and Barmish in [12] but
for only a single uncertain parameter. Thus, the aspect of obtaining less conservative
sufficient bounds for a large number of uncertain parameters is still an important
issue of interest, especially for use in applications. With this in mind, in this section,
we present such sufficient bounds. This is accomplished, as mentioned before, using
some Kronecker-related matrices (which, of course, also was the tool in [12,25]).
The reduction in conservatism of the method being discussed in this section is due
to the fact that this method distinguishes real parameter variations from complex
parameter variations in the derivation of the sufficient condition. Similar treatment
for unstructured uncertainty is given in Qiu and Davison in [28]. It should be
kept in mind that the bounds for structured uncertainty presented in this section
are considerably different from and improved over the bounds one can derive for
structured uncertainty from the bounds for unstructured uncertainty.

The original results of this section appeared in [29]. In reviewing and elaborating
these results again for this chapter, we first briefly review the nominal matrix
stability conditions from Fuller [30]. This is done using three classes of Kronecker-
based matrices of various dimensions, namely, (1) Kronecker sum matrix 2 = K[A]
of dimension n? where 7 is the dimension of the original state space matrix 4, (2)
Lyapunov matrix .2 = L[A] which is of dimension n(n + 1)/2, and then finally
(3) bialternate sum matrix ¢4 = G[A] which is of dimension n(n — 1)/2. Thus,
when we extend these concepts to uncertain matrices, we present separate sufficient
bounds on the perturbations for robust stability using these three classes of matrices.
Note that . = L[A] is called the “Lyapunov matrix” by Fuller in this context.
As mentioned earlier, to distinguish this matrix from the symmetric positive-definite
matrix obtained by solving the Lyapunov matrix equation such as in (2.3), we label
the matrix P as “Lyapunov Solution Matrix” and . = L[A] as the “Lyapunov
matrix.”

Stability Conditions for a Nominal Matrix

We now briefly review a few stability theorems for a nominal system matrix A,
in terms of the above mentioned Kronecker-based matrices. Most of the following
material is adopted from Fuller [30].



34 2 Robust Stability Analysis of Linear State Space Systems

Definition. Let A be an n-dimensional matrix [a;;] and B an m-dimensional matrix
[bi;]. The mn-dimensional matrix C defined by

a”B e alnB
aji B ... aryp B
. (2.49)
amB ...au,B
is called the Kronecker product of A and B and is written
Ax B =C. (2.50)
Theorem 2.4. Let the characteristic roots of matrices A and B be Ay, Aa, ..., Ay,
and Wy, o, - .., m, respectively. Then the characteristic roots of the matrix
> hpgA” x B (2.51)
pq
are the mn values Zp’qh,,qkf X u‘jf i=12,....,nand j =1,2,...,m.
Corollary 2.1. The characteristic roots of the matrix A & B where
A®B=Ax1I,+1,xB (2.52)

are the mn values A; + ;i =1,2,...,nand j =1,2,...,m.
The matrix A @ B is called the Kronecker sum of A and B.

Nominal Matrix Case I: Kronecker Sum Matrix 2 = K[A4]
Kronecker Sum of A with Itself: Let & be the matrix of dimension k = n?,
defined by

9=Ax1I,+1,xA. (2.53)

Corollary 2.2. The characteristic roots of 9 are A; + Aj, i = 1,2,...,n and
j = 1,2,...,n. Henceforth, we use an operator notation to denote 9. We write
2 = K[A].

Example. For
A= |:6111 012i|
as axn

with A1, and A, as eigenvalues, the previous & matrix is given by
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2a;,  ap ap 0

g — | 921 an +axn 0 an
as 0 ax +ap ap
0 as a)  2ax

with eigenvalues 2A1, A; 4+ A2, A, + Ay, and 24,.

Stability Condition I (for Nominal Matrix A in Terms of Kronecker Sum
Matrix 2 = K[A])

Theorem 2.5. For the characteristic roots of A to have all of their real parts
negative (i.e., for A to be asymptotically stable), it is necessary and sufficient that
in the characteristic polynomial

(=D K[A] — M| (2.54)

the coefficients of A, i = 0,1,2, ...,k — 1 should all be positive.

Nominal Matrix Case II: Lyapunov Matrix .¥ = L[A]
We now define another Kronecker-related matrix .# called “Lyapunov matrix” and
state a stability theorem in terms of this matrix.

Definition. Lyapunov Matrix .#: The elements of the Lyapunov matrix £ of
dimension [ = %[n (n 4+ 1)] in terms of the elements of the matrix A are given
as follows: For p > ¢,

aps if r—qgands <gq
apr if r=q.r#ps=gq
a,, +a if r=pands=gq
Loore = 177 qaq 2.55
p ays ifr=pands <p,s #gq (2.35)
agr if r>pands=p
0 otherwise

and for p =g

2a,, if r=pands<p

2a,, ifr=p>gq,ands=p

2a,, if r=pands=gq |
0 otherwise

gpq.rs = (2.56)

Corollary 2.3. The characteristic roots of £ are A; + A;, i = 1,2,...,n and
j=12,...,i.
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Example. 1f
A= [“” “‘2} (2.57)

azy ax

with eigenvalues A; and A,, then the Lyapunov matrix is given by

26111 26112 0
L= | an an+an an
0 26121 26122

with eigenvalues 241,4; + A5, and 24,. We observe that, when compared with
the eigenvalues of the Kronecker sum matrix &, the eigenvalues of . omit the
repetition of eigenvalues A; + A,. Again, for simplicity, we use operator notation to
denote .Z. We write . = L[A]. A method to form the £ matrix from the matrix
2 is given by Jury in [31].

Stability Condition II (for Nominal Matrix A in Terms of Lyapunov Matrix
2 =L[4])

Theorem 2.6. For the characteristic roots of A to have all of their real parts
negative (i.e., for A to be an asymptotically stable matrix), it is necessary and
sufficient that in the characteristic polynomial

(=D [L[A] = AL} (2.58)
the coefficients of A i = 1,2,...,1 — 1 should all be positive.

Clearly, Theorem 2.6 is an improvement over Theorem 2.5, since the dimension of
% is less than that of 2.

Nominal Matrix Case II1: Bialternate Sum Matrix & = G[A]

Finally, there is another matrix, called “bialternate sum” matrix, of reduced dimen-
sion m = %[n (n — 1)] in terms of which a stability theorem like that given earlier
can be stated.

Definition. Bialternate Sum Matrix ¢: The elements of the bialternate sum matrix
4 of dimension m = %[n (n —1)] in terms of the elements of the matrix A4 are given
as follows:

—d ps if r=qands <gq
apr if r#ps=gq
@ — App + agq %fs:pands:q . (2.59)
ays ifr =pands # ¢
—ayr if s=p
0 otherwise
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Note that ¢ can be written as ¢ = A - I, + I, - A where - denotes the bialternate
product (see [31] for details on the bialternate product). Again, we use operator
notation to denote 4. We write ¢ = G[A].

Corollary 2.4. The characteristic roots of ¢ are A; + A, fori = 2,3,...,n and
j=12,...,i—1

In [31] a simple computer-amenable methodology is given to form ¢ matrix from
the given matrix A.

Example. For
A = |:6111 012i|
dz1 dxn
with A; and A, as eigenvalues, the bialternate sum matrix ¢ is given by the scalar
G = laxn +anl,

where the characteristic rootof ¥ is A; + A, = a1 + an

Example. When n = 3, for the matrix

ap a2 agz
A= |ax ax» ax
asy asp ass

with A1,4;, and A3 as eigenvalues, the bialternate sum matrix ¢ is given by

ax» + ai ans —aps
Y = ap astan ap
—as; as| aszs +axn

with eigenvalues A1 + A2, Ao + A3 A3 + A4
Note that, when compared with the eigenvalues of & and .Z, the eigenvalues of
¢ omit the eigenvalues of the type 2A;.

Stability Condition III (for Nominal Matrix A in Terms of the Bialternate Sum
Matrix ¢)

Theorem 2.7. For the characteristic roots of A to have all of their real parts
negative, it is necessary and sufficient that in (—1)" times the characteristic
polynomial of A, namely,

(=1)"[A] = AL, ] (2.60)

and in (—1)" times the characteristic polynomial of 94, namely,

(=D)"|G[A] = 1] (2.61)

the coefficientsof A (i = 0,...,n —1)and u(j = 1,2,...,m — 1) should all be
positive.
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This theorem improves somewhat on Theorems (2.5) and (2.6), since the
dimension of ¢ is less than the dimensions of & and .Z, respectively. One important
consequence of the fact that the eigenvalues of 2, %, and ¢ include the sum of the
eigenvalues of A is the following fact, which is stated as a lemma to emphasize its
importance.

Lemma 2.2.
detK[A] =0
detL[A] =0
detG[A] =0

if and only if at least one complex pair of the eigenvalues of A is on the imaginary
axis and
detA =0

if and only if at least one of the eigenvalues of A is at the origin of the complex plane.
It is important to note that detK[A], detL[A], and detG[A] represent the constant
coefficients in the corresponding characteristic polynomials mentioned earlier. It
may also be noted that the previous lemma explicitly takes into account the fact that
the matrix A is a real matrix and hence has eigenvalues in complex conjugate pairs.
This is the main reason for the robustness theorems based on these matrices, which
are given in the next section, to give less conservative bounds as compared with
other methods that do not distinguish between real and complex matrices.

New Perturbation Bounds for Robust Stability

In this section, we extend the concepts of stability of a nominal matrix in terms
of Kronecker theory given in the previous section to perturbed matrices and derive
bounds on the perturbation for robust stability. In this connection, as before, we first
present bounds for unstructured uncertainty and then for systems with structured
uncertainty. So, we consider, as before, the linear perturbed system given by (2.16)

X() = Aox() + E x(1).

Then bounds on the unstructured uncertainty (norm bound) were reported in terms
of the above mentioned Kronecker matrices as follows [28]:

Bounds for Unstructured Perturbation

Theorem 2.8. The above mentioned linear perturbed system is stable if

Umax(E) < Minl:amin(AO)v %Unz—l(K[AO])i|

Umax(E) < %Umin (L[AO])

Umax(E) < Min |:Umin(A0)a %Umin(G[AO])i|-
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where we followed the notation that

0 =>0>...>

0,2.

Bounds for Structured Perturbation
Next, we turn our attention to the case of structured perturbation as follows:
Consider

x =A(@)x x(0) = xo, (2.62)
where
I
A(g) = Ao+ ) fila —q")Ai = Ao+ E(q) (2.63)
i=1
with 49 = A(¢°) € R™" being the “nominal” matrix, 4; € R"™" are given

constant matrices, f; are scalar polynomial functions such that f;(0) = 0, and the
parameter vector g7 = [¢1, ¢, ..., q,] belongs to the hyper-rectangular set £2(S)
defined by

2)=(eR 1q; —Pw, = ¢ <q° + pwi)
fori = 1,2,...,r, where B > 0 and w; and w;, fori = 1,2,...,r are positive
weights. A special case of this general description is of interest.

Linear Dependent Variations
For this case,

P
E(q) =) _qiA; (2.64)
i=1
where A; are constant, given matrices with no restriction on the structure of the
matrix A;. This type of representation produces a “polytope of matrices” in the
matrix space. A special case of this is the so-called “independent variations” case,
given by

P
E(@) =) qiEi. (2.65)
i=1
where E; contains a single nonzero element at a different location in the matrix for
different i. In this case, the set of possible A(g) matrices forms a hyper-rectangle in
R™"_1In this representation, the family of matrices is labeled the “interval matrix”
family.

It may be noted that, even though only analysis is presented here, in a design
situation, the matrix Ao may represent the nominal closed-loop system matrix with
gain matrix elements as design parameters. In what follows, we extend the previous
theorems to present necessary and sufficient conditions for robust stability of linear
uncertain systems with structured uncertainty.

At this point, it is useful to mention that the operators K[A], L[A], and G[A]
satisfy the linearity property, namely,
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K[A + B] = K[4] + K[B]
L[A + B] = L[] + L[B]
G[A + B] = G[A] + G[B)].

Theorem 2.9 (Theorem (Robust Stability Condition Based on Kronecker Sum
Matrix K[A])). The perturbed system (2.63) is stable if and only if

!
der(1+ 13 fia -Vl (L) >0 g2 260

i=1

Proof. Necessity: If A(g) is stable, then K[A(q)] has negative real part eigenvalues.
Hence, we have (—1)*detK[A(q)] > 0; ie., (—1)*{detK[4o + E]} > 0 —
(=D)*{det[K[A4o] + O f; K[A;])]} (because K[A + B] = K[A] + K[B]).

Since K[Ay] is stable, we can write

det{K[Ao] +> fiK[Ai]} = det(K[Ao)) - det{ I+ K[AD ™ + ) ﬁK[Ai]}

det{K[Ao] +> ﬁK[Ai]} = det(K[A)]) - det{ Li+Y. ﬁK[Ai](K[Ao])_l}

O
and noting that K[Ay] is stable, and since det(K[Ap]) > 0, we can conclude that
(2.66) is necessary.

Sufficiency:

derl 1+ 3 iklANKIAD

and the fact that K[A] is stable implies that

(—1)kdet(K[Ao]) - det{ I + (Z ﬁK[Ai])(K[AO])_l} >0

= (—1)¥detK[4,] > 0
= (=DFIm A, >0,

where Ay, . are the eigenvalues of K[A(q)]. Since Ay, are sums of eigenvalues A; of
A(q), it implies that A; cannot have zero real parts. But A; cannot have positive real
parts because either A is stable or A(q) is a continuous function of the parameter
vector ¢, which in turn implies that A(q) is stable.

It may be noted that the results of [11] can be cast in the form of the Kronecker
sum matrix K[-], and this is done in [32] where parametric Lyapunov equations are
solved in terms of K[-] matrices. However, the sufficient bounds to be presented
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next are quite different and improved over the sufficient bounds of Zhou and
Khargonekar [11] and Hagood [32].

Theorem 2.10 (Theorem (Robust Stability Condition Based on Lyapunov
Matrix L[A])). The perturbed system (2.63) is stable if and only if

!
dei( 1+ Y At ala ) >0 geem o

i=1
The proof is given in [25].

Theorem 2.11 (Theorem (Robust Stability Condition Based on Bialternate Sum
Matrix G[A])). The perturbed system (2.63) is stable if and only if

1
@41+[§:ﬁ@—q%AiAy}>o (2.68)

i=l1

and

/
i1+ { Y rta— a0l @) >0 g2 2o

i=1
with ¢ € 2(B).

The proof is similar to the proof given for Theorem 2.9 with appropriate
modifications.

There is an interesting observation to be made from these theorems. Although for
a nominal matrix Ay to be stable, the necessary and sufficient condition is that all
of the coefficients in the respective characteristic polynomials have to be positive,
for a perturbed matrix Ay + E, with A, being stable, the necessary and sufficient
condition for stability requires the positivity of only the constant coefficient of the
appropriate characteristic polynomial, which in turn is simply the determinant of the
matrix being considered in the characteristic polynomial. These previous theorems
also imply that the robust stability problem can be converted to the positivity testing
of multivariate polynomials over a hyper-rectangle in parameter space. This problem
has been studied extensively in the literature [31]. The conclusion from this research
is that this problem is computationally intensive and is extremely cumbersome to
carry out when a large number of parameters are involved. The question of whether
to go for necessary and sufficient bounds with huge computational effort for a small
number of parameters or to settle for sufficient bounds with a relatively simpler
computational effort but suitable for a large number of parameters is clearly dictated
by the application at hand. In [29], the latter viewpoint is taken because in many
applications such as aircraft control there are a large number of uncertain parameters
present, and thus obtaining less conservative sufficient bounds for a large number
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of uncertain parameters is still of interest from the design point of view. Hence, in
what follows, we derive sufficient conditions for robust stability of linear uncertain
systems with structured uncertainty, applicable even when there are a large number
of uncertain parameters.

Sufficient Bounds for Robust Stability: Robust Stability Problem Transformed
to Robust Nonsingularity Problem via Kronecker Matrix Approach

As can be seen from the above discussion, the basic idea behind the guardian
map approach involving these Kronecker-based matrices is that the robust stability
problem in the original matrix space is converted to robust nonsingularity problem
in the higher dimensional Kronecker matrix space, which in turn relies on a
determinant criterion. That is the reason the following sufficient conditions for
robust stability involve the spectral radius of matrices rather than the singular values
of the matrix which was the case for conditions based on quadratic stability.

Theorem 2.12 (Based on Kronecker Sum Matrix K[-]). The perturbed system
(2.63) is stable if

maxmax | f;(q — q°) < (2.70)

where
1

Pl Y KA K[ AoD)

e =

(No modulus sign is necessary in the denominator of (2.70) fori = 1.)
In the above expressions p[-] is the spectral radius of the matrix [-], and [],,
denotes the matrix formed with the absolute values of the elements of [-].

Proof. Let
K[A4o] = Bo; K[4;] = B;; m{?X|fi(q —q%| = Bi.

From Theorem 2.9, it is known that a necessary and sufficient condition for stability

of Ay + E(q) is
det[] + (Z,B,B,»)Bo_l} > 0.

That is satisfied if
p[(Z,BiBi)BO_I} < 1.

But

p[(lz,eigi)ggl} . p(lZﬁiBiBo—l) VO
< max il 3155771
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Hence Ay + E(q) is stable if
1

s

a

Theorem 2.13 (Based on Lyapunov Matrix L[-]). The perturbed system (2.63) is
stable if

mflxm;mlﬁ(q—qo)l <UL .71

where
1

p] St LA [A) ]

nL =

(No modulus sign is necessary in the denominator of (2.71) fori = 1.)
The proof is very similar to the proof of Theorem 2.9 with K[A¢] replaced by
L[Ay] and K[A4;] replaced by L[A4;].

Theorem 2.14 (Theorem (Based on Bialternate Sum Matrix G[-])). The per-
turbed system (2.63) is stable if

maxmax | f; (¢ —¢°)| < pi, (2.72)
1 q
where
MG = min(ﬂAo’ :U“AG)
1
M4, = 1
p{ Zizl[[Ai][Ao]—11m}
1
Hag =

p{ ZLI[G[A,»](G[A()])—‘],,,}

(No modulus sign is necessary in (2.72) fori = 1.)
The proof is similar to the proof of Theorem 2.9 with appropriate modifications.

Another Set of Sufficient Bounds for Robust Stability of Linear Systems with
Constant Real Parameter Uncertainty Using Guardian Map Approach

Now, we review another set of sufficient bounds for robust stability of linear state
space systems with constant parameter uncertainty by applying the guardian map
approach [33] to the uncertain matrices. This approach is closely related to the
technique used in the previous section, but considers various sets of uncertain
parameter spaces.



44 2 Robust Stability Analysis of Linear State Space Systems

Definitions, Notation, and a Necessary and Sufficient Condition for Robust
Stability

Consider the uncertain linear dynamic system as considered in (2.63),where A is
an n x n real Hurwitz matrix, i.e., all the eigenvalues of A, have negative real part,
and E is a constant uncertainty matrix with the structure

P
E=Y gA. (2.73)

i=1
where A; are given constant n X n real matrices and ¢; are real constant uncertain
parameters. Let £2 denote the assumed uncertainty set, that is,

q=Iq192--.9,)" € 2 CR”. (2.74)

We assume that 0 € §2 and that £2 is continuously arc-wise connected.

We say that the system (2.63) is robustly stable if (49 + E) is Hurwitz for all E
given by (2.73), (2.74), that is, if the matrix A(q) = Ao + >./_, ¢; A; is Hurwitz
for all ¢ € £2. As noted earlier, the transformation of the original stability problem
into a nonsingularity problem is based on Kronecker matrix algebra. The Kronecker
product and sum operations ®andé® are as defined before. The operator vec(F)
stacks the columns of F into a vector, while its inverse mat [vec(F)] = F reforms
the matrix F from vec(F).

For A € R™" the Lyapunov operator L4 : R — R"*" defined by

Li(P):=ATP 4+ PA (2.75)
has the representation

vecL4(P) = (A® A)TvecP. (2.76)

Letting spec(.) denote spectrum, it follows from the previous development that

spec(A ® A) = {A;A; : A;, A; € spec(A4)},

spec(A ® A) = {A; + A : A;, A; € spec(A)}.
Hence, the matrix A®A is nonsingularif andonlyif A;+A; #0,i,j = 1,2,...,n.
It thus follows that (4¢ + E) @ (Ao + E) is singular if and only if E is such that
(A + E) has an eigenvalue on the imaginary axis. Thus, v(A) 2 det(Ap A) is
a guardian map for the open left-half plane in the sense of [33]. The following result
is basic to the approach followed later to get the bounds.

Proposition 2.1. The system (2.63) is robustly stable if and only if

p
det(Ao S Ao+ qi(4 @ Ai)) £0, €. (2.77)

i=1
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Another Set of Robust Stability Bounds by Guardian Map Approach [33,34]
Now, we use the previous Proposition to derive new robust stability bounds. These
new bounds are based upon sufficient conditions that imply that the guardian map
does not vanish. We begin with some preliminary lemmas. A symmetric matrix
M e R is positive-definite (M > 0) if x” M x is positive for all nonzero x € R¥.
For (arbitrary) M € R**¥ we define the symmetric part of M by

1
M5 2 S (M + M),
The following result is the basis for their approach.

Lemma2.3. Let M € RFK J[f MS > 0, then —M is Hurwitz and thus M is
nonsingular.

As an application of this Lemma 2.3, we have the following result.

Lemma 2.4. Let Ay & Ao have the singular value decomposition A9 & Ay =
UV, where U and V are orthogonal and ), is positive diagonal; let positive

diagonal y_,,> ", satisfy Y~ =Y, >_,; and define

—1 -1
Miézl UT(AiGBAi)VTzzy i=1,...,p.
If

P
I+ ¢M'>0. qeg, (2.78)

i=l1

then (2.63) is robustly stable.

We now turn to the principle result on robust stability bounds as given in
[34]. For this result, the following notation is defined. If M € R™", then
|M | 2 [[Mi; ]I} j=1. Omax(M) is the maximum singular value of M, and [M| is
the nonnegative-definite square root of MM .

Theorem 2.15. Let M;,i = 1,..., p, be defined as in Lemma 2.4, and define
M, & M5 ... le] Then (2.63) is robustly stable for 2 defined by each of the
following conditions:

Z q; < ( ) (2.79)

i=1

P
> 1 lmax (M) < 1 (2.80)

i=1
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1
(Omax (0, IMF]))’
1

qi|l < , i=1,2,...,p. (2.82)
i1 (OmaX(Zz{;l abS(MiS)))

lgi| < i=1.2...p (2.81)

Note that bound (i) corresponds to a circular region, bound (ii) corresponds to a
diamond-shaped region, and bounds (iii) and (iv) are rectangular regions. As will
be seen, the tightness of the bounds depends on the factorization )~ = Y, > ,.
In Lemma 3.2 we chose that factorization to be 3, = %, 3, = 3"'7%, where
0 < a < 1. That is, each diagonal element Z(i) of ) was factored as the product
of two positive numbers between 1 and Z(i). One could also allow « to be an
arbitrary real number or choose a different value of « for each diagonal element
of ). However, our simple factorization seemed to be adequate for the examples
considered. The presence of free “balance” parameters in Lyapunov bounds is a
common feature of robustness theory [35,36]. Finally, it can be seen that when there
is a single uncertain parameter (p = 1), all four of the regions (i)—(iv) coincide.

Examples. We first consider system (2.63) with

-2 0 —1 101 000
Algl=10 -3 0 [+ |000|+4g2|010
—1—1—-4 101 010

The exact robust stability region for this problem is { (¢1,¢2) : g1 < 1.75 and
q>» < 3 }. Note that the nominal parameter values g; = ¢, = 0 are close to the
boundary of the stability region. Since all of the regions given by Theorem 2.15 are
symmetric with respect to the origin, it follows that the size of these regions will be
severely limited. Although it is a simple matter to shift the nominal point to obtain
larger regions, we shall not do so in order to remain consistent with [11,36].

Using the factorization Y = Y, 3, = Y* Y 0 < & < 1, we obtain
the following regions from Theorem 2.15:

1. q12 + q% < (1.7443)?,
q1 q2

17465 27193
3. |g/] < 1.1964, i
1

4. |g;| < 1.7149,

It is thus seen that new bounds for robust stability could be obtained by means of
guardian maps. These bounds apply only to constant real parameter uncertainty and
thus do not imply quadratic stability. Examples were given to show improvement
over Lyapunov- based bounds for constant real parameter uncertainty. The new
bounds, however, may entail greater computational effort than other bounds.
Furthermore, although these bounds showed improvement over other bounds for
specific examples, these bounds may not perform as well always in other cases.



2.4 Problem B Formulation: Given Perturbation Bounds, Checking for Robust Stability 47

24 Problem B Formulation: Given Perturbation Bounds,
Checking for Robust Stability

In the previous long section, we dealt with Problem A Formulation, namely, of
getting robust stability bounds using the nominal system information. In particular,
we thoroughly discussed the stability robustness of linear uncertain systems with
time-invariant real parameter perturbations. Clearly, this issue can also be simply
treated as a problem of robust stability of matrix families in which the uncertain
parameters vary within given intervals. This problem formulation, which we labeled
as Problem B Formulation, namely, given the perturbation bounds, checking for
robust stability of the perturbed system, can also be viewed as robust stability
analysis of linear interval parameter systems. We now summarize various stability
robustness results applicable for linear interval parameter systems. Note that all the
previous results discussed till now are also applicable to this problem formulation.

2.4.1 Stability Robustness Analysis of Linear Interval
Parameter Systems

As can be seen from the discussion in the previous sections within the framework
of continuous-time uncertain systems described by state space representation, the
robustness issue is cast as a problem of testing the stability of a family of real (n xn)
matrices, parametrized by an uncertain parameter vector ¢ € R”, which we denote

as A(g).
Specifically, one can write the system as

x = A(q)x(t) = [Ao + E(@)]x(0).

where Ay is as asymptotically stable matrix. The different methods available for
this problem are dependent on the characterization of the perturbation matrix E(g).
Note that this interval parameter matrix family problem is best addressed by the
structured uncertainty formulation discussed before. For this case, the different
methods available are again influenced by the characterization of the “structure”
of the uncertainty, namely, the way the elements of £ depend on the real parameters
qi(i =1,2,...,r). Again, we can consider the following categories:

Category M1. Independent Variations
In this case, the elements of E vary independently, i.e.,

£~j§E,"j§E,"j for all i,j=1,2,...,l’l.

1,

Another way of representing this situation is

2
r=n-

E(q)=)_ qiEi.

i=l1

where E; are known constant matrices with only one nonzero element, at a different
location for different i.
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This family of matrices is the so called “interval matrix” family.

Category M2. Linear Dependent Variations
For this case, the elements of E vary linearly with the parameters ¢;. Thus, we can
write

p
E(@q) = Z q:Ei,
i=1
where E; are constant, known, real matrices. This family is termed as the “polytope”
of matrices.

Category M3. General Variations
For this case,

P
E(@@) =) aiEi(@).
i=1

As mentioned before, the robust stability problem for linear interval parameter
matrix families can be investigated from two viewpoints, namely, (1) that given
the nominally stable matrix and the structure of the uncertainty, give “bounds” on
the interval parameters to maintain stability or (2) that given the “interval ranges”
and the structure of the uncertainty, check whether the interval parameter matrix
family is robustly stable within the given interval parameter ranges. That is, one is a
problem of “estimating” the bounds and the other is the problem of “checking” the
robust stability.

Since all the methods we discussed in the previous sections of the chapter belong
to the “estimating” bound problem, in this section, we focus on “checking” robust
stability problem.

The available literature on checking the robust stability of “interval parameter
matrices” can be viewed again from two perspectives, namely, (1) the “polynomial”
approach and (2) “matrix” approach. The idea behind the “polynomial” approach to
the “interval parameter matrix family” problem is to convert the “interval parameter
matrix family” to a characteristic polynomial family with interval coefficients and
then use various tests available for checking the robust stability of a “polynomial
family” (such as “Kharitonov” theorem and edge theorem). In the matrix approach,
the stability of interval parameter matrix family is analyzed directly in the matrix
domain using approaches such as Lyapunov theory or other matrix theory-based
techniques.

In this connection, in what follows we provide a brief review of the literature on
the robust stability check of polynomial families.

Brief Review of Approaches for Robust Stability of ‘“Polynomial Families”

In the framework of continuous-time uncertain systems represented by transfer
function polynomials, the robustness issue is cast as a problem of testing the Hurwitz
invariance of a family of polynomials parametrized by an uncertain parameter vector
q € R", which we denote as f(s,q). The different methods available for this
problem are dependent on the characterization of the “structure” of the uncertainty,
i.e., the way the coefficients of the polynomial depend on the real parameters
q; (i =1,2,...r). This characterization can be divided into four categories:
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Category P1. Independent Coefficients
In this case, the coefficients vary independently of each other. For example,

[.q) =5 +3q15° + 45 +5, ¢, <qi<q, =12

The family of polynomials generated in this category is called an “interval polyno-
mial” family.

Category P2. Linear Dependent Coefficients
For this case, the coefficients vary linearly on the uncertain parameters g;. For
example,

f(s,q) = $° + 3q15* + 4q15° + 2¢25% + ¢a5 + 4q5.

In addition, the polynomial

[ =5+0-q)s>+B—-q)s+3B—9q)

is said to be “affinely linear dependent.” The family of polynomials generated in this
category is a “polytope” of polynomials.

Category P3. Multilinear Case

In this case, the coefficients have product terms in the parameters but are such that
they are linear functions of a single parameter when others are held constant. One
example is

f(5.9) = 5° +2q1425” + 442435 + 5919293

Category P4. Nonlinear Case
The coefficients are nonlinear functions of the parameters. For example,

f(5,9) = 8° + 29725 + (492 + 3q3)s + 5.

With this classification in mind, we can now present some results available for these
cases. In [37], Guiver and Bose consider the “interval” polynomials and derive a
maximal measure of robustness of quartics (n < 4, where n is the degree of the
polynomials). Perhaps the best-known and most significant result for the “interval”
polynomial stability is the one by Kharitonov [38]. This result shows that of the 2"
extreme polynomials formed by restricting the coefficients to the end points of the
allowable range of variation, stability can be determined by examining only four
special members of this set (independent of the degree n). It may be noted that
Kharitonov’s result is a necessary and sufficient condition for the stability testing of
interval polynomials (i.e., polynomials with independent coefficients) but becomes
a sufficient condition for the case of a polytope of polynomials. Kharitonov’s result
was introduced in the western literature by Barmish [39]. Later in [40], Bose recasts
the Kharitonov analysis in a system theoretic setting, and in [41], Anderson, Jury,
and Mansour present a refinement of Kharitonov’s result by showing that fewer than
four polynomials are required for stability testing for degree n < 5.

Since the celebrated Kharitonov theorem revolutionized the research on parame-
ter robustness, for completeness of the contents of this book which emphasizes real
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parameter robustness, we find it quite logical and appropriate to very briefly review
this most important result at this juncture in the book. Even though Kharitonov’s
result is essentially a result in the area of polynomial family stability, because of
its profound impact on the field, this author ventures to review this method in this
book that focuses on matrix family stability. Of course, for a thorough discussion on
the polynomial family stability results, the reader is referred to two excellent books,
[24,42]. In what follows, we essentially directly borrow the material from [24].

Interval Polynomial Family Notation
The interval polynomial family under consideration is simply denoted by

pls.q) =) qis' (2.83)
i=1

with g7, qi+ denoting the lower and upper bounds on the coefficients g;. Thus, the
shorthand notation for the interval polynomial is given by [24]

p(s.9) =) la7 a1 (2.84)
i=1

Following the path of [24], we now specifically identify “four magic Kharitonov”
(fixed) polynomials as follows:

Definition. Four Kharitonov Polynomials: Associated with the above mentioned
polynomial family, here are the four fixed Kharitonov polynomials:

Ki($) =qy +q7s+q5 8" +q58 +q3 5 +455 +qi s+ (2.85)
Kxs)=qf + a5+ +a58 +afs" +4F s +q5s°+--- (2.86)
Ki(s)=qf +q7s+q>s*+qF s> +qfs* +q55° + g5+ (2.87)
Ki(s) =qy +qi s +qf s +q55° +q7s* +qFs” +q5s°+-- (2.88)

As an example, suppose the interval polynomial is given by
p(s.q) = [1,2]s> + [3. 4]s* + [5, 6]s3 + [7. 8]s> + [9, 10]s + [11, 12]. Then the four
Kharitonov polynomials are

Ki(s) = 11 + 95 + 85> + 657 + 35 + 5° (2.89)
Ko(s) = 12+ 10s 4 7s% + 55> + 45* + 25° (2.90)
K3(s) = 12+ 95 + 75> + 65° + ss* + 5° (2.91)

Ky4(s) = 11 + 10s + 85> + 55° + 35* + 25°. (2.92)
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With these preliminaries taken care of, we are now ready to state the most famous
theorem in recent history of polynomial family stability, namely, the celebrated
Kharitonov theorem [38].

Theorem 2.16. An interval polynomial family with invariant degree (as described
above) is robustly stable if and only if its four Kharitonov polynomials are stable.

For proofs, extensions, and other interesting discussions, see [24, 42]. Some
additional results on interval polynomials and some early results on the polytope
of polynomials can also be found out in [24,42].

The next important result for the polytope of polynomials is given in Bartlett
et al. [43], in which they provide necessary and sufficient conditions for checking
stability. This result is now known as the “edge” theorem. It is in a way a
Kharitonov-like result for the polytope of polynomials, in the sense that, instead
of the vertices of hypercube, one has to check the “edges” of polytope to ascertain
stability. However, this result suffers from a “combinatorial explosion” problem.
That is, the number of “edges” to check increases significantly with increase in the
number of uncertain parameters. The most recent result for this problem, which
circumvents somewhat the combinatorial explosion problem, is given by Barmish
[44]. Here, a special function called robust stability testing function, “H (§),” is
constructed, and robust stability is assured if and only if this function remains
positive for all § > 0. Finally, the robust stability analysis for the case of coefficients
of the polynomial being multilinear functions of the uncertain parameters is quite
daunting. In [45] there is an extremely interesting case study where the polynomial
family has a lone unstable point in the interior of the parameter space rectangle (with
only two uncertain parameters).

Solving Robust Stability of Matrix Family Problem via Robust Stability of
Polynomial Family

Of all the general interval parameter matrix families, one matrix family that deserves
special mention is that of “interval matrices.” As noted before “interval matrices” are
a special case of interval parameter matrix families in which the interval parameters
enter into the matrix in “independent” way. That is, each element in the matrix varies
independently within a given interval range. Noting the importance of these matrices
in matrix theory, we devote the following section to discuss the robust stability of
“interval matrices” or “interval matrix family.”

We motivate the use of robust stability testing of polynomial family to check the
robust stability of an interval matrix family with the help of the following example.
Note that the following example is selected to show that this route may not be
successful majority of the times, justifying parallel research in the robust stability
checking for matrix families [46]. Consider the linear time-invariant uncertain
system

0-1-1
XxX=A@xt) =12 qg 0 |x(2) (2.93a)
10.5 -1

—125<¢ <—0.15. (2.93b)
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Using the polynomial approach, we convert the above interval matrix to an interval
polynomial f(s,q) where

f(s.q) = det[s] — A(q)]

Denoting the polynomial f(s) as
F(s) =5° + kis? + kas + ks (2.95)
we observe that the interval polynomial f (s, ¢) has its coefficients vary in the range
kl:[ky k] =[1.15,2.25]
k2: k3, k] = [3.15,4.25] (2.96)
k3: k3. k] = [3.15,4.25].

The four Kharitonov polynomials to be tested for Hurwitz invariance are

fi(s,q) = s> +2.255* + 4255 + 3.15
fols.q) = s> 4+ 1.155% + 3.155 + 4.25
f3(s.q) = 57 +2.255% + 3.155 + 3.15 (2.97)
fa(s,q) = 53 4+ 1155 + 4.255 + 4.25.

Clearly f>(s,q) is not Hurwitz and hence Kharitonov’s test gives inconclusive
results.

However, note that this particular problem can be solved using the EPBA method
discussed in the previous sections. Forming the average matrix, we get

0 -1 -1
Ag=1(2 —-07 O (2.98)
I 05 -1

which is asymptotically stable. Note that with respect to this “center” matrix, the
maximum modulus perturbation range € is = 0.55. The U, matrix is simply

000
U ={010]. (2.99)
000
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Calculating the bound p; with transformation, we get
€ =0.55 < pur =0.5517 (2.100)

and hence the above interval matrix is stable. The transformation matrix used was
M = diag[l 0.4897 1.2912].

Remarks.

» It can be seen that the elemental bound approach is relatively simpler to use and
is clearly more amenable to numerical computation.

* Also since only a single parameter is varying, it was possible to convert the
interval matrix into an interval polynomial and determine the bounds k;~, k;"
with relative ease. However, when more number of parameters are varying,
determination of the coefficient bounds k;, k;” becomes extremely complex
computationally and involves the use of optimization routines, whereas the
computational complexity of the elemental bound method is relatively unaffected
by the number of uncertain parameters (especially when there is no need for
transformation).

* In the polynomial approach, the structural information available is not made
use of in an explicit way, whereas the elemental bound approach utilizes this
information in an explicit way.

* Also extreme caution is warranted in this approach of trying to solve the robust
stability of a matrix family by converting into the robust stability testing of a
polynomial family, in view of abundance of counter examples, as discussed in
[47,48]. Also, this approach is necessarily conservative (even when it works) as
shown by Wei and Yedavalli in [49]. In view of these difficulties, much of the
literature on the robust stability of matrix family problem is dominated by results
which provide “sufficient” conditions for stability.

2.4.2 Robust Stability of Interval Matrices

In [50], a useful survey of all the results on checking the robust stability of interval
matrix families is presented. For the benefit of readers of this book, we essentially
reproduce all those results in a compact manner. Most of the material below is
almost directly taken from that article. Different sufficient conditions were derived
using different methods, namely, Gershgorin and Bauer-Fike theorems [51, 52],
via definiteness [53], Lyapunov theory [8-10, 54-59], frequency domain methods
[5,26,60-62], and methods using Kronecker sums and products [12,33,47,63], and
finally others such as [64—71], which focus on the eigenvalue distribution of interval
matrices. There are many other papers which shed some insight on the stability
of family of matrices [72]. Some results assume unstructured perturbations, while
others make use of the perturbation structure. It is expected that the latter results are
less conservative. In the following we give a short overview of some of the results
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with modifications and improvements as well as some new results which follow
directly from the previous ones.

In [50], there are five representations of the interval matrix given, as described
below:

Representation 1:

A[Z[B C],b,‘jf(l,‘ij‘,‘j,AEA[.

5-2 90
p=[7] wa c=[]

For example,

Representation 2:
A=A+ E;j, A€ A;, Ay € A;, E; = [—D D]

D is a nonnegative matrix. D is nothing but the majorant matrix that was discussed
in previous sections, i.e., the matrix formed with the maximum modulus deviations
from the nominal. If the end point (vertex) matrices B and C as in Representation
are given, then we can write

For example, if

52 90
_[3 4} and C_[SJ
7-1 21
Ao—|: 5i| and D—|:11i|

This implies that in this representation, the nominal matrix A is taken to be the
center (average) of the interval ranges. In other words, the interval ranges are
symmetric about the nominal.

then

Representation 3:
A1=A0+E],A€A],A0€A1,E1I[F D],DZC—A(),FZB—A().

where D is a nonnegative matrix and F' is a nonpositive matrix.

For example, if
5-2 90
p=[i7] i c=20]

Ay = 6 —1.5
35 45

Suppose we select
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p— 305
1.51.5
F= -1 —1.5 .
—0.5 -0.5

In this representation, as can be seen, the nominal matrix A is not necessarily at the
center of the interval ranges but instead is a member of the interval matrix family.

then

and

Representation 4:

P
Ar = Ao +ZriAi:A €A, Ag€ Ay, si <1i <t
i=1
A; is a matrix with all entries zero except one which is unity and ppa = 1.
For example, taking
7—1
Ay = .
=[]

10 01 00 00
Ay = Ay = Ay = JAy = ,
=loo] = [ao] = [e] =[]

then

Representation 5:

P
A = ZriAi:A €Ar,si <1 <1,
i=1
A; is a matrix with all entries zero except one which is unity, and pp.x = n?.

10 01 00 00
= = = Al =
Ay [O 0} Az [O 0} Az |:1 0i|’ 4 |:O 1i|,
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Connected with the first representation are the following constant matrices [50]

LS tk=1,2,....2"
sij 1bjjore;, Vi, j ,ie., the corner matrices
bij if |bij| > |cij |
2.W(A) iwy; = cij if [eij| > |bij| ¢ Vi, j
bij, orcij if |bij| = |cii]
3.V(A) : v;j = max{|b;;|.|c;j|} forall i, j

V(A)is a nonnegative matrix

4.U(A) : u; = max{|b;;|, |c;j|} foralli # j

Uij = Cij.
Connected with the second and third representations are W(E), V(E), U(E).

Sufficient Conditions for Robust Stability
Results Using Gershgorin and Bauer-Fike Theorems

Fact 1: Gershgorin Theorem

All the eigenvalues of the matrix A are included in the discs whose centers are
n

a;; and radius Z ;]

J=Lj#i
Fact 2: Bauer-Fike Theorem
Let A = Ap + E and T is the transformation matrix which diagonalizes Ay, i.e.,
T~ AyT = diag(};). Then the eigenvalues y of A are included in the union of
the circular discs given by

lw =2l < IT7H-IT - 1IE],

where || - || is the 1,2, 00 or F norm.

Result 1: [51]
The interval matrix A; = [B  C] is Hurwitz stable, if

Z“U <O0for all i orZuﬁ < 0for all i,

=1 =1

where U(A) = [u;;].
The proof follows directly from Gershgorin theorem.

Remark. c;; must be negative for the above condition to be satisfied.
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Remark. The above condition can be applied to the matrix R~'U(A)R instead of
U(A), where R = diag(r;),r; >0

Result 2: [50]
Assuming Ay = % is Hurwitz stable, the interval matrix A; = [B C] =
Ao + Ej is stable if

min{—Re; (4o)} = —oe > [T7'||- [T ||| E|

that is,
—ag > k|| D],

where « is the condition number of the modal matrix of Ay, i.e., of T'.

Here T is the transformation matrix which transforms Ay to diagonal form. Note
that Ao must be stable.

This result says that the stability degree, i.e., the real part of the dominant
eigenvalue of the nominal, stable matrix, offers protection against real parameter
variations. Note that the condition number of the “modal” matrix plays an important
role in the bound.

Result 3: [50]

The interval matrix A; = [B C] is Hurwitz stable if every matrix (Sj), given by
Sii = Cij, Sij = c,/—l——c/,’ ors;; = #, is Hurwitz stable.

Result 4: [55]

The interval matrix A; = [B C] = Ao + E; with 49 = # and E; =
[-D D] is Hurwitz stable if A4y + A} + af <0 wherea = | D[ + || Dloo-

This can be proved using the Lyapunov function with P = [ and using the

inequalities
X*(E + E")X < Amax(E + E*)Xx"x

and

AmaX(E + E*) = ”E + E*”Z = ”E + E*”oo = ”E + E*”l
<Elh + IEleo < I1Dll1 + 1D lco-

Result 5: [55]
The above interval matrix is Hurwitz stable if 4y + Ag + 2\/B I < 0 where 8 =
D11+ 1D loo-
This can be proved using the Lyapunov function with P = [ and using the
inequalities
X*(E 4+ E")X < Anax(E + E")x"x

and

Amax(E + E*) < |E + E*|» <2|E|> <2VIEEllso < 2VIID 111D ]co-
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Remark. The above results (2, 3, 4 and 5) use the fact that every negative-definite
matrix is a stable matrix. It is to be noted that the converse is not true, i.e., every
stable matrix is not necessarily negative definite. Due to this fact, these results are
extremely conservative.

Results Using Lyapunov Theory

Result 6: [10]
The interval matrix A; = Ay + E; with Ag Hurwitz stable is Hurwitz stable if

IV(E)|2 < A*P + PA = -21.

1

a(P)’
1
If E; = [—D D], then the stability condition is || D], = ———.
a(P)

Result 7: [9]
The interval matrix A; = Ay + E; is Hurwitz stable if

- 1
E< 7,

G[(PnU.)s]

Eij
where u;; = —L, &;; = max |e;; |, and € = maxe;;.
j P j i

Result 8: Please see [50]
The interval matrix A; = [B C] is Hurwitz stable if there exists a solution P
to the Lyapunov matrix inequality common to Sy, k = 1,2,...,2" (the corner
matrices), S P + PS; < 0. The proof is obtained using the convexity property
of the Lyapunov equation.

Results Using Frequency Domain Methods
Let A; = Ao + Ej. If A is stable, then instability occurs if by perturbing Ay,
continuously one or more eigenvalues of A cross the stability boundary (imaginary
axis for Hurwitz stability).

Result 9: [26]
A; = Ag + E; is Hurwitz stable if

1
sup || (o — A0) "Il

w>0

sup [E |, < (Ao is Hurwitz stable).

Result 10: [26]
A; = Ag + E; is Hurwitz stable if

1
< - —
SUI())P“(JCU — 40)" ' |U,]

(Ap is Hurwitz stable),

where U, = [u;;], u;; = &;j = max{|e; j|/¢}, & = max|e;;|. The proof comes from
ij
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1
sup A, [|(jo — 40) 7' |Ue]

w>0

&<

= p(|(jo — A)IE) <1 = p((jo—A49)"'E) < 1
= det(] — (jowl —Ag) 'E) #0
<« det(jol — Ag— E) # 0.

Result Using Kronecker Matrix Theory

Result 11: [28]
Given a Hurwitz-stable Ag then Ay + E is Hurwitz stable if

1
1E]l2 < miny 0(4), 50,21 (4 & A) .

Result 12: [73]
Given a Hurwitz-stable Ag then Ag + E is Hurwitz stable if

—1,—1
IE @ E| < [[(Ado® A0) ||

Remark. 1f ||-| is the 2-normand if E = [-D D], thena (D@ D) < a (Ao D Ap),
and if D is symmetric, then 6 (D @ D) = 26(D) = 21 ,(D).
Remark. If || - || is the 2-norm and if E = [-D D], then

o[(D ® |Ao]) + (|40] ® D) + (D ® D)] < (Ao ® Ao) + (I ® I)].

Composite matrices other than the Kronecker sums and products which have the
characteristic that they become singular on the stability boundary are the Schlafiin
matrices of dimension n(n + 1)/2 and n(n — 1)/2. These are of lower dimension
than the Kronecker sums and products of dimension n2. These matrices were also
called the Lyapunov matrix and bialternate sum matrix, respectively, in the previous
sections. Theorems similar to the above theorems can be obtained. They need less
computational effort.

Results for Special Matrices

Several articles dealing with robust stability of special matrices like Metzler and M -
matrices, symmetric matrices, and normal matrices appeared in the literature giving
simplified results. Also the stability of matrices of the form

m
A= E rA; s <r; <t Iisconsidered.
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Necessary and Sufficient Conditions: For 2 x 2 Matrices

ap az
Let A = |: :| where bi_/' = ajj =¢jj.

asy d
The characteristic equation is

f(s) =52 — (a1 + an)s + ajjan — apay = 0.

The Hurwitz-stability conditions are
(i) —(ai1 +an) >0
(i) anaxn —apay =0>0

Result 13: [50]
The interval matrix of dimension 2 x 2 is Hurwitz stable if all the corners are
Hurwitz stable. The proof depends on the linearity of the stability conditions in
the parameters.

Result 14: [50]
The interval matrix of dimension 2 x 2 is Hurwitz stable if the 12 corners given by

[Cn (&) CITZ a;‘l]
[c1 b2 af, a3y]
[bll (&) a]’} a;I]

are Hurwitz stable. af, € {b12, c12}, an € {by,cu}.

The proof depends on the following: The first stability condition is satisfied if
—(c11 + c22) > 0. The second condition is satisfied if the twelve corners given
above are Hurwitz stable assuming the first condition is satisfied.

Result 15: [50]

If a1y and ax; are constant, then only the four corners a1aaf,a}; are needed where
at, € {bia, c12,a3,} € {ba1, c21}. If only ay is constant, then only 5 corners

c11 axp * * (one corner)
* *
b1 ax ay, a3, (four corners)

are needed if ay; > 0. The dots mean any extreme value for a;, and a»;. If azy < 0,
the four corners c11axa},a3; have to be checked.
2.5 Quadpratic Variation in a Scalar Parameter

We now consider the case in which a scalar uncertain parameter enters into £ in a
nonlinear manner, in particular, as a square term; i.e., we assume

Ei;(q) = kijq? (2.101)

where q is the uncertain parameter.
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This type of structured uncertainty model occurs in many applications; for
example, in [74] where a large-scale interconnected system has the form

. 0 1 00 00
e [—1 —1} n [q2 0} e [O 261} *

. Jo 1 00 00
- 2.102
2 [—1 —1} T [0 —261} nr [qz 0} 2 @10

which can be written as

010 0 0 0 00
-1-10 0 g> 0 0 2q
Ao = d E(q) = 2.102b
=19 00 1| ™ ED=17 4 ¢ ( )
0 0 —1—1 029420

For a situation of this type, the following iterative method is proposed to obtain an
improved bound on |g|:

Proposed Iterative Method [75]

Iteration 1. In this iteration, we ignore the functional dependence and assume the
entries in the perturbation matrix vary independently. Accordingly, we let U,;; = 1
for those entries in which perturbation is present and zero for the other entries. Then
compute the bound p; using the expression (2.21). Let the upper bound matrix be
denoted by

Ay = 1 Usiy. (2.103)

Knowing the elements of A,,, and the corresponding functional relationship of the
perturbation matrix elements on ¢ in the matrix [E(g)], ((-) denotes the modulus
matrix), solve for the possible different values of |g| and select the minimum value
of |¢|. Let this value of |g| be denoted by g,,,. With this value of g,,,, compute the
matrix [E(¢m,)]m utilizing the functional relationship in the matrix [E(g)],. Then
write

[E(@m)]n 2 &2Ue, (2.104)

where ¢ is the maximum modulus element in [E (¢, )]m-

Iteration 1. With &, as the left-hand side of (2.21), compute the bound p, using
(2.21) (with U,, replacing the matrix U,).
If
& < W2 (2.105)

form
A, = 02U, (2.106)
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and go through the exercise outlined after (2.103) in iteration 1 to obtain ¢,,,, which

will be greater than 7,,,. If &, £ o, the r,,, becomes the acceptable bound.
Termination. Repeat the iterations until no improvement in the bound g,,, (i =

1,2,...) is observed (say, at iteration N ), and take ¢,,, as the acceptable bound.

Example. Consider the system given in (2.102).

0000
1001
0000
0110

0 0 0 0
0.3246 0 0 0.3246

Iteration 1. Let U,, = and compute p; = 0.3246. Form

Am =l =170 o o
0 0324603246 0
Knowing
0000
2002
E@ln =1 0 o o
02¢q%> 0

we can solve for |g| as (i) |¢| = 0.1623; (ii) |¢g| = 0.57. We take
qm, = min[0.1623,0.57] = 0.1623.

We then form the matrix [E(gm,)]m, i.€.,

0 0 0 0
0.1623)2 0 0 2(0.1623)
E(Gm)ln =

[E(gm,)] 0 0 0 0
0 2(0.1623) (0.16232 0

0 00O

— 0.3246 0080 0 1

0 0 0 O0

0 10.080

= &U,,(Thus e, = 0.3246).

Iteration 2. Compute the bound p, with U,, as the “structured” matrix and

obtain u, = 0.4625. Noting that &, > u, (and that u, > w;), we proceed further
and form
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0 0 0 0
0.0375 0 0 0.4625
0 0 0 0
0 0.46250.0375 O

Amz = M2U€2 =

Comparing A,,, with [E(q)]n, we can solve for |g| as (i) |¢| = 0.1937 (from ¢>
term) and (ii) |¢| = 0.231 (from 2¢ term). We take

qm, = min[0.1937,0.231] = 0.1937.

Thus, one acceptable range of q is 0 < |g| < 0.1937. One can carry out these
iterations further to obtain an improved bound on |¢|. This was done in [75], and
the final bound (with transformation applied at the tenth iteration only) obtained
was 0 < |g| < 0.3079. In addition, if more effort is expended in trying out the
state transformation method at the end of each iteration, we can get a better bound
of 0 < |g| < 0.3339. Yedavalli [75] also presents a simpler method and obtains a
bound of 0 < |¢| < 0.225. Both of the bounds presented in [75] are more improved
bounds than those obtained by D-A method of [74].

2.6 Relationship Between Quadratic and Robust (Hurwitz)
Stability

The purpose of this section is to investigate the relation between the notions
of robust (Hurwitz) stability and quadratic stability for uncertain systems with
structured uncertainty due to both real and complex parameter variations as
presented in [76]. In particular, the authors focus on the case of the ‘“norm-
bounded structured uncertainty,” due to both real and complex parameter variations.
Robust stability means that the uncertain system is stable for all (constant but
otherwise unknown) parameter variations, while quadratic stability means that the
uncertain system admits a parameter independent (quadratic) Lyapunov function
which guarantees stability for all memoryless, possibly time-varying and/or state-
dependent, parameter variations. Even though one would have preferred the phrase
“Hurwitz Stability” in place of “Robust Stability” in this discussion, since the
authors of this original paper used the phrase “robust stability” to mean “Hurwitz
stability,” going forward in this section, we will follow the notation by these
authors and continue to use the phrase “robust stability” to mean Hurwitz stability.
By definition, quadratic stability is a stronger requirement than robust stability.
Similarly, robust/quadratic stability with respect to complex parameter variations
is stronger than robust/quadratic stability with respect to real parameter variations.
A surprising result is that, in the case of one block of uncertainty, the notions
of quadratic stability for real parameter variations, quadratic stability for complex
parameter variations, and robust stability for complex parameter variations are all
equivalent. In [76] examples are presented which demonstrate that for systems
containing at least two uncertain blocks, the notions of robust stability for complex
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parameter variations and quadratic stability for real parameter variations are not
equivalent; in fact neither implies the other. A by-product of these examples is
that, for this class of systems, quadratic stability for real perturbations need not
imply quadratic stability for complex perturbations. This is in stark contrast with the
situation in the case of unstructured uncertainty, for which it is known that quadratic
stability for either real or complex perturbations is equivalent to robust stability for
complex perturbations and thus equivalent to a small gain condition on the transfer
matrix that the perturbation experiences. A gist of the findings and observations on
this issue is summarized by the authors of [76] as follows:

1. There are uncertain systems which are stable for all complex (constant but
otherwise unknown) parameter variations, but not quadratically stable for all real
(possibly time-varying/state-dependent) memoryless parameter variations.

2. There are uncertain systems which are quadratically stable for all real (possibly
time-varying/state-dependent) memoryless parameter variations, but not stable
for all complex (constant but otherwise unknown) parameter variations.

Similar conclusions were previously obtained by Packard and Doyle [77] in a

discrete-time context. The examples in [76] differ from those of Packard and Doyle

[77] in two ways. First in [76] the authors work with continuous-time systems.

More importantly, the examples provided in that work are “linear affine” in the

uncertain parameters. Since these examples are of a “negative” nature, these results

are slightly stronger than those of [77].

The notation adopted is fairly standard. The real part and maximum singular
value of a complex matrix are denoted by Z(-) and &(-), respectively. Given
a matrix-valued function G (of a complex variable) which is bounded on the
imaginary axis, we let |G ||oo 1= SuUp, g 0(G(jw)).

Stability Notations for Uncertain Systems
Consider the uncertain system

2(t) = F(A®t x(1))x (1), (2.107)

where ¢t € R is the time variable, x(¢t) € E" is the state vector, F(-) is a known
matrix-valued function, and A(-) represents parameter uncertainty which is possibly
time varying and/or state dependent. Here, E stands for the field over which the state
vector and the uncertain parameters are defined. In this note, E is the set of either
real (R) or complex (C) numbers. The bounding set for the uncertain parameters will
be denoted by A g, and we assume that Ag is a known compact subset of E”*?, We
also assume that the mapping A(:) : R x E" — Ag is Lebesgue measurable in the
first argument and continuous in the second argument; we shall call such a function
an admissible uncertainty. Finally, we also assume that the matrix-valued function
F(-) is a continuous mapping from Ag into E"*".

When the uncertain parameters are time varying and/or they depend on the state
vector, a popular stability notion for the above uncertain system is the following
notion of quadratic stability.
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Definition. The uncertain system (2.107) is quadratically stable with respect to the
bounding set A if there exists a positive-definite Hermitian matrix P € E™*" such
that, for any nonzero x € E” and A € Ag, the following condition is satisfied:

¢ (x, A) := R(x* PF(A)x) < 0. (2.108)

Note that there is no distinction between time-varying/state-dependent and constant
perturbations as far as the notion of quadratic stability is concerned. That is, if there
exists a positive-definite Hermitian matrix P such that (2.108) holds, the Lyapunov
function given by V(x) = x* Px ensures global uniform asymptotic stability of
(2.107) not only for any constant perturbation A € Ag but also for any “admissible
uncertainty” A(-).

The notion of quadratic stability has proven to be quite useful for developing
“systematic” synthesis procedures for robust controller design. These synthesis
results are especially useful when the uncertain parameters are time varying and/or
state dependent. See, for example, the compilation of papers by Dorato [78], and
Dorato and Yedavalli [79], for some recent developments in this area.

When the uncertain parameters are constant (but otherwise unknown) elements
of the bounding set, the notion of quadratic stability becomes a fairly strong
requirement; in this case it is more natural to call for the less restrictive requirement
of robust stability.

Definition. The uncertain system (2.107) is robustly stable with respect to the
bounding set Ag if for any A € Ag, F(A) has all eigenvalues in the open left-
half complex plane.

In the sequel, we will say that the uncertain system (2.107) is RS(Ag)
(respectively, O S(Ag)) when (2.107) is robustly stable (respectively, quadratically
stable) with respect to the bounding set Ag.

Consider uncertain system (2.107). In this note we are primarily interested in the
case in which the function F(-) and the bounding set Ay are given by

F(A):= A+ BAC (2.109)
Ag = {A = block diag(Ay,...,A):Vi=1,...,r,A; € E"*Pi 5 <1},
(2.110)

where A, B, C are known real matrices of compatible dimensions. This type of
uncertainty modeling encompasses many cases of practical significance. Note that
F(A) can also be written as

F(A):=A+) BiAC:. 2.111)
i=1
where
B=[BB,...B]. C=[C|C}...C]]. (2.112)
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Fig. 2.1 Relation among the various stability notions [(©IEEE 1993], reprinted with permission

We shall call an uncertain system of the form (2.107) that satisfies (2.110) and
(2.111) a system with norm-bounded uncertainty. Although the set Ag introduced
in (2.111) depends on the number of uncertain blocks and their dimensions, we shall
not carry this dependence explicitly to avoid cumbersome notation.

An important result in the analysis of uncertain systems with norm-bounded
uncertainty is the following.

Theorem 2.17. Let Y denote a system with norm-bounded uncertainty as defined
in (2.109) and (2.110). Define G(s) := C(sI — A)~'B. Let E denote either R or C.
Suppose that the bounding set Ag is given by

Ap :={A € E™P :5(A) <1}

Then, the following statements are equivalent:

1. Y is 0S(A¢).

2. Y is OS(Ag).

3. Y is RS(A¢).

4. The matrix A has all eigenvalues in the open left-half complex plane and
[Glloo < 1.

5. The algebraic Riccati equation XA + ATX + XBBTX + CTC = 0 has a
(unique) symmetric solution X € R"" such that A+ BBT X has all eigenvalues
in the open left-half plane, and X is positive semidefinite.

The contribution of [76] in this context of discussion on stability robustness is to
show that for uncertain systems with norm-bounded “structured” uncertainty, i.e.,
two or more uncertain blocks in (2.110), statements (1)—(3) of Theorem 2.1 are
no longer equivalent. Indeed, examples do exist of systems with norm-bounded
structured uncertainty which demonstrate that regions 2 and 4 in the Venn diagram
of Fig.2.1 are nonempty. The combination of these examples together with the
well-known fact that there are systems with norm-bounded uncertainty that are
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RS (AR) but neither RS(Ac¢) nor QS(AR), i.e., region 1 is nonempty, permits
us to conclude that, in general, no two of the above mentioned stability notions
are equivalent. Even though the current literature has not been able to produce an
example that demonstrates that region 3 is nonempty, it is generally believed that
there are uncertain systems that are both RS(A¢) and QS(Ag) but not 9S(A¢).

2.7 Exercises

Problem 1. Consider a linear time-invariant system

0—-1-1
XxX=A@x@) =12 qg 0 |x(?)
1051
—-0.5<¢g <-0.1.

(a) Convert this to a polynomial stability problem and determine if this “interval
matrix” is stable in the given parameter range or not.

(b) Treat this as a matrix stability problem and again determine the stability of
the system in the given parameter range by applying any appropriate “matrix
stability robustness” tests of this chapter in this book.

-2 2

Problem 2. Given a symmetric matrix A,; = |: ) —6

:| and an error matrix E; =

e e ) ) ..
[ & (1)2i| . Obtain the “maximal box” in the parameter space e;; and e|, where the
€12

box is symmetrical with respect to the origin and |e}1|max= 2|€12|max, and knowing
that the necessary and sufficient condition for the stability of (49 + E) is to check
the stability of the vertices.

Problem 3. Consider a interval parameter matrix with a single parameter 3,

A= Ao+ BE,

Ay = -8 -3 . E= 11 .
2 -4 00

(a) Treating q; = Ey; = B and ¢ = E;» = B as independent parameters, draw
the diagram in the matrix element space (i.e., £ vs E12, i.e., ¢ Vs ¢2). Then
get a sufficient bound on § treating the two elements as independent parameters,
using the bound formula for independent variations.

(b) Then, get a sufficient bound on § using any of the dependent variation methods
that you have learned.

(c) Then using iteration on this method, expand the bounds as much as possible.
Record the history of iteration; explain the procedure pictorially in the (g1, g2)
space.

where
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Problem 4. In “interconnected systems” (decentralized control) literature, the
model is given by

N
gi= Auxi+) e Quxy i =125,

J=1

s
where x; € %", Zni = n, ¢;;, the “interconnection” parameters which can
j=1
be varied and A;; being assumed to be asymptotically stable. A researcher in
interconnected systems theory wants to obtain some estimates on the intercon-
nection parameters to maintain stability. Can you provide some estimates for that
researcher? You can illustrate your answer with s = 2.

Problem 5. In the robust stability analysis of matrices with independent variation
approaches, one method is based on Lyapunov theory and the other on determinantal
criteria. For example, a result which uses Lyapunov stability theory is

1

< =
¢ Hy Umax(Pm Ue).v

where PAo+ Ag P 421 = 0 and aresult which uses frequency domain determinant
criteria is 1
eE< Uy = X — s
supp([(joI — Ao) 1]mU€)

w=>0

where p is spectral radius. Assume A = [_Oa Obi|’ a > 0,b > 0. Given that only

ay) is varying, write down what the bounds py and p s are analytically, and explain
in detail why py is conservative than p .

ap an

Problem 6. Given A = [ i|, form the U, matrix (and specify ¢ if applicable

dry dxn
and the corresponding A matrix) for the various following situations:
(i) Only elements ay, a»;, a» are varying.

(ii)
09<a;; =-05<-03
—12<a;; =-08<-0.2

—0.1 <ay =0 <0.2; apy isnot varying.

Problem 7. Given x = [Ag + E(¢)]x, Agis (n x n)
(i) Suppose it is given (or known) that only one element of Ay is uncertain but we
do not know which entry. One bound you would give on this element would be
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1
u = ———— where P satisfies the usual Lyapunov equation. Do you agree
NOmax (P) |
with the statement that j1, = ———— can also serve as a bound for this case?
Umax(P)

Give an explanation.
(ii) Now suppose that only the diagonal element ay; is uncertain. Can u, =

still be given as a bound for e;;? How does it compare with uy =

Umax(P)
| 10---
— where U, = |00 ---
Umax(Pm Ue)s ‘ .
(iii) Now suppose that all the diagonal elements are subject to variation. Can p, =
1
———— be still given as a bound for e;;? How does it compare with puy =
Umax([l))
——— where U, = I,,.
Umax(Pm UE)S ¢ '

(iv) Now suppose that either all or many elements of A are varying. Can i, be
taken as the elemental bound? Explain why. If not, what is the elemental bound
you can give?

Problem 8. Given A = [_13 _02}, obtain the bounds as in Table 2.1 for all the

possible locations of the perturbation, using the frequency domain formula of (2.44).
Then do the same exercise using the bounds g, i1, and (g meant specifically for
time-invariant, real perturbations.

2.8 Notes and Related Literature

As can be seen from this long chapter, it is clear that the stability robustness
analysis of linear dynamic state space systems attracted enormous attention from
the research community in the late 1980s and early 1990s, making it the most
“hot area” of research in that time frame. While the seminal Kharitonov theorem
in polynomial family testing provided the “trigger” for this “tsunami” of research,
the interesting conclusion drawn aftermath of this tsunami is that it is relatively
easier to obtain “sufficient” conditions for robust stability, but it is altogether an
entirely different level of effort to obtain computationally tractable “necessary and
sufficient” conditions for the robust stability check. It is now well known that
checking the “vertex” matrices for stability is not a sufficient condition for the entire
interval matrix family [48]. Another line of research on this issue uses LMI and
parameter-dependent Lyapunov function approach to present sufficient conditions
[80-83]. The LMI and parameter-dependent Lyapunov function approach is a vastly
researched topic and is beyond the scope of this book. An expanded discussion on
this topic is provided in the last chapter of this book on Related Topics. There is
no question that the robust stability checking of interval (polytope) matrix family
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problem in a “necessary and sufficient” way is considerably more difficult and,
as a previously held NSF symposium put it, is a “hard nut to crack” than the
interval polynomial family stability check problem. A new framework for this
matrix family robust stability check is to cast the problem as that of the checking the
robust stability of a convex combination of matrices [24]. The author of this book
has brought considerable insight to this convex combination problem formulation
recently in [84] and hopes to bring a closure to the research on this issue by offering
a final necessary and sufficient “extreme point” algorithm for checking the robust
stability of interval parameter matrices in an archival journal publication soon. Since
this topic has been a subject of intense effort and interest, it deserves to be discussed
in a separate book or journal publication at a later time.
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In this chapter, we address the issue of performance robustness, in contrast to
stability robustness discussed in the previous chapter. We assume that “perfor-
mance” of the control system is characterized by speed of response which in turn
is a function of the location of the eigenvalues of the closed-loop system. Thus, we
treat the performance robustness problem as robust D-stability problem where the
D-stability region is a subregion in the complex plane. In that sense, this chapter
thus addresses the robust stability of discrete-time systems since the unit circle,
which is the region of stability for discrete-time systems, can be regarded as a
D-stability region. In fact, the continuous-time stability robustness results presented
in the previous chapter become special cases of this topic where the D-stability
region is simply open left half of the complex plane. We first consider the general
theory of matrix root clustering for nominal systems and then extend those results
for uncertain system matrices. Thus, this chapter essentially presents analysis results
for “robust root clustering.” Henceforth, the phrases robust D-stability, robust root
clustering, and robust eigenvalue (pole) placement will be used interchangeably.

3.1 A General Theory for Nominal Matrix Root Clustering
in Subregions of the Complex Plane

As mentioned earlier, we first consider the general theory of matrix root clustering
problem for nominal system matrices. In this direction, we briefly review and
summarize the results of the seminal paper presented by Gutman and Jury [1]. In
what follows, we essentially use the same notation followed by them in their paper.
In their paper, they consider a two variable transformation region £2 for matrix root
clustering. For simplicity in exposition, we restrict our attention to only real matrices
and review the material related to only real matrices.

Let A € R™", A an eigenvalue of A, A the complex conjugate of A, x =
Re[A], y = Im[A].
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For A € R™", we are interested in symmetric regions, since in real matrices,
eigenvalues appear as conjugate pairs. In this case,

(1) 2,5 {(x.y) Y ypx! y? <0} 3.1)
fh

) 202 {(x. ) Yy y? <0}, (3.2)
Sfh

where f and & are nonnegative integers, v = f + 2h is the region’s degree, and
v ri 18 a real coefficient. Next consider the following facts:

(1) x = %(A + ).
@ y=-30-D.
SRR WA () ooy
= Z yrnx! y?".
7

In addition, let , 8 € C and define

+

A _ hl(f o fin _ @a\2h
pe.B) 2y vy @+ @ - (3.3)

fih

We now restrict regions £2,, §2,, by the following:
(a) £2, is transformable, if o, B € £2,, implies

Re[u(a, B)] < 0.
(b) !_ZU is transformable, if a, B € !_ZU implies

Re[p (e, B)] < 0.

For simplicity in exposition, we limit our attention to regions £2; and §2, and
specialize the above notation to these two regions. Incidentally, these two regions
cover quite a large class of regions in the complex plane. The following are examples
of a class of regions:

Regions of Degree 1

2, = {(x,y) 2 Y00 + Y1i0x < 0} 3.4)

These regions include open left-half plane and regions with prescribed degree of
stability (relative stability).
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Regions of Degree 2

25 = {(x,¥) : Yoo + V10X + Yory* + y20x* < 0}. (3.5

This represents a conic section (either ellipse, parabola, or hyperbola, depending on
the nature of coefficients y;; ).
We state some transformability conditions [1].

Lemma 3.1. 2, £2, are transformable.
Lemma 3.2. For symmetric regions, §2, and 2, are transformable, if yo2+ Y20 > 0.

Having established some fundamental preliminaries, we now recall that Gutman
and Jury [1] present conditions for root clustering of a nominal real matrix via
two paths, namely, (1) via generalized Lyapunov equation (G.L.E) and (2) via the
Kronecker-based matrices (already introduced in the previous chapter; recall the
Kronecker and bialternate sum matrices of various dimensions). Hence, in what
follows, we briefly review these conditions via the two above mentioned avenues.
First, we summarize the analysis related to the G.L.E and then those related to the
Kronecker-based matrices.

Nominal Root Clustering Conditions via Generalized Lyapunov Equation

We now proceed to review a fundamental theorem on root clustering of a nominal
matrix in terms of the G.L.E from [1]. Consider the G.L.E given by

> cpgAPPAT = —Q. (3.6)
14

where A7 is the transpose of A and ¢, is the coefficient of &” 87 in the polynomial
given by u(«, ), discussed before.

Note that for the regions under consideration, coefficients ¢, are real. Before
proceeding to state an important theorem of [1], in what follows, we summarize the
expressions for ¢, and the corresponding expression for the G.L.E for four regions,
namely, LHP, a-shift (relative stability degree), ellipse, and circle.

* Open left-half plane:

21:x<0, (Yoo=0, y1o=1)
coo =0, cro=co1 =1/2
GLE: (PA" + AP) = -20Q.
* « stability degree:

21:a+x<0,a>0, (Yo=a, yio=1)
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coo = o, c1o = co1 = 1/2

G.LE: (2aP + PAT + AP) = —20.

» Ellipse:
251 Y00 + Y02y + y10x + y20x? <0, y20 > 0, yo2 > 0
1 1 1
€00 = Y00, €10 = Co1 = Y10, €11 = E(Vzo + Y02), Co2 = C20 = Z()’zo — Yo2)

G.LE: coP + co1(PAT + AP) 4+ c11APAT + coa(P(AT) + A2P) = —Q.

e Circle:
25 Yoo + yiox + x2 +y2 <0

€00 = Y00. €10 = Co1 = V10 €11 = 1, cop =c20=0

G.LE: cooP + co1(PAT + AP) + APAT = —Q.

We now state the theorem on nominal matrix root clustering using G.L.E given
in [1].

Theorem 3.1. Let A € R"™" and consider the $2,(v = 1,2) regions described
before. For the eigenvalues of A to lie in $§2,, it is necessary and sufficient that given
any positive-definite matrix Q, there exists a unique positive-definite symmetric
matrix P satisfying the corresponding G.L.E.

Next, we recall the conditions of nominal matrix root clustering in terms of the
Kronecker operation-based matrices. Note that these Kronecker operation-based
matrices were discussed in the previous chapter. However, for completeness of
this chapter, we restate the formation of those matrices. In particular, we restrict
our attention to two classes of matrices, namely, (1) Kronecker matrices, which
are of dimension n? and (2) the bialternate sum matrices, which are of dimension
%n(n — 1). As before, we specialize our discussion to real matrices and to only
regions given by £2 and £2,.

Nominal Root Clustering Conditions via Kronecker and Bialternate
Product Matrices

Let A, B € 13” t”. The Kronecker product (or tensor product) of A and B, written
A® B € R"™ is
anB ...a,,B
AQBE| .
anB ...a,,B
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Definition. Let A, B € R"*". The bialternate product of A and B, written A - B €
R m = %n(n — 1) is a matrix with entries A - B, ;s where

|

p=23....,n; g=12,....,p—1lr=2,3,....,n; s=12,...,r—1.

bpr bps
Arq dgs

Apr Aps
byr bys

1
A'qu’rs - §|:

In particular, the bialternate product of A with itself is A - A, where

].

We now present a set of important theorems on nominal matrix root clustering,
taken from [1].

Apr Aps
Aqr Qys

A- qu.rs = |:

Theorem 3.2. Let A € C™" with {A;} as eigenvalues. The eigenvalues of the
matrix

P(A: A) =) cpg A’ @ A%, cpy €C
P4
are the n* values

(P(}{[, /'{/) = Z Cqulpk_jq.

P4

Theorem 3.3. Let A € R™" with {A;} as eigenvalues. The eigenvalues of the
matrix

O(A: A) =Y cpA” - A1 cpy €R
P4
1
are the 3n(n — 1) values
1
O(i.Aj) =5 D epg AT+ A7A!
P4
i=23,...n and j=12,...,(—1).
Theorem 3.4. Let A € R™", &(A;4) = 3, cpA” @ A9, where cp, is the
coefficient of a? B4 in the polynomial p(a, B). For the eigenvalues of A to lie in the
transformable region $2,,(82,), it is necessary and sufficient that in the polynomial

detlul — ®(A; A)), the coefficient of p',i = 0,1,...,n2 — 1 are all positive
(nonnegative).
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Counting separately the real and the complex conjugate eigenvalues of A, we
obtain the following:

Theorem 3.5. Let A be an nxn real matrix and ©(A; A) = Zp,q Cpg AT - AT where
Cpq Is the coefficient of aP B4 in the polynomial ju(a, B) and W(A) = > ys,A7.
A

For the eigenvalues of A to lie in the transformable region $2,, it is necessary and

sufficient that in the polynomials,

(i) det[Al —W(A)].

(ii) det[ul — @(A; A)], the coefficients of A\, i = 0,1,...,n—1, and those of,uf,
j=0,1,..., ln(n — 1) — 1, are all positive.

Note that for the regions under consideration, coefficients ¢, are real. In what
follows, we summarize the expressions for ¢, and the expressions for the matrices
@ and ¥ and O for four regions, namely, LHP, o-shift, ellipse, and circle. to
distinguish the nominal and perturbed situations, we denote the nominal matrices
@ and ¥ and O as @y and Yo and Opom.

* Open left-half plane:

21 :{x <0}(yoo =0,y10 = 1)

Coo = 0
1
Clo = Co1 = 5 3.7
1
DPyom = E(A QLi+1,® A) 3.8)
Yhom = A
1
Onom = (A0 + 1. 4). 3.9)

* « degree of stability:

2 {a+x <0,a >0}

(Yoo =a,y10=1)

Cop = 3.10)
1
Cl0 = Co1 = 5
1
¢n0m:aln®ln+§(A®In+In®A) (3.11)
Yiom = ol + A

1
Onom = el + 5 (AL + 1. A). (3.12)
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* Ellipse:

25 {yo0 + Y02»* + vi0x + yaox® < 0}
(Y20 > 0,700 > 0)

Coo = Yoo
1
Cl0o = Co1 = 5)/10 (3.13)

1
= 5()’20 + Y02)

1
Cop =€ = Z(Vzo — Yo2)

Drom = cooln ®1, +COI(A®1n +1, ®A)+CII(A®A)+COZ(A2®In +1, ®A2)
(3.14)
Whom = Cooln + 2¢o1 A + (11 + 2¢02) A®

Onom = Cooln.In +cor (A0, + I,.A) +c11(A.A) + cor (A1, + 1,.A%). (3.15)

e Circle:

25 {Yoo + viox + x* + y? < 0}

€00 = Yoo
1
Clo = Co1 = 5)’10 (3.16)
C11 = 1

Co2 =1¢0 =0

Dnom = cooln @ Iy +c01(AR 1, +1, 8 A) + (AR A) (3.17)
Yhom = Cooln + 2co1 A + A?
Ornom = coodn. Iy + co1 (A1, + I,.A) + (A.A). (3.18)

Having recalled the conditions for nominal matrix root clustering via both the
G.L.E and the Kronecker-based matrices, in the next section, we extend the concepts
of root clustering in Gutman and Jury to perturbed matrices and derive bounds on
the perturbation to maintain root clustering in a given region (robust root clustering).



82 3 Performance Robustness Analysis via Root Clustering (Robust D-Stability)

3.2  Robust Root Clustering for Linear Uncertain Systems:
Bounds for Robust Root Clustering

Most of the literature on robust D-stability is confined to family of polynomials
[2-8]. The very few methods reported for matrix root clustering confine them-
selves to some very specific D-regions [9—-13]. In majority of these papers, the
relationship between perturbation range and the eigenvalue migration range is not
explicit and is not tractable. In this section, an elegant, unified theory for robust
eigenvalue placement is presented for a class of D-regions defined by algebraic
inequalities by extending the nominal matrix root clustering theory discussed in
the previous section to linear uncertain systems, the results of which are valid
for both continuous-time systems and discrete-time systems, for both unstructured
and structured uncertainties. It may be recalled that this type of extension was
considered in a series of papers by Abdul-Wahab [14, 15] with continuous-time
systems in mind. But as pointed out by Yedavalli [16], those results turned out
to be erroneous. So in this section, we present explicit conditions for matrix
root clustering for different D-regions in terms of bounds on the real parameter
perturbations and establish the relationship between eigenvalue migration range and
the real parameter range. The bounds obtained do not need any frequency sweeping
or parameter gridding.

With this backdrop, we first present the robustness bounds for robust root
clustering using generalized Lyapunov theory [17] and then using Kronecker-based
matrix theory [18, 19].

Bounds Using Generalized Lyapunov Theory
Towards this direction, we first consider systems with unstructured perturbation.
Bounds for Unstructured Perturbation

Consider the following linear state space model ¥ = Ax = (4o + E)x, x(0) =
X0, where Ay is an n x n matrix with a given root clustering region and E is an
unstructured perturbation on Ay. The aim is to derive bounds on the norm of the
perturbation matrix, i.e., on || E'|| such that Ay + E has roots maintained inside the
root clustering region of Aj. Note that in a design situation, the matrix Ay may
represent a nominal closed-loop system matrix with gain matrix elements as design
parameters (for either continuous-time or discrete-time systems).

Theorem 3.6. The perturbed system matrix Ao+ E has eigenvalues inside the given
region $21 if
Omin(Q)

Omax(E) = Umax(P)

_— (3.19)

where P satisfies
2P + PAy + AL P = —20. (3.20)
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Now consider the G.L.E corresponding to £2; region. Assuming that the
eigenvalues of the nominal system matrix Ao are located inside the given region
£2,, we now want to derive bounds on the perturbation matrix E such that the roots
of the perturbed matrix Ayg 4+ E also lie inside the region 2.

Theorem 3.7. The perturbed system matrix Ao+ E has eigenvalues inside the given
region $2; if

) <[ (b= )+ ] o ) G20

where

a =2com + Clim

b = omax(A4o) ¢ » (3.22)
¢ = Onin(Q)/Omax(P)
and P satisfies the G.L.E
cooP + co1(PA] + AgP) + c11 AgPAL + coa(PAL + A2P) = —Q,  (3.23)

and [1,,, denotes the perturbation bound for root clustering for the region of degree
2, and (.),, denotes the absolute value of (.).

For the special case of a circle in the left-half plane with center at 8 and radius
rc, the G.L.E is given by the following parameters:

coo = B> —rk

co1 = c10 = —P;
(3.24)
ey =1,
Co2 = ¢0 = 0.
Thus, we have the G.L.E as
— B(AgP + PAY) + AgPAL + (B> —r>H)P = —Q. (3.25)
The above equation can be written as
Ay — BI Ao — BL)T
(0 ;Bn)P(O .Bn) —P——%. (3.26)
re re r

which is in the form of a discrete Lyapunov equation with the nominal matrix (Ao —
B1,)/rc. For this case, the bound y,,, is given by
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Omin(Q)

1/2
amm(P)} — (omax(Ao) — B).  (3.27)

Omax(E) < o, = [(Umax(AO) - ,3)2 +

Remark. It may be noted that the bound u,, specializes to the discrete system
bounds of Kolla et al. [20] with 8 = 0, r. = 1.

Bounds for Structured Perturbation
For this case, we consider the linear state space system with structured perturbation
as follows:

X = A(g)x, x(0) = xo; (3.28)
where

Alg) = Ao+ E(@) = Ao+ )_aiE; (3.29)

i=1

with Ape R"*" being the “nominal” matrix obtained at the nominal value of the
uncertain parameter vector ¢(q;,i = 1,2,...,r), i.e., qO = 0 and E; are given
constant matrices. This type of representation produces a “polytope” in the matrix
space. A special case of interest is the so-called “interval matrix” family in which
E; are such that they contain a single nonzero element, at a different location in
the matrix for each different i. We now define a set of matrices with the following
notation. Let (.),, denote the matrix with all its elements taking on absolute values of
the elements of the matrix (.). Also let (.); denote the symmetric part of the matrix,
ie, (()+0OH/2

Again consider the G.L.E corresponding to region of degree 1. Assuming that the
eigenvalues of the nominal system matrix Ay are located inside the given region §2;
(LHP or «-shifted LHP), we now want to derive bounds on the perturbation matrix
E(q) such that the roots of the perturbed system matrix Ay + E(g) also lie inside
the region £2;.

Theorem 3.8. The perturbed system matrix Ay + E(q) has eigenvalues inside the
given region §2| if

Omin(Q)
| < — = =t (3.30)
|q'/| Umax(Z(Pi)m) H
where P; = (PE;); and P satisfies
2aP + PAy + AL P = —20. (3.31)

Remark. Note that this bound pu;, . specializes to the standard left-half plane
(asymptotic stability for continuous-time systems) bound derived in Keel et al. [21]
and Zhou and Khargonekar [22] where o = 0. Here pu,, denotes the perturbation
bound for root clustering for region of degree 1 for structured uncertainty.



3.2 Robust Root Clustering for Linear Uncertain Systems... 85

Now consider the G.L.E corresponding to region of degree 2. Assuming that the
eigenvalues of the nominal system matrix Ay are located inside the given region £25,
we now want to drive bounds on the perturbation parameters ¢; such that the roots

of the perturbed matrix Ay + E(q) also lie inside the region 2.

Let
(E\E\P)y (E\EyP)s ... (E\E P)
Py = (E\E2P)s (E2E5P)y ... (E2E,P), (3.32)
(E\E,P)y (E2E,P)s ... (E.E.P),
(E\PE[)s (E\PE])s ... (E\PE]);
p., — | (BYPED);s (E2PED); ... (E2PE), (333)
(E\PET); (E,PET), ... (E,PE]),
and
Puei = (E; PA]);:
Aoip = (AoE; P)s;
o’ ' (3.34)

Eiap = (E;AoP);:
P, = (EiP)s-

Now we are ready to state the theorem which gives bounds on root clustering of
(3.29), assuming Ay has roots inside the given root clustering region £2;.

Theorem 3.9. The perturbed system matrix Ay + E(q) has eigenvalues inside the
given region §2, if

b\ omn(@) ] (b
lg;1 < [(—) + “’—] - (—) = [ (3:39)
dg dg dg

by = Omax [[Cozm (Z(Eiap)m + Z(Aoip)m)]
+ ctim (X Pacihm) + o1 (3 (Perhm )] (3.36)

as = rUmax[chZm(Pep)m + Cllm(Pee)m]a (3.37)

where

where P satisfies (3.23) and 5, denotes the perturbation bound for root clustering
for region of degree 2 for structured uncertainty.
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Ilustrative Example
To illustrate the theory, consider a simple example with the plant matrix (see [15])

Ay = |:—4.3 —0.4i| :

0.2 -34
with eigenvalues A; = —4.2 and A, = —3.5. Let us consider a circular root
clustering region in the left half of the complex plane with the center at § = —4.0

and radius r = 1.0. Then the bound on the unstructured uncertainty omax(E) is
given by (3.27). Carrying out the computations with Q = I, we get

M2, = 0.0341.
That is, as long as the unstructured uncertainty is such that
omax (E) < 0.0341

the eigenvalues of Ay + E stay inside the circular region of the complex plane with
the center at —4.0 and the radius r = 1.0.

Bounds Using Kronecker Matrix Theory
Towards this direction, we first consider systems with unstructured perturbation.

Bounds for Unstructured Perturbation

Consider the following linear state space model ¥ = Ax = (4 + E)x, x(0) =
X0, where A is an n x n matrix with a given root clustering region and E is an
unstructured perturbation on A. The aim is to derive bounds on the norm of the
perturbation matrix, i.e., on || E || such that A+ E has roots maintained inside the root
clustering region of A. Note that in a design situation, the matrix A may represent a
nominal closed-loop system matrix with gain matrix elements as design parameters
(for either continuous-time or discrete-time systems).

First consider the generalized Kronecker equations of (3.10) corresponding to
region of degree 1. Assuming that the eigenvalues of the nominal system matrix
A are located inside the given region §2; (LHP or «-shifted LHP), we now want
to derive bounds on the perturbation matrix E such that the roots of the perturbed
system matrix A + E also lie inside the region £2;.

Theorem 3.10. The perturbed system matrix A + E has eigenvalues inside the
given region §2| if

Umax(E) < Umin((pnom) = M1k,

where ¢nom satisfies (3.11).

Another sufficient bound can be obtained by using the ¥;,om, and &, matrices.
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Theorem 3.11. The perturbed system matrix A + E has eigenvalues inside the
given region §2| if

O~max(E‘) < Min[amin(wnom)7 Umin(@nom)] = WUip,
where Whom and Oyon satisfy (3.12).

Remark. Note that this bound 15 specializes to the standard left-half plane (asymp-
totic stability for continuous-time systems) bound derived in Qiu and Davison [23]
where o = 0. Here p1x and w1, denote the perturbation bounds for root clustering
for region of degree 1 using Kronecker product and bialternate product, respectively.

Now consider the @yom, Whom, and o, matrices corresponding to region of
degree 2. Assuming that the eigenvalues of the nominal system matrix A4 are located
inside the given region £2,, we now want to derive bounds on the perturbation
matrix E such that the roots of the perturbed system matrix A + E also lie inside
the region £2;.

Theorem 3.12. The perturbed system matrix A + E has eigenvalues inside the
given region §2, if

3
]
=
o
e
A
| p—|
VR
| 2
N—
~o
_|._
| o
| I |
SIS
|
|
I
=
S

where
a = 2(co2)m + (c11)m
b = omax(A)
¢ = Omin(Pnom)
d = 2(co2)mb + (c11)mb + (co1)m
= [2(co2)m + (c11)m]b + (co1)m
= ab + (co1)m

and Pnom is as defined before and o denotes the perturbation bound for root
clustering for the region of degree 2 using Kronecker product and (.),, denotes the
absolute value of (.).

For the special case of a circle in the left-half plane with center at 8 and radius
r., we use the following parameters:

2 2
coo =P —ricor =cro=—P,ci1 =1,c00=1c2=0.



88 3 Performance Robustness Analysis via Root Clustering (Robust D-Stability)
Thus, we have the matrix @, as
Doom = (B =1L QL — AR, + I, ® A) + (A ® A).
For this case, the bound py is given by
Omax (E) <tz = [(Omax (40) = B)? + Ouin(Prom)]? — (Omax(4) = B).  (3.38)
Similarly, another sufficient bound can be given using the bialternate sum matrix.

Theorem 3.13. The perturbed system matrix A + E has eigenvalues inside the
given region §2; if

Omax (E) < min{flypy . Hopg} = Wab,

where
_ T(d\> e, d
Py =1\5) T2 — 2
_ 1
_ (b+ (COI)m) +c—wi|_—(b+ (COI)m)
i a a a
— . i d 2+C(9 %_d
Hape = \a a a
ARG : (cor)
_ (b+ co)m +C_e} —(b+ COlm)
i a a a
and

a = 2(co2)m + (C11)m

b = Omax(A4)

¢ = Omin(Pnom)

d = 2(co2)mb + (c11)mb + (co1)m
= [2(co2)m + (c1)m]b + (co1)m
= ab + (co1)m

and Yyom and Onem are as defined before and |1, denotes the perturbation bound
for root clustering for the region of degree 2 using bialternate product.
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In the paper [18] where the author first presented the above theorems, the
modulus signs on the coefficients ¢;; in these theorems were inadvertently missing.
The paper [19] has the correct expressions for these bounds.

For the special case of a circle in the left-half plane with center at 8 and radius
1., we use the following parameters:

22
coo =B —r;,co1 =cx=—P,ci1 =1,co0 =100 =0.
Thus, we have the matriX ¥yom and @nom as

oom = (B> — 121, —2BA + A?
Onom = (B> — 11,1, — B(A.I, + I,.A) + (A.A).

For this case, the bound w,p is given by

Omax (E) < pop = min{ﬁzbw’ﬁzbe}’ (3.39)

where
Hapy = [(OmaX(A) -8+ Umin(ll/nom)]i — (Omax(4) — B)

and
Hopy = [(OmaX(A) -8+ Umin(@nom)]i — (Omax(4) — B).

Remark. It may be noted that the bound wy; specializes to the discrete system
bounds of Qiu and Davison [24] with 8 = 0, r, = 1.

Ilustrative Example
To illustrate the above robust D-stability theory, consider a simple example with the
system plant matrix

—4.47 —3.23 108.99
A= 026 —0.85—-11.39
0.49 295 —15.84

with eigenvalues A = —17.5and 1,3 = —1.83 £ 0.95;.

First let us consider a circular root clustering region in the left half of the
complex plane with the center at § = —9.75 and radius r. = 8.25. Note
that the above nominal matrix eigenvalues are inside this region. Now we can
compute the robustness bounds on the unstructured uncertainty norm, oy (E),
using the three methods discussed, namely, tsrc, U2k, and finally wyp. Carrying
out the computations, we obtain iy, = 8.93 x 107°; py = 1.1135 x 107#; and
Hop = 2.547 x 1073,

Note that as expected and discussed in the previous chapter, the bounds
based on Kronecker matrix theory are always larger than those obtained by the
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Lyapunov method, since Kronecker-based methods are specifically tailored to real,
time-invariant parameter perturbations. It is also a trend that the bound based
on bialternate sum matrix is always larger than the bound based on the higher
dimensional Kronecker sum matrix. This is due to the fact that the bialternate sum
matrix avoids redundancy in the eigenvalue calculations.

Even though the above root clustering analysis can be specialized to address the
robust stability of linear discrete-time systems, where the stability region for these
systems is the unit circle in the complex plane centered at the origin, because of
the amount of literature available specifically for the linear discrete-time uncertain
systems, it is justified to present the details of the stability robustness analysis for
linear discrete-time uncertain systems separately. Hence, in the next section, we
explicitly address this issue and expand on the results available in the literature,
which, in a way, mimic the path taken in continuous-time systems in the previous
chapter. These results are essentially taken from reference [20].

3.3  Robust Stability Bounds on Linear Perturbations
for State Space Models of Linear Discrete-Time Systems

The problem of maintaining the stability of a nominally stable system subjected
to perturbations has been an active area of research for some time. There is
considerable literature on this topic for continuous-time systems as discussed in the
previous chapter. Concurrently, the robust stability analysis of discrete-time systems
has also received considerable interest; see [25-29]. Interestingly, it was shown
in [28] that Kharitonov’s theory does not apply to discrete-time systems of order
greater than three.

Motivated by the results obtained for the robust stability of uncertain continuous-
time systems using Lyapunov theory and singular value decomposition as discussed
in the previous chapter, we consider here the robust stability analysis for state
space models of discrete-time systems. Most of the material in this section is taken
from [20].

System Description and Notation

Let the linear uncertain discrete-time system be described by the difference equation
x(k+1)=(A+ E(k))x(k), (3.40)

where x is the n-dimensional state vector and E is an n x n time-varying uncertainty
(perturbation) matrix. The time argument k of the matrix E is omitted hereafter for
brevity.

The singular values of any matrix L are denoted o (L) and defined by o (L) =
[A(LLT)]'/?], with opax(L) the largest and opin(L) the smallest singular values
of L. The notation |L| represents the matrix whose elements are the magnitudes of
the elements /;; of L. The symmetric matrix L is the symmetric part of a square
matrix L : Ly = (L + L7)/2. Here L > 0 denotes positive semidefinite, L > 0
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positive definite, and L < 0 negative definite. The notation L; < L, represents the
matrices whose elements satisfy /;;; < I5;; for all i and j. For the asymptotically
stable nominal system matrix A4, the discrete Lyapunov equation

ATPA-P+0=0 (3.41)

gives the unique symmetric solution matrix P > 0 for any given symmetric matrix

0 > 0.

Stability Robustness Measures for Discrete-Time Systems

In this section, we give bounds on the time-varying error matrix E such that the
system (3.40) remains stable in the presence of these parameter variations.

Bound for Unstructured Perturbations

Theorem 3.14. The discrete-time system (3.40) is stable if

Omin(Q)

o (P)’ (3.42)

Omax(E) < py = —0max(A) + \/[Umax(A)]2 +

Remark. As in the continuous-time case of the previous chapter, the bound p, is
maximum when Q = I, for which 0, (Q) = 1.

Remark. When A is normal (AA” = ATA)and Q =1,
= 1-p(A). (3.43)
Example. Consider the normal matrix
4= [0.5 —0.1i|
0.1 0.5
with eigenvalues 0.5 £ j 0.1, for which p(A4) = 0.5099. With Q = I, (3.42) gives

Hy = 0.4901
=1-p(A4).

Bound for Structured Perturbations
Define constants €;; and € such that the elements e;; (k) of E (k) satisfy

eij (k) < leij(k)|max = €;j and € = max ¢;;. (3.44)

LetU = [u;], ujj = €5 /€.
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Theorem 3.15. System (3.40) is stable if

, 1/2
€ < % |:—amax(A) 4 ([am(A)]2 + "’“‘"(Q)) } . (3.45)

Omax (P)

Theorem 3.16. System (3.40) is stable if

€< by = —

Umax(UT|PA|)s + Umax(UTlpAl)s 2+ Umin(Q) 1/2
omax(UT|P|U) omax(UT|P|U) omax(UT|P|U) '

Note that 0 < u;; < 1. One can take u;; = 0 if the perturbation ¢;; of a;; is
known to be zero. Similarly, u;; = 1 if ¢;; is not explicitly known. To get a bound
on the relative variation on the elements of A, one can take u;; = |a;;|/|aij |max-

Bound for Dependent Variations

In many interesting problems, we may have only a small number of uncertain
parameters, but these uncertain parameters may enter into many entries of the
system matrix. In particular, the time-varying uncertainty matrix £ may be of the
form

E =" kE;, (3.47)

where E; are constant matrices and k; are uncertain parameters which may vary
independently. Recall similar discussion from the previous chapter on continuous-
time systems. Define the mn x mn symmetric matrices

(E[ PE\) (E{PEs)s --- (E{ PEy);

(EITPEz)S (EZTPE2) .. (EZTPEW,)S
e = : : . : (3.48)
(EITPE,,,)S (EZTPE,,,)S .. (E;PEm)
and
P = (ATPEi)s- (3.49)

Theorem 3.17. System (3.40) with structured perturbations (3.47) is stable if the
following hold:

(a) Eim=1 |ki |20max(Pee) + 22,‘m=1 |ki |Umax(Paei) < Umin(Q)
(3.50)
or

Umax(xim:llpaei|):|+(|:Umax(2im:1|Paei|):|2+ Umin(Q) )1/2
MOmax (| Pee|) MOmax (| Pee|) MOmax (| Pecl) )
(3.51)

®) Iyl < —[
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Improved Bounds Using State Transformation

It may be easily shown that the linear system x (k 4+ 1) = Lx (k) is stable if and only
if the system %(k + 1) = LX(k), where x(k) = M%(k), L = M~'LM, and M
is a nonsingular matrix, is stable. Using the same path as discussed in the previous
chapter, in this section, we show that it is possible to improve both the unstructured
and structured perturbation bounds presented before. We now investigate the use of
state transformation on discrete-time system robust stability bounds.

Unstructured Perturbations

Theorem 3.18. For a given nonsingular n x n matrix M, the discrete-time sys-
tem (3.40) is stable if

O (E) < pif = —— (M—lf;omax i (3.52)
where
fu = —Omax (A) + \/ [Omax ()] + Inin(Q) (3.53)
Omax (P)
A= M""AM, and P is the solution of the Lyapunov equation
ATPA-P+ 0 =0. (3.54)

For this result, we transformed the given perturbed system to a different coordi-
nate frame and derived a stability condition in the new coordinate frame. In doing
so0, the perturbation also gets transformed; so we made an inverse transformation
to eventually give a bound on the perturbation in the original coordinates. It can
be noted that, for this case, the inverse transformation is accomplished by means
of the spectral condition number omax (M ~')0max (M) of the transformation matrix.
With the help of the following example, we now show that is indeed possible to give
improved bounds on the original perturbation.

Example. Consider the system matrix
A= 0 ! .
—-0.2 —-0.9

[ty = 0.0735.

0.99 —0.30
0.02 0.96

With Q = I, we get

With M = [ i| , (3.52) and (3.53) give the bounds
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p* =0.0897 and 2, = 0.1195

in the original and transformed coordinate frames, respectively.
As uy > uy, there is an improvement in the bound.

Remark. Itis clear that the “best bound” is obtained when the matrix in the original
matrix space is diagonal. However, a diagonalizing transformation may not always
be a good choice in our present case. As an example, consider the transformation
matrix

_ [~18.2870 —17.6164
| 73148  8.8082

that diagonalizes the system matrix in Example 2 with the least value of spectral
condition number. Then we get the bounds

pr =0.0208 and [, =0.5.

Obviously, ) < u, for this case.
Structured Perturbations
As noted before, it is possible to get better bounds for the structured perturbation
case also. In fact, in this case, it may be possible to get higher bounds even with the
use of a diagonal transformation.
Theorem 3.19. Given

M = diag[m,my, ..., m,], (3.55)

the discrete-time system (3.40) is stable if

e <pt= : (3.56)
1’1;12le :nn—f Ujj
where
~ Umax(0T|ﬁA|)s Umax((jTlﬁ/i\Ds ? Umin(Q)
= 4 ——— + > (3.57)
Umax(UT|P|U) Umax(UT|P|U) Umax(UT|P|U)
12,‘/‘ = iygij = ‘m— €ij and € = max gij- (358)
€ i L,
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Example. Consider the diagonal matrix
a 0
A=|" ,
0 ay

where |ay], |az| < 1. Assuming that the bottom antidiagonal element is varying,

we take
00
U = .

A priori, we know that this element can vary up to oo without destroying the stability
of the system. With Q = diag[q1, ¢2], (3.46) gives

a a>|?  min(qy,
Ns = _M + \/l 2| =+ (31 q2) (1 — |a2|2).
2

2 4

From this equation, it can be seen that the maximum achievable bound is 1 which
occurs when a, = 0. However, we know that the system is stable even if u, = oo.
Now, using the transformation matrix M = diag[1, m], (3.56) gives

a a|?  min(qy,
. _Q+\/| P (:]]1 ©) (1 o)
2

I‘LSZm 2 4

From this equation, it is clear that 4y — oo as m— oo, indicating the usefulness of
the transformation.

Stability Analysis of Interval Matrices for Discrete-Time Systems

Here we extend the structured perturbation bound result to the stability analysis of
interval matrices as discussed in the previous chapter. An n x n interval matrix F,
denoted F' = [G, H], is a set of real matrices defined by g;; < fi; < h;;. Define the
n X n average matrix

1
F, = E[H + G] (3.59)

and the deviation matrix |
D, = E[H - Gl, (3.60)

where d;; > 0. Then, G = F, — D and H = F, + D. Taking d = max(d;;), let
U= [ui_/] where Uij = d,//d

Theorem 3.20. Given that the system x(k + 1) = Ax(k) is stable, the interval

system
x(k+1)= Fx(k) = [A—eU, A+ eU]x (k) (3.61)

is stable if € satisfies (3.46).



96 3 Performance Robustness Analysis via Root Clustering (Robust D-Stability)

Theorem 3.21. The interval matrix F is stable if the matrix F, is stable and if

Ouax (U 1PADs T ([oman UTIPEDS T 0win(@) \"°
- _[m}—i_([ Imax (UT|PIU) :| +Umax(UT|P|U)) - G:62)

where P satisfies the Lyapunov equation FT PF, — P + Q = 0.
Examples

Example 1. Consider the system matrix

A= 0.2 0.30 .
0.1 —0.15
For unstructured time-varying perturbations, (3.42) gives omax (E) < 0.6373. For

the structured time-varying perturbation case, (3.45) gives € < 0.3187.

From (3.46), the different parameter perturbation cases represented by the

following U matrices give
10 10 11 11
v(00)(i0)(10) (i 1)

€ 0.7322 0.4935 0.4009 0.3247

For dependent variations, consider the case

#=(%a)

With E| = ( kk 8) , solution of (3.51) gives

|k| < 0.5705.
Example 2. The following example is intended to emphasize the fact that time-

varying perturbation bounds, when applied to the time-invariant case, tend to give
conservative results. Consider the system matrix

4 = 0.0 1.0
—0.5 0.5

and the perturbation matrix
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For this system, the structured perturbation bound (3.46), with
U — 00
0 1

le(k)| < 0.2755.

gives

This system remains stable under time-invariant perturbations satisfying
—2<e<l.

However, the initial condition response of this system grows indefinitely (system
is unstable) for the time-varying perturbation with a maximum modulus variation
(Je(k)| = 0.58. This value that causes instability for this time-varying perturbation
is much less than the allowable time-invariant perturbation. There could be other
types of time-varying perturbations for which instability occurs with even smaller
modulus variation.

Example 3. Consider the interval matrix F [30] with
G — —0.50 0.00 CH = 0.50 0.60 .
—0.25 0.00 0.75 0.00
Then, with d = 0.5,
F, = 0.00 0.3 D= 0.5 0.3 U — 1.0 0.6 .
0.25 0.0 0.5 0.0 1.0 0.0
Since (3.62) gives d < 0.5027, the interval matrix F is stable.

34 Exercises

Problem 1 Consider the robustness bounds for unstructured uncertainty in the
robust D-stability topic. Convince yourself through examples that the smaller the
D-stability region in the complex plane, the smaller the corresponding parameter
perturbation bound.

Problem 2 Now consider the robustness bounds for structured uncertainty in
the robust D-stability discussion. Generate examples that show that for a given
D-stability region in the complex plane, the parameter perturbation bound is
different for different locations of the perturbation, thereby convincing yourself that
the robustness bound for structured uncertainty is highly dependent on the location
of the uncertainty.
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Problem 3 This time, consider the robustness bounds for unstructured uncertainty in
the robust D-stability discussion, in which the bounds were computed using G.L.E
and the Kronecker-based matrices. Generate examples that show that for a given
circular D-stability region in the complex plane, the parameter perturbation norm
bound is higher for Kronecker-based method than the bound obtained using the
G.LE.

3.5 Notes and Related Literature

It is clear that the issue of developing performance robustness bounds via the
robust root clustering (robust D-stability) problem formulation is very useful
and important. It can be seen that the perturbation bounds for robust D-stability
tend to be lower than the tolerable perturbation bounds for asymptotic stability
underscoring the fact that stability robustness is a special case and a prerequisite for
the performance robustness issue. Motivated by the importance of the performance
robustness issue in linear uncertain dynamic systems via the D-stability formulation,
useful results were obtained in [31, 32] for Hy control under regional pole
constraints. Few other results of interest recently are presented in [33-36]. Similarly,
the relationship between the parameter perturbation range and the associated
eigenvalue/eigenvector migration range for disjointed domains as well as the time
response bounds was explored in the papers [37,38]. There is considerable literature
in the frequency domain framework on this performance robustness aspect via H,
H,, and mixed H, and Hs, formulations, and they are covered in textbooks such
as [39].
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In this chapter, we focus our attention on the issues of robust stabilization and
control design of linear uncertain systems with real parameter variations in state
space framework. Recall that in the previous two chapters, we addressed the stability
robustness and performance robustness from analysis viewpoint, whereas in this
chapter, we address the aspect of controller synthesis for linear uncertain systems.
Henceforth, we use the words synthesis and design interchangeably in the context
of robust control. Towards this direction, this chapter presents various robust control
design methodologies under three categories: (i) design via perturbation bound
analysis; (ii) stabilization and performance issues via quadratic stability concept,
which in turn include techniques labeled as “Riccati equation-based methods” as
well as “guaranteed cost control” (GCC) methods; and finally (iii) design via robust
eigenstructure assignment. These results are presented in the above mentioned order.
In an attempt to consolidate these various methodologies in an overview perspective,
only the salient features of the design procedures are discussed with the finer
detailed design algorithms left to the original references in which they appeared.
In line with the main focus of this book, design procedures dealing with only
linear systems with linear controllers for systems described by linear state space
models are considered. Also, only uncertain systems with linear time-varying and/or
time-invariant real parameters belonging to a compact set are emphasized.

4.1 An Overview of the Robust Control Design Methodologies
for Linear Systems with Real Parameter Uncertainty

There is a considerable amount of literature on the aspect of designing linear
controllers for linear time-invariant systems with small (infinitesimal) parameter
uncertainty. The book by Frank [1] summarizes these techniques which make use
of the concepts of trajectory sensitivity and cost sensitivity. In this framework, an
augmented system which includes the state sensitivity vector is appended to the
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original state space system, and a control design procedure based on nominal design
methods (such as linear quadratic regulator, LQR) is sought for this augmented
system [2].

However, for uncertain systems whose dynamics are described by interval
parameter matrices (i.e., matrices whose elements are known to vary within a
given, finite, not necessarily small, bounded interval), control design schemes that
guarantee stability had occupied the attention of researchers in the 1980s and 1990s.
This research can be broadly divided into three lines of thought: (i) control design
via perturbation bound analysis, (ii) via quadratic stability concept, and finally (iii)
via eigenstructure assignment.

The research on stability robustness analysis of linear state space models, with
finite real parameter variations, which utilizes the structure of the uncertainty in
obtaining less conservative robustness bounds (discussed in detail in the previous
chapters of this book), paved the way for designing robust controllers via the
“perturbation bound analysis.” These methods [3—6] are discussed in detail in the
following section.

Another seminal line of thought in robust control design for uncertain systems is
pioneered by a host of researchers, notably Leitmann, Barmish, Petersen, Hollot,
Corless, Zhou, Khargonekar, and many others [7-13], through the concepts of
“quadratic stability,” “ultimate boundedness control,” and “matching conditions.”
The concept of “matching conditions” (MC) is that it, in essence, constrains the
manner in which the uncertainty is permitted to enter into the dynamics. Thus this
concept belongs to the “structured uncertainty” framework of the previous chapter.
This was introduced as a sufficient condition for the existence of a controller for
stabilizing the uncertain system. In those methods, the resulting controller may turn
out to be nonlinear and even discontinuous. Considerable effort was then expended
on the question of existence of a “linear” controller for linear uncertain systems, in
which the real uncertain parameters are allowed to be time varying, within a given
bounded compact set. In this direction of research, a noteworthy paper is the one by
Thorp and Barmish. In this important paper, Thorp and Barmish [13] show that in
the absence of external disturbances, a linear state feedback control that guarantees
stability exists provided the uncertainty satisfies the matching conditions. By this
method, large bounding sets produce large feedback gains, but the existence of a
linear full state feedback controller is guaranteed. But no such guarantee can be
given for general uncertain systems. However, a linear state feedback controller
may still exist for systems that satisfy the so-called generalized matching conditions
[13]. In addition, in [7], a technique is given in which the general uncertainty
structure is split into a “matched” portion and “mismatched” portion, and a state
feedback controller is designed that guarantees robust stabilization, provided the
mismatched portion of the uncertainty is below a “mismatch threshold.” After this,
various extensions to these fundamental concepts appeared in the literature [14—
18] among which the paper by Wei [16] on “antisymmetric stepwise configuration”
deserves attention. Continuing this line of thought, Hollot and Barmish [19] present
methods which need the testing of definiteness of a Lyapunov matrix obtained as
a function of the uncertain parameters. The line of direction of this research then
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shifted to “Riccati equation”-based methods pioneered by the seminal paper by
Petersen and Hollot [20] and many other subsequent papers [21-23]. Later on, these
Riccati equation-based methods of robust stabilization are shown to be connected
to the so-called “GCC” methods [24]. The role of observers and the associated
recovery of robustness (compared to the full state feedback) were investigated by
many researchers, notably by Petersen, Jabbari, and Schmitendorf and Hollot and
Galimidi [25-30]. Various other issues related to quadratic stabilization (such as
existence of linear vs nonlinear control, time-varying vs time-invariant uncertainty)
were investigated by Zhou and Khargonekar, Rotea and Khargonekar, and others
[31]. Incidentally, Ackermann [32], in the multi-model theory approach, considers
a discrete set of points in the parameter uncertainty range to establish the stability.
However, this book focuses on the stabilization problem for a continuous range of
parameters in the uncertain parameter set (i.e., in the context of interval parameter
matrices), and as such this multi-model theory is not discussed in detail in this book.
For a detailed discussion on this practical viewpoint-based design, it is rewarding
to consult [32]. Also, this book focuses on approaches that attack the stabilization
of interval parameter matrix systems directly in the matrix domain rather than
converting the interval parameter matrix to interval polynomials and then using
methods inspired by Kharitonov polynomials [33, 34]. These robust control design
methods via the concept of “quadratic stability” are discussed in detail in one of the
following sections of this chapter.

A very closely related research area which heavily depends on the concept of
quadratic stability is the so-called “GCC” concept. This line of thought is motivated
by the desire to obtain acceptable stability and performance out of linear uncertain
systems in which performance is measured by a quadratic cost function such as
in an LQR problem. Of course in this procedure, mostly stability robustness is
assumed under the given uncertainty structure, and robust performance is sought
by the “guaranteed cost” concept. In some cases, both stability and performance
robustness are combined in the design algorithm with the assumption of satisfaction
(and existence of solutions) of the derived conditions through modified “Riccati”-
type equations. Perhaps, the initial papers in this line of research are those of Chang
and Peng [35], and Vinkler and Wood [36]. In [37], the authors compare several
techniques for designing linear controllers for robust stability and performance for
a class of uncertain linear systems. Among the methods considered are the standard
LQR design, the GCC method of Chang and Peng [35], and the multistep guaranteed
cost control (MGCC) of Vinkler and Wood [36]. In these methods, the weighting
on state in a quadratic cost function and the Riccati equation are modified in the
search for an appropriate controller. Also the parameter uncertainty is assumed
to enter linearly, and restrictive conditions are imposed on the bounding sets. For
example, in [35], norm inequalities on the bounding sets are given for stability, but
they are conservative since they do not take advantage of the system as well as the
uncertainty structure. There is no guarantee that a state feedback controller exists.
Later, significant new research was pioneered by Petersen, Bernstein, and Haddad
[38—40] in a series of papers. A gist of the robust control design procedure under this
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framework and its connection to the Riccati-based method for robust stabilization
are included in the section on “Quadratic Stability.”

Finally, the last line of thought in robust control design that we discuss in this
book is via the concept of robust “eigenstructure assignment.” It is no wonder that
the highly successful nominal control design methods of “eigenvalue (pole) assign-
ment” and “eigenvector assignment” were extended to linear uncertain systems. In
this line of research, considerable progress was made after realizing that in practice,
strict eigenvalue and eigenvector assignment is not needed, and thus the flexibility
obtained by relaxing this requirement was used in imparting parameter robustness
to the system via prudent design methods [41]. This line of robust control design is
discussed in a following section of this chapter.

With this “overview” in mind, we now present various robust control design
methodologies in each of these categories in separate sections of this chap-
ter, starting with methods using “perturbation bound analysis,” then methods
using “quadratic stability” concept, and then finally methods using “eigenstructure
assignment.”

4.2  Synthesis of Controllers for Robust Stability
via Perturbation Bound Analysis

As mentioned earlier, the philosophy behind the design methods presented under
this viewpoint is to make use of the perturbation bounds developed in the previous
chapters in a design formulation and give an algorithm to synthesize controllers
for robust stability. Towards this direction, a scalar quantitative measure called
“stability robustness index, Bsr,” is introduced whose positivity ensures that the
condition for robust stability is satisfied. Based on this index, design algorithms
are presented by which one can pick a controller that possesses good stability
robustness property (i.e., with as high Bsg as possible). These design procedures
are presented based on two viewpoints. Under the first viewpoint, the control law
(it can be a full state feedback or a dynamic compensator of reduced order) is
determined by first designing a controller for the nominal system as a function of a
user-introduced design parameter and then determining the corresponding “stability
robustness index Bsgr” of the closed-loop system for each of the control gains (as
a function of the design parameter) and then checking if this index is positive or
not. Eventually, the design parameter is varied until we get a controller for which
the stability robustness index is positive and satisfactorily meets any other design
specifications. In the second viewpoint, the control law is determined directly by
maximizing the stability robustness index for a given uncertainty structure, and this
is done by a parameter optimization method. Note that in the former viewpoint,
the controller gain is essentially a “nominal” control gain that possesses some
robustness margin, whereas in the latter viewpoint, the robust controller gain is a
function of the given uncertainty profile and thus may include the given uncertainty
range information in its determination. First, we present the design procedure from
the former viewpoint, and then later, we present the design procedure from the latter
viewpoint.
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4.2.1 Synthesis of Robust Controllers for Linear Systems
with Structured Uncertainty

Towards this direction, we first briefly review the upper bounds for robust
stability presented in the previous chapter for “structured” (elemental) perturbation.
Structured perturbations are those for which magnitude bounds on the individual
matrix elements are known for a given model structure.

Consider the following linear dynamic system
X(t) = A@)x(t) = [Ao + E@)]x(2), 4.1)

where x(¢) — R” is the state vector. Ay is the n x n nominally stable matrix and
E(t) is the error matrix. In the case of structured perturbation, the elements of E(¢)
are such that

Max|E;; ()| = €; and € = Maxe;; Vi, J. 4.2)
In [42], it is shown that the system (4.1) [with (4.2)] is asymptotically stable if

1

€ < —————U,;j = nU,;; 4.3)
/ 0'max(Pm Ue)s v v
or simply if
1
E<———=[ 4.4)
Umax(Pm Ue)x
forall U,;; #0,i,j =1,...,n, where P satisfies the Lyapunov matrix equation
PAo+ AJP +21,=0 (4.5)
and
Ueij = €jj /6. (46)

Note that, in the absence of explicit information on ¢;;, one can take
Ueij = €ij/€ = |Aoij|/]Aoij Imax 4.7
forall i, j for which ¢;; # 0.

Remark. From (4.2), it is seen that ¢; are the maximum modulus deviations
expected in the individual elements of the nominal matrix Ag. If we denote the
matrix A as the matrix formed with ¢;; , then clearly A is the “majorant” matrix of
the actual error matrix E(¢). It may be noted that U, is simply the matrix formed by
normalizing the elements of A (i.e., €;; with respect to the maximum of ¢;; (i.e., €)),

i.e., A = €U, (absolute variation)
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Thus €;; here are the absolute variations in Ay;; . Alternatively one can express A
in terms of percentage variations with respect to the entries of Ay;;. Then one can
write

A = §Ay,, (relative (or percentage) variation),

where Aomij = |Aoij| for all those 7, j in which variation is expected and Ag,,;; = 0
for all those i, j in which there is no variation expected and §;; are the maximum
relative variations with respect to the nominal value of Agp;; ., and § = Maxd;;.
Clearly, one can then get a bound on § for robust stability as

1
8§ < ————— where P is the same as in (4.5) (4.8)
Umax[Pm Aom]

Extension to Closed-Loop System

Consider a linear, time-invariant system described by
X = Ax 4+ Bu x(0) = xo, 4.9)

where x is n x 1 state vector and the control u is m x 1. The matrix pair (4, B)
is assumed to be completely controllable, and the controller is assumed to be a
full state feedback control law given by u = Gx. Let us also assume that this
full state feedback gain is determined via the LQR methodology with a symmetric
positive-definite state weighting matrix 0 > 0 and a symmetric positive-definite
control weighting matrix R given by R = p. Ry where Ry is a fixed matrix and the
positive scalar p, is treated as a design variable.

For this case, the nominal closed-loop system matrix is given by

— —R;'BTK
A=A+ BG,G=—""""— (4.10)
Pe
with K coming from the solution of the algebraic Riccati equation given by
R—l
KA+ ATK—KB—>B"K+Q =0 4.11)

(&

and A is asymptotically stable.

The main interest in determining G is to keep the nominal closed-loop system
stable. The reason Riccati approach is used to determine G is that it readily renders
(A + BG) asymptotically stable with the above assumption on Q and Ry. Thus
the gain G is essentially a “nominal” control gain, and it varies as a function of the
design variable p,.
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Now consider the perturbed system with linear time-varying perturbations E 4 (¢)
and Ep(t), respectively, in matrices 4 and B, ie., X = [A + E5()]x() +
[B + Eg(1)]u(t)

Let AA and AB be the perturbation matrices formed by the maximum modulus
deviations expected in the individual elements of matrices A and B, respectively.
Then one can write

AA =¢,U,,
AB = ¢,U,p,

where ¢, is the maximum of all the elements in AA and ¢, is the maximum of
all elements in AB. Then the total absolute perturbation in the linear closed-loop
system matrix with nominal control ¥ = Gx is given by

A= AA+ ABG,, = €,Usq + €,UsbGy. (4.12)

Here (.),, denotes the matrix with all its elements being absolute values. Assuming
the ratio €,/€, = € is known, we can extend the above analysis to the closed-loop
situation of the linear state feedback control system and obtain the following design
observation.

Design Observation 1

The perturbed linear system is stable for all perturbations bounded by €, and €, if

1
€ < = 4.13
“ Omax [Pm(Uea + EUeme)]s a ( )
and
€y, <€u  where (4.14)
P(A+ BG)+ (A+ BG)"P +21I, = 0. (4.15)
Alternately, we can write
AA = 6,4,
AB = §,B,,,
where A,;; = |A;j| and By;; = |B;;| for all those i, j in which variation is

expected and A,,;; = 0, B,,;; = 0 for all those i, j in which there is no variation
expected. For this situation, assuming §,/8, = & is known, we get the following
bound on §, for robust stability.

Design Observation 2

The perturbed linear system is stable for all relative (or percentage) perturbations
bounded by §, and §; if
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1
0'max[Pm (Am + By Gm)]S -

8a < y. (4.16)

Stability Robustness Index and Design Algorithm

We now define, as a measure of stability robustness, an index called “stability
robustness index Bsg” as follows:

Case A: € is known. In this case, we are checking the robust stability for a given
perturbation range. For this case

BsrR = 4 — €,. 4.17)

Case B: € is not known. In this case we are simply specifying a bound for robust
stability. For this case, we simply take Bsg = u.

It is clear that Bsg is a function of the design variable p., which in turn determines
the control gain G. In order to plot the relationship between Bsg and the control gain
G, we need a scalar measure of the gain G denoting “nominal control effort.” For
this, we can use

Jen = 0'maX(G)-

Another measure of control effort could be taken as | f0°° uludt])'/?.

The variation of Bsg with the nominal control effort J., is very much dependent
on the perturbation matrices and on the behavior of the Lyapunov solution, which
are difficult to predict analytically a priori. Assuming stability robustness is the only
design objective, the design algorithm basically consists of picking a control gain
that maximizes the index Bgsg. Specifically, the algorithm involves determining the
index fsg and J,, for each of the values of the design variable p, and plotting
Bsr vs J., and picking that gain which gives the highest Ssr. The algorithm thus
provides a simple, nominal constant gain feedback control law that is robust from
the stability point of view. The algorithm, for given perturbations, can be used
for selecting the range of control efforts for which the system possesses stability
robustness or alternatively, for given control effort, can be used to determine the
range of allowable perturbations for stability.

The application of this robust control design procedure for various flight control
problems is illustrated in [5], and these details are discussed in this book in a later
chapter on “Applications.”

4.2.2 Robust Control Design by Maximizing the Stability
Robustness Index via Parameter Optimization

In the previous section, efforts were directed to design a linear full state feedback
controller for robust stability. However, in that treatment, the control gain determina-
tion does not directly involve the stability robustness criterion as a design constraint.
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Instead, for a predetermined linear control gain (obtained by many different nominal
methods), the perturbation bound is calculated, and in the cases where the parameter
perturbation ranges are given, the stability robustness condition is checked (for
robust stability). Even though the bound p;; utilizes the structural information of
the uncertainty, this design procedure does not utilize the structural information U,
in the determination of the control gain G. In this section, we attempt to solve the
problem of control design for robust stabilization in a more direct and general way
by formulating it as a parameter optimization problem. Instead of designing the
control gains by nominal means and then checking its stability robustness bounds,
in this procedure, we include the stability robustness condition explicitly in the
design procedure as a performance measure. In this way it is possible to exploit
(in principle) the uncertainty structure U, in the design procedure.

Augmented Performance Index Specification

An optimization problem to maximize the stability robustness bound p can be posed
as follows. (For simplicity let us consider the case AB = 0.)
Minimize J; = Opmax (P Ueq)s (i-€., maximize @) w.r.t. G subject to constraints

P(A+ BG)+ (A+BG)"P +21,=0 (4.18)

and
Rel;(A) = Red; (4 + BG) < 0, (4.19)
where 1 = Gx. We now append the above stability robustness measure to the

standard quadratic performance index in state x and control u. Thus the new
performance index is then given by

_ 1T [
J1 = Omax(PuUea)s + §|:/ ()CTQX + MTRM) dli|,
0

1
= Gmax(Pm Uea)s + ETrace(KXo) (4.20)

R =p.Ry and Q > 0where K satisfies the Lyapunov equation
K(A+BG)+ (A+BG)"K+GT'RG+0 =0 4.21)

and
Xo = xox{ . (4.22)

The optimization problem then is as follows: Find G such that the performance
index

_ 1
Ji = [Gmax(PmUea).v + 5 TI‘aCC(KX())] (4.23)

is minimized subject to constraints
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P(A+ BG)+ (A+BG)'P+2I,=0 (4.24)
K(A4+ BG)+ (A+ BG)K+G'RG+0 =0 (4.25)

and
Rel; (A + BG) < 0. (4.26)

Modified Performance Index

Note that the above performance index J| contains a term involving the maximum
singular value as well as a positive matrix P,,. Even though there are algorithms to
optimize o,y (.), optimization of an index like the one posed is a formidable task as
it is computationally very complex. Hence we intend to modify the performance
index such that it becomes more tractable. Noting that the Frobenius form of a
matrix is always an upper bound on the spectral norm of the matrix, i.e.,

(”()”)F > Omax (s 4.27)

and that
Omax (-) > Omax()s- (4.28)

We propose the following upper bound J,, to be minimized instead of oax (P Ueq)s-

Proposition 4.1.
1
J, = ETrace(P WPT + PTWP) > o2 (PnU.);. (4.29)
The diagonal weighting matrix W is such that W;; = 0 whenever Ug;; (j =

1,2,...,n) = 0 for a given row i and W;; = w;; whenever Ug;; (j = 1,2,...,n)
# 0 for a given row i and a given column j. Even though the specification of w;; is
crucial in establishing the upper bound property of J, as in (4.29), it turns out that
it is possible to specify the w;; > 0 as arbitrary and transfer its implication in the
design to another design variable, namely, p., the weighting on the control variable.

Remark. One limitation of specifying the W matrix as above is that it reflects the
uncertainty structure (U, ) only partially in the sense that w;; (i.e., the same diagonal
entry) irrespective of whether there are uncertain elements present in different jth
locations or only in one jth location. However, for those uncertainty structures U,
which make U, UeT diagonal, we can replace

W =aU, UeT (diagonal) (« is a scalar > 0)
which then amounts to utilizing the structure of the uncertainty completely and «

acts as a weighting parameter. The forms of U, which render U,U/] diagonal are
given by:
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Case (a):  Variations in one row

Case (b):  Variations in diagonal elements

Case (c):  Variations in antidiagonal elements

Case (d): No two varying elements are in the same column

In fact, case (a), (b), and (c) are special cases of case (d).

We are now in a position to state the problem of finding the “optimal” state feedback
gain G for robust stability as follows:

Minimize
J = %Trace [PWPT + PTWP] + %Trace(KXo) (4.30)
w.rt. G
subject to
K(A+BG)+ (A+BG)"K+GT'RG+0 =0 4.31)
Rel; (A + BG) < 0. (4.32)

Solution by Parameter Optimization

We approach the solution to the above nonlinear (quadratic performance index)
programming problem by writing down necessary conditions and investigating the
solutions which satisfy them. Using the technique of Lagrange multipliers, we
transform the above constrained optimization problem by defining the Hamiltonian.
Thus we minimize H where H is the Hamiltonian given by

1 o
H = Trace; {PTWP L PWPT + KXo+ L{(PA+A P +21,)
+L,(KA+A4 K +GTRG + Q)} : (4.33)

where L; and L, are the Lagrange multiplier matrices corresponding to the two
matrix constraints. The first-order necessary conditions are given by

0H
o= A+ BG)' P+ P(A+ BG) +2I,=0 (4.34)
1
0H T T
E:(/1+13c;)P+I<(A+BG)+G RG+0=0 (4.35)
2
0H T T
— =(A+BG)L] +LT(A+ BG)+ PW + WP =0 (4.36)

P
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OH
o = (A BG)LY + LT(A+BG)T +xl =0 (4.37)

OH
G = 2BT(PL, + KL>) + 2RGL, = 0. (4.38)

In arriving at these conditions, the matrix derivative identities given in [43] are
used. One can determine the gain G by simultaneously solving for the above set
of equations, starting with an initial guess Gy. Guidelines for obtaining solutions to
the above type of equations are given in [43].

Remark. Note that when the stability robustness constraint is absent (which is the
case by making W = 0), the above problem formulation reduces to the standard
LQR problem, and the equations yield the standard Riccati equation for the optimal
control gain G. However, with stability robustness constraint present, the gain G is
seen to be a function of the initial condition matrix Xy. As pointed out in [43], this
dependence of the controller on the initial condition can be removed by treating X
to be a random vector with zero mean and uniformly distributed over a sphere of unit
radius thereby considering the worst-case situation. Accordingly, we can modify the
performance index as

1 1
J = 5Trace[P wPT + PTWP] + ETraceK , (4.39)

where it is assumed that X = E (xoxOT ) = I, (with E being the expectation
operator).
Accordingly one of the necessary conditions (4.37) changes to

(A+BG)LY + LY (A+BG) +1,=0 (4.40)
which then allows us to express the “optimal” control given G explicitly as
G =—-R'BT(PL, + KLy)L3". (4.41)

Extension to Observer-Based Feedback Controller
It may be noted that the above procedure can be readily extended to the case of
observer-based feedback controller, with the system description given by

x=[A+ Es0)x() + [B + Ep(®)]u(t) (4.42)

z=[M + En(D)]x (@), (4.43)

where z is the [-vector of measurements and E 4, Ep, E,, are the “perturbations”
in the nominal matrices A, B, and M. In this connection a few remarks about
the paper by [44] are in order. The problem formulation of designing an observer-
based feedback controller in this paper is similar in spirit to that of [44]. However,
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in that paper no explicit bounds on the individual elements of the perturbation
are incorporated as it is done here, and there are some restrictions placed on the
uncertainty structure to fit it into their proposed problem formulation (such as
orthogonally of the uncertainty matrices, only a single uncertain parameter being
allowed in Ep). The major contribution of the above result (presented in [4]) that
is significantly different from that of [44] is the exploitation of the uncertainty
structure in obtaining the stability robustness bounds as explained before, and this in
turn results in the consideration of two separate Lyapunov equations in the problem
formulation as opposed to only one Lyapunov equation considered in [44].
The observer structure is the standard Luenberger observer with

g =FB+ Hu+ Dz, (4.44)

where B is the estimate of x and the matrices F, D, and H satisfy the observer
conditions

SA— DM =FS (4.45)
H =SB (4.46)
For an appropriate transformation matrix .S, the control is given by
u=Gg

For brevity, the details of the problem formulation, which follows the develop-
ment given in previous sections, are not given here.

Example. Consider a simple second-order linear time-invariant system given by

. |0 1 0
x—[a _0.5i|x+|:1i|u 4.47)

where a is the uncertain parameter with nominal value @ = 1. Notice that

Uew = |:(1) 8:| , we select W = aU, U] = [8 2:| .
It may be noted that the robustness weighting matrix W incorporates the uncertainty
structure (that only a,; element is varying) in an explicit way.

Now let Q = I, R = pRy with p as a design variable. Note that the design
with a nonzero positive scalar o gives a robust controller and ¢ = 0 gives a nominal
control gain. Taking @ = 1, we carry out the computation of the “optimal” control
gain G by following the proposed procedure.

The comparison of “robust state feedback control law by parameter optimization
(PO) method” vs the “nominal state feedback control law” is done by plotting the
perturbation bound 11, against the nominal control effort in [4]. This comparison is
illustrated in Fig. 4.1. In this plot the control effort is taken as J,,, = ( fooo ulu dt)l/ 2,
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Fig. 4.1 Perturbation bound
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As anticipated, for a given control effort, the robust control law yields a higher
perturbation bound p; than the nominal control law, indicating the usefulness of the
proposed optimization procedure. Also since in this case “the matching condition”
is satisfied, it is seen that the higher the control effort, the bigger the perturbation
bound.

Extension of this control design procedure with dynamic compensators is
presented in [45]. Similarly “robustifying control design” for various sets of
uncertainty profiles is discussed in detail in [6]. This type of perturbation bound
analysis was used in a design setting, albeit with a different method of robust
stability analysis, in [18].

4.2.3 Robust Control Design for D-Stability (Robust Root
Clustering)

In the above line of thought, it is clear that the analysis for robust root clustering
of matrices presented in the previous chapter can be used to design controllers
for performance robustness. This was done in [46]. Here we briefly review that
content. As motivation for this issue, recall that, in aircraft control design problems,
performance is dictated by the location of the poles of the closed-loop system. For
continuous-time systems, the root clustering regions are essentially located in the
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left half of the complex plane, symmetric with respect to the real axis. The nominal
design is such that the controller assigns the closed-loop eigenvalues to lie inside
a given such region. Since explicit bounds such as those given in the previous
chapter are available for region of degree 2, the idea is to approximate (may be
by enveloping) any desired pole location region by a region of degree 2 (ellipse,
or circle). Suppose we assume that the desired root clustering region in a given
application can be approximated by a circle with center at 8 and desired radius r,.
Note that it is not difficult to form the Kronecker-based matrices involved in the
analysis for other regions of degree 2, and the computational complexity remains
essentially the same. This is in contrast to the Lyapunov-based analysis considered
before, where a circular region is preferred from the availability of Lyapunov
solution software as one needs to form and solve a generalized Lyapunov equation
for this purpose. In the control design for robust root clustering, the designer has
two parameters to work with. One is the root clustering region radius r, (which
could be different from r; because ry is a given quantity whereas r, can be used
as design parameter), and the other is the measure of parameter perturbation. In the
case of unstructured uncertainty, this measure of parameter perturbation range, of
course, is the radius r, of the unstructured uncertainty sphere in the parameter space,
whereas for structured uncertainty it is the interval range in the parameter space. For
clarity in exposition, let us consider the unstructured uncertainty case. In a design
situation, one can either assume the parameter space radius r, is given and then
design a controller to make r, as close to r4 as possible (i.e., minimize r. — rg > 0)
or, conversely, assume r. = ry is given and attempt to design a controller that
maximizes r,. In this discussion, we address the latter issue.
Consider a linear time-invariant system described by

X = Aox + Bou, x(0) = xo. (4.48)
Let us assume that the controller is a full state feedback, i.e.,
u=Gx
so that the closed-loop system is
X = (Ao + BoG)x, x(0) = xo.

It is assumed that the control gain G is such that it achieves D-stability for the
nominal closed-loop system matrix A = Ay 4+ ByG.

Let E, be the perturbation in the closed-loop system matrix.

Then the perturbed closed-loop system matrix is given by

Apu = AO + BOG + Ea.

Then from the results of the previous chapter, we observe the following:

Observation: The perturbed system matrix Zp,, is D-stable where the D-region is
a circle with center at 8 and radius r, = ry, if



116 4 Robust Control Design for Linear Uncertain State Space Systems

Omax(Ea) < Uap = p,

where the expression for (1,5 is given in Chap. 3.
A similar observation can be made with the bound o .

Clearly it can be seen that bound w; is a function of control gain. In order
to plot the variation of r,(u2,) with the control gain G, we need a scalar measure
of G. For this we use

Jen = Omax (G),

where J., denotes the norm of the control gain.

The design algorithm then is to determine o, = 7, as function of the control
gain G and plot the curves of 7, vs J., and pick that G which gives the maximumr,.
If omax (E,) is known then we select the gain such that (1o — Omax (E 4)) is positive
and maximum.

We now illustrate this design procedure by applying it to an aircraft ride quality
control design problem.

Example. Consider the following short-period dynamics of a hypothetical aircraft
(similar in characteristics to F16) at the flight condition (M = 1, altitude =
30,000 ft):

xT = [a:q] and u=>=:

~1.1969 2.0
Ay =
2.4763 —0.8581

Bo = —0.1149
—14.1249

which has eigenvalues at 0.5552 and —2.6102 and is thus open loop unstable.

Case 1: In this case the desired pole placement region for this flight condition is
assumed to be a circular region in the complex plane with center at § = —4.4
and radius r, = 4.0.

Assuming full state feedback control, a series of control gain matrices (each
gain matrix is quantified by its special norm, 0,5 (G) are determined which place
the nominal closed-loop eigenvalues within the given region. Then for each of
these control gain matrices, the tolerable perturbation radius in the parameter
space is calculated using the bound formulas given in Chap. 3, which correspond
to the Kronecker method and bialternate method, respectively. The bound is also
calculated using the formula using Lyapunov method. A plot of these bounds as
a function of these control gain norms shows that there is one control gain which
tolerates the highest parameter range for robust root clustering. From the plot the
gain corresponding to the norm 0.244 seems to possess the highest bound. The
values of these bounds are
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U2 = 0.40206
Mok = 0.41024
Wap = 0.41078.

Case 2: In this case the desired pole placement region is approximated by an
ellipse with center at 8 = —4.4 and a semiminor axis of @ = 4.3 and a semimajor
axis of b = 5.0. The bounds 1y, and iy as a function of the norm of the control
gains are computed and plotted. From that plot, the robust control gain (within the
class of control gains computed) turns out to be the one with its norm computed
as in case 1, but this time the perturbation bounds are

Hor = 0.6197
Map = 0.6204.

Corresponding to this norm the robust control gain matrix is

G = [-0.2429 — 0.0292]

and the corresponding nominal closed-loop system eigenvalues are —1.2474 +
70.9752 which of course lie within the given desired region. In addition to
this, it is to be noted that for all perturbed closed-loop system matrices whose
perturbation matrix norms are less than the above bounds, we can guarantee the
eigenvalues of all these perturbed matrices also lie within the given regions.

Note that the controller is a full state feedback and is designed based on
nominal means and out of this the best controller is selected such that it
maximizes the perturbation bounds for robust root clustering. Alternatively one
can design controller gains directly using parameter optimization methods by
incorporating the bound in the performance objective as is done in the above for
robust stabilization.

4.3  Robust Control Design for Linear Uncertain Systems
Using Quadratic Stability Approach

In this section, we address the problem of stabilizing an uncertain linear system via
the “quadratic stability” concept. We begin by considering the following uncertain
dynamic system:

%(t) = [A + AAQ)x (1) + [B + AB(Q)]u(t) + Cv(7) v(t)eV,vC R,
(4.49)

where x(¢) € R”" is the state, u(¢) € R™ is the control, A, B, C are known constant
matrices, v(?) is the external disturbance, and ¢(t) is the time-varying, uncertain
parameter vector which is restricted to the prescribed bounding set Q. Note that the
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uncertainty ¢ (-) which enters the dynamics is nonstatistical in nature. That is, no a
priori statistics for g(-) are assumed; only bounds Q on the admissible variations
of g(-) are taken as given. The theory given here only requires compactness of the
bounding set Q. We also start with the following assumptions:

Al. (A, B) is a controllable pair.

A2. The matrices depend continuously on their arguments.

A3. The uncertainty is Lebesgue measurable.

A4. The bounding set Q is compact.

Definition. The system (4.49) (assuming external disturbances are absent) is said to
be quadratically stabilizable if there exists a continuous function p(-) : R* — R™,
with p(0) = 0, an nxn positive-definite symmetric matrix P, and a constant & > 0
such that the following condition is satisfied: Given any admissible uncertainties
as above, for the Lyapunov function V(x) = x” Px, the Lyapunov derivative
L(x,t), corresponding to the closed-loop system with the feedback control law
u(t) = p(x(t)), satisfies the inequality

dv

L(x, l):?=xT[(A—l—AA)]TP+P(A—i—AA)x—}-ZxTP[B—}-AB]p(x) < —a|x|?
(4.50)

for all pairs (x,7) € R" x R.

Based on this “quadratic stability” concept, significant research on stabilization of

linear uncertain systems with time-varying real parameter uncertainty was carried

out in the 1970s and 1980s, perhaps starting with the pioneering work by Leitmann.

In that research, [9-12], they also considered not only quadratic stability but also

the concept of ultimate boundedness control. For brevity and imparting focus to the

problem at hand, in this book, we review the literature on methods using quadratic

stability. Towards this direction, in [9, 11], in addition to the above assumptions, the

following conditions, labeled “matching conditions (MC),” are introduced.

Matching Conditions A5. There exist continuous matrix functions
DA :0 - R"™and E(): Q — R™"

such that

AA(q) = BD(q), Vq € Q,
AB(q) = BE(q), VYq€Q,
IE@I <1, Vqe0,

where the norm of a matrix (-) is taken as

1O 2 A2l ()T O]
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and A« (+) denotes the operation of taking the largest eigenvalue.
A6. Rank B = m < n. This assumption is made without loss of generality, since
redundant inputs can always be eliminated.

Remark. The matrices AA(gq) and AB(q) might each depend on different compo-
nents of ¢; that is, we might have

g =[r.s].

where AA(-) depends solely on r and AB(:) on s. We also note that the results to
follow will hold if the condition

A B(Ew) + E’(q»} -1, VYgeQ

replaces A5(iii) above. Both of these conditions have appeared in the guaranteed
stability and ultimate boundedness literature.

In essence, these matching conditions constrain the manner in which the uncertainty
is permitted to enter into the dynamics.

With the above conditions imposed, Leitmann addressed the issue of designing
a robust controller for stabilizing the above uncertain system using the concepts of
quadratic stability and ultimate boundedness [9-11]. It turns out that the resulting
controller happens to be nonlinear and even discontinuous. Thus efforts were
expended to look for linear, continuous controllers. Henceforth, in an effort to
determine controllers with guaranteed stability, we consider the above uncertain
system with no external disturbance. The purpose of this section is to examine the
relationship between these matching conditions and the stabilization of uncertain
systems which are nominally linear and time invariant in the absence of external
disturbances. This problem was thoroughly addressed in a series of papers by
Barmish and colleagues [7, 8, 13] which are now reviewed with their salient points.

The first main result of this section is to show that, if the matching conditions,
described above, are imposed on a linear time-invariant system, the stabilizing linear
feedback gain always exists. Larger bounding sets produce larger feedback gains, of
course, but the existence of a stabilizing feedback gain is guaranteed and is shown
to depend only on the system’s structure.

The paper [13] also motivates a means of generalizing the so-called matching
conditions mentioned above. It introduces a set of “generalized matching condi-
tions” which, for nominally linear time-invariant systems, enables one to extend the
class as uncertainties beyond those that satisfy matching conditions. As with the
original matching conditions, the existence of a stabilizing linear feedback gain is
guaranteed no matter how large the given bound on the uncertainty. The generalized
matching conditions also extend the class of linear feedback gains guaranteed no
matter how large the given bound on the uncertainty. The generalized matching
conditions also extend the class of linear systems to which the nonlinear control
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laws of [9, 11] apply. The key difference between the approach taken here and
that in [9, 11] is the selection of a Lyapunov function which extends the class of
systems. In [9,11] any Lyapunov function for the nominal system is used, while here
a specific quadratic Lyapunov function is constructed. The choice of this Lyapunov
function is dictated in part by the manner in which the uncertainty enters the system.

We now briefly state the main design algorithm of [13].

Construction of a Guaranteed Stability Controller

Step 1:  Construct a matrix K, such that A = A + BK, is asymptotically stable.
This is always possible by assumption Al.
Step 2:  Let T be any n x n square matrix such that 7B has the block structure

0
w-[2)

where I,,, denotes the identity matrix of dimension m.
Step 3:  Form the matrices

FATAT™, AF(q) 2 T(AA(q) + AB(q)K,)T ™" 4.51)

G 2 TB, AG(q) 2 TAB(q), S=T1P'T (4.52)

and the matrix
M(q) = [F + AF(q)]S + S[F + AF(¢)'], and partition it into four blocks,
with My;, My», M{,, and M>, denoting those blocks. Note that by the nature of
proposed algorithm, the M;; block is independent of ¢.

Step 4:  Select a real scalar y < 0 such that

‘aneaQX Amax[M22(q) — M{z(Q)MﬁlMIZ(Q)]‘

2(1 - rqneannE(q)u)

Note that the denominator is strictly positive. The existence of such a maximizer
is assured, because E(.) is continuous and Q is compact.
Step 5:  The desired feedback matrix is now given by

y<— (4.53)

K2 K, +y[01,(T"")YP =yB'P =K, + K. (4.54)

The following theorem tells us that guaranteed stability is possible using purely
linear feedback, using the above algorithm.
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Theorem 4.1. Consider the uncertain linear system (4.49) (without the external
disturbance) and with control

ut) £ Kx(1),

where K is generated via the procedure outlined in steps 1 through 5 above. Then,
for any admissible uncertainty q(-), the origin x = 0 is uniformly asymptotically
stable.

Example. To illustrate the preceding theory, we consider the uncertain dynamic
system having state equations

X1(t) = x2(1)
X2(1) = [gq1 (1) = 2]x1 (1) + [g2(1) + 1]x2(0) + u(r)
with uncertainty bounded by

—1<qit) <1 —1<—q(t) <15

This system was used for comparison purposes in [37]. With

AA(q)é[O 0}

q1 42

we observe that the matching conditions A1-AS are satisfied. We now proceed to
construct, through steps 1 through 5 described above, a stabilizing linear feedback
controller.

Step1 Choosing Ky = [1/2,—5/2], we generate

4= [—:?/2 —31/2}

which is indeed a stability matrix. We also choose

_[4/31/3
P= [1/3 1/3}

satisfying the Lyapunov equation

with

Q= [—11/3 _11//33}
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Steps2and 3 Taking T = I, we apply the formulas of step 3 and generate

= 0 1 00 0 0
] aro=n o] o=[]) ew=[]]
1 -1 -2 d+q1—q) }
S = , M(g) =
|:_1 4:| @ [(4 +q1—q2) (=9 —2q1 + 8¢2)
Step4  Using the entries M;;(q) of M(q), the requirement for selecting y is

1 1 )
Y <—=|max{[-9—-2q1 + 8¢ + z[4+q1 —q2] ¢ |-
2 |q€0 2

Squaring and collecting terms, we have

!
y=73

1
max { (1 +2q1 + 492+ =[q1 — 6]2]2}
q€Q 2
The maximum with respect to q is seen to be achieved at

gi=1 g=15

and yields
y < —3.50625.

Step 5  Choosing
y = —3.51,

the desired feedback matrix is given by

K =[1/2-5/2]+ (v/3)]0, 1] [‘1‘ ﬂ

= [-0.67, =3.67] = —[K11, K1].

The feedback gain compares rather well with the eight designs given in [37]. The
gain K, is somewhat larger than most of the designs, but the gain K, is smaller
than all but two of the seven acceptable solutions. Hence, for systems satisfying the
matching conditions, the only real computational effort is the maximization over ¢
in step 4. Most importantly, a solution is guaranteed to exist before the design is
initiated. Such a guarantee cannot be given for the design procedures described in
[37]. The particular values of the gains obtained in this example are, of course, a
function of the choice of P in step 1. Larger (and smaller) values of the gains are
obtained for different choice of P.
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It is interesting to note that the same example discussed above was solved by
the perturbation bound analysis method by this author in [47]. In that method the
final control gain matrix turned out to be K = [—0.88 — 3.6] which also compares
favorably with the other gains. Another method which solves the same problem by
judicious modification of the forcing function weighting matrix Q in the standard
algebraic Riccati equation of LQR problem was presented in [18] in which the
control gain turned out to be K = [—0.569 — 3.437]. It is clear that satisfaction
of matching conditions affords the control designer many avenues for determining
the control gains.

For a more detailed discussion on generalized matching conditions, the reader is
referred to [13].

Now, we turn our attention to robust control schemes under the unstructured (or
semi-structured) “norm-bounded” uncertainties.

4.3.1 Robust Stabilization of Linear Systems with Norm-Bounded
Time-Varying Uncertainty

In this section, robust stabilization of a class of linear systems with norm-bounded
time-varying uncertainties as presented in [21] is considered. It is shown that for this
class of uncertain systems, quadratic stabilizability via linear control is equivalent
to the existence of a positive-definite symmetric matrix solution to a (parameter-
dependent) Riccati equation. Also, a construction for the stabilizing feedback law is
given in terms of the solution to the Riccati equation. Since these results started a
new direction based on the Riccati equation approach, we now briefly review those
results.

Recall that in [15], Barmish has obtained necessary and sufficient conditions for
quadratic stabilizability for linear systems with time-varying uncertainties. However
these conditions are rather difficult to check, and, in general, a nonlinear control law
is required. Some sufficient conditions that are easy to check have been derived
recently. (See, e.g., [48, 49] and references therein.) Petersen (see [21, 50]) has
obtained necessary and sufficient conditions for the quadratic stabilizability of
uncertain linear systems with norm-bounded time-varying uncertainties which are
confined to either only the input matrix or only the state matrix but sufficient
conditions when uncertainties enter into all system matrices.

A Stabilization Algorithm for a Class of Uncertain Linear Systems
Using Riccati Equation Approach

System and Definitions: We consider uncertain linear systems described by state
equations of the form

%(t) = (A+ DF()E)x(t) + Bu(t), F()TF(@t) <1, (4.55)

where x(¢) € R” is the state, u(¢) € R™ is the control, and F(¢) € R”*? is a matrix
of uncertain parameters.
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In order to stabilize the uncertain system (4.55), we use a linear control law of
the form u(#) = Kx(¢). The stability of the resulting closed-loop system will be
established using a quadratic Lyapunov function. This leads us to the following
definition.

Definition. The uncertain linear system (4.55) is said to be quadratically stabiliz-
able if there exists a linear feedback control law u(t) = Kx(t), a positive-definite
symmetric matrix P € R™", and a constant « > 0 such that the following
condition holds: Given any admissible uncertainty F(-), the Lyapunov derivative
corresponding to the resulting closed-loop system and the Lyapunov function
V(x) = x' Px satisfies the bound

L(x.t) 2 xT[AT P + PAlx + 2x" PDF(t)Ex + 2x” PBKx < —a||x|* (4.56)

for all pairs (x,¢) € R" x R. In this inequality, || - || will refer to the standard
Euclidean norm. Furthermore given a k x k matrix M, Ayn[M] denotes the
minimum eigenvalue of the matrix M.

The Stabilization Algorithm: In this section, we describe their procedure for
stabilizing an uncertain linear system (4.55). The following two theorems underlie
their stabilization algorithm.

Theorem 4.2. Let Q € R""and R € R™™ be given positive-definite symmetric
weighting matrices, and suppose there exists a constant ¢ > 0 such that the Riccati
equation

1
ATP + PA— PBR'BTP +¢PDDT"P + —-ETE4+ Q0 =0 4.57)
&

has a positive-definite symmetric solution P. Then the uncertain system (4.55) is

quadratically stabilizable. Furthermore, a suitable stabilizing control law is given
byu(t) = —R7'BTPx(¢).

Theorem 4.3. Let Q € R™" and R € R™™ be given positive-definite symmetric
matrices, and suppose that there exists a constant ¢ > 0 such that Riccati equation
(4.57) has a positive-definite solution. Then given any p()sztzve definite symmetric
matrices Q € R™" and R € R™™ there exists a constant €* > 0 such that the
following condition holds: Given any & € (0, £*], the Riccati equation

~ 1 ~
A"P + PA—PBR'B"P +EPDD"P + -ETE+ Q=0 (4.58)
&

has a positive-definite symmetric solution P.
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Remarks. It follows from Theorem 4.3 that the success or failure of this algorithm
is independent of the choice of weighting matrices Q and R. If the algorithm
succeeds, we conclude that the uncertain system (4.55) is quadratically stabilizable.
The required stabilizing control law can be constructed as in Theorem 4.2. In the
following theorem, we show that if the algorithm fails, we can conclude that the
given uncertain system is not quadratically stabilizable.

Theorem 4.4. Suppose that the system (4.55) is quadratically stabilizable and let
0 € R and R € R™™ be given positive-definite symmetric weighting matrices.
Then there exists a constant £* > 0 such that the Riccati equation

1
ATP 4+ PA—PBR'B"P +¢PDD"P + —-ETE+Q =0 (4.59)
e
has a positive-definite symmetric solution P for all ¢ € (0, &*].
Using the above theorems we obtain the following corollary.

Corollary 4.1. The stabilization algorithm described above will succeed (provided
&o is sufficiently small) if and only if the uncertain system (4.55) is quadratically
stabilizable.

Observation: Recalling our previous observation, we note that the proof
of Theorem4.4 remains valid if we restrict the uncertainty F(-) so that
F(t)T F(t) = I. Hence, the uncertain linear system

%(t) = (A+ DF(t)E)x(t) + Bu(t), Ft)"'F@t) =1,
is quadratically stabilizable if and only if the stabilization algorithm described above

succeeds.

Overbounding of Uncertain Linear Systems

The stabilization algorithm described in the previous section applies only to
uncertain systems of the form (4.55). In order to apply our algorithm to uncertain
linear systems which are not of the form, we introduce a notion of overbounding.
Consider two uncertain linear systems described by the state equations

X(t) = Ai(q(@)x (1) + Bu(r), q(t) € Q1. (4.60)
X(t) = Ai(q(®)x (1) + Bu(r), q(t) € 0o, (4.61)

It is assumed that the matrix functions A4;(-), A,(-) are continuous and the sets Q;
and Q, are assumed to be compact sets in R¥.

Definition. The uncertain linear system (4.61) is said to overbound the uncertain
linear system (4.60) if
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Ai(q) g € Q1 C A2(q) 1 q € Qo.

In light of this definition, it follows immediately that if the uncertain system (4.61)
is stabilizable, then the uncertain linear system (4.60) will also be stabilizable. Fur-
thermore, the stabilizing feedback control law for (4.61) will also stabilize (4.60).
We now consider a specific class of uncertain linear systems in which the uncertainty
is of the “rank-1” type. That is, we consider uncertain linear systems described by
state equations of the form

X(t) =

k
A+ Zdiefri(t)} x(t) + Bu(t), |ri()| <1 fori =1,2,... k.
i=1

(4.62)
In this state equation, d;, ¢; are vectors R”, and hence the matrix d; eiT is of rank 1.
We now investigate the overbounding of (4.62) by an uncertain linear system of the
form (4.55). This will enable us to apply our stabilization algorithm to uncertain
linear systems with rank-1 uncertainty.

Theorem 4.5. Consider the uncertain linear system (4.62) and let

DE[didy...d]. E&[erer...er] . (4.63)

Then, the corresponding system (4.55) overbounds the system (4.62).

Remarks. In light of the above theorem, we can see that our stabilization algorithm
provides a sufficient condition for the quadratic stabilizability of the system (4.62).
This sufficient condition for the quadratic stabilizability of (4.62) is identical to the
sufficient condition given in [14]. Thus, the result of [ 14] can be regarded as a special
case of our results.

Later, Zhou and Khargonekar [22] consider systems with uncertainties entering into
both the state matrix and the input matrix. However, as in [21, 50], they restrict
their attention to systems with norm-bounded time-varying uncertainties. They show
that quadratic stabilizability via linear control for this class of uncertain systems
is equivalent to the existence of a positive-definite symmetric matrix solution to a
parameter-dependent Riccati equation. Their result is thus a generalization of the
results of Petersen in [21, 50]. Because of its important message, we review those
results in [22] here.

Uncertain Systems

Consider the class of uncertain dynamic systems described by the following vector
differential equation:

‘(11_’[‘ = [A 4+ AAlx(r) + [B + ABJu(r) (4.642)
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[AA AB] = DF(t)E, (4.64b)

where x(t) € R” is the state; u(t) € R™ is the control; A, B, D, E are known
constant matrices; and F(t) € F C R”*? is the modeling or parameter uncertainty.
The set F is defined as follows: F = F(t) : FT(t)F(t) = I; the elements of
F(¢) are Lebesgue measurable. (Note that the above matrix inequalities are in the
standard sense for symmetric matrices. Thatis, K < L if L — K > 0. This notation
is used throughout this paper.) We consider stabilization of such systems by state
feedback using Lyapunov stability theory. In particular, we consider the case where
the Lyapunov function is a quadratic Lyapunov function. The following definition
is from [15]:

Definition. The system (4.64) is said to be quadratically stabilizable if there exists
a continuous function p(-) : R" — R”, with p(0) = 0; an n x n positive-definite
symmetric matrix P; and a constant ¢ > 0 such that the following condition is
satisfied: Given any admissible uncertainties F(t) € F C RP*4, for the Lyapunov
function V(x) = x Px, the Lyapunov derivative L(x,t), corresponding to the
closed-loop system with the feedback control law u(t) = p(x(t)), satisfies the
inequality

dv
L(x,t):E:xT[(A—i—AA)]TP—}-P(A—i—AA)x—}-ZxTP[B—i-AB]p(x) < —afx|?
(4.65)
for all pairs (x,7) € R" x R.

Further, system (4.64) is said to be quadratically stabilizable via linear control if
system (4.64) is quadratically stabilizable and the stabilizing control law can be
chosen to be in the form u = Kx, where K is an m X n real constant matrix. As
is well known, if the above inequality (4.65) holds, it follows that the closed-loop
system is uniformly asymptotically stable at the equilibrium point x = 0, for any
given admissible uncertainties.

It has been shown in the literature [20, 51] that difficulty arises whenever the
system has uncertainties in both state matrix and input matrix. However, this can be
avoided by introducing additional dynamics as follows:

c(li—);=(A+AA)x+(B+AB)u,z=u,$=v or
LN (AB)(«x AAAB) (x 0
(£)-(60) () (5 ) )= (7)n o
[AAAB] = DF()E, FT(t1)F(t) < I. (4.66b)

Remark. The above idea of introducing additional dynamics to get a simple form for
the B matrix is not new, see, e.g., [14, 15]. It corresponds to dynamic state feedback
in contrast to static state feedback. Clearly, system (4.66) is much easier to deal with
than (4.64) since (4.66) has only state matrix uncertainty.
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Main Result [22]

Theorem 4.6. Let R, and Q. be any given positive-definite symmetric matrices.
Then system (4.66) is quadratically stabilizable via linear control if and only if
there exists a constant € > 0 such that the following Riccati-like equation

1
Ar'p, + P.A.— P.B.R;'B! P, + ¢P,D. D! P, + ;EQTEG +Q.=0 (4.67)

has a positive-definite symmetric solution P,. Further, if such a solution exists then
the stabilizing control law for (4.64) can be chosen as

u(t) = S1S;'x (), (4.68)

where S|, € R"*" are submatrices of

s=pr— (S159).
S 12 522

Remark. It is shown by Petersen in [21] that if there is either no input matrix
uncertainty or no state matrix uncertainty, then the quadratic stabilizability of (4.64)
is equivalent to the quadratic stabilizability via linear control of (4.64). Further,
he also gives a construction for a stabilizing control law using certain Riccati
equations. Theorem 4.6 given above is applicable when both state and input matrix
uncertainties are present and thus generalizes the results of Petersen. It is not
clear whether the above construction of the feedback law reduces to Petersen’s
construction, in case the uncertainty is confined either only to the state or only
to the input matrix. One question in the setting of (4.64) is still unanswered. Is
quadratic stabilizability equivalent to quadratic stabilizability via linear control if
both A4 and AB are not zero? Zhou and Khargonekar believe that the answer is
positive. It should be noted that the counterexample given by Petersen in [50] is in a
different setting and is not applicable to the problem considered here. (In particular,
his counterexample does not satisfy (4.64b).)

4.3.2 Using Guaranteed Cost Control Approach
We now briefly review the concept of GCC approach initiated by [35] and
advanced many researchers such as Petersen, Bernstein, and Haddad [38-40, 52].

We essentially review the latest results drawn from [24,38].

Quadratic Guaranteed Cost Control: We consider uncertain linear systems
described by state equations of the form

X(t) = (A+ DF()E)x(t) + Bu(t), FOTF@t)<I, x(0)=x, (4.69)
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where x(t) € R” is the state, u(t) € R™ is the control, F(¢) € R?*? is a matrix of
uncertain parameters, X, is a zero mean random variable satisfying E[x,x)] = I,
and E is the expectation operator.

Associated with this system is the quadratic cost function

J = E[/oo(xTQx + u” Ru) dt},
0

where Q > 0 and R > 0 are symmetric positive-definite matrices.

The following definition extends the notion of quadratic stability to allow for
a guaranteed level of performance. Recall the definition of quadratic stability
discussed before.

Definition. A control law u(r) = Kx(t) is said to define a quadratic GCC for the
system and cost function described above if there exists a matrix P > 0 such that

xT[0 + KTRK]x + 2xT P[A 4+ DF(t)E + BK]x <0 (4.70)

for all x € R” and all matrices F : FTF < I. Now, restricting our attention
to control laws in the class of quadratic cost controls, it is now shown that [24] if
there exists a quadratic GCC law for the system and cost described above, then the
resulting closed-loop uncertain system will be quadratically stable. Furthermore, the
matrix P defines an upper bound on the cost function above.

Theorem 4.7. Consider the system and the quadratic cost function described above
and suppose the control law u(t) = Kx(t) is quadratic GCC. Also let P > 0 be
the corresponding matrix in the inequality above. Then the closed-loop uncertain
system
dx

T [A+ DF(¢t)E + BK]x(2) 4.71)
is quadratically stable. Furthermore, the corresponding value of the cost function
satisfies the bound

J < Trace(P) 4.72)

for all admissible uncertainties F(t).

To show the connection between GCC law and the control law for robust
stabilizability of linear uncertain system described above, the following theorem
[24] is provided.

Theorem 4.8. Let Q € R"™"and R € R™ ™ be given positive-definite symmetric
weighting matrices, and suppose there exists a constant € > 0 such that the Riccati
equation
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1
ATP 4+ PA—PBR'BTP +¢PDD"P + —-ETE+Q =0 (4.73)
&

has a positive-definite symmetric solution P. Then the uncertain system (4.71) is
quadratically stabilizable. Furthermore, a suitable stabilizing control law is given
by u(t) = —R~'BT Px(t). Furthermore, the required matrix P in the inequality
of the GCC definition is given by P, the solution to the above mentioned Riccati
equation.

Remarks. It is shown [24, 38] that if the above Riccati equation has a positive-
definite solution for ¢ = &*, then it will have a positive-definite solution for all
& < &*. It was also shown in that paper that the existence of a suitable solution to
the above Riccati equation is a necessary and sufficient condition for the quadratic
stabilizability of the uncertain system described above.

For many variations on the upper bounding sets in solution of the above
mentioned parameter-dependent Riccati equation, which connects GCC philosophy
with the philosophy of robust stabilizability of linear uncertain systems, the reader
is referred to [39, 40, 52].

4.3.3 Effects of Using Observers on Stabilization of Uncertain
Linear Systems

Now our attention shifts to the issue of the effects of observers on robust linear
feedback controllers. It is well known that [53] the popular “Separation Principle”
of nominal observer-based controllers is not valid in the presence of uncertainty.
Also it is shown that the use of observer in the control law robs the closed-loop
system of some of the robustness possessed by the full state feedback control law.
Hence, efforts were made to look for avenues by which some of this robustness
can be recovered in the observer-based feedback control laws. Early work on robust
stability problems with observers was presented in [25, 27]. More recently, Tahk
and Speyer [30] studied the asymptotic LQG problem to establish conditions under
which full state feedback properties, such as stabilization with uncertainty bounds,
can be recovered. Similarly, Petersen and Hollot [28], through geometric arguments,
derived conditions for the recovery of the full state feedback disturbance rejection
bound, using high-gain observers. They also applied the results to the problem of
stabilization of systems with uncertainty.

In this section, we briefly review the results of [54] in which sufficient conditions
were obtained that guarantee full recovery of the allowable uncertainty bounds
attainable by full state feedback. They also study the effects of the resulting high-
gain observers on the disturbance rejection bounds. It was shown that full recovery
of the uncertainty bound leads to possible large degradation in disturbance rejection.
However, if there is only an additive plant disturbance and no measurement distur-
bance, this degradation can be prevented. The reasons for recalling the contents of
this paper are that it is one of the more recent papers covering the previous literature
and in addition it considers the most general uncertainty structure.
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In what follows, we now essentially reproduce the contents of [54]. Their
approach to the design process is separated into two parts. First, the control law is
designed assuming full state feedback. Next, the observer, which is constructed from
a standard (definite) Riccati equation, is designed based on the system parameters,
as well as the control-law gains. The resulting approach separates the observer
design from the full state controller design. Also, by not changing the controller
law, they focus on the role of the high-gain observers and the trade-offs involved in
disturbance attenuation. In studying the effects of using an observer in the control
law, the result in [54] can be used to obtain estimates for levels of uncertainty
tolerated by the observer-based control laws and establish conditions under which
the observer-based control law can tolerate the same amount of uncertainty as
the full feedback law. If the allowable uncertainty bound that can be tolerated
with an observer is equal to the bound tolerated by the full state feedback, then
we say the observer “recovers the allowable uncertainty bound.” In recovering
the allowable uncertainty bound, the observer gains may become quite large. To
investigate the undesirable effects of such high-gain observers, they study the
relationship between stabilization of systems with parametric uncertainty and the
disturbance rejection problem. The main emphasis in [54] is on investigating the
effects of observers on uncertainty and disturbance rejection bounds, assuming
full state feedback design is completed, and the corresponding uncertainty and
disturbance rejection bounds have been obtained. Conditions are then derived under
which the uncertainty bound achieved by the full state feedback can be recovered
with dynamic output feedback. In particular, in the presence of measurement
disturbances, they obtain an explicit condition that yields the trade-off between
the recovery of the parametric uncertainty and a performance-degrading increase
in the disturbance rejection bound. Finally, they treat the case where there is no
measurement noise. In this case, it is possible to fully recover the uncertainty bound
with an observer while simultaneously maintaining the disturbance rejection bound.

We begin by considering systems in which the uncertainty enters the system matrix
only, i.e., the systems are described by

X()=[A+ E(r@)]x@) + Bu@®), y@) =Cx(@), (4.74)

where x (¢) € R” is the state, y(¢) € R? is the measured output, and u(¢) € R™ is the
control. The matrices A and B are the nominal system matrices, and it is assumed
that the nominal system is both observable and controllable. The uncertainty matrix
has the structure

!
E(r) =) DiF/(r)E;, (4.75)
i=1
where D; and E; are constant matrices and matrices F; () contain the possible time-
varying, uncertainty vector r(¢) € R?. The dimensions of D;,F;, and E; are n x ny,
ny € ny, and ny x n, respectively, where n; and n, depend on the structure of E.
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Further, we assume
Floryiryr <71, i =1,2,...,1, (4.76)

where by M > N we mean M — N is positive semidefinite. Note that this
uncertainty structure is a generalization of the structures used in [20, 23] where D;
and E; are rank one or in [21,31] where /[ = 1. Also, we use two n X n matrices
defined by

1
D=>"D;D] =DD". where D=[ayDyaD;...a; D;] (477)

i=1

!
E=Y E/E =EE". where E" = [iElT lE{ lE,T] (4.78)
P ap | a ap

Often, the positive scalars a's are set to unity. In some problems, it may be
advantageous to allow these scaling parameters to vary to better exploit the structure
of (4.75) (i.e., it may be possible to obtain a stabilizing control with a]s different
from one, but not with all @; = 1). When the full state is available for feedback,
the following result, which is a straightforward generalization of the results in
[20,21,23], can be used.

Lemma4.1. Let Q; > 0, R > 0 be given. If there exists a positive definitive
solution to

1
PA+ATP—PBR_IBTP+,3PDP+EEF2+Q1 =0 (4.79)

for some B > 0, then stabilizing control law is

u(t) = —R'BTPx(1). (4.80)
When AA = DFE, the existence of a positive definite solution of (4.79) for some
B > 0 is a necessary and sufficient condition for stabilizability of (4.74) under the
full state feedback law of (4.80). Now, we use the following structure for observer-
based controllers. The control law is of the form

u(t) = —R7'BT P.z(1), (4.81)

where z(t) is from (full-order) observer equation

i(t) = Az+ Bu+ yP,'CT(y — C2). (4.82)
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We now focus on choosing the positive definitive matrices P, and P., as well
as positive constant y, such that the closed-loop system is stabilized via (4.81)
and (4.82). For P., we choose the solution of (4.79); i.e., the control gain is the
same as in the full state feedback case. Define the observer error

e(t) & x(1) — z2(t) (4.83)
and combining (4.74) and (4.82), we obtain
e(t) = Ae(t) — yPO_lCTCe(Z) + E(r(t))x(2). (4.84)

Introducing a Lyapunov function for the (x, e) system

Vix,e) =[x e7] [1;“ I(J) } m (4.85)

we obtain, after standard manipulations, the following derivative of the Lyapunov
function

V[T o] P.A+ ATP.+ P.E+ETP. ETP, X
- P,E P,A+ ATP,||e

ST 7] [—2PCBR_1BTPC PCBR_lBTPC} |:x

4.86
P.BR™'BT P, —2y ei| (4.86)

Observer-Based Stabilizing Controller

In the development below, we will rely on the following matrix identity. For any two
suitably dimensioned matrices X, Y

1
XYT +vXT <aXGXT + -YG7 YT, (4.87)
a

where a is a positive scalar and G is any positive definitive matrix of appropriate
dimension. With repeated use of (4.87), (4.86) can be simplified to

V <xTMx + e Mye (4.88)

T -1 pT 1 1 =2
M; = P.A+ A"P. — P.BR™'B" P, + BP.DP, + g |TE @89
1

M, = P,A+ A"P,—2yCTC + B,P,DP, + P.BR"'BTP,. (4.90)

In light of the Lyapunov function of (4.85) and its derivative in (4.88), it is clear that
the following preliminary sufficient condition holds.
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Lemma 4.2. If there exist suitable scalars y, B, and B, and positive-definite
matrices P, and P, such that M, in (4.89) and M, in (4.90) are negative definite,
then (4.81) and (4.82) form a stabilizing control law for (4.74), with the uncertainty
structure of (4.75) and (4.76) (i.e., with the uncertainty bound r ).

The main problem of interest is whether we can determine a feedback control law
for full state measurement and then use this control law with an estimate of the state
provided by an observer. For a given uncertainty bound of 7 and any R and Q,
assume that there exist 8 > 0 such that (4.79) has a positive-definite solution, i.e.,
the full state feedback law of (4.80) stabilizes (4.74). We use this solution of (4.79)
for P.. For P,, consider the positive definitive solution of

SA+oDT +(A+01)S—ySCTCS + D =0, (4.91)
where o > 0. A sufficient condition for the existence of S > 0 is that (4, ﬁ) be

controllable. With
P,=5"" (4.92)

(4.90) becomes
M, = —20P, —yCTC + P.BR™'BTP.. (4.93)
Now, consider a constant 0 < €; < 1 and choose §; to satisfy

g =L

= 5.
I —e€;

(4.94)

Theorem 4.9. Let P. be the positive-definite solution of (4.79) for a given r,
with the appropriate B. Also, let B satisfy (4.94), for some fixed 0 < € < 1.
Further, assume that (A, D ) is controllable. The control law of (4.81) and (4.82) is
a stabilizing control law for uncertainty bound €7, if there exist suitable y and o
such that P, from (4.91) and (4.92) results in negative-definite M in (4.93).

To strengthen this result, we need to determine conditions under which we can
guarantee the existence of a stabilizing control law for any 0 < €; < 1. This is
done with the help of the following theorem.

Theorem 4.10. Given €1, 0 < ¢, < 1, let P.,r, B, and B1 be as in Theorem 4.9.
Furthermore, assume (i) (A, D) is controllable and (C, A) observable and (ii) the
transfer function C(sI — A)™! D has no zeros on the closed right half plane and
is left invertible. Then, there exist scalars o and y* such that for any y > y*,
the corresponding P, [from (4.91) and (4.92)] results in a negative-definite M,
in (4.93), and the control law of (4.81) and (4.82) is stabilizing for uncertainty
bound €;r.
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Remark. If the controllability assumption in Theorem 4.10 is not met, the following
modification can be used: In (4.91), replace the term ;D by Bi(D + NNT),
where the matrix N is chosen such that (4,[D N]) is controllable, rank(C) >
rank([D N)]), and C(sI — A)~'([D N))) is left invertible with zeros on the open
left-half plane. Theorems 4.9 or 4.10 can now be invoked after replacing (4.93)
with —20P, —yC"C — B P,NNT P, + P.BR™'BT P,.

For a complete design algorithm and an example that illustrates this algorithm,
see [54].

Finally, we turn our attention to the robust control design methods based on
eigenstructure assignment.

4.4 Robust Control Design Using Eigenstructure Assignment
Approach

It is well known that eigenstructure assignment (i.e., placement of eigenvalue and
eigenvectors) is a powerful tool to shape the dynamic response of a linear time-
invariant dynamic system. Within the last decade eigenstructure assignment-based
control design has been an active topic of research. The early work of Moore [55]
and Srinathkumar [56] highlighted the degrees of freedom available over and above
pole assignment using state feedback and output feedback, respectively. Since then,
numerous researchers [49,57-59] have exercised those degrees of freedom to design
closed-loop feedback systems via eigenstructure assignment. It is also important to
notice that in this eigenstructure assignment literature, some authors used the word
“robust” in the sense of “well conditioned” rather than in the context of uncertain
systems perturbed by real uncertain parameters, for example, see [60].

Traditionally the eigenstructure assignment problem is carried out as a two-step
procedure; either the desired eigenvalues are assigned first and then the resulting
eigenvectors are accounted for or the desired eigenvectors are selected first and
then the resulting eigenvalues are accounted for. Unfortunately, prespecification
of the eigenvalues has a restrictive effect in that the eigenvectors v; must reside
in the subspaces spanned by the columns of 1;I — A~' B, respectively. Fixing the
eigenvalues freezes these subspaces thereby diminishing the domain within which
the eigenvectors can be placed. Similarly, prespecification of the eigenvectors has a
restrictive effect on pole placement.

In order to avoid such sub-optimality, several eigenstructure approaches have
appeared [49, 57-59] that take advantage of the fact that in practice exact pole
assignment is seldom required. Instead, the closed-loop poles are only required to
lie in a region of the complex plane. The new approaches allow the eigenvalues
to vary over such a region which enables better attainment of other objectives
such as perturbation (parametric variation) insensitivity. In particular, in [61, 62]
a generalized formulation for robust eigenstructure assignment was developed in
which the best eigenstructure achievable is attained by a constrained minimization
with respect to the real and imaginary components of the eigenvalues and the
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components of the eigenvectors. In those two works, a Riccati constraint was
imposed on the minimization which provides robustness with respect to gain and
phase variations. However, it is well known this is not sufficient to guarantee
robustness with respect to parameter variations [63].

In this section, we review the results of [41]. This research combines the concepts
of [61, 62] with those of [4, 64] to produce a generalized eigenstructure assignment
procedure for robust control of linear uncertain systems, where the parameter vari-
ations can be time varying. A Lyapunov constraint is imposed on the minimization,
while an additional term is added to the performance index whose presence enlarges
the class of nondestabilizing perturbations. While only full state feedback control is
considered, the technique presented can be directly extended to the output feedback
case. One simply needs to replace the gain K with KC in the appropriate equations,
where C is the observation matrix. Thus, a generalized eigenstructure assignment
procedure for designing a controller which has the best eigenstructure achievable
while simultaneously maintaining stability robustness to time-varying parametric
variations is presented. The approach taken is the constrained minimization of
the difference between the actual and desired eigenstructure. This minimization is
made subject to the constraints of the eigenstructure equation and the closed-loop
Lyapunov equation.

Eigenstructure Assignment-Based Control Design

Consider the multivariable, linear uncertain system with parameter uncertainty
(which can be time varying) where x and u are n and m dimensional vectors,
respectively:

x(@) =[A+ E(t)x(t) + Bu(t)]. (4.95)

Note that, in principle, one can consider a more general system than (4.95) with
parameter variations also in the B matrix but, for simplicity in exposition, we
consider only variations of the state dynamics matrix. Let the control policy be given
by a linear full state feedback in the form shown below, where K is the constant
control gain matrix:

u(t) = —Kx(1). (4.96)

The closed-loop system is given by the following, where the nominal closed-loop
system matrix A — BK is assumed to be asymptotically stable:

X(t) = [A — BK + E(t)]x(?). (4.97)

It is known from [35,65] that if the following bound is satisfied, then the closed-loop
system is asymptotically stable for all E(z):

Omax (E(1)) < (4.98)

Umax(P) ’

where the Lyapunov equation for the closed-loop system is given by
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P(A—BK)+ (A—BK)'P +2I, =0. (4.99)

Here, 0max (P) is the maximum singular value of matrix P where P is the solution
to the above Lyapunov equation. From (4.98) it is seen that the smaller the norm
of P is, the more robustly stable the closed-loop system will be to unstructured
time-varying parametric variations.

Formulation

Let A be the matrix of the closed-loop eigenvalues, M be the closed-loop modal
matrix, and Ap, Mp be the desired eigenstructure. Then combining the ideas of
[4,61,62,64], the generalized eigenstructure assignment formulation for robustness
to unstructured time-varying parametric variations is given as follows. Minimize the
performance index J with respect to the elements of A, M, K, and P, constrained
by (4.101)—(4.103), where ||(-)|| is the Frobenius norm and p,, p2, and p3 are scalar
weights:

J =pillA=Ap|?> + pa|M — Mp|* + p3]| P (4.100)
(A— BK)M — MA =0 (4.101)
diag(M™M — 1) =0 (4.102)

P(A— BK)+ (A—BK)TP +2I,=0. (4.103)

Equation (4.101) guarantees that the matrix pair A, M is an eigenstructure for the
closed-loop system. Equation (4.102) keeps the eigenvectors normalized and, more
importantly, prevents them from going to zero. Equation (4.103) guarantees that P
is a solution of the closed-loop Lyapunov equation. The Frobenius norm of P is
employed in place of the two norm of P since it is differentiable while bounding
the maximum singular value of P, i.e.,

Umax(P) = ”P” (4.104)

The weights p;, p,, and p; are used to provide trade-offs between desired
eigenstructure achievement and robust stability to time-varying uncertainties. To
increase flexibility of the design process, in practice we replace the performance
index (4.100) with the following, where /,L; ;8 and 77;_ ;8 are the scalar weights relative
to the elements of A = (;;) and M = (m;;), respectively:

n n n n
J=p Z ZM:‘_/ (Aij - %‘;)2 + 2 ZZ nij (mij —m{)* + psl| P|*. (4.105)

i=1j=1 i=1j=I
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The performance index in (4.105) is more general than that of (4.100), since it allows
for the individual weighting of the components of the eigenstructure. The weights
wij indirectly allow the eigenvalues to vary in regions about A;;, while an n;; weight
of zero allows that component of the eigenvector to be freely varied, thus enlarging
the class of M matrics satisfying (4.101) and (4.102). Note that many of the weights
of ;; may be zero and that most of the weights of j1;; are zero (since A is tridiagonal
due to a real modal decomposition of the complex eigenvalue-eigenvector pairs).
In (4.104), P must be a symmetric, positive-definite matrix. However, there is
no need to enforce this requirement by substituting UUT for P and optimizing
over U instead of P. The Lyapunov solution P is guaranteed to be symmetric and
positive definite as long as K is a stabilizing controller. This, of course, is ensured
by specifying stable desired eigenvalues and setting p; large enough to ensure that
the achieved eigenvalues are also stable. Alternatively, we could guarantee stability
through a transformation ensuring that all of the poles lie to the left of some vertical
reference line @ = A, in the left half of s plane. Using y as the slack variable, the
additional constraint would be

diag[A — Awetl + y21]. (4.106)

Solution Technique: The constrained optimization problem (4.105), subject to
(4.101)—(4.103), can be vectorized and converted to a standard nonlinear math-
ematical programming problem. The transformed problem is that of minimizing
a nonlinear function f(x) subject to a nonlinear constraint ¢(x) = 0, where
f is a scalar, x is a k-vector, and ¢ is a g-vector, with ¢ < k. The vector x
contains all of the nonredundant elements of matrices A, M, K, and P, while the
constraint ¢(x) = 0 includes all of the nonredundant scalar equations present in
(4.101)—(4.103). Redundant elements and redundant scalar constraints arise due to
the symmetry of the P matrix and the Lyapunov equation (4.103) and the special
asymmetry of the tridiagonal eigenvalue matrix A. Thus, only the upper triangular
elements of P and A appear in the vector x, and only n(n + 1)/2 of the scalar
equations which constitute (4.103) appear in ¢(x) = 0. Additionally, repeated
diagonal elements of A, due to the real modal decomposition or the presence of
nondistinct eigenvalues, are redundant and are handled accordingly.

The mathematical programming problem is then solved numerically using the
periodically preconditioned conjugate gradient-restoration algorithm developed in
[66]. Even though the autopilot design problem presented in the next chapter results
in a highly ill-conditioned optimization problem, by periodically transforming the
axes (preconditioning the problem) so that, locally, circular surface contours are
produced, a satisfactory rate of convergence is attained. Naturally, how quickly
the algorithm converges is, in part, a function of initial guess and the tolerance
levels set on the stopping condition. In the cases addressed below, the algorithm
was considered to have converged whenever the norms of the augmented gradient
and vector constraint were simultaneously less than 107¢ and 1072, respectively.
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With these tolerance levels, the algorithm converged in less than 100 iterations in all
cases. Application of this design procedure to a missile autopilot design is illustrated
in Chap. 5 on Applications.

4.5 Exercises

Problem 1 Consider a simple second-order state space system with single input.
In other words, select a 2 x 2 4 matrix and a 2 x 1 B matrix, such that the
matrix pair (A, B) is controllable. Select uncertainty AA such that it satisfies
matching condition. Select a reasonable set of uncertain parameter bounds for the
uncertain entries of AA. Use all the methods you learned from this chapter (namely,
perturbation bound analysis, quadratic stability, modifying the weightings in Riccati
equation-based approach) to design a full state feedback controller, and compare
those gains.

Problem 2 For the same problem data as above, assume a 1 x 2 output (measure-
ment) C matrix such that the pair (A4, C) is observable. Build any “nominal” full
state feedback controller gain that stabilizes the closed-loop system. Then, also build
a “nominal” observer with the taken measurement matrix and form the augmented
nominal closed-loop system matrix with the observer-based feedback controller.
Now compute the unstructured uncertainty bound (by any technique you learned
from the second chapter of this book) for the nominal full state feedback controlled
closed-loop system matrix as well as for the nominal observer-based feedback
controlled closed-loop system. Note that the dimension of the closed-loop system of
the observer-based feedback controlled system is twice that of the original system. Is
the robust stability bound for the observer-based feedback controlled system lower
than that of the full state feedback closed-loop system? If so, by how much? Should
it be lower? Reason out the reasons for it from the matrix theory point of view as
well as from any other arguments you may have.

4.6 Notes and Related Literature

Inspired by the original papers discussed in this chapter, there were many related
issues addressed and solved in various other papers. For example, in [67] the case
of robust stabilizability in the presence of a mixture of constant (time-invariant)
and time-varying real parameter variations was considered. In [68] an improved
bound for the “mismatch threshold” was given for the ultimate boundedness control
of mismatched systems where the overall uncertainty is split into “matched” and
“mismatched” portions. In [18] efforts were made to modify the weighting matrices
in the standard algebraic Riccati equation to squeeze as much parameter robustness
as possible. In [16] it was shown that to ensure a stabilizability for a linear uncertain
system with large independent parameter variations, the uncertainties can only enter
the system matrices in a way to form a particular geometrical pattern called an
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“antisymmetric stepwise configuration.” This result seems to have a relationship
to the ecological sign stable patterns discussed by this author in [69]. In [70]
the connection between stabilizability of linear time-varying and uncertain linear
systems was explored. In [50] it was shown that there exist uncertain systems
with more general uncertainty structures which are quadratically stabilizable via
nonlinear control but not quadratically stabilizable via linear control. The linear
programming approach was used for quadratic stabilization in [71]. As mentioned in
the previous chapters, using parameter-dependent Lyapunov functions for quadratic
stabilization is a vast area of research, and more is alluded to on this aspect [72—
74] later in Chap. 6. Most of the research results in the quadratic stabilization of
linear uncertain systems are deemed theoretically elegant emphasizing the notions
of sufficiency and necessary and sufficiency. However most of these techniques
seemed to be applicable to only low-order systems as the derived conditions are
quite involved requiring some optimization in some of the internal steps. Thus there
is still considerable interest in coming up with robust control design techniques
for real parameter variations that can be used for large-order practical systems,
especially for the case of real time-invariant uncertain parameters, i.e., for linear
interval parameter systems. Towards this direction, this author initiated a new line of
research using ecological principles in determining the desirable closed-loop matrix
structures that possess as high parameter robustness as possible. This research is
briefly alluded to in the sixth chapter of this book. The research on Riccati-based
approach for robust stabilizability of linear systems with uncertain, time-varying,
real parameters has significant connections to the corresponding Riccati equations
that appear in the Hy, optimization problem, which in itself has vast literature
which resulted in books and articles such as [75-77]. In this related research, control
design with regional pole constraints in H, framework was reported in [78]. The
use of similar Riccati equation-based approach arising in covariance control of
linear perturbed systems and the connection to robust stabilization are discussed
in [79-81].
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In this chapter, we illustrate some of the robust stability analysis and design
techniques presented in the previous chapters to few realistic engineering systems, in
particular, to flight control problems in the aerospace engineering field. The objec-
tive of this chapter is to highlight the belief that elegant theoretical developments
are appreciated more if they are applicable to practical engineering problems. In
fact, the main gap between theory and practice is essentially due to the unrealistic
assumptions made in the theoretical development, and in that sense, the entire
research being carried out in the robust control area is to hopefully reduce this gap
between theory and practice. For that reason, this author believes that there is still
considerable interest in the research on developing robustness analysis and design
algorithms that are applicable to engineering systems modeled with a state space
description of much larger dimensions (say n > 4, n being the dimension of the
state vector), even if the results are of “sufficiency” nature rather than expending
effort in developing results of “necessary and sufficiency” but only applicable to
low-dimensional (n = 2) systems. With this viewpoint, in this chapter, we present
few illustrative examples of higher order dynamic systems for which we apply the
analysis and design methods discussed in the previous chapters. These examples
are essentially taken from this author’s own contributions as it is difficult to convey
the results of other authors in an accurate and verifiable manner.

5.1 State Space Robustness Analysis and Design: Applications

This entire book was motivated with the belief that when modeling errors are in
the form of real, parameter variations, state space models in time domain are best
suited for further analysis and synthesis purposes. It may be noted that many good
textbooks on control systems [1-4] provide state space models for various systems
in different disciplines such as mechanical, aerospace, electrical, and chemical
engineering. If one looks at those models, it is quite clear as to why real parameter
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variations are best captured in state space models. With this motivation, we briefly
review the state space models in few engineering disciplines, where these examples
are taken directly from the standard textbooks available in the current literature.

State Space Model for the Longitudinal Motion of an Aircraft. For motivational
purposes, let us start by considering the linear state space description of the
longitudinal flight dynamic models of a typical air vehicle, given by [5]

x(1) = A(p)x(t) + B(p)u p € Q (5.1)

where x(t) € R* is the state vector consisting of the four state variables, namely,
x1 = forward speed change, u,; xo = the angle of attack change o; x3 = pitch rate
change, ¢; and x4 = pitch angle change 6. The control variable u is the elevator
deflection .. Note that the entries of the above A matrix and B matrix consist of
dimensional stability derivatives as described below.

In addition, these stability derivatives such as X,, Z,,, and M, and the control
derivatives Xg,, etc. are in turn functions of the aerodynamic parameters like Cp,
and C,,, as well as the geometric parameters such as 7, mass m and S is the wing
area. For example, the stability derivative M,, is given by

M, = Cpal(QSc)/(Uol,y)] (5.2)

where C,, is the (local) slope of the pitching moment vs « (the angle of attack)
curve, S is the wing area, ¢ is the wing mean aerodynamic chord, U is the steady-
state forward speed, Q is the dynamic pressure (= 1/2pUZ), and 1, is the mass
moment of inertia about the y-axis. Note that these parameters typically take on
values within a given interval that could be a function of the flight condition. Even
though some of these stability derivatives within the A matrix vary nonlinearly with
respect to some primary parameters, in this discussion, we may overbound them
and treat each of the elements in the above matrix as an uncertain parameter. So
conceptually we denote p € R’ to be a vector of r parameters varying in the
prescribed compact set Q. Specifically, let the parameters p; be given a priori
bounds as
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piL = pi = p,'Ui=1,2,...l’ (5.3)

Assuming linear dependent variations p; in the entries of A(p), we can write the
matrix A(p) as

A(p) = Ao+ ) pid; (5.4)

i=1

where A is the “nominal” matrix and A; are constant, specified matrices, reflecting
the “structure” of the perturbation (i.e., reflect the presence of the uncertain
parameters p; in the different elements of A). Thus, the “nominal” matrix Ao is
the matrix A(p) when the perturbation structure matrices A; are all zero.

Clearly, the stability robustness analysis and synthesis of this uncertain system
(in the form of an interval parameter system) is best captured in the above state
space representation, and we can now apply all the methods learned in the previous
chapters to this problem.

State Space Model for the Broom-Balancing Problem. As another example,
let us consider the linearized model of the “Broom-Balancing” problem discussed
in [6]. It is given by

x(t) = A(p)x () + B(p)u p € Q (5.5

where x(¢) € R* s the state vector consisting of the four state variables, namely, x;
= forward position z(7), x, = the forward speed z(¢), x3 = angular displacement
0, and x4, = angular velocity 6. The control variable u is the forward force f. Note
that the entries of the above A matrix and B matrix consist of parameters such as
the masses of the broom and the vehicle and the length of the boom as described
below.

01 0 0
00 -—mg/M O
A(p) =
P)=1090 0 |
00 (M +m)g/MI1 0

0
/M
0
—1/MI

B(p) =

The output is the forward position z(t). Typically, some nominal values are taken
for these parameters. For example, as described in [6], if we take M = 1kg, m =
0.1kg, ! = 1 m, and the acceleration due to gravity g as 9.81 m/s?, we get
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This particular example is better suited to highlight the “structured uncertainty”
situation discussed at length in the stability robustness analysis topic of a previous
chapter. Since the uncertain parameters such as m, M, and [ occur only at some
specific locations of the matrix, the “structured uncertainty” formulation can take
this into account and formulate the appropriate matrices that reflect the structure of
the uncertainty. Again, state space models are thus more amenable to capture the
real parameter variation problem.

Similarly, there are numerous examples in many textbooks that capture the
dynamics of an engineering system cleanly in the state space framework, making
the research in the stability and performance robustness analysis and design in state
space framework extremely relevant in many engineering applications. In that spirit,
in the next few sections, we illustrate the theory developed in the previous chapters
to some useful, high-order application problems.

5.2  Application of Kronecker-Based Robust Stability Analysis
to Flight Control Problem

Application to VTOL Aircraft Control The linearized model of the VTOL
aircraft in the vertical plane is described by (5.6)

x(t) = [Ao + AA(1)]x(t) + [Bo + AB()]u(r) (5.6)

The components of the state vector x € R* and the control vector u € R? are given
by the following:

X1 — horizontal velocity, kt

x, — vertical velocity, kt

Xx3 — pitch rate, deg/s

x4 — pitch angle, deg

u; — “collective” pitch control

uy — “longitudinal cyclic” pitch control
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Essentially, control is achieved by varying the angle of attack with respect to the
air of the rotor blades. The collective control u; is mainly used for controlling
the motion of the aircraft vertically up and down. Control u; is used to control the
horizontal velocity of the aircraft.

In [7], the linearized mathematical model is presented, assuming a nominal
airspeed to be 135 knots. It is also shown that during operation in the flight envelope
of interest, significant changes take place only in the elements a3;, azq4, and b,1. The
ranges of values taken by these elements are given by

0.0663 < a3, (= 0.3681) < 0.5044
0.1220 < Gay(2= 1.4220) < 2.5280

0.9770 < by (== 3.5440) < 5.1114

where (-) denotes the nominal value.

Note that the perturbation ranges are asymmetric with respect to the nominal
values. To take full advantage of the perturbation bound analysis, we will “bias”
the nominal values of as;, a4, and by, such that we obtain the symmetric ranges.
Accordingly, the nominal values of as;, dss, and 521 now are asz, = 0.2855, a3y =
1.3229, and by, = 3.04475. The full matrices A and B are given by

[—0.0366 0.0271 0.0188 —0.4555
0.0482 —1.0100 0.0024 —4.0208
0.1002 0.2855 —0.7070 1.3229
L 0.0000 0.0000 1.0000 0.0000

BT — [0.4422 3.0447 —5.5200 0.0000
~10.1761 —7.5922 4.4900 0.0000

so that

|AAz),,, = 0.2197
|AAsy] . = 1.2031
|ABy1 |y = 2.06725

In [8] a robust constant gain linear state feedback control law that stabilized the
system in the entire range of the perturbation was obtained and is given by

G — —0.4670 0.0139 0.5390 0.8060
~ | 0.0430 0.5190 —0.1899 —0.7310

The corresponding nominal closed-loop system matrix is given by
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—0.2355 0.1246 0.2237 —0.2278
—1.7002 —4.9080 3.0853 3.9832
2.8711 2.5392 —4.5349 —6.4084
0.0000 0.0000 1.0000 0.0000

A+ BG =

The above nominal control gain was shown to be a “robust control” gain by
using Lyapunov-based stability robustness analysis (i.e., design using perturbation
bound analysis approach discussed in the previous chapter). In [9] this was done
making use of the similarity transformation approach to improve the robustness
bounds as well as other problem-specific techniques. We now use the proposed
less conservative stability robustness bounds using the Kronecker-based approach
to show that the above control gain is indeed a robustly stabilizing gain. Note that
the closed-loop system matrix with perturbations in A and B matrices as above can
now be written, assuming q; = Aj; element, g, = As4 element, and g3 = By
element, as

A4+ BG+AA+ ABG =A+ BG+qiE1+qE>+g3E; 5.7

Since the ranges of A3y, Az4, and By; are known, the corresponding perturbation
structure matrices E; (which is a case of independent variations) are given by

[0.0000 0.0000 0.0000 0.0000]
0.0000 0.0000 0.0000 0.0000
0.0000 0.1063 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000_

E, =

[10.0000 0.0000 0.0000 0.0000]
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.5820
.0.0000 0.0000 0.0000 0.0000_|

E, =

[ 0.0000 0.0000 0.0000 0.0000
—0.4670 0.0139 0.5390 0.8060
0.0000 0.0000 0.0000 0.0000
L 0.0000 0.0000 0.0000 0.0000

With the above structured uncertainty matrices, the computation of the proposed
bounds (using the expressions given in the Kronecker-based matrix approach of the
previous chapter) yields

Hr = 2.5235
pr = 2.9421
e = 3.7397
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Since these bounds exceed |¢|max = 2.06725, we conclude that the previous gain
indeed stabilizes the system in the entire range of the parameters.

Application to Drone Lateral Attitude Control Problem. The system matrices
for the drone lateral attitude control system considered in [10] are given by

[ —0.0853 —0.9994 —0.0001 0.0414  0.0000  0.1862 |
—46.8600 —2.7570 0.3896 0.0000 —124.3000 128.6000
—0.4248 —0.0622 —0.0671 0.0000 —8.7920 —20.4600

0.0000 1.0000 0.0523 0.0000 0.0000  0.0000
0.0000 0.0000 0.0000 0.0000 —20.0000 0.0000
| 0.0000 0.0000 0.0000 0.0000 0.0000 —20.0000 |

BT — 0.0 0.0 0.0 0.0 20.0 0.0
0.0 0.00.00.0 0.0 20.0

With a linear state feedback control gain

| —215.1000 4.6650 7.8950 233.2000 —6.7080 2.5540
~ | =231.5000 —3.7230 7.4530 —213.5000 2.5540 —6.8690

the closed-loop system matrix A = A 4+ BG is made asymptotically stable.
Now assuming the element A,; to be the uncertain parameter (having a nominal
value = —46.86), we get the stability robustness bounds on this parameter as

Ha1, = 8.9458e+03
Ha1, = 9.7711e+03
Jorg = 2.3472e+04

Note that the perturbation structure matrix E in this case is a matrix with all zeros
except for the E5; entry which is one.

For the same problem above, the bound using Lyapunov theory that was given in
[11] is shown to be

IU“ZlLyap = 573.46

Thus, it is clear that the proposed bounds that use Kronecker theory are much less
conservative compared with the bounds derived using Lyapunov theory. Of course,
it should be kept in mind that the bound obtained using Lyapunov theory is valid for
time-varying perturbations, whereas the bounds using Kronecker-based theory are
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valid only for time-invariant perturbations. Hence, whenever the theory applicable
to time-varying perturbations is applied to the case of time-invariant perturbations,
that bound would necessarily be conservative.

5.3  Application of Robust Control Design by Perturbation
Bound Analysis to Flight Control Problem

In this example, we apply the robust control design by perturbation bound analysis
discussed in the previous chapter on control design to the same example of the
VTOL aircraft problem discussed in the previous section. The aircraft model data
is the same as the one given in that section. In this case, we choose to use the
Lyapunov-based robustness analysis bounds discussed in the analysis chapter of
this book. In particular, we focus on the structured uncertainty analysis of Yedavalli
[12,13].

For illustration of the algorithm, we consider various cases of perturbation ranges
in each of those uncertain parameters, namely, the A3,, A34, and B, elements.

Case I:
0.3545 < as (= 0.3681) < 0.3817
1.31 < a3q(= 1.4220) < 1.53
3.39 < by (= 3.5440) < 3.702

In other words, AAsy,, = 0.0136; AAzs, = 0.11; AByy,, = 0.157 where (),
denote the maximum modulus deviations in those entries of the matrix.

Case 2:

0.3271 < as (= 0.3681) < 0.4091
1.09 < @s4(= 1.4220) < 1.7540

3.0740 < by (== 3.5440) < 4.0140
In other words, AAsy,, = 0.041; AAzg,, = 0.332; AByy,, = 0.47
Case 3:

0.3001 < as (= 0.3681) < 0.4361
0.8690 < as4(== 1.4220) < 1.9750

2.7640 < by, (= 3.5440) < 4.3240
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In other words, AAs,,, = 0.068; AA3y,, = 0.553; AB>y,, = 0.78
Case 4:
0.2731 < as(= 0.3681) < 0.4631

0.6480 < d@s4(= 1.4220) < 2.1960
2.4470 < by (= 3.5440) < 4.6410

In other words, AAsy,, = 0.095; AAss,, = 0.774; AB>y,, = 1.097
Case 5:
0.2318 < azp(x~ 0.3681) < 0.5044

0.3160 < d@s4(= 1.4220) < 2.5280
1.9766 < by (= 3.5440) < 5.1114

In other words, AAsy,, = 0.1363; AAsy,, = 1.106; AByy,, = 1.5674

Thus, for these cases, the problem is that of deciding the robust stability when
both the left-hand side and right-hand side of the sufficient condition for robust
stability are known. Recall the sufficient condition for robust stability, which for
completeness sake is reproduced here.

Design Observation 1: The perturbed linear system is stable for all perturbations
bounded by €, and ¢ if

1
€ < = 5.8
¢ Omax [Pm(Uea + EUeme)]s a ( )
and
€, <€u  where 5.9
P(A+BG)+ (A+BG)P +21,=0 (5.10)

and € = ¢, /¢,.

We now design a “nominal” full state feedback controller that stabilizes the
nominal closed-loop system. For this example, we employ the standard algebraic
Riccati equation KA+A” K—KBR™'BT K+ Q = 0 where Q and R are symmetric
positive-definite matrices and the control gain G = —R~' BT K. We take R = pR,
with R, fixed as an identity matrix of dimension 2 and p as a design variable. We
also fix Q to be
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We now determine the control gain for each p, the corresponding control effort J,,,
and the corresponding stability robustness index Bsg discussed in the control design
by perturbation bound analysis of the previous chapter and plot the index Bggr vs the
control effort J,,,. These plots are shown for the above five cases in Fig. 5.1.

In interpreting these plots, it is to be recalled that the region of control effort for
stability robustness is the region in which Bsg > 0. From these plots, few interesting
observations can be made.

®
(ii)

(iii)

(iv)

As the parameter perturbation range is increased, the range of control effort for
stability robustness is decreased, which is reasonable.

For any given set of parameter perturbations, there is a unique control effort
(and thus a control gain) for which Ssgr is maximum. Clearly, it is this control
gain we are seeking, assuming other performance specifications are satisfied
with this control gain.

Itis to be noted that, in this example, for all cases of perturbation, the maximum
Bsr happens at the same control effort (and control gain). However, this could
be due to the fact that the range of variations in cases 2 through 5 are simply
some multiples of the range of case 1. If these ranges were of different size for
each element in each case, then for different cases, the maximum Bgsg could
have occurred at different control gains.

Note that for case 5, there is no positive Ssg. That does not mean there is
no control gain which stabilizes the closed-loop system for those ranges of
parameter variations. It is just that the stability robustness bound computation
technique could be a conservative sufficient condition. That is the reason there
is considerable interest in getting necessary and sufficient bounds for robust
stability of linear state space systems, which indeed is a difficult problem to
solve.
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Now let us consider the cases when the parameter perturbation is in only one of
the matrices, A or B. Accordingly, we consider the following ranges:

Case 6: AAszy, = 0.3018; AAszy, = 1.300; AByy,, =0
Case7: AAsy, = 0.1366; AAzy, = 0.106; ABy,, =0
Case8: AAs, =0; AAzg, = 0; ABoyy, = 2.5671
Case 9: AAszy, =0; AAsg = 0; AByy,, = 1.5674

Figure 5.2 corresponds to these cases. It may be observed from these plots that,
as before, it turns out that the smaller the size of the perturbation, the more is the
control effort range available for stability robustness. But consider the difference in
cases 6 and 7 (variations in A matrix only) with those of cases 8 and 9 (variations
in B matrix only). It can be seen that the control range for stability robustness for A
matrix variations is much larger than that of B matrix variations, indicating that the
variations in B matrix are more critical from the stability robustness point of view.

Similarly, the theory of stability robustness bounds was applied to structural
dynamic models and its utility fully exploited in [14].

5.4  Application of Robust Eigenstructure Assignment
Algorithm to Missile Roll-Yaw Autopilot Design

In the previous chapter, an algorithm to design a robust controller using robust
eigenstructure assignment was presented. We now apply that algorithm to a missile
autopilot design problem and illustrate the usefulness of that algorithm. The
objective of the design is to achieve decoupling between the roll mode and yaw
mode of the missile. In this example, this mode-decoupled roll-yaw autopilot has
been designed for the Extended Medium Range Air-to-Air Technology (EMRAAT)
airframe and compared to an existing integral linear quadratic regulator design.
The airframe is a generic, nonaxisymmetrical airframe and is shown in Fig. 5.3.
Such an airframe lends itself to high g coordinated back-to-turn maneuvers. The
nominal roll-yaw system model for the EMRAAT airframe for the flight conditions
of Mach = 2.5, velocity = 2, 420 ft/s, dynamic pressure = 1, 720 1bs/ft?, and angle
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of attack = 10° is shown, where f is sideslip, r is yaw rate, p is roll rate, f pisroll
angle, 8r is rudder position, and §a is aileron position:

B —0.501 —0.985 0.174 07 [ B 0.109 0.007

Pl _ | 16.83 —0.5750.01230 | r ~132.8 27.19 [8} 5.12)
p —3227 0321 2100 | p —1620 —1240 | |5,

Ip 0 0 1 olLfp 0 0

The actual missile normally operates at or about a set of flight conditions for
an extended period of time, particularly during midcourse. Perturbations of the
flight conditions propagate into variations of the parameters of the system model.
These variations can be time varying, therefore the more robust the closed-loop
system is to these variations while simultaneously maintaining an acceptable level
of performance, the better the design will be. The nominal system has the following
open-loop eigenstructure:

Eigenvalues: 0, —0.55, —1.3 £ j24

Eigenvectors:
B— |1 0.00025 —0.00025 £ j0.00743
r— (0 —0.0968 —0.00522 £ j0.00018
p— 0] -0.55 |’ 1.0£ ;0.0
Jp—LO 1 —0.0023 £ j0.04154
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Inspection of (5.12) reveals a huge natural, but undesirable, coupling between
sideslip and roll rate, as evidenced by the magnitude of the A (3, 1) element.
Inspection of the rows of the eigenvectors reveals that the largest entries correspond
to either roll or roll rate. Thus, any sideslip whatsoever produces significant
rolling motion and practically zero yawing motion. In other words, the airframe
is characterized at this flight condition solely by roll modes (all three eigenvectors)
without the existence of a Dutch roll mode.

A roll-yaw autopilot was previously developed for the airframe using the integral
linear quadratic (ILQ) design method. Full state feedback is available in this case;
r and p are available from the strapdown inertial system, [ p is computable, and
is the inverse tangent of the strapdown-system supplied body velocities. The overall
performance, as demonstrated using a six-degree-of-freedom (6-DOF) simulation
was excellent. This controller design is used for comparison. The ILQ autopilot
design and the resulting performance are given in the section below labeled “ILQ
design.”

The gain K, the closed-loop system ([A — BK]), and the eigenstructure for the
ILQ design are given as

K — 1.83 —0.154 0.00492 —0.0778 (5.13)
—2.35 0.287 —0.03555 0.0203
,3 —0.684 —0.969 0.173 0.00834 B
Fo| | 323.7 —28.83 1.6323 —10.884 r (5.14)
1? | =3176 107.0 —38.20 —100.86 ’
I, o o 1 o Jlp
Eigenvalues: —5.12, —14.54, —-24.03 &+ j18.48
Eigenvectors:
B — [ 000504 0.00137 —0.00642 £+ j0.00561
r— | 0.18641 0.19782 —0.08309 &+ j0.01274
p— 1 ’ 1 ’ 1+ ;0
fp — [—0.1952 —0.06878 —0.00231 £+ j0.02011

Note that the ILQ design has done nothing to reduce the coupling between
sideslip and roll rate (A(3, 1) = —3176) and that the three closed-loop eigenvectors
still represent roll modes. This coupling can also be seen in the initial condition
time responses shown in Fig. 5.4. Examination of Fig. 5.4a, c shows that an initial
condition on sideslip generates a large amount of roll rate. This indicates that the
autopilot is probably sensitive to wind gusts, a situation that should be investigated
further in 6-DOF simulations. Additionally, the high sideslip to roll rate coupling
could cause problems in the end game. During this highly dynamic phase of the
intercept, the fin actuators are being pushed to their limits. Excessive roll due to
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Fig. 5.4 Initial condition time responses: solid ILQ, dashed p3 = 0.0, dot-dashed ps = 0.1, dotted
p3 = 1.0

small sideslip could induce saturation of the actuators controlling roll and, therefore,
could result in instability.

We now proceed to set up the optimal eigenstructure assignment algorithm to
achieve a solution which will reduce the sideslip to roll rate coupling as well
as to increase the stability robustness to time-varying parametric variations. The
desired eigenvalues are picked to be close to those obtained from the ILQ method.
This is done in order to achieve similar performance to that attained in the ILQ
design. However, true Dutch roll and roll modes are desired. Therefore, the desired
eigenvalue matrix is set to

~1010 0 0

~10-10 0 0
Ap = .
b 0 0 —24 18 (5.13)

0 0 —18-24

This is equivalent to asking for eigenvalues of —10 £ j10 and —24 &£ ;18 in the
Dutch roll and roll modes, respectively. The desired eigenvector matrix is chosen
to be
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00xx

00xx
Mp = 1
b xx00 (5.16)

xx00

The x’s signify the inconsequential components of the eigenvectors. These
components will be zero-weighted out in the performance index i.e., they will not
appear in the performance index. With this choice of M a complete decoupling of
the roll and Dutch roll modes is being requested. The desired eigenstructure (5.15)
and (5.16) and the system matrices in (5.12) are then substituted into equations
of the performance index and the constraints given in the previous chapter. The
algorithm was run with values of p; = p,, = 1 and values of p; = 0.0,0.1, and 1.0.
The resulting gains, closed-loop systems, and eigenstructures are given below.

omax {P}
Design OmaxtP} I/Umax{P}
ILQ 221.1 0.00452

03 =0.0 19.571 0.05109
p3 =0.1 11.076 0.08350
p3 = 1.0 5.43854 0.18387

From an examination of the system and eigenstructure of these designs, it is
seen that true Dutch roll and roll modes have been obtained in each case. The
achievement of the desired performance and mode decoupling, as described by
the desired eigenvalues and eigenvectors, respectively, has been accomplished in
each design to some degree, particularly for the case of p; = 0.0. This design can
be considered to be strictly eigenstructure assignment design; achievement of the
desired eigenvalues and near achievement of the design eigenvectors should occur.
Note in Fig. 5.4 that for the p3 = 0.0 design, coupling effect of 8 on the roll
mode [ p and p is negligible. As p3 is increased, the achieved performance and
mode decoupling moves away from the desired. This phenomenon is seen in the
eigenstructures of each design as well as in Fig. 5.4. Namely, the time response of
the closed-loop system Dutch roll mode slows and the mode couplings increase.

The above mentioned table gives the value of on.{P} and the tolerable
uncertainty bound, m, for different designs. As expected, the norm of the
P matrix is decreased as the weight p; is increased. As om.{P} decreases, the
tolerable uncertainty bound (column 3) increases, thereby enhancing the stability
robustness of the closed-loop system to unstructured time-varying parametric
variations. Surprisingly, the pure eigenstructure assignment design (p; = 0.0)
increases the tolerable uncertainty bound by an order of magnitude over the ILQ
design. The design resulting from p; = 1.0 would be expected to give the best
stability robustness to unstructured time-varying parametric variations. Naturally,
the increase in stability robustness is at the expense of the speed of response of the
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system (performance). An engineering judgement would have to be made on how
much loss in performance could be tolerated for an increase in stability robustness.

Control Gain, Closed Loop, and the Eigenstructure for Robust Design The
resulting control gain matrix, closed-loop system, and eigenstructure for the case
of p3 = 0.0 is given below:

5.60 —0.275 0.00481 —0.989]
Koo = 5.17
00 [—4.71 0.359 —0.00815 1.1312 | >.17)
B —1.078 —0.957 0.174 0.1003 ][ B
P | 887.6 —46.92 0.405 —162.14 r (5.18)
p ~ | =0.001 0 —20.00 —200.00 ’
[p 0 0 1 0 L/ p
Eigenvalues: —10.00 £ ;10.00, —24.00 &+ j18.00
Eigenvectors:
B — [—0.00864 &+ j0.00912 0.02582 £ j0.02028
r — | 0.00089 + j0.00001 1.0+ 0.0
p— 1+;0.0 ’ —0.00000 £ ;0.00000
fp— —0.05 £+ j0.05 0.00000 £ j0.00000

The resulting control gain matrix, closed-loop system, and eigenstructure for the
case of p3 = 0.1 is given below:

3.19 —0.232 0.10718 0.1777 |

Ko1 = (5.19)
—1.63 0.299 —0.15998 —0.4656 |
B —0.837 —0.961 0.163 0.016157| [
P | 484.4 —39.49 18.596 36.255 r (5.20)
1? | —78.66 —4.59 —26.847 —289.56 '
[p 0 0 1 0 L/ p
Eigenvalues: —9.676 £ j8.175,-23.91 &+ j17.65
Eigenvectors:
B — [—0.01961 £+ j0.04805 0.02763 £ j0.01739
r— | 0.39894 &+ j0.60939 1.0+ ;0.0
p— 1+ ;0.0 ’ 0.10267 £ j0.52777

[ p — [—0.06029 £ j0.05095 0.00777 £ j0.01634
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The resulting control gain matrix, closed-loop system, and eigenstructure for the
case of p3 = 1.0 is given below:

Kio= 1.277 —0.172 0.10453 0.1223 (5.21)
0.925 0.2147 —0.15696 —0.2743
B —0.646 —0.967 0.163 —0.0144 B
r‘ _ | 16l.2 —29.28 1.816 —23.708 r (5.22)
p —11.1 —12.43 —27.39 142.03 p
Ip 0 0 1 0 Ip
Eigenvalues: —4.700 £ j2.416, —23.96 &+ j17.65
Eigenvectors:
B — [—0.07335+ j0.11990 0.02922 £ j0.01609
r— | 0.16285 % j0.68680 1.0+ ;0.0
p— 1+ ;0.0 ’ 0.01187 £ j0.86005

[ p— [—0.16829 £ j0.08650 0.01681 £ j0.02349

5.5 Exercises

Problem 5.1. Convince yourself that in the example on robust stability bounds with
Kronecker-based method, with the nominal closed-loop system stabilized by the
given control gain, the structured uncertainty matrices E;, E,, and E3 are as given
in the example.

Problem 5.2. Give careful thought and come up with application examples (not
academic examples) wherein the nominal system is time invariant, but the (bounded)
perturbations could be time varying, so that Lyapunov-based robustness bounds are
readily applicable to these problems, without raising the issue of conservatism.
Explain the meaning of those time-varying perturbations you come up with, in
practical terms.

Problem 5.3. Design a full state feedback robust controller for the “Balancing
the Broom” problem using perturbation bound analysis from both Problem A and
Problem B formulations. For Problem B formulation, assume your own reasonable
ranges for the uncertain parameters.

5.6 Notes and Related Literature

There are, of course, multitude of papers dealing with robust control design for
aerospace flight control problems, but to impart focus, we restricted our attention
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to state space based methods with real parameter variations. In this connection, a
detailed discussion on how the military specifications of aircraft can be interpreted
as real parameter perturbations is given in [15]. Of course, there is an abundance of
literature on frequency domain methods of robust stabilization of aerospace systems
including the book by Bates et al. [16].
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In this last chapter of the book, we briefly present few results on some topics related
to robust control of uncertain systems, not necessarily cast in the time domain
state space framework, as well as a recent emerging research direction related to
robust control of state space systems, namely, “eco-inspired” robustness analysis
and design. In that direction, for complete and full use of this book for any course
on robust control, in the Related Topics section, we review, very briefly, few popular
frequency domain-based methods such as u synthesis, H, control, Hs, control, and
mixed H,/Hso control, along with a brief mention of topics such as simultaneous
stabilization, LIAS and parameter-dependent Lyapunov functions, linear parameter-
varying (LPV) systems, robust control of matrix second-order systems, and finally
robustness of uncertain, sampled data time-delay systems. Then in the Emerging
Topics section, we present some preliminary research results on robustness and
robust control inspired by ecological principles and mention “resilient control” as
another emerging topic.

6.1 Related Topics: Frequency Domain Analysis and Design
Methods

In the frequency domain analysis and design methods, such as Hs, and p synthesis,
the starting point of discussion is the input/output relationship in Laplace domain in
the form of either transfer function (for Single Input, Single Output, SISO) systems
or transfer matrix G (s) (for Multiple Input, Multiple Output, MIMO) systems. Even
though the eventual analysis and design algorithms make use of the state space
realizations of those transfer function matrices, there is still a subtle difference
between frequency domain treatment and time domain treatment of the problem
formulation. In the direct time domain state space representation, the state space
vectors and matrices belong to the real vector space, whereas the transfer matrices
of frequency domain belong to the complex variable space. Thus all the matrix
manipulations being done in frequency domain framework assume the underlying

R.K. Yedavalli, Robust Control of Uncertain Dynamic Systems: A Linear State 163
Space Approach, DOI 10.1007/978-1-4614-9132-3_6,
© Springer Science+Business Media, LLC 2014
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matrices to belong to complex variable space. This is the reason why these methods,
when applied to the actual real parameter variation case, become conservative
because in this viewpoint real variables are viewed as special cases of complex
variables. Since this book’s objective is to highlight the direct time domain state
space methods with real parameter perturbations, the above mentioned frequency
domain methods are treated briefly in this chapter as “Related Topics.” It appears
as though, for some reason, the direct time domain state space framework research
never garnered its due respect and attention in the literature as much as the frequency
domain framework research, albeit, with LQR and Kalman filter topics being an
exception. It is indeed one of the reasons that prompted the author to undertake the
authorship of this book.

6.1.1 Structured Singular Value and ;. Synthesis

In this research, Structured Singular Value is denoted by . Its definition arises from
the following mathematical problem. In this connection, we borrow the material
from [1]. Given a matrix M € CP*4, what is the smallest perturbation matrix A €
C 7P in the sense of 6,4, (A) such that Det (I —M A) is equal to 0? Let this smallest
(infimum) norm of A be denoted by ¢, ,. It is known that [1]

Omin = 1/Umax(ju) (6.1)

Now consider the case of A matrix being structurally restricted. In particular,
consider the case when it is a “block diagonal” matrix, with two types of blocks:
(i) repeated scalar blocks and (ii) some full blocks. Let the ;" repeated scalar block
be of dimension r; xr; and let the j th full block be of dimension m; xm > assuming
that these dimensions all add up to the dimension n where A C C"*".

Then the Structured Singular Value is given by
/,LA(M)Z I/Olmm (62)

Notice that
p(M) = //L(M) = Umax(M) (6.3)

where p is the spectral radius of matrix M .

These upper and lower bounds are meant for complex uncertainty. For real
uncertainty, as pointed out clearly in [2], convergent upper and lower bound
algorithms for p exist, but these algorithms are exponential in time, making them
impractical for implementation for many application problems. The main point to
bring out here is that the yt synthesis tries to incorporate the real parameter variation
modeling error in a transfer function framework working with complex variable
analysis, in which real parameters are treated as special case of complex case.
For this reason, it is clear that there is considerable conservatism associated with
this viewpoint when this technique is applied to actual real parameter variation
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problem. Thus it can be safely said that the techniques given in the previous chapters
of this book address the real parameter variation problem more directly in time
domain state space framework, rather than frequency domain-based techniques like
W synthesis.

The application of Structured Singular Value to control systems with uncertainty
in the frequency domain and its utility in designing control systems for robust
stability and performance form the bulk of the literature on p synthesis, and this
research was pioneered by Doyle and his colleagues, and there are many excellent
textbooks which deal with this subject such as [1].

6.1.2 H, Control and H,, Control and Mixed H, and H, Control

The above mentioned topics are so popular that scores of books have been written
on those topics, almost to the extent of creating an impression that only those topics
constitute the robust control literature. For this reason, they are not elaborated in
this book. As mentioned before, one of the objectives of this book is to bring the
readership attention to the other direct time domain-based methods, such as those
discussed in the previous chapters of this book.

Strictly speaking, H, control and Hy control are nominal control design
methods, not robust control methods, per se. In fact, while LQR controller is known
to possess 60 degree phase margin and 6 dB gain margin, it has poor robustness
properties from real parameter variation point of view [3]. Furthermore, H,
controllers (LQG controllers) possess no guaranteed stability margins, as pointed
out in [1]. Similarly, strictly optimal H, controllers are difficult to obtain for large-
order practical systems even as a nominal design. In practice, only suboptimal
H, controllers are designed, and even those tend to be higher order controllers
even for small-order dynamic systems; see [4] for examples of case studies of Hoo
controllers for various application problems. The H,, controller is classified as a
robust control only because the (sub)optimized Hos norm provides a bound on
the tolerable unstructured uncertainty for stability of the perturbed system in the
frequency domain framework. However, for completeness sake, it is only proper
to briefly recall some of the fundamental concepts behind the above mentioned
popular literature. In a standard linear time-invariant dynamic system in state
space description considered throughout this book, the optimal control in the linear
quadratic regulator problem is obtained via the algebraic Riccati equation (ARE)
given by

PA+ATP—PBR'B"P+Q =0 (6.4)

where Q and R are symmetric positive-definite weighting matrices.
Then the optimal full state feedback control law is given by

u(t)y = —R'BTPx(t) (6.5)
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The closed-loop system matrix (A — BR™'BT P) is always known to be
asymptotically stable under the standard assumptions on controllability and
observability. This is well known as the LQR control.

If the full state is not available, then an observer-based feedback control law is
built where the estimator gain is formed along the lines of another ARE. Together
with the controller and estimator, this problem solution is popularly known as the
LQG solution.

In this LQR or LQG problem, we essentially minimize the “energy” of the
system, represented by the quadratic performance index consisting of the weighted
outputs (controlled variables) and the control variables (inputs). In mathematical
terms, we are minimizing the H, norm of the transfer function between the output
and exogenous sensor noise signal, with the control variable being a function of
the measurement signal. In the case of full state feedback, it is understood that we
assume all the states are available for measurement. Thus this framework of H;
norm minimization is well known as the H, optimal control problem.

On the other hand, around the 1980 time period, Zames [5] introduced an
optimal control problem formulation in which the so-called H, norm of the transfer
function between the output signal z(s) (in the Laplace domain transfer function
framework) and the exogenous noise signal w(s) was suggested to be minimized.
Conceptually, the Ho norm of the transfer matrix amounts to the maximum value
the transfer matrix could achieve. In a way the optimization’s aim is to achieve
a minimum value for the worst-case amplitude of the signal. Originally, this H
optimal control problem was researched in the frequency domain framework, but
later on, recently, the award-winning paper of Doyle, Glover, Khargonekar, and
Francis (popularly known as the DGKF paper [6]) gave the solution to a suboptimal
H, control problem in the form of solving a different-looking Riccati equation,
called the “central” Riccati equation. For simplicity in discussion and to compare it
with H, Riccati equation mentioned above, we reproduce the Riccati equation for
the suboptimal H, problem solution for full state feedback case. It is given by

PA+ ATP + P(y?EET —BBT)P +CTC =0 (6.6)

where the linear system is given by

X =Ax+ Ew+ Bu 6.7)
z=Cx (6.8)
y=x (6.9)
u= Ky (6.10)

where the (sub)optimal control gain is given by F = —B” P. If (and only if) there
exists a y that produces a positive semidefinite solution P for the above central
Riccati equation, then with this (sub)optimal control, the H, norm of the transfer
matrix between z and w is guaranteed to be < y.
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Notice that the Ho Riccati equation is slightly different from the H, Riccati
equation, in the sense that the weighting matrix in the nonlinear term does not
possess any clear definiteness property. Thus in contrast to the H, case, there is
no guarantee that such a solution exists. It is also interesting to observe that as y
tends to 0o, the Ho Riccati equation approaches the H» Riccati equation. Thus in
the iteration procedure for solving the above Riccati equation, a good starting value
for y would be a large value representing oco.

Another important point to note is that this y would also serve as a stability
robustness bound for unstructured uncertainty for linear uncertain systems which
was the subject of Chap. 2 of this book.

Then in mixed H, and H, problem, the idea is to find a controller that satisfies
both an Hy, norm constraint and an H, norm constraint. In other words, the
desire to have some guaranteed performance (H, norm sense) along with some
stability robustness guarantee (Hy, bound) prompts this mixed H,/H o, framework.
For research on this problem formulation, the reader is referred to [7, 8] and the
references therein.

6.1.3 Simultaneous Stabilization

In transfer function-based research, one topic that attracted considerable amount
of attention is the “simultaneous stabilization” problem, introduced in references
[9, 10]. Given a discrete set of plants P,(s), Pi(s), P2(s),....Px(s), does there exist
a single compensator C(s) that stabilizes all of them? In their paper, Saeks and
Murray [9] develop geometric conditions for simultaneous stabilization and state
that their solution is “mathematical in nature and not intended for computational
implementation.” The subsequent work of Vidyasagar and Viswanatham [10] is
concerned with a Multiple Input, Multiple Output (MIMO) generalization of some
of the SISO results of [9]. To this end, they prove that the problem of simultaneously
stabilizing (k + 1) plants is equivalent to the problem of simultaneously stabilizing
k plants with the added requirement that the compensator itself be stable. As far as
computational criteria are concerned, the results of [10] imply a complete solution
for the two-plant case, i.e., upon reducing the two-plant problem to that of finding a
stable compensator for a single plant, one can apply the results of Youla, Bongiorno,
and Lu [11]. To illustrate, if P,(s) and P;(s) are strictly proper SISO transfer
functions with P, being stable, then the results of [10] lead to the requirement that
the “difference plant” P;(s)— P, (s) be stabilizable via a stable compensator. Hence,
according to [11], the problem reduces to checking for satisfaction of the parity
interlacing property. Namely, we examine the pole-zero pattern of P (s)— P,(s) and
require that no zeros on the nonnegative real axis lie to the left of an odd number of
real poles, multiple poles counted according to their multiplicity.

It is also shown in [10] that given two nxm plants, one can generically
stabilize them simultaneously, provided that either n or m is greater than one. This
result is further generalized in [12], where it is shown that general simultaneous
stabilizability of r nxm plants is guaranteed if max(n, m)is > r.
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In view of the results of [10], the issue of finding a computationally feasible
test for simultaneous stabilizability for three or more plants was raised again in a
paper by Emre [13]. In his work, SISO plants are considered and the problem of
finding a computational test is solved for the special case obtained by imposing
a constraint that all k + 1 closed-loop systems must end up having the same
characteristic polynomial. In [14] the authors derive sufficient conditions under
which a family of SISO systems can be simultaneously stabilized by a proper (or
strictly proper, if desired) stable compensator. Regularity conditions are imposed
on the plant family coefficients, and it is assumed that the plant family is minimum
phase, with one sign high-frequency gain. A computation procedure for constructing
a robust compensator is also provided. These results have been further generalized
for MIMO systems in [15]. In [16] the minimum phase requirement is relaxed
and it is shown that there exist certain classes of non-minimum phase systems
that can be simultaneously stabilized by a single compensator. Further research on
simultaneous stabilization of uncertain systems is reported in [17-19].

6.1.4 LMis and Parameter-Dependent Lyapunov Functions

It may be recalled that in Chaps. 2 and 4, robust stability analysis and robust
stabilization via “quadratic stability” concept were thoroughly discussed. In that
discussion, the results were limited to the existence of a single Lyapunov function
to be able to guarantee quadratic stability under perturbations. In this section,
we report later research in that area using the concept of parameter-dependent
Lyapunov functions and the associated Linear Matrix Inequality (LMI) approach.
This approach has been extensively researched and is covered in detail in many other
textbooks and monographs. For this reason, to avoid duplication, these approaches
were not included in the fundamentals covered in Chap. 2 and 4. In keeping with
the objective of keeping this book as a textbook for first-year graduate students,
these advanced concepts were not included in those chapters. However, because of
the importance and abundance of literature on this subject, we briefly mention this
research in this section and provide few important references for further interest in
this subject.

An excellent book with tutorial value is by Boyd et al. [20]. Few of the early
papers on this subject are those by Bernstein and Haddad and by Feron et al. [21-23]
which introduce the idea of parameter-dependent Lyapunov functions for analysis
and synthesis of robust control systems. Few other important ideas which connect
PDLFs to LMIs are presented in a series papers in [24-29].

6.1.5 Linear Parameter-Varying (LPV) Systems Control

There is an active area of research labeled as “control of Linear Parameter-Varying
(LPV) systems.” Conceptually, this area of research has a lot of resemblance
and connection to the robust control of uncertain systems with real parameter
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uncertainty. However, when we get into the details, there are significant differences.

First of all, the LPV system research stemmed from the gain scheduling technique

used in nonlinear systems control [30]. The basic idea behind LPV systems control

is to first transform a nonlinear system into an equivalent linear parameter-varying

system, where the “parameter” is “state dependent” varying within a given region £2.
More precisely, consider nonlinear systems given by

X = f(x,u) (6.11)

which then is formulated (or transformed) as a linear parameter-varying system
given by
x = A(p)x + B(pu,.,,p € 2 (6.12)

where p is the state-dependent parameter vector within a region §2. Typical
important properties of an LPV description of a nonlinear system in the gain
scheduling paradigm are

(1) The existence of a relationship between the parameter and the state, i.e, p =
g(x), such that the LPV description and the nonlinear system description are equal
(ideally), i.e.,

f(x,u) = A(p)x + B(p)u,,,p € £2 (6.13)

(ii) The g(x) depends only on the measured signals.

(iii) The relationship function g(x) is known.

When the parameter (scheduling parameter) p is a true exogenous signal, then the
above system is referred to as an “LPV” system, whereas if it contains the states
or output, it is called a “quasi-LPV” system. This distinction is not followed that
rigorously in the literature. Note that it is possible to write the A(p) matrix as

p
Alp) = A, + Y Aipy (6.14)

i=1

where
pel =[p:p <pi < pi (6.15)

This is where the resemblance to the uncertain system with time-varying uncertain
real parameters comes into picture as this is exactly how we described the uncertain
system in the robust stability analysis chapter.

However, LPV control is significantly different from the robust control of uncer-
tain systems. The major difference lies in the assumption that the real parameter
uncertainty in robust control literature is not measurable, whereas the (scheduling)
parameter in LPV systems is measurable in real time. Also the requirement on the
parameter p of the LPV system is that it needs to capture the plant’s nonlinearities
well and/or that it should vary sufficiently slowly or with some restrictions on its
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rate. Thus the LPV control design is significantly different from robust control
design.

However this is not to say that there are no connections between the two
frameworks. Especially in the analysis stage, there are connections through the use
of parameter-dependent Lyapunov functions. Most of the LPV systems analysis and
synthesis studies are carried out by using parameter-dependent Lyapunov functions.
For extensive literature on this topic, the reader is referred to the many interesting
papers some of which we refer here [31-33].

6.1.6 Robust Control of Matrix Second-Order Systems

It is well known that many mechanical and structural dynamic systems are well
modeled as matrix second-order (MSO) systems, described by the equation

Mi+Di+Kx=F (6.16)

where x € R”" is the state vector and the square matrices M, D, and K are
typically labeled as the mass matrix, damping matrix, and the stiffness matrix.
For conservative systems, typically arising in structural dynamics field, these
are symmetric, positive-definite matrices. But there exist applications, such as in
rotating machinery, aeroelastic systems, and systems involving dynamics from
interdisciplinary fields as in smart structure control; the above matrices could be
general, nonsymmetric matrices. In that situation, we represent the MSO systems as

M+L)i+D+G)i+(K+C)x=F (6.17)

where L, G, and C are skew symmetric matrices. In mechanical systems, the G
matrix captures the gyroscopic effects; the C matrix represents the circulatory
effects. Typically, MSO systems are converted to standard state space systems,
and stability performance studies are carried out on these state space systems.
However, it is not always possible to do this and thus carrying out stability and
performance studies directly in the MSO framework attracted considerable research
effort as it has many advantages. These details are discussed in [34, 35] and the
references therein. In addition, uncertainty in MSO systems was also addressed in
[36]. For example, in [36], results on robust controller design for MSO systems with
structured uncertainty were reported. More research in this area is warranted in the
future.

6.1.7 Networked Control Systems: Robustness of Distributed,
Sampled Data Time-Delay Systems

Another area of active research is the broad area of networked control systems
and distributed control with communication constraints such as packet dropouts
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and time delays. In this scenario, one needs to consider the robustness aspects of
sampled data, time-delay systems. Preliminary attempts at analyzing the robustness
and developing robustness bounds for sampled data, time-delay systems under
distributed control architectures with application to turbine engine control are
reported in [37].

6.2 Emerging Topic: Robust Control Inspired by Ecological
Principles

This emerging research topic addresses the issues of qualitative stability, a topic
of interest in the general field of life sciences (especially in ecology), and robust
stability of linear interval parameter systems, a topic of interest in engineering
sciences, and proposes to develop a synergy between these two concepts by making
qualitative (or sign) stability concept as a useful tool in analyzing the robust stability
of interval matrices. It may be noted that there are many conceptual differences in
the qualitative (sign) stability literature of ecology reviewed here and the qualitative
(sign) stability literature available in the engineering sciences. Thus the main
emphasis of the research is to highlight these differences and bring out usefulness
of this concept from ecology to applications in engineering sciences. In this section
we first review the fundamentals related to “qualitative (or sign) stability” including
the necessary and sufficient conditions for qualitative stability. Then the problem of
robust stability analysis of interval matrices is addressed, and then using the tool
of “qualitative stability,” a simple sufficient condition for robust stability of a class
of interval matrices is obtained. Then linear uncertain systems in which the interval
parameters enter nonlinearly into the system matrix are considered, and again using
the qualitative stability of ecology ideas, sufficient conditions on the allowable
bounds on these parameters are obtained. It is concluded that qualitative stability
concept from ecology (of life sciences) can be further exploited to solve many other
interesting problems in engineering/mathematical sciences.

6.2.1 Introduction and Perspective

The fields of population biology and ecology deal with the analysis of growth
and decline of populations in nature and the struggle of species to predominate
over one another. Many mathematical population models were proposed over the
last few decades with the most significant contributions coming from the work
of Lotka and Volterra. The predator-prey models of Lotka and Volterra, studied
extensively by ecologists and population biologists, consist of a set of nonlinear
ordinary differential equations, and the stability of the equilibrium solutions of
these models has been a subject of intense study for students of life sciences. For
example, many standard textbooks on mathematical models in biology such as [38]
cover these issues. These small perturbations from equilibrium can be modeled as
linear state space systems where the state space plant matrix is the “Jacobian,” and
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it is important to analyze the stability of these state space (Jacobian) matrices. For
communities of five or more species, the order of these matrices is high enough
to cause difficulties in assessing the stability. For this reason, to circumvent these
difficulties, alternative concepts of reduced computation have been proposed, and
one such important concept is that of “qualitative (or sign) stability.” The technique
of “qualitative stability” applies ideally to large-scale systems in which there is no
quantitative information about the interrelationship of species or subsystems. The
motivation for this method actually came from economics. The paper by economists
Quirk and Ruppert [39] was later followed by further research and application
to ecology by May [40] and Jeffries [41]. Note that in a complex community
composed of many species, numerous interactions take place. The magnitudes of the
mutual effects of species on each other are seldom accurately known, but one can
establish with greater certainty whether predation, competition, or other influences
are present. This means that technically in the Jacobian matrix, one does not know
the actual magnitudes of the partial derivatives, but their signs are known with
certainty. Thus the “qualitative” information about the species is represented by the
signs +, -, or 0. Thus the (i,j)th entry of the state space (Jacobian) matrix simply
consists of signs +, or - or 0, with the + sign indicating species j having a positive
influence on species i, - sign indicating negative influence, and 0 indicating no
influence. An alternative visual representation of this situation can also be given
by a “directed graph” or simply a “digraph” as shown in Fig. 6.1. For example,
with respect to the “digraph” of Fig. 6.1a, the corresponding sign pattern matrix is
given by

0+ +
A=[-00
-0 =

Similarly, the sign matrix corresponding to Fig. 6.1b is given by

[000+0 0]
0000+0
00000+
—00—0 +
0—-0+4+—-0
[ 00—0 + — |

and finally the sign matrix for Fig. 6.1c is seen to be given by



6.2 Emerging Topic: Robust Control Inspired by Ecological Principles 173

Fig. 6.1 Signed directed graphs(digraphs) equivalent to the matrix representation of sign patterns.
(a) Digraph of the 3 X 3 sign matrix (b) Digraph of the 6 X 6 sign matrix (¢) Digraph of the 5 X 5
sign matrix

0-000
+0-00
A=10+--0
00+0-—
000+0

The question then is whether it can be concluded, just from this sign pattern, that
the system is stable or not. If so, we say the system is “qualitatively stable.” In
some literature, this concept is also labeled as “sign stability.” In what follows, we
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use these two terms interchangeably. It is important to keep in mind that systems
(matrices) that are qualitatively (sign) stable are also stable in the ordinary sense.
That is, qualitative stability implies Hurwitz stability in the ordinary sense of
engineering sciences. In other words, once a particular sign matrix is shown to
be qualitative (sign) stable, we can insert numerical values of any magnitudes in
those entries, and for all those values, the matrix is automatically Hurwitz stable.
This is the most attractive feature of a sign stable matrix. However the converse is
not true. Systems that are not qualitatively stable can still be stable in the ordinary
sense for certain appropriate magnitudes in the entries. From now on, to distinguish
from the concept of “qualitative stability” of life sciences literature, we use the label
of “quantitative stability” for the standard Hurwitz stability in engineering sciences.
It is important to note that the general concepts of “qualitative stability” and “sign
stability” are used in engineering sciences literature also. For example, the book [42]
briefly discusses sign stability in the context of matrix diagonal stability in systems
and computation and provides few other references within the book. However, these
references touch upon the sufficient conditions for sign stability and do not allude to
the color test conditions which are part of the “necessary and sufficient” conditions
provided in the ecology literature. Also, the “qualitative stability” concept discussed
in the nonlinear systems literature of engineering sciences is not same as the
qualitative stability of ecology because in the former case the considered systems
include time-varying systems, whereas in the latter case, only strict real, linear time-
invariant systems are considered. For this reason, the qualitative (sign) stability
literature from ecology presents “necessary and sufficient” conditions in terms of
ecological terms involving the color test, and there is no equivalent test reported in
the engineering sciences literature. In fact one of the contributions of this research
is to bring out this color test to the engineering sciences community and interpret
this color test in matrix notation so that it can be easily used by the engineering
sciences community. Thus, in this research, we thoroughly delve into the full set
of “necessary and sufficient” conditions (along with the “color test”) and state
them purely in terms of standard matrix theory notation. Thus the major difference
between literature of “qualitative (sign) stability” of ecology and that of engineering
sciences is that in the former case, one can decide “a priori,” using the necessary
and sufficient conditions stated in that literature, what “sign pattern” matrices of a
given order are sign stable or not. Thus one can store “a priori” all the 3 by 3
sign stable matrices, all the 4 by 4 sign stable matrices, and so on. This type of “a
priori” knowledge of the role played by the different signs of a given order matrix is,
according to this author, not currently available in the current engineering sciences
literature. Hence to emphasize these differences in the use of the phrase “qualitative
(sign) stability” in engineering sciences and ecology, henceforth, we may initially
use the phrase “qualitative (sign) stability of ecology” but later on, for brevity, may
drop the words “of ecology,” but it is understood that we are implying the same.
On the other hand, in the engineering/mathematical sciences, the aspect of
“robust stability” of families of matrices has been an active topic of research for
many decades as thoroughly discussed in the previous chapters of this book. This
aspect essentially is manifested in “uncertain linear dynamic systems” with real
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parameter variations and arises in many applications of systems and control theory.
When the system is described by linear state space representation, the plant matrix
elements typically depend on some uncertain parameters which vary within a given
bounded interval. An “interval matrix” is a matrix whose elements vary in given
intervals. Consider the “interval matrix family” in which each individual element
varies independently within a given interval. Thus the interval matrix family is
denoted by

Ae[AE, AY] (6.18)

as the set of all matrices A that satisfy
(A5);; < Aij < (AY),; for every i.j (6.19)

Clearly, we can form the so-called “vertex” matrices, which are nothing but the
matrices with each element taking on the “end” points of the “interval.” Thus
there are finite “vertex” matrices. In fact, if there are r elements varying, there
are 2" “vertex” matrices. Assuming these “vertex” matrices are Hurwitz stable
(i.e., quantitatively stable), then the question of interest is whether all the matrices
belonging to this interval matrix family are also Hurwitz stable or not. This issue
has attracted considerable amount of research in mathematical sciences.

The objective of this research is to apply the concepts behind “qualitative stability
of ecology” approach to solve the problem of “robust stability” of a class of
interval parameter matrix families, thereby achieving a marriage between ideas
of life sciences and mathematical sciences. This is in true spirit of encouraging
collaborative effort between researchers in life sciences and mathematical sciences.
With this motivation and backdrop, this section is organized as follows. We first
review the conditions for “qualitative (sign) stability” along with few examples to
illustrate the application of these conditions. We then state the problem formulation
of checking the robust stability of a class of “interval matrices” (i.e., class of
matrices in which the interval parameters enter linearly into the entries of the
matrix). We then apply the concepts of qualitative stability to analyze the robust
stability of this class of interval matrices and offer further insight into the interval
ranges over which robust stability can be guaranteed. We then also consider interval
parameter matrices in which the parameters enter nonlinearly into the entries of the
matrix and apply the qualitative stability ideas to obtain bounds on these interval
parameters. We conclude the discussion on this emerging topic by elaborating on
the possible avenues for extending these ideas to various problems in engineering
sciences.

6.2.2 Review of Conditions for Qualitative (Sign) Stability

We now present the necessary and sufficient conditions for qualitative stability as
given by May [40] and Jeffries [41]. Let A be the matrix with entries a;;. Then the
following are “necessary” conditions for “sign stability”:
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M1. a;; <Oforalli.

M?2. a;; <0 for at least one i.

M3. ajjdji = 0 for all 175_]

M4. ajjaji...a4-a,, = 0 for any sequences of three or more distinct indices
i,j,k,.q,r.

M5. detA #0.

In ecological and population dynamics terms, these conditions can be interpreted
as follows:[38]:

M1. No species exerts positive feedback on itself.

M?2. Atleast one species is self-regulating.

M3. The members of any given pair of interacting species must have opposite
effects on each other.

M 4. There are no closed chains of interactions among three or more species.

M5. There is no species that is unaffected by interactions with itself or with other
species.

Again as discussed in [38], if the information is given in terms of directed signal
graphs, then the following conditions are equivalent to the above conditions:

M1. No + loops on any single species (i.e., no positive feedback)
M?2. Atleast one - loop on some species in the graph

M3. No pair of like arrows connecting a pair of species

M4. No cycles connecting three or more species

M5. No node devoid of input arrows

Note that the above conditions are only necessary conditions for qualitative
stability. However Jeffries [41] developed “necessary and sufficient” conditions
for qualitative stability by devising an auxiliary set of conditions, which he called
the color test, that replaces condition M 2. Before describing the color test, it is
important to gather some definitions as follows:

Definition 1. A predation link is a pair of species connected by one + line and
one - line.

Definition 2. A predation community is a subgraph consisting of all interconnected
predation links.

If one defines a species not connected to any other predation link as a trivial
predation community, then it is possible to decompose any graph into a set of
distinct predation communities. For example, the systems shown in Fig. 6.1 have
predation communities as follows: (a) (2,1,3); (b) (H1, P1), (H2,P>), (H3, P3); and
() (1,2,3,4,5).

The following color scheme constitutes the test to be made. A predation
community is said to fail the color test if it is not possible to color each node in
the subgraph black or white in such a way that:

1. Each self-regulating node is black.
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2. There is at least one white point.

3. Each white point is connected by a predation link to at least one other white
point.

4. Each black node is connected by a predation link to one white node that is also
connected by a predation link to one other white node.

Jeffries [41] proved that for qualitative stability (i.e., asymptotic stability with
only signs as elements), a community must satisfy the main conditions M 1,M 3,M 4,
and M5 and in addition must have only predation communities that fail the color
test.

Since these necessary and sufficient conditions for “qualitative stability” are
given in ecological (population dynamics) terms, it takes a little effort to state
them in matrix theory notation. Out of these, main conditions M1,M2,M3,M4,M5
are already amenable to matrix theory notation, but the color test was stated
in ecological terms. As mentioned earlier, even though the book [42] discusses
qualitative stability conditions briefly in the context of matrix diagonal stability,
the conditions discussed are only sufficient conditions, and it does not allude to the
role played by color test in the necessary and sufficient conditions. So this author
transformed these “color test” conditions in matrix theory notation as follows. As far
as this author’s literature search is concerned, till now there was no evidence of these
qualitative stability conditions, along with the color test, appearing in engineering
sciences literature, in the standard matrix theory notation. Along with the main result
of this research on robust stabilization using sign stability, this in itself is considered
to be another contribution of this research.

6.2.2.1 Color Test Conditions in Terms of Matrix Element Notation

First of all, to begin testing the “necessary and sufficient” conditions (along with
the “color test”), it is recommended that the main necessary conditions M1 through
M 5 be tested. Fortunately these conditions are already in matrix theory notation. It
needs to be emphasized that we go to the “color test” only after satisfying the main
conditions M1 through M 5. Note that M 4 does not apply to 2 by 2 matrices. Note
that if all the diagonal elements are negative, there is no need to go to the “color
test.” It automatically “fails.”

To state the “color test” conditions in matrix theory notation, we treat the entire
matrix as the “community,” which includes all “trivial predation communities” as
well as “the regular predation communities” as defined in [41]. With this setup, we
can come up with a programmable set of conditions for the “color test” as follows:

Note that at the beginning of “color test,” it is understood that, as mentioned
before, main conditions M1 through M5 are already tested. We invoke the “color
test” only after assuming that these main conditions are satisfied:
ctl. Each (i, i) element that is negative is a black node. Let us denote these black

node elements as ay, »;. (Note that the case of no negative elements does not lead

us to the “color test.”)

ct2. Each (i,7) element that is zero is a white point. Let us denote these white
node elements as a,,; ,,;. Passing this condition of the color test implies there is
at least one white node (i.e., there is at least one diagonal element that is zero).
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If there are no zero elements on the diagonal, it implies that this condition (and
thus the “color test”) failed.

ct3. Form all products of the form a,; ,,ja j i . Passing this condition of the color
test implies at least one of these products is negative. If there is only one white
node, in which case there is no indicated product possible, then it implies that
this condition (and thus the “color test”) failed. Similarly, if there is only one
product possible (like when there are two white nodes),then that product being
negative constitutes passing this condition of the color test.

ct4.  Form all products of the form ay; ,,; @, »,; . Passing this condition of the color
test implies that if, for each fixed bj black node, the product ap;iawip; is
negative, then another product ap; i awk »; 18 also negative for some wk # wi.
If there is only one product possible, then passing this condition implies that this
product is negative. If the products formed under this c74 condition are all zero,
or all negative, it implies passing this condition.

6.2.2.2 Brief Discussion on Qualitative Stability Conditions
Case I: n =2: For this case, we need to first test the main conditions M1,M 2, M 3,
and M 5 as M 4 does not apply to this case. It is relatively easy to form and store
all the 2 by 2 matrices which are sign stable. Few example matrices that are sign
stable for this case are
A [ 0+ }

a=[27]

In fact, out of the 81 possible sign combination matrices, eleven sign pattern
matrices are known to be qualitative stable. Currently, a computer algorithm is
available to store all possible sign stable 2 by 2, 3 by 3 and 4 by 4 matrices.

Case Il: n > 3: It is interesting to analyze these necessary and sufficient condi-
tions for checking qualitative stability for this case. Firstly, it is clear that if
all the diagonal elements are negative, color test fails immediately, and we can
simply focus on the main conditions M3,M 4, and M5. It is also interesting
to observe that to satisfy the main condition M 4, it is necessary to have some
zero elements in the matrix. Thus if a matrix has no zero elements at all,
we can immediately abandon the use of qualitative stability concept. However
by the same token, it is useful to realize that achieving zero elements in the
matrix increases the chance of satisfying qualitative stability conditions and these
conditions give us some guidelines as to which elements need to be “zeroed”
to achieve qualitative stability. Finally, it is clear that these qualitative stability
conditions nicely “expose” the role of each element in the quantitative stability
analysis.

and



6.2 Emerging Topic: Robust Control Inspired by Ecological Principles 179

The test for “sign stability” of a given matrix can be illustrated best with the help
of examples.

6.2.2.3 Examples lllustrating “Sign Stability” of a Matrix

In this section, we illustrate the notion of “qualitative (sign) stability” of a matrix by
interpreting the above necessary and sufficient conditions in terms of matrix element
notation and then decide whether that given matrix is qualitative stable or not.

Example 1. Let us consider the following 3 by 3 sign matrix, given in [38]:

0+ +
A={-00
-0 —

First, let us test the necessary conditions M1,M2,M3,M 4, and M 5. Since a;; and
ay are zero and as; is negative, conditions M'1 and M 2 are satisfied. Note that the
product ajxa,; is negative. Similarly aj3as3; is negative. Finally ay3as; is zero. So
condition M 3 is satisfied. Next notice that aj»az3as; is zero. Similarly ajzassas;,
a»1a13asy, A»3az1dz, Az1d2dss, and aspariags are all zero, and thus condition M 4
is satisfied. It is easy to observe that det A is not zero and thus condition M5 is
satisfied as well.

Now let us look at the “color test.” Note that we have only one self regulating
node, namely, as3. Thus node (3,3) is black and nodes (1,1) and (2,2) are white.
Thus there are two white nodes. These observations up to this point pass conditions
ctl and ct2 of the color test. There is one predation community, namely (1,2,3),
with two predation links ((1,2);(2,1)) and ((1,3);(3,1)). So we form the product
aipaz; which is already seen to be negative. Thus condition ct3 of color test passes.
Finally, for testing condition ct4, we form the products a3; a3 and aszya,; out of
which the former is negative but the latter is zero. That means condition cz4 is not
satisfied because the black node (3,3) is not connected to one of the white nodes
(2,2) (because a3 = azy = 0). That means this matrix “fails” the color test. Thus
we can conclude that the above matrix is qualitative stable.

Note that by the above logic, the matrix with the signs of first row and column
interchanged, namely, the matrix

0 ——
A=]+4+00
+0—

is also qualitative stable.

In fact, using the above logic, all the 3 by 3 matrices which are sign stable are
determined a priori and stored by the author. It turns out that there are approximately
in the range of 300 matrices (out of the 19683 sign combination matrices possible)
that are qualitative stable. For brevity, they are not presented here. It is interesting
and amazing to realize that among these 300 (and plus) sign stable matrices, we
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can substitute any numerical values for the magnitudes of those entries and be
guaranteed Hurwitz stability without the need for any computations! This is where
the strength of the sign stability of ecology lies.

Example 2. Let us consider the following 5 by 5 sign matrix, given in [38]:

0-000
+0-00
A=10+--0
00+0-—
000+0

This matrix satisfies main conditions M 1 through M 5. In addition, it also passes the
color test. Note that in condition c¢3 for this matrix, products a4 a4; and a;5 as
and a4 a4 and ays as are all zero and products aj, a»; and ass as4 are negative.
For condition c#4 for this matrix, product a3; a3 = 0; product as; a3 is negative;
product as4 a4z is also negative; and product ass ass is zero, thereby passing the
“color test.” From these, it can be concluded that this matrix is not qualitative stable.

Example 3. However, it is amazing to note that if, in the above matrix, we simply
interchange the (1,1) element and the (3,3) element and consider the matrix given
by [42]

—-—000
+0-00
A=]10+0-0
00+0-—
000+0

then suddenly, this matrix becomes “sign stable”’! This matrix, while satisfying the
main conditions M1 through M 5, “fails” the color test. That is because in condition
ct4 for this matrix, product aj, a; is negative, whereas products a3 as; and a4
as) and a5 as; are all zero, thereby “failing” the “color test.” From these, it can be
concluded that this matrix is qualitative stable.

Example 4. Let us consider the following 6 by 6 sign matrix, given in [38]:

[000+0 0]
0000+0
00000 +
—00—0 +
0—-0+4+—-0
[ 00—0+ — |
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This matrix satisfies main conditions M'1,M 3,M 5, but does not satisfy condition
M 4. So there is no need to even go through the color test. It can thus be concluded
that this matrix is not qualitative stable.

6.2.3 Robust Stability Analysis of a Class of Interval Matrices

In the mathematical sciences, the aspect of “robust stability” of families of matrices
has been an active topic of research for many decades. This aspect essentially arises
in “uncertain linear dynamic systems” with real parameter variations and arises in
many applications of systems and control theory. When the system is described
by linear state space representation, the plant matrix elements typically depend on
some uncertain parameters which vary within a given bounded interval. Consider
the “interval matrix family” in which each individual element varies independently
within a given interval. Thus the interval matrix family is denoted by

Ae[AL, AY] (6.20)

as the set of all matrices A that satisfy
(Ah);; < Ay < (AY),; for every i, j (6.21)
Now let us consider a special “class of interval matrix family” in which for each

element that is varying, the lower bound, i.e., (AL),»]-, and the upper bound, i.e.,
(AY), ;» are of the same sign. As an example, consider the interval matrix given by

0 apais
A= an 0 0
a1 0 as

with the elements a», a13, a»1, a31, and a33 being uncertain varying in some given
intervals as follows:

2<ap =<5 (6.22)
l<apz=<4 (6.23)

=3 <ay =<-1 (6.24)
—4<ay <=2 (6.25)
—5 <az <05 (6.26)

Qualitative Stability as a “Sufficient Condition” for Robust Stability: It is
clear that “qualitative stability” concept widely used in ecology and population
dynamics is an extremely interesting and useful technique. Judged from the standard
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quantitative stability of matrices encountered in engineering sciences, it may be
said that “sign stability” is a very restrictive and conservative type of concept.
However, the main point of this research is to put forth a viewpoint that advocates
using “qualitative stability” concept as a means of achieving “robust stability” in the
standard uncertain matrix theory and offer it as a “sufficient condition” for checking
the robust stability of a class of interval matrices. Let us illustrate this argument with
the following examples.

Example 1. Consider again, the same “interval matrix” considered before in the
introduction of this section.

Once we recognize that the signs of the interval entries in the matrix are not
changing (within the given intervals), we can form the sign matrix. The “sign”
matrix for this interval matrix is given by

0+ +
A=[-00
-0 =

The above “sign” matrix is shown to be “qualitative (sign) stable” in the previous
section. Thus we can conclude that the above interval matrix is robustly stable in
the given interval ranges. If the “robust stability” of this “interval matrix” is to
be ascertained by the methods of robustness theory of mathematical sciences, one
needs to resort to the “extreme point” solution offered by the author in [43] which
would have been computationally expensive, because it involves first checking
the Hurwitz stability of the 2° = 32 “vertex” matrices and then following the
algorithm to check the virtual stability of the 32 KN matrices in the higher-
dimensional “Kronecker Lyapunov” matrix space. But in the above matrix, once
we realize that the sign of the matrix entries is not changing within the given
intervals, we can readily apply the “qualitative stability” concept and conclude that
the above “interval matrix” is “robustly stable,” because with only signs replacing
the entries, we observe that the above matrix is Hurwitz stable irrespective of the
magnitudes of those entries! Thus we have established the “robust stability” of the
entire “interval matrix family” without resorting to any algorithms related to robust
stability literature. Incidentally, if we do apply the “vertex algorithm” of Yedavalli
[43] for this problem, it can be also concluded that this “interval matrix family” is
indeed Hurwitz stable in the given interval ranges.

In fact, more can be said about the “robust stability” of this matrix family using
the “sign stability” application. This matrix family is indeed robustly stable, not
only for those given interval ranges above, but it is also robustly stable for any
large “interval ranges” in those elements as long as those interval ranges are such
that the elements do not change signs in those interval ranges. Thus elements ai;
and a3 can vary along the entire positive real line, and elements ay, as;, and ass3
can vary along the entire negative real line simultaneously! In other words, if this
matrix were the “plant” matrix for a linear state space system, that particular linear
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system is “enormously robust” for those specific “sign-preserving” variations in the
elements of that matrix. It could not have been possible to conclude this way but for
the usefulness of the “sign stability” concept.

Example 2. Consider the interval matrix given by

aip aiz iz dig
an A 0 O
asy 0 ass 0
ay 0 0 ay

with the elements a;; above being uncertain and varying in some given intervals as
follows:

—5<a; -2 (6.27)
1<ap<4 (6.28)
0.4<a;3<35 (6.29)
2<ay <3 (6.30)

3 <ay < -1 (6.31)
—4<an<-15 (6.32)
—4<a3 <-2 (6.33)
27 <ax<-1 (6.34)
-3 <ay <-08 (6.35)
—5<au <-05 (6.36)

Again, recognizing that the signs of the interval entries in the matrix are not
changing (within the given intervals), we can form the sign matrix, which for this
specific matrix is given by

+++
——00
~0-0

By applying the conditions for “qualitative (sign) stability” of this matrix, it can
be concluded that this matrix is “qualitative stable.” Hence it can be concluded
that the above interval matrix is Hurwitz stable in the given interval ranges. Again,
just as the previous problem, we can even conclude that the above interval matrix
is “enormously robust” since it is Hurwitz stable for all arbitrarily large “sign-
preserving” interval ranges.
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Example 3. Finally, consider the “interval matrix” given in [44],

an 0 O
A= 0 ar dr3
0 as asz

with the elements aj, ax, a3, and @33 being uncertain varying in some given
intervals as follows:

—2.4780 < a;; < —1.4471 (6.37)
—0.0518 < az, < —0.0194 (6.38)
2.0 < as; < 3.4370 (6.39)

ap = —0.7115 (6.40)

—0.0026 < az; < —0.0012 (6.41)

Again as before, we observe that the signs of the interval entries are invariant. So
the “sign” matrix for this interval matrix is given by

~00
A=|0-+
0— —

The above “sign” matrix fails the color test because there are no white nodes. It
satisfies all the main conditions M1,M3,M4,M 5. Thus it is “qualitative (sign)
stable.” Thus we can conclude that the above interval matrix is robustly stable in the
given interval ranges, which is also the conclusion reached in [44]. Not only is this
interval matrix Hurwitz stable within the given interval ranges, it is “enormously
robust” for all “sign-preserving” interval ranges.

The above examples clearly demonstrate that the “qualitative stability” of
ecology concept is very useful in assessing the robust stability of a class of interval
matrices. Thus this is a situation of “life sciences” research helping “mathematical
sciences” research! This is the beneficial “marriage” this research attempts to
convey.

6.2.4 Robust Stability Analysis of Matrices with Nonlinear
Variations in Interval Parameters

In this section, we consider another class of interval parameter matrices, namely,
those in which the interval parameters enter nonlinearly into the entries of the
matrix. Consider the following popular example discussed in [42] in the context of
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matrix diagonal stability in systems and computation. The dynamics of the particular
mechanical system is written in state space form given by

X() = A(w)x(t) (6.42)

where x(¢) € R* is the state vector consisting of the four state variables, namely,
X| =X, X =X, x3 =y, and x4, = y. Note that the entries of the above A matrix
consist of elements as described below:

0 1 0 0
w?—1 —1 0 2w
0 0 0 1
0 —2ww-1-1

Alw) =

Thus the angular velocity w is considered the perturbation parameter with a nominal
value w = 0.

Note that the parameter @ enters nonlinearly into the system matrix and that at
the nominal value of w = 0, the matrix is given by

The “sign matrix” for this “nominal” matrix is given by

0+00
-—-00
000+
00 —--—

Alw =0) =

which is tested to be “sign stable” by applying the qualitative stability conditions of
ecology.

Since the parameter w is a physical parameter with a lower bound of @ = 0, let
us look at the robust stability of the above interval parameter matrix with w varying
in the interval 0 < w? < 1, by applying the qualitative stability of ecology. For the
range 0 < w? < 1, the “sign matrix” is given by

0+00
A0 <0’ <1) =



186 6 Related and Emerging Topics

which is seen to be ‘“sign stable” as well by applying the qualitative stability
conditions of ecology. However, finally if we evaluate the nature of sign stability
for the value of w?> = 1, we see that the sign matrix is given by

0+00
0—-0+
000+
0—-0-—

Al =1) =

and it turns out that the above sign matrix is not sign stable because the determinant
of the matrix is zero. Thus from this analysis, it is clear that in the range 0 < w? <1,
the above interval parameter matrix is robustly stable which is the conclusion
reached by [42] in their book. Note that this range obtained by qualitative stability
of ecology approach is valid only for a time-invariant parameter @ which is
again endorsed by [42]. This confirms that the qualitative (sign) stability discussed
in engineering sciences literature through the method of Lyapunov functions,
diagonal Lyapunov functions, etc., which are extendable to time-varying systems
is considerably different from the qualitative stability of ecology which is strictly
aimed at time-invariant systems because it essentially is a matrix technique.

Based on the above example, it appears that if the nonlinear function of the
interval parameter is sign invariant in an open interval range, then the above
procedure of evaluating the sign stability at the lower bound and upper bound of
the nonlinearly entering interval parameter and if at these two extremes the matrix
is sign stable then it providing a sufficient condition for robust stability of the matrix
may possibly be generalized to other matrix families with nonlinear parameter
variations. However, this aspect needs further research.

The foregoing analysis along with the above examples clearly demonstrates the
potential of the sign stability of ecology approach in the robust stability analysis of
interval parameter matrices.

Note that this qualitative stability concept from ecology can be further exploited
to solve many other interesting problems in engineering/mathematical sciences such
as robust control design and critical parameter selection. Further research on this
emerging topic is reported in [45-50].

6.2.5 Resilient Control

Resiliency sounds synonymous with robustness at the casual level, but deep down,
for mathematical rigor purposes as well as conceptual purposes, we need to make
a distinction between resilience and robustness. It is agreed among researchers
that resilience is robustness to “unexpected or unanticipated perturbations.” In
engineering systems, this is taken as response to “emergency” situations. In other
words, resilience is the system’s ability to come back to “nominal” state after
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responding to an “emergency” situation. There is a considerable need to engage
in research in this “emerging” topic.

6.3 Exercises

Problem 1. Find the H, norm of few simple transfer functions like 1/(s + 1) and
s+ 1D/(s2+2s +4).

Problem 2. Solve the scalar versions of H, and Hs Riccati equations.

Problem 3. Identify all possible sign stable matrices of order 2. (Hint: There are 11
of them.)

6.4 Notes and Related Literature

It is hoped that the new research on qualitative robustness and quantitative robust-
ness [50] using ecological principles would shed considerable insight on the robust
stability analysis of interval parameter systems. For example, in a recent paper [51],
it is shown that for a class of matrix families with specified qualitative robustness
indices, it is sufficient to check the stability of only the “vertex” matrices (i.e., an
extreme point solution) to guarantee the robust stability of the entire interval matrix
family. This is indeed deemed important and significant because with this result, we
can easily identify for which “interval matrix families” we need to resort to more
sophisticated stability check algorithms and for which families we can get away with
a “vertex matrix” check. It turns out that this class of “qualitative stable” matrices
that admit “vertex solution” for its “quantitative robustness” is quite large. Thus
the results of this new eco-inspired robustness research offer new insight into the
nature of interactions and interconnections in a matrix family on its robust stability.
Encouraged by the results of this research, continued research is underway in using
this interdependence of “qualitative robustness” and “quantitative robustness” in the
design robust controllers for engineering systems.
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A.1  Matrix Operations, Properties, and Forms

In this Appendix, we include briefly some rudimentary material on matrix theory
and linear algebra needed for the material in the book. In particular, we review some
properties of matrices, eigenvalues, singular values, singular vectors, and norms
of vectors and matrices. We have used several texts and journal papers (given as
references in each chapter of this book) in preparing this material. Hence, those
references are not repeated here.

Principal diagonal—  consists of the m;; elements of a square matrix M.

Diagonal matrix— a square matrix in which all the off-diagonal elements are
zero, i.e., only m;; exist.

Trace— sum of all the elements on the principal diagonal of a square matrix.

n

trace M = Zm” (A.1)

i=1

Determinant—  denoted by det[M] or |M |, definition given in any linear algebra
book.

Singular matrix—  a square matrix whose determinant is zero.

Minor—  the minor M;; of a square matrix M is the determinant formed after the
i"" row and j column are deleted from M.

Principal minor— a minor whose diagonal elements are also diagonal elements
of the original matrix.

Cofactor— a signed minor given by

¢y = (=)' M (A2)

Adjoint matrix— the adjoint of M, denoted by adj[M], is the transpose of the
cofactor matrix. The cofactor matrix is formed by replacing each element of M
by its cofactor.

Inverse matrix— inverse of M is denoted by M !, has the property MM ~! =
M~'M = I, and is given by
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-1 _ adj[M]
M|

(A.3)

Rank of a matrix— the rank r of a matrix M (not necessarily square) is the order
of the largest square array contained in M which has nonzero determinant.
Transpose of a matrix— denoted by M7, or M’: It is the original matrix with

. . . 4
its rows and columns interchanged, i.e., m;; = m ;.

Symmetric matrix— a matrix containing only real elements which satisfies
M=MT.
Transpose of a product of matrices
(AB)T = BT AT (A4)

Inverse of a product of matrices
(AB) ' =B7'47! (A.5)

(Complex) Conjugate— the conjugate of a scalara = o + jB isa™ = a — jB.
The conjugate of a vector or matrix simply replaces each element of the vector
or matrix with its conjugate, denoted by m™* or M*.

Hermitian matrix—  a matrix which satisfies

M=M" =T (A.6)

where superscript H stands for Hermitian. The operation of Hermitian is simply
complex conjugate transposition—usually, * is used in place of H.

Unitary matrix—  a complex matrix U is unitary if U7 = U~

Orthogonal matrix—  a real matrix R is orthogonal if R” = R™!,

A.1.1 Some Useful Matrix Identities

1.[I, + GG Hy H 7' GGy = Gy[ly + G HH Go] 7' Gy

= G2Gy[I, + HyH,G,G1]™
= G,Gi — G2G Hy[I, + H\G,G H,y] "' H|G,G, (A7)

where G| is (m x r), Gy is (n x m), Hy is (p x n), and H; is (r x p).
For the following three identities, the dimensions of matrices P, K, and C are the
following: Pis (n x n), Kis (n x r), and C is (r x n).

2(P'+KC)'=P—-PK(I +CPK)"'CP (A.8)

3.(1 + KCP)'=1—-K( +CPK)™'CP (A.9)
4.(1 + PKC)'=1—-PK(I +CPK)™'C (A.10)
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A.2 LinearIndependence and Rank

A set of mathematical objects ay, as,--- ,a, (specifically, in our case, vectors or
columns of a matrix) is said to be linearly independent, if and only if there exists a
set of constants ¢y, ¢2, - - , ¢, not all zero, such that

cia; +cay + -+ cra, =0

If no such set of constants exists, the set of objects is said to be linearly independent.
Suppose A is a matrix (not necessarily square) with a;, a,, -+ , a, as its columns

A = lai|az]---|ay]

The rank of A, sometimes written rank(A) or r(A) is the largest number of
independent columns (or rows) of A. The rank of A cannot be greater than the
minimum of the number of columns or rows, but it can be smaller than that
minimum. A matrix whose rank is equal to the minimum of the number of rows
and the number of columns is said to be of full rank.

A fundamental theorem regarding the rank of a matrix can be stated as follows:

The rank of A is the dimension of the largest nonzero determinant formed by
deleting rows and columns from A.

Thus, we can say that the rank of a matrix is the maximum number of linearly
independent columns (rows) of the matrix, the test for which is the largest (in
dimension) nonsingular determinant found “embedded” in the matrix.

Numerical determination of the rank of a matrix is not a trivial problem: If
the brute-force method of testing is used, a goodly number of determinants must
be evaluated. Moreover, some criterion is needed to establish how close to zero
a numerically computed determinant must be in order to be declared zero. The
basic numerical problem is that rank is not a continuous function of the elements
of a matrix: a small change in one of the elements of a matrix can result in a
discontinuous change of its rank.

The rank of a product of two matrices cannot exceed the rank of either factor

rank (AB) = min [rank (A), rank (B)] (A.11)

But if either factor is a nonsingular (square) matrix, the rank of the product is the
rank of the remaining factor:

rank (AB) = rank (A)if B~ exists

rank (AB) = rank (B)if A 'exists (A.12)
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A.3  Eigenvalues and Eigenvectors
A be an (nx n) matrix, and v; be an (n x 1) vector. The eigenvalue problem is
Al —Alvi =0 (A.13)
Solution of
det[A;I —A] =0 (A.14)

gives the eigenvalues A1, A,,, A,,. Given A;, the nontrivial solution v; of A.13 is
called the eigenvector. We also refer to vy, v, v, as right eigenvectors. These are
said to lie in the null space of the matrix [A; I — A]. The eigenvectors obtained from

wl AT — Al =0 (A.15)

are referred to as left eigenvectors. Left and right eigenvectors are orthogonal to
each other, that is,
1 fori=j
W?U,’ = . ]
' 0 fori # j

The trace of A, defined as the sum of its diagonal elements, is also the sum of all
eigenvalues:

w(A) =Y A=Y h=Xli+l+-+h (A.16)

i=1 i=1
The determinant of A is the product of all eigenvalues:

det(4) =4 = Aida- - A (A.17)

i=1
If the eigenvalues of A are distinct, then A can be written as
A=TAT™! (A.18)

where A is a diagonal matrix containing the eigenvalues. This is called an
eigenvector decomposition (EVD). T is called a modal matrix.

The columns of T are the right eigenvectors v;, and the rows of T~ are left
eigenvectors w! . Thus,

T =va...v), TV =wlwl . W (A.19)

Finding T for the case of repeated eigenvalues is omitted here.
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Some properties of eigenvalues:

1. All the eigenvalues of a Hermitian matrix are real.

2. All the eigenvalues of a unitary matrix have unit magnitude.

3. If a matrix A is Hermitian, then the modal matrix T in A.18 is unitary. EVD is
then

A=U0AU" (A.20)
since U™l = UH
4. If A is Hermitian, then
 xHAx
”};{} Ty Amin(A) (A.21)
xH Ax
n;liéc Hx = Amax(A) (A.22)

The quantity ~ AX is called the Rayleigh’s quotient. Sometimes we are not inter-

ested in the complete solution of the eigenvalue problem (i.e., all the eigenvalues
and eigenvectors). We may want an estimate of the first mode. One of the nice
properties of Rayleigh’s quotient is that it is never smaller than A,,;,(A4). Also,
the minimum of the left-hand side of A.21 is achieved when y is the eigenvector
corresponding to A,,;,. Similarly, the maximum is achieved in A.22 when x is the
eigenvector corresponding to A,,,x(A). Equation A.21 is particularly useful in the
modal analysis of structures represented by finite element models.
Some more properties:
1. If A is (nxm) and B is (mxn), then

AB is (n x n) and is singular if n > m (A.23)

2. If Ais (nxm), E is (mxp) and C is (pxn), then

APC is (n x n) and is singularif n > morn > p (A.24)
3. Aissingular iff A;(A) =0 for somei (A.25)
1
4.0(A ADAATH =1 A2
() = 3p5m ~ MAAAT (A26)
5. AMaA) = aA(A); « is scalar (A.27)
6. A1 +A) =1+ A(A4) (A.28)

7.0(AT) = A(4) (A.29)
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A.4 Definiteness of Matrices

_ A+4T
AS - 2

Agpe = A_ZAT is the skew-symmetric part of A.

If all the (real) eigenvalues of matrix A, are > 0, then A is said to be positive
definite.

If all the (real) eigenvalues of matrix A are > 0, then A is said to be positive
semidefinite.

If all the (real) eigenvalues of — A, are > 0, then A is said to be negative definite
(or if the eigenvalues of A, are negative).

If all the (real) eigenvalues of —A,; are > 0, then A is said to be negative
semidefinite.

If some of the (real) eigenvalues of A, are positive and some negative, then A is
said to be indefinite.

Note that xT Ax = xTA;x + xT Ay x

(i.e., A= As + Ag).

In real quadratic forms,

xTAx = xT A,x

(since xT Ay x is always equal to 0).

Thus, the definiteness of A is determined by the definiteness of its symmetric
part A;.

is the symmetric part of A.

Principal minor test for definiteness of matrix A given in terms of A;
(symmetric part of A)

By the definition The matrix Ay is If Or equivalently
xTAx>0 V x#0 PD AllA; >0 AllA; >0
xTAx>0 V x PSD AllA; >0 AllA; >0
xTAx <0 V x#0 ND Alld; <0 Ay <0,A4, >0, A; <0, Ay >0, etc.
xTAx <0 V x NSD AllA; <0 A1 <0, Ay >0,A5 <0, Ay >0, etc.
xTAx >0 some x indefinite Some A; > 0 None of the above

<0otherx # 0 some A; <0

where A;,1 = 1 to n are the eigenvalues of A, and A; = i'" principal minor

ana ap ap ap
11 d12
Ay =ay, Ay =Det [ i| , Az = Det |aypan ars |, etc.
aip an
aiz dsz dass
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In the above, the matrix Ay is given by

aijp app ais --- dip
apz ax axs

A = ap ars as .| (since Ay is assumed symmetric, therefore a;; = a;;)
_aln ...... ann_

Corollary 6.1. If A, is ND, then A has negative real part eigenvalues. Similarly if
Ay is PD, then A has positive real part eigenvalues. Thus, a negative-definite matrix
is a stable matrix, but a stable matrix need not be ND.

Also note that even though

A= As + Ask
the eigenvalues of A do not satisfy linearity property:
i.e., /X,’ (A) ;é /X,’ (A;) + Ai(A.vk)

However, it is known that A;(A) lie inside the ‘field of values’ of A, i.e., in the region
in the complex plane, bounded by the real eigenvalues of Ay on the real axis and by
the pure imaginary eigenvalues of Ask.

A.5 Singular Values
Let us first define inner product and norms of vectors.

Inner Product: The inner product is also called a scalar (or dot) product since it
yields a scalar function. The inner product of complex vectors x and y is defined by

n

<x,y>=@)'y=y'x =xixyi Atk 2t X kY= )X Y
i=1

(A.30)

where (.)* indicates complex conjugate of the vector in parenthesis. If x and y are

real, then
<X,y >=Zx,~y,~=x1y1+X2y2+...+x,,y,, (A.31)
i=1

Note that when x and y are complex, < x, y >= x’ y*. However, when x and y are
real,
<x,y>=xTy=yTx =<y, x> (A.32)
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Norm or Length of a Vector: The length of a vector x is called the Euclidean
norm and is (also known as /, norm)

lxlle = lxl = VRXES = Ja? +xF + ...+ 2 (A33)

Definition of Spectral Norm or /; Norm of a matrix is given by

Ax
||A||2 = max ” ”2

where A e C™" (A.34)
x#0 || x]2

It turns out that

Al = max/A; (A7 A), i =1,2,--- ,n
1
=max/Ai(AAT), i =1,2,--- ,m (A.35)

Note that A% A and AA” are Hermitian and positive semidefinite, and hence
eigenvalues of A A and AA" are always real and nonnegative. If A is nonsingular,
AM A is positive definite, and the eigenvalues of A% A and AA are all positive.

We now introduce the notion of singular values of complex matrices. These are
denoted by the symbol o. If Ae C"*", then

0i(A) = VA (AT A) = VA (AAH) >0 i =1,2,....n (A.36)

and they are all nonnegative since A7 4 and AA" are Hermitian.
If A is non-square, i.e., A € C"™*", then

0i(A) = VA (AH A) = /A (AAH) (A.37)

for 1 < i < k, where k = number of singular values = min(m,n) and o;(4) >
02(A) > ... > o (A).

A
Omar(4) = max A2y gy (A38)
R
Claxl 1
Omin(A) = min = (A.39)
minlA) = = AT

provided A~! exists. Thus, the maximum singular value of A, 0y,4.(A4), is simply

the spectral norm of A. The spectral norm of A~! is the inverse of 6,,;,(A), the
minimum singular value of A. The spectral norm is also known as the /, norm.
Usually we will write (A) and o (A) to indicate 0,4 (A) and 0, (A).
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It follows that |
max(A™H = [|[A7Y ], = A.40
O (A7) = 1471 = — (A.40)
1 1
Omin(A7Y = = (A41)
min ) = 1L = o ()
omin(A) =0 if Aissingular. (A.42)

Let us now introduce the singular value decomposition (SVD). Given any (nxn)
complex matrix A, there exist unitary matrices U and V such that

A=UzVT =3 oi/(Auv]! (A.43)

i=1

where Y is a diagonal matrix containing the singular values o0;(A) arranged in
descending order, u; are the column vectors of U, i.e.,

U =up,uy, ..., ul (A.44)
and v; are the column vectors of V, i.e.,
V =[v,v2,..., 0] (A.45)

The v; are called the right singular vectors of A or the right eigenvectors of A" A
because

A" Av; = o (A)v; (A.46)
The u; are called the left singular vectors of A or the left eigenvectors of A7 A
because

uff A" A = o (A)ul (A.47)

For completeness let us also state the SVD for non-square matrices. If A is an (mxn)
complex matrix, then the SVD of A is given by

K
A=UzVT =3 "oi(Auv]! (A.48)
i=1
where
U =lu,u,...,uyl (A.49)
V =[v,v2,...,0] (A.50)

and ¥ contains a diagonal nonnegative-definite matrix X' of singular values
arranged in descending order in the form
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X
y=1... ifm>n
0
=[5 10 ifm=n (AS1)
where
010--- 0
0 (o)) 0
X = )
0 0 -0,
and

01>0y>-->0,>0, p=min{m,n}.

Let us digress momentarily now and point out an important property of unitary
matrices. Recall that a complex matrix A is defined to be unitary if A# = A~
Then AA" = AA™" = 1. Therefore, A; (AAH) =1 forall i, and

[[All» =0(4) = a(4) =1 (A.52)

Therefore, the (/) norm of a unitary matrix is unity. Thus, unitary matrices are norm
invariant (if we multiply any matrix by a unitary matrix, it will not change the norm
of that matrix).

Finally, the condition number of a matrix is given by

a(4)

cond(A) = @A)

(A.53)

If the condition number of a matrix is close to zero, it indicates the ill-conditioning
of that matrix, which implies inversion of A may produce erroneous results.
In some books, the condition number of a matrix is defined the opposite way,
namely, that
a(4)

cond(A) = m

(A.54)
with the interpretation that a high condition number conveys ill-conditioning of the
matrix.

Note that for normal matrices, namely, for matrices with the property that 447 =
AT A, the condition number is one.
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A.5.1 Some Useful Singular Value Properties

1. If AEeC™", and det(A+ E) > 0, thena(E) < a(4) (A.55)
2. oi(ad) = |a|o;(4), a € C,A € C™ (A.56)
3. 5(A+ B) < 5(A) +35(B), A,B € C"™" (A.57)
4. G(AB) < 3(A)5(B), A € C™*, B e Ck (A.58)
5. 0(AB) > a(A)a(B), A € C™*k B e Ch (A.59)
6. |o(A)—a(B)| < 5(A—B), A,B € C"™", (A.60)
7. 0(A)—1 < oI+ A) <o(A)+1, 4 € C". (A.61)
8. 0(A) < |Mi(A)| <T(4), 4 € C™", (A.62)
9. o(4)-o(B) < a(A+ B) < a(A) +0(B), A, B € C™". (A.63)
10. |o(A)—a(B)| < 6(A+ B), A,B € C"™". (A.64)
11. o(A)—0o(E) = a(A—B) = a(A)+0(B). (A.65)
12. Rank(A) = the number of nonzero singular values of A. (A.66)
13. 0:(A") =0,(4), A € C™" (A.67)

A.5.2 Some Useful Results in Singular Value and Eigenvalue
Decompositions

Consider the matrix A € C™*",
Property 1:
Omax(4) £ [|4]ls = [|A]]2

= [Max A; (AT A))"/? = [Max A; (AAT)]'/? (A.68)
Property 2: If A is square and 0,,;,(4) > 0, then A~! exists and

1
Umin(A) = m (A.69)

Property 3: The standard ‘norm’ properties, namely,
(@) l|All2 = omax(A) > 0 for A # 0and = 0only when A=0. (A.70)

b) ||kAll2 = Omax(kA) = |k|Omax (A). (A.71)
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(C)”A + B||2 = Omax(A+ B) < ||A||2 + ||B||2 = Opax(A) + opax(B) (A72)
(triangle inequality)
Property 4: Special to || A]|, (Schwartz inequality)

i.e.||ABl|> < ||All2]| Bl|2 (A73)

i.e., Omax (AB) S Umax(A)UmaX(B) (A74)
Property 5: 6,5 (A)Omin(B) < Opmin(AB).

It is also known that
O~min(A) f |A(A)|mtn f |Ai(A)|max = ,O(A) S Omax(A) (A75)

Note that A(A + B) £ A(A) + A(B)
AMAB) Z A(A)A(B).

Result 1: Given the matrix A is nonsingular, then the matrix (A+4E) is nonsingular if
Omax (E) < Omin (A)

Result 2: If A is stable and A; is negative definite, then A; + E| is negative definite,
and hence A+E is stable if

Umax(Es) = Umax(E) = Omin (As)

Result 3: If A; is negative definite, A; + E; is negative definite if

p[(Es(Fv)_l)x] <1
or UmaX[(E.v(F;)_l)s] <1

because for a symmetric matrix, |A(.)s|max = P()s] = Omax[(-)s]

Result 4: For any given square matrix A
p(|A]) = p(An) = p(A)

Omax (Am) 2 Omax (A)

Result 5: For any two given square nonnegative matrices A; and A, such that
Alij > AQ,‘/‘ for all 1,_] then,

p(A1) = p(Az)
Umax(Al) > Umax(AZ)
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A.6 Vector Norms

A vector norm of x is a nonnegative number denoted ||x||, associated with X,
satisfying:

(a) ||x|| > 0 for x # 0, and ||x|| = O precisely when x = 0.

(b) |lkx]|| = |k]|||x]|| for any scalar k.

© |lx+yll <llxIl + ||yl (the triangle inequality).

The third condition is called the triangle inequality because it is a generalization
of the fact that the length of any side of a triangle is less than or equal to the sum of
the lengths of the other two sides.

We state that each of the following quantities defines a vector norm.

[lxI[i = |xi]| + |x2] + ...+ |x,] (A.76)
1/2

lxll = (2 + [P+ + D) (A77)

[1x]]oo = mlaxlx,»l (A.78)

The only difficult point in proving that these are actually norms lies in proving that
||.||> satisfies the triangle inequality. To do this, we use the Hermitian transpose x*/
of a vector; this arises naturally since ||x||, = (xHx)l/z.

We note that

[1x[loo =< [1x[1 = nllx]leo

IXloo =< llxl2 = Vallx]loo

From the Schwartz inequality applied to vectors with elements |x;| and 1, respec-
tively, we see that ||x||; < +/n||x]|>. Also, by inspection, ||x||3 < ||x||. Hence,

1
WIIXIIz = Ix[loo = l1¥]l2
[Ix1l2 < [IxIh < Vnllx|l2

1
Sl = lxfleo = flxll: (A.79)

Let A be an m x n matrix, and let A be the linear transformation A(x) = Ax
defined from C" to C™ by A. By the norms ||A|[1, ||A]]2, ||A]]co, We mean the
corresponding norms of A induced by using the appropriate vector norm in both the
domain C" and the range C". That is,

A
||A||1=max{|| XHI} (A.80)
x#0 (x|
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A
||A||2=mCIX%|| XHZ} (A.81)
x#0 {[|x]|2
A
| Alloo = max{ [14xlo x”""} (A.82)
x#0 | [1x]loo
Let A be an m x n matrix. Then,
@114l = max ) la] (A.83)
i=1
n
(i0).[|Alloo = ’“?"Zl Jaij| (A.84)
iz

(iii).||A||2=[maximum eigenvalue of A" A)'>=maximum singular value of A.
(A.85)

Since we can compare vector norms, we can easily deduce comparisons for operator
norms. For example, if A is m X n, using A.79 we find that

[[Ax[lr = m|[Ax|leo = m|[Alloo||Xloo = m[|Al[oo|lx[h (A.86)

so that || A]|; < m||A]|co- By similar arguments, we obtain
1
Jm

1
ﬁHAHz <|l4]li = m'?|A]l2

14112 = [l 4]l = VnlAll2

1
—MlAlloo = [14]lr = m[A]loo (A.87)
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