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Preface to the Revised Edition

When this book first appeared, in 1983, it soon went out of print, and on several
occasions the authors were approached with photocopy requests. After almost 30
years, it seems to have turned out in a collector’s item, and a few accidentally
found copies were sold at enormous prices. Meanwhile, the first of the authors
(ADD) passed away in 2000, leaving behind a tremendous work in science and
engineering, especially in the target area of the book, and the second of the authors
(SAP) jointly with the first of the revising authors (ThGC), paying a tribute to his
memory, decided to proceed with an updated edition of it. SPRINGER agreed to
handle the project, and the result produced by several months of hard work is now
visible.

In this second edition, the various chapters were revised and updated to a
different extent. There was not much to add to the first chapters, which contained
fundamental knowledge or general theory of analytical methods (Chaps. 1–4).
However, extended revisions along with substantial additions, reflecting the pro-
gress achieved during the last three decades in the area of each of the remaining
(Chaps. 5–8), were carried out, especially on the dynamics of cracked rotors, and
its use on the identification of cracks and their depth and orientation as well as on
their influence on the dynamic stability and life expectancy of rotating elements
and even stationary structures. Finally, what is new is the introduction of varia-
tional methods, which, being quite a bulk of material, it was not thought wise to
have them squeezed in the existing chapters, therefore, two new (Chaps. 9–10)
dealing with variational applications in prismatic bars and rods and turbine rotors
respectively.

S. A. Paipetis
Th. G. Chondros
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Preface

The design and construction of rotating machinery operating at supercritical
speeds was, in the 1920s, an event of revolutionary importance for the then new
branch of dynamics known as rotor dynamics. Out of the treatment of a number of
new problems thus created, such as dynamic balancing, accelerating through
critical speeds, effects of material damping, and the mechanical behaviour of the
various types of bearings, along with the influence of all these factors on the
stability of the rotatoiy motion, an individual discipline was in fact born. These
problems were exhaustively treated in the classical monographs by Dimentberg
and Tondl (Chap. 1, Refs. I and 2, respectively), while particular aspects are even
included in standard vibration textbooks.

In the 1960s, another revolution occurred: in less than a decade, imposed by
operational and economic needs, an increase in the power of turbomachinery by
one order of magnitude took place. This was achieved by means of advanced
design methods, aided by fast digital computers and modern optimization tech-
niques. The new situation demanded higher and faster rotors, operating above the
second and sometimes the third critical speed, as is the case with steam or gas
turbines and aircraft engines. Inevitably, a whole class of new problems were
created: increased power concentration entails considerable interaction between
the dynamic behavior of rotors on the one hand and the associated thermal and/or
fluid flow fields on the other. The dynamic analysis of complex rotor forms
became a necessity, while the importance of approximate methods for dynamic
analysis was stressed, because of their capability to provide both straightforward
solutions and means of checking computer results based on complicated algo-
rithms. Finally, the appearance of fracture mechanics in the last two decades, as
another new branch of applied mechanics, provided the analytical tools for the
investigation of cracks on the dynamic behavior of rotors. The importance of this
latter development becomes evident if one bears in mind that the new philosophy
of design to the limit renders complete control over such phenomena as low- or
high-cycle fatigue, dynamic failure, etc., to an absolute necessity.

The scope of this book is based on these new developments. It was found that
no topics related to the well-known classical problems needed to be included, but
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the book rather deals exclusively with modern high-power turbomachinery.
Therefore the material included has been arranged in the following manner.

In Chap. 1, the problem of the approximate evaluation of the flexural eigen-
frequencies of rotors is investigated. The procedure based on Dunkerley’s rule for
the determination of the lowest eigenfrequency of a lumped-mass, multi-degree-
of-freedom elastic shaft is examined along with its extension to higher modes. This
procedure generally provides lower bounds for the eigenfrequencies, but its
accuracy can be increased at will by means of the root-squaring process, as sug-
gested by Graeffe and Lobachevsky, applicable both to undamped and damped
systems.

Extension to continuous systems is considered and also an integral equation
formulation of the eigenvalue problem, providing upper and lower bounds for the
eigenvalues, which by means of an iterative process can be brought as close as
desired.

Chapter 2 deals with the effects of variable elasticity in rotating machinery.
Such effects occur with a large variety of mechanical, electrical, etc., systems, in
the present case, for geometrical and/or mechanical reasons. Systems with variable
elasticity are governed by differential equations with periodic coefficients of the
Mathieu-Hill type and exhibit important stability problems. In this chapter, ana-
lytical tools for the treatment of these kinds of equations are given, including the
classical Floquet theory, a matrix method of solution, solution by transition into an
equivalent integral equation and the BWK procedure.

Chapter 3 presents the main mathematical models used in rotor dynamic
analysis. The one disk-flexible rotor model, called Jeffcott or de Laval rotor, can be
used to derive qualitative features, since it lends itself to analytical treatment. For
realistic rotor forms, a discrete finite element model is presented, applicable to
very complicated rotor geometries, yet leading to a manageable system of equa-
tions for linear or nonlinear analysis.

Chapter 4 deals with flow-induced vibration of rotors and in particular with the
most important case, known as ‘steam whirl’, often appearing in large steam
turbines. Vibration of rotors in fluid annuli is also discussed.

In Chap. 5 rotor instabilities are investigated, resulting from friction heating, a
phenomenon known as the ‘Newkirk effect’. The interaction between vibration
characteristics and heat generation leads to a nonlinear feedback system exhibiting
either stable or unstable behavior.

The problem of cracked rotor dynamics is discussed in Chap. 6. Open cracks
lead to linear systems, while closing cracks lead to nonlinear ones. Analytical
solutions are obtained, which can be used to monitor crack propagation or to
identify cracks in service.

The question of crack detection from dynamic measurements is further
extended and discussed in Chap. 7. A general stiffness matrix for cracked struc-
tural members is introduced, to model the respective dynamic system. The change
in dynamic response is analytically evaluated for simple systems and by means of
approximate methods for more complicated ones.
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Chapter 8 deals with the inverse problem to the one encountered in Chap. 5,
e.g., the heat generated by the vibration of rotating shafts. The corresponding
mechanisms are associated with internal damping and plastic deformation. This
phenomenon has been identified recently as the cause of large-scale failures of
power equipment, with electrical disturbances being the cause of the rotor
vibration.

Finally, the authors wish to express their sincere appreciation to Geoffrey and
Dorothy Holister for their help and advice in preparing the final manuscript for
publication.

A. D. Dimarogonas
S. A. Paipetis
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Chapter 1
Approximate Evaluation
of Eigenfrequencies

Abstract Approximate evaluation of rotors flexural eigenfrequencies is investi-
gated in Chap. 1. However, the formulation is similar for torsional vibrations of
shafts or even vibrations of elastic systems in general. The Dunkerley’s rule for the
determination of lowest eigenfrequency of a lumped-mass, multi-degree-of-free-
dom elastic shaft is applied along with its extension to higher modes. This pro-
cedure generally provides lower bounds for the eigenfrequencies, but its accuracy
can be increased at will by means of the root-squaring process, as suggested by
Graeffe and Lobachevsky, applicable both to undamped and damped systems.
Extension to continuous systems is considered too, and an integral equation for-
mulation of the eigenvalue problem, providing upper and lower bounds for the
eigenvalues, which by means of an iterative process can be brought as close as
desired. Those methods are useful for predicting bending and torsional fatigue life
of rotors and shafts, and furthermore, for developing methodologies for damage
detection, and the estimation of position and size of flaws and cracks in rotating
machinery.

1.1 Introduction

Dynamics of rotating shafts has attracted attention a long time ago. Since the end
of the nineteenth century, the theory of vibration was already extensively
developed, and there was rapid progress in high-speed machinery construction, in
particular to be used with locomotives and steam turbines. Whirling of shafts was
anticipated by W. A. Rankine, who postulated that shaft operation above the
critical speed was impossible. Extensive analytical investigations were performed
by Dunkerley and Reynolds. De Laval observed and resolved experimentally most
rotor dynamics problems, experimenting with steam turbines in the last quarter of
the nineteenth century. The whirling problem was solved by A. Föpl, who
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explained analytically why operation above the critical speed is possible, as
experimentally demonstrated by De Laval. His analysis is sometimes erroneously
credited to Jeffcott and the De Laval rotor is sometimes misnamed the ‘‘Jeffcott
rotor.’’ The early works of Rankine, Jeffcott and Stodola identified some of the
fundamental aspects of the dynamics of rotating shafts [1–8].

In the 1920s the turbine industry designed machines to operate at substantially
higher loads and at speeds above the lowest critical speed, and this introduced the
modern rotor dynamics problems, which were treated by B. L. Newkirk and A.
T. Kimball. Gyroscopic effects were introduced by A. Stodola. The influence of fluid
bearings was investigated by Stodola and further quantified by B. L. Newkirk and H.
D. Taylor and by A. Stodola. Vibration of shafts and beams of engineered shapes was
first studied by Frahm, in particular, torsional vibration of ship main shafts [7, 8].

In the 1920 and 1930s electric power was in great demand in the United States due
to the rapidly developing industry. Turbine manufacturers hired several engineers
from Europe. Timoshenko, den Hartog and Myklestad were all hired by Westing-
house, while H. Poritsky, a General-Electric mathematician came from Russia [7, 8].

The classical rotor dynamic model is based on the assumption that one or more
rigid disks (in a generalized sense e.g. also propellers, blade stages, etc.) are
mounted rigidly or elastically on an elastic shaft which is supported on elastic
bearings. In general, the equations of motion of these models are formulated in a
stationary (non-rotating) reference system. For rotating elastic structures as disks,
blades, bladed disks, etc., which are fixed rigidly or elastically on a rigid shaft on
rigid bearings, the equations of motion are generally formulated in a rotating
reference system with the additional static equation combining the external static
forces on the rotating structure, and inertia forces [9, 10].

Simplified models to describe a rotor, namely a disk on a massless shaft, rigid
or elastic, have been almost exclusively used for rotor stability analysis. For other
aspects of rotor dynamics, such as critical speed and unbalanced response, better
rotor models and methods of analysis have been devised. The one disc rotor
representation can only be used for qualitative studies and for the derivation of
general results. For analysis of specific machinery, one has to take into account the
complicated geometry of the rotor and accurate forms of excitation, bearings and
supports [5–10].

The present chapter deals with methods for the approximate determination of
eigenfrequencies in rotating shafts. More specifically, the methods examined are
referred to flexural vibrations; however, the formulation will be similar for tor-
sional vibrations of shafts or even vibrations of elastic systems in general.

The flexural eigenfrequencies of shafts are affected by a large number of
factors, such as [11–19]:

(1) Mechanical properties of the shaft material, including internal damping
[20–23], and factors affecting them, such as operating temperature [24, 25].

(2) Geometric properties of the shaft and mass distribution: Cross-sections may be
uniform or change in a continuous or even discontinuous manner, as is the
case with stepped shafts. Mass may be continuously distributed along a shaft
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or a shaft may bear a number of lumped masses. Secondary effects due to the
form of the latter may appear, such as a gyroscopic effect with disc-like
masses [26–29].

(3) Number, type and elastodynamic behaviour of bearings [30, 31].
(4) Mechanical prestressing and static loads [32–35].
(5) External damping [36].
(6) Local imperfections, such as flaws, cracks, fatigue microcracks etc., factors

affecting the structural integrity of the shaft [8–16, 37–44].

To solve the general dynamic problem, the shaft is modeled as a continuous
beam, properly supported, with or without lumped masses [45–48]. A rigorous
solution of the problem usually requires a considerable amount of analytical and/or
numerical work, depending on the complexity of the system considered. In order to
save effort and provide straightforward solutions with only a minimum of ana-
lytical and computational work, approximate methods have been developed. These
bypass the rigorous solution and provide results sufficiently accurate for specific
applications. Such methods are generally centered about the Rayleigh principle
and associated methods [49–53], on which a rather long list of references can be
found in the literature.

One of these methods is the Dunkerley procedure, which, as will be seen in the
following, is a convenient tool for the solution of the relevant problems when
combined with certain algebraic methods to increase its accuracy [54–56]. It is
mainly this procedure which will be covered in detail in this chapter.

1.2 Formulation of the Eigenvalue Problem

The flexural vibrations of a continuous beam obey the differential equation [7, 52]

EJ
o4u

ox4
þ 2

d
dx

EJð Þ o
3u

ox3
þ d2

dx2 EJð Þ o
2u

ox2
¼ �qA

o2u

ot2
ð1:1Þ

where u = u(x, t) is the vibration displacement, q is material density and

EJ ¼ f xð Þ ð1:2Þ

is beam stiffness. Equation (1.2) copes for changes of cross-section, as well as of
material properties along the x-axis. Moreover, density q and cross-section A may
also be functions of x. By separating coordinates, a solution of the following form
is obtained:

u ¼ X xð ÞT tð Þ ð1:3Þ

where

XðxÞ ¼ c1 sin axþ c2 cos axþ c3 sinh axþ c4 cosh ax ð1:4Þ
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T tð Þ ¼ sin a2bt � u
� �

ð1:5Þ

b ¼ ðEI=qAÞ1=2, u is phase angle, and a corresponds to the eigenvalues which are
to be determined from the boundary conditions. The latter may account for lumped
masses along the beam.

If the amount of the distributed mass of the beam is small, as compared with the
lumped masses, the system can be approximated by means of a massless beam
(q = 0) with finite stiffness (EJ = 0) and n concentrated masses m1, m2,…, mn. In
this case, the system has n degrees of freedom and obeys the matrix equation [15].

M€xþKx ¼ F ð1:6Þ

where
M ¼ diag ðm1; m2; . . .;mnÞ; the mass matrix;
K ¼ kij

� �
; the stiffness matrix;

F ¼ f1 tð Þ; f2 tð Þ; . . .; fn tð Þ½ �T; the external force vector, which is a function of
time in general.

In the presence of damping, a term C _x must be included in the left-hand side of
Eq. (1.6), where C ¼ cij

� �
is the damping matrix.

Equation (1.6), for free undamped vibration (F = 0), leads to the equation

�x2MþK
�� �� ¼ 0 ð1:7Þ

which is an algebraic equation of 2n degree, i.e. yielding n roots for x2, the
eigenfrequencies of the system.

1.3 Dunkerley’s Procedure

Dunkerley’s procedure is actually an approximate method of determining the roots
of Eq. (1.7). It was introduced by Dunkerley [55] on a purely empirical basis, as a
means of determining the lowest eigenfrequency of a shaft, carrying k concen-
trated masses. Dunkerley intuitively noticed that if the natural frequencies X1, X2,
…, Xk for the continuous shaft without masses and the massless shaft carrying
each mass separately were combined by the formula

1
x2

n

¼ 1

X2
s

þ 1

X2
1

þ 1

X2
2

þ . . .þ 1

X2
k

ð1:8Þ

the resulting critical frequency xn rad/s of the shaft having any number of disks of
masses agreed very closely with the system natural frequency determined exper-
imentally. In Eq. (1.8); X1 is the critical speed of shaft if considered massless and
supporting only disk m1, X2 is the critical speed of shaft if considered massless and
supporting only disk m2 etc. If the mass of the shaft is to be included, and Xs is the
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critical speed of the shaft alone, i.e., if all disks are removed, then the term 1/Xs
2

has to be included to the right part of Eq. (1.8). Equation (1.8), known as Dun-
kerley’s formula, was later proved by H. H. Jeffcott [7].

Consider a simply supported beam, AB as shown in Fig. 1.1, carrying masses
mk at respective positions xk (k = 1, 2, … , n). A unit force acting at x = xk

produces a deflection fk, which can be evaluated from the static elastic curve. If
only the mass mk at x = xk existed, the system would possess an eigenfrequency
equal to

Xk ¼ ðkk=mkÞ1=2 ð1:9Þ

where kk is the spring constant at the position considered. According to Dunkerley,
the lowest eigenfrequency x1 of the beam is given by

1
x2

1

¼
Xn

k¼1

1

X2
k

ð1:10Þ

Equation (1.10) provides a good estimate, although somewhat low, for the
fundamental flexural frequency of a massless beam carrying concentrated masses.
For example, with two equal masses m equally spaced on the beam, this estimate is

x1D ¼ 5 � 51135
EJ

ml3

� �1=2

where l is the length of the beam, while the exact value for x1 is 5.692 96, i.e. x1D

is lower by 3.19 % than the exact value. With three equal masses m equally spaced
on the beam (Fig. 1.2), the respective values are 4.747 15 and 4.921 40, i.e. x1D is
lower than x1 by 3.54 %.

In order to determine the principle underlying the Dunkerley procedure one has
to examine Eq. (1.7), which has the following form:

Dnx
2n � Dn�1x

2ðn�1Þ þ . . .þ ð�1Þnþ1D1x
2 þ ð�1Þn ¼ 0 ð1:11aÞ

Fig. 1.1 A simply supported, massless elastic beam carrying n concentrated masses

Fig. 1.2 A simply supported,
massless elastic beam
carrying n concentrated
masses

1.3 Dunkerley’s Procedure 5



where

D1 ¼ A11 þ A12 þ . . .þ Ann

D2 ¼
A11 A12

A21 A22

����

����þ . . .þ An�1;n�1 An�1;n

An;n�1 Ann

����

����
D3 ¼ ðsum of terms AijAklAmnÞ

..

.

Dn ¼ ðsum of products of nAij terms

ð1:11bÞ

etc., and

Aij ¼ aij mj

where aij are the influence coefficients, i.e. quantities expressing deflection at
position j (x = xj) due to unit force applied at position i. According to Maxwell’s
reciprocity theorem

aij ¼ aji ð1:12Þ

From the values of the coefficients Di (Eq. 1.11b), it is evident that Di is of the
order of Aij, D2 of A2

ij; etc., and Dn is of the order of An
ij. If x1 is the fundamental

(lowest) eigenfrequency of the system and Aij are sufficiently small, terms con-
taining powers of x2 higher than 1 can be neglected in Eq. (1.11a), which then
assumes the form

D1x
2
1 � 1 ¼ 0 ð1:13Þ

and become equivalent to Eq. (1.9), i.e. Dunkerley’s formula.
It is obvious that, under the conditions just stated, the higher harmonics of the

system can be determined [17]. Indeed, if the fundamental frequency x1 is known,
then, according to Eq. (1.11a)

Dnx
2n
1 � Dn�1x

2ðn�1Þ
1 þ . . .þ ð�1Þnþ1D1x

2
1 þ ð�1Þn ¼ 0 ð1:14Þ

which states that the polynomial of Eq. (1.10) has as an exact divider the binomial
x2 � x2

i ; which gives

x2
1Dnx2ðn�1Þ þ ðx4

1Dn � x2
1Dn�1Þx2ðn�2Þ þ ðx6

1Dn�x4
1Dn�1 þ x2

1Dn�1Þx2ðn�3Þ

þ. . .þ ðx2n
1 Dn � x2ðn�1Þ

1 Dn�1 þ . . .þð�1Þnþ2x2
1D2Þx2

þðx2n
1 Dn � x2ðn�1Þ

1 Dn�1 þ . . .þ ð�1Þnþ2x4
1D2Þþ ð�1Þnþ1x2

1D1 ¼ 0

ð1:15Þ

Now, by virtue of Eq. (1.13), the constant term of Eq. (1.15) is equal to
(-1)n-1; hence Eq. (1.15) assumes the form of Eq. (1.11a), but the highest power
of x2 has been reduced by 1. The coefficient of x2 is of the order of D2 or A2

ij at the

highest, etc. In this way, considering the smallest root x2
2, which corresponds to

the second eigenfrequency of the system, one may neglect terms containing
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powers of x2 higher than 1. But also in the coeficient of x2 only the last term

�1ð Þnþ2x2
1D2 need be retained, and Eq. (1.15) becomes

x2
1x

2
2D2 ¼ 0 ð1:16Þ

which provides a direct approach to the second eigenfrequency:

x2 ¼ 1=x1D2 ð1:17Þ

By dividing the polynomial of Eq. (1.14) by x2 � x2
i and admitting the same

approximations, Eq. (1.17) may assume the following form:

Dn

Yn

j¼1

x2
j ¼ 1 ð1:18Þ

thus confirming a well-known fact from the theory of algebraic equations, i.e. that
the product of all roots is equal to the constant term divided by the coefficient of
the highest power of the variable.

Application of these results to a simply supported massless beam carrying
n equally spaced equal masses m yields the following: The influence coefficients,
as derived from the static elastic curve, are

aij ¼
l3

6EJ

qj 1� qið Þ 1� q2
j � 1� qið Þ2

n o
ðqj\qiÞ

qi 1� qj

� �
1� q2

i � 1� qj

� �2
n o

ðqj [ qiÞ

8
<

:

9
=

;
ð1:19Þ

where q = x/l is a dimensionless coordinate along the axis of the beam. Now, with
two equal masses, attached at q = 1/3 and q = 2/3, respectively, we have

D1 ¼ 0:032921810=ðml3=EJÞ
D2 ¼ 0:000063775=ðml3=EJÞ

Accordingly, with three equal masses attached at q = 0.25, q = 0.50 and
q = 0.75, we have

D1 ¼ 4:438� 10�2=ðml3=EJÞ
D2 ¼ 1:370� 10�4=ðml3=EJÞ
D3 ¼ 0:069� 10�6=ðml3=EJÞ

Table 1.1 Dimensionless eigenfrequencies for discrete systems

xðEJ=ml3Þ1=2 n Accurate Dunkerley Error (%)

Fundamental 2 5.69296 5.51135 -3.19
2nd mode 2.199564 22.72047 +3.29
Fundamental 3 4.49140 4.74715 -3.54
2nd mode 19.33365 18.01872 -5.93
3rd mode 39.79685 44.05223 +10.69

1.3 Dunkerley’s Procedure 7



For both cases, exact eigenvalues, as well as the ones produced by Dunkerley’s
procedure, are given in Table 1.1. The error e is expressed as

e %ð Þ ¼ xacc � xdunkð Þ � 100=xacc ð1:20Þ

A procedure similar to Dunkerley’s, based on partial distributions of stiffness
instead of mass, is expressed by Southwell’s theorem (see Ref. [49], for
example).

1.4 The Question of Accuracy

The sum of the roots of Eq. (1.11a) is equal to

Xn

i¼1

1

x2
i

¼ Di ð1:21Þ

where, from Eq. (1.11b)

D1 ¼
1

X2
1

þ 1

X2
2

þ . . .þ 1

X2
n

ð1:22Þ

i.e. Eq. (1.21) is the exact form of Eq. (1.10), expressing Dunkerley’s principle. In
the latter, the roots x2

2;x
2
3; . . .;x2

n have been omitted, obviously by assuming that
their reciprocals are very small compared with x2

1. The same assumption must be
made in order to proceed to the determination of higher eigenvalues by Dunkerley.
Hence, the condition for the validity of the latter is

x2
n � x2

n�1 � . . .� x2
1 ð1:23Þ

i.e. x1 corresponds to the fundamental eigenfrequency.
One more conclusion drawn from the comparison of Eqs. (1.10) and (1.21) is

that Dunkerley’s procedure provides values for the eigenfrequencies which in
general are smaller than the exact ones, i.e. it provides lower bounds for the roots
of the characteristic equation. However, in the results of Table 1.1 it should be
noted that with certain higher eigenfrequencies the method yields greater values.
This is due to the fact that, according to Eqs. (1.16–1.18), each higher eigenfre-
quency x2

k is determined as a function of the lower values x2
1;x

2
2; . . .;x2

k�1 which
have been previously determined by means of the same procedure and, as they are
smaller than the exact values, may produce the said effect.

Algebraic equations whose roots satisfy the condition (1.23) can, therefore, be
solved in a straightforward approximate way, without lengthy computations. It is
interesting to look into this fact in detail, bearing in mind that roots of charac-
teristic equations of vibrating elastic systems without damping are always real and
positive x2

i

� �
.
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Returning now to Eq. (1.11a), where Dn = 0 and assuming that the condition
(1.23) holds, we can write

x2
2 ¼ e1x2

1
x2

3 ¼ e2x2
2

..

.

x2
n ¼ en�1x2

n�1

9
>>>=

>>>;

ð1:24Þ

where the quantities e1; e2; . . .; en are much smaller than one. On the other hand,
between the roots and the coefficients of Eq. (1.11a) the following relations hold:

x2
1 þ x2

2 þ . . .þ x2
n ¼ � Dn�1

DN

x2
1x

2
2 þ x2

2x
2
3 þ . . .þ x2

n�1x
2
n ¼ Dn�2

DN

..

.

x2
1x

2
2. . .x2

n ¼ 1
DN

9
>>>>=

>>>>;

ð1:25Þ

which, on the basis of Eq. (1.24), assume the form

x2
1 1þ E1ð Þ ¼ � Dn�1

DN

x2
1x

2
2 1þ E2ð Þ ¼ Dn�2

DN

..

.

x2
1x

2
2. . .x2

n 1þ Enð Þ ¼ 1
DN

9
>>>>>>=

>>>>>>;

ð1:26Þ

where the quantities E1, E2,…, En are all much smaller than one and, without
important loss of accuracy, they can be neglected, giving

x2
n ¼ � Dn�1

Dn

x2
nx

2
n�1 1þ E2ð Þ ¼ Dn�2

Dn

..

.

x2
1x

2
2. . .x2

n ¼ 1
Dn

9
>>>>>>=

>>>>>>;

ð1:27aÞ

from which the following approximations to the roots of Eq. (1.11a) result:

x2
n ¼ � Dn�1

Dn

x2
n�1 ¼ � Dn�2

Dn�1

..

.

x2
1 ¼ 1

D1

9
>>>>>>=

>>>>>>;

ð1:27bÞ

i.e. the roots of Eq. (1.11a) can be approximated by the roots of the following
linear equations:

1.4 The Question of Accuracy 9



Dnx2
n þ Dn�1 ¼ 0

Dn�1x2
n�1 þ Dn�2 ¼ 0

..

.

D1x2
1 � 1 ¼ 0

9
>>>>>=

>>>>>;

ð1:28Þ

It is obvious that the accuracy of the process depends on how small, as com-
pared with one, the quantities e1; e2; . . .; en�1 in Eq. (1.24) are. For example, from
the values presented in Table 1.1, e1 ¼ 0:0670 for n = 2 and e1 ¼ 0:0540;
e2 ¼ 0:236 for n = 3, which values have provided acceptable accuracy with
Dunkerley’s procedure. They also explain why the original empirical formula
worked when applied to shafts.

However, there are cases where the method is not applicable, at least in its
present form. Consider, for example, a massless circular plate, clamped circum-
ferentially, carrying two equal masses m (Fig. 1.3). The static deflection w at a
position defined by the polar coordinates r, h due to a unit load at r = b and h = 0
is given by the following equation [57]

w ¼ a2

16pD
1� xð Þ2 1� nð Þ2þ x2 þ n2 � 2xn cos h

� �
log

x2 þ n2 � 2xn cos h

1þ x2n2 � 2xn cos h

	 


ð1:29Þ

where a is the radius of the plate;
x = r/a, n = b/a are dimensionless coordinates;
D = Eh3/[12(1-m2)], the flexural rigidity of the plate;
h is the thickness of the plate;
E and m are Young’s modulus and Poisson’s ratio of the plate

material, respectively.

The influence coefficients are therefore

a11 ¼ 0:5625a2=16p D

a12 ¼ 0:5625a2=16p D

Fig. 1.3 A circumferentially
clamped, massless elastic
plate carrying two equal
concentrated masses
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and the coefficients of the frequency equation are

D1 ¼ 1:125ma2=16pD

D2 ¼ 0:3029ðma2=16pDÞ2

which give the following exact solutions:

x1 ¼ 1:4969ma2=16pD

x2 ¼ 1:2138ma2=16pD

while respective values obtained by the Dunkerley procedure are

xD1 ¼ D1=D2ð Þ1=2¼ 1:9272ma2=16pD ðerrorþ 28:75 %Þ
xD2 ¼ D1=2

1 ¼ 0:9428ma2=16pD ðerror� 22:33 %Þ

It is obvious that the method is not applicable with the present system, where
e1 = 0.6575, i.e. not much smaller than one.

1.5 The Root-Squaring Process

In order to increase the accuracy of the method, or even to make it applicable to
more systems, special techniques are required, the most convenient of which is
Graeffe [58] or Lobachevsky-Graeffe [59] method.

This method is based on the following principle. If, from Eq. (1.11a),
a transformed equation can be derived:

DðmÞn y2n � DðmÞn�1y2ðn�1Þ þ . . .þ ð�1Þnþ1DðmÞ1 y2 þ ð�1Þn ¼ 0 ð1:30Þ

whose roots y2
i

� �
are equal to the mth power of the respective roots ðx2

i Þ of
Eq. (1.11a), i.e.

y2
i ¼ x2m

i i ¼ 1; 2; . . .; nð Þ ð1:31Þ

then condition (1.23) is valid more accurately for Eq. (1.30) than for Eq. (1.11a).
Indeed, if y2

k�1 and y2
k\y2

k�1 are two consecutive roots of Eq. (1.30), we have

lim
y2

k

y2
k�1

¼ lim
x2

k

x2
k�1

� �m

¼ 0 when m!1

This limit, however, is the quantity ek-1, which, under these conditions, can be
taken as small as necessary, provided that a suitable value for m is selected. In
practice such a method works by taking the exponent m equal to a power of 2, i.e.
m = 2p, where p is a natural number and the process is executed in p steps. At each
step, a transformed equation is obtained, whose roots are the squares of the
respective roots of the transformed equation of the last step. The method is thus
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called the root-squaring process. If some of the roots of the basic equation do not
differ considerably the convergence of the method is slowed down.

The coefficients of the transformed equations can be determined as follows: The
polynomial of Eq. (1.11a) can be written in the form

Px2 ¼ Dn x2 � x2
1

� �
x2 � x2

2

� �
. . . x2 � x2

n

� �

while

P �x2
� �

¼ �1ð ÞnDn x2 þ x2
1

� �
x2 þ x2

2

� �
. . . x2 þ x2

n

� �
:

Then, equation

Q x4
� �

¼ P x2
� �

P �x2
� �

¼ �1ð ÞnDn x4 � x4
1

� �
x4 � x4

2

� �
. . . x4 � x4

n

� �
¼ 0

ð1:32Þ

has roots equal to x4
1;x

4
2; . . .;x4

n i.e. the squares of the roots of the equation
P x2ð Þ ¼ 0.

Carrying out the multiplication of the polynomials

P x2
� �

¼ Dnx
2n � Dn�1x

2 n�1ð Þ þ . . .þ �1ð Þn�1D1x
2 þ �1ð Þn¼ 0

P �x2
� �

¼ �1ð Þn Dnx
2n � Dn�1x

2 n�1ð Þ � . . .� �1ð Þn�1D1x
2 þ �1ð Þn

h i
¼ 0

one obtains the polynomial

Q x4
� �

¼ Dð1Þn y2n þ Dð1Þn�1y2ðn�1Þ þ . . .þ �1ð Þn�1Dð1Þ1 y2 þ �1ð Þn¼ 0 ð1:33Þ

with roots

y2
i ¼ x4

i

where

Dð1Þn ¼ D2
n

Dð1Þn�1 ¼ D2
n�1 � 2 �1ð ÞnDn�2

Dð1Þn�2 ¼ D2
n�2 � 2Dn�1Dn�3 þ 2 �1ð ÞnDn�4

..

.

etc:

or generally

Dðiþ1Þ
k ¼ Di

k

� �2þ2
Xk

s¼1

�1ð ÞsD ið Þ
k�sD

ið Þ
kþs k ¼ 1; 2; . . .; nð Þ ð1:34Þ

where it is assumed that Ds = 0 for s \ 0 and s [ n. If any of the coefficients Dk-s

or Dk+s is absent, it is considered to be zero.
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If the root-squaring process is applied p times and the roots zi of the pth
equation are determined through the linear equations

DðpÞn z2
n þ DðpÞn�1 ¼ 0

DðpÞn�1z2
n�1 þ DðpÞn�2 ¼ 0

..

.

DðpÞ1 z2
1 � 1 ¼ 0

then the roots xi of the initial Eq. (1.11a) are given by

xi ¼
ffiffiffiffi
zi

2p
p ¼ Di�1

Di

� �1=2p

ði ¼ 1; 2; . . .; nÞ ð1:35Þ

It is evident that repeated application of the transformation expressed by
Eq. (1.34) leads to progressively smaller values for the double products.

This remark leads to the following rule:

The root-squaring process is terminated when the coefficients of a certain
transformed equation are equal to the squares of the respective coefficients of the
preceding transformed equation.

Such equality is meant to be within the accuracy of computations and is due to
the absence of double products.
Examples

As examples, let the simply supported beam of Fig. 1.2 and the circumferen-
tially clamped circular plate of Fig. 1.3 be considered.

In the first case and for one application (p = 1), the results are presented in
Table 1.2. On both occasions (n = 2, n = 3), the error has been reduced to
insignificant levels, as a result of the fact that condition (1.23) was in the first place
fulfilled with sufficient accuracy.

In the second case, however, such a rapid convergence of the method is not
exhibited. According to the results presented in Table 1.3, the same order of
accuracy as in the previous case can be obtained only by means of three successive
applications of the root-squaring process.

However, it should be pointed out that

Table 1.2 Dimensionless eigenfrequencies of Table 1.1 corrected by applying once (p = 1) the
root-squaring process

xðEJ=ml3Þ1=2 n Accurate Dunkerley Error (%)

Fundamental 2 5.69296 5.68659 -0.11
2nd mode 21.99564 22.02028 +0.11
Fundamental 3 4.92140 4.92799 +0.13
2nd mode 19.33365 19.13948 -1.00
3rd mode 39.79685 40.33301 +1.35
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(1) the combined use of Dunkerley’s procedure and Graeffe’s method renders the
former applicable with any elastic system, even with those which do not
conform to condition (1.23);

(2) in the latter circumstances, the computations required are straightforward and
less complex than when solving the characteristic equation by numerical
means.

1.6 Application with Dissipative Systems

Assume that one or more of the masses of the system considered is subjected to
viscous damping. The respective roots of the characteristic equation will then
appear in pairs of complex conjugate quantities. A straightforward application of
the procedures so far mentioned for their determination is not possible, as con-
dition (1.23) is no longer valid. However, the problem can still be tackled directly,
at least partially, by means of proper generalisations. Suppose that the n roots of
Eq. (1.11a) can be grouped in r classes:

x2
1;x

2
2; . . .;x2

q1

x2
q1þ1;x

2
q1þ2; . . .;x2

q2

..

.

x2
qr�1þ1;x

2
qr�1þ2; . . .;x2

qr

9
>>>>=

>>>>;

such that

x2
1�x2

2� . . .�x2
q1
� x2

q1þ1�x2
q1þ2� . . .�x2

q2
� x2

qr�1þ1� . . .

�x2
qr�1þ2� . . .�x2

qr

ð1:36Þ

where obviously q1 ? q2 + … + qr = n, i.e. the roots belonging to a lower class
are much smaller than the roots belonging to a higher class. In this case, by

Table 1.3 Approximate dimensionless eigenfrequencies of a circumferentially clamped
massless circular plate carrying two concentrated masses with repeated corrections by the
root-squaring process

xð16pD=ma2Þ1=2 p Dunkerley Error (%)

Fundamental 0.9428 -22.33
2nd mode 0 1.9272 +28.73
Fundamental 1.1096 -8.59
2nd mode 1 1.6378 +9.41
Fundamental 1.1881 -2.12
2nd mode 2 1.5297 +2.19
Fundamental 1.2111 -0.23
2nd mode 3 1.5000 +0.21

(Accurate values x1ð16pD=ma2Þ1=2 ¼ 1:4969; x2ð16pD=ma2Þ1=2 ¼ 1:2138)
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reasoning similar to that for the derivation of the linear Eq. (1.28) from the ori-
ginal Eq. (1.11a), it can be proved that the latter is approximately equivalent to the
set of equations

Dnx2q1 þ Dn�1x2ðq1�1Þ. . .þ Dq1 ¼ 0

Dq1x
2q2 þ Dq1þ1x2ðq2�1Þ þ . . .þ Dq1þq2 ¼ 0

..

.

Dq1þq2þ...þqp�1x
2qr þ Dq1þq2þ...þqp�1þ1x2ðqrþ1Þ þ . . .þ Dq1þq2þ...þqr ¼ 0

9
>>>>>>>=

>>>>>>>;

ð1:37Þ

of degree q1, q2,…, qr x2 in respectively (only plus-signs have been used for
convenience). It is obvious that, if condition (1.23) holds, r = n and Eq. (1.37) are
equivalent to the set of the linear binomials (1.28). Now, Eq. (1.37) are of much
lesser degree than n and are perhaps easier to solve than the original n-degree
equation. However, this procedure provides the basis for the solution of the latter,
if it possesses one, two or three pairs of complex roots. With four pairs or more,
the procedure becomes too complex and further methods are required.

Indeed, assuming that roots x2
m and x2

mþ1 are complex conjugates of the form

x2
m ¼ uþ iv

x2
mþ1 ¼ u� iv

�
ð1:38Þ

where u and t are real, that all other roots are real and satisfy the condition

x2
1\x2

2\. . .\ x2
m

�� �� ¼ x2
mþ1

�� ��\. . .\x2
n ð1:39Þ

by applying p times the root-squaring process, the equation

DðpÞn yn � DðpÞn�1yn�1 þ . . .þ DðpÞ1 yþ ð�1Þn ¼ 0 ð1:40Þ

is obtained, with roots

yk ¼ x2
n

� �2p
k ¼ 1; 2; . . .nð Þ

for sufficiently large p, the real roots of Eq. (1.40) can be approximated by the n-2
linear equations

D pð Þ
n yn þ D pð Þ

n�1 ¼ 0

..

.

D pð Þ
m�2ym�2 þ D pð Þ

m�1 ¼ 0

D pð Þ
mþ1ymþ1 þ D pð Þ

mþ2 ¼ 0

..

.

DðpÞ1 y1 þ ð�1Þn ¼ 0

9
>>>>>>>>>>>=

>>>>>>>>>>>;

ð1:41aÞ

1.6 Application with Dissipative Systems 15



from which

x2
k ¼ DðpÞk =DðpÞk�1

h i1=2p
k 6¼ m; k 6¼ mþ 1ð Þ

As stated, when the root-squaring process is terminated, the double products in

Eq. (1.34) tend to vanish. This is the present case with all coefficients D pð Þ
k , but not

D pð Þ
m . This coefficient does not contain vanishing products. On the contrary, the

double products assume significant values, sometimes causing the coefficient to
change sign. When this occurs with the root-squaring process, it is an unmistakable
sign of the existence of complex roots, whose position in condition (1.39) is
indicated by the index m of the coefficient D pð Þ

m .
Now, these complex roots must satisfy the quadratic

D pð Þ
m�1y2 þ D pð Þ

m y2 þ D pð Þ
mþ1y2 ¼ 0 ð1:41bÞ

which, along with Eq. (1.41a), provides the complete solution of the characteristic
equation.

This procedure can also be applied for two or three pairs of complex roots, if
sufficiently distant. However, with four such pairs and more, the improvement
suggested by Brodetsky and Smeal needs to be applied. Using this, the origin of
the variable x is moved by a small quantity n and then the root-squaring process is
applied. All complex roots can thus be found, but the introduction of n entails
considerable algebraic work, necessary for the transformation of the initial
equation by means of the binomial expansion x0 þ nð Þn. The method need not be
given here in detail, as it is readily available in the literature [60, 61].

1.7 Applications with Continuous Systems

Dunkerley’s procedure is also applicable to continuous systems. If the influence
function a(q, n) is known, i.e. the deflection at the position q due to a unit load
applied at the position n, which can be continuous or sectionally continuous, and
also the mass distribution

l qð Þ ¼ dm

dq

along the beam, then the A-coefficients of Eq. (1.11b) appear in the differential
form

dAðq; nÞ ¼ aðq; nÞdm ð1:42Þ

In order to apply Dunkerley’s procedure the coefficients Dk in Eq. (1.11b) must
be evaluated in the following manner:
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D1 ¼
Z1

0

dAðq; qÞ ð1:43aÞ

D2 ¼
Z1

0

dAðq; qÞ Z
1

0

dAðn; nÞ � Z1

0

A q; nð ÞAðn; qÞdq ð1:43bÞ

etc.
The application in a simply supported beam with uniformly distributed mass

l = m/l is straightforward. One has

a q; nð Þ ¼ l3

6EJ
�

n 1� qð Þ 1� n2 � 1� qð Þ2
h i

q 1� nð Þ 1� q2 � 1� nð Þ2
h i n\qð Þ

n [ qð Þ

8
<

:

9
=

;
ð1:44Þ

which, when combined with Eq. (1.42), yields

D1 ¼ 0:011 111 ll4=EJ
� �

D2 ¼ 7:349 � 10�6 ll4=EJ
� �2

These results can be obtained directly if one bears in mind the expression

Zl

0

xm 1� xð Þndx ¼ m!n!

mþ nþ 1ð Þ!

The first and second eigenfrequencies along with the accurate ones and the error
appear in Table 1.4. It is interesting to note that one application of Graffe’s method
leads, for the fundamental mode, to a value

D2
1 � 2D2=D2

2

� �1=4¼ 9:792 48

i.e. an improved value, and for the second mode to a value

D2
1 � 2D2=D2

2

� �1=4¼ 37:668 54

which is less accurate than the first approximation. The procedure can be gener-
alised to stepped shafts [63] or to continuous shafts carrying concentrated masses
as well.

It is now expedient to consider in detail the approximate solution of the
eigenvalue problem of the vibrating beam by means of its integral-equation for-
mulation. If a(x, n) is the influence function of the beam and P(n, t) a dynamic load

Table 1.4 Dimensionless eigenfrequencies for a simply supported uniform beam

xðEJ=ll4Þ1=2 Accurate Dunkerley Error (%)

Fundamental p2 = 9.869 60 9.486 52 -3.89
2nd mode 4p2 = 39.478 42 38.883 43 -1.51

1.7 Applications with Continuous Systems 17



distribution, the differential deflection at the position x due to a load P(n, t)dn at
the position n is

du ¼ dðx; nÞPðn; tÞ dn:

By integration over the length l of the beam, one obtains

uðx; tÞ ¼ Zl

0

a x; nð ÞP n; tð Þdn: ð1:45Þ

However, with freely vibrating beams the load P(n,t) is only due to inertial
forces, i.e.

P n; tð Þ ¼ �m nð Þ o
2u

ot2
ð1:46Þ

where m nð Þ is the mass distribution along the beam. On the other hand, we have

u n; tð Þ ¼ X nð Þ cos ðxtÞ

as free vibrations are harmonic, and Eq. (1.45) assumes the form

XðxÞ ¼ x2 Zl

0

a x; nð Þm nð ÞX nð Þdn: ð1:47Þ

By substituting [62, 63],

yðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi
m xð Þ

p
XðxÞ

K1ðx; nÞ ¼ aðx; nÞ
ffiffiffiffiffiffiffiffiffiffi
m xð Þ

p ffiffiffiffiffiffiffiffiffiffi
m nð Þ

p

k ¼ x2

:

Eq. (1.47) becomes

yðxÞ ¼ k
Zl

0

K1 x; nð Þy nð Þdn ð1:48Þ

which possesses a symmetric kernel K1(x, n).
Solutions of Eq. (1.48) exist for a discrete set of real and positive eigenvalues,

k1 \ k2 \ … \ kn \ …, to which the eigenfunctions y1, y2,…, yn,…correspond.
No multiple eigenvalues exist.

The eigenfunctions are orthogonal [64], i.e.

Zl

0

yn xð Þym xð Þdx ¼ Nmdmn ð1:49Þ

where dmn is Kronecker’s delta, and form a complete set, on the basis of which the
kernel can be expressed in the form of the series [65]
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K1 x; nð Þ ¼
X1

n¼1

yn nð Þyn xð Þ
knNn

: ð1:50Þ

The lowest eigenvalue ki can be found from Eq. (1.50) by putting n = x and
integrating with respect to x. We then have

Zl

0

K1 x; xð Þdx ¼
X1

n¼1

1
kn
: ð1:51Þ

Now, if k1 � k2 � k3 � …, i.e. a condition corresponding to (1.23), we can
write

1
k1
	 Zl

0

K1 x; xð Þdx ¼ J1 ð1:52Þ

which clearly provides a lower bound for the fundamental eigenfrequency and
corresponds to the value from Eq. (1.43a).

In order to proceed to higher eigenvalues one must make use of a theorem [65],
stating that if un(n) is the sequence of all eigenfunctions of a symmetric kernel
K(x, n) and kn the corresponding eigenvalues, then the truncated kernel

Knþ1 x; nð Þ ¼ K x; nð Þ �
Xn

m¼1

ym xð Þym nð Þ
km

ð1:53Þ

has the eigenvalues kn+1, kn+2, … to which correspond the eigenfunctions un+1(n),
un+2(n), … and no other eigenvalues or eigenfunctions. Equation (1.52) corre-
sponds to the values from Eq. (1.43b), etc.

Finally, in order to improve the lower bound provided by Eq. (1.52), etc., and also
to provide an upper bound, the mth iterated kernel Km(x, n), m C 2, is defined as

Kmðx; nÞ ¼
Zl

0

Km�1 x; gð ÞK1 g; nð Þdg ð1:54Þ

Moreover, we have
Z l

0

Km x; nð Þyn nð Þdn ¼
Z l

0

Km�1 x; gð Þdg
Z l

0

K1 x; nð Þyn nð Þdn

¼ k�1
n

Z l

0

Km x; gð Þyn gð Þdg

and, by continuing
Z l

0

Km x; nð Þyn xð Þdx ¼ k�m
n yn nxð Þ
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and the iterated kernel Km(x, n) can be expanded as

Km x; nð Þ ¼
X1

n¼1

yn nð Þyn xð Þ
km

n Nn

from which it follows that

X1

n¼1

1
km

n

¼ Zl

0

Km x; xð Þdx ¼ Jm ð1:55Þ

giving Eq. (1.52) for m = 1. By putting

Jm ¼ 1
km

1
ð1þ emÞ

Jm�1 ¼ 1
km�1

1
ð1þ em�1Þ

)

ð1:56Þ

where, since k1 \ k2 \ k3…

0 \ em ¼
X1

n¼2

k1

kn

� �m

\em�1 ¼
X1

n¼2

k1

kn

� �m�1

it follows that

k1 [
1

Jm

� �1=m

and

k1 ¼
Jm�1

Jm

1þ em

1þ em�1
\

Jm�1

Jm

leading eventually to an upper and a lower bound for k1:

1
Jm

� �1=m
\k1\

Jm�1

Jm
ð1:57Þ

which are the closer the larger the value of m.

1.8 Summary and Conclusions

Dunkerley’s procedure, based on a simple empirical rule for a direct approxima-
tion to the fundamental flexural eigenfrequency of vibrating shafts, can be gen-
eralized and combined with certain algebraic devices to provide approximate
solutions for the eigenfrequencies corresponding to any mode for any linear
vibrating elastic system. The procedure is a number of discrete components and
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whose eigenfrequencies differ considerably from each other. However, by apply-
ing Graeffe’s method and the root-squaring process, the accuracy of approximation
can be increased at will, while the computational effort remains small. The method
can also cope with vibrating masses subjected to viscous damping, in which case a
respective number of complex roots results for the characteristic equation. If more
than three masses are subjected to damping, the improvement suggested by
Broodetsky and Smeal renders the root-squaring process applicable.

The procedure is applicable with continuous systems as well. By means of the
integral equation formulation or the respective eigenvalue problem, it can be
proved that upper and lower bounds are provided for the eigenvalues, and iterative
processes increasing accuracy are established. Those methods are useful for pre-
dicting the bending and torsional fatigue life of rotors and shafts, and furthermore,
for developing methodologies for damage detection, and the estimation of position
and size of flaws and cracks in rotating machinery [66–70].

In all of the approximate procedures suggested, the necessary computations are
straightforward and less complex than required for the rigorous solution of the
respective problem, while any desired level of accuracy can be obtained.
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Chapter 2
Variable Elasticity Effects in Rotating
Machinery

Abstract The effects of variable elasticity in rotating machinery occur with a
large variety of mechanical, electrical, etc., systems, in the present case, geo-
metrical and/or mechanical problems. Parameters affecting elastic behavior do not
remain constant, but vary as functions of time. Systems with variable elasticity are
governed by differential equations with periodic coefficients of the Mathieu-Hill
type and exhibit important stability problems. In this chapter, analytical tools for
the treatment of this kind of equations are given, including the classical Floquet
theory, a matrix method of solution, solution by transition into an equivalent
integral equation and the BWK procedure. The present analysis is useful for the
solution of actual rotor problems, as, for example, in case of a transversely cracked
rotor subjected to reciprocating axial forces. Axial forces can be used to control
large-amplitude flexural vibrations. Flexural vibration problems can be encoun-
tered under similar formulation.

2.1 Introduction

Variable elasticity effects occur with systems in which the parameters affecting
elastic behavior do not remain constant, but vary as functions of time. Equations of
motion pertaining to such systems remain linear, but they possess time-dependent
coefficients. Similar phenomena appear in all fields of physics and are generally
associated with wave propagation in periodic media, a problem encountered as
early as 1887 by Lord Rayleigh, and subsequently by other prominent physicists
[1]. It was recognized that such phenomena are described by means of Hill and
Mathieu differential equations. A detailed and comprehensive review on the work
on waves in periodic structures was given by Brillouin [2].

A. D. Dimarogonas et al., Analytical Methods in Rotor Dynamics,
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� Springer Science+Business Media Dordrecht 2013

25



Omitting a large number of non-mechanical phenomena mentioned in the above
references, it is interesting to concentrate attention on the following vibrating
mechanical systems [3–10]:

1. A rotating shaft with non-circular cross-section, i.e. non-uniform flexibility.
2. A mass suspended from a taut string with time-varying tension.
3. A pendulum with time-varying length.
4. An inverted pendulum attached to a vertically vibrating hinge.
5. The side-rod system of electric locomotives, exhibiting torsional vibrations.
6. The rotating parts of small motors, which are subject to the time-varying action

of electromagnetic fields.
7. A rotating flywheel carrying radially moving masses.
8. A rotating flywheel eccentrically connected to reciprocating masses.

The list is by no means complete, but the examples are characteristic of the
problems encountered.

If one of these structures is constrained to move at constant circular frequency,
the respective parameters are periodic functions and under proper conditions large
vibration amplitudes may develop. The reason is that, within each cycle, positive
work is introduced into the system, which results in a gradually increasing
amplitude, i.e. instability. This effect can be caused, for example, by a small
accidental force producing an initial velocity and being enhanced, under certain
conditions, by the action of gravity or static forces [3]. In Fig. 2.1, the response of
a simple oscillator with a different spring constant in tension and in compression is
presented. The oscillator is assumed to perform harmonic oscillations at constant
circular frequency x.

By using the analysis given in Sect. 2.2, the total energy stored in the system
during the first and second half-cycles can be evaluated. This may be positive, zero
or negative. The second and third cases lead to stable situations; however, the first
one leads to increasing vibration amplitudes, i.e. to instability.

Fig. 2.1 Response of a
simple oscillator with a
different spring constant in
tension and in compression
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Consider now a rotating shaft, or the more general case of a beam executing
flexural vibrations. The following cases of variable elasticity can be distinguished.

2.1.1 Variable Length l

A beam resting on circular supports with finite radius undergoes periodic changes
of length during flexural vibrations. This case is obviously not related to rotating
machinery; however, it is an interesting example of periodic changes in elasticity
(Fig. 2.2).

2.1.2 Variable Stiffness EJ

The flexural stiffness EJ may vary periodically if either elastic modulus E of the
structure material or the second area moment J of the respective cross-sections or
both vary accordingly. Rotor-to-stator rub often occurs in rotating machinery.
Methods for detecting the rub-impact effect were developed based on the variable
stiffness issue for the rotor system [11, 12]. Therefore, one can distinguish the
following particular cases:

Variable elastic modulus E: Many materials, especially polymers and their
composites, exhibit different elastic modulus in tension Es and in compression Ec

[12–15]. A beam performing longitudinal vibration would exhibit a variable
stiffness of ripple form, as shown in Fig. 2.1. With flexural vibration, in the
presence of an axial load, a respectively oscillating neutral axis would result,
giving rise to periodically varying flexural stiffness.

Variable second area moment J: The second area moment J depends on the
particular form of the respective cross-sections. With circular cross-sections,
J remains constant in all directions and the flexural stiffness is not affected.
However, with non-circular cross-sections, for example rectangular, if the beam
rotates while the direction of the load or the couple vector remains constant,
a periodically varying J results. With constant rotating speed, this variation is
sinusoidal. Non-circular cross-sections are produced by keyways, etc., special
formations of rotors, and also by longitudinal or transverse cracks. The latter may
have a considerable effect and, alternatively, their presence can be detected by the
dynamic behavior of the vibrating element. A quasi-sinusoidal experimental curve

Fig. 2.2 A beam on circular
supports of finite radius
exhibiting periodic length
variation during flexural
vibration
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represents the periodic variation of the flexural stiffness [16] (Fig. 2.3). The
simplest example of a system with periodically varying stiffness is a straight
rotating shaft, whose cross-section has different principle moments of inertia.
A classical example of systems with periodically varying stiffness was the drive
system of an electric locomotive incorporating a coupling link for force trans-
mission, applied during the first years of electric locomotion.

2.1.3 Variable Mass or Moment of Inertia

Such examples have already been mentioned. The case of a reciprocating engine is
a very common one, by which the inertia of the piston mechanism varies peri-
odically [17–19]. A heavy flywheel is necessary in order to maintain uniform
rotating speed, a device important for all systems exhibiting variable elasticity.

In this chapter the various problems of such systems are discussed in detail,
along with the respective mathematical techniques used for their treatment.

