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Preface

This monograph considers the basic and fundamental control and estimation
problems of noisy state-multiplicative uncertain continuous and discrete-time
linear systems in an H∞ setting. Applying various mathematical tools, these
problems, and related ones, are solved in a comprehensive and detailed man-
ner. In addition to the theoretical aspects of the above topics, the monograph
contains various practical state of the art examples taken from the control
engineering field.

Systems, where some of its uncertain parameters can be described by
white noise processes, attracted the attention of scientists, particularly con-
trol theoreticians, in the early sixties, where most of the research was focused
upon continuous-time problems. In fact, continuous-time state-multiplicative
systems emerge quite naturally from basic principles in chemistry, biology,
ecology and other fields even under somewhat restrictive assumptions. Fur-
thermore nonlinear input-output maps can be approximated quite accurately
by these systems. In principle, noisy state-multiplicative systems belong to a
class of systems termed ‘bilinear stochastic systems’ which turns out to be
a special case of the vast class of bilinear systems. The bilinearity of these
systems implies that the system is linear in the product of the states and the
stochastic multiplicative terms. Early research on the control of these systems
concentrated mainly on stability issues and on basic control and estimation
problems, analogous to their deterministic counterparts. In the eighties, along
with the state-space formulation of the H∞ control theory, a renewed interest
in these systems yielded new results in both the analysis and synthesis aspects
within the continuous-time domain. In the nineties, the theoretical treatment
of state-multiplicative systems was extended to include discrete-time systems
and many quite involved synthesis issues, including measurement-feedback,
tracking control and mixed performance control and estimation solutions.
By accumulating sufficient design experience with the above techniques, as
demonstrated by the solution of some practical engineering problems, the ap-
plicability of the various topics tackled by the theoretical research has been
facilitated.



VIII Preface

In this monograph we address the major issues addressed by the research
during the past two decades. Our aim is twofold: on the one hand we intro-
duce and solve problems that were previously solved or partially solved. Here
we apply methods which are taken from the mainstream of control theory,
where we somewhat relax the mathematical burden typically encountered, by
and large, in the field of stochastic processes. We thus simplify the introduc-
tory topics which are used at a later stage for the solution of much more
considerably involved problems.

On the other hand we formulate and fully solve problems which were not
previously tackled in this field. These problems, both from a theoretical and
from a practical point of view, form the major part of this monograph.

In our treatment we apply new approaches, typically applied to deter-
ministic systems in the past, to noisy state-multiplicative systems. Beside
the theoretical treatment of the various problems contained in the book, we
present six real practical engineering systems where extensive use is made of
the theory we have developed. We especially emphasize this point to highlight
the applicability of the theoretical results achieved in this field to practical
problems, since this approach adds considerably to the value of the subject
material under study.

The monograph is addressed to engineers engaged in control systems re-
search and development, to graduate students specializing in control theory
and to applied mathematicians interested in control problems.

The reader of this book is expected to have some previous acquaintance
with control theory. The reader should also have taken, or be taking con-
currently, introductory courses in state-space methods, emphasizing optimal
control methods and theory. Some knowledge in stochastic processes would be
an advantage, although the monograph is, in a sense, self contained and pro-
vides a basic background of the subject. The basic stochastic tools needed to
master the subject material are given in the Appendix, where basic concepts
are introduced and explained.

The book consists of four parts which include: introduction and literature
survey, continuous-time stochastic systems, discrete-time systems and an es-
pecially extensive application section. The second part includes the following
five chapters (Chapters 2-6): In Chapter 2 we present the formulation of the
stochastic version of the bounded real lemma and the solutions to the state
and the measurement-feedback control problems, utilizing a Luenberger-type
observer. Chapter 3 contains a treatment of the stationary estimation prob-
lem where a general type of filter is considered. In Chapter 4 various preview-
patterns are treated within the stochastic tracking problem. The contents of
Chapter 5 deal with the stochastic static measurement control problem for
nominal systems and for systems with polytopic uncertain parameters. Chap-
ter 6 considers the stochastic passivity issue of state-multiplicative systems.

In Part 3 (discrete-time systems, Chapters 7-10) we present the discrete-
time counterparts to Chapters 2-6. The last part (Part 4) introduces six prac-
tical examples of noisy state-multiplicative control and filtering problems,



Preface IX

taken from various fields of control engineering, including tracking, guidance
and navigation control. In addition to the above four parts, the book contains
an extended Appendix consisting of three parts, the first of which contains
a basic introduction to stochastic differential equations. The last two parts
of the appendix consider theoretical and practical aspects of difference and
differential linear matrix inequalities that are used in our solutions.

A few words about the numbering scheme used in the book are in order.
Each chapter is divided into sections. Thus, Section 2.3 refers to the third
section within the second Chapter. In each chapter, theorems, lemmas, corol-
laries, examples and figures are numbered consecutively within the chapter.
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Preface

This monograph considers the basic and fundamental control and estimation
problems of noisy state-multiplicative uncertain continuous and discrete-time
linear systems in an H∞ setting. Applying various mathematical tools, these
problems, and related ones, are solved in a comprehensive and detailed man-
ner. In addition to the theoretical aspects of the above topics, the monograph
contains various practical state of the art examples taken from the control
engineering field.

Systems, where some of its uncertain parameters can be described by
white noise processes, attracted the attention of scientists, particularly con-
trol theoreticians, in the early sixties, where most of the research was focused
upon continuous-time problems. In fact, continuous-time state-multiplicative
systems emerge quite naturally from basic principles in chemistry, biology,
ecology and other fields even under somewhat restrictive assumptions. Fur-
thermore nonlinear input-output maps can be approximated quite accurately
by these systems. In principle, noisy state-multiplicative systems belong to a
class of systems termed ‘bilinear stochastic systems’ which turns out to be
a special case of the vast class of bilinear systems. The bilinearity of these
systems implies that the system is linear in the product of the states and the
stochastic multiplicative terms. Early research on the control of these systems
concentrated mainly on stability issues and on basic control and estimation
problems, analogous to their deterministic counterparts. In the eighties, along
with the state-space formulation of the H∞ control theory, a renewed interest
in these systems yielded new results in both the analysis and synthesis aspects
within the continuous-time domain. In the nineties, the theoretical treatment
of state-multiplicative systems was extended to include discrete-time systems
and many quite involved synthesis issues, including measurement-feedback,
tracking control and mixed performance control and estimation solutions.
By accumulating sufficient design experience with the above techniques, as
demonstrated by the solution of some practical engineering problems, the ap-
plicability of the various topics tackled by the theoretical research has been
facilitated.



VIII Preface

In this monograph we address the major issues addressed by the research
during the past two decades. Our aim is twofold: on the one hand we intro-
duce and solve problems that were previously solved or partially solved. Here
we apply methods which are taken from the mainstream of control theory,
where we somewhat relax the mathematical burden typically encountered, by
and large, in the field of stochastic processes. We thus simplify the introduc-
tory topics which are used at a later stage for the solution of much more
considerably involved problems.

On the other hand we formulate and fully solve problems which were not
previously tackled in this field. These problems, both from a theoretical and
from a practical point of view, form the major part of this monograph.

In our treatment we apply new approaches, typically applied to deter-
ministic systems in the past, to noisy state-multiplicative systems. Beside
the theoretical treatment of the various problems contained in the book, we
present six real practical engineering systems where extensive use is made of
the theory we have developed. We especially emphasize this point to highlight
the applicability of the theoretical results achieved in this field to practical
problems, since this approach adds considerably to the value of the subject
material under study.

The monograph is addressed to engineers engaged in control systems re-
search and development, to graduate students specializing in control theory
and to applied mathematicians interested in control problems.

The reader of this book is expected to have some previous acquaintance
with control theory. The reader should also have taken, or be taking con-
currently, introductory courses in state-space methods, emphasizing optimal
control methods and theory. Some knowledge in stochastic processes would be
an advantage, although the monograph is, in a sense, self contained and pro-
vides a basic background of the subject. The basic stochastic tools needed to
master the subject material are given in the Appendix, where basic concepts
are introduced and explained.

The book consists of four parts which include: introduction and literature
survey, continuous-time stochastic systems, discrete-time systems and an es-
pecially extensive application section. The second part includes the following
five chapters (Chapters 2-6): In Chapter 2 we present the formulation of the
stochastic version of the bounded real lemma and the solutions to the state
and the measurement-feedback control problems, utilizing a Luenberger-type
observer. Chapter 3 contains a treatment of the stationary estimation prob-
lem where a general type of filter is considered. In Chapter 4 various preview-
patterns are treated within the stochastic tracking problem. The contents of
Chapter 5 deal with the stochastic static measurement control problem for
nominal systems and for systems with polytopic uncertain parameters. Chap-
ter 6 considers the stochastic passivity issue of state-multiplicative systems.

In Part 3 (discrete-time systems, Chapters 7-10) we present the discrete-
time counterparts to Chapters 2-6. The last part (Part 4) introduces six prac-
tical examples of noisy state-multiplicative control and filtering problems,



Preface IX

taken from various fields of control engineering, including tracking, guidance
and navigation control. In addition to the above four parts, the book contains
an extended Appendix consisting of three parts, the first of which contains
a basic introduction to stochastic differential equations. The last two parts
of the appendix consider theoretical and practical aspects of difference and
differential linear matrix inequalities that are used in our solutions.

A few words about the numbering scheme used in the book are in order.
Each chapter is divided into sections. Thus, Section 2.3 refers to the third
section within the second Chapter. In each chapter, theorems, lemmas, corol-
laries, examples and figures are numbered consecutively within the chapter.
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1

Introduction

This monograph considers linear systems that contain, in the general case,
state, control and measurement multiplicative noise, in both the discrete-time
and the continuous-time settings. In the discrete-time case, we consider the
following system [43], [39]:

xk+1 = (Ak + Dkvk)xk + B1,kwk + (B2,k + Gkηk)uk, x(0) = x0

yk = (Ck + Fkζk)xk + D21,knk,

zk = Lkxk + D12,kuk, k = 0, 1, ..., N −1

(1.1)

where xk ∈ Rn is the state vector, wk ∈ Rq is an exogenous disturbance,
uk ∈ Rs is the control input signal, x0 is an unknown initial state, yk ∈ Rr

is the measured output, nk is a measurement noise, zk ∈ Rm is the objective
vector and where the sequences {vk},{ξk} and {ηk} are standard white noise
scalar valued sequences with zero mean that satisfy:

E{vkvj}=δkj , E{ηkηj}=δkj , E{ηkvj}=βkδkj , |βk| < 1

E{ζkζj}=δkj , E{ζkηj}=σkδkj , E{ζkvj}=αkδkj , |αk| < 1, |σk| < 1.
(1.2)

The system (1.1) is a simplified version of a more involved system where:
the control input feeds the measurements (i.e D22,k �= 0), the deterministic
disturbance wk appears also in zk (i.e D11,k �= 0), and a finite sum of the
multiplicative noise terms appears in the state equation instead of one multi-
plicative term. Notice that the system (1.1) is, in fact, the uncertain version
of the linear system

xk+1 = Akxk + B1,kwk + B2,kuk, x(0) = x0

yk = Ckxk + D21,knk,

zk = Lkxk + D12,kuk, k = 0, 1, ..., N −1

(1.3)

where the system dynamic, control feed-through and measurement matrices,
namely, Ak, B2,k and Ck are corrupted by the white noise signals Dkvk, Gkηk

E. Gershon et al.: H∞ Contr. and Est. of State-multipl. Lin. Sys., LNCIS 318, pp. 3–18, 2005.
© Springer-Verlag London Limited 2005
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and Fkζk, respectively. In the present monograph, the exogenous disturbance
wk serves, in some cases, the purpose of analyzing both the H∞ and H2 norms
of (1.1). Therefore, the disturbance feed-through matrix B1 is intentionally
not corrupted with noise in the above problem formulation in order to avoid
terms that include products of noise signals.

In the continuous-time setting, we consider the following linear time in-
variant (LTI) Ito system with multiplicative noise:

dx(t) = (Ax(t) + B1w(t))dt + B2u(t)dt + Gu(t)dη(t) + Dx(t)dv(t)

dy(t) = (Cx(t) + D21w(t))dt + Fx(t)dζ(t)

z = Lx(t) + D12u(t)

(1.4)

where x, w, y, z are defined similarly to (1.1). The matrices A, B1, B2,
C, L, D12, D21 and D, F, G are constant matrices of the appropriate
dimensions. Similarly to (1.1), the variables v(t), η(t) and ζ(t) are zero-mean
real valued scalar Wiener processes that satisfy:

E{dv(t)} = 0, E{dζ(t)}=0, E{dη(t)}=0, E{dη(t)2}=dt,

E{dv(t)2}=dt, E{dζ(t)2}=dt, E{dv(t)dζ(t)}=αdt, |α|< 1,

E{dη(t)dζ(t)}=σdt, |σ|< 1, E{dv(t)dη(t)}=βdt, |β|< 1.

Namely, in the continuous-time case, adopting the formal notation of white
noise signals being the derivative of corresponding Wiener processes, the sys-
tem dynamic, control feed-through and measurement matrices A, B2 and C
are corrupted by the white noise signals Dv̇, Gη̇ and F ζ̇, respectively. Simi-
larly to the discrete-time case, the system of (1.4) is a simplified version of a
more involved system. We also consider the time varying version of (1.4).

The above systems belong to a class of systems called ‘bilinear stochastic
systems’ (BLSS), which is a special case of the vast class of bilinear systems
(BLS) [84]. The bilinearity of BLSS implies that the system is linear in the
states and in the stochastic multiplicative terms. Deterministic bilinear sys-
tems (DBLS) include multiplicative terms where the states are multiplied by
the control [13], meaning that while the system is linear in each variable, it
is jointly non-linear. The latter systems evolved in the early 1960s out of a
nuclear reactor research at Los Alamos where they arose naturally for neu-
tron kinetics and heat transfer [13]. In fact, bilinear systems emerge, quite
naturally, from basic principles in chemistry, biology, ecology and other fields
[13]. Also, in somewhat restrictive cases, nonlinear input-output maps can be
approximated quite accurately by BLS [84].

The diffusion processes found in the nuclear fission reaction can also be
analyzed as BLSS. Other diffusion models, that can be described by the BLSS,
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have been developed for the migration of people and for biological cells. In
a study of the immune system, it has been shown that BLSS may arise for
cellular population and antibody concentration as a consequence of a stochas-
tic coefficients for cell division, differentiation, and possibly antibody-antigen
chemical affinity [13] In addition to the above, bilinear differential equations
that are driven by standard Gaussian white-noise, have been used to analyze
such diverse processes as sunspot activity and earthquakes (see [84] and the
references therein). It is important to note that deterministic systems can be
derived from BLSS models by considering the mean of the latter descriptions
[84].

BLSS are also found in control and information systems. One important
example is the human operator in a control task. From an intuitive point of
view, the tracking error induced by the human operator in tracking an input
signal depends, among other things, upon the magnitude of the input signal.
When this input signal has a bandwidth significantly lower than the human
operator induced error, the latter can be approximated to be a white noise
signal. In such a case, a practical example for control-dependent noise (CDN)
is obtained which has been investigated, both theoretically and experimen-
tally, (see [79] and the references therein). Another example of CDN occurs in
modelling thrust misalignment in a gas-jet thrusting system for the attitude
control of a satellite, where the misalignment angle is being modelled as a
stochastic process.[13]

Practical examples for state-dependent noise (SDN) are found in aerospace
systems [96]. One example is the momentum exchange method for regulating
the precession of a rotating spacecraft. Spacecrafts are often rotated about
their symmetry axis in order to enhance their aerodynamic stability upon
reentry, or to create an artificial sense of gravitational field to facilitate on
board experiments in deep space [96]. Another aerospace related example
is obtained when implementing gain scheduled controllers for large flight en-
velopes. In such cases the plant (i.e. the airframe model) is first linearized with
respect to equilibrium points (referred to as ‘trim’ in the aerospace literature)
where, naturally, the matrices A and B2 strongly depend on the flight condi-
tions of each envelope (operating) point, usually the corresponding dynamic
pressure or the Mach number. A gain scheduled controller is then designed to
stabilize the system.

Consider a state-feedback control

u = K(pmeas)x

for the linear system
ẋ = Ax + B2u

where
pmeas = p + v̇
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is the dynamic pressure corrupted by the broadband noise v̇. Approximating
to first order

K(pmeas) = K(p) +
dK(p)

dp
v̇

one readily obtains a closed-loop system including the state-multiplicative
noise, namely

dx(t) = (A + B2K(p))xdt + D(p)xdv

where

D(p) = B2
dK(p)

dp
.

One may be tempted to take the mean of the former and obtain a deterministic
system that supposedly will possess the stability properties of the system with
state-multiplicative noise, but such a simplifying approach may be erroneous.

The following simple example may serve the purpose of realizing the effect
that multiplicative noise may have on stability. Consider

dx = −xdt − δxdv,

where v(t) is a standard Wiener process (see Appendix A), and δ is a positive
constant and where E(x(0) = 0 and E(x(0)2) = P0. Loosely speaking, the
transfer function of this system is

G(s) =
1

s + 1 + δv̇
.

Consider now φ(x) = x2. Then, by Ito lemma (see Appendix A), we have

dφ = φxdx + δ2x2dt = 2x(−xdt + δxdv) + δ2x2dt = (δ2 − 2)x2dt + 2x2δdv

Taking the expected value of both sides and defining:

P (t) = E(x2(t)) = E(φ(x)),

one readily sees that
dP

dt
= (δ2 − 2)P.

Namely, the covariance P (t) of x(t) will tend to zero (meaning that the system
is mean square stable as explained in the sequel) if and only if δ <

√
2.

Violating the latter condition will cause divergence of the system in spite of
the fact that the expected value dx/dt = −x of

dx = −xdt − δxdv

is stable. This simple example motivates the exact analysis of the effect of
white multiplicative noise on system stability and performance. Few problems
where such an analysis is required are listed next.
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1.1 Stochastic Linear Quadratic Control
and Estimation Problems

Many researchers have dealt in the past with various aspects of linear
quadratic control and filtering problems in systems with multiplicative noise,
mainly in the continuous-time case (for an overview of these works see [84]).
Several important results in the area of stationary control with perfect mea-
surements have appeared in [79], [108], [61], [105] and [106]. In [79], the prob-
lem of the output-feedback control with perfect measurement for stationary
continuous-time system which contain both CDN and SDN, was solved us-
ing a special form of the minimum principle applied to matrix differential
equations. Both the finite and the infinite time problems were solved in [79].

The linear quadratic control and H2-type filtering problems for systems
with multiplicative noise were solved in the discrete-time case by [90]. The
continuous counterpart of the latter, in the stationary case, has been solved
by [82]. In the case where the measurements are noisy, both the continuous
time-varying estimation and quadratic control problems have been solved by
[94]. The latter solution has been obtained in both the non-stationary and
stationary cases, where in the former case a set of matrix nonlinear differen-
tial equations had to be solved. In the stationary case, non-linear algebraic
equations had to be solved. It is important to note that the separation prin-
ciple [57], [116] does not hold in the BLSS and, therefore, the filtering and
the control problems have to be solved simultaneously [94]. In the absence of
multiplicative noise the separation principle [57] is restored.

1.2 Stochastic H∞ Control and Estimation Problems

Control and estimation of systems with state-multiplicative white noise has
been a natural extension of the deterministic H∞ control theory that was
developed in the early 80s. The solutions, in the stochastic H∞ context, of
the latter problems were achieved by applying the stochastic version of the
deterministic BRL [57], for both the continuous- and the discrete-time se-
tups. Thus, for example, once the state-feedback solution for the stochastic
H∞ control problem was obtained, the corresponding measurement-feedback
control problem has been solved, similarly to the deterministic case, by trans-
forming the problem to one of filtering (with the aid of either a Luenberger
observer [52] or a general-type filter [42]). The resulting filtering problem has
then been solved by applying the stochastic BRL.

Although, in outline form, the stochastic problems are solved similarly
to their deterministic counterpart, it is noted that the separation principle
does not hold in the stochastic case [84], [13]. It is also noted that, once the
covariance of the white noise process is set to zero (i.e, deleting the stochas-
tic terms), the deterministic solutions should be fully recovered from their
stochastic counterparts. In the sequel we bring a short survey of the various
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problems that were tackled in the stochastic H∞ literature for the discrete-
and the continuous-time setups.

1.2.1 Stochastic H∞: The Discrete-time Case

The formulation of the stochastic BRL for the discrete-time case has been
obtained by [87], [10], [26] and [43]. In [87], a version of the BRL for discrete-
time varying systems with state-dependent noise is proved. For the time-
invariant case, when the states and the control matrices are affected by noise,
a corresponding result has been derived in [10]. A Linear Matrix Inequality
(LMI) version for the following more involved time-varying system :

xk+1 = (A0
k + r

i=1 Ai
kwi

k)xk + (B0
1,k + r

i=1 Bi
1,kwi

k)wk + B2,kuk,

yk = C2,kxk + D21,kwk,

zk = (C0
1,k + r

i=1 Ci
1,kwi

k)xk + (D0
11,k + r

i=1 Di
11,kwi

k)wk + D12,kuk,

was formulated by [87]. In the latter system, {wi
k} are standard non-correlated

random scalar sequences with zero mean (note that wk is the usual distur-
bance in the H∞ sense). Based on a new version of the BRL for the above
system, the problem of output-feedback control was solved in [26] for both the
finite-horizon and the stationary cases. Necessary and sufficient conditions for
the existence of a stabilizing deterministic controller were derived there which
ensure an imposed level of attenuation. The latter conditions were derived in
terms of a solution of two linear matrix inequalities that satisfy a complemen-
tary rank condition. It is noted that in the finite-horizon case the resulting
necessary and sufficient conditions of [26] lead to an infinite number of lin-
ear inequalities that have to be solved. In the stationary case, only two LMIs
have to be solved there. Also in [26], an explicit formulae for the resulting con-
troller has been found under certain conditions. As a particular case, the above
problem has been solved for discrete time-varying periodic systems where a
periodic γ-attenuating controller can be computed as a function of a certain
extended LMIs system. A major drawback of the work of [26] is that it does
not allow for stochastic uncertainty in the measurement matrix- thus limiting
its application to practical problems. In the H∞ filtering, the work of [26] will
be restricted to processes whose measurement matrix is perfectly known.

The stationary H∞ and mixed H2/H∞ filtering problems were solved in
[40], [46]. In these works the system matrices were allowed to reside in a
polytopic setup.

1.2.2 Stochastic H∞: The Continuous-time Case

In the continuous-time setting, the formulation of a stochastic BRL was ob-
tained by [24], [86] for time-varying systems with only state-dependent un-
certainty. A stationary stochastic BRL for LTI systems with state and input
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stochastic uncertainties has been derived by [59], where an LMI formulation
has been obtained.

The problems of state and output feedback control have been solved for
various versions of the system (1.4). The state-feedback control problem was
solved by [85],[25],[56] and [103]. In [56] the following stationary LTI system
is considered, which is similar to (1.4) but includes additional multiplicative
white-noise terms:

dx(t) = Ax(t)dt + Buu(t)dt + Bww(t)dt + L
i=1(Aix(t) + Bu,iu(t)

+Bw,iw(t))dpi(t),

dz(t) = Czx(t)dt + Dzuu(t)dt + Dzww(t)dt + L
i=1(Cz,ix(t) + Dzu,iu(t)

+Dzw,iw(t))dpi(t).
(1.5)

In this system, x, u, w and z are defined as in (1.4) and the process
p = (p1, ..., pL) is a vector of mutually independent standard zero mean Wiener
processes. In [56], using the LMI optimization method, a static state-feedback
law of the form u = Kx was derived such that the closed-loop system is mean
square stable and satisfies a given upper-bound on the output energy.

The state-feedback control problem has also been solved by [103], [104] for
a simplified form of (1.5) (which only contain a state-multiplicative noise). A
necessary and sufficient condition under which there exists a state-feedback
stabilizing controller was derived. The latter condition is given in terms of
a generalized game-type algebraic Riccati equation, arising from a stochastic
linear quadratic game. Unlike the solution of [56], [103] considers stability of
the exponentially mean square type.

We note that the solution of [103] applies the concept of entropy between
two probability measures (see [30], for a review of this concept). Also in [110]
the case of uncertain systems with state-multiplicative noise and time delays
was treated. In [110], the system also contains time-varying parameters un-
certainties, where a state-feedback controller was obtained.

The dynamic output-feedback control was solved by [59], [52](for systems
with additional tracking signal) and [15] (which also includes the stochastic
H2 solution). The problem of dynamic output-feedback control for the system
below has been solved by [59] in the infinite-horizon case.

dx(t) = Ax(t)dt + A0x(t)dw1(t) + B0w(t)dw2(t) + B1w(t)dt + B2u(t)dt

y(t) = C2x(t) + D21w(t)

z(t) = C1x(t) + D11w(t) + D12u(t).

Based on a stationary stochastic BRL developed in [59], the solution was
obtained in a form of two coupled non-linear matrix inequalities (instead of
two uncoupled LMIs and a spectral radius condition in the deterministic case
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[35]). A necessary and sufficient condition for the existence of a stabilizing
controller was achieved there. In addition, a stability radii for the solution
was obtained where a lower bound for these radii was determined. A major
drawback of the work of [59] is that, beside the fact that the solution involves
non-linearity, it does not allow for stochastic uncertainty in the measurement
matrix. The stationary H∞ filtering problems in the continuous-time case
were solved in [45], [41], [2].

1.3 Some Concepts of Stochastic Stability

Stability is a quantitative property of the solutions to differential equations,
which can be often studied without a direct recourse to solving the equations.
Stability concepts are usually defined in terms of convergence relative to pa-
rameters such as the initial conditions, or the time parameter. The literature
on the topic is abundant (see [69] and the references therein). Many concepts
of stability have been studied and criteria have been derived mainly for the
stability of deterministic systems.

The common modes of convergence which appear in the literature include:
convergence in probability, convergence in the mean square and almost sure
convergence. It is important to note that the stochastic stability in proba-
bility is too weak to be of practical significance [69] and examples can be
constructed so that although limt→∞Prob{||x(t)|| > 0} = 0, for 0 > 0, the
samples x(t) themselves do not converge to zero. Since also convergence in the
mean square implies convergence in probability we do not use the latter defi-
nition of convergence [63]. In this section we review two types of mean square
stability that are most applied in the literature of linear systems with stochas-
tic state multiplicative noise [24],[56],[58],[59],[87] and that are, therefore, of
major importance in our monograph.

1.3.1 Asymptotic Mean Square Stability

We consider the following discrete-time stochastic system [12]:

xk+1 = (A0 + L
i=1 Aivi,k)xk (1.6)

where {vi,k} are independent, identically distributed zero-mean random vari-
ables with the statistics of E{viv

T
i } = σ2

i and where the initial condition x0

is independent of the above random sequence. Defining the state covariance
matrix as Mk = E

vi
{xkxT

k }, it can be shown that Mk satisfies the the following
linear recursion:

Mk+1 = A0MkAT
0 + L

i=1 σ2
i AiMkAT

i , M0 = E{x0x
T
0 } (1.7)

If the latter linear recursion is stable, meaning that limk→∞ Mk = 0 regardless
of M0, then the system is said to be asymptotically mean square stable.



1.4 Game-theory Approach to Stochastic H∞ Control 11

Mean square stability can be verified directly by considering a stochastic Lya-
punov function of the type V (ξ) = ξT Pξ, where E

vi
{V (x)} decreases along the

trajectories of (1.6) making the function V (M) = Tr{MP} a linear Lyapunov
function for the deterministic system (1.9) [12]. Similarly the system

dx = A0xdt + L
i=1 Aidβi, (1.8)

where E{dβ2} = σ2dt, is mean square stable whenever the following deter-
ministic differential equation:

Ṁ = A0M + MAT
0 + L

i=1 σ2
i AiMAT

i , M0 = E{x(0)xT (0)} (1.9)

is stable.

1.3.2 Mean Square Exponential Stability

We describe this concept in the continuous-time setting. Consider the follow-
ing linear system:

dx(t) = A(t)x(t)dt + d
j=1 Aj(t)x(t)dwj(t), x(t0) = x0 (1.10)

where dwj(t) are independent standard Wiener processes. The latter system
is exponentially stable in the mean square if there exists ([24],[69]) β ≥ 1 and
α > 0 such that the

E{�x(t)�2} ≤ βe−α(t−t0)||x0||2

for all t ≥ t0 and for all x0 ∈ Rn.
Mean square stochastic stability can be verified also using quadratic sto-

chastic Lyapunov functions where one has to require (see [58] and Appendix
A) that LV (x, t) < −0||x||2 for all x ∈ Rn and for all t > t0 where 0 > 0.

Although in general mean square stability neither implies or is implied [63]
by almost sure stability, in a certain class of stochastic systems to which (1.1)
belongs mean square exponential stability implies that xk → 0 almost surely
[63]. Since also when dealing with time-invariant systems mean square stability
implies also exponential mean square stability, then most of the results in the
present monograph deal with just mean square stability.

For additional discussion of the issue of stochastic stability the reader is
referred to Appendix A.

1.4 Game-theory Approach to Stochastic H∞ Control

The framework of dynamic (differential) game-theory stands out as the most
natural approach among the different time-domain approaches to the solution
of various problems in the deterministic H∞ setting [3].
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It has been shown that the original H∞ optimal control problem (in its
time domain equivalent) is in fact a zero-sum minmax optimization problem
where the controller is the minimizing player that plays against nature (the
disturbance) - which is the maximizing player [3]. In the 1990s, the game
theory approach has been successfully applied to various H∞ control and es-
timation problems. The problems of preview tracking control in both, the
continuous and the discrete-time case were solved, for example, via a game
theory approach in [17], [98]. The solution of [17] was also extended to the ro-
bust case (applying game-theory approach) in [18], where the system matrices
reside in given uncertainty intervals.

Application of the game-theory approach to the field of state-multiplicative
noise H∞ control follows along lines similar to that of the deterministic case,
where a saddle-point strategy is sought for both players of a cost function
which both the minimizer (controller) and maximizer (disturbance) share.
The stochastic state-feedback H∞ control was solved, via the game theory
approach, by [103] where a stochastic game is considered.

In this monograph we apply game-theoretic strategies in both, Chapters 4
and 9, where we solve the stochastic counterpart of the deterministic preview
tracking control of [98] and [17].

1.5 The Use of σ−algebra for the Study of
State-multiplicative Noisy Systems

The proper use of σ−algebra calculus is inherent in this monograph to the
study of systems with state-multiplicative noise in the H∞ context, given the
nature of the multiplicative term (be it in the dynamics, the disturbance or
the input matrices). This term is a white noise sequence (in the discrete-
time case), or a Wiener process (in the continuous-time case). In the sequel
we bring the description of a system with state-multiplicative noise and the
signals involved in both the continuous- and the discrete-time setups.

1.5.1 Stochastic Setup: The Continuous-time Case

Given the following system with state-multiplicative noise:

dx = [A(t)x(t) + B1(t)w(t) + B2(t)u(t)]dt + D(t)x(t)dβ(t), x(0) = x0,

y(t) = C2(t)x(t) + D21(t)u(t),

z(t) = C1(t)x(t) + D12(t)u(t), (1.11)
where, for simplicity, we consider a single, zero-mean, Wiener process, de-
noted by β(t). We note that all the stochastic differential equations in this
monograph are interpreted to be of the Ito type.

In order to elaborate on the nature of the signals involved in the system
i.e: x(t), w(t), u(t), y(t) and z(t) we introduce here the notations used for
the continuous-time systems of Part 2.
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In the continuous-time setup we provide all spaces Rk, k ≥ 1 with the
usual inner product < ·, · >, and with || · || we denote the standard Euclidean
norm.

It is assumed here that the Wiener process βt is defined on a probability
space (Ω, F , P ). We then write (Ω, F , {Ft}t≥0, P ) to denote the filtered prob-
ability space generated by the Wiener process βt, that is, the increasing family
of σ-algebras {Ft}t≥0 is generated by βt in the usual sense. The control signal
ut is taken to be a function of the observations, namely, ut = K(Yt), where
Yt = {y(s) : s ≤ t}. Thus, ut is Ft-measurable for all t ∈ [0, T ], and it is also
non-anticipative process. Before characterizing the disturbance process wt, we
introduce the Hilbert space L̃2([0, T ]; Rk) which consists of, by definition, the
the family of all non-anticipative stochastic processes, say f(t), defined on the
filtered probability space (Ω, F , {Ft}t≥0, P ), and satisfy

||f ||2
L̃2 = E{

T

0

||f(t)||2dt} =
T

0

E{||f(t)||2}dt < ∞.

Thus, we assign for the system of (1.11) the above notations where x(t) ∈
L̃2([0, T ]; Rn is the state vector, w(t) ∈ L̃2([0, T ]; Rp) is an exogenous distur-
bance, z(t) ∈ L̃2([0, T ]; Rm is the objective vector and u(t) ∈ L̃2([0, T ]; Rl is
the control input signal and y(t) ∈ L̃2([0, T ]; Rz is the measurement signal.

By writing w(t) ∈ L̃2([0, T ]; Rp) we thus mean that w(t) is a finite (mean
square) energy signal, measurable on Ft, and consequently that w(t) is, for
example, a nonanticipative feedback strategy of the type w(t) = f(x(τ), τ ≤ t.

1.5.2 Stochastic Setup: The Discrete-time Case

Similarly to the continuous-time case, we consider the following system with
state-multiplicative noise:

xk+1 = (Ak + Dkβk)xk + B2,kuk + B1,kwk, k = 0, 1, ..., N − 1,

yk = C2,kxk + D21,kuk,

zk = C1,kxk + D12,kuk,

(1.12)

where, for simplicity, we consider a single zero-mean white noise sequence,
denoted by βk. In order to describe the nature of the signals involved in the
system, i.e: xk, wk, uk, yk and zk, we bring below the notations used for the
discrete-time systems of Part 3.

Denoting by N the set of the positive integers in [1 N ], we denote by
l2(Ω, Rn) the space of square-integrable Rn− valued functions on the prob-
ability space (Ω, F , P), where Ω is the sample space, F is a σ−algebra of
subsets of Ω called events, and P is the probability measure on F . By
(Fk)k∈N we denote an increasing family of σ−algebras which is generated
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by βj , 0 ≤ j ≤ k − 1. Fk ⊂ F . We also denote by l̃2(N ; Rn) the space of
n-dimensional nonanticipative stochastic processes {fk}k∈N with respect to
(Fk)k∈N where fk ∈ L2(Ω, Rn). On the latter space the following l2-norm is
defined:

||{fk}||2
l̃2

= E{ N−1
0 ||fk||2} = N−1

0 E{||fk||2} < ∞, {fk} ∈ l̃2(N ; Rn)
(1.13)

where || · || is the standard Euclidean norm. Let φ : Rn × Rm → R be a
continuous function and let z ∈ Rn and W be an Rm valued random variable
defined on (Ω, F , P ). Define EW {φ(z, W )} =

Ω
φ(z, W (ω))dPW (ω), where

PW is the measure induced by W (which is the restriction of P to the the
σ−algebra generated by W ). Note that it readily follows from this definition
that EW {φ(z, W )} = E [φ(Z, W )/Z = z] where Z is any random variable
defined on (Ω, F , P ), which is independent on W .

Thus, we assign for the system (1.12) the above notations where {xk} ∈
l̃2([0, N ]; Rn) is the state vector, {wk} ∈ l̃2([0, N −1]; Rp) is an exogenous
disturbance, {zk} ∈ l̃2([0, N ]; Rm) is the objective vector and {uk} ∈ l̃2([0, N−
1]; Rl) is the control input vector and {yk} ∈ l̃2([0, N ]; Rz) is the measurement
vector.

1.6 The LMI Optimization Method

The following is a short description of the LMI technique, which will be used
extensively in the proposed research for stationary systems.

A LMI is any constraint of the form

A(x) ≡ A0 + x1A1 + ... + xNAN < 0 (1.14)

where x = (x1, ...., xN ) is a vector of unknown scalars and A0, ...., AN are
given symmetric matrices. The above LMI is a convex constraint on x since
A(y) < 0 and A(z) < 0 imply that A(αy+(1−α)z)) < 0, for all α ∈ [0, 1]. As
a result, its solution set, if it exists, is called the feasible set and it is a convex
subset of RN . Within the feasible set one may choose to solve optimization
problems which are still convex such as to minimize c0 + c1x1 + ... + cnxn.
It should be noted that cost functions for systems with state multiplicative
noise often lead, as in the deterministic case, to quadratic inequalities in the
search variables vector x = (x1, ...., xN ) of the following form :

Q(x) − S(x)R(x)−1ST (x) > 0, R(x) > 0

where Q(x) = QT (x) and R(x) = RT (x) and S(x) depend affinely on x. In
such cases, the application of the Schur complements (see e.g. [12]) shows that
an equivalent LMI is :

Q(x) S(x)
ST (x) R(x) > 0
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where in many cases, repeated application of Schur’s complements is needed
to achieve an LMI which is affine not only in the search variables but also in
some of the parameters (e.g. matrices A, B2, etc.).

The LMI technique for solving convex optimization problems has led to
a major development in the field of H∞ control and estimation in the past
few years [12], [35] motivated by the efficiency of the interior point algorithms
to solve LMIs. In fact, all problems which are convex in the optimizing pa-
rameters in the field of system theory are amenable to this technique,and,
therefore, since any matrix inequality of the form L(X1, X2, ...) < 0 being
affine in matrix valued arguments X1, X2, ... can be written at the form of
(1.14). Consider, for example, the following Lyapunov inequality in matrices
in R2×2:

AT P + PA < 0.

Defining

P = x1 x2

x2 x3
, A = A11 A12

A21 A22
,

The above inequality can be readily expressed in the form of (1.14). Note also
that in the case where the dynamic matrix A is uncertain say, A = ΣAifi, fi ∈
[0 1], Σfi = 1, the resulting inequality should also be affine in A in order to
be formulated as (1.14).

In a case where the system is linear and stationary, the LMI technique is
easily applied to the solution of the H∞ control problem, either with perfect
state-measurement or with noisy one (and thereby also to the filtering prob-
lem). It is important to note that unlike the Riccati equation approach, which
supplies the central solution, the LMI approach produces a solution which
may be far from the central solution [57]. The inequality-based solution using
the latter approach can be easily extended to other additional requirements
such as the minimum upper-bound on variance, in the case of nominal H∞
estimation problem (the ”mixed H2/H∞” problem). It is also important to
note that in the case where the system parameters are modelled in a polytopic
framework, the LMI technique can be easily applied to allow solutions for both
the control and the estimation problems (see, for example, [38] for the solution
of the H∞ filtering problem, in the presence of polytopic uncertainties) .

1.7 The DLMI Method

In this monograph, we apply the novel Difference LMI (DLMI) method which
was originally developed for the solution of various control and estimation
of finite horizon design problems for continuous and discrete Linear Time-
Varying (LTV) systems.

To present the method, in the discrete-time case, we start by considering
the solution Pk to the following problem:

min Tr{Pk} subject to F (Pk, Pk+1) ≤ 0, PN = 0
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where F (Pk, Pk+1) is a Linear Matrix Inequality (LMI) which stems, say, from
the formulation of the BRL. We note that this LMI contains elements which
are linear in Pk+1 and in Pk and that Pk+1 is known, at each step k, since
we assume a backward iterative solution starting from PN = 0. We are then
seeking Pk which will solve the problem. It turns out that the resulting Pk has
the interesting property that it is as close to the Difference Riccati Equation
(DRE) solution as the tolerance of the LMI solver routine. This feature, which
is a result of the monotonicity properties of the DRE (see [7] pp. 277-278),
allows one to mimic the DREs for LTV systems over a finite horizon and is
thus useful as a consistency check. One is not restricted, however, to DRE’s
since convex constraints in the form of additional LMIs may be added which
allow a solution to a wide range of multiobjective problems such as securing
a given bound on the output peak[1].

In addition, the method allows one to solve problems over a finite horizon
which have not been previously solved, such as the general type H∞ filtering
problem, whose solution was obtained by [37] for the LTI case over an infinite
horizon only.

An attractive feature of LMIs in control and filtering has been their abil-
ity to cope with plant parameter uncertainties in stationary systems. In [12]
a set of LMIs was introduced for the state-feedback problem, whose solution,
if it exists, guarantees quadratic stability [93] and the required bound on the
disturbance attenuation level of the closed-loop system, in spite of polytopic
type uncertainties encountered in the plant. For the above set of LMIs, a single
solution (P, K) is sought where K is the required state-feedback gain and P
is the kernel of a quadratic Lyapunov function common to all of the possible
plants, occuring at different time instants k. While a single K is certainly jus-
tifiable (we seek a single state-feedback gain), the requirement for a common
P, rather than Pk, is inherent in the optimization problem posed and it stems
from the special structure of the LMI involved. With the new DLMI method,
there is no longer a need to require the same P for all of the uncertain plants.

In Appendix B we bring the solution to the continuous-time BRL with the
aid of the DLMI technique and we demonstrate the applicability and useful-
ness of the continuous DLMI in the solution of several control and estimation
problems. Similarly, in Appendix C we bring the discrete-time DLMI counter-
part technique which is somewhat simpler than the continuous-time method.
We present there solutions to various important control problems [44] and we
bring a numerical example that demonstrates the typical convergence of our
algorithm.
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1.8 Nomenclature

(·)T matrix transposition.
Rn the n dimensional Euclidean space.
Rn×m the set of all n × m real matrices.
P >0, (P ≥0) the matrix P ∈ Rn×n is symmetric

and positive definite (respectively, semi-definite).
||.||22 the standard l2-norm:||d||22 = (ΣN−1

k=0 dT
k dk).

l2[0 N ] the space of square summable functions over [0 N ].
||fk||2R the product fT

k Rfk.
�f� the Euclidean norm of f.
E
v

{·} the expectation with respect to v.

[Qk]+ the causal part of a sequence {Qi, i = 1, 2, ..., N}.
[Qk]− the anti causal part of a sequence {Qi, i = 1, 2, ..., N}.
T r{·} the trace of a matrix.
δij the Kronecker delta function.
δ(t) the Dirac delta function.
N the set of natural numbers.
Ω the sample space.
F σ−algebra of subsets of Ω called events.
P the probability measure on F .
P r(·) probability of (·).
l2(Ω, Rn) the space of square-summable Rn− valued functions.

on the probability space (Ω, F , P).
(Fk)k∈N an increasing family of σ−algebras Fk ⊂ F .

l̃2([0, N ]; Rn) the space of nonanticipative stochastic processes:
{fk} = {fk}k∈[0,N ] in Rn with respect to (Fk)k∈[0,N) satisfying
||fk||2

l̃2
= E{ N

0 ||fk||2} = N
0 E{||fk||2} < ∞,

fk ∈ l̃2([0, N); Rn).
l̃2([0, ∞); Rn) the above space for N → ∞
L̃2([0, T ); Rk) the space of non anticipative stochastic processes:

f(·) = (f(t))t∈[0,T ] in Rk with respect to (Ft)t∈[0,T ) satisfying
||f(·)||2

L̃2
= E{ T

0
||f(t)||2dt} = T

0
E{||f(t)||2}dt < ∞.

L̃2([0, ∞); Rn) the above space for T → ∞.
P R
∗ Q

=
P ∗
RT Q

, for symmetric P and Q, is the matrix
P R
RT Q

.

diag{A, B} the block diagonal matrix A 0
0 B

.

col{a, b} the matrix (vector)
a
b

.
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1.9 Abbreviations

APN Augmented Proportional navigation
BRL Bonded Real Lemma
BLS Bilinear System
BLSS Bilinear Stochastic System
BRL Bounded Real Lemma
CDN Control Dependent Noise
DBLS Deterministic Bilinear System
DLMI Difference LMI (discrete-time)

or
Differential LMI (continuous-time)

DRE Difference Riccati Equation
GBM Geometrical Brownian Motion
LMI Linear Matrix Inequality
LPD Lyapunov Parameter Dependent
LTI Linear Time Invariant
LTV Linear Time Variant
MEL Minimum Effort guidance Law
MSS Mean Square Stable
NNC Neural Network Controller
OPs Operating Points
OUC Open Unit Circle
RSL Reduced Sensitivity guidance Law
SAC Simplified Adaptive Control
SDN State Dependent Noise
SISO Single-Input-Single-Output
SNR Signal to Noise Ratio
TRK Stochastic Tracking Law



2

Continuous-time Systems: Control and
Luenberger-type Filtering

2.1 Introduction

In this chapter we address the problems of continuous-time, state-multiplicative,
H∞ state-feedback control and estimation via the solution of the stochastic
BRL which is formulated and proved at the beginning of the chapter. We
then solve the dynamic output-feedback control problem by transforming the
problem to an estimation one, to which we apply the result of the filtering
solution. We derive solutions of both, the finite-horizon and the stationary
cases for the above mentioned problems.

The general problems of the discrete-time and the continuous-time output-
feedback control with state-multiplicative stochastic uncertainties have been
treated by several groups. The discrete-time case has been solved by [26],[10]
and [43]. The continuous-time counterpart case has been solved by [59], [52]
(for systems with additional tracking signal) and [15]. The solution in [26]
includes the finite and the infinite time horizon problems without transients.
One drawback of [26] is the fact that in the infinite-time horizon case, an
infinite number of LMI sets should be solved. Moreover, the fact that in [26] the
measurement matrix has no uncertainty is a practical handicap: for example in
cases where the measurements include state derivatives (e.g. altitude control
of an aircraft or missile). The treatment of [59] includes a derivation of the
stochastic BRL and it concerns only the stationary case where two coupled
nonlinear inequalities were obtained.

In the present chapter we allow for a stochastic uncertainty in the mea-
surement matrix and we address the problem via two new approaches: In the
finite-horizon case we apply the DLMI method for the solution of the Riccati
inequality obtained and in the stationary case we apply a special Lyapunov
function which leads to an LMI based tractable solution. At the end of the
chapter we bring an example which demonstrates the applicability of the the-
ory developed.

E. Gershon et al.: H∞ Contr. and Est. of State-multipl. Lin. Sys., LNCIS 318, pp. 21–44, 2005.
© Springer-Verlag London Limited 2005
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2.2 Problem Formulation

We treat the following problems:

i) H∞ state-feedback control of systems with state-multiplicative
noise:

We consider the following system:

dx = [A(t)x(t) + B1(t)w(t) + B2(t)u(t)]dt + D(t)x(t)dβ(t) + G(t)u(t)dν(t),

x(0) = x0,

z(t) = C1(t)x(t) + D12(t)u(t),
(2.1)

where x(t) ∈ Rn is the state vector, w(t) ∈ L̃2([0, T ]; Rp) is an exogenous
disturbance, z(t) ∈ Rm is the objective vector and u(t) ∈ Rl is the control
input signal. It is assumed that D12(t) is of full rank for all t ∈ [0, T ].

The zero-mean real scalar Wiener processes of β(t) and ν(t) satisfy:

E{dβ(t)2}=dt, E{dν(t)2}=dt, E{dβ(t)dν(t)}= ᾱdt, |ᾱ|≤ 1,

Considering the following performance index for a prescribed γ > 0:

JE
�
= E{

� T

0

||z(t)||2dt − γ2

� T

0

||w(t)||2dt}

+E{xT (T )PTx(T )} − γ2||x0||2R−1 , R > 0, PT ≥ 0. (2.2)

Our objective is to find a state-feedback control law u(t) = K(t)x(t) that
achieves JE < 0, for the worst-case of the process disturbance w(t) ∈
L̃2([0, T ]; Rp) and the initial condition x0 and for the prescribed scalar γ > 0.

ii) H∞ filtering of systems with state-multiplicative noise:
We consider the following system:

dx = [A(t)x(t) + B1(t)w(t)]dt + D(t)x(t)dβ(t), x(0) = x0,

dy(t) = [C2(t)x(t) + D21(t)w(t)]dt + F (t)x(t)dζ(t) + n(t)dt,

z(t) = C1(t)x(t),

(2.3)

where x(t), w(t), z(t) are defined above, n(t) ∈ L̃2([0, T ]; Rz) is an addi-
tive measurement corruptive noise and y(t) ∈ Rz. The zero-mean real scalar
Wiener processes of β(t) and ζ(t) satisfy:

E{dβ(t)2}=dt, E{dζ(t)2}=dt, E{dβ(t)dζ(t)}= 0.

We consider the following filtered estimate system - the Luenberger type:

dx̂(t) = A(t)x̂(t)dt + L(t)(dy(t) − C2(t)dx̂(t)), x̂0 = 0. (2.4)
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Note that the initial value of the state vector x0 of (2.3) is not known. It
has a zero-mean value dictating, therefore, the zero initial value of the state
estimator.

We denote

e(t) = x(t) − x̂(t), and w̃(t) = col{w(t), n(t)} (2.5)

and we consider the following cost function:

JF
�
= E{

� T

0

||z(t)||2dt − γ2[
� T

0

||w(t)||2dt +
� T

0

||n(t)||2dt]}

−γ2||x0||2R−1 , R > 0. (2.6)

Note that R represents the uncertainty in x0. Namely, R of a norm tending
to zero will force x0 to zero.

Given γ > 0 and R > 0, we seek, in the filtering problem, an estimate
C1(t)x̂(t) of C1(t)x(t) over the finite time horizon [0, T ] such that JF of (2.6) is
negative for all nonzero (w̃(t), x0) where w̃(t) ∈ L̃2([0, T ]; Rp+z) and x0 ∈ Rn.
This estimate should be unbiased whenever w̃(t) has zero-mean.

iii) H∞ output-feedback control of systems with 
state-multiplicative noise - The finite-horizon case:

We consider the following system:

dx = [A(t)x(t) + B1(t)w(t) + B2(t)u(t)]dt + D(t)x(t)dβ(t) + G(t)u(t)dν(t),

x(0) = x0,

dy(t) = [C2(t)x(t) + D21(t)w(t)]dt + F (t)x(t)dζ(t) + n(t)dt,

z(t) = C1(t)x(t) + D12(t)u(t).
(2.7)

The zero-mean real scalar Wiener processes of β(t), ν(t) and ζ(t) are defined
in the above two problems where

E{dβ(t)dζ(t)}= 0, E{dζ(t)dν(t)}= 0, E{dβ(t)dν(t)}= 0.

We consider the following index of performance:

JO
∆= E{

� T

0

||z(t)||2dt − γ2

� T

0

(||w(t)||2 + ||n(t)||2)dt}

+ExT (T )PTx(T ) − γ2||x0||2R−1 , R > 0, PT ≥ 0, (2.8)

We seek an output-feedback controller that achieves JO < 0 for all nonzero
(w(t), x0) where w(t) ∈ L̃2([0, T ]; Rp), n(t) ∈ L̃2([0, T ]; Rz) and x0 ∈ Rn.
Similarly to the standard case [57], this problem involves an estimation of an
appropriate combination of the states, and the application of the results of
the state-feedback control problem with a proper modification.
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iv) H∞ output-feedback control of systems 
with state-multiplicative noise - The infinite-horizon case:

Given the following mean square stable system:

dx = [Ax(t) + B1w(t) + B2u(t)]dt + Dx(t)dβ(t) + Gu(t)dν(t), x(0) = 0,

dy(t) = [C2x(t) + D21w(t)]dt + Fx(t)dζ(t) + n(t)dt,

z(t) = C1x(t) + D12u(t),
(2.9)

where the system matrices A,B1, B2, D, G, C2, D21, F, C1 and D12 are all con-
stant and β(t), ν(t), ζ(t) are specified above. We seek an output-feedback
controller that achieves, for a given γ > 0, JSO < 0 where

JSO
∆= E{

� ∞

0

||z(t)||2dt − γ2

� ∞

0

(||w(t)||2 + ||n(t)||2)dt}

+E{xT (T )PTx(T )}, PT ≥ 0, (2.10)

for all nonzero w(t) ∈ L̃2([0, ∞); Rp) and n(t) ∈ L̃2([0, ∞); Rz).

2.3 Bounded Real Lemma for Systems with
State-multiplicative Noise

We address the problem of the stochastic state-feedback by deriving first a
BRL for the following system:

dx = [A(t)x(t) + B1(t)w(t)]dt + D(t)x(t)dβ(t), x(0) = x0,

z(t) = C1(t)x(t),
(2.11)

where x0 is an unknown initial state and where x(t) ∈ Rn is the state vec-
tor, w(t) ∈ L̃2([0, T ]; Rp) is an exogenous disturbance and z(t) ∈ Rm is the
objective vector.

The zero-mean real scalar Wiener processes of β(t) satisfies:

E{dβ(t)2}=dt.

Considering the cost function JE of (2.2), our objective is to determine,
for a given scalar γ > 0, whether JE is negative for all nonzero (w(t), x0)
where x0 ∈ Rn and w(t) ∈ L̃2([0, N ]; Rp).
We obtain the following result:

Theorem 2.1. [26], [59], [86] Consider the system of (2.11). Given the
scalar γ > 0, a necessary and sufficient condition for JE of (2.2), to be neg-
ative for all nonzero (w(t), x0) where w(t) ∈ L̃2([0, T ]; Rp) and xo ∈ Rn is
that there exists a solution Q(t) > 0 to the following Riccatti-type equation:
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−Q̇(t) = Q(t)A(t) + AT (t)Q(t) + γ−2Q(t)B1(t)BT
1 (t)Q(t)

+CT
1 (t)C1(t) + DT (t)Q(t)D(t), Q(T ) = PT ,

(2.12)

that satisfies Q(0) < γ2R−1. When such Q(t) exists, the corresponding opti-
mal strategy of the disturbance w(t) is:

w∗ = γ2BT
1 Qx. (2.13)

Proof: Sufficiency
Assume that there exists Q(t) that satisfies (2.12) so that Q(0) < γ2R−1.
Consider:

M(t) = E{
� T

0

d(xTQ(t)x)} + xT
0 Q(0)x0 − E{xT (T )PTx(T )}.

Note that the fact that Q(T ) = PT yields M(t) = 0. Using Ito lemma we have
the following:

d(xTQ(t)x) = xT ∂Q(t)
∂t

xdt +
∂

∂x
(xTQ(t)x)dxt +

1
2
Tr{2DxxTDTQ}dt.

Note that the last equation is the stochastic version of the chain rule for
calculating differentials, where the last term is the sole contribution of the
state-multiplicative term of D(t)x(t)dβ in (2.11).

We readily see that

M(t) = xT
0 Q(0)x0 − E{xT (T )PTx(T )} − γ2E{

� T

0

||w − γ−2BT
1 Q(t)x||2dt}

−E{
� T

0

(||z||2 − γ2||w||2)dt},

where we have used Tr{QDxxTDT } = Tr{xTDTQDx} and the fact that
mixed terms involving x(t) and β(t) drop under expectation (see Appendix
A). Adding and subtracting γ2xT

0 R−1x0 to the above M(t), we obtain that:

M = −γ2E{
� T

0

||w−w∗||2dt}−[E{
� T

0

(||z||2−γ2||w||2)dt}+E{xT (T )PTx(T )}

+γ2xT
0 R−1x0] + xT

0 [Q(0) − γ2R−1]x0 + ExT (T )[PT − Q(T )]x(T ) (2.14)

where w∗ = γ−2BT
1 Qx. Identifying the term in the brackets as JE of (2.2) we

see that:

JE = −γ2E{
� T

0

||w − w∗||2dt} + xT
0 [Q(0) − γ2R−1]x0.

Hence JE < 0 if Q(0) < γ2R−1.
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This concludes the sufficiency part. Now, the condition of (2.12) with
Q(0) < γ2R−1 is also necessary and the reader is referred to [86] for the
proof.

�$
Remark 2.1. The differential equation (2.12) is solved by backward integra-
tion. An alternative result stems from (2.14) in the case where Q(0) is taken
to be γ2R−1 and instead of requiring Q(T ) = PT and Q(0) < γ2R−1 we
require that PT < Q(T ).

2.3.1 The Stationary BRL

The derivation of the stationary stochastic BRL is obtained by two ap-
proaches. In the first approach we consider the following mean square stable
system:

dx = [Ax(t) + B1w(t)]dt + Dx(t)dβ(t), x(0) = 0,

z(t) = C1x(t),
(2.15)

which is obtained from (2.11) for the case where the system matrices are
constant and T = ∞. Considering the following index of performance:

JSE
∆= E{

� ∞

0

||z(t)||2dt − γ2

� ∞

0

(||w(t)||2)dt} (2.16)

we obtain the following result:

Theorem 2.2. Consider the system of (2.15). Given the scalar γ > 0, a
necessary and sufficient condition for JSE of (2.16), to be negative for all
nonzero w(t) ∈ L̃2([0, ∞); Rp) is that there exists a solution Q̄ > 0 to the
following algebraic Riccatti-type equation:

Q̄A + AT Q̄ + γ−2Q̄B1B
T
1 Q̄ + CT

1 C1 + DT Q̄D = 0. (2.17)

When such Q̄ exists, the corresponding optimal strategy of the disturbance
w(t) is:

w∗ = γ−2BT
1 Q̄x. (2.18)

Proof: The proof outline resembles that of the finite horizon case of Section
2.3. Thus, the optimal strategy w∗ of (2.18) is obtained by completing to
squares for w(t) , similarly to Section 2.3. Note that JSE < 0 can also be
achieved iff the following inequality holds:

Q̄A + AT Q̄ + γ−2Q̄B1B
T
1 Q̄ + CT

1 C1 + DT Q̄D ≤ 0.
�$
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By using the nonstrict Schur’s complements formula[12], the latter inequal-
ity can be readily transformed to the following LMI:

ΓS
�
=


AT Q̄ + Q̄A Q̄B1 CT

1 DT Q̄

∗ −γ2Ip 0 0

∗ ∗ −In 0

∗ ∗ ∗ −Q̄

 ≤ 0. (2.19)

The second approach for the solution of the stationary BRL is achieved
by considering the finite horizon counterpart of this problem, assuming that
the resulting system (2.15) is mean square stable. We consider the system
of (2.11) for the case where the system matrices are constant and T → ∞.
Considering the results of [108] we obtain that the Riccati-type differential
equation of (2.12) will converge to the algebraic equation of (2.17) where the
pair (A, C1) is observable, (A, B1) is stabilizable and PT ≥ 0 (See Theorem
2.1, page 691 in [108]).

