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Preface

Since the pioneering work of Shannon in 1948 on the development of informational entropy
theory and the landmark contributions of Kullback and Leibler in 1951 leading to the devel-
opment of the principle of minimum cross-entropy, of Lindley in 1956 leading to the
development of mutual information, and of Jaynes in 1957–8 leading to the development
of the principle of maximum entropy and theorem of concentration, the entropy theory
has been widely applied to a wide spectrum of areas, including biology, genetics, chemistry,
physics and quantum mechanics, statistical mechanics, thermodynamics, electronics and com-
munication engineering, image processing, photogrammetry, map construction, management
sciences, operations research, pattern recognition and identification, topology, economics,
psychology, social sciences, ecology, data acquisition and storage and retrieval, fluid mechan-
ics, turbulence modeling, geology and geomorphology, geophysics, geography, geotechnical
engineering, hydraulics, hydrology, reliability analysis, reservoir engineering, transportation
engineering, and so on. New areas finding application of entropy have since continued to
unfold. The entropy theory is indeed versatile and its application is widespread.

In the area of hydrologic and environmental sciences and water engineering, a range of
applications of entropy have been reported during the past four and half decades, and new
topics applying entropy are emerging each year. There are many books on entropy written in
the fields of statistics, communication engineering, economics, biology and reliability analysis.
These books have been written with different objectives in mind and for addressing different
kinds of problems. Application of entropy concepts and techniques discussed in these books to
hydrologic science and water engineering problems is not always straightforward. Therefore,
there exists a need for a book that deals with basic concepts of entropy theory from a
hydrologic and water engineering perspective and then for a book that deals with applications
of these concepts to a range of water engineering problems. Currently there is no book
devoted to covering basic aspects of the entropy theory and its application in hydrologic and
environmental sciences and water engineering. This book attempts to fill this need.

Much of the material in the book is derived from lecture notes prepared for a course
on entropy theory and its application in water engineering taught to graduate students in
biological and agricultural engineering, civil and environmental engineering, and hydrologic
science and water management at Texas, A & M University, College Station, Texas. Comments,
critics and discussions offered by the students have, to some extent, influenced the style of
presentation in the book.

The book is divided into 16 chapters. The first chapter introduces the concept of entropy.
Providing a short discussion of systems and their characteristics, the chapter goes on to
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discuss different types of entropies; and connection between information, uncertainty and
entropy; and concludes with a brief treatment of entropy-related concepts. Chapter 2 presents
the entropy theory, including formulation of entropy and connotations of information and
entropy. It then describes discrete entropy for univariate, bivariate and multidimensional cases.
The discussion is extended to continuous entropy for univariate, bivariate and multivariate
cases. It also includes a treatment of different aspects that influence entropy. Reflecting on the
various interpretations of entropy, the chapter provides hints of different types of applications.

The principle of maximum entropy (POME) is the subject matter of Chapter 3, including
the formulation of POME and the development of the POME formalism for discrete variables,
continuous variables, and two variables. The chapter concludes with a discussion of the effect
of constraints on entropy and invariance of entropy. The derivation of POME-based discrete
and continuous probability distributions under different constraints constitutes the discussion
in Chapter 4. The discussion is extended to multivariate distributions in Chapter 5. First,
the discussion is restricted to normal and exponential distributions and then extended to
multivariate distributions by combining the entropy theory with the copula method.

Chapter 6 deals with the principle of minimum cross-entropy (POMCE). Beginning with
the formulation of POMCE, it discusses properties and formalism of POMCE for discrete and
continuous variables and relation to POME, mutual information and variational distance. The
discussion on POMCE is extended to deriving discrete and continuous probability distributions
under different constraints and priors in Chapter 7. Chapter 8 presents entropy-based methods
for parameter estimation, including the ordinary entropy-based method, the parameter-space
expansion method, and a numerical method.

Spatial entropy is the subject matter of Chapter 9. Beginning with a discussion of the organi-
zation of spatial data and spatial entropy statistics, it goes on to discussing one-dimensional and
two-dimensional aggregation, entropy maximizing for modeling spatial phenomena, cluster
analysis, spatial visualization and mapping, scale and entropy and spatial probability distribu-
tions. Inverse spatial entropy is dealt with in Chapter 10. It includes the principle of entropy
decomposition, measures of information gain, aggregate properties, spatial interpretations,
hierarchical decomposition, and comparative measures of spatial decomposition.

Maximum entropy-based spectral analysis is presented in Chapter 11. It first presents the
characteristics of time series, and then discusses spectral analyses using the Burg entropy,
configurational entropy, and mutual information principle. Chapter 12 discusses minimum
cross-entropy spectral analysis. Presenting the power spectrum probability density function
first, it discusses minimum cross-entropy-based power spectrum given autocorrelation, and
cross-entropy between input and output of linear filter, and concludes with a general method
for minimum cross-entropy spectral estimation.

Chapter 13 presents the evaluation and design of sampling and measurement networks.
It first discusses design considerations and information-related approaches, and then goes on
to discussing entropy measures and their application, directional information transfer index,
total correlation, and maximum information minimum redundancy (MIMR).

Selection of variables and models constitutes the subject matter of Chapter 14. It presents the
methods of selection, the Kullback–Leibler (KL) distance, variable selection, transitivity, logit
model, and risk and vulnerability assessment. Chapter 15 is on neural networks comprising
neural network training, principle of maximum information preservation, redundancy and
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diversity, and decision trees and entropy nets. Model complexity is treated in Chapter 16.
The complexity measures discussed include Ferdinand’s measure of complexity, Kapur’s
complexity measure, Cornacchio’s generalized complexity measure and other complexity
measures.

Vijay P. Singh
College Station, Texas
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1 Introduction

Beginning with a short introduction of systems and system states, this chapter presents
concepts of thermodynamic entropy and statistical-mechanical entropy, and definitions of
informational entropies, including the Shannon entropy, exponential entropy, Tsallis entropy,
and Renyi entropy. Then, it provides a short discussion of entropy-related concepts and
potential for their application.

1.1 Systems and their characteristics

1.1.1 Classes of systems
In thermodynamics a system is defined to be any part of the universe that is made up of a
large number of particles. The remainder of the universe then is referred to as surroundings.
Thermodynamics distinguishes four classes of systems, depending on the constraints imposed
on them. The classification of systems is based on the transfer of (i) matter, (ii) heat, and/or
(iii) energy across the system boundaries (Denbigh, 1989). The four classes of systems, as
shown in Figure 1.1, are: (1) Isolated systems: These systems do not permit exchange of matter
or energy across their boundaries. (2) Adiabatically isolated systems: These systems do not
permit transfer of heat (also of matter) but permit transfer of energy across the boundaries.
(3) Closed systems: These systems do not permit transfer of matter but permit transfer of energy
as work or transfer of heat. (4) Open systems: These systems are defined by their geometrical
boundaries which permit exchange of energy and heat together with the molecules of some
chemical substances.

The second law of thermodynamics states that the entropy of a system can only increase or
remain constant; this law applies to only isolated or adiabatically isolated systems. The vast
majority of systems belong to class (4). Isolation and closedness are not rampant in nature.

1.1.2 System states
There are two states of a system: microstate and macrostate. A system and its surroundings
can be isolated from each other, and for such a system there is no interchange of heat or
matter with its surroundings. Such a system eventually reaches a state of equilibrium in a
thermodynamic sense, meaning no significant change in the state of the system will occur. The
state of the system here refers to the macrostate, not microstate at the atomic scale, because the

Entropy Theory and its Application in Environmental and Water Engineering, First Edition. Vijay P. Singh.
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Figure 1.1 Classification of systems.

microstate of such a system will continuously change. The macrostate is a thermodynamic state
which can be completely described by observing thermodynamic variables, such as pressure,
volume, temperature, and so on. Thus, in classical thermodynamics, a system is described by
its macroscopic state entailing experimentally observable properties and the effects of heat
and work on the interaction between the system and its surroundings. Thermodynamics
does not distinguish between various microstates in which the system can exist, and hence
does not deal with the mechanisms operating at the atomic scale (Fast, 1968). For a given
thermodynamic state there can be many microstates. Thermodynamic states are distinguished
when there are measurable changes in thermodynamic variables.

1.1.3 Change of state
Whenever a system is undergoing a change because of introduction of heat or extraction
of heat or any other reason, changes of state of the system can be of two types: reversible
and irreversible. As the name suggests, reversible means that any kind of change occurring
during a reversible process in the system and its surroundings can be restored by reversing
the process. For example, changes in the system state caused by the addition of heat can be
restored by the extraction of heat. On the contrary, this is not true in the case of irreversible
change of state in which the original state of the system cannot be regained without making
changes in the surroundings. Natural processes are irreversible processes. For processes to be
reversible, they must occur infinitely slowly.



CHAPTER 1 Introduction 3

It may be worthwhile to visit the first law of thermodynamics, also called the law of
conservation of energy, which was based on the transformation of work and heat into one
another. Consider a system which is not isolated from its surroundings, and let a quantity
of heat dQ be introduced to the system. This heat performs work denoted as dW . If the
internal energy of the system is denoted by U, then dQ and dW will lead to an increase
in U : dU = dQ + dW . The work performed may be of mechanical, electrical, chemical, or
magnetic nature, and the internal energy is the sum of kinetic energy and potential energy
of all particles that the system is made up of. If the system passes from an initial state 1 to a

final state 2, then,

2∫
1

dU =
2∫

1

dQ +
2∫

1

dW. It should be noted that the integral

2∫
1

dU depends on

the initial and final states but the integrals

2∫
1

dQ and

2∫
1

dW also depend on the path followed.

Since the system is not isolated and is interactive, there will be exchanges of heat and work
with the surroundings. If the system finally returns to its original state, then the sum of
integral of heat and integral of work will be zero, meaning the integral of internal energy will

also be zero, that is,

2∫
1

dU +
1∫

2

dU = 0, or −
2∫

1

dU = −
1∫

2

dU. Were it not the case, the energy

would either be created or destroyed. The internal energy of a system depends on pressure,
temperature, volume, chemical composition, and structure which define the system state and
does not depend on the prior history.

1.1.4 Thermodynamic entropy
Let Q denote the quantity of heat. For a system to transition from state 1 to state 2, the

amount of heat,

2∫
1

dQ, required is not uniquely defined, but depends on the path that is

followed for transition from state 1 to state 2, as shown in Figures 1.2a and b. There can be
two paths: (i) reversible path: transition from state 1 to state 2 and back to state 1 following
the same path, and (ii) irreversible path: transition from state 1 to state 2 and back to state
1 following a different path. The second path leads to what is known in environmental
and water engineering as hysteresis. The amount of heat contained in the system under a
given condition is not meaningful here. On the other hand, if T is the absolute temperature
(degrees kelvin or simply kelvin) (i.e., T = 273.15 + temperature in ◦C), then a closely related

quantity,

2∫
1

dQ/T, is uniquely defined and is therefore independent of the path the system

takes to transition from state 1 to state 2, provided the path is reversible (see Figure 1.2a).
Note that when integrating, each elementary amount of heat is divided by the temperature at
which it is introduced. The system must expend this heat in order to accomplish the transition
and this heat expenditure is referred to as heat loss. When calculated from the zero point of
absolute temperature, the integral:

S =
T∫

0

dQrev

T
(1.1)

is called entropy of the system, denoted by S. Subscript of Q, rev, indicates that the path is
reversible. Actually, the quantity S in equation (1.1) is the change of entropy �S (= S − S0)
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System response (say Q)

Path

T

2

1

(a) One path

System response (say Q)

Path 1

T

Path 2

2

1

(b) Two paths

Figure 1.2 (a) Single path: transition from state 1 to state 2, and (b) two paths: transition from state 1 to state 2.

occurring in the transition from state 1 (corresponding to zero absolute temperature) to
state 2. Equation (1.1) defines what Clausius termed thermodynamic entropy; it defines the
second law of thermodynamics as the entropy increase law, and shows that the measurement
of entropy of the system depends on the measurement of the quantities of heat, that is,
calorimetry.

Equation (1.1) defines the experimental entropy given by Clausius in 1850. In this manner
it is expressed as a function of macroscopic variables, such as temperature and pressure, and its
numerical value can be measured up to a certain constant which is derived from the third law.
Entropy S vanishes at the absolute zero of temperature. In 1865, while studying heat engines,
Clausius discovered that although the total energy of an isolated system was conserved, some
of the energy was being converted continuously to a form, such as heat, friction, and so on,
and that this conversion was irrecoverable and was not available for any useful purpose; this
part of the energy can be construed as energy loss, and can be interpreted in terms of entropy.
Clausius remarked that the energy of the world was constant and the entropy of the world
was increasing. Eddington called entropy the arrow of time.

The second law states that the entropy of a closed system always either increases or remains
constant. A system can be as small as the piston, cylinder of a car (if one is trying to design a
better car) or as big as the entire sky above an area (if one is attempting to predict weather).
A closed system is thermally isolated from the rest of the environment and hence is a special
kind of system. As an example of a closed system, consider a perfectly insulated cup of water
in which a sugar cube is dissolved. As the sugar cube melts away into water, it would be
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logical to say that the water-sugar system has become more disordered, meaning its entropy
has increased. The sugar cube will never reform to its original form at the bottom of the cup.
However, that does not mean that the entropy of the water-sugar will never decrease. Indeed,
if the system is made open and if enough heat is added to boil off the water, the sugar will
recrystallize and the entropy will decrease. The entropy of open systems is decreased all the
time, as for example, in the case of making ice in the freezer. It also occurs naturally in the case
where rain occurs when disordered water vapor transforms to more ordered liquid. The same
applies when it snows wherein one witnesses pictures of beautiful order in ice crystals or
snowflakes. Indeed, sun shines by converting simple atoms (hydrogen) into more complex
ones (helium, carbon, oxygen, etc.).

1.1.5 Evolutive connotation of entropy
Explaining entropy in the macroscopic world, Prigogine (1989) emphasized the evolutive
connotation of entropy and laid out three conditions that must be satisfied in the evolutionary
world: irreversibility, probability and coherence.

Irreversibility: Past and present cannot be the same in evolution. Irreversibility is related to
entropy. For any system with irreversible processes, entropy can be considered as the sum of
two components: one dealing with the entropy exchange with the external environment and
the other dealing with internal entropy production which is always positive. For an isolated
system, the first component is zero, as there is no entropy exchange, and the second term may
only increase, reaching a maximum. There are many processes in nature that occur in one
direction only, as for example, a house afire goes in the direction of ashes, a man going from
the state of being a baby to being an old man, a gas leaking from a tank or air leaking from
a car tire, food being eaten and getting transformed into different elements, and so on. Such
events are associated with entropy which has a tendency to increase and are irreversible.

Entropy production is related to irreversible processes which are ubiquitous in water and
environmental engineering. Following Prigogine (1989), entropy production plays a dual role.
It does not necessarily lead to disorder, but may often be a mechanism for producing order.
In the case of thermal diffusion, for example, entropy production is associated with heat flow
which yields disorder, but it is also associated with anti-diffusion which leads to order. The
law of increase of entropy and production of a structure are not necessarily opposed to each
other. Irreversibility leads to a structure as is seen in a case of the development of a town or
crop growth.

Probability: Away from equilibrium, systems are nonlinear and hence have multiple
solutions to equations describing their evolution. The transition from instability to probability
also leads to irreversibility. Entropy states that the world is characterized by unstable dynamical
systems. According to Prigogine (1989), the study of entropy must occur on three levels: The
first is the phenomenological level in thermodynamics where irreversible processes have a
constructive role. The second is embedding of irreversibility in classical dynamics in which
instability incorporates irreversibility. The third level is quantum theory and general relativity
and their modification to include the second law of thermodynamics.

Coherence: There exists some mechanism of coherence that would permit an account of
evolutionary universe wherein new, organized phenomena occur.

1.1.6 Statistical mechanical entropy
Statistical mechanics deals with the behavior of a system at the atomic scale and is therefore
concerned with microstates of the system. Because the number of particles in the system is
so huge, it is impractical to deal with the microstate of each particle, statistical methods are
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therefore resorted to; in other words, it is more important to characterize the distribution
function of the microstates. There can be many microstates at the atomic scale which may be
indistinguishable at the level of a thermodynamic state. In other words, there can be many
possibilities of the realization of a thermodynamic state. If the number of these microstates is
denoted by N, then statistical entropy is defined as

S = k ln N (1.2)

where k is Boltzmann constant (1.3806 × 10−16 erg/K or 1.3806 × 10−23 J/K (kg-m2/s2-K)),
that is, the gas constant per molecule

k = R

N0

(1.3)

where R is gas constant per mole (1.9872 cal/K), and N0 is Avogadro’s number
(6.0221 × 1023 per mole). Equation (1.2) is also called Boltzmann entropy, and assumes
that all microstates have the same probability of occurrence. In other words, in statistical
mechanics the Boltzmann entropy is for the canonical ensemble. Clearly, S increases as N

increases and its maximum represents the most probable state, that is, maximum number of
possibilities of realization. Thus, this can be considered as a direct measure of the probability
of the thermodynamic state. Entropy defined by equation (1.2) exhibits all the properties
attributed to the thermodynamic entropy defined by equation (1.1).

Equation (1.2) can be generalized by considering an ensemble of systems. The systems will
be in different microstates. If the number of systems in the i-th microstate is denoted by ni

then the statistical entropy of the i-th microstate is Si = k log ni. For the ensemble the entropy
is expressed as a weighted sum:

S = k
N∑

i=1

ni log ni (1.4a)

where N is the total number of microstates in which all systems are organized. Dividing by N,
and expressing the fraction of systems by pi = ni/N, the result is the statistical entropy of the
ensemble expressed as

S = −k
N∑

i=1

pi ln pi (1.4b)

where k is again Boltzmann’s constant. The measurement of S here depends on counting the
number of microstates. Equation (1.2) can be obtained from equation (1.4b), assuming the
ensemble of systems is distributed over N states. Then pi = 1/N, and equation (1.4b) becomes

S = −kN
1

N
ln

1

N
= k ln N (1.5)

which is equation (1.2).
Entropy of a system is an extensive thermodynamic property, such as mass, energy,

volume, momentum, charge, or number of atoms of chemical species, but unlike these
quantities, entropy does not obey the conservation law. Extensive thermodynamic quantities
are those that are halved when a system in equilibrium containing these quantities is
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partitioned into two equal parts, but intensive quantities remain unchanged. Examples of
extensive variables include volume, mass, number of molecules, and entropy; and examples
of intensive variables include temperature and pressure. The total entropy of a system equals
the sum of entropies of individual parts. The most probable distribution of energy in a system
is the one that corresponds to the maximum entropy of the system. This occurs under the
condition of dynamic equilibrium. During evolution toward a stationary state, the rate of
entropy production per unit mass should be minimum, compatible with external constraints.
In thermodynamics entropy has been employed as a measure of the degree of disorderliness
of the state of a system.

The entropy of a closed and isolated system always tends to increase to its maximum
value. In a hydraulic system, if there were no energy loss the system would be orderly and
organized. It is the energy loss and its causes that make the system disorderly and chaotic.
Thus, entropy can be interpreted as a measure of the amount of chaos or disorder within a
system. In hydraulics, a portion of flow energy (or mechanical energy) is expended by the
hydraulic system to overcome friction, which then is dissipated to the external environment.
The energy so converted is frequently referred to as energy loss. The conversion is only in
one direction, that is, from available energy to nonavailable energy or energy loss. A measure
of the amount of irrecoverable flow energy is entropy which is not conserved and which
always increases, that is, the entropy change is irreversible. Entropy increase implies increase
of disorder. Thus, the process equation in hydraulics expressing the energy (or head) loss can
be argued to originate in the entropy concept.

1.2 Informational entropies

Before describing different types of entropies, let us further develop an intuitive feel about
entropy. Since disorder, chaos, uncertainty, or surprise can be considered as different shades
of information, entropy comes in handy as a measure thereof. Consider a random experiment
with outcomes x1, x2, . . . , xN with probabilities p1, p2, . . . , pN , respectively; one can say that
these outcomes are the values that a discrete random variable X takes on. Each value of X,
xi, represents an event with a corresponding probability of occurrence, pi. The probability pi

of event xi can be interpreted as a measure of uncertainty about the occurrence of event xi.
One can also state that the occurrence of an event xi provides a measure of information about
the likelihood of that probability pi being correct (Batty, 2010). If pi is very low, say, 0.01,
then it is reasonable to be certain that event xi will not occur and if xi actually occurred then
there would be a great deal of surprise as to the occurrence of xi with pi = 0.01, because our
anticipation of it was highly uncertain. On the other hand, if pi is very high, say, 0.99, then it
is reasonable to be certain that event xi will occur and if xi did actually occur then there would
hardly be any surprise about the occurrence of xi with pi = 0.99, because our anticipation of
it was quite certain.

Uncertainty about the occurrence of an event suggests that the random variable may take
on different values. Information is gained by observing it only if there is uncertainty about
the event. If an event occurs with a high probability, it conveys less information and vice
versa. On the other hand, more information will be needed to characterize less probable or
more uncertain events or reduce uncertainty about the occurrence of such an event. In a
similar vein, if an event is more certain to occur, its occurrence or observation conveys less
information and less information will be needed to characterize it. This suggests that the more
uncertain an event the more information its occurrence transmits or the more information
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needed to characterize it. This means that there is a connection between entropy, information,
uncertainty, and surprise.

It seems intuitive that one can scale uncertainty or its complement certainty or information,
depending on the probability of occurrence. If p(xi) = 0.5, the uncertainty about the occurrence
would be maximum. It should be noted that the assignment of a measure of uncertainty should
be based not on the occurrence of a single event of the experiment but of any event from
the collection of mutually exclusive events whose union equals the experiment or collection
of all outcomes. The measure of uncertainty about the collection of events is called entropy.
Thus, entropy can be interpreted as a measure of uncertainty about the event prior to the
experimentation. Once the experiment is conducted and the results about the events are
known, the uncertainty is removed. This means that the experiment yields information
about events equal to the entropy of the collection of events, implying uncertainty equaling
information.

Now the question arises: What can be said about the information when two independent
events x and y occur with probability px and py? The probability of the joint occurrence of x and
y is pxpy. It would seem logical that the information to be gained from their joint occurrence
would be the inverse of the probability of their occurrence, that is, 1/(pxpy). This shows that
this information does not equal the sum of information gained from the occurrence of event
x, 1/px, and the information gained from the occurrence of event y, 1/py, that is,

1

pxpy

�= 1

px

+ 1

py

(1.6)

This inequality can be mathematically expressed as a function g(.) as

g

(
1

pxpy

)
= g

(
1

px

)
+ g

(
1

py

)
(1.7)

Taking g as a logarithmic function which seems to be the only solution, then one can express

− log

(
1

pxpy

)
= − log

(
1

px

)
− log

(
1

py

)
(1.8)

Thus, one can summarize that the information gained from the occurrence of any event with
probability p is log(1/p) = − log p. Tribus (1969) regarded –log p as a measure of uncertainty
of the event occurring with probability p or a measure of surprise about the occurrence of
that event. This concept can be extended to a series of N events occurring with probabilities
p1, p2, . . . , pN , which then leads to the Shannon entropy to be described in what follows.

1.2.1 Types of entropies
There are several types of informational entropies (Kapur, 1989), such as Shannon entropy
(Shannon, 1948), Tsallis entropy (Tsallis, 1988), exponential entropy (Pal and Pal, 1991a, b),
epsilon entropy (Rosenthal and Binia, 1988), algorithmic entropy (Zurek, 1989), Hartley
entropy (Hartley, 1928), Renyi’s entropy (1961), Kapur entropy (Kapur, 1989), and so on. Of
these the most important are the Shannon entropy, the Tsallis entropy, the Renyi entropy, and
the exponential entropy. These four types of entropies are briefly introduced in this chapter
and the first will be detailed in the remainder of the book.
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1.2.2 Shannon entropy
In 1948, Shannon introduced what is now referred to as information-theoretic or simply
informational entropy. It is now more frequently referred to as Shannon entropy. Realizing
that when information was specified, uncertainty was reduced or removed, he sought a
measure of uncertainty. For a probability distribution P = {p1, p2 . . . , pN}, where p1, p2, . . . , pN

are probabilities of N outcomes (xi, i = 1, 2, . . . , N) of a random variable X or a random
experiment, that is, each value corresponds to an event, one can write

− log

(
1

p1p2 . . . pN

)
= − log

(
1

p1

)
− log

(
1

p2

)
− . . . − log

(
1

pN

)
(1.9)

Equation (1.9) states the information gained by observing the joint occurrence of N events.
One can write the average information as the expected value (or weighted average) of this
series as

H = −
N∑

i=1

pi log pi (1.10)

where H is termed as entropy, defined by Shannon (1948).
The informational entropy of Shannon (1948) given by equation (1.10) has a form similar

to that of the thermodynamic entropy given by equation (1.4b) whose development can be
attributed to Boltzmann and Gibbs. Some investigators therefore designate H as Shannon-
Boltzmann-Gibbs entropy (see Papalexiou and Koutsyiannis, 2012). In this text, we will call
it the Shannon entropy. Equation (1.4b) or (1.10) defining entropy, H, can be re-written as

H(X) = H(P) = −K
N∑

i=1

p(xi) log[p(xi)],
N∑

i=1

p(xi) = 1 (1.11)

where H(X) is the entropy of random variable X : {x1, x2, . . . , xN}, P : {p1, p2, . . . pN} is the
probability distribution of X, N is the sample size, and K is a parameter whose value depends
on the base of the logarithm used. If different units of entropy are used, then the base of the
logarithm changes. For example, one uses bits for base 2, Napier or nat or nit for base e, and
decibels or logit or docit for base 10.

In general, K can be taken as unity, and equation (1.11), therefore, becomes

H(X) = H(P) = −
N∑

i=1

p(xi) log[p(xi)] (1.12)

H(X), given by equation (1.12), represents the information content of random variable X or
its probability distribution P(x). It is a measure of the amount of uncertainty or indirectly
the average amount of information content of a single value of X. Equation (1.12) satisfies
a number of desiderata, such as continuity, symmetry, additivity, expansibility, recursivity,
and others (Shannon and Weaver, 1949), and has the same form of expression as the
thermodynamic entropy and hence the designation of H as entropy.

Equation (1.12) states that H is a measure of uncertainty of an experimental outcome
or a measure of the information obtained in the experiment which reduces uncertainty. It
also states the expected value of the amount of information transmitted by a source with
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probability distribution (p1, p2, . . . , pN). The Shannon entropy may be viewed as the indecision
of an observer who guesses the nature of one outcome, or as the disorder of a system in
which different arrangements can be found. This measure considers only the possibility of
occurrence of an event, not its meaning or value. This is the main limitation of the entropy
concept (Marchand, 1972). Thus, H is sometimes referred to as the information index or the
information content.

If X is a deterministic variable, then the probability that it will take on a certain value is
one, and the probabilities of all other alternative values are zero. Then, equation (1.12) shows
that H(x) = 0 which can be viewed as the lower limit of the values the entropy function
may assume. This corresponds to the absolute certainty, that is, there is no uncertainty and
the system is completely ordered. On the other hand, when all xi s are equally likely, that is,
the variable is uniformly distributed (pi = 1/N, i = 1, 2, . . . , N), that is, if all probabilities are
equal, pi = p, i = 1, 2, . . . , N, then equation (1.12) yields

H(X) = Hmax(X) = log N (1.13)

This shows that the entropy function attains a maximum, and equation (1.13) thus defines the
upper limit or would lead to the maximum entropy. This also reveals that the outcome has the
maximum uncertainty. Equation (1.10) and in turn equation (1.13) show that the larger
the number of events the larger the entropy measure. This is intuitively appealing because
more information is gained from the occurrence of more events, unless, of course, events
have zero probability of occurrence. The maximum entropy occurs when the uncertainty is
maximum or the disorder is maximum.

One can now state that entropy of any variable always assumes positive values within the
limits defined as:

0 ≤ H(x) ≤ log N (1.14)

It is logical to say that many probability distributions lie between these two extremes and their
entropies between these two limits. As an example, consider a random variable X which takes
on a value of 1 with a probability p and 0 with a probability q = 1 − p. Taking different values of
p, one can plot H(p) as a function of p. It is seen that for p = 1/2, H(p) = 1 bit is the maximum.

When entropy is minimum, Hmin = 0, the system is completely ordered and there is no
uncertainty about its structure. This extreme case would correspond to the situation where
pi = 1, pj = 0, ∀j �= i. On the other hand, the maximum entropy Hmax can be considered as a
measure of maximum uncertainty and the disorder would be maximum which would occur if
all events occur with the same probability, that is, there are no constraints on the system. This
suggests that there is order-disorder continuum with respect to H; that is, more constraints
on the form of the distribution lead to reduced entropy. The statistically most probable state
corresponds to the maximum entropy. One can extend this interpretation further.

If there are two probability distributions with equiprobable outcomes, one given as
above (i.e., pi = p, i = 1, 2, . . . , N), and the other as qi = q, i = 1, 2, . . . , M, then one can
determine the difference in the information contents of the two distributions as �H = Hp − Hq

= log2 p − log2 q = log2(p/q) bits, where Hp is the information content or entropy of
{pi, i = 1, 2, . . . , N} and Hq is the information content or entropy of {qi, i = 1, 2, . . . , M}.
One can observe that if q > p or (M < N), �H > 0. In this case the entropy increases or
information is lost because of the increase in the number of possible outcomes or outcome
uncertainty. On the other hand, if q < p or (M > N), then �H < 0. This case corresponds to
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the gain in information because of the decrease in the number of possible outcomes or in
uncertainty.

Comparing with Hmax, a measure of information can be constructed as

I = Hmax − H = log n +
n∑

i=1

pi log pi

=
n∑

i=1

pi log

(
pi

1/n

)
=

n∑
i=1

pi log

(
pi

qi

)
(1.15)

where qi = 1/n. In equation (1.15), {qi} can be considered as a prior distribution and {pi} as a
posterior distribution. Normalization of I by Hmax leads to

R = I

Hmax

= 1 − H

Hmax

(1.16)

where R is called the relative redundancy varying between 0 and 1.
In equation (1.12), the logarithm is to the base of 2, because it is more convenient to use

logarithms to the base of 2, rather than logarithms to the base e or 10. Therefore, the entropy
is measured in bits (short for binary digits). A bit can be physically interpreted in terms of
the fraction of alternatives that are reduced by knowledge of some kind. These alternatives
are equally likely. Thus, the amount of information depends on the fraction, not the absolute
number of alternatives. This means that each time the number of alternatives is reduced to
half based on some knowledge or one message, there will be a gain of one bit of information or
the message has one bit of information. Consider there are four alternatives and this number
is reduced to two, then one bit of information is transmitted. In the case of two alternative
messages the amount of information = log2 2 = 1. This unit of information is called bit (as
in binary system). The same amount of information is transmitted if 100 alternatives are
reduced to 50, that is, log2(100/50) = log2 2 = 1. In general, one can express that log2 x is
bits of information transmitted or the message has if N alternatives are reduced to N/x. If
1000 alternatives are reduced to 500 (one bit of information is transmitted) and then 500
alternatives to 250 (another bit of information is transmitted), then x = 4, and log2 4 = 2 bits.
Further, if one message reduces the number of alternatives N to N/x and another message
reduces N to N/2x then the former message has one bit less information than the latter. On the
other hand, if one has eight alternative messages to choose from, then log2 8 = log2 23 = 3bits,
that is, this case is associated with three bits of information or this defines the amount of
information that can be determined from the number of alternatives to choose from. If one
has 128 alternatives the amount of information is log2(2)7 = 7 bits.

The measurement of entropy is in nits (nats) in the case of natural logarithm (to the base e)
and in logits (or decibles) with common logarithm. It may be noted that if nx = y, then
x log n = log y, meaning x is the logarithm of y to the base n, that is, x logn n = logn y. To be
specific, the amount of information is measured by the logarithm of the number of choices.
One can go from base b to base a as: logb N = logb a × loga N.

From the above discussion it is clear that the value of H being one or unity depends on the
base of the logarithm: bit (binary digit) for log2 and dit (decimal digit) for log10. Then one
dit expresses the uncertainty of an experiment having ten equiprobable outcomes. Likewise,
one bit corresponds to the uncertainty of an experiment having two equiprobable outcomes.
If p = 1, then the entropy is zero, because the occurrence of the event is certain and there is
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no uncertainty as to the outcome of the experiment. The same applies when p = 0 and the
entropy is zero.

In communication, each representation of random variable X can be regarded as a message.
If X is a continuous variable (say, amplitude), then it would carry an infinite amount of
information. In practice X is uniformly quantized into a finite number of discrete levels, and
then X may be regarded as a discrete variable:

X = {xi, i = 0, ±1, . . . , ±N} (1.17)

where xi is a discrete number, and (2N + 1) is the total number of discrete levels. Then,
random variable X, taking on discrete values, produces a finite amount of information.

1.2.3 Information gain function
From the above discussion it would intuitively seem that the gain in information from an
event is inversely proportional to its probability of occurrence. Let this gain be represented by
G(p) or �I. Following Shannon (1948),

G(p) = �I = log

(
1

pi

)
= − log(pi) (1.18)

where G(p) is the gain function. Equation (1.18) is a measure of that gain in information or
can be called as gain function (Pal and Pal, 1991a). Put another way, the uncertainty removed
by the message that the event i occurred or the information transmitted by it is measured by
equation (1.18). The use of logarithm is convenient, since the combination of the probabilities
of independent events is a multiplicative relation. Thus, logarithms allow for expressing the
combination of their entropies as a simple additive relation. For example, if P(A ∩ B) = PAPB,
then H(AB) = − log PA − log PB = H(A) + H(B). If the probability of an event is very small, say
pi = 0.01, then the partial information transmitted by this event is very large �I = 2 dits if the
base of the logarithm is taken as 10; such an outcome will not occur in the long run. If there
are N events, one can compute the total gain in information as

I =
N∑

i=1

�Ii = −
N∑

i=1

log(pi) (1.19)

Each event occurs with a different probability.
The entropy or global information of an event i is expressed as a weighted value:

H(pi) = −pi log pi (1.20)

Since 0 ≤ pi ≤ 1, H is always positive. Therefore, the average or expected gain in information
can be obtained by taking the weighted average of individual gains of information:

H = E(�I) = −
N∑

i=1

pi(�Ii) = −
N∑

i=1

pi log pi (1.21)

which is the same as equation (1.10) or (1.12). What is interesting to note here is that one
can define different types of entropy by simply defining the gain function or uncertainty
differently. Three other types of entropies are defined in this chapter.

Equation (1.21) can be viewed in another way. Probabilities of outcomes of an experiment
correspond to the partitioning of space among outcomes. Because the intersection of outcomes
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is empty, the global entropy of the experiment is the sum of elementary entropies of the N

outcomes:

H = H1 + H2 + . . . + HN =
N∑

i=1

Hi (1.22a)

= −p1 log p1 − p2 log p2 − . . . − pN log pN = −
N∑

i=1

pi log pi (1.22b)

which is the same as equation (1.21). Clearly, H is maximum when all outcomes are
equiprobable, that is, pi = 1/N. This has an important application in hydrology, geography,
meteorology, and socio-economic and political sciences. If a topology of data measured on
nominal scales has classes possessing the same number of observations then it will transmit
the maximum amount of information (entropy). This condition is not entirely true if by
computing distances between elements one can minimize intra-class variance and maximize
inter-class variance. This would lead to distributions with a smaller entropy but a higher
variance value (Marchand, 1972).

Example 1.1: Plot the gain function defined by equation (1.18) for different values of
probability: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. Take the base of logarithm as 2 as
well as e. What do you conclude from this plot?

Solution: The gain function is plotted in Figure 1.3. It is seen that the gain function decreases
as the probability of occurrence increases. Indeed the gain function becomes zero when the
probability of occurrence is one. For lower logarithmic base, the gain function is higher, that
is, the gain function with logarithmic base of 2 is higher than that with logarithmic base e.
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Figure 1.3 Plot of Shannon’s gain function.
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Example 1.2: Consider a two-state variable taking on values x1 or x2. Assume that
p(x1) = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. Note that p(x2) = 1 − p(x1) =
1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, and 0.0. Compute and plot the Shannon
entropy. Take the base of the logarithm as 2 as well as e. What do you conclude from the plot?

Solution: The Shannon entropy for a two-state variable is plotted as a function of probability
in Figure 1.4. It is seen that entropy increases with increasing probability up to the point
where the probability becomes 0.5 and then decreases with increasing probability, reaching
zero when the probability becomes one. A higher logarithmic base produces lower entropy
and vice versa, that is, the Shannon entropy is greater for logarithmic base 2 than it is for
logarithmic base e. Because of symmetry, H(X1) = H(X2) and therefore graphs will be the same.

1.2.4 Boltzmann, Gibbs and Shannon entropies
Using theoretical arguments Gull (1991) has explained that the Gibbs entropy is based on
the ensemble which represents the probability that an N-particle system is in a particular
microstate and making inferences given incomplete information. The Boltzmann entropy is
based on systems each with one particle. The Gibbs entropy, when maximized (i.e., for the
canonical ensemble), results numerically in the thermodynamic entropy defined by Clausius.
The Gibbs entropy is defined for all probability distributions, not just for the canonical
ensemble. Therefore,

SG ≤ SE

where SG is the Gibbs entropy, and SE is the experimental entropy. Because the Boltzmann
entropy is defined in terms of the single particle distribution, it ignores both the internal
energy and the effect of inter-particle forces on the pressure. The Boltzmann entropy becomes
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Figure 1.4 Shannon entropy for two-state variables.
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the same as the Clausius entropy only for a perfect gas, when it also equals the maximized
Gibbs entropy.

It may be interesting to compare the Shannon entropy with the thermodynamic entropy.
The Shannon entropy provides a measurement of information of a system, and increasing of
this information implies that the system has more information. In the canonical ensemble
case, the Shannon entropy and the thermodynamic entropy are approximately equal to each
other. Ng (1996) distinguished between these two entropies and the entropy for the second
law of thermodynamics, and expressed the total entropy S of a system at a given state as

S = S1 + S2 (1.23)

where S1 is the Shannon entropy and S2 is the entropy for the second law. The increasing of
S2 implies that the entropy of an isolated system increases as regarded by the second law of
thermodynamics, and that the system is in decay. S2 increases when the total energy of the
system is constant, the dissipated energy increases and the absolute temperature is constant or
decreases. From the point of view of living systems, the Shannon entropy (or thermodynamic
entropy) is the entropy for maintaining the complex structure of living systems and their
evolution. The entropy for the second law is not the Shannon entropy. Zurek (1989) defined
physical entropy as the sum of missing information (Shannon entropy) and of the length of
the most concise record expressing the information already available (algorithmic entropy),
which is similar to equation (1.23). Physical entropy can be reduced by a gain of information
or as a result of measurement.

1.2.5 Negentropy
The Shannon entropy is a statistical measure of dispersion in a set organized through an
equivalent relation, whereas the thermodynamic entropy in a system is proportional to its abil-
ity to work, as discussed earlier. The second law of thermodynamics or Carnot’s second prin-
ciple is the degradation of energy from a superior level (electrical and mechanical energy) to a
midlevel (chemical energy) and to an inferior level (heat energy). The difference in the nature
and repartition of energy is measured by the physical energy. For example, if a system expe-
riences an increase in heat, dQ, the corresponding increase in entropy dS can be expressed as

dS = dQ

T
(1.24)

where T is the absolute temperature, and S is the thermodynamic entropy.
Carnot’s first principle of energy, conservation of energy, is

W − Q = 0 (1.25)

and the second principle states

dS ≥ 0 (1.26)

where W is the work produced or output. This shows that entropy must always increase.
Any system in time tends towards a state of perfect homogeneity (perfect disorder) where
it is incapable of producing any more work, providing there are no internal constraints. The
Shannon entropy in this case attains the maximum value. However, this is exactly the opposite
of that in physics in that it is defined by Maxwell (1872) as follows: ‘‘Entropy of a system is the
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mechanical work it can perform without communication of heat or change of volume. When
the temperature and pressure have become constant, the entropy of the system is exhausted.’’

Brillouin (1956) reintroduced the Maxwell entropy while conserving the Shannon entropy
as negentropy: ‘‘An isolated system contains negentropy if it reveals a possibility for doing a
mechanical or electrical work. If a system is not at a uniform temperature, it contains a certain
amount of negentropy.’’ Thus, Marchand (1972) reasoned that entropy means homogeneity
and disorder, and negentropy means heterogeneity and order in a system:

Negentropy = −entropy

Entropy is always positive and attains a maximum value, and therefore negentropy is always
negative or zero, and its maximum value is zero. Note that the ability of a system to
perform work is not measured by its energy, since energy is constant, but by its negen-
tropy. For example, a perfectly disordered system, with a uniform temperature contains a
certain amount of energy but is incapable of producing any work because its entropy is
maximum and its negentropy is minimum. It may be concluded that information (disorder)
and negentropy (order) are interchangeable. Acquisition of information translates into an
increase of entropy and decrease of negentropy; likewise decrease of entropy translates into
increase of negentropy. One cannot observe a phenomenon without altering it and the
information acquired through an observation is always slightly smaller than the disorder it
introduces into the system. This implies that a system cannot be exactly reconstructed as it was
before the observation was made. Thus, the relation between the information and entropy
S in thermodynamics is: S = k log N, k = Boltzmann’s constant (1.3806 × 10−16 erg/K), and
N = number of microscopic configurations of the system. The very small value of k means that
a very small change in entropy corresponds to a huge change in information and vice versa.

Sugawara (1971) used negentropy as a measure of order in discussing problems in water
resources. For example, in the case of hydropower generation, the water falls down and its
potential energy is converted into heat energy and then into electrical energy. The hydropower
station utilizes the negentropy of water. Another example is river discharge, which, with large
fluctuations, has low negentropy or the smaller the fluctuation the higher the negentropy. In
the case of a water treatment plant, input water is dirty and output water is clear or clean,
meaning an increase in negentropy. Consider an example of rainwater distributed in time and
space. The rainwater is in a state of low negentropy. Then, rainwater infiltrates and becomes
groundwater and runoff from this groundwater becomes baseflow. This is in a state of high
negentropy achieved in exchange of lost potential energy. The negentropy of a system can
conserve entropy of water resources.

1.2.6 Exponential entropy
If the gain in information from an event occurring with probability pi is defined as

G (p) = �I = exp[(1 − pi)] (1.27a)

then the exponential entropy, defined by Pal and Pal (1991a), can be expressed as

H = E(�I) =
N∑

i=1

pi exp[(1 − pi)] (1.27b)

The entropy, defined by equation (1.27b), possesses some interesting properties. For example,
following Pal and Pal (1991a), equation (1.27b) is defined for all pi between 0 and 1,
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is continuous in this interval, and possesses a finite value. As pi increases, �I decreases
exponentially. Indeed, H given by equation (1.27b) is maximum when all pi’s are equal. Pal
and Pal (1992) have mathematically proved these and other properties. If one were to plot the
exponential entropy, the plot would be almost identical to the Shannon entropy. Pal and Pal
(1991b) and Pal and Bezdek (1994) have used the exponential entropy in pattern recognition,
image extraction, feature evaluation, and image enhancement and thresholding.

Example 1.3: Plot the gain function defined by equation (1.27a) for different values of
probability: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. What do you conclude from this
plot? Compare this plot with that in Example 1.1. How do the two gain functions differ?

Solution: The gain function is plotted as a function of probability in Figure 1.5. It is seen
that as the probability increases, the gain function decreases, reaching the lowest value of one
when the probability becomes unity. Comparing Figure 1.5 with Figure 1.3, it is observed that
the exponential gain function changes more slowly and has a smaller range of variability than
does the Shannon gain function.

Example 1.4: Consider a two-state variable taking on values x1 or x2. Assume that
p(x1) = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. Note that
p(x2) = 1 − p(x1) = 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.5, 0.4, 0.3, 0.2, 0.1, and 0.0.
Compute and plot the exponential entropy. What do you conclude from the plot? Compare
the exponential entropy with the Shannon entropy.

Solution: The exponential entropy is plotted in Figure 1.6. It increases with increasing
probability, reaching a maximum value when the probability becomes 0.5 and then declines,
reaching a minimum value of one when the probability becomes 1.0. The pattern of variation
of the exponential entropy is similar to that of the Shannon entropy. For any given probability
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Figure 1.5 Plot of gain function of exponential entropy as defined by equation (1.27a).
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value, the exponential entropy is higher than the Shannon entropy. Note that H(X1) = H(X2);
therefore graphs will be identical for X1 and X2.

1.2.7 Tsallis entropy
Tsallis (1988) proposed another formulation for the gain in information from an event
occurring with probability pi as

G(p) = �I = k

q − 1
[(1 − pq−1

i )] (1.28)

where k is a conventional positive constant, and q is any number. Then the Tsallis entropy can
be defined as the expectation of the gain function in equation (1.28):

H = E(�I) = k

q − 1

N∑
i=1

pi[(1 − pq−1
i )] (1.29)

Equation (1.29) shows that H is greater than or equal to zero in all cases. This can be considered
as a generalization of the Shannon entropy or Boltzmann–Gibbs entropy. The Tsallis entropy
has some interesting properties. Equation (1.29) achieves its maximum when all probabilities
are equal. It vanishes when N = 1; as well as when there is only one event with probability
one and others have vanishing probabilities. It converges to the Shannon entropy when q

tends to unity.

Example 1.5: Plot the gain function defined by equation (1.18) for different values of
probability: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. Take k as 1, and q as −1, 0,
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Figure 1.6 Plot of exponential and Shannon entropy for two-state variables.
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1.1, and 2. What do you conclude from this plot? Compare the gain function with the gain
functions obtained in Examples 1.1 and 1.3.

Solution: The Tsallis gain function is plotted in Figure 1.7. It is seen that the gain function is
highly sensitive to the value of q. For q = 1.1, and q = 2, the gain function is almost zero; for
q = −1, and 0, it declines rapidly with increasing probability – indeed it reaches a very small
value when the probability is about 0.5 or higher. Its variation is significantly steeper than the
Shannon and exponential gain functions, and its pattern of variation is also quite different.

Example 1.6: Consider a two-state variable taking on values x1 or x2. Assume that
p(x1) = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. Note that p(x2) = 1 − p(x1) =
1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, and 0.0. Compute and plot the Tsallis entropy.
Take q as 1.5 and 2.0. What do you conclude from the plot?

Solution: The Tsallis entropy is plotted in Figure 1.8. It increases with increasing probability
reaching a maximum value at the probability of about 0.6 and then declines with increasing
probability. The Tsallis entropy is higher for q = 1.5 than it is for q = 2.0.

1.2.8 Renyi entropy
Renyi (1961) defined a generalized form of entropy called Renyi entropy which specializes
into the Shannon entropy, Kapur entropy, and others. Recall that the amount of uncertainty

or the entropy of a probability distribution P = (p1, p2, . . . , pn), where pi ≥ 0 and
n∑

i=1

pi = 1,

denotes the amount of uncertainty as regards the outcome of an experiment whose values
have probabilities p1, p2, . . . , pn, measured by the quantity H(p) = H(p1, p2, . . . , pn).
H(p, 1 − p) is a continuous function of p, 0 ≤ p ≤ 1. Following Renyi (1961), one can also
write: H(wp1, (1 − w)p1, p2, . . . , pn) = H(p1, p2, . . . , pn) + p1H(w, 1 − w) for 0 ≤ w ≥ 1.
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Figure 1.7 Plot of gain function for k = 1, and q = −1, 0, 1.1, and 2.



20 Entropy Theory and its Application in Environmental and Water Engineering
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Figure 1.8 Plot of Tsallis entropy for two state variables with q = 1.5 and 2.

Renyi (1961) expressed

Hα(p1, p2, . . . , pn) = 1

1 − α
log2

(
n∑

i=1

pα
i

)
(1.30)

where α > 0 and α �= 1. Equation (1.30) also is a measure of entropy and can be called the
entropy of order α of distribution P. It can be shown from equation (1.30) that

lim
α→1

Hα(p1, p2, . . . , pn) =
n∑

i=1

pi log
1

pi

(1.31)

which is the same as equation (1.12). Thus, the Shannon entropy is a limiting case of the
Renyi entropy given by equation (1.30) for α → 1.

Let W(P) be the weight of the distribution P, 0 < W(P) < 1. The weight of an ordi-
nary distribution is 1. A distribution which has weight less than 1 is called an incomplete
distribution:

W(P) =
n∑

i=1

pi (1.32)

For two generalized distributions P and Q, such that W(P) + W(Q) ≤ 1,

H(P ∪ Q) = W(P)H(P) + W(Q)H(Q)

W(P) + W(Q)
(1.33)
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This is called the mean value property of entropy; the entropy of the union of two incomplete
distributions is the weighted mean value of the entropies of the two distributions, where the
entropy of each component is weighted by its own weight. This can be generalized as

H(P1 ∪ P2 ∪ P3 . . . ∪ Pn) = W(P1)H(P1) + W(P2)H(P2) + . . . W(Pn)H(Pn)

W(P1) + W(P2) + . . . W(Pn)
(1.34)

Any generalized P{p1, p2, . . . , pn} can be written as

P = {p1} ∪ {p2} ∪ . . . ∪ {pn} (1.35)

Thus, Renyi (1961) defined an entropy as

H(X) = 1

1 − a
log

N∑
i=1

pa
i

N∑
i=1

pi

, a �= 1, a > 0 (1.36)

This is an entropy of order a of the generalized distribution P. As a → 1, equation (1.36)
converges to the Shannon entropy. Thus, the Shannon entropy can be considered as a limiting
case of Reny’s entropy. The Kapur entropy is a further generalization of the Renyi entropy as

H(X) = 1

1 − a
ln

N∑
i=1

pa
i

N∑
i=1

pb
i

, a �= 1, b > 0, a + b − 1 > 0 (1.37)

If b = 1, equation (1.37) reduces to the Renyi entropy. For b = 1, and a = 0, equation (1.37)
reduces to log N, if pi = 1/N, which is Hartley’s measure (Hartley, 1928).

1.3 Entropy, information, and uncertainty

Consider a discrete random variable X : {x1, x2, . . . , xN} with a probability distribution
P(x) = {p1, p2, . . . , pN}. When the variable is observed to have a value xi, the information is
gained; the amount of information Ii so gained is defined as the magnitude of the logarithm
of the probability:

Ii = − log pi = | log pi|

One may ask the question: How much uncertainty was there about the variable before
observation? The question is answered by linking uncertainty to information. The amount
of uncertainty can be defined as the average amount of information expected to be gained
by observation. This expected amount of information is referred to as the entropy of the
distribution

H =
N∑

i=1

piIi = −
N∑

i=1

pi log pi =
N∑

i=1

pi| log pi|
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This entropy of a discrete probability distribution denotes the average amount of information
expected to be gained from observation. Once a value of the random variable X has been
observed, the variable has this observed value with probability one. Then, the entropy of
the new conditional distribution is zero. However, this will not be true if the variable is
continuous.

1.3.1 Information
The term ‘‘information’’ is variously defined. In Webster’s International Dictionary, definitions
of ‘‘information’’ encompass a broad spectrum from semantic to technical, including ‘‘the
communication or reception of knowledge and intelligence,’’ ‘‘knowledge communicated by
others and/or obtained from investigation, study, or instruction,’’ ‘‘facts and figures ready for
communication or use as distinguished from those incorporated in a formally organized branch
of knowledge, data,’’ ‘‘the process by which the form of an object of knowledge is impressed
upon the apprehending mind so as to bring about the state of knowing,’’ and ‘‘a numerical
quantity that measures the uncertainty in outcome of an experiment to be performed.’’
The last definition is an objective one and indeed corresponds to the informational entropy.
Semantically, information is used intuitively, that is, it does not correspond to a well-defined
numerical quantity which can quantify the change in uncertainty with change in the state
of the system. Technically, information corresponds to a well-defined function which can
quantify the change in uncertainty. This technical aspect is pursued in this book. In particular,
the entropy of a probability distribution can be considered as a measure of uncertainty and
also a measure of information. The amount of information obtained when observing the
result of an experiment can be considered numerically equal to the amount of uncertainty as
regards the outcome of the experiment before performing it. Perhaps the earliest definition of
information was provided by Fisher (1921) who used the inverse of the variance as a measure
of information contained in a distribution about the outcome of a random draw from that
distribution.

Following Renyi (1961), another amount of information can be expressed as follows.
Consider a random variable X. An event E is observed which in some way is related to X. The
question arises: What is the amount of information concerning X? To answer this question,
let P be the probability (original, unconditional) distribution of X, and Q be the conditional
distribution of X, subject to the condition that event E has taken place. A measure of the
amount of information concerning the random variable X contained in the observation of
event E can be denoted by I(Q|P), where Q is absolutely continuous with respect to P. If
h = dQ/dP, the Radon-Nikodym derivative of Q with respect to P, then a possible measure of
the amount of information in question can be written as:

Ii(Q|P) =
∫

h log2 dQ =
∫

h log2 hdP (1.38)

Assume X takes on a finite number of values: X : {x1, x2, . . . , xn} If P(X = xi) = pi and
P(X = xi|E) = qi, for i = 1, 2, . . . , n, then equation (1.38) becomes

I1(Q|P) =
n∑

i=1

qi log2
qi

pi

(1.39)

Also,

Iα(Q|P) = 1

α − 1
log2

(
n∑

i=1

qα
i

pα−1
i

)
(1.40)
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For α → 1,

lim
α→1

Iα(Q|P) = I1(Q|P) (1.41)

This measures the amount of information contained in the observation of event E with respect
to the random variable X, or the information of order α obtained if the distribution P is
replaced by distribution Q.

If I(Q1|P1) and I(Q2|P2) are defined, and P = P1P2 and Q = Q1Q2 and the correspondence
between the elements of P and Q is that introduced by the correspondence between the
elements of P1 and Q1 and those of P2 and Q2, then

I(Q|P) = I(Q1|P1) + I(Q2|P2) (1.42)

If

W(P1) + W(P2) ≤ 1 and W(Q1) + W(Q2) ≤ 1 (1.43)

then

I(Q1UQ2|P1UP2) = W(Q1)I(Q1|P1) + W(Q2)I(Q2|P2)

W(Q1) + W(Q2)
(1.44)

The entropies can be generalized as

I1(Q|P) =

n∑
i=1

qi log2
qi

pi

n∑
i=1

qi

(1.45)

Likewise,

Iα(Q|P) = 1

α − 1
log2




n∑
i=1

qα
i

pα−1
i

n∑
i=1

qi


 (1.46)

If P and Q are complete distributions then equation (1.45) will reduce to equation (1.39) and
equation (1.46) to equation (1.40).

Information is a measure of one’s freedom of choice when selecting an alternative or a
message. Thus, it should not be confused with the meaning of the message. For example,
two messages, one filled with meaning and the other with nonsense can be equivalent.
Information relates not so much to what one does say as to what one could say. If there are
two alternative messages and one has to choose one message then it is arbitrarily stated that
the information associated with this case is unity which indicates the amount of freedom one
has in selecting a message. Thus, the concept of information applies to the whole situation,
not to individual messages. The messages can be anything one likes.

The measure of information is entropy. Entropy is a measure of randomness or shuffledness.
Physical systems tend to become more and more shuffled, less and less organized. If a system
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is highly organized and it is not characterized by a large degree of randomness, then its
information (entropy) is low.

If H is zero (pi = 1, certainty) and (pj = 0, j �= i impossibility) then information is zero and
there is no freedom of choice. When one is completely free, H is maximum and reduces to
zero when the freedom of choice is gone. Thus, H increases with the increasing number of
alternatives or by equiprobability of alternatives if the number of alternatives is fixed. There
is more information if the number of alternatives to choose from is more.

Entropy H(X) permits to measure information and for that reason it is also referred to as
informational entropy. Intuitively, information reduces uncertainty which is a measure of
surprise. Thus, information I is a reduction in uncertainty H(X) and can be defined as

I = HI − HO (1.47)

where HI is the entropy (or uncertainty) of input (or message sent through a channel), and
HO is the entropy (or uncertainty) of output (or message received). Equation (1.47) defines
a reduction in uncertainty. Consider an input-output channel or transmission conduit. Were
there no noise in the conduit, the output (the message received by the receiver or receptor)
would be certain as soon as the input (message sent by the emitter) was known. This means
that the uncertainty in output HO would be 0 and I = HI .

1.3.2 Uncertainty and surprise
The concept of information is closely linked with the concept of uncertainty or surprise. The
quantity − log (1/pi) can be used to denote surprise or unexpectedness (Watanabe, 1969).
When all probabilities are equal, it is impossible to state that one possibility is more likely than
another. This means there is complete uncertainty. Any information about the nature of an
event under such conditions can be expected to shed more light than in any other condition.
Maximum entropy is therefore a measure of complete uncertainty. Maximum uncertainty
can be equated with a condition in which the expected information from actual events is also
maximized. Now assume that X = xi and it occurs with probability one, pi = 1; that is, the
event occurs with certainty and hence there is no uncertainty. This means that pj = 0, j �= i.
In this case, there is no surprise and therefore the occurrence of event X = xi conveys no
information, since it is known what the event must be. One can state that the information
content of observing xi or the anticipatory uncertainty of xi prior to the observation is a
decreasing function of the probability p(xi). The more likely the occurrence of xi, the less
information its actual observation contains.

If xi’s occur with probabilities pi’s, pi �= pj, i = j = 0, ± 1, . . . , ±N, then there is more
surprise and therefore more information that X = xi occurs with probability pi than does
X = xj with probability pj where pj > pi. Thus, information, uncertainty and surprise are all
related. Information is gained only if there is uncertainty about an event. Uncertainty suggests
that the event may take on different values. The value that occurs with a higher probability
conveys less information and vice versa. The probability of occurrence of a certain value is
the measure of uncertainty or the degree of expectedness and hence of information. Shannon
(1948) argued that entropy is the expected value of the probabilities of alternative values
that an event may take on. The information gained is indirectly measured as the amount of
reduction of uncertainty or of entropy.

The above discussion suggests that uncertainty can be understood to be a form of information
deficiency or reflects information reduction, which may be because information is unreliable,
biased, contradictory, vague, incomplete, imprecise, erroneous, fragmentary, or unfounded.



CHAPTER 1 Introduction 25

In many cases, information deficiency can be reduced and hence uncertainty. Consider, for
example, prediction of a 100-year flood from a 20-year record. This prediction has uncertainty,
say, u1 (it can be referred to as a priori uncertainty). If the record length is increased to 50 years,
the prediction will have less uncertainty, say u2 (it can be referred to as posteriori uncertainty).
The reduction in uncertainty due to a more complete record (or an action) is u1 − u2 which
is equal to the information gain, that is, this is the amount of information realized as a
result of uncertainty reduction. Klir (2006) refers to this uncertainty as uncertainty-based
information, and reasons that this type of information does not encompass the concept of
uncertainty in its entirety and is hence restricted somewhat. On the other hand, information
is understood to reduce uncertainty or reflects uncertainty reduction. Klir (2006) calls this an
information-based uncertainty.

1.4 Types of uncertainty

Uncertainty can appear in different forms. It can appear in both probabilistic and deterministic
phenomena. In deterministic phenomena, it appears as a result of fuzziness about the
phenomena, in data or in relations about the variables, and can be dealt with using the fuzzy
set theory (plausibility, possibility, and feasibility). Probabilistic uncertainty is associated with
the probability of outcomes and is entropy. This is also linked with arrow of time, meaning
that it increases from past to present to future.

In environmental and water resources engineering models which express relations among
states of given variables are constructed for a variety of purposes, including prediction,
retrodiction, forecasting, diagnosis, prescription, planning, scheduling, control, simulation,
detection, estimation, extrapolation, and design. Each of these purposes is subject to uncer-
tainty. Depending on the purpose, unknown states of some variables are determined from
the known states of other variables, using appropriate relation(s). If the relation is unique,
the model is deterministic; otherwise it is nondeterministic and involves uncertainty. The
uncertainty relates to the purpose for the construction of the model, and can thus be distin-
guished as predictive uncertainty, retrodictive uncertainty, forecasting uncertainty, diagnostic
uncertainty, prescriptive uncertainty, planning uncertainty, scheduling uncertainty, control
uncertainty, simulation uncertainty, detection uncertainty, estimation uncertainty, extrapola-
tion uncertainty, and design uncertainty. It is logical that this uncertainty is incorporated into
the model description. A decision is an action from a set of actions, based on the consequences
of individual actions. Clearly, these actions are subject to anticipated uncertainty due to the
uncertainty associated with consequences.

For probabilistic uncertainty, the value of p(x) represents the degree of evidential support
that x is the true alternative, x ∈ X :→ [0, 1] set. Then the Shannon entropy measures
the amount of uncertainty in evidence expressed by the probability distribution P on the
finite set:

−c
∑

p(x) logb p(x) (1.48)

where c and b are constant, and b �= 1. The choice of b and c determines the unit in which the
uncertainty is measured. The most common measurement unit is a bit. If

−c logb

1

2
= 1 (1.49)
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then b = 2, c = 1, and it would imply X = [x1, x2] and p(x1) = p(x2) = 0.5. This is often
referred to as a normalization requirement. Thus, one bit is the amount of information
gained or uncertainty removed when one learns the answer to a question whose two possible
outcomes are equally likely. Thus, H(p) is called the Shannon measure of uncertainty or
Shannon entropy.

To gain further insight about the type of uncertainty measured by the Shannon entropy,
one can write Shannon entropy as

H(p) = −
∑
x∈X

p(x) log2


1 −

∑
y �=x

p(y)


 (1.50)

Now consider the term

con(x) =
∑
y �=x

p(y) (1.51)

which expresses the total evidence (sum) as a result of the alternatives that are different
from x, that is, y �= x. This evidence is in conflict with the one focusing on x. It is seen
that con(x) ∈ [0, 1] for each x ∈ X. The term − log2 [1 − con(x)] in equation (1.51) increases
monotonically with con(x) and its range is extended from [0, 1] to [0, ∞]. Thus, the Shannon
entropy is the mean (expected value) of the conflict among evidences expressed by each
probability distribution P.

Example 1.7: One way to gain further insight into the Shannon uncertainty is from
equation s(a) = c logb a, where c and b are constants, and b �= 1. The Shannon uncertainty
here is analogous to the gain function defined by equation (1.18). Taking c = −1, and
b = 2, s(a) = c log2 a. Plot this function taking a = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0. What do you
conclude from this graph?

Solution: The function is plotted as a function of a in Figure 1.9. The function declines with
increasing a and reaches zero when a = 1.

S

0
0.0 0.2 0.4

a

0.6 0.8 1.0

Figure 1.9 Plot of function s(a) = − log2 a for different values of a.
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Example 1.8: Consider X = {x1, x2} with, p(x1) = a, and p(x2) = 1 − a, a ∈ [0, 1]; x1 and x2

represent two alternatives. The Shannon entropy depends only on a and is comprised of two
components S1 = −a log2 a and S2 = −(1 − a) log2(1 − a); each component is analogous to the
gain function. Compute the Shannon entropy as well as each of the two components, taking
a = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0, and graph them. What do you conclude from these
graphs?

Solution: The Shannon entropy and each component thereof are plotted in Figure 1.10. The
Shannon entropy graph is as before. The two components are mirror images of each other, as
shown in Figure 1.10a. Graphs of S1 and S2 are shown in Figure 1.10a. Graph S1 and S2 are
the same except for the change of scale.

1.5 Entropy and related concepts

Hydrologic and environmental systems are inherently spatial and complex, and our
understanding of these systems is less than complete. Many of the systems are either fully
stochastic or part-stochastic and part-deterministic. Their stochastic nature can be attributed
to the randomness in one or more of the following components that constitute them: 1)
system structure (geometry), 2) system dynamics, 3) forcing functions (sources and sinks),
and 4) initial and boundary conditions. As a result, a stochastic description of these systems is
needed, and the entropy theory enables the development of such a description.

Fundamental to the planning, design, development, operation, and management of envi-
ronmental and water resources projects is the data that are observed either in field or
experimentally and the information they convey. If this information can be determined, it can
also serve as a basis for design and evaluation of data collection networks, design of sampling
schemes, choosing between models, testing the goodness-of-fit of a model, and so on.

Engineering decisions concerning hydrologic systems are frequently made with less than
adequate information. Such decisions may often be based on experience, professional judg-
ment, thumb rules, crude analyses, safety factors, or probabilistic methods. Usually, decision
making under uncertainty tends to be relatively conservative. Quite often, sufficient data are
not available to describe the random behavior of such systems. Although probabilistic methods
allow for a more explicit and quantitative accounting of uncertainty, their major difficulty
occurs due to the lack of sufficient or complete data. Small sample sizes and limited informa-
tion render the estimation of probability distributions of system variables with conventional
methods difficult. This problem can be alleviated by the use of entropy theory which enables to
determine the least-biased probability distributions with limited knowledge and data. Where
the shortage of data is widely rampant as is normally the case in many countries, the entropy
theory is particularly appealing.

1.5.1 Information content of data
One frequently encounters a situation in which to exercise freedom of choice, evaluate
uncertainty or measure the information gain or loss. The freedom of choice, uncertainty,
disorder, information content, or information gain or loss has been variously measured by
relative entropy, redundancy, and conditional and joint entropies employing conditional and
joint probabilities. As an example, in the analysis of empirical data, the variance has often
been interpreted as a measure of uncertainty and as revealing gain or loss in information.
However, entropy is another measure of dispersion – an alternative to variance. This suggests
that it is possible to determine the variance whenever it is possible to determine the entropy
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(a) Graph of Shannon entropy. 
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(b) Graph of S1 and S2 : S1 = -alog2a, S2 = − (1 − a) log2 (1 − a).
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Figure 1.10 Shannon entropy.

measure, but the reverse is not necessarily true. However, variance is not the appropriate
measure if the sample size is small.

1.5.2 Criteria for model selection
Usually there are more models than one needs and a choice has to be made as to which model
to choose. Akaike (1973) formulated a criterion, called Akaike Information Criterion (AIC),
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for selecting the best model from amongst several models as

AIC = −2 log(maximized likelihood) + 2k (1.52)

where k is the number of parameters of the model. AIC provides a method for model
identification and can be expressed as minus twice the logarithm of the maximum likelihood
plus twice the number of parameters used to find the best model. The maximum likelihood
and entropy are uniquely related. When there are several models, the model giving the
minimum value of AIC should be selected. When the maximum likelihood is identical for two
models, the model with the smaller number of parameters should be selected, for that will
lead to smaller AIC and comply with the principle of parsimony.

1.5.3 Hypothesis testing
Another important application of the entropy theory is in the testing of hypotheses (Tribus,
1969). With use of Bayes’ theorem in logarithmic form, an evidence function can be defined
for comparing two hypotheses. The evidence in favor of a hypothesis over its competitor is
the difference between the respective entropies of the competition and the hypothesis under
testing. Defining surprisal as the negative of the logarithm of the probability, the mean surprisal
for a set of observations is expressed. Therefore, the evidence function for two hypotheses is
obtained as the difference between the two values of the mean surprisal multiplied by the
number of observations.

1.5.4 Risk assessment
There are different types of risk, such as business risk, social risk, economic risk, safety risk,
investment risk, occupational risk, and so on. In common language, risk is the possibility of
loss or injury and the degree of probability of such loss. Rational decision making requires a
clear and quantitative way of expressing risk. In general, risk cannot be avoided and a choice
has to be made between risks. To put risk in proper perspective, it is useful to clarify the
distinction between risk, uncertainty, and hazard.

The notion of risk involves both uncertainty and some kind of loss or damage. Uncertainty
reflects the variability of our state of knowledge or state of confidence in a prior evaluation.
Thus, risk is the sum of uncertainty plus damage. Hazard is commonly defined as a source
of danger and involves a scenario identification (e.g., failure of a dam) and a measure of
the consequence of that scenario or a measure of the ensuing damage. Risk encompasses
the likelihood of conversion of that source into the actual delivery of loss, injury, or some
form of damage. Thus, risk is the ratio of hazard to safeguards. By increasing safeguards, risk
can be reduced but it is never zero. Since awareness of risk reduces risk, awareness is part
of safeguards. Qualitatively, risk is subjective and is relative to the observer. Risk involves
the probability of scenario and its consequence resulting from the happening of the scenario.
Thus, one can say that risk is probability and consequence. Kaplan and Garrick (1981) have
analyzed risk using entropy. Luce (1960) has reasoned that entropy should be described as an
average measure of risk, not of uncertainty.

Questions

Q.1.1 Assume that there are 256 possibilities in a particular case. These possibilities are
arranged in such a way that each time an appropriate piece of information becomes
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available, the number of possibilities reduces to half. What is the information gain in
bits if the number of possibilities is reduced to 128, to 64, to 32, to 16, to 8, to 4,
and to 2?

Q.1.2 Assume that there are 10,000 possibilities in a particular case. These possibilities are
arranged in such a way that each time an appropriate piece of information becomes
available, the number of possibilities reduces to one tenth. What is the gain in
information in decibels or dits if the number of possibilities is reduced to 1,000, to
100, and to 10?

Q.1.3 Consider that a random variable X takes on values xi, i = 1, 2, 3, 4, 5, with probabilities
p(xi) = 0.10, 0.20, 0.30, 0.25, and 0.15. Compute the gain in information for each
value using the Shannon entropy, exponential entropy and Tsallis entropy with
q = 0.5. Which entropy provides a larger gain?

Q.1.4 Consider the probabilities in Q.1.3. Order them in order of increasing surprise and
relate the surprise to the gain in information computed in Q.1.3.

Q.1.5 Consider two distributions Pi = p = 0.1, i = 1, 2, . . . , 10; qj = q = 0.05, j = 1,
2, 3, . . . , 20 having equiprobable outcomes. Compute the maximum entropy of each
distribution in bits. Compare these two distributions by determining the difference in
the information contents of these distributions. Is there a loss of information with the
increase in the number of possible outcomes?

Q.1.6 Consider two distributions Pi = p = 0.05, i = 1, 2, . . . , 20; qi = q = 0.10, j = 1,
2, 3, . . . , 10 having equiprobable outcomes. Compute the maximum entropy of
each distribution in bits. Compare these two distributions by determining the differ-
ence in the information contents of these distributions. Is there a gain of information
with the decrease in the number of possible outcomes?

Q.1.7 Consider that a discrete random variable X takes on 10 values with probability
distribution P : P : {p1, p2, . . . , p10} corresponding to X : {xi, i = 1, 2, . . . , 10). What
distribution P will yield the maximum and minimum values of the Shannon entropy?

Q.1.8 Consider an event A. The probability of the occurrence of event A can be regarded as
a measure of uncertainty about its occurrence or non-occurrence. For what value of
the probability will the uncertainty be maximum and why?

Q.1.9 Consider a coin tossing experiment. Let the probability of the occurrence of head be
denoted as p and that of tail as q. Express the Shannon entropy of this experiment.
Note q = l − p or p = l − q. Plot a graph of entropy by taking different values of p. For
what value of p does the entropy attain a maximum?

Q.1.10 Consider a six-faced dice throwing experiment. The dice is unbiased so the probability
of the occurrence of any face is the same. In this case there are six possible events
and each event is equally likely. Express the Shannon entropy of this experiment and
compute its value. Now consider that the concern is whether an even-numbered or
an odd-numbered face shows upon throw. In this case there are only two possible
events: (even, odd). Express the Shannon entropy of this experiment and compute its
value. Which of these two cases has higher entropy? Which case is more uncertain?
Is there any reduction in uncertainty in going from case one to case two?
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2 Entropy Theory

Since the development of informational entropy in 1948 by Shannon, the literature on
entropy has grown by leaps and bounds and it is almost impossible to provide a comprehensive
treatment of all facets of entropy under one cover. Thermodynamics, statistical mechanics,
and informational statistics tend to lay the foundation for what we now know as entropy
theory. Soofi (1994) perhaps summed up best the main pillars in the evolution of entropy
for quantifying information. Using a pyramid he summarized information theoretic statistics
as shown in Figure 2.1, wherein the informational entropy developed by Shannon (1948)
represents the vertex. The base of the Shannon entropy represents three distinct extensions
which are variants of quantifying information: discrimination information (Kullback, 1959),
mutual information (Lindley, 1956, 1961), and principle of maximum entropy (POME) or
information (Jaynes, 1957, 1968, 1982). The lateral faces of the pyramid are represented by
three planes: 1) the SKJ (Shannon-Kullback-Jaynes) minimum discrimination information
plane, 2) the SLK (Shannon-Lindley-Kullback) mutual information plane, and 3) the SLJ
(Shannon-Lindley-Jaynes) Bayesian information theory plane. Most of the information-based
contributions can be located on one of the faces or in the interior of the pyramid. The
discussion in this chapter on what we call entropy theory represents some aspects of all three
faces but not fully.

The entropy theory may be comprised of four parts: 1) Shannon entropy, 2) principle of
maximum entropy, 3) principle of minimum cross entropy, and 4) concentration theorem.
The first three are the main parts and are most frequently used. One can also employ the
Tsallis entropy or another type of entropy in place of the Shannon entropy for some problems.
Before discussing all four parts, it will be instructive to amplify the formulation of entropy
presented in Chapter 1.

2.1 Formulation of entropy

In order to explain entropy, consider a random variable X which can take on N equally likely
different values. For example, if a six-faced dice is thrown, any face bearing the number 1,
2, 3, 4, 5, or 6 has an equal chance to appear upon throw. It is now assumed that a certain
value of X (or the face of the dice bearing that number or outcome upon throw) is known to
only one person. Another person would like to know the outcome (face) of the dice throw
by asking questions to the person, who knows the answer, in the form of only yes or no.
Thus, the number of alternatives for a face to turn up in this case is six, that is, N = 6. It can
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Figure 2.1 Pyramid showing informational-theoretic statistics.

be shown that the minimum number of questions to be asked in order to ascertain the true
outcome is:

I = −log2
1

N
= log2N (2.1)

where I represents the amount of information required to determine the certain value of X,
1/N defines the probability of finding the unknown value of X by asking a single question,
when all outcomes are equally likely, and log is the logarithm to the base of 2. If nothing
else is known about the variable, then it must be assumed that all values are equally likely in
accordance with the principle of insufficient reason.

In general,

Ii = −log2 pi (2.2)

where pi is the probability of outcome i = 1, 2, . . . , N. Here I can be viewed as the minimum
amount of information required to positively ascertain the outcome of X upon throw. Stated
in another way, this defines the amount of information gained after observing the event X = x

with probability 1/N. In other words I is a measure of information and is a function of N.
The base of the logarithm is 2, because the questions being posed (i.e., questions admitting
only either yes or no answers) are in binary form. The point to be kept in mind when asking
questions is to gain information, not assent or dissent, and hence in many cases a yes is as
good an answer as is a no. This information measure or equation (2.2) satisfies the following
properties:
1 I(xi) = 0, pi = 1. This means that if the outcome of an event is certain, it provides no
information or no information is gained by its occurrence.
2 I(xi) ≥ 0, 0 ≤ pi ≤ 1. This means that the occurrence of an event X = xi provides some or no
information but does not lead to the loss of information.
3 I(xk) > I(xi), pk < pi, k �= i. This means that the less probable the event the more information
one gains through its occurrence.
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Example 2.1: If a six-faced dice is thrown, any face bearing the number 1, 2, 3, 4, 5, or 6 has
an equal chance to appear. The outcome of the first throw is number 5 which is known to a
person A. How many questions does one need to ask this person or how much information
will be required to positively ascertain the outcome of this throw?

Solution: In this case, N = 6. Therefore, I = −log2
1
N = log2N = 2.585 bits. This gives the

minimum amount of information needed or the number of questions to be asked in binary
form (i.e., yes or no). The number of questions needed to be asked is a measure of uncertainty.
The questioning can go like this: Is the outcome between 1 and 3? If the answer is no then
it must be between 4 and 6. Then the second question can be: Is it between 4 and 5? If the
answer is yes, then the next question is: Is it 4 and the answer is no. Then the outcome has to
be 5. In this manner entropy provides an efficient way of obtaining the answer. In vigilance,
investigative or police work entropy can provide an effective way of interrogation. Another
example of interest is lottery.

Example 2.2: Suppose that N tickets are sold for winning a lottery. In other words the
winning ticket must be one of these tickets, that is, the number of chances are N. Let N be
100. Each ticket has a number between 1 and 100. One person, called Jack, knows what the
winning ticket is. The other person, called Mike, would like to know the winning ticket by
asking Jack a series of questions whose answers will be in the form of yes or no. Find the
winning ticket.

Solution: The number of binary questions needed to determine the winning ticket is given
by equation (2.1). For N = 100, I = 6.64. This says that it will take 6.64 questions to find
the winning ticket. To illustrate this point, the questioning might go as shown in Table 2.1.
The questioning in Table 2.1 shows how much information is gained simply by asking binary
questions. The best way of questioning and finding an answer is by subdividing the class
consisting of questions in half at each question. This is similar to the method of regula falsi in
numerical analysis when determining the root of a function numerically.

Consider another case where two coins are thrown and a person knows what the outcome
is. There are four alternatives in which head or tail can appear for the first and second coins,
respectively: head and tail, head and head, tail and tail, and tail and head or one can simply
write the number of alternatives N as 22. The number of questions to be asked in order to
ascertain the outcome is again given by equation (2.1): log2 4 = log2 22 = 2.

Table 2.1 Questioning for finding the winning lottery ticket.

Question number Question asked Answer

1 Is the winning ticket between 50 and 100? No
2 Is it between 25 and 49? No
3 Is it between 1 and 12? Yes
4 Is it between 7 and 12? Yes
5 Is it between 7 an 9? Yes
6 Is it between 7 and 8? Yes
7 It is 7? No

Answer then is: 8
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Example 2.3: Consider that the probability of raining on any day in a given week is the
same. In that week it rained on a certain day and one person knew the day it rained on.
Another person would like to know the day it rained on by asking a number of questions to
the person who knows the answer. The answers to be given are in binary form, that is, yes
or no. What will be the minimum number of questions to be asked in order to determine the
day it rained on?

Solution: In this case, N = 7. Therefore, the minimum number of questions to be asked is:
I = − log2 (1/7) = log2 7 = 2.807

In the above discussion the base of the logarithm is 2 because of the binary nature of answers
and the questioning is done such that the number of alternatives is reduced to half each time
a question is asked. If the possible responses to a question are three, rather than two, then
with n questions one can cover 3n possibilities. For example, an answer to a question about
weather may be: hot, cold, or pleasant. Similarly, for a crop farmers may respond: bumper,
medium or poor. In such cases, the number of questions to cover N cases is given as

I = −log3
1

N
= log3N (2.3)

Here the logarithm is to the base 3. The change from a base of 2 to a base of 3 corresponds to
multiplication by a constant, that is,

log3N = log32 log2N (2.4)

Example 2.4: Consider two days in a week: Monday and Tuesday. The weather on any of
these two days can be hot (W), pleasant (J) or cold (C). What will be the minimum number
of questions to be asked in order to determine what the weather would be on these two days?
The weather man knows the answer and one would like to know the answer by asking the
weather man a number of questions.

Solution: In this case, the number of possibilities, N, is: 32 = 9. These include: WW , JJ, CC,
WJ, WC, CJ, CW , JC, and JW . Therefore, the number of questions to cover nine cases is:

I = −log3
1

9
= log39 = log3(3)2 = 2

The questioning can go like this: Were any of the two days hot? If the answer is no, then were
any of the two days cold? If the answer was again no then it must be pleasant on both days.
On the other hand, if the base of the logarithm is 2 then the questioning is done in a binary
manner as before. The questioning can go like this: Was it hot on Monday? If the answer
is no, then the next question is if it was cold. If the answer is again no then it clearly was
pleasant on Monday. Was it hot on Tuesday? If the answer is no, then the next question is:
Was it cold? If the answer is again no then it clearly was pleasant on Tuesday. In this manner,
by asking four questions, one determined the weather on Monday and Tuesday. In this case,
the information contained in the outcome of the experiment of questioning is:

I = −log2
1

9
= log2 9 = 3.17 bits

In order to appreciate the informational value of entropy, one may ask a question: What is
the information associated with an experiment whose outcome is certain? For example, the
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experiment may be whether the sun will set between midday (or noon) and midnight. In this
case the outcome is certain and there is only one possible outcome. The number of questions
to be asked to determine the outcome is 0. Therefore,

I = log21 = 0

In other words, the information contained in the outcome of the experiment is 0 bits.
To extend this point further, if the experiment entails flipping a coin then the number

of possible outcomes is 2 and the information should be 1 bit. If the experiment involves
throwing a dice as in Example 2.1, then there are six possible outcomes and the information
of the outcome is log2 6 = 2.585 bits. If the experiment involves flipping three coins, then
the number of possible outcomes would be 23 = 8, and the information would be log2 8 = 3
bits. An interesting point to be noted here is that the information is the sum of information
associated with flipping each individual coin, that is, log2 2 + log2 2 + log2 2. This shows that
it does not matter whether the coins are flipped simultaneously or separately. In all of this
discussion the underlying assumption is that outcomes are equally likely.

Can one extend the above concept of information to the outcomes of an experiment where
they are not equally likely? To keep things simple, consider an experiment having N equally
likely outcomes which are divided into two groups of N1 and N2 outcomes: N = N1 + N2.
The question one asks is: Does a particular outcome belong to N1 or N2? One can write the
probability, denoted as p1, if the outcome belongs to group 1 as

p1 = N1

N1 + N2

(2.5a)

and similarly p2 if it belongs to group 2 as:

p2 = N2

N1 + N2

(2.5b)

The question is: How much information is associated with the particular outcome? Remember
the outcomes are not equally likely. The information associated with the outcome amongst N

possible outcomes is: log2 N. Similarly, the information associated with the outcome amongst
N1 equally likely outcomes is: log2 N1 and this happens only for a proportion of outcomes
equal to N1/N. Similarly for the outcome amongst N2 equally likely outcomes the information
is: log2 N2 and this happens only for the proportion equal to N2/N.

One way to determine the information associated with the particular outcome is to compute
the information associated with N equally likely outcomes and subtract the excess information
associated with N1 or N2 possible outcomes in the two groups. The information associated
with the outcome of the experiment can now be computed by the arithmetic sum as

I = log N −
[

N1

N
log N1 + N2

N
log N2

]
= −p1log p1 − p2log p2 (2.5c)

Since probabilities are less than unity, their logarithms are negative and hence I is positive.
The above discussion then leads to a form for the amount of information in the outcome

of an experiment. Although it was assumed that all values of X were equally likely, that
is, pi’s are equally or uniformly distributed, I holds for any kind of probability distribution
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P = {p1, p2, . . . , pN}. Equations (2.5c) can be extended to define the self-information or
information content of X.

Example 2.5: There was a music gathering of well-known musicians who charged for their
performances. In order to break even, 500 (N) tickets, numbered from 1 to 500, were to be
sold. There were five (n) sales persons (called Ai, i = 1, 2, . . . , 5) who were tasked with selling
the tickets. In order to encourage sales, a lottery ticket was included. One of the sales persons
had the lottery ticket. The question was: what was the lottery ticket? Find the lottery ticket
by asking binary questions.

Solution: In order to answer this question, one must first determine the sales person who
had the winning ticket. The number of questions (n1) required to determine the sales person
having the lottery ticket is

n1 = log2 n = log25 = 2.3219

Likewise the number of questions (n2) required to determine the lottery ticket is

n2 = log2

(
N

n

)
= log2

(
500

5

)
= log2100 = 6.6439

The number of questions asked in the above two steps can be combined:

m = n1 + n2 = log2 n + log2

(
N

n

)
= log2 N = log2500 = 8.9658 bits

n1 + n2 = 2.3219 + 6.6439 = 8.9658

Interestingly, this is the same as would be given directly by equation (2.1).

From the above discussion one can define the uncertainty U as the number of binary
questions to be asked for determining the answer to a specific question where there is certain
evidence. In the above example, the evidence is that there are N equally likely mutually
exclusive possibilities or alternatives. Then the uncertainty is given by equation (2.1) and can
be measured in bits. It should be noted that the questioning was done in two steps and at
each step each question reduced the number of possibilities to half and the possibilities were
equally likely. Let us now consider the case where possibilities are not equally likely.

Example 2.6: Consider the above example on the music gathering of musicians. In this case,
sales person A1 had to sell 75, A2 75, A3 250, A4 50, and A5 50 tickets. The question was:
what was the lottery ticket? Find the lottery ticket by asking binary questions.

Solution: In this case, let mi be the number of tickets the i-th sales person had to sell. Then

5∑
i=1

mi = N

Let Ai be the i-th sales person who sold the lottery ticket and this person had mi tickets. There
are two questions to be answered: 1) Which ticket is the lottery ticket? This question can be
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designated as Q1. 2) Which sales person sold the lottery ticket? This question can be designated
as Q2. The uncertainty U associated with Q1 can be expressed as

U
(
Q1

) = log2

n∑
i=1

mi =log2

5∑
i=1

mi = log2500 = 8.9658 bits

Likewise, the uncertainty associated with Q2 can be expressed as

U
(
Q2

) = −
n∑

i=1

p
(
Ai

)
log2

[
p
(
Ai

)] =
5∑

i=1

(mi

N

)
log

(mi

N

)

It may be noted that

p
(
A1

) = p
(
A2

) = 75/500 = 0.15; p
(
A4

) = p
(
A5

) = 50/500 = 0.1, p
(
A3

) = 250/500 = 0.5.

Therefore,

U
(
Q2

) = − [
2
(
0.15 log2 0.15

) + 0.50 log2 0.50 + 2
(
0.15 log2 0.15

)] = 2.1422 bits

Now the number of questions to be asked to determine the sales persons who sold the
lottery ticket is computed as follows. 1) Did A3 sell? If the answer is yes then the question Q2

is answered in one attempt. The probability of getting the yes answer in one question is 1/2.
Therefore the probability of having Q2 answered in one question is 1/2, because this person sold
half the tickets. 2) If the answer is no, then the next question is did A1 and A2 sell? 3) If the
answer is yes then the next question is if A1 sold. 4) If the answer is yes then Q2 is answered.
This means that it takes two additional questions to answer Q2. Thus, the expected number
of questions needed to answer Q2 therefore is expressed as 1

2 × 1 + 1
2 × 4 = 2.5, that is, 3.

2.2 Shannon entropy

Equations (2.1) and (2.2) denote the information content of a single outcome of a variable or
process which may be of interest. However, of greater importance is the information content
of the entire variable (or process) or the expected value of the information content of each
value that the random variable X can take on. Expressed mathematically,

H = E [I] =
N∑
i

piIi (2.6)

or

H = E [I] = −
N∑

i=1

pi log2 pi (2.7)

where N is the number of values X takes on, pi is the probability of the i-th value of X

occurring, Ii is the information content of the i-th value, and H is Shannon entropy of X
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or P : {p1, p2, . . . , pN}. Equation (2.7) is a measure of the average uncertainty of the random
variable and defines the entropy given by Shannon (1948). It can also be interpreted as the
number of bits required, on average, to describe the random variable. For example, when a
six-faced dice is thrown, any face bearing the number 1, 2, 3, 4, 5, or 6 has an equal chance
to appear. Then the average uncertainty or information content of the random variable
expressing the occurrence of the face upon throw is 2.585 bits as computed in Example 2.1.
To see the validity of equation (2.7), consider the case where N outcomes are equally likely.
Then, pi = 1/N. One can write: −log2 pi = log2 N. Substituting this in equation (2.7) gives
log2 N, as it should.

If one imagines before carrying out an experiment N possible outcomes with probabilities
p1, p2, . . . , pN, then equation (2.7) measures the uncertainty concerning the results of the
experiment. However, if we imagine the outcomes after the experiment has already been done,
then equation (2.7) measures the amount of information obtained from the experiment. It is
intuitively plausible to say that the larger amount of information gained upon the knowledge
of the outcome or required to determine the outcome means the greater a priori uncertainty
of this outcome. In this sense, entropy is employed as an indicator of uncertainty. Thus,
information can be considered as the opposite of uncertainty or vice versa.

Shannon (1948) developed the entropy theory for expressing information or uncertainty.
To understand the informational aspect of entropy an experiment on a random variable X is
performed. There may be N possible outcomes x1, x2, . . . , xN, with probabilities p1, p2, . . . , pN;
P(X = x1) = p1, P(X = x2) = p2, . . . , P(X = xN) = pN. These outcomes can be described by the
probability distribution:

P (X) = (
p1, p2, . . . , pN

) ;
N∑
i

pi = 1; pi ≥ 0, i = 1, 2, . . . , N (2.8)

If this experiment is repeated, the same outcome is not likely, implying that there is uncertainty
as to the outcome of the experiment. Based on one’s knowledge about the outcomes, the
uncertainty can be more or less. For example, the total number of outcomes is a piece of
information and the number of those outcomes with nonzero probability is another piece of
information.

The probability distribution of outcomes, if known, provides a certain amount of infor-
mation. Shannon (1948) defined a quantitative measure of uncertainty associated with a
probability distribution or the information content of the distribution in terms of entropy as

H (X) = H (P) = −
N∑

i=1

pi log pi = E
[− log p

]
(2.9)

Quantity H(P) or H(X) is called Shannon entropy or informational entropy, and H(X)
is a measure of the average amount of information conveyed per outcome or message.
It is a measure of prior uncertainty about X. It is assumed here that 0 log 0 = 0; this
can be justified by continuity considerations, since x log x → 0 as x → 0. This means
that adding terms of zero probability does not change the value of entropy. Entropy
depends on the probability distribution of X but not on the value of the variable itself.
If X follows p(x) and g(x) = log [1/p(x)] = −log p(x), then the expected value of g(x) is:
−∑

p(x) log p(x) = E[1og (1/p(x))] = E[g(x)]. Thus, entropy is the expected value of minus the
logarithm of p(x) or the opposite of information.
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Entropy is bounded as 0 ≤ H(X) ≤ log(N). H(X) = 0 if and only if the probability pi = 1 for
some i, and the remaining probabilities are all zero. This lower bound of entropy represents
no uncertainty. When all events are equally probable and all pi’s are equal, then H(X) = log N;
this upper bound corresponds to the maximum uncertainty which increases with increasing N.

Entropy can also be considered as a statistic for measuring the spatial distribution of various
geographic phenomena. Consideration of spatial dimension in which these phenomena are
recorded is implicit rather than explicit in equation (2.9). The manner of partitioning of space
has received little attention in water and environmental engineering. Different areal patterns
can result in different conclusions. Thus, design of optimal spatial systems for geographical
analysis or locational planning is desirable. Geometry of spatial systems in relation to the
measurement of locational phenomena will be discussed in Chapters 9 and 10.

Example 2.7: Consider a coin tossing experiment in which the collection of events is
comprised of head and tail. What is the entropy of the coin tossing experiment?

Solution: The probability of occurrence of head = the probability of occurrence of tail = 0.5,
since there are only two mutually exclusive events (N = 2). Therefore, the entropy of the coin
tossing experiment is:

H = −1

2
log2

1

2
− 1

2
log2

1

2
= log2 2 = 1 bit

Example 2.8: Consider an experiment throwing a six-faced dice with faces numbered as 1,
2, 3, 4, 5, and 6. What is the entropy of the dice throwing experiment? What is the amount
of information gained about dice throwing? Now characterize the faces as odd (1, 3, 5) or
even (2, 4, 6). When a dice is thrown, either an even numbered face or an odd numbered
face shows up. Determine the entropy of the dice throwing experiment in this case and the
information gained. What will be the loss of information by going from considering each face
in experiment one to considering faces as even or odd in experiment two?

Solution: There are six faces of the dice, implying six mutually exclusive events. Therefore,
the probability of any face showing upon throw is p = 1/6. Then, the entropy of the dice throw
experiment one is:

H = −1

6
log2

1

6
− 1

6
log2

1

6
− 1

6
log2

1

6
− 1

6
log2

1

6
− 1

6
log2

1

6
− 1

6
log2

1

6

= −log2
1

6
= log2 6 = 2.585 bits

The amount of information gained about the dice throwing experiment one = log2 6 =
2.585 bits.

In this case, when faces are characterized as odd or even, then there are only two events
(N = 2). Therefore, the entropy of the dice throwing experiment two or the average uncertainty
per event is

H = −1

2
log2

1

2
− 1

2
log2

1

2
= −log2

1

2
= log22 = 1 bit

The amount of information gained is log2 2 = 1 bit.
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The amount of information gained in the first experiment is greater than that in
the second experiment. The amount of uncertainty about the dice throwing experi-
ment = log2 6 − log2 2 = log2 3 = 1.585 bits. Thus, the loss in information from the second
experiment on characterizing faces as odd or even is log2 3 = 1.585 bits.

Example 2.9: There is a bag containing ten balls: five red, three black and two white. Choose
one ball from the bag blindly and the ball may be red. If this experiment is repeated, the
outcome of getting a red ball is not likely, implying that there is uncertainty as to the outcome
of the experiment. How much uncertainty is associated with this experiment or what is the
value of entropy in bits of this experiment?

Solution: In this experiment, N = 3, x1 = red, x2 = black, x3 = white, with corresponding
probabilities, respectively, as: p1 = 5/10 = 0.5, p2 = 3/10 = 0.3, and p3 = 2/10 = 0.2. The entropy
of this experiment is:

H = E [I] = −
N∑
i

pi log2 pi = 1.485 bits

2.3 Connotations of information and entropy

2.3.1 Amount of information
Consider a certain event that is going to occur. The event can occur in different ways leading to
different outcomes, and one may determine how probable each outcome is from observations
of similar events. However, what is not exactly known is which of these outcomes will actually
happen. Consider an example to illustrate the point. A thirsty person would like to get a
bottle of fresh water. Assume that there are 20 bottles available but except one all others do
not have fresh water. Bottles are identifiable through color, shapes, marks on the top, and so
on, and so is a fresh water bottle but not without seeing the bottle. Assume that bottles are
identified by color marks on their tops. If the thirsty person grabs the bottle he can see what it
contains. Clearly the event – grabbing the bottle – has 20 possible outcomes. Of course, if he
is lucky the first bottle he picks up may be the fresh water bottle and he can quench his thirst.
However, it is not very likely, so that in order to pick the right bottle, he needs information.
One can tell him that all the bottles having red marks are not fresh water bottles and there
are five such bottles. With this piece of information, the number of alternatives or outcomes
reduces from 20 to 15.

Similarly, if the person is told that all the bottles with green marks on the top are not fresh
water bottles and such bottles are five bottles. Then, the number of alternatives reduces to 10.
If he is simply told that the bottle with blue mark on the top is the fresh water bottle then
he has all the information he needs to pick the fresh water bottle. In this case the number of
alternatives is reduced from 20 to 1. In this example, the amount of information is measured
by the reduction in alternatives or outcomes. Nothing is said about the truthfulness, value,
believability, or understanding. Miller (1953) emphasized that information is not synonymous
with ‘‘meaning.’’ All that is being discussed is how much information there is, that is, the
amount of information each piece of knowledge conveys. It should be noted however that
the term information occurs in a particular way. In information theory, only the amount
of information is measured or quantified, but it says nothing about the content, value,
truthfulness, exclusiveness, history, or purpose of the information.
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2.3.2 Measure of information
One way to measure the information in such examples as above may be to count the number
of alternatives the supplied information eliminates. In that case, one unit of information
is transmitted each time an alternative is eliminated. This however does not seem to be a
good measure, at least intuitively. For example, it is more advantageous to eliminate two
alternatives in case of five possible alternatives than in case of 20 alternatives. This would
suggest the use of ratios or fractions of alternatives eliminated. In order to transmit the same
information (i.e., 2/5 = 0.4), the number of alternatives to be reduced would have to be 8 in
case of 20 alternatives, that is, 20 to 12 alternatives.

The information is measured in bits. When the number of alternatives is reduced to half, one
unit of information is obtained and this unit is called bit. If one message reduces n alternatives
to n/x, then it possesses one bit less information than does a message that reduces n to n/2x,
where x is factor. Thus, the amount of information in a message that reduces n to n/x, is log2x

bits. In the case of water bottles, if the number of bottles is reduced from 20 to 5 then x = 4
and log2 4 = 2 bits of information. In this case, 20 has been halved twice: from 20 to 10 and
from 10 to 5 alternatives.

Information is related to the freedom of choice and uncertainty to the choice made. Greater
the freedom of choice, the greater the information and the greater the uncertainty that the
alternative actually is a particular one. This connects greater freedom ⇒ greater information
⇒ greater uncertainty.

2.3.3 Source of information
When communicating information, three elements are involved: source (supplier of
information), conduit or channel (transmitter or conveyor of information), and destination
(receiver) of information. A schematic of information flow and components of a resulting
communication system is given by Shannon (1948) as shown in Figure 2.2. The source
generates messages (and hence information) by making a series of decisions among certain
alternatives. The series of such decisions is often referred to as a message in a discrete system.
The source selects a message from a set of n alternative messages. A message can be a chart,
data, text, or table, because it provides information. The message flows through the channel
and thus the channel is the connection between the source and the destination. The decisions
made by the source must be translated into a form which is suitable for transmission through
the channel. This may be accomplished by the introduction of a transmitter between the
channel and the source. The transmission of the message is in the form of signals. Likewise,

Information
Source Transmitter Receiver

Noise Source

Destination

Message Message

Signal Received
Signal

Figure 2.2 General communication system (adapted from Shannon, 1948).
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the signals coming from the channel must be translated into a form acceptable to the
destination. This entails introducing a receiver between the channel and the destination.

The receiver decodes the message for the destination. In this communication system, the
transmitter accepts the message from a source which has entropy H, and encodes it, that
is, it changes the message into a signal. The transmitter transmits log2n bits of information,
where n is the number of signals. The transmitter has a finite capacity C which is defined in
terms of the information it can transmit or more accurately in terms of its ability to transmit
what comes out of the source of given information. This signal encodes the message. Then
the receiver gets the information as to what was chosen and decodes it. The entropy theory
yields the average of transmission over the channel as C/H. Irrespective of the coding, the
transmission rate cannot exceed C/H and this equals the capacity of the channel.

Not all messages are equally likely. If some messages are more likely than others then a
receiver can anticipate them and less information needs to be conveyed. Consider N messages
each with probability p = 1/N (equally likely) then the amount of information to be conveyed
for this message is: −log2p = log2 N. For unequally likely messages with probabilities p1,
p2, . . . , pN, the amount of information associated with the ith message is: −log2 pi.

Now consider an example of a raingage which measures rainfall. A transmitter changes the
message into a signal. The hopper collects the rainwater and sends it to the tipping bucket.
Receiver – an inverse transmitter – changes the transmitted signal into a message. The tipping
bucket records the rainwater onto a graph which is the measurement. In the process of
measurement, certain distortions or errors are added to the measurements. These are called
noise.

There may be another source which transmits signal into a channel. This source is referred
to as noise source and its signal as noise. The effect of noise is unpredictable beforehand,
except statistically. One then may need to state the probability with which it alters one signal
into another. Thus, loss of information occurs during the process of sending, transmitting,
and receiving a message. For example, during transmission noise is introduced in the form
of distortions, errors, or certain extraneous matter. The message received is not exactly the
message sent. The received message has greater uncertainty and greater information, for
the received signal is selected out of more varied set than the sent signal. This means that the
information is enhanced during the process of transmission, and the enhancement may not
be desirable. This enhancement or loss causes the amount of original information to decline.
There is a multitude of factors that may affect the loss of information. For example, in the case
of a chart, the language of the chart, its quality, amount of noise, experience of the reader,
conditions on which the chart is read, and others affect the loss of information.

The connotation of information can be good or bad. For example, uncertainty due to the
freedom of choice the sender has is desirable uncertainty, and the uncertainty due to errors
or noise is undesirable uncertainty. Some of the received information is spurious and must be
subtracted. Entropy is related to the missing information.

2.3.4 Removal of uncertainty
One can ask the question: How much uncertainty is removed? This uncertainty is referred to
as entropy which is defined as an average value of information rate to eliminate uncertainty.
Entropy represents a kind of uncertainty of the system before receiving information. Figure 2.3
shows a schematic for eliminating the uncertainty (entropy) from a system S. The uncertainty
rate associated with the system is also the amount of information required to eliminate
this uncertainty. The implication is that entropy determines the amount of information
that must be added to the system. Consider, for example, a person as a receiver of the
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H

Entropy
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The World

H(S) = 1 => max. H(S) = 0 => min.

Information

System S

H(S ) ∈[0, 1]

Figure 2.3 Schematic for eliminating uncertainty from a system (Adapted from Paszto et al., 2009, with

permission).

information. Removal of uncertainty (entropy) can be insignificant, if this person has either
a lack of knowledge or on the other hand complete knowledge/experience with the problem
of interest. In the first instance, the person would not be able to comprehend the provided
information. In the second instance, the person learns no new facts that he already does not
have or know. This means a suitable person would be somewhere in between.

2.3.5 Equivocation
Entropy of one set may be related to another, that is, entropy of a message related to the
signal. The message is generated by the source and the signal is what is actually received.
The probabilities of these two are inter-related. The probability of receiving, say, a symbol
(of a message) depends on the symbol that was sent. In the absence of noise, the received
signal would correspond to the message symbols sent. In the presence of noise or errors,
the probabilities of received symbols would be closely related to those of message symbols
sent. Given the signals received, relative entropies are computed by averaging entropies.
The relative entropy is referred to as equivocation. It measures the average uncertainty when
the signal is known. In the absence of noise, there is no uncertainty as to the message for the
known signal.

Thus, the capacity C of a channel equals the maximum rate (bits/s) at which useful
information (i.e., total uncertainty minus noise uncertainty) can be transmitted over the
channel. If C is equal to or greater than H(x), then with appropriate coding the source message
can be transmitted with little error. If C is less than H(x), then there is always some uncertainty
(noise) about what the message was after the signal was received. This undesirable uncertainty
(equivocation) will be equal to or greater than H(x) − C.

2.3.6 Average amount of information
In practice, the interest is in the amount of information a source generates rather than the
amount of information of a particular message. In general, different messages possess different
amounts of information. It seems, therefore, logical to determine the average amount of
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information per message one can expect to get from the source, that is, the average for all the
different messages the source may select. The expected value of information from source X is
denoted as H(X):

H (X) = the mean value of
(−log2 pi

) =
N∑

i=1

pi

(−log2 pi

)
(2.10)

H(X) represents the mean logarithmic probability for all messages from source X. This is the
Shannon entropy.

2.3.7 Measurement system
One may ask questions concerning a measurement system. How does one measure the amount
of information? How does one measure the capacity of a measurement system? What are
the characteristics of noise? How does the noise affect the accuracy of measurement? How
can one minimize the undesirable effects of noise? To what extent can they be estimated? In
hydrologic observations, problems seem to occur at three levels (Shannon and Weaver, 1949).

Level 1: The technical problem: How accurately can observations be made and transmitted?
This entails accuracy of transference of observations from receiver to the sender.

Level 2: The semantic problem: How precisely do the transmitted observations convey the
desired meaning? This entails interpretation of the meaning of information.

Level 3: The effectiveness problem: How effectively do the received measurements affect
the conduct in the desired way. The success with which the meaning is conveyed to
the receiver leads to the desired effect. Level 1 represents mostly engineering aspects,
and level 2 and 3 philosophical aspects of the problem, but level 1 does impact levels 2
and 3.

2.3.8 Information and organization
Information offers a way to measure the degree of organization. If a system is well organized
meaning its behavior is predictable, then one knows almost what the system is going to
do before it does. This means that one learns little or acquires little information when the
system does something. Extending this reasoning further, the behavior of a perfectly organized
system is completely predictable and hence yields no information at all. On the other hand,
the converse is true for a disorganized system. The more disorganized the system the more
information its behavior yields and there is much to be learnt by observing the behavior.
In this way, information, predictability, and organization are interrelated.

However, Denbigh (1989) argues that informational entropy has no bearing on the second
law of thermodynamics. Neither is it related to orderliness, organization, or complexity as
discussed by Denbigh and Denbigh (1985). Terms, such as order and organization and their
negations, are broad and are subject to large variation, based on context, such as political,
legal, etc. Changes in entropy, orderliness, and organization can occur independently. Denbigh
(1989) argues that increased orderliness and increase in organization or complexity do not
mean the same things.

2.4 Discrete entropy: univariate case and marginal entropy

Equation (2.7) can be generalized to bases of logarithm different from 2. For a random variable
X which takes on values x1, x2, . . . , xN with probabilities p1, p2, . . . , pN, respectively, entropy
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of X can be expressed as

H (X) = H (P) = −K
N∑

i=1

p
(
xi

)
log p

(
xi

)
(2.11)

where N is the sample size, and K is a parameter whose value depends on the base of the
logarithm used. If different units of entropy are used, then the base of the logarithm changes.
For example, one uses bits for base 2, Napier for base e, and decibels for base 10. In general,
K can be taken as unity. H(X), given by equation (2.11), represents the information content
of random variable X and is referred to as the marginal entropy of X. It is a measure of the
amount of uncertainty or indirectly the average amount of information content of a single
value.

If X is a deterministic variable, then the probability that it will take on a certain value is
one, and the probabilities of all other alternative values are zero. Then, equation (2.11) shows
that H(X) = 0 which can be viewed as the lower limit of the values the entropy function may
assume. This corresponds to the absolute certainty. On the other hand, when all xis are equally
likely, that is, the variable is uniformly distributed (pi = 1/N, i = 1, 2, . . . , N), then equation
(2.11) yields

H (X) = Hmax (X) = log N (2.12)

This shows that the entropy function attains a maximum, and equation (2.12) thus defines
the upper limit. This also reveals that the outcome has the maximum uncertainty. One can
now state that entropy of any process/variable always assumes positive values within limits
defined as:

0 ≤ H (X) ≤ log N (2.13)

One can now define relative entropy, HR, or dimensionless entropy as the ratio of entropy
to the maximum entropy:

HR = H (X)

Hmax (X)
= H (X)

log N
(2.14)

Equation (2.14) expresses the comparative uncertainty of outcomes of X defined by H(X) with
respect to the entropy value if all outcomes were equally likely. Clearly, the more uncertain
the outcome is, the closer the relative entropy (uncertainty) to unity is.

The marginal entropy satisfies the following properties:
1 It is a function of p1, p2, . . . , pN , meaning that H = H(P) = H(p1, p2, . . . , pN).
2 It is a continuous function of p1, p2, . . . , pN, i.e., small changes in p1, p2, . . . , pN would

result in small changes in H. Often, this property is referred to as continuity.
3 It does not change when outcomes are rearranged among themselves, meaning thereby

that H is a symmetric function about its arguments, p1, p2, . . . , pN. It does not change with
numbering or ordering. This property is referred to as symmetry.

4 It is maximum when outcomes are equally likely or follow a uniform distribution which
means that the maximum uncertainty is when:

p1 = p2 = · · · = pN = 1/N (2.15)
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Figure 2.4 Entropy of a distribution P : {p1, p2, p3} as function of probabilities [Note: p1+ p2 + p3 = 1].

The maximum value of H is log N. This is the maximum property. Entropy is a smooth
concave function of probabilities. For N = 3, Figure 2.4 shows the scaled entropy. The entropy
of a distribution with infinite support may be infinite.

For the special case of N = 2, the entropy measured in bits is

0 ≤ H (p) ≤ 1

Maximum uncertainty or entropy can be considered to correspond to a condition where the
expected information from actual events is also maximized.

Example 2.10: Show that the maximum of Shannon entropies for probability distributions
with N elements is log2 N.

Solution: Let there be two probability distributions P : {p1, p2, . . . , pN} and Q : {q1, q2, . . . , qN}.
Using the inequality

−
N∑

i=1

pi log2 pi ≤ −
N∑

i=1

pi log2 qi

for all probability distributions {p1, p2, . . . , pN} and {q1, q2, . . . , qN}. The above equation is
sometimes referred to as Gibbs theorem. If q’s are uniformly distributed then

−
N∑

i=1

pi log2 pi ≤ −
N∑

i=1

pi log2
1

N
= −log2

1

N

N∑
i=1

pi = log2 N

Thus, entropy is bounded as H(p1, p2, . . . , pN) ≤ log2 N, with the upper bound obtained for
pi = 1/N.
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5 A corollary of the above property is that the uncertainty would increase with increasing N.
If there are two positive integers, M and N, M < N, then H(M) < H(N). This is also referred to
as monotonicity.

6 If an impossible outcome is added, entropy or uncertainty does not change, that is,

H
(
p1, p2, . . . , pN , 0

) = H
(
p1, p2, . . . , pN

)
This property is referred to as expansibility.

7 Entropy is always positive and is equal to zero when the outcome is certain, that is,
pk = 1, pi = 0, i �= k. Thus, 0 ≤ H ≤ log N.

8 Any change toward equalization of probabilities increases entropy. For example, let us
consider probabilities p1 and p2 of two events named 1 and 2. Assume that p1 < p2. If we
increase p1 and decrease p2 by the same amount then entropy would increase which means
uncertainty would increase.

Example 2.11: There are two bags numbered as 1 and 2. Number 1 bag contains ten balls:
three red and seven black, and number 2 bag contains ten balls: four red and six black. The
experiment is to choose one ball from number 1 bag without seeing. Compute its entropy.
This experiment is repeated for number 2 bag. Compare the entropies of the two experiments
on the two bags in bits.

Solution: For number 1 bag: p1 = 3/10 for ten red balls, and p2 = 7/10 for black balls.

H = E [I] = −
N∑
i

pi log2 pi = − (
0.3 × log2 0.3 + 0.7 × log2 0.7

) = 0.8813 bits

For number 2 bag: p1 = 4/10 for red balls, and p2 = 6/10 for black balls.

H = E [I] = −
N∑
i

pi log2 pi = − (
0.4 × log2 0.4 + 0.6 × log2 0.6

) = 0.971bits

The entropy of number 2 bag is higher.

9 HN(P) = H(p1, p2, . . . , pN) is a convex function of p1, p2, . . . , pN . This means that the local
maximum of HN(p) is equal to the global maximum.
10 Entropy also satisfies the property of subadditivity. A joint probability distribution is
derived from marginal probability distributions. According to this property, the uncertainty of
this joint distribution should not be larger than the sum of uncertainties of the correspond-
ing marginal distributions. For two random variables, X = {x1, x2, . . . , xN} with probability
distribution as PX = {p1, p2, . . . , pN} and Y = {y1, y2, . . . , yN} with probability distribution as
QY = {q1, q2, . . . , qN}, the sub-additivity property can be expressed as

H(p1, p2, ..., pN; q1, q2, ..., qN} ≤ H
(
p1, p2, ..., pN

) + H(q1, q2, ..., qN}

11 If the variables are independent or noninteractive, then the uncertainty of any joint
distribution of variables becomes equal to the sum of uncertainties of the corresponding
marginal distributions. This property is called additivity. For random variables X and Y defined
as above, this property can be expressed as

H(p1, p2, ..., pN; q1, q2, ..., qN} = H
(
p1, p2, ..., pN

) + H(q1, q2, ..., qN}
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12 Entropy exhibits a recursive property defined as:

HN(p1, p2, . . . , pN) = HN−1(p1 + p2, p3, p4, . . . , pN) + (p1 + p2)H2

(
p1

p1 + p2

,
p2

p1 + p2

)
= HN−2(p1 + p2 + p3, p4, . . . , pN) + (p1 + p2 + p3)

× H3

(
p1

p1 + p2 + p3

,
p2

p1 + p2 + p3

,
p3

p1 + p2 + p3

)
(2.16)

The advantage of this property is that if H2(p1, p2) is known then one can successively
determine H3(p1, p2, p3), H4(p1, p2, p3, p4), . . . . It then follows that

HN(p1, p2, . . . , pN) ≥ HN−1(p1 + p2, p3, p4, . . . , pN) ≥ HN−2(p1 + p2 + p3, p4, p5, . . . , pN)

≥ . . . ≥ H2(p1 + p2 + . . . + pN−1, pN) (2.17)

This means that uncertainty is reduced by combining outcomes and increased by decomposing
outcomes. This property is also referred to as branching.

If X is divided into two groups A and B, defined as A = {x1, x2, . . . , xm} and

B = {xm + 1, xm + 2, . . . , xN} and pA =
m∑

i=1

pi and pB =
N∑

i=m+1

pi then sometimes the branching

property is also expressed as

H
(
p1, p2, . . . , pN

) = H
(
pA, pB

) + pAH

(
p1

pA

,
p2

pA

, . . . ,
pm

pA

)
+ pBH

(
pm+1

pB

,
pm+2

pB

, . . . ,
pN

pB

)
(2.18)

This is essentially a grouping or consistency requirement.

Example 2.12: Assume that a probability distribution is given as:

P = {
p1, p2, . . . , p10

} = {0.015, 0.035, 0.1, 0.15, 0.20, 0.25, 0.14, 0.06, 0.04, 0.01}

Using these probability values show that the recursive property of entropy holds.

Solution: Entropy computations are shown in Table 2.2.

Entropy and the total entropy associated with the specified probability values are given in
column 1 of Table 2.2. In columns 2 and 3, entropy is calculated as per the following formulae
[equation (2.16)]:

Column 2:

HN−1

(
p1 + p2, p3, p4, . . . , pN

) + (
p1 + p2

)
H2

(
p1

p1 + p2

,
p2

p1 + p2

)

Column 3:

HN−2

(
p1 + p2 + p3, p4, . . . , pN

) + (
p1 + p2 + p3

)
H3

(
p1

p1 + p2 + p3

,
p2

p1 + p2 + p3

,
p3

p1 + p2 + p3

)
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Table 2.2 Computation for showing the recursive property of entropy.

Column 1 Column 2 Column 3

P P H (bits) P p H (bits) P P H (bits)

p1 0.015 0.0909
p2 0.035 0.1693 p1 + p2 0.05 0.2161
p3 0.1 0.3322 P3 0.1 0.3322 p1 + p2 + p3 0.1500 0.4105
p4 0.15 0.4105 P4 0.15 0.4105 p4 0.1500 0.4105
p5 0.2 0.4644 P5 0.2 0.4644 p5 0.2000 0.4644
p6 0.25 0.5000 P6 0.25 0.5000 p6 0.2500 0.5000
p7 0.14 0.3971 P7 0.14 0.3971 p7 0.1400 0.3971
p8 0.06 0.2435 P8 0.06 0.2435 p8 0.0600 0.2435
p9 0.04 0.1858 P9 0.04 0.1858 p9 0.0400 0.1858
p10 0.01 0.0664 P10 0.01 0.0664 p10 0.0100 0.0664∑

2.8601 p1/(p1 + p2) 0.3 0.5211 p1/(p1 + p2 + p3) 0.1000 0.3322
p2/(p1 + p2) 0.7 0.3602 p2/(p1 + p2 + p3) 0.2333 0.4899

p3/(p1 + p2 + p3) 0.666667 0.3900∑
2.8601 ∑

2.8601

The total entropy as computed from individual probabilities is seen to be the same as that
calculated in columns 2 and 3. It can therefore be deduced that entropy follows a recursive
property.

If entropy is measured in bits, then one obtains:

H

(
1

2
,

1

2

)
= 1bit

This is the normalization property, and can be amended if other measurement units are
employed.

Example 2.13: Consider a random variable X which takes on two values, a value of 1 with
a probability p and a value of 0 with a probability q = 1m p. Taking different values of p, plot
H(p) as a function of p. This is analogous to tossing a coin where the occurrence of head has
probability p and that of tail has probability q. Compute the entropy by taking different values
of p and graph it.

Solution: The entropy can be expressed as

H (P) = −plogp − qlogq = −plogp − (1 − p) log (1 − p)

The graph of H(P) versus p is shown in Figure 2.5. It is seen that for p = 0.5, H(P) = 1
bit is the maximum. The function H(P) is symmetrical, convex and attains its maximum at
p = q = 0.5. Also, H(p = 0) = H(p = 1) = 0.0.
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Figure 2.5 Entropy as a function of probability.

2.5 Discrete entropy: bivariate case

In general, when there are more sources generating information three cases arise: 1) The
sources are independent, 2) the sources are perfectly correlated, and 3) the sources are partially
correlated. To illustrate these cases, consider the power situation on a given day in a city.
Let there be three people, labeled as A, B, and C, who make binary choices designated by
P for power and F for failure. The question arises: What binary choices would these people
make? This case entails triple-choice events and one may want to determine the outcome of
the triple-choice event. Without further knowledge or information, there are eight possible
outcomes = 23: PPP, PPF, PFF, FFF, FPP, FFP, PFP, FPF. If each outcome is equally likely,
then pi = 1/8, i = 1, 2, . . . , 8, then one would need log2 8 = log2 23 = 3bits of information to
determine the outcome. If one person (A) divulges what his choice would be then the number
of outcomes reduces from 8 to 4: PP, PF, FF, FP. One bit of information then is gained from the
disclosure by A. Extending this logic further, one can determine the amount of information
to be gained if both B and C tell what they would do.