2.2 The Problem of Stability

Consider a simple oscillator, i.e. a mass m suspended from a massless spring,
whose constant, however, assumes the value k(1 ? d) for tension and the value
k(1 - d) for compression. Moreover, assume that at t = 0, its deflection is x = 0
and its velocity _x ¼ v0. The free vibration of the system is governed by the
equations

Fig. 2.3 Variation of flexural
stiffness of a transversely
cracked rotor
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€xþ x2
0 1þ dð Þx ¼ 0 for x [ 0 tensionð Þ

€xþ x2
0 1� dð Þx ¼ 0 for x\0 compressionð Þ

)

ð2:1Þ

where x2
0 ¼ k=m: During the first half-cycle, the natural frequency of the system is

x1 ¼ x0 1þ dð Þ1=2 ð2:2aÞ

while during the second half-cycle

x2 ¼ x0 1� dð Þ1=2: ð2:2bÞ

The period T of a complete cycle is

T ¼ T1 þ T2 ¼
p
x1
þ p

x2
¼ 2p

x
ð2:3Þ

where x is the circular frequency of the free vibration, which, however, is not
uniform over the two half-cycles. From Eq. (2.3) we obtain

1
x
¼ 1

x1
þ 1

x2
ð2:4aÞ

or

x ¼ 0:5

ffiffiffiffi
k

m

r
1� d2� �1=2

1þ d2� �1=2þ s 1� d2� �1=2
ð2:4bÞ

In Fig. 2.4, the forms of the displacement function x tð Þ and the velocity
function _x tð Þ are presented for d = 0.324. Amplitudes and velocities remain
constant, as the system is conservative. However, the oscillation is clearly not
simple harmonic, and can be analyzed as a Fourier series:

Fig. 2.4 Variation of
displacement and velocity
with time of a simple
oscillator with a different
spring constant in tension
and compression
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x tð Þ ¼ a0 þ
X1

k¼1

ak sin kxt þ bk cos kxtð Þ ð2:5Þ

Considering the odd (sine) functions, we obtain

ak ¼
2
T

Z T

0
x tð Þ sin kxt dt ð2:6Þ

where

x tð Þ ¼
x1 sin x1t 0 \ t \T1ð Þ
x2 sin x2t T1 \ t\ Tð Þ

( )

ð2:7Þ

As evident from Eq. (2.5), the system possesses in fact an infinite number of
eigen frequencies x, 2x, 3x …, multiples of the circular frequency x of a full
cycle, as defined in Eq. (2.4a).

Now, if the system is forced to oscillate at uniform circular frequency x,
stability problems may arise. The respective analysis is due to van der Pol and
Strutt [3, 4] and is based on the solution of Eq. (2.1) under the proper boundary
conditions. Namely, Eq. (2.1) possess the following general solutions:

x1 ¼ A1 sin x1t þ A2 cos x1t

x2 ¼ B1 sin x2t þ B2 cos x2t

)

ð2:8Þ

Now, considering that at the end of the first half-cycle (t = p/x), displacements
and velocities for both solutions [Eq. (2.8)] must be equal and, moreover, that at
the end of the first complete cycle (t = 2p/x) displacements and velocities must be
k times as large as at t = 0, four homogeneous linear equations result, containing
the integration constants as unknowns. The condition for these equations to give
solutions other than zero for the latter leads to the quadratic

k2 � 2qkþ 1 ¼ 0 ð2:9Þ

giving for k the values

k ¼ q�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 1

p
ð2:10Þ

where

q ¼ cos
px1

x
cos

px2

x
� x2

1 þ x2
2

2x1x2
sin

px1

x
sin

px2

x
ð2:11aÞ

or

q ¼ cos p 1þ dð Þ
1
2
x0

x

h i
cos p 1� dð Þ1=2x0

x

h i
� 1

2 1� d2� �1
2

� sin p 1þ dð Þ
1
2
x0

x

h i
sin p 1� dð Þ

1
2
x0

x

h i ð2:11bÞ
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Now, the system is stable for q = ±1, in which case k = q, and for |q| \ 1,
when k is complex, but its modulus equals one. Alternatively, instability occurs
with |q| [ 1. In this case, if q is positive, displacements and velocities at the end of
each consecutive cycle of the spring fluctuation will increase, retaining the same
sign. This means that the system vibrates at the same frequency X of spring
fluctuation or at a multiple of it: 2X, 3X..... If q is negative, displacements and
velocities will also increase at the end of each consecutive cycle of the spring
fluctuation, but will have alternating sign. This means that the system vibrates at
frequencies X/2, X/3…..

As q is a function of d and the ratio x0/x, according to Eq. (2.11b) the above
conditions of stability can be plotted in the classical diagram of Fig. 2.5. The shaded
regions in Fig. 2.5 correspond to stable situations (-1 \ q \ 1), blank regions to
unstable ones qj j [ 1 and full and dotted lines to q = ?l and q = -1 respec-
tively. Details of this representation can be found in the relevant literature [2–4]. In
the presence of damping, the motion is again not simple harmonic, even for the free
vibration, and a solution for x must be sought in the form of Fourier series [3].

2.3 The Mathieu-Hill Equation

The general form of an equation of motion, pertaining to a system with variable
elasticity, is

d2x

dt2
þ f tð Þx ¼ 0 ð2:12Þ

where f(t) is a single-valued periodic function of fundamental period T, which can
be represented by a general Fourier series of the form

Fig. 2.5 Regions of stability
and instability for a simple
oscillator with a different
spring constant in tension and
in compression. (According
to van der Pol and Strutt
[3, 4])
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f tð Þ ¼ A0 þ
X1

k¼1

Ak cos kxt þ Bk sin kxtð Þ ð2:13Þ

where x = 2p/S. Equation (2.12), if the function f(t) has the general form (2.13),
is known as Hill’s equation. If the Fourier series (2.13) can degenerate in the
simple form

f tð Þ ¼ A0 þ A1 cos xt ð2:14Þ

then Eq. (2.12) is known as Mathieu’s equation. This equation can be solved by
using the tabulated Mathieu functions [16].

An important property of a system expressed by the Mathieu equation is that
instabilities are exhibited for certain ranges of the parameters A0 and A1, i.e. if the
system is displaced from the equilibrium, x = 0, a motion of increasing amplitude
follows.

The classical method for the solution of Hill’s equation, available in most
textbooks [20], is as follows: Following the form (2.13) of the function f(t), one
can look for a similar expansion for the unknown periodic function x(t):

x tð Þ ¼ a0 þ
X1

k¼1

ak cos kxt þ bk sin kxtð Þ ð2:15Þ

Equation (2.12) then leads to an infinite system of simultaneous linear homo-
geneous equations for the unknown coefficients ak and bk. In order to obtain a non-
trivial solution, the corresponding infinite determinant must be zero. However, if
the series of the coefficients Ak and Bk in Eq. (2.13) are absolutely converging, the
latter can be easily evaluated or, alternatively, higher terms can be neglected, and
the problem can be solved, by long computations in any case. The method is not
very practical; however, it appears to be the only one operating with functions f(t),
for which no analytical expression is available, as occurs with experimentally
determined forms.

Apart from Hill’s method of infinite determinants, further methods have been
developed for the treatment of coupled Mathieu equations [17], based on the
expansion of the converging infinite determinant, which also provides a criterion
for stability of the solution. Moreover, a stability criterion for the general Hill
equation can be developed in a similar manner [21].

2.4 The Classical Floquet Theory

Equations of the Mathieu-Hill type can be solved by means of the Floquet theory
[2, 22–25]. This theory basically deals with equations of the form

_y ¼ A tð Þy ð2:16Þ
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where y = (y1, y2,…, yn) and A(t) = [aij(t)] is a continuous n 9 n matrix defined
in the range -?\ t \?. A(t) satisfies the relation

A t þ Tð Þ ¼ A tð Þ

where the period T is a non-zero quantity. The complete Floquet theory, leading to
the general form of solution of Eq. (2.16) can be found in the literature [24, 25]. A
basic property of the solution, however, is described by the Floquet theorem
stating that

For the system expressed by the matrix Eq. (2.16), there exists a non-zero
constant k, real or complex, and at least one non-trivial solution y(t) having the
property that

y t þ Tð Þ ¼ ky tð Þ

The various values k1, k2,…, km of the parameter k are the distinct character-
istic roots of a constant n 9 n matrix C defined by the relation

U t þ Tð Þ ¼ U tð Þc

where U(t) = [uij(t)] is a fundamental system of solutions of Eq. (2.16). The
above values are called characteristic factors or multipliers of Eq. (2.16).
The following corollary is valid:

The system (2.16) has periodic solution of period T, if and only if there is at
least one characteristic factor equal to one [14].

The quantities r1, r2,…, rm defined by the relations

kj ¼ exp rjT
� �

j ¼ 1; 2; . . .;m

are called the characteristic exponents of the system (2.16) and, according to the
following theorem

There are at least m solutions of the system (2.16) having the form

xi tð Þ ¼ pi tð Þ exp ritð Þ i ¼ 1; 2; . . .;m

where the functions pi(t) are periodic with period T.
Now, consider Hill’s equation:

€xþ f tð Þx ¼ 0 ð2:12Þ

where f(t) is real–valued, continuous and periodic with period T, assumed tradi-
tionally as equal to p. Let a fundamental system of solutions be x1(t) and x2(t), and

x1 0ð Þ ¼ 1 _x1 0ð Þ ¼ 0 x2 0ð Þ ¼ 0 _x2 0ð Þ ¼ 1

whose Wronskian is equal to one. That is

U tð Þ ¼
x1 tð Þ x2 tð Þ
_x1 tð Þ _x2 tð Þ

" #
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and

AðtÞ ¼ 0 1
�f ðtÞ 0

� �

when the matrix C is equal to

C ¼
x1 pð Þ x2 pð Þ
_x1 pð Þ _x2 pð Þ

" #

whose characteristic roots k1, k2 are roots of the equation

kI� Cð Þ ¼ k2 � x1 pð Þ þ _x pð Þ½ �kþ 1 ¼ 0

where k1k2 ¼ 1 and r1 þ r2 � 0. Hence a number r can be defined satisfying the
conditions

expðirpÞ ¼ k1

and

expð�irpÞ ¼ k2

The following cases are distinguished:

1. k1 = k2, leading to two linearly independent solutions:

u1 tð Þ ¼ exp irtð Þf1 tð Þ

u2 tð Þ ¼ exp �irtð Þf2 tð Þ

where f1(t), f2(t) are periodic with period p.
2. k1 = k2, leading to one non-trivial periodic solution with period p (with

k1-k2 = 1) or 2p (with k1 = k2 = -1).

In order to apply the above results, information about the matrix C is required,
which can be derived from the conditions imposed on A(t), guaranteeing the
existence of stable, unstable or oscillatory solutions.

Finally, for a non-homogeneous system

_x ¼ A tð Þxþ B tð Þ ð2:17Þ

where A(t) and B(t) are periodic matrices with period T, the following theorem is
valid:

For the system (2.17), a period solution with period S exists for every B(t), if
and only if the corresponding homogeneous system has no non-trivial solution of
period T.
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2.5 Matrix Solution of Hill’s Equation

Consider Eq. (2.12) again and two linearly independent solutions x1(t) and x2(t) in
the interval 0 B t B T. The general solution for displacement and velocity is given
by the equations

x tð Þ ¼ A1x1 tð Þ þ A2x2 tð Þ
_x tð Þ ¼ A1x1 tð Þ þ A2 _x2 tð Þ

)

ð2:18aÞ

or in matrix form

x tð Þ
_x tð Þ

" #

¼
x1 tð Þ x2 tð Þ
_x1 tð Þ _x2 tð Þ

" #
A1

A2

" #

ð2:18bÞ

The Wronskian of the two solutions x1(t) and x2(t), given by the following
equation

W ¼
x1 tð Þ x2 tð Þ
_x1 tð Þ _x2 tð Þ

�����

�����
¼ x1 tð Þ _x2 tð Þ � _x1 tð Þx2 tð Þ ð2:19Þ

is constant in the interval 0 \ t \ S [21] and, since x1(t) and x2(t) are linearly
independent, we have also W = 0; hence the 2 9 2 matrix in Eq. (2.18b) is non-
singular and has the following inverse:

x1 tð Þ x2 tð Þ
_x1 tð Þ _x2 tð Þ

� ��1

¼ 1
W

_x2 tð Þ �x2 tð Þ
� _x1 tð Þ x1 tð Þ

� �
ð2:20Þ

If the initial conditions are given:

x tð Þ
_x tð Þ

" #

t¼0

¼
x0

_x0

" #

ð2:21Þ

From Eq. (2.18b) we derive

x0

_x0

" #

¼
x1 0ð Þ x2 0ð Þ
_x1 0ð Þ _x2 0ð Þ

" #
A1

A2

" #

ð2:22Þ

or

A1

A2

" #

¼
x1 0ð Þ x2 0ð Þ
_x1 0ð Þ _x2 0ð Þ

" #�1
x0

_x0

" #

ð2:23Þ

which determines the column of arbitrary constants, and, consequently, the final
solution assumes the form
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x tð Þ
_x tð Þ

� �
¼ 1

W
x1 tð Þ x2 tð Þ
_x1 tð Þ _x2 tð Þ

� �
_x2 0ð Þ �x2 0ð Þ
� _x1 0ð Þ x1 0ð Þ

� �
x0

_x0

� �
ð2:24Þ

At the end of the first period, i.e. at t = T, Eq. (2.24) becomes

x tð Þ
_x tð Þ

� �

t¼T

¼M
x0

_x0

� �
ð2:25Þ

where

M¼ 1
w

x1 Tð Þ x2 Tð Þ
_x1 Tð Þ _x2 Ttð Þ

" #
_x2 0ð Þ � x2 0ð Þ
� _x1 0ð Þ x1 0ð Þ

" #

ð2:26Þ

It can be easily shown that, at the end of the nth period of f(t), i.e. at t = nT, we
have

x tð Þ
_x tð Þ

" #

t¼nT

¼Mn x0

_x0

" #

ð2:27Þ

which provides the complete solution of Hill’s equation in terms of the initial
conditions, and two linearly independent solutions of Hill’s equation in the fun-
damental interval 0 B t B T. The nth power of the matrix M can be computed by
means of Sylvester’s theorem [26, 27]. Solutions have been given for various
forms of the function f(t), such as rectangular ripple, sum of step functions,
exponential function, sawtooth variation, etc. [26].

2.6 Solution by Transition into an Equivalent Integral
Equation

Equation (2.12), with the function f(t) developable in a Maclaurin series, can be
solved by means of a transition to an equivalent Volterra integral equation of the
second type. Again, by using the notation of Eq. (2.21), we obtain the following
form [24]:

x tð Þ ¼ x0 t þ x�
Z t

0

t � sð Þf sð Þx sð Þds ð2:28Þ

The classical method of solution is by means of successive approxi–mations.
Problems of a practical nature may appear with the determination of the iterated
kernels, depending on the function f(t). Particular examples, such as for f(t) = tn

can be found in the literature [28].
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2.7 The Bwk Procedure

The BWK1 procedure, discovered while dealing with problems of wave mechanics
[23, 29, 37] is suitable for the solution of Eq. (2.12) in the following manner: Let a
function be considered, such that

u ¼ g�1=2 exp ð�iSÞ S ¼
Z t

a

Gdx ð2:29Þ

where G(t) is any given function of t. The following equation can then be derived:

€uþ u G2 � 3
4

_G

G

� 	2

þ 1
2

€G

G

" #

¼ 0 ð2:30Þ

which, when compared with Eq. (2.12), leads to the condition

f ¼ G2 � 3
4

_G

G

� 	2

þ 1
2

€G

G
ð2:31Þ

If Eq. (2.31) can be solved to a certain approximation, then the function u in
Eq. (2.29) represents an approximate solution of Eq. (2.12). Moreover, in case that
_G and €G can be omitted in Eq. (2.31), an acceptable approximation can be
obtained by taking

G ¼ G0 ¼ f tð Þ½ �1=2 ð2:32Þ

which is a zero–order approximation to the BWK procedure. As a particular case,
with

G ¼ A= aþ tð Þ2 ð2:33Þ

terms in _G; €G cancel out in Eq. (2.30), and a rigorous solution of Eq. (2.12)
results [23].

An accurate approximation to G can be determined by means of a series

G ¼ G0 þ G1 þ G2 þ . . . ð2:34Þ

under the assumption that

_G0=G2
�� ��\ e €G=G3

�� ��\e2 e2 � 1

1 Named after three authors: L. Brillouin (J. Phys., 7, 1926, 353); G. Wentzel (Z. Phys., 38,
1926, 518); and E.C. Kemble (The Fundamental Principles of Quantum Mechanics, McGraw-
Hill, New York, 1937).
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when the successive terms would be of the order e2, e4….. By substitution in
Eq. (2.30) we obtain

G0 ¼ f 1=2

2G0G1 ¼ 3
4

_G0
G0


 �2
� 1

2
€G0
G0

2G0G1 þ G2
1 ¼ 3

2
_G0
G0


 �2 _G1
_G0
� _G1

G0


 �
� 1

2
€G0
G0

€G1
€G0
� G1

G0


 �

9
>>>=

>>>;

ð2:35Þ

and the expansion of G would yield a first solution from Eq. (2.29). A second
independent solution t can be found either with f [ 0, G real and positive and
S real, or with f \ 0, G and S purely imaginary and i1=2u real. The first case
corresponds to propagating waves, the second to attenuated waves without prop-
agation. A detailed analysis can be found in the literature [23, 37].

2.8 Vibrations of Different-Modulus Media

As an example, consider the longitudinal vibrations of a bar with uniform cross-
section made of a material with a different modulus in tension and in compression
[37]. The one-dimensional equation of motion is

o2u

ot2
¼ a

o2u

ox2
ð2:36Þ

where a = (E/q)1/2, E is Young’s modulus and q is density. Moreover

a ¼ aT ¼
ET

q

� 	1
2

for r [ 0 or
ou

ox
[ 0 tensionð Þ

a ¼ aC ¼
EC

q

� 	1
2

for r \0 or
ou

ox
\0 compressionð Þ

Assuming that the bar is initially tensioned by a force producing displacement
u0 at x = l and released at t = 0, the initial and boundary conditions become:

t ¼ 0 ou
ot ¼ 0 u ¼ u0x

l
x ¼ 0 u ¼ 0
x ¼ l ou

ox ¼ 0

9
=

;
ð2:37Þ

By applying separation of variables, the general solution of Eq. (2.36) can be
given the following form:

u x; tð Þ ¼
Xx

n¼1

xn xð ÞTn tð Þ ð2:38Þ
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where

Xn xð Þ ¼ An sin xnx=að Þ þ Bn cos xnx=að Þ
Tn tð Þ ¼ Cn sin xnt þ Dn cos xnt

)

ð2:39Þ

where the constants An, Bn, Cn, Dn, xn assume different values for tension and for
compression (index c or T, respectively) and can be determined by the initial and
boundary conditions. By virtue of the first boundary and the first initial condition
[Eqs. (2.37), (2.38) assumes the form

u ¼
Xx

n¼1

Ansin
xTnxð Þ
aT

cos xTnt ð2:40Þ

and the second initial condition gives

xTn ¼ 2n� 1ð ÞpaT=2l ð2:41Þ

Moreover, we have

u0
x

l
¼
Xx

n¼1

An sin
2n� 1ð Þ

2l
px

leading to

An ¼
8u0 �1ð Þn�1

p2 2n� 1ð Þ2
ð2:42Þ

which gives Eq. (2.38) the following form:

u ¼ 8u0

p2

Xx

n¼1

�1ð Þn�1

2n� 1ð Þ2
sin

2n� 1
2l

� 	
px cos

2n� 1ð Þ
2l

paT t ð2:43Þ

valid for the interval 0 B t B l/aT, during which the bar is in the tensile state, i.e.
during the first half-cycle. For the second half-cycle, when the bar enters the
compressive state, the initial conditions are

t ¼ 1
aT

u ¼ 0
ou

ot
¼ �u0aT=l

as Eq. (2.43) yields, with the same boundary conditions. From Eq. (2.36), with
a = ac, we have

u ¼
X1

n¼1

Bn sin
xcnx

ac
sin xcn t � l

aT

� 	
ð2:44Þ
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where

xcn ¼
2n� 1

2l
pac ð2:45Þ

Bn ¼ �
8u0aT

p2ac 2n� 1ð Þ2
ð2:46Þ

leading eventually to the equation

u ¼ 8u0

p2

X1

n¼1

1

2n� 1ð Þ2
sin

2n� 1
2l

px sin
2n� 1

2l
paT t � l

aT
� 2l

ac

� 	
ð2:47Þ

valid within the interval

l

aT
� t � l

aT
þ 2l

ac

during which the bar is in the compressive state. The period of vibration for the bar
particles is equal to

T ¼ 2l
l

aT
þ l

ac

� 	

or

T ¼ 2l
ffiffiffi
q
p 1þ

ffiffiffiffi
Ec
ET

q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ec

ET

q ð2:48Þ

The present analysis is useful for the solution of actual rotor problems, as, for
example, in the case of a transversely cracked rotor subjected to reciprocating axial
forces. The problem of flexural vibrations can be encountered in a similar manner.
Axial forces are very important in this case. The latter, even if not applied
externally, develop during large deflections, and the problem assumes a rather
complex form. An axial force can be used to control large-amplitude flexural
vibrations [30, 31]. Other problems of instability including crack breathing,
damping or parametric instabilities have to be treated with non-linear formulation
[32–37].
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Chapter 3
Mathematical Models for Rotor
Dynamic Analysis

Abstract Chapter 3 presents the main mathematical models used in rotor dynamic
analysis. The one disc-flexible rotor model, called Jeffcott or de Laval rotor, can be
used to derive qualitative features, since it lends itself to analytical treatment. The
transfer matrix is powerful to model very long and complex rotors but it is strictly
limited to linear systems and has certain problems of numerical instability.
Lumped mass systems lead to very tedious computations, compared with the
transfer matrix method, but they can be used to describe nonlinear systems. For
realistic rotor forms, a discrete finite element model is presented, applicable to
very complicated rotor geometries, yet leading to a manageable system of equa-
tions for linear or non-linear analysis.

3.1 Introduction

Almost 150 years ago Rankine published his paper on ‘Centrifugal whirling of
shafts’. This marked the beginning of a special branch of applied mechanics
dealing with the dynamics, and in particular with the stability, of rotating
machinery. The ever increasing importance of the latter and the technical diffi-
culties of extending its size and reliability have led to a considerable growth of the
new discipline.

In the 1920s there were very important milestones in rotor dynamics. It was the
time when higher speeds and larger machines demanded supercritical machine
operation. This introduced most of the rotor stability phenomena and inspired
some fundamental analyses. Newkirk studied instability problems associated with
the bearing effects [1] and he identified instabilities due to dry friction [2], while
Kimball [3, 4] gave basic results for internal damping in the shafts.

A. D. Dimarogonas et al., Analytical Methods in Rotor Dynamics,
Mechanisms and Machine Science 9, DOI: 10.1007/978-94-007-5905-3_3,
� Springer Science+Business Media Dordrecht 2013
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In the last few decades work on rotor stability has been concentrated on
improvements of rotor and bearing description. A vast number of publications,
among which, several books on the subject are now available. In classical literature,
Stodola [5], in his book on steam and gas turbines, devotes a considerable portion
on rotor stability while the books by Dimentberg [6], Tondl [7], Ehrich [8], Childs
[9], Lalanne and Ferraris [10], and by Yamamoto and Ishida [11] are exclusively on
rotor dynamics. A total of 554 references on the subject are listed in Ref. [12].1

Internal or ‘‘rotating’’ damping is a well-known source of potential dynamic
instability of shafts operating at supercritical speeds. This kind of destabilizing
damping may be present due to energy dissipation in the shaft’s material or rub-
bing between rotating components. In some cases similar effects may also be the
result of fluid flow in labyrinth seals, oil flow properties, journal bearings, etc. [13].
The Newkirk Effect, the vibration change due to thermal distortion of a rotor
caused by rubbing on stationary components was studied analytically by Dima-
rogonas [14]. The static bow due to an arbitrary heat input was found from a
convolution integral of a source bow function and a heat function. Utilizing the
dynamic response of the system, the resulting dynamic bow was computed. This
dynamic bow controls the generated heat and the associated heat function. The
resulting model was described by a complex integral equation, consequently
transformed into two nonlinear differential equations. The stability and the modes
of these equations, solved with numerical methods, were studied. Three modes of
the Newkirk Effect were discovered: spiralling, oscillating, and constant modes. It
was found that critical speeds influence those modes only indirectly.

The influence of internal damping on the dynamic behaviour of rotating shafts
has been investigated, considering the presence of nonlinearities introduced in the
restoring elastic forces by the alternate tension and compression of the shaft fibres.
These forces can oppose or induce shaft whirl motion affecting the rotor stability
limit [15, 16].

A rotating shaft with internal damping mounted either on elastic dissipative
bearings or on infinitely rigid bearings with viscoelastic suspensions affecting the
stability region is investigated by Mukherjee and Montagnier [17, 18]. Comparison of
viscous and hysteretic damping conditions lead to the conclusion that an appropriate
material damping model is essential for an accurate prediction of these instabilities.

Tilting pad bearings have many attractive features such as high rotor-bearing
stability. In predicting the stability of rotors supported by tilting pad journal
bearings, it was debated whether or not the bearings should be represented with
frequency dependent dynamics [19–21].

Computational fluid dynamics (CFD) have been used to model the labyrinth
seal flow path and calculate rotordynamic forces. The seal influence on the
rotordynamic stability, however, is a challenging task, accounting for inlet pres-
sure, shaft whirling, and shaft rotational speed requiring relatively high computer
processing power [22–26].

1 A list of rotordynamics books can be found at www.rotordynamics.org/booklist.htm.

44 3 Mathematical Models for Rotor Dynamic Analysis

http://www.rotordynamics.org/booklist.htm


Several theoretical works have focused on general movements of bases, par-
ticularly in cases of seismic excitation [27, 28]. The influence of nonlinear bear-
ings has been studied with piecewise linear coefficients using the discrete
acceleration values of the El Centro earthquake [29].

In order to better understand some of the technical difficulties of rotor design
and rotor operation we must turn to those laws of mechanics which determine rotor
behavior. In general these laws are formulated as differential equations; i.e. rela-
tions linking to one another the derivatives (in space and time) of those variables
which characterize the various phases of motion. To find the differential equations
is the first step of rotor analysis. In general, no insurmountable difficulties appear
at this point. Next we must study the solutions of the equations in order to obtain
features of rotor behavior, and finally we have to link certain measurable prop-
erties of the solutions to the parameters of rotor design. Such properties are
oscillation frequencies, amplitudes, rates of growth or decay, etc. It would be ideal
to establish analytic relations between the properties and the parameters, which is
the point at which difficulties begin. If one disregards the special case of ordinary
linear differential equations with constant coefficients, no complete theory per-
mitting determination of the ultimate relations required by comprehensive and
rigorous analysis exists. However, numerical methods and computer codes can
provide all the necessary design information without a general theory. Buckner’s
argument on this point is worth mentioning [30]: any differential equation has an
infinite number of solutions, and a great number of them can be numerically solved
by a computer, which could also extract and print out those features which interest
the design engineer. But this is not enough. We cannot be satisfied with the
solutions to just one equation. Any change in the design parameters means another
equation. Thus, if we have m design parameters and k choices for each of them, we
must consider a total of km parameter constellations, each constellation charac-
terized by one differential equation (or one system of such equations). Now if
n solutions for each constellation are needed, then the computer must calculate the
total of nkm solutions. If m = 3, k = 4 and n = 50 (none of these numbers is
excessively high) then we must compute and look into 3,200 solutions. Although
3,200 solutions constitute a small computer project, which, after carried out, may
not lead to any valid conclusions at all. Fortunately, in these days, there seems to
be no problem for a modern computer to do the work.

It has been repeatedly happening in the past that science has dealt with a
situation where a theory is missing, and where excessive cost, prohibit numerical
or other experimentation on a large scale. The remedy was based on a rather
simple principle: if a problem were too big for comprehensive and exact analysis
try to make it smaller by simplification, but not to the point at which all features
suffer a qualitative or even quantitative way, while others are deliberately dropped
for the sake of simplification.

There are several examples in astronomy, physics and mechanics. In mechanics
we can mention Euler’s computation of the buckling load of a column under
pressure. Euler simplified the differential equation of the column by ‘linearization’.
The simplification is good enough to predict the onset of buckling, while no
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conclusion can be drawn about the size of the deflection or the energy of defor-
mation after buckling. Another example appears in the field of aerodynamics. The
rather simple theory of plane flow of an ideal fluid predicts airfoil lift correctly but
fails with respect to drag.

If we describe a physical system exactly or approximately by a set of equations
(e.g. differential equations), we call that set a model of the physical system. A
model can be crude, refined or exact, depending on the quality of the equations. It
is now clear what we mean by the Euler model of the buckling column. The
creation of models of a finite degree of freedom enjoy the greatest use as a
substitute for structures of finite degree; the finite element method in elasticity is
one example, and the procedure of lumping masses for the purpose of analyzing
vibrations another.

The most convenient type of model (if it can be developed at all) is the linear
one. In this case the differential equations are linear. Homogeneous linear models,
especially those described by ordinary differential equations, have a property
which makes them easy to deal with. This is the feature of superposition due to
which the sum of two solutions is also a solution. With ordinary differential
equations the superposition principle permits a reduction of the search for all
solutions; it suffices to find a finite number of them.

It is interesting to note that linear models of rotors have been introduced and
applied with considerable success. The simplest linear model, namely the rigid
wheel on a flexible shaft, led to the discovery of the critical speed. Linear models
of a higher degree of freedom showed that a rotor can have more than one, if not
infinitely more, critical speeds. By now engineers and research workers have
drawn as much information from linear models as the validity of such models
admits. In many cases we have reached the point where a linear model fails to
predict rotor behavior. This is largely due to the non-linear characteristics
of journal bearings. Today we must consider models of a high degree of free-
dom, where at least four of these degrees are associated with highly none linear
force laws.

In the presence of non-linearities, we can no longer reduce the solutions to a
finite number of models. The concept of stability, while it can be extended to
characterize the behavior of solutions of non-linear equations, is not easily linked
to the design parameters. Moreover, a concept ‘practical stability’ has still to be
developed. It should also be noted that ‘critical speed’ is no longer well-defined for
a non-linear model. Still, one can ask if it would not suffice to look for certain
typical solutions and to correlate them with the design parameters [30, 31].

Most rotors have rather complicated geometries. This leads naturally to the
question of the complexity of the analytical model which is to be used to inves-
tigate the rotor’s behavior in service. There is an obvious trade-off between two
directions:

(a) a simple model with mist results by way of analysis, often in closed form (such
features are also associated with a better qualitative understanding of the effect
of the several design parameters upon the design objectives);
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(b) a model with an adequate description of the properties of the rotor and the
associated elements, which is often rather complicated and necessitates the use
if numerical methods and lengthy machine computations, this leads to a better
prediction of the behavior of the specific rotors and to more reliable numerical
results, accompanied by a loss in generality and a difficulty in extracting
general features of the model.

Most times, both analyses are necessary. The complexity of the model is
determined from the individual features of the particular rotor in conjunction with
the experience of the analyst and the scope of the analysis. For example, if the rigid
body motion of a rotor has frequencies close to the rotating speed and far from the
frequencies at the bending modes, a single disc description will suffice. If the
rotating speed is in the vicinity of a higher bending mode, the model devised
should at least be able to include that mode. A thorough discussion on the appli-
cation of methods and algorithms for rotating shafts analysis is presented in [31].

3.2 The Single Disc Model

We shall begin this chapter with the simplest model of a massless elastic rotor
carrying a rigid disc and revolving at a constant angular velocity as shown in
Fig. 3.1, known as a de Laval rotor [31]. The disk mass is m and the mass polar
moment of inertia J with respect to the axis of rotation z. If the shaft is flexible
(with a lateral spring constant k) the disk is capable of movements perpendicular to
its axis in the horizontal and vertical directions x and y (Fig. 3.1a), but also
rotations about the three axes, such as in Fig. 3.1b. The rotation about the z axis is
the steady-state motion.

To conform with practices from statics we shall describe the orientation of the
disc by way of the vertical and horizontal slopes of its axis of rotation h and u, in

Fig. 3.1 Whirling of a de
Laval rotor (from Ref. [31]
by permission)
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order words the angles h and u of the axis of rotation of the disc in respect to the
planes (y, z) and (x, z) respectively (Fig. 3.2).

If the rotor has a substantial moment of inertia about its diameter and a general
rigid-body motion, changing the orientation of its axis requires application of
considerable moments at high speeds. This is known to change the critical speeds
of high-speed rotors, rendering them functions of the rotating speed, and to gen-
erate new ones [29].

From dynamics, the position of the disk can be defined by way of the coordi-
nates of the mass-center, plus the three Euler angles /, v, w (Fig. 3.2). The
resulting equations of motion can be found at any standard textbook on advanced

Fig. 3.2 Euler angles (from
Ref. [31] by permission)

Fig. 3.3 Definition of
coordinate systems for rotor
motion
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dynamics or mechanics. From a vibration engineering viewpoint, the Euler angle
description of the motion is not a very convenient one because these angles are
difficult to measure or interpret. Instead, to conform with practices from statics, we
shall describe the orientation of the disk by way of the vertical and horizontal
slopes of its axis rotation, h and /: in other words, the angles h and / of the axis of
rotation of the disk with respect to the planes (y, s) and (x, s) respectively
(Fig. 3.3).

It is known from kinematics that finite rotations do not obey the vector law of
addition. However, infinitesimal rotations are commutative and can be added as
vectors. Since we consider only small displacements and rotations, we can con-
sider the angles h and u has no effect on the final position. Thus, we consider a
coordinate system x00; y00; s00ð Þ affixed to the disc but not rotating with it, and
oriented along the principal axis of inertia of the disc. We also consider an inertial
coordinate system X; Y ; sð Þ. Let the two systems coincide and rotate the system
x00; y00; s00ð Þ about the x00-axis by an angle u to a new position x0; y0; s0ð Þ. Then we

rotate it by an angle h about the y0-axis to the final position x; y; sð Þ. If the angles h
and u change with time, the disc will have, in addition to its angular velocity of

rotation X about the s-axis, angular velocities _h and _u about the axes Y and s,
respectively (Fig. 3.3).

We select the coordinate system (x, y, s) to coincide with the principal axis of
inertia but not to rotate with it about the s-axis. Thus, the disc rotates in respect to
this coordinate system with angular velocity X about the s-axis. Then, Newton’s
law yields

MG ¼
dHG

dt

� �

x;y;s

þX�HG ð3:1Þ

where MG the moment vector about the mass is centre, G, and HG is the corre-
sponding momentum vector. If Ix; Iy; Is are the principal moments of inertia of the
disc,

RMx ¼ Ix
dxx

dt
� IyXsxy þ IsXyxs

RMy ¼ Iy
dxy

dt
� IsXxxs þ IxXsxx

RMs ¼ Is
dxs

dt
� IxXyxx þ IyXxxy

9
>>>>>>=

>>>>>>;

ð3:2Þ

where x is the angular velocity of the disc vector.
Let e1, e2, e3 be the unit vectors of the coordinate system X; Y; sð Þ and i, j, k the

unit vectors of x; y; sð Þ. We then have

x ¼ � _ue1 þ _he2 X ¼ Xk ð3:3Þ
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We note that

e1 ¼ i cos hþ k sin h

e2 ¼ i cos f þ sin h sin uð Þ þ k cos h sin u

)

ð3:4Þ

Thus

x ¼ � _u cos hð Þiþ _hðcos uþ sin h cos uÞjþ _u sin hþ _h cos h sin u
� �

k

We assume that X = constant, which means that the shaft is infinitely stiff in
torsion and attached to a prime mover with infinite inertia. Moreover, in tune with
the general assumptions, we assume small angles h and u, so that

sin h � h cos h � 1

and we neglect products of h and u and their time derivatives to obtain

x ¼ � _uiþ _hjxx ¼ � _uxy ¼ _hxs ¼ 0
X ¼ XkXx ¼ 0Xy ¼ 0Xs ¼ X

�
ð3:5Þ

Furthermore, for a circular disk we have Ix ¼ Jp, Ix ¼ Iy ¼ J and

�RMx ¼ J €uþ JpX _h

þRMy ¼ J€h� JpX _u

)

ð3:6Þ

The centre of the disk has lateral deflections x and y with the motion restricted
on the s-axis. External forces on the disc are XðtÞ; YðtÞ; HðtÞ; UðtÞ along the
coordinates x, y, h, u respectively. Elastic forces are linearly associated with the
four coordinates by way of stiffness constants kij i; j ¼ x; y; h;uð Þ. Application of
Newton’s law yields, if m is the mass of the disk

m€xþ kxxxþ kxhh ¼ XðtÞ
m€yþ kyyyþ ky/u ¼ YðtÞ

J€hþ JpX _uþ khhhþ khxx ¼ HðtÞ
J €u� JpX _hþ kuuuþ kuyy ¼ UðtÞ

9
>>=

>>;
ð3:7Þ

In the sequel, an isotropic shaft will be assumed. The problem of unequal shaft
stiffness along two perpendicular lateral directions will be further explored later.
Therefore, it is assumed that

kxx ¼ kyy ¼ k kxh ¼ kyu ¼ k khh ¼ kuu ¼ l

Furthermore, the following complex quantities are defined:

z ¼ xþ iy Z ¼ X þ iY
w ¼ hþ iu W ¼ Hþ iU

�
ð3:8Þ
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The equations of motion assume the form

m€zþ kzþ kw ¼ ZðtÞ
J €wþ iXJp

_wþ lwþ kz ¼ WðtÞ

)

ð3:9Þ

A rotor-fixed coordinate system n; gð Þ is defined which rotates with the rotor at
angular velocity X. therefore, if

f ¼ nþ ig

then

z ¼ f expðiXtÞ

and Eq. (3.9) become

m€fþ 2miX _fþ k � X2m
� �

fþ kw ¼ ZðtÞ expð�iXtÞ
J €wþ iX 2J þ Jp

� �
_wþ l� X2J � X2Jp

� �
wþ kf ¼ WðtÞ expð�iXtÞ

)

ð3:10Þ

where w = u ? iv, and u and v are respective to h and u in the moving coordinate
system representing the angles of the centerline of the rotor with the planes (g,
s) and (n, s) respectively.

Systems of Eqs. (3.9 and 3.10) describe the motion in two different coordinate
systems. The significance of using the moving coordinate system will be apparent
later. In the following, the basic equations will be used to identify qualitatively
some basic engineering problems in rotor dynamics.

3.2.1 Critical Speeds

Under a certain condition, the set (3.9 or 3.10) can have the harmonic solution
x = xexp (pt) etc. In particular, when the frequency of natural vibration coincides
with the frequency of rotation (p = iX) there is an unwanted situation in machine
operation and this particular speed is called the critical speed. It will be computed
as a root of the characteristic equation of system (3.9). Four such roots exist, in
general, for this system [31]: two positive, which correspond to a motion of
the type

x ¼ x0 exp ixtð Þx [ 0

called forward whirl, and two negative, corresponding to a motion of the type

x ¼ xo expð�ix tÞ

called backward whirl. The physical significance of this technology is apparent.

3.2 The Single Disc Model 51



3.2.2 Internal Damping

Materials and structures have several mechanisms of resistance to change in their
configurations which are depending on the rate of this change. Due to friction
mechanical assemblies such as compound rotors possess a great deal of this
resistance. The magnitude is not proportional to the rate of change but rather to the
sign of it. Therefore the system becomes non-linear. Tondl devotes a good portion
of his book [7] to this non-linearity. The term internal damping is commonly
adopted regarding both the elastic hysteresis of materials and the shaft fibre shear
inside the hub [7, 11, 12]. When a rotating shaft undergoes a perturbation, con-
sisting in displacement and velocity variations of a point belonging to the shaft
axis with respect to dynamic equilibrium conditions, the fibres are alternatively
compressed and stretched. This phenomenon occurs every time that the rotor
angular speed with respect to its deflected axis line differs from the whirl speed,
i.e. the angular velocity of the deflection line itself [15]. On the other hand,
Timoshenko [32] and Den Hartog [33] proved the presence of a force normal to the
plane of the deformed shaft, due to the fact that the neutral axis of strain does not
coincide with the neutral line of stress.

Since our purpose is to develop gradually a manageable system of equations,
the viscoelastic model will be used, with linear, hysteric damping. It is apparent
that changes in the rotating coordinate system will result in changes of the
structural configuration. Therefore, the damping force will be assumed to have the
form [7, 31]

Fd ¼ �
ck _f
Xxn

ð3:11Þ

where x2
n ¼ k=m and c is a material constant. From here on, the first equation of

(3.9 or 3.10) will be used, assuming that J and Jp are negligible. Extension to the
two equations is straightforward but tedious.

Therefore

m€fþ c
Xxn

k þ 2iXm
� �

_fþ k � mX2
� �

f ¼ ZðtÞ expð�iXtÞ

m€zþ c
Xxn

k_zþ k 1� cXi
X�xn

� �
z ¼ ZðtÞ

9
=

;
ð3:12Þ

3.2.3 Bearing Forces

Rotors on fluid bearings operate at some equilibrium point. Additional forces on
the rotor cause the journal to move from equilibrium point. The opposite is also
true. The relation of the bearing reaction to the journal motion is a highly non-
linear function [34]. Such functions have been found in closed form for the most
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usual fluid bearings with high speed rotor applications, the pad bearings [35]. The
effect of the non-linearity will be discussed later. At present, linear behavior will
be assumed, as usual [31] in the form

�Fb ¼ Bdþ C _d ð3:13Þ

where B and C can be complex functions, which means that reactions are not co-
linear with the deflection of the journal centre d. Here B and C are the bearing
spring and damping constants, respectively. The bearing is assumed isotropic.
Otherwise, the equations should be separated into real and imaginary parts. The
model and geometry of the system is shown in Fig. 3.4.

The equations for the rotor and journal motion and equilibrium are

m€z ¼ �kðz� dÞ
kðz� dÞ ¼ Bdþ C _d

�
ð3:14Þ

Eliminating d, we obtain

mC

k
vzþ m 1þ B

k

� �
€zþ C _zþ Bz ¼ 0 ð3:15Þ

Fig. 3.4 Model and
geometry of deflected rotor
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3.2.4 Environmental Forces

If the disc works in a fluid or magnetic environment, forces can be exerted by the
magnetic field or the fluid. We can develop a linear expansion similar to the one
for the bearings. In general, this will provide us with force relations such as [31]

�Px ¼ Lxxxþ Lxyyþ Dxx _xþ Dxy _y ð3:16Þ

�Py ¼ Lyyyþ Lyxxþ Dyy _yþ Dyx _x ð3:17Þ

The coefficients L and D will be called midspan force gradients.
The bearings and the midspan force gradients necessitate the writing of the

equations of motion explicitly in terms of x and y, in case of asymmetry. However,
in most engineering systems symmetry can be assumed, which leads to
Lxx ¼ Lyy ¼ L; Dxx ¼ Dyy ¼ D, where

�Pe ¼ Lzþ D_z: ð3:18Þ

3.2.5 Stability of Motion, Second-Order Equations

It has been shown that, in general, the null equation for the rotor motion of the
form

m€zþ c1 þ ic2ð Þ_zþ k1 þ ik2ð Þz ¼ 0 ð3:19Þ

Although we can deal with the solution of Eq. (3.19) directly, we can do it with
a generalization of the Routh-Hurwitz criteria of complex equations. To this end,
we seek after a solution z ¼ z0expðiptÞ to obtain the characteristic equation

�mp2 þ i c1 þ ic2ð Þpþ k1 þ ik2ð Þ ¼ 0 ð3:20Þ

The Routh-Hurwitz criteria for stability, if the characteristic equation is of the
form

ao þ iboð Þpn þ a1 þ ib1ð Þpn�1 þ . . .þ an þ ibnð Þ ¼ 0 ð3:21Þ

are [6], [31]

� ao a1

bo b1

				

				[ 0

ao a1 a2 0
bo b1 b2 0
0 ao a1 a2

0 bo b1 b2

								

								

[ 0 ð3:22Þ
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�1ð Þn

. . . . . . . . . . . .
ao a1. . .an 0 0. . .
bo b1. . .bn 0 0. . .
0 ao. . .an�1 an 0. . .
0 bo. . .bn�1 bn 0. . .

. . . . . . . . . . . .

. . . . . .0 ao. . .an�1 an

. . . . . .0 bo. . .bn�1 bn

																

																

[ 0 ð3:23Þ

Applied to Eq. (3.20) for

ao ¼ �m; bo ¼ 0; a1 ¼ �c2; b1 ¼ c1; a2 ¼ k1; b2 ¼ k2 :

the latter yields

� �m �c2

0 c1

				

				[ 0 ð3:24aÞ

�m �c2 k1 0
0 c1 k2 0
0 �m c2 k1

0 0 c1 k2

								

								

[ 0 ð3:24bÞ

Condition (3.24a) implies mc1 [ 0 or c1 [ 0: (3.24b) yields

�m
c1 k2 0
�m �c2 k1

0 c1 k2

						

						
[ 0

or

c1c2k2 þ c2
1k1 � mk2

2 [ 0 ð3:25Þ

Criteria (3.22 and 3.23) apply only for rotors with isotropy in the x and
y directions, for which complex equations can be written. For other systems, for
example with bearings of different vertical and horizontal stiffness, it is better to
deal with equations with real coefficients. In general, these lead to characteristic
equations of the form

anpn þ an�1pn�1 þ . . .þ a1pþ ao ¼ 0 ð3:20aÞ

In this case, Routh-Hurwitz criteria for stability are [7]

(a) that all powers of p are present and all coefficients ai are of the same sign;
(b) that the successive determinants below are positive:
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Do ¼ a1 D1 ¼
a1 ao

a3 a2

				

				 D2 ¼
a1 ao 0
a3 a2 a1

a5 a4 a3

						

						
ð3:22aÞ

In engineering problems almost all factors contributing to the equations of
motion are simultaneously present. However, depending on the particular appli-
cation, some factors are dominant and the associated instability phenomena are
labeled accordingly. The reader is warned against over-simplification of omitting
factors considered less important, very commonly occurring in contemporary
literature. In the following, we shall attempt to present some instability cases,
with the warning that they are altogether qualitative and have a pedagogical
purpose only.

Internal friction: internal friction includes the internal damping we have dis-
cussed previously, plus some other factors contributing to the same effect. The
most common is the dry friction in shrink-fit joints, such as discs, gears and pulleys
on the shaft. Figure 3.5 illustrates this point.

A gear G is mounted on the shaft by way of a shrink-fit. Thus, there is always
a pressure p, between shaft and hub due to the gear, almost uniform. If the shaft
bends, as in the figure, the upper fibres elongate and the lower ones contract.
There is a friction force associated with this, if the fit slips, which produces a
torque, which is a function of the deflection of the shaft. From experiments, we
can incorporate this effect into the internal damping coefficient, hysteretic or
viscoelastic.

In general, we shall assume that ci represents internal damping and ce some
form of external damping, i.e. bearing damping neglecting higher derivatives in
Eq. (3.15) and assuming k� B; as usually happens. Then

m€fþ c1 þ ceð Þ _fþ k � mX2
� �

fþ 2mXi _fþ ceXif ¼ 0 ð3:26Þ

Substituting

f ¼ fo exp iptð Þ

we obtain the characteristic equation (or characteristic polynomial)

Fig. 3.5 Mechanism of
damping at shrink-fit joints
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�p2 þ i
c1 þ ce

m
pþ k

m
� X2

� �
� 2Xpþ ce

m
Xi ¼ 0 ð3:27Þ

Applying the criterion (3.25) we obtain, for stability

X\ 1þ ce

ci

� �
xn xn ¼

ffiffiffiffiffiffiffiffiffi
k=m

p
ð3:28Þ

In the absence of external damping (ce = 0) we observe that for a rotating
speed smaller than the critical xn we have stability. Furthermore, Eq. (3.28)
implies that there is always a rotating speed X ¼ 1þ ce=cið Þxn above which the
system is unstable. Also, for any rotational speed X[ xn, we can always make the
system stable by providing adequate external damping.

Bearing instabilities: For a rigid rotor, k� B and Eq. (3.15) becomes, for
B ¼ Kd � iKc; C ¼ Cd � iCc

m€zþ Cd � iCcð Þ_zþ Kd � iKcð Þz ¼ 0 ð3:29Þ

Stability conditions (3.25) yield

�Cc\0 CCcKc � C2
c K � mK2

c [ 0 ð3:30Þ

The first condition means that negative bearing damping always causes insta-
bility. The second condition, upon division by m, yields

x2
n\

C

Cc

Kc

m
� Kc

Cc

� �2

ð3:31Þ

The right hand part of Eq. (3.31) is a function of the rotating speed x, because
so are the bearing properties. If this expression, at some value of X, becomes
smaller than x2

n, this will imply instability.
Asymmetry of rotating parts: We have confined our discussion up to this point

to cylindrical shafts with similar properties in both directions. If the shaft has
spring constants kg and kn different along two perpendicular directions, a situation
common in electric generators, we shall not have restoring forces kg and kn in the
rotating coordinate system, but kgg and knn respectively. Substituting into
Eq. (3.26) and using

k1 ¼
kg þ kn

2
k2 ¼

kg � kn

2
ð3:32Þ

we obtain

m€gþ ce þ cið Þ _gþ k1 � mX2 þ k2
� �

g� 2mX _n� ceXn ¼ 0 ð3:33Þ

m€nþ ce þ cið Þ _nþ k1 � mX2 þ k2
� �

n� 2mX _g� ceXg ¼ 0 ð3:34Þ

3.2 The Single Disc Model 57



Substituting g ¼ go expðiptÞ; n ¼ no expðiptÞ we obtain the characteristic
equation

�p2 þ ceci

m
ipþ k1

m
� X2

� �� �2

� 2Xpþ cep

m

� �2
� k2

m

� �2

¼ 0 ð3:35Þ

It can be shown with Routh-Hurwitz criteria [Eq. (3.22a)] that there is an
additional instability region for kg\kn:

ffiffiffiffiffiffiffiffiffiffi
kn=m

p
\X\

ffiffiffiffiffiffiffiffiffiffi
kn=m

q
ð3:36Þ

In other words, the operation between the critical speeds defined by the two
spring constants of the shaft is unstable.

Thermal imbalance: If there are stationary components around the shaft on
which it might rub, there will be heat input in the rotor due to rubbing which is
proportional to and in the direction of the amplitude. Therefore, there will be an
imbalance in the rotating coordinate system (see Chap. 5):

e ¼ qf ð3:37Þ

where q is a complex constant depending on the geometric and thermo elastic
characteristics of the system. Neglecting damping, Eq. (3.26) becomes, with the
external force mqX2f due to imbalance

m€fþ k � mX2
� �

fþ 2mXi _f� mqX2f ¼ 0 ð3:38Þ

Considering the characteristic equation

�p2 � 2Xpþ x2
n � X2 � qX2� �

¼ 0 ð3:39Þ

If q ¼ uþ iu, the condition (3.25) yields

� 2Xð Þ2 x2
n � X2 � uX2� �

� m X2t
� �2

[ 0 ð3:40Þ

or

�4x2
n þ 4X2 1þ uð Þ � mX2t2 [ 0 ð3:41Þ

Finally

X2 [
4x2

n

4 1þ uð Þ � mt2
ð3:42Þ

In most practical situations, t � 0 and u� 1, so that stability occurs for a
rotating speed greater than the critical speed.
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3.3 The Discrete Model

The one-disc rotor representation can only be used for qualitative studies and for
derivation of general results. For the analysis of specific machines, we have to take
into account the complicated geometry of the rotor and accurate forms of the
excitation, bearings and supports.

The transfer matrix method has been applied to stepped rotors by Landzberg
[36]. This method was applied further by Vogel [37] and Lund [38]. Lumped mass
systems have also been used to represent realistic rotor geometries, for example by
Gasch [39], Shen [40] and Kirk [41]. Ruhl and Booker [42] used a finite element
method for the modeling of a realistic rotor. Dimarogonas [32] developed a dis-
crete model for a continuous shaft including non-linearities of the system.

The transfer matrix is powerful to model very long and complex rotors but it is
strictly limited to linear systems and has certain problems of numerical instability.
Lumped mass systems lead to very tedious computations, compared with the
transfer matrix method, but they can be used to describe non-linear systems.

The geometry of real rotors, such as high speed turbo rotors, cannot be realized
as one-mass or one-disc. Figure 3.6 depicts the configuration of such a rotor along
with mass and moment of inertia distribution. The distribution of its mass and
stiffness is discontinuous and very irregular. The same irregularity also charac-
terizes the distribution of the forces acting on the rotor. In such systems successful
prediction of stability behavior has been never reported. The finite element method
is essentially the same as the transfer matrix method, but with a different scheme of
numerical solution, and it goes through the explicit writing of the differential
equations of motion, so that non-linear systems can be modeled.

Though the above methods can be applied, in principle, to analyse the stability
of rotors of complicated geometries, when numerical solutions of the equations of
motions are required they are usually impractical. It appears that no matter how
complicated a geometry a rotor has, one can model it by way of a sufficiently large
number of masses or elements, however, introduction of short shaft sections results
in a ‘‘stiff’’ system, having very high and very low eigenvalues. This requires very

Fig. 3.6 Mass and moment
of inertia distribution of a
turbine rotor (from Ref. [34]
by permission)
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short integration steps which mean not only enormous computation time but also a
tendency for numerical instabilities.

Since the final objective is the non-linear analysis of the system one should
expect eventually to have to resort to numerical methods, namely, the numerical
solution of a set of non-linear equations. Consequently, the number of equations
must be reduced to an absolute minimum.

A rotor might have as many as 50 inspan conditions, such as changes in
stiffness, mass applied forces, etc. The continuous rotor has an infinite number of
degrees of freedom. Since the vibrations of the usual rotors observed are associated
with a small number of low eigenvalues of the system, one expects that utilization
of a limited number of degrees of freedom will yield adequate accuracy. In fact, for
calculations of critical speeds, it has been found that with a finite element approach
[42], 2–5 elements give enough accuracy for all engineering purposes, for a shaft
of constant diameter. For more complicated geometries, it is obvious that a larger
number of elements might be necessary.

Here, a fixed coordinate system (x, y, s) is considered with the s-axis in the
direction of the geometric axis of the undeflected rotor (Fig. 3.7). It is assumed
that the rotor revolves with a constant angular velocity x. Along the rotor axis
n ? 1 nodes are considered, which identify n rotor elements. Each node is asso-
ciated with 4 degrees of freedom expressed by way of four generalized coordi-
nates: x and y are the coordinates of the node and u and v are the slopes of the rotor
deflection in the planes (x, s) and (y, s) respectively. On each element there are
distributed properties with a finite number (mk) of discontinuities in the masses,
flexibilities and the external forces. The subscript k denotes the element k. Fur-
thermore, motions along the s-axis will not be considered. Finally, the rotor is
assumed to be homogeneous cylindrical elastic solid of revolution.

The shape of the rotor along its length will be assumed as described by the
coordinates of the n ? 1 rotor nodes. For calculations of natural vibrations of
rotors, it was found that the lower frequencies are relatively insensitive to the
selection of this shape. In particular, the static deflection of the rotor between two
nodes with the coordinates (deflections and slopes) at these nodes as boundary

Fig. 3.7 Typical rotor
element (from Ref. [34] by
permission)
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conditions was always very successful. In view of the fact that stability analyses of
practical rotors involve only very few of the lower frequencies, the static deflection
curve will approximate the shape of the rotor between nodes. In the case of a
uniform elastic cylinder between two nodes, the static deflection curve in the
(x, s) or (y, s) plane is a third degree polynomial. This approach amounts
to assuming a set of linearly independent functions fijkðsÞ i; j ¼ð
1; 2; k ¼ 1; 2; . . .; nþ 1Þ, such that the motion of the rotor can be described as the
linear combinations

xðs; tÞ ¼
Xnþ1

k¼1

f11kðsÞxkðtÞ þ f12kðsÞukðtÞ½ �

uðs; tÞ ¼
Xnþ1

k¼1

f21kðsÞxkðtÞ þ f22kðsÞukðtÞ½ �

9
>>>>=

>>>>;

ð3:43Þ

in the (x, s) plane and similar expressions in the (y, s) plane.
This leads to four (n ? 1) unknown functions of the time xk; uk; yk; tk

describing the motion of the n ? 1 nodes of the rotor. These real functions are
combined into the complex functions

z ¼ xþ iy w ¼ uþ iu
zk ¼ xk þ iyk wk ¼ uk þ iuk

�
ð3:44Þ

Furthermore, the following vectors are defined:

X ¼ x1u1x2u2. . .xnþ1unþ1f g
Y ¼ y1v1y2v2. . .ynþ1vnþ1f g
Z ¼ z1w1z2w2. . .znþ1wnþ1f g

9
>=

>;
ð3:45Þ

The shape of the rotor at time t is determined by four (n ? 1) generalized
coordinates xk; uk; yk; tk k ¼ 1; 2; . . .; nþ 1ð Þ where (n ? 1) is the number of nodes
along the rotor. The nodes are taken on the geometric axis of symmetry of the
rotor.

Between the nodes k and k ? 1 there is a rotor element which consists of a
number mk ? 1 of sub-elements, in the form of elastic solids of revolution, usually
in the form of, but not restricted to, cylindrical sections. Between such sub-ele-
ments, discs of finite mass and moment of inertia but negligible length are
admitted.

Let q ¼ x uf g or q ¼ y tf g be a vector containing the deflection and
slope at the vertical or horizontal plane respectively. It will be used in the form qjk

and will designate the subnode jk of the element k. Each sub-element is described
by a transfer matrix which relates the state vectors at the ends of the sub-elements.
Let �D be the transfer matrix linking the state vector at subnode jk to the one at
node k, and �R the transfer matrix linking the state vector at node k ? 1 to one at
subnode jk. Catalogues of transfer matrices for the particular beam model can be
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found in Ref. [43]. If the 4 9 4 matrices �D and �R consist of the blocks dij and rij

respectively, where i and j take the values 1 and 2, one can prove that

qjk ¼ fjkqkþ1 þ gjkqk ð3:46Þ

where

fjk ¼ d11d�1
12 þ r�1

12 r11
� ��1

r�1
12

gjk ¼ d11d�1
12 þ r�1

12 r11
� ��1

d11d�1
12 d11

9
=

;
ð3:47Þ

Furthermore, for the sub-element jk, the end vector Xjk ¼ qT
j
..
.
qT

j


 �
is defined.

Then

Xjk¼CjkXk ð3:48Þ

where

Cjk ¼
gjk

���
gjþ1; k

j
j

f jk

���
f jþ1; k

2

4

3

5

is a transformation matrix.
While Yk has an apparently similar meaning, Xk is the end vector of the element

k. The rotor configuration of the sub-element jk will be expressed by a function
satisfying the boundary conditions Xjk. The simpler function will be a third degree
polynomial:

x ¼ u1ðsÞxj�1 þ u2ðsÞxj þ u3ðsÞuj�1 þ u4ðsÞuj ð3:49Þ

u ¼ u01ðsÞxj�1 þ u02ðsÞxj þ u03ðsÞuj�1 þ u04ðsÞuj ð3:50Þ

where, if l is the length of the sub-element

u1ðsÞ ¼ 1� f2 þ 2f3� �

u2ðsÞ ¼ 3f2 � 2f3

u3ðsÞ ¼ l f� 2f2 þ f3� �

u4ðsÞ ¼ �f2 þ f3� �
l

f ¼ s

l

Differentiating with respect to time:

_x ¼ u1ðsÞ _xj�1 þ u2ðsÞ _xj þ u3ðsÞ _uj�1 þ u4ðsÞ _uj ð3:51Þ

_u ¼ u01ðsÞ _xj�1 þ u02ðsÞ _xj þ u03ðsÞ _uj�1 þ u04ðsÞ _uj ð3:52Þ
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Similar expressions hold for y; t; _y; _t.
The kinetic energy of the sub-element jk will be

Tjk ¼
1
2

X4

p¼1

X4

q¼1

_xp _xqMpq þ
1
2

mjk _x2
j þ

1
2

Jjk _x2
s þ x

X4

q¼1

X4

p¼1

_xpyqNpq

� x
X4

q¼1

X4

p¼1

xp _yqNpq ð3:53Þ

where Jjk is the moment of inertia of the disk attached at the subnode jk, mjk the
mass of the same disk,

Mpq ¼ mjkUpq þ r2
jkWpq

Npq ¼ mjkr2
jk

Zljk

0

upu
0
qds

Upq ¼
Zljk

0

upuqds

Wpq ¼
Zljk

0

u0pu
0
qds

�mjk the mass of the sub-element jk, �rjk the radius of gyration of the sub-element,
and ljk the length of the sub-element.

In view of Eq. (3.48), Eq. (3.53) becomes

Tjk ¼
1
2

_X
T
k

~Mjk
_Xk þ x _X

T
k

~NjkYk � xXT
k

~Njk
_Yjk ð3:54Þ

where

~Mjk ¼ CT
jk

~MjkCjk þ CT
jkdiag mjk Jjk 0 0ð ÞCjk

~Njk ¼ CT
jk

~NjkCjk þ CT
jkdiag mjk Jjk 0 0ð ÞCjk

�Mjk ¼ Mpq

h i

jk
�Njk ¼ Npq

h i

jk

The kinetic energy of the element k will be the sum

Tk ¼
Xmk

j¼1

Tjk ¼
1
2

_X
T
k M�

kXk þ x _X
T
k N�kYk � x _X

T
k N�k

_Yk ð3:55Þ

The energy of the elastic deformation of the sub-element jk is
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Veð Þjk¼
1
2

Zl;k

0

a sð Þu2
s ds ð3:56Þ

After similar steps, one obtains for the energy of elastic deformation of element
k:

Vek ¼
1
2

XT
k

�VkXk ð3:57Þ

where

�Vk ¼ CT
jkSjkCjk Sjk ¼ spq

� �
jk

4� 4ð Þ

spq ¼ ajk

Zljk

0

u00pðsÞu00qðsÞds

and ajk is the flexural rigidity EI of the sub-element jk.
The Lagrangian function is

L ¼
Xn

k¼1

Tk � Vekð Þ ð3:58Þ

Application of the Lagrangian equations of motion yields

M€X� xN _YþKX ¼ QX�ext

M€Yþ xN _XþKY ¼ QY�ext

)

ð3:59Þ

Using the complex displacement vector Z = X ? iY, the Eq. (3.59) become

M€Zþ ixN _ZþKZ ¼ QZ�ext ð3:60Þ

where N ¼ �Nþ NT . The matrices �N, M and K are similar in structure. They
consist of the matrices N�k , M�

k and Vk, respectively. The matrices M�
k have a

common diagonal with the matrix M, and they start at the row 2k-1 overlapping
with the M�

kþ1 by way of adding the common elements. Matrices N and K are
constructed with the matrices N�k and Vk in the same way.

We turn now to the computation of the linear external forces. Non-linear terms
will be developed later.

External forces acting on the element nodes can be written down immediately.
Forces acting on the subnodes give contributions to generalized forces which can
be calculated as follows: Given a variation dqk to the vector qk, the variation at the
subnode jk will be

dqjk ¼ gjkdqk ð3:61Þ
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Associated with the variation dqjk there are linear forces

Qjk ¼ Hjkqjk

where Hjk is a 2 9 2 matrix of the linear external forces at the subnode jk.
The work of those forces is

dWjk ¼ qT
jkHjkdqjk ð3:62Þ

The total work due to dqk will be

dWk ¼ qT
k�1

Xmk�1

j¼1

gT Hf
� �

j:k�1þqT
k

Xmk

j¼1

gT Hg
� �

jk
þ
Xmk�1

j¼1

fT Hf
� �

j:k�1

" #

þ qT
kþ1

Xmk

j¼1

fT Hf
� �

jk

( )

dqk

ð3:63Þ

The complex force vector F associated with the generalized coordinate vector
Z will then be

F¼SZ ð3:64Þ

where the matrix S has the following 2 9 2 blocks:

row block k column block k þ 1

S-block ¼
Pmk�1

j¼1
gT HFð Þ

j:k�1

row block k column block k þ 1

S-block ¼
Pmk

j¼1
gT Hgð Þ

jk
þ
Pmk�1

j¼1
fT Hf
� �

j:k�1

row block k columnblock k þ 1

S-block ¼
Pmk

j¼1
fT Hg
� �

jk

Additional forces arise due to the internal friction of the shaft material. This
damping appears in two forms [44–46]:

(a) Hysteretic damping, which gives rise to forces proportional to the elastic
forces and lagging them by an angle p/2. They can be expressed as the vector

Fhyst ¼ �icoKZ ð3:65Þ

The factor c0, the loss factor due to hysteric damping is independent of the
rotating speed.

(b) Linear viscoelastic damping, which is associated with forces in the direction of
and in proportion to the lateral velocities in a rotor-fixed coordinate system. In
the system x; y; sð Þ it can be expressed as

3.3 The Discrete Model 65



Fvisc ¼ �c1K _Zþcix1KZ ð3:66Þ

where c1 is the viscoelastic loss factor, dependent on speed (Eq. 3.12).
Finally, the equations of motion become

M€Zþ c1Kþ ixNð Þ _Zþ 1� i co þ c1xð Þ½ �KZ ¼ SZþ F Z; _Z
� �

ð3:67Þ

where F Z; _Z
� �

is a vector of the non-linear forces depending, in general, on the

displacements Z and velocities _Z.
In the special case of a rotor with mass lumped at the nodes, the matrix M is

diagonal, in general, it is a banded matrix, positive definite and it possesses an
inverse M�1. The equations of motion take the form

€Zþ c1Lþ ixL2ð Þ _Zþ 1� igð ÞLZ ¼ L1Zþ F� Z; _Z
� �

ð3:68Þ

where L¼M�1K; L1¼M�1S and F�¼M�1�F; L2M�1N.
Questions about natural vibration or imbalance response can be answered by

work along known lines with a linearization of Eq. (3.68) around the equilibrium
point.

In general, the equilibrium state is not the static deflection of the rotor, but the
solution of the system of non-linear algebraic equations

1� igð ÞL� L1½ �Z0 � F Z0; 0ð Þ ¼ 0 ð3:69Þ

A Newton–Raphson method can be used to yield the state of equilibrium Z0.
Since this state is usually very close to the static deflection of the rotor superposed
on the equilibrium points of the bearings at the running speed, the solution Z0 is
obtained with a small number of iterations.

The vector Z is now redefined with a parallel transformation �Z ¼ Z�Z0 and the

non-linear force vector �F �Z; _�Z
� �

¼ F Z; _Z
� �

� F� Z0; 0ð Þ. The equations of motion

become

€�Zþ c1Lþ ixL2ð Þ _�Zþ 1� igð ÞL�Z¼L1
�Zþ�F �Z; _Z

� �
ð3:70Þ

The equilibrium of this system is the zero vector.
If the bearings are assumed at the nodes k1 and k2, and no other non-linear

forces are imposed on the system, a situation most common in rotors, the vector �F
has only two non-zero components F2k1þ1 and F2k2þ1of the form

B1 ¼ F2k1þ1 ¼ �g11 xk1; yk1ð Þ þ �g12 xk1; yk1ð Þ _xk1 þ �g13 xk1; yk1ð Þ _yk1

B2 ¼ F2k2þ1 ¼ �g21 xk2; yk2ð Þ þ �g22 xk2; yk2ð Þ _xk2 þ �g23 xk2; yk2ð Þ _yk2

)

ð3:71Þ

The linearised form of these forces is obtained by a Maclaurin expansion,
retaining only linear terms in x; y; _x and _y:
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Bj ¼ KjxxKjyxCjxxCjyx

� �
x y _x _yf g þ i KjyyKjxyCjyyCjxy

� �
x y _x _yf g

ð3:72Þ

where j takes the values 1 and 2 and the coefficients K and C are the spring and
damping coefficients of the bearings. These forces are incorporated in two matrices
�V and �W to yield equations of motion in the form

€�Zþ c1Lþ ixL2ð Þ _�Zþ 1� igð ÞL�Z ¼ L1
�Zþ V�ZþW _�Zþ R ð3:73Þ

Where V ¼M�1 �V and W ¼M�1 �W, while R is a vector with the higher order
terms of Maclaurin expansion.

It is very unlikely that one will have the full form of Eq. (3.73) in actual
systems. In fact, the most common situations are the following:

(a) Electrical machines, motors and generators. The linear terms L1 are very small
and L1 is diagonal. The matrices V and W contain both coupling and cross-
coupling terms which are functions of the rotating speed x.

(b) Turbines, compressors. In cases where certain non-diagonal elements of the
matrix L1 have a significant value, tilting pad bearings are utilized which do
not have significant cross-coupling terms in the matrices V and W. The matrix
L1 is a function of the speed and load of the machine.

In these situations two types of instability are encountered:

(a) In the process of accelerating the rotor, there is a threshold speed after which
the operation is unstable. Usually at this stage the load-dependent matrix L1

has only zero components. The problem is to find the rotor speed x for which
the system is unstable.

(b) When the rotor reaches its normal operating speed the load starts increasing
and at a certain critical value the operation becomes unstable. At this stage the
speed-dependent matrices V and W remain constant while the load-dependent
matrix L1 changes with the load.

Finally, the system of Eq. (3.73) will be normalized as follows: The pertur-
bation vector

x ¼ x1
..
.
x2

..

.
. . ...

.
xnþ1


 �

is defined where

xj ¼ xjujyjvj _xj _uj _yj _vj

� �

Then Eq. (3.73) becomes

_x ¼ Axþ fðxÞ ð3:74Þ

3.3 The Discrete Model 67



where the matrix A consists of (n ? 1)2 blocks aij (i, j = 1,2,			n ? 1), and the
vector f contains higher order terms of the non-linear forces. One should assume
that the non-linear functions of the vector f are continuous and have a sufficient
number of continuous partial derivatives, in the case of non-linear forces due to
dry friction with stationary components, these features does not usually exist and
one has to resort to numerical methods.

According to Liapunov’s first theorem, [47–50] Eq. (3.74) is asymptotically
stable if all the eigenvalues are given by the equation

A� kIj j ¼ 0 ð3:75Þ

where I is the diagonal unit matrix and k the eigenvalue. The imaginary parts of
the roots of this algebraic equation are the damped natural frequencies of the
system at the operating speed x. These frequencies will coincide with the critical
speeds if we set x = k in the elements of the matrix A(x, r).

Let A(x, r) be the matrix of Eq. (3.74). The threshold of instability is at the
point where the real part of one eigenvalue of Eq. (3.75) becomes positive,
crossing the zero line. Because of the continuity, we can conclude that at the
threshold one eigenvalue of the system has only an imaginary part. The substi-
tution k ¼ ixn in Eq. (3.75) yields the determinant

A x; rð Þ � ixnIj j ¼ 0 ð3:76Þ

The two types of instability mentioned before, namely speed-and load-con-
trolled, correspond to the following formulation:

(a) Speed-controlled instability (r = 0)

F x;xnð Þ ¼ A x; 0ð Þ � ixnIj j ¼ 0 ð3:77Þ

(b) Load-controlled instability (x = constant)

F r;xnð Þ ¼ A x; rð Þ � ixnIj j ¼ 0 ð3:78Þ

Each equation yields two algebraic, real and non-linear equations in the
unknowns x, xn, and r, xn respectively. The existence of such solutions will mean
instability. This question was investigated by means of a digital computer and the
Newton-Raphson method. Application to turbo rotors yielded the following
observations:

(a) For speed-controlled instability, an unstable speed was found associated with a
whirl speed xn of the order of the critical speed. Many unsuccessful attempts
were made for higher whirl speeds.
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(b) For load-controlled instability, if the operating speed is below the unstable
speed, there is a threshold load r at whirl speeds xn, again of the order of the
critical speed. The deviation of the whirl speed from the critical speed is due to
the gyroscopic terms of x in Eq. (3.76). Instabilities at high whirl speeds were
not discovered. Details of numerical examples are given in Ref. [31].

In case of load-controlled instabilities of large steam turbines the following
sequence of events was observed: At low speeds the rotor has a synchronous
vibration due to residual imbalance. At increasing loads a whirl starts developing
at speeds close to the first critical speed with amplitude which is a monotonic
function of the load. At a load as high as 200 % of the load at which the whirl
started, the whirl orbit jumps to a very high amplitude. At this point, the orbit is
sometimes not only unstable, but shows an almost random character.

The low level, stable whirl occurs at a wide range of loads and it would be an
unnecessary limitation to consider as unstable the operations at the appearance of
the whirl, which must be the instability predicted with the first Liapunov theorem.
Therefore, other methods must be employed for the study of the system.

To this end, Eq. (3.74) has been solved as an initial value problem with
numerical integration. Fourth-order Runge–Kutta and as Adams–Moulton
predictor–corrector methods were used.

The fact that the number of degrees of freedom is small is equivalent to
observing the system operation from a window of a low number of frequencies,
which makes the numerical methods sufficiently stable. The assurance of numer-
ical stability is obtained by way of using half the integration step. A sample layout
of such an integration, for a large steam turbine rotor is given in Figs 3.8, 3.9, 3.10
corresponding to limit cycle (engineering stability), stability, and instability,
respectively.

The obvious place to look for limit cycles is the non-linearity of the bearings.
To do this, we shall study the case of load-controlled instability. In this case the
bearings are of the tilting pad type and, for simplicity; four-pad bearings are
considered which are isotropic. Therefore the equations can be considered in the
complex form.

Fig. 3.8 Limit cycles of
rotor orbits (from Ref. [34] by
permission)
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The bearing force R is given [32] as a function of the eccentricity ratio as

R ¼ f eð Þ ¼ f
zj j
c

� �
ð3:79Þ

where c is the bearing radial clearance and e is the eccentricity ratio.

Fig. 3.9 Stable rotor orbits
(from Ref. [34] by
permission)

Fig. 3.10 Unstable rotor
orbits (from Ref. [34] by
permission)

Fig. 3.11 Derivatives of the
force-eccentricity function
(from Ref. [32] by
permission)
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An expansion of the function R around the point of equilibrium yields

R ¼ ef 0 þ e2

2
f 00 þ . . .je¼eo ð3:80Þ

The first derivative f 0ðeÞ at e ¼ eo is the bearing spring coefficient eo and the
second f 00ðeÞ at e ¼ eo is the second bearing coefficient e1. For �z denoting devia-
tions from the equilibrium, one obtains

R� R0 ¼ e0�eþ
e1

2
�ej�ej þ . . . ð3:81Þ

where �e ¼ �z=c.
For a tilting four-pad bearing [50], the function f ðeÞ and its derivatives have

been plotted on Fig. 3.11.
For values of the Sommerfeld number equal to 0.2, 0.4 and 0.6, which cover the

range of typical turbine bearings, Fig. 3.12 illustrates the bearing force versus the
deviation from equilibrium �e, based on data from Ref. [51].

The non-linearity is apparent. For example, for a vibration amplitude �e ¼ 0:3,
which is within acceptable limits for turbomachinery, the deviation from linearity
is 19, 39, 63 % for e = 0.2, 0.4 and 0.6, respectively.

For general bearings the situation is more complicated because the nearing
forces depend on x and y and not only on z. this situation is treated in detail
elsewhere [35, 52–58]

To study the feasibility of a limit cycle, solutions are sought in the form

�Z ¼ qexp iptð Þ ð3:82Þ

The components of R will be ejq2
j exp iptð Þ where ej are the coefficients of the

second-order term, if the Maclaurin expansion of the non-linear bearing forces,
Eq. (3.67) becomes

�mp2Iþ ip c1Lþ ixL2ð Þ þ 1� gið ÞL� L1 � V� ipW
� �

qþ eq0q ¼ 0 ð3:83Þ

where qo ¼ diag q1q2. . .qnþ1

� �
. Equation (3.80) has of course a trivial solution

but, under certain conditions, it has additional solutions because of its non-

Fig. 3.12 Non linear force-
functions (from Ref. [34] by
permission)
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linearity. To demonstrate this, the simplest case of one node will be considered.
Equation (3.83) becomes

�mp2 þ K þ iSþ ipC
� �

qþ eq2 ¼ 0 ð3:84Þ

where K is the bearing spring constant, C its damping constant, S the force due to
steam flow, e the bearing second stiffness coefficient. Equation (3.84) yields

p ¼ S

C
q ¼ m S=Cð Þ2�K

e
ð3:85Þ

The limit orbit has to be positive. This yields

S [ C
ffiffiffiffiffiffiffiffiffiffi
K=m

p
ð3:86Þ

At the onset S ¼ C
ffiffiffiffiffiffiffiffiffiffi
K=m

p
, the whirl frequency is

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K=m ¼

p
xcr ð3:87Þ

where xcr is the critical speed. This, qualitatively, confirms experimental obser-
vations. Applying finite perturbation to the limit orbit solution (Eq. 3.84) it was
proved that this solution is stable for all values of the parameters involved,
admissible under Eq. (3.87). The jumping phenomenon observed in practice and in
numerical solutions cannot be observed in this model, without taking higher order
approximations to the bearing non-linearities.

3.4 Summary and Conclusions

Up to this point we have discussed special shafts of very simple geometry. Such
models are useful in extracting qualitative results and general features. For many
engineering systems, one has to take into account realistic geometries and
boundary conditions thus, leading to the application of direct methods of analysis
as the ones presented in this chapter. Of course, masses concentrated at a point,
rigid bodies, elastic massless members, and linear properties do not exist in nature.
But if one can conceive such systems, they can have exact solutions. The most
commonly used method for engineering systems is the transfer matrix method.
Attention must be paid to the fact of coupling between horizontal and vertical
vibration. If there is an element in the system, such as a fluid bearing, which
couples the vertical and horizontal vibration, the state vector should include the
state parameters in both directions. Analysis in two planes needs to be used with
great care and only if the cross-coupling terms due to the bearings and gyroscopic
effects are of substantial magnitude. Thermal unbalance due to rubbing effects, and
bending of shafts, depending on the geometric and thermoelastic characteristics of
the system, has to be also considered, this issue is presented in detail in Chap. 8.
Rotor dynamic analyses are coded in Refs. [31, 55] followed by illustrating
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examples. Codes for analyses refer to vibration modes with animation, torsional
critical speeds, dynamic response, nonlinear response, cracked or misaligned rotor
response, nonlinear analysis, vibration analysis, and balancing.
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Chapter 4
Flow-Induced Vibration of Rotating
Shafts

Abstract Chapter 4 deals with flow-induced vibration of rotors and in particular
with the most important case, known as ’steam whirl’, often appearing in large
steam turbines. Stability criteria, Thomas Stability Criterion and Torque-Deflection
Number are applied and compared. Vibration of rotors in fluid annuli occurs due to
dynamic interaction of cylinders with the surrounding fluid in parallel or cross-flow.
The integrated effect of pressure and dynamic fluid forces generated results to
imbalance. Application of Hurwitz-Routh determinants is used for checking sta-
bility conditions. Self-excited vibration of a rotating hollow shaft partially filled
with viscous liquid occurs within a certain range of rotating speed. Approximate
solutions of the equations of motion for the non-dimensional time-dependent radial
and circumferential velocity of a small internal liquid element yield non-dimen-
sional liquid forces and, furthermore, stability limits for the rotor. The marginal
condition under which the system becomes absolutely stable is investigated.

4.1 The Steam Whirl Problem

In the 1940s, two non-condensing turbines built by General Electric Company,
designed very differently from the previous ones, and having very flexible rotors,
experienced violent whirl at high loads [1]. This whirl could not be corrected by
balancing and appeared at high loads only. To cure the trouble, the machines were
modified with completely new rotors or pad bearings or both. It was later recog-
nised that forces due to steam flow contributed to this instability. Alford [2]
reported that modification to the steam path largely eliminated the problem. There
is conflicting information of these two cases. We know, however, that an empirical
stability criterion resulted from an investigation related to these two unstable
turbines, the Torque Deflection Number (TDN). Later, in 1956, Thomas [3]
reported similar problems with AEG turbines, and the efforts to study this
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phenomenon both analytically and experimentally. Thomas indicated some of the
sources of the excitation, and developed a stability criterion based on a combi-
nation of analytical results and experimental calibration. He concluded that the
excitation originated from the steam flow through the packing clearances, and the
stabilizing effect came from damping forces. He also reported that the problem
was corrected mainly by decreasing the span and thus raising the critical speed,
and sometimes by bearing changes. Thomas and Alford agreed that the vibration
occurred at frequencies equal to the critical speed of the rotor. Alford, however,
stated that variation of the whirl speed in jet engines was associated with a wide
range of parameters, depending on the amplitude and the test conditions.

In the late 1960s the problem arose again, and several papers published in
Germany dealt with the problem along the lines followed by Thomas [4–7]. Later,
Black [8] applied simplified analyses for similar phenomena on high speed cen-
trifugal pump rotors. He also identified instabilities due to local reversed flows at
very low flow rates of the pumps. Shapiro and Colsher [9] studied the influence of
bearings on steam whirl; Pollman et al. [10] and Wright [11] concentrated on the
development of the excitation mechanisms due to flow in turbines and reported on
measurements of the forces due to flow. The excitation coefficient for labyrinth
seals and shrouded blade row seals for whirling shafts is calculated assuming
standard fluid dynamic behavior by Kwanka et al. [11] and Pugachev et al. [12]
Rotor bearing instability, effect of the destabilizing steam forces on the rotor at the
first row, effect of the seal rotordynamic forces and the valve opening sequence on
the rotor stability were studied analytically to interpret vibrations affected to
300 MW steam turbine rotors at certain loads [13].

A case history of a steam turbine that experienced a heavy steam-whirl instability
though the stability margin in design conditions, calculated by the turbine manufac-
turer according to a consolidated methodology, was sufficiently high was studied by
Bachschmid et al. [14], Pennacchi et al. [15] studied instability phenomena in steam
turbines caused by certain characteristics of the steam flow as well as of the mechanical
and geometrical properties of the seals. They modeled the eigenvalues and eigen-
vectors change due to the cross coupled coefficients from steam pressure and velocity,
and the seal stiffness. The threshold level of the steam flow that causes instability
conditions was analyzed and used to define the stability margin of the power unit [16].

Dimarogonas [17–19] presented a method of treating the problem in a very
general way and some results of this analysis, applicable to the whirl problem of
turbine rotors, are presented in this chapter.

Thomas [3] was the first to identify one of the stimuli, the forces due to leakage
flow through the packing clearances. Figure 4.1 shows an eccentric stage. We
observe that at the area of smaller clearances there is less leakage, and therefore
more steam is available to produce shaft work. Consequently the peripheral force at
this point will be greater than at the area of high clearances. The result is a net force
perpendicular to the deflection and in the direction of rotation. Assuming that the
efficiency of the stage is, to a first approximation, a linear function of the clearance,
we can conclude that the lateral force is proportional to the deflection. The coef-
ficient of proportionality Ks will be called the steam force gradient, Ks = qU/qd.
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The same situation exists for flow through the shaft packings. Therefore, the
steam force gradient Ks consists of two terms and we have [3]

oU

od
¼ U

2h
a

dn

dm

� �2 u
ffiffiffiffiffiffiffiffiffi
2gH
p

C2 sin a2
ffiffi
z
p þ b 1þ h

dm

� �" #

ð4:1Þ

where
U = peripheral force,
d = shaft deflection,
h = nozzle height,

dn = shaft diameter,
dm = pitch diameter of stage,
H = adiabatic drop of stage,
/ = velocity coefficient,
C2 = absolute exit velocity,
a2 = exit angle,
Z = number of packing teeth,
g = acceleration due to gravity.

We recognise immediately the two terms in the bracket as representing a
gradient due to leakage at the shaft and bucket packings, respectively. The two
coefficients a and b are calibration constants determined experimentally. They
account for secondary factors, such as circumferential flow, pressure equalising
holes and other effects on efficiency. Thomas determined them experimentally.
Therefore, in his work, other mechanisms for steam gradients have also been taken
into account in these constants. A more accurate expression for the term due to
bucket leakage can be used, similar to one for the shaft packings [4–6, 20].

Thomas [3] derived a criterion for stability based on these forces and considering
the damping as a logarithmic decrement. Although Thomas’s work has theoretical

Fig. 4.1 Unequal tangential
forces in an eccentric stage
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flaws, it could be used for comparison of stability, even for prediction, for similar
machines, since enough empirical factors have been introduced which are estab-
lished by experiments in similar machines. It is unfortunate that this work, carried
out in 1955, has not stimulated further interest in the subject at an earlier stage.

Alford [2] proposed another model for the axial flow around a bucket cover,
assuming no effects of circumferential flow and considering variation of static
pressure in a two-teeth bucket packing due to the motion of the shaft. This phe-
nomenon appears to contribute to the problem only when the upstream tooth
clearance is greater than the downstream one, and does not seem to have a con-
siderable effect in practical situations.

Flow around eccentric cylinders without axial flow effects has been studied by
Yamada et al. [21–23]. The result of this flow is that the misalignment is
accompanied by a force which is not in phase with it but which has radial and
circumferential components. Their magnitude appears to be small compared with
the Thomas model. However, this model does not take into account axial flow, nor
the fact that the steam entering the cavity might have a peripheral velocity greater
than the peripheral velocity of the stage.

Adequate treatment of this subject is not available yet. In general, we shall
consider the force due to an eccentricity of the stage i as a linear function of d:

Fs ¼ dsrir þ dstit ð4:2Þ

where Sr and St are constants of the particular stage at the rated steam flow. This is
not a necessary restriction for the calculation method [19] but it is a convenient
way of extracting general features of the whirl phenomenon. Information of this
type is commonly available from the turbine manufacturers.

Another factor stimulating instability is the internal damping of the material and
dry friction between the rotor components [24, 25]. This is expressed as a material
damping factor c which, in this work, is defined as follows: Assuming that the
shaft runs in very small bearing clearances at a constant speed X, a vertical
displacement d results in a horizontal force perpendicular to the displacement d
and in the direction of rotation with magnitude (see Chap. 3):

Ft ¼
krcX

X� xn
ð4:3Þ

We consider c invariant with speed, at least in the ranges of interest. Lazan
gives values of c for several rotor materials [25]. The internal damping alone has
shown itself capable of inducing instability. From its definition we see that it is
very similar to the steam force gradients and thus the steam and the internal
damping whirl phenomena are of a similar nature. In fact, in most practical situ-
ations they coexist and both contribute to instability. A very interesting difference
is that the steam force gradient is proportional to the absolute deflection of the
rotor from the concentric position, no matter how the journals move, whereas
the internal damping force is proportional to the deflection of the rotor itself,
i.e. the deflection of the midspan from a straight line which connects the journals.
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Therefore, for very stiff rotors, the internal damping is negligible and the steam
force prevails. In the case of more elastic rotors, the internal damping possesses an
increasing importance.

Fluid bearings react to displacements and velocities of the journals around the
equilibrium with proportional forces [26]. The coefficients of proportionality are
called spring and damping coefficients respectively. These forces have components
along the displacements or velocities and the associated coefficients are called
direct terms. The forces perpendicular to the disturbances are associated with
constants called cross-coupling terms. We observe that the latter forces act in the
same sense as the other stimulating forces. For that reason, in rotors with appre-
ciable values of the other stimuli, they use pad bearings which have very small
cross-coupling forces. The magnitude of these forces depends mainly on Hertzian
contact effects and the inertia of the pads. Useful information for pad bearings can
be found in Refs. [27–30]. In general, the coefficients for the vertical and
horizontal directions are not equal. For four-pad bearings they are given in Refs.
[27, 31]. In other types they do not differ too much.

Our purpose is to study general features of the system. Our method will be to
reduce the system to a small number of parameters in order to make a qualitative
study possible. Numerical results with specific cases should be obtained with more
detailed analyses [19, 32]. Here, we shall assume the following:

1. the rotor is a uniform cylinder of diameter d and length l;
2. at the ends, the rotor is supported by two identical orthotropic bearings;
3. steam force gradients appear at the midspan only.

The simplest way to model the rotor is to divide it into two equal distributed
mass finite elements (Fig. 4.2). For such a system the equations of motion will be
(see Chap. 3)

Fig. 4.2 A two-finite element rotor model
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where w is a function defined, neglecting rotary inertia effects, as

w1 ¼
8

15
m and w2 ¼

1
10

m ð4:5Þ

m is the mass of the rotor,
z1, z2 complex perturbations defined in Fig. 4.2,
C damping constant of the bearing,
K the spring constant of the bearing.

Furthermore, Eq. (4.5) can be written as
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where

x2
n ¼

kt

m
r ¼ St

kr
t ¼ St

kr
c ¼ C

xnm
k ¼ k

kr

The quantities xn, r, t, c, k are the governing parameters of the system. One
could proceed with a study of the stability of the system (4.6) with the usual
methods. This, however, will lead to an 8th degree polynomial which will force us
to resort eventually to numerical methods. Therefore, the method from Ref. [19]
was utilized with the model of Fig. 4.2.

The results have been plotted in a dimensionless form. Table 4.1 gives the
several parameter constellations which correspond to Figs. 4.3, 4.4, 4.5, 4.6 and
4.7. We have used two values for c, namely 10-3 and 10-4 which are, in the opinion
of the authors, extreme values for rotor materials. Higher values correspond to 12
Cr material used extensively for high pressure rotors. Lower values correspond to
CrMoV. We can see immediately the effect of the rotor’s material on stability.

Table 4.1 Parameters for stability charts of Figs. 4.3–4.7

Figure number Internal damping Radial steam gradient Tangential steam gradient

4.3 0 0 Parameter
4.4 0.0001 0 Parameter
4.5 0.001 0 Parameter
4.6 0.0001 Parameter 0
4.7 0.001 Parameter 0

82 4 Flow-Induced Vibration



We should point out that in stability due to internal damping is influenced by the
load only to the extent that the increased temperatures influence the damping prop-
erties of the material. We note also that for normal rotors, internal damping can induce
instability (in this case even at no load) only for extreme conditions in the bearings.

The stiffness and damping parameters of the bearings are used as coordinates,
and the steam force parameters, either tangential or radial, are used as parameters.

Fig. 4.3 Stability chart, c = 0.0001, St, = 0

Fig. 4.4 Stability chart, c = 0.001, St, = 0
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For a specific rotor, the bearing properties determine a point in the diagram with
the appropriate parameters. This point corresponds to a value of the parameter of
the plot (either r or t). If this value is higher than the value of the parameter for the
rotor under consideration, the rotor is stable. Therefore, every curve r = constant
or t = constant separates the (c, k) plane into stable and unstable regions. A
measure for the deviation from stability is the ratio g(c, k)/g0 where g(c, k) is the
value of the steam force gradient ratio, r or t which corresponds to the bearing

Fig. 4.5 Stability chart, c = 0.001, St, = 0

Fig. 4.6 Stability chart, c = 0.0001, St, = 0
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parameters c and k, and go is the value of the same parameter for the rotor under
consideration at rated load.

If we call this ratio the Load Stability Criterion (LSC), we observe that values
of LSC above 1 indicate instability. Its deviation from I indicates how far we are
from the onset of instability. This criterion is very useful for comparing similar
rotors for stability behaviour.

In these graphs we did not consider radial and tangential steam force gradients
acting simultaneously. In cases where this is important, additional studies have to
be carried out if a sum of the values given by these graphs is not satisfactory.

By inspection, one can conclude the following:

1. The steam force gradients greatly influence the stability of the rotor. It is
evident, however, that they are not the only factors influencing stability. We
observe also that tangential steam gradients have far more effect than equal
radial ones. However, that does not reflect the situation in turbo machinery
because this might be offset by much greater radial gradients. In stabilising an
unstable machine, one has to decrease these gradients. From Eq. (4.1) we see
that we cannot change them very much without redesigning the machine. The
only thing that we can change is the clearance, which is not involved in
Eq. (4.1); therefore an increase in clearance has only secondary effects upon
stability, due to the fact that Eq. (4.1) is only a first approximation. The only
tool available for improvement is the bearings. Indeed, from Figs. 4.3 and 4.4 it
is apparent that the bearings are the most important factor in stability.

2. Turning attention to the bearings, we observe a remarkable property. It is
obvious that both stiffness and damping determine the stability of the system.

Fig. 4.7 Stability chart, c = 0.001, St, = 0
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In fact, we see that stiffness has, in a way, much greater influence on stability
than damping. Changing the bearing parameters in order to achieve higher
damping does not necessarily result in improvement of stability, because it is
always accompanied by a change in stiffness. In the area of practical interest,
we observe that lines of constant steam force gradients have the form

C=K2 ¼ constant

From this, we conclude that the factor that one should minimise in order to
optimise stability is the damping function

D ¼ K2=C

where K and C are the bearing spring and damping coefficients, respectively.
Using graphs of the spring and damping coefficients for a four-pad bearing [27],
the damping function has been constructed (Fig. 4.8). We can see that this is
not a monotonous function of the Sommerfeld number, nor of its ingredients.
This is a very important observation, because it cautions against deriving
general results from experience or tests. Indeed, an increase of Sommerfeld
number, for example, by way of reducing the oil temperature and thus
increasing viscosity, might improve stability in one case and make things worse
in another, with the same machine, if the increase is large enough. We can
largely influence the bearing behaviour because there are many parameters
which could be changed without much difficulty, such as bearing clearance,
length, oil viscosity and preload. The latter is probably the most drastic tool
available: we can see its influence from several graphs given in Ref. [27].
However, we should be very careful in abusing this tool because, as the pads
wear with start-ups, the shape of the pad, after some time, will be the same as
that of the journal and then the whirl will return, probably after years.

3. The rotor flexibility is a very important factor, in the form xn=x. This is the
most difficult parameter to change: therefore we are not going to discuss it any
further. However, we point out the well-known fact that a stiffer rotor improves
stability, if mass is not increased proportionally. We can express it better by
saying that increasing the critical speed improves stability.

4.2 Stability Criteria

In Sect. 3.2.5, the stability conditions were stated for a complex second-order
differential equation of motion. In Sect. 3.2.3, it was shown that an adequate
description of the single-mass elastic rotor with elastic bearings requires a third-
order complex equation of the form Eq. (3.15)
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mC

k
vz þ m 1þ B

k

� �
€zþ C _zþ Bz ¼ 0 ð4:7Þ

where B and C are spring and damping constants of the bearings, respectively, and
k is rotor stiffness. To account for a steam force gradient St, operating on the rotor
deflection z, Eq. (4.7) assumes the form

mc

k
vz þ m 1þ B

k

� �
€zþ C 1þ l

st

k

� �
_zþ Bþ iSt 1þ B

k

� �� �
z ¼ 0 ð4:8Þ

It has the general form

a0
vz þ a1 þ ib1ð Þ€zþ a2 þ ib2ð Þ_zþ a3 þ ib3ð Þz ¼ 0 ð4:9Þ

with

a0 ¼ mC=k a1 ¼ m 1þ B=kð Þ b1 ¼ 0

a2 ¼ C b2 ¼ m 1þ B=kð Þ b3 ¼ S1 1þ B=kð Þ

Substituting z = exp(ikt) in Eq. (4.9) yields

a0ik3 þ a1 þ ib1ð Þk2 þ �a2 þ ia2ð Þkþ a3 þ ib3ð Þ ¼ 0 ð4:10Þ

Fig. 4.8 Dynamic properties
of a four-pad journal bearing
(from Ref. [23])
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The Routh-Hurwitz conditions require that for stability the following successive
determinants should be positive (see Chap. 3):

� 0 a1

a0 b1

				

				[ 0 or a0a1 [ 0 ð4:11Þ

m2c

k
1þ B=kð Þ[ 0 ð4:12Þ

For turborotors under study for steam whirl, the bearing properties B and C are
real and positive (no coupling terms-pad bearings) and condition (4.12) is always
fulfilled.

0 a1 b2 �a3

a0 b1 �a2 �b3

0 0 a1 b2

0 a0 b1 �a2

								

								

ð4:13Þ

a0 a1b1b2 � a0a1a3 þ a2
1a2 � a0b2

2 � a0b2
2


 �
[ 0 ð4:14Þ

Substituting:

1þ 2
B

k

� �
mk

c2
1þ B

k

� �
[

S2
t

k2

� �
ð4:15Þ

Condition (4.15) is always satisfied for engineering systems, since St � k and
mk/C2 � 1.

�

0 a1 b2 �a3 0 0
a0 b1 �a2 �b3 0 0
0 0 a1 b2 �a3 0
0 a0 b1 �a2 �b3 0
0 0 0 a1 b2 �a3

0 0 a0 �b1 �a2 �b3

											

											

ð4:16Þ

or, expanding the determinant (4.16)

a0b1a2b3a1b2a3
1
b3
� 2a1

a2b2
þ b2

a2a3
þ b1a3

a2b3b2
þ a2a1

b1b3b2
þ b3a2

1

b1a2b2a3
þ a1

b1a3
þ

�

a0b2

b1b3a1
� a0

b1a2
þ a0b2

2

b1a2a1a3
þ a0a3

a2b3a1
� a0a3

b1b3b2

�
\0

ð4:17Þ

Substituting and observing that a0a1a2a3b2b3 [ 0 for the systems under con-
sideration, we see that the stability, after proper substitutions becomes
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1 [
B

k
1þ B

k

� �
ðSt

B
Þ2

mk 1þ B
k


 �3

c2
þ c2B

mk2 1þ B
k


 �2 � 1

" #

þ St

B

� �4 c2B2

mk3 1þ B
k


 �

( )

ð4:18Þ

Further, the following dimensionless quantities are defined:

Bearing fraction of critical damping 4mB/C2 = f2

Bearing/rotor stiffness ratio n = B/k
Steam force gradient ratio g = St/B

The stability condition can be written as

1 [ n 1þ nð Þ g2 �1þ f2 1þ nð Þ3

4n
þ n2

f2 1þ nð Þ2

" #

þ 4n2

n2 1þ nð Þ2
g4

( )

ð4:19Þ

The threshold of instability will be determined by the quadratic equation in g2

4n2

n2 1þ nð Þ2
g4 þ �1þ f2 1þ nð Þ3

4n
þ 4n2

f2 1þ nð Þ2

" #

g2 � 1
n 1þ nð Þ ¼ 0 ð4:20Þ

Since; f � 1 and n = 0(1), it is apparent that Eq. (4.20), to a good approxi-
mation can be written as

g4 þ g2 � f2 1þ nð Þ
4n3 ¼ 0 ð4:21Þ

from which

g2 ¼ � 1
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
þ f2 1þ nð Þ

4n3

s

ð4:22Þ

This function is plotted in Fig. 4.9.
It can be concluded that the parameters controlling stability are

g ¼ St=B f2 1þ nð Þ=4n3 ¼ u

Fig. 4.9 Threshold of
instability, (Eq. 4.22)
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and that there is always a value of the steam force gradient St, which makes the
system unstable.

In view of the approximation f � 1 and noting that generally n � 1, the
stability condition (4.19) becomes

1 [
n3g2

f2 1þ nð Þ
¼ B4

C2

4m

k5 1þ B
k


 � S2
t ð4:23Þ

This is a rational stability criterion since the model used is adequately accurate
and the parameters n and f can be measured or computed by well-known methods.

At this point it is interesting to discuss other stability criteria used by turbine
manufacturers. As mentioned earlier, in the beginning of this Chapter, due to the
instability problems of the two General Electric machines in the 1940s [2], a
stability criterion called Torque Deflection Number (TDN), was established based
on experience with these machines. One definition of the Torque Deflection
Number (TDN) is as follows (Fig. 4.10): We assume that all of the power gen-
eration on the rotor occurs in one stage, usually in the middle of the span.

Fig. 4.10 Definition of the torque deflection number
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In addition, the forces F which generate the torque are concentrated on one bucket.
These forces produce torque and power but also bend the shaft to the direction
shown in Fig. 4.10. The maximum deflection of the rotor, considered as a simply
supported beam, in mils, is called TDN.

Simple calculations using known design parameters lead to the following
formula:

TDN =
169400ymaxkw

dmWn
ð4:24Þ

where
ymax = maximum static deflection due to the rotor’s own weight (min),
kW = rotor kilowatts,
dm = average bucket pitch diameter (in),
W = rotor’s weight (lbs),
n = speed of rotation.

TDN was considered for long to be the most successful criterion for rotor
stability similarity. However, this criterion was misleading rather than guiding.
The main weakness of the TDN is that it does not give a full account of the steam
forces and it does not consider what happens in the bearings. For this reason its
success in steam whirl prediction is limited.

The first attempt at a quantitative evaluation of steam whirl was made by
Thomas [3]. He used a one-mass rotor and lumped flexibility of the rotor and
bearing in a linear spring. On this rotor he imposed a steam force gradient, caused
by the leakage through the bucket cover spill strips and the packings. Furthermore,
he used the system’s damping as a logarithmic decrement of system’s vibration,
which he determined experimentally. Although Thomas confused the bearing
damping, which opposes the destabilizing forces, with the rotor’s internal damping
(a destabilizing factor), his results are valid because of the experimental deter-
mination of the damping. Thus, comparing the steam forces S for a circular orbit of
unit radius with the damping forces D he gives the inequality

S

D
\1 ð4:25Þ

as the stability criterion.
Since the steam force S is a linear function of the load, he calculates the

maximum load Nk that the rotor can carry as

Nk ¼ mx2
khxS ð4:26Þ

where
m = mass of the rotor,
xk = critical speed of the rotor (rad/s),
h = logarithmic decrement,
x = running speed (rad/s).
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S ¼ hdm

pc
c ¼ a

dn

dm

� �2 ffiffiffiffiffiffiffiffiffi
2gH
p

c2

ffiffiffi
Z
p þ b 1þ h

dm

� �
ð4:27Þ

where
h = bucket height,
dm = bucket pitch diameter,
dn = packing diameter,ffiffiffiffiffiffiffiffiffi
2gH
p

= available stage energy,
C2 = exit velocity from previous stage,
Z = number of packing teeth.

Constants a and b have been determined experimentally.
Thomas [3] introduces two mechanisms of steam forces. First, an axisymmetric

stage j is assumed in which Nj kilowatts of power are generated from a steam flow
Gj. The steam flow results in tangential forces Tj which, because of symmetry, give
the generated torque of the stage (Fig. 4.11).

The second mechanism is of a similar type. The same displacement d results in
an unequal packing clearance (Fig. 4.12). More energy is available in the upper
part of the stage through the nozzle because of smaller losses through the packing.
Therefore, the torque generated on the bucket will be more than in the lower part,
resulting in a force perpendicular to the deflection, as in the previous model.

Here, a physical explanation of the constants a and b is in order: In the first
mechanism, the disturbance of the flow due to the non-uniform flow around the
buckets will show up as an eddy loss and this is taken into account by the constant
b which assumes values of 0.6–1.5, the higher value for free buckets and the lower
for covered buckets. In the second mechanism, in the part of the packing with the
smaller clearance, because of the smaller leakage part of the available steam is not
going to be gained through the nozzle but will flow towards the high clearance
area. On the other hand, the non-uniformity of the leakage flow will disturb the

Fig. 4.11 Tangential force
variation in a deflected stage
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flow through the buckets. The two effects are combined in a constant a which
assumes values of 1.6 for stages with and 2.0 for stages without pressure equali-
sation holes through the wheels.

Thomas proved also that for his model rotor the stability of the one-mass rotor
expressed as the stability of the solution of a second-order linear ordinary dif-
ferential equation is equivalent to the equilibrium of the steam and damping forces
assuming a circular orbit.

Numerous conclusions can be derived from Thomas’s work: The most
important factor for stability or, in terms of Eq. (4.2), for load-carrying capacity, is
the critical speed, which enters in the second power. Rotor’s mass, running speed,
damping, bucket height and pitch diameter enter linearly. Steam parameters enter
in the parameter y as secondary effects. To express Thomas criterion in terms of
TDN we rewrite Eq. (4.25) as follows:

Th ¼ N

Nk
¼ pNc

hdmx2
khx

ð4:28Þ

where N is the rotor load.
For stable operation, unstable load Nk should be greater than rotor load N;

therefore the stability criterion is

Th \ 1 ð4:29Þ

In terms of the TDN, Thomas Stability Criterion can be written as

Th ¼ p
2

TDN

h

c
h

\1 ð4:30Þ

Equation (4.30) shows the relation between TDN and Thomas Stability Criterion.
The latter, however, contains some additional terms:

Fig. 4.12 Deflected rotor in
a packing clearance
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1. The bucket height h enters in the denominator. This partially explains the fact
that low pressure rotors or nuclear ones with high TDN are stable because they
have longer buckets.

2. The bearing damping h enters in the denominator too. That explains the well
known influence of damping on stability. Thomas gives values for h

h ¼ 0:05 for xk � 0:5x

h ¼ 0:1 for xk [ 0:5x

3. The factor y contains secondary effects because of the steam path, such as effect
of clearances, reaction ratio, etc.

If bearing damping coefficients C are available, the log decrement can be
calculated as follows:

h ¼ xkCm

p

Thomas Stability Criterion, although incomplete, is more rational than Torque
Deflection Number.

4.3 Rotor Dynamics for Annular Flows

In the previous sections it was demonstrated that severe vibration may be imposed
upon a rotating shaft due to the mechanism of power generation in fluid machinery.

In fluid machines there are well-known phenomena of dynamic interaction of
cylinders with the surrounding fluid in parallel or cross-flow. A thorough review of
the pertinent literature was reported by Paidoussis [33]. This type of flow is
common in power reactors, heat exchangers, etc.

The effect of fluids surrounding rotating shafts can be distinguished on the basis
of the relation of the clearance annulus to the rotor radius C/R. Journal bearings
constitute a typical case with a C/R ratio of the order of 10-3 In this section we
shall discuss rotor-fluid interaction in annuli of the order 10-1 for C/R, which
corresponds to seals, passages, etc.

Whenever solids move in contact with fluids, fluid pressures are generated as a
result of this motion. Fluid forces occur on these solids due to the integrated effect
of pressure. Stokes analysed the case of an incompressible, frictionless fluid filling
the space between two coaxial cylindrical surfaces. He found that, if the outer
cylinder were stationary and the inner cylinder were accelerated, then the fluid
force on the inner cylinder would be [34]

FH ¼ �
b2 þ a2

b2 � a2
pqLa2 €X ð4:31Þ

This force may be associated with a ‘hydrodynamic mass’, mH, defined by
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FH ¼ �mH €X ð4:32Þ

where

mH ¼
b2 þ a2

b2 � a2
pqLa2 ð4:33Þ

This expression reduces to

mH ¼
pR3qL

c
ð4:34Þ

for a thin annulus for which R � C. For these relations:
FH = hydrodynamic force,
a = inner radius of outer stationary cylinder,
b = outer radius of inner cylinder,
C = b–a,
L = length of cylinder (L � b),
Q = fluid mass density,
€X = inner cylinder acceleration (X � C).

Next, the dynamic fluid forces can be estimated for a cylinder rotating at
constant speed, as shown in Fig. 4.13. The fluid is incompressible and flows
circumferentially in a thin annulus. Figure 4.13 shows the angles

w ¼ hþ / ð4:35Þ

where
w = angular coordinate of annular position. This angle is fixed

in the laboratory system and is considered as an indepen-
dent variable

/ ¼ / tð Þ = location of minimum h (annular thickness)
h = h(w,t) = angular coordinate of annular position which rotates with

the cylinder. h is measured from the location of minimum h.

For C/R � 1

h ¼ C l� e cos hð Þ ð4:36Þ

where e = d/C, d = maximum deflection of the rotating cylinder centre.
From Eqs. (4.35) and (4.36)

_h ¼ �C _e cos h� ce _/ sin h ð4:37Þ

The equation of continuity and Eq. (4.37) yield

1
R

ohu

ow
¼ c_e cos hþ ce _/ sin h ð4:38Þ
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Integrating Eq. (4.38), by using Eq. (4.35)

hu ¼ q tð Þ þ RC _e sin h� RC e _/ cos h ð4:39Þ

where q(t) is a constant of integration. If e ¼ _e ¼ 0; h = C, then, from Eq. (4.39)
and the geometry of Fig. 4.13.

q

C
¼ XR

2
ð4:40Þ

Substituting Eq. (4.40) into Eq. (4.39) and using Eq. (4.36) results in

u ¼ XR

2 1� e cos hð Þ þ
R_e sin h

1� e cos h
� Re _/ cos h

1� e cos h
ð4:41Þ

Fig. 4.13 Geometry of a rotating cylinder in a fluid annulus. (Courtesy ASME [35, 36])
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In the following analysis, e will be treated as a small quantity (e � 1). On this
basis Eq. (4.41) can be approximated by

u ¼ XR

2
1þ e cos hð Þ þ R_e sin h� Re _/ cos H ð4:42Þ

Since

u ¼ XR

2
þ V ð4:43Þ

V ¼ XR

2
e cos hþ R_e sin h� Re _/ cos H ð4:44Þ

From Eqs. (4.35) and (4.42)

u
: ¼

2
e
:
cos hþ e /

:

sin h
h i

� R e
::

sin h� R e
:
/
:

s cos h

� R e
:
/
:

s cos h� R e /
::

s cos h� Re /
:

s2 sin h
ð4:45Þ

ou

ow
¼ XR

2
�e sin hð Þ þ R_e cos hþ Re _/ sin h ð4:46Þ

Substituting Eqs. (4.41), (4.44) and (4.49) into the momentum equation [35, 36]
for the fluid, and rearranging results (still neglecting terms in e [2]):

1
qR

oP

ow
¼ cos h �XR_eþ 2R_e _/þ Re€/� XR

2
eF þ Re _/F

� �

þ sin h �XR

2
e _/� R€eþ Re _/2 þ X2

4
Re� X

2
Re _/� ReF

� � ð4:47Þ

The fluid forces whose directions are shown in Fig. 4.13 are evaluated from

F0 ¼ �
Z 2p

0
LRP cos hdh ð4:48Þ

FQ ¼ �
Z 2p

0
LRP sin hdh ð4:49Þ

In the above relations the parameter F takes the values [35, 36] for turbulent
flow (Re [ 5000)

FT ¼ 0:0556
XRn

CRe
ð4:50Þ

where, n is a flow profile parameter = 1.14 for the -1/7 power law, Re the
Reynolds number, and for vortex (Taylor number [ 60) flow
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Fm ¼ 1:52
XRn

c

c

R

� �0:261
Re�0:478 ð4:51Þ

Integrating Eq. (4.47) to obtain P and substituting into Eqs. (4.48) and (4.49)
yields

�FQ ¼ mHC e€/þ 2_e _/� X_e� X
2

eF þ Fe _/

� �
ð4:52Þ

�F0 ¼ mHC €e� e _/2 þ Xe _/� X2

4
eþ F _e

� �
ð4:53Þ

where

mH ¼
pR3qL

c
ð4:34Þ

For a rotor of mass M flexibly connected to a rotating shaft, a spring force is
generated equal to Kd where d is the radial deflection of the rotor from its central
position. The rotor is assumed to have the shape of a long cylinder surrounded by a
thin fluid annulus (C/R � 1). The fluid in the annulus is assumed to flow tan-
gentially with negligible (net) axial flow. We are interested in the vibrations of this
rotor due to imbalance. The equations of motion are

M €d� d _/2
� �

¼� mH
€d� d _/2 þ Xd _/� X2

4
dþ F _d

� �
� kdþMX2e cos a

M d€/� 2 _d _/
� �

¼� mH d€/þ 2 _d _/� X _d� X
4

Fdþ Fd _/

� �
þMX2e sin a

9
>>>=

>>>;

ð4:54Þ

The inertial reaction on M (left sides of Eqs. (4.54)) was taken from Page [37].
Terms multiplying mH are the fluid reaction terms from Eqs. (4.52) and (4.53). The
last term is the centrifugal force due to imbalance (see Fig. 4.14) to define e and a.

Assuming a stable whirl at steady amplitude d; d ¼ €/ ¼ 0 and / ¼ X;
Eq. (4.54) become

� M þ mH

4


 �
dX2 þ kd ¼ MX2e cos a

mHFXd
2 ¼ MX2e sin a

�
ð4:55Þ

Solving for d/e, Eqs. (4.45) and (4.55) are squared and added. The result is

d
e
¼ X2

1þ bð Þ2 X2
0 � X2


 �2 þ 4b2F2X2
h i1=2

ð4:56Þ

where b = mH/4 M (mH from Eq. (4.34).

98 4 Flow-Induced Vibration



X2
0 ¼

K

M þ mH

4

¼ K=M

1þ b
ð4:57Þ

X0 is the undamped (F = 0) critical speed. The amplification at the undamped
critical speed is

d=c½ �M¼
X

2bF
ð4:58Þ

To analyse for stability, it is convenient to write Eqs. (4.54) referred to Cartesian
coordinates in the stationary coordinate system. To this end, Eq. (4.54) give

M þ mHð Þ €d� d/2
� �

¼ �mH Xd _/� X2

4
dþ F _d

� �
� KdþMX2e cos a ð4:59Þ

M þ mHð Þ d€/� 2 _d _/
� �

¼ �mH X _d� X
4

Fdþ Fd/

� �
þMX2e sin a ð4:60Þ

The transformation

X ¼d cos /

Y ¼d sin /

)

ð4:61Þ

on the equations of motion, for the fixed coordinate system, yield

M þ mHð Þ€X þ F _X þ K � mHX2

4

� �
X þ mHX _Y þ mHXF

2
Y ¼ MX2e cos /þ að Þ

ð4:62Þ

Fig. 4.14 Fluid forces in a
hollow rotor partially filled
with a liquid. (Courtesy
ASME [38])
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M þ mHð Þ€Y þ F _Y þ K � mHX2

4

� �
Y � mHX _X � mHXF

2
X ¼ MX2e sin /þ að Þ

ð4:63Þ

The homogeneous equation is analysed for stability; that is, Eqs. (4.62) and
(4.63), setting the right side to zero. Replacing the coefficients of Eqs. (4.62) and
(4.63) by more convenient symbols, m = M ? mH, C1 = F, etc., we obtain

m€X þ C1 _X þ K1X þ C2 _Y þ K2Y ¼ 0 ð4:64Þ

m€Y þ C1 _Y þ K1Y � C2 _X þ K2X ¼ 0 ð4:65Þ

Assuming X ¼ X0 exp ktð Þ and Y ¼ Y0 exp ktð Þ; and substituting into Eqs. (4.64)
and (4.65) gives

ðmk2 þ C1kþ K1ÞX0 þ ðC2kþ K2ÞY0 ¼ 0 ð4:66Þ

�ðC2kþ K2ÞX0 þ ðmk2 þ C1kþ K1ÞY0 ¼ 0 ð4:67Þ

In order to allow non-zero solutions for X0, Y0 the determinant of Eqs. (4.66)
and (4.67) must be zero, or

mk2 þ C1kþ K1

 �2 þ C2kþ K2ð Þ2¼ 0

which may be written

m2k4 þ 2mC1k
3 þ C2

1 þ 2m K1 þ C2
2


 �
k2 þ 2 C1K1 þ C2K2ð Þkþ K2

1 þ K2
2 ¼ 0

ð4:68Þ

Applying Hurwitz-Routh determinants to check for stability conditions, the
determinants reduce to

2mC1 [ 0 ð4:69Þ

and

2mC1 C2
1 þ 2mK1 þ C2

2


 �
[ 2m2 C1K1 þ C2K2ð Þ ð4:70Þ

which can be simplified to

C2
1 þ C2

2 [ mðc2

c1
K2 � K1Þ ð4:71Þ

and

2mC1 C2
1 þ 2mK1 þ C2

2


 �
2 C1K1 þ C2K2ð Þ[ 4m2C2

1 K2
1 þ K2

2


 �

þ 4m2 C1K1 þ C2K2ð Þ2 ð4:72Þ
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which simplifies to

c1k1 þ c2k2

k2
[

mk2

c1
ð4:73Þ

and, finally

K2
1 þ K2

2 [ 0 ð4:74Þ

Comparing Eqs. (4.73), (4.63), (4.64) and (4.65), the coefficients are

m ¼ M þ mH ð4:75Þ

C1 ¼ F ð4:76Þ

K1 ¼ K � mHX2

4
ð4:77Þ

C2 ¼ mHX ð4:78Þ

K2 ¼
mHFX

2
ð4:79Þ

Substituting these values in the following:
From Eq. (4.69)

2 M þ mHð ÞmH F [ 0 ð4:80Þ

From Eq. (4.71)

m2
H F2 þ X2
 �

[ M þ mHð Þ X
F

mHFX
2
� K � mHX2

4

� �� �
ð4:81Þ

which simplifies to

F2 þ X2
 �
[

M þ mH

mH

X2

4
� K

mH

� �
ð4:82Þ

From Eq. (4.75)

mHF k � mHX2

4

� �
þ mHFX2

2

mHF
2

2

4

3

5[
M þ mHð ÞmHFX

2mHF

� �
ð483Þ

which simplifies to

X \ 2

ffiffiffiffiffi
k

M

r

ð4:84Þ

4.3 Rotor Dynamics for Annular Flows 101



And finally, from Eq. (4.74)

k � mHX2

4

� �2

þ mHFX
2

� �2

[ 0 ð4:85Þ

Equation (4.80) is inherently satisfied for a physical system where the values in
the equation are all positive real quantities. Assume that condition (4.86) is met, so
that

X2

4
þ B ¼ k

M
B [ 0 ð4:86Þ

Substituting Eq. (4.86) into (4.82), and letting M/mH = c

F2 þ X2 [ 1þ cð Þ X2

4
� c

X2

4
� cB

� �
ð4:87Þ

This simplifies to

F2 þ X2

4
3þ c2

 �

þ 1þ cð ÞcB [ 0 ð4:88Þ

Since all terms have positive real values, inequality (4.88) is automatically
satisfied if (4.84) is satisfied. And likewise for (4.74)

p
K=Mð Þ is the critical

angular frequency of the rotor in a vacuum (that is, without fluid effects) and may
be denoted by XC.

The resulting condition for stability is relation (4.84) which states that the
rotational speed X must be less than twice the critical speed XC where XC is
determined in the absence of fluid effects.

4.4 Dynamics of a Hollow Rotor Partially
Filled with a Liquid

In a rotating hollow shaft partially filled with viscous liquid, self-excited vibration
occurs [39, 40] within a certain range of rotating speed. The investigations into this
vibration reported hitherto can be divided into two schools: in one the liquid is
considered to be inviscid [41, 42] and in the other the viscosity of liquid is taken
into account [43–50].

Such a situation appears frequently due to condensation in the bore holes of
rotating shafts, centrifugal casting of pipes, etc. In Fig. 4.14, O and O1 represent
the centre of the stationary coordinates X-Y and the centre of the rotating hollow
shaft, respectively. n-g are the coordinates fixed to the rotating shaft. Now O1 is
whirling around O with the small amplitude ea (e � 1) and frequency ax. The
equation of motion for the non-dimensional time-dependent radial velocity U of
the small liquid element at point A can be written as [46]
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R3 d4U

dR4
þ 6R2 d3U

dR3
þ 3R� i a� 1ð ÞReR3

 � d2U

dR2
� 3 1� i a� 1ð ÞReR2

 � dU

dR
¼ 0

ð4:89Þ

and the equations of the non-dimensional time-dependent circumferential velocity
V and pressure P are [8]

V ¼ �iU � iR
dU

dR
ð4:90Þ

P ¼ �2i a� 1ð ÞR2 dU

dR
� 2i aþ 1ð ÞRU þ 2a2Rþ 2

Re
R2 d3U

dR3
þ 4R

d2U

dR2

� �
ð4:91Þ

Boundary conditions are given as [46]
at R = 1,

U ¼ 0 ð4:92Þ

V ¼ 0 ð4:93Þ

and at R = H,

R
d2U

dR2
þ dU

dR
¼ 0 ð4:94Þ

U ¼ �cP ð4:95Þ

where
R = r/a, the dimensionless radius at A,
Re = Reynolds number (a2x/m),
a = inner radius of the hollow shaft,
m = fluid viscosity

Equation (4.89) can be solved, for example, exactly by using the Bessel
function, [45] or numerically by using the finite difference method [46]. Saito and
Someya [47] solved the equation approximately by using the assumption in which
the relative depth of liquid to the radius of hollow shaft is small.

The following equations are obtained by substituting R = 1-T into Eqs.
(4.89–4.91) and regarding the coefficients of the equations so obtained as con-
stants. This approximation is correct in the case of T � 1.

a1
d4U

dT4
� 6a2

d3U

dT3
þ 3a3 � ia1 a� 1ð ÞRe½ � d

2U

dT2
þ 3 1þ ia2 a� 1ð ÞRe½ � dU

dT
¼ 0

ð4:96Þ

V ¼ �iU þ ia3
dU

dT
ð4:97Þ
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P ¼ 2ia2 a� 1ð Þ dU

dT
� 2ia3 aþ 1ð ÞU þ 2a3a

2 � 2
Re

a2
d3U

dT3
� 4a3

d2U

dT2

� �
ð4:98Þ

where

a1 ¼ 1=T0

Z1

1�T0

R3dR ¼ 1� 3
2

T0 þ T2
0 �

1
4

T3
0

a2 ¼ 1=T0

Z1

1�T0

R2dR ¼ 1� T0 þ
1
3

T2
0

a3 ¼ 1=T0

Z1

1�T0

RdR ¼ 1� 1
2

T0

T0 ¼ 1� H

The characteristic equation for Eq. (4.96) can be obtained by assuming
U = C exp(kT):

a1k
4 � 6a2k

3 þ 3a3 � ia1 a� 1ð ÞRe½ �k2 þ 3 1þ ia2 a� 1ð ÞRe½ �k ¼ 0 ð4:99Þ

Regarding the solution of Eq. (4.96) as kj (j = 1-4)

U ¼
X4

j¼1

Cj exp kj


 �
T ð4:100Þ

Substituting Eq. (4.100) into Eqs. (4.97) and (4.98) results in

V ¼
X4

j¼1

a3kj � 1

 �

exp kjT


 �
Cj ð4:101Þ

P ¼
X4

j¼1

bj exp kjT


 �
Cj þ 2a3a

2 ð4:102Þ

where

bj ¼ 2i a2 a� 1ð Þkj � a3 aþ 1ð Þ

 �

� 2
Re

a2k
3
j � 4a3k

2
j

� �

Substituting Eqs. (4.100, 4.102) into the boundary conditions (4.92–4.95)

X4

j¼1

Cj ¼ 0 ð4:103Þ
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X4

j¼1

a3kj � 1

 �

Cj ¼ 0 ð4:104Þ

X4

j¼1

a3kj � 1

 �

exp kjT


 �
Cj ¼ 0 ð4:105Þ

X4

j¼1

ð1þ cbjÞ exp ðkjTÞCj ¼ �2a3ca
2 ð4:106Þ

U, V and P can be obtained by solving Eqs. (4.103–4.106) for the unknown
constants Cj (j = 1-4) and substituting them into Eqs. (4.100–4.102). The non-
dimensional fluctuation of the free surface of liquid g� and the non-dimensional
liquid force F* are given as [50]

g� ¼ �½P�T�T0
=½2ð1� T0Þ� ð4:107Þ

F� ¼ p½P�T¼0 ð4:108Þ

Figure 4.15 shows an example of the solution kjR þ ikjIðj ¼ 1� 4Þ of
Eq. (4.99). In the region Re [ 103, as the Re number increases, k2Rj; jk2I j; jk4Rj
and jk4I j increase and k3Ij j approaches zero, but jk3Rj remains constant and k1R as
well as k1I are zero. Accordingly, in the case of a large Re number, expðk1TÞ and
expðk3TÞ represent the term independent of T and the term that increases expo-
nentially with Tðk3R [ 0Þ; respectively.

Fig. 4.15 Solution of
Eq. (4.99). (Courtesy ASME
[50])
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And, expðk2TÞ as well as expðk4TÞ mean the terms of T that change with ‘‘high
frequency’’. As T increases, the envelope of expðk2TÞ decreases rapidly ðk2R � 0Þ;
while that of expðk4TÞ increases rapidly ðk4R � 0Þ:

The rapid increase of jk2I j and jk4I j corresponds to the fact that the thickness of
the dynamic boundary layer decreases [49] rapidly as the Re number increases.
As the increase of jk2Rj; jk2I j; jk4Rjand jk4I j is approximately proportional to HRe
in the region Re [ 103, and the term in Eqs. (4.103–4.106) that gives the maxi-
mum change is expðkjT0Þ; it is considered that the non-dimensional term T0HRe or
T0

2Re plays an important role in this problem.
One of the applicability limits of this approximate solution depends on whether

Eqs. (4.103–4.106) can be solved numerically or not. If the Re number or T0

increases, expðk4T0Þ in Eqs. (4.105) and (4.106) becomes excessively large in
comparison with the other terms and the solution could be less accurate due to the
truncation error involved in the computations. Trial calculations have shown that
the theory is applicable within the range T0

2Re B 104.
Figure 4.16 shows a model of a flexible shaft on soft journal bearings. The

rotating hollow shaft is assumed to be rigid, and only the motion of the parallel
mode is analyzed. The equations of motion are

m€X þ ks X � xð Þ ¼ f ð4:109Þ

ks

2
X � xð Þ ¼ kb

2
xþ c

2
_x ð4:110Þ

where X and x are the displacements at the hollow shaft and at the journal,
respectively; ks, kb and c are shaft stiffness, bearing stiffness, and bearing damping,
respectively.

Assuming X = ea exp(iaxt) and x = a exp(iaxt)

eaf �exp iaxtð Þðe; d� 1Þ � �ma2x2eþ ksð� dÞ ¼ ef � ð4:111Þ

ksðe� dÞ ¼ kbdþ icaxd ð4:112Þ

From Eq. (4.112)
d ¼ ks

ks þ kb þ icax
e ð4:113Þ

Fig. 4.16 Model of a flexible
shaft on soft journal bearings.
(Courtesy ASME [43])
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Substituting Eq. (4.113) into Eq. (4.111) and rearranging:

ðks � ma2x2Þðks þ kb þ icaxÞ � k2
s ¼ f �ðks þ kb þ icaxÞ ð4:114Þ

Expressing Eq. (4.114) in the non-dimensional form:

ð1� a2X2Þð1þ lþ 2ifaXÞ � 1 ¼ m�F�X2

2p
ð1þ lþ 2ifaXÞ ð4:115Þ

The above equation can be solved by Newton-Raphson method and the stability
of rotor systems is investigated [50–52]. Substituting F� ¼ F�R � iF�I and a = aI

into Eq. (4.115), and separating the real part from the imaginary one:

2p½l� ð1þ lÞa2
I X

2� � ð1þ lÞ m�X2F�R þ 2m�faIX
3F�I ¼ 0 ð4:116Þ

4pfaI 1� a2
I X

2
 �
� 2m�faIX

2F�R � ð1þ lÞ m�X2F�I ¼ 0 ð4:117Þ

Regarding g1 and g2 as the left sides of Eqs. (4.116) and (4.117), respectively,
and expanding these functions in a Taylor series around aI0 and X0:

g1 ¼ g10 þ
og1

oaI

� �

0

aI � aIoð Þ þ og1

oX

� �

0

X� X0ð Þ þ . . . ð4:118Þ

g2 ¼ g20 þ
og2

oaI

� �

0

aI � aIoð Þ þ og2

oX

� �

0

X� X0ð Þ þ . . . ð4:119Þ

Regarding the values of Eqs. (4.118) and (4.119) as zero:

a1

X

� �
¼ aI0

X

� �
og1=oaI og1=oX
og2=oaI og2=oX

� ��1
gI0

g20

� �
ð4:120Þ

From Eq. (4.120), values more accurate than aI0 and X0: can be obtained.
Therefore, by the above-mentioned procedure, non-dimensional frequency aI and
non-dimensional stability limit X can be calculated. The values qgj/qaI and qgj/qX
(j = 1, 2), which are necessary in solving Eq. (4.120) are obtained by differenti-
ating Eqs. (4.116) and (4.117). In Eq. (4.115), the following replacement is made:

g ¼ 1� a2X2
 �
1þ lþ 2ifaXð Þ � 1� m�X2

2p
1þ lþ 2ifaXð ÞF� ð4:121Þ

Equation (4.121) is expanded in a Taylor series:

g ¼ g0 þ
og

oa

� �

0

a� a0ð Þ þ . . . ð4:122Þ

Setting g = 0 into Eq. (4.122):

a ¼ a0 � g0=
dg

da

� �

0

ð4:123Þ
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Therefore, the non-dimensional complex eigenvalue a ð¼ aI � iaRÞ can be
calculated by the procedure as mentioned in the foregoing paragraph.

Stability limits are given by a double root under a certain condition to be
discussed later. In this paragraph the method of solving aI; X and f, under the
double root condition is presented.

The following function is defined:

h ¼ gl þ Zg2 ð4:124Þ

where gl and g2 stand for the left sides of Eqs. (4.116) and (4.117), respectively,
and Z is an unknown constant. The differentiation of Eq. (4.124) by aI and X gives

g3 ¼
oh

oaI
¼ og1

oaI
þ Z

og2

oaI
ð4:125Þ

g4 ¼
oh

oX
¼ og1

oX
þ Z

og2

oX
	 	 	 ð4:126Þ

If aI, X, f and Z, which satisfy gj = 0 (j = 1-4) can be calculated, a stability
limit under the double root condition is obtained.

Expanding gj = 0 (j = 1-4) in a Taylor series around aI0, X0, f0, and Z0 and
substituting gj = 0 (j = 1-4) into the equations obtained, the more accurate
values for aI, X, f and Z are calculated by the same method as mentioned in
the paragraph on stability limits (Sect. 4.2). Figure 4.17 shows an example of a
calculated stability limit in the case of T0 = 0.1, m* = 0.1, Re* = 105, and
l = 0.01. The solid curve and the dotted curve represent the stability limit and the
whirling frequency, respectively. In order to distinguish the stable region from the
unstable one, the complex eigenvalue has been calculated and is shown in
Fig. 4.18.

The rotor system is unstable under the condition aR [ 0; therefore the dis-
crimination between the stable region and the unstable one results in a form such
as shown in Figs. 4.17 and 4.19.

In Fig. 4.17, if the non-dimensional rotating speed X is elevated at a given f,
the system becomes unstable at the marginal curve L, and becomes stable again at

Fig. 4.17 Stability threshold for T0 = 0.1, m* = 0.1, Re* = 105, l = 0.01. (Courtesy ASME [50])
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the marginal curve H. The whirling frequencies at the stability limits L and H are
given by the values of frequency curves L and H, respectively. Within the unstable
region, the non-dimensional whirling frequency aI decreases with increasing X, as
shown in Fig. 4.18, from the value of the curve L to that of H.

Next, in Fig. 4.17, the influence of non-dimensional external damping f on the
stability limit is illustrated. If f ? 0, it is clear from Eq. (4.117) that FI

* ? ? 0.
The two whirling frequencies (aI), which satisfy FI

* ? ? 0, exist as shown pre-
viously. These are named aI1 and aI2 (aI1 \ aI2). As FR

* = 0 at aI = aI1 (normally
0.55–0.56), the stability limit is given by Eq. (4.116) as follows:

X ¼ 1
aI

ffiffiffiffiffiffiffiffiffiffiffi
l

1þ l

r

 0:181 ð4:127Þ

and as FR
* & 6 at aI = aI2 (= 1), the stability limit is

X 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pl

ð1þ lÞð2pa2
I þ m�F�RÞ

s


 0:095 ð4:128Þ

Fig. 4.18 Complex
eigenvalue. (Courtesy
ASME [50])

Fig. 4.19 Stability chart.
(Courtesy ASME [50])
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The unstable region becomes narrow gradually as the external damping
increases, and vanishes in this example at f & 0.024. The whirling frequencies
approach each other and become equal at f = 0.024. Under the condition
f & 0.024–0.28, the unstable region does not exist (absolutely stable). The
condition under which the rotor system becomes absolutely stable as in this
example is discussed in the following paragraph. The unstable region appears
again in the region above f & 0.28, and the stability limit is substantially larger
than that in f\ 0.024. The cause for this change is found in the fact that the
excessively large damping plays the same role as the large stiffness of the support
bearing and the damped critical speed approaches that of simple support [49–56].

At f ? ?, the condition FI
* ? ? 0 has to be satisfied to keep the last term of

the left side of Eq. (4.116) finite. aI which satisfies FI
* ? ? 0 has the same value

as that of f ? 0. The following equation can be obtained from Eq. (4.117) as
FR

* = 0 at aI = aI1:

X 
 1
aI
¼ 1:81 ð4:129Þ

And, as FR
* & 6 at aI = aI2, one obtains similarly

X 
 1
aI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

2pa2
I þ m�F�R

s


 0:955 ð4:130Þ

In addition, the critical speeds under the conditions f ? 0 and f ? ? are
given by Eqs. (4.128) and (4.129), respectively.

The calculated result of a stability limit under the same conditions as in
Fig. 4.17, except for l, is shown in Fig. 4.19. In this figure, though X and aI under
f[ 102 are not shown, these values are the same as in Fig. 4.17. It is found that
the f value which makes the rotor system absolutely stable does not exist if l is
large, as in this case.

Fig. 4.20 Relation of f and l
for a stable system. (Courtesy
ASME [43])
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Re*, T0 and m* are other factors that influence the stability limit. The larger
these factors are, the smaller the stability limit of the rotor. And finally, the region
in which the system is absolutely stable disappears.

As mentioned already, the instability of the rotor system does not exist in a
certain range of f and the other factors. For example, the solutions aI and X, of
Eqs. (4.116) and (4.117) can be regarded as double roots at f = 0.024 as well as at
f = 0.28. Therefore, the marginal condition under which the system becomes
absolutely stable may be obtained by the method by which a double root is
calculated.

The relationship between f and l which make the system absolutely stable, is
computed under the condition T0 = 0.1 and m* = 0.1, and is shown in Fig. 4.20,
where Re* is taken as a parameter. In this figure, the rotor system is absolutely
stable in the region enclosed by the curved line of a given Re* and the f-axis. It is
found that the more l or Re* increases, the more the range of f decreases. This
makes the system absolutely stable, and finally the absolutely stable region
disappears.
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Chapter 5
Heat-Flow-Induced Vibration of Rotating
Shafts: The Newkirk Effect

Abstract Packing rub effect is the unstable vibration induced by friction forces
and generated heat on a rotor when it rubs on a clearance annulus. Its main
controlling factors are friction characteristics at the sliding contact and the
dynamic response of the rotor, bearings, supports and foundation system. In
Chapter 5 rotor instabilities are investigated, resulting from friction heating, a
phenomenon known as the ’Newkirk effect’. The interaction between vibration
characteristics and heat generation leads to a non-linear feedback system exhib-
iting either stable or unstable behavior.

5.1 Introduction

Around rotating shafts there exist stationary components such as packings, seals
and oil deflectors, used to separate two fluids and to ensure mechanical limitations.
When rotating parts come into contact with stationary elements, heat is generated
which deforms the parts, and finally imbalance and vibration are produced [1–4].
On other occasions, due to normal or accidental presence of fluids in the gaps
between rotating and stationary components, heat may be generated due to an
abnormal flow of these fluids, or the abnormal energy dissipation within their bulk,
leading to the same results as above.

The usual form of seals, subject to rotor rubbing phenomena, is of the labyrinth
type used in turbines. With these seals the designer has to choose between materials
which wear quickly and with a low coefficient of friction, or harder materials
resisting wear but with a high coefficient of friction. The materials selected must
meet additional requirements, such as corrosion and erosion resistance, high thermal
conductivity, and strength at high temperatures. At the places of contact between

A. D. Dimarogonas et al., Analytical Methods in Rotor Dynamics,
Mechanisms and Machine Science 9, DOI: 10.1007/978-94-007-5905-3_5,
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stationary and rotating parts, considerable forces may appear as friction forces or
shock forces in case of violent interaction [5]. The combined effect of heating
imbalance, and direct forces, can be either amplifying or a stabilising. In case of
amplification, a continuous increase in amplitude and phase angle usually appears
and a polar presentation of these quantities exhibits an outward spiral curve [6].

The rotating parts may also be surrounded by a fluid environment, which can exert
considerable influence. For example, the phenomenon of fluid-induced instability in
bearings has been observed with high-speed machinery, as well as with other cases in
which the rotors are working in a fluid environment such as steam and gas turbines,
pumps, etc. Under certain circumstances, vibration can be induced by fluids trapped
within the annuli between stationary and rotating parts [7] (see Chap. 4).

Vibration can also be initiated or amplified by structural instabilities arising
from transmitted forces (buckling), or torques (torsional buckling).

The packing rub effect occurs when a rotating shaft, R (Fig. 5.1), due to its bow,
O2O1, and due to the displacement of its centre of rotation from O to O1 comes
into contact with a stationary part, S. In the above model, a circular and syn-
chronous orbit of the geometric centre of the rotor O2 about O, has been assumed.
At angle xt contact occurs at point D, which moves on the rotor circumference
between points C and B. A portion of the friction heat generated goes into the rotor
between B and C and bows the rotor because the resulting temperature field is non-
uniform. Depending on the dynamic characteristics of the rotor, vibration can
decrease (if imbalance is at location Uz), or increase (if the imbalance is at location U).
Generally there is also a phase shift between the position of the original bow and the
location of the thermal bow produced which can be synthesized vectorially, so that the
result is a spiral pattern respectively converging or diverging.

In the latter case the result is usually severe damage of the interacting parts,
sometimes leading to catastrophic failure. In last decades, many such incidents

Fig. 5.1 Diagram of a
bowed, eccentric rotor in
contact with a flexible stator
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have been reported with a variety of machines, such as steam and gas turbines,
pumps, compressors and aircraft engines.

Rubbing problems were identified and reported in 1925 [8] for a vertical
hydroelectric turbine-generator. Newkirk [4] noticed the thermal character of the
phenomenon and gave a correlation with the critical speeds. At the same time tests
were performed by Taylor [9] to verify the hypothesis of Newkirk that rubbing
instability occurs below the critical speeds while above the critical speed there is a
self-stabilizing effect because of the reversal of the phase angle between the
exciting force (imbalance due to thermal deflection) and dynamic deflection.
Taylor used a ‘bent shaft’ model. When light rub was applied below the critical
speed, the amplitude built up slowly at first and then faster. Tests above the critical
speed showed that with light rubbing the vibration level decreased. Newkirk and
Taylor also noticed a backward rubbing whip in tests when the rubbing acciden-
tally became very hard. The direction of rotation and its speed was slightly higher
than the rotor’s critical speed. An explanation of this can be given by considering
the friction forces developing during rubbing. At higher speeds these forces have
little influence, since heat propagation is so rapid that their effect is minimized.

Kroon and Williams [6, 10] noticed the spiral character of the packing rub
effect. Keeping track of the amplitude and the associated phase angle they tried to
correlate the experimental results mathematically to provide an analytical tool
predicting the rubbing response.

The first attempt for a direct analytical attack on the problem was made by
Sweets [11]. He considered a shaft bowed by heat input from a packing rub. To
simplify the problem he ignored axial conduction along shaft’s axis, which is the
main limitation of his analysis.

A good step towards a more accurate analytical solution of the dynamic part of the
problem was made by Boley [12] for thermally induced vibration in beams and
plates. This analysis does not consider rotation and assumes two-dimensional tem-
perature distribution to make the calculation of the temperature field easier; the same
assumption has been made by Sweets and Kroon and Williams in their models.

The three-dimensional problem is quite elaborate and is usually resolved by the
turbine manufacturers with numerical methods [13].

To make possible a prediction of the areas of instability and of the movement of
the rotor, an analytical approach to the problem is necessary. In the following part
of this chapter, analytical models are developed for the physical phenomenon,
calibrated and verified with experimental investigation.

5.2 Analytical Model

Consider a packing of circular cross-section, Fig. 5.2. Let O be its centre if rubbing
does not take place. We assume packing to be capable of translation perpendicular
to its axis; a restoring force is assumed to act on the packing at the point O

0
of its

actual centre in the direction of O
0
O. Consequently, the position with centre O is
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one of static equilibrium. The rotor with geometric centre at O2 is assumed to
revolve about the fixed pole O1. The distance O1O2 gives the absolute value f of
the dynamic bow; the line O1O2 is fixed to the rotor. The eccentricity e of the
system is given by the distance OO1. Let c be the clearance, i.e. the difference of
the radii of packing and rotor. If d = OO2 is less than c, the packing has its centre
at O; if d [ c, then rubbing occurs, and the packing will yield to the rotor and
move to a position with centre O

0
such that O, O

0
and O2 are on a straight line and

such that packing and rotor touch one another. Rubbing takes place at the point C
of the contact. It is important to describe the motion of C on the rotor as well as on
the packing. To this end we introduce angles r, u, v for triangle O1O2O; here r
gives the actual position of the rotor at any moment; u measures the position of C
in the rotor-fixed reference system and v measures the position of C in the
packing-fixed reference system. The angles are counted positive as indicated by
the arrows in Fig. 5.2. For reasons of symmetry it suffices to consider the case
0 B r B p. We have r = p - u - v. In general u is not a monotonous function
of r, and it takes several distinctions of parameter constellations c, e, f in order to
describe the relationship properly.

Observing that rubbing can take place only if

eþ f � c ð5:1Þ

and imposing the conditions

e\c f \c ð5:2Þ

under which rubbing occurs in actual machine operation, we can render our task
considerably easier. We have

Fig. 5.2 Geometry of
packing-rotor interaction
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f 2 ¼ e2 þ d2 � 2ed cos v� e2 þ d2� c2 ð5:3Þ

for cos v B 0. But this contradicts (5.2) and cos v B 0 cannot occur; likewise
cos v B 0 is impossible for a situation of rubbing. This leads to

0 � u v � p=2 ð5:4Þ

But

f sin u ¼ e sin v ð5:5Þ

Conditions (5.4) and (5.5) imply that u and v increase and decrease simulta-
neously. Since r = p – u – v we have to conclude that u as well as v is a
monotonously decreasing function of r. We have

d2 ¼ e2 þ f 2 � 2ef cos r ð5:6Þ

This makes d a monotonously increasing function of r. We have

d ¼ eþ f � c

for r = p and

d ¼ e� fj j\c

for r = 0.
Clearly rubbing occurs if and only if r0 B r B p with d = c for r = r0. The

angles u and v vary between zero and values a/2 and X/2, respectively. The latter
ones are taken for r = r0. Figure 5.3 shows the situation.

We find

cos a
2 ¼

c2þf 2�e2

2cf

cos X
2 ¼

e2þc2�f 2

2ec

)

ð5:7Þ

Finally, lifting the restriction 0 B r B p, we can state that the intervals

� a
2 �u� a

2
� X

2 � v� X
2

�
ð5:8Þ

Fig. 5.3 Angles associated
with ring geometry
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are monotonously swept by C during one rotor revolution of the. Rubbing gen-
erates heat at an average rate

Q ¼ l�FaXx
2pJ

ð5:9Þ

where l is the coefficient of friction, �F the normal force acting on the packing, a
the outer radius of the rotor, x its angular velocity, and J the mechanical equiv-
alent of heat. The heat, somehow distributed over the interval -a/2 B u B a/2
enters the rotor and causes a thermal deflection. Consequently the total bow f and
the direction of O1O2 will change with respect to a rotor-fixed reference system.
Even so it is reasonable to assume that the change of O1O2 in relation to the rotor
is negligible during one revolution. This will permit us to retain Eqs. (5.7–5.9).
The angle u takes on a new meaning. We must set

u ¼ h�W ð5:10Þ

where h and W are polar angles, measured with respect to the centre of the rotor in
a rotor-fixed coordinate system. W indicates the midpoint of the segment of rub-
bing while h characterises the points C of contact. From here on we consider W, a,
X, f, Q as functions of time t.

We turn now to an investigation of the thermal bow. We expect rubbing to be
highly localised and we assume that the length L of the rotor is large compared
with the length l of the heating zone. Figure 5.4 shows the situation for a rotor
extending along the z-axis of a Cartesian coordinate system with axes x, y, z and
bent in the (x, z) plane due to rubbing of its outer cylindrical surface in the zone
-l/2 B z B l/2.

Assuming that the portions of the rotor outside the rubbing zone stay straight or
exhibit negligible bend only, the bow can be expressed approximately as

B ¼ L�x
4

ð5:11Þ

Fig. 5.4 Geometry of a locally bowed rotor
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where �x is the angle of flexural rotation of one end relative to the other. Equation
(5.11) has an error due to substituting triangle A, A

0
, A

00
for the exact shape of the

bowed rotor; however, this error is believed to be quite negligible [1].
In order to apply Eq. (5.11) we must determine angle �x. Let T denote the

temperature in the rotor as a function of location and time, the temperature field
caused by rubbing. For a prismatic bar, extending along the z-axis and bending in
the (x, z) plane under the action of T. Goodier [14] defines ‘a mean thermoelastic
flexural rotation of one end relative to the other’ by the integral

�x ¼ 1
I

Z

V
eTx dxdydz ð5:12Þ

over the volume V of the bar. I represents the moment of inertia of the bar cross-
section with respect to the y-axis, and e is the thermal expansion coefficient.
Goodier’s formula is based on Betti’s reciprocity theorem. Its angle �x is not
exactly the angle of Eq. (5.11) but since it appears that the difference is irrelevant,
we shall ignore it. If bowing is not restricted in the (x, z) plane, it is useful to let
B be complex such that Re{B}, Im{B} give the bow in the x- and y-directions,
respectively. Since we are concerned with rotors in the form of hollow cylinders
made of isotropic material, the moment I is the same for the x- and the y-axis. This
permits us to set up the complex bow in the form

B ¼ Le
4I

Z

V

Tðxþ iyÞ dxdydz ð5:13Þ

We turn now to the relevant features of the temperature field. It is convenient to
refer it to cylindrical coordinates r, h, z, where x = r cos h, y = r sin h. If the
inner rotor surface has a radius b and the outer one has a radius a, then the rotor
can be described by b B r B a and -L/2 B z B L/2.

We write T = T(r, h, z) and observe that Eq. (5.13) can be given in the form

B ¼ Le
4I

Z a

b

Z 2p

0

Z L=2

�L=2
T r; h; z; tð Þr2 exp ihð Þ dzdhdr ð5:14Þ

T must satisfy the partial differential equation

o2T

or2
þ 1

r

oT

or
þ 1

r2

o2T

oh2 þ
o2T

oz2
¼ 1

K

oT

ot
ð5:15Þ

and the initial condition

T ¼ 0 for t\ 0

if rubbing does not begin before t = 0. Equation (5.15) has to be supplemented by
boundary conditions. We set
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oT

oz
¼ 0 for z ¼ � L

2

�k
oT

or
þ hbT ¼ 0 for r ¼ b

ð5:16Þ

k
oT

or
þ haT ¼ gðh; z; tÞ for r ¼ a ð5:17Þ

Here k, -k, ha, hb are thermodynamic constants; g(h, z; t) gives the heat rate
density per unit area, generated by rubbing at the point h, z of the outer cylinder
r = a.

It is remarkable that we need not specify g(h, z; t) in every detail.
Introducing the integrals

Z r; h; tð Þ ¼
R
L
2

�L
2

T r; h; z; tð Þdz

�g h; tð Þ ¼
R
L
2

�L
2

g h; tð Þdz

9
>>>>>=

>>>>>;

ð5:18Þ

We observe that Eq. (5.14) requires the knowledge of Z only; on the other hand,
from Eqs. (5.15) and (5.16) it follows that

o2Z

or2
þ 1

r

oZ

or
þ 1

r2

o2Z

oh2 ¼
1
K

oZ

ot
ð5:19Þ

Furthermore, Eq. (5.17) is satisfied with T replaced by Z and finally

�k oZ
or þ hbZ ¼ 0 for r ¼ b

k oZ
or þ haZ ¼ �g h; z; tð Þ for r ¼ a

�
ð5:20Þ

The bow can be expressed in the form

B ¼ Le
4I

Ra

b
r2Wðr; tÞdr

Wðr; tÞ ¼
R2p

0
Z r; h; tð Þ exp ðihÞ dh

9
>>=

>>;
ð5:21Þ

W(r, t) represents (divided by p) a complex Fourier component of Z with respect to
h. It satisfies

o2W

or2
þ 1

r

oW

or
�W

r2
¼ 1

K

oW

ot
ð5:22Þ

and the boundary conditions
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k oW
or þ haW ¼ wðtÞ

wðtÞ ¼ R2p

0
�g h; tð Þ exp ðihÞdh

9
=

;
ð5:23aÞ

for r = a and

�k
oW

or
þ hbW ¼ 0 ð5:23bÞ

for r = b.
W also satisfies Eq. (5.15), i.e. W = 0 for t \ 0. The function W(r, t) can be

found by Laplace transform. Introducing

�Wðr; pÞ ¼
Z1

0

exp �ptð ÞWðr; tÞdt ð5:24Þ

as the transform of W. In similar vein we introduce �w and �B as transforms of
w(t) and of B(t) respectively.

Furthermore we set k2 = p/K. From Eq. (5.22) and from W = 0 for t \ 0 it
follows that

�W 00 þ 1
r

�W 0 � 1
r2

�W � k2 �W ¼ 0 ð5:25Þ

Consequently

�W ¼ cI1 krð Þ þ dK1 krð Þ ð5:26Þ

where I1 and K1 are modified Bessel functions of the first order. The coefficients c
and d must be determined from Eq. (5.23a, b) which remain valid if W, w are
replaced by �W , �w respectively. The boundary conditions yield

a11cþ a12d ¼ a�w
k

a21cþ a22d ¼ 0

�
ð5:27Þ

where

a11 ¼ akI01 kað Þ þ uI1 kað Þ a12 ¼ akK 01 kað Þ þ uK1 kað Þ
a21 ¼ bkI01 kbð Þ þ vI1 kbð Þ a22 ¼ bkK 01 kbð Þ þ tK1 kbð Þ

�
ð5:28Þ

u ¼ ha

k
t ¼ hb

k

Since

zI01 zð Þ ¼ zI0 zð Þ � I1 zð Þ zK 01 zð Þ ¼ zK0 zð Þ � K1 zð Þ

we also have
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a11 ¼ kaI0 kað Þ þ u� 1ð ÞI1 kað Þ
a12 ¼ kaK0 kað Þ þ u� 1ð ÞK1 kað Þ

a21 ¼ kbI0 kbð Þ þ uþ 1ð ÞI1 kbð Þ
a22 ¼ kbK0 kað Þ þ uþ 1ð ÞK1 kbð Þ

The solution of Eq. (5.27) is

c ¼ a22a�w
kD

d ¼ � a21a�w
kD

�
ð5:29Þ

with

D ¼ a11a22 � a12a21

The computation of the determinant D is somewhat simplified if one uses the
well-known expression for the Wronskian:

I0 zð ÞK1 zð Þ þ I1 zð ÞK0 zð Þ ¼ 1=z

We obtain

D ¼ k2abD00 þ ka vþ 1ð ÞD01 þ kb u� 1ð ÞD10 þ u� 1ð Þ tþ 1ð ÞD11 ð5:30Þ

with

Dmn ¼ Im kað ÞKn kbð Þ � �1ð ÞmþnIn kbð ÞKm kað Þ

where m, n, = 0, 1. We are now in a position to represent �B in a closed form. From
Eq. (5.21) it follows that

�B ¼ Le
4I

Za

b

�Wr2dr ð5:31Þ

Since Eq. (5.25) can be rewritten in the form

k2r2 �W ¼ r2 �W 00 þ r �W 0 � �W ¼ r2 �W 0 � r �W
� �0 ð5:32Þ

it follows right away

k2
Za

b

�Wr2dr ¼ r2 �W 0 � rW
� �

jab ð5:33Þ

It remains to use Eqs. (5.26) and (5.29). After some elementary steps we
arrive at

�B ¼ Le
4Ik

a4�P �W ð5:34Þ
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and

P ¼ abk2D00 þ a tþ 1ð ÞkD01 � 2bkD10 � 2 vþ 1ð ÞD11 þ b=a 1� tð Þ
a2k2 abk2D00 þ a tþ 1ð ÞkD01 þ b u� 1ð ÞkD10 þ u� 1ð Þ tþ 1ð ÞD11

� �

ð5:35Þ

P represents Laplace transform of a function P(t). Under the circumstances (by
virtue of the convolution theorem) we may write

B tð Þ ¼ La4e
4Ik

Z t

0

P t � sð Þw sð Þds ð5:36Þ

We shall apply this general formula to the special case in which w(t) represents
the influence of heat flow into the rotor due to rubbing.

Our first concern is to link the function �g h; tð Þ to the rate of heat Q = Q(t) is
given by Eq. (5.9). In view of Eq. (5.10) we set

gðh; tÞ ¼ hðu; tÞ for � a
2
� u � a

2
ð5:37Þ

On the function h we impose the conditions

hðu; tÞ ¼ hð�u; tÞ

and

a

Za=2

�a=2

h u; tð Þdu ¼ Q tð Þ ð5:38Þ

We postulate now that h = constant with respect to u for uj j � a
2 : This leads to

h ¼ Q tð Þ
aa

for � a
2
�u� a

2
ð5:39Þ

The function w(t) is

w tð Þ ¼ Q tð Þ
aa

exp iWð Þ
Za=2

�a=2

exp iuð Þdu ¼ Q tð Þ
a

2 sin a=2ð Þ
a

exp iWð Þ ð5:40Þ

While the choice of h appears to be rather arbitrary, it can be hoped never-
theless that w(t) is not much affected by our choice. As an example, let us consider
another possibility for h, namely

h u; tð Þ ¼ 6Q tð Þ
aa3

a2

4
� u2

� �
for � a

2
�u� a

2
ð5:41Þ
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This function complies with the conditions formulated above. It decreases to
zero as u goes to ±a/2. The associated function w(t) is

wðtÞ ¼ Q tð Þ
a

2sin a=2ð Þ
a A að Þ exp iWð Þ

A að Þ ¼ 6
a2 ð2� cota=2Þ

)

ð5:42Þ

The computations leading to Eqs. (5.41) and (5.42) are elementary and left to
the reader. As we see, the function of (5.42) differs from that of (5.40) by a factor
A(a). As is to be expected, A(a) ? 1 as a ? 0. For small angles a, the difference
between the two w(t) is certainly negligible. Let us now take the largest a
admissible. This is a = p, and we find A(a) = 12/p2. In this case the deviation is
of the order of 20 %. In view of the fact that the coefficient of friction l in
Eq. (5.9) for Q(t) is not well-known and that the thermodynamic constants may
also be somewhat uncertain, our choice of Eq. (5.39) and the associated Eq. (5.40)
is justified on practical grounds. From here on we deal with Eqs. (5.39) and
(5.40) only.

Since Q(t) is proportional to X(t), we can link B(t) to X(t), and

B tð Þ ¼ nL

Z t

0

P t � sð Þq sð Þds ð5:43Þ

where

qðsÞ ¼ X sð Þ exp iW sð Þð Þ2 sin a sð Þ=2ð Þ
a sð Þ

This formula follows from Eqs. (5.36) and (5.40) along with Eq. (5.9). Note that
W, and a must be considered as functions of time in accordance with the state-
ments in Sect. 5.1. The constant n is

g ¼
�Fa4xel
8pIkJ

ð5:44Þ

Since the integrand in Eq. (5.43) is dimensionless (Pds has no dimension), and
since B has the dimension of L, n is dimensionless.

We turn now to a discussion of P(t). This function has nothing to do with the
rubbing process in its details. It depends on the quality of Eqs. (5.11) and (5.12)
exclusively. We shall try to find a simple approximation for it, one to be com-
patible with the errors affecting function w(t) in Eq. (5.40). To this end we consider
P in some detail. For large values of |z| and for |argz| \ p/2 we use the well-known
asymptotic formulae

InðzÞ ¼ 1þ 0 1ð Þð Þ exp zð Þffiffiffiffiffi
2pz
p

KnðzÞ ¼ 1þ 0 1ð Þð Þ
ffiffiffiffiffip
2pz

p
exp �zð Þ

)

ð5:45Þ
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This implies for the coefficients Dmn introduced in Eq. (5.30)

Dmn ¼ 1þ 0 1ð Þð Þ exp k a� bð Þð Þ
2k

ffiffiffiffiffi
ab
p as kj j ! 1 arg kj j\p=2 ð5:46Þ

so that

Dmn=D00 ! 1 as kj j ! 1 ð5:47Þ

If we set Dmn/D00 = 1 then Eq. (5.35) yields the asymptotic formula

�P � ak� 2

a2k2 akþ u� 1ð Þ
for large k and arg kj j\p=2 ð5:48Þ

In particular

a2k2P! 1 as jkj ! 1 ð5:49Þ

For very small values of |k| Eq. (5.25) indicates that the function �W , due to
h [ 0, will be regular analytic with respect to k2 in some neighbourhood of
k2 = 0. This means that �P approaches a limit value as k ? 0. In order to find the
latter value we can either use asymptotic formulae for the behaviour of Bessel
functions for small arguments or we can directly determine �W by setting k = 0 in
Eq. (5.25). The latter procedure is quite simple and leads to

W ¼ cr þ D
r

ð5:50Þ

The coefficients �c; �d are determined by the boundary conditions for r = a, b.
We find

�c ¼ a2 tþ 1ð Þ�w
kN

d ¼ a2b2 t� 1ð Þ�w
kN

with

N ¼ a2 uþ 1ð Þ tþ 1ð Þ � b2 u� 1ð Þ t� 1ð Þ
¼ a2 � b2
� �

utþ 1ð Þ þ a2 þ b2
� �

uþ tð Þ ð5:51Þ

Since

Za

b

�Wr2dr ¼ 1
4

a2 � b2
� �

c a2 þ b2
� �

þ 2d
� �

ð5:52Þ

Finally, we obtain

�P 0ð Þ ¼ q ¼ a2 � b2ð Þ
4a2

a2 � b2ð Þuþ a2 þ 3b2

a2 � b2ð Þ utþ 1ð Þ þ a2 þ b2ð Þ uþ tð Þ ð5:53Þ
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For a thick-walled rotor, and if u � 1, t � 1, we may use the approximation

q ¼ a2 � b2ð Þ
4ua2

ð5:54Þ

Let us now seek a rational function ~P of k having the same behavior as �P for
k ? 0 and for k ? ? and which approximates ~P for positive k within an error
bound of say 1 %. Such a function ~P should not present great difficulties as we try
to retransform it into a function of time. Since k is proportional to p1/2 it would be
preferable (if at all possible) to make ~P a rational function of k2 i.e. of p itself. The
latter seems promising since the behaviour of �P for small and large |k| points to k2.
Therefore, let us try to find a ~P of the form

~P ¼
a2k2 þ qd1d2
� �

a2k2 þ d1
� �

a2k2 þ d2
� � ¼ q1

a2k2 þ d1
� �� q2

a2k2 þ d2
� � ð5:55Þ

where

q1 ¼
qd2 � 1ð Þd1

d2 � d1ð Þ q2 ¼
qd1 � 1ð Þd2

d2 � d1ð Þ q1 � q2 ¼ 1

This approximation has indeed the desired asymptotic behaviour. It depends on
the two parameters d1, d2, which, for example, might be determined by
collocation.

Collocation leads to two linear equations for d1, d2 and d1 ? d2. Out of these
quantities d1, d2 can be derived as roots of the quadratic

d2 � ðd1 þ d2Þ þ d1d2 ¼ 0

An example of approximation by collocation is shown in Fig. 5.5. It is apparent
that good agreement between �P and ~P has been obtained. Further improvement
could be obtained by optimizing the selection of the points of collocation. For the
purpose of this study the accuracy in Fig. 5.5 appears to be sufficiently good.

Fig. 5.5 Approximation of
the Laplace transform
(Courtesy ASME [2])
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The inverse transform of ~P is readily obtained. First we substitute k ¼
ffiffiffiffiffiffiffiffiffi
p=k0

p
in

Eq. (5.56):

~P � k0q1

Pþ k0d1
� k0q2

Pþ k0d2
k0 ¼ K

a2
ð5:56Þ

The fractions in Eq. (5.56) have well-known inverse transforms and

P tð Þ ¼ k0q1 exp �k0d1tð Þ � k0q2 exp �k0d2tð Þ ð5:57Þ

Equation (5.43) now assumes the form of the approximation

B tð Þ ¼ nL

Z t

0

k0q1 exp �k0d1 t � sð Þð Þ � k0q2 exp �k0d2 t � sð Þð Þ½ �q sð Þds ð5:58Þ

By differentiation we can show that Eq. (5.58) is equivalent to

lB ¼ Mg ð5:59Þ

where

l ¼ d2

dt2
þ k0 d1 þ d2ð Þ d

dt
þ k02d1d2

M ¼ nL k02 q1d2 � q2d1ð Þ þ k0 q1 � q2ð Þ d
dt


 �

¼ nL k02d1d2qþ k0
d
dt


 �

supplemented by the initial conditions

B 0ð Þ ¼ 0 _B 0ð Þ ¼ nk0Lq 0ð Þ ð5:60Þ

It was assumed that rubbing does not occur before t = 0. This does not exclude
the rotor possessing an initial bow B0 at t = 0; the bow B0 can represent a per-
manent deformation of the rotor, to give just one example. We refer B0 to the same
rotor-fixed coordinate system in which we measure B (Fig. 5.6); without loss in
general the coordinate system can be chosen so that B0 is real and positive if
B0 = 0. It is still necessary to express the bow which causes rubbing in appro-
priate vector form. From what was said in Section I we conclude that we must
introduce

F ¼ f exp iWð Þ ð5:61Þ

as the total bow. It is measured in the rotor-fixed coordinate system. In the pre-
ceding sections we established a chain of analytic expressions linking F–B. In
order to obtain a model for packing rub effect we must provide a new and inde-
pendent link from B to F.
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We expect that F depends on the sum (B ? B0) only. We set up

F ¼ b exp ifð Þ Bþ B0ð Þ ð5:62Þ

with real constants b[ 0, f. Such a relation can be expected, and does indeed hold
[9, 11–22] if one considers elastic rotor vibrations of the bending mode in the
rotor-fixed coordinate system, and if the effect of bearings is also taken into
account.

In connection with Eq. (5.62) we set

Bþ B0 ¼ r exp inð Þ ð5:63Þ

This leads to

f ¼ br w ¼ nþ f ð5:64Þ

Furthermore, we write

q ¼ U exp iwð Þ ¼ H fð Þ exp i nþ fð Þð Þ ð5:65Þ

with U = H(f) defined by

H fð Þ ¼ 0 for f \ c� e

¼ X 2 sin d=2
d for c� e \ f \ c

ð5:66Þ

with

cos a
2 ¼

c2þf 2�e2

2cf cos X
2 ¼

e2þc2�f 2

2ec

0\ a
2 � p

2 0� X
2 \ p

2

Fig. 5.6 Dynamic bow
vector diagram
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A typical graph of the function ~Hðf Þ ¼ nLqHðf Þ is shown in Fig. 5.7. The
function ~Hðf Þ representing heat input produced by rubbing, we can in retrospect
define or change our model by specifying H(f) directly.

As an example, we may substitute for the ~Hðf Þ of Fig. 5.7 the following
function:

Hc fð Þ ¼ 0 for f \� eþ c

Hc fð Þ ¼ 2 fþe�cð Þ
2c�e

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

4c2

q
for f [ c

Hc fð Þ ¼ constant for f [ c

9
>=

>;
ð5:67Þ

This function takes the same values as ~Hðf Þ of Fig. 5.7 at f = e ? c and at
f = c. We may also use it in order to lift the former restrictions on f, e by
substituting e \ 2c for them, while f is permitted to take any non-negative value.

In actual numerical computations Hc(f) did not induce much difference in the
results versus H(f) [Eq. (5.67)].

In this study we assumed that the stiffness of the spring which backs the
packing is negligible compared to the preload. If, however, this is not the case we
may modify the heat function by multiplying by a factor

Sk f � f0ð Þ

Fig. 5.7 Heat function
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where Sk is spring constant. We are now prepared to express our model by the
differential equation

E r exp inð Þð Þ ¼ M H brð Þ exp i fþ nð Þð Þ½ � þ k02d1d2B0 ð5:68Þ

with boundary conditions

r ¼ B0 n ¼ 0
r þ ir ¼ gk0L q1 � q2ð Þ H brð Þ exp inð Þ

�
at t ¼ 0 ð5:69Þ

If we multiply Eq. (5.68) by exp(-in) and split the result into real and imag-
inary parts, then

€r � r _n2 þ k0 d1 þ d2ð Þ_r þ k02d1d2r � k02gL q1d2 � q2d1ð ÞU cos f

� k0 q1 � q2ð ÞgL _U cos f� U _n sin f
� 


� k02d1d2B0 cos n

¼ 0

ð5:70Þ

r€n� 2_r _nþ k0 d1 þ d2ð Þr _n� k02gL q1d1 � q2d2ð ÞU sin n

� k0 q1 � q2ð ÞgL _U sin fþ U _n cos f
� 


þ k02d1d2B0 sin n

¼ 0

ð5:71Þ

The initial conditions assume the final form

r ¼ B0 n ¼ 0 _r ¼ gk0L q1 � q2ð ÞH bB0ð Þ cos f

B0 ¼ gk0L q1 � q2ð ÞH bB0ð Þ sin f

Equations (5.70), (5.71) are in general non-linear. They become equivalent to
linear equations in those time intervals at which no rubbing takes place, so that
H = 0. In this case it is preferable to deal with the quantity B immediately to
obtain

B tð Þ ¼ A1 exp �k0d1tð Þ þ A2 exp �k0d2tð Þ ð5:72Þ

as the general solution for B. In the case of non-linear equations, we are primarily
interested in what happens in the long run; in particular we shall be interested in
finding phenomena of stability and instability.

In order to study such features we shall ignore the initial conditions. Let us
assume that we possess solutions r = r(t), n = n(t) tending to finite limits, �r; �n as
t ? ?, while simultaneously their derivatives approach zero. In this case the
differential equations demand

�r � B0 cos �n0 � ~H b�rð Þ cos �n ¼ 0
B0 sin �n� ~H b�rð Þ sin f ¼ 0

~H ¼ gLqH

9
=

;
ð5:73Þ

where
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q ¼ q1

d1
� q2

d2

[see also Eq. (5.56)]. Equations (5.73) lead to

�r sin f ¼ B0 sin fþ �n
� �

ð5:74Þ

�r2 � 2�r ~H cos fþ ~H2 ¼ B2
0 ð5:75Þ

We must add the condition 0\b�r\c:
From Eq. (5.75) the value of �r can be computed, provided that a solution of this

equation exists. We note that this equation is identical to the cosine law for the
triangle. Therefore, a triangle should exist with sides ~H, B0, and angle f (between �r
and ~H (Fig. 5.8). In the following, H	 �rð Þ will designate the value of ~H computed
from this triangle or from Eq. (5.75).

As is well known, the locus of all points A at which the fixed line A1 A2 of
length B0 appears under the angle f is a circular arc, as shown in Fig. 5.8.
Therefore, if

fj j\p=2

the function H	 �rð Þ is single-valued and monotonously decreasing. In the case of

fj j\p=2

H	 �rð Þ is double-valued.
We plot the graphs of the functions ~H and H	 in Fig. 5.9. Their intersection

gives the value of �r: The angle n can be computed either from Eq. (5.74) or from
the first one of Eq. (5.73). If a solution �r to Eq. (5.75) exists, then Fig. 5.8 yields �n
from Eq. (5.74).

The constant state r ¼ �r; n ¼ �n can be stable or unstable. In order to check this
point we introduce the complex quantity

1
�r

exp i n� �n
� �� �

� 1 ¼ z ð5:76Þ

as a measure of deviation from the constant state, and we now linearise Eq. (5.68)
with respect to z.

Writing also z = x ? iy, we find that

Fig. 5.8 Geometric
interpretation of Eq. (5.76)

5.2 Analytical Model 133



r

r
� 1 � x n� n ¼ y

and

exp i n� �n
� �� �

� 1 � iy

Putting these relations to use we find that Eq. (5.68) yields the linearised form

E xþ iyð Þ ¼ exp ifð ÞM sxþ s
0
iy

� 

ð5:77Þ

with

s ¼ bH0 b�rð Þ s0 ¼ H b�rð Þ=�r

This equation can be rewritten in the form of a vector equation

Ew ¼ MAw

w ¼ x
y

� �

A ¼ s cos n s0 sin n
s sin n s0 cos n

� �
ð5:78Þ

This has a solution of the form

w ¼ w0 expðptÞ

where w0 is a constant two-vector while p is a real or complex constant; moreover
w0 has to be an eigenvector of A, so that Aw0 = kw0 with k, an associated
eigenvalue. Consequently

Fig. 5.9 Stability limits
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L pð Þ � kM pð Þ ¼ 0 ð5:79Þ

where

L pð Þ ¼ exp �ptð ÞE exp ptð Þð Þ M pð Þ ¼ exp �ptð ÞM exp ptð Þð Þ

and k satisfying

k2 � kðsþ s0Þ cos nþ ss0 ¼ 0 ð5:80Þ

From Eqs. (5.79) and (5.80) we derive

L2 � LMðsþ s0Þ cos nþM2ss0 ¼ 0 ð5:81Þ

The constant state r ¼ �r; n ¼ �n is stable if the roots p of Eq. (5.81) are in the
left half plane Re(p) \ 0. We can check on this feature by investigating Eq. (5.79)
for the roots k of Eq. (5.80), or we can deal with Eq. (5.81) as it is. In this case
Routh criterion of stability yields the following conditions:

a1 ¼ 4k0 þ l1ðsþ s0Þ cos n [ 0
a2 ¼ 4k2

0 þ 2l2
1ss
0 þ ðsþ s0Þ l0 þ 2k0l1ð Þ cos f

a3 ¼ 4k0 þ 2l0l1ss
0 þ 2k0l0 þ l1ð Þ sþ s0ð Þ cos f

a0 ¼ 1
a2 � a0a3=a1 [ 0

9
>>>>=

>>>>;

ð5:82Þ

and

k0 ¼
d1 þ d2

2
ffiffiffiffiffiffiffiffiffi
d1d2
p l0 ¼ gLp l1 ¼

gL
ffiffiffiffiffiffiffiffiffi
d1d2
p

Without going into much detail we can derive from Eq. (5.81) the result that
cos f = -1 means stability. Indeed we can rewrite

L pð Þ þ sM pð Þ ¼ 0 L pð Þ þ s0M pð Þ ¼ 0 ð5:83Þ

Since these equations represent quadratic equations with positive coefficients,
their roots are in the left hand half plane. This first result permits the conjecture
that stability will exist if

cos f\ cos n	

where cos n* is some number depending on the coefficients of L, M only.
Examples given elsewhere in this chapter illustrate this point.

For the homogeneous case, B0 = 0 and for suitable parameter constellations
Eq. (5.68) admits solutions of the type

r exp inð Þ � 1 ¼ �r exp ipt þ ip0Þð Þ ð5:84Þ

5.2 Analytical Model 135



where r, p, p0, are real constants. This represents an undesirable type of operation
and we shall refer to it as the ‘spiralling mode’. Here, we can state already
(more details follow at a later stage) that this mode can be observed in actual
practice. The quantities p, �r have to be determined from the following condition:

L ipð Þ ¼ R exp ifð ÞM ipð Þ R ¼ H brð Þ=r ð5:85Þ

where L and M are the polynomials introduced in Eq. (5.79). Since R must be
positive, the imaginary part of L(ip)M(-ip) exp(-if) has to vanish. This leads to a
cubic equation for p, namely

p k1l0 � k0l1ð Þ þ l1p2
� �

cos nþ �l0k0 � l1k1 þ l0p2
� �

sin n ¼ 0 ð5:86Þ

This equation always has one real root, which, once found, one has to ascertain
that quantity R is positive and that �r can be found in accordance with it.

While the constant states and the ‘spiralling’ modes can be found easily from
rather simple equations for two unknowns, more information about the model has
to be obtained the hard way, i.e. by solving the differential equation (5.68) with the
associated initial conditions, which was obtained by a Runge–Kutta method. Since
all numerical methods involve errors, while in the case of initial value problems
the errors sometimes build up with time, two particular solutions were chosen in
order to check the quality of the method and of the program. In the long run the
solutions would either approach a constant state or become indistinguishable from
a spiralling mode. Therefore the final data, furnished by numerical solutions of
differential equation (5.68), could be checked by an independent and rather
accurate computation of the final data. These checks confirmed that the program
for the differential equation comes up to engineering requirements.

To obtain the asymptotic values of the constant mode the solution of two
transcendental equations is necessary, namely Eqs. (5.74) and (5.75). For the
spiralling mode, utilising Eq. (5.85), the following explicit expressions for p and �r;
were found:

�r ¼ gLqp cos fþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 fþ 4
d1d2

d1 þ d2ð Þ2
sin2 f

 !vuut

0

@

1

A ð5:87Þ

p ¼ 2pgLk0qd1d2 sin f
�r d1 þ d2ð Þ ð5:88Þ

The asymptotes calculated for the numerical example show very good agree-
ment with the numerical solution of the non-linear differential equation. A fourth-
order Runge–Kutta method was used.

Figure 5.10 shows an example of both the asymptotic and the non-linear
solution.
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5.3 Modes of the Newkirk Effect

Certain general observations can be made by observing the behaviour of the
solutions for different parameter constellations [3, 23–30]:

1. The system response can have three modes:

a. The spiralling mode. The amplitude and phase angle increase continuously
up to some point where the amplitude varies harmonically around a maxi-
mum value while the phase angle increases continuously.

b. The oscillatory mode. The amplitude oscillates around a value close to the
initial bow of the system.

c. The constant mode. The amplitude reduces to a constant value where it
remains, with the phase angle exhibiting the same behaviour.

2. This response can be initiated only by an initially unbalanced or bowed rotor.
3. The mode of the Newkirk effect depends primarily on the dynamic response of

the system, namely on the phase angle between static and resulting dynamic
bow at the operating speed. It also depends on the friction characteristics, but
this effect is secondary.

As a test case, a typical turbine rotor was used, with properties described in the
Appendix.

The first critical speed of the test rotor was 1,450 rpm and the second
2,400 rpm.

Figure 5.11 shows a typical unstable mode. There are two calculated responses:
wear = 0 means that the wear or the material is very small compared to the

Fig. 5.10 Asymptotic behaviour (Courtesy ASME [2])
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clearance and the bow. Therefore, the heat generation continues for a long time
and maintains maximum bow of the rotor. The test results are from Ref. [3].
Wear = ? means that the material wears so fast that the clearance is never less
than the maximum vibration amplitude. Therefore, after the rotor bow reaches a
maximum, heat generation stops, the rotor cools rapidly and the bow resumes the
initial value. This performance actually occurred with the tests because the
packing ring consists of very thin teeth of soft brass which wear very quickly.

Figure 5.12 shows a typical oscillatory mode. Again, because of the wear of the
teeth the oscillatory motion predicted by the analysis did not appear in the test, and
for all practical purposes such performance can be accepted as stable.

Fig. 5.12 Rubbing response
at 1,800 rpm (from Ref. [3],
by permission)

Fig. 5.11 Rubbing response at 1,200 rpm (from Ref. [3], by permission)
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In all modes, after a time long enough to wear the teeth, the rotor will return to
its initial bow, provided the rubs were mild enough to avoid permanent bow.
However, this result does not have practical importance because we are only
interested in the stability of the system at the start of the rub. If the system is
unstable, the resulting bow is so high that operation of the machine must be
stopped to avoid major damage.

In Fig. 5.13, a typical stable mode is plotted. Figures 5.14, 5.15, 5.16 show the
same cases as in Figs. 5.11, 5.12, 5.13, respectively, in polar form.

Figures 5.11, 5.12, 5.13, 5.14, 5.15, 5.16, 5.17 use the following parameters:
B0 static initial bow of the rotor at the rubbing position;
b dynamic vibration amplitude on a rotor-fixed coordinate system;
n phase angle between initial static bow and dynamic bow at time t;
C radial clearance of the packing annulus;
f phase angle between static and dynamic bow at time t.

Fig. 5.13 Rubbing response
at 3,000 rpm (from Ref. [3],
by permission)

Fig. 5.14 Rubbing response
at 1,200 rpm (from Ref. [3],
by permission)
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In general, it was found that the main factor controlling the rubbing stability of
a system is the phase angle f. Generally, at f = 0 the mode is always spiralling and
at f = p the mode is always converging. Around the middle, at f = p/2 or f = 3p/2,
an oscillatory response is obtained. Based on these results, the chart in Fig. 5.17 was
constructed. In areas where more than one mode overlaps each other, the behaviour
depends on other parameters of the system and the phase angle alone cannot deter-
mine the mode characteristics of the system. This observation agrees with the test
results and with an early observation of Taylor [9], who noticed that at running speeds
above critical, light rubbing did not have any effect. When the rubbing force was
increased, then the vibration amplitude decreased.

Fig. 5.15 Rubbing response
at 1,800 rpm (from Ref. [3],
by permission)

Fig. 5.16 Rubbing response
at 3,000 rpm (from Ref. [3],
by permission)
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Appendix: Numerical Example

Unless otherwise indicated the following numerical values have been used, cor-
responding to the test conditions [3]:

Fig. 5.17 Packing rub effect
stability chart (from Ref. [3],
by permission)

Rotor geometry:
Outer radius a = 0.19 m
Inner radius b = 0.038 m
Length L = 3.0 m

Thermodynamic properties:
Thermal conductivity k = 60 W/m �C-1

Thermal diffusivity a = 12.6 9 106m2/s
Heat transfer coefficients ha = 116 m-1

hb/k = 29
2 m-1

Coefficient of thermal expansion e = 10.8 9 10-6 �C-1

Friction properties:
Friction force F = 89.2 N
Friction coefficient l = 0.5
Heat distribution coefficient a = 0.75

Interaction properties:
Initial bow B0 = 22.8 lm
Clearance c = 254 lm
Eccentricity e = c
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The heat parameter g is

g ¼ Fa4xel
8pIkJ

:

Where x is rotating speed, I is the moment of inertia, and J is the mechanical
equivalent of heat.

This example corresponds to a medium-size steam turbine or to a large gas
turbine. The results of the calculations presented are not directly applicable to
different designs. However, the general features of the model are valid also for a
wide range of designs. One could plot stability charts for the constellation of the
parameters involved, which could be used directly by the designer. This is a major
undertaking and certainly beyond the aim of this book.
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Chapter 6
Dynamics of Cracked Shafts

Abstract The problem of cracked rotor dynamics is discussed in Chap. 6.
Analytical formulation for crack local flexibility in relation to crack depth yields a
supervisory instrument which can give an early crack warning. Fracture mechanics
methods provide stress intensity factors for the investigation of rotor’s dynamic
performance for varying crack depth. Open cracks lead to linear systems, while
closing cracks lead to non-linear ones. Analytical solutions are obtained, which
can be used to monitor crack propagation or to identify cracks in service.

6.1 Introduction

The behavior of a rotating shaft with a transverse surface crack first attracted
attention in the late 1960s in connection with the possibility of crack identification
on a large steam turbine where there was a suspicion that one of the rotors had
such a crack. Dimarogonas [1] observed the local flexibility of the shaft due to the
crack and developed an analytical formulation for the crack local flexibility in
relation to the crack depth; he also showed the influence of the crack upon the
dynamic response of the rotor. Due to the turbine rotor failures at Southern
California Edison’s Mohave station in 1970 and 1971, industry’s attention was
focused on problems of turbine-generator shaft failures, caused by transmission
system operation and system faults leading to fatigue cracks. Metallurgical
examination revealed that the failure was due to fatigue-propagated cracks in the
rotors. A sister machine had similar loading history and it was suspect for having
the potential for a forthcoming failure of the same type [2].

A. D. Dimarogonas et al., Analytical Methods in Rotor Dynamics,
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As a result of Dimarogonas and his colleagues’ efforts, the problem was the
subject of a thorough investigation and led to the development of a supervisory
instrument which can give an early crack warning. The manufacturer released this
instrument for general use in the early 1970s [3]. After 1975 there were a number
of publications dealing with this problem [1, 2, 4, 5].

Gash [6] and Henry and Okah-Avae [7] considered the non-linear mechanism
of a closing crack with different flexibilities for open and closed cracks. Applying
this principle on a De Laval rotor they derived the equations of motion on both the
rotating and the stationary coordinate systems, which were solved by an analogue
computer. The crack flexibility was determined experimentally.

Mayes and Davies [8] performed a detailed analytical and experimental
investigation for turbine shafts with cracks. They derived a rough analytical
estimate of crack compliance based on Paris energy principle and measured it on a
test rig. Although they considered the nonlinear equations for a simple rotor, they
obtained analytical solutions by considering an open crack which led to a shaft
with dissimilar moments of inertia in two normal directions, a problem with a
known analytical solution.

Grabowski [9] argues that in shafts of practical interest the shaft deflection, due
to its own weight, is greater than the vibration amplitude by several orders of
magnitude. Therefore, he suggests that non-linearity does not affect shaft response,
since the crack opens and closes regularly with rotation. Therefore, the equations
of motion can be considered linear with variable coefficients. Further, he uses
modal analysis, like Mayes and Davies [8], and numerical integration of the
resulting system of equations for a multi-degree of freedom shaft. Similar results
are also presented by Ziebarth et al. [10].

The influence of a peripheral crack upon the torsional dynamic behaviour of a rod
was introduced in 1980 by Dimarogonas and Massouros [11]. The assumption of a
torsional linear spring model for the peripheral crack led to the conclusion that,
because of added flexibility, the introduction of a crack leads to lower torsional
natural frequencies. Experimental results confirmed the analysis closely. The results
showed that the change in dynamic response due to the crack was high enough to
allow for the detection of the crack and estimation of its location or magnitude for
moderate and deep cracks. Since early 1980s substantial body of academic research
on the monitoring and early warning of cracked rotors was performed [12–18].

Concerning dynamic response of rotors and other structures with cracks, there
were three basic methods to deal with the problem: equivalent reduced section,
local flexibility from fracture mechanics, cracked continuous beam. Among those
methods the lumped crack flexibility gained wider acceptance. The effect of a notch
on a structure is usually simulated by a local bending moment or reduced section,
with magnitudes, estimated experimentally or analytically or with fine-mesh finite
element techniques. Also, an important observation was the identification of
vibration coupling due to cracks as well as parametric vibration and bilinear and
non-linear effects characterizing vibration of cracked rotating shafts [1–4].

Although there is extensive literature on the vibration of cracked shafts attention
is restricted to theoretical methods to assess the effect of cracks on overall
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dynamics. Such estimates were made numerically or by introducing the concept of
crack local flexibility. It must be stated here that there is extensive confusion in the
literature in distinguishing between a notch and a crack. Many authors treat cracks
as notches, experimentally, analytically or numerically. Saw cuts are used to model
cracks. It must be understood that no matter how thin a saw cut is, never behaves as
a crack. In fact, in the authors’ experience, a thin cut results in a local flexibility
substantially less than the local flexibility associated with a fatigue crack [1–6].

Christides and Barr [19, 20] extended Hu-Washizu [21, 22] theory for the
uncracked bar to develop the theory for the torsional vibration of the cracked rod
based on the general variational principle and independent assumptions concerning
displacement, momentum, strain and stress fields of the cracked rod. The equations
of motion for a uniform rod in torsional vibration were derived, where the rod had
one or more circumferential open edge cracks along its length. This restriction on
crack geometry avoided coupling of torsional and flexural motion, which follows a
non-symmetric crack configuration. The cracks were regarded as constantly open
to avoid non-linearity associated with the compressive stresses over a closing
crack face. Further, for the stress field about the crack an exponential decay stress
and strain distribution determined experimentally was used.

A continuous cracked beam vibration theory was developed by Chondros et al.
[23, 24], with adequate assumptions for the stress field determined by fracture
mechanics, for the prediction of the dynamic response of a cracked shaft con-
sidering it in a more fundamental way as a one-dimensional elastic continuum,
presented in Chaps. 9 and 10 [25].

6.2 Local Flexibility of a Cracked Shaft

A transverse crack of depth a is considered on a shaft of radius R (Fig. 6.1). The
shaft has local flexibility due to a crack in many directions, depending on the
direction of the applied forces. A complete flexibility matrix will be presented in
the next chapter but here only bending deformation will be considered. Axial forces
giving coupling with transverse motions of the cracked shaft will not be considered.
Shear stresses are also not considered, on the assumption of a rather long shaft.
Therefore, the shaft is bent by a pure bending moment M and the additional angular
deflection of the one shaft end relative to the other will be computed.

Paris computed the displacement u of a cracked structure due to the action of a
force P as [26]

u ¼ o

oP

Za

0

J að Þda ð6:1Þ

where a is the crack depth and J(a) is the strain energy density function, which for
a rectangular beam with a crack of constant depth a is (for unit width) and for
plane strain
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J ¼ 1� m2

E
K2

l ð6:2Þ

For a crack with varying depth, the strain energy density function will have the
form

J ¼
Zb

�b

1� m2ð ÞK2
l nð Þ

E
dn ð6:3Þ

where E is Young’s modulus, v is Poisson’s ratio and 2b the crack width.
The flexibility influence coefficient will be [1]:

c ¼ ou

oP
¼ o2

oP2

Za

0

Zb

�b

1� m2ð ÞK2
l nð Þ

E
dadn ð6:4Þ

Thesolutionfor thestress intensity factorKi isnot available.Thesolutionfor thestrip

with width dn and depth a ¼ aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � n2

p
� R will be used. This solution is [26]

Kl ¼
4M
pR4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � n2

q ffiffiffiffiffiffi
pa
p

F2 a=hð Þ ð6:5Þ

where

F2 a=hð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h
pa

tan
pa
2h

r
0:923þ 0:199 1� sin pa

2h

� �4

cos pa
2h

Fig. 6.1 Geometry of a
cracked section of a shaft
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and h is the local height:

h ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � n2

q

Therefore, for P = M, Eq. (6.4) becomes

cn ¼
1� m2

E

Za

0

Zb

�b

32
p2R8

R2 � n2� �
paF2

2 a=hð Þdadn ð6:6Þ

In dimensionless form

p2R3Ec

1� m2
¼
Za

0

Zb

�b

32 1� n=Rð Þ2
h i

p a=Rð ÞF2
2 a=hð Þd a

R

� �
d

n
R

� �
ð6:7Þ

The expression on the right is a function of a/R only and has been computed by
way of numerical integration; it is plotted in Fig. 6.2. Certain experimental data
are shown in this figure for comparison.

For the moment about the g-axis, the cracked shaft has another flexibility
coefficient:

cg ¼
1� m2

E

Za

0

Zb

�b

32n2paF2
1 a=hð Þ

p2R8
dadn ð6:8Þ

Fig. 6.2 Dimensionless flexibility or the cracked section, load direction normal to crack edge
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where [26]

F1 a=hð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h
pa

tan
pa
2h

r
0:752þ 2:02 a=hð Þ þ 0:37 1� sin pa

2h

� �3

cos pa=2hð Þ

In dimensionless form

p2R3Ec

1� m2
¼
Za

0

Zb

�b

32 n=Rð Þ2p a=Rð ÞF2
1 a=hð Þd a

R

� �
d

n
R

� �
ð6:9Þ

The integral on the right is a function of a/R and is plotted in Fig. 6.3. The
integration is carried out over only half the crack width because only positive
tension stresses cause extension and opening of the crack.

6.3 The Open Crack

Analysis of a system with an open crack introducing only a dissimilar moment of
inertia has more than just a pedagogic purpose. Many features of rotors with
dissimilar moments of inertia are found in the behavior of cracked rotors and on
many occasions open cracks can be assumed for small vibration amplitudes and
static deflections that are not substantial.

Consider a de Laval rotor with a disc of mass m supported by a massless elastic
shaft of stiffness k without the crack, damping c and eccentricities of the mass e1

and e2 along the rotor-fixed coordinates n and g (see Chap. 3). The edge of the
crack is along the fixed coordinate n. Therefore, the shaft spring constant will be

Fig. 6.3 Dimensionless flexibility of the cracked section, load parallel to cracked edge
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different along the two axes n and g. If kn and kg are the respective spring con-
stants, cn and cg the respective crack flexibilities, and l the shaft length, then

kn ¼ k
	

1þ cgkl2=8
� �

kg ¼ k
	

1þ cnkl2=8
� �

)

ð6:10Þ

The equations of motion in the rotor-fixed coordinate system are

m €n� 2x _g� x2 nþ e1ð Þ
h i

þ c _n� xg
� �

þ knn ¼ mg cos xt

m €g� 2x _n� x2 gþ e2ð Þ
h i

þ c _g� xnð Þ þ kgg ¼ mg sin xt

9
>=

>;
ð6:11Þ

Introducing

x2
n ¼

k

m

c

m
¼ 2xnf

kn

m
¼ x2

1
kg

m
¼ x2

2

The equations of motion become

€nþ 2xnn _n� xg
� �

� 2x _gþ x2
1 � x2

� �
n ¼ e1x

2 þ g cos xt

€gþ 2xnn _gþ 2xnð Þ þ 2x _nþ x2
2 � x2

� �
g ¼ e2x

2 � g sin xt

9
=

;
ð6:12Þ

Stability of this linear system will depend on the behavior of the homogeneous
system. A solution is sought in the form

n ¼ A exp ktð Þ g ¼ B exp ktð Þ ð6:13Þ

The characteristic equation is then

k4 þ 4xnfk
3 þ x2

1 þ x2
2 þ 2x2 þ 4x2

nf
2� �

k2 þ 2xnf x2
1 þ x2

2 þ 2x2
� �

k

þ x2
1 � x2

� �
x2

2 � x2
� �

þ 4x2
nf

2x2 ¼ 0
ð6:14Þ

Routh criterion for stability [27] demands that a characteristic equation of the
form

ank
n þ an�1k

n�1 þ � � � þ a1k
1 þ a0 ¼ 0 ð6:15Þ

must have all roots with negative real parts so that

1. All coefficients a o are non-zero and of the same sign;
2. All the following successive determinants are positive:

D0 ¼ a1 D1 ¼
a1 a0

a3 a2











 D2 ¼
a1 a0 0
a3 a2 a1

a5 a4 a3
















� � �
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The conditions D0 [ 0, D1 [ 0, D2 [ 0 are always satisfied. The condition a0 [ 0
implies that for stability, x should lie outside the roots of the equation in x:

x2
1 � x2

� �
x2

2 � x2
� �

þ 4x2
nf

2x2 ¼ 0 ð6:16Þ

which means that x should be either

x2 \
x2

1 þ x2
2

2
� 2x2

nf
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 � x2
2

2

� �2

� 4x2
nf

2 x2
1 þ x2

2

2

� �
þ 4x4

nf
4

s

or

x2 [
x2

1 þ x2
2

2
� 2x2

nf
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 � x2
2

2

� �2

� 4x2
nf

2 x2
1 þ x2

2

2

� �
þ 4x4

nf
4

s

ð6:17Þ

A first observation is that when the radical is negative there is always stability.
Neglecting f4, the condition for global stability is

f2 [
x2

1 � x2
2

� �2

4x2
n x2

1 þ x2
2

� � ð6:18Þ

If the system is undamped, Eq. (6.17) suggest that the range x1 [x [x2 is
unstable. Damping shifts the range of instability to lower frequencies. For shallow
cracks the local flexibility is small and condition (6.18) is usually satisfied. The
propagation of the crack causes x1 and x2 to be progressively different from one
another until inequality (6.18) is violated. At this point the instability range starts
developing. As the difference between x1 and x2 increases, the influence of
damping tends to be minimized and the situation gradually approaches undamped
instability range x1 [x [x2.

Turning our attention to the forced response (Eq. 6.12), upon multiplication of
the second by i and addition, becomes, for q = n ? ig

€qþ 2 xnfþ ixð Þ _qþ x2
1 þ x2

2

2
� x2 þ 2ixxnf

� �
qþ x2

1 � x2
2

2
�q ¼ x2 e1 þ ie2ð Þ þ g exp �ixtð Þ

ð6:19Þ

where a bar denotes the complex conjugate number. Since the problem is linear,
the influence of imbalance and of the disc weight can be assessed separately.

To this end, the imbalance response is the steady state solution neglecting the
term g exp(-ixt). The length of the response vector, from Eq. (6.19) is

qej j ¼ Re ¼ x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1 x2

2 � x2
� �

þ 2fxnxe2
� �2þ e2 x2

1 � x2
� �

� 2fxnxe1
� �2

q

x2
1 � x2

� �
x2

2 � x2
� �

þ 4f2x2
nx

2
� �

ð6:20Þ
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As one would expect, this function has maxima near the frequencies x1 and x2

and the respective amplitudes are, for small damping

Reð Þx¼x1
¼ e1

4f2

x2
2 � x2

1



 



x2
n

Reð Þx¼x2
¼ e2

4f2

x2
2 � x2

1



 



x2
n

9
>>>=

>>>;

ð6:21Þ

These amplitudes become infinite for zero damping. Therefore, it is expected that
critical speeds are present during speeding up or coasting down near the natural
frequencies x1 and x2 which are both below the uncracked shaft frequency xn.

The influence of the disc weight can be found by neglecting the eccentricities e1

and e2 in Eq. (6.19). A solution of the resulting equation exists in the form

qg ¼ U exp ixtð Þ þ V exp �ixtð Þ ð6:22Þ

where

Re Uf g ¼ 1
2

g
D x2

2 � x2
1

� �
x2

1x
2
2 � 2x2 x2

1 þ x2
2

� �� �

Im Uf g ¼ g

D
fxnx x2

1 � x2
2

� �
x2

1 þ x2
2

� �

Re Vf g ¼ g

D
1
2

x2
1 þ x2

2

� �
� 4x2


 �
� x2

1x
2
2 � 2x2 x2

1 þ x2
2

� �
þ cf2x2

nx
2 x2

1 þ x2
2

� �� �� �

Im Vf g ¼ g

D
2fxnx

1
2

x2
1 þ x2

2

� �
� 4x2


 �
x2

1 þ x2
2

� �
� 2 x2

1x2 � 2x2 x2
1 þ x2

2

� �� �� �

D ¼ x2
1x

2
2 � 2x2 x2

1 þ x2
2

� �� �2þ4f2x2
nx

2 x2
1 þ x2

2

� �2

The magnitudes of U and V are finite for all x for non-zero f, because D is
positive. For zero damping, D becomes zero and the amplitude becomes infinite,
for a particular speed of rotation:

xc ¼
x1x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 x2
1 þ x2

2

� �q ¼ 1
2
xn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� kn � kg

kn þ kg

� �s

ð6:23Þ

For small crack depth, x1 & x & x2, and this particular speed equals half the
uncracked rotor natural frequency. This observation is used for crack detection on
rotating shafts because only mechanisms of dissimilar moment of inertia can
introduce such a frequency. For non-zero damping the amplitude at x = xc is near
maximum and this speed is called the secondary critical speed due to the weight of
the disc.

If we now consider a forced response due to both imbalance and disc weight
and perform the transformation

z ¼ q expðixtÞ
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into the stationary coordinate system, we see that the rotor response is

z ¼ U expð2ixtÞ þ V þ qe expðixtÞ ð6:24Þ

The first term represents whirl at double the running frequency. The second
term is the static deflection of the shaft. The third term is the imbalance response at
running frequency. The response as a function of the running speed is shown in
Fig. 6.4.

6.4 The Closing Crack

The rotation of a cracked shaft loaded laterally by its own weight or a static load,
for a crack closing at positions where compressive stresses occur at the location of
the crack, introduces time varying coefficients into the equations of motion. In this
case, if the time t = 0 corresponds to a position at which the crack starts opening,
Eq. (6.19) becomes

€qþ 2 xnfþ ixð Þ _qþ x2
1 þ x2

2

2
� x2 þ 2ixxnf

� �
qþ x2

1 � x2
2

2
�q ¼ x2 e1 þ ie2ð Þ þ g exp �ixtð Þ 0\xt\p

€qþ 2 xnfþ ixð Þ _qþ x2
n � x2 þ 2ixxnf

� �
q ¼ x2 e1 þ ie2ð Þ þ g exp �ixtð Þ

ð6:25Þ

Although, in principle, these equations can be solved with the analytical methods
described in Chap. 2, the usual procedure is the numerical solution of these
equations. In this manner, one can take into account the non-linear behavior for
sufficiently high vibration amplitudes.

For shafts with more complicated geometry, it is preferable to work in the
stationary coordinate system. A shaft element in the vicinity of the crack has the
following flexibility matrix in the rotating coordinate system:

Fig. 6.4 Vibration amplitude of the cracked shaft
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c1 0
0 c2


 �

Multiplying by the transformation matrix, the same matrix in the stationary
coordinate system is

c2 þ c1 � c2ð Þ cos2 xt 1
2 c1 � c2ð Þ sin 2xt

1
2 c1 � c2ð Þ sin 2xt c2 þ c1 � c2ð Þ sin

2 xt


 �

for 2pn \xt \ 2pn ? p. In the second half of the period, the flexibility matrix is

c 0
0 c


 �

for 2pn ? p\xt \ 2p(n ? 1).
Several investigators have used such equations to obtain the responses of

cracked shafts [4–18, 28–33].
Whereas a slotted shaft has only two speeds at which the synchronous response

becomes unbounded, the cracked shaft carries the possibility of either a range of
speeds, where a bounded synchronous response does not exist, or a range of speeds
where there are two possible synchronous responses. Which of these alternatives is
realized depends upon the phase of the out-of-balance with respect to the crack.
With the out-of-balance in phase with the crack, a band of speeds occurs where the
equations have no solution; with the out-of-balance in antiphase with the crack, a
band of speeds exists where there are two solutions to the equations. One of these
solutions is unstable and the slightest disturbance would cause the system to jump
from the unstable to the stable solution. This phenomenon (switching from one
solution to another) is characteristic of non-linear systems. The time history of
local flexibilities associated with a breathing crack and, furthermore, material
damping in a rotating shaft has been the subject of several investigations [33–38].

A first analytical approach to the problem of a breathing crack can be made by
considering the motion on the rotating coordinate system. The equation of motion
for the de Laval rotor, neglecting damping and for a mass of eccentricity , will be

m€nþ 2mxi _nþ k � mx2
� �

n ¼ mg exp �ixtð Þ þ mex2 ð6:26Þ

where the shaft stiffness k takes the value k(l - d) for negative (which is equiv-
alent to p/x\ t \ 2p/x. If kT is the cracked shaft local stiffness to bending, the
corresponding linear stiffness of the shaft in the lateral direction will be

1
k 1� dð Þ ¼

1
k
þ L2

16kT
¼ 1

k
1þ kL2

16kT

� �
ð6:27Þ

Here, kT = 1/cn where cn, is given by Eq. (6.6).
The null equation has the form

€nþ 2xi _nþ x2
1 � x2

2

� �
n ¼ 0 ð6:28Þ
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with x ¼ x1 ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
for n[ 0 and x ¼ x2 ¼ x1

ffiffiffiffiffiffiffiffiffiffiffi
1� d
p

for n\ 0. It admits
solutions of the form

n1 ¼ A1 cos x1t þ B1 sin x1tð Þ exp �ixtð Þ
n2 ¼ A2 cos x2t þ B2 sin x2tð Þ exp �ixtð Þ

)

ð6:29Þ

during the first and second half of one rotation respectively.
If the system is forced to rotate with angular velocity X instability may occur

(see Chap. 2). This can be demonstrated by observing some compatibility
conditions:

1. At the end of the half cycle (t = n/w) displacements and velocity are the same;
2. At the end of the complete cycle (t = 2n/w) displacement and velocity are k

times greater than the values at the beginning of the cycle (t = 0).

These conditions lead to four homogeneous linear equations in A1, A2, B1, B2.
The condition that these equations have a solution other than the trivial gives (see
Eqs. 2.9–2.11)

k2 � 2qkþ 1 ¼ 0 ð6:30Þ

from which

k ¼ q�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 1

p
ð6:31Þ

where

q ¼ cos
px1

x
cos

px2

x
� x2

1 þ x2
2

2x1x2
sin

px1

x
sin

px2

x
ð6:32Þ

It is apparent that k[ 1 will lead to growing vibrations and instability. The
threshold of instability is at k = 1 in which case q = 1. The speeds at which
instability occurs are given as solutions of the equation

q ¼ 1 ð6:33Þ

or, in terms of the dimensionless parameters, f1 = x1/x, and f2 = x2/x, where x
is the natural frequency of the uncracked shaft.

q ¼ cos pf1 cos f2 �
f2

1 þ f2
2

2f1f2
sin pf1 sin f2 ¼ 1 ð6:34Þ

Solutions of this equation are plotted in Fig. 6.5 as functions of the parameters d
and x1/x. Out of these, d is a function of the crack depth, as described above. The
instability region for the shaft with open crack is indicated by dotted lines. It is
obvious that there is a substantial difference between the two models.

When we turn our attention to the forced response, we find that a particular
solution of the non-homogeneous equation is
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np ¼
mex2

k � mx2
þ mg

k
exp �ixtð Þ ð6:35Þ

The general solution is

n ¼ Aj cos xjt þ Bj sin xjt
� �

exp �ixtð Þ þ mex2

k � mx2
þ mg

k
exp �ixtð Þ ð6:36Þ

where the subscript j takes the values 1 and 2 in the intervals 0 \ t \ p/x and p/
x\ t \ 2p/x, respectively. Application of the continuity conditions with k = 1
for steady state will yield

La ¼ f ð6:37Þ

where

a ¼ A1 A2 B1 B2f g
f ¼ f1 f2 f3 f4f g

Fig. 6.5 Stability chart for a
cracked shaft. Shaded areas
indicate instability
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f1 ¼ e
1

x2=xð Þ2�1
� 1

x1=xð Þ2�1

" #

þ g
1

x2
1

� 1

x2
2

� �

f2 ¼ � g
1

x2
1

� 1

x2
2

� �

f3 ¼ e
1

x2=xð Þ2�1
� 1

x1=xð Þ2�1

" #

� g
1

x2
1

� 1

x2
2

� �

f4 ¼ g
1

x2
1

� 1

x2
2

� �

L ¼

cos p x1=x� 1ð Þ sin p x1=x� 1ð Þ �cos p x2=x� 1ð Þ �sin p x2=x� 1ð Þ
�sin p x1=x� 1ð Þ cos p x1=x� 1ð Þ sin p x2=x� 1ð Þ �cos p x2=x� 1ð Þ

1 1 �1 �1
�1 1 1 �1

2

664

3

775

Therefore, the coefficients of Eq. (6.37) are

a ¼ L�1 f ð6:38Þ

Then, Eq. (6.37) yields the rotor response in the rotating coordinate system and
the transformation z = n exp (iXt) will give the response in the stationary coor-
dinate system.

The above analysis is based on the assumption that the static deflection is much
greater than the vibration amplitude and that there is a sharp transition of the shaft
stiffness from uncracked to cracked, at the time that the crack is vertical. This is
not exactly correct at times when the crack is near the vertical position. For such
cases the local stiffness is measured experimentally as a function of the angle of
the crack to the vertical. The analytical procedure in this case is based on the
expansion of this function in a Fourier series. To this end, proper selection of the
zero time permits the shaft stiffness to be set up in the form

k ¼
Xn

i¼0

An cos ixt ð6:39Þ

Usually, this series converges very rapidly and no more than a few first terms
are significant.

The shaft equation in the stationary coordinate system for the vertical motion
will be

m€zþ kz ¼ mex2 exp ixtð Þ þ mg ð6:40Þ

A solution is sought in the form

z ¼
Xl

j¼0

aj cos jxt ð6:41Þ
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Substituting into Eq. (6.40) and collecting similar terms cos kXt, after
expressing the products

cos a cos b ¼ cos ðaþ bÞ þ cos ða� bÞ½ �=2

a series of equations is obtained. The kth of the p = l ? n ? 1 equations is

�mx2akk2 þ
Xlþn

j¼0

aj Akþj þ Ak�j

� �
¼

mg for k ¼ 0
mex2 for k ¼ 1

0 otherwise

8
<

:

9
=

;
ð6:42Þ

The second term in the parentheses exists only if k C j.
The coefficients aj are computed from the solution of the system of linear

algebraic equations

Da ¼ f ð6:43Þ

where the i, j element of the p 9 p matrix D is

dij ¼
Aiþj þ Ai�j for i [ j
A2i þ A0 � mex2i2 for i ¼ j
Aiþj for i\j

8
<

:

9
=

;

Of course Ai = 0 when i [ n. The forcing vector has only two non-zero terms:

f0 ¼ mg

f1 ¼ mex2

D is a banded matrix and the width of the band depends on the number n of
harmonics of the stiffness function. In general, the response has 2n harmonics and
l = 2n. Then, the size of the matrix 0 is p = 3n ? 1.

Therefore

z ¼ cD�1 f ð6:44Þ

where

c ¼ 1 cos xt; cos 2xt; . . .; cos 3nþ 1ð Þxt½ �

Critical speeds will be roots of the equation

Dj j ¼ 0 ð6:45Þ

Due to the term i2 in the diagonal of matrix D, the system has several sub-
harmonics. Their magnitude depends strongly on b. For uncracked shafts,
Eq. (6.45) degenerates to the well-known relation

x2 ¼ k=m

for A0 = k, A1 = A2 = ��� = 0.

6.4 The Closing Crack 159



References

1. Dimarogonas, A.D.: Vibration for Engineers, 2nd edn. Prentice Hall, New Jersey (1996)
2. Wauer, J.: On the dynamics of cracked rotors: A literature survey. Appl. Mech. Rev. 43(1),

13–17 (1990)
3. General Electric Co.: A methodology for predicting torsional fatigue life of turbine generator

shafts using crack initiation plus propagation. EL-4333, Research project 1531-1, Final report
(1985)

4. Dimarogonas, A.D.: Vibration of cracked structures: A state of the art review. Eng. Fract.
Mech. 55(5), 831–857 (1996)

5. Papadopoulos, C.A.: The strain energy release approach for modelling cracks in rotors: A
state of the art review. Mech Syst Signal Process 22(4), 763–789 (2008). Special issue on
crack effects in Rotordynamics

6. Gash, R.: Dynamic behavior of a simple rotor with a cross-sectional crack. In: IME
Conference on Vibrations in Rotating Machinery, Paper C178/76. IME Conference
Publication (1976)

7. Henry, T.A., Okah-Avae, B.E.: Vibrations in cracked shafts. ibid, Paper C162/76 (1976)
8. Mayes, I.W., Davies, W.G.R.: The vibrational behavior of a rotating shaft system containing

a transverse crack. ibid, Paper C168/76 (1976)
9. Grabowski, B.: The vibrational behavior of a turbine rotor containing a transverse crack. In:

Proceedings of the ASME Design Engineering Technology Conference, ASME paper 79-
DET-67. St. Louis (1979)

10. Ziebarth, H., et al.: Auswirkung von Querissen auf das Schwingungsverhalten von Rotoren.
VDl-Berichte 320, 37–43 (1978)

11. Dimarogonas, A.D., Massouros, G.: Torsional vibration of a shaft with a circumferential
crack. Eng. Fract. Mech. 15(3–4), 439–444 (1981)

12. Dimarogonas, A.D., Papadopoulos, C.A.: Vibration of cracked shafts in bending. J. Sound
Vib. 91, 583–593 (1983)

13. Papadopoulos C.A., Dimarogonas, A.D.: Coupled longitudinal and bending vibrations of a
rotating shaft with an open crack. J. Sound Vib. 117, 81–93 (1987)

14. Wauer, J.: Modelling and formulation of equation of motion for cracked rotating shafts. Int.
J. Solids Struct. 26(4), 901–914 (1990)

15. Papadopoulos, C.A., Dimarogonas, A.D.: Coupled vibration of cracked shafts. J. Vib. Acoust.
114, 461–467 (1992)

16. Edwards, S., Lees, A.W., Friswell, M.I.: Fault Diagnosis of Rotating Machinery. Shock Vib
Digest 1, 4–13 (1998)

17. Bicego, V., Lucon, E., Rinaldi, C., Crudeli, R.: Failure analysis of a generator rotor with a
deep crack detected during operation: Fractographic and fracture mechanics approach. Nucl.
Eng. Des. 188, 173–183 (1999)

18. Gounaris, G.D., Papadopoulos, C.A.: Crack identification in rotating shafts by coupled
response measurements. Eng. Fract. Mech. 69, 339–352 (2002)

19. Christides, S., Barr, A.D.S.: Torsional vibration of cracked beams of non-circular cross-
section. Int. J. Mech. Sci. 28(7), 473–490 (1986)

20. Barr, A.D.S.: An extension of the Hu-Washizu variational principle in linear elasticity for
dynamic problems. Trans. ASME J. Appl. Mech. 33(2), 465 (1966)

21. Washizu, K.: On the Variational Principles of Elasticity and Plasticity. Technical report
25–18, contract no. N5–07833. Massachusetts Institute of Technology, Cambridge, Mass
(1955)

22. Hu, H.C.: On some variational principles in the theory of elasticity and plasticity. Sci. Sinica
4, 33–55 (1995)

23. Chondros, T.G., Dimarogonas, A.D., YAO, J.: A consistent cracked bar vibration theory.
J. Sound Vib. 200, 303–313 (1997)

160 6 Dynamics of Cracked Shafts



24. Chondros, T.G., Dimarogonas, A.D., Yao, J.: A continuous cracked beam vibration theory.
J. Sound Vib. 215, 17–34 (1998)

25. Chondros, T.G.: Variational formulation of a rod under torsional vibration for crack
identification. Fatigue Fract. Eng. Mater. Struct. 44(1), 95–104 (2005)

26. Tada, H., Paris, P.: The Stress Analysis of Cracks Handbook. Del Research Corp.,
Hellertown, Pennsylvania (1973)

27. Gibson, J.E.: Nonlinear Automatic Control. McGraw-Hill, New York (1963)
28. Papadopoulos, C.A., Dimarogonas, A.D.: Coupling of bending and torsional vibrations of a

cracked timoshenko shaft. Ing. Arch. (Replaced by Arch. Appl. Mech.) 57(4), 257–266
(1987)

29. Papadopoulos, C.A., Dimarogonas, A.D.: Coupled longitudinal and bending vibrations of a
cracked shaft. J. Vib. Acoust. Stress Reliab. Des. 110(1), 1–8 (1988)

30. Papadopoulos, C.A., Dimarogonas, A.D.: Stability of cracked rotors in the coupled vibration
mode. J. Vib. Acoust. Stress Reliab. Des. 110(3), 356–359 (1988)

31. Papadopoulos, C.A.: Torsional vibrations of rotors with transverse surface cracks. Comput.
Struct. 51(6), 713–718 (1994)

32. Gounaris, G.D., Papadopoulos, C.A., Dimarogonas, A.D.: Crack identification in beams by
coupled response measurements. Comput. Struct. 58(2), 299–305 (1996)

33. Tondl, A.: The Effect of Internal Damping on the Stability of Rotor Motion and the Rise of
Self Excited Vibrations, Some Problems of Rotor Dynamics, pp. 1–6. Publishing House of
Czechoslovak Academy of Sciences, Prague (1965)

34. Zorzi, E.S., Nelson, H.D.: Finite element simulation of rotor- bearing systems with internal
damping. J. Eng. Power Trans. ASME 99, 71–76 (1977)

35. Muszynska, A.: Rotor Dynamics. CRC Press, Taylor (2005)
36. Georgantzinos, S.K., Anifantis, N.K.: An insight into the breathing mechanism of a crack in a

rotating shaft. J. Sound Vib. 318, 279–295 (2008)
37. Chouksey, M., Dutt, J.K., Modak, S.V.: Modal analysis of rotor-shaft system under the

influence of rotor-shaft material damping and fluid film forces. Mech. Mach. Theory 48,
81–93 (2012)

38. Rubio, L., Fernández-Sáez J.: A new efficient procedure to solve the nonlinear dynamics of a
cracked rotor, Nonlin. Dynam 70(3), 1731–1745 (2013)

References 161



Chapter 7
Identification of Cracks in Rotors and
Other Structures by Vibration Analysis

Abstract The question of crack detection from dynamic measurements is further
extended and discussed in Chap. 7. A general stiffness matrix for cracked struc-
tural members is introduced, to model the respective dynamic system. This stiff-
ness matrix can be further utilized for static, dynamic or stability analysis of a
structure with cracked members of rectangular or circular cross-section. Off-
diagonal terms indicate vibration coupling. The change in dynamic response is
analytically evaluated for simple systems and by means of approximate methods
for more complicated ones. The outlined procedure can be used for engineering
analysis in two ways: (a) as a design tool, to assist in structural optimization with
the objective of achieving certain specific dynamic characteristics; and (b) as a
maintenance and inspection tool, to identify structural flaws, such as cracks, by
linking the variations in service of the structure’s natural frequencies to structural
changes due to the cracks.

7.1 Flexibility Matrix of Cracked Structural Members

In the previous chapter it was shown that the presence of a crack on a rotating shaft
may change to a measurable, even substantial, extent its dynamic characteristics.

A crack on a structural member introduces a local flexibility, which is a
function of the crack depth. This flexibility changes the dynamic behavior of the
system and its stability characteristics. In this chapter, the problem of identification
of the crack from the resulting change in the dynamic behavior of the system
containing the crack will be examined. It must be emphasized that non-
propagating cracks will be examined.

A. D. Dimarogonas et al., Analytical Methods in Rotor Dynamics,
Mechanisms and Machine Science 9, DOI: 10.1007/978-94-007-5905-3_7,
� Springer Science+Business Media Dordrecht 2013
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The local flexibility of a cracked beam was studied by Irwin [1], who related
this flexibility (compliance) to the stress intensity factor.

The effect of the local flexibility of a cracked column upon its buckling load
was studied by Liebowitz et al. [2, 3] and Ocamura [4]. These authors identified
the compliance of a cracked column to a bending moment. Rice and Levy [5]
recognized coupling between bending and extensional compliance of a cracked
column in compression.

The effect of cracks upon the dynamic behavior of cracked beams was studied
by Dimarogonas [6] and by Chondros and Dimarogonas [7, 8]. The effect of
peripheral cracks upon the torsional vibration of a rod of circular cross-section was
studied by Dimarogonas and Massouros [9].

The investigation of cracked rotors behavior in torsional vibration and the
development of crack detection methods for rotating shafts were initiated at about
1970. In a literature survey on the dynamics of cracked rotors by Wauer [10] it is
stated that obviously the first work was done by the General Electric Company.
The problem was further examined by Dimarogonas [11] and Pafelias [12], at the
Turbine Department of the General Electric Company in Schenectady. Metallur-
gical examination revealed that failure was due to fatigue-propagated cracks in the
rotors.

Circumferential cracks often appear in a variety of machinery such as gas and
steam turbines and aircraft engines, especially in welded rotors. Identification of
cracks and their depth in service is of paramount importance for system planners
who must modify operating practices before large amounts of shaft fatigue life
have gone astray. The problem of crack modeling is one of the most significant
issues in this area. The theory of strain energy release meets the rotordynamics in
the early 1970s, when the detection of fatigue crack became a necessity in power
plants.

Since the early 1980s, there has been a substantial amount of academic research
on the monitoring and early warning of cracked rotors. A state of the art review by
Dimarogonas [11] on the vibration of cracked structures provided a detailed
description of the papers that followed the initial investigations reported by Wauer
[10, 13] and Gasch [14] including analytical, numerical and experimental
investigations.

The fundamental frequency vibration problem has been investigated experi-
mentally and analytically by Dimarogonas [6, 11] to assess the possibility of crack
detection without interrupting the operation of the machine. For a stepped rotor,
the transfer matrix technique was used to compute the change in critical speed of a
shaft due to a crack. The results confirmed that for small crack depths the change
in critical speed is proportional to (a/D)2, where a is the crack depth and D is the
shaft diameter, but it was concluded that the measurement of the change at critical
speed is not an efficient way to monitor rotor cracks.

Cracks in rotors are initiated on a microscopic level and are not detectable until
the shaft has suffered extensive damage. Continued exposure to system distur-
bances could result in crack growth and subsequent shaft fatigue failure. A case of
a generator rotor, in which a transverse fatigue crack could grow to a very large
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extent for several years until its extension reached 60 % of the rotor section area,
without being detected, is presented by Bicego et al. [15].

A continuous cracked rod torsional vibration theory proposed by Christides and
Barr [16, 17] was adopted by Chondros [18, 19] and independent assumptions about
displacement, momentum, strain and stress fields of the cracked rod were considered
for the derivation of the equations of motion for a uniform rod in torsional vibration,
where the rod has one circumferential open edge crack along its length. Since fracture
mechanics methods appear in the literature for the evaluation of stress intensity
factors for different cracks configurations, the method can be extended to multiple
cracks, stepped rods, etc., without adding complexity to the problem, as the same
differential equation will be used with different forms of the stress disturbance
function [20]. This theory will be presented in Chaps. 9 and 10.

7.1.1 Prismatic Cracked Beam Element

To study the effect of a crack on the dynamic response of an elastic structure, one
has to establish local stiffness or flexibility matrix of the cracked member under
general loading. To this end, a prismatic bar with a crack of depth a along the y-
axis with a uniform depth along the z-axis is considered.

The beam has height h and width b. The beam is loaded with an axial force P1,
shear forces P2, P3 and bending moments P4 and P5 (Fig. 7.1).

The basic modes of crack surface displacements, also shown in Fig. 7.1 cor-
respond to: I—the crack surfaces move directly apart (symmetric to the x–y and

Fig. 7.1 Loaded beam element with transverse crack, and the basic modes of crack surface
displacements [21]
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y–z planes), II—the edge sliding mode, and III—tearing [21]. Under general
loading, the additional displacement ui along the direction of force Pi due to the
presence of the crack will be computed using Castigliano’s theorem and by gen-
eralization of the Paris equation [21].

To this end, if UT is the strain energy due to a crack, Castigliano’s theorem
demands that the additional displacement is

ui ¼ oUT=oPi

along the force Pi. The strain energy will have the form [1]

UT ¼
Za

0

oUT

oa
da ¼

Za

0

Jda ð7:1Þ

where J ¼ oUT=oað Þ, the strain energy density function. Therefore

ui ¼
o

oPi

Za

0

JðaÞda

2

4

3

5 Paris equationð Þ ð7:2Þ

the flexibility influence coefficient cij will be

cij ¼
oui

oPj

¼ o2

oPioPj

Za

0

JðaÞda ð7:3Þ

The strain energy density function J is the general form

J ¼ 1
E0

X5

i¼1

KII

 !2

þ
X5

i¼1

KIII

 !2

þa
X5

i¼1

KIIII

 !2

4

3

5 ð7:4Þ

where E’ = E for plane stress, E’ = E/(1 - v2) for plane strain, a = 1 ? m; E and
v are Young’s modulus and Poisson’s ratio, respectively. Then, integrating along
the cut (y-axis):

cij ¼
1

E0b

Za

0

o2

oPioPj

X

m

Zb

0

ðem

X

n

KmnÞ2dy

2

4

3

5da ð7:5Þ

where em ¼ a for m = III and em = 1 for m = I, II. Furthermore, Kmn is the stress
intensity factor of mode m (m = I, II, III) due to the load Pn (n = 1, 2, 5) since the
strain energy is additive. Adequate information is available for all Kmn except K14

which will be assumed variable along the y-axis and the plane solution will be used
with the beam bending stress due to P4 at location y. Then
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K11 ¼
P1

bh

ffiffiffiffiffiffi
pa
p

F1 a=hð Þ ð7:6Þ

K15 ¼
6P5

bh2

ffiffiffiffiffiffi
pa
p

F2 a=hð Þ ð7:7Þ

K14 ¼
12P4

b3h
y
ffiffiffiffiffiffi
pa
p

F1 a=hð Þ ð7:8Þ

K12 ¼ K13 ¼ 0

KII 1 ¼ KII 2 ¼ KII 4 ¼ KII 5 ¼ 0

KII 3 ¼
2P3

bhpa
FII a=hð Þ ð7:9Þ

KIII 1 ¼ KIII 3 ¼ KIII 4 ¼ KIII 5 ¼ 0

KIII 2 ¼
2P2

bhpa
FIII a=hð Þ ð7:10Þ

where [21]

F1ða=hÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h
pa tan pa

2h

q
0:752þ2:02ða=hÞþ0:37 1� sin pa

2hð Þ3
cos pa

2h

F2ða=hÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h
pa tan pa

2h

q
0:923þ0:199 1� sin pa

2hð Þ4
cos pa

2h

FIIða=hÞ ¼ 1:122�0:561ða=hÞþ0:085ða=hÞ2þ0:180ða=hÞ3ffiffiffiffiffiffiffiffiffiffi
1�a=h
p

FIIIða=hÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pa
h

�
sin pa

h

q

Using Eqs. (7.6–7.10) in Eq. (7.5), we obtain

c11 ¼
U11

E0b3h2
c14 ¼

12U11

E0b3h2
c15 ¼

6U12

E0b3h3
ð7:11Þ

c44 ¼
48U11

E0b4h2
c45 ¼

72U12

E0b3h3
c11 ¼

U11

E0b3h2
ð7:12Þ

c22 ¼
Za

0

4aF2
III a=hð Þ

E0b2h2p a=hð Þd a=hð Þ ð7:13Þ

c33 ¼
Za

0

4F2
II a=hð Þ

E0b2h2p a=hð Þd a=hð Þ ð7:14Þ

Uij ¼
Za

0

pa

h
Fi a=hð ÞFj a=hð Þda:
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The local flexibility matrix for the crack will have the form

C ¼

c11 0 0 c14 c15

0 c22 0 0 0
0 0 c33 0 0

c41 0 0 c44 c45

c51 0 0 c54 c55

2

66664

3

77775
: ð7:15Þ

Due to reciprocity, matrix C is symmetric.
Some of the terms of matrix C can be found also in the literature. Okamura [4]

and Liebowitz et al. [2, 3] have computed c55; Rice and Levy [5] have computed
the terms c11, c15, c55; and Dimarogonas and Massouros have computed the term
c22 [9]. Dimarogonas and Papadopoulos [22–24] and Dimarogonas [25, 26] gen-
eralized the Irwin method of the computation of local compliances, extending it for
six degrees of freedom.

7.1.2 Circular Cracked Rod

Direct application of fracture mechanics methods for the computation of local
flexibility of a shaft with an edge crack could not be done, because solutions for
the stress intensity factor, for a cylindrical shaft with an edge crack, were not
available. Dimarogonas [11, 12] used the approximation to consider the section as
consisting of elementary strips of varying height which were perpendicular to the
crack tip and parallel to the axis of symmetry of the cylindrical shaft (Fig. 7.2).
Each was considered as a rectangular cross-section beam with an edge crack,
assuming that there was no traction between the strips, for which the cracked
region local flexibility, for plane strain, is computed using the fracture mechanics
relations between the strain energy release rate and stress intensity factor and
Castigliano theorem, Eqs. 7.1–7.4 [1–3, 11]. The effect of a crack upon the
dynamic behavior of a beam with a circular cross section under general loading
and a surface crack of depth a along the y axis is considered by Papadopoulos and
Chondros [27–32]. The beam is loaded with axial force P1, shear forces P2, P3, and
bending moments P4, P5, P6 (Fig. 7.2).

The values of the stress intensity factors for a strip of unit thickness with a crack
propagating on its own plane are known from the literature [1-11, 21]. Since the
energy density is a scalar, it is permissible to integrate along the tip of the crack
assuming that the crack depth is variable and that the stress intensity factor is given
for the elementary strip. Then, for the circular cross-section of radius R shown in
Fig. 7.2, the stress intensity factors K for a strip of unit thickness with a transverse
crack under different loading conditions, as shown in Fig. 7.2 are [11]:

KI1 ¼ r1
ffiffiffiffiffiffi
pa
p

F1
a=h
� �

; r1 ¼ P1
�

pR2
� �

KI4 ¼ r4
ffiffiffiffiffiffi
pa
p

F1
a=h
� �

; r4 ¼ 4P4x
�

pR4
� �
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KI5 ¼ r5
ffiffiffiffiffiffi
pa
p

F2
a=h
� �

; r5 ¼ 4P5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2
p .

pR4
� �

KI2 ¼ KI3 ¼ KI6 ¼ 0;

KII3 ¼ r3
ffiffiffiffiffiffi
pa
p

FII
a=h
� �

; r3 ¼ P3k
�

pR2
� �

ð7:15Þ

KII6 ¼ r6II
ffiffiffiffiffiffi
pa
p

FII
a=h
� �

; r6II ¼ 2P6x
�

pR4
� �

KII1 ¼ KII2 ¼ KII4 ¼ KII5 ¼ 0

KIII2 ¼ r2
ffiffiffiffiffiffi
pa
p

FIII
a=h
� �

; r2 ¼ kP2
�

pR2
� �
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Fig. 7.2 A cracked rod element in general loading and cracked section geometry
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where Kij are crack stress intensity factors (SIF) corresponding to the three modes
of fracture i = I, II, III, which result for every individual loading mode j = 1,
2,…6, h and a are local strip height and crack depth, respectively, at x, and
k = 6(1 ? m)/(7 ? 6m) a shape coefficient for the circular cross section. The
functions F1(a/h), F2(a/h), FII(a/h), FIII(a/h) are the same as in the case of the
prismatic beam (Sect. 7.1.1).

Combination Eqs. (7.3), (7.4), and (7.15) yields the dimensionless terms of the
compliance matrix as:

�c11 ¼ pERc11
�

1� m2
� �

¼ 4
Z�a

0

Z�b

0

�xF2
I ð�hÞd�xd�y
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�

1� m2
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0
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0

�y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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�c63 ¼ pER2c63
�

1� m2
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0

Z�b

0

�x�yF2
IIð�hÞd�xd�y
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1ð�hÞ; A2 ¼ 1� �x2

� �
�yF2

IIIð�hÞ; and �x¼ x=R; �y¼ y=R; �h¼ y=h; �b¼ b=R

Finally, the compliance matrix has the form

C ¼

�c11 0 0 �c14 �c15 0
0 �c22 0 0 0 �c26

0 0 �c33 0 0 �c36

�c41 0 0 �c44 �c45 0
�c51 0 0 �c54 �c55 0
0 �c62 �c63 0 0 �c66

2

6666664

3

7777775

where �cij is the compliance or deflection in the i direction due to the load in the
j direction. Dimensionless compliances for varying crack depths are shown in
Fig. 7.3. By inversion of the compliance matrix the local stiffness matrix K = C-1

can be obtained. Off-diagonal terms of the flexibility matrix indicate vibration
coupling.

This matrix relates the displacement vector {d}+=[d1, d2… d6] to the corre-
sponding generalized force vector {P}+=[P1, P2… P6]. Assuming a ‘‘small’’ element
about the crack, its motion defined by a displacement vector {d} = {{d}- {d}+} and
a force vector {P} = {{P}- {P}+}, where - and ? mean before and after the crack.
Here, force equilibrium is maintained, while the additional displacement due to the
crack is related to the force vector as

Pf gþ¼ Pf g�; df gþ� df g�¼ C½ � Pf gþ ð7:17Þ

or

Pf g� Pf gþ
� �

¼ � C½ ��1 C½ ��1

� C½ ��1 C½ �1
� 	

df g� df gþ
� �

ð7:18Þ

or

Pf g ¼ K½ � df g ð7:19Þ

and the stiffness matrix [K] of the element is computed [33].
The flexibility matrix C can be further utilized for static, dynamic or stability

analysis of a structure with cracked members of rectangular or circular cross-
section. In the previous chapter, the pertinent elements of the flexibility matrix
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Fig. 7.3 Dimensionless compliances for varying crack depths
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have been computed for circular cross-section and for a straight crack. Other cases
can be treated along the same lines, if appropriate expressions for the stress
intensity factor are available.

7.2 Direct Methods

Introduction of one or more cracks on an elastic structure will apparently change
its dynamic response, which, in turn can be related to the change in elastic
properties and these to the existence, location, and magnitude of the crack(s).

In small structures, such as uniform shafts, this can be achieved by direct
analysis. In this section, some simple methods will be presented which directly
relate the crack location and magnitude to the dynamic properties of the system.
For systems with simple geometry, this can be obtained with relatively small
computation effort.

7.2.1 Rotors with a Circumferential Crack

With a rotor with a circumferential crack, the analysis is simple because the
flexibility matrix has only one element relating the torque applied to the relative
rotation of the two faces of the crack.

Circumferential cracks often appear in a variety of machinery, e.g. shafts of
thermal machines such as gas and steam turbines, and aircraft engines, especially
in welded rotors. Identification of cracks in service is desirable, and estimation of
the crack depth at the same time can be very useful, since the machine can have a
programmed maintenance instead of a catastrophic failure.

The somewhat similar problem of torsional wave scattering about a penny-
shaped crack was studied by Sih and Loeber [34, 35]. They studied scattering of a
given torsional wave due to the penny-shaped crack by way of the field equation
solved by a finite Hankel transform. Although the same procedure could be used
for the problem at hand, an energy method was preferred, based on the wealth of
data existing for the strain energy density function.

The strain energy in the shaft due to torque T is

U ¼ T2c

2
ð7:20Þ

where c is the local flexibility (compliance) of the shaft due to the crack, Du/Dt.
The strain energy release rate with respect to the crack surface A = at is defined as

J ¼ oU

oA
¼ 1

2
T2 oc

oa

1
2 pR� að Þ ð7:21Þ
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Irwin and Kies [36] suggested that by measuring the flexibility of a test spec-
imen, or a component model, with various crack depths a, the value of the gradient
oc=oa as a function of a could be determined, leading to the determination of the
strain release function.

By using virtual work arguments Irwin [37] demonstrated that energy release
rate J could be related to the stress intensity factor K as

J ¼ K2
III

2G
ð7:22Þ

where G is shear modulus, and mode III stress intensity factor KIII is defined by the
relation

sxz

syz

" #

¼ KIIIffiffiffiffiffiffiffiffi
2pr
p

sin
h
2

cos
h
2

2

664

3

775þ terms of order r0 ð7:23Þ

giving the shear stresses in the vicinity of the crack at distance r from its tip.
Equation (7.22) is a particular case of Eq. (7.4).

Equations (7.21) and (7.22) yield

dc

da
¼ K2

III

T2G
2ðpR� aÞ ð7:24Þ

Integrating:

c ¼
Za

0

K2
III

T2G
2 pR� að Þda ð7:25Þ

Fig. 7.4 Geometry of a rotor
with a circumferential crack

174 7 Identification of Cracks in Rotors and Other Structures



An expression is needed for the stress intensity factor KIII for the problem at
hand. For a shaft with a circumferential crack, Bueckner [38] has outlined a
method for the determination of KIII as a function of the crack depth.

Benthem and Koiter [39] have approximated stress intensity factor K for a
cylinder in torsion T with a circumferential crack by the following expression:

K ¼ 3
8

1þ 1
2
k2 þ 5

16
k3 þ 35

128
k4 þ 0:208k5

� 	
ð7:26Þ

where k ¼ R� að Þ=R, R being shaft radius (Fig. 7.4).
The dimensionless stress intensity factor K is defined by the relation

szu ¼ K
2T

p R� að Þ3
a R� að Þ

R

� 	1=2 1
ffiffiffiffiffi
2r
p ð7:27Þ

Therefore, comparison with Eq. (7.23) yields

KIII ¼
2T

ðR� aÞ3
aðR� aÞ

pR

� 	1=2

K ð7:28Þ

Dimensionless flexibility becomes (Eq. 7.25)

pR3l
4

c ¼ 1
R

Za

0

a

R

2ðpR� aÞ
R

R5

ðR� aÞ5
K2ðaÞda ¼ Iða=RÞ ð7:29Þ

where l = G is the shear modulus of the material.
The integral I(a/R) has a value

I a=Rð Þ ¼ 0:035ð1� a=RÞ�4 þ 0:001ð1 � a=RÞ þ 0:029ð1 � a=RÞ2

þ 0:0086ð1 � a=RÞ3 þ 0:0044ð1 � a=RÞ4 þ 0:0025ð1 � a=RÞ6

þ 0:0017ð1 � a=RÞ7 þ 0:008ð1 � a=RÞ8 � 0:092

Values of this integral are plotted in Fig. 7.5.
Measurement of local flexibility on a plexiglas shaft was carried out indirectly

on the same apparatus used for developing the fatigue crack [9]. A light shaft
carries an inertia J0 at the end, while the crack is near the support (Fig. 7.6).

In the model of Fig. 7.6, the natural frequency for torsional motion without
crack is

x0 ¼
ffiffiffiffiffi
k

Jo

r

¼

ffiffiffiffiffiffiffiffiffiffiffiffi
pd4l
32LJo

s

k ¼ pd4l
32L

ð7:30Þ

while, in the presence of a crack of stiffness kc
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x
xo
¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k=kc

p : ð7:31Þ

Therefore,

pR3l
4

c ¼ L

2R

1

ðx=xcÞ2
� 1

" #

ð7:32Þ

which leaves the expression 1
.

x=x0ð Þ2 � 1
h i

L=2Rð Þ the role of an experimental

value of the integral I(a/R) in Eq. (7.29). For comparison, experimental results are

Fig. 7.5 Cracked rotor local flexibility. Line, analytical, Eq. (7.25); circle, experimental (from
Ref. [9], by permission)

Fig. 7.6 Test model
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plotted in Fig. 7.5 against analytical function. In the experiment, a Plexiglas shaft
was used with diameter d = 0.020 m, length L = 0.75 m, l ¼ 1:1� 109N

�
m2.

The measured function of the frequency change x=x0 versus relative crack depth
is shown in Fig. 7.7. Here, x is torsional natural frequency with the crack and x0

the same frequency without the crack. From these results and Eq. (7.32), cracked
shaft local flexibility parameter was computed and entered in Fig. 7.5 as a function
of crack depth. At small crack depths a/R there is a considerable discrepancy
between analytical and experimental results, which was expected, due to the dif-
ficulty in accurate measurement of small frequency differences of the order of 1 %,
appearing for cracks with a/R in the range 0–0.4.

A continuous shaft with free ends (Fig. 7.8) and length L, at distance L1 from
the left there has a circumferential crack of depth a. Usual procedures [6] lead to
the frequency equation

sin
xL1

c
cos

xL2

c
þ sin

xL2

c
cos

xL1

c
� pR3lc

4
R

L
sin

xL1

c


 �
¼ 0 ð7:33Þ

Fig. 7.7 Natural frequency
versus crack depth (from Ref.
[9], by permission)

Fig. 7.8 Model of a
continuous cracked shaft
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where
R is shaft diameter;
L is shaft length;
x is shaft torsional natural frequency;
c is torsional wave velocity = Hl/q;
q is density of the shaft material.

Let a frequency parameter n ¼ x L=c, the location of the crack on the shaft
k ¼ L1=L, and the crack flexibility parameter f ¼ pR3lc

�
4

� �
R=Lð Þ. Equation

(7.33) becomes

sin knð Þ cos 1� kð Þnþ sin 1� kð Þn cos kn� fsin knð Þ ¼ 0: ð7:34Þ

The first three solutions x1L=c; x2L=c; x3L=c of Eq. (7.34) were computed as
functions of the flexibility parameter f with, as the other parameter, the location
k ¼ L1=L of the crack on the shaft. The results are plotted in Fig. 7.9. It is obvious
that in the absence of a crack (f = 0), the first three frequency parameters are
p; 2p and 3p. This result is known for a free cylindrical shaft in torsional
vibration [6].

From Fig. 7.9 it can be seen that the crack can have a substantial influence upon
the natural vibration of the shaft. In the upper part of Fig. 7.9 the crack depth
a/R over the crack flexibility parameter f ¼ pR3lc

�
4

� �
R=Lð Þ was plotted for a

shaft of different R/L ratios to allow for a direct evaluation of the frequency drop
as a function of the crack depth a/R and the inverse of it. It can be seen that
relatively small cracks can have a substantial influence on the torsional natural
frequencies with measurable magnitude.

This gives a very useful method to identify magnitude and location of the crack.
Since the change of the first three frequencies shown does not follow the same
pattern it is possible to estimate location and magnitude. For rotating machinery,
this is very useful because it allows for the identification of the crack without
disassembling the machine, even without stopping it. Proper instrumentation can
provide continuous monitoring of the machine operation and an early warning for
the existence of a crack.

7.2.2 Beam with a Lateral Crack

A lateral crack on a beam of rectangular cross-section introduces local flexibility,
influencing the dynamic response of the beam. This property can be used for
direct identification of the crack.

The local flexibility matrix for the cracked beam was computed in Sect. 7.1.
However, Chondros and Dimarogonas [7] have found that, in this case, only the
diagonal term c55 is significant. Let Ks be the inverse of this term, a rotational spring
constant for the crack. In Ref. [7] this stiffness was determined experimentally.
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To this end, a 300 mm cantilever beam of cross-section 20 9 20 mm2 with a mass
of 0.6 kg at the free end, welded at a base clamped to a vibrating table, was used to
give the relation between the change in natural frequency of the vibrating beam and
the depth of a crack at the welded edge. The crack was initiated with a saw cut and
propagated to the desired depth by fatigue loading. The depth of the crack was
measured directly and verified with an ultrasonic detector for uniformity and actual
depth. The vibration pick-up signal was transferred to a vibration analyzer and a
recorder to give plots of frequency versus vibration amplitude.

Fig. 7.9 Natural frequencies of a continuous cracked shaft (from Ref. [9], by permission)
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For various values of the ratio a/h, where a is the crack depth and h the initial
height of the cross-section profile, the corresponding values of the ratio xn=xn0

were measured, where xn is natural frequency of the beam with the existing crack
and xn0 is the natural frequency in the absence of the crack (a/h = 0).

Figure 7.10 gives this relation as found experimentally by the procedure
described above. To relate the crack depth to a local flexibility parameter, the
system was modeled, as shown in Fig. 7.11, by a massless elastic beam with a
mass m at the free end and a torsional spring of constant Ks at the clamped end.
The load was applied at the free end of the cantilever where the deflection was also
measured. This deflection consists of the beam deflection d1 which was measured
initially without the crack and which remained unchanged with the increase of
crack depth, and the deflection d2 due to the rigid body motion caused by the local
flexibility at the clamped end. If xn is the natural frequency of this system and xn0

the natural frequency without the crack (Ks = 0), steps of elementary nature lead
to the relationship

xn

xno

¼ 1
1þ l2

o

ð7:35Þ

where l0
2 = 3EI/LKs, E is Young’s modulus, I moment of inertia of the section,

and L is the length of the beam.
Equation (7.35) and Fig. 7.11 yield the information shown in Fig. 7.12, which is a

plot of the crack depth a/h against the torsional spring constant parameter LKs/EI.
This figure can be used directly to assess the depth of crack for a system as the one
shown in Fig. 7.11.

These experimental results provide a basis for an extension of the method so
that it can be applied with other member geometries and other boundary condi-
tions, since the flexibility of the crack area is a highly local phenomenon and has
negligible influence on the stress field beyond a certain distance.

For a beam of constant cross-section clamped at both ends the frequency
equation for transverse vibrations is [6]

Fig. 7.10 Diagram relating
crack depth a to the change in
natural frequency of vibration
xn0 (from Ref. [7], by
permission)
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o4w

oz4
� k4w ¼ 0 ð7:36Þ

where k ¼ qFx2
�

EI, F is cross-sectional area, qe material density and w vertical
displacement. The solution of Eq. (7.36) is [6]

w zð Þ ¼ c1 cosh k zþ c2 sinh k zþ c3 cos k zþ c2 sin k z

When the beam has a crack at one of the welded edges (see Fig. 7.13), the crack
is treated as a torsional spring of constant Ks, disregarding the transverse flexibility
in the vertical direction. The corresponding boundary conditions are

w 0ð Þ ¼ 0 w Lð Þ ¼ 0 EIw00 0ð Þ ¼ Ksw
0 0ð Þ w0 Lð Þ ¼ 0: ð7:37Þ

By applying these the frequency equation assumes the form

Fig. 7.11 Modelling of a cantilever beam with a mass at the free end and a crack at the welded
root (from Ref. [7], by permission)

Fig. 7.12 Diagram relating
crack depth a to the torsional
spring constant Ks (from Ref.
[7], by permission)
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1 0 1 0
1 �A �1 A

cosh kL sinh kL cosh kL sin kL
sinh kL cosh kL � sinh kL cos kL

��������

��������

¼ 0 ð7:38Þ

where A = Ks/EI. The roots of Eq. (7.38) for different values of A were found by
numerical computations and are plotted in Fig. 7.14.

For a cantilever beam (see Fig. 7.11) one proceeds in a similar manner. The
boundary conditions are

w 0ð Þ ¼ 0 o2w Lð Þ
�
oz2 ¼ 0 EIw00 0ð Þ ¼ Ksw

0 0ð Þ o3w Lð Þ
�
oz3 ¼ 0: ð7:39Þ

The frequency equation is

1 0 1 0
1 �A �1 �A

cosh kL sinh kL � cos kL � sin kL
sinh kL cosh kL sin kL � cos kL

��������

��������

¼ 0 ð7:40Þ

Figure 7.15 shows the solutions of Eq. (7.40), which were obtained by
numerical machine computation.

Fig. 7.13 Clamped–clamped
beam with a crack at one
welded edge

Fig. 7.14 Diagram relating
the change in natural
frequency (for the first three
harmonics) and local
flexibilities for a clamped–
clamped beam (from Ref. [7],
by permission)
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The graph in Fig. 7.12 the local flexibility due to the existence of a transverse
crack and to the depth of the crack. This relation was obtained both experimentally
and analytically using c55 (Eq. 7.12). The two relations are in close agreement.
The local flexibility thus found was utilized to establish the relationships of the
crack depth to the change of natural frequency for two cases: of a cantilever beam
with a transverse crack at the welded root of the beam, and of a beam welded
(clamped) at both ends with a transverse crack at one welded end. For these cases,
and of course also for the case of a massless beam carrying a mass at the end and
having a cracked weld at the other end which was used to establish the local
flexibility of the crack, Figs. 7.10, 7.14 and 7.15 provide graphically quantitative
relations between the change in natural frequency and the depth of the crack.
However, these are based on the assumption of a transverse surface crack,
extending uniformly along the width of the weld.

In many cases, other situations might occur, such as a crack inside the section, a
non-uniform crack along the width, a crack at both ends of the clamped beam, etc.
Furthermore, one might encounter other geometries and boundary conditions, such
as frames, beams of non-uniform cross-section, etc. In such cases one can easily
use the results of Fig. 7.12 local flexibility, to establish the analytical relations
between the frequency ratio and the crack depth for the particular geometry and
boundary conditions.

The experimental results of this work also have another limitation. They are
based on the assumptions of a weld having a Young’s modulus equal to that for the
beam material, and of a rectangular cross-section of the weld and the beam. For
other cross-sections, further work is needed.

For the cases investigated, nomograms were constructed directly relating crack
depth to the frequency ratio (Figs. 7.16 and 7.17), from Eqs. (7.38) and (7.40),
respectively, and Figs. 7.12 and 7.13. These nomograms can be used for field
work. In the field, the natural frequencies can be easily measured with portable
instruments and by a variety of methods. An inspection schedule can be

Fig. 7.15 Diagram relating
the change in natural
frequency (for the first three
harmonics) and local
flexibilities for a cantilever
beam (from Ref. [7], by
permission)
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established for periodic checks of the natural frequencies of the structure. With the
aid of the nomograms of Figs. 7.16 and 7.17, or similar ones for other particular
cases, one can follow the history of the crack development and proceed to repairs,
when necessary. It is believed that this method can be developed into a useful tool
for preventive maintenance and non-destructive testing of structures.

Fig. 7.16 Nomogram relating crack depth to the change in natural frequency of the first three
harmonics for a clamped–clamped beam (from Ref. [7], by permission)

Fig. 7.17 Nomogram relating crack depth to the change in natural frequency of the first three
harmonics for a cantilever beam (from Ref. [7], by permission)
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For complex structures, one does not need to establish relations such as in
Figs. 7.16 and 7.17 for the whole structure, and also different ones for the crack at
each of the welds, as might seem necessary. Among the large number of natural
frequencies of a structure there are a certain number of frequencies associated with
modes having high relative amplitudes at the location of any particular member.
This simplifies the problem since one can work with simpler local structures,
making proper simplifying assumptions for the boundary conditions. General
guidelines for such a procedure cannot be given here, since it depends on expe-
rience for the particular type of structure.

The method is not very sensitive as compared with other methods such as
ultrasonic, radiation ones, etc. Since, with modern portable digital vibration ana-
lyzers, one can obtain resolutions far better than 1 %, detection of a frequency
change better than 5 % is certainly possible in practice. Once can ensure better
results by following a programme of periodic inspection to indicate the trend in
lowering of the natural frequency with the propagation of the crack. Therefore, as
can be seen from Fig. 7.12, the crack depth detectable with confidence is of the
order of 10 %. It is known that, by the other methods, one can detect much smaller
cracks and thus obtain a much earlier warning of defects.

However, the method proposed has definite advantages because it is easier to
apply to large structures than any other method in the field such as, for example,
underwater platforms, bridges, etc. In such cases inspections with a portable
instrument can be carried out, to measure the response of the structure to envi-
ronmental excitation. If this excitation is considered to be white noise, the
response of the structure will be, to a certain scale, the transfer function of
the structure. This can also be done with telemetry, without even approaching the
structure. The possibility for automation of the inspection procedure is obvious. In
most cases detection with the sensitivity mentioned above is early enough from a
practical stand point.

Another problem with the application of the method is that it is limited to open
cracks only. The authors believe that this is not a severe limitation, given the fact
that the method is intended for field application to cracks developed in service,
which almost invariably affect bending and tension modes and also are the most
likely ones to propagate.

The quantitative results given in this section are of course strictly applicable to
a particular case of a very simple geometry, but can be likewise applied to indi-
vidual members of large structures, especially if the member flexibility is sub-
stantially larger than the flexibility of the supporting members.

In the general case of a complex structure no quantitative results can be tab-
ulated because of the large number of parameters involved. The structural analyst,
however, can use this analysis as a guide to obtain quantitative results for a specific
structure, treating cracks as local flexibilities at the welding points.

One should be cautious in cases where material properties may change in
service, especially if changes of the elasticity modulus occur.
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7.2.3 Clamped Circular Plate with a Peripheral
Surface Crack

The problem of a circular plate clamped at the contour with a surface crack at the
periphery was discussed by Chondros and Dimarogonas [8]. An apparatus con-
sisting of a circular plate having a peripheral crack at the weld and subjected to
vibrations with the aid of a vibrating table was used to give quantitative evidence
of the influence of the peripheral crack on the dynamic behavior of the plate, to be
compared with the analytical results.

For various values of the ratio a/h, where a is crack depth and h is the plate
thickness, the corresponding values of the ratio xn=xn0 were measured, where xn

is the natural frequency for the plate with a peripheral crack and xn0 is the natural
frequency in the absence of a crack. The crack extends over the periphery at
constant depth. Figure 7.18 gives this relation found experimentally with the
above procedure for plates welded peripherally at the support and plates integral
with the support. A good correlation exists for the two cases.

Assuming that the plate consists of radial parts of unit width at the periphery,
each treated as a cantilever beam clamped at one end by the peripheral weld, the
torsional spring constant Ks due to the local flexibility at the crack was measured
by a simple test. A cantilever beam of thickness h welded at the support with a
crack at the weld of depth a was loaded in order to have a moment M at the welded
support. The local rotation u was measured and the rotational spring constant
Ks = M/u was computed. This yields Ks for a unit length peripheral crack of the
plate as a function of the crack depth.

Fig. 7.18 Change of natural
frequency of vibration for
various values of crack depth
(Courtesy ASME [8])
triangle experimental; circle,
analytical
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Figure 7.19 shows the relation of a/h versus Ks=N þ m=Rð ÞR, where a is the
crack depth, h the plate thickness, N ¼ Eh3

�
12 1� m2ð Þ, E is Young’s modulus,

v is Poisson’s ratio for the plate material m ¼ 0:3ð Þ and R is the plate radius.
In order to check the accuracy of the method and the assumptions made so far,

the deflections of the plate’s centre point caused by a force P acting at the centre
were analytically calculated using the torsional spring constant Ks found experi-
mentally from cantilever beam tests and analytically using Eq. (7.16).

Next, an experimental procedure was used, in order to give the relation between
the peripheral crack depth and the deflection of the plate’s centre point. A circular
plate welded at the contour with a peripheral crack was subjected to a constant
force, P, acting at its centre. With increasing crack depth, the deflection at the
centre point was measured. Figure 7.20 gives the deflections found both analyti-
cally and experimentally versus a/h, the ratio of crack depth to plate thickness.
Figure 7.20 shows that the assumption made for the determination of the torsional
spring constant Ks of the crack was adequate. This was expected since the flexi-
bility of the crack area is highly local and has a negligible influence on the stress
beyond a certain distance.

With the results obtained above, one can proceed to apply the method directly
to the determination of cracks in peripherally welded plates from the change in
natural frequency of vibration. For this reason the solution of the frequency
equation is necessary.

For a circular plate of constant thickness the equation for transverse vibrations
is [40]

D DF � k4F ¼ 0 ð7:41Þ

where k4 ¼ x2qh
�

N, x is the frequency of transverse vibration and q the material
density. Here, the solution is

Fig. 7.19 Relation of the
torsional spring constant of
the crack Ks versus the ratio
a/h where a is the crack depth
and h the plate thickness
(Courtesy ASME [8]) circle,
experimental; [8]—, Eq.
(7.12)
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F rð Þ ¼ C1J0 krð Þ þ C2J0 ikrð Þ ð7:42Þ

where J0 is Bessel function of the first kind.
For a plate clamped at the periphery with a peripheral crack at the weld, the

crack is treated as a torsional spring of constant Ks. Here, the boundary conditions
yield the following system of linear equations [41]:

C1J0ðkRÞ þ C2J0ðkRÞ ¼ 0
C1 � kJ0ðkRÞ � A� 1

R

� �
J1ðkRÞ þ C2kIoðkRÞ þ A� 1

R

� �
I1ðkRÞ ¼ 0


 �
ð7:43Þ

where I0 is Bessel function of the second kind and,

A ¼ Ks

N
þ m

R
:

The solution of Eq. (7.43) is shown in Fig. 7.21. It is evident that the first few
natural frequencies depend heavily on the crack depth, especially the fundamental
one.

Figure 7.19 relates the local flexibility due to the presence of a peripheral
transverse crack to the depth of the crack. This relation was found by the aid of a
simple experimental procedure to confirm analytical results. The assumptions
made for the determination of local flexibilities due to the presence of the crack are
based on the hypothesis of a peripheral transverse surface crack extending uni-
formly along the peripheral weld.

On many occasions, different situations may exist, such as a crack inside the
section, a crack of non-uniform depth along the weld, etc. Another limitation of
the experimental results of this work is the assumptions made for a weld having
the same as that of the plate material, which is not always correct.

Fig. 7.20 Deflections w of
the plate’s centre point for
various crack depths and a
constant force acting at the
centre. (Courtesy ASME [8])
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Figure 7.22 shows a nomogram constructed with the aid of Figs. 7.19 and 7.21
directly relating the depth of the crack to the frequency ratio. This nomogram is of
importance for field work. In the field, the natural frequencies can be easily
measured with portable instruments and by a variety of methods.

An inspection schedule can be established for periodic checks of the natural
frequencies of the structure. With the aid of the nomogram in Fig. 7.22, or with
similar ones for other particular cases, one can follow the history of the crack
development and proceed to repairs when necessary. It is believed that this method
can be developed into a useful tool for preventive maintenance and non-destructive
testing of structures.

7.3 The Eigenvalue Sensitivity Problem

7.3.1 Introduction

Direct methods, such as the ones presented in the previous section, can be applied
only to systems with simple geometry. With more complicated systems one has to
use a more systematic methodology.

In general, a structure will be assumed to be modeled as a linear system
described by way of stiffness and a mass matrix. The general statement of the
problem is that the change in the eigenvalues and eigenvectors of a linear system is
to be computed if the change in the stiffness or flexibility matrix of the system is

Fig. 7.21 Solution of the
frequency equation for a plate
with a peripheral crack at the
weld (Courtesy ASME [8])
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known. In addition, it is assumed that for the unmodified structure the eigenvalue
problem has been solved in advance and the procedure desired should not be to
solve the eigenvalue problem for the modified structure, on two counts: first, to
reduce computation effort; secondly, to reduce computation error.

Fig. 7.22 Nomogram relating peripheral crack depth to the change of natural frequency of
vibration for a circular plate welded at the periphery (Courtesy ASME [8])
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Simple problems can be solved analytically and yield direct relations of change
in natural frequencies of vibration to location and magnitude of cracks on struc-
tural members. With more complex engineering problems it is impractical to have
direct solutions and one needs a more systematic investigation.

Weissenburger [42] developed the solution for the modified problem of the
eigenvalues of the modified matrix B* if the diagonal eigenvalue matrix r of the
matrix B is known, and then the matrix B can be expressed in the form
B = VTCV, where V is an upper tridiagonal matrix. The eigenvalues of the
modified matrix B* can then be computed by way of a procedure which is of
comparable complexity to the solution of the eigenvalue problem for the matrix B*
directly.

Zarghmee [43] computed the derivative of an eigenvalue with respect to the
compliance of a member of the structure, if the mass and stiffness matrices of the
structure can be written in the form

K ¼
Xn

i¼0

aiKi M ¼
Xn

i¼0

aiMi

where ai are constants and Ki and Mi are stiffness matrix and mass matrix,
respectively, for the element i of the structure.

Fox and Kapoor [44] computed the variation of the eigenvalue i for the vari-
ation of the vector d containing all the parameters of the system which change, in
the form

oLi

odj

¼ xT
i oK=odj � koM=odj

� �
xi

where xi is the eigenvector i of the unmodified structure and ki the corresponding
eigenvalue.

Morgan [45] and Paraskevopoulos et al. [46] computed the change in the
eigenvalue ki of a matrix A as

dki ¼ tr R kið Þ½ ��1 R kið Þ½ ��dA ð7:44Þ

where R(k) is the adjoint matrix for the eigenvalue ki, dA is the change in the
matrix A and * means inner product of vectors.

Determination of the eigenvalue differential by Eq. (7.44) requires the com-
putation of the adjoint matrix, which is of considerable complexity, especially for
large systems.

7.3.2 Rayleigh’s Quotient

Owing to the stationary character of Rayleigh’s quotient [6] a simpler method was
developed for the computation of the change of eigenvalues of the modified
system, provided that the solution of the unmodified problem is known.
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The equation of motion for a vibrating conservative system is

M€xþKx ¼ 0 ð7:45Þ

where M and K are mass and stiffness matrices, respectively. If xi are the
eigenvectors and ki the corresponding eigenvalues, Rayleigh’s quotient, with xi

the corresponding natural frequencies, is

ki ¼
xT

i Kxi

xT
i Mxi

¼ x2
i : ð7:46Þ

If the modification of the stiffness matrix is DK and the corresponding changes
in the eigenvalues are Dkj, then

ki þ Dkið Þ � xT
i ðKþ DKÞxi

xT
i Mxi

where, change in eigenvectors has been omitted, since small variations of the
eigenvectors have a much smaller effect upon the eigenvalues. Using Eq. (7.46) we
obtain

Dki �
xT

i DKxi

xT
i Mxi

: ð7:47Þ

It should be noted that, again owing to the stationary behavior of the Rayleigh’s
quotient, small but finite changes in eigenvalues can be computed with acceptable
error. Further, the eigenvector change can be computed. To this end, the eigen-
value problem which follows Eq. (7.45) is stated as

Kxi ¼ kiMxi ð7:48Þ

where ki ¼ x2
i and xi the corresponding eigenvector. Differentiation yields

dKxi þKdxi ¼ dkiMxi þ kiMdxi ð7:49Þ

Multiplication from the left by xj
T yields

xT
j dKxi þ xT

j Kdxi ¼ dkix
T
j Mxi þ kix

T
j Mdxi: ð7:50Þ

Since the matrices K and M are real and symmetric, Eq. (7.44) implies that

xT
i K ¼ kix

T
i M ð7:51Þ

Equation (7.50) for j = i yields

xT
i dK ¼ dkix

T
i M ð7:52Þ

dki ¼
xT

i dKxi

xT
i Mxi

ð7:53Þ

192 7 Identification of Cracks in Rotors and Other Structures



which is identical to Eq. (7.47). Furthermore, Eq. (7.50), because of the orthog-
onality of the eigenvectors, [47] i.e.

xT
i Mxi ¼ 0

yields

xT
j kiMdxi � xT

j Kdxi ¼ xT
j dKxi ð7:54Þ

and because of Eq. (7.51)

x
T

j ki � kj

� �
Mdxi ¼ x

T

j dKxi: ð7:55Þ

Let the eigenvector differential be

dxi ¼
Xn

j¼1

aijxj ð7:56Þ

where aij are appropriate differential weighing factors . Multiplying from the left
by xj

TM, due to the orthogonality,

xT
j Mdxi ¼ aijx

T
j Mxj ð7:57Þ

and with Eq. (7.55) we obtain

aij ¼
xT

j dKxi

xT
j Mxj

i 6¼ j ð7:58Þ

aii ¼ 0

Equations (7.53), (7.56) and (7.58) can be used to compute the eigenvalue and
eigenvector change due to the modification of the stiffness matrix K of the structure.

To test of the accuracy of this approximation, the simple system of Fig. 7.23a
was considered. The error in computation of the changes of the natural frequencies
x1 and x2 with Eq. (7.43) in comparison with the changes computed exactly by
analysis is shown in Fig. 7.23b. For a rather substantial change in stiffness by
10 %, the error in Dx1 is 5 % and in Dx2 is 0.5 % [48].

With more complicated systems, the global matrices K and dK consist of
blocks describing the structural elements [49–52]. The matrix dK of the structural
modifications due to cracks can be directly linked to the crack characteristics, as
shown by the following example.

7.3.3 Torsional Vibration of a Cracked Rotor

For an infinite cylinder with a peripheral crack of depth a, Dimarogonas and
Massouros [9] computed the torsion al local flexibility of the shaft due to the crack
in the form
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c ¼ Du
T
¼ f ðnÞ

where n = 1 - a/R, R the radius of the cylinder.

pR3l
4

c ¼ 0:035n�4 þ 0:01nþ 0:029n2 þ 0:0086n3 þ 0:0044n4

þ 0:0025n6 þ 0:0017n7 þ 0:008n8 � 0:092:
ð7:59Þ

For a general rotor in torsional vibration, considered as the lumped system of
Fig. 7.22, the equations of motion are [6]

J €HþKH¼ 0 ð7:60Þ

where the inertia matrix

J ¼ diag J1; J2; . . .; Jnð Þ

and the stiffness matrix has the line i in the form

1 2 3. . .i� 1 i iþ 1 . . .n
0 0 0. . .� ki . . .ki þ kiþ1 kiþ1 . . .0

The natural frequencies xi are roots of the equation

�JkþKj j ¼ 0 k ¼ x2 ð7:61Þ

The modified problem consists of the rotor of Fig. 7.24 having a peripheral
crack of depth a at section i which, without crack, has torsional stiffness ki. The
stiffness ki

*, reduced by the presence of a crack, will be

1
k�i
¼ cþ 1

ki

k�i ¼
1

1þ cki
ki ð7:62Þ

Fig. 7.23 Frequency shift calculation error for a 2-degree-of-freedom system
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The change DK of the stiffness matrix K will be an n 9 n matrix with all
elements zero, except

ðDKÞii ¼
cki

1þ cki

ki ¼ ðDKÞði�1Þði�1Þ

ðDKÞi�1;i ¼ �
cki

1þ cki

ki ¼ ðDKÞi;ði�1Þ:

For comparison, the change in natural frequencies has been computed for a
shaft with 10 nodes and uniform diameter with the inertia lumped at the nodes,
with a crack at midspan. The changes have been computed alternatively by the
following methods:

1. ‘exactly’, by repeating the solution of the eigenvalue problem for the original
and the cracked rotor;

2. by the classical Morgan method [22];
3. by Eq. (7.47).

For comparison, considering the processing time for the computation of the
change in the first four natural frequencies with method (1) as 100, the time
required for method (2) is 78.25 and 7.57 for (3).

The changes in the first three natural frequencies as a function of the change in
local stiffness 1/(1 ? cki) at node 4, computed with the above methods, have been
plotted in Fig. 7.25.

7.3.4 Cracked Structural Members

For a structural member with rectangular cross-section (Fig. 7.1) having a trans-
verse crack (see Sect. 7.1), a local flexibility matrix C describes the elastic
behavior of the latter.

Due to reciprocity, matrix C is symmetric. The stiffness matrix is the inverse:

K ¼ C�1: ð7:63Þ

Fig. 7.24 Model of a lumped
rotor
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The change in the system eigenvalues due to the appearance of the crack can be
linked directly to the local flexibility or stiffness matrix. To this end, we note that
the numerator in Rayleigh’s quotient is the additional strain energy due to the
introduction of the crack. It can be written in the form

V ¼ 1
2

xT
i dKxi ð7:64Þ

where dK refers to the local stiffness C-1 due to the crack. Therefore, Eq. (7.47)
can be written as

Fig. 7.25 Frequency shift of
a cracked rotor in torsional
vibration. a Harmonic 1.
b Harmonic 2. c Harmonic 3.
1, 2 and 3: morgan, exact and
Eq. (7.47), respectively
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dki ¼
ðxiÞTc C�1ðxiÞc

xT
i Mxi

ð7:65Þ

where crack flexibility matrix C for the most general loading indicated in Fig. 7.1
is given by Eq. (7.15). This links a change of natural frequencies directly to the
geometry and location of the crack. The subscript c in the eigenvector denotes the
components of the eigenvector describing the state of deformation in the vicinity
of the crack. In Eq. (7.65) the elements of matrix C are functions of the geometry,
location of crack and material properties. The treatment of continuous systems is
very similar. Rayleigh’s quotient can be written in the form

dki ¼
ðxiÞTc C�1ðxiÞcR

x2
i dm

ð7:66Þ

where xi is the appropriate eigenvector and integration is carried over the length of
the structural members.

Equations (7.47) and (7.66) provide a complete solution of the modified
eigenvalue problem, especially if modification consists of a variation of the
stiffness matrix. A change in the mass matrix can be treated similarly. This
solution requires that the solution of the original problem of the unmodified
structure be known, as usually happens. Moreover, for the computation of the
change of the lowest eigenvalue, mass and stiffness change matrices are required,
along with an estimate of the corresponding eigenvector which can be obtained
with sufficient accuracy from the static deflection of the structure. Owing to the
constancy of Rayleigh’s quotient, good results can be obtained even for finite
structural modifications, as can be seen from Fig. 7.25.

The method requires much less computation effort than Morgan’s method. In
addition, it yields higher accuracy for finite modifications and the eigenvector
changes can also be computed.

The outlined procedure can be used for engineering analysis in two ways:

1. as a design tool, to assist in structural optimization with the objective of
achieving certain specific dynamic characteristics;

2. as a maintenance and inspection tool, to identify structural flaws, such as
cracks, by linking the variations in service of the structure’s natural frequencies
to structural changes due to the cracks.

7.4 Summary and Conclusions

The fact that a crack or a local defect affects the dynamic response of a structural
member is known long ago. Numerous attempts to quantify local defects are
reported to the literature. Dimarogonas [6] introduced the local flexibility model
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for a crack for vibration analysis of cracked beams. In general there exist three
basic crack models configurations: the local flexibility model, the local bending
moment or the equivalent reduced cross section model, with magnitudes that were
estimated by experimentation or by use of fracture mechanics methods. It must be
stated here that flaws in structures may have a serious influence on their dynamic
characteristics [6–11, 53, 54].

Defects in a structure may cause also changes in mass distribution and damping
properties. This approach suffers from various limitations mainly from the fact that
the modification of the stress field induced by the crack is decaying with the
distance from the crack or flaw and a direct method relating flaw position and size
with stiffness change is not easy to be developed. Such parameters affecting this
approach are discussed in the papers of Dimarogonas and Chondros [20, 53, 54].
There is confusion in the literature concerning cracks. In some experimental works
cuts or slots are used to simulate cracks. It would be more precise if the term crack
model (local flexibility or distributed disturbance) was used. An experimental
setup for initiating and propagating a fatigue crack is presented Chap. 9 [20].

During the vibration period of a cracked structural member the static deflection
due to some loading component on the cracked beam (residual loads, body weight
of a structure, etc.) combined with the vibration effect may cause the crack to open
at all times, or open and close regularly, or completely close depending on various
loads at a given time. If the static deflection due to some loading component on the
beam (dead loads, own weight, etc.) are larger than the vibration amplitudes, then
the crack remains open all the times, or opens and closes regularly and the problem
is linear. If the static deflection is small, then the crack will open and close in time
depending on the vibration amplitude. In this case the system is nonlinear. The
effect of a breathing crack on the flexural and longitudinal vibration of cracked
structures is discussed in the papers by Chondros and Dimarogonas [55, 56].
Besides, the change of damping of structures in case of crack initiation and growth
is important for the estimation of resonance and near resonance vibrations of high-
loaded structures and structural elements such as rotors of steam and gas turbines
[10–14, 57–62].
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Chapter 8
Thermal Effects Due to Vibration
of Shafts

Abstract Chapter 8 deals with the inverse problem of the one encountered in
Chap. 5, e.g. the heat generated by torsional vibration of rotating shafts. The
corresponding mechanisms are associated with internal damping and plastic
deformation. Practically all the energy of 476 plastic deformation is transformed
into heat. For elastic deformation part of the strain energy is transformed into heat,
depending on material loss factor. This phenomenon has been identified as the
cause of large-scale failures of power equipment, with electrical disturbances
being the cause of rotor torsional vibration. Maximum temperatures given in the
form of design nomograms can assist in estimating the overheating of shaft of
rotating machinery, where such phenomena are present. A typical turbo-generator
shaft is analyzed for vibrations occurring during electrical transients.

8.1 Heat Propagation Due to Torsional Vibration of Shafts

Torsional vibrations of shafts result in heat generation due to material damping. In
some cases, temperatures can reach high values affecting the reliability of machine
members. Such a case was reported for the generator exciter shaft failures at the
Southern California Edison. Mohave Station [1, 2], due to torsional vibration
resulting from subsynchronous resonance or the electromechanical system. The
heat generated produced high temperatures which destroyed the exciter insulation
and accelerated shaft failure.

This chapter gives a quantitative account of the temperatures generated in the
shaft and over its surface because of torsional vibration. The heat is generated due
to material damping and, for plastic deformation, due to plastic flow.

A. D. Dimarogonas et al., Analytical Methods in Rotor Dynamics,
Mechanisms and Machine Science 9, DOI: 10.1007/978-94-007-5905-3_8,
� Springer Science+Business Media Dordrecht 2013
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Dynamic effects due to surface friction heating have been reported for rotating
shafts [3–5, 7–12], Extensive studies were also reported on the effect of material
damping on the vibration response of shafts [12–17].

Barenblatt et al. [18]. studied heat propagation caused by a crack in a vibrating
elastic solid due to material damping. Panteliou and Dimarogonas [19–21]
reported on the temperatures produced during torsional vibration of rotating shafts.

A uniform shaft is supposed to undergo forced torsional vibration. In general,
vibration of this sort can have a linear mode between nodes for lumped mass
systems, and a harmonic mode for continuous shafts.

Therefore, the torsional vibration amplitude will be [3]

ul ¼ az cos xt ð8:1Þ

uc ¼ Cl cos
pz

L
cos xt ð8:2Þ

where z is coordinate along shaft axis, and subscripts l and c mean lumped mass
and continuous system, respectively. L is mode length and a and Cl, are vibration
amplitude parameters.

The energy of elastic deformation for unit volume under shear stress s will be

w ¼ s2

2G
ð8:3Þ

but

s ¼ 1
2

GDH

where H = du/dz, D is shaft diameter (D = 2r) at the point considered and
G shear modulus. Therefore,

w ¼ 1
2

G
du
dz

� �2

r2: ð8:4Þ

Heat generation per vibration cycle due to material damping is pcw/2 [3, 12]
where c is loss factor of the material. Therefore, heat generation rate will be

q

k
¼ pc

2
w ¼ pc

2
nGr2 du=dzð Þ2

2k
ð8:5Þ

where k is thermal conductivity and n = xn/2p, vibration frequency. For plastic
deformation, there will be additional heat generation. Practically all of deforma-
tion energy will be transformed into heat, so that the material loss factor should be
taken as effectively equal to 2/p, and an appropriate term should be added to Eq.
(8.5). Heat conduction equation for the shaft becomes, for the steady state [22],

o2T

or2
þ 1

r

oT

or
þ o2T

oz2
¼ � q

k
¼ � pcnGr2 du=dzð Þ2

4k
ð8:6Þ
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where T = T(r, z) is temperature.
Equations (8.1) and (8.2) yield

du1

dz
¼ a ð8:7Þ

duc

dz
¼ � p

L
Cl sin

pz

L
ð8:8Þ

The term cos xt was dropped at this point because heat generation was com-
puted on the basis of averaging over one period. It should be noted that with a
continuous system, L is not necessarily the total shaft length but the half cosine
period of the vibration mode over the shaft. The reason is that at the points z = 0
and z = L of this function, the twist (dH/dz) is zero and the corresponding energy
of elastic deformation and generated heat vanishes as well Fig. 8.1a. Due to
symmetry, there is no heat flow along the shaft at these points; therefore the part of

Fig. 8.1 Vibration modes
and heat functions for (a)
Continuous systems and (b)
Lumped mass systems
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the shaft of length L can be treated independently. Modes of more complicated
forms, mainly due to variable diameters, can be expressed as cosine series.

Equations (8.7) and (8.8) yield

q1

k
¼ pcnGr2a2

4k
¼ n1r2f1 zð Þ ð8:9Þ

qc

k
¼ xp2cGr2C2

1

16kL2
1� cos 2

pz

L

� �
ð8:10Þ

qc

k
¼ ncr2fc zð Þ ð8:11Þ

where

nc ¼
xGc
4KL2

fc zð Þ ¼ p2C2
1

4
1� cos

2pz

L

� �
ð8:12Þ

n1 ¼
xGc
4KL2

¼ nc f1 zð Þ ¼ a2L2: ð8:13Þ

Now, we turn to the heat conduction Eq. (8.6):

J Tð Þ ¼ o2T

or2
þ 1

r

oT

or
þ o2T

oz2
¼ �nr2f zð Þ ð8:14Þ

where n and f(z) are given by Eqs. (8.12) and (8.13). In general, for k ¼ p=L

f zð Þ ¼ b1 þ b2 cos 2kz ð8:15Þ

where for a lumped system

b1 ¼ a2L2 b2 ¼ 0 ð8:16Þ

and for a continuous system

b1 ¼
p2C2

1

4
b2 ¼ �

p2C2
1

4
: ð8:17Þ

Due to the linearity of the problem

T ¼ T1 þ T2 ð8:18Þ

where

J T1ð Þ ¼ �nr2b1 ð8:19Þ

J T2ð Þ ¼ �nr2b2 cos 2kz: ð8:20Þ
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Equation (8.19) suggests that T1 = T1(r) and qT1/qz = 0, Therefore,

T
00

1 þ
1
r

T
0

1 ¼ �nr2b1 ð8:21Þ

with the boundary condition of Newtonian cooling at r = R

k
dT1

dr
þ haT1 ¼ 0 ð8:22Þ

where ha is heat transfer coefficient. The resulting solution is

T1 rð Þ ¼ nb1R4

4
1
Bi
þ 1

4
1� r=Rð Þ4
h i� �

ð8:23Þ

where Bi is the Biot number, Bi = haR/k. Equation (8.20) suggests that

T2 r; zð Þ ¼ H rð Þ cos 2kz: ð8:24Þ

Therefore,

d2H
dr2
þ 1

r

dH
dr
� 2kð Þ2H ¼ �nr2b2: ð8:25Þ

The general solution of the homogeneous differential equation is

H rð Þ ¼ C1I0 2krð Þ þ C2K0 2krð Þ: ð8:26Þ

The boundary condition suggests that H be bounded for r ? 0, and therefore
C2 = 0; and at r = R there is Newtonian cooling with heat transfer coefficient ha

and Biot number Bi [Eq. (8.22)]. A particular solution of Eq. (8.25) will be sought
in the form.

Hl rð Þ ¼ a0 þ a1r þ a2r2: ð8:27Þ

Therefore, solving for the coefficients a0, a1, a2:

Hl rð Þ ¼ nb2

4k4 þ
nb2

4k2 r2:

For the non-homogeneous differential equation, the general solution will be

H rð Þ ¼ C1I0 2krð Þ þ nb2

4k4 þ
nb2

4k2 r2: ð8:28Þ

The boundary condition

K
dH
dr
þ haH ¼ 0

yields
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C1 ¼ �
nb2

2k2

Bi
2

1
k2 þ R
� �

þ R2

2kRI1 2kRð Þ þ BiI0 2kRð Þ

and, therefore, from Eq. (8.28) yields

H rð Þ ¼ � nb2

4k2

Bi 1þ k2R2
� 	

þ 2k2R2

2kRI1 2kRð Þ þ BiI0 2kRð Þ I0 2krð Þ � 1þ rkð Þ2
h i

( )

: ð8:29Þ

Then, Eqs. (8.18), (8.23), (8.24) and (8.29) yield the solution

T ¼� nb2

4k2

Bi 1þ k2R2
� 	

þ 2k2R2

21 2kRð Þ þ BiI0 2kRð Þ I0 2krð Þ � 1þ rkð Þ2
h i

( )

� cos 2kz

þ nb1R4

4
1
Bi
þ 1

4
1� r=Rð Þ4
h i� �

:

ð8:30Þ

For lumped mass systems, one can write

T ¼ nb1R4

4
1
Bi
þ 1

4
1� r=Rð Þ4
h i� �

: ð8:31Þ

In dimensionless form,

4T

nb1R4
¼ 1

Bi
þ 1

4
1� r=Rð Þ4
h i

: ð8:32Þ

The maximum temperature occurs at the centre of the cylinder (r = 0), and the
minimum one at the surface (r = R). Therefore

4Tmax

na2L2R4
¼ 1

Bi
þ 1

4
4Tmin

na2L2R4
¼ 1

Bi
:

In Fig. 8.2 the maximum and minimum (surface) temperatures are shown as
functions of Biot number. The temperature at the shaft centre (r = 0 and z = 0) is
given by

8k4Tmax

np2C2
1

¼
Bi 1þ k2R2
� 	

þ 2k2R2

2kRI1 2kRð Þ þ BiI0 2kRð Þ � 1þ k4R4 1
Bi
þ 1

4

� �
: ð8:33Þ

The maximum surface temperature occurs for r = R and z = 0:

8k4Tsurf

np2C2
1

¼
Bi 1þ k2R2
� 	

þ 2k2R2

2kRI1 2kRð Þ þ BiI0 2kRð Þ I0 2kRð Þ � 1þ Rkð Þ2
h i

þ kRð Þ4 1
Bi

� �

ð8:34Þ
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These temperatures are plotted in Figs. 8.3 and 8.4 as functions of Biot number
and radius to length parameter kR ¼ pR=L.

From Fig. 8.2, it can be seen that, for lumped mass systems, substantial tem-
peratures can be developed for low Biot number. With exciters for electric gen-
erators, where electrical insulation between shaft and collector exists, this

Fig. 8.3 Maximum
temperatures for a uniform
mass shaft (from Ref. [19], by
permission). Ordinate: Bi.
Abscissa: 8k4Tmax=np2C2

1

Fig. 8.4 Maximum surface
temperatures for a uniform
mass shaft (from Ref. 19 by
permission). Ordinate: Bi.
Abscissa: 8k4Tsurf=np2C2

1

Fig. 8.2 Maximum and
surface temperatures for a
lumped mass shaft (from Ref.
[19] by permission).
Ordinate: 4T/na2L2R4.
Abscissa: Bi
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insulation has low thermal conductivity and acts as a thermal insulator as well. In
this case, temperatures reach high levels and destroy the insulation. For very high
values of Biot number, i.e. high rate of heat convection over the surface, surface
temperatures fall with increasing Biot number but the maximum temperatures at
the shaft centre decrease with an increasing Biot number, but only down to a
certain level, and remain constant despite further increase of the Biot number.

Similar results are presented with continuous systems in Figs. 8.3 and 8.4.
Temperatures increase rapidly with increasing diameter to length ratio. Again,
substantial temperatures can be developed in the shaft centre even at very high
rates of surface cooling (Biot number) and even higher temperatures at the surface
in case of surface insulation (low Biot number) as previously mentioned for the
electric exciter.

Equation (8.30) was used to calculate temperature field in a continuous shaft
with the following characteristics:

(a) Geometry: diameter 2R = 0.20 m;
Length L = 2 m;

(b) Material properties: shear modulus, steel SAE 1045; G = 1.05 9 1011 N/m2;
Material damping factor c = 0.01 Snowdon [12];
Thermal conductivity (steel) ks = 60 W/m �C;
Thermal conductivity (air) ka = 0.095 W/m �C;
Viscosity (air) t ¼ 0:1785� 10�4 m2=s;

(c) Vibration mode (Eq. 8.2):
Amplitude C1 = 0.0093 rad;
Angular velocity x ¼ 377 rad=s;
Vibration frequency n = 914 Hz.

In this example, Biot number was computed for rotation of the cylinder in free
air. For this case, Dorfman [23] gives the Nusselt number, for negligible effect of
the free convection, based on the plain wall model, Nu = 300 for Reynolds
number

Re ¼ x0R2

t
¼ 377� 0:12

0:1785� 10�4
¼ 211:000

Biot number

Bi ¼ Nu
ka

ks
¼ 0:47

The maximum shear stress corresponding to the above geometry and vibration
characteristics can easily be computed to be smax = 4.85 9 106 N/m2. The cor-
responding temperatures are shown in Fig. 8.5 for different radii. It is shown that
considerable temperatures will develop.
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8.2 Heat Propagation in Rotating Shafts Due to Bending

A uniform shaft is supposed to rotate at constant speed and carry static loads.
Because of rotation the shaft material undergoes alternating bending stresses. Due
to the damping mechanism, a certain amount of heat is generated within the shaft
material. Exactly the same analysis applies to any form of bending vibration of
shafts or beams of circular cross-section [24].

The energy of elastic deformation for unit volume under bending stress a will
be, for a static load mg at the midspan of the rotor

w ¼ r2

2E
ð8:35Þ

but

r ¼ Mr=I

where bending moment M = mgz/2, moment of inertia I = R4/4, and R is shaft
radius. Furthermore, E is elastic modulus, g acceleration of gravity, m mass of the
static load, z coordinate along the shaft axis and L is shaft length. The situation is
shown in Fig. 8.6. Therefore

w ¼ 2m2g2z2r2

p2ER8
: ð8:36Þ

Fig. 8.5 Temperature
distribution in a uniform mass
shaft (from Ref. [19] by
permission)

Fig. 8.6 Shaft geometry
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Heat generation per time unit due to material damping is pcw/2 [3, 12], where c
is loss factor of the material and rotation frequency n = xn/2p. Therefore, heat
generation rate will be

q ¼ pnc
2

w ¼ cnm2g2z2r2

pER8
: ð8:37Þ

The heat conduction equation for the shaft becomes for the steady state [23]

oT

or
þ 1

r

oT

or
þ o2T

oz2
¼ � q

k
ð8:38Þ

where k is thermal conductivity, and with boundary conditions
(1) Newtonian cooling at r = R

k
oT

or
þ hT ¼ 0 ð8:39Þ

where h is heat transfer coefficient at the surface.
(2) due to symmetry at z = 0

oT

oz
¼ 0 ð8:40Þ

Equations (8.36) and (8.37) yield

o2T

or2
þ 1

r

oT

or
þ o2T

oz2
¼ �Az2r2 ð8:41Þ

where A ¼ � ðcnm2g2=pkER8Þ. One can solve Eq. (8.41) using the finite cosine
Fourier transform of T(r, z) as follows: Let

F r; gð Þ ¼
ZL

0

T r; zð Þ cos
pgz

L
dz: ð8:42Þ

Equation (8.41) multiplied by cos(pnz/L)dz and integrated between 0 and
L yields

ZL

0

o2T

or2
cos

pgz

L
dz ¼ o2

or2

ZL

0

Tcos
pgz

L
dz ¼ o2F

or2

ZL

0

1
r

oT

oz
cos

pgz

L
dz ¼ 1

r

o

oz

ZL

0

Tcos
pgz

L
dz ¼ 1

r

oF

oz

ZL

0

o2T

oz2
cos

pgz

L
dz ¼ � pg

L

� �2

F
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Therefore

o2F

or2
þ 1

r

oF

or
� a2F ¼ �Ar2

ZL

0

z2 cos azdz

where a ¼ pn=L. Since

ZL

0

z2 cos azdz ¼ 2L3 cos pg

pgð Þ2
¼ 2L3 �1ð Þg

pgð Þ2

we get

o2F

or2
þ 1

r

oF

or
� a2F ¼ bgr2 ð8:43Þ

where

bg ¼
2AL3 �1ð Þn

pgð Þ2
g ¼ 1; 2; 3; . . .

At this point, it should be noted that the simple model of linear bending due to a
static load at the midspan was assumed. In general, the integration should be
carried out for any form of the bending diagram of the shaft. This will yield a
different value for bn. In the present case, integration was carried out over half the
shaft length since, due to symmetry of the bending diagram and therefore sym-
metry of the heat function, there is no axial flow at the midspan.

The general solution of the homogeneous differential equation is

F rð Þ ¼ C1I0 arð Þ þ C2K0 arð Þ: ð8:44Þ

The boundary condition suggests that F be bounded for r ? 0; and therefore
C2 = 0; and that at r = R there is Newtonian cooling:

k
dF

dr
þ hF ¼ 0: ð8:45Þ

A particular solution of Eq. (8.43) will be sought in the form

Fl rð Þ ¼ d0 þ d1r þ d2r2: ð8:46Þ

Substituting in Eq. (8.43) and equating to zero the coefficients of powers of r,
the particular solution is found as

Fl rð Þ ¼ �
4bg

a4
�

bg

a2
r2 ¼ �

bg

a4
4þ arð Þ2
h i

: ð8:47Þ
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The general solution for the non-homogeneous differential equation will be

F r; gð Þ ¼ C1I0 arð Þ �
bg

a4
4þ arð Þ2: ð8:48Þ

With Bi = hR/k, Eqs. (8.45) and (8.48) yield,

C1 ¼
bg

a4

Bi 4þ aRð Þ2
h i

þ 2 aRð Þ2

aRI1 aRð Þ þ BiI0 aRð Þ

8
<

:

9
=

;
:

Therefore,

F r; gð Þ ¼
bg

a4

Bi 4þ aRð Þ2
h i

þ 2 aRð Þ2

aRI1 aRð Þ þ I0 aRð Þ

8
<

:

9
=

;
I0 aRð Þ � 4� aRð Þ2

2

4

3

5: ð8:49Þ

One can obtain zero-order of F(r,n) as follows: Multiplying Eq. (8.41) by
cosðpnz=LÞdz and integrating between 0 and L for n = 0 and F0 = F(r,0):

d2F0

dr2
þ 1

r

dF0

dr
¼ AL3r2

3
: ð8:50Þ

But

1
r

d

dr
r

dF0

dr

� �
¼ d2F0

dr2
þ 1

r

dF0

dr
¼ AL3r2

3
:

Integrating twice:

F0 ¼
AL3r4

48
þ C1 ln r þ C2: ð8:51Þ

For F0 bounded, C1 must be zero.
Due to Newtonian cooling

R
dF0

dr
þ BiF0 ¼ 0 r ¼ R: ð8:52Þ

Equation (8.52) yields

C2 ¼ �
AL3R4

12
1
Bi
þ 1

4

� �
: ð8:53Þ

Therefore,

F0 ¼
R4AL3

48
r

R

� �4

� 4
Bi
þ 1

� �
 �
: ð8:54Þ
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Because T(r, z) satisfies Dirichlet’s conditions in the interval (0, L) and con-
sidering Eq. (8.42), then T(r, z) is given at each point of the interval (0, L) by the
series [23] (inverse discrete Fourier transform)

T r; zð Þ ¼ 1
L

F r,0ð Þ þ 2
L

X1

g¼1

F r; gð Þcos
pgz

L
: ð8:55Þ

Equations (8.49), (8.54) and (8.55) yield the following solution:

T r; zð Þ ¼R4AL2

48
r

R

� �4

� 4
Bi
þ 1

� �
 �
þ
X1

g¼1

4A �1ð Þg

a6

�
Bi 4þ aRð Þ2
h i

þ 2 aRð Þ2

aRI1 aRð Þ þ BiI0 aRð Þ

8
<

:

9
=

;
I0 arð Þ � 4� arð Þ2

2

4

3

5cos az

ð8:56Þ

The temperature in dimensionless form is

T

AL6
¼ R=Lð Þ4

48
r

R

� �4

� 4
Bi
þ 1

� �
 �
þ
X1

g¼1

4A �1ð Þg

pgð Þ6

�
Bi 4þ aRð Þ2
h i

þ 2 aRð Þ2

aRI1 aRð Þ þ BiI0 aRð Þ

8
<

:

9
=

;
I0 arð Þ � 4� arð Þ2

2

4

3

5cos
pgz

L

ð8:57Þ

The maximum core temperature occurs at r = 0, z = L:

Tc

AL6
¼ � R=Lð Þ4

48
4
Bi
þ 1

� �
þ
X1

g¼1

4

pgð Þ6
Bi 4þ aRð Þ2
h i

þ 2 aRð Þ2

aRI1 aRð Þ þ BiI0 aRð Þ � 4

8
<

:

9
=

;
: ð8:58Þ

The maximum surface temperature occurs at r = R, z = L:

Ts

AL6
¼ � R=Lð Þ4

12Bi
þ
X1

g¼1

4

pgð Þ6

�
Bi 4þ aRð Þ2
h i

þ 2 aRð Þ2

aRI1 aRð Þ þ BiI0 aRð Þ

8
<

:

9
=

;
I0 aRð Þ � 4� aRð Þ2

2

4

3

5:

ð8:59Þ

These temperatures are plotted in Figs. 8.7 and 8.8 as functions of Biot number
and radius to length parameter, R/L. From Figs. 8.7 and 8.8, it can be seen that
substantial temperatures can develop at low Biot numbers and high R/L ratios. At
low Biot numbers, maximum core and surface temperatures are very close. Surface
temperatures drop drastically at higher Biot numbers, while maximum core tem-
peratures are substantially higher [25].
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Equation (8.57) was used to calculate temperature field in a uniform shaft with
the following characteristics:

(a) Geometry: diameter 2R = 1.00 m;
length 2L = 20 m;

(b) Material properties: elastic modulus, steel SAE 1045; E = 2.10 9 1011 N/ m2;
Material damping factor c = 0.01 Snowdon [12];
Thermal conductivity (steel) ks = 22 W/m �C;
Thermal conductivity (air) ka = 0.03 W/m �C;
Viscosity (air) t ¼ 0 � 1785� 10�4 m2=s;

(c) Deflection mode: angular velocity
Static load at midspan x ¼ 377 rad=s;

F = 58.86 9 104 N.

In this example, Biot number was computed for rotation of the cylinder in free
air. For this case, Mikheyev [26] relationship (Eq. 2.46)

Fig. 8.7 Maximum core
temperatures (Courtesy
ASME [27])

Fig. 8.8 Maximum surface
temperatures (Courtesy
ASME [27])
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Nuf ¼ 0:018 Re0:80

yields Nusselt number (for negligible effect of the free convection, based on the
plane wall model) Nu = 4300 for Reynolds number:

Re ¼ xR2

t
¼ 377� 0.52

0.1785 � 1064
¼ 5.28� 106:

Biot number

Bi ¼ Nu
ka

ks
¼ 4300� 0.03

22
¼ 5.7.

The maximum bending stress corresponding to the above geometry and loading
characteristics can be easily computed to be rmax = 30 MN/m2. The corre-
sponding temperatures are shown in Fig. 8.9 for the core (r = 0) and for the
surface (r = R) [26].

Fig. 8.9 Temperature
distribution in a uniform shaft
(Courtesy ASME [27])

8.2 Heat Propagation in Rotating Shafts Due to Bending 217



8.3 Summary and Conclusions

Transient heat propagation in a rotating shaft undergoing torsional vibration of
variable amplitude, or due to static load, internal damping or bending vibration
was discussed. It was shown that low heat transfer coefficients over the shaft
surface can lead to extremely high surface temperatures. High diameter to length
ratios lead also to high surface temperatures. Surface temperatures drop rapidly
with increasing heat transfer coefficients over the surface [19–21, 24, 25, 27].

Transients following switching in the network and/or the tripping of generating
unit auxiliaries can excite oscillatory torques on the turbine-generator-rotor-shaft
system. The oscillations can be damped or amplified with time. Damped oscilla-
tions affect the power quality and, if the oscillations grow with time, they may
even lead to generating unit outages (and damages) resulting in possible system
instabilities. During such transients, substantial temperatures may develop in the
shafts which may affect the operation of the machine [21, 28–30].

Plastic deformation is very important because practically all the energy of
plastic deformation is transformed into heat. For elastic deformation some of the
strain energy is transformed into heat depending on the loss factor of the material.
For machinery steels the amount of strain energy which is transformed into heat is
usually below 1 %. This stresses the importance of the plastic deformation on the
shaft [21].

The results of this transient analysis coincide in the limit with previously
published results on steady state heat generation due to constant amplitude
vibration. Maximum temperalbures are given in the form of design nomograms
which can assist in estimating the overheating of shaft of rotating machinery where
such phenomena are present. In particular, a typical turbo-generator shaft was
analysed for vibrations occuring during electrical transients. Substantial temper-
atures have been computed for this ease [21, 28].
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Chapter 9
Variational Formulation of Consistent:
Continuous Cracked Structural Members

Abstract In Chap. 9, modeling and formulation of the governing dynamic
equations for cracked Euler-Bernoulli beams in flexural vibration are studied. The
results of three independent evaluations of the lowest natural frequency of lateral
vibrations of beams with single-edge cracks and various end conditions are
investigated: continuous cracked beam vibration theory, lumped crack flexibility
model vibration analysis, a finite element method, and experimental results. For
the case of torsional vibration of a shaft with a peripheral crack, the Hu-Washizu-
Barr variational formulation is adopted for obtaining the differential equation of
motion, with plausible assumptions about displacements, momentum, strain and
stress fields, along with the associated boundary conditions. For the experimental
procedure crack propagation and formation of stationary cracks is achieved by a
vibration technique. Continuous cracked beam theory agrees better with experi-
mental results than lumped crack theory.

9.1 Variational Formulation of Cracked Beams and Rods

Cracks on elastic structural elements introduce considerable local flexibility due to
strain energy concentration around the crack tip [1, 2]. Great efforts have been
expended to develop models capable of simulating the vibrational characteristics of
cracked beams, however, the said models usually assume ideal geometry and
material properties [3–20]. Variational approaches seem promising in such cases, as
the one used by Chondros et al. [21–29] to develop a continuous vibration model for
the lateral vibration of cracked Euler-Bernoulli beams with open single-edge or
double-edge cracks, and torsional vibration of cracked rods. The Hu-Washizu-Barr

A. D. Dimarogonas et al., Analytical Methods in Rotor Dynamics,
Mechanisms and Machine Science 9, DOI: 10.1007/978-94-007-5905-3_9,
� Springer Science+Business Media Dordrecht 2013
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[30, 31] variational formulation was used to develop the differential equation and
boundary conditions for flexural and torsional vibration of structural members with
flaws considered as one-dimensional continua. Cracks are modelled as continuous
flexibilities, and displacement field, found with fracture mechanics methods is
investigated. This consistent continuous cracked beam vibration theory is useful in
predicting changes in flexural vibration of prismatic members with single- or
double open-edge surface cracks. The variational formulation along with fracture
mechanics methods, provide analytical solutions, for the development of the dif-
ferential equation and the boundary conditions of the cracked beam. Analytical
methods are always convenient, since they deliver accurate results, are more effi-
cient and provide deep physical insight into the problem.

In this chapter the problem of cracked beams with a single- or double-edge
surface crack and various end-conditions is investigated. The cracked beam model
satisfies the Euler-Bernoulli theory [27–29] i.e., the planar cross-sections of the
undeformed beam remain plane after deformation, perpendicular to any axis along
the length of the beam and retain original size and shape after deformation, the
vibration of the cracked beam as a one–dimensional structural member is
described by a linear hyperbolic partial differential equation of second order, with
respect to time. Beam has open edge crack(s) along its length, and modification of
the stress field in the vicinity of the crack is evaluated by fracture mechanics
methods. A comparative study based on the Hu-Washizu-Barr variational for-
mulation, a lumped crack flexibility approach and a finite element alternative is
applied for the derivation of the cracked beam frequencies drop for vibration
analysis and crack identification. The analytical and numerical results were cor-
related with experimental results, obtained from prismatic aluminium beams with
open fatigue cracks.

For the case of torsional vibration of a shaft with a peripheral crack, again the
Hu-Washizu-Barr variational formulation will be adopted for obtaining the dif-
ferential equation of motion, with plausible assumptions about displacements,
momentum, strain and stress fields, which produces the approximate equation of
motion together with its associated boundary conditions. Relationships between
strain and displacement, stress and strain, and momentum and displacement are
also generated [27–30].

9.2 Lateral Vibration of a Continuous Cracked Beam

9.2.1 The Variational Theorem for a Simply Supported
Beam

Hu-Washizu-Barr [30–32] variational principle in linear elasticity allows for
independent variation of displacement, strain, and stress for the construction of
approximate equations of equilibrium in elastostatic problems. Application of
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Hu-Washizu variational principle requires plausible assumptions about momen-
tum, strain and stress fields. Christides and Barr [31] extended Hu-Washizu [30]
principle further, by incorporating the perturbation in the stress and strain distri-
butions of the beam, due to the presence of a crack through local functions which
assume their maximum value at the cracked section, and decay exponentially from
crack location. The equations of motion of a cracked beam-like structure are
derived through Hu-Washizu-Bar [30–32] variational principle. The reduction to
one spatial dimension was achieved by using integration over the cross-section
after certain stress, strain, displacement and momentum fields were chosen. In
particular, the modification of the stress field induced by the crack was introduced
through a local experimental function, assuming an exponential decay with dis-
tance from the crack, and included a parameter that must be evaluated by
experiments. Some experiments on beams with cuts simulating cracks were briefly
described. The change in the first natural frequency versus crack depth matched
closely with theoretical predictions. To confirm theoretical results, Shen and Pierre
[33, 34] used a two-dimensional finite element approach to determine the
parameter controling the stress concentration profile near the crack tip in the
theoretical formulation without using experimental results. They found an agree-
ment between theoretical and finite element results.

For an Euler-Bernoulli beam with an open single transverse surface crack as
shown in Fig. 9.1, where displacement components are denoted by ui, strain
components by cij, and stress components by rij, with i, j = 1, 2, 3 referring to
Cartesian axes x, y, z. Normal engineering notation will be used here with u1 = u,
u2 = t, u3 = w. Let pi be the momentum such that Tm = 1/2qdijpipj will be the
kinetic energy density (dij is Kronecker’s delta). For arbitrary independent varia-
tions dui, dcij, drij, and dpi, the extended Hu-Washizu variational principle was
introduced by Christides and Barr [30–32] and Chondros et al. [21–23] in the form:

Z

V

n
rij;j þ Fi � q _pi

� �
dui þ rij �W;cij

h i
dcij

þ cij � 1� 1
2

dij

� �
ui;j þ uj;i

� �� 	
drij þ q _ui � Tm;pi

� �
dpi

o
dV

þ
Z

Sg

�gi � gi½ �duidSþ
Z

Su

ui � �ui½ �dgidS ¼ 0

ð9:1Þ

z

M M x
a h

L L 0 - L

Fig. 9.1 Geometry of a
simply supported beam with
an edge crack
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where, W(cij) is strain energy density function, q is material density, Fi, gi and ui

are, respectively, body forces, surface traction and surface displacement. Moreover,
V is the total volume of the solid, and Sg and Su are its external surfaces. The overbar
denotes the prescribed values of the surface traction and the surface displacement.
The prescribed surface tractions gi are applied over the surface Sg and the prescribed
displacements ui are over Su. Together Sg and Su constitute the total surface of the
solid. The differentiation with respect to time (q/qt) is indicated by a dot. Commas
in the subscripts indicate differentiation with respect to Cartesian axes.

To derive the governing equation and applicable boundary conditions for the
transverse vibration of a cracked beam through the variational theorem, Eq. (9.1),
the x axis is taken along the center line of the bar and the yz plane is the plane of
the cross-section. The change in stress, strain and displacement distributions due to
the crack will be expressed by a crack disturbance function for the axial dis-
placement f(x,z) introduced here.

For a uniform beam in the absence of body forces, the introduction of the
displacement disturbance function f(x,z) will modify Eq. (9.3) of Ref. [30] to yield:

u ¼ �z 1 þ f x; zð Þ½ �w x; tð Þf g0; t ¼ 0;w ¼ 1þ f x; zð Þ½ �w x; tð Þpx ¼ 0; py ¼ 0; pz ¼ P x; tð Þ
cxx ¼ �zS x; tð Þ; cyy ¼ czz ¼ �mcxx; cxy ¼ cyz ¼ cxz ¼ 0

rxx ¼ �zT x; tð Þ; rxz ¼ rxz x; z; tð Þ; rxy ¼ rzz ¼ rxy ¼ ryz ¼ 0Fx ¼ Fy ¼ Fz ¼ 0

ð9:2Þ

Following the method introduced in Ref. [30] the term rxz is applied for the
lateral loading of the beam, and furthermore, it will be noted f(x,z) = f. Equation
(9.2) can now be substituted in the general variational theorem, Eq. (9.1) and
independent variations of the unknowns w, P, S and T are considered. The vari-
ations will be considered one by one as follows:

For an arbitrary and independent variation dT, the strain-displacement term of
Eq. (9.1) becomes:

Z

V

cxx � ox

h i
drxxdV ¼

Z

x

Z

A

�zSþ z½ð1þ f Þw�00
� �

� zdTdA

8
<

:

9
=

;
dx ð9:3Þ

Defining the various integrals over the cross section A as:

I ¼
Z

A

z2dA; I2 ¼
Z

A

zdA; I4 ¼
Z

A

z2f 00dA; I5 ¼
Z

A

z2f 0dA; I6 ¼
Z

A

z2 1þ fð ÞfdA;

the right-hand of Eq. (9.3) becomes:
Z

x

I � 2I2ð ÞS� I4wþ 2I5w0 þ I6w00ð Þf g dTdx ð9:4Þ
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The stress-strain term in Eq. (9.1) is

Z

v

rxx �
oW

ocxx

� 	
dcxx �

oW

ocyy
dcyy �

oW

oczz
dczz

( )

dSdV ð9:5Þ

where, W ¼ 1=2 ke2 þ Gðc2
xx þ c2

yy þ c2
zzÞ þ 1=2 Gðc2

xy þ c2
yz þ c2

xzÞ is strain energy
density, E and m are Young modulus and Poisson’s ratio respectively,
e ¼ cxx þ cyy þ czz is dilatation, G ¼ E=½2ð1þ mÞ� is shear modulus, and
k ¼ mE=½ð1þ mÞð1� 2mÞ� is Lame’s constant. Substituting the various quantities
from Eq. (9.2), the stress-strain term (9.5) simplifies to:

Z

x

T � ESð ÞðI � 2I2Þf gdSdx ð9:6Þ

The velocity momentum term is written using assumptions (9.2) as:
Z

x

qI7 _w� qPAð ÞdPdx ð9:7Þ

where I7 ¼ R
A 1þ f x; zð Þ½ � dA:

The first term of Eq. (9.1) is the dynamic equilibrium term, leading to the
equation of motion. Using the assumptions of Eq. (9.2), this term becomes:

Z

V

orxx

ox
þ orxz

oz

� �
duþ orxz

ox
� q _Pz

� �
1þ fð Þdw

� 	
dV

¼
Z

A

Z

x

ð�zTÞ0 þ orxz
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� 	�
�zd



ð1þ f Þw

�0	


þ orxz

ox
� q _P

� �
1þ fð Þdw

�
dxdA

ð9:8Þ

Since,

d 1þ fð Þw½ �0� o

ox
1þ fð Þdw½ � ð9:9Þ

the first term of Eq. (9.8) can be integrated by parts as
Z

A

Z

x
z2T 0 � z

orxz

oz

� �
o

ox

� �
ð1þ f Þdw½ �


 �
dxdA

¼
Z

A
z2T 0 � z

orxz

oz

� �� 	
1þ fð Þdw dAjx

�
Z

A

Z

x
z2T 0 � o

ox
z
orxz

oz

� �� 	
1þ fð ÞdwdxdA

ð9:10Þ
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The last term of Eq. (9.10) integrated by parts over z results in
Z

x

o

ox

Z

y

Z

z
z
orxz

oz
dzdy


 �
1þ fð Þdwdx

¼
Z

y

Z

x

o

orz
zrxzð Þ 1þ fð Þdwdxdyjz

�
Z

A

Z

x

orxz

oz
1þ fð ÞdwdxdA

ð9:11Þ

The boundary terms of Eq. (9.10) incorporated with the other boundary con-
ditions, of the variational Eq. (9.1) yield

Z

A

z2T 0 � z
orxz

oz


 �
ð1þ f Þdw dAjx

þ
Z

y

Z

x

o

ox
ðzrxzÞð1þ f Þdwdx dyjz

ð9:12Þ

The first and second term of the right-hand of Eq. (9.10) incorporated in Eq.
(9.8) reduces the latter to the form

Z

x

Z

A

�z2T
� �00�q _P
h i

1þ fð ÞdwdAdx ð9:13Þ

Performing the double differentiation indicated and integrating over the cross-
section in (9.13), the dynamic equilibrium term of Eq. (9.1) can be rewritten as

Z

x

I002 T þ 2I02T 0 þ I2 � Ið ÞT 00 � qA _P
� 


1þ fj jdwdx ð9:14Þ

It will be assumed that the lateral surfaces Sg of the beams are free of external
traction, i.e., that all prescribed traction on lateral surfaces are zero. The surface
force is obtained from the stress components as gi ¼ rijnj where nj is the direction
cosine of the external normal to the surfaces with the co-ordinate directions. While
the beam is a uniform beam, the normal to its lateral surfaces will be at right angles
to its axis so that nx is zero. Thus, using Eq. (9.2), the surface forces gi become:

gx ¼ rxxnx þ rxy ny þ rxz nz ¼ rxz nz;

gy ¼ ryxnx þ ryy ny þ ryz nz ¼ 0;

gz ¼ rzxnx þ rzy ny þ rzz nz ¼ 0

ð9:15Þ

On the other hand, over the ends of the beam x = 0 and x = Lo, there are
nx = -1 and nx = 1, respectively (assuming plane ends normal to the beam axis).

226 9 Variational Formulation of Consistent



From Eq. (9.15) gx is reduced to ± rxx and gz to ± rxz. The forces prescribed at
the ends, integrated over the section, correspond to an applied force or moment.

The surface integral in the general variational Eq. (9.1) thus takes the form,
over the lateral surface of the beam at the limits of z, z1 and z2, and z2 [ z1:

Z

x

Z

y

0� rxz½ �z¼z2
duþ 0þ rxz½ �z¼z1

du
n o

dydx

which can be written as:

Z

x

Z

y

�rxzdudydx

2

64

3

75

�������

z2

z1

Using the relation du ¼ �zð1þ f Þdw0 and integrating by parts over x, the latter
surface integral becomes:

Z

y

zrxz 1þ fð Þdwdy

1

CA

�������

2

64

x

�
Z

y

Z

x

d
dx

zrxzð Þ 1þ fð Þdwdxdy

3

75

�������

z2

z1

ð9:16Þ

The second term of this integral cancels the final term of Eq. (9.12). The second
term of (9.12) can be integrated by parts over z, and results in a term cancelling
first term of (9.16). The remaining terms of Eq. (9.12) applied to the boundaries of
x are:

Z

y

z2T 0 þ rxz

� 

1þ fð Þdw dAjx ð9:17Þ

Similarly, for the prescribed forces, the surface integral of Eq. (9.1) over the
ends of the beam, at x = 0 and x = L0, assume the form:

Z

A

Z
�X � rxxð Þduþ �Z � rxzð Þ 1þ fð Þdwf gdA

2

4

3

5

x¼L0

þ
Z

A

�X þ rxxð Þduþ �Z þ rxzð Þdwf gdA

� 	

x¼0

ð9:18Þ

The variation dw in term (9.17) is arbitrary and independent, expecting at
boundary

rxz ¼ �z2T 0
� 
��

x
ð9:19Þ
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From Eqs. (9.19 and 9.18) and using Eq. (9.2) for the quantities du, dw and rxx,
integration over the section can be performed. The resulting boundary terms take
the form,

�
Z

A

z�XdAþ ðI2 � IÞT

8
<

:

9
=

;
dw0 þ
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8
<

:

9
=

;
dw
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8
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9
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Z

A
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9
=

;
dw

2
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5

x¼0

ð9:20Þ

On the other hand, for the prescribed displacements, the surface integral of the
variational Eq. (9.1) over the ends x = 0, and x = Lo is:

Z

A

fðu� �uÞdrxx þ ð1þ f Þðw� �wÞdrxxgdA

2

4

3

5

x¼L0

�
Z

A

fðu� �uÞdrxx þ ð1þ f Þðw� �wÞdrxxgdA
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5

x¼0

ð9:21Þ

After substituting for u, w and rxx from Eq. (9.2) and integrating over the
section, (9.21) becomes:

ðI � I2Þð1þ f Þw0 þ
Z

A

�uzdA

8
<

:

9
=

;
dT þ ðw� �wÞAf gdrxz
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�uzdA
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:

9
=
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dT þ fðw� �wÞAdrxzg
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x¼0

ð9:22Þ

The entire variational statement for the vibration of cracked Euler–Bernoulli
beams can now be assembled by using Eq. (9.1) and the variational terms (9.4),
(9.6), (9.7) and (9.14) along with the boundary terms given in (9.20) and (9.22).
The variations dw, dP, dS, dT and drxz are regarded as independent so that
Eq. (9.1) implies, for arbitrary values of these variations, that each term multiplied
by them in the volume integral must independently be zero, which will give the
following relations directly:
the strain-displacement term (9.4) for dT yields

S ¼ Q1 xð Þw00 þ Q2 xð Þw0 þ Q3 xð Þw ð9:23Þ

where: Q1 xð Þ ¼ I6= I � 2I2ð Þ;Q2 xð Þ ¼ 2I5= I � 2I2ð Þ;Q3 xð Þ ¼ I4= I � 2I2ð Þ, from
stress-strain term (9.6):
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T ¼ E S; ð9:24Þ

from velocity momentum term (9.7):

P ¼ I7

A
_w; ð9:25Þ

and from dynamic equilibrium term (9.14):

I002 T þ 2I02T 0 þ I2 � Ið ÞT 00 � qA _P ¼ 0 ð9:26Þ

or

I � I2ð ÞT½ �00þqA _P ¼ 0 ð9:27Þ

The above Eq. (9.27) is the equation of motion. Substitution for T and P can be
made in terms of displacement w by using Eqs. (9.23–9.27). The resulting equation
of motion is

E I � I2ð Þ Q1w00 þ Q2w0 þ Q3wð Þ½ �00þqI7 €w ¼ 0 ð9:28Þ

where the various integrals over the cross section A have been defined as:

I ¼Z

A
z2dA; I2 ¼

Z

A
zdA; I4 ¼

Z

A
z2f 00dA; I5 ¼

Z

A
z2f 0dA

I6 ¼
Z

A
z2 1þ fð ÞfdA; I7 ¼

Z

A
½1þ f x; zð ÞdA;

Q1 xð Þ ¼I6= I � 2I2ð Þ;Q2 xð Þ ¼ 2I5= I � 2I2ð Þ;Q3 xð Þ ¼ I4= I � 2I2ð Þ

Equation (9.28) is the differential equation expressing the consistent beam
behaviour for generally distributed displacement field. The boundary conditions
appropriate to equation of motion (9.28) are obtained by equating surface integral
(9.20) of Eq. (9.1), to zero with prescribed external forces, and equivalent surface
integral (9.22) to zero with prescribed displacements.

From Eq. (9.28) it can be seen that the displacement disturbance factor
f(x,z) affects the displacement w(x,t) through the function I7(x) directly. The dis-
placement disturbance factor f(x,z) will be evaluated by fracture mechanics
methods available in the literature, in the next paragraph.

If there are no cracks in the beam, the functions f, I2, I4, I5, Q2, Q3 are zero, Q1

is unity and function I7 is replaced by area A. The equation of motion (9.28) will
then reduce to [3]

EI o4w x; tð Þ=ox4 þ Aq o2w x; tð Þ=ot2 ¼ 0: ð9:29Þ

9.2.2 The Crack Disturbance Function

For the redistribution of stress in a structural member due to the presence of a
crack or notch, linear-elastic stress analysis methods have been used. The high
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elevation of stresses in the vicinity of the crack tip, which usually is accompanied
by some plasticity and other non-linear effects, is confined within a linear elastic
field surrounding the crack tip [36–43] The influence of crack surfaces on stress
distribution in the vicinity of the crack tip prevails against remote stress-free
surfaces. Other loading forces and boundary conditions have a lesser effect on the
intensity of this local stress field.

Griffith’s concept, relating fracture stress to crack size, for brittle materials lay
the foundations of fracture mechanics as [36–40]:

ffiffiffiffiffiffiffi
GE
p

¼ r
ffiffiffiffiffiffi
pa
p

ð9:30Þ

where E is Young’s modulus, G is strain energy release rate, r is applied stress,
and a is crack’s half-length. The energy release rate is the amount of energy, per
unit length along the crack edge, supplied by the elastic energy in the body and by
the loading system in creating the new fracture surface area.

Stress fields near crack tips are divided in three basic types, the opening mode I,
the sliding mode II, and the tearing mode III, each associated with a local mode of
deformation (Fig. 7.1). By the superposition of these three modes, the most general
case of local crack-tip deformation and stress fields is sufficiently described.

Irwin’s relationship for energy release rate in terms of stress intensity factors [1, 2]:

G ¼ GI þ GII þ GIII ¼
1
E0

K2
I þ K2

II þ
K2

III

1� v

� �
ð9:31Þ

provides the means to describe the redistribution of load paths for transmitting
force past a crack through the parameters KI, KII, KIII, the crack tip stress field
intensity factors for the corresponding three modes of fracture. Two different
models for the stress intensity factor for plane stress and plane strain exist, and
their values are determined by the other boundaries of the structural element and
the loads imposed. A complete stress analysis of a given configuration and loading
yields their evaluation [35–40].

In order to establish the local flexibility matrix of the cracked part for the
prismatic beam shown in Fig. 9.1, the additional displacement ui along the
direction of the force Pi, due to the presence of a transverse surface crack of
uniform depth a under general loading will be considered. Under general loading,
applying Castigliano’s theorem Paris equation [36–40] relates the additional dis-
placement and strain energy release rate as:

ui ¼
o

oPi

Za

0

J að Þdy ð9:32Þ

where: J(a) is strain energy release rate and Pi the corresponding load. J(a)
depends on crack depth and applied generalized forces responsible for the different
mode of fracture (opening, shearing or tearing). For general loading of the cracked
cross section, strain energy release rate for plane strain is defined as:
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J að Þ ¼ 1� v2

E

X6

i¼1

KIi

 !2

þ
X6

i¼1

KIIi

 !2

þ 1þ mð Þ
X6

i¼1

KIIIi

 !2
2

4

3

5 ð9:33Þ

where: E is Young modulus, m Poisson’s ratio, and K Stress Intensity Factors (SIF)
for fracture modes I, II, III respectively. The stress intensity functions depend on
the cracked section geometry and the loads applied.

From Paris equation the local flexibility matrix [cij] per unit width has
components

cij ¼
oui

oPj
¼ o2ui

oPioPj

Za

0

J að Þdy ð9:34Þ

A simply supported cracked beam of length L0 as shown in Fig. 9.1 is loaded
with a bending moment M. The cross sectional width and height are b and
h respectively. The crack is located at the lower edge of the beam at x = L. The
lateral displacement w0 and the axial displacement u0 at the free end of the
uncracked beam are [35, 42]:

w0 ¼ M=2EI L2
0 þ m h2=4

� �� �
; u0 ¼ �hML0 =2EI ð9:35Þ

Under general loading, the additional displacements w*, u* and h* due to the
presence of the initial moment M and the crack, will be computed by Castigliano’s
theorem. If UT is strain energy due to the crack, Castigliano’s theorem demands
that additional rotation h* is:

h� ¼ oUT =oM ð9:36Þ

due to the initial moment M and the crack. The strain energy UT and the strain
energy density Js have respectively the form[29–32]:

UT ¼
Za

0

oUT

oa
da ¼ b

Za

0

Jsda ð9:37Þ

where b is beam thickness, and strain energy density Js has the general form

Js ¼
K2

I

E0
¼ 1� m2

E
r2

0paF2
I að Þ ð9:38Þ

for plane strain, KI is stress intensity factor, E and m are Young modulus and
Poisson’s ratio respectively, and E0 ¼ E= 1� m2ð Þ.

The stress intensity factor for a single-edge cracked beam specimen under pure
bending M (Fig. 9.1), is [29, 30]:
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KI ¼ r0
ffiffiffiffiffiffi
pa
p

� FI að Þ ð9:39Þ

where, r0 ¼ 6M=bh2; a ¼ a=h; and F1ðaÞ ¼ 1:12� 1:40aþ 7:33a2 � 13:1a3 þ
14:0a4: F1ðaÞ has an accuracy of ±0.2 % for a/h B 0.6, b is thickness, and h is
height of the cross-section of the beam. Then, Eq. (9.37) yields

b

Za

0

Js að Þda ¼ bh2 1� m2ð Þ
E

6M

bh2

� �
pU1 að Þeih ð9:40Þ

where UI að Þ ¼ 0:6272a2 � 1:04533a3 þ 4:5948a4 � 9:9736a5 þ 20:2948a6 �
33:0351a7 þ 47:1063a8 � 40:7556a9 þ 19:6a10 and hence, the additional rotation
h* will be:

h� ¼ oUT=oM ¼ 72pð1� m2ÞMUIðaÞ=Ebh2 ð9:41Þ

or

h� ¼ 6pð1� m2ÞMhUIðaÞ=EI ð9:42Þ

On the other hand, assuming that u0 and u* are the total elongation of the lower
surface of the beam due to the bending moment and the existence of the crack
respectively, the following geometric relations hold

h�=h0 ¼ u� x� L� L0=2j j=L0h ð9:43Þ

where h0 ¼ L0M=EI and consequently

h� ¼ 2u�= x� L� L0=2j j=L0h ð9:44Þ

From Eq. (9.2) it is

u� ¼ �zf 0w0 ð9:45Þ

Consequently, the crack disturbance derivative will be:

f 0 ¼ �3p 1� m2
� �

h2UI að Þ x� L� L0=2ð Þ=zL0 L2
0 þ mh2=4

� �
ð9:46Þ

Integrating Eq. (9.46) yields the crack disturbance function:

f ¼ �3p 1� m2
� �

h2UI að Þ x� L� L0=2ð Þ2=zL0 L2
0 þ mh2=4

� �
ð9:47Þ

where a = a/h.
Combining the above Eqs. (9.46) and (9.47) with the systems of Eqs. (9.8–

9.10), the frequency shifting ratio can be calculated for cracked Euler-Bernoulli
beam with different boundary conditions and varying crack depth a.
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9.2.3 Natural Frequencies of Cracked Beams

Let a beam as in Fig. 9.1, with an open-edge crack at a distance L from the left
end. The differential Eq. (9.28) for the natural modes can be written as [23]:

c2
0 I7wð Þiv
� �

þ I7 €w ¼ 0 ð9:48Þ

where c2
0 ¼ EI=ðqAÞ material constant, and I the appropriate area moment.

By separation of variables, the general solution of Eq. (9.28) can be set as

w x; tð Þ ¼ W xð ÞT tð Þ ð9:49Þ

Substituting it into the above partial differential Eq. (9.48), the following
equation yields

c2
0 o4 I7 xð ÞW x; tð Þ

ox4

� 	
 �
T ¼ I7 xð ÞW xð Þ½ � o

2T

ot2
¼ 0 ð9:50Þ

From Eq. (9.50) two ordinary differential equations are derived,

I7 xð ÞW xð Þ½ �ivþ x�n
c0

� �2

I7 xð ÞW xð Þ½ � ¼ 0 ð9:51Þ

and

€T þ x�2n T ¼ 0 ð9:52Þ

where xn* are natural frequencies of cracked beam.
Equation (9.51) is the differential equation for the natural modes of vibration

considering the beam as a continuous system while, Eq. (9.53) corresponds to the
breathing crack problem [26]. The general solution of Eq. (9.51) for a continuous
cracked beam with an open crack is [23]:

W xð Þ ¼ Gn cos b�nxþ cosh b�nx
� �

þ Hn cos b�nx� cosh b�nx
� �

þ An sin b�nxþ sinh b�nx
� �

þ Dn sin b�nx� sinh b�nx
� �

ð9:53Þ

where xn� ¼ cob
�2
n are natural frequencies of the cracked beam, c2

0 ¼ EI=ðqAÞ is
material constant, and I the appropriate second area moment. Gn, Hn, An, and Dn

are unknown constants. For the cracked beam with a crack the natural modes of
vibration become:

w xð Þ ¼ I7 xð ÞW xð Þ ð9:54Þ

where I7(x) is related to the crack disturbance function f(x,z), evaluated earlier with
fracture mechanics methods.

The boundary conditions appropriate to the equation of motion (9.28), for
beams with different end-conditions, are summarized as:
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1. simply supported beam, zero deflection and shear forces at both ends of the
beam, i.e.

wjx¼0 ¼ 0; o2w=ox2
x¼0 ¼ 0;wj jx¼ Lo¼ 0; o2w=ox2jx¼Lo ¼ 0 ð9:55Þ

2. cantilever beam, zero deflection and slope at the clamped end and zero
moments and shear forces at the free end of the beam:

wjx¼0 ¼ 0; ow=oxjx¼0 ¼ 0; o2w=ox2jx¼Lo ¼ 0;o3w=ox3jx¼Lo ¼ 0 ð9:56Þ

3. free-free beam, zero moments and shear forces at both ends of the beam:

o2w=ox2jx¼0 ¼ 0; o3w=ox3jx¼0 ¼ 0; o2w=ox2jx¼Lo ¼ 0; o3w=ox3jx¼Lo ¼ 0 ð9:57Þ

Similarly, for clamped–clamped beam, zero deflection and slope at both ends of
the beam.

The set of Eqs. (9.55–9.57) possess a solution if the determinant of the coef-
ficients of the unknowns Gn, Hn, An and Dn is zero.

The set of Eqs. (9.55–9.57) can be solved directly for the exact solution ß*n

through a numerical method and results are shown in Figs. 9.2, 9.3 and 9.4.
For the simply supported cracked beam, the boundary conditions at x = 0 and

x = L0 yield the characteristic equation

I07 L0ð Þ=I7 L0ð Þ cosðb�nL0Þ � sin b�nL0
� �

cth b�nL0
� ��� �

þ b�n sinðb�nL0Þ ¼ 0 ð9:58Þ

This implicit natural frequency Eq. (9.58) is solved directly for an exact
solution ßn* through a numerical method or solved analytically and results are
shown in Fig. 9.2. Results from a simply supported beam with a breathing crack,
found with a perturbation method, are also shown in Fig. 9.2 for comparison [26].

Results for a cracked cantilever beam, with boundary conditions described by
the set of Eq. (9.56) and application of the variational theorem, are shown in
Fig. 9.3, along with results from a lumped crack flexibility approach presented
below (Eq. 9.66).

Similarly, the results of the above analysis, for a cracked free-free beam, with
open cracks, and boundary conditions described by the set of Eq. (9.57) are shown
in Figs. 9.4, 9.5 and 9.6 for the first three natural frequencies, along with results
from a lumped crack flexibility approach presented below (Eq. 9.67). Continuous
beam theory results agree well with experimental data for crack depths up to 60 %.

Results shown in Figs. 9.4, 9.5 and 9.6 refer to aluminium 2024-S351 beam,
length 0.235 m, cross-section width 0.007 m, cross-section height 0.023 m,
E ¼ 7:2E10 N=m2, material density 2,800 kg/m3 and Poisson’s ratio 0.35.

9.2.4 The Beam with Lumped Crack Flexibility

The above procedure distributes the flexibility added due to the crack over the
length of the beam. For comparison, the natural frequencies of a cracked beam,
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considering the crack as a local flexibility, as previously reported in the literature
was found [23–27]. The local flexibility can be found from Eq. (9.36) as

c ¼ 6p 1� m2
� �

hUI að Þ=EI ð9:59Þ

Assuming that the effect of the crack is apparent in its neighbourhood, the beam
can be treated as two uniform beams, connected by a torsional spring of local
flexibility c at crack location. Considering the modes of harmonic vibration on the
two segments of the beam, left and right of the crack respectively, an alternative
configuration for the mode shapes will be employed as follows:

With harmonic flexural vibration of Euler–Bernoulli beams, the dimensionless
equation of motion for a uniform beam of rectangular cross-section (Fig. 9.1) is
given as [3]:

EI
d4W Xð Þ

dX4
� X2W Xð Þ ¼ 0 ð9:60Þ

where the non-dimensional variables are defined as X ¼ x=L0; X2 ¼ x2
i AL4

0q=EI;
x the crack position from the beam left end, L0 the length of the beam, q = mass of
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the beam per unit length (kg/m), xi natural frequency of the ith mode (rad/sec),
E = modulus of elasticity (N/m2) and I the area moment of inertia for the beam
cross-section (m4).
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Fig. 9.3 Lowest transverse natural frequency ratio x1*/x1 for a cantilever aluminum beam with
a surface crack at 40 % of span, versus the crack depth ratio a = a/h. Analytical results:
Continuous crack model, Eq. (9.56). Lumped crack model, Eq. (9.66). Experimental results small
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Solution of Eq. (9.60) is given by

W Xð Þ ¼ A cos kX þ B sin kX þ C cosh kX þ D sinh kX ð9:61Þ

If the bending mode of vibration dominates as in the present study, the crack is
modeled as a torsional spring with a lumped flexibility c. Based on this model, the
beam is divided into two segments: the left part before the crack and the right after
the crack. The cracked beam is modeled by applying Eq. (9.61) to each segment of
the crack independently. Then, the mode shapes for both segments of the beam as
illustrated in Fig. 9.1 are:

W1 Xð Þ ¼ A1 cos kX þ B1 sin kX þ C1 cosh kX þ D1 sinh kX ð9:62Þ

W2 Xð Þ ¼ A2 cos kX þ B2 sin kX þ C2 cosh kX þ D2 sinh kX ð9:63Þ
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In order to use Eqs. (9.62 and 9.63) for the purposes of crack identification the
following assumptions are made: (1) The crack is open. As a result of this
assumption the crack is replaced by a torsional spring. (2) The open-edge crack is
uniform in propagation over the surface of one side of the specimen. (3) shear
deformation and rotary inertia effects are ignored.

The eight unknown coefficients in the set of Eqs. (9.62 and 9.63) can be found
by substituting this solution into the boundary conditions. Assuming constant
properties along the beam, in addition to the boundary conditions as described in
Eqs. (9.55–9.57), the continuity conditions at the crack position require equal
displacements, moments and shear forces at both ends of the crack. Defining a
non-dimensional crack position parameter measured from the left end n ¼ L=L0,
where L0 is the total beam length (m), and L is the distance from the left end of the
beam to the crack location, an additional boundary condition simulating the tor-
sional spring crack model follows:

oW2 Xð Þ=oXjx¼n � oW1 Xð Þ=oXjx¼n ¼ EIc=Lð Þo2W1 Xð Þ=oX2jx¼n ð9:64Þ

where EIc/L is the dimensionless cracked section flexibility.
The boundary conditions result in a set of homogeneous linear algebraic

equations for the unknown coefficients in Eqs. (9.62 and 9.63).
For a nontrivial solution the determinant for the unknown coefficients must be

zero, thus providing the natural frequency equation for the beam with lumped
crack flexibility as shown in Figs. (9.2, 9.3, 9.4), based on the assumption that the
crack flexibility does not depend on the frequency of vibration.

Assuming that the effect of the crack is apparent in its neighbourhood only, the
beam can be treated as two uniform beams, connected by a torsional spring of local
flexibility c at crack location. If constant properties along the beam are considered,
from the boundary conditions for the left and right parts of the beam the natural
frequency equations for the beams with lumped crack flexibility yield:

1. simply supported beam

4 sin kL0 sinh kL0 þ kL0EIc=LÞ½sinh kL0ðcos kL0 � cos bkL0Þ
þsin kL0ðcosh kL0 � cosh bkL0Þ� ¼ 0

ð9:65Þ

where EIc/L is the dimensionless cracked section flexibility, b ¼
L� L0=2ð Þ= L=2ð Þ a dimensionless crack location measured from mid-point.

Equation (9.65) is solved with the aid of Mathematica to yield natural fre-
quencies kLn as shown in Fig. (9.2).

2. cracked cantilever beam:

sin kn� sinh kn cos kn� cosh kn sin kð1� nÞ þ sinh kð1� nÞ cos kð1� nÞ þ cosh kð1� nÞ
� sin kn� sinh kn � cos kn� cosh kn � sin kð1� nÞ þ sinh kð1� nÞ � cos kð1� nÞ þ cosh kð1� nÞ
� cos kn� cosh kn sin kn� sinh kn cos kð1� nÞ � cosh kð1� nÞ � sin kð1� nÞ þ sinh kð1� nÞ
cos kn� cosh knþ � sin kn� sinh knþ � cos kð1� nÞ � cosh kð1� nÞ � sin kð1� nÞ � sinh kð1� nÞ
kEIcð� sin kn� sinh knÞ kEIcð� cos kn� cosh knÞ

2

66664

3

77775

ð9:66Þ
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where n = L/Lo.

3. free–free beam:
0 �1 0 1 0 0 0 0
�1 0 1 0 0 0 0 0
� sin kn � cos kn sinh kn cosh kn sin kn cos kn � sinh kn � cosh kn
� cos kn sin kn cosh kn sinh kn cos kn � sin kn � cosh kn � sinh kn
cos kn � sin kn cosh kn sinh kn � cos kn sin kn � cosh kn � sinh kn

�kEIc sin kn � cos kn þkEIc sinh kn þkEIc cosh kn
sin kn cos kn sinh kn cosh kn � sin kn � cos kn � sinh kn � cosh kn

0 0 0 0 � sin kL0 � cos kL0 sinh kn cosh kn
0 0 0 0 � cos kL0 sin kL0 cosh kn sinh kn

0

BBBBBBBBBBBB@

1

CCCCCCCCCCCCA

ð9:67Þ

Equations (9.66) and (9.67) were solved numerically to yield the natural
frequencies for the lumped crack flexibility model. Figures (9.3, 9.4, 9.5, and
9.6) show the numerical solutions for the lumped crack flexibility approach and
experimental results with aluminum beams.

9.2.5 The Finite Element Method

A parametric Finite Element model is here developed for the numerical prediction of
the dynamic response of the cracked beam based on the commercial code ANSYS
[44]. The model can be modified accordingly in order to analyse different beam
geometrical configurations and varying crack locations and depth. The Finite Ele-
ment (FE) formulation of an Euler-Bernoulli cracked beam using three-dimensional
solid elements, leads to a set of linear algebraic equations of the form [41]:

M½ �sf€qgS þ C½ �sf _qgS þ K½ �sfqg ¼ ffgS ð9:68Þ

where, [M]S, [C]S and [K]S are mass, damping and stiffness matrices for the
vibrating system and {q(t)} the response of a cracked free-free beam in a sta-
tionary coordinate system. The damping part of Eq. (9.68) is neglected, i.e.
undamped vibration is considered. For the solution of Eq. (9.68), a linearized
three-dimensional finite element model of the cracked beam was developed. The
FE mesh of the considered crack rod is developed using FE software ANSYS [44]
and the non-singular 8-node brick element ‘solid 45’, which has three degrees of
freedom per node, i.e., the displacements in the x, y and z directions. The crack is
modelled by assuming the corresponding nodes of the two crack surfaces to
deform independently. The crack surfaces are modelled using double nodes
identical in location but topologically belong to the two different crack faces.

9.2.6 Experimental Procedure

A fatigue crack growth technique in resonating aluminium cantilever beams was
used for the development of a series of cracked specimens for the experimental
verification of the proposed method. Homogeneous prismatic straight aluminium
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(2024-S351) beams with cross-sectional height h = 0.0254 m and cross-sectional
width b = 0.006 m were prepared. A small notch was introduced to serve as a
crack initiation point and the bar was subsequently transversely vibrated at its
fundamental lateral natural frequency to force a crack formation and propagation.
30 different specimens were vibrated at different numbers of cycles so that dif-
ferent crack lengths would be obtained. When the desired crack depth was reached,
the beam was taken out of the vibrating table and the crack depth was measured to
both sides of the beam. Crack depths obtained were varying from 5 to 60 % of the
cross-section height.

Each specimen of length L = 235 mm was supported at its ends to obtain the
appropriate boundary conditions: simply supported, cantilever, or free-free. The
crack was positioned at mid-span and facing downwards. A small static load was
put opposite the crack to ensure that the crack remains open during vibration. This
static load decreased the measured natural frequencies by 1.5 % Vibration mea-
surements were acquired through 1 gr miniature accelerometer put at the opposite
side of the crack face. The beam was lightly tapped with a miniature hammer and
the resulting vibration signal was recorded. The vibration frequency was calcu-
lated by measuring time elapsed for 50 cycles of vibration. Moreover, an FFT
transform was performed at the stored signal for an independent measurement of
the flexural natural frequencies. The magnitude of the forcing force was kept low
to avoid generating higher harmonics caused by geometric and material nonlin-
earities. However, the transverse excitation produces longitudinal vibration. This
coupling does not affect the flexural natural frequencies, although it produced
additional peaks on the frequency-response function due to cross-axis sensitivity
of the accelerometer. Longitudinal vibration frequencies are well above the flex-
ural vibration frequencies and were easily identified. Experimental results are
shown in Figs. (9.2, 9.3, and 9.4) with small circles.

9.3 Torsional Vibration of a Continuous Cracked Rod

9.3.1 The Variational Theorem for a Cracked Rod in Torsion

The first complete statement of the dynamic problem of torsion was made by Saint-
Venant who assumed that the displacement field consisted of a rotation of the cross–
section along with the warping of the section out of its plane. Only shear stresses in
the plane of the sections were considered. Although Saint-Venant takes into account
the warping displacement, his theory neglects the longitudinal stress and inertia
arising from this stress. Since then, there have been extensive studies in the theory of
torsional vibration of shafts with circular and non-circular cross-section. Hu-
Washizu-Barr [30–32] variational principle in linear elasticity was used in Refs.
[24–29] for the development of a continuous cracked rod vibration theory. The
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general variational principle and the independent assumptions about the displace-
ment, the momentum, the strain and the stress fields of the cracked shaft, and the
equations of motion for a uniform shaft in torsional vibration, with one or more pairs
of transverse symmetrically disposed open edge cracks along its length, were
derived. The cracks were modeled as continuous flexibilities using the displacement
field in the vicinity of the crack, found with fracture mechanics methods.

A shaft with an open peripheral surface crack is shown in Fig. 9.7. Strain and
displacement, stress and strain, and momentum and displacement terms yield in a
similar manner to that of Sect. 9.2.1.

To derive the governing equation and applicable boundary conditions for the
torsional vibration of a cracked shaft through the variational theorem, Eq. (9.1),
the x axis is taken along the center line of the bar, and the yz plane is the plane of
the cross-section. Subscripts i, j of the stresses rij take values 1, 2, 3 corresponding
to the Cartesian co-ordinates x, y and z, respectively.

Stress and strain fields of the cracked shaft can be obtained by adding the
disturbance functions to the stress and strain distributions of the undamaged shaft.
Since the distribution of each stress (and the equivalent strain) component is
unique, the most general situation will be considered here in which a different
disturbance function is added to each component. Thus, the disturbance in the
direct components rxx and cxx is introduced through a function f1(x, y, z), the
disturbance in the shear components rxy and cxy is introduced through a function
f2(x, y, z) and the disturbance in the shear components rxz and cxz is introduced
through a function f3(x, y, z). The three crack functions f1, f2 and f3 are all, at
present, unknown. As mentioned earlier, Christides and Bar [30] used an
empirical exponential function to describe the stress disturbance due to a crack. In
this work, the stress disturbance function will be found using fracture mechanics
results.

It is further assumed that the presence of the cracks does not alter in any way
the displacement fields of the shaft. Finally, the direct strains cyy and czz will be
taken as non-zero although the corresponding direct stresses will be assumed zero.
For a uniform shaft the following assumptions are made [28–30]:

y

T T         x

2b

z
L0 - L L

Fig. 9.7 Geometry of a circular cracked rod with a peripheral crack
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u ¼U y; zð Þh0 x; tð Þ; t ¼ �zh x; tð Þ;w ¼ yh x; tð Þ;
px ¼ 0; py ¼ �zP x; tð Þ; pz ¼ yP x; tð Þ;
cxx ¼ Uþ f1 x; y; zð Þ½ �S1 x; tð Þ; cyy ¼ czz ¼ �mcxx;

cxy ¼
oU
oy
� zþ f2 x; y; zð Þ

� 	
S2 x; tð Þ;

cxz ¼
oU
oz
þ yþ f3 x; y; zð Þ

� 	
S2 x; tð Þ; cyz ¼ 0;

ð9:69Þ

rxx ¼ Uþ f1 x; y; zð Þ½ �T1 x; tð Þ; ryy ¼ rzz ¼ 0;

rxy ¼
oU
oy
� zþ f2 x; y; zð Þ

� 	
T2 x; tð Þ;

rxz ¼
oU
oz
þ yþ f3 x; y; zð Þ

� 	
T2 x; tð Þ;

ryz ¼ 0;

Xx ¼Xy ¼ Xz ¼ 0:

In Eqs. (9.69) h, P, S1, S2, T1 and T2 are all unknown functions of axial co-
ordinate x and time t. The warping function U(y, z) is approximated by that of
static torsion and it should satisfy two important conditions [42, 45]:

First, it is a harmonic function, i.e. it satisfies the condition

o2U
oy2
þ o2U

oz2
¼ 0 ð9:70Þ

everywhere in the cross-section. This condition also implies that in case of a
doubly symmetrical cross-section, e.g. a circle, an ellipse or a rectangle cross-
section, the function U(y, z) is odd in both the y and the z co-ordinates.

Second, the shear stresses rxy and rxz of the undamaged shaft (which are
functions of U) are such that the condition rxy ny ? rxz nz = 0 is satisfied on the
outer surfaces of the shaft, where ny and nz are the directional cosines. This
condition implies that the resultant shearing stress on the boundary is directed
along the tangent to the boundary.

The stress and strain fields in Eq. (9.2) can now be substituted in the general
variational Eq. (9.1), and independent variations of the unknowns h, P, S1, S2, T1

and T2 can be considered. These independent variations will be considered one by
one.

For arbitrary and independent variations dT1 and dT2 the strain-displacement
term of the general variational Eq. (9.1) becomes
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ð9:71Þ

or,
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The following integrals are defined over the cross-section A:

B xð Þ ¼
R

A
f 2
1
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f 2
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ð9:73Þ

In Eq. (9.73), / represents the warping function of static torsion, and K = -L
[30, 45]. Integrating over the cross-section of the shaft, the strain-displacement
term (9.72) reduces to

Z

x

Rþ 2F þ Bð ÞS1 � Rþ Fð Þh00½ �f dT1

þ Lþ J þ C þ 2Dþ 2Mð ÞS2 � Lþ J þ DþMð Þh0½ �dT2gdx:

ð9:74Þ

9.3 Torsional Vibration of a Continuous Cracked Rod 243



9.3.1.1 Stress-Strain and Velocity-Momentum Terms

For the torsion problem the stress-strain term in Eq. (9.1) is given by:

Z

V

rxx �
oW

o~axx

� 	
dcxx �

oW

ocyy
dcyy

 !

� oW

o~azz
dczz

� �(

þ rxy �
oW

o~axy

� 	
dcxy þ rxz �

oW

o~axz

� 	
dcxz

�
dV

ð9:75Þ

where

W ¼ 1=2ke2 þ G c2
xx þ c2

yy þ c2
zz

� �
þ 1=2G c2

xy þ c2
yz þ c2

xz

� �
;

e ¼ cxx þ cyy þ czz, is dilatation, G ¼ E=ð2ð1þ mÞÞ shear modulus, and k ¼
mE=ðð1þ mÞð1� 2mÞÞ Lame’s constant. Then, the stress-strain term (9.75) sim-
plifies to:

Z

V
rxx � Ecxx½ �dcxx þ rxy � Gcxy

� �
dcxy

�

þ rxz � Gcxz

� �
dcxz



dV

ð9:76Þ

Substituting the assumptions (9.69) into stress-strain term (9.76), yields

Z

v

/þ f1ð Þ2 T1�ES1ð Þ
h i

dS1þ T2�GS2ð Þ o/
oy
� zþ f2

� �2
(

þ o/
oz
þ yþ f3

� �2
)

dS2

" #(

dV

which, after expanding the squared terms and integrating over the cross-section,
the stress-strain term becomes
Z

x

h
Rþ 2F þ Bð Þ

�
T1 � ES1

�i
dS1 þ

h
Lþ J þ C þ 2Dþ 2Mð Þ

�
T2 � GS2

�in o
dx

ð9:77Þ

In a similar way, the velocity-momentum term becomes
Z

x
qJ _h� p
� �

dp
n o

dx ð9:78Þ

where J is the polar second moment of area of the section.

9.3.1.2 Dynamic Equilibrium Term

The first term of Eq. (9.1) provides the equation of motion. For the torsional
problem, and the assumptions of Eq. (9.69) this term becomes
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After proper substitutions, term (9.89) becomes
Z

V
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Stresses and moments from Eq. (9.69) are substituted in (9.80) yielding the
dynamic equilibrium term as
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>>>=
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ð9:81Þ

Differentiations with respect to x are performed first, and then the whole term is
integrated over the cross–section yielding

Z

x

Rþ Fð ÞT 01 þ F0T1 � DT2
� �

dh0
�

þ Lþ J þMð ÞT 02 þM0 T2 � qJ _p
� �

dh



dx

ð9:82Þ

Noting that dh 0 = q(dh}/qx, the first term of (9.82) is integrated by parts over
x as follows

Z

x

Rþ Fð ÞT1 þ F0T1 � DT2½ � o
ox

dhð Þdx




¼ F0T1 þ Rþ Fð ÞT 01 � DT2
� 


dh
� �x¼L

x¼0

�
Z

x

F00T1 þ 2F0T 01 Rþ Fð ÞT 001 � D0T2 � DT 02
� 


dhdx

ð9:83Þ

where the shaft length is L0 with the x origin at one end. Substituting this result
into (9.82) the latter provides the equation of motion term

Z

x
�F00T1 � 2F0T 01 � Rþ Fð ÞT 001 þ D0 þM0ð ÞT2
�

þ Lþ J þ DþMð ÞT 02 � qJ _p


dhdx

ð9:84Þ
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along with the boundary term

F0T1 þ Rþ Fð ÞT 01 � DT2
� 


dh
� �x¼L

x¼0 ð9:85Þ

9.3.1.3 Boundary Conditions

The boundary conditions of the problem consist of term (9.85) together with terms
obtained from the surface integral over Sg and Su in Eq. (9.1). In these integrals the
surface force is obtained from the stress components as gi = rij nj where nj are the
direction cosines of the external normal to the surface with the co-ordinate
directions. Following a procedure similar to the one described by Eqs. (9.15–9.20)
above, the boundary term for the prescribed forces will be found as [29, 30]:

XA � Rþ Fð ÞT1½ �dh0f þ TA � Lþ J þ DþMð ÞT2 þ F0T1½ �
þ Rþ Fð ÞT 01

�
dhgx¼L0

þ XA þ Rþ Fð ÞT1½ �f dh0

þ TA þ Lþ J þ DþMð ÞT2 � F0T1 � Rþ Fð ÞT 01
� �

dhgx¼0

ð9:86Þ

where XA and TA correspond to applied force and torque respectively.
On the other hand, for prescribed displacements, the boundary term becomes

[29, 30]:
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ð9:87Þ

9.3.1.4 Governing Equations

The variational statement for the torsional problem can be assembled using Eq.
(9.1) and the variational terms (9.74, 9.84, and 9.85) along with the boundary
terms (9.86 and 9.87). The variations dh, dp, dS1, dS2, dT1 and dT2 are regarded as
independent so that Eq. (9.1) implies, for arbitrary values of these variations, that
each expression multiplied by them in the volume integral must independently be
zero. The latter yields the following relations:
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The strain-displacement term (9.74) for dT1 results in

S1 ¼ Q01 xð Þh00 ð9:88Þ

where

Q1 xð Þ ¼ Rþ Fð Þ
Rþ 2F þ Bð Þ ð9:89Þ

and for dT2,

S2 ¼ Q2 xð Þh0 ð9:90Þ

where

Q2 xð Þ ¼ Lþ J þ DþMð Þ
Lþ J þ C þ 2Dþ 2Mð Þ ð9:91Þ

The stress-strain term (9.74) for dS1 gives

T1 ¼ ES1 ¼ EQ01 xð Þh00 ð9:92Þ

and for dS2,

T2 ¼ GS2 ¼ GQ2 xð Þh00 ð9:93Þ

The velocity-momentum term (9.84) for dp yields

p ¼ h0 ð9:94Þ

The dynamic equilibrium term (9.85) for dh yields

�F00T1 � 2F0T 01 � Rþ Fð ÞT 001 þ D0 þM0ð ÞT2

þ Lþ J þ DþMð ÞT 02 � qJ _p ¼ 0
ð9:95Þ

which is the equation of motion. Substituting for T1, T2 and P from Eqs. (9.88–
9.95), and denoting

g1 xð Þ ¼ Rþ Fð ÞQ1 xð Þ
g2 xð Þ ¼ Lþ J þ DþMð ÞQ2 xð Þ

ð9:96Þ

the equation of motion (9.95) becomes

g1Ehiv þ 2g01Eh000 þ g001E � g2G
� �

h00 � g02Gh0 þ qJ€h ¼ 0 ð9:97Þ

or

g1Eh00ð Þ00� g2Gh0ð Þ0þqJ€h ¼ 0 ð9:98Þ
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The partial differential equation of motion (9.98) is of the fourth order so that
two boundary conditions must be satisfied at both ends of the shaft. The solution of
the equation of motion with appropriate boundary conditions and application of the
Hu-Washizu-Bar variational formulation will be presented in the next Chap. 10.

9.4 Summary and Conclusions

The discrete–continuous models are by far the most commonly used models in
dynamic analysis of cracked beams. The basic concept is the introduction of
additional boundary conditions at the crack location where two intact beams are
connected with a flexibility matrix whose components are determined by linear
fracture mechanics. Hence, the most important work by this approach is to
determine the local flexibility matrix. The main limitation of the flexibility
approach is that it can only be applied to one-dimensional problems and mostly
works well for fundamental structural elements.

However, discrete–continuous crack models are advantageous from many
aspects. For instance, the intact part of a structure containing no cracks can still be
modeled with corresponding partial differential equations; cracks only increase the
boundary conditions that require less computational effort, than most finite ele-
ment methods involving fine meshes around the crack region. While natural fre-
quencies are relatively easier and more accurately measured than other modal
parameters, solving an inverse problem for crack detection based only on changes
in natural frequencies is not an easy task, considering the fact that natural fre-
quency has a global nature while damage in most cases is a local phenomenon.
However, if the crack is the most possible failure mode and no other form of
damage exists, detecting the crack by natural frequencies is possible, even if
measurement errors occur.

The key issues in developing a proper modeling technique of a cracked beam is
to model the crack more accurately, and furthermore identify the variation in the
stress field due to the opening and closing of the crack (crack breathing) and the
stress-strain field complexity in the region of the developing crack. Also, the
modification of the stress field induced by the crack is decaying with the distance
from the crack or flaw, and a direct method relating flaw position and size with
stiffness change is not easy to develop. Although previous analyses gave com-
parable results, the analytical methods are always convenient as delivering accu-
rate results, there are more efficient, and provide deep physical insight into the
problem. The present methodology gives a more detailed approach to the problem
of crack identification in prismatic structural elements and lends itself for further
development with applications to breathing cracks, multiple cracks and different
crack configurations.
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Chapter 10
The Variational Formulation of a Rod
in Torsional Vibration for Crack
Identification

Abstract In Chap. 10 the Hu-Washizu-Barr variational formulation is used for the
development of the differential equation and boundary conditions for a cracked rod.
Based on the general variational principle and independent assumptions about
displacement, momentum, strain and stress fields of the cracked rod with one or
more pairs of transverse symmetrically disposed open edge cracks along its length,
the equations of motion in torsional vibration were derived. Crack is introduced as a
stress disturbance function, and stress field is determined by fracture mechanics
methods. Strain energy density theory has been used for an accurate evaluation of
the stress disturbance function. The strain energy density criterion is based on local
density of the energy field in the crack tip region, and no special assumptions on the
direction in which the energy released by the separating crack surfaces is required.

10.1 Dynamic Behaviour of Cracked Shafts

The assessment of the state of damage of a structural system depends on various
factors, among which the identification of existing flaws, their location, type and
severity and on damage tolerance. The latter is a measure of the capability of a
damaged material or damaged structure to sustain load and/or maintain functional
capability. Modern structures, especially in turbomachinery (Fig. 10.1), are
designed on the basis of a damage tolerance philosophy, which allows for the
presence of sub-critical cracks not growing to critical length between periodic
inspections. The damage tolerance concept provides quantitative guidance for the
balancing of cost of repair or replacement of damaged components against the
possibility that continued service would lead to a catastrophic failure [1, 2].

Despite elements of uncertainty concerning environmental effects such as
corrosion, moisture, and temperature effects, a predictive methodology taking into
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account crack growth mechanisms is valuable in the evaluation procedures.
Although, computational technology has provided vast possibilities, the predictive
failure analyses tools available in the literature are impractical to implement with
complex structural problems. Thus, the extension of current damage tolerance
methods to complex structures is not easy [3, 4].

The development of crack detection methods in rotating shafts was initiated in
about 1970 [5–8]. Theory and extensive laboratory and field experiments were
used to develop methodologies for crack detection based on the second harmonic
and the half critical speed sub-harmonic. Further, it was reported that on-line
electronic instrument for monitoring and early warning of cracked rotors was
developed, to be used as turbine supervisory equipment. This report was widely
distributed and, in the sequence, had triggered substantial work in the turboma-
chinery industry [9–12]. Since the early 1980s there has been substantial academic
research on the subject [8–29].

With a stepped rotor, a transfer matrix technique was used to compute the
change of critical speed of a shaft due to the crack [9–12]. The results confirmed
that for small crack depths the change in critical speed is proportional to (a/D)2,
where a is the crack depth and D the shaft diameter. For example, an edge crack
with depth 54 % of the radius produced a 5.6 % (overestimated) change of the
lowest critical speed of the shaft. It was concluded that measurement of the change
in critical speed was not an efficient way to monitor rotor cracks.

In order to assist system planners to modify operating practices before large
portions of shaft fatigue life have been consumed, it is required that the cumulative
fatigue damage associated with various types of system disturbances be deter-
mined. This is necessary since cracks initiate at a microscopic level and are not

Fig. 10.1 Steam turbine stepped rotor disassembled for scheduled inspection and maintenance
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observable until the shaft has suffered extensive damage. Continued exposure to
system disturbances could result in crack growth and subsequent shaft fatigue. In
1973 a long-range program was initiated to determine the torsional fatigue strength
of large turbine-generator shafts and to develop analytical techniques to calculate
cumulative fatigue damage [12]. The scope of the program was enhanced in servo-
hydraulic torsional fatigue and combined axial-torsion fatigue testing machines,
the development of torsional extensometry, and the computerization of torsional
test equipment to facilitate evaluation of complex torque histories.

A State of the Art review on the vibration of cracked structures provides a
detailed description of the papers that followed initial investigations [8]. A wealth
of further analytical, numerical and experimental investigations has been reviewed.
A broad review of the state of the art in fault diagnosis revealed that mass
unbalance, bent shafts and cracked shafts should be given special treatment [13].
The diagnosis of cracks in subcritical and supercritical speed ranges using cross-
coupling stiffness terms, for the purpose of online monitoring schemes, was
investigated in Ref. [14].

A simple hinge model for small breathing cracks analyzing the transient
vibration response of a cracked rotor passing through its critical speed, as an
attempt for crack detection and monitoring is considered in Ref. [15]. For deeper
cracks the vibrations are violent and there is no definite critical speed but a zone
with severe vibrations. A generator rotor case history, where a transverse fatigue
crack could grow to a very large extent, for several years, without being detected
until its extension reached 60 % of the whole rotor cross-section, is discussed in
Ref. [16].

The mathematical foundations for experimental modal analysis of rotating
structures are characterized by non-symmetric and time-variant matrices [17]. The
equations of motion were solved in Ref. [18] by modal transformation to derive
impulse and frequency response functions, which form the basis of modal iden-
tification algorithms in time and frequency domains, respectively. The shaft crack
detection was formulated as an optimization problem by means of a finite element
method and utilizing genetic algorithms to search the solution [18].

A local compliance matrix of different degrees of freedom is used to model the
transverse crack in a shaft of circular cross section, based on expressions available
of the stress intensity factors and the associated expressions for the strain energy
release rates. It is known that when a crack exists in a structure, such as a beam,
then the excitation in one-direction causes coupled vibrations in other directions.
This property is used in Ref. [19] to identify the crack. The shaft is modeled as a
rotating Timoshenko beam including gyroscopic effect and axial vibration due to
coupling. The method was applied in rotating cracked shafts to identify depth and
location of a transverse surface crack.

The several existing methods for crack detection in rotating shafts are compared
in Ref. [20]. Among those methods the lumped crack flexibility is shown to gain
wider acceptance by researchers due to the availability of various crack models in
the literature. The effect of a notch on a structure is usually simulated by a local
bending moment or reduced section, with magnitudes, which were assessed
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experimentally or analytically or fine-mesh finite element techniques. Also, an
important observation was the recognition of vibration coupling due to cracks as
well as parametric vibration and bilinear and non-linear effects characterizing
vibration of cracked rotating shafts.

A neural network analyzing cracked rotor’s vibration parameters is presented in
Ref. [21], while the instantaneous frequency is introduced in Ref. [22] to describe the
dependency offrequency components on time for non-stationary signals for machine
monitoring and diagnosis. A model-based method for the on-line identification of
two cracks in a rotor is studied in Ref. [23]. A finite element model was used for the
rotor, while cracks are simulated through local flexibility changes. The continuous
wavelet transform (CWT) has been proposed for crack detection and monitoring in a
rotor system coasting down through its critical speed [24].

Other methods dealing with the localization of cracks in rotating machinery,
based on measured vibrations and the introduction of various techniques are
reported in Refs. [24–26], with time domain identification algorithm (the Extended
Kalman Filter), or a vector quantity (residue) defined for the non-zero elements
corresponding to the nodes encompassing elements carrying cracks.

Although there is an extensive literature on the vibration of cracked shafts
attention is restricted to theoretical methods estimating the effect of a crack on overall
dynamics. Such estimates were made numerically or by introducing the crack local
flexibility concept. Many researchers have used the vibration response to detect
cracks in a structure. These detection schemes are based on the fact that the presence
of a crack in a structure reduces the stiffness of the structure-hence reducing its
natural frequencies. Significant research, both empirical and theoretical, has been
conducted to predict the appearance and location of a crack using the vibration
signature of the structure. Researchers using the Finite Element Method used beam
elements of various dimensions and concentrated masses along the shaft axis to
model stepped shafts and turbine discs. However, it is difficult to vary the location of
the crack, since every relocation into a shaft segment of different geometry, requires
the development of a new cracked beam element. Till present, the greatest difficulty
in crack detection and identification remains the quantitative evaluation of the crack
parameters and the distinction between a developing crack from other faults such as
imbalance, misalignment, shaft bow, bearing failure, etc. [27].

In a rotor, a crack produces vibration of the second and higher harmonics of the
rotating frequency [7, 28]. However, the amplitudes of those harmonics can be
measured only if the frequency of one of the harmonics closely matches one of the
natural frequencies of the shaft. While the signature analysis can easily predict the
presence of a crack it is not an easy task to locate the crack using the signature graph.

The key issue in developing a proper modeling technique of cracked rotors is to
model the crack more accurately, and furthermore identify the variation in the
stress field over one revolution due to the opening and closing of the crack (crack
breathing) and the stress-strain field complexity in the region of the developing
crack. This situation calls for the application of fracture mechanics methods and
continuous cracked rod vibration theory [27–29].
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Hu-Washizu theory for the uncracked bar [30–32] was extended to develop a
theory for the torsional vibration of the cracked rod based on the general varia-
tional principle and independent assumptions about displacement, momentum,
strain and stress fields of the cracked rod [27–29]. The equations of motion for a
uniform rod in torsional vibration were derived, where the rod had one or more
circumferential open edge cracks along its length. This restriction on crack
geometry avoided the coupling of torsional and flexural motion, which follows a
non-symmetric crack configuration. The cracks were regarded as constantly open
to avoid non-linearity associated with compressive stresses over a closing crack
face. Furthermore, for the stress field about the crack an exponential decay stress
and strain distribution determined experimentally was used.

In this chapter variational formulation is adopted for the study of torsional
vibration of cylindrical shafts with circumferential crack. Hu-Washizu-Barr vari-
ational formulation is used to develop the differential equation and boundary
conditions of the cracked rod [30–32]. The general variational principle and
independent assumptions about displacement, momentum, strain and stress fields
of the cracked rod, and equations of motion for a uniform rod in torsional vibration
are derived, to predict the dynamic response of a cracked shaft considering it in a
more fundamental way as a one-dimensional elastic continuum. The crack is
modeled as a continuous flexibility using the displacement field in the vicinity of
the crack, found with fracture mechanics methods. Rayleigh quotient is used to
approximate the natural frequencies of the cracked rod. Independent evaluations of
crack identification methods in rotating shafts are compared with the continuous
crack flexibility theory [27–32].

10.2 Torsional Vibration of a Continuous Cracked Shaft:
Variational Theorem

10.2.1 Cracked Rod-Variational Theorem

A rod with an open peripheral surface crack is shown in Fig. 10.2. Displacement
components are denoted by ui, strain components by cij and stress components by
rij, i, j = 1, 2, 3 referring to Cartesian axes x, y, z.

The stress and strain fields of the cracked rod can be obtained by adding the
disturbance functions to the stress and strain distributions of the undamaged rod.
Here, the most general situation will be considered here by which a different
disturbance function is added to each component. Thus, the disturbance in the
direct components rxx and cxx is introduced through a function f1(x,y,z) = f1, the
disturbance in the shear components rxy and cxy is introduced through a function
f2(x,y,z) = f2 and the disturbance in the shear components rxz and cxz is introduced
through a function f3(x,y,z) = f3. These functions assume maximum values at the
crack tip and decay with distance from the cracked section.
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The extended Hu-Washizu variational principle extending Barr’s theory
[30–32] for the uncracked bar, and the general equation for torsional vibration of a
cracked rod was formulated in the previous chapter as the fourth order differential
Eq. (9.97) [27–30]:

g1Ehiv þ 2g01Eh000 þ ðg001E � g2GÞh00 � g2Gh0 þ qJ€h ð10:1Þ

where E is Young’s modulus, G = E/(1 ? m), m Poisson’s ratio, h angular dis-
placement, q material mass density, J polar moment of inertia,

g1 ¼ ðR þ FÞ Q1 xð Þ
g2 ¼ ðL þ J þ D þ MÞ Q2 xð Þ

Q1 xð Þ ¼ ðR þ FÞ=ðR þ 2F þ BÞ
Q2 xð Þ ¼ ðL þ J þ D þ MÞ=ðL þ J þ C þ 2D þ 2MÞ

ð10:2Þ

R, F, L, J, D, M, B, C are integrals defined over the cross-section A as:
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f1, f2 and f3 crack disturbance functions, and / is the warping function.
The three crack disturbance functions f1, f2 and f3 are all, at present, unknown.

An empirical exponential function was initially used to describe the stress dis-
turbance due to a crack [30]. In the present, the crack disturbance function will be
found by using fracture mechanics results.
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x 2R0
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L0 - L L

Fig. 10.2 Geometry of a circular cracked rod
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10.2.2 The Crack Disturbance Function

Let us consider the free vibration of a circular rod of length L0 and radius R0 with a
symmetric ring-shaped crack as shown in Fig. 10.2. The depth of the ring-shaped
crack is a. This restriction on crack geometry avoids coupling of torsional and
flexural vibration which follows a non symmetric crack configuration. For the
tearing mode III the shear stress distribution is denoted by r*xz and r*yz.

The stresses r*xz and r*yz are given as [33]:

r�xz

r�yz

" #

¼ KIIIffiffiffiffiffiffiffiffi
2pr
p cos

h
2

� sin
h
2

cos
h
2

2

664

3

775 ð10:4Þ

where KIII is the stress intensity factor for the tearing mode III, and r is the radius
at the crack tip [33–36].

For a rod with a circumferential crack under torque T, KIII is given as [34]

KIII ¼ rTn
ffiffiffiffiffiffi
pa
p

� FIII að Þ ð10:5Þ

where rTn = 2T/pR0
3, a crack depth, R0 rod radius, a = a/R0, and

FIIIðaÞ ¼ a 1� að Þ½ �1=2 0:3750þ 0:1875 1� að Þ þ 1� að Þ2þ0:1172 1� að Þ3þ0:0732 1� að Þ4þ0:0780 1� að Þ5
h i

For a cracked rod in pure torsion the stress disturbance function due to the crack
is set in the form:

f3 xð Þ ¼ D0b
r�yz r ¼ L� xj j; h ¼ 0�ð Þ

rTn
; ð0 � x \ LÞ ð10:6Þ

where D0 is a constant and b is a dimension scale factor so that the frequency
disturbance function f3 is dimensionally consistent with Eq. (2) of Ref. [30].

Equations (10.4) and (10.6) yield

f3ðxÞ ¼
D0

ffiffiffi
a
p

FIIIðaÞbffiffiffiffiffi
2r
p ð10:7Þ

To find the scale factor D0 in the above equation, a circular rod loaded with a
torque T is considered with a ring shaped crack of depth a, as shown in Fig. 10.2.
Under general loading, the additional twist angle h* along the direction of the
initial torque T, due to the presence of a crack, is computed by Castigliano’s
theorem, and theory of fracture based on field strength of the local energy density
[34–37]. D0 will be computed so that the relative twist of the two ends will be
equal to the one computed with fracture mechanics methods for static torque.

If UT is strain energy per unit volume due to a crack of depth a, Castigliano’s
theorem demands that additional twist h* due to the initial torque T be:

10.2 Torsional Vibration of a Continuous Cracked Shaft: Variational Theorem 257



h� ¼ oUT=oT ð10:8Þ

The strain energy per unit volume, of the element located at distance r from the
crack tip, has the form [38]

UT ¼ S=r ð10:9Þ

where S is the strain energy density factor.
With isotropic and homogeneous materials the strain energy density factor is

given as [35–38]

S ¼ a11 K2
I þ 2a12 KIKII þ a22K2

II þ a33K2
III ð10:10Þ

where KI, KII, KIII are stress intensity factors corresponding to tensile, in-plane
shear and out-of-plane shear modes of crack opening respectively, and the coef-
ficients a11, a12, a22, a33 are calculated from Eq. (7) of Ref. [30].

From Eqs. (10.5), (10.7), (10.8), (10.9) and (10.10), after the appropriate
assumptions for the stress field in the region of the peripheral surface crack are
considered, the additional twist is calculated as

h� ¼ 4p 1 � m2ð ÞrTn

G

4a � R0

R0 � a
þ R0 � að Þ3

12R3
0

" #

ð10:11Þ

On the other hand, according to the rod deformation analysis theory the general
form for the twist angle of the rod in pure torsion is

h� ¼ TL0=GJ ð10:12Þ

Assuming that the stress disturbance function f3(x) in Eq. (10.6) for the torsional
vibration of cracked rods acts directly on the torque T, Eq. (10.5), the additional
twist due to the crack located at x = L assumes the form:

h� ¼ D0

ffiffiffi
a
p

rTnpL0 1 � að Þ3R3
0FIIIðaÞb

2GJ
ð10:13Þ

Equations (10.11) and (10.13), yield the constant D0 as:
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4
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2
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ð10:14Þ

10.2.3 The Differential Equation of Motion

The variation of the natural frequencies and in particular the fundamental frequency
with increasing crack depth is of interest here for the purpose of diagnosing and
monitoring cracks. The equation of motion (10.2) for the cracked rod torsional
vibration can be solved analytically for the frequency shifting ratios. The frequency
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shifting ratio of the fundamental frequency of the torsional vibration of cracked
rods will be compared to torsional vibration of uncracked rods.

If the displacement h is taken in the normal mode form h(x,t) = W(x)cosx*t,
where W(x) is an assumed shape function and x* the fundamental frequency of the
cracked rod, Eq. (10.2) will change to:

ðg1 EW 00Þ00 � ðg2GW 0Þ0 ¼ x�2qJW ð10:15Þ

The partial differential equation of motion (10.15) is of the fourth order so that
two boundary conditions must be satisfied at both ends of the rod. The boundary
conditions appropriate to this equation are obtained by equating the boundary terms
to zero with prescribed external forces, and prescribed displacements respectively.

10.2.4 Boundary Conditions

A cantilever rod with its fixed end at x = 0, (Fig. 10.2) at that point has dis-
placements u, t and w all prescribed as zero while at the free end x = L0 has the
forces prescribed as zero. At x = 0, the boundary term, Eq. (19) of Ref. [30],
yields h = 0 and h0 = 0:

At x = L0, the boundary term in Eq. (17) of Ref. [30] yields h000 = 0 and
(R ? F)EQ1h0 - (L ? J ? D ? M)GQ2h0 = 0.

If there is no crack in the rod the functions F, B, C, D and M, are all zero.
Hence, Q1(x) and Q2(x) become unity, g1 becomes R, and g2 becomes L ? J. For
the circular rod twisted about its central axis, the warping function will vanish
[39], that is

/ ¼ 0 ð10:16Þ

The displacement, stress, strain and velocity momentum terms, Eq. (2) of Ref.
[30], for the cracked rod will be reduced to:

u ¼ 0; t ¼ �zh x; tð Þ;w ¼ yh x; tð Þ
px ¼ 0; py ¼ �zP x; tð Þ; pz ¼ yP x; tð Þ
cxx ¼ f1 x; y; zð Þ½ �S1 x; tð Þ; cyy ¼ czz ¼ �mcxx

cxy ¼ �z þ f2 x; y; zð Þ½ �S2 x; tð Þ; cyz ¼ 0; cxz ¼ y þ f3 x; y; zð Þ½ �S2 x; tð Þ
rxx ¼ f1 x; y; zð Þ½ �T1 x; tð Þ; ryy ¼ rzz ¼ 0

rxy ¼ �z þ f2 x; y; zð Þ½ �T2 x; tð Þ; rxz ¼ y þ f3 x; y; zð Þ½ �T2 x; tð Þ; ryz ¼ 0

Xx ¼ Xy ¼ Xz ¼ 0

ð10:17Þ

where P(x,t) is the velocity function, S1(x,t), S2(x,t) strain functions, T1(x,t),
T2(x,t) stress functions and Xi body forces.
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Now, Eq. (10.3) will change to
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and functions g1(x) and g2(x) become

g1 xð Þ ¼ 0

g2 xð Þ ¼ J þMð Þ2

J þ C þ 2Mð Þ :
ð10:19Þ

10.2.5 Torsional Natural Frequencies of the Cracked
Rod-Rayleigh Quotient

Alternatively, an approximate energy method approach, Rayleigh’s quotient
method as used in Ref. [30], will be employed to estimate the fundamental fre-
quency x* of the cracked rod for various crack depths.

In Eq. (10.15) denoting

L Wð Þ ¼ ðg1EW 00Þ00 � ðg2GW 0Þ0

and

N Wð Þ ¼ qJW : ð10:20Þ

Rayleigh quotient, associated with the differential equation of motion takes the
form:

QR Wð Þ ¼
R

WL Wð ÞdxR
WN Wð Þdx

ð10:21Þ

where the two integrals are over the length of the rod.
Therefore, QR(W) provides an estimate for x* from an assumed function W(x)

which, for the fundamental mode, will exceed the true value. The numerator of
Eq. (10.21) can be integrated by parts resulting in boundary terms which are taken
to be zero for an appropriate choice of W(x). The quotient then provides the
approximation for the fundamental frequency x* of the cracked rod.

x�2 ¼

R L0

0 g1E W 00ð Þ2þg2G W 0ð Þ2
n o

dx
R L0

0 W2dx
: ð10:22Þ
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Equation (10.22) can now be applied to a prismatic cracked rod for the pre-
diction of the variation of the fundamental frequency for different cross-section
geometries and end conditions.

From experimental results available in the literature [13–30], it is conclude that
the natural torsional frequencies of the cracked rod are rather insensitive to small
depth cracks. Only if total crack depth exceeds 50 % of the depth of the rod, there
is an appreciable drop in the value of the natural frequencies. This suggests that the
shape function W(x) of the cracked rod might be approximated reasonably well by
the shape function of the undamaged rod. With a free-free rod this takes the form
W(x) = cos(px/L0) [7]. The terms integrated over the length of the rod Eq. (10.22)
are symmetric around the rod‘s mid-span, so only half of the rod (0 \ x \ L0/2)
needs to be considered. The algebra is further simplified if the origin is transferred
to the rod mid-span and a new axial co-ordinate given by s = (L–L0/2)/(L/2) is
used. Using the above value of W(x) and new coordinate, s, Eq. (10.22) becomes

x�2 ¼ 4p2

qJL2
0

p
L0

� �2
E
R1

�1
g1 sin2 psð Þdsþ G

R1

�1
g2 cos2 psð Þds

	 


�1 \ s \ 1ð Þ
: ð10:23Þ

This evaluation can be carried out for a range of crack depths defined by the
parameters g1 and g2. The frequency shifting ratio of the fundamental frequency
for the torsional vibration of the cracked rod, to that of the torsional vibration of
the uncracked rod, will be compared with results found from Ref. [40].

For a rod of circular cross section, the function g1(x) = 0 (Eq. 10.19) and the
cracked rod frequency, Eq. (10.23), is reduced to the form

x�2 ¼ 4p2G

qJL2
0

Z1

�1

g2 cos2 psð Þds: ð10:24Þ

If there is no crack, that is f2(x) = f3(x) = 0, and C(x) = M(x) = 0, Eq. (10.18),
yield g1 = 0, g2 = J, Eqs. (10.19) and (10.24) yields the uncracked rod frequency
as

x2 ¼ p2G

qJL2
0

: ð10:25Þ

Thus, from Eqs. (10.24) and (10.25) the frequency ratio becomes

x�

x

� �2

¼ 4
J

Z1

�1

g2 cos2 psð Þds: ð10:26Þ

It is worth noting that the function g2 is not related with the crack disturbance
function f1(x). In other words, the latter f1(x) does not appear in Eq. (10.26), axial
stress rxx has no effect on the torsional vibration of cracked rods of circular cross-
section. Since only torsional vibration is considered here, it is expected that
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f2 xð Þ ¼ 0 and f3 xð Þ ¼ D0FIII að Þb
ffiffiffi
a
p
ffiffiffiffiffi
2r
p ð10:27Þ

From Eq. (10.18) substituting with the new axial coordinate s, terms C(s) and
M(x) become:

C sð Þ ¼ pD2
0F2

IIIab2 R0 � að Þ2

L0s
; �1 \ s \ 1ð Þ ð10:28Þ

and

M xð Þ ¼
Z

yf3dA ¼ 0 ð10:29Þ

Hence, the frequency ratio Eq. (10.26) changes to:

Dx2 ¼ x�

x

� �2

¼ 4
Z

1
2

0

L0s cos2 psð Þ
L0s þ D2

0F2
IIIa 1� að Þ2

ds ð10:30Þ

Substituting D0 from Eq. (10.14) the fundamental frequency shifting ratio Eqs.
(10.15) and (10.30) were solved with the aid of Mathematica and results for
different R/L0 ratios are shown in Fig. 10.3. The more slender the rod is, the
smaller the frequency shifting ratio drop is.

Furthermore, comparison of the analytical solution of Eq. (10.30) with the ana-
lytical solutions from Refs. [40, 41], both with lumped crack flexibility, and
experimental results from Ref. [40] are shown in Fig. 10.4. Results agree very well.

Fig. 10.3 Frequency shifting
ratios versus crack depth,
Eqs. (10.15) and (10.30)
for different ratios R0/L0
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10.3 Finite Element Analysis of a Vibrating Cracked Rod

To compare with analytical results obtained, a Finite Element (FE) formulation of a
cracked Euler–Bernoulli beam was investigated. The model adopted is using three-
dimensional solid elements, leading to a set of linear algebraic equations of the form:

½M]S €qf gSþ ½C]S _qf gSþ ½K]S qf g¼ ff gS ð10:31Þ

where, [M]S, [C]S and [K]S are the mass, damping and stiffness matrices for the
vibrating system and {q(t)} the response of the vibrating cracked rod in a stationary
coordinate system [29]. The damping part of Eq. (10.31) is neglected, since no
damping is considered. The FE mesh of the crack rod considered was developed
using the FE software ANSYS [42] and the non-singular eight-node brick element
‘solid 45’, which has three degrees of freedom per node, i.e. the displacements in
the x, y and z directions. The circumferential crack is modeled by assuming the
corresponding nodes of the two crack surfaces to deform independently.

The crack surfaces are modeled using double nodes which are identical in
location but topologically belong to the two different crack faces. Contact elements
are not used in the present model, therefore, contact or friction between the crack
faces is not taken into account. Element length was reduced in the axial direction
towards the crack area.

Solution of the modal eigenvalue problem, using FE model has revealed the
extensional, bending and twisting vibration modes, as well as, their interactions.
Here, torsional natural frequencies and the sensitivity of the FE mesh with respect
to the numerical results for various crack depth ratios are investigated. The FE
mesh was refined progressively, from rough to very dense mesh and results of the
corresponding frequency drop in close agreement with the analytical solution,
Eq. (10.15) are shown in Figs. 10.5, 10.6 and 10.7, for different R0/L0 ratios and
varying crack depth.

Fig. 10.4 Lowest natural
frequency shifting ratio x/x*
versus crack depth ratio;
comparison of analytical and
experimental results. ——
solution of Eq. (10.15), +
Dimarogonas and Massouros
[40], experimental, q

Dimarogonas and Massouros
[40], analytical, 9 symbol
Wauer’s solution [41]
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Fig. 10.5 Frequency shifting
ratios versus crack depth
ratio. R/L0 = 0.0071.
Comparison of analytical
Eqs. (10.15, 10.30) and FE
numerical results Eq. (10.31)

Fig. 10.6 Frequency shifting
ratios versus crack depth
ratio. R/L0 = 0.0102.
Comparison of analytical
Eqs. (10.15, 10.30) and FE
numerical results Eq. (10.31)

Fig. 10.7 Frequency shifting
ratios versus crack depth
ratio. R/L0 = 0.0133.
Comparison of analytical
Eqs. (10.15, 10.30) and FE
numerical results Eq. (10.31)
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10.4 Summary and Conclusions

From 1971 till present, a wealth of analytical, numerical and experimental results
on the dynamic response of cracked rotors has been accumulated. However, many
unanswered questions still remain, especially in the area of closing cracks in
rotating shafts [5–8, 41, 43].

Here, a differential equation for the torsional vibration of a rod with a cir-
cumferential crack was developed. The crack was introduced as a stress distur-
bance function which needed no a priori assumptions (local flexibility formulation
[40], a prescribed exponential function formulation [30]) but rather the stress field
determined by well-known methods of fracture mechanics [27–29].

Hu-Washizu-Barr variational formulation [30–32] was used to develop the dif-
ferential equation and the boundary conditions for a cracked rod. The method is
based on the general variational principle and the independent assumptions about
displacement, momentum, strain and stress fields of a cracked rod, and the equations
of motion for a uniform rod in torsional vibration with one or more pairs of transverse
symmetrically disposed open edge cracks along its length, were derived. The crack is
introduced as a stress disturbance function, the stress field is determined by fracture
mechanics methods, and thus one a priori assumption for the extent of the stress field
due to the crack is not required. The strain energy density theory has been used for an
accurate evaluation of the stress disturbance function induced by the crack. More-
over, the strain energy density criterion is based on the local density of the energy
field in the crack tip region and requires no special assumptions on the direction in
which the energy released by the separating crack surfaces is computed. Thus the
strain energy density factor is the only criterion to be used with mixed mode asso-
ciated with mode III and mode I and II as this is usually the case [35–40]. The crack
was regarded as constantly open to avoid non-linearities associated with compressive
stresses over a closing crack face.

Although previous analyses produced comparable results [15–26, 40, 41, 43],
the method presented provides a more detailed approach to crack identification
[27–29]. Multiple cracks can easily be treated by superposition of the crack dis-
turbance functions, if the cracks are not too close. The latter can be also considered
using appropriate fracture mechanics solutions for the stress field under static
torsional load. The results are almost identical with previous experimental and
analytical ones obtained by the lumped local flexibility approach. This method,
however, besides its generality, it does not need a priori assumptions for the extent
of stress fields due to crack, can be extended to multiple cracks, stepped rods, etc.,
without adding complexity to the problem, since the same differential equation can
be used with different forms of the stress disturbance function.

Finite Elements have been incorporated by many researchers for the derivation
of the dynamic behavior of structures with cracks or flaws. It must be mentioned
that indiscriminate application of the frequencies calculated by FEM, without
consideration of the assumptions under which the crack or flaws models were
derived and are valid, might lead to gross errors. However, careful observation of
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the behavior of these damage models can lead to extension of their utility for
defects of practical engineering importance. There are so many parameters that can
be varied in flexural vibration of large-scale composite structures with flaws that it
would be very difficult to present and compare results for all cases. Difficulties
arising with this type of damaged structure dynamic behavior include for example
coupling of flexural and longitudinal vibration. Also, according to the preloading
conditions of the structure under investigation, the damage model assumption
needs further verification in order to interpret vibration and mode shape
measurements.
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Stable mode, 139
Stable rotor orbits, 70
Stability analysis, 171
Static deflection, 91, 150, 154, 158, 197
Stationary coordinate system, 98, 145,

153–158, 239, 263
Steam flow, 72–80, 92
Steam force, 78–92
Steam force gradient, 78–89

ratio, 83, 88
Steam whirl

evaluation, 91
problem, 77–88, 90

Stepped rotors, 59
Stiffness

constants, 50
distribution, 59
effects, 85, 155, 158, 165
function, 3–4, 26, 159
matrix, 4, 171, 191–197
parameters, 82
varying, 27

Strain energy, 148
density function, 148, 165, 173
release rate, 168–173, 230, 253

Strain release function, 173
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Stress intensity factor, 148, 163, 164, 166–174,
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Superposition Principle, 46
Surface friction heating, 203
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Taylor number, 97
Taylor series, 107–108
Temperature effects, 251
Thermal bow, 116–120
Thermal conductivity, 115, 141, 204, 212–216
Thermal effects, 203–217
Thermal imbalance, 58
Thermodynamic constants, 122–126
Thomas stability criterion, 93–94
Three-dimensional problem, 117
Torque deflection number (TDN), 77, 90–93
Torsional spring constant, 186–187

parameter, 180
Torsional vibration

amplitude, 204, 218
continuous rod, 240, 258
cracked rotor, of, 193–194, 222, 240, 265
heat propagation due to, 203
Hu-Washizu theory, 254, 256
rod, 251
variational principle, 222, 255, 256

Torsional wave scattering, 173
Transfer matrix method, 59, 72
Transformation matrix, 62, 154
Transverse circumferential cracks, 173–175,

255, 257
Transverse crack at welded root of beam, 180
Transverse flexibility, 180
Transverse surface cracks. See Cracked shafts
Transverse vibration, 180–186, 188, 223
Turborotors, 88
Two-finite element rotor model, 81

U
Unstable rotor orbits, 70

V
Variable elasticity effects, 25
Variable length, member, 26

Variable mass or moment of inertia, 27
Variable stiffness, 27
Variational formulation

boundary conditions, 180–182, 211, 221,
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cracked rotor, 252–254
Hu-Washizu-Barr, 221, 255, 256
prismatic beams, 222–230
rods, 251–258
strain field, 241, 254–255
stress field, 147, 164, 180, 222, 223,

229–230, 240
stress intensity functions, 230
warping, 240
warping function, 242–243, 256, 259

Variational theorem, 222–224, 235, 240, 255
Vector equation, 134
Velocity function, 29, 259
Velocity-Momentum Term, 243–244, 247
Vibrating elastic system, 8, 20
Vibrating mechanical systems, 25
Vibrating shafts, 20
Vibration frequency, 204–210, 239
Viscoelastic loss factor, 66
Viscoelastic model, 52
Viscous damping, 14–21
Volterra integral equation, 36

W
Warping function, 242–243, 259
Washizu, 254, 265
Wauer, 164, 263
Wave mechanics, 36
Whirl, 1, 44, 51, 68, 78, 154

forward-backward, 51
frequency, 72, 108, 109
speed, 68
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Young’s modulus, 148, 166, 180–188,
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