Remark 2.2. The optimal strategy of (2.18) is valid only if the resulting dis-
turbance w∗(t) is in L̃2([0, T ]; Rp. The question arises whether the resulting
closed-loop system that is described by:

dx = [Ax(t) + γ−2B1B
T
1 Q̄]dt + Dx(t)dβ(t),

is mean square stable. Namely, whether a solution of the algebraic equation
(2.17) is strongly stabilizing [57]. A similar problem arises in the deterministic
case (D = 0) where one has to show that the worst-case disturbance does not
destabilize the system.

Two methods have been suggested, in the deterministic case, for prov-
ing that the corresponding algebraic Riccati equation (which is identical to
(2.17) with D = 0) has a strong stabilizing solution Q̄ that leads to a matrix
A + γ−2B1B

T
2 Q̄ with eigenvalues that all reside in the open left half of the

complex plane. The first method, which is the more direct one, is based on the
properties of the corresponding Hamiltonian matrix [116]. Unfortunately, this
method is not readily applicable to the stochastic case. The second method
considers the algebraic Riccati equation as the limit of the differential Ric-
cati equation in the case where the horizon T tends to infinity. It is shown
in [57] that under the above mentioned conditions of stabilizability and ob-
servability there exists a solution to the algebraic Riccati equation which is
strongly stabilizing. Since the same arguments of convergence of the solution
of the differential Riccati equation (2.12) to a solution of (2.17) hold also in
the stochastic case, strong stability is guaranteed if the latter solution is the
one used in (2.18).
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2.4 State-feedback Control of Systems with
State-multiplicative Noise

We consider the following Riccati-type differential equation:

−Q̇(t) = Q(t)A(t) + AT (t)Q(t) + γ−2Q(t)B1(t)BT
1 (t)Q(t)

+CT
1 (t)C1(t) − S̄T (t)R̂−1(t)S̄(t) + DT (t)Q(t)D(t),

Q(T ) = PT ,

(2.20)

where
R̃ = DT

12D12

R̂(t) = R̃(t) + GT (t)Q(t)G(t),

S̄(t) = BT
2 (t)Q(t) + ᾱGT (t)Q(t)D(t) + DT

12(t)C1(t).

(2.21)

The solution to the state-feedback control problem is obtained by the follow-
ing:

Theorem 2.3. [24], [59], [53] Consider the system of (2.1) with the feedback
law u(t) = K(t)x(t). Given γ > 0, a necessary and sufficient condition for JE
of (2.2) to be negative for all nonzero (w(t), x0) where w̃(t) ∈ L̃2([0, T ]; Rp)
and xo ∈ Rn is that there exists a solution Q(t) > 0 to (2.20) that satisfies
Q0 < γ2R−1.

If there exists such Q(t), then the state-feedback law is given by:

u(t) = K(t)x(t),

where

K(t) = −R̂−1(t)[(BT
2 (t)Q(t) + DT

12(t)C1(t) + ᾱGT (t)Q(t)D(t))].

(2.22)

Remark 2.3. The general case, where a multiple set of correlated stochastic
uncertainties appear in both the dynamics and the input matrices, can be
readily solved by extending the results of Theorem 2.3. The proof outline
of Theorem 2.3 in the later case is essentially unchanged. We bring below
a simplified case which will be used in the infinite-horizon, stationary state-
feedback control. We consider the following system:

dx = [A(t)x(t) + B1(t)w(t) + B2(t)u(t)]dt + [D̃(t)dν(t)

+F̂ (t)dζ(t)]x(t) + G(t)u(t)dν(t), x(0) = x0,

z(t) = C1(t)x(t) + D12(t)u(t),

(2.23)

where the variables β(t) and ν(t) are zero-mean real scalar Wiener processes
with the same statistic as above.

Note that the Wiener process of ν(t) appears in both, the dynamics and
the input matrices. For system (2.23), we obtain the results of Theorem 2.3
where DTQD in (2.20) is replaced by F̂TQF̂ +D̃TQD̃+2ᾱ[F̂TQD̃+D̃TQF̂ ],
and ᾱGTQD is replaced by ᾱGTQD̃ + GTQF̂ in S̄ and u(t) of (2.21) and
(2.22), respectively.
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2.4.1 The Infinite-horizon State-feedback Control

We treat the mean square stable system of (2.9) where we exclude the mea-
surement equation and where T tends to infinity. Following [23] the solution
Q(t) of (2.20), if it exists for every T > 0, will tend to the mean square
stabilizing solution of the following equation:

Q̃A + AT Q̃ + γ−2Q̃B1B
T
1 Q̃ + CT

1 C1 − S̃T R̂−1S̃ + DT Q̃D = 0, (2.24)

assuming that the pair (ΠC1, A−B2R̃
−1DT

12C1), where Π = I−D12R̃
−1DT

12,
is detectable (see Theorem 5.8 in [23]). A strict inequality is achieved from
(2.24) for (w(t), xo) that are not identically zero, iff the left side of (2.24) is
strictly negative definite (for the equivalence between (2.24) and the corre-
sponding inequality see [59]). The latter inequality can be expressed in a LMI
form in the case where ᾱ = 0 and DT

12C1 = 0. We arrive at the following
result:

Theorem 2.4. [53] Consider the mean square stable system of (2.9) where
the measurement equation is excluded. Given γ > 0, a necessary and sufficient
condition for JSO of (2.10), with ||n(t)||2

l̃2
= 0 to be negative for all nonzero

w(t) where w(t) ∈ L2([0, ∞); Rp) is that there exists a positive-definite matrix
P̃ ∈ Rn×n that satisfies the following LMI:

Γ1
�
=



AP̃ + P̃AT − B2R̃
−1BT

2 B1 P̃CT
1 B2G

T P̃DT

∗ −γ2Ip 0 0 0

∗ ∗ −Im 0 0

∗ ∗ ∗ −(P̃ + GR̃−1GT ) 0

∗ ∗ ∗ ∗ −P̃


< 0.

(2.25)
If such a solution exists then the stationary state-feedback gain is obtained by:

Ks = −R−1BT
2 P−1.

Proof: The inequality that is obtained from (2.20) for ᾱ = 0 and DT
12C1 = 0

is:
Q̃A + AT Q̃ + γ−2Q̃B1B

T
1 Q̃ + CT

1 C1 − S̃T R̂−1S̃ + DT Q̃D < 0,

where
S̃ = BT

2 Q̃.

Denoting P̃ = Q̃−1, we multiply the latter inequality by P̃ from both sides
and obtain:

AP̃ + P̃AT + γ−2B1B
T
1 + P̃CT

1 C1P̃ − B2R̄
−1BT

2 + P̃DT P̃−1DP̃ < 0,
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where
R̄ = R̃ + GT P̃−1G.

Since

(R̃ + GT P̃−1G)−1 = R̃−1/2[I + R̃−1/2GT P̃−1GR̃−1/2]−1R̃−1/2,

we obtain, using the matrix inversion lemma, the following equality:

[I + R̃−1/2GT P̃−1GR̃−1/2]−1 = I − R̃−1/2GT P̃−1GR̃−1/2

[I + R̃−1/2GT P̃−1GR̃−1/2]−1.

Using the latter, together with the identity

α[I + βα]−1 = [I + αβ]−1α,

we readily obtain the following inequality:

AP̃ + P̃AT + γ−2B1B
T
1 + P̃CT

1 C1P̃ − B2R̃
−1BT

2 + B2G
T [P̃ + GR̃−1GT ]−1

GBT
2 + P̃DT P̃−1DP̃ < 0.

By using Schur’s complements formula, the latter inequality is equivalent to
(2.25).

�$
Remark 2.4. In the general case, where DT

12C1 �= 0, a simple change of vari-
ables (see [57], page 195) can be readily used. Denoting:

Ã = A − B2R̃
−1/2DT

12C1,

ũ = u + R̃−1/2DT
12C1x,

C̃T
1 C̃1 = CT

1 [I − D12R̃
−1DT

12]C1,

we consider the following system:

dx = Ãxdt + B1wdt + B2ûdt + B3rdt + [Ddβ − Gdν]x + Gûdν,

z =

�
C̃1

0

�
x +

�
0

I

�
ũ.

Note that this system possesses multiple uncertainties which can be readily
tackled using the arguments of Remark 2.3 with ᾱ = 0.
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2.5 H∞ filtering of Systems with State-multiplicative
Noise

We consider the Luenberger-type state observer of (2.4) and e(t) of (2.5). We
obtain:

de(t) = [A − LC2]e(t)dt + B̂w̃(t)dt + [Ddβ(t) − LFdζ(t)]x(t), e(0) = x0,

where

B̂ =
�
B1 − LD21 −L

�
,

and where w̃(t) is defined in (2.5). Defining ξ(t) = col{x(t), e(t)}, we obtain
the following.

dξ(t) = [Ãdt + D̃dβ(t) + F̃ dζ(t)]ξ(t) + B̃1w̃(t)dt,

ξ(0) = col{x(0), x(0)},

z̃(t) = C̃1ξ(t),

(2.26)

where

Ã =

�
A 0
0 A − LC2

�
, D̃ =

�
D 0
D 0

�
,

B̃1 =

�
B1 0
B1 − LD21 −L

�
, F̃ =

�
0 0

−LF 0

�
and C̃1 = [0 C1]. (2.27)

Applying the stochastic BRL of Section 2.3 (also see [24], [59], [53] ) to the
system (2.26) with the matrices of (2.27), we obtain the following Riccati-type
equation:

− ˙̂
P = P̂ Ã + ÃT P̂ + γ−2P̂ B̃1B̃

T
1 P̂ + D̃T P̂ D̃ + F̃T P̂ F̃ + C̃T

1 C̃1,

P̂ (0) =

�
In

In

�
γ2R−1

�
In In

�
. (2.28)

The solution of (2.28) involves the simultaneous solution of both P̂ (t) and
the filter gain L and can not be obtained readily due to mixed terms of the
latter variables in (2.28). Considering, however, the monotonicity of P̂ with
respect to a free semi-positive definite term in (2.28) [59], the solution to the
above Riccati-type equation can be obtained by solving the following DLMI
[99],[44] :

˙̂
P + ÃT P̂ + P̂ Ã + D̃T P̂ D̃ P̂ B̃1 C̃T

1 F̃T P̂

∗ −γ2Ip+z 0 0

∗ ∗ −In 0

∗ ∗ ∗ −P̂

 ≤ 0, (2.29)
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where P̂ > 0 and with P̂ (0) of (2.28) and where we require that Tr{P̂ (τ)} be
minimized at each time instant τ ∈ [0, T ].
Recently, novel methods for solving DLMIs has been introduced in [99],[44].
Applying the method of [99], the above DLMI can be solved by discretizing
the time interval [0, T ] into equally spaced time instances resulting in the
following discretisized DLMI :

Ψ11 P̂kB̃1,k C̃T
1,k F̃T

k P̂k

∗ −γ2ε̃−1Ip 0 0

∗ ∗ −ε̃−1Iq 0

∗ ∗ ∗ −ε̃−1P̂k

 ≤ 0, (2.30)

for k = 0, 1, .., N − 1 and where:

Ψ11 = P̂k+1 − P̂k + ε̃(ÃT
k P̂k + P̂kÃk) + ε̃D̃T

k P̂kD̃k,

Ãk = Ã(tk),

B̃1,k = B̃1(tk),

C̃1,k = C̃1(tk),

F̃k = F̃ (tk),

D̃k = D̃(tk), with

{ti, i = 0, ..N − 1, tN = T, t0 = 0} and

ti+1 − ti
∆= ε̃ = N−1T, i = 0, ...N − 1.

(2.31)

The discretized estimation problem thus becomes one of finding, at each
k ∈ [0, N − 1], P̂k+1 > 0 of minimum trace and Lk that satisfy (2.30).
The latter DLMI is initiated by the initial condition of (2.28) at the instant
k = 0 and a solution for both, the filter gain Lk and P̂k+1 (i.e P̂1 and L0) is
sought, under the minimum trace requirement of P̂k+1. The latter procedure
repeats itself by a forward iteration up to k = N − 1, where N is chosen (and
therefore 1/0̃) to be large enough to allow for a smooth solution (see also [99]).
We summarize the above results by the following theorem:

Theorem 2.5. Consider the system of (2.3) and JF of (2.6). Given γ > 0
and 0̃ > 0, the stochastic state-multiplicative filtering problem achieves JF < 0
if there exists P̂ (t) that solves (2.30) ∀t ∈ [0, T ] starting from the initial
condition of (2.28) for small enough 0̃.

2.5.1 The Stationary H∞-filtering Problem

We consider the mean square stable system of (2.9) where B2 = 0 and D12 = 0
and where, for simplicity, we take G = 0. We Introduce the following Lyapunov
function:
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V (t) = ξT (t)P̃ ξ(t), with P̃ =

�
P αP̂

αP̂ P̂

�
, (2.32)

where ξ(t) = [xT (t) eT (t)]T , P and P̂ are n × n matrices and α ia a tuning
scalar. We obtain the following result:

Theorem 2.6. Consider the system of (2.9) where B2 = 0 and D12 = 0, G =
0 and where x̂(t) is defined in (2.4). Given the scalar γ > 0, the stationary
state-multiplicative filtering problem possesses a solution if there exist P =
QT ∈ Rn×n, P̂ = P̂T ∈ Rn×n, Y ∈ Rn×m and a tuning scalar parameter α
that satisfy the following LMI:

Ψ(1, 1) Ψ(1, 2) (P + αP̂ )B1 −αY 0

∗ Ψ(2, 2) (α + 1)P̂B1 −Y CT
1

∗ ∗ −γ2Iq 0 0

∗ ∗ ∗ −γ2Iq 0

∗ ∗ ∗ ∗ −Ip

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

−αFTY T −FTY T DT (P + αP̂ ) (1 + α)DT P̂

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

−P −αP̂ 0 0

∗ −P̂ 0 0

∗ ∗ −P −αP̂

∗ ∗ ∗ −P̂



< 0,

where
Ψ(1, 1) ∆= ATP + PA,

Ψ(1, 2) ∆= α[AT P̂ + P̂A] − αY C2,

Ψ(2, 2) ∆= AT P̂ + P̂A − Y C2 − CT
2 Y T
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Proof: Applying the results of continuous BRL of Section 2.3.1 for the sta-
tionary case (see also [86], [59] ) to the latter system, the algebraic counterpart
of (2.28) is obtained which similarly, to the finite horizon case, leads to the
stationary version of (2.29). Thus we obtain:

ÃT P̃ + P̃ Ã P̃ B̃1 C̃T
1 F̃T P̃ D̃T P̃

∗ −γ2Ip+z 0 0 0

∗ ∗ −Im 0 0

∗ ∗ ∗ −P̃ 0

∗ ∗ ∗ ∗ −P̃

 ≤ 0. (2.33)

Replacing for the structure of P̃ in (2.32) and the stationary version of the
matrices of (2.27) and denoting Y = P̂L, where L is the observer gain, and
carrying out the various multiplications, the LMI of Theorem 2.6 is obtained.

�$
Remark 2.5. Note that contrary to the solution of the finite-horizon filtering
of Section 2.5, where use has been made of the DLMI method, in the latter
solution of the stationary case, an inherent overdesign is entailed in the solu-
tion, due to the special stricture of P̃ in (2.32). The advantage of the latter
solution is however, in its simplicity and tractability, as will be seen also in
Section 2.7.

2.6 Finite-horizon Stochastic Output-feedback Control

The solution of the output-feedback control problem is obtained below by
transforming the problem to one of filtering, to which the result of the
continuous-time stochastic state-multiplicative BRL of Section 2.3 is applied
(see also [59], [24],[53]). In order to obtain the equivalent estimation prob-
lem, the optimal strategies of w∗(t) and u∗(t) of the state-feedback case are
needed. One can not use the results of Section 2.3, for this transformation,
since the solution there was obtained by applying the stochastic BRL to the
closed-loop system of Section 2.4. The optimal strategies w∗(t) and u∗(t) are
obtained below by completing to squares for both w(t) and u(t).

Consider the system of (2.1) and let Q(t) be a solution of (2.20) that
satisfies Q(0) < γ2R−1. Considering (2.20) and applying Ito formula to
H(t, x(t)) = �x(t), Q(t)x(t)
, and taking expectation for every T > 0 we
obtain the following, noting that Q(T ) = PT .

0 = E{
� T

0

d{xT (t)Q(t)x(t)} + xT
0 Q(0)x0} − E{xT (T )PTx(T )} =
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E{
� T

0

�x(t), ˙Q(t)x(t)
dt}

+2E{
� T

0

�Q(t)x(t), A(t)x(t) + B1(t)w(t) + B2(t)u(t)
dt}

+E{
� T

0

Tr{Q(t)[D(t)x(t) G(t)u(t)]

P̄ [D(t)x(t) G(t)u(t)]T dt}} + xT
0 Q(0)x0 − E{xT (T )PTx(T )},

where P̄ dt
�
=

�
1 ᾱ
ᾱ 1

�
dt is the covariance matrix of the augmented Wiener

process vector col{dβ(t) dν(t)}. We also have the following:

Tr{Q(t)[D(t)x(t) G(t)u(t)]P̄ [D(t)x(t) G(t)u(t)]T }

= Tr{
�

xT (t)DT (t)

uT (t)GT (t)

�
Q(t)[D(t)x(t) G(t)u(t)]P̄}

= Tr{
�

xT (t)DT (t)Q(t)D(t)x(t) xT (t)DT (t)Q(t)G(t)u(t)

uT (t)GT (t)Q(t)D(t)x(t) uT (t)GT (t)Q(t)G(t)u(t)

� �
1 ᾱ
ᾱ 1

�
}

= �
�

x(t)

u(t)

�
,

�
DT (t)Q(t)D(t) ᾱDT (t)Q(t)G(t)

ᾱGT (t)Q(t)D(t) GT (t)Q(t)G(t)

��
x(t)

u(t)

�



= xT (t)DT (t)Q(t)D(t)x(t) + 2ᾱxT (t)DT (t)Q(t)G(t)u(t)

+uT (t)GT (t)Q(t)G(t)u(t)

Using the above derivation and adding the zero sum of

E{
� T

0

||w(t)||2dt −
� T

0

||w(t)||2dt}

+E{
� T

0

||z(t)||2dt −
� T

0

||z(t)||2dt}

we obtain after completing to squares for w(t):

0 = E{
� T

0

xT (t)[ ˙Q(t) + Q(t)A(t) + AT (t)Q(t)

+DT (t)Q(t)D(t) − γ−2Q(t)B1(t)BT
1 (t)Q(t)]x(t)dt}

+2E{
� T

0

xT (t)Q(t)[B2(t)u(t)]dt}

+E{
� T

0

{||z||2 + γ2(||w||2 + ||w − γ−2BT
1 Qx||2)}dt}
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+E{
� T

0

{2ᾱxT (t)DT (t)Q(t)G(t)u(t)

+uT (t)GT (t)Q(t)G(t)u(t)}dt} + xT
0 Q(0)x0.

−E{
� T

0

||z(t)||2dt +
� T

0

[||C1(t)x(t) + D12(t)u(t)||2]dt} − E{xT (T )PTx(T )}

Completing to squares for u(t), we obtain:

0 = E{
� T

0

−||z(t)||2 + γ2(||w(t)||2 − ||w(t) − γ−2BT
1 (t)Q(t)x(t)||2)}dt

+E{
� T

0

||û(t)||2
R̂

}dt + xT
0 Q(0)x0 − E{xT (T )PTx(T )}

where
û(t) = u(t) + R̂−1(t)S̄(t)x(t), (2.34)

where R̂(t), S̄(t) are defined in (2.21).
Adding JE(u, w, x0) of 2.2 to the above zero quantity we obtain:

JE = −γ2||x0||2
P−1

0
+ E{

� T

0

[||u(t) + R̂−1S̄(t)x(t)||2
R̂

}dt

−E{
� T

0

||w(t) − γ−2BT
1 (t)Q(t)x(t)||2}dt

where
P0 = [R−1 − γ−2Q(0)]−1 (2.35)

and with the optimal strategies being:

w∗(t) = γ2BT
1 (t)Q(t)x(t),

u∗ = −R̂−1(t)[(BT
2 (t)Q(t) + DT

12(t)C1(t) + ᾱGT (t)Q(t)F (t))]x(t).
(2.36)

Once the saddle point strategies are derived, we consider the system of
(2.7) and take for simplicity G(t) = 0. We also suppress the time-dependence
of the system matrices for clarity of representation. We assume that (2.20)
has a solution Q(t) > 0 over [0, T ] that satisfies Q(0) < γ2R−1. Using the
optimal strategies of (2.36) for the above state-feedback case, the index of
performance turns to be:

JO(u, w, n, x0) = −γ2||x0||2
P−1

0
− γ2E{

� T

0

||w − w∗||2dt}

+E{
� T

0

||[u − u∗]||2
R̂
dt − γ2

� T

0

||n(t)||2dt}, (2.37)

where G ≡ 0 is taken in both R̂ and S̄ of (2.21).
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Following [21] we define:

w̄(t) = w(t) − w∗(t), (2.38)

where w∗(t) is given in (2.36), we obtain:

JO(u, w, n, x0) = −γ2||x0||2
P−1

0
− γ2E{

� T

0

||w̄||2dt}

+E{
� T

0

||R̂1/2[u + Ĉ1x]||2dt} − γ2E{
� T

0

||n(t)||2dt},

where
Ĉ1 = R̂−1[BT

2 Q + DT
12C1]. (2.39)

We seek a controller of the form

u(t) = −Ĉ1(t)x̂(t).

Substituting (2.38) in (2.1) we re-formulate the state equation of the system
and we obtain:

dx = [ ¯̄A(t)x(t) + B1(t)w̄(t) + B2(t)u(t)]dt + D(t)x(t)dβ(t), (2.40)

where
¯̄A(t) = A + γ−2B1B

T
1 Q. (2.41)

Considering the following Luenberger-type state observer:

dx̂(t) = ¯̄Ax̂(t)dt + L[dy − Ĉ2x̂(t)dt]+B2(t)u(t)dt, x̂(0) = 0,

ẑ(t) = Ĉ1x̂(t),
(2.42)

where
Ĉ2 = C2 + γ−2D21B

T
1 Q,

and denoting e(t) = x(t) − x̂(t)the following system for the error e(t) is ob-
tained.

de(t) = [ ¯̄A − LĈ2]e(t)dt + B̂ŵ(t)dt + [Ddβ(t) − LFdζ(t)]x(t),

where
ŵ(t)

�
= col{w̄(t), n(t)}, and B̂

�
= [B̄1 − LD21 − L].

Defining ξ(t) = col{x(t), e(t)}, we obtain:

dξ(t) = [Ãdt + D̃dβ(t) + F̃ dζ(t)]ξ(t) + B̃1ŵ(t)dt, ξT (0) = [xT (0) xT (0)]T ,

z̃(t) = C̃1ξ(t),
(2.43)
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where

Ã =

� ¯̄A − B2Ĉ1 B2Ĉ1

0 ¯̄A − LĈ2

�
, D̃ =

�
D 0
D 0

�
,

B̃1 =

�
B1 0
B1 − LD21 −L

�
, F̃ =

�
0 0

−LF 0

�
, C̃1 = [0 Ĉ1]. (2.44)

Applying the stochastic BRL of Section 2.3 (see also [24], [53]) to the system
of (2.43) with the matrices of (2.44), the following Riccati-type equation is
obtained.

− ˙̂
P = P̂ Ã + ÃT P̂ + γ−2P̂ B̃1B̃

T
1 P̂ + D̃T P̂ D̃ + F̃T P̂ F̃ + C̃T

1 C̃1,

P̂ (0) =

�
In

In

�
(γ2R−1 − Q(0))

�
In In

�
, (2.45)

where the latter initial condition follows from (2.35).
Similarly to the filtering problem of Section 2.5, the solution of (2.45)

involves the simultaneous solution of both P̂ (t) and the filter gain L and
it can not be readily obtained due to mixed terms of the latter variables
in (2.45). Considering, however, the monotonicity of P̂ with respect to a free
semi-positive definite term in (2.45) [59], the solution to the above Riccati-type
equation can be obtained by solving the following Differential LMI (DLMI):

˙̂
P + ÃT P̂ + P̂ Ã + D̃T P̂ D̃ P̂ B̃1 C̃T

1 F̃T P̂

∗ −γ2Ip+z 0 0
∗ ∗ −Im 0

∗ ∗ ∗ −P̂

 ≤ 0, (2.46)

for P̂ > 0 and with P̂ (0) of (2.45) and where it is required that Tr{P (τ)} be
minimized at each time instant τ ∈ [0, T ].

Similarly to the filtering problem of Section 2.5, we apply the method
of [99]. Thus the above DLMI can be solved by discretizing the time interval
[0, T ] into equally spaced time instances resulting in the following discretisized
DLMI: 

Ψ11 P̂kB̃1,k C̃T
1,k F̃T

k P̂k

∗ −γ2ε̃−1Ip+z 0 0

∗ ∗ −ε̃−1Im 0

∗ ∗ ∗ −ε̃−1P̂k

 ≤ 0, (2.47)

for k = 0, 1, .., N − 1 and where:
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Ψ11 = P̂k+1 − P̂k + ε̃(ÃT
k P̂k + P̂kÃk) + ε̃D̃T

k P̂kD̃k,

Ãk = Ã(tk)

B̃1,k = B̃1(tk),

C̃1,k = C̃1(tk),

F̃k = F̃ (tk),

D̃k = D̃(tk), with

{ti, i = 0, ..N − 1, tN = T, t0 = 0} and

ti+1 − ti
∆= ε̃ = N−1T, i = 0, ...N − 1.

(2.48)

The discretized estimation problem thus becomes one of finding, at each
k ∈ [0, N − 1], P̂k+1 > 0 of minimum trace that satisfies (2.47).

The latter DLMI is initiated with the initial condition of (2.45) at the
instance k = 0 and a solution for both, the filter gain Lk and P̂k+1 (i.e P̂1 and
L0) is sought for, under the minimum trace requirement of P̂k+1. The latter
procedure repeats itself by a forward iteration up to k = N −1, where N is
chosen to be large enough to allow for a smooth solution (see also [99]). We
summarize the above results by the following theorem:

Theorem 2.7. Consider the system of (2.7) and JO of (2.8). Given the pos-
itive scalar γ and 0̃ > 0, the output-feedback control problem possesses a
solution if there exists Q(t) > 0, ∀t ∈ [0, T ] that solves (2.20) such that
Q(0) < γ2R−1, and P̂ (t) that solves (2.47) ∀t ∈ [0, T ] starting from the initial
condition of (2.45), where R is defined in (2.8). If a solution to (2.20) and
(2.47) exists the following control law:

uof (t) = −Ĉ1(t)x̂(t) (2.49)

achieves the required H∞ norm bound of γ for J0 where x̂(t) is obtained by
solving for (2.42).

Remark 2.6. We note that the solution of the latter DLMI proceeds the so-
lution of the finite-horizon state-feedback problem of Section 2.4 that starts
from Q(T ), in (2.20), for a given attenuation level of γ. Once a solution to the
latter problem is achieved, the DLMI of (2.47) is solved for the same value of
γ starting from the initial condition P̂0 of (2.45).

Remark 2.7. Similarly to the initial condition of (2.28), the initial condition
P̂ (0) of (2.45) corresponds to the case where a large weight is imposed on x̂(0)
in order to force nature to select e(0) = x(0) (i.e x̂(0) = 0).
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Remark 2.8. In the case where the augmented state-vector is chosen as ξ(t) =
col{x(t), x̂(t)} the initial condition of P̂ (0) of (2.45) would satisfy:

P̂ (0) =

�
γ2R−1−Q(0) 0

0 0

�
where γ2R−1 −Q(0) is the initial weight. The latterP̂ (0) can be readily trans-
formed to account for the augmented state-vector of ξ(t) = col{x(t), e(t)} by
the pre- and post- multiplication of the above matrices, by ΥT and Υ , respec-

tively, where Υ
�
=

�
I 0

I −I

�
. The resulting matrix will then be identical to the

one of the initial condition of (2.45).

2.7 Stationary Stochastic Output-feedback Control

We consider the mean square stable system of (2.9) where, for simplicity, we
take: G = 0, E{dβ(t) dζ(t)} = 0 and DT

12C1 = 0. Similarly to the solution of
the stationary filtering problem of Section 2.5.1, we introduce the following
Lyapunov function:

V (t) = ξT (t)Q̃ξ(t), with Q̃ =

�
Q αQ̂

αQ̂ Q̂

�
, (2.50)

where ξ(t) is the augmented state vector of the finite-horizon case, Q and Q̂
are n × n matrices and α ia a tuning scalar. We obtain the following result:

Theorem 2.8. Consider the system (2.9) and JSO of (2.10) where the matri-
ces A, B1, B2, D, C2, F, C1 and D12 are all constant, G = 0, u(t) = Ks(t)x̂(t)
and where x̂(t) is defined in (2.42). Given a scalar γ > 0, there exists a con-
troller that achieves JSO < 0, ∀(w(t), x(0)) �= 0 if there exist Q = QT ∈
Rn×n, Q̂ = Q̂T ∈ Rn×n, Y ∈ Rn×q and a tuning scalar parameter α that
satisfy the following LMI:
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Υ (1, 1) Υ (1, 2) (Q + αQ̂)B1 − αY D21 −αY 0

∗ Υ (2, 2) (α + 1)Q̂B1 − Y D21 −Y ĈT
1

∗ ∗ −γ2Iq 0 0

∗ ∗ ∗ −γ2Iq 0

∗ ∗ ∗ ∗ −Ip

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

−αFTY T −HTY T FT (Q + αQ̂) DT Q̂(1 + α)

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

−Q −αQ̂ 0 0

∗ −Q̂ 0 0

∗ ∗ −Q −αQ̂

∗ ∗ ∗ −Q̂



< 0,

where

Υ (1, 1) ∆= ¯̄ATQ + Q ¯̄A − QB2Ĉ1 − ĈT
1 BT

2 Q,

Υ (1, 2) ∆= α( ¯̄AT Q̂ + Q̂ ¯̄A) + QB2Ĉ1 − αĈT
1 BT

2 Q̂ − αĈ2,

Υ (2, 2) ∆= ¯̄AT Q̂ + Q̂ ¯̄A + αQ̂B2Ĉ1 + αĈT
1 BT

2 Q̂ − Y ĈT
2 − Ĉ2Y

T

Proof: The proof outline for the above stationary case resembles the one for
the finite-horizon problem. Considering the system (2.9) we first solve the
stationary state-feedback problem to obtain the optimal stationary strategies
of both w∗

s(t) and u∗
s(t) and the stationary controller gain Ks (see Section 2.4.1

for a derivation of the stationary Riccati-type inequality) . Similarly to the
finite- horizon solution of the state-feedback control problem using completing
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to squares (See Section 2.6), the optimal strategies of the stationary case are
given by :

u∗
s(t)

∆= Ksx(t) where Ks(t) = R̂−1[(BT
2 Q + DT

12C1)]

and

w∗(t) = γ−2BT
1 Qx(t),

where Q = P̃−1 is the solution of (2.25).

Using the latter optimal strategies the problem is transformed to an es-
timation one, thus arriving at the stationary counterpart of the augmented
system for ξ(t). Applying the stationary continuous BRL of Section 2.3.1 (see
[86], [59] ) to the latter system the algebraic counterpart of (2.45) is obtained
which, similarly to the finite horizon case of Section 2.6, becomes the sta-
tionary version of (2.46). We thus obtain the following LMI in the decision
variables Q̃ and L:

ÃT Q̃ + Q̃Ã Q̃B̃1 C̃T
1 F̃T Q̃ D̃T Q̃

B̃T
1 Q̃ −γ2Ip+z 0 0 0

C̃1 0 −In 0 0

Q̃F̃ 0 0 −Q̃ 0

Q̃D̃ 0 0 0 −Q̃


≤ 0. (2.51)

Substituting the structure of Q̃ and the stationary version of the matrices
of 2.44 in (2.50), denoting Y = Q̂L, where L is the observer gain, and carrying
out the various multiplications, the LMI of Theorem 2.8 is obtained.

�$

2.8 Example: Stationary Estimation and State-feedback
Control

We consider the system of (2.9) where B2 = 0 and D12 = 0 with the following
matrices:

A=
�

0 1
−1 −0.4

�
, D=

�
0 0.3
0 −0.12

�
, B1 =

�
1

−1

�
, C1 =

�−0.5 1
0 0

�
,

where C2 =
�
0.1 0.1

�
and where G = 0, F = 0. We apply the result of Theorem

2.6 and we obtain for a near minimum of γ = 5.72 and α = 0.1 the following
results:

P =
�
3.4333 0.5220
0.5220 2.9490

�
, P̂ =

�
2.7807 0.2687
0.2687 1.7186

�
,
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where the filter gain is LT =
�
1.0292 1.5855

�
. The resulting eigenvalues for the

closed loop system are:

−0.2 ± 0.9798i, −0.3307 ± 0.9937i.

We note that for the deterministic case, where D = 0, a near minimum of
γ = 4.96 is achieved for α = 0.1.

Assuming that there is an access to the states of the system, the stationary
state-feedback control solution of this problem, where

B2 =
�

0
1

�
, D12 =

�
0
.1

�
,

obtains a near minimum attenuation level of γ = 1.39, by applying the results
of Theorem 2.4. The resulting state-feedback gain is K = −R−1BT

2 P−1 =
[−32.1205 − 14.0154] where the eigenvalues of the closed-loop system
are:−2.8683, −11.5471 and where

P =
�

0.2420 −0.5546
−0.5546 8.4061

�
,

is the matrix solution of (2.25). For the deterministic case, where D = 0, a
near minimum attenuation level of γ = 1.04 is obtained.

2.9 Conclusions

In this chapter the solution of the stochastic state-multiplicative BRL is solved
for both the finite- and infinite-horizon cases. Based on the BRl solution the
problems of state-feedback control and filtering are solved where in the fil-
tering case we make use of the simple and efficient DLMI technique. This
technique was shown to produce, in the deterministic case, solutions that
mimic the standard central solution of the Riccati equation associated with
the solution of the deterministic BRL and the nominal state-feedback and
filtering problems. The problem of H∞-optimal output-feedback control of
finite-horizon and stationary continuous-time linear systems with multiplica-
tive stochastic uncertainties is solved. In both problems the solution is car-
ried out along the standard approach where, using the optimal strategy for
the state-feedback case, the problem is transformed to an estimation one, to
which the stochastic BRL is applied. Unlike the previous works of [24], [59],
[43], our solution is tractable and involves an LMI based recursion (DLMI)
in the finite horizon case and a simple set of two LMIs for the stationary
case. We note that in the latter case one has only to search for a single tun-
ing parameter of α, a fact that renders our solution as a simple and easily
implementable. We note that the stationary solution is based on a specific
selection of a Lyapunov function which leads to a sufficient solution of the
output-feedback problem. In the example the solution of both the stationary
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state-feedback control and the Luenberger observer based estimation is pre-
sented, where for the latter solution the efficiency of partitioning the matrix
solution with a tuning parameter is demonstrated.



3

Continuous-time Systems: General Filtering

3.1 Introduction

In this chapter we bring the solution of the continuous-time stationary filter-
ing using a general-type filter [45], [41]. Recently, the solution of the output-
feedback problem for LTI continuous-time stochastic uncertain systems has
been derived for the stationary case [59]. The solution in [59] is obtained
by formulating a stochastic BRL and a general-type controller. It results in
two coupled nonlinear matrix inequalities which reduce to the standard H∞
output-feedback problem in the nominal case. The solution in [59] does not
include uncertainty in the measurement matrix, which is most likely to be
found in physical control systems.

In the present chapter, we treat the case where stochastic uncertainties
appear in both the dynamic and the measurement matrices and correlations
are allowed between these uncertain parameters [45], [41]. This case is often
encountered in practice when one considers filtered estimation. Our solution is
based on the stationary continuous-time BRL of Section 2.3.1 (for the deriva-
tion of the stationary BRL see also [24], [86] and [59]). In our solution we
apply the techniques of [74] to the deterministic polytopic problem [36],[38].
Necessary and sufficient conditions are derived for the existence of a solution
in terms of LMIs. The latter solution is extended to the case where the de-
terministic part of the system matrices lie in a convex bounded domain of
polytopic-type. Our theory is also applicable to the case where the covariance
matrices of the stochastic parameters are not perfectly known and lie in a
polytopic domain. We also solve the mixed H2/H∞ problem where, of all the
filters that solve the stochastic H∞ filtering problem, the one that minimizes
an upper-bound on the estimation error variance is found. The method devel-
oped is demonstrated by a practical example that is given in the Application
part.

E. Gershon et al.: H∞ Contr. and Est. of State-multipl. Lin. Sys., LNCIS 318, pp. 45–54, 2005.
© Springer-Verlag London Limited 2005
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3.2 Problem Formulation

We consider the following linear mean square stable system with state-
dependent noise:

dx = (Ax + B1w)dt + Dxdβ,

dy = (Cx + D21w)dt + Fxdζ,

z = Lx

(3.1)

where x ∈ Rn is the system state vector , x(0) is any norm bounded vector
in Rn, y ∈ Rr is the measurement, w ∈ L̃2([0,∞); Rq) is the exogenous
disturbance signal, z ∈ Rm is the state combination to be estimated and
where A, B1, C, D, F, D21 and L are constant matrices of the appropriate
dimensions. The variables β(t) and ζ(t) are zero-mean real scalar Wiener
processes that satisfy:

E{dβ(t)} = 0, E{dζ(t)}=0, E{dβ(t)2}=dt, E{dζ(t)2}=dt,

E{dβ(t)dζ(t)}=αdt, |α|< 1.

We consider the following filter for the estimation of z(t):

dx̂ = Af x̂dt + Bfdy, x̂0 = 0, ẑ = Cf x̂, (3.2)

where x̂ ∈ Rn and ẑ ∈ Rm. Denoting

ξT =
�
xT x̂T

�
and z̃ = z − ẑ, (3.3)

we define, for a given scalar γ > 0, the following performance index

JS
�
= ||z̃(t)||2

L̃2
− γ2||w(t)||2

L̃2
(3.4)

The problems addressed in this chapter are:
i) Stochastic H∞ filtering problem: Given γ > 0, find an asymptoti-
cally stable linear filter of the form (3.2) that leads to a mean square stable
estimation error process z̃ such that JS of (3.4) is negative for all nonzero
w ∈ L̃2([0,∞); Rq).
ii) Stochastic mixed H2/H∞ filtering problem: Of all the asymptotically
error stabilizing filters that solve problem (i) find the one that minimizes
an upper-bound on the estimation error variance: limt→∞E

�
z̃T z̃

	
, where

ẇ(t) = η̇(t) is regarded as a standard white noise process, independent of β(t)
and ζ(t). Namely, in this case, (3.1) should be interpreted as:

dx = Axdt + Dxdβ + B1dη

and

dy = Cxdt + Fxdζ + D21dη,

where E{dηdηT } = Idt.
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3.3 The Stochastic BRL

We bring, for convenience, the lemma that is derived in Section 2.3.1 (see also
[59]) for the following mean square stable system :

dx = Axdt + (D1dβ + D2dζ)x + B1wdt,

z = Lx
(3.5)

where the scalar Wiener processes β(t) and ζ(t) and the disturbance w ∈
L̃2([0,∞); Rq) are defined above. Using the cost function

Ĵ = ||z(t)||2
L̃2

− γ2||w(t)||2
L̃2

and applying the arguments of [59] the following holds:

Lemma 3.1. (Section 2.3.1, and [59]) For any γ > 0 the following state-
ments are equivalent:
i) The system of (3.5) is mean square stable and Ĵ is negative for all nonzero
w ∈ L̃2([0,∞); Rq).
ii) There exists Q > 0 that satisfies the following inequality:

QA+ATQ+γ−2QBBTQ+LTL+DT
1QD1+DT

2QD2+α[DT
1QD2+DT

2QD1]<0.

3.4 The Stochastic Filter

Problem i is solved by applying Lemma 3.1 Considering the system of (3.1)
and the definitions of (3.3) we obtain:

dξ = Ãξdt + [D̃1dβ + D̃2dζ]ξ + B̃wdt, z̃ = C̃ξ (3.6)

where

Ã =

�
A 0

BfC Af

�
, B̃ =

�
B1

BfD21

�
, D̃1 =

�
D 0

0 0

�
,

D̃2 =

�
0 0

BfF 0

�
, C̃ =

�
L −Cf

�
. (3.7)

We arrive at the following result.

Theorem 3.1. Consider the system of (3.1)-(3.4) and the filter of (3.2).
Given γ > 0, the following holds:

i) A necessary and sufficient condition for (3.6) to be stable and JS to be
negative for all nonzero w ∈ L̃2([0,∞); Rq), is that there exist R = RT ∈
Rn×n, W = WT ∈ Rn×n, Z ∈ Rn×r, S ∈ Rn×n, and T ∈ Rm×n,
such that

Σ(R,W,Z, S, T ) < 0 (3.8)
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where by Σ(R,W,Z, S, T ) we define

Σ =



RA + ATR ∗ ∗ ∗ ∗ ∗ ∗
WA + ZC + S S−ST ∗ ∗ ∗ ∗ ∗

L − T T −Im ∗ ∗ ∗ ∗
RD 0 0 −R ∗ ∗ ∗

WD + αZF 0 0 0 −W ∗ ∗
α̃ZF 0 0 0 0 −W ∗
BT

1 R BT
1 W+DT

21Z
T 0 0 0 0 −γ2Iq


,

where α̃ = (1 − ᾱ2)0.5.

ii) If (3.8) is satisfied, a mean square stabilizing filter in the form of (3.2)
that achieves JS < 0 is given by:

Af = −W−1S, Bf = −W−1Z and Cf = T. (3.9)

Proof: The assertions that JS is negative for all nonzero w ∈ L̃2([0,∞); Rq)
and that the filter of (3.2) stabilizes the filtering error (namely, {Ã, D̃1, D̃2, α}
defines a mean square stable evolution) are equivalent, by Lemma 3.1, to the
solvability of the following Riccati inequality

ÃTQ +QÃ+γ−2QB̃B̃TQ+C̃T C̃+D̃T
1 QD̃1+D̃T

2 QD̃2

+ᾱ[D̃T
2 QD̃1 + D̃T

1 QD̃2]<0 , Q > 0.
(3.10)

Since α̃
�
= (1 − ᾱ2)0.5, the inequality (3.10a) is equivalent to the following

ÃTQ + QÃ + γ−2QB̃B̃TQ + C̃T C̃ + (D̃1 + ᾱD̃2)TQ(D̃1 + ᾱD̃2)
+α̃2D̃T

2 QD̃2 < 0,
(3.11)

because

D̃T
1 QD̃1 + D̃T

2 QD̃2 + ᾱD̃T
2 QD̃1 + ᾱD̃T

1 QD̃2 = (D̃1 + ᾱD̃2)TQ
(D̃1 + ᾱD̃2) + α̃2D̃T

2 QD̃2.

Applying Schur’s complements, (3.11) can be readily rearranged into the fol-
lowing LMI:

ÃTQ + QÃ C̃T (D̃1 + ᾱD̃2)TQ α̃D̃T
2 Q QB̃

∗ −I 0 0 0

∗ ∗ −Q 0 0

∗ ∗ ∗ −Q 0

∗ ∗ ∗ ∗ −γ2Iq


< 0, (3.12)
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and the negativity of JS is thus guaranteed iff there exists Q > 0 that satisfies
(3.12).

Following [38], we partition Q and Q−1 as follows

Q
�
=

�
X M

MT U

�
, Q−1 �

=

�
Y N

NT V

�
, (3.13)

where we require that
X > Y −1. (3.14)

The latter inequality stems from the fact that for Q > 0 the following holds:�
Q I2n

I2n Q−1

�
≥ 0

which implies that �
X In

In Y

�
≥ 0

Requiring, however, the filter of (3.2) to be of order n, a strict inequality is
required in (3.14) (see[33], page 428). We also note that consequently

In − XY = MNT

is of rank n.
Defining :

J
�
=

�
Y In

NT 0

�
and J̃

�
= diag

�
J, Im, J, J, Iq

�
we pre- and post-multiply (3.12) by J̃T and J̃ , respectively. Substituting for
the matrices of (3.7) in (3.12) and carrying out the various multiplications in
(3.12) we obtain:

AY + Y AT A + Y ATX + Y CTZT + ẐT Y LT − Z̃T Y DT

∗ XA + ATX + ZC + CTZT LT DT

∗ ∗ −I 0

∗ ∗ ∗ −Y
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
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Y DTX + ᾱY FTZT 0 α̃Y FTZT B1

DTX + ᾱFTZT 0 α̃FTZT XB1 + ZD21

0 0 0 0

−I 0 0 0

−X 0 0 0

∗ −Y −I 0

∗ ∗ −X 0

∗ ∗ ∗ −γ2Iq


< 0, X > Y −1 > 0,

(3.15)
where

Z
�
= MBf , Z̃

�
= CfN

T and Ẑ
�
= MAfN

T . (3.16)

Pre- and post-multiplying (3.15) by Υ and ΥT , respectively, we obtain (3.8),
where we define the following

Υ
�
= diag{

�
R 0

−R In

�
, Im,

�
R 0

−R In

�
,

�
R 0

−R In

�
, Iq},

S
�
= ẐR, T

�
= Z̃R, R

�
= Y −1, W = X − R. (3.17)

ii) If a solution to (3.8) exists, we obtain from (3.16) that

Af = M−1ẐN−T , Bf = M−1Z and Cf = Z̃N−T . (3.18)

Denoting the transfer function matrix of the filter of (3.2) by Hẑy(s), we
find from (3.18) that:

Hẑy(s) = Z̃N−T (sIn − M−1ẐN−T )−1M−1Z

which leads to:

Hẑy(s) = Z̃(sMNT − Ẑ)−1Z = Z̃[s(In − XY ) − Ẑ]−1Z.

The result of (3.9) follows using (3.17).
�$

3.5 The Polytopic Case

Due to the affinity of (3.8) in A, B1, C, D21, D and F , the result of 3.1 can
be extended to the case where these matrices lie in a convex bounded domain.
In this case, we require that (3.8) holds for all the vertices of the uncertainty
polytope for a single set of matrices (R,W,Z, S, T ).
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Assuming that A,B1, C,D21, D and F lie in the following uncertainty poly-
tope:

Ω̄
�
={(A,B1, C,D21, D, F )|(A,B1, C,D21, D, F )

=
l�

i=1

τi(Ai, B1i, Ci, D21,i, Di, Fi) ; τi ≥ 0;
l�

i=1

τi=1}

and denoting the set of the l vertices of this polytope by Ψ̄ we obtain the
following result:

Corollary 3.1. Consider the system of (3.1) and the filter of (3.2). The
performance index of (3.4) is negative for a given γ > 0, for all nonzero
w ∈ L̃2([0,∞); Rq) and for all (A,B1, C,D21, D, F ) ∈ Ω̄, if (3.8) is satisfied
at all the vertices in Ψ̄ by a single set (R,W,Z, S, T ). In the latter case the
filter matrices are given by (3.9).

We note here that while (3.8) requires (3.1) to be asymptotically stable
for a single A, the requirement of the last corollary demands (3.1) to be
quadratically stable [93] for all A ∈ Ω̄. Thus, while in 3.1 the conditions were
necessary and sufficient, the results of the later corollary are only sufficient.
It should be emphasized that the requirement for quadratic stability may
sometimes be quite conservative.

3.6 Robust Mixed Stochastic H2/H∞ Filtering

The mixed stochastic H2/H∞ filter design is achieved by considering the set
of filters that satisfy the H∞ requirement and choosing the one that minimizes
an upper-bound on the estimation error variance. The latter is described by
the following H2 objective function

J2 = lim
t→∞E

�
z̃T (t)z̃(t)

	
= ||Hz̃w||22,

where ||·||2 stands for the standard H2-norm and where Hz̃w is the transference
in the system of (3.6), from w to z̃. The signal w(t) is considered, at the present
context, to be a white noise.

Denoting P̄
�
= lim

t→∞E
�
ξξT

	
, we readily find that, in such a case, ||Hz̃w||22 =

Tr{C̃P̄ C̃T } where P̄ satisfies the following algebraic equation [105],[108]:

ÃP̄ + P̄ ÃT + D̃1P̄ D̃
T
1 + D̃2P̄ D̃

T
2 + ᾱ(D̃1P̄ D̃

T
2 + D̃2P̄ D̃

T
1 ) + B̃B̃T = 0. (3.19)

We consider next the following algebraic equation:

ÃT Q̃ + Q̃Ã + D̃T
1 Q̃D̃1 + D̃T

2 Q̃D̃2 + ᾱ(D̃T
1 Q̃D̃2 + D̃T

2 Q̃D̃1) + C̃T C̃ = 0.
(3.20)

We obtain the following:
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Lemma 3.2. Tr{C̃P̄ C̃T } = Tr{B̃T Q̃B̃}.

Proof: (see also Proposition 1 in [86] ) : We consider the following:

Tr{[ÃP̄ + P̄ ÃT + D̃1P̄ D̃
T
1 + D̃2P̄ D̃

T
2 + ᾱD̃1P̄ D̃

T
2 ]Q̃} = Tr{P̄ [ÃT Q̃

+Q̃Ã + D̃T
1 Q̃D̃1 + D̃T

2 Q̃D̃2 + ᾱ(D̃T
1 Q̃D̃2 + D̃T

2 Q̃D̃1)}.
Using Tr{ᾱβ} = Tr{βα} the result of the lemma readily follows.

�$
We note that Q̃ satisfies Γ (Q̃) = 0 where we define:

Γ (Q̃) = ÃT Q̃ + Q̃Ã + D̃T
1 Q̃D̃1 + D̃T

2 Q̃D̃2 + ᾱ(D̃T
1 Q̃D̃2 + D̃T

2 Q̃D̃1) + C̃T C̃.
(3.21)

We consider Γ̂ (Σ, Q̂)
�
= Γ (Q̂)+Σ for some 0 ≤ Σ ∈ Rn×n and relate solutions

of the following equation (3.22) to those of Γ (Q̃) = 0 :

Γ̂ (Q̂, Σ) = 0. (3.22)

It follows from the monotonicity, with respect to Σ, of the solutions to (3.22),
say Q̃, that Q̃ − Q̂ < 0 where Q̃ satisfies

Γ̂ (Q̃, 0) = Γ (Q̃) = 0.

Denoting the set

Ω̃
�
= {Q̂|Γ (Q̂) < 0 ; Q̂ > 0},

it follows from the above monotonicity that

JB = Tr{B̃T Q̂B̃} > Tr{B̃T Q̃B̃}, ∀Q̂ ∈ Ω̃. (3.23)

To solve the stochastic mixed H2/H∞ problem we seek to minimize an
upper-bound on JB over Ω̃. Namely, assuming that there exists a solution to
(3.11), we consider the following LMI:

Γ̃ (Q̄, H̄)
�
=

�
H̄ −B̃T Q̄

−Q̄B̃ Q̄

�
> 0, (3.24)

where we want to find Q̄ ∈ Ω̃ and H̄ that minimize Tr{H̄}.
On the other hand (3.11) is equivalent to

Γ (Q) < −γ−2QB̃B̃TQ,

where γ−2QB̃B̃TQ plays this role of Σ ≥ 0. Restricting, therefore, Q̄ of (3.24)
to the set of the solutions to (3.12), we clearly have that Γ (Q̄) < 0 and that
Q̄ ∈ Ω̃. We are thus looking for Q and H̄ that satisfy (3.12) and Γ̃ (Q, H̄) > 0
so that Tr(H̄) is minimized.
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The minimization of Tr{H̄} can be put into LMI form that is affine
in R, W and Z, by pre- and post-multiplying (3.24) by diag{Iq, JT }
and diag{Iq, J}, respectively, substituting for B̃ (using (3.7) and (3.18))
and pre- and post-multiplying the result by Λ̄ and Λ̄T , respectively, where:

Λ̄
�
= diag{I,

�
R 0

−R In

�
}. We obtain the following result:

Theorem 3.2. Consider the system of (3.6) and (3.4). Given γ > 0, a filter
that yields JS < 0 for all nonzero w ∈ L̃2([0,∞); Rq) and that minimizes a
bound on JB of (3.23) is obtained if there exists a solution (R,S, Z, T,W ) to
(3.8). The minimizing filter is obtained by simultaneously solving (3.8) and

Ῡ
�
=


H̄ BT

1 R BT
1 W+DT

21Z
T

∗ R 0

∗ ∗ W

 > 0, (3.25)

and minimizing Tr{H̄}. The filter matrices are given then by (3.9).

Remark 3.1. We note that the requirement for a simultaneous solution of
(3.8) and (3.25) does not impose any special difficulty since both LMIs are
affine with respect to the matrix variables. Their simultaneous solution can
be obtained using any standard LMI solver.

Remark 3.2. The problem of finding the minimum of Tr{H̄} maybe ill-
defined if strict inequalities are imposed on (3.8) and (3.25). In most cases,
the infimum of the trace may be achieved on the closure of the feasibility region
of (3.12). In our case, however, this infimum will be obtained for Q that is
0-close to the boundary of the feasibility region where 0 is the tolerance of the
LMI solver used.

3.7 Conclusions

In this chapter we solve the problem of stationary stochastic H∞-filtering
of continuous-time linear systems using LMI techniques. This problem has
already been solved, indirectly, in [59], where a solution to the stochastic
output-feedback problem was obtained. The solution of the filtering problem
can be extracted from the latter in the case that the measurement matrix is
not corrupted by stochastic uncertainty. The resulting filter will require the
solution of two coupled nonlinear inequalities. Although our solution treats the
case where the uncertainty appears in both, the dynamic and the measurement
matrices, it can similarly be extended to the more general case where the
stochastic uncertainty appears in all the system state-space representation.



54 3 Continuous-time Systems: General Filtering

The case that we have treated in this chapter is encountered with in many
filtering problems.

Using the LMI approach and applying special transformations, the condi-
tions for the existence of a solution to the problem have been obtained in terms
of LMIs that are affine in the system and the filter parameters. This affinity
also allows the consideration of deterministic uncertainty in the system, where
the deterministic part of the system matrices lies in a given polytopic type
domain and the bounded uncertainty in the covariance matrices of the sto-
chastic parameters. An over-design that is inherent in our solution method
stems from the quadratic stability nature of the solution. Under the require-
ment imposed by this type of stability, the conditions we obtained for the
existence of a solution to the problem are both necessary and sufficient.

In Chapter 11 an altitude estimation example is given that utilizes the
theory of the present chapter.



4

Continuous-time Systems: Tracking Control

4.1 Introduction

In this chapter we treat the problem of H∞ tracking with stochastic mul-
tiplicative white noise. We extend the work of [98], which does not involve
stochastic uncertainties, to the case where there are stochastic white noise pa-
rameter uncertainties in the matrices of the state-space model that describes
the system. We treat the case where correlated parameter uncertainties appear
in both the system dynamics and the input matrices for the state-feedback
case, and in both, the input and the measurement matrices in the output-
feedback case. An optimal finite-horizon state-feedback tracking strategy is
derived which minimizes the expected value of the standard H∞ performance
index with respect to the unknown parameters and which applies game the-
oretic considerations. The solution of the latter problem and the stationary
state-feedback case, appear in Section 4.3. In Section 4.4 we solve the output-
feedback control problem where we allow for a state-multiplicative noise in
the measurement matrix. We first introduce in Section 4.4.1 an auxiliary sto-
chastic BRL for systems that contain, in addition to the standard stochastic
continuous-time BRL [10], a reference signal in the system dynamics. The BRL
is solved as a max-min problem and results in a modified Riccati equation.

The output-feedback tracking problem is solved in Section 4.4.2 via max-
min strategy arguments, rather than the game approach that was applied
in the state-feedback case of Section 4.3. Using the latter solution we re-
formulate the problem to a filtering problem which we solve with the aid of
the above auxiliary BRL. We then apply the theory to a simple state-feedback
tracking example where we compare our solution with the solution achieved
when the tracking signal is viewed as a disturbance signal and yet the state-
multiplicative noise is taken into consideration in the design of the alternative
controller.

E. Gershon et al.: H∞ Contr. and Est. of State-multipl. Lin. Sys., LNCIS 318, pp. 55–73, 2005.
© Springer-Verlag London Limited 2005
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4.2 Problem Formulation

Given the following linear continuous time-varying system:

dx=[A(t)x(t)+B1(t)w(t)+B2(t)u(t)+B3(t)r(t)]dt+F (t)x(t)dβ(t)

+G(t)u(t)dζ(t), x(0) = x0,

z(t) = C1(t)x(t) + D12(t)u(t) + D13(t)r(t)

(4.1)

where x ∈ Rn is the system state vector , x(0) is any norm-bounded vector
in Rn, w ∈ L̃2([0, T ); Rp) is the exogenous disturbance signal, z ∈ Rq is the
signal to be controlled and where A(t), B1(t), B2(t), B3(t), C1(t), D12(t),
D13(t), F (t) and G(t) are real known, piecewise continuous time-varying ma-
trices of the appropriate dimensions. The variables β(t) and ζ(t) are zero-mean
real scalar Wiener processes that satisfy:

E{dβ(t)} = 0, E{dζ(t)}=0, E{dβ(t)2}=dt, E{dζ(t)2}=dt,

E{dβ(t)dζ(t)}= ᾱdt, |ᾱ|≤ 1.

We denote R̃(t)
�
= DT

12D12.
We consider the following problems:

i) State-feedback tracking: Our objective is to find a state-feedback con-
trol law u(t) that minimizes, for the worst-case of the process disturbance w(t)
and the initial condition x0, the mean energy of z(t), with respect to the un-
certain parameters, by using the available knowledge on the reference signal,.
We, therefore, consider, for a given scalar γ > 0, the following performance
index:

JE
�
= E{

� T

0

||z(t)||2dt − γ2

� T

0

||w(t)||2dt} + E{xT (T )PTx(T )}

−γ2||x0||2R−1 , R > 0, PT ≥ 0. (4.2)

Similarly to [98] we consider three different tracking problems:
1) Stochastic H∞-tracking with full preview of r(t) : The tracking
signal is perfectly known over the interval t ∈ [0, T ].
2) Stochastic H∞-tracking with zero preview of r(t) : The tracking
signal is measured on line i.e at time t, r(τ) is known for τ ≤ t.
3) Stochastic H∞ finite-fixed preview tracking of r(t) : The tracking
signal r(t) is previewed in a known fixed interval i.e r(τ) is known for τ ≤ t+h
where h is a known preview length.
In all three cases we seek a control law u(t) of the form

u(t) = Hx(t)x(t) + Hr(t)r(t), (4.3)

where Hx(t) is a causal operator and where the causality of Hr(t) depends on
the information pattern of the reference signal.
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For all of the above three tracking problems we consider a related linear
quadratic game in which the controller plays against nature. We, thus, con-
sider the following game:

Find w∗(t) ∈ L̃2([0, T ); Rp), u∗(t) ∈ L̃2([0, T ); Rl) and x∗
0 ∈ Rn that

satisfy:
JE(r, u∗, w, x0) ≤ JE(r, u∗, w∗, x∗

0) ≤ JE(r, u, w∗, x∗
0), (4.4)

where w∗, x∗
0 and u∗ are the saddle-point strategies and r(t) is a fixed signal

of finite energy.

ii) Output-feedback tracking: We consider the following system:

dx = [A(t)x(t) + B1(t)w(t) + B2(t)u(t) + B3(t)r(t)]dt + F (t)x(t)dβ(t),

x(0) = x0,

dy(t) = [C2(t)x(t) + D21(t)w(t)]dt + H(t)x(t)dζ(t) + n(t)dt,

z(t) = C1(t)x(t) + D12(t)u(t) + D13(t)r(t)
(4.5)

where y(t) ∈ Rz and where we note that the measurement matrix is con-
taminated with a zero-mean real scalar white noise process H(t) ˙ζ(t), where
E{dζ(t)2}=dt, E{dβ(t)dζ(t)}= 0. For simplicity, the stochastic uncertainty
is removed from the input matrix. Similarly to the state-feedback case we
seek a control law u(t), based on the information on the reference signal r(t),
that minimizes the tracking error between the the system output and the
tracking trajectory, for the worst case of the initial condition x0, the process
disturbances w(t), and the measurement noise n(t). We, therefore, consider
the following performance index:

JO(r, u, w, n, x0) = JE(r, u, w, x0) − γ2E{
� T

0

||n(t)||2dt}, (4.6)

where JE is given in (4.2). Similarly to the state-feedback case we solve the
problem for the above three tracking patterns. We seek a controller u(t) ∈
L̃2([0, T ); Rl) of the form (4.3) where our design objective is to minimize

maxJO(r, u, w, n, x0) ∀w(t) ∈ L̃2([0, T ); Rp), n(t) ∈ L̃2([0, T ); Rz), xo ∈ Rn.

For all the three tracking problems we derive a controller u(t) which plays
against its adversaries w(t), n(t) and x0.

4.3 The State-feedback Tracking

We consider the following Riccati-type differential equation:
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−Q̇ = QA + ATQ + γ−2QB1B
T
1 Q + CT

1 C1 − S̄T R̂−1S̄ + FTQF,

Q(T ) = PT

(4.7)

where
R̂ = R̃ + GTQG, S̄ = BT

2 Q + ᾱGTQF + DT
12C1. (4.8)

The solution to the state-feedback tracking problem is obtained by the fol-
lowing :

Theorem 4.1. Consider the system of (4.1) and JE of (4.2). Given γ > 0,
the state-feedback tracking game possesses a saddle-point equilibrium solution
iff there exists Q(t) > 0, ∀t ∈ [0, T ] that solves (4.7) such that Q(0) < γ2R−1.
When a solution exists, the saddle-point strategies are given by:

x∗
0 = (γ2R−1 − Q0)−1θ(0)

w∗ = γ−2BT
1 (Qx + θ)

u∗ = −R̂−1[(BT
2 Q + DT

12C1 + ᾱGTQF )x + DT
12D13r + BT

2 θc]

(4.9)

where w∗, x∗
0 and u∗ are the maximizing and minimizing strategies of nature

and the controller, respectively, and where

θ̇(t) = −ĀT θ(t) + B̄rr(t), t ∈ [0 T ], θ(T ) = 0, (4.10)

with

Ā = A − B2R̂
−1(DT

12C1 + ᾱGTQF ) + (γ−2B1B
T
1 − B2R̂

−1BT
2 )Q

B̄r = S̄T R̂−1DT
12D13 − (QB3 + CT

1 D13),
(4.11)

and where θc
�
= [θ(t)]+ (i.e the causal part of θ(·)) satisfies:

θ̇c(τ) = −ĀT (τ)θc(τ) + B̄r(τ)r(τ), t ≤ τ ≤ tf ,

tf =

�
t + h if t + h < T

T if t + h ≥ T

θc(tf ) = 0.

(4.12)

The game value is then given by:

JE(r, u∗, w∗, x∗
0)= J̄(r) + E{

� T

0

||BT
2 [θ]−||2

R̂
dt} (4.13)

where [θ]−1 = θ(t) − θc(t), ∀t ∈ [0, T ] is the anti causal part of θ(t) and
where

J̄(r)=
� T

0

||D13r||2dt + γ−2

� T

0

||BT
1 θ||2dt −

� T

0

||R̂−1/2(BT
2 θ + DT

12D13r)||2dt
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+2
� T

0

θTB3rdt + γ−2||θ(0)||2P0
(4.14)

with
P0 = [R−1 − γ−2Q(0)]−1. (4.15)

Proof: Sufficiency Let Q(t) be a solution of (4.1) such that
Q(0) < γ2R−1. Considering (4.1) and applying Ito formula to ϕ(t, x(t))
= �x(t), Q(t)x(t)
, and taking expectation for every T > 0 we obtain:

0=E{
� T

0

d{xT(t)Q(t)x(t)}−x(T )TPTx(T )}+xT
0Q(0)x0 =E{

� T

0

�x(t), ˙Q(t)x(t)
dt}

+2E{
� T

0

�Q(t)x(t), A(t)x(t) + B1(t)w(t) + B2(t)u(t) + B3(t)r(t)
dt}

+E{
� T

0

Tr{Q(t)[F (t)x(t) G(t)u(t)]P̄ [F (t)x(t) G(t)u(t)]T }dt} + xT
0 Q(0)x0

where P̄
�
=

�
1 ᾱ
ᾱ 1

�
is the covariance matrix of the augmented Wiener process

vector col{β(t), ζ(t)}. Now,

Tr{Q(t)[F (t)x(t) G(t)u(t)]P̄ [F (t)x(t) G(t)u(t)]T }

= Tr{
�

xT (t)FT (t)

uT (t)GT (t)

�
Q(t)[F (t)x(t) G(t)u(t)]P̄}

= Tr{
�

xT (t)FT (t)Q(t)F (t)x(t) xT (t)FT (t)Q(t)G(t)u(t)

uT (t)GT (t)Q(t)F (t)x(t) uT (t)GT (t)Q(t)G(t)u(t)

� �
1 ᾱ
ᾱ 1

�
}

= �
�

x(t)

u(t)

�
,

�
FT (t)Q(t)F (t) ᾱFT (t)Q(t)G(t)

ᾱGT (t)Q(t)F (t) GT (t)Q(t)G(t)

��
x(t)

u(t)

�



= xT (t)FT (t)Q(t)F (t)x(t) + 2ᾱxT (t)FT (t)Q(t)G(t)u(t)

+uT (t)GT (t)Q(t)G(t)u(t)

Using the above derivation and adding the zero sum of

E{
� T

0

||w(t)||2dt} − E{
� T

0

||w(t)||2dt} + E{
� T

0

||z(t)||2dt} − E{
� T

0

||z(t)||2dt}

we obtain after completing to squares for w(t):

0 = E{
� T

0

[xT (t)[ ˙Q(t) + Q(t)A(t) + AT (t)Q(t) + FT (t)Q(t)F (t)
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−γ−2Q(t)B1(t)BT
1 (t)Q(t)]x(t)dt}+2E{

� T

0

xT(t)Q(t)[B2(t)u(t)+B3(t)r(t)]dt}

+E{
� T

0

||z||2 + γ2(||w||2 + ||w − γ−2BT
1 Qx||2)dt − x(T )TPTx(T )}

+E{
� T

0

2ᾱxT (t)FT(t)Q(t)G(t)u(t) + uT (t)GT (t)Q(t)G(t)u(t)dt} + xT
0 Q(0)x0.

−E{
� T

0

||z(t)||2dt + E

� T

0

[||C1(t)x(t) + D12(t)u(t) + D13(t)r(t)||2dt}

Completing to squares for u(t), we obtain:

0 = E{
� T

0

{−||z(t)||2 + γ2(||w(t)||2 − ||w(t) − γ−2BT
1 (t)Q(t)x(t)||2)}dt}

+{E

� T

0

||û(t)||2
R̂

+ ||D13(t)r(t)||2dt − x(T )TPTx(T )}

+2E{
� T

0

(xT(t)[Q(t)B3(t)+CT
1 (t)D13(t)]+uT(t)DT

12(t)D13(t)r(t))dt}+xT
0Q(0)x0

where
û(t) = u(t) + R̂−1S̄(t)x(t). (4.16)

Adding JE(r, u, w, x0) of (4.2) to the above zero quantity we obtain:

JE = −γ2||x0||2
P−1

0
+ E{

� T

0

{[||u(t) + R̂−1S̄(t)x(t)||2
R̂

+ ||D13(t)r(t)||2

+2xT (t)Q(t)B3(t) + CT
1 (t)D13(t)]r(t)}dt + E{xT (T )PTx(T )}

+2E{
� T

0

(û(t) − R̂−1S̄T (t)x(t))TDT
12(t)D13(t)r(t)dt}

where
ŵ(t) = w(t) − γ2BT

1 (t)Q(t)x(t). (4.17)

Next we add the following identically zero-term to the above JE , where we
apply the Ito lemma:

0=2E{
� T

0

dθT(t)x(t)dt} − 2[θT(0)x(0)]+ =2E{θT (T )x(T )} − 2θT (0)x(0)

+2θT (0)x(0) = 2E{
� T

0

θ̇T (t)x(t)dt} + 2E{
� T

0

θT (t){Ā(t)x(t) + B1(t)ŵ(t)

+B2(t)û(t) + B3(t)r(t)}dt} + 2θT (0)x(0)

where θ(t) and Ā(t) are defined in (4.10) and (4.11), respectively, and satisfy
the following:
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dx=Ā(t)x(t) + B1(t)ŵ(t) + B2(t)û(t) + B3(t)r(t)]dt + F (t)x(t)dβ(t)

+G(t)û(t)dζ(t) − G(t)R̂−1S̄xdζ(t) = A(t)x(t) + B1(t)w(t) + B2(t)u(t)

+B3(t)r(t)]dt + F (t)x(t)dβ(t) + G(t)u(t)dζ(t).

By another completion to squares with respect to û(t) we obtain:

JE = −γ2||x0 − γ−2P0θ(0)||2
P−1

0
+ γ−2||θ(0)||2P0

−γ2E{
� T

0

||[ŵ − γ−2BT
1 θ]||2dt} + γ−2E{

� T

0

||BT
1 θ||2dt}

+E{
� T

0

||R̂1/2[û + R̂−1(BT
2 θ + DT

12D13r)]||2dt} − E{
� T

0

||R̂−1/2
1 BT

2 θ||2dt}

+2E{
� 0

T

[θ̇+ĀT θ+[QB3+CT
1D13−S̄T R̂−1DT

12D13]r]Txdt}+E{xT (T )PTx(T )}

−E{
� T

0

2θT (B2R̂
−1DT

12D13 − B3)rdt} + E{
� T

0

||D13r||2dt}

−E{
� T

0

||R̂−1/2DT
12D13r||2dt}.

Denoting next:

x̂0 = γ−2P0θ(0) = [γ2R−1 − Q(0)]−1θ(0) (4.18)

and considering (4.10), (4.16) and (4.17) and the above JE can be rewritten
as:

JE(r, u, w, x0) = −γ2||x0 − x̂0||2
P−1

0
− γ2E{

� T

0

||w − γ−2BT
1 (Qx + θ)||2dt}

+E{
� T

0

||R̂1/2[u+R̂−1S̄Tx+R̂−1(BT
2 θ+DT

12D13r)]||2dt}+J̄(r)+E{xT(T )PTx(T )}
(4.19)

where J̄(r) is given by (4.14) and is independent of u, w and x0. Applying
the fact that P0 > 0 and that the admissible control signal u(t) is based
on the state measurements up to τ = t + h , a saddle-point strategy for
the tracking game is readily achieved. Considering (4.9), [θ]− and the above
JE (see Chapter 9 about the minimization of quadratic functionals under
causality constraints), we obtain:

JE(r, u∗, w, x0)=−γ2||x0−x̂0||2
P−1

0
−γ2E{

� T

0

||w−γ−2BT
1 (Qx+θ)||2dt}



62 4 Continuous-time Systems: Tracking Control

+E{
� T

0

||R̂1/2BT
2 [θ]−)||2dt} + J̄(r) ≤ JE(r, u∗, w∗, x∗

0). (4.20)

On the other hand, considering (4.9) and [θ]− we obtain:

JE(r, u, w∗, x∗
0)=E{

� T

0

||R̂1/2[u+R̂−1S̄Tx+R̂−1(BT
2 θ + DT

12D13r)]||2dt}

+J̄(r) ≥ JE(r, u∗, w∗, x∗
0). (4.21)

Necessity The saddle-point strategies provide a saddle-point equilibrium also
for the case of r(t) ≡ 0. In this case, one obtains the problem of stochastic
state-multiplicative noisy state-feedback regulation game for which the con-
dition of Theorem 4.1 is necessary [24], [86], [59].

If there exists a solution Q(t) = QT (t), ∀t ∈ [0, T ] that solves (4.7) with
the condition of Q(0) < γ2R−1, we obtain the following control strategies:

�$
Corollary 4.1. Stochastic H∞-Tracking with full preview: In this case
θ(t) is as in (4.10) and the control law is given by:

u = Kxx + Krr + Kθθ,

where

Kx = −R̂−1(BT
2 Q + DT

12C1 + ᾱGTQF ),

Kr = −R̂−1DT
12D13,

and

Kθ = −R̂−1BT
2 .

(4.22)

Furthermore, JE(r, u∗, w∗, x∗
0) of (4.4) coincides with J̄(r) of (4.14).

Corollary 4.2. Stochastic H∞-Tracking with no preview: In this case
the control law is given by:

u = Kxx + Krr, (4.23)

and the existence of (4.4) is guaranteed where

JE(r, u∗, w∗, x∗
0) = E{

� T

0

||R̂−1/2BT
2 θ||2dt} + J̄(r)

where θ(·) and J̄(r) satisfy (4.10) and (4.14), respectively.

Corollary 4.3. Stochastic H∞-Tracking with finite fixed-preview: In
this case the following control law is obtained:
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u = Kxx + Krr + Kθθc, (4.24)

where Kx, Kr and Kθ are defined in (4.22) and θc is given by (4.12). The
above controller achieves (4.4) with

JE(r, u∗, w∗, x∗
0) = J̄(r) + E{

� T

0

||R̂−1/2BT
2 [θ]−||2dt}

and where J̄(r) is defined in (4.14). The latter is obtained since at time t̄, r(t)
is known for t ∈ [t̄ min(T, t̄ + h)].

Remark 4.1. The general case, where a multiple set of correlated stochastic
uncertainties appear in both the dynamic and the input matrices, can be
readily solved by extending the results of Theorem 4.1. The proof outline
of Theorem 4.1 in the later case is essentially unchanged. We bring below
a simplified case which will be used in the infinite-horizon, stationary state-
feedback tracking. We consider the following system:

dx = [A(t)x(t) + B1(t)w(t) + B2(t)u(t) + B3(t)r(t)]dt + [F̃ (t)dβ(t)

+F̂ (t)dζ(t)]x(t) + G(t)u(t)dζ(t),

z(t) = C1(t)x(t) + D12(t)u(t) + D13(t)r(t),

(4.25)

where the variables β(t) and ζ(t) are zero-mean real scalar Wiener processes
with the same statistic as above.

Note that the Wiener process of ζ(t) appears in both, the dynamics and
the input matrices. In the above case, we obtain the results of Theorem 4.1
where FTQF in (4.7) is replaced by F̂TQF̂ + F̃TQF̃ + 2ᾱ[F̂TQF̃ + F̃TQF̂ ],
and ᾱGTQF is replaced by ᾱGTQF̃ + GTQF̂ in S̄, u∗ and Ā of (4.8), (4.9)
and (4.11), respectively. The results of Corollaries 4.1-4.3 are also retrieved
when the latter changes are made in Kx of (4.22).

4.3.1 The Infinite-horizon Case

We treat the case where the matrices of the system in (4.1) are all time-
invariant, T tends to infinity and the system is mean square stable. Since
(4.7) is identical to the one encountered in the corresponding state-feedback
regulator problem (where r(t) ≡ 0)[24], [86], the solution Q(t) of (4.7), if
it exists, will tend to the mean square stabilizing solution (see [23]) of the
following equation:

Q̃A + AT Q̃ + γ−2Q̃B1B
T
1 Q̃ + CT

1 C1 − S̃T R̂−1S̃ + FT Q̃F = 0, (4.26)

assuming that the pair (ΠC1, A − B2R̃
−1DT

12C1), Π = I − D12R̃
−1DT

12 is
detectable (see Theorem 5.8 in [23]). A strict inequality is achieved from (4.26)
for (w(t), xo) that are not identically zero, iff the left side of (4.26) is strictly
negative definite (for the equivalence between (4.26) and the corresponding
inequality see [59]). The latter inequality can be expressed in a LMI form in
the case where ᾱ = 0 and DT

12C1 = 0. We arrive at the following result:
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Theorem 4.2. Consider the system of (4.1) and JE of (4.2) with constant
matrices, DT

12C1 = 0 and ᾱ = 0. Then, for a given γ > 0, there exists a
strategy u∗ that satisfies ∀w(t) ∈ L̃2([0, ∞); Rp), xo ∈ Rn,

JE(r, u∗, w, x0) < J̄(r) + E{
� ∞

0

||R̂−1/2BT
2 [θ]−||2dt},

where

J̄(r) = E{
� ∞

0

||D13r||2dt} + γ−2E{
� ∞

0

||BT
1 θ||2dt} − E{

� ∞

0

||R̂−1/2
1 (BT

2 θ

+DT
12D13r)||2dt} + 2E{

� ∞

0

θTB3rdt} + γ−2||θ(0)||2P0
, (4.27)

iff there exists a positive-definite matrix P̃ ∈ Rn×n that satisfies the following
LMI:

Γ1
�
=


AP̃ + P̃AT − B2R̃

−1BT
2 B1 P̃CT

1 B2G
T P̃FT

∗ −γ2Iq 0 0 0
∗ ∗ −I 0 0

∗ ∗ ∗ −(P̃ + GR̃−1GT ) 0

∗ ∗ ∗ ∗ −P̃

 < 0.

(4.28)

Proof: The inequality that is obtained from (4.7) for ᾱ = 0 and DT
12C1 = 0

is
Q̃A + AT Q̃ + γ−2Q̃B1B

T
1 Q̃ + CT

1 C1 − S̃T R̂−1S̃ + FT Q̃F < 0,

where S̃ = BT
2 Q̃.

Denoting P̃ = Q̃−1, we multiply the latter inequality by P̃ from both sides
and obtain:

AP̃ + P̃AT + γ−2B1B
T
1 + P̃CT

1 C1P̃ − B2R̄
−1BT

2 + P̃FT P̃−1FP̃ < 0,

where R̄ = R̃ + GT P̃−1G.
Since

(R̃ + GT P̃−1G)−1 = R̃−1/2[I + R̃−1/2GT P̃−1GR̃−1/2]−1R̃−1/2,

we obtain, using the matrix inversion lemma, the following equality:

[I + R̃−1/2GT P̃−1GR̃−1/2]−1 = I − R̃−1/2GT P̃−1GR̃−1/2[I+

R̃−1/2GT P̃−1GR̃−1/2]−1.

Using the latter, together with the identity α[I + βα]−1 = [I + αβ]−1α, we
readily obtain the following inequality:
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AP̃ + P̃AT + γ−2B1B
T
1 + P̃CT

1 C1P̃ − B2R̃
−1BT

2 + B2G
T [P̃ + GR̃−1GT ]−1

GBT
2 + P̃FT P̃−1FP̃ < 0.

By using Schur’s complements formula, the latter inequality is equivalent to
(4.28)

�$
Remark 4.2. In the general case, where DT

12C1 �= 0, a simple change of vari-
ables (see [57], page 195) can be readily used. Denoting:

Ã = A − B2R̃
−1/2DT

12C1,

ũ = u + R̃−1/2DT
12C1x,

and
C̃T

1 C̃1 = CT
1 [I − D12R̃

−1DT
12]C1,

we consider the following mean square stable system:

dx = Ãxdt + B1wdt + B2ûdt + B3rdt + [Fdβ − Gdζ]x + Gûdζ,

z =

�
C̃1

0

�
x +

�
0

I

�
ũ.

Note that this system possesses multiple uncertainties which can be readily
tackled using the arguments of Remark 4.1 with ᾱ = 0.

4.4 The Output-feedback Tracking Control

The output-feedback problem is solved along the lines of the standard so-
lution [57], where use is made of the state-feedback solution of Section 4.3,
thus arriving at an estimation problem to which we apply an auxiliary BRL,
which is partially derived from the state-feedback solution. We first bring the
following BRL solution.

4.4.1 BRL for Systems with State-multiplicative Noise and
Tracking Signal

We consider the system:

dx = [A(t)x(t) + B1(t)w(t) + B3(t)r(t)]dt + F (t)x(t)dβ(t), x(0) = x0,

z(t) = C1(t)x(t) + D13(t)r(t),
(4.29)

which is obtained from (4.1) by setting B2(t) ≡ 0 and D12(t) ≡ 0. We consider
the following index of performance:



66 4 Continuous-time Systems: Tracking Control

JB(r, w, x0)
�
= E{

� T

0

||z(t)||2dt} − γ2E{
� T

0

||w(t)||2dt} − γ2||x0||2R−1 , R > 0,

(4.30)
which is obtained from (4.2) by setting PT = 0. We arrive at the following.

Theorem 4.3. Consider the system of (4.29) and JB of (4.30). Given γ > 0,
JB of (4.30) satisfies JB ≤ J̃(r, 0) ∀w(t) ∈ L̃2([0, ∞); Rp), xo ∈ Rn, where

J̃(r, 0) = E{
� T

0

||D13r||2dt} + γ−2E{
� T

0

||BT
1 θ̃||2dt}

+2E{
� T

0

θ̃TB3rdt + ||θ̃(0)||2�−1}, (4.31)

iff there exists Q̃(t) > 0, ∀t ∈ [0, T ] that solves the following Riccati-type
equation:

− ˙̃Q = Q̃A + AT Q̃ + γ−2Q̃B1B
T
1 Q̃ + CT

1 C1 + FT Q̃F, Q̃(0) = γ2R−1 − 0I,
(4.32)

for some 0 > 0, where

˙
θ̃(t) = −ÂT θ̃(t) + B̂rr(t), t ∈ [0 T ], θ̃(T ) = 0, (4.33)

and where

Â = A + γ−2B1B
T
1 Q̃, B̂r = −[Q̃B3 + CT

1 D13]. (4.34)

Proof: The condition of the BRL does not involve saddle-point strategies
since u(t) is no longer an adversary. The sufficiency part of the proof can,
however, be readily derived based on the first part of the sufficiency proof of
Theorem 4.1, up to equation (4.19), where we set B2(t) ≡ 0 and D12(t) ≡ 0,
and where we take PT = 0. Analogously to (4.19) we obtain the following:

JB(r, w, x0) = −γ2||x0 − x̂0||2
P̃−1

0
− γ2E{

� T

0

||w − γ−2BT
1 (Q̃x + θ̃)||2dt},

where we replace θ, Q by θ̃ and Q̃, respectively and where

P̃0 = [R−1 − γ−2Q̃(0)]−1,

x̃0 = γ−2P̃0θ̃(0) = [γ2R−1 − Q̃(0)]−1θ̃(0)
(4.35)

The neccesity part follows from the fact that for r(t) ≡ 0, one gets J̃(r, 0) = 0
(noting that in this case θ̃ ≡ 0 in (4.33) and therefore the last 3 terms in
(4.31) are set to zero) and JB < 0. Thus the existence of Q̃ > 0 that solves
(4.32) follows from the necessary condition in the stochastic BRL [24], [86],
[59]. �$
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Remark 4.3. Note that the choice of 0 > 0 in Q̃(0) of (4.32) reflects on both,
the cost value (i.e J̃(r, 0)) of (4.31) and the minimum achievable γ. Choosing
0 < 0 << 1 causes the cost of J̃(r, 0) to increase while the solution of (4.32) is
easier to achieve the result of which is a smaller γ. The choice of large 0, on
the other hand causes the reverse effect, which leads to a larger γ.

4.4.2 The Output-feedback Control Solution

Due to the special structure of the stochastic uncertainty in the system of
(4.5), the solution of the output-feedback control problem can not be obtained
by applying saddle-point strategies but rather as a max-min problem. We
consider the system of (4.5) and we assume that (4.7) has a solution Q(t) >
0 over [0, T ]. Using the expression of (4.19) for JE(r, u, w, x) in the state-
feedback case, the index of performance turns to be:

JO(r, u, w, n, x0) = −γ2||x0 − x̂0||2
P−1

0
− γ2E{

� T

0

||w − γ−2BT
1 (Qx + θ)||2dt}

+E{
� T

0

||[u+R̂−1S̄Tx+R̂−1(BT
2 θ+DT

12D13r)]||2
R̂
dt}+J̄(r)−γ2E{

� T

0

||n(t)||2dt},

(4.36)
where J̄(r) is defined in (4.14) and where we take G ≡ 0 in both R̂ and S̄ of
(4.8). We also note that in the full preview case [θ(t)]+ = θ(t).

We define:
w̄(t) = w(t) − w∗(t),

ū(t) = u(t) + R̂−1[DT
12D13r + BT

2 θ],
(4.37)

where w∗(t) is given in (4.9). We obtain:

JO(r, u, w, n, x0) = −γ2||x0 − x̂0||2
P−1

0
− γ2E{

� T

0

||w̄||2dt}

+E{
� T

0

||R̂1/2[ū + Ĉ1x]||2dt} + J̄(r) − γ2E{
� T

0

||n(t)||2dt},

and
Ĉ1 = R̂−1[BT

2 Q + DT
12C1], (4.38)

where P0 is defined in (4.15).
We seek a controller of the form

ū(t) = −Ĉ1(t)x̂(t).
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We, therefore, re-formulate the state and measurement equations of (4.5) and
we obtain:

dx = [ ¯̄A(t)x(t) + B1(t)w̄(t) + B2(t)ū(t) + r̄(t)]dt + F (t)x(t)dβ(t),

dy = (C2 + γ−2D21B
T
1 Q)xdt + Hxdζ + ndt + γ−2D21B

T
1 θ,

(4.39)

where

¯̄A(t) = A + γ−2B1B
T
1 Q,

r̄(t) = [B3 − B2R̂
−1DT

12D13]r − [B2R̂
−1BT

2 − γ−2B1B
T
1 ]θ.

(4.40)

We consider the following Luenberger-type state observer:

dx̂(t) = ¯̄Ax̂(t)dt + L[dȳ − Ĉ2x̂(t)dt] + g(t)dt, x̂(0) = 0,

ẑ(t) = Ĉ1x̂(t),

Ĉ2 = C2 + γ−2D21B
T
1 Q,

(4.41)

where
ȳ = y − γ−2D21B

T
1 θ, and g(t) = B2ū(t) + r̄(t). (4.42)

We note that

dȳ = Ĉ2x(t)dt + Hx(t)dζ(t) + D21w̄dt + n(t)dt.

Denoting e(t) = x(t) − x̂(t) and using the latter we obtain:

de(t) = [ ¯̄A − LĈ2]e(t)dt + B̂ŵ(t)dt + [Fdβ(t) − LHdζ(t)]x(t),

where we define

ŵ(t)
�
= [w̄T (t) nT (t)]T , and B̂ = [B̄1 − LD21 − L].

Defining ξ(t) = [xT (t) eT (t)]T and r̃(t) = [rT (t) θT (t)]T , we obtain:

dξ(t) = [Ãdt + F̃ dβ(t) + H̃dζ(t)]ξ(t) + B̃1ŵ(t)dt + B̃3r̃(t)dt,

ξT (0) = [xT (0) xT (0)]T ,

z̃(t) = C̃1ξ(t),

(4.43)

where

Ã =

� ¯̄A − B2Ĉ1 B2Ĉ1

0 ¯̄A − LĈ2

�
, B̃1 =

�
B1 0

B1 − LD21 −L

�
, F̃ =

�
F 0

F 0

�
,

H̃ =

�
0 0

−LH 0

�
, C̃T

1 =

�
0

ĈT
1

�
, B̃3 =

�
B̃3,11 B̃3,12

0 0

�
, (4.44)
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where B̃3,11
�
= B3 − B2R̂

−1DT
12D13 and B̃3,12

�
= B2R̂

−1BT
2 − γ−2B1B

T
1 . Ap-

plying the results of Theorem 4.1 and Remark 4.1 to the system (4.43) with
the matrices of (4.44a-e), we obtain the following Riccati-type equation:

− ˙̂
P = P̂ Ã + ÃT P̂ + γ−2P̂ B̃1B̃

T
1 P̂ + C̃T

1 C̃1 + F̃T P̂ F̃ + H̃T P̂ H̃,

where

P̂ (0) =

�
γ2R−1 − Q(0) − 0I + 0.5γ2ρI −0.5γ2ρI

−0.5γ2ρI 0.5γ2ρI

�
, 0 > 0, ρ >> 1. (4.45)

The initial condition of (4.45) is derived from the fact that the initial condition
of (4.43) corresponds to the case where a large weight of say, ρ >> 1, is im-
posed on x̂(0) to force nature to select e(0) = x(0) (i.e x̂(0) = 0 ) [44], [57]. In
the case where the augmented state-vector is chosen as ξ(t) = [xT (t) x̂T (t)]T ,
the initial condition of P̂0 of (4.45) would satisfy, following (4.32),

P̂ (0) =

�
γ2R−1 − Q(0) 0

0 γ2ρI

�
+

�−0I 0

0 −0.5γ2ρI

�
,

where γ2R−1 − Q(0) is the initial weight and where the factor of 0.5 in
−0.5γ2ρI is arbitrarily chosen such the (2, 2) block of P̂ (0) is positive defi-
nite. The above P̂ (0) can be readily transformed to account for the augmented
state-vector of ξ(t) = col{x(t), e(t)} by the pre- and post- multiplication of

the above matrices, with ΥT and Υ , respectively, where Υ
�
=

�
I 0

I −I

�
, the

result of which is the initial condition of (4.45).

The solution of the (4.45) involves the simultaneous solution of both P̂ (t)
and the filter gain L and can not be readily obtained due to mixed terms
of the latter variables in (4.45). Considering, however, the monotonicity of P̂
with respect to a free semi-positive definite term in (4.45) [59], the solution
to the above Riccati-type equation can be obtained by solving the following
Differential Linear Matrix Inequality (DLMI):

Γ (P )
�
=


˙̂
P + ÃT P̂ + P̂ Ã + F̃T P̂ F̃ P̂ B̃1 C̃T

1 H̃T P̂

∗ −γ2Ip+z 0 0
∗ ∗ −Iq 0

∗ ∗ ∗ −P̂

 ≤ 0, P̂ > 0,

(4.46)
with P̂ (0) of (4.45) and where we require that Tr{P̂ (τ)} be minimized at each
time instant τ ∈ [0, T ].
Recently, novel methods for solving both difference (for the discrete-time case)
and DLMIs have been introduced in [99] and [44], respectively. Applying the
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method of [99], the above DLMI can be solved by discretizing the time interval
[0, T ] into equally spaced time instances resulting in the following discretisized
DLMI [99] :

P̂k+1−P̂k+ε̃(ÃT
k P̂k+P̂kÃk)+ε̃F̃T

k P̂kF̃k P̂kB̃1,k C̃T
1,k H̃T

k P̂k

∗ −γ2ε̃−1Ip+z 0 0

∗ ∗ −ε̃−1Iq 0

∗ ∗ ∗ −ε̃−1P̂k

 ≤ 0,

(4.47)
where k = 0, 1, .., N − 1 and where Ãk = Ã(tk), B̃1,k = B̃1(tk), C̃1,k = C̃1(tk),
H̃k = H̃(tk), and F̃k = F̃ (tk) with {ti, i = 0, ..N − 1, tN = T, t0 = 0} and

ti+1 − ti
�
= ε̃ = N−1T, i = 0, ...N − 1. (4.48)

The discretized estimation problem thus becomes one of finding, at each
k ∈ [0, N − 1], P̂k+1 > 0 of minimum trace that satisfies (4.47).

The latter DLMI is initiated with the initial condition of (4.45) at the
instance k = 0 and a solution for both, the filter gain Lk and P̂k+1 (i.e P̂1 and
L0) is sought for, under the minimum trace requirement of P̂k+1. The latter
procedure repeats itself by a forward iteration up to k = N − 1, where N is
chosen (and therefore 1/0̃) to be large enough to allow for a smooth solution
(see also [99]).

We summarize the above results, for the full preview case, by the following
theorem:

Theorem 4.4. Consider the system of (4.5) and JO of (4.6). Given γ > 0
and 0̃ > 0, the output-feedback tracking control problem, where r(t) is known
a priori for all t ≤ T (the full preview case), possesses a solution iff there
exist Q(t) > 0, ∀t ∈ [0, T ] that solves (4.7) such that Q(0) < γ2R−1, and
P̂ (t) that solves (4.45) ∀t ∈ [0, T ] starting from the initial condition of (4.45),
where R is defined in (4.2). If a solution to (4.7) and (4.45) exist we obtain
the following control law:

uof (t) = −Ĉ1(t)x̂(t) (4.49)

where x̂(t) is obtained from (4.41).

In the case where r(t) is measured on line, or with preview h > 0, we note
that w(t) which is not restricted by causality constraints, will be identical to
the one in the case of the full preview. This stems from the fact that in (4.19)
the optimal strategy of u∗ leads to (4.20) where [θ]− is not affected by w. We
obtain the following:

Corollary 4.4. H∞ Output-feedback tracking with fixed-finite preview of r(t):
In this case:



4.5 Example 71

uof (t) = −Ĉ1[x̂]+,

where
d[x̂]+ = [ ¯̄A + LĈ2]x̂dt + Ld[ȳ]+ + [g(t)]+dt,

[g(t)]+ = B2ū + [B3 − B2R̂
−1DT

12D13]r − [B2R̂
−1BT

2 − γ−2B1B
T
1 ][θ]+,

d[ȳ]+ = dy − γ−1D21B
T
1 [θ]+.

Corollary 4.5. H∞ Output-feedback tracking with no preview of r(t): In this
case [θ(t)]+ = 0 and

uof (t) = −Ĉ1[x̂]+,

where
d[x̂]+ = [ ¯̄A + LĈ2]x̂dt + Ly + [g(t)]+dt,

[g(t)]+ = B2ū + [B3 − B2R̂
−1DT

12D13]r.

4.5 Example

We consider the system of (4.1) with the following objective function:

J = limT→∞E{
� T

0

(||Cx − r||2 + 0.01||u||2 − γ2||w||2)dτ}

where there is an access to the states of the system, where

A=
�

0 1
−1 −0.4

�
, F =

�
0 0
0 −0.1

�
, B1 =

�
1

−1

�
,

B2 =
�

0
1

�
, B3 =

�
1
0

�
and C =

�−0.50.4
�
.

and where G = 0. The case of h = 0 can be solved using the stochastic solution
of [56] where rk is considered as a disturbance. The disturbance vector wk is

augmented to include a finite-energy adversary rk namely, w̃k
�
= col{wk, rk}.

Using the notation of the standard problem [57], we define

B1 =
�

1 1
−1 0

�
, D11 =

�
0 −1
0 0

�
and D12 =

�
0
.1

�
.

We obtain a minimum value of γ = 2.07 for the latter solution. Using the
results of Theorem 4.2, we obtain γmin = 1.06. We compared the two solutions
for γ = 2.1 and we obtained for the standard solution of [56], the control
law u(t) = Kxx(t) where Kx = [−500.65 − 53.01]. For our solution, using
Corollary 4.2, the resulting control law is: u(t) = [−16.10 −14.62]x(t), Kr =
0. In Figure 4.1 the average tracking error (Cx(t) − r(t)), with respect to the
statistics of the multiplicative noise, is depicted as a function of time for
r = sin(t). The improvement achieved by our new method is clearly visible.
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Fig. 4.1. Comparison between the tracking errors obtained in the standard solution
(dashed lines) and by the new method (solid lines) for r = sin(t), measured on- line.

4.6 Conclusions

In this chapter we solve the problem of tracking signals with preview in the
presence of white-noise stochastic parameter uncertainties in the system state-
space model. Applying the game theory approach, a saddle-point tracking
strategy is obtained, for the state-feedback case, which is based on the perfect
measurement of the system state and the previewed reference signal. The
performance index that corresponds to the tracking game includes expectation
over the statistics of the stochastic uncertainties in the system state-space
model. The game value depends on the reference signal and is usually positive.

The state-feedback problem was first solved for the finite-horizon time
varying case, where a nonzero correlation between the unknown parameters
in the input and the dynamic matrices was allowed. The latter result has been
extended to the time-invariant case with an infinite horizon. The problem of
determining whether there exists a solution to the problem that guarantees
a prechosen attenuation level became one of solving a single LMI, which can
be obtained for the general case (i.e regardless of the possible orthogonality
of DT

12C1). The general case requires, however, a simple re-formulation of the
state equations which is readily implementable.
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Similarly to the solution of the output-feedback control problem of Chapter
2, extension of the results of the state-feedback solution to the case where there
is no access to the system states causes an error in the estimate of the system
state, that depends not only on the past values of the error but also on the
value of the state.

The solution of output-feedback tracking problem is, carried along the lines
of the standard solution for both, the deterministic case [57] and the stochastic
case [43], where we first apply the state-feedback solution to arrive to an
estimation problem. The latter problem is solved by applying an auxiliary
BRL which is solved as a max-min problem.



5

Continuous-time Systems: Static
Output-feedback

5.1 Introduction

The static output-feedback problem has attracted the attention of many in
the past [5], [111] and [100]. The main advantage of the static output-feedback
is the simplicity of its implementation and the ability it provides for design-
ing controllers of prescribed structure such as PI and PID. An algorithm has
been presented recently by [62], which under some assumptions, is found to
converge in stationary infinite horizon examples without uncertainty. A suf-
ficient condition for the existence of a solution to a special case of the static
output-feedback problem has been obtained in [20]. This condition is, in some
cases, quite conservative.

A necessary and sufficient condition for the existence of a solution to the
problem without uncertainty in terms of a matrix inequality readily follows
from the standard Bounded Real Lemma [57]. It is, however, bilinear in the
decision variable matrices and consequently standard convex optimization pro-
cedures could not be used in the past to solve the problem, even in the case
where the system parameters were all known. Various methods have been
proposed to deal with this difficulty [92] [72].

In the present chapter, we extend the work of [100] that considered the H2

and the H∞ static control problem in the absence of stochastic uncertainties,
to the case where there exist stochastic white noise parameter uncertainties in
the matrices of the state-space model that describes the system [51]. We ap-
ply a simple design method for deriving the static output-feedback gain that
satisfies prescribed H2 and H∞performance criteria. Since a constant gain
cannot be achieved in practice and all amplifiers have some finite bandwidth,
we add, in series to the measured output of the system, a simple low-pass
component with a very high bandwidth. A parameter dependent Lyapunov
function is then assigned to the augmented system which is obtained by incor-
porating the states of the additional low-pass component into the state space
description. This function does not require a specific structure for the matrix
that corresponds to the states of the original system and a sufficient condi-

E. Gershon et al.: H∞ Contr. and Est. of State-multipl. Lin. Sys., LNCIS 318, pp. 75–86, 2005.
© Springer-Verlag London Limited 2005
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tion is then obtained adopting a recent LPD (Linear Parameter Dependent)
stabilization method that has been introduced in [91].

Static output-feedback is applied in many areas of control engineering
including process and flight control. In the latter, designing flight control sys-
tems, engineers prefer the simple and physically sound controllers that are
recommended as recipe structures [81], [8]. Only gains are included in these
simple structures and the closed-loop poles are thus obtained by migration
of the open-loop poles that have a clear physical meaning. In Chapter 11 we
apply the theory of the present chapter to an altitude control example where
the effect of the height on the Radar signal to noise ratio is modelled as a
state-multiplicative noise.

5.2 Problem Formulation

We consider the following linear system

dx = [Ax(t) + B1(t)w(t) + B2u(t)]dt + Dx(t)dβ(t) + Gu(t)dζ(t), x(0) = x0

dy = (C2x + D21w)dt + Fxdν
(5.1)

with the objective vector

z(t) = C1x(t) + D12u(t) (5.2)

where x ∈ Rn is the system state vector, w ∈ Rq is the exogenous disturbance
signal, u ∈ R) is the control input, y ∈ Rm is the measured output and
z ∈ Rr ⊂ Rn is the state combination (objective function signal) to be
regulated and where the variables β(t) and ζ(t) are zero-mean real scalar
Wiener processes that satisfy:

E{dβ(t)}=0, E{dζ(t)}=0, E{dβ(t)2}=dt, E{dζ(t)2}=dt, E{dβ(t)dζ(t)}=0,

E{dν(t)}=0, E{dν(t)2}=dt, E{dν(t)dζ(t)}=0, E{dν(t)dβ(t)}=σdt, |σ|< 1.

Note that the dynamic and measurement Wiener-type processes are corre-
lated. The latter correlation was also considered in the case of filtering of the
above system in Chapter 3. The matrices in (5.1), (5.2) are constant matrices
of appropriate dimensions.

We seek a constant controller of the following form:

u = Ky (5.3)

that achieves a certain performance requirement. We treat the following two
different performance criteria.
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• The stochastic H2 control problem : Assuming that w is a realization
of a unit intensity white noise process and that either D21 = 0 or D12 = 0,
the following performance index should be minimized:

J2
∆= E

w
{||z̃(t)||2

L̃2
}. (5.4)

• The stochastic H∞control problem: Assuming that the exogenous
disturbance signal is energy bounded, a static control gain is sought which,
for a prescribed scalar γ and for all nonzero w ∈ L̃2([0,∞);Rq), guarantees
that J∞ < 0 where

J∞
∆= ||z(t)||2

L̃2
− γ2||w(t)||2

L̃2
. (5.5)

Instead of considering the purely constant controller (5.3) we consider the
following strictly proper controller

dη = −ρηdt + ρdy, η(0) = 0, u = Kη (5.6)

where η ∈ Rm and 1 << ρ is a scalar much larger than the open-loop and the
desired closed-loop bandwidths. The latter controller is introduced in order to
facilitate the convexity of the design method below. It represents, however, the
actual situation where ‘constant’ gains are achieved in practice by amplifiers
of finite bandwidths.

Augmenting the system (5.1) to include the states of (5.6) we define the
augmented state vector ξ = col{x, η} and obtain the following representation
to the closed-loop.

dξ = [Ãξ + B̃w]dt + D̃ξdβ + G̃ξdζ + F̃ ξdν, ξ(0) = col{x0, 0}
z = C̃ξ,

(5.7)

where:

Ã
∆=

�
A B2K

ρC2 −ρIm

�
, D̃

∆=
�

D 0
0 0

�
, G̃

∆=
�

0 G
0 0

�
, F̃

∆=
�

0 0
ρF 0

�
,

B̃
∆=

�
B1

ρD21

�
and C̃

∆=
�
C1 D12K

�
. (5.8)

5.2.1 The Stochastic H2 Control Problem

Applying to (5.7) the derivation of the stochastic H2 control results [105], we
obtain that J2 < δ2 for a prescribed scalar δ if there exists a positive definite
solution Q̃ of the structure (5.10) and H ∈ Rq×q to the following LMIs that
are derived in the proof for Theorem 5.1 below.
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Q̃ÃT + ÃQ̃ Q̃C̃T Q̃(D̃ + σF̃ )T Q̃G̃T σ̄Q̃F̃T

∗ −Ir 0 0 0
∗ ∗ −Q̃ 0 0
∗ ∗ ∗ −Q̃ 0
∗ ∗ ∗ ∗ −Q̃

 < 0

�
H B̃T

B̃ Q̃

�
> 0, and Tr{H} < δ2. (5.9)

where we consider the following structure for Q̃

Q̃ =
�

Q CT
2 Q̂

Q̂C2 αQ̂

�
, (5.10)

where σ̄ = (1 − σ2)0.5 and where the parameter α is a positive scalar tuning
parameter. We obtain the following result.

Theorem 5.1. Consider the system of (5.1). The output-feedback control law
(5.6) achieves a prescribed H2-norm bound 0 < δ, for some 1 << ρ, if there
exist Q ∈ Rn×n, Q̂ ∈ Rm×m, Y ∈ R)×m and H ∈ Rq×q that, for some
tuning scalar 0 < α, satisfy the following LMIs:



Γ̃ (1, 1) Γ̃ (1, 2) Γ̃ (1, 3) QDT σρQFT CT
2 Q̂GT 0 0 QFT ρσ̄

∗ Γ̃ (2, 2) Γ̃ (2, 3) Q̂C2D
T σQ̂C2F

T αQ̂GT 0 0 Q̂C2F
T ρσ̄

∗ ∗ −γ2Ir 0 0 0 0 0 0
∗ ∗ ∗ −Q −CT

2 Q̂ 0 0 0 0
∗ ∗ ∗ ∗ −αQ̂ 0 0 0 0
∗ ∗ ∗ ∗ ∗ −Q −CT

2 Q̂ 0 0
∗ ∗ ∗ ∗ ∗ ∗ −αQ̂ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q −CT

2 Q̂

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −αQ̂


<0,

H BT
1 ρDT

21

∗ Q CT
2 Q̂

∗ ∗ αQ̂

>0, and Tr{H} < δ2, (5.11)

where
Γ̃ (1, 1) = AQ + QAT + CT

2 Y T BT
2 + B2Y C2,

Γ̃ (1, 2) = αB2Y + ρQCT
2 + ACT

2 Q̂ − ρCT
2 Q̂,

Γ̃ (1, 3) = QCT
1 + CT

2 Y T DT
12,

Γ̃ (2, 2) = −2ραQ̂ + ρ(Q̂C2C
T
2 + C2C

T
2 Q̂),

Γ̃ (2, 3) = αY T DT
12 + Q̂C2C

T
1 .
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If a solution to the latter LMIs exists, the gain matrix K that stabilizes
the system and achieves the required performance is given by

K = Y Q̂−1. (5.12)

Proof: Applying the result of Chapter 3 with a straightforward adaptation
for the H2 case, we obtain the following Riccati-type inequality:

ÃT P +PÃ+C̃T C̃+D̃T PD̃+F̃T PF̃ +σ[F̃T PD̃ + D̃T PF̃ ]+G̃T PG̃<0

P > 0. (5.13)

Using the definition of σ̄ = (1 − σ2)0.5, the inequality (5.13) is equivalent to
the following

ÃT P + PÃ + C̃T C̃ + (D̃ + σF̃ )T P (D̃ + σF̃ ) + σ̄2F̃T PF̃ +G̃T PG̃ < 0,
(5.14)

since

D̃TPD̃+F̃T PF̃ +σF̃T PD̃+σD̃T PF̃ =(D̃+σF̃ )T P (D̃+σF̃ )+σ̄2F̃T PF̃ .

Multiplying (5.14) by P−1, from the left and the right, we obtain, denoting
Q̃ = P−1, the following inequality:

Q̃ÃT + ÃQ̃ + Q̃CT C̃Q̃ + Q̃(D̃ + σF̃ )T Q̃−1(D̃ + σF̃ )Q̃ + σ̄2Q̃F̃T Q̃−1F̃ Q̃

+Q̃G̃T Q̃−1G̃Q̃ < 0.
(5.15)

Applying Schur’s complements, (5.15) can be readily rearranged into the
LMI of (5.9). Substituting for Ã, B̃ and C̃ into (5.9) and assuming that either
D12 or D21 is zero we obtain the LMIs of (5.11) where we define Y = KQ̂.

�$
Remark 5.1. In many practical cases amplifiers that produce constant gain
have finite bandwidths and thus the result of Theorem 5.1 for 1 << ρ, is di-
rectly applicable. It also stands to reason that since for 1 << ρ the controller
(5.6) has the transference K, at the significant frequency range, the corre-
sponding frequency-independent feedback controller of (5.3) will also achieve
the prescribed H2−norm. Note, that a good choice for the scalar ρ is one
which is two order of magnitudes larger than the bandwidth of the system. It
is also noted that a similar practice is adopted in gain-scheduling in the case
where an uncertainty appears in the input or the output matrices, in the state
space model of the system.

Remark 5.2. The structure of Q̃ of (5.10) contains in the (2,2) matrix block
the term αQ̂. Originally, one could have chosen this block matrix to be an
arbitrary positive square matrix. However, in order to be able to solve feedback
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problem, this matrix should be proportional to Q̂. One could have chosen
α = 1 but then one puts an unnecessary restriction on this second diagonal
block. Note also the over-design entailed in the structure of (5.10), an over-
design that can not be avoided when solving this problem.

Remark 5.3. In the above, it was assumed that either D12 or D21 is zero. This
requirement stems from the fact that if both these matrices are nonzero, then,
by applying the control law (5.3), the disturbance w will have a direct access
to the objective vector z, at the limit where ρ tends to infinity, which leads
to an unbounded H2-norm.

5.2.2 The Stochastic H∞Problem

The LMIs of Theorem 5.1 provide a sufficient condition for the existence of a
static output-feedback gain that achieves a prescribed H2-norm for the system
(5.7). A similar result can be obtained if the H∞-norm of the latter system is
considered. Given a prescribed desired bound 0 < γ on the H∞-norm of the
system, the inequalities in (5.9) are replaced by the following Bounded Real
Lemma (BRL) condition [59].

ÃT P̃ + P̃ Ã P̃ B̃ C̃T (D̃ + σF̃ )T P̃ G̃T P̃ σ̄F̃T P̃
∗ −Iq 0 0 0 0
∗ ∗ −γ2Ir 0 0 0
∗ ∗ ∗ −P̃ 0 0
∗ ∗ ∗ ∗ −P̃ 0
∗ ∗ ∗ ∗ ∗ −P̃

 < 0, and P̃ > 0.

(5.16)
Denoting Q̃ = P̃−1 and Y = KQ̂, where it is assumed that Q̃ has the structure
of (5.10) and multiplying (5.16) by diag{Q̃, Iq, Ir, Q̃, Q̃, Q̃}, from both
sides, we substitute for Ã, B̃ and C̃ into the latter LMI and obtain the
following.
Theorem 5.2. Consider the system of (5.1). The control law (5.6) achieves a
prescribed H∞-norm bound 0 < γ, for some 1 << ρ, if there exist Q ∈ Rn×n,
Q̂ ∈ Rm×m and Y ∈ R)×m that, for some scalar 0 < α, satisfy the following
LMIs:

Γ̃ (1, 1) Γ̃ (1,2) B1 Γ̃ (1,4) QDT ρσQFT CT
2 Q̂GT 0 0 QFTρσ̄

∗ Γ̃ (2,2) ρD21 Γ̃ (2,4) Q̂C2D
T Γ̃ (2,6) αQ̂GT 0 0 Γ̃(2,10)

∗ ∗ −Iq 0 0 0 0 0 0 0
∗ ∗ ∗ −γ2Ir 0 0 0 0 0 0
∗ ∗ ∗ ∗ −Q −CT

2 Q̂ 0 0 0 0
∗ ∗ ∗ ∗ ∗ −αQ̂ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Q −CT

2 Q̂ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −αQ̂ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q −CT

2 Q̂

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −αQ̂


<0
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where
Γ̃ (1, 4) = QCT

1 + CT
2 Y T DT

12,

Γ̃ (2, 4) = αY T DT
12+Q̂C2C

T
1 ,

Γ̃ (2, 6) = ρσQ̂C2F
T ,

Γ̃ (2, 10) = Q̂C2F
T ρσ̄,

and �
Q CT

2 Q̂

∗ αQ̂

�
> 0.

(5.17)

If a solution to the latter set of LMIs exists, the gain matrix K that stabilizes
the system and achieves the required performance is given by (5.12).

Proof: The proof follows the lines adopted in the proof of Theorem 5.1.

5.3 The Robust Stochastic H2 Static Output-feedback
controller

The system considered in Section 5.2 assumes that all the parameters of the
system are known, including the matrices D, G and F. In the present section
we consider the system (5.1) whose matrices are not exactly known. Denoting

Ω = 
�
A B1 B2 C1 D12 D21 D 

� 
,

where either D12 or D21 is zero, we assume that Ω ∈ Co{Ωj , j = 1, ...N},
namely,

Ω =
N�

j=1

fjΩj for some 0 ≤ fj ≤ 1,
N�

j=1

fj = 1 (5.18)

where the vertices of the polytope are described by

Ωj =


A(j) B

(j)
1 B

(j)
2 C

(j)
1 D

(j)
12 D

(j)
21 D(j)

�
, j = 1, 2..., N.

For every point in Ω, say the one that is obtained by
�N

j=1 fjΩj for some
0 ≤ fj ≤ 1,

�N
j=1 fj = 1 we assign the following linear parameter varying

Lyapunov function

VL = ξT (
N�

j=1

fjP̃j)ξ, P̃j ∈ R(n+m)×(n+m) > 0 (5.19)

For each vertex of Ω where, for simplicity we consider only the stochastic
state-multiplicative noise of β(t), the inequalities of (5.9) can be written as
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0 Ir 0
0 0 Q̃j

 Ā(j)T + Ā(j)

 Q̃j 0 0
0 Ir 0
0 0 Q̃j

<0, Ā(j) ∆=

 Ã(j) 0 0
C̃(j) − 1

2Ir 0
D̃(j) 0 − 1

2In+m


and �

Z B̃(j)T

B̃(j) Q̃j

�
> 0 (5.20)

where Q̃j = P̃−1
j , j = 1, 2, ..., N .

The latter inequalities include products of Qj by A(j) and C(j) and they
cannot therefore be solved by standard convex optimization techniques. These
inequalities are ‘convexified’ by the following.

Lemma 5.1. The inequalities (5.20) in Q̃j and Z are satisfied if the following
LMIs in in T̃ , H̃ ∈ R(2n+2m+r)×(2n+2m+r) and 0 < Q̃j ∈ R(n+m)×(n+m)

possesses a solution. T̃TĀ(j)T +Ā(j)T̃ −
 Q̃j 0 0

0 Ir 0
0 0 Q̃j

+T̃T−Ā(j)H̃

∗ −H̃ − H̃T

<0

and �
Z B̃(j)T

∗ Q̃j

�
> 0. (5.21)

Proof : The equivalence between (5.21) and (5.20) is proved using the method
of [91]. If (5.20) holds for a specific j then, choosing:

T̃ = diag{Q̃j , Ir, Q̃j}

and taking H̃ = βI where β > 0 is arbitrarily small, (5.21) is satisfied. The
latter implies that if there exists a quadratic stabilizing solution to (5.20)
(namely a solution Q̃ is obtained independently of the vertices) then (5.21)
will also have a solution for all the vertices. On the other hand, if (5.21)
possesses a solution, multiplying the latter inequality from the left and the
right by Γ̃j and Γ̃T

j , respectively, where

Γ̃j =
�
I2n+2m+r −Ā(j)

�
,

(5.20) is obtained.
�$

In order to obtain from (5.21) LMIs in T̃ , H̃, Q̃j , j = 1, 2, ..., N, Z and
K, for a given 0 < δ, G̃ and H̃ are sought that, for some positive tuning
scalars βi, i = 1, 2, 3 possess the following structure:
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T̃ =

� T1

T2

�
C2 β1Im

�� 0

0 Ir+m+n

, H̃ =

� H1

T2

�
β2C2 β3Im

�� 0

0 Ir+m+n

, (5.22)

where T1, H1 ∈ Rn×(n+m) and T2 ∈ Rm×m is a nonsingular matrix.
Substituting the latter and (5.8) in (5.21) and denoting Y = KT2, the

following result is obtained.

Theorem 5.3. Consider the uncertain system of (5.1) where either D12 or
D21 is zero. The control law (5.6) guarantees, for some 1 << ρ, a prescribed
H2-norm bound 0 < δ over the uncertainty polytope Ω̄ if there exist T1, H1 ∈
Rn×(n+m), T2 ∈ Rm×m, Qj ∈ R(n+m)×(n+m) j = 1, 2..., N and Y ∈ R)×m

that, for some scalars 0 < α, βi, i = 1, 2, 3, satisfy the following LMIs:

Γ =

�
Γ (1, 1) Γ (1, 2)

∗ −H̃ − H̃T

�
<0,

�
Z



B

(j)T
1 ρD

(j)T
21

�
∗ Qj

�
>0 and Tr{Z}<δ2, j = 1, 2, ..., N (5.23)

where

Γ (1, 1) = T̃T Â(j)T + Â(j)T̃ +


B

(j)
2

0
D

(j)
12

0

 Y

 CT
2

β1Im

0

T

+

 CT
2

β1Im

0

 Y T


B

(j)
2

0
D

(j)
12

0


T

,

Γ (1, 2) = −
Qj0 0

0 Ir 0
0 0 Qj

+ T̃T − Â(j)H̃ −


B

(j)
2

0

D
(j)
12

0

 Y

β2C
T
2

β3Im

0

T

,

and

Â(j) ∆=

 A(j) 0 0
ρC2 −ρIm 0
C

(j)
1 0 − 1

2Ir

 , (5.24)

and where T̃ and H̃ posses the structure of (5.22).
If a solution to the latter set of LMIs exists, the gain matrix K that stabi-

lizes the system and achieves the required performance is given by

K = Y T−1
2 . (5.25)

Remark 5.4. The solution provided by Theorem 5.3, being only sufficient, is
inherently conservative. One could have chosen in T̃ and H̃ of (5.22), matrices
of arbitrary structure. This however, would not allow a solution to be found by



84 5 Continuous-time Systems: Static Output-feedback

LMIs. We thus constrain the structure of these matrices to be of the form given
in (5.22) where we still use the degrees of freedom provided by β1, β2 and β3

to tune the solution and to obtain a tighter upper-bound on the H2−norm of
the closed-loop system.

Remark 5.5. We note that H̃ in (5.22) must be invertible, being a diagonal
element of the matrix of Γ of (5.23), once the feasibility of the latter matrix is
obtained. Since the matrix H̃ of (5.22) has a lower block triangle structure, its
diagonal block elements must be invertible and therefore β3 T2 is nonsingular.
Thus, the regularity of T2 is ensured once the LMIs of (5.23) are found feasible,
justifying therefore the controller gain of (5.25).

5.4 The Robust H∞Control

For each point in Ω, say the one that is obtained by
�N

j=1 fjΩj for some
0 ≤ fj ≤ 1,

�N
j=1 fj = 1 we assign the parameter varying Lyapunov function

of (5.19). For each vertex of Ω, say the j-th, the inequality of (5.16) can be
written as: Q̃j 0 0

0 Ir 0
0 0 Q̃j

Ā(j)T + Ā(j)

 Q̃j 0 0
0 Ir 0
0 0 Q̃j

 +γ−2

B̃(j)

0
0

�
B̃(j)T 0 0

�
< 0 (5.26)

where 0 < Q̃j = γ−2P̃−1
j . The latter inequality also stems directly from the

Lyapunov function in (5.19), following the standard derivation of the BRL
[57].

Inequality (5.26) has the form of a Lyapunov inequality and as such it is
similar to (5.20). Following the same lines used to prove that the existence of
a solution to (5.21) is a sufficient condition for (5.20) to hold, the following is
obtained.

Lemma 5.2. For a prescribed scalar γ the inequality (5.26) is satisfied for
the j-th vertex of Ω by K and 0 < Q̃j if the following LMI in T̃ , H̃ ∈
R(2n+2m+r)×(2n+2m+r) and 0 < Q̃j ∈ R(n+m)×(n+m) possesses a solution.

T̃T Ā(j)T +Ā(j)T̃

B̃(j)

0
0

 −
Q̃j 0 0

0 Ir 0
0 0 Q̃j

+T̃T − Ā(j)H̃

∗ −γ2Iq 0
∗ ∗ −H̃ − H̃T

<0 (5.27)

In order to obtain from the latter set of inequalities for j = 1, ..., N for a given
γ, T̃ and H̃ are sought that, for some positive tuning scalars βi, i = 1, 2, 3
possess the structure of (5.22).

Substituting the latter and (5.8) in (5.27) and denoting Y = KT2 the
following result is obtained.
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Theorem 5.4. Consider the uncertain system of (5.1). The control law (5.6)
guarantees for 1 << ρ a prescribed disturbance attenuation level 0 < γ over
the uncertainty polytope Ω if there exist T1, H1 ∈ Rn×(n+m), T2 ∈ Rm×m,
Qj ∈ R(n+m)×(n+m), j = 1, 2..., N and Y ∈ R)×m that, for some scalars
0 < α, βi, i = 1, 2, 3, satisfy the following LMIs:

Γ̃ =


Γ̃ (1, 1)


B

(j)
1

ρD
(j)
21

0
0

 Γ̃ (1, 3)

∗ −γ2Iq 0
∗ ∗ −H̃ − H̃T

<0

Qj >0, j = 1, 2, ..., N. (5.28)

where

Γ̃ (1, 2) = T̃T Ā(j) + Ā(j)T T̃ +


B

(j)
2

0
D

(j)
12

0

 Y

 CT
2

β1Im

0

T

+

 CT
2

β1Im

0

 Y T


B

(j)
2

0
D

(j)
12

0


T

,

Γ̃ (1, 3) = −
Qj 0 0

0 Ir 0
0 0 Qj

+ T̃T − Ā(j)H̃ −


B

(j)
2

0
D

(j)
12

0

 Y

β2C
T
2

β3Im

0

T

,

where Ā(j) is defined in (5.20) and where T̃ and H̃ posses the structure of
(5.22).

If a solution to the latter set of LMIs exists, the gain matrix K that stabi-
lizes the system and achieves the required performance is given by

K = Y T−1
2 .

5.5 Conclusions

A convex optimization method is presented which provides an efficient design
of robust static output-feedback controllers. Linear systems with polytopic
type uncertainties are considered and a sufficient condition is derived, based on
a linear parameter varying Lyapunov function, for the existence of an almost
constant output-feedback controller that stabilizes the system and achieves a
prescribed bound on its performance over the entire uncertainty polytope.

Both H2 and H∞ performance criteria have been considered. For both
criteria, conditions for quadratic stabilizing solution have been obtained. The
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conservatism entailed in these conditions is reduced either by using a recent
method that enables the use of parameter varying Lyapunov based optimiza-
tion, or by treating the vertices of the uncertainty polytope as distinct plants.
The latter solution cannot guarantee the stability and the performance within
the polytope whereas the former optimization method achieves the required
bound over the entire polytope.

The proposed method can be used also in the mixed H2/H∞ case where
a robust static output-feedback controller is sought that achieves, say, a pre-
scribed attenuation level while minimizing a H2-norm of the closed-loop. The
standard way of achieving the mixed objective has been to apply the same
single Lyapunov function for both the H2 and the H∞ criteria and for all the
points in the uncertainty polytope. This practice is quite conservative and can
be significantly reduced by using the LPD design of Lemma 5.1 and Section
5.4.

We note that in the Application chapter (Chapter 11) we bring an alti-
tude control example which illustrates the design of static feedback controller
in the presence of multiplicative noise. In this example it is shown how the
multiplicative noise, resulting from the dependence of the noise level in the
RADAR altitude measurement on the altitude itself, can be explicitly taken
into account in the design procedure.



6

Stochastic Passivity

6.1 Introduction

Passivity of deterministic linear systems plays an important role in network
theory and in adaptive control. The fact that a system is passive entails some
stability properties that allow for robust control design of this system. It is
the purpose of the present chapter to investigate the corresponding situation
in linear systems with multiplicative noise. The concept of stochastic passivity
is first considered and a positive-real like lemma for finite dimensional linear
time invariant uncertain systems with state multiplicative noise is derived.
The system uncertainties are assumed to be of the polytopic type.

These passivity conditions are applied to a certain class of direct adaptive
controllers referred to as Simplified Adaptive Control (SAC) [64]. Adaptive
controllers provide a possible alternative to fixed compensators when large
parameter uncertainty is encountered in the model that describes the system.
Often, the conditions for closed-loop stability when using adaptive controllers
include a strict passivity requirement of the controlled plant. For example,
when using SAC method [64], the passivity of the plant guarantees the robust
stability of the closed-loop. The SAC applies a tracking error gain which is
simply adapted by using proportional and integral versions of the squared
tracking error. In fact, the relaxed condition of almost passivity, requiring the
plant to be stabilizable and passive via static output-feedback gain, suffices
in many cases. A similar situation is encountered when controlling uncertain
plants with a class of neural network controllers (NNC) (see [76] and [77]). Also
there, the plant is required to be almost passive to ensure closed loop stability.
In some applications the system uncertainties can be fixed but unknown; other
cases may involve stochastic uncertainties. The latter cases of stochastic un-
certainties are described by state-multiplicative noise. In this case, the system
matrices are corrupted by white noise while their deterministic components
lie in a convex polytope.

In the present chapter, the concept of passivity is, therefore, generalized
to the latter case of stochastic uncertainties. The new stochastic passivity

E. Gershon et al.: H∞ Contr. and Est. of State-multipl. Lin. Sys., LNCIS 318, pp. 87–93, 2005.
© Springer-Verlag London Limited 2005
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condition is expressed in a form of LMIs to allow efficient solutions. It is shown
that the stochastic passivity conditions ensure closed-loop stochastic stability
when applying a class of SAC. A numerical example is given to demonstrate
the use of the new theory in the control of a target tracking system with
polytopic type uncertainties.

6.2 Problem Formulation

Consider the following time-invariant linear system with state-dependent
noise:

dxt = (Axt + Bwt)dt + Dxtdβt + Gwtdσt,

dyt = (Cxt + D21wt)dt
(6.1)

defined on the filtered probability space (Ω,F , {Ft}t≥0, P ), where {Ft}t≥0 is
the σ-algebra generated by the Wiener process:

Wt = col{βt, σt} (6.2)

where xt is the Rn- valued solution to (6.1); x(0) = 0, yt is the Rq-valued
observation and w ∈ L̃2([0, ∞);Rq). The stochastic processes βt and σt are
zero-mean scalar standard Wiener processes defined on the probability space
(Ω,F , P ).

It is desired to verify whether

J = E{
� ∞

0

yT
τ wτdτ} ≥ 0, ∀ wt ∈ L̃2([0, ∞)) over Ω, (6.3)

for the case of polytopic uncertainties where the matrices A, B, C, D21, D
and G are unknown constant matrices that lie in the following uncertainty
polytope:

Ω̄
∆=

N�
i=1

τi(Ai, Bi, Ci, D21,i, Di, Gi); τi ≥ 0,
N�

i=1

τi = 1. (6.4)

We denote by L the infinitesimal generator of the stochastic differential
equation (6.1)(see Appendix A). Choosing the Lyapunov function and the
supply rate to be, respectively,

V (xt) = xT
t Pxt, S(xt, wt) = 2yT

t wt (6.5)

where P is a positive-definite constant matrix inRn×n, we find the following
result:

Lemma 6.1.
i) The system (6.1) is globally asymptotically stable in probability if for wt ≡ 0
and for all x ∈ Rn the following holds over the polytope Ω̄.



6.2 Problem Formulation 89

LV (x) < 0, ∀x ∈ Rn. (6.6)

ii) If the system (6.1) is stable in probability over Ω, then a sufficient condition
for (6.3) to hold is:

LV (x) ≤ S(x,w) ∀x ∈ Rn, w ∈ L̃2([0, ∞);Rq) over Ω. (6.7)

Proof: Part i is well known (see, e.g. [58] or [97] ). To prove part ii we first
realize that

dxt = f(x, t)dt + g(x, t)dγt (6.8)

where γt is a standard Wiener process and where f(x, t) = Axt+Bwt, g(x, t) =�
Dxt Gwt

�
and dγt = col{dβt, dσt}. We then consider:

LV (xt)=fT ∂
TV (xt)
∂x

+
1
2
Tr{ggT ∂2

∂2x
V (xt)}=

Vx(xt)(Axt+Bwt)+
1
2

[xT
t D

TVxx(xt)Dxt+wT
t G

TVxx(xt)Gwt].

By Ito formula

V (xt) = V (x0) +
� t

0
LV (xs)ds +

� t

0
Vx(xs)Dxsdβs +

� t

0
Vx(xs)Gwsdσs

(6.9)
and since x(0) = 0 we find that

E{
� t

0

LV (xs)ds} = E{V (xt)} ≥ 0, ∀t ≥ 0.

If (6.7) is satisfied, the results of (6.3) readily follows.
�$

For the specific choice of (6.5) we obtain:

LV (xt)=xT
t P (Axt+Bwt)+(Axt + Bwt)TPxt+xT

t D
TPDxt+wT

t G
TPGwt.

(6.10)
The condition of (6.7) is thus

�
xT

t wT
t

���
−PA−ATP −DTPD −PB

−BTP −GTPG

�
+

�
0 CT

C D21 + DT
21

���
xt

wt

�
≥0

(6.11)
The existence of 0 < P ∈ Rn×n that satisfies:�

PA + ATP + DTPD PB − CT

BTP − C −D21−DT
21 + GTPG

�
< 0 (6.12)

over Ω would thus ensure that (6.7) is satisfied. Since the requirement of (6.6)
is also satisfied by the first block on the diagonal in (6.12), stability is also
ensured. �$
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The latter inequality is not affine in the system parameters. Affinity is
obtained by applying Schur’s complements formula. The following is then
achieved.

Theorem 6.1. The system (6.1) is stable (in probability) over Ω and (6.3) is
satisfied, over the uncertainty polytope Ω̄, if there exists 0 < P ∈ Rn×n that
satisfies the following LMIs.

PAi + AT
i P PBi − CT

i DT
i P 0

∗ −D21,i−DT
21,i 0 GT

i P

∗ ∗ −P 0

∗ ∗ ∗ −P

 < 0, i = 1, ..., N. (6.13)

The latter result may turn out to be conservative since it applies the same
decision variable P to all the vertices of Ω̄. Realizing that (6.13) can be written
as

P̄ Āi + ĀT
i P̄ < 0, i = 1, ..., N

where

P̄ = diag{P, Iq, P, P} and Āi =


Ai Bi 0 0

−Ci −D21,i 0 0

Di 0 − 1
2In 0

0 Gi 0 − 1
2In

 .

(6.14)

Applying then the result of [91], and defining n̄ = 3n + q, the following is
obtained.

Corollary 6.1. The system (6.1) is stable (in probability) over Ω and (6.3)
is satisfied over the uncertainty polytope Ω̄, if there exist 0 < Pi ∈ Rn×n, Ḡ
and H in Rn̄×n̄ that satisfy the following LMIs.�

ḠT Āi + ĀT
i Ḡ ḠT −diag{Pi, I, Pi, Pi} − ĀT

i H

∗ −H−HT

�
< 0, i = 1, ..., N.

(6.15)

The above produced conditions for the stability in probability of the sys-
tem. We next inquire what are the conditions for the exponential mean square
stability of the system. The following result is standard:

Lemma 6.2. ([58])Assume there exists a positive function V (x, t), which is
twice differentiable in x and once in t, with V (0, t) = 0. Then, the system
(6.1) is globally exponentially stable if for w = 0 there are positive numbers
k1, k2, k3 such that the following hold.

k1||x||2 ≤ V (x, t) ≤ k2||x||2
LV (x, t) ≤ −k3||x||2, ∀t ≥ 0 ∀x ∈ Rn

(6.16)
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In our case, as V (x) = xTPx, the first condition is satisfied as long as P > 0.
To satisfy the second condition we require LV (x) ≤ −0||x||2 for some 0 > 0
over Ω. Obviously, in terms of LMI, this sufficient condition would be: The
system (6.1) (with w = 0) is exponentially stable in the mean square sense if
there exist P > 0 and 0 < 0 such that

PA + ATP + DTPD + 0I < 0, over Ω. (6.17)

It is clear then that (6.17) is satisfied for small enough 0 if there exists a
solution 0 < P ∈ Rn×n to (6.12).

6.3 Application to Simplified Adaptive Control

Consider the following system

dxt = (Axt + But)dt + Dxtdβ, dyt = Cxtdt (6.18)

where the matrices A, B, C, D are again unknown constant matrices that
lie in the following uncertainty polytope:

Ω̂
∆=

N�
i=1

τi(Ai, Bi, Ci, Di); τi ≥ 0,
N�

i=1

τi = 1. (6.19)

This system should be regulated using a direct adaptive controller [64] of the
type:

ut = −Kyt (6.20)

where
K̇ = yty

T
t . (6.21)

In the context of deterministic systems, such a controller has been known
to stabilize the plant and result in a finite gain matrix K if the plant is Almost
Passive (AP). In our stochastic context we may conjecture that stochastic
stability of this direct adaptive controller (which usually referred to as SAC)
will be guaranteed by the stochastic version of the AP property. Namely, the
existence of a constant output feedback matrix Ke which, using the control
signal

u = u� −Kex, (6.22)

makes the transference relating u� and y stochastically passive. To see that
this conjecture is true, we first substitute (6.20) and (6.21) in (6.1) and get
the following closed-loop system:

dxt = (Axt −BKCxt)dt + Dxtdβ (6.23)

Defining
Ā = A−BKeC and K̄ = K −Ke
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the closed-loop system equations are given by :

dxt = (Āxt −BK̄Cxt)dt + Dxtdβ (6.24)

and
˙̄K = CxxTCT (6.25)

In the sequel, we choose for simplicity to deal with SISO systems and
define the augmented state vector

x̄ =

�
x

K̄

�
∆=

�
x̄1

x̄2

�

and choose the following Lyapunov function candidate (see [64]) :

V (x̄t) = x̄T
t P̄ x̄t

where

P̄ =
�
P 0
0 1

�
.

We note that x̄ satisfies (6.8) with x̄ replacing x and where:

f(x̄) =

�
Āx̄1 −Bx̄2Cx̄1

x̄T
1 C

TCx̄1

�
, g(x̄) =

�
Dx̄1

0

�
and dγt = dβt. (6.26)

By Lemma 6.1, the closed-loop system (6.24) will be stable in probability
if LV < 0. However,

LV (x̄t) = fT ∂
TV (x̄t)
∂x̄

+
1
2
Tr{ggT ∂

2V (x̄t)
∂2x̄

}. (6.27)

Substituting (6.26) into the last equation, we readily find that:

LV (x̄t) = x̄1
T [ĀTP+PĀ]x̄1−ζT [BTP−C]x̄1−x̄T

1 [PB−CT ]ζ+x̄1
TDTPDx̄1

where the last term is obtained from the second term in (6.27) and where
ζ

∆= x̄2Cx̄1. Therefore, a sufficient condition for LV < 0 is

ĀTP + PĀ + DTPD < 0, where PB = CT (6.28)

A LMI version of (6.28) for the polytope Ω̂ is then the following.PĀi + ĀT
i P PBi − CT

i DT
i P

BT
i P − Ci −0I 0
PDi 0 −P

 < 0, i = 1, ..., N (6.29)

for small enough 0 > 0, where Āi = Ai − BiKeCi. Namely, (6.18) can be
stabilized and made stochastically passive using (6.22).
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6.4 Numerical Example

In this section we bring a simple numerical example. Consider the sys-
tem of (6.1) and (6.4) with two vertices differing only in Ai so that Ai =

−αiI2, B =
�

1 0.1
0 1

�
, C = I2, D21 = 10−3I2 and D = 1

2I2 where α1 = 1 and

α2 = 10. Solving (6.29) results in the following feasible positive definite so-

lution P =
�

0.9916 −0.0485
−0.0485 1.0066

�
indicating that our system is stochastically

passive throughout the convex polytope.

6.5 Conclusions

The concept of passivity has been generalized for a class of stochastic systems
of practical significance. The passivity conditions in the form of LMIs can be
efficiently solved using state of the art LMI solvers (e.g. [35]). It was shown
that a relaxed version of the stochastic passivity conditions, namely the almost
stochastic passivity, guarantees closed-loop stochastic stability. In Chapter 11
(the Application chapter) we bring a numerical example which is taken from
the field of target tracking and which demonstrates the application of the
theory.



7

Discrete-time Systems: Control and
Luenberger-type Filtering

7.1 Introduction

In this chapter we bring the discrete-time counterpart of Chapter 2 where
we solve the state-feedback control and filtering problems with the aid of the
discrete-time stochastic BRL, which is fully derived in the chapter. We then,
solve the finite-horizon and the stationary output-feedback control problems.

When dealing with linear time-varying systems with parameter uncertain-
ties, both the stochastic state-multiplicative and the deterministic approaches
are applied. In the deterministic H∞ setting, the state-feedback control and
the estimation problems have been treated by [102],[109], respectively. These
problems have been solved by considering norm-bounded uncertainties that
appear in the matrices of the state-space description. The main drawback of
the method of [102],[109] is the significant over-design that is entailed in trans-
forming the uncertainties into fictitious disturbances (in the discrete-time case
this over-design is most accentuated when the system poles are close to the
unit circle).

Using convex optimization over linear matrix inequalities, the stochas-
tic state-multiplicative state-feedback H∞ problem has been solved for the
discrete-time setting in [12]. These solutions are not based on completing to
squares, for both the exogenous and the control signals, and the expressions
obtained there for the performance index can not, therefore, be readily ex-
tended to systems whose states are not directly accessible.

In [19], the discrete-time state-feedback H∞-control problem has been
solved for infinite-dimensional, stochastic, state-multiplicative systems using
a probabilistic framework; it resulted in an algebraic Riccati-like operator
equation. A necessary and sufficient condition for the existence of a state-
feedback controller has been obtained there. The latter can not, however, be
easily applied to the output-feedback case. A finite-dimensional approach to

E. Gershon et al.: H∞ Contr. and Est. of State-multipl. Lin. Sys., LNCIS 318, pp. 97–124, 2005.
© Springer-Verlag London Limited 2005
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the problem has been offered in [24] where a bounded real lemma type result
has been derived for the continuous-time case. Using the latter, the state-
feedback problem has been solved in [85], [25].

Also recently, the corresponding discrete-time problem for output-feedback
with stochastic uncertainties at the measured output has been considered in
[26]. The solution there refers to both the finite and infinite time horizon
problems without transients. One drawback of [26] is the fact that in the
infinite-time horizon case, an infinite number sets of LMI have to be solved.
Moreover, the fact that the measured output has no state-dependent uncer-
tainties is practically a constraint. Specifically, in this chapter, we solve three
problems that are defined in Section 7.2. We first solve in Sections 7.3 and
7.4 the time-varying BRL and the state-feedback problem for the discrete-
time case, respectively, where we also allow for a nonzero correlation between
the different stochastic variables of the system. The latter solution is obtained
using the stochastic BRL which we introduce in order to derive both the neces-
sary and sufficient conditions for the existence of a solution. We also address
in Section 7.4.2 the convergence properties of our results in the stationary
case.

Similarly to the state-feedback case, we solve the filtering problem, in Sec-
tion 7.5, with possible uncertainty in the measurement matrix by applying
the discrete-time BRL. In Section 7.7, we solve the output-feedback control
problem by applying the state-feedback control solution and by transforming
the resulting system to fit the filtering model. On the latter we apply the fil-
tering solution of Section 7.5. The theory developed is demonstrated by three
examples: a state-feedback control, filtering and measurement feedback exam-
ples. The first solution is compared to the solution obtained by applying the
deterministic technique of [102], [109]. It is shown that in this problem our
stochastic approach yields lower worst-case performance bound.

7.2 Problem Formulation

We treat the following three problems [43], [39]:

i) Stochastic state-feedback H∞- control
Given the following linear discrete time-varying system:

xk+1 = (Ak + Dkvk)xk + (B2,k + Gkrk)uk + B1,kwk, k = 0, 1, ..., N − 1
(7.1)

where xk is the state vector, {wk} ∈ l̃2([0, N − 1]; Rp) is an exogenous dis-
turbance, {uk} ∈ l̃2([0, N − 1]; Rl) is the control input signal and x0 is an
unknown initial state and where {vk} and {rk} are standard independent
white noise scalar sequences with zero mean that satisfy:
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E{vkvj} = δkj , E{rkrj} = δkj , E{rkvj} = αkδkj , |αk| < 1 (7.2)

Denoting
zk = Lkxk + D12,kuk,

where zk ∈ Rm and assuming, for simplicity, that:

[LT
k DT

12,k]D12,k = [0 R̃k], R̃k > 0 (7.3)

we consider, for a given scalar γ > 0, the following performance index:

J1
�
= E

r,v

�||zk||22 − γ2||wk||22
	

+ E
r,v

�
xT

N Q̄NxN

	 − γ2xT
0 Q̄0x0,

Q̄N ≥ 0, Q̄0 > 0.
(7.4)

The objective is to find a control law {uk} such that, J1 is negative for all
nonzero ({wk}, x0) where x0 ∈ Rn and {wk} ∈ l̃2([0, N − 1]; Rp) and where

wk depends on Yk
�
= {x0, ...xk} since it is Fk−1 measurable.

ii) Stochastic H∞-filtering
We consider the following system:

xk+1 = (Ak + Dkvk)xk + B1,kwk, x0 = x0

yk = (Ck + Fkζk)xk + nk,

zk = Lkxk

(7.5)

where yk ∈ Rz is the measured output, {nk} ∈ l̃2([0, N −1]; Rz) is a measure-
ment noise, and where {vk} and {ζk} are standard independent white noise
scalar sequences with zero mean that satisfy:

E{vkvj} = δkj , E{ζkζj} = δkj , E{ζkvj} = αkδkj , |αk| < 1

We are looking for Lkx̂k, the filtered estimate of zk, where:

x̂k+1 = Akx̂k + Ko,k(yk − Ckx̂k) , x̂0 = 0. (7.6)

Note that similarly to the continuous-time counterpart problem, the initial
value x̂0 = 0 of the above Luenberger-type estimator is chosen.

We define
ek = xk − x̂k, w̃k = col{wk, nk} (7.7)

and we consider the following cost function:

J2
�
= E

v,ζ

�
||Lk+1ek+1||22 − γ2||w̃k||22

�
− γ2xT

0 P0x0, P0 > 0. (7.8)
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Given the scalar γ > 0 and P0 > 0, we look, in the filtering problem, for an
estimate Lkx̂k of Lkxk over the finite time horizon [1, N ] such that J2 of
(7.8) is negative for all nonzero ({w̃k}, x0) where {w̃k} ∈ l̃2([0, N − 1]; Rp+z)
and x0 ∈ Rn.

iii) Stochastic H∞ output-feedback - The finite-horizon case
Given the following system:

xk+1 = (Ak + Dkvk)xk + B1,kwk + (B2,k + Gkrk)uk

yk = (Ck + Fkζk)xk + nk,

zk = Lkxk + D12,kuk

(7.9)

where vk, rk, wk and nk are defined in problems (i) and (ii) and ζk is similar
to the former stochastic variables and satisfies the following:

E{ζkζj} = δkj , E{ζkrj} = σkδkj , E{ζkvj} = βkδkj ,

E{rkvj} = αkδkj , |αk| < 1, |βk| < 1, |σk| < 1

We seek an output-feedback controller that achieves, for a given scalar γ > 0,

J3
�
= E

v,r,ζ

�||zk||22 − γ2||w̃k||22 + xT
N Q̄NXN

	 − γ2xT
0 Q̄0x0 < 0,

Q̄N ≥ 0, Q̄0 ≥ 0
(7.10)

for all nonzero ({w̃k}, x0) where {w̃k} ∈ l̃2([0, N − 1]; Rp+z) and x0 ∈ Rn.
Similar to the standard case [57], this problem involves the estimation of an
appropriate combination of the states, for the worst case disturbance signal,
and the application of the results of the state-feedback control with a proper
modification.

iv) Stochastic H∞ output-feedback - The Infinite-horizon case
Given the following system:

xk+1 = (A + Dvk)xk + B1wk + (B2 + Grk)uk, x0 = 0,

yk = (C + Fζk)xk + nk,

zk = Lxk + D12uk

(7.11)

where vk, rk, wk and nk are defined in the above problems and vk, rk and ζk

are similar to the stochastic variables of problem iii).
We seek a stabilizing output-feedback controller that achieves, for a given

scalar γ > 0,

J4
�
= E

v,r,ζ

�||zk||22 − γ2||w̃k||22 + xT
N Q̄NXN

	
< 0, Q̄N ≥ 0, (7.12)

for all nonzero {w̃k} where {w̃k} ∈ l̃2([0, ∞); Rp+z). Similarly to the prob-
lem iii), this problem involves the stationary estimation of an appropriate
combination of the states and the application of the results of the stationary
state-feedback with a proper modification.
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7.3 The Discrete-time Stochastic BRL

We address the problem of the stochastic state-feedback by deriving first a
BRL for the following system:

xk+1 = (Ak + Dkvk)xk + (Bk + Fkrk)wk, k = 0, 1, ..., N − 1 (7.13)

where x0 is an unknown initial state and where the scalar sequences {vk} and
{rk} are defined in problem (i). The exogenous disturbance wk is assumed to
be of finite energy and may depend on current and past values of the state-
vector namely, it is Fk−1 measurable. We consider the cost function J1 of (7.4)
where

zk = Lkxk. (7.14)

The objective is to determine, for a given scalar γ > 0, whether J1 is negative
for all nonzero ({wk}, x0) where x0 ∈ Rn and {wk} ∈ l̃2([0, N − 1]; Rp).
We consider the following recursion:

Qk = AT
k Qk+1Ak + (BT

k Qk+1Ak + αkFT
k Qk+1Dk)T Θ−1

k

(BT
k Qk+1Ak + αkFT

k Qk+1Dk) + LT
k Lk + DT

k Qk+1Dk, QN = Q̄N

(7.15)
where we define

Θk
�
= γ2I − BT

k Qk+1Bk − FT
k Qk+1Fk.

The following result is obtained in [43]:

Theorem 7.1. Consider the system (7.13),(7.14). Given the scalar γ > 0, a
necessary and sufficient condition for J1 of (7.4) to be negative for all nonzero
({wk}, x0) where {wk} ∈ l̃2([0, N − 1]; Rp) and x0 ∈ Rn is that there exists
a solution Qk to (7.15) that satisfies Θk > 0, for k = 1, 2, ..N − 1, and
Q0 < γ2Q̄0.

Proof.
Sufficiency: We define:

J̃k = xT
k+1Qk+1xk+1 − xT

k Qkxk. (7.16)

Substituting (7.13) in (7.16) we obtain:

J̃k = [xT
k (Ak+Dkvk)T +wT

k (Bk+Fkrk)T ]Qk+1[(Ak+Dkvk)xk+(Bk+Fkrk)wk]

−xT
k Qkxk

= xT
k [AT

kQk+1Ak+vkDT
k Qk+1Ak+AT

kQk+1Dkvk+v2
kDT

k Qk+1Dk−Qk+LT
k Lk]xk

+2xT
k AT

k Qk+1Bkwk + 2xT
k vkDT

k Qk+1Bkwk + 2rkxT
k AT

k Qk+1Fkwk
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+2wT
k FT

k Qk+1Dkxkrkvk − wT
k Θkwk + 2wT

k rkFkQk+1Bkwk − zT
k zk + γ2wT

k wk

where we added to J̃k, the zero term xT
k LT

k Lkxk − zT
k zk +γ2wT

k wk −γ2wT
k wk.

Since wk does not depend on vk and rk, taking the expectation with respect
to these signals we obtain that:

E
v,r

�
J̃k

�
= E

v,r
{xT

k [AT
k Qk+1Ak + DT

k Qk+1Dk − Qk + LT
k Lk]xk

+2xT
k [DT

k Qk+1Fkαk + AT
k Qk+1Bk]wk − wT

k Θkwk − zT
k zk + γ2wT

k wk}
(7.17)

Since Θk > 0, completing to squares for wk, we obtain using (7.15), that

E
v,r

�
J̃k

�
= − E

v,r
{[wk − w∗

k]T Θk[wk − w∗
k] + zT

k zk − γ2wT
k wk}

where
w∗

k

�
= Θ−1

k (BT
k Qk+1Ak + αkFT

k Qk+1DK)xk. (7.18)

Taking the sum of the two sides of the latter, from 0 to N −1, we obtain using
(7.16)

E
v,r

{ΣN−1
k=0 J̃k} = E

v,r
{xT

N Q̄NxN} − xT
0 Q0x0

= − E
v,r

{ΣN−1
k=0 [wk − w∗

k]T Θk[wk − w∗
k]} − E

v,r
{ΣN−1

k=0 (zT
k zk − γ2wT

k wk)}.

Hence J1 of (7.4) is given by:

J1 = − E
v,r

{ΣN−1
k=0 [wk − w∗

k]T Θk[wk − w∗
k]} + xT

0 (Q0 − γ2Q̄0)x0. (7.19)

Clearly J1 is negative {wk} ∈ l̃2([0, N − 1]; Rp) and x0 ∈ Rn that are not
identically zero iff Q0 < γ2Q̄0.

Necessity: We consider the case where J1 is negative for all ({wk}, x0) �=0 and
we solve (7.15) for Qi, i = N−1, N−2, ..., starting with QN = Q̄N . Denoting
the first instant for which Θi is not positive-definite by i = k∗, we distinguish
between two cases. In the first, Θk∗ ≥ 0 and it has a zero eigenvalue, namely
there exists dk∗ �= 0 that satisfies Θk∗dk∗ = 0. In this case, we consider the
following strategy of nature: x0 = 0, wi = 0, i < k∗, wk∗ = dk∗ and
wi = w∗

i , i > k∗ where w∗
i is defined in (7.18). It follows from (7.17) that at

the k∗ instant the quadratic term in wk is zero and from (7.13) that xk∗ = 0.
Thus, the contribution of the terms in J1 that corresponds to k∗ is zero. It
follows from (7.19) that the terms in J1 that correspond to i > k∗ are also
zero. Therefore, the above non-zero strategy yields a zero J1, contradicting
the above assumption. The second case is one where Θk∗ is nonsingular but
possesses a negative eigenvalue with a corresponding eigenvector dk∗. We con-
sider then the following strategy: wi = w∗

i , i �= k∗ and wk∗ = w∗
k∗ + dk∗

The resulting J1 of (7.19) can be made arbitrarily large (positive) by choosing
dk∗ to be of large norm. �$
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Theorem 7.1 has been derived for the system (7.13) with a single stochastic
parameter in Ak and Bk. The results of this theorem are easily extended to
the following system:

xk+1 = (Ak +
m1�
i=1

Di,kvi,k)xk + (Bk +
m2�
i=1

Gi,kri,k)wk,

zk = Lkxk, k = 0, 1, ., N − 1

(7.20)

where xk, wk and x0 are defined in (7.1), and {vi,k} and {ri,k} are standard
random scalar sequences with zero mean that satisfy:

E{vi,k1vj,k2} = σij,kδk1k2, E{ri,k1rj,k2} = βij,kδk1k2,

E{ri,k1vj,k2} = αij,kδk1k2

(7.21)

and where αij,k, βij,k and σij,k are predetermined scalars of absolute value
less than 1. Denoting

Ĝk
�
=

m2�
i=1

m2�
j=1

GT
i,kQk+1Gj,kβij,k,

D̂k
�
=

m1�
i=1

m1�
j=1

DT
i,kQk+1Dj,kσij,k,

Ĥk
�
=

m2�
i=1

m1�
j=1

GT
i,kQk+1Dj,kαij,k,

(7.22)

we consider the following recursion:

Qk =AT
k Qk+1Ak+D̂k+LT

k Lk+(BT
k Qk+1Ak+Ĥk)T Θ̄−1

k (BT
k Qk+1Ak+Ĥk),

QN =Q̄N ,
(7.23)

where
Θ̄k

�
= γ2I − BT

k Qk+1Bk − Ĝk.

We obtain the following result:

Corollary 7.1. Consider the system (7.20) and a prescribed scalar γ > 0.
A necessary and sufficient condition for J1 of (7.4) to be negative for all
nonzero ({wk}, x0) where {wk} ∈ l̃2([0, N − 1]; Rp) and x0 ∈ Rn is that there
exists a solution Qk to (7.23) that satisfies Θ̄k > 0, ∀ k = 1, 2, ..N − 1, and
Q0 < γ2Q̄0.

Remark 7.1. The above BRL can be used to solve the state-feedback H∞
control problem by using uk = Kkxk and looking for Kk that achieves the
performance level of γ that involves both wk and uk. Another, more general,
way is to derive an alternative expression for J1 along the lines of the proof of
Theorem 7.1. The advantage of the latter approach is its applicability to the
case where the states are not all accessible. This approach will be used below
in the solution of the output-feedback.
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7.3.1 The Discrete-time Stochastic BRL: The Stationary Case

Similarly to the continuous-time counterpart of Section 2.3.1, the derivation
of the discrete-time stationary stochastic BRL is obtained by two approaches.
In the first approach we consider the following mean square stable system:

xk+1 = (A + Dvk)xk + B1wk, x0 = 0,

zk = Lxk

(7.24)

which is obtained from (7.13) for the case where the system matrices are
constant and N = ∞. Considering the following index of performance:

JS
�
= E

v

�||zk||22 − γ2||wk||22 + xT
N Q̄NxN

	
< 0, Q̄N ≥ 0, (7.25)

we obtain the following result:

Theorem 7.2. Consider the system (7.24). Given the scalar γ > 0, a neces-
sary and sufficient condition for JS of (7.25), to be negative for all nonzero
{wk} ∈ l̃2([0, ∞); Rp) is that there exists a solution Q̄ > 0 to the following
algebraic Riccatti-type difference equation:

AT Q̄A + AT Q̄B1[γ2I − BT
1 Q̄B1]−1BT

1 Q̄A + LT L + DT Q̄D = 0. (7.26)

When such Q̄ exists, the corresponding optimal strategy of the disturbance
{wk} is:

w∗
k = γ2BT

1 Q̄x. (7.27)

Proof: The proof outline resembles that of the finite horizon case of Sec-
tion 7.3. Thus, the optimal strategy w∗

k of (7.27) is obtained by completing
to squares for {wk} , similarly to Section 7.3. Note that JS < 0 can also be
achieved iff the following inequality holds:

AT Q̄A + AT Q̄B1[γ2I − BT
1 Q̄B1]−1B1Q̄AT + LT L + DT Q̄D ≤ 0

By using Schur’s complements formula, the latter inequality can be readily
transformed to the following LMI:

ΓS
�
=



−Q̄ 0 AT DT LT

∗ −γ2Ip BT
1 0 0

∗ ∗ −Q̄−1 0 0

∗ ∗ ∗ −Q̄−1 0

∗ ∗ ∗ ∗ −Im


≤ 0. (7.28)
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The second approach for the solution of the stationary BRL is achieved by
considering the finite horizon counterpart of this problem. We consider the
system (7.13), (7.14) for the case where the system matrices are constant
and N → ∞. Considering the results of [87] we obtain that the Riccati-type
difference equation of (7.15) will converge to the algebraic equation of (7.26)
where the pair (A, C1) is observable, (A, B1) is stabilizable and Q̄N ≥ 0.

�$

7.4 Stochastic H∞ State-feedback Control

We solve the problem of the state-feedback control by referring to (7.1). We
apply the BRL of Theorem 7.1 replacing Ak +Dkvk of (7.13) by Ak +Dkvk +
(B2,k + Gkrk)Kk and Bk + Fkrk by B1,k. We also replace Lk of (7.14) by
Lk + D12,kKk and assume that (7.3) holds. We obtain the following system
k = 0, 1, ..., N − 1

xk+1 = [Ak + Dkvk + (B2,k + Gkrk)Kk]xk + B1,kwk,

zk = (Lk + D12,kKk)xk.
(7.29)

Applying Corollary 7.1, for m1 = 2, and m2 = 0, we obtain the following
Riccati equation:

Qk = (Ak + B2,kKk)T Qk+1(Ak + B2,kKk) + LT
k Lk + KT

k R̃kKk + DT
k Qk+1Dk

+KT
k GT

k Qk+1GkKk + (Ak + B2,kKk)T Qk+1B1,kR−1
k BT

1,kQk+1(Ak + B2,kKk)

+αkKT
k GT

k Qk+1Dk + αkDT
k Qk+1GkKk , QN = Q̄N

(7.30)
where

Rk
�
= γ2I − BT

1,kQk+1B1,k. (7.31)

Defining :

M̄k
�
= Qk+1[I − γ−2B1,kBT

1,kQk+1]−1,

Φk
�
= BT

2,kM̄kB2,k + GT
k Qk+1Gk + R̃k

(7.32)

and completing to squares for Kk we obtain:

Qk = R̄(Qk) + (Kk + K∗
k)T Φk(Kk + K∗

k)

where

K∗
k

�
= Φ−1

k ∆1,k,

∆1,k
�
= BT

2,kM̄kAk + αkGT
k Qk+1Dk,

R̄(Qk)
�
= AT

k M̄kAk + DT
k Qk+1Dk + LT

k Lk − ∆T
1,kΦ−1

k ∆1,k.

(7.33)
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Clearly, by choosing Kk = −K∗
k and using the monotonicity property of the

Riccati equation [57] we arrive at the following:

Theorem 7.3. Consider the system (7.29) and (7.4). Given a scalar γ > 0, a
necessary and sufficient condition for J1 of (7.4) to be negative for all nonzero
({wk}, x0) where {wk} ∈ l̃2([0, N − 1]; Rp) and x0 ∈ Rn is that there exists a
solution Qk > 0 to the following Riccati equation

Qk = AT
k M̄kAk + DT

k Qk+1Dk + LT
k Lk − ∆T

1,kΦ−1
k ∆1,k , QN = Q̄N (7.34)

that satisfies Rk > 0, ∀k = 1, 2, ...N − 1 and Q0 < γ2Q̄0, where M̄k is
defined in (7.32). If Qk of (7.34) satisfies Rk > 0 for all k = 1, 2, ..N − 1 and
Q0 < γ2Q̄0, then using the definition of (7.32) and (7.33) the state-feedback
gain is given by:

Kk = −Φ−1
k ∆1,k. (7.35)

7.4.1 The Multiple-noise Case

The result of Theorem 7.3 is extended to the case where the system is de-
scribed by:

xk+1 = (Ak +
m1�
i=1

Di,kvi,k)xk + (B2,k +
m2�
i=1

Gi,kri,k)uk + B1,kwk,

k = 0, 1, ..., N − 1,

(7.36)

where xk, wk, uk and x0 are defined in (7.1) and {vi,k} and {ri,k} are standard
random scalar sequences with zero mean that satisfy (7.21).

Using the notation of (7.22), we consider the following recursion

Q̂k = AT
k

ˆ̂
MkAk − (BT

2,k
ˆ̂

MkAk + Ĥk)T (BT
2,k

ˆ̂
MkB2,k + Ĝk + R̃k)−1

(BT
2,k

ˆ̂
MkAk + Ĥk) + D̂k + LT

k Lk,

Q̂N = Q̄N ,
ˆ̂

Mk
�
= Q̂k+1[I − γ−2B1,kBT

1,kQk+1]−1.

(7.37)

We obtain the following.

Corollary 7.2. Consider the system (7.36). Given the scalar γ > 0, a nec-
essary and sufficient condition for J1 of (7.4) to be negative for all {wk} ∈
l̃2([0, N −1]; Rp) and x0 ∈ Rn that are not identically zero is that there exists
a solution Q̂k to (7.37) that satisfies Rk > 0, ∀ k = 1, 2, ..N − 1, and
Q̂0 < γ2Q̄0.
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7.4.2 Infinite-horizon Stochastic H∞ State-feedback control

We address the issue of closed-loop stability by considering the case where the
system matrices in (7.1) and the correlation between them are all constants
and N tends to infinity. The stability is considered in the mean square sense
[105], [106] meaning that the states mean and the correlation matrix Pk =
E
v,r

{xkxT
k } converge to zero as k tends to infinity, for all initial states x0 and

{wk} = 0. In our case, when we consider (7.1), it is readily found that for
P0 > 0:

Pk+1 = (A + B2K)Pk(A + B2K)T + DPkDT + GKPkKT GT

+αDPkKT GT + αGKPkDT
(7.38)

where K is the state-feedback gain. If the latter linear recursion is stable, in
the mean square stability sense [105], we obtain that xk goes to the origin
almost surely when k tends to infinity.

We derive next a sufficient condition for the mean square stability of the
autonomous system (7.13) (with Bk = Fk ≡ 0), in the case where A and D are
constant matrices and N tends to infinity. We then show that the closed-loop
system that is obtained using the state-feedback of Theorem 7.3 satisfies this
condition. We consider the following autonomous system

xk+1 = (A + Σm1
i=1Divi,k)xk (7.39)

where {vik}, i = 1, 2, ..m1 are random zero-mean sequences with E{vik1 , vik2} =
σijδk1k2. Defining

D∗ =
m1�
i=1

m1�
j=1

DT
i QDjσij

we obtain the following.

Lemma 7.1. The system (7.39) is mean square stable if there exists a positive
definite matrix Q ∈ Rnxn that satisfies Tr{Γ̄Pi} < 0, ∀i, where

Γ̄
�
= AT QA − Q + D∗.

Proof: We consider the following Lyapunov function:

Vi = E
vjk,j=1,2,..L1,k≤i

{xT
i Qxi} = Tr{QPi}.

It follows from the positive definiteness of Q that Vi is nonnegative. We also
find that
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Vi+1 − Vi = E
vjk,k≤i

{xT
i [(AT +

m1�
i=1

DT
i vik)Q(A +

m1�
i=1

Divik) − Q]xi}

= E
vjk,k<i

{xT
i Γ̄ xi} = Tr{Γ̄Pi}.

The requirement of a negative Tr{Γ̄Pi} thus implies a negative Vi+1−Vi which
leads to the convergence of Tr{QPi} to zero.

�$
We apply the latter lemma to prove the following.

Theorem 7.4. Given the system

xk+1 = (A + Dvk)xk + B1wk + (B2 + Grk)uk,

zk = Lxk + D12uk,
(7.40)

where the matrices A, B1, B2, D, G, L and D12 are all constant and {vk}
and {rk} are the standard random scalar sequences with zero-mean that
satisfy (7.2). Assuming that (A, L) is observable and that [LT DT

12]D12 =
[0 R̃], R̃ > 0, then the matrix Kk of Theorem 7.3 which solves the stochas-
tic H∞ state-feedback problem of Section 7.4, for a given γ > 0 and for N that
tends to infinity, stabilizes the system in the mean square sense.

Proof: The closed-loop system (7.40) is described by:

xk+1 = [(A + B2K) + (Dvk + GKrk)]xk + B1wk,

zk = (L + D12K)xk

(7.41)

It follows from Lemma 7.1 that a sufficient condition for the required stability
is the existence of Q > 0 s.t. Tr{Γ0Pi} < 0, ∀i, where Pi is the covariance
of the state vector of the closed-loop system (7.41) (where B1 = 0), and

Γ0
�
= (A + B2K)T Q(A + B2K) − Q + DT QD + KT GT QGK + αKT GT QD

+αDT QGK = (A + B2K)T Q(A + B2K) − Q + (1 − α2)DT QD

+(KT GT + αDT )Q(GK + αD).

On the other hand, we obtain from (7.30) that any state-feedback gain ma-
trix K that solves the stationary state-feedback problem satisfies Tr{(Γ0 +
Γ1)Pi} = 0, ∀i where

Γ1 = (A + B2K)T QB1R
−1BT

1 Q(A + B2K) + LT L + KT R̃K. (7.42)

It is, thus, left to be shown that Tr{Γ1Pi} > 0, ∀i. Assuming that the latter
trace is not positive for some value of i, we denote the first value of i for which
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the latter happens by i∗. We find from (7.42) that the only way for Tr{Γ1Pi}
to be nonpositive, in fact zero, is that

LPi∗L
T = 0 and KPi∗K

T = 0,

which also implies that Pi∗ is singular. Since we started from P0 > 0, and
since the correlation between {vk} and {rk} , α2 < 1, we obtain from (7.38)
that

Pi∗ − (A + B2K)i∗P0(AT + KT BT
2 )i∗ ≥ 0.

The matrices LPi∗L
T and L(A + B2K)i∗P0(AT + KT BT

2 )i∗LT are therefore
zero, and thus L(A + B2K)i∗ (and similarly K(A + B2K)i∗) are zero. Since

Pi ≥ (A + B2K)i−i∗Pi∗(AT + KT BT
2 )i−i∗ , i > i∗ (7.43)

it is obtained that

LPi = 0 and KPi = 0, ∀i ≥ i∗.

Denoting by d any eigenvector of Pi∗ that corresponds to a nonzero eigenvalue
of Pi∗ we readily obtain that Ld = 0 and Kd = 0. We also find from (7.43)
that both L(A + B2K)jd and K(A + B2K)i−i∗d are zero for j > 0. Since

(A + B2K)jd = Aj−i(A + B2K)d = Ajd, j > 0,

it follows that the vector d is perpendicular to L and LAj and therefore to the
observability matrix. This contradicts the assumption about the observability
of the pair (A, L).

�$
Remark 7.2. The solution of the stationary state-feedback control can be read-
ily achieved in an LMI form by applying the stationary BRL of Section 7.3.1
to the closed-loop system (7.41). Thus one obtains the following stationary
algebraic Riccati-type counterpart of 7.34:

−Q + AT M̄A + DT QD + LT L − ∆T
1 Φ−1∆1 ≤ 0 , QN = Q̄N , (7.44)

together with the following stationary optimal strategies:

w∗
s,k = R̂−1BT

1 Q[A − B2Φ
−1∆1]xk

u∗
s,k = Φ−1∆1xk,

(7.45)

where
R̂ = γ2Ip − BT

1 QB1,

M̄
�
= Q[I − γ−2B1B

T
1 Q]−1,

∆1
�
= BT

2 M̄A + αkGT QD,

Φ
�
= BT

2 M̄B2 + GT QG + R̃,

R̃ = DT
12D12

(7.46)
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If Q of (7.44) satisfies R̂ > 0 then using the above definitions, the state-
feedback gain is given by:

Ks = −Φ−1∆1. (7.47)

Defining P = Q−1 and applying Schur’s complements formula and carrying
out various multiplications, the following inequalities are achieved:

−P PAT 0 PDT PCT 0

∗ −Γ (2, 2) B2R̃
−1 0 0 B1

∗ ∗ −P 0 0 0

∗ ∗ ∗ −P 0 0

∗ ∗ ∗ ∗ −Il 0

∗ ∗ ∗ ∗ ∗ −γ2Ip


≤ 0 (7.48)

and �
γ2Ip BT

1

∗ P

�
> 0. (7.49)

where Γ (2, 2) ∆= P +B2R̂
−1BT

2 . We note that the optimal stationary strategies
of (7.46) will be used for the solution of the stationary output-feedback of
Section 7.8.

7.5 Stochastic State-multiplicative H∞ Filtering

We investigate next the H∞-filtering problem. Considering the system (7.5)
and defining:

ξk = col{xk, ek},

we obtain the following system:

ξk+1 = Ãkξk + D̃kξkvk + F̃kξkζk + B̃kw̃k, ξ0 =

�
x0

e0

�
,

zk = C̃kξk

(7.50)

where

Ãk =

�
Ak 0

0 Ak − KokCk

�
, B̃k =

�
B1,k 0

B1,k −Kok

�

D̃k =

�
Dk 0

Dk 0

�
, F̃k =

�
0 0

−KokFk 0

�
, C̃k =

�
0 Lk

�
. (7.51)

Similarly to the solution of the continuous-time counterpart problem, we seek
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for a gain observer Kok that achieves J2 < 0 where J2 is defined in (7.8) and
where we replace in the latter x0 by ξ0. We obtain the following theorem:

Theorem 7.5. Consider the system (7.50) and (7.8). Given a scalar γ >
0, a necessary and sufficient condition for J2 to be negative for all nonzero
({wk}, x0) where {wk} ∈ l̃2([0, N − 1]; Rp) and x0 ∈ Rn is that there exists a
solution (Mk, Kok) to the following DLMI:

−M̂k M̂kÃT
k 0 M̂kD̃T

k M̂kF̃T
k M̂kC̃T

1,k

∗ −P̂k+1 γ−1B̃1,k 0 0 0

∗ ∗ −I 0 0 0

∗ ∗ ∗ −P̂k+1 0 0

∗ ∗ ∗ ∗ −P̂k+1 0

∗ ∗ ∗ ∗ ∗ −I


≤ 0, (7.52)

with a forward iteration, starting from the following initial condition:

P̂0 =

�
In

In

�
γ2P0

�
In In

�
where M̂k = P̂−1

k , k = 0, ..., N −1. (7.53)

Proof: We apply the stochastic BRL of Section 7.3 to the system (7.50) and
we obtain the following Riccati-type equation:

Mk = ÃT
k Mk+1Ãk + ÃT

k Mk+1B̃kΘ̃−1
k B̃T

k Mk+1Ãk + C̃T
k C̃k + D̃T

k Mk+1D̃k

+F̃T
k Mk+1F̃k + αkF̃T

k Mk+1D̃k + αkD̃T
k Mk+1F̃k,

M0 =

�
P0 P0

P0 P0

�
,

(7.54)
where

Θ̃k
�
= γ2I − B̃T

k Mk+1B̃k > 0 , ∀ k = 1, 2, ..N − 1. (7.55)

In order to comply with the initial condition in (7.54), and with the choice
of x̂0 = 0, we force nature to select the component e0 in ξ0 to be equal to x0.

�$
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The results of the last theorem can be extended to the case where the
system is given by:

xk+1 = (Ak +
m1�
i=1

Di,kvi,k)xk + B1,kwk, x0 = x0,

yk = (Ck +
m2�
i=1

Fi,kζi,k)xk + nk,

zk = Lkxk

(7.56)

where xk, wk, nk relate to the system (7.5) and {vi,k} and {ζi,k} are standard
random scalar sequences with zero-mean that satisfy:

E{vi,k1vj,k2} = σij,kδk1k2, E{ζi,k1ζj,k2} = βij,kδk1k2,

and E{ζi,k1vj,k2} = αij,kδk1k2

and where αij,k, βij,k and σij,k are predetermined scalar sequences. Denoting:

F̃k
�
=

m2�
i=1

m2�
j=1

F̄T
i,kMkF̄j,kβij,k,

D̃k
�
=

m1�
i=1

m1�
j=1

D̄T
i,kMkD̄j,kσij,k

S̃k
�
= (

m1�
i=1

m2�
j=1

D̄T
i,kMkF̄j,k +

m2�
i=1

m1�
j=1

F̄T
i,kMkD̄j,k)αij,k

(7.57)

where

D̄i,k =

�
Di,k 0

Di,k 0

�
and F̄i,k =

�
0 0

−KokFi,k 0

�
,

we consider the following recursion:

Mk = ÃT
k Mk+1Ãk + ÃT

k Mk+1B̃k(γ2I − B̃T
k Mk+1B̃k)−1B̃T

k Mk+1Ãk

+C̃T
k C̃k + D̃k + F̃k + S̃k,

(7.58)

where Ãk, B̃k, and C̃k are given in (7.51) and M0 is given in (7.54). We obtain
the following :

Corollary 7.3. Consider the system (7.56) and (7.8). Given a scalar γ > 0,
a sufficient condition for J2 to be negative, for all nonzero ({wk}, x0) where
{wk} ∈ l̃2([0, N−1]; Rp) and x0 ∈ Rn, is that there exists a solution (Mk, Kok)
to the Riccati equation of (7.58) that satisfies, Θ̃k > 0 , ∀ k = 1, 2, ..N − 1,
where Θ̃k is defined in Theorem 7.5.
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7.6 Infinite-horizon Stochastic Filtering

We consider the system (7.11) with B2 = G = 0, D12 = 0 and where, for
simplicity, we take zero correlation between ζk and vk (i.e βk = 0. Introducing
the following Lyapunov function:

Vk = ξT
k Q̃ξk, with Q̃ =

�
Q α̃Q̂

α̃Q̂ Q̂

�
, (7.59)

where ξk is the augmented state vector of Section 7.5, Q and Q̂ are n × n
matrices and α̃ is a tuning scalar. We obtain the following result:

Theorem 7.6. Consider the system (7.11) and J4 of (7.12) where the ma-
trices A, B1, D, C2, F, C1 and D12 are all constant, with B2 = G = 0, D12 = 0,
and where x̂k is defined in (7.6). Given γ > 0, a necessary and sufficient
condition for J4 of (7.12) to be negative for all nonzero ({wk}, x0) where
{wk} ∈ l̃2([0, N − 1]; Rp) and x0 ∈ Rn is that there exist Q = QT ∈
Rn×n, Q̂ = Q̂T ∈ Rn×n, Y ∈ Rn×z and a tuning scalar parameter α̃ that
satisfy the following LMIs:

−Q −α̃Q̂ 0 0 Υ (1, 5) Υ (1, 6)

∗ −Q̂ 0 0 Υ (2, 5) Υ̃ (2, 6)

∗ ∗ −γ2Ip 0 Υ (3, 5) BT
1 Q̂[1 + α̃]

∗ ∗ ∗ −γ2Iz −α̃Y T −Y T

∗ ∗ ∗ ∗ −Q −α̃Q̂

∗ ∗ ∗ ∗ ∗ −α̃Q̂

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
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Υ (1, 7) DT Q̂[1 + α̃] Υ (1, 9) −FT Y T 0

0 0 0 0 LT

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−Q −α̃Q̂ 0 0 0

∗ −Q̂ 0 0 0

∗ ∗ −Q −α̃Q̂ 0

∗ ∗ ∗ −Q̂ 0

∗ ∗ ∗ 0 −Im



< 0,

and �
γ2Ip+z B̃T

B̃ Q̃

�
> 0, (7.60)

where
Υ (1, 5) ∆= AT [Q + α̃Q̂],

Υ (1, 6) ∆= AT Q̂[1 + α̃],

Υ (1, 7) ∆= DT [Q + α̃Q̂],

Υ (1, 9) ∆= −FT Y T ,

Υ (2, 5) ∆= BT
1 [Q + α̃Q̂],

Υ (2, 6) ∆= BT
1 Q̂[1 + α̃],

Proof: The proof outline for the above stationary case resembles the one of
the finite-horizon case. Considering the augmented state vector ξk of Section
7.5 and the stationary counterpart of both 7.5 and 7.51 where N = ∞, we
obtain by applying the stationary stochastic BRL of Section 7.3.1, the station-
ary counterpart of 7.54. The latter can be readily expressed as the following
inequality:

−Q̃ + ÃT Q̃Ã + ÃT Q̃B̃ [̃γ2Ip+z − B̃Q̃B̃]−1B̃T Q̃Ã + C̃T C̃ + D̃T Q̃D̃

+F̃T Q̃F̃ ≤ 0.
(7.61)

Applying Schur’s complements formula to (7.61) we obtain:
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ΓS
�
=



−Q̃ 0 ÃT D̃T F̃T C̃T

∗ −γ2Ip+z B̃T 0 0 0

∗ ∗ −Q̃−1 0 0 0

∗ ∗ ∗ −Q̃−1 0 0

∗ ∗ ∗ ∗ −Q̃−1 0

∗ ∗ ∗ ∗ ∗ −Im


≤ 0. (7.62)

Multiplying the latter inequality by diag{I2n×2n, Ip+z, Q̃, Q̃, Q̃, Im} and

carrying out the various multiplications and denoting Y
�
= Q̂K0, where K0 is

the stationary observer gain, the LMIs of (7.60) are obtained.
�$

7.7 Stochastic Output-feedback

The solution of the output-feedback problem is obtained below by transform-
ing the problem to one of filtering which has been solved in the last section.
We can not use the results of Section 7.4, for this transformation, since we
need the optimal strategies of both {wk} and {uk}. These are obtained below
by completing to squares for both strategies.

Substituting from (7.1) in (7.16) we obtain:

J̃k =[xT
k(Ak+Dkvk)T+uT

k (B2,k+Gkrk)T ]Qk+1[(Ak+Dkvk)xk+(B2,k+Gkrk)uk]

+2[xT
k (Ak+Dkvk)T +uT

k (B2,k+Gkrk)T ]Qk+1B1,kwk+wT
k BT

1,kQk+1B1,kwk

−xT
k Qkxk − γ2wT

k wk + γ2wT
k wk + uT

k R̃kuk + xT
k CT

k Ckxk − zT
k zk

= −wT
k [γ2I − BT

1,kQk+1B1,k]wk + 2[xT
k (Ak + Dkvk)T + uT

k (B2,k + Gkrk)T ]

Qk+1B1,kwk + uT
k [R̃k + (B2,k + Gkrk)T Qk+1(B2,k + Gkrk)]uk

+2xT
k (Ak + Dkvk)T Qk+1(B2,k + Gkrk)uk

+xT
k [(Ak + Dkvk)T Qk+1(Ak + Dkvk) + CT

k Ck − Qk]xk − zT
k zk + γ2wT

k wk.

Taking the expectation with respect to rk and vk we obtain:

˜E
v,r

�
Jk

�
= E

v,r
{−wT

k [γ2I−BT
1,kQk+1B1,k]wk+2[xT

kA
T
kQk+1B1,k+uT

k BT
2,kQk+1B1,k]wk

+uT
k [R̃k+BT

2,kQk+1B2,k +GT
k Qk+1Gk]uk+2xT [AT

k Qk+1B2,k+αkDT
k Qk+1Gk]uk

+xT
k [AT

k Qk+1Ak +DT
k Qk+1Dk +CT

k Ck −Qk]xk −zT
k zk +γ2wT

k wk}+ E
v,r

{Ψk}
where
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Ψk = 2xT
k DT

k vkQk+1B1,kwk + 2uT
k GT

k rkQk+1B1,kwk + 2uT
k GT

k rkQk+1B2,kuk

+2xT
k DT

k vkQk+1B2,kuk + 2xT
k AT

k Qk+1Gkrkuk + 2xT
k DT

k vkQk+1Akxk

and where
E
v,r

{Ψk} = 0, k = 0, 1, ..., N − 1.

Completing to squares, first for wk and then for uk, we get:

E
v,r

�
J̃k

�
= E

v,r
{−(wk − w∗

k)T Rk(wk − w∗
k) + (uk − u∗

k)T Φk(uk − u∗
k)

−xT
k [∆1,kΦ−1

k ∆T
1,k − AT

k Qk+1B1,kR−1
k BT

1,kQk+1Ak]xk

+xT
k [AT

k Qk+1Ak + DT
k Qk+1Dk + CT

k Ck − Qk]xk

−zT
k zk + γ2wT

k wk} + E
v,r

{Ψk}

where Rk, Φk and ∆1,k are defined in (7.31), (7.32), (7.33) and where we
define:

u∗
k

�
= Kkxk,

w∗
k

�
= Kxkxk + Kukuk,

Kxk
�
= R−1

k BT
1,kQk+1Ak,

Kuk
�
= R−1

k BT
1,kQk+1B2,k

where Kk is defined in (7.35).
Rearranging the last equation we obtain:

E
v,r

�
J̃k

�
= E

v,r
{−(wk − w∗

k)T Rk(wk − w∗
k) + (uk − u∗

k)T Φk(uk − u∗
k)

+xT
k R̄(Qk)xk − zT

k zk + γ2wT
k wk} + E

v,r
{Ψk}

(7.63)
where R̄(Qk) is defined in (7.33) and Φk is defined in (7.32). Taking the sum
of both sides of (7.16), from zero to N − 1, we obtain using (7.63):

E
v,r

N−1�
k=0

�
J̃k

�
= E

v,r

�
xT

NQNxN

	 − xT
0 Q0x0

=
N−1�
k=0

E
v,r

�−(wk − w∗
k)T Rk(wk − w∗

k) + (uk − u∗
k)T Φk(uk − u∗

k)
	

+
N−1�
k=0

E
v,r

�
xT

k R̄(Qk)xk

	
+

N−1�
k=0

E
v,r

�−zT
k zk + γ2wT

k wk

	
+ E

v,r
{Ψk}

Hence
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J1 =
N−1�
k=0

E
v,r

�−(wk − w∗
k)T Rk(wk − w∗

k) + (uk − u∗
k)T Φk(uk − u∗

k)
	

+
N−1�
k=0

E
v,r

�
xT

k R̄(Qk)xk

	
+ xT

0 (Q0 − γ2Q̄0)x0 + E
v,r

{Ψk}.

(7.64)

Clearly, the optimal strategy for uk is given by uk = u∗
k where Qk that is

obtained by R̄(Qk) = 0 namely, Qk satisfies:

Qk = AT
k Qk+1Ak − ∆1,kΦ−1

k ∆T
1,k + DT

k Qk+1Dk + LTkLk

+AT
k Qk+1B1,kR−1

k BT
1,kQk+1Ak, QN = Q̄N ,

(7.65)

Rk > 0 and Q0 < γ2Q̄0, where Rk is defined in (7.31)

Remark 7.3. The recursion we obtained in (7.65) together with the feasibility
condition of Φk > 0 is identical to the necessary and sufficient condition we
obtained in Theorem 7.3. We did not apply the proof of this section to derive
the BRL in Section 7.3 since we could not prove the necessary condition of
Theorem 7.3 using the arguments of the present proof.

We are now ready to use the results of the state-feedback to derive a

solution to the output-feedback problem. Denoting rk
�
= wk − w∗

k and using
uk = Kkx̂k, where x̂k is yet to be found, we obtain from (7.9) that

xk+1 = (Ak + Dkvk + B1,kKxk)xk + B1,krk + (B1,kKuk + B2,k + Gkνk)Kkx̂k

  x0 = x0, yk = (Ck + Fkηk)xk + nk.

Substituting in (7.64) we look for x̂ for which

J
�
= E

ν,v,η

�
ΣN−1

k=0 ||zk||2Φk
− ||rk||2Rk

+ γ2||nk||22 + Ψk

	 − xT
0 S̃x0

is less then zero for all nonzero ({wk}, {nk}, x0) , where

zk = Kk(xk − x̂k), and S̃ = γ2Q̄0 − Q0. (7.66)

We consider the following state estimator

x̂k+1 = (Ak + B1,kKxk)x̂k + (B1,kKuk + B2,k)uk + K0,k(yk − Ckx̂k). (7.67)

Using the definition of (7.7) for ek we obtain:

xk+1 = [Ak + B1,kKxk + B1,kKukKk + B2,kKk]xk + Dkxkvk + GkKkxkνk

+B1,krk − (B1,kKuk + B2,k)Kkek − GkKkekνk

, 
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and

x̂k+1=[Ak+B1,kKxk+(B2,k+B1,kKuk)Kk]x̂k+K0,k[(Ck+Fkηk)xk+nk−Ckx̂k].

Therefore,

ek+1 = [Ak + Dkvk + B1,kKxk + (B1,kKuk + B2,k + Gkνk)Kk]xk

−(B1,kKuk +B2,k +Gkνk)Kkek − (Ak +B1,kKxk)x̂k − (B2,k +B1,kKuk)Kkx̂k

−K0,k[(Ck + Fkηk)xk + nk − Ckx̂k] + B1,krk = [Ak + B1,kKxk − K0,kCk]ek

+B1,krk − K0,knk + Dkxkvk + GkKkxkνk − K0,kFkxkηk − GkKkekνk.

Defining
ξk = col{xk, ek} and w̃k = col{rk, nk}

we obtain the following system, which is equivalent to the one in (7.50):

ξk+1 = Ãkξk + D̃1,kξkvk + F̃kξkηk + D̃2,kξkνk + B̃kw̃k, ξ0 =

�
x0

e0

�
zk = C̃1,kξk

(7.68)

where

Ãk =

�
Ak + (B1,kKuk + B2,k)Kk + B1,kKxk −[B1,kKuk + B2,k]Kk

0 Ak + B1,kKxk − K0,kCk

�

B̃k =

�
B1,k 0

B1,k −K0,k

�
, D̃1,k =

�
Dk 0

Dk 0

�
, F̃k =

�
0 0

−K0,kFk 0

�

D̃2,k =

�
GkKk −GkKk

GkKk −GkKk

�
and C̃1,k =

�
0 Kk

�
.

Using the above notation we arrive at the following theorem:

Theorem 7.7. Consider the system (7.9) and J3 of (7.10) where uk =
Kkx̂k, Kk is given in (7.35) and where x̂k is defined above. Given a scalar
γ > 0, there exists a controller that achieves J3 < 0 if there exists a solution
(P̂k, K0,k) to the following difference linear matrix inequality (DLMI)[44]:

−P̂k P̂kÃT
k 0 P̂kD̃T

1,k P̂kD̃T
2,k P̂kF̃T

k P̂kC̃T
1,k

∗ −P̂k+1 γ−1B̃1,k 0 0 0 0

∗ ∗ −Ip+z 0 0 0 0

∗ ∗ ∗ −P̂k+1 0 0 0

∗ ∗ ∗ ∗ −P̂k+1 0 0

∗ ∗ ∗ ∗ ∗ −P̂k+1 0

∗ ∗ ∗ ∗ ∗ ∗ −Il


≤ 0, (7.69)
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with a forward iteration, starting from the following initial condition:

P̂0 =

�
In

In

�
(γ2Q̄0 − Q0)

�
In In

�
. (7.70)

Proof: Applying the result of the discrete-time stochastic BRL of Section 7.3
(see also [43]) to the system (7.68), the following Riccati-type inequality is
obtained:

−Q̂k + ÃT
k Q̂k+1Ãk + ÃT

k Q̂k+1B̃kΘ−1
k B̃T

k Q̂k+1Ãk

+D̃T
1,kQ̂k+1D̃1,k + D̃T

2,kQ̂k+1D̃2,k + F̃T
k Q̂k+1F̃k + C̃T

1,kC̃1,k > 0,

Θk = γ2I − B̃T
k Q̂k+1B̃k, Θk > 0.

(7.71)

By simple manipulations, including the matrix inversion Lemma, on the latter
the following inequality is obtained:

−Q̂k+ÃT
k [Q̂−1

k+1−γ−2B̃kB̃T
k ]−1Ãk+C̃T

1,kC̃1,k

+D̃T
1,kQ̂k+1D̃1,k + D̃T

2,kQ̂k+1D̃2,k + F̃T
k Q̂k+1F̃k > 0.

(7.72)

Denoting P̂k = Q̂−1
k and using Schur’s complements the result of (7.69) is

obtained.
�$

Remark 7.4. We note that the solution of the latter DLMI proceeds the so-
lution of the finite-horizon state-feedback of Section 7.4 starting from QN in
(7.34), for a given attenuation level of γ. Once a solution to the latter prob-
lem is achieved, the DLMI of (7.69) is solved for the same γ starting from the
above initial condition.

Remark 7.5. We note that P̄0 = E{x0x
T
0 } where P̄0 = γ2Q̄0 −Q0). The latter

suggests that the initial condition P̂0 of (7.70) is

P̂0 = E{
�

x0

e0

� �
xT

0 eT
0

�} =

�
P̄0 P̄0

P̄0 P̄0

�
,

since e0 = x0, hence justifying the structure of (7.70).

7.8 Stationary Stochastic Output-feedback Control

We consider the mean square stable system (7.11), where for simplicity, we
take G = 0. Introducing the following Lyapunov function:

Vk = ξT
k Q̃ξk, with Q̃ =

�
Q α̃Q̂

α̃Q̂ Q̂

�
, (7.73)

where ξk is the state vector of (7.68), Q and Q̂ are n × n matrices and α̃ is a
tuning scalar, we obtain the following result:
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Theorem 7.8. Consider the mean square-stable system (7.11) and J4 of
(7.12) where the matrices A, B1, B2, D, C2, F, C1 and D12 are all constant,
G = 0, uk = Ksx̂k and where x̂k is defined in (7.67). Given γ > 0, there
exists a controller that achieves J4 < 0 if there exist Q = QT ∈ Rn×n, Q̂ =
Q̂T ∈ Rn×n, Y ∈ Rn×z and a tuning scalar parameter α̃ that satisfy the
following LMIs:

−Q α̃Q̂ Υ (1, 3) Υ (1, 4) 0 0

∗ −Q̂ Υ (2, 3) Υ̃ (2, 4) 0 0

∗ ∗ −Q α̃Q̂ Υ (3, 5) −γ−1α̃Y

∗ ∗ ∗ −Q̂ Υ (4, 5) −γ−1Y

∗ ∗ ∗ ∗ −Ip 0

∗ ∗ ∗ ∗ ∗ −Iz

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

−α̃DT Y −DT Y FT (Q + α̃Q̂) FT Q̂(1 + α̃) 0

0 0 0 0 ĈT
1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−Q α̃Q̂ 0 0 0

∗ −Q̂ 0 0 0

∗ ∗ −Q α̃Q̂ 0

∗ ∗ ∗ −Q̂ 0

∗ ∗ ∗ 0 −Il



< 0,

and �
γ2Ip+z B̃T

B̃ Q̃

�
> 0. (7.74)
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where

Υ (1, 3) ∆= [KT
s,xBT

1 + KT
s (BT

2 + KT
s,uBT

1 ) + AT ]Q,

Υ (1, 4) ∆= α̃Q̂Υ (1, 3)Q−1,

Υ (2, 3) ∆= −α̃CT Y T − KT
s [BT

2 + KT
s,uBT

1 ]Q + α̃[KT
s,xBT

1 + AT ]Q̂,

Υ (2, 4) ∆= α̃[KT
s,xBT

1 +KT
s (BT

2 +KT
s,uBT

1 )+AT ]Q̂+[KT
s,xBT

1 +AT ]Q̂−CT Y T ,

Υ (3, 5) ∆= γ−1[QB1 + α̃Q̂B1],

Υ (4, 5) ∆= γ−1(α̃ + 1)Q̂B1,

Ks,x = R−1BT
1 P−1A,

Ks,u = R−1BT
1 P−1B2

and where P is the solution (7.48) of Section 7.4.2.

Proof: The proof outline for the above stationary case resembles the one
of the finite-horizon case. Considering the system (7.11) we first solve the
stationary state-feedback problem to obtain the optimal stationary strategies
of both w∗

s,k and u∗
s,k and the stationary controller gain Ks. These are given

in Section 7.4.2 in (7.45).
Using the optimal strategies we transform the problem to an estimation

one, thus arriving to the stationary counterpart of the augmented system
(7.68). Applying the stationary discrete BRL for the stationary case of Sec-
tion 7.3.1 (see also [10]) to the latter system the algebraic counterpart of
(7.71) is obtained [10] which, similarly to the finite horizon case, becomes the
stationary version of (7.69). Multiplying the stationary version of (7.69) from
the left and the right by diag{P̂−1, P̂−1, Ip+z, P̂

−1, P̂−1, P̂−1, Il}, denoting
Q̃ = P̂−1, Y = Q̂Ko where Ko is the observer gain and carrying out the
various multiplications the LMI of Theorem 7.8 obtained.

7.9 Examples

In this section we solve two examples of stationary systems with stochastic pa-
rameter uncertainties. We first solve a stochastic state-feedback problem and
we compare our results with those obtained using the method of [109] which
is not specially developed for white noise uncertainty. In the second example
we solve a stochastic H∞-filtering problem, again using both methods.

7.9.1 Example 1: The State-feedback Case

We consider the system (7.1)
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xk+1 =

�
0.1 0.6 + ak

−1.0 −0.5

�
xk +

�−0.225

0.45

�
wk +

�
0.04 + bk

0.05

�
uk,

zk =

�
2 0

0 0

�
xk +

�
0

0.1

�
uk

where {ak} and {bk} are zero-mean independent white noise Gaussian se-
quences with standard deviation of 0.63 and 0.04 respectively. Using the theory
of Section 2.4 we have D = [I 0]T [0 0.63] and G = [0.04 0]T . Considering
(7.34) for a large N and QN that tends to zero, we obtain that γ = 1.74 is
close to the minimal possible level of attenuation and that a convergence of
Qk of (7.34) is obtained, up to a tolerance of 10−6, after 80 steps. We notice
that here (A, L) is observable. The resulting feedback gain is found by (7.35)
to be K = [9.73 1.45]. In order to compare our results with those obtained
by the method of [109] we choose the uncertainty interval in [109] to be one
that provides an attenuation level similar to our result. For the latter compar-
ison we choose, for example ak ∈ [−0.63 0.63] and bk ∈ [−0.01 0.01]. We
note that this choice allows for 32% of the values of ak and 80% of bk of our
stochastic case to lie outside the above intervals. Using the method of [109]
we search for one free parameter 0 and we obtain a near minimum value of
γ = 1.67 for 0 = 4. The resulting K is then [11.12 0.152].

The two designs are compared first for the uncertainty intervals on which
the design method of [109] was based. We find that while the latter design sat-
isfies the attenuation level of 1.67, our design achieves, at one extreme point,
an attenuation level of 2.29. On the other hand, our method allows for high
probabilities for the parameters ak and bk to lie outside the latter intervals.
Checking, therefore, the two designs for uncertain intervals that correspond
to one standard deviation in our stochastic parameters, we achieve a worst
attenuation level of 103 in the design of [109] compared with a level of 2.29
that is achieved by our method. In both methods the minimal achievable γ
for the nominal system (with no uncertainties) is 0.6.

7.9.2 Example 2: The Output-feedback Case

We consider the mean square stable system (7.11) and the objective function
of (7.12) with the following matrices:

A=
�

0 1
−0.8 1.6

�
, D=

�
0 0

0.08 0.16

�
, B1 =

�
1

−1

�
,

B2 =
�

0
1

�
, D12 =

�
0
.1

�
, C1 =

�−0.5 0.4
0 0

�
and C =

�
01

�
where F = 0.
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We apply the result of Remark 7.2 and Theorem 7.8 where we solve first
for (7.48) and then for the LMIs of (7.74) and obtain for a near minimum of
γ = 7.18 and α̃ = 0.15 the following results:

Q=
�

0.5950 −0.2184
−0.2184 1.0805

�
, Q̂=

�
8.2663 −3.1948

−3.1948 2.7360

�
,

Ks =
�
0.7790 −0.9454

�
, KT

o =
�
1.2273 2.0104

�
. The resulting closed-loop

transfer function, from wk to zk, is Gz = (−0.9446z + 0.9646)(z2 − 0.5350z −
0.3589)−1. We note that for the state-feedback solution of this problem (see
Remark 7.2) (where we assume that there is an access to the states of the
system) one obtains a near minimum attenuation level of γ = 1.02. We note
also that for the deterministic counterpart of this example (where D = 0) we
obtain for the output-feedback case, a near minimum γ of 4.88.

7.10 Conclusions

The problem of H∞-optimal control and filtering of discrete time linear sys-
tems with multiplicative stochastic uncertainties has been solved. The main
contribution of this chapter is the method it introduces to solve the problems
in the time-varying finite-horizon case where the stochastic uncertainties ap-
pear in the input and the output matrices of the state-space description of
the system, as well as in the dynamic matrix. The theory developed offers a
necessary and sufficient condition for solving the state-feedback problem.

Comparing our stochastic approach to the deterministic approach of [102],
[109], where the uncertainties are modelled as exogenous signals, it is shown in
the state-feedback control of example 1 that the stochastic approach achieves
an improved level of attenuation and estimation namely, lower values of γ,
where we take the uncertainty interval in [102] to be within a one standard
deviation of the distribution of our parameters. It should be pointed out that
in the approach of [102] the prescribed bound on the index of performance is
guaranteed for all the parameters in the uncertainty interval. In our approach,
on the other hand, there is a finite nonzero probability of violating the index
of performance. There is a trade-off here between a better attenuation and
estimation level and certainty in achieving these levels. In many practical
problems the designer may prefer achieving better performance on the average,
knowing that in a small proportions of the cases, the design may not achieve
its goals. Another approach for the analysis of this trade-off is presented in
[112] and [11] where the uncertainty in the system parameters was assumed
to be uniformly distributed over a prescribed convex region.

Another reason for the better performance of the stochastic approach is
the inherent over design entailed in the method of [102] that is notably accen-
tuated, in the discrete-time case, when the system poles are close to the unit
circle. In the latter case, the solution is not readily found and one gets con-
siderably higher values of the performance bound, especially when multiple
uncertain parameters are involved.
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Finally, we note that the solution of the filtering problem of Section 7.5 can
be partially applied to the solution of the state-multiplicative H∞ prediction
problem. In the latter problem, for a given measurement interval say, [0 k] k =
1, ..., N , a state prediction is sought for the time instant k + h, where h is the
given prediction length. A special case of the latter problem is one where h = 1.
This problem is called one step ahead prediction (see [9] for the deterministic
case). The case where h > 1 but reasonably small enough can be possibly
solved by augmenting the system states to include delayed states and by
applying the BRL of Section 7.3. However, for large values of h this solution
may prove to be inefficient and time-consuming. Therefore, one can easily find
the prediction by applying the autonomous open loop dynamics of the filtered
estimate and then obtain the corresponding H∞−norm of the prediction error
by applying the stochastic BRL (one may expect to obtain larger attenuation
levels as h is increased).



8

Discrete-time Systems: General Filtering

8.1 Introduction

In Chapter 7 we introduced the solution to the output-feedback control prob-
lem for the time-varying, discrete-time systems with state-multiplicative noise,
for both the finite and the infinite time cases [43],[39]. This solution is based
on solving the filtering part using a Luenberger-type observer and applying
the stochastic BRL. In this chapter, similarly to Chapter 3, we apply a general
type filter for the solution of both: the H∞ and the mixed H2/H∞ stationary
filtering cases. We also allow for a deterministic polytopic-type uncertainties
in the system matrices.

LMIs for uncertainties that lie in a convex-bounded domain (polytopic
type) have been studied by [36]- [38],[37]. In [38], applying the standard BRL
[102] on the uncertain system, a Riccati inequality is obtained whose solution,
over the whole uncertainty polytope, guarantees the existence of a single filter
that achieves the prescribed estimation accuracy. This Riccati inequality is
expressed in terms of an LMI that is affine in the uncertain parameters. A
single solution to the latter, for all the vertices of the uncertainty polytope,
produces the required result [35]. The mixed H2/H∞ problem has also been
solved in [36].

In this chapter we treat the stationary case where the stochastic uncer-
tainty appears in the dynamic, input and measurement matrices, and where we
allow for correlations between the uncertain parameters[46], [40]. In our treat-
ment, we considered the case that commonly appears in practice, namely the
one where the stochastic uncertainties appear in A, B1 and C. This treatment
can also be readily extended to the more general case where the stochastic
uncertainties appear in all the system matrices. The results one achieves in the
latter case are, however, too cumbersome and the insight that could have been
gained would be lost. Unlike the solution of the filtering problem of Chapter
7, we do not require a Luenberger-type structure for the filter[43]. This prob-
lem has been partially treated in [26], however, the solution there does not
allow for uncertainty in the measurement matrix and for correlations between

E. Gershon et al.: H∞ Contr. and Est. of State-multipl. Lin. Sys., LNCIS 318, pp. 125–136, 2005.
© Springer-Verlag London Limited 2005
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the parameters, and it does not treat the mixed H2/H∞ estimation problem.
We use the techniques of [74], as applied in the solution of the determinis-
tic polytopic problem [36]. Necessary and sufficient conditions are derived for
the existence of a solution in terms of LMIs. Our solution is based on the
stationary stochastic BRL of Chapter 7 and [10] and it is extended to cases
where also the deterministic part of the system matrices is unknown and as-
sumed to lie in a convex bounded domain of a polytopic-type. Our theory
is also applicable to the case where the covariance matrices of the stochastic
parameters are not perfectly known and lie in a polytope.

We also solve the mixed H2/H∞ problem where, of all the filters that solve
the stochastic H∞ filtering problem, the one that minimizes an upper-bound
on the estimation error variance is found. The applicability of our method
is demonstrated in a gain-scheduled estimation example which is brought is
the Application part. In this example we treat a guidance motivated tracking
problem and compare the results with those obtained by the Kalman-filter.

8.2 Problem Formulation

We consider the following mean square stable system:

xk+1 = (A + Dβk)xk + (B1 + Gβ̄k)wk, x0 = 0

yk = (C + Fζk)xk + D21wk

zk = Lxk

(8.1)

where xk ∈ Rn is the system states, yk ∈ Rr is the measurement, wk ∈
l̃2([0,∞); Rq) is the exogenous disturbance signal, zk ∈ Rm is the state com-
bination to be estimated and where A, B1, C, D, D21, F, G and L are constant
matrices with the appropriate dimensions. The variables {βk}, {β̄k} and {ζk}
are standard random scalar sequences with zero mean that satisfy:

E{βkβj} = δkj , E{β̄kβ̄j} = δkj , E{ζkζj} = δkj , E{ζkβj} = αkδkj ,

|αk| < 1, ∀k, j ≥ 0.

and where {β̄k} is uncorrelated with {βk} and {ζk}. The system model of
(8.1) represents practical situations of systems with multiplicative noise. It
could be readily generalized to cases with vector valued multiplicative noise
at the expense of more complicated expressions.
We consider the following asymptotically stable filter for the estimation of zk:

x̂k+1 = Af x̂k + Bfyk, x̂0 = 0

ẑk = Cf x̂k.
(8.2)

Denoting
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ek = xk − x̂k, ξTk = col{xk, x̂k} and z̃k = zk − ẑk, (8.3)

we define, for a given scalar γ > 0, the following performance index

JS
�
= ||z̃||2l̃2 − γ2||wk||2l̃2 . (8.4)

The problems addressed in this chapter are :

i) Stochastic H∞ filtering problem : Given γ > 0, find an asymptoti-
cally stable linear filter of the form (8.2) that leads to an estimation error z̃k
for which JS of (8.4) is negative for all nonzero wk ∈ l̃2([0,∞); Rq).

ii) Stochastic mixed H2/H∞ filtering problem : Of all the asymptot-
ically stable filters that solve problem (i), find the one that minimizes an
upper-bound on the estimation error variance:

lim
k→∞

E
w,β,ζ,β̄

�
z̃Tk z̃k

	
,

where {wk} is assumed to be a zero-mean, standard, white-noise sequence.

8.3 A BRL for Systems with Stochastic Uncertainty

We first bring, for convenience, the lemma that is proven in Section 7.3.1
(which is similar to the one derived in [10]) for the following mean square
stable system:

xk+1 = (A + D1βk + D2ζk)xk + (B + Gβ̄k)wk,

zk = Lxk
(8.5)

where the scalar sequences {β̄k}, {βk}, {ζk} and the exogenous disturbance
{wk} are defined above. Considering the cost function

Ĵ = ||zk||2l̃2 − γ2||wk||2l̃2
and applying the arguments of [10] the following holds:

Lemma 8.1. [43], [10] For any γ > 0 the following statements are equiva-
lent:
i) The system of (8.5) is mean square stable and Ĵ is negative for all nonzero
wk ∈ l̃2([0,∞); Rq).
ii) There exists Q > 0 that satisfies the following inequality

−Q+ATQA+ATQBΘ−1BTQA+LTL+DT
1 QD1+DT

2 QD2

+α[DT
1 QD2+DT

2 QD1]<0
(8.6)

and also satisfies Θ > 0, where Θ
�
= γ2Iq − BTQB − GTQG.
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8.4 Stochastic H∞ Filtering

Problem (i) is solved by applying Lemma 8.1. Considering the system of (8.1)
and the definitions of (8.3) we obtain:

ξk+1 = [Ã + D̃1βk + D̃2ζk]ξk + [B̃ + G̃β̄k]wk

z̃k = C̃ξk
(8.7)

where

Ã=
�
A 0
BfC Af

�
, B̃=

�
B1

BfD21

�
, G̃=

�
G

0

�
, D̃1 =

�
D 0
0 0

�
,

D̃2 =
�

0 0
BfF 0

�
, C̃=

�
L −Cf

�
.

(8.8)

We arrive at the following result:

Theorem 8.1. Consider the system of (8.7). Given γ > 0, the following
hold:
i) A necessary and sufficient condition for JS of (8.4) to be negative for all
nonzero wk ∈ l̃2([0,∞); Rq), is that there exist R = RT ∈ Rn×n, W =
WT ∈ Rn×n, Z ∈ Rn×r, S ∈ Rn×n and T ∈ Rm×n, such that

Σ(R,W,Z, S, T, γ2) < 0 (8.9)

where

Σ(R,W,Z, S, T, γ2)
�
=



−R 0 0 0

−W 0 0

∗ −R 0

∗ ∗ −W
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
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0 0 0 −RA 0 −RB1 0

0 0 0 −WA − ZC − S S −WB1 − ZD21 0

0 0 0 −RD 0 0 0

0 0 0 −WD − αZF 0 0 0

−W 0 0 −ᾱZF 0 0 0

∗ −R 0 0 0 −RG 0

∗ ∗ −W 0 0 −WG 0

∗ ∗ ∗ −R 0 0 TT − LT

∗ ∗ ∗ ∗ −W 0 −TT

∗ ∗ ∗ ∗ ∗ −γ2Iq 0

∗ ∗ ∗ ∗ ∗ ∗ −Im



(8.10)

and where

Σ(8, 2) ∆= −ATW − CTZT − ST and Σ(8, 4) = −DTW − αFTZT .

ii) If (8.10) is satisfied, a mean square stabilizing filter in the form of (8.2)
that achieves the negative JS is given by:

Af = −W−1S, Bf = −W−1Z and Cf = T. (8.11)

Proof: i) The assertion that JS is negative for all nonzero wk ∈
l̃2([0,∞); Rq) is equivalent, by Lemma 8.1, to the solvability of the follow-
ing Riccati inequality

−Q + ÃTQÃ + ÃTQB̃Θ̃−1B̃TQÃ + C̃T C̃ + D̃T
1 QD̃1 + D̃T

2 QD̃2

+α[D̃T
2 QD̃1 + D̃T

1 QD̃2] < 0,

and where

Θ̃
�
= γ2Iq − B̃TQB̃ − G̃TQG̃ > 0.

(8.12)

Lemma 8.1 can be applied to the system of (8.7) since it is composed of
the mean square system of (8.1) and the asymptotically stable filter of (8.2).

Denoting ᾱ
�
= (1−α2)0.5, the inequality of (8.12) is equivalent to the following.

−Q + ÃTQÃ + ÃTQB̃Θ̃−1B̃TQÃ + C̃T C̃ + (D̃1 + αD̃2)TQ(D̃1 + αD̃2)

+ᾱ2D̃T
2 QD̃2 < 0,

(8.13)
since

D̃T
1 QD̃1 + D̃T

2 QD̃2 + αD̃T
2 QD̃1 + αD̃T

1 QD̃2

= (D̃1 + αD̃2)TQ(D̃1 + αD̃2) + ᾱ2D̃T
2 QD̃2.
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Applying Schur’s complements, (8.13) can be readily rearranged into the fol-
lowing LMI:

Γ̂ (Q)
�
=



−Q−1 0 0 0 Ã B̃ 0

∗ −Q−1 0 0 (D̃1 + αD̃2) 0 0

∗ ∗ −Q−1 0 ᾱD̃2 0 0

∗ ∗ ∗ −Q−1 0 G̃ 0

∗ ∗ ∗ ∗ −Q 0 C̃T

∗ ∗ ∗ ∗ ∗ −γ2Iq 0

∗ ∗ ∗ ∗ ∗ ∗ −Im


< 0, (8.14)

and the negativity of JS is thus guaranteed iff there exists Q > 0 that satisfies
the (8.14). Following [38], we partition Q and Q−1 as follows:

Q
�
=

�
X M

MT U

�
and Q−1 �

=

�
Y N

NT V

�
,

where we require that
X > Y −1. (8.15)

The latter inequality stems from the fact that

�
Q I2n

I2n Q−1

�
≥ 0, which leads

to X ≥ Y −1. Requiring, however, the filter of (8.2) to be of order n , a strict
inequality is required in (8.15) (see [35], page 428 for the discrete-time case).
We also note that I − XY = MNT is of rank n.

Defining:

J
�
=

�
Y In

NT 0

�
and J̃

�
= diag

�
QJ, QJ, QJ, QJ, J, I I

�
,

we pre- and post-multiply (8.14) by J̃T and J̃ , respectively. Substituting for
the matrices of (8.8a-f) in (8.14) and carrying out the various multiplications
in (8.14) we obtain:
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−Y −In 0 0 0 0

∗ −X 0 0 0 0

∗ ∗ −Y −In 0 0

∗ ∗ ∗ −X 0 0

∗ ∗ ∗ ∗ −Y −In
∗ ∗ ∗ ∗ ∗ −X
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

0 0 AY A B1 0

0 0 XAY + ZCY + Ẑ XA + ZC XB1 + ZD21 0

0 0 DY D 0 0

0 0 XDY + αZFY XD + αZF 0 0

0 0 0 0 0 0

0 0 ᾱZFY ᾱZF 0 0

−Y −In 0 0 G 0

∗ −X 0 0 XG 0

∗ ∗ −Y −In 0 Y LT − ẐT

∗ ∗ ∗ −X 0 LT

∗ ∗ ∗ ∗ −γ2Iq 0

∗ ∗ ∗ ∗ ∗ −Im



< 0,

X>Y −1>0, (8.16)

where
Z

�
= MBf , Z̃

�
= CfN

T and Ẑ
�
= MAfN

T . (8.17)

Pre- and post-multiplying (8.16) by Υ and ΥT , respectively, where

Υ
�
= diag{

�
R 0

−R In

�
,

�
R 0

−R In

�
,

�
R 0

−R In

�
,

�
R 0

−R In

�
,

�
R 0

−R In

�
, Iq, Im},

and where we denote R
�
= Y −1, we obtain, defining
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S
�
= ẐR and T

�
= Z̃R (8.18)

the requirement of (8.9), where we replace X − R by W and multiply the
resulting inequality by -1.
ii) If a solution to (8.9) exists it follows from (8.17) that

Af = M−1ẐN−T , Bf = M−1Z and Cf = Z̃N−T . (8.19)

These results require the derivation of M , Ẑ, N and Z̃. We show next that a
filter with the same transference as the one achieved by (8.2) and (8.19), can
be obtained using (8.11). Denoting the transfer function matrix of the filter
of (8.2) by Hẑy we find that :

Hẑy(ρ) = Z̃N−T (ρI − M−1ẐN−T )−1M−1Z,

where ρ is the Z-transform variable. The latter equation is similar to :

Hẑy(ρ) = Z̃(ρMNT − Ẑ)−1Z = Z̃[ρ(I − XY ) − Ẑ]−1Z,

and (8.11) follows using (8.18).
The fact that the filter of (8.2) stabilizes the filtering error (namely,

{Ã, D̃1, D̃2, α} defines a mean square stable evolution) is readily implied by
Lemma 8.1.

�$

8.4.1 The Polytopic Case

Due to the affinity of Σ of (8.9) in A, B1, C and D21, the result of Theorem 8.1
can be easily extended to the case where these matrices lie in convex bounded
domain. In this case, it is required that (8.9) holds for all the vertices of the
uncertain polytope for a single quintuple (R,S, Z, T,W ). We note that the
system should be quadratically stable over the polytope [38].

Assuming that A,B1, C, and D21 lie in the following uncertainty polytope

Ω̄
�
= {(A,B1, C,D21)|(A,B1, C,D21)

=
�l

i=1 τi(Ai, B1i, Ci, D21,i); τi ≥ 0;
�l

i=1 τi = 1}.
(8.20)

and denoting the set of the l vertices of this polytope by Ψ̄ we obtain the
following result:

Corollary 8.1. Consider the system of (8.1) and (8.2) and a given γ > 0.
The performance index of (8.4) is negative for any nonzero wk ∈ l̃2([0,∞); Rq)
and for any (A,B1, C,D21) ∈ Ω̄ if (8.9) is satisfied for all the vertices in Ψ̄
by a single (R,Z, S, T,W ). In the latter case, the filter matrices are given by
(8.11)
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Remark 8.1. In the above, the same matrix solution is considered (i.e Q in
(8.14)). This is done in order to keep the convexity of the resulting LMI. How-
ever, taking the same matrix solution for all the vertices leads to an overdesign
in the sense that in cases where the system of (8.1) is not quadratically stable,
no solution can be reached. Also, in the case where a solution is obtained using
the same matrix, a higher minimum γ is obtained. An improved result for the
above polytopic filter may be achieved by using a less conservative stochas-
tic version of the BRL of [89], where for each vertex a solution is obtained
on a basis of a separate Lyapunov function, rather than applying the known
conservative BRL where the solution is based on a single Lyapunov function
[39].

8.5 Robust Mixed Stochastic H2/H∞ Filtering

The mixed stochastic H2/H∞ filter design is achieved by considering the filters
that satisfy the H∞ requirement and finding the one that minimizes an upper-
bound on the estimation error variance when it is assumed that the sequence
{wk} is zero mean, standard white noise that is uncorrelated with β, β̄, and
ζ. The latter is described by the following H2 objective function :

J2 = lim
k→∞

E
w,β,β̄,ζ

�
z̃Tk z̃k

	
.

Denoting P̄
�
= lim

k→∞
E

w,β,β̄,ζ

�
ξkξ

T
k

	
, we readily find that J2 = Tr{C̃P̄ C̃T }

where P̄ = limk→∞ Pk and

−Pk+1+ÃPkÃ
T +D̃1PkD̃

T
1 +D̃2PkD̃

T
2 +α(D̃1PkD̃

T
2 +D̃2PkD̃

T
1 )+B̃B̃T =0.

(8.21)
The latter equation is readily achieved substituting for z̃k+1 in J2, using

(8.7) and taking the expectation with respect to the stochastic parameters.
We are interested in deriving the corresponding dual observability-type result
[116], taking into account the stochastic nature of {βk}, {ζk}, {β̄k}. Consider-
ing the following recursion

Q̃k =ÃT Q̃k+1Ã+D̃T
1 Q̃k+1D̃1+D̃T

2 Q̃k+1D̃2+α(D̃T
1 Q̃k+1D̃2+D̃T

2 Q̃k+1D̃1)
+C̃T C̃,

we obtain :

Tr{Pk+1Q̃k+1 − PkQ̃k} = Tr{[ÃPkÃ
T + D̃1PkD̃

T
1 + D̃2PkD̃

T
2

+α(D̃1PkD̃
T
2 + D̃2PkD̃

T
1 ) + B̃B̃T ]Q̃k+1}
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−Tr{Pk[ÃT Q̃k+1Ã+D̃T
1 Q̃k+1D̃1+D̃T

2 Q̃k+1D̃2+α(D̃T
1 Q̃k+1D̃2+D̃T

2 Q̃k+1D̃1)

+C̃T C̃]}.
Since

lim
k→∞

Tr{Pk+1Q̃k+1 − PkQ̃k} = 0

and Tr{αβ} = Tr{βα} it follows that Tr{C̃P̄ C̃T } = Tr{B̃T Q̃B̃}, where
Q̃ = limk→∞ Q̃k.
Defining:

Γ (Q̃)=−Q̃+ÃT Q̃Ã+D̃T
1 Q̃D̃1+D̃T

2 Q̃D̃2+α(D̃T
1 Q̃D̃2+D̃T

2 Q̃D̃1)+C̃T C̃,
(8.22)

we denote the following set

Φ
�
= {Q̂|Γ (Q̂) ≤ 0 ; Q̂ > 0}.

We also consider Γ̂ (Q̂, Σ)
�
= Γ (Q̂) + Σ for some 0 ≤ Σ ∈ Rn×n. The

monotonicity, with respect to Σ, of the solution Q̂ to the equation

Γ̂ (Q̂, Σ) = 0, (8.23)

implies, as in Lemma 3.2, that the solution Q̃ for (8.22) which is also the
solution for (8.23) for Σ = 0, if it exists, is less than or equal, in the matrix
inequality sense, to all other solutions of (8.23). We obtain

JB = Tr{B̃T Q̂B̃} ≥ Tr{B̃T Q̃B̃}, ∀Q̂ ∈ Φ. (8.24)

To solve the stochastic mixed H2/H∞ problem we assume that (8.13) has
a solution. We define the set of all the solutions to (8.13) by ΦQ, and we seek
to minimize JB over Φ ∩ ΦQ. Namely, we consider the following LMI:

Γ̃ (Q̄,H)
�
=

�
H −B̃T Q̄

−Q̄B̃ Q̄

�
> 0, Q̄ ∈ Φ ∩ ΦQ (8.25)

and we want to find Q̄ and H that minimize

Jτ = Tr{H}. (8.26)

It follows from (8.13) that Γ (Q) < −ÃTQB̃Θ̃−1B̃TQÃ and thus ΦQ ⊂ Φ.
We are, therefore, looking for Q and H that satisfy (8.14) and Γ̃ (Q,H) > 0
so that Tr(H) is minimized.

Notice that the matrix built from the first and sixth column and row blocks
in (8.14) resembles Γ̃ . Hence Q of (8.13) satisfies also (8.25) for H = γ2Iq.
This is in accordance with the well known fact that the solution to the H∞
problem is an upper-bound to the solution of the corresponding H2 problem
[6]. We are clearly looking for a tighter bound on JB .
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The minimization of (8.26) can be put in an LMI form that is affine in
Bf , by pre- and post-multiplying (8.25) by diag{I, JT } and diag{I, J}, re-
spectively, substituting for B̃ (using (8.8) and (8.19)) and pre- and post-
multiplying the result by Λ̄ and Λ̄T , respectively, where :

Λ̄
�
= diag{I,

�
R 0

−R In

�
}.

We obtain the following result :

Theorem 8.2. Consider the system of (8.7) and (8.4) and γ > 0. A filter
that yields JS < 0 for all nonzero wk ∈ l̃2([0,∞); Rq) and minimizes (8.24)
is obtained if there exists a solution (R,S, Z, T,W,H) to (8.9). The H2-norm
minimizing filter is obtained by simultaneously solving for (8.9) and

Υ̃
�
=


H −BT

1 R −BT
1 W − DT

21Z
T

−RB1 R 0

−WB1 − ZD21 0 W

 > 0

and minimizing (8.26). The filter matrices are then given by (8.11)

Remark 8.2. We note that the requirement for a simultaneous solution of
(8.9) and Υ̃ does not impose any special difficulty since both LMIs are affine
with respect to the matrix variables. Their simultaneous solution can be easily
obtained using any standard LMI solver.

8.6 Conclusions

In this chapter we solve the problem of stationary stochastic H∞-filtering of
discrete-time linear systems using LMI techniques [46], [40]. This problem was
treated before in [43],[39] by restricting the filter to be of the Luenberger type.
Using a Riccati recursion, the solution was obtained there only if in addition
to the H∞ requirement, an upper-bound on the covariance of the estimation
error is minimized in each instant. The solution of the present chapter does not
depend on the latter minimization and is not restricted to a specific structure
of the filter.

Using the LMI approach, the conditions for the existence of a solution to
the problem are obtained in term of LMIs that are affine in the system and the
filter parameters. This affinity allows also the consideration of deterministic
uncertainty in the system, when the deterministic part of the system matrices
lie in a given polytopic type domain. Our solution entails an over-design that
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stems from the quadratic stability nature of the solution. Under the require-
ment for this type of stability, the conditions we obtained for the existence of
a solution to the problem are both necessary and sufficient.

It may be argued that the solution of the estimation problem is a spe-
cial case of the solution of the general output-feedback problem with state-
multiplicative noise [10]. The latter, however, is confined to the case where the
measurement is free of multiplicative noise . The theory we developed in this
chapter allows for multiplicative uncertainties in the measurement matrix.
As such it enables the design of gain scheduled filters for estimation prob-
lems with noisy measurement matrices. This possibility is illustrated via the
guidance-motivated tracking example in which, unlike the standard Kalman
filter, the multiplicative noise affects the filter gains. Moreover, these gains
are scheduled according to the range measurements. Using the Kalman fil-
ter one can either ignore the multiplicative noise, or introduce an additional
measurement corresponding to the range. In the latter case, a non-linear filter-
ing scheme (e.g. extended kalman filter) can be applied. Our solution, which
avoids this nonlinearity by gain scheduling, may be useful also in other similar
applications where the nonlinear terms in the measurement can be used for
gain-scheduling at the cost of introducing multiplicative noise.



9

Discrete-time Systems: Tracking Control

9.1 Introduction

A method for solving the deterministic discrete-time tracking problems with
preview has been introduced in [17]. Similarly to the deterministic continuous-
time tracking control of [98], this method processes the information that is
gathered on the reference during the system operation and by applying the
game-theory approach it derives the optimal tracking strategy.

An important extension of the above mentioned works on H∞ tracking
with preview is to allow for uncertainties in the plant parameters. Using the
method of [17], the tracking problem was solved for discrete-time systems
with norm-bounded uncertainties in [18]. The latter solution entails a signifi-
cant overdesign, even in the case where the uncertain parameters in the plant
state-space model are uniformly distributed in the assumed interval of uncer-
tainty. It cannot, therefore, cope successfully with plant parameters that are
non-uniformly distributed around given average values. One such example is
encountered when the plant parameters are subject to white noise uncertain-
ties resulting in state multiplicative noise.

In this chapter, we extend the work of [17] to systems with state-multiplicative
noise [53], [42]. We treat the case where correlated parameter uncertainties
appear in both the system dynamics and the input matrices. An optimal
state-feedback tracking strategy is derived, in Section 9.3, which minimizes
the expected value of the standard H∞ performance index with respect to
the unknown parameters, for three tracking patterns of the reference signal.
In the finite horizon case, a game theory approach is applied where, given a
specific preview pattern, the controller plays against nature which chooses the
initial condition and the energy-bounded disturbance. In this case the optimal
strategies of both nature and the designer are found by a achieving a saddle-
point equilibrium. In the stationary case, however, a state-feedback control
strategy is obtained in Section 9.3.2 for which the index of performance is
less than or equal to a certain cost. In this case, the problem is solved by two

E. Gershon et al.: H∞ Contr. and Est. of State-multipl. Lin. Sys., LNCIS 318, pp. 137–162, 2005.
© Springer-Verlag London Limited 2005
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easily implementable linear matrix inequalities. For both, the finite and the
infinite horizon cases, necessary and sufficient conditions are obtained.

In Section 9.4 we solve the output-feedback control problem where we
allow for a state-multiplicative noise in the measurement matrix. We first
introduce an auxiliary stochastic BRL for systems that contain, in addition
to the standard BRL, a reference signal in the system dynamics. The BRL is
solved as a max-min problem and results in a modified Riccati equation.

The output-feedback tracking control problem is solved via a max-min
strategy arguments in Section 9.4.2, rather than a game theory approach (
applied to the solution of the finite-horizon state-feedback control). Using the
solution of the finite-horizon state-feedback, we re-formulate the problem to
a filtering problem which we solve with the above auxiliary BRL.

The theory developed in this chapter [53], [42] is applied to two examples.
The first is a stochastic version of the example in [17] and in the second ex-
ample, which is brought in Chapter 11 of the Application part, we synthesize
an optimal guidance law for the case of noisy measurement in the time to go
of a guidance system. It is shown, in the latter example, that the effect of the
noise in the measurements can be modeled as a multiplicative white noise.
The theory of the present chapter is, therefore, applied to derive a guidance
law with a very low sensitivity to this noise.

9.2 Problem Formulation

Given the following linear discrete time-varying system:

xk+1 = (Ak + Fkvk)xk + (B2,k +Gkηk)uk +B1,kwk +B3,krk

yk = (C2,k +Dkζk)xk +D21,knk
(9.1)

where xk ∈ Rn is the state vector, wk ∈ l̃2([0, N − 1]; Rp) is an exogenous
disturbance, yk ∈ Rz is the measurement, rk ∈ Rr is a measured reference
signal, uk ∈ l̃2([0, N −1]; Rl) is the control input signal and x0 is an unknown
initial state and where {vk} and {ηk} are standard random scalar white noise
sequences with zero mean that satisfy:

E{vkvj} = δkj , E{ηkηj} = δkj , E{vkηj} = αkδkj , |αk| ≤ 1, (9.2)

where {ζk} satisfies E{ζkζj} = δkj and is uncorrelated with {vk} and {ηk}.
We denote

zk = Ckxk +D2,kuk +D3,krk, zk ∈ Rq, k ∈ [0, N ]. (9.3)

We assume, for simplicity, that:

[CT
k DT

3,k DT
2,k]D2,k = [0 0 R̃k], R̃k > 0.



9.2 Problem Formulation 139

Remark 9.1. We note that the formulation of (9.3) is most general. It reduces
to an objective that includes the tracking error and a penalty on the control

effort. For example, taking Ck =
�

0 1
0 0

�
, D3,k =

�−1
0

�
and D2,k =

�
0

−1

�
implies that we minimize the sum of squares of ek = yk − rk and uk, where
yk = [0 1]xk. We also note that the orthogonality between [CT

k DT
3,k] and

D2,k leads to quadratic costs in both the error defined by Ckxk + D3,krk
and the control effort. The assumption on R̃k > 0 is required to simplify the
derivations contained in this chapter. This assumption can be readily relaxed
[57].

Our objective is to find a control law {uk} that minimizes the mean energy
of {zk} with respect to v and η, for any given energy of {wk}, by using the
available knowledge on the reference signal, for the worst-case of the process
disturbance and measurement noise {wk}, {nk} and the initial condition x0.
We, therefore, consider, for a given scalar γ > 0 the following two problems:

9.2.1 State-feedback Tracking

We consider the system of (9.1) and (9.3) where we define the following per-
formance index:

JE(rk, uk, wk, x0)
�
= E

v,η

��CNxN +D3,NrN�2+||zk||22−γ2[||wk||22]
	

−γ2xT0 R
−1x0, R−1 ≥0. (9.4)

Similarly to [17] we consider three different tracking problems differing on
the information pattern over {rk} :
1) Stochastic H∞-Tracking with full preview of {rk} : The tracking
signal is perfectly known for the interval k ∈ [0, N ].

2) Stochastic H∞-Tracking with no preview of {rk}: The tracking
signal measured at time k is known for i ≤ k.

3) Stochastic H∞-Tracking with fixed-finite preview of {rk}: At
time k, ri is known for i ≤ min(N, k + h) where h is the preview length.
In all three cases we seek a control law {uk} of the form

uk = Hxxk +Hrrk (9.5)

where Hx is a causal operation on {xk}, i ≤ k and where the causality of
Hr depends on the information pattern of the reference signal. The design
objective is to minimize

maxJE(rk,uk,wk,x0) ∀{wk}∈ l̃2([0, N−1]; Rp), {uk}∈ l̃2([0, N−1]; Rl), xo∈Rn

where for all of the three tracking problems we consider a related linear
quadratic game in which the controller plays against nature by choosing x0
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and {wk}. We, thus, consider the following game:

Find {w∗
k} ∈ l̃2([0, N −1]; Rp), {u∗k} ∈ l̃2([0, N −1]; Rl), and x∗0 ∈ Rn that

satisfies, given {rk} ∈ l2[0, N ], the following inequalities:

JE(rk, u∗k, wk, x0) ≤ JE(rk, u∗k, w
∗
k, x

∗
0) ≤ JE(rk, uk, w∗

k, x
∗
0).

9.2.2 Output-feedback Control Tracking

We consider the system of (9.1) and (9.3) with the following index of perfor-
mance:

J̃E(rk, uk, wk, nk, x0)
�
= E

v,ζ

��CNxN +D3,NrN�2
	

+ E
v,ζ

�||zk||22−γ2[||wk||22 + ||nk||22]
	 − γ2xT0 R

−1x0, R−1 ≥0.
(9.6)

Similarly to the state-feedback problem of Section 9.2.1, we consider the
above three tracking problems differing on the information pattern over {rk}.
We seek a controller of the form (9.5) where our design objective is to minimize

max J̃E(rk, uk, wk, nk, x0) ∀{wk} ∈ l̃2([0, N − 1]; Rp),

{nk} ∈ l̃2([0, N − 1]; Rz), {uk} ∈ l̃2([0, N − 1]; Rl), xo ∈ Rn,

where for all of the three tracking problems we derive a controller {uk} which
plays against it’s adversaries {wk}, {nk} and x0.

9.3 The State-feedback Control Tracking

We consider the following Riccati difference equation:

Qk=AT
kMk+1Ak+CT

k Ck+FT
k Qk+1Fk−(FT

k Qk+1Gkαk +AT
kMk+1B2,k)Φ−1

k

(GT
kQk+1Fkαk +BT

2,kMk+1Ak),

Q(N) = CT
NCN

(9.7)
where

Mk+1
�
= Qk+1[I − γ−2B1,kB

T
1,kQk+1]−1

and

Φk = BT
2,kMk+1B2,k +GT

kQk+1Gk + R̃k.

The solution of the state-feedback tracking problem is obtained by the
following :
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Theorem 9.1. Consider the system of (9.1) and JE of (9.4). Given γ > 0,
the state-feedback tracking game possesses a saddle-point equilibrium solution
iff there exists Qi > 0, ∀i ∈ [0, N ] that solves (9.7) and satisfies

Rk+1 > 0, k ∈ [0 N − 1], γ2R−1 − Q0 > 0, (9.8)

where we define

Rk+1
�
= γ2I − BT

1,kQk+1B1,k.

When a solution exists, the saddle-point strategies are given by:

x∗0 = (γ2R−1 − Q0)−1θ0

w∗
k = R−1

k+1B
T
1,k[θk+1 +Qk+1(Akxk +B2,kuk +B3,krk)]

u∗k = −Φ−1
k (BT

2,kMk+1[Akxk +B3,krk +Q−1
k+1θ

c
k+1] + αkG

T
kQk+1Fkxk)

(9.9)
where

θck+1 = [θk+1]+ (9.10)

and where θk satisfies

θk = ĀT
k θk+1 + B̄krk, θN = CT

ND3,NrN , (9.11)

with

Āk = Q−1
k+1(M

−1
k+1 +B2,kT

−1
k+1B

T
2,k)

−1(Ak − αkB2,kT
−1
k+1G

T
kQk+1Fk)

B̄k = ĀT
kQk+1B3,k + CT

k D3,k.

where
Tk+1

�
= R̃k +GT

kQk+1Gk.

The game value is then given by:

JE(rk, u∗k, w
∗
k, x

∗
0)=�[Q−1

k+1+B2,kT
−1
k+1B

T
2,k−γ−2B1,kB

T
1,k]

− 1
2

(Q−1
k+1θk+1+B3,krk)�2

2 −�Q− 1
2

k+1θk+1�2
2+�D3,krk�2

2+�D3,NrN�2

+θT0 (γ2R−1−Q0)−1θ0.

(9.12)

Proof: In order to provide a full proof to Theorem 9.1, we need a preliminary
result which deals with the causality issue that is essential for the structure
of the control sequence:
We consider the following cost function:

Jo =
N−1�
k=0

||uk − μk||2

where μk is the output of a linear time-varying system with input wk ∈ Yk
where Yk = {yj , j ≤ k, rj , j ≤ min(k+h,N −1)} and where we note that for
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h = 0, {uk} is obtained using the zero preview on {rk}. A finite h corresponds
to finite preview and an infinite h (or h larger than N−1) corresponds to a full
preview of {rk}. We further note that in our case yk = xk (full state-feedback
control). In order to obtain {uk}, using the above description, we consider the
following:

μk =
k�

j=0

αjyj +
N−1�
j=0

βjrj

where αj , βj are matrices of the appropriate dimensions. Consider the follow-
ing realization of {uk}:

uk =
k�

j=0

ᾱjyj +
kh�
j=0

β̄jrj ,

where kh
�
= min(k + h, N − 1). We arrive at the following lemma:

Lemma A1: Consider the above Jo, μk and uk. The matrix parameters
ᾱj , β̄j that minimize Jo are given by

ᾱj = αj , β̄j = βj .

Proof: We define

[ri]+ =

�
ri i ≤ kh

0 i > kh

�
, [ri]− =

�
0 i ≤ kh

ri i > kh

�
. (9.13)

Subtracting uk from μk we obtain:

μk − uk =
k�

j=0

(αj − ᾱj)yj +
kh�
j=0

(βj − β̄j)rj +
N−1�

j=kh+1

βjrj

By padding by zeros αj , ᾱj for k + 1 ≤ j ≤ kh, we obtain:

μk − uk =
kh�
j=0

{(αj − ᾱj)yj + (βj − β̄j)rj} +
N−1�

j=kh+1

βjrj .

We further define

ρTj
�
= [yTj rTj ]T , 0j

�
= [αj − ᾱj βj − β̄j ], νj

�
= [0 βj ]

and consider [ρi]+ and [ρi]− similarly to (9.13). We have:

μk − uk =
kh�
j=0

0jρj +
N−1�

j=kh+1

νjρj =
N−1�
j=0

0j [ρj ]+ +
N−1�
j=0

νj [ρj ]−.
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The result of the lemma readily follows by calculating (μk−uk)T (μk−uk) and
using the orthogonality of [ρk]+ and [ρk]−. We note that this lemma implies
that the minimization of Jo =

�N−1
k=0 ||uk − μk||2 by {uk} is accomplished by

just uk = [μk]+, namely the optimal control {uk} is just the causal part of
{μk}.