Case I: Both B and C make their choices independently. Knowledge about what B will
choose conveys nothing about what C will do. If one bit of information is gained from B and
one bit of information from C then the total amount of information gained from B and C
together is two bits of information.

Case II: If B and C are perfectly correlated then knowledge about B also translates into
knowledge about C, and vice versa. This means that once information is acquired from B then
C adds nothing to the information already acquired. If both B and C always make the same
choices then the number of outcomes reduces to four: PPP, FPP, PFF, FFF, for A makes a
choice of either P or F. Then only two bits of information are needed to select the outcome.

Case III: In general, B and C are partially, not fully, correlated. If one knows what B will
do, one can make a reasonable guess what C will do, and vice versa. The information gained
from B is not duplicated by C. Therefore, this case falls between case I and case II.
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2.5.1 Joint entropy
Consider two simultaneous experiments whose outcomes are represented by X and Y

with probability distributions PX and PY . For mathematically formulating the information
associated with cases involving more than one variable, consider these two random vari-
ables X and Y . Let X take on values x1, x2, x3, . . . , xN with corresponding probabilities
P = {p1, p2, p3, . . . , pN}; and let Y take on values y1, y2, y3, . . . , yM with corresponding
probabilities Q = {q1, q2, q3, . . . , qM}, such that

N∑
i=1

pi = 1, pi ≥ 0;
M∑

j=1

qj = 1, qj ≥ 0 (2.19)

Note that each value of a random variable represents an event. The joint probability of xi and
yj can be denoted as p(xi, yj) = pij, i = 1, 2, 3, . . . , N; j = 1, 2, 3, . . . , M.

The joint entropy of X and Y can now be defined as

H (X, Y) = −
N∑

i=1

M∑
j=1

pij logpij (2.20)

The joint entropy expresses the total amount of uncertainty contained in the merger or union
of events representing X and Y , and depends on the joint probability distribution of X and Y .

If X and Y are stochastically independent, then p(xi, yj) = p(xi) p(yj) or pij = pipj where
p(xi) = pi, p(yj) = pj. This leads to the definition of joint entropy of independent variables as

H (X, Y) = H (X) + H (Y) (2.21)

Clearly H(X) depends on the probability distribution of X and the same for Y . H(X, Y) in
equation (2.21) indicates the total amount of uncertainty that X and Y entail or the total
amount of information they convey, provided they are independent. Consider, for example,
the flood process characterized by flood peak (X) and flood volume (Y). Then the uncertainty
of the flood process would be represented by equation (2.20). A practical implication is that
more observations on X and Y would reduce the uncertainty more than more observations of
only X or Y .

2.5.2 Conditional entropy
Consider two simultaneous outcomes or events A and B occurring with probabilities PA and
PB, respectively. If events A and B are correlated then the occurrence of event A gives some
indication about the occurrence of event B. The probability of occurrence of B knowing the
occurrence of A is P(B|A)is different from the probability of occurrence of B, P(B). This then
explains the statistical dependence. The conditional entropy of B|A is H(B|A), that is, the
entropy of B conditioned on A, and the global entropy of the two outcomes is

H (AB) = H (A) + H(B |A) (2.22a)

Since H(AB) = H(BA), one can write

H (A) + H(B |A) = H (B) + H(A |B) (2.22b)



54 Entropy Theory and its Application in Environmental and Water Engineering

where H(A|B) is the entropy of A conditioned on B or conditional entropy of B. Equation
(2.22a) can be generalized for any number of outcomes, A, B, C, . . . , Z, as

H (ABC . . . Z) = H (A) + H(B |A) + H (C|AB) + . . . + H(Z |ABC . . . ) (2.23)

It is seen from equation (2.23) that the general entropy includes the contribution of each
event after deduction of the contribution of what has already been accounted for by other
events.

Consider an event X = xi and an event X = m. Then the conditional probability of xi given
m, denoted as p(xi|m), can be expressed as

p
(
xi|m

) = p
(
xi, m

)
p (m)

(2.24)

The conditional entropy becomes

H (X|m) = −
N∑

i=1

p
(
xi|m

)
logp(xi |m) (2.25)

This corresponds to uncertainty in X given m.
Now consider in the subsequence of trials X in which m occurs. Now consider another

variable or sequence of trials Y : {yj, j = 1, 2, . . . , M}. Then, the conditional probability of yj

given Y = w, denoted as p(yj|w), can be expressed as

p
(

yj|w
)

=
p
(

yj, w
)

p (w)
(2.26)

The conditional entropy of X given yj becomes

H
(

X|yj

)
= −

N∑
i=1

p
(

xi|yj

)
logp(xi|yj) (2.27)

Now the conditional entropy of X given Y can be written as

H (X|Y) = −
M∑

j=1

p
(

yj

)
H(X|yj) (2.28)

The conditional entropy of X given Y is the entropy H(X|yj) weighted over j = 1, 2, . . . , M.
This is the uncertainty about X if at each trial event yj of Y is known to have occurred.

Example 2.14: Consider a six-faced dice: X : {1, 2, . . . , 6}= {faces}. Let Y be defined as [even,
odd], that is, it takes on two values as either even or odd. Compute the probability of an even
face occurring upon throw, given an even face; probability of an even face occurring upon
throw, given an odd face; probability of an odd face occurring upon throw, given an odd
face; and probability of an odd face occurring upon throw, given an even face. Compute the
entropy of dice throw given an even face, and entropy of the throw given an odd face. Also
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compute the entropy of the dice throw and then the reduction in uncertainty knowing that at
each trial either odd or even face occurred.

Solution: Each face has a probability of occurrence as 1/6, that is, pi = 1/6. However, the con-
ditional probability p(i − th even face|even face) = 1/3 if i is even and p(i − th even face|odd face) = 0,
i is odd. Likewise, p(i − th odd face|odd face) = 1/3, if i is odd, and p(i − th odd face|even face) = 0,
if i is even. Then

H (X|even) = −1

3
log2

1

3
− 1

3
log2

1

3
− 1

3
log2

1

3
= log23 = 1.585 bits

H (X|odd) = −1

3
log2

1

3
− 1

3
log2

1

3
− 1

3
log2

1

3
= log23 = 1.585 bits

H (X|even) = H(X |odd)

Since even and odd faces constitute two events one of which occurs when the dice is
thrown. Therefore, p(even) = p(odd) = 0.5, and H(X) = log2 2 = 1bit. Then,

H (X|Y) = 0.5log23 + 0.5log23 = log23 = 1.585 bits

H (X) = −1

6
log2

1

6
− 1

6
log2

1

6
− 1

6
log2

1

6
− 1

6
log2 − 1

6
log2

1

6
− 1

6
log2

1

6
= log26

= 2.585 bits

This expresses the uncertainty about X. However, at each trial if it is known that either odd
or even face occurred then the uncertainty is reduced from log26 = 2.585 bits to log23 = 1.585
bits.

Now the discussion is extended to two random variables X and Y . The conditional entropy
H(X|Y) can be defined as the average of entropy of X for each value of Y weighted according
to the probability of getting that particular value of Y . Mathematically,

H (X|Y) = −
∑

i,j

p
(

xi, yj

)
log p(xi|yj) (2.29a)

Similarly,

H (Y |X) = −
∑

i,j

p
(

xi, yj

)
log p(yj

∣∣xi

)
(2.29b)

where p(xi, yj), i = 1, 2, 3, . . . , N; j = 1, 2, . . . , M, are the joint probabilities; and p(xi|yj) and
p(yj|xi) are conditional probabilities.

Let X : {x1, x2, . . . , xN} and Y : {y1, y2, . . . , yM}.

P
(

X = xi|Y = yj

)
= pji/pj = qji (2.30)

H
(

X|yj

)
= −

∑ pji

pj

log
pji

pj

= −
N∑

i=1

qji log qji (2.31)
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The conditional entropy H(X|Y) of X given Y is the conditional entropy of X : {x1, x2, . . . , xN}
given Y : {y1, y2, . . . , yM}, that is,

H (X|Y) = −
M∑
j

pjH
(

X|yj

)
= −

N∑
i=1

M∑
j=1

pji log

(
pji

qj

)
= −

N∑
i=1

M∑
j=1

pji log qji (2.32)

The conditional entropy H(X|Y) in equation (2.29a) gives the amount of uncertainty still
remaining in X after Y becomes known or has been observed, and is expressed in terms of
conditional probabilities. With the knowledge of the values of Y , say yj (j = 1, 2, . . . , M), the
uncertainty in X will be reduced. In other words, the knowledge of Y will convey information
on X. Thus it can be stated that conditional entropy H(X|Y) is a measure of the amount of
uncertainty remaining in X even with the knowledge of Y ; which is less than the same amount
of information gained by observing X. The amount of reduction in uncertainty in X equals the
amount of information gained by observing Y . It then follows that the conditional entropy of
one variable, say X, with respect to the other, say Y , will be less than the marginal entropy of
X:

H (X|Y) ≤ H (X) (2.33a)

Likewise,

H (Y |X) ≤ H (Y) (2.33b)

wherein equality holds if X and Y are independent of each other. It is noted that

H (Y |X) �= H(X |Y) (2.34a)

but

H (X) − H (X|Y) = H (Y) − H(Y |X) (2.34b)

In the case of sending messages and consequent transmission of signals one can also state
the average uncertainty as to the received signal for the message sent. Here H(X) is the entropy
or information of the source of messages, H(Y) is the entropy or information of the received
signals, H(X|Y) is the equivocation or the uncertainty in the message source given the signals,
and H(Y |X)is the uncertainty in the received signal given the sent messages or the spurious
part of the received signal information due to noise. The right side of the equation is useful
information transmitted in spite of the noise.

When X and Y are dependent, as may frequently be the case, say, for example, flood peak
and flood volume, then their joint (or total) entropy equals the sum of marginal entropy of the
first variable (say X) and the entropy of the second variable (say Y) conditioned on the first
variable (X) (that is, the uncertainty remaining in Y when a certain amount of information it
conveys is already present in X):

H (X, Y) = H (X) + H(Y |X) (2.35a)
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or

H (X, Y) = H (Y) + H(X |Y) (2.35b)

Noting equations (2.35a) and (2.35b), the total entropy H(X, Y) of two dependent variables
X and Y will be less than the sum of marginal entropies of X and Y :

H (X, Y) ≤ H (X) + H (Y) (2.35c)

Note that one can also write

log p (x, y) = log p (x) + log p(y |x) (2.36a)

Expectation of both sides of this equation yields equation (2.35a). Furthermore, if Z is another
variable exhibiting some degree of dependence on X and Y , then

H (X, Y |Z) = H (X|Z) + H(Y |X, Z) (2.36b)

2.5.3 Transinformation
To develop an intuitive appreciation of transinformation, consider a river reach receiving
inflow (as a function of time) at its upstream end and discharging flow at its downstream end
(outflow as a function of time). It is assumed that the reach does not receive or discharge
flow from its sides. Then the amount of association between the inflow hydrograph and
the outflow hydrograph of the channel is measured by transmitted information which is
referred to as transinformation. If inflow and outflow are perfectly correlated then all the
inflow information is transmitted. Here the connotation is that the inflow hydrograph appears
as outflow hydrograph undisturbed. No information is transmitted if inflow and outflow
are independent. This, of course, does not occur in hydrology. The perfect correlation and
independence represent two extremes. In nature most cases fall in between where some
information is transmitted and some is not. Our interest is in the amount of information
transmitted, not what the transmitted information is.

Transinformation of two different events A and B, T(A, B), is the quantity of information
common to the two events and is also called mutual information, I(A, B), and can be
expressed as

T (A, B) = I (A, B) = H (A) − H(A |B) (2.37a)

Likewise,

T (B, A) = I (B, A) = H (B) − H(B |A) (2.37b)

It is now noted that

T (B, A) = H (A) + H(B |A) − H (A|B) − H (B|A) = H (A) − H (A|B) = I (A, B) (2.38)

This shows that the mutual information is symmetric and can be extended to any number of
events. Consider three events A, B, and C. Then, one can write:

T (AB, C) = H (AB) − H(AB |C) (2.39)
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The concept of mutual information can be used in a variety of problems, such as network
evaluation and design, flow regime classification, watershed clustering, and so on. In the
network design the objective is to minimize mutual information between gages to avoid
repetition of observed information. The bigger the mutual information between two gages A
and B, the less useful the two are together. It can be said that the role of gage B, used after gage A,
must be proportional to the new information it actually conveys after deduction of the mutual
information already accounted for in A, that is, proportional to H(B) − T(A, B) = H(B|A).

Now the discussion is extended to two discrete random variables X and Y . Transinformation
represents the amount of information common to both X and Y or repeated in both X and Y ,
and is denoted as T(X, Y). Since H(X) represents the uncertainty about the system input (X)
before observing the system output (Y) and the conditional entropy H(X|Y) represents the
uncertainty about the system input after observing the system output, the difference between
H(X) and H(X|Y) must represent the uncertainty about the system input that is reduced by
observing the system output. This difference is often called the average mutual information
between X and Y , or transinformation T of X and Y . Transinformation is also referred to
as mutual information and is a measure of the dependence between X and Y and is always
non-negative. It is a measure of the amount of information random variable X contains about
random variable Y . This means that T(X, Y) defines the amount of uncertainty reduced in X
when Y is known. It equals the difference between the sum of two marginal entropies and
the total entropy:

T (X, Y) = H (X) + H (Y) − H (X, Y) (2.40a)

or

T (X, Y) = −
N∑

i=1

p
(
x1

)
log p

(
xi

) −
M∑

j=1

p
(

yj

)
log p

(
yj

)
+

N∑
i=1

M∑
j=1

p
(

xi, yj

)
log p

(
xi, yj

)
(2.40b)

One can also write

T (X, Y) =
N∑

i=1

M∑
j=1

p
(

xi, yj

)
log

p(xi|yj)

p
(
xi

) (2.41a)

or

T (X, Y) =
N∑

i=1

M∑
j=1

p
(

xi, yj

)
log

p
(

xi, yj

)
p
(
xi

)
p
(

yj

) (2.41b)

T (X, Y) ≥ 0.
When X and Y are independent, T(X, Y) = 0. Taking account of equations (2.37a) and

(2.37b), equation (2.40a) can be written as

T (X, Y) = H (Y) − H(Y |X) (2.42a)

T (X, Y) = H (X) − H(X |Y) (2.42b)

Marginal entropy can be shown to be a special case of transinformation or mutual information,
because

H (X) = T (X, X) (2.43a)

H (Y) = T (Y , Y) (2.43b)
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H(X ) H(Y )

H(X, Y )

T(X, Y ) H(Y | X )H(X | Y )

Figure 2.6 T (X, Y ): Information common to X and Y ; H(X | Y ): information in X given Y ; H(Y | X): information in Y

given X; and H(X,Y ): total information in X and Y together.

H(X1) H(X2) H(Xm−1)

H(Xm)

H(Xm| X1, X2, X2…, Xm−1)

Figure 2.7 Marginal entropies H(X1), H(X2), · · ·, H(Xm), and conditional entropy H(Xm | X1, X2, . . . , Xm − 1).

The concepts of marginal, conditional, and joint entropies and transinformation can be
represented graphically as shown in Figures 2.6 and 2.7.

Let the entropy associated with X be represented by set S1 and the entropy associated with
Y by set S2. Then union of sets S1 and S2 is equivalent to their joint entropy, the intersection
of S1 and S2 equivalent to their transinformation or mutual entropy and the set difference of
S1 and S2 equivalent to the conditional entropy. Noting equations (2.40a) and (2.40b) and
referring to Figure 2.6, equations (2.42a) and (2.42b) show that the marginal entropy can be
expressed as a sum of transinformation and conditional entropy:

H (X) = H (X|Y) + T (X, Y) (2.44a)

H (Y) = H (Y |X) + T (X, Y) (2.44b)

Equations (2.44a) and (2.44b) show that the marginal entropy of X is equal to the amount
of uncertainty in X given the knowledge about Y plus transinformation or the amount of
uncertainty that is reduced by the knowledge about Y .

Returning to the aforementioned three cases in Section 2.5.2, based on the degree of
dependence, the situation in case III is graphed in Figure 2.6. The left circle corresponds to the
information gained from B and the right circle corresponds to the information gained from C.
The term H(X) denotes the average amount of information in bits per event expected from
source B. It is determined from probabilities of choices made by B. Likewise for H(Y) and its
computation. The overlap of two circles corresponds to the common information due to the
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correlation between B and C and its average amount in bits per event is denoted by T. The left
half of the circle represents the information from B given the information from C, denoted as
H(X|Y) which defines the average amount of information per event that is to be obtained from
source B after C is already known. Likewise the right half of the circle represents information
from C given information from B, denoted as H(Y |X).

The total area represented by both circles corresponds to all the information that both B and
C contain. This total amount in bits per event is denoted by H(X, Y). It is calculated from the
joint probabilities of double (joint) choice of B and C together. The remainder of the quantities
can be determined in a manner suggested by Figure 2.6. For example,

H(X|Y) = H (X, Y) − H(Y)

T = H (X) + H (Y) − H (X, Y)

T possesses the attributes of a measure of correlation (contingency, dependence) between
B and C but it is not equivalent to correlation – rather it is more a measure of indepdence
between B and C. If N is the number of occurrences of the event that are used to determine
the probabilities involved, then 1.3863 NT is essentially the same as the value of chi-square
one calculates to test the null hypothesis that B and C are independent (Miller, 1953).

Now consider the transmission of information or communication of message again from one
end of the conduit to another – a situation very similar to what is dealt with in input–output
models in hydrology, as shown in Figure 2.8. If the channel is good, the output is closely related
to the input but is seldom identical, because the input is changed in the process of transmission.
If the change is random then it is referred to as noise reflecting the channel characteristics.
The variables involved in the transmission can be associated with the various quantities of
information shown in Figure 2.8. Let X be the source that generates the input information
and Y be the source that generates the output information. H(X) is the average amount of
input information, and H(Y) is the average amount of output information. The amount of
information that is transmitted is the overlap or common information T(X, Y), since X and Y
are related sources of information. T(X, Y) is the average amount of transmitted information.
Sometimes T is referred to as the average amount of throughput information.

H(X|Y) can be interpreted as the information that is put in but is not received. In other words,
this information is lost in transmission. It is sometimes referred to as ‘‘equivocation’’ or lost
information, because a receiver cannot determine if it was sent. Likewise, H(Y |X) represents
the information that is not put in but is not received; it is added during transmission. It is
referred to as ‘‘noise’’ in the sense that it interferes with good communication.

H(X, Y) represents the total amount of information one has when both input information
and output information are known. One can say that H(X, Y) is the sum of the lost information,

Channel

Receiver (output)Source (input)

Figure 2.8 Transmission of information.
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Figure 2.9 Amount of information transmitted as a function of the amount of input information. For perfect

transmission, transmitted information = input information.

transmitted information and added information or noise:

H (X, Y) = H (X|Y) + T (X, Y) + H (Y |X) (2.45)

where H(X|Y) represents the lost information (or equivocation), T(X, Y) represents the
transmitted information, and H(Y |X) represents the information not sent or system noise.

In communication, one wants to compute T(X, Y), the amount of information transmitted
by the channel. Each channel has an upper limit to the amount of information it transmits
and this upper limit is referred to as channel capacity, C. As H(X) increases, T(X, Y) attains an
upper bound and does not increase thereafter. This is depicted in Figure 2.9. Referring to the
input-channel-output representation, H(X) is the excitation or stimulus information, H(Y) is
the response information, and T measures the degree of dependence of responses on stimuli.
T can also be considered as a measure of discrimination, and C is the basic capacity of the
subject to discriminate among the given stimuli.

Consider student grading in a class. The purpose of the test is to discriminate among students
with respect to some scholastic achievement criterion or dimension. Each student who takes
the test achieves a certain score on this dimension. The result of the test will indicate this
score. In the information parlance, the student can be considered as a channel. True test
values are input information X, and test scores are output information Y . For a good test T
is large and H(Y |X) is small. The test score can discriminate accurately among students who
take it. Transinformation helps define the number of classes students can be distinguished in.
This analogy can be extended to see the similarity between any process of measurement and
the transmission situation. Nature provides input, the process of measurement constitutes the
channel, and measurements themselves constitute the output.

Consider the measurement of rainfall. The rain that falls is the input, the way it is measured
is the channel, and the resulting measured values the output (see Figure 2.10).

In the preceding discussion it is assumed that all successive occurrences of the event are
independent. In many cases this assumption is not tenable, and is not true in behavioral
processes. Consider, for example, a sequence of rainfall and runoff or flood events in a
watershed. Rainfall is the input, watershed is the channel and runoff is the output. The amount
of information of runoff is not the same as the amount of information of rainfall, but there
is some common information between them. This repeated information is ‘‘transinfomation.’’
Let X be the rainfall source that generates input information and let Y be the runoff source
that generates the output information. H(X) is the average amount of information in bits in
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Process of measurement
(Equipment)

Output
(Measurement)

Nature
↓

Input

Figure 2.10 Measurement and transmission of information.

the N-rainfall sequence, and H(Y) is the average amount of information in bits in the N-flood
sequence. H(Y |X) is the average amount of information per event in Y when X is known, and
expresses the rate at which information is generated by the source. It measures the average
number of bits per unit or event.

Transinformation and correlation
Although the joint information (transinformation) is a measure of dependence or indepen-
dence, it is not equivalent to correlation. If event A is determined by event B then p(A|B) = 1,
and B ⊂ A. The information in (AB) = B is measured by H(B), which may be small. The com-
mon information carried by two partially correlated variables is greater than the information
of a group of two variables where one completely governs the other.

Calculation of transinformation
From the point of view of calculating T, consider a discrete input variable X (say, rainfall)
taking on values xi, i = 1, 2, 3, . . . , N, and a discrete output variable Y (say, flood) taking on
values yj, j = 1, 2, 3, . . . , M. It is assumed that when event xi occurs, event yj is caused. Thus,
one can think of a joint input–output event (xi, yj) having a probability p(xi, yj). Of course, it
is true that

N∑
i=1

p
(
xi

) =
M∑

j=1

p
(

yj

)
=
∑

i,j

p
(

xi, yj

)
= 1 (2.46a)

The amount of information transmitted in bits per value (or signal) can be written from
equation (2.40a) as

T (X, Y) = H (X) + H (Y) − H (X, Y)

where

H(X) = −
N∑

i=1

p
(
xi

)
log2 p

(
xi

); H(Y) = −
M∑

j=1

p
(

yj

)
log2 p

(
yj

)
;

H(X, Y) = −
∑

i,j

p
(

xi, yj

)
log2 p

(
xi, yj

)
(2.46b)
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One bit equals − log2 (1/2) and denotes the information transmitted by a choice between two
equally probable alternatives.

If a relation exists between X and Y then H(X) + H(Y) > H(X, Y) and the size of the
inequality defines T(X, Y) which is a bivariate positive quantity measuring the association
between X and Y . Now suppose that there are n observations of events (i, j) and nij denotes
the number of times i occurred and j was caused. In other words,

ni =
∑

j

nij; nj =
∑

i

nij; n =
∑

i,j

nij (2.47)

where ni denotes the number of times i occurred, nj denotes the number of times j was
caused, and n denotes the total number of observations. For doing calculations it is easier to
use contingency tables where XY would represent cells and nij would be entries. In that case,
the probabilities would be: p(i) = ni/n, p(j) = nj/n, and p(i, j) = nij/n; these are actually relative
frequencies. Rather than using relative frequencies, one can also use a simpler notation for
computing entropies in terms of absolute frequencies as follows:

sij = 1

n

∑
i,j

nij log2 nij; si = 1

n

∑
i

ni log2 ni; sj = 1

n

∑
j

nj log2 nj; s = log2 n (2.48a)

Then

T (X, Y) = s − si−sj + sij (2.48b)

The two-dimensional case of the amount of information transmitted can be extended to three
or more dimensional cases (McGill, 1953, 1954). Consider three random variables: U, V , Y ,
where U and V constitute sources and Y the effect. In this case, X of the two-dimensional case
has been replaced by U and V . Then, as shown in Figures 2.11a, and 2.11b, one can write

T (U, V ; Y) = H (U, V ) + H (Y) − H (U, V ; Y) (2.49)

Here X is divided into two classes U and V , with values of U as k = 1, 2, 3, . . . , K; and values
of V as w = 1, 2, 3, . . . , W . The subdivision of X is made such that the range of values of U
and V jointly constitute the values of X, with the implication that the input event i can be
replaced by the joint event (k, w). This means that ni = nkw.

A(U, V, Y) T(V; Y )T(U; Y )

H(U, V; Y)

TU(V; Y )TV(U; Y )

Figure 2.11a Schematic of the components of three-dimensional transmitted information. Three-dimensional

information = part of bivariate transmission plus and interaction term.
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T(V; Y )T(U; Y )

A(UYW ) A(VYW )

A(UVYW)

T (U, V, W; Y )

Figure 2.11b Schematic of the components of four-dimensional transmitted information with three sources and a

single output.

Here T(U, V ; Y) measures the amount of information transmission that U and V transmit
to Y . It can be shown that the direction of transmission is irrelevant, because

T (U, V ; Y) = T (Y ; U, V ) (2.50)

This also implies that distinguishing sources from effect or transmitters from receivers do
not gain anything, because the amount of information transmitted measures the association
between variables and hence the direction in which information travels is immaterial.
However, it is important to note that symbols cannot be permuted at will, because

T (U, Y ; V ) = H (U, Y) + H (V ) − H (U, Y ; V ) (2.51)

but it is not necessarily equal to T(U, V ; Y).
For computing T(U, V ; Y), it should be noted that it can be expressed as a function of

bivariate transmission between U and Y , and V and Y . Observations of the joint event (k, w, j)
can be organized into a three-dimensional contingency table with UVY cells and nkwj entries.
Then one can compute the terms of

T (U, V ; Y) = s − sj − skw + skwj (2.52)

where

skwj = 1

n

∑
k,w,j

nkwj log2 nkwj (2.53)

Other terms can be expressed in a similar manner.
One can investigate the transmission between U and Y . This would involve eliminating V

which can be done in two ways. First, the three-dimensional contingency table can be reduced
to two dimensions by summing over V , resulting in the entries of the reduced table as

nkj =
∑

w

nkwj (2.54)
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The transmitted information between U and Y can be expressed as

T (U; Y) = s − sk − sj + skj (2.55)

The second way for eliminating V is to compute the transmission between U and Y
separately for each value of V and then average the transmitted values together. Designating
Tw(U;Y) as the information transmitted between U and Y for a single value of V , namely w,
one can write the transmitted information Tv (U; Y) as

Tv (U; Y) =
∑

w

nw

n

[
Tw (U; Y)

]
(2.56)

It can be shown that

Tv (U; Y) = sw − skw − swj + skwj (2.57)

In a three-dimensional contingency table, three different pairs of variables occur. For
transmission between V and Y , one can write

T (V ; Y) = s − sw − sj + swj (2.58)

Tu (V ; Y) = sk − skw − skj + skwj (2.59)

The transmission between U and V can be expressed as

T (U; V ) = s − sk − sw + skw (2.60)

Ty (U; V ) = sj − skj − swj + skwj (2.61)

Now, the information transmitted between U and Y can be reconsidered. If V affects the
transmission between U and Y , that is, U and V are related, then TV (U;Y) �= T(U;Y). This
effect can be measured as

A (UVY) = TV (U; Y) − T (U; Y) (2.62)

A (UVY) = −s + sk + sw + sj − skw − skj − swj + skwj (2.63)

A little algebra shows

A (UVY) = Tv (U; Y) − T (U; Y) = Tu (V ; Y) − T (V ; Y) = Ty (U; V ) − T (U; V ) (2.64)

Keeping this symmetry in mind, A(UVY) can be regarded as the U.V .Y interaction information,
and is the gain (or loss) in information transmitted between any two of the variables due to
the knowledge of the third variable.

Now the three-dimensional information transmitted from U, V to Y , that is, T(U, V ; Y), can
be expressed as a function of its bivariate components:

T (U, V ; Y) = T (U; Y) + T (V ; Y) + A (UVY) (2.65)

T (U, V ; Y) = Tv (U; Y) + Tu (V ; Y) − A (UVY) (2.66)



66 Entropy Theory and its Application in Environmental and Water Engineering

Following these two equations, taken together, T(U, V ; Y) can be shown as in Figure 2.11a
with overlapping circles. This figure assumes that there is a positive interaction between
U, V , and Y , meaning that when one of the interacting variables is held constant, the
amount of association between the remaining two increases, that is, Tv(U;Y) > T(U;Y), and
Tu(V ;Y) > T(V ;Y).

For the three-dimensional case, one can write

H (Y) = Huv (Y) + T (U; Y) + T (V ; Y) + A (UVY) (2.67)

where H(Y) = s − sj and Huv(Y) = skwj − skw. This shows that the marginal information is
partitioned into an error term and a set of correlation terms due to input variables. The error
term is Huv(Y) and denotes the unexplained or residual variance in the output Y after the
information due to inputs U and V has been removed. For the two-dimensional case, one can
write

H (Y) = Hu (Y) + T (U; Y) (2.68)

In this case Hu is the error term, because there is only one input variable U. Shannon (1948)
has shown that

Hu (Y) ≥ Huv (Y) (2.69)

This shows that if only U is controlled, the error term cannot be increased if V is also controlled.
It can be shown that

Hu (Y) = Huv (y) + Tuv (V ; Y) (2.70)

Now the issue of independence in three-dimensional transmission is considered. If the
output is independent of the joint input then T(U, V ; Y) = 0, that is,

nkwj =
nkwnj

n
(2.71)

Then it can be shown that

skwj = skw + sj − s (2.72)

This equation can be used to show that T(U, V ; Y) = 0.
Now assume that T(U, V ; Y) > 0, but V and Y are independent, that is,

nwj =
nwnj

n
(2.73)

This results in

swj = sw + sj − s (2.74)

If swj from equation (2.58) is used in equation (2.74) then T(V ; Y) = 0. Equation (2.74) does
not lead to a unique condition for independence between V and Y .
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If the input variables are correlated, then the question arises: How is the transmitted
information affected? The three-dimensional transmitted information T(U, V ; Y) would
account for only part of the total association in a three-dimensional contingency table. Let
C(U, V ; Y) be the correlated information. Then one can write

C (U, V ; Y) = H (U) + H (V ) + H (Y) − H (U, V ; Y) (2.75)

Adding to and subtracting from equation (2.75) H(U, V) one obtains

C (U, V ; Y) = T (U; V ) + T (U, V ; Y) (2.76)

C (U, V ; Y) = T (U; V ) + T (U; Y) + T (V ; Y) + A (UVY) (2.77)

It is seen that C(U, V ; Y) can be employed to generate all possible components of the three
correlated sources of information U, V , and Y .

Example 2.15: Using the s-notation method to compute the transinformation T(A, B), T(B,
C), T(A, C) and the interaction information A(A, B, C). Data are given in Table 2.3.

Solution: Transinformation calculation:
Let us compute T(A, B) first. From equation (2.48b) we know that we need to compute s, si, sj

and sij. All of the components can be obtained from equation (2.48a). In the following, by taking
the transinformation T(A, B) as an example, we compute all the components one by one.
a) Compute s: By dividing the ranges of variables A and B into five equal sized intervals and
counting the number of occurrence in all combinations of these subintervals, the contingency
table can be computed as

3
B

n Table

4 521

1

A

2

3

4

5

15

10

2

0

1

6

8

4

0

0

1

4

0

0

1

1

3

0

1

0

0

1

1

1

0

From equation (2.47), we have

n =
∑

i,j

nij = 15 + 10 + 2 + 0 + 1 + 6 + 8 + 4 + 0 + 0 + . . . + 0 + 1 + 1 + 1 + 0 = 60

From equation (2.48a), we have

s = log2 n = log2 n = 5.9069

b) Compute si and sj: By marginalizing out one of the two variables, the contingency of A and
B can be obtained from the above contingency table.
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Table 2.3 A Stream flow observations.

Year Month A B C

2000 1 61.21 2.54 6.86
2000 2 40.64 8.13 45.97
2000 3 122.68 22.10 15.75
2000 4 97.54 18.80 26.16
2000 5 179.83 23.88 80.52
2000 6 110.49 120.65 109.22
2000 7 12.45 12.45 7.87
2000 8 4.06 0.51 7.11
2000 9 62.23 16.51 48.00
2000 10 59.69 109.47 185.67
2000 11 347.98 84.07 140.46
2000 12 137.16 14.73 34.54
2001 1 120.14 30.48 64.77
2001 2 104.90 36.83 30.73
2001 3 175.01 33.27 59.44
2001 4 14.48 14.73 39.62
2001 5 89.15 60.20 72.39
2001 6 336.55 5.84 22.61
2001 7 41.66 12.45 25.15
2001 8 117.35 70.10 92.71
2001 9 168.66 52.32 67.31
2001 10 103.89 21.84 43.43
2001 11 72.39 77.98 126.49
2001 12 144.53 4.83 34.80
2002 1 49.78 10.67 6.60
2002 2 57.91 30.23 6.10
2002 3 82.55 41.91 27.69
2002 4 59.44 9.40 60.45
2002 5 101.85 32.00 50.55
2002 6 104.65 41.15 50.29
2002 7 90.68 73.15 416.56
2002 8 25.65 16.00 17.27
2002 9 29.72 32.78 144.78
2002 10 140.72 124.71 198.12
2002 11 99.82 13.21 23.88
2002 12 125.22 26.16 37.34
2003 1 18.54 4.06 19.05
2003 2 189.23 42.16 45.21
2003 3 51.56 35.31 41.15
2003 4 30.48 11.68 4.06
2003 5 56.64 38.86 23.62
2003 6 123.95 148.34 112.27
2003 7 111.25 16.00 182.12
2003 8 39.37 59.18 46.23
2003 9 90.17 68.83 119.38
2003 10 93.47 91.69 66.29
2003 11 116.33 20.57 23.11
2003 12 58.93 0 1.52
2004 1 110.24 35.81 57.91
2004 2 156.97 48.51 44.70
2004 3 75.95 48.26 95.25
2004 4 131.06 61.21 176.53
2004 5 105.16 22.86 31.24

(continued overleaf)



CHAPTER 2 Entropy Theory 69

Table 2.3 continued

Year Month A B C

2004 6 212.34 105.41 232.16
2004 7 54.10 62.23 32.26
2004 8 105.66 119.38 59.44
2004 9 50.04 37.08 76.20
2004 10 179.07 150.37 77.72
2004 11 249.68 159.00 142.24
2004 12 66.80 10.41 5.84

From equation (2.47), we have

ni(1) =
∑

j

n1j = 15 + 6 + 1 + 1 + 1 = 23

ni(2) =
∑

j

n2j = 10 + 8 + 4 + 3 + 1 = 26

......

ni(5) =
∑

j

n5j = 1 + 0 + 1 + 0 + 0 = 2

The results (contingency table for A) are shown in the shaded column in the following table.

3
B

n + Margin n Table

4 5 621

1

A

2

3

4

5

6

15

10

2

0

1

28

6

8

4

0

0

18

1

4

0

0

1 0 0

6

1

3

0

1

5

0 23

26

7

2

2

1

1

1

3

Similarly, we also have

nj(1) =
∑

i

ni1 = 15 + 10 + 2 + 0 + 1 = 28

nj(2) =
∑

i

ni2 = 6 + 8 + 4 + 0 + 0 = 18

......

nj(5) =
∑

i

ni5 = 0 + 1 + 1 + 1 + 0 = 3

Finally, from equation (2.48a) we have

si = 1

n

∑
i

ni log2 ni = 1

60

(
23 × log2 23 + 26 × log2 26 + 7 × log2 7 + 2 × log2 2 + 2 × log2 2

)
= 4.1651
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Also we have

sj = 1

n

∑
j

nj log2 nj = 1

60

(
28 × log2 28 + 18 × log2 18 + 6 × log2 6 + 5 × log2 5 + 3 × log2 3

)
= 4.0256

c) Compute sij: From the joint contingency table and equation (2.48a) we can also compute sij,

sij = 1

n

∑
i,j

nij log2 nij

= 1

60

(
15 × log2 15 + 10 × log2 10 + 2 × log2 2 + . . . + 0 × log2 0 + 1 × log2 1+
. . . + 0 × log2 0

)
= 2.5681

Finally,

T(A, B) = s − si−sj + sij = 5.9069 − 4.1651 − 4.0256 + 2.5681

= 0.2843

Similarly, T(B, C) and T(C, A) can be computed.

T (B, C) = 0.4890

T (C, A) = 0.1863

Interaction information calculation:
By dividing the ranges of the variables A, B and C into five equal sized intervals, the trivariate
contingency table can be created. The resulting contingency table is

3
B

Counts,C:1.5-84.53

4 521

1

A

2

3

4

5

14

7

3

0

1

5

6

4

0

0

1

1

0

0

0

0

2

0

0

0

0

0

1

0

0

3
B

Counts,C:84.53-167.53

4 521

1

A

2

3

4

5

2

0

0

0

0

2

1

0

0

0

0

0

0

0

1

0

1

0

0

0

0

1

0

1

0

3
B

Counts,C:167.53-250.54

4 521

1

A

2

3

4

5

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

1

0

1

3
B

Counts,C:250.54-333.55

4 521

1

A

2

3

4

5

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
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3
B

Counts,C:333.55-416

4 521

1

A

2

3

4

5

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

Summing up all the elements in the above trivariate joint contingency table, we have n = 60.
Therefore,

s = log2 60 = 5.9069

The marginal contingency table can be obtained in the following way.
The marginal contingency table of A and B given C ∈ (1.5,84.53]

3
B

Counts,C:1.5-84.53

4 521

1

A

2

3

4

5

14

7

3

0

1

5

6

4

0

0

1

1

0

0

0

0

2

0

0

0

0 20

16

8

0

1

25 15 2 2 1

0

0

0

0

The marginal contingency table of A and B given C ∈ (84.53,167.53]

3
B

Counts,C:84.53-167.53

4 521

1

A

2

3

4

5

2

0

0

0

0

2

1

0

0

0

0

0

0

0

1

0

1

0

0

0

0 4

3

0

1

1

2 3 1 1 2

1

0

1

0

The marginal contingency table of A and B given C ∈ (167.53,250.54]
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3
B

Counts,C:167.53−250.54

4 521

1

A

2

3

4

5

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1 1

1

2

0

1

1 0 1 0 3

0

1

0

1

The marginal contingency table of A and B given C ∈ (250.54,333.55]

3
B

Counts,C:250.54−333.55

4 521

1

A

2

3

4

5

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0 0 0 0

0

0

0

0

The marginal contingency table of A and B given C ∈ (250.54,333.55]

3
B

Counts,C:333.55−416.

4 521

1

A

2

3

4

5

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0 0

0

1

0

0

0 0 1 0 0

0

0

0

0

Then the marginal contingency table for A can be

nk (1) =
∑
w,j

n1wj = 20 + 4 + 1 + 0 + 0 = 25

nk (2) =
∑
w,j

n2wj = 16 + 3 + 1 + 0 + 0 = 20
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nk (3) =
∑
w,j

n3wj = 8 + 0 + 2 + 0 + 1 = 11

nk (4) =
∑
w,j

n4wj = 0 + 1 + 0 + 0 + 0 = 1

nk (5) =
∑
w,j

n5wj = 1 + 1 + 1 + 0 + 0 = 3

The results are tabulated as:

3

nk

4 521

1 25 20 11 1 3

And the marginal contingency table for B can be

nj (1) =
∑
k,w

nkw1 = 25 + 2 + 1 + 0 + 0 = 28

nj (2) =
∑
k,w

nkw2 = 15 + 3 + 0 + 0 + 0 = 18

nj (3) =
∑
k,w

nkw3 = 2 + 1 + 1 + 0 + 1 = 5

nj (4) =
∑
k,w

nkw4 = 2 + 1 + 0 + 0 + 0 = 3

nj (4) =
∑
k,w

nkw4 = 1 + 2 + 3 + 0 + 0 = 6

Tabulate the results as

3

nj

4 521

1 28 18 5 3 6

The marginal contingency table for C can be computed as

nw (1) = 25 + 15 + 2 + 2 + 1 = 20 + 16 + 8 + 0 + 1 = 45

nw (2) = 2 + 3 + 1 + 1 + 2 = 4 + 3 + 0 + 1 + 1 = 9
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nw (3) = 1 + 0 + 1 + 0 + 3 = 1 + 1 + 2 + 0 + 1 = 5

nw (4) = 0 + 0 + 0 + 0 + 0 = 0 + 0 + 0 + 0 + 0 = 0

nw (5) = 0 + 0 + 1 + 0 + 0 = 0 + 0 + 1 + 0 + 0 = 1

Tabulate the results as

3

nw

4 521

1 45 9 5 0 1

Therefore, we can have

sk = 1

60

(
25 × log2 25 + 20 × log2 20 + 11 × log2 11 + 1 × log2 1 + 3 × log2 3

) = 4.0891

sj = 1

60

(
28 × log2 28 + 18 × log2 18 + 5 × log2 5 + 3 × log2 3 + 6 × log2 6

) = 4.0256

sw = 1

60

(
45 × log2 45 + 9 × log2 9 + 5 × log2 5 + 0 × log2 0 + 1 × log2 1

) = 4.7879

Now skw swj and skj are computed. The bivariate contingency table can also be obtained from
the trivariate contingency by marginalizing one of the three variables out. Using equation
(2.54) we can have the bivariate joint contingency table of A and B:

3
B

nkj

4 521

1

A

2

3

4

5

16 7

7

4

0

0 1

0 0

0

02

1

1 0 1

1

2

1

1

38

3

0

1

Therefore skj can be computed as

skj = 1

60

(
16 × log2 16 + 8 × log2 8 + 3 × log2 3 + . . . + 1 × log2 1 + 1 × log2 1

) = 2.4802
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Similarly, the bivariate joint contingency table of B and C is:

3
C

nwj

4 521

1

B

2

3

4

5

25 2

3

1

1

2 3

0 0

0

01

0

1 0 0

0

1

0

0

015

2

2

1

swj can be computed as

swj = 1

60

(
25 × log2 25 + 15 × log2 15 + 2 × log2 2 + . . . + 0 × log2 0 + 0 × log2 0

) = 3.2035

The bivariate joint contingency table of A and C is:

3
C

nkw

4 521

1

A

2

3

4

5

20 4

3

0

1

1 1

0 0

0

02

1

1 0 0

0

1

0

0

016

8

0

1

and skw is computed as

skw = 1

60

(
20 × log2 20 + 16 × log2 16 + 8 × log2 8 + . . . + 0 × log2 0 + 0 × log2 0

) = 3.1532

Using the trivariate contingency table and equation (2.53), skwj can be computed as

skwj = 1

n

∑
k,w,j

nkwj log2 nkwj

= 1

60
(14 × log2 14 + 7 × log2 7 + 3 × log2 3 + . . . + 0 × log2 0 + 0 × log2 0

+ 2 × log2 2 + 0 × log2 0 + 0 × log2 0 + . . . + 1 × log2 1 + 0 × log2 0

+ 0 × log2 0 + 1 × log2 1 + 0 × log2 0 + . . . + 0 × log2 0 + 1 × log2 1

+ 0 × log2 0 + 0 × log2 0 + 0 × log2 0 + . . . + 0 × log2 0 + 0 × log2 0

+ 0 × log2 0 + 0 × log2 0 + 0 × log2 0 + . . . + 0 × log2 0 + 0 × log2 0)

= 1.9805
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So far we can use equation (2.63) to compute the interaction information

A(A, B, C) = −s + sk + sw + sj − skw − swj − skj + skwj

= −5.9069 + 4.0891 + 4.7879 + 4.0256 − 3.1532 − 3.2035 − 2.4802 + 1.9805

= 0.1393

It may be interesting to summarize this example now. The entire analysis is additive and
hence is simple to calculate. The component measures of association (with drought duration
and with inter-arrival time) plus the error or noise sum to the drought severity information.
Following Garner and Hake (1951) and Miller (1953), the amount of information transmitted
is approximately equal to the logarithm of the number of perfectly discriminated input classes.

More on mutual information
In many rural areas in developing countries of Asia and Africa, domestic water needs are
met by fetching water from different sources of supply, such as open-dug wells, tanks, and
ponds. Often there is no restriction as to who will fetch water from which source. To that end,
consider the transport of a body of water from a location can be characterized as an event E.
This event originates in an area denoted by ai and the probability that this event occurs in
area ai is pi (i = 1, 2, . . . , N). The probability that event reaches the channel j, cj, is pj. The
probability of the movement or flow between ai and cj is pij. If the information is received to
the effect that the flow did occur between i and j, then each of these probabilities is raised to
unity. The smaller the value of probability, the message about the actual movement is more
informative. Let a priori transport probabilities be denoted as qij. Of course, the a posteriori
probabilities of movement or transport of water are pij. Then one can write

∑
i

∑
j

qij = 1 (2.78a)

∑
j

qij = qi (2.78b)

∑
i

qij = qj (2.78c)

∑
i

qi. =
∑

j

q.j = 1.0 (2.78d)

Equations (2.78b) and (2.778c) can be expressed in matrix form Q : {qij} as:




q11 q12 . . . q1M

q21 q22 . . . q2M

. . . . . .

. . . . . .

. . . . . .

qN1 qN2 . . . qNM



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Analogous relations for pij can be written as

∑
i

∑
j

pij = 1.0 (2.79a)

∑
j

pij = pi. (2.79b)

∑
i

pij = p.j (2.79c)

∑
i

pi. =
∑

j

p.j = 1.0 (2.79d)

Equations (2.79b) and (2.79c) can be written in matric form P : {pij}as:




p11 p12 . . . p1M

p21 p22 . . . p2M

. . . . . .

. . . . . .

. . . . . .

pN1 pN2 . . . pNM




These constitute matrices of probabilities. Note rows represent flow origins and columns flow
destinations.

Comparison of the a priori and a posteriori matrices results in three issues. First, row and
column entropies may or may not be maximized. If rows and columns are at the maximum
of (log N, log M) then there is complete uncertainty about the origins and destinations. If the
entropies are less than the maximum log N, then origins and destinations have some degree
of concentration or organization reflecting systematic regularity. Second, if mutual entropy
and expected mutual entropy or transinformation are the same, there is interchange reflecting
movement within the bounds specified by the marginal probability distributions. The equality
of mutual and expected mutual entropies reveals pure random movement and in that case
marginal entropies are maximized. If the mutual and expected mutual entropies are not equal,
movements depart from order or organization along margins. The transmitted information
ultimately gets degraded to noise and thus the information entropy can be viewed in the
same way as thermal entropy (thermodynamics). Of most value is the non-noisy or significant
information, and this may be revealed by the differences between the a priori expectations
and the a posteriori expectations.

Matrix P implies the joint, row, and column entropies:

H
(

pij

)
= −

N∑
i=1

M∑
j=1

pij log pij (Joint entropy) (2.80a)

H
(
pi.

) = −
N∑

i=1

pi. log pi. (Row entropy) (2.80b)
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H(p.j) = −
M∑

j=1

p.j log p.j (Column entropy) (2.80c)

Analogous expressions can be written for matrix Q as:

H(qij) = −
N∑

i=1

M∑
j=1

qij log qij (Joint entropy) (2.81a)

H(qi.) = −
N∑

i=1

qi. log qi. (Row entropy) (2.81b)

H
(

q.j

)
= −

M∑
j=1

q.j log q.j (Column entropy) (2.81c)

If movements are independent at origins and destinations the following measures of expected
mutual entropy (transinformation) can be expressed:

T(qij) =
N∑

i=1

M∑
j=1

qij log

(
qij

qi.q.j

)
(2.82a)

T(pij) =
N∑

i=1

M∑
j=1

qij log

(
pij

pi.p.j

)
(2.82b)

One may also write

T(qij) = −
N∑

i=1

qi. log qi. −
M∑

j=1

q.j log q.j +
N∑

i=1

M∑
j=1

qij log qij (2.83a)

Therefore,

T(qij) = H
(
qi.

) + H
(

q.j

)
− H

(
qij

)
(2.83b)

This means that the joint entropy of qij is less than the sum of marginal entropies of qi. and q.j

because of the mutual information between them:

H(qij) < H
(
qi.

) + H
(

q.j

)
(2.84a)

Likewise,

T(pij) = H
(
pi.

) + H
(

p.j

)
− H

(
pij

)
(2.84b)

Transinformation is zero if the difference between joint and the sum of marginal entropies
and the joint entropy (based on the margins) is zero. Transinformation increases with
increasing deviations of qij and pij from their expectations (qi.q. j) and (pi.p. j). Furthermore,
log(qij/qi.q. j) is positive, zero or negative, depending on whether the probabilities of movement
from i to j are greater than, equal to, or less than the independence level.
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Three issues emerge from the a priori and a posteriori movement matrices. First, row and
column matrices may or may not be maximized. Note rows represent origins of movement
and columns destinations of movement. If rows and columns are at the maximum of log
N then there is complete uncertainty about the origins and destinations. If their entropies
are less than log N, then origins and/or destinations have some degree of concentration or
organization reflecting systematic regularity. Second, if mutual and expected mutual entropy
(transinformation) are the same, there is interchange reflecting movement within bounds
specified by the marginal probability distributions. The equality of mutual and expected
mutual entropies reveals pure random movement in the case where marginal entropies are
maximized. If mutual and expected mutual entropies are not equal, flows depart from order
or organization along margins.

Properties of mutual information
The mutual information or transinformation satisfies the following properties:
1 Transinformation between X and Y is symmetric, because it is a measure of common
information between them, that is,

T (X, Y) = T (Y , X)

where the mutual information T(X, Y) is a measure of the uncertainty about the system input
X that is resolved by observing the system output, whereas the mutual information T(Y , X) is
a measure of uncertainty about the system output Y that is resolved by observing the system
input X.
2 The mutual information T(X, Y) between X and Y is always non-negative, that is,

T (X, Y) ≥ 0

In other words, one does not lose information, on average, by observing system output
Y . Furthermore, the mutual information vanishes only if the system input and output are
independent.
3 The mutual information can be stated in terms of the system output entropy Y as:

T (X, Y) = H (Y) − H(Y |X)

where the right side represents the ensemble average of the information conveyed by the
system output Y minus the ensemble average of the information conveyed by Y given that the
system input is already known. The conditional entropy H(Y | X) conveys information about
the system noise, rather than about the system input X.

2.6 Dimensionless entropies

Sometimes it is useful to work with normalized or dimensionless entropies. Each type of
entropy can be expressed in dimensionless terms by dividing the respective entropy by its
maximum value. Thus, dimensionless marginal entropy, H*(X), can be written as:

H∗(X) = H(X)

log2 |X| (2.85a)
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where |X| is the cardinality of X, meaning the number of elements or values of X. Clearly,
when all values of X are equally likely, the entropy will be maximum. The joint entropy in
dimensionless form can be expressed as

H∗(X, Y) = H(X, Y)

log2(|X| |Y |) (2.85b)

Likewise, the dimensionless conditional entropy can be written as

H∗(X|Y) = H(X|Y)

log2 |X| (2.85c)

These dimensionless entropies will vary within the range of 0 to 1. One can also define
dimensionless transinformation as

T∗(X, Y) = T(X, Y)

Tm(X, Y)
(2.86a)

where Tm(X, Y)is the maximum value of transinformation which can be obtained as

Tm(X, Y) = min
{
log2 |X| , log2 |Y |} (2.86b)

2.7 Bayes theorem

Bivariate entropies can also be expressed using set algebra. A set can be defined as a collection
of objects considered for some purpose. The objects of the set are then called members or
elements of the set. The usual convention is to denote sets by upper case letters and its
elements by lower case letters. For example, if X denotes a set then x denotes its element.
Symbolically, x ∈ X means that x is a member of set X or x is contained in X. A set may contain
a finite or an infinite number of elements. If the set contains a finite number of elements,
say 1, 2, 5, and 7, then one way to define a set is to list its members explicitly within curly
brackets as: X = {1, 2, 5, 7}. Another way to define a set is by specifying a characteristic that
an object must possess in order to qualify for membership in the set. For example, if an object
must be between 20 and 30, then X = {x| 20 ≤ x ≤ 30}. Symbol vertical bar stands for ‘‘such
that.’’ This manner of defining an object permits inclusion of an infinite number of objects if
they can be included in the set.

A more common way to define a set is through a characteristic function which is like an
indicator function. Here the concept of a universal set is invoked, wherein a set is analogous
to a sample, and a universal set is analogous to a population. This means that members of any
set are drawn from the universal set. Thus many sets can be drawn from the universal set.
Now consider a set A, the characteristic function of set A, denoted by CA, is then a function
from the universal set to the set {0, 1} where

CA =
{

1 if x is a member of A

0 if x is not amember of A
(2.87)

for each x ∈ X.
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Now Bayes’ theorem is presented. This theorem is a powerful tool for computing conditional
probabilities and for updating specified probabilities when new evidence becomes available. In
other words, when given probabilities are expressed as prior probabilities and new evidence
as conditional probabilities, then updated probabilities are posterior probabilities. To express
Bayes’ theorem, consider two sets A and B with probabilities P(A) and P(B), respectively, and
P(B) is not equal to zero. Then, the conditional probability of A given B is defined as

P(A|B) = P(A ∩ B)

P(B)
(2.88)

Likewise, the conditional probability of B given A can be written as

P(B|A) = P(A ∩ B)

P(A)
(2.89)

Combining equations (2.88) and (2.89), one obtains a relation between two conditional
probabilities as

P(A|B)P(B) = P(B|A)P(A) (2.90)

Equation (2.90) can also be expressed for one conditional probability in terms of another as

P(A|B) = P(B|A)P(A)

P(B)
(2.91)

Equation (2.91) is normally called the Bayes theorem. It may be noted that P(B) can be
expressed in terms of elementary mutually exclusive events Ai, i = 1, 2, . . . , as

P(B) =
∑

i

p(Ai ∩ B) =
∑

i

P(B|Ai)P(Ai) (2.92)

Inserting equation (2.92) in equation (2.91), the Bayes theorem becomes

P(A|B) = P(B|A)P(A)∑
i

P(B|Ai)P(Ai)
(2.93)

The Bayes theorem would be applied in several examples discussed in the chapter.

Example 2.16: Consider two variables rain (X) and wind (Y) on a given day in the month of
August in north India. The states of these variables are 0 if the variable does not occur and 1
if it does. From empirical data it is found that

X Y p(x, y)

0 0 0.40
0 1 0.20
1 0 0.10
1 1 0.30
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The marginal probabilities p(x) and p(y) are calculated from empirical data and are given as

X p(x) Y p(y)

0 0.6 0 0.5
1 0.4 1 0.5

Compute the uncertainties associated with marginal, joint, and conditional probability distri-
butions; and transinformation.

Solution: The uncertainties associated with these marginal probability distributions are:

H(X) = −0.6 log2 0.6 − 0.4 log2 0.4

= 0.971 bits
H(Y) = −0.5 log2 0.5 − 0.5 log2 0.5

= 1.0 bit

The uncertainty associated with the given joint probabilities can be expressed as

H(X, Y) = −0.40 log2 0.4 − 0.20 log2 0.20 − 0.10 log2 0.10 − 0.30 log2 0.30

= 1.846 bits

The conditional uncertainties are calculated using equations (2.35a) and (2.35b) as:

H(X|Y) = H(X, Y) − H(Y) = 0.846 bits

H(Y |X) = H(X, Y) − H(X) = 0.876 bits

The transinformation or information transmission is calculated using equation (2.40a) as:

T(X, Y) = H(X) + H(Y) − H(X, Y) = 0.125 bits

Example 2.17: Consider in the above example that variables X and Y are independent and
their marginal probabilities are known. Compute the uncertainty associated with the joint
distribution and compare it with the case in Example 2.16 where the actual joint distribution
is known.

Solution: The joint entropy is calculated as

H(X, Y) = −0.6 log2 0.6 − 0.4 log2 0.4 − 0.5 log2 0.5 − 0.5 log2 0.5

= 1.971 bits

Comparing it with that obtained in Example 2.16, where H(X, Y) = 1.846 bits, the gain in
information is 0.125 bits when the actual probability distribution is known.

Example 2.18: A project work requires drainage work to be completed within the month
of August. The contractor needs 15 rainless days, needs to rent earthmoving machinery, and
needs to hire sufficient labor. Thus, there are three variables involved: occurrence of nonrainy
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days, availability of equipment for renting, and availability of labor for hiring. The first two
variables can be represented by the set X = Y = [0, 1], and the remaining variable by the
set Z = [0, 1, 2] corresponding to no labor, inadequate labor and enough labor. Empirical
observations suggest that nonzero joint probabilities for different combinations of these three
factors can be expressed as

X Y Z p(x, y, z)

0 0 0 0.12
0 1 0 0.10
1 0 0 0.18
1 0 1 0.15
1 1 1 0.22
0 0 2 0.13
1 0 2 0.04
1 1 2 0.06

Observations lead to empirical marginal probabilities as

X p(x) Y p(y) Z p(z)

0 0.35 0 0.62 0 0.40
1 0.65 1 0.38 1 0.37

2 0.23

Compute joint, conditional, and marginal entropies. Note that there are 12 possibilities eight
of which are given above and for the remaining four possibilities joint probabilities are zero.
From this table one can compute p(x, y), p(y, z), and p(x, z) which are tabulated below:

x y p(x, y) x z p(x, z) Y z p(y, z)

0 0 0.25 0 0 0.22 0 0 0.30
0 1 0.10 1 0 0.18 1 0 0.10
1 0 0.37 1 1 0.37 0 1 0.15
1 1 0.28 0 2 0.13 1 1 0.22

1 2 0.10 0 2 0.17
1 2 0.06

Solution: One can compute the uncertainties associated with different probability distribu-
tions as:

H(X, Y , Z) = −0.12 log2 0.12 − 0.10 log2 0.1 − 0.18 log2 0.18 − 0.15 log2 0.15

− 0.22 log2 0.22 − 0.13 log2 0.13 − 0.04 log2 0.04 − 0.06 log2 0.06

= 2.848 bits
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H(X, Y) = −0.25 log2 0.25 − 0.10 log2 0.1 − 0.37 log2 0.37 − 0.28 log2 0.28

= 1.877 bits

H(X, Z) = −0.22 log2 0.22 − 0.18 log2 0.18 − 0.37 log2 0.37 − 0.13 log2 0.13

− 0.10 log2 0.10

= 2.171 bits

H(Y , Z) = −0.30 log2 0.30 − 0.10 log2 0.10 − 0.15 log2 0.15 − 0.22 log2 0.22

− 0.17 log2 0.17 − 0.06 log 20.06

= 2.423 bits

H(X) = −0.35 log2 0.35 − 0.65 log2 0.65

= 0.934 bits

H(Y) = −0.62 log2 0.62 − 0.38 log2 0.38

= 0.958 bits

H(Z) = −0.40 log2 0.40 − 0.37 log2 0.37 − 0.23 log2 0.23

= 1.547 bits

The conditional probabilities are calculated as

H(X|Y , Z) = H(X, Y , Z) − H(Y , Z) = 0.425 bits

H(Y |X, Z) = H(X, Y , Z) − H(X, Z) = 0.676 bits

H(Z|X, Y) = H(X, Y , Z) − H(X, Y) = 0.970 bits

H(X, Y |Z) = H(X, Y , Z) − H(Z) = 1.300 bits

H(X, Z|Y) = H(X, Y , Z) − H(Y) = 1.890 bits

H(Y , Z|X) = H(X, Y , Z) − H(X) = 1.914 bits

Now we can compute transinformation or information transmission as

T[(X, Y) , Z] = H(X, Y) + H(Z) − H(X, Y , Z) = 0.577 bits

T[(X, Z) , Y] = H(X, Z) + H(Y) − H(X, Y , Z) = 0.282 bits

T[(Y , Z) , X] = H(Y , Z) + H(X) − H(X, Y , Z) = 0.509 bits

T[(X, Y , Z] = H(X) + H(Y) + H(Z) − H(X, Y , Z) = 2.256 bits

Example 2.19: Consider an urban area where in the month of July rainfall (X1), flooding
(X2), wind (X3), and power outage (X4) frequently occur together. Empirical data suggest
they occur with probabilities as p

(
x1

) = p1 = 0.45, p
(
x2

) = p2= 0.22 , p
(
x3

) = p3 = 0.18,
p
(
x4

) = p4 = 0.15. Let the set X =[
x1,x2, x3, x4

]
. There can be many combinations in which

these events can occur, but for purposes of illustration consider only four combinations, as
shown in Figure 2.12a. Compute the uncertainty or the probability distributions.

Solution: Combination 1: This is shown Figure 2.12a. Using equation (2.9), the entropy or
uncertainty can be computed as:

H(P) = −0.45log20.45 − 0.22log20.22 − 0.18log20.18 − 0.15log20.15

= 1.855 bits
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p1 = 0.45 

P

p2 = 0.22

p3 = 0.18

p4 = 0.15

Figure 2.12a Combination 1.

P

0.67
0.45p1

p1 + p2 = 0.67
A

B
p3 + p4 0.33

pA

0.33
0.18p3

pA

0.67
0.22p2

pA

0.33
0.15p4

pA

=

=

=

=

Figure 2.12b Combination 2.

Combination 2: This is shown in Figure 2.12b. It has two branches A and B to start with
probabilities pA which is made up of p1 and p2, and pB which is made up of p3 and p4. The
uncertainty can be computed using equation (2.16) or (2.18), the branching property given as:

H(P) = H(pA, pB) + pAH

(
p1

pA

,
p2

pA

)
+ pBH

(
p3

pB

,
p4

pB

)

= H(0.67, 0.33) + 0.67H

(
0.45

0.67
,

0.22

0.67

)
+ 0.33H

(
0.18

0.33
,

0.15

0.33

)
= 1.855 bits

Combination 3: This is shown in Figure 2.12c. This has two branches p1 and pA which are made
up of p2, p3 and p4. The uncertainty therefore is computed as:

H(P) = H
(
p1, pA

) + pAH

(
p2

pA

,
p3

pA

,
p4

pA

)

= H(0.45, 0.55) + 0.55H

(
0.22

0.55
,

0.18

0.55
,

0.15

0.55

)
= 1.855
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p1 = 0.45

(p1, pA)

pA = p2 + p3 + p4 = 0.55

0.55
0.22p2

pA

0.55
0.18p3

pA

0.55
0.15p4

pA

=

=

=

Figure 2.12c Combination 3.

[p1,pA (p2,pB)]

p1 = 0.45

0.33
0.15p4

pB

0.33
0.18p3

pB

p2 = 0.22

pA = p2 + p3 + p4
= 0.55

pB = p3 + p4
= 0.33

=

=

Figure 2.12d Combination 4.

Combination 4: This combination is shown in Figure 2.12d.

pA = p2 + p3 + p4

= 0.55

pB = 0.33

0.55
× 0.55 = 0.33

H(P) = H(p1, pA) + pAH

(
p2

pA

,
pB

pA

)
+ pBH

(
p3

pB

,
p4

pB

)

= H(0.45, 0.55) + 0.55H

(
0.22

0.55
,

0.33

0.55

)
+ 0.33H

(
0.18

0.33
,

0.15

0.33

)

= 1.855

These four combinations show that uncertainty is the same for all of them. Hence any
combinations can be used for computing uncertainty.

Example 2.20: Consider a reservoir which can take on one of the three states: X = [x1,
x2, x3], where x1 is flood level, x2 normal level, and x3 low level. Transitions of states are
assumed to occur at discrete times. Empirical data show that probabilities of these transitions
are given as below:
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Time t Time t + 1
State States

State P State p State P

x1 x1 0 x2 0.7 x3 0.3
x2 x1 0.4 x2 0.0 x3 0.6
x3 x1 0.0 x2 0.75 x3 0.25

Assume that initially the reservoir is in state 1; this means that p(x1) = 1, p(x2) = p(x3)=0 at
t = 1. Compute the uncertainty in predicting at time t sequences of states at t+1, t+2, and t+3.

Solution: The sequence of states is represented as a branch diagram shown in Figure 2.13. The
diagram shows that there are eight sequences with nonzero probabilities. Let these sequences
be denoted as S1, S2, . . . , S8, as indicated in the diagram. The probabilities of these sequences
can be calculated in a general way as follows:

p(Si) = p[xi(t + 1), xj(t + 2), xk(t + 3)], i, j, k = 1, 2, 3

= p[x1(t)]p[xi(t + 1)|x1 (t)]p[xj

(
t + 2]|xi (t + 1)

)
p[xk (t + 3)|xj (t + 2)]

More specifically,

p[S1] = p[x1(t)]p[x2(t + 1)|x1 (t)]p
[
x1 (t + 2) |x2 (t + 1)

]
p[x2 (t + 3)

∣∣x1 (t + 2)
]

= 1 × 0.7 × 0.4 × 0.7

= 0.196

x1

t t + 1

x2

x3

S1 = 0.196

S2 = 0.084

S3 = 0.315

S4 = 0.105

S5 = 0.090

S6 = 0.135

S7 = 0.056

S8 = 0.019

x1

x3

x2

x3

x2

x3

x2

x3

x1

x3

x3

t + 2 t + 3

Figure 2.13 Branch diagram for the sequence of states.
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p[S2] = p[x1(t)]p[x2(t + 1)|x1 (t)]p
[
x1 (t + 2) |x2 (t)

]
p[x3 (t + 2)

∣∣x1 (t + 2)
]

= 1 × 0.7 × 0.4 × 0.3

= 0.084

p[S3] = p[x1(t)]p[x2(t + 1)|x1 (t)]p
[
x3 (t + 2) |x2 (t + 1)

]
p[x2 (t + 3)

∣∣x3 (t + 2)
]

= 1 × 0.7 × 0.6 × 0.75

= 0.315

p[S4] = p[x1(t)]p[x2(t + 1)|x1 (t)]p
[
x3 (t + 2) |x2 (t + 1)

]
p[x3 (t + 3)

∣∣x3 (t + 2)
]

= 1 × 0.7 × 0.6 × 0.25

= 0.105

p[S5] = p[x1(t)]p[x3(t + 1)|x1 (t)]p
[
x2 (t + 2) |x3 (t + 1)

]
p[x1 (t + 3)

∣∣x2 (t + 2)
]

= 1 × 0.3 × 0.75 × 0.4

= 0.09

Similarly,

p
[
S6

] = 1 × 0.3 × 0.75 × 0.6 = 0.135

p
[
S7

] = 1 × 0.3 × 0.25 × 0.75 = 0.056

p
[
S8

] = 1 × 0.3 × 0.25 × 0.25 = 0.019

The amount of uncertainty associated with the prediction of a particular sequence is:

H
(
S1

) = 0.09H[0.0, 0.7, 0.3] + 0.567H[0.4, 0.0, 0.6] + 0.343H[0.0, 0.75, 0.25] = 0.908

We can also compute uncertainty associated with such a prediction. At time t+3, the
prediction of states is based on the conditional probabilities of states at time t+2 and marginal
probability at time t. Since p[x1(t)] = 1, the relevant probabilities are:

p[x1 (t + 3)]|x1 (t)] = 0.09

p[x2 (t + 3)]|x1 (t)] =[0.196 + 0.315 + 0.056] = 0.567

p|x3 (t + 3)]x1 (t)] =[0.084 + 0.105 + 0.135 + 0.019] = 0.343

At time t+3, state x1 occurs one way, state x2 can occur in three ways and state x3 can occur
in four ways. Therefore, considering these ways as independent, their probabilities need to be
calculated.

2.8 Informational correlation coefficient

The informational correlation coefficient R0 measures the mutual dependence between random
variables X and Y and does not assume any type of distributional relationship between them.
It is thus a measure of transferable information. It is a dimensional quantity and is expressed
in terms of transinformation as

R0 =
√

1 − exp
(−2T0

)
(2.94)
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where T0 is the transinformation or mutual information representing the upper limit of
transferable information between two variables X and Y . If the values of probabilities in
equation (2.41b) are computed from the corresponding sample frequencies (Harmancioglu
et al., 1986), then the transinformation obtained represents the upper limit of transferable
information between the two variables. When X and Y are normally distributed and linearly
correlated, R0 reduces to the classical Pearson correlation coefficient between X and Y , rxy:

r0 = rxy = Cov(x, y)

σxσy

(2.95)

where Cov (x, y) is the covariance between X and Y , σ x is the standard deviation of X, and σ y

is the standard deviation of Y . These quantities can be computed from sample data as follows:

Cov(x, y) = 1

N

N∑
i=1

(xi−x)(yi − y) (2.96)

where x is the mean of X, y is the mean of Y , and N is the sample size. The standard deviations
are computed as:

σx =
√√√√ 1

N − 1

N∑
i=1

(
xi − x

)2
, σy =

√√√√ 1

N − 1

N∑
i=1

(
yi − y

)2
(2.97)

Example 2.21: Let X and Y be two random variables that are normally distributed and
linearly correlated. Show their informational correlation coefficient R0 and compare it with
the classical Pearson correlation coefficient between X and Y denoted as γ 2

xy.

Solution: For the normal distribution, it is known that

H(X) = 1

2

(
log(2π) + log σ 2

x + 1
) ; H(Y) = 1

2

(
log(2π) + log σ 2

y + 1
)

The joint entropy of X and Y can be shown to be:

H(X, Y) = log(2π) + 1

2
(log σ 2

x + log σ 2
y + log

(
1 − γ 2

xy

)
+ 1

From equation (2.40), transinformation can be written as

T(X, Y) = H(X) + H(Y) − H(X, Y) = −1

2
log

(
1 − γ 2

xy

)

Designating T(X, Y) as T0, it can be written as

R0 =
√

1 − exp
(−2T0

) = γxy

Thus, the informational correlation coefficient R0 between X and Y is γ xy and it is equal to the
classical Pearson correlation coefficient.
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2.9 Coefficient of nontransferred information

In regression analysis, the coefficient of determination r2 measures the amount of variance
that can be explained by the regression relationship and thus is often used as a measure
of transferred information by regression. Thus, 1−r2 represents the amount of unexplained
variance. In a similar manner, R0 can be used to measure the amount of information that the
assumed relation between X and Y transfers with respect to the upper limit of transferable
information. The coefficient of nontransferred information t1 measures the percentage of
information left in Y after transfer to X, and can be expressed as

t1 = T0 − T1

T0

(2.98a)

where T1 is the transinformation computed for the relationship between X and Y . For example,
if the relationship is described by the bivariate normal distribution then T1 is given as

T1 = −1

2
ln
(
1 − r2) (2.98b)

Otherwise, T1 is the transinformation between X and Y and T0 will be the marginal entropy of
X. Quantity t1 basically describes the relative portion, T0 –T1, of the untransferred information.
Likewise, 1−t1 expresses the percentage of transferred information. Both R0 and t1 may be
used to test the validity of the assumed relationship between two random variables X and Y .

Example 2.22: Annual rainfall and annual discharge runoff for San Antonio River at Elem-
ndorf, Texas, is given in Table 2.4. Compute the correlation coefficient and the coefficient of
determination between the selected two variables. Then compute the informational correlation
coefficient. How different are these coefficients? Compute the coefficient of nontransferred
information and compare it with the percentage of unexplained variance.

Solution: Annual rainfall and stream flow of San Antonio River near Elmendorf, Texas (USGS
08181800), covering a period of 44 years, are given in Table 2.4.

Mean rainfall = 31.93 in. and mean runoff = 4.62 in. The correlation coefficient is deter-
mined using equation (2.95) and the coefficient of determination by squaring it: r2 = r2

xy.
Using the given data, rxy = 0.4391 and r2 = 0.1928. The informational correlation coefficient is
obtained using equation (2.94) which requires calculation of mutual information or transin-
formation which involves computation of marginal and joint entropies. Here X and Y denote
rainfall and discharge values. To that end, absolute frequency and probability tables for runoff
and rainfall are prepared as shown in Tables 2.5 to 2.8.

From Tables 2.8 and 2.9, the transinformation value is obtained as:

T(X; Y) = H(X) + H(Y) − H(X, Y) = 1.53 + 1.96 − 2.86 = 0.63

The informational correlation coefficient R0 between X and Y is

R0 =
√

1 − exp
(−2T0

) =
√

1 − exp(−2 × 0.63) = 0.846

The coefficient of nontransferred information of X is

t1 = T0 − T1

T0
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Table 2.4 Annual rainfall and stream flow of San Antonio River at Elemndorf, Texas.

Rainfall Runoff Rainfall Runoff Rainfall Runoff
Year (in.) (in.) Year (in.) (in.) Year (in.) (in.)

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

18.65

31.88

36.65

21.44

29.26

30.42

31.42

22.74

31.80

31.49

52.28

37.00

25.67

39.13

29.64

1.29

1.69

3.05

2.02

1.84

3.98

2.17

2.50

2.07

4.93

8.05

6.17

6.31

4.32

7.83

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

35.99

36.64

24.23

36.37

22.96

26.11

25.95

41.43

42.73

37.96

19.01

22.14

38.31

42.76

46.49

5.00

6.73

2.78

5.68

3.56

2.66

1.90

3.64

4.67

13.23

2.89

1.86

3.16

3.51

13.92

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2004

2006

32.00

40.43

23.20

17.80

33.92

42.05

16.41

35.85

36.72

46.27

28.45

45.32

16.54

21.34

5.14

3.09

3.19

1.66

3.87

3.22

6.35

2.05

5.14

12.86

7.35

6.54

7.52

1.79

Table 2.5 Computation of marginal entropy of discharge.

Runoff 0–2 2–4 4–6 6–8 8–10 10–12 12–14 Total

Frequency 7 18 7 8 1 0 3 44
Probability 0.16 0.41 0.16 0.18 0.02 0.00 0.07 1.00
H(Xi) 0.29 0.37 0.29 0.31 0.09 0.00 0.18 1.53

Table 2.6 Computation of marginal entropy of rainfall.

Rainfall 15–20 20–25 25–30 30–35 35–40 40–45 45–50 50–55 Total

Frequency 5 7 6 7 10 5 3 1 44
Probability 0.11 0.16 0.14 0.16 0.23 0.11 0.07 0.02 1.00
H(Yi) 0.25 0.29 0.27 0.29 0.34 0.25 0.18 0.09 1.96

Table 2.7 Absolute frequency contingency table for runoff and rainfall combinations.

Runoff

Rainfall 0–2 2–4 4–6 6–8 8–10 10–12 12–14 Marginal Runoff

15-20 2 1 0 2 0 0 0 5
20-25 2 5 0 0 0 0 0 7
25-30 2 1 0 3 0 0 0 6
30-35 1 4 2 0 0 0 0 7
35-40 0 3 4 2 0 0 1 10
40-45 0 4 1 0 0 0 0 5
45-50 0 0 0 1 0 0 2 3
50-55 0 0 0 0 1 0 0 1
Marginal Rain 7 18 7 8 1 0 3
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Table 2.8 Contingency table for computation of joint probability for runoff and rainfall combinations

Runoff (in.)

Rainfall (in.) 0–2 2–4 4–6 6–8 8–10 10–12 12–14 Marginal Runoff (in.)

15-20 0.05 0.02 0.00 0.05 0.00 0.00 0.00 0.11
20-25 0.05 0.11 0.00 0.00 0.00 0.00 0.00 0.16
25-30 0.05 0.02 0.00 0.07 0.00 0.00 0.00 0.14
30-35 0.02 0.09 0.05 0.00 0.00 0.00 0.00 0.16
35-40 0.00 0.07 0.09 0.05 0.00 0.00 0.02 0.23
40-45 0.00 0.09 0.02 0.00 0.00 0.00 0.00 0.11
45-50 0.00 0.00 0.00 0.02 0.00 0.00 0.05 0.07
50-55 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02
Marginal Rain 0.16 0.41 0.16 0.18 0.02 0.00 0.07

Table 2.9 Joint entropy calculation for runoff and rainfall combinations.

Number 7 7 1 2 3 Total:

Probability P(Xi , Yi) 0.05 0.02 0.11 0.07 0.09 1.00
Entropy H(Xi, Yi) 1.05 0.55 0.24 0.37 0.65 2.86

where T0 = H(X) = 1.53 nats and T1 = T(X;Y) = 0.63 nats. Therefore,

t1 = 1.53 − 0.63

1.53
= 0.588

Similarly, the coefficient of nontransferred information of Y is

t1 = T0 − T1

T0

where T0 = H(Y) = 1.96 nats and T1 = T(X;Y) = 0.63 nats. Therefore,

t1 = 1.96 − 0.63

0.63
= 0.679

The percentage of unexplained variance is 1 − r2 = 1 − 0.1928 = 0.8072.

2.10 Discrete entropy: multidimensional case

Consider n random variables X1, X2, . . . , Xn. Each variable takes on values as xiNi
, i = 1,

2, . . . , n; and Ni: N1, N2, . . . , Nn. The multidimensional entropy of X1, X2, . . . , Xn can be
expressed as

H
(
X1, X2, . . . , Xn

) = −
N1∑

i1=1

N2∑
i2=2

....
Nn∑

in=1

p(xi1
, xi2

, . . . , xin) log
[
p
(

xi1
, xi2

, . . . , xin

)]
(2.99)
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in which X1 :
{

xi1
, i1 = 1, 2, . . . , N1

}
, . . . , Xn :

{
xin , in = 1, 2, . . . , in = Nn

}
. The joint entropy,

given by equation (2.99), represents the collective information or uncertainty of n random
variables. In a similar manner, multidimensional conditional entropy of one random variable
conditioned on all others can be defined as

H
(
Xn|X1, . . . , Xn−1

) = −
N1∑

i1=1

. . .

Nn∑
in=1

p
(

xi1
, xi2

, . . . , xin

)
log

[
p
(

xin

∣∣∣xi1
, xi2

, . . . , xin−1

)
(2.100a)

It represents the uncertainty left in one random variable Xn when all others are known. The
multidimensional transinformation can be defined as

T
(
X1, X2, . . . , Xn−1; Xn

) = H
(
Xn

) − H(Xn

∣∣X1, X2, . . . , Xn−1

)
(2.100b)

This represents the common information between random variable Xn and all other variables.
Figure 2.7 graphically portrays these multivariate entropy concepts.

2.11 Continuous entropy

Most environmental and hydrologic processes are continuous in nature. The entropy concepts
presented for discrete variables can be extended to continuous random variables. If the random
variable X is continuous, the probability of a specific value of X is zero. That is the way the
probability density function f (x) of X is defined. Defining F(x) as the probability that X has
a value equal to or less than x, f (x)=dF(x)/dx. If a ≤ x ≤ b, where a and b are the lower and

upper limits, the probability that X occurs between a and b can be defined as

b∫
a

f (x) dx. If b−a

is small, then approximately,

b∫
a

f (x) dx =(b − a) f (a).

Now consider entropy as frequently used [defined by Shannon (1948)]:

Hs (X) = −
∫

f (x) log f (x) dx (2.101a)

In this equation, Hs is not dimensionless, and depends on the coordinate system. To that end,
consider a density function q(w) in the new coordinate system where w and x are related. One
can express that f (x) = q(w)w′(x) and dw = w′(x)dx. Furthermore,

Hs(W) = −
∫

q(w) log q(w) dw = −
∫

f (x)

w′(x)
log

f (x)

w′(x)
dw

= −
∫

f (x)

w′(x)
[
log f (x) − log w′(x)

]
dx

= −
∫

f (x) log f (x) dx +
∫

f (x) log w′(x) dx

= Hs(X) +
∫

f (x) log w′(x) dx = Hs(X) + E[log w
′
(x)] (2.101b)
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Equation (2.101b) shows that the entropy value depends on the coordinate system if it is used
as defined by equation (2.101a).

Consider an example where coordinate systems x and w are linearly related as w = mx + k.
Then, dw = mdx, and w′(x) = m. Then,

Hs (W) = Hs (X) +
∫

f (x) log(m) dx = Hs(X) + log m (2.102a)

Hence, Hs (W) − Hs (X) = log m, a constant quantity. In this example, the difference between
the entropies of the two distributions 1 and 2, Hs1 and Hs2 is the same in the two coordinate
system x and w. However, in general this is not true, and both entropy Hs and the difference
Hs1-Hs2 may depend on the coordinate system.

To illustrate, consider two populations of circles, with x denoting the radius and the area
w =πx2. One can write: dw = 2πxdx. Then, for two distributions

Hs1 (W) − Hs2 (W) = Hs1 (X) − Hs2 (X) +
∫ [

f1 (x) − f2 (x)
]

log(2πx) dx (2.102b)

In general, the integral will not be zero. It is seen from the above discussion that the
meaning of entropy Hs is not the same as in the case of a discrete distribution, as remarked
by Shannon (1948): ‘‘The scale of measurement sets an arbitrary zero corresponding to a
uniform distribution over unit volume.’’

Equation (2.101a) is a special case of a more general definition of entropy defined as

Hs (X) = −k

∫
f (x) log

[
f (x)

m(x)

]
dx (2.102c)

where k is constant depending on the base of logarithm, and m(x) is a measure which
guarantees the invariance of entropy to the choice of coordinate sustem. In practice, often
both k and m(x) are assumed unity. However, their physical import is not lost sight of.

2.11.1 Univariate case
A stochastic hydrologic process is represented by a continuous random variable X within a
certain range and the probability density function f (x) of the variable X is assumed known.
The range within which the continuous variable assumes values is divided into N intervals of
width �x. One can then express the probability that a value of X is within the n-th interval as

pn = P

(
xn − �x

2
≤ X ≤ xn + �x

2

)
=

xn+(�x/2)∫
xn−(�x/2)

f (x)dx (2.103)

For relatively small values of �x, one approximates the probability pn as

pn
∼= f

(
xn

)
�x (2.104)

First, consider the marginal entropy of X expressed by equation (2.9) which for given class
interval �x can be rewritten as

H(X;�x) ∼= −
N∑

n=1

pn log pn = −
N∑

n=1

f
(
xn

)
log

[
f
(
xn

)
�x

]
�x (2.105a)
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This approximation would have an error whose sign would depend on the form of the
function – f (x) log f (x). In order to reduce this approximation error, the �x interval is chosen
to be as small as possible. Let pi = p(xi)�x and p(xi) = f (xi). Let the interval size �x tend to
zero. Then, equation (2.105a) can be expressed as

H(X;�x) = − lim
�x→0

N∑
i=1

p
(
xi

)
�x log

[
p
(
xi

)
�x

]
(2.105b)

Equation (2.105b) can be written as

H(X;�x) = − lim
�x→0

N∑
i=1

p
(
xi

)
�x log

[
p
(
xi

)] − lim
�x→0

N∑
i=1

p
(
xi

)
log(�x)�x (2.105c)

Equation (2.105c) can also be extended to the case where �xi varies with i, and shows that
the discrete entropy of equation (2.9) increases without bound.

Equation (2.105c) converges to

H(X;�x) = −
∞∫

0

f (x) log f (x) dx − lim
�x→0

N∑
i=1

p
(
xi

)
log(�x)�x (2.106a)

Equation (2.106a) can be recast as

H(X;�x) = −
∞∫

0

f (x) log f (x) dx − lim
�x→0

log(�x) (2.106b)

Equation (2.106b) is also written as:

H(X;�x) = −
∞∫

0

f (x) log f (x) dx − log �x (2.107a)

Moving − log �x on the left side, equation (2.105c) can be written as

H(X;�x) ∼= −
N∑

n=1

pn log
( pn

�x

)
= −

N∑
n=1

f
(
xn

)
log f

(
xn

)
�x (2.107b)

Equation (2.107b) is also referred to as spatial entropy (Batty, 2010) if x is a space dimension.
The right side of equation (2.107b) can be written as

H(X) = −
∞∫

0

f (x) log f (x) dx (2.108)

Equation (2.108) is the commonly used expression for the continuous Shannon entropy.
If a random variable X is continuous over the range (0, ∞), then the Shannon entropy is

expressed as

H(X) = −
∞∫

0

f (x) log
[
f (x)

]
dx = −

∞∫
0

log
[
f (x)

]
dF(x) = E

[− log f (x)
]

(2.109)
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where f (x) is the probability density function (PDF) of X, F(x) is the cumulative probability
distribution function of X, and E[.] is the expectation of [.]. H(X) is a measure of the
uncertainty of random variable X of the system. It can also be understood as a measure of the
amount of information required on average to describe the random variable. Thus, entropy
is a measure of the amount of uncertainty represented by the probability distribution or of
the lack of information about a system represented by the probability distribution. Sometimes
it is referred to as a measure of the amount of chaos. If complete information is available,
entropy = 0; otherwise, it is greater than zero. The uncertainty can be quantified using entropy
taking into account all different kinds of available information.

Recall the discrete form of Shannon entropy given by equation (2.9) in which pi is the
probability of i-th event and N is the number of events. Here X is a discrete random variable
taking on discrete values: xi, i = 1, 2, . . . , N, or X:{xi, i = 1, 2, . . . , N}; X = xi defines the
i-th event. Of course, if X is a continuous random variable then the continuous form of
entropy is expressed by equation (2.109) which measures the amount of information in the
corresponding probability distribution. Equation (2.108) cannot be directly obtained from
equation (2.9) by letting the interval size tend to zero and taking the limit.

From equation (2.106a) the continuous form of entropy can be expressed as

−
∞∫

0

f (x) ln f (x) dx = −
N∑

i=1

p
(
xi

)
ln p

(
xi

) + lim
�x→0

N∑
i=1

p
(
xi

)
ln(�x)�x (2.110a)

or

−
∞∫

0

f (x) ln f (x) dx = −
N∑

i=1

pi ln pi + lim
�x→0

N∑
i=1

p
(
xi

)
ln(�x) (2.110b)

Equation (2.110b) is not equal to the Shannon entropy and shows that the continuous entropy
is the difference between the discrete entropy given by equation (2.9) and a term representing
the logarithm of the interval of measurement. Therefore,

H = − lim
�x→0

N∑
i=1

pi ln
( pi

�x

)
or H = − lim

�x→0

N∑
i=1

pi ln

(
pi

�xi

)
(2.111)

Equation (2.111) provides a discrete approximation of equation (2.110a) and constitutes
the foundation for spatial analysis in geography, hydrology, climatology, ecosystem science,
forestry, and watershed sciences.

Now consider a weighting function g(x, y) such that

∫
g(x, y) dx =

∫
g(x, y) dy = 1, g(x, y) ≥ 0 (2.112a)

An averaged distribution p(x, y) can be expressed using a generalized averaging operation:

p(y) =
∫

g(x, y) f (x) dx (2.112b)

Then the entropy of p(y) is equal to or greater than the entropy of the original distribution
f (x).
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Example 2.23: A continuous random variable X with a normal probability density function
of mean µ and standard deviation σ . What is the value of entropy of this random variable?

Solution: Note that

∞∫
−∞

f (x) dx = 1;
∞∫

−∞
xf (x) dx = µ;

∞∫
−∞

f (x) (x − µ)2 dx = σ 2

Normal probability density function: f (x) = 1√
2πσ

e
− (x−µ)2

2σ2

Substituting f (x) into the Shannon entropy expression, one gets

H(X) = −
∞∫

−∞
f (x) log

[
f (x)

]
dx = −

∞∫
−∞

f (x) log

[
1√
2πσ

e
− (x−µ)2

2σ2

]
dx

= −
∞∫

−∞
f (x) log

[
1√
2πσ

]
dx −

∞∫
−∞

f (x)

[
− (x − µ)2

2σ 2

]
dx

= − log

[
1√
2πσ

]
+ 1

2σ 2

∞∫
−∞

f (x) (x − µ)2 dx

= 1

2
(log 2πσ 2 + 1) = 1

2
(log(2π) + log σ 2 + 1) (2.113)

If the variance is unity, then

H(X) = 1

2

[
log(2π) + 1

] = 1.419 nats (2.114)

Equation (2.114) shows that the entropy of a normal variable depends only on the variance
but not on the mean. This suggests that variance can also be considered as a measure of
information.

2.11.2 Differential entropy of continuous variables
For a continuous random variable X with PDF f (x),

h(X) = −
∞∫

−∞
f (x) log f (x) dx (2.115)

is called the differential entropy of X, which is distinguished from the ordinary or absolute
entropy. This can be seen as follows.

The discrete variable X takes on values xi = iδx, where i = 0, ± 1, ± 2, . . . , and δx approaches
0. The continuous variable takes on values in the interval [xi, xi + δx] with probability f (xi)δx.
Letting δx go to 0, the ordinary entropy of the continuous random variable X can be
expressed as:

H(X) = − lim
δx→0

∞∑
i=−∞

f
(
xi

)
δx log[f (xi)δ(x)]

= − lim
δx→0

[ ∞∑
i=−∞

f
(
xi

)
δx log

[
f
(
xi

)] + log δx
∞∑

i=−∞
f
(
xi

)
δx

]

= −
∞∑

i=−∞
f (x) log f (x)d(x) − lim

δx→0
log δx

∞∑
i=−∞

f
(
xi

)
δx = −h(x) − lim

δx→0
log δx (2.116)
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Figure 2.14 Entropy of the Pareto distribution as a function of parameters a> and b>0.

In the limit, as δx approaches 0, −log δx approaches infinity. This shows that the entropy of
a continuous random variable is infinitely large. This is intuitive because X takes on many
(an infinite number of) values in the interval (−∞, ∞), and uncertainty associated with the
variable is of the order of infinity. Adopting −logδx as a reference, h(X) is characterized
as a differential entropy. For a dynamical system, the information processed is actually the
difference between two entropy terms that have a common reference and will equal the
difference between the corresponding differential entropy terms. In this text, the differential
entropy h(X) will be considered as entropy H(X), keeping in mind that it is above the reference
value of − log δx.

For a continuous distribution, the differential entropy given by equation (2.115) shares
some but not all the properties of discrete entropy. For continuous distributions, H(X)
is not scale independent, for H(CX) = log C + H(X) but is translation invariant, because
H(C + X) = H(X). If f (.) is bounded then H(X) >− ∞. If Var(x) < ∞, then H(X) < ∞ (Ash,
1965, p. 237). But for a distribution with a finite entropy, the variance may not exist. Consider
a Pareto distribution f (x) = (a/b)(x/b)− (a + 1), x > b, a > 0, and b > 0. In this case, noting that
E[ln x] = ln b + (1/a), H(X) = log b − log a + (1/a) + 1 which is finite over the entire parameter
space but Var(x) = b2a(a − 1)− 2(a − 2)− 2 is not defined if a < 2. Figure 2.14 shows the entropy
of the Pareto distribution. This shows that variance cannot be employed for computing uncer-
tainties of two Pareto distributions when a < 2, but the uncertainties based on the entropy
difference can be computed: H(X|a1, b1) − H(X|a2, b2).

If �X is a random vector consisting of n random variables X1, X2, . . . , Xn then the differential
entropy is given by the n-fold integral:

h
( �X) = −

∫
f
( �X) log f

( �X) d �X (2.117)

where f
( �X) is the joint PDF of �X.
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2.11.3 Variable transformation and entropy
Consider a dimensionless variable X, say, river flow divided by mean flow having a probability
density function f (x), x∈(a, b). Let there be a change of variable from X to Z:

x = g(z) (2.118)

where Z ∈ (a0, b0), a0 = g(a), b0 = g(b), and z = g− 1(x) is a unique inverse. Let q(z) be the PDF
of Z. Also,

f (x) dx = f
[
g(z)

]∣∣∣∣dx

dz

∣∣∣∣ dz = q(z) dz (2.119)

where

q(z) = f
[
g(z)

]∣∣∣∣dx

dz

∣∣∣∣ (2.120)

where q(z) is a PDF of Z:

b0∫
a0

q(z) dz = 1 (2.121)

Now consider the Shannon entropy for Z:

H(Z) = −
b0∫

a0

q(z) ln q(z) dz (2.122)

whereas for X:

H(X) = −
b∫

a

f (x) ln f (x) dx (2.123)

Then,

H(Z) = −
b∫

a

f (x)

∣∣∣∣dx

dz

∣∣∣∣ ln

[
f (x)

∣∣∣∣dx

dz

∣∣∣∣
]

dz = −
b∫

a

f (x) ln f (x) dx −
b0∫

a0

f (x) ln

∣∣∣∣dx

dz

∣∣∣∣dz

= H(X) −
b∫

a

f (x) ln

∣∣∣∣dx

dz

∣∣∣∣dz (2.124)

This leads to

H(X) = H(Z) +
b∫

a

f (x) ln

∣∣∣∣dx

dz

∣∣∣∣ dz (2.125)

This shows that H(Z) ≤ H(X) + E[ln |dx|].
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2.11.4 Bivariate case
For two random variables, the bivariate entropy can be expressed as

H(X, Y) = −
∞∫

0

∞∫
0

f (x, y) log f (x, y) dxdy − log(�x�y) (2.126)

The conditional entropy of X with respect to Y can be expressed as

H(X|Y ;�x) = −
∞∫

0

∞∫
0

f (x, y) log
[
f (x|y)]dx dy − log �x (2.127)

The range of variable Y is also divided using the same class interval �x. It should be noted that
the expressions for marginal entropy and conditional entropy include a subtractive constant
term log �x. This means that the uncertainty is reduced as the class interval size is increased.
Further, following (Papoulis, 1991), one can write

H(X|y) = −
∞∫

−∞
f (x|y) log f (x|y) dx (2.128)

H(X|Y) = −
∞∫

−∞
f (y) H(X|Y = y) dy =

∞∫
−∞

∞∫
−∞

f (x, y) log f (x|y) dx dy (2.129)

H(X|Y = y) = E[− log f (x|y)|Y = y
]

(2.130a)

H(X|Y) = E
[− log f (x|y)] = E{E[− log f (x|y)|Y = y]} (2.130b)

Example 2.24: Consider the bivariate normal distribution of random variables X and Y :

f (x, y) = 1

2πσxσy

√
1 − r2

exp

{
− 1

2
(
1 − r2

)
[

(x − x)2

σ 2
x

− 2r
(x − x)(y − y)

σ xσy

+ (y − y)2

σ 2
y

]}

where σ x is the standard deviation of X, σ y is the standard deviation of Y , and r is the
coefficient of correlation between X and Y. Determine the entropy of this distribution.

Solution: The joint entropy H(X, Y) can be expressed as

H(X, Y) = −
∞∫

−∞

∞∫
−∞

f (x, y) ln
[
f (x, y)

]
dx dy = E

[− ln f (x, y)
]

Then,

ln
[
f (x, y)

] = −1

2
(
1 − r2

)
[

(x − x)2

σ 2
x

− 2r
(x − x)(y − y)

σ xσy

+ (y − y)2

σ 2
y

]
− ln

[
2πσxσy

√
1 − r2

]
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Note that

E

[
(x − x)2

σ 2
x

− 2r
(x − x)(y − y)

σ xσy

+ (y − y)2

σ 2
y

]
= 1 − 2r2 + 1

Therefore,

E
[− ln f (x, y)

] = 1 + ln 2πσxσy

√
1 − r2

Thus, the entropy of the joint normal distribution is:

H(X, Y) = ln 2πe
√

σ 2
x σ 2

y − r2σ 2
x σ 2

y

Example 2.25: Consider two random variables X and Y each having a normal distribution
and they are jointly normal as well. Assume zero mean. Determine the conditional entropy
and transinformation or mutual information.

Solution: The conditional probability density function f (x|y)is normal with mean rσ x/σ y and
variance σ 2

x

(
1 − r2

)
, where r defines the degree of correlation. Then, the conditional entropy

can be written as

H(X|Y) = E
[− ln f (x|y)] = ln

[
σx

√
2πe

(
1 − r2

)]

Since this is independent of Y , that is, H(X|Y) = H(X), and H(X) = ln
[
σx

√
2πe

]
, it then follows

that

T(X, Y) = H(X) − H(X|Y) = −0.5 ln
(
1 − r2)

Further,

H(X|Y) + H(Y) = ln 2π e
√

σ 2
x σy

2−r2σ 2
x σ 2

y = H(X, Y)

One can generalize this result.
Entropy H(X) measures the relative information, with –log(�x) serving as the datum, when

�x approaches zero (Lathi, 1969), and �x is the division interval of the X domain. As a
measure of the relative information, H(X) can be positive, negative or zero, and therefore the
conditional entropy connoting HLost can also be positive, negative or zero, since it is part of the
information H(X) and is bounded from above by H(X). Negative H(X) or negative HLost has
no physical meaning. This difficulty occurs owing to the use of a relative coordinate system
for which the origin is set at −log�x. In an absolute coordinate system where the origin is set
at −∞, and both H and HLost remain no longer negative and retain physical meaning.

An important difference between discrete and continuous cases is that entropy measures
randomness of the discrete random variable in an absolute way, whereas for the con-
tinuous random variable entropy measures the randomness in relation to the coordinate
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system, which can be an assumed standard. If X : {x1, x2, . . . , xN} is changed to coordinates
Y : {y1, y2, . . . , yN} then the new entropy is expressed as

H(Y) =
∫ ∫

. . .

∫
f
(
x1, x2, . . . , xN

)
J

(
X

Y

)
log

[
f
(
x1,x2, . . . , xN

)
J

(
X

Y

)]
dy1dy2 . . . dyN

(2.131)

where J(X/Y)is the Jacobian of the coordinate transformation. Equation (2.131) can be
expressed as

H(Y) = H(X) −
∫ ∫

. . .

∫
f
(
x1, x2, . . . , xN

)
J

(
X

Y

)
log

[
J

(
X

Y

)]
dx1dx2 . . . dxN (2.132)

Thus, the new entropy is defined as the old entropy minus the expected logarithm of the Jaco-
bian. The coordinate system can be chosen with each small volume element dx1, dx2, . . . , dxN

given equal weight. In the changed coordinate system entropy measures randomness, wherein
volume elements dy1, dy2, . . . , dyN are assigned equal weight.

The entropy of a continuous distribution can be negative. The scale of measurement defines
an arbitrary zero corresponding to a unique distribution over a unit volume. A distribution
more confined than the uniform distribution has less entropy and it will be negative. The
information rate and capacity will always be non-negative.

Now consider a case of linear transformation of coordinates:

yj =
∑

i

aijxi (2.133)

The Jacobian in this case is the determinant
∣∣∣aij

∣∣∣−1
. The entropy can then be written as

H(Y) = H(X) + log
∣∣∣aij

∣∣∣ (2.134)

If the coordinates are rotated, then J = 1 and H(X)=H(Y).
The rate of transmission of information can be expressed as

R = H(X) − H(X|Y) (2.135)

where H(X) is the entropy of the input and H(X|Y) is the equivocation or the lost information.
The minimum of R is obtained by varying the input X over all possible ensembles, that is,
maximize

−
∫

f (x) logf (x) dx +
∫ ∫

f (x, y) log
f (x, y)

f (y)
dx dy

This can be expressed as∫ ∫
f (x, y) log

f (x, y)

f (x) f (y)
dxdy

Noting that∫ ∫
f (x, y) log

f (x, y)

f (x) f (y)
dxdy =

∫
f (x) log(x) dx (2.136)
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If u is the message, x is the signal, y is the received signal perturbed by noise, and v is the
recovered message, then

H(X) − H(X|Y) ≥ H(U) − H(U|V ) (2.137)

irrespective of the operations performed on u to obtain x or on y to obtain v.
If the noise is added to the signal and is independent (in a probability sense), then f (x|y) is

a function of only the difference z = y-x:

f (y|x) = g(y − x) (2.138)

For the received signal as the sum of the transmitted signal and the noise, the rate of
transmission is

R = H(Y) − H(Y − X) (2.139)

which is the entropy of the received signal minus the entropy of the noise. Since y = x + z,

H(X, Y) = H(X, Z) (2.140)

Expanding the left side and considering X and Z as independent,

H(Y) + H(X|Y) = H(X) + H(Z) (2.141a)

Thus,

R = H(X) − H(X|Y = y) = H(Y) − H(Z) (2.141b)

Transinformation can be defined as

T(X, Y ;�x) = −
∞∫

0

f (x) log f (x) dx +
∞∫

0

∞∫
0

f (x, y) log f (x, y) dx dy

= −
∞∫

0

∞∫
0

f (x, y) log f (x) dx dy +
∞∫

0

∞∫
0

f (x, y) log
f (x, y)

f (y)
dx dy

=
∞∫

0

∞∫
0

f (x, y) log
f (x, y)

f (x) f (y)
dx dy (2.142)

Equation (2.142) for transinformation shows that the information about X transferred by the
knowledge of Y does not depend on the class interval selected.

Example 2.26: One would want to determine the effect of measurement interval size on
the value of entropy. 1) Assume that the probability distribution given in Example 2.12 is
for a random variable that has been measured at an interval of one unit. [Note the random
variable has been normalized and is therefore dimensionless.] Compute the value of entropy
using this distribution. 2) Now take the interval of measurement as two units. In this case,
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Figure 2.15 Variation of entropy with measurement interval.

probability values averaged over two class intervals can be used. Compute the entropy value
for this measurement interval. 3) Increase the measurement interval to four times the original
interval and then compute the entropy value. 4) Increase the measurement interval to five
times the original interval and then compute the entropy value. 5) Compare entropy values
and show how entropy varies with the measurement interval.

Solution:
a) Using the probabilities values from Example 2.12, a) H(P) = 2.8601 bits.
b) If the measurement interval is doubled, five probability values are obtained: P = [0.05 0.25
0.45 0.20 0.05]. Then H(P) = 1.9150 bits
c) If the measurement interval is increased four times the original value then three probabil-
ities values are obtained as: P = [0.3 0.65 0.05]. Then, H(P) = 1.1412 bits
d) If the measurement interval is five times the original value then two probabilities values
are obtained: P = [0.5 0.5]. Then, H(P) = 1 bit
e) The above entropy values are plotted in Figure 2.15. It is seen that there is a sharp drop in the
magnitude of entropy, when the measurement interval increases multiplicatively. Intuitively,
the decrease in entropy value with increasing measurement interval can be attributed to the
reduction in the variability of observed values. Put another way, the probability of observing
an event within the interval also increases when the measurement interval is increased. This
leads to more certainty and hence less entropy.

Example 2.27: A random variable X of the normal probability distribution with a mean
of zero and a variance of 2, compare the entropies of the variable for different values of
interval �x.

Solution: According to Example 2.23, the entropy value for the normally distributed contin-
uous variable X is given as

H(X) = 1

2

(
ln(2π) + lnσ 2

x + 1
) = 1.766 Napier

Generate 1000 samples according to X ∼ N(0, 2) and count its frequencies for different
intervals.
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Table 2.10 Frequencies for different intervals.

�x = 1 −5∼ −4 ∼ −3 ∼ −2 ∼ −1 ∼0 ∼1 ∼2 ∼3 ∼4 ∼5 Total

Numbers of

samples

5 19 75 138 192 238 180 91 48 14 1000

�x = 2 −5∼ −3 ∼ −1 ∼ 1 ∼ 3 ∼ 5
Numbers of

samples

24 203 430 271 62 1000

The result is listed in Table 2.10.

When �x = 1, H(X;�x) ∼= −
N∑

n=1

pnlnpn − ln�x = 1.9602 − 0 = 1.9602 napiers

When �x = 2, H(X;�x) ∼= −
N∑

n=1

pnlnpn − ln�x = 1.3023 − 0.6931 = 0.6092 napiers

2.11.5 Multivariate case
For multivariate case, the entropy of n random variables X1, X2, . . . , Xn can be expressed as

H
(
X1, X2, . . . , Xn

) = −
∞∫

0

...

∞∫
0

f
(
x1, x2, . . . , xn

)
log

[
f
(
x1, x2, . . . , xn

)]
dx1 dx2 . . . dxn − log (�x)n

(2.143)

Similarly, the conditional entropy can be expressed as

H
(
Xn|X1, X2, . . . , Xn−1

)
= −

∞∫
0

...

∞∫
0

f
(
x1, x2, . . . , xn

)
log[f

(
xn|x1, x2, . . . , xn−1

)
dx1 dx2 . . . dxn − log(�x) (2.144)

It can also be shown that

H
(
Xn

) ≥ H
(
Xn|Xn−1

) ≥ . . . ≥ H(Xn

∣∣Xn−1, Xn−1, . . . , X1

)
(2.145)

Thus, as the degree of dependence increases and more multivariables interact, the conditional
entropy decreases until some lower limit. The increase or decrease of information depends
on the introduction or elimination of multivariables. This may be compared with the forward
selection of variables in the regression analysis based on partial correlation.

2.12 Stochastic processes and entropy

Let there be random variables X(t1), X(t2), . . . , X(tm) having a joint probability density
f (x1, x2, . . . , xm). The joint entropy H(X1, X2, . . . , Xm) = E[−ln f (x1, x2, . . . , xm)], referred to
as the m-th order entropy of the stochastic process X(t), denotes the uncertainty about those
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random variables and equals the information gained upon their observation. In general, the
uncertainty about the values of X(t) on the entire t-axis or an interval thereof is infinite.
Therefore, only discrete-time processes are considered. Let Xn be a discrete-time stochastic
process whose m-random variables can be expressed as xn, xn − 1, . . . , xn − m + 1. Then the m-th
order entropy or joint entropy, H(x1, x2, . . . , xm), indicates the uncertainty about m consec-
utive values of the process Xn. As an example, the first order entropy can be denoted by H(X)
representing the uncertainty about Xn for a specific value of n. This is a univariate entropy.

If the process is strictly white, that is, all random values x1, x2, . . . , xm are independent then
H(x1, x2, . . . , xm) = mH(X). If the stochastic process is Markovian then the probability density
function can be expressed as

f
(
x1, x2, . . . , xm

) = f
(
xm|xm−1

)
. . . f

(
x2|x1

)
f
(
x1

)
(2.146)

Then the entropy can be written as

H
(
x1, x2, . . . , xm

) = H
(
xm|xm−1

) + . . . + H
(
x2|x1

) + H
(
x1

)
(2.147)

Assuming Xn to be stationary, it follows that

H
(
x1, x2, . . . xm

) =(m − 1) H
(
x1, x2

) − (m − 2) H(X) (2.148)

Thus, the m-order entropy of a Markovian stochastic process can be expressed in terms of first
and second order entropies.
Conditional entropy: The conditional entropy of order m, H(xn | xn − 1, xn − 2, . . . , xn − m),
expresses the uncertainty about its present given its most recent observed values. It can then
be shown that

H
(
xn|xn−1,xn−2,...., xn−m

) ≤ H
(
xn|xn−1,xn−2, . . . , xn−m−1

)
(2.149)

This conditional entropy is a decreasing function of m. If m → ∞ then

Hc (x) = lim
m→∞ H(xn

∣∣xn−1, xn−2, . . . , xn−m

)
(2.150)

measures the uncertainty about the present xn given its entire past.
If xn is strictly white, then

Hc (x) = H(x) (2.151)

If xn is Markovian, then

H(xn

∣∣xn−1, xn−2, . . . , xn−m

) = H(xn

∣∣xn−1

)
(2.152)

Since xn is a stationary stochastic process, then

Hc (x) = H(x2

∣∣x1) = H
(
x1, x2

) − H(x
)

(2.153)

meaning that if xn−1 is obtained then the past has no influence on the uncertainty of the
present.
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Entropy rate: Let m be a block of consecutive samples. Then, H(X1, X2, . . . , Xm)/mexpresses
the average uncertainty per sample. For m →∞, the limit of this average, denoted as Hr(X),
expresses the entropy rate of the process Xn:

Hr (X) = lim
m→∞

1

m
H
(
x1, x2, . . . , xm

)
(2.154)

If Xn is strictly white then

Hr (X) = H(X) = Hc (X) (2.155)

If Xn is Markovian then

Hr (X) = H
(
X1, X2

) − H(X) = Hc (X) (2.156)

The entropy rate of a process Xn is equal to its conditional entropy:

Hr (X) = Hc (X) (2.157)

Let Xn be a normal stochastic process having variance σ 2 and power spectrum S(w). Then the
entropy rate can be expressed as

Hr (X) = In
√

2πe + 1

4σ

a∫
−σ

In S(w) dw (2.158a)

Let Yn be the output of a linear system L(Z). Then the entropy rate Hr (Y) of the output Yn

can be written as

Hr(Y) = Hr (X) + 1

2σ

σ∫
−σ

ln|L[exp(iwT)| dw (2.158b)

If Xn is a normal process then Yn is also a normal process. The entropy rate is expressed as
before where

S(w) = Sy (w) = Sx (w)
∣∣L[exp(iwT)

]∣∣2 (2.158c)

This leads to

Hr(Y) = ln
√

2πe + 1

4σ

σ∫
−σ

{
lnSx (w) + ln |L[exp(iwT)|2} dw (2.159)

2.13 Effect of proportional class interval

In the above discussion on measures of uncertainty, a fixed class interval has been assumed.
In many cases, such as stream flow measurements, observation errors increase with the
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magnitude of flow and may indeed be approximately proportional to that flow. Consider, for
example, an error of 0.1 cubic meter per second (cumec). It may be a large error at low flows
but almost undetectable at high flows. In a similar vein, for a stream with flow above 50
cumecs a model predicting stream flow with an error of 0.1 cumec would be considered quite
accurate but would not be considered satisfactory if observed stream flows were less than 0.2
cumec. This leads to the development of entropy concepts in terms of a class interval which
is proportional to flow. This is tantamount to dividing the logarithms of flows into equal class
intervals. Chapman (1986) addressed this issue and here his work, which is similar to that of
Amorocho and Espildora (1973), is followed.

Consider a random variable Z, such that Z = ln X. Let the range of Z be divided into N
intervals of width �z. One can now compute the probability that a value of X is within the
i-th interval (i = 1, 2, 3, . . . , N) as

pi
∼= p(zi − 1

2
�z ≤ Z ≤ zi + 1

2
�z) = p(lnxi − 1

2
�z ≤ lnX ≤ lnxi + 1

2
�z)

= p[xiexp(−�z/2) ≤ X ≤ xiexp(�z/2)] ∼= f (xi)[xiexp(�z/2) − xiexp(−�z/2)] (2.160)

Expanding the exponential terms up to first order, one obtains:

pi
∼= f

(
xi

)
xi�z (2.161)

if �z is small. Then, the marginal entropy given by equation (2.9) can be expressed as

H(X;�x/x) = H (X;�x) = −
N∑
i

pi logpi
∼= −

N∑
i=1

xi f
(
xi

)
ln
[
xi f

(
xi

)
�z

]
�z

∼= −
N∑

i=l

xi f
(
xi

)
log

[
xi f

(
xi

)]
�z − log�z

N∑
i=1

xi f
(
xi

)
�z

∼= −
∞∫

0

f (x)In
[
xf (x)

]
dx − In(�x/x) (2.162)

Note dz = dx/x from the log transformation. Likewise, the conditional entropy can be written as

H(X|Y ;�x/x) ∼= −
∞∫

0

∞∫
0

f (x, y) log
[
xf (x|y)] dx dy − log(�x/x) (2.163)

Transinformation can be derived by subtracting equation (2.163) from equation (2.162) as

T(X, Y ;�x/x) = −
∞∫

0

f (x) log
[
xf (x)

]
dx +

∞∫
0

∞∫
0

f (x, y) log
[
xf (x|y)] dx dy (2.164)

Similar to equation (2.142), equation (2.164) shows that transinformation or the information
about X transferred by the knowledge of Y does not depend on whether the class interval is
constant or proportional.

Now the relation between expressions for marginal entropy and conditional entropy for
a fixed class interval �x [equations (2.109) and (2.144)] and those for a proportional class
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interval �x/x can be established [equations (2.162) and (2.163)] as:

[H(X;�x) + In �x] − [H(X;�x/x) + In(�x/x)]

= [H(X|Y ;�x) + In�x] −[H(X|Y ;�x/x) + In(�x/x)] =
∞∫

0

f (x) In(x) Inxdx (2.165)

For a lognormal distribution, the integral term in equation (2.165) defines the mean of z, µz,
with the marginal entropy as: H(X;�x/x) = 0.5ln

(
2πeσ 2

z

) − ln(�x/x), where σ 2
z is the variance

of Z. Using �x/x = 0.05 for daily stream flow data of Dry Creek, California, that Amorocho
and Espildora (1973) used, Chapman (1986) found that marginal entropy was higher during
low flow periods than during high flow periods and the cross over was where the mean flow
was about 1/0.05 = 20 cfs. He also noted that there was reduction in seasonal variation of
the marginal entropy, with the ratio range/mean reduced from 1.59 for �x = 1 cfs to 0.37 for
�x/x = 0.05. He also suggested that a value of �x/x = 0.05 would be appropriate for stream
flow data of good quality and as a general criterion of fit of hydrologic models to observed
data.

Example 2.28: Take daily flows of Brazos River near Hempstead for the period of October
1950 through September 1979. Compute and compare marginal entropies for fixed and
proportional intervals of time, respectively.

Solution: The fixed interval is taken as 1 cfs and the proportional interval as 0.05 cfs. Then,
marginal entropy is computed for both intervals as shown in Figure 2.16. It is seen that the
marginal entropy for the proportional interval is significantly less and varies less than that for
the fixed intervals.

∆x = 1 cfs ∆x/x = 0.05 cfs
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Figure 2.16 Marginal entropy of recorded daily flows of Brazos River near Hempstead, Texas (USGS 08111500).

Source: US Geological Survey.
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2.14 Effect of the form of probability distribution

The values of entropy and transinformation depend on the form of the probability distribution
to be used. Frequently the lognormal distribution has been used for computing entropy.
Consider the case of gamma distribution:

f (x;α, β) = 1

�(α) βα
xα−1exp

(
− x

β

)
(2.166)

where α and β are the form and scale parameters, respectively. Substitution of equation
(2.166) in equation (2.162) yields

H(X;�x/x) = ln�(α) + µz

β
− αψ(α) − ln(�x/x) (2.167)

where ψ is the digamma function (Abramowitz and Stegun, 1970) defined as

ψ(z) = d

dz
ln�(z) (2.168)

The marginal entropy for equal class interval reduces to

H(X;�x) = ln[βln(α)] + µx

β
−(α − 1) ψ(α) − ln�x (2.169)

noting that the integral term in equation (2.166) is equal to

∞∫
0

f (x) ln x dx = ψ(α) + lnβ (2.170)

Expressions for conditional entropy and transinformation require that the bivariate gamma
distribution be known. One can employ the bivariate gamma distribution proposed by Moran
(1969):

1√
2π

z∫
−∞

exp
(−t2/2

)
dt =

x∫
0

f
(
t;αx, βx

)
dt

1√
2π

w∫
−∞

exp
(−t2/2

)
dt =

y∫
0

f
(

t; αy, βy

)
dt (2.171)

where z and w are normalized variates corresponding to x and y, respectively. The conditional
entropy becomes (Chapman, 1980):

H(X|Y ;�x/x) = 1

2
ln
(
1 − ρ2

zw

) + ln�
(
αx

) + µx

βx

− αxψ
(
αx

) − ln(�x/x) (2.172)

where ρzw is the correlation coefficient between z and w.
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The transinformation of X and Y is found to be

T(X, Y ;�x/x) = −1

2
ln
(
1 − ρ2

zw

)
(2.173)

Transinformation has the same form for any distribution which can be normalized as can be
shown below. If f (x, y) can be normalized to g(x, y), then equation (2.142) becomes

T(X, Y) =
∞∫

−∞

∞∫
−∞

g(z, w) log

[
g(z, w)

g(z) g(w)

]
dz dw (2.174)

If g(z, w) is a bivariate normal distribution then equation (2.174) is the result. For such cases,
conditional entropy can be obtained by adding transinformation to the marginal entropy.
Numerical values of transinformation will be affected by the correlation coefficient ρzw which,
in turn, depends on the form of transformation to normal.

If the probability distribution function is lognormal, as is frequently assumed, then one
obtains the marginal entropy for a fixed class interval as

H(X;�x) = µz + 1

2
ln
(
2πeσ 2

z

) − ln�x (2.175)

and conditional entropy as

H(X|Y ;�x) = µz + 1

2
ln
[(

2πeσ 2
z

)(
1 − ρ2

zw

)] − ln�x (2.176)

The transinformation expression is the same as equation (2.173).
For a proportional class interval with the lognormal distribution, equation (2.162) yields

H(X;�x/x) = 1

2
ln
(
2πeσ 2

z

) − ln(�x/x) (2.177)

For recorded daily flows of Canadian River near Canadian (07228000), Texas, for a period
of October 1950 through September 1979, assuming that daily flow is a random variable
having a lognormal distribution, entropy was computed using a gamma distribution and the
lognormal distribution. It was found that the marginal entropy for the recorded daily flows
was less steady for the gamma distribution than for the lognormal distribution. This can be
taken as an indication that the log-normal assumption was a better fit to the data, and suggests
that calculations of marginal entropy can serve as an aid in selecting the appropriate form of
the distribution for hydrologic data.

2.15 Data with zero values

In many instances time series may contain zero values. For example, flow in ephemeral and
intermittent streams becomes zero some time after rainfall ceases. Consider a sequence of N

values of a random variable X. Let nx be the number of nonzero values. Then N−nx denotes the
number of zero values and let the ratio of nonzero values be denoted as kx = nx/N. Considering
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f (x) as the probability density function for nonzero values only, the probability distribution
for all X with class interval �z = �x/x becomes

p
(
xn

) =(
1 − kx

)
δ(x) + kxf

(
xn

)
xn�z (2.178)

where δ(x) is the Dirac delta function. Substitution of equation (2.178) in equation (2.107a)
yields the marginal entropy (Chapman, 1980):

H(X;�x/x) = −(1 − kx

)
ln
(
1 − kx

) − kxlnkx − kx

∞∫
0

f (x) ln
[
xf (x)

]
dx − kxln(�x/x) (2.179)

Equation (2.179) reduces to equation (2.162) for kx = 1 and to zero (certainty of no flow) for
kx = 0.

For the bivariate case, consider another random variable Y having the same number of
observations N. With similar notations, let ny be the number of nonzero values. Then N−ny

denotes the number of zero values and let the ratio of nonzero values be denoted as ky = ny/N.
Now let nxy be the number of nonzero values common to both data sets and let the ratio of
nonzero values be denoted as kxy = nxy/N. Then, for class intervals �z =�x/x and �w = �y/y,
one can write the joint probability and conditional probability as:

p
(
xn, ym

) =




1 − kx − ky + kxy x = 0, y = 0

kx − kxy x > 0, y = 0

ky − kxy x = 0, y > 0

kxyxnymf (xn, ym)�z �w x > 0, y > 0

(2.180)

and

p
(
xn|ym

) =




1 − kx − ky + kxy

1 − ky

x = 0, y = 0

kx − kxy

1 − ky

x > 0, y = 0

ky − kxy

ky

x = 0, y > 0

kxy

ky

xnf (xn|ym)�z x > 0, y > 0

(2.181)

Substitution of equation (2.181) in equation (2.127) results in the expression for conditional
entropy (Chapman, 1980):

H(X|Y ;�x/x) = −(1 − kx − ky + kxy)ln(1 − kx − ky + kxy)

−(kx − kxy)ln(kx − kxy) + (1 − ky)ln(1 − ky)

−(ky − kxy)ln(ky − kxy) + ky ln ky − kxylnkxy

−kxy

∞∫
0

∞∫
0

f (x, y) ln
[
xf (x|y)] dx dy − kxyln(�x/x) (2.182)
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Equation (2.182) reduces to equation (2.163) for kx = ky = kxy = 1 and to zero for
kx = ky = kxy = 0. Note that transinformation is given by the difference between equations
(2.179) and (2.182), and will be independent only if kx = kxy, that is, each flow occurrence is
nonzero flow.

Example 2.29: In the recorded daily flows of May 14 of Canadian River near Canadian
(07228000), Texas, for the period of October 1950 through September 1979, there are two
zero values in the data set. Analyze the effect of zero values.

Solution: For equal class interval �x, one uses the formula:

H(X;�x) = −
∞∫

−∞
f (x) ln

[
f (x)

]
dx − ln(�x)

∞∫
−∞

f (x) ln
[
f (x)

]
dx = 2.7007 Napier

For unequal class interval �x, one uses the formula:

H(X;�x) = −(1 − kx)ln(1 − kx) − kxlnkx − kx

∞∫
0

f (x) ln
[
f (x)

]
dx − kxln(�x)

= 0.2449 + 0.9333 × 2.7007

= 2.7656 Napier

where kx = 0.9333. The value of entropy is 2.7656 Napier.

2.16 Effect of measurement units

Transinformation depends on the correlation coefficient of the normalized variates and is
therefore independent of their original units of measurement. For marginal entropy, let it be
supposed that X is measured in units a or b and that xa = Kxb where K is just a constant.
Taking its logarithm, ln xa = ln K+ln xb. For the lognormal distribution ln za = ln K+ln zb and
σ za = σ zb. Thus equation (2.176) remains unchanged for a proportional class interval. Using
equation (2.175) for a fixed class interval, one gets

H(X;�xa) = µza + 1

2
ln(2πeσ 2

za) − ln�xa

= µza + lnK + 1

2
ln(2πeσ 2

zb) − ln�xb − lnK = H(X;�xb) (2.183)

Equation (2.183) shows that the marginal entropy remains unchanged, if the class interval
remains the same absolute value.

For the gamma distribution defined by equation (2.166), the marginal entropy is given by
equation (2.167) in terms of gamma parameters. These parameters can be estimated using the
method of maximum likelihood as

ln α − ψ(α) = ln
(
x/xG

) ; αβ = x (2.184)
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where x and xG are the mean and geometric mean of X. For the scale change as defined above,
the gamma parameters become

αa = αb, βa = Kβb (2.185)

Equation (2.185) leads to

(
µx

β

)
a

=
(

µx

β

)
b

(2.186)

This means that equation (2.186) remains unchanged with change of units.

Example 2.30: Show if the change of units has any effect on entropy if the probability
distribution is exponential, triangular, uniform, Gumbel, or two-parameter Pareto.

Solution: For an exponential distribution, the PDF is f (x) = λexp(−λx).

H(X, λ) = −
∞∫

0

f (x) log
[
f (x)

]
dx = −1

λ

0∫
λ

log x dx = f (λ) = f [E(x)] (2.187)

The above equation shows that there is no change in the marginal entropy provided E(x)
remains the same absolute value.

For a triangular distribution, the PDF is f (x) = 2
β−α

(
x−α
γ−α

)
, α < x < γ , γ corresponding to the

summit of the triangular distribution. The marginal entropy is expressed as

H(X;α, β, γ ) = −
γ∫

α

f (x) log
[
f (x)

]
dx = γ − α

β − α

[
log

2

β − α
+ 1

2

]
(2.188)

The above equation shows that there is no change in the marginal entropy, provided (γ−α)
and (β−α) retain the same absolute values.

For a uniform distribution, the PDF is f (x) = 1/(β−α).

H(X;α, β) = −
β∫

α

f (x) log
[
f (x)

]
dx = −log

1

β − α
(2.189)

The above equation shows that there is no change in the marginal entropy provided (β−α)
retains the same absolute value.

For the Gumbel distribution, the PDF is:

f (x) = a exp{−a(x − b) − exp[−a(x − b)]} (2.190)

where a>0 and –∞< b < x are parameters. Entropy of this distribution is:

H(X; a, b) = −ln a + ax − ab (2.191)

If E(x) = x remains the same, then there is no change in entropy.
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For two-parameter Pareto distribution, the PDF is

f (x) = babx−b−1 (2.192)

Entropy of this distribution is

H(X; a, b) = −ln b − b ln a +(b + 1) E[lnx] (2.193)

The marginal entropy depends on the average value of X which depends on the unit of
measurement.

2.17 Effect of averaging data

Consider that daily flow data are available and entropies are calculated for these data. What
happens if the data are averaged over shorter or longer time intervals? Or what happens if the
data measurement interval is increased or decreased? This issue was analyzed by Chapman
(1986). Increased interval would smoothen the data and that might lead to a decrease in
marginal entropy and an increase in transinformation. Using lognormal distribution for daily,
weekly, monthly, and yearly mean flows, Chapman (1986) found that marginal entropy
exhibited little change for averaging intervals up to a month but was significantly less for
mean annual flow. For increasing time interval, the conditional entropy decreased at a greater
rate and as expected transinformation increased.

Example 2.31: Using daily, weekly, monthly, and annual average streamflow for Dry Creek,
California, show the effect of averaging on entropies and transinformation.

Solution: Streamflow data are obtained for Dry Creek, California. Table 2.11 shows entropies
and transinformation for daily, weekly, monthly, and annual mean flows. It is verified that a
log normal distribution was appropriate for all these variates. The marginal entropy exhibits
little change for averaging intervals up to a month, but is significantly less for mean annual
flow. The conditional entropy decreases at a greater rate, resulting in the anticipated increase
in transinformation as the averaging interval is increased.

Example 2.32: Using daily streamflow data form Brazos River near Hempstead, Texas, (USGS
08111500) for the period 1976 to 2006, investigate the effect of averaging on entropy. Consider
several intervals as 1-day, 1-week (7-day), 15-day, 30-day (one month), 2-month, 3-month,

Table 2.11 Mean values of marginal and conditional entropy

(�x/x = 0.05) and transinformation, for Dry Creek, California,

using a lognormal distribution.

Day Week Month Year

H(X) 4.45 4.46 4.27 3.64
H(X[Y) 3.66 3.57 3.28 2.07
T(X, Y) 0.79 0.89 1.09 1.57
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Table 2.12 Effect of time interval on entropy.

Marginal entropy Marginal entropy
Time interval (Napier) �x = 1 (Napier) �x/x = 0.05

1 day 9.60 4.50
Weekly average 9.61 4.48
Fortnightly average 9.64 4.46
Monthly average 9.69 4.44
2 months average 9.73 4.40
3 months average 9.73 4.35
6 months average 9.73 4.21
Year average 9.68 4.00
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Figure 2.17 Effect of interval size on entropy.

6-month, and a year. Plot the entropy value against interval and see if the value increases or
decreases.

Solution: Entropy calculations are done for data averaged over different time intervals. It
is assumed that the daily stream flow follows a log-normal distribution. The corresponding
average marginal entropy values are shown in Table 2.12 and a plot of average marginal
entropy values is shown in Figure 2.17. It is seen that for the fixed class interval the entropy
value increases slightly and then decreases, while for the proportional class interval a gradual
decrease in the average entropy is observed.

2.18 Effect of measurement error

Let there be an observed value a of X and standard error s and let there be another value b.
The value b is considered to differ significantly if | a − b | is greater than a specified multiple of
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s, cs, where c is a multiplication factor. The probability of a measurement of X which does not
differ significantly from a can be stated as (White, 1965):

a+cs∫
a−cs

f (x) dx ∼= 2csf (a)

Then, the absolute value of log[2csf (a)] defines the amount of information gained by the
observation I(x) = |log[2csf (x)]|. If 2cs can be viewed as an error factor, and f as the reciprocal
of the extent of range of the variable, then the amount of information gained is the
logarithm of ratio of the extent to the error. In general, both s and f vary with x and the
product sf is dimensionless. Therefore, the information I(x) per observation can be written as
I(x) = − log[2cs(x)f (x)].

Consider the populations of circles again. Let it be assumed that the radius can be determined
with an error that does not depend on the area. Then the error in the determination of area
is proportional to the square root of area. In the above equation, since the product sf is
dimensionless, this means its value does not depend on the coordinate system. For any change
in coordinate system, s and f would change in a reciprocal manner. With this background,
the Shannon entropy, analogous to the discrete case, can be defined as the average amount
of information expected to be gained per observation as

Hs =
∫

f (x) I(x) dx = −
∫

f (x) log
[
sf (x)

] + K

where K = − log 2c. If the interest is in only entropy changes then the value of K is irrelevant.
However, it is possible to assign a meaningful value to K. To that end, consider an extreme

case, where the PDF, f (x), has a small variance, and a measurement may unpredictably alter
the variable. This suggests that less is known about the variable after the measurement than
before. This means that one loses information by measurement, implying negative entropy. If,
on average, information is neither gained nor lost, then entropy is zero. One can now define
the zero point. Hs is zero if s is constant and f (x) is normal with a standard deviation equal
to s. Substitution into the above equation leads to K = −log

√
2πe. Then, c = √

2πe/2 = 2.066.
This corresponds to a confidence level of 3.9%.

Now consider two limitations on the accuracy with which the values of the variable are
determined: 1) measurement error, and 2) random error. Both errors arise in case of hydrologic
variables. In entropy, data may be investigated in two ways. First, considering 2cs as equal to
the width of the interval for recording of data, the measurement error can be included in the
error term. Approximating the integral by a sum, one can write

Hs = −
∑

filog
(
2csifi

)
�xi = −

∑(
fi�xi

)
log

(
fi�xi

)

which is the entropy, H, of the distribution with the proportion of the value viewed as a
discrete variable. The maximum entropy distribution will, of course, be uniform and then one
can determine the difference between two distribution entropies. The difference will be the
amount of information supplied by the new distribution.
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2.19 Entropy in frequency domain

The previous discussion presents entropy either in time or space domain. Thus, the data
available as a time series or space series can be employed to compute entropy. However,
entropy can also be computed in the frequency domain as

H(υ) =
�t/2∫

−�t/2

log[W(υ)] dυ (2.194)

where υ is the frequency and W(υ) is the power spectrum related to the autocovariance
function γ (k) of the time series by the Wiener-Knitchine relationship:

γ(k) = 2π

π∫
0

cos(2πυk) W(2πυ) dυ (2.195)

The entropy defined by equation (2.194) is known as the Burg entropy (Burg, 1975).
Expanding equation (2.194) Burg (1975) derived

H(υ) =
∑
υ

log
[
πeW(υ)

]
(2.196)

where W(υ) is the normalized power spectrum. Both equations (2.194) and (2.196) are
employed in univariate spectral analysis for reconstruction and extrapolation of time series.
Equation (2.194) has been generalized in a manner similar to the form of the Shannon
entropy (Johnson and Shore, 1984) and this will be discussed in detail in Chapter 11 on
spectral analysis.

For multivariate spectral analysis, Burg (1977) suggested multivariate entropy as a function
of the determinant of the power spectrum matrix W(υ):

H(υ) =
�t/2∫

−�t/2

log{det[W(υ)]} dυ (2.197)

where det is the determinant.

2.20 Principle of maximum entropy

In search of an appropriate probability distribution for a given random variable, entropy
should be maximized. In practice, however, it is common that some information is available
on the random variable. The chosen probability distribution should then be consistent with
the given information. There can be more than one distribution consistent with the given
information. From all such distributions, one should choose the distribution that has the
highest entropy. To that end, Jaynes (1957) formulated the principle of maximum entropy
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(POME) a full account of which is presented in a treatise by Levine and Tribus (1978) and will
be presented in the next chapter. According to POME, the minimally prejudiced assignment of
probabilities is that which maximizes entropy subject to the given information, that is, POME
takes into account all of the given information and at the same time avoids consideration of
any information that is not given. The reasoning for POME comes from a simple practical
need. Assume, for example, that we fit two probability density functions (PDF) to a histogram
of data and that both PDFs fit equally well, that is, satisfy the same statistical criteria. Then the
PDF with higher entropy should be the preferred one. In other words, for given information
the best possible distribution that fits the data would be the one with the maximum entropy,
since this contains the most reliable assignment of probabilities.

The information usually included in POME is specified as some statistics, including, for
example, mean, variance, covariance, cross-variance, and so on, or linear combinations of
these statistics. Since the POME-based distribution is favored over those with less entropy
among those which satisfy the given constraints, according to the Shannon entropy as an
information measure, entropy defines a kind of measure on the space of probability distribu-
tions. Intuitively, distributions of higher entropy represent more disorder, are smoother, are
more probable, are less predictable, or assume less. The POME-based distribution is maximally
noncommittal with regard to missing information and does not require invocation of ergodic
hypotheses.

Constraints encode relevant information. POME leads to the distribution that is most
conservative and hence most uninformative. If a distribution with lower entropy were chosen,
it would mean that we would be assuming information that was not available, while a
distribution with higher entropy would violate the known constraints. The maximum entropy
leads to a probability distribution of particular macrostate occurring amongst all possible
arrangements (or microstates) of the events under consideration.

2.21 Concentration theorem

The concentration theorem, formulated by Jaynes (1958), has two aspects. First, it shows
the POME-based probability distribution best represents our knowledge about the state of
the system by showing the spread of lower entropies around the maximum entropy value.
Second, POME is the preferred method to obtain this distribution. The basis for these two
aspects is contained in the Shannon inequality and the relation between entropy and the
chi-square test.

The Shannon inequality says that the probability distribution given by POME has a greater
entropy than any other distribution. Let P = {pi, i = 1, 2, . . . , N} be the distribution given by
maximization of the Shannon entropy. The entropy corresponding to this distribution obtained
by the method of Lagrange multipliers is Hmax. Let there be another distribution Q = {qi, i = 1,
2, . . . , N} satisfying the same constraints as does P. Its entropy is H. For these two probability
distributions, the Shannon inequality can be expressed as

N∑
i=1

qilog

[
qi

pi

]
≥ 0 (2.198)
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where the equality holds only if qi = pi, i = 1, 2, . . , N. Thus, it can be written that

Hmax − H ≥ 0 (2.199)

where Hmax − H = 0 only if Q = P. If Q satisfies the same constraints as P that it can be shown
that

Hmax − H =
N∑

i=1

qi log

[
qi

pi

]
(2.200)

Following Keshavan and Kapur (1992), an interesting result is obtained by letting
qi = pi(1 + ωi)where

N∑
i=1

piωi = 0 (2.201)

where wi is the weighting actor. Then, neglecting summation terms involving third or higher
powers of ω, one can approximate equation (2.200) as

�H = Hmax − H =
N∑

i=1

qilog

[
qi

pi

]
=

N∑
i=1

pi

(
1 + ωi

)
log

(
1 + ωi

)
(2.202)

Expanding the logarithmic term inside the summation, equation (2.202) can be approxi-
mated as

�H ≈
N∑

i=1

pi

(
1 + ωi

)[
ωi − ω2

i

2
+ ω3

i

3
− ...

]
≈ 1

2

N∑
i=1

piω
2
i

= 1

2

N∑
i=1

pi

(
qi − pi

)2

p2
i

= 1

2

N∑
i=1

(
qi − pi

)2

pi

= 1

2M

N∑
i=1

(
Mqi − Mpi

)2

Mpi

(2.203)

where M is the total number of observations, and N is the number of class intervals. Then, Mqi,
i = 1, 2, . . . , N, can be interpreted as the observed frequencies; and Mpi, i = 1, 2, . . . , N, as
the frequencies computed from the POME-based distribution P which has the same moments
that Q has. Let Oi = Mqi and Ci = Mpi. Then, equation (2.203) can be written as

2M�H =
N∑

i=1

(
Mqi − Mpi

)2

Mpi

=
N∑

i=1

(
Oi − Ci

)2

Ci

= χ2 (2.204)

whereχ2 is chi-square with n degrees of freedom defined by

n = N − m − 1 (2.205)

where (m+1) is the number of constraints. Because the chi-square distribution is known, one
can determine the probability that the computed chi-square is less than the chi-square at 95%
or 99% significance level:

P
[(
χ2) ≤ χ2

n (0.95)
] = 0.95; P

[(
χ2) ≤ χ2

n (0.99)
] = 0.99 (2.206)
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Table 2.13 Chi-square distribution.

N 2 3 4 5 6 8 10 15 20 25 30

χ2
n (0.95) 5.99 7.80 9.49 11.07 12.59 15.51 18.31 25.00 31.40 37.66 43.78

χ2
n (0.99) 9.21 11.35 12.28 15.09 16.81 20.09 25.21 30.58 37.67 44.31 50.89

For different degrees of freedom, n, the values of χ2
n (0.95) and χ2

n (0.99)are found in standard
statistical textbooks or can be computed from the chi-square distribution as given in Table 2.13.

In order to determine the 95% and 99% entropy intervals, equation (2.206) with the use
of equation (2.204) can be expressed as

P

[
Hmax − H ≤ χ2

n (0.95)

2M

]
= 0.95 (2.207a)

P

[
Hmax − H ≤ χ2

n (0.99)

2M

]
= 0.99 (2.207b)

Equations (2.207a) and (2.207b) can be expressed as

P

[
Hmax ≥ H ≥ Hmax − χ2

n (0.95)

2M

]
= 0.95 (2.208a)

P

[
Hmax ≥ H ≥ Hmax − χ2

n (0.99)

2M

]
= 0.99 (2.208b)

Thus, the 95% and 99% entropy intervals, respectively, are:

[
Hmax − χ2

n (0.95)

2M
, Hmax

]
;
[

Hmax − χ2
n (0.99)

2M
, Hmax

]
(2.209)

For a random variable X having a probability distribution that satisfies the same constraints as

the POME-based distribution then its entropy will be greater than
[
Hmax − χ2

n (0.95)

2M

]
with a 95%

probability. Likewise, its entropy with a 99% probability will be greater than
[
Hmax − χ2

n (0.99)

2M

]
.

If M is large, entropies of most probability distributions that satisfy a given set of constraints
will be concentrated near the maximum entropy values. This means that the POME-based
distribution is the best choice. It can also be noted that the length of the entropy interval
increases with N and decreases with m, increases with confidence interval, and decreases
rapidly with M. Thus, the concentration theorem states that for large M, 2M(Hmax−H) is
distributed as chi-square with N−m−1 degrees of freedom.

Thus, for the marginal entropy H(x) of a random variable X, associated with its probability
density function f (x), the entropy for any PDF will be in the range given as

Hmax − �H ≤ H(x) ≤ Hmax (2.210a)
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where Hmax is given by POME as

Hmax = log(Z) +
m∑

k=1

λkak (2.210b)

where m is the number of constraints, ak, specified, Z is the potential function, and λk are
Lagrange multipliers. If one considers N probabilities and observes M different realizations, the
concentration of these probabilities near the upper bound Hmax is given by the concentration
theorem. Asymptotically 2M�H is distributed over class C as χ2 with N−m−1 degrees of
freedom, independently of the nature of constraints. Denoting the critical value of χ2 for k

degrees of freedom at 100 (1−α)% significant level as χ2
c (α), �H is given in terms of the upper

tail area 1−F as:

χ2
c (1 − F) = 2M�H (2.211)

Example 2.33: Assume that a six-faced dice is being thrown 1000 times with no knowledge
about its outcome. The problem is to determine frequencies or probabilities of the six faces of
the dice and their distribution.

Solution: From POME it is known that the only noncommittal PDF is the uniform PDF for
which probabilities are all equal:

f (x) = 1

6
, fi = 1

6
, i = 1, 2, . . . , 6

Can we make a more precise estimate of these frequencies knowing that the dice has
been thrown 1000 times. It is known that M = 1000, N = 6, m = 0, and N−m−1 = 5 degrees
of freedom. The maximum entropy is Hmax = log(N)=log(6)=1.79176 Napier. At a 95%
significance level, from χ2 tables, χ2(0.95)=11.07. From equation (2.211),

2N�H = 11.07

which yields �H = 0.0055, and from equation (2.210a), 95% of all possible outcomes (confi-
dence interval) will lie in the range:

1.786 ≤ H(x) ≤ 1.792

Thus, without invoking any empirical evidence, one is confident that the vast majority of the
outcomes will have the PDF close to the uniform distribution.

2.22 Principle of minimum cross entropy

According to the Laplace principle of insufficient reason, all outcomes of an experiment
should be considered equally likely unless there is information to the contrary. On the
basis of intuition, experience or theory, a random variable may have an a priori probability
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distribution. Then, the Shannon entropy is maximum when the probability distribution of
the random variable is that one which is as close to the a priori distribution as possible.
This is referred to as the principle of minimum cross entropy (POMCE) which minimizes the
Bayesian entropy (Kullback and Leibler, 1951). This is equivalent to maximizing the Shannon
entropy.

2.23 Relation between entropy and error probability

There is a relation between entropy and prediction error probability. Intuitively, entropy H is
a measure of the complexity or degree of randomness of a random variable. This means that
if a random variable has a higher entropy then it is more difficult to predict or guess the value
the random variable takes on and vice versa. Indeed this concept can be employed to assess
the accuracy of schemes employed for winning in a gamble, achieving growth rates in stock
market investments, and so on. The degree of difficulty in predicting the value of the random
variable can be evaluated by the minimum possible error probability of any prediction scheme.
Feder et al. (1992) showed that two random variables having the same entropy might have
different minimum prediction error probabilities. In other words, the prediction error is not
uniquely assessed by entropy (Feder and Merhav, 1994).

Consider a discrete random variable X : {xi, i = 1, 2, . . . , N}, with the probability distribution
pi, i = 1, 2, . . . , N, for which the Shannon entropy is defined. If there are no constraints
imposed on the random variable then the estimator of X is the value a with the highest
probability. If q = p(a) = maxx p(x), then the minimum error probability in guessing the value
of X is given by Feder and Merhav (1994) as

g(X) =
∑
x �=a

p(x) = 1 − q (2.212)

For a uniform distribution with N outcomes, the maximum Shannon entropy is log N and
highest possible minimum error probability is (N−1)/N. On the other hand, if the entire
probability mass is concentrated on a single value, that is, the probability of that value is 1 and
all other values have zero probabilities, then both entropy and minimum error probability for
the random variable will be zero.

For a random variable X with entropy H, the upper and lower bounds of the minimum
error probability g(X) are given by Feder and Merhav (1994) as

φ−1 (H) ≥ g(X) ≥ �−1 (H) (2.213)

where the maximum entropy is

�(g) = H
[
pmax (g)

] = h(g) + g log(N − 1) (2.214a)

h(g) = −g log g −(1 − g) log(1 − g) (2.214b)
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and

φ(g) = H
[
Pmin (g)

]

=




h(g) 0 ≤ g ≤ 1/2

2(1 − g) + h(2g − 1) (1/2) ≤ g ≤ 2/3

. .

. .

. .

i log i(1 − g) + h(ig −(i − 1)) (i − 1) /i ≤ g ≤(i/(i + 1))

. .

. .

. .

(N − 1) log(N − 1)(1 − g) + h((N − 1) g − N + 2) (N − 2) /(N − 1) ≤ g ≤(N − 1) /N

(2.215)

Equation (2.214b) is the binary entropy function. The quantity Pmax(g) can be expressed as

Pmax (g) =
[
1 − g,

g

N − 1
, . . . ,

g

N − 1

]
(2.216)

and Pmin(g) is

Pmin (g) =[
p(1) , p(2) , , ..., p(N)

]
(2.217)

where

p(1) = 1 − g, p(2) = g, p(3) = . . . p(N) = 0, 0 ≤ g ≤ 1/2

p(1) = p(2) = 1 − g, p(3) = 2g − 1, p(4) = . . . p(N) = 0, 1/2 ≤ g ≤ 2/3 (2.218)

p(1) = . . . p(N − 1) = 1 − g, p(N) = 1 − (N − 1)(1 − g), (N − 2)/(N − 1) ≤ g ≤ (N − 1)/N

Equation (2.214a) also implies that

H(X) ≤ h(g) + g log (N − 1) (2.219)

which is a special case of Fano’s inequality. It may also be noted that

h(g) ≥ H ≥ 2g (2.220)

or equivalently

1

2
H ≥ g ≥ h−1 (H) (2.221)

These bounds show that entropy and predictability do not have a one-to-one relationship.
Consider a random variable X(i)=−log pi, i = 1, 2, . . . , N; pi is the probability of X(i). Let

the Shannon entropy be H(P) and empirical entropies from observations be H(Pn). If H(Pn) is
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appropriately normed then its asymptotic distribution is asymptotically normal with mean of
H(P), and the asymptotic variance σ 2(P) is given (Feistauerova and Vajda, 1993) as

σ 2 (P) =
N∑

i=1

pilog2pi − H2 (P) (2.222)

This is the variance of the random variable X(i)=−log pi, defined above.

2.24 Various interpretations of entropy

Entropy can be viewed as an objective measure of some property of a system or as a subjective
concept for use as a model building tool to maximize the use of available information. When
entropy is used as a subjective concept it is associated not with the system itself but with the
information about the system that is known. Wilson (1970) presented four different ways
to view entropy: 1) Entropy as a measure of system property (such as order or disorder,
reversibility or irreversibility, complexity or simplicity, etc.); 2) entropy as probability for
measure of information, uncertainty, or probability; 3) entropy as a statistic of a probability
distribution or measure of information or uncertainty; and 4) entropy as the negative of a
Bayesian log-likelihood function for a measure of information. In addition to being a measure
of uncertainty equation (2.9) has been associated with a multitude of interpretations (Kapur
and Kesavan, 1992) some of which are outlined below.

2.24.1 Measure of randomness or disorder
Consider an experiment with N outcomes. Each outcome occurs with a certain probability
pi, i = 1, 2, . . . , N. If all outcomes are equally likely, meaning all probability values are the
same, that is, p1 = p2 = . . . = pN = 1/N, then the value of entropy would be maximum which is
log N and it defines the upper bound. If one outcome occurs with certainty, that is, probability
1, then other outcomes will not occur at all and their probabilities of occurrence will be
zero. In this case entropy will be zero, which also defines the lower bound of entropy, and
there is no uncertainty or randomness. If probabilities of occurrence are not equal, that is,
pi �= pj, i = 1, 2, . . . , N; j = 1, 2, . . . , N; i �= j, based on some knowledge about this experiment or
the constraints that this experiment is designed to satisfy, then entropy will be less than the
maximum and greater than zero. In this case the degree of randomness is less. This means that
entropy can be considered as a measure of randomness. In environmental and water resources
engineering, constraints may be expressed as laws of conservation of mass, momentum and
energy, and flux laws. Each constraint reduces randomness and reduces entropy or disorder.

2.24.2 Measure of unbiasedness or objectivity
The argument employed here is that for a given set of constraints the distribution of
probabilities yielding the maximum entropy is the most unbiased or objective distribution and
this is the maximum entropy-based distribution. Any other distribution would lead to less
than maximum entropy and would be biased or less than objective. Thus entropy can also be
considered as a measure of objectivity or unbiasedness.

2.24.3 Measure of equality
As noted above, entropy varies from a maximum value to zero, depending on the equality
or inequality of probabilities. The more unequal the probability the less the entropy value.
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Thus entropy can be considered as a measure of equality or inequality. This is of interest in
measuring economic, political or geographical inequalities of different types.

2.24.4 Measure of diversity
Watershed ecosystems may have different types of vegetation and animal species. One can
then group, say vegetation, in different classes and determine the relative frequency of each
class and hence entropy. Entropy will be higher when relative frequencies of different classes
will be close to each other, and less when they would be more unequal. This means that greater
diversity will lead to greater entropy. Thus entropy can be viewed as a measure of diversity or
desegregation. In this case frequencies can simply be numbers or absolute frequencies.

2.24.5 Measure of lack of concentration
Since entropy is a measure of the degree to which M probabilities are equal to each other, it
can be perceived as an inverse measure of concentration. For example, when H = 0, only one
pi is unity and the rest are 0, then there is the maximum concentration. If all probabilities
are equal the concentration is minimum: H = log M. Furthermore, as M increases and all pis
remain the same, log M increases, and the degree of concentration drops. Entropy is greater
when probability values are spread out and declines when they are concentrated. This suggests
that entropy can be used as a measure of dispersion or scatter or spread. Consider an example
having M classes with absolute frequencies f 1, f 2, . . . , f N , where f 1 + f 2 + . . . + f N = N (where
N = total number of values). Entropy can be defined in the usual sense as

H(f ) = −
M∑

i=1

fi
N

log
fi
N

= log N − 1

N

M∑
i=1

fi log fi

In practical terms fi can represent the average elevation of the i-th group of areas or points,
the grade point average of the i-th group of students, the income of the i-th group of people,
the height of the i-th group of trees, the weight of the i-th group of animals, and so on. H(f )
defines the spreading out of values.

2.24.6 Measure of flexibility
Flexibility emanates from the choice of options one has, the more options the more flexibility.
Each option may be associated with a probability value. When all options are equally
probable, entropy is maximum. This means one has maximum flexibility, and any option
can be exercised. On the other hand, if probability values are unequal, the available options
are not as many, and if the probabilities are highly unequal, the options become even more
limited. In the extreme case, there may not be more than one option if all probability values,
except one, are zero. In this way, entropy can be considered as a measure of flexibility.

2.24.7 Measure of complexity
The previous discussion shows that entropy can be used as a measure of uniformity or lack
thereof (i.e., concentration). When probabilities are equal, entropy is maximum, and when
they are unequal, entropy is less than maximum. The inequality of probabilities results from
the constraints that are to be satisfied. Each constraint reduces entropy, decreases uniformity
and thus introduces complexity. Hence the larger the number of constraints the smaller the



CHAPTER 2 Entropy Theory 127

entropy value and the larger the system complexity. Thus, the departure from the maximum
entropy value can be regarded as a measure of complexity:

Complexity = Hmax − H (2.223)

Often a normalized measure is more appropriate for measuring complexity:

Complexity(%) = Hmax − H

Hmax − Hmin

× 100 (2.224)

2.24.8 Measure of departure from uniform distribution
Consider two probability distributions P = {p1, p2, . . . , pN} and Q = {q1, q2, . . . , qN}. A measure
of directed divergence of P from Q can be expressed as

Dd =
∑

pi log
pi

qi

(2.225)

If Q is uniformly distributed, that is, q1 = q2 = . . . = qN = 1/N, then

Dd =
∑

pi log
pi

(1/N)
=
∑

pi log pi + log N = log N − H (2.226)

Thus, a larger value of entropy H would result in a smaller value of directed divergence,
meaning that P would be close to Q. Hence entropy can be viewed as a measure of departure
of the given distribution from the uniform distribution.

2.24.9 Measure of interdependence
Consider n variables X1, X2, . . . , Xn with marginal probability distributions g1(x1), g2(x2), . . . ,
gn(xn) and the corresponding marginal entropies as H1, H2, . . . , Hn. Let the joint probability
distribution of these variables be f (x1, x2, . . . , xn). The maximum value of entropy can be
shown to be:

Hmax = H1 + H2 + . . . + Hn (2.227)

If the variables are independent then H = Hmax and if not then H < Hmax. Thus the degree of
interdependence of variables Dn can be defined as

Dn = Hmax − H ≥ 0 (2.228)

If the variables are discrete then it can be shown that

H1 ≤ H, H2 ≤ H, . . . , Hn ≤ H (2.229)

One can then write

Dn = Hmax − H

(n − 1) H
, Dn = nH − Hmax

(n − 1) H
(2.230)
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When H=Hmax (for independent variables), Dn = 0, Dn = 1; when H=H1 (for perfect

dependence), Hmax = nH1, then Dn = 1, Dn = 0. Thus, both Dnand Dn lie between 0 and 1,

and can be used as measures of dependence. It may be noted that Dn, Dn and Dn involve no
assumptions of linearity or normality.

2.24.10 Measure of dependence
If there are two random variables X and Y , then one can construct a contingency table for
computing joint probabilities. Let the random variable X have a range of values consisting of n

categories (class intervals), while the random variable Y is assumed to have m categories (class
intervals). The cell density or the joint frequency for (i, j) is denoted by f ij, i = 1, 2, . . . , m;
j = 1, 2, . . . , n, where the first subscript refers to the row and the second subscript to the
column. The marginal frequencies are denoted by f i. and f .j for the row and the column values
of the variables, respectively. For example, one may be measuring nitrate as an indicator of
water quality at two wells. Their measurements would constitute a time series of nitrate at
each well. Then the nitrate concentration at the two wells for the entire time series can be
organized as a contingency table for purposes of computing the joint probability distribution of
nitrate concentration at the two wells. Here nitrate at each well can be regarded as a random
variable. The dimensions of the table would be m×n with elements fij such that

n∑
j=1

fij = Fi,
m∑

i=1

fij = Gj,
m∑

i=1

Fi =
n∑

j=1

Gj = M (2.231)

Entropy can be defined in the usual way as

H = −
n∑

j=1

m∑
i=1

fij
M

log
fij
M

, H1 = −
m∑

i=1

Fi

M
log

Fi

M
, H2 = −

n∑
j=1

Gj

M
log

Gj

M
(2.232)

If these entropies are maximized, using the constraints specified above, then one obtains

fij
M

= Fi

M
= Gj

M
, Hmax = H1 + H2 (2.233)

and

D = H1 + H2 − H ≥ 0 (2.234)

Here D vanishes if X and Y are independent. This means that D can be viewed as a measure
of dependence of the two variables or two attributes. In the case of nitrate concentration, D

can be viewed as a measure independence in the contingency table containing frequencies of
nitrate observations.

2.24.11 Measure of interactivity
Consider the example of nitrate concentration in the two wells discussed in the above section.
Then entropy H defined as above can be considered as a measure of interactivity between
nitrate concentrations at the two wells. For higher interactivity the value of H would be larger.
If the wells are independent and so are their nitrate concentrations, then the value of H would
be zero.
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2.24.12 Measure of similarity
Consider n m-dimensional vectors. These vectors can be obtained by organizing nitrate
concentrations of the previous example as vectors where row represents time and column
represents concentration:


c11 c12. . .c1n

c21 c22 . . .c2n

.

.

.

cm1 cm2. . .cmn




Based on entropy, it is plausible to write a measure (Kapur and Kesavan, 1992) as

Sr = 2

m(m − 1)

m∑
i=1

n∑
j=1

[
n∑

k=1

ciklog
cik

cjk

+
n∑

k=1

cjklog
cjk

cik

]
(2.235)

which is always greater than or equal to 0 and it is 0 if the row vectors are identical. This
means the nitrate concentration pattern is not changing with time. Thus, this can be regarded
a measure of similarity.

2.24.13 Measure of redundancy
Consider an environmental phenomenon E controlled by E1, E2, . . . , EN factors each giving
rise to i, j, k, . . . , N outcomes. The global entropy of E will be maximum if 1) the outcomes
of each factor are equiprobable, and 2) the factors are mutually and completely independent
(completely, for three factors can be independent two by two, but dependent when three
are considered together.) Thus, three cases can be considered: 1) equiprobable factors and
complete independent factors, this will yield the maximum entropy Hm(p); 2) not equiprobable
outcomes but independent factors, this will lead to Hd(p); and (3) not equiprobable outcomes,
and not independent factors. The actual entropy H(P) will be less than the maximum possible,
because complete independence is unlikely.

One can compare the calculated entropy (or information) with the maximum value this
entropy could have, using the ratio of the actual to the maximum entropy. This ratio is termed
relative entropy. If the relative entropy of a source is, say, 0.6, then the source is 60% as free
as it can be with these same alternatives. Redundancy is defined as one minus the relative
entropy. The term redundancy used here is close to its meaning. If the fraction of alternatives
were missing, the information would still be the same or could be made the same. Thus the
fraction of alternatives is redundant. For example, the English language has 50% redundancy.
This means that about half of the letters or words chosen for writing or speaking are subject to
the freedom of choice and about half are governed by the statistical structure of the language.

Let E define a phenomenon, such as a watershed response as evapotranspiration, and
E1, E2, . . . , EN factors as temperature, radiation, wind velocity, and so on. controlling evapo-
transpiration. Because some of the factors are dependent, H(E) or H(P) tends to attain a limit
as N tends to infinity, that is, as a new factor does not convey any new information. Then
the ratio of H(P)/Hm(P) expresses the constraint of the environment and subsequent loss of
uncertainty or freedom of choice. Following Shannon and Weaver (1949), redundancy can
be defined as

R = 1 − H(P)

Hm (P)
(2.236)



130 Entropy Theory and its Application in Environmental and Water Engineering

in which

H(P) = H(E) = H
(
E1

) + H
(
E2|E1

) + . . . + H(EN

∣∣E1, E2, . . . , EN−1

)
(2.237)

Considering a phenomenon caused by a number of factors each made of three outcomes,
Marchand (1972) recognized tree types of entropies. First, the maximum entropy Hm will
occur when the outcomes of factors are equally probable and the factors are completely and
mutually independent. Second, entropy Hd will occur when the outcomes of each factor are
not equally probable but factors are still mutually independent. Note that three factors can be
independent two by two but dependent with the three together. Entropy H will occur when
the factors are not independent and their outcomes are not equally probable. He then defined
three types of redundancies:
1 Internal redundancy RI :

RI = 1 − Hd (P)

Hm (P)
(2.238)

Here the structure is more determined.
2 Structural redundancy RS:

RS = 1 − H(P)

Hd (P)
(2.239)

This measures the inner cohesion of the system and the degree to which it influences the
human influence.
3 Global redundancy R:

R = 1 − H(P)

Hm (P)
(2.240)

This is equivalent to Shannon’s definition which integrates internal constraints owing to
the unequal distribution of the outcomes of each factor, and structural constraints which
stem from the mutual dependencies among these factors. The concept of redundancy permits
comparison of land use patterns of different areas with the same kind of development.

2.24.14 Measure of organization
Information theory can be employed to define organization in any point pattern in space.
The spatial pattern of a distribution may encompass properties of shape, dispersion, relative
location, density, and others. In other words, variations of density over an area can be
analyzed. These may not follow any regular geometric pattern. The number and relative sizes
of any nucleation may be analyzed. Likewise, the relative location of nucleations may also be
analyzed. An example may be the areal distribution of human population in space. In these
cases, there are variations in density, the number and sizes of cities or zones, and relative
location of cities or zones.

Recall the Shannon entropy

H =
N∑

i=1

qilog
1

qi

(2.241)
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where

I = K log
(
1/qi

)
(2.242)

is the information. Equation (2.242) can be used to measure the amount of information
gained between the first state where I �= 0 and there are N equally likely outcomes pi = 1/N,
and the final state where I = 0, and pi = 1, where the outcomes are no longer equally probable.
The average expected information gain from a set of probabilities is given by equation (2.241)
which applies to any number of probability sets. For two sets one before the other, one
determines the average expected information gain between the first set and the second set,
that is,

H =
N∑

i=1

pi

(
log

1

qi

− log
1

pi

)
=

N∑
i=1

pi log
pi

qi

(2.243)

Term log (pi/qi) defines the amount of information gained from the first set {qi} to the second
set {pi}. Then equation (2.243) defines the weighted average information for the whole set.
For the special case pi = 1,

H = log
1

qi

(2.244)

In this case pi is selected from one of N expected outcomes and hence qi = 1/N. This yields

I = K log

(
1

qi

)
= K log N (2.245)

Now consider areal distribution reflecting the density over an area in which the area is
considered as a characteristic of the points, each point being surrounded by its area as in the
case of Thiessen polygons for rainfall or soil moisture. The question one may ask is: What does
this represent in the way of organization? To that end, a base or reference is defined using the
maximum entropy. Note the total area and the amount of area for each individual point are
defined, and fractions of the total area are treated as probabilities. Thus,

H =
N∑

i=1

pi log
1

pi

(2.246)

will be maximum when pi = 1/N or ai = A/N, all individual areas are the same. This gives

Hmax = log N (2.247)

Equation (2.247) defines the base.
From the information gain, the degree of organization in the observed pattern can be

expressed as

H =
N∑

i=1

pi log
pi

1/N
(2.248)

in which qi = 1/N-all prior probabilities are equal.
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Now divide the points and their areas into groups. For example, in the case of a state these
can correspond to counties and let M be the number of these groups or counties or sets. If nj

denotes the number of objects, say people, in the j-th set sj, j = 1, 2, . . . , M, then for the j-th

set or group yi =
∑
iεsj

pi. Equation (2.243) can be expressed in disaggregated form as

H =
M∑

j=1

yjlog
yj

nj/N
+

M∑
j=1

yj


∑

iεsj

pi

yj

log
pi/yj

1/nj


 (2.249)

The entropy log N which represents the maximum entropy is known to be varying directly
with N. The information gain is independent of N, thus allowing comparison of different sizes.

Organization can be related to the reduction in information from the case of maximum
entropy. The uniform case, or equal areas, is the case of maximum order. This means that the
maximum entropy, interpreted in a spatial sense, defines a highly significant regular pattern.
Von Foerster (1960) defined order O as

O = 1 − H

Hmax

(2.250)

which is the same as redundancy defined by Shannon. This makes matters muddy. The
maximum entropy is being used here as an indication of order or the base for an exactly
opposite definition of order.

Let us now consider organization in the relative sizes and number of nucleations. The
entropy measure in the disaggregated form can be expressed as

H =
∑

j

xj log
1

xj

+
∑

j

xj


∑

iεsj

qi

xj

log
1

qi/xj


 (2.251)

Equation (2.251) takes on a maximum value when all cities have the same population. This
would mean there is no organization in their relative sizes which in the real world is not true.
When sizes are different, the index will decrease and entropy will decrease.

Now consider effects of relative location from a central location or point of reference. For
a watershed, this point can be the outlet, and in the case of a city it can be city center. The
whole size range (of cities, say) can be laid out on each axis, with each row and each column
represented by one city only. Entries along any one row may represent flow from city to
all others. These flows can be computed as the product of two populations divided by their
centers. These values are summed up for the whole matrix and then fractions of the summed
values are re-entered and treated as probabilities. Then the entropy for the whole matrix can
be expressed as

H =
∑

pi

∑ pij

pi

log
pi

pij

(2.252)

where pij is the flow from i-th to the j-th city, and pi =
∑

j

pij. For each row the maximum

value is when all flow fractions have the same value. This would mean there is no flow
preference between cities. As the value becomes smaller, the preference increases.
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To determine the effect of distance another matrix is considered without dividing the
product of populations by the square of the distance. The implication is that the distance has
no effect – an ideal case. A measure of locational preference due to distance can be expressed
by the index value of the first distance case as a percentage of the nondistance case.

2.25 Relation between entropy and variance

Although there does not appear to be an explicit relationship between entropy H and variance,
this relationship can, by reparmeterization, be explicitly stated for certain distributions. By so
doing these distributions can be compared as was done by Mukherjee and Ratnaparkhi (1986).
Plotting H as a function of variance σ 2, assuming the variance is known, one can show those
distributions that have higher entropy and those that have lower entropy. The close proximity
of entropies may be reflected by the similarity of the shapes of distributions, whereas the
difference may point to the longer tail of the distribution. The closeness of entropy may also
point to the genesis of distributions.

Since entropy of a distribution is a function of its parameters, direct comparison of entropies
is not simple or straightforward. However, it is plausible to construct an entropy-based measure
of affinity or closeness for distributions having a common variance. Following Mukherjee and
Ratnaparkhi (1986), the affinity A between two distribution functions f 1 and f 2 with common
variance is defined as

A
(
f1, f2

) =∣∣H1 − H2

∣∣ (2.253)

where H1 is entropy of f 1 and H2 is entropy of f 2. Equation (2.253) can be written as

A
(
f1, f2

) =
∣∣∣∣−E

[
ln

f2
f1

]∣∣∣∣ (2.254)

which is the expectation of the log-likelihood ratio and is not the same as the Kulback-Leibler
minimum cross-entropy.

The affinity measure defined by equation (2.254) satisfies the following: 1) A(f 1, f 2)=0, if
f 1 = f 2. That is, the affinity of a distribution with itself is zero. However, the converse is not
necessarily true. 2) If A(f 1, f 2) = A(f 2, f 1), then distributions are interchangeable. 3) A(f 1, f 2)
satisfies the triangular inequality. 4) It is a measure of the distance between two distributions
having common variance.

Another measure, called similarity commonly used in cluster analysis, can be defined as

S
(

fi, fj

)
= 1 −

A
(

fi, fj

)
max

{
A
(

fi, fj

)} (2.255)

for any i and j, and i �= j. Thus, one can state that affinity is a monotonically decreasing function
of similarity. The similarity measure can be employed for clustering distributions. Some
distributions are more similar than others. Entropy may imply concentration of probability
density toward location followed by long tails. Similarly, low values of entropy imply flatness
of the distribution.
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Consider Xi, i = 1, 2, . . . , N, independent identically normally distributed random variables
each having mean µ and variance σ 2. One can define

X = 1

N

N∑
i=1

Xi, S2 = 1

N − 1

N∑
i=1

(Xi − X)2 (2.256)

where S2 is an estimate of σ 2 and X is estimate of µ. An estimate of H, Ĥ, for the normal
distribution can be expressed as

Ĥ = 1

2
ln
[
2πeS2] (2.257)

It is known that the distribution of S2 is chi-square with (N-1) degrees of freedom. Then, from
equation (2.257), it can be shown using transformation of variables that the distribution of
Ĥ is log-chi-squared. If N is used as a scale factor in equation (2.257), then Ĥ becomes the
maximum likelihood estimator of H.

Now consider two independent random samples, Xij, i = 1, 2; j = 1, 2, . . . , N, from normal
distributions with mean and variance as µ1, µ2 and σ 1

2, σ 2
2, respectively. Si

2, i = 1, 2, are
sample variances. Then

D = Ĥ1 − Ĥ2 = 1

2
ln

(
S2

1

S2
2

)
(2.258)

has logarithmic F-distribution which can be approximated by the normal distribution. This
follows from the observation that S2

1/S2
2 has F-distribution. Equation (2.258) further suggests

that D constructed with other estimators may likely possess the desirable properties of the
log-F distribution.

If Xi, i = 1, 2, . . . , N, are exponentially distributed with parameter λ. Let X be the sample
mean which is an unbiased estimator of σ then an estimate of H, Ĥ, is expressed as

Ĥ = 1 + ln X (2.259)

It is known that X is gamma distributed with parameter 1/(Nλ). Then, equation (2.259) leads
to the distribution of Ĥ as log-gamma distribution. Furthermore, Ĥ is the maximum likelihood
estimate of H, because X is the maximum likelihood estimate of σ .

If Xij, i = 1, 2; j = 1, 2, . . . , N, are two independent exponentially distributed random vari-
ables with parameter λi, i = 1, 2, and entropies Hi, i = 1, 2, then with sample means Xi, i = 1, 2,
the statistic

D = Ĥ1 − Ĥ2 = ln

(
X1

X2

)
(2.260)

has log-F distribution (2N1, 2N2) degrees of freedom. This can be seen by recalling that the
ratio of two gamma variables has an exact F distribution. Again, D = ln F can be approximated
by the normal distribution.

In this manner, distributions having the same variance can be compared using entropy.
High entropy indicates less extraneous information. Thus, entropy can also be used to select a
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distribution for a particular data set. In a similar manner, the affinity measure can be used to
select a particular distribution.

2.26 Entropy power

Shannon (1948) introduced the concept of entropy power which is defined as the variance of
the independent identically distributed (IID) components of an n-dimensional white Gaussian
random variable having entropy H(X). The entropy power N(X) can be expressed as

N(X) = 1

2πe
exp

[
2

n
H(X)

]
(2.261)

Since white noise has the maximum entropy for a given power, the entropy power of any
noise (or any distribution) is less than or equal to its actual power. For two independent
random variables X and Y , Shannon showed that

N(X + Y) ≥ N(X) + N(Y) (2.262)

Dembo (1989) has proved equation (2.262) and Zamir and Feder (1993) have presented
generalizations of entropy power inequality.

2.27 Relative frequency

Consider N class intervals and in each class interval the number of values or absolute frequency
is ni, i = 1, 2, . . . , N. Here n1 + n2 + . . . + nN = N. Let the probability of each class intervals be
pi, i = 1, 2, . . . , N, where

pi = ni
N∑

i=1

ni

= ni

N
,

N∑
i=1

ni = N (2.263)

For the relative frequency to be interpreted as probability, N must be sufficiently large. Then
one can write

ni = Npi, i = 1, 2, . . . , N (2.264)

Sometimes, a sequence is referred to as typical, if ni
∼= Npi; otherwise it is rare. Of course,

P =
N∑

i=1

pi = 1 and 1-P = 0. One can write

ni
∼= Npi = exp

[
N ln pi

]
(2.265)

For all class interval sequences, one can express the probability of each typical sequence

P ={
p1, p2, . . . , pN

} = exp[Np1ln p1 + Np2ln p2 + . . . + NpN ln pN = exp[−NH(P)] (2.266)
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where H(P) is the entropy of the sample. The number of typical class interval sequences, NT,
can be written as

NT = P
(
Ut

)
P
(
ts
) ≈ 1

exp[−NH(P)]
= exp[NH(P)]

= Pr obability of union of all typical sequences

Pr obability of each sequence
(2.267a)

where Ut denotes the union of typical sequences, and ts is a typical sequence. If all sequneces
are equally likely then H(P) = ln N and NT = nN . Thus, for n>1, one can express

NT ≈ exp[NH(P)] << nN (2.267b)

For sufficiently large N, most sequences are rare.

2.28 Application of entropy theory

Applications of entropy can be grouped into two categories. The first category encompasses
those applications which require determination of probability distributions or parameter
estimation. Information is specified in the form of constraints and the determination is based
on the application of the principle of maximum entropy (POME) or the principle of minimum
cross entropy (POMCE) and entropy is maximized. Applications in this category are common
in water engineering. The second category of applications entails the specification of (source)
entropy and various random variables (code lengths) are constructed in order to minimize
their expected values. The specification is based on the construction of optimum mappings
(codes) of the random variables of interest into the given probability space.

Questions

Q.2.1 In the month of January it rained on a particular day in an area. The person who
was interested to know the day it rained on was away from that area but he knew a
friend who knew the day of rain. How many questions does that person need to ask
his friend or how much information will be required to positively ascertain the day it
rained on?

Q.2.2 Obtain two sets of daily rainfall data (only positive values) for two raingage stations.
Compute the Shannon entropy for the two sets of data. On a relative basis, what do
these entropy values say about the rainfall measurements of these two gages?

Q.2.3 Obtain two sets of data on runoff events for two small watersheds which are closely
located. Compute the Shannon entropy for the two sets of data. On a relative basis,
what do these entropy values say about runoff from these watersheds?

Q.2.4 Consider a set of rainfall amounts and the corresponding runoff amounts for a
watershed. Compute marginal entropies of rainfall and runoff. Arrange these data
as a two-dimensional contingency table and compute joint entropy of rainfall and
runoff. Also compute transinformation. Compute the coefficient of correlation and
informational correlation coefficient. How different are these two coefficients and
what does the difference mean?
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Q.2.5 Consider a set of runoff amounts and the corresponding sediment yields for a water-
shed. Compute marginal entropies of runoff and sediment yield. Arrange these data as
a two-dimensional contingency table. Also compute transinformation. Compute the
coefficient of correlation and informational correlation coefficient. How different are
these two coefficients and what does the difference mean?

Q.2.6 Consider a set of rainfall amounts and the corresponding runoff amounts and sediment
yields for a watershed. These data can be arranged as a three-dimensional contingency
table. However, the three-dimensional contingency table can be portrayed as two sub-
tables or two two-dimensional contingency tables one having sediment yield as output
(or response) and rainfall as input (or stimulus) and the other having sediment yield
as output (or response) and runoff as input (or stimulus). Compute the components
of the sediment yield information.

Q.2.7 Consider a set of flood events with peak discharge, volume of flow, and duration
for a watershed. Here peak discharge is considered as output (or response), and
volume and duration as input variables (or stimuli). These data can be arranged as
a three-dimensional contingency table. It is, however, more convenient to portray
the three-dimensional contingency table as two sub-tables or two two-dimensional
contingency tables one having peak discharge as output (or response) and volume as
input (or stimulus) and the other having peak discharge as output (or response) and
duration as input (or stimulus). Compute the components of the peak discharge yield
information.

Q.2.8 Consider a set of rainfall-runoff events for a watershed. Compute marginal entropy of
rainfall and of runoff. Compute transinformation between rainfall and runoff. For the
watershed, rainfall can be considered as input and runoff as output. Determine the
conditional entropy of runoff given rainfall and also conditional entropy of rainfall
given runoff. What is the lost information? What is the noise? What is the transmitted
information?

Q.2.9 For the data set in Q.2.8, change the class interval size and then compute entropy.
Take at least three class interval sizes. How does entropy change with class interval
size?

Q.2.10 Consider a stream flow time series for gaging station on a river. Compute the marginal
entropy of stream flow using a constant class interval. Now consider a class interval
proportional to flow. Compute entropy in this case and compare it with the entropy
corresponding to the fixed class interval. What is the difference between two entropy
values and what does the difference tell us?

Q.2.11 Obtain stream flow values from a gaging station where there are zero values. Compute
entropy of such a record.

Q.2.12 Obtain daily rainfall values for a raingaging station. Fit a probability distribution to the
rainfall values. Apply the concentration theorem to check if the fitted distribution is
the right one.
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3 Principle of Maximum Entropy

The principle of maximum entropy is one of the main pillars of entropy theory. It was briefly
discussed in Chapter 2. The objective of this chapter is to discuss it more fully and illustrate its
properties using examples.

3.1 Formulation

Consider that an experiment is conducted which produces N outcomes
(
x1, x2, . . . , xN

)
with

probabilities
(
p1, p2, . . . , pN

)
which are not known; x1, x2, . . . , xN are the values of the random

variable X on which the experiment is conducted or are experimental outcomes, and N is the
number of values or outcomes. The objective of the experiment is to determine the values
of probabilities p1, p2, . . . , pN or the probability distribution P = {p1, p2, . . . , pN

}
. Assume that

nothing is known about X in terms of its moments (mean, variance, etc.). Of course, the total
probability law will hold:

N∑
i=1

pi = 1, pi ≥ 0, i = 1, 2, . . . , N (3.1)

There can be a number of probability distributions that can satisfy equation (3.1). For
example, one distribution could be: P = { 1

N , 1
N , . . . , 1

N

}
. Another distribution could be:

P = { 1
2N , 3

2N , . . . , 1
N

}
. Likewise, one can construct an infinite number of probability distribu-

tions which can satisfy equation (3.1). Each of these distributions would have a particular
value of entropy. There are also N degenerate distributions: {1, 0, 0, . . . , 0}, {0, 1, 0, 0, . . . , 0},
. . . , {0, 0, 0, . . . , 1}, each having zero entropy. Of the distributions having nonzero entropy
there would be one distribution that would have the maximum entropy. It turns out that
such a distribution would be the one with pi = 1/N and this distribution is the uniform
(rectangular) distribution and its entropy is log N. The question arises: What would be the
most appropriate probability distribution of X?

The principle of maximum entropy (POME) formulated by Jaynes (1957a, b), states that the
most appropriate probability distribution would be the one having the maximum entropy or
uncertainty. This is consistent with Laplace’s principle of insufficient reason which states that
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all outcomes are equally likely when nothing is known about the random variable, except for
what is described by equation (3.1). This makes sense, for it makes use of only the information
that is given and avoids assuming anything that is not available or known. In that case the
distribution would be the uniform distribution. According to POME, one should maximize
uncertainty given by entropy. In other words, when only partial information in the form of
constraints is given on X, that is, some information is missing, probabilities should be chosen
that maximize the uncertainty about the missing information. This leads to the most random
distribution subject to the specified constraints. The implication is that one should utilize
whatever information one has and scrupulously avoid using any information that one does
not have. This also means that one should be as noncommittal to the missing information
as possible. This again is in accord with Laplace’s principle of insufficient reason, that is,
unless there is reason to believe, all outcomes of an experiment have equal probabilities of
occurrence.

Now consider that an additional piece of information is given in the form of a constraint as:

p1x1 + p2x2 + . . . + pNxN = x (3.2)

where x is the weighted mean of the N values of X. The probability distribution based on
equation (3.1) may not satisfy equation (3.2). Thus, one needs a distribution that satisfies
equation (3.1) as well as equation (3.2) and has maximum entropy, Hmax. As before, there
would be an infinite number of probability distributions each having a particular value of
entropy, but there would be one distribution that would have the maximum entropy and there
would be another distribution that would have the minimum entropy. It turns out that the
distribution having the maximum entropy would be the exponential distribution. The entropy
value of this distribution would be less than the entropy value of the uniform distribution log
N, but would be greater than 0. This suggests that each new piece of information (in the form
of constraint) that the distribution has to satisfy reduces (or at least does not increase) the
maximum entropy and increases (or at least does not decrease) the minimum entropy, Hmin.
Indeed Hmax is a monotonically decreasing (or at least nonincreasing) function of the number
of constraints, and Hmin increases (or at least does not decrease) as a function of the number
of constraints. The reduction in uncertainty due to the knowledge of, say, average constraints
quantifies the information content of the additional constraints. This idea of quantifying
uncertainty reduction offers a useful tool for evaluating merits of explanatory variables in the
class of probability distributions (Soofi, 1994).

Extending the above argument further, let there be M independent constraints on X such
that a unique probability distribution (corresponding to the maximum entropy) would result,
where Hmax = Hmin, as shown in Figure 3.1, and the uncertainty may be completely removed.
For less than M constraints, there can be a number of distributions but these distributions
would be biased. There would be only one distribution that would correspond to the maximum
entropy and that distribution would be most random, most unbiased, and most objective. All
these distributions would have Hmin values (globally minimum) and would represent most
biased distributions. Thus, POME can also be cast in other forms. For example, of all the
distributions one chooses the distribution that has the maximum uncertainty, or chooses
the distribution that is least committed to the information not known or not specified, or
chooses the distribution that is most random or objective, or chooses the distribution that
is most unbiased. Thus, POME can also be called the principle of maximum uncertainty.
Van Campenhout and Cover (1981) have shown that all the well-known distributions are
maximum entropy-based distributions, given appropriate moment constraints. Evans (1969)
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Figure 3.1 Variation of maximum and minimum entropy with the number of constraints.

called POME the principle of minimum information, since information is the negative of
uncertainty, and discussed how to choose constraints. Kesavan and Kapur (1989) presented a
generalization of POME.

As Jaynes (1957) has stated, the probability distribution based on the principle of maximum
entropy is maximally noncommittal to missing information, agrees with what is known, and
expresses maximum uncertainty with regard to other aspects and hence permits maximum
freedom to accommodate the influence of subsequent data. POME is essentially a method of
inductive inference. This means that different ways of using POME with the same information
should yield consistent results. In other words, the results should be consistent for different
methods of solving the same problem. To that end, Shore and Johnson (1980) formulated four
consistency measures: 1) Uniqueness: The result should be unique. 2) Invariance: The result
should be independent of the choice of coordinate system. 3) System independence: The result
should not be dependent on whether systems are dependent or independent. 4) Subsystem
independence: The result should not depend on whether a subset of a system is dealt with
independently in terms of a separate conditional probability density function or full system
probability density function.

Thus, one can now summarize entropy, information, and uncertainty. Information (or
knowledge) is expressed in the form of constraints on the values of random variable and
their associated probability values. Then, one does not have a unique value of uncertainty,
rather one has a range of uncertainty defined by Hmax and Hmin, and as a result a definite
statement on the value of uncertainty cannot be made. Any additional piece of information
or constraint reduces the range of uncertainty, but not the value of uncertainty itself. As more
and more constraints are specified, the range of uncertainty becomes smaller and smaller. It is
plausible that with enough constraints the range may converge to a point or a definite value
of uncertainty and when that equals 0, the probability distribution would be a degenerate
one. In that case the experiment becomes deterministic. Otherwise it remains stochastic.
This suggests that entropy provides a criterion for distinguishing between deterministic and
stochastic phenomena. Thus, one may express: knowledge → information → constraints →
entropy → uncertainty.

It may be noted that in practice constraints are derived from data and do not incorporate
all the information provided by the data. This means that the POME formalism does not use
all the information and may introduce errors when doing inference because sample averages
may differ from statistical averages as emphasized by Feder (1986) who suggested a minimum
description length (MDL) method introduced by Rissanen (1978, 1983, 1984). Feder (1986)
showed POME to be a special case of MDL criterion.
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3.2 POME formalism for discrete variables

POME involves determining probability distributions or parameters thereof, subject to given
constraints. Often the problem is solved numerically. In a number of cases analytical solutions
can be derived. POME states that one should maximize the Shannon entropy:

H(P) = −
N∑

i=1

pi loge pi = −
N∑

i=1

pi ln pi (3.3)

subject to equation (3.1) and

N∑
i=1

pigj

(
xi

) = Cj, j = 1, 2, ..., m (3.4)

where gj

(
xi

)
is the j-th function of X:{xi} for expressing constraint Cj, and m is the number

of constraints. In equation (3.3) the logarithm to the base e has been written as ln and this
convention will be followed throughout the book. Equation (3.4) specifies m constraints.

Maximization of H can be done using the method of Lagrange multipliers where the
Lagrangean function L can be expressed as

L = −
N∑

i=1

pi ln pi−
(
λ0 − 1

) ( N∑
i=1

pi − 1

)
−

m∑
j=1

λj

(
N∑

i=1

pigj

(
xi

)− Cj

)
(3.5)

where λ0, λ1, . . . , λm are the (m + 1) Lagrange multipliers corresponding to the (m + 1)

constraints specified by equations (3.1) and (3.4). For convenience, in equation (3.5) one uses(
λ0 − 1

)
as the first Lagrange multiplier instead of λ0.

Differentiating L in equation (3.5) with respect to pi and equating it to zero, one obtains

∂L

∂pi

= 0 ⇒ − ln pi − λ0 −
m∑

j=1

λjgj

(
xi

) = 0 (3.6)

Equation (3.6) gives

pi = exp
[−λ0 − λ1g1

(
xi

)− . . . − λmgm

(
xi

)]
, i = 1, 2, . . . , N (3.7)

Equation (3.7) is the maximum entropy probability distribution with Lagrange multipliers
λ0, λ1, . . . , λm which can be determined as follows.

Substituting equation (3.7) into equations (3.1) and (3.4), one, respectively, gets

N∑
i=1

exp


−λ0 −

m∑
j=1

λigi

(
xi

) = 1 (3.8)

and

N∑
i=1

gj

(
xi

)
exp


−λ0 −

m∑
j=1

λigi

(
xi

) = Cj, j = 1, 2, . . . , m (3.9)
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The Lagrange multipliers are determined from equations (3.8) and (3.9). Equation (3.8) can
be written as

exp
(
λ0

) = Z =
N∑

i=1

exp


−

m∑
j=1

λjgj

(
xi

) (3.10)

or

λ0 = ln Z = ln
N∑

i=1

exp


−

m∑
j=1

λjgj

(
xi

) (3.11)

Equation (3.10) is referred to as the partition function. Equation (3.11), also referred to as
potential function, expresses λ0 as a function of λ1, λ2, . . . , λm. Differentiating equation (3.11)
with respect to λj one obtains

G = ∂λ0

∂λj

= ∂Z

Z∂λj

= ∂ ln Z

∂λj

=

N∑
i=1

exp


−

m∑
j=1

λigi

(
xi

) ∂

∂λj


−

m∑
j=1

λjgj

(
xj

)
N∑

i=1

exp


−

m∑
j=1

λjgj

(
xi

)
= −Cj (3.12)

Equation (3.9) can be expressed as

Cj exp
(
λ0

) =
N∑

i=1

gj

(
xi

)
exp


−

m∑
j=1

λjgj

(
xi

) , j = 1, 2, . . . , m (3.13)

Combining equations (3.10) and (3.13), one obtains

Cj =

N∑
i=1

gj

(
xi

)
exp


−

m∑
j=1

λjgj

(
xi

)
N∑

i=1

exp


−

m∑
j=1

λjgj

(
xi

)
; j = 1, 2, . . . , m (3.14)

Equation (3.14) expresses C1, C2, . . . , Ci as functions of λ1, . . . , λm. Thus, the Lagrange mul-
tipliers can be expressed in terms of constraints (the given information) and the resulting
distribution is rendered as a nonparametric distribution. Agmon et al. (1979) developed an
algorithm for determining the Lagrange multipliers using equation (3.14). Clearly, the algo-
rithm entails a numerical solution and two stages. First, it verifies if the constraints are linearly
independent, and then it checks if a feasible solution exists. These days, computer software
packages are available for solving equation (3.14) for specified constraints.

Substitution of equation (3.7) in equation (3.3) gives the value of Hmax:

Hmax = −
N∑

i=1

pi

[−λ0 − λ1g1

(
xi

)− λ2g2

(
xi

)− . . . − λmgm

(
xi

)]
= λ0 + λ1C1 + λ2C2 + . . . + λmCm (3.15)
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It may be instructive to apply the POME formalism to derive a discrete distribution for
illustrative purposes.

Example 3.1: Suppose a discrete random variable X takes on N values, but from equation
(3.4), Ci = 0, i = 1, 2, . . . . What should be the probability distribution of X?

Solution: From equation (3.7) one obtains

pi = exp
[−λ0

]
, i = 1, 2, . . . , N (3.16)

Using equation (3.10), one gets

exp
(
λ0

) =
N∑

i=1

exp [0] = N (3.17)

Inserting equation (3.17) in equations (3.7), one obtains:

pi = 1

N
, i = 1, 2, . . . , N (3.18)

This is a uniform distribution. This means that if one knows nothing about the random
variable or its values then for a discrete number they are all equally likely. This is consistent
with Laplace’s principle of insufficient reason.

Example 3.2: Consider a dice throwing experiment. Suppose one bets 2 dollars on the
occurrence of an even-numbered face upon throw and one wins, on average, 50 cents per
game. What will be the probability of occurrence of each face upon throw?

Solution: Let pi define the probability of the i-th face, i = 1, 2, . . . , 6. The probability
of winning 0.50 dollar is cents/200 cents = 0.25. An average gain of 50 cents means that
p (even numbered face) − p (odd numbered face) = 0.25. Therefore, the constraint in this case
is p2 + p4 + p6 = 0.75, p1 + p2 + p3 = 0.25. Maximizing entropy subject to this constraint
yields

p2 = p4 = p6 = 0.25, p1 = p3 = p5 = 0.0833.

This concurs with the principle of insufficient reason as to the outcome of events (even) and
odd separately. In this example, the outcome depends on whether the dice is fair or not and
it is not fair.

Example 3.3: Suppose a discrete random variable X (e.g., rainfall occurrence) takes on n
states, each of which is characterized by either 1 or 0. Let Si represent a specific ordering
of these states. These states occur in many different ways and

{
Si

}
constitute an exhaustive

mutually exclusive set of states. Let ri represent the number of occurrences of 1 in Si. It is
assumed that the average value of r, R = r, is known. Let q = R/n. Derive the probability
distribution of Si and the corresponding probability distribution of ri.

Solution: The number of Si having the same value of r with rainfall occurrence as 1 and
non-occurrence as 0 each day a week (7 days) can be given as the binomial coefficient:

(
n
r

)
= n!

r! (n − r)!
(3.19)
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The probability distribution of Si then becomes

p
(
Si

) = exp
(−λ0 − λ1 Si

)
(3.20)

From equation (3.4) one obtains

R = qn = r =
n∑

i=1

rip
(
Si

) =
n∑

r=0

(
n

r

)
p
(
Si

)
(3.21)

Then, from equation (3.10),

exp
(
λ0

) =
n∑

i=1

exp
[−λ1ri

] =
n∑

r=0

(
n

r

) [
exp

(−λ1

)]r
(3.22)

It can be shown that

exp
(
λ0

) = [1 + exp
(−λ1

)]n ; log
[
exp

(
λ0

)] = n log
[
1 + exp

(−λ1

)]
(3.23)

Therefore, from equation (3.14)

nq = R = −n
exp

(−λ1

)
1 + exp

(−λ1

) ; exp
(−λ1

) = − q

1 − q
(3.24)

Hence,

exp
(
λ0

) = (1 − q)n (3.25)

The probability distribution of states Si is expressed as

p
(
Si

) = 1

(1 − q)−n

(
q

1 − q

)ri

= qri (1 − q)n−ri (3.26)

Because

(
n

r

)
states have the same value of r, the probability distribution of r is

p(r) =
(

n
r

)
qr (1 − q)n−r (3.27)

This is the binomial distribution.

Example 3.4: Consider grading students for their performance in a class as outstanding,
excellent, very good, good, fair, or unsatisfactory. Thus, grading is assigned numbers from 6 to
1, respectively, with 6 denoting outstanding and 1 denoting unsatisfactory, with the six grades
numbered as 1, 2, 3, 4, 5, and 6 from unsatisfactory to outstanding. Let a random variable X
define the occurrence of a grade of student performance. Thus, X takes on values of 1, 2, 3,
4, 5, or 6, with probabilities of p1, p2, p3, p4, p5, or p6, respectively. It is assumed that the
average grade of students is between very good and excellent:

6∑
i=1

xipi = x = 3.5 (3.28)
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Determine the POME-based probability distribution of X.

Solution: Equation (3.1) with N = 6 is true. Using the method of Lagrange multipliers, one
writes

L = −
6∑

i=1

pi ln pi − (λ0 − 1
) ( 6∑

i=1

pi − 1

)
−

1∑
j=1

λj

(
6∑

i=1

xipi − x

)
(3.29)

Differentiating L with respect to pi, one obtains:

∂L

∂pi

= 0 ⇒ − (1 + ln pi

)− (λ0 − 1
)− xi λ1 = 0, i = 1, 2, . . . , 6 (3.30)

This leads to

pi = exp
[−λ0 − λ1xi

] = abxi , a = exp
(−λ0

)
, b = exp

(−λ1

)
(3.31)

The probabilities are in geometric progression and the probability distribution is geometric.
Parameters a and b can be determined with the aid of equation (3.1) and the information x

given by equation (3.26). Thus,

6∑
i=1

pi =
6∑

i=1

abxi = a
6∑

i=1

bxi = 1 (3.32)

6∑
i=1

xipi =
6∑

i=1

xiabxi = a
6∑

i=1

xib
xi = x (3.33)

Combining these two equations, one gets

6∑
i=1

xib
xi = x

6∑
i=1

bxi (3.34a)

or

(1 − x) b + (2 − x) b2 + (3 − x) b3 + (4 − x) b4 + (5 − x) b5 + (6 − x) b6 = 0 (3.34b)

Here x is 3.5. Thus, coefficients of the first three terms are negative and those of the last
three terms are positive. By Descartes’ rule of signs, this has only one positive root and that
is b = 1 (x = 3.5) , and a = 1/6. This means that pi = 1/6 and the probability distribution is
uniform.

One can generate different probability distributions for different values of x. Probabilities
increase if x > (N + 1) /2 and decrease if x < (N + 1) /2. Kapur and Kesavan (1992) have
noted that the probability distribution becomes p6, p5, p4, p3, p2, p1 if the mean is (7 − x) ,
and it becomes p1, p2, p3, p4, p5, p6 when the mean is x.

Example 3.5: Consider different values of x. in Example 3.4. Then, show that when the
mean is (7 − x) the probability distribution becomes p6, p5, p4, p3, p2, p1 and it becomes
p1, p2, p3, p4, p5, p6 when the mean is x, as noted by Kapur and Kesavan (1992).
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Solution: For different values of x. In Example 3.4, one gets different values of probabilities
as shown below:

x p1 p2 p3 p4 p5 p6

1.0 1.000 0.000 0.000 0.000 0.000 0.000
2.0 0.4781 0.2548 0.1357 0.0723 0.03856 0.0205
3.0 . . .

4.0 . . .

5.0 0.0205 0.0385 0.0723 0.1357 0.2548 0.4781
6.0 1.000 0.000 0.000 0.000 0.000 1.000

This table shows that the probability distribution is indeed reversed.
In the above formulation it is noted that λ0 is a convex function of λ1, λ2, . . . , λm. This can

be shown by taking the second derivative of λ0 with respect to λ1, λ2, . . . , λm and determining
that they are positive at every point in the interval. In this case the Hessian matrix will
be positive definite. In a similar manner one can show that Hmax is a concave function
of C1, C2, . . . , Cm. To that end, one can determine the Hessian matrix of the second order
partial derivative Hmax with respect to C1, C2, . . . , Cm and show that it is negative definite. An
interesting result occurs when taking the derivatives of Hmax with respect to C1, C2, . . . , Cm,
which are found to be equivalent to Lagrange multipliers.

Example 3.6: The Lagrange multiplier λ0 is a function of λ1, λ2, . . . , λm. Show that the
corresponding Hessian matrix can be expressed as variance-covariance matrix. By so doing
one can show that λ0 is a convex function of λ1, λ2, . . . , λm. One may note that

∂2λ0

∂λi∂λj

= cov
[
gi (x) gj (x)

]
(3.35a)

∂2λ0

∂λ2
i

= cov[gi (x) gi (x)] = Var[gi (x)] = E
{
[gi (x)]

2}− {E[gi (x)]
}2

(3.35b)

Solution: To answer the question in this example, reference is made to Section 3.2. Differen-
tiation of equation (3.10) with respect to λi yields

exp
(
λ0

) ∂λ0

∂λj

=
N∑

i=1

gj

(
xi

)
exp


−

m∑
j=1

λjgj

(
xi

) (3.36)

Differentiation of equation (3.36) with respect to λj yields

exp
(
λ0

) ∂2λ0

∂λ2
j

+ exp
(
λ0

) (∂λ0

∂λj

)2

=
N∑

i=1

g2
j

(
xi

)
exp


−

m∑
j=1

λjgj

(
xi

) (3.37)
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Equation (3.37) can be written with the use of equations (3.7) as

∂2λ0

∂λ2
j

+
(

∂λ0

∂λj

)2

=
N∑

i=1

pig
2
j

(
xi

) = E[g2
j (X)] (3.38)

Equation (3.38) leads to

∂2λ0

∂λ2
j

= −
(

∂λ0

∂λj

)2

+
N∑

i=1

pig
2
j

(
xi

) = −
(

∂λ0

∂λj

)2

+ E
[
g2

j (X)
]

(3.39)

With the use of equation (3.35b) for the definition of variance, equation (3.39) can be
expressed as

∂2λ0

∂λ2
j

= E
[
g2

j (X)
]

−
(

E
[
gj (X)

])2 = Var
[
gj (X)

]
(3.40)

Differentiation of equation (3.36) with respect to λr yields

exp
(
λ0

) ∂2λ0

∂λj∂λr

+ exp
(
λ0

) (∂λ0

∂λj

)(
∂λ0

∂λr

)
=

N∑
i=1

gj

(
xi

)
gr

(
xi

)
exp


−

m∑
j=1

λjgj

(
xi

) (3.41)

Equation (3.41) can be written as

∂2λ0

∂λj∂λr

+
(

∂λ0

∂λj

)(
∂λ0

∂λr

)
=

N∑
i=1

pigj

(
xi

)
gr

(
xi

) = E[gj (X) gr (X)] (3.42a)

Equation (3.42a) leads to

∂2λ0

∂λj∂λr

= −
(

∂λ0

∂λj

)(
∂λ0

∂λr

)
+

N∑
i=1

pigj

(
xi

)
gr

(
xi

) = −
(

∂λ0

∂λj

)(
∂λ0

∂λr

)
+ E

[
gj (X) gr (X)

]
(3.42b)

Recalling equations (3.12), (3.35a) and (3.35b), one can express equation (3.42b) as

∂2λ0

∂λj∂λr

= E
[
gj (X) gr (X)

]
− E

[
gj (X)

]
E
[
gr (X)

] = Cov
[
gj (X) , gr (X)

]
(3.43)

Constructing the Hessian matrix of λ0, one gets




∂2λ0

∂λ2
1

∂2λ0

∂λ1∂λ2

. . .
∂2λ0

∂λ1∂λm

∂2λ0

∂λ2∂λ1

∂2λ0

∂λ2
2

. . .
∂2λ0

∂λ2∂λm

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

∂2λ0

∂λm∂λ1

∂2λ0

∂λm∂λ2

. . .
∂2λ0

∂λ2
m



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Using the definitions of the derivatives of λ0, the Hessian matrix can be written in terms of
variances and covariances as




Var[g1 (X)] Cov[g1 (X) , g2 (X)] . . . Cov[g1 (X) , gm (X)]
Cov[g2 (X) , g1 (X)] Var[g2 (X)] . . . Cov[g2(X), gm (X)]

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

Cov[gm (X) , g1 (X)] Cov[gm (X) , g2 (X)] . . . Var[gm (X)]




Since variances and covariances are always positive, the Hessian matrix must be positive
definite. This means that λ0 is a convex function of λ1, λ2, . . . , λm.

3.3 POME formalism for continuous variables

As in the case of discrete variables, the usual procedure for determining probability distributions
or estimating their parameters in the case of continuous variables is based on the maximization
of entropy which is accomplished using the method of Lagrange multipliers which will be
presented here. However, in very simple cases entropy can also be maximized somewhat
intuitively. To that end, it may be useful to recall for two arbitrary probability density
functions f (x) and g(x):

−
∞∫

−∞
g(x) log g(x) dx ≤ −

∞∫
−∞

g(x) log f (x) dx (3.44)

Example 3.7: Consider a coin tossing experiment. The probability of the occurrence of head
p can be regarded as a random variable. Determine the probability density of p, f (p) .

Solution: The objective is to apply POME, that is, one maximizes the entropy:

H(p) = −
1∫

0

f (p) log f (p) dp

Since no prior information is available, f (p) must be uniform over the interval [0, 1]. Therefore,
f (p) = 1, leading to H(p) = 0. For any other density g(p) ,

−
1∫

0

g(p) log g(p) dp ≤ −
1∫

0

g(p) log f (p) dp = 0

3.3.1 Entropy maximization using the method of Lagrange multipliers
For a continuous variable X, one writes the Shannon entropy as

H(f ) = H(X) = −
b∫

a

f (x) ln f (x) dx (3.45)
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where

b∫
a

f (x) dx = 1 (3.46)

where a and b are upper and lower limits of the integral or the range of variable X. In
order to maximize H(f ) subject to equation (3.46) and m linearly independent constraints
Cr (r = 1, 2, . . . , m) :

Cr =
b∫

a

gr (x) f (x) dx, r = 1, 2, . . . , m (3.47)

where gr (x) are some functions over an interval (a, b).
For maximization one employs the method of Lagrange multipliers and constructs the

Lagrangean function L as:

L = −
b∫

a

f (x) ln f (x) dx − (λ0 − 1
) b∫

a

f (x) dx − 1


−

m∑
r=1

λr


 b∫

a

f (x) gr (x) dx − Cr


 (3.48)

where λ1, λ2, . . . , λm are Lagrange multipliers.
In order to obtain f (x) which maximizes or minimizes L, recall the Euler-Lagrange calculus

of variations. Let there be a function G which is a function of random variable X and its
probability density function (PDF) as well as the first derivative of the PDF. If the integral of
G is written as

I =
b∫

a

G
(
x, f (x) , f ′ (x)

)
dx (3.49)

then f (x) can be obtained by differentiating G and equating the derivative to zero as

∂G

∂f (x)
− d

dx

(
∂G

∂f ′ (x)

)
= 0 (3.50)

The PDF, f (x), so obtained maximizes or minimizes I. In our case L in equation (3.48) does
not involve f ′ (x) and is therefore a function of f (x) alone. Therefore, one differentiates L with
respect to f (x) only and equates the derivative to zero:

∂L

∂f
= 0 ⇒ −[1 + ln f (x)] − (λ0 − 1

)−
m∑

r=1

λrgr (x) = 0 (3.51)

This yields

f (x) = exp
[−λ0 − λ1g1 (x) − . . . − λmgm (x)

]
(3.52)

Equation (3.52) is the POME-based probability distribution containing the Lagrange multi-
pliers as parameters. Equation (3.52) is also written as
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f (x) = 1

Z
(
λ1, λ2, . . . , λm

)exp

[
−

m∑
r=1

λrgr (x)

]
(3.53)

where Z is called the partition function. The Lagrange multipliers λ1, λ2, . . . λm can be
determined by inserting equation (3.52) in equations (3.46) and (3.47):

exp
(
λ0

) =
b∫

a

exp

[
−

m∑
r=1

λrgr (x)

]
dx, r = 1, 2, . . . , m (3.54)

and

Crexp
(
λ0

) =
b∫

a

gr (x) exp

[
−

m∑
r=1

λrgr (x)

]
dx, r = 1, 2, . . . , m (3.55)

Equation (3.54) expresses the partition function Z as

Z
(
λ1, λ2, . . . , λm

) =
b∫

a

exp

[
−

m∑
r=1

λrgr (x)

]
dx (3.56)

Combining equation (3.54) and (3.55), one gets

Cr =

b∫
a

gr (x) exp

[
−

m∑
r=1

λrgr (x)

]
dx

b∫
a

exp

[
−

m∑
r=1

λrgr (x)

]
dx

, r = 1, 2, . . . , m (3.57)

Equation (3.56) expresses constraints as functions of the Lagrange multipliers or

∂ log
[
Z
(
λ1, λ2, . . . , λr

)]
∂λr

= −Cr, r = 1, 2, . . . , m (3.58)

Thus, the Lagrange multipliers can be determined from the given constraints.

Example 3.8: Assume that no constraints are given or no knowledge is available a priori for
a random variable. Derive the probability distribution of this variable using POME.

Solution: In the case that all that is known is that equation (3.46) must be satisfied. Thus,
entropy given by equation (3.45) is maximized subject to equation (3.46). Then, equation
(3.53) becomes

f (x) = 1

Z (λ)
exp

[
−

0∑
r=1

λrgr (x)

]
(3.59)

The expression inside the exponential is zero, since there are no constraints. Therefore,

f (x) = 1

Z (λ)
(3.60)
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Equation (3.56) yields

Z(λ) =
b∫

a

dx = b − a (3.61)

Therefore,

f (x) = 1

b − a
(3.62)

which is a uniform probability density function on the interval <a, b>. According to the
principle of insufficient reason, if nothing is known then the maximum noncommittal
distribution is the uniform distribution as given by POME. The entropy of the uniform
distribution is:

H(X) = −
b∫

a

1

b − a
log

[
1

b − a

]
dx = log (b − a) (3.63)

and is measured in bits if the logarithm is with respect to the base of 2 or in Napier if the base
is e.

It may be noted that if the limits of integration are extended as a → −∞ and b → ∞, or
a → 0 and b → ∞, POME would hold and the algebraic analysis would hold. When a random
variable varies within these infinite limits, it cannot have a rectangular distribution if the only
constraint is the total probability law.

Example 3.9: Assume that no constraints are given or no knowledge is available a priori for
a random variable. Derive the probability distribution of this variable using POME if the limits
of the variable are [−∞, ∞].

Solution: In the case that all that is known is that equation (3.46) must be satisfied. Thus,
entropy given by equation (3.45) is maximized subject to equation (3.46). Then, equation
(3.53) becomes

f (x) = 1

Z (λ)
exp

[
−

0∑
r=1

λrgr (x)

]
(3.64)

The expression inside the exponential is zero, since there are no constraints. Therefore,

f (x) = 1

Z (λ)
(3.65)

Equation (3.56) yields

Z (λ) =
∞∫

−∞
dx = ∞ + ∞ (3.66)

which is indeterminate. Therefore, in this situation, the probability distribution f (x) cannot be
determined.
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Table 3.1 Stream flow (unit: cfs) of Brazos River at Richmond, Texas, for May from 1979 to 2007 [Note: – means

the data is missing].

Year Flow (cfs) Year Flow (cfs) Year Flow (cfs)

1979 26,330 1989 15,229 1999 3,752
1980 15,520 1990 39,470 2000 3,212
1981 – 1991 13,940 2001 7,968
1982 – 1992 23,060 2002 1,462
1983 – 1993 19,780 2003 1,883
1984 2,002 1994 11,050 2004 23,110
1985 7,581 1995 15,340 2005 –
1986 10,770 1996 818.60 2006 3,332
1987 4,994 1997 21,030 2007 29,800
1988 1,206 1998 2,771

Example 3.10: Consider monthly (May) stream flow data for Brazos River at Richmond,
Texas (gaging station USGS 08114000), as given in Table 3.1. Compute the mean and variance
of the May-month stream flow data. Then, compute entropy for rectangular, exponential, and
log-normal distributions that one may wish to fit the data. For the rectangular distribution,
entropy is given as

H(X) = ln (a − b) (3.67)

where x is the value of stream flow, and a < x > b. For the exponential distribution, entropy
is:

H(X) = ln (ex) (3.68)

where e is the base of the logarithm. For the normal distribution, entropy is given as

H(Y) = ln
[
Sy (2πe)0.5

]
(3.69a)

where Sy is the standard deviation of Y . Assume X = exp (Y), where x ∈ (0, ∞), then Y has
the log-normal distribution. The entropy for the log-normal distribution is:

H(X) = H(Y) + y (3.69b)

Show if entropy decreases as the number of constraints increases.

Solution: The mean, variance, and standard deviation of the given data are computed as

x = 1

N

N∑
i=1

xi = 2216cfs

Var(x) = E(X2) − [E(X)]2 = 1

N

N∑
i=1

(xi − x)2 = 1.0595e + 008(cfs)2
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Sx =
√√√√ 1

N − 1

N∑
i=1

(
xi − x

)2 = 1050.60 cfs

Now entropy is computed. For the rectangular distribution, H(X) = ln (a − b) in which
a = 39470 cfs and b = 818.6 cfs then H(X) = ln (39470 − 818.6) = 10.56 Napiers For the
exponential distribution, H(X) = ln (ex) = ln (12216e) = 10.41 Napiers For the normal dis-
tribution, H(X) = ln[Sx (2πe)0.5] = ln[1050.6 (2πe)0.5] = 8.38 Napiers. From these results it is
seen that entropy decreases as the number of constraints increases. For the same set of data,
the entropy for the rectangular distribution is the largest and the one for normal distribution
is the smallest among the three distributions.

3.3.2 Direct method for entropy maximization
The entropy is maximized directly with respect to the specified constraints, that is, by
differentiating entropy with respect to specified constraints. To illustrate the method, an
example is considered.

Example 3.11: Consider a random variable X ∈ (−π , π) Determine its probability density
function f (x) subject to the condition that the coefficients of its Fourier series expansion cj are
known for | j| ≤ J:

cj = 1

2π

π∫
−π

f (x) exp (ijx) dx, |j| ≤ J

Solution: The PDF f (x) can be expressed as a Fourier series:

f (x) =
∞∑

j=−∞
ci exp (−ijx) , − π ≤ x ≤ π

Entropy given as

H(X) = −
π∫

−π

f (x) log f (x) dx

is maximized subject to the specified constraints. Since H depends on cj, its maximum is
obtained as

∂H

∂cj

= ∂H

∂f

∂f

∂cj

= −
π∫

−π

[
log f (x) + 1

]
exp (ijx) dx = 0, |j| > J

The term log f (x) + 1 can be written in the interval (−π , π) as:

log f (x) + 1 =
k=J∑

j=−J

γk exp (jkx)
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and coefficients γk of the Fourier series expansion of [log f (x) + 1] should be zero for | j| > J.
Thus,

f (x) = exp

[
−1 +

k=J∑
k=−J

γk exp (kjx)

]
, −π ≤ x ≤ π

Substitution of this equation into the constraint equation would lead to a system of nonlinear
equations whose solution would yield parameters γk.

3.4 POME formalism for two variables

The POME formalism discussed for univariate cases in the preceding sections can now be
extended to bivariate cases where one can maximize either joint entropy, conditional entropy,
or transinformation (i.e., mutual entropy or joint information). Consider the case of two
random variables X and Y for which one can write these three types of entropies, respectively,
as:

H (X, Y) = −
∞∫

0

∞∫
0

f (x, y) ln f (x, y) dx dy (3.70)

H(Y |X) = −
∫ ∫

f (x, y) ln f (y|x)dx dy = −
∞∫

0

∞∫
0

f (x, y) ln
f (x, y)

f (x)
dx dy (3.71)

T (X, Y) = H(X) + H(Y) − H (X, Y) =
∞∫

0

∞∫
0

f (x, y) ln
f (x, y)

f (x) g(y)
dx dy (3.72)

First, the objective is to maximize H (X, Y) given by equation (3.70). To that end, the following
constraints are defined:

∞∫
0

∞∫
0

f (x, y) dy dx = 1 (3.73)

∞∫
0

∞∫
0

xf (x, y) dy dx = x (3.74)

∞∫
0

∞∫
0

yf (x, y) dy dx = y (3.75)

∞∫
0

∞∫
0

xyf (x, y) dy dx = xy = σxy (3.76)

Using the method of Lagrange multipliers, one gets

f (x, y) = exp
(−λ0 − λ1x − λ2y − λ3xy

)
(3.77)
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Inserting equation (3.77) in equation (3.73), one gets

∞∫
0

∞∫
0

f (x, y) dy dx = 1 = exp
(−λ0

) ∞∫
0

∞∫
0

exp
(−λ1x − λ2y − λ3xy

)
dx dy

= exp
(−λ0

) ∞∫
0

exp
(−λ1x

)
λ2 + λ3x

dx (3.78a)

One can also write

∞∫
0

∞∫
0

f (x, y) dy dx = 1 = exp
(−λ0

) ∞∫
0

exp
(−λ2y

)
λ1 + λ3y

dy (3.78b)

Substituting equation (3.77) in equation (3.74), one obtains

∞∫
0

∞∫
0

xf (x, y) dy dx = x = exp
(−λ0

) ∞∫
0

∞∫
0

x exp
(−λ1x − λ2y − λ3xy

)
dx dy

= exp
(−λ0

) 1

λ3

∞∫
0

exp
(−λ1x

)
dx − λ2

λ3

∞∫
0

exp
(−λ1x

)
λ2 + λ3x

dx




= exp
(−λ0

)
λ3λ1

− λ2

λ3

(3.79a)

Equation (3.79a) can be simplified as follows:

∞∫
0

∞∫
0

xf (x, y) dy dx = x = exp
(−λ0

) ∞∫
0

x
exp

(−λ1x
)

λ2 + λ3x
dx




= exp
(−λ0

) 1

λ3

∞∫
0

(
λ2 + λ3x − λ2

λ2 + λ3x

)
exp

(−λ1x
)

dx

= exp
(−λ0

)
λ3


 ∞∫

0

exp
(−λ1x

)
dx − λ2

∞∫
0

exp
(−λ1x

)
λ2 + λ3x

dx


 (3.79b)

Taking advantage of equation (3.78b), equation (3.79b) can be simplified as

∞∫
0

∞∫
0

xf (x, y) dy dx = x = exp
(−λ0

)
λ3

∞∫
0

exp
(−λ1x

)
dx − λ2

λ3


exp

(−λ0

) ∞∫
0

exp
(−λ1x

)
λ2 + λ3x

dx




= exp
(−λ0

)
λ1λ3

− λ2

λ3

(3.79c)

Substituting equation (3.77) in equation (3.75), one gets

∞∫
0

∞∫
0

yf (x, y) dy dx = y = exp
(−λ0

) ∞∫
0

y

∞∫
0

exp
(−λ1x − λ2y − λ3xy

)
dx dy

= exp
(−λ0

) ∞∫
0

y
exp

(−λ2y
)

(
λ1 + λ3y

) dy (3.80a)
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Equation (3.80a) can be simplified as follows:

∞∫
0

∞∫
0

yf (x, y) dy dx = y = exp
(−λ0

) ∞∫
0

(
λ1 + λ3y − λ1

)
exp

(−λ2y
)

λ3

(
λ1 + λ3y

) dy

= exp
(−λ0

)
λ3

∞∫
0

exp
(−λ2y

)
dy − λ1

λ3


exp

(−λ0

) ∞∫
0

exp
(−λ2y

)
λ1 + λ3y

dy




(3.80b)

Equation (3.80b), with the use of equation (3.78b), simplifies to

∞∫
0

∞∫
0

yf (x, y) dy dx = y = exp
(−λ0

)
λ2λ3

− λ1

λ3

(3.80c)

Substituting equation (3.77) in equation (3.76), one obtains

∞∫
0

∞∫
0

xyf (x, y) dy dx = xy = exp
(−λ0

) ∞∫
0

x exp
(−λ0 − λ1x

)
dx

∞∫
0

y exp
(−λ2y − λ3xy

)
dy

= exp
(−λ0

) ∞∫
0

x exp
(−λ1x

)
(
λ2 + λ3x

)2 dx (3.81)

The marginal probability density function of X is obtained from equation (3.77) as

∞∫
0

f (x, y) dy = f (x) = exp
(−λ0 − λ1x

)
(
λ2 + λ3x

) (3.82)

Similarly, the PDF of Y is obtained as

∞∫
0

f (x, y) dx = g(y) = exp
(−λ0 − λ2y

)
(
λ1 + λ3y

) (3.83)

For conditional entropy H (Y |X) one requires

f (x, y)

f (x)
= exp

(−λ0 − λ1x − λ2y − λ3xy
)

exp
(−λ0 − λ1x

) (
λ2 + λ3x

)−1 = (λ2 + λ3x
)

exp
(−λ2y − λ3xy

)
(3.84)

H (Y |X) = −
∞∫

0

∞∫
0

f (x, y)
[
ln
(
λ2 + λ3x

)− (λ2y + λ3xy
)]

dx dy (3.85)

Equation (3.85) can be written as

H (Y |X) = −
∞∫

0

∞∫
0

exp
(−λ0 − λ1x − λ2y − λ3xy

) [
ln
(
λ2 + λ3x

)− (λ2y + λ3xy
)]

dx dy (3.86)
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Equation (3.86) can be used to maximize the conditional entropy.
For transinformation, one requires

f (x, y)

f (x) g(y)
= exp

(−λ0 − λ1x − λ2y − λ3xy
)

exp
(−2λ0 − λ1x − λ2y

) [(
λ2 + λ3x

) (
λ1 + λ3y

)]−1 (3.87)

Transinformation can now be expressed as

T (X, Y) =
∞∫

0

∞∫
0

f (x, y)
[
ln
(
λ1 + λ3y

)+ ln
(
λ2 + λ3x

)+ λ0 − λ3xy
]

dx dy (3.88)

Equation (3.88) can be expressed as

T (X, Y) =
∞∫

0

ln
(
λ1 + λ3y

)
(
λ1 + λ3y

) exp
(−λ0 − λ2y

)
dy +

∞∫
0

ln
(
λ2 + λ3x

)
(
λ2 + λ3x

) exp
(−λ0 − λ1x

)
dx

+ λ0 − λ3

∞∫
0

x exp
(−λ0 − λ1x

)
(
λ2+λ3x

)2 dx (3.89)

Equation (3.89) gives transinformation where the Lagrange multipliers are determined using
constraint equations (3.73)–(3.76). One can then minimize the transinformation.

In the second case, the entropy given by equation (3.70) is maximized subject to the
constraints given by equations (3.73) and (3.76) as well as the following:

∞∫
−∞

∞∫
−∞

x2f (x, y) dy dx = x2 = σ 2
x (3.90)

∞∫
−∞

∞∫
−∞

y2f (x, y) dy dx = y2 = σ 2
y (3.91)

Using the method of Lagrange multipliers, the entropy-based probability density function will
be:

f (x, y) = exp
(−λ0 − λ1x2 − λ2y2 − λ3xy

)
(3.92)

Using equation (3.92) in equation (3.73), one gets

exp(−λ0)

∞∫
−∞

exp(−λ1x2)dx

∞∫
−∞

exp

[
−λ2

(
y2 + λ3

λ2xy

)
dy

= exp(−λ0)

∞∫
−∞

exp

[
−
(

λ1 − λ2
3

4λ2

)]
x2

√
π√
λ2

= 1 (3.93)

This can be simplified as

exp
(−λ0

) π√
λ2

1√
λ1 − λ2

3
4λ2

= 1 = exp
(−λ0

) 2π√
4λ1λ2 − λ2

3

(3.94)
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This yields

exp
(
λ0

) = 2π√
4λ1λ2 − λ2

3

(3.95)

Inserting equation (3.92) in equation (3.90), one obtains

x2 = exp
(−λ0

) √
π

2
√

λ2

∞∫
−∞

x2exp

[
−
(

λ1 − λ2
3

4λ2

)
x2

]
dx

= exp
(−λ0

) √
π

2
√

λ2

√
π(

λ1 − λ2
3

4λ2

)3/2 = 2λ2(
4λ1λ2 − λ2

3

) = σ 2
x (3.96)

Similarly, substitution of equation (3.92) in equation (3.91) yields

y2 = σ 2
y = 2λ1(

4λ1λ2 − λ2
3

) (3.97)

Substitution of equation (3.92) in equation (3.76) leads to

σxy = xy = exp
(−λ0

) ∞∫
−∞

x exp
(−λ1x2) dx

∞∫
−∞

exp

{
−λ2

[(
y + λ3

2λ2

x

)2

− λ2
3

4λ2
2

x2

]
dy (3.98)

Taking Y = y + (0.5λ3/λ2

)
x, equation (3.98) can be simplified as

σxy = exp
(−λ0

) (− λ3

2λ2

) √
π√
λ2

∞∫
−∞

x2 exp[−
(

λ1 − λ2
3

4λ2

)
x2dx = − λ3(

4λ1λ2 − λ2
3

) (3.99)

Thus, the joint probability distribution can be written as

f (x, y) =
√

4λ1λ2 − λ2
3

2π
exp

[
−
(

4λ1λ2 − λ2
3

2

)(
σ 2

y x2 + σ 2
x y2 − 2σxyxy

)]
(3.100)

Note that

σ 2
x σ 2

y − σ 2
xy = 1(

4λ1λ2 − λ2
3

) (3.101)

Equation (3.100) becomes

f (x, y) = 1

2π
√

σ 2
x σ 2

y − σ 2
xy

exp[−
(
σ 2

y x2 + σ 2
x y2 − 2σxyxy

)
2
(
σ 2

x σ 2
y − σ 2

xy

) (3.102)
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From equation (3.102) one can obtain

f (x) =
∞∫

−∞
f (x, y) dy = 1

2π
√

σ 2
x σ 2

y − σ 2
xy

exp


− σ 2

y x2

2
(
σ 2

x σ 2
y − σ 2

xy

)



×
∞∫

−∞
exp


− σ 2

x

2
(
σ 2

x σ 2
y − σ 2

xy

) (y2 − 2σxy

σ 2
x

xy

)dy (3.103)

Equation (3.103) simplifies to

f (x) = 1√
2πσx

exp

(
− x2

2σ 2
x

)
(3.104)

The conditional probability distribution can now be written as

f (y|x) = f (x, y)

f (x)
= 1

2π
√

σ 2
x σ 2

y − σ 2
xy

exp
{[−(4λ1λ2 − λ2

3)/2
] [

σ 2
y x2 + σ 2

x y2 − 2σxyxy
]}

exp
[
− x2

2σ2
x

] √
2πσx

(3.105)

Equation (3.105) simplifies to

f (y|x) = σx√
2π(σ 2

x σ 2
y − σ 2

xy)
1/2

exp


−

σ2
xy

σ2
x

x2 + σ 2
x y2 − 2σxyxy

2(σ 2
x σ 2

y − σ 2
xy)


 (3.106)

One can now write the joint entropy as well as marginal entropies.
One can also maximize H (X, Y) subject to the constraints given by equations (3.90), (3.91)

and (3.76), where f (x) is also determined if only x2 is specified. In this case the joint probability
distribution is given by equation (3.102), and f (x) is given by equation (3.104). Thus, the
same answer will be obtained in this case because of self-consistency conditions.

H (X, Y) = ln[2π
√

σ 2
x σ 2

y − σ 2
xy + 1 (3.107)

The marginal entropies are

H(X) = ln
(√

2πσx

)
+ 1

2
(3.108)

H(Y) = ln
(√

2πσy

)
+ 1

2
(3.109)

Thus,

T (X, Y) = −H (X, Y) + H(X) + H(Y) = ln


 σxσy√

σ 2
x σ 2

y − σ 2
xy


 = 1

2
ln

[
σ 2

x σ 2
y

σ 2
x σ 2

y − σ 2
xy

]
(3.110)
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Example 3.12: Consider yearly rainfall and runoff for Brazos River for a number of years
(equal to or greater than 30 years). Compute, mean, variance, standard deviation, and
coefficient of variation of rainfall and runoff, and covariance between them. Then compute
f (x), f (y), f (x, y), T (X, Y), H(X), H(Y), and H (X, Y)

Solution: Stream flow data for Brazos River is obtained for a gaging station located near
Bryan (USGS 08109000) from 1941–93 from the USGS website. Rainfall data for the Bra-
zos County from 1941–93 is obtained from the Texas Water Development Board website
[http://www.twdb.state.tx.us/]

x = 39.5, y = 5170.3, Sx = 76.3, Sy = 15741278, σx = 8.7, σy = 3967.5

Cvx = σx

x
= 0.22

Cvy = σy

y
= 0.77

Cov (x, y) = σxy = E ((x − x) (y − y)) = 17709.9

f (x) = 1√
2πσx

exp

(
− (x − x)2

2σ 2
x

)
= 1

8.7
√

2π
exp

(
− (x − 39.5)2

152.6

)

f (y) = 1√
2πσy

exp

(
− (y − y)2

2σ 2
y

)
= 1

3967.5
√

2π
exp

(
− (y − 5170.3)2

31482556

)

f (x, y) = 1

2π
√

σ 2
x σ 2

y − σ 2
xy

exp


−

(
σ 2

y x2 + σ 2
x y2 − 2σxyxy

)
2
(
σ 2

x σ 2
y − σ 2

xy

)



= 5.34269 × 10−6exp

[
−
(
3967.5x2 + 8.7y2 − 35419.9xy

)
1774803407

]

H(X) = ln
(√

2πσx

)
+ 1

2
= 3.59 Napier

H(Y) = ln
(√

2πσy

)
+ 1

2
= 9.70 Napier

T (X, Y) = 1

2
ln

[
σ 2

x σ 2
y

σ 2
x σ 2

y − σ 2
xy

]
= 0.15 Napier
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3.5 Effect of constraints on entropy

Let there be m constraints imposed on f (x) and defined as

Cr =
b∫

a

Ar (x) f (x) dx, r = 1, 2, . . . , m (3.111)

in which Ar (x) is known function of x for each r = 1, 2, . . . m. Thus, Cr is the average of Ar (x)
The entropy-based PDF is

f (x) = exp

[
−λ0 −

m∑
r=1

λrAr (x)

]
(3.112)

where λr, r = 1, 2, . . . , m, are Lagrange multipliers, determined from known constraints. The
maximum entropy is then given as

Hm (f ) = −
b∫

a

f (x) ln[f (x)]dx = −λ0 −
N∑

r=1

λrCr (3.113)

Now suppose that q(x) is another probability distribution obtained by satisfying n constraints,
The maximum entropy is expressed as:

Hn (q) = −
b∫

a

q(x) ln q(x) dx (3.114)

Note that n includes the previous m constraints plus some more. Then

Hn (q) ≤ Hm (f ) , n ≥ m (3.115)

The question is if equation (3.115) holds. To answer the question consider cross entropy,

H(q|f ) =
b∫

a

q(x) ln

[
q(x)

f (x)

]
dx =

b∫
a

q(x) ln q(x)dx −
b∫

a

q(x) ln f (x)dx (3.116)

It is known that H(q|f ) ≥ 0. Recalling Jensen’s inequality

x − 1 ≥ ln x ≥ 1 − 1

x
⇒ x2 − x ≥ x ln x ≥ x − 1 (3.117)

one can write

f (x) − f 2 (x) ≤ −f (x) ln f (x) ≤ 1 − f (x) (3.118)

Multiplying by dx and integrating equation (3.118) with limits from a to b, one gets

1 −
b∫

a

f 2 (x) dx ≤ H(f ) ≤
b∫

a

[1 − f (x)]dx = b − a − 1 (3.119)
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Using Jensen’s inequality, equation (3.116) can be written as

H(q|f ) ≥
b∫

a

q(x)

[
1 − f (x)

q(x)

]
dx = 0 (3.120)

From equation (3.116) and using equation (3.120) one can write

−
b∫

a

q(x) ln q(x) dx ≤ −
b∫

a

q(x) ln f (x) dx (3.121)

−
b∫

a

q(x) ln

{
exp

[
−λ0 −

n∑
r=1

λrAr (x)

]}
dx ≤ −

b∫
a

q(x) ln

{
exp

[
−λ0 −

m∑
r=1

λrAr (x)

]}
dx

(3.122)

This yields

λ0 +
n∑

r=1

λrCr (x) ≤ λ0 +
m∑

r=1

λrCr (x) (3.123)

This shows that H(q) ≤ H(f ) .
Equation (3.116) can be written using expansion of the log term as

H(q|f ) = −
b∫

a

q(x) ln

(
1 + q(x) − f (x)

f (x)

)
dx ≥ −1

2

b∫
a

q(x)

[
ln(1 + q(x) − f (x)

f (x)
)2

]
dx (3.124)

Therefore, using Jensen’s inequality,

H (q|f ) ≥ 1

2

b∫
a

q(x)

(
f (x) − q(x)

q(x)

)2

(3.125)

Because the first m constraints are the same, it may be noted that

−
b∫

a

q(x) ln q(x) dx = −
b∫

a

f (x) ln f (x) dx (3.126)

Therefore,

H (q|f ) = Hm (f ) − Hn (q) (3.127)

This shows that an increase in the number of constraints leads to a decrease in entropy or
uncertainty as regards the system information.

Example 3.13: Consider the maximum yearly peak discharge values for Brazos River at
College Station. Compute the mean, variance, standard deviation, and coefficient of variation.
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Then, compute the probability distribution using only mean as the constraint and call it f (x)
Then using mean and variance in the logarithmic domain as the constraints compute the
probability distribution and call it q(x) which will be a log-normal distribution. Compute
H[f (x)] and H[q(x)] and show that H(q) < H(f ) .

Solution: x = 23741, s2
x = 397384148, σx = 19935, Cvx = x

σx
= 0.840. With the mean as the

constraint, we get the exponential distribution. For the exponential distribution, entropy is:

H (x) = ln (ex)

where e is the base of the logarithm. When the variance is added, we can get the normal
distribution. For the log-normal distribution, entropy is given as I (x) = ln[Sy (2πe)0.5] + y ,
where x = exp (y), where x ∈ (0, ∞) , y is normally distributed. Then we can get:

H (f ) = ln (ex) = 11.07

H (q) = ln
[
Sy (2πe)0.5

]
+ y = 11.01

Then it can be seen that H(q) < H(f ) .

3.6 Invariance of total entropy

The Shannon entropy is a measure of information of the system described by a PDF. Let us
suppose that different PDFs are proposed to describe the system. The total information of the
system is fixed and different PDFs attempt to get the best estimate of this information. If these
PDFs yield the same information content, then their parameters must be related to each other.
To illustrate, consider that the system is described by an exponential distribution:

f (x) = a exp (−ax) , 0 ≤ x < ∞, a ≥ 0 (3.128)

Now consider an extreme value type I distribution:

q (y) = a0 exp
[−a0y − exp

(−a0y
)]

, − ∞ < y < ∞ (3.129)

Entropy of equation (3.128) is

H (f ) = ln
( e

a

)
(3.130)

Likewise, entropy of equation (3.129) is

H (q) = ln

(
e

a0

)
− λ (3.131)

where γ = 0.57 is Euler’s constant. Equation (3.130) and (3.131) are related by the transfor-
mation:

ax = exp
(−a0y

)
(3.132)

Thus,

f (x)dx = a exp(−ax)dx = a0 exp[−exp(−a0y)]dy = q(y)dy (3.133)
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If f (x) and q(y) yield the same information about the system then H(f ) = H(q) or equating
equations (3.130) and (3.131), one obtains

a = a0 exp (γ ) (3.134)

This establishes a relation between parameters of the exponential and extreme value type I
distributions. This means a0 can be determined by knowing a.

Questions

Q.3.1 Consider an experiment on a random variable X with possible outcomes
X :

{
x1, x2, x3, x4

}
each with probability P :

{
p1, p2, p3, p4

}
. How many degenerate

distributions can there be? Write these distributions. What would be the entropy of
each of these degenerate distributions?

Q.3.2 Consider the experiment in Q.3.1. There can be many distributions having nonzero
entropy. State the distribution that would have the maximum entropy amongst all
non-zero entropy distributions. What would be the maximum entropy? What is the
constraint on which this maximum entropy distribution is based?

Q.3.3 In the discrete POME formalism λ0 is expressed as a function of Lagrange multipliers
λ1, λ2, . . . , λm if there are m constraints. Show that this function is convex.

Q.3.4 In the discrete POME formalism, show if Hmax is a concave function of constraints
C1, C2, . . . , Cm.

Q.3.5 Show that in the discrete POME formalism, derivatives of Hmax with respect to
constraints C1, C2, . . . , Cm are equivalent to Lagrange multipliers.

Q.3.6 Consider the continuous POME formalism. Show that partial derivatives of the
partition function are equal to negative of constraints.

Q.3.7 Obtain data on the number of rainy days (n) for a number of years (say, 30 or
more years) for College Station in Texas. Using the mean number of rainy days as a
constraint, determine the discrete distribution that n follows. Fit this distribution to
the histogram and discuss how well it fits. Compute the entropy of the distribution.

Q.3.8 Consider the number of rainy days as a continuous random variable. Use the data
from Example 3.7. Using the mean number of rainy days as constraint, determine
the continuous distribution that n follows. Fit this distribution to the histogram and
discuss how well it fits. Compute the entropy of the distribution.

Q.3.9 Obtain the values of time interval between two successive rain events in College
Station, Texas, for a number of years (say 30 or more years) and select the maximum
value for each year. The maximum time interval between rainy days is considered
here as a random variable. Plot a histogram of the maximum values and discuss
what it looks like. Now compute the mean time interval in days. Using this statistic,
determine the discrete distribution that the time interval follows. Fit this distribution
to the histogram and discuss how well it fits. Compute the entropy of this distribution.

Q.3.10 Consider the time interval between two successive rain events and select the maximum
value for each year for the data in Q.3.9. The maximum time interval is considered
here as a continuous random variable. Using the mean time interval (maximum
values) as a constraint, determine the continuous distribution that the time interval
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follows. Fit this distribution to the histogram and discuss how well it fits. Compute the
entropy of the distribution.

Q.3.11 Obtain the values of time interval between two successive rain events in College
Station, Texas, for a number of years (say 30 or more years) and select the minimum
value for each year. The minimum time interval between rainy days is considered here
as a random variable. Plot a histogram of the minimum values and discuss what it
looks like. Now compute the mean time interval in days. Using this statistic, determine
the discrete distribution that the time interval follows. Fit this distribution to the
histogram and discuss how well it fits. Compute the entropy of this distribution.

Q.3.12 Consider the time interval between two successive rain events and select the minimum
value for each year. Use the data from Q.3.11. The minimum time interval is considered
here as a continuous random variable. Using the mean time interval (minimum values)
as a constraint, determine the continuous distribution that the minimum time interval
follows. Fit this distribution to the histogram and discuss how well it fits. Compute the
entropy of the distribution.

Q.3.13 Consider yearly rainfall for a number of years for College Station, Texas. Consider
yearly rainfall as a discrete random variable. Using the mean yearly rainfall as a
constraint, determine the discrete distribution that yearly rainfall follows. Fit this
distribution to the histogram and discuss how well it fits. Compute the entropy of the
distribution.

Q.3.14 Consider yearly rainfall as a continuous random variable. Use the data from Q.3.13.
Using the mean yearly rainfall as a constraint, determine the continuous distribution
that yearly rainfall follows. Fit this distribution to the histogram and discuss how well
it fits. Compute the entropy of the distribution.

Q.3.15 Obtain data on the number of days (n) having temperature above 36 ◦C (100 ◦F) for a
number of years (say, 30 or more years) for College Station in Texas. Using the mean
number of days as a constraint, determine the discrete distribution that n follows. Fit
this distribution to the histogram and discuss how well it fits. Compute the entropy of
the distribution.

Q.3.16 Consider the number of days (n) having temperature above 36 ◦C (100 ◦F) as a
continuous random variable. Use the data from Q.3.15. Using the mean number of
days as a constraint, determine the continuous distribution that n follows. Fit this
distribution to the histogram and discuss how well it fits. Compute the entropy of the
distribution.

Q.3.17 Obtain data on the number of days (n) having temperature equal to or below 0 ◦C

(32 ◦F) for a number of years (say, 30 or more years) for College Station in Texas.
Using the mean number of days as a constraint, determine the discrete distribution
that n follows. Fit this distribution to the histogram and discuss how well it fits.
Compute the entropy of the distribution.

Q.3.18 Consider the number of days (n) having temperature equal to or less than 0 ◦C (36 ◦F)
as a continuous random variable. Use the data from Q.3.17. Using the mean number
of days as a constraint, determine the continuous distribution that n follows. Fit this
distribution to the histogram and discuss how well it fits. Compute the entropy of the
distribution.

Q.3.19 Obtain the values of number of days without rainfall each year in College Station,
Texas. The number of rainless days each year is considered here as a random variable.
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Plot a histogram of the number of rainless days and discuss what it looks like. Now
compute the mean number of rainless days. Using this statistic, determine the discrete
distribution that the number of rainless days follows. Fit this distribution to the
histogram and discuss how well it fits. Compute the entropy of this distribution.

Q.3.20 Consider the number of rainless days as a continuous random variable. Use the data
from Q.3.19. Using the mean number of rainless days as a constraint, determine the
continuous distribution that the number of rainless days follows. Fit this distribution
to the histogram and discuss how well it fits. Compute the entropy of the distribution.
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4 Derivation of Pome-Based
Distributions

In Chapter 3, it has been discussed that the principle of maximum entropy (POME) leads
to a least-biased probability distribution for a given set of constraints. This chapter
extends this discussion further and derives a number of well-known probability dis-
tributions. The constraints are usually expressed in terms of moments (or averages of
some kind), although it is not a necessary condition. Examples of such constraints are
E[x], E[|x|], E[x2], E[ln x], E[ln(1 − x)], E[ln(1 + x)], E[{ln(x)}2] and E[ln(1 + x2)]. It must
however be noted that in the case of a continuous variable the limits of integration for
entropy and specification of constraints must be compatible, or else POME would not lead to
a probability distribution or POME-based probability distribution would not exist.

4.1 Discrete variable and discrete distributions

Here, depending on the constraints some well-known discrete distributions are derived.

4.1.1 Constraint E[x] and the Maxwell-Boltzmann distribution
Consider a random variable X which takes on values x1, x2, x3, . . . , xN with probabilities
p1, p2, p3, . . . , pN where N is the number of values. It goes without saying that the total
probability law holds:

N∑
i=1

pi = 1, pi ≥ 0, i = 1, 2, . . . , N (4.1)

The expected value of the variable is known:

p1x1 + p2x2 + . . . + pNxN =
N∑

i=1

xipi = x (4.2)

Entropy Theory and its Application in Environmental and Water Engineering, First Edition. Vijay P. Singh.

 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.



CHAPTER 4 Derivation of Pome-Based Distributions 173

The objective is to derive the POME-based distribution P = {p1, p2, . . . , pN}, subject to
equation (4.1) and (4.2). In other words, one maximizes the Shannon entropy:

H(p) = H(X) = −
N∑

i=1

pi ln pi (4.3)

subject to equation (4.1) and (4.2).
Following the POME formalism, one constructs the Lagrangean L:

L = −
N∑

i=1

pi ln pi − (λ0 − 1)

(
N∑

i=1

pi − 1

)
− λ1

(
N∑

i=1

pixi − x

)
(4.4)

Differentiating equation (4.4) with respect to pi, i = 1, 2, . . . , N, and equating each derivative
to zero, one obtains:

∂L

∂pi

= 0 ⇒ − ln pi − λ0 − λ1xi = 0, i = 1, 2, . . . , N (4.5)

Equation (4.5) yields

pi = exp[−λ0 − λ1xi], i = 1, 2, . . . , N (4.6)

Equation (4.6) contains parameters λ0 and λ1 that are determined with the use of equation
(4.1) and (4.2). Inserting equation (4.6) in equation (4.1), one gets

exp(−λ0) =
[

N∑
i=1

exp(−λ1xi)

]−1

(4.7a)

or

λ0 = log

[
N∑

i=1

exp(−λ1xi)

]
(4.7b)

When equation (4.7a) is substituted in equation (4.6) the result is

pi = exp(−λ1xi)
N∑

i=1

exp(−λ1xi)

(4.8)

Equation (4.8) is called the Maxwell-Boltzmann (M-B) distribution used in statistical mechan-
ics. Before discussing its application in different areas, one first determines its parameter λ1 in
terms of constraint x. If the Lagrange multiplier for the average value of X is redundant, that
is, λ1 = 0, the exponential distribution reduces to a uniform distribution pi = 1/N.

Inserting equation (4.6) in equation (4.2), one gets

N∑
i=1

xi exp (−λ0 − λ1xi) = x (4.9)
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Taking advantage of equation (4.7a), equation (4.9) yields

N∑
i=1

xi exp (−λ1xi)

N∑
i=1

exp (−λ1xi)

= x (4.10)

Equation (4.10) permits the estimation of λ1 in terms of x.
Kapur (1989), and Kapur and Kesavan (1987, 1992) have discussed mathematical details of

the M-B distribution. If λ1 = 0, clearly equation (4.6) would be a rectangular distribution with
pi = 1/N. If λ1 is negative, then the probability increases as xi increases, and if λ1 > 0 then
the probability decreases as xi increases. In physics the M-B distribution has been employed
to derive the microstates of a system on the basis of some knowledge about macroscopic data.
For example, if a system had a large number of particles each with an energy level then
the M-B distribution would be employed to determine the probability distribution of energy
levels of particles, provided the expected energy of the system was somehow known. The
M-B distribution, although developed in statistical mechanics, is applicable to a wide range
of problems in environmental and water engineering. Fiorentino et al. (1993) employed the
M-B distribution to describe the probability distribution of elevations of links in a river basin
if the mean basin elevation was known. It is possible to employ the M-B distribution for
representing the probability distribution of elevations, lengths, and drainage areas of channels
of a given order, say, first order in a river basin.

The maximum entropy of the distribution becomes

Hmax = λ0 + λ1x

This shows that the maximum entropy is a function of the Lagrange multipliers and the
constraint. It depends on the spread of the distribution. In this sense, entropy can be regarded
as a system wide accessibility function where the partition and the x values relate to the
probabilities across the system.

4.1.2 Two constraints and Bose-Einstein distribution
One can extend the discussion of the M-B distribution here by considering another moment-
type constraint. Consider a case where values of a random variable X can be arranged into
N categories. In each category X takes on k values (from 0 to ∞). The values of the random
variable X can then be denoted as: X : {xjk; j = 1, 2, . . . , N; k = 1, 2, . . . , M}, where the
value of M can be as large as infinity. Thus, each value of random variable X can be associated
with one of j attributes, where j = 1, 2, . . . , N. In statistical mechanics xjk represents the k

number of particles associated with an energy level j; here k signifies the number of particles
in energy level j. In hydrology, one considers the case of a river basin where there is a
large number of links each associated with an elevation or elevation interval. It is possible to
define a finite number of elevations or range of elevations, say N, in the basin. Then there
can be k links (k = 0, 1, 2, . . . , ∞) having elevations j ( j = 1, 2, . . . , N). Thus the number
of links being of elevation j is a random variable. Corresponding to an elevation there can
be k links between zero and infinity. Thus, one has two variables: 1) the number of links
k and 2) the elevation j that k possesses. Similarly, consider a farm on which there are a
large number of plants whose heights can be classified into a number of categories, and each
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plant is associated with a particular height. Then the number of plants of a particular height
is a random variable. Here k represents the number of plants of a particular height j and N
represents the categories of plant heights. For geomorphologic analysis, a river basin is ordered
following the Horton-Strahler ordering scheme. Suppose a basin is a 6-th order basin using
this scheme. Then, there can be a large number of channels for each order, except the highest
order. Here, order is tantamount to category or energy level, denoted by j and number of
channels in each order denoted by k is the random variable.

One considers pjk as the probability of k links being in the j-th state or elevation from
amongst N elevation states. The value xj defines the value of variable X in the j-th state. Thus,

∞∑
k=0

pjk = 1, j = 1, 2, . . . , N (4.11)

It is known that

N∑
j=1

∞∑
k=0

kpjk = k (4.12)

and

N∑
j=1

xj

∞∑
k=0

kpjk = x (4.13)

where k is the average value of k (the number), and x is the average value of elevations of the
basin.

The Shannon entropy for the j-th elevation category can be expressed as

Hj = −
∞∑

k=0

pjk ln pjk, j = 1, 2, . . . , N (4.14)

The probability distribution of one elevation category is independent of the probability
distribution of another elevation category. Therefore, the total entropy of the system is the
sum of entropies of all the elevation categories:

H = H1 + H2 + . . . + HN (4.15)

or

H = −
N∑

j=1

∞∑
k=0

pjk ln pjk (4.16)

In order to determine pjk, H in equation (4.16) is maximized, subject to equation (4.11) to
(4.13). To that end, the Lagrange multiplier L is constructed as

L = −
N∑

j=1

∞∑
k=0

pjk ln pjk −
N∑

j=1

(λ0 − 1)

( ∞∑
k=0

pjk − 1

)
− λ1


 N∑

j=1

∞∑
k=0

kpjk − k




− λ2


 N∑

j=1

xj

∞∑
k=0

kpjk − x


 (4.17)



176 Entropy Theory and its Application in Environmental and Water Engineering

Differentiating equation (4.17) with respect to pjk and equating the derivative to zero, one
obtains

∂L

∂pjk

= 0 ⇒ pjk = exp(−λ0 j) exp[−k(λ1 + λ2xj)]

= aj exp[−k(λ1 + λ2xj)], j = 1, 2, . . . , N; k = 0, 1, 2, . . . , ∞ (4.18)

where aj = exp(−λ0j). Parameters λ0, λ1 and λ2 are determined with the use of equations
(4.11) to (4.13) Substituting equation (4.18) in equation (4.11), one gets

aj

∞∑
k=0

exp[−k(λ1 + λ2xj)] = 1 (4.19)

Equation (4.19) yields

aj = 1 − exp[−(λ1 + λ2xj)] (4.20)

Coupling equation (4.20) with equation (4.18), one obtains

pjk = {1 − exp[−(λ1 + λ2xj)]} exp[−k(λ1 + λ2xj)] (4.21)

Substituting equation (4.21) in equation (4.12) one gets

N∑
j=1

∞∑
k=0

k{1 − exp[−(λ1 + λ2xj)} exp[−k(λ1 + λ2xj)] = k (4.22)

The inside summation designated as Kj in equation (4.22) can be simplified as

Kj =
∞∑

k=0

k{1 − exp[−(λ1 + λ2xj)]} exp[−k(λ1 + λ2xj)]

= {1 − exp[−(λ1 + λ2xj)]}
∞∑

k=0

k exp[−k(λ1 + λ2xj)]

= exp[−λ1 − λ2xj]

1 − exp[−λ1 − λ2xj]
= 1

exp(λ1 + λ2xj) − 1
(4.23)

Substitution of equation (4.23) in equation (4.22) yields

N∑
j=1

Kj =
N∑

j=1

1

exp(λ1 + λ2xj) − 1
= k (4.24)

Inserting equation (4.21) in equation (4.13) and taking advantage of equation (4.23) one gets

N∑
j=1

Kjxj =
N∑

j=1

xj

exp(λ1 + λ2xj) − 1
= x (4.25)

Equation (4.24) and (4.25) are solved to determine λ1 and λ2 in terms of k and x.
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Equation (4.21) is the probability distribution of the number of links of different elevations.
The distribution of the expected number of links in N states, Kj (j = 1, 2, . . . , N), is the
Bose-Einstein (B-E) distribution. Note one can normalize the expected number of links of the
j-the elevation as

pj = Kj

k
(4.26)

Then, (p1, p2, . . . , pN) can be regarded as a probability distribution, wherein pj can be viewed
as the probability of a link having the j-th elevation. The B-E distribution was derived in
statistical mechanics as the distribution of the expected number of particles in different states.
This has wide ranging applications in environmental and water engineering as well as other
disciplines.

4.1.3 Two constraints and Fermi-Dirac distribution
In this case the assumption is that each state contains either no particle or one particle. Thus,
comparing with the B-E distribution, the number of particles (k) varies from 0 to 1 instead of
∞. As an example, a day can be considered as a state, and a day may contain a rainstorm or
not. Thus, the number of rainstorms varies from 0 to 1. Therefore, constraint equation (4.11)
to (4.13) become:

1∑
k=0

pjk = 1 (4.27)

N∑
j=1

1∑
k=0

kpjk = k (4.28)

N∑
j=1

xj

1∑
k=0

kpjk = x (4.29)

Similarly, equation (4.16) becomes

Hj = −
N∑

j=1

1∑
k=0

pjk ln pjk, j = 1, 2, . . . , N (4.30)

As in the case of the B-E distribution, the method of Lagrange multipliers yields

pjk = aj exp[−k(λ1 + λ2xj)] (4.31)

Substituting equation (4.31) in equation (4.27), one obtains

aj = 1

1 + exp[−(λ1 + λ2xj)]
(4.32)

Using equation (4.32) the expected number of particles in the j-th state can now be expressed as

Kj =
1∑

k=0

kpjk = pj1 = 1

1 + exp(λ1 + λ2xj)
, j = 1, 2, . . . , N (4.33)

Equation (4.33) is the Fermi-Dirac distribution.



178 Entropy Theory and its Application in Environmental and Water Engineering

4.1.4 Intermediate statistics distribution
This distribution occurs during transition from the B-E distribution to the F-D distribution.
It is assumed that the number of particles in any state is constrained by a maximum value
mj (between ∞ in the B-E distribution and 1 in the F-D distribution). Therefore, constraint
equation (4.11) to (4.13) and (4.16) become

mj∑
k=0

pjk = 1, j = 1, 2, . . . , N (4.34)

N∑
j=1

mj∑
k=0

kpjk = k (4.35)

N∑
j=1

xj

mj∑
k=0

kpjk = x (4.36)

and

H = −
N∑

j=1

mj∑
k=0

pjk ln pjk (4.37)

Maximization of equation (4.37), subject to equation (4.34) to (4.36), using the method of
Lagrange multipliers produces

pjk = aj exp[−k(λ1 + λ2xj)], j = 1, 2, . . . , N; k = 0, 1, 2, . . . , mj (4.38)

If

yj = exp(−λ1 − λ2xj) (4.39)

Then, equation (4.38) becomes

pjk = ajy
k
j (4.40)

Using equation (4.40) in equation (4.34), one gets

aj(1 + yj + y2
j + . . . + y

mj
j ) = 1 (4.41)

For the expected number of particles in the j-th state one can write

Kj =
mj∑

k=0

kpjk = aj

mj∑
k=0

kyk
j

=
yj + 2y2

j + . . . + mjy
mj
j

1 + yj + y2
j + . . . + y

mj
j

(4.42)

Equation (4.42) is referred to as the Intermediate Statistics Distribution (ISD). If mj = 1 then
equation (4.42) gives

Kj = yj

1 + yj

= 1

1 + exp(λ1 + λ2xj)
(4.43)
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which is the F-D distribution. If mj → ∞, equation (4.42) reduces to

Kj = yj(1 − yj)
−2

(1 − yj)
−1

= 1

exp(λ1 + λ2xj) − 1
(4.44)

which is the B-E distribution.

4.1.5 Constraint: E[N]: Bernoulli distribution for a single trial
Let a random variable be denoted by N which takes on anyone of two possible values – one
associated with success and the other with failure. When one considers whether it is wet or
dry, hot or cold, flooded or not, windy or tranquil, day or night, sunny or cloudy, clear or
hazy, foggy or not foggy, urbanized or rural, rich or poor, tall or short, high or low, and so
on, it is seen that only two mutually exclusive or collectively exhaustive events are possible
outcomes. Such a variable is defined as the Bernoulli random variable. Now for the random
variable N, one assigns a value of zero for ‘‘nonoccurrence’’ of the specified event and a value
of one for its ‘‘occurrence’’. Let the probability of ‘‘occurrence’’ be p, and the probability of
‘‘nonoccurrence’’ be q = 1 − p. If a success is observed, n = 1 and if a failure is observed,
n = 0. In the Shannon entropy the scale factor m is used as p.

Many everyday situations entail events which have just two possibilities. A highway bridge
may or may not be flooded in the next year, an area may or may not get flooded this year, it
may or may not rain today, it may be windy or may not be windy next week, it may snow
or may not snow next week, it may be cloudy or sunny tomorrow, a car accident may or may
not occur next week, a column may or may not buckle, an excavator may or may not cease to
operate in the next week, and so on. For a Bernoulli variable, the probability of occurrence of
the event in each trial is the same from trial to trial and the trials are statistically independent.
The Bernoulli distribution is useful for modeling an experiment or an engineering process
that results in exactly one of two mutually exclusive outcomes. The experiments involving
repeated sampling of a Bernoulli random variable are frequently called Bernoulli trials, for
example, tossing a coin repeatedly and observing their outcomes (head or tail).

The constraint equation can be specified as

1∑
n=0

npn = E[n] = p (4.45)

where pn is the probability of occurrence of value n. Maximization of the Shannon entropy H
then yields

pn = 1

p exp (λ0)
exp[−λ1n] (4.46)

Substitution of equation (4.46) in equation (4.1) gives

1∑
n=0

1

p exp(λ0)
exp[−λ1n] = 1 (4.47)

Equation (4.47) yields

exp(λ0) = 1 + exp(−λ1)

p
(4.48)
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Equation (4.48) can also be expressed as

λ0 = ln[1 + exp(−λ1)] − ln p (4.49)

Differentiating equation (4.49) with respect to λ1 one gets

∂λ0

∂λ1

= − 1

1 + exp(−λ1)
(4.50a)

Equation (4.50a) also equals

∂λ0

∂λ1

= −p (4.50b)

Therefore, equating equations (4.50a) and (4.50b) yields

λ1 = ln
1 − p

p
(4.51)

On substitution of equation (4.51) in equation (4.46), one obtains

pn = pn(1 − p)1−n (n = 0, 1) (4.52)

This is the Bernoulli distribution.
Several commonly used discrete distributions arise from examining the results of Bernoulli

trials repeated several times. Three basic questions come to mind when one observes a set of
Bernoulli trials: 1) How many successes will be obtained in a fixed number of trials? 2) How
many trials must be performed until one observes the first success? 3) How many trials must
be performed until one observes the kth success? To answer these three questions motivates
the development of the binomial, geometric, and negative binomial distributions, respectively.

4.1.6 Binomial distribution for repeated trials
A binomial random variable represents the number of successes obtained in a series of N
independent and identical Bernoulli trials, the number of trials is fixed and the number
of successes varies from experiment to experiment. Consider a sequence of Bernoulli trials,
where the outcomes of the experiment are mutually independent and the probability of
success remains unchanged. For example, for a sequence of N years of flood data, the
maximum annual flood magnitudes are independent and the probability of occurrence, p,
of a flood in any year remains unchanged throughout the period of N years. If the random
variable is whether the flood occurs or not, then the sequence of N outcomes is Bernoulli
trials. Let the random variable be designated by K and its specific value by k. One wishes to
determine the probability of exactly k occurrences (the number of successes) in N Bernoulli
trials. Let the probability of success (say, occurrence of flood) be p.

When deriving the binomial distribution, it is useful to take the invariance measure function

in the Shannon entropy as m =
(

N

k

)
, the binomial coefficient, which states the number of

ways that exactly k successes can be found in a sequence of N trials. The constraints are given
by equation (4.1) and

N∑
k=0

kpk = Np (4.53)
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Maximizing entropy subject to the constraints, one obtains the probability distribution as:

pk = m

exp(λ
0
)

exp[−λ1k] (4.54)

Substitution of equation (4.54) in equation (4.1) yields

exp(λ0) =
N∑

k=0

(
N
k

)
[exp(−λ1)]k1N−k = [exp(−λ1) + 1]N (4.55)

Taking the logarithm of equation (4.55) results in

λ0 = N ln[exp(−λ1) + 1] (4.56)

Differentiating equation (4.56) with respect to λ1 gives

∂λ0

∂λ1

= − N exp(−λ1)

1 + exp(−λ1)
= −Np (4.57)

Equation (4.57) yields

λ1 = ln

(
1 − p

p

)
(4.58)

Substituting equation (4.58) in equation (4.55), one obtains

exp(λ0) =
[

p

1 − p
+ 1

]N

= 1

(1 − p)N
(4.59)

Using equations (4.58) and (4.59) in equation (4.54), the probability distribution now is
given as

P(K = k) =
(

N
k

)
pk(1 − p)N−k (4.60)

which is the binomial distribution.
Here N must be an integer and 0 ≤ p ≤ 1. This equation defines the distribution of K for

given values of p and N. The binomial distribution has two parameters: the number of trials
N and the probability of occurrence of the specified event in a single trial p. The probability of
each sequence is equal to pkqN−k. With the use of the above equation, the probabilities that K
will take on the values of 0, 1, 2, . . . , N, which exhaust all possibilities, can be calculated.

4.1.7 Geometric distribution: repeated trials
The preceding discussion focuses on the number of successes occurring in a fixed number of
Bernoulli trials. Here one focuses on the question of determining the number of trials when
the first success would occur. For example, how many days would pass before the next rain if
the probability of occurrence of rain on any day is p? What would be the year when a flood
would occur if the probability of occurrence of flood in any year is p? When would the next
accident occur? When would the next hurricane strike the Texas or Louisiana coast? When
would the next earthquake hit the Los Angeles area? When would the next snowfall occur in
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Denver? Thus a geometric random variable represents the number of trials needed to obtain
the first success.

Assuming the independence of trials and a constant value of p, the distribution of N,
the number of trials to the first success, can be found using the geometric distribution. The
constraint equations for this distribution are given by equation (4.1) and

∞∑
n=0

npn = m (4.61)

In reality n must start at 1 but for purposes of summation, it is being taken as 0. Maximizing
entropy subject to the given constraints, one gets the POME-based distribution:

pn = exp(−λ0 − λ1n) = abn, a = exp(−λ0), b = exp(−λ1) (4.62)

Inserting equation (4.62) in equation (4.1), one obtains

∞∑
n=0

exp(−λ0 − λ1n) =
∞∑

n=0

abn = 1 (4.63a)

Equation (4.63a) can be expressed as

a

1 − b
= 1, 0 < b < 1 (4.63b)

Similarly from the second constraint, one gets

a
∞∑

n=0

nbn = m = a
b

(1 − b)2
, 0 < b < 1 (4.64)

Equations (4.63a) and (4.64) yield

b = m

1 + m
= q, a = 1

1 + m
= 1 − q = p (4.65)

Substituting equation (4.65) in equation (4.62) for the distribution function, one gets

pn = 1

1 + m

[
m

1 + m

]n

= (1 − q)qn = p(1 − p)n (4.66)

But n starts at 1. Therefore, for success at the n-th trial,

pn = p(1 − p)n−1 (4.67)

This is the geometric distribution.

Example 4.1: In any given day the probability of rain event is p = 0.1; find the maximum
entropy-based probability distribution.

Solution: Assume that the first rainfall event occurs after n days. The constraints for this
problem are equations (4.1) and (4.61), and the geometric distribution derived by POME is
given as equation (4.62). From equation (4.65), one can obtain:

a = 1 − q = p = 0.1, b = q = 0.9

pn = abn−1 = 0.1 × (0.9)n−1
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4.1.8 Negative binomial distribution: repeated trials
The negative binomial random variable represents the number of trials needed to obtain
exactly k successes. Here the number of successes, k, is fixed and the number of trials varies
from experiment to experiment. Due to this reason it is thought of as a reversal of the binomial
distribution, because the number of successes and number of trials are reversed. Each trial has
two possible outcomes: success or failure and the probability of success is constant from one
trial to another. In the binomial case the number of trials is fixed and the number of successes
varies. Following the same procedure, one can derive the negative binomial distribution by

maximizing entropy. To that end, it is useful to use the invariance measure as

(
N − 1
k − 1

)
. The

distribution of k successes in N trials can be derived as

PNk
(n) =

(
N − 1
k − 1

)
(1 − p)n−kpk, n = k, k + 1, . . . (4.68)

where Nk is the trial number at which the k-th success occurs. This equation implies that k − 1
successes in the preceding n − 1 trials have already occurred. The probability of k − 1 successes
in n − 1 trials is obtained from the binomial distribution.

This is the negative binomial distribution, also called as the Pascal distribution, with
parameters k and p:

E(n) = k

p
(4.69)

Var(n) = k(1 − p)

p2
(4.70)

Example 4.2: In any given year, the probability of a city suffering a 100-year flood event as
p = 1/100 = 0.01, find the maximum entropy probability distribution if the city will suffer k
100-year flood events in n years.

Solution: The probability that the city will suffer from k 100-year flood events in n years can
be represented as negative binomial distribution. Here p = 0.01; q = 1 − p = 0.99. Based on
equation (4.68), one can obtain that:

P(n, k, 0.01) =
(

n − 1
k − 1

)
(0.99)n−k(0.01)k, n = k, k + 1, . . .

4.1.9 Constraint: E[N] = n: Poisson distribution
In hydrology, this distribution is used for rare events that occur randomly in time. Examples
of such events include the time of start of rainfall. The binomial distribution is used when the
random variable X is the number of times a specified event occurs in a fixed number of trials.
When our interest is in the number of times a specified event occurs in a certain length of
time, such as a given monitoring period, or how often the event is observed in a continuum
of space, such as the length of a highway, an area of land, and so on, and the number of
trials is not specified, then the binomial distribution cannot be used. In such cases, it is more
appropriate to use the Poisson distribution. Instead of defining the probability of ‘‘occurrence’’
for the specified event in a single trial, as for the binomial distribution, what is defined here
is the probability of occurrence per unit of time or of space. For example, the probability that
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lightning in New Orleans in the month of May will occur as, may be, 0.025 per day. It is
assumed that the probability is the same for every day, every meter or every year. It is further
assumed that the occurrences and the nonoccurrences are independent along the continuum.
The difference between the binomial and Poisson distributions can be summarized by noting
that both the occurrences and nonoccurrences can be specified for the binomial distribution,
but not for the Poisson distribution.

The binomial and Poisson distributions share some similarities. The probability distribution
of the number of occurrences X in a given continuum of time or space can be treated as
a special case of the binomial distribution under two conditions: 1) The number of trials
becomes infinitely large, and 2) the average number of occurrences defined by Np remains
constant. By dividing the continuum into small intervals, the problem can be reduced to one of
‘‘occurrence’’ and ‘‘nonoccurrence’’ of the specified event in any of these intervals, provided
these intervals are made so small that the probability of getting two or more ‘‘occurrences’’ in
any interval is negligible.

The constraints are specified by equation (4.1) and

∞∑
n=0

npn = E[n] = n = ν (4.71)

where n is the mean of the distribution, n is the number of events, and p is the probability
of n events to occur. Assume that in the Shannon entropy the scale factor m = 1/n!. With
this scale factor, maximize H subject to the specified constraints. To that end, the Lagrange
multiplier function, L, is constructed as

L = −
∞∑

n=0

n!pn ln(n!pn) − (λ0 − 1)
∞∑

n=0

pn −
[
λ1

∞∑
n=0

npn − ν

]
(4.72)

Differentiating L in equation (4.72) with respect to pn and equating to zero yields the
entropy-based probability distribution:

pn = m exp[−λ0 − λ1n] = 1

n! exp(λ0)
exp(−λ1n) (4.73)

where z(λ1) = exp(λ0) is the partition function. Substituting in equation (4.1), one obtains

Z(λ1) = exp(λ0) =
∞∑

n=0

1

n!
exp(−λ1n) = exp[exp(−λ1)] (4.74)

Equation (4.74) can be written as

λ0 = ln

[ ∞∑
n=0

1

n!
exp(−λ1n)

]
= exp(−λ1) (4.75)

Differentiating equation (4.75), one gets

∂λ0

∂λ1

= −ν (4.76)
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Also,

∂λ0

∂λ1

= − exp(−λ1) (4.77)

Therefore,

exp(−λ1) = ν (4.78)

Equation (4.78) yields

λ1 = − ln ν (4.79)

Substituting the values of λ0 and λ1 in the entropy-based probability distribution, one obtains

pn = vne−v

n!
, n = 0, 1, 2, . . . ., ∞ (4.80)

This is the Poisson distribution. This distribution has one parameter and is entirely specified
by the average number of occurrences of the specified event over the interval of time or space
in question.

Example 4.3: Consider that in a 40-year period, the total number of droughts is 70 with
the longest drought lasting for 62 days in the growing season, find the maximum entropy
distribution function if n droughts occur in the growing season.

Solution: From equation (4.71), one can obtain the average number of droughts per year as:

ν =
∞∑

n=0

npn = E(n) = 70

40
= 1.75

Then the entropy-based probability distribution can be expressed as:

pn = 1

n!
1.75ne−1.75

4.2 Continuous variable and continuous distributions

4.2.1 Finite interval [a, b], no constraint, and rectangular distribution
Let a random variable be X varying from a to b and having a probability density function f (x).
The Shannon entropy function is defined as

H = −
b∫

a

f (x) ln f (x)dx (4.81)

Of course,

b∫
a

f (x)dx = 1 (4.82)
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Maximizing H in equation (4.81) subject to equation (4.82), one can determine the least-biased
f (x). To that end, the Lagrange multiplier L is constructed as:

L = −
b∫

a

f (x) ln f (x)dx − (λ0 − 1)


 b∫

a

f (x)dx − 1


 (4.83)

where λ0 is the Lagrange multiplier. Differentiating equation (4.83) with respect to f (x) and
setting the derivative equal to 0, one gets

∂L

∂f (x)
= 0 ⇒ −[1 + ln f (x)] − (λ0 − 1) = 0 (4.84)

Equation (4.84) yields

f (x) = exp(λ0) (4.85)

Equation (4.85) is the POME-based probability distribution with λ0 as parameter. Inserting
equation (4.85) in equation (4.82), one obtains

exp(λ0) = 1

b − a
(4.86)

Thus, equation (4.85) becomes

f (x) = 1

b − a
(4.87)

which is the uniform distribution.

Example 4.4: Let a random variable vary from 1 to 100. Find the maximum entropy
probability distribution.

Solution: Suppose the probability of random variable X is f (x). For this problem, the only

constraint is

b∫
a

f (x)dx = 1. According to equation (4.87),

f (x) = 1

b − a
= 1

100 − 1
= 1

99
= 0.0101

4.2.2 Finite interval [a, b], one constraint and truncated
exponential distribution

The constraint is given as

b∫
a

xf (x)dx = x (4.88)

The objective is to determine f (x). Maximizing H, subject to equations (4.82) and (4.88), f (x)
is determined using the method of Lagrange multipliers. To that end, the Lagrangean L is
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constructed as

L = −
b∫

a

f (x) ln f (x)dx − (λ0 − 1)


 b∫

a

f (x)dx − 1


 − λ1


 b∫

a

xf (x)dx − x


 (4.89)

where λ0 and λ1 are parameters.
Differentiating L with respect to f (x) and equating the derivative to zero, one gets

∂L

∂f (x)
= 0 ⇒ −[1 + ln f (x)] − (λ0 − 1) − λ1x = 0 (4.90)

Therefore,

f (x) = exp(−λ0 − λ1x) = a exp(−λ1x), a = exp(−λ0) (4.91)

which is the POME-based distribution with λ0 and λ1 as parameters. These parameters can be
determined with the aid of equation (4.82) and (4.88).

Inserting equation (4.91) in equation (4.82), one gets

a = λ1

exp(−λ1a) − exp(−λ1b)
(4.92)

Therefore, equation (4.91) becomes

f (x) = λ1

[exp(−λ1a) − exp(−λ1b)]
exp(−λ1x) (4.93)

Inserting equation (4.93) in equation (4.88), one can determine λ1 in terms of x. Thus,
equation (4.91) is the truncated exponential distribution.

A slightly different method for derivation of a distribution using POME entails expressing
the zeroth Lagrange multiplier in two ways: 1) in terms of other Lagrange multipliers as an
algebraic relation and 2) as logarithm of the integral of the probability density function minus
the zeroth Lagrange multiplier. This will be illustrated for the case of beta distribution later in
the chapter.

Example 4.5: Let a random variable vary from 0 to 2 with a mean value of 1, find the
maximum entropy probability distribution.

Solution: Suppose the probability distribution of a random variable X is f (x). For this problem,

except for the constraint of

2∫
0

f (x)dx = 1, another constraint is

2∫
0

xf (x)dx = 1. From equations

(4.93) and (4.88),

f (x) = λ1

1 − exp(−2λ1)
exp(−λ1x);

2∫
0

xf (x)dx = 1

Solving these equations, one gets λ1 = 0.008714. Therefore,

f (x) = 0.5044 exp(−0.008714x)
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4.2.3 Finite interval [0, 1], two constraints E[ln x] and E[ln(1 − x)] and beta
distribution of first kind

In this case the constraint equations are given as

b∫
a

ln x f (x)dx = E[ln x] = ln x (4.94)

and

b∫
a

ln(1 − x)f (x)dx = E[ln(1 − x)] = ln(1 − x) (4.95)

The Shannon entropy is written as

H = −
1∫

0

f (x) ln f (x)dx (4.96)

and equation (4.82) as

1∫
0

f (x)dx = 1 (4.97)

For maximizing H in equation (4.96), subject to equations (4.94), (4.95), and (4.97), the
Lagrange function L is constructed as

L = −
1∫

0

f (x) ln f (x)dx − (λ0 − 1)


 1∫

0

f (x)dx − 1


 − λ1


 1∫

0

xf (x)dx − ln x




−λ2


 1∫

0

ln(1 − x)f (x)dx − ln(1 − x)


 (4.98)

Taking the derivative of L with respect to f (x) and equating it to 0, one gets

∂L

∂f (x)
= 0 ⇒ −[1 + ln f (x)] − (λ0 − 1) − λ1 ln x − λ2 ln(1 − x) = 0 (4.99)

Therefore,

f (x) = ax−λ1(1 − x)−λ2 , a = exp(−λ0) (4.100)

Equation (4.100) is the POME-based distribution with λ0(or a), λ2 and λ1 as parameters. These
parameters are determined with the use of equation (4.94), (4.95), and (4.97).

Substitution of equation (4.100) in equation (4.97) yields

1∫
0

x−λ1(1 − x)−λ2 dx = 1

a
(4.101)
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Equation (4.101) can be expressed in terms of the beta function as

1

a
=

1∫
0

xm−1(1 − x)n−1dx = B(m, n), m = 1 − λ1, n = 1 − λ2 (4.102)

Therefore, equation (4.100) becomes

f (x) = 1

B(m, n)
xm−1(1 − x)n−1 (4.103)

which is the beta distribution of first kind. Parameters m and n are determined from:

1

B(m, n)

1∫
0

xm−1(1 − x)n−1 ln x dx = ln x (4.104)

1

B(m, n)

1∫
0

xm−1(1 − x)n−1 ln(1 − x) dx = ln(1 − x) (4.105)

Now a slightly different approach, alluded to in the beginning and discussed in Chapter 3,
is considered. From equation (4.99), one writes

exp(λ0) =
1∫

0

exp [−λ1 ln x − λ2 ln(1 − x)] dx (4.106)

The quantity z(λ) = exp(λ0) is also called the partition function, and leads to

λ0 = ln

1∫
0

exp [−λ1 ln x − λ2 ln(1 − x)] dx (4.107)

One can also simplify equation (4.106) as

λ0 = ln �(1 − λ1) + ln �(1 − λ2) − ln �(2 − λ1 − λ2) (4.108)

Differentiating equation (4.107) with respect to λ1 and λ2, respectively, one gets

∂λ0

∂λ1

= −E[ln x] (4.109)

∂λ0

∂λ2

= −E[ln(1 − x)] (4.110)

It should be emphasized that derivatives of the zeroth Lagrange multiplier with respect to
other multipliers are equal to the constraints specified. Similarly, differentiating equation
(4.108) with respect to λ1 and λ2 one obtains, respectively:

∂λ0

∂λ1

= −ψ(m) + ψ(m + n), m = 1 − λ1, n = 1 − λ2 (4.111)
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∂λ0

∂λ2

= −ψ(n) + ψ(m + n) (4.112)

where ψ(m) and ψ(m + n) are digamma functions defined as

∂ ln(�(m))

∂λ1

= −ψ(m)
∂ ln(�(m + n)

∂λ2

= ψ(m + n) (4.113)

Equating equations (4.109) and (4.110) to equations (4.111) and (4.112), respectively, one

obtains:

E[ln x] = ψ(m) − ψ(m + n) (4.114)

E[ln(1 − x)] = ψ(m) − ψ(m + n) (4.115)

The left side of equation (4.114) and of equation (4.115) is known and hence m and n can be

found, and then in turn λ1 and λ2 and finally m and n.

Example 4.6: Let a random variate vary from 0 to 1 with a mean value of E[ln x] = −0.2
and E[ln(1 − x)] = −1.8, find the maximum entropy probability distribution and graph it.

Solution: For this case, the distribution is the beta distribution of first kind. From equations
(4.103), (4.104) and (4.105),

f (x) = 1

B(m, n)
xm−1(1 − x)n−1

1

B(m, n)

1∫
0

xm−1(1 − x)n−1 ln x dx = −0.2

1

B(m, n)

1∫
0

xm−1(1 − x)n−1 ln(1 − x) dx = − 1.8

First the equations below are solved:

E[ln x] = ψ(m) − ψ(m + n)

E[ln(1 − x)] = ψ(n) − ψ(m + n)

One gets: m = 25.6925, and n = 5.5785.
Then one gets:

f (x) = 1

B(25.6925, 5.5785)
x24.6925−1(1 − x)4.4785−1

The plot is shown in Figure 4.1.
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Figure 4.1 Probability density function of the beta distribution.

4.2.4 Semi-infinite interval (0, ∞), one constraint E[x]
and exponential distribution

In this case the constraint equation is given as

∞∫
0

x f (x)dx = E[x] = x (4.116)

The Shannon entropy is written as

H = −
∞∫

0

f (x) ln f (x)dx (4.117)

where

∞∫
0

f (x)dx = 1 (4.118)

The least-biased f (x) is determined by maximizing equation (4.117), subject to equations
(4.116) and (4.118). To that end, the Lagrangean L is constructed as

L = −
∞∫

0

f (x) ln f (x)dx − (λ0 − 1)


 ∞∫

0

f (x)dx − 1


 − λ1


 ∞∫

0

xf(x)dx − k


 (4.119)
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Taking the derivative of L with respect to f (x) and equating it to 0, one obtains

∂L

∂f (x)
= 0 ⇒ −[1 + ln f (x)] − (λ0 − 1) − λ1x = 0 (4.120)

Therefore,

f (x) = exp(−λ0 − λ1x) (4.121)

Equation (4.121) is the POME-based distribution with λ0 and λ1 as parameters.
Substituting equation (4.121) in equation (4.118), one obtains

∞∫
0

exp(−λ0 − λ1x)dx = λ1 exp(λ0) = 1 (4.122)

Substituting equation (4.122) in equation (4.121), one gets

f (x) = λ1 exp(−λ1x) (4.123)

Inserting equation (4.123) in equation (4.116), one gets

∫ ∞

0
λ1x exp(−λ1x)dx = k or λ1 = 1

k
(4.124)

Thus equation (4.123) becomes

f (x) = 1

k
exp

(
− x

k

)
, k = x (4.125)

which is the exponential distribution.

4.2.5 Semi-infinite interval, two constraints E[x] and E[ln x]
and gamma distribution

The constraint equations are expressed as equations (4.116) and (4.118) and

∞∫
0

ln x f (x) dx = ln x (4.126)

To obtain the least-biased f (x), H in equation (4.117) is maximized, subject to equations
(4.118), (4.116), and (4.126). To that end the Lagrangean L is expressed as

L = −
∞∫

0

f (x) ln f (x)dx − (λ0 − 1)


 ∞∫

0

f (x)dx − 1


 − λ1


 ∞∫

0

xf (x)dx − x




− λ2


 ∞∫

0

ln x f (x)dx − ln x


 (4.127)
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Differentiating equation (4.127) with respect to f (x) and equating the derivative to 0, one gets

∂L

∂f (x)
= 0 ⇒ f (x) = ax−λ2 exp(−λ1x), a = exp(−λ0) (4.128)

Equation (4.128) is the least-biased POME-based distribution with a, λ0 and λ1 as parameters.
Inserting equation (4.128) in equation (4.118), one obtains

∞∫
0

x−λ2 exp(−λ1x)dx = 1

a
(4.129)

Recall the definition of a gamma function:

�(n) = bn

∞∫
0

xn−1 exp(−bx)dx (4.130)

Equation (4.129) can be recast as

1

a
=

∞∫
0

xn−1 exp(−bx)dx = �(n)

bn
, n = 1 − λ2; λ1 = b (4.131)

Thus, equation (4.128) becomes

f (x) = bn

�(n)
xn−1 exp(−bx) (4.132)

which is the gamma distribution.

Example 4.7: Let a random variate vary from 0 to ∞ with a mean value of E[x] = 3 and
E[ln(x)] = 1, find the maximum entropy probability distribution.

Solution: Suppose the probability of random variable X is f (x). In this case, the distribution
is the gamma distribution. Substituting equation (4.132) in the two constraint equations, one
gets

f (x) = bn

�(n)
xn−1 exp(−bx)

∞∫
0

bn

�(n)
xn exp(−bx) dx =2

∞∫
0

ln(x)
bn

�(n)
xn−1 exp(−bx) dx =1

According to Singh (1998), we have the equation below for the parameter:

n

b
= x = 3

�(n) − ln n = E(ln x) − ln x = −0.0986
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Solving the above equations, one gets:

b = 1.744, n = 5.231

Then the maximum entropy probability distribution can be expressed as:

f (x) = 1.7445.231

�(5.231)
x4.231 exp(−1.744x)

4.2.6 Semi-infinite interval, two constraints E[ln x] and E[ln(1 + x)]
and beta distribution of second kind

In this case the constraint equations are equation (4.126) and

∞∫
0

ln(1 + x) f (x) dx = E[ln(1 + x)] = ln(1 + x) (4.133)

The Shannon entropy given by equation (4.117) is maximized, subject to equation (4.126),
(4.133) and (4.118), in order to obtain the least-biased f (x). To that end, the Lagrangian L is
expressed as

L = −
∞∫

0

f (x) ln f (x)dx − (λ0 − 1)


 ∞∫

0

f (x)dx − 1


 − λ1


 ∞∫

0

ln x f (x)dx − ln x




−λ2


 ∞∫

0

ln(1 + x) f (x)dx − ln(1 + x)


 (4.134)

Differentiating L with respect to f (x) and equating the derivative to 0, one obtains

∂L

∂f (x)
= 0 ⇒ f (x) = ax−λ1(1 + x)−λ2 , a = exp(−λ0) (4.135)

Equation (4.135) is the POME-based distribution with parameters a, λ1 and λ2. These
parameters are determined using equations (4.126), (4.133) and (4.118).

Substituting equation (4.135) in equation (4.118), one gets

∞∫
0

x−λ1(1 + x)−λ2 dx = 1

a
(4.136)

Recalling the definition of the beta function, equation (4.136) can be written as

1

a
=

∞∫
0

xm−1(1 + x)−(m+n)dx =B(m, n), m − 1 = −λ1; m + n = λ2 (4.137)

Therefore, equation (4.135) becomes

f (x) = 1

B(m, n)

xm−1

(1 + x)m+n
(4.138)
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which is the beta distribution of the second kind with parameters m and n determined from
equations (4.118) and (4.133).

Example 4.8: Let a random variate vary from 0 to ∞ with a mean value of E[ln x] = 1 and
E[ln(1 + x)] = 2, find the maximum entropy probability distribution.

Solution: Let the probability distribution of the random variable X be f (x). For this problem,
the distribution is the beta distribution of the second kind. According to equations (4.138),
(4.126) and (4.133),

f (x) = 1

B(m, n)

xm−1

(1 − x)m+n
(4.139)

1

B(m, n)

∞∫
0

x
xm−1

(1 − x)m+n
dx =1 (4.140)

1

B(m, n)

∞∫
0

ln(x)
xm−1

(1 − x)m+n
dx =2 (4.141)

From equation (4.139)–(4.141), one can obtain the equations below:

ψ(m) − ψ(n) = −1

ψ(m) − ψ(m + n) = −2

where m = λ1+λ2 − 1; n = 1 − λ1. Then one gets m = 0.3896, n = 0.5740. The maximum
entropy probability distribution is expressed as:

f (x) = 1

B(0.3896, 0.5740)

x−0.6104

(1 − x)0.9636

4.2.7 Infinite interval, two constraints E[X] and E[X2] and normal distribution
In this case the constraint equations are

E[x] = m (4.142)

E[x2] = σ 2 + m2 or E[(x − m)2] = σ 2 (4.143)

where m is the mean of X, and σ 2 is the variance of X. Furthermore,

∞∫
−∞

f (x)dx = 1 (4.144)

The Shannon entropy is expressed as

H = −
∞∫

−∞
f (x) ln f (x)dx (4.145)
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Equation (4.145) is maximized, subject to equations (4.142), (4.143) and (4.144), in order to
obtain the least-biased f (x). Hence the Lagrangean L is expressed as:

L = −
∞∫

−∞
f (x) ln f (x)dx − (λ0 − 1)


 ∞∫

−∞
f (x)dx − 1


 − λ1


 ∞∫

−∞
x f (x)dx − m




−λ2


 ∞∫

0

x2 f (x)dx − σ 2 − m2


 (4.146)

Differentiating equation (4.146) with respect to f (x) and equating the derivative to 0, one gets

∂L

∂f (x)
= 0 ⇒ f (x) = exp(−λ0 − λ1x − λ2x2) (4.147)

Equation (4.147) is the POME-based distribution with λ0, λ1 and λ2 as parameters. These para-
meters are determined using equations (4.142)–(4.144) as:

∞∫
−∞

exp(−λ0 − λ1x − λ2x2)dx = 1 (4.148)

∞∫
−∞

x exp(−λ0 − λ1x − λ2x2)dx = m (4.149)

∞∫
−∞

x2 exp(−λ0 − λ1x − λ2x2)dx = σ 2 + m2 (4.150)

Note that equation (4.148) can be expressed as

exp(λ0) =
∞∫

−∞
exp

(−λ1x − λ2x2) dx = exp

(
λ2

1

4λ2

) ∞∫
−∞

exp −
[√

λ2x + λ1

2
√

λ2

]2

dx (4.151)

Taking t = √
λ2x + λ1

2
√

λ2
, equation (4.151) can be written as

exp(λ0) =
2 exp

(
λ2

1
4λ2

)
√

λ2

∞∫
−∞

exp (−t2)dt =
exp

(
λ2

1
4λ2

)
√

λ2

√
π (4.152)

A little algebraic manipulation yields (Singh, 1998):

λ1 = − m

σ 2
; λ2 = 1

2σ 2
(4.153)

Finally, the resulting distribution is

f (x) = 1√
2π σ

exp

[
−1

2

(
x − m

σ

)2
]

(4.154)
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which is the probability density function of the normal distribution, and corresponds to the
case when mean and variance are known. It may be remarked that normal distribution
can also be derived using only the variance as a constraint, because variance includes mean
(Krstanovic and Singh, 1988).

Example 4.9: Let X be a random variable over the range from −∞ to ∞ with a mean value
of E[x] = 0 and E[x2] = 1. Find the maximum entropy probability distribution of X and graph
it.

Solution: Let the probability density function of X be denoted by f (x). In this case, the
distribution is the normal distribution. From equations (4.147)–(4.149) and (4.150) one
obtains

E[x] = m = 0; E[x2] = σ 2 + m2 = 1. Thus, m = 0 and σ = 1. f (x) = exp(−λ0 − λ1x − λ2x2)

∞∫
−∞

exp(−λ0 − λ1x − λ2x2)dx = 1 (4.155)

∞∫
−∞

x exp(−λ0 − λ1x − λ2x2)dx = 0 (4.156)

∞∫
−∞

x2 exp(−λ0 − λ1x − λ2x2)dx = 1 (4.157)

According to λ1 = − m
σ2 , λ2 = 1

2σ2 , one gets λ1 = 0, λ2 = 1
2 , λ0 = 1

2 ln 2π + 1
2 ln 2.

The maximum entropy probability distribution is

f (x) = 1√
2π σ

exp

[
−1

2

(
x − m

σ

)2
]

= 1√
2π

exp

[
−1

2
x2

]
(4.158)

Equation (4.158) can be obtained from equation (4.154) directly and it is graphed in
Figure 4.2.

4.2.8 Semi-infinite interval, log-transformation Y = ln X, two constraints E[y]
and E[y2] and log-normal distribution

Let there be a normal random variable Y over the interval (−∞, ∞) and be another random
variable X related to Y as Y = ln X. If Y is normally distributed then X would be log-normally
distributed over the interval (0, ∞). The constraint equations are equation (4.144) and

E[y] = my or E[x] = E[exp (y)] = mx (4.159)

E[y2] = σ 2
y + m2

y (4.160)

Equation (4.145) is maximized, subject to equations (4.144), (4.159) and (4.160), in order to
obtain the least-biased f (x). Hence the Lagrangean L is expressed as:

L = −
∞∫

−∞
f (x) ln f (x)dx − (λ0 − 1)


 ∞∫

−∞
f (x)dx − 1


 − λ1


 ∞∫

−∞
(ln x) f (x)dx − mx




−λ2


 ∞∫

−∞
(ln x)2f (x)dx − σ 2

y − m2
y


 (4.161)
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Figure 4.2 Probability density function of the maximum entropy distribution.

Differentiating equation (4.161) with respect to f (x) and equating the derivative to 0, one gets

∂L

∂f (x)
= 0 ⇒ f (x) = exp[−λ0 − λ1 ln x − λ2(ln x)2] (4.162)

Equation (4.147) is the POME-based distribution with λ0, λ1 and λ2 as parameters which
can be determined by substitution of equation (4.162) in equations (4.144) and (4.159) and
(4.160) as:

∞∫
−∞

exp[−λ0 − λ1 ln x − λ2(ln x)2]dx = 1 (4.163)

∞∫
−∞

x exp[−λ0 − λ1 ln x − λ2(ln x)2]dx = my (4.164)

∞∫
−∞

x2 exp[−λ0 − λ1 ln x − λ2(ln x)2]dx = σ 2
y + m2

y (4.165)

A little algebraic manipulation yields (Singh, 1998):

λ0 = 1

2
ln π − 1

2
ln λ2 + (λ1 − 1)2

4λ2

(4.166)

λ1 = 1 − my

σ 2
y

(4.167)

λ2 = 1

2σ 2
y

(4.168)
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Finally, the resulting distribution is

f (x) = 1

x
√

2π σy

exp


−1

2

(
ln x − my

σ 2
y

)2

 (4.169)

which is the probability density function of the lognormal distribution, and corresponds to the
case when mean and variance are known.

4.2.9 Infinite and semi-infinite intervals: constraints and distributions
Following the above methodology, a number of probability distributions can be derived
for given constraints. Without going through the algebra many of these distributions are
summarized here.

Three-parameter lognormal distribution: constraints: E[ln(x − a)] and E
{
[ln(x − a)]2

}
, where

a > 0 is a parameter. These constraints lead to a three-parameter lognormal distribution:

f (x) = 1

(x − a)σy

√
2π

exp

{
− [ln(x − a) − my]

2

2σ 2
y

}
(4.170)

where Y = ln(x − a), my is the mean of Y , and σ 2
y is the variance of Y .

Extreme value type I (or Gumbel) distribution: constraints: E(x) and E(exp(−ax)), where a > 0
and −∞ < b < x are parameters. These constraints lead to extreme value type I (or Gumbel)
distribution:

f (x) = a exp{−a(x − b) − exp[−a(x − b)]} (4.171)

Log-extreme value type I distribution: constraints: E(ln x) and E{exp[−a(ln x − b)]} = 1, where a

and b are parameters. These lead to the log-extreme value type I distribution:

f (x) = a

x
exp{−a(ln x − b) − exp[−(ln x − b)]} (4.172)

Extreme value type III distribution: constraints: E[ln(x − c)] and E[(x − c)a] = (b − c)a, where
a > 0, b > 0 and c are parameters. These constraints yield the extreme value type III
distribution:

f (x) = a

b − c

(
x − c

b − c

)a−1

exp

[
−

(
x − c

b − c

)a]
(4.173)

Here (b − c)a = E[(x − c)a]; ψ(1) − ln b = E[ln(x − c)], where ψ is the digamma function.

Generalized extreme value distribution: constraints: −E[ln(1 − b
a (x − c)] and E[(1 − b

a (x − c)]1/b,
where a > 0, b and c are parameters. These constraints produce the generalized extreme value
distribution:

f (x) = 1

a

[
1 − b

a
(x − c)

](1−b)/b

exp

{
−

[
1 − b

a
(x − c)

]}1/b

(4.174)
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Weibull distribution: constraints: E[ln x] and E[ xa] = ba, where a > 0 and b > 0 are parameters.
These constraints yield the Weibull distribution:

f (x) = a

b

( x

b

)a−1
exp

[
−

( x

b

)a]
(4.175)

Here ba = E[ln xa] and ψ(1) − ln b = E[ln x].

Pearson type III distribution: constraints: E[ln x] = ab + c and E[ln(x − c)], a > 0, b > 0, and
0 < c < x are parameters. These constraints lead to the Pearson type III distribution:

f (x) = 1

a�(b)

(
x − c

a

)b−1

exp

[
−

(
x − c

a

)]
(4.176)

Log-Pearson type III distribution: constraints: E[ln x] and E[ln(ln x − c)] : Also, ab + c = E[ln x]
and ba2 = σ 2

y . Here, a > 0 b > 0 and c < 0 < ln x are parameters and Y = ln X. These con-
straints lead to the log-Pearson type III distribution:

f (x) = 1

ax�(b)

(
ln x − c

a

)b−1

exp

[
−

(
ln x − c

a

)]
(4.177)

Log-logistic distribution: constraints: E[ln x] and E{ln[1 + ( x
a )b]}, a > 0, and b ≥ 0 are parame-

ters. These constraints lead to the log-logistic distribution:

f (x) = (b/a)(x/a)b−1

[1 + (x/a)b]2
(4.178)

Three-parameter log-logistic distribution: constraints: E[ln( x−c
a )] and E[1 + ( x−c

a )b], a, b, and c are
parameters. These constraints lead to the three-parameter log-logistic distribution:

f (x) = (b/a)[(x − c)/a]b−1

{1 + [(x − c)/a]b}2
(4.179)

Two-parameter Pareto distribution: constraint: E(ln x). This constraint yields the two-parameter
Pareto distribution:

f (x) = babx−b−1 (4.180)

Here 1
b + ln a = E[ln x], where a > 0 and b > 0 are parameters.

Two-parameter generalized Pareto distribution: constraint: E[ln(1 − a x
b )], where a and b are param-

eters. This constraint leads to the two-parameter generalized distribution:

f (x) = 1

b

(
1 − a

x

b

) 1
a −1

, a �= 0 (4.181)

f (x) = 1

b
exp

(
− x

b

)
, a = 0 (4.182)
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Three-parameter generalized Pareto distribution: constraints: E
[
ln(1 − a x−c

b )
]

, where a, b, and c are
parameters. This constraint yields the three-parameter generalized Pareto distribution:

f (x) = 1

b

[
1 − a

x − c

b

] 1
a −1

, a �= 0 (4.183)

f (x) = 1

b
exp

(
− x − c

b

)
, a = 0 (4.184)

Laplace distribution: constraint: E[|x|]. This leads to the Laplace distribution:

f (x) = 1

σ
exp

[
−|x|

σ

]
(4.185)

Cauchy distribution: constraint: E[ln(1 + x2)]. This yields to the distribution:

f (x) = �(b)
√

π�

(
b − 1

2

) 1(
1 + x2

) , b >
1

2
(4.186)

where b is a parameter. When b = 1, the distribution specializes into the Cauchy distribution.

Rayleigh distribution: constraints: E[ln x] and E[ x2]. These constraints lead to the Rayleigh
distribution:

f (x) = x

α2
exp

[
− x2

2α2

]
(4.187)

where α > 0 is a parameter.

Chi-square distribution: constraints: E[ln x] and −E[x]. These constraints lead to the Chi-square
distribution with k degrees of freedom:

f (x) = x(k−2)/2 exp(−x/2)

2k/2�(k/2)
(4.188)

Inverse normal (Gaussian) distribution: constraints: E(x) = µ : E( 1
x ) = 1

λ
+ 1

µ
: These constraints

lead to the inverse Gaussian distribution by letting X = 1/Y2 in which Y has the probability

density function as: f (y) = 2√
2πξ

exp
[
− (y−v/y)2

2ξ2

]
; v = 1/µ, ξ2 = 1/λ, the inverse Gaussian

maximum entropy distribution can be obtained as:

f (x) =
(

λ

2πx3

)1/2

exp

{
− λ

2µ2x
(x − µ)2

}
(4.189)

Generalized gamma probability distribution: constraints: E[ln x] and E[xc]: These constraints lead
to

f (x) = cλ
(1−λ1)/c
2

�

(
1 − λ1

c

)x−λ1 exp(−λ2xc) (4.190)
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Using the Maxwell-Boltzmann statistic, Lienhard (1964, 1972) derived equation (4.190) as
a generalized probability distribution but his procedure is much more complicated. Equation
(4.190) has three parameters: λ1 λ2 and c. Exponent c can be either specified or determined
by trial and error or can be estimated using the entropy method. Equation (4.190) specializes
into several distributions. For example, for c = 1, λ2 = 1/k, and (c − λ1)/c = n it leads to a
two-parameter gamma distribution. If x is replaced by x − x0 then it would result in a Pearson
type III distribution. If y = log x then equation (4.190) would lead to a log-Pearson type III
distribution. If c = 2, λ2 = (m + 1)/(2k2), and λ1 = −m then equation (4.190) becomes

h(t) = 2

k�

(
m + 1

2

) (
m + 1

2

)(m+1)/2 ( x

k

)m
exp

[
−m + 1

2

( x

k

)2
]

(4.191)

Equation (4.191) is the Lienhard equation. For m = 2, equation (4.191) reduces to

h(t) = 1

k�

(
3

2

) (
3

2

)3/2 ( x

k

)2
exp

[
−3

2

( x

k

)2
]

(4.192)

Lienhard (1964) used equation (4.192) for representing the unit hydrograph.
If c = 2, λ2 = (a/b), and λ1 = 1 − 2a then equation (4.190) becomes

h(t) = 2

�(a)

(a

b

)a
x2a−1 exp

[
−a

b
x2

]
(4.193)

Equation (4.193) is the Nakagami–m distribution function and is a slightly different form of
equation (4.190) and has received some attention in recent years (Rai et al., 2010). Equation
(4.193) is another form of the IUH (instantaneous unit hydrograph) equation.

If c = 1, λ1 = 0, and λ2 = 1/k, equation (4.190) reduces to an exponential distribution.
For λ1 = 1 − c, and λ2 = (1/kc), equation (4.190) reduces to the Weibull distribution. If
c = 2, λ1 = −1 and λ2 = (1/kc) then equation (4.190) becomes the Rayleigh distribution used
in reliability analysis. If c = 2, λ2 = (1/k2), and λ1 = 0 then equation (4.190) becomes

h(t) = 1

k

2√
π

exp

[
−

(
t

k

)2
]

(4.194)

Equation (4.194) is the Maxwell molecular speed distribution which is used in quantum
physics.

Extended Burr III (EBIII) distribution: constraints: E[ln( b
x )] and E[ln[1 − a( b

x )c]]. These
constraints lead to the extended Burr III distribution:

f (x) = cb−1

(
b

x

)c+1 [
1 − a

(
b

x

)c](
1
a −1

)
, a �= 0 (4.195a)

= cb−1

(
b

x

)c+1

exp

(
−

(
b

x

)c)
, a = 0 (4.195b)

For a ≤ 0, the range of x is from 0 to infinity, or 0 ≤ x ≤ ∞; for a > 0, x ≥ ba1/c; for a = 0 this
distribution corresponds to the Fréchet Distribution (Shao et al., 2008). For low flow analysis,
one can get the EBIII distribution by applying the transformation x → 1/x to the extended
Burr XII distribution (Shao et al., 2008; Hao and Singh, 2009a).
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Extended three-parameter Burr XII distribution: constraints: E[ln( x
b )] and E[ln(1 − a( x

b )c)]: These
constraints lead to the extended three-parameter Burr XII distribution:

f (x) = cb−1
( x

b

)c−1 [
1 − a

( x

b

)c]( 1
a −1)

, a �= 0 (4.196a)

= cb−1
( x

b

)c−1
e−( x

b )c
, a = 0 (4.196b)

for a ≤ 0, 0 ≤ x ≤ ∞, and for a > 0, 0 ≤ x ≤ ba−1/c; for a = 0 it corresponds to the Weibull
distribution; b is a scale parameter; and c is a shape parameter. The location parameter is
determined by c and a. The probability density function is unimodal at mod(x) = [(c − 1)/(c −
a)]1/c if c > 1 and a < 1; L-shaped if c ≤ 1 and a ≥ 1; and J-shaped otherwise (Shao et al.,
2004; Hao and Singh, 2009b).

Triangular distribution: constraint: E[x]: Here 0 ≤ x ≤ a. This constraint leads to a triangular
probability distribution:

f (x) = 2x

a
, 0 ≤ x ≤ a (4.197a)

If a ≤ x ≤ 1, then the constraint becomes E[1 − x] and the triangular probability density
function becomes

f (x) = 2(1 − x)

1 − a
, a ≤ x ≤ 1 (4.197b)

Questions

Q.4.1 The M-B distribution is a one-parameter distribution determined from the average
value of the attribute under consideration. Plot the distribution for different values
of the average and discuss how its shape changes with changes in the mean value.
Based on the shape, can this distribution be applied to any problem in water and
environmental engineering that you can think of? Derive the entropy of the M-B
distribution and plot it as a function of its parameter(s). Discuss the graph and reflect
on its physical import.

Q.4.2 Consider a third-order river basin. Obtain elevations of all the links in the basin and
graph the probability distribution of link elevations. Determine the mean elevation.
Then, use the M-B distribution to represent the probability distribution of elevations
of links and comment on its adequacy.

Q.4.3 For the basin in Q.4.2, obtain lengths of channels of all orders and graph the probability
distribution of channel lengths. Determine the average channel length. Then, use the
M-B distribution to represent the probability distribution of channel lengths and
comment on its adequacy.

Q.4.4 For the basin in Q.4.2, obtain drainage areas of channels of all orders and graph the
probability distribution of channel areas. Determine the average channel drainage
area. Then, use the M-B distribution to represent the probability distribution of areas
and comment on its adequacy.

Q.4.5 For the basin in Q.4.2, obtain the distances of all first and second order channels from
the basin outlet and graph the probability distribution of these distances corresponding
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to first order channels. Determine the mean distance. Then, use the M-B distribution
to represent the probability distribution of channel distances and comment on its
adequacy.

Q.4.6 The B-E distribution is a two-parameter distribution determined from the average
values: number and magnitude of the attribute under consideration. Plot the distribu-
tion for different values of the average number and magnitude and discuss how the
distribution shape changes with changes in the mean values. Based on the shape, can
this distribution be applied to any problem in water and environmental engineering
that you can think of? Derive the entropy of the B-E distribution and plot it as a
function of its parameter(s). Discuss the graph and reflect on its physical import.

Q.4.7 For the basin in Q.4.2, obtain elevations of all the links in the basin. For each elevation
(category or range) there can be a number of links. Determine the mean elevation
and the mean number of links. The number of links of a particular elevation is
a random variable. Graph the probability distribution of link numbers. Then, use
the B-E distribution to represent the probability distribution of number of links and
comment on its adequacy.

Q.4.8 For the basin in Q.4.2, obtain lengths of channels of all orders. Determine the average
channel lengths and average number. Then, use the B-E distribution to represent the
probability distribution of the number of channels and comment on its adequacy.

Q.4.9 For the basin in Q.4.2, obtain drainage areas of channels of all orders and graph
the probability distribution of channel areas. Determine the average drainage area
and number of channels. Then, use the B-E distribution to represent the probability
distribution of the number of channels and comment on its adequacy.

Q.4.10 For the basin in Q.4.2, obtain the distances of channels of all orders from the basin
outlet and graph the probability distribution of these distances. Determine the mean
distance and mean number of channels. Then, use the B-E distribution to represent
the probability distribution of number of channels and comment on its adequacy.

Q.4.11 The F-D distribution is a two-parameter distribution determined from the average
values of the number of, say, particles and magnitude of, say, energy of particles in
the system under consideration. This gives the distribution of the expected number
of particles in each of, say, N states. Plot the distribution for different values of the
average number and magnitude and discuss how the distribution shape changes with
changes in the mean values. Based on the shape, can this distribution be applied to
any problem in water and environmental engineering that you can think of? Derive
the entropy of the F-D distribution and plot it as a function of its parameter(s). Discuss
the graph and reflect on its physical import. Note that in this case each state contains
either zero or one event or particle.

Q.4.12 The ISD is a two-parameter distribution determined from two constraints: the average
values of the number and magnitude of the attribute in the system under consideration.
This gives the distribution of the expected number of, say, particles in the i-th state.
Plot the distribution for different values of the average number and magnitude and
discuss how the distribution shape changes with changes in the mean values. Based on
the shape, can this distribution be applied to any problem in water and environmental
engineering that you can think of? Derive the entropy of the ISD and plot it as a
function of its parameter(s). Discuss the graph and reflect on its physical import.

Q.4.13 The binomial distribution is a one-parameter distribution determined from one con-
straint, and gives the distribution of the number of k successes in N Bernoulli trials.
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Plot the distribution for different values of k and magnitude and probability of success
p and discuss how the distribution shape changes with changes in parameter values.
Based on the shape, can this distribution be applied to any problem in water and
environmental engineering that you can think of? Derive the entropy of this distribu-
tion and plot it as a function of its parameter(s). Discuss the graph and reflect on its
physical import.

Q.4.14 The geometric distribution is a one-parameter distribution determined from one
constraint, and gives the distribution of the number of trials k before the first success
would occur in N Bernoulli trials. Plot the distribution for different values of k and
probability of success p and discuss how the distribution shape changes with changes
in the parameter values. Based on the shape, can this distribution be applied to any
problem in water and environmental engineering that you can think of? Derive the
entropy of this distribution and plot it as a function of its parameter(s). Discuss the
graph and reflect on its physical import.

Q.4.15 The negative binomial distribution is a one-parameter distribution determined from
one constraint, and gives the distribution of the number of N Bernoulli trials needed
to achieve k successes. Plot the distribution for different values of k and magnitude
and probability of success p and discuss how the distribution shape changes with
changes in parameter values. Based on the shape, can this distribution be applied to
any problem in water and environmental engineering that you can think of? Derive
the entropy of this distribution and plot it as a function of its parameter(s). Discuss the
graph and reflect on its physical import.

Q.4.16 The Poisson distribution is a one-parameter distribution determined from one con-
straint, and gives the probability distribution of the average number of occurrences per
unit of time or space. Plot the distribution as a function of its parameter and discuss
how the distribution shape changes with changes in the parameter values. Based on
the shape, can this distribution be applied to any problem in water and environmental
engineering that you can think of? Derive the entropy of this distribution and plot it
as a function of its parameter(s). Discuss the graph and reflect on its physical import.

Q.4.17 Consider the exponential distribution and its truncated form. Both are one-parameter
distributions determined from one constraint, and give the probability distribution of
the random variable. Plot each distribution as a function of its parameter and discuss
how the distribution shape changes with changes in parameter values. Based on the
shape, can this distribution be applied to any problem in water and environmental
engineering that you can think of? Derive the entropy of this distribution and plot it
as a function of its parameter(s). Discuss the graph and reflect on its physical import.

Q.4.18 Consider the beta distributions of first kind and second kind. Both are two-parameter
distributions determined from two constraints, and give the probability distribution of
the random variable. Plot each distribution as a function of its parameters and discuss
how the distribution shape changes with changes in parameter values. Based on the
shape, can this distribution be applied to any problem in water and environmental
engineering that you can think of? Derive the entropy of this distribution and plot it
as a function of its parameters. Discuss the graph and reflect on its physical import.

Q.4.19 Consider the gamma distribution which is a two-parameter distribution determined
from two constraints and gives the probability distribution of the random variable. Plot
the distribution as a function of its parameters and discuss how the distribution shape
changes with changes in parameter values. Based on the shape, can this distribution



206 Entropy Theory and its Application in Environmental and Water Engineering

be applied to any problem in water and environmental engineering that you can think

of? Derive the entropy of this distribution and plot it as a function of its parameters.

Discuss the graph and reflect on its physical import.

Q.4.20 Consider the normal distribution which is a two-parameter distribution determined

from two constraints and gives the probability distribution of the random variable. Plot

the distribution as a function of its parameters and discuss how the distribution shape

changes with changes in parameter values. Based on the shape, can this distribution

be applied to any problem in water and environmental engineering that you can think

of? Derive the entropy of this distribution and plot it as a function of its parameters.

Discuss the graph and reflect on its physical import.

Q.4.21 Consider the two-parameter log-normal distribution which is a two-parameter dis-

tribution determined from two constraints and gives the probability distribution of

the random variable. Plot the distribution as a function of its parameters and discuss

how the distribution shape changes with changes in parameter values. Based on the

shape, can this distribution be applied to any problem in water and environmental

engineering that you can think of? Derive the entropy of this distribution and plot it

as a function of its parameters. Discuss the graph and reflect on its physical import.

Q.4.22 Consider the three-parameter log-normal distribution which is a three-parameter

distribution determined from two constraints and gives the probability distribution of

the random variable. Plot the distribution as a function of its parameters and discuss

how the distribution shape changes with changes in parameter values. Based on the

shape, can this distribution be applied to any problem in water and environmental

engineering that you can think of? Derive the entropy of this distribution and plot it

as a function of its parameters. Discuss the graph and reflect on its physical import.

Q.4.23 Consider the extreme value type I distribution (also called the Gumbel distribution)

which is a two-parameter distribution determined from two constraints and gives the

probability distribution of the random variable. Plot the distribution as a function of its

parameters and discuss how the distribution shape changes with changes in parameter

values. Based on the shape, can this distribution be applied to any problem in water

and environmental engineering that you can think of? Derive the entropy of this

distribution and plot it as a function of its parameters. Discuss the graph and reflect

on its physical import.

Q.4.24 Consider the log-extreme value type I distribution which is a two-parameter distri-

bution determined from two constraints and gives the probability distribution of the

random variable. Plot the distribution as a function of its parameters and discuss

how the distribution shape changes with changes in parameter values. Based on the

shape, can this distribution be applied to any problem in water and environmental

engineering that you can think of? Derive the entropy of this distribution and plot it

as a function of its parameters. Discuss the graph and reflect on its physical import.

Q.4.25 Consider the generalized extreme value distribution which is a three-parameter

distribution determined from three constraints and gives the probability distribution

of the random variable. Plot the distribution as a function of its parameters and discuss

how the distribution shape changes with changes in parameter values. Based on the

shape, can this distribution be applied to any problem in water and environmental

engineering that you can think of? Derive the entropy of this distribution and plot it

as a function of its parameters. Discuss the graph and reflect on its physical import.
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Q.4.26 Consider the extreme value type III distribution which is a three-parameter distribution
determined from two constraints and gives the probability distribution of the random
variable. Plot the distribution as a function of its parameters and discuss how the
distribution shape changes with changes in parameter values. Based on the shape, can
this distribution be applied to any problem in water and environmental engineering
that you can think of? Derive the entropy of this distribution and plot it as a function
of its parameters. Discuss the graph and reflect on its physical import.

Q.4.27 Consider the Weibull distribution which is a two-parameter distribution determined
from two constraints and gives the probability distribution of the random variable. Plot
the distribution as a function of its parameters and discuss how the distribution shape
changes with changes in parameter values. Based on the shape, can this distribution
be applied to any problem in water and environmental engineering that you can think
of? Derive the entropy of this distribution and plot it as a function of its parameters.
Discuss the graph and reflect on its physical import.

Q.4.28 Consider the Pearson type III distribution which is a three-parameter distribution
determined from two constraints and gives the probability distribution of the random
variable. Plot the distribution as a function of its parameters and discuss how the
distribution shape changes with changes in parameter values. Based on the shape, can
this distribution be applied to any problem in water and environmental engineering
that you can think of? Derive the entropy of this distribution and plot it as a function
of its parameters. Discuss the graph and reflect on its physical import.

Q.4.29 Consider the log-Pearson type III distribution which is a three-parameter distribution
determined from two constraints and gives the probability distribution of the random
variable. Plot the distribution as a function of its parameters and discuss how the
distribution shape changes with changes in parameter values. Based on the shape, can
this distribution be applied to any problem in water and environmental engineering
that you can think of? Derive the entropy of this distribution and plot it as a function
of its parameters. Discuss the graph and reflect on its physical import.

Q.4.30 Consider the logistic distributions: two-parameter log-logistic and log-logistic three
parameter. Plot each distribution as a function of its parameters and discuss how the
distribution shape changes with changes in parameter values. Based on the shape, can
this distribution be applied to any problem in water and environmental engineering
that you can think of? Derive the entropy of this distribution and plot it as a function
of its parameters. Discuss the graph and reflect on its physical import.

Q.4.31 Consider the Pareto distributions: two-parameter, two-parameter generalized and
three parameter. Plot each distribution as a function of its parameters and discuss
how the distribution shape changes with changes in parameter values. Based on the
shape, can this distribution be applied to any problem in water and environmental
engineering that you can think of? Derive the entropy of this distribution and plot it
as a function of its parameters. Discuss the graph and reflect on its physical import.

Q.4.32 Consider the Cauchy distribution which is a one-parameter distribution determined
from one constraint and gives the probability distribution of the random variable. Plot
the distribution as a function of its parameter and discuss how the distribution shape
changes with changes in parameter values. Based on the shape, can this distribution
be applied to any problem in water and environmental engineering that you can think
of? Derive the entropy of this distribution and plot it as a function of its parameters.
Discuss the graph and reflect on its physical import.
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Q.4.33 Consider the Raleigh distribution which is a one-parameter distribution determined
from one constraint and gives the probability distribution of the random variable. Plot
the distribution as a function of its parameter and discuss how the distribution shape
changes with changes in parameter values. Based on the shape, can this distribution
be applied to any problem in water and environmental engineering that you can think
of? Derive the entropy of this distribution and plot it as a function of its parameters.
Discuss the graph and reflect on its physical import.

Q.4.34 Consider the Chi-square distribution which is a one-parameter distribution determined
from one constraint and gives the probability distribution of the random variable. Plot
the distribution as a function of its parameter and discuss how the distribution shape
changes with changes in parameter values. Based on the shape, can this distribution
be applied to any problem in water and environmental engineering that you can think
of? Derive the entropy of this distribution and plot it as a function of its parameters.
Discuss the graph and reflect on its physical import.
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5 Multivariate Probability
Distributions

Multivariate distributions arise frequently in hydrologic science and water engineering. This
chapter extends the discussion of the previous chapter on univariate distributions to multivari-
ate distributions using POME. Let X1 and X2 be two random variables, such as rainfall depth
and duration in case of rainfall, flood peak and volume in case of floods, drought duration and
inter-arrival time in case of droughts, sediment load and concentration in case of sediment
transport, and so on. In a similar manner there can be more than two variables, such as
rainfall depth X1, duration X2, and inter arrival time X3 in case of rainfall; drought duration,
severity, and areal extent in case of droughts; and flood peak, volume, and duration in case of
floods. These random variables are different; they may be dependent or independent of each
other. Each individual variable can have Markovian dependencies. Consider, for example,
annual stream flow of a river as a random variable. Now consider the same annual stream
flow series but lagged by say five years. Then the five-year lagged values can be considered to
represent another random variable. Likewise, 10-year lagged values would represent another
random variable. Thus, the zero-lag series (original), five-year lag series, and 10-year lag series
are three time series leading to three random variables from the same stream flow process;
the latter two are obtained from the same present random series. In such cases, even one
variable with Markovian dependency will have to be treated in the same way as two or more
variables with cross-correlations.

The objective of this chapter is to derive multivariate normal and multivariate exponential
distributions using the principle of maximum entropy (POME). Derivation of multivariate
probability distribution function (PDF) entails 1) specification of constraints, 2) maximization
of entropy using the method of Lagrange multipliers, 3) formulation of partition function,
4) relation between the Lagrange multipliers and constraints, 5) derivation of the PDF, and
6) determination of entropy of the PDF.

5.1 Multivariate normal distributions

5.1.1 One time lag serial dependence
First, a variable with one-lag serial dependency is treated. The values of the variable with one
lag-one dependency are the values of the same process X(t) but at one time lag part. This then
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reduces to a case involving two random variables, X1 and X2, one time lag apart: X = {X1, X2}.
It is assumed that X1 and X2 have some cross-correlation. The objective is to derive a joint
probability density function (PDF) of X1 and X2.

Specification of constraints
The constraints to be imposed on these variables X : {X1, X2} are variance σ 2 and autocovariance
γ :

σ 2
Xi

=
∞∫

−∞

∞∫
−∞

(xi − µ)2 f (x1, x2)dx1dx2, i = 1, 2 (5.1)

γ (1) =
∞∫

−∞

∞∫
−∞

(x1 − µ)(x2 − µ) f (x1, x2)dx1dx2 (5.2)

where f (x1, x2) is the joint PDF of X1 and X2 where their values, x1 and x2 represent two
consecutive values of the same hydrologic process X(t), and µ is the mean of X1 and X2. Both
σ 2

X and γ (1) are approximated by their sample values, respectively, as:

S2
Xi

= 1

N

N−1∑
t=0

(xt+i − x)2, i = 1, 2 (5.3)

c(1) = 1

N

N−1∑
t=0

(xt − x)(xt+1 − x) (5.4)

where N denotes the number of observations and t ∈ (0, T), and x is the sample mean. For the
same hydrologic process second order stationarity is assumed: S2

X1
= S2

X2
= S2

X .
The total probability constraint can be expressed as

∞∫
−∞

∞∫
−∞

f (x1, x2)dx1dx2 = 1 (5.5)

Maximization of entropy
Entropy of two variables, joint entropy, can be written as

H(X1, X2) = −
∞∫

−∞

∞∫
−∞

f (x1, x2) ln[f (x1, x2)]dx1dx2 (5.6)

Maximizing the joint entropy H(X1, X2) using the method of Lagrange multipliers, subject to
equations (5.1), (5.2) and (5.5), one obtains the POME-based PDF:

f (x1, x2) = exp[−λ0 − λ1(x1 − µ)2 − λ2(x2 − µ)2 − λ3(x1 − µ)(x2 − µ)] (5.7a)

or

f (x1, x2) = 1

Z(λ1, λ2, λ3)
exp[−λ1(x1 − µ)2 − λ2(x2 − µ)2 − λ3(x1 − µ)(x2 − µ)] (5.7b)

where λ0, λ1, λ2 and λ3 are the Lagrange multipliers, and Z(λ1, λ2, λ3) is the partition function.
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Formulation of partition function
Using equation (5.7b) in equation (5.5), the partition function can be written as

Z(λ1, λ2, λ3) = exp(λ0)

=
∞∫

−∞

∞∫
−∞

exp[−λ1(x1 − µ)2 − λ2(x2 − µ)2 − λ3(x1 − µ)(x2 − µ)]dx1dx2 (5.8a)

For simplicity, one can write x1 − µ = x1 and x2 − µ = x2, keeping in mind that these values
are mean-corrected. Equation (5.8a) can be written as

Z(λ1, λ2, λ3) = exp(λ0) =
∞∫

−∞

∞∫
−∞

exp[−λ1x2
1 − λ2x2

2 − λ3x1x2]dx1dx2 (5.8b)

Taking the logarithm of equation (5.8b), one obtains

λ0 = ln

∞∫
−∞

∞∫
−∞

exp[−λ1x2
1 − λ2x2

2 − λ3x1x2]dx1dx2 (5.9)

The exponential terms in equation (5.9) can be expressed as error functions, noting that

∞∫
−∞

exp[−a2x2]dx =
√

π

a
(5.10)

Separating the variables of integration, equation (5.8b) can be written as

exp(λ0) =
∞∫

−∞
exp[−λ1x2

1]dx1

∞∫
−∞

exp

[
−λ2

(
x2 + λ3

2λ2

x1

)2

+ 4λ2
3

4λ2

]
dx2

=
∞∫

−∞
exp

[
−x2

1

(
λ1 − λ2

3

4λ2

]
dx1

∞∫
−∞

exp

[
−λ2

(
x2 + λ3

2λ2

x1

)2
]

dx2

=
√√√√ π

λ1 − λ2
3

4λ2

√
π

λ2

= 2π√
4λ1λ2 − λ2

3

(5.11)

Equation (5.11) is valid whenever 4λ1λ2 − λ2
3 > 0, that is, for λ2 > 0 and 4λ1λ2 > λ2

3.
Taking the logarithm of equation (5.11), one can write λ0 as:

λ0 = ln(2π) − 1

2
ln[4λ1λ2 − λ2

3] (5.12)

Relation between Lagrange multipliers and constraints
Differentiating equation (5.9) with respect to the Lagrange multiplier λ1 and using
equation (5.1) yield

∂λ0

∂λ1

= −σ 2
X (5.13)
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Differentiating equation (5.9) with respect to Lagrange multiplier λ2 and using equation (5.1)
yield

∂λ0

∂λ2

= −σ 2
X (5.14)

Differentiating equation (5.9) with respect to Lagrange multiplier λ3 and using equation (5.2)
yield

∂λ0

∂λ3

= −γ (1) (5.15)

Differentiating equation (5.12) with respect to λ1, λ2, and λ3 separately, one obtains,
respectively:

∂λ0

∂λ1

= − 2λ2

4λ1λ2 − λ2
3

(5.16)

∂λ0

∂λ2

= − 2λ1

4λ1λ2 − λ2
3

(5.17)

∂λ0

∂λ3

= λ3

4λ1λ2 − λ2
3

(5.18)

Equating equation (5.13) to equation (5.16), equation (5.14) to equation (5.17), and equation
(5.15) to equation (5.18), one obtains

σ 2
X = 2λ2

4λ1λ2 − λ2
3

(5.19)

σ 2
X = 2λ1

4λ1λ2 − λ2
3

(5.20)

and

−γ (1) = λ3

4λ1λ2 − λ2
3

(5.21)

From equations (5.19), (5.20) and (5.21), one obtains

λ1 = λ2 = 1

2

σ 2
X

σ 4
X − [γ (1)]2

(5.22)

and

λ3 = ± γ (1)

σ 4
X − [γ (1)]2

(5.23)

Substituting equations (5.22) and (5.23) in equation (5.11), the partition function becomes:

exp(λ0) = 2π

√
σ 4

X − [γ (1)]2 (5.24)
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Probability density function
Inserting the partition function and Lagrange multipliers in equation (5.7b), the POME-based
PDF becomes:

f (x1, x2) = 1

2π

√
σ 4

X − [γ (1)]2
exp

{
−1

2

σ 2
X[(x1 − µ)2 + (x2 − µ)2] ± 2γ (1)[x1 − µ)(x2 − µ)]

σ 4
X − [γ (1)]2

}

(5.25)

which is the bivariate normal probability density function.
The expression inside the exponential in equation (5.25) can be re-arranged as

−1

2

[
(x1 − µ)2σ 2

X

σ 4
X − [γ (1)]2

± (x1 − µ)(x2 − µ)γ (1)

σ 4
X − [γ (1)]2

± γ (1)(x1 − µ)(x2 − µ)

σ 4
X − [γ (1)]2

+ (x2 − µ)2σ 2
X

σ 4
X − [γ (1)]2

]

or

− 1

2

[
(x1 − µ)σ 2

X

σ 4
X − [γ (1)]2

± (x2 − µ)γ (1)

σ 4
X − [γ (1)]2

± γ (1)(x1 − µ) + σ 2
X(x2 − µ)

σ 4
X − [γ (1)]2

] [
x1 − µ

x2 − µ

]

= −1

2

[
x1 − µ x2 − µ

]



σ 2
X

σ 4
X − [γ (1)]2

± γ (1)

σ 4
X − [γ (1)]2

± γ (1)

σ 4
X − [λ(1)]2

σ 2
X

σ 4
X − [γ (1)]2



[

x1 − µ

x2 − µ

]
(5.26)

The joint PDF can now be written in compact form as

f (X) = 1

2π |γa|1/2
exp

[
−1

2
(X − µ)γ −1

a (X − µ)∗
]

(5.27)

where (X − µ) = [x1 − µ, x2 − µ] is the mean corrected vector, superscript * denotes the
transpose matrix; γa is the autocovariance matrix:

γa =
[

σ 2
X γ (1)

γ (1) σ 2
X

]
(5.28)

and γ −1
a is the inverse of the autocovariance matrix given as:

γ −1
a =




σ 2
X

σ 4
X − [γ (1)]2

− γ (1)

σ 4
X − [γ (1)]2

− γ (1)

σ 4
X − [γ (1)]2

σ 2
X

σ 4
X − [γ (1)]2


 (5.29)

Equation (5.29) is valid only if λ3 in equation (5.23) is defined with negative sign. Equation
(5.27) is equivalent to the bivariate normal distribution when the autocovariance matrix γa

is replaced by the cross-covariance matrix γc of the same dimension and the mean-corrected
vector of the univariate process, (µ, µ) or (x, x), by the mean corrected vector of the bivariate
process, (µx, µy) or (x, y).

The determinant of the autocovariance matrix given by equation (5.28) is:

|γa| = σ 4
X − [γ (1)]2 (5.30)
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From the condition on Lagrange multipliers mentioned earlier, it is concluded that

|γa| > 0 if λ1 = λ2 (5.31)

The autocovariance matrix must always be nonsingular, which is a necessary condition for
the PDF to exist. For its real solution from equation (5.21), one gets

|γa| = 4λ2
1 − λ2

3 > 0 (5.32)

or

λ1 = λ2 >
λ3

2
for λ1 > 0 (5.33)

Thus, the two principal minors [A principal minor of order n is obtained by deleting all rows
and columns except for the first n row and columns] of γa must be positive. Term γ −1

a can
now be re-written as

γ −1
a =

[
2λ1 λ3

λ3 2λ2

]
(5.34)

underscoring the important connection between the Lagrange multipliers λ1, λ2, λ3 and matrix
γ −1

a . Because of the identical values on the diagonal, equation (5.34) can be written as

γ −1
a =

[
2λ1 λ3

λ3 2λ1

]
(5.35)

Equations (5.22), (5.23) and (5.24) relate the Lagrange multipliers to elements σ 2
X and γ (1) of

the autocovariance matrix.
For the independent hydrologic process X(t), there is no transfer of information from one

lag to another, that is, γ (1) = 0. From equation (5.28), the off-diagonal Lagrange multiplier
dependent on γ (1) = 0 is zero. Therefore, an independent hydrologic process has diagonal
matrix � as

� =
[
λ1 0
0 λ1

]
(5.36)

Dependent hydrologic processes have two carriers of dependencies or information: one
represented by Lagrange multiplier λ1 proportional to the variance and another by λ2

proportional to the autocovariance of the first lag.

Example 5.1: Plot f (x1, x2) for various values of σ 2X and γ (1).

Solution: Assume the mean of X1 and the mean of X2 are zero. The joint probability f (x1, x2)
for various values of σ 2

X and γ (1) are computed and plotted, as shown in Figure 5.1.

Example 5.2: Compute σ 2
X and γ (1) for the data series of monthly discharges from Brazos

River at the gaging station at Waco, Texas (USGS gaging station number: 08096500), for the
period from 1970–2001 to 2006–2012. Plot f (x1, x2) as a function of σ 2

X and γ (1).

Solution: Monthly discharge data are first log-transformed beforehand. Then, the variance
and co-variance are computed: σx = 9.34 × 103 (cubic meters per second or cms in short) and
γ (1) = 5.25 × 103 (cms). The graph of f (x1, x2) is constructed, as shown in Figure 5.2.
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Distribution entropy
The entropy of the joint distribution f (x1, x2) is given by equation (5.6). Substituting equation
(5.25) in equation (5.6) and writing x1 and x2 for x1 − x or x1 − µ and x2 − x or x2 − µ one
obtains:

H(X1, X2) = −
∞∫

−∞

∞∫
−∞

f (x1, x2){ln 1

2π

√
σ 4

X − [γ (1)]2
− 1

2{σ 4
X − [γ (1)]2}

× [σ 2
X(x2

1 + x2
2) − 2γ (1)x1x2]}dx1dx2 (5.37)

Equation (5.37) can be written as

H(X1, X2) =
[
ln 2π + 1

2
ln |γa|

] ∞∫
−∞

∞∫
−∞

f (x1, x2)dx1dx2

+ 1

2{σ 4
X − [γ (1)]2}

∞∫
−∞

∞∫
−∞

f (x1, x2)[σ 2
X(x2

1 + x2
2) − 2γ (1)x1x2]dx1dx2 (5.38)

Equation (5.38) simplifies to:

H(x1, x2) = ln 2π + 1

2
ln |γa| + 1

2{σ 4
X − [γ (1)]2} [σ 2

X

∞∫
−∞

∞∫
−∞

x2
1 f (x1, x2)dx1dx2

+ σ 2
X

∞∫
−∞

∞∫
−∞

x2
2 f (x1, x2) − 2γ (1)

∞∫
−∞

∞∫
−∞

f (x1, x2)x1x2dx1dx2 (5.39)

Equation (5.39) further simplifies to

H(x1, x2) = ln 2π + 1

2
ln |γa| + 1

2{σ 4
X − [γ (1)]2} [σ 2

Xσ 2
X + σ 2

Xσ 2
X − 2γ (1)γ (1)] (5.40)

or

H(x1, x2) = ln(2π) + 1

2
ln |γa| + 1 (5.41)

Example 5.3: Compute the bivariate normal distribution entropy for the data of Example 5.2.
Then, taking arbitrarily different values of γa, plot H as a function of γa.

Solution: First, the determinant of the autocovariance matrix is computed as:

|γa| = σ 4
X − [γ (1)]2 = 1.49102 − 0.98542 = 1.0426

Then, the entropy is computed as:

H = ln(2π + 1) + 1

2
ln |γa| = 2.8587 Napier

For different values of |γa|, entropy is computed and plotted, as shown in Figure 5.3.
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Figure 5.3 Entropy for different values of |γa|.

5.1.2 Two-lag serial dependence
Consider a univariate hydrologic process where observations are being made with two time
lags apart, that is at a given time, one time lag apart and then another time lag apart. Thus
there will be three sets of observations. Each set of observations represents a random variable.
Essentially this case involves three random variables. Let X1, X2 and X3 be then the three
random variables of the same hydrologic process two time lags apart. The objective is to derive
the joint distribution. Assume that X1, X2 and X3 are normally distributed.

Specification of constraints
The constraints to be imposed on these variables are variance σ 2

X , autocovariance of the first
lag γ (1) and autocovariance of the second lag γ (2):

σ 2
Xi

=
∞∫

−∞

∞∫
−∞

∞∫
−∞

(xi − µ)2 f (x1, x2, x3)dx1dx2dx3, i = 1, 2, 3 (5.42)

γ (1) =
∞∫

−∞

∞∫
−∞

∞∫
−∞

(xi − µ)(xi+1 − µ) f (x1, x2, x3)dx1dx2dx3, i = 1, 2 (5.43)

γ (2) =
∞∫

−∞

∞∫
−∞

∞∫
−∞

(x1 − µ)(x3 − µ) f (x1, x2, x3)dx1dx2dx3 (5.44)

where f (x1, x2, x3) is the joint PDF of three consecutive random variables X : {Xi, i = 1, 2, 3} of
a hydrologic process X(t). σ 2

Xi, γ (1), and γ (2) are approximated by their sample values:

S2
Xi

= 1

N

N−1∑
t=0

(xt+i − x)2, i = 0, 1, 2 (5.45)
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c(1) = 1

N

N+i−1∑
t=0

(xt+i − x)(xt+i+1 − x), i = 0, 1 (5.46)

c(2) = 1

N

N−2∑
t=0

(xt − x )(xt+2 − x) (5.47)

where N denotes the number of observations and tε(0, T). Because the hydrologic process is
the same, second order stationarity is assumed: S2

X1
= S2

X2
= S2

X .
The total probability constraint can be expressed as

∞∫
−∞

∞∫
−∞

∞∫
−∞

f (x1, x2, x3)dx1dx2dx3 = 1 (5.48)

Maximization of entropy
The three-variate entropy or the entropy of the joint distribution f (x1, x2, x3) can be written as:

H(X1, X2, X3) = −
∞∫

−∞

∞∫
−∞

∞∫
−∞

f (x1, x2, x3) ln[f (x1, x2, x3)]dx1 dx2dx3 (5.49)

Maximizing entropy H(X1, X2, X3), subject to equations (5.42) to (5.44) and equation (5.48),
for deriving the trivariate distribution, one obtains

f (x1, x2, x3) = 1

Z(λ1, λ2, λ3, λ4, λ5, λ6)
exp

[−λ1(x1 − µ)2 − λ2(x2 − µ)2 − λ3(x3 − µ)2

−λ4(x1 − µ) (x2 − µ) − λ5(x2 − µ)(x3 − µ) − λ6(x1 − µ)(x3 − µ)]
]

(5.50a)

One can also write:

f (x1, x2, x3) = exp[−λ0 − λ1(x1 − µ)2 − λ2(x2 − µ)2 − λ3(x3 − µ)2

− λ4(x1 − µ) (x2 − µ) − λ5(x2 − µ)(x3 − µ) − λ6(x1 − µ)(x3 − µ)] (5.50b)

where λ1, λ2, λ3, λ4, λ5 and λ6 are the Lagrange multipliers, and Z(λ1, λ2, λ3, λ4, λ5, λ6) is the
partition function.

Formulation of partition function
Using equation (5.48), the partition function can be written as

Z(λ) = exp(λ0) =
∞∫

−∞

∞∫
−∞

∞∫
−∞

[−λ1(x1 − µ)2 − λ2(x2 − µ)2 − λ3(x3 − µ)2

− λ4(x1 − µ)(x2 − µ) − λ5(x2 − µ)(x3 − µ) − λ6(x1 − µ)(x3 − µ)]dx1dx2dx3 (5.51)

For simplicity, one can write x1 − x = x1 or x1 − µ, x2 − x = x2 or x2 − µ, and x3 − x = x3 or
x3 − µ keeping in mind that these values are mean-corrected. Also, λ = {λ1, λ2, λ3, λ4, λ5, λ6}.
Separating the variables of integration, equation (5.51) can be written as

Z(λ) =
∞∫

−∞
exp[−λ1x2

1]dx1

∞∫
−∞

exp(−λ2x2
2 − λ4x1x2)dx2

∞∫
−∞

exp[−λ3x2
3 − x3(λ5x2 + λ6x1)]dx3

(5.52)
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The third integral can be solved using the formula:

∞∫
−∞

exp[−a2x2 − bx]dx =
√

π

a
exp

(
b2

4a2

)
, if a = √λ3 > 0 (5.53)

Thus,

Z(λ) =
∞∫

−∞
exp[−x2

1λ1]dx1

∞∫
−∞

exp(−λ2x2
2 − λ4x1x2)dx2 exp

[
(λ5x2 + λ6x1)2

4λ3

]√
π

λ3

(5.54)

Rearranging the terms under the integral in equation (5.54), one obtains

Z(λ) =
√

π

λ3

∞∫
−∞

exp

[
−x2

1λ1 + λ6x2
1

4λ3

]
dx1

∞∫
−∞

exp

[
−x2

2

(
λ2 − λ2

5

4λ3

)
− x2

(
λ4 − λ5λ6

2λ3

)]
dx2

(5.55)

In a similar manner, the second integral in equation (5.55) can be solved as

Z(λ) =
√

π

λ3

∞∫
−∞

exp

[
−x2

1

(
λ1 − λ2

6

4λ3

)]
dx1 exp




(
2λ3λ4 − λ5λ6

2λ3

x1

)2

4
4λ2λ3 − λ2

5

4λ3

√
π√

4λ2λ3 − λ2
5

4λ3




(5.56)

under the condition that

4λ2λ3 − λ2
5

4λ3

> 0 (5.57)

Rearranging the terms in equation (5.56), one gets

Z(λ) = 2π√
4λ2λ3 − λ2

5

∞∫
−∞

exp

{
−x2

1

[
λ1 − λ2

6

4λ3

− (2λ3λ4 − λ5λ6)2

4λ3(4λ2λ3 − λ2
5)

]}
dx1 (5.58)

Using equation (5.10), for a > 0 equation (5.58) simplifies to:

Z(λ) = 2π√
4λ2λ3 − λ2

5

√
π√

4λ1λ3(4λ2λ3 − λ2
5) − λ2

6(4λ2λ3 − λ2
5) − (2λ3λ4 − λ5λ6)2

4λ3(4λ2λ3 − λ2
5)

(5.59)

On simplification, equation (5.59) becomes

Z(λ) = 2(π)3/2√
4λ1λ2λ3 − λ1λ

2
5 − λ2λ

2
6 − λ3λ

2
4 + λ4λ5λ6

(5.60)

To further simplify it, let

D = 4λ1λ2λ3 − λ1λ
2
5 − λ2λ

2
6 − λ3λ

2
4 + λ4λ5λ6 (5.61)

where D > 0.
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Taking the logarithm of equation (5.60), one gets

λ0 = ln(2) + 3

2
ln(π) − 1

2
ln(D) (5.62)

Relation between Lagrange multipliers and constraints
Differentiating the logarithm of equation (5.51) with respect to individual Lagrange multipliers
separately, and making use of constraint equations (5.42) to (5.44), one obtains:

∂λ0

∂λ1

= −σ 2
X (5.63)

∂λ0

∂λ2

= −σ 2
X (5.64)

∂λ0

∂λ3

= −σ 2
X (5.65)

∂λ0

∂λ4

= −γ (1) (5.66)

∂λ0

∂λ5

= −γ (1) (5.67)

∂λ0

∂λ6

= −γ (2) (5.68)

Differentiating λ0 in equation (5.62) with respect to other Lagrange multipliers,
λ1, λ2, λ3, λ4, λ5 and λ6, one gets

∂λ0

∂λ1

= 4λ2λ3 − λ2
5 (5.69)

∂λ0

∂λ2

= 4λ1λ3 − λ2
6 (5.70)

∂λ0

∂λ3

= 4λ1λ2 − λ2
4 + λ5λ6 (5.71)

∂λ0

∂λ4

= −2λ3λ4 + λ5λ6 (5.72)

∂λ0

∂λ5

= −2λ1λ5 + λ4λ6 (5.73)

∂λ0

∂λ6

= −2λ2λ6 + λ4λ5 (5.74)

Equating equations (5.69) to (5.74) individually to corresponding equations (5.63) to (5.68),
respectively, and then solving, one gets the relations between Lagrange multipliers and
constraints as:

λ1 = 1

4λ2

(λ2
4 + σ 2

X2D) (5.75)

λ2 = 1

4λ3

(λ2
5 + σ 2

X2D) (5.76)

λ3 = 1

4λ1

(λ2
6 + σ 2

X2D) (5.77)

λ4 = − 1

2λ3

(−λ5λ6 + γ (1)2D) (5.78)
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λ5 = − 1

2λ1

(λ4λ6 + γ (1)2D) (5.79)

λ6 = − 1

2λ2

(−λ4λ5 + γ (2)2D) (5.80)

where D is defined in equation (5.61). The solution of the system of equations (5.75) to (5.80)
is found to be:

λ1 = λ3 = 1

2

σ 4
X − [γ (1)]2

|γa|
(5.81)

λ2 = 1

2

σ 4
X − [γ (2)]2

|γa|
(5.82)

λ4 = λ5 = γ (1)γ (2) − γ (1)σ 2
X

|γa|
(5.83)

λ6 = [γ (1)]2 − γ (2)σ 2
X

|γa|
(5.84)

where |γa| is the determinant of the autocovariance matrix given as:

γa =




σ 2
X γ (1) γ (2)

γ (1) σ 2
X γ (1)

γ (2) γ (1) σ 2
X


 (5.85)

The determinant is expressed as

|γa| = σ 6
X − 2σ 2

X[γ (1)]2 + 2[γ (1)]2γ (2) − σ 2
X[γ (2)]2 (5.86)

Substituting equation (5.81) to (5.84) in equation (5.59), the partition function can now be
expressed as

Z(λ) = 2(π)3/2

[
1

2

σ 4
X − [γ (1)]2

|γa|3
{σ 4

X − [γ (2)]2} − 1

2

σ 4
X − [γ (1)]2

|γa|

× [γ (1)γ (2) − γ (1)σ 2
X]2

|γa|
− 1

2

{σ 4
X − [γ (2)]2}

|γa|
{[γ (1)]2 − γ (2)σ 2

X}2

|γa|
]−1/2

(5.87)

Simplifying the denominator, collecting terms of the same power, and rearranging, equation
(5.87) can be expressed as:

Z(λ) = (2π |γa|)3/2{σ 12
X + σ 4

X(2[γ (1)]2 + [γ (2)]2)2 + 4[γ (1)]4[γ (2)]2 − 2σ 8
X{2[γ (1)]2

+ [γ (2)]2} + 4[γ (1)]2γ (2)σ 6
X + 4[γ (1)]2γ (2){2γ (1)]2 + [γ (2)]2}σ 2

X}−1/2 (5.88)

or

Z(λ) = (2π |γa|)3/2

{σ 6
X − σ 2

X[2[γ (1)]2 + [γ (2)]2] + 2[γ (1)]2γ (2)}2
(5.89)

Therefore,

exp(λ0) = (2π)3/2|γa|1/2 (5.90)
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Substituting equations (5.81) to (5.84) and equation (5.90) in equation (5.50a), the PDF can
be expressed as

f (x1, x2, x3) = 1

(2π)3/2|γa|1/2
exp


−1

2
[x1 − µ, x2 − µ, x3 − µ]γ −1

a


x1 − µ

x2 − µ

x3 − µ




 (5.91)

or

f ( �X) = 1

(2π)3/2|γa|1/2
exp

{
−1

2
( �X − �µ)γ −1

a ( �X − �µ)

}
(5.92)

where �X = (x1, x2, x3), �X − �µ = (x1 − µ, x2 − µ, x3 − µ) is the mean corrected vector �X, and γ −1
a

is the inverse of the autocovariance matrix γa given as

γ −1
a =




σ 4
X − [γ (1)]2

|γa|
γ (1)γ (2) − σ 2

Xγ (1)

|γa|
[γ (1)]2 − σ 2

Xγ (2)

|γa|
γ (1)γ (2) − σ 2

Xγ (1)

|γa|
σ 4

X − [γ (2)]2

|γa|
γ (1)γ (2) − γ (1)σ 2

X

|γa|
[γ (1)]2 − σ 2

Xγ (2)

|γa|
γ (1)γ (2) − γ (1)σ 2

X

|γa|
σ 4

X − [γ (1)]2

|γa|




(5.93)

Now the connection between the Lagrange multipliers and the inverse matrix γ −1
a given by

equation (5.93) can be established. The inverse matrix can be rewritten as

γ −1
a =


2λ1 λ4 λ6

λ4 2λ2 λ5

λ6 λ5 2λ3


 (5.94)

Since λ1 = λ3 and λ4 = λ5, equation (5.94) can be written as

γ −1
a =


2λ1 λ4 λ6

λ4 2λ2 λ4

λ6 λ4 2λ1


 (5.95)

The solution is possible under the conditions:

λ3 > 0, 4λ2λ3 − λ2
5 > 0 (5.96)

|D| = |γ −1
a | > 0 (5.97)

For the inverse matrix given by equation (5.94), all principal minors must be positive.
It may be noted that there are four Lagrange multipliers that are responsible for carrying

information in hydrologic processes. λ1 and λ2 depend only on the variance, λ4 depends on
the first lag autocovariance γ (1), and λ6 depends on the second lag autocovariance γ (2).
Define the Lagrange multiplier matrix as:

� = 1

2
γ −1

a (5.98)
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For independent hydrologic processes, matrix � becomes diagonal:

� =




λ1 0 0

0 λ2 0

0 0 λ1


 (5.99)

For the first lag-dependent process the Lagrange multiplier matrix is:

� =




λ1
λ4

2
0

λ4

2
λ2

λ4

2

0
λ4

2
λ1


 (5.100)

and for the second lag dependency it is

� =




λ1
λ4

2

λ6

2
λ4

2
λ2

λ4

2
λ6

2

λ4

2
λ1


 (5.101)

Example 5.4: Using the dataset of monthly discharges in Example 5.2, compute σ 2
X and

γ (1), γ (2). Derive the joint probability distribution function f (x1, x2, x3) as a function of σ 2
X

and γ (1), γ (2).

Solution: For the given dataset, the logarithm of discharge values is taken, first. Then, one
gets: σ 2

X = 1.4190 (cms)2, γ (1) = 0.9854 (cms)2 and γ (2) = 0.7603 (cms)2. Then,

|γa| = σ 6
X − 2σ 2

X[γ (1)]2 + 2[γ (1)]2γ (2) − σ 2
X[γ (2)]2 = 0.7578

From equations (5.81)–(5.84), one gets:

λ1 = λ3 = 1

2

σ 4
X − [γ (1)]2

|γa|
= 0.6879

λ2 = 1

2

σ 2
X − [γ (2)]2

|γa|
= 0.9472

λ4 = λ5 = γ (1)γ (2) − γ (1)σ 2
X

|γa|
= −0.8566

λ6 = γ (1)2 − γ (2)σ 2
X

|γa|
= −0.1423

Thus, one gets the matrix:

γ −1
a =




2λ1 λ4 λ6

λ4 2λ2 λ4

λ6 λ4 2λ1


 =




1.3758 0.8566 −0.1423

0.8566 1.8944 0.8566

−0.1423 0.8566 1.3758



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Probability Density Function
Now, the PDF can be expressed as:

f (x1, x2, x3) = 1

(2π)3/2|γa|1/2
exp

[
−1

2
( �X − �µ)γ −1

a ( �X − �µ)

]

= 0.0729 exp


−1

2
[x1 − µ, x2 − µ, x3 − µ]


 1.3758 0.8566 −0.1423

0.8566 1.8944 0.8566
−0.1423 0.8566 1.3758




x1 − µ

x2 − µ

x3 − µ






Subtracting mean values from actual values as x1 − µ or x1 − x and x2 − µ or x2 − x, and
x3 − µ or x3 − x and then denoting the residuals simply as x1, x2 and x2, the joint PDF can be
written as:

f (x1, x2, x3) = 1

(2π)3/2|γ a|1/2
exp

{
− (σ 4

X − [γ (1)]2)x2
1 + x2

3

2|γa|
− [σ 4

X − [γ (2)]2x2
2

2|γa|
− [γ (1)γ (2) − γ (1)σ 2

X](x1x2 + x2x3)

|γa|
− [{γ (1)}2 − γ (2)σ 2

X]x1x3

|γa|
}

(5.102)

Distribution entropy
The entropy of the joint probability density function f (x1, x2, x3) can be expressed by substi-
tuting equation (5.102) in equation (5.49) as:

H(X1, X2, X3) = −
∞∫

−∞

∞∫
−∞

∞∫
−∞

f (x1, x2, x3){ln[(2π)−3/2|γa|−1/2] − 1

2(|γa|)
[σ 4

X − [γ (1)]2(x2
1 + x2

3)

+ [σ 4
X − γ (2)]2x2

2 + (2γ (1)γ (2) − γ (1)σ 2
X)(x1x2 + x2x3)

+ 2x1x3[{γ (1)}2 − γ (2)σ 2
x ]]}dx1dx2dx3 (5.103)

Equation (5.103) is essentially the sum of five integrals:

H(X1, X2, X3) =
(

3

2
ln(2π) + 1

2
ln |γa|

)
A1 + 1

2|γa|
[A2 + A3 + A4 + A5] (5.104)

where

A1 =
∞∫

−∞

∞∫
−∞

∞∫
−∞

f (x1, x2, x3)dx1dx2dx3 (5.105)

A2 = {σ 4
X − [γ (1)]2}


 ∞∫

−∞

∞∫
−∞

∞∫
−∞

f (x1, x2, x3)x2
1dx1dx2dx3 +

∞∫
−∞

∞∫
−∞

∞∫
−∞

x2
3dx1dx2dx3


 (5.106)

A3 = {σ 4
X − [γ (2)]2}


 ∞∫

−∞

∞∫
−∞

∞∫
−∞

f (x1, x2, x3)x2
2dx1dx2dx3


 (5.107)

A4 = 2[γ (1)λ(2) − γ (1)σ 2
X]


 ∞∫

−∞

∞∫
−∞

∞∫
−∞

f (x1, x2, x3)x1x2dx1dx2dx3
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+
∞∫

−∞

∞∫
−∞

∞∫
−∞

x2x3f (x1, x2, x3)dx1dx2dx3


 (5.108)

A5 = 2{[γ (1)]2 − γ (2)σ 2
X}

 ∞∫

−∞

∞∫
−∞

∞∫
−∞

f (x1, x2, x3)x1x3dx1dx2dx3


 (5.109)

Using the constraint equations, equations (5.105) to (5.109) are solved as:

A1 = 1 (5.110)

A2 = 2σ 2
X{σ 4

X − [γ (1)]2} (5.111)

A3 = σ 2
X{σ 4

X − [γ (2)]2} (5.112)

A4 = 4γ (1)[γ (1)γ (2) − γ (1)σ 2
X] (5.113)

A5 = 2γ (2){[γ (1)]2 − γ (2)σ 2
X] (5.114)

Inserting equation (5.110) to (5.114) in equation (5.104), and substituting (5.86), equation
(5.49) becomes

H(X1, X2, X3) = 3

2
ln 2π + 1

2
ln |γa|

+

σ 2
X{σ 4

X − [γ (1)]2} + σ 2
X

2
{σ 4

X − [γ (2)]2} + 2γ (1)[γ (1)γ (2) − γ (1)σ 2
X]

+γ (2){[γ (1)]2 − γ (2)σ 2
X}

σ 6
X − 2σ 2

X[γ (1)]2 + 2[γ (1)]2γ (2) − σ 2
X[γ (2)]2

(5.115)

On simplification, equation (5.115) reduces to:

H(X1, X2, X3) = 3

2
ln 2π + 1

2
ln |γa| +

3

2

[
σ 6

X − 2σ 2
X[γ (1)]2 − σ 2

X[γ (2)]2 + 2[γ (1)]2γ (2)
]

σ 6
X − 2σ 2

X[γ (1)]2 + 2[γ (1)]2γ (2) − σ 2
X[γ (2)]2

(5.116)

Finally, equation (5.116) can be cast as

H(X1, X2, X3) = 3

2
ln(2π + 1) + 1

2
ln |γa| (5.117)

Example 5.5: Compute the distribution entropy for the data of Example 5.4.

Solution: H(X1, X2, X3) = 3
2 ln(2π + 1) + 1

2 ln |γa| = 4.1182 Napier

5.1.3 Multi-lag serial dependence
The development of a three-time lag variate PDF can be extended to the case where the values
of the hydrologic process X(t) = {x(t), t ∈ (0, T), m < T} are dependent until an m-th lag.

Specification of constraints
From the previous discussion the resulting PDFs have the form of multivariate PDFs with the
following changes:
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a) The autocovariance matrix γa in the one variate PDF replaces the cross-covariance matrix
γc in the multivariate counterpart.
b) The number of values x ∈ X(t) serially correlated in the univariate PDF replaces the
number of multivariables X in the multivariate counterpart.
The univariate distribution with multi-lag serial dependence can be used for any hydrologic
process with strong serial dependency. An example may be a partial duration series with low
cutoff level examining multiple flood events, hourly rainfall at one station, and so on.

To derive the multivariate PDF using POME, one must include all possible dependencies
among values X(t) until the m-th lag. For the development with no dependencies one
constraint is sufficient, that is, variance – the statistic associated with the zeroth lag. For the
case with one-lag serial dependence, two constraints – variance and autocovariance for the
first lag – are sufficient. However, three Lagrange multipliers are needed for the specification of
the autocovariance matrix. For two-lag serial dependence, three constraints and six Lagrange
multipliers are necessary. For the m-th serial dependence, the autocorrelation matrix is of
(m + 1) × (m + 1) dimensions. The number of constraints for POME is m + 1; specifically these
constraints are: σ 2

X , γ (1), γ (2), . . . , γ (m). The number of Lagrange multipliers is equal to the
number of elements on and below the main diagonal of the autocovariance matrix γa, where

γa =




σ 2
X γ (1) . . . γ (m)

γ (1) . . . . .

. . . . . .

. . . . . .

. . . . . .

γ (m) . . . . σ 2
X




(5.118)

The inverse of the autocovariance matrix is

γ −1
a =




a1 . b1 . . .

. . . . . .

b1 . . . . .

. . . . . bj

. . . . . .

. . . bj . am+1




(5.119)

where matrix elements a’s and b’s are functions of σ 2
X , γ (1), γ (2), . . . , γ (m). The matrix of

Lagrange multipliers is

� =




a1/2 . . . b1/2 . . .

. . . . . . . .

. . . . . . . .

. . . . . . . bj/2

b1/2 . . . . . . .

. . . . . . . .

. . . . . . . .

. . . bj/2 . . . am+1/2




(5.120)

The matrix � determines the dependence structure of the hydrologic process up to the m-th
lag. For example, in an independent process all off-diagonal elements in the � matrix are
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zero. For that case, equation (5.120) can be written as

� =




λ1 . . . 0 . . .

. λ2 . . . . . .

. . . . . . . .

. . . . . . . 0

. . . . . . . .

0 . . . . . . .

. . . . . . . .

. . 0 . . . . λm+1




(5.121)

The existence of both partition function Z(λ) and PDF is assured if all principle minors of γ −1
a

are positive.

Partition function
For the independent process this means that all Lagrange multipliers must be positive. The
partition function is

exp(λ0) = (2π)
m+1

2 |γ1|1/2 (5.122)

POME-based PDF
The PDF is

f (X) = 1

Z(λ)
exp

[
−1

2
( �X − �µ)γ −1

a ( �X − �µ)∗
]

= 1

Z(λ)
exp

[−( �X − �µ)�( �X − �µ)∗] (5.123)

where �X = (x0, x1, . . . , xm) is the vector including serially dependent elements of the hydro-
logical process, and �X − �µ = (x0 − µ, x1 − µ, . . . , xm − µ) is the mean corrected vector �X; γ −1

a

is the inverse of the autocovariance matrix γa; and Z(λ) is the partition function.

Example 5.6: Take the data series of monthly discharges given in Example 5.4. Derive the
joint probability distribution function f (x1, x2, x3, x4) as a function of σ 2

X and γ (1), γ (2), γ (3).

Solution: Specification of Constraints: The constraints to be imposed on these variables
are variance σ 2

X , autocovariances of the first, second and third lags: γ (1), γ (2), and γ (3):

σ 2
Xi

=
∞∫

−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

x2
i f (x1, x2, x3, x4)dx1dx2dx3dx4, i = 1, 2, 3, 4 (5.124)

γ (1) =
∞∫

−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

xixi+1f (x1, x2, x3, x4)dx1dx2dx3dx4 , i = 1, 2, 3 (5.125)

γ (2) =
∞∫

−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

xixi+2f (x1, x2, x3, x4)dx1dx2dx3dx4, i = 1, 2 (5.126)

γ (3) =
∞∫

−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

x1x4f (x1, x2, x3, x4)dx1dx2dx3dx4 (5.127)



232 Entropy Theory and its Application in Environmental and Water Engineering

The total probability constraint can be expressed as

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

f (x1, x2, x3, x4)dx1dx2dx3dx4 = 1 (5.128)

Maximization of entropy
The entropy of the joint distribution f (x1, x2, x3, x4) can be written as:

H(X1, X2, X3, X4) = −
∞∫

−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

f (x1, x2, x3, x4) ln f (x1, x2, x3, x4)dx1 dx2dx3dx4 (5.129)

Maximizing entropy H(X1, X2, X3, x4) subject to the constraints, one obtains

f (x1, x2, x3, x4) = 1

Z(λ)
exp[−λ1x2

1 − λ2x2
2 − λ3x2

3 − λ4x2
4

− λ5x1x2 − λ6x2x3 − λ7x3x4 − λ8x1x3 − λ9x2x4 − λ10x1x4] (5.130)

Partition function
The partition function can be expressed as:

Z(λ) = exp(λ0)

=
∞∫

−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

(
−λ1x2

1 − λ2x2
2 − λ3x2

3 − λ4x2
4

−λ5x1x2 − λ6x2x3 − λ7x3x4 − λ8x1x3 − λ9x2x4 − λ10x1x4

)
dx1dx2dx3dx4

=
∞∫

−∞
exp[−λ1x2

1]dx1

∞∫
−∞

exp(−λ2x2
2 − λ5x1x2)dx2

∞∫
−∞

exp[−λ3x2
3 − x3(λ6x2 + λ8x1)]dx3

×
∞∫

−∞
exp[−λ4x2

4 − x4(λ7x3 + λ9x2 + λ10x1)]dx4

= 2π2

√
D

(5.131)

where

D′ = 4λ1λ2λ3λ4 − λ2λ4λ
2
8 − λ1λ3λ

2
9 − λ3λ4λ

2
5 − λ1λ2λ

2
7 − λ1λ4λ

2
6 − λ2λ3λ

2
10 + λ4λ5λ6λ8

+λ1λ6λ7λ9 + λ3λ5λ9λ10 + λ2λ7λ8λ10 − λ5λ6λ7λ10

2
− λ6λ8λ9λ10

2
− λ5λ7λ8λ9

2

+λ2
6λ

2
10

4
+ λ2

8λ
2
9

4
+ λ2

5λ
2
7

4
(5.132)

Relation between Lagrange multipliers and constraints
Differentiating the logarithm of Z(λ) with respect to individual Lagrange multipliers separately,
and making use of constraint equations, one obtains

∂λ0

∂λ1

= −σ 2
X; ∂λ0

∂λ2

= −σ 2
X; ∂λ0

∂λ3

= −σ 2
X; ∂λ0

∂λ4

= −σ 2
X; ∂λ0

∂λ5

= −γ (1); ∂λ0

∂λ6

= −γ (1);
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∂λ0

∂λ7

= −γ (1); ∂λ0

∂λ8

= −γ (2); ∂λ0

∂λ9

= −γ (2); ∂λ0

∂λ10

= −γ (3) (5.133)

The six equations used for solving the Lagrange multipliers can be expressed as:

4λ2λ3λ4 − λ3λ
2
9 − λ2λ

2
7 − λ4λ

2
6 + λ6λ7λ9 = 2DS2

x (5.134)

4λ1λ3λ4 − λ4λ
2
8 − λ1λ

2
7 − λ3λ

2
10 + λ7λ8λ10 = 2DS2

x (5.135)

−2λ3λ4λ5 + λ4λ6λ8 + λ3λ9λ10 − λ6λ7λ10

2
− λ7λ8λ9

2
+ λ5λ

2
7

2
= 2Dγ (1) (5.136)

−2λ1λ4λ6 + λ4λ5λ8 + λ1λ7λ9 − λ5λ7λ10

2
− λ10λ8λ9

2
+ λ6λ

2
10

2
= 2Dγ (1) (5.137)

−2λ2λ4λ8 + λ4λ5λ6 + λ2λ7λ10 − λ6λ9λ10

2
− λ5λ7λ9

2
+ λ8λ

2
9

2
= 2Dγ (2) (5.138)

−2λ2
2λ10 + 2λ2λ5λ8 − λ2

5λ6

2
− λ6λ

2
8

2
+ λ2

6λ10

2
= 2Dγ (3) (5.139)

where λ1 = λ4, λ2 = λ3, λ5 = λ7 and λ8 = λ9.
Solving these equations above, one gets:

λ1 = λ4 = 0.6887, λ2 = λ3 = 0.9518; λ5 = λ7 = −0.8526;
λ6 = −0.7866 λ8 = λ9 = −0.1130; λ10 = −0.0474

For the given data set, the autocovariance matrix can be expressed as:

γa =




σ 2
X γ (1) γ (2) γ (3)

γ (1) σ 2
X γ (1) γ (2)

γ (2) γ (1) σ 2
X γ (1)

γ (3) γ (2) γ (1) σ 2
X


 =




1.4190 0.9854 0.7603 0.6003

0.9854 1.4190 0.9854 0.7603

0.7603 0.9854 1.4190 0.9854

0.6003 0.7603 0.9854 1.4190




The matrix of Lagrange multipliers becomes

� =




λ1
λ5

2

λ8

2

λ10

2
λ5

2
λ2

λ6

2

λ9

2
λ8

2

λ6

2
λ3

λ7

2
λ10

2

λ9

2

λ7

2
λ4




=




0.6887 −0.4263 −0.0565 −0.0237

−0.4263 0.9518 −0.3933 −0.0565

−0.0565 −0.3933 0.9518 −0.4263

−0.0237 −0.0565 −0.4263 0.6887




The partition function is:

Z(λ) = exp(λ0) = 2π2|D|−1/2 = 29.28
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PDF
The probability distribution function can now be written as:

f ( �X) = 0.0342 exp




−( �X − �µ)




0.6887 −0.4263 −0.0565 −0.0237
−0.4263 0.9518 −0.3933 −0.0565
−0.0565 −0.3933 0.9518 −0.4263
−0.0237 −0.0565 −0.4263 0.6887


 ( �X − �µ)∗




Distribution entropy
Concurrent with this discussion, entropy of the univariate hydrologic process can be expressed
as follows:

For the 0-th lag dependency:

H(X) = 1

2
ln |γa| + 1

2
[ln(2π) + 1] (5.140)

where γa = σ 2
X .

For one-lag dependency:

H(X) = 1

2
ln |γa| + 2

2
[ln(2π) + 1] (5.141)

where γa is given by equation (5.28)
For two-lag dependency:

H(X) = 1

2
ln |γa| + 3

2
[ln(2π) + 1] (5.142)

where γa is given by equation (5.85).
For the m-lag dependency:

H(X) = 1

2
ln |γa| + m + 1

2
[ln(2π) + 1] (5.143)

where γa is given by equation (5.118). Equation (5.143) is equivalent to the entropy of the
multivariate normal distribution where γa is replaced by γc and m serially correlated values
xi (i = 1, 2, . . . , m) by m hydrologic multivariables.

Example 5.7: Compute the entropy using the data of Example 5.6.

H(X) = 1

2
ln |γa| + m + 1

2

[
ln(2π) + 1

] = 1

2
ln |γa| + 2

[
ln(2π) + 1

] = 5.97 (Napier)

Note that the entropy is decreasing with increasing lag.

5.1.4 No serial dependence: bivariate case
Let X1 and X2 be two random variables of a stationary hydrologic process X(t) Specifically
the multivariables are: X1 = {x1(t), t ∈ (0, T)} and X2 = {x2(t), t ∈ (0, T)}. To simplify notation,
let X1 and X2, be designated respectively as X and Y , that is, X ∈ X(t) and Y ∈ Y(t). As an
example, if X(t) is a flood process, then X may represent the series of flood peaks and Y the
series of flood volumes. From populations X and Y , representative sample measurements are
obtained and used to compute relevant statistics.
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For deriving the bivariate PDF by POME, one can use the results from one-lag serial
dependent case, recognizing that multivariables are serially independent (0-lag dependence)
and cross-correlated only at 0-th lag. Bivariate distribution with no serial dependence can
be used for any two hydrologic processes strongly associated at the same lag, that is, rainfall
depths and runoff peaks for the same storms, runoff and snowmelt for the same season,
and so on. The objective is to derive the bivariate distribution with two variables dependent
only at the 0-th lag and no serial dependency. The matrix that adequately expresses these
characteristics is the cross covariance matrix γc of 2 × 2 dimensions:

γc =
[

σ 2
X γ12(0)

γ12(0) σ 2
Y

]
(5.144)

where γ12(0) is covariance of X and Y .

Specification of constraints
In a manner similar to what has been presented in the previous section on cases with serial
dependency, the constraints necessary for deriving a bivariate PDF may be expressed as:

σ 2
1 = σ 2

X =
∞∫

−∞

∞∫
−∞

(x − µx)2 f (x, y)dx dy (5.145)

σ 2
2 = σ 2

Y =
∞∫

−∞

∞∫
−∞

(y − µy)
2 f (x, y)dx dy (5.146)

γ12(0) = γXY (0) =
∞∫

−∞

∞∫
−∞

(x − µx)(y − µy) f (x, y)dx dy (5.147)

where f (x, y) is the bivariate joint PDF of random variables X and Y , and µx and µy are
the means of X and Y , respectively. σ 2

X , σ 2
Y , and γ12(0) can be approximated by their sample

values:

S2
X = 1

N

N∑
t=0

(xt − x)2 (5.148)

S2
Y = 1

N

N∑
t=0

(yt − y)2 (5.149)

c12 = cov(X, Y) = 1

N

N∑
t=0

(xt − x)(yt − y) (5.150)

where x and y are sample means. If Sc is the sample approximation to γc then the number of
Lagrange multipliers should be three, since Sc is symmetric and the number of elements on
and below the main diagonal is 3.

POME-based PDF
Using POME, the PDF has the form:

f (x, y) = 1

Z(λ)
exp[−λ1(x − µx)2 − λ2(y − µy)

2 − λ3(x − µx)(y − µy)] (5.151)

Equation (5.151) is equivalent to equation (5.7b).
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Partition function
Writing x for x − µx and y for y − µy in equation (5.151) for simplicity, the partition function
has the form:

Z(λ1, λ2, λ3) =
∞∫

−∞

∞∫
−∞

exp[−λ1x2 − λ2y2 − λ3xy]dx dy (5.152)

whose solution is

Z(λ1, λ2, λ3) = Z(λ) = 2π√
4λ1λ2 − λ2

3

(5.153)

Taking logarithm of equation (5.153),

ln Z(λ1, λ2, λ3) = ln(2π) − 1

2
ln(4λ1λ2 − λ2

3) (5.154)

Relation between Lagrange multipliers and constraints
Differentiating the logarithm of equation (5.152) with respect to Lagrange multipliers
separately and using constraint equations (5.145) to (5.147), and solving each derivative
one obtains:

∂ ln Z(λ)

∂λ1

= −σ 2
X (5.155)

∂ ln Z(λ)

∂λ2

= −σ 2
Y (5.156)

∂ ln Z(λ)

∂λ3

= −γ12 (5.157)

Differentiating equation (5.154) with respect to the Lagrange multipliers and substituting
equations (5.155) to (5.157), one obtains:

2λ2

4λ1λ2 − λ2
3

= σ 2
X (5.158)

2λ1

4λ1λ2 − λ2
3

= σ 2
Y (5.159)

λ3

4λ1λ2 − λ2
3

= −γ12 (5.160)

Solution of equation (5.158) to (5.160) is:

λ1 = σ 2
Y

2(σ 2
Xσ 2

Y − γ 2
12)

(5.161)

λ2 = σ 2
X

2(σ 2
Xσ 2

Y − γ 2
12)

(5.162)

λ3 = − γ12

σ 2
Xσ 2

Y − γ 2
12

(5.163)
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The common expression in the denominator of equations (5.161) to (5.163) is the determinant
of the variance-covariance matrix γc given by equation (5.144). Thus,

λ1 = σ 2
Y

2|γc|
(5.164)

λ2 = σ 2
X

2|γc|
(5.165)

λ3 = −γ12

|γc|
(5.166)

and

Z(λ1, λ2, λ3) = 2π |γc|1/2 (5.167)

where the inverse of the γc matrix, γ −1,
c is given as

γ −1
c =




σ 2
Y

σ 2
Xσ 2

Y − γ 2
12

− γ12

σ 2
Xσ 2

Y − γ 2
12

− γ12

σ 2
Xσ 2

Y − γ 2
12

σ 2
X

σ 2
Xσ 2

Y − γ 2
12


 (5.168)

The Lagrange multipliers continue to form the same pattern as in the one-lag serial dependence
variate analysis. Thus, using equations (5.164) to (5.168), one obtains

γ −1
c =

[
2λ1 λ3

λ3 2λ2

]
(5.169)

The necessary condition for the partition function Z(λ) and PDF is the positiveness of the
principal minors of the inverse matrix γ −1

c :

λ2 > 0; 4λ1λ2 − λ2
3 > 0 (5.170)

Probability density function
Substituting the partition function and Lagrange multipliers [equation (5.164) to (5.167)] into
equation (5.151), one obtains

f (x, y) = 1

2π |γc|1/2
exp

{−[σ 2
Y (x − µx)2 + σ 2

X(y − µy)
2 − 2γ12(x − µx)(y − µy)]

2|γc|

}
(5.171)

This bivariate PDF is often expressed as a function of the correlation coefficient ρ12 =
γ12/(σXσY ). Inserting this in equation (5.171) one obtains

f (x, y) = 1

2π |γc|1/2
exp

{
− 1

2(1 − ρ2
12)

[
(x − µx)2

σ 2
X

+ (y − µy)
2

σ 2
Y

− 2γ12(x − µx)(y − µy)

ρ12

]}

(5.172)

The bivariate PDF can also be written in the matrix-vector form as:

f ( �X) = 1

Z(λ)
exp

{
−1

2
( �X − �µ)γ −1

c ( �X − �µ)∗
}

(5.173)
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or

f ( �X) = 1

Z(λ)
exp

{−( �X − �µ)�( �X − �µ)∗} (5.174)

where �X = (x, y) is the row vector of the values of hydrologic random variables X and Y ,
�X − �µ = (x − �µx, y − �µy), the mean corrected vector �X,� is the matrix of Lagrange multipliers,
Z(λ) is the partition function defined by equation (5.167).

For independent random variables X and Y , γc, γ
−1
c and � are diagonal matrices, and ρ12 in

equation (5.172) is zero. For that case,

f (x, y) = f (x)f (y) (5.175)

Z(λ) = 2πσXσY (5.176)

and

λi > 0, (i = 1, 2) (5.177)

The entropy of two variables X and Y is equivalent to the entropy of equation (5.41) with γa

replaced by γc, or to the entropy of equation (5.142).

Example 5.8: Take the flood peak (CMS = cubic meters per second) and volume data from
a river and compute its bivariate probability density function.

Solution: Consider the flood peak and volume data are used by Yue et al. (1999). From
the data, the statistics that are computed as: ux = 1.4265 × 103(cms), uy = 5.2205 × 104(cms),
σ 2

x = 1.2944 × 105(cms)2, σ 2
y = 1.5499 × 108(cms)2, and γ12(0) = 2.6704 × 106(cms)2. From

equations (5.161) to (5.163), the Lagrange multipliers can be expressed as: λ1 = 5.9932,
λ2 = 0.50052, and λ3 = −2.0652. From equation (5.164), γ −1

c can be expressed as:

γ −1
c =

[
11.986 −2.0652

−2.0652 1.001

]

The partition function can be obtained as:

Z(λ) = 2π |γc|1/2 = 2.2593

The joint probability density function is plotted in Figure 5.4 and can be expressed as:

f (x, y) = 0.4426 exp

(
−1

2
[x − µx, y − µy]

[
11.986 −2.0652

−2.0652 1.001

] [
x − ux

y − uy

])

5.1.5 Cross-correlation and serial dependence: bivariate case
Now consider a bivariate case where each variable is serially dependent. First, consider
the case when the dependency in each variable is one lag. The matrix that includes such
dependencies is:

∑
=
[

E11 E12

E21 E22

]
(5.178)
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Figure 5.4 Joint probability density function for the flood peak and volume.

where E11 and E22 are autocovariance matrices of variables X and Y , while E12 and E21 are
cross-variance matrices including the dependencies of zero order and first order:

E12 =
[
γ12(0) γ12(−1)
γ12(1) γ12(0)

]
, E21 =

[
γ21(0) γ21(−1)
γ21(1) γ21(0)

]
(5.179)

where γij are cross-covariances of order k = 0 or 1. Sample approximations of these matrices
are S12 and S21 matrices with elements cij(k), Using the property c12(k) = c21(−k), equation
(5.179) can be written as

S12 =
[

c12(0) c21(1)
c12(1) c12(0)

]
, S21 = S∗

12 (5.180)

where * denotes the matrix transpose. Inserting equation (5.180) in equation (5.178), one
obtains the symmetric Toeplitz matrix (A Toeplitz matrix is a matrix with constant diagonals):

S =
[

S11 S12

S21 S22

]
=




S2
X c1(1) c12(0) c21(1)

c1(1) S2
X c12(1) c21(0)

c12(0) c12(1) S2
Y c2(1)

c21(1) c12(0) c2(1) S2
Y


 (5.181)

The definition of
∑

and S matrices includes an expansion of submatrix elements according to
random variables X or Y . For example, E11 is for X and E22 is for Y . However, submatrices may
also be expanded according to lags, for example, E11 and E22 for the 0-th lag and E12 and E21
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for lag one. In that case,

S =




S2
X c12(0) c1(1) c12(1)

c12(0) S2
Y c21(1) c2(1)

c1(1) c21(1) S2
X c12(0)

c12(1) c2(1) c12(0) S2
Y


 (5.182)

It may be noted that the determinant of matrix in equation (5.181) equals the determinant of
matrix in equation (5.182).

Specification of constraints
The bivariate distribution corresponding to the S matrix would include dependencies among
(x1, x2) ∈ X(t) and (y1, y2) ∈ Y(t) The number of constraints for POME is equal to the number
of different elements in the S matrix:

σ 2
X = σ 2

1 , σ 2
Y = σ 2

2 , γX(1) = γ1(1), γY (1) = γ2(1), cov(X, Y) = γ12(0),

γXY (1) = γ12(1), γXY (1) = γYX(1) = γ21(1)

The constraints are replaced by their sample values:

S2
X = 1

N

N∑
t=0

(xt − x) (5.183)

S2
Y = 1

N

N∑
t=0

(yt − y) (5.184)

c1(1) = 1

N

N∑
t=0

(xt − x)(xt+1 − x) (5.185)

c2(1) = 1

N

N∑
t=0

(yt − y)(yt+1 − y) (5.186)

c12(0) = 1

N

N∑
t=0

(xt − x)(yt − y) (5.187)

c12(1) = 1

N

N∑
t=0

(xt − x)(yt+1 − y) (5.188)

c21(1) = 1

N

N∑
t=0

(yt − y)(xt+1 − x) (5.189)

Maximization of entropy
Since the S matrix is symmetric, the number of Lagrange multipliers necessary for POME
is equal to the number of elements under and on the main diagonal: ten. Therefore the
POME-based PDF has the form:

f (x1, x2; y1, y2) = 1

Z(λ)
exp[−λ1x2

1 − λ2x2
2 − λ3y2

1 − λ4y2
2 − λ5x1x2 − λ6x2y1 − λ7y1y2

− λ8x1y1 − λ9x2y2 − λ10x1y2] (5.190)

where x1, x2, y1, and y2 are each corrected by respective means µx or x and µy or y.
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Partition function
Using the total probability constraint,

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

f (x1, x2, y1, y2)dx1dx2dy1dy2 = 1 (5.191)

one solves for the partition function:

exp(λ0) =
∞∫

−∞
exp[−λ1x2

1]dx1

∞∫
−∞

exp[−λ2x2
2 − λ5x1x2]dx2

∞∫
−∞

exp[−λ3y2
1 − y1(λ6x2 + λ8x1)]dy1

∞∫
−∞

exp[−λ4y2
2 − y2(λ7y1 + λ9x2 + λ10x1)]dy2 (5.192)

Relation between Lagrange multipliers and constraints
Equation (5.192) is solved by the successive use of the formula:

+∞∫
−∞

exp[−p2x2 ± qx)dx =
√

π

p
exp

[
q2

4p2

]
(5.193)

under the condition that p > 0. Final expressions for Lagrange multipliers are given as

λ1 =
S2

Y 2D + λ2
5 + λ2λ

2
10

λ4

− λ5λ9λ10

λ4

4λ2 − λ2
9

λ4

(5.194)

λ2 =
S2

X2D + λ2
6 + λ3λ

2
9

λ4

− λ6λ7λ9

λ4

4λ3 − λ2
7

λ4

(5.195)

λ3 =
S2

X2D + λ2
8 + λ1λ

2
7

λ4

− λ7λ8λ10

λ4

4λ1 − λ2
10

λ4

(5.196)

λ4 = (4λ1λ2λ3 − λ2λ
2
8 − λ1λ

2
6 − λ3λ

2
5 + λ5λ6λ8)

2S2
y




4λ1λ2λ3 − λ2λ
2
8 − λ1λ

2
6 − λ3λ

2
5 + λ5λ6λ8 + λ2

8λ
2
9

4λ4

+ λ2
6λ

2
10

4λ4

+ λ2
5λ

2
7

4λ4

− λ2λ3λ
2
10

λ4

−λ5λ6λ7λ10

2λ4

− λ1λ3λ
2
9

λ4

− λ1λ2λ
2
7

λ4

− λ6λ8λ9λ10

2λ4

− λ5λ7λ8λ9

2λ4

+ λ2λ7λ8λ10

λ4

+λ1λ6λ7λ9

λ4

+ λ3λ5λ9λ10

λ4




(5.197)

λ5 =
c1(1)2D − λ6λ8 + λ7λ8λ9

2λ4

− λ3λ9λ10

λ4

+ λ6λ7λ10

2λ4

−2λ3 + λ2
7

2λ4

(5.198)
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λ6 =
c12(1)2D − λ5λ8 + λ8λ9λ10

2λ4

− λ1λ7λ9

λ4

+ λ5λ7λ10

2λ4

−2λ1 + λ2
10

2λ4

(5.199)

λ7 =
c2(1)2D + λ5λ8λ9

2λ4

− λ2λ8λ10

λ4

− λ1λ6λ9

λ4

+ λ5λ6λ10

2λ4

λ2
5

2λ4

− 2
λ1λ2

λ4

(5.200)

λ8 =
c12(0)2D − λ5λ6 + λ6λ9λ10

2λ4

+ λ5λ7λ9

2λ4

− λ2λ7λ10

λ4

−2λ2 + λ2
9

2λ4

(5.201)

λ9 =
c12(0)2D + λ6λ8λ10

2λ4

+ λ5λ7λ8

2λ4

− λ1λ6λ7

λ4

− λ3λ5λ10

λ4

λ2
8

2λ4

− 2
λ1λ3

λ4

(5.202)

λ10 =
c12(1)2D + λ6λ8λ9

2λ4

− λ2λ7λ8

λ4

− λ3λ5λ9

λ4

+ λ5λ6λ7

2λ4

λ2
6

2λ4

− 2
λ2λ3

λ4

(5.203)

where D is given as

D = 4λ1λ2λ3λ4 − λ2λ4λ
2
8 − λ1λ4λ

2
6 − λ3λ4λ

2
5 + λ4λ5λ6λ8 + λ2

8λ
2
9

4
+ λ2

6λ
2
10

4
+ λ2

5λ
2
7

4

− λ2λ3λ
2
10 − λ5λ6λ7λ10

2
− λ1λ3λ

2
9 − λ1λ2λ

2
7 − λ6λ8λ9λ10

2
− λ5λ7λ8λ9

2
+ λ2λ7λ8λ10 + λ1λ6λ7λ9 + λ3λ5λ9λ10 (5.204)

The system of equations (5.194) to (5.203) can be solved using the Newton-Raphson method
or any other appropriate numerical method. The result can be presented as a matrix of
Lagrange multipliers:

� =




λ1
λ5

2

λ8

2

λ10

2
λ5

2
λ2

λ6

2

λ9

2
λ8

2

λ6

2
λ3

λ7

2
λ10

2

λ9

2

λ7

2
λ4




=
[
�11 �12

�21 �22

]
(5.205)

where �11, �12, �21, and �22 are sub-matrices satisfying:

�11 = 1

2
(S11 − S12 S−1

22 S21)−1 (5.206)

�12 = −1

2
S−1

11 S12(S22 − S21 S−1
11 S12)−1 (5.207)

�21 = −1

2
S−1

22 S21(S11 − S12 S−1
22 S21)−1 (5.208)

�22 = 1

2
(S22 − S21 S−1

11 S12)−1 (5.209)
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where Sii and Sij(i, j = 1, 2) are autocovariance and cross-covariance defined by equations
(5.179) and (5.181). The partition function can be written as

Z(λ) = 2π2D−1/2 (5.210)

which can be shown to be equivalent to:

Z(λ) = (2π)2|S|1/2 (5.211)

Probability Density Function
The PDF of equation (5.190) can be written as

f ( �X, �Y) = 1

Z(λ)
exp[−( �X�11

�X∗ + �Y�21
�X∗ + �X�12

�Y∗ + �Y�22
�X∗)] (5.212)

where �X = (x1 − µ, x2 − µ) = (x1 − x, x2 − x) and �Y = (y1 − µ, y2 − µ) = (y1 − y, y2 − y). The
PDF can also be written more generally as

f ( �X, �Y) = 1

Z(λ)
exp[−( �X, �Y)�( �X, �Y)∗] (5.213)

where � is defined by equation (5.205). In deriving equations (5.211) to (5.213), the necessary
condition for the existence of the solution is the positiveness of all principal minors of the
S matrix. The inverse of S, S−1, can be expressed in terms of the Lagrange multipliers as a
symmetric matrix:

S−1 =




2λ1 λ5 λ8 λ10

λ5 2λ2 λ6 λ9

λ8 λ6 2λ3 λ7

λ10 λ9 λ7 2λ4


 (5.214)

Note that the number of variables analyzed here is 2(M = 2) and the order of serial dependency
is one (m = 1). Equations (5.211) and (5.213) can be written more generally as

Z(λ) = (2π)M(m+1)/2|S|1/2 (5.215)

f ( �X, �Y) = 1

Z(λ)
exp

[
−1

2
( �X − �µ)S−1( �X − �Y)∗

]
(5.216)

where �X − �µ = (x1 − x, x2 − x, y1 − y, y2 − y). If we use the covariance matrix S in equation
(5.182), the same PDF as equation (5.216) is obtained but with a different arrangement of
terms inside the mean corrected vector. Specifically, �X − �µ = (x1 − x, y1 − y, x2 − x, y2 − y),
while the determinants of S matrices remain the same.

Entropy
The entropy of the bivariate distribution with two variables with first order serial
dependency is equal to the entropy of 2(1 + 1) variables. Using equation (5.142) and letting
M = 2, and m = 1, the entropy of the bivariate distribution becomes

H(X) = 1

2
ln |S| + 2[ln(2π) + 1] (5.217)
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5.1.6 Multivariate case: no serial dependence
Univariate and bivariate normal distributions can be considered as building blocks for deriving
the multivariate normal distribution. Let X1, X2, X3, . . . , XM be random multivariables of a
stationary hydrologic process X(t). If X(t) is a flood process, then X1, X2, X3, . . . , XM are
multivariables describing that process. Two cases are discussed: 1) no serial dependency, and
(2) multi-serial dependency.

When there is no serial dependency, the process is strongly independent. For example,
Peak, volume, duration, and time to peak of an extreme flood depend on one another but are
independent of other floods. The development of a multivariate normal distribution in this
case is analogous to the univariate case when:
i The number of lags (m + 1) is replaced by the number of multivariables (M).

ii The autocovariance matrix Sa(or γa) is replaced by the cross-covariance matrix Sc(or γc) of
zero lag cross-covariances or covariances between variables.
iii The number of Lagrange multipliers for POME is equal to the number of elements on and
below the main diagonal of the cross-covariance matrix:

Sc =




S2
1 c12 . . . c1M

c21 S2
2 . . . .

. . . . . .

. . . . . .

. . . . . .

cM1 . . . . S2
M




(5.218)

where cij = cov(Xi, Xj), (i, j = 1, 2, . . . , M).
iv The existence of the partition matrix Z(λ) and PDF f ( �X) requires all principal minors of Sc

to be positive.
The partition function for POME is given as:

Z(λ) = (2π)M/2|Sc|1/2

and the PDF as

f ( �X) = f (x1, x2, . . . , xM) = 1

Z(λ)
exp

[
−1

2
( �X − �µ)S−1

c ( �X − �µ)∗
]

(5.219)

where S−1
c is the inverse of the Sc matrix given by equation (5.218) and �X − �µ is the mean

corrected vector �X = (x1, x2, . . . , xM). Each Lagrange multiplier in the � matrix corresponds
to the appropriate element in the S−1

c matrix. Specifically,

λij(∈ �) = aij (∈ S−1
c ) if i = j (off diagonal elements) (5.220a)

λij(∈ �) = 1

2
S2

i (∈ S−1
c ) (diagonal elements) (5.220b)

The number of Lagrange multipliers determines the order of dependency between
multivariables of the hydrologic process X(t). The entropy of the multivariate process
�X = (X1, X2, . . . , XM) is:

H(X) = 1

2
ln |Sc| + M

2
[ln(2π) + 1] (5.221)
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5.1.7 Multi-lag serial dependence
This case applies where there is serial dependency in the multivariables of the process. For
example, when one measures flood characteristics, such as peak, volume, and duration at
very short intervals of time, then these characteristics are dependent serially as well on each
other. The analysis of the bivariate case can be extended to the multivariate case. Let the total
number of hydrologic variables be M and the order of serial dependency be m. The sample
matrix that includes all possible dependencies is the matrix of all sample autocovariance and
cross-covariance matrices:

S =




S11 . . . S1M

S21 . . . S2M

. . . . .

. . . . .

SM1 . . . SMM




(5.222)

where Sii(i = 1, 2, . . . , M) are autocovariance matrices of (m + 1) × (m + 1) dimensions, and
Sij(i, j = 1, 2, . . . , M; i �= j) are cross-covariance matrices of (m + 1) × (m + 1) dimensions:

Sij =




cij(o) . . . cij(−m)

. . . . .

. . . . .

. . . . .

cij(m) . . . cij(0)


 (5.223)

Thus, the S matrix is of [M × (m + 1)][M × (m + 1)] dimensions. It is known that the matrix
of Lagrange multipliers will be proportional to S−1. Expressions for the partition function
and the PDF f (X) are the same as equations (5.213) and (5.216) with �X − �µ = (X1 − x1, X2 −
x2, . . . , XM − xM) as the mean corrected vector. The entropy of the multivariate normal
distribution with m-th order serial dependency is expressed as:

H(X) = 1

2
ln |S| + M(m + 1)

2
[ln(2π) + 1] (5.224)

5.2 Multivariate exponential distributions

Multivariate exponential distributions are useful for network design, flood frequency analysis,
drought frequency analysis, reliability analysis, and so on. Here we derive these distributions
of Marshall-Olkin form. First, the bivariate case is discussed.

5.2.1 Bivariate exponential distribution
Let X and Y be two hydrologic random variables each exponentially distributed as:

FX(x) = 1 − exp[−(a1 + a12)x] (5.225)

FY (y) = 1 − exp[−(a2 + a12)y] (5.226)
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where a1, a2, a12 are parameters: the first parameter is associated with X, the second with Y ,
and third with both X and Y . The mean and variance of the distributions are:

E[X] = 1

a1 + a12

, var[X] = 1

(a1 + a12)2
(5.227)

E[Y] = 1

a2 + a12

, var[Y] = 1

(a2 + a12)2
(5.228)

Since X and Y are dependent, the dependency is expressed by the coefficient of correlation:

ρ12 = a12

a1 + a2 + a12

(5.229)

The bivariate exponential distribution of Marshall-Olkin form can be expressed as

F(x, y) = 1 − exp[−a1x − a2y − a12 max(x, y)] (5.230)

where a1 > 0, a2 > 0, a12 > 0 are distribution parameters, and x, y > 0. An alternative form of
the distribution was introduced by Galambos (1978) as

F(x, y) = 1 − exp[−(a1 + a12)x] − exp[−(a2 + a12)y] − exp[−a1x − a2y + a12 max(x, y)]

(5.231)

This alternative form is employed in this chapter. In the derivation three cases are distinguished:
1) means are normalized, that is, µX = µY = 1; 2) means are equal, that is, µX = µY = a; and
3) means are unequal.

Derivation with normalized means
Here E[X] = E[Y] = 1. From equations (5.227) and (5.228), one gets

a1 + a12 = 1, a2 + a12 = 1 (5.232)

Let a12 = b. Equation (5.229) for the coefficient of correlation simplifies to:

ρ12 = b

2 − b
(5.233)

Equation (5.231) becomes

F(x, y) = 1 − exp(−x) − exp(−y) + exp[−(1 − b)x − (1 − b)y − b max(x, y)] (5.234)

The PDF consists of two parts: continuous and discrete. The discrete part is associated with
the singularity point and is not treated here. The continuous part is obtained after successive
differentiation with respect to x and y. Two cases are distinguished: x = max(x, y), and
y = max(x, y).

Specification of constraints: Case X > Y > 0
Equation (5.234) simplifies to:

F(x, y) = 1 − exp(−x) − exp(−y) + exp[−x − (1 − b)y] (5.235)
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The PDF is:

f1(x, y) = (1 − b) exp[−x − (1 − b)y] (5.236)

Note that

∞∫
0

∞∫
0

f1(x, y)dxdy = 1 (5.237)

The first moments are determined as

E[X] =
∞∫

0

∞∫
0

xf1(x, y)dxdy = (1 − b)

∞∫
0

x exp(−x)dx

∞∫
0

exp[−(1 − b)y]dy = 1 (5.238)

E[Y] =
∞∫

0

∞∫
0

yf1(x, y)dxdy = (1 − b)

∞∫
0

exp(−x)dx

∞∫
0

y exp[−(1 − b)y]dy = 1

1 − b
(5.239)

The joint entropy can be written as

H(X, Y) = − log(1 − b)

∞∫
0

∞∫
0

f1(x, y)dxdy +
∞∫

0

∞∫
0

xf1(x, y)dxdy + (1 − b)

∞∫
0

∞∫
0

yf1(x, y)dxdy

(5.240)

Thus, the constraint equations are: equation (5.237) to (5.239). The theoretical means in
equation (5.238) and (5.239) can be written as

x = 1

n + 1

n∑
i=0

xi (5.241)

y = 1

n + 1

n∑
i=0

yi (5.242)

Derivation of PDF: Case X > Y > 0
The POME-based PDF consistent with equations (5.237) to (5.239) can be expressed as:

f (x, y) = 1

Z(λ1, λ2)
exp[−λ1x − λ2y] (5.243)

Partition function
Using equation (5.237), the partition function is

Z(λ1, λ2) =
∞∫

0

exp(−λ1x)dx

∞∫
0

exp(−λ2y)dy = 1

λ1λ2

(5.244)

Relation between Lagrange multipliers and constraints
Differentiating the logarithm of equation (5.244) with respect to Lagrange multipliers and
taking advantage of equations (5.243) and (5.244), one obtains

∂[log Z(λ1, λ2)]

∂λ1

= − 1

λ1

= −µX = −1 (5.245)
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∂[log Z(λ1, λ2)]

∂λ2

= − 1

λ2

= −µY = − 1

1 − b
(5.246)

Equations (5.245) and (5.246) lead to

λ1 = 1 (5.247)

and

λ2 = 1 − b (5.248)

Substituting these values in equation (5.244), the partition function becomes

Z(λ1, λ2) =
∞∫

0

exp(−λ1x)dx

∞∫
0

exp(−λ2y)dy = 1

λ1λ2

= 1

1 − b
(5.249)

Likewise, substituting equations (5.247) to (5.249) in equation (5.243), the PDF becomes
equation (5.236) when X > Y > 0.

Specification of constraints: Case Y > X > 0
Equation (5.234) simplifies to

F2(x, y) = 1 − exp(−x) − exp(−y) + exp[−(1 − b)x − y] (5.250)

The PDF is

f2(x, y) = (1 − b) exp[−(1 − b)x − y] (5.251)

Note that

∞∫
0

∞∫
0

f2(x, y)dxdy = 1 (5.252)

The first moments are determined as

E[X] =
∞∫

0

∞∫
0

xf2(x, y)dxdy = (1 − b)

∞∫
0

x exp[(1 − b)x]dx

∞∫
0

exp(−y)dy = 1

1 − b
(5.253)

E[Y] =
∞∫

0

∞∫
0

yf2(x, y)dxdy = (1 − b)

∞∫
0

exp[(1 − b)x]dx

∞∫
0

y exp(−y)dy = 1 (5.254)

The joint entropy can be written as

H(X, Y) = −
∞∫

0

∞∫
0

[log(1 − b) − (1 − b)x − y]f2(x, y)dxdy

= − log(1 − b) + (1 − b)µX + µY (5.255)

The constraints are equations (5.252)–(5.254).
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Derivation of PDF: Case X > Y > 0
The POME-based PDF consistent with equations (5.252) to (5.254) can be expressed as:

f2(x, y) = (1 − b) exp[−(1 − b)x − y] (5.256)

Combining equations (5.236) and (5.256) the complete PDF is:

f (x, y) =
{

(1 − b) exp[−x − (1 − b)y], x > y > 0

(1 − b) exp[−(1 − b)x − y], y > x > 0
(5.257)

The entropy for both cases is

H(X, Y) = 2 − log(1 − b) − b (5.258)

Derivation with equal means
Here E[X] = E[Y] = a. From equations (5.227) and (5.228), one obtains

a1 + a12 = 1

a
(5.259)

a2 + a12 = 1

a
(5.260)

Then, equation (5.229) becomes

ρ12 = a12
2

a
− a12

(5.261)

With these changes, the bivariate exponential distribution transforms into (b = a12):

F(x, y) = 1 − exp
(
− x

a

)
− exp

(
− y

a

)
+ exp

[
−
(

1

a
− b

)
x −

(
1

a
− b

)
y − b max(x, y)

]
(5.262)

Now two cases, as before, are discussed: Case 1: X > Y > 0 and Case 2: Y > X > 0.

Specification of constraints: Case X > Y > 0
Equation (5.262) simplifies to

F1(x, y) = 1 − exp
(
− x

a

)
− exp

(
− y

a

)
+ exp

[
− x

a
−
(

1

a
− b

)
y

]
(5.263)

The PDF is

f1(x, y) = 1

a

(
1

a
− b

)
exp

(
− x

a
−
(

1

a
− b

)
y

)
(5.264)

The first moments of the distribution are:

E[X] =
∞∫

0

∞∫
0

xf1(x, y)dxdy =
∞∫

0

x
1

a

(
1

a
− b

)
exp

(
− x

a

)
dx

∞∫
0

exp

[
−
(

1

a
− b

)
y

]
dy = a

(5.265)
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E[Y] =
∞∫

0

∞∫
0

yf1(x, y)dxdy = 1

a

(
1

a
− b

) ∞∫
0

exp
(
− x

a

)
dx

∞∫
0

y exp

(
−
(

1

a
− b

))
dy = 1

1

a
− b

(5.266)

Also,

∞∫
0

∞∫
0

f1(x, y)dxdy = 1

a

(
1

a
− b

) ∞∫
0

exp
(
− x

a

)
dx

∞∫
0

exp

[
−
(

1

a
− b

)]
dy = 1 (5.267)

The joint entropy can be written as

H(X, Y) = −
∞∫

0

∞∫
0

[
log

[
1

a

(
1

a
− b

)]
− x

a
−
(

1

a
− b

)
y

]
f1 (x, y) dxdy (5.268)

= − log

[
1

a

(
1

a
− b

)]
+ 1

a
µX +

(
1

a
− b

)
µY

The constraints are equations (5.265) to (5.267).

Derivation of PDF: Case X > Y > 0
Using equation (5.267), the entropy-based PDF is:

f1(x, y) = 1

Z(λ1, λ2)
exp[−λ1x − λ2y] (5.269)

This leads to

Z(λ1, λ2) =
∞∫

0

exp(−λ1x)dx

∞∫
0

exp(−λ2y)dy = 1

λ1λ2

(5.270)

where λ1 = 1
a , λ2 = 1

a − b.
The partition function becomes

Z(λ1, λ2) = a
1
a − b

(5.271)

and the PDF becomes

f1(x, y) = 1

a

(
1

a
− b

)
exp

[
−
(

1

a
− b

)
x − 1

a
y

]
(5.272)

Derivation for the case Y > X > 0
The procedure is equivalent to the case x > y > 0, except that variables X and Y are inter-
changed. Thus,

f2(x, y) = 1

a

(
1

a
− b

)
exp

[
−1

a
x −

(
1

a
− b

)
y

]
(5.273)
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Combining equations (5.272) and (5.273), one gets

f (x, y) =




1

a

(
1

a
− b

)
exp

[
−
(

1

a
− b

)
x − 1

a
y

]
, x > y > 0

1

a

(
1

a
− b

)
exp

[
−1

a
x −

(
1

a
− b

)
y

]
, y > x > 0

(5.274)

The entropy for both cases is:

H(X, Y) = 2 − log

[
1

a

(
1

a
− b

)]
− b (5.275)

Derivation with unequal means
Here µX = E[X] and µY = E[Y].

Case: X > Y > 0
Equation (5.231) simplifies to:

F1(x, y) = 1 − exp[−(a1 + a12)x)] − exp[−(a2 + a12)y)] + exp[−(a1 + a12)x − a2y] (5.276)

Then,

f1(x, y) = ∂2F1(x, y)

∂x∂y
= a2(a1 + a12) exp[−(a1 + a12)x − a2y] (5.277)

The first moments of the distribution are:

E[X] =
∞∫

0

∞∫
0

xf1(x, y)dxdy = a2(a1 + a12)

∞∫
0

x exp[−(a1 + a12)x]dx

∞∫
0

exp(−a2y)dy

= 1

a1 + a12 (5.278)

E[Y] =
∞∫

0

∞∫
0

yf1(x, y)dxdy = a2(a1 + a12)

∞∫
0

exp[−(a1 + a12)x]dx

∞∫
0

y exp(−a2y)dy = 1

a2

(5.279)

Also,

∞∫
0

∞∫
0

f1(x, y)dxdy = a2(a1 + a12)

∞∫
0

exp[−(a1 + a12)]dx

∞∫
0

exp(−a2y)]dy = 1 (5.280)

The joint entropy can be written as

H(X, Y) = −
∞∫

0

∞∫
0

[
log[a2(a1 + a12)] + [−(a1 + a12)x − a2y] f1(x, y)dxdy

]
= − log[a2(a1 + a12)] + (a1 + a12)µx + a2µY (5.281)
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The constraint equations are equations (5.278) to (5.280). The PDF is

f1(x, y) = 1

Z(λ1, λ2)
exp[−λ1x − λ2y]

The partition function is obtained as

Z(λ1, λ2) =
∞∫

0

exp(−λ1x)dx

∞∫
0

exp(−λ2y)dy = 1

λ1λ2

(5.282)

Differentiating the logarithm of equation (5.282) with respect to Lagrange multipliers and
taking advantage of equations (5.278) through (5.280), one obtains

∂[log Z(λ1, λ2)]

∂λ1

= − 1

λ1

= −µX = − 1

a1 + a12

(5.283)

∂[log Z(λ1, λ2)]

∂λ2

= − 1

λ2

= −µY = − 1

a2

(5.284)

Equations (5.283) and (5.284) lead to

λ1 = a1 + a12 (5.285)

and

λ2 = a2 (5.286)

Substituting these values in equation (5.282), the partition function becomes

Z(λ1, λ2) =
∞∫

0

exp(−λ1x)dx

∞∫
0

exp(−λ2y)dy = 1

a2(a1 + a12)
(5.287)

Likewise, substituting equations (5.285) to (5.287) in equation (5.243), the PDF becomes
when X > Y > 0:

f1(x, y) = (a1 + a12)a2 exp[−(a1 + a12)x − a2y] (5.288)

Derivation with Y > X > 0
Equation (5.231) simplifies to:

F2(x, y) = 1 − exp[−(a1 + a12)x)] − exp[−(a2 + a12)y)] + exp[−a1x − (a2 + a12)y] (5.289)

Then, the continuous part of the PDF is

f2(x, y) = ∂F2(x, y)

∂x∂y
= a1(a2 + a12) exp[−a1x − (a2 + a12)y] (5.290)

The first moments of the distribution are:

E[X] =
∞∫

0

∞∫
0

xf2(x, y)dxdy = a1(a2 + a12)

∞∫
0

x exp(−a1x)dx

∞∫
0

exp[−(a2 + a12)y]dy = 1

a1

(5.291)
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E[Y] =
∞∫

0

∞∫
0

yf2(x, y)dxdy = a1(a2 + a12)

∞∫
0

exp(−a1x)dx

∞∫
0

y exp[−(a2 + a12)y]dy

= 1

a1 + a12

(5.292)

Also,

∞∫
0

∞∫
0

f2(x, y)dxdy = 1 (5.293)

The constraint equations are equations (5.291) to (5.293). Following the same procedure as
before,

λ1 = a1, λ2 = a2 + a12 (5.294)

The partition function becomes

Z(λ1, λ2) = 1

a1(a2 + a12)
(5.295)

The PDF is

f2(x, y) = a1(a2 + a12) exp[−a1x − (a2 + a12)y] (5.296)

Combining equations (5.288) and (5.296),

f (x, y) =
{

(a1 + a12)a2 exp[−(a1 + a12)x − a2y], x > y > 0

(a2 + a12)a1 exp[−a1x − (a2 + a12)y], y > x > 0
(5.297)

The joint entropy for the complete domain is:

H(x, y) =
{

− log[a2(a1 + a12)] + (a1 + a12)uX − a2uY , x > y > 0

− log[a1(a2 + a12)] − a1uX − (a2 + a12)uY , y > x > 0
(5.298)

The joint entropy can also be expressed as a function of Lagrange multipliers:

H(X, Y) = − log(λ1λ2) + λ1uX + λ2uY (5.299)

The number of domains where PDFs are defined is 2! for the bivariate exponential PDFs. Thus,
POME must be based on each domain separately.

To determine parameters a1, a2, and a12 of the bivariate exponential distributions, the sample
approximations of the means of X and Y and the sample correlation coefficient between X
and Y are used:

x = 1

a1 + a12

(5.300)

y = 1

a2 + a12

(5.301)

r12 = a12

a1 + a2 + a12

(5.302)
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5.2.2 Trivariate exponential distribution
Let X1, X2, and X3 be three random variables of a hydrologic process X(t) : X1 = {x1 ∈
(0, T)}, X2 = {x2 ∈ (0, T)}, and X3 = {x3 ∈ (0, T)}. The original Marshall-Olkin form of the
trivariate exponential distribution is:

F(x1, x2, x3) = P(X1 < x1, X2 < x2, X3 < x3)

= 1 − exp(−a1x1 − a2x2 − a3x3 − a12m12 − a13m13 − a23m23 − a123m123)(5.303)

where mij = max(xi, xj). This includes six regions of definitions, depending on the relations
between x1, x2, and x3.

F(x1, x2, x3) =




1 − exp

[
−

3∑
i=1

aixi − a12x1 − a13x1 − a23x2 − a123x1

]
, x1 > x2 > x3

1 − exp

[
−

3∑
i=1

aixi − a12x1 − a13x1 − a23x3 − a123x1

]
, x1 > x3 > x2

1 − exp

[
−

3∑
i=1

aixi − a12x2 − a13x1 − a23x2 − a123x2

]
, x2 > x1 > x3

1 − exp

[
−

3∑
i=1

aixi − a12x2 − a13x3 − a23x2 − a123x2

]
, x2 > x3 > x1

1 − exp

[
−

3∑
i=1

aixi − a12x1 − a13x3 − a23x3 − a123x3

]
, x3 > x1 > x2

1 − exp

[
−

3∑
i=1

aixi − a12x2 − a13x3 − a23x3 − a123x3

]
, x3 > x2 > x1

(5.304)

Collecting the same variables, one can write the distribution as

F(x1, x2, x3) =




1 − exp

[
−

3∑
i=1

aixi − (a12 + a13 + a123)x1 − a23x2

]
, x1 > x2 > x3

1 − exp

[
−

3∑
i=1

aixi − (a12 + a13 + a123)x1 − a23x3

]
, x1 > x3 > x2

1 − exp

[
−

3∑
i=1

aixi − a13x1 − (a12 + a23 + a123)x2

]
, x2 > x1 > x3

1 − exp

[
−

3∑
i=1

aixi − (a12 + a23 + a123)x2 − a13x3

]
, x2 > x3 > x1

1 − exp

[
−

3∑
i=1

aixi − a12x1 − a13x3 − a23x3 − a123x3

]
, x3 > x1 > x2

1 − exp

[
−

3∑
i=1

aixi − a12x2 − a13x3 − a23x3 − a123x3

]
, x3 > x2 > x1

(5.305)
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The PDF is obtained by successive differentiation as

f (x1, x2, x3) = ∂3F(x1, x2, x3)

∂x1∂x2∂x3

(5.306)

which results in

f (x1, x2, x3)

=




(a1 + a12 + a13 + a123)(a2 + a23)a3 exp

[
−

3∑
i=1

aixi − (a12 + a13 + a123)x1 − a23x2

]
,

x1 > x2 > x3

(a1 + a12 + a13 + a123)a2(a3 + a23) exp

[
−

3∑
i=1

aixi − (a12 + a13 + a123)x1 − a23x3

]
,

x1 > x3 > x2

(a1 + a13)a3(a2 + a12 + a23 + a123) exp

[
−

3∑
i=1

aixi − a13x1 − (a12 + a23 + a123)x2

]
,

x2 > x1 > x3

a1(a2 + a12 + a23 + a123)(a13 + a3) exp

[
−

3∑
i=1

aixi − (a12 + a23 + a123)x2 − a13x3

]
,

x2 > x3 > x1

(a1 + a12)a2(a3 + a13 + a23 + a123) exp

[
−

3∑
i=1

aixi − a12x1 − a13x3 − a23x3 − a123x3

]
,

x3 > x1 > x2

a1(a2 + a12)(a3 + a13 + a23 + a123) exp

[
−

3∑
i=1

aixi − a12x2 − a13x3 − a23x3 − a123x3

]
,

x3 > x2 > x1

(5.307)

Using POME, PDFs for each domain are derived separately.

Domain 1: X1 > X2 > X3

f (x1, x2, x3) = (a1 + a12 + a13 + a123)(a2 + a23)a3

× exp

[
−

3∑
i=1

aixi − (a12 + a13 + a123)x1 − a23x2

]
, x1 > x2 > x3 (5.308)

Note that

∞∫
0

∞∫
0

∞∫
0

f (x1, x2, x3)dx1dx2dx3 = 1 (5.309)
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Specification of constraints
The first moments of the PDF in equation (5.308) are:

E[x1] = (a1 + a12 + a13 + a123)

∞∫
0

x1 exp[−(a1 + a12 + a13 + a123)x1]dx1

= 1

a1 + a12 + a13 + a123

(5.310)

E[x2] = (a1 + a12 + a13 + a123)(a2 + a23)

∞∫
0

exp[−(a1 + a12 + a13 + a123)x1]dx1

∞∫
0

x2 exp[−(a2 + a23)x2]dx2 = 1

a2 + a23

(5.311)

E[X3] = 1

a3

(5.312)

Entropy of distribution
The entropy of equation (5.308) is

H(X1, X2, X3) = − log(const1) + const2µX1
+ const3µX2

+ const4µX3
(5.313)

where the constraints in POME are the information constraint given by equation (5.309) and
µxi

, i = 1, 2, 3 that are approximated, respectively, by equations (5.310), (5.311), and (5.312).

Derivation of probability density function
Maximizing entropy H(X1, X2, X3), subject to equations (5.309) to (5.312), one obtains

f1(x1, x2, x3) = 1

Z(λ1, λ2, λ3)
exp

[
−

3∑
i=1

λixi

]
(5.314)

Using equation (5.309), one obtains the partition function as

Z(λ1, λ2, λ3) =
∞∫

0

exp
[−λ1x1

]
dx1

∞∫
0

exp[−λ2x2]dx2

∞∫
0

exp[−λ3x3]dx3 = 1

λ1λ2λ3

(5.315)

Taking the logarithm of equation (5.315), one gets

log Z(λ1, λ2, λ3) = − log λ1 − log λ2 − log λ3 (5.316)

Differentiating equation (5.316) with respect to λ1 and using equation (5.310), one gets

∂ log Z(λ1, λ2, λ3)

∂λ1

= − 1

λ1

= −µX1
= − 1

a1 + a12 + a13 + a123

or

λ1 = a1 + a12 + a13 + a123 (5.317)
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Similarly,

λ2 = a2 + a23 (5.318a)

λ3 = a3 (5.318b)

Therefore, the partition function is

Z(λ1, λ2, λ3) = 1

(a1 + a12 + a13 + a123)(a2 + a23)a3

(5.319)

The PDF therefore is

f1(x1, x2, x3) = (a1 + a12 + a13 + a123)(a2 + a23)a3 exp[−(a1 + a12 + a13 + a123)x1

−(a2 + a23)x2 − a3x3 (5.320)

which is equivalent to equation (5.308).

Determination of parameters
Parameters of the trivariate exponential distribution are: a1, a2, and a3 associated with random
variables X1, X2 and X3; a12, a13, and a23 are associated with maxima m12, m13, and m23; and
a123 is associated with m123. These are seven parameters so seven equations are needed. The
first three equations are obtained by the first three moment expressions given by equations
(5.310) to (5.312). For the second three equations it is convenient to use statistics that best
express dependencies among variables – partial correlation coefficients. Specifically,

ρ12 = a12

a1 + a2 + a12

(5.321)

ρ13 = a13

a1 + a3 + a13

(5.322)

ρ23 = a23

a2 + a3 + a23

(5.323)

In application sample approximations of correlation coefficients are obtained as

rij =
∑

(xi − xi)(xj − xj)√∑
(xi − xi)

√∑
(xj − xj)

(5.324)

where i, j = 1, 2 and 3, i �= j, and xi and xj are sample means of Xi and Xj. To get the seventh
parameter, one must compute a higher moment.

5.2.3 Extension to Weibull distribution
The Marshall-Olkin bivariate exponential distribution becomes the bivariate Weibull
distribution when the following substitutions are made: Substitute X with X1/b and substitute
Y with Y1/c. The general form of the bivariate Weibull distribution is obtained as

F(x, y) = 1 − exp[−a1xb − a2yc − a12 max(xb, yc)] (5.325)

or in alternative form:

F(x, y) = 1 − exp[−(a1 + a12)xb] − exp[−(a2 + a12)yc + exp[−a1xb − a2yc − a12 max(xb, yc)]

(5.326)
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5.3 Multivariate distributions using the entropy-copula method

The preceding discussion shows that analytical derivation of multivariate probability
distributions using the entropy theory becomes complicated for more than two variables,
even when marginal distributions are the same. This complication can be overcome by
employing the copula concept which was formulated by Sklar (1959) and which has been
receiving a lot of attention in recent years. Consider random variables X1, X2, . . . , Xn with
CDFs, respectively, as F1(x1), F2(x2), . . . , Fn(xn). It should be emphasized that these CDFs
can be obtained using entropy. Sklar’s theorem enables a connection between the joint
distribution function of X1, X2, . . . , Xn, F(x1, x2, . . . , xn), and marginal CDFs of these variables
to be developed, that is, copulas are functions that provide that connection. Accordingly,
there exists a copula C such that, for all x ∈ R, where R ∈ (−∞, ∞), the relationship between
the joint distribution function F(x1, x2, . . . , xn) and copula C(x1, x2, . . . , xn) can be expressed
as

F(x1, x2, . . . , xn) = P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn)

= C[F1(x1), F2(x2), . . . , Fn(xd)] = C(u1, u2, . . . , un) (5.327a)

where Fi(xi) = ui, i = 1, 2, . . . , n, with Ui ∼ U(0, 1) if Fi is continuous. Another way to think
about the copula is as follows:

C(u1, u2, . . . , un) = F [F−1
1 (u1), F−1

2 (u2), . . . , F−1
n (un)]; (u1, u2, . . . , un) ∈ [0, 1]n (5.327b)

Thus, an n dimensional copula is a mapping [0, 1]n → [0, 1], and is a multivariate cumulative
distribution function defined in the unit cube [0, 1]n with standard uniform univariate margins.
It is implied that there is some dependence amongst random variables, and the copula captures
the essential features of this dependence.

If c(u1, u2, . . . , un) denotes the probability density function (PDF) of copula C(u1, u2, . . . , un),
then the mathematical relation between c(u1, u2, . . . , un) and C(u1, u2, . . . , un) can be
expressed as

f (x1, . . . , xn) = ∂F(x1, . . . , xn)

∂x1 . . . ∂xn

= ∂C(x1, . . . , xn)

∂x1 . . . ∂xn

= ∂C(u1, . . . , un)

∂u1 . . . ∂un

∂u1

∂x1

. . .
∂un

∂xn

= ∂C(u1, . . . , un)

∂u1 . . . ∂un

∂F1(x1)

∂x1

. . .
∂Fn(xn)

∂xn

= c(u1, . . . , un)
n∏

i=1

∂Fi(xi)

∂xi

= c(u1, . . . , un)
n∏

i=1

fi(xi) (5.328a)

where c(u1, . . . , un) = ∂C(u1, ... ,un)
∂u1 ... ∂un

; fi(xi) = ∂Fi(xi)
∂xi

, i = 1, . . . , n. The PDF c(u1, . . . , un) can be
also expressed as

c(u1, . . . , un) = f (x1, . . . , xn)
n∏

i=1

fi(xi)

(5.328b)
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For illustration, consider the case of a bivariate copula C(u, v) which is a mapping from
[0, 1] × [0, 1] to [0, 1]. Then, the CDF and PDF can be written as

C(u, v) = F [F−1
1 (u), F−1

2 (v)]; u = F1(x1), v = F2(x2) (5.329a)

c(u, v) = ∂C(u, v)

∂u∂v
= f (x1, x2)

f (x1)f (x2)
(5.329b)

Likewise, for a trivariate copula C(u, v, w) which is a mapping from [0, 1] × [0, 1] ×
[0, 1] to [0, 1], the CDF and PDF can be written as

C(u, v, w) = F [F−1
1 (u), F−1

2 (v), F−1
3 (w)]; u = F1(x1), v = F2(x2), w = F3(x3) (5.330a)

c(u, v) = ∂C(u, v, w)

∂u∂v∂w
= f (x1, x2, x3)

f (x1)f (x2)f3(x3)
(5.330b)

Now the conditional joint distribution based on the copula can be expressed. As an example,
the conditional distribution function of U given V = v can be expressed as:

CU|V=v(u) = F [U ≤ u|V = v] = lim
	v=0

C(u, v + 	v) − C(u, v)

	v
= ∂

∂v
C(u, v)|V = v (5.331)

Similarly, an equivalent formula for the conditional distribution function for variable V given
U = u can be obtained. Furthermore, the conditional distribution function of U given V ≤ v

can be expressed as:

C(u|V ≤ v) = F(U ≤ u|V ≤ v) = C(u, v)

v
(5.332)

Likewise, an equivalent formula for the conditional distribution function for V given U ≤ u

can be obtained.

5.3.1 Families of copula
The copula concept has led to defining a multitude of copulas and has led to a method that
is capable of exhibiting the dependence between two or more random variables and has
recently emerged as a practical and efficient method for modeling general dependence in
multivariate data (Joe, 1997; Nelsen, 2006). The advantages in using copulas to model joint
distributions are threefold. They provide 1) flexibility in choosing arbitrary marginals and the
structure of dependence; 2) the capability for extension to more than two variables; and 3) a
separate analysis of marginal distributions and dependence structure. As a result, hydrological
applications of copulas have surged in recent years. For example, they have been used for
rainfall frequency analysis, drought frequency analysis, rainfall and flood analysis, spillway
and dam design, sea storm analysis, and some other theoretical analyses of multivariate
extremes. Detailed theoretical background and description for the use of copulas can be found
in Nelsen (2006) and Salvadori et al.(2007).

Copulas may be grouped into the Archimedean copulas, metaelliptical copulas, and quadratic
form, copulas with cubic form. According to their exchangeable properties, copulas may also
be classified as symmetric copulas and asymmetric copulas. For example, one parame-
ter Archimedean copulas are symmetric copulas; and periodic copulas (Alfonsi and Brigo,
2005) and mixed copulas (Hu, 2006) belong to asymmetric copulas. The copulas which are
more common in water resources engineering applications include: Archimedean, Plackett,
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Table 5.1 Bivariate copulas and their generating functions: ũ = − ln u and ṽ = − ln v.

Copula Generator φ(t) C
θ
(u, v) Parameter Space

AMH ln
1 − θ (1 − t)

t
uv

1 − θ (1 − u)(1 − v)
[−1, 1)

Clayton
1
θ

(t−θ − 1) [max(u−θ + v−θ − 1, 0)]−1/θ (0, ∞)

Frank − ln
e−θt − 1
e−θ − 1

− 1
θ

ln
[
1 − (1 − e−θu)(1 − e−θv )

(1 − e−θ )

]
(−∞, ∞) \{0}

GH (− ln t)θ exp[−(ũθ + ṽθ )1/θ ] [1, ∞)

metaelliptical, mixed, and empirical. The Archimedean copulas are widely applied due to their
simple form, dependence structure, and other desirable properties. The Plackett copula has also
been used in recent years. Metaelliptical copulas are a flexible tool for modeling multivariate
data in hydrology. When data are analyzed with an unknown underlying distribution, the
empirical data distribution can be transformed into what is called an ”empirical copula” such
that the marginal distributions become uniform. Parametric copulas place restrictions on the
dependence parameter. When the process generating the data is heterogeneous, it is desirable
to have additional flexibility in modeling the dependence. A mixture model, proposed by Hu
(2006), is able to measure dependence structures that do not belong to the above copula
families. By choosing component copulas in the mixture, a model can be constructed which is
simple and flexible enough to generate most dependence patterns and provides flexibility in
practical data. This also facilitates the separation of the degree of dependence and the structure
of dependence. Considering three bivariate copulas CI(u1, u2), CII(u1, u2) and CIII(u1, u2), the
mixed copula can be defined as:

Cmix(u1, u2; θ1, θ2, θ3; w1, w2, w3) = w1CI(u1, u2; θ1) + w2CII(u1, u2; θ2) + w3CIII(u1, u2; θ3)

(5.333)

where Cmix(u1, u2; θ1, θ2, θ3; w1, w2, w3) is the mixed copula; CI(u1, u2; θ1), CII(u1, u2; θ2) and
CIII(u1, u2; θ3) are three bivariate copulas, each with different dependence properties; and
θ1, θ2, and θ3 are the corresponding copula parameters; w1, w2, and w3 may be interpreted as

weights of the component copulas, 0 < wj < 1, j = 1, 2, 3,
3∑

j=1
wj = 1.

From a hydrologic perspective, the Archimedean family of copulas has been most popular
and the popular members of this family are the Gumbel-Hougaard (GH), Frank, Clayton,
Ali-Mikhail-Haq (AMH), and Cook-Johnson (CJ). The Normal and t copulas have also been
used for the bivariate case. The equations of these copulas are given in Table 5.1.

5.3.2 Application
First, the marginal distributions of random variables under consideration should be obtained
and this can be done using the entropy theory. Then, the application of a copula entails the
following components: 1) construction of copula, 2) dependence measures and properties,
3) copula parameter estimation, 4) copula model selection, and 5) goodness of fit tests. Each
of these components is now briefly discussed.
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Construction of copulas
Copulas may be constructed by different methods, that is, the inversion method, the geometric
method, and the algebraic method. In the inversion method, the copula is obtained through
the joint distribution function F and the continuous marginals. Nelson (1999) introduced the
algebraic method by constructing the Plackett and Ali-Mikhail-Haq copulas through ”odd”
ratio in which the Plackett copula is constructed by measuring the dependence of 2 × 2
contingency tables, and the Ali-Mikhail-Haq copula is constructed by using the survival odds
ratio. Nelsen (2008) has discussed how to use these methods to construct copulas.

An n-dimensional Archimedean symmetric copula can be defined as (Salvadori et al., 2007;
Savu and Trede, 2008):

C(u1, . . . , un) = φ−1

[
n∑

k=1

φ(uk)

]
= φ−1[φ(u1) + φ(u2) + . . . φ(un)]; uk ∈ [0, 1], k = 1, . . . , n

(5.334)

where φ(.) is called the generating function of the Archimedean copula, which is a convex
decreasing function satisfying φ(1) = 0 and φ−1(.) is equal to 0 when uk ≥ φ(0) Taking an
example of a two-dimensional copula, the one-parameter Archimedean copula, Cθ (u, v), can
be expressed from equation (5.334) as

Cθ (u, v) = φ−1{φ(u), φ(v)}, 0 < u, v < 1 (5.335)

where subscript θ of copula C is a parameter hidden in the generating function φ; u =
F−1(x) and v = F−1(y) are uniformly distributed random variables.

It may be noted that

C(u1, u2, u3) = φ−1[[φ(u1) + φ(u2) + φ(u3)] = φ−1{φ(u1) + φ[φ−1(φ(u2) + φ(u3))]}
= C[u1, C(u2, u3)] (5.336a)

and

C(u1, u2, u3) = φ−1[φ(u1) + φ(u2) + φ(u3)] = φ−1{φ[φ−1(φ(u1) + φ(u2))] + φ(u3)}
= C[C(u1, u2), u3] (5.336b)

that is

C(u1, u2, u3) = C[u1, C(u2, u3)] = C[C(u1, u2), u3] (5.336c)

Equation (5.336c) implies that given three random variables u1, u2, u3, the dependence
between the first two random variables taken together and the third one alone is the same as
the dependence between the first random variable taken alone and the two last ones together.
This implies a strong symmetry between different variables in that they are exchangeable but
the associative property of the Archimedean copula is not satisfied by other copulas in general.

For the Gumbel-Hougaard copula, the generating function is defined as

φ(u) = (− ln u)θ , φ−1(t) = exp(−t
1
θ ), t = u or v (5.337)
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where copula parameter can be expressed in terms of Kendall’s coefficient of correlation τ

between X and Y as τ = 1 − θ−1. Note that (− ln u)θ = φ(u) and (− ln v)θ = φ(v). Then we
have

φ(u1) + φ(u2) = (− ln u1)θ + (− ln u2)θ (5.338a)

and hence the copula can be expressed as

C(u1, u2) = φ−1[φ(u1) + φ(u2)] = exp(−[(− ln u1)θ + (− ln u2)θ ]
1
θ ) (5.338b)

Likewise, for the three-dimensional copula, one can write

φ(u1) + φ(u2) + φ(u3) = (− ln u1)θ + (− ln u2)θ + (− ln u3)θ (5.339a)

C(u1, u2, u3) = φ−1 [φ(u1) + φ(u2) + φ(u3)
] = exp

(
− [(− ln u1)θ + (− ln u2)θ + (− ln u3)θ

] 1
θ

)
(5.339b)

For the Ali-Mikhail-Haq copula, the generating function is written as

φ(t) = ln
1 − θ (1 − t)

t
, τ =

(
3θ − 2

θ

)
− 2

3

(
1 − 1

θ

)2

ln(1 − θ) (5.340a)

Then the copula becomes

C(u, v) = C(F−1(x), F−1(y)) = F(x, y) = uv

1 − θ(1 − u)(1 − v)
, θ ∈ [−1, 1) (5.340b)

For the Frank copula, the generating function can be expressed as

φ(t) = ln

[
exp(θ t) − 1

exp(θ) − 1

]
, τ = 1 − 4

θ
[D1(−θ) − 1] (5.341)

where D1 is the first order Debye function Dk which is defined as

Dk(θ) = k

xk

θ∫
0

tk

exp(t) − 1
dt, θ > 0 (5.342a)

and the Debye function Dk with negative argument can be expressed as:

Dk(−θ) = Dk(θ) + kθ

k + 1
(5.342b)

Thus, the Frank copula can be written as

C(u, v) = C(F−1(x), F−1(y)) = F(x, y) = 1

θ
ln

[
1 + (exp(θu) − 1)(exp(θv) − 1)

exp(θ) − 1

]
, θ �= 0

(5.343)

For the Cook-Johnson copula, the generating function can be written as

φ(t) = t−θ − 1, τ = θ

θ + 2
(5.344a)
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and the copula becomes

C(u, v) = [u−θ + v−θ − 1]−1/θ , θ ≥ 0 (5.344b)

Example 5.9: Consider two random variables, X and Y , with their marginal distributions
as the extreme value type (EVI) or Gumbel distributions: F(x) = exp[− exp(−x)] and F(y) =
exp[− exp(−y)]. Construct the joint distribution using the Gumbel-Hougaard copula.

Solution: u = exp[− exp(−x)] and v = exp[− exp(−y)]. Therefore, using equation (5.338b),
the joint distribution of two random variables, F(x, y), can be expressed as:

F(x, y) = C(u, v) = exp[−[(− ln(exp(− exp(−x))))θ + (− ln(exp(− exp(−y))))θ ]1/θ ]

= exp[−(exp(−θx) + exp(−θy))1/θ ] (5.345)

Equation (5.345) is the Gumbel bivariate logistic distribution.

Example 5.10: Consider a random variable X which is EVI (Gumbel) distributed:
F(x) = exp[− exp(−x)], and another variable Y which is EVI (Gumbel) distributed as well:
F(y) = exp[− exp(−y)]. Construct the joint distribution using the Ali-Mikhail-Haq (AMH)
copula.

Solution: Here u = exp[− exp(−x)] and v = exp[− exp(−y)]. The joint distribution of two
random variables, F(x, y) can be expressed as:

F(x, y) = C(u, v) = exp[− exp(−x) − exp(−y)]

1 − θ[1 − exp(− exp(x)][1 − exp(− exp(−y)]
, θ ∈ [−1, 1) (5.346)

Example 5.11: Consider a random variable X which is uniformly distributed (i.e.,
X ∼ uniform [−1, 1] and another variable Y which is exponentially distributed
[i.e.,Y ∼ exp(1)]). Construct the joint distribution using the Frank copula.

Solution: Here, u = F(x) and v = F(y). Then, using equation (5.343) the joint distribution of
two random variables, F(x, y), can be expressed as:

F(x, y) = C(u, v) = (x + 1)(ey − 1)/[x + 2ey − 1], (x, y) ∈ [−1, 1] × [0, ∞) (5.347)

Example 5.12: Consider a random variable X which is log-Pearson III distributed as F(x)
and another variable Y which is also log-Pearson III distributed as F(y). Construct the joint
distribution using the Cook-Johnson copula.

Solution: Here, u = F(x) and v = F(y). Then, using equation (5.344a), the joint distribution
of the two random variables F(x, y) is given as:

H(x, y) = C(u, v) = [F(x)−θ + F(y)−θ − 1]−1/θ (5.348)

Dependence measures and properties
The dependence between random variables is important for multivariate analysis. The depen-
dence properties include: positive quadrant and orthant dependence, stochastically increasing
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positive dependence, right-tail increasing and left-tail decreasing dependence, positive function
dependence, and tail dependence. There are several measures of dependency or association
amongst variables. Five popular measures of association are Pearson’s classical correlation
coefficient rn, Spearman’s ρn, Kendall’s τ , Chi-Plots and K-Plots which were originally devel-
oped in the field of nonparametric statistics. Genest and Rivest (1993) described a procedure
to identify the copula function. It is assumed that a random sample of bivariate observations
(x1, y1), (x2, y2), . . . , (xn, yn) is available and that its underlying distribution function F(x, y) has
an associated Archimedean copula Cθ which also can be regarded as an alternative expression
of F. Then the following steps are used to identify the appropriate copula:
1 Determine Kendall’s τ (the dependence structure of bivariate random variables) from
observations as:

τN = 2

N(N − 1)

N∑
i=1

N−1∑
j=1

sign[(x1i − x1j)(x2i − x2j)] (5.349)

where N is the number of observations; sign(x) =




1; x > 0

0; x = 0

−1; x < 0

; and τN is the estimate of τ

from the N observations.
2 Determine the copula parameter θ from the above value of τN for the copulas under
consideration.
3 Obtain the generating function of each copula, 
.
4 Obtain the copula function by inserting 
.
5 Based on each generating function 
 and the parameter θ obtained from step 2, the copula
can be identified.

Copula parameter estimation
If entropy is not used to derive parameters of marginal distributions, then their parameters also
need to be estimated. Further, for certain copulas, the relation between Kendall’s τ and the
copula parameter(s) is not straightforward and other methods of parameter estimation may
be needed. Two of the methods of parameter estimation are the exact maximum likelihood
method, also called Full Maximum Likelihood (Full ML), which is a one stage method; and
the inference function for marginal method (IFM) which is a two stage method. IMF entails
estimating parameters of marginal distributions and dividing the copula into two steps. First, a
semiparametric approach, which is a more flexible method, is used for estimating parameters
of marginal distributions (empirical distribution functions). It consists of using a nonparametric
estimator. Second, copula parameters are estimated using the maximum likelihood.

Copulas model selection
How to select a copula model that best fits the data is a difficult problem. In practice, the
following methods are used: Root Mean Square Error (RMSE), Akaike Information Criterion
(AIC), Bayesian Information Criterion (BIC), and goodness-of-fit tests for copulas. Goodness-
of-fit tests are: 1) two tests based on the empirical copula; 2) two tests based on Kendall’s
transform; and 3) a test based on Rosenblatt’s transform. A bootstrap version based on
Rosenblatt’s transformation is a popular method used to evaluate the goodness-of-fit.
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5.4 Copula entropy

Let x ∈ RN be random variables with marginal functions ui = Fi(xi), with Ui ∼ U(0, 1),
i = 1, 2, . . . , n,. The copula entropy HC can be defined as:

HC(U1, U2, . . . , Un) = −
1∫

0

1∫
0

. . .

1∫
0

c(u1, u2, . . . , un) log(c(u1, u2, . . . , un))du1du2dun

(5.350)

where c(u1, u2, . . . , un) is the probability density function of copula. The relation between
joint entropy and copula entropy is now discussed. The joint probability density function of
vector X can be defined as:

f (x1, x2, . . . , xn) = c(u1, . . . , un)
n∏

i=1

f (xi) (5.351)

The joint entropy can be expressed as:

H(X1, X2, . . . , Xn) = −
∞∫

0

. . .

∞∫
0

f (x1, x2, . . . , xn) log[f (x1, x2, . . . , xn)]dx1dx2 . . . dxn

= −
∞∫

0

. . .

∞∫
0

c(u1, . . . , un)
n∏

i=1

f (xi) log[c(u1, . . . , un)
n∏

i=1

f (xi)]dx1dx2 . . . dxn

= −
∞∫

0

. . .

∞∫
0

c(u1, . . . , un)
n∏

i=1

f (xi){log[c(u1, . . . , un)] +
n∑

i=1

log[f (xi)]}dx1dx2 . . . dxn

= −
∞∫

0

. . .

∞∫
0

c(u1, . . . , un)
n∏

i=1

f (xi)• log[c(u1, . . . , un)]dx1dx2 . . . dxn

−
∞∫

0

. . .

∞∫
0

c(u1, . . . , un)
n∏

i=1

f (xi)•

n∑
i=1

log[f (xi)]dx1dx2 . . . dxn (5.352)

From equation (5.352),

−
∞∫

0

. . .

∞∫
0

c(u1, . . . , un)
n∏

i=1

f (xi).
n∑

i=1

log[f (xi)]dx1dx2 . . . dxn

= −
∞∫

0

. . .

∞∫
0

f (x1, x2, . . . , xn).
n∑

i=1

log[f (xi)]dx1dx2 . . . dxn

= −
n∑

i=1

∞∫
0

f (xi) log[f (xi)]dxi = −
n∑

i=1

H(Xi) (5.353)



266 Entropy Theory and its Application in Environmental and Water Engineering

Recalling that du = f (xi)dx,

−
∞∫

0

. . .

∞∫
0

c(u1, . . . , un)
n∏

i=1

f (xi). log[c(u1, . . . , un)]dx1dx2 . . . dxn

= −
∞∫

0

. . .

∞∫
0

c(u1, . . . , un). log[c(u1, . . . , un)]du1du2 . . . dun = Hc(u) (5.354)

Therefore, the joint entropy can be expressed as the sum of the n univariate marginal entropies
and the copula entropy as:

H(X1, X2, . . . , Xn) =
n∑

i=1

H(Xi) + HC(U1, U2, . . . , Un) (5.355)

Equation (5.355) indicates that the joint entropy H(X1, X2, . . . , Xn) is divided into parts: the
sum of the n marginal entropies H(Xi) and the copula entropy HC(U1, U2, . . . , Un).

According to equation (5.350), the copula entropy can be derived using the multiple
integration method. First, the parameters of the copula function need to be estimated, and
then the copula probability density function can be determined. The multiple integration
method, proposed by Berntsen et al. (1991), can be applied to calculate multiple integration.
For more variables, maybe it is difficult to calculate multiple integration. The Monte Carlo
method can then be used to calculate the copula entropy. For a multivariate vector with
support in [0, 1], the copula entropy can be obtained by:

HC(U1, U2, . . . , Un) = −
∫

[0,1]n

c(U) ln[c(U)]dU = E[ln c(U)] (5.356)

The copula entropy equals the expected value of [ln c(U)], which can be derived by the Monte
Carlo method. Similar to the multiple integration method, first the dependence structure and
parameters of the copula function need to be determined. M pairs of u are generated from the
determined copula function, and then average values of the ln(c(u)) were calculated.

Questions

Q.5.1 Obtain yearly discharge data for a number of years from a gaging station (say A) at
a river and plot its histogram and check if it follows a normal distribution. Likewise,
obtain yearly discharge data from another gaging station (say B) upstream at the
same river and check if it follows a normal distribution. If either of the two data sets
does not, then transform it using a power or log transformation so that it follows
the normal distribution. Then, compute the joint probability distribution of yearly
discharge. Compute the joint entropy.

Q.5.2 Compute the distribution of yearly discharge of station A conditioned on the yearly
discharge at station B. Compute the conditional entropy.

Q.5.3 Compute 5, 10, 25, 50, and 100-year return periods of yearly discharge at Station A
given a discharge value at station B given in Q.5.2.
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Q.5.4 Obtain yearly peak rainfall depth and duration data for a rain gage in a basin.
Assume the depth and duration each follow an exponential distribution. Compute
the bivariate exponential distribution of rainfall depth and duration. Compute its
entropy.

Q.5.5 Compute the distribution of rainfall depth conditioned on the duration. Compute
the conditional entropy.

Q.5.6 Compute 5, 10, 25, 50, and 100-year return periods of rainfall depth given a duration.

Q.5.7 Obtain the flood peak and volume data from a gaging station at a river. Transform
the data so they are normally distributed. Then, compute the bivariate probability
density function.

Q.5.8 Compute the distribution of peak discharge conditioned on the volume. Compute
the conditional entropy.

Q.5.9 Compute 5, 10, 25, 50, and 100-year return periods of peak discharge given a volume.

Q.5.10 Consider a random variable which is gamma distributed and another variable which is
exponentially distributed. Construct the joint distribution using the Ali-Mikhail-Haq
(AMH) copula.

Q.5.11 Consider a random variable which is uniformly distributed and another variable
which is normally. Construct the joint distribution using the Gumbel-Hougaard
copula.

Q.5.12 Consider a random variable which is log-Pearson III distributed and another variable
which is log-normal distributed. Construct the joint distribution using the Cook-
Johnson copula.
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6 Principle of Minimum
Cross-Entropy

The Principle of Minimum Cross-entropy (POMCE) is one of the building blocks of the entropy
theory, and is a powerful principle. This chapter focuses on this principle.

6.1 Concept and formulation of POMCE

The principle of minimum cross-entropy (POMCE) was formulated by Kullback and Leibler
(1951) and is detailed in Kullback (1959). Sometimes it is also referred to as the Kullback-
Leibler (KL) principle. POMCE is also referred to as the principle of minimum discrimination
information, principle of minimum directed divergence, principle of minimum distance,
or principle of minimum relative entropy. Recalling that entropy of a random variable
characterizes the uncertainty of the variable, it measures the amount of information required
on average to describe the random variable. To explain POMCE, let one guess, based on
intuition, experience or theory, a probability distribution Q = {

q1, q2, . . . , qN

}
for a random

variable X which takes on N values. If Q is a uniform distribution then this would represent
the maximum uncertainty. The guessed distribution constitutes the prior information in the
form of a prior distribution. To verify one’s guess, one takes some observations and computes
some moments of the distribution using these observations and expresses them in the form
of constraints. If the prior or guessed distribution satisfies the constraints then the guessed
probability distribution Q = {

q1, q2, . . . , qN

}
is the desired distribution of X. If that is not the

case which often happens then another probability distribution is to be sought. To derive
the distribution P = {

p1, p2, . . . , pN

}
of X one takes all the given information and makes

the distribution as near to Q (based on one’s intuition and experience) as possible, that is,
minimize the distance between P and Q. This means that the closer P is to Q, the greater will
be its uncertainty. Thus, POMCE is expressed as

D(P, Q) =
N∑

i=1

Pi ln
pi

qi

(6.1)

where D is the cross-entropy or distance or discrimination information and the objective
is to minimize D, the cross-entropy. In equation (6.1) we often use the convention that

Entropy Theory and its Application in Environmental and Water Engineering, First Edition. Vijay P. Singh.

 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.



CHAPTER 6 Principle of Minimum Cross-Entropy 271

0 log(0/q) = 0 and p log(p/0) = ∞. If no a priori distribution is available in the form of
constraints and Q is chosen to be a uniform distribution Q = {

qi = 1/N, i = 1, 2, . . . , N
}

, then
equation (6.1) takes the form:

D(P, Q) =
N∑

i=1

pi ln

[
pi

1/N

]
= ln N +

(
N∑

i=1

pi ln pi

)
= ln N − H (6.2)

where H is the Shannon entropy. Equation (6.2) shows that minimizing D(P, Q) is equivalent
to maximizing the Shannon entropy (Kapur, 1989; Kapur and Kesavan, 1987, 1992) defined
as

H = −
N∑

i=1

pi ln pi (6.3)

Because D is a convex function, its local minimum is its global minimum.
Thus, a posterior distribution P is obtained by combining a prior Q with specified constraints.

The distribution P minimizes the cross- (or relative) entropy with respect to Q, defined by
equation (6.1), where the entropy of Q is defined or given. Minimization of cross- entropy
results asymptotically from Bayes’ theorem.

It is to be noted that POMCE involves two concepts: 1) a prior probability distribution
and 2) a measure of distance. As stated earlier, Q = {

q1, q2, . . . , qN

}
is chosen based on

some knowledge about X but this Q does not satisfy the prescribed constraints. Second, D is a
measure of distance which has certain desirable properties, such as D(P, Q) ≥ 0 and D(P, Q) = 0
if and only if P = Q. In essence, POMCE is a measure between two probability distributions
one of which is related to the system to be characterized or the source to be estimated and
assumed to be unknown and the other (called prior) to the model chosen to describe the
system. The system is characterized by a set of moments or by the mean and any symmetric
part of the covariance matrix of the system called constraints. The POMCE measure is obtained
by minimizing the discrimination information with respect to the given prior distribution over
all probabilistic descriptions of the system which concur with the given constraints.

One can express a measure of distance in many different ways. For example, one way to
express it is in a root square sense as

D(P, Q) =
[

N∑
i=1

(pi − qi)
2

]0.5

(6.4)

However, one would want a measure D to be a convex function of P = {
p1, p2, . . . , pN

}
. Such

a measure is the Kullback-Leibler (KL) measure of cross-entropy given by equation (6.1).

6.2 Properties of POMCE

The KL measure has the following properties:
1 The distance measure D(P, Q) is non-negative: D(P, Q) ≥ 0.
2 The distance measure D(P, Q) is asymmetric: D(P, Q) �= D(Q, P).
This is not a true distance between distributions, because it does not obey the triangular
inequality and is not symmetric.
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Example 6.1: Show this property of asymmetry assuming first Q as uniform and then P as
uniform.

Solution: Let Q be a uniform distribution: qi = 1/N. Then one obtains

D(P, Q) =
N∑

i=1

pi ln
pi

1/N
= ln N +

N∑
i=1

pi ln pi = ln N − H (6.5)

where H is the Shannon entropy. On the other hand, if P is uniform pi = 1/N, then

D(Q, P) =
N∑

i=1

qi ln
qi

1/N
= ln N +

N∑
i=1

qi ln qi (6.6)

Clearly, D(P, Q) is not equal to D(Q, P).
However, it turns out that the measure

W(P, Q) = D(P, Q) + D(Q, P) =
N∑

i=1

pi ln
pi

qi

+
N∑

i=1

qi ln
qi

pi

=
N∑

i=1

(pi − qi) ln
pi

qi

(6.7)

is symmetric, that is, W(P, Q) = W(Q, P). This measure is sometimes referred to as a measure
of symmetric cross-entropy or of symmetric divergence or W divergence (Lin, 1991). It may
be noted that D(P, Q) is undefined if Q = 0 and P is not equal to 0 for any x. This means that
the distribution P must be absolutely continuous with respect to the distribution Q in order
for D(P, Q) to be defined. Likewise, P and Q should be continuous with respect to each other
in order for W(P, Q) to be defined.

Example 6.2: Let P = {p1, p2, . . . , pN} and Q = {q1, q2, . . . , qN}, pi = abi, and qi = 1/N.
Show that D(P, Q) is not symmetric, but W(P, Q) is.

Solution: First, from equation (6.1)

D(P, Q) =
N∑

i=1

abi ln

[
abi

1/N

]
= a

N∑
i=1

bi ln[Nabi] (6.8)

D(Q, P) =
N∑

i=1

1

N
ln

[
1/N

abi

]
= 1

N

N∑
i=1

ln

[
1

Nabi

]
(6.9)

This shows that D(P, Q) is not the same as D(Q, P).
On the other hand,

W(P, Q) =
N∑

i=1

abi ln
abi

1/N
+

N∑
i=1

1

N
ln

1/N

abi
(6.10)

Likewise,

W(Q, P) =
N∑

i=1

1

N
ln

1/N

abi
+

N∑
i=1

abi ln
abi

1/N
(6.11)

It is seen that W(P, Q) = W(Q, P).
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3 D(P, Q) is a continuous function of P = {p1, p2, . . . , pN} and Q = {q1, q2, . . . , qN}.
4 D(P, Q) does not change if (p1, q1), (p2, q2), . . . , (pN , qN) are permuted among themselves.
5 D(P, Q) ≥ 0 and D(P, Q) = 0 if P = Q.

Example 6.3: Show that D(P, Q) = 0 if P = Q.

Solution: P = {p1, p2, . . . , pN} and Q = {q1, q2, . . . , qN}. Substituting Q = P in equa-
tion (6.1), one obtains

D(P, Q) =
N∑

i=1

pi ln
pi

qi

=
N∑

i=1

pi ln
pi

pi

=
N∑

i=1

pi0 = 0

6 D(P, Q) is a convex function of P and Q. This can be shown by constructing the Hessian
matrix of second order partial derivatives of D with respect to p1, p2, . . . , pN and showing that
it is positive definite. The Hessian matrix is defined in mathematics as a square matrix of
second-order partial derivatives of a function. Similarly, the Hessian matrix of D with respect
to q1, q2, . . . , qN is positive definite. This will infer that D(P, Q) is a convex function of P and Q.

Because D(P, Q) is a convex function of p1, p2, . . . , pN , its maximum for a specified Q must
coincide with one of the degenerate distributions. The maximum value must be:

max(− ln q1 − ln q2 − . . . − ln qN) = ln
1

qmin

(6.12)

where

qmin = min(q1, q2, . . . , qN) (6.13)

In a similar manner one can infer that the maximum value of D(P, Q) can be made as large as
desired by making some of qi’s sufficiently small. This is because D(P, Q) is a convex function
of Q.
7 For two independent variables X and Y with probability distributions P = {p1, p2, . . . , pN}

and G = {g1, g2, . . . , gM}, respectively, with two independent prior distributions Q = {q1, q2,
. . . , qN} and R = {r1, r2, . . . , rM}, D(P, G; Q, R) satisfies the additive property:

D(P, G; Q, R) =
M∑

j=1

N∑
i=1

pigj ln
pigj

qirj

=
M∑

j=1

gj

N∑
i=1

pi ln
pi

qi

+
N∑

i=1

pi

M∑
j=1

gj ln
gj

rj

= D(P, Q) + D(G, R) (6.14)

8 For dependent variables X and Y with distribution as P = {pij, i = 1, 2, . . . N; j = 1, 2,
. . . , M} and prior as Q = {qij, i = 1, 2, . . . N; j = 1, 2, . . . , M} one can write

D(P, Q) =
M∑

j=1

N∑
i=1

pij ln
pij

qij
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=
M∑

j=1

N∑
i=1

pij ln

M∑
j=1

pij

M∑
j=1

qij

+
N∑

i=1

M∑
j=1

pij

M∑
j=1

pij

M∑
j=1

pij

ln

pij/

M∑
j=1

pij

qij/

M∑
j=1

qij

(6.15)

Example 6.4: Show that the minimum cross-entropy D(P, Q) is a convex function of both P
and Q, where P and Q are vectors.

Solution: The Hessian matrix must be positive definite. In other words, all second partial
derivatives of D with respect to P as well as Q must be positive definite. Equation (6.1) shows
that D(P, Q) = f (p1, p2, . . . . . . . . . , pN; q1, q2, . . . . . . . . . , qN). Therefore, the Hessian matrix is
given as:




∂2f

∂p2
1

∂2f

∂p1∂p2

• •
∂2f

∂p1∂pN

∂2f

∂p2∂p1

∂2f

∂p2
2

• •
∂2f

∂p2∂pN

• • • • • • • •

• • • • • • • •

∂2f

∂pN∂p1

∂2f

∂pN∂p2

• •
∂2f

∂p2
N




=




1

p1

0 • • 0

0
1

p2

• • 0

• • • • • • • •

• • • • • • • •

0 0 • •
1

pN




(6.16)

� =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

p1

0 • • 0

0
1

p2

• • 0

• • • • • • • •

• • • • • • • •

0 0 • •
1

pN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 1

p1p2
• •• •• •pN

(6.17)

This is a positive definite quantity, as pi > 0.
Similarly,


∂2f

∂q2
1

∂2f

∂q1∂q2

• •
∂2f

∂q1∂qN

∂2f

∂q2∂q1

∂2f

∂q2
2

• •
∂2f

∂q2∂qN

• • • • • • • •

• • • • • • • •

∂2f

∂qN∂q1

∂2f

∂qN∂q2

• •
∂2f

∂q2
N




=




p1

q2
1

0 • • 0

0
p2

q2
2

• • 0

• • • • • • • •

• • • • • • • •

0 0 • •
pN

q2
N




(6.18)
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� =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p1

q2
1

0 • • 0

0
p2

q2
2

• • 0

• • • • • • • •

• • • • • • • •

0 0 • •
pN
q2

N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= p1p2
• •pN

q2
1q2

2
• •q2

N

(6.19)

This is a positive definite quantity, as pi, qi > 0. Thus, the minimum cross-entropy D(P, Q) is a
convex function of both P and Q.

6.3 POMCE formalism for discrete variables

D(P, Q) in equation (6.1) is minimized subject to the moment constraints:

N∑
i=1

piyri(x) = ar, r = 1, 2, . . . , m (6.20)

where yr(x) is some function of x, and ar is the average of yr(x). Equation (6.20) gives m
constraints. Of course, the total probability theorem holds:

N∑
i=1

pi = 1 (6.21)

In order to obtain the least-biased P, D(P, Q) is minimized, subject to equations (6.20) and
(6.21). This can be done using the method of Lagrange multipliers. The Lagrangean L is
constructed as

L =
N∑

i=1

pi ln
pi

qi

+ (λ0 − 1)

(
N∑

i=1

pi − 1

)
+

m∑
j=1

λj

(
N∑

i=1

piyrj(xi) − aj

)
(6.22)

where λ0, λ1, . . . , λm are the (m + 1) Lagrange multipliers corresponding to the m + 1
constraints specified by equations (6.20) and (6.21). In equation (6.22), for convenience one
uses (λ0 − 1) as the first Lagrange multiplier instead of λ0.

Differentiating L in equation (6.22) with respect to pi and equating it to zero, one obtains

∂L

∂pi

= 0 ⇒
(

1 + ln
pi

qi

)
+ (λ0 − 1) +

m∑
r=1

λryri = 0 (6.23)

Equation (6.23) gives

pi = qi exp[−λ0 − λ1y1i − . . . − λmymi], i = 1, 2, . . . , N (6.24)

Equation (6.24) is the POMCE-based probability distribution of X with the Lagrange multipliers
λ0, λ1, . . . , λm which can be determined using equations (6.20) and (6.21) as follows. It may
be noted that the probability distribution given by equation (6.24) is the product of the prior
distribution and the probability distribution resulting from the maximization of the Shannon
entropy.
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Substituting equation (6.24) into equation (6.21), one gets

exp(λ0) =
N∑

i=1

qi exp(−λ1y1i − λ2y2i − . . . − λmymi) (6.25)

Substituting equation (6.24) in equation (6.20) one gets

ar exp(λ0) =
N∑

i=1

qiyri exp(−λ1y1i − λ2y2i − . . . − λmymi) (6.26)

From equations (6.25) and (6.26), one can be write:

ar =

N∑
i=1

qiyri exp(−λ1y1i − λ2y2i − . . . − λmymi)

N∑
i=1

qi exp(−λ1y1i − λ2y2i − . . . − λmymi)

(6.27)

Equation (6.27) shows that ar, r = 1, 2, . . . , m, is a function of Lagrange multipliers as well
as q1, q2, . . . , qN . Equation (6.25) shows that λ0 is a function of λ1, . . . , λm. Differentiating
equation (6.25) with respect to λ1, one gets

∂λ0

∂λ1

=
−

N∑
i=1

qiy1i exp(−λ1y1i − λ2y2i − . . . − λmymi)

exp(λ0)
(6.28)

Substituting equation (6.26) in equation (6.28) and then using equation (6.27) one obtains

∂λ0

∂λ1

= −a1 (6.29)

Generalizing it, one gets

∂λ0

∂λr

= −ar, r = 1, 2, . . . , m (6.30)

Similarly, taking the second derivative of λ0 one obtains:

∂2λ0

∂λ2
r

= E[y2
r (x)] − {E[yr(x)}2 = Var[yr(x)] (6.31)

and

∂2λ0

∂λr∂λs

= E[yr(x)ys(x)] − E[yr(x)]E[ys(x)] = Cov[yr(x)ys(x)] (6.32)

λ0 is a convex function of λ1, λ2, . . . , λm. This can be shown by constructing the Hessian
matrix of the second order partial derivatives of λ0 with respect to λ1, λ2, . . . , λm and then
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showing the matrix to be positive definite:

M =




∂2λ0/∂λ2
1 ∂2λ0/∂λ1∂λ2 . . . . . . . . . ∂2λ0/∂λ1∂λm

∂2λ0/∂λ2∂λ1 ∂2λ0/∂λ2
2 . . . . . . . . . . . . ∂2λ0/∂λ2∂λm

. . .

.

∂2λ0/∂λm∂λ1 ∂2λ0/∂λm∂λ2 . . . . . . . . . ∂2λ0/∂λ2
m




(6.33)

With the use of equations (6.31) and (6.32), the matrix in equation (6.33) can actually be
expressed in terms of variances and co-variances as

M =




Var[y1(x)] Cov[y1(x), y2(x)] . . . . . . . . . Cov[y1(x), y2(x)]

Cov[y2(x), y1(x)] Var[y2(x)] . . . . . . . . . . . . Cov[y2(x), ym(x)]

. . .

.

Cov[ym(x), y1(x)] Cov[ym(x), y2(x)] . . . . . . . . . Var[ym(x)]




(6.34)

Since all the principal minors are positive, M is therefore positive definite. (A minor of a matrix
is called principal if it is obtained by deleting certain rows and the same numbered columns.
This results in the diagonal elements of a principal minor being the diagonal elements of the
matrix.)

The minimum value of D(P, Q) can now be expressed by substituting equation (6.24) in
equation (6.1) as:

Dmin =
N∑

i=1

qi exp[−λ0 − λ1y1i − λ2y2i − . . . − λmymi)][−λ0 − λ1y1i − λ2y2i − . . . − λmymi]

=
N∑

i=1

pi[−λ0 − λ1y1i − λ2y2i − . . . − λmymi]

= −[λ0 + λ1a1 + λ2a2 + . . . + λmam] (6.35)

Taking the derivative of equation (6.35) with respect to ar, r = 1, 2, . . . , m, one obtains

∂Dmin

∂ar

= −
m∑

s=1

∂λ0

∂λs

∂λs

∂ar

− λr −
m∑

s=1

as

∂λs

∂ar

= −λr, r = 1, 2, 3, . . . , m (6.36)

Taking the second derivative of Dmin with respect to ar, one gets

∂2Dmin

∂a2
r

= −∂λr

∂ar

(6.37a)

In a similar manner,

∂2Dmin

∂ar∂as

= −∂λr

∂as

(6.37b)
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Now one can construct the Hessian matrix of Dmin with respect to a1, a2, . . . , am :

N =




−∂λ1/∂a1 −∂λ1/∂a2 . . . −∂λ1/∂am

−∂λ2/∂a2 −∂λ2/∂a2 . . . −∂λ2/∂am

. . .

.

−∂λm/∂a1 −∂λm/∂a2 . . . −∂λm/∂am


 (6.38)

From equation (6.30),

∂as

∂λr

= − ∂2λ0

∂λr∂λs

(6.39a)

Since[
∂λr

∂as

] [
∂as

∂λr

]
= I (6.39b)

it can be shown that the negative of M−1 is the variance-covariance matrix and is positive
definite. Hence N is also positive definite. Thus, Dmin is a convex function of a1, a2, . . . , am.

Example 6.5: Determine the POMCE-based distribution of a random variable I which takes
on values of 1, 2, 3, 4, 5, or 6, with probabilities of p1, p2, p3, p4, p5, or p6, respectively. It is
assumed that the mean of I is known as:

6∑
i=1

ipi = x = 3.5 (6.40)

Also known is the a priori probability distribution Q = {qi = 1/6, i = 1, 2, . . . , 6}.
Solution: One needs to minimize D(P, Q) given by equation (6.1) subject to equation (6.21)
and the mean constraint given by equation (6.40). Equation (6.24) yields

pi = 1

6
exp[−λ0 − λ1i] = 1

6
abi, a = exp(−λ0), b = exp(−λ1) (6.41)

This is the POMCE-based distribution whose parameters λ0 and λ1 or a and b can be determined
using equations (6.24) and (6.40). Substituting equation (6.41) in equation (6.21) one obtains

6∑
i=1

1

6
exp[−λ0 − λ1i] = 1

6

6∑
i=1

abi = 1 (6.42a)

or

a

6

6∑
i=1

bi = 1 (6.42b)

Similarly, inserting equation (6.41) in equation (6.40), one gets

a

6

6∑
i=1

ibi = 3.5 (6.43)
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Equations (6.42b) and (6.43) can be solved to get a and b and in turn λ0 and λ1:

6∑
i=1

ibi

6∑
i=1

bi

= 3.5 (6.44)

Solving the equation above, one gets:

a = b = 1, λ0 = λ1 = 0.

pi = 1

6
, i = 1, 2, . . . , 6

Example 6.6: A six-faced dice is given. It is observed that the mean of number appearing
on the six-faced dice upon throw is found to be 4.5. Let X be the random variable expressing
this number. Determine the POMCE-based distribution of X when an a priori probability
distribution q is given by (0.05, 0.10, 0.15, 0.20, 0.22, 0.28).

Solution: Minimizing
6∑

i=1
pi ln pi

qi
subject to

6∑
i=1

pi = 1 and
6∑

i=1
ipi = 4.5, one gets pi = qiabi

where
6∑

i=1
qiabi = 1,

6∑
i=1

iqiabi = 4.5.

Substituting for q1, q2, . . . , q6 and solving for a, b one gets the distribution:

P = {0.035, 0.078, 0.131, 0.192, 0.234, 0.330}

Its entropy H(P) = 1.606 bits.

6.4 POMCE formulation for continuous variables

For a continuous variable X, equation (6.1) becomes

D(f , q) = D(x) =
b∫
a

f (x) ln
f (x)

q(x)
dx (6.45)

where f (x) is the probability density function of X, and q(x) is the a priori PDF of X. For
applying POMCE the following constraints can be specified:

b∫
a

f (x)dx = 1 (6.46)

and

b∫
a

yr(x)f (x)dx = yr = ar, r = 1, 2, . . . , m (6.47)

where a and b are upper and lower limits of the integral or the range of variable X.



280 Entropy Theory and its Application in Environmental and Water Engineering

For minimization of D(f , q) given by equation (6.45), subject to equations (6.46) and (6.47),
one employs the method of Lagrange multipliers and obtains:

f (x) = q(x) exp[−λ0 − λ1y1(x) − . . . − λmym(x)] (6.48)

where q(x) is the density function of the a priori probability distribution. In this case, Dmin is a
convex function of a1, a2, . . . , am, whereas Hmax is concave function of a1, a2, . . . , am.

Example 6.7: Determine the POMCE-based distribution of a random variable X which takes
on values from −∞ to +∞ with probability density f (x). It is assumed that the mean and the
variance of X are known as: E(x) = m = 0, E[(x − m)2] = σ 2 = 1. Also known is the a priori
probability distribution q(x) = 1√

2π
exp[− 1

2 x2].

Solution: One needs to minimize D(f , q) given by equation (6.45), subject to equation (6.46),
the mean and the variance constraints given above. Substituting equation (6.48) in equation
(6.46) and the two constraints one obtains

f (x) = q(x) exp[−λ0 − λ1x − λ2x2] (6.49)

+∞∫
−∞

f (x)dx =
+∞∫

−∞

1√
2π

exp

[
−1

2
x2

]
exp[−λ0 − λ1x − λ2x2]dx = 1 (6.50)

+∞∫
−∞

xf (x)dx =
+∞∫

−∞
x

1√
2π

exp

[
−1

2
x2

]
exp[−λ0 − λ1x − λ2x2]dx = 0 (6.51)

+∞∫
−∞

x2f (x)dx =
+∞∫

−∞
x2 1√

2π
exp

[
−1

2
x2

]
exp[−λ0 − λ1x − λ2x2]dx = 1 (6.52)

Solving these equations one gets λ0 = 0, λ1 = 0, λ2 = 0, and the probability distribution is

f (x) = 1√
2π

exp

[
−1

2
x2

]
(6.53)

which is the standard normal distribution.

6.5 Relation to POME

In the case of POME, one maximizes the Shannon entropy subject to given constraints and
determines the least-biased or maximum-uncertainty distribution. Thus, the emphasis is on
the maximization of uncertainty. In the case of POMCE, one minimizes the distance between
the distribution one seeks and the prior distribution and determines the least-biased probability
distribution, subject to given constraints. Here the emphasis is on minimizing the distance
between the prior and the posterior distributions. If the prior is uniform and no constraints
are given, then POME becomes a special case of POMCE as seen from equation (6.2). For
continuous variables, POMCE is invariant with coordinate transformation. POME yields the
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least-biased distribution as

pi = exp(−λ0 − λ1y1i − . . . − λmymi) (6.54)

whereas POMCE yields

pi = qi exp(−λ0 − λ1y1i − λ2y2i − . . . − λmymi) (6.55)

In the case of POME as well as POMCE, λ0 is a convex function of λ1, λ2, . . . , λm. Dmin is
a convex function of a1, a2, . . . , am; where as Hmax is a concave function of a1, a2, . . . , am.
Likewise ∂Dmin/∂ar = −λr, where as ∂Hmax/∂ar = λr.

Example 6.8: Referring to Example 6.5, compare the distributions resulting under POME
and POMCE.

Solution: For POME, one does not need a prior q and hence it is not given. One would have
used Laplace’s principle of insufficient reason to use the uniform distribution instead of q.

Thus, one would either minimize
6∑

i=1

pi ln
pi

1/6
or maximize

6∑
i=1

pi ln pi, subject to the same

constraints and would get the distribution:

P = {0.0543, 0.0788, 0.1142, 0.1654, 0.2378, 0.3475}

Its entropy H(P) = 1.613. Out of all distributions with mean 4.5, P has the maximum entropy.

6.6 Relation to mutual information

Let the joint probability distribution of random variables X and Y be g(x, y). The marginal
distributions of X and Y are: f (x) and q(y). Then, the mutual information or transinformation,
I(X, Y), is the relative entropy between the joint distribution and the product of distributions:

I(X, Y) =
N∑

i=1

M∑
j=1

g(xi, yi) log

[
g(xi, yi)

p(xi)q(yj)

]

= D[g(x, y); p(x)q(y)] = E

[
log

(
g

pq

)]
(6.56)

6.7 Relation to variational distance

The variational distance V between two probability distributions, P and Q, can be defined as

V(P, Q) =
∑
x∈X

|P(x) − Q(x)| (6.57)

There are several lower bounds for D(P, Q) in terms of V(P, Q) that have been derived, with
the sharpest being

D(P, Q) ≥ max{L1[V(P, Q)], L2[V(P, Q)]} (6.58a)



282 Entropy Theory and its Application in Environmental and Water Engineering

where

L1[V(P, Q)] = log
2 + V(P, Q)

2 − V(P, Q)
− 2V(P, Q)

2 + V(P, Q)
, 0 ≤ V(P, Q) ≤ 2 (6.58b)

derived by Vajda (1970) and

L2[V(P, Q)] = V 2(P, Q)

2
+ V 4(P, Q)

36
+ V 6(P, Q)

288
, 0 ≤ V(P, Q) ≤ 2 (6.59)

derived by Toussaint (1975). There is, however, no general upper bound either for D(P, Q) or
W(P, Q).

6.8 Lin’s directed divergence measure

Lin (1991) derived a new class of directed divergence measures based on the Shannon entropy
and compared them with the above measures. One of the measures is defined as

K(P, Q) =
∑
x∈X

p(x) log
p(x)

1

2
p(x) + 1

2
q(x)

(6.60)

This measure possesses numerous desirable properties. K(P, Q) = 0 if and only if P = Q, and
K(P, Q) ≥ 0. The relation between K(P, Q) and D(P, Q) can be shown to be

K(P, Q) = D

(
P,

1

2
P + 1

2
Q

)
(6.61)

The K-directed divergence is bounded by the D-divergence as

K(P, Q) ≤ 1

2
D(P, Q) (6.62)

The lower bound for the K-directed divergence can be expressed as

K(P, Q) ≥ max

{
L1

(
V(P, Q)

2

)
, L2

(
V(P, Q)

2

)}
(6.63)

where L1 and L2 are defined by equations (6.58a) and (6.59). It can be shown that

V(P,
1

2
P + 1

2
Q) = 1

2
V(P, Q) (6.64)

A symmetric measure, L(P, Q), can be defined based on K(P, Q) which is not symmetric as

L(P, Q) = K(P, Q) + K(Q, P) (6.65)

The L-divergence is related to the W-divergence in the same way as the K-divergence is related
to the D-divergence:

L(P, Q) ≤ 1

2
W(P, Q) (6.66)

One can compare D, W , K and L divergences as shown in Figure 6.1, where P = (x, 1 − x) and
Q = (1 − x, x), 0 ≤ x ≤ 1. Divergences D and W have steeper slopes than do divergences K and
L. When x approaches 0 or 1, divergences D and W approach infinity, whereas divergences K
and L are well defined in the entire range 0 ≤ x ≤ 1.
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Figure 6.1 Comparison of D, W , K and L divergence measures.

The L divergence and the variational distance are related as

L(P, Q) ≤ V(P, Q) (6.67)

It may be noted that

H(w, 1 − w) ≥ 2 min(w, 1 − w), 0 ≤ w ≤ 1 (6.68)

and

1 − H(w, 1 − w) ≤ |w − (1 − w)| (6.69)

The bound for the K-divergence is also written as

K(P, Q) ≤ V(P, Q) (6.70)

This shows that the variational distance is an upper bound to both the K and L divergences.
Both K and L are non-negative, finite, and semi-bounded:

K(P, Q) < +∞, K(P, Q) ≥ K(P, P) (6.71)

L(P, Q) < +∞, L(P, Q) ≥ L(P, P) (6.72)

for all probability distributions P and Q.
Another important property of the K and L divergences is their boundedness:

K(P, Q) ≤ 1, L(P, Q) ≤ 2 (6.73)
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The L-divergence can be expressed as

L(P, Q) = 2H

(
P + Q

2

)
− H(P) − H(Q) (6.74)

where H is the Shannon entropy.
The L-divergence can be generalized as the Jensen-Shannon divergence denoted as JS:

JS(P, Q) = H(w1P + w2Q) − w1H(P) − w2H(Q) (6.75)

JS(P, Q) is non-negative and is equal to 0 for P = Q. It also gives both upper and lower
bounds to the Bayes probability of error. The advantage of JS is that one can assign weights to
probability distributions, depending on their significance. Consider two classes C = {c1, c2} with
a priori probabilities p(c1) = w1 and p(c2) = w2. Let the corresponding conditional distributions
be P(X|c1) = P(X), and Q(X|c2) = Q(X). The Bayes probability of error Pe is expressed (Hellman
and Raviv, 1970) as

Pe(P, Q) =
∑

min[w1p(x), w2q(x)] (6.76)

The upper bound for Pe can be written as

Pe(P, Q) ≤ 1

2
[H(w1, w2) − JS(P, Q)] (6.77)

where

H(w1, w2) = −w1 log w1 − w2 log w2 (6.78)

The lower bound for Pe can be written as

Pe(P, Q) ≥ 1

4
[H(w1, w2) − JS(P, Q)]2 (6.79)

It may be noted that

1

2
H(s, 1 − s) ≤

√
s(1 − s), 0 ≤ s ≤ 1 (6.80)

This is shown in Figure 6.2.

If Q = {qi, i = 1, 2, . . . , n}, 0 ≤ qi ≤ 1, 0 ≤ i ≤ 1, and
n∑

i=1
qi = 1, then

1

2
H(Q) ≤

n−1∑
i=1

√
qi(1 − qi) (6.81)

Also,

JS(P, Q) ≤ H(w1, w2) − 2Pe(P, Q) ≤ H(w1, w2) ≤ 1 (6.82)



CHAPTER 6 Principle of Minimum Cross-Entropy 285

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
0 0.2 0.4

x
0.6 0.8 1

sqrt[s(1−s)]

H(s,1−s)

Figure 6.2 Comparison of H (s,1−s)
2 and

√
s (1 − s).

If there are n probability distributions, Pi, i = 1, 2, . . . , n, with weights wi, i = 1, 2, . . . , n, then
the generalized Jensen-Shannon divergence can be written as

JS(P1, P2, . . . , Pn) = H

(
n∑

i=1

wiPi

)
−

n∑
i=1

wiH(Pi) (6.83)

If there are n classes, C = {ci, i = 1, 2, . . . , n}, with prior probabilities wi, i = 1, 2, . . . , n, then
the Bayes error for n classes can be expressed as

P(e) =
∑
x∈X

p(x){1 − max[p(w1|x), p(w2|x), . . . , p(cn|x)]} (6.84)

Now, the relationship between the generalized JS and the Bayes probability of error can be
expressed as

P(e) ≤ 1

2
[H(w) − JS(P1, P2, . . . , Pn)] (6.85)

where

H(w) = −
N∑

i=1

wi log wi (6.86)

and

Pi(X) = P(X|ci), i = 1, 2, 3, . . . , n (6.87)

The upper bound for P(e) can be written as

P(e) ≥ 1

4(n − 1)
[H(w) − JS(P1, P2, . . . , Pn)]2 (6.88)
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6.9 Upper bounds for cross-entropy

Consider two distributions P(x) and Q(x) of random variable X. In statistics the distance
between the two distributions is measured by the expectation of the logarithm of the
likelihood ratio, whereas it is given by the relative or cross-entropy D(p|q). In other words,
D(p|q). measures the inefficiency of the assumption that the distribution is Q when in fact the
true distribution is P.

For the two distributions, Dragomir et al. (2000) have shown that

D(p, q) ≤
N∑

i=1

p2(xi)

q(xi)
− 1

= 1

2

N∑
i=1

p(xi)p(yi)

[
p(xi)

q(xi)
− p(yi)

q(yi)

] [
q(yi)

p(yi)
− q(xi)

p(xi)

]

with equality if and only if p(xi) = q(xi) for all i’s. For two random variables X and Y , two
corollaries can be stated. The first is about the mutual information or transinformation:

I(X, Y) ≤
N∑

i=1

w2(xi, yi)

p(xi)q(yi)
− 1

The equality will hold only for X and Y being independent.

If r(x) = p(x)/q(x), and R = max
x∈X

r(x), and r = min
x∈X

r(x), and the quotient S = R

r
≥ 1, then

S ≤ 1 + ε +
√

ε(ε + 2)

and

D(p, q) ≤ ε

Likewise, let M = max
(x,y)∈X×Y

g(x, y)

p(x)q(y)
, m = min

(x,y)∈X×Y

g(x, y)

p(x)q(y)
and u = M

m
≥ 1. If u ≤ 1 + ε +

√
ε(ε + 2), ε > 0. Then one gets I(X, Y) ≤ ε. Similarly, for two probability distributions

which satisfy the condition:

0 < r ≤ p(x)

q(x)
≤ R

then the bound is

D(p, q) ≤ (R − r)2

4rR

The equality holds only if p(x) = q(x). For mutual information,

0 ≤ I(X, Y) ≤ (M − m)2

4Mm

Similarly, another upper bound is obtained using Diaz-Metcalf inequality:

D(p, q) ≤ (1 − r)(R − 1) ≤ 1

4
(R − r)2
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and for mutual information

0 ≤ I(X, Y) ≤ (1 − m)(M − 1) ≤ 1

4
(M − m)2

Questions

Q.6.1 Obtain data on the number of rainy days (n) for a number of years (say, 30 or
more years) for College Station in Texas. Use the data from Chapter 3. Using the
mean number of rainy days as a constraint, determine the discrete distribution that n

follows. Use the uniform distribution as a prior distribution. Fit this distribution to the
histogram and discuss how well it fits. Compute the entropy of the distribution.

Q.6.2 Consider the number of rainy days as a continuous random variable. Then solve Q.6.1
for the continuous case.

Q.6.3 Using the mean number of rainy days as constraint and exponential distribution as a
prior, determine the continuous distribution that n follows. Fit this distribution to the
histogram and discuss how well it fits. Compute the cross-entropy of the distribution.

Q.6.4 Obtain the values of time interval between two successive rain events in College
Station, Texas, for a number of years (say 30 or more years) and select the maximum
value for each year. The maximum time interval between rainy days is considered
here as a random variable. Using the mean time interval in days as a constraint and
uniform distribution as prior, determine the discrete distribution that the time interval
follows. Fit this distribution to the histogram and discuss how well it fits. Compute the
cross-entropy of this distribution.

Q.6.5 Consider the time interval between two successive rain events and select the maximum
value for each year for the data in Q.3.9. The maximum time interval is considered here
as a continuous random variable. Using the mean time interval (maximum values)
as a constraint, and exponential distribution as a prior, determine the continuous
distribution that the time interval follows. Fit this distribution to the histogram and
discuss how well it fits. Compute the cross-entropy of the distribution.

Q.6.6 Obtain the values of time interval between two successive rain events in College
Station, Texas, for a number of years (say 30 or more years) and select the minimum
value for each year. The minimum time interval between rainy days is considered
here as a random variable. Using the mean time interval in days as a constraint and
the uniform distribution as a prior, determine the discrete distribution that the time
interval follows. Fit this distribution to the histogram and discuss how well it fits.
Compute the cross-entropy of this distribution.

Q.6.7 Consider the time interval between two successive rain events and select the minimum
value for each year. The minimum time interval is considered here as a continuous
random variable. Using the mean time interval (minimum values) as a constraint, and
the exponential distribution as a prior, determine the continuous distribution that the
minimum time interval follows. Fit this distribution to the histogram and discuss how
well it fits. Compute the cross-entropy of the distribution.

Q.6.8 Consider yearly rainfall for a number of years for College Station, Texas. Consider
yearly rainfall as a discrete random variable. Using the mean yearly rainfall as a
constraint and uniform distribution as prior, determine the discrete distribution that
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yearly rainfall follows. Fit this distribution to the histogram and discuss how well it
fits. Compute the cross-entropy of the distribution.

Q.6.9 Consider yearly rainfall as a continuous random variable and obtain yearly rainfall
values from a raing age in a watershed. Using the mean yearly rainfall as a constraint
and exponential distribution as a prior, determine the continuous distribution that
yearly rainfall follows. Fit this distribution to the histogram and discuss how well it
fits. Compute the cross-entropy of the distribution.

Q.6.10 Obtain data on the number of days (n) having temperature above 36 ◦C (100 ◦F) for a
number of years (say, 30 or more years) for College Station in Texas. Using the mean
number of days as a constraint and uniform distribution as a prior, determine the
discrete distribution that n follows. Fit this distribution to the histogram and discuss
how well it fits. Compute the cross-entropy of the distribution.

Q.6.11 Consider the number of days (n) having temperature above 36 ◦C (100 ◦F) as a
continuous random variable and obtain the needed data. Using the mean number of
days as a constraint and exponential distribution as a prior, determine the continuous
distribution that n follows. Fit this distribution to the histogram and discuss how well
it fits. Compute the cross-entropy of the distribution.

Q.6.12 Obtain data on the number of days (n) having temperature equal to or below 0 ◦C
(32 ◦F) for a number of years (say, 30 or more years) for College Station in Texas.
Using the mean number of days as a constraint and uniform distribution as a prior,
determine the discrete distribution that n follows. Fit this distribution to the histogram
and discuss how well it fits. Compute the cross-entropy of the distribution.

Q.6.13 Consider the number of days (n) having temperature equal to or less than 0 ◦C
(36 ◦F) as a continuous random variable and obtain the needed data. Using the mean
number of days as a constraint and exponential distribution as a prior, determine
the continuous distribution that n follows. Fit this distribution to the histogram and
discuss how well it fits. Compute the cross-entropy of the distribution.

Q.6.14 Obtain the values of number of days without rainfall each year in College Station,
Texas. The number of rainless days each year is considered here as a random variable.
Plot a histogram of the number of rainless days and discuss what it looks like. Using
the mean number of rainless days and uniform as a prior, determine the discrete
distribution that the number of rainless days follows. Fit this distribution to the
histogram and discuss how well it fits. Compute the cross-entropy of this distribution.

Q.6.15 Consider the number of rainless days as a continuous random variable and obtain the
needed data. Using the mean number of rainless days as a constraint and exponential
distribution as a prior, determine the continuous distribution that the number of
rainless days follows. Fit this distribution to the histogram and discuss how well it fits.
Compute the cross-entropy of the distribution.
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7 Derivation of POME-Based
Distributions

In the preceding chapter on POMCE, it has been discussed that POMCE leads to a least-biased
probability distribution corresponding to a given set of constraints and a prior distribution
(Kapur, 1989; Kapur and Kesavan, 1992). In this chapter this discussion is extended fur-
ther and a number of well-known distributions are derived. The constraints are usually
expressed in terms of moments (or averages of some kind), although it is not a nec-
essary condition. Examples of these constraints are E[x], E[|x|], E[x2], E[ln x], E[ln(1 − x)],
E[ln(1 + x)], E[{ln(x)}2], E[ln(1 + x2)], and so on. The prior distribution can be of any kind but
is often specified as uniform, arithmetic, geometric, binomial, or normal. The prior distribution
can be selected based on the hydrology of the variable under consideration. It must be noted
that in the case of a continuous variable the limits of integration for entropy and specification
of constraints must be compatible, or else POMCE would not lead to a probability distribution
or POMCE-based distribution would not exist.

7.1 Discrete variable and mean E[x] as a constraint

Let a random variable X take on N values x1, x2, x3, . . . , xN with probabilities p1, p2, p3, . . . , pN .
such that

N∑
i=1

pi = 1 (7.1)

Then the least biased POMCE-based distribution would depend on the specification of the
prior distribution and the minimization of cross-entropy (Kullback and Leibler, 1951; Kullback,
1959):

D(P, Q) =
N∑

i=1

pi ln
pi

qi

(7.2)

where P = {p1, p2, . . . , pN} is the distribution to be determined, and Q = {q1, q2, . . . , qN} is the
prior distribution.
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7.1.1 Uniform prior distribution
The prior distribution Q is:

q1 = q2 = q3, . . . = qN = 1

N
(7.3)

The constraint is expressed as:

p11 + p22 + . . . + pNN =
N∑

i=1

ipi = x (7.4)

From the previous chapter, the POMCE-based distribution can be written as

pi = qi exp[−λ0 − λii] (7.5a)

Equation (7.5a) can be recast as

pi = 1

N
exp[−λ0 − λ1i] = exp(−λ0)

N
exp(−λ1i) = cdi (7.5b)

where c = exp(−λ0)/N, and d = exp(−λ1).
Substitution of equation (7.5b) in equation (7.1) yields

N∑
i=1

cd1 = 1 (7.6)

Inserting equation (7.5b) in equation (7.4), one obtains

N∑
i=1

icdi = x (7.7)

Parameter c can be eliminated by combining equations (7.6) and (7.7):

N∑
i=1

idi

N∑
i=1

di

= x (7.8)

Parameter d can be determined from equation (7.8). Equation (7.5b) shows that the POMCE-
based distribution is a geometric distribution, that is, if the prior is a uniform distribution
and the constraint is defined by the mean, then the posterior distribution is a geometric
distribution.

Example 7.1: Determine the POMCE-based distribution of a random variable X expressing
the number that occurs when a six-faced dice is thrown. Assume that the mean of the six-faced
dice upon throw is given as 3.5, and the prior is given as a uniform distribution.

Solution: Let X take on values x1, x2, x3, . . . , x6 with probabilities p1, p2, p3, . . . , p6 such that

6∑
i=1

pi = 1 (7.9)

Then the least biased POMCE-based distribution would depend on the specification of the prior
distribution and minimization of cross-entropy given by equation (7.2). The prior distribution
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Q is uniform, that is,

Q : q1 = q2 = q3, . . . = q6 = 1

6
(7.10)

The constraint is expressed as:

p1.1 + p2.2 + . . . + p6.6 =
6∑

i=1

ipi = x = 3.5 (7.11)

The POMCE-based distribution can be written as

pi = qi exp[−λ0 − λ1i] or pi = 1

6
exp[−λ0 − λ1i] = exp(−λ0)

6
exp(−λ1i) = cdi (7.12)

where c = exp(−λ0)/6, and d = exp(−λ1). Substituting equation (7.12) in equation (7.9), one
gets

6∑
i=1

cdi = 1 (7.13)

Substituting equation (7.12) in equation (7.11), we get

6∑
i=1

icdi = x = 3.5 (7.14)

Dividing equation (7.14) by equation (7.13).

6∑
i=1

idi

6∑
i=1

di

= x = 3.5 (7.15)

Solving equation (7.15) for parameter d, we get d = 1. Inserting d = 1 in equation (7.13), we
get c = 1/6. Hence, c = exp(−λ0)/6. This yields: λ0 = 0 ; and d = exp(−λ1), λ1 = 0. Therefore,
the POMCE-based distribution can be written as

pi = 1

6
exp[−λ0 − λ1i] = 1

6
exp(−0 − 0.i) = 1

6
(7.16a)

or

P = {1/6, 1/6, 1/6, 1/6, 1/6, 1/6} (7.16b)

The cross-entropy is:

D(P, Q) =
6∑

i=1

pi ln
pi

qi

= 6

[
1

6
ln

(
1/6

1/6

)]
= 0 (7.17)

Thus, the posterior distribution P is the same as the prior distribution Q when Q has a uniform
distribution. Hence, the Lagrangean multipliers λ0, λ1 as well as the cross-entropy are equal
to zero. Therefore, plotting D as a function of Lagrange parameters or constraints is not
meaningful.
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7.1.2 Arithmetic prior distribution
The prior distribution is the arithmetic distribution expressed as:

Q = {q0, q1, . . . , qN} = {Ka, K(a + b), K(a + 2b), . . . , K(a + Nb} =
N∑

i=0

K(a + ib) (7.18)

where K, a, and b are constants. The constraint is given by equation (7.4). The POMCE-based
least-biased probability distribution can be written as

pi = qi exp[−λ0 − λ1i] = K(a + bi) exp[−λ0 − λ1i] (7.19)

Equation (7.19) can be recast as

pi = k(a + ib)di (7.20)

where

k = K exp(−λ0) (7.21)

and

d = exp(−λ1) (7.22)

The probability distribution given by equation (7.20) is the arithmetic-geometric distribution.
Equation (7.20) contains two parameters k and d which can be determined with the aid of
equations (7.1) and (7.4). Substitution of equation (7.20) in equations (7.1) and (7.4) yields,
respectively,

k
N∑

i=0

(a + ib)di = 1 (7.23)

and

k
N∑

i=0

i(a + ib)di = x (7.24)

Parameters k and d can be determined from equations (7.23) and (7.24).

Example 7.2: Determine the POMCE-based distribution of a random variable X expressing
the number that occurs when a six-faced dice is thrown. The mean of the six-faced dice is
given as 4.5 and a priori probability distribution Q is assumed to be an arithmetic distribution.

Q = {q1, . . . , qN} = {Ka, K(a + b), K(a + 2b), . . . , K(a + [N − 1])b} =
N∑

i=1

K(a + (i − 1)b)

(7.25)
where a and b are parameters.

Solution: From equations (7.20), (7.23) and (7.24), one gets

pi = k(a + (i − 1)b)di−1 (7.26)
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N∑
i=1

pi = k
N∑

i=1

[a + (i − 1)b]di−1 = 1 (7.27)

p11 + p22 + . . . + pNN =
N∑

i=0

ipi = k
N∑

i=1

ik[a + (i − 1)b]di−1 = x (7.28)

where k = K exp(−λ0), K, a, and b are constants.
The POMCE-based least-biased probability distribution can be written as

pi = qi exp[−λ0 − λ1i] = K(a + bi) exp[−λ0 − λ1i] (7.29)

The mean is given = 4.5 for number a six-faced dice and a priori probability distribution
Q is an arithmetic distribution. Numerical iteration yields: a = 0.025, b = 0.057, d = 2.270,
K = 1, k = 0.035, λ0 = 3.35, and λ1 = −0.82. This gives: Q = (0.02, 0.08, 0.14, 0.20, 0.25,
0.31); P = (0.001, 0.01, 0.03, 0.08, 0.23, 0.65). Changing the values of λ0 and λ1 one observes
the changes in D (information gap):

Variation of λ0 and λ1 produces:

λ0 λ1 D

9.42 −2.78 3.11
7.56 −2.27 2.64
9.22 −2.75 3.09
4.87 −1.41 1.45
3.35 −0.82 0.34

7.1.3 Geometric prior distribution
The prior distribution is the geometric distribution expressed as

Q = {q0, q1, . . . , qN} = {K, Ka, Ka2, . . . , KaN}; qi = Kai (7.30)

The constraint is given by equation (7.4). Then the POMCE-based least-biased probability
distribution can be written as

pi = qi exp[−λ0 − λ1i] = Kai exp[−λ0 − λ1i] (7.31)

Equation (7.31) can be recast as

pi = kaibi (7.32)

where

k = K exp(−λ0) (7.33)

and

b = exp(−λ1) (7.34)
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Parameters b and k are determined by substituting equation (7.32) in equations (7.1) and
(7.4), respectively,

k
N∑

i=0

aibi = 1 (7.35)

and

k
N∑

i=0

iaibi = x (7.36)

Example 7.3: Solve Example 7.2 if the a priori probability distribution Q is assumed to be a
geometric distribution.

Q = {q0, q1, . . . , qN} = {K, Ka, Ka2, . . . , KaN}, where K = 0.1, a = 1 − K = 0.9, N = 7.

Solution: From equation (7.32), (7.35), and (7.36), one gets

pi = kaibi (7.37)

k
N∑

i=0

aibi = 1 (7.38)

k
N∑

i=0

iaibi = x (7.39)

Solving these equations one gets b = 1.7081, k = 0.0279. The distribution is

pi = kaibi = 0.0279 × (1.5373)i (7.40)

7.1.4 Binomial prior distribution
The prior distribution is the binomial distribution expressed as

Q = {q0, q1, q2, . . . , qN} = {N0p0qN−0, N1p1qN−1, . . . , NNpNq0} = Nip
iqN−i, Ni = (

N
i

)
(7.41)

where Ni is the i-th binomial coefficient, and q = 1 − p. The constraint is given by equation
(7.4). Then the POMCE-based probability distribution is given by

pi = Nip
iqN−1 exp(−λ0 − λ1i) (7.42)

Equation (7.42) can be recast as

pi = aNip
iqN−1bi (7.43)

where a and b are parameters and are defined as

a = exp(−λ0) (7.44)

and

b = exp(−λ1) (7.45)
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Equation (7.43) is a binomial distribution. Parameters a and b in equations (7.43) and (7.44)
can be determined, respectively, as

a
N∑

i=0

Nip
iqN−ibi = 1 (7.46)

and

a
N∑

i=0

iNip
iqN−ibi = x (7.47)

Equation (7.46) leads to

a(pb + q)N = 1 (7.48)

and equation (7.47) to

aNpb(pb + q)N = x = Np∗ (7.49)

for p∗ such that

pb

q
= m

N − m
= p∗

1 − p∗
(7.50)

Substituting equation (7.50) in equation (7.48) one gets

aqN(1 + m

N − m
)N = 1 (7.51)

or

aqN = q∗, q∗ = 1 − p∗ (7.52)

Thus, POMCE-based distribution is:

pi = Niq
i
∗ (7.53)

in which p∗ = m/N is independent of the value of p in the prior distribution.

Example 7.4: Solve Example 7.2 if a priori probability distribution Q is assumed to a binomial
distribution:

Q = {q0, q1, q2, . . . , qN} = {N0p0qN−0, N1p1qN−1, . . . , NNpNq0} = Nip
iqN−i, Ni = (

N
i

)
(7.54)

where N = 6, p = 1/6.

Solution: From equation (7.53), one gets

pi = Niq
i
∗ = Ci

6(0.25)i (7.55)

in which Ci
6 is the binomial coefficient, p∗ = m/N = 4.5/6 = 0.75 and q∗ = 1 − p∗ = 0.25.
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7.1.5 General prior distribution
Consider a prior distribution Q = {q1, q2, ..., qN}. One considers the case where there are N
energy levels, E1, E2, . . . , EN , and the expected energy level is:

N∑
i=1

Eipi = E (7.56)

Then the POMCE-based distribution is:

pi = qi exp(−λ0 − λ1Ei) (7.57)

Substitution of equation (7.57) in equation (7.1) results in

exp(λ0) =
N∑

i=1

qi exp(−λ1E1) (7.58)

Inserting equation (7.58) in equation (7.57), one obtains

pi = qi exp(−λ1Ei)
N∑

i=1

qi exp(−λ1Ei)

(7.59)

Parameter λ1 is determined by making use of equation (7.56).

E =

N∑
i=1

Eiqi exp(−λ1Ei)

N∑
i=1

qi exp(−λ1Ei)

(7.60)

Equation (7.59) looks like the Maxwell-Boltzmann distribution, but is, in general, different.
Now let the a priori distribution be defined as

qi = exp(−λ0Ei)
N∑

i=1

exp(−λ0Ei)

(7.61)

The constant is still given by equation (7.56). Then the POMCE-based distribution becomes

pi = qi exp(−λ0 − λ1Ei) = exp(−λ0Ei)
N∑

i=1

exp(−λ0Ei)

exp(−λ0 − λ1Ei) (7.62)

Inserting equation (7.62) in equation (7.1) one obtains

N∑
i=1

exp[−(λ0 + λ1)Ei]

N∑
i=1

exp(−λ0Ei)

= exp(λ0) (7.63)
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Inserting equation (7.63) in equation (7.62), one gets

pi = exp[−(λ0 + λ1)Ei)]
N∑

i=1

exp[−(λ0 + λ1)Ei]

(7.64)

Also, inserting equation (7.64) in equation (7.56), one obtains

E =

N∑
i=1

Ei exp[−(λ0 + λ1)Ei)]

N∑
i=1

exp[−(λ0 + λ1)Ei]

(7.65)

Equation (7.64), in conjunction with equation (7.65), is the Maxwell-Boltzmann distribu-
tion. If λ0 = 0 in equation (7.61), the resulting distribution is the uniform distribution.

7.2 Discrete variable taking on an infinite set of values

In this case, the variate takes on values 1, 2, 3, . . . The constraint is given in terms of a mean
value.

7.2.1 Improper prior probability distribution
The prior distribution is: qi = a/ib. The constraint is still the mean expressed by equation (7.4).
Using POMCE, the least-biased probability distribution is obtained as

pi = 1

ib
exp(−λ0 − λ1i), i = 1, 2, 3, . . . (7.66)

Equation (7.66) can be cast as

pi = c

ibdi
(7.67)

where

c = a exp(−λ0) (7.68)

d = exp(−λ1) (7.69)

Parameters c and d are obtained by substituting equation (7.67) in equations (7.1) and (7.4),
which results in

c
N∑

i=1

di

ib
= 1 (7.70)

and

c
N∑

i=1

idi

ib
= x (7.71)

In equation (7.66), b can be any value.
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We now consider three special cases: b = 0, 1, and − 1. When b = 0, the a priori probability
distribution becomes an improper uniform probability distribution: pi = cdi. Equations (7.70)
and (7.71) become:

c
N∑

i=1

di = c
d

1 − d
= 1 (7.72)

and

c
N∑

i=1

idi = c
d

(1 − d)2
= x (7.73)

Equations (7.72) and (7.73) yield

1

1 − d
= x (7.74)

and

c = 1

x − 1
(7.75)

Thus, equation (7.67), with b = 0, becomes

pi = (x − 1)i−1

(x)i
= 1

x

(
1 − 1

x

)i−1

, i = 1, 2, . . . (7.76)

Equation (7.76) represents an infinite geometric progression with common ratio of (x − 1)/x.
Clearly, x > 1 and the probability distribution is the infinite geometric distribution.

We now consider the case when b = 1. Then equation (7.67) becomes

pi = c

i
di (7.77)

Therefore, equations (7.70) and (7.71) become

c
N∑

i=1

di

i
= 1 (7.78)

and

c
N∑

i=1

di = x (7.79)

Equations (7.78) and (7.79) produce

−c ln(1 − d) = 1 (7.80)

and

c
d

1 − d
= x (7.81)
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Equations (7.80) and (7.81) are used to determine parameters c and d. The POMCE-based
probability distribution given by equation (7.77) becomes a log-series distribution.

Consider now b = −1. Then equation (7.67) becomes

pi = cidi (7.82)

Equations (7.70) and (7.71) become

c
∞∑

i=1

idi = c
d

(1 − d)2
= 1 (7.83)

and

c
∞∑

i=1

i2di = c
d + d2

(1 − d)3
= x (7.84)

Equations (7.83) and (7.84) can be solved for c and d:

d = x − 1

x + 1
(7.85)

and

c = 4

(x)2 − 1
(7.86)

Hence, equation (7.82) becomes

pi = 4i

(x)2 − 1

(
x − 1

x − 1

)i

(7.87)

Note that the series

∞∑
i=1

di

ib
(7.88)

always converges, as seen below:

lim
i→∞

di+1/(1 + i)b

di/ib
= d lim

i→∞

(
i

i + 1

)b

= d (7.89)

Example 7.5: Solve Example 7.2 but here random variable X which takes on the value of
1 ∼ +∞ and a priori probability distribution Q is given by an improper distribution qi = a/ib.

Solution: When b = 0, one gets from equation (7.76).

pi = (x − 1)i−1

(x)i
= 1

x

(
1 − 1

x

)i−1

= 1

4.5

(
1 − 1

4.5

)i−1

= 0.2857 × (0.7778)i

When b = 1, solving equation (7.80).

−c ln(1 − d) = 1
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and equation (7.81)

c
d

1 − d
= x

one gets d = 0.915 and c = 0.418. From equation (7.77), pi = c

i
di = 0.418

i
(0.915)i.

When b = −1, one gets from equation (7.87).

pi = 4i

(x)2 − 1

(
x − 1

x + 1

)i

= 4i

(4.5)2 − 1

(
4.5 − 1

4.5 + 1

)i

= 0.2078 × i × (0.6364)i

7.2.2 A priori Poisson probability distribution
The a priori probability distribution is given as

qi = ai

i!
exp(−a), i = 0, 1, 2, . . . (7.90)

The constraint is still given by equation (7.4). Then the POMCE-based distribution is obtained
as

pi = ai

i!
exp(−a) exp(−λ0 − λ1i) (7.91)

Equation (7.91) can be recast as

pi = b
ai

i!
exp(−a)ci (7.92)

where

b = exp(−λ0), c = exp(−λ1) (7.93)

Parameters b and c can be determined by substituting equation (7.92) in equation (7.1) and
(7.4) as

b exp(−a)
∞∑

i=1

ai

i!
ci = 1 (7.94)

and

b exp(−a)
∞∑

i=1

iai

i!
ci = x (7.95)

Equation (7.95) can be written as

b exp(−a)ca
∞∑

i=1

(ac)i−1

(i − 1)!
= b exp(−a)ca

∞∑
i=1

(ac)i

i!
= x (7.96)

Equations (7.94) and (7.95) yield

b exp(−a) exp(ac) = 1 (7.97)
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and

b exp(−a)ca exp(ac) = x (7.98)

Solution of equations (7.97) and (7.98) gives

ac = x (7.99)

and

b = exp(a − x) (7.100)

Inserting equations (7.99) and (7.100) in equation (7.92) yields

pi = exp(−x)
(x)i

i!
, i = 0, 1, 2, . . . (7.101)

Equation (7.101) is a Poisson distribution with parameter given by x. This shows that if the
prior probability distribution is a Poisson distribution and the constraint is mean, then the
POMCE-based distribution is also a Poisson distribution independent of the parameter of the
a priori Poisson distribution.

Example 7.6: Solve Example 7.2 where the random variable X which takes on the value of
1 ∼ +∞ with a mean of 4.5 and an a priori probability distribution Q is given by the Poisson
distribution:

qi = ai

i!
exp(−a), i = 0, 1, 2, . . . , where a = 0.5. (7.102)

Solution: From equation (7.101) one gets

pi = exp(−x)
(x)i

i!
= exp(−4.5)

(4.5)i

i!
(7.103)

The a priori probability distribution Q is given by the Poisson distribution:

qi = ai

i!
exp(−0.5), i = 0, 1, 2, . . . (7.104)

The constraints are given by

∞∑
i=0

ipi = x;
∞∑

i=1

pi = 1 (7.105)

Then the POMCE-based distribution is obtained as

pi = qi exp[−λ0 − λii] = pi = ai

i!
exp(−a) exp(−λ0 − λ1i) (7.106)

This equation can be recast as

pi = b
ai

i!
exp(−a)ci (7.107)
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where

b = exp(−λ0), c = exp(−λ1) (7.108)

Parameters b and c can be determined by substituting these equations in the constraints,
yielding

b exp(−a)
∞∑

i=1

ai

i!
ci = 1 (7.109)

and

b exp(−a)
∞∑

i=1

iai

i!
ci = x (7.110)

Simplification yields:

b exp(−a)ca
∞∑

i=1

(ac)i−1

(i − 1)!
= b exp(−a)ca

∞∑
i=1

(ac)i

i!
= x (7.111)

b exp(−a) exp(ac) = 1 (7.112)

b exp(−a)ca exp(ac) = x (7.113)

ac = x (7.114)

b = exp(a − x) (7.115)

Therefore, the distribution is given by

pi = exp(−x)
(x)i

i!
, i = 0, 1, 2, . . . (7.116)

Substituting x = 4.5

pi = exp(−x)
(x)i

i!
= exp(−4.5)

(4.5)i

i!

and

b = e−4; c = 9; λ0 = 4; λ1 = − ln 9

Further,

D(P, Q) =
∞∑

i=1

pi ln
pi

qi

where

pi = exp(−x)
(x)i

i!
(7.116)

pi

qi

= exp[−λ0 − λii] (7.117)
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Therefore,

D(P, Q) = e−x
∞∑

i=1

xi

i!
[−λ0 − λ1i] (7.118)

D(P, Q) = e−x
∞∑

i=1

xi

i!
[−λ0] + e−x

∞∑
i=1

xi

i!
[−λ1i]

D(P, Q) = −λ0e−x
∞∑

i=1

xi

i!
− λ1e−x

∞∑
i=1

xi

i!
[i]

D(P, Q) = −λ0(e−2x) − xλ1e−2x

D(P, Q) = −e−2x[λ0 + λ1x]

D(P, Q) = −e−9[4 − 4.5 ln 9] = 0.0013

7.2.3 A priori negative binomial distribution
The a priori distribution is a negative binomial distribution given as:

qi = (N + i − 1)!

(N − 1)!i!
aN(1 − a)i, i = 0, 1, 2, . . . (7.119)

The constraint is given by equation (7.4). Then the POMCE-based distribution can be
expressed as

pi = (N + i − 1)!

(N − 1)!i!
aN(1 − a)i exp(−λ0 − λ1i), i = 0, 1, 2, . . . (7.120)

Equation (7.120) can be written as

pi = b
(N + i − 1)!

(N − 1)!i!
aN(1 − a)ici (7.121)

where

b = exp(−λ0) (7.122)

and

c = exp(−λ1) (7.123)

Parameters b and c can be determined by substituting equation (7.121) in equations (7.1) and
(7.4) as

b
∞∑

i=1

(N + i − 1)!

(N − 1)!i!
aN(1 − a)ici = 1 (7.124)
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and

b
∞∑

i=1

i
(N + i − 1)!

(N − 1)!i!
aN(1 − a)ici = x (7.125)

Equation (7.124) can be simplified as

baN[1 − (1 − a)c]−N = 1 (7.126)

and equation (7.125) as

bNaN[1 − (1 − a)c]−N−1 = x (7.127)

Equations (7.126) and (7.127) yield

baN =
(

N

x

)N

(7.128)

and

(1 − a)x =
(

1 − N

x

)
(7.129)

Substituting equations (7.128) and (7.129) in equation (7.121), one gets

pi = (N + i − 1)!

(N − 1)!i!

(
N

x

)N (
1 − N

x

)i

, i = 0, 1, 2, . . . (7.130)

Equation (7.130) is a negative binomial distribution with parameters N and N/x, and is
independent of parameter a of the a priori distribution.

Example 7.7: Solve Example 7.2 where the random variable X which takes on the value
of 1˜ + ∞ with a mean of 4.5 and an a priori probability distribution q is given by a negative
binomial distribution:

qi = (N + i − 1)!

(N − 1)!i!
aN(1 − a)i, i = 0, 1, 2, . . .

where a = 0.1, N = 4.

Solution: From equation (7.130) one gets

pi = (N + i − 1)!

(N − 1)!i!

(
N

x

)N (
1 − N

x

)i

= (4 + i − 1)!

(4 − 1)!i!

(
4

4.5

)4 (
1 − 4

4.5

)i

7.3 Continuous variable: general formulation

In the previous chapter (Chapter 6) the principle of minimum cross-entropy (POMCE) for
continuous variables has been formulated. That formulation is extended here. For a continuous
random variable X in the range 0 and infinity, let q(x) be the prior probability density function
(PDF) and p(x) be the posterior PDF. The objective is to determine p(x) subject to specified
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constraints and given the prior PDF. To that end, the cross-entropy is expressed as

D(p, q) = D(x) =
∞∫

0

p(x) ln
p(x)

q(x)
dx (7.131)

where

∞∫
0

q(x)dx = 1 (7.132)

∞∫
0

p(x)dx = 1 (7.133)

In order to derive p(x) by applying POMCE, the following constraints can be specified:

∞∫
0

gr(x)p(x)dx = gr = Cr, r = 1, 2, . . . , m (7.134)

The minimization of D(p, q) subject to equations (7.133) and (7.134), can be achieved using
the method of Lagrange multipliers where the Lagrangean function can be expressed as

L =
∞∫

0

p(x) ln
p(x)

q(x)
dx + (λ0 − 1)


 ∞∫

0

p(x)dx − 1


 +

m∑
r=1

λr


 ∞∫

0

gr(x)p(x)dx − Cr


 (7.135)

Differentiating equation (7.135) with respect to p(x) while recalling the calculus of variation
and equating the derivative to zero, the following is obtained:

ln
p(x)

q(x)
+ 1 + (λ0 − 1) +

m∑
r=1

λrgr(x) = 0 (7.136)

Equation (7.136) leads to the posterior PDF p(x):

p(x) = q(x) exp

[
−λ0 −

m∑
r=1

λrgr(x)

]
(7.137)

Equation (7.136) is also conveniently written as

p(x) = 1

Z(λ0)
q(x) exp

[
−

m∑
r=1

λrgr(x)

]
(7.138)

where Z is called the partition function obtained by substituting equation (7.137) in equation
(7.133).

Z = exp(λ0) =
∞∫

0

q(x) exp

[
−

m∑
r=1

λrgr(x)

]
dx (7.139)
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The Lagrange multipliers are determined using equation (7.134) with known values of
constraints as

−1

Z

∂Z

∂λr

= −∂ ln Z

∂λr

= gr(x) = Cr (7.140)

Equation (7.140) does not lend itself to an analytical solution except for simple cases but
numerical solution is not difficult. Equation (7.137) shows that specific forms of p(x) depend
on the specification of q(x) and gr(x). Here two simple cases of the prior q(x) are dealt with.

7.3.1 Uniform prior and mean constraint
It is assumed that the domain of X is bounded and therefore the assumption of a priori uniform
density can be justified. Let

q(x) = 1

b − a
(7.141)

where a and b are limits of X for q. The mean constraint is defined as

∞∫
0

xp(x) = x (7.142)

The PDF p(x) is determined, subject to equation (7.133) and (7.142) and given the prior as in
equation (7.141). In this case equation (7.137) yields

p(x) = 1

b − a
exp(−λ0 − λ1x) (7.143)

Substitution of equation (7.143) in equations (7.133) and (7.142) yields

∞∫
0

1

b − a
exp(−λ0 − λ1x)dx = 1 (7.144)

∞∫
0

1

b − a
x exp(−λ0 − λ1x)dx = x (7.145)

Solution of equations yields

(b − a) exp(λ0) = 1

λ1

(7.146)

and

(b − a) exp(λ0)x = 1

λ2
1

(7.147)

Equations (7.146) and (7.147) give

1

λ1

= x (7.148)
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Substitution of equations (7.148) and (7.146) in equation (7.143) lead to

p(x) = 1

(b − a)x
exp(−x/x) (7.149)

which is of exponential type.

7.3.2 Exponential prior and mean and mean log constraints
Let the prior PDF be given as

q(x) = 1

k
exp(−x/k) (7.150)

The constraints are specified as equation (7.142) and

∞∫
0

ln xp(x)dx = ln x (7.151)

Equation (7.137) in light of equation (7.150), (7.142), and (7.151) becomes

p(x) = 1

k
exp(−x/k) exp(−λ0 − λ1x − λ2 ln x) (7.152)

which can be expressed as

p(x) = x−λ2

k
exp(−x/k) exp(−λ0 − λ1x) (7.153)

Substitution of equation (7.153) in equation (7.133), (7.142), and (7.151) yield, respectively,

∞∫
0

x−λ2

k
exp(−x/k) exp(−λ0 − λ1x)dx = 1 (7.154)

∞∫
0

x1−λ2

k
exp(−x/k) exp(−λ0 − λ1x)dx = x (7.155)

∞∫
0

x1−λ2

k
ln x exp(−x/k) exp(−λ0 − λ1x)dx = ln x (7.156)

Equations (7.154) to (7.156) can be solved numerically for the Lagrange multipliers.

Questions

Q.7.1 Show that the minimum cross-entropy D(P, Q) is a convex function of both P and Q.
P and Q are vectors here. [Hint: The Hessian matrix must be positive definite. In other
words, all second partial derivatives of D with respect to P as well as Q must be positive
definite].
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Q.7.2 Determine the POMCF-based distribution of a random variable X expressing the
number that occurs when a six-faced dice is thrown. Assume that the mean of the six-
faced dice upon throw is given as 4.0, and the prior is given as a uniform distribution.
Determine the value of D and plot D as a function of Lagrange multipliers as well as
constraints.

Q.7.3 Determine the POMCF-based distribution of a random variable X expressing the
number that occurs when a six-faced dice is thrown. Assume that the mean of the
six-faced dice upon throw is given as 3.0, and the prior is a uniform distribution.
Determine the value of Dand plot D as a function of Lagrange multipliers as well as
constraints. How does the POMCE-based distribution differ from that in Q.7.2?

Q.7.4 Solve Q.7.2 if the a priori distribution is arithmetic. How does the POMCE-based
distribution differ from that in Q.7.2?

Q.7.5 Solve Q.7.3 if the priori distribution is arithmetic. How does the POMCE-based
distribution differ from that in Q.7.3?

Q.7.6 Solve Q.7.2 if the a priori distribution is geometric. How does the POMCE-based
distribution differ from that in Q.7.2?

Q.7.7 Solve Q.7.3 if the a priori distribution is geometric. How does the POMCE-based
distribution differ from that in Q.7.3?

Q.7.8 Solve Q.7.2 if the a priori distribution is Poisson with the parameter a as 4.0. How
does the POMCE-based distribution differ from that in Q.7.2?

Q.7.9 Solve Q.7.3 if the a priori distribution is Poisson with the parameter a as 3.0. How
does the POMCE-based distribution differ from that in Q.7.2?
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8 Parameter Estimation

Frequency distributions that satisfy the given information are often needed. The entropy theory
is ideally suited to derive such distributions. Indeed POME and POMCE have been employed to
derive a variety of distributions some of which have found wide applications in environmental
and water engineering. Singh and Fiorentino (1992) and Singh (1998a) summarize many
of these distributions. There are three entropy-based methods that have been employed for
estimating parameters of frequency distributions in water and environmental engineering:
1) ordinary entropy method, 2) parameter space expansion method, and 3) numerical method.
The objective of this chapter is to briefly discuss the first two methods and illustrate their
application.

8.1 Ordinary entropy-based parameter estimation method

Recalling the definition of Shannon entropy:

H(P) = H(X) = −
N∑

i=1

pi ln pi (8.1a)

if X is a discrete variable and

H = −
∞∫
0

f (x) ln f (x)dx (8.1b)

if X is a continuous variable.
The general procedure for deriving an ordinary entropy-based parameter estimation method

for a frequency distribution involves the following steps: 1) Define the given information in
terms of constraints, 2) maximize the entropy subject to the given information, 3) construct
the zeroth Lagrange multiplier, 4) relate the Lagrange multipliers to constraints, and 5) relate
the parameters to the given information or constraints.

Entropy Theory and its Application in Environmental and Water Engineering, First Edition. Vijay P. Singh.
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8.1.1 Specification of constraints
For a continuous variable X, let the available information be given in terms of m linearly
independent constraints Ci(i = 1, 2, . . . , m) in the form:

Ci =
b∫
a

yi(x)f (x)dx, i = 1, 2, . . . , m (8.2a)

b∫
a

f (x)dx = 1 (8.2b)

where yi(x) are some functions of X whose averages over the interval (a, b) specify the
constraint values.

If X is a discrete variable, then the constraints can be defined as

N∑
i=1

gr(xi)pi = ar r = 1, 2, . . . , m (8.3a)

and

pi ≥ 0,
N∑

i=1

pi = 1 (8.3b)

where ar is the r-th constraint, gr is the r-th function of X, N is the number of observations,
and m is the number of constraints, m + 1 ≤ N. When there are no constraints, then POME
yields a uniform distribution. As more constraints are introduced, the distribution becomes
more peaked and possibly skewed. In this way, the entropy reduces from a maximum for the
uniform distribution to zero when the system is fully deterministic.

8.1.2 Derivation of entropy-based distribution
An increase in the number of constraints leads to less uncertainty about the information
concerning the system. Considering the continuous random variable case, the maximum of
H, subject to the conditions in equation (8.2a) and (8.2b), leads to:

f (x) = exp

[
−λ0 −

m∑
i=1

λiyi(x)

]
(8.4a)

where λi, i = 0, 1, . . . , m, are the Lagrange multipliers. Equation (8.4a) is the entropy-based
distribution. Similarly, for discrete X,

pi = exp[−λ0 − λ1 g1(xi) − λ2 g2(xi) . . . . . . − λm gm(xi)], i = 1, 2, . . . , N (8.4b)

where λi, i = 0, 1, . . . , m, are Lagrange multipliers.

8.1.3 Construction of zeroth Lagrange multiplier
For a continuous random variable X, POME specifies f (x) by equation (8.4a). Inserting
equation (8.4a) in equation (8.1b) yields

H[f ] = λ0

b∫
a

f (x)dx +
m∑

i=1

λi

b∫
a

yi(x)f (x)dx (8.5a)



312 Entropy Theory and its Application in Environmental and Water Engineering

or

H[f ] = λ0 +
m∑

i=1

λiCi (8.5b)

where the Lagrange multipliers are determined using the information specified by equations
(8.2a) and (8.2b). In addition, the zeroth Lagrange multiplier λ0, also called the potential
function, is obtained by inserting equation (8.4a) in equation (8.2b) as

b∫
a

exp

[
−λ0 −

m∑
i=1

λiyi

]
dx = 1 (8.6a)

resulting in

λ0 = ln

b∫
a

exp

[
−

m∑
i=1

λiyi

]
dx (8.6b)

For the discrete case, substitution of equation (8.4b) in equation (8.1a) yields

H = −
N∑

i=1

pi ln

{
exp

[
−λ0 −

m∑
r=1

g(xi)λr

]}
(8.7a)

or

H[p] = λ0 +
m∑

r=1

λrar (8.7b)

The zeroth Lagrange multiplier is obtained by inserting equation (8.4b) in equation (8.3b):

λ0 = ln

{
N∑

i=1

exp

[
m∑

r=1

λrgr(xi)

]}
(8.7c)

8.1.4 Determination of Lagrange multipliers
The Lagrange multipliers are related to the given information (or constraints) as

∂λ0

∂λi

= −Ci = E[yi(x)], i = 1, 2, 3, . . . . . . , m (8.8a)

∂2λ0

∂λ2
i

= Var[yi(x)] (8.8b)

∂2λ0

∂λi∂λj

= Cov[yi(x), yj(x)], i �= j (8.9)

∂3λ0

∂λ3
i

= −µ3[yi(x)] (8.10)

where E[.] is the expectation, Var[.] is the variance, Cov[.] is the covariance, and µ3 is the
third moment about the centroid, all for yi.
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For discrete X, similar relationships follow:

∂λ0

∂λi

= −ai = E[gi], i = 1, 2, 3, . . . . . . , m (8.11a)

∂2λ0

∂λ2
i

= Var[gi] (8.11b)

∂2λ0

∂λi∂λj

= Cov[gi, gj], i �= j (8.12a)

∂3λ0

∂λ3
i

= −µ3[yi(x)] (8.12b)

The information available is in terms of constraints given by equation (8.3a). Then, the
entropy-based distribution is given by equation (8.4b). Substitution of equation (8.4b) in
equation (8.2b) yields

exp(λ0) = Z(λ1, λ2, . . . , λN) = Z(λ) =
N∑

j=1

exp

[
−

m∑
i=1

λigi(xj)

]
(8.13)

where Z(λ) is called the partition function, and λ0 is the zeroth Lagrange multiplier.

8.1.5 Determination of distribution parameters
With the Lagrange multipliers estimated from equations (8.7c) to (8.8a), the frequency
distribution given by equation (8.4a) is uniquely defined. It is implied that the distribution
parameters are uniquely related to the Lagrange multipliers. Clearly, this procedure states that
a frequency distribution is uniquely defined by the specification of constraints and application
of POME. This procedure is illustrated with a couple of examples.

Example 8.1: Derive the parameters of the Poisson distribution using the ordinary entropy
method. The probability distribution function of the Poisson distribution is given as:

pn = ane−a

n!
, n = 0, 1, 2, . . . (8.14)

where a is parameter and n is the n-th observation.

Solution: The Poisson distribution parameter is estimated as follows.

Specification of constraints Taking the natural logarithm of equation (8.14), one gets:

ln(n!pn) = −a + n ln(a) (8.15)

Applying the Shannon entropy formula for discrete case [i.e., equation (8.1a)], one
gets:

H(P) = −
∞∑

n=0

pn ln(n!pn) = a
∞∑

n=0

ane−a

n!
− ln a

∞∑
n=0

n
ane−a

n!
(8.16)

From equation (8.16), the constraints appropriate for equation (8.14) can be written as:

∞∑
n=0

pn = 1 (8.17a)
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∞∑
n=0

npn = m, m : sample mean (8.17b)

Construction of zeroth Lagrange multiplier The least-biased distribution pn consistent
with equations (8.17a) and (8.17b) and based on POME is:

pn = 1

n!
exp(−λ0 − λ1n) (8.18)

where λ0, λ1 are Lagrange multipliers. Substitution of equation (8.18) into equation
(8.17a), one gets:

∞∑
n=0

1

n!
exp(−λ0 − λ1n) = 1 ⇒ exp(λ0) =

∞∑
n=0

exp(−λ1n)

n!
(8.19a)

Recall the geometric series formula given as:

∞∑
n=0

xn

n!
= exp(x) (8.19b)

Equation (8.19a) can be simplified as:

exp(λ0) = exp[exp(−λ1)] (8.19c)

and the zeroth Lagrange multiplier λ0 is given as:

λ0 = exp(−λ1) (8.19d)

Relation between Lagrange multiplier and constraints Differentiating equation (8.19a)
with respect to λ1 one gets:

∂λ0

∂λ1

= −

∞∑
n=0

n
exp(−λ1n)

n!

∞∑
n=0

exp(−λ1n)

n!

= −m (8.20)

Similarly, differentiating equation (8.19d), one gets:

∂λ0

∂λ1

= − exp(−λ1) (8.21)

Equating equation (8.20) to equation (8.21), one gets:

exp(−λ1) = m ⇒ λ1 = − ln m (8.22)

Substituting equation (8.22) back into equation (8.19d), one gets

λ0 = m (8.23)

Relation between Lagrange multipliers and parameters Substitution of equations (8.22)
and (8.23) into equation (8.18), one gets:

pn = 1

n!
exp(−m + n ln m) = e−mmn

n!
(8.24)
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Comparison of equation (8.24) with equation (8.14), one gets:

a = m (8.25)

Distribution entropy According to equation (8.16), the Shannon entropy for the Poisson
distribution can be rewritten as:

H(n) = a
∞∑

n=0

pn − ln a
∞∑

n=0

npn +
∞∑

n=0

ln n!pn

= m − m ln m + e−m
∞∑

n=0

ln(n!)mn

n!
(8.26)

Example 8.2: Derive the parameters of the geometric distributionusing the ordinary entropy
method.

Solution: The geometric distribution is given as:

pn = (1 − p)n−1p, n = 1, 2, . . . (8.27)

where p is the probability of success on the n-th try. The geometric distribution parameter is
estimated as follows:

Specification of constraints Taking the natural logarithm of equation (8.27), one gets:

log pn = (n − 1) log(1 − p) + log(p) = log

(
p

1 − p

)
+ n log(1 − p) (8.28)

Applying the Shannon entropy formula for discrete case [i.e.,equation (8.1a)], one gets:

H(n) = −
∞∑

n=1

pn log pn = − log

(
p

1 − p

) ∞∑
n=1

pn − log(1 − p)
∞∑

n=1

npn (8.29)

From equation (8.29), the constraints appropriate for equation (8.27) can be written as:

∞∑
n=1

pn = 1 (8.30a)

∞∑
n=1

npn = m, m : sample mean (8.30b)

Construction of zeroth Lagrange multiplier The least-biased probability distribution pn

consistent with equations (8.30a) and (8.30b) and based on POME is:

pn = exp(−λ0 − λ1n) (8.31)

where λ0 and λ1 are the Lagrange multipliers. Substitution equation (8.31) into equation
(8.30a), one gets:

∞∑
n=1

exp(−λ0 − λ1n) = 1 ⇒ exp(λ0) =
∞∑

n=1

exp(−λ1n) (8.32a)
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Recall the geometric series formula given as:

∞∑
i=0

pi = 1

1 − p
(8.32b)

Equation (8.32a) can be further simplified as:

exp(λ0) =
∞∑

n=0

exp(−λ1n) − 1 = exp(−λ1)

1 − exp(−λ1)
(8.32c)

and the zeroth Lagrange multiplier λ0 is given as:

λ0 = ln
exp(−λ1)

1 − exp(−λ1)
(8.32d)

Relation between Lagrange multiplier and constraints Differentiating equation (8.32c)
with respect to λ1, one gets:

∂λ0

∂λ1

= −

∞∑
n=1

n exp(−λ1n)

∞∑
n=1

exp(−λ1n)

= −m (8.33)

Differentiating equation (8.32d) with respect to λ1, one gets:

∂λ0

∂λ1

= − 1

1 − exp(−λ1)
(8.34)

Equating equation (8.33) to equation (8.34), one gets:

1

1 − exp(−λ1)
= m ⇒ λ1 = − ln

m − 1

m
(8.35)

Substituting equation (8.35) back into equation (8.32d), one gets:

λ0 = ln(m − 1) (8.36)

Relation between Lagrange multipliers and parameters Substitution of equations
(8.35) and (8.36) into equation (8.31), one gets:

pn = exp

[
− ln(m − 1) + n ln

(
m − 1

m

)]
= exp

[
− ln

(1 − 1/m)

(1/m)
+ n ln

(
m − 1

m

)]

=
(

1

m

) (
1 − 1

m

)n−1

(8.37)

Comparison of equation () with equation (8.27), one gets:

p = 1

m
(8.38)
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Distribution entropy Substitution equation (8.38) into equation (8.29), one gets:

H(n) = − ln

(
1/m

1 − 1/m

) ∞∑
n=1

pn − ln

(
1 − 1

m

) ∞∑
n=1

npn

= − ln

(
1

m − 1

)
− m ln

(
m − 1

m

)
= m ln m − (m − 1) ln(m − 1)

= −(1 − p) ln(1 − p) − p ln p

p
(8.39)

Example 8.3: Derive the parameters of the normal distribution using the ordinary entropy
method. The probability density function of the normal distribution is given as:

f (x) = 1

b
√

2π
exp

[
− (x − a)2

2b2

]
(8.40)

where a and b are parameters.

Solution: The normal distribution parameters are estimated as follows.

Specification of constraints Taking the logarithm of equation (8.40) to the base e, one
gets

ln f (x) = − ln
√

2π − ln b − (x − a)2

2b2
or

ln f (x) = − ln
√

2π − ln b − x2

2b2
− a2

2b2
+ 2ax

2b2
(8.41)

Multiplying equation (8.41) by [−f (x)] and integrating between −∞ to ∞, one gets

H(x) = −
∞∫

−∞
f (x) ln f (x)dx

=
[
ln

√
2π + ln b + a2

2b2

] ∞∫
−∞

f (x)dx + 1

2b2

∞∫
−∞

x2f (x)dx − a

b2

∞∫
−∞

xf (x)dx (8.42)

From equation (8.42), the constraints appropriate for equation (8.40) can be written as

∞∫
−∞

f (x)dx = 1 (8.43a)

∞∫
−∞

xf (x)dx = E[x] = x (8.43b)

∞∫
−∞

x2f (x)dx = E[x2] = s2
x + x2 (8.43c)

where x is the sample mean, and s2
x is the sample variance of X.
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Construction of zeroth Lagrange multiplier The least-biased probability density function
f (x) consistent with equations (8.43a) to (8.43c) and based on POME takes the form:

f (x) = exp(−λ0 − λ1x − λ2x2) (8.44)

where λ0, λ1, and λ2 are the Lagrange multipliers. Substitution of equation (8.44) in the
normality condition in equation (8.43a) gives

∞∫
−∞

f (x)dx =
∞∫

−∞
exp(−λ0 − λ1x − λ2x2)dx = 1 (8.45)

Equation (8.45) can be simplified as

exp(λ0) =
∞∫

−∞
exp(−λ1x − λ2x2)dx (8.46)

Equation (8.46) defines the partition function. Making the argument of the exponential
as a square in equation (8.46), one gets

exp(λ0) =
∞∫

−∞
exp

(
−λ1x − λ2x2 + λ2

1

4λ2

− λ2
1

4λ2

)
dx

= exp

(
λ2

1

4λ2

) ∞∫
−∞

exp −
(

x
√

λ2 + λ1

2
√

λ2

)2

dx (8.47)

Let

t = x
√

λ2 + λ1

2
√

λ2

(8.48)

Then

dt

dx
= √

λ2 (8.49)

Making use of equations (8.48) and (8.49) in equation (8.47), one gets

exp
(
λ0

) =
exp

(
λ2

1
4λ2

)
√

λ2

∞∫
−∞

exp
(−t2

)
dt =

2 exp

(
λ2

1
4λ2

)
√

λ2

∞∫
0

exp(−t2)dt (8.50)

Consider the expression
∞∫
0

exp(−t2)dt. Let k = t2. Then [dk/dt] = 2t and t = k0.5. Hence,

this expression can be simplified by making substitution for t to yield

∞∫
0

exp(−t2)dt =
∞∫
0

exp(−k)
dk

2k0.5
= 1

2

∞∫
0

k−0.5 exp(−k)dk

= 1

2

∞∫
0

k[0.5−1] exp(−k)dk = �(0.5)

2
=

√
π

2
(8.51)
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Substituting equation (8.51) in equation (8.50), one gets

exp(λ0) =
2 exp

(
λ2

1

4λ2

)
√

λ2

√
π

2
= exp

(
λ2

1

4λ2

) √
π

λ2

(8.52)

Equation (8.52) is another definition of the partition function. The zeroth Lagrange
multiplier λ0 is given by taking the logarithm of equation (8.52) as

λ0 = 1

2
ln π − 1

2
ln λ2 + λ2

1

4λ2

(8.53)

One also obtains the zeroth Lagrange multiplier from equation (8.46) as

λ0 = ln

∞∫
−∞

exp(−λ1x − λ2x2)dx (8.54)

Relation between Lagrange multipliers and constraints Differentiating equation (8.54)
with respect to λ1 and λ2 respectively, one obtains

∂λ0

∂λ1

= −

∞∫
−∞

x exp(−λ1x − λ2x2)dx

∞∫
−∞

exp(−λ1x − λ2x2)dx

= −
∞∫

−∞
x exp(−λ0 − λ1x − λ2x2)dx

= −
∞∫

−∞
xf (x)dx = −x (8.55)

∂λ0

∂λ2

= −

∞∫
−∞

x2 exp(−λ1x − λ2x2)dx

∞∫
−∞

exp(−λ1x − λ2x2)dx

= −
∞∫

−∞
x2 exp(−λ0 − λ1x − λ2x2)dx

= −
∞∫

−∞
x2f (x)dx = −(s2

x + x2) (8.56)

Differentiating equation (8.53) with respect to λ1 and λ2 respectively, one obtains

∂λ0

∂λ1

= 2

4

λ1

λ2

= λ1

2λ2

(8.57)

∂λ0

∂λ2

= − 1

2λ2

− λ2
1

4λ2
2

(8.58)

Equating equation (8.55) to equation (8.57) and equation (8.56) to equation (8.58),
one gets

λ1

2λ2

= −x (8.59)
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1

2λ2

+ 1

4

(
λ1

λ2

)2

= s2
x + x2 (8.60)

From equation (8.59), one gets

λ1 = −2λ2x (8.61)

Substituting equation (8.61) in equation (8.60), one obtains

1

2λ2

+ 1

4

4λ2
2x

λ2
2

= s2
x + x2 ⇒ 1

2λ2

= s2
x ⇒ λ2 = 1

2s2
x

(8.62)

Eliminating λ2 in equation (8.59) yields

λ1 = −2
1

2s2
x

x = − x

s2
x

(8.63)

Relation between Lagrange multipliers and parameters Substitution of equation (8.53)
in equation (8.44) yields

f (x) =
[
−1

2
ln π + 1

2
ln λ2 − λ2

1

4λ2

− λ1x − λ2x2

]

= exp

[
ln(π)−0.5 + ln(λ2)0.5 − λ2

1

4λ2

− λ1x − λ2x2

]

= (π)−0.5(λ2)0.5 exp

[
− λ2

1

4λ2

− λ1x − λ2x2

]
(8.64)

Comparison of equation (8.64) with equation (8.40) shows that

λ1 = −a/b2 (8.65)

λ2 = 1/(2b2) (8.66)

Relation between parameters and constraints The normal distribution has two param-
eters a and b which are related to the Lagrange multipliers by equations (8.65) and
(8.66), which themselves are related to the constraints through equations (8.62) and
(8.63) [and in turn through equations (8.43b) and (8.43c)]. Eliminating the Lagrange
multipliers between these two sets of equations, we obtain

a = x (8.67)

b = sx (8.68)

Distribution entropy Substitution of equations (8.67) and (8.68) in equation (8.42) yields

H(x) =
[
ln

√
2π + ln sx + x2

2s2
x

] ∞∫
−∞

f (x)dx + 1

2s2
x

∞∫
−∞

x2f (x)dx − x

s2
x

∞∫
−∞

xf (x)dx

=
(

ln
√

2π + ln sx + x2

2s2
x

)
+ 1

2s2
x

(x2 + s2
x ) − x2

s2
x

= ln[sx(2πe)0.5] (8.69)
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Example 8.4: The gamma distribution is commonly employed for synthesis of instantaneous
or finite-period unit hydrographs. If X has a gamma distribution then its probability density
function (PDF) is given by

f (x) = 1

a�(b)

( x

a

)b−1
e−x/a (8.70a)

where a > 0 and b > 0 are parameters. The gamma distribution is a two-parameter distribu-
tion. Its cumulative distribution function (CDF) can be expressed as:

f (x) =
∞∫
0

1

a�(b)

( x

a

)b−1
e−x/adx (8.70b)

If y = x/a then equation (8.70b) can be written as

F(y) = 1

�(b)

y∫
0

yb−1 exp(−y)dy (8.70c)

Abramowitz and Stegun (1958) expressed F(y) as

F(y) = F(χ2|v) (8.71a)

where F(χ2|v) is the chi-square distribution with v = 2b degrees of freedom and χ2 = 2y.
According to Kendall and Stuart (1963), for v greater than 30, the following variable follows
a normal distribution with zero mean and variance equal to one:

u =
[
(
χ2

v
)1/3 + 2

9v
− 1

] (
9v

2

)1/2

(8.71b)

This helps compute f (x) for a given x by first computing y = x/a and χ2 = 2y and then
inserting these values into equation (8.71b) to obtain u. Given a value of u, F(x) can be
obtained from the use of normal distribution tables. Derive parameters of gamma distribution
using the ordinary entropy method and express its entropy.

It may be useful to recall the definition of the gamma function as well as some of its
properties in this chapter. The gamma function is defined as

�(b) =
∞∫
0

xb−1 exp(−x)dx (8.72)

which is convergent for b > 0. A recursive formula for the gamma function is:

�(b + 1) = b�(b), �(b = 1) = 1, �

(
1

2

)
= √

π (8.73a)

If b is a positive integer then

�(b + 1) = b!, b = 1, 2, 3, . . . (8.73b)
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This explains the reason that �(b) is sometimes called the factorial function. If b is a large
integer value then the value of the gamma function can be approximated using Stirling’s
factorial approximation or asymptotic formula for b! as

b! ∼
√

2πbbb exp(−b) (8.73c)

Also, Euler’s constant γ is obtained from the gamma function as:

�
′
(1) =

∞∫
0

exp(−x) ln xdx = −γ (8.74a)

where γ is defined as

lim
M→∞

(
1 + 1

2
+ 1

3
+ . . . + 1

M
− ln M

)
= 0.577215 (8.74b)

Solution: The gamma distribution parameters are estimated as follows.

Specification of constraints Taking the logarithm of equation (8.70a) to the base e, one
gets

ln f (x) = − ln a�(b) + (b − 1) ln x − (b − 1) ln a − x

a

= −[ln a�(b) + (b − 1) ln a] + (b − 1) ln x − x

a
(8.75)

Multiplying equation (8.75) by [−f (x)] and integrating between 0 and ∞, one obtains
the function:

H(f ) = −
∞∫
0

f (x) ln f (x)dx = [ln a�(b) + (b − 1) ln a]

∞∫
0

f (x)dx

−(b − 1)

∞∫
0

[ln x]f (x)dx + 1

a

∞∫
0

xf (x)dx (8.76)

From equation (8.76) the constraints appropriate for equation (8.70a) can be written
(Singh et al., 1985, 1986) as

∞∫
0

f (x) = 1 (8.77)

∞∫
0

xf (x)dx = x (8.78)

∞∫
0

[ln x]f (x)dx = E[ln x] (8.79)
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Construction of zeroth Lagrange multiplier The least-biased PDF, based on the principle
of maximum entropy (POME) and consistent with equations (8.77) to (8.79), takes the
form:

f (x) = exp[−λ0 − λ1x − λ2 ln x] (8.80)

where λ0, λ1, and λ2 are the Lagrange multipliers. Substitution of equation (8.80) in
equation (8.77) yields

∞∫
0

f (x)dx =
∞∫
0

exp[−λ0 − λ1x − λ2 ln x]dx = 1 (8.81)

This leads to the partition function as

exp(λ0) =
∞∫
0

exp[−λ1x − λ2 ln x]dx =
∞∫
0

exp[−λ1x] exp[−λ2 ln x]dx

=
∞∫
0

exp[−λ1x] exp[ln x−λ2]dx (8.82)

Let λ1x = y. Then dx = dy/λ1. Therefore, equation (8.82) becomes

exp(λ0) =
∞∫
0

(
y

λ1

)−λ2

exp(−y)
dy

λ1

= 1

λ
1−λ2
1

∞∫
0

y−λ2 e−ydy = 1

λ
1−λ2
1

�(1 − λ2) (8.83)

Thus, the zeroth Lagrange multiplier λ0 is given by equation (8.83) as

λ0 = (λ2 − 1) ln λ1 + ln �(1 − λ2) (8.84)

The zeroth Lagrange multiplier is also obtained from equation (8.82) as

λ0 = ln

∞∫
0

exp[−λ1x − λ2 ln x]dx (8.85)

Relation between Lagrange multipliers and constraints Differentiating equation (8.85)
with respect to λ1 and λ2, respectively, produces

∂λ0

∂λ1

= −

∞∫
0

x exp[−λ1x − λ2 ln x]dx

∞∫
0

exp[−λ1x − λ2 ln x]dx

= −
∞∫
0

x exp[−λ0 − λ1x − λ2 ln x]dx = −
∞∫
0

xf (x)dx = −x (8.86)
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∂λ0

∂λ2

= −

∞∫
0

ln x exp[−λ1x − λ2 ln x]dx

∞∫
0

exp[−λ1x − λ2 ln x]dx

= −
∞∫
0

ln x exp[−λ0 − λ1x − λ2 ln x]dx = −
∞∫
0

ln xf (x)dx = −E[ln x] (8.87)

Also, differentiating equation (8.84) with respect to λ1 and λ2, respectively, gives

∂λ0

∂λ1

= λ2 − 1

λ1

(8.88)

∂λ0

∂λ2

= ln λ1 + ∂

∂λ2

ln �(1 − λ2) (8.89)

Let 1 − λ2 = k. Then

∂k

∂λ2

= −1 (8.90)

and equation (8.89) can be written as

∂λ0

∂λ2

= ln λ1 + ∂

∂k
ln �(k)

∂k

∂λ2

= ln λ1 − ψ(k) (8.91a)

where ψ(k) is the psi(ψ)-function defined as the derivative of the log-gamma function:

ψ(x) = ∂ ln �(x)

∂x
(8.91b)

From equations (8.86) and (8.88) as well as equations (8.87) and (8.89) and (8.91a),
one gets

λ2 − 1

λ1

= −x; x = k

λ1

(8.92)

ψ(k) − E[ln x] = ln λ1 (8.93)

From equation (8.92), λ1 = k/x, and substituting λ1 in equation (8.93), one gets

E[ln x] − ln x = ψ(k) − ln k (8.94)

One can find the value of ’k’ (= 1 − λ2) from equation (8.94) and substitute it in
equation (8.92) to get λ1.
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Relation between Lagrange multipliers and parameters Substituting equation (8.83)
in equation (8.80) gives the entropy-based PDF as

f (x) = exp
[
(1 − λ2) ln λ1 − ln �(1 − λ2) − λ1x − λ2 ln x

]
exp

[
ln λ

1−λ2
1

]
× exp

[
ln(

1

�
(
1 − λ2

)
]

exp
[−λ1x

]
exp

[
ln x−λ2

]
= λ

1−λ2
1

1

�(1 − λ2)
exp[−λ1x]x−λ2 (8.95)

If λ2 = 1 − k then

f (x) = λk
1

�(k)
exp[−λ1x]xk−1 (8.96)

Comparison of equation (8.96) with equation (8.70a) produces

λ1 = 1

a
(8.97)

and

λ2 = 1 − b (8.98)

Relation between parameters and constraints The gamma distribution has two param-
eters a and b which are related to the Lagrange multipliers by equations (8.97) and
(8.98), which themselves are related to the known constraints by equations (8.92) and
(8.93). Eliminating the Lagrange multipliers between these two sets of equations, we
get parameters directly in terms of the constraints as

ba = x (8.99)

ψ(b) − ln b = E[ln x] − ln x (8.100)

Distribution entropy Equation (8.76) gives the distribution entropy. Rewriting it, one gets

H(x) = −
∞∫
0

f (x) ln f (x)dx

= [ln a�(b) + (b − 1) ln a]

∞∫
0

f (x)dx − (b − 1)

∞∫
0

ln xf (x)dx + 1

a

∞∫
0

xf (x)dx

= [ln a�(b) + ln ab−1] − (b − 1)E[ln x] + x

a

= ln{a�(b)ab−1} + x

a
− (b − 1)E[ln x]

= ln{�(b)ab} + x

a
− (b − 1)E[ln x] (8.101)

8.2 Parameter-space expansion method

This method, developed by Singh and Rajagopal (1986), employs an enlarged parameter
space and maximizes entropy subject to both the parameters and the Lagrange multipliers.
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An important implication of the enlarged parameter space is that the method is applicable to
virtually any distribution, expressed in direct form, having any number of parameters. For a
continuous random variable X having a probability density function f (x, θ) with parameters
θ , the entropy can be expressed as

H(X) = H(f ) =
∞∫

−∞
f (x, θ) ln f (x, θ)dx (8.102)

Parameters of this distribution, θ , can be estimated by achieving the maximum of H(f ).
To apply the method, the constraints are defined first. Next, the POME formulation of
the distribution is obtained in terms of the parameters using the method of Lagrange
multipliers. This formulation is used to define H whose maximum is sought. If the probability
distribution has n parameters, θi, i = 1, 2, . . . n, and the (n + 1) Lagrange multipliers are
λi, i = 1, 2, . . . (n + 1), then the point where H[f ] is a maximum is a solution of (2n + 1)
equations:

∂H[f ]

∂λi

= 0 i = 0, 1, 2, . . . , n (8.103)

and

∂H[f ]

∂θi

= 0 i = 1, 2, . . . , n (8.104)

Solution of equations (8.103) and (8.104) yields the estimates of distribution parameters.
The method is illustrated using examples.

Example 8.5: Determine parameters of the normal distribution using the parameter expan-
sion method.

Solution: Following Singh and Rajagopal (1986), the constraints for this method are given
by equation (8.43a) and

∞∫
−∞

( xa

b2

)
f (x)dx = E

( xa

b2

)
= a

b2
E(x) = ax

b2
(8.105)

∞∫
−∞

(
x2

2b2

)
f (x)dx = E

(
x2

2b2

)
= s2

x + x2

2b2
(8.106)

Derivation of entropy function The PDF corresponding to POME and consistent with
equations (8.43a), (8.105), and (8.106) takes the form:

f (x) = exp

[
−λ0 − λ1

xa

b2
− λ2

x2

2b2

]
(8.107)

where λ0, λ1, λ2 are the Lagrange multipliers. Insertion of equation (8.107) into equation
(8.43a) yields

exp(λ0) =
∞∫

−∞
exp

(
−λ1

xa

b2
− λ2

x2

2b2

)
dx = b

√
2π√
λ2

exp

(
a2λ2

1

2λ2b2

)
(8.108)



CHAPTER 8 Parameter Estimation 327

Equation (8.108) is the partition function. Taking the logarithm of equation (8.108)
leads to the zeroth Lagrange multiplier which can be expressed as

λ0 = ln b + 0.5 ln(2π) − 0.5 ln λ2 + a2λ2
1

2λ2b2
(8.109)

The zeroth Lagrange multiplier is also obtained from equation (8.108) as

λ0 = ln

∞∫
−∞

exp

[
−λ1

xa

b2
− λ2

(
x2

2b2

)]
dx (8.110)

Introduction of equation (8.108) in equation (8.107) gives

f (x) =
√

λ2

b
√

2π
exp

[
−

(
a2λ2

1

2λ2b2
+ λ1xa

b2
+ λ2x2

2b2

)]
(8.111)

Comparison of equation (8.111) with equation (8.40) shows that λ2 = 1 and λ1 = −1.
Taking the logarithm of equation (8.111) and multiplying by [−1], one gets

− ln f (x) = −1

2
ln λ2 + ln b + 1

2
ln(2π) + a2λ2

1

2λ2b2
+ λ1xa

b2
+ λ2x2

2b2
(8.112)

Multiplying equation (8.112) by f (x) and integrating from minus infinity to positive
infinity, we get the entropy function which takes the form:

H(f ) = −1

2
ln λ2 + ln b + 1

2
ln(2π) + a2λ2

1

2λ2b2
+ λ1a

b2
E[x] + λ2

2b2
E[x2] (8.113)

Relation between distribution parameters and constraints Taking partial derivatives
of equation (8.113) with respect to λ1, λ2, a, and b individually, and then equating each
derivative to zero, one obtains

∂H

∂λ1

= 0 = 2a2λ1

2λ2b2
+ a

b2
E[x] (8.114)

∂H

∂λ2

= 0 = − 1

2λ2

− a2λ2
1

2λ2
2b2

+ 1

2b2
E[x2] (8.115)

∂H

∂a
= 0 = 2aλ2

1

2b2λ2

+ λ1

b2
E[x] (8.116)

∂H

∂b
= 0 = 1

b
− 2a2λ2

1

2λ2b3
− 2aλ1

b3
E[x] − 2λ2

2b3
E[x2] (8.117)

Simplification of equation (8.114) through equation (8.117) results in

E[x] = a (8.118)

E[x2] = a2 + b2 (8.119)
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E[x] = a (8.120)

E[x2] = b2 + a2 (8.121)

Equations (8.118) and (8.120) are the same, and so are equations (8.119) and (8.121).
Thus the parameter estimation equations are equations (8.118) and (8.119).

Example 8.6: Determine parameters of the gamma distribution using the parameter expan-
sion method.

Solution: The gamma distribution is given by equation (8.70a).

Specification of constraints Following Singh and Rajagopal (1986), the constraints for this
method are equation (8.77) and

∞∫
0

x

a
f (x)dx = E

[ x

a

]
(8.122)

∞∫
0

ln
( x

a

)b−1
f (x)dx = E

[
ln

( x

a

)b−1
]

(8.123)

Derivation of entropy function The least-biased PDF corresponding to POME and consis-
tent with equations (8.77), (8.122) and (8.123) takes the form

f (x) = exp

[
−λ0 − λ1

( x

a

)
− λ2 ln

( x

a

)b−1
]

(8.124)

where λ0, λ1, and λ2 are Lagrange multipliers. Insertion of equation (8.124) into
equation (8.77) yields the partition function:

exp(λ0) =
∞∫
0

exp

[
−λ1

( x

a

)
− λ2 ln

( x

a

)b−1
]

dx = a
(
λ1

)λ2(b−1)−1
�[1 − λ2(b − 1)]

(8.125)

The zeroth Lagrange multiplier is given by equation (8.125) as

λ0 = ln a − [1 − λ2(b − 1)] ln λ1 + ln �[1 − λ2(b − 1)] (8.126)

Also, from equation (8.126) one gets the zeroth Lagrange multiplier:

λ0 = ln

∞∫
0

exp

[
−λ1

( x

a

)
− λ2 ln

( x

a

)b−1
]

dx (8.127)

Introduction of equation (8.126) in equation (8.124) produces

f (x) = 1

a
(λ1)1−λ2(b−1) 1

�[1 − λ2(b − 1)]
exp

[
−λ1

x

a
− λ2 ln(

x

a
)b−1

]
(8.128)
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Comparison of equation (8.128) with equation (8.70a) shows that λ1 = 1 and λ2 = −1 .
Taking logarithm of equation (8.128) yields

ln f (x) = − ln a + [1 − λ2(b − 1)] ln λ1 − ln �[1 − λ2(b − 1)] − λ1
x

a
− λ2 ln

( x

a

)b−1

(8.129)

Multiplying equation (8.129) by [−f (x)] and integrating from 0 to ∞ yields the entropy
function of the gamma distribution. This can be written as

H(f ) = ln a − [1 − λ2(b − 1)] ln λ1 + ln �[1 − λ2(b − 1)] + λ1E
[ x

a

]
+ λ2E

[
ln

( x

a

)b−1
]

(8.130)

Relation between parameters and constraints Taking partial derivatives of equation
(8.130) with respect to λ1, λ2, a, and b separately and equating each derivative to zero,
respectively, yield

∂H

∂λ1

= 0 = −[1 − λ2(b − 1)]
1

λ1

+ E
( x

a

)
(8.131)

∂H

∂λ2

= 0 = +(b − 1) ln λ1 − (b − 1)ψ(K) + E

[
ln

( x

a

)b−1
]

, K = 1 − λ2(b − 1) (8.132)

∂H

∂a
= 0 = +1

a
− λ1

a
E

[ x

a

]
+ (1 − b)

a
λ2 (8.133)

∂H

∂b
= 0 = λ2 ln λ1 − λ2ψ(K) + λ2

b − 1
E

[
ln

( x

a

)b−1
]

(8.134)

Simplification of equations (8.131) to (8.134), respectively, gives

E
( x

a

)
= b (8.135a)

E
[
ln

( x

a

)]
= ψ(K) (8.135b)

E
( x

a

)
= b (8.135c)

Equation (8.135a) is the same as equation (8.135c). Therefore, equations (8.135a) and
(8.135b) are the parameter estimation equations.

8.3 Contrast with method of maximum likelihood estimation (MLE)

Consider a discrete random variable X with known values xi, i = 1, 2, . . . , N. The probability
mass function for the random variable X is known: P(x, θ); {pi, i = 1, 2, . . . , N}, where θ is a
parameter vector. To estimate parameters θ , one maximizes the likelihood function L:

L =
N∏

i=1

p(xi, θ) (8.136)
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Quite often, one maximizes ln L:

ln L =
N∑

i=1

ln p(xi, θ) (8.137)

such that

∂ ln L

∂θ
= 0,

∂2 ln L

∂θ2
< 0 (8.138)

where

N∑
i=1

p(xi, θ) = 1 (8.139)

Equation (8.138) can be written explicitly as

N∑
i=1

1

p(xi, θ)

∂p(xi, θ)

∂θ
= 0 (8.140)

and

N∑
i=1

[
1

p(xi, θ)

∂2p(xi, θ)

∂θ2
− 1

p2(xi, θ)

(
∂p(xi, θ)

∂θ

)2
]

< 0 (8.141)

When the Shannon entropy is maximized with respect to θ , one obtains

N∑
i=1

ln p(xi, θ)
∂p(xi, θ)

∂θ
+

N∑
i=1

∂p(xi, θ)

∂θ
= 0 (8.142)

N∑
i=1

[
1

p(xi, θ)

[
∂p(xi, θ)

∂θ

]2

+ ln p(xi, θ)
∂2p(xi, θ)

∂θ2

]
+

N∑
i=1

∂2p(xi, θ)

∂θ2
= 0 (8.143)

Note that from equation (8.139),

N∑
i=1

∂p(xi, θ)

∂θ
= 0,

N∑
i=1

∂2p(xi, θ)

∂θ2
= 0 (8.144)

Using Jensen’s inequality,

p(x) − 1 ≥ ln p(x) ≥ 1 − 1

p(x)
(8.145)

one gets

N∑
i=1

p(xi, θ)
∂p(xi, θ)

∂θ
≥

N∑
i=1

ln p(xi, θ)
∂p(xi, θ)

∂θ
≥ − 1

p(xi, θ)

∂p(xi, θ)

∂θ
(8.146)
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Comparing equation (8.140) with equation (8.142) in view of equation (8.146),

N∑
i=1

ln p(xi, θ)
∂p(xi, θ)

∂θ
≥ −

N∑
i=1

1

p(xi, θ)

∂p(xi, θ)

∂θ
(8.147)

If ∂p(xi, θ)/∂θ = 0, the two methods will yield the same parameter estimates. The uniform and
exponential distributions are examples for which the two methods are the same. For other
distributions they may not lead to the same estimates. For example, for gamma and Weibull
distributions parameter estimates by the two methods are not the same.

Furthermore, consider cross-entropy H(p|q) of two density functions p and q:

H(p|q) =
∑

p(xi, θ) ln
p(xi, θ)

q(xi, θ)
(8.148)

where p is deduced from maximizing H(f ) and q is obtained from MLE. If p = q, then

H(p|q) = 0 (8.149)

Otherwise,

H(p|q) ≥ 0 (8.150)

Using Jensen’s inequality x − x2 ≥ ln x, one can show that

N∑
i=1

q(xi, θ)

[
p(xi, θ)

q(xi, θ)

]2

− 1 ≥ H(p|q) ≥ 0 (8.151)

Equation (8.151) gives a measure of the relative information contained in the two methods.
Indeed one can use cross-entropy and equation (8.151) to compare POME with any other
parameter estimation scheme.

8.4 Parameter estimation by numerical methods

It is difficult to analytically determine the Lagrange multipliers contained in equation (8.4a)
unless yi(x), i = 1, 2, . . . , m, are quite simple. In general, an analytical solution for obtaining
the Lagrange multipliers (for m > 2) does not exist and numerical solution is the only resort.
It has been shown that the problem of solving the set of nonlinear equations is equivalent
to finding the minimum of a function � expressed as (Agmon et al., 1979; Mead and
Papanicolaou, 1984):

� = ln Z +
m∑

r=1

λryr, r = 1, 2, . . . , m (8.152)

where

Z = exp(λ0) =
∞∫
0

exp

[
−

m∑
r=0

λryr(x)

]
dx (8.153)
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The minimization can be achieved by employing Newton’s method. Starting from some initial
value λ(0), one can solve for Lagrange parameters by updating λ(1) through the equation given
as:

λ(1) = λ(0) − H−1 ∂�

∂λi

, i = 0, 1, 2, . . . , m (8.154)

where the gradient � is expressed as:

∂�

∂λi

= yi −
∞∫
0

exp

[
−

m∑
r=0

λryr(x)

]
yi(x)dx, i = 0, 1, 2, . . . , m (8.155)

and H is the Hessian matrix whose elements are expressed as:

Hi,j =
∞∫
0

exp

(
−

m∑
r=0

λryr(x)

)
yi(x)yj(x)dx, i, j = 0, 1, 2, . . . , m (8.156)

and H−1 is the inverse of Hessian matrix H. Clearly, the minimization of equation (8.152) is
done numerically. One can employ the MATLAB function fminsearch to obtain the minimum
of equation (8.155) and hence the Lagrange multipliers.

Questions

Q.8.1 Take a sample data of annual peak discharge from a gaging station on a river near your
town. Fit the gamma distribution to the discharge data. Then using this distribution,
determine the effect of sample size on the value of the Shannon entropy.

Q.8.2 Use the same gamma distribution as in Q.8.1. Changing the parameter values deter-
mine the Shannon entropy and discuss the effect of parameter variation.

Q.8.3 Determine the effect of discretization on the Shannon entropy.

Q.8.4 Determine the constraints for the log-gamma distribution needed for estimation of its
parameters using entropy. Then determine its parameters in terms of the constraints.

Q.8.5 Determine the constraints for the Pearson type III distribution needed for estimation
of its parameters using entropy. Then determine its parameters in terms of the
constraints.

Q.8.6 Consider the log-Pearson type III distribution and determine its parameters using both
the ordinary entropy method and the parameter space expansion method. Plot the
distribution entropy as a function of its parameters.

Q.8.7 Determine the constraints for the Weibull distribution needed for estimation of its
parameters using entropy. Then determine its parameters in terms of the constraints.

Q.8.8 Determine the constraints for the Gumbel distribution needed for estimation of its
parameters using entropy. Then determine its parameters in terms of the constraints.

Q.8.9 Consider the log-Gumbel distribution and determine its parameters using both the
ordinary entropy method and the parameter space expansion method. Plot the
distribution entropy as a function of its parameters.
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Q.8.10 Determine the constraints for three-parameter log-normal distribution needed for
estimation of its parameters using entropy. Then determine its parameters in terms of
the constraints.

Q.8.11 Determine the constraints for the logistic distribution needed for estimation of its
parameters using entropy. Then determine its parameters in terms of the constraints.

Q.8.12 Consider the log-logistic distribution and determine its parameters using both the
ordinary entropy method and the parameter space expansion method. Plot the
distribution entropy as a function of its parameters.

Q.8.13 Determine the constraints for the Pareto distribution needed for estimation of its
parameters using entropy. Then determine its parameters in terms of the constraints.

Q.8.14 Determine the constraints for the log-Pearson type III distribution needed for estima-
tion of its parameters using entropy. Then determine its parameters in terms of the
constraints.
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9 Spatial Entropy

In water and environmental engineering, many phenomena need to be spatially analyzed. For
example, consider land use and land cover (LULC) and their changes in a large urban area.
From the standpoint of determining the hydrologic and water quality consequences, it may
be desirable to partition the area into a number of zones. Within each zone also, there can be
more than one LULC and each LULC has its own area. In this case the variable of interest is
the area of each zone. Another dimension of great interest is the location of each zone from
a reference point, such as watershed outlet. One can then analyze the spatial distribution
of LULCs, as well as the distribution of their locations. The area can be divided into more
zones of smaller areas or less zones of larger areas. This means that the number of zones
determines the level of detail and the areas will determine the geometry or architecture of
LULCs. For urban development and planning, one may ask the question: What is the best way
to partition the area into zones and how can these zones be configured in order to minimize
the environmental impact? In this case, spatial analysis of the environmental consequences
would involve two dimensions of area and location, and can be undertaken using entropy. In
a similar vein, best management practices and their consequences can be analyzed.

Consider another case where one needs to construct the time-area (TA) diagram of
a watershed for purposes of constructing the unit hydrograph. The TA diagram requires
computing times of travel from the outlet, drawing isochrones or contours of equal travel
time, and computing areas between two consecutive isochrones. Sometimes equal travel time
is equated with equal distance. From the perspective of spatial analysis, the watershed outlet
is the point of reference. The watershed is partitioned into a number of sub-areas based on
the number of isochrones selected. Each sub-area is enclosed by two isochrones. This subarea
is represented by a mean distance or mean travel time. Within each sub-area there is a large
number of sub-sub-areas that have somewhat different travel times or distances. Thus, there
are two variables here: area between two consecutive isochrones and travel time.

In an urban area, population is the primary determinant for the planning and development
of water supply, land use, roads, shopping centers, schools, hospitals, energy supply, waste
disposal facilities, pipe lines, and a host of other infrastructure facilities. People decide where to
live based on a number of factors, including such amenities as shops, schools, hospitals, roads,
parks, job location, transportation facilities, socio-economic level, types of houses available,
lawns and garden requirements, and so on. The net result of these factors working in concert
is that the distribution of residential locations will be quite heterogeneous such that many
zones will have widely varying population densities. For urban planning and development,
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an urban area can be divided into a number of zones or spatial units called sub-areas. Each
unit has an area and has a number of people living in it, and can be considered as a residential
area. Considering the city center as a point of reference, the distances from these sub-areas
to the city center can be computed. The distances roughly translate into times of travel from
residential areas to the city center and back. The variables of interest are: location of each
zone and area of the zone. Entropy theory can be applied to study the population distribution
in different zones or distribution of distances. In a similar manner, entropy can be employed
to analyze spatial distributions of various geographical phenomena, such as economic level,
crime rate, drug use, economic dependence on government, emergency preparedness, athletic
facilities, and so on. Analysis of spatial phenomena is not straightforward and requires special
attention.

There has been a considerable body of literature on spatial analysis using both discrete
and continuous Shannon entropies that have been discussed in Chapter 2. Since the work
of Leopold and Langbein (1962) who were amongst the first to apply entropy to derive the
most probable profile of a river, spatial applications of entropy in water and environmental
engineering have received comparatively limited attention. However, in geography numerous
spatial applications of entropy have been reported. Chapman (1970), Semple and Gollege
(1970), and Gurevich (1969) applied entropy to measure the amount of information in spatial
probability distributions. Anderson (1969), Medvedkov (1970), Marchand (1972), Mogridge
(1972), amongst others, provided informative reviews of spatial applications. Curry (1964)
suggested the use of entropy in investigating spatial series. Later, Curry (1971, 1972a, b)
applied entropy to derive rank-size frequency distributions of human settlements. Wilson
(1970) laid the foundation for geographical model building. Batty (1972, 1974, 1976, 1983,
2010) and Batty and Sammons (1978) presented entropy concepts and techniques for spatial
analyses. The discussion in this chapter on application of entropy for spatial analysis draws
significantly from the work of Batty and his associates.

9.1 Organization of spatial data

Spatial data are gathered for analysis of spatial phenomena. Often the interest is in discerning
the pattern that may underlie the phenomenon under consideration. This depends on the
manner in which the data are organized. Spatial data can be organized in terms of the number
and configuration of spatial units (or classes or zones). The number and configuration of zones
influence the level of detail and information imparted. Therefore, the spatial data should be
organized so that the maximum information is imparted.

The number of zones relates to the level of detail characterizing the phenomenon and
configuration relates to the geometric structure used to divide the two-dimensional spatial
phenomenon. The number of zones also determines the spatial scale of analysis and hence the
level of aggregation and in turn configuration. Configuration also affects the level of detail, but
its central concern is with the homogeneity and regularity of the phenomenon. When spatial
units are differently aggregated, different patterns may result; in other words, as the number
and configuration of spatial units change, different spatial patterns can emerge. These patterns
will exhibit different values of variance and co-variance of the phenomenon. However, there
is uncertainty as to the pattern for two reasons. First, the process of observation is subjective.
Second, the pattern is an abstraction. This means that the set of observations is of crucial
importance. The question is: Is the set of observations organized in the best possible way?
Further, different configurations based on the same number of units or different numbers
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based on the same configuration can give rise to the same or different attributes. This suggests
that prior to any spatial analysis data should be organized efficiently and optimally.

Any set of observations exhibits a measurable amount of information and this information
can be increased or decreased by changing the level of detail characterizing the observations.
This level of detail depends on the number and configuration of zones. This suggests that
one should define an information measure so that the maximum information is imparted
by the pattern to be achieved. Once the optimal pattern is achieved, it will lead to the most
informative spatial pattern.

9.1.1 Distribution, density, and aggregation
The number and configuration of zones characterize a two-dimensional spatial distribution.
They approximate the distribution and determine the level of detail thereof. The number of
zones and the ensuing configuration may not be independent of each other. It may be noted
that equally good and informative approximations to the true distribution may be achieved
with large or small number of zones and different configurations.

The probability density function (PDF) underlying the spatial phenomenon under con-
sideration is seldom known a priori. A PDF can be enumerated by an infinite number of
classes or points defining the density and these points imply a regular configuration. In a
one dimensional case, the sets of points can be approximated by equal class intervals. In a
two-dimensional case, the spatial density function can be employed to define an information
statistic in which both the number and configuration are included. As an example, consider
the configuration in which all spatial units are of the same value, that is, they are of equal
area. Equal area means the same weight is assigned to each spatial unit and the phenomenon
within it. Here, space will act in a neutral way as regards spatial analysis. In this case of equal
area configuration, the density rather than the distribution is the main concern.

Now consider a region encompassing the phenomenon of interest and let the region be
defined by a set S. Let this set be partitioned into a series of N mutually exclusive subsets si,
i = 1, 2, . . . , N, referred to as zones:

S = {
si, i = 1, 2, ..., N

} = {
s1, s2, ...sN

}
(9.1)

in which N is the number of subsets characterizing the distribution of phenomenon. For zones
si, i = 1, 2, . . . , N, two characteristics must be noted. First, the distribution of phenomenon
across zones can be defined as

ϕ = {
ϕi, i = 1, 2, ..., N

} = {
ϕ1, ϕ2, ..., ϕN

}
(9.2)

which, for example, may be the distribution of LULCs or population. Second, the areal size of
zones si can be defined as

x = {
xi, i = 1, 2, ..., N

} = {
x1, x2, ..., xN

}
(9.3)

Now the main point is to define an information measure relating the distribution {ϕi} to the
distribution {xi} such that it is maximized when these distributions approach the limit or N
tends to be large. Consider an aggregation of the original N zones into M zones or sub-regions:

S = {
s1, s2, ...sM

}
, for M ≤ N (9.4)

The partition of S is such that the information measure is maximized.
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Note that if the phenomenon is one of population then the total population denoted by �

and the total area denoted by X can be expressed as:

� =
N∑

i=1

ϕi, X =
N∑

i=1

xi (9.5)

By normalizing {ϕi} and {xi}, one can obtain probabilities of populations in different areas:

pi=
ϕi

�
,

N∑
i=1

pi = 1 (9.6)

Likewise, for the land area

qi=
xi

X
,

N∑
i=1

qi = 1 (9.7)

Equation (9.6) yields the probability (mass) distribution of the phenomenon (i.e., LULC or
population) as:

{
pi

} = {
p1, p2, ..., pN

}
(9.8)

and equation (9.7) defines the probability (mass) distribution of land area as:

{
qi

} = {
q1, q2, ..., qN

}
(9.9)

One can employ the probability mass function P = {pi} for approximating the probability
density function p(xi) of the phenomenon associated with zones si. The probability density
denotes the probability of the phenomenon occurring in a unit of space of the relevant zone
and this is the zonal average, that is, the mean estimate of the probability density across a
zone. Since this is the average probability of occurrence in a unit of space, the total probability
of occurrence or probability mass, pi, is determined by multiplying the density p(xi) by the
area associated with si, that is, xi:

pi = p(xi)xi (9.10)

This shows that

p(xi) = pi

xi

(9.11)

is normalization of pi with respect to xi. Thus, p(xi) is the probability over unit of space and is
probability density.

Equation (9.11) shows the relation between probability density function and probability
distribution or probability mass function. Two points may be noted. First, the approximation
to the probability density function p(xi) may likely become more accurate with the decreasing
size of area xi. This means that as the number of zones increases the probability density
underlying the whole spatial system is more closely approximated. Second, if all the zones
were of the same size, x1 = x2 = . . . = xN , then the probability density p(xi) and zonal area
xi would be irrelevant, and therefore pi would be a measure of p(xi). The actual density of
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population in each zone is defined by ϕ(xi) and the total (system wide) density of population
by D. Then

ϕ(xi) = ϕi

xi

, D = �

X
(9.12)

Here ϕ(xi) denotes the number of attributes (e.g. persons, land uses, trees, etc.) located in a
unit of space, xi, in zone si. The total population in si, that is, ϕi, is obtained by multiplying the
actual population density ϕ(xi) by the associated area xi. Equations (9.6), (9.11), and (9.12)
show that p(xi) is proportional to ϕ(xi), that is,

p(xi) = ϕ(xi)

�
or ϕ(xi) = �p(xi) (9.13)

Extending the probability densities to the continuous case when xi → 0, ∀ i, for p(x) and ϕ(x),

lim
max(xi)→0

N∑
i=1

p(xi)xi = lim
N→∞

N∑
i=1

p(xi)xi =
∫
x

p(x)dx (9.14)

and

lim
max(xi)→0

N∑
i=1

ϕ(xi)xi = lim
N→∞

N∑
i=1

ϕ(xi)xi =
∫
x

ϕ(x)dx (9.15)

Now the question of most informative spatial pattern can be addressed. Corresponding to
the original partition of S into N zones, {si, i = 1, 2, . . . , N} or ρN(S), a measure of information
I(P : Q|N), is derived from the probability distributions {qi} and {pi}. The objective is to
determine the optimal value of I(P : Q|N) by aggregating sub-sets SN = {si, i = 1, 2, . . . , N}
consistent with partition ρN(S) into sets SM = {s′i , i = 1, 2, . . . , M} consistent with the partition
ρM(S). The optimum value of I(P : Q|N)is attained by aggregating {qi} to {pi} so as to achieve
the idealized number of zones and configurations. Here {qi} and {pi} can be regarded as
prior and posterior probability distributions, since {qi} can be considered as a hypothetical
(a priori) probability distribution based on the assumption that the zone or area is divided
into N subzones and {pi} as a (posterior) probability distribution of the phenomenon after
aggregation. The prior probability distribution of the phenomenon {qi} can be deemed as
proportional to the area size xi or more generally as lineally related to the area size. Sets SM

can be defined as SM = {s′i , i = 1, 2, . . . , M}, where s
′
i is the union of subsets of the partition

SN = {si, i = 1, 2, . . . , N}. Clearly si ⊆ SM, that is, zone si is an element of a sub-region of SM.

9.2 Spatial entropy statistics

Assuming there is a random variable X divided into N intervals �xi, i = 1, 2, . . . , N with
probability for X ∈ [xi − 0.5�xi, xi + 0.5�xi] approximated as pi = p(xi)�xi, then the discrete
Shannon entropy, denoted as Hd, is defined as

Hd = −
N∑

i=1

pi ln(pi) (9.16)
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whereas the continuous counterpart of the discrete Shannon entropy, that is, the continuous
Shannon entropy, denoted as Hc, is defined as

Hc = −
∫

p(x) ln
[
p(x)

]
dx (9.17)

The spatial entropy for random variable X, denoted by Hs, is defined as

Hs = − lim
�xi→0

N∑
i=1

pi ln

(
pi

�xi

)
(9.18)

Equation (9.18) shows that the spatial entropy explicitly takes into account the effects of the
way in which the spatial system is partitioned. Also, it can actually be shown that equation
(9.18) is equivalent to the continuous Shannon entropy:

Hs = Hc = − lim
�xi→0

N∑
i=1

pi log

(
pi

�xi

)
(9.19)

In real application, for a given interval size �xi, the discrete approximation of the spatial
entropy (i.e., continuous Shannon entropy) is usually computed as

Ĥs = −
N∑

i=1

pi ln

(
pi

�xi

)
(9.20)

Here the subscripts aim to avoid confusion. In the following all the subscripts will be omitted,
so that no misunderstanding is introduced. For simplicity, subscripts in equations (9.16) will
be omitted throughout this chapter. It should be obvious where such omissions are made.

Example 9.1: Consider a 100 square kilometer urban area. Divide the area into a number
of equal zones. Take the number as 10, 20, 30, 40 and 50. Compute the discrete entropy and
plot it as a function of number of zones. Now divide the area into unequal zones as shown
in Tables 9.1 and 9.2 and then compute entropy and plot it. Finally compute the entropy
reflecting the spatial interval size and plot it.

Table 9.1 Division of area into unequal zones.

Number of zones/ Randomly assigning number of unequal subzones such that
partitions the total number of subzones satisfies each partition

10 0 2 3 5 0
20 1 2 2 5 10
30 1 2 2 5 20
40 1 6 3 10 20
50 1 2 2 20 25
60 1 3 6 20 30
70 2 3 5 25 35
80 2 8 15 25 30
90 0 15 20 25 30

100 10 10 20 25 35
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Table 9.2 Areas of different numbers of unequal zones for different partitions.

Number of Total area
zones Areas (km2) for corresponding number of zones in Table 9.1 (km2)

10 0 (each 0) 20 (each 10) 35 (each 11.7) 45 (each 9) 0 (each 0) 100
20 10 (each 10) 25 (each 12.5) 35 (each17.5 ) 10 (each 2) 20 (each 2) 100
30 10 (each 10) 25 (each 12.5) 35 (each 17.5) 20 (each4) 10 (each 0.5) 100
40 10 (each 10) 20 (each 3.3) 25 (each 8.3) 30 (each 3) 15 (each 0.75) 100
50 15 (each 15) 15 (each 7.5) 25 (each 12.5) 25 (each1.25 ) 20 (each 0.8) 100
60 10 (each 10) 20 (each 6.67) 25 (each 4.17) 30 (each 1.5) 15 (each 0.5) 100
70 10 (each 5) 20 (each 6.67) 30 (each 6) 30 (each 1.2) 10 (each 0.29) 100
80 10 (each 5) 20 (each 2.5) 25 (each 1.67) 30 (each 1.2) 15 (each 0.5) 100
90 0 (each 0) 10 (each 0.67) 15 (each 0.75) 40 (each 1.6) 35 (each 1.17) 100
100 10 (each 1) 15 (each 1.5) 25 (each 1.25) 30 (each 1.2) 20 (each 0.57) 100

Solution: First, compute the discrete entropy when partitioning the system into equal zones.
Consider the number of zones as N and the total area as �. Then the discrete probability mass
can be computed as

pi = ϕi

�
= �/N

�
= 1

N

According to equation (9.16), the discrete entropy can be calculated as

Hequal (N) = −
N∑

i=1

pi ln
(
pi

) = −
N∑

i=1

1

N
ln

(
1

N

)
= − ln

(
1

N

)
= ln (N) nats

Take N = 10 as an example, the discrete entropy is calculated as

Hequal (10) = ln (10) = 2.3026 nats

For each partition of the given urban area, the discrete entropy is shown in the left panel of
Figure 9.1. As expected, with increase in the number of zones, the discrete entropy increases
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Figure 9.1 Relationship between number of zones and discrete entropy. (Left: N increases from 1 to 100; Middle:

N increases from 100 to 1000; Right: the same as figure in the middle panel but using a semi-logarithmic scale).
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without bound. This can be explicitly seen from Figure 9.1. In addition, when the system is
equally partitioned, the discrete entropy tends to increase linearly with the logarithm of the
number of zones, indicated by the right panel of Figure 9.1.

Second, compute the discrete entropy when partitioning the system into unequal zones.
For entropies of unequally divided zones, the assumed number of zones for each partition is
shown in Table 9.1. Areas of different numbers of unequal zones for different partitions are
shown in Table 9.2. For instance, if the total area is divided into 10 zones, from Table 9.1 it is
known that there are three types of zones for this partition. The numbers of different types are
2, 3, and 5, respectively. From Table 9.2, it is found that for type 1, it consists of two zones with
an area of 10 km2, respectively. For type 2, it consists of three zones of 11.7 km2 respectively.
For type 3, it consists of five zones of 9 km2, respectively. Likewise, the distribution of unequal
zones for other partitions (i.e., 20, 30, . . . , 100) can be obtained from Tables 9.1 and 9.2. Here
one should be careful that the system is not partitioned into zones all with different sizes but
some of them with the same area, as explained above. Also using equation (9.16) the discrete
entropy can be calculated as follows:

Hunequal(10) = −
10∑

i=1

pi ln
(
pi

) = − 10

100
ln

(
10

100

)
− 10

100
ln

(
10

100

)

−11.7

100
ln

(
11.7

100

)
− 11.7

100
ln

(
11.7

100

)
− 11.7

100
ln

(
11.7

100

)

− 9

100
ln

(
9

100

)
− 9

100
ln

(
9

100

)
− 9

100
ln

(
9

100

)
− 9

100
ln

(
9

100

)
− 9

100
ln

(
9

100

)

= 2.297 nats

Discrete entropies for other numbers of intervals are computed following the same way and
plotted as shown in the left panel of Figure 9.2. For unequal zones, the entropy is not only
determined by the number of zones, but also by the specific partition of the system. In
general, the entropy for unequal zones is less than that for equal zones (see the right panel of
Figure 9.2).

Third, to compute the entropy reflecting the effect of spatial interval size, the cases regarding
equal and unequal intervals should be considered separately. In the case of equal size interval,

4.
5

3.
5

2.
5

20 40 60

Number of zones (N )

80 100

4.
0

3.
0

D
is

cr
et

e 
en

tr
op

y

4.
5

3.
5

2.
5

20 40 60

Number of zones (N )

80

Unequal size
Equal size

100

4.
0

3.
0

D
is

cr
et

e 
en

tr
op

y

Figure 9.2 Relationship between number of zones with unequal areas and discrete entropy (right panel) and

comparison of relationships between number of zones for equal and unequal partitions of zones (left panel).
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Figure 9.3 Relationship between spatial interval size and discrete entropies for equal zones.
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Figure 9.4 Relationship between averaged spatial interval size and discrete entropies for unequal zones.

the interval number determines the interval size. Therefore, plotting the computed discrete
entropies versus the corresponding interval sizes, one can obtain a general picture about the
relationship between spatial interval size and discrete entropy for equal zones. The results
are shown in Figure 9.3. As the interval size increases, the discrete entropy decreases. In
the case of unequal size interval, for the same number of intervals there are many different
possible partitions. In turn, different partitions lead to different discrete entropies. In order
to show the effect of interval size on the computed discrete entropy, one can figure out the
relationship between discrete entropy and the averaged interval size, which is determined
only by the interval numbers, given a spatial system. For each given interval number, partition
the system into 100 patterns, and for each pattern there is one discrete entropy. Therefore,
corresponding to each interval number, there are 100 discrete entropies, the maximum, the
mean and the minimum of which can be computed. Assuming the interval numbers to be
10, 20, 30, . . . , 100, the mean of the computed discrete entropies as a function of averaged
interval size is shown in Figure 9.4, in which the maximum and the minimum values are also
presented by dashed lines. Similar to the case of equal size intervals, it is apparent that the
discrete entropy also decreases as the averaged interval size increases.

9.2.1 Redundancy
Consider a measure of redundancy Z defined as one minus the ratio of the actual entropy to
the maximum entropy:

Z = 1 − H

Hmax

(9.21)

For a discrete case, H is given by the Shannon discrete entropy:

H = −
N∑

i=1

pi ln pi (9.22)
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and the maximum entropy from equation (9.22) results as

Hmax = ln N (9.23)

if and only if the phenomenon of interest (e.g., population) is uniformly distributed over
different zones, that is, pi = 1/N, i = 1, 2, . . . , N. Substituting equations (9.22) and (9.23) in
equation (9.21), the redundancy Z is obtained as:

Z = 1 +

N∑
i=1

pi ln pi

ln N
(9.24)

which is information redundancy measured by the discrete Shannon entropy. One defect of
the information redundancy Z defined in equation (9.24) is that it changes as the number
of intervals N changes. Comparison of redundancy between different systems is therefore
difficult. Since spatial entropy as defined in equation (9.20) explicitly takes into account the
effect of spatial interval size and/or the number of intervals, it is intuitive to replace the
discrete entropy in equation (9.24) by the spatial entropy.

Now consider a spatial system (e.g., a watershed) having an area X divided into N zones.
Let �xi be defined as X/N, which means the spatial system is divided into N equal size
intervals. Assuming the spatial phenomenon of interest is distributed over different zones
with probability mass function {pi, i = 1, 2, . . . , N}, the spatial entropy of the phenomenon is
computed as

H = −
N∑

i=1

pi ln

(
pi

�xi

)
= −

N∑
i=1

pi ln

(
Npi

X

)

= −
N∑

i=1

pi ln (N) −
N∑

i=1

pi ln
(
pi

)+
N∑

i=1

pi ln(x)

= − ln (N) + ln(x) −
N∑

i=1

pi ln
(
pi

)
(9.25)

Apparently, if and only if the spatial phenomenon is uniformly distributed over different
zones, that is, pi = 1/N, i = 1, 2, . . . , N, the spatial entropy is maximized. That is

Hmax = − ln (N) + ln(x) −
N∑

i=1

1

N
ln

(
1

N

)
= ln(x) (9.26)

Then, applying the spatial entropy [equation (9.20)], the redundancy measure can be
defined as

Z = 1 +

N∑
i=1

pi ln

(
pi

�xi

)
ln(x)

(9.27)
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Figure 9.5 Relationship between number of zones and redundancy for equal (left) and unequal partitions (right).

which is the information redundancy measured by spatial entropy or more precisely by
discrete approximation of spatial entropy. Substituting equation (9.25) into equation (9.27)
yields

Z =
ln(N) +

N∑
i=1

pi ln(pi)

ln(x)
(9.28)

Equations (9.27) and (9.28) show that as the number of zones increases, Z converges to a
limiting value.

Example 9.2: Compute the value of information redundancy Z using discrete entropy for
the data in Example 9.1.

Solution: Since the spatial phenomenon of interest is the area of zones, pi is proportional to
the area of the zone i. In the case of even division, pi = 1/N. From equation (9.24) one can
see that the redundancy Z is a constant of 0 no matter how many intervals are used to divide
the system. The relationship between the number of zones and the redundancy for equal
partitions is presented in the left panel of Figure 9.5.

In the case of uneven division, the probability associated with each zone is calculated using
the assumed numbers in Tables 9.1 and 9.2. First, the discrete entropy is computed for each
interval number (N = 10, 20, . . . , 100). The detailed calculation procedure and the final results
can be found in Example 9.1. Then, applying equation (9.24), in which N takes on values
of 10, 20, . . . , 100, redundancy Z can be computed. The relationship between the number of
zones and redundancy for unequal zones is shown in the right panel of Figure 9.5.

9.2.2 Information gain
Statistical information gain is defined as the difference between the posterior distribution {pi}
and the prior distribution {qi}. Following Kullback (1959),

I =
N∑

i=1

pi ln

(
pi

qi

)
,

N∑
i=1

pi =
N∑

i=1

qi =1 (9.29)

where I varies between 0 and ∞. It is often referred to as cross-entropy of one distribution
P = {p1, p2, . . ., pN} with respect to another distribution Q = {q1, q2, . . ., qN}. The information
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gain can be considered as a measure of divergence, distance or difference between the two
distributions {qi} and {pi}. If pi = qi, I = 0, meaning no information is gained by moving from
{qi} to {pi}. If

qi = �xi
N∑

i=1

�xi

= �xi

X
(9.30)

where X is the area of the entire system. In this case, the spatial phenomenon of interest
is assumed a priori as uniformly distributed over the entire spatial system or distributed
proportionally or more generally, linearly, related to the zonal area over the system. Then,

I =
N∑

i=1

pi ln

(
pi

�xi/X

)
= ln(X) +

N∑
i=1

pi ln

(
pi

�xi

)
= ln(X) − H (9.31)

where H represents the discrete approximation of spatial entropy as defined in equation
(9.20). If �xi = �x, ∀ i, that is, the system X is partitioned into equal size subsystems, then
qi = 1/N, i = 1, 2, . . ., N. In turn the information gain in equation (9.31) becomes

I = ln (N) +
N∑

i=1

pi ln(pi) = ln N − H (9.32)

where H represents the discrete Shannon entropy defined in equation (9.16). In this case, {qi}
is noninformative.

Another useful measure is given by the difference between the maximum entropy and the
actual entropy:

I = Hmax − H (9.33)

where I denotes the information gain defined by Theil (1967). It can be shown that equation
(9.33) would converge to the same value for both discrete and continuous entropies. Substi-
tuting equations (9.22) and (9.23) in equation (9.33), one obtains

I = ln N +
N∑

i=1

pi ln
(
pi

)
(9.34)

which is the information gain measured by the discrete Shannon entropy.
Now, using spatial entropy or more precisely the discrete approximation of spatial entropy

as defined in equation (9.20) to substitute for the discrete Shannon entropy in equation
(9.34), the information gain, with system X being divided into N zones, can be expressed as

I = ln X +
N∑

i=1

pi ln

(
pi

�xi

)
(9.35)

which is the information gain measured by spatial entropy or more precisely by discrete
approximation of spatial entropy. The derivation from equation (9.33) to equation (9.35) is
clear, considering the maximum value of the discrete approximation of spatial entropy is ln(X)
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as shown in Section 9.2.1. It can be seen that equation (9.35) will reduce to equation (9.34)
when system X is equally divided, that is, �xi = X/N.

It seems helpful to make clear the relationship between statistical information gain defined
in equation (9.29) and information gain defined in equation (9.33) or more specifically in
equations (9.34) and (9.35). Statistical information gain in equation (9.29) is a general form
of information gain in equation (9.33). Statistical information gain defines a measure of
information change when moving from a prior distribution {qi} to a posterior distribution
{pi}. It may assume any real values. Assuming the prior distribution as {qi} := {1/N} for all i,
that is, the phenomenon is uniformly distributed over the system and the system is equally
partitioned, equation (9.29) will reduce to equation (9.34). On the other hand, assuming
the prior distribution as {qi} := {�xi/X}, that is, the phenomenon is uniformly distributed but
the system may not be equally partitioned, equation (9.29) will reduce to equation (9.35).
Following the framework of statistical information gain, that is, it is a measure of information
change when moving from the prior distribution to the posterior distribution, equation
(9.33) can be explained as the information gained when moving from the noninformative
distribution (uniform distribution) to another distribution. {qi} := {1/N} and {qi} := {�xi/X}
can be understood as two types of uniform distribution. The relation between statistics for
redundancy and information gain using equations (9.21) and (9.33) becomes

Z = 1 − H

Hmax

= Hmax − H

Hmax

= I

Hmax

(9.36)

With the concept of information gain, the effect of interval size �xi can be evaluated.
A system may be continuous, as for example, a watershed is. When its area is divided into
zones, then a discrete representation becomes an approximation of the continuous system.
In other words an integral is approximated by a finite sum, as for example, partitioning
the watershed into zones or discretizing river flow. If the discrete entropy approximation is
compared with its continuous form, the difference between the two would yield the loss of
information and this loss would depend on the choice of �xi. Then one can set a criterion for
the loss and in turn �xi:∣∣∣∣∣∣−

b∫
a

f (x) ln f (x)dx +
N∑

i=1

pi ln

(
pi

�xi

)∣∣∣∣∣∣ < ε (9.37)

where a and b are the end points of the support of X, and ε is tolerance limit.

Example 9.3: Compute the value of information gain I for the data in Example 9.1.

Solution: Prior to solution, it is better to make clear that the information gain I can
be measured either by discrete Shannon entropy as in equation (9.34) or by (discrete
approximation of) spatial entropy as in equation (9.35).

First, compute the information gain by equation (9.34) for equal and unequal partitions,
respectively. Let us assume the system is equally partitioned into N = 10 zones. According
to equation (9.34), we need to calculate the probabilities pi and then the discrete Shannon
entropy. Since the spatial phenomenon of interest is the zonal area, pi can be computed as
pi = 1/N = 0.1, and the discrete entropy is calculated as

Hequal (10) = −
10∑

i=1

1

10
ln

(
1

10

)
= ln (10)
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Figure 9.6 Relationship between number of zones and information gain measured by discrete Shannon entropy for

equal (left) and unequal (right) partitions.

Substituting the discrete entropy in equation (9.33) yields

Iequal (10) = ln (10) − Hequal (10) = ln (10) − ln (10) = 0

In the same way, the information gain for other interval numbers can be computed and
plotted in the left panel of Figure 9.6. Apparently, the information gain is 0 in the case of
equal size intervals no matter how many interval numbers are used.

When the system is divided into unequal size intervals, the probability associated with each
sub-zone can be computed using the assumed numbers in Tables 9.1 and 9.2. The calculation
can be found in Example 9.1. For ease of understanding, we repeat the calculation procedure
here. Again take N = 10 as an example, Tables 9.1 and 9.2 show that the system is divided into
three types of sub-zones. For type 1 whose the interval size is 10 km2, there are in total two
sub-zones with an area of 10. For type 2, the interval size is 11.7 km2 and there are in total
three sub-zones with a size of 11.7 km2. Similarly for type 3, the interval size is 9 km2 and the
total number of sub-zones with this interval size is 5. Knowing this the discrete probability for
each sub-zone can be computed by dividing the corresponding interval size by the total area
of the system, which is 100 here. Then, the discrete entropy is computed as:

Hunequal(10) = −
10∑

i=1

pi ln(pi) = − 10

100
ln

(
10

100

)
− 10

100
ln

(
10

100

)
︸ ︷︷ ︸

n1=2

−11.7

100
ln

(
11.7

100

)
− 11.7

100
ln

(
11.7

100

)
− 11.7

100
ln

(
11.7

100

)
︸ ︷︷ ︸

n2=3

− 9

100
ln

(
9

100

)
− 9

100
ln

(
9

100

)
− 9

100
ln

(
9

100

)
− 9

100
ln

(
9

100

)
− 9

100
ln

(
9

100

)
︸ ︷︷ ︸

n3=5

= 2.297 nats
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where ni denotes the number of type i sub-zones. Similarly for the case of N = 20, the discrete
entropy is computed as:

Hunequal(20) = −
20∑

i=1

pi ln(pi) = − 10

100
ln

(
10

100

)
︸ ︷︷ ︸

n1=1

−12.5

100
ln

(
12.5

100

)
− 12.5

100
ln

(
12.5

100

)
︸ ︷︷ ︸

n2=2

−17.5

100
ln

(
17.5

100

)
− 17.5

100
ln

(
17.5

100

)
︸ ︷︷ ︸

n3=2

− 2

100
ln

(
2

100

)
− 2

100
ln

(
2

100

)
− 2

100
ln

(
2

100

)
− 2

100
ln

(
2

100

)
− 2

100
ln

(
2

100

)
︸ ︷︷ ︸

n4=5

− 2

100
ln

(
2

100

)
− 2

100
ln

(
2

100

)
− ...... − 2

100
ln

(
2

100

)
︸ ︷︷ ︸

n5=10

= 2.5338 nats.

Using equation (9.35), the corresponding information gains can be computed as

Iunequal (10) = ln (10) − Hunequal (10) = 2.3026 − 2.2972 = 0.0054 nats.

Iunequal (20) = ln (20) − Hunequal (20) = 2.9957 − 2.5338 = 0.4619 nats.

We caution that for a given number of intervals, there are many different ways to partition the
system. The partition given in Tables 9.1 and 9.2 represents only one of the possible partitions.
For other interval numbers the information gains can be computed similarly and are plotted
in the right panel of Figure 9.6.

Second, compute the information gain by equation (9.35) for equal and unequal partitions,
respectively. When the system is equally partitioned, equation (9.26) will reduce to equation
(9.34), as shown below:

I = ln X +
N∑

i=1

pi ln

(
pi

�xi

)
= ln X +

N∑
i=1

pi ln

(
pi

X/N

)
= ln (N) +

N∑
i=1

pi ln
(
pi

)

Therefore the information gain measured by spatial entropy will be the same as that measured
by discrete Shannon entropy, that is, the information gain [computed by equation (9.35)] is
0 when the system is equally partitioned no matter how many interval numbers are used, as
illustrated in the left panel of Figure 9.7.

When the system is unequally divided, first using numbers given in Tables 9.1 and 9.2,
the probabilities pi can be computed. Then using equation (9.35) the information gain can be
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Figure 9.7 Relationship between number of zones and information gain measured by (discrete approximation of)

spatial entropy for equal (left) and unequal (right) partitions.

computed. Here, again taking N = 10 as an example, the information gain measured by spatial
entropy is

I (10) = ln(X) +
10∑

i=1

pi ln

(
pi

�xi

)

= ln (100) + 10

100
ln

(
10/100

10

)
+ 10

100
ln

(
10/100

10

)
︸ ︷︷ ︸

n1=2

+11.7

100
ln

11.7/100

11.7
+ 11.7

100
ln

11.7/100

11.7
+ 11.7

100
ln

11.7/100

11.7︸ ︷︷ ︸
n2=3

+ 9

100
ln

9/100

9
+ 9

100
ln

9/100

9
+ 9

100
ln

9/100

9
+ 9

100
ln

9/100

9
+ 9

100
ln

9/100

9︸ ︷︷ ︸
n3=5

= ln (100) + ln

(
1

100

)
= 0 nats

The above calculation signifies that in the present example the information gain measured by
spatial entropy (or more precisely discrete approximation of spatial entropy) is always null, no
matter how the system is partitioned, as indicated in the right panel of Figure 9.7. This result
is expected since the spatial phenomenon of interest of the present example is the zonal area
which is definitely uniformly distributed over the spatial system, which means that probability
distribution of the zonal area can be fully represented by {�xi/X}. Considering the fact that
the information gain in equation (9.35) assumes a prior distribution of {qi} := {�xi/X}, which
means in this example the posterior distribution is the same as the prior distribution.

Example 9.4: How much loss in information will there be when a continuous form of
entropy is represented by a discrete form employing different class interval sizes?

Solution: Prior to the solution, one point worth noting is that the discrete Shannon entropy
as defined in equation (9.16) is not an approximation of its analogous continuous Shannon
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entropy defined in equation (9.17). In other words, the continuous Shannon entropy
cannot be derived from the discrete Shannon entropy by letting the number of intervals
in equation (9.16) tend to infinity and passing to the limit. The continuous Shannon entropy
is exactly equal to the spatial entropy as defined in equation (9.18). In practice, the spatial
entropy is commonly approximated by its discrete form as in equation (9.20). In this question,
therefore, the discrete form of entropy is referred to the discrete approximation of the spatial
entropy, that is, equation (9.20).

Referring to equation (9.33), with the increase in the number of zones, the difference
between continuous form and discrete form of entropy should be reduced. For purposes
of illustration, it is supposed that the continuous distribution is a truncated exponential
distribution at 10 from the right, whose probability density function is given as

f (x) = A exp (−x) , A = 1

1 − exp (−10)
≈ 1, 0 ≤ x ≤ 10

First, compute the continuous Shannon entropy (or the spatial entropy) as

H = −
10∫

0

f (x) ln f (x)dx = exp (−x) (Ax − A − A ln A)|10
0 = 1.0004 nats

The simplest case is considering the entire support as a single interval, then the discrete
probability is p = 1 and the interval size is �x = 10. According to equation (9.20), the discrete
approximation of spatial entropy is

Hs (1) = −1 × ln

(
1

10

)
= 2.3026 nats

Similarly, when dividing the support into two equal sized intervals, that is, �xi = 5, the
probability mass p can be computed as

p1 =
5∫

0

A exp (−x) dx = 0.9933

p2 =
10∫

5

A exp (−x) dx = 1 −
5∫

0

A exp (−x) dx =0.0067

Substituting p1 and p2 into equation (9.20), one obtains

Hs (2) = −
2∑

i=1

pi ln

(
pi

�xi

)
= −0.9933 × ln

(
0.9933

5

)
− 0.0067 × ln

(
0.0067

5

)
= 1.6496 nats

Following the same procedure, one can compute Hs(3), Hs(4) . . . . The difference between
the continuous entropy and its discrete approximations with respect to different numbers
of intervals is illustrated in Figure 9.8. This figure shows that as the number of intervals
increases, the divergence between the continuous entropy and its discrete approximation
becomes smaller and smaller, and the discrete approximation will converge to the continuous
entropy as the number of intervals approaches a sufficiently large value.
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Figure 9.8 Spatial entropy as a function of number of intervals.

9.2.3 Disutility entropy
In the case of spatial distribution and location, the Shannon entropy

H = −k
N∑

i=1

pi ln pi (9.38)

can be considered as a measure of accessibility or interactivity (Erlander and Stewart, 1978),
wherein pi is the probability of locating in zone i of a city with N zones, and k is a constant of
proportionality. If the cost of location or accessibility is regarded as a random variable then the
probability distribution of location or accessibility entropy can be determined by maximizing
entropy. Because location, accessibility, and cost of location are related, the probability of
location can be regarded as a function of the cost of location. H can be maximized subject to

N∑
i=1

pi = 1 (9.39)

N∑
i=1

ripi = r = rm (9.40)

where ri is the cost of locating in zone i (ri ≥ 0) and rm is the mean cost of locating in the city.
One can also interpret ri as a measure of distance from some point in the city, such as central
area, to zone i. Thus, H corresponds to accessibility and rm to cost, and these can be used to
classify spatial distributions of different areas or cities.

A weighted entropy measure (Belis and Guiasu, 1968) can be defined by combining the
two measures as

I = −k
N∑

i=1

ripi ln pi (9.41)

With k disregarded, equation (9.41) is the Shannon entropy with pi ln pi weighted by ri, and
is referred to as disutility entropy (Theil, 1980). The disutility of any location i is a function of
the cost ri of locating there (Beckmann, 1974). The weight ri indicates the utility of event i.
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If ri = r, for all i, that is, the distribution of weights is immaterial, then H and I measure the
same variation. In general I and H are the same. If H = 0, all activity is concentrated in one
zone, accessibility is at a minimum. When the probability distribution is uniform, H = ln N, the
accessibility is maximum. On the other hand, disutility entropy reaches its maximum if the
probabilities are distributed as a negative exponential function of the inverse of the disutility
(Guiasu, 1977) but has a minimum equivalent to H.

It can be shown that H(N) ≥ H(N − 1) and H(N) → ∞ as N → ∞. This means that the greater
the number of zones characterizing the system, the greater the information imparted to an
observer of the system. One can make the same argument for the disutility entropy I(N), but
only if the aggregation is nested and aggregate weights are weighted averages. As an example,
consider two zones i and j which are combined to form zone k in moving from the N-th to the
(N − 1)-th level. If

rk = ripi + rjpj

pi + pj

(9.42)

it can be shown that I(N) ≥ I(N − 1)(Guiasu, 1977). This means that as activity grows the city
is described by more and more zones both accessibility and disutility entropies will increase.
This would correspond to finer and finer partition of a fixed space.

9.3 One dimensional aggregation

In hydrology, geography, climatology, and watershed sciences, frequently one aggregates
spatially varying units into a finite number of relatively homogeneous units such that the
system heterogeneity is more or less preserved. For example, an urban watershed may have
a large number of land uses and it may be desirable to group them into a smaller number of
relatively uniform land use zones. Likewise, a watershed may be divided into a number
of zones each having its own population density. A state may be divided into a number
of meteorologically homogenous regions. Consider a watershed whose time-area diagram is
constructed. To that end, it is divided into different zones based on isochrones or contours of
equal travel time from the outlet. Each zone or sub-area enclosed by two isochrones has an
area. The rain falling on this area will produce water. Thus, the water from this area will take
a certain amount of time to reach the watershed outlet. Let r define the distance in terms of
time of travel of water from that area to the outlet. The farthest sub-area or zone is bounded
by R, the boundary of the upstream watershed, the time of concentration or the longest time
of travel. The question is: How many isochrones or subdivisions should one use?

It may be useful to discuss aggregation using a simple truncated exponential probability
density function f (r):

f (r) = K exp(−ar) (9.43)

where a is parameter of the probability density function and is related to the mean travel
distance to the outlet, rm, and K is a normalizing constant so that the density function
integrates to 1 over its support, that is, from 0 to its boundary R, and defined as

K = a

1 − exp(−aR)
(9.44)
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Equation (9.43) is bounded from 0 ≤ r ≤ R, where R is the boundary. The mean travel distance
can be obtained from the first moment of f (r) about the origin located at the outlet as:

rm =
R∫

0

rK exp(−ar)dr = 1

a
− exp(−aR)R

1 − exp(−aR)
(9.45)

Solving equation (9.45), the value of parameter a can be obtained for known rm. It is seen
from equation (9.45) that if R is very large, that is, R → ∞, the second term on the right side
vanishes which can be easily obtained from the L’Hospital’s rule, and one simply gets a=1/rm.

In urban areas where aggregating land uses is a main concern, the choice of the regional
boundary becomes important. This can be addressed by computing the entropy for R → ∞
and the entropy for finite R. For any R, the continuous entropy of equation (9.43) can be
expressed as

H = −
R∫

0

f (r) ln
[
f (r)

]
dr = −

R∫
0

K exp(−ar) ln
[
K exp(−ar)

]
dr

= − a

1 − exp(−aR)

R∫
0

exp(−ar)
{
ln a − ar − ln

[
1 − exp (−aR)

]}
dr (9.46)

Integrating the right hand side by parts, equation (9.46) simplifies to

H = − ln a + 1 − a exp(−aR)R

1 − exp(−aR)
+ ln

[
1 − exp(−aR)

]
(9.47)

For R → ∞, equation (9.47) yields

H = − ln a + 1 (9.48)

Subtracting equation (9.47) from equation (9.48), the difference in entropy H(e) (between
finite R and R tending to ∞) is:

H(e) = −
∞∫

R

f (r) ln f (r)dr = a exp(−aR)R

1 − exp(−aR)
− ln

[
1 − exp (−aR)

]
(9.49)

Taking the ratio of equation (9.49) to equation (9.47) and setting the tolerance limit as 0.05
or any other value, one gets:

a exp(−aR)R − [
1 − exp(−aR)

]
ln
[
1 − exp(−aR)

]
(− ln a + 1)

[
1 − exp(−aR)

]− a exp(−aR)R + [
1 − exp(−aR)

]
ln
[
1 − exp(−aR)

] = 0.05

(9.50)

For different ratios, different values of boundaries would be obtained. In this manner
boundaries of any monocentric region can be determined. Also if the boundary is given
according to prior information, solving equation (9.50) numerically yields estimate for the
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Figure 9.9 The relationship between discrete entropy and the number of intervals, assuming the distribution given

in equation (9.43) with parameter R = 10, a = 0.3979.

parameter a. Now consider H(e)/H = 0.05. If R is set to equal 10, a is calculated as 0.3979 from
equation (9.50). The discrete entropy is calculated using the following equations:

H = −
∑

i

pi ln pi = −
∑

i

p(xi)�xi ln
[
p(xi)�xi

]
(9.51)

p(xi) = a

1 − exp (−aR)
exp

(−axi

)
(9.52)

The relationship between the number of intervals and the discrete entropy is shown in
Figure 9.9. Obviously, the discrete entropy increases without bound as the number of interval
increases. The continuous entropy computed from equation (9.47) is 1.8646 nats. This
confirms that the continuous Shannon entropy cannot be derived from the discrete Shannon
entropy by letting the number of intervals tend to infinity and passing to the limit. The
continuous Shannon entropy is equivalent to the spatial entropy, which, in practice, can be
approximated by the discrete approximation of spatial entropy, as defined in equation (9.20).

Example 9.5: Compute the value of entropy for different values of R: 10, 20, 30, 40, 50, 60,
70, and 80 minutes and plot H(R). Notice that time is taken here as a measure of distance.
Compute the value of a for different values of R. Also compute parameter a when R → ∞.
Then compute the difference in entropy H(e) between H(R) and H(R → ∞) and plot it.

Solution: Different values of R will correspond to different values of a. The relationship of
R and a is described in equation (9.44). Given a value of R, numerically solving for the zero
of equation (9.50) yields a. For example, assuming the ratio H(e)/H be 0.05 and R be 10, a
will be 0.3979. After knowing R and a, the continuous entropy H(R) can be computed via
equation (9.47). In the case of R = 10 minutes, the continuous entropy H(R) is 1.8646 nats.
When a = 0.3979, the limiting entropy H(R → ∞) is computed by equation (9.48), that is,
H(R → ∞) = − ln(0.3979) + 1 = 1.9216 nats. Thus, the difference between H(R) and H(R → ∞)
is computed as

H (R → ∞) − H (R) = 1.9216 − 1.8646 = 0.057 nats

Following the same way, the values of a, H(R) and H(e) can be computed and are tabulated
in Table 9.3a. The relationships between R and H(R), and between R and H(e) is plotted in the
left and right panels of Figure 9.9a, respectively.
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Table 9.3a Parameter a, H(R), H(R → ∞) and H(e) for different R

values with H(e)/H = 0.05.

R a H(R) H(R → ∞) H(e)

10 0.3979 1.8268 1.9216 0.0947
20 0.1773 2.5953 2.7299 0.1346
30 0.1118 3.0340 3.1910 0.1570
40 0.0808 3.3427 3.5158 0.1731
50 0.0629 3.5806 3.7662 0.1856
60 0.0513 3.7743 3.9701 0.1957
70 0.0432 3.9376 4.1419 0.2043
80 0.0373 4.0778 4.2888 0.2109
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Figure 9.9a Relationship between R represented in minutes and continuous entropy, the continuous entropy

evaluated when R approaches infinity and the difference entropy H(e) with the ratio of H(e)/H = 0.05.

Table 9.3b Parameter a, H(R), H(R → ∞) and H(e) for different R

values with H(e)/H = 0.10.

R a H(R) H(R → ∞) H(e)

10 0.2961 2.0023 2.2171 0.2148
20 0.1279 2.7611 3.0565 0.2954
30 0.0791 3.1953 3.5370 0.3417
40 0.0565 3.5000 3.8735 0.3835
50 0.0436 3.7349 4.1327 0.3978
60 0.0352 3.9270 4.4367 0.4197
70 0.0295 4.0878 4.5234 0.4355
80 0.0253 4.2271 4.6769 0.4498

For different values of ratio H(e)/H, results of calculations are shown in Tables 9.3b and
9.3c, and plotted in Figures 9.9b and 9.9c.

So far, the above solutions illustrate a way to determine the distribution parameter a

from a given reasonable boundary approximation. Now assuming parameter a is already
known, say to be a value of 0.033, which implies that the expected travel distance rm

is 30 minutes. This implication can be easily seen from equation (9.45). We intend to
explore the difference between the real continuous entropy (as R approaches infinity) and
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Table 9.3c Parameter a, H(R), H(R → ∞) and H(e) for different R

values with H(e)/H = 0.15.

R a H(R) H(R → ∞) H(e)

10 0.2348 2.1005 2.4490 0.3485
20 0.0984 2.8485 3.3187 0.4702
30 0.0598 3.2770 3.8168 0.5397
40 0.0421 3.5785 4.1677 0.5892
50 0.0322 3.8106 4.4358 0.6252
60 0.0258 4.0001 4.6574 0.6573
70 0.0215 4.1592 4.8397 0.6805
80 0.0183 4.2973 5.0008 0.7036
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Figure 9.9b Relationship between R represented in minutes and continuous entropy, the continuous entropy

evaluated when R approaches infinity and the difference entropy H(e) with the ratio of H(e)/H = 0.10.
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Figure 9.9c Relationship between R represented in minutes and continuous entropy, the continuous entropy

evaluated when R approaches infinity and the difference entropy H(e) with the ratio of H(e)/H = 0.15.

its approximation, assuming a finite boundary R. The real value of continuous entropy is
computed by equation (9.48), that is, H = − ln(0.033) + 1 = 4.4112 nats. Assuming boundary
R be a finite value, the approximation of continuous entropy is evaluated by equation (9.47).
Finally, the difference H(e) can be computed. Or it can also be computed from equation
(9.49) directly. The relationship between R represented in minutes and H(e) with a = 0.033 is
computed as shown in Figure 9.10. From the figure it is clear that when R approaches infinity,
H(e) approaches zero.
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Figure 9.10 Relationship between R represented in minutes and H(e) with a = 0.033 and rm = 30.

Example 9.6: Compute discrete (Shannon) entropy as a function of number of zones for
different values of R. Take the number of zones up to 80. Plot the discrete entropy as a function
of number of zones on a semi-logarithm coordinates.

Solution: Three cases, that is, R = 20, R = 40 and R = 60, are considered for illustrating the
relationship between discrete entropy and the number of zones. For each R, parameter a can be
estimated by equation (9.50). Take R = 20 as an example, solving equation (9.50) numerically
yields the value of 0.1773 for a, assuming the entropy ratio H(e) be 0.05. Similarly, for R = 40
and R = 60 the corresponding a estimates will be 0.0808 and 0.0512, respectively.

A specific value of R is divided into N zones, and their probability pi and discrete entropy
H are calculated, respectively. Suppose points r1, r2, . . ., rN + 1 divide the spatial system into N
equally sized intervals. The discrete entropy can be calculated as follows:

H = −
N∑

i=1

pi ln pi

where

pi =
ri+1∫
ri

a

1 − exp(−aR)
exp(−ar)dr = 1

a − exp(−aR)

[
exp(−ari) − exp(−ari+1)

]

For each boundary R and each interval number, discrete entropy can be computed. The
relationship between discrete entropy and the number of intervals can be shown by plotting
the discrete entropy as a function of the interval number, which is presented in Figure 9.11.
Obviously, the discrete entropy increases without bound as the number of zones increases.
In the semi-logarithm coordinates, the discrete entropy approximately linearly increases with
the logarithm of the number of intervals.

Example 9.7: Compute the discrete approximation of continuous entropy or spatial entropy
as a function of number of zones for different values of R. Take N up to 80 on a log scale. Also
compute the continuous entropy corresponding to each boundary value R and see how close
does the discrete approximation of continuous entropy or spatial entropy get to become the
continuous entropy?
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Figure 9.11 Relationship between the discrete entropy and the number of zones in natural coordinate (left) and

semi-logarithm coordinates (right).

Solution: Similarly as in Example 9.6, three cases are considered, that is, R = 20, R = 40, and
R = 60. Also for each R parameter a can be estimated by equation (9.44), assuming the entropy
ratio H(e) to be 0.05. The estimated a values corresponding to R = 20, R = 40, and R = 60 are
0.1733, 0.0808, and 0.0512, respectively. For a given R, the spatial system is divided into
1, 2, . . . , 80 zones. Their probability pi and discrete entropy H are calculated. For generalization,
suppose the spatial system is divided into N equally sized intervals by r1, r2, . . ., rN + 1. The
discrete approximation of continuous entropy (spatial entropy) is expressed as follows:

H = −
N∑

i=1

pi ln
pi

�xi

where

pi =
ri+1∫
ri

a

1 − exp(−aR)
exp(−ar)dr = 1

a − exp(−aR)

[
exp(−ari) − exp(−ari+1)

]

Then the discrete approximation of continuous entropy is computed and is plotted, as shown
in Figure 9.12 which shows that with the increase in the number of intervals the discrete
approximation of continuous entropy decreases but approaches a bound.

Actually the boundary value of the discrete approximation of continuous entropy is the
continuous entropy or spatial entropy, which can be directly calculated from equation (9.47)
for a given R and thus a given a. For example, when R = 20, the parameter a can be
obtained from the solution of equation (9.50) as 0.1733, assuming an entropy ratio H(e)
of 0.05. Substituting R = 20 and a = 0.1733 into equation (9.47), the continuous entropy is
computed as

H = − ln a + 1 − a exp(−aR)R

1 − exp(−aR)
+ ln

[
1 − exp(−aR)

]
= − ln(0.1733) + 1 − 0.1733 × exp(−0.1733 × 20) × 20

1 − exp(−0.1733 × 20)
+ ln

[
1 − exp(−0.1733 × 20)

]

= 2.5953 nats.

Investigating the behavior of the discrete approximation of continuous entropy with respect to
the continuous entropy, one can get a picture about how closely the discrete approximation of
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to 20 for the convenience to show the decreasing trend. The corresponding continuous entropies are depicted as

horizontal lines.

continuous entropy approaches the continuous entropy as the number of intervals increases.
As expected, Figure 9.12 clearly shows that as the number of intervals increases the discrete
approximation of continuous entropy convergence to the corresponding continuous entropy,
which is shown by the horizontal line.

9.4 Another approach to spatial representation

Consider the cost of location C as a random variable with a probability density function f (c),
minimum value as c0 and a maximum value as cmax. Let it be assumed that the average cost
of location is empirically known. The Shannon entropy for the cost can be written as

H(C) = −
cmax∫
c0

f (c) ln f (c)dc (9.53)

The objective is to determine f (c) subject to

cmax∫
c0

f (c)dc = 1 (9.54)

cmax∫
c0

cf (c)dc = c = cm (9.55)
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Applying POME, the PDF of C using the method of Lagrange multipliers is

f (c) = exp(−λ0 − λ1c) (9.56)

where λ0 and λ1 are the Lagrange multipliers which can be determined by using equations
(9.54) and (9.55). Substituting equation (9.56) in equation (9.54), one gets

exp(−λ0)

cmax∫
c0

exp(−λ1c)dc = 1 (9.57)

or

exp(λ0) = 1

λ1

[
exp(−λ1c0) − exp(−λ1cmax)

]
(9.58)

Therefore,

λ0 = ln
[
exp(−λ1c0) − exp(−λ1cmax)

]− ln λ1 (9.59)

Now substituting equation (9.56) in equation (9.55), one gets

cmax∫
c0

c exp(−λ0 − λ1c)dc = c = cm (9.60)

Equation (9.60), with the use of equation (9.59), leads to

cm

1

λ1

[
exp(−λ1c0) − exp(−λ1cmax)

] = 1

λ1

[
c0 exp(−λ1c0) − cmax exp(−λ1cmax)

]+
+ 1

λ2
1

[
exp(−λ1c0) − exp(−λ1cmax)

]
(9.61)

Equation (9.61) contains one unknown λ1 and can therefore be solved in terms of c0, cm, and
cmax.

Now it is hypothesized that

F(c) = P(C ≤ c) = x

L
, x0 ≤ x ≤ L (9.62)

Here x is travel time. Differentiation of equation (9.62) yields

dF(c)dc = f (c)dc = exp(−λ0 − λ1c)dc = dx

L
(9.63)

Integrating equation (9.63), the result is

c∫
c0

exp(−λ0 − λ1c)dc = 1

L

x∫
x0

dx (9.64)
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Figure 9.13 Behavior of equation (9.61) as the Lagrange multiplier λ1 varies.

Equation (9.64) results in

c = − 1

λ1

ln

[
exp(−λ1c0) − λ1

L
(x − x0) exp(λ0)

]
(9.65)

The entropy in this case is

H(C) = λ0 + λ1c (9.66)

Example 9.8: Considering the average time of travel as 15 minutes, the minimum time of
travel as 5 minutes and the maximum as 90 minutes, compute the values of the Lagrange
multipliers λ0 and λ1. Plot the probability density function of time of travel.

Solution: Substituting cm = 15 minutes, c0 = 5 minutes, and cmax = 90 minutes into equation
(9.61) and solving it with the use of the bisection method or some other more advanced
numerical techniques, one can get λ1 = 0.1. To obtain ideas about the behavior of equation
(9.61) with respect to the Lagrange multiplier λ1, Figure 9.13 presents the plots of equation
(9.61) versus λ1, from which it is clear where to locate the zero of the equation. One may
find that there are some other intervals of λ1, for which equation (9.61) is also pretty close
to 0. It is necessary to caution that more efforts are required when solving for the Lagrange
multiplier.

After obtaining λ1, λ0 is calculated by equation (9.59) as follows:

λ0 = ln
[
exp(−λ1c0) − exp(−λ1cmax)

]− ln λ1

= ln
[
exp(−0.1 × 5) − exp(−0.1 × 90)

]− ln(−0.1) = 1.8

Finally, substituting λ0 and λ1 into equation (9.56), the probability density function of time of
travel can be achieved and plotted as shown in Figure 9.14.

Example 9.9: Let the maximum distance of travel, L, be 20 kilometers and the minimum
distance of travel be 0.5 kilometer. Using the values of the Lagrange multipliers obtained in
Example 9.8, determine and plot the time of travel as a function of distance.

Solution: Substituting λ0 = 1.8, λ1 = 0.1, x0 = 0.5 and L = 90 into equation (9.65), the function
between the travel time and distance can be obtained and plotted as shown in Figure 9.15.
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9.5 Two-dimensional aggregation

For a two-dimensional case it is more convenient to use polar coordinates in place of
rectangular coordinates. Thus, a location in a field is defined by coordinates r and θ , where r
is the distance from the pole, and θ is the angle of variation. Now consider a two-dimensional
probability density function which describes the probability of locating at a given distance r
from the origin O in a radially symmetric density field. The underlying implication of this
radially symmetric density is that the distance is isotropically distributed. Let the density
function be defined as

f (r, θ) = K exp(−ar) (9.67)

where a is a parameter, and K is a normalizing constant so that

2π∫
0

R∫
0

rf (r, θ)dr dθ = 1 (9.68)

One may wonder why r comes into equation (9.68). Actually it involves a small trick when
integrating in a polar coordinate system. Since such two-dimensional integration plays an
important role in the following two-dimensional spatial entropy analysis, it is necessary to
explain it a bit more clearly. Suppose one wants to integrate f (r,θ) over the region as shaded
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Figure 9.17 Partition of the integral region and an illustration of the small cell.

in Figure 9.16. Mathematically, the integral region can be expressed as h1(θ) ≤ r ≤ h2(θ),
α ≤ θ ≤β. Suppose the integral region is partitioned into small cells by radial lines and
arcs as shown in Figure 9.17, and then the integration, denoted as I for example, can be
approximated by I ≈

∑
k

f
(
rk, θk

)
�Ak, where the summation means sum over all small cells

and �Ak represents the area of the k-th cell. Now we need to find the expression for �Ak.
Picking one cell out for illustration, which is almost a rectangle but is not, basic geometry
tells that the length of inner and outer arcs are, respectively, ri�θ and ro�θ , where ri and
ro are radii of the inner and outer arcs and �θ is the angle between the two radial lines
that form the small cell. Now assuming the cell is small enough such that ri ≈ ro, denoting
this quantity as r, therefore we have ri�θ ≈ r0�θ = r�θ . When the cell is small enough, it
can be approximately considered as a rectangle and thus its area can be approximated by
�Ak = r�θ�r. Substituting �Ak back yields I ≈

∑
k

f
(
rk, θk

)
r�r�θ . Finally, the integral is

computed as I = lim
N→∞

∑
k

f
(
rk, θk

)
r�r�θ =

β∫
α

h2(θ)∫
h1(θ)

f (r, θ) rdrdθ .
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Now let us go back to the two-dimensional spatial aggregation problem. Substitution of
equation (9.67) in equation (9.68) yields the value of K:

K = a

2π

{
1

a

[
1 − exp (−aR)

]− exp (−aR) R

} (9.69)

Parameter a can be related to the mean travel time from pole rm as

rm =
2π∫

0

R∫
0

r2K exp(−ar)drdθ = 2πK

[
2

a3
− exp(−aR)

a

(
R2 + 2R

a2
+ 2

a

)]
(9.70)

Equation (9.70) can be solved iteratively to get parameter a for known rm. A first approximation
is obtained by taking R as ∞:

rm =
2π∫

0

∞∫
0

r2K exp(−ar)drdθ = 2

a
(9.71)

It is interesting to note that for a one-dimensional case a = 1/rm from equation (9.45), whereas
for a two-dimensional case a = 2/rm.

For determining the value of R, analogous to the one-dimensional case, one may relate the
entropy for finite R to the entropy where R → ∞. The entropy H can be expressed for the
two-dimensional case as

H = −
2π∫

0

R∫
0

f (r, θ) ln(f (r, θ))dr dθ = −2πK

R∫
0

exp(−ar)(ln K − ar)rdr

= −2πK ln K

R∫
0

exp(−ar)rdr + 2πaK

R∫
0

exp(−ar)r2dr (9.72)

The first integral in equation (9.72) is integrated by parts as follows:

∫
exp(−ar)rdr = −1

a

∫
rd(exp(−ar)) = −1

a

[
r exp (−ar) −

∫
exp (−ar) dr

]

= −1

a

[
r exp (−ar) + 1

a
exp (−ar)

]
(9.73)

Then we have

R∫
0

exp(−ar)rdr = −1

a

[
exp(−aR)R + 1

a
exp(−aR)

]
+ 1

a

[
0 × exp(0) + 1

a
exp(0)

]

= −1

a

[
exp(−aR)R + 1

a
exp(−aR)

]
+ 1

a2
(9.74)
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Similarly, the second integral in equation (9.72) can be integrated as follows:

∫
exp (−ar) r2dr = −1

a

∫
r2d (exp (−ar)) = −1

a

[
r2 exp (−ar) − 2

∫
exp (−ar) rdr

]

= −1

a

[
r2 exp (−ar) + 2

a

(
r exp (−ar) + 1

a
exp (−ar)

)]
(9.75)

Then we obtain

R∫
0

exp (−ar) r2dr = −1

a

[
exp (−aR) R2 + 2

a

(
exp (−aR) R + 1

a
exp (−aR)

)]

+ 1

a

[
0 × exp(0) + 2

a

(
0 × exp(0) + 1

a
exp(0)

)]

= −1

a

[
R2 exp (−aR) + 2

a

(
exp (−aR) R + 1

a
exp (−aR)

)]
+ 2

a3
(9.76)

Substituting equation (9.74) and equation (9.76) into equation (9.72), one can get

H = −2πK ln (K)

{
−1

a

[
exp (−aR) R + 1

a
exp (−aR)

]
+ 1

a2

}

+ 2πKa

{
−1

a

[
R2 exp (−aR) + 2

a

(
exp (−aR) R + 1

a
exp (−aR)

)]
+ 2

a3

}

= 2πK ln (K)

a

[
exp (−aR) R + 1

a
exp (−aR)

]
− 2πK ln (K)

a2

− 2πK

[
R2 exp (−aR) + 2

a

(
exp (−aR) R + 1

a
exp (−aR)

)]
+ 4πK

a2

=
2πK ln (K)

a

[
R + 1

a

]
− 2πK

[
R2 + 2R

a
+ 2

a2

]
exp (aR)

+ 2πK

a2
[2 − ln (K)] (9.77)

Simplifying equation (9.77) by replacing K with equation (9.74) and after performing a series
of algebraic operations, it would reduce to

H = − ln (a) + ln (2π) + ln

[
1

a
(1 − exp (−aR)) − exp (−aR) R

]

+
2

a
− a exp (−aR)

(
R2 + 2R

a2
+ 2

a

)
1

a

[
1 − exp (−aR)

]− exp (−aR) R
(9.78)

In the limiting case as R → ∞, equation (9.78) is

H = −2 ln (a) + 2 + ln (2π) (9.79)
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The error entropy H(e) can be obtained by subtracting equation (9.79) from equation (9.77)
or equation (9.78):

H (e) = −2 ln (a) + 2 + ln (2π)

−
2πK ln (K)

a

[
R + 1

a

]
− 2πK

[
R2 + 2R

a
+ 2

a2

]
exp (aR)

− 2πK

a2
[2 − ln K] (9.80)

or

H (e) = − ln (a) + 2 − ln

[
1

a
(1 − exp (−aR)) − exp (−aR) R

]

−
2

a
− a exp (−aR)

(
R2 + 2R

a2
+ 2

a

)
1

a

[
1 − exp (−aR)

]− exp (−aR) R
(9.81)

Taking the ratio of equation (9.80) or equation (9.81) to equation (9.79) and setting the
tolerance limit as a threshold, say 0.05, one gets:

H (e)

H
= 0.05 (9.82)

where H is given by equation (9.78). For a boundary value R, solving equation (9.69)
numerically yields estimate for parameter a. Determining an initial value for a is important for
any numerical solver. As previously mentioned, a = 2/rm is a reasonable initial guess of a for
known rm, which can be determined based on the knowledge about the problem under study.
After knowing all the distribution parameters, the discrete entropy, the discrete approximation
of continuous entropy or spatial entropy can be calculated, respectively, as

H = −
∑

i

pi ln pi (9.83)

H = −
∑

i

pi ln
pi

�xi

(9.84)

where

pi =
2π∫

0

ri+1∫
ri

K exp (−ar) rdrdθ = −2π
K

a

[
r exp (−ar) + 1

a
exp (−ar)

]∣∣∣∣ri+1

ri

(9.85)

�xi = ri+1 − ri (9.86)

Example 9.10: Compute and plot two-dimensional (a) continuous entropy versus distance,
and (b) error entropy versus distance, for different values of R: 10, 20, 30, 40, 50, 60, 70, and
80 minutes.

Solution: Prior to the computation of continuous entropy and error entropy, first we need
to determine parameter a for a given spatial boundary R. Parameter a can be calculated
for different values of R according to the ratio of H(e) to the entropy at infinity, that is,
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Table 9.4a Parameter a, H (R), H (R →∞) and H (e) for different R values with H(e)/H = 0.05.

R a H(R) H(R → ∞) H(e)

10 0.5163 4.9144 5.1604 0.2460
20 0.2672 6.1688 6.4774 0.3086
30 0.1843 6.8766 7.2203 0.3437
40 0.1421 7.3721 7.7403 0.3682
50 0.1163 7.7539 8.1410 0.3871
60 0.0988 8.0646 8.4672 0.4026
70 0.0861 8.3266 8.7424 0.4158
80 0.0764 8.5529 8.9814 0.4286

equation (9.82). For illustrative purposes, take R = 10 as an example. The continuous entropy
and error entropy H(e) are calculated, respectively, by equation (9.78) and equation (9.80) or
equation (9.81). Assuming the criterion ratio as 0.05, the value of a can be achieved by solving
equation (9.82) using a numerical method. When R = 10, a is estimated to be 0.5163. Then,
the continuous entropy is calculated by substituting the corresponding R and a into equation
(9.78). Here R = 10, a = 0.5163, from equation (9.78) the total entropy can be computed as

H = − ln(0.5163) + ln(2π) + ln

[
1

0.5163
(1 − exp(−0.5163 × 10)) − exp(−0.5163 × 10) × 10

]

+
2

0.5163
− 0.5163 × exp (−0.5163 × 10)

(
102 + 2 × 10

0.51632 + 2

0.5163

)
1

0.5163

[
1 − exp (−0.5163 × 10)

]− exp (−0.5163 × 10) × 10

= 4.9144 nats

Following the same procedure, a and H corresponding to other boundary values of R can be
calculated as shown in Table 9.4a. Then, the error entropies can be easily computed as

H(R → ∞) = −2 ln (0.5163) + 2 + ln (2π) = 5.1604 nats

H(e) = H(R → ∞) − H(R) = 5.1604 − 4.9144 = 0.2460 nats
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Figure 9.18a Relationship between R represented in minutes and continuous entropy, the continuous entropy

evaluated when R approaches infinity and the difference entropy H(e) with the ratio of H(e)/H = 0.05.
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Table 9.4b Parameter a, H(R), H(R → ∞) and H(e) for different R values with H(e)/H = 0.10.

R a H(R) H(R → ∞) H(e)

10 0.4280 5.0319 5.5351 0.5032
20 0.2279 6.1777 6.7956 0.6179
30 0.1593 6.8296 7.5118 0.6823
40 0.1238 7.2877 8.0161 0.7283
50 0.1019 7.6419 8.4504 0.7735
60 0.0869 7.9298 8.7239 0.7941
70 0.0760 8.1738 8.9919 0.8181
80 0.0677 8.3861 9.2232 0.8371

Table 9.4c Parameter a, H(R), H(R → ∞) and H(e) for different R values with H(e)/H = 0.15.

R a H(R) H(R → ∞) H(e)

10 0.3804 5.1084 5.7709 0.7526
20 0.2066 6.0799 6.9918 0.9120
30 0.1456 6.6876 7.6917 1.0041
40 0.1138 7.1177 8.1845 1.0668
50 0.0940 7.4410 8.5668 1.1168
60 0.0804 7.7206 8.8794 1.1587
70 0.0705 7.9522 9.1422 1.1810
80 0.0629 8.1523 9.3703 1.2180
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Figure 9.18b Relationship between R represented in minutes and continuous entropy, the continuous entropy

evaluated when R approaches infinity and the difference entropy H(e) with the ratio of H(e)/H = 0.10.

In the same way, the values of a, H(R) and H(e) can be computed and are tabulated in
Table 9.4a. The relationships between R and H(R) and between R and H(e) are plotted in
the left and right panels of Figure 9.18a, respectively. Similarly, for different threshold ratios,
one can perform the same calculations to obtain the corresponding parameter a, continuous
entropy at R, continuous entropy when R approaches infinity, and error entropy H(e).
Results for other threshold values are tabulated in Tables 9.4b and 9.4c and are plotted in
Figures 9.19b and 9.18c.
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Figure 9.18c Relationship between R represented in minutes and continuous entropy, the continuous entropy

evaluated when R approaches infinity and the difference entropy H(e) with the ratio of H(e)/H = 0.15.

Example 9.11: Compute discrete (Shannon) entropy given by equation (9.83) as a function
of number of zones for different values of R.

Solution: Similar to Example 9.6, three cases, that is, R = 20, R = 40 and R = 60, are considered
for illustrating the relationship between discrete Shannon entropy and the number of zones.
For each R, parameter a can be estimated by numerically solving equation (9.82). Also take
R = 20 as an example, solving equation (9.82) yields the value of 0.2279 for a. In this example,
the entropy ratio threshold is assumed be 0.05. Solving equation (9.82) given R = 40 and
R = 60 yields 0.1238 and 0.0869 for the parameter a, respectively.

A specific value of R is divided into N zones, and their probability pi and discrete entropy H
are calculated, respectively. Suppose circles with radius of r1, r2, . . . , rN + 1 partition the spatial
system into N equally sized intervals. The discrete entropy can be calculated by equation (9.83):

H = −
N∑

i=1

pi ln pi

in which the discrete probability is computed by equation (9.50)

pi =
2π∫

0

ri+1∫
ri

K exp(−ar) rdrdθ = −2π
k

a

[
r exp(−ar) + 1

a
exp(−ar)

]∣∣∣∣ri+1

ri

For each boundary R and each interval number, discrete entropy is computed. The relationship
between discrete entropy and the number of intervals can be shown by plotting the discrete
entropy as a function of interval numbers, which is presented in Figure 9.19. Obviously,
the discrete entropy increases without bound as the number of zones increases. In the
semi-logarithm coordinates, the discrete entropy approximately linearly increases with the
logarithm of the number of intervals.

Example 9.12: Compute and plot two-dimensional spatial entropy versus number of zones.
Also determine the optimum number of zones for describing the density [N on the log scale:
take N = 1000, and R = 20, 40, 60].

Solution: Here we take R = 20, R = 40, and R = 60 as examples. For each R parameter a can
be estimated by equation (9.82), assuming the threshold for the entropy ratio H(e) be 0.05.
The estimated a values corresponding to R = 20, R = 40, and R = 60 are, respectively, 0.2672,
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Figure 9.19 Relationship between the discrete Shannon entropy and the number of zones in natural coordinate

(left) and semi-logarithm coordinates (right).

0.1421, and 0.0988. Suppose the spatial system is divided into N equally sized intervals
by r1, r2, . . . , rN + 1. The discrete approximation of continuous entropy (spatial entropy) is
calculated by equation (9.84):

H = −
N∑

i=1

pi ln
pi

�xi

where pi and �xi are computed by equation (9.85) and equation (9.86), respectively, that is,

pi =
2π∫

0

ri+1∫
ri

K exp(−ar) rdrdθ = −2π
K

a

[
r exp(−ar) + 1

a
exp(−ar)

]∣∣∣∣ri+1

ri

�xi = π
(
r2

i+1 − r2
i

)
. Then the discrete approximation of continuous entropy is computed and

is plotted, as shown in Figure 9.20 which shows that with the increase in the number of
intervals the discrete approximation of continuous entropy decreases but approaches a bound.
From Figure 9.20 one can detect that the discrete approximation of spatial entropy reaches a
flat plateau, after that the region is partitioned into about 100 regions. Therefore, the optimal
number of zones is 100 in the sense that the density can be well described.

Example 9.13: Compute and plot two-dimensional information gain I and information
redundancy Z measured by spatial entropy as a function of number of intervals N for different
values of boundary R. Take R = 20, 40, 60 as examples to illustrate the behavior of I and Z.

Solution: First, let us compute the information gain. As mentioned previously, information
gain can be measured by discrete Shannon entropy and spatial entropy (continuous entropy)
or more precisely the discrete approximation of spatial entropy (continuous entropy). In
this example, we adopted the second one, that is, by the spatial entropy. According to
equation (9.35)

I = ln X + H

in which X is the size of the spatial system and H is the spatial entropy. Here X assumes 20,
40, and 60, for the cases of R = 20, 40, and 60, respectively. Substituting the spatial entropy,
which is computed in Example 9.12, into equation (9.35), the information can be obtained.
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Figure 9.21 Relationship between information gain and the number intervals for H(e)/H = 0.05.

The behavior of information gain with respect to the number of intervals is presented in
Figure 9.21 for each boundary value R. Remember that parameter a is estimated assuming an
entropy ratio threshold of 0.05. As the number of intervals increases, the information gain
increases and then approaches a plateau.

Then, we compute the information redundancy. According to equation (9.36), the informa-
tion redundancy can be obtained directly via dividing the information gain by the maximum
entropy. In Section 9.2.2, we have already shown that for a given spatial system with size X

the maximum spatial entropy is ln(X), that is, Z = 1/ln(X). The behavior of information redun-
dancy with respect to the number of intervals is presented in Figure 9.22 for each boundary
value R. Also one should remember that parameter a is estimated, assuming an entropy ratio
threshold of 0.05. As the number of intervals increases, the information redundancy also
increases and then approaches a plateau.

9.5.1 Probability density function and its resolution
It is assumed that the probability of location is some function of location cost, and the location
cost is measured as a distance or time of travel from some point in the city. Probabilities
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Figure 9.22 Relationship between information redundancy and the number intervals for H(e)/H = 0.05.

are defined over two dimensions. For simplicity, consider M radial sectors of the city, and
n zones within each sector. Thus, N = Mn zones in total. Each sector can be considered as a
segment of a circle centered on the central point, and each sector j subtends an angle �θ j

about the center, as shown by the small cell in Figure 9.17. Within each sector, the boundaries
of each zone i define the average distance as (ri−ri−1). The area of a typical zone, �rij, can be
approximated as

�rij ≈ ri�θj

(
ri − ri−1

)
(9.87)

It is assumed that each sector has the same regular variation �θj = �θ , ∀ j and each distance
difference (ri − ri − 1) = �r, ∀ i. The area of the system, city, R can be written as

R =
∑

i

∑
j

�rij (9.88)

From equations (9.87) and (9.88), the probability of locating in zone i in sector j, denoted by
pij is consistent with a two-dimensional density function defined by polar coordinates. It is
noted that∑

i

∑
j

pij = 1 (9.89)

The probability density function p(r, θ) can be approximated as

p(rij) = pij

�rij

(9.90)

This yields

pij = p(rij)�rij (9.91)

The Shannon entropy, H(N), for the two-dimensional case can be written as

H(N) = −
∑

i

∑
j

pij ln pij (9.92)
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With the use of equations (9.90) and (9.91), equation (9.92) can be expressed as

H(N) = S(N) + L(N) (9.93)

where S(N) is the spatial entropy, corresponding to the probability density, defined as

S(N) = −
∑

i

∑
j

p(rij) ln[p(rij)]�rij = −
∑

i

∑
j

pij ln
pij

�rij

(9.94)

and L(N) denotes the level of resolution entropy defined as

L(N) = −
∑

i

∑
j

p(rij) ln[�rij]�rij = −
∑

i

∑
j

pij ln �rij (9.95)

H(N) is unbounded (Goldman, 1953). Taking p(rij) as an approximation to a continuous
single-valued function p(r, θ), one can write equations (9.93), (9.94) and (9.95) as

lim
N→∞

H(N) = lim
N→∞

S(N) + lim
N→∞

L(N) = S + L (9.96)

in which

S = −
∫ ∫

R

p (r, θ) ln
[
p (r, θ)

]
rdθdr (9.97)

L = − lim
N→∞

∑
i

∑
j

p(rij) ln
[
�rij

]
�rij (9.98)

Now the disutility entropy I(N) gain in equation (9.41) can be recast as

I(N) = −
∑

i

∑
j

ripij ln pij (9.99)

Equation (9.99) can be decomposed using equation (9.94) and (9.95) as

I(N) = D(N) + T(N) (9.100)

in which D(N) denotes the disutility entropy, spatial disutility, corresponding to the density,
defined as

D(N) = −
∑

i

∑
j

rip(rij) ln[p(rij)]�rij = −
∑

i

∑
j

ripij ln
pij

�rij

(9.101)

and T(N) denotes the level of resolution disutility defined as

T(N) = −
∑

i

∑
j

rip(rij) ln[�ij]�rij = −
∑

i

∑
j

ripij ln �rij (9.102)

For N → ∞, equation (9.100) can be written as

lim
N→∞

I(N) = lim
N→∞

D(N) + lim
N→∞

T(N) = D + T (9.103)
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where

D = −
∫ ∫

R

p (r, θ) ln
[
p (r, θ)

]
r2dθdr (9.104)

and

T = − lim
N→∞

∑
i

∑
j

p(rij) ln
[
�rij

]
ri�rij (9.105)

For a nested aggregation, S(N) ≤ S(N − 1) and S(1) = log R. Over a wide range of aggregations
S(N) and D(N) remain unchanged and the variation in H(N) and I(N) is due to L(N)
and T(N).

9.5.2 Relation between spatial entropy and spatial disutility
For illustrative purposes, consider a gamma density function in polar coordinates. This density
function has been used as a spatial distribution function:

p (r, θ) = ba+2

� (a + 2) 2π
ra exp(−br) (9.106)

where a and b are parameters of the gamma density function. Of course,

2π∫
0

∞∫
0

p (r, θ) r dθdr = 1 (9.107)

Parameters a and b can be estimated using the maximum likelihood function or the principle
of maximum entropy:

2π∫
0

∞∫
0

p (r, θ) r2 dθdr = rm = a + 2

b
(9.108)

2π∫
0

∞∫
0

p (r, θ) r ln r dθdr = ln r = d

da
ln(a + 2) − ln b = ψ (a + 2) − ln b (9.109)


(a + 2) is called the psi or digamma function. Equations (9.107) to (9.109) are constraints
for equation (9.106). The spatial entropies S and D in equation (9.97) and (9.104) can be
obtained, subject to equations (9.107) to (9.109), as

S = −
2π∫

0

∞∫
0

p (r, θ) ln[p (r, θ) rdθdr = −2 ln b + ln � (a + 2) + ln 2π − aψ (a + 2) + a = 2

(9.110)

D = −
2π∫

0

∞∫
0

p (r, θ) ln
[
p (r, θ)

]
r2drdθ

= −rm[−2 ln b + ln � (a + 2) + ln 2π − aψ (a + 3) + a + 3] (9.111)
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From the definition of the gamma function

� (a + 3) = (a + 2) � (a + 2) (9.112a)

and the psi function:

ψ (a + 3) = d ln � (a + 3)

da

or

ψ (a + 3) = ψ (a + 2) + 1

a + 2
(9.112b)

Inserting equation (9.112b) in equation (9.111) and then substituting for S in equation
(9.110), one obtains a relation between D and S as

D = rm

(
S + 1 − a

a + 2

)
(9.113)

Example 9.14: Consider a one-dimensional probability density function p(r). Determine S
and D.

Solution: D = rm

(
S + 1 − a

a+1

)
, where S is the approximate entropy (Tribus, 1968). If a = 0,

the density becomes negative exponential, and D = rm(S + 1). The spatial disutility is directly
related to the product of average cost and accessibility measured by spatial entropy.

9.6 Entropy maximization for modeling spatial phenomena

Consider two constraints:

N∑
i=1

pi = 1 (9.114)

N∑
i=1

ripi = rm (9.115)

where ri is a measure of location cost i or travel cost between 0 and location i, and rm is the
mean location cost in the system.

Maximizing equation (9.16), subject to equations (9.114) and (9.115), the probability of
locating any i is:

pi = exp
(−ari

)
N∑

i=1

exp
(−ari

) (9.116)

Equation (9.116) does not explicitly show the effect of zone size or shape. To explicitly
incorporate the zone size, the spatial entropy given by

H = −
N∑

i=1

pi ln

(
pi

�xi

)
(9.117)
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can be maximized, subject to equations (9.114) and (9.115) using the method of Lagrange
multipliers:

L = −
N∑

i=1

pi ln

(
pi

�xi

)
− λ0

(
N∑

i=1

pi − 1

)
− λ1

(
N∑

i=1

ri pi − rm

)
(9.118)

Differentiating equation (9.118) with respect to pi and equating the derivative to zero, one
obtains

∂L

∂pi

= − ln pi + ln �xi − λ0 − λ1ri (9.119)

Equation (9.119) yields

pi = �xi exp
(−λ0 − λ1ri

)
(9.120)

Substituting equation (9.120) in equation (9.114), one gets

N∑
i=1

pi = exp
(−λ0

) N∑
i=1

�xi exp(−λ1ri) (9.121)

From equation (9.121),

exp
(−λ0

) = 1
N∑

i=1

�xi exp
(−λ1ri

) (9.122)

The location probability mass function then becomes

pi = �xi exp
(−λ1ri

)
N∑

i=1

�xi exp
(−λ1ri

) (9.123)

If �xi = �x, then equation (9.123) becomes

pi = exp
(−λ1ri

)
N∑

i=1

exp
(−λ1ri

) (9.124)

To further explore the effect of zone size and shape, consider the probabilities of location as
equal in each zone. Then

1

N
= �xi exp

(−λ1ri

)
N∑

i=1

�xi exp
(−λ1ri

) (9.125)



378 Entropy Theory and its Application in Environmental and Water Engineering

which yields

�xi = 1

N exp
(−λ1ri

) N∑
i=1

�xi exp(−λ1ri) (9.126)

Equation (9.126) can be employed to fix zone sizes which yield location probabilities. It shows
that such zones vary directly with the exponential distribution of location costs.

It may be interesting to dwell a little bit further on equation (9.124) which would directly
result from the specification of constraint equation (9.115) without consideration of the spatial
size or interval. Let ci be the cost of locating in zone i, and c be the average cost of locating in
any zone:

c =
N∑

i=1

pici (9.127)

In that case

pi = exp
(−λ0 − λ1ci

)
(9.128)

Here

λ0 = ln

[
N∑

i=1

exp
(−λ1ci

)]
(9.129)

If the Lagrange multiplier for the average cost of locating is redundant, that is, λ1 = 0, the
exponential distribution reduces to a uniform distribution pi = 1/N. The maximum entropy
would be

Hmax = λ0 + λ1x (9.130)

Thus, the maximum entropy is a function of the Lagrange multipliers and constraints. It
depends on the spread of the distribution which in turn depends on the constraints. Thus, the
entropy can be regarded as a system wide accessibility function where the partition and the
cost of locating relate to the spread of probabilities across the system.

Going from the discrete form to the continuous form, pi = p(xi)�xi and ci = c(xi), where p(xi)
can be an approximation of the size of the population x at the point location i to the probability
density over the interval or area defined by �xi and c(xi) is an equivalent approximation to
the cost density in zone i. If �xi → 0, p(xi) → p(x) and c(xi) → c(x). Then,

lim
�xi→0

N∑
i=1

p(xi)�xi =
∞∫

0

p(x)dx =
∞∫

0

exp
(−λ0

)
exp

[−λ1c(x)
]
dx

= exp
(−λ0

)
λ1

= 1 (9.131)

which simplifies to

exp
(−λ0

) = λ1 or λ0 = − ln λ1 (9.132)
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lim
�xi→0

N∑
i=1

p(xi)c(xi)�xi =
∞∫

0

p(x)c(x)dx

=
∞∫

0

λ1 exp
[−λ1c(x)

]
c(x)dx = 1

λ1

= c (9.133)

Thus,

pi = 1

c
exp

(
− c(x)

c

)
(9.134)

Quantity c(x) in thermodynamics is the energy (thermal) at location x and c is related to the
average temperature, because c = kT, where k is the Boltzmann constant.

In continuous form,

H = −
∞∫

0

p(x) log p(x)dx

=
∫

p(x) log

{
1

c
exp

[
− c(x)

c

]}
dx = ln c + 1 = − ln λ1 + 1 = 1 − λ0 (9.135)

which is not the same as in the case of discrete form but is of similar form. S varies with the
log of the average cost or temperature, and the Lagrange multipliers λ0 and λ1 can be related
to this average cost which can be an indicator of accessibility, and entropy can be regarded as
a measure.

The continuous form of the spatial entropy then is written as

lim
�x→0

H = −
∞∫

0

p(x) log p(x)dx −
∞∫

0

p(x) log p(x)dx (9.136)

H → ∞ as in the limit �xi → 0. If �xi = x/n, ∀ i, then H ≈ log N and tends to infinity in an
equivalent manner. Thus,

Hs = −
N∑

i=1

pi log

[
pi

�xi

]
(9.137)

which is the spatial entropy. Maximization of entropy leads to the augmented Boltzmann-Gibbs
exponential model:

pi = �xi exp
(−λ1ci

)
N∑

i=1

�xi exp
(−λ1ci

) (9.138)

The interval size �xi is introduced as a weight on the probability. The entropy can then be
written as:

Hs = −
N∑

i=1

pi log pi +
N∑

i=1

pi log �xi

= H +
N∑

i=1

pi log �xi (9.139)
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The second term
N∑

i=1

pi log �xi is the expected value of the logarithm of interval sizes and it

can be considered as a constraint on the discrete entropy:

N∑
i=1

pi log �xi = log x (9.140)

Then,

L = −
N∑

i=1

pi log pi − (λ0 − 1)

(
N∑

i=1

pi − 1

)
− λ1

(
N∑

i=1

pici − c

)
− λ2

(
N∑

i=1

pi log �xi − log x

)
(9.141)

∂L

∂pi

= 0 ⇒ pi = exp(−λ0 − λ1ci − λ2 log �xi) (9.142)

which can be cast as

pi = (�xi)
−λ2 exp (−λ1ci)

N∑
i=1

(�xi)
−λ2 exp (−λ1ci)

(9.143)

Thus, the interval or zone size appears in the distribution as a scaling factor – a kind of benefit
rather than cost. If λ2 = 1 then this reduces to what is obtained from the maximization of
spatial entropy.

9.7 Cluster analysis by entropy maximization

In spatial aggregation and regionalization the objective is to preserve the heterogeneity of
the system as far as possible. Following Theil (1967), an aggregation procedure is based on
between-set entropy and within-set entropy. Consider Sj is a larger set.

H = −
N∑

j=1

Pj ln Pj −
∑

j

Pj


∑

i∈Sj

pi

Pj

ln
pi

Pj


 (9.144)

Pj =
∑
i∈Sj

pi (9.145)

∑
j

Pj =
∑

j

∑
i∈Sj

pi = 1 (9.146)

Equation (9.144) is a sum of between-set entropy denoted by the first term on the right side
and within-set entropy denoted by the second term. Equation (9.144) is constant for any
aggregation of spatial units noted by i in larger set Sj. When spatial units are aggregated in Sj

sets, it is observed that the between-set entropy monotonically decreases as the size of sets
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Sj increases, whereas the within-set entropy monotonically increases. This has been proved
by Ya Nutenko (1970).

Consider an initial aggregation of spatial units N + 1 sets where the set SN + 1 contains a
single unit. For the next level of aggregation, set SN and set SN + 1 are combined to form set SM.
The difference E between the entropy of the new M sets and the old N + 1 sets is written as

E =
N+1∑
j=1

Pj ln Pj −
M∑

j=1

Pj ln Pj (9.147)

Equation (9.147) can be simplified as

E = PN ln PN + PN+1 ln PN+1 − PM ln PM (9.148)

Equation (9.148) can be expressed solely in terms of the first N + 1 sets as

E = PN ln PN + PN+1 ln PN+1 − (
PN + PN+1

)
ln
(
PN + ln PN+1

)
(9.149)

or

E = PN

[
ln PN − ln

(
PN + PN+1

)]+ PN+1

[
ln PN+1 − ln

(
PN + PN+1

)]
(9.150)

E is negative and can exhibit the increasing value of within-set entropy at higher levels of
aggregation.

Now consider the discrete equivalent of the continuous entropy function. This means that
equation (9.146) can be replaced by its continuous equivalent, including the zonal size in the
aggregation problem. To that end, equation (9.20) can be written as

H = −
∑

i

pi ln pi +
∑

i

pi ln �xi (9.151)

The second term on the right side of equation (9.151) can be written as

N∑
i=1

pi ln �xi =
∑

j

∑
i∈Sj

pi ln �xi =
∑

j

Pj

∑
i∈Sj

pi

Pj

ln �xi (9.152)

Term ln �xi can be written as:

ln �xi = ln
�xi∑

i∈Sj

�xi

+ ln
∑
i∈Sj

�xi (9.153)

Let �Xj =
∑
i∈Sj

�xi. Equation (9.152) can be cast as

∑
i

pi ln �xi =
∑

j

Pj


∑

i∈Sj

pi

Pj

(
ln

�xi

�Xj

+ ln �Xj

)

=
∑

j

Pj


∑

i∈Sj

pi

Pj

ln
�xi

�Xj


+

∑
j

Pj ln �Xj (9.154)
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The first term on the right side of equation (9.154) can be expanded as equation (9.144).
Adding equations (9.144) and (9.154) yields the spatial form of Theil’s aggregation
formula:

H = −
∑

j

Pj ln Pj +
∑

j

Pj ln �Xj −
∑

j

Pj


∑

iεSj

pi

Pj

ln
pi

Pj


+

∑
j

Pj


∑

iεSj

pi

Pj

ln
�xi

�Xj




= −
∑

j

Pj ln

(
Pj

�Xj

)
−
∑

j

Pj


∑

iεSj

pi

Pj

ln

(
pi�Xj

�xiPj

) (9.155)

For maximizing the first term using the probability constraint given by equation (9.146), the
Lagrangean function can be written as

L = −
∑

j

Pj ln

(
Pj

�Xj

)
− λ0


∑

j

Pj − 1


 (9.156)

Differentiating equation (9.156), one gets

∂L

∂Pj

= − ln Pj + ln �Xj − λ0 (9.157)

Equation (9.157) yields

Pj = �Xj∑
j

�Xj

(9.158)

Equation (9.158) shows that probabilities of location Pj depend on the geometry of the system.
Equation (9.155) can be employed for aggregating zones where the population can be used to
determine the probabilities of location.

Example 9.15: Considering that a spatial system is partitioned into three regions, each region
is then partitioned into different sub-regions. The probability associated with each sub-region
is given in Figure 9.23. Compute the between-set and within-set entropies.

Solution: Following equation (9.144), between-set and within-set entropies of the given
system can be computed. First let us compute the between-set entropy as:

H = −
3∑

j=1

Pj ln Pj

where

P1 = 0.3 + 0.25 + 0.15 = 0.7

P2 = 0.05 + 0.02 + 0.03 = 0.1

P3 = 0.1 + 0.05 + 0.03 + 0.02 = 0.2
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p = 0.3 p = 0.15

p = 0.25

p = 0.05

p = 0.02

p = 0.03
p = 0.03

p = 0.05

p = 0.1

p = 0.02

Figure 9.23 The spatial system partition and the corresponding probabilities.

Therefore

H = −0.7 log (0.7) − 0.1 log (0.1) − 0.2 log (0.2) = 0.8018 nats

Then we compute the within-set entropy region by region. For region 1, the within set
entropy is

H1 = −
∑
i∈S1

pi

P1

ln
pi

P1

= −0.3

0.7
log

(
0.3

0.7

)
− 0.25

0.7
log

(
0.25

0.7

)
− 0.15

0.7
log

(
0.15

0.7

)

= 1.0694 nats

For region 2

H2 = −
∑
i∈S2

pi

P2

ln
pi

P2

= −0.05

0.1
log

(
0.05

0.1

)
− 0.02

0.1
log

(
0.02

0.1

)
− 0.03

0.1
log

(
0.03

0.1

)

= 1.0297 nats

For region 3

H3 = −
∑
i∈S3

pi

P3

ln
pi

P3

= −0.1

0.2
log

(
0.1

0.1

)
− 0.05

0.2
log

(
0.05

0.2

)
− 0.02

0.2
log

(
0.02

0.2

)
− 0.03

0.2
log

(
0.03

0.2

)

= 1.2080 nats
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Also we compute the total entropy of the system by summing over between-set and within-set
entropies in a weighted manner as

H = −
3∑

j=1

Pj ln Pj +
3∑

j=1

PjHj

= 0.8018 + 0.7 × 1.0694 + 0.1 × 1.0297 + 0.2 × 1.0280

= 1.8890 nats

9.8 Spatial visualization and mapping

Kriging is an interpolator which performs linear averaging using the observed data, and is
employed to compute spatial variations. When combined with entropy, a method can be
developed to determine the optimum number and spatial distribution of data. Entropy yields
information at each location of observation and data at locations can be re-constructed. By
calculating entropy and transmitted information, areas for measurement can be prioritized.
In this manner, the optimum spatial distribution and the minimum number of observation
stations in the network can be determined.

The outcoming kriging estimators of the spatial phenomena depend on the number of
observations. The question then is: What is the number of observations that yield no more
useful information than the outcoming spatial modeling? The outcoming spatial model of the
phenomenon yields the next amount of information as a function of the number of modeled
points. The spatial function is a convex function. This means that the next added interval to the
visualization of the spatial phenomenon yields much less information than the previous one.
Different organizations of intervals (the same number of intervals) yield different amounts of
information.

Quite often, we want to know the status of land use/land cover (LULC) within specific
regions, river basins, watersheds, geopolitical units, or agro-ecological zones. The data available
on LULC may be from satellite observations, biophysical crop suitability assessments, periodic
surveys, crop production surveys, forest management and characterization, and population
density. However, there are often gaps in data with respect to geographical and geospatial
data, time period, and vegetative coverage. Then there are complexities in the conversion of
local measurement units into standard units of area and quantity.

Often data on land use in terms of area and type is lacking or insufficient at best. A spatial
allocation approach proposed by You and Wood (2003, 2005) can be employed, which permits
allocations of land use type (say, crop production) at the scale of individual pixels (arbitrary
scale). Accordingly, the boundary of a geographical area/watershed within which crops are
grown is divided into pixels whose actual sizes depend on the spatial resolution of land
use/land cover data and crop suitability surfaces. In the absence of detailed complete data, the
spatial allocation approach allocates these land use/land cover areas in those pixels within the
watershed/geo-political boundary where individual land uses are most likely to be found. In
this manner, some pixels may be allocated no land use, some one type of land use/cover, and
some may be allocated multiple covers/uses.

The spatial mapping of land cover/use, crop productivity, ecological diversity, and so on is
needed. Such mapping can be constructed with the use of cross-entropy. The advantage of the
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entropy-based approach is that it can utilize information even if incomplete, partially correct,
and sometimes conflicting. Recalling the cross-entropy,

D(P, Q) =
N∑

i=1

pi log

(
pi

qi

)
=

N∑
i=1

pi log pi −
N∑

i=1

pi log qi

= −H + E[log q] (9.159)

Cross-entropy assumes that there is some information available about the probability dis-
tribution P which is derived by the minimization of D, subject to specified constraints. This
information can be regarded as an initial estimate of the unknown distribution P, and this
estimate is called prior Q which may not satisfy all the specified constraints. The principle of
minimum cross-entropy (POMCE) then states that minimization of D results in the minimiza-
tion of difference between P and Q. You and Wood (2003, 2005, 2006) and You et al. (2009)
employed cross entropy to do spatial mapping of crop distributions. The cross-entropy-based
approach can be described using an example of land use mapping as follows:
1 The area under consideration is a river basin or a watershed which is divided by major land

use systems, that is, urban, agricultural, forestry, and so on. Let k represent the major land
use division, k = 1, 2, . . . , K.
2 Each land use system is further divided into different land uses. For example, agricultural

land area may be divided based on crops – wheat, rice, maize, soybean, sugarcane, and so on;
urban land use into residential areas, commercial buildings, schools, hospitals, parks, gardens,
paved areas, and so on; and forest areas into different types of trees – pines, oaks, post-oaks,
water-oaks, and so on. Let j represent the land use category, j = 1, 2, . . . , J.
3 Divide the area into a grid of pixels, where the coarseness of grid depends on the objective

of study. Let i represent the i-th pixel for land use category j at the k-th system within the
basin. Here i = 1, 2, . . . , Ijk.
4 Convert all the real-value parameters into probabilities.
5 Generate the initial land use distribution using the empirical data.

Let qijk define the area of pixel i and land use type j at the division or watershed level k
within a certain watershed; ujk define the total physical area of land use type j at system level
k; and Aijk define the area allocated to pixel i for land use type j at system level k in the
watershed. Then,

pijk = Aijk

ujk

(9.160)

D
(

pijk; qijk

)
=
∑

k

∑
j

∑
i

pijk log pijk −
∑

k

∑
j

∑
i

pijk log qijk (9.161)

Equation (9.161) is minimized, subject to the following constraints:

∑
i

pijk = 1 ∀j, k (9.162)

As pointed out by Zellner (1988), the advantage of the cross-entropy approach is that it
satisfies the ‘‘information conservation principle,’’ meaning that the estimation procedure
should neither ignore any input nor it should use any false information (Robinson et al.,
2001). It permits the use of prior knowledge about land cover/use. It also enables the
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employment of equality or inequality constraints reflecting conditions under which spatial
allocation of land cover/use should be made.

The prior LULC distribution {qijk} should be specified. One way is to normalize the potential
LULC for land cover/use j at input level k for pixel i as:

qijk = A

N
∀i, j, k (9.163)

where A is the area of the watershed and N is the total number of pixels. Equation (9.163)
is based on biophysical conditions which may not reflect realistic conditions in the field. For
example, some areas which are quite suitable for forestry have not yet been afforested. To
make the prior more realistic, population density may be superimposed, such that higher
density may correspond to urban, zero density to forest, and low density to rural. Similarly,
zero density with little cover may represent desert.

9.9 Scale and entropy

Consider a set Z of n objects (the spatial zones of a geographical system) divided into K sets, Zk,

k = 1, 3, . . . , K, each with nk objects such that
K∑

k=1

nk = n. The sets are mutually exclusive and

collectively exhaustive. Z = K∪
k=1

Zk and φ = K∩
k=1

Zk, φ is the empty set. Each probability pi ∈ Zk

is defined as

pk =
∑
i∈Zk

pi,
K∑

k=1

pk =
K∑

k=1

∑
i∈Zk

pi = 1 (9.164)

Then

H = −
K∑

k=1

pk log pk −
K∑

k=1

pk

∑
i∈Zk

pi

pk

log
pi

pk

= HB +
K∑

k=1

pkHk, Hk= −
∑
i∈Zk

pi

pk

log
pi

pk

(9.165)

where HB is the between set entropy at the higher system level, and the second term is the sum
of within-set entropies Hk weighted by their probability of occurrence pk at the higher level.
If K decreases, meaning fewer Zk sets and each set becoming larger then between-set entropy

decreases but within-set entropy increases. In the limit K = 1, HB → 0 and
K∑

k=1

pkHk → H. On

the other hand, if K increases then HB increases and within-set entropy decreases in sum. In
the limit, K → n, that is, nk = 1, then the within set entropy vanishes and HB → H.

Now note that

Xk =
∑
i∈Zk

�xi (9.166)



CHAPTER 9 Spatial Entropy 387

where Xk is the sum of the intervals (areas) in each aggregate set Zk, the spatial entropy can
be decomposed as

Hs = −
K∑

k=1

pk log

[
pk

Xk

]
−

K∑
k=1

pk

∑
i∈Zk

pi

pk

log

[ (
pi/pk

)(
�xi/Xk

)
]

= HsB +
K∑

k=1

pkHsk (9.167)

where HsB is the between-set spatial entropy, and
K∑

k=1

pkHsk is the sum of the weighted

within-set entropies. Entropies can be nested into a hierarchy of levels, that is, between-set
entropies can be further subdivided into sets that are smaller than Zk but larger than basic sets
for each object or zone Zi. The concepts are employed to redistrict zones so that they have
equal populations in the case of discrete entropy and equal population densities in the case of
continuous entropies.

The decomposed entropy measures can be employed in accordance with POME to derive
probability distributions subject to constraints at different system levels. Suppose the mean
cost constraint applies to the entire system, but the entropy is maximized so that aggregate
probabilities sum to those that are set by the level of decomposition or aggregation selected.
The Lagrangean L function can be written as

L = −
K∑

k=1

pk log pk−
K∑

k=1

pk

∑
i∈Zk

pi

pk

log
pi

pk

−
K∑

k=1

(
λk

0 − 1
)∑

i∈Zk

(pi − pk) − λ1


∑

i∈Zk

pici − c




(9.168)

where λk
0 is the zeroth Lagrange multiplier associated with total probability law and λ1 is the

Lagrange multiplier associated with the mean cost constraint.
Minimizing the L function,

∂L

∂pi

= − log pi − λk
0 − λ1ci=0, i ∈ Zk (9.169)

which yields

pi = exp
(
−λk

0 − λ1ci

)
, i ∈ Zk (9.170)

The partition function can be expressed as

exp
(
−λk

0

)
= pk∑

i∈Zk

exp
(−λ1ci

) (9.171)

or

λk
0 = log

∑
i∈Zk

exp
(−λ1ci

)
pk

(9.172)
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Thus,

pi = pk

exp
(−λ1ci

)∑
i∈Zk

exp
(−λ1ci

) , i ∈ Zk and
∑
i∈Zk

pi = pk (9.173)

Note the cost of constraint is for the entire system and couples the distributions for each
sub-set.

If there is no system-wide constraint then entropy maximizing is separable in K sub-
problems. To illustrate, the cost constraints or subsets are:

∑ pi

pk

ci = ck, ∀k (9.174)

This permits satisfying the system wide constraint as

K∑
k=1

pk

∑
i∈Zk

pi

pk

ci =
K∑

k=1

pkck =
K∑

k=1

∑
i∈Zk

pici = c, ∀k (9.175)

Using the method of Lagrange multipliers with k multipliers,

pi = pk

exp
(−λk

1ci

)
∑

i ∈ Zk

exp
(
−λk

1ci

) , i ∈ Zk (9.176)

This is not separable for each sub-set.
By the maximization of spatial entropy,

pi = pk

�xi exp
(−λk

1ci

)
∑

i ∈ Zk

�xi exp
(
−λk

1ci

) , i ∈ Zk (9.177)

9.10 Spatial probability distributions

If the population size X is the random variable in place of cost of location, then maximization
of entropy leads to the city size distributions. Let the probability pi of each event be denoted
with its frequency f (.), the size of the event be xi, and the discrete probability frequency be
f (xi). Then

H(X) = −
N∑

i=1

f (xi) log f (xi) (9.178)

The usual constraints are defined as

N∑
i=1

f (xi) = 1,
N∑

i=1

f (xi)xi = x,
N∑

i=1

f (xi)
[
x2

i − (x)2] = σ 2 (9.179)

where σ 2 is the variance of the distribution.
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Using the first constraints, one gets

log f (xi) = −λ0 − λ1xi (9.180)

Therefore,

f (xi) = exp
(−λ0 − λ1xi

)
(9.181)

and

f (xi) = exp
(−λ1xi

)
N∑

i=1

exp
(−λ1xi

) (9.182)

This shows that the larger size leads to lower probability. From the above one can write

xi = −λ0

λ1

− 1

λ1

log f (xi) (9.183)

The size can be in terms of the number of people living in the area. However, in this the size
cannot be directly equated to cost, because more people will prefer to live in low cost areas.
However, the size distributions can be developed by maximization of entropy.

Consider the mean log constraint as

N∑
i=1

f (xi)log xi = log x (9.184)

Then the maximization of entropy leads to

log f (xi) = −λ0 − λ1log xi (9.185)

or

f (xi) = exp
(−λ0

)
x−λ1

i (9.186)

This is a power function and can be written as

f (xi) = x−λ1
i

N∑
i=1

x−λ
i

(9.187)

From equation (9.187) one can also write

xi = exp

(
−λ0

λ1

)
f
(
xi

)−1/λ1 (9.188)

Equation (9.188) shows that xi varies inversely with the power of frequency. This relation can
be used to generate rank-size rule, first explored by Pareto (1906) for income size and by Zipf
(1949) for city sizes.
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Consider another constraint expressed by variance as

N∑
i=1

f (xi)(xi − x)2 =
N∑

i=1

f (xi)x2
i − (x)2 = σ 2 (9.189)

Then, maximization of entropy leads to

f (xi) = exp
(−λ0 − λ1xi − λ2x2

i

)
(9.190)

Using the total probability,

exp
(
λ0

) =
N∑

i=1

exp
(−λ1xi − λ2x2

i

)
(9.191)

Equation (9.190), with the use of equation (9.191), can be written as

f (xi) = exp
(−λ1xi − λ2x2

i

)
N∑

i=1

exp
(−λ1xi − λ2x2

i

) (9.192)

This is a form of normal distribution with the contribution of the mean and variance
associated with the Lagrange multipliers λ1 and λ2. Parameter λ1 is negative making the
exponential positive, and parameter λ2 is positive making the exponential negative. For
λ1 
 λ2, the variance of the distribution becomes increasingly smaller, but the skewness
becomes increasingly peaked.

If the size is defined as its logarithm, then constraints can be defined as

N∑
i=1

f (xi) = 1 (9.193)

N∑
i=1

f (xi)log xi = log x (9.194)

f (xi)

[(
log xi

)2 −
(
log x

)2
]

= σ 2 (9.195)

On maximizing entropy, one obtains

f (xi) =
exp

(
−λ1log xi − λ2

[
log xi

]2)
N∑

i=1

exp
(
−λ1log xi − λ2

[
log xi

]2)

= v−λ1
i

(
vi

2
)−λ2

N∑
i=1

x
−λ1
i

(
x2

i

)−λ2

(9.196)

For λ1 
 λ2, the log-normal distribution reduces to the inverse of the power law form but
only for the largest values of vi. This shows that power laws tend to dominate in the upper or
heavy tail of the logarithmic-normal distribution.
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9.11 Scaling: rank size rule and Zipf’s law

The cumulative probability distribution function of size (continuous case) can be interpreted
in terms of size rank (Batty 2010). To that end, all size values are arranged in descending order
from the largest value to the smallest value. Consider rank one r1 for the largest value of xi and
rn for the smallest value. Then, when ranking the values from the smallest rank to the largest
rank, i = m < n. The ranking is the accumulation of frequencies (Adamic, 2002). To illustrate,
consider the exponential distribution where one can write f (xi) = f (x), when �xi → 0.

9.11.1 Exponential law
For the continuous exponential distribution, f (x) ∼ exp(−λ1x). The cumulative probability
distribution becomes

F(x) =
∞∫
x

f (x)dx ∼
∞∫
x

exp
(−λ1x

)
dx = 1

λ1

exp
(−λ1x

)∞
I
x

(9.197)

where for rank F(x) ∼ xn − m = rk, i = m, k = n − i. Thus, one can express

rk ∼ exp
(−λ1xk

)
(9.198)

Taking the logarithm of equation (9.198),

log rk ∼ −λ1xk (9.199)

or

xk ∼ 1

λ1

log

(
1

rk

)
(9.200)

Equation (9.200) defines rank as a function of population or population as a function of rank,
manifesting the log-linear structure of the exponential rank-size relationship.

9.11.2 Log-normal law
There are myriad cases where processes follow log-normal rather than power laws. Expressing
the first Lagrange multiplier in equation (9.185) as α and the second as β and taking the limit
f (x) ∼ xαx− 2β , one expresses the counter cumulative frequency as

F (x) =
∞∫
x

f (x) dx ∼
∞∫
x

xαx−2βdx = 1

α − 2β + 1
xα−2β

∞
I
x

(9.201)

Equation (9.201) shows that the shape of the log-normal distribution depends on parameters
α and β. The logarithmic equation yields

log rk ∼ (−λ1 + 1
)

log xk (9.202)

or

xk ∼ r1/(−λ1+1)

k (9.203)

Equation (9.203) shows size as a function of rank or rank as a function of size.
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The rank and size relationship can be expressed as

log rk ∼ (α + 1) log vk − 2 β log vk (9.204)

or

vk ∼ r
1

α+1−2β

k (9.205)

If α+1 
 2β, then for the largest values of vk the second term becomes dominant. This suggests
that the rank-size relation is more like a power law in its upper or heavy tail.

9.11.3 Power law
The rank-size relationship is commonly derived using a power law for the relationship between
size and frequency. Power laws emerge from two sources: 1) the constraint for maximization
of entropy is a geometric mean, and 2) the constraints are those leading to log-normal
distribution but for very large values of the variable where the variance of the distribution
is also very large. This means that heavy tails occur over several orders of magnitude. The
continuous form of power equation (9.205) can be expressed as f (x) ∼ x−λ1 . Then the counter
cumulative frequency F(x) can be defined as

F (x) =
∞∫

x

f (x) dx ∼
∞∫

x

x−λ1 dx = 1

−λ1 + 1

(
x−λ1+1)∣∣∞

x (9.206)

in which F(x) corresponds to the rank rk which can be expressed as

rk ∼ x−λ1+1
k (9.207)

Equations (9.207) and (9.205) show that these power laws are scale invariant. To show this
property, consider a scale parameter α. Then size is scaled as αxk but the rank rk clearly does
not change. Only the power laws have this property.

9.11.4 Law of proportionate effect
Consider Gibrat’s (1931) law of proportionate effect. An object is of size xit. It grows or declines
to size xit+1 by a random amount ζ it whose value is proportional to the size of the object
already attained. This can be written as

xit+1 = xit + ζitxit = xit

(
1 + ζit

)
(9.208)

where t indicates time. Operating continually for any periods this process results in log normal.
If the process is constrained such that objects do not decrease in size below a certain minimum
(+ve) then the resulting distribution is scaling in the form of an inverse power function.

Solomon (2000) discussed the generalized Lotka-Volterra (GLV) model where in the steady
state power laws arise from processes involving random proportionate growth. The GV type
models can lead to log-normal and power laws.
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Questions

Q.9.1 Consider an urban area of 500 km2, with seven types of average land use areas
as follows: 10 km2 industrial development, 40 km2 roads, and other pavements,
120 km2 agricultural-horticultural, 30 km2 dairy farms, and 50 km2 forest. Define the
probability of each land use as the area of land use divided by the total area. For each
land use the value of the spatial interval is different and can be taken as equal to the
area of land use. Compute the spatial entropy of the urban area.

Q.9.2 Consider that the urban area in Q.9.1 has equal area land uses. Then compute the
spatial entropy and then compare it with the entropy value computed in Q.9.1.

Q.9.3 Compute the redundancy measure for the data in Q.9.1.

Q.9.4 Compute the information gain or loss considering the land use distribution in Q.9.1
and in Q.9.2.

Q.9.5 Consider an urban area having 10 subdivisions (Subdiv.) located at different distances
from the city center. Residents travel to the city center for meeting their daily needs,
such as work, shopping, eating, and so on. The average distances (Av. Dist.) from these
subdivisions and the average times of travel (Trav. Time) are given. It is surmised that
the cost of travel is a direct function of the distance or time of travel. The probability
(Prob.) of locating is almost inversely proportional to the average time of travel. The
weighting factor associated with each average distance is computed.

Subdiv. Av. Dist. (km) Weigh. Factor Av. Trav. Time (h) Prob. of Locating

1 1 0.0250 0.10 0.04
2 1.5 0.0750 0.15 0.06
3 2.5 0.0625 0.20 0.08
4 4.5 0.1125 0.30 0.12
5 5.0 0.1250 0.30 0.12
6 3.0 0.0750 0.20 0.08
7 3.5 0.0875 0.25 0.10
8 2.0 0.0500 0.20 0.08
9 8.0 0.2000 0.35 0.14
10 10.0 0.2500 0.45 0.18

Compute the disutility considering the distance of travel.

Q.9.6 Compute the disutility considering the time of travel given in Q.9.5. Compare this
value with the value computed in Q.9.5.

Q.9.7 For a residential area located 10 km away from the city center, the minimum time
of travel is 40 minutes and the maximum time of travel is 80 minutes. Compute the
probability density function of time of travel and the value of entropy.

Q.9.8 For a residential area the minimum distance to the city park is 5 km and the maximum
distance is 8 km. The average distance is 6 km. Compute the probability density
function of the distance and the value of entropy.
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Q.9.9 Consider an urban area that is partitioned into five regions and then each region is
portioned into different sub-regions. The probability associated with each sub-region
is given below. Compute the between-set and within-set entropies.

Probability values of regions and sub-regions 

Region 1 Region 2 Region 4 Region 5

0.30 0.15 0.10 

0.05 0.08 0.04 0.03 0.04 0.06 0.02 0.1 0.05 0.05 0.02 0.03 0.04 0.01

0.25

0.10 0.10 0.05 0.10 0.03

Region 3

0.20

Q.9.10 Consider an urban area that is partitioned onto four regions where each region is
partitioned into different sub-regions. The probability associated with each sub-region
is given. Compute the between-set entropy and within-set entropy.

0.35 0.30 0.15 0.20

0.07 0.13 0.14 0.01 0.05 0.10 0.08 0.03 0.04 0.03 0.04 0.06 0.02 0.1 0.05 0.05

Probability values of regions and sub-regions 

Region 1 Region 2 Region 3 Region 4
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10 Inverse Spatial Entropy

The concept of spatial entropy was discussed in Chapter 9. This chapter extends the discussion
of spatial entropy to inverse spatial entropy. There are many situations where a watershed
or a component thereof is divided into a number of parts called zones and calculations are
then based on these zones. For example, to compute the time-area diagram of a watershed,
isochrones (contours of equal travel time) are constructed. If there are M isochrones then they
divide the watershed into M + 1 or N zones. Each zone is bounded by two isochrones and
has an area. Thus, these N zones have N areas, with the sum of these areas being equal to
the watershed area. Another example is one of computing evapotranspiration or evaporation
from soil, soil moisture accounting, or soil moisture routing. In general, soil is heterogeneous
both in the vertical direction and the horizontal direction. At a given location in the vertical
plane, the soil is divided into a number of layers, such that each layer is more or less uniform
in its texture. For example, one layer may be sand, the other clay, another silt, and so
on. Frequently, two to five layers are found sufficient to represent the soil horizon. Thus,
the vertical soil column is represented by these layers whose thicknesses are different. In a
similar manner, a watershed is divided into a number of areas each represented by a linear
reservoir. Then the watershed unit hydrograph is derived. A channel is divided into a number
of segments such that the sum of segments is equal to the length of the channel reach. These
segments may be of different lengths. In a similar vein, when computing the curve number,
the watershed is divided into a number of land use areas such that each area has more or less
the same land use.

In the above examples, there are two parameters: number of zones and configuration
of zones characterized by size or length or some geometric parameter. The question arises:
What information can be gleaned from the division into different zones and how does the
configuration affect the information? The discussion in this chapter focuses on this and related
questions.

10.1 Definition

Consider a random variable X divided into N unequal intervals (or classes) �xi, i = 1, 2, . . . , N,
with probability of X = xi, pi = p(xi). Here pi is the probability of occurrence in each class

Entropy Theory and its Application in Environmental and Water Engineering, First Edition. Vijay P. Singh.
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interval. The information content of event X = xi is

I
(
pi

) = log
1

pi

(10.1)

The expected information or the discrete Shannon entropy H of X can be written as

H = −
N∑

i=1

pi log pi;
N∑

i=1

pi = 1 (10.2)

Equation (10.2) can be employed to measure the variance of spatial probability distributions.
Entropy in equation (10.2) is dimensionless, because it depends only on the number of classes
or events but not on any system spatial characteristic. Equation (10.2) is useful if the number
of events or class intervals is the central focus. If systems have different numbers comprising
the values of X, comparison of these systems using entropy then becomes difficult. Consider
an example where a watershed is divided into two different zoning systems such that the
total number of land use zones in each system is different. For example, one zoning system
has five types of land uses and another has eight types of land uses. In this case, the entropy
characteristic of each system (set of zones) may be different and to compare these two systems
will then be difficult. It is therefore desirable to explicitly incorporate the effect of zone
class size (measured by interval size or coordinate system) in the entropy expression. Such
incorporation leads to the definition of spatial entropy:

H = −
N∑

i=1

pi log

(
pi

�xi

)
(10.3)

The spatial entropy can also be derived in another way. Consider a spatial system with the
total number of land uses (or population) being M. Let mi be the number of land uses assigned

to zone i whose capacity (or area) is �xi. Then X =
N∑

i=1

xi. Thus these land uses can be divided

into a number of zones N. Clearly each zone will have more than one land use and each zone
will have its own area. There are two variables here: number of land uses per zone and zone
area. There are many ways in which the M land uses can be assigned to N zones. Let W be the
number of ways in which mi land uses can be assigned to zone i with area �xi. The function
yielding W can be obtained from the multinomial distribution:

W = M!
∏

i

(
�x

mi
i

mi!

)
(10.4)

Equation (10.4) is analogous to the likelihood function whose maximization can be achieved
by first using logarithmic transformation and then using Stirling’s formula for simplifying the
log-factorial. Stirling’s formula can be expressed as (Blundell and Blundell, 2006):

ln N! ≈ N ln N − N (10.5a)

when N is very large. Thus, one obtains from equation (10.4):

log W = −
∑

i

mi log

(
mi

M�xi

)
= M

∑
i

pi log

(
pi

�xi

)
(10.5b)
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where mi/M = pi. Equation (10.5b) is similar to equation (10.3) and states that spatial entropy
is proportional to the average number of ways each land use can be assigned to each zone.
Dividing equation (10.5b) by M, one gets the spatial entropy function described in Chapter 9:

H = log W

M
= −

∑
i

pi log

(
pi

�xi

)
(10.6)

which is the same as equation (10.3). There are, however, two problems with equation (10.6).
First, it can give rise to negative values which make physical interpretation of entropy difficult.
Second, if spatial systems are of different sizes which is not unusual then it is difficult to
compare relative distributions of spatial phenomena. Thus, it is suggested to normalize spatial
entropy by its maximum value.

Considering �xi as probability distributed or as a weighting factor, that is, wi = �xi/X, then
the maximum spatial entropy from equation (10.3) can be written as log X. Therefore, the
relative spatial entropy (or information gain) can be expressed as

I = Hmax − H = log X +
∑

i

pi log

(
pi

�xi

)
(10.7)

Equation (10.7) can be written as

I =
N∑

i=1

pi log

(
Xpi

�xi

)
=

N∑
i=1

pi log pi −
N∑

i=1

pi log

(
�xi

X

)
(10.8)

Equation (10.8) denotes what is referred to by Batty (1976, 2010) as inverse spatial entropy.
Equations (10.7) and (10.8) show that inverse spatial entropy is virtual relative spatial entropy.
The sum of equations (10.6) and (10.8) is always equal to the logarithm of the system size
log X.

Equation (10.8) can be considered as a special case of a general case. To that end, let

qi = �xi

X
(10.9)

which can be interpreted as the probability of occurrence of �xi. Here the probability qi is like
a weighting factor or qi is equivalent to the weight assigned to the ith zone. Inserting equation
(10.9) in equation (10.8) one obtains

I =
∑

i

pi log

(
pi

qi

)
=

∑
i

pi log pi −
∑

i

pi log qi (10.10)

which is the same as cross or relative entropy due to Kullback and Leibler (1951) discussed
in Chapter 6. Here the probability distribution Q = {qi, i = 1, 2, . . . , N} can be considered as
a prior distribution and the probability distribution P = {pi, i = 1, 2, . . . , N} as the posterior
distribution. Equation (10.10) is the sum of two components and defines the information gain
by P = {pi} over Q = {qi}. The quantity log(pi/qi) may be positive, zero or negative, depending
on whether pi is greater than, equal to, or less than qi. If the a priori probability distribution
leads to the maximum entropy log N, say when the spatial system is divided into N equal
zones, then

I (P; Q) = log N +
∑

i

pi log pi = log N − H(p) (10.11)
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Equation (10.10) measures the difference between prior distribution {qi} and posterior
distribution {pi}. It also denotes the information gain due to the posterior distribution over the
prior distribution. In other words, the posterior distribution reflects the additional knowledge
over the prior distribution which reflects a state of prior knowledge or ignorance. In the spatial
context equation (10.10) determines the difference between the observed spatial probability
function {qi} and a hypothetical probability distribution function {pi} based on the premise
that probability is proportional to the zone size. Following Gibbs’ inequality, equation (10.10)
is always positive for any distributions {qi} and {pi}. It is zero when {pi} = {qi}.

The entropy given by equation (10.10) approximates a χ2 statistic and can be interpreted as
the logarithm of a weighted geometric measure as follows. Taking the exponential of equation
(10.8)

exp (I) =
∏

i

(
Xpi

�xi

)
pi (10.12)

In equation (10.12), term Xpi/�xi is the ratio of the density of population of, say, land uses in
zone i, mi/�xi, to the average density of land uses M/X in the system. Equation (10.12) is the
geometric mean of all land use density ratios in the system weighted by location probabilities
of land uses. Equations (10.7), (10.8), (10.10), and (10.11) express the decomposition of
various entropies into simple additive terms.

Example 10.1: Consider a 1000 acre watershed having five land use types as follows:

Land use Crops Forest Pasture Garden Urban
Area (acres) 300 350 200 50 100

Compute spatial entropy, inverse spatial entropy, maximum spatial entropy, and relative
spatial entropy.

Solution: Here N = 5, and �x1 = 300, �x2 = 350, �x3 = 200, �x4 = 50, and �x5 = 100 acres.
Assume that different land uses are equally likely, that is, pi = 1/5 = 0.2, i = 1, 2, . . . , 5.
Following equation (10.3) or equation (10.6), the spatial entropy is computed as:

H = −
5∑

i=1

pi log

(
pi

�xi

)

= −0.2 log

(
0.2

300

)
− 0.2 log

(
0.2

350

)
− 0.2 log

(
0.2

200

)
− 0.2 log

(
0.2

50

)
− 0.2 log

(
0.2

100

)
= 6.6849 nats

Following equation (10.8), the inverse spatial entropy is calculated as:

I =
N∑

i=1

pi log

(
Xpi

�xi

)

= 0.2 log

(
1000 × 0.2

300

)
+ 0.2 log

(
1000 × 0.2

350

)
+ 0.2 log

(
1000 × 0.2

200

)

+ 0.2 log

(
1000 × 0.2

50

)
+ 0.2 log

(
1000 × 0.2

100

)
= 0.2229 nats
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The system (watershed) size X = 1000 acres. The maximum spatial entropy thereof is:

Hmax = log (1000) = 6.9078 nats

Following equation (10.7), the relative spatial entropy can be computed as

I = Hmax − H = 6.9078 − 6.6849 = 0.2229 nats.

The above computations show that relative spatial entropy (or information gain measured by
spatial entropy) is indeed equal to the inverse spatial entropy.

10.2 Principle of entropy decomposition

Theil (1972) defined the principle of decomposition (POD) consisting of two terms, the
first measuring variation at the aggregate level and the second measuring variation at
the disaggregation level. This principle has been applied extensively to measure locational
concentration in geographical analysis (Chapman, 1970; Semple and Golledge, 1970). It can
form the basis for hierarchical analysis (Batty, 1976).

Let a spatial system Z be decomposed into K mutually exclusive subsystems or regions
denoted by zk, k = 1, 2, . . . , K, where each subsystem is divided into Mk parts. The principle of
decomposition states that the entropy of system Z is the sum of two entropies: 1) between-set
entropy defined over the set of zk regions, and 2) the weighted within-set entropy defined
within each of the zk regions. With the inverse spatial entropy defined by equation (10.8), the
principle of decomposition can be expressed as

I = IK +
∑

k

wkIk, k = 1, 2, . . . , K (10.13)

where IK is the between-set entropy, Ik is the within-set entropy for each zk, and wk is the
weight assigned to Ik. Equation (10.13) represents I at two levels of aggregation.

Before applying equation (10.13), the following concerning the aggregation of probabilities
and zones should be defined:

Pk =
∑
i∈zk

pi (10.14)

∑
k

Pk =
∑

k

∑
i∈zk

pi = 1 (10.15)

�Xk =
∑
i∈zk

�xi (10.16)

∑
k

�Xk =
∑

k

∑
i∈zk

�xi = X (10.17)

where Pk is the regional probability for aggregated zone zk and �Xk is the land area or size of
zk. On the basis of equation (10.13), equation (10.8) can be expressed as

I =
∑

k

Pk log

(
PkX

�Xk

)
+

∑
k

Pk

∑
iεzk

pi

Pk

ln

(
pi

Pk

�Xk

�xi

)
(10.18)
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p = 0.3
∆x = 60

p = 0.25
∆x = 80

p = 0.05
∆x = 90

p = 0.15
∆x = 60

p = 0.1
∆x = 100

p = 0.05
∆x = 300

p = 0.02
∆x = 50

p = 0.03
∆x = 50

p = 0.03
∆x = 140

p = 0.02
∆x = 70

Figure 10.1 Sketch demonstrating the

partition of the spatial system.

Equation (10.18) shows that the first term, designated as between-set entropy, is the inverse
of spatial entropy defined over sets zk; whereas the second term, designated as within-set
entropy, is an inverse spatial entropy for zone i within each set zk but weighted by the regional
probability Pk. The between-set inverse entropy is positive but within-set inverse entropy is
negative. Equations (10.7), (10.8), (10.10), (10.11), and (10.13) express decomposition of
various entropies into simple additive terms.

Example 10.2: Suppose a spatial system is partitioned as shown in Figure 10.1. Compute
the between-set and within-set inverse spatial entropies.

Solution: From Figure 10.1 and equation (10.14) to equation (10.17), we can compute the
probability associated with each region as

P1 = 0.3 + 0.15 + 0.25 = 0.7

P2 = 0.05 + 0.03 + 0.02 = 0.1

P3 = 0.1 + 0.05 + 0.02 + 0.03 = 0.2

Also we can compute the area of each region as

�X1 = 60 + 60 + 80 = 200 acres

�X2 = 90 + 70 + 140 = 300 acres

�X3 = 100 + 300 + 50 + 50 = 500 acres

The total area of the system is X = �X1 + �X2 + �X3 = 1000 acres.
Then, following equation (10.18), the between-set inverse spatial entropy is calculated as

IK =
3∑

k=1

Pk log

(
PkX

�Xk

)

= 0.7 log

(
0.7 × 1000

200

)
+ 0.1 log

(
0.1 × 1000

300

)
+ 0.2 log

(
0.2 × 1000

500

)
= 0.5838 nats

The within-set inverse spatial entropy is computed as:
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For region 1:

I1 = 0.3

0.7
log

(
0.3

0.7

200

60

)
+ 0.15

0.7
log

(
0.15

0.7

200

60

)
+ 0.25

0.7
log

(
0.25

0.7

200

80

)
= 0.0403 nats

For region 2:

I2 = 0.05

0.1
log

(
0.05

0.1

300

90

)
+ 0.03

0.1
log

(
0.03

0.1

300

70

)
+ 0.02

0.1
log

(
0.02

0.1

300

140

)
= 0.1613 nats

For region 3:

I2 = 0.1

0.2
log

(
0.1

0.2

500

100

)
+ 0.05

0.2
log

(
0.05

0.2

500

300

)
+ 0.02

0.2
log

(
0.02

0.2

500

50

)

+0.03

0.2
log

(
0.03

0.2

500

50

)
= 0.3001 nats

Then, the weighted within-set inverse spatial entropy is

∑
k

PkIk = 0.7 × 0.0403 + 0.1 × 0.1613 + 0.2 × 0.3001 = 0.1044 nats

Finally, from equation (10.13) the total inverse spatial entropy of the given spatial system is

I = 0.5838 + 0.1044 = 0.6882 nats

On the other hand, according to the definition as in equation (10.8), the system inverse spatial
entropy also can be computed as

I =
10∑

i=1

pi log

(
Xpi

�xi

)

= 0.3 log

(
1000 × 0.3

60

)
+ 0.15 log

(
1000 × 0.15

60

)
+ 0.25 log

(
1000 × 0.25

80

)

+ 0.05 log

(
1000 × 0.05

90

)
+ 0.03 log

(
1000 × 0.03

70

)
+ 0.02 log

(
1000 × 0.02

140

)

+ 0.1 log

(
1000 × 0.1

100

)
+ 0.05 log

(
1000 × 0.05

300

)
+ 0.02 log

(
1000 × 0.02

50

)

+ 0.03 log

(
1000 × 0.03

50

)
= 0.6882 nats

From the computations one can see that the total inverse spatial entropies computed in two
different ways are the same.
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10.3 Measures of information gain

In a given area, usually water supply, energy supply, waste disposal facilities are directly
related to the population in the area. Thus, the migration of people from one area to the
other becomes important. Migration of people will determine the planning and design of such
facilities, and spatial analysis of migrant flows can be analyzed using entropy. In a similar
vein, consider a watershed receiving rainfall. Different areas of the watershed receive different
rainfall amounts. Part of the rainfall received in any area is converted to surface water which
flows as runoff to the nearest channel or stream which then flows into a higher order stream
and so on, until the water reaches the watershed outlet. In a similar manner, all areas of the
watershed will contribute flows to the flow that reaches the outlet. Thus, the movement of
water can be considered as a two dimensional problem and can be analyzed using entropy.

10.3.1 Bivariate measures
One can characterize the movement of a body of water as an event E. This event originates in
an area denoted by ai and the probability that this event occurs in area ai is pi (i = 1, 2, . . . , N).
The probability that the water (or event) reaches the channel j, cj, is pj (j = 1, 2, . . . , M). The
probability of the movement between ai and cj is pij. If the information is received to the effect
that the flow did occur between i and j, then each of these probabilities is raised to unity. The
smaller the value of probability, the message about the actual movement is more informative.
Let the a priori probabilities be qij and a posteriori probabilities of the movement of water or
flow be pij. Then one can write

N∑
i=1

M∑
j=1

qij = 1 (10.19)

∑
j

qij = qi• (10.20)

∑
i

qij = q•j (10.21)

∑
i

qi• =
∑

j

q•j = 1.0 (10.22)

Putting in matrix form,




q11 q12 . . . q1M

q21 q22 . . . q2M

. . . . . .

. . . . . .

. . . . . .

qN1 qN2 . . . qNM




Analogous relations for pij can be written as

∑
i

∑
j

pij = 1.0 (10.23)

∑
j

pij = pi• (10.24)
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∑
i

pij = p•j (10.25)

∑
i

pi• =
∑

j

p•j = 1.0 (10.26)




p11 p12 . . . p1M

p21 p22 . . . p2M

. . . . . .

. . . . . .

. . . . . .

pN1 pN2 . . . pNM




These constitute matrices of probabilities. Note that rows represent flow origins and columns
flow destinations.

Comparison of a priori and a posteriori probability matrices results in three issues. First,
row and column entropies may or may not be maximized. If rows and columns are at the
maximum of log N then there is complete uncertainty about the origins and destinations. If the
entropies are less than log N, then origins and destinations have some degree of concentration
or organization reflecting systematic regularity. Second, if joint entropy and expected joint
entropy or transinformation are the same, there is interchange reflecting movement within the
bounds specified by marginal probability distributions. The equality of joint and expected joint
entropies reveals pure random movement and in that case marginal entropies are maximized.
If the joint and expected joint entropies are not equal, flows depart from order or organization
along margins. The transmitted information ultimately gets degraded to noise and thus the
information entropy can be viewed in the same way as thermal (thermodynamics) entropy.
Of the most value is the non-noisy or significant information, and this may be revealed by the
differences between a priori expectations and the a posteriori expectations.

Matrix P implies the joint, row, and column entropies:

H
(

pij

)
= −

N∑
i=1

M∑
j=1

pij log pij (Joint entropy) (10.27)

H
(
pi•

) = −
N∑

i=1

pi• log pi• (Row entropy) (10.28)

H
(

p•j

)
= −

M∑
j=1

p•j log p•j (Column entropy) (10.29)

Analogous expressions can be written for matrix Q as:

H
(

qij

)
= −

N∑
i=1

M∑
j=1

qij log qij (Joint entropy) (10.30)

H
(
qi•

) = −
N∑

i=1

qi• log qi• (Row entropy) (10.31)

H
(

q•j

)
= −

M∑
j=1

q•j log q•j (Column entropy) (10.32)
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If flows at origins and destinations are independent the following measures of expected joint
entropy (transinformation) can be expressed, respectively, as:

I
(

qij

)
= log

(
qij

qi•q•j

)
(10.33)

T
(

qij

)
=

N∑
i=1

M∑
j=1

qij log

(
qij

qi•q•j

)
(10.34)

T
(

pij

)
=

N∑
i=1

M∑
j=1

pij log

(
pij

pi•p•j

)
(10.35)

One may also write

T
(

qij

)
= −

N∑
i=1

qi• log qi• −
M∑

j=1

q•j log q•j +
N∑

i=1

M∑
j=1

qij log qij (10.36)

Therefore,

T
(

qij

)
= H

(
qi•

) + H
(

q•j

)
− H

(
qij

)
(10.37)

This means that

H
(

qij

)
< H

(
qi•

) + H
(

q•j

)
(10.38)

Likewise,

T
(

pij

)
= H

(
pi•

) + H
(

p•j

)
− H

(
pij

)
(10.39)

The transinformation is zero if the difference between the sum of marginal entropies and the
joint entropy (based on the margins) is zero. The transinformation increases with increasing
deviations of qij and pij from their expectations 〈qi.q. j〉 and 〈pi.p. j〉 (usually <•> denotes
expectation). Furthermore, log(qij/qi •q• j) is positive, zero or negative, depending on whether
the probabilities of movement from origin i to destination j are greater than, equal to, or less
than the independence level.

Comparing flows further, one can write the a priori information of Q and the a posteriori

information of P, then the gain of information by p over q can be stated as I(p; q) =
∑

p log
p

q
in which log(p/q) may take on a positive, zero, or negative value, based on whether p is greater
than, equal to, or less than q. If the a priori probabilities correspond to the maximum entropy
then equation (10.10) becomes

I(p; q) = log N +
∑

p log p = log N − H(p)

Now one can express specific aspects of comparison as:

I
(
pi• : qi•

) =
N∑

i=1

pi• log

(
pi•

qi•

)
(10.40)
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I
(

p•j : q•j

)
=

M∑
j=1

p•j log

(
p•j

q•j

)
(10.41)

I
(

pi•p•j : qi•q•j

)
=

N∑
i=1

M∑
j=1

pi•p•j log

(
pi•p•j

qi•q•j

)
(10.42)

I
(

pij : qij

)
=

N∑
i=1

M∑
j=1

pij log

(
pij

qij

)
(10.43)

Several interesting aspects of flows can be investigated using these comparative information
gains. For example, if the marginals of Q and P are constant, or if the a priori and a posteriori
distributions of flows among origins and destinations change, one can focus on the interchange
of flows among areas. The direction of interchange is of interest in any case. The question
of a change in steady state on the margins, if generated probabilistically, occurs or there is a
differing degree and pattern of organization exhibiting systematic regularity.

Example 10.3: Consider five interconnected reservoirs in a large urban area. Flows can
occur from one reservoir to another, depending on the requirements. In other words, one
reservoir can be a supplier at one time but can be a receiver at another time.

Flows (×1000 m3)
Reservoir 1 2 3 4

1 Expected 5000 1000 1500 1200
Observed 5500 1800 750 1400
Residual 500 800 −750 200

2 Expected 5000 1300 2800 1700
Observed 4500 2400 4600 2500
Residual −500 1100 1800 800

3 Expected 1000 1400 950 1300
Observed 2200 3600 700 2250
Residual 1200 2200 −250 950

4 Expected 1500 2850 950 1220
Observed 670 3700 410 1450
Residual −830 850 −540 230

5 Expected 1200 1810 2420 1240
Observed 580 2910 3710 1525
Residual −620 1100 1290 285

Compute qij, pij, pi., p.j, qi., q.j. Compute entropies for rows and columns for the observed
flows as well as expected flows. Also, compute entropies for the flows. Determine if there is
some systematic ordering present in the flows, if there is concentration both in origin and
destination patterns, and if inflows are exhibiting more concentration than outflows. What do
residuals reveal?

Solution: From the given observed flow data, we can obtain the expected flow matrix as:
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5000 1000 1500 1200
5000 1300 2800 1700
1000 1400 950 1300
1500 2850 950 1220
1200 1810 2420 1240

Dividing each element by the summation of the above matrix yields the expected flow
probabilities matrix Q = [qij] as

0.1339 0.0268 0.0402 0.0321
0.1339 0.0348 0.0750 0.0455
0.0268 0.0375 0.0254 0.0348
0.0402 0.0762 0.0254 0.0327
0.0321 0.0485 0.0648 0.0332

In a similar manner, the observed flow matrix is:

5500 1800 750 1400
4500 2400 4600 2500
2200 3600 700 2250
670 3700 410 1450
580 2910 3710 1525

Also dividing each element by the summation of the above matrix yields the expected flow
probabilities matrix P = [pij] as

0.1166 0.0382 0.0159 0.0297
0.0954 0.0509 0.0976 0.0530
0.0467 0.0763 0.0148 0.0477
0.0142 0.0785 0.0087 0.0307
0.0123 0.0617 0.0787 0.0323

Obviously, the sums of Q and P are 1, respectively.
pi. is equivalent to the probabilities by summing up all columns (j) of P for each row (i):

∑
j

pij = pi.

Similarly, p.j is equivalent to the probabilities by summing up all rows (j) of P for each column
(i):

∑
i

pij = p.j
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Likewise, qi and qj can be calculated by the above procedure by manipulating matrix Q. The
resulting pi., p.j, qi and q.j are shown as below:

pi • p• j qi • q• j

0.2004 0.2852 0.2330 0.3669
0.2969 0.3056 0.2892 0.2239
0.1856 0.2157 0.1245 0.2309
0.1321 0.1935 0.1746 0.1784
0.1850 0.1786
1 1 1 1

Following equations (10.27) to (10.32), the associated entropies can be calculated as follows:

Joint entropy: H
(

pij

)
= −

N∑
i=1

M∑
j=1

pij log pij = 2.7966 nats

Row entropy: H
(
pi•

) = −
N∑

i=1

pi• log pi• = 1.5748 nats

Column entropy: H
(

p•j

)
= −

M∑
j=1

p•j log p•j = 1.3688 nats

Joint entropy: H
(

qij

)
= −

N∑
i=1

M∑
j=1

qij log qij = 2.8355 nats

Row entropy: H
(
qi•

) = −
N∑

i=1

qi• log qi• = 2.5700 nats

Column entropy: H
(

q•j

)
= −

M∑
j=1

q•j log q•j = 1.3489 nats

Then from equations (10.37) and (10.39) one can obtain the transinformation as

T
(

pij

)
= H

(
pi•

) + H
(

p•j

)
− H

(
pij

)
= 1.5748 + 1.3688 − 2.9766 = 0.147 nats

T
(

qij

)
= H

(
qi•

) + H
(

q•j

)
− H

(
qij

)
= 1.5700 + 1.3489 − 2.8355 = 0.0834 nats

Results indicate that there is some systematic ordering present in the flows because
T(pij) = 0.147 nats. Residuals reveal that the a posteriori flows are generally larger than
the a priori flows.

10.3.2 Map representation
A map can be considered as a carrier of information. The distribution of its contents can be
designed using entropy. The quantity of information of a map can be expressed as

I(Y , X) = H(X) − φ(Z) (10.44)

where I(Y , X) or Iy → x denotes the quantity of information of base map (system) X received by
plotting map (system) Y in the process of development and transformation of the base map X
(expressed in binary units); and φ(z) denotes the loss of information of the map incurred due
to its transformation and development in the process of plotting.
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The loss of information φ(z) can be measured by the relative entropy in binary units. The
loss is due to the generalization of the base map and external and internal noise. For estimating
the loading of information one can write

I(Y , X) = H(X|Y) (10.45)

where I(Y ,X) is the loading information in binary units, say, for 1 cm2 of the map; H(X)and
H(X|Y) denote entropies corresponding to the marginal and conditional probability density
functions expressed in bits for a unit area (say 1 cm2) of the map. For estimating spatial
information,

I
(

yj, xi

)
= log2

p
(

xi|yj

)
p
(
xi

) (10.46)

or

I
(

yj, xi

)
= log2

p
(

xi, yj

)
p
(
xi

)
p
(

yj

) (10.47)

where xi denotes that X is in a state of xi and yj denotes that Y is in a state of yj; p(xi), p(yj), and
p(xi,yj) correspond to their probabilities. The spatial information I(yj,xi) from equation (10.46)
corresponds to the information quantity per unit area (e.g., 1 cm2) of the map.

Information loss by map plotting is determined as the difference in entropy in a base map
and that in a plotted map. Let A1, A2, . . . , Am shown on the map (land use, settlements, for
example) be associated with probabilities p(x1), p(x2), . . . , p(xm). The system (map) entropy
can be written as

H(X) = −
m∑

i=1

p
(
xi

)
log2

[
p
(
xi

)]
(10.48)

where H(X) denotes the entropy of contents in bits for an elemental cell, a symbol, a sign, a
letter, and so on. H(X) denotes the entropy loading (in bits) per unit area (1 cm2) of a map.
The map information capacity or informativity can be regarded as a special case of entropy
when the states are equiprobable:

p
(
x1

) = p
(
x2

) = . . . = p
(
xm

)
(10.49a)

In this case,

H0 = log2 m (10.49b)

The relative entropy Hrel is

Hrel = H

H0

(10.50)

The deviation of relative entropy from unity means excessivity and indicates the degree of
information under loading or ‘‘reserve’’:

R = 1 − H

H0

(10.51)
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Some elements of map contents (for example, relief shown by contours) are continuous and
can be expressed by entropy as

H(X) = −
∫

p(x) log2

[
p(x)

]
dx (10.52)

where p(x) is the probability density function.
Consider the case of loading estimation for a small scale map. The loading estimation can

be made using map graticule, hydrography, relief, settlements, roads, administrative, and
territorial division, and so on.

10.3.3 Construction of spatial measures
Three desirable properties of a suitable information measure include the following: 1) The
measure should increase with the increase in the number of alternatives (e.g., number of
zones). 2) The measure should increase as the configuration of alternatives (e.g., the sizes of
zones) becomes closer to the equal area configuration. 3) Different forms of the underlying
distribution should exhibit different amounts of information, the uniform density leading to
the maximum uncertainty or lack of information. One way is to disaggregate the measure into
two components corresponding to the first two properties and then combine them to form
the composite function.

To explicitly reflect the effect of number of zones, the Shannon entropy function H(P|N) is
suitable and is expressed as:

H(P|N) = −
N∑

i=1

pi log pi, 0 ≤ H(P|N) ≤ log N (10.53)

Clearly, H(P|N) → ∞, as N → ∞, and H(P|N + 1) > H(P|N), regardless of {pi}. For a fixed
number of zones, the Shannon entropy attains its maximum log N as pi = 1/N, ∀ i.

However, equation (10.52) does not consider the configuration of zones, and it is a measure
of the number rather than the density of the phenomenon under consideration. What this
means is that for very different configurations for the same number of partitions of the system
or a given area and possibly different densities, identical entropy values can be obtained. Thus,
it is necessary for the measure of information to relate to configuration, that is, relate {pi} to
{qi}. Kerridge (1961) defined an inaccuracy function as

K(P : Q|N) = −
N∑

i=1

pi log qi = −
N∑

i=1

pi log

(
qipi

pi

)

= −
N∑

i=1

pi log pi +
N∑

i=1

pi log

(
pi

qi

)
, 0 ≤ K(P : Q|N) ≤ ∞ (10.54)

which is a kind of cross-entropy and measures the difference between P = {pi} and Q = {qi}.
If {qi} = {pi}, then K(P : Q|N) reduces to H(P|N). If the two distributions are extreme-peaked
such that pj = 1 and pi = 0, ∀ i, i 	= j, and qj = 1, and qi = 0, ∀ i, i 	= j, then K(P : Q|N) = 0. If only
the distribution {qi} is extreme-peaked, then K(P : Q|N) = ∞. If {qi} is uniform, that is, the
zones are of equal area, then

K(P : Q|N) = log N = H(P|N) (10.55)
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The inaccuracy function has a positive value but less than log N, if the densities are uniform,
that is, pi=qi, ∀i, and if {qi} is not uniform.

The inaccuracy measure K(P : Q|N) depends on N. Normalizing K(P : Q|N)with respect to the
number of zones N, one can define another measure, called accuracy measure, A(P : Q|N) as

A(P : Q|N) = log N − K(P : Q|N)

= log N +
N∑

i=1

pi log qi, −∞ ≤ A(P : Q|N) ≤ log N (10.56)

A(P : Q|N) does not directly depend on N and can be construed as a measure for comparing the
two distributions {pi} and {qi} in terms of their relative forms. If K(P : Q|N) = 0 (i.e., {pi} and
{qi} are extreme-peaked), then A(P : Q|N) = log N. If the system configuration is an equal area,
the accuracy measure is zero, and when the configuration is extreme-peaked, the accuracy
measure is − ∞.

A measure of information relating to the zone number, configuration, and density, denoted
as Î (P : Q|N), can be obtained by summing H(P|N) and A(P : Q|N) as:

Î (P : Q|N) = H(P|N) + A(P : Q|N)

= −
N∑

i=1

pi log pi + log N +
N∑

i=1

pi log qi (10.57)

If qi=1/N, ∀i, that is, {qi} is equal area, A(P : Q|N) = 0 and H(P|N) dominates. This implies that
if configuration is irrelevant, the Shannon entropy is the measure to be used. If the elements
of the distribution {pi} are weighted unequally then the Shannon entropy should be modified.

The maximum value of Î (P : Q|N) can occur in two ways. If {pi} and {qi} are both
uniform then H(P|N) dominates and takes its maximum value of log N. If pi = qi, ∀i then
Î (P : Q|N) = log N. In this case the distribution {qi} is not uniform (or equal area). Although
the weighting of zones is not equal, it is consistent across both {qi} and {pi}. If {pi} is an
extreme valued distribution, A(P : Q|N) dominates. If {qi} is extreme-peaked but not {pi},
the minimum value of accuracy -∞ occurs. If both these distributions are extreme-peaked,
that is, pj = qj = 1, and pi = qi = 0, ∀i, i 	= j, this is equivalent to uniform density simplification,
Î (P : Q|N) = log N. Furthermore, Î (P : Q|N) = 0 if {pi} is extreme-peaked and {qi} is uniform.

Equation (10.57) shows that H(P|N) and K(P : Q|N) can be combined to constitute a measure
of relative information, I(P : Q|N). Thus, Î (P : Q|N) can be expressed as

Î (P : Q|N) = log N − I(P : Q|N) = log N −
N∑

i=1

pi log
pi

qi

(10.58)

The quantity I(P : Q|N) is the well-known cross-entropy (Kullback and Leibler, 1951). Theil
(1972) termed I(P : Q|N) as information gain which is independent of N in terms of its
magnitude. From equation (10.58) the effect of zone number and configuration can be re-
interpreted. It can be argued that log N refers to the zone number and I(P : Q|N) relates to
the configuration. There is a relationship between H(P|N) and K(P : Q|N) and I(P : Q|N). One
can also define H(P|N) in terms of K(P : Q|N) and I(P : Q|N). According to Aczel and Daroczy
(1975), K(P : Q|N) is inaccuracy and I(P : Q|N) is information error, and K(P : Q|N)−I(P : Q|N)
is inaccuracy minus error, and H(P|N) is uncertainty. If {pi} = {qi}, I(P : Q|N) = 0; this reflects
the tendency to uniform density.
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The other interpretation is via improvement revision or improvement (Theil, 1972).
Consider a pre-prior

{
q∗

i

}
and let it be an equal area distribution, q∗

i = 1/N, ∀i. The posterior
distribution is the same. The accuracy can be expressed as

A(P : Q|N) =
N∑

i=1

pi log
qi

q∗
i

=
N∑

i=1

pi log
pi

q∗
i

−
N∑

i=1

pi log
pi

qi

(10.59)

Thus, accuracy is the difference between the equal area information gain and the actual
gain. If the prior and the posterior distributions are the same, implying uniform density,
the accuracy is the greatest. If the pre-prior, prior, and posterior distributions are the same,{
q∗

i

} = {
qi

} = {
pi

}
, A(P : Q|N) = 0. The information measure Î (P : Q|N) can be expressed as

Î (P : Q|N) = −
N∑

i=1

pi log pi +
N∑

i=1

pi log
qi

q∗
i

(10.60)

This shows that accuracy is a modification of the Shannon entropy because of the deviation
from the equal area concept. This deviation can lead to an additional amount of information
over and above H(P|N), due to the tendency toward uniform density, or a loss in information
from H(P|N) due to the deviation from the equal area notion.

Example 10.4: Consider five zones dividing a 1000-acre watershed. Compute the inaccuracy
function K(P; Q|N). The zones are given as follows:

Zones

Configuration 1 2 3 4 5

1 300 350 200 50 100
2 250 300 150 175 125
3 200 200 200 200 200
4 500 50 150 120 180
5 400 225 175 80 120

Suppose p1 = 0.15, p2 = 0.30, p3 = 0.25, p4 = 0.2, and p5 = 0.1. Compute the Shannon entropy
of the zones. Compute the inaccuracy accounting for the configuration types. Also compute
the accuracy measure N = 5, and pi = 1/5 = 0.2, i = 1, 2, . . . , 5, for maximum entropy.

Solution: Following the definition as shown in equation (10.52), the discrete Shannon
entropy for each configuration can be computed as:

H(P|N) = −
N∑

i=1

pi log pi

= −0.15 log2 (0.15) − 0.30 log2 (0.30) − 0.25 log2 (0.25) − 0.2 log2 (0.2) − 0.1 log2 (0.1)

= 2.2282 bits

To take into account zonal configuration, we compute the inaccuracy measure as given
in equation (10.54). In this case, pis are given without due consideration of the zonal
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configuration and qis are based on the zonal configuration. Therefore, for configuration 1,

K1 (P; Q|N = 5) = −
N∑

i=1

pi log2

(
qi

)

= −0.15 log2

(
300

1000

)
− 0.30 log2

(
350

1000

)

− 0.25 log2

(
200

1000

)
− 0.2 log2

(
50

1000

)
− 0.1 log2

(
100

1000

)
= 2.4920 bits

For configuration 2

K2 (P; Q|N = 5) = −
N∑

i=1

pi log2

(
qi

)

= −0.15 log2

(
250

1000

)
− 0.30 log2

(
300

1000

)

− 0.25 log2

(
150

1000

)
− 0.2 log2

(
175

1000

)
− 0.1 log2

(
125

1000

)
= 2.3082 bits

For configuration 3

K3 (P; Q|N = 5) = −
N∑

i=1

pi log2

(
qi

)

= −0.15 log2

(
200

1000

)
− 0.30 log2

(
200

1000

)

− 0.25 log2

(
200

1000

)
− 0.2 log2

(
200

1000

)
− 0.1 log2

(
200

1000

)
= 2.2319 bits

For configuration 4

K4 (P; Q|N = 5) = −
N∑

i=1

pi log2

(
qi

)

= −0.15 log2

(
500

1000

)
− 0.30 log2

(
50

1000

)

− 0.25 log2

(
150

1000

)
− 0.2 log2

(
120

1000

)
− 0.1 log2

(
180

1000

)
= 2.9900 bits

For configuration 5

K5 (P; Q|N = 5) = −
N∑

i=1

pi log2

(
qi

)

= −0.15 log2

(
400

1000

)
− 0.30 log2

(
225

1000

)

− 0.25 log2

(
175

1000

)
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− 0.2 log2

(
80

1000

)
− 0.1 log2

(
120

1000

)
= 2.5072 bits

The accuracy measure can be computed using equation (10.56). Take configuration 1 as an
example. The accuracy measure can be computed as:

A1 (P : Q|N) = log N − K1 (P : Q|N) = log2 5 − 2.4920 = −0.1701 bits

In a similar manner, the accuracy measures for other configurations can be obtained as:

A2 (P : Q|N) = log N − K2 (P : Q|N) = log2 5 − 2.3082 = 0.0137 bits

A3 (P : Q|N) = log N − K3 (P : Q|N) = log2 5 − 2.2319 = 0.0900 bits

A4 (P : Q|N) = log N − K4 (P : Q|N) = log2 5 − 2.9900 = −0.6681 bits

A5 (P : Q|N) = log N − K5 (P : Q|N) = log2 5 − 2.5072 = −0.1853 bits

Example 10.5: Compute the information measure Î relating zone number, configuration,
and density using the data given in Example 10.4. Use N = 5, p1 = 0.15, p2 = 0.3, p3 = 0.25,
p4 = 0.2, and p5 = 0.1. Then, consider pi = qi = 1/N. Compute Î. Compute information error
and uncertainty.

Solution: The measure of information relating to zone number, configuration, and density,
denoted as Î (P : Q|N), is defined in equation (10.57). Then for the configuration 1, such
information measure is:

Î1 (P : Q|N) = H(P|N) + A1 (P : Q|N)

From Example 10.5, we have already obtained:

H(P|N) = 0.2282 bits

A1 (P : Q|N) = −0.1701

Therefore, of Î1 (P : Q|N) = 0.2282 − 0.1701 = 0.0581 bits
Similarly, we have

Î2 (P : Q|N) = H(P|N) + A2 (P : Q|N) = 0.2282 + 0.0137 = 0.2419 bits

Î3 (P : Q|N) = H(P|N) + A3 (P : Q|N) = 0.2282 + 0.0900 = 0.3182 bits

Î4 (P : Q|N) = H(P|N) + A4 (P : Q|N) = 0.2282 − 0.6681 = −0.4399 bits

Î5 (P : Q|N) = H(P|N) + A5 (P : Q|N) = 0.2282 − 0.1853 = 0.0429 bits

When pi = qi = 1/5, also following equation (10.57) the information measure is computed as:

I = −
N∑

i=1

pi log pi + log N +
N∑

i=1

pi log qi

= −
5∑

i=1

0.2 log2 (0.2) + log2 (5) +
5∑

i=1

0.2 log2 (0.2) = log2 (5)

= 2.2319 bits
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Information error, also known as cross-entropy, as presented in equation (10.58), for
configuration 1 can be computed as:

I1 (P : Q|N) =
5∑

i=1

pi log
pi

qi

where

p1 = 0.15, p2 = 0.3, p3 = 0.25, p4 = 0.2, p5 = 0.1

q1 = 300

1000
= 0.3, q2 = 350

1000
= 0.35, q3 = 200

1000
= 0.2, q4 = 50

1000
= 0.05,

q5 = 100

1000
= 0.1

Therefore,

I1 (P : Q|N) = 0.15 log2

(
0.15

0.3

)
+ 0.3 log2

(
0.3

0.35

)
+ 0.25 log2

(
0.25

0.2

)
+ 0.2 log2

(
0.2

0.05

)

+ 0.1 log2

(
0.1

0.1

)
= 0.2638 bits

Similarly, information errors for other configurations are

I2 (P : Q|N) = 0.0800 bits

I3 (P : Q|N) = 0.0937 bits

I4 (P : Q|N) = 0.7618 bits

I5 (P : Q|N) = 0.2790 bits

H(P|N) also known as uncertainty. From Example 10.4, it is 2.2282 bits.

10.4 Aggregation properties

The information of the proposed measure ensues from two sources: from the number of
zones N describing the phenomenon and from zonal configuration based on the equal area or
uniform density assumption. The information owing to the number of zones can be traded off
with information imparted by the zonal configuration. The objective of aggregation is to find
a configuration of M zones from N, M < N, where the change in information is positive. This
change in information can be expressed as

�Î (P : Q|N → M) = Î (P : Q|M) − I
(
P : Q̂|N)

(10.61)

For the aggregation to be meaningful, �Î > 0.
Consider the aggregation from N to M zones. For the zonal aggregation of Si, i = 1, 2, . . . , N,

into sub-regions Sj, j = 1, 2, . . . , M, the associated aggregation of probabilities can be written as

Pj =
∑
i∈Sj

pi and Qj =
∑
i∈Sj

Qi (10.62)
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Equation (10.61) can now be recast as

�Î (P : Q|N → M) = −
∑

j

Pj log Pj + log M +
∑

j

Pj log Qj +
∑

i

pi log pi − log N −
∑

i

pi log qi

(10.63)

From the theorem of entropy decomposition (Theil, 1972),

∑
i

pi ln pi =
∑

j

Pj log Pj +
∑

j

Pj

∑
i∈Sj

pi

Pj

ln
pi

Pj

(10.64)

and

∑
i

pi ln qi =
∑

j

Pj log Qj +
∑

j

Pj

∑
i∈Sj

pi

Pj

ln
qi

Qj

(10.65)

Introducing equation (10.65) in equation (10.63), the information change can be cast as

�Î (P : Q|N → M) = �H(P|N → M) + �A(P : Q|N → M) (10.66)

which can be written as

� ˆI(P : Q|N → M) =
∑

j

Pj

∑
i∈Sj

pi

Pj

log
pi

Pj

+ log
M

N
−

∑
j

Pj

∑
i∈Sj

pi

Pj

log
qi

Qj

(10.67)

The first term on the right side of equation (10.67) represents �H(P|N → M), and the
second and third terms represent �A(P : Q|N → M). Clearly, �H(P|N → M) is negative. In
order for Î (P : Q|N → M) to be positive, �A(P : Q|N → M) must be positive and greater than
�H(P|N → M), that is,

�A(P : Q|N → M) > −�H(P|N → M) (10.68)

The term log (M/N) < 0. Therefore, for I
(
P : Q|N̂ → M

)
to be positive,

−
∑

j

Pj

∑
i∈Sj

pi

Pj

log

(
qi

Qj

)
> log

(
N

M

)
−

∑
j

Pj

∑
i∈Sj

pi

Pj

log

(
qi

Pj

)
(10.69)

The loss in zonal information log (M/N) is owing to the change in the way accuracy is
normalized at the level of M and N zones.

From equations (10.58) and (10.61) one can write

�Î (P : Q|N → M) = log M −
∑

j

Pj log

(
Pj

Qj

)
− log N +

∑
i

pi log

(
pi

qi

)
(10.70)

Thus, the change in information is a function of change in the number of zones and change
in the information gain:

�I(P : Q|N → M) = I(P : Q|M) − I(P : Q|N) (10.71)
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Using the entropy decomposition theorem,

∑
i

pi log
pi

qi

=
∑

j

Pj log
Pj

Qj

+
∑

j

Pj

∑
i∈Sj

pi

Pj

log

(
pi/Pj

qi/Qj

)
(10.72)

Substituting equation (10.72) in equation (10.70),

�Î (P : Q|N → M) = log
M

N
+

∑
j

Pj

∑
i∈Sj

pi

Pj

log

(
pi/Pj

qi/Qj

)
(10.73)

For Î (P : Q|N → M) > 0, one gets

∑
j

Pj

∑
i∈Sj

pi

Pj

log

(
pi/Pj

qi/Qj

)
> log

N

M
(10.74)

Equation (10.74) shows that the gain in information from moving toward the equal area-
uniform density assumption must be larger than the loss owing to the adjustment of the zonal
number information.

Example 10.6: Consider three unequal zones and the corresponding probability distribution.
The distribution of phenomenon at the three-zone level is uneven. Aggregation of three zones
to two equal zones is made, as shown in Figure 10.2.

Solution: The aggregation leads to a uniform distribution of the phenomenon. The accuracy
measure will be zero and the Shannon entropy will change from �H(P|3) = 0.9433 to
�H(P|2) = log 2 = 0.6931. Therefore, �H(P|3 → 2) = − 0.2502 bits.

The Kerridge inaccuracy:

K(P : Q|3) = 1.3593, K(P : Q|2) = 0.6931, �K(P : Q|3 → 2) = −0.6661 bits.

Pure zonal information:

log 3 = 1.0986, log 2 = 0.6931, � log N = −0.4055 bits.

p1 = 0.2

p1 = 0.5

p2 = 0.5

p2 = 0.3

(a)

(b)

p3 = 0.5

Figure 10.2 Aggregation from three zones to two zones.
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Table 10.1 Information measures before and after aggregation.

�H K A I Î

Zones 3 0.9433 1.3593 −0.2606 0.4159 0.6827
Zones 2 0.6931 0.6931 0.0000 0.0000 0.6931
Changes −0.2502 −0.6661 0.2606 −0.4159 0.0104

Accuracy:

A(P : Q|3) = −0.2606, A(P : Q|2) = 0.00, �A(P : Q|3 → 2) = 0.2606 bits.

Information gain:

I(P : Q|3) = 0.4159, I(P : Q|2) = 0.00.�I(P : Q|3 → 2) = −0.4159 bits.

Information:

Î(P : Q |N = 3) = 0.6827, Î(P : Q |N = 2) = 0.6931, �Î(P : Q |N → 3 toM → 2) = 0.0104 bits.

Results are shown in Table 10.1. The change in information �Î(P : Q |3 → 2) is positive.
This means that the two-zone system conveys slightly more information than the three-zone
system. In this case the loss of information �H(P|3 → 2) is more than compensated for by the
gain in inaccuracy A(P : Q|3 ← 2). The loss in the Shannon entropy is 26% of H(P|3), even
though {pi} is aggregated to a uniform distribution, but the gain in information is also of this
order and offsets the loss. The slight increase in information is achieved by quite a radical
change in the configuration of zones. In practical applications, aggregation to equal area can
never be achieved. As n increases, it becomes more difficult to achieve a positive value of
�Î(P : Q |N → M) when M = N−1.

Referring to Table 10.1, the loss in zonal information log(2/3) is about 36% and the gain
through the change in information gain just offsets this amount. The change in accuracy, a
positive quantity in the information, is on the order of 49% of the inaccuracy at the three-zone
level, but the loss with inequality is log(3/2) + �H(P|3 → 2) is about 32% of log 3 + H(P|3).
Improvements in information through aggregation entail radical changes in configuration.

10.5 Spatial interpretations

Information in equation (10.57) or (10.58) can be cast with use of equation (10.9) as

Î (P; Q|N) = −
N∑

i=1

pi log
pi

xi

− log
X

N
(10.75)

in which the first term on the right side is the Shannon entropy. If, the average zone size
X/N = x, is defined as

x = X

N
(10.76)
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Then equation (10.75) yields

I
(
P; Q̂|N) = −

N∑
i=1

pi log
pi

xi

− log x (10.77)

Equation (10.76) can be interpreted as the information proportional to the spatial entropy
modified by the system information measured by the average zonal size.

Rearranging equation (10.76), and recalling pi = p(xi)xi (xi is the area of the corresponding
zone i) and taking the limits, one obtains

lim
N→∞

[
Î (P; Q|N) + log

(
X

N

)]
= −

∫
X

p(x) log
[
p(x)

]
dx (10.78)

Equation (10.78) shows that spatial entropy converges to continuous Shannon entropy as
xi → 0, ∀ i.

Using equation (10.58) in equation (10.78) and recalling definitions of q(x) and q(xi)
analogous to those of p(x) and p(xi), the continuous information gain or divergence can be
defined as

lim
N→∞

[
Î (P; Q|N) + log

(
1

N

)]
= −

∫
X

p(x) log

[
p(x)

q(x)

]
dx (10.79)

The difference between the above two measures entailing �Î (P; Q|N) is solely in terms of X,
the system size. Thus, the zone size or configuration enters the modified Shannon entropy in
an absolute way.

Using equation (10.58), equation (10.79), in terms of p(xi), can be cast as

Î (P; Q|N) = −
N∑

i=1

p
(
xi

)
xi log p

(
xi

) − log x = −
∑

i

p
(
xi

)
xi log

[
p
(
xi

)
x
]

(10.80)

�Î (P; Q|N) is the modified Shannon entropy. Equation (10.80) converges to H(P|N). As
xi → x, with p(xi) redefined, Î (P; Q|N) → H(P|N).

Using equations (10.48), (10.52), and (10.80), accuracy A(P; Q|N) can be re-interpreted:

A(P; Q|N) = Î (P; Q|N) − H(P|N) = −
∑

i

p
(
xi

)
xi log

[
p
(
xi

)
x
] +

∑
i

p
(
xi

)
xi log

[
p
(
xi

)
xi

]
(10.81)

Equation (10.81) can be rearranged as

A(P; Q|N) =
∑

i

p
(
xi

)
xi log

( xi

x

)
(10.82)

Equation (10.82) is the explicit density equivalent of the information-improvement or revi-
sion interpretation of accuracy expressed by equation (10.59). Accuracy can be positive or
negative within the range given by equation (10.58). It can also be inferred as a measure
of �I(P; Q|N) → H

(
P|N̂)

is A(P ; Q|N) → 0, which can occur only when xi → x, ∀i, with p(xi)
defined appropriately.
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Now expressing �Î (P; Q|N) in terms of actual values of the phenomenon {ϕi} using
equations (10.75) and pi = �xi/X, ϕi = ϕi/�, where ϕi can be, say the number of land uses in
zone I, and � is the total number of land uses,

Î (P; Q|N) = −
N∑

i=1

pi log

(
ϕi

xi

)
+ log

(
N�

X

)
(10.83)

Noting ϕi = �p(xi), D =�/X, (D = density of population system wise) and using equation
(10.49b), equation (10.83) can be written as

Î (P; Q|N) = log N −
N∑

i=1

pi log ϕi + log D (10.84)

Comparing equation (10.84) with equation (10.58) one obtains

I(P; Q|N) ==
∑

i

pi log
[
ϕ
(
xi

)] − log D (10.85)

Equation (10.85) is the information gain as the average of logarithms of population density
minus the logarithm of average density. When ϕ(xi) = D, ∀ i, the information gain is zero.
This implies a uniform distribution and a maximum value for �Î (P; Q|N) of log N. The zonal
component is isolated as log N.

Thus, the information gain measure is a function of the difference between zonal and system
wide densities. Using equation (10.84), one gets

�Î (P; Q|N → M) = log M −
∑

j

Pj log
[
ϕ
(

Xj

)]
+ log D − log N +

∑
i

pi log
[
ϕ
(
xi

)] − log D

(10.86)

Using the principle of entropy decomposition and by analogy with equation (10.74), the
condition for positive change can be stated as

∑
j

Pj

∑
i∈Sj

pi

Pj

log


 ϕ

(
xi

)
ϕ
(

Xj

)

 > log

N

M
(10.87)

The term on the left side of the inequality can be seen as a density difference or divergence,
and the right side is the absolute gain in information from moving from N to M zones.

Let

µ(x) = 1

X
(10.88)

where X is partitioned into N equal areas of size x,

µ(x) = 1

Nx
(10.89)

Using equation (10.48), (10.52), and (10.89), the Shannon entropy can be expressed in terms
of p(xi) and x:

H(P|N) = −
∑

i

p
(
xi

)
Nµ(x)

log

[
p
(
xi

)
µ(x)

]
x (10.90)
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This can be simplified as

H(P|N) = log N −
∑

i

p
(
xi

)
log

[
p
(
xi

)
µ(x)

]
x (10.91)

Therefore,

lim
N→∞

H(P|N) = lim
N→∞

log N −
∫
X

p(x) log

[
p(x)

µ(x)

]
dx (10.92)

Equation (10.92) is equivalent to equation (10.78).
Let the total area X be partitioned into equal areas xi. The measure µ(x) is a density estimate:

µ
(
xi

) = 1∑
xi

= 1

X
, ∀i (10.93)

It is uniform and equivalent to µ(x). Then

�Î (P; Q|N → M) = log N −
∑

j

p
(
xi

)
log

[
p
(
xi

)
µ

(
xi

)
]

xi = logN −
∑

i

pi log

[
pi

qi

]
(10.94)

This explains the approximation of the Shannon entropy by the measure �Î (P; Q|N) which
allows for unequal zone size or area.

Example 10.7: Consider aggregating zones N = 3 unequal zones into M = 2 equal zones, as
shown in Figure 10.1. It is assumed that the aggregation of three zones in two zones results
in uniform configuration. Compute the Shannon entropy for the two cases and the resulting
change in the Shannon entropy. Also compute the change in information, loss of information,
and the gain in accuracy, inaccuracy, zonal information logN, and information Î(P; Q |N).
Discuss the results.

Figure 10.1a shows the density and distribution over three zones, and Figure 10.1b shows
the aggregation to two equal area zones.

Solution: See Example 10.6

Example 10.8: Consider two hypothetical urban areas named A and B. Their major charac-
teristics are shown in Table 10.2. Compute different information measures: Î (P; Q|N), H[P(N)],
A(P; Q|N), Î (P; Q|N) / log N, Î (P; Q|N) /H[P(N)], and R[P(N)].

Solution: For urban area A

ÎA (P; Q|N) = −
5∑

i=1

pi log pi + log N +
5∑

i=1

pi log qi

= −0.2 log 0.2 − 0.3 log 0.3 − 0.15 log 0.15 − 0.25 log 0.25 − 0.1 log 0.1 + log 5

+ 0.2 log 0.5 + 0.3 log 0.1 + 0.15 log 0.05 + 0.25 log 0.15 + 0.1 log 0.2

= 1.2399 bits
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Table 10.2 Major characteristics of two hypothetical areas.

Urban area No. of zones Land use Total no. of trees Av. Area/zone Av. no. of trees
N X (mi2) (�) x = X/N φ = �/N

A 5 15 100,000 3 20,000
B 10 20 150,000 2 15,000

Urban A
Zone 1 2 3 4 5 Total

xi 7.5 1.5 0.75 2.25 3.0 15
qi 0.5 0.1 0.05 0.15 0.2 1
pi 0.2 0.3 0.15 0.25 0.1 1

Urban B
Zone 1 2 3 4 5 6 7 8 9 10 Total

xi 2.4 3.6 3.0 1.0 0.5 1.5 2.7 1.3 1.7 2.3 20
qi 0.12 0.18 0.15 0.05 0.025 0.075 0.135 0.065 0.085 0.115 1
pi 0.1 0.05 0.06 0.08 0.25 0.21 0.05 0.04 0.06 0.10 1

HA [P(N)] = −
5∑

i=1

pi log pi

= −0.2 log 0.2 − 0.3 log 0.3 − 0.15 log 0.15 − 0.25 log 0.25 − 0.1 log 0.1

= 1.5445 bits

AA (P; Q|N) = log N +
5∑

i=1

pi log qi

= log 5 + 0.2 log 0.5 + 0.3 log 0.1 + 0.15 log 0.05 + 0.25 log 0.15 + 0.1 log 0.2

= −0.3046 bits

ÎA (P; Q|N) / log N = 1.2399

log 5
= 0.7706 bits

ÎA (P; Q|N) /HA [P(N)] = 1.2399

1.5445
= 0.8028 bits

RA [P(N)] = 1 − HA [P(N)]

log N
= 1 − 1.5445

log 5
= 0.04

Similarly, for urban area B, we have

ÎB (P; Q|N) = 1.7143 bits

HB [P(N)] = 2.1028 bits

AB (P; Q|N) = −0.3885 bits

ÎB (P; Q|N) / log N = 1.7143

log 5
= 0.7444 bits

ÎB (P; Q|N) /H[P(N)] = 1.7143

2.1028
= 0.8152 bits

RB [P(N)] = 1 − HB [P(N)]

log N
= 1 − 2.1028

log 5
= 0.0869 bits
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Figure 10.3 Decomposition of a spatial system into four zones.

Example 10.9: Consider a hypothetical 1000-acre urban area decomposed into four zones
as shown in Figure 10.3.

Area 1 2 3 4
Acres 200 300 150 450
pi 0.30 0.25 0.35 0.10

Subdivision of areas
Area 1 1-1 1-2 1-3 1-4
Acres 35 45 50 70
pi 0.105 0.075 0.075 0.045

Area 2 2-1 2-2 2-3 2-4 2-5
Acres 60 40 55 65 80
pi 0.055 0.0625 0.05 0.045 0.0375

Area 3 3-1 3-2 3-3
Acres 35 55 60
pi 0.1575 0.105 0.0875

Area 4 4-1 4-2 4-3 4-4 4-5 4-6
Acres 55 90 20 95 65 75
pi 0.020 0.010 0.030 0.010 0.017 0.013

Compute the aggregation probabilities, between-set entropy, and within-set entropy

Solution: Aggregation probabilities can be shown below:

P1 = 0.3, P2 = 0.25, P3 = 0.35, and P1 = 0.3, and

Q1 = 0.1818,Q2 = 0.2727, Q3 = 0.1364, and Q4 = 0.4091
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The between-set entropy in bits can be calculated as follows:

4∑
k=1

Pk ln

(
PkX

�Xk

)
= 0.3 ln

(
0.3 × 1000

200

)
+ 0.25 ln

(
0.25 × 1000

300

)

+ 0.35 ln

(
0.35 × 1000

150

)
+ 0.1 ln

(
0.1 × 1000

450

)
= 0.2222

The within-set entropy can be calculated as follows:

4∑
k=1

Pk

∑
i⊂zk

pi

Pk

ln

(
pi

Pk

�Xk

�xi

)
= 0.0426 + 0.0190 + 0.0412 + 0.0523 = 0.1550 bits

10.6 Hierarchical decomposition

Using POD one can measure the variation in activity at a series of related levels of aggregation
forming a hierarchy. From equation (10.13), the within-set entropies

∑
k

wkIk attributable to

each level of hierarchy can be obtained by subtracting the between-set entropy at level l + 1
from the between-set entropy at level l. Noting that the between-set entropy monotonically
decreases for increasing l, one can express

I = (
I − I1

k

) + (
I1
k − I2

k

) + . . . +
(

Il
k − Il+1

k

)
+ . . . + (

IL−1
k − IL

k

)
(10.95)

where IL
K is the between-set entropy at the highest possible level L, which would be equal to

zero. Equation (10.95) can be cast as the sum of the within-set entropies:

I =
L∑

l=1

Kl∑
k=1

wl
kIl

k, 1 ≤ Kl+1 ≤ Kl ≤ N (10.96)

in which Kl denotes the number of aggregated zones or sets at level l. With this notation, the
entropy at level l can be written as

Il
K = Il+1

K +
∑

k

wl+1
k Il+1

k (10.97)

Equation (10.97) represents the partitioning of entropy at two levels of hierarchy. Thus the
within-set entropy can be calculated from equation (10.97) as

Il
K − Il+1

K =
∑

k

wl+1
k Il+1

k (10.98)

This partitioning of entropy at each level of hierarchy helps assess the variation in the
phenomenon under consideration at any geographic scale. It is important to emphasize the
proper understanding of entropy. First, the total inverse spatial entropy at each level Il

K

indicates the significance of scale. A higher value of this entropy would indicate a higher
difference between the actual distribution and the uniform distribution at this level. Second,
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the within-set entropy from equation (10.98) indicates the extent to which entropy Il
K would

be captured by the next level of aggregation up.
The Shannon entropy given by equation (10.2), the spatial entropy given by equation

(10.3), and the inverse spatial entropy given by equation (10.8) can now be decomposed in a
similar manner. Relating probabilities to particular hierarchical levels l and l + 1, the Shannon
discrete entropy can be expressed as

H = −
∑

l

∑
k

Pl+1
k

∑
i∈zl+1

k

pl
i

Pl+1
k

ln

(
pl

i

Pl+1
k

)
(10.99)

in which the aggregated probabilities are obtained as

Pl+1
k =

∑
i∈zl+1

k

pl
i (10.100)

The spatial entropy can now be decomposed as

H = ln X −
∑

l

∑
k

Pl+1
k

∑
i∈zl+1

k

pl
i

Pl+1
k

ln

(
pl

i�Xl+1
k

Pl+1
k �xl

i

)
(10.101)

in which zonal areas are aggregated

�Xl+1
K =

∑
i∈zl+1

k

�xl
i (10.102)

In equation (10.101), as each term in the hierarchy of within-set spatial entropies is negative,
the value of H decreases with increasing zonal size. Equation (10.101) converges to the
continuous form in the following sense:

H = ln X − lim
�xi→0
L→∞

L−1∑
l=1

Kl∑
k=1

Pl+1
k

∑
i∈zl+1

k

pl
i

Pl+1
k

ln

(
pl

i�Xl+1
k

Pl+1
k �xl

i

)
(10.103)

This suggests that a continuous probability density function can be used to compute H. The
second term in equation (10.103) would evaluate the difference between the continuous
entropy of the PDF and the maximum value of log X. Each measure of spatial entropy
at hierarchical level l = 1, 2, . . . , L−1 is negative, and hence the hierarchical spatial entropy
cannot be used for aggregation analysis. However, since the inverse spatial entropy does not
take on negative values, it can be used. Therefore,

I =
∑

l

∑
k

Pl+1
k

∑
i/∈zl+1

k

pl
i

Pl+1
k

ln

(
pl

i�Xl+1
k

Pl+1
k �xl

i

)
(10.104)

in which IL
K is zero.
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10.7 Comparative measures of spatial decomposition

Moellering and Tobler (1972) employed an analysis of variance scheme. Consider the distri-
bution of population (Mi, i = 1, 2, . . . , N). Let µl

ik denote a mean of population for each basic
zone i over an aggregated set of zone zl

K at each level of hierarchy l. This can be defined as

µl
ik =

∑
i∈zl

k

Mi

nl
k

, k = nL
k , . . . , nl

k, . . . , n1
k (10.105)

where nl
k is the number of zones in each set zl

k at the hierarchical level l. Note the number of
zones at each hierarchical level is related to its higher level as

nl−1
k =

∑
i∈zl−1

k

nl
j (10.106)

At the highest level of hierarchy nL
k = 1, and at the base level nl

k = N zones. The analysis of
variance principle in the context of geographical hierarchies says that the deviation of each
zone from the overall mean at the base level of the hierarchy can be written as a sum of the
deviations between successive means at each successive level of hierarchy, that is,

Mi − µI
ik = (

µ2
ik − µ1

ik

) + (
µ3

ik − µ2
ik

) + . . . +
(
µl+1

ik − µl
ik

)
+ . . . + (

µL
ik − µL−1

ik

)
=

L−1∑
l=1

(
µl+1

ik − µl
ik

)
(10.107)

It may be noted that nL
k = 1, µL

ik = Mi. Squaring the terms in equation (10.107) and summing
over all levels of hierarchy, the proportion of variance at each level of hierarchy is given by
the sum of deviations at each level, that is,

V =
∑

i

(
Mi − µI

ik

) =
L−1∑
l=1

nl
k∑

i=1

(
µl+1

ik − µl
ik

)2
(10.108)

Equation (10.108) includes a special case in which the number of zones in each set at any
hierarchical level is constant and the ratio of zones in each set to zones in sets at a higher level
is also constant. This happens if nl

1 = nl
2 = . . . , and

nl−1
k

nl
k

= M (10.109)

For all k and l. This was suggested by Curry (1971) who computed entropy from probabilities
computed for each set k at level l + 1. Thus,

Pl+1
k = Q

∑
i∈zl+1

k

∣∣∣µl+1
ik − µl

ik

∣∣∣ (10.110)
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where Q is a normalizing factor making sure that

L−1∑
l=1

nl
k∑

k=1

Pl+1
k = 1 (10.111)

and is evaluated as

Q = 1

L−1∑
l=1

nl
k∑

k=1

∑
i∈zl+1

k

∣∣∣µl+1
ik − µl

ik

∣∣∣
(10.112)
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Figure 10.4 Hierarchy based on two-fold cascading.
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Table 10.3 Zones and their probabilities.

Zones 1 2 3 4 5 6 7 8

Area (%) 10 18 20 15 12 10 8 7
(acres) 1000 1800 2000 1500 1200 1000 800 700
pi 0.10 0.11 0.08 0.17 0.13 0.14 0.12 0.15

The marginal entropies Hl + 1 for each level l are defined by Curry (1971) as

Hl+1 = −
nl

k∑
k=1

Pl+1
k ln Pl+1

k (10.113)

showing the proportion of entropy at each level. The total entropy is calculated as

H = −
L−1∑
l=1

nl
k∑

k=1

Pl+1
k ln Pl+1

k (10.114)

Example 10.10: Consider a 10,000-acre area originally divided into 64 zones as shown in
Figure 10.4. Table 10.3 presents the size of each division and tree population therein. Do the
hierarchical aggregation and compute spatial entropy, inverse spatial entropy, variance, and
Curry’s entropy at each level. Then discuss the results.

Solution: The aggregated areas and corresponding probabilities are shown Tables 10.4
to 10.14.

Table 10.4 Hierarchy based on l = 5 and i = 64.

Zones 1 2 3 4 5 6 7 8

ai (acres) 100 140 250 150 200 75 60 25

pi 0.02 0.0085 0.0025 0.0065 0.0075 0.0100 0.0300 0.0150

Zones 9 10 11 12 13 14 15 16

ai (acres) 140 180 340 290 270 200 220 160

pi 0.030 0.0085 0.0025 0.0065 0.0055 0.0045 0.0150 0.0375

Zones 17 18 19 20 21 22 23 24

ai (acres) 100 260 320 280 315 310 215 200

pi 0.020 0.006 0.015 0.015 0.005 0.004 0.008 0.007

Zones 25 26 27 28 29 30 31 32

ai (acres) 160 220 210 190 230 170 180 140

pi 0.040 0.012 0.030 0.034 0.008 0.014 0.017 0.015

Zones 33 34 35 36 37 38 39 40

ai (acres) 120 260 140 200 210 80 90 100

pi 0.013 0.003 0.022 0.030 0.010 0.021 0.020 0.011
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Table 10.4 (continued)

Zones 41 42 43 44 45 46 47 48

ai (acres) 25 250 150 140 200 75 60 100

pi 0.015 0.005 0.022 0.035 0.011 0.021 0.020 0.011

Zones 49 50 51 52 53 54 55 56

ai (acres) 80 120 125 115 105 95 85 75

pi 0.013 0.003 0.012 0.030 0.010 0.021 0.020 0.011

Zones 57 58 59 60 61 62 63 64

ai (acres) 60 80 115 90 110 95 85 65

pi 0.018 0.007 0.025 0.036 0.012 0.021 0.020 0.011

For l = 1

Table 10.5 Areas of level 1.

60 80 115 90 110 95 85 65

80 120 125 115 105 95 85 75

25 250 150 140 200 75 60 100

120 260 140 200 210 80 90 100

160 220 210 190 230 170 180 140

100 260 320 280 315 310 215 200

140 180 340 290 270 200 220 160

100 140 250 150 200 75 60 25

Table 10.6 Probabilities of level 1.

0.018 0.007 0.025 0.036 0.012 0.021 0.02 0.011

0.013 0.003 0.012 0.03 0.01 0.021 0.02 0.011

0.015 0.005 0.022 0.035 0.011 0.021 0.02 0.011

0.013 0.003 0.022 0.03 0.01 0.021 0.02 0.011

0.04 0.012 0.03 0.034 0.008 0.014 0.017 0.015

0.02 0.006 0.015 0.015 0.005 0.004 0.008 0.007

0.03 0.0085 0.0025 0.0065 0.0055 0.0045 0.015 0.0375

0.02 0.0085 0.0025 0.0065 0.0075 0.01 0.03 0.015

For l = 2

Table 10.7 Areas of level 2.

140 200 240 205 215 190 170 140

145 510 290 340 410 155 150 200

260 480 530 470 545 480 395 340

240 320 590 440 470 275 280 185



432 Entropy Theory and its Application in Environmental and Water Engineering

Table 10.8 Probabilities of level 2.

0.031 0.01 0.037 0.066 0.022 0.042 0.04 0.022

0.028 0.008 0.044 0.065 0.021 0.042 0.04 0.022

0.06 0.018 0.045 0.049 0.013 0.018 0.025 0.022

0.05 0.017 0.005 0.013 0.013 0.0145 0.045 0.0525

For l = 3

Table 10.9 Areas of level 3.

340 445 405 310

655 630 565 350

740 1000 1025 735

560 1030 745 465

Table 10.10 Probabilities of level 3.

0.041 0.103 0.064 0.062

0.036 0.109 0.063 0.062

0.078 0.094 0.031 0.047

0.067 0.018 0.0275 0.0975

For l = 4

Table 10.11 Areas of level 4.

995 1075 970 660

1300 2030 1770 1200

Table 10.12 Probabilities of level 4.

0.077 0.212 0.127 0.124

0.145 0.112 0.0585 0.1445

For l = 5

Table 10.13 Areas of level 5.

2070 1630

3330 2970

Table 10.14 Probabilities of level 5.

0.289 0.251

0.257 0.203



CHAPTER 10 Inverse Spatial Entropy 433

Therefore, the spatial entropy, inverse spatial entropy, variance, and Curry’s entropy at each
level are calculated as follows:

The spatial entropy:

H = ln X − lim
�xi→0
L→∞

L−1∑
l=1

Kl∑
k=1

Pl+1
k

∑
i∈zl+1

k

pl
i

Pl+1
k

ln

(
pl

i�Xl+1
k

Pl+1
k �xl

i

)

= ln 10000 − (0.0674 + 0.0805 + 0.0717 + 0.0420)

= 8.9487 bits

where l = 1, 2, 3, and 4 in order to guarantee l + 1 = 5.
The inverse spatial entropy:

I =
∑

l

∑
k

Pl+1
k

∑
i/∈zl+1

k

pl
i

Pl+1
k

ln

(
pl

i�Xl+1
k

Pl+1
k �xl

i

)

= 0.0674 + 0.0805 + 0.0717 + 0.0420

= 0.2616 bits

The variance can be calculated as

V =
∑

i

(
Mi − µI

ik

) =
L−1∑
l=1

nl
k∑

i=1

(
µl+1

ik − µl
ik

)2 = (
µ2

ik − µ1
ik

)2 + (
µ3

ik − µ2
ik

)2 + (
µ4

ik − µ3
ik

)2

+ (
µ5

ik − µ4
ik

)2 = 7812500

and Curry’s entropy can be calculated as

H = −
L−1∑
l=1

nl
k∑

k=1

Pl+1
k ln Pl+1

k = 0.3304 + 0.3585 + 0.3125 + 0.3531 = 5.4562 bits

Questions

Q.10.1 Consider an urban area of 100 km2, with seven types of average land use areas
as follows: 4 km2 industrial development, 16 km2 roads and other pavements, 48
km2 agricultural-horticultural, 12 km2 dairy farms, and 20 km2 forest. Define the
probability of each land use as the area of land use divided by the total area. For each
land use the value of the inverse spatial interval is different and can be expressed in
terms of the area of land use. Compute the inverse spatial entropy of the urban area.

Q.10.2 Consider that the urban area in Q.10.1 has equal area land uses. Then compute the
inverse spatial entropy and then compare it with the entropy value computed in
Q.10.1.
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Q.10.3 Suppose a spatial system is partitioned as shown below:

Area

Land use 1 Land use 2 Land use 3 Land use 4

�x Probability �x Probability �x Probability �x Probability
(km2) (km2) (km2) (km2)

20 0.04 25 0.04 60 0.25 40 0.07
40 0.06 40 0.01 40 0.15 80 0.015
60 0.10 35 0.06 70 0.015
80 0.15

Compute the between-set and within-set inverse spatial entropies.

Q.10.4 Consider four zones dividing a 2000-acre watershed. Compute the inaccuracy function
K(P; Q|N). The zones are given as follows:

Zones
Configuration 1 2 3 4

1 600 700 400 300
2 500 600 350 550
3 500 500 500 500
4 800 100 650 450
5 700 500 400 400

Suppose p1 = 0.20, p2 = 0.35, p3 = 0.25, and p4 = 0.2. Compute the Shannon entropy
of the zones. Compute the inaccuracy accounting for the configuration types. Also
compute the accuracy measure. N = 4, and pi = 1/4 = 0.5, i = 1, 2, . . . , 4, for maximum
entropy.

Q.10.5 Compute the information measure Î relating zone number, configuration, and density
using the data given in Q.10.4. Use N = 4, p1 = 0.20, p2 = 0.35, p3 = 0.25, and p4 = 0.2.
Then, consider pi = qi = 1/N. Compute Î. Compute information error and uncertainty.

Q.10.6 Consider five unequal zones and their corresponding probabilities. The distribution of
phenomenon at the five-zone level is uneven. Then, aggregate the five zones to four
equal zones, then three zones and finally two zones. Compute the Kerridge inaccuracy,
information and information gain or loss as the number of zones is reduced.

Q.10.7 Consider a hypothetical 2000-acre urban area and decompose it into five zones.
Compute the aggregation probabilities, between-set entropy, and within-set entropy.

Q.10.8 Consider a 50,000-acre area and divide it into 50 zones. Each zone has its own land use
configuration. Do the hierarchical aggregation and compute spatial entropy, inverse
spatial entropy, variance, and Curry’s entropy at each level. Then discuss the results.
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11 Entropy Spectral Analyses

In environmental and water engineering, time series of many variables are available at

locations of measurement. For example, stream flow is continuously measured at several

gauging stations along a river and thus time series of stage and discharge are available at

each of these gauging stations. Similarly, rainfall is measured at a number of points (rain

gage stations) in a watershed and hence the time series of rainfall at each of the stations is

available. Similarly, time series of pollutant concentration in air as well as in water, sediment

yield, temperature, wind velocity, air pressure, radiation, and so on are available. Time

series is an empirical series and contains a wealth of information about the system under

study. It can be discrete or continuous and its analysis permits estimation of system transfer

function, identification of system parameters, forecasting, detection of trends and periodicities,

determination of power spectrum, and system design. Autocovariance (or autocorrelation)

function is employed to characterize the evolution of a process (using time series) through

time. Frequency properties of the time series are considered using spectral analysis. This

chapter discusses spectral analyses based on maximum entropy and minimum cross entropy.

11.1 Characteristics of time series

A time series is a record of variation of an observed quantity in time. For example, river flow

at a specified location is an example of a time series. Let the time series under consideration

be a stochastic process X(t), which can be defined as random variable X at any given time t. At

this given time, the random variable can take on a number of possible values. For example, if

time is the month of January, then stream flow for January in one year will be different from

that in another year and the January stream flow is a random variable. In a similar manner,

a stochastic process can be thought of as the collection of all possible records of variation (or

realizations) of the observed quantity with time. This collection is referred to as ensemble. For

example, if air quality is observed at a number of places (or stations) in an area and time series

of air quality is available at each of the stations, then those time series together constitute the

ensemble. Likewise, soil moisture is observed at a number of locations in a watershed as a

function of time. Considering soil moisture as a random variable, its time series is a stochastic

process, and the collection of these time series of soil moisture constitutes the ensemble.

Entropy Theory and its Application in Environmental and Water Engineering, First Edition. Vijay P. Singh.

 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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It is assumed that a time series X(t) consists of a set of observations x0, x1, x2, . . . , xN :

X(t) = [
x0 x1 x2 . . . xN

]T
(11.1)

where continuous time t is broken down into the N number of discrete intervals for
observations and N corresponds to the time when observation ends, xi is the i-th ordered
variate or the value of X(t) at the i-th time, and T is transpose. It is further assumed that
the time interval �t between successive observations (or measurements) is constant; in other
words, observations are equi-spaced in time; that is, the time interval (�t) between x0 and x1

is the same as x2 and x3; this is often the case with stream flow observations. For example, in
daily stream flow series �t = 1 day.

It may often be advantageous to transform the observations so that the mean of transformed
values is zero. To that end, the mean of observations x is first computed:

x = 1

N

N∑
i=1

xi (11.2)

where N is the number of observations and xi is the i-th observation. Then the mean is
subtracted from each individual observation:

x∗i = xi − x (11.3)

where x*i is the i-th reduced observation, and the reduced observations, x*i, i = 1, . . . , N,
will now have zero mean. It may now be worthwhile recalling the definitions of mean,
variance, covariance, and correlation of the stochastic process here before describing other
characteristics of the time series.

11.1.1 Mean
Let a random variable time at t be designated as X(t). It is assumed that the probability
distribution of X(t) is given explicitly in the form of probability mass function (PMF),
probability density function (PDF), f (x, t), or cumulative distribution function (CDF), F(x, t).
The mean is one of the most important parameters of a distribution and is defined as the
first moment of the probability distribution about the origin, and is usually designated by the
Greek letter µ. For a continuous probability distribution, at time t, µ(t) is defined as

µ(t) = E
[
X(t)

] =
+∞∫

−∞
x f (x, t) dx =

1∫
0

xdF (x, t) (11.4)

where x is the value of random variable X(t) at time t, E is the expectation operator, f (x, t) is
the PDF of X(t), F(x, t) is the CDF of X(t), and dF(x, t) = f (x, t)dx.

For a discrete probability distribution p(x, t), µ(t) is defined as

µ(t) =
N∑

i=1

xi p
(
xi, t

)
(11.5)

where N is the number of observations, xi is the ith observation of X, p(xi, t) is the probability
(or probability mass) if x = xi, and i = 1, 2, 3, . . . ,N. The mean gives the distance of the center
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of gravity of the probability mass from the origin and describes the location of the probability
mass, and is calculated from sample data as:

m(t) = x(t) = 1

N

N∑
i=1

xi(t) (11.6)

where m(t) = x(t) is the sample mean approximating µ(t).

11.1.2 Variance
Variance measures the variability of a random variable and is the second most important
descriptor of its probability distribution. A small variance of a variable indicates that its values
are likely to stay near the mean value, while a large variance implies that the values have
large dispersion around the mean. If the stage of a river at a gauging station is independently
measured in a quick succession a number of times in a survey, then there will likely be a
variability in the stage measurements. The magnitude of variability is a measure of both the
natural variation and the measurement error.

Variance, designated by the Greek letter σ 2, measures the deviation from the mean and is
universally accepted as given by the second moment of the probability distribution about the
mean. Sometimes, the notation VAR(x) or Var(x) is also used. For a continuous variable X(t) it
is expressed as

σ 2(t) =
+∞∫

−∞

[
x − µ(t)

]2
f (x, t) dx (11.7)

and for a discrete variable X(t),

σ 2(t) =
N∑

i=1

[
xi − µ(t)

]2
p
(
xi, t

)
(11.8)

The sample variance, denoted as s2(t), is calculated as:

s2(t) = 1

N

N∑
i=1

[
xi − m(t)

]2
(11.9)

When the number of values in the samples N ≤ 30, an unbiased estimate of variance is
obtained as

s2(t) = 1

N − 1

N∑
i=1

(
xi − m(t)

)2
(11.10)

The variance can also be computed as

s2(t) = 1

N

N∑
i=1

x2
i − m2(t) (11.11)

In structural engineering, the variance is the moment of inertia of the probability mass about
the center of gravity.
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The variance has a dimension equal to the square of the dimension of the random
variable. If X is discharge which is measured in m3/s, then its variance σ 2 is in (m3/s)2.
This makes it quite difficult to visualize the degree of variability associated with a given
value of the variance. For this reason, the positive square root of the variance, called
standard deviation, denoted by σ , is often used. Its mechanical analogy is the radius of
gyration. Variance has four important properties: 1) The variance of a constant, a, is zero:
Var [a] = 0, a = constant. 2) The variance of X multiplied by a constant a is equal to the
variance of X multiplied by the square of a: Var [aX] = a2×Var [X]. 3) The variance of X
is the difference between the second moment of X about the origin, µ

′
2, and the square of

first moment of X about the origin µ2: Var [X] = µ
′
2 − µ2. 4) The variance of the sum of n

independent random variables is equal to the sum of variances of the n individual variables:
Var[X1 + X2 + X3 + . . . + Xn] = Var[X1] + Var[X2] + Var[X3] + . . . + Var[Xn].

A dimensionless measure of dispersion is the coefficient of variation, cv, which is computed
as the ratio of standard deviation and mean:

Cv = σ

µ
= s

m
(11.12)

where s is the sample standard deviation estimate of the population standard deviation σ , and
m is the sample mean estimate of the population mean µ. When the mean of the data is zero,
Cv is undefined. The coefficient of variation is useful in comparing different populations or
their distributions. For example, if the two samples of aggregates of water quality are analyzed,
the one with larger Cv will have more variation. If each value of a variable is multiplied by
a constant α, the mean, variance and the standard deviation are obtained by multiplying the
original mean, variance and standard deviation by α, α2 and α, respectively; the coefficient of
variation remains unchanged. If a constant α is added to each value of the variable, the new
mean is equal to the old mean + α; variance and the standard deviation remain unchanged;
but the coefficient of variation changes because the unchanged standard deviation is divided
by the new (changed) mean.

Example 11.1: A time series of annual stream flow for a USGS gaging station 08109000 on
the Brazos River near Bryan, Texas, is given in Table 11.1. Plot the time series. Compute its
mean and variance. Compute its reduced time series and show that its mean is zero.

Table 11.1 Annual stream flow (cfs) for USGS 08109000.

Year Flow Year Flow Year Flow Year Flow

1941 15110 1954 1965 1967 1584 1980 2320
1942 9369 1955 1835 1968 9196 1981 3575
1943 3705 1956 2053 1969 4770 1982 6161
1944 7396 1957 12680 1970 4889 1983 2143
1945 9061 1958 8469 1971 1078 1984 627
1946 6137 1959 1923 1972 3100 1985 3504
1947 5561 1960 6674 1973 5321 1986 5273
1948 1836 1961 10190 1974 3697 1987 9135
1949 3185 1962 3538 1975 9012 1988 1390
1950 2912 1963 1896 1976 3930 1989 4204
1951 1258 1964 1334 1977 7131 1990 7081
1952 1155 1965 7707 1978 930 1991 4394
1953 2319 1966 6479 1979 6716 1992 21720
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Figure 11.1 Plot of annual stream flow for the Brazos River near Bryan from 1941–92.

Solution: The annual stream flow data for the Brazos River near Bryan (USGS station
08109000) from 1941–92, given in Table 11.1, is plotted in Figure 11.1. The mean and
variance of annual flow data are computed as

x = 1

N

N∑
i=1

xi = 5166 cfs

s2(t) = 1

N − 1

N∑
i=1

(
xi − x

)2 = 1.574 × 107(cfs)2

The mean of the reduced series is computed as:

x∗ = 1

N

N∑
i=1

(x∗i − x) = 1

N

N∑
i=1

(
xi − x

) = 1

N

N∑
i=1

xi − x = 0

11.1.3 Covariance
Another basic characteristic of a time series is its covariance at a certain lag. Consider xi and
xi + k, where k is the time lag or simply lag. If k = 1, then xi + 1 is one time lag away from xi;
similarly, xi + 4 is four time lags away from xi. Since xi and xi + k belong to the same X(t), the
covariance in this case is called the autocovariance, defined at lag k as:

rk = Cov
(
xi, xi+k

) = E
[(

xi − µ
) (

xi+k − µ
)] =

∞∫
−∞

∞∫
−∞

(
xi − µ

) (
xi+k − µ

)
f
(
xi, xi+k

)
dxidxi+k

(11.13)
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where f (xi, xi + k) is the joint PDF of xi and xi + k, k = 0, 1, 2, . . . ; µ is the mean of X(t),
approximated by m or x, rk is the autocovariance at lag k, and Cov(xi, xi + k) is the covariance
of (xi, xi + k). The stationarity assumption implies that the joint PDF is the same at all times
separated by a constant time interval k. In practice, the autocovariance is estimated as

rk = Cov
(
xi, xi+k

) = 1

N

N−k∑
i=1

(
xi − x

) (
xi+k − x

)
(11.14)

where x is the mean of the observed series.
If the number of observations at equally spaced intervals is large, say infinite, then one

can determine autocovariances rk at all lags and since the autocovariance is a function of the
lag and can be plotted against the lag, it is called the autocovariance function. When k = 0,
covariance becomes the variance of X(t), Var [X] or r0:

Var(X) = r0 = Cov[xi, xi+0] = E[(xi − µ)(xi+0 − µ)] = E[
(
xi − µ

)2
]

= 1

n

n∑
i=1

(
xi − µ

)2 ∼= 1

n − 1

n∑
i=1

(
xi − µ

)2
(11.15)

Variance can be regarded as a measure of power, and covariance can be regarded as a measure
of cross-power.

For computational purposes, equation (11.14) can be expressed as

rk = Cov
(
xi, xi+k

) = 1

N

N−k∑
i=1

[
xi, xi+k − (x)2], k = 0, 1,2,... (11.16)

If the covariance is independent of t but depends only on k, which is true for a stochastic
process stationary in mean and covariance, then

Cov
(
xi, xi+k

) = Cov (k) = rk = r0σ
2
x (11.17)

Since rk varies with k, it is called the autocovariance function and is an even function for a
stationary stochastic process, rk = r− k or Cov(k) = Cov(−k).

Mathematically, the negative exponential function has often been used to represent the
covariance function as:

r (k) = σ 2 exp [− |k| /α]

where σ 2 is the variance, and α is the integral scale expressed as

α =
∞∫

0

ρ (k) dk, ρ (k) = r (k) /σ 2

11.1.4 Correlation
Covariance is a dimensional quantity and it is often useful to nondimensionalize it by
normalization which gives rise to autocorrelation. Then, it is easier to compare different time
series having different scales of measurement, because autocorrelation is independent of the
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scale of measurement. Thus, the autocorrelation at lag k can be defined as

ρk = ρ (k) = E
[(

xi − µ
) (

xi+k − µ
)]

√
E
[(

xi − µ
)2
]

E
[(

xi+k − µ
)2
] = E

[(
xi − µ

) (
xi+k − µ

)]
σ 2

x

= Cov (x, k)

σ 2
x

(11.18)

Since autocorrelation varies with k, ρk = ρ(k) is called the autocorrelation function. The plot
of autocorrelation function is sometimes called correlogram. The autocorrelation function of
data reflects the dependence of data at one time on the data at another time. Thus, the
autocorrelation at lag k can simply be expressed as

ρk = ρ (k) = rk

r0

(11.19)

Equation (11.19) implies that when k = 0, ρ0 = ρ(0) = 1. Since the autocorrelation coefficient
is a measure of linear dependence, its decease with time or lag suggests a decrease in the
memory of the process. In hydrology, it is frequently observed that processes are more linearly
dependent at short intervals of time than at long intervals. Thus, the correlogram provides
information about the dependence structure of the time series. In many hydrologic processes,
the correlogram does not decrease continuously with lag but exhibits a periodic increase and
decrease, suggesting a deterministic component in the processes such as seasonal variability.

Further, knowing the autocorrelation function and the variance is equivalent to knowing
the autocovariance function. For observations made for a stationary time series at n successive
times, one can construct a covariance matrix as

�n = rij =




r0 r1 r2 r3 . . . . . rn−1
r1 r0 r1 r2 r3 . . . . rn−2
r2 r1 r0 r1 r2 r3 . . . rn−3
r3 r2 r1 r0 r1 r2 r3 . . .
. r3 r2 r1 r0 r1 r2 . . .
. . r3 r2 r1 r0 r1 . . .
. . . r3 r2 r1 r0 . . .
. . . . . . r1 r0 r1 r2
. . . . . . . r1 r0 r1

rn−1 rn−2 rn−3 . . . . r2 r1 r0




= σ 2
x




1 ρ1 ρ2 ρ3 . . . . . ρn−1
ρ1 1 ρ1 ρ2 ρ3 . . . . ρn−2
ρ2 ρ1 1 ρ1 ρ2 ρ3 . . . ρn−3
ρ3 ρ2 ρ1 1 ρ1 ρ2 ρ3 . . .
. ρ3 ρ2 ρ1 1 ρ1 ρ2 ρ3 . .
. . ρ3 ρ2 ρ1 1 ρ1 ρ2 . .
. . . ρ3 ρ2 ρ1 1 ρ1 ρ2 .
. . . . . . . 1 ρ1 ρ2
. . . . . . . ρ1 1 ρ1

ρn−1 ρn−2 ρn−3 . . . . ρ2 ρ1 1




= σ 2
x Pn (11.20)

Here �n is the autocovariance matrix, and Pn is the autocorrelation matrix. Both of these
matrices are symmetric and have constant elements on any diagonal. These matrices are
positive definite. This characteristic of the autocorrelation matrix means that its determinant
and all principal minors are greater than zero. For example, when n = 2,∣∣∣∣∣ 1 ρ1

ρ1 1

∣∣∣∣∣ > 0 (11.21)
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implying that

1 − ρ2
1 > 0 (11.22)

That is,

−1 < ρ1 < 1 (11.23)

In a similar manner, for n = 3, it can be shown that

∣∣∣∣∣∣∣
1 ρ1 ρ2

ρ1 1 ρ2

ρ2 ρ1 1

∣∣∣∣∣∣∣ > 0,

∣∣∣∣∣ 1 ρ1

ρ1 1

∣∣∣∣∣ > 0,

∣∣∣∣∣ 1 ρ2

ρ2 1

∣∣∣∣∣ > 0 (11.24)

Equation (11.24) shows that

−1 < ρ1 < 1, − 1 < ρ2 < 1, − 1 <
ρ2 − ρ2

1

1 − ρ2
1

< 1 (11.25)

and so on.
The autocorrelation function is symmetric about zero, that is,

ρk = ρ−k (11.26)

11.1.5 Stationarity
A commonly made assumption in practice is that the stochastic process X(t) is stationary;
in other words, properties of its time series, such as mean, variance, skewness, spectrum,
probability distribution, and so on, do not change with shift in origin, that is, two processes
X(t) and X(t + τ ) have the same statistics regardless of what the value of τ is, where τ = t1 − t2
(time difference). In other words, the stationary process has a similar structure with respect
to the variability in time, implying some kind of repetition in the process. This suggests that
statistical interpretations can be based on a single realization. Then, the first order PDF of X

will be independent of time, but the second order PDF will depend only on the time difference.
Likewise, the mean will be constant in time but the autocorrelation, function, autocovariance
function, and autocorrelation coefficient will depend on the time difference. If the time series
is nonstationary then it is rendered stationary by the use of a suitable transformation. One
such transformation is data differencing:

x∗
i = xi+1 − xi, i = 1,2,3, . . . , N − 1 (11.27)

This operation can be continued until data are rendered stationary. Another transformation
can be done by taking the logarithm.

Example 11.2: Consider an ensemble of time series X(t) from say 1 to m, and plot these on
the same graph. Show on the graph Xi(t), Xi(t+τ ), i = 1, 2, . . . , m; and τ is the lag. This will
make clear which values to take when computing time series characteristics.

Solution: An ensemble of time series is shown in Figure 11.2.
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Figure 11.2 Ensemble of time series.

Example 11.3: Using the stream flow time series given in Table 11.1 for a gauging station at
Brazos River, compute the autocovariance function by taking different values of lag. Note, in
general, the maximum lag should not be more than one fourth of the length of the series.
For example, if 60 years of data are available, then the maximum lag would be no more
than 15 years. Then, compute the autocorrelation function (or correlogram) and plot it, and
discuss the plot. Also, when doing the computation of autocovariance, use equation (11.16).
Note for lags greater than 0, the number of values in the sum proportionately becomes less.
Do not use the circular method where the number remains the same. Use the same method
(non-circular) for other questions.

Solution: r0 = Cov(xi,xi + 0) = 1.574 × 107(cfs)2. Similarly r1 = 1.307 × 106(cfs)2 and r2 = 9.390
× 104(cfs)2. Likewise, the coefficient of correlation is computed for other lags up to 12
years. Table 11.2 shows the autocovariance and autocorrelation values for six lags. The
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Table 11.2 Autocovariance and autocorrelation values

for annual stream flow at station USGS 0819000.

Lags
(year)

Autocovariance
(cfs)2

Autocorrelation

0 1.57E + 07 1.00E + 00
1 1.31E + 06 8.31E − 02
2 9.39E + 04 5.97E − 03
3 8.61E + 05 5.47E − 02
4 8.93E + 05 5.68E − 02
5 1.20E + 06 7.61E − 02
6 −2.87E + 06 −1.82E − 01
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Figure 11.3 Autocorrelation of

annual stream flow of Brazos River

near Bryan from 1941–92.

autocorrelation is shown in Figure 11.3. It is seen that the autocorrelation function fluctuates
and the memory seems to be long for stream flows of this river.

Example 11.4: Now consider monthly stream flow for the same gauging station at Brazos
River as in Table 11.1. Plot the stream flow as a function of month. Now compute the
autocorrelation function (ACF) and plot as a function of lag. Also, transform the series
logarithmically and then compute the autocorrelation function and plot it. What is the effect
of transformation?

Solution: Monthly stream flow for the USGS gauging station at Brazos River (USGS
08109000) near Bryan, Texas, from 1941–92 is plotted as shown in Figure 11.4. For monthly
flow data, the autocorrelation function is shown in Figure 11.5, which shows that it fluctuates.
Table 11.3 gives the autocorrelation values for monthly stream flow for the Brazos River near
Bryan for 24 lags. Then monthly stream flow is transformed logarithmically and is then plotted
as shown in Figure 11.6. For the transformed data, the autocorrelation function is computed,
as shown in Figure 11.7. Again, the autocorrelation function is a fluctuating function.
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Figure 11.4 Plot of monthly stream flow of Brazos River near Bryan from 1941–92.

0 5 10 15 20 25 30 35 40 45 50
–0.2

0

0.2

0.4

0.6

0.8

1

1.2

Lag (Month)

A
ut

oc
or

re
la

tio
n 

(O
ri

gi
na

l)

Figure 11.5 Autocorrelation functions of monthly stream flow of Brazos River near Bryan from 1941–92.

11.2 Spectral analysis

Environmental and water resources processes, such as rainfall, stream flow, drought, soil
moisture, evapotranspiration, temperature, radiation, relative humidity, water quality, and
so on, have inherent periodicities which are not easily observed in raw data. For example,
consider the drought process which is stochastic. Then, Fourier analysis of drought data in
certain parts of the world, say northern India, may reveal a significant period of five years.
This means that, on average, a cycle of drought occurs once every five years. Extending the
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Table 11.3 Autocorrelation values for monthly stream flow with 24 lags

(lag 0–lag 23 months).

Lag ACF Lag ACF Lag ACF Lag ACF

0 1.00 6 0.01 12 0.15 18 −0.07
1 0.59 7 −0.03 13 0.08 19 0.00
2 0.32 8 −0.04 14 −0.02 20 0.07
3 0.18 9 −0.02 15 −0.05 21 0.04
4 0.11 10 0.03 16 −0.06 22 0.05
5 0.05 11 0.16 17 −0.06 23 0.07
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Figure 11.6 Plot of the log-transformed monthly stream flow of Brazos River near Bryan from 1941–92.

argument further, a sample may exhibit oscillations at all possible frequencies, suggesting the
stochastic process may be composed of oscillations of all possible frequencies. Identifying these
individual frequencies helps understand periodic patterns of the process. The term frequency
is invoked whenever a function of a physical phenomenon fluctuates in time/or space. The
fluctuating characteristic is then defined by the rate of fluctuation in terms of frequency or
the wave number. Thus, the description of the phenomenon is now in the frequency domain
in place of time or space domain. When dealing with data, the arrangement of data is now
made in terms of frequency. This paves the way for spectral analysis.

To develop a physical appreciation of spectrum, consider a beam of white light passing
through a prism. It is then observed that the beam is decomposed into an array of colored
lights and the resulting colors are the primary colors of the spectrum. Then, it can be said that
any color may be the result of a particular combination of primary colors. The deflection of
each color is in proportion to its harmonic frequency or rate of energy oscillation, where the
violet has the highest frequency and the red has the lowest frequency. In a similar vein, any
sound can be partitioned into a combination of fundamental sounds. In hydraulics, there are
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Figure 11.7 Autocorrelation functions of transformed monthly stream flow of Brazos River near Bryan from

1942–92.

three fundamental quantities, such as density, viscosity, and compressibility in terms of which
most hydraulic parameters can be expressed.

The spectrum of a record is defined by the transform of the record into the frequency (or
wave number) domain and is essentially a function defined by amplitude, power or any other
property. It depends on an independent variable which is generally frequency or/and wave
number. In statistics, the spectrum is generally a complex function defined either as a sum
of real and imaginary parts or a product thereof. Spectral analysis is employed to determine
the spectrum over the whole range of frequencies. It entails estimating the spectral density
function or spectrum of a given time series.

Correlogram may experience periodic fluctuations and may not monotonically decrease as
a function of lag, thus indicating a presence of a deterministic component in the stochastic
process. From Fourier or harmonic analysis, it is known that any periodic function can be
represented by the sum of a series of sine terms and/or cosine terms of increasing frequencies.
This suggests that hidden periods of oscillations in samples of stochastic processes can be
identified by Fourier or harmonic analysis. Spectral analysis is a modification of Fourier
analysis. For analyzing a time series made up of sine and cosine waves of different frequencies
the periodogram is often employed. Spectral analysis is employed to detect periodicities in
time series data. The spectrum so determined should have sharp peaks only at frequencies
corresponding to frequencies of actual periodicities in the data. The methods which determine
such spectra are said to have a high degree of resolution. Entropy-based spectral analysis has
this property.

11.2.1 Fourier representation
Recall a periodic deterministic function, f (t), with a period of T. Here period T is just a number
such that

f (t) = f (t + T) (11.28)
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Figure 11.8 Illustration of a periodic function with period T and frequency w.

for all t. The function f (t) between t and t + T can be of any shape. Consider, for example, a
simple, cosine function f (t) = a cos 2πwt with a period w = 1/T, then

a cos 2πwt = a cos 2πw (t + T) (11.29)

where a is called amplitude. Term 2πw is called angular frequency in cycles per 2π and w is the
cyclic frequency in cycles per unit, with w = 1/the period T of cycle, as shown in Figure 11.8.

Now let there be a periodic function in time, f (t), with periodicity of T. If there is another
function g(t) such that g(t) = f [tT/(2π)], then g(t) is periodic with period 2π . According to
the Fourier theorem, g(t) can be expanded by an infinite Fourier series consisting of sine and
cosine functions as

g (s) = a0 +
∞∑

n=1

(
an cos ns + bn sin ns

)
(11.30)

Now, writing s = 2π t/T and denoting f (t) = g(tT/2π), one can write equation (11.30) as

f (t) = g

(
2π t

T

)
= a0 +

∞∑
n=1

(
an cos

2πnt

T
+ bn sin

2πnt

T

)
(11.31a)

or simply with 2π=T,

f (t) = a0 +
∞∑

n=1

(
an cos nt + bn sin nt

)
(11.31b)

where a0, an, bn, n = 1,2, . . . ,∞, are called Fourier coefficients and they are evaluated by
Fourier analysis or harmonic analysis. One can take a0 = 0, as is sometimes done, since
that is just the base for measurement for f (t). The first term corresponding to n = 0, a0, is
often denoted by (a0/2) rather than by a0; the next term corresponding to n = 1 is called
the fundamental and represents a cosine/sine wave whose period matches exactly that of
the given function f (t). The next term corresponding to n = 2 is called the first harmonic
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and represents a cosine/sine wave whose period is exactly half of that of the given function
f (t). The terms corresponding to n = 3, 4, 5, . . . , are called the second harmonic, the third
harmonic, the fourth harmonic, the fifth harmonic, and so on.

In equation (11.31a), the function f (t) has a periodicity of T. This is seen because
sin(π t/T) and cos(π t/T) have periods 2π/(πT) = 2T, or 4T, 6T, . . . Similarly, sin(2π t/T)
and cos(2π t/T) have periods 2π/(2πT) = T, or 2T, 3T, . . . In general, it should be noted
that each of sin(2nπ t/T) and cos(2nπ t/T) has a period equal to 2π/(2nπT) = T/n, 2T/n,
3T/n, . . . 2nT/2n = T, . . . All terms have a common period of T − this is the least period of all
terms. Thus, if the infinite series of equation (11.31a) or equation (11.31b) is equal to f (t),
where t lies in the interval of length T, then it will be true for any other interval provided
f (t) has a period equal to T. Often we limit ourselves to the interval of length (−T/2, T/2)
but results would be valid for any interval of length T. To illustrate it may be instructive to
consider a continuous series, say stream flow, of duration T sampled at discrete times and the
series is to be expanded into periodic functions. Let the sampling interval be �t, as shown in
Figure 11.9. Then in period T, this produces N = T/�t sample values fr:

fr = f (t = r�t) (11.32)

where r is a number.
Note that the highest frequency for fitting the data is w =π (0<w< π), which is the Nyquist

frequency, while the lowest frequency one can reasonably fit completes one cycle in the whole
length of the time series. Equating the cycle length 2π/w to N, the lowest frequency is obtained
as 2π/N. If observations are taken at equal intervals of time �t then the Nyquist frequency
is wN = π/�t. The equivalent frequency stated in cycles per unit time is fN = wN/2π = 1/2�t.
The Nyquist frequency is the highest frequency about which meaningful information can be
extracted from the data. As an example, consider evaporation readings taken at 1:00 P.M. each
day. These observations will not tell anything about the variation in evaporation whether it is
more at noon or less in the morning and even less during nights. With only one observation
the Nyquist frequency is wN = π radians per day or fN = 1 cycle per two days. This is lower than
the frequencies that consider variation within a day. The variation with a wave length of one
day has frequency (angular) w = 2π radians per day or f = one cycle per day. Clearly, more
observations will be needed to obtain information about variation of evaporation within a day.

It may be instructive to label the terms in the Fourier series in terms of their frequencies.
Terms cosnt and sinnt each have period (2π/n), meaning each term will go through (n/2π)
complete cycles. If time t is measured in seconds then term an cos nt + bn sin nt has a frequency
of (n/2π) cycles per second. The quantity n can be interpreted as the angular frequency of the
term (an cos nt + bn sin nt) and is measured in radians per second (if t is measured in seconds).
Geometrically, the angle (nt) passes through n radians each time t moves through one unit of
time. This leads to a relation between frequency (cycles per second) and angular frequency
(in radians per second) as

Angular frequency (w) = (frequency, f ) × 2π = 2π

period
(11.33)

where period is units of time.
It may be remarked that if a function is represented by a Fourier series for 0 ≤ x ≤ L instead

of 0 ≤ x ≤ 2π , then one can substitute t = (2πx)/L and use the Fourier series in terms of t.
If the interval is a ≤ x ≤ b, then one can take y = x − a and use t = (2πy)/(b − a). The Fourier
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Fundermental: w1 = 1/(N∆t), T1 = N∆t

2nd harmonica: w2 = 2/(N∆t), T2 = N∆t/2

nth harmonica: wn = n/(N∆t), Tn = 3∆t

a

f(t)

–2∆t, –∆t

Figure 11.9 Waves and harmonics for a discrete signal. a: a discrete signal sampling from a continuous signal;

b: fundamental w1 = 1/(N�t), T1 = N�t; c: 2nd harmonic w2 = 2/(N�t), T2 = N�t/2; d: n-th harmonics,

wn = 1/(2�t), T = 2�t.
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series can be employed to represent functions that cannot be represented by power series, for
the former depends on the existence of certain integrals whereas the latter depends on the
existence of derivatives.

The Fourier coefficients can be determined as follows. For each integer m, both sides of
equation (11.31b) can be multiplied by cosmt and then integrated from –π to π . Integrating
term by term we get

π∫
−π

f (t) cos mt dt = a0

2

π∫
−π

cos mt dt +
∞∑

n=1


an

π∫
−π

cos nt cos mt dt + bn

π∫
−π

sin nt cos mt dt


 ,

m = 0,1,2, . . . (11.34)

Now recall the property of orthogonality of sine and cosine functions:

π∫
−π

cos (mt) sin (nt) dt =
π∫

−π

sin (mt) cos (nt) dt =
{

π for m = n

0 for m �= n
(11.35)

Taking advantage of equation (11.35), all terms on the right side of equation (11.34) will
vanish except for the cosine integral term in which n = m. Thus equation (11.34) becomes

π∫
−π

f (t) cos mt dt = am

π∫
−π

cos2 mt dt = πam (11.36)

Equation (11.36) yields

a0 = 1

2π

π∫
−π

f (t)dt (11.37)

am = 1

π

π∫
−π

f (t) cos mt dt, m = 1,2, . . . (11.38)

Likewise, the Fourier coefficients bn, n = 0, 1, 2, . . . , can be determined by multiplying equation
(11.31b) by sinmt, and integrating term by term from –π to π , and using the orthogonality
property as

π∫
−π

f (t) sin mt dt = bm

π∫
−π

sin2 mt dt = πmm (11.39)

which yields

bm = 1

π

π∫
−π

f (t) sin mt dt, m = 1,2, . . . (11.40)

Equations (11.38) and (11.40) are called the Euler-Fourier equations.
Note that the limits of integration can also be taken as 0 to 2π . If the fundamental period

(periodicity) is T, instead of 2π , then the expressions for the Fourier series and the associated
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coefficients become:

f (t) = a0 +
∞∑

n=1

(
an cos

2nπ t

T
+ bn sin

2nπ t

T

)
(11.41)

a0 = 1

T

T/2∫
−T/2

f (t)dt (11.42)

an = 2

T

T/2∫
−T/2

f (t) cos
2nπ t

T
dt (11.43)

bn = 2

T

T/2∫
−T/2

f (t) sin
2nπ t

T
dt (11.44)

The above integral expressions for the coefficients [equations (11.38) and (11.40) or (11.43)
and (11.44)] are called Cauchy integrals.

11.2.2 Fourier transform
Let w be the Fourier transform variable. Recalling exp(−it) = cos(t) − i sin(t) where i = √−1,
the Fourier transform of function f (t), denoted by F(w), can be expressed as

F (w) =
∞∫

−∞
f (t) exp (−it) dt =

∞∫
−∞

f (t) [cos wt − i sin wt] dt (11.45)

Equation (11.45) transforms function f in the time domain to function F in the Fourier
domain. The Fourier variable w, called angular frequency, is defined as

w = 2π

T
= 2πw∗ = 2π f , w∗ = 1

T
= f (11.46)

where T is the period in units of time, and w* is the frequency in cycles per unit of time. Term
wi is the i-th harmonic of the fundamental frequency 1/N. Thus, quantities frequency, period,
and number of cycles per unit of time are related.

The Fourier transform (also called Fourier spectrum) of function f (t), F(ω), can be written as

F (w) = a (w) − ib (w) = |F (w)| exp [i	 (w)] (11.47)

where

|F (w)| = [
a2 (w) + b2 (w)

]0.5
(11.48)

is the amplitude spectrum, and

	 (w) = tan−1 [−b (w) /a (w)] + 2nπ (n = 0, ± 1, ± 2, . . . ) (11.49)

is the phase spectrum and its negative is called phase-lag spectrum. Determination of F(w)
is called the Fourier analysis of f (t).
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Thus, the Fourier spectrum is defined in terms of the amplitude spectrum and the phase
spectrum. The real part, a(w), the Fourier cosine transform and the imaginary part b(w), the
Fourier sine transform, of F(w) are called, respectively, co-spectrum and quad-spectrum:

a (w) =
∞∫

−∞
f (t) cos wt dt (11.50)

b (w) =
∞∫

−∞
f (t) = sin wt dt (11.51)

These spectra correspond to:

a (w) → 1

2
an; b (w) → 1

2
bn (11.52)

The inverse Fourier transform is now defined as

f (t) = 1

2π

∞∫
−∞

F (w) exp (iwt) dw (11.53)

and is indeed the Fourier synthesis of f (t). Functions f (t) and F(w) are said to constitute
a Fourier pair and there is a one to one correspondence between them. However, this
correspondence is not point to point in the two domains but is only curve by curve. In a
physical sense, F(w) represents an average of f (t)exp(−iwt) over the interval of integration.
Term exp(−iwt) selects from f (t) only those terms that have frequency w, that is, F(w) is an
average of those components of f (t) that have frequency w. When the frequency interval
is unity, F(w) is called density or more specifically spectral density and |F(w)| is called the
amplitude density. Both f (t) and F(w) have the same dimensions. One can also refer the
spectral density to unit time interval in place of unit frequency interval. Then, F(w) should be
multiplied by the number of cycles per second or any proportional quantity, such as w. Hence
wF(w) would be the spectral density for the unit time interval.

11.2.3 Periodogram
The periodogram is employed to detect and determine the amplitude of a sine component
of known frequency in the random series and can be calculated as follows. Let there be
N = 2m + 1 odd observations of series X(t). The Fourier series is fitted to this series as:

x(t) = a0 +
m∑

i=1

[
ai cos

(
2π it

N

)
+ bi sin

(
2π it

N

)]
+ e(t) (11.54)

where i/N is the i-th harmonic of the fundamental frequency 1/N, and e(t) represents the
residual or error term. The least square estimate of coefficients a0, ai, and bi can be written as

a0 = x (11.55)

ai = 2

N

N∑
i=1

x(t) cos

(
2π it

N

)
i = 1, 2, . . . , m (11.56)

bi = 2

N

N∑
i=1

x(t) sin

(
2π it

N

)
i = 1,2, . . . , m (11.57)
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The periodogram, denoted as P(i/N), then is constituted by m = (N−1)/2 values determined as

P (i/N) = N

2

(
a2

i + b2
i

)
, i = 1,2, . . . , m (11.58)

Term P(i/N) represents the intensity at frequency i/N.
If the number of observations N is even, then N = 2m and equations (11.56) and (11.57)

will hold for i = 1, 2, . . . ,m−1 but for i = m the following will apply:

am = 1

N

N∑
i=1

(−1)i xi(t) (11.59)

bm = 0 (11.60)

P (m/N) = P (0.5) = Na2
m (11.61)

It may be noted that the smallest period is two intervals and hence the highest frequency is
0.5 cycles per interval.

Example 11.5: Represent the annual stream flow time series, given in Table 11.1 in Example
11.1, by a Fourier series and compute the Fourier coefficients. Specify the values of an and bn.
Also, plot the original series and the fitted Fourier series and discuss how they are determined.

Solution: There are 52 years of data, that is, 52 points for the annual stream flow for the
dataset (N = 52). The corresponding discrete Fourier series can be given as:

yn = a0 +
N/2∑
t=1

(
at cos

2nπ t

T
+ bt sin

2nπ t

T

)
, n = 1, . . . , N

The first coefficient a0 is computed as:

a0 = 1

N

N∑
i=1

yi = 5165.9

The coefficients from n = 1 to N/2−1 are computed as

at =
N∑

i=1

yi cos
2nπ i

T
t = 1, . . . , N/2 − 1

bt =
N∑

i=1

yi sin
2nπ i

T
t = 1, . . . , N/2 − 1

For n = N,

an = 1

N

N∑
i=1

(−1)i xi(t) = −180.1, bn = 0

The first 26 coefficients are computed, as shown in Figure 11.10. The original series and the
fitted Fourier series are shown in Figure 11.11 which shows that these two series are close to
each other.
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Figure 11.10 Fourier coefficients for annual stream flow of Brazos River near Bryan for the period 1941–92.
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Bryan for the period 1941–92.
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Figure 11.12 Periodogram of daily stream flow for Brazos River near Bryan, Texas, from 1987–92.

Example 11.6: Compute and plot the periodogram of the following data: (a) daily time series
of stream flow of Brazos River near Bryan; (b) mean monthly stream flow of Brazos River
near Bryan; and (c) mean monthly temperature of College Station.

Solution: For the daily stream flow of Brazos River from 1987–92, the number of observations
is 2192 which is even. The coefficients can be obtained with the procedure in Example 11.5.
The periodogram for the daily stream flow is then plotted as shown in Figure 11.12. Similarly,
the periodogram for monthly stream flow and monthly temperature are plotted in Figure 11.13
and Figure 11.14.

11.2.4 Power
If a physical function, denoted as f (t), is deterministic expressed as equation (11.31b) then its
periodic representation can be interpreted in terms of energy/frequency. Let the period of the
function be 2π . The total energy over the interval (−π , π) is expressed as

Total energy over interval (−π ,π) =
∞∫

−∞

[
f (t)

]2
dt (11.62)

Squaring both sides of equation (11.31b), integrating from –π to π , and using the orthogonality
property, equation (11.62) can be written as

π∫
−π

[f (t)]2dt = π

[
a2

0 +
∞∑

n=1

(
a2

n + b2
n

)]
(11.63)
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Figure 11.13 Periodogram of monthly stream flow of Brazos River near Bryan from 1941–92.
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Figure 11.14 Periodogram of monthly temperature of College Station from 2003–8.
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Denoting c0 = a0√
2
, cn = [(

a2
n + b2

n

)
/2
]0.5

, n = 1,2, . . . , one can write equation (11.62) as

Total energy over interval (−π ,π) = 2π

[ ∞∑
n=0

c2
n

]
(11.64)

This is the amount of energy dissipated over a time period of 2π . The energy dissipated per
unit of time, called power, can also be expressed as

Total power = Total energy over interval (−π , π)

2π
=

∞∑
n=0

c2
n (11.65)

Consider a special case as

f (t) = an cos nt + bn sin nt (11.66)

In this case, all Fourier coefficients, excepting an and bn vanish and consequently all cs,
excepting cn, vanish. Then, equation (11.65) yields

Total power = c2
n (11.67)

This shows that cn
2 represents the contribution of the term an cos nt + bn sin nt to the total

power. Thus, the quantity cn
2 describes the contribution to the total power from the term in

the Fourier series having frequency (n/2π) cycles per second or angular frequency n radians
per second.

If function f (t) is periodic with period T as equation (11.41), then the total energy dissipated
in time interval (−T/2, T/2) can be expressed as

Total energy over interval (−T/2,T/2) =
T/2∫

−T/2

f 2(t)dt = T

( ∞∑
n=0

c2
n

)
(11.68)

Similarly,

Total power over (−T/2,T/2) = Total energy over (−T/2,T/2)

T
=

∞∑
n=0

c2
n (11.69)

Thus, term cn
2 represents the contribution to the total power from the term in the Fourier

series of f (t) having a frequency of n/T (cycles per second) or angular frequency 2πn/T (radians
per second). A plot of cn

2 against n/2π , which is a discrete power spectrum, shows graphically
the distribution of total power over the various frequency components of function f (t).

Let us now discuss the concept of power. Consider the time function f (t), say representing
stream flow. Then the corresponding frequency function F(w) related to f (t) through equations
(11.45) and (11.53) is the stream flow spectrum. Sometimes it is more meaningful to consider
the power of the signal rather than the amplitude. In general, power is expressed as the square
of the amplitude. That is the reason that the corresponding spectra are referred to as power
spectra. For any time function (real), the average power (or variance) is defined in the time
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domain as

s2
T = 1

T

T/2∫
−T/2

|f (t)|2dt =
∞∑

m=−∞

∣∣Xm

∣∣2 (11.70)

where Xm denotes the complex amplitude at the harmonic frequency wm = m/T, measuring
the amplitudes of sine and cosine terms at frequency wm in series f (t). The complex amplitude
can be computed as

Xm = 1

T

T/2∫
−T/2

f (t) exp

(
− i2πmt

T

)
dt (11.71)

where

exp

(
−2iπmt

T

)
= cos

(
2πmt

T

)
− i sin

(
2πmt

T

)
(11.72)

Note the Fourier decomposition of f (t) as

f (t) =
∞∑

m=−∞
Xm exp

(
2π imt

T

)
(11.73)

If function f (t) is discrete observed at times t = − n�t, −(n − 1)�t, . . . , (n − 1)�t, then the
average power can be decomposed into contributions at a finite number of harmonics of the
fundamental frequency w1 = 1/N�t (N = 2n). The corresponding relations for the discrete case
can be expressed as

s2
T = 1

N

n−1∑
t=−n

f 2
t =

n−1∑
m=−n

∣∣Xm

∣∣2 (11.74)

Xm = 1

N

n−1∑
t=−n

ft exp

(
−2π im�t

n�t

)
= 1

N

n∑
t=−n

ft exp

(
−2π imt

N

)
(11.75)

Equation (11.75) represents the decomposition of power at harmonics wm = m/T of the
fundamental frequency w1 = 1/T. Term |f (t)|2 denotes the instantaneous power of f (t) and

the integral

T/2∫
−T/2

|f (t)|2dt represents the total energy of f (t). Using Parseval’s theorem, it can

be shown that

∞∫
−∞

|f (t)|2 dt = 1

π

∞∫
0

|F (w)|2dw (11.76)

where F(w) is the Fourier transform of f (t). Further, a simple shift in f (t) will keep the power
spectrum unchanged. That is,

∞∫
−∞

|f (t ± a)|2 dt = 1

2π

∞∫
−∞

|exp (±iaw) F (w)|2 = 1

2π

∞∫
−∞

|F (w)|2dw (11.77)
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11.2.5 Power spectrum
The power spectrum of a given time series, S(w), is defined by the Fourier transform of its
autocovariance function r(τ ):

S (w) = 1

2π

∞∫
−∞

e−iwτ r (τ )dτ (11.78)

or

S (w) = 1

2π

∞∫
−∞

r (τ ) cos (wτ) dτ (11.79)

where τ is the lag. The spectrum is an even function, S(w) = S(−w). From the inverse Fourier
transform, the covariance function Cov (τ ) can be expressed as:

Cov (τ ) = r (τ ) =
∞∫

−∞
eiωtS (w) dw (11.80)

or

r (τ ) =
∞∫

−∞
S (w) cos (wτ) dw (11.81)

Equation (11.80) shows that the covariance function can be expressed as the inverse Fourier
transform of the spectrum. Fourier transform S(w) provides information about the time
series in the frequency domain, in contrast with the autocovariance function which gives
information in the time domain. The advantage of S(w) is that it helps uncover hidden
periodicities in data and determines closely spaced frequency peaks.

For the discrete case the spectrum can likewise be defined as:

S (w) = �t
(N−1)∑

j=−(N−1)

rk exp
[−2π iwj�t

]
, − 1

2�t
≤ w ≤ 1

2�t
(11.82)

where i = √−1, �t = the sampling time interval, and w = frequency. Term 1/(2�t) is called
the Nyquist frequency. Equation (11.82) implies that rk is known for finite values of lag, that
is, observations are finite.

Taking the inverse Fourier transform of S(w) in equation (11.82) yields the autocovariance
function:

rk =
1/2�t∫

−1/2�t

S (w) exp(2πkiw)dw, − N�t ≤ k ≤ N�t (11.83)

If the observation interval �t = 1, that is, normalized to unit length, then equation (11.82)
results in the normalized power spectrum:

S (w) =
∞∑

j=−∞
rk exp

[−2jπ iw
]
, |w| <

1

2
, i = √−1 (11.84)
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Likewise, equation (11.83) becomes

rk =
1/2∫

−1/2

S (w) exp(2πkiw)dw (11.85)

Let θ = 2πw. Then, equation (11.85) becomes

rk = 1

2π

2π∫
0

S

(
θ

2π

)
exp(iθk)dθ (11.86)

The quantity |F(w)|2/T is called power spectral density. For comparing time series with
different scales of measurement, one may normalize the spectrum by dividing it by the
variance σ 2

X :

g (w) = S (w)

σ 2
x

(11.87)

Equation (11.87) defines the spectral density function g(w). This means that the covariance
function in equation (11.78) can be replaced by the autocorrelation function ρ*(τ ):

g (w) = 1

2π

∞∫
−∞

ρX (τ )e−wτ dτ = 1

2π

∞∫
−∞

ρX (τ ) cos (wτ) dτ (11.88)

where g(w) is the normalized spectral density function. Likewise, the inverse of equation
(11.88) can be cast as

ρX (τ ) =
∞∫

−∞
g (w) eiwτ dω =

∞∫
−∞

g (w) cos (wτ) dw (11.89)

Equation (11.89) indicates that the area under the spectral density function is unity, since
ρ(0) = cos(0) = 1:

1/2∫
0

g (w) dw = 1 (11.90)

If τ = 0, Cov(0) = σ 2 = variance, then equation (11.89) reduces to

r (0) = σ 2 =
∞∫

−∞
g (w) dw (11.91)

Equation (11.91) shows that the variance of the process X(t) is distributed over frequency in
the same manner as variance of one particular sample of length T is distributed over frequency
shown by equation (11.85). More specifically, the variance of X(t) due to frequencies in the
range w and w + �w is approximately S(w)�w.

Interpreted physically, the spectrum represents a distribution of variance over frequency.
When divided by the variance, the spectrum is analogous to a probability density function.
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This explains the designation of spectral density function. When divided by the variance,
the integrated spectrum is analogous to the cumulative probability distribution function. The
spectral density function helps determine the frequencies that dominate the variance. A graph
of the spectral density function shows predominant frequencies relative to less dominant
frequencies. For example, a partial area between a band of two frequencies, f 1 and f 2, under
the spectral density function indicates the contribution of the total normalized variance in the
band. Thus, the spectral density is a function of frequency in cycles per unit of time (wm),
frequency in radians per unit of time (wm), or period in units of time (T). Therefore,

S (w) = 2π S
(
wm

)
(11.92)

Equations (11.78) and (11.79) can also be expressed in terms of wm. If x’s are random variables
then one can express the joint probability density p(X), where X = {x1,x2, . . . , xN} to describe
the stochastic signal. Here p(X) is the spectral power probability density function.

It may be worthwhile to recall several important aspects of covariance-spectrum relation-
ships: 1) The spectrum must be non-negative at all frequencies, for it corresponds to a square
amplitude. 2) The spectrum is a distribution of variance over frequency. When divided by
variance, the spectrum is analogous to a probability density function. Likewise, the integrated
spectrum, when divided by variance, is analogous to the cumulative probability distribution
function. 3) The spectrum is an even function of frequency, because the covariance is an even
function of lag.

Example 11.7: Consider the covariance function expressed by the negative exponential
function. Determine the spectrum.

Solution: Substituting the negative exponential covariance function equation (11.78), one
gets

S (w) = 1

2π

∞∫
−∞

exp (−iwk)
1

σ 2
exp(− |k| /α]dk

= σ 2

2π




∞∫
0

exp

[
(−iwk) −

(
1

α
|k|
)]

dk +
0∫

−∞
exp

[
(−iwk) −

(
|k| 1

α

)]
dk




= σ 2α

π
(
1 + α2w2

)

Example 11.8: Consider an autocorrelation function which is periodic in lag measured in
months. Assume the function has the form:

ρ (τ) = 1

π
cos

(πτ

12

)
where τ is the lag in months. Compute the spectral density function and what does it tell?

Solution: Substitute given function into equation (11.79), one gets

S(w) = 1

2π

∞∫
−∞

1

π
cos

(πτ

12

)
cos (wτ)dτ



464 Entropy Theory and its Application in Environmental and Water Engineering

=
(

1

2π

)2
∞∫

−∞
cos

(πτ

12
+ wτ

)
+ cos

(πτ

12
− wτ

)
dτ

=
(

1

2π

)2 2(
π
12

)2 − w2

11.3 Spectral analysis using maximum entropy

In spectral analysis, the main goal is twofold: 1) determination of the spectrum and
2) extension of the spectrum beyond the length of data. The first goal can be accomplished
in three ways: 1) application of the principle of maximum entropy (POME) to Burg entropy,
2) consideration of the spectrum as a PDF, and 3) use of linear filter. Before discussing these
methods, we discuss the reasoning for treating spectral densities as PDFs. Consider (frequency)
w as random variable. Because the power spectrum (non-negative) is normalized to have an
area equal to one, it can be perceived as the PDF. It is known that the Fourier transform
pair (autocovariance function and power spectrum), r(τ ) ↔ S(w), has the same properties
as those of the pair of characteristic function ↔PDF of a random variable differing only by
a scaling factor. To illustrate this point, let us consider another random variable ϕ whose
characteristic function satisfies ϕ(1) = ϕ(0) = 0. Random variable w is independent of ϕ with
an event density function f (w). Let a stochastic process be formed as

X(t) = a cos (wt + ϕ)

where a is coefficient. If X(t) is wide sense stationary, it has a power spectrum expressed as
S(w) = πa2f (w). This shows that the power spectrum is identical to an underlying PDF of the
frequency of the process multiplied by a constant.

Now consider a more general case entailing two bounded signals: deterministic x(t) and
stochastic ϕ(t). Both signals can be related to one another one on one through the transfor-
mation:

x(t) = A sin ϕ(t), |x(t)| ≤ A, |ϕ(t)| ≤ π/2, ∀(t)

where A is coefficient. Then, the stochastic process X(t), composed of realizations as
x1(t), x2(t), . . . , xN(t), has a one on one relation with the stochastic process ϕ(t) composed of
realizations ϕ1(t), ϕ2(t), . . . , ϕN(t) as:

x1(t) = A sin
(
ϕ1(t)

)
, x2(t) = A sin

(
ϕ2(t)

)
, . . . , xN(t) = AϕN(t)

Therefore, the two random processes, X(t) and ϕ(t), are connected one on one to each other as

X(t) = A sin ϕ(t)

Tzannes et al. (1985) show that the normalized power spectrum of any wide sense stationary
stochastic process can be considered as equivalent to the first-order probability density
function (PDF) of the underlying stochastic process, that is, the instantaneous frequency
process. For the stochastic process X(t), its instantaneous frequency can be expressed as

w(t) = dϕ(t)

dt
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and the PDF of w(t), denoted as P(w), can be assumed as time invariant and an even function
of w. Then the power spectral density of X(t) can be shown to be

S (w) = πA2P (w)

Thus the normalized power spectrum of a wide stationary random process is equivalent to
the first order PDF of an underlying process, namely the instantaneous frequency process of
X(t). This discussion establishes a basis for the interpretation of normalized spectral density
as PDF and it can be so treated in entropy-based spectral analysis.

The power spectrum S(w) of a band limited stationary stochastic process is related to its
autocorrelation function ρ(τ ) by Fourier transform. It is easy to determine ρ(τ ) from data.
Spectral analysis techniques are based on two concepts. In the first concept, the power
spectrum is determined by taking the Fourier transform of the product of the autocorrelation
function ρ(τ ), τ ≤ T, and a window function W(t), where W(t) = 0, t > T. The unknown power
spectrum is then determined by making use of the convolution theorem which states that the
Fourier transform of the product of two time functions equals the convolution of their Fourier
transforms in the frequency domain. There are, however, two shortcomings of this concept.
First, it assumes that ρ(τ ) = 0, τ > T, which in general is not true. Second, it distorts the known
values of ρ(t). In the second concept, ρ(τ ) is extended beyond T and then the power spectrum
S(w) is determined by taking the Fourier transform of the extended ρ(τ ). However, it requires
an extension of ρ(τ ), t > T, and it is not clear how best to accomplish the extension.

Foragivensetofdata, it is assumedthat specific information is contained in theautocorrelation
values. Further, power spectra must be non-negative. These two conditions can be satisfied by
an infinite number of spectra. Thus, the goal is to find a single spectrum which will hopefully be
representative of the class of all possible spectra. Burg (1967) proposed choosing such spectrum
bymaximizingentropywhichwill correspondtothemostrandomorthemostunpredictable time
series whose autocorrelation function will concur with known values. The spectrum so derived
will be most noncommittal to the unknown values of the autocorrelation function. Burg (1975)
suggested extending ρ(t) by maximizing entropy of the underlying stochastic process and thus
he proposed maximum entropy spectral analysis (MESA). The principle of maximum entropy
(POME) is applied in MESA somewhat indirectly. The Burg entropy expresses the entropy gain
in a stochastic process that is transmitted through a linear filter having a characteristic function
Y(w),where S(w) = |Y(w)|2. If the input iswhitenoise then theoutputhas spectralpowerdensity
s(w) or g(w). The implication here is that the process entropy can be maximized by maximizing
theentropygain H(w)of thefilter thatproduces theprocess.Thus, theBurgentropy ismaximized
subject to constraints defined by autocorrelation functions.

Burg (1975) discussed desirable properties of entropy-based spectrum. First, the resolution
of the maximum entropy spectral estimate is greater than that obtained by conventional
methods. Second, since the most random time series has a white or flat spectrum, the
maximum entropy spectrum is expected to be white, consistent with the autocorrelation
values. The white spectrum usually has sharp spectral peaks of high resolution. Third, the
maximum entropy spectra can be computed from known autocorrelation functions.

11.3.1 Burg method
Spectral analysis by the Burg method involves the following steps: 1) defining Burg entropy,
2) specification of constraints in terms of autocorrelation functions, 3) maximization of Burg
entropy for obtaining the least-biased spectrum, 4) determining parameters, 5) determining
the spectral density, 6) Levinson-Burg algorithm, and 7) extension of autocorrelation function.
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Burg entropy
The Burg entropy, H(w), discussed in Chapter 2, can be re-written as

H (w) =
W∫

−W

log [S (w)] dw (11.93)

where w is the frequency, W is the band width, and S(w) is the power spectrum at frequency w

related to the autocovariance function ρn of the time series (n denoting the lag). It is assumed
that the time series is sampled at a uniform period of �t, W = 1/(2�t) = the Nyquist frequency
and the power spectrum of the series is band limited to ± W . The objective is to maximize the
Burg entropy subject to specified constraints.

Specification of constraints
For maximizing the Burg entropy given by equation (11.93), the constraints are given as
autocorrelations:

ρn =
W∫

−W

S (w) exp (i2πwn�t) dw, −N ≤ n ≤ N (11.94)

where N is the specified maximum lag.

Maximization of Burg entropy
First, the power spectrum is expressed in terms of the Fourier series:

S (w) = 1

2W

∞∑
n=−∞

ρn exp (−i2πwn�t) (11.95)

Substituting equation (11.95) in the Burg entropy in equation (11.93), one obtains

H (w) =
W∫

−W

log

[
1

2W

∞∑
n=−∞

ρn exp (−i2πnw�t)

]
dw (11.96)

Differentiating equation (11.96) partially with respect to ρn, and equating to zero, where
|n| > N,

W∫
−W

[
1

2W

∞∑
n=−∞

ρn exp(−i2πnw�t)

]−1
1

2W
exp(−i2πnw�t)dw

= 1

2W

W∫
−W

1

S (w)
exp (−i2πnw�t) dw = 0, |n| > N (11.97)

Expanding 1/S(w) in a Fourier series, one gets

1

S (w)
=

∞∑
n=−∞

Cn exp (−i2πnw�t) (11.98)
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where Cn are undetermined coefficients. Equation (11.98) shows that Cn = 0 for |n|> N. This
means that the Fourier series of the function 1/S(w) truncates at n = N. Then, equation (11.98)
yields the power spectrum as

S (w) = 1
N∑

n=−N

Cn exp (−i2πnw�t)

(11.99)

Equation (11.99) can also be derived using the method of Lagrange multipliers where Cn will
be the Lagrange multipliers.

Example 11.9: Derive equation (11.99) using the method of Lagrange multipliers.

Solution: Denote the spectrum as S(f ), where f = 2πw and w is the frequency. The autocor-
relations are denoted as r(k), k = −n, . . . , −1,0,1, . . . , n. Then the problem can be formalized
by maximizing the entropy function H:

H = −
π∫

−π

logS (f ) df

subject to the constraints:

r (k) =
π∫

−π

S (f ) exp (ifk)df , k = −n, . . . , −1, 0, 1, . . . , n

By introducing the Lagrange multipliers λk (k = −n, . . . , −1,0,1, . . . , n), the Lagrange function
can be defined as:

L =
π∫

−π

logS (f ) df +
n∑

k=−n

λk


r (k) −

π∫
−π

S (f ) exp (ifk)df




Taking derivative of L with respect to the spectra S(f ) and setting the derivatives to be zero,
one obtains the spectrum as:

S (f ) = 1
n∑

k=−n

λk exp (ifk)

= 1
n∑

k=−n

λk exp (−i2πwk)

, k = −n, . . . , −1, 0, 1, . . . , n

Determination of parameters Cn

Burg (1975) determined parameters Cn in two ways: 1) direct integration and 2) z-transform.
The direct integration method is followed here. Substitution of equation (11.99) in equation
(11.94) yields

W∫
−W

exp (i2πnw�t)
N∑

n=−N

Cs exp (−i2πwn�t)

dw = ρn, −N ≤ n ≤ N (11.100)
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Let z = exp(−i2πw�t)(the z-transform notation). Then,

dz = −i2π�t exp (−i2πw�t) dw = −i2π�tzdw (11.101a)

or

dw = − dz

i2π�tz
(11.101b)

Substituting these quantities in equation (11.100), one gets

W∫
−W

z−n

N∑
n=−N

Csz
n

dw = 1

2π i�t

∮
z−n−1dz

N∑
n=−N

Cnzn

= ρn (11.102)

in which the contour integral is around the unit circle in the counter-clock wise direction.
Since S(w) must be real and positive for |z| = 1, it is possible to write from equation (11.99)
using the z-transform notation (z = exp(−i2πw�t)):

N∑
n=−N

Cnzn = [
PN�t

]−1
[1 + a1z + a2z2 + . . . + aNzN][1 + a∗

1z−1 + a∗
2z−2 + . . . + a∗

Nz−N]

= [
PN�t

]−1
N∑

n=0

anzn
N∑

n=0

a∗
nz−n (11.103)

in which PN > 0 and a0 = 1. All of the roots of the first polynomial in z in equation (11.103)
can be chosen to lie outside of the unit circle; thus all of the roots of the second polynomial
will be inside the unit circle. Inserting equation (11.103) in equation (11.102), one obtains:

PN

2π�t

∮
z−n−1dz

N∑
n=0

asz
n

N∑
n=0

a∗
s z−n

= ρn, −N ≤ n ≤ N (11.104)

Forming the summations,

N∑
n=0

a∗
nρn−j = PN

2π�t

∮ zj−1
N∑

n=0

a∗
nz−n

N∑
n=0

anzn
N∑

n=0

a∗
nz−n

dz = PN

2π�t

∮
zj−1

N∑
n=0

anzn

dz, j ≥ 0 (11.105)

Note one form of Cauchy’s integral formula:

1

2π�t

∮
g (z) dz

z
= g (0) (11.106)

in which g(z) is analytic on and inside the contour of integration. With the use of this formula
and noting that a0 = 1, it is observed that equation (11.105) equals PN for j = 0. Using the
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complex conjugate of equation (11.105), the result is the prediction error filter equation:

N∑
n=0

ρj−nan = PN , j = 0 (11.107a)

and

N∑
n=0

ρj−nan = 0, j ≥ 1 (11.107b)

For 0 ≤ j ≤ N, equations (11.107a) and (11.107b) can be written in matrix form as


ρ0 ρ−1
• • ρ−N

ρ1 ρ0
• • ρ1−N

• • • • •

• • • ρ0
•

ρN ρN−1
• • ρ0







1
a1

•

•

aN




=




PN

0
•

•

0




(11.108)

Equation (11.108) is the N-th order prediction error filter and can be solved for PN and
an (n = 1, 2, . . . , N) using the Levinson-Burg algorithm. Note that substitution of equations
(11.95) and (11.103) into equation (11.99) yields

S (w) = PN�t
N∑

s=0

asz
s

N∑
n=0

a∗
nz−n

= 1

2W

∞∑
r=−∞

ρrz
r (11.109)

Substitution of values obtained from the Levinson-Burg algorithm into equation (11.109)
yields the maximum entropy spectrum.

Solution by the Levinson-Burg algorithm
It is assumed that the N by N Toeplitz matrix in equation (11.108) is positive definite and the
full N + 1 by N + 1 Toeplitz matrix is at least nonnegative definite. This means that equation
(11.108) will have a unique solution. The algorithm is recursive wherein the solution of the
N + 1th set of equations is obtained from the solution of the Nth set of equations. Thus, from
the solution of N equations:



ρ0 ρ−1
• • ρ1−N

ρ1 ρ0
• • ρ2−N

• • • • •

• • • ρ0
•

ρN−1 ρN−2
• • ρ0







1
b1

•

•

bN−1




=




PN−1

0
•

•

0




(11.110a)

the solution of N + 1st equations is obtained by evaluating the matrix equation:




ρ0 ρ−1
• • ρ−N

ρ1 ρ0
• • ρ1−N

• • • • •

ρN−1 ρN−2
• ρ0

•

ρN ρN−1
• • ρ0










1
b1

•

bN−1

1




+ CN




0
b∗

N−1

.

b∗
1

1





 =







PN−1

0
•

0
�N




+ CN




�∗
n

0
0
0

PN−1







(11.110b)
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where b*1, . . . , b*N−1 and �*n denotes the conjugate reverse of b1, . . . , bN−1 and �n. In
equation (11.110b), the second column vector on both sides is the simple complex conjugate
reverse of the first column. The autocorrelation matrix has the last row as complex conjugate
reverse of the first row, the second to the last row as reverse of the second row, and so on.
From equation (11.111b),

�N =
N−1∑
n=0

ρN−nbn (11.111)

where b0 = 1. The Nth order reflection coefficient CN is specified as

CN = − �N

PN−1

(11.112)

Thus, Nth order prediction filter is obtained from CN and the N-1 the order filter as:


1
a1

•

•

•

aN−1

aN




=




1
b1

•

•

•

bN−1

0




+ CN




0
b∗

N−1
•

•

•

b∗
1

1




(11.113)

The value of PN is now obtained as

PN = PN−1

(
1 − CNC∗

N

) = PN−1

(
1 − ∣∣CN

∣∣2) (11.114)

The recursive algorithm is often started with P0 = ρ0 and the zeroth order prediction error
filter which is one point filter with unit weight.

Extension of autocorrelation function
The autocorrelation function values for lag n are known, that is, |n| ≤ N, and are to be
determined for n greater than N. Entropy maximization leads to



ρ0 ρ1
• • • ρN−1 ρN

ρ1 ρ0 ρ1
• • • ρN−1

• • • • • • •

• • • • • • •

• • • • • • •

ρN−1 ρN−1
• • • ρ0 ρ1

ρN ρN−1
• • • ρ1 ρ0







1
C1

•

•

•

CN−1

CN




=




PN

0
•

•

•

•

•




(11.115)

where PN is one step ahead prediction error power, and CN are the coefficients of filter. Both
PN and CN are estimated recursively. Then the spectrum is estimated as

S (w) = PN

2W

∣∣∣∣∣∣1 +
N∑

j=1

Cj exp (−j2πwj)

∣∣∣∣∣∣
2 (11.116)

where W is the Nyquist frequency.
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Example 11.10: Select the first eight years of annual stream flow data (1941–8) of the Brazos
River near Bryan, Texas, used in Example 11.1 and compute the maximum entropy spectrum.

Solution: First, the time series of stream flow is logarithmically transformed is taken and
the mean of the time series is than subtracted. Assume the autocorrelation is known up to
lag-2 (m = 2), which are ρ0 = 1.0000, ρ1 = 0.0899; ρ2 = −0.2112. Second, the Levinson-Burg
algorithm is applied to solve for the Lagrange multipliers as illustrated below.

Three equations are used sequentially to obtain �N , CN, and PN, which are expressed as:

�N =
N−1∑
n=0

ρN−nbn (11.117)

CN = − �N

PN−1

(11.118)

PN = PN−1

(
1 − CNC∗

N

) = PN−1

(
1 − ∣∣CN

∣∣2) (11.119)

Step 1: Equation (11.110a) can be written as:

[
ρ0

]
[1] = [

P0

]
From this equation, one obtains: P0 = 1. Note that b0 = 1.

Step 2: Equation (11.110b) can be written as:[
ρ0 ρ1

ρ1 ρ0

][(
1
0

)
+ C1

(
0
1

)]
=
[

P0

�1

]
+ C1

[
�1

P0

]

Using equations (11.117), (11.118) and (11.119),

�1 = ρ1b0 = ρ1

C1 = −�1

P0

= −ρ1

P1 = P0

(
1 − ∣∣C1

∣∣2) = 1 − ρ2
1

Since(
1
a1

)
=
(

1
0

)
+ C1

(
0
1

)

one obtains:

a1 = C1 = −ρ1

Step 3:
From the results in Step 2, equation (11.110a) can be written as:[

ρ0 ρ1

ρ1 ρ0

][
1
a1

]
=
[

P1

0

]
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Then equation (11.110b) can be written as:
ρ0 ρ−1 ρ−2

ρ1 ρ0 ρ−1

ρ2 ρ1 ρ0






 1

b1

0


 + C2


 0

b1

1




 =


P1

0
�2


 + C2


�2

0
P1




where b1=a1 = −ρ1.

Using equations (11.117), (11.118), and (11.119), one obtains:

�2 = ρ2b0 + ρ1b1 = ρ2 + ρ1b1

C2 = −�2

P1

= −ρ2 + ρ1b1

1 − ρ2
1

P2 = P1

(
1 − ∣∣C2

∣∣2) = (
1 − ρ2

1

) [
1 −

(
ρ2 + ρ1b1

1 − ρ2
1

)2
]

Since
 1

a1

a2


 =


 1

b1

0


 + C2


 0

b1

1




one obtains:

a1 = b1 + C2b1 = −ρ1

(
1 − ρ2 + ρ1b1

1 − ρ2
1

)

a2 = C2 = −ρ2 + ρ1b1

1 − ρ2
1

Substituting ρ0 = 1.0000, ρ1 = 0.0899; ρ2 = −0.2112, one obtains:

a1 = −0.1098, a2 = 0.2211, and P2 = 0.9434.

Step 4:
From the results in Step 3, equation (11.110a) can be written as:
ρ0 ρ−1 ρ−2

ρ1 ρ0 ρ−1

ρ2 ρ1 ρ0




 1

a1

a2


 =


P2

0
0




or
 1.0000 0.0899 −0.2112

0.0899 1.0000 0.0899
−0.2112 0.0899 1.0000




 1

−0.1098
0.2211


 =


0.9434

0
0




Then the maximum entropy spectrum can be expressed as: (use the actual values in the
equation below.)

S (f ) = Pm
m∑

s=0

asz
s

m∑
n=0

a∗
nz−n

= P2∣∣∣∣∣1 +
2∑

k=1

ak exp (−2π ikf )

∣∣∣∣∣
2
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11.3.2 Kapur-Kesavan method
Kapur and Kesavan (1992) presented a method for maximum entropy spectral analysis. The
method entails the same steps as in the Burg method.

Specification of constraints
Let the variates be x− m, x− m + 1, . . . , x0, x1, . . . , xm or X = [

x−m, x−m+1, . . . , x0x1, . . . , xm

]T
.

These variates and their variances and covariances vary from − ∞ to +∞. The means of
these variates are zero, for the mean is subtracted from the actual values. Since observations
of these variates are assumed to be available, their autocovariance functions m + 1 can be
determined from data and these form the constraints:

rk = 1

n

n−k∑
j=0

xjxj−k (11.120)

For real values which are being considered here, r− k = rk.

11.3.3 Maximization of entropy
From the discussion in Chapter 4, it is clear that POME-based probability density function
with zero mean and nonzero autocovariances will be a multivariate normal which can be
written for a random vector Y = [

y1, y2, . . . , yM

]T
as

p (y) = 1

(2π)M/2
∣∣∑∣∣1/2 exp

[
−1

2
yT

−1∑
y

]
(11.121)

where y = [y1,y2, . . . , yM] has zero mean and covariance matrix
∑

which will be clear in what
follows. For random vector X, xT = [

x0 x1, . . . , xn

]T
, the entropy-based probability density

function can be derived, using POME subject to equation (11.121) and the method of
Lagrange multipliers, as

p(x) = 1

Z (λ)
exp

{
−
[

m∑
k=−m

λk

n−k∑
i=0

xixi + k

]}

= 1

Z (λ)
exp

[
−1

2
xT
x

]
(11.122)

where Z(λ) is a partition function, a function of Lagrange multipliers λ− m, . . . , λ− 2, λ− 1, λ0,
λ1, λ2, . . . , λm; and 
 is an equidiagonal (m + 1) × (m + 1) Toeplitz matrix of the Lagrange
multipliers represented as

cij =




λ0 λ1
• • λm

• • • • •

• • • • •

• • • • •

λ−m
• • • λ0


 (11.123)

It is noted that each entry at (i, j) in the matrix is cij where cij = λj − i if |j − i| ≤ m and cij = 0 if
|j − i| > m. In order for the matrix to be related to the constraints via the covariance matrix, it
must be positive definite. Hence, matrix 
 is also a Hessian matrix.
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The PDF given by equation (11.122) has the same form as equation (11.121). Therefore, X
can be regarded as having a multivariate normal distribution (with zero mean) and covariance
matrix 
− 1. The covariance matrix

∑
is expressed as∑

= 
−1 (11.124)

Comparing equation (11.124) with equation (11.122), the partition function Z(λ) is
obtained as:

Z (λ) = (2π)
n+1

2
∣∣
−1

∣∣1/2
(11.125)

It should be noted that equation (11.122) is valid only if the autocovariances rk’s are given
such that the determinant of the autocovariance matrix is not zero, thus permitting the
eigenvalues of the matrix to be positive and real.

Determination of Lagrange multipliers
The values of Lagrange multipliers in the partition function Z(λ) = Z(λ−m, . . . , λ−1, λ0,
λ1, . . . , λm) can be obtained as follows. Taking the logarithm of equation (11.125) and
denoting the real and positive eigenvalues of matrix 
 as w0, w1, w2, . . . , wn, one obtains

ln Z (λ) = n + 1

2
ln (2π) − 1

2
ln |
| (11.126)

Equation (11.126) relates the eigenvalues to Lagrange multipliers or vice versa. Since 
 is a
Toeplitz matrix, its eigenvalues can be expressed analytically in the limiting case m � n. One
can write the determinant of the covariance matrix as

|
| =
n∏

j=0

wj (11.127)

Inserting equation (11.127) in equation (11.126), one gets

ln Z (λ) = n + 1

2
ln (2π) − 1

2

n∑
j=0

ln wj (11.128)

For Toeplitz matrices, the eigenvalues can be expressed, if n 
 m, as

wj = g
(

zj

)
=

m∑
k=−m

λkzk
j , j = 0, 1, 2, . . . , n (11.129)

where z’s are the (n + 1) roots of zn + 1 = 1 lying on the unit circle in the complex plane.
Because 
 is a Hermitian matrix (A matrix is a Hermitian matrix if the element aij in the i-th
row and j-th column is equal to the complex conjugate of the element in the j-th row and i-th
column) and all the eigenvalues w0, w1, w2, . . . , wn are real, one can write the roots as

zj = exp

(
2π ij

n + 1

)
, j = 0, 1, . . . , n; i = √−1 (11.130)

Substituting equation (11.130) into equation (11.129), the result is

wj =
m∑

k=−m

λk exp

(
2π ijk

n + 1

)
(11.131)
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Substitution of equation (11.131) in equation (11.128) produces

ln Z (λ) ∼= n + 1

2


ln (2π) − 1

n + 1

n∑
j=0

ln g

[
exp

(
2π ij

n + 1

)]
 (11.132)

Recall Riemann’s definition of a definite integral:

1

2π

2π∫
0

f (θ)dθ = lim
n→∞

1

n + 1

n∑
j=0

f

(
2π j

n + 1

)
(11.133)

For n → ∞, equation (11.132), with the use of equation (11.133) and f (θ) = g[exp(iθ)], can
be approximated as

2

n + 1
ln Z (λ) ∼= ln (2π) − 1

2π

2π∫
0

ln g
[
exp (iθ)

]
dθ (11.134)

Equation (11.134), with the use of equation (11.129), becomes

2

n + 1
ln Z (λ) ∼= ln (2π) − 1

2π

2π∫
0

ln

[
m∑

k=−m

λk exp (ikθ)

]
dθ (11.135)

Equation (11.135) is now differentiated with respect to zk:

2

n + 1

∂ ln Z (λ)

∂λk

∼= − 1

2π

2π∫
0

∂

∂λk

ln

[
m∑

k=−m

λk exp (ikθ)

]
dθ

= − 1

2π

2π∫
0

exp (iθk)

g
[
exp (iθ)

]dθ , k = 0, ±1, ±2, . . . , ±m (11.136)

In the multivariate maximum entropy formulation, λ0 is expressed in terms of the Lagrange
multipliers λ1, λ2, . . . , λm and derivatives of λ0with respect to other Lagrange multipliers are
equated to the constraints:

∂λ0

∂λk

= −rk = −E


n−k∑

j=0

x∗
j xj+k


 (11.137)

In equation (11.122), Z(λ) is the partition function and serves the same role as λ0 and there
constraints rk are the same as (n + 1)/2rk. Therefore, one obtains

∂

∂λk

ln Z (λ) = −n + 1

2
rk = −E


n−k∑

j=0

x∗
j xj+k


 (11.138)

Equation (11.137) becomes

rk = rk

(
2

n + 1

)
= 1

2π

2π∫
0

exp (iθk)

g
[
exp (iθ)

]dθ = E


 2

n + 1

n−k∑
j=0

x∗
j xj+k


 (11.139)
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Equation (11.139) permits (2m + 1) equations that express autocovariances in terms of the
Lagrange multipliers to be generated. The left side of equation (11.136) is obtained from
data for all values of k between –m and m. On the right side, g[exp(iθ)] is a function of
λ0, λ1, λ2, . . . , λm − 1, λm. Thus, equation (11.139) leads to (2m + 1) equations which can be
employed to determine (2m + 1) unknown Lagrange multipliers. Then, Z(λ) is obtained and
the POME-based distribution is given by equation (11.122) in terms of autocovariances.

Example 11.11: Compute the right side of equation (11.139) for the time series used in
Example 11.4.

Solution: For the given stream flow data, covariances are computed first. From the equation:

rk = 1

8

n−k∑
j=0

xjxj−k

One obtains rk as: rk = [0.3621 0.0326 −0.0765 −0.0203 0.0219], k = 0, 1, . . . , 4. The
right side of equation (11.139) can then be computed as:

rk = rk

(
2

8

)

The result for k = 0, 1, . . . 4 is then obtained as:

rk = [0.0905 0.0081 − 0.0191 − 0.0051 0.0055], k = 0, 1, . . . , 4

11.3.4 Determination of Lagrange multipliers λk
To solve for λks, equation (11.139) is transformed as a contour integral over the unit circle in
an anticlockwise direction in the complex plane. Let

z = exp (iθ) , dz = i exp (iθ) dθ (11.140)

Substituting in equation (11.139), one obtains

rk = 1

2π i

∮
zk−1

g (z)
dz (11.141)

where the closed contour C is the unit circle.
The term g(z) in equation (11.141) can be factored as

g (z) =
m∑

k=−m

λkzk = Gm (z) G∗
m

(
z∗) , zz∗ = 1 (11.142)

where

Gm (z) = g0 + g1z−1 + g2z−2 + . . . + gmz−m

G∗
m

(
z∗) = g∗

0 + g∗
1z + g∗

2z2 + .... + g∗
mzm

since on a unit circle, zz* = 1, where z* is the conjugate of z. Terms g’s are selected such that
Gm(z) comprises all its zeros inside the unit circle (minimum phase polynomial) and G*m(z*)
comprises all its zeros outside the unit circle (maximum phase polynomial).
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When coefficients in equation (11.140) are equated to those in equation (11.142), one
obtains

λk =
m−k∑
j=0

gjg
∗
j+k (11.143)

and λ−k = λ∗
k. To solve for gis so that λk can be determined, substitute equation (11.143) in

equation (11.141),

rk = 1

2π i

∮
zk−1 [Gm (z) G∗

m

(
z∗)]−1

dz (11.144)

This can also be written as

m∑
j=0

gjrk−j = 1

2π i

∮
(

m∑
j=0

gjz
−j

)
zk−1

Gm (z) G∗
m (z∗)

dz

= 1

2π i

∮
zk−1

g∗
o + g∗

1z + . . . + g∗
mzm

dz (11.145)

Since G∗
m (z∗) comprises zeros only outside the unit circle, the integral in equation (11.145)

can be evaluated as:

1

2π i

∮
zk−1

G∗
m (z∗)

dz =

0 k > 0

1
g∗0

k = 0
(11.146a)

Hence,

m∑
j=0

gjrk−j =
{

1
g∗o k > 0

0 k = 0
(11.146b)

Equation (11.146b) leads to (m + 1) equations which can be solved for gjs, since autocovari-
ances are known from data.

Let

aj = gj

g0

(11.147)

Then equation (11.146b) can be expressed as




r0 r−1 ... r−m

r1 r0 . . . r−m+1

. . .

. . .

. . .

rm rm−1 . . . r0




(m+1)×(m+1)




1
a1

.

.

.

am




(m+1)×1

=




1/g0g∗
0

0
.

.

.

0




(m+1)×1

(11.148a)
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or in matrix form:

Rma = sm (11.148b)

The autocovariance matrix in equation (11.148a) is Hermitian and Toeplitz.
Recall that equation (11.129) can be recast as

m∑
k=−m

λkzk = g0g∗
0

(
1 + a1z−1 + . . . + amz−m

) (
1 + a∗

1z + . . . + a∗
mzm

)
(11.149)

Comparing the coefficients of various powers of z,

λ0

g0g∗
0

= 1 + a1a∗
1 + a2a∗

2 + . . . + ama∗
m

λ1

g0g∗
0

= a∗
1 + a1a∗

2 + a2a∗
3 + . . . + am−1a∗

m (11.150a)

...

λm

g0g∗
0

= a∗
m

More compactly,

λk = g0g∗
0

m−k∑
j=0

aja
∗
j+k, k = 0, 1, 2, . . . , m (11.150b)

Equation (11.150b) permits a determination of λ− m, λ− m + 1, . . . , λ1, λ2, . . . , λm in terms of
g0, g∗

0, a1, a∗
1, . . . , am, a∗

m which themselves are determined in terms of autocovarainces from
equation (11.148).

Example 11.12: Compute the Lagrange multipliers for the time series used in Example 11.4.

Solution: For m = 2, the matrix in equation (11.148a) can be solved to obtain the parameters
g0, g∗

0, a1, . . . , am:


 0.0905 0.0081 −0.0191

0.0081 0.0905 0.0081
−0.0191 0.0081 0.0905






1
a1

a2


 =




1/g0g∗
0

0
0




The solution is:

a1 = −0.1098 a2 = 0.2211 g0g∗
0 = 11.7079

Then, the Lagrange multipliers are computed as:

λ0 = g0g∗
0

(
1 + a1a∗

1 + a2a∗
2

) = 12.4214

λ1 = g0g∗
0

(
a1 + a1a∗

2

) = −1.5701

λ2 = g0g∗
0

(
a∗

2

) = 2.5883
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Example 11.13: If X is not a complex number then represent equation (11.122).

Solution: From the Lagrange multipliers above, one can write the Lagrange multiplier matrix
as:


 =




λ0 λ1 λ2 0 0 0
λ−1 λ0 λ1 λ2 0 0
λ−2 λ−1 λ0 λ1 λ2 0
. . . . . . . . .

0 0 0 λ−1 λ0 λ1

0 0 0 λ−2 λ−1 λ0




(12×12)

where λ−2 = 2.5883,λ− 1 = −1. 5701, λ0 = 12.4214, λ1 = −1. 5701, and λ2 = 2. 5883.
The eigenvalues can be obtained from equation (11.131) and then |
| can be computed as:

|
| =
8∏

j=1

wj = 3.5106x 108

Then the joint distribution is given by:

p (y) = 12.0218 exp

[
−1

2
yT
y

]

11.3.5 Spectral density
From the limited data available in practice, the autocovariances that can be calculated are
rk, k = −m to m. The power spectrum S(w) requires rk, k = −∞ to ∞, and hence cannot be
calculated exactly. Thus, it is desired to estimate S(w) with the least assumptions regarding the
unknown autocovaraince functions. To that end, POME is utilized to obtain the maximum
entropy spectral analysis (MESA). Recall that the spectral density at frequency w is the Fourier
transform of the autocovariance functions,

S (w) =
∞∑

n=−∞
rk exp (−i2πwn) (11.151)

The autocovariance can be recovered by:

rk =
W∫

−W

S (w) exp (i2πwn) dw (11.152)

Substituting θ = 2πw into equation (11.152), one obtains:

rk =
W∫

−W

S

(
θ

2π

)
exp (i2πwn) dw (11.153)

Comparison of equations (11.153) and (11.141) points to an estimate of spectral density
function:

Ŝ

(
θ

2π

)
= 1

g
[
exp (iθ)

] , i = √−1 (11.154a)
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or

Ŝ (w) = 1

g
[
exp (i2πw)

] = 1
m∑

k=−m

λk exp (i2πkw)

(11.154b)

If the Lagrange multipliers λk are known, which can be determined from autocovariances of
data, then the spectral density function Ŝ (w) can be obtained from equation (11.154b). Note
that λk = λ− k, and λ−k = λ∗

k, and S(w) is real. Therefore,

Ŝ (w) = 1
m∑

k=−m

λk exp (i2πkw)

= 1
m∑

k=−m

λ−k exp (−i2πkw)

= 1
m∑

k=−m

λ∗
k exp(−i2πkw)

(11.155)

Using equation (11.142), equation (11.155) can be written as

Ŝ (w) = 1

Gm

[
exp (i2πwk)

]
G∗

m

[
exp (−i2πwk)

] (11.156)

or

Ŝ (w) = 1∣∣Gm

[
exp (i2πwk)

]∣∣2 (11.157)

Equation (11.157) can be expressed as

Ŝ (w) = 1∣∣g0

∣∣2 ∣∣1 + a1 exp (−i2πw) + a2 exp (−i4πw) + . . . + