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Foreword

One of the major causes of the New York power outage of 1987 was ulti-
mately traced to incorrect information about the status of a circuit in the
system. The operation of a major new market, such as the PJM market,
would be nearly impossible without the capabilities afforded by state es-
timation. It is not yet known to what extent the blackout of 2003 may
have been in part caused by missing information. Undoubtedly, thus, the
theme of this book is an important one. From its origins as a mathematical
curiosity in the 1970's to its limited use during the 1980's to its expanded
but not yet central role in the operation of the system in 1990's, nowa-
days state estimation has become nothing less than the cornerstone upon
which a modern control center for a power system is built. Furthermore,
to the extent that markets must be integrated with reliable system opera-
tion, state estimation has acquired a whole new role: it is the foundation
for the creation and operation of real time markets in power systems, and
thus the foundation for all markets, real time or not, since ultimately all
markets must derive their valuations from real time information. Among
the most important properties of a properly operated market is something
that I shall call "auditability," that is, the ability to go back and verify
why certain things were done the way they were. Without an accurate
and ongoing knowledge of the status of every Row and every voltage in the
system at all times, it would be impossible to "go back" and explain why,
for example, prices were what they were at a particular time.

This book, written by two of the most prominent researchers in the
Held, brings a fresh perspective to the problem of state estimation. The
book offers a blend of theory and mathematical rigor that is unique and
very exciting. In addition to the more traditional topics associated with
weighted least squares estimation (including such & r^wewr topics as bad
data detection and topology estimation), this book also brings forth several
new aspects of the problem of state estimation that have not been presented
in a systematic manner prior to this effort. Most notable among these are
the chapters on robust estimation and the work on ampere measurements,
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to name just two. In this sense the book distinguishes itself from the other
state estimation book known to this writer, the book by the late great Alcir
Monticelli. In such way this book is a great complement to the efforts of
Monticelli.

The readers of the book will also find it quite pleasing to have a nice
review of a number of topics relating to efficient computation. The book
provides excellent material for those wishing to review the topic of efficient
computation and sparsity in general. Proper attention is paid throughout
the book to computational efficiency issues. Given that computational
efficiency is the key to making state estimation work in the first place, the
importance of this topic cannot be understressed.

Although the bibliography associated with every chapter and with the
appendix is short, it is all quite pertinent and very much to the point.
In this sense, the readers can get focused and rapid access to additional
original material should they wish to investigate a topic further.

I am particularly pleased to have had the opportunity to comment on
both the theme of the book and the book itself, since the authors of this
book are unquestionably respected leaders in the field and are themselves
the originators of many of the ideas that are in present use throughout the
Held of state estimation and beyond. I am sure readers will share with me
these sentiments after reading this book.

Fernando L. Alvarado

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.



Preface

Power system state estimation is an area that matured in the past three
decades. Today, state estimators can be found in almost every power sys-
tem control center. While there have been numerous papers written on
many different aspects of state estimation, ranging from its mathemati-
cal formulation to the implementation and start-up issues at the control
centers, relatively few books have been published on this subject.

This book is the product of a long-term collaboration between the au-
thors, starting from the summer of 1992 when they worked at the University
of Seville on a joint project that was sponsored by the Ministry of Science
and Education of the Spanish Government. Since then, they have spent
two summers working together on different projects related to state esti-
mation and continued their collaboration. They each taught regular and
short courses on this topic and developed class notes, which make up most
of the material presented in this book.

The chapters of the book are written in such a way that it can be used as
a textbook for a graduate-level course on the subject. However, it may also
be used as a supplement in an undergraduate-level course in power system
analysis. Professionals working in the Reid of power systems may also find
the chapters of the book useful as self-contained references on specific issues
of interest.

The book is organized into nine chapters and two appendices. The intro-
ductory chapter provides a broad overview of power system operation and
the role of state estimators in the overall energy management system con-
figurations. The second chapter describes the modeling of electric networks
during steady state operation and formulates one of the most commonly
used state estimation methods in power systems, namely the weighted least
squares (WLS) method. Application of the WLS method to power system
state estimation presents several challenges ranging from numerical insta-
bilities to the handling of measurements with special constraints. Chapter
3 presents various techniques for addressing these problems. Network ob-
servability is analyzed in Chapter 4, where a brief review of networks and
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graphs is foHowed by the description of alternative methods for network
observability determination. Chapter 5 is concerned with detecting and
identifying incorrect measurements. In this chapter, it is assumed that the
WLS method is used for state estimation and bad data processing takes
place after the convergence of the WLS state estimator. In Chapter 6, the
topic of robust estimation is introduced and some robust estimation meth-
ods which have already been investigated for power system applications
are presented. Chapter 7 is about different methods of estimating trans-
mission line parameters and transformer taps. These network parameters
are typically assumed to be perfectly known, despite the fact that errors
in them significantly affect the state estimates. The problem of topology
error identification is the topic of Chapter 8. Topology errors cause state
estimators to diverge or converge to incorrect solutions. The challenges in
detecting and identifying such errors and methods of overcoming them are
presented in this chapter. Finally, Chapter 9 discusses the use of ampere
measurements and various issues associated with their presence in the mea-
surement set. The book also has two appendices, one on basic statistics
and the other on sparse linear equations.

All chapters, except for the first one, end with some practice problems.
These may be useful if the book is adopted for teaching a course at either the
graduate or undergraduate level. The first five chapters are recommended
to be read in the given order since each one builds on the previously covered
material. However, the last four chapters can be covered in any arbitrary
order.

Parts of the work presented in this book have been funded by the
United States National Science Foundation projects ECS-9500118 and ECS-
8909752 and by the Spanish Government, Directory of Scientific and Tech-
nical Investigations (DGICYT) Summer Research Grants No. SAB 95-0354
and SAB 92-0306, and Research Project No. PB94-1430.

It has been a pleasure to work with our many graduate students who
have contributed to the development and implementation of some of the
ideas in this book. Specifically, we are happy to acknowledge the contri-
butions made by Esther Romero, Francisco Gonzalez, Antonio de la Villa,
Mehmet Kemal Celik, Hongrae Kim, Fernando Hugo Magnago and Bei Gou
in their respective research projects.

Finally, we are also grateful for the constant encouragement and sup-
port that we have received from our spouses, Aysen and Cati, during the
preparation of this book.

Ali Abur
Antonio Gomez Exposito
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Chapter 1

Introduction

Power systems are composed of transmission, sub-transmission, distribution
and generation systems. Transmission systems may contain large numbers
of substations which are interconnected by transmission lines, transformers,
and other devices for system control and protection. Power may be injected
into the system by the generators or absorbed from the system by the loads
at these substations. The output voltages of generators typically do not
exceed 30-kV. Hence, transformers are used to increase the voltage levels
to levels ranging from 69-kV all the way up to 765-kV at the generator
terminals for efficient power transmission. High voltage is preferred at
the transmission system for different reasons one of which is to minimize
the copper losses that are proportional to the ampere Rows along lines.
At the receiving end, the transmission systems are connected to the sub-
transmission or distribution systems which are operated at lower voltage
levels ranging from 115-KV to 4.16-KV. Distribution systems are typically
configured to operate in a radial configuration, where feeders stretch from
distribution substations and form a tree structure with their roots at the
substation and branches spreading over the distribution area.

1.1 Operating States of a Power System

The operating conditions of a power system at a given point in time can be
determined if the network model and complex phasor voltages at every sys-
tem bus are known. Since the set of complex phasor voltages fully specifies
the system, it is referred to as the static state of the system. According to
[1], the system may move into one of three possible states, namely normal,
emergency and restorative, as the operating conditions change.

A power system is said to operate in a normal state if all the loads in the
system can be supplied power by the existing generators without violating
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any operational constraints. Operational constraints include the limits on
the transmission line flows, as well as the upper and lower limits on bus
voltage magnitudes. A normal state is said to be secwre if the system can
remain in a normal state following the occurrence of each contingency from
a list of critical contingencies. Common contingencies of interest are trans-
mission line or generator outages due to unexpected failures of equipment
or natural causes such as storms. Otherwise, the normal state is classified as
msecwe where the power balance at each bus and all operating inequality
constraints are still satisfied, yet the system remains vulnerable with re-
spect to some of the considered contingencies. If the system is found to be
in a normal but msecwe operating state then, preventive actions must be
taken to avoid its move into an emergency state. Such preventive controls
can be determined typically by the help of a security constrained optimal
power flow program which accounts for a list of critical contingencies.

Operating conditions may change significantly due to an unexpected
event which may cause the violation of some of the operating constraints,
while the power system continues to supply power to all the loads in the
system. In such a situation the system is said to be operating in an emer-
gency state. Emergency state requires immediate corrective action to be
taken by the operator so as to bring the system back to a normal state.

While the system is in the emergency state, corrective control measures
may be able to avoid system collapse at the expense of disconnecting various
loads, lines, transformers or other equipment. As a result, the operating
limit violations may be eliminated and the system may recover stability
with reduced load and reconfigured topology. Then, the load versus gener-
ation balance may have to be restored in order to start supplying power to
all the loads. Such an operating state is called the restorative state, and the
actions to be taken in order to transform it into a normal state are referred
to as restorative controls. The state diagram in Figure 1.1 illustrates the
possible transitions between the different operating states defined above.

1.2 Power System Security Analysis

Power systems are operated by system operators from the area control
centers. The main goal of the system operator is to maintain the system in
the normal secure state as the operating conditions vary during the daily
operation. Accomplishing this goal requires continuous monitoring of the
system conditions, identification of the operating state and determination
of the necessary preventive actions in case the system state is found to be
msecwe. This sequence of actions is referred to as the security analysis of
the system.

The first stop of security analysis is to monitor the current state of the
system. This involves acquisition of measurements from all parts of the
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Figure 1.1. State Diagram for Power System Operation

system and then processing them in order to determine the system state.
The measurements may be both of analog and digital (on/off status of
devices) type. Substations are equipped with devices called remote terminal
units (RTU) which collect various types of measurements from the field
and are responsible for transmitting them to the control center. More
recently, the so-called intelligent electronic devices (IED) are replacing or
complementing the existing RTUs. It is possible to have a mixture of these
devices connected to a local area network (LAN) along with a SCADA
front end computer, which supports the communication of the collected
measurements to the host computer at the control center. The SCADA
host computer at the control center receives measurements from all the
monitored substations' SCADA systems via one of many possible types of
communication links such as fiber optics, satellite, microwave, etc. Figure
1.2 shows the configuration of the EMS/SCADA system for a typical power
system.

Measurements received at the control center will include line power
Hows, bus voltage and line current magnitudes, generator outputs, loads,
circuit breaker and switch status information, transformer tap positions,
and switchable capacitor bank values. These raw data and measurements
are processed by the state estimator in order to filter the measurement noise
and detect gross errors. State estimator solution will provide an optimal
estimate of the system state based on the available measurements and on
the assumed system model. This will then be passed on to all the energy
management system (EMS) application functions such as the contingency
analysis, automatic generation control, load forecasting and optimal power
now, etc. The same information will also be available via a LAN connection
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Figure 1.2. EMS/SCAOA system configuration.

to the corporate offices where other planning and analysis functions can be
executed off-line.

Initially, power systems were monitored only by supervisory control sys-
tems. These are control systems which essentially monitor and control the
status of circuit breakers at the substations. Generator outputs and the sys-
tem frequency were also monitored for purposes of Automatic Generation
Control (AGC) and Economic Dispatch (ED). These supervisory control
systems were later augmented by real-time system-wide data acquisition
capabilities, allowing the control centers to gather all sorts of analog mea-
surements and circuit breaker status data from the power system. This led
to the establishment of the first Supervisory Control and Data Acquisition
(SCADA) Systems. The main motivation behind this development was the
facilitation of security analysis. Various application functions such as con-
tingency analysis, corrective real and reactive power dispatch could not be
executed without knowing the real-time operating conditions of the system.
However, the information provided by the SCADA system may not always
be reliable due to the errors in the measurements, telemetry failures, com-
munication noise, etc. Furthermore, the collected set of measurements may
not allow direct extraction of the corresponding A.C. operating state of the
system. For instance, bus voltage phase angles are not typically measured,
and not all the transmission line flows are available. Besides, it may not be
economically feasible to telemeter all possible measurements even if they
are available from the transducers at the substations.
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1.3 State Estimation

The foregoing concerns were first recognized and subsequently addressed
by Fred Schweppe, who proposed the idea of state estimation in power sys-
tems [2, 3, 4]. Introduction of the state estimation function broadened the
capabilities of the SCADA system computers, leading to the establishment
of the Energy Management Systems (EMS), which would now be equipped
with, among other application functions, an on-line State Estimator (SE).

In order to identify the current operating state of the system, state
estimators facilitate accurate and efficient monitoring of operational con-
straints on quantities such as the transmission line loadings or bus voltage
magnitudes. They provide a reliable real-time data base of the system,
including the existing state based on which, security assessment functions
can be reliably deployed in order to analyze contingencies, and to determine
any required corrective actions.

The state estimators typically include the following functions:

* Topology processor: Gathers status data about the circuit breakers
and switches, and configures the one-line diagram of the system.

* Observability analysis: Determines if a state estimation solution for
the entire system can be obtained using the available set of mea-
surements. Identifies the unobservable branches, and the observable
islands in the system if any exist.

< State estimation solution: Determines the optimal estimate for the
system state, which is composed of complex bus voltages in the en-
tire power system, based on the network model and the gathered
measurements from the system. Also provides the best estimates for
all the line Hows, loads, transformer taps, and generator outputs.

* Bad data processing: Detects the existence of gross errors in the mea-
surement set. Identifies and eliminates bad measurements provided
that there is enough redundancy in the measurement configuration.

< Parameter and structural error processing: Estimates various net-
work parameters, such as transmission line model parameters, tap
changing transformer parameters, shunt capacitor or reactor param-
eters. Detects structural errors in the network configuration and
identifies the erroneous breaker status provided that there is enough
measurement redundancy.

Thus, power system state estimator constitutes the core of the on-line
security analysis function. It acts like a filter between the raw measurements
received from the system and all the application functions that require the
most reliable data base for the current state of the system. Figure 1.3
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describes the data and functional interfaces between the various applica-
tion functions involved in the on-line static security assessment procedure.
Raw measurements which include the switch and circuit breaker positions
in the substations, are processed by the topology processor, which in turn
generates a bus/branch model of the power system. This model not only in-
cludes all buses within the area of the control center EMS, but also selected
buses from the neighboring systems. The information and measurements
obtained from the neighboring systems are used to build and update the
external system model. Furthermore, there may be unobservable pockets
within one's own area due to temporary loss of telemetry, rejected bad
data or other unexpected failures. Such areas whether physically located
within the control area or part of the external system, will be estimated via
the use of pseudo measurements. Pseudo measurements can be generated
based on short term load forecasts, generation dispatch, historical records
or other similar approximation methods. Naturally, they are assigned high
variances (low weights) or they can be forced to be critical measurements
by design. Definition and properties of a critical measurement will be dis-
cussed in detail in chapter 5. In addition, there may be passive buses with
no generation or load, having net zero real and reactive power injection.
Such bus injections, even though not measured, can be used as error free
measurements in the state estimation formulation and referred to as "vir-
tual" measurements. The results obtained by the state estimator will be
checked in order to classify the system state into one of the three categories
shown in Figure 1.1. If it is found to be in the normal state, then contin-
gency analysis will be carried out to determine the system security against a
set of predetermined contingencies. In case of insecurity, preventive control
actions have to be calculated via the use of a software tool such as a security
constrained optimal power flow. Implementing these preventive measures
will move the system into the desired normal and secwe state. Figure 1.3
also indicates the emergency and restorative control actions which will be
deployed under a&nonnaZ operating conditions, however these topics are
beyond the scope of this book and will not be discussed any further.

1.4 Summary

Power systems are continuously monitored in order to maintain the oper-
ating conditions in a normal and secure state. State estimation function is
used for this purpose. It processes redundant measurements in order to pro-
vide an optimal estimate of the current operating state. State estimation
problem has been investigated by several researchers since its introduc-
tion in the late 1960s. Being an on-line function, computational issues re-
lated to speed, storage and numerical robustness of the solution algorithms
have been carefully studied. Measurement configuration and its effect on
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Figure 1.3. On-line Static Security Assessment: Functional Diagram

state estimation have been addressed by the developed observability anal-
ysis methods. State estimators also function as filters against incorrect
measurements, data and other information received through the SCADA
system. Hence, the subject of bad data processing has been investigated
and detection/identification algorithms for errors in analog measurements
have been developed. Special methods also exist for the identification of
those errors related to the topology information and/or network parame-
ters. On the other hand, the use of ampere measurements present some
problems which do not exist in their absence from the measurement set.
In the following chapters, these issues will be presented in more detail and
methods which are developed to address them will be described.
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Chapter 2

Weighted Least Squares
State Estimation

2.1 Introduction

Static state estimation refers to the procedure of obtaining the voltage
phasors at all of the system buses at a given point in time. This can be
achieved by direct means which involve very accurate synchronized phasor
measurements of all bus voltages in the system. However, such an approach
would be very vulnerable to measurement errors or telemetery failures. In-
stead, state estimation procedure makes use of a set of redundant mea-
surements in order to filter out such errors and find an optimal estimate.
The measurements may include not only the conventional power and volt-
age measurements, but also those others such as the current magnitude or
synchronized voltage phasor measurements as well. Simultaneous measure-
ment of quantities at different parts of the system is practically impossible,
hence a certain amount of time skew between measurements is commonly
tolerated. This tolerance is justified due to the slowly varying operating
conditions of the power systems under normal operating conditions.

The definition of the system state usually includes the steady state bus
voltage phasors only. This implies that the network topology and param-
eters are perfectly known. However, errors in the network parameters or
topology do exist occasionally, due to various reasons such as unreported
outages, transmission line sags on hot days, etc. Detection and correction
of such errors will be separately discussed later on in chapters 7 and 8.
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2.2 Component Modeling and Assumptions

Power system is assumed to operate in the steady state under balanced
conditions. This implies that all bus loads and branch power flows will
be three phase and balanced, all transmission lines are fully transposed,
and all other series or shunt devices are symmetrical in the three phases.
These assumptions allow the use of single phase positive sequence equivalent
circuit for modeling the entire power system. The solution that will be
obtained by using such a network model, will also be the positive sequence
component of the system state during balanced steady state operation. As
in the case of the power flow, all network data as well as the network
variables, are expressed in the per unit system. The following component
models will thus be used in representing the entire network.

2.2.1 Transmission Lines

Transmission lines are represented by a two-port 7r-model whose parameters
correspond to the positive sequence equivalent circuit of transmission lines.
A transmission line with a positive sequence series impedance of .R+ĵ f and
total line charging susceptance of j23, will be modelled by the equivalent
circuit shown in Figure 2.1.

Figure 2.1. Equivaient circuit for a transmission tine

2.2.2 Shunt Capacitors or Reactors

Shunt capacitors or reactors which may be used for voltage and/or reactive
power control, are represented by their per phase susceptance at the corre-
sponding bus. The sign of the susceptance value will determine the type of
the shunt element. It will be positive or negative corresponding to a shunt
capacitor or reactor respectively.

2.2.3 Tap Changing and Phase Shifting Transformers

Transformers with off-nominal but in-phasc taps, can be modeled as series
impedances in scries with ideal transformers as shown in Figure 2.2. The
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two transformer terminal buses m and /c are commonly designated as the
impedance side and the tap side bus respectively.

Figure 2.2. Equivatent circuit for an off-nominat tap transformer

The nodal equations of the two port circuit of Figure 2.2 can be derived
by first expressing the current flows ̂^ and î  at each end of the series
branch R + jJf. Denoting the admittance of this branch ^ — m by y, the
terminal current injections will be given by:

(2.1)

Substituting for ̂rn and

the final form will be obtained as follows:

(2.2)

where a is the in phase tap ratio. Figure 2.3 shows the corresponding two
port equivalent circuit for the above set of nodal equations.

Figure 2.3. Equivatent circuit of an in-phase tap changer

For a phase shifting transformer where the off-nominal tap value a, is
complex, the equations will slightly change as:
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yielding the following set of nodal equations:

(2.3)

Note the loss of reciprocity as the admittance matrix is no longer symmetri-
cal. Therefore, a passive equivalent circuit such as the one shown in Figure
2.3 for the in-phase tap changer, can no longer be realized for the phase
shifting transformer. However, the circuit equations can still be solved as
before by only modifying the admittance matrix which is no longer sym-
metrical.

2.2.4 Loads and Generators

Loads and generators are modeled as equivalent complex power injections
and therefore have no effect on the network model. Exceptions are con-
stant impedance type loads which are included as shunt admittances at the
corresponding buses.

2.3 Building the Network Model

The above-described component models can be used to build the network
model for the entire power system. This is accomplished by writing a set
of nodal equations which are derived by applying KirchhofF's current law
at each bus. Denoting the vector of net current injections by 7, and the
vector of bus voltage phasors by V, these equations will take the following
form:

7 = = V . V (2.4)

where
^ is the net current injection phasor at bus A;.
v^ is the voltage phasor at bus A:.
%m is the (A:,m)th element of K.

Note that, as a convention, currents (or power) entering a bus will be
assumed to be positive injections throughout the rest of the book. Matrix Y
is referred to as the bus admittance matrix, and has the following properties:

1. It is in general complex, and can be written as G + j_B.

2. It is structurally symmetric. It may also be numerically symmetric
depending upon the absence of certain network components such as
phase shifters, with non-symmetrical nodal equations.
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3. It is very sparse.

4. It is non-singular provided that each island in the network has at
least one shunt connection to ground.

Equation (2.4) is valid for any N-port passive circuit with external cur-
rent injections defined by the vector 7. This representation of the network
by nodal equations, facilitates the modification of equations in case of topol-
ogy changes. Adding or removing a k-port sub-circuit can be easily done by
adding or subtracting the corresponding entries of the admittance matrix.

As an example, consider a two-port model of a transformer connected
between bus A; and m, having a series admittance of y^ and a tap ratio of
a, represented by the following nodal equations:

(2.5)

Given the bus admittance matrix Y for the entire system, the transformer
model can be introduced by modifying the following 4 entries in Y:

+

Hence, the bus admittance matrix Y of a large power system can be
built from scratch by introducing one subsystem at a time and modify-
ing the corresponding entries of Y until all branches are processed. One
of the simplest subsystems is a two-port network such as the model of a
transformer or a transmission line as shown in Figures 2.1 and 2.3.

Example 2.1:

Consider the 4-bus power system whose one-line diagram is given in Figure
2.4. Network data and the steady state bus voltages are listed below. The
susceptance of the shunt capacitor at bus 3 is given as 0.5 per unit.

From
Bus
1
1
2
2

To
Bus
2
3
3
4

R
pu

0.02
0.02
0.05
0.00

X
pu

0.06
0.06
0.10
0.08

Total Line
Charging Susceptance

0.20
0.25
0.00
0.00

Tap
a
-
-
-

0.98

Tap Side
Bus
-
-
-
2
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Bus
No.
1
2
3
4

Voltage Mag.
pu

1.0000
0.9629
0.9597
0.9742

Phase Angle
degrees

0.00
-2.76
-3.58
-3.96

Figure 2.4. One-line diagram of a 4-bus power system

* Write the nodal equations for the 2-port 7r-model of the transformer con-
nected between bus 2 and 4.

* Form the bus admittance matrix, IK for the entire system.

* Calculate the net complex power injections at each bus.

Solution:

The nodal equations for the transformer branch will be obtained by substi-
tuting for y and a in Equation (2.2):

-J 13.02 j 12.75
J12.75 -j'12.50

Bus admittance matrix for the entire system can be obtained by including one
branch at a time and expanding the above admittance matrix to a 4x4 matrix:

10.00-j'29.77 -5.00 + J15.00 -5.00 + J15.00 0
-5.00j'15.00 9.00-j'35.91 -4.00 + j'8.00 j'12.75
-5.00jl5.00 -4.00 + j'8.00 9.00-J22.37 0

0 j'12.75 0 -j'12.50

Complex power injection at bus A; will be given by:
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Substituting for :̂  from the above noda] equation:

4

Evaluating them for A; = 1,.. ., 4 yietds:

Si = 2.00 + j'0.45

63 = -0.50 - jO.30

Ss = -l.20-jO.80

& = -0.25-jO. 10

2.4 Maximum Likelihood Estimation

The objective of state estimation is to determine the most likely state of
the system based on the quantities that are measured. One way to accom-
plish this is by maximum likelihood estimation (MLE), a method widely
used in statistics. The measurement errors are assumed to have a known
probability distribution with unknown parameters. The joint probability
density function for all the measurements can then be written in terms of
these unknown parameters. This function is referred to as the likelihood
function and will attain its peak value when the unknown parameters are
chosen to be closest to their actual values. Hence, an optimization problem
can be set up in order to maximize the likelihood function as a function of
these unknown parameters. The solution will give the maximum likelihood
estimates for the parameters of interest.

The measurement errors are commonly assumed to have a Gaussian
(Normal) distribution and the parameters for such a distribution are its
mean, ̂  and its variance, o*̂ . The problem of maximum likelihood esti-
mation is then solved for these two parameters. The Gaussian probability
density function (p.d.f.) and the corresponding probability distribution
function (d.f.) will be reviewed below briefly before describing the maxi-
mum likelihood estimation method.

2.4.1 Gaussian (Normal) probability density function

The Normal probability density function for a random variable 2 is defined
as:

27rcr
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where z : random variable
/n : mean (or expected value) of 2 = E(z)
o* : standard deviation of 2

The function /(z) will change its shape depending on the parameters /i and
cr. However, its shape can be standardized by using the following change
of variables:

which yields:

- ̂) = = 1.0

Hence, the new function becomes:

2?r

A plot of <&(%), which is referred to as the Standard Normal (Gaussian)
Probability Density Function, is shown in Figure 2.5.

-3 -2

Figure 2.5. Standard Gaussian (Normal) Probability Density Function,
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2.4.2 The likelihood function

Consider the joint probability density function which represents the prob-
ability of measuring m independent measurements, each having the same
Gaussian p.d.f. The joint p.d.f can simply be expressed as the product of
individual p.d.f's if each measurement is assumed to be independent of the
rest:

where 2̂  : ̂ th measurement
2̂  : [21,22,." ,2̂ ]

The function 7̂ (2) is called the likelihood function for 2. Essentially it is a
measure of the probability of observing the particular set of measurements
in the vector 2.

The objective of maximum likelihood estimation is to maximize this
likelihood function by varying the assumed parameters of the density func-
tion, namely its mean /̂  and its standard deviation cr. In determining
the optimum parameter values, the function is commonly replaced by its
logarithm, in order to simplify the optimization procedure. The modified
function is called the Log-Likelihood Function, Z! and is given by:

r — joy f /2\ —**-* — iu& JmA^/ —

MLE will maximize the likelihood (or log-likelihood) function for a given
set of observations 21,23,..., 2̂ ,. Hence, it can be obtained by solving the
following problem:

maximize log 7̂ (2)

OR

minimize

This minimization problem can be re- written in terms of the reŝ &tâ
of measurement !, which is defined as:

where the mean /̂ , or the expected value -E(2t) of the measurement 2̂  can
be expressed as 7̂ ($;), a nonlinear function relating the system state vector
z to the zth measurement. Square of each residual r̂  is weighted by W^
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= cr̂ , which is inversely related to the assumed error variance for that
measurement. Hence, the minimization problem of Equation (2.6) will be
equivalent to minimizing the weighted sum of squares of the residuals or
solving the following optimization problem for the state vector 2:

minimize / ̂ (2.7)

(2.8)

The solution of the above optimization problem is called the
gttares (WLS) estimator for 2. A review of the measurement model

and the associated assumptions will be given next, before discussing the
numerical solution methods.

2.5 Measurement Model and Assumptions

Consider the set of measurements given by the vector 2:

2 =
22 62

(2.9)

where:

t̂(̂ ) is the nonlinear function relating measurement ^ to the state vector

a:̂  = [a;i, 3̂ 2, - - - , ̂ n.] is the system state vector
e*̂  = [ei, 62, ..., ê ] is the vector of measurement errors.

The following assumptions are commonly made, regarding the statistical
properties of the measurement errors:

* Measurement errors are independent, i.e. Ê e.,] = 0.
Hence, Cou(e) = E[e - ê ] = R = diag { cr^, <r^, - - - , o*̂  }.

The standard deviation cr̂  of each measurement ̂  is calculated to reflect
the expected accuracy of the corresponding meter used.

The WLS estimator will minimize the following objective function:

(2.10)
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At the minimum, the first-order optimality conditions will have to be
satisfied. These can be expressed in compact form as follows:

dx (2.11)

where

Expanding the non-linear function (7(2) into its Taylor series around the
state vector T^ yields:

Neglecting the higher order terms leads to an iterative solution scheme
known as the Gauss-Newton method as shown below:

where is the iteration index,

is the solution vector at iteration k,

G(x) is called the f?am mâ Wa;. It is sparse, positive definite and symmet-
ric provided that the system is fully observable. The issue of observability
will be discussed in detail in Chapter 4. The matrix G(a:) is typically not
inverted (the inverse will in general be a full matrix, whereas G(a:) itself is
quite sparse), but instead it is decomposed into its triangular factors and
the following sparse linear set of equations are solved using forward/back
substitutions at each iteration &:

[C(̂ )]AT*=+i = R^x^R-^ - 7t(̂ )] (2.12)

where Aa^+i = 3̂ +* — aA The set of equations given by Equation (2.12)
is also referred to as the Normal Equations.

Example 2.2:

Consider the 3-bus power system shown in Figure 2.6. The network data are
presented in the table below:

Line
From Bus

1
1
2

To Bus
2
3
3

Resistance
R(pu)
0.01
0.02
0.03

Reactance
X(pu)
0.03
0.05
0.08

Total Susceptance
26s (pu)

0.0
0.0
0.0
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: Power Measurement
: Voltage Magnitude Measurement

Figure 2.6. One-tine diagram and measurement configuration of a 3-bus power sys-

tem

The system is monitored by 8 measurements, hence m = 8 in Equation (2.9).
Measurement values and their associated error standard deviations
are given as:

Measurement, !
1
2
3
4
5
6
7
8

Type
Pl2

P13

P2

$12

<?13

92

14

^

Value (pu)
0.888
1.173
-0.501
0.568
0.663
-0.286
1.006
0.968

-/Rii (pu)
0.008
0.008
0.010
0.008
0.008
0.010
0.004
0.004

The state vector 3 wiM have 5 elements in this case (n = 5),

3̂  = [02, $3,14,̂ ,̂ 1

#i = 0 is chosen as the arbitrary reference angle.

2.6 WLS State Estimation Algorithm

WLS State Estimation involves the iterative solution of the Normal equa-
tions given by Equation (2.12). An initial guess has to be made for the state
vector a:̂ . As in the case of the power How solution, this guess typically
corresponds to the Hat voltage profile, where all bus voltages are assumed
to be 1.0 per unit and in phase with each other.

The iterative solution algorithm for WLS state estimation problem can
be outlined as follows:

1. Start iterations, set the iteration index A; = 0.

2. Initialize the state vector ẑ , typically as a flat start.
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3. Calculate the gain matrix, G(3̂ ).

4. Calculate the right hand side ̂  = R(̂ f,R-i(2 - ̂(a;̂ ))

5. Decompose G(â ) and solve for AaA

6. Test for convergence, max ] Aa^ [< e?

7. If no, update 3̂ +* = a;̂  + Aa^, /c = A; + 1, and go to step 3. Else,
stop.

The above algorithm essentially involves the following computations in
each iteration, A;:

1. Calculation of the right hand side of Equation (2.12).

(a) Calculating the measurement function, ̂(a;̂ ).

(b) Building the measurement Jacobian, R(â ).

2. Calculation of G(â ) and solution of Equation (2.12).

(a) Building the gain matrix, (?(a;̂).

(b) Decomposing C(a;̂ ) into its Cholesky factors.

(c) Performing the forward/back substitutions to solve for Aa;^+^.

2.6.1 The Measurement Function, ̂(â )

Measurements can be of a variety of types. Most commonly used measure-
ments are the line power Bows, bus power injections, bus voltage magnitudes
and line current now magnitudes. These measurements can be expressed in
terms of the state variables either using the rectangular or the polar coordi-
nates. When using the polar coordinates for a system containing N buses,
the state vector will have (27V — 1) elements, TV bus voltage magnitudes
and (TV — 1) phase angles, where the phase angle of one reference bus is
set equal to an arbitrary value, such as 0. The state vector a; will have the
following form assuming bus 1 is chosen as the reference:

The expressions for each of the above types of measurements are given
below, assuming the general two-port 7r-model for the network branches,
shown in Figure 2.7:

* Real and reactive power injection at bus i:

p. = ̂  ]T V, (Gij cos 6̂  + ̂ sin ̂ )
j'eKj

^ = ̂  ̂  ̂ 7 ( Ĉ ' sin (9̂  - B^ cos 6̂. )
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Figure 2.7. Two-port 7r-modei of a network branch

Real and reactive power Bow from bus z to bus j:

+ Fi? ) - ̂ !j cos 6̂  + &̂ - sin 6̂  )

- 6̂  cos 0

Line current flow magnitude from bus ^ to bus j:

or ignoring the shunt admittance (<?̂  +

where
%,0, is the voltage magnitude and phase angle at bus i.
ĵ = ̂: " ̂ j -

G^ + j'B̂  is the r?'th element of the complex bus admittance matrix.
.9tj + .7&ij is the admittance of the series branch connecting buses : and j.
Sst+j&st is the admittance of the shunt branch connected at bus ! as shown
in Figure 2.7.
f̂  is the set of bus numbers that are directly connected to bus :.
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2.6.2 The Measurement Jacobian, R

The structure of the measurement Jacobian # will be as follows:

38

36

0

3V

3V

3V

3V

3V

The expressions for each partition are given below:

* Elements corresponding to real power injection measurements:

N

E (-C,, sin < cos ̂ -

ij sin^ - B^ cos 0̂

an

— -̂  = 14 ( Gi j cos 6̂  + B̂ - sin 0̂ - )

Elements corresponding to reactive power injection measurements:

E
14 V? (

E

,- cos 0̂ .,- + -%,, sin 0̂ ) —

- cos 6< - B - sin 0
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* Elements corresponding to real power flow measurements:

?ij sin 0̂ ' — &̂ - cos 6*ij)

— = — V^Vy^j'sin&tj—^-cos^j)

^ cos ̂j + &ij sin ̂,,)
^ ̂ j

Elements corresponding to reactive power flow measurements:

—-̂  = - ̂ V,- (ĝ  cos 6<ij + 6̂ - sin 6<̂ )

-

- = — %(̂ r; sin̂ - — 6ij cos^

Elements corresponding to voltage magnitude measurements:

Elements corresponding to current magnitude measurements (ignor-
ing the shunt admittance of the branch) :
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Exampie 2.3:

Consider the same system and measurement configuration shown in example
2.2. Assume flat start conditions, where the state vector is equal to:

0
0
1.0
1.0
1.0

Then, the measurement Jacobian can be evaluated as follows, using the expres-
sions given above:

dpi

d#2
* -30.0

40.9
10.0

-14.1

<%s dH

-17.2
-10.9

6.9
4.1

10.0
6.9

-10.0
30.0
17.2

-30.0
1.0

dl/2
-10.0

14.1
-30.0

40.9

1.0

<9%
*

-6.9
-4.1

-17.2
-10.9

Note that the dimension of # is 7n x n = 8 x 5, and it is a sparse matrix. Its
sparsity becomes more pronounced for large scale systems, where the number of
nonzeros per row stays fairly constant, irrespective of the system size.

2.6.3 The Gain Matrix, G

Gain matrix is formed using the measurement Jacobian R and the mea-
surement error covariance matrix, R. The covariance matrix is assumed to
be diagonal having measurement variances as its diagonal entries. Since G
is formed as:

it has the following properties:

1. It is structurally and numerically symmetric.

2. It is sparse, yet less sparse compared to R.

3. In general it is a non-negative definite matrix, i.e. all of its eigen-
values are non-negative. It is positive definite for fully observable
networks.
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G is built and stored as a sparse matrix for computational efficiency
and memory considerations. It is built by processing one measurement at
a time. Consider the measurement jacobian R and the covariance matrix
for a set of m measurements, each one corresponding to one row, as shown
below:

0
0

0
%:

0
0

0
0

Then, the gain matrix can be re-written as follows:

Since % arrays are very sparse row vectors, their product will also yield
a sparse matrix. Nonzero terms in C can thus be calculated and stored in
sparse form.

Example 2.4:

Using the measurement jacobian R(
matrix C(:c°) will be obtained as foHows:

evaluated in example 2.3, the gain

3.4392
-0.5068
0.0137

-0.0137

-0.5068
0.6758

-0.0137
0.0137
0.0000

0.0137
-0.0137
3.1075

-2.9324
-0.1689

0.0137
-2.9324
3.4455

-0.5068

-0.0137 *
0.0000

-0.1689
-0.5068
0.6758

Gain matrix is 5 x 5, symmetric and less sparse than the corresponding mea-
surement jacobian R(a;°). Its eigenvatues can be computed as:

3.5293
6.2254
0.5857
0.9992
0.0042

confirming that it is positive definite.
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2.6.4 Cholesky Decomposition of G

The gain matrix G can be written as a product of a lower triangular sparse
matrix and its transpose. This is called the Cholesky decomposition of G,
details of which are given in Appendix B. Decomposed form of G will be:

G — jL ' iy

Note that this decomposition may not exist for systems which are not
fully observable. As a result, a state estimation solution can not be obtained
for such unobservable systems. Chapter 4 describes methods for testing
observability and related topics.

Example 2.5:

Cholesky decomposition of the gain matrix G(a;°) in example 2.4, is given as
follows:

where :

L = 103

5.8645
-0.8643
0.0234

-0.0000
-0.0234

0
2.4517

-0.0476
0.0559

-0.0082

0
0

5.5743
-5.2600
-0.3030

0
0
0

2.6045
-2.5579

0 "
0
0
0

0.3503

Triangular factors of G are not unique and their sparsity depends heavily
on the way the decomposition is carried out. There are several ordering
methods for optimizing the sparsity of the resulting L factors. These are
discussed in detail in Appendix B.

2.6.5 Performing the Forward/Back Substitutions

Assuming that the gain matrix is properly decomposed into its Cholesky
factors L and L̂ , the next step is to solve the Normal equation for AaA'

where, ̂  denotes the right hand side of Equation (2.12). This solution
is obtained in two steps:

1. Forward substitution: Let L^A^ = u, and obtain the elements of M
starting from Mi by using substitutions in the transformed equation
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Lu = î . The top row will yield the solution for Mi as ii/Ln. Sub-
stituting for Mi in the rest of the rows will reduce the set of equations
by one. Repeating the same procedure for tt2 and others sequentially,
will yield the entire solution for M.

2. Back substitution: Now that M is available, use L̂ Aa;̂  = u, to back
substitute and solve for the entries of AaA This time, the substitu-
tions should start at the bottom row, where the last element of the
solution vector is obtained as Aa;̂ (n) = û /L̂ n. Substituting for
it in the remaining rows, the back substitution process can continue
until all entries are calculated.

Note that both the forward and back substitution steps proceed very
efficiently due to the sparse structure of the triangular factor L.

Example 2.6:

Consider the iterative solution of the WLS state estimation problem for the
system of example 2.2. Applying the algorithm described in section 2.6, the
state vector can be solved iteratively. The convergence criteria will be chosen
as 10"̂  for the state variable updates. Starting from the Hat start, and using
the jacobian and gain matrices already initialized in examples 2.3 and 2.4, the
solution is obtained in 3 iterations. The convergence summary for the objective
function J(â ) and the state updates Aa;̂  are given in the below table.

Iterations, A;

A^A6<3

A^Avy
Â }°

Objective Function, J(T̂ )

1

-2.10e-2
-4.52e-2
S.OOe - 4

-2.57e-2
-5.72e-2

49,123

2

-6.00e - 4
-2.70e-3
-1.09e-4
-1.06e-4
1.15e-3

59.6

3

-0.02e - 5
2.81e-6

-1.65e-6
-1.63e - 6
1.87e - 6

8.6

The algorithm converges to the following state estimation solution:

Bus
:
1
2
3

14
(p")

0.9996
0.9742
0.9439

0i
(degrees)

0.0
-1.2475
-2.7457
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Finally, we can also compute the estimated measurements and their residual
vector given by:

r = 2 — A(a;)

These values are shown below:

Measurement
No. ̂
1
2
3
4
5
6
7
8

Type

Pl2

P13

P2

912

913

92

14

^

Measured
Value (pu)

0.888
1.173

-0.501
0.568
0.663

-0.286
1.006
0.968

Estimated
Value (pu)

0.8930
1.1711

-0.4959
0.5588
0.6677

-0.2977
0.9996
0.9742

Residual

(PU)

-0.0050
0.0019

-0.0051
0.0092

-0.0047
0.0117

-0.0064
-0.0062

The gain matrix G evaluated in the 3rd iteration is given by:

* 3.2086
-0.4472
-0.0698
-0.0314
0.0038

-0.4472
O.S95S

-0.0451
0.0045
0.0000

-0.0698
-0.0451
3.2011

-2.8862
-0.2160

-0.0314
0.0045

-2.8862
3.3105

-0.4760

0.0038 *
0.0000

-0.2160
-0.4760
0.6684

Note that this matrix is not very different from the initial G(a;°) matrix eval-
uated at Hat start in example 2.3. While there are exceptions, in general the
gain matrix elements do not change significantly during the iterative solution
procedure.

2.7 Decoupled Formulation of the
WLS State Estimation

The main computational burden associated with the WLS state estimation
solution algorithm presented in section 2.6 is the calculation and triangular
decomposition of the gain matrix. One way to reduce this burden is to
maintain a constant but approximate gain matrix. This approximation is
in line with the observation in exercise 2.6, that the elements of the gain
matrix do not significantly change between fiat start initialization and the
converged solution. Furthermore, as observed earlier for the power How
problem [1], sensitivity of the real (reactive) power equations to changes
in the magnitude (phase angle) of bus voltages is very low, especially for
high voltage transmission systems. These two observations lead to the
fast decoupled formulation of the state estimation problem [2, 3]. In this
formulation, the measurement equations are partitioned into two parts:
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* Real power measurements, including the real power bus injections
and real power Bows in branches. These measurements will be de-
noted by the subscript ̂ 1, meaning the active measurements.

* Reactive power measurements, including the reactive power bus in-
jections, reactive power flows in branches and bus voltage magnitude
measurements. These measurements will be denoted by the subscript
R, meaning the reactive measurements.

Note that branch current magnitude measurements are not included in
either of these groups of measurements. This is intentional due to the fact
that such measurements do not lend themselves as readily as the others to
the decoupled formulation. This is one of the shortcomings of the decoupled
formulation and the problems associated with the use of current magnitude
measurements will be discussed further in Chapter 9.

Thus, the measurement and their related arrays can be partitioned
based on the above designation:

R/t/l

R^ o
o RR

The following assumptions are used to obtain the fast decoupled state
estimation algorithm:

1. Assume flat start operating conditions, i.e. all bus voltages being at
nominal magnitude of 1.0 pu and in phase with each other.

2. Ignore the off diagonal blocks R^R and RR/t in the measurement
jacobian R, and compute the gain matrix using this approximation.
This will also eliminate the off diagonal blocks in the gain matrix,
yielding a constant and decoupled gain matrix evaluated at fiat start:

0
GRR

^ #AA

3. Repeat the same approximation for the jacobian entries when calcu-
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lating the right hand side vector:

where :

There are two variations to the basic assumptions listed above. These vari-
ations essentially pertain to the submatrices #4̂  and #RR. Ignoring the
branch series resistances in forming .Ĥ /t or T^RR will lead to the so-called
.Xi? or BJf formulation of the fast decoupled state estimation respectively.
Details of the justification of these formulations can be found in [4, 5].

The above assumptions lead to a decoupled solution algorithm using
the polar coordinates in the calculations. Hence, the solution for the phase
angle A6? and magnitude AV updates are obtained alternatingly and con-
vergence is tested based on the max. changes in both of these arrays. The
steps of the solution algorithm are given below:

1. Initialize all bus voltages at Hat start, % = 1 pu, 0̂  = 0 for all

2. Build and perform triangular decomposition of G/̂  and

3. Calculate T̂ .

4. Solve G^ A% = 714.

5. Check if both A0 and AV are less than the convergence tolerance.
If yes, stop. Else, continue.

6. Update P*+i = 6̂  + A%.

7. Calculate T*R.

8. Solve GRR AV = TR.

9. Check if both A6? and AV are less than the convergence tolerance.
If yes, stop. Else, continue.

10. Update V^ = V= + AV.

11. Go to step 3.
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Note that the gain sub-matrices G^ and G^ are computed and decom-
posed into their triangular factors only once at the beginning of the iterative
solution. Solutions for A0 and AV are carried out very efficiently using the
forward and back substitutions, since the triangular factors need not be
updated during the iterations. Furthermore, the dimension of the two gain
sub-matrices are half the size of the fully coupled gain matrix, further re-
ducing the computational effort.

Example 2.7:

The constant gain matrices used in the fast decoupled state estimation
rithm are given below for the same network of example 2.2:

3.837 -0.5729
-0.5729 0.7812

2.777 -2.635 -0.1357
-2.635 3.090 -0.4489
-0.1357 -0.4489 0.5846

In this example, the fast decoupled state estimation algorithm converges in 3.5
iterations, i.e. 3 real power and 4 reactive power iterations are needed. Estimated
state is given by:

Bus
!

1

2
3

14
(pu)
1.000

0.97438
0.94401

9;
(degrees)

0.0
-1.24
-2.71

Fast decoupled state estimation has found wide acceptance in the indus-
try and various versions have been implemented in control centers all over
the world. When compared with the full (coupled) WLS solution algorithm,
the decoupled version has the following advantages:

* It requires less memory.

* It is computationally faster, since the gain sub-matrices are smaller
and constant requiring the triangular decomposition to be carried
out only once at the first iteration.

On the other hand, it has the below given limitations which should be
carefully considered before using it for a particular system and measurement
set:
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* There may be cases when the network parameters or operating condi-
tions violate the stated decoupling assumptions. Such cases may not
converge or converge to significantly inaccurate solutions. However,
such cases are rather rare in practice.

* Branch current magnitude (ampere) measurements do not have the
same type of decoupling properties as the rest of the measurement
types. Hence, the decoupled formulation can not be reliably used in
the presence of branch current magnitude measurements.

2.8 DC State Estimation Model

It is often helpful to work with a simplified DC approximation model for
the measurement equations in analyzing the inherent limitations of various
methods related solely to the measurement configuration. DC approxima-
tion is obtained by assuming that the bus voltage magnitudes are already
known and are all equal to 1.0 per unit. Neglecting all shunt elements and
branch resistances, the real power flow measured from bus A; to m can be
approximated by the first order Taylor expansion around 0 = 0, given by:

P̂  = ̂^ + e (2.13)

where 2̂  is the reactance of branch A: — m, 6̂  is the phase angle at bus A;
and e is the measurement error. Similarly, a power injection measurement
at a given bus ̂  can be expressed as a sum of Bows along incident branches
to that bus:

where Hy is the set of buses connected to bus j.
Hence, the DC model for the real power measurements can be expressed

in matrix form as follows:

where 2/t includes flow and injection measurements, F̂  is a function of
the branch reactances only, and e^ is the vector of random errors. Note
that the reference bus phase angle is typically excluded from 0 and the
corresponding column will be missing in F̂ .̂ We will refer to this DC
model frequently in the subsequent chapters.

2.9 Problems

1. The measurement model for a certain application is given as follows:
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where, y^ is the !th measurement, â  is a known parameter for mea-
surement ,̂ e^ is the error in the ^th measurement, a and 5 are un-
known parameters of the measurement mode}.

Assume that ê 's are independent random variables distributed ac-
cording to a Normal distribution with N(0,0.4), and calculate the
MLE of a and & for the measurements given in the below table:

2. Determine the minimum value of n for which

Fr(l Xn - ̂  > 1.2) < 0.01

if the random sample is taken from a Normal distribution whose
mean /̂  is unknown and variance is 0.16.

3. Suppose that the voltage at a certain substation has a normal dis-
tribution with mean 345,000 V and variance 225,000,000. If five in-
dependent measurements of the voltage are made, what is the prob-
ability that all five measurements will lie between 340 kV and 360
kV?

4. Suppose that a random sample of size N is to be taken from a normal
distribution with mean /i and standard deviation 0.04. Determine the
smallest value of N such that:

>0.85 (2.16)

5. Suppose that X\, - - - , ̂ fjv form a random sample from a distribution
for which the probability density function (p.d.f) is given as follows:

0

Also, suppose that the value of
MLE of <?.

' for 0 < a; < 1
otherwise

is unknown ( 0 > 0 ) Find the

6. Suppose that a wattmeter has errors distributed according to a nor-
mal distribution with mean 0.5 W and variance 0.25 W. If 100 inde-
pendent power measurements arc made using this instrument, what
is the probability that all 100 measurements will have errors less than
0.6W? Assume that wattmeters can measure negative watts.
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7. One hundred independent voltage measurements will be made at a
power system bus.

(a) Assuming that the bus voltage is distributed according to a
Normal distribution with a mean of 230-kV and a variance of
50 million square volts, find the probability that all one hundred
measurements will lie between 220-kV and 235-kV.

(b) Repeat part (a) this time assuming a variance of 0.5 million
square volts.

8. Suppose that

{0.2,0.45,0.86,0.55,0.01,0.94,0.33,0.66,0.32,0.75,0.24}

form a random sample from a distribution for which the probability
density function (p.d.f) is given as follows:

0
for 0 < ;y < 1

otherwise

Also, suppose that the value of the parameter 0 is unknown (0 > 0).
Find the MLE of 0.

9. A small power system is monitored through 7 measurements whose
errors are independently distributed according to a Normal distribu-
tion with zero mean and a variance as given below for each measure-
ment:

Measurement, :
1
2
3
4
5
6
7

^6.4010-̂
9.0010-s
1.6010-3
4.9010-6
1.0010*6
1.4410-s
2.5010-s

What is the probability that the absolute value of the error of at
least one of the measurements will be greater than 0.01?

10. A 2-bus power system is shown in Figure 2.8. Assume that the
following measurement set is available for estimation:

= [-0.30,-0.15,1.0]

Assume that the measurements are equally accurate.
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* : Power Measurement
n: Voltage Magnitude Measurement

Figure 2.8. 2-bus system diagram for Problem 10

(a) Find the WLS estimator for % and #2-

(b) What is the value of the objective function J(a?) at the optimal
solution?

(c) Does J(2) have a unique minimum? If not, find ail other possi-
ble solutions.
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Chapter 3

Alternative Formulations
of the WLS State
Estimation

Solution of the WLS State Estimation problem via the use of the Normal
Equations (NE), as explained in the former chapter, can almost always be
successfully carried out, especially on modern extended-wordlength com-
puters. However, it is well known that under certain circumstances that
are likely to occur in actual systems, the NE will become prone to numer-
ical instabilities. Such situations will prohibit the solution algorithm from
reaching an acceptable solution or even will cause divergence.

In this chapter, the limitations of NE will be first discussed and illus-
trated. Then, several, numerically more robust, alternative techniques, will
be presented.

3.1 Weaknesses of the Normal Equations For-
mulation

Let us first recall, from the previous chapter, that the WLS State Estimator
leads to the iterative solution of the so-called NE:

G(̂ )Â  = R̂ (3̂ )tVÂ  (3.1)

where

A; denotes the iteration index
Az = z — ̂ ,(z) is the residual vector
77 is the Jacobian of /T,z
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IV = R"i = diag"\cr?) is the weighting matrix
C = R^tVR is the gain matrix

Equation (3.1) is solved by Cholesky factorization of C followed by
forward/backward substitutions on the right hand side vector. Since C is
positive definite for observable systems, there is no need to worry about
pivoting to preserve numerical stability.

However, prior to the decomposition of G, its rows/columns must be
symmetrically permuted according to the minimum degree criterion so as
to maintain its sparse structure as much as possible. The sparsity pattern
of C can be directly deduced from that of R which, in turn, is determined
by the network topology and measurement configuration. Every injection
measurement brings in second-neighbor adjacency for the corresponding
bus, as shown by the examples of Chapter 2. This implies that, G will in
general be less sparse than the bus admittance matrix. Consequently, solv-
ing the NE will involve significantly more computations than those required
by the power flow solution for the same network.

Another and perhaps a more important difference between the state
estimation and the load flow problems, for the matters discussed in this
chapter, is the numerical conditioning of the solution equations. A linear
equation system is said to be :̂ -co?M̂ :onê  if small errors in the entries
of the coefficient matrix and/or the right hand side vector translate into
significant errors in the solution vector. The more singular a matrix is, the
more ill-conditioned its associated system will be. The degree to which a
system is ill-conditioned, can be quantified by a measure called the condi-
tion number, which is deHned as:

where ] ] - ] [ represents a given matrix norm. This value is equal to unity for
identity matrices and tends to infinity for matrices approaching singular-
ity. Condition numbers are typically approximately computed, due to the
high computing cost of K as evident from its definition above. One such
approximation which yields a good estimate of the condition number is the
ratio Am,o.2;/̂ -m.:Tn where A^ax; A^n are the largest and smallest absolute
eigenvalues respectively of a normalized matrix.

It can be shown that

(3.2)

which means that the NE are intrinsically ill-conditioned. Consider as an
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example the following matrix:

1 1 1 1 1
E

If the Heating-point accuracy is le - 10 and s = 0.5e - 5, then rank(R) = 5.
However, for such an accuracy, the corresponding gain matrix reduces to

"l + s2

1

1

1

1

1

1+E2

1

1

1

1

1

1 + E2

1

1

1 1

1 1

1 1

1 + E2 1

1 1 + E^_

PR

*1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1*

1

1

1

1

which is a rank-one matrix.
Although such extreme cases are never found in practice, a combina-

tion of a too low termination threshold, poor word-length and severe ill-
conditioning may cause convergence problems or even divergence.

Furthermore, for the particular case of the WLS state estimation, the
following specific sources of ill-conditioning have been described in the lit-
erature:

* Very large weighting factors used to enforce virtual measurements.

* Short and long lines simultaneously present at the same bus.

* A large proportion of injection measurements.

The following three examples will illustrate these ill-conditioning mech-
anisms, for very simple cases.

Example 3.1:

Consider the three-bus system shown in figure 3.1, where we are interested in
the linear DC state estimation problem.

)0

Figure 3.1. 3-bus system for exampte 3.1
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For simplicity, only two critical measurements are considered to estimate $1
and #2, namely the regular power flow measurement _Poi and the exact null in-
jection .Pi. If # and C denote the Jacobian of regular and virtual measurements
respectively, we have in this case:

-1 0
2 -1^

^ ̂  ] Cj I 0 VJ ] C ] ̂  [ -2V V

Clearly, if the weight assigned to the ordinary measurement, tV, is negligible
compared to V, the gain matrix will become almost singular (ill-conditioned).
The same will happen in the general case, because the rows of C will not be
sufficient to make the network fully observable (only in the case of the power
flow, does C contain all rows).

Example 3.2:

Consider now the network shown in figure 3.2, where the ratio ̂ 12/̂ 01 is

0 P.i,l __P^2

Figure 3.2. 3-bus system for example 3.2

The relevant equations in this case, assuming unit weights, are:

- o

+ 1 -1

Note again that the gain matrix becomes ill-conditioned if the line 1-2 is much
shorter than line 0-1 (A: <g; 1).
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Example 3.3:

The former example comprises two power How measurements. When the two
lines are identical (/c = 1), the Jacobian and gain matrices become:

_ JT-1 0
X [ 1 -1

r 1 [2 -*1^ = ̂ i[_i ij

and cond(Gr) = 6.854.
Assume now that, instead of the two power Hows, the two injections Pi,

are measured. In this case, the matrix values are:

-1 1

3 2

and cond (Gj) = 46.98 = cond (Gr)̂ . Observe that, except for a scaling factor,
G^ = Rr, which explains the relationship between the two condition numbers.

A theoretical justification is as follows: In the DC model, the power flow
vector is given by,

PF = X"* V6<

where X is the diagonal primitive branch reactance matrix, A is the node-branch
incidence matrix and 6 is the phase angle column vector. Therefore, for a mea-
surement set exclusively composed of (all) power flows the Jacobian is:

and the gain matrix (ignoring weights):

GF = ,4

Similarly, the power injection vector can be expressed as follows:

and, when only power injections are measured at all system buses, the resulting
matrices are:

Rj = AX"^

G, = (,4X"'V)2

Consequently, according to (3.2), the gain matrix corresponding to power
injection measurements is more ill-conditioned than that of power Hows. For
branch reactances of the same order of magnitude, it is expected that cond (Gj) ̂
cond (Gy)2.

In the following sections, several alternative techniques which try to
circumvent the shortcomings of the NE by avoiding the use of G* and/or
handling virtual measurements in a different manner, will be described.
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3.2 Orthogonal Factorization

Any m - n matrix F of full rank can be decomposed into two matrices of
the form:

R = QR (3.3)

where Q is an m - 771, orthogonal matrix (Q̂  = Q"*) and .R is an m - n
upper trapezoidal matrix (i.e., its first n rows are upper triangular while
the remaining m — % rows are null). The equivalent expression,

is the basis of well-known factorization algorithms, which obtain R as a
sequence of elementary transformations on the columns (rows) of F (see
Appendix B).

Also, partitioning Q and R accordingly yields the following reduced
form of this factorization:

It is therefore sufficient to build only the submatrix Q^ rather than the full

Q.
In order to apply the orthogonal factorization to the WLS estimation

problem the NE are written first in the following compact form:

FTA,g (3.5)

G

where

R = Ŵ /2̂  (3.6)

A^ = lV̂ A,z (3.7)

This way, the weighting factors do not appear explicitly but are embedded
in the remaining terms.

Then, using the property QQ*^ = 7, Equation (3.5) can be successively
transformed as follows:

= y^Az (3.8)

Furthermore, since ̂7 is a regular matrix, the last expression leads to,

x = Q̂ 'Az (3.9)
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which is the key equation in the orthogonal factorization approach. Al-
though this equation has been obtained strictly from algebraic manipu-
lations, it can be also reached considering that the solution of the WLS
estimation problem is equivalent to minimizing the euclidean norm of the
residual vector, and keeping in mind that orthogonal transformations of
vectors do not change their norms (geometric interpretation).

In summary, every iteration of the WLS estimation process consists of
the following steps [9, 11, 10]:

1. Perform the factorization R =

2. Compute the vector A,Zq =

3. Obtain Aa: from backsubstitution on f/Aa: = A^

Therefore, it is not required to obtain and factorize G. Furthermore,
since the QR factorization is not based on scalar pivots, it is numerically
more robust than the H/ factorization. Hence, the use of very large weights
for virtual measurements poses no problems.

The only drawback of this scheme is the need to obtain the matrix Q
which, in spite of being actually expressed as the product of elementary
matrices, is much denser than G. However, clever square-root-free imple-
mentation of the Givens rotations is not computationally too expensive.

3.3 Hybrid Method

Comparing Equations (3.5) and (3.8), it can be concluded that the matrix
t/ in the QR factorization is the same as that of the Cholesky factorization
of G. In fact, different algorithms could lead to different Qs but to the
same t/. However, as explained in Appendix B, this may not be the case
in practice due to round-off errors.

Based on this observation, a hybrid scheme can be devised as follows

[7]:

1. Obtain 7̂ by orthogonal transformations on F. There is no need to
keep track or save the components of Q.

2. Compute the independent vector

3. Obtain Aa; by solving the system

Hence, the NE are solved at step 3 but (7 is obtained by orthogonal
transformations on F, rather than by Cholesky factorization of G.
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Example 3.4:

The sample network of Chapter 2, repeated here for convenience, will be used
to illustrate the orthogonal factorization technique.

: Power Measurement
Voltage Magnitude Measurement

Figure 3.3. 3-bus power system of Chapter 2

Evaluating the Jacobian and the measurement residual vector at flat start,
yields:

rr

-30.0
0

40.959
10.0
0

-14.110
0
0

0
-17.241
-10.959

0
6.8966
4.1096
0
0

10.0
6.8966
-10.0
30.0
17.241
-30.0
1.0
0

-10.0
0

14.110
-30.0
0

40.959
0
1.0

0
-6.8966
-4.1096

0
-17.241
-10.959

0
0

(3.10)

and scaling them by

0.88756
1.1739
-0.50075
0.56863
0.66278
-0.28578
0.0065010
-0.031618

' -3750
0

4095.9
1250
0

-1411
0
0

0
-2155.2
-1095.9

0
862.07
410.96
0
0

1250
862.07
-1000
3750
2155.2
-3000
250
0

-1250
0

1411
-3750
0

4095.9
0
250

0
-862.07
-410.96

0
-2155.2
-1095.9

0
0

(3.11)

110.95
146.73
-50.075
71.079
82.847
-28.578
1.625
-7.905

Then, the QR factorization of R is performed by means of Givens rotations.
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The reduced factors are:

= 10"

-63.94 -22.54 22.50 -2.070 -0.4446
0

69.84
21.31
0

-24.06
0
0

-87.91
-20.08
7.514
35.16
8.281
0
0

14.71
-18.40
67.25
38.96
-53.65
4.485
0

31.60
17.44
-8.329
77.94
48.74
9.058
9.599

-4.679
-1.733
-1.044
-11.62
-4.773
70.02
70.09

5864.5 -864.27 23.359 0 -23.359
0 2451.7 -47.640 55.874 -8.2344
0 0 5574.3 -5260.0 -303.03
0 0 0 2604.5 -2557.9
0 0 0 0 350.28

Note that the upper triangular part of R is the same as the Choleski factors of C
obtained in Chapter 2. For realistic systems, it is computationally more efficient
to store and form Q as the product of eiementary orthogonal matrices.

Next, the right-hand-side vector is computed as,

A^ = Q^Ag=[ -83.891 -111.83 151.25 79.450 -19.902]^

and, Snally, the solution is obtained by back-substitution,

Ax = ?ŷ A3,; = 10-3[-21.197 -45.226 0.17702 -25.294 -56.816]̂

Except for possible round-off errors, the state obtained after the first itera-
tion should match the one obtained by the NE (see the table summarizing the
convergence rate in Chapter 2).

The steps required by the hybrid method can be easily performed in terms of
the matrices and vectors detailed above. The major difference is that R, rather
than Qn., is used to compute the right hand side term.

3.4 Method of Peters and Wilkinson

This is an alternative method, which performs an H/ decomposition of F:

where L is a lower trapezoidal matrix and f/ is upper triangular. Substi-
tuting for R in the NE:

(3.12)
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they are successively transformed as follows:

(3.13)

where:
Ay = ?7Ax (3.14)

The solution procedure consists of the following steps [4] :

1. Perform the H7 factorization of R.

2. Compute Ay from (3.13). This involves the Cholesky factorization
of L*̂ L followed by a forward/backward substitution.

3. Obtain A^ by backward substitution using (3.14).

The main advantage of using this scheme is the fact that L̂ L is less
ill-conditioned than

3.5 Equality-Constrained WLS State Estima-
tion

The use of very high weights for modeling very accurate virtual measure-
ments such as zero injections, leads to ill-conditioning of the C matrix. One
way to avoid the use of high weights, is to model these measurements as
explicit constraints in the WLS estimation. The Constrained WLS State
Estimation problem can then be formulated as follows [2]:

minimize J(x) = -[2 - ̂(x)f 1V[2 - ̂(x)] (3.15)

subject to c(z) = 0

where c(z) — 0 represents the accurate virtual measurements such as zero-
injections, which are now excluded from /i,(a).

This problem can be solved by the Lagrangian method, where the fol-
lowing Lagrangian is built:

f = J(z) - Â e(z) (3.16)

and the first-order optimah'ty conditions are derived:

-̂ (z)] + C^A =0 , ,
cz =0 ^ J
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where the matrix C* = de(x)/93;, is the Jacobian of c(a:).
Applying the Gauss-Newton method, the nonlinear set of equations

(3.17) is solved iteratively by means of the following linear system:

Ax
-A (3.18)

where:

Note that the IV matrix no longer has large values, which eliminates one
of the main sources of ill-conditioning. However, the drawback of Equation
(3.18) lies in its coefficient matrix being indefinite. This means that row-
pivoting to preserve numerical stability must be combined with sparsity-
oriented techniques during Lt/ factorization, destroying the initial symme-
try. More sophisticated techniques, capable of resorting on-the-Hy to 2x2
pivots to preserve the symmetry, have been developed to deal with indefi-
nite matrices. Recently, other block-pivot approaches have been presented
in which the pivot size is decided in advance based on available measure-
ments (see Section 3.7).

It is worth mentioning that the condition number of the coefficient ma-
trix in Equation (3.18) can be further improved by simply scaling the term
of the Lagrangian corresponding to the objective function, yielding:

^ = Q,J(̂ )-̂ c(x) (3.19)

It is easy to show that the scaling factor a has no influence on the estimated
state and that Ag = aA. The equation system that must be solved at each
iteration is obtained by substituting alV for IV:

\-A,C 0

Very low condition numbers are obtained when a is chosen as

or
max

The reader should be aware that a = 1 might lead to condition numbers
which are even worse than that of the conventional C, because the values
W,;,; are usually very large compared to the coefficients of C*.

This flexibility is not possible in the conventional approach, where scal-
ing the objective function has no effect on cond(G). Hence, this is an added
advantage of modeling virtual measurements as equality constraints.
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It is also interesting to show the relationship between both formulations.
To this end, let us write J(z) for the conventional formulation in such a
way that ordinary and virtual measurements appear separately:

J(x) - ̂[2 - ̂(x)f tV[̂  - ̂(T)] + ̂ c(xf c(x) (3.21)

where p is a weighting factor several orders of magnitude larger than any
Ŵ . The optimality conditions for the above scalar are

(:x) = 0 (3.22)

which can be rewritten as follows:

F̂ lV[2-̂ (2;)] + C^A = 0 (3.23)

c(x) + I A = 0
P

In turn, this augmented system involves the repetitive solution of the fol-
lowing linear equation:

Ax
C -1 -A

Clearly, Equations (3.23) and (3.24) approach (3.17) and (3.18) respec-
tively for very large values of /9. On the other hand, eliminating A in (3.24)
leads to the NE of the unconstrained formulation, namely:

,o Ĉ C] Arc = F^IVA^ - p Ĉ ĉ ) (3.25)

Therefore, the equality-constrained formulation is simply an augmented
way of writing the NE in which high-confidence measurements become 'un-
squared' (i.e., the product C*̂ C is not carried out).

At the optimum, the Lagrange multipliers are given by

A = — /9c(a:)

That is, the larger /3 the smaller the residuals of the virtual measurements,
but their product tend to the Lagrange multiplier vector. This interpre-
tation allows Lagrange multipliers to be handled in the same manner as
residuals for bad data analysis (see Chapter 5).

3.6 Augmented Matrix Approach

Similar to the virtual measurements, regular measurement equations can
be written as equality constraints if the associated residuals arc retained as
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explicit variables. In this approach, the WLS problem can be restated as
[3, 6]:

minimize
1

<^M = ;r

subject to 0(2) = 0

(3.26)

= 0

The resulting Lagrangian will have two sets of Lagrange multipliers:

and the optimality conditions will be given by:

= 0 , + R^ =0
g/g.̂  — Q

y. ^ -j- /̂ f̂ j) = 0

(3.28)

The third equation allows r (or ̂) to be eliminated (r = R̂ t). Lineariz-
ing the remaining three, the following system of equations will be obtained:

0
c

0

0 A
0

-c(̂ )
(3.29)

The coefficient matrix in Equation (3.29) is called the Hachtel's matrix.
Note that, Equation (3.29) will become identical to (3.18) if ̂ t is eliminated.
Hence, this is the most primitive or augmented formulation and, according
to the theory and examples discussed above, lower condition numbers are
expected. On the other hand, since the Hachtel's matrix is very sparse,
solving the above enlarged system is not particularly expensive in terms of
arithmetic operations, but a more involved logic is needed to control and
track the required row pivoting.

Besides, as in the case of Equation (3.18), the condition number of
the Hachtel's matrix can be further improved if the residual weights are
properly scaled. This is achieved simply by using aPV instead of tV in
Equation (3.29):

0

R 0
0 Ĉ
C 0

Ax 0
-c(â )

(3.30)

where ̂  and As arc the scaled Lagrange multipliers.
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Example 3.5:

The augmented matrix method will be illustrated with the help of the 3-bus
system used so far (see example 3.4). As there are no virtual measurements in
this case, the augmented matrix is simply:

* 6.4e
0
0
0
0
0
0
0

- 5 0
6.4e -
0
0
0
0
0
0

0
-50

le
0
0
0
0
0

0
0

-4 0
6.4e-
0
0
0
0

0
0
0

5 0
6.4e
0
0
0

0
0
0
0

-5 0
le-
0
0

0
0
0
0
0

4 0
1.6e
0

0
0
0
0
0
0

-5 0
1.6e - 5

L R^

R

Oexs .

and the right-hand-side vector:

0 0 0 0 0 ]

where the values of R and Az are given in (3.10) and (3.11) respectively.
Solving this equation system provides, as expected, the same values for Aa

as obtained before and the following Lagrange multipliers:

^=[-47.84 16.25 -30.07 257.3 -124.4 196.8 395.2 -395.2]̂

The condition number of the augmented matrix is 4.4e + 6. Such a high value,
which compares badly in this case with that of the conventional gain matrix
(1.5e + 3), is due to the poor scaling of the elements of R with respect to those
of R. Fortunately, using a scaling factor a"^ = 62500, as indicated by equation
(3.30), reduces the condition number of the Hachtel's matrix to 161. Note that
J(a:) and the elements of /u would be scaled accordingly.

3.7 Blocked Formulation

The former sections describe two somewhat extreme cases from the point
of view in which ordinary measurements are dealt with. While in one case
the product R^R is formed for every measurement, the whole matrix R
remains unsquared in the other.

Among the several possibilities lying in between, the one described be-
low has attracted most interest [1, 8]. It is based on the following observa-
tions regarding injection measurements:

* Once virtual measurements are excluded from R and handled as
equality constraints, injections arc the main source of ill-conditioning
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* Only injections give rise to second-neighbor adjacency in R^R.

Consequently, the method first divides the set of measurements into two
sets, namely the injection set, denoted by the index J, and the remaining
measurements (Bows and voltage magnitudes) denoted by .F. The 'tableau'
equation system becomes:

F̂ 0
0 R/

Rf R/
0 0

X
0
c

0
0
c'̂'
0

*;;*
Aa;
A

Now, only ̂ F is eliminated, yielding:

0

C 0
(3.31)

(3.32)

The resulting model is a hybrid between Hachtel's and the conventional
equality-constrained method, and comprises the following variables:

* /j/: Multipliers associated with active-reactive injection measure-
ments

* A: Multipliers associated with active-reactive null injections

* 2: Bus voltage magnitudes and phase angles

The key observation is that all those unknowns are exclusively related
to buses (/jj and A refer to disjoint sets of nodes). Therefore, symmetrical
row/column permutations can be carried out so that the variables corre-
sponding to each node appear consecutively and can be arranged as a block.
From the above development it is clear that the following block sizes are
possible:

* 4x4 when injection or virtual measurements exist (2x2 for every sub-
problem of the decoupled formulation)

* 2x2 otherwise (1x1 in the decoupled formulation)

Since eliminating the set of measurements F does not cause second-
neighbor elements, it follows that the resulting blocked matrix has the same
topology as the bus admittance matrix, except for irrelevant branches which
are missing in any formulation. Hence, solving the resulting equation sys-
tem by means of block arithmetic would be rather simple if the diagonal
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blocks were always appropriate pivots because, in such a case, the conven-
tional minimum degree ordering adopted in the load Bow problem and other
routines could be applied. Unfortunately, there are situations in which, in
spite of the network being observable, a block pivot may be singular when
the block ordering is performed exclusively to preserve sparsity. As will
be clear from the following example, this happens when a bus is made ob-
servable by means of an adjacent injection whose block is eliminated later,
and requires that the measured bus be reordered before the singular one
to avoid the singularity. In more complex cases, several adjacent buses
may be involved in this problem by the 'domino' effect, which makes the
block-based approach less elegant and simple than expected. An alterna-
tive to bus reordering consists of adding a small number to the appropriate
diagonal of the critical block to make it non-singular, but then numerical
observability analysis is complicated (see Chapter 4).

Example 3.6:

Consider the 6-bus system shown in figure 3.  comprising 1 voltage magni-
tude, 4 power Hows and 3 power injections (for our purposes it is not important
if they are actual or virtual measurements). For simplicity, only the reactive
subproblem will be pursued.

Figure 3.4. 6-bus power system to iHustrate the Mock method

The Jacobian for this example has the following structure:

1 2 3 4 5 6

Qie

Q35

Qe

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

t
F

7
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and the augmented matrix becomes

1 5 6 1 2 3 4 5 6

1
5
6
1
2
3
4
5
6

X

X

X

X

X

X X
X X

X X

X X
X

X

X

X

X X
X X

X

X

X X
X X X

X

X X
X X

X X
X X

X X X

X X X X X
X X X

Following the steps explained above, the variables labeled with F are elimi-
nated, yielding (the matrices corresponding to the null-injection case are shown
in parentheses):

1 5 6 1 2 3 4 5 6
X

X

X

X

X

X

X

X

X

X X
X X

X

X

*

*

*

X

X X

*

*

*

* *

X X
X

*

*

*

X

X

X

*

*

As expected, the rill-in elements, represented by dots, appear only among adjacent
buses. Rearranging by buses we get,

1 6 6
X X
X *
X *

X

X *

X

*

*

X
*

<

X

*

X

X *
X *
X

X X
X

X

X

X

X *

X

X

X X
X <
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whose block structure is:

1
2
3
4
5
6

X

X

X

X

X
a

X

a
X

X

X

X

a x
X X

X

X

X

X

The symbol O has been used above to denote null blocks which are non-null in the
bus admittance matrix. The elements (2,3) and (3,2) correspond to an irrelevant
branch while the null block (4,4) refers to a non-measured bus (these are the only
structural differences between both matrices). The null diagonal block becomes
a valid pivot only if bus S is eliminated beforehand. Note that node 4 would lead
node 5 if the minimum degree criterion was adopted, but this may not be the
case in general.

3.8 Comparison of Techniques

In this section we will first resort to the 6-bus system of example 3.6 to
compare the robustness of several formulations in the presence of adverse
factors, like short lines, virtual measurements, etc. As usually, only the DC
state estimator will be dealt with. Then, larger benchmark networks will
be used to assess the respective computational efforts.

For the first set of experiments all branches of the 6-bus system are
assumed to be identical (&̂  = 3 pu), and all measurement weights are set
to 1. Bus 4 is the slack bus. The following cases are considered:

(a): 7 Power flow measurements (all branches), no injections.

(b): Case (a) plus regular injection measurements at buses 2 and 6.

(c): Same as (b) except for injection 6 being null (in the NE formulation
its weight is set to 1000).

(d): Same as (b) except for line 1-2 being 100 times shorter (&i2 = 300
pu).

Table 3.1 shows, from left to right, the resulting condition numbers for
the gain matrix of the NE, the intermediate matrix used by the blocked
method (power flow measurements 'squared') and the Hachtel's matrix. It
can be observed that the NE approach is significantly affected by the pres-
ence of null injections. It is also noticeable the robustness of the Hachtel's
method against short lines, which is lost when power flows are 'squared'.
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As all weights are 1 in this case, there is no need to normalize them with
the scaling factor a introduced in the former sections.

Case
(a) 7 power Bows
(b) ordinary injec.
(c) null injec.
(d) short line

NE
48.4
165.8
5.5e+4
2.6e+5

Sq. Flows
48.4
54.6
57

1.4e+5

Hachtel
20
38.2
47
1200

Table 3.1. Condition numbers for different formulations

It is worth mentioning also that the choice of the slack bus affects to
some extent the condition number. For instance, for case (b), the condition
number of the gain matrix ranges from 21.5 (when bus 2 is the slack) to
165.8 (when bus 4 is the slack). The Hachtel's matrix is again less sensitive
to such a choice (29.5 and 38.2 for slack buses 6 and 4 respectively).

The reader should realize, however, that in mild cases, like (a) or (b),
in which all line reactances and measurement weights are of the same order
of magnitude, the NE's performance is quite good.

The next comparison refers to the number of flops per iteration. For
this purpose, three IEEE test networks, comprising 57, 118 and 300 buses
respectively, have been tested. Table 3.2 shows the results for the NE, the
hybrid orthogonal method and the conventional augmented method when
all power Rows, but none injection, are measured. The ngures shown do not
include the operations required to obtain R and A,z, which are common
to all formulations. Sparsity has been preserved in all cases by means
of appropriate factorization techniques preceded by row/column ordering
[10, 7, 6].

Network
57
118
300

NE
3605
8250
21265

Hybrid QR
3976
10634
28048

Hachtel
4431
10253
26337

Table 3.2. Flops per iteration for different formulations (only power Hows)

From this table it can be concluded that the NE approach is less ex-
pensive than its competitors, although the differences are not so significant
to be determinant [5, 12]. Note also that the computational effort grows
almost linearly with the system size.

In order to assess the influence of injection measurements, the same
experiments are repeated by adding all injections to the existing power
Hows. The results arc shown in table 3.3.
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Network
57
118
300

NE
13564
33166
89693

Hybrid QR

26822
62178
176034

Hachtel
13605
29388
82578

Table 3.3. Flops per iteration for different formutations (power Hows plus injections)

Comparing this table with the former one, it can be concluded that the
less sparse rows in the Jacobian corresponding to injection measurements
significantly affect the computational costs. This time, in spite of its larger
dimension, the Hachtel's equation system becomes the cheapest approach
for realistic networks. This is due both to the second-neighbor fill-ins cre-
ated by injections in the gain matrix of the NE and to the fact that no
operations are involved in computing the right-hand side of the Hachtel's
equation system. On the other hand, the increased number of Givens ro-
tations required by the hybrid QR method makes it the most expensive,
albeit not dramatically.

Even though the number of injections is lower than the number of power
flows, the cost per iteration is 3 times as much as in the previous case for
the Hachtel's method, about 4 times for the NE and over 6 times for the
QR method. This means that the augmented approach is less sensitive to
the presence of injection measurements.

3.9 Problems

1. The three lines of the 3-bus system shown in the figure have the same
reactance, X. Considering for simplicity the DC state estimation
problem, perform the following analyses:

a) Assuming there are three, equally weighted power Bow measure-
ments, obtain the gain matrix in terms of X and compute its condi-
tion number by means of an appropriate computer tool.

b) Repeat a) by successively adding one, two and three power injec-
tion measurements to the three power Rows of the base case. Obtain
the gain matrix in terms of the weight assigned to the injection mea-
surements relative to the power flow weight. If/? denotes this relative
weight, compute the condition number for p = 0.1, p = 1 and p = 10.
Draw your own conclusions regarding the influence of injection mea-
surements on the NE ill-conditioning.

2. Same as problem 1, except that the length of line 2-3 is A; times that
of the remaining lines. Analyze the cases /c = 0.1, ̂ = 10 and A; = 25.
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9i =0

-6)3

Figure 3.5. 3-bus system for problems 1, 2 and 3

3. In problem 1, case b), compute the condition number of the gain
matrix for p = 1000 when only injection 3 is measured. Such a
high value of p can be used to model perfect measurements, like
null injections. Obtain also the coefficient matrix, and its condition
number, when the injection 3 is modeled as an equality constraint.
Do the same with Hachtel's augmented matrix.

4. Perform the Lf/ factorization of matrix F for case a) of problem 1.
Then obtain the condition number of the matrix L^L used by the
Peters-Wilkinson method and compare this value with that obtained
for the conventional matrix.

5. Consider the Hachtel's matrix of problem 3. Obtain its condition
number for different values of the scaling factor a in Equation (3.30).
Try to obtain, in terms of ̂ f, the value of a that minimizes the
condition number (trial-and-error procedure).

6. From the Jacobian of example 3.6, determine the "sparse" structure
of the gain matrix. Compare its number of non-zero elements with
those of the alternative matrices developed in that example. Repeat
the analysis when injection 5 is substituted by the power flow 5-4.
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Chapter 4

Network Observability
Analysis

Power system state estimator uses the set of available measurements in or-
der to estimate the system state. Given a set of measurements and their
locations, the network observability analysis will determine if a unique es-
timate can be found for the system state. This analysis may be carried out
off-line during the initial phase of a state estimator installation, in order to
check the adequacy of the existing measurement configuration. If the sys-
tem is found not to be observable, then additional meters may have to be
placed at particular locations. Observability analysis is also done on-line,
prior to running the state estimator. It ensures that a state estimate can
be obtained using the set of measurements received at the last measure-
ment scan. Telecommunication errors, topology changes or meter failures
may occasionally lead to cases where the state of the entire system can
not be estimated. Then, the system will contain several isolated observable
islands, each one having its own phase angle reference that is independent
of the rest. Network observability analysis allows detection of such cases
and identifies all the existing observable islands prior to the execution of
the state estimator.

Observability of a given network is determined by the type and location
of the available measurements as well as by the topology of the network.
Thus, the analysis of network observability utilizes the graph theory as
it relates to networks, their associated equations and solutions. In this
chapter, a brief review of networks and graphs, their related matrices and
equations will be given. This will be followed by the presentation o  the
methods used for analysis of network observability.
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4.1 Networks and Graphs

4.1.1 Graphs

A graph is defined by a set of

by
and a set of <?, and is denoted

where each edge has two distinct terminal nodes. A graph is said to be
fully connected if any node can be reached from any other node by tracing
the edges of the graph. A &reĉ ec? <?mp/t is a graph where all edges are
assigned directions. In a directed graph, the terminal nodes of each edge
are designated as sending-end and receiving-end nodes. The direction of
the edge is identified by an arrow from the sending-end node towards the
receiving-end node of that edge.

A r̂ee of a graph is defined as a set of connected edges which does not
form any loops. If any node in the graph can be reached from any other
node by tracing only the edges of the tree, then it will be called a spa?mm<7
r̂ee of the graph.

All edges that do not belong to the spanning tree, are called n̂̂ s. A
network with TV nodes and L edges, will have a spanning tree with (TV — 1)
edges and there will be (L — TV + 1) links associated with this spanning tree.
While the number of nodes and edges in a spanning tree are predetermined,
the set of edges that form a tree, is in general not unique.

Example 4.1:

e2

:TreeEdge

:Link

:Node

e4

Figure 4.1. A network graph with 6 nodes

Consider the network graph given in Figure 4.1 where TV = 6 and L = 8.
Thus, its spanning tree will have TV - 1 = 5 nodes and one possible choice wiH
include the foHowing edges:

= {el,e2, e3, e4, e5}
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where e^ represents the edge number :. The graph will then have the following
(L — N + 1) = 3 links associated with this tree:

{e6,e7,e8}

Note that each link forms a loop with the tree branches where no other
links are present. Therefore, each link is said to belong to a /tmda?%e?T.iĜ
ôop of the network graph and there will be exactly (L — N + 1) such
fundamental loops for a given graph. The fundamental loops associated
with the graph of Figure 4.1 for the chosen tree T, will be the following:

= {61,62,63,64,65,66}

= {62,63,64,65,67}

= {62,63,64,63}

(4.1)
(4.2)
(4.3)

These fundamental loops correspond to the 3 links identified in Example
4.1 above.

4.1.2 Networks

An electric network contains a collection of branches and buses where each
branch has two terminal buses which may be shared by one or more other
branches in the same network. If one of the terminal buses of a branch
is grounded, then it will be referred to as a 3/mwi &nmcA. Branches with
ungrounded terminal buses will be called seWes &mncAe3. Each electric net-
work has a corresponding graph where the branches and buses are replaced
by edges and nodes respectively.

Each branch /c has an associated impedance ẑ . Furthermore, if branch
j and A; are magnetically coupled, then there will be an associated mu-
tual coupling impedance 2̂  relating their terminal voltages and branch
currents.

4.2 Network Matrices

For a given electric network containing L branches, the vectors of branch
currents 7̂  and branch voltages % will be related through the

221 222

2L1

22L
(4.4)
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where ẑ  is the self impedance of branch A; and ̂ t̂ is the mutual impedance
between branches A; and m. The inverse of the matrix Zp is called the
zf we &rancA a&mMance mafWa? and denoted by K^ = ZJ ̂.

Example 4.2:

'33

Figure 4.2. A network with 6 buses and 8 branches

Consider the electric network shown in Figure 4.2. The graph for this network
is the same as given in Figure 4.1. Assume that each branch has the identical self
impedance of j'1.0 per unit, and the branches 1 and 7 are mutually coupled via a
mutual impedance of j'0.2 per unit. Then, the 8x8 primitive branch impedance
matrix Zp can be formed as foHows:

p —

jl
0
0
0
0
0

jO.2
0

0
jl
0
0
0
0
0
0

0
0

j'l
0
0
0
0
0

0
0
0

J'l
0
0
0
0

0
0
0
0
jl
0
0
0

0
0
0
0
0

J'l
0
0

j'0.2
0
0
0
0
0

J'l
0

0 *
0
0
0
0
0
0

'lj

4.2.1 Branch to Bus Incidence Matrix

Each network branch will be incident to two buses unless it is a shunt
branch connecting a single bus to ground. An arbitrary direction can be
assigned to each branch by designating its terminal buses as seno'mg and
recewmg end terminals of the branch. The corresponding network graph
will then become a directed graph. Thus, a branch-bus incidence matrix A
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can be denned based on these chosen branch directions as follows:

f 1 if bus j is the sending terminal of branch !
4̂(!, j) = \ *1 if bus j is the receiving terminal of branch !

t 0 otherwise

Each row of A contains two nonzero entries and they add up to zero. Thus,
any one of the columns of A can be removed and later recovered without
loss of information. The matrix formed by deleting any one of the columns
of A is called the reduced incidence matrix and denoted by A.

In a fully connected network with iV nodes, (.ZV — 1) rows of A,- will
be linearly independent. Furthermore, these (TV — 1) rows will be linearly
independent if and only if the corresponding branches form a spanning tree
of the network. Assuming that a spanning tree is chosen, then the rows of
A can be reordered and partitioned as:

where the rows of Ar and A^ correspond to the spanning tree branches
and the links respectively. The matrix Ay is a (TV — 1) x (TV — 1) non-
singular square matrix.

4.2.2 Fundamental Loop to Branch Incidence Matrix

As shown in section 4.1.1, each fundamental loop will include several tree
branches and a single link. Each loop is assigned a direction (clockwise or
counter-clockwise), which matches the direction of the corresponding link.
Using the chosen direction for the branches, a fundamental loop to branch
incidence matrix Z! can be defined as follows:

f 1 if branch j is in loop ! and has the same direction
Z!(!, j) = < —1 if branch j is in loop ! and has the opposite direction

t 0 otherwise

The columns of Z! can be reordered and partitioned as:

z: = I z:-r : 7

where the columns of /I?- and the identity matrix 7 correspond to the
(TV — 1) spanning tree branches and the (L — N + 1) links associated with
the fundamental loops, respectively.

Using the orthogonality of /I and A, the following can be derived:

z:. A = o
f--A-r + A- = 0
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This provides a simple way to build Ẑ . In practice, the inverse of A^y is
never explicitly calculated, since efficient methods exist for obtaining this
inverse [1]. Note also that the sparsity structure of ̂ 2 depends upon the
topology of the network as well as the choice of the spanning tree (see
Problem 3 at the end of the chapter).

Example 4.3:

Consider the same network graph of Example 4.1. Figure 4.3 shows the
arbitrarily assigned directions for the branches of this graph.

1 el e2

e6 e3

Figure 4.3. Arbitrarily assigned branch directions

Using this directed graph, a branch to bus incidence matrix ̂ 4 can be formed
as beiow:

1 2 3 4 5
el
e2
e3

,4= e4
e5
e6
e7

6
1 -1

1 -1
1 -1

1 -1
1 -1

1 -1
1 —1
1 —1

Furthermore, a fundamental loop to branch incidence matrix ̂  corresponding
to the tree in Figure 4.1 can also be built using the assigned directions for the 3
Hnks, as follows:

e6
e7
e8

el e2 e3 e4 eS e6 e7 e8
-1 -1 -1 - 1 - 1 1

-1 -1 -1 -1 1
-1 -1 -1 1

Alternatively, X! can be built by using A Eliminating the last column of ̂ and
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partitioning the rows, the reduced incidence matrix /t,. is obtained as:

* 1
0
0
0
0

1
0
0

-1
1
0
0
0

0
1
1

0
-1
1
0
0

0
0
0

0
0

-1
1
0

0
0
0

0 *
0
0

-1
1

0
0

-1 _

=

Then, the fundamental loop to branch incidence matrix Ẑ  will be given by:

: 7s

=
-1 -1

-1
-1

-1
1

-1

-1
-1
-1

-1 1
-1 1

1

4.3 Loop Equations

According to the Kirchhoff's Voltage Law, the sum of the branch voltages
in a given loop should add up to zero. Given a spanning tree and the cor-
responding links, a linearly independent set of fundamental loop equations
can be written in compact form as:

f.l4, = 0 (4.5)

where:
Z! : is the (L — Af + 1) x L fundamental loop to branch incidence matrix
% : is the branch voltage vector.

Eq.(4.5) merely states the Kirchhoff's Voltage Law for the given network
and therefore is not enough for the solution of the unknown voltages. These
equations will be augmented by the measurement equations satisfying the
Kirchhoff's Current Law in order to build the complete set of network equa-
tions. Measurement equations will be described in the following sections.

Note that the polarities of the branch voltages should be consistent
with the assigned branch directions in building Z!. Since % = AV, the
two incidence matrices A and /I should be built using the same branch
direction assignments. The use of loop equations in power system analysis
is discussed in more detail in [2].
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4.4 Methods of Observability Analysis

Observability analysis can be carried out using the fully coupled or decou-
pled measurement equations. The analysis is performed on the linearized
measurement model without loss of generality. Use of fully coupled model
has its drawbacks, one of which is the non-uniqueness of the solution. This
can be illustrated by considering a simple case of a single line, whose reac-
tive power flow is measured at one end, along with the voltage magnitude
at both end buses as shown in Figure 4.4. If the line impedance is jO.2 p.u.,
and the measurements are:

Vi = 1.00 p.u., Vz = 0.99 p.u., Qiz = -0.80 p.u.

then the state variable #2 can be estimated by solving the following equa-
tion:

-0.8 = 49.5 cos Pz- 50 (4.7)

Equation (4.7) will be satisfied by 6*2 = ±6.31 degrees, both of which are
equally likely solutions.

""±
Figure 4.4. Two bus system and measurements

This example illustrates the risk involved in attempting to estimate
0 using Q (or V using P) measurements. Network observability analysis
methods commonly assume paired P, Q measurements and make use of the
decoupled measurement model, in order to avoid such cases. Observability
of 0 based only on the P measurements, is analyzed using the DC power
flow equations. This approach however is restricted to cases where decou-
pling of the measurement equations can be justified. For instance, in the
presence of current magnitude measurements, the corresponding measure-
ment equations can no longer be decoupled based on the same decoupling
assumptions [3]. Hence, a coupled model has to be used along with further
methods of detecting possible multiple solutions. A detailed analysis of
such cases will be given in Chapter 9.

Network observability analysis can be performed using either numerical
or topological approaches. Topological approaches use the decoupled mea-
surement model and graph theory. Numerical approaches may use fully
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coupled or decoupled models. They are based on the numerical factoriza-
tion of the measurement Jacobian or the gain matrices. These methods are
formulated using either branch or nodal variables.

4.5 Numerical Method Based on the Branch
Variable Formulation

This section describes a general numerical method which is developed based
on branch variables [4]. Description of the new branch variables will be
given first, followed by the formulation of the network observability problem
using these variables.

4.5.1 New Branch Variables

Assume that branch j is connected between the sending-end bus A; and the
receiving-end bus m as shown in Figure 4.5.

Let the branch voltage and phase angle variables a,, and <5j be denned
as follows:

(4.8)
TTT,

<5j = ̂ -^ (4.9)

where:
%, Vm are the magnitude of the voltages at bus /c and m.
6̂ ,0̂ 1 are the phase angles of the voltages at bus A; and m. In compact

Bus k Bus m

V k/ k

Figure 4.5. Branch j

form, the branch variable vectors Xa,,Xs can be expressed as:

(4.10)
(4.11)

where:
V j = [Vi% . . . V^rJ^, vector of bus voltage magnitudes
= [f?î z - - - ̂ /v]̂ ! vector of bus voltage phase angles
= branch-bus incidence matrix.
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4.5.2 Measurement Equations

All types of measurements can be expressed as a function of the above
denned branch variables a.,- , <5j . The expressions for different measurements
will be derived first, followed by their linearized analysis.

Power Flows

Real and reactive power flows along branch j of Figure 4.5 can be expressed
as follows:

^=m - ŷ 3;=m - t̂ Kn̂ TT!. cos (5, + &/-̂  sin Jj) (4.12)

Q^m = -^6^-%14n(3^mSinJj--&^cos&,) (4.13)

where:
<77c77i + jb/cm i admittance of branch j, neglecting the line charging suscep-
tance of the branch.
% : voltage magnitude at bus A;,
&, : f??c — 6<m., branch phase angle variable,
0?c : voltage phase angle at bus A;.

Consider the modified power now equations where they are scaled by
the squared voltage magnitude at the measured bus %;:

(4.14)

r //< i r\()̂m (4.15)

Using the new branch voltage variable aj given by Equation (4.8):

^=ln^-, or ̂ =e^ (4.16)
m̂ m̂

Equations (4.14) and (4.15) can be expressed in terms of the branch
voltage and branch phase angle variables as:

(4.17)

(4.18)

Power Injections

Scaled power injections can be expressed as linear combinations of scaled
power flows that are originating from the bus where the injection is mea-
sured. Therefore, scaled power injections can be similarly expressed in
terms of a^ and & variables.
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: TREE BRANCH

: UNK

Figure 4.6. Illustration of rooted tree structure.

Voltage Magnitudes

Let us assume that there is at least one voltage magnitude measurement in
the system. Let us choose one of these measured buses as the reference bus.
Then, a network tree that is rooted at this reference bus, can be constructed
and denoted by T. The ratio of the voltage magnitude at any bus to the
voltage magnitude of the reference bus (14-e/) can then be expressed as:

(4.19)

(4.20)

Taking the logarithm of both sides:

(4.21)

where {jl,j2, ...,jr} form the set of branches all of which belong to the
tree T rooted at the reference bus and form a continuous path from bus /c
to the reference bus re/. This is illustrated in Figure 4.6.

Current Magnitudes

Square of the magnitude of line current through branch j connecting bus /c
to bus m can be expressed as:

02
-*

V2

^

y + (4.22)

Then, the square of the scaled line current magnitude will be:

(4.23)
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Loop Equations

Note that, in a loop formed by the branches jl,j2,...,jL, the branch
variables will satisfy the following equations:

C*7'l + <3j'2 -! ----- I- CtjL = 0 (4.24)

^i+^2 + '" + ̂'L = 0 (4.25)

Hence, the fundamental loop equations derived in Equation (4.5) will also
hold true if the branch voltage vector % is replaced by either of the branch
voltage magnitude difference vector X^ or branch voltage phase angle dif-
ference vector X,;, i.e.

/:.<% = 0 (4.26)

.̂̂  = 0 (4.27)

In Equations (4.26) and (4.27), the variables corresponding to the links
can be expressed in terms of the rest of the tree branch variables. Hence, a
model reduction is possible by eliminating the link variables from the rest of
the measurement equations. However, despite the reduction in the number
of variables, this may not necessarily yield a numerically more efficient
solution due to the loss of sparsity in the measurement equations.

4.5.3 Linearized Measurement Model

The above described equations for the power injections, Bows, voltage and
current magnitudes, and loops can be expressed in compact form as a non-
linear vector equation:

/(X) = z (4.28)

where:
JT = [<̂ ,â ]
2 : Scaled measurement vector including zeros for the loop equations. Mea-
surements are assumed to be error free.
<5 : Vector of branch phase angle variables.
a : Vector of branch voltage variables.

Note the assumption in Equation (4.28) that the measurements are free
of errors. This is justified, since the measurement errors have no effect on
the observability analysis of the network.

First-order Taylor approximation of Equation (4.28) yields:

F . Ax = 2 - /(X°) = Az (4.29)

where:
evaluated at some X°.
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In order to ensure that real (reactive) power measurements are not used
to observe voltage (phase angle) variables, power Bow and injection mea-
surements are assumed to come in pairs. Also, in the above Equation
(4.29), those terms coupling real (reactive) measurements to the voltage
(phase angle) variables in matrix R, are neglected. Hence, the only type of
measurements whose rows contain nonzero entries in both phase angle and
voltage variable columns, will be the ampere measurements.

Elements of #

The measurement jacobian # is built by evaluating the following expres-
sions corresponding to the Brst derivatives of the measurement and loop
equations with respect to the branch variables.

Power Hows

= -ĝ e"' cos Jj - &̂ ê  sin Jj ̂  0 (4.30)

= d^me"-* sin^ - &A:me°̂  cos Jj (4.31)

= ^T^e^cosJj-^^e^sinJ,,' (4.32)

= —̂ ê"̂  sin^j — (7/̂ 6*̂  cosJj ?R 0 (4.33)

da.,

Power Injections

Neglecting the shunt elements at the buses, the scaled injection at bus A;,
Pf or Qf can be expressed in terms of the incident scaled branch Bows:

(4.34)

(4.35)

where, H^ is the set of buses directly connected to bus .̂
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Then,

"̂ 0 (4.36)

^ (4.37)

^ (4.38)

g^O (4.39)

Voltage Magnitude

Using Equation (4.21):

otherwise

Current Magnitude

Using the Equation (4.22), derivatives of the scaled current magnitude mea-
surements can be expressed in terms of the scaled power injections and their
derivatives as calculated above. They will be given as follows:

Loop Equations

Combining Equations (4.26) and (4.27), and taking their derivative with
respect to the branch variables ̂,Xa will yield:

- U A/; A, U
ax [ o z: J [ x̂  I " I o

4.5.4 Observability Analysis
Equation (4.29) relates all existing measurements to the branch variables,
using the first-order Taylor approximation. An estimate for Az can be
obtained as long as the column rank of R is equal to the dimension of Arc.
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One way to determine this is through matrix factorization. The method
of Peters-Wilkinson [12] can be used to decompose R into its triangular
factors as follows:

F = ̂  [̂] (4.43)

where:
L and t/ are square lower and upper triangular matrices respectively,
Af is a rectangular matrix.

During the course of the factorization, row/column pivoting may be
necessary to avoid zero pivots. When the system is unobservable, such
zero pivots can not be avoided despite pivoting. In such a case a non-zero
value of 1.0 will be substituted for the zero pivot and the factorization will
thus be continued, The factor L obtained this way, will contain one or
more artificially added pivot entries, each one corresponding to a branch
variable.

Rewrite Equation (4.29) by substituting Equation (4.43):

L - f/ - Ax = Az" (4.44)

Af -1/ - Ax = Az*' (4.45)

where Az = [(Az")̂ (Az**)̂ ]̂ .
Note that, for the purpose of analyzing observability, the set of measure-

ments corresponding to the top TV measurements (JV being the number of
branch variables) are sufficient, since they represent a linearly independent
set of measurements.

If the system is observable, then Equation (4.44) will yield a null solution
for Ax for a null vector of Az". In the case of unobservable systems, the
entries in Az" corresponding to those zero pivots of L, that are artificially
set equal to 1.0 during factorization, will be set equal to arbitrary, but
distinct non-zero values. It can be shown that this procedure is equivalent
to adding a new measurement of the corresponding branch variable to the
existing measurement set. The set of Equation (4.44) can be reordered,
so that the rows and columns of the artificially introduced nonzero pivots
become the last:

0
0

= Az' = I ̂  I (4.46)

where

Lo : a non-singular lower triangular matrix

[/Q : a non-singular upper triangular matrix

Lg : a rectangular matrix
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t̂ e : a rectangular matrix

Zu : an identity matrix of dimension A^

FVu : number of zero pivots encountered and replaced by 1.0s during the
factorization of F.

Az^ : vector of arbitrarily assigned but distinct nonzero entries.

A^o, Az^ : branch variable solution.

Note that:

Aa^ = Az^ (4.47)

t/oAxo = -^A^ (4.48)

Solution of Equation (4.48) will yield A^O; where the nonzero entries will
correspond to the unobservable branches. The set of unobservable branches
will be the union of these with the previously identified branches corre-
sponding to the entries of Â . Once the unobservable branch list is thus
formed, these branches can be eliminated from the system diagram, yielding
the "observable islands" of the system.

Example 4.4:

Consider the 6-bus power system with the measurement configuration as
shown in Figure 4.7. For simplicity, assume that onty real power measurements
are used and only phase angie variables are estimated. Determine the observable
island(s).

Figure 4.7. Measurement configuration of the 6-bus system

The linearized measurement jacobian with respect to the new branch variables
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will be given as:

P34

,C8
P23

* _^

0
0
0
0
0
0
0

_^

2
0

-1
0
0

_1

2

1

0
3

-1
0
0

-1
3

1

0
0
1

0
0

-1
0

-1
0
0
1

5
0
0
0

1
0
0
0
6
6
0
0

0
0
0
1
0
0
0
0

Factorization of R yields one zero pivot at row/column 8, i.e. branch 8 is unob-
servable. This zero pivot is replaced by 1.0 and the following modified factors are
obtained:

1
0
0

-1 -

-

1
0
0
0
0
0
0
0

0
0
0
0

0
1
0
1
0

-1
—

0
1
0
0
0
0
0
0

1
1

0
1
1
0
0
0
0
0

0
0
1
0
0
0
0

-1

0
0
0
1
0
0
0
0

0
0
0
1
0
1
1
0

0
0
0

-1
1
0
0
0

0
0
0
0
1
0
1
0

0
0
0
0
0
1
1
0

1
0
0
2
0

-2
0
0

0
0
0
0
0
0
1
0

0
0
0
0
0
1

-1
0

0 *
0
0
0
0
0
0
1

0 *
0
0
0
0
0
1
1

The remaining unobservable branches will be identified by partitioning the factors
according to Equation (4.46) where:

1
0
0
0
0
0
0

0
1
0
0
0
0
0

0
1
1
0
0
0
0

0
0
0

— 1

0
0
0

0
0
0

-1
1
0
0

1
0
0
2
0

-2
0

0 *
0
0
0
0
1
1

7,= = [ 0 0 0 0 0 0 1
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and solving for
-0.5
0
0

1.0
-O.S

0
0.5

Hence, in addition to branch 8, the branches 1,4,5 and 7 that correspond to
the nonzero entries in Aa;o, wiH be declared as itnohserfaMe &ran,cAe.s. Removing
these branches, the observable islands shown in Figure 4.8 will be obtained.

Figure 4.8. Observable istands of the 6-bus system

Before ending this section, it is noted that the use of branch variables
in the formulation of the observability analysis problem has two important
advantages. One is the non-iterative nature of the resulting procedure and
the other is the simplification of the formulation in the absence of the slack
bus concept. Although the need to build loop equations can be seen as a
burden, in practice the model can be significantly reduced by direct elimi-
nation of power Row measurements and the corresponding branch variables,
which is not possible in the nodal formulation to be discussed next.

4.6 Numerical Method Based on the Nodal
Variable Formulation

Numerical observability analysis can also be carried out by using the nodal
variables as described in [5]. Nodal variable vector is denoted by 2: and
represents the vector of magnitude and phase angle of all bus voltages in
the system. Consider the linearized measurement model, where measure-
ment errors are ignored due to their irrelevance in the observability analysis:
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where:
A^ = 2 — ̂ (zo), is the mismatch between the measurement vector and its
calculated value at an estimate ZQ.
Aa: = 2; — 2Q.
R = ĝ ^ evaluated at a;o.

The WLS estimate Ai will be given by:

A unique solution for A:r can be calculated if (F̂ R"̂ R) is nonsingular
or equivalently if R has full column rank, i.e. rank[H] = n, where n is the
total number of states.

Using the weak coupling between P - V and Q - 6*, the linearized model
can be decoupled as:

where:
Az^ , A^R is the real and reactive power measurement mismatch vectors
respectively.
R/t/s = 1%̂  is the decoupled Jacobian for the real power measurements.
R.RR = î f is the decoupled Jacobian for the reactive power measurements.
A0 = % - #o.
AV = V-H).

Assuming that the P, Q measurements come in pairs, P — 0 and Q — V
observability can be separately tested. Note that, unlike 0, the voltage
solution requires a measured reference bus. Hence, following the P — 0
analysis, it should be further checked to ensure that at least one voltage
measurement exists per observable island.

It should be noted that the system observability is independent of the
branch parameters as well as the operating state of the system. So, all
system branches can be assumed to have an impedance of jl.O p.u. and all
bus voltages can be set equal to 1.0 p.u. for the purpose of observability
analysis. Then, the d.c. power Bows along these system branches can be
written as:

Ph = A? (4.49)

where: Pb is the vector of branch flows
A is the branch-bus incidence matrix
6* is the vector of bus voltage phase angles
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If the estimated state 0 is zero, then all branch flows will be zero as
given by Equation (4.49). Using the DC measurement model:

the WLS estimate for 0 will be given by:

(4.50)

(4.51)

A null estimate for 6̂  will be obtained for an observable system when all
system measurements Az^, i.e. Bows and injection measurements, are all
zero. If there exists an estimate 6? which satisfies the measurement equation:

= o

yet, yields a nonzero branch flow:

0

(4.52)

(4.53)

then, ̂  will be called an imo&geruaMe sMe. Furthermore, those branches
carrying nonzero flows, will be referred to as imo&seruaMe

Example 4.5:

Consider the 5-bus system and its measurement configuration given in Figure
4.9. The measurement Jacobian can be formed as:

Pi
P5

Pl2

Let 0̂  = [0 0 0 1 0.5], then

01 02 03 04 05

2 -1 -1

-1 -1 2

1 -1

1 -1

= 0. Calculating the branch Sows:

1 -1 1
1 -1

-1 1
-1 1

1 -1

0
0
0

0.5

^
* 0.0 *
-0.5
-0.5
1.0
0.0

-1.0

Branches 2,3,4 and 6 are therefore unobservabte and 0 is an unobservaMe state.
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Figure 4.9. Measurement configuration of the 5-bus system

4.6.1 Determining the Unobservable Branches

If the system is found to be unobservable, then the observable islands which
are separated by unobservable branches can be identified as described in
[6]. Note that those branches having no incident measurements, are called
zrreZef anf &nmcAes and the estimated state will be independent of the sta-
tus (on/off) and parameters of these branches. Therefore, they can be
disregarded when analyzing network observability.

Let us again consider the decoupled linearized model where all measure-
ments are set equal to zero:

= ̂  = 0 (4.54)

Ĝ ^ is singular, even for fully observable systems since the reference
bus phase angle is included in the state vector #. Then row/column per-
mutations can be used to reorder and partition the matrix as follows:

where Gn is a nonsingular submatrix within Ĝ . By assigning arbitrary
but distinct values to 0b entries as 0&, one of many possible solutions for 0̂
can be obtained as:

The branch Bows corresponding to this solution
be found as:

= <?* can then

Those branches ̂  with PJ(si) ŷ  0 will be identified as the
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In practice, the above procedure is carried out by triangular factoriza-
tion of G^ by using the Cholesky method, which is described in detail in
Appendix A. Since G/̂  is singular, at least one of the pivots will be zero
during the Cholesky factorization. When a zero pivot is encountered, it
will be replaced by a 1.0 and the corresponding entry of the right hand side
vector will be assigned an arbitrary value. The arbitrary values assigned
in this manner should be distinct from each other and this is accomplished
by assigning integer numbers in increasing order, such as 0,1,2, etc. Con-
sidering the Example 4.5 again, the gain matrix will be given by:

6 -3
-3 3
-3 1
0 1
0 -2

-3 0 0 *
1 1 -2
2 0 0
0 1 -2
0 - 2 4

Cholesky factorization of G^ yields:

2.4495
-1.2247
-1.2247

0
0

0
1.2247

-0.4082
0.8165

-1.6330

0
0

0.5774
0.5774

-1.1547

0
0
0

1.0000
0

0 *
0
0
0

1.0000

where the last two zero pivots are changed to 1.0 and the right hand side
vector is modified as:

4̂ = [0 0 0 0 1]̂

The estimated state 9 will then be given by:

2.0
2.0
2.0
0.0
1.0

and the branch flow estimates can be obtained as:

0
1.0
1.0
-2.0
0

2.0

A = ,49 =

Hence, branches 2,3,4 and 6 that have nonzero Hows, will be labelled as
unobservable branches.
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4.6.2 Identification of Observable Islands

The above procedure of identifying unobservable branches can be used to
determine the observable islands in the system. The above procedure needs
to be carried out recursively, each time eliminating the irrelevant injections
until all observable islands are identified. Irrelevant injections are those
that are incident to unobservable branches. The algorithm is given below:

1. Remove all irrelevant branches. These are branches that have no
incident measurements.

2. Form the decoupled linearized gain matrix for the P — 0 estimation
problem:

3. Factorize Ĝ  modifying the zero pivots and the right hand side
vector as described above.

4. Identify and remove all unobservable branches and all injections that
are incident to these unobservable branches.

5. If no more unobservable branches are found, then determine the ob-
servable islands separated by the unobservable branches and stop.
Else, go to step 2.

Example 4.6:

Consider the system and measurement configuration shown in Figure 4.10.

) 3

Figure 4.10. 6-bus test system and its measurements.

Note that branch 4-6 is an irretevant branch. Removing it from the network
yields the following branch-bus incidence matrix:
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1
1
1
0
0
0

-1
0
0
1
0
0

0
-1
0
0
1
0

0
0

-1
-1
0
0

0
0
0
0

-1
1

0 *
0
0
0
0

-1

The gain and the measurement Jacobian matrices are built as below:

10 -5 -3 -2
-5 5 1 - 1
-3 1 2 1
-2-1 1 2

- 2 00 0
0 0

0
0
1
0

-2
1

3 - 1 - 1 - 1 0 0
-1 2 0 - 1 0 0
0 0 - 1 0 2 - 1

Cholesky factorization of G yields 3 zero pivots. The upper triangular factor
is shown below:

" 3.1623
0
0
0
0
0

-1.5811
1.5811

0
0
0
0

-0.9487
-0.3162
1.0000

0
0
0

-0.6325
-1.2649

0
0
0
0

0
0

-2.0000
0
0
0

0 *
0

1.0000
0
0
0

Replacing the zero pivots by 1.0 and choosing the right hand side vector as:

= [000012]

the estimated state will be obtained by:

0.0
0.0
0.0
0.0
1.0
2.0
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and the branch flow estimates can be obtained as:

0
0
0
0

-1.0
-1.0

Hence, branches 3-5 and 5-6 are declared as unobservable and removed from the
network, along with the incident injection measurement at bus 5. This results in
the observable islands as shown in Figure 4.11.

Figure 4.11. Results after the first identification cycle.

The modified network and measurement configuration will yield the following
gain Gmod and measurement Jacobian R^od matrices in the second identification
cycle:

* 10
-5
-3
-2
0
0

-5
5
1

-1
0
0

-3
1
1
1
0
0

-2
-1
1
2
0
0

0
0
0
0
0
0

0 *
0
0
0
0
0

3 - 1 - 1 - 1 0 0
-1 2 0 - 1 0 0

Factorizing Gm.od, replacing the zero pivots by 1.0:

* 3.1623
0
0
0
0
0

-1.5811
1.5811

0
0
0
0

-0.9487
-0.3162
1.0000

0
0
0

-0.6325
-1.2649

0
1.0000

0
0

0
0
0
0

1.0000
0

0 *
0
0
0
0

1.0000
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and choosing the right hand side vector as:

/̂  = [0 0 0 1 2 3]

the estimated state wHl be obtained by:

0.6
0.8
0.0
1.0
2.0
3.0

The branch Row estimates are then calculated as:

1 - 1 0 0 0 0
1 0 - 1 0 0 0
1 0 0 - 1 0 0
0 1 0 - 1 0 0

-0.2
0.6
-0.4
-0.2

Thus, all branches in the network are declared unobservable and the final
result is shown in Figure 4.12. This terminates the identification procedure.

t
1
Figure 4.12. Final result of identified observable islands.

4.6.3 Measurement Placement to Restore
Observability

Once the observable islands are identified, measurements can be added to
merge these islands so that eventually a single observable island can bo
formed. The candidate measurements that can merge islands arc:

the line Bows along branches that connect observable islands, and
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* the injections at the boundary buses of observable islands.

Consider the gain matrix G^ of Equation (4.54). The subscripts (AA)
will be dropped to simplify the notation. Note that, since the slack bus is
also included in the formulation, the rank of F (and G) will be at most
(n - 1) (?T, being the number of buses), even for a fully observable system.
Hence, the Cholesky factorization of the gain matrix G will be interrupted
by at least one zero pivot. Assume that this happens after the processing
of pivot ̂  as shown below:

0 0
0 x

: x
0 x

x
X

0
x

X
X

(4.55)

where,

(4.56)

and L̂ 's are elementary factors given by:

1

X

X

(4.57)

where the f th column has nonzero elements below its diagonal marked by
x's in Equation (4.57) above.

Setting L^+i = TnxTn the Cholesky factorization of G^g^ in Equation
(4.55) can proceed with the (i + 2)-nd column. This procedure can be
repeated each time a zero pivot is detected until completion of the entire
factorization. The following expression can then be written:

D = --T -T

t.58)

where D is a singular and diagonal matrix with zeros in rows corresponding
to the zero pivots encountered during the factorization of G, and L is a
nonsingular lower triangular matrix.
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Now, consider the addition of a single candidate measurement which
will contribute a new row /̂  to the measurement Jacobian. Then, the new
gain matrix (?' can be expressed as:

(4.59)

where D' = D + MM^ and M = L̂ ^̂ . It can be shown that, the rank of
G" will increase by 1 if and only if, M(:) ̂  0 for any ! such that D(̂ , ̂ ) = 0.

The value of M(̂ ) can be obtained by taking the inner product of /̂
and the fth row of L"\ which is computed by a single back substitution
step as shown below:

(4.60)V

where, e^ is a singleton array with all elements zero except for a 1.0 as its
ith entry and w is the i-th row of L"\ with the following structure:

to = [l/Ji *MJ2 W3 ... M4-1 100 ... 0]

Let the matrix IV be denned as the matrix containing only those rows
of L"i corresponding to the zero pivots in the diagonal matrix D. Rows
of IV can be obtained by repeated solution of Equation (4.60) for all z for
which D(i,i) =0.

The following measurement placement algorithm can then be imple-
mented based on the above defined matrices:

1. Form the gain matrix and compute its Cholesky factors.

2. Check if D has only one zero pivot. If yes, stop, the system is observ-
able. Else, compute the W/ matrix by repeated solution of Equation
(4.60) for each zero pivot row.

3. Form the candidate measurement list. The list will contain now and
injection measurements incident to branches connecting observable
islands, which have already been identified by the observability anal-
ysis.

4. Build the measurement Jacobian matrix Re for the candidate mea-
surements.

5. Compute R = RclV^ and compute the reduced echelon form E of
R. The linearly independent rows of i? will correspond to all the
measurements required to be placed.
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Detailed derivation of this multiple measurement placement method can be
found in [13].

Example 4.7:

Figure 4.13. Example System for Meter Placement.

Consider the 6-bus system and its measurement configuration shown in Figure
4.13. Previous observability analysis identified 5 observable islands defined by
buses [3 4], [1], [2], [5], and [6j. Place measurements in order to make the system
fully observable.

Step 1 Form the Jacobian matrix # and the gain matrix G:

rr

"

* -1
0
0

* 1
1
-3
1
0
0

Triangular factors of G wil!

1
1
-3
1
0
0

-1
0
0

1
1
-3
1
0
0

be:

1
0
0
0
0

3
1
-1

-3
-3
11
-7
1
1

1
-2
0.5
0.5

1

-1
3

1
1
-7
11
-3
-3

1
-0.5
-0.5

0
0
-1

0
0
1
-3
1
1

1
0

0
0
-1

0
0
1
-3
1
1

-

1

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.



Step 2 Form the IV matrix using the 2nd, 5th and 6th rows of the inverse of L:

- 1 1 0 0 0 0
1 0 0.5 0.5 1 0
1 0 0.5 0.5 0 1

Step 3 Consider only the available boundary injections as candidates. They
are injections at buses 1, 2, 5, and 6. Form the candidate measurement
Jacobian sub-matrix Re, given by:

2 - 1 - 1 0 0 0
- 1 2 - 1 0 0 0
0 0 0 - 1 1 0
0 0 0 - 1 0 1

where, the rows correspond to the candidate injection measurements at
buses 1,2,5 and 6.

Step 4 Form B =

-3 1.5 1.5
3 -1.5 -1.5
0 0.5 -0.5
0 -0.5 0.5

and its reduced echelon form

-1
0

-1
0

Hence, the injections at buses 1 and 5, corresponding to the linearly inde-
pendent Arst and third rows of .E, should be placed in order to make the
system fully observable.
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4.7 Topological Observability Analysis
Method

Observability analysis can also be carried out by using a topological method
[7]. This method differs from the numerical methods in that it does not
use any floating point calculations in the analysis. The decision is based
strictly on logical operations and therefore requires the information about
the network connectivity, measurement type and their location only. The
actual parameters of the network elements are not used in any part of the
analysis at all. Furthermore, it is assumed that the measurements come
in real and reactive pairs, and therefore the real part of the decoupled (or
DC) measurement model can be used for the observability analysis. In
this model, the error-free real power flow and injection measurements are
related to the bus voltage phase angles (excluding the slack bus) linearly
as:

Consider a single branch with reactance x^ = 1.0 p.u. connected
between buses /c and m. Assuming the voltage magnitude at each terminal
to be 1.0 p.u., the first order approximation around ̂ ° = ̂  = 0 of the real
power now through this branch can be written as:

If a tree can be formed such that each branch of this tree contains a
power flow measurement, then the phase angles at all buses can be deter-
mined, i.e. the system will be fully observable. The topological method
hence starts out by assigning power flow measurements to their respective
branches and tries to form a spanning tree, i.e. a tree that reaches each
and every bus in the system, using these branches. If this procedure is
not successful, then it will yield a forest where there are several smaller
size trees. In that case, the remaining measurements which are of injection
type, will be used in order to merge these trees and reduce the size of the
forest. If successful, this reduction process will result in a single tree, in
which case the system will be declared as observable.

4.7.1 Topological Observability Algorithm

While the implementation of the topological observability analysis can be
carried out in several different ways, Lhc essential steps of the algorithm
can be summarized as follows:

1. First assign all the Row measurements to their respective branches.
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2. Then, try to assign the injection measurements in order to reduce the
existing forest by merging existing trees. Note that there is no way
to predict the correct sequence for processing injections. Implemen-
tation of the method requires proper back-up and re-assignment of
injections when necessary. Different implementation details for the
topological method can be found in the literature [7, 8, 9, 10, 11].

4.7.2 Identifying the Observable Islands

After processing all the flows and injections, if a spanning tree can not be
found, then the observable islands need to be identined. This can be done
as follows:

1. Discard those injections that have a^ ̂ easi o^e wc!dewf 5mnc/t which
does no% form a loop with the branches of the already defined forest.

2. Update the forest accordingly and repeat step 1 until no more injec-
tions need to be removed.

Example 4.8:

Use the topological observability analysis method to solve Example 4.6.
Solution:

* Start by assigning How measurements to the corresponding branches:
Flow 1-2 => branch 1-2,
Flow 3-5 => branch 3-5,
Flow 5-6 => branch 5-6.

They form a forest denned by the branches 3-5, 5-6, and 1-2.

* Assign the injection at bus 4 => branch 4-6 in order to merge two trees.
However, the injection at bus 4 is also incident to branches 1-4 and 2-
4. Neither one of these branches forms a loop with the branches of the
existing forest. Therefore, the injection at bus 4 can not be used and is
discarded.

* The resulting observable islands are the same as found in Example 4.6 in
Figure 4.11.

4.8 Determination of Critical Measurements

Measurements can be broadly classified into two categories as critical and
non-critical (or redundant). If the removal of a measurement causes an
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observable system to become unobservable, then this measurement is called
a critical measurement. Such measurements can be identified either by
topological [10] or numerical methods. State estimators that are based
on the WLS method, may use the measurement error covariance matrix,
which will be discussed in detail in Chapter 6, by searching its null columns
in order to determine the corresponding critical measurements. Another
approach which does not require explicit formation of the covariance matrix
is described below.

Consider an observable power system with % states and m measure-
ments. If the system is initially unobservable, it is assumed that proper
measurements are placed to restore observability as explained in section
4.6.3. Then, a set of n measurements can be chosen out of the available m,,
so that the system will be observable with only these n measurements. This
set of % measurements will be referred to as the "essential measurements".
Such a set is in general not unique, yet will contain all of the critical mea-
surements, since no set that excludes them can make the system observable.

Ordering the essential measurements hrst and partitioning the matrices,
the linearized measurement equations will be:

M = [ !' 1 (4.61)

where the rows of Ni, 2:1 and #2; 22 correspond to the essential and non-
essential measurements respectively. Applying the Peters- Wilkinson [12]
decomposition:

where
Li is a n x w, lower triangular matrix,
Â 2 is a (m — n) x n rectangular matrix,
7̂ is a n x n upper triangular matrix.

Substituting Equation (4.62) into (4.61):

21 = Li-f/.x (4.63)

23 = M2 - f/ - z (4.64)

Eliminating ̂ 7 - a::

22 = M*2 - L^ - zi (4.65)

2̂ = T-^i (4.66)

Equation (4.66) shows the linear dependency among the non-essential and
essential measurements. Hence, an element of zj will be critical if the
corresponding column of T is null.
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Example 4.9:

Consider the 6-bus power system and the measurement configuration given
in Figure 4.14. Determine the critical measurements. Solution:

Figure 4.14. Example System Containing Critical Measurement.

First, form the measurement Jacobian R, excluding the first column for bus
1 which is chosen as the slack bus:

* -1
-1
0
0

-1
0
0

0
2

-1
1
0
0
0

0
-1
2
1

0
0

-1

0
0

_^

0
0
0
1

-1 *
0
0
0
0

_]̂

0

Partition 77 into Hi, which contains the first 5 rows of essential measurements,
and #2, which contains the last 2 rows. Decompose H into LU factors using the
Peters-Wilkinson decomposition method:

' 1.0
1.0
0
0
0

1.0
0

0
1.0

-0.5
0
0
0

0.5

0
0

1.0
-0.66

0
0

-0.33

0
0
0

1.0
0
0

-1.0

0 *
0
0
0

1.0
-1.0
0.0

* -1.00
0
0
0
0

0
2.00
0
0
0

0
-1.00
1.50
0
0

0
0

-1.00
0.33
0

-1.00 *
1.00
0.50
0.33

-1.00

Then, the matrix T will be given by:

T =
1.00 0.00 0.00 0.00 - 1.0
0.00 0.00 - 1.00 -1.00 0.0

The second column of T is null, indicating that the measurement corresponding
to the second row of Ri is critical. In this example, this measurement is the
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injection at bus 3.

4.9 Measurement Design

This chapter has so far discussed various methods of analyzing network
observability for a given power system and its associated measurement
configuration. Methods have also been presented for placement of new
measurements in order to turn an unobservable system into an observ-
able one. However, in certain situations, considerations may go beyond
just checking observability when placing new measurements. In particular,
measurements may be added in order to maintain a certain level of reli-
ability against loss of measurements or branch outages. This problem is
more involved due to the additional considerations including the measure-
ment costs. One possible formulation of this optimal measurement design
problem and its solution can be found in [14].

4.10 Summary

This chapter presents the methods for network observability analysis. The
methods can be broadly divided into numerical and topological categories.
Both methods can be used for not only determining network observabil-
ity, but also for identifying observable islands, any existing critical mea-
surements, and placing new measurements to restore observability. These
methods are discussed in sufficient detail to enable their implementation in
a computer program.

4.11 Problems

1. The measurement configuration for a 14 bus test system is shown
in Figure 4.15. Use the topological observability analysis method to
determine the following:

(a) All irrelevant branches.

(b) AH irrelevant injections.

(c) AH observable islands.

(d) AH unobservable branches.

Suggest the location and type of a set of minimum number of mea-
surements to be added to the measurement list in order to make the
system observable.
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(v) : Voltage L ;P,Q injection * :P,QFbss

Figure 4.15. Test system for Problem 1

2. Use the numerical observability method to solve problem 1.

3. Use the numerical observability analysis method and identify the
observable islands for the 10 bus test system given Figure 4.16.

4. Suggest a minimum number of measurements to be placed in the
system of Problem 3, so that the system will be fully observable.
Use the multiple measurement placement method.

5. Considering the system given for Problem 3. Form the /I matrix by
choosing the tree branches as:

(a) Ti = {1,3,6,11,15,14,8,7,10}

(b) Ti = {9,5,7,10,13,11,15,2,3}

Compare the number of non-zero elements in /̂  for both cases. Can
you choose another tree that will yield a sparser /I ?

6. Consider the system and measurement configuration given for Prob-
lem 3. Determine the observable islands using the branch variable
based numerical method. Compare your results with those of Prob-
lem 3.
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(v) : Vohage t :P,Q Injection * :P,Q Floss

l_ij : Branch No: i

Figure 4.16. Test system for Problem 3

Design Project:

This is a project that can be carried out by two or more students as a
team.

Objective:

To accomplish the most economical design that complies with the tech-
nical/cost specifications given below.

Design Specifications:

Design a measurement system for the IEEE-30 bus test system, so that
the system remains observable and single bad data in any of the measure-
ments can be detected during normal operation as well as in case of any
one of the contingencies listed below:

1. Outage of line 15-23

2. Outage of line 2-5

3. Outage of line 22-24
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4. Outage of line 10-20

5. Outage of transformer 27-28

6. Outage of line 16-17

7. Outage of line 12-14

8. Outage of line 12-15

Assume appropriate costs in your design for the following items:

t Remote Terminal Unit (RTU)

* Voltage magnitude meter

* P-Q meter

Note that every measurement needs to be assigned one RTU for communi-
cating with the control center. Assume an appropriate number of available
channels for each RTU.

Detailed information including the system diagram and network data
for the IEEE-30 bus system can be downloaded from :
http://www.ee.washington.edu/research/pstca/pf30/pg-tca30bus.htm

Design Project Report Format

Prepare a report describing your design. The report should contain the
following:

1. Executive summary (not to exceed 1 page)

2. Main body:

* Problem statement

* Technical approach used in the design

* Results: tables, charts or plots

3. References: if used, should be referred to in text.

4. Appendix:

* System diagram(s)

* Simulation results

* Listing of input or output files (if necessary), programs (if de-
veloped).
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Chapter 5

Bad Data Detection and
Identification

One of the essential functions of a state estimator is to detect measure-
ment errors, and to identify and eliminate them if possible. Measurements
may contain errors due to various reasons. Random errors usually exist in
measurements due to the finite accuracy of the meters and the telecom-
munication medium. Provided that there is sufficient redundancy among
measurements, such errors are expected to be filtered by the state estima-
tor. The nature of this filtering action will depend on the specific method
of estimation employed.

Large measurement errors can also occur when the meters have biases,
drifts or wrong connections. Telecommunication system failures or noise
caused by unexpected interference also lead to large deviations in recorded
measurements.

Apart from these, a state estimator may be deceived by incorrect topol-
ogy information which will be subsequently interpreted as bad data by the
state estimator. Such situations are more complicated to deal with and the
treatment of topology errors will be separately discussed in Chapter 7.

Some bad data are obvious and can be detected and eliminated apriori
state estimation, by simple plausibility checks. Negative voltage magni-
tudes, measurements with several orders of magnitude larger or smaller
than expected values, or large differences between incoming and leaving
currents at a connection node within a substation are some examples of
such bad data. Unfortunately, not all types of bad data are easily de-
tectable by such means. Hence, state estimators have to be equipped with
more advanced features that will facilitate the detection and identification
of any type of bad data.
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Treatment of bad data depends on the method of state estimation used
in the implementation. This chapter will focus on the bad data detection
and identification techniques that are associated with the commonly used
WLS method. Other state estimation methods such as those that will be
discussed in Chapter 6, incorporate bad data processing as part of the state
estimation procedure and hence their discussion will involve aspects of their
treatment of bad data as well.

When using the WLS estimation method, detection and identification
of bad data are done only after the estimation process by processing the
measurement residuals. The analysis is essentially based on the properties
of these residuals, including their expected probability distribution.

Bad data may appear in several different ways depending upon the
type, location and number of measurements that are in error. They can be
broadly classified as:

1. Single bad data: Only one of the measurements in the entire system
will have a large error.

2. Multiple bad data: More than one measurement will be in error.

Multiple bad data may appear in measurements whose residuals are strongly
or weakly correlated. Strongly correlated measurements are those whose er-
rors affect the estimated value of each other significantly, causing the good
one to also appear in error when the other contains a large error. Estimates
of measurements with weakly correlated residuals are not significantly af-
fected by the errors of each other. When measurement residuals are strongly
correlated their errors may or may not be conforming. Conforming errors
are those that appear consistent with each other. Multiple bad data can
therefore be further classified into three groups:

1. Multiple non-interacting bad data: Bad data in measurements with
weakly correlated measurement residuals.

2. Multiple interacting but non-conforming bad data: Non-conforming
bad data in measurements with strongly correlated residuals.

3. Multiple interacting and conforming bad data: Consistent bad data
in measurements with strongly correlated residuals.

Quantifying the degree of interaction between measurements and anal-
ysis of errors can be carried out based on the sensitivities of measurement
residuals to measurement errors. Properties of the measurement residuals
that are obtained by the WLS state estimation method will be reviewed
below for this purpose.
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5.1 Properties of Measurement Residuals

Consider the linearized measurement equations:

Az = RAa + e (5.1)

where, J5(e) = 0 and cov(e) = R, which is a diagonal matrix based on
the assumption that measurement errors are not correlated. Note that
measurement residuals may still be correlated even if errors are assumed
independent.

Then, the WLS estimator of the linearized state vector will be given by:

Ai = (R̂ 7r*R)"i.H
= G-^R-^Az (5.2)

and the estimated value of Â :

Az = RAz = 7(Az (5.3)

where 7( = RC"^R^R*^ and sometimes is called the Ao^ matrix, for
putting a hat on Az.

A rough idea about the local measurement redundancy around a given
meter can be obtained, by checking the corresponding row entries in the
matrix i<f. A large diagonal entry relative to the off-diagonal elements in
î , will imply that the estimated value corresponding to that measurement
is essentially determined by its measured value, i.e. the local redundancy
is poor. Furthermore, the matrix 7( can be shown to have the following
properties:

X.Rf.R*-.-R* = X (5.4)
X.R = F (5.5)

(7-iT).R = 0 (5.6)

Now, the measurement residuals can be expressed as follows:

r = Az - Az

= (7 - X)e [Substituting Equation(5.6)]

= 3e (5.7)

The matrix <S*, called the reŝ wâ  senŝ ŵ y mairM:, represents the sensi-
tivity of the measurement residuals to the measurement errors. It has the
following properties:
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* It is not a symmetric matrix unless the covariance of errors are all
equal, i.e. R = A;7, where A; is any scalar.

. 6*. 6*. 6'..- 6* = ̂

. 3 - R - 5̂  = 5* - R

WLS estimation is based on the assumption that the measurement errors
are distributed according to a Gaussian distribution given as below:

ê  ̂  N(0, R̂ ) for all :

Using the linear relation between the measurement residuals and errors
given by Equation (5.7), the mean and the covariance, and hence the prob-
ability distribution of the measurement residuals can be obtained as follows:

.e) = 3;E(e)=0 (5.8)

= Q = Err^

[See the properties of 6* above.]

= 57? (5.9)

Therefore:

The off-diagonal elements of the residual covariance matrix Q can be
used to identify those strongly versus weakly interacting measurements.

If Oij > e, then measurement ! and j are said to be strongly inter-
acting. Else, these measurements are considered as weakly interacting or
non-interacting at all. The threshold e depends on the network and mea-
surement topology as well as the desired level of selectivity among mea-
surements.

Residual covariance matrix H has some interesting properties which will
be useful in the subsequent discussion of identification of bad data. Some
of these properties are stated below:

* M is a real and symmetric matrix.
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Example 5.1:

Consider the 3-bus system and its measurement configuration given in Exam-
p]e 2 in Chapter 2. Using the DC measurement model, find the hat matrix T'f ,
the sensitivity matrix S and the covariance matrix Q for the residuals. Verify the
properties of the residual covariance matrix Q.

Solution:

The linearized F* — 0 measurement equation is given by:

where

Pis
-33.33

-20.0
45.8 -12.5

Using the given measurement error covariance matrix:

0.008̂
0.0082

O.Of

Corresponding decoupled active gain matrix will then be given as:

3.837 -0.5729
-0.5729 0.7812

Hat matrix A* can be built as:

0.5084 0.2236 -0.3577
0.2236 0.8983 0.1627
-0.5589 0.2542 0.5932

and the sensitivity matrix S will be given as:

0.4916
-0.2236
0.5589 -0.2542

-0.2236 0.3577
0.1017 -0.1627

0.4068

Finally, the residua! covariance matrix Q will be:

0.3146 -0.1431
SI = 5 . = 10" -0.1431 0.0651

0.3577 -0.1627

0.3577
-0.1627
0.4068

Note that H is real and symmetric. The off-diagonal entries can be verified to
remain less than both the arithmetic and geometric mean of the corresponding

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.



diagonal entries. Two of them are illustrated below:

Qi,3 = 1.2796 x ID*" ^ ̂ ^ ̂  ̂  1.2796 x 10*̂

1̂,2 = -1.4309 x 10"" < ^1.1+^,

5.2 Classification of Measurements

Power systems may contain various types of measurements spread out in
the system with no apparent topological pattern. These measurements will
exhibit different properties and affect the outcome of the state estimation
accordingly, depending upon not only their values but also their location.
Therefore, they may belong to one or more of the following categories [7]:

Critical measurement: A critical measurement is the one whose elimina-
tion from the measurement set will result in an unobservable system.
The column of the residual covariance matrix H, corresponding to a
critical measurement will be identically equal zero. Furthermore, the
measurement residual of a critical measurement will always be zero.

Redundant measurement: A redundant measurement is a measurement
which is not critical. Only redundant measurements may have nonzero
measurement residuals.

Critical pair: Two redundant measurements whose simultaneous removal
from the measurement set will make the system unobservable.

Critical k-tuple: A critical k-tuple contains A; redundant measurements,
where removal of all of them will cause the system to become unob-
servable. None of these /c measurements belong to a critical tuple of
lower order. Those A; columns of the residual covariance matrix Q,
corresponding to the members of a critical k-tuple, will be linearly
dependent.

5.3 Bad Data Detection and IdentiRability

Detection refers to the determination of whether or not the measurement set
contains any bad data. Identification is the procedure of finding out which
specific measurements actually contain bad data. Detection and identifia-
bihty of bad data depends on the configuration of the overall measurement
set in a given power system.
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Bad data can be detected if removal of the corresponding measurement
does not render the system unobservable. In other words, bad data appear-
ing in critical measurements can not be detected.

A single measurement containing bad data can be identified if and only
if:

* it is not critical and

* it does not belong to a critical pair.

Bad data processing logic should be able to recognize the above inherent
limitations of detection and single bad data identification. Provided that
the above conditions are observed, single bad data can be detected and
identified by the methods outlined next. The case of multiple bad data is
more difficult to handle and will be discussed later in sections 5.7.2 and 5.8.

5.4 Bad Data Detection

One of the methods used for detecting bad data is the CM-s^wares test.
Once bad data are detected, they need to be identiAed and eliminated
or corrected, in order to obtain an unbiased state estimate. Bad data
identification methods will be discussed later in section 5.6.

5.4.1 Chi-squares x^ Distribution

Consider a set of A^ independent random variables Jfi, ̂2; - - - -^JV; where
each X̂  is distributed according to the Standard Normal distribution:

, 1)

Then, a new random variable V defined by:

will have a x^ distribution with N degrees of freedom, i.e.

The degrees of freedom N, represents the number of independent variables
in the sum of squares. This value will decrease if any of the ̂ Q variables
form a linearly dependent subset.

Now, let us consider the function / (x), written in terms of the measure-
ment errors:

?;=!
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where e^ is the ^th measurement error, R^ is the diagonal entry of the
measurement error covariance matrix and m is the total number of mea-
surements. Assuming that ê 's are all Normally distributed random vari-
ables with zero mean and
distribution, i.e.

variance, ê 's will have a Standard Normal

e N(0, 1)

Then, /(a:) will have a x^ distribution with at most (m - n) degrees of
freedom. In a power system, since at least % measurements will have to
satisfy the power balance equations, at most (m - n) of the measurement
errors will be linearly independent. Thus, the largest degree of freedom can
be (m - %), i.e. the difference between the total number of measurements
and the system states.

5.4.2 Use of Y^ Distribution for Bad Data Detection

0.08
Probability Density Function

Figure 5.1. x^ Probability Density Function

A plot of the x̂ -probabih'ty density function (p.d.f) is shown in Figure
5.1. The area under the p.d.f. represents the probability of finding X in
the corresponding region, for example:

(5.11)
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represents the probability of Ĵ  being larger than a certain threshold (̂.
This probability decreases with increasing values of 3̂ , due to the decaying
tail of the distribution. Choosing a probability of error, such as 0.05, the
threshold a?t can be set such that:

Pr{X > xj = 0.05

In Figure 5.1, this threshold corresponds to â  = 25 indicated by the vertical
dotted line. The threshold represents the largest acceptable value for .X
that will not imply any bad data. If the measured value of ̂ exceeds this
threshold, then with 0.95 probability, the measured Ĵ  will not have a x^
distribution, i.e. presence of bad data will be suspected.

Tables containing Chi squares cumulative distribution function values
for different degrees of freedom can be found in various statistical publica-
tions. Alternatively, Matlab's statistical toolbox can be used to evaluate
specific values, as illustrated in the following example.

Example 5.2:

Consider S independent measurements of a quantity, given as follows:

Measured variable
Measured value

Tl

0.5
Z2

-1.2
X3

0.80
K4

0.20
T5

-3.1

Assume that the measurements are taken from a sample which is known to have
a Standard Normal distribution, i.e.

) foraUt

Use x^ distribution to check for bad data with 99% conSdence.

Sortition:
Let us form the sum of squares of the measured variables:

The probability of obtaining this value (11.98) when Y indeed has a X4
distribution, can be found by using the Matlab Statistical Toolbox function
CHI2CDF(Y,DF). DF is the degrees of freedom, which is 4 for this example.
This probability, denoted by f will be obtained as:

P = CHI2CDF(11.98,4) = 0.9825

Since 0.9825 < 0.99, bad data will not be suspected with 99% confidence.
Alternatively, the test threshold at the 99% confidence level can be obtained

by using another one of the Matiab functions called CHI2INV(P,DF) where P
is the confidence probability level, which is 0.99 for this example. Execution of
this function yields the corresponding threshold yt, which represents the largest
acceptable vahie for y, without suspecting any bad data with 99% confidence:
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?/i = CHI2INV(0.99,4) = 13.28

Again, since yt == 13.28 > y = 11.98, bad data wilt not be suspected for this
example.

5.4.3 x̂ -Test for Detecting Bad Data in WLS State
Estimation

The WLS state estimation objective function J(a) can be used to approxi-
mate the above function /(a;) and a bad data detection test, referred to as
the Chi-squares test for bad data, can be devised based on the properties
of the x^ distribution.

The steps of the Chi-squares x^-test are given as follows:

< Solve the WLS estimation problem and compute the objective func-
tion:

i=l ^

where:
a; : estimated state vector of dimension n.
t̂(i) : estimated measurement :.

2̂  : measured value of the measurement t.
<y? = jR̂  : variance of the error in measurement .̂
77T. : number of measurements.

* Look up the value from the Chi-squares distribution table corre-
sponding to a detection confidence with probability p (e.g. 95%) and
(m — n) degrees of freedom. Let this value be x̂ -Ti) p'

. Test if J(i) > x̂ ),p.
If yes, then bad data will be suspected.
Else, the measurements will be assumed to be free of bad data.
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: Power Measurement

: Voltage Magnitude Measurement

Consider the 3-bus system and its measurement configuration shown in the
figure. The corresponding network data are given below:

Line
From Bus

1
1
2

To Bus
2
3
3

Resistance
R(pu)
0.01
0.02
0.03

Reactance
X(pu)

0.03
0.05
0.08

Total Susceptance
2&s (pu)

0.0
0.0
0.0

The number of state variables, n for this system is 5, made up of three bus
voltage magnitudes and two bus voltage phase angles, slack bus phase angle being
excluded from the state list. There are altogether m = 10 measurements, i.e. 2
voltage magnitude measurements, 2 pairs of real/reactive flows and 2 pairs of
real/reactive injections. Therefore, the degrees of freedom for the approximate
X^-distribution of the objective function J(a:) will be:

5 = 5

Measurements are generated by solving the base case power How and then
adding Gaussian distributed errors. One of the measurements, %, is then changed
intentionally, to simulate bad data. The state estimation solution and the ob-
jective function values that are obtained for both cases, are shown in the tables
below.

Bus
No:

1
2
3

Estimated State
No Bad Data
V

1.0000
0.9886
0.9834

6<°
0

-0.84
-1.19

One Bad Data
V

1.0000
0.9886
0.9834

0°
0.00
-0.67
-1.20
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Measurement
No:
1
2
3
4
5
6
7
8
9
10

Measurement
Type

Vi
14
Pz
Pa
Q2

Qs
Pl2

Pl3

Ql2

Ql3

-?(x)

Measured Value
No Bad Data

1.0065
0.9769
-0.4007
-0.4857
-0.3052
-0.3850
0.4856
0.4054
0.3821
0.3367
6.1

One Bad Data
1.0065
0.9769
-0.3507
-0.4857
-0.3052
-0.3850
0.4856
0.4054
0.3821
0.3367
22.8

The test threshold at 95% confidence level is obtained by Matlab function
CHI2INV as:

!/t = CHI2INV(0.95,5) = 11.1

In the first case, since J(̂ ) =6.1 < 11.1, bad data will not be suspected. However,
the test will detect bad data for the second case, since the corresponding value of
J(A) = 22.8 exceeds the x^-test threshold of 11.1.

Use of Normalized Residuals for Bad Data
Detection

5.4.4

As described above, the x^-test is inaccurate due to the approximation of
errors by residuals in Equation (5.10). Therefore it may fail to detect bad
data for certain cases. A more accurate test for detecting bad data can be
devised by using the normalized residuals. Normalized value of the residual
for measurement ! can be obtained by simply dividing its absolute value by
the corresponding diagonal entry in the residual covariance matrix:

(5.12)

will then have a Standard Normal dis-The normalized residual vector
tribution, i.e.

Thus, the largest clement in r^ can be compared against a statistical
threshold to decide on the existence of bad data. This threshold can be
chosen based on the desired level of detection sensitivity.
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5.5 Properties of Normalized Residuals

It can be shown that if there is a single bad data in the measurement set
(provided that it is neither a critical measurement nor a member of a crit-
ical pair) the largest normalized residual will correspond to the erroneous
measurement. This property may hold true even for certain multiple bad
data cases, where bad measurements have very weak correlation, i.e. they
are essentially non-interacting.

Consider the case where the only bad data occurs in measurement %;,
i.e. e/c ŷ  0 and all the remaining measurements are free of errors, e,, =
0, j ̂ &. Using Equation (5.7), the normalized residual for the erroneous
measurement A;, can be shown to be the largest among all other error free
measurements:

[Using the property f& <

The above inequality becomes a strict equality, if the measurements j
and /c form a critical pair, since the corresponding columns of 0 matrix will
be linearly dependent. Hence, the normalized residuals of a critical pair
will always be equal, making the identification of bad data impossible even
though it can be detected. The same is true for any (A: — 1) member subset
of a set of measurements forming a critical k-tuple, i.e. errors associated
with them can be detected but not identified.

5.6 Bad Data Identification

Upon detection of bad data in the measurement set, their identification can
be accomplished by further processing of the residuals. Among the existing
methods, two of them, namely the Largest Â ormâ zê  Ee.s:&taZ ('r̂,̂  Teŝ
and the .%/pô AesM Teŝ ng 7a*enf{/tcâ on (TfTY) method, will be described
here.

5.7 Largest Normalized Residual ( r ) Test

The properties of normalized residuals for a single bad data existing in the
measurement set, can be used to devise a test for identifying and subsc-

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.



quently eliminating bad data. The test is referred to as the Largest TVor-
and is composed of the following steps:

1. Solve the WLS estimation and obtain the elements of the measure-
ment residual vector:

^ = 1,... ,

2. Compute the normalized residuals:

3. Find A; such that r̂  is the largest among all r̂ , ̂ = 1,..., m.

4. If r̂  > c, then the A:-th measurement will be suspected as bad data.
Else, stop, no bad data will be suspected. Here, c is a chosen identi-
fication threshold, for instance 3.0.

5. Eliminate the A;-th measurement from the measurement set and go
to step 1.

Example 5.4:

Consider the same system studied in Example 5.3. Apply the normalized
residual test to identify and eliminate the bad data for this measurement set.

The WLS state estimator results for the significant measurement residuals
sorted in descending order are given in the below table.

Measurement, !
P2

Pl2

Vi

%

Ps

rf
4.2
4.1
2.3
2.3
1.1

n
0.0286
0.0235
0.006
-0.006
0.007

The threshold of detection is assumed to be 3.0. Hence, the power injection
at bus 2, is identified as bad data and eliminated from the measurement set.
State estimation is repeated using the modified measurement set and the largest
normalized residuals and the state estimation solution are given below.

Measurement, !

14

^

rf
2.3
2.2

n
0.006
-0.006

1
2
3

0.9999
0.9886
0.9833

î

0
-0.84
1 19
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Since the largest r^ value is below the detection threshotd 3.0, the test is
terminated and the measurement set is declared to be free of errors.

5.7.1 Computational Issues

Implementation of the largest normalized residual test may require several
identification/elimination cycles. Each cycle will involve two computation-
ally intensive stages:

* normalized residuals are calculated using the diagonal entries of the
residual covariance matrix H.

* identified bad measurement with the largest normalized residual will
be removed from the measurement set before repeating the state
estimation procedure.

Computation of the matrix 0

Using Equation (5.7):

(5.13)
(5.14)

Note that only the diagonal entries of Q are needed. Furthermore, the
gain matrix C has already been decomposed into its triangular Cholesky
factors L, during the state estimation iterations:

Each row of R corresponds to a measurement, and can be denoted by the
row vector /̂  for measurement i. Then, R can be written in terms of its
row vectors as follows:

Now, let:

The columns of the temporary matrix T can be obtained by solving the
following linear sparse matrix equation for each of the m measurements:

r r^T -lyjL/ 1^ — 1 < : < (5.15)
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Since the sparse Cholesky factor L, is already available from the last state
estimation iteration, solution of Equation (5.15) will require a forward and
a backward substitution steps. Furthermore, both substitutions can be fast
due to the very sparse structure of the right hand side vector ̂?\

The diagonal entries of 0 can then be computed easily as follows:

f^=Rii-^'^ l<:<m (5.16)

A computationally more efficient alternative is the use of sparse inverse
method to obtain only the necessary elements of G"̂ . These correspond to
the locations of nonzero elements in the products /t?̂  for all ̂  — 1, . . . , m.
Details of sparse inverse method are given in Appendix B.

Removal of the identified bad data

Once bad data are identified, they have to be removed from the mea-
surement set before the next cycle of state estimation. Actual removal of
the bad measurement may be avoided by subtracting the estimated error
from the bad measurement as explained below.

Assume that all measurements are error-free except for the measurement
!, which can be written as:

2, + e, = ̂ (5.17)

where, 2̂ "̂  is the measured value, ̂  is the true value and e^ is the gross
error associated with measurement i. Using the linearized residual sen-
sitivity relation of Equation (5.7), the bad measurement residual can be
approximated by:

2^-/t(i)=7f^m6^ (5.18)

where, i is the state estimate based on the measurement set including the
bad measurement. Hence, an approximate value for the error ê  can be
computed. Subtracting this error from the bad measurement yields:

^ bad î  &od i'c in^^ ̂ * * (a..LK

State estimation can be repeated after correcting the bad measurement
using the above approximation. The results of this estimation will provide
approximately the same state estimate that would have been obtained if the
measurement were actually removed from the measurement set. Exceptions
to this case exist, when the linear residual sensitivity model, fails to properly
approximate the changes in the residuals for large errors. Such cases will
require iterative corrections to minimize the approximation error.
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5.7.2 Strengths and Limitations of the r̂  Test

The largest normalized residual test will perform differently depending upon
the type of bad data and its configuration. Its performance and limitations
are summarized below for all possible types of bad data.

Single Bad Data

When there is single bad data, the largest normalized residual will corre-
spond to the bad measurement, provided that it is not critical or its removal
does not create any critical measurements among the remaining ones.

Multiple Bad Data

Multiple bad data may appear in 3 ways:

* Non-interacting:
If 5̂  m 0, then measurement ! and A; are said to be non-interacting.
In this case, even if bad data appear simultaneously in both mea-
surements, the largest normalized residual test can identify them
sequentially, one pass at a time.

* Interacting, non-conforming:
If 6̂  is significantly large, then measurements % and ĉ are said to be
interacting. However, if the errors in measurement ! and /c are not
consistent with each other, then the largest normalized residual test
may still indicate the bad data correctly.

* Interacting, conforming:
If two interacting measurements have errors that are in agreement,
then the largest normalized residual test may fail to identify either
one.

The following example illustrates the above situations on a rather small
scale example system. However, since bad data identification is a localized
function for sparsely interconnected power system buses, similar results are
likely to be observed for larger, actual size systems.
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Example 5.5:

1

: Power Measurement

: VoKage Magnitude Measurement

In the figure, all branches have identical impedances, 2, = j 0.1, and the
voltage magnitudes are assumed to be known. State estimation is carried out for
the phase angles of bus voltages using the real power measurements only. Three
cases are simulated corresponding to single, multiple interacting non-conforming
and multiple interacting conforming bad data present in the system. The results
are summarized in the below table, where the largest normalized residual for each
case is typed in boldface. Note that, the r̂ -̂test fails when multiple interacting
bad data are conforming, where errors introduced in measurements .Ps and F*32
are consistent with each other.

Meas.
Type

Flow 1-3
Flow 2-1
Flow 3-2
Flow 2-3
Inj. 1
Inj. 3

Bad Data
Single

2:

0.634
0.666
0.134
-0.034
1.299
-0.600

rf
1.81
2.95
11.1
4.57
1.33
3.77

Multiple Interacting
Non-conforming

2i

0.634
0.666
0.134
-0.034
1.299
-0.700

?f
1.56
2.47
14.5
2.05
3.05
11.16

Conforming
2i

0.634
0.666
0.134
-0.034
1.299
-0.500

?*f

3.81
2.96
7.93
8.16
1.07
3.49

5.8 Hypothesis Testing Identification (HTI)

The main weakness of the r̂ g. method is that it is based on the residuals
which may be strongly correlated. Hence, in case of multiple bad data, this
correlation may lead to comparable size residuals for good as well as bad
measurements. A way to distinguish between good and bad measurements
is by estimating the measurement errors directly, rather than devising tests
based on the derived residuals. One such approach is the use of Hypothesis
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Testing Identification (HTI) method [2, 3]. This method differs from the
largest normalized residual test in that bad data are identified based on the
computed estimates of measurement errors.

Estimation of all measurement errors using the calculated residuals is
not possible, since the rank of 6* in Equation (5.7) is much less than the
number of measurements m. In fact, the rank can not be larger than
(m — %) for a system with n states. Therefore, only those errors in at most
(m — %) measurements can be attempted to be estimated using a reduced
form of the matrix <?. Hence, the method's effectiveness depends upon this
initial reduction, namely in the choice of an initial suspect measurement set
which should include all bad data. HTI method makes use of the normalized
residuals for this choice, and hence has a vulnerability due to the possibility
of missing one or more bad data whose normalized residuals may appear
small.

Consider that the WLS estimator is run and the normalized residuals
are calculated. A set of measurements with the largest normalized residuals
are picked making sure that they are linearly independent and non-critical.
The number of such measurements which meet these conditions and are
to be included in the initial suspect set is up to the user. The rest of the
measurements are assumed to be error free. Then the sensitivity matrix <?
and the error covariance matrix R are partitioned according to the assumed
suspect and true measurements:

7-s = 6*3363+ 6346̂  (5.20)

(5.21)

0 ^ (5.22)

where:
7-3,7^ : is the residual vectors of suspect and true measurements
63, ê  : is the error vectors of suspect and true measurements
-Ssst-Sstt-StsA;, : partitioned submatrices of 5*
Rs, R; : partitioned residual covariance matrices

Under the assumption that the true measurements are free of errors, i.e.
_E[et] = 0, an estimate for e^ can be obtained from Equation (5.20) as:

e, = 3L̂ s (5.23)

Substituting back in Equation (5.20):

63 = 63 + S'Jl̂ tet (5.24)

Note that, in order for 6*33 to have an inverse, the suspect set should contain
measurements which are independent and not critical. These are the con-
ditions stated earlier for the selection of the suspect set. If the suspect set
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indeed contains aU bad data in the measurement set, then the estimated er-
rors and their expected statistical properties can be used to identify them
by using the HTI algorithm. In order to devise a test for the estimated
errors of the suspect set, their probability distributions must be known.

5.8.1 Statistical Properties of 6g

The mean and covariance of the estimated errors for the suspect set of
measurements can be derived as follows:

1. Mean:
IfE[et] =0, thence,] = &,.
Else, .E[eg] ̂  eg.

2. Covariance:
If E[e;] = 0, then using Equation (5.24):

i)(3-̂ ,f (5.25)

3;f (5.26)

Recalling the property of residual sensitivity matrix:

R̂̂  = 3R (5.27)

Substituting the partitioned form of ̂ and R and equating the terms, will
yield the following identity:

3ssR̂  + ̂R,̂  = 3s,Rs (5.28)

Substituting in Equation (5.26):

) + (3-'-Js)Rs (5.29)

where L, represents an identity matrix of order equal to the number of
suspected measurements. The notation can be simplified by letting:

If 2s (i) is good, then 63 (i) is assumed to be a random variable with zero
mean and R̂ ,!) variance. Then C*ov(e,,) will cancel out Rs in Equation
(5.29) and its distribution will be given by:
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On the other hand, if 2s(̂ ) carries bad data, then in Equation (5.29) the
variable 6g(!) will be treated as an unknown but deterministic quantity [2].
Thus, its distribution will be given by:

HTI method uses the above derived statistical properties of ê (!) in order to
devise a hypothesis test and its associated decision rules which are described
below.

5.8.2 Hypothesis Testing

Hypothesis testing is a general method in making decisions about accepting
or rejecting a statement. The statement being tested is referred to as the
null hypothesis and denoted by Ho. Rejection of the null hypothesis im-
plies acceptance of its complement, which is referred to as the alternative
hypothesis and denoted by #1.

There are two types of errors that one can make when accepting or
rejecting .%:

Type I error is rejection of No when it is indeed true. The probability
of making such an error is denoted by a in statistical convention.
This probability is referred to as the probability of false alarm or
the significance level of the test. Typical va!ues for a are small such
as 0.01, 0.05, or 0.10. The larger it is chosen, the more sensitive the
decision will become to random errors in the observations.

Type II error is the error of rejecting the alternative hypothesis when it
is indeed true. The probability of making such an error is denoted
by /3. It is the probability of missing bad data and its complement
(1 — /?), which is referred to as the power of test.

Choosing the null #o and alternative Ri hypotheses as:

#o: measurement ! is valid.
Fi: measurement ! is in error.

they can be tested based on the decision rules derived below. Figure 5.2
shows an example of two distributions for ê  corresponding to the null #o
and the alternative #1 hypotheses. The distribution for #1 has a mean of
eg,; which represents the assumed error for measurement:. Type I and type
II error probabilities are also indicated in the figure for a given threshold
of A,;.
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Figure 5.2. Type I and II errors in hypothesis testing

5.8.3 Decision Rules

There are two alternative strategies that can be chosen. One is to choose a
fixed probability of false alarm, a and determine the corresponding thresh-
old A, for deciding on the significance of ] ̂  . The other is to do the same
based on a chosen fixed probability of /? (or 1 - /?). Choice of A^ for each
strategy will be described below.

Fixed probability of false alarm, a

This type I error probability is defined as:

a = .Pr(reject Ho

Note that if #o is true => e^ ̂  N ( 0,
the following condition:

is true)

). Then, A^ should satisfy

Normalizing the absolute value of the estimated error:
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Since the normalized variable will have a standard Normal distribution, a
proper cut-off value -?Vi-^ can be looked up from the Standard Normal
distribution table. Then:

Yielding the sought after threshold A^ as:

Fixed probability of bad data identification, (1 — /?)

Similarly, one can define type II error probability and its complement as:

If #1 is true

/3 = Pr ( reject Ri Ri is true )

1 — /3 = Pr ( accept Ri ] #1 is true

N ( ê , ̂(?̂  - 1) ). Then,

< -A,)

Normalizing

TVg is the value which can be looked up from the standard Normal
distribution table for the chosen value of /3. Note that for the same threshold
A^, the two cut-off values N(i_ °;) and JV^ can be related by eliminating A^
to yield:

Hence, HTI method can be implemented either under fixed a or fixed
/? strategy. The steps of implementing the HTI method for fixed /? will be
given only. Note that for small values of H,;, iV(i_ °) may become too large
increasing the risk of missing bad data. Thus, an upper bound -<V(i-°)ma.T
is used to limit this risk. Further details on the implementation of HTI
method can be found in [3].
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5.8.4 HTI Strategy Under Fixed /3

The following parameters are initially set by the user:
a = 1̂ , (e.g. a = 40)

N^ = b,'( e.g. b = -2.32 for /3 = 0.01 )
Â /i_s.\̂ ^ = 3.0

Steps of the Algorithm:

1. Select suspect set Si based on r^ and calculate

Tgi = ,?Ĵ  and e^i = Tgirsi

2. Calculate TV(i_<^:

,, I ê  I +<7i7Vgv^ - 1
V̂(i-§)i ̂  j-

with 0 < N(i_<^ < N(i_<,)̂ .̂

3. Calculate the threshold for each si,:

4. Select measurement ŝ  if e^^. [ > A^.

5. Form a shorter list of suspect measurements using those that are
selected at step 4. Repeat steps 1-4 until all measurements that are
suspected in the previous iteration are all selected again at step 4.

5.9 Summary

This chapter discussed the problem of bad data detection and identifica-
tion when using the WLS method for state estimation. It is shown that
identification of single bad data is possible by using the maximum nor-
malized residual r̂ ^ method. Multiple bad data on the other hand, are
more difficult to identify and two alternative methods are discussed for this
purpose. The ability to detect and identify bad data depends also on the
measurement types and their configuration. Conditions under which bad
data detection or identification will fail irrespective of the method used, are
also presented. Treatment of bad data can also be viewed as a robustness
issue for a given estimator. Hence, rather than devising post estimation cor-
rection methods which are discussed in this chapter, alternative estimators
which remain robust against bad data can be formulated. Such estimators
will be discussed in detail in the next chapter.
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5.10 Problems

1. Consider the foilowing linear model:

where, -E?[e] == 0 and ccw[e] = 7. The measurements are given as:

!

1

2
3
4
5

3̂
-0.9
0.1
0.2
0.5
0.4

^0.75
0.3
0.5
0.25
-0.2

2;
-5.4
-0.08
0.02
2.02
2.32

(a) Find the WLS estimates for a and &.

(b) Find the normalized residuals.

(c) Find the estimated errors for measurements 1 and 5, assuming
that the remaining measurements are error free.

2. The network diagram and its associated measurement configuration
of the IEEE 14-bus test system is shown in Figure 5.3. Network data
for the IEEE-14 bus system can be downloaded from :
http://www.ee.washington.edu/research/pstca/pfl4/pg-tcal4bus.htm.

Vottage Magnitude

Power

Figure 5.3. Measurement configuration for problem 2
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(a) Give the results of the Chi-squares test for detecting bad data
for each of the cases listed in the below table.

(b) Use the results of the normalized residual test to identify bad
data for each case.

Explain the reason(s) of failure for those cases where the tests fail to
detect and/or identify the bad data.

Case No:

1
2
3

4

Bad Measurement

P Flow 6-12
P Flow 9-14
P Flow 4-9
P Inj.at 4
P Flow 3-4

Magnitude of Bad Data

M
+30
+30
+20
+20
+20

3. A 3-bus system and its measurement configuration are shown in Fig-
ure 5.4.

Power Measurement

Figure 5.4. Measurement configuration for problem 3

Assume that the real power measurements can be expressed as a
linear function of phase angles as below:

JV

^ = E 3̂ -3*)

where ĝ  is 1 if bus ! and A; are connected, and zero otherwise. All
measurements have a standard deviation of 0.01 p.u. and they are
given as:

Pi = 0.53, Pg = 0.24, Pis = 0.08, Pzs = 0.42, P̂  = 0.44.
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(a) Use Chi-squares test to detect any bad data at 95% confidence
level.

(b) Use the largest normalized residuals test to identify bad data.
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Chapter 6

Robust State Estimation

6.1 Introduction

One of the reasons for using a state estimator is to detect, identify and
eliminate errors which may appear in the measurements, network model or
parameters. If the estimated state remains insensitive to major deviations
in a limited number of redundant measurements, then the corresponding
estimator will be considered statistically robust. Unfortunately, robustness
is commonly achieved at the expense of computational complexity. The
topic of robust estimation is quite broad and is covered in several books
and papers in the literature.

The aim of this chapter is to introduce some of the robustness issues in
power system state estimation and present alternative estimation methods
which are more robust as compared to the weighted least squares (WLS)
estimator that has been discussed in detail so far.

The WLS state estimation problem is formulated based on certain as-
sumptions about the measurement errors. These errors are considered to be
independent random variables distributed according to the Gaussian distri-
bution with zero mean and known variance. Measurement error variances
are chosen based on the assumed metering accuracy and/or historical data
on the measurement errors. However, occasional gross errors due to various
telemetry noise or failure are known to occur. Post estimation processing
of measurement residuals in order to detect and identify such outliers in
measurements is discussed in Chapter 5. There may also be other types of
outliers which strongly influence the estimated state, yet may or may not
carry bad data. Robust estimators are expected to remain unbiased despite
the existence of different types of outliers.
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6.2 Robustness and Breakdown Points

Robustness of an estimator can be quantified by the concept of the finite-
sample breakdown point [2] . Assume a set of measurements

2 = {21,22, -. ,2m,}

for which a given estimator yields an estimate i. If one or more measure-
ments are replaced by bad data so that a corrupted set 2' is created, then
the new estimate 3̂  will also be biased. The maximum norm of the bias in
the estimate will be:

= max z = 1, . . . , n

where ̂  is estimated by replacing m{, good measurements by arbitrarily
large bad data. The number of bad data m;, is increased until &"̂  is no
longer finite. The largest ratio

for which &"̂  remains bounded, is called the breakdown point of this esti-
mator.

Example 6.1:

Given 3 = {0.9, 0.95, 1.05, 1.07, 1.09}, find the breakdown point of the follow-
ing estimators:

Solution:

1. For 7?T,b = 1, replace 25 = 1.09 by an infinitely large number 2g = oo. The
new estimate X'a will then be:

1 ^
X'a = - V^ z, = oo

Since, by replacing even a single measurement by an infinitely large num-
ber, an unbounded estimate X'n is obtained, the breakdown point for this
estimator will be 0.

2. For !7tb = 1, replace 2g = 1.09 by an infinitely targe number zg = oo. The
new estimate X';, wilt then be:

Xh = 1.05 (finite)
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For mb = 2, replace both 25 and 24 by infinity. The new estimate Jf'b will
then be:

X̂  = 1.05 (finite)

For !%b = 3, replacing 25, 24 and 23 by infinity yields:

^=00

Hence, the breakdown point of this estimator will be 2/5 = 0.4.

A robust estimator will have a large breakdown point. The largest possi-
ble breakdown point will be limited by the measurement redundancy. Even
the most robust estimators can not reject more than half of the redundant
measurements when they are in error.

In the case of linear regression with n-unknown parameters, robustness
can be quantified by a simpler concept referred to as the e^ac^
which is introduced in [3, 4]. An estimator is said to have the
property if the estimate is an ?T,-dimensional hyperplane when the majority
of the measurements lie exactly on this hyperplane. Then, the exact-fit
point of an estimator will be defined as the largest fraction of bad data for
which the exact-fit property continues to hold.

Prior to discussing some of the robust estimation methods that are
applied to the power system state estimation problem, the concept of an
outlier in state estimation will be introduced. The concept of bad data and
outliers are usually used within the context of robust estimation and they
are closely related. Bad data usually refers to a measurement whose value
is incorrectly recorded. Since it lies away from its expected location in the
measurement space, it is also an outlier in that space. A measurement,
which may not contain any errors, may also appear as an outlier due to the
structure of its corresponding equation. Such outliers are more difficult to
identify, yet will strongly bias the state estimate when they contain errors.

6.3 Outliers and Leverage Points

Consider a linear measurement model given below:

2 = R.z + e (6.1)

In the above model, 2 is the measurement vector, x is the unknown variable
vector to be estimated and R is a mxn matrix. The vector e represents the
measurement error which is commonly assumed to have a Normal distri-
bution with zero mean. Denoting row : of R by .%, the pair (ẑ , _%) will
represent an observation and j%'s will lie in an %-dimcnsional space called
t/te /acfor .space of regression [3]. An outlier in this model can either be
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in the ̂ -direction or in the factor space. An example of an outlier in the
z-direction is a bad data in one of the measurements. Such an outlier can
be detected and identified based on the measurement residuals as discussed
in the previous chapters. When there is an outlier in the factor space, one
of the rows of F, say J%, will lie away from the rest of the factors. The
corresponding measurement will then have an undue influence on the state
estimate and is referred to as i/te leverage pom^ in regression.

6.3.1 Concept of Leverage Points

Let us reconsider the simple linear regression model:

g = #.K + e (6.2)

where E[e] = 0 and E[e - (e)̂] = R (diagonal).
Let 2 = R-i/2 - ,g, F = R-i/2 - R and e = R^/2 - e, then:

(6.3)

where j5[e] = 0 and jE*[e - e*̂ ] = Ĵ , i.e., the modified measurement error
vector, e, has unit covariance. Then, the least squares estimator for a can
be expressed as:

i = (R̂ R)-'R̂  (6.4)

and the estimator for z as:

z = F(F̂ F)-iR̂  (6.5)

= R".z (6.6)

Here "X" is the "hat" matrix which is defined earlier in Chapter 5,
Equation (5.3). Denoting the ! — ̂ row of the matrix R by .%, the diagonal
elements of ̂  can be expressed as follows:

^ = Ri(R̂ R)-'Rf (6.7)

Since Ff is both symmetric (A' = R"̂ ) and idempotent (jFf - ̂  = 7*Q,
î M can be written as:

. (6.8)

It follows from the above equation that 0 < A^ < 1. The value .R*̂
represents the influence of the z — î  measurement ̂  on its estimate ̂ . If
this influence is high, i.e. if -K^ is close to 1.0, then the measurement will be
likely to behave as a leverage point. Geometrically A^ gives a measure of
the distance of the measurement factor R^ from the bulk of the remaining
(m — 1) measurement factors.
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The measurement residuals can also be expressed as a function of the
elements of the hat matrix î :

r = z-,g = 2-R*.2 = (i^-,Rr).2 (6.9)

Thus, the residual of a measurement corresponding to a leverage point will
be very small even when it is contaminated with a large error. As such,
it behaves almost like a critical measurement whose residual is identically
zero. However, the main difference between them will be that although
the elimination of a critical measurement renders the system unobservable,
leverage points can be deleted without loss of system observability.

6.3.2 Identification of Leverage Measurements

The expected value of the i — i/t diagonal element of i*f can be found as:

1 "̂
E[^]=^=-V^ = - (6.10)

TTt ̂^ 7H
t=l

where n, and m are the number of estimated variables and measurements
respectively.

This can be shown using the trace operator as follows:

)-iRT] (6.11)
-iR^R] (6.12)

(6.13)

If any of the K̂ 's differs significantly from A;, then it is taken as an indica-
tion of a leverage point. As a rule of thumb, if :

^ > 2- (6.15)

then the measurement ! is suspected to be a leverage point.
When the leverage measurements contain bad data, identification of the

bad measurement becomes very difficult by conventional methods. Residual
covariances for these measurements will be numerically insignificant. Lever-
age measurements may appear as isolated single points or as a group. In
power system state estimation, occurrence of leverage measurements can
be linked to low measurement redundancy. The following conditions are
known to create leverage measurements:

* An injection measurement placed at a bus which is incident to a large
number of branches.
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* An injection measurement placed at a bus which is incident to branches
of very different impedance values.

* Flow measurements along branches whose impedances are very dif-
ferent from those of the other branches in the system.

* Using a very large weight for a specific measurement.

The presence of leverage measurements created as a result of the above
conditions, will affect the numerical structure of the measurement Jaco-
bian #. The rows of R corresponding to the leverage measurements will
have entries of very different magnitudes compared to those of the other
rows. When these rows correspond to flow measurements, the decoupled
Jacobian matrix will contain only two identical entries with opposite signs.
Therefore, these can easily be scaled by multiplying the entire row by an
appropriate scalar. However, when the row corresponds to an injection
measurement, row scaling will not necessarily work due to the large varia-
tion in the magnitudes of the entries of that row.

When there are multiple leverage points, their identification will be more
difficult. Such leverage points are characterized by a set of outliers in the
factor space of regression. Assuming a multi-variate Normal distribution
for -%'s, the sample mean R and covariance C can be computed as:

* ̂  " (6.16)

C = -—— ) (%-̂ )(%-̂ V (6.17)
771, — 1 '̂

A given row .% corresponding to measurement ! can be checked to see if
it constitutes an outlier with respect to the rest of the measurement cloud.
The so-called AfaMan,o&M DM^mce (MD) is a simple measure defined for
measurement z as:

to indicate the distance of j% to the rest of the cloud of Fj 's. Using the
Normal distribution assumption for R;'s, MD^ can be shown to have a x^
distribution with % degrees of freedom, n, being the dimension of _%:

MD^-x^ (6.19)

Choosing a false alarm probability such as a = 0.025, the measurement :
will be suspected to be a leverage point if MD? > x^ 0.975- Unfortunately,
this measure is not robust since leverage point clusters may be masked by
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causing the covariance values to increase and the sample mean to approach
close to the leverage cluster.

A more robust measure of leveraging effect of a measurement is proposed
by Donoho and Gasko [7] and later applied to the power system state
estimation by Mili et al. [8]. This measure is called the projeĉ on

and defined for a measurement ! as below:

= max for A; = 1, 2,... ,m (6.20)

where
/? = 7 . lomedi{lomed̂ ,{[ Rf % + R̂ % j}} 1 < ̂ , j, A; < m
lomed;{:r} : low median of the m numbers in T={zi, ̂ 2,..., â }
*y = 1.1926 (see the closure of [8] for the choice of this factor)

The projection statistics F*6̂  can be shown to approximately behave
like a chi-square random variable [8]. Furthermore, for measurement i, the
degrees of freedom of the corresponding chi-square distribution is directly
related to the sparsity structure of the row .%. Hence, a measurement ^
will be identified as a leverage point if:

> ,̂ 0.975

where, A; is the number of nonzero entries in the row ,
Jacobian R.

(6.21)

of the measurement

Example 6.2:

Consider the 4-bus power system and its measurement configuration shown
in Figure 6.1. AH branches are assumed to have a reactance of jO.l p.u., except
for branch 1-2 which has a smaMer reactance of jO.Ol p.u.

Figure 6.1. 4-bus power system with leverage points

Using the real power part of the docoupted measurement Jacobian with bus
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4 chosen as the stack:

* 110
100
10
0
0
0
0

-10
-10

-MO
-MO

0
10

-10
-10
0

-10
0

0 *
0
0
0
20
10
10

-10
0

Calculated values of

2.0937
1.9970
0.9072
0.9517

AfD = 2.2387
1.3394
1.0792
2.2596
0.9072

Note that for a choice of a cut-off value based on
the measurements will be identified as leverage points.

= 3.06, none of

Table 6.1. Projection Statistics for the measurements

Measurement

Flow 1-2
Flow 1-4
Flow 2-4
Flow 3-2
Flow 3-4
Flow 4-1
Inj 1
Inj 3
Inj 4

PS

8.39
0.42
0.84
0.84
0.84
0.42
8.47
1.26
1.68

^

1
1
2
2
2
1
2
3
3

v2AA;, 0.975

5.02
5.02
7.38
7.38
7.38
5.02
7.38
9.35
9.35

Now, let us compute the projection statistics for the same measurements.
Table 6.1 shows the calculated P<% values, the degrees of freedom and the cor-
responding cut-off x^ o 975 values. Flow 1 — 2 and Injection 1, both of which are
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incident to the short branch 1 — 2 are identiBed correctly as the two leverage
points.

6.4 M-Estimators

The M-estimator concept is first introduced by Huber [1] for robust esti-
mation of the center of a distribution and is subsequently generalized to
regression. In general, an M-estimator is a maximum likelihood estima-
tor. It minimizes an objective function, which is expressed as a function
of the measurement residuals /?(r), subject to the constraints given by the
measurement equations:

771.

Minimize V] p(7i) (6.22)
:=1

Subject to 2 = /!,(x) + r (6.23)

where
p(?l) is a chosen function of the measurement residual r̂
2 is the measurement vector
2 is the state vector, and
/i,(a:) is the measurement function.

The influence of bad data on the estimated system state and methods
of their suppression are first discussed within the context of power system
state estimation by Merrill and Schweppe [5]. It is suggested that this issue
can be addressed by changing the estimation algorithm in such a way that
the bad measurements will be screened and suppressed during the iterative
estimation process. This approach produced several M-estimators, some of
which will be discussed here.

The first estimator proposed in [5] minimizes an objective function
which is chosen as a non-quadratic function of the measurement residu-
als. Several variations of it are later introduced in [6]. These estima-
tors are mainly designed for automatically detecting measurements with
rapidly growing residuals and suppressing their influence on the state es-
timate. Later on, it is recognized that the structure of the measurement
equations, location of meters and the network parameters lead to the cre-
ation of leverage points which have undue influence on the estimate [8].
Thus, the objective function is further modified to balance the influence
of measurements irrespective of their locations and types. This estimator
belongs to the class of estimators which are referred to as the generalized
M-estimators or bounded influence estimators.
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The function p(r) in (6.22) should be chosen so that it has at least the
following properties:

* p(r) = 0 for r = 0.

* /o(7*) ̂  0 for any r.

* p(r) is monotonically increasing in both +r and — r directions.

* It is symmetric around r = 0, i.e. /)(r) = p(— r).

The following list of estimators that use such functions for /o(r), are
proposed by different investigators so far. The tuning parameter a used in
the definitions below, is to be specified by the users. Typical values range
between 1 and 4.

Quadratic-Constant (QC)

otherwise

Quadratic-Linear (QL) [6]:

r<za -

Square Root (SR) [6]:

j_i 'otherwise

(6.24)^ ^

tO.ZOt

- 3 .

Schweppe-Huber Generalized-M (SHGM) [8]:

< I

otherwise

otherwise

where, (ĵ  is the iteratively modified weighting factor. Details of its
choice will be given later in section 6.4.2.

Least Absolute Value (LAV):

(6.28)

The solution of the M-estimation problem denned by (6.22-6.23) can be
obtained by different methods. Two alternative methods will be discussed
below. One is based on the Newton's method and requires computation of
the first and second derivatives of the function /3. The second method avoids
the computation of the second derivatives and is based on the iterativcly
re- weighted least squares method.
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6.4.1 Estimation by Newton's Method

Consider the optimization problem defined by (6.22-6.23):

7T3

Minimize J(r) = /̂o(̂ ) (6.29)
i=l

Subject to 2 = (̂a;) + r (6.30)

This problem can be solved by forming the Lagrangian:

and writing the first order necessary conditions for a minimum of J(r):

— = -R^A = 0 (6.31)

^ = T-A = 0 (6.32)
or

^ = ^ - /t(a;) - r = 0 (6.33)

where R = ^ ^ and T = ŷ \

Eliminating A from equations (6.31) and (6.32), the following set of
nonlinear equations will be obtained:

2 - T̂ x) - r = 0 (6.34)

R^T = 0 (6.35)

The above non-linear equation set can be solved iteratively by substituting
the following first order Taylor approximations for:

Ma;) ?3 Ma;̂ ) + R(3̂ )-Aa:̂  (6.36)

(6.37)

where:

VT =
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into (6.34) and (6.35), which yields:

VT F
F̂  0

where F = VT . F(̂).

VT-r'
(6.38)

Note that the above matrix equation can be further reduced to the
following form by eliminating the variable r, provided that VT remains
non-singular:

= F̂ T(r̂ ) (6.39)

Table 6.2. Gradient and Weighting Functions for M-estimators

Estimator VT if

QC
otherwise

QL
otherwise

SR

otherwise

SHGM
otherwise

LAV

Table 6.2 gives the functions T and VT for different estimators. The it-
erative solution algorithm for (6.39) will update the diagonal matrix VT(r̂ )
at each iteration based on the current value of r^. Depending upon the cho-
sen function p(r), some of the entries in the diagonal matrix VT(r^) may be
zero. This means that the corresponding measurements (with zero weights)
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will effectively be eliminated from (6.39). The residuals corresponding to
these measurements will still be computed and checked against their chosen
tuning parameter, so that they can be reinserted in the subsequent itera-
tions if their residuals are sufficiently reduced. Simulation results of this
implementation for QC and QL estimators can be found in [9].

Note that (6.39) can be used to iteratively solve the state estimation
problem for any one of the M-estimators listed in section 6.4, except for the
LAV estimator for which the weighting matrix VT will be zero. Formula-
tion and solution of the LAV state estimation problem will be separately
discussed in section 6.5.

6.4.2 Iteratively Re-weighted Least Squares
Estimation

An alternative to the above-described Newton-based solution algorithm is
to use an iteratively re-weighted least squares (IRLS) method, where the
use of the VT(r̂ ) matrix is avoided. An application of the IRLS method
to the Schweppe-Huber Generalized-M (SHGM) estimation is illustrated in
[8], where the SHGM estimator is developed as a robust estimator which
can not only suppress bad data in regular measurements, but also avoid the
influence of any existing leverage points when they carry bad data. This
is accomplished through a re-weighting scheme which will be summarized
next.

This estimate is obtained as the solution of the following optimization
problem where the objective function is expressed in terms of the residuals
/?(r) as given earlier in (6.27):

Minimize J(r) = ̂ p(ri) (6.40)
i=l

Writing the KKT necessary conditions for a minimum of J(r):

.,% = 0 (6.43)

- . ̂ . R, = 0 (6.44)
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).^-.%=0 (6.45)
i=l

=̂ . F̂  - 3(.z - ̂(a;)) = 0 (6.46)

and substituting the first order Taylor approximation for 7i,(a:) ̂  A,(a;̂ ) +
F-A^, yields:

F̂  - $ - FAa;̂ = = F̂  - $ - r^ (6.47)

where
7̂  = 2- ̂ 3;^

*&M = y. is a diagonal weight matrix, whose elements are defined by:

f -4 I rjo-̂ i l< a
^ = 1 aL . , , - - (6.48)M_^ . mg^^^ otherwise

In (6.48), ̂ is the penalty factor chosen specifically to cancel the effect of
any existing leverage points in the measurement set and defined as in [8]:

(/j, = mm(1, (6.49)
P̂

where:
X^ p : Chi-square statistics
M: degrees of freedom which is equal to the number of nonzeros in F̂
p: probability, a typical value is 0.975
-P<%: projection statistics for measurement ^, as given by (6.20).

Details of the solution algorithm can be found in [8]. This particular
estimator will behave more like a LAV (WLS) estimator for small (large)
values of the tuning parameter a used in (6.27).

6.5 Least Absolute Value (LAV) Estimation

In the case of LAV estimator, it can be shown that the problem can be
formulated as a linear programming (LP) problem, which in turn can be
solved by applying one of the well developed LP solution methods. The con-
nection between the LAV estimation problem and linear programming was
initially pointed out in [10]. LP-based implementation of LAV estimation
of power system states is investigated first in [11] and [12].
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In this section, we will first review the LAV estimation of the unknown
vector in a linear regression model and the relevant properties of the LAV
estimator. Then, we will illustrate how the power system LAV state esti-
mation problem can be formulated and solved by means of two alternative
solution methods, namely the simplex and the interior point methods.

6.5.1 Linear Regression

Let us consider the linear regression model given below:

2i = ̂z + e^ (6.50)

where, a set of observations {̂ , ̂ = 1, ..., m} are assumed to be linearly re-
lated to a set of vectors {̂  g .R", ̂  = 1, . . . , m} and an unknown vector
a; g R", and each observation t contains some random error ê .

Then, the least absolute value estimate i for the unknown vector 2 will
be given by the solution of the following optimization problem:

Minimize ĉ  7* ] (6.51)

Subject to 2 - ,42 = r (6.52)

where, yl is a m x n matrix with A^ being its ith row, c 6 R'" is a vector
with all of its entries equal to 1, and r 6 R"̂  is the vector of observation
residuals. Thus, the objective function is equal to the sum of the absolute
values of the observation residuals.

In the simple one-dimensional case, i.e. when n = 1, the LAV estimator
yields the sample median. Note that, to find the sample median of a sample
{21, . . . , 2̂ }, the entries of 2 are ordered first in increasing values to obtain
the ordered sample {2̂ , . . . , 2̂ }. Then the sample median 2 is given by:

f 2JL if m is odd,
^= (4+4+i) ., .t -, * +1^ , if m is even.

where, A; = ̂  + 1.

6.5.2 LAV Estimation as an LP Problem

It can be shown that the LAV estimation problem given in (6.51)-(6.52) can
be formulated as a linear programming (LP) problem and solved using one
of the well established LP methods. We will first illustrate the formulation
of the LAV estimation problem within a standard LP framework and then
present two different solution algorithms, one based on the simplex and the
other on Interior Point methods.

Let ̂  be defined such that:

?l; < &, 1 < ̂  < m
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and replace the above inequality by two equalities via the introduction of
two non- negative slack variables ̂  and ̂:

?\-^ = -& (6.54)

r̂  + ̂ = ^ (6.55)

Let us now define 4 new nonnegative variables 2", ̂ ", M^, and v^, such
that:

^ = ̂ -< (6-56)

r̂  = M^ — ̂  (6.57)

^ = ̂  (6.58)

^ = ̂  (6.59)

and rewrite (6.50) in terms of these new variables:

Note that the term ] r̂  in the objective function in (6.51) can be replaced
by ̂ , which is given in terms of the new variables as:

^ = t̂  + ̂ (6.60)

Then, the LAV estimate for 3 will be given by the solution to the following
linear programming problem :

Minimize /^t4+?j,;] (6.61)
t=i

T3

Subject to ̂ -̂(̂ -̂ ) = -M,+Vi+^, l<i<m(6.62)
.7 = 1

3̂ ,a:J > 0, l<j<7^ (6.63)

!4,t4 > 0, !<^<m (6.64)

The following theorem is about the interpolation property of the LAV
estimator:

Theorem 1 jy ̂ e cô M77m ran̂  o/ /I M L, (̂L < ?ij,
L^4V eA't!mâ e w/!,:c/i saf:.ŝ e5 a^ Zea.ŝ  L o/ ̂ e
zero r
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This property will facilitate the identification and suppression of bad data
in the measurements. The following is a simple example which illustrates
this property.

Example 6.3:

Consider the simple regression model given by:

where yltj represents the jth entry in vector /̂  as defined above. The associated
observation data are given in the table below.

!

1

2
3
4
5

3t

-3.01
3.52

-5.49
4.03
5.01

î

1.0
0.5

-1.5
0.0
1.0

A2

1.5
-0.5
0.25
-1.0
-0.5

The LAV estimate for 2 is given as:

aJ = [3.005 ; - 4.010]

with an objective function of 0.0525. The residuals are all relatively small as
given below:

r̂  = [0.0 ; 0.0125 ; 0.02 ; 0.02 ; 0.0]

The first and the fifth observations are satisfied exactly with zero residuals.
Now, let us simulate an error in observation 5 by replacing its value by 15.01.

Despite the erroneous fifth observation, LAV estimator yields almost the identical
estimate for T as before:

3̂  = [3.02 ; - 4.02]

and the corresponding residuals for the observations are given by:

f-T = [0.0 ; 0.0 ; 0.045 ; 0.01 ; 9.98]

Note the large residual associated with the erroneous observation 5. Now, the
first and the second observations are satisfied exactly with zero residuals.

In the general %-dimensional case, provided that the matrix A is of full
rank, there exists a hyperplane which satisfies n. out of m observations ex-
actly, where % is the dimension of the unknown vector z. Looking back
at Example 6.3 above, note that, for both cases, only two out of five ob-
servations have zero residuals. In this sense, the LAV estimator tends to
discard those observations that arc outliers and yields an estimate that is
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less sensitive to bad observations. This property however does not hold
true when there are leverage points. The following example illustrates such
a case.

Example 6.4:

Consider again another simple regression model given by:

3: = ̂4â l + ̂4:222 +6; ! = 1, . . . , 5

where A., represents the jth entry in vector /̂  as defined above. The associated
observation data are given in the table below.

!

1

2
3
4
S

2t

15
18
4
24
162

n̂

1.0
2.0
3.0
4.0
50.0

2̂

1.0
1.0
1.0
1.0
1.0

Note that one of the observations 23 is replaced by bad data. LAV estimate for
the unknown vector X is found as:

and the residuals

X^ = [3 12]

are given in the below table:

!

1

2
3
4
5

3:

15
18
4
24
162

2:

15
18
21
24
162

n

0
0

-17
0
0

As expected, the LAV estimator yields an unbiased estimate for X and rejects
the bad observation 23. Next, let us introduce bad data in observation 5 instead
of 3:

23 = 21, 25 = 20

Then, the same LAV estimator will yield the following biased solution:

X*r = [0.0417 17.917]

and the corresponding residuals ?i given in the table below:

t

1
2
3
4
5

2i

15
18
21
24
162

2i

17.958
18.000
18.042
18.083
20.000

Ti

-2.958
0.000
2.958
5.917
0.000

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.



Here, observation 5 constitutes a leverage point and the bad data can not be
rejected by the LAV estimator. This is one of the shortcomings of the LAV
estimator and must be considered when applying the method to power system
state estimation. Different methods that modify the structure of the measurement
equations in order to eliminate leverage points, have been proposed in [17, 16].

Two alternative methods for solving the LP problem, namely the sim-
plex and the interior point methods have been applied to the power system
state estimation problem so far. Their implementations require different
considerations and they will be discussed separately.

6.5.3 Simplex Based Algorithm

Several variations of the well known simplex method of solving LP problems
can be applied to the LAV estimation problem. In applying the simplex
method, the special structure of the LAV estimation problem can be ex-
ploited for computational efficiency. This can be accomplished both at the
initialization and the actual optimization stages of the algorithm.

Substituting (6.28) into (6.22), LAV estimation problem can be stated
as:

77t

Minimize ^ I (6.65)

Subject to ẑ  = (̂3)+?̂ , !<!<m (6.66)

where ̂  is the i'th measurement, ̂(2:) is the nonlinear function relating
the state vector T to this measurement and r̂  represents its residual.

Assuming an initial solution a:° for the state and using the first-order
approximation of ̂(x) around z°, the problem can be transformed into a
successive set of linear programming (LP) problems, each one minimizing
the objective function given below:

77̂

J(̂ ) = ̂(̂  + ̂) (6.67)
i=l

where n'' - ̂  = 2 - ̂(̂ ) - R(â ) - Ax = A^ - #(3̂ ) - A^, is the
measurement residual vector at the A;-th state estimation iteration.

Dropping the superscript A for simplicity of notation, the optimization
problem to be solved at iteration A; can be formulated as below:

77!.

Minimize Y*!̂  + t̂ ) (6.68)

Subject to R - Az^ - F - A^ + M - v = Az (6.69)

A.T^,A^,M,v > 0 (6.70)
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where Ag; = Aa^ — Aa:̂ .
This can be written in compact form as a standard LP problem:

minimize ĉ  - Y (6.71)

subject to ̂  - y = & (6.72)

y > 0 (6.73)

where:

-̂ — [Uft , Uy^, -t ?TH -̂  771, j!

0̂  = [0,..., 0], a zero vector of order %,

^̂  = [1,...,1], a vector of order m, where all the entries are equal to 1,

& = Az,

y^ = [Â Â ^̂ ],
^ = [ R -R 7̂  -7̂  ]

7m = identity matrix of order m.

This LP problem can now be solved using the simplex method. The overall
state estimation solution will be obtained by successively solving these LP
problems until [lAa?]] is less than a chosen threshold.

A closer look at the special structure of the coefficient matrix A and
the properties of the LAV estimator, reveals that the simplex procedure
can be further simplified computationally [18]. The interpolation property
of the LAV estimator implies that it will select the best % measurements
out of the 777, available ones and will yield an estimate that will satisfy
the selected % measurement equations exactly. Therefore, at each state
estimation iteration, the measurements can be classified into two sets:

* Set N: essential measurements with zero residuals.

* Set B: the remaining ones with non-zero residuals.

The letters N and B stand for the nonbasic and basic variables respectively.
The measurement array and its Jacobian (H), can be partitioned according
to these designated sets as follows:

where :
77̂  : % x ft Jacobian for those measurements in set N.
F{, : (m — n) x 71, Jacobian for those measurements in set B.
Â . : measurement mismatch vector for set N.
Azb : measurement mismatch vector for set B.

Simplex method involves two stages:
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1. Initialization:

Given the (m x (2m + 2%)) matrix 4̂, choose a basis B, which is
an m x m nonsingular sub-matrix formed by m linearly independent
columns of A. Then, partition yl and V as follows:

A = B D

It is observed that an initial basis can be readily chosen and a basic
feasible solution can be found for the LP problem. The initial basis
will contain a diagonal matrix with entries ± 1, of dimension m
where the diagonal entries will be assigned the same signs as the
corresponding right hand side entries 5̂ . This ensures the feasibility
of the initial solution which will be given by:

Yo = 0

2. Iterative optimization:

Simplex solution can then proceed by applying the simplex rules [21]
in exchanging the columns of B and D until no further reduction in
the objection function can be achieved. During the first n simplex
iterations, the choice of the columns to enter the basis should be
restricted to the columns corresponding to the state variables Aa;̂
and Aa;̂ . If no such column can be found to enter the basis anytime
during the initial ft iterations, then this will imply that the com-
plete unknown vector Aa; can not be estimated with the given set of
observations, i.e. the system is unobservable.

After the first % iterations, the pivoting strategy will be modified so
that the columns associated with the basic Aai^ and Aa;̂  variables,
will not be allowed to leave the basis. Hence, thereafter, the column
exchanges between the columns within and outside the basis will take
place among those associated with the t̂  and f̂  variables only.

Note also that, if initially a minimum set of n measurements can
be identified through observability analysis, then this information
can be used to choose an initial basis B for the LP iterations. The
minimal observable set is not necessarily unique and the chosen set
will be referred to as the set of egsenNa/ measurements.

Assuming that an essential measurement set has been chosen using ei-
ther one of the methods above, the constraint equation (6.69) can be rewrit-
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ten as :

B D

where :
Sn = !̂  — u?t = 0 , which also implies that t̂  = v^ = 0,

-̂ (m-n)] ̂ n ' are identity matrices of order (m — ??,) and n.

Note that, (6.74) is identical to (6.72). As long as the signs of the slack
variables ŝ  and the states Aa; are properly tracked, there is no need to
explicitly store R and 7 matrices twice, one for each sign.

The cost vectors associated with the basic solution vector [Aa; ; Sf,] and
the non-basic slack variables ŝ , will then be:

0

and the relative cost (re) of rejecting one of the already selected measure-
ments can be found as:

Due to the structure of the matrix D, only the first n entries of A (
[Â  , A?l ) will have to be calculated:

A. = (RD"M-Ff"6]

Once the relative cost vector 7̂  is computed, the next step is to decide on
the measurement to replace the one to be rejected (with the most negative
7*c). The minimum ratio given by:

-mm — - > 0

will indicate the measurement number to be selected among the (m —
rejected measurements. Note that:

where e., is a singleton n,- vector containing a 1 as its ̂ ''th entry, j being the
index of the measurement with the largest negative relative cost, to leave
the selected set N.

Thus, the steps of the LAV estimation algorithm will be as follows:
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1. Solve R^ - A a; = A
Compute Sb = A 2;, A a;.

2. Solve
Compute Tc = Cn — A^.
Choose min^ ?*c(j) < 0.

3. If all T*c(j) > 0, stop; optimal solution is reached. Else go to 4.

4. Solve R^ - 2/,i — ê -.
Compute y& = - R& - ̂
Compute min^ {§̂ } > 0.
A short-cut referred to as ueriea;
step to further accelerate convergence.

[13] can be used at this

5. Update R̂ ; Replace j'th column of R^ by the &'th row of R&. Ter-
minate the LP iterations if the preset limit is exceeded, otherwise go
to 1.

Details of this implementation can be found in [18]. Further modifica-
tion of this method to account for inequality and equality constraints can
be found in [20]. In the absence of leverage points, LAV estimators will
reject bad measurements. An illustrative example is given below.

Example 6.5:

Consider the system shown in Figure 6.1 from Example 6.2 with an added
voltage magnitude measurement at bus 2. Estimate the measurements and the
system state using the LAV estimation method.

Solution:
Running the LAV estimator wiil yield the solution for the system state:

Bus No.

1
2
3
4

Voltage

1.0000
0.9865
0.9409
0.9612

Phase

0.00
-0.88
-4.39
-2.93

Estimated measurements and residuals will be:
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Type

P-Flow
P-Flow
P-Flow
P-Flow
P-Flow
P-Flow
Q-Flow
Q-Flow
Q-Flow
Q-Flow
Q-Flow
Q-Flow
P-InJ
P-Inj
P-InJ
Q-Inj
Q-Inj
Q-Inj
V-mag

From

2
3
3
1
1
4
2
3
3
1
1
4
3
1
4
3
1
4
2

To

4
2
4
2
4
1
4
2
4
2
4
1

Measured

0.33966
-0.56915
-0.23084
1.50882
0.49119

-0.49119
0.25583

-0.41177
-0.18810
1.36472
0.40104

-0.36083
-0.80000
-2.00011
-0.60000
-0.60000
1.76576

-0.40000
0.98650

Estimated

0.33966
-0.56915
-0.23085
1.50882
0.49118

-0.49119
0.25584

-0.41178
-0.18810
1.36469
0.40107

-0.36085
-0.80000
2.00000

-0.60000
-0.59988
1.76576

-0.40000
0.98650

Residual

0.0
0.0

0.00001
0.0

0.00001
0.0

-0.00001
-0.00001

0.0
0.0

-0.00003
0.00002

0.0
-4.0
0.0

-0.00012
0.0
0.0
0.0

Note that the sign error in the real power injection at bus 1 is corrected by
the LAV estimator, yielding a large residual for this measurement.

6.5.4 Interior Point Algorithm

A new method for solving LP problems was introduced by N.K. Karmarkar
in 1984 [14]. Several variants of the original Karmarkar's algorithm [15]
have since been developed. The collection of these methods constitute
what is referred to in the literature as the interior point methods for linear
programming. The distinguishing feature of these methods as compared
to the simplex method, is the way they reach the solution. While in the
simplex method, the extreme points of the feasible region are traced along
its exterior, interior point methods trace a path interior to the feasible
region. These methods have been successfully applied to the solution of
power system LAV state estimation problem and implementation details
can be found in [22, 23, 24]. Only the primal logarithmic barrier function
method of [22] will be reviewed here as an example.
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Let us consider the LAV estimation problem given below:

m

Minimize J = ŷ (t̂  + t̂ ) (6.75)

Subject to ,̂ -/̂ (T)-t4 + ̂  = 0, l<t<m (6.76)

Mi,^ > 0, !<:<m (6.77)

The logarithmic barrier method can be employed to remove the inequality
constraints on the slack variables. This is accomplished by appending a
logarithmic barrier function to the objective function J as:

+ t4 - // hn4 - /̂  In t̂ ) (6.78)

where ̂  is a positive barrier parameter, which is gradually reduced to zero
as the optimal solution is reached.

Form the Lagrangian Z!:

77t

and apply the Karush-Kuhn-Tucker (KKT) conditions for the minimum:

^ = - = ^-^M-Mi + ̂ = 0 (6.81)
(7Â

^ = ̂ = l-̂ ,)-' + A, = 0 (6.82)
C*M:

^ = 7̂  = l-̂ )"'-A, = 0 (6.83)
ov^

(6.84)

The variables A^i^,t^, and /̂ (:r) can be replaced by their first order ap-
proximations given below:

A^ ^ A° + AAi (6.85)
t4 ^ M° + A^ (6.86)

^ ^ °̂ + Av, (6.87)

(̂)"' ̂  (̂ )-'-(̂ °)-'Â  (6.88)

(̂ )-' ̂  (̂ )-t-(̂ )-2Â  (6.89)

(̂.-r) ^ ^(z°)+R.A3; (6.90)
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where

a;° + Aa;.

Letting A^ = [AiA2 . . . Â ], (6.80)-(6.83) can be expressed as:

^ = R^A° + R^AA = 0 (6.91)
^A = ^-/t(T°)-RA^-M° + ̂ -AM° + Av° = 0 (6.92)
^ = l-/̂ (M°)-'+̂ (M°)̂ AM, + A° + AA, = 0 (6.93)
Ẑ  = l-^°)-'+^(v°)-^A^-A°-AA, = 0 (6.94)

Solving for At^, A^ from (6.93)-(6.94):

and substituting into (6.92):

where:

Thus, (6.91 - 6.94) can be reduced to the foliowing compact form:

0

Equation (6.95) can be further reduced by eliminating AA:

RTD-'FAx = R^A° - R^D-iy (6.96)

where D = -/̂ **̂ [Q°]. Iterative solution of (6.95) by reducing ̂  at each
step will yield the optimum solution. However, successful implementation
of this method requires careful choice and updating of the barrier parameter
/j,. Also, it may not be possible to take full Newton steps given by (6.95)
without violating the inequality limits. Detailed discussion of these issues
along with initialization of the solution procedure can be found in [22] .
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6.6 Discussion

All of the estimators which are reviewed in this chapter will have some
degree of robustness against bad data in the measurements. Existence of
leverage points, local measurement redundancy, weights associated with
measurements and network and measurement configuration all play a role
in the performance of the estimators. Furthermore, implementation of these
different estimators require different solution algorithms. However, looking
at (6.39) of QC, QL, SR using Newton method, (6.47) of SHGM using iter-
atively re-weighted least squares method and (6.95) of LAV using interior
point method, it can be observed that all iterative solution equations have
the form of the "Normal" equations used in weighted least squares estima-
tion. The effective weights of the measurements and the right hand side
vector will have to be updated in different ways depending upon the chosen
method. Hence, all of the computational techniques that are developed for
the WLS estimation problem can be effectively used in implementing these
estimators.

6.7 Problems

1. Use the concept of the Mahalanobis distance to illustrate why the
four conditions listed in section 6.3.2 will lead to the creation of
leverage points.

2. Plot the functions of T and its gradient VT for the SHGM and LAV
estimators for different values of the tuning parameter a between 1
and 5. Verify the claim that the SHGM estimator behaves more like
the LAV estimator as a is reduced.

3. Repeat Example 6.4 by adding the following new observations to the
existing set:

!

6
7
8
9

2i

42
72
102
132

î

10
20
30
40

2̂

1.0
1.0
1.0
1.0

Comment on your results.

4. In Example 6.4, show that 25 constitutes a leverage point. Use one
of the identification methods discussed in section 6.3.2.
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5. Given the following linear measurement model:

2 = #2; + e

where:

2 =

0.6 *
0.1
0.5

-0.4
0.6
0.2
0.1

* -10.0 0.0
-10.0 0.0

0.0 0.0
-10.0 0.0
30.0 -10.0

-10.0 10.0
0.0 10.0

-10.0 *
0.0
10.0
10.0

-10.0
0.0

-10.0

Determine the least absolute value (LAV) estimate of x assuming that
all measurements ̂  are equally weighted. Detect and identify any
incorrect (bad) measurements. You can use the linear programming
function of Matlab to solve this problem.
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Chapter 7

Network Parameter
Estimation

7.1 Introduction

The redundancy, and to a certain extent the accuracy, of the measurement
system depend significantly on the voltage level and importance of the
monitored network. In bulk transmission systems every bus section volt-
age magnitude, sending and receiving branch power flows and externally
injected powers are systematically measured, which leads to /tiN redttn-
&mc?/. For instance, for a network with 1400 buses and 2000 branches the
full redundancy is 4.36. This value ignores the fact that an electrical bus
is usually composed of several measured bus sections and that some key
circuit breaker (CB) power flows are also measured.

In such cases, the State Estimator can be enhanced with some extra
features, leading to the so-called Generalized State Estimator [4]. Among
these advanced features the following can be pointed out:

1. Possibility of improving the statistical model of certain suspected
measurements (e.g., the bias can be computed).

2. Ability to obtain better estimates for the suspected data base values
(e.g., line parameters).

3. Capability to estimate important non-telemetered variables (e.g.,
transformer taps).

4. Capability to determine the unknown status of CBs and to detect
topological errors (i.e., wrong CB statuses).
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The first functionality is an extension of the bad data analysis techniques
discussed in Chapter 5 and it is mainly of interest during the commissioning
and tuning phases of a SE or when remote measurement calibration is
considered. The last three items will be separately discussed in this and
the next chapter.

Incorrect topological information normally produces large errors in the
estimated measurements and can be more easily identified. However, branch
impedance errors are less evident and may not be identified for a long time
leading to permanent errors in the results provided by the SE.

7.2 Influence of parameter errors on state
estimation results

Branch parameter values stored in the fixed data base and tap changer
positions available in real time at the Control Center may be incorrect as
a result of:

* Inaccurate manufacturing data (e.g., iron losses are customarily ig-
nored in transformer models) or poor line length estimation. For line
lengths over 200km, errors exceeding 1% are expected if a lumped
parameter pz model is employed. Differences between topographical
and actual line lengths may lead to even larger errors.

* Network changes not properly updated in the data base (e.g., an
overhead line section is substituted by a cable).

* Dependence on temperature (especially the series resistance) or en-
vironmental conditions (especially the shunt conductance).

* Misoperation or miscalibration of any electrical or mechanical device
involved in the tap monitoring process.

* Local modification of a tap changer without informing the Control
Center. This can be done manually by an operator or automatically
by the voltage regulator.

These wrong taps and inaccurate parameter values may have the fol-
lowing consequences:

* A noticeable degradation of the results provided by the SE which, in
turn, may mislead other applications like security assessment.

* Correct measurements being identified as bad data due to their in-
consistencies with the incorrect network parameters.

* Loss of operator's confidence in the SE results.
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Reference [18] presents a brief review of the parameter estimation prob-
lem. Most works on parameter estimation brieny refer to the importance of
including this function within the SE, in order to prevent the consequences
mentioned above. However, it is difficult to find systematic experimental
results supporting this claim [25, 30, 31, 33, 36]. Reference [6] presents
some Held experiences obtained during the process of bringing the state es-
timator on line. A complete study about the influence of parameter errors
on state estimation, in which the most important factors are analyzed, can
be found in [36, 37]. The main conclusions of this analysis, performed on
the IEEE 14-bus test system, will be summarized next.

To begin with, a large enough set of different network states is generated
by properly interpolating a typical 24-hour load curve. For every state, a
fully redundant measurement set is generated by adding random noise in
accordance with the respective standard deviation, o*. The following cr
values are adopted:

* Voltage measurements: cr = 0.1̂  - FS

* Power measurements: o* = ̂ y - FS

where 'y is the precision class of the measurement device and FS refers to
its full scale. A full scale value in accordance with the largest magnitude
expected at the respective measuring point has been chosen (FS=1 for
voltage measurements).

Unless otherwise noted, each numerical value reported below is the aver-
age of 60 experiments, for the results to be statistically significant. Hence,
as the 14-bus system comprises 20 branches, every branch is involved in
three different tests.

The first analysis tries to assess how far a single parameter error spreads
over the network. To this end, measurements at different a^anceg from
a branch are considered. Measurements at dM^ance ^ refer to the power
flows of the erroneous branch, as well as the power injections and voltages
of its edge buses (the so-called adjacent set). Measurements at a*Mia%ce ̂
comprise the former set plus the power flows and remote injections of those
branches which are incident to the edge buses of the erroneous branch, and
so on. This concept is illustrated in Figure 7.1.

Figure 7.1. Notion of measurement distance to a branch
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In simulation environments the actual measurement values are known.
Consequently, estimated measurement errors (ẑ  — 2̂ "̂ ), rather than resid-
uals (ẑ  -2̂ ), can be used to assess the effect of a parameter error.

Figure 7.2 shows the ratio between the average estimated measurement
error when a single line series susceptance is erroneous and the same average
when the susceptance is correct. This ratio is computed by considering
measurements at increasing distances to the erroneous susceptance. Error
levels produced by class 1 transducers have been simulated.

.̂ tc

CC .
CCCE
UJCE

12

10

8

6

5 10 15 20

PARAMETER ERROR (%)

25

Figure 7.2. Influence of a parameter error on estimated measurement errors at
different distances (@IEEE)

As clearly seen in this figure, the parameter error's influence is negligible
at distances equal to or larger than 4. This means, reciprocally, that remote
measurements are virtually useless to estimate a particular parameter value.
Therefore, the parameter estimation process can be performed on small
subnetworks locally surrounding the suspected branches, in order to save
computational effort.

The figure also shows that, despite the high redundancy and the fact
that a single parameter is erroneous, adjacent measurements (distance 1)
are significantly deteriorated.

The same conclusions can be reached by an analysis of the entries of
the residual sensitivity matrix presented in Chapter 5. This requires, how-
ever, that the parameter in question be included both in the state and
measurement vectors (sec the next sections).
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The above experiments refer exclusively to measurements generated by
class 1 devices, but can be repeated for different accuracies. Figure 7.3 rep-
resents, for three accuracy classes, the ratio of the average estimated mea-
surement error to the average input measurement error, where the average
is taken on adjacent measurements only. The results clearly suggest that

CEo
CE
OE
LU

MEAS.
ERROR
^ Class 5
*-Class 3
Class 1

5 10

PARAMETER ERROR (%)

15

Figure 7.3. Ratio of average estimation error to average initial error versus single
susceptance error

the more accurate the measurements are, the higher relative influence the
parameter will have. The horizontal dashed line represents the limit beyond
which no filtering is possible for the given redundancy as a consequence of
the susceptance error. Consider, for instance, the case corresponding to
class 1 devices; when the susceptance error is 2%, the average error of the
estimated measurements is the same (2.2% for this particular case) as that
of input measurements. Susceptance errors larger than 2% would make
actual measurements better than estimated ones, for this precision class.

Until now full redundancy is assumed. However, partially redundant
measurement sets may lead to rather different results, depending on the
type of measurements available. To assess this factor, the following two
sets are separately considered: A) power flows plus voltage magnitudes
(no power injections); B) power injections plus voltage magnitudes (no
power Rows). Figure 7.4 shows, for two different accuracies, the average
estimation error corresponding to the adjacent measurements. While the
power now measurements (set A) are significantly affected by the parameter
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PARAMETER ERROR (%)

Figure 7.4. Average estimation error of adjacent measurements for incomplete

measurement sets versus single susceptance error

error, the power injection measurements (set B) are hardly influenced. It
should not be concluded, however, that the estimated state for the set B
is more accurate. What happens in this case is that the parameter error
redistributes nearby power flows in such a way that power injections remain
essentially unaffected. Therefore, the presence of power flow measurements
is crucial to be able to detect and estimate parameter errors. Note that the
redundancy in case B is much lower than in case A.

If the line series conductance, rather than the susceptance, is erroneous,
similar dependencies will be obtained, except for the fact that the resulting
average errors will be much smaller. This is expected, since the power
flows are more sensitive to the series susceptance than the conductance.
Fortunately, it is also true that susceptances are less sensitive to weather
conditions compared to the conductances. Consequently, it is reasonable
to neglect possible time dependencies of line parameters.

It should be emphasized that, as every point in the above figures is the
average of 60 experiments on different branches, the same or very similar
diagrams and results arc expected for other networks, irrespective of their
size.
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7.3 Identification of suspicious parameters

Although, theoretically, the parameters of all network branches can be esti-
mated if a long series of fully redundant measurement snapshots are avail-
able, in practice this is usually not the case. Furthermore, in addition to
the computational cost, there is also a concern about hitting the upper
limit that is imposed by the measurement system, on the accuracy of the
estimated parameters, (see sections 7.6 and 7.7). In other words, it makes
no sense to estimate a parameter whose existing value is likely to be more
accurate than the one provided by the SE.

Therefore, it is necessary to initially identify the candidate parameters.
Sometimes, the operator's experience, or certain information provided by
maintenance teams, may allow manual selection of the candidate parame-
ters. In a majority of cases, however, an automatic procedure based on the
measurement residuals is required [31].

A parameter error has the same effect on the estimated state as a set
of correlated errors acting on all measurements adjacent to the erroneous
branch, namely the power flows through the branch and the power injections
at the edge nodes. This results from a simple manipulation of the basic
measurement model [24]:

2s = ̂3(2,p) + 63 = ̂3(2:,Po) + [/̂ (2:,p) - /̂ (K,po)] + 6s (7.1)

where p and po are respectively the true and erroneous value of the network
parameter, and the subscript s refers to the set of adjacent measurements
only.

The term in square brackets in (7.1) is equivalent to an additional mea-
surement error. If the parameter error is large enough, this term may lead
to bad data being detected and, when this happens, the adjacent measure-
ments will most likely have the largest residuals [23, 24, 35]. The equivalent
measurement error can be linearized as:

ŝ(:r,p) - h,,,(x,po) ?s "5̂

where 6p = p — po is the parameter error.
Therefore, those branches whose adjacent measurements have large nor-

malized residuals should be declared suspicious.
In reference [19] it is assumed that bad data has been previously iden-

tified and removed so that a persistent bias term in certain measurement
residuals is an indication of the existence of parameter errors. The identi-
fication method proposed in [20] is essentially based on the same idea.

Finally, measurement, parameter and configuration errors on the input
data are identified by means of suitable statistical tests in [1].
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7.4 Classification of parameter estimation
methods

In spite of the profuse literature on SE, the number of publications devoted
to the parameter estimation problem is comparatively very modest. Tech-
niques for network parameter estimation, including transformer taps, can
be classified as follows [37]:

* Methods based on residual sensitivity analysis [14, 19, 22, 23, 24, 32,
35]. These methods are performed at the end of the state estimation
process and resort to the same information previously used to iden-
tify suspected parameters. The main advantage of this approach is
that the identification and parameter estimation procedures consti-
tute additional and separate routines and, hence, there is no need to
modify the main SE code. It is possible, and sometimes necessary,
within this category of methods to carry out several iterations of the
joint state-and-parameter estimation loop.

* Methods augmenting the state vector. The suspected parameters are
included in the state vector and both the state and parameters are
simultaneously estimated. Note, however, that a preliminary regular
state estimation may be needed in order to identify which parame-
ters should be included in the state vector. Clearly, a modification
of existing SE routines is necessary under this approach. Two dif-
ferent but related techniques have been proposed to deal with the
augmented model, namely:

— Solution using normal equations [2, 3, 4, 8, 20, 26, 34, 36]. Ex-
cept for some observability and numerical issues (e.g., risk of
Jacobian singularity at flat start) this approach is a straight-
forward extension of the conventional SE model. Several snap-
shots can be resorted to, either simultaneously or sequentially,
in order to increase the local redundancy around suspected pa-
rameters.

— Solution based on Kahnan filter theory [5, 9, 11, 12, 17, 29,
30, 31]. Under this approach, several measurement samples are
sequentially processed in order to recursively improve existing
parameter values. The need to update the covariance matrix
of parameter errors, as well as other related overheads, make
this approach more cumbersome and costly, especially when the
number of parameters is high.

The methods comprising the above classification will be separately dis-
cussed in the following sections.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.



7.5 Parameter estimation based on residual
sensitivity analysis

As stated above, this approach makes use of the conventional state vec-
tor and takes advantage of the results provided by the SE to perform the
parameter estimation process.

The technique presented in [23, 24, 35] is based on the sensitivity rela-
tionship between residuals and measurement errors [16]:

where .? is the residual sensitivity matrix, given by (see Chapter 5):

and

(7.3)

(7.4)

(7.5)

is the gain matrix. Combining (7.1)-(7.3) a linear relationship can be es-
tablished between the residuals of adjacent measurements, fg, and the pa-
rameter error 6:

(7.6)
dp

where Ŝ  is the s x s submatrix of <S corresponding to the s involved
measurements and fg is the residual vector that would be obtained when
the parameter is correct.

Equation (7.6) provides a linear model linking a given vector of mea-
surement residuals, fg, and an unknown parameter error, Cp, in the presence
of a 'noise' vector, fg. Therefore, determining 6p can be interpreted and
performed as a local estimation problem in which every residual should be
weighted according to its N(0, 0) distribution (see Chapter 5 for the sta-
tistical properties of the residuals). Using U to denote the inverse of the
diagonal of Q, the optimal value in the least squares sense, 6p, is computed
from,

-i

A simpler approximate expression is developed in [24]:

(7.7)

dp

-i

"dp*
W r" s' s (7.8)
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Once the parameter error is estimated, an improved parameter value is
obtained,

p = po + gp

Such a model can be immediately extended to several parameter errors
by letting p, 6p, etc. be vectors of appropriate size instead of scalars, and by
making sure that the set s contains all relevant measurements. Eventually,
the state estimation can be repeated using the updated parameter value,
the parameter error re-estimated, etc. until no further improvements are
obtained.

Example 7.1:

Consider the 3-bus system and measurement set of Example 2.2, whose one-
line diagram is repeated in Figure 7.5 for convenience. Assume that the series
susceptance value of branch 1-2 available in the data base is —35 instead of its
true value —30. Obtain an improved value of this parameter by an analysis of
the residual sensitivity matrix.

: Power Measurement
: Voltage Magnitude Measurement

Figure 7.5. One-line diagram and measurement configuration of a 3-bus power sys-

tem

The WLS algorithm converges to the following state estimation solution:

Bus
t
1
2
3

^(PU)
0.9978
0.9760
0.9424

^(degrees)
0.00

-1.153
-2.743

The objective function is J(a;) = 18.5 and the normalized residuals:

meas.
r;v

P12

-3.16
P13

3.12
P2

-3.15
912

-0.73
913

0.46
92

-0.49 2̂.86 ^-2.87

Both the objective function value and largest normalized residual confirm the
presence of (perhaps multiple) bad data. The fact that the normalized residuals
corresponding to pia, pis, P2, ̂i and % exceed, or are close to 3 suggests the
possibility of something being wrong in branch 1-2.
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In this case, the four measurements pi2, pz, 912 and 2̂ are directly related to
the parameter &i2. From the expressions and values provided in Chapter 2, the
Mowing derivatives are easily obtained at the solution point:

<9pi2/<%i2 = Vi% sin02 = -0.0196
= 0.0196
- V^ = -0.0219

-t^ = 0.0211

Furthermore, the other matrices appearing in (7.8) are:

0.4640 0.3575 -0.0056 -0.0146
0.5585 0.4315 0.0216 0.0048
-0.0056 0.0138 0.4608 0.3570
-0.0228 0.0048 0.5579 0.4339

15625
10000

15625
10000

r, = [-0.0172, -0.0207, -0.0040, -0.0032f

These data yield an estimated error 6p = 5.372 and a new susceptance &i2 =
—29.63. This new value is stiM inaccurate because the measurements are noisy. In
this example, this is aggravated by the fact that the local redundancy is low. In
general, and in absence of bad data, the higher the redundancy the more accurate
the estimated parameter will be, particularly if several iterations are performed.

The procedure proposed in [19] is based both on measurement residuals
and on a bias vector which combines the effect of parameter errors and the
state of the system. The estimation comprises two steps: First a bias vector
is estimated and then the parameter errors are obtained at the second step
from a sequence of formerly computed bias vectors. The main difference
between this and [23, 24, 35] is that the bias vector is expressed in terms
of the line Bows.

7.6 Parameter estimation based on state
vector augmentation

In this class of methods, the suspected parameter, p, constitutes an addi-
tional state variable. Therefore, the objective function becomes,

(7.9)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.



where the dependence on p affects only the set s of adjacent measurements.
In general, p will be a vector containing all suspected parameters, but only
the scalar case will be considered below for simplicity.

Almost always, an approximate value po is available in the data base,
both for line parameters and transformer taps, which can be added to the
model as a pseudo-measurement. In such a case, a new term arises in the
objective function,

TTt

[̂  - 7̂ (x,p)f + tup(p - pof (7.10)

where Wp is the arbitrary weight assigned to the pseudo-measurement.
Most research works take it for granted that (7.10) rather than (7.9)

should be used, to ensure the observability of p. However, this is a contro-
versial issue to which proper attention has not been paid until recently [38].
On the one hand, if p is not observable with existing regular measurements
and constraints, the new term in (7.10) is critical and, hence, useless, as
the estimated value will be po irrespective of the Wp value. On the other
hand, if the extra term is redundant, the value assigned to Wp is critical, as
it may significantly influence the estimated value p. A very small ̂  would
be equivalent to completely neglecting the available information, po. In
this case, p would be exclusively determined by the analog measurements.
On the contrary, a very large tUp would lead to p m po, irrespective of the
analog measurement values. In order to assess what happens with inter-
mediate Wp values, the series susceptance of line 7-9 (IEEE 14-bus system)
is added to the state vector and estimated by means of (7.10). Figure 7.6
represents the relative error of p versus the ratio w^/Wp, where û  is the
average of all measurement weighting factors (10̂ ). Different errors in po
have been simulated (±5%, ±10%), and a measurement set characterized
by an average error of 3.23% has been employed.

It is observed that, when the ratio ŵ /tû  is smaller than 10̂  (leftmost
side of the figure), the influence of the initial parameter value is dominant
and there is no way to improve the estimated value. Note also that all curves
merge at the rightmost side, where Wp ̂  0. This means that, irrespective of
the initial parameter error, the estimator converges to the parameter value
dictated by regular measurements. In this case, the error of the resulting
parameter is positive (about 2%), but it can be negative as well for other
measurement sets and/or other lines [38].

Two different situations are possible:

* The sign of the error associated to po is the same as that of p when
Wp m 0 (positive for this particular experiment). In this case (upper
curves), the best result is obtained when ujp = 0, unless po is more
accurate than the value provided by analog measurements, which is
not logical for a suspected line.
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Figure 7.6. Error in the estimated susceptance value versus the relative parameter

weight (@IEEE).

The two signs are different (lower curves). Then, there must be a
certain Wp (in this case û /̂ Jp ̂  10̂  ) for which the exact parameter
is estimated. However, if this optimal parameter weight is not chosen,
the estimated parameter is likely to be worse than the one obtained
with W = 0.

Consequently, since the sign of the initial parameter error can not be
predicted in advance and, in any case, the optimal parameter weight is
unknown, the pseudo-measurement po should not be added to the model.
If it is added for observability purposes, a rather small value should be used
for Wp. It is also not advisable to estimate a parameter whose suspected
initial error is smaller than the average measurement error (about 2% in this
case). This is why the identification phase is so critical to prevent existing
data base values from being prematurely and incorrectly substituted by
estimated values.

In order to keep the local redundancy above reasonable levels, the num-
ber of extra variables added to the state vector should remain as small as
possible. Typically, the line parameters per unit length are well established
and the only doubtful information is the total line length. In such cases, a
single parameter, e.g., the total length normalized with the existing value,
L, suffices. For a line between nodes ^ and j, the following admittances
should be used when building the admittance matrix or computing the
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residual vector,

where c?̂ ,&;j and

(7.H)
series: (<?ij+j6

shunt: jb̂ L

are the admittance values assumed in the data base.

7.6.1 Solution using conventional normal equations

Almost three decades ago, the augmented state vector approach was sug-
gested in [2, 3] to estimate a^ %Mg elements in polar coordinates. Since
then, this straightforward technique, combined with the preliminary iden-
tification phase discussed in section 7.3, has been successfully applied in dif-
ferent forms. For instance, in [20] the authors extend the state vector with
the incremental power flows originated by parameter errors, rather than
with the parameters themselves, in an attempt to prevent the numerical
problems referred to below. Parameter errors are subsequently calculated
in terms of these associated power Bows.

Irrespective of the particular version adopted, the Jacobian matrix must
be enlarged to accommodate as many extra columns as new state variables
and as many extra rows as the new pseudo-measurements. For a single
parameter this yields the following structure

0 0 0 0

0
0
0
0
<8
0
<s<
0
1

(7.12)

where the upper leftmost block corresponds to the conventional Jacobian
and the nonzero elements of the new column (0) arise only in rows corre-
sponding to adjacent measurements. For instance, assume that the param-
eter L of (7.11) is added to the state vector. Then, the Jacobian elements
corresponding to the power measurements (flows &; injections) at node t
will be

(7.13)
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where P̂  and Q^ refer to the power Hows computed for L = 1. Similar
expressions can be obtained for the power measurements at node j (by
simply exchanging the subscripts).

Of course, the best initial guess for the new state variable is Lo = 1.
Note that, at flat start, the extra column of the Jacobian in (7.12) will be
virtually null if, as suggested above, the pseudo-measurement L = Lo is
not added. This will lead to a near-singular gain matrix during the first
iteration and to potential numerical problems if the normal equations are
solved in this situation. Including the new variable L in the state vector
starting from the second iteration is one way to solve this problem, provided
that the power actually flowing through the line is not null.

Example 7.2:

Consider again the 3-bus system of Example 7.1. Assume that, in the data
base, the series impedance of line 1-2 is 0.0117+j'0.0351, instead of the true value
0.01+jO.03 given in Chapter 2. Estimate the line length by augmenting the state
vector.

The state vector is augmented with the variable L (relative length) whose
initial vatue is set to 1 pu. It is decided not to include this information as an extra
pseudo-measurement. At the beginning of every iteration, 3/12 and the 4 affected
admittance matrix entries are updated by means of (7.11). Also, according to
(7.12), new Jacobian e!ements are required at rows corresponding to piz, pa, 912,
92.

The WLS algorithm takes S iterations to converge to the following solution

Bus
!

1

2
3

H
(Pu)

0.9998
0.9740
0.9440

0;
(degrees)

0.00
-1.2605
-2.7466

The estimated relative length is L = 0.8649 which leads to an impedance
212 = 0.0101+0.0304j. The objective function and the largest normalized residual
are:

J(A) = 8.555 ; ?y = 0.2169 x 10̂

Compared to the results of Chapter 2, a reduced objective function and much
smaller residuals are obtained. The reason is simply that one extra degree of
freedom is added for the same set of measurements. The additional 2 iterations
are due to the larger condition number of the gain matrix and due to the fact
that the new variable L is added during the second iteration.

Note that the estimated impedance error is only 1%, in spite of the low local
redundancy. In practice, it is very unlikely that the existing data base value is
more accurate than the one estimated in cases like this.
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7.6.2 Solution based on Kalman filter theory

The method presented in [11], intended to estimate transmission line ad-
mittances, transformer taps, measurement biases and standard deviations
of measurement errors, constitutes the first attempt to systematically apply
the Kalman filter to this problem.

At every time sample A;, the measurements are related to the states by

where ̂  is made dependent on A; to reflect the possibility of network changes
from one time sample to the next. The parameters are assumed constant
for the entire time period under consideration.

In the LS formulation, the state vector is estimated by minimizing the
following objective function:

(7.16)

Starting with the available parameter vector, po, the idea is to get better
estimates of p at every new sample from,

where the error vector 6p(A;) is assumed to have zero mean and covariance
matrix Rp(Ai). To do so, the objective function must be augmented with as
many pseudo-measurements as suspected parameters

J = \Tn-l
=-1 "PA:) (7.18)

This leads to the following equation being solved at iteration ^ of the
A;-th sample,

0 7 o

where the gain matrix is given by,

C'W=[t Ĵ h

and,

0

(7.19)

(7.20)

dp
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At the end of the iterative process, the parameter covariance matrix is
updated from,

App(&) (7.21)

where App(A;) is the respective block of the inverse of the gain matrix,

There are efficient methods to compute small selected subsets of the
inverse of a sparse matrix (see Appendix B), but the computational effort
may be prohibitive for on-line application if the number of parameters is
relatively large.

The algorithm is recursive in the sense that, at the %;-th sample, only
the vector z(/c) is considered, but the effect of former measurement vectors
(i.e., the past history) is taken into account through updated estimates of
parameters and associated covariances.

The work reported in [29]-[31] presents two important differences with
respect to [11, 12]:

* The problem is localized into several small observable subnetworks
containing the unknown parameters.

* Parameters are modeled as Markov processes, thereby allowing esti-
mation of time-varying parameters.

The method assumes that the probability density functions of the pa-
rameter and measurement errors are Gaussian with zero mean, leading to
an adaptive parameter estimator. The procedure starts by estimating only
the parameters of a few branches where the redundancy is maximum. Once
the impedances of those branches become established, they are used to ex-
tend the process to less telemetered branches, and so on. The solution will
eventually include all network branches with adequate local redundancy,
excluding only those for which the process can not be reliably performed.

References [5, 9] and [17], combine the residual-based identification pro-
cedure with the Kalman filter theory.

7.7 Parameter estimation based on historical
series of data

Assuming network parameters are essentially time invariant, it is possible
and probably more convenient to perform the parameter estimation process
in batch mode by means of a sufficiently large set of recorded measurement
samples. This way of proceeding offers the following advantages [25, 36]:
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* Parameter values can be routinely improved on a dedicated computer
without interfering with the execution of any EMS critical applica-
tion. Furthermore, there is no need to modify the SE code running
on line.

< Optimality of the estimated values is much more important than
computation times. Hence, complex and expensive algorithms can
be resorted to if they provide more accurate results.

* Filtering tests can be performed in order to get rid of those samples in
which measurement redundancy is locally insufficient or the existence
of bad data is suspected. This "healthy" snapshot selection process
can be as sophisticated (i.e., costly) as needed. Similarly, selection
of suspect parameters can be based on a longer historical series of
data.

* Simultaneously using several snapshots avoids deteriorating the local
redundancy because the additional parameter variables are shared
by all network states. This would be quite a cumbersome process if
carried out on line.

The last statement can be easily proved as follows. Let %p and q be the
number of suspected parameters and simultaneous samples respectively. As
always, m and % denote the measurement and state vector sizes, but in this
case they can refer also to the size of the SE subproblems localized around
the suspected parameters. The base-case redundancy, i.e., the redundancy
when no parameters are estimated is

m
?7oo = —%

This redundancy level decreases to

?7T, m

when %p parameters are included in the state vector and no pseudo-measure-
ments are added to compensate for them. For instance, if ?r,p ?R n, then
771 R^ 0.5̂ oo. However, when q samples are simultaneously employed we get

^

Clearly, for <? — > oo the local redundancy approaches that of the base case,
even though no pseudo-measurements reflecting existing parameter values
are added. For instance, for q = 10, with n,p ?R n,, we get % = 0.9?7oc which
is quite an acceptable value.
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The remaining part of this section will be devoted to showing how the
computations involved in the NE-based SE can be rearranged so that sev-
eral measurement samples can be simultaneously handled without incurring
unacceptable overheads.

Assuming q simultaneous samples are used, the overall state and mea-
surement vectors will become,

= [21,2:2, ..-t (7.23)

(7.24)

where â , ̂  refer to the A;-th sample vectors.
The Jacobian corresponding to this enlarged model has, therefore, the

following structure,

R =

Ri / p

R,

(7.25)

Note that, in order to avoid the potentially perverse effect discussed in
section 7.6 the parameter pseudo-measurements are not added to the model.
Substituting into the normal equations,

(7.26)

leads to a gain matrix given by

dip

(7.27)

where

'?' — 1 9^ — i, z,.
f,' — 1 O^ — i, z,.

(7.28)

(7.29)

(7.30)

and to the following right-hand side vector

(7.31)
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where

(t = l,2,...,g) (7.32)

(7.33)

At first glance, it seems that the huge matrix given by (7.27) must
be formed and factorized at each iteration, in order to obtain the state
vector correction, Aa;. This is clearly impractical for large networks, even
if conventional sparsity techniques are used. In the appendix of [11], it was
suggested that a block-wise iterative method could be used to circumvent
the dimensionality problem of the resulting model. However, convergence
of such an iterative scheme has not been tested.

Instead, the direct method described below is a safer alternative pro-
vided the number of parameters simultaneously estimated remains rela-
tively low [36]. Assuming the matrix Gpp and vector &p are initially set to
zero, the following steps must be performed at each iteration:

1. Block factorization and forward elimination. For each diagonal block

(̂  = 1,2, ...,<?):

(a) Compute

(b) Compute Ĉ  and obtain y^, % from

(7.34)
(7.35)

(7.36)
(7.37)

(7.38)
(7.39)
(7.40)

(c) Update

Cpp = Cpp + 7^p^p-3^ (7.41)

&p = &p + /̂ Â -<7!p% (7.42)

2. Obtain Ap from
GppAp - 5p (7.43)
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3. Block backward substitution. Once Ap is available, all state variables
are updated independently. For each diagonal block (̂  = 1,2, ...,<?)
obtain Aa^ from

Ax; = % - y^Ap (7.44)

The following clarifying comments are in order:

* Each column of ̂p is an extremely sparse vector, as only adjacent
measurements contribute non-zero derivatives with respect to p. This
fact should be taken into account to save arithmetic operations in the
above procedure.

* Each diagonal block, (7̂ , is used only once in step l.(b), and can be
discarded thereafter. Hence, only the gain matrix corresponding to a
single snapshot must be formed and held simultaneously in memory.
In fact, steps 1 and 3 could be performed in parallel on as many
processors as available samples.

* When only a single parameter is estimated, /̂ p is a column vector
and Gpp is a scalar.

* As explained above, the derivative terms included in /̂ p are negligible
for the usual Rat start voltage profile. So, to prevent ill-conditioning
of the resulting equation system, parameters are added to the state
vector only after the first iteration.

Therefore, for a low number of estimated parameters, the overhead
caused by equations (7.34), (7.36), (7.39) and (7.41)-(7.44), both in terms of
memory requirements and computation time, is rather modest, compared
to the cost of sequentially processing the whole set of samples, which is
dictated mainly by equations (7.38) and (7.40). Considering, as proved in
section 7.2, that only nearby measurements appreciably influence the esti-
mated parameter values, the above methodology can be applied in such a
way that each diagonal block includes only the relevant network portion.
This would reduce significantly the computational cost but still provide
virtually the same estimated values.

The major difference between this and the Kalman filter approach de-
scribed above lies in the fact that there is no need to update the parameter
error covariance matrix, as all samples are simultaneously, rather than re-
cursively considered and existing information about the parameter values
is discarded.

Resorting again to the IEEE 14-bus test system and to the simulation
environment presented in section 7.2 (full redundancy, 60 experiments per
point, etc.), the advantage of using several samples to estimate line param-
eters can be shown. Figure 7.7 represents the estimated parameter error
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divided by the average estimated measurement error (and its inverse) ver-
sus the number of samples. The initial parameter error is 10% and the
measurement noise corresponds to class 1 devices. The linear regression
and its hyperbolic inverse clearly shows that the estimated parameter error
continuously decreases with the number of samples. For instance, when 25
samples are used, the estimated parameter is almost 8 times as accurate as
the estimated measurements. In the limit, the exact parameter value would
be estimated, irrespective of its initial error, which is a remarkable result.

EC
O
CE
CE
UJ

s
§ 4
CE
CC

0.6

0.5
EE
O
CE
CE
ID

0.4 ̂
nT
O

0.3 °E

0.2
M
m

0.1
5 10 15 20

NUMBER OF SAMPLES

25

Figure 7.7. Ratio of the average estimated measurement error to estimated param-
eter error (left) and its inverse (right) versus the number of samples
simultaneously processed

Of course, the initial noise associated with the measurements has a
signiRcant influence on the quality of the estimated parameter value. Table
7.1 presents the estimated parameter error (b) for three measurement error
levels (a) when 1, 4 and 7 samples are used. Even for an unrealistically high
measurement error (14%) the parameter is estimated within 3% accuracy
if 7 samples are employed.

Note that the ratio a/b depends on the number of samples, but not
on the measurement noise. Clearly, for a given number of samples, the
estimated parameter value may be worse than that of the data base if the
analog measurements are of poor quality; and vice versa. The interested
reader may resort to the above figures (which are quite general in spite of
being referred to the 14-bus system) in order to find out whether it is worth
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Snapshots

1

4

7

(a)
13.53
8.10
2.70
14.20
8.52
2.84
14.26
8.56
2.85

(b)
8.73
5.27
1.70
4.38
2.65
.90
3.27
1.95
.65

(a/b)
1.5
1.5
1.6
3.2
3.2
3.2
4.4
4.4
4.4

Table 7.1. Estimated parameter error (b) for different measurement error levels
(a), both in percent, and different number of samples

to estimate a certain parameter for a given redundancy and error level.

7.8 Transformer tap estimation

From an operational point of view two different classes of on-load tap chang-
ers can be identified:

* Taps of large transformers located within the bulk transmission grid
or connecting the transmission networks to the sub-transmission net-
works. These taps are usually telemetered and remotely set by the
control center operator in order to keep bus voltages within rea-
sonable but relatively wide limits, to control reactive power Hows
or reactive power delivered by generators and also to reduce power
losses.

* Taps of medium-size transformers connecting the sub-transmission
network to the distribution feeders. In order to keep customer volt-
ages as steady as possible against load fluctuations, these transform-
ers are equipped with automatic controllers that sense the voltage
and/or current at the feeder head and accordingly shift the tap. As
there are many transformers of this type, the tap value is seldom
monitored in the control center.

Unlike ordinary measurements, the telemetered tap is handled from the
very beginning as a digital value and consequently no noise can be as-
sociated with this piece of information. However, malfunctioning of the
mechanical or electrical equipment involved in the tap changer, albeit rare,
is always possible, leading to an error of the same nature as the topological
errors discussed in the next chapter. When this happens inadvertently, the
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transformer model used by the SE will be inaccurate and one or several
nearby measurements can be wrongly identified as bad data.

Example 7.3:

Let us substitute the h'ne 1-2 in the same 3-bus case of Example 7.1 by a
voltage regulating transformer. The impedance values and measurement points
are shown in Figure 7.8. Noisy measurements (<? = 0.001) are generated which
are compatible with the null resistance of branch 1-2 and nominal tap setting
(a = 1). Run the SE by assuming a wrong tap value a = 1.05 and perform bad
data analysis.

0.02 + O.OSj 0.03 + O.OSj Power Meas.
Voltage Mag. Meas.

Figure 7.8. Modified 3-bus system with a transformer

The SE converges after 5 iterations to the state given in the following tables,
where the estimated and actual measurements as well as the normalized residuals
are also provided.

Bus
:
1
2
3

14
(pu)

0.9380
0.8776
0.8794

<?i
(degrees)

0.00
-1.42
-3.19

Measurement

P12

P13

P2

<?12

913

92

Vi

^

Meas. Value
0.7135
1.1390

-0.3230
0.6747
0.5675

-0.4193
1.0000
0.9800

Estim. Value
0.6475
1.1791

-0.3914
0.4767
0.6529

-0.5639
0.9380
0.8776

Norm. Res.
87.9

-120.9
121.8
285.8

-271.5
271.0
82.3
134.3

The objective function remains very high at the solution point (J(i) = 9.2 -
), the largest normalized residual being associated with 912. Note that the
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residuals of <?i3, $2 and % are also very high. Removing <?i2, the SE still detects
gisasbaddata.

Of course, assuming a = 1, and repeating the experiment, the correct solution
with small normalized residuals is obtained in just 3 iterations. This confirms
that the presence of wrong parameters tends to deteriorate the convergence rate
(divergence is also possible).

The above example illustrates that the terminal bus voltage magnitudes
and reactive power through a transformer become significantly affected by
an error in the tap value. Conversely, these magnitudes can not be ac-
curately estimated if the tap value is not available, as in the second class
of transformers. Therefore, there is a need to estimate transformer tap
positions for the following two cases:

* The tap is telemetered but the available value is suspicious. Since
tap setting errors are very infrequent, it is wasteful to include in the
SE model all taps. Hence, as in the parameter estimation problem,
only a few suspected taps are considered each time.

* The tap is not telemetered and the user wishes to estimate the power
How through the transformer, which requires that both terminal
buses are included within the SE scope.

Obviously, transformer taps are time-varying parameters and, conse-
quently, off-line processing can not be used. Apart from this, most of the
ideas discussed in former sections for line parameter estimation are appli-
cable for estimating transformer taps.

Residual analysis can be used both to identify suspected transformers
and to obtain improved tap values. As noted above, the reactive power flow
through the transformer plays an important role in this regard. In fact, it
is almost mandatory for this magnitude to be measured, in addition to the
terminal voltage magnitudes, if the tap setting is to be estimated reliably.
Let i and / denote the tapped and fixed buses respectively. Then, ignoring
the resistance, the reactive power entering bus ^ is given by the following
equation,

2v2 v ,
(7.45)

where ̂  is the transformer reactance and T == I/a is used to get a more lin-
ear expression. Assuming cos0t/ ̂  1, the former equation can be linearized
around the estimated state, yielding,

+ TA^) - T^AVf (7.46)

where E^y = 2T% - Vf , the incremental values AQt, A% and APy refer to
the respective residual (measured minus estimated magnitude), and AT =
Tlmw — Totd is the inverted tap error.
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Equation (7.46) provides a simple means of estimating the tap error,
based on the most significant residuals related to the transformer tap,

+ -LAV, (7.47)

The new tap setting is therefore,

6tnew = ̂ - = 1-1 - Vlvf (7.48)
inew l/aoM + ̂

However, taking into account that A&/a = — AT*/r, the following al-
ternative expression can be used to update the tap,

"new = aoM + Aa = ao)d(l - â AT) (7.49)

Note the signs of the different terms in (7.47), and the fact that the
contribution of A% counteracts that of AV^-. The size of every term de-
pends very much on the network topology and transformer role. For a
radially connected distribution transformer, a tap error will translate into
a large A I/}, because the values of % and Qt will be mainly dictated by
the measurements at the high voltage side. For a transmission regulating
transformer, belonging to a meshed grid, the 3 magnitudes will be affected
to a certain extent, depending on the local redundancy and relative weights
(usually, AQi will be the largest residual).

A similar development can be undertaken if Qy, rather than Q^, is
measured, but the results obtained will generally be worse.

Example 7.4:

Apply the above residual-based methodology to get a better value for the tap
setting of Example 7.3.

The following data are taken directly from the results provided in that exam-
ple,

A?i2 = 0.1980 ; AVi = 0.0620 ; AV^ = 0.1024 ;

Therefore, we obtain AT = 0.0513 and,

1

1/aoM + AT
= 0.9963

The accuracy of this result depends on that of involved measurements, but
also on the size of the tap deviation. The following table collects the results
provided both by (7.48) and (7.49) when different tap values are assumed for the
same set of measurements and the actual tap setting (a = 1):
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&o)d

0.875
0.9
0.925
0.95
0.975
1.0
1.025
1.05
1.075
1.1
1.125

0,new (7.48)

1.0941
1.0501
1.0226
1.0073
1.0010
1.0
0.9995
0.9963
0.9898
0.9805
0.9691

Ctnew (7.49)

1.0502
1.0287
1.0133
1.0040
1.0003
1.0
0.9988
0.9934
0.9825
0.9659
0.9440

#Iter.
7
6
5
4
3
3
4
5
6
6
7

The following conclusions are reached:

* The tap is overestimated (underestimated) when the assumed value is
smaller (larger) than 1 pu.

* Equation (7.48) is more accurate when the assumed value is larger than
1 pu., and the opposite happens with (7.49). This is helpful to select the
most appropriate expression in every case.

* The linear approximation starts to deteriorate (estimation error is larger
than 1 %) for assumed tap errors exceeding 7.5 %. However, different per-
centages could apply when the available measurements are less accurate.

Several approximations to (7.47) have been used in an attempt to se-
quentially refine wrong tap settings. For instance, in [14] and [32] suspected
taps are identified when the difference between the calculated and teleme-
tered reactive power flow through a transmission transformer is higher than
a preset tolerance. Then, the tap setting is raised or lowered depending on
which reactive power flow is measured and the sign of the residual, AQ.
The algorithm proposed in reference [22], intended for radial transformers,
uses the estimated and measured voltages in order to generate a new tap
position.

Example 7.5:

Consider the 4-bus system of Example 2.1, containing a radiat transformer.
This system, along with the measurement points, is shown in Figure 7.9.

A set of measurements, compatible with the actual tap value, a = 0.98, is
generated by adding Gaussian noise (cr = 0.001) to the exact values corresponding
to the state given in Chapter 2.

Assume now that the available tap value is a = 1.05. The following tables
show the results of the WLS algorithm after 3 iterations:
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Figure 7.9. One-line diagram of a 4-bus power system

Bus
!

1

2
3
4

14
(PU)

1.0281
0.9919
0.9902
0.9361

^(degrees)
0.00

-2.61
-3.40
-3.90

Measurement

Pl2

P32

P24

P42

P3

912

932

924

942

93

Ĥ

Meas. Value

0.88726
-0.11676
0.25034

-0.24908
-1.19965
0.24140
0.02923
0.10645

-0.09913
-0.79933
0.96290
0.97423

Estim. Value

0.88739
-0.11520
0.24972

-0.24972
-1.20007
0.23658
0.04209
0.10444

-0.09788
-0.80426
0.99190
0.93606

Applying (7.47) and (7.48) to the above results yields AT = 0.06615 and
ctnew = 0.9818. Unlike in the former example, the term AQ24 in (7.47) is negligible
in this case, due to the radial configuration.

The normalized residual test erroneously identifies % as bad data (r̂ * =
50.2). When this measurement is removed, the following results are obtained:

Bus

1̂
2
3
4

^(pu)
1.0002
0.9630
0.9599
0.9082

#i
(degrees)

0.00
-2.76
-3.58
-4.14
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Measurement

P12

P32

P24

P42

P3

912

932

924

942

93

H

t̂

Meas. Value
0.88726

-0.11676
0.25034

-0.24908
-1.19965
0.24140
0.02923
0.10645

-0.09913
-0.79933
0.96290
(0.97423)

Estim. Value
0.88735

-0.11705
0.24971

-0.24971
-1.19954
0.24148
0.02903
0.10629

-0.099929
-0.79924
0.96304
0.90817

Observe that the residuals corresponding to ($24 and % are very small now.
Consequently, (7.47) reduces in this case to,

AT -
-K-24

= 0.06793

and the updated tap setting is anew = 0.9801, which is almost the exact value.

The state vector augmentation technique is considered a more effective
approach, as all surrounding measurements, not just reactive power flows
or voltages magnitudes are involved in the procedure. However, this is
accomplished at the expense of more complexity and computation time.

Consider, for simplicity, that a single transformer tap must be estimated.
Then, the Jacobian of the augmented model has a block structure like that
of (7.12). The extra row is needed only if a tap value is available whereas
the nonzero elements of the extra column correspond to the sensitivities
of power Bows through the transformer and terminal bus power injections
with respect to the tap variable.

It has recently been shown [7] that, if T = I/a, rather than a, is added
to the state vector, the new Jacobian elements will be readily available
from existing ones by taking advantage of the symmetrical role of % and
T in all equations. From the transformer model provided in Chapter 2 the
following expressions can be written for the power flows at both sides of
the transformer,

(7.50)
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where C and B are the transformer series conductance and susceptance
respectively. Noting the systematic pairing of the variables T and % we
can write,

d
(7-51)

which allows new Jacobian elements to be obtained in a simple manner.
The same idea applies to power injection measurements.

The technique proposed in [34] belongs to the state augmentation class
of methods. Initially, transformer taps are modeled as continuous variables
and a best fit is calculated. Then, the best fit is set to its nearest feasible
discrete tap position and is removed from the state vector. The normal
equations are solved again allowing changes in the state vector resulting
from the tap discretization. One or several transformer taps can be esti-
mated simultaneously.

The method described in [20], which considers incremental flows origi-
nated by parameter errors as additional state variables, can be applied also
to the estimation of transformer taps.

Example 7.6:

The above ideas are applied to the 3-bus and 4-bus systems of the former
examples, assuming the tap is not measured. In both cases the WLS algorithm
converges in three iterations to the following states:

Bus
!

1

2
3

^(pu)
1.000
0.9800
0.9499

^(degrees)
0.00

-1.25
-2.75

a = 0.9999

Bus
:
1
2
3
4

^(PU)
1.0002
0.9630
0.9599
0.9742

P,
(degrees)

0.00
-2.76
-3.58
-3.96

a = 0.9801

Note that the estimated tap settings are slightly better than those obtained
from the residuals, but probably the most noticeable effect is the fact that the
convergence is not deteriorated by the presence of the wrong tap value.
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7.9 Observability of network parameters

Observability of the parameters defining a particular branch depends on the
nature of the measurements in the adjacent set. As defined in section 7.2,
this set is composed of the branch power Bows and power injections at both
terminal buses. When all measurements in this set are critical to estimate
the conventional state vector, none of the respective branch parameters will
be observable. In fact any parameter error will remain undetected, as the
respective residuals will be null. Conversely, if any member of this set, and
hence all of them, are redundant then at least a single branch parameter,
e.g. a line length or transformer tap, can be added to the state vector in
order to be estimated [17]. Estimating several parameters requires a higher
redundancy level.

Of course, any parameter can be made observable by adding a guessed
value as a pseudo-measurement to the measurement set, but this is use-
less to improve the data base when there is no redundancy. If the added
pseudo-measurement turns out to be critical when the respective parameter
is included in the state vector, then such a parameter will be unobservable
in the absence of the extra pseudo-measurement.

An interesting and frequent particular case arises when power flows at
both ends of a branch belonging to an observable island are measured. In
this case, at least two out of the four measurements can be removed without
losing observability. Therefore, at least two independent branch parameters
can be estimated in this situation.

From a numerical point of view, however, some care must be exercised
when performing parameter estimation. Consider, for instance, the line
length estimation problem discussed in section 7.6.1. The Jacobian terms
corresponding to the new variable are null at flat start, but also when the
power now through the line is negligible. This means that, in the absence
of the respective pseudo-measurement, the relative line length is in practice
unobservable for lines whose power flow is very small, or at least the esti-
mated value is not reliable as a consequence of numerical instabilities. For
the same reason, the presence of voltage magnitude and/or reactive power
measurements is of paramount importance to reliably estimate transformer
taps, as the sensitivity of active power with respect to this variable is very
small.

In the general case, the numerical observability methods described in
Chapter 4 should be resorted to so as to decide whether a particular pa-
rameter included in the state vector is observable or not.

Nevertheless, as concluded from the results presented in former sections,
assuring observability is not enough to take the decision of estimating a
particular parameter. An analysis of the local redundancy and quality of
available measurements is strongly recommended before running the risk of
substituting a data base value by an estimated one.
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7.10 Discussion

The following aspects are somewhat subject to controversy and deserve
further discussion.

* Residua/ awa%t/SM uersMs s^aie aM^men^aNon. If the ultimate goal is
to estimate a parameter value, then the state vector augmentation
technique is preferable to the one based on residual sensitivity anal-
ysis. This is due to the fact that the approach based on residuals
extracts the information from a linearized model and, hence, must
be applied repeatedly to provide the same accuracy. Nevertheless,
the residual analysis is still necessary in the process of identifying
suspect branches.

/Aer versus convenNowa^ FJ5. It is evident that resorting to
several snapshots, either sequentially by means of the Kalman filter
or simultaneously by enlarging the conventional SE model, improves
the local redundancy and provides a safer way of updating the data
base. It is not clear, however, whether the recursive filter should be
employed in all circumstances. The Kalman filter could be perhaps
more appropriate to continuously update time- varying parameters in
a localized area, while the simpler WLS approach is a better choice
to estimate constant parameters. Keep in mind, anyway, that any
method will provide poor estimates of parameters in the presence of
persistent nearby gross errors that remain undetected.

On-Kne fersus Oĵ -Hne processing. Estimation of transformer tap
positions, like detection of topology errors, is inherently an on-line
process. However, off-line processing may be a more adequate ap-
proach to estimate those branch parameters which remain essentially
constant over time, like inductance and capacitance. Fluctuations of
line resistance due to temperature changes may be significant, but
errors affecting this parameter have been shown to be less influential
on the SE performance [33, 36]. Additionally, if representative tem-
peratures were recorded along with every sample, then it would be
possible to relate the time-varying resistance to the constant value
corresponding to a reference temperature.

Located versMS (?̂ oM parameter esNmaNon. This issue refers to
whether a few selected parameters (including transformer taps) should
be estimated, or whether the estimation process should be adaptively
extended to eventually include all network branches with adequate
local redundancy. A tentative answer to this question can be given by
looking at the results presented above. From Table 7.1 it can be con-
cluded that, for a given redundancy, the estimated parameter errors
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are proportional to the average measurement error. Therefore, if the
SE is fed with very accurate measurements, the estimated parameter
values will most likely be better than those stored in the data base.
But the opposite may also occur; an acceptable parameter value can
be updated with a less accurate value if poor measurements are in-
volved in the estimation process. Hence, deciding in advance which
parameters should be estimated is not a trivial task.

7.11 Problems

1. Prove that (7.8) can be obtained from (7.7) by ignoring the off-
diagonal terms in the transpose of the residual sensitivity matrix,
i.e. ?

2. Obtain gp in Example 7.1 by means of (7.8), and compare the result
with the one provided by (7.7).

3. Prove that, if (7.8) is adopted, then using the full residual vector, r,
and the full matrices <?, U and d/i,/dp will provide the same parameter
value as that obtained with the subset s of adjacent measurements
(Hint: reorder the rows of ̂  into two blocks so that the first one
corresponds to the set s and the second one is null).

4. Prove that resorting to the submatrices corresponding to the set s is
not equivalent to using the full matrices and vectors when the exact
expression (7.7) is adopted. Numerically assess the differences by
applying both schemes to the data of Example 7.1.

5. In Example 7.2, add L = 1 as a pseudo-measurement and perform
the SE. Analyze the results obtained when very different weighting
factors are adopted for the new pseudo- measurement.

6. Using <7 = 0.01 for all measurements, generate 4 different sets of
measurements for the network of Example 7.2. Estimate separately
the parameter L for the 4 cases. Next, considering simultaneously
the 4 samples, obtain a single line length as explained in section 7.7.
Compare the results of both experiments.

7. Repeat the computations of Examples 7.4 and 7.5 by using less ac-
curate measurements (o* = 0.01). Assess the loss of accuracy in the
estimated tap values.

8. Repeat Problem 7 for the Example 7.6.

9. Change the value of $2 in the 3-bus network of Example 7.4 to the
bad data $2=0. Perform the SE by assuming a wrong tap a = 1.1.
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Estimate a better tap value based on the residuals and (7.47). Obtain
also the tap setting by the state augmentation technique.

10. Repeat the experiments of Problem 9, this time assuming the bad
data is g^ = 0. Assess the robustness of both estimation techniques
when the bad data is in the reactive power injection or in the power
flow through the transformer.

11. Develop the counterpart of (7.47) when the power flow at the non-
tapped bus, Qy, is considered. Apply the resulting expression to
the networks of Examples 7.4 and 7.5. Compare the accuracy of the
estimated tap values with that obtained when Qt is employed.
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Chapter 8

Topology Error
Processing

8.1 Introduction

As explained in Chapter 1, the SE works with an electrical model provided
by the Topology Processor (TP). This routine analyzes the status of all
circuit breakers (CB) and switching devices in order to determine:

* The way physical nodes (bus sections) are interconnected to give rise
to a reduced set of electrical nodes.

* The electrical node(s) to which every transmission element (line,
transformer or shunt device) is connected.

* The energized or non trivial electrical islands.

In other words, the TP converts a bus section/switch detailed model
into a compact and more useful bus/branch model. It is worth noting that,
in this process, some measurements must be discarded (e.g., power Sows
through CBs) while others are merged into a single measurement point
(e.g., injections measurements of several bus sections put together at a
single electrical bus).

A physical CB, along with several isolating switches, constitute one or
several 'logical' CBs. For instance, Figure 8.1 shows the two logical CBs
necessary to define the connectivity of a line in the presence of two electrical
nodes. In this chapter, the term CB will refer to such logical devices.

The correct statuses of all CBs in the system are known almost all the
time. However, in some rare cases, the assumed status of certain CBs may

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.



(a) (b)

Figure 8.1. Physical (a) and logical (b) switching devices

be wrong. This will happen when some of the involved isolation switches,
the majority of which are neither telemetered nor remotely operated, sim-
ply malfunction. Other reasons might be unreported breaker manipulation
by maintenance teams, mechanical failure of signaling devices, etc. A more
common situation is when the TP encounters a CB whose status is un-
known. In cases like this, the TP must decide on the most likely CB status,
for which it uses the status history for the same breaker and/or the values
of related measurements as a guide. Hence, the risk of assuming the wrong
status for the CB still will not be completely avoided.

When this happens, the bus/branch model generated by the TP is lo-
cally incorrect, leading to a ôpô of̂ cĉ  error. Unlike the parameter errors
discussed in the previous chapter, most of which remain undetected untii a
threshold is exceeded, topology errors usually cause the state estimate to
be significantly biased. As a result, the bad data detection & identifica-
tion routine may erroneously eliminate several analog measurements which
appear as interacting bad data, finally yielding an unacceptable state. It
is also possible for the SE process to diverge, or have serious convergence
problems, in the presence of topology errors.

Therefore, there is a need to develop effective mechanisms intended to
detect and identify this kind of gross errors. The aim of this chapter is to
present classical and recent approaches to deal with topological errors and
related matters.

It should be noted that the word 'substation', as used in this chapter,
refers to a 'bus section group', i.e. the set of bus sections interconnected by
switching devices. Real substations, usually containing power transformers,
will be composed of as many groups as voltage levels.
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8.2 Types of topology errors

Topology errors can be broadly classified in two categories:

BmncA ŝ tts errors.' Errors affecting the status of regular network
branches (lines or transformers) . An ezcfttŝ on error takes place when
an energized element is excluded from the model. The opposite, i.e.,
mĉ t.s!o?T, error, occurs when a disconnected element is assumed to
be in service. The branches involved in this category of errors, which
may affect one or more CBs, will always have non-zero impedances.

w errors; Errors affecting CBs whose purpose
is to link bus sections within the substation. A sp̂ ;t error arises when
a single electrical bus is modeled as two buses. The opposite is called
a mer^mf? error. Since all of them are CBs, no impedance can be
associated with the branches involved in this category of errors.

As will be explained below, the techniques proposed to deal with the
first type of errors are closely related with those described in the previous
chapter for parameter estimation. The second type of errors, however,
requires specific procedures in which the affected CBs appear explicitly in
the SE model.

8.3 Detection of topology errors

Topology errors have, in general, a more dramatic influence on the mea-
surement residuals than the parameter errors. This can be easily illustrated
by considering for instance an exclusion error affecting a branch of admit-
tance V. Excluding this branch is equivalent to considering a branch of null
admittance or, stated in other words, a branch whose admittance error is
100%. This value is an order of magnitude larger than the parameter errors
found in practice (including those related with tap settings). The reader is
referred to the figures shown in the preceding chapter, where the influence
of branch susceptance errors as large as 25% are presented.

Conditions upon which topology errors can be detected are analyzed in
detail in [6] and [31] (see section 8.6.1). A single branch error is detectable if
the following two conditions are satisfied: (1) it is not an irrelevant branch
(branch with no incident measurements), and (2) removal of any one of the
measurements incident to this branch does not make it an unobservable
branch.

The following two examples illustrate numerically what happens typi-
cally in the presence of topology errors.
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Example 8.1:

Consider the 4-bus network shown in Figure 8.2-(a), where only active power
measurements are relevant to solve the linear DC state estimation problem. The
given measurements contain Gaussian noise (cr̂  = 0.001) and the same reactance
is adopted for at! lines (2 = 0.01). Figure 8.2-(b) presents the resulting normalized
residuals, which are well below the usual bad data threshold.

-4.94̂  4-2.754 0.8̂  0̂.1
T — n.252 n 953 Y T n 5 05 T

-4.693)) ^ '—* * ' 2 O-3-015 1.0)) i ' * * ' 2 OO.S

O 3 ^
i ^ 1.

.231
.502 -1.493

il.508

(a) Correct topology &: measurements

i 0.3 0.1 i

0.5̂  0̂.4

(b) Correct topology & norm, resid.

(c) Wrong topology & norm, resid.

14.3$ I

—L—-14.3 177 T-2̂ 7̂ * 3̂7V̂ ^

(d) Norm, resid. (p2 removed)

Figure 8.2. Influence of branch inclusion error on normalized residuals

Assume now that a line, actually disconnected, is in service between buses 2
and 3. For the sake of coherence, it is also assumed that the power flows through
this line are not telemetered, as their null values would be a clear indication of
the topology error. Figure 8.2-(c) shows that, in this situation, the normalized
residuals corresponding to injections 2 and 3, as well as those associated with
power Hows of incident branches, are very high. A conventional bad data analysis
would conclude that p2, the measurement with largest normalized residual, should
be eliminated. When this is done, the residuals are still very high, as shown in
Figure 8.2-(d). Although the residual of ps is now the largest, a significant increase
can be noticed in the residuals of the power injections at buses 1 and 4, which
are first neighbors of bus 2. If measurement ps is finally removed, the normalized
residual values corresponding to the remaining measurements are very similar to
those of Figure 8.2-(b), which is logical because the line 2-3 becomes an irrelevant
branch when the two injections are removed.

Consequently, the topology error remains undetected and two correct mea-
surements are discarded by the conventional SE.
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An analysis of this example provides certain guidelines for the detection
and identification of single branch status errors. A non-telemetered branch,
regardless of its assumed status, will be suspected if the normalized residu-
als of the measurements which are incident to its terminal buses are among
the largest. If the injection at one of those buses is missing, then large
normalized residuals will also be expected at the first neighbors of such a
bus.

A more systematic analysis of this kind of topology errors can be found
in [16], where it is also concluded that the injections at the terminal buses
of the wrong branch, when measured, will most likely be identified and
suppressed as bad data.

Example 8.2:

Consider this time the 5-bus network and associated measurements shown
in Figure 8.3-(a). As in Example 8.1, the measurements contain Gaussian noise
(<? = 0.001) and alt line reactances are 3; = 0.01.

4.94̂  °'̂  # ^^^ 1.23^ &0.17
T -1.511 1 515 T^ 5T T 1 1 3 n 4 , , ' ,

S8(i 1 '—̂  *"*ij (1-2.976 11.3(1 1 '—̂  *̂̂ ] <"31

—̂I ^
1.492—T—
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3.011

.507

32.26

.39

(a) Correct topology &: measurements

t—t ** * * *
s i

10.3

(b) Wrong topology & norm, resid

X0.47

(c) Norm. res. (P42,P24,P43,P34 removed)

2̂4.01

(d) Norm, resid. (ps removed)

Figure 8.3. Inftuence of bus merging error on normalized residuals

In the situation shown in Figure 8.3-(a), the largest normalized residual, cor-
responding to pi, is 1.19. Now, the CB that couples buses 2 and S, actually open,
is assumed closed. This implies that pz and ps are collapsed into a single injection
measurement by the topology processor, as shown in Figure 8.3-(b). Then, the
bad data processor performs the following procedure:
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Table 8.1. Estimated phase angles (radians)

1. correct topology

2. wrong topol. (initial)
3. wrong topol. (final)

%2
0.0149
0.0118
0.0149

03

0.0348
0.0379
0.0348

%4

0.0198
0.0323
0.0449

%5

-0.0101

* According to the normalized residuals presented in Figure 8.3-(b), the
power Sow p42 is considered bad data and removed. It should be observed
that the residuals corresponding to all power Hows, particularly those of
the loop 2-3-4, are significantly affected by the topological error, whereas
the power injections remain almost unaffected. Somewhat the opposite
happens in Example 8.1, which can be explained by the fact that branch
errors are essentially in conflict with Kirchhoff's current law (nodal equa-
tions), while bus configuration errors mainly contradict Kirchhoff's voltage
law (loop equations).

* As expected, when p42 is removed, the largest normalized residual corre-
sponds to p24. Repeating the estimation cycle, p43 and ps4 will be subse-
quently removed. The resulting residuals are given in Figure 8.3-(c).

* In this situation, ps leads to the largest residual and should be removed.
As shown in Figure 8.3-(d), removal of pa causes both pg and p4 to have
identical residuals, since they now form a critical pair (see Chapter 5). If,
for instance, p4 is discarded (this is not shown in Figure 8.3), then pa will
become critical and its residual will consequently be zero. As a result, all
the remaining measurements will be consistent with the wrong topology
(the largest normalized residual will be 1.19 and will again correspond to

Pi).

In summary, the bus configuration error leads to the six measurements p42,
P24, P43] P34] ps and p4 (or p2) being erroneously eliminated. The consequence is
that the topology error remains hidden and that the value of ̂4 is totally wrong.
Table 8.1 provides the estimated phase angles under three different conditions:
(1) correct topology; (2) wrong topology, full set of measurements (initial); (3)
wrong topology, six measurements discarded (final). Note that, while #2 and #3
are accurately estimated, the final value obtained for 04 is even worse than the
one estimated before the bad data processing. This translates into very poor
estimated values for the six discarded measurements.

Based on the results obtained in this example, bus configuration errors
could be detected from a systematic analysis of the normalined residuals [6],
provided the redundancy is large enough. The presence of large residuals
at several branches forming a loop, coexisting with reduced residuals in the
involved injections, should be considered a clear symptom of this kind of
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errors. However, unlike in Example 8.1, it is not so easy to develop aĉ
Aoc rules for the identification of a single suspected substation, once the
topology error is detected. In the last example, the topology error may be
located at any of the buses 2, 3 or 4.

In [13, 14] and [15], a method based on the number of measurements
labelled as bad data is proposed. A counter which is initialized as zero, is
assigned to each bus. A bad injection increases the counter of the respective
bus by one unit, whereas a bad power now increases the counters of its two
terminal buses. Suspect buses are then identified as those at the top of the
bus list, when sorted in decreasing order of their counters.

Given an estimate, and a list of measurements previously discarded
as bad data, hypothesis testing is applied in [16] to determine alternative
network topologies, that are consistent with the existing measurements.

In practice, there are cases in which the influence of topology errors on
measurement residuals is not so significant. For exclusion and split errors,
this happens when the power now through the respective branch or CB is
small, whereas inclusion and merging errors are less noticeable when the
voltage drop between the two involved buses is small. In extreme cases,
i.e., when the power now or voltage drop is negligible, there is no way to
detect the topology error, but then there is no need to worry either, as the
state estimate will be acceptable.

By far, the most important factor affecting the capability to detect
such errors is the presence of bad data on adjacent measurements. If re-
dundancy is high enough, it is very unlikely that a single bad data can
mislead the detection procedures described above, because they are based
on abnormally high values of several selected residuals. Nevertheless, low
redundancy combined with several interacting bad data constitute a risky
scenario.

8.4 Classification of methods for topology er-
ror analysis

Methods for topology error analysis can be classified according to different
criteria. The following two broad categories can be defined based on the
adopted model:

* Bus-branch model: The relevant information for topology error anal-
ysis is obtained from the conventional bus-branch model generated
by the TP.

* Bus section-switch model: The portion of the network presumably
affected by the topology error, is modeled in detail including all the
individual CBs present in that part of the network.
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Until recently, use of such a detailed model for the entire network was
assumed not to be viable, although this assumption may no longer hold true
as will be discussed later in this chapter. Therefore, the application of the
second approach currently requires proper identification of the area whose
model is to be expanded. This leads to a two-stage procedure. First, based
on the residuals provided by the conventional model, suspected substations
or branches are identified. Second, the CBs associated with the candidate
components are added to the model as explained later in this chapter, and
the SE and bad data analysis is performed again. This computationally
more expensive procedure is replacing the older techniques based solely on
the bus-branch model, owing to its reliability and increased flexibility to
analyze complex situations. An added benefit of the detailed model is that
certain measurements discarded by the compact model can be taken into
account.

Techniques for topology error analysis can also be categorized based on
the moment at which the analysis is performed:

* /I pWort processing: Much in the same way as analog measurements
are pre-Rltered before entering the SE, the assumed status of CBs
can be validated in advance by means of local consistency checks,
rule-based techniques combined with recorded information, etc.

processing: The bad data analysis stage can be made
more sophisticated so as to consider the possibility of topology errors
being responsible for biased estimates. This type of processing is
very similar to that of processing parameter errors (see Chapter 7).
If the topology error is not clearly identified, i.e., there are several
candidates, then the second SE run mentioned above, containing
detailed models for the suspected areas, can be resorted to.

4̂ pWoW processing methods by nature are based on fast, approximate
techniques, usually applied at the substation level, and hence they may
fail to properly identify the topological problem. On the other hand, post-
processing methods rely on the results of a converged SE, which may not
always exist in the presence of certain topology errors.

In the next section, preprocessing methods for topology validation are
briefly addressed. The rest of the chapter will discuss the second class
of methods, based on residual and Lagrange multiplier analysis for identi-
fying both types of topology errors (branch and bus errors). Section 8.9
presents a recent development, allowing the information for topology error
processing to be obtained, at a moderate cost, from a single execution of
an implicitly constrained SE model. This now approach allows the detailed
modelling of the entire network at little computational overhead and hence
may soon replace the existing two-stage procedure which can incorporate

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.



explicit models of only a limited set of certain switching devices at the
second step.

8.5 Preliminary topology validation

The following is a chronological account of the most outstanding contribu-
tions in this category of methods.

An original and systematic procedure, intended to locally validate switch
indicators and analog measurements within a substation, is presented in
[12]. The substation structure is modeled in terms of open and closed links
between potential nodes, whose active power flows are estimated by solving
the following linear programming (LP) problem:

Min (̂e, + ê ) + ̂(ê +̂ )
at! A: alt 3'

subject to ̂  ̂  = 0 for ail ̂
:g<!

% = P?TtA; + e^ — ejc for all /c

P, = 0 + e,, - ê  for all j

*̂t < ^tmax for certain !
^t > Pimin for certain :
0 < 6^,6^,6^,6^

where:
P̂  is the real power flow through link ̂
6^,6^, e., , e'. are the error terms
^ is the power flow measurement number
j is the open switch number
^ is the node number, and ^ € ̂  refers to the set of links incident to node f
^max;^77Mn upper and lower limits on the power flow through link .̂

Given enough redundancy, the solution will provide the best estimates
for all substation link flows. Measurements and switch indicators that are
grossly in error will be automatically rejected by the LP solution. The es-
timated error variables for these erroneous measurements will be relatively
large, indicating the misconfigured links. This method is developed as a
local data validation tool, and therefore uses a lossless node-link based net-
work model and linear network transport equations in terms of the real
power flows through the links.

The approach proposed in [4] incrementally obtains an approximate
network state. Starting from a measured bus, and giving preference to
the best measurements, the state of adjacent buses is computed by means
of available power flows. Eventually, by means of a breadth-first graph
search, the most likely state for the entire network is obtained. Then, in
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those buses or loops where redundancy permits, consistency checks based
on KirchhofF's laws are performed to detect potential gross errors. Finally,
a systematic analysis of the results provided by these checks should allow
status errors to be identified.

A rule-based system, taking into account the temporal evolution of mea-
surements and switch positions, is proposed in [26]. The basic idea is that,
while normal evolution of load gives rise to smooth or incremental changes
in the measurement values, switching operations are usually accompanied
by more abrupt deviations. Trying to emulate the way an engineer would
locally infer the coherency of present and past information around a given
switch, including alarm and event lists, a knowledge base containing over
120 rules is developed. Practical experience gained in the integration of
this expert system into a Swiss control center is reported in [27].

The application of artificial neural networks (ANN) to this problem
is explored in [30]. The so-called 'normalized innovations', obtained in
tracking mode for each measurement from an associated dynamic model,
are used as inputs to self-organizing anomaly classifiers. The normalized
innovations are, in the pre-Hltering stage, the counterpart of normalized
residuals in SE post-processing, but they are free from the 'smearing' effect
that complicates identification of topology errors based solely on normalized
residuals (as happened in Example 8.2).

More recently [17], a robust Huber estimator (see Chapter 6) based on
an approximate decoupled model, is proposed as a means of pre-checking
the assumed system topology. Under this approach, which ignores voltage
measurements, active and reactive power flows through CBs and ordinary
branches are adopted as state variables. This requires that branch losses
be approximately expressed in terms of this alternative set of variables
so that a single power flow can be used per branch. Once the iteratively
re weighted estimator converges, branch statuses are determined on the basis
of statistical tests applied to the 'normalized' estimated news (see the next
section). Since the adopted model is nearly linear, this procedure is less
sensitive to the convergence problems suffered sometimes by conventional
estimators in the presence of topology errors.

8.6 Branch status errors

As non-zero impedance branches explicitly appear in conventional estima-
tors, there is no need to include detailed physical models if this is the only
type of topology error of interest.

Similar to the case of parameter errors (see Chapter 7), branch sta-
tus errors can be identified and corrected by means of either normalized
residuals or state vector augmentation. Both solutions will be discussed
separately.
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8.6.1 Residual analysis

This approach makes use of the results of a converged state estimation in
order to detect branch errors.

The effect of these types of errors on the measurement equations can be
modeled in the following manner [31]:

R = Rg + E (8.1)

where, R is the true Jacobian, Rg is the incorrect Jacobian due to topol-
ogy errors, and E is the Jacobian error matrix. Substituting (8.1) in the
linearized measurement model

2 = R3 + e (8.2)

yields:
z = R,,x + Ex + e (8.3)

The statistical characteristics of the new residual vector can also be
derived as below (see Chapter 4):

E(r) = (7 - TQEz

cov(r) = (7 - 7Q72

where

T̂ e = Re(Rg -R Re) Rg 7i

Using (8.2), each entry of the bias vector Ex can be written as a linear
combination of errors in network branch Rows. Let / be a vector of branch
now errors, and Af be the measurement-to-branch incidence matrix. Then,
the measurement bias Ex can be written as:

Ex = A7/ (8.4)

and the residual vector will be given by:

r = (7 - Xg)A7/ (8.5)

Now, the expected value of the normalized residuals can be rewritten in
terms of the branch now errors:

E(r̂ ) = Q"^ (7-̂ )̂ 77 = ̂ (8.6)

where M = diag{cov(r)}, and 6* = Q^^ (7 — 7fg)A7 is the sensitivity matrix
for r^ with respect to branch now errors, /.
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Hence, topology error detection can proceed based on the normalized
residual test, assuming that bad data in measurements have already been
identified and eliminated.

Equation (8.6) states that E(r̂ ) is a linear combination of the columns
of <S corresponding to branches whose status is wrong (as the remaining
elements of / are null). However, finding a linear combination of columns
that equals a given vector is not a trivial problem in the general case, as the
solution is not unique. Therefore, even though the vector / may contain
the power flow through any CB, using the normalized residuals for topology
error identification is not advisable in complex cases, like those involving
bus configuration errors.

A geometric interpretation of the measurement residuals is also possible
[6] . Consider the expression for the residuals given in terms of the branch
Hows:

r = Tf (8.7)

where T = (7 — 7fg)A7. If branch j has an admittance error, then /j = a
and /A; = 0 for A; ŷ  j, a: being a scalar. Hence, the j-th column of T, Tj , will
be colinear with r. Their dot product can thus be used to test colinearity
by calculating:

If cos0y = 1.0, and cos 6̂  < 1 for all ! ̂  j, this will imply a single
branch topology error in branch j. Single topology error detectability and
identifiability conditions also follow from this colinearity condition:

1. Branch j is single topology error detectable if 71, ̂  0.

2. Branch j is single topology error identifiable if T, is not colinear with
any of the other columns of T*.

Some results on detectability and identifiability of topology errors are
derived based on the above formulation. Before stating these results, a few
de&nitions are in order:

A cW^ccJ bmncA of a measured, observable network is one whose
deletion leads to an unobservable network.

* A cWNca^ p<Mr o/ &mncAes are those whose simultaneous removal
leads to an unobservable network, but neither one is a critical branch.

The proofs for the following results can be found in [6]:

1. A branch is not single topology error detectable if it is critical or it
is incident only to critical measurements.
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2. Single topology errors in either one of a critical pair of branches are
not identifiable.

Note again that, in general, a unique linear combination of the columns
of T that yields a vector colinear with r, can not be found.

Example 8.3:

Consider the 4-bus system shown in Figure 8.4. AH branches have jl.O p.u.
impedance and all measurement weights are chosen as 1.0 for simplicity. Branch
Fal, shown by a dotted line, is actuaHy disconnected, but will be erroneousby
assumed to be in service.

#4 #1

jj : BRANCH LABEL

#i : MEASUREMENT NO.

Figure 8.4. 4-Bus Test System for Example 8.3

Using the .
defined:

— 0 part of the decoupled model, the foHowing matrices can be

02

1

2
3
4
5
6
7

3
i

-1
-1
0

-1
0

03

-1
-1
3
0

-1
1
1

04
-1

2
-1
0
0
0

-1
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2
0

-1
-1
0
1

0

1

1

3
0

-1
1
1

0 *
1

-1
0
0
0

-1

#2 #3 a
- 1 0 1
1 0 - 1
o o
o o
o o
o o
o o

a
1
2
3
4
5
6
7

"* 1
_-^
0
0
0
0
0

5
0

-1
1
0
0
0
1

c
1
0

-1
0
0

-1
0

d
0
0

-1
0
1
0
0

e
i

0
0
1
0
0
0

Then, the sensitivity matrix S can be calculated as denned in (8.6).
The WLS estimator is run with the measurement set of Figure 8.4, but having

branch Fal in service. The residuals are then used to evaluate (8.8) and the results

are listed in Table 8.2. Note that, branches Fal and IbJ have similar cos# values
since they form a pair of critical branches.

Table 8.2. Results of cos 9 test

Branch
a
b
c
d
e

cos 6?
0.984

-0.984
-0.425
-0.284
0.284

In [25], the so-caMed correfâ on. ma*e2is used to identify topology errors.
For a branch between buses ? and j, this index is defined as follows:

ê - =
STM n

(8.9)

where the vertical bar denotes the cardinal of a set, STM is the set of
measurements identified as bad data and SST̂ - refers to the set of mea-
surements sensitive to the misconfiguration of branch !-j. This last set is
obtained from the respective column of the sensitivity matrix, <S\ defined
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in (8.6), by discarding those entries which are not large enough. The scalar
ê  is a measure of how likely a topology error involving branch it-j is the
real cause of the anomaly detected by the normalized residual test.

All of the above methods assume that the state estimator successfully
converges and that the residual vector, r, is available for post processing.
Under this assumption, they can effectively identify single branch topology
errors. However, as explained before, they cannot identify multiple inter-
acting branch flow errors, which may occur when the statuses of several
CBs in a substation are wrong.

8.6.2 State vector augmentation

The status of a non-zero impedance branch can be represented by means of
a single integer variable, A;, that multiplies all branch admittances. When
this variable is considered, the 7r model (see Chapter 2) is composed of the
following admittances:

series: (d̂ '+Ĵ )̂
(8.10)

parallel: J&LA;

Clearly, A: = 0 represents a disconnected branch whereas A; — 1 should
be used if the branch is in service. The idea is to include the variable A;
into the state vector for any suspected branch. Note, however, the subtle
difference between (8.10) and the equation adopted in the former chapter
to estimate the relative line length.

As explained in [28], in a WLAV state estimator this extra variable
is compensated by adding two conflicting pseudo-measurements, A; = 0
and A; = 1. If both pseudo-measurements are given the same weight, the
estimator will automatically satisfy the one which is most coherent with
the existing information, and will discard the other (see Chapter 6 for the
properties of WLAV estimators).

When the WLS estimator is used, it makes no sense to enforce simul-
taneously the two contradictory constraints. If they are considered as very
accurate pseudo-measurements and are given the same weight, then A; ̂  0.5
will be obtained, which is useless. On the other hand, if both constraints
are ignored, the estimated value of A; will be dictated by the analog mea-
surements. A value of A; close to 1 is an indication of the branch being
in service, while a value approaching 0 implies a disconnected element. In
practice, however, owing to measurement errors, the estimated value of A;
may significantly differ from 0 or 1. Even worse, in the presence of nearby
bad data, the estimated value of A; may approach 0.5, in which case the
status of the clement is ambiguous. Additionally, the estimated values of
the remaining state vector components would be less accurate than if A; had
the right integer value.
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In order to elude these potential problems, the quadratic constraint

A;(l-/c) = 0 (8.11)

is used to enforce the estimator to converge to either of the two feasible
statuses [11]. If the adjacent measurements render ̂  observable, then the
above constraint constitutes a redundant information whose only purpose
is to refine the estimated value of %c. Otherwise, when A; is unobservable,
the equality constraint is useless because either of the two possible solu-
tions can be reached depending on the starting point. This happens, for
instance, when neither the power flows of the branch in hand nor its adja-
cent injections are measured (irrelevant branch). In such cases, even if the
complex voltages of the terminal buses are observable, both the respective
injections and the branch status remain undetermined.

This idea can be applied to any of the WLS state estimation algorithms
described in Chapter 3. Although it is ideally suited to those methods in
which equality constraints are explicitly modeled, (8.11) can also be handled
as a very accurate measurement, provided orthogonal factorization of the
Jacobian is employed in order to prevent the intrinsic ill-conditioning of the
normal equations when large weighting factors are adopted.

Consider the case where the status of the branch connecting nodes : and
j, represented by the variable A;, is to be estimated. Then, the only rows
of the Jacobian related to the new state variable are those corresponding
to the respective power Hows, adjacent power injections and the virtual
measurement given by (8.11).

The power flows through the branch leaving bus i can be expressed as

7%.(&) = A;P,j (8.12)

Qij(̂ ) = ̂  (8.13)

where P̂  and Q^ are the conventional power flows, computed as if /c = 1.
The power injections at bus ! can be expressed as a function of A; in a similar
manner,

P#) = ]T P̂  + ̂  (8.14)
7?T.eZ,7Tt̂ J

Qi(Ai) = ^ Qim + ̂Qij (8.15)
T7t6t,7Tt̂ j

Exchanging ^ for j in (8.12)-(8.15) the power injections at bus j and the
opposite power flows through the branch can be obtained.

In addition to the only non-zero element due to (8.11),
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the following new terms will appear in the extra Jacobian column,

—*ajL— " —A; = Q^ (8.18)

along with their counterparts for node j. It is also clear from (8.10) that,
in the remaining columns of the Jacobian, the series and shunt admittance
parameters of the suspected branch should be multiplied by A;.

Another important practical issue is the initial choice, A;o, for /c. Ex-
perimental results show that, when (8.11) is treated as a very accurate
measurement, the estimation process systematically converges to A; = 1 if
A;g > 1/2 or A; = 0 if A;o < 1/2. Hence, the 'neutral' value A;o = 1/2 should
be adopted, which means that the Jacobian term given by (8.16) is null.
Furthermore, since Ĵ j and Q^ are also nearly zero at flat start, the Ja-
cobian becomes ill-conditioned or even singular during the first iteration.
As discussed in the previous chapter regarding the estimation of the line
length, a way of circumventing this risk is by adding the new state variable,
A;, only after the first iteration.

Therefore, the WLS state augmentation technique can be summarized
as follows:

* From flat start, perform one iteration and correct the state vector.
At this step, the only difference with respect to a conventional state
estimator is the factor A;o = 1/2 which affects the parameters of the
branch whose status is to be estimated.

* From the second iteration on, add the constraint (8.11) to the model
and include A; in the state vector. Note that the effect of the con-
straint will only be noticed at the end of the third iteration, since
the value of A; is still 1/2 during the second iteration.

Example 8.4:

Consider the 3-bus system of Figure 8.5, where all branch impedances are
equal to 0.05J and alt measurement weights are 1. Estimate the status of branch
1-2, with and without the constraint (8.11) added, for the following measurement
values:

Pl3

1.305
913

0.646
P23

0.198
923

0.086
P2

-0.807
92

-0.351
Vi

1.018 ^0.996

When the constraint A(l — A:) = 0 is not added, the WLS estimator converges,
after 14 iterations, to the foUowing state vector:
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Voltage measurement
Power measurement

Figure 8.5. 3-bus system to illustrate branch status estimation

Magnitude
Est. value

Vi
1.0160

V2

0.9904
H

0.9863
#2

-3.1485°
03

-3.7320°
A;

0.9105

which means that line 1-2 is 91% 'closed'. This physically meaningless state
corresponds with the following estimated measurements:

Magnitude
Est. value

Pl3

1.3045
913

0.647
P23

0.1989
923

0.0837
P2

-0.8075
92

-0.3499

and can be reached for any nonzero initial value ̂ o, the only difference being the
number of iterations.

When the quadratic constraint is added, the estimator converges in 7 itera-
tions to the following feasible state for A;o = 0.5:

Magnitude
Est. value

Vi
1.0187 ^0.9942

H
0.9893

02

-2.9893°
03

-3.6657°
&

1.0000

which leads to the estimated measurements:

Magnitude
Est. value

P13

1.2886
913

0.6392
P23

0.2322
923

0.0996
P2

-0.8241
92

-0.3583

However, the wrong status is reached when A:o < 0.5. For instance, when
= 0.49 the estimator converges, after 66 iterations, to the state:

Magnitude
Est. value

H
1.0021

H
0.0183

H
0.9720

02

-69.2885°
93

-3.8410°
&

0.0000

and measurements:

Magnitude
Est. value 1

Pl3

3049
913

0.6468
P23

-0 3238
923

-0 1412
P2

-0 3238
92

-0.1412

The objective function value and normalized residuals suggest in this case the
presence of bad data, originated by the incorrect line status. It is important,
therefore, to start with the neutral value &o = 0.5 or to add the constraint only
when the correct solution is sufficiently close.
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Figure 8.6. Usual substation configurations

8.7 Substation configuration errors

Circuit breakers and bus sections can be arranged in many different config-
urations within a substation, depending on the voltage level, role and im-
portance of the substation, number of incident lines, etc. Figure 8.6 shows,
from left to right, three of the most frequent configurations, namely: two
buses with coupling, breaker-and-a-half and ring bus.

The common feature of all these cases is that CBs are interconnected
through zero-impedance bus sections, unlike external connections which
always involve a finite admittance. An arbitrarily small impedance might
be inserted in series with every CB, so that the procedures presented in the
former section could be applied. However, as explained in Chapter 3, this
approach would lead to severe numerical problems and, most probably, to
convergence difficulties and/or unacceptable results.

Furthermore, the number of electrical nodes determined by a particular
substation depends on its topology and CB statuses. Frequently, two or
more nodes exist within the same voltage level of a substation. In some
cases, it is known for example that a branch is in service, but its terminal
buses are not clearly identified. When this happens, the above procedures
can not be applied because the extra variable %: is intended to represent
the on/off status of a particular branch located between a pair of well de-
fined buses. Therefore, there is a need to discuss more flexible and general
methodologies, intended to model the diverse situations arising in substa-
tion configuration errors and certain types of branch errors.

The techniques that are described in the remaining parts of this chapter
can be considered the somewhat natural evolution of the LP-based, local
pre-filtering procedure proposed in [12] (see section 8.5). Major differences
and improvements are:

* A full CB model, including both active and reactive problems, is
employed.

* Constraints for closed CBs are considered, in addition to zero power
flow constraints.

* The entire power system, rather than a single substation, is analyzed,
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either through the two-stage procedure discussed in section 8.4 or the
implicit model presented in section 8.9.

8.7.1 Inclusion of circuit breakers in the network model

Effects of topology errors can be taken into account explicitly by repre-
senting the circuit breakers in terms of their real and reactive power flows,
rather than as closed (zero impedance) or open (zero admittance) branches
(see [22, 18, 19] for more details). The simple 4-bus test system shown in
Figure 8.4 will be used to illustrate the modified formulation. Assume that
bus 2 represents a substation which is composed of two separate buses, 2a
and 2b, connected by a circuit breaker (see the expanded network in Figure
8.7). If the breaker status is unknown, then the breaker flows 7-*y, Qy can be
used as extra unknown variables in the equations of measurements incident
to this breaker. For instance, the power injection measurements at bus 2a,
will be written as:

where 7-23! ̂ "21 ; Q23; and (̂ 21 are the real/reactive power flows along lines
connecting bus 2a to its neighboring buses.

# Power Flow Measurement

Figure 8.7. Circuit breaker modeling using power Row variables

Let us now consider a general or augmented set of measurement equa-
tions written in terms of the state variables and the breaker Hows:

3.19)

where:
2a is the generalized measurement vector,
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^ is the nonlinear vector function relating ordinary measurements to the
states assuming all breakers are open,
2 is the ?T, x 1 state vector containing bus voltages and phase angles,
Af is the measurement ito MrctMi breaker incidence matrix,
/ is the vector of real/reactive power Rows through the circuit breakers,
e is the measurement error vector.

Conventional state variables and CB Rows can be combined to form an
augmented state vector 2a as given below:

3-T _ r T ,Ti
-**o " L'*' J J

In terms of this enlarged vector, (8.19) is written in compact form as:

2a = 3(x.) + e (8.20)

The following three different kinds of 'measurements' should be consid-
ered when building (8.20) [7]:

1. Regular analog measurements, given by:

2 = ̂ (xa) + e (8.21)

2. Operational constraints imposed by the open or closed status of the
switching branches. For a branch /c — m these will be p^ = 0,
%m = 0 if open, or % — 14n = 0, 6̂  — 0̂  = 0 if closed. These linear
constraints can be compactly expressed by:

A)Xa + eo = 0 (8.22)

Each operational constraint of (8.22) can be strictly enforced by set-
ting eo = 0, or can be used as a measurement with finite uncertainty,
i.e. cov(eo) ŷ  0.

3. Structural constraints imposed by the network connectivity, such as
the zero injection constraints at certain nodes:

c(z.) = 0 (8.23)

Dropping the subscript a for simplicity, the state estimation problem
can thus be written as follows:

Minimize J(r,ro) (8.24)

Subject to /i,(z') +?" = z

ôi + ro = 0

e(i) = 0
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Figure 8.8. (a) 8-bus substation (closed CBs are shown in black); (b) bus-branch
equivalent model.

where J is the objective function that depends upon r and ro, the residuals
for the analog measurements and operational constraints respectively, and
i is the estimated state vector containing the estimated bus voltages, angles
and switching branch real and reactive power Rows.

The objective function, and the way the results are interpreted, is de-
termined by the type of estimator adopted.

Example 8.5:

For the substation of Figure 8.8, where 9, 10 and 11 refer to external buses,
develop the DC linearized estimator, both for the conventional bus-branch model
and the augmented model described above.

Bus-branch model

As shown in Figure 8.8-(b), the bus-branch substation model contributes two
unknowns to the state vector, i.e.,

2&b = [01 02 2ej (8.25)

where 2̂  includes the external variables #9, 0io and 0n. The two resulting mea-
surements are related to the state variables as follows:

PsT = 2̂ -̂ (02 ** ̂n) *̂ " ̂ 2 fR net
^ -.--1 /d a ̂  , - _ (S-zio)

where 21-10 and 22-11 denote the series reactance of external elements. Note
that the aggregated measurement p]̂  is missing in this case, because one of its
component, injections, pi, is not measured. It has been assumed that the Topol-
ogy Processor is able to shift the power flow measurement psy from the CB to
the external branch 3-10, but sometimes this is not possible and these internal
measurements can not be used by a conventional SE.
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FuH detailed model

The augmented state vector is, in this case:

Xa = [01 #2 03 04 05 06 07 08 P47 P37 P67 Pl4 P3S P26 PlS P58 P28 ̂e]̂  (8.27)

In terms of these variables, the available analog measurements are expressed as:

(8.28)

Ps = -P35 + P58

P2* = P26 + P28

P37 = P37 +S37

P47 = P47 +S47

and the topological constraints (eo = 0):

6)4 - P? = 0;
04 — 0g = 0;
Pas = 0;

03 - 07 = 0;
05 - 0s = 0;
P67 = 0;

01 - 04 = 0

02 - 06 = 0

P28 = 0

(8.29)

Finally, the structural constraints associated with zero-injection buses are:

P4 = 0; —Pl4 + P47 + 34"-9(04 — 0g) = 0

P3 = 0; pas + P37 + X3*-io(03 - 01o) = 0 (8.30)

P7 = 0; p47 -(- pe? + P37 = 0

PS = 0; pig + pss + P28 = 0

Table 8.3 compares the size of both models. From the figures shown, the
following conclusions are obtained:

* The full mode! requires a very large number of variables (17 ignoring a?e)t
compared to the 2 variables of the 'electrical' model.

* The detailed model allows 4, rather than 2, measurements to be separately
included and, hence, tested.

* As many topological constraints as CBs must be enforced, unless their
status is not safely known.

* The number of structural constraints is also high (5 in this case). Typi-
cally, most bus sections where one or several CBs join a line or tranformer
constitute zero-injection buses.

Table 8.3. Comparison between the bus-branch and the fully augmented model

Model
Bus-branch

Full

Analog meas.

2
4

Topol. const.
0
9

Struct, const.
0
5

State var.

2
17
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Of course, observability can not be assessed based solely on the data presented
in Table 8.3, as measurements located at nearby substations play an important
role in this regard.

In spite of the substation size being moderate, this example clearly
shows the impossibility of modeling on-line the whole set of substations
in full detail, which calls for the two-stage procedure described above. At
this point, the reader may wonder why so many state variables are added
to the model if, at the same time, their value is forced to be null. The
reason is that only when CBs are individually modeled, can their status
be separately checked. However, as will be explained in sections 8.8 and
8.9, the number of state variables can be significantly reduced if, instead
of this 'brute force' approach, a systematic analysis based on topological
properties is performed.

8.7.2 WLAV estimator

The WLAV estimation method, described in Chapter 6, can be applied
to solve the augmented model (8.24). This estimator is robust under bad
data and can easily handle additional constraints. It solves the following
optimization problem:

T7T.

Minimize J(a:) = y^to^Mi + Vi) (8.31)

subject to 2 = $(3;) + M - v (8.32)

where M and u are nonnegative slack variables such that (M — v) represents
the measurement residual vector, W; is the weight assigned to measurement
!, and m is the number of measurements.

Additionally, the operaMo%a% constraints referred to above can be ap-
pended to (8.32) to indicate a closed or open CB. Since the status informa-
tion of the breakers may not be correct, such operational constraints are
made soft by treating them as measurements with some uncertainty. For
a breaker connected between j — %;, one of the following constraints will be
appended depending on its assumed status:

^ - ̂ + M^+i - v^ = 0 [closed] (8.33)

/^+M^+i-^+i = 0 [open] (8.34)

! = 1,2,...,6s

where 6,, is the number of CBs.
If any of the flow variables in a: are unobscrvable in the absence of the

operational constraints, then the status error for that breaker will not be
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detectable. Observability of breaker flows and cases of undetectable breaker
status errors are identified by the WLAV estimator during the Phase I
solution stage [1].

Example 8.6:

Consider the IEEE 14-bus system shown in Figure 8.9, whose data can be
downloaded from [34]. The system is fully measured with injections and voltages
at each bus, and power Hows at both ends of each branch. The detailed bus-
breaker connguration at substation 3 is also shown. Note that, as only the breaker
2 is closed, this substation is actually composed of three electrical nodes, one of
them isolated (bus split). Measurements are simulated using the correct three-
node model, while the WLAV estimator is run assuming breaker 1 is closed (two
nodes only, merging error). Initial WLAV estimation results, omitted here for
brevity, indicate bus 3 as a suspect substation due to the large percentage of
incident measurements to bus 3 having large normalized residuals.

14

BUS SPLIT i

to bus 4

H CLOSED BREAKER

Q OPEN BREAKER

(T) BREAKER NO.

[7] BUS NO.

SUBSTATION BREAKER CONFIGURATION

Figure 8.9. Detailed substation modet at bus 3 of the 14-bus test system
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Then substation 3 is modeled in detail. In addition to the existing measure-
ments, zero injection measurements are added at newly created buses 15, 16 and
17. Closed breaker constraints for breakers 1 and 2, which are thought to be
closed, and open constraints for breakers 3 and 4, are also included.

Running the WLAV estimator yields the estimated bus voltages listed in Table
8.4. Large power flows through breaker 2 (3-16) are compatible with this state,
indicating that its status should be closed. On the other hand, bus 3 voltage
is estimated correctly due to the constraint equations used between buses 3, 16
and 17. One of these constraints (3-17) is rejected by the WLAV estimator, since
breaker 1 is actually open. The other one (3-16), however, is found consistent,
allowing the estimation of the state of bus 3. Note that bus 15 voltage can not
be estimated based on the available measurements, since it is isolated from the
rest of the network by circuit breakers. So the WLAV estimator assigns bus
15 the flat start voltage at the solution. Note also that bus 4 and bus 17 have
similar voltages, since 4-17 is an open ended line carrying a small line charging
current only. As can be seen, the results of the state estimator using breaker
models, should be analyzed with care due to these peculiarities arising from a
nonconventional breaker model used.

Table 8.4. True versus Estimated States

Bus
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

True State
V

1.061
1.046
1.012
1.024
1.025
1.072
1.065
1.091
1.060
1.054
1.060
1.057
1.053
1.039

—
—

1.027

0
0.00

-5.15
-15.64
-9.36
-8.12
-13.43
-12.43
-12.43
-14.04
-14.21
-13.95
-14.29
-14.36
-15.16

—
—

-9.44

Estimated State
V

1.059
1.044
1.010
1.022
1.023
1.069
1.063
1.089
1.058
1.052
1.057
1.055
1.050
1.037
1.000
1.010
1.025

0
0.00

-5.17
-15.70
-9.41
-8.17
-13.49
-12.52
-12.53
-14.12
-14.29
-14.02
-14.35
-14.41
-15.24

0.00
-15.70
-9.48
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8.7.3 WLS estimator

Alternatively, the objective function J(r) = r^R^r can be used in (8.24),
leading to an equality-constrained WLS estimator [3, 9, 7].

Two possibilities arise at this point. One is to treat CB operational con-
straints as strict equality constraints, i.e. rg = 0. The resulting Lagrangian

(8.35)

The other possibility consists of handling operational constraints as very
accurate measurements, for which a very high weighting factor, /3, will be
assigned in the objective function,

/; = I^R"^-A^(r-z + ̂(i)) (8.36)

As /o grows, ro and its covariance tend to zero. Therefore, the normalized
residual test can not be safely applied to this measurement type because
of the numerical instability associated with the undefined 0/0 operation.
However, as discussed in Chapter 3 (section 5), the following relationship
holds:

Ao = /oro (8.37)

and, consequently,

f (8.38)

where cov(Ai) is computed as explained in [9]. This means that the nor-
malized multipliers can be compared with, and used in the same manner
as, the normalized residuals of ordinary measurements during the bad data
detection &: identification process. Statistically significant Â 's imply in-
consistent constraints, and the corresponding switch status is reversed. This
procedure is repeated until all Â 's decrease below a chosen threshold. Fine
tuning of this procedure to avoid cycling may be needed (see [7]).

The above discussion does not apply to CBs whose status is unknown,
because no operational constraints are added in this situation. However,
based on the results provided by the WLS estimator, hypothesis testing can
still be used to check for the most likely CB status [20]. Let Ac = 0 be the
p constraints comprising the null hypothesis. Then, it can be shown that
the performance index,

]̂̂ (Ai) (8.39)
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follows a x^ distribution with p degrees of freedom. This provides a thresh-
old to validate hypotheses about open/closed statuses.

Another problem related to unknown CBs is the fact that, due to mea-
surement noise, the estimated power How through open devices is not com-
pletely null, nor is the voltage drop across closed switches. Accuracy of the
estimation can be easily improved if the following constraints [32],

Cp = P^(0i-^)=0
^ ^ ' (8.40)
c. = Q̂ -̂ ') = 0

are added to the model for a breaker between buses ! and j. When building
the Jacobian, these extra rows lead to the following new terms:

(8.41)

Since these terms are either null or very small at Rat start, the above
constraints are useful only after the first iteration.

Note that the status of a breaker forming a loop with closed CBs is
irrelevant. The same happens with a CB belonging to a cut-set where the
remaining CBs are open. In such cases, there is no need to add extra
variables and constraints.

Example 8.7:

Consider again the 3-bus system of Figure 8.5, slightly modified as shown
in Figure 8.10. In the modified system, bus 2 is actually composed of two bus-
bar sections which are linked by a CB whose status is uncertain. For the same
impedance values and weights adopted for Example 8.4, estimate the status of the
unknown CB, with and without the pair of constraints (8.40) added. Available
measurements comprise those provided in Example 8.4, plus a voltage measure-
ment at bus section '2b'. It is assumed that 75% of all power injected at bus
2 is incident to section '2a', while the remaining 25% lies at section '2b'. The
following two tables provide the measurement values:

Pl3

1.305
913

0.646
P2b3 <?2b3

0.198 0.086
P2a

-0.6053
92a P2b

-0.2632 -0.2018

Vi .̂ Hb
1.018 0.996 1.002

<?2b

-0.0877
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Voltage measurement
# Power measurement

Figure 8.10. 3-bus system with unknown CB

When the constraints in (8.40) are not added, the WLS estimator converges
after 4 iterations to the following state vector:

Bus
1
2a
2b
3

Magnitude
1.0215
0.9983
0.9962
0.9919

Angle (°)
0.0000

-2.8245
-3.1182
-3.6922

This state is compatible with the following power flows through the CB:

P2a,26 = 0.3998 ; <?2s,2& = 0.1745

which suggests that the CB is closed, even though the voltages at its terminal
buses are not identical. This physically meaningless state can be avoided by
adding the constraints (8.40). In this case, the estimator converges in 6 iterations
to the state:

Bus
1
2a
2b
3

Magnitude

1.0214
0.9969
0.9969
0.9921

Angle (°)
0.0000

-2.9939
-2.9939
-3.6524

where the complex voltages of bus sections '2a' and '2b' are identical. The re-
sulting CB power Bows are:

P2a,26 = 0.4437 = 0.1913

These values are about 10% larger than those obtained formerly, showing the
importance of adding the constraints (8.40) as a means of improving the accuracy
of the estimate.

Before ending this section it is interesting to point out another impor-
tant difference between the models (8.35) and (8.36), related to the po-
tential inclusion of linearly dependent operational constraints. Such con-
straints arise, for instance, in the presence of loops (cut-sets) exclusively
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composed of closed (open) CBs. If these constraints are modeled as pseudo-
measurements, like in (8.36), there is no need to worry about their number
and linear independence, so long as the weighting factor /9 is not so high
that numerical problems arise. Assume now that the model given by (8.35),
rewritten for simplicity as

/: = J(x) - Â A)X (8.42)

is adopted. The first-order optimality conditions, when applied to (8.42),
allow both 3? and Ao to be determined, provided Ag is of full rank (linearly
independent constraints). But there are cases, where linear independence
of the rows of ̂o can not be assured. Let yl/ and ̂ D denote the set of
linearly independent and redundant rows of ̂ 4o respectively. The above
constrained model becomes,

/: = J(x) - A^z - A^DX (8.43)

which, taking into account the linear relationship between the rows of ̂D
and A/,

D̂ = -R̂ Ar (8.44)

can be also written as,

f = J(x) - (A, + R^AD^jx (8.45)

This means that only an equivalent multiplier vector

A = A, + X^AD (8.46)

can be computed, but not its separate components A/ and AD, unless further
assumptions are made. For instance, it is easy to show that assigning the
same weighting factor to all constraints,

translates into the following additional relationship,

AD = RAj (8.48)

In matrix form, (8.46) and (8.48) yield,

A, i r A
ADj [0

Therefore, when the objective function (8.35), rather than (8.36), is min-
imized, only linearly independent constraints should be used. The Lagrange
multipliers of arbitrary sets of constraints could be obtained, if needed, by
means of (8.49).
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Figure 8.11. Graph corresponding to the 9-CB substation of Figure 8.8 and a pos-
sible tree

8.8 Substation graph and reduced model

This section will show that, by properly exploiting topological properties of
circuits, i.e., Kirchhoff laws, only a subset of power flows through switch-
ing devices must be added to the state vector [10]. This requires that the
substation graph (SG) be previously introduced, from which linearly inde-
pendent operational constraints can be easily identified as well. For the
sake of clarity, only the active subproblem of the SE will be analyzed in de-
tail in the following development, although any noteworthy difference with
the reactive problem will be indicated. It is assumed that the reader is
familiar with basic linear circuit theory (see [5] and Chapter 4).

The SG is composed of as many internal nodes as bus-bar sections plus
a virtual "ground" node intended to represent the external system. The %,
internal nodes of this graph are interconnected by &g internal branches rep-
resenting switching elements. Furthermore, two types of external branches
can be distinguished in the general case: a) 5̂  non-zero impedance branches
corresponding to lines, transformers or shunt devices; b) &p branches con-
necting non-zero injection nodes to ground (external sources or sinks of
power). The number of zero-injection nodes is therefore ?î  — &p.

Example 8.8:

Figure 8.11 shows the graph corresponding to the substation of Figure 8.8.

In this case, there are n^ = 8 buses, &,j = 9 internat branches (switches),
bg = 3 regular branches and &p = 3 external injections. Note that there are 5
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zero-injection nodes.

Each branch of the substation graph contributes a pair of unknowns to
the active problem, namely its active power How and its voltage phase drop
(and another pair to the reactive problem). Let us analyze separately both
sets of unknowns.

On the one hand, by means of Kirchhoff's voltage law, any branch phase
angle (or voltage magnitude drop in the reactive problem) can be expressed
in terms of a base of %i branch phase angles. This set of basic phase angles
can be composed of the branches of an arbitrary tree, but in conventional
nodal-based formulations the nodal phase angles, which serve for the same
purpose, are preferred (note that this particular base corresponds to a star-
shaped tree composed of real or virtual branches connecting all internal
nodes to ground). This explains why 7̂  phase angles are retained in the
state vector, as in the full model described in the former section.

Similarly, Kirchhoff's current law allows any power flow to be expressed
solely in terms of a base of power flows determined by the links of a tree.
For a connected graph, with the notation adopted above, the number of
such links is in principle (&s + &p + &̂ ) — ̂. However, the &̂  power flows
of regular branches can be expressed in terms of the nodal phase angles
of the substation in hand and adjacent substations, already contained in
the state vector. Therefore, the number of truly independent power flow
variables that should be included in the state vector is (&s + &p) — %i, instead
of the &s power flows adopted by the fully augmented model, which means
a reduction of n^ — &p power Rows.

The following remarks are in order:

* 7̂  — &p is also the number of null-injection nodes, whose respective
constraints are no longer enforced since they are implicitly taken
into account by the SG definition. Hence, the same amount of state
variables and constraints are removed from the model.

* The power flows retained in the state vector should be selected in
such a way that they are links of a certain tree in which regular
non-zero impedance branches are also links by default.

* Consequently, it is not strictly necessary that the power flows in-
cluded in the state vector correspond to those of CBs. As will be
shown in the next section, it is sometimes more convenient to con-
sider certain power injections as state variables, and hence links of
the tree. However, for the tree to be connected to ground, at least
one of the power injections should be a tree branch.
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Example 8.9:

The full model of Example 8.5, corresponding to the substation of Figure 8.8,
will be reconsidered in the light of the above development. In this case, the state
vector must be augmented with just (bg + &p) — n^ = 4 power Hows, selected as
explained earlier. Among the several possible choices, the following state vector
is adopted:

2,, = [0i 02 03 04 05 0a 07 08 PS P2 P67 P35 Kef (8.50)

where 2e contains 0g, 0io and 0n. This selection of power flows corresponds to
a tree composed of CBs 1-8, 1-4, 4-7, 3-7, 2-6, 2-8 and 5-8, plus the injection at
bus 1 (refer to Figure 8.11).

In terms of these state variables, the available analog measurements are ex-
pressed as:

Ps* = Ps +es
PT = P2 +S2 /o ci\—1 (8.51)
P37 — —P35 — 2*3—10 (03 — 01o) "h€37

P47 = P3S + T̂ ig(03 - 01o) - P67 +̂ 47

and the topological constraints:

04 - 07 = 0; 03 - 07 = 0; 0i - 04 = 0
04 — 08 = 0; 05 — 08 = 0; 02 — 06 = 0 , .

P35 = 0; P67 = 0; '̂̂)
P28 = P2 - P67 - Tĵ i(06 - 01l) = 0

Comparing (8.50) with (8.27) it is apparent that the reduced model saves 5
state variables with respect to the full model. Note that the 5 structural con-
straints associated with zero-injection buses are not explicitly enforced, which
compensates for the 5 missing power flow variables.

A substation without external power injections constitutes a special
case, as there is no way to connect the internal tree branches to ground if all
non-zero impedance branches must be links. This particular case is handled
by allowing a zero-injection virtual branch to be retained at any of the
substation buses, leading to the non-linear structural constraint appearing
also in the bus-branch mode!. Hence, the reduced model discussed in this
section involves the same number of structural constraints as those of the
bus-branch model.

Further model reductions are many times possible by previously identi-
fying critically observable state variables and their associated critical con-
straints. For instance, the operational constraint of an open CB is critical,
and hence can be removed from the model, if none of the available power
measurements is formulated in terms of the respective power now variable,
which can be also dropped from the state vector. This possibility is sys-
tematically explored in [10], where carefully selected trees are employed
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both for the voltage and power flow submodels. The reduction achieved
by this technique depends anyway on the measurement distribution and
redundancy.

Before ending this section it is worth noting that the SG provides also a
simple means of finding which operational constraints are linearly indepen-
dent. For this purpose, a particular tree is selected so that it includes as
many closed CBs and excludes as many open GBs as possible. When such
a tree contains all closed but no open CB, all operational constraints are
linearly independent. As explained in the former section, redundant con-
straints, corresponding to loops of closed CBs and cut-sets of open CBs,
should be removed from the model if they are handled as equality con-
straints, in order to avoid rank-deficient matrices.

8.9 Implicit substation model: state and
status estimation

Up to now, at least three trees of the SG have been considered, namely:

* A branch voltage tree intended to apply Kirchhoff's voltage law. The
branch voltages of this tree should be included in the state vector.
For convenience, however, this tree is seldom built, as the nodal
voltages constitute a simpler alternative to get an equivalent number
of variables.

* A branch power flow tree intended to apply Kirchhoff's current law.
The power flows of the links of this tree should be included in the
state vector, except for those power Bows which are non-linear func-
tions of the bus voltages.

< A tree intended to identify the largest set of linearly independent
operational constraints.

In this section, a single tree, called the Proper Tree, useful for the
three goals discussed above, is first introduced. This tree requires that
some node voltages be replaced by branch voltages but, as shown later, the
structure of the resulting equations leads naturally to a model in which
none of the operational constraints needs to be explicitly handled. In turn,
this model provides a philosophically different approach to perform state
and status estimation [33].

The Proper Tree is selected keeping the following goals in mind:

1. The conventional bus-branch model should be embedded in the result-
ing state vector. This requires that electrical nodes be previously
identified and their voltages be included in the state vector. An
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electrical node is any bus-bar section, or group of bus-bar sections
interconnected by closed CBs, directly connected to at least one ex-
ternal branch. In Figure 8.12, bus sections 1-3-4-5-7-8 constitute the
electrical node 1, while sections 2-6 lead to node 2.

2. The power Bow through non-zero impedance branches is a non-linear
function of electrical bus voltages, which are already included in the
state vector. Therefore, it is convenient for these regular branches to
be links of the tree so that their power Bows can be directly removed
from the state vector.

3. As many closed CBs as possible should belong to the tree, and the
opposite can be stated for open CBs. This way, independent loops of
closed CBs and cut-sets of open CBs, leading to linearly dependent
constraints, are automatically identiBed.

Consequently, the Proper Tree is deBned as follows:

* Exclude all non-zero impedance branches.

* Include as many closed CBs as possible.

* Select, for every electrical bus, a non-zero injection node that will be
termed the base node (this is the node retained in the bus-branch
model). Include the respective injection branch in the tree (note that
any other injection of the same electrical bus becomes a link). An
electrical bus exclusively connected to non-zero impedance branches
constitutes a special case that is handled by adding a virtual null-
injection branch to any of its elemental buses. This extra branch, also
included in the tree, is responsible for the null-injection constraints
conventionally used by state estimators.

< If the case arises, complete the tree with CBs whose status is un-
known.

< Exclude as many open CBs as possible.

Example 8.10:

Figure 8.12 shows the Proper Tree for the substation of Figure 8.8. The state
vector is composed of the voltages corresponding to tree branches,

Ze = [̂ ,̂ 2,014̂ ig, ̂8,̂ 47,037,̂ 6,̂ ]* (8.53)

and the power Hows/injections corresponding to links, excluding those of actual
hnes or transformers,

Xp = [P28,P67,P35,P5]' (8.54)
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Figure 8.12. Proper Tree

As the only difference with Example 8.9 lies in the chosen tree, the total
number of state variables in (8.53) and (8.54) is the same as those of (8.50),
i.e., five less than the full model. The reader should check that any existing or
potential measurement can be formulated solely in terms of the state variables
contained in (8.53) and (8.54). For instance, if the voltage magnitude at bus-bar
5 is measured, then the following expression results for the reactive problem,

where Vy is the measured value and e the associated noise.

An important additional reason for selecting the proper tree as suggested
above is the fact that linearly independent CB constraints involve identity ma-
trices only. In this case, (8.29) becomes,

0 0
0 0
0 0
0 0
0 0
0 0

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

#1

#47

#37

#26

= 0 3.55)

1 0 0
0 1 0
0 0 1

P67

P35
= 0 (8.56)
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Note that, as the tree contains all closed CBs but none open CB, all topological
constraints are linearly independent in this example.

As a consequence of the way the proper tree is selected, the reduced
model can be written in compact form as follows (refer to the above exam-
ple):

E (8.57)

0 (8.58)

= 0 (8.59)

= 0 (8.60)

where the notation adopted is:

* a;/: Component of the state vector containing,

— Voltage magnitude and phase angle of all base nodes (each one
representing an electrical node).

— Voltage magnitude and phase angle across unknown and open
CBs belonging to the proper tree.

— Power flows through links of the proper tree corresponding to
injections, as well as unknown and closed CBs.

* arcg- Component of the state vector comprising,

— Voltage magnitude and phase angle across closed CBs included
in the proper tree.

— Power Bows through open CBs excluded from the proper tree.

The vector 2 contains all available measurements, including those dis-
carded by conventional estimators, ̂ (-) is the vector of linear and non-linear
functions relating 2 with a;, and c(-) comprises the non-linear constraints
contributed by null-injection base nodes.

In the above model, (8.59) represents the linearly independent CB con-
straints, i.e., those corresponding to closed CBs in the tree and open CBs
in the co-tree. As explained in the former example, one of the reasons for
selecting the proper tree as suggested in this section is to keep (8.59) as
simple as possible (identity matrix involved). Equation (8.60), on the other
hand, refers to linearly dependent CB constraints, i.e., those corresponding
to loops of closed CBs and cut-sets of open CBs. As discussed in section
8.7.3, both types of constraints can be included in the model provided they
are handled as very accurate measurements. However, when the Lagrange
multiplier method is adopted, only (8.59) can be included and its Lagrange
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multiplier vector, A, be computed. If needed, this vector can be split into
two components A/, A^, corresponding to (8.59) and (8.60) respectively, by
solving (8.49). For simplicity, (8.60) will be discarded in the sequel.

With these premises, the Lagrangian of the proper model becomes,

^ = Ir'lVr - //c(a;7, XcB) - A^cB (8.61)

and the following first-order optimality conditions can be written,

0 (8.62)

A = 0 (8.63)

(8.64)

0 (8.65)

where r = 2 — /̂ /̂ cg) is the residual vector, and R/,
are the respective Jacobian matrices.

The following remarks are in order:

1. Equation (8.63) allows the multiplier vector of topological constraints,
A, to be computed from

A = T] ;, I (8.66)

where,

i (8.67)
^CB

is properly called the Topological Sensitivity matrix. In order to
normalize the multiplier vector, A, its covariance can be also obtained
from,

cov(A) = Tcov (1 ̂  ]) T* (8.68)
\L /̂  J/

2. Equation (8.65) can be used to eliminate a:cg from the proper model.
Let /3o(2/) and co(a?/) represent (̂a;/,0) and c(a;/,0) respectively.
Then, it can be shown that the so-called Implicit Model,

2 = 7i,o(a:/)+E (8.69)

co(x/) = 0 (8.70)

provides exactly the same results as the original model without ex-
plicitly handling topological constraints [33].
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Example 8.11:

The implicit model corresponding to the active subproMem of the substation
of Figure 8.8, when the proper tree is that of Figure 8.12, gives rise to the following
state vector,

x; = [9i,02[p5]' (8.71)

Compared to the conventional bus-branch model, a single extra variable, ps,
is added. However, this makes it possible to include three extra measurements in
the state estimation (pg*, ̂47, Ps?) and, what is more important, to detect/identify
topological errors.

In the general case, the implicit model requires the following additional
state variables, with respect to conventional estimators:

1. Injections which are links of the tree. When there are several injections
at the same electrical node, only one of them is a tree branch, which
forces the remaining to be links and, hence, state variables.

2. Voltages across unknown CBs in the tree and power flows through un-
known CBs in the co-tree. These variables remain in the model
because the respective topological constraints are missing.

3. Voltages across open CBs in the tree and power flows through closed
CBs in the co-tree. These CBs are, so to speak, "misplaced" in the
tree, leading to redundant constraints which are useless to decrease
the size of the state vector (when the variable is a voltage drop, the
constraint refers to a power now, and viceversa).

Some of the additional variables, particularly those of items 2 and 3,
are clearly unobservable in many cases and could be removed.

Typically, as in the case analyzed later, the number of additional vari-
ables in the implicit model is a very small percentage of the total. There-
fore, the cost of solving the implicit model is comparable to that of the
bus-branch model. However, the implicit model allows topological error
analysis to be performed at the end of the state estimation process by
means of (8.66)-(8.68), much in the same way as bad data is processed in
conventional estimators. This way, there is no need to carry out the two-
stage estimation procedure in which those substations declared suspicious
after the first run are modeled in detail during the second.

The overall process based on the implicit model can be summarized as
follows:

1. Topology Processing. Among others, the following tasks are per-
formed at every substation: Identification of electrical nodes, sclec-
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tion of proper tree and state vector configuration, the structure of T
is built and many of its elements, which are constant, are determined.

2. State Estimation. Except for the size of the state and measurement
vectors, this stage is essentially identical to existing formulations. As
a byproduct, the residual and Lagrange multiplier vectors, r, //, as
well as associated covariances are obtained. Non-constant elements
of T are computed.

3. Bad Data and Topology Error Analysis. This task is carried out
at the substation level. First, normalized residuals are computed.
If they are small enough, then stop. Otherwise, obtain normalized
Lagrange multipliers corresponding to CB constraints by means of
(8.66) and (8.68). If needed, individual CB multipliers can be com-
puted from (8.49). Select the largest normalized value. If this corre-
sponds to a measurement, remove it or make it dormant and go to
step 2. Otherwise, change the status of the respective CB and go to
step 1 (topological information must be updated in this case).

Note that bad data and topology error analysis is performed simul-
taneously. Compared to conventional estimators, where only the diago-
nal elements of covariance matrices are sought, further computations are
needed to obtain the covariances of CB constraints. However, as matrix T
is composed of as many decoupled blocks as substations, these computa-
tions involve small submatrices which are dealt with sequentially for every
suspected substation.

Example 8.12:

Exact measurements are generated for the substation of former examples (DC
state estimation). Assigning same weights to alt measurements (û  = 1000) and
identical line reactances (X = 0.02 p.u.), two cases, whose relevant normalized
residuals/multipliers are collected in Table 8.5, are run:

1. Assuming the given topology is correct, a gross error is added to p̂ . The
largest normalized residual is 10.3 and, as expected, it is associated with
p̂ }. As there are several large residuals, it is decided to obtain normalized
multipliers. The largest value, corresponding to pe? = 0, is 7.8 < 10.3.
Hence, it is concluded that the topology is correct and the bad data is
properly identified.

2. The assumed open status for the CB 6-7 is wrong (i.e., exact measurements
are compatible with CB 6-7 being closed). The largest normalized residual
is now 15.5 and is associated again with p̂ . However, when normalized
multipliers are computed, the largest one is 20.5 > 15.5 and corresponds
to pe? = 0. Therefore, it is concluded this time that the status of CB 6-7
is wrong.
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Table 8.5. Normalized values for the 9-CB substation

Measurement/
Constraint

T)"*P?3
Tl"*P47
Tl"̂
P2

P28 =0

P67 =0

P35 = 0

Normalized residual/multiplier
Case 1

5.2
10.3
0
0
7.8
5.1

Case 2

7.7
15.5
13.4
13.4
20.5
7.7

In both cases, the same matrix T is employed:

P73 P47 P6\ Pz" P9̂ 4 Pn-6 PlO-3

* 50
0
0
50
50
0
0
0

-1

50
0
0
50
50
0
0
1

-1

0
0
0
0
0
0
0
0
0

0
0
0
0
0
50
-1
-1
0

-50
0
0
0
0
0
0
0
0

0
0
0
0
0

-50
0
0
0

-50 *
0
0

-50
-50
0
0
0
0

014=0

=0

T =10^ 50 50 0 0 0 0 -50 047 = 0
037=0

026=0

P28 = 0

P67 = 0

P35 = 0

A null row in this matrix indicates that the respective constraint is critical (0i8 =
0 and 0ss = 0 in this example), but other constraints may be critical as well (e.g.,
0i4 = 0, 047 = 0 and 026 = 0).

Example 8.13:

Every substation of the IEEE 14-bus test system has been modeled in detail,
as in [10], resorting to typical bus-bar arrangements (see the one-line diagram in
Figure 8.13).

Table 8.6 provides, for each substation, the number of state variables required
by the substation models discussed in this chapter (bus-branch, full, reduced and
implicit). Both the active and reactive problems are considered. Note that the
structure of the measurement set is irrelevant to build this table, except for the
super-reduced model of [10], based on the notion of equivalent constraints, which
is not included. Of course, if the redundancy is not enough, some of those variables
will be unobscrvablc.

The number of additional variables required by the implicit model has essen-
tially to do with the number of unknown CBs and multiple injection branches at
the same electrical bus. Note that a cut-set of open GBs exists at substation 5.
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Figure 8.13. IEEE 14-bus system with substations modeled in detail
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Table 8.6. Number of state variabtes required by different models

Subst. I] B/B
1
2
3
4
5
6
9

10/14
11
12
13

2
4
2
2
2
2
2
4
4
2
2

Total [I 28

Full ] Reduced

24
20
16
34
36
36
30
34
16
10
16
272

16
14
12
20
24
24
18
22
12
6
10
178

Implicit

4
6
4
2
4
2
2
4
6
2
2
38

Some buses, like 35 (substation 5) and 59 (substation 11) are clearly unob-
servable, since their phase angles do not appear in any measurement/constraint.
If the respective variables are removed from the state vector, then the full and
implicit models comprise 268 and 34 variables respectively. This means that
the implicit model requires only 6 extra variables compared to the conventional
bus-branch model.

8.10 Observability analysis revisited

Conventional observability analysis, as presented in Chapter 4, assumes
that the state vector is composed exclusively of bus voltage magnitudes
and phase angles, which is not the case when any of the augmented models
discussed above are resorted to. Therefore, observability analysis should be
reconsidered in the light of the generalized estimation concepts introduced
in this chapter. For the topological observability analysis, this is done in
[8], while numerical observability determination is generalized in [18]. The
reader is referred to those references for further details.

Irrespective of the adopted model being full or implicit, the presence
of certain power Hows (or injections) in the state vector gives rise to the
following major differences with respect to the conventional formulation:

< The notion of topological island somewhat vanishes and that of ob-
servable island is generalized. Conventionally, a topological island,
separated from other islands by open CBs, may lead to one or scv-
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era! observable islands. For each observable island, one of its phase
angles can be arbitrarily chosen without any influence on the power
flows of observable branches. Many trivial islands, composed of bus
sections and switches, or isolated nodes, are identified and discarded
by the topology processor at the very beginning. However, according
to the basic observability definition, a branch is said to be observable
when its power now can be obtained from the available information.
Therefore, open CBs should be considered as observable branches in
the new paradigm, which means that two or more topological islands
can lead to a single generalized observable island, i.e., a set of inter-
connected branches and switches whose power flows are observable.
Network configuration is hence translated into a set of additional
constraints which, along with existing measurements, determine ob-
servable branches. A single generalized observable island, anyway,
requires as many phase angles to be specified as conventional observ-
able islands it comprises.

* Numerically based observability must be able to cope with zero pivots
arising in columns corresponding to power Bow variables. When this
happens, the null pivot is replaced by 1, the power flow is assigned an
arbitrary value and the respective branch is flagged as unobservable.
Back substitution will determine subsequently the remaining unob-
servable branches. Sometimes, because of the new state variables,
conventionally observable islands become partly unobservable.

These philosophical differences are illustrated in the following examples.

Example 8.14:

Analyze whether the network shown in Figure 8.14-(a) is observable or not.
Repeat the analysis when pz is measured.
Initial situation

To begin with, it is very easy to conclude that, when the bus/branch model
is adopted, the resulting 3-bus network is observable by means of the two power
How measurements, for which a single reference angle is required. The status of
CBs cannot be checked, however, with this mode).

The full topological model would require 6 power now variables plus 8 nodal
phase angles. Instead, the implicit model based on the proper tree of Figure
8.14-(b) will be adopted. Note that the only additional variable retained in the
mode} is the injection at bus 2 (tree link). The Jacobian corresponding to the
DC state estimator, assuming unity reactances, is given in this case by:

-1 1 0 0
-1 0 1 0
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(b)

Figure 8.14. 6-CB substation (a) and associated proper tree (b) to illustrate gener-
alized observability concepts

Clearly, p2 is not observable (zero pivot), which means that pi and
pressed as:

-Pi = P2 + Pse + P?5 -Pl2 = P2 + P75

are not observable either. Hence, in spite of a single reference angle being required,
there are two observable islands, given by branches {5-7, 3-5, 2-3} and {6-8, 4-6,
1-4} respectively.
Injection measurement added

When P2* is added, the Jacobian corresponding to the implicit modet becomes:

P75

01 7̂ 08 P2

- 1 1 0 0

- 1 0 1 0
0 0 0 1

which is of fuR rank so long as an angle pseudomeasurement is added. Therefore,
the whole network is observable.

The same conclusions would have been reached if the full substation model
had been adopted.

Example 8.15:

Perform generalized observability analysis for the network of Figure 8.15-(a),
where the status of CB 1-2 is unknown.

From the perspective of a conventional state estimator, a decision must be
first taken about the status of CB 1-2. Assume that, based for instance on
measurement values, it is decided that CB 1-2 is open. Then, two observable
islands exist, each one matching its corresponding topological island.

When the implicit model developed in the former section is employed, the
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5 2

(a) (b)

Figure 8.15. 6-CB substation (a) and associated proper tree (b) to illustrate an
observable network requiring two reference angles

proper tree shown in Figure 8.15-(b) results, which leads to the following Jacobian:

P75

PM

01 2̂ 7̂ 8̂ Pl2

0 - 1 1 0 0 '
- 1 0 0 1 0
0 1 - 1 0 - 1

This time, pi2 is observable, and hence the entire network, for which two
reference angles must be chosen. Note that there is no need to decide in advance
whether one or two topological islands exist.

8.11 Problems

1. Consider the 4-bus system of Example 8.1, Figure 8.2-(a). Assume
that line 1-2, actually closed, is erroneously assumed open (exclusion
error). Ignoring the power How measurements corresponding to this
branch, carry out the WLS estimation followed by a conventional
bad data analysis. Are the conclusions reached for the inclusion
error studied in Example 8.1 valid in this case?

2. Repeat the previous analysis, taking into account this time the power
now measurements at branch 1-2. Compare the results obtained in
both cases, paying special attention to the measurements with largest
residual.

3. In the network corresponding to Example 8.2, Figure 8.3-(a), the
topology processor is misled by wrong field information, concluding
that bus 3 is composed of two bus sections (bus split error). Branch
1-3, along with 50% of the net power injection is incident to one
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of the sections, while the other half of the injected power plus the
remaining branches give rise to the second section. Is this topology
error detectable? Why?

4. Consider again the 4-bus system of Example 8.1. Build the sensitivity
matrix that relates normalized residuals with power Rows, as denned
by (8.6). Then, obtain the correlation index given by (8.9) for each
branch. Is the inclusion error properly identified?

5. In the 3-bus network corresponding to Example 8.4, Figure 8.5, the
active and reactive power injection measurements at bus 2 are suc-
cessively decreased from their original values in steps of 10%. This
leads eventually to a pair of bad data along with the unknown status
of branch 1-2. Compare the results of running the WLS estimator
with and without the quadratic constraint (8.11) added, in terms of
number of iterations, accuracy of estimated values, particularly the
branch status, and capability to detect the bad data. Note that,
when the constraint is missing, the branch status becomes ambigu-
ous (value of A; close to 0.5) in the presence of the bad injections, and
also that bad data take longer to be flagged.

6. Consider the system of Figure 8.10 analyzed in Example 8.7. The
following sets of Gaussian measurements are generated which are
compatible with the CB '2a-2b' being open:

P13
1.305

313

0.646
P2&3 <?263 P2o, 92a

0.198 0.0862 -0.807 -0.351

Vl â ĥ

1.0144 1.0023 0.9754

P2b 92&

0.234 0.0756

For the same impedance values and weights adopted in Example 8.4,
perform the WLS estimation with and without the pair of constraints
(8.40) added, and compare the power flow through the CB in both
cases.

7. Repeat the analysis of Examples 8.10 and 8.11 when the CB 1-4 in
the substation of Figure 8.8 is open. Compare the size and structure
of the full, bus/branch and implicit models.

8. Repeat the analysis of Examples 8.10 and 8.11 when the status of
the CB 2-6 in the substation of Figure 8.8 is unknown. Compare
again the different models.

9. Confirm that the same conclusions of Examples 8.14 and 8.15 are
reached by using the full rather than the implicit substation model.
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10. Assume that, in the substation of Example 8.14, the CB 1-2 is open
and p^ is not available. Are all power flows observable? How many
phase angle references are needed?
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Chapter 9

State Estimation Using
Ampere Measurements

9.1 Introduction

In the preceding chapters, line current magnitude (ampere) measurements
are intentionally left out of the presented analysis. Despite their widespread
availability in substations and their utilization for protective relaying func-
tions, ampere measurements are seldom telemetered to the bulk transmis-
sion system's control center. Instead, utilities prefer to invest in a large
number of transducers that supply real and reactive power measurements
to the substation RTUs. This is certainly justifiable given the importance
of reliability in monitoring the operation of the high voltage system.

Recent developments in the power industry as a result of the electric
business deregulation initiated the separation of the formerly integrated
generation, transmission and distribution activities. This has led to the
creation of several electric utilities that essentially plan and operate re-
gional distribution networks, while the so-called Independent System Op-
erator (ISO) manages the operation of the transmission network. Efficient
management of such distribution networks calls for improved monitoring
capabilities, where ampere measurements can play a vital role as will be
discussed in this chapter.

In this context, the notion of "distribution network" comprises not only
the radially operated low and medium voltage feeders, but also those sub-
transmission systems with voltage levels below 138-kV or 220-kV, which
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are typically not managed by the ISO. Higher quality-of-service standards,
as well as legal requirements for open access to the wires by any market
partner, are challenging the way such distribution networks have been tra-
ditionally operated. In many cases, simple SCADA systems that report
directly to the main EMS, are installed by these utilities. Their main
responsibilities have to do with component loading and bus voltage moni-
toring, organization of maintenance tasks, prompt service restoration after
a blackout, etc. Taking advantage of advances in computers and commu-
nications, such local and modest systems are nowadays being converted
into true distribution management systems (DMS), in much the same way
the advanced energy management systems emerged in the late sixties and
seventies. Needless to say, this upgrading relies strongly on the develop-
ment of a state estimator, which should be designed taking the following
characteristics of distribution networks into consideration:

1. High R/X ratios, sometimes well above unity.

2. Very limited measurement set. Power measurements are usually re-
stricted to 132-kV or 138-kV and above. On the other hand, many
ampere measurements are available at the lower voltage levels. These
are cheaper to install and facilitate the checking for line overloads by
the system operator.

3. Small number of loops compared to transmission networks. In order
to reduce short-circuit currents, sub-transmission systems (50-132-
kV, 34.5-138-kV) are usually operated through separated ring struc-
tures. Lower voltage distribution systems are radially operated for
the sake of simplicity and economy.

4. No major generators, if any, connected to networks under 132-kV
or 138-kV (eolic farms and co-generation systems are becoming an
important exception to this rule). Each sub-transmission loop is
typically supplied power from two transmission buses through ap-
propriate transformers, in order to increase system reliability.

5. Line susceptances are almost negligible.

The first item precludes the application of the decoupling principle.
Furthermore, as will be shown below, ampere measurements cannot be
clearly coupled to any of the resulting subproblems. Therefore, decoupled
state estimators will not be addressed in this chapter.

The second item implies a reduced redundancy and hence filtering capa-
bility, as many pairs of power measurements are replaced by single current
measurements. This redundancy deterioration is aggravated by the third
feature, as the branch-to-node ratio approaches the unity for nearly radial
networks.
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The third and fourth features are sometimes helpful in the process of
determining power now directions in the presence of ampere measurements.
This is the case, for instance, of active power flows in radial networks fed
from a single point (more caution should be exercised in general regarding
reactive power now directions).

The last item is not so relevant, but in the presence of current measure-
ments it tends to deteriorate the Jacobian condition number.

This chapter describes the main difficulties associated with the use of
ampere measurements in state estimators. Then, it presents various tech-
niques that have been developed in the last decade in order to overcome
these problems. The notion of observable network will be reconsidered and
extended to cope with new situations arising in the presence of current
measurements.

9.2 Modeling of Ampere Measurements

For a branch connecting nodes ̂  and j, the following equation relates its
current magnitude to the state variables [19]:

7̂. = [̂2 + B^ - 2̂ V,(Ccoŝ  - Dsin̂ )]̂  (9.1)

where the following coefficients have been defined:

Aj, — &ij : series conductance & susceptance

&s?t : 1/2 charging susceptance

When the line charging susceptance bg^ is neglected, the simplified ex-
pression provided in Chapter 2 is obtained:

4' = [(4 + H)(̂  + ̂ - 2̂  cos<̂ )]̂  (9.2)

Note that the "sine" term in (9.1) vanishes, which is one of the main
sources of trouble when using ampere measurements.

Figure 9.1 represents both Ĵ - and J? as a function of % and <?i for
V^ = 1 and 0j = 0 (assuming unity admittance).

From the above expression it is easy to obtain the following Jacobian
entries for the state variables of bus i (those of bus j are obtained by simply
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*'s at t̂ g ̂  _2 0.9,

Figure 9.1. Current magnitude (a) and squared current magnitude (b)
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exchanging subscripts : and j below):

^̂ (9.3)

Figure 9.2 shows the derivatives of 7̂  as a function of % and 9̂  for
Vy = 1 and 0., = 0 (assuming unity admittance). Note that the smaller
the difference % — V, the steeper the resulting sigmoid-like and impulse-
like functions. In the limit (% ̂  V,, 0̂  ̂  0), both derivatives will be
undefined, as evident also from Figure 9.1.

It is also possible for the squared current magnitude measurement, 7?.,
to be included in the SE model, in which case the following terms are of
interest:

(9.4)

Note that if 7?< is adopted instead of 7̂ , the measurement covariance
will double.

Figure 9.3 is the counterpart of Figure 9.2 for 7?,. The resulting func-
tions are much smoother in this case and can be approximated, around fiat
start, as follows:

Therefore, both derivatives tend to zero when % ̂ Vy and 6̂ - m 0.
It is apparent from those figures that ampere measurements can not be

coupled a pWoW with either the active or reactive subproblem. Current
measurements will be coupled with the active (or reactive) component only
if 6̂  (or % — 1̂ ) is large enough. Hence, for heavily loaded lines, current
measurements tend to couple both problems.

Note that the net current injection at a bus is frequently the sum of sev-
eral external contributions but current magnitudes can not be algebraically
added into a single measurement. Hence, the possibility of having current
injection measurements will be neglected throughout this chapter. How-
ever, should such a measurement exist, it could be also included in the
estimation process, much in the same way and with the same difficulties as
for the branch current magnitude measurements.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.



3 c

De
ri
va
ti
ve
 w.
r.
t.
 p
ha
se
 an
g[
e

°

39
 
5

"*
 3 *S 3 G O- (D

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.



Figure 9.3. Derivatives of squared current magnitude with respect to voltage mag-
nitude (a) and phase angle (b)
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9.3 Difficulties in Using Ampere Measure-
ments

The use of ampere measurements wiU lead to various problems, which in
turn may seriously deteriorate the performance of the state estimators. We
will first present the problems and then develop methods to alleviate them.
The following problems related to numerical and/or observability issues are
likely to arise:

< For fiat start, Jacobian elements are undefined if the raw value 7̂
is used (Figure 9.2), or null when 7̂  is adopted (Figure 9.3), which
means that current measurements are useless in this situation. Con-
sequently, any observability analysis in the presence of such mea-
surements should be based on a Jacobian computed at a different
point. The following solutions have been suggested to circumvent
this problem:

— Add artificial shunt elements which are removed after the first
iteration.

— Initialize state variables with a random small perturbation.

Both schemes perform reasonably well provided the current actu-
ally flowing through the line exceeds a certain threshold. Otherwise,
i.e., when the line loading is negligible, the estimated value 0̂  ap-
proaches zero and the Jacobian becomes ill-conditioned if the ampere
measurement is needed to assure observability. It is better in such
cases to substitute the measurement 7̂  ?R 0 by 7̂ - ?R 0.

* Abrupt changes around the origin of these Jacobian terms when 7̂
is used (Figure 9.2), due to the strong non-linearity inherent to (9.1).
This dependence of Jacobian terms upon the state vector may cause
convergence difficulties for lightly loaded lines, unless the step-length
is carefully chosen during the iterative process. Note that this prob-
lem will be alleviated if 7? is used instead (Figure 9.3), at the expense
of its deteriorated covariance.

* In the absence of power measurements, the only information about
phase angles that can be obtained, according to (9.2), is:

y.2 + y2 _ j2/ 2 < 3.2 )
'+^

Therefore, two opposite values ±6̂  are compatible with a given set
of voltage and ampere magnitude measurements. This translates
into two different power flow solutions, because of the presence of
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the "sine" term when writing the power flow equations as follows
(line susceptance ignored):

+ - 7̂ . .]
(9.6)

- 3̂ ^ sin ̂

For a lossless line (r̂  = gij = 0) a unique Qij value but two F̂
values with opposite signs are obtained. In subtransmission systems,
however, where r m a:, multiple and different solutions are expected
both for the active and reactive power flows.

The multiplicity of solutions issue is not exclusively due to ampere
measurements, but may arise also in the presence of power mea-
surements. Assuming the values of % and % are given, Table 9.1
shows the number of possible solutions for Vy and 0j when differ-
ent measurement pairs are available. Conventional estimators ignore
the possibility of having multiple solutions by assuming that power
measurements come in pairs.

Table 9.1. Number of possible solutions for different measurement combinations

Measured
magnitudes

-̂Q;j
-̂̂Q^
4-y?
,̂-4

(t/%j*-̂ ẑ

No. of solutions

î
i
2
2
2
2

^
1

1

1

1

2
2

The following example illustrates the multiplicity of solutions issue dis-
cussed above. In order to simplify the analysis it will be assumed through-
out this chapter, unless otherwise noticed, that all measurements are exact.

Example 9.1:

Consider the three-bus system of Figure 9.4 comprising six measurements.
The corresponding phasor diagram is shown in Figure 9.5. Arbitrarily assuming
the phase angle of bus 1 voltage as zero, the complex voltage at bus 2 can be
determined either by the pair F*i2-Qi2 or .Pi2-%. On the other hand, the voltage
phasor at bus 3 must lie at the intersection of two circles, one centered at "P"
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Figure 9.4. 3-bus system with six measurements

with radius %, the other centered at "Q" with radius
are two possible solutions for %, marked by V^ and

. Consequently, there
Provided that the

linearization is not performed at flat start, it is easy to show that the column rank
of the measurement Jacobian for this example is 5, which implies observability in
the conventional sense. However, as apparent from the diagram, the solution is
not unique.

Figure 9.5. Phasor diagram iHustrating the two possible solutions for the system
of Figure 9.4

Of all the inconveniences cited above, the possibility of multiple solu-
tions is by far the most important, as it affects several well-established
notions in conventional state estimators, like that of observability.

Observability is denned as the ability to uniquely estimate the state of
the system using the given measurements. The commonly used observabil-
ity algorithms [18, 15] are based on the assumption that if a solution can
be found to the state estimation problem, then it will be unique. This is
a valid assumption as long as the measurements come in real and reactive
pairs and the observability tests can be done using decoupled models. As
shown above, the natural decoupling between the real and reactive mea-
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surements is lost when current magnitude measurements are included in the
measurement set. But the coupled model no longer guarantees uniqueness
of the solution, even if a solution can be reached numerically. That is, the
column rank of the measurement Jacobian #, may remain full throughout
the iterative solution steps, indicating a conven^oTmNy observable or solv-
able system, even though it may have multiple possible solutions. Hence,
when using current magnitude measurements, a full rank Jacobian does not
necessarily imply a M?M(?Mê / observable system.

A system is said to be non-uniquely observable if more than one state
can be found based on the given set of measurements. Accordingly, those
branches whose power flows can assume more than one value that satisfies
all the system measurements will be labeled as non-uniquely observable
branches. On the other hand, uniquely observable systems will have a
unique state and a unique set of branch power flows through every branch.
State estimation will yield the same solution, irrespective of the starting
point, for uniquely observable systems. However, it may converge arbitrar-
ily to any one of the possible solutions, based on the starting point, for
systems with multiple solutions.

Besides the notion of unique solvability, there is also a need to reconsider
the way existing measurements are classified as critical or redundant, as well
as the capability of a state estimator to detect bad data in the presence
of current measurements. The rest of the chapter will be focused on these
issues.

9.4 Inequality-Constrained State Estimation

Previous work on the use of ampere measurements in WLS state estima-
tors is restricted to cases where the system is already observable without
these measurements. So, the main purpose of including them is to improve
accuracy rather than extending the observable network. The results of sim-
ulations where different types of measurements are added to a critical set of
measurements are presented in [20]. It is demonstrated that for the chosen
performance index, line currents are comparable to active power flows and
better than reactive power Bows. In [12] a comparison is made between
the inclusion of voltage magnitudes and line currents. It is concluded that
improved estimation accuracy is provided by the voltage set. Reference [14]
mentions the risk of overflow for flat start and the lack of directional in-
formation as the two major problems posed by the inclusion of line-current
measurements. The conclusion is that such measurements should not be
considered to extend the observable network. Reference [16] is the first work
specifically devoted to the topic of using line currents in state estimation.
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Assuming the system is already observable by other types of measurements,
inclusion of line-current measurements to improve redundancy (i.e., accu-
racy), especially for the P — 0 subproblem, is recommended. The use of the
squared value of current magnitudes in order to avoid the overflow problem
is suggested in [9]. Furthermore, for those lines in which the direction of
power flow is known a pWoW, it is suggested that current measurements
can be safely used for extending observability. This is frequently true in
radial networks, but seldom so in general meshed networks where power
now directions may change arbitrarily during daily operation.

The first attempt to systematically deal with the multiplicity of solu-
tions issue in the presence of ampere measurements is presented in [19].
The basic idea is that many, if not all, of the potential solutions that may
be reached when ampere measurements are included, can be discarded by
checking the net power injected at those buses for which its sign is known
a pWort In high-voltage distribution networks, active power is always de-
livered to low voltage buses via distribution transformers. On the other
hand, active power taken from the transmission level or small generators
is injected into a few buses of the distribution network. Consequently, it is
almost always possible to assert whether the specified real power for each
node is less, greater than or equal to zero (due to the presence of capacitor
banks at lower levels, this is not so clear in certain cases for the reactive
power). This knowledge can be incorporated into the estimation process in
the form of me<?Maf!% cofM̂ ram̂ s. The estimation problem thus becomes
that of minimizing a non-linear function subject to non-linear equality and
inequality constraints. Mathematically stated:

Minimize J(z) = -̂̂ (a;)]̂ [̂ -̂ (a;)]

Subject to Ci(a:) > 0, ^ = 1,2,"',JV (9.7)

This model is a natural extension of the equality-constrained state es-
timator discussed in Chapter 3, and can be used for other purposes as well
in conventional estimators, like forcing certain magnitudes of the external
equivalent to lie within an acceptable range, etc. Numerical solution of
the above model is obviously more complex, and the use of interior-point
techniques is strongly recommended [13].

A theoretical analysis is presented in [19] showing that the number of
inequality constraints strictly required in practice to assure uniqueness of
solution can be rather low, particularly for meshed networks, provided all
voltage and line-current magnitude measurements are available. The worst
case arises in radial networks, where all inequality constraints are needed.
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Example 9.2:

Assume a single loop like the one shown in Figure 9.6, where all branch resis-
tances are negligible and all reactances are identical. Besides, it is assumed that
all voltage magnitudes are 1 pu and all branch current magnitudes are measured.

Figure 9.6. 4-bus ring with two possible solutions

From the available measurements, the absolute values of all branch phase
angles can be obtained from (9.5):

= arccos < 1 - T

The resulting values are shown next to the corresponding branches in Fig-
ure 9.6. A simple analysis of those values indicates that only the following two
combinations of signs are possible for Kirchhoff's voltage law to be satisfied:

1-2-3+4=0 -1+2+3-4=0

But, according to (9.6), it is also clear that those solutions lead to opposite
active power Hows and, consequently, opposite power injections. Therefore, a
single inequality constraint (marked up with an arrow in Figure 9.6) would suffice
in theory to force the estimator to converge to the right solution.

In certain cases, however, numerical coincidences may lead to a larger
number of feasible combinations, particularly when measurement noise is
taken into account.

Example 9.3:

Consider the 5-bus ring shown in Figure 9.7, where two phase angles are, by
chance, very similar (the two respective branches might correspond, for instance,
to identical transformers approximately sharing one half of the total load). Note
that, this time, because of the redundancy and the presence of noise, the phase
angles provided a pWoW by (9.5) do not exactly obey Kirchhoff's voltage law (of
course, the estimated values will do!).
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(c)

Figure 9.7. 5-bus ring with more than two solutions

In this case, a single inequality constraint at the top corner bus is able to
discriminate between the two opposite solutions (a) and (b) but not between (a)
and (c). Hence, at least two bus constraints are needed (the reader is referred to
the end-of-chapter Problem 2 to continue the analysis).

Unfortunately, even if aN inequality constraints are added to the model,
there is no guarantee that a unique solution exists when the measurement
set is exclusively composed of voltage and current magnitudes (i.e., un-
signed measurements). This happens for instance in radial networks which
are fed from several buses and in meshed networks with incomplete mea-
surement sets, as illustrated by the following examples.

Example 9.4:

Figure 9.8(a) shows a 5-bus radial network obtained by unfolding the loop of
Example 9.2. The arrows at each bus indicate the sign of the respective power
injection.

(a)

? 1̂ I ? ] ̂  T 5̂4 I

Figure 9.8. Radial network with two solutions
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Because of the constraints at buses 1 and 5, the signs of power Hows .Pgi and
Ps4 can be determined. Also, considering the relative values of [f̂ s] and ĵ s] and
the constraint at bus 3, it can be also concluded that Pis is positive. However,
as suggested by the question mark in Figure 9.8(b), the sign of pM can not be
safety ascertained, in spite of all constraints being available. Note that, unlike
in Example 9.2, the measurement set is critical in this case, because of the extra
bus. Therefore, not only the measurement set, but also the topology is relevant
when analyzing the solution uniqueness.

Example 9.5:

Consider the system shown in Figure 9.9. Assume that all bus voltage magni-
tudes (all equal to 1.0) and the line currents 7i and 2̂ are measured and 7i > /2<
Further assume that bus 2 is a load bus (Ps < 0) and bus 3 is a generator bus
(Ps > 0). The possible solutions for #2 and 0s are shown in Figure 9.10. It

can be shown that the choice of Vg will imply Pi2 > 0 and P̂ s < 0, yielding
P2 < 0 which is consistent with the inequality constraint on the net power injec-
tion at this load bus. On the other hand, the choice of Vg^ will imply Pi2 < 0
and P23 > 0, yielding P2 > 0 which contradicts the inequality constraint. Thus,
1/2 is chosen as the solution. However, for this chosen solution, one can choose

either one of Vg or P̂  , since both voltages can yield solutions satisfying the
inequality constraint Ps > 0 at the generator bus 3. So, despite the use of in-
equality constraints on the bus injections, possibility of multiple (in this case
two) solutions can not be completely avoided.

t̂nequ dity Constr lint

Figure 9.9. System with two possible solutions

However, contrary to what the pioneers in this research subject area
initially believed, ampere measurements can be useful, not only to increase
the redundancy, but also to extend the uniquely observable network when
the measurement set contains certain strategically located power measure-
ments, without having to enforce inequality constraints. This wiH be illus-
trated by the following example.
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Figure 9.10. Phaser diagram for possible solutions

Example 9.6:

In the system of Figure 9.11, comprising 4 buses and 8 measurements, branches
1-4 and 4-3 are fully observable by means of the respective power How measure-
ments.

Figure 9.11. 4-bus system with a unique solution

Given the voltage phasors of buses 1, 3 and 4, the voltage of bus 2 is uniquely
determined by the intersection of the three circles centered at the tips of the three
phasors with radii Jgh-KzA:, for /c = 1;3,4. This point is labelled as P in Figure
9.12. It should be noted that any one of the line currents is redundant. Also, note
that point P becomes ill-defined as the three phasors tend to be in phase. That
is, the fact that 6*13, #14 and #34 are not null is crucial for the unique observability
of the voltage at bus 2.

In order to take advantage of this possibility, several acf /toe procedures
have been developed in the last decade aimed at determining, for a given
topology and combination of measurements, which branches are uniquely
observable, nonuniquely observable and fully unobscrvable. The following
two sections will be devoted to summarize these developments.
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Figure 9.12. Phaser diagram for the system of figure 9.11

9.5 Heuristic Determination of ,P-0 Solution
Uniqueness

As voltage magnitudes for nearly all buses are commonly included in most
measurement sets, usually in a redundant manner, it makes sense to restrict
the solution uniqueness analysis to just the _P-0 subproblem by assuming
that all voltage magnitudes are known.

At first glance, it seems that the massive presence of current magni-
tudes in the measurement set gives rise, when considered individually, to a
large number of possible combinations in the signs of branch phase angles,
each one leading to a different power flow solution. However, as appar-
ent from the preceding results and discussions, Kirchhoff's laws establish
additional restrictions among certain subsets of signs in such a way that
only two combinations remain valid, provided that the possibilities of exact
numerical cancellations are ignored. Furthermore, whenever power flow or
injection measurements get involved in any of those equations, one of the
two solutions will be automatically excluded. This can be formalized in the
following observability rules:

Loop rule: In a given loop, if all the branches are measured (either a
current magnitude or a power flow measurement), then all branches
will be observable provided at least one of them has a power flow
measurement (or equivalently, at least one of them is observable).
If all branches of the loop carry only current measurements, then
there will be two possible solutions, corresponding to the possible
polarities of 0̂  in each branch.
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Node rule: At a given injection measured node, if all the branches con-
nected to that node are measured (either current magnitude or power
now), all connected branches will be observable. One exception for
lossless branches is the zero-injection node (see the explanation in the
next paragraph), in which case two solutions for the branch variables
remain, unless at least one incident power now is measured.

According to (9.6), when all branches are lossless, like in the above
examples, the two opposite values of 0̂  lead also to identical but opposite
active power flows, which means that zero-injection constraints are useless
to discriminate the correct solution. However, in real distribution systems,
the relatively large value of r̂  gives rise to probably contrary but different
power Bows, in which case virtual zero-injection measurements are also
helpful to prevent multiplicity of solutions (there are no exceptions to the
node rule).

A heuristic procedure to determine uniquely observable branches can
be devised by sequentially applying the above two rules, starting with fully
measured loops and nodes and progressing in a systematic manner [3]. As
distribution networks are operated by splitting them into simpler subnet-
works, such a procedure will almost always succeed in correctly finding the
maximum observable subnetwork.

In many cases, one or several inequality constraints may be needed in
order to rule out those physically infeasible solutions, in the absence of
power measurements.

Example 9.7:

Consider the network and measurement set of Figure 9.13, where buses have
been labeled with letters and branches with numbers.

The following independent loop equations can be written:

0 = 0i+^2T^+&+^T^4 (9.8)
0 = +0g+0g+6)7 + 6)9 + 6)8 (9.9)

where the variables carrying the "*" symbol can be directly obtained from existing
current or power flow measurements.

Also, assuming unity branch reactances, the DC power measurement model
leads to:

Pc = T<93T<?6+07 (9.10)

Pe = ±<?4T<?5-9s (9.11)

Using the "Loop rule" in (9.8), the signs of the branch variables $2, 6*3, <?4, 6*5 and
9e will be uniquely denned. Substituting these in (9.10) and (9.11), 6*7 and (2s
can also be uniquely determined. Finally, (9.9) will yield the remaining unknown
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* : POWER MEAS.

O : CURRENT MEAS.

Figure 9.13. 8-bus system for Example 9.7

#9. Therefore, the network is uniquely observable with the given measurement
configuration.

Example 9.8:

Consider the same system with a different measurement configuration, as
shown in Figure 9.14.

In this case, the following 2 independent loop and 2 node equations can be

written:

0 = 0i ± 02 + 03 + 06 ± 05

0 = T<?6 - 06 ± 07 + 09 ± 0

Pc = -03 + 06 ± 07

Pe = ±04 T <?5 =F <?8

(9.12)

(9.13)

(9.14)

(9.15)

Using the "Node rule" in (9.15), the signs of the branch variables 04, 0s and
0g can be uniquely determined. Substituting these in (9.12) and (9.13), multiple
solutions for 0s, 0e and 0g can be found corresponding to the possible choices of
+/- signs for 02 and 0? in (9.12), (9.13) and (9.14). Thus, this network is not
uniquely observable for the given measurement configuration.

Note that, in both examples above, the same number of current, power
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* : POWER MEAS.

O : CURRENT MEAS.

Figure 9.14. 8-bus system for Example 9.8

Bow and injection measurements are available but in different configura-
tions. While they make the network uniquely observable in the first case,
they fail to uniquely define the state of the second network.

9.6 Algorithmic Determination of Solution
Uniqueness

Even though the above heuristic procedures may suffice in simple, nearly ra-
dial network structures, like those usually found in systems under 132 kV, a
fully automated technique, preferably based on existing numerical routines
and matrices, would be most welcome for the general and more complex
case.

Current magnitude measurements can be considered as measurements
with possible structural errors (because of the unknown signs of the Jaco-
bian entries and that these signs are arbitrarily set at the initial guess). If
there were other measurements which were functions of the same states as
these current magnitude measurements, they would force the states to move
towards the unique solution even if the initial signs of the Jacobian entries
for the current magnitudes were incorrect. Obviously, this would not be
possible, if any of the current magnitude measurements wore critical, since
critical measurements would be linearly independent of the rest of the mea-
surements. So, the existence of a critical current magnitude measurement
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implies that the system is not uniquely observable.
When a redundant (non critical) measurement is in error, the set of

measurements that will be affected by this error, forms the ressi&mf spread
component corresponding to these measurements [7]. Consider a current
measurement belonging to a residual spread component, which contains
only other current and voltage magnitude measurements but no other type
of measurements. Then there is a possibility that more than one solution
will satisfy all the current measurements in the residual spread component
without affecting any of the remaining measurements outside the residual
spread area. Such residual spread components will be referred to as f-!
restdMa/ spread component. If the residual spread component contains at
least one power now or injection measurement, then the possibility of mul-
tiple solutions will be avoided. This is due to the fact that the power now
or injection measurements can only be satisfied by a single solution, forcing
the current magnitude measurements to satisfy that single solution among
the several possible ones. Note that a critical measurement is nothing but
a residual spread component with a single member. Therefore, in general,
we can conclude that if a v-i residual spread component can be found, then
the system will not be uniquely observable.

The presence of v-i residual spread components and/or critical current
measurements, leading to multiple solutions, can be detected in several
ways, like the ones discussed in the two subsections that follow.

9.6.1 Procedure based on the residual covariance ma-
trix

As derived in Chapter 5, the residual covariance matrix Q can be obtained
from

Q = ̂.R = R-RC"^R^ (9.16)

where:
R: measurement Jacobian matrix
R: covariance matrix of measurement error vector
G = R^R-iR: gain matrix
.?: residual sensitivity matrix.

If a measurement is critical, then the corresponding column of the ma-
trix Q will be zero. Furthermore, if a measurement ̂ ,̂ belongs to a residual
spread component, then the A;'th column of Q will be zero except for the
entries corresponding to the measurements belonging to the same residual
spread component. Therefore, by computing the corresponding column of
0, one can find out whether such a measurement is critical or not and, in
this case, which measurements belong to the same residual spread compo-
nent.
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Since the criticality and the residual spread components need to be de-
termined only for the current magnitude measurements, only those columns
of Q corresponding to the current measurements are required. Any desired
column, Q/;, can be calculated according to the following procedure:

* Solve G y^ = /̂
where /̂  : /c'th row of #.

* Compute Q^ as: 61̂  = R^ — Ry^
where R/; is the %;'th column of R (containing all zeros except for
as the A;'th entry).

Note that the sparse triangular factors of G* are already available from
the state estimation solution and /i,ĵ  is a very sparse vector, hence y^ can
be obtained by sparse forward/back substitutions very efficiently.

The steps of the uniqueness determination procedure can now be pre-
sented [5]. It is assumed that a conventional observability analysis program
is available to determine the solvability of the system. The following proce-
dure is intended for detecting the possibility of multiple solutions only. So,
it starts out with the assumption that the given network is solvable, but
has possibly several solutions corresponding to the given measurement set.

1. Compute the columns of Q corresponding to the current magnitude
measurements. Note that, as the numerical values of R are irrelevant,
the residual sensitivity matrix <? is as good as R for this purpose.

2. If any column, ̂, contains a nonzero entry corresponding to a power
flow or an injection measurement, then skip that column. Otherwise,
flag the current measurement together with all the other measure-
ments with nonzero entries in that column, as a v-i residual spread
component that has potential to yield multiple solutions. If the col-
umn is completely zero, then flag the current magnitude measure-
ment as critical.

If no measurement is flagged, then the system will be uniquely observ-
able. If one or more current magnitude measurements are flagged either as
critical or as a member of a v-i residual spread component, then the system
will not be uniquely observable.

During step 2 the entries of H are to be checked for possible zeros. The
decision on a zero has to be made based on a numerical threshold which
may not be the same for different systems and measurement configura-
tions. In order to have a decision threshold independent of the systems
tested, the entries of fl should be normalized with respect to the absolute
maximum diagonal element, Umax- Then, H^ will be assumed to be zero if
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l^^l/^Tnaz < e, where e is of the same order as the convergence threshold
used for the state estimation algorithm (e.g. e = l.Oe-4).

It is important to realize the implications of the above threshold and
the potential limitations of this approach when very few power measure-
ments exist and the residual spread components embrace electrically distant
measurements. In some exceptional cases, the presence of a single power
measurement might not suffice to prevent the estimator from converging to
an incorrect state.

Compared to a conventional state estimator, in which only the diagonal
elements H^ are needed for the bad data identification cycles, the above
procedure requires that whole columns of 0 be computed. Note, however,
that o%̂ / those columns corresponding to the current measurements not
belonging to the residual spread components that are already analyzed,
need to be processed. This will reduce the computational burden, espe-
cially for systems containing few but large size residual spread components
containing current magnitude measurements.

Example 9.9:

Consider the 4-bus system and measurement configuration of Figure 9.15.
Assuming unity reactances and null resistances, for the arbitrary (but non Hat

Figure 9.15. 4-bus system for Exampte 9.9

start) state given below:

Bus
1
2
3
4

V
1
1

0.9
1.1

3(")
0

-10
-15
-5
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the resulting Jacobian matrix will be:

14

02

0
0
0
0
0

0.157
-0.192

0

#3

0
0
0
0
0

-0.157
0

-0.344

04

1.096
-0.096

0
0
0
0

0.192
0.344

14
0.096
0.904

0
0
0
0
0
0

14
0
0

1.000
0
0

0.207
-0.192

0

14
0
0
0

1.000
0

-0.192
0

-0.367

14
0.087 *

-0.996
0
0

1.000
0

0.208
0.427

If R is assumed to be the identity matrix, then the residual covariance matrix
wiH be:

Pl4

Pl4

Ql4

1̂4

14

1̂ 3
&

I&

* 0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Ql4

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

14
0.000
0.000
0.001

-0.001
-0.001
-0.027
-0.022
0.012

14
0.000
0.000

-0.001
0.000
0.000
0.013
0.011

-0.006

14
0.000
0.000

-0.001
0.000
0.000
0.013
0.011

-0.006

2̂3

0.000
0.000

-0.027
0.013
0.013
0.532
0.435

-0.243

4̂0.000
0.000

-0.022
0.011
0.011
0.435
0.356

-0.198

&
0.000
0.000
0.012

-0.006
-0.006
-0.243
-0.198
0.111

Inspection of the entrees in M reveals that the measurement subset {14, 14,
14, ̂ 23] ̂ 24, ̂ 34} forms a v-i residual spread component, while 7̂ 14 and Qi4 are
critical, which means that there are two possible solutions for 02 and #3. Note
that, despite the redundancy of the current magnitude measurement igs, multiple
solutions can not be avoided due to the symmetry of the resulting phasor diagram
(this is left as an end-of-chapter exercise). The reader is encouraged to verify that
by adding the measurement 7i2 the full system can be made uniquely observable.

9.6.2 Procedure based on the Jacobian matrix

The information concerning the presence of v-i residual spread components
can also be obtained from the Jacobian matrix, without having to compute
the residual covariance matrix.

For the sake of simplicity, it wiH be assumed again that unobservable
branches have been previously removed from the model, by following any
of the procedures discussed in Chapter 4. In [11] it is explained how the
identification of fully unobscrvaMe and nonuniquely observable branches
can be combined into a single generalized observability procedure.

The linearized and error-free measurement equations can be partitioned
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so that the first n, will correspond to a linearly independent set, yielding:

(9.17)

Such a partitioning is a byproduct of the Peters-Wilkinson decomposition
of the Jacobian matrix:

(9.18)

where:
Ri=L'!7isa?T,x% square matrix
L is a % x % lower triangular matrix
i7 is a % x % upper triangular matrix
#2 and Af are (m — %) x n rectangular matrices.

As unobservable branches have been removed, no zero pivots should be
encountered during the Jacobian factorization, provided the linearization
has not been carried out at flat start.

Based on the Jacobian factorization it is straightforward to express the
redundant measurements, Z2, as a linear combination of the linearly inde-
pendent set, zi:

= 3,. 21 (9.19)

Let us call matrix 6*2 the measurement senŝ Mĵ  mâ Wa;, since its ele-
ments carry the sensitivity information between zi and zg. Each row of Ŝ
corresponds to a redundant measurement. Nonzero elements in each row
indicate those measurements in 21 that belong to the same residual spread
component as that redundant measurement. Note on the other hand that
a null column in -Ŝ  implies that the corresponding measurement in zi is
cW^caL As proved in [11], use of Ŝ  matrix in (9.19) is equivalent to the
use of the residual covariance matrix 61 for measurement classification (the
residual sensitivity matrix <S can be expressed in terms of the smaller and
simpler to obtain 5*̂  matrix).

The j-th row of Ŝ , denoted by Sj, can be efficiently computed by solv-
ing:

Zfŝ  = AfT (g.20)

where Afj is the j-th row of Af. This is just a backsubstitution using the
transpose of the triangular factor L and the respective row of M as the
right hand side vector.
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Then, from the nonzero pattern of 6*3, the subset of current measure-
ments in 21 belonging to v-i residual spread components can be easily iden-
tified (critical measurements constitute a particular case).

An alternative but equivalent procedure, that traces sequentially in L
and M the lower factorization paths corresponding to current measure-
ments, instead of explicitly computing the matrix ̂ , can be found in [4].
As factorization paths of currents belonging to previously traced paths need
not be obtained, this implementation is probably the most efficient way of
obtaining v-i residual spread components.

Example 9.10:

Consider again the 4-bus system of Example 9.9, whose Jacobian rows are
already ordered as required by the partition suggested in (9.18), i.e.,

0
0
0
0
0

0.157
-0.192

0

0
0
0
0
0

-0.157
0

-0.344

1.096
-0.096

0
0
0
0

0.192
0.344

0.096
0.904

0
0
0
0
0
0

0
0

1.000
0
0

0.207
-0.192

0

0
0
0

1.000
0

-0.192
0

-0.367

0.087 *
-0.996

0
0

1.000
0

0.208
0.427 _

Consequently, the matrix 6*3 is:

3̂  = #2̂  = [0, 0, -0.1096, 0.0537, 0.0543, 2.1911, 1.7917]

As expected, it is concluded that both F*i4 and Qi4 are critical measurements,
the remaining ones constituting a v-i redundant set.

9.7 Identification of Nonuniquely Observable
Branches

A majority of algorithms and procedures associated with state estimation
are more easily implemented and more efficiently solved when the conven-
tional nodal formulation is adopted. However, virtually all of them could
be reformulated by resorting to branch variables. This is the case, for
instance, of the procedures presented in the former section to detect v-i
residual spread components. In fact, expressions (9.17) to (9.20) remain
valid if 2: denotes the whole set of branch variables and 2 contains, in addi-
tion to regular measurements, a set of independent loop equations, which
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compensates for the increased number of state variables. This model was
adopted in section 4.5 to develop a noniterative numerical observability
procedure.

For the purpose of this section, as the solution uniqueness issue is a
direct consequence of the signs of branch phase angles being undefined
in the presence of ampere measurements, the use of branch variables offers
added advantages. The material that follows constitutes a simple extension
of the observability algorithm described in section 4.5.

Assume, therefore, that the branch-based Jacobian has been factorized
like in (9.18), and that the subset of current measurements in 21 belonging
to v-i residual spread components has been identified. Then, for each mem-
ber ̂ ^ of this measurement set, a list of nonuniquely observable branches
is obtained by solving the triangular system:

(9.21)

and Sagging the nonzero elements of T^, where e^ contains a single nonzero
value at position .̂ The union of all branches flagged during these fast
backward processes constitutes the nonuniquely observable network por-
tion.

A convenient alternative to the full branch model is the reduced model
where aH the variables associated with the links and corresponding loop
equations are eliminated. In obtaining this model, it is recommended that
the chosen tree includes all power flow measurements. The resulting mea-
surement vector of this reduced branch model is identical to that of the
nodal approach (in fact, the same matrix 5*̂  is obtained) and the tree
branch variables remaining in the state vector are related to the nodal un-
knowns through a regular transformation matrix. The procedure described
above remains valid but provides information only about tree branches.
Solution uniqueness for a given link could be subsequently determined by
applying for instance the node and loop rules of section 9.5.

Example 9.11:

Consider the 4-bus system with the given measurement set shown in Figure
9.16.

Let us assume that aH voltage magnitudes are measured and that only phase
angle observability is to be analyzed. The Jacobian matrix in the branch reference
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Figure 9.16. 4-bus system for Example 9.11

frame can be written as:

AP4

A023

where x's represent the nonzero entries. In this simple case, the Jacobian is
already tower trapezoidal, which means that Ri = L, % = ̂  and t/ is the
identity matrix. Without explicitly building R'z it is easy to conclude that no
v-i residual spread components exist. Hence, the system is declared uniquely
observable.

Now, let us remove the injection measurement at bus 4. Then the correspond-
ing Jacobian will become:

(9.22)

AF2

* A%12 A023 A6̂ 34 A041
X

X

X

X

X

X X X

X

As the third and fourth columns of Af are null, it is apparent that 3̂4 and the
loop equation are critical to estimate 634 and 641 respectively. Also, as C/ reduces
to the identity matrix, no extra branches are flagged during the backsubstitution
processes. Thus, branches 3-4 and 4-1 will be declared as not uniquely observable
for this case.
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Example 9.12:

The IEEE 14-bus test system with the measurement set shown in Figure 9.17
wiH be used to illustrate the uniqueness determination procedure. The exact
measurement values adopted for this network are provided in Tables 9.2 and 9.3.

^

^ : Power measurement

O : Current measurement

A i Vottage magnitude

Figure 9.17. IEEE 14-bus system and available measurements for Example 9.12

Note that the system will become unobservable if the current measurements
are excluded. Thus, the line current measurements are useful to extend observable
islands in this example. Also, note that existing observability methods based on
the rank of H (numerical [18] or topological [15]), can not be used to test network
observability due to the existing current measurements.

The results of two cases will be presented. In the base case, the network
equations are composed of 7 real/reactive loop, 6 real/reactive power now, 4
real/reactive injection, 4 voltage magnitude and 9 current magnitude equations.
The procedures described earlier declare the whole system as uniquely observable.

Then, the measurement configuration is modified by deleting the tine current
measurements in branches 5 and 9. The observability algorithm declares this
system as unobservable and determines the branches 1,2,3,5,6,8 and 9 as unob-
servable. This corresponds to three observable islands formed by branches 10
through 20 (island 1), branch 4 (island 2) and branch 7 (island 3) respectively.

Two different solutions satisfying exactly all the available measurements are
provided in Table 9.4. Note that the two solutions differ at buses 6 and 10 through
14. However, the voltage values at the pairs of buses 10-11 and 13-14 are such
that a unique power now results for branches 4 and 7.
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Table 9.2. Bus-related measurements for Example 9.12

Bus

1
3
6
8
9
10
12

V

1.060
-
-

1.090
1.056
1.051

-

^^?tj

2.324
-0.942
-0.112

-
-
-

-0.061

(t/̂ TTJ

-0.169
0.044
0.047

-
-
-

-0.016

9.8 Measurement Classification and Bad Data
Identification

When the measurement set does not contain current measurements, only
n linearly independent measurements are strictly required to estimate a
network whose state vector is composed of n variables. If there exists
any current magnitude measurement then the system state will not be
uniquely observable by only % linearly independent measurements, as shown
in the preceding sections. Based on this observation, measurements can be
reclassified as follows [6]:

Noncritical: when deleted, the system remains uniquely observable.

Critical: when removed, the system becomes unobservable.

Uniqueness-Critical: when eliminated the system is not uniquely observ-
able, i.e., several solutions are possible.

Critical measurements containing bad data can not be detected because
they will be exactly satisfied, yielding null residuals. On the other hand,
bad data in a uniqueness-critical measurement can be detected. However,
its identification depends upon the magnitude of the bad data, initial state
chosen to iterate and proximity in the domain of convergence of other pos-
sible solutions. Even when it is correctly identified and removed, a unique
solution can not be guaranteed. Therefore, only bad data affecting noncrit-
ical measurements can be safely identified and eliminated.
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Table 9.3. Branch-related measurements for Example 9.12

Branch

1
3
4
5
6
7
9
10
11
12
13
14
16
18
19

^1

0.076366
0.178826

-
0.095849
0.064200

-
0.449792

-
-

0.270054
0.290826

-
0.701174

-
0.397307

-P/;ow

_
-

0.05632
-
-

-0.03774
-

-0.61217
0.16090

-
-

0.00000
-

0.75551
-

Q/ioiu

-
0.01692

-
-

-0.01529
-

0.15669
-0.00321

-
-

-0.16910
-

0.03504
-

Unlike the uniqueness-related observability issues, the required modifi-
cations to the bad data identification procedures depend on the particular
estimator adopted. The LS and LAV estimators will be separately discussed
below.

9.8.1 LS Estimation

Bad data detection and identification is carried out as a post estimation
procedure, which can be summarized as follows (see Chapter 5):

1. Use the estimated state to calculate the normalized measurement
residuals.

2. Sort them in descending order.

3. If the largest residual exceeds a threshold, eliminate the respective
measurement and repeat the process.

When using only conventional measurements, there is no risk of elimi-
nating a critical measurement during the identification cycles, as it will be
pushed always to the bottom of the sorted list. However, in the presence
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Table 9.4. Two possible solutions for the second case of Example 9.12

Bus
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Solution 1
Voltage
1.060
1.045
1.010
1.018
1.020
1.070
1.062
1.090
1.056
1.051
1.057
1.055
1.050
1.035

Angle (°)
0.00

-4.98
-12.72
-10.32
-8.78
-14.06
-13.37
-13.37
-14.95
-14.79
-14.48
-14.92
-15.00
-15.88

Solution 2
Voltage
1.060
1.045
1.010
1.018
1.020
1.061
1.062
1.090
1.056
1.051
1.057
1.041
1.035
1.020

Angle (°)
0.00

-4.98
-12.72
-10.32
-8.78
-13.61
-13.37
-13.37
-14.95
-15.10
-14.80
-14.15
-13.81
-14.72

of current magnitude measurements, there is a need to check whether or
not the identified bad data corresponds to a noncritical measurement, in
the sense defined above. According to the conditions for solution unique-
ness found in the preceding sections, noncriticality of measurements can be
checked by the following procedure:

1. If the measurement belongs to a residual spread component contain-
ing only power and voltage measurements, then declare it as noncrit-
ical. Else, continue.

2. If the measurement refers to a power flow or injection and the residual
spread component does not contain any other power measurement,
then declare it as uniqueness-critical. Else, continue.

3. Check if any of the remaining ampere measurements in the same
residual spread component will become critical when this measure-
ment is eliminated. If the answer is yes, then declare the measure-
ment as uniqueness-critical, else declare it as noncritical.

Note that, in order to carry out step 3, the diagonals of the residual
covariance matrix must be updated when the candidate measurement is
removed. This process can be notably simplified if the techniques described
in [17] are used.
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9.8.2 LAV Estimation

As discussed in Chapter 6, the main advantage of the LAV estimation is its
ability to reject bad data as part of the estimation process. Therefore, if
leverage points are properly dealt with, the estimated state will be unbiased
since bad data are discarded by the LAV estimator. This is true as long
as the measurement set contains only conventional measurements. In the
presence of current measurements, further postprocessing is required to
assure uniqueness of the state reached.

The normalized residuals of rejected measurements can be obtained,
and those exceeding a threshold can be declared as bad data [1]. The list of
suspect measurements must then be tested for noncriticality per the three
step procedure presented above. If any of the suspect measurements is
found to be uniqueness critical, then the results of the LAV estimator can
not be trusted due to the possibility of multiple solutions.

Example 9.13:

Consider the 4-bus system of Figure 9.18 whose data are given in Table 9.5.

Figure 9.18. 4-bus system for Example 9.13

Table 9.5. Data for the system of Figure 9.18

From
bus
1
2
3
1
2

To
bus
4
4
4
2
3

R
.0001
.0001
.0001
.0001
.0001

X
0.2
0.2
0.5
0.1
0.2

Current
magnitude

-
-
-

1.5983
0.6820

P/Q
flows

1.083/0.626
0.340/0.204
-0.1234/0.09

-
-
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The system is uniquely observable, even in the absence of current measure-
ments. Power How measurements of branch 2-4 are chosen to be inconsistent
with the remaining measurements (bad data). The results provided by the two
estimators will be separately analyzed.

The sorted list of normalized residuals are given in Table 9.6. In this case
the estimator converges to a point close to the true solution and the normalized
residual test is able to identify the two bad data of branch 2-4.

Table 9.6. Normalized residuals provided by the LS estimator for the system of
Example 9.13

Measurement
2̂4

Pl4

7l2

Q24

<9l4
Vi
Q34

3̂4

-?23

]nvl
22.7
20.8
20.6
19.7
17.8
14.1
8.0
8.0
8.0

However, if 7-*2-4 and Qg4 are eliminated, Ji2 and /23 will become critical and
the system is no longer uniquely observable. The two possible solutions are shown
in Table 9.7.

Table 9.7. Two possible solutions when power flows of branch 2-4 are eliminated

Bus
1
2
3
4

V
1.050
0.992
1.000
0.953

% (°)
0.00
-8.37
-16.21
-12.50

V
1.050
1.034
1.000
0.953

% (°)
0.00
-8.75
-16.21
-12.50

The LAV estimator converges to a state close to one of the two solutions given
in Table 9.7, depending upon the starting point. Hence, even though the system is
uniquely observable, due to the presence of bad data the state estimation solution
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wiH not be reliable.

9.9 Problems

1. Consider again the 3-bus system of Example 9.1. The voltage mea-
surement % is replaced by the current measurement 7g3 - Analyze the
solution uniqueness based on the respective phasor diagram. Note in
passing that the same situation would arise in the system of Example
9.6 if one of the current measurements were missing.

2. In the 5-bus ring of Example 9.3, analyze which buses are the right
candidates for the extra inequality constraint to be added so that the
correct solution (a) can be discriminated from (c).

3. Prove that, if 7̂ , in the 8-bus system of Example 9.7 is substituted
by Pg or Ph, all branches will remain uniquely observable.

4. Assume that, in the 8-bus system of Example 9.8, buses "b" and "c"
are generation buses, while the remaining ones are load buses. Prove
that, thanks to this extra information, the system becomes uniquely
observable. #2%i.' consider the cut-set composed of branches 2, 6
and 7, whose power Bow directions are determined by the signs of
bus injections.

5. Obtain the phasor diagram corresponding to the 4-bus system of
Example 9.9, taking % as phase origin, and check to see if there
are two possible solutions for 0g and 0g. Furthermore, by means
of this diagram, prove that the addition of 7i4 renders the system
uniquely observable. In this situation, analyze what happens if: a)
/24 is removed; b) ̂ 23 is removed.

6. Utilize the topological concepts to manually solve the two cases of
Example 9.12. Rm̂ s; First of all, replace those network portions
which are observable through power measurements by a single super
node. It is also useful to "associate" injections 6 and 12 to branches
2 and 8 respectively. Then, apply the loop and node rules of section
9.5 to the small equivalent system that results.

7. Using a Matlab script Hie build the Jacobians for the two cases ana-
lyzed in Example 9.12, detect v-i residual spread components by com-
puting the respective matrices 6*̂  and identify unobservable branches
in the second case.
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8. Repeat the analysis of Example 9.13 when the voltage magnitude at
bus 2 is added to the measurement set.
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Appendix A

Review of Basic Statistics

In this appendix, a brief review of the basic definitions and concepts in
statistics will be given. The intent is to highlight some of the relevant
concepts in statistics that are frequently referred to in various chapters of
the book. The review starts with some definitions for the random variables
and commonly used statistical functions.

A.I Random Variables

A real valued function, that is denned on the sample space S, is called a
random variable (r.v.). A simple example of a r.v. is the outcome of rolling
a dice. Here, the sample space is the set of numbers 1 through 6, i.e. all
possible outcomes of rolling a dice.

A.2 The Distribution Function (d.f.), F(x)

It is a real valued function of a real number 2, defined as:

F(x) = Pr(X<2:), -ooOKoo (A.I)

0 < F(x)<l (A.2)

where, Pr stands for "probability of".
The distribution function, d.f. has several useful properties some of

which are listed below:

Property-1 F(x) is non-decreasing as x is increasing, i.e.

if 3:1 < Kg, then F(?;i) < F̂ )
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Property-2 Lower and upper limits of d.f are zero and one respectively,
i.e.

lim F(z) = 0, and, lim F(z) = 1
— — —a: — > — oo

Property-3 A d.f at a given point z is defined by its limit from the right,
i.e.

F(g;) = F(:E+) for all z.

A. 3 The Probability Density Function (p.d.f),
f(x)

A non-negative function f, defined on the real line, is called a probability
density function if for any interval T, the following is satisfied:

Pr(X € T) -

The p.d.f has the following properties:

/M > 0 (A.3)

/(2;)&E = 1 (A.4)

Note that when a random variable JSf has a continuous distribution, then
= 2) = 0. Also, the distribution and density functions are related as

shown below:

/(M)&t (A.5)

= F(x) (A.6)

or as long as the p.d.f is continuous, the d.f. will be differentiable:

A.4 Continuous Joint Distributions

Joint distributions are denned for two or more random variables. Consider
the case of two random variables, X and Y. A non-negative function f(x,y)
is called the joint probability density function of X and Y, if for a region T
in the x-y plane, the following holds true:
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Again, similar properties can be written for the joint p.d.f:

/M > 0 (A.7)

= 1 (A.8)
— oo — oo

Similarly, joint distribution function of two random variables X,Y can be
defined as:

F(x,y) = Fr(X<3: and Y<y) (A.9)

A. 5 Independent Random Variables

X and Y are independent random variables if

/(x,y) = A(x)/2(2/) and F(x,y) = Fi(̂ )F2(y)

A. 6 Conditional Distributions

The conditional probability density function g, of a random variable X
when another random variable V is already known to have assumed a value
T/, is given by:

a;
-oo<3;<oo

A.7 Expected Value

Expected (or mean) value of a random variable X, is denoted by -E(X) and
defined as:

Expected value has the following properties:

1. Expected value of a random variable X = aX + 5, will be given by
6.

2. If Pr(X > a) = 1, then E(X) > o.. If Pr(X < A) = 1, then
E(X) < 5.

3.
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A. 8 Variance

Variance of a random variable X is denoted by cr̂  and defined as:

c-2 = Var(X) = E[(X - ̂)% where /̂  =

Variance has the following properties:

1. Var(aX + 6) =

2.

3. ̂ ar(̂ Li ̂ î) = ELi ̂Var(Xi), for independent

A. 9 Median

Median of a distribution of a random variable X, is denned as the value
along the real line, such that

Also, note that:

Pr(X < m) > - and Pr(X > m) >

> m) = 1 - Pr(X < m) < (A.ll)

> m) < - < Pr(X < m) (A.12)

A. 10 Mean Squared Error

It can be shown that the value of 2 that will minimize the expected value
of the squared error, i.e. pf — z]̂ , is the expected value of the random
variable Ĵ . Consider the expression

Choosing -E(̂ Q = 2 will minimize the above expression, which is called the
mean squared error (MSB). Note also that, with the choice of 2 as
MSB will be identical to the definition of the variance of X:
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A. 11 Mean Absolute Error

Similar to the case of the MSB, it can be shown that the value z, that
minimizes the mean absolute error:

yields the median m for the random variable .X. In other words, if m is the
median and c is any other number, then

Proo/.- Let us arbitrarily assume that m < c. Then,

/-OO

E(] X - c I) - E(] X - m ]) = / (] X - c - I X - m [)/
-7 — OO

/*m /*c /<oo

= / (c — ?7̂)/(a:)̂  + / (c + m — 2:r)y(2;)G!2-t- / (?n, — c)/
^/— oo /̂?n. *̂ c

/*TH /-C

> / (c — ??T-)/(̂ )̂ T + / (m — c)/(3j)̂
J— OO */T7t

= (c - m) [Pr (X < m) - Pr(X > m)]

Since m is the median, Eq.(A.12) must hold true:

m > - > r > m

Hence,
E(IX-el)-E(IX-ml) >0

Proof under the alternative assumption of m > c is left to the reader.

A. 12 Covariance

Covariance between two random variables X and X is defined as:

Related to the covariance, one can define the correlation coefficient as:

Properties of covariance:
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2. If X, V are independent random variables, then ccw (X, y) =
0.

3. Var(X + y) = Var(X) +

4.
+ 2cov(X,

2 ^
A. 13 Normal Distribution

A random variable X is said to have a Normal (Gaussian) distribution with
a mean ,̂ and variance o*^, if it is distributed according to the following
function:

1 1 T — M

When plotted, the Normal distribution function looks like a bell as
shown in Figure A.I, hence it is frequently referred to as the bell shaped
distribution. A random variable X which has a Normal distribution with
mean /̂  and variance cr^ is commonly denoted by X

Normal Distribution Function with 0 mean, 2 stand, dev.

-10

Figure A.I. Normal Distribution function
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Theorem

If ̂ f ̂  N(/̂ ,cr̂ ) and K = oJf + 5, then V will also have a Normal
distribution with mean â  + 5 and variance â o*̂ .

A. 14 Standard Normal Distribution

Normal distribution with 0 mean and 1 variance is called the Standard
Normal distribution. The p.d.f. of Standard Normal distribution is given
by:

and the corresponding distribution function d.f. will be given by:

Note that, due to distribution symmetry:

Example 1.1:

A random variable X is distributed according to a Normal distribution with
a mean of 15 and variance of 9.

(a) Find the probability that X > 16.

(b) Find the probability that ] X - 15 > 4.

(c) Find To such that Pr(] X - 15 [< xo) = 0.90.
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Solution

(a)

> 16) = 1 - Pr(X < 16)
_ X-15 16-15^

3 "" 3

= 1-0.63 = 0.37

Note that the value 0.63 is looked up from the Standard Normal distribu-
tion table corresponding to the value 1/3.

(b)

SOutton tor part (b)

< 11) + > 19)

> 19)

<19)1
- 15 19-15^

= 2[1-0.9082] =0.1836
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(c)

Sotution for part (c)

Pr(X > xi) = 0.05

Ti) = 0.95

= 0.95

From the Standard Normal table, look up the value corresponding to 0.95
-̂  1.645.

— 15
= 1.645

xi = 19.935

a;o = xi - 15 = 4.935

A. 15 Properties of Normally Distributed Ran-
dom Variables

1. If Xi, Xg, . . . , Xn. are independent r.v. each with Normal distribution
,cr?), then

2. If y = + &'
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A. 16 Distribution of Sample Mean

Given a sample {̂ i, ̂2, - - - 1 -X̂ ,} of random variables, the sample mean is
defined as:

" v

If the sample is taken from a Normal distribution with mean /i and variance
cr^, then

2

Example 1.2:

Determine the minimum value of n for which

Pr(l^-^]< 1)>0.95

if the random sample is taken from a distribution N(/̂ , 9).

Solution
Make a change of variable to obtain Z ̂  7V(0, 1), i.e. Standard Normal

distribution:

Then,

l< ̂) > 0.95

> —) < 0.025

l-$(̂ ) < 0.025

#(̂ ) > 0.975

From the Standard Normal table:

IT - '
Therefore, n should be at least 35!.
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A. 17 Likelihood Function and Maximum
Likelihood Estimator

Consider the random variables Xi,X2,...,X̂  taken from a distribution
with a p.d.f of /(J*f 0), where ̂  is a vector of unknown parameters of this
distribution.

Assuming a parameter space Q which 0 belongs, we try to find a region
in Q that 0 will most likely to lie. An estimate for 0 can be found by
observing the random variables X̂ 's, and choosing the parameter 0 that
will most likely yield the observed variables. The joint p.d.f. of a set of
random observations rr = (21,22,... 3̂ } will be expressed as:

This joint p.d.f is referred to as the L^e^Aood FMncNon, since it yields
the distribution of 0 for a set of observed variables, 2. Variation of the
distribution as the parameter 0 is changed, will indicate how likely the
chosen value of 6* is, for a given set of observations. The value of 0, which
will maximize the function /f],(̂  I 0) will be called the Afa^mwrn L^eKAooti
RsNnMio?" (MLE) of 0.

A.17.1 Properties of MLE's

1. If 0 is MLE of 0, then g(6<) will be the MLE of 3(0).

2. It may not always be possible to express the MLE as an explicit
algebraic function.

3. MLE's are consistent estimators, that is the sequence of MLE's will
converge to the true unknown value of 0 as the sampling size % be-
comes infinitely large.

In determining the MLE's, it is common to maximize the logarithm of
the likelihood function (log likelihood function) instead of the likelihood
function itself, in order to simplify the algebra. Since log function is mono-
tonically increasing, the solution of the maximization problem will not be
affected by this change of the objective function. The following example
shows the procedure of obtaining the MLE for the parameters of a Normal
distribution, namely the mean // and the variance cr^, based on a finite
number of observations.

Example 1.3:

Suppose (Xi, ̂ 2,. . < , ̂n} are samples taken from a Normal distribution with
unknown î and cr. Find the MLE of these unknown parameters.
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Solution
The likelihood function for w samples from N(̂ , ĉ ) can be expressed as:

The log likelihood function will then be given by:

Writing the nrst order optimality conditions for maximizing the log likelihood
function /̂  with respect to the unknown parameters /i and cr^:

= Ĵ ^ sample mean

9n-2 QrT^ Z—<^ ^̂  —

1 -̂ , y ,2 ,3;, — An.) sample variance

It is therefore to be noted that the sample mean and variance constitute
MLE's for the unknown parameters of a Normal distribution.

A. 18 Central Limit Theorem for the Sample
Mean

If the r.v.s. Xi, ̂2? - - - ; ̂?i form a random sample of size n taken from a
distribution whose mean is // and variance cr^, then for any real number 3;
we can write the following:

In other words, as the sample size grows, sample mean of any distribu-
tion will be distributed more and more like a Normal distribution.
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Appendix IB

Review of Sparse Linear
Equation Solution

Solution of network equations for steady-state, transient or dynamic analy-
sis of power systems operating under normal or emergency conditions all in-
volve solution of large sparse linear equations. In short circuit calculations,
each sequence network can be solved separately using the corresponding
sequence admittance matrix given below:

where superscript s indicates the sequence, i.e. positive, zero or negative.
y^ is the sparse network admittance matrix, 7" is the net bus injection due
to the fault and V is the bus voltage solution, all denned for the s sequence
network.

In power flow solution, nonlinear power balance equations are solved
iteratively. At each iteration, a linear equation of the form given below,
will be solved in order to obtain the bus voltage corrections, A:r:

(B.2)

where J^ represents the Jacobian of the power balance equations, and
is the real and reactive power mismatches at network buses, both evaluated
at iteration z.

In solving the state estimation problem using the WLS method, the
following set of equations will be solved at each iteration ̂:

R̂ R̂ FA.̂  - R̂ R-i[.2 - ̂(z*)] (B.3)

where R is the measurement jacobian evaluated at 2;̂ , R is the measure-
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ment error covariance matrix, 2 is the measurement vector, ̂(a;̂ ) is the
nonlinear measurement function evaluated at ;x\ and Aa;̂ * = 2;̂ +̂  — 2̂
is the incremental change in the state vector at iteration A; + 1. Since, R is
a sparse matrix and R is diagonal, the product F^R"^R will be a sparse
and symmetric matrix.

In transient stability studies, the network and machine equations are
solved simultaneously at each time step of the simulation period. The
machine equations are written as difference equations by discretizing the
differential equations of the machines using some numerical integration
method, such as trapezoidal rule. The network equations are written as
nodal current balance equations in linear form. The resulting system of
linear equations will take the following form:

,4 _
AV - A7

where the Jacobian matrix is sparse, and the right hand side (rhs) vector
is generally full. At each integration step, this linear equation is solved
several times iteratively updating the current injections until convergence.

Similarly, in electromagnetic transients simulations, all network branches
are modeled by their discrete-time models and the discrete-time network
equations given below, are solved at each simulation time step:

[C] [V] = [7 + Ms;] (B.5)

where (? is the sparse conductance matrix which depends on network pa-
rameters as well as the chosen integration method and step size, V is the
node voltage solution, I is the known current injections of the indepen-
dent current sources, Ms^ are the current injections dependent on variables
evaluated at previous integration steps.

As evident from the above summary of commonly used analysis tools,
solution of sparse linear equations constitutes the essential computational
hurdle in almost all power system applications.

While there are numerous methods for the solution of such equations,
they can be classified under two broad categories:

1. Direct methods that work on the right hand side vector transforming
it into the solution vector after a predetermined and finite number
of steps. These steps belong to procedures that are well denned for
a given set of equations.

2. Indirect (iterative) methods that start by guessing the solution and
repeatedly improving it based on some error criterion. These meth-
ods may or may not converge in a reasonable number of iterations
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depending on the equations, the iterative scheme employed and ma-
chine accuracy.

Almost all power system software is built around direct solvers, and
hence only those direct solvers will be reviewed here. Interested readers
can look up references [14, 13] for a good review of the iterative solvers.

B.I Solution by Direct Methods

Consider the linear equation given below:

Ar = & (B.6)

where A is an n.3% matrix, 2 and & are vectors of order n. Direct solution
of T in Eq.(B.6) involves two computational steps:

1. Triangular decomposition of ̂ 4 into its factors:

A = LD!7 (B.7)

where L and t/ are lower and upper triangular matrices respectively
and their diagonal elements are all equal to 1. D on the other hand, is
a strictly diagonal matrix. Also, note that if matrix A is symmetric,
then L = (7̂ , hence storage requirements will be reduced accordingly.

It is also possible to combine LD product into a single lower triangu-
lar matrix with non-unity diagonals and express the decomposition
using only two matrices as:

A = L!7 (B.8)

where L in Eq.(B.S) is equal to the product of L and D in Eq.(B.7).

2. Forward and back substitutions:

Substituting Eq.(B.7) into Eq.(B.6) for A, and defining an interme-
diate solution vector y as !7 2, the solution can be obtained by:

y = D"iL-*& (B.9)

Note that, due to the special triangular structure of L and t/ factors,
their inverses need not be explicitly calculated as suggested by the
above equations. Instead, a series of substitutions are carried out
to transform & into y and subsequently into a?, i.e. the final solu-
tion. Hence, the above computational steps defined by Eq.(B.9) and
Eq.(B.lO) are referred to as Forward 6*M&ĝ 'fM̂ 'o?M and Bac/:

respectively.
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Forward and back substitution steps can be studied in terms of
ma^Wces, possessing some useful properties which will be discussed

next.

B.2 Elementary Matrices

There are four types of elementary matrices:

1
K 1

Elementary matrices have the following properties:

1. Their inverses are readily obtained by simply reversing the signs of
their off-diagonal entries.

2. Product of elementary lower (upper) triangular matrices yield lower
(upper) triangular matrices.

3. Any lower triangular matrix, L with unit diagonals can be written
as a product of elementary matrices as:

where L^ and L[ are formed by using the :th column and row entries
of L respectively.
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B.3 LU Factorization Using Elementary Ma-
trices

Properly choosing the elements of the lower triangular elementary matrices,
a square matrix 4̂ can be transformed into an upper triangular form with
unit diagonals as shown below:

Rewriting the above equation:

(L^_i-.-L^)-i.y = ^ (B.ll)
L-?7 = A (B.12)

Note that, inverse of a lower triangular matrix is also lower triangular,
yielding the above defined matrix L.

Decomposition of a non-singular matrix 4̂ into its triangular factors
may sometimes lead to zero diagonals, causing premature termination of
the factorization procedure. Such situations can be resolved by re-ordering
the rows and columns of A This is accomplished by using a permutation
matrix P with the following properties:

1. It has a single 1 in each row and column.

2. It is orthogonal, i.e. P"* = P̂ .

3. Rows (columns) of a matrix ̂ 4 can be reordered by multiplying ̂ 4 by
P from the left (right).

In practice, P is never stored as a matrix due to its super sparse structure.
Instead, an array of row (column) pointers are used to store the ordering
information.

There are more than one ways to decompose a given matrix 4̂ into
its triangular factors. Here, we will review two of these methods, namely
Grout's method and Doolittle's method, both of which can apply to any
square matrix. We will then turn our attention to symmetric matrices and
review the method of Cholesky for factorization of symmetric matrices.

B.3.1 Grout's Algorithm

This algorithm operates on the columns and rows of matrix A in an alter-
nating manner. At the completion of the procedure, A will be destroyed
and replaced by the Table of Factors, ToF which is a matrix whose lower
(upper) triangular part will contain the elements of L (?7). If A needs to
be kept for other calculations, then a separate matrix ToP can be formed
using the same algorithm.

Steps of the algorithm are as follows:
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1. Set the first column of ToF equal to the first column of A. This step
is redundant if A is being overwritten.

2. Calculate the first row of ToF as:

where ̂j and â j are (̂ , j)th elements of ToF and A

3. Set pivot counter j = 2.

4. Calculate jth column of ToF:

j-i
i/c j = ̂  j - 2J ̂,:̂  j for A; = j, j + 1, . . . ,

5. If j — %, stop. Else, continue.

6. Calculate jth row of ToF:

'̂j for A; = j + 1, j + 2, . . . ,

7. Advance pivot counter, j = j + 1. Return to step 4.

Example 2.1:

Given the matrix
0

-10
5

-4

64
16
64
3

0
-20
10

-16
Find the Table of Factors for A using the Grout's algorithm.

ToF is built foMowing the above described steps of Grout's algorithm. Step
by step modiHcation of A into ToF is illustrated below:

4 0 64 0
1 -10 16 -20
2 5 64 10
0 - 4 3 - 1 6

* 4 0 0 0 *
1 -10 0 0
2 5 64 0
0 - 4 3 - 1 6

* 4 0 0 0 *
1 -10 0 0
2 5 64 0
0 - 4 3 - 1 6

* 4 0 0 0 *
1 -10 0 0
2 5 32 0
0 -4 3 - 8

* 1 0 16 0 *
0 1 16 -20
0 0 1 1 0
0 0 0 1

* 1 0 16 0 *
0 1 0 2
0 0 1 10
0 0 0 1

" 1 0 16 0 *
0 1 0 2
0 0 1 0
0 0 0 1
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B.3.2 Doolittle's Algorithm

This algorithm is very similar to the Grout's algorithm presented above.
Instead of updating alternating rows and columns of the pivot, all elements
in the lower right submatrix below the pivot, are updated at each pivoting
step. Again, at the completion of the procedure, A will be destroyed and
replaced by the Table of Factors, TbF.

Note that the Arst two steps of this algorithm are identical to that of
Grout's. Steps of the Doolittle's algorithm are given below:

1. Set the pivot counter A; = 1.

2. Set the pivot column of ToF equal to the pivot column of A. This
step is redundant if ̂4 is being overwritten.

3. Calculate the pivot row of TToF as:

where %̂ j and a^j are (A;, j')th elements of ToF and A

4. Calculate each (̂ ,j)th element of ToF for i > A; and j > A; according
to:

ĵ = "'ij " 4ĵ ,A: forall !,j > A;

5. Set A; = A; + 1. If A;=%, stop. Else, go to step 2.

Example 2.2:

Given the matrix

=

* 2
3
2
4

4
3
4
2

4
12
-1
1

2 *
6
2
1

Find the Table of Factors for ̂4 using the Dootittie's algorithm.
is built following the above described steps of Doolittle's algorithm. Step
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by step modification of ̂ 4 into To.F is illustrated beiow:

* 2 4 4 2 "
3 3 12 6
2 4 - 1 2
4 2 1 1

* 2 2 2 1 *
3 3 12 6
2 4 - 1 2
4 2 1 1

"̂

* 2 2 2 1 *
3 -3 -2 -1
2 0 - 5 0
4 -6 -7 -3

" 2
3
2
4

2 2 1 *
- 3 6 3
0 - 5 0

-6 -7 -3

* 2 2
3 -3
2 0
4 -6

2 1 *
-2 -1
-5 0
-19 -9

B.3.3 Factorization of Sparse Symmetric Matrices

Triangular factorization of sparse symmetric matrices can be carried out
by Cholesky method. There are two variations to the Cholesky method of
factorization:

* Build two identical factors, one being the transpose of the other. This
requires a positive definite (p.d.) matrix due to the perfect square
diagonal entries.

* Build two identical but transposed factors with unit diagonals and
one diagonal factor.

Since the matrices involved in state estimation problem will commonly be
positive definite and symmetric, only the first variation will be discussed
here.

Consider a sparse p.d. symmetric matrix A This matrix can be written
as a product of three matrices as below:

3,1

731

The above decomposition can now be applied to the submatrix _Bi as below:
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1̂ = 1 0 1 =
* J

* 1 0
0 0*2

0 a2

" 1
0 V̂ 2

0 "?' 7̂ -2

* 1
0

0

0 *
T

Bg

0
1
0 B

0
0

Continuing with this process, 4̂. can be written as the following product
of elementary matrices:

B.3.4 Ordering Sparse Symmetric Matrices

Cholesky factorization scheme proceeds one pivot at a time, modifying the
original matrix elements below the pivot row and column according to the
following equation:

where
B' is the lower right corner submatrix below the pivot row and column
a is the column array containing elements of the matrix below the pivot
c! is the value of the pivot element

Hence, the matrix aa*̂  will have as many non-zeros as the square of the
number of nonzeros in a. Since, each such nonzero will potentially create
a "fill-in" (a nonzero element in a position originally occupied by a zero in
yl), the choice of pivots during the factorization process will directly affect
the sparsity of the resulting factor L.

A commonly used ordering scheme known as the minimum degree or
Tinney-2 ordering, yields almost optimum results in terms of maintaining
sparsity of L. Tinney-2 scheme of ordering rows/columns can be outlined
as follows:

1. Choose the row with the minimum number of nonzeros.

2. Using the chosen row/column as the pivot, carry out one elimination
step using Cholesky method, i.e. _B' — aa /a!.
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3. Go back to step 1 and repeat the procedure until all pivots are pro-
cessed.

Note that, in finding the Tinney-2 ordering for a given sparse symmet-
ric matrix, Cholesky elimination steps need not be carried out numerically.
It is possible to predict the locations of nonzeros in the product aa^ and
therefore the "fill-in" elements can be determined symbolically. There is a
small chance that a nonzero element may become zero as a result of perfect
numerical cancellations during the elimination steps and symbolic process-
ing will not be able to detect it. However, chance of this happening is really
small and hence it is not taken into account. Certain applications may call
for repeated factorization of a sparse matrix ̂ 4, whose sparsity pattern re-
mains the same while its elements change numerically. For those cases, the
use of symbolic factorization to order the matrix once and subsequently re-
peating numerical factorization using this ordering, will be computationally
more efficient.

Example 2.3:

Let ̂ 4 be a sparse symmetric matrix as given below:

12 1 1
1 12 1

1 12 1
12 1 1

12 1 1
,1

1
1 1 12 1

1 12 1
1 12 1

1 1 12 1 1
1 1 12

1 1 12

Applying the Tinney-2 ordering algorithm to matrix yl yields the following
row/column order:

[ 8 1 0 1 3 2 7 1 1 4 5 9 6 ]

B.4 Factorization Path Graph

Factorization of a sparse symmetric matrix can be carried out using the
Cholesky method as described above. The procedure involves essentially
sequential processing of one pivot row/column at a time until all pivots are
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processed. Special sparse structure of these matrices makes it possible to
further simplify the solution procedures that involve forward and back sub-
stitution steps. This can be accomplished by constructing what is referred
to as the /aĉ cWzâ on pa^ (?rap&, of the matrix for a chosen ordering. Fac-
torization path graph (FPG), also known as factorization tree, is a compact
representation of the sparsity structure of the lower triangular (or upper
triangular) factor of the sparse matrix A. FPG can be stored in compact
form in a single array F whose entries, for i = 1,...,%— 1, are defined
by F(x) = /c, where A; is the row index corresponding to the first nonzero
entry below the pivot in column ! of the lower triangular factor of 7!. For
convenience, F(n) is set to the dummy value —1, indicating that all paths
end at the last row for a connected network. The factorization path for a
given row ! can be recursively traced as follows:

1. Initialize the list with row z.

2. Substitute t by F(i). If i < 0 stop, otherwise continue.

3. Add ! to the list and go to step 2.

In the above example, after ordering yi according to Tinney-2 algo-
rithm and factorizing it into its lower and upper triangular factors using
the Cholesky method, above FPG building procedure can be carried out.
The resulting FPG is given in compact form as the following F vector:

F= [ 2 9 5 5 9 7 8 10 10 11 -1 ]

Here, F(̂ ) represents the node number that is below the node ̂  in the
factorization path graph. Naturally, at each fork, more than one node will
be followed by the same node, as is the case for nodes 3 and 4, both of
which are followed by 5 in this example. A graphical representation of
FPG for this example is shown in Figure B.I. Note that the numbers
in the parenthesis in Figure B.I indicate the row/column indices of the
elements in the original (unordered) matrix A Following the ordering and
factorization of ̂4, the FPG can be obtained by tracing the columns of the
lower triangular factor L. Figure B.2 shows the FPG tracing procedure on
the lower triangular factor L.

B.5 Sparse Forward/Back Substitutions

Following the triangular factorization of a sparse matrix 4̂, solution of
Eq.(B.6) will be carried out by the forward and back substitutions as in
Eq.(B.9, B.10). Forward substitutions involve sequential updating of the
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1(8)

Figure B.I. Factorization Path Graph of matrix

10 12

Figure B.2. Obtaining the FPG using the tower factor L.

right hand side vector &, by processing columns of L one at a time as follows:

"n

Forward substitution steps can be greatly simplified by noting that the
information contained in FPG will indicate which entries of & will have to
be updated in processing a given column. In addition, FPG also indicates
which columns can be altogether skipped during the forward substitution
provided that certain elements of the right hand side vector are zero.

Considering the matrix A of the above example, let us assume that the
right hand side vector is a sum of two sm^eion, vectors as follows:

0... Of
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where, a swgMon ŝ  is defined as a vector whose only nonzero entry is in
position ̂  with a value 1.0:

0

1.0

0

Note that after ordering, the nonzero elements of & will assume positions
3 and 5 in the ordered right hand side vector (see Figure B.I). Looking
at the lower triangular factor L in Figure B.2, it can be shown that for
the given &, forward substitution steps can be carried out by processing the
columns 3, 5, 9, 10 and 11 of L. This is the union of the factorization paths
corresponding to the singletons 33 and 55 (or si and S2 in the unordered
vector) as can be traced from Figure B.I. Hence, FPG can be used to
identify the set of columns to be processed during forward substitution for
a given right hand side vector &. Performing the forward elimination process
in this way, i.e., skipping columns corresponding to null elements in &, is
called /asi /orward e^mwaiton.

The same idea can be applied during the backward substitution process
when only a few entries of the unknown vector 2 are wanted. Specifically, it
is easy to verify that, in order to obtain â , it is sufficient to previously com-
pute the entries â  for those rows A; belonging to the factorization path of i.
In this case, the path is traced in the opposite direction. Again, obtaining
several elements of a; requires that the union of paths corresponding to the
needed rows be traced. This procedure is known as /asi &acA; SM&ŝ M̂ on,.

Clearly, the computational cost of sparse vector operations is propor-
tional to the number of rows involved in the process. Hence, bush-shaped
trees, rather than cypresses, are preferable from this point of view. Al-
though Tinney-2 ordering scheme usually yields reasonable FPGs, in certain
cases it may provide unacceptable results. Several algorithms have been
proposed aimed at reducing the average and/or maximum path lengths,
while keeping under control the number of fill-ins [7, 3]. Most of them take
advantage of the fact that, at each stage of the Tinney-2 method, there
are many candidate (minimum degree) nodes to be chosen, and a second
tie-break criterion is proposed based on past elimination steps.

B.6 Solution of Modified Equations

In many situations, there is a need to solve an equation system whose
coefficient matrix differs from that of a previously solved system by very
few elements. When this happens, it is wasteful to solve the modified

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.



system from scratch, as significant computational savings can be achieved
by taking advantage of the operations already performed to solve the base
case.

Let To denote the solution of the original % x n system

whose coefficient matrix has been factorized as 7l = Lf7. Then, the modified
system can be in general expressed as follows:

where A is an m x m matrix and Af , TV are n x m sparse matrices, m being
directly related to the number of modified branches (or buses) . When m = 1
the change is referred to as a m%%;-̂  modification.

For instance, if ̂4 represents the bus admittance matrix of a certain
system to which a single series branch connecting nodes ̂  and j is added,
then A reduces to a scalar whose value is the branch admittance, Af is
a null column vector except for entries m^ = 1 and m^ = —1, and TV =
M. Removing a branch is equivalent to adding a branch with negative
admittance.

Several techniques have been proposed to efficiently deal with this prob-
lem, all of which can be grouped within two categories:

* Methods that update the elements of the To.F strictly necessary, i.e.,
only those which become modified (partial refactorization).

* Methods that modify the independent vector so that it takes care of
the changes performed on the system (compensation).

Depending on the application (single or repeated solutions, temporary
or permanent changes, etc.) one class of methods will be the most appro-
priate, but it is not possible in general to provide a rule of thumb in this
regard.

Compensation-based methods are well-known in linear circuit theory,
where ̂ 4 is the bus admittance matrix and & represents nodal current injec-
tions. On the other hand, partial refactorization constitutes a much more
recent development based on the factorization path concept. Owing to
their apparently different nature and origin, both techniques are customar-
ily presented in separate fashions, usually by means of different notation.
In the sequel, however, both categories of methods will be developed from
the common framework provided by (B.13), and their similarities will be
stressed.
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B.6.1 Partial Refactorization

All techniques within this category are based on the important observation
that when a certain row (or column) of a structurally symmetric matrix gets
modified, only the rows/columns of its ToF belonging to the factorization
path of the modified row need to be updated.

The modified matrix can be rearranged as follows

where

V = L^Af and W = t/̂ JV

are obtained by means of m fast forward eliminations on the columns of Af
and JV respectively. In (B.14) the matrix within brackets differs from the
identity matrix only in the rows/columns pertaining to the path, and can
be factorized as,

from which the To.F of ̂4̂  are obtained,

It is worth mentioning that no new fill-ins arise when factorizing matrix
(7, because all of its non trivial rows/columns share the same non-zero
pattern dictated by the respective path. In certain applications (e.g., non
permanent changes) it may be advantageous not to explicitly carry out the
products LLg and C7,,̂ - In case such products are needed, it should be kept
in mind that only the columns (rows) of Lm (L̂ n.) belonging to the involved
path differ from those of L (C7).

Example 2.4:

Consider the foHowing structurally symmetric matrix,

2
3

-0.4
-0.9

-0.2

4

-0.4

-0.4

-0.2

2.04

-0.4
-0.18

-0.3
-0.1
-0.2

1.09
3.05

-0.1 -0.28
-0.59

-0.1

-0.08
-0.1
-0.08
1.04

-0.08

-0.1

-0.19
-0.08
1.06
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whoseToF*are,

1
-0.2 1

-as i
-0.1 -0.2 1

-0.1 -0.1 -0.1 -0.1 1
-0.1 -0.2 -0.1 1

2 -0.2 -01
3 -as

4 -0.1 -0.1
2 -0.2 -0.1

1 -0.1
3 -0.1 -0.2

1 -0.1
1

Now, the scalar 0.2 is added to 0,33 and aee, and subtracted from aes and
yielding a modified matrix which can be expressed as

^+[0 0 1 0 0 -1 0 0]^0.2[0 0 1 0 0 -1 0 0]

The auxiliary arrays V and W are

V = L'*Af = [0 0 1 0 0 -0.9 -0.09 -0.089]̂

W = (/-̂ N = [ 0 0 0.25 0 0 -0.325 -0.0325 -0.04321^

Note that the nonzero elements in V and IV correspond with the factorization
path of row 3 (rows 3, 6, 7 and 8).

The intermediate matrix (7 is given by

1

1.0500

-0.0450
-0.0045
-0.0045

-0.0650 -0.0065 -0.0086

1.0585 0.0059 0.0078
0.0058 1.0006 0.0008
0.0058 0.0006 1.0008
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and its ToF,

0
1 0

1.0000
0 1
0 1

-0.0429 1
-0.0043 0.0053 1
-0.0042 0.0052 0.0005 1

1.050 -0.0650 -0.0065 -0.0086

1.0557 0.0056 0.0074
1.0005 0.0007

1.0007

Consequently, the ToF corresponding to ̂ 4rn are,

1
1

1
-0.2 1

-0.3 1
-0.1429 -0.2 1

-0.1 -0.1 -0.1 -0.0947 1
-0.0952 -0.1953 -0.0995 1

2 -0.2 -0.1
3 -0.3

4.2 -0.1 -0.1
2 -0.2 -0.1

1 -0.1
3.1671 -0.1 -0.2043

1.0005 -0.0993
1.0007

Compared to the original ToF, it is clear that only rows/columns 3, 6, 7 and
8 have changed.

B.6.2 Compensation

The idea is to express the solution of the modified system
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in terms of the Tc,F of the original matrix 4̂, rather than computing the
To.F of 7).̂. According to (B.14), the solution of the modified system can
be obtained from,

3; = ̂ -i(7"̂ L"̂  (B.15)

The inverse of matrix C in the above expression is provided by the so-called
muerse maf?"!2; mo&/tcaf!on /emma, which states that,

where the auxiliary m, x m matrix <5 must be previously computed from,

Whenever A is rank deficient the following alternative expression for <5 can
be used,

Substituting (B.16) into (B.15) yields,

Such a way of arranging the computations is known as m̂ -
because the intermediate vector L"^b is "compensated" with the term in
brackets, and then back substitution is applied to the resulting vector [2, 1].
It is also possible to compensate the independent vector
or the solution vector (poŝ -compe?Ma&ton,) by applying

or

respectively. In a majority of applications, mid-compensation is believed
to be the best choice.

Example 2.5:

Resorting to the ToF of yl in the former example, obtain the solution of

yl̂ T = &

with
&= [ 1 2 0 -1 2 0 1 0 ]̂

From the matrices obtained above, the scalar <5 is first computed

* = 1.3346
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Next, forward elimination on & yields the intermediate vector

y = L'*&=[l 2 0 -as 2.6 -0.16 1.264 0.0944]̂

Then, y is compensated as follows

[ 1 2 -0.0091 -0.8 2.6 -0.1518 1.2648 0.0952 ]̂

Finally, back substitution is applied to g/c,

x = !7"̂ c =

[ 0.5300 0.9394 0.0019 -0.3367 2.7274 -0.0042 1.2736 0.0945

B.7 Sparse Inverse

Although the inverse of a sparse matrix is generally full, there are cases in
which only a selected subset of elements of the inverse are needed.

One of such cases arises in sensitivity analysis. Given a linearized model

the influence of a certain control action Mj on a dependent variable ẑ  is
determined from:

where the sensitivity coefficient ŝ  is the respective element of A"^. The
fastest way of computing such a single coefficient is by performing a fast
forward elimination on the singleton vector 3 ̂ , followed by a fast back sub-
stitution ending at the i-th row. A conventional back substitution is justi-
fied only when a significant portion of sensitivity coefficients, with respect
to the same variable ttj, is required.

In a few but important cases, like short-circuit analysis and bad data
identification in WLS state estimation, only the elements of the inverse
lying at the same positions as the non-zero elements of the To.F are of
interest. Such subset of elements is known as the sparse m^erse, and the
approach based on sparse vector methods is inefficient in this situation,
because certain unwanted elements are computed during the fast back sub-
stitution processes. The method described below, proposed by Takahashi
ei( aZ. [9], constitutes the cheapest approach to obtain the sparse inverse.

Let us assume for simplicity that A is symmetric. Then, it can be
factorized as
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and its inverse 6* can be obtained from,

where the right hand side matrix is lower triangular with diagonal elements
d^ * . The procedure computes columns of the sparse inverse from the right-
most column to the left. Within each column j the diagonal element gjj is
first computed from,

.

This is possible because ail elements ŝ  above lie below the diagonal and
can be retrieved from the respective transposed elements of columns already
computed.

Next, off-diagonal elements s^, for t — j — 1, j — 2, . . . , 1, are obtained
from,

!<SA; = 0

where again the elements ŝ - are available from preceding steps (either
in the same column or as transposed elements in previously computed
columns).

Note that, in both expressions above, off-diagonal elements of S" are
always multiplied by elements of L, which explains why just the sparse
inverse is involved in the computations.

Example 2.6:

Consider the 11x11 matrix of example 2.3, reordered and factorized as shown
in figure B.2. Assuming the 11-th column of the sparse inverse is already available,
computation of its 10-th column above the diagonal proceeds as foUows:

sio.io = <^io,io " ̂ n,io[sn,io]

39,10 = — ̂

S8,10 = — ̂

37,10 = —%8, 7Sg,10 — ^10,7310,10 — %ll,7[sil,lo]

32,10 = —^9,239,10 — ^10,2310,10

where elements within brackets are taken from their transpose.
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B.8 Orthogonal Factorization

Orthogonal decomposition constitutes a numerically more stable alternative
to the L?7 factorization, in particular when the coefficient matrix is very
ill-conditioned and computational effort is not the main concern.

Any m - % matrix 4̂ of full rank can be factorized into two matrices of
the form:

7l = QR (B.19)

where Q is an m - m orthogonal matrix (i.e., Q^ = Q"*) and R is an m - %
upper trapezoidal matrix (i.e., its first % rows are upper triangular while
the remaining m — % rows are null) . The alternative expression,

allows practical factorization algorithms to obtain R as a sequence of ele-
mentary orthogonal transformations on the columns (rows) of ̂4, as follows:

where p is the number of steps required to transform 7l into R.
Properly partitioning Q and R gives rise to the following reduced form

of the QR factorization:

OJ = Qn!7 =̂  Q̂ 4 = ?7 (B.20)

It is therefore sufficient to build only the submatrix Q^ rather than the full
Q.

Whenever 7i is square, the unique solution of the linear system Tla; = 5
can be obtained by back substitution on the triangular system,

It is easy to show that the above system also provides the least-squares
solution in the general rectangular case (m > n).

Factorization based on the so-called Givens rotations is considered most
efficient for large sparse matrices. The most popular version proceeds
columnwise from left to right. Each elemental transformation eliminates
a single element below the diagonal, in ascending order of rows.

Assume the first j — 1 columns, as well as column j up to row 'i — 1,
have been processed. Then, elimination of the element a^ is performed by
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pre-multiplying 7l times the orthogonal matrix,

where

c =
-1/2

Geometrically, this is equivalent to rotating the columns of ̂4 by an angle

0 = arctans/c = arctana^/a^

Note that, in practice, the orthogonal matrix

is not explicitly built. Instead, the coefficients s and c defining each ele-
mental rotation replace m ŝ M the eliminated element a^ .

When applying Givens rotations to large sparse matrices, proper atten-
tion must be paid to fill-in elements arising in the process. It is easy to
verify that when the element â  gets eliminated, the resulting non-zero
pattern of both rows, j and i, is the union of the original non-zero patterns
corresponding to both rows.

Row/column ordering strategies have been developed in an attempt to
reduce the number of fill-ins. Such strategies are based on the observation
that row permutations on yl do not affect Â 4̂, while column permuta-
tions on y4 are equivalent to symmetric permutations on ̂A Therefore,
permutation of the columns of A is determined by applying the minimum
degree algorithm (Tinney's 2 scheme) to 74"̂ A, which reduces the fill-in in
[/. Intermediate fill-in, i.e., that arising in the factors of Q, is kept under
control by ordering the rows of A in ascending order of the index

max{j : â - ̂  0}

It is possible to carry out the rotations in such a way that no square
roots are necessary (sec for instance [12] for implementation details). How-
ever, as shown by the results presented in Chapter 3, Q̂ 7 factorization
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is computationally much more expensive than other techniques based on
augmented matrices and Lt/ decomposition.

Example 2.7:

Consider the following matrix

2

,4 =

1
3 2 1

4
3

4 6 1
1 2

2 3 1

where the first two columns are already upper triangular. In order to eliminate
the element ass = 4, the columns of yl are rotated by the angle

0 = arctana,63/&33=53.13°
e = cos # = 0.6
g = sin6< = 0.8

This leads to the following elemental orthogonal matrix

1
i

0.6 -0.8
1

1
0.8 0.6

yielding,

5 1.2 4.8 0.6 0.8
4

3
-1.6 3.6 -0.8 0.6

1 2
2 3 1

Note the extra fill-in elements at rows 3 and 6.
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B.9 Storage and Retrieval of Sparse Matrix
Elements

While there are numerous schemes developed for sparse matrix storage,
some of them apply to matrices with special properties such as symmetric,
triangular, banded, etc. The one that will be reviewed here is most general
and can be used for any sparse matrix with arbitrary structure. It was
suggested by Knuth [8] and is referred to as the JmA;ec! ̂si storage scheme,
or simply Aŵ A's mê .ô  of storage. Knuth's scheme requires 7 arrays for
storing an n x m sparse matrix A These are described below:

V This is the array containing all the nonzero elements of the sparse matrix
in compact form stored in arbitrary order. Dimension of V will be
equal to the number of nonzeros in A

Row This array contains the row index of the corresponding elements
stored in V. E.g. the row index of the element stored in V(z) will be

This array contains the index of the corresponding column elements
stored in V. E.g. the column index of the element stored in V(̂ )
will be

This array contains pointers to the next nonzero element location in
the same row. E.g. if Nea;̂ R(i) = /c, then the next nonzero element
in the same row as V(̂ ) will be

This array contains pointers to the next nonzero element location
in the same column. E.g. if Neâ C(i) = A;, then the next nonzero
element in the same column as V(si) will be

This array contains pointers to the beginning of each row. E.g. if
= A;, then the first nonzero element in row : will be

This array contains pointers to the beginning of each column. E.g.
if Bet/wC*̂ ) = /c, then the first nonzero element in column i will be

As matrix elements arc randomly stored in array V, the auxiliary arrays
(J5egwC) and TVeaiiR (./Veâ C) are needed to sequentially sweep

a given row (column) in ascending order of columns (rows).
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Example 2.8:

Consider the (3 x 5) sparse matrix A given be!ow, where the null values are
retained for clarity:

* 0 16 0 340 74
,4= 7 0 0 0 -51

0 44 0 14 23

This matrix can be stored using the following arrays:

V

Row

Co?

JVeztR

-51 44 340 23 14 7 74 16

2 3 1 3 3 2 1 1 ]

5 2 4 5 4 1 5 2 ]

- 1 5 7 - 1 4 1 - 1 3 ]

4 - 1 5 - 1 - 1 - 1 1 2 ]

8 6 2 ]

6 8 - 1 3 7

A "—1" is used to indicate the termination of lists in the above pointer
arrays. Note that column 3 is empty and the pointer Begin,C(3) = — 1
indicating that there are no nonzero elements to trace in column 3.

In a majority of power system applications, operations with sparse ma-
trices can be arranged in such a way that entries are exclusively accessed
by rows (also by columns). Usually, entire rows are retrieved in order to
combine them with other rows, perform inner products with column vec-
tors, etc. In such cases, storage requirements can be significantly reduced
by getting rid of arrays Row, J5egwC and Neâ C. This will also reduce the
overhead caused by the need to keep updated so many auxiliary structures,
which is not negligible.

When dealing with square matrices, diagonal elements are customarily
stored in a separate array, the array V being reserved just for off-diagonal
entries. Also, if the ToF are stored on the space previously occupied by
7!, it may be helpful to create another auxiliary array whose entries are
pointers to the first nonzero element above the diagonal of each row.

Of particular interest in power system analysis are square incidence-
symmetric matrices, as virtually any problem leads to an equation system
which can be rewritten in terms of such matrices. When solving those
systems by H7 factorization, all stages can be coded in such a way that
matrix coefficients above (below) the diagonal are systematically accessed
by rows (columns). Consequently, only one half of the matrix non-zero pat-
tern (upper or lower triangle) needs to be stored and handled. Each entry
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within this structure will contain two transposed elements for numerically
unsymmetric matrices, or a single element in the fully symmetric case.

B.10 Inserting and/or Deleting Elements in
a Linked List

Above linked list structure allows fast and easy manipulation of the sparse
matrices when the sparsity structure of the matrix changes. Change of
sparsity structure occurs during the triangular factorization of yi, where
/EN-ms are created, and have to be stored as part of the sparse Table of
Factors ToF matrix. On the other hand, nonzero elements in an admittance
matrix will have to be deleted if a branch is disconnected from the system.
That requires efficient elimination of nonzero entries from the link list. In
either case, link list can be efficiently updated to reflect the changes in the
sparsity structure.

For simplicity, it will be assumed below that matrix elements are linked
only by rows (4 arrays out of the 7 possible used).

B.10.1 Adding a nonzero element

Assume that a nonzero value of 23.5 is to be inserted in location (A;, j) of
a sparse matrix 4̂, whose link list is already formed as described above.
Provided the new element will be neither the first nor the last one in row
A;, it is inserted by performing the following steps:

+ 1) -̂ 23.5

+ 1) <—

Neâ R(preu) <— ?T,2f + 1

where,
wzf is the current number of matrix entries.
prev is the location of the nonzero entry in row A; immediately preceding
the added element in the link list.

Note that, before the modification, the following inequality applied:

The reader can easily modify the above procedure to take care of the
particular cases in which the new element is the first or last in the considered
row.
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B.10.2 Deleting a nonzero element

Deletion of a nonzero element from the link list constitutes a simpler task,
once its position is identified. Assume that element ̂ 4(A;, j) whose value is
stored in V(:) is to be deleted. Then, provided it is not the first element in
row A;, the following assignment must be carried out:

where,
prev is the location of the nonzero entry in row A; which is preceding the
deleted element in the link list (i.e., before the change, JVea;̂ .R(preu) = ̂).

Deleting the first element of row A; requires simply that

Even though it is possible, it is not worth the effort to track and recover
the emptied location for future use (garbage collection).

Example 2.9:

Given the sparse matrix 4̂ in the previous example:

,4 =
0 16 0 340 74
7 0 0 0 -51
0 44 0 14 23

Assuming the reduced row-oriented storage scheme is adopted, the following
change (indicated within a box) will have to be made in the pointer array RegwR
in order to delete the entry ̂4(2,1) = 7, located in V(6). This illustrates the case
in which the first entry of a row is deleted.

V = [ -51 44 340 23 14 7 74 16 ]

Co; = [ 5 2 4 5 4 1 5 2 ]

= [ - 1 5 7 - 1 4 1 - 1 3 ]

[1] 2 1

Now, assume that a new element ̂ 4(2, 2) = 45.7 is to be inserted in the matrix
A Then the new pointer arrays wiH take the following form. Again, the changes
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are marked within a box:

V = f-5l 44 340 23 14 7 74 16 ] 45.7 ]

CoZ = [ 5 2 4 5 4 1 5 2 [ V ] 1

= [-1 5 7 -1 4 1 -1 3

= [ 8 [9] 2 ]
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