The remaining part of the proof follows the standard line of applying a
Lyapunov-type quadratic function in order to comply with the index of per-
formance. This is usually done by using two completing to squares operations
however, since the reference signal of rk is introduced in the dynamics of (9.1),
we apply a third completion to squares operation with the aid of the signal
θk+1. This latter signal finally affects the controller design through it’s causal
part [θk+1]+. Defining

Jk = ||Ckxk +D3,krk||2 + ||D2,kuk||2 − γ2||wk||2,
we consider (9.4) and obtain:

JE(r, u, w, x0) = −γ2xT0 R
−1x0 + E

v,η

��CNxN +D3,NrN�2
	

+
N−1�
k=0

E
v,η

{Jk} .

Denoting
φk = xTk+1Qk+1xk+1 − xTkQkxk,

and substituting (9.1) in the latter, we find that

φk = [xTk (Ak + Fkvk)T + uTk (B2,k +Gkηk)T + rTk B
T
3,k]

Qk+1[(Ak + Fkvk)xk + (B2,k +Gkηk)uk +B3,krk]

+2[xTk (Ak + Fkvk)T + uTk (B2,k +Gkηk)T + rTk B3,k]Qk+1B1,kwk

+wT
k B

T
1,kQk+1B1,kwk − �xk�2

Qk
+ �Ckxk +D3,krk�2

−γ2wT
k wk + γ2wT

k wk + �uk�2
R̃k

− zTk zk

= −wT
k [γ2I − BT

1,kQk+1B1,k]wk + 2[xTk (Ak + Fkvk)T +uTk (B2,k +Gkηk)T

+rTk B
T
3,k]Qk+1B1,kwk + uTk [R̃k + �B2,k +Gkηk)�2

Qk+1
]uk

+2xTk [(Ak + Fkvk)T + rTk B
T
3,k]Qk+1(B2,k +Gkηk)uk

+xTk [(Ak + Fkvk)TQk+1(Ak + Fkvk) + CT
k Ck − Qk]xk − zTk zk + γ2wT

k wk

+rTk (DT
3,kD3,k +BT

3,kQk+1B3,k)rk + 2rTk (BT
3,kQk+1(Ak + Fkvk) +DT

3,kCk)xk.

Taking the expectation with respect to ηk and vk we obtain:

E
v,η

{φk} = E
v,η

{−wT
k [γ2I − BT

1,kQk+1B1,k]wk + 2[xTkA
T
kQk+1B1,k
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+(uTkB
T
2,k+rTk B

T
3,k)Qk+1B1,k]wk + uTk [R̃k+BT

2,kQk+1B2,k +GT
kQk+1Gk]uk

+2(xT [AT
kQk+1B2,k + αkF

T
k Qk+1Gk] + rTk B3,kQk+1B2,k)uk

+xTk [AT
kQk+1Ak + FT

k Qk+1Fk + CT
k Ck − Qk]xk

+rTk (DT
3,kD3,k+BT

3,kQk+1B3,k)rk+2rTk (BT
3,kQk+1Ak+DT

3,kCk)xk}− E
v,η

{Jk}
Note that first order terms in both ηk or vk have vanished as a result of the
expectation operation. Completing to squares for wk we get:

E
v,η

{φk}=

E
v,η

{−(wk − w̃k)TRk+1(wk − w̃k) + uTk [R̃k +BT
2,kMk+1B2,k +GT

kQk+1Gk]uk

+2(xT [AT
kMk+1B2,k + αkF

T
k Qk+1Gk] + rTk B3,kMk+1B2,k)uk

+xTk [AT
kMk+1Ak + FT

k Qk+1Fk + CT
k Ck − Qk]xk

+rTk [DT
3,kD3,k+BT

3,kMk+1B3,k]rk+2rTk (BT
3,kMk+1Ak+DT

3,kCk)xk}− E
v,η

{Jk}.
Completing next to squares for uk we obtain:

E
v,η

{φk}= E
v,η

{−(wk−w̃k)TRk+1(wk−w̃k)+(uk−ũk)TΦk(uk−ũk)}− E
v,η

{Jk}

+ E
v,η

{xTk [AT
kMk+1Ak−(AT

kMk+1B2,k+αkF
T
k Qk+1Gk)Φ−1

k (BT
2,kMk+1Ak

+αGT
kQk+1Fk)+FT

k Qk+1Fk+CT
k Ck−Qk]xk

+rTk [DT
3,kD3,k+BT

3,k(M
−1
k+1+B2,kT

−1
k+1B

T
2,k)

−1B3,k]rk+2rTk (BT
3,k(M

−1
k+1

+B2,kT
−1
k+1B

T
2,k)

−1Ak+DT
3,kCk − αkB

T
3,kMk+1B2,kΦkG

T
kQk+1Fk)xk}

where:

ũk = u∗k,

w̃k = w∗
k,

θk+1 = θck+1 = 0

(9.14)

and where w∗
k, u

∗
k are given in (9.9).

Note that following the above two completion to square operations, the
mixed terms in rk and xk still remain. Similarly to [17], in order to get rid of
these latter terms in rk and xk we first define the following:

ŵk
�
= wk − w̃k, ûk

�
= uk − ũk.

Considering the above definition of ŵk and ûk we readily re formulate the
state equation of (9.1) in the following way:

xk+1 = Akxk +B2,kuk +B1,kŵk +B1,kw̃k +B3,krk + Fkvkxk +Gkηkuk
= Akxk +B1,kŵk +B1,kR

−1
k+1B

T
1,kQk+1(Akxk +B2,kuk +B3,krk)

+B2,kuk +B3,krk + Fkvkxk +Gkηkuk
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= [I +B1,kR
−1
k+1B

T
1,kQk+1]Akxk + [I +B1,kR

−1
k+1B

T
1,kQk+1]B2,kuk

+[I +B1,kR
−1
k+1B

T
1,kQk+1]B3,krk +B1,kŵk + Fkvkxk +Gkηkuk.

Now, considering the definition of Rk+1 in Theorem 9.1 and using the identity

α[I − βα]−1 = [I − αβ]−1α

we obtain the following.

I +B1,kR
−1
k+1B

T
1,kQk+1 = I + γ−2B1,k[I − γ−2BT

1,kQk+1B1,k]−1BT
1,kQk+1

= I + γ−2B1,kB
T
k Qk+1[I − γ−2B1,kB

T
k Qk+1]−1 = [I + γ−2B1,kB

T
k Qk+1]−1

= Q−1
k+1Mk+1,

where the definition of Mk+1 follows (9.7). Considering the latter and uk =
ũk + ûk, where ũk is given in (9.14), we obtain the following.

xk+1 = Q−1
k+1Mk+1Akxk +Q−1

k+1Mk+1B2,kûk +B1,kŵk +Q−1
k+1Mk+1B3,krk

−Q−1
k+1Mk+1B2,kΦ

−1
k [BT

2,kMk+1(Akxk +B3,krk) + αkG
T
kQk+1Fkxk]

+Fkvkxk +Gkηkuk = [Q−1
k+1Mk+1(I − B2,kΦ

−1
k BT

2,kMk+1)Ak

−Q−1
k+1Mk+1B2,kΦ

−1
k αkG

T
kQk+1Fk]xk + Fkvkxk +Gkηkuk

+Q−1
k+1Mk+1(I − B2,kΦ

−1
k BT

2,kMk+1)rk +Q−1
k+1Mk+1B2,kûk +B1,kŵk.

Noting that:

Mk+1B2,kΦ
−1
k BT

2,kMk+1

= Mk+1B2,k[I + T−1
k+1B

T
2,kMk+1B2,k]−1T−1

k+1B
T
2,kMk+1

= [I +Mk+1B2,kT
−1
k+1B

T
2,k]

−1Mk+1B2,kT
−1
k+1B

T
2,kMk+1

= Mk+1 − (M−1
k+1 +B2,kT

−1
k+1B

T
2,k)

−1,

where we use the identity

[I + L]−1L = I − [I + L]−1

and where Φk is given right after (9.7), we obtain:

−Q−1
k+1Mk+1B2,kΦ

−1
k αkG

T
kQk+1Fk

= −Q−1
k+1Mk+1B2,k[I + T−1

k+1B
T
2,kMk+1B2,k]−1T−1

k+1αkG
T
kQk+1Fk

= −Q−1
k+1Mk+1[I +B2,kT

−1
k+1B

T
2,kMk+1]−1B2,kT

−1
k+1αkG

T
kQk+1Fk

= −Q−1
k+1[M

−1
k+1 +B2,kT

−1
k+1B

T
2,k]

−1B2,kT
−1
k+1αkG

T
kQk+1Fk.

Considering the above derivations, the new state equation of (9.1) in terms
of ûk and ŵk and the stochastic terms becomes:
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xk+1 = Ākxk +Q−1
k+1Mk+1B2,kûk +B1,kŵk +Q−1

k+1Mk+1

(I − B2,kΦ
−1
k BT

2,kMk+1)B3,krk + Fkvkxk +Gkηkuk,

where

Āk = Q−1
k+1[M

−1
k+1 +B2,kT

−1
k+1B

T
2,k]

−1(Ak − B2,kT
−1
k+1αkG

T
kQk+1Fk).

The next step which is taken in order to get rid of the mixed terms in rk
and xk in E

v,η
{φk} is the addition of the auxiliary term of 2(θTk+1xk+1 −θTk xk)

to φk before calculating E
v,η

{φk}.
In terms of the above new state equation we obtain:

E
v,η

�
θTk+1xk+1

	
= E

v,η
{θTk+1[Ākxk +Q−1

k+1Mk+1B2,kûk +B1,kŵk +Q−1
k+1Mk+1

(I − B2,kΦ
−1
k BT

2,kMk+1)B3,krk + Fkvkxk +Gkηkuk].}

Defining :
φ∗
k = φk + 2(θTk+1xk+1 − θTk xk),

we thus add the following quantity to φk

E
v,η

�
2(θTk+1xk+1 − θTk xk)

	
= E

v,η

�
2(θTk+1Āk − θTk )xk

	
+ E

v,η
{2θTk+1[Q

−1
k+1Mk+1B2,kûk +B1,kŵk

+Q−1
k+1Mk+1(I − B2,kΦ

−1
k BT

2,kMk+1)B3,krk + Fkvkxk +Gkηkuk]}.

We obtain, after completing to squares for θk, the following expression.

E
v,η

{φ∗
k} = −||ŵk − R−1

k+1B
T
1,kθk+1||2Rk+1

+ ||ûk + Φ−1
k BT

2,kMk+1Q
−1
k+1θk+1||2Φk

− E
v,η

{Jk} + ||BT
1,kθk+1||2

R−1
k+1

−||BT
2,kMk+1Q

−1
k+1θk+1||2

Φ−1
k

+rTk [DT
3,kD3,k+BT

3,k(M
−1
k+1+B2,kT

−1
k+1B

T
2,k)

−1B3,k]rk+

xTk [AT
kMk+1Ak−(AT

kMk+1B2,k+αkF
T
kQk+1Gk)Φ−1

k (BT
2,kMk+1Ak+αGT

kQk+1Fk)

+FT
k Qk+1Fk+CT

k Ck−Qk]xk

+2θTk+1Q
−1
k+1(M

−1
k+1 +B2,kT

−1
k+1B

T
2,k)

−1B3,krk.

The performance index becomes:

JE(rk, uk, wk, x0) =
N−1�
k=0

−||ŵk − R−1
k+1B

T
1,kθk+1||2Rk+1

+ J̄(r)



9.3 The State-feedback Control Tracking 147

+
�N−1

k=0 {||ûk + Φ−1
k BT

2,kMk+1Q
−1
k+1θk+1||2Φk

} − γ2||x0

−(γ2R−1 − Q0)−1θ0||2R−1−γ−2Q0.

(9.15)

where

J̄(r)
�
=

N−1�
k=0

θTk+1{B1,kR
−1
k+1B

T
1,k − Q−1

k+1Mk+1B2,kΦ
−1
k BT

2,kMk+1Q
−1
k+1}θk+1

+
�N−1

k=0 rTk (DT
3,kD3,k +BT

3,k(M
−1
k+1+B2,kT

−1
k+1B

T
2,k)

−1B3,k)rk

+2
�N−1

k=0 θTk+1Q
−1
k+1(M

−1
k+1 +B2,kT

−1
k+1B

T
2,k)

−1B3,krk + θT0 (γ2R−1 − Q0)−1θ0

+||D3,NrN ||2 .
The result of (9.12) readily follows from (9.15) and Lemma A1, and the

saddle-point strategies are obtained by taking:

ŵ∗ = R−1
k+1B

T
1,kθk+1,

û∗ = −Φ−1
k BT

2,kMk+1Q
−1
k+1θ

c
k+1,

x∗0 = (γ2R−1 − Q0)−1θ0.

(9.16)

�$
Remark 9.2. For uN−1 to be defined, it is required that CT

NCN is of full rank.
This may not comply sometimes with actual requirements. In this case CT

NCN

may be replaced by CT
NCN + 0Iwhere 0 < 0 � 1.

Remark 9.3. We note that θck+1 is the causal part of θk+1 which depends on
the specific patterns of the three reference signals (1) - (3) of Section 9.2.1.
Note also that only the saddle- point strategy of the controller u∗k of (9.9)
depends on the causality of the reference signal of the latter three problems.

9.3.1 Preview Control Tracking Patterns

Applying the result of Theorem 9.1 on the specific pattern of the reference
signal we obtain:

Lemma 9.1. H∞-Tracking with full preview of {rk}: In this case

θck+1 = Φ̂k+1θN +
�N−k−1

j=1 Ψk+1,jB̄N−jrN−j (9.17)

where
Φ̂k+1

�
= ĀT

k+1Ā
T
k+2...Ā

T
N−1

Ψk+1,j
�
=

�
ĀT
k+1Ā

T
k+2...Ā

T
N−j−1 j < N − k − 1

I j = N − k − 1

� (9.18)

The control law is given by (9.9) with θck+1 given by (9.17).
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Proof: Considering (9.11) and taking k + 1 = N we obtain:

θN−1 = ĀT
N−1θN + B̄N−1rN−1,

where θN is given in (9.11). Similarly we obtain for N − 2

θN−2 = ĀT
N−2θN−1 + B̄N−2rN−2 = ĀT

N−2[Ā
T
N−1θN + B̄N−1rN−1]

+B̄N−2rN−2 = ĀT
N−2Ā

T
N−1θN + ĀT

N−2B̄N−1rN−1 + B̄N−2rN−2.

The above procedure is thus easily iterated to yield (9.18). Taking, for
example N = 3 one obtains from (9.11) the following equation for θ1:

θ1 = ĀT
1 Ā

T
2 θ3 + ĀT

1 B̄2r2 + B̄1r1.

The same result is recovered by taking k = 0 in (9.18) where j = 1, 2. We
note that in this case of full preview of {rk}, θck+1 = [θk+1]+.

�$
Lemma 9.2. H∞-Tracking with zero preview of {rk}: We obtain the following
control law:

u∗ = −Φ−1
k [BT

2,kMk+1(Akxk +B3,krk) + αkG
T
kQk+1Fkxk].

Proof : In this case θck+1 = 0 since at time k, ri is known only for i ≤ k.
We obtain from (9.9) the above control law.

Lemma 9.3. H∞-Tracking with fixed-finite preview of {rk}: We obtain the
control law of (9.9) where θck+1 satisfies :

θck+1 =


�h

j=1 Ψ̄k+1,jB̄k+h+1−jrk+h+1−j k + h ≤ N − 1

Φ̂k+1θN +
�h−1

j=1 Ψ̄k+1,jB̄N−jrN−j k + h = N

 .

where Ψ̄k+1,j is obtained from (9.18) by replacing N by k + h+ 1.

The above results is obtained since ri is known at time k for i ≤
min(N, k+ h). We note that the proof of Lemma 9.3 follows the same line as
the proof of Lemma 9.1.

Remark 9.4. The case of multiple stochastic uncertainties in both the dy-
namic and the input matrices can be readily considered. For simplicity we
bring here a case where two white noise uncertainties appear in the latter ma-
trices (namely Fkvk and Gkηk in (9.1) are replaced by F1,kv1,k + F2,kv2,k

and G1,kη1,k + G2,kη2,k respectively). We consider the special case where
{v1,k}, {v2,k}, {η1,k}, {η2,k} are uncorrelated standard random scalar white
noise sequences with zero mean. For the latter case, we set α = 0 in (9.7),
(9.9) and in Ā and replace FT

k Qk+1Fk by FT
1,kQk+1F1,k + FT

2,kQk+1F2,k and
GT

kQk+1Gk by GT
1,kQk+1G1,k +GT

2,kQk+1G2,k.
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Remark 9.5. We note that since

θk = ĀT
k θk+1 + B̄krk, uk = gx,kxk + gθ,kθk,

in the case where rk is scalar and slowly varies with respect to the dynamics
of θk, one may solve

θ̃k = ĀT
k θ̃k+1 + B̄k

and approximate uk by

uk = gx,kxk + gθ,kθ̃krk.

In such cases the controller applies both causal state-feedback and distur-
bance/reference feedforward, whereas without this approximation the distur-
bance feedforward path is not causal. Of course, the error in such approxi-
mation is nulled when rk is actually constant. This idea is widely applied in
many guidance laws based on optimal control [115] where the target maneu-
vers are assumed to be constant for synthesis purposes, resulting in guidance
laws which are applicable for slowly varying maneuvers.

9.3.2 State-feedback: The Infinite-horizon Case

We treat the case where the matrices of the system in (9.1) and (9.3) are all
time-invariant and N tends to infinity. Since (9.7) and the condition of (9.8)
are identical to those encountered in the corresponding state-multiplicative
state-feedback regulator problem (where rk ≡ 0) [87], the solution Qk of (9.7)
and (9.8), if it exists, will tend to the mean square stabilizing solution (see
[12], page 134) of the following equation:

−Q̄+AT M̄A+CTC+FT Q̄F−(FT Q̄Gα+AT M̄B2)Φ̄−1(GT Q̄Fα+BT
2 M̄A)=0

(9.19)
where

M̄
�
= Q̄[I − γ−2B1B

T
1 Q̄]−1 and Φ̄

�
= BT

2 M̄B2 +GT Q̄G+ R̃ (9.20)

and where
γ2Ip − BT

1 Q̄B1 > 0. (9.21)

The latter will guarantee that

JE(rk, u∗k, wk, x0) ≤ Ĵ(r),

where

Ĵ(r) = �[Q̄−1 +B2T̄
−1BT

2 − γ−2B1B
T
1 ]−

1
2 (Q̄−1θk+1 +B3rk)�2

2

−�Q̄− 1
2 θk+1�2

2 + �D3rk�2
2 + �D3rN�2 + θT0 (γ2R−1 − Q̄)−1θ0.

In the latter, θk is given by the time-invariant version of (9.11), θck is defined
in (9.10) and
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T̄
�
= R̃ +GT Q̄G. (9.22)

A strict inequality is achieved, for ({wk}, xo) that is not identically zero,
iff the left side of (9.19) is strictly less than zero. The latter inequality can be
expressed in a LMI form in the case where α = 0, as follows:

Theorem 9.2. Consider the system of (9.1) and (9.3) with constant matrices
and α = 0. Then, for a given γ > 0,

JE(rk, u∗k, wk, x0) < Ĵ(r).

for all {wk} ∈ l̃2([0,∞); Rp) and x0 ∈ Rn iff there exists a matrix P = PT ∈
Rn×n that satisfies the following LMIs:

Γ1
�
=



−P PAT 0 PFT PCT 0

∗ −P − B2R̃
−1BT

2 B2R̃
−1GT 0 0 B1

∗ ∗ −P − GR̃−1GT 0 0 0

∗ ∗ ∗ −P 0 0

∗ ∗ ∗ ∗ −Iq 0

∗ ∗ ∗ ∗ ∗ −γ2Ip


< 0

(9.23)
and �

γ2Ip B
T
1

∗ P

�
> 0. (9.24)

If such a solution exists then the optimal control strategy is given by:

u∗k = −Φ̄−1BT
2 M̂(Axk +B3rk + Pθck+1) (9.25)

where
M̂ = (P − γ−2B1B

T
1 )−1, and θck+1 = [θk+1]+

and θk satisfies

θk = AT [P − γ−2B1B
T
1 +B2(R̃ +GTP−1G)−1BT

2 ]−1(Pθk+1 +B3rk).

Proof: The inequality that is obtained from (9.19) for α = 0 is

−Q̄+AT M̄ [I − B2Φ̄
−1BT

2 M̄ ]A+ CTC + FT Q̄F < 0

with the condition of (9.21). Since

M̄ − M̄B2Φ̄
−1BT

2 M̄ = (M̄−1 +B2T
−1BT

2 )−1

we obtain, using the definition of M̄ in (9.20), the condition:
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−Q̄+AT [Q̄−1 − γ−2B1B
T
1 +B2T̄

−1BT
2 ]−1A+ CTC + FT Q̄F < 0 (9.26)

Applying the inversion lemma on T̄ of (9.22) we obtain

T̄−1 = R̃−1 − R̃−1GT (Q̄−1 +GR̃−1GT )−1GR̃−1.

Substituting the latter in (9.26) and defining P = Q̄−1 we obtain:

P−1 − AT [P − γ−2B1B
T
1 +B2R̃

−1BT
2 − B2R̃

−1GT (P +GR̃−1GT )−1GR̃−1

BT
2 )]−1A − CTC − FTP−1F > 0.

Using Schur’s complements the latter inequality is equivalent to

−P−1 AT 0 FT CT 0

∗ −P − B2R̃
−1BT

2 B2R̃
−1GT 0 0 B1

∗ ∗ −P − GR̃−1GT 0 0 0

∗ ∗ ∗ −P 0 0

∗ ∗ ∗ ∗ −Iq 0

∗ ∗ ∗ ∗ ∗ −γ2Ip


< 0 (9.27)

The LMI of (9.23) is then obtained by multiplying (9.27), from both sides,
by diag{P, In, In, In, Iq, Ip}. Using Schur’s complements the condition of
(9.21) is readily given by (9.24).

�$
Remark 9.6. The case of D3 = 0 characterizes a situation where a part of the
disturbance is measured with preview. Substituting for D3 in the equations
of Theorem 9.1 we obtain, by (9.12), the following game value.

JE(rk, u∗k, w
∗
k, x

∗
0)=�[P +B2T

−1BT
2 −γ−2B1B

T
1 ]−

1
2 (Pθk+1+B3rk)�2

2

−�P 1
2 θk�2

2+�P 1
2 θ0�2+θT0 (γ2R−1−P−1)−1θ0

= �[P +B2T
−1BT

2 −γ−2B1B
T
1 ]0.5ηk�2

2 − �P 1
2AT ηk�2

2 +�P 1
2 θ0�2

+θT0 (γ2R−1−P−1)−1θ0 = �Θηk�2
2 +�P 1

2 θ0�2+θT0 (γ2R−1−P−1)−1θ0,

where
ηk

�
= [P +B2T

−1BT
2 −γ−2B1B

T
1 ]−1(Pθk+1+B3rk)

and where
Θ

�
= P +B2T

−1BT
2 −γ−2B1B

T
1 − APAT ,

is the matrix block that is obtained by deleting the forth and fifth matrix rows
and columns in Γ1 of (9.23) and using the Schur’s complements formula with
respect to the (2,2) block in the resulting inequality. The fact that Γ1 > 0
readily implies that the game value is positive. The latter also stems from
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the fact that in the case where D3 = 0, rk is a disturbance (measurable one)
that does not appear in the performance index. If nature could choose also
rk, it would certainly win the game by choosing rk of unbounded magnitude
without being penalized. To include nature in the game and let it choose rk
one should add to the cost function of (9.4) a penalized term of {rk}, namely
−γ2||rk||22. In such case, however, the maximizing future values of rk = r∗k
depend on xk which in turn depends on r∗k via uk, resulting in an infinite
dimensionality of the problem [65].

The optimal strategy for the control input uk is obtained from the results of
Theorem 9.2 according to the specific information we have on {rk}. Assuming
that the conditions of the latter theorem are satisfied we obtain the following.

Lemma 9.4. Stationary H∞-Tracking with zero preview of {rk}: In this case
θck+1 = 0 and

u∗ = −Φ̄−1BT
2 M̂(Axk +B3rk).

Lemma 9.5. Stationary H∞ Fixed-finite Preview Tracking: The control law
is given by (9.25) when θck+1 is given by:

θck+1 =
h�

j=1

(ĀT )h−j(ĀTP−1B3 + CTD3)rk+h+1−j .

Proof: We note that in this case ri is known at time k for i ≤ k + h. The
above expression is easily recovered from Lemma 9.3 by considering the case
of k+h < N−1 (since N tends to infinity) and noting that B̄ is time invariant.
Replacing for B̄k of (9.11) where we note that P−1 = Q and noting that the
summation over Ψ̄ of Lemma 9.3 is done from k+ 1 to k+ 1 + h− j (since in
this case N is replaced by k+h+1), we obtain the above expression for θck+1.
Note also that in the stationary case Ā is time-invariant.

�$

9.4 The Output-feedback Control Tracking

The solution of the deterministic counterpart of this problem (i.e with no
white noise components) with different preview patterns was obtained, using
a game theoretic approach, in [17]. Similarly to the standard dynamic output-
feedback control problem solution [57], the solution in [17] involves two steps.
The second step of this solution is a filtering problem of order n. A second
Riccati equation is thus achieved by applying the bounded real lemma [57]
to the dynamic equation of the estimation error. In our case we follow the
same approach, however, it will be shown that the estimation error contains a
state-multiplicative white noise component. The latter imposes augmentation
of the system to order 2n. The augmented system contains also a tracking
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signal component and one needs, therefore, to apply a special BRL for state
multiplicative system with tracking signal. We thus bring first the following
auxiliary BRL:

9.4.1 BRL for Stochastic State-multiplicative Systems with
Tracking Signal

We consider the following system:

xk+1 = (Ak + Fkvk)xk +B1,kwk +B3,krk

zk = Ckxk +D3,krk, zk ∈ Rq, k ∈ [0, N ]
(9.28)

which is obtained from (9.1) and (9.3) by setting B2,k ≡ 0 and D2,k ≡ 0. We
consider the following index of performance:

JB(rk, wk, x0)
�
= E

v

��CNxN +D3,NrN�2+||zk||22
	 − E

v

�
γ2[||wk||22]

	
−γ2xT0 R

−1x0, R−1 ≥0. (9.29)

We arrive at the following theorem:

Theorem 9.3. Consider the system of (9.28) and JB of (9.29). Given γ > 0,
JB of (9.29) satisfies JB ≤ J̃(r, 0), ∀{wk} ∈ l̃2([0, N − 1]; Rp), xo ∈ Rn,
where

J̃(r, 0) =
N−1�
k=0

rTk (DT
3,kD3,k)rk + ||D3,NrN ||2 +

N−1�
k=0

θ̃Tk+1{B1,kR
−1
k+1B

T
1,k}θ̃k+1

+2
N−1�
k=0

θ̃Tk+1Q̃
−1
k+1(M

−1
k+1)

−1B3,krk + θ̃T0 0
−1θ̃0,

if there exists Q̃k that solves the following Riccati-type equation

Q̃k=AT
kMk+1Ak+CT

k Ck+FT
k Q̃k+1Fk, Q̃(0) = γ2R−1 − 0I, (9.30)

for some 0 > 0, where

θ̃k = ÂT
k θ̃k+1 + B̂krk, θ̃N = CT

ND3,NrN ,

Âk = Q̃−1
k+1Mk+1Ak, B̂k = ÂT

k Q̃k+1B3,k + CT
k D3,k.

(9.31)

Proof: Unlike the state-feedback tracking control, the solution of the BRL
does not invoke saddle-point strategies (since the input signal uk is no longer
an adversary). The sufficiency part of the proof can, however, be readily de-
rived based on the first part of the sufficiency proof of Theorem 9.1, up to
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equation (9.15), where we set B2,k ≡ 0 and D2,k ≡ 0, and where we take
PN = 0. Analogously to (9.15) we obtain the following:

JB(rk, uk, wk, x0) = −
N−1�
k=0

||ŵk − R−1
k+1B

T
1,kθ̃k+1||2Rk+1

−γ2||x0 − (γ2R−1 − Q̃0)−1θ̃0||2
R−1−γ−2Q̃0.

(9.32)

where we replace θk+1, Qk by θ̃k+1 and Q̃k, respectively, and where

P̃0 = [R−1 − γ−2Q̃0]−1,

x0 = γ−2P̃0θ̃0 = [γ2R−1 − Q̃0]−1θ̃0
(9.33)

The necessity follows from the fact that for rk ≡ 0, one gets J̃(r, 0) = 0 (noting
that in this case θ̃k ≡ 0 in (9.31) and therefore the last 3 terms in the above
J̃(r, 0) are set to zero) and JB < 0. Thus the existence of Q̃ > 0 that solves
(9.30) is the necessary condition in the stochastic BRL [87], [10].

�$
Remark 9.7. The choice of 0 > 0 in Q̃(0) of (9.30) reflects on both, the cost
value (i.e J̃(r, 0)) of (9.30) and the minimum achievable γ. If one chooses
0 < 0 << 1 then, the cost of J̃(r, 0) increases while the solution of (9.30) is
easier to achieve, which results in a smaller γ. The choice of large 0, on the
other hand, causes the reverse effect, which leads to a larger γ.

9.4.2 The Output-feedback Solution

We consider the following system:

xk+1 = (Ak + Fkvk)xk +B2,kuk +B1,kwk +B3,krk

yk = (C2,k +Dkζk)xk +D21,knk,
(9.34)

where yk ∈ Rz and where we note that the measurement matrix is contam-
inated with a white noise component of Dkζk and where, for simplicity, the
stochastic uncertainty is removed from the input matrix. Like in the state-
feedback case we seek a control law {uk}, based on the information of the
reference signal {rk} that minimizes the tracking error between the the sys-
tem output and the tracking trajectory, for the worst case of the initial con-
dition x0, the process disturbances {wk}, and the measurement noise {nk}.
We, therefore, consider the following performance index:

J̃E(rk,uk,wk,nk,x0)
�
= E

v,ζ

��CNxN +D3,NrN�2+||zk||22−γ2[||wk||22 + ||nk||22]
	

−γ2xT0 R
−1x0 + E

v,ζ
{xTN Q̄NxN}, R−1 ≥0, Q̄N ≥ 0.

(9.35)
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We assume that (9.7) has a solution Qk+1 > 0 over [0, N − 1] where (9.8)
are satisfied. We introduce the following difference linear matrix inequality
(DLMI) [99],[44]:

Γ̂
�
=



−P̂−1
k ÃT

k 0 D̃T
k F̃T

k C̃T
1,k

∗ −P̂k+1 γ
−1B̃1,k 0 0 0

∗ ∗ −I 0 0 0

∗ ∗ ∗ −P̂k+1 0 0

∗ ∗ ∗ ∗ −P̂k+1 0

∗ ∗ ∗ ∗ ∗ −I


≤ 0, P̂k = Q̂−1

k , (9.36)

where Ãk, B̃1,k, C̃k and D̃k, F̃k are defined in (9.47) and Q̂k, P̂k are given
in (9.48) and (9.49), respectively.
The solution of the output-feedback problem is stated in the following theo-
rem, for the a priori case, where uk can use the information on {yi, 0 ≤ i < k} :

Theorem 9.4. Consider the system of (9.34) and J̃E of (9.35). Given γ > 0,
the output-feedback tracking control problem, where {rk} is known a priori for
all k ≤ N (the full preview case) possesses a solution if there exists P̂k ∈
R2n×2n > 0, Af,k ∈ Rn×n, Bf,k ∈ Rn×z, Cf,k ∈ Rm×l ∀k ∈ [0, N ] that
solves the DLMI of (9.36) with a forward iteration, starting from the initial
condition:

P̂0 = Q̂−1
0

�
= γ−2

�
R R

R R+0In

�
, 0 < 0 << 1. (9.37)

where R is defined in (9.4).

Proof: Using the expression achieved for JE(rk, uk, wk, x0) in the state-
feedback case of Section 9.3, the index of performance is now given by:

Jy(rk, uk, wk, nk, x0) = JE(rk, uk, wk, x0) − γ2||nk||22 = −γ2||w̄k||22
−γ2||x0 − x∗0||2R−1−γ−1Q0

+
�N−1

k=0 [{||ūk + Ĉ1,kxk||2}]+ − γ2||nk||22 + J̄(r).
(9.38)

We note that in the full preview case [θk+1]+ = θk+1.
Using the following definitions:

ūk = Φ
1/2
k+1uk + Φ

−1/2
k+1 BT

2,kMk+1(B3,krk +Q−1
k+1θk+1)

w̄k = γ−1R
1/2
k+1wk − γ−1R

−1/2
k+1 BT

1,k[Qk+1(Akxk +B2,kuk +B3,krk) + θk+1],
(9.39)

we note that
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w̄k = γ−1R
1/2
k+1(wk − w∗

k),

where w∗
k is defined in (9.9). We also note that

ūk = Φ
1/2
k+1(uk − u∗k),

where u∗k is derived from (9.9) by excluding from u∗k the terms that are not
accessed by the controller (i.e the terms with xk). Considering the above w̄k

and ūk we seek a controller of the form

ūk = −Ĉ1,kx̂k.

We, therefore, re-formulate the state equation of (9.34) in terms of ∗
k and w∗

k

rather than uk and wk.
Considering the above, we obtain the following state equation.

xk+1 = (Âk + Fkvk)xk + B̄1,kw̄k + B̄2,kūk + B̄3,krk + B̄4,kθk+1, (9.40)

where

Âk = Q−1
k+1Mk+1Ak,

B̄1,k = γB1,kR
−1/2
k+1 ,

B̄2,k = Q−1
k+1Mk+1B2,kΦ

−1/2
k+1 ,

B̄3,k = B3,k +B1,kR
−1
k+1B

T
1,kQk+1B3,k − B̄2,kΦ

−1/2
k+1 BT

2,kMk+1B3,k,

B̄4,k = B̄1,kR
−1
k+1B̄

T
1,k − B̄2,kΦ

−1/2
k+1 BT

2,kMk+1Q
−1
k+1.

(9.41)

Replacing for w̄k and ūk we obtain:

xk+1 = (Q−1
k+1Mk+1Ak + Fkvk)xk + B̄1,k(γ−1R

1/2
k+1(wk − w∗

k))

+B̄2,k(Φ
1/2
k+1(uk − u∗k)).+ B̄3,krk + B̄4,kθk+1

(9.42)

Replacing for w∗
k and u∗k we obtain:

xk+1 =(Q−1
k+1Mk+1Ak+Fkvk)xk+γB1,kR

−1/2
k+1 γ−1R

1/2
k+1(wk − R−1

k+1B
T
1,k[θk+1

+Qk+1(Akxk +B2,kuk +B3,krk)]) +Q−1
k+1Mk+1B2,kΦ

−1/2
k+1 (Φ1/2

k+1(uk

+Φ−1
k+1B

T
2,kMk+1(B3,krk +Q−1

k+1θk+1))) + B̄3,krk + B̄4,kθk+1,

(9.43)
or obtain:

xk+1 = [(I − γ−2B1,kB
T
1,kQ

−1
k+1)

−1Ak − B1,kR
−1
k+1B

T
1,kQk+1Ak]xk + Fkxkvk

+γB1,kR
−1/2
k+1 γ−1R

1/2
k+1wk − (γB1,kR

−1/2
k+1 γ−1R

1/2
k+1R

−1
k+1B

T
1,k[θk+1

+Qk+1(Akxk +B2,kuk +B3,krk)]) +Q−1
k+1Mk+1B2,kΦ

−1/2
k+1

(Φ1/2
k+1(uk + Φ−1

k+1B
T
2,kMk+1(B3,krk +Q−1

k+1θk+1))) + B̄3,krk + B̄4,kθk+1

(9.44)
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where we note that:

Âk = Ak − B1,kR
−1
k+1B

T
1,kQk+1Ak

= (I − γ−2B1,kB
T
1,kQ

−1
k+1)

−1Ak − B1,kR
−1
k+1B

T
1,kQk+1Ak,

B1,k = γ−1B̄1,kR
1/2
k+1,

B2,k = −B1,kR
−1
k+1B

T
1,kQk+1B2,k + B̄2,kΦ

1/2
k+1

B3,k = −B1,kR
−1
k+1B

T
1,kQk+1B3,k + B̄2,kΦ

−1/2
k+1 BT

2,kMk+1B3,k + B̄3,k

B̄2,kΦ
−1/2
k+1 BT

2,kMk+1Q
−1
k+1 = Q−1

k+1Mk+1B2,kΦ
−1
k+1B

T
2,kMk+1Q

−1
k+1.

We consider next the following a priori-type state observer:

x̂k+1 = Af,kx̂k +Bf,kyk + dk, x̂0 = 0,

ẑk = Cf,kx̂k,
(9.45)

where
dk = B̄2,kūk + B̄3,krk + B̄4,kθk+1.

Denoting ek = xk − x̂k and using the latter we obtain:

ek+1 =(Âk−Bf,kC2,k−Af,k)xk +Af,kek + Fkxkvk − Bf,kDkxkζk + B̂1,kŵk,

where we define

ŵk
�
= col{w̄k, nk}, B̂1,k = [B̄1,k − Bf,kD21,k].

Defining also

ξk
�
= col{xk, ek}, r̄k

�
= col{rk, θk+1},

we obtain

ξk+1 = (Ãk + F̃kvk + D̃kζk)ξk + B̃1,kŵk + B̂3,kr̄k, ξ0 = col{x0, e0},
z̃k = C̃1,kξk,

(9.46)

where

Ãk =

�
Âk − B̄2,kCf,k B̄2,kCf,k

Âk − Bf,kC2,k − Af,k Af,k

�
, B̃1,k =

�
B̄1,k 0

B̄1,k −Bf,kD21,k

�
,

B̂3,k =

�
B̄3,k B̄4,k

0 0

�
, F̃k =

�
Fk 0

Fk 0

�
, D̃k =

�
0 0

−Bf,kDk 0

�
,

Ĉ1,k = Φ
−1/2
k+1 BT

2,kMk+1Ak, C̃1,k = [Ĉ1,k − Cf,k Cf,k].

(9.47)
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Applying the results of Theorem 9.3 to the system of (9.46) we obtain the
following Riccati-type equation:

Q̂k=ÃT
k [Q̂−1

k+1 − γ−2B̃1,kB̃
T
1,k]

−1Ãk+C̃T
k C̃k+F̃T

k Q̂k+1F̃k+D̃T
k Q̂k+1D̃k,

(9.48)
where Q̂0 is given in (9.37).
Denoting

P̂k = Q̂−1
k (9.49)

and using Schur complement we obtain the DLMI of (9.36). The latter DLMI
is initiated with the initial condition of (9.37) which corresponds to the case
where a weighting γ20−1In is applied to x̂0 in order to force nature to select
x̂0 = 0 in the corresponding differential game [99], [57].

�$
In the case where {rk} is measured on line, or with a preview h > 0, we

note that nature’s strategy, which is not restricted to causality constrains, will
be the same as in the case of full preview of {rk}, meaning that, in contrast to
ūk which depends on the preview length h, w̄k of (9.39) remains unchanged.
We obtain the following.

Lemma 9.6. H∞ Output-feedback Tracking with full preview of {rk}: In this
case

ūk = Φ
1/2
k+1uk + Φ

−1/2
k+1 BT

2,kMk+1(B3,krk +Q−1
k+1θk+1).

Solving (9.11) we obtain:

θk+1 = Φ̂k+1θN +
�N−k−1

j=1 Ψk+1,jB̄N−jrN−j

where
Φ̂k+1

�
=ĀT

k+1Ā
T
k+2...Ā

T
N−1

Ψk+1,j
�
=

�
ĀT
k+1Ā

T
k+2...Ā

T
N−j−1 j < N − k − 1

I j = N − k − 1

� (9.50)

Proof: We note that in this case [θk+1]+ = θk+1. Considering (9.11) and
taking k + 1 = N we obtain:

θN−1 = ĀT
N−1θN + B̄N−1rN−1,

where θN is given in (9.11). Similarly we obtain for N − 2

θN−2 = ĀT
N−2θN−1 + B̄N−2rN−2 = ĀT

N−2[Ā
T
N−1θN

+B̄N−1rN−1] + B̄N−2rN−2 = B̄N−2rN−2 + ĀT
N−2Ā

T
N−1θN + ĀT

N−2B̄N−1rN−1.

The above procedure is thus easily iterated to yield (9.50). Taking, for
example N = 3 one obtains from (9.11) the following equation for θ1 :
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θ1 = ĀT
1 Ā

T
2 θ3 + ĀT

1 B̄2r2 + B̄1r1.

The same result is recovered by taking k = 0 in (9.50) where j = 1, 2.
�$

Lemma 9.7. H∞ Output-feedback Tracking with no preview of {rk}: In this
case

ūk = Φ
1/2
k+1uk + Φ

−1/2
k+1 BT

2,kMk+1B3,krk.

The proof follows from the fact that in this case [θk+1]+ = 0 since at time
k, ri is known only for i ≤ k.

Lemma 9.8. H∞ Output-feedback tracking with fixed-finite preview of {rk}:
In this case:

ūk = Φ
1/2
k+1uk + Φ

−1/2
k+1 BT

2,kMk+1(B3,krk +Q−1
k+1[θk+1]+)

and
dk = B̄2,kū+ B̄3,krk + B̄4,k[θk+1]+.

where [θk+1]+ satisfies :

[θk+1]+ =


�h

j=1 Ψ̄k+1,jB̄k+h+1−jrk+h+1−j k + h ≤ N − 1

Φ̂k+1θN +
�h−1

j=1 Ψ̄k+1,jB̄N−jrN−j k + h = N

 .

and where Ψ̄k+1,j is obtained from (9.50) by replacing N by k + h+ 1.

9.5 Example: A Stochastic Finite Preview Tracking

We consider the system of (9.1) with the following objective function:

J = Σ∞
0 ER̄k

{�Cxk − rk�2 + 0.01�uk�2} − γ2Σ∞
k=0�wk�2

where there is an access to the states of the system, where

A=
�

0 1
−0.8 1.6

�
, F =

�
0 0

0.12 0.24

�
, B1 =

�
1

−1

�

, B2 =
�

0
1

�
, B3 =

�
2
0

�
and C=

�−0.50.4
�
.

and where G = 0. The case of h = 0 can be solved using the standard H∞
model where rk is considered as a disturbance [21]. The disturbance vector

wk becomes the augmented disturbance vector w̃k
�
= col{wk, rk}. Using the

notation of the standard problem, we define:
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B1 =
�

1 2
−1 0

�
, D11 =

�
0 −1
0 0

�
and D12 =

�
0
.1

�
.

Applying the theory of [12] we get that the minimum possible value of γ
is near γs = 2.031 . The obtained control law for this γ is uk = Ksxk , Ks =�
0.472 −2.359

�
and the resulting closed-loop transfer function, from rk to

Cxk, is Gs = −(z + 1.021)(z2 + 0.759z + 0.327)−1.
We apply the results obtained in Section 9.3.2 with preview of h = 0. We

find that for γ = 1.016, a value very close to the lowest achievable value of

γ, the solution of (9.23) is P =
�
6.1846 3.1776
3.1776 4.2601

�
, and the resulting closed-loop

transfer function, from rk to Cxk, is Gs = −(0.3645z)(z2 − 0.794z)−1. We
note that one should not draw a conclusion from the fact that the minimal
γ achieved by the two methods is significantly different. Unlike our solution,
in [21] the energy of rk is also taken into account in the performance index.
The comparison between the two methods should, therefore, be based on time
simulation. The resulting control law of (9.25) becomes:

ũk = [0.7944 − 1.0][Axk +B3rk].

We compare the results of [12] with our result in Figure 9.1 where the average
tracking error (Cxk − rk), with respect to the statistics of the multiplicative
noise, is depicted as a function of time for rk = sin(k). The improvement
achieved by our new method, in this frequency, is clearly visible.

The latter controller is extended to the case of h > 0 using the result of
Theorem 9.2. The only addition to the control law of ũk is the term Kθθ

c
k+1

where Kθ = −Φ−1BT
2 M̂P = [1.7354 −1.7358]. The results that are obtained

for the case of h > 0 are described in Figure 9.2, where the average power of
the tracking error, with respect to the statistics of the multiplicative noise, is
depicted as a function of the preview length.
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Fig. 9.1. Comparison between the tracking errors obtained in the standard solution
(dashed lines) and the new method (solid lines) for rk = sin(k), measured on line
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Fig. 9.2. The power of the tracking error as a function of the preview length
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9.6 Conclusions

In this chapter we solve the problem of both, the state-feedback and output-
feedback control tracking with preview in the presence of white noise parame-
ter uncertainties in the system state-space model. Applying the game theory
approach, a saddle-point tracking strategy is obtained for the finite-horizon
state-feedback case which is based on the measurement of the system state
and the previewed reference signal. The performance index that corresponds
to the tracking game includes averaging over the statistics of the white noise
parameters in the system state-space model. The game value depends on the
reference signal sequence and is usually greater than zero.

For the finite-horizon time varying state-feedback case, a nonzero correla-
tion between the unknown parameters in the input and the dynamic matrices
was allowed. The latter result has been extended to the time invariant case
with an infinite horizon. The problem of determining whether there exists a
solution that guarantees a pre chosen attenuation level became one of solving
a set of two LMI’s, in the case where the latter correlation is zero. The fact
that we could not formulate the solution to the problem in a LMI form, in
the case where this correlation in not zero, may indicate that the problem is
not convex.

The problem is probably nonconvex in the case where this correlation is
nonzero.

Extension of the results of the state-feedback solution to the case where
there is no access to the system states and the controller has to rely on noisy
measurements of the output is not immediate. Unlike the treatment in the
deterministic uncertain case where the uncertainties are norm-bounded, the
stochastic uncertainties of the plant in our case lead to an error in the estimate
of the system state that depends not only on the past values of the error but
also on the value of the state multiplied by the stochastic uncertainty. To solve
the output-feedback tracking control we needed, therefore, to formulate and
solve an auxiliary BRL which also contains an additional tracking signal in
the system dynamics. Thus, using an a priori-type state-observer the latter
problem can be formulated as an estimation problem, to which we apply
the auxiliary BRL. Applying the latter we arrive at a linear matrix inequality
over a finite-horizon (i.e DLMI) which can be solved with the aid of the DLMI
technique [99], [44] presented in the introduction and in Appendices B and C.
This technique was accurately shown to mimic the standard Riccati recursions
of various H∞ control and estimation problems. It was also shown to converge
to the stationary solution of the latter problems in the case where the system
is LTI and the horizon length tends to infinity [99], [44]. Alternatively the
latter DLMI can be also solved using homotopy algorithm.



10

Discrete-time Systems: Static Output-feedback

10.1 Introduction

In this chapter we bring the solution of the discrete-time counterpart of Chap-
ter 5 where we solve both the H2 and the H∞ static output-feedback control
problems. In both cases we treat systems where that contain stochastic white-
noise parameter uncertainties in the matrices of the state-space model, includ-
ing the measurement matrix, that describes the system.

Similarly to Chapter 5 we apply the simple design method of [100] for
deriving the static output-feedback gain that satisfies prescribed H2 and
H∞performance criteria. A parameter dependent Lyapunov (LPD) function
is applied and a sufficient condition is obtained by adopting a stochastic coun-
terpart of a recent LPD stabilization method that has been introduced in [36].
The theory we develop is demonstrated by an example of a two- output one-
input system where we design a static controller for a nominal and uncertain
system.

10.2 Problem Formulation

We consider the following linear system:

xk+1 = (A + Dνk)xk + B1wk + (B2 + Gζk)uk, x0 = 0

yk = C2xk + D21nk
(10.1)

with the objective vector

zk = C1xk + D12uk, (10.2)

where {xk} ∈ Rn is the system state vector, {wk} ∈ l̃2([0,∞); Rq) is the
exogenous disturbance signal, {nk} ∈ l̃2([0,∞); Rp) is the the measurement
noise sequence, {uk} ∈ l̃2([0,∞); R)) is the control input, {yk} ∈ Rm is the

E. Gershon et al.: H∞ Contr. and Est. of State-multipl. Lin. Sys., LNCIS 318, pp. 163–172, 2005.
© Springer-Verlag London Limited 2005
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measured output and {zk} ∈ Rr ⊂ Rn is the state combination (objective
function signal) to be regulated. The variables {ζk} and {νk} are zero-mean
real scalar white-noise sequences that satisfy:

E{νkνj} = δkj , E{ζkζj} = δkj E{ζkνj} = 0, ∀k, j ≥ 0.

The matrices in (10.1), (10.2) are assumed to be constant matrices of appro-
priate dimensions.

We seek a constant output-feedback controller

uk = Kyk, (10.3)

that achieves a certain performance requirement. We treat the following two
different performance criteria.

• The stochastic H2 control problem: Assuming that {wk}, {nk} are
realizations of a unit variance, stationary, white noise sequences that are
uncorrelated with {νk}, {ζk}, rather than adversaries in l2, the following
performance index should be minimized:

J2
∆= E

w,n
{||zk||2

l̃2
}. (10.4)

• The stochastic H∞control problem: Assuming that the exogenous
disturbance signal is in l̃2, a static control gain is sought which, for a
prescribed scalar γ > 0 and for all nonzero {wk} ∈ l̃2([0,∞); Rq) and
{nk} ∈ l̃2([0,∞); Rp), guarantees that J∞ < 0 where

J∞
∆= ||zk||2

l̃2
− γ2[||wk||2

l̃2
+ ||nk+1||2

l̃2
]. (10.5)

Augmenting system (10.1) and (10.2) to include the measured output yk we
define the augmented state vector ξk = col{xk, yk} and obtain the following
representation to the closed-loop system.

ξk+1 = Ãξk + B̃w̃k + D̃ξkνk + G̃ξkζk, ξ0 = 0

zk = C̃ξk
(10.6)

where:

w̃k
∆=

�
wk

nk+1

�
, Ã

∆=
�

A B2K
C2A C2B2K

�
, D̃

∆=
�

D 0
C2D 0

�
,

G̃
∆=

�
0 GK
0 C2GK

�
, B̃

∆=
�

B1 0
C2B1 D21

�
, C̃

∆=
�
C1 D12K

�
. (10.7)

We consider the following Lyapunov function

VL = ξT P̃ ξ with P̃ =
�

P −α−1PCT
2

−α−1C2P P̂

�
, P̃ > 0, (10.8)

where P ∈ Rn×n and P̂ ∈ Rm×m. The parameter α is a positive scalar tuning
parameter.
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10.2.1 The Stochastic H2 Control Problem

Applying (10.8) to the derivation of the stochastic H2 control results [105] it
is obtained that J2 < δ2 for a prescribed δ if there exist a positive definite
solution Q̃ = P̃−1, where P̃ is of the structure (10.8), and H ∈ R(q+p)×(q+p)

that solve the following Linear Matrix Inequalities (LMIs) :

−Q̃ ÃQ̃ 0 0 0

∗ −Q̃ Q̃C̃T Q̃D̃T Q̃G̃T

∗ ∗ −Ir 0 0

∗ ∗ ∗ −Q̃ 0

∗ ∗ ∗ ∗ −Q̃


< 0,

�
H B̃T

∗ Q̃

�
> 0, and Tr{H} < δ2.

(10.9)
Applying [100] it is found that Q̃ possesses the following structure:

Q̃ =

�
Q CT

2 Q̂

Q̂C2 αQ̂

�
, (10.10)

where Q ∈ Rn×n, Q̂ ∈ Rm×m.
Substituting for Ã, B̃, C̃ and D̃, G̃ into the latter LMIs we obtain the

following:

Theorem 10.1. Consider the system (10.1),(10.2). The output-feedback con-
trol law (10.3) achieves a prescribed H2-norm bound 0 < δ, if there exist
Q ∈ Rn×n, Q̂ ∈ Rm×m, Y ∈ R)×m and H ∈ R(q+p)×(q+p) that, for some
tuning scalar 0 < α, satisfy the following LMIs:

Γ̃
∆=



−Q −CT
2 Q̂ Γ̃ (1, 3) Γ̃ (1, 4) 0 0 0 0 0

∗ −αQ̂ Γ̃ (2,3) Γ̃ (2,4) 0 0 0 0 0

∗ ∗ −Q −CT
2 Q̂ Γ̃ (3,5) QDT Γ̃ (3,7) CT

2 Y
TGT Γ̃ (3,9)

∗ ∗ ∗ −αQ̂ Γ̃ (4,5) Q̂C2D
T Γ̃ (4,7) αY TGT Γ̃ (4,9)

∗ ∗ ∗ ∗ −Ir 0 0 0 0

∗ ∗ ∗ ∗ ∗ −Q −CT
2 Q̂ 0 0

∗ ∗ ∗ ∗ ∗ ∗ −αQ̂ 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q −CT
2 Q̂

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −αQ̂



<0,

(10.11)
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H11 H12 B

T
1 BT

1 C
T
2

∗ H22 0 DT
21

∗ ∗ Q CT
2 Q̂

∗ ∗ ∗ αQ̂

>0, T r{H} < δ2, (10.11)

where

H
∆=

�
H11 H12

H21 H22

�
,

Γ̃ (1, 3) = AQ+B2Y C2,

Γ̃ (1, 4) = αB2Y+ACT
2 Q̂,

Γ̃ (2, 3) = [C2AQ + C2B2Y C2 − Q̂C2] + Q̂C2,

Γ̃ (2, 4) = [C2AC
T
2 Q̂ + αC2B2Y − αQ̂] + αQ̂,

Γ̃ (3, 5) = QCT
1 +CT

2 Y
TDT

12,

Γ̃ (3, 7) = QDTCT
2 ,

Γ̃ (3, 9) = CT
2 Y

TGTCT
2 ,

Γ̃ (4, 5) = αY TDT
12+Q̂C2C

T
1 ,

Γ̃ (4, 7) = Q̂C2D
TCT

2 ,

Γ̃ (4, 9) = αY TGTCT
2 .

(10.12)

If a solution to the latter LMIs exists, the gain matrix K that stabilizes
the system and achieves the required performance is given by

K = Y Q̂−1. (10.13)

10.2.2 The Stochastic H∞Problem

The LMIs of Theorem 10.1 provide a sufficient condition for the existence of a
static output-feedback gain that achieves a prescribed H2-norm for the system
(10.6). A similar result can be obtained if the H∞-norm of the latter system
is considered. Given a prescribed desired bound 0 < γ on the H∞-norm of the
system, the inequalities in (10.9) are replaced by the following Bounded Real
Lemma (BRL) condition (see 7.3.1).

−Q̃ ÃQ̃ B̃ 0 0 0
∗ −Q̃ 0 Q̃C̃T Q̃D̃T Q̃G̃T

∗ ∗ −γ2Iq+p 0 0 0
∗ ∗ ∗ −Ir 0 0
∗ ∗ ∗ ∗ −Q̃ 0
∗ ∗ ∗ ∗ ∗ −Q̃

 < 0. (10.14)
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Using the definition of (10.10), and substituting for Ã, B̃, C̃ and D̃, G̃ in the
latter LMI we obtain the following.

Theorem 10.2. Consider the system of (10.1), (10.2) . The control law
(10.3) achieves a prescribed H∞-norm bound 0 < γ, if there exist Q ∈ Rn×n,
Q̂ ∈ Rm×m and Y ∈ R)×m that, for some scalar 0 < α, satisfy the following
LMI:  Γ̃

 B1 0
C2B1 D21

0 0


∗ −γ2Iq+p

 < 0. (10.15)

where Γ̃ is defined in (10.11).
If a solution to the latter LMI exists, the gain matrix K that stabilizes the
system and achieves the required performance is given by (10.13).

10.3 The Robust Stochastic H2 Static Output-feedback
Controller

The system considered in Section 10.2 assumes that all the parameters of the
system are known, including the matrices D and G. In the present section
we consider the system (10.1),(10.2) whose matrices are not exactly known.
Denoting

Ω =
�
A B1 B2 C1 D12 D21 D G

�
,

we assume that Ω ∈ Co{Ωj , j = 1, ...N}, namely,

Ω =
N�
j=1

fjΩj for some 0 ≤ fj ≤ 1,
N�
j=1

fj = 1 (10.16)

where the vertices of the polytope are described by

Ωj =


A(j) B

(j)
1 B

(j)
2 C

(j)
1 D

(j)
12 D

(j)
21 D(j) G(j)

�
, j = 1, 2..., N.

The solution of the robust problem in this section is based on the deriva-
tion of a specially devised BRL for polytopic-type uncertainties [36] with a
simple straightforward adaptation to the stochastic case. Considering (10.9),
multiplying it by diag{In+m, Q̃

−1, Ir, In+m, In+m}, from the left and the
right and using the method of [36] we obtain that a sufficient condition for
achieving the H2-norm bound of δ for the system at the i-th vertex of Ω is
that there exists a solution Q̃i, Z, H to the following LMIs:
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−Q̃i ÃiZ 0 0 0

∗ Q̃i − Z − ZT ZT C̃T
i ZT D̃T

i ZT G̃T
i

∗ ∗ −Ir 0 0

∗ ∗ ∗ −Q̃i 0

∗ ∗ ∗ ∗ −Q̃i


< 0,

�
H B̃T

i

∗ Q̃i

�
> 0, and Tr{H} < δ2, (10.17)

for i = 1, 2, ...N, where H ∈ R(q+p)×(q+p) . Denoting

Z
∆=

�
Z1

Z2[C2 βIm]

�
(10.18)

where β > 0 is a tuning scalar parameter, we arrive at the following result:

Theorem 10.3. Consider the uncertain system of (10.1), (10.2). The con-
trol law (10.3) guarantees a prescribed H2-norm bound 0 < δ over the en-
tire uncertainty polytope Ω if there exist Z1 ∈ Rn×(n+m) , Z2 ∈ Rm×m,
Q̃i ∈ R(n+m)×(n+m), i = 1, 2..., N and Y ∈ R)×m that, for some positive
scalar β, satisfy the following LMIs:

Υ i ∆=



−Q̃i11 −Q̃i12 Υ (1,3) Υ (1,4) 0 0 0 0 0

∗ −Q̃i22 Υ (2,3) Υ (2,4) 0 0 0 0 0

∗ ∗ Υ (3,3) Υ (3,4) Υ (3,5) ZT
11D

T
i ZT

11D
T
i CT

2 CT
2 Y T GT

i Υ (3,9)

∗ ∗ ∗ Υ (4,4) Υ (4, 5) ZT
12D

T
i ZT

12D
T
i CT

2 βY T GT
i Υ (4,9)

∗ ∗ ∗ ∗ −Ir 0 0 0 0

∗ ∗ ∗ ∗ ∗ −Q̃i11 −Q̃i12 0 0

∗ ∗ ∗ ∗ ∗ ∗ −Q̃i22 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q̃i11 −Q̃i12

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q̃i22



<0,


H11 H12 BT

1i BT
1iC

T
2

∗ H22 0 DT
21i

∗ ∗ Q̃i11 Q̃i12

∗ ∗ ∗ Q̃i22

>0, i = 1, 2, ...N, and Tr{H} < δ2, (10.19)

where

Q̃i11 = Ῡ1Q̃iῩ
T
1 , Q̃i12 = Ῡ1Q̃iῩ

T
2 , Q̃i22 = Ῡ2Q̃iῩ

T
2 , Z11

∆=Z1Ῡ
T
1 , Z12

∆=Z1Ῡ
T
2 ,
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Ῡ1
∆= [In 0], Ῡ2

∆= [0 Im], (10.20)

Υ (1, 3) = AiZ11 + B2iY C2, Υ (1, 4) = AiZ12 + βB2iY,

Υ (2, 3) = [C2AiZ11 + C2B2iY C2 − Z2C2] + Z2C2,

Υ (2, 4) = [βC2B2iY + C2AiZ12 − βZ2] + βZ2,

Υ (3, 3) = Q̃i11 − Z11 − ZT
11, Υ (3, 4) = Q̃i12 − Z12 − CT

2 Z
T
2 ,

Υ (3, 5) = ZT
11C

T
1i + CT

2 Y
TDT

12i, Υ (3, 9) = CT
2 Y

TGT
i C

T
2 ,

Υ (4, 4) = Qi22 − β[Z2 + ZT
2 ],

Υ (4, 5) = ZT
12C

T
1i + βY TDT

12i, Υ (4, 9) = βY TGT
i C

T
2 .

(10.21)

If a solution to the latter set of LMIs exists, the gain matrix K that stabilizes
the system and achieves the required performance is given by

K = Y Z−T
2 . (10.22)

Remark 10.1. We note that the existence of Z−T
2 in (10.22) is guaranteed since

Υ (4, 4) = Qi22 − β[Z2 + ZT
2 ] in (10.19) must be negative definite in order to

satisfy the inequality of (10.19), and Qi22 > 0, β > 0.

10.4 The Robust Stochastic H∞ Static Output-feedback
Controller

Similarly to the previous section, at each point in Ω, say the one that is
obtained by

�N
j=1 fjΩj for some 0 ≤ fj ≤ 1,

�N
j=1 fj = 1 we assign a special

matrix solution Q̃. For each vertex of Ω, say the i-th, the inequality of (10.14)
can be written, following a modified result of [36] as the following set of LMIs:

−Q̃i ÃiZ B̃i 0 0 0

∗ Q̃i − Z − ZT 0 ZT C̃T
i ZT D̃T

i ZT G̃T
i

∗ ∗ −γ2Iq+p 0 0 0

∗ ∗ ∗ −Ir 0 0

∗ ∗ ∗ ∗ −Q̃i 0

∗ ∗ ∗ ∗ ∗ −Q̃i


< 0 (10.23)

where Z is defined in (10.18). We therefore arrive at the following result:

Theorem 10.4. Consider the uncertain system (10.1), (10.2). The control
law (10.3) guarantees a prescribed H∞-norm γ > 0 over the entire uncer-
tainty polytope Ω, if there exist Z1 ∈ Rn×(n+m) , Z2 ∈ Rm×m, Q̃i ∈
R(n+m)×(n+m), i = 1, 2..., N and Y ∈ R)×m that, for some positive scalar
β, satisfy the following LMI:
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 B1i 0

C2B1i D21i

0 0


∗ −γ2Iq+p

 < 0, i = 1, 2, ...N (10.24)

where Υ i is defined in (10.19).
If a solution to the latter set of LMIs exists, the gain matrix K that stabi-

lizes the system and achieves the required performance is given by (10.22).

10.5 Example

To demonstrate the solvability of the various LMIs in this chapter we bring a
3rd-order, two-output, one-input example where we seek static-output feed-
back controllers in 3 cases: the stochastic H2 control, the stochastic H∞ con-
trol and the robust stochastic H∞ control problems. We consider the system
of (10.1), (10.2) where:

A =

 0.9813 0.3420 1.3986
0.0052 0.9840 −0.1656

0 0 0.5488

 , B1 =

 0.0198 0.0034 0.0156
0.0001 0.0198 −0.0018

0 0 0.0150

 ,

B2 =

 −1.47
−0.0604
0.4512

 , C2 =
�

1 0 0
0 1 0

�
, D21 = 0, C1 =

 1 0 0
0 1 0
0 0 0

 ,

D =

 0 0 0
0 0 0
0 0 0.4

 , G = 0. (10.25)

We obtain the following results:

• The stochastic H2 controller: Applying the result of Theorem 10.1 and
solving (10.11) a minimum H2-norm bound of δ = 0.0449 is obtained for
α = 2.4. The corresponding static output-feedback controller of (10.13) is:

K =
�

0.3469 0.6216
�
.

The corresponding closed-loop poles are: 0.0695, 0.9486+0.1059i, 0.9486−
0.1059i. These poles reside in the Open Unit Circle (OUC).

• The stochastic H∞ controller: Using Theorem 10.2 and solving (10.15)
a minimum value of γ = 0.8916 is obtained for α = 2.4 . The corresponding
static output-feedback controller of (10.13) is:

K =
�

0.3567 1.2622
�
,
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and the corresponding closed-loop poles are 0.0961, 0.9087 + 0.0882i, and
0.9087 − 0.0882i. Also these poles are all in the OUC. For the nominal
case, where D = 0 (i.e with no state-multiplicative noise), we obtain for
the above value of α an attenuation level of γ = 0.6572.

• The robust stochastic H∞ controller: We consider the system of
(10.1), (10.2) where the system matrices A, B1 and B2 of (10.1) reside
in a polytope of 4 vertices. The system matrices include the matrices of
(10.25a-i) and the following 3 sets of Aj , Bj

1 and Bj
2 for j = 2, 3, 4:

A2 =

 0.9872 0.3575 1.2273
0.0016 0.9872 −0.1603

0 0 0.5488

 , B2
1 =

 0.0199 0.0036 0.0137
0.0000 0.0199 −0.0018

0 0 0.0150

 ,

A3 =

 0.9687 0.9840 3.6304
0.0043 0.9742 −0.4647

0 0 0.5488

 , B3
1 =

 0.0197 0.0099 0.0412
0.0000 0.0197 −0.0052

0 0 0.0150

 ,

A4 =

 0.9857 0.5881 2.5226
−0.0135 0.9717 −0.4702

0 0 0.5488

 , B4
1 =

 0.0199 0.0059 0.0284
−0.0001 0.0197 −0.0051

0 0 0.0150

 ,

B2
2 =

−4.9990
−0.0576
0.4512

 , B3
2 =

−0.4376
−0.1589
0.4512

 , B4
2 =

−1.4700
−0.0604
0.4512

 .

Applying the result of Theorem 10.4 and solving (10.24) a minimum value
of γ = 5.39 is obtained for β = 1.02. The corresponding static output-
feedback controller of (10.22) is:

K =
�

0.2007 1.9022
�
.

10.6 Conclusions

In this chapter we present a convex optimization method that provides an
efficient design of robust static output-feedback controllers for linear systems
with state multiplicative noise. Our treatment is similar to the one of Chapter
5 with the clear advantage that in the present chapter the results are obtained
without adding the low-pass component that was required in Chapter 5 in
order to achieve convexity. We also consider linear systems with polytopic
type uncertainties in which case and based on a linear parameter dependent
Lyapunov function, sufficient conditions are derived for the existence of a con-
stant output-feedback gain that stabilizes the system and achieves a prescribed
bound on its performance over the entire uncertainty polytope.
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Both stochastic H2 and H∞performance criteria have been considered.
For both, conditions for quadratic stabilizing solution have been obtained.
The conservatism entailed in these conditions are reduced either by using a
recent method that enables the use of parameter dependent Lyapunov based
optimization (adopted for the stochastic case), or by treating the vertices of
the uncertainty polytope as distinct plants. The latter solution cannot guar-
antee the stability and performance within the polytope whereas the former
optimization method achieves the required bound over the entire polytope.

To the best of our knowledge, no other solution has been published in
the literature that concerns the discrete-time static output-feedback for state-
multiplicative noise system. Due to the latter fact we can not compare our
results, in the example, to any existing solution. However, it is shown, in the
deterministic counterpart of this work (for the continuous-time case [100]),
that the results obtained in [100] are less conservative than any other result
obtained by other existing method.

In the example we demonstrate the tractable solvability of the various
LMIs obtained in our study. We also note that the proposed method can
be used also to solve the mixed stochastic H2/H∞ problem where a robust
static output-feedback controller is sought that achieves, say, a prescribed
attenuation level while minimizing a bound on H2-norm of the closed-loop.
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Systems with State-multiplicative Noise:
Applications

11.1 Altitude Estimation

In order to demonstrate the application of the theory developed in Chapter
3, we consider the problem of altitude estimation with measurements from
a RADAR altimeter and a baro altimeter. The barometric altitude measure-
ment is based on a static pressure measurement. As a result of various sources
of error, (e.g. initial reference error, static pressure measurement bias, or tem-
perature measurement errors) the baro altimeter is corrupted with a bias error
(see page 32 [75]) up to 1000 ft together with a small white noise component.
Denoting the true altitude above ground by h, we have the following approx-
imate model for the altitude hold loop which is commanded by the altitude
command w(t) :

dh = −1/τ̄(h − w)dt, hbaro = h + b + ζ1 (11.1)
where τ̄ is the time constant of the command response, b represents the baro
altitude measurement bias and ζ1 is a standard zero-mean white noise with
intensity R1, that is: E{ζ1(t)ζ1(τ)} = R1δ(t − τ).

The RADAR altimeter measures the height above ground level without
bias, however, its output is corrupted by a broad band measurement noise,
the intensity of which increases with height due to a lower SNR (signal to
noise ratio) effect at higher altitude (see [73], page 196 for various models
depending on the SNR levels).

A reasonable model for this effect is:

hradar = h(1 + η) + ζ2,

E{ζ2(t)ζ2(τ)} = R2δ(t − τ),

E{η(t)η(τ)} = R3δ(t − τ).

(11.2)

In this model, η represents the altitude-dependent broad-band measurement
noise and ζ2 represents the altitude-independent white noise. The overall
model is completed by:

E. Gershon et al.: H∞ Contr. and Est. of State-multipl. Lin. Sys., LNCIS 318, pp. 175–204, 2005.
© Springer-Verlag London Limited 2005
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ḃ =
√

2w̄

where w̄ is a standard white noise signal which interferes with the measure-
ment of the bias. The later signal is not correlated with the other white noise
signals in the system.

To obtain a state-space description we denote:

x
�
= col{h, b}, y

�
= col{[hbaro, hradar}

where x is the state vector and y is the measurement vector. Using the mea-

surements Y (t)
�
= {y(τ), τ < t}, we want to estimate z(t) = [h(t) b(t)]T .

Combining the dynamical descriptions in (11.1), (11.2) and that of ḃ, we
obtain:

dx = (Ax + B1w̃)dt, dy = (Cx + D21w̃)dt + Fxdη, z = Lx

where

w̃ =


w

w̄

ζ1

ζ2

 A =

�−1/τ̄ 0

0 0

�
, B1 =

�
1/τ̄ 0 0 0

0
√

2 0 0

�
, C =

�
1 1

1 0

�
,

F =

�
0 0
√
R3 0

�
, D21 =

�
0 0

√
R1 0

0 0 0
√
R2

�
, L =

�
1 0

0 0

�
.

In our problem, the altitude hold-loop dynamics is characterized by a time-
constant of τ̄ = 30sec . We consider a step maneuver in w at a time 5.6sec
from an initial condition of w = h(0) = 500ft to the value of w = 5000ft. We
also take an initial bias of b = 0ft and we solved the case where R1 = R2 = 0.4
and R3 = 0.0016.

We consider 3 filters:
1) Kalman filter: This filter ignores the multiplicative noise η(t). For the
design of the filter we assume that w is an unbiased white-noise signal with:
E{w(t)w(τ)} = Qδ(t − τ) where Q should be determined to achieve the best
result for the filter (a tuned Q).
2) H∞ filter: The multiplicative noise η(t) is neglected and a standard H∞
design is used. In order to compare the results with those obtained by the
Kalman filter we multiply B by

√
Q. The measurement equation is changed

to
y = Cx +

√
Rζ̃

where ζ̃ = [ζ1 ζ2]T and where R = diag{R1, R2}.
3) Stochastic H∞ filter: The term Fη is taken into consideration using
the results of 3.1 In our case (A,B) is not detectable. We therefore add a
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very small perturbation term to the second diagonal element in A (we used
−2 · 10−6).

Since the best Q-tuned Kalman filter is obtained for Q = 1000, we designed
the three filters for this value of Q. We obtain the following:

• The Kalman filter: The following transfer function matrix for the tuned
Kalman filter relates the two measurements of hradar and hbaro to the
estimate of the height h:

GKalman =
[0.64s 1.50s + 3.65]
s2 + 4.24s + 3.72

.

The behaviour of the resulting L2 estimate is depicted in Fig. 11.1b, where
the true trajectory of h is described in Fig. 11.1a. In these figures, and the
figures below, we depict the time behaviour for 50 seconds into the future,
in order to accentuate the difference between the various filter designs.
The Kalman estimate is poor with a mean square error of 34890ft2.

• The nominal H∞ design: We designed this filter with γ = 1.12. We choose
this value for γ in spite of the fact that the minimum possible value is 0.632.
This is because we want to compare this design with the one achieved by
the stochastic H∞ filter which achieves a minimum value of γ0 = 1.10.
For the value of γ = 1.12, we obtain the following transfer function matrix
which predicts h from hradar and hbaro:

Gnom=
[0.99s 2.61s + 9.10]
(s2 + 6.46s+9.07)

.

The time behaviour of the resulting estimate is given in Fig. 11.1c. It is
seen in this case that the estimate is even worse than the Kalman filter
given above. The corresponding mean square estimation error is 50277ft2.

• The stochastic H∞ filter : This filter is calculated for the same value of
γ = 1.12, where the minimal achievable value in this case is γ = 1.10 . The
corresponding transfer function matrix is given by

Gsto =
[1.52s 1.03s + 4.12]
(s2 + 5.06s + 4.12)

.

The time behavior of the estimate that is achieved by this filter is given in
Fig. 11.1d. This is, by far, the best of all the three filters considered. Its
estimate is closest to the actual trajectory of h and its mean squares error
is only 19106ft2.

11.2 Altitude Control

In this section an altitude control example is presented to illustrate the design
of static-feedback controller in presence of multiplicative noise, as considered
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Fig. 11.1. Comparison between the stochastic H∞, the H∞, and the Kalman filters:

in Chapter 5. Our example is adapted from (McLean 1990,[80]) where a non-
causal control system was designed, based on complete a priori information
about the altitude level. A causal version of this altitude control problem
is considered in the sequel where the effect of the height on the RADAR
altimeter Signal to Noise Ratio (SNR) is considered.

We consider the system of (5.1) where
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A =



−1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 02 0 0 0 0
0 0 0 1 −1 0 0 0

−.088 .0345 0 0 1 −.0032 0 0
0 0 Θ 0 0 0 0 0
0 0 1/τd 0 0 0 0 −1/τd


(11.3)

and

B1 =
�

0 0 0 0 0 0 −Θ 0
�T

, B2 =
�

1 0 0 0 0 0 0 0
0 0 0 0.09 0 0 0 0

�T
, (11.4)

C2 =


0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 −1

 , F =


0 0 0.15 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0.15 0 0 0 0 −0.15

 , (11.5)

where τd is a time constant of an approximate differentiator, Θ = 0.025[rad/sec]
corresponds to the required closed-loop time-constant and where, rather than
zero, 02 = −0.01 is chosen, in order to obtain finite gain at low frequencies
of the thrust control loop. The state vector, measurements vectors and the
exogenous signals, are given by the following table:

Variable Physical Variable

x1 Vertical acceleration
x2 Height rate
x3 Height
x4 Thrust Command
x5 Thrust
x6 Airspeed
x7 Height error integral
x8 Filtered Height
y1 RADAR altimeter height meausurement
y2 Integrator Output
y3 Vertical acceleration meausurement
y4 Height rate of RADAR altimeter output
u1 Vertical acceleration command
u2 Thrust rate command
w Height command
ν Height measurement multiplicative noise
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The fact that the height measurement errors become larger with the height
(Levanon 1988, [73]) due to SNR decrease is reflected by F1,3. Note that
the estimate of the height rate is obtained by feeding the RADAR altimeter
output to the approximate differentiator s/(1 + sτd) = [(1 − 1/(1 + sτd)]/τd.
Since we have taken τd = 1sec, the nonzero terms in F4,3 and F4,8 reflect the
multiplicative noise which is produced by the approximate differentiation of
the RADAR altimeter output.

The control problem definition is then completed by (5.2) where

C1 =


0 0 0 0 0 0 1 0
0 0 0 0 0 2.23 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 and D12 =


0 0
0 0√
3 0

0
√

0.3

 . (11.6)

Notice that C1 reflects the goals of controlling the closed-loop bandwidth
to be Θ (namely, a rise-time of about 40 seconds) and minimizing the airspeed
changes.

Notice also that the above selection of z and the fact that the exogenous
disturbance signal is the height command, imply that

||ΘTe,w/s||∞ < γ,

where Te,w is the transference between the height command w and the height
tracking error e = x3 − w. Therefore, the time constant τ of the transference
that describes the attenuation of the height command effect is approximately
given by τ = γΘ−1. The exact time constant is affected by the control weight-
ing D12 which, in turn, affects γ and τ .

We next design a static output-feedback type controller using the result of
Theorem 5.2. To this end we first relocate the double integrator poles, which
correspond to the transfer function between acceleration and position, to a
stable complex pair. This is achieved by the static output-feedback controller

u = ũ + Kauxy

where

Kaux =
�−0.02 0 0 −0.2

0.002 0 0 −0.02

�
. (11.7)

This auxiliary control signal u, which is needed in order to avoid numerical
problems with the LMI solver, includes, however, the multiplicative noise in y.
We, therefore, have both nonzero F and D with a unit correlation coefficient
(σ = 1) between β(t) and ν(t) in (5.1), namely
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D = B2KauxF = 10−4



0 0 −330 0 0 0 0 300
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −2 0 0 0 0 3
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


. (11.8)

The design was performed using the result of Theorem 5.2 and using the
MATLABTM LMI Toolbox [35] to solve the relevant matrix inequalities. We
obtained γ = 0.6625 (actual closed-loop norm is 0.6495) and

K =
�−0.00124 −0.06018 −0.05012 0.00759

0.000321 0.00650 1.32 × 10−5 0.00134

�
. (11.9)

The simulations results are depicted in Fig. 11.2-11.3. In Fig. 11.2 the al-
titude as a function of time is depicted where the smooth line in Fig. 11.2
show the altitude command. The acceleration command azc (acceleration, z-
axis, command) and thrust-rate command (usually denoted as δTHc (thrust,
command) are respectively depicted in Figs. 11.3-11.4. The effect of the mul-
tiplicative noise in these measurements is clearly observed as the noise mag-
nitude increases with the altitude. Notice that the time-response of Fig. 11.2
can be made faster by applying an anti-causal feed-forward in the style sug-
gested in (McLean 1990, [80]) but the latter strategy is out of the scope of
the this example.

11.3 Guidance-motivated Tracking Filter

We illustrate the use of the theory of Chapter 8 in a guidance motivated
tracking problem. In this problem, a scheduled estimation is obtained in spite
of a significant noise intensity that is encountered in the measurement of the
scheduling parameter.
Consider the system

ẋ1 = x2, ẋ2 = ω

where x1 is the relative separation between an interceptor and an evader,
normal to a collision course, x2 is its derivative, with respect to time, and ω
represents the relative interceptor-evader maneuvers. The state x2 has to be
estimated via the following measurements :

y = x1/R + ν Rm = R(1 + ζ) (11.10)

where ν and ζ are additive and multiplicative white noise zero-mean signals
in the bearing measurement and the measurement Rm of the range R, re-
spectively. These noise signals stem from the characteristics of the measuring
devices. Substituting (11.10) in (11.10) we have
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Fig. 11.2. - Height and Height Command (smooth line)

y = x1(1 + ζ)/Rm + ν.

Given the variances of ν and ζ, it is desired to obtain an estimate that is
scheduled by the measurement of Rm and achieves a given H∞ estimation
level. We solve the problem in discrete-time where we sample the continuous
system with a sampling period T . The resulting discrete-time system is the
one described in (8.1) with D = 0, G = 0,

A =

�
1 T

0 1

�
, B =

�
T 2/2 0

T 0

�
, D21 =

�
0 ρ̄

�
and L =

�
0 1

�
.

The range measurement of Rk satisfies the discrete-time version of (11.10)
and is given by

Rm,k = Rk(1 + ζk), (11.11)

where {ζk} is a zero-mean white-noise sequence which is a reasonable modeling
of the sampled version of ζ. The corresponding time-varying matrix Ck in (8.1)
is Ck =

�
1

Rmk
0
�
, and the corresponding time-varying version of F in (8.1)

becomes Fk =
�

σ
Rmk

0
�
, where σ is the standard deviation of {ζk}. In our
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Fig. 11.3. - Acceleration Command azc

example, we take T = 0.025sec., ρ̄ = 0.001, and σ = 0.3. The matrix Rk in
(11.11) is taken as

Rk = Vc(50 − k/40), k ∈ [0, N ], where Vc = 300m/sec

and where N = 1880 is taken to match a time range of [0, 47] sec. Since Ck

varies significantly during the system operation in k ∈ [0 N ], it cannot be
possibly represented by an average value. We therefore take Ck to be affinely
dependent on R−1

m,k of (11.11) and consider it to be uncertain, varying in the
interval described by the two vertices [g1 0] and [g2 0] where

g1
�
= 1/R1 = 1/15, 000, and g2

�
= 1/RN = 1/900.

The matrix Fk that corresponds to k = 0 and k = N is similarly considered as
an uncertain matrix lying between

�
0.3g1 0

�
and

�
0.3g2 0

�
. The attempt

to design a robust filter over the whole range of Rm,k by using the results of
[38], without taking into account the state multiplicative noise, would clearly
cause a significant over-design since it leads to a single H∞ filter that satisfies
the required estimation level over the whole interval of uncertainty. Instead,
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since we measure Rm,k, we may use this noisy measurement of Rk to schedule
the filter at time k. This scheduling is based on the fact that the LMI of

(8.9) is affine in the products ZC and ZF . We thus define ΨC
�
= ZkCk and

ΨF
�
= ZkFk, bearing in mind that ΨF = σΨC . Keeping ΨC constant for all

k we want to solve for (W,S,Zk, T,R) in (8.9) for k in [1, N ]. This is done
by first solving the LMI for k = 1, namely for Ck and Fk that correspond to
R1, we obtain the matrix Z1. The resulting ΨC and ΨF are easily calculated.
Since the last two matrices are fixed for all k ∈ [1 N ], we obtain ZN from
either ΨC = ZNCN or ΨF = ZNFN .

For any k ∈ [1 N ], Rm,k can be expressed as a convex combination of
R1 and RN , say Rmk = αkR1 + (1 −αk)RN , α ∈ [0, 1], The matrix Zk that
satisfies ZkCk = ΨC and ZkFk = ΨF is obtained by Zk = αkZ1 + (1 −αk)ZN .
The corresponding Bfi in (8.2) is then given, at any instant i ∈ [1, N ], by
Bfi = αiBf1 + (1 − αi)BfN , where Bf1 and BfN are obtained from Z1 and
ZN by (8.11). The matrices Af and Cf in (8.2) are constant. They are obtained
by (8.11).
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We solved the problem for γ = 30 where we also added the require-
ment for a minimum upper-bound on the H2-norm of the estimation er-
ror. We obtained ZT

1 =
�−0.1153 −20.088

�
, BT

f1 =
�

1.895 0.088
�
, ZT

N =�−1.9231 −333.8954
�
, and BT

fN =
�

31.653 1.474
�
. The pair (Af , Cf ) is

Af =

�
0.9978 0.025

−0.0001 0.9999

�
, Cf =

�
0 1

�
.

The resulting scheduled estimate is given by ẑk = Cf x̂k where

x̂k+1 = Af x̂k + [αkBf1 + (1 − αk)BfN ]yk, x̂0 = 0.

Fig 11.5 describes the ensemble average of the estimation error and the plus
and minus standard deviation (sd) plots for ten randomly selected white noise
sequences {ζk}. We compare the latter results to those obtained by apply-
ing the standard time-varying aposteriori Kalman filter. It is seen that al-
though our filter is based on a priori measurements, we achieve better results
than those obtained by the aposteriori Kalman filter. It is also seen that our
method, where we use 1/Rm,k to schedule the gain instead of computing the
gain on-line (as with the Kalman filter), is more robust at small ranges, where
the effect of the additive noise in the range measurement on the bearing is
more significant.
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Fig. 11.5. Comparison between the H∞ and the Kalman filters. In both parts: the
solid line describes error mean and the dashed lines describe the +/- sd as indicated.
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11.4 Terrain Following

In this section we bring a second example to illustrate the design of static
output-feedback controllers in presence of multiplicative noise, as considered
in Chapter 5 and Section 11.2. We present a terrain following example which
is adapted from [80] where a non-causal control system is designed, based on
complete a priori information about the terrain level. A causal version of this
terrain following problem is considered in the sequel where the effect of the
height on the RADAR altimeter Signal to Noise Ratio (SNR) is modeled as
a state-multiplicative noise.

We consider the system of (5.1) where

A =



−1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 −1 0 0

−.088 .0345 0 0 1 −.0032 0
0 0 Θ̄ 0 0 0 02


(11.12)

and

B1 =
�

0 0 0 0 0 0 −Θ̄ �T
, B2 =

�
1 0 0 0 0 0 0
0 0 0 0.09 0 0 0

�T
, (11.13)

C2 =

 0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1

 , F =

 0 0 0.04 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 (11.14)

where Θ̄ = 1/20[rad/sec] and 02 = −10−5. Note that in comparison with
Section 11.2, here the height rate is assumed to be directly measured. Also
the multiplicative noise level reflected in F is somewhat smaller in order to
allow comparison to other methods. The state vector, measurements vector,
and the exogenous signals and control inputs, are given in the table of the
next page.

The fact that errors in height measurement are larger with the height [73]
due to a decrease in SNR is reflected by the none zero entry of F1,3.

The control problem definition is then completed by (5.2) where

C1 =


0 0 0 0 0 0 1
0 0 0 0 0 2.23 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 , D12 =


0 0
0 0√
3 0

0
√

0.3

 (11.15)
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State Variable Physical Variable
x1 Vertical acceleration
x2 Height rate
x3 Height
x4 Thrust Command
x5 Thrust
x6 Airspeed
x7 Height error integral

Measured Variable Physical Variable
y1 RADAR altimeter height meausurement
y2 RADAR altimeter height rate meausurement
y3 Integrator Output

Disturbance Variable Physical Variable
w Height command
ν Height measurement multiplicative noise

Control Variable Physical Variable
u1 Acceleration command
u2 Thrust rate command

Minimized Variable Physical Variable
z1 Integral of tracking error
z2 Weighted true air speed
z3 Weighted acceleration command
z4 Weighted thrust rate command

Notice that C1 reflects the goals of controlling the closed-loop bandwidth
to be Θ̄ (namely a rise-time of about 20 seconds) and minimizing the airspeed
changes. Notice, also, that the above selection of z1 and the fact that the
exogenous disturbance signal is the height command, imply ( as in Section
11.2 that

||Tz1,w||∞ < γ

in the sense of (5.5) where

Tz1,w = Θ̄
1
s

(x3 − w)

is the transference between the height command w and the weighted integral
height tracking error, and where s is the differentiation operator. Therefore,
the time constant τ of the transference that describes the attenuation of the
height command effect is approximately given by τ = γΘ̄−1. The exact time
constant is affected by the control weighting D12 which, in turn, affects γ and
τ . We note that the approach of modeling the reference signal (the height
command in our case) in tracking problems as an exogenous finite energy
signal is rather standard in the H∞ literature (see [32], pp. 18-19). The latter
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approach is useful when no future information is available on the reference
signal. Otherwise, an anti-causal feed-forward can be used (e.g. [98]).

We compare a couple of controller designs, both of the static output-
feedback type characterized in Theorem 5.2. The first one (Design 1), ignores
F of (11.14) (namely assumes F = 0) for design purposes but the effect of
the nonzero F is tested by simulations. The second one (Design 2), takes F
of (11.14) into account, both in design and simulations. Both designs were
performed using the result of Theorem 5.2 and using the MATLAB’s LMI
Toolbox [34] to solve the relevant matrix inequalities.

For Design 1, a minimum attenuation level of γ = 1.0944 is obtained,
using ρ = 1000 and α = 7442.7, (the actual closed-loop norm is 0.985) and
the corresponding K is :

K =
�−0.0280 −0.2164 −0.0286

0.0001 0.0000 0.0001

�
. (11.16)

For Design 2 we obtained, using again ρ = 1000 and α = 7442.7, that γ =
2.7138 (the actual closed-loop norm is 1.55) and

K =
�−0.0170 −0.1593 −0.0111

0.0000 −0.0001 0.0000

�
. (11.17)

Notice that the gains in Design 2 on the measured altitude are of smaller
magnitude. A simulation was performed using the static gains obtained above,
without the dynamic augmentation including ρ/(s+ ρ). Namely, the dynamic
augmentation is used for design purposes only. The simulations results that
compare the performance of these two designs are depicted in Fig. 11.6- 11.9.
In Fig. 11.6 the altitude as a function of time is depicted, where the dash-
dotted lines correspond to Design 1 and the solid lines to Design 2. The dotted
lines in Fig. 11.6 show the altitude command. The magnitude of the steady-
state (i.e. t > 400 sec.) oscillations estimated by their standard deviation
(that are the result of the state-multiplicative noise corrupting the altitude
measurements) is somewhat smaller by about 8 percent at the cost ,however,
of a somewhat more sluggish response. The merit of Design 2 is better seen in
Figs. 11.7- 11.9 where the true-air-speed, acceleration command and thrust-
rate command are respectively depicted with dash-dotted lines corresponding
to Design 1 and solid lines corresponding to Design 2. The improvement in
these variables, in terms of standard deviation of the steady-state oscillations,
as a result of taking F of (11.14) into account is 30, 40 and 40 percent re-
spectively. Namely, the oscillations in the height rate and control variables
is significantly reduced at the cost of somewhat slower time-response. No-
tice that this time-response can be made faster by applying an anti-causal
feed-forward in the style suggested in [80].
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Fig. 11.6. Height and Height Command (dash-dotted lines Design 1, solid lines
Design 2, dotted lines altitude command )
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Fig. 11.7. Height Rate (dash-dotted lines Design 1, solid lines Design 2)
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Fig. 11.8. Acceleration Command (dash-dotted lines Design 1, solid lines Design
2)
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11.5 Stochastic Passivity: Adaptive Motion Control

This example applies the theory of Chapter 6 to adaptive motion control. We
consider the following system

dx1
dt = x2,

dx2
dt = α(−x2 + u),
dx3
dt = α(x1 − x3) + 0.5x1β̇ + v̇1,

dx4
dt = 5(x2 − x4) + v̇2,

z = x3 + x4

where the range x1 and the range rate x2 of a velocity controlled air vehicle,
are measured by their low-pass filtered versions x3 and x4 respectively. The
low-pass filtered version x3 of the target range is assumed to be corrupted
with β̇x1 , namely the measurement noise increases with the measured range,
where β is a standard Wiener process. Both x3 and x4 are also driven by white
noise processes v̇1 and v̇2 of intensity 10−4 (namely E{dv2

i } = 10−4dt, i = 1, 2)
mutually independent and also independent of β. The bandwidth α ∈ [5, 10]
of the velocity control loop is assumed to vary due to changes in the flight
conditions. It is desired to achieve a regulation of z(t) using the measurements
x3 and x4 in the presence of variations of the bandwidth α and the various
source of measurement noise, including also the state multiplicative noise. A
simplified adaptive control is suggested for this control task. Note that while
the transference relating u and x1 is not passive, the one relating u and z
is passive (see [113] for a similar idea where the actual controlled variable is
chosen as close as possible to the desired control variable under a passivity
constraint). We suggest the following stochastic controller :

u(t) = −Ky(t)

where
y(t) = z(t),

z = Cx and x = col{x1, x2 x3 x4}, and where C =
�

0 0 1 1
�

and where K
obeys the simplified adaptation law of (6.21).

By the results of Section 6.3, the closed-loop stability is ensured if ẋ =
Ax − BKey + Bu, y = Cx is passive where Ke may possibly depend on α.
This passivity condition can be verified by Ke ∈ [1000, 500] corresponding to
α ∈ [5, 10] by solving (6.29) which results in the following positive definite
solution :

P =


28.1441 0.0061 −10.1908 −28.1443

0.0061 0.0020 0.0039 0.0007

−10.1908 0.0039 21.0051 20.8977

−28.1443 0.0007 20.8977 38.8519





11.5 Stochastic Passivity: Adaptive Motion Control 193

A simulation of the above system was run where α linearly varied between
5 and 10 and where the initial range was 500 meters . The simulation results
are depicted in Fig. 11.10-11.13 whereas the variation of α is seen in Fig.
11.14: The position x1 and velocity x2 are depicted in Fig. 11.10 and Fig.
11.11, respectively, whereas the control signal is depicted in Fig. 11.12. The
adaptive gain K is depicted in Fig. 11.13. The results in Fig. 11.10-11.11 show
a satisfactory regulation quality of x1 in spite of the multiplicative noise with
a rather smooth behavior of the adaptive gain (see Fig. 11.13). Note also the
gradual decrease in the noise component observed in the control signal u in
Fig. 11.12 as the range decreases and consequently the effect of multiplicative
noise diminishes.
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11.6 Finite-horizon Disturbance Attenuation: Guidance

This example utilizes the theory of Chapter 9 and is taken from the field of
guidance. It is well known ,[115], that modern guidance laws strongly depend
on the time-to-go. When the time-to-go is not exactly known, a severe per-
formance degradation can occur. In [4], the effect of bias errors was shown
to be significantly reduced, by an optimal rendezvous guidance, where be-
sides the miss-distance (i.e. the relative pursuer-evader position at intercept)
the relative velocity and pursuer acceleration at intercept were minimized
as well. The rational behind the fact that rendezvous guidance is less sensi-
tive to time-to-go errors stems from the fact that in the last moments before
the rendezvous instant, the pursuer is already heading the evader and timing
errors can not significantly affect the miss distance. For the same reasons,
rendezvous guidance should cope well also with noise effects in the time-to-go
measurements, although it is not specifically tuned to deal with such noise
. In this example we offer a systematic development of an optimal guidance
law which explicitly considers the time-to-go measurements noise effect and
compare the performance of the resulting guidance law (which we denote in
the sequel by TRK) to the Minimum Effort guidance Law (MEL) of [115] and
the Reduced Sensitivity guidance Law (RSL) of [4]. We also refer to the Aug-
mented Proportional navigation (APN) guidance law (see e.g. [115]) which is
very popular in missile guidance. Our motivation for analyzing the effect of
time-to-go noise is the guidance of missiles equipped with a RADAR seeker.
Few applications regarding such missiles are mentioned in [115] from which
we adopt some of the data we use for realistic evaluation of the effects of
time-to-go measurements noise on various guidance laws.

We consider the following system :

ẋ = Acx + B2cu + B3cr

where

Ac =

 0 1 0
0 0 1
0 0 −1/T

 , B2c =

 0
0

1/T

 , B3c =

 0
1
0


The first two components of the state vector x are the pursuer-evader relative
position and velocity, respectively, whereas the third component is the actual
pursuer’s acceleration. The control u represents the pursuer’s acceleration
command and the disturbance r is the evader’s maneuver. Due to preference
of discrete-time realization, we take a discrete-time model of the above system,
where we assume for simplicity that both r and u are the outputs of a zero
order hold device with a sampling time of h. The equivalent discrete-time
system becomes then [55] the one of (9.1) where :

Ak =

 0 h −T 2 + Th + T 2e−h/T

0 1 T (1 − e−h/T )
0 0 e−h/T

 , B2k
=

h2/2 − Th + T 2(1 − e−h/T )
h − T (1 − e−h/T )

1 − e−h/T


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B1k
= 0 and B3k

=

h2/2
h
0

 .

For design purposes we assume, following [115] and [4], that the evader’s
maneuver r is constant throughout the interception conflict. Since we also
assume that r is measured online by the pursuer, the apparently anti-causal
feed-forward part of the control θk of (9.11) can be interpreted as a time-
varying gain (obtained by setting r = 1), multiplying the measured constant
disturbance. Although it may seem at first glance that the assumption of
constant r is limiting, the resulting guidance law is quite powerful dealing
also with slowly time-varying maneuvers [115]. Indeed, we show in the sequel
that the guidance law that we obtain is very effective in the presence of a
weave maneuver which is typical to tactical ballistic missiles ([115] , page
433).

We assume that the true time-to-go tgotruek
= tf −kh is noisily measured.

Namely,
tgomeask

= tgotruek
+ vk

where adopting the RADAR noise model of [115], page 379, we assume that
vk is a standard N(0, 0.0225) white noise sequence (derived from a variance
of about 500ft2 and a closing velocity of Vc = 300m/sec) with a sample time
of h = 0.05sec, and where tf is the interception conflict duration and t the
time from conflict start.

We take the MEL law of [115] as a starting point and try to improve its
performance in the presence of the noise vk in the time-to-go measurements.
To this end, we consider the cost function of (9.4) where we take there

Ci = 0, ∀i < N, CN =

 104 0 0
0 0 0
0 0 0

 and D12k
= 1.

Besides the 0 = 1 terms which make our problem well posed, taking D3,N = 0
and γ which tends to infinity, the guidance law which results from Theorem
9.1 nearly recovers the MEL gains. The gains obtained do not exactly match
the MEL gains only due the finite sampling time h and the 0 terms. We denote
the resulting gains matrix by KMEL(tgo) and compute the first two terms in
the Taylor series of these gains. Namely,

KMEL(tgo) = K0(tgo) + K1(tgo)v + O(v2).

If we take the discrete-time version of this Taylor development and substi-
tute in (9.1) we readily obtain a first order approximation to the time-to-go
noise effect by setting:

Fk = B2cK1(k)h and Hk = D12k
K1(k)
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We denote the gains obtained then from Theorem 9.1 by KTRK(tgo). The
RSL gains of [4] obtained by taking

Ci = 0, ∀i < N, CN =

 104 0 0
0 103 0
0 0 103

 and γ = 12,

are denoted by KRSL(tgo), whereas the APN gains are taken from [115], page
145, and are computed using the noise corrupted time-to-go.

The gains of the MEL, RSL and APN divided by those of the TRK are
depicted in Fig. 11.15-11.18. We see already there that the MEL relative ve-
locity gain is lower than the one of the TRK, indicating that the former is
less suitable to be a rendezvous type law and is likely to be more sensitive to
time-to-go noise. On the other hand, the relative RSL velocity gain is higher
(especially at small time-to-go) than the corresponding TRK gain, indicating
that it is a rendezvous type law. Apparently, as it seems from the simulation
results in the sequel, the RSL gains are too high and lead,therefore, to higher
amplification of the time-to-go noise than those of the TRK (at small time-
to-go the RSL gain is also higher than those of the MEL) . The relative TRK
velocity gain which was especially tailored, by using our multiplicative noise
theory, to deal with the time to go noise is just as high as needed. We note
that the APN evader acceleration gain is too small to achieve a small miss
distance for short conflict durations. We also note that the APN law is the
only one of the four guidance laws considered here that is derived by ignoring
the pursuer’s time-constant. Both its relative insensitivity to time-to-go noise
(since it is not ”aware” of the need of compensating for this time constant)
and its poor performance for maneuvering target in short duration (in terms of
pursuer time-constants) are the results of ignoring the pursuer’s time constant.

We next simulate the four guidance laws to illustrate the performance
under time-to-go noise effects. We use an integration step of ∆t = 0.0005 and
take an initial heading error of 10deg. (corresponding to x2(0) = 10πVc/180
where Vc = 300m/sec is the closing velocity and the evader maneuvers with
6gcos(3t) (namely r = 6 ∗ 9.81cos(3t) m/sec2. The latter maneuver model is
taken from [115], page 435, and is typical for tactical ballistic missiles weaving
into resonance. The resulting performance of the MEL, TRK , RSL and APN
laws is depicted in Fig. 11.19 a-d, Fig. 11.20 a-d, Fig. 11.21 a-d and Fig. 11.22
a-d respectively (a-relative separation, b-relative velocity, c-commanded and
actual acceleration and d-control effort). Obviously both our new TRK law
and the RSL efficiently attenuate the noise effect while MEL fails to do so.
The TRK which is especially tailored to deal with the noise performs better.
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Fig. 11.15. Guidance Position Gains of MEL, APN and RSL as a function of the
normalized time to go in seconds
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Fig. 11.16. Guidance Velocity Gains of MEL, APN and RSL as a function of the
normalized time to go in seconds
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Fig. 11.17. Guidance Pursuer Acceleration Gains of MEL, APN and RSL as a
function of the normalized time to go in seconds
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Fig. 11.18. Guidance Evader Gains of MEL, RSL and APN divided by those of
TRK as a function of the normalized time to go
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Fig. 11.19. Simulations results for MEL: a)-relative separation, b)-relative velocity,
c)-commanded and actual acceleration and d)-control effort. The miss-distance is -

0.299 m, the interception angle is -7.302 degrees and t−1
f g−2

� tf

0
u2dτ = 261.786.
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Fig. 11.20. Simulations results for TRK: a)-relative separation, b)-relative velocity,
c)-commanded and actual acceleration and d)-control effort. The miss-distance is -

0.851 m, the interception angle is -2.185 degrees and t−1
f g−2
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u2dτ = 176.530.
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Fig. 11.21. Simulations results for RSL: a)-relative separation, b)-relative velocity,
c)-commanded and actual acceleration and d)-control effort. The miss-distance is

0.031 m, the interception angle is -0.514 degrees and t−1
f g−2
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u2dτ = 363.516.



204 11 Systems with State-multiplicative Noise: Applications

0 1 2 3
−10

0

10

20

30

40

Time [sec]

Rel
ativ

e se
par

atio
n [m

]
a) − Relative separation

0 1 2 3
−60

−40

−20

0

20

40

60

Time [sec]

Rel
ativ

e ve
loci

ty [m
/sec

]

b) − Relative velocity

0 1 2 3
−50

0

50

Time [sec]

Inte
rce

pto
r ac

cele
rati

on 
[g]

c) − Interceptor acceleration

actual

command

0 1 2 3
0

100

200

300

400

500

Time [sec]

Con
trol

 eff
ort

d) − Control effort

Fig. 11.22. Simulations results for APN: a)-relative separation, b)-relative velocity,
c)-commanded and actual acceleration and d)-control effort. The miss-distance is
about 3 m.
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Appendix: Introduction to Stochastic
Differential Equations

A.1 Introduction

In this appendix we bring some basic results concerning stochastic differen-
tial equations of the Ito type which systems with state-multiplicative noise
constitute a special case of. Stochastic differential equations received a com-
prehensive treatment in [63], mainly aimed at providing a rigorous framework
for optimal state estimation of nonlinear stochastic processes. In the present
Appendix, we provide only the main facts that are required to assimilate the
main concepts and results which are useful in deriving optimal estimators
and controllers for linear systems with state-multiplicative white noise. While
the expert reader may skip this appendix, graduate students or practicing
engineers may find it to be a useful summary of basic facts and concepts,
before they read the text of [63]. Comprehensive treatment of stochastic dif-
ferential equations in a form accessible to graduate students and practicing
engineers is given also in [97] where the close connections between Ito type
stochastic differential equations and statistical physics are explored and where
a few additional topics such as stochastic stability are covered. Also in [97]
many communications oriented examples of nonlinear estimation theory can
be found.

A.2 Stochastic Processes

Stochastic processes are a family of random variables parameterized by time
t ∈ T . Namely, at each instant t, x(t) is a random variable. When t is con-
tinuous (namely T = R), we say that x(t) is a continuous-time stochastic
process, and if t is discrete (namely T = {1, 2, ....}), we say that x(t) is a
discrete-time variable. For any finite set of {t1, t2, ...tn} ∈ T we can define the
joint distribution F (x(t1), x(t2), ..., x(tn)) and the corresponding joint density
p(x(t1), x(t2), ..., x(tn)).

E. Gershon et al.: H∞ Contr. and Est. of State-multipl. Lin. Sys., LNCIS 318, pp. 205–216, 2005.
© Springer-Verlag London Limited 2005
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The first and the second order distribution functions, p(x(t)) and p(x(t),
x(τ)), respectively, play an important role in our discussion. Also the mean
mx(t) ∆= E{x(t)} and the autocorrelation γx(t, τ) ∆= E{x(t)x(τ)} are use-
ful characteristics of the stochastic process x(t). When x(t) is vector valued,
the autocorrelation is generalized to be Γx(t, τ) = E{x(t)x(τ)T }. The co-
variance matrix of a vector valued stochastic process x(t) is a measure of
its perturbations with respect to its mean value and is defined by Px(t) ∆=
E{(x(t) − mx(t))(x(t) − mx(t))T }.

A process x(t) is said to be stationary if

p(x(t1), x(t2), ..., x(tn)) = p(x(t1 + τ), x(t2 + τ), ..., x(tn + τ))

for all n and τ . If the latter is true only for n = 1, then the process x(t)
is said to be stationary of order 1 and then p(x(t)) does not depend on t.
Consequently, the mean mx(t) is constant and p(x(t), x(τ)) depends only on
t − τ . Also in such a case, the autocorrelation function of two time instants
depends only on the time difference, namely γx(t, t − τ) = γx(τ).

An important class of stochastic processes is one of Markov processes. A
stochastic process x(t) is called a Markov process if for any finite set of time
instants t1 < t2 < ... < tn−1 < tn and for any real λ it satisfies

Pr{x(tn) < λ|x(t1), x(t2), ..., x(tn−1), x(tn)} = Pr{x(tn)|x(tn−1}.

Stochastic processes convergence properties of a process x(t) to a limit
x can be analyzed using different definitions. The common definitions are
almost sure or with probability 1 convergence (namely x(t) → x almost surely,
meaning that this is satisfied except for an event with a zero probability),
convergence in probability (namely for all 0 > 0, the probability of |x(t)−x| ≥
0 goes to zero), and mean square convergence, where given that E{x(t)2} and
E{x2} are both finite, E{(x(t)−x)2} → 0. In general, almost sure convergence
neither implies nor it is implied by mean square convergence, but both imply
convergence in probability. In the present book we adopt the notion of mean
square convergence and the corresponding measure of stability, namely mean
square stability.

A.3 Mean Square Calculus

Dealing with continuous-time stochastic processes in terms of differentiation,
integration, etc. is similar to the analysis of deterministic functions, but it
requires some extra care in evaluation of limits. One of the most useful ap-
proaches to calculus of stochastic processes is the so called mean square cal-
culus where mean square convergence is used when evaluating limits.

The full scope of mean square calculus is covered in [63] and [97] but we
bring here only a few results that are useful to our discussion.
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The notions of mean square continuity and differentiability are key issues
in our discussion. A process x(t) is said to be mean square continuous if
limh→0x(t + h) = x(t). It is easy to see that if γx(t, τ) is continuous at (t, t)
then also x(t) is mean square continuous. Since the converse is also true,
then mean square continuity of x(t) is equivalent to continuity of γ(t, τ) in
(t, t). Defining mean square derivative by the mean square limit as h → 0
of (x(t + h) − x(t))/h, then it is similarly obtained that x(t) is mean square
differentiable (i.e. its derivative exists in the mean square sense) if and only if
γx(t, τ) is differentiable at (t, t). A stochastic process is said to be mean square
integrable, whenever

�n−1
i=0 x(τi)(ti+1 − ti) is mean square convergent where

a = t0 < t1 < ... < tn = b, where τi ∈ [ti, ti+1] and where |ti+1 − ti| → 0. In
such a case, the resulting limit is denoted by

� b

a
x(t)dt. It is important to know

that x(t) is mean square integrable on [a, b] if and only if γx(t, τ) is integrable
on [a, b]× [a, b]. The fundamental theorem of mean square calculus then states
that if ẋ(t) is mean square integrable on [a, b], then for any t ∈ [a, b], we have

x(t) − x(a) =
� t

a

ẋ(τ)dτ.

The reader is referred to [63] for a more comprehensive coverage of mean
square calculus.

A.4 Wiener Process

A process β(t) is said to be a Wiener Process (also referred to as Wiener-
Levy process or Brownian motion) if it has the initial value of β(0) = 0
with probability 1, has stationary independent increments and is normally
distributed with zero mean for all t ≥ 0. The Wiener process has then the
following properties : β(t) − β(τ) is normally distributed with zero mean and
variance σ2(t−τ) for t > τ where σ2 is an empirical positive constant. Consider
now for t > τ the autocorrelation

γβ(t, τ) = E{βtβτ )} = E{(β(t) − β(τ) + β(τ))β(τ)}
= E{(β(t) − β(τ))β(τ)} + E{β2(τ)}.

Since the first term is zero, due to the independent increments property of
the Wiener process, it is readily obtained that γβ(t, τ) = σ2τ . Since we have
assumed that t > τ we have in fact that γβ(t, τ) = σ2min(t, τ). Since the
latter is obviously continuous at (t, t), it follows that β(t) is mean square con-
tinuous. However, a direct calculation (see [63]) of the second order derivative
of γβ(t, τ), with respect to t and τ at (t, t), shows that

min(t + h, t + h�) − min(t, t)
hh�

= 1/max(h, h�)
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which is clearly unbounded as h and h� tend to zero. Therefore, γβ(t, τ) is
not differentiable at any (t, t) and consequently β(t) is not mean square dif-
ferentiable anywhere. It is, therefore, concluded that the Wiener process is
continuous but not differentiable in the mean square sense. In fact, it can
be shown that the latter conclusion holds also in the sense of almost sure
convergence.

A.5 White Noise

We begin this section by considering discrete-time white noise type stochas-
tic processes. A discrete-time process is said to be white if it is a Markov
process and if all x(k) are mutually independent. Such a process is said to
be a white Gaussian noise if, additionally, its samples are normally distrib-
uted. The mutual independence property leads, in the vector valued case, to
E{x(n)xT (m)} = Qnδn,m where δn,m is the Kronecker delta function (1 for
equal arguments and zero otherwise) and where Qn ≥ 0. The discrete-time
white noise is a useful approximation of measurement noise in many practical
cases. Its continuous-time analog also appears to be useful. Consider a sta-
tionary process x(t) whose samples are mutually independent, taken at large
enough intervals. Namely,

γ(τ) = E{x(t + τ)x(t)} = σ2 ρ

2
e−ρ|τ

where ρ >> 1. As ρ tends to infinity γ(τ) rapidly decays as a function of τ , and
therefore the samples of x(t) become virtually independent and the process
becomes white. Noting that for ρ that tends to infinity, ρ

2e
−ρ|τ → δ(τ) where δ

is the Dirac delta function [63], a vector valued white process x(t) is formally
considered to have the autocorrelation of γ(τ) = Q(t)δ(τ) where Q(t) ≥ 0.
Namely, E{x(t)x(τ)} = Q(t)δ(t− τ). Defining the spectral density of x(t) by
the Fourier transform of its autocorrelation, namely by

f(ω) =
� ∞

−∞
e−iτωσ2 ρ

2
e−ρ|τ |dτ =

σ2

1 + ω2/ρ2

we see that this spectral density is constant and has the value of σ2 up to
about the frequency ρ where it starts dropping to zero. Namely, the spectrum
of x(t) is nearly flat independently of the frequency, which is the source of
the name ”white” noise, in analogy to white light including all frequencies
or wavelengths. We note that for finite ρ >> 1, x(t) is said to be a wide-
band noise (where 1 may represent the measured process bandwidth and ρ the
measurement noise bandwidth). In such a case, modelling x(t) as a white noise
is a reasonable approximation. We note, however, that constant f(ω) or white
spectrum corresponds to infinite energy by Parseval’s theorem . Alternatively,
looking at the autocorrelation at τ = 0, we see that
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γ(0) = E{x2(t)} =
1

2π

� ∞

−∞
f(ω)dω → ∞.

Therefore, white noise is not physically realizable but is an approximation
to wide band noise. To allow mathematical manipulations of white noise, we
relate it to Wiener processes which are well defined. To this end we recall that
the autocorrelation of a Wiener process β(t) is given by

γ(t, τ) = E{x(t)x(τ)} = σ2min(t, τ).

Since expectation and derivatives can be interchanged, namely

E{dβ(t)
dt

dβ(τ)
dτ

} =
d2

dtdτ
E{βtβτ},

it follows that the autocorrelation of ˙β(t) is given by σ2 d
dτ [ ddtmin(t, τ)]. How-

ever, min(t, τ) is τ for τ < t and t otherwise; therefore, its partial derivative
with respect to t is a step function of τ rising from 0 to 1 at τ = t. Con-
sequently, the partial derivative of this step function is just σ2δ(t − τ). The
autocorrelation of β̇(t) is thus σ2δ(t− τ), just as the autocorrelation of white
noise, and we may, therefore, formally conclude that white noise is the deriv-
ative, with respect to time, of a Wiener process.

A.6 Stochastic Differential Equations

Many stochastic processes are formally described (see [63] and [97]) by the
Langevin’s equation:

dx

dt
= f(x(t), t) + g(x(t), t)β̇(t)

where β̇(t) is a white noise process. For example, in this monograph, the
so called state-multiplicative process is obtained when f(x(t), t) = Ax and
g(x(t), t) = Dx leading to

dx

dt
= Ax + Dxβ̇(t).

When we write the latter in terms of differentials rather than in terms of
derivatives, we obtain the following equation

dx = Axdt + Dxdβ

where the physically unrealizable β̇(t) no longer appears but instead the dif-
ferential dβ of β(t) drives the equation. Note that

dβ(t) ∆= β(t) − β(t − dt)
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is normally distributed with zero mean and σ2(t − (t − dt)) = σ2dt. When
σ2 = 1 we say that the Wiener process β(t) and the corresponding white noise
process β̇(t) are standard. Back to Langevin’s equation, we may realize that
it can also be written in terms of differentials as

dx(t) = f(x(t), t)dt + g(x(t), t)dβ(t).

This equation is, in fact, interpreted by

x(t) − x(t0) =
� t

t0

f(x(τ, τ)dτ +
� t

t0

g(x(τ, τ)dβ(τ),

where the first term is a Lebesgue-Stieltges integral and the second term is
an Ito integral with respect to the Wiener process β(t). Namely, this integral
is defined via approximation by the sum:

n−1�
i=0

gti [β(ti+1) − β(ti)], where a = t0 < t1 < ... < tn = b,

where gti is a random variable at the fixed time ti which is Fti measurable
(see Section 1.4.1). It is assumed that gti is independent on future increments
β(tk)−β(tl) for ti ≤ tl ≤ tk ≤ b of β(t). The stochastic integral is then defined
by choosing a series gnof piecewise step functions which converge to g, in the
sense that the mean square of the integral of gn−g tends to zero as n tends to
infinity. Whenever gt is mean square integrable and is independent of future
increments of β(t), the stochastic Ito sense integral exists. Furthermore, it
satisfies two useful identities:

E{
�

gtdβ(t)} = 0, and E{
�

gtdβ(t)
�

ftdβ(t)} = σ2

�
E{gtft}dt.

In fact, we have defined in the above the first order stochastic integral.
The second order stochastic integral in the Ito sense,

� t

0
gtdβ

2(t), is similarly
defined by taking the limit of n to infinity in

�n−1
i=0 gti [β(ti+1) −β(ti)]. It can

be shown [63] that the latter converges, in mean square, to just
� t

t0
σ2gtdt.

We consider next

dx(t) = x(t)dβ(t) +
1
2
x(t)dβ2(t)

where x(0) = 1 almost surely. Integrating the latter yields

x(t) − 1 =
� t

0

x(t)dβ(t) +
1
2

� t

0

x(t)dβ2(t) =
� t

0

x(t)dβ(t) +
σ2

2

� t

0

x(t)dt.

The latter is simply the integral form in the Ito sense of:

dx(t) = x(t)dβ(t) +
σ2

2
x(t)dt,

meaning that in stochastic differential equations, dβ2(t) can be replaced in
the mean square sense by σ2dt.
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A.7 Ito Lemma

Ito lemma is a key lemma which is widely used in the present monograph to
evaluate differentials of nonlinear scalar valued functions ϕ(x(t)) of solutions
x(t) of Ito type stochastic differential equations. Consider a scalar process x(t)
which satisfies

dx

dt
= f(x(t), t) + g(x(t), t)β̇(t).

Then, using Taylor expansion, we have

dϕ = ϕtdt + ϕxdx +
1
2
ϕxxdx

2 +
1
3
ϕxxxdx

3 + ....

Discarding terms of the order o(dt), recalling that dβ2(t) is of the order of dt,
and substituting for dx in the above Taylor expansion, it is found that [63]:

dϕ = ϕtdt + ϕxdx +
1
2
ϕxxg

2dβ2(t).

Substituting σ2dt for dβ2(t) we obtain

dϕ = ϕtdt + ϕxdx +
σ2

2
ϕxxg

2dt.

For vector valued x(t), where Qdt = E{dβdβT }, the latter result reads:

dϕ = ϕtdt + ϕxdx +
1
2
Tr{gQgTϕxx}dt

where ϕxx is the Hessian of ϕ with respect to x.

A.8 Application of Ito Lemma

Ito lemma is useful in evaluating the covariance of state multiplicative
processes considered in the present monograph. Consider

dx = Axdt + Dxdξ + Bdβ

where ξ is a scalar valued standard Wiener process and where β is also a
scalar Wiener process independent of ξ so that E{dβdβT } = Qdt. We define

w = col{β, ξ}. The intensity of w is given by Q̃
∆=

�
Q 0
0 1

�
. We also define

G̃ =
�
B Dx

�
Defining ϕ(x(t)) = xi(t)xj(t), where xi is the i-th component of x, we get

(see [63]), using Ito lemma, that

dϕ = xi(t)dxj(t) + xj(t)dxi(t) +
1
2
Tr{G̃Q̃G̃TΣ},
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where the only non zero entries in Σ are at locations i, j and j, i. Consequently,
we have that

d(xxT ) = (xdxT + dxxT + G̃Q̃G̃T )dt.

Taking the expectation of both sides in the latter, and defining:
P (t)=E{x(t)xT (t)}, the following result is obtained.

Ṗ = AP + PAT + BQBT + DPDT .

A.9 Simulation of Stochastic Differential Equations

Consider again
dx = Axdt + Dxdξ + Bdβ.

Consider now the discrete-time stochastic process

x(k + 1) − x(k)
h

= Ax(k) + Dx(K)ξ̄(k)/
√
h + Dβ̄(k)/

√
h,

where ξ̄(k) is a normally distributed random sequence of zero mean and unit
variance and β̄(k) is a random vector sequence of zero mean and covariance
Q. Notice that x(k), in fact, satisfies

x(k + 1) = Fx(k) + Gw(k),

where F= I+Ah and G=
√
h

�
B Dx(k)

�
and where w(k) = col{β̄(K), ξ̄(K)}.

Defining S(k) =E{x(k)xT (k)} we see, by the independence of x(k) on w(k),
that

P (k + 1) = FP (k)FT + E{GQGT } = FP (k)FT + hBQBT + hDP (k)DT .

Substituting for F , neglecting terms of the order of h2 and dividing both sides
of the resulting equation by h we get

P (k + 1) − P (k)
h

= AP (k) + P (k)AT + BQBT + DP (k)DT ,

meaning that the discrete-time process x(k) correctly represents the continuous-
time process x(t), in the sense that the first two moments are identical in the
limit where the integration step h tends to zero. Furthermore, we note that
the increments ξ((k+ 1)h) − ξ(kh) are represented in the discrete-time model
by ξ̄(k)

√
h, which is zero mean and of variance h thus approximating the

property of Wiener process increments E{dξ2(t)} = dt.
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A.10 The Kalman Filter for Systems with
State-multiplicative Noise

The present monograph deals with H∞ or mixed H2/H∞ estimators and
controllers for systems with state-multiplicative noise. It is appropriate, for
the sake of completeness, to derive also the pure H2-optimal estimator for this
case which is a variant of the celebrated Kalman filter.

We consider the system

dx = Axdt + Dxdξ + Bdβ,

where E{dξ2(t)} = dt, E{dβdβT } = Qdt, and E{x0x
T
0 } = P0, measured by

dy = Cxdt + dη,

where E{dηdηT } = Rdt and where the Wiener processes ξ, β, η are assumed
to be mutually independent. Considering the observer

dx̂ = Ax̂ + K(dy − Cx̂dt)

and defining the estimation error e = x − x̂, we readily obtain that the aug-
mented state vector μ = col{e, x}, satisfies the following equation:

dμ = Fμdt + Gdw + ∆μdξ,

where

F =
�
A − KC 0

0 A

�
, G =

�
B −K
B 0

�
, and ∆ =

�
D 0
D 0

�
where w = col{β, η} and where

E{dwdwT } =
�
Q 0
0 R

�
dt

∆= Q̃.

The covariance S of the augmented state vector obviously satisfies then

Ṡ = FS + SFT + ∆S∆T + GQ̃GT , S(0) =
�
P0 P0

P0 P0

�
.

Partitioning the covariance matrix S in conformity with the dimensions of e
and x so that

S
∆=

�
S11 S12

ST
12 S22

�
,

it is readily obtained that

˙S11 = (A − KC)S11 + S11(A − KC)T + BQBT + KRKT + DS11D
T

˙S12 = (A − KC)S12 + S12A
T + BQBT + KRKT + DS11D

T
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and
˙S22 = AS22 + S22A

T + BQBT + DS11D
T .

Fortunately, the equation for S11 can be solved independently of the other
two. Denoting P

∆= S11 and completing to squares we obtain that

Ṗ = AP + PAT + BQBT − PCTR−1CP + DPDT

+(K − PCTR−1)R(K − PCTR−1)T , P (0) = P0.

In order to minimize P , the last term should be nulled and therefore the
Kalman filter for our case turns out to be:

dx̂ = Ax̂dt + PCTR−1(dy − Cx̂dt)

where

Ṗ = AP + PAT + BQBT − PCTR−1CP + DPDT , P (0) = P0.

Note that the last term is the only contribution of the state multiplicative
noise. In fact, the Kalman filter for linear systems with state multiplicative
noise, is one of the very few examples for which finite dimensional minimum
mean square optimal estimators are obtained for nonlinear systems.

A.11 Stochastic Stability

It is appropriate to conclude the present appendix with few words about
stochastic stability. Consider the following stochastic system

dx = f(x(t), t)dt + g(x(t), t)dβ(t) (A.1)

for x ∈ Rn and the corresponding Ito formula:

dϕ = ϕtdt + ϕxdx +
1
2
Tr{gQgTϕxx}

= ϕtdt + ϕx(f + gdβ) +
1
2
Tr{gQgTϕxx}

= ϕtdt + ϕxf +
1
2
Tr{gQgTϕxx} + ϕxgdβ = Lϕ + ϕxgdβ

where

L
∆=

∂

∂t
+ fT

∂T

∂x
+

1
2
Σn

i,j=1(ggT )i,j
∂2

∂xi∂xj

is referred to as the infinitesimal generator of the system (A.1). Since

dϕ = Lϕ + Mdβ
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where M
∆= ϕxg, then if ϕ(x) = V (x) > 0 for all x and LV ≤ 0, then V is

said to be Lyapunov function.
From the above we have:

V (x(t)) = V (x0) +
� t

0

LV (x(t))dt +
� t

0

Mdβ ≤ V (x0) +
� t

0

Mdβ. (A.2)

Using results about Martingales, which are beyond the scope of the present
monograph, it is shown in [97] that (A.2) implies that all trajectories with
x0 sufficiently close to the origin remain, at all times, in the origin’s neigh-
borhood, except for a set of trajectories with arbitrarily small probability.
The latter result, which corresponds to almost sure stability, can be under-
stood also intuitively: if V (x) is reduced so that x(t) gets closer to the origin,
then its gradient Vx becomes small and consequently M = Vxg tends to zero.
Therefore, V (x) is reduced in a manner which is similar to the deterministic
case. In fact, when g(x, t) ≡ 0 the above discussion reduces to the stability
analysis of the deterministic system

ẋ = f(x(t), t).

In this case, LV ≤ 0 reduces to dV
dt ≤ 0. Furthermore, if g(x, t) = x, then the

term
M = Vxg = Vxx

tends to zero if x(t) → 0, thus allowing the effect of β(t) to vanish, ensuring
the convergence of x(t) to zero. If in addition, limt→∞x(t) = 0 with probabil-
ity 1, then the origin is stochastically asymptotically stable. Furthermore, if
the above results hold for all x0 rather than those that are in a small neighbor-
hood, then the origin is globally asymptotically stable. It turns out that when
LV (x) < 0 holds for all nonzero x then the origin is asymptotically stable in
probability. If also LV (x) < −kV (x) for all nonzero x, for some k > 0, then
also mean square global stability is obtained.

Consider the class of linear systems with state-multiplicative noise that is
treated in the present monograph where

f(x) = Ax, and g(x) = Dx,

and where all eigenvalues of A are in the open left half of the complex plane.
Choosing

V (x) = xTPx,

with P > 0 and requiring that LV < −kV , for k > 0, (which generally
means small enough ||D||), imply square stability, in addition to the global
asymptotic stability in probability.

It may be interesting to see a case [78] where the different concepts of
stability may lead to different conclusions.

Consider the so-called Geometrical Brownian Motion (GBM) (see also [97])
which evolves according the following stochastic differential equation:
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dx(t) = ax(t)dt + bx(t)dβ(t), x(0) = x0 (A.3)

where β(t) is again a standard Wiener process (or Brownian Motion), namely
E{dβ2(t)} = dt and where a − b2/2 < 0 but a > 0 so that the deterministic
case with b = 0 would be unstable.

Define dz(t) = bdβ(t), z(0) = 0 (meaning that z(t) = bβ(t)) and consider
ϕ(z) = e(a−b2/2)t+z(t). Applying Ito lemma to evaluate dϕ we obtain, since z
satisfies (A.1) with f(z) = 0, and g(z) = b, that

dϕ = ϕtdt + ϕzdz + 1
2ϕzzdt = [(a − b2/2)ϕ + ϕdz + b2

2 ϕ]dt = aϕdt + bϕdz

= aϕdt + bϕdβ.

Since ϕ satisfies (A.3) we arrive at the conclusion (see [97]) that the solution
(A.3) is

x(t) = e(a−b2/2)t+bβ(t) = e[(a−b2/2)+bβ(t)/t]t

Since β(t)/t tends to zero as t tends to infinity (β(t) is of the order of
√
t),

x(t) tends to zero as t tends to infinity (see [97]). Also, the corresponding
Lyapunov exponential is negative [78]:

lim
t→∞λ(t) = lim

t→∞[log(x(t))]/t = a − b2/2 < 0.

Consider now V (x) = px2 where p > 0. Then,

LV = (2a + b2)px2 > 0

and also P (t) = E{x2(t)} is shown to satisfy

dP/dt = (2a + b2)P

which means that P (t) = x2
0e

(2a+b2)t. The latter tends to infinity as t tends
to infinity. Namely, (A.3) can not be shown to be stochastically stable in
probability, using a quadratic Lyapunov function, but it is clearly unstable
in the mean square sense. Considering a non quadratic Lyapunov function
V (x) = p|x|α where p > 0, then

LV = [a +
1
2
b2(α − 1)]αp|x|α,

which, by choosing 0 < α < 1 − 2a
b2 , leads to LV < 0. Therefore, the system

(A.3) is stochastically stable, in probability, but not mean square stable.
If both a < 0 and a − b2/2 < 0 are satisfied, then for b2 < −2a (in this

case b plays the role of D in dx = Axdt+Dxdβ), the above discussion shows
that (A.3) is mean square stable.



B

Appendix: The Continuous DLMI Method

B.1 Introduction

In the past, LMIs were used mainly to solve stationary problems. The alge-
braic nature of the Riccati equations to which these problems correspond,
enables the construction of equivalent LMIs by applying the Schur comple-
ments formula [60].

Unfortunately, in cases where the systems involved are time-varying or
when the time-horizon is finite, differential or difference LMIs appear. The
degree of freedom that is entailed in solving these inequalities at each instant
of time should be exploited to derive the best solution that will enable the op-
timal solution at future instances of time. In the discrete-time case, recursive
sets of LMIs are obtained, and the question which was raised in [44] was how
to find a solution for a given set of difference LMIs at, say, the k-th instant
which enables the best solution to these LMIs at instances i > k. The method
developed in [44] was used to solve robust control and filtering problems and
the relationship between the proposed solutions and the corresponding ‘cen-
tral’ solutions was discussed.

In this appendix we adopt a similar approach for continuous-time systems
by discretizing the time scale and developing LMIs that resemble the ones ob-
tained in [44] for the discrete-time case. The results we obtain here enable the
solution of the state and output-feedback control problems for time-varying
systems over a finite horizon. They also provide an efficient means for solv-
ing the control problem for multiple operating points and, by an appropriate
gridding of the uncertainty intervals, for the robust control of systems with
polytopic uncertainties.

B.2 Solution of the BRL via Discretization

Given the following system S(A, B, C):

E. Gershon et al.: H∞ Contr. and Est. of State-multipl. Lin. Sys., LNCIS 318, pp. 217–228, 2005.
© Springer-Verlag London Limited 2005



218 B Appendix: The Continuous DLMI Method

ẋ = Ax + Bw, z = Cx, x0 = 0, (B.1)

where x ∈ Rn is the system state vector, w ∈ Lq
2[t, T ] is the exogenous

disturbance signal and z ∈ Rm ⊂ Rn is the state combination (objective
function signal) to be attenuated. The matrices A, B and C are time-varying
matrices of appropriate dimensions. For a prescribed scalar γ > 0 and for a
given PT ≥ 0 we define the performance index:

J(w, t, T ) = xT (T )PTx(T ) +
� T

t

(zT z − γ2wTw)dτ (B.2)

It is well known that a necessary and sufficient condition for J(w, t, T ) < 0
for all w ∈ Lq

2[t, T ] is the existence of a solution P , on [t, T ], to the following
Differential Riccati Equation (DRE):

−Ṗ = PA + ATP + γ−2PBBTP + CTC, P (T ) = PT . (B.3)

It follows from the monotonicity of P with respect to an additional positive
semidefinite term on the right hand side of (B.3), that the solution to the
above DRE can be obtained by solving the following Differential Linear Matrix
Inequality (DLMI):

Γ (P ) ∆=

 Ṗ + ATP + PA PB CT

∗ −γ2Iq 0
∗ ∗ −Im

 ≤ 0, P ≥ 0, P (T ) = PT (B.4)

where we require that Tr{P (τ)} be minimized at each time instant τ ∈
[t, T ]. The above DLMI can be solved by discretizing the time interval [t, T ]
into equally spaced time instances {ti, i = 1, ..N, tN = T, t1 = t}, where:

ti − ti−1
∆= ε = N−1(T − t), i = 1, ...N. (B.5)

The discretized BRL problem thus becomes one of finding, at each k ∈ [1, N ],
Pk−1 > 0 of minimum trace that satisfies−Pk−1 + Pk + ε(AT

k Pk + PkAk) PkBk CT
k

∗ −γ2

ε Iq 0
∗ ∗ −ε−1Im

 ≤ 0, PN = PT (B.6)

where the index k implies that the matrix concerned is evaluated at t = tk.
For relatively large N, P (ti) may be a good approximation to P (τ) on [ti−

ε/2, ti+ε/2]. The problem with the above solution procedure arises, however,
when the matrices A, B and C depend on some other matrix variable, for
example the gain matrix K in the state-feedback problem. When applying the
above method to the latter problem, at instant k, the matrix Pk is given and
the matrices Pk−1 and Kk are sought. The fact that the latter matrix variables
correspond to different time instances may cause instability in the iterative



B Appendix: The Continuous DLMI Method 219

process for small feasible values of γ, especially when T − t tends to infinity.
One may overcome this difficulty by replacing Ṗ (tk) by ε−1(Pk+1 − Pk). The
DLMI of (B.6) will then become:Pk+1 − Pk + ε(AT

k Pk + PkAk) PkBk CT
k

∗ −γ2

ε Iq 0
∗ ∗ −ε−1Im

 ≤ 0, PN = PT (B.7)

where the Pk ≥ 0 of minimum trace is sought that satisfies the inequality.
Another, more serious, disadvantage of the above method is evident in the

case where A, B and C are time-invariant uncertain matrices lying within a
polytope Ω. Solving (B.4) for this case and for T − t which tends to infinity,
we seek a P > 0 of minimum trace that satisfiesATP + PA PB CT

∗ −γ2Iq 0

∗ ∗ −Im

 ≤ 0 (B.8)

When the matrices in Ω are affine functions of a common matrix variable (for
example, in the state-feedback case a single constant gain matrix K should be
found for all of the systems in Ω), a single matrix P is sought which solves
(B.8) for all of the matrices belonging to the set Ω. This procedure guarantees
the quadratic stability [93] of the resulting closed-loop systems, but the overall
design is quite conservative.

It would, therefore, be of interest to find another discrete representation
for the DLMI of (B.4) that will overcome the above mentioned difficulties.
Defining

Q̃
∆= P−1 (B.9)

we find that (B.3) is equivalent to:

˙̃Q = Q̃AT + AQ̃ + γ−2BBT + Q̃CTCQ̃, Q̃(T ) = P−1
T . (B.10)

Further defining 0Q̄
∆= Q̃, where 0 < 0 << 1 is the scalar frame time (integra-

tion step) defined in (B.5), we obtain:

0 ˙̄Q = 0(Q̄AT + AQ̄) + γ−2BBT + 02Q̄CTCQ̄, Q̄(T ) = 0−1P−1
T .

The monotonicity of the solution Q̄, with respect to an additional positive
semidefinite term on the right hand side of the above equation, implies that
the same solution can be obtained by solving

−0 ˙̄Q+ 0(Q̄AT +AQ̄)+γ−2BBT + 02Q̄CTCQ̄ ≤ 0, Q̄(T ) = 0−1P−1
T (B.11)

and choosing the minimal solution at each t ∈ [0 T ].
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Applying the previously described time discretization scheme and replac-
ing ˙̄Q(tk) by 0−1(Q̄k+1−Q̄k) it readily follows from (B.11) that the discretized
BRL problem is one of finding {Qk} that will satisfy

−Qk+1+Qk+0(AkQk+QkA
T
k )+γ−2BkB

T
k +02QkC

T
k CkQk ≤ 0 Q̄N = 0−1PT

(B.12)
with Q̄k > 0 of minimum trace for all k = N − 1, ...0. The latter leads to the
following:

Lemma B.1. Given γ > 0, PT and 0 < 0 << 1. The discretized BRL problem
has a solution if for all k = N − 1, ....1 there exists a solution Qk of minimum
trace to the following DLMIs

−Qk In + 0AT
k 0 CT

k

∗ −Q−1
k+1 Bk 0

∗ ∗ −γ2Iq 0
∗ ∗ ∗ −0−2Im

 ≤ 0, Qk > 0, QN = 0PT (B.13)

Proof: We have that

Qk + 0(AkQk + QkA
T
k ) = (I + 0Ak)Qk(I + 0AT

k ) − 02AkQkA
T
k

so that inequality (B.12) becomes:

−Qk+1 +(I+ 0Ak)Qk(I+ 0AT
k )− 02AkQkA

T
k +γ−2BkB

T
k + 02QkC

T
k CkQk ≤ 0

(B.14)
We also have that

(I − 02CkQkC
T
k )−1 = I + 02CkQkC

T
k + 04CkQkC

T
k CkQkC

T
k + ...

= I + 02CkQkC
T
k + O(04)

hence

02QkC
T
k CkQk = 02QkC

T
k (I − 02CkQkC

T
k )−1CkQk + O(04)

Therefore:

(I + 0Ak)Qk(I + 0AT
k ) + 02QkC

T
k CkQk

= (I + 0Ak)
�
Qk + 02QkC

T
k (I − 02CkQkC

T
k )−1CkQk

�
(I + 0AT

k ) + O(03).

This in turn implies that inequality (B.14) becomes:

−Qk+1 + (I + 0Ak)
�
Qk + 02QkC

T
k (I − 02CkQkC

T
k )−1CkQk

�
(I + 0AT

k )

−02AkQkA
T
k + γ−2BkB

T
k + O(03) ≤ 0, Q̄N = 0−1P−1

T . (B.15)

Defining Σk
∆= 02AkQkA

T
k + O(03), (B.15) is then:
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−Qk+1 + (I + 0Ak)
�
Qk + 02QkC

T
k (I − 02CkQkC

T
k )−1CkQk

�
(I + 0AT

k )

−Σk + γ−2BkB
T
k ≤ 0, Q̄N = 0−1P−1

T . (B.16)

The latter can be put in the following form:
−Q̄−1

k In + 0AT
k 0 CT

k

∗ −Q̄k+1 − Σk Bk 0

∗ ∗ −γ2Iq 0

∗ ∗ ∗ −0−2Im

 ≤ 0, Q̄N = 0−1P−1
T (B.17)

The term Σk(Q̄k) is not linear in Q̄k. However, since Σk(Q̄k) ≥ 0 for a small
enough 0, we solve (B.17) by replacing Σk with a zero matrix. For a small
enough 0, the resulting solution sequence {Q̄k} will also solve (B.17) with a
non-zero Σk. Denoting Qk = Q̄−1

k (which means that Qk = 0Pk) and replacing
Q̄k by Q−1

k , (B.17) readily leads to (B.13).
The first inequality in (B.17) does not suffer from the discrepancy between

the time indices in the state space matrices and Q̄k. It will be shown below
that it also overcomes the difficulties entailed in the design when subjected to
parameter uncertainty.

B.3 State-feedback Control

We now apply the preceding DLMIs to the finite-horizon, time-varying, state-
feedback design problem. Given the system S(A, B1, B2, C1, D12):

ẋ = Ax + B1w + B2u, z = C1x + D12u, x0 = 0, (B.18)

where x, w and z are defined in Section B.2, u ∈ R) is the control input and
A, B1, B2, C1 and D12 are time-varying matrices of appropriate dimensions.
For a prescribed scalar γ > 0 and for a given PT > 0 we consider the perfor-
mance index of (B.2). We look for the state-feedback gain matrix K(t) which,
by means of the control strategy of u = Kx, achieves J(w, t, T ) ≤ 0 for all
w ∈ Lq

2[t, T ].
Replacing Ak and Ck of (B.13) by Ak+B2,kKk and C1,k+D12,kKk, respec-

tively, the discretized state-feedback problem becomes one of finding sequences
{Qk} and {Kk} such that, for k=N−1,N−2, ..., 0, they simultaneously satisfy
the following LMI:

−Qk In+0(AT
k +KT

k B
T
2,k) 0 CT

1,k+KT
k D

T
12,k

∗ −Q−1
k+1 B1,k 0

∗ ∗ −γ2Iq 0
∗ ∗ ∗ −0−2Im

 ≤ 0, QN =0PT

(B.19)

and Qk possesses a minimum trace.
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The applicability of the above method is demonstrated by the following ex-
ample:

Example 1:

We consider the system of (B.18) with:

Ak =
�
0 1
0 0

�
, B1,k =B2,k =

�
0
1

�
, C1,k =

�
1 0
0 0

�
, and D12,k =

�
0
1

�
; T =20secs

with the cost function of (B.2) and with PT = 10−10I2, which implies that we
are not interested in the final value of x(20). The minimum achievable value
of γ, for the corresponding infinite horizon case (T → ∞) is 1, and we thus
look for a solution in the vicinity of the minimum value of γ, say γ = 1.01.
The time interval of interest (in seconds) is [0 20]. We thus choose 0 = .005
seconds and sequentially solve (B.19) for k = 3999, ..., 0. The following results
were obtained:

Q0 =
�

3.7823 7.1366
7.1366 26.9322

�
0, K0 =

�−7.1177 −26.8965
�
.

The eigenvalues of the resulting closed-loop matrix A0 +B2,0K0 are: −0.2673
and −26.6292. The maximum singular value of Q1 −Q0 is 1.28×10−60, which
indicates the convergence of the sequence {Qi, i = 4000, 3999, ...} to the nearly
stationary value of Q0.
In comparison, the ‘central solution’ for the stationary case, which is derived
by solving

ATP + PA + CT
1 C1 + P (γ−2B1B

T
1 − B2R

−1BT
2 )P = 0,

R = DT
12D12, and K = R−1BT

2 P

for the same value of γ = 1.01 is:

P =
�

3.7746 7.1240
7.1240 26.8906

�
, and K =

�−7.1240 −26.8906
�
.

with closed-loop poles at −0.2676 and −26.6230 !

B.3.1 The Uncertain Case:

We assume in the following that A, B1, B2, C1 and D21 are appropriately
dimensioned matrices which reside in the following uncertainty polytope
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Ω
∆={(A, B1, B2, C1, D21) |(A, B1, B2, C1, D21)

=
Nv�
i=1

τi(Ai, B1,i, B2,i, C1,i, D21,i); τi ≥ 0,
Nv�
i=1

τi = 1}, (B.20)

and we look for a single state-feedback gain matrix K(t) that will yield a
negative performance index in (B.2) for x(0) = 0 and for all nonzero w ∈
Lq

2[t, T ]. The preceding state-feedback problem can be solved by applying
the above discretization and by replacing Ak, Bk and Ck of (B.17) by Ai,k +
B2,i,kKk, B1,i and C1,i,k + D12,i,kKk, respectively, where i = 1, ...Nv denote
the vertices of Ω. Multiplying the first row block in (B.17), from the left, by
Qk and the first column block ,from the right, by the same matrix and taking
Σk = 0 we have:

−Q̄k Q̄k+0(Q̄kA
T
i,k+Q̄kK

T
k B2,i,k

T ) 0 Q̄kC
T
1,i,k+Q̄kK

T
k D

T
12,i,k

∗ −Q̄k+1 B1,i,k 0
∗ ∗ −γ2Iq 0
∗ ∗ ∗ −0−2Im

≤0,

Q̄N = 0−1P−1
T (B.21)

Letting Q̄kK
T
k

∆= Y T
k ,(B.21) becomes:

−Q̄k Q̄k+0(Q̄kA
T
i,k+Y T

k B2,i,k
T ) 0 Q̄kC

T
1,i,k+Y T

k DT
12,i,k

∗ −Q̄k+1 B1,i,k 0
∗ ∗ −γ2Iq 0
∗ ∗ ∗ −0−2Im

≤0,

Q̄N = 0−1P−1
T (B.22)

and we look for the sequences of {Q̄k} with maximum trace and {Yk} which,
for k = N−1, N−2....0, satisfy the above LMIs for i = 1, ...Nv. If a solution to
the latter set of LMIs exists, the solution for Kk is derived from:

Kk = YkQ̄
−1
k . (B.23)

Example 2:

We solved the above set of LMIs (B.22) for the case where g ∈ [g1 g2] =
[−.8 .8], and the system matrices of (B.18) are respectively:

Ai,k =
�

0 1
2 gi

�
, B1,i,k =

�
2
0

�
, B2,i,k =

�−.5
1

�
, C1,,i,k =

�−.4 1
0 0

�
,

and
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D12,i,k =
�

0
1

�
.

Once again, we consider the cost function (B.2) with T = 5 secs. and PT =
10−15I2 . The uncertainty polytope is described by the Nv = 2 vertices, g1
and g2. We solved (B.22), with 0 = .005 secs. and a tolerance of 10−6, for a
nearly minimum value of γ = 84 and for γ = 86. For both values of γ we
obtained solutions. The resulting gain matrices K(t) = [K1(t) K2(t)] are
depicted in Fig. 1. We note here that the robust stationary state-feedback
solution ( T → ∞ ), which can also be obtained using the method of Boyd
et.al. [12], admits a solution only for γ > 106.6. All of these results entail an
overdesign since they are based on the same sequence {Qk} for all the vertices
of Ω.

The LMIs of (B.19) imply another important application of the DLMI
method to robust design. Assuming that the system of (B.18) belongs to a set
containing a finite number of systems, that is:

(A, B1, B2, C1 D21) ⊂ Γ

where
Γ

∆={(Ai, B1,i, B2,i, C1,i, D21,i) i = 1, 2, ...Ns}
we derive the following set of coupled LMIs from (B.19):

−Qi,k In+0(AT
i,k+KT

k B
T
2,i,k) 0 CT

1,i,k+KT
k D

T
12,i,k

In+0(Ai,k+B2,i,kKk) −Q−1
i,k+1 B1,i,k 0

0 BT
1,i,k −γ2Iq 0

C1,i,k+D12,i,kKk 0 0 −0−2Im

≤ 0,

i=1,..,Ns, Qi,N = 0PT (B.24)

For each k < N we seek {Qi,k, i = 1, ..., Ns} of minimum trace and Kk

that satisfy (B.24), based on the preceding values of {Qi,k+1, i = 1, ..., Ns}.
A solution to the latter set of LMIs, may significantly reduce the overdesign
of the previous method which applied a single Qk to all of the plants. We
demonstrate the use of (B.24) in the following example.

Example 3:

The system of Example 2, where g is either g1 or g2, may represent the two op-
erating points of a practical process. With the time interval of [0 5] seconds,
0 = .005 seconds and emphasizing the trace of Q1,k, we obtained a solution for
the close to minimum value of γ = 51. The resulting state-feedback gain vec-
tor K(t) = [K1(t) K2(t)] is depicted in Fig. 2. Extending our horizon time
to T = 20 seconds, resulted in a nearly minimum value of γ = 88 and with
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a converging gain vector K(0) consisting of K(0) = −[162.5901 86.9370].
This K(0) is, in fact, the stationary feedback gain vector which guarantees
the H∞norm for the two operating points in the infinite horizon case. Indeed,
a maximum value of 83.91 has been actually obtained (for the case with g1).
Remark: The above method is aimed at solving the problem for a distinct set
of plants. Since the design procedure does not preserve convexity, the result-
ing state-feedback controller may not satisfy the requirement of achieving a
disturbance attenuation level of γ for all the convex combinations of the state
space matrices of these distinct plants. If such a requirement is made, one
may superimpose a grid onto the uncertainty polytope and the above method
can then be applied to all of the plants that correspond to the points on the
grid. It can be shown that, by choosing a dense enough grid, the specifications
can be satisfied for all the points in the uncertainty polytope [14]. Indeed, the
results for the stationary K, show that the maximum achievable H∞norm,
for all g ∈ [g1 g2] is less than 83.91, which demonstrates that in our case,
a grid of two points was sufficient to guarantee robust performance over the
whole uncertainty polytope.

B.4 Output-feedback

The previously described method of solving the continuous-time BRL equation
via recursive LMIs can also be applied to the output-feedback control problem.
We consider the following linear system

ẋ = Ax + B1w + B2u x0 = 0

y = C2x + D21w
(B.25)

with the objective vector

z = C1x + D12u + D11w (B.26)

where x, w, u and z are defined in the previous section and y ∈ Rm is the
measured output.

We seek a controller
ẋc = Acxc + Bcy

u = Ccx + Dcy
(B.27)

such that for prescribed γ > 0 and P̄T > 0 the following holds:

J
∆= x(T )T P̄Tx(T ) +

� T

0

{zT z − γ2wTw}dt < 0 ∀w ∈ Lq
2[t, T ]. (B.28)

Defining the augmented state vector ξ as:

ξ =
�
x
xc

�
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we obtain the following:

ξ̇ = Ãξ + B̃w, ξ0 = 0

z = C̃ξ + D̃w
(B.29)

where:

Ã
∆=

�
A 0
0 0

�
+

�
0 B2

I 0

�
Θ

�
0 I
C2 0

�
,

B̃
∆=

�
B1

0

�
+

�
0 B2

I 0

�
Θ

�
0

D21

�
,

C̃
∆=

�
C1 0

�
+

�
0 D12

�
Θ

�
0 I
C2 0

�
,

D̃
∆= D11 +

�
0 D12

�
Θ

�
0

D21

�
and where

Θ
∆=

�
Ac Bc

Cc Dc

�
.

Considering the system of (B.29) we apply the discretization as in Sec-
tion B.2. It follows from the standard BRL and a derivation similar to
that of (B.13), that the objective of (B.28) is equivalent to the existence
of {Qk}, Qk = QT

k and {Θk} that, for 0 < δ, 0 << 1 satisfy:
−Qk I2n + 0ÃT

k 0 0C̃T
k

I2n + 0Ãk −Q−1
k+1 B̃k 0

0 B̃T
k −γ2Iq D̃T

k

0C̃k 0 D̃k −Im

 ≤ 0, QN = 0diag{PT , δIn}, (B.30)

with minimum Tr{T QkT T } for each k = N − 1, N − 2, ..., 0, where N =

0−1T, and T =
�
I I
0 −I

�
.

In the above DLMI, 0 is the integration time step, the index k implies the
value of the matrix at time tk (as in Section B.2) and δ is a small positive
scalar which implies that we hardly weight the final value of xc. The matrix
T T transforms ξ into col{x, x − xc} so that by minimizing the latter trace
we are, in fact, applying the BRL to the augmented system consisting of x
and the ‘error’ vector x − xc. Recall that the DLMI stems from a differential
Riccati inequality which was derived by differentiation of a Lyapunov candi-
date function (LCF - see [54]) of the form V = ξTQkξ. Hence, if we use the
transformation χ = T T ξ, our LCF becomes:

V = χTT QkT Tχ.
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While we have not changed the underlying LCF, we can force a coordinate
change by asking for the minimization of T QkT T , without changing the stuc-
ture or entries of the DLMI in (B.30).

Using the the definitions of ÃK , B̃k, C̃k, and D̃k and substituting them
into (B.30), the problem becomes one of searching for {Qk} and {Θk} which
minimize Tr{T QkT T } for each k < N and satisfy:

Φk(Qk+1) − IQkIT + PkΘkDT
k + DkΘ

T
k PT

k < 0 (B.31)

where

I ∆=


In 0
0 In
0 0
0 0
0 0
0 0

 , Pk
∆=


0 0
0 0
0 B2,k

In 0
0 0
0 D12,k

 , DT
k

∆=
�

0 0In 0 0 0 0
0C2,k 0 0 0 D21,k 0

�
,

and

QN =0diag{PT , δIn} and Φk(Qk+1) ∆=



0
�
I+0AT

k 0
0 In

� �
0
0

� �
0CT

1,k

0

�
∗ −Q−1

k+1

�
B1,k

0

�
0

∗ ∗ −γ2Iq DT
11,k

∗ ∗ ∗ −Im


(B.32)

At each step, say the k-th, Φk(Qk+1) in (B.31) is known and we then look for
T QkT T of minimum trace and Θk that satisfy (B.31).

The latter set of LMIs can readily be applied to the situation where (in
similarity to Example 3), the plant belongs to a finite set of possible plants.
The LMI of (B.31) should then be solved for each plant in the set with dif-
ferent Qi,k but with a Θk that is common to all of the resulting LMIs. We
demonstrate the applicability of the method in the following example.

Example 4:

We consider the system of (B.25) with the state space matrices, the time
interval ([0 5] secs.) and the performance index as in Example 2 and with

B1,k =
�−.5 0

1 0

�
, C2,k =

�
1 0

�
, D21,k =

�
0 −.1 �

.

We solved (B.31) and (B.32) for the Ns = 2 plants characterized by g1 =
−0.8 and g2 = 0.8. Applying the discretization period of 0 = 0.04 seconds
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and putting an emphasis on the trace that corresponds to g = −.8, a near
minimum value of γ = 80 was obtained, for which the time varying sequence
{Θk, k = 125, ...0} was derived. The time evolution of the eigenvalues of the
controller dynamical matrix Ac are depicted in Fig. 3. It is seen in the figure
that at the end of the time interval, at t = 0, the eigenvalues of Ac tend to
reside on the imaginary axis.

Unfortunately, no solution could be found for the infinite horizon case,
even for large γ.

B.5 Conclusions

A method for solving the continuous-time BRL has been proposed which
enables solutions to various time-varying finite-horizon H∞control problems
with uncertainty and with multiple objectives. This method also resolves the
difficulty that was encountered in the stationary case with uncertainties in the
state space matrices, where the matrix variable in the corresponding LMI mul-
tiplies the system state-space matrices. The recursive nature of the proposed
algorithm leads to inequalities that are affine in all that matrix variables. This
property enables the solution of the robust output-feedback control problem
in cases where the uncertain system to be controlled is included in a finite
set of known systems. The control of systems with polytopic type uncertainty
can also be solved by the new method by imposing a grid on the uncertainty
polytope and solving the problem for the grid point systems.

The fact that at each of the discrete instances the resulting DLMI is affine
in the controller parameters at this instant also enables a solution that guar-
antees the stability of the controller in the stationary control problem. This
stability, which is quite difficult to guarantee by the standard H∞solution
method, is achieved by directly solving the corresponding Lyapunov inequal-
ity for the dynamic matrix of the controller.



C

Appendix: The Discrete DLMI Method

C.1 A BRL for Discrete-time LTV Systems

We consider the following system:

xk+1 = Akxk + Bkwk, k = 0, 1, ..., N − 1, zk = Lkxk, (C.1)

where xk ∈ Rn is the state vector, wk ∈ Rq is the exogenous disturbance
which is assumed to be of finite energy, zk ∈ Rm is the objective vector and
x0 is an unknown initial state. We consider, for a given scalar γ > 0, the
following performance index:

JB
�
= ||zk||22 −γ2||wk||22 +xTN Q̄NxN −γ2xT0 Q̄0x0, Q̄N > 0, Q̄0 > 0. (C.2)

The objective is to determine, for a given γ > 0, whether JB is nonpositive
for all possible {x0, {wk}} ∈ Rn × l2[0, N−1].
We obtain the following:
Theorem C.1.1: Consider the system of (C.1) and a given γ > 0. The
following statements are equivalent:

1. JB of (C.2) is negative for all nonzero ({wk}, x0) where {wk} ∈ l2[0 N−
1] and x0 ∈ Rn.

2. There exists a solution Qk to

Γk(0) = 0, s.t Θk > 0, k=0, 1, ..., N−1, QN =Q̄N , Q0 ≤ γ2Q̄0

(C.3)
where

Γk(Σk)
�
= −Qk+AT

kQk+1Ak+(BT
k Qk+1Ak)TΘ−1

k (BT
k Qk+1Ak)+LT

k Lk+Σk

and
Θk

�
= γ2Iq − BT

k Qk+1Bk. (C.4)

3. At each i > k, minimizing the trace of the solution Qi to the following
DLMIs:

E. Gershon et al.: H∞ Contr. and Est. of State-multipl. Lin. Sys., LNCIS 318, pp. 229–237, 2005.
© Springer-Verlag London Limited 2005
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−Q−1

i+1 Ai Bi 0

AT
i −Qi 0 LT

i

BT
i 0 −γ2Iq 0

0 Li 0 −Im

 ≤ 0, QN = Q̄N ,

�
γ2Iq BT

i Qi+1

BiQi+1 Qi+1

�
> 0

(C.5)

results in a solution to (C.5) also for i = k, for all k = N−1, N−2, .....0,
with Q0 ≤ γ2Q̄0.

Proof: The equivalence between assertions 1 and 2 is standard [57]. The
proof that assertion 1 is equivalent to assertion 2 is based on the fact that,
using Schur’s complements, the DLMI of (C.5) is equivalent to the following
DRE:

Γk(Σk) = 0 (C.6)

for some 0 ≤ Σk ∈ Rn×n. The monotonicity property of the latter DRE (see
for example [101], pp. 38-39) implies that its solution for Σk ≡ 0 (the so called
‘central solution’), if it exists, is less than or equal to, in the matrix inequal-
ity sense, all other solutions of (C.6) that are obtained for 0 ≤ Σk, Σk �= 0.
Denoting the set of all the solutions to (C.5) for i=k by Ω̄k, we find that the
central solution {Qk} ∈ Ω̄k. Since Qk is less than or equal to all of the other
elements in the sequences of Ω̄k, it attains the minimum trace over Ω̄k.

Remark C.1.1: Using Schur’s complements, it is easily verified that the fea-
sibility condition of (C.3) is satisfied by all the solutions to (C.5). The results
of Theorem C.1.1 thus suggest an alternative solution procedure to the BRL
problem. We begin at the stage i = N − 1 by substituting the given terminal
condition (i.e Qk+1 = Q̄N ) into (C.5). At each instant, say the k-th, we solve
for Qk, using the previously established solution to Qk+1 that attained the
minimum trace at the instant i = k + 1.

Remark C.1.2: Consider the case where the system of (C.1) is LTI, asymp-
totically stable, reachable and observable. Due to the equivalence between the
solutions of the above DLMI (with the minimization of Tr{Qk}) and the re-
cursion of (C.3), the DLMIs solution to Qk will converge, in the limit where
N − k tends to infinity, to the central stationary solution Qs, if the latter
exists and if Q̄N is less than the antistabilizing solution of the corresponding
algebraic Riccati equation [88].
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Remark C.1.3: The DLMI of (C.5), with the requirement of minimum trace
for Qk is a convex problem and can be readily solved with existing programs
(for example the MATLAB LMI toolbox [34]). In some filtering problems it
will be important to minimize the trace of the inverse of the solution to the
corresponding DLMI. This minimization can be achieved by imposing the ad-
ditional requirement that for each k, the trace of the matrix 0 ≤ Hk ∈ Rn×n

that satisfies:

�
Hk In

In Qk

�
≥ 0, k = 0, 1, ..., N − 1, is minimized.

C.2 Application of the DLMI Technique

C.2.1 H∞ State-feedback Control

The state-feedback control problem is solved using the above BRL [57]. We
consider the following system:

xk+1 = Akxk + B2,kuk + B1,kwk, x0 = x0, k = 0, 1, ..., N − 1

zk = Lkxk + D12,kuk, k = 1, 2, ..., N
(C.7)

where xk, wk, zk and x0 are defined as in the system of (C.1) and where
uk ∈ Rs is the control input signal. We seek a state-feedback law uk = Kkxk
that achieves JB ≤ 0 of (C.2) for all {wk} ∈ l2[0 N − 1] and x0 ∈ Rn.
The central solution to the above problem is well known [57]. It can also be
achieved by substituting uk into (C.7) and applying the DLMI of Theorem
C.1.1. The following lemma solves the H∞ state-feedback problem:

Lemma C.2.1: Consider the system of (C.7) and uk = Kkxk with the per-
formance index of (C.2). For a prescribed γ > 0 there exists a control law of
uk = Kkxk that guarantees a non positive JB for all {wk} ∈ l2[0 N−1] and
x0 ∈ Rn if there exist Qk ∈ Rn×n and Kk ∈ Rs×n that satisfy the following
DLMIs:

−Q−1
k+1 Ãk B̃k 0

ÃT
k −Qk 0 L̃T

k

B̃T
k 0 −γ2Iq 0

0 L̃k 0 −Im

 ≤ 0, k = N − 1, ..., 0, QN = Q̄N ,

�
γ2Iq B̃T

k Qk+1

B̃kQk+1 Qk+1

�
> 0

(C.8)

where
Ãk

�
= Ak + B2,kKk, B̃k = B1,k, and L̃k = Lk + D12,kKk,

with Qk of minimum trace that also satisfies Q0 ≤ γ2Q̄0.
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Unlike the solution to the BRL which sought a single matrix Qk for (C.5),
in Lemma C.2.1 we seek, at each instant k, two matrix variables namely: Qk

and the state-feedback gain Kk.

Remark C.2.1: In a way dual to the state-feedback control, one can ap-
ply (C.8) to design both a priori and a posteriori Luenberger-type filters.
The DLMI of (C.8) should then be solved iteratively where a minimum for
Tr(Q−1

k+1) is sought, beginning with an initial condition that equals to the
weight on the initial state in the performance index.

C.2.2 Robust H∞ State-feedback Control of Uncertain Systems

A clear advantage of the new DLMI method emerges when dealing with un-
certain systems. We consider the case where, due to uncertainty in the plant’s
parameters, the system is described by a finite set of plants. It is desired to
obtain a single controller (in the present application a state-feedback one) for
all of the plants in the set that will meet some pre-specified stability and dis-
turbance attenuation requirements. Such requirements arise in many practical
situations where a single controller is sought that will satisfy prescribed per-
formance criteria for various operating points. For example, in [71], a single
controller is sought that will satisfy some strict requirements on the behavior
of a flexible arm for three different loads.
The above problem can be solved, in the stationary case, using the method
of [12] for state-feedback design in the presence of polytopic-type uncertainty.
Embedding the set of plants into a convex polytope may provide a solution
to the problem, if a single matrix solution exists for a set of LMIs that are
solved at the vertices of the polytope. This method is quite conservative since
it requires the quadratic stabilizability of the set of systems involved. The
solution guarantees, however, the required performance for all of the possible
plants in the polytope.
The advantages of the DLMI approach to the design of the required robust
state-feedback control are two-fold. First of all, it can provide a solution to
the time-varying case over a finite horizon and secondly it is not restricted to
quadratically stabilizing solutions.
Representing the finite set of plants involved by Φ

∆= {Si, i = 1, ...np}, where
the system Si is described by:

xk+1 = Ak,ixk + B2,k,iuk + B1,k,iwk, k = 0, 1, ..., N − 1, x0 = x0,i

zk = Lk,ixk + D12,k,iuk, k = 1, 2, ..., N.
(C.9)

we look for a single state-feedback law of uk = Kkxk, k = 0, ...N − 1 which
ensures that all of the np systems in Φ, achieve (C.2), for all {wk} ∈ l2[0 N−1]
and x0,i ∈ Rn. The following corollary provides the solution to the robust H∞
state-feedback problem:
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Corollary C.2.1 : Consider the system of (C.9) with the performance index
of (C.2). For a prescribed γ > 0 there exists a control law of uk = Kkxk that
guarantees a non positive JB, over Φ, for all {wk} ∈ l2[0 N−1] and x0 ∈ Rn

if there exist Qk,i ∈ Rn×n and Kk ∈ Rs×n that satisfy the following DLMIs:
−Q−1

k+1,i Ãk,i B̃k,i 0

ÃT
k,i −Qk,i 0 L̃T

k,i

B̃T
k,i 0 −γ2Iq 0

0 L̃k,i 0 −Im

 ≤ 0, QN,i = Q̄N ,

�
γ2Iq B̃T

k−1,iQk,i

B̃k−1,iQk,i Qk,i

�
> 0, (C.10)

for i = 1, 2, ..., np, k = N − 1, ..., 0, with Qk,i of minimum trace that also
satisfy Qi,0 ≤ γ2Q̄0, where

Ãk,i
∆= Ak,i + B2,k,iKk, B̃k,i = B1,k,i, and L̃k,i = Lk,i + D12,k,iKk.

C.2.3 The Static Output-feedback Control Problem

The DLMI method allows us to solve the static output-feedback control prob-
lem in much the same way as the state-feedback control problem of Section
C.2.1. We consider the following system:

xk+1 = Akxk + B2,kuk + B1,kwk, k = 0, 1, ..., N − 1

yk = Ckxk, zk = Lkxk + D12,kuk, k = 1, 2, ..., N
(C.11)

where xk, wk, zk and x0 are defined as in the system (C.1) and where uk ∈ Rs

is the control input signal. We seek a static output-feedback law uk = Kkyk
that achieves JB ≤ 0 of (C.2) for all {wk} ∈ l2[0 N−1] and x0 ∈ Rn.
The ‘central-type’ solution to the above problem can be achieved by substi-
tuting uk = Kkyk into (C.11) and applying the DLMI of Theorem C.1.1. The
H∞ static output-feedback problem is solved with the aid of the next lemma:

Lemma C.2.2: Consider the system of (C.11) with the performance in-
dex of (C.2). For a prescribed γ > 0 there exists a control law of uk = Kkyk
that guarantees a non positive JB for all {wk} ∈ l2[0 N−1] and x0 ∈ Rn if
there exist Qk ∈ Rn×n and Kk ∈ Rs×r that satisfy the DLMI of (C.8) where

Ãk
�
= Ak + B2,kKkCk, B̃k = B1,k, and L̃k = Lk + D12,kKkCk,

with Qk of minimum trace that also satisfies Q0 ≤ γ2Q̄0.
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As with the robust state-feedback control of Section C.2.1, the advantage of
the DLMI approach in the static output-feedback case lies in its ability to pro-
vide a finite horizon solution and, in particular, the fact that it is not restricted
to quadratically stabilizing solutions (see [38] and the references therein). Rep-

resenting the finite set of plants involved by Φ̃
�
= {Si, i = 1, ...np}, where the

system Si is described by:
xk+1 = Ak,ixk + B2,k,iuk + B1,k,iwk, k = 0, 1, ..., N − 1, x0 = x0,i

yk = Ck,ixk, zk = Lk,ixk + D12,k,iuk, k = 1, 2, ..., N
(C.12)

and where, similar to Section C.2.1 we seek a single static-feedback law of
the form uk = Kkyk which ensures that all of the np systems in Φ̃, achieve
JB ≤ 0, for all {wk} ∈ l2[0 N−1] and x0,i ∈ Rn. The solution to the robust
H∞ static output feedback problem is obtained from the following corollary:

Corollary C.2.2: The robust static output-feedback problem of (C.12), uk =
Kkyk and (C.2) possesses a solution over Φ̃ for a prescribed γ > 0 if for every
k = N − 1, N − 2, ..., 0 and for i = 1, 2, ..., np there exist Qk ∈ Rn×n and
Kk ∈ Rs×r that satisfy the following DLMI

−Q−1
k+1,i Ãk,i B̃k,i 0

ÃT
k,i −Qk,i 0 L̃T

k,i

B̃T
k,i 0 −γ2Iq 0

0 L̃k,i 0 −Im

 ≤ 0, QN,i = Q̄N ,

�
γ2Iq B̃T

k,iQk+1,i

B̃k,iQk+1,i Qk+1,i

�
> 0

(C.13)

with Qk,i of minimum trace that also satisfy Q0,i ≤ γ2Q̄0, where

Ãk,i
�
= Ak,i +B2,k,iKkCk,i, B̃k,i = B1,k,i, and L̃k,i = Lk,i +D12,k,iKkCk,i.

Remark C.2.2: The above procedure can be readily performed such that
a single matrix solution Qk is found for all the np DLMIs at the kth iteration
step, k = N −1, N −2, ..., 0. The latter corresponds to the selection of a single
Lyapunov function

�N−1
k=0 xTk+1Qk+1xk+1 − xTkQkxk for all the plants in Φ̃.

C.3 Example: Robust H∞ State-feedback Control

To demonstrate the applicability of the DLMI technique for the discrete-time
setup we bring a practical problem of terrain following control system which
is encountered in aerospace engineering. The problem is taken from [80] and a
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full description of the physics involved appears in Section 11.11, pages 404-408
there.

We consider the following continuous-time uncertain system:

ẋ = Ax + B1w + B2u, z = C1x + D12u,

where

A=



−1 0 0 0 0 0 0

1 −10−3 0 0 0 0 0
0 1 −10−3 0 0 0 0
0 0 0 −10−3 0 0 0
0 0 0 1 −1 0 0

A(6, 1) .0345 0 0 1 A(6, 6) 0
0 0 0.2 0 0 0 −10−6


, B1 =



0
0
0
0
0
0

−0.02


,

C1 =


0 0 0 0 0 0 1

0 0 0 0 0
√

5 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

, D12 =


0 0
0 0

0.3162 0
0 0.01

, B2 =



1 0
0 0
0 0
0 0.09
0 0
0 0
0 0


,

and where the uncertain parameters reside in the following intervals:

A(6, 1) = [−0.0704 − 0.1056], A(6, 6) = [−0.00256 − 0.00384].

Note that the original problem was of order 6 and we have added a sev-
enth state (an integrator) in order to provide a zero tracking error for the
tracking altitude command. The discrete-time robust state-feedback version
of the above continuous-time problem was solved, by discretization with a
ZOH (zero-order hold) at a sampling rate of 10Hz. The control design con-
sisted of the following 3 distinct plants:

(A(6, 1), A(6, 6)) = (−0.0704 − 0.00256), (−0.1056 − 0.00384),
(−0.088 − 0.0032) .

The state-feedback controller for the above system, in the stationary case,
was readily found by applying the DLMIs procedure of (C.10) of Corollary
C.2.1. We note that at each instant k, starting from k = N = 400 where
QN,i = Q̄N = 10−8I7, i = 1, 2, 3, we substituted for Qk and obtained Kk−1
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and Qk−1. For a near minimum value of γ = 0.080 we obtained the following
robust state-feedback controller K where K is:� −6.4646 −10.9603 −5.8185 −0.1620 −0.3736 −0.5934 −72.8956

−13.5683 −39.5879 −18.3110 −45.9064 −97.8663 −180.6088 −228.7737

�
.

The top part of Figure C.1 below depicts the traces of the three matrix so-
lutions {Qk,i} that are obtained for the three OPs, along the interval of the
recursive solution of the DLMI of Corollary C.1.1. The bottom part of Figure
C.1 describes the trace of KKT , where K is the controller gain, along the
solution trajectory. Both parts of the figure show the convergence properties
of the DLMI method.

C.4 Conclusions

In this appendix a DLMI method for discrete-time linear systems is presented
which successfully mimics the Riccati recursion in the solution of the standard
time-varying H∞control and filtering problems over a finite horizon. Due to
their structure, the DLMIs that are solved at each instant are linear in the
matrices Qk or Qk+1, depending on the nature of the iterative solution and in
the matrices that constitute the required controllers or filters. This linearity
enables a simple and easily implementable treatment of plant uncertainty in
both the finite horizon time-varying and the stationary cases.

The problems of robust output-feedback control, either static or dynamic,
and the H∞ estimation that uses a general filter, is solved here for the first
time. The existing H∞ stationary solution for uncertain systems (i.e convex
(polytopic) method [12]), [38], [37] are not applicable to many practical control
problems (i.e tracking control), which are of the finite-horizon type. It has been
shown in [44] and partially in the present appendix that the DLMI method
easily tackles these latter types of problems. In the stationary case, the DLMI
method may provide solutions that are significantly better than those obtained
by the polytopic type design of [12] and [38] (see [44]).

We note that while the convex methods [12], [38], [37], guarantee a solution
for all of the operating points included within the convex domain, the non-
convex DLMI approach guarantees a solution for only the operating points
taken into account by the design procedure. In some control systems, most
notably in aerospace, a design for distinct plants is of major importance.

Dealing with robust problems, such as the finite-horizon robust state-
feedback, the DLMI method easily allows the implementation of both the
quadratic and the non quadratic design procedures. An additional important
advantage of the DLMI method is that, besides satisfying a required H∞ per-
formance, it may deal successfully with additional design requirements, such
as the minimization of bounds on the peak-to-peak gain and with the control
and estimation problems of systems with state-multiplicative noise.
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Fig. C.1. The results of the H∞ robust state-feedback solution. Shown are the
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adaptive motion control, 192-193
airspeed, 180, 188
altitude control, 177-181
altitude estimation, 175-177
altitude hold-loop, 176
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bandwidth, 5, 79
baro altimeter, 175
bias error, 175
bilinear systems, 4
BLSS, 4
BRL

cont. tracking, 65-67
continuous, 8, 9, 16, 24-27, 47, 220
disc. tracking, 153,154
discrete, 8, 16, 101-105, 229
discrete-time, 8

CDN, 5, 7

DLMI, 31, 38, 39, 226
continuous, 69, 217, 218, 226–228
discrete, 15, 229-234
LTV BRL, 220
output-feedback, 226
state-feedback

discrete, 231
DRE, 16

evader, 181, 196

filtering
continuous

H∞, 22, 32, 47-50, 99, 177
discrete

H∞, 128-132
robubst continuous

mixed, 46
robust continuous, 183

H∞, 50, 51
mixed, 51-53

robust discrete
H∞, 132-133
mixed, 133-135

transfer function matrix, 50

gain scheduling, 5, 79
game-theory, 11
GBM, 215
guidance, 196-198

Hessian, 211

interception, 202
interceptor, 181
Ito

formula, 89
lemma, 6, 25, 211, 212
system, 4
type, 12, 205

Kalman filter, 136, 176, 177, 185, 213,
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LMI, 14
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solver, 16
toolbox, 181, 189

Luenberger filter, 7, 31, 68
continuous, 21-23, 31, 34, 37, 42
discrete, 97, 110, 115, 232

Lyapunov
function, 40, 92, 113, 215
inequality, 15, 84

maneuvers, 181, 196
matrix inversion lemma, 30
MEL, 197
monotonicity, 52
multiobjective, 16

navigation, 196
NNC, 87
noise

additive, 181
broadband, 6
Gaussian white, 5
multiple, 106
multiplicative, 4, 187
state dependent, 8

observability, 109
optimal rendezvous, 196
optimal strategies, 36, 42
output peak, 16
output-feedback

continuous, 23, 24, 34-40, 225
discrete, 115, 119
stationary continuous, 40-42
stationary discrete, 119-121

Parseval’s theorem, 208
passivity, 87-91, 192

almost, 91
deterministic, 87
stochastic, 88

pursuer, 196

RADAR altimater, 175, 178
RADAR altimeter, 180, 187
Riccati

differential equation, 57
equation, 69

discrete, 111, 140
inequality, 79

rise-time, 188
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SAC, 87, 91-92
example, 93

saddle-point, 58, 147
sampling period, 182
Schur complement, 27, 30, 48, 79, 90,

114, 151
Schur’s complements, 14
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separation principle, 7
simulations, 189
SNR, 175, 178, 187
spectral density, 208
stability

asymptotic mean square, 10
exponential, 9, 91
exponential mean square, 11
global, 215
quadratic, 16, 51
stochastic, 10, 11, 214, 215

state-feedback
continuous, 22, 28, 221
discrete, 105, 106
stationary continuous, 29-30
stationary discrete, 107, 110

static control
continuous

H2, 77-80
H∞, 80, 81

discrete
H2, 165, 166
H∞, 166, 167

robust continuous
H2, 81-84
H∞, 84, 85

robust discrete
H2, 167-169
H∞, 169, 170

static pressure, 175

Taylor expansion, 211
terrain following, 187-189
time-to-go, 196, 198
tracking

cont. output-feedback, 65-71
cont. state-feedback, 56, 57-65
disc. output-feedback, 154-161
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disc. state-feedback, 56, 140-154

example, 71
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fixed preview, 56, 62, 70
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trim, 5
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white noise, 208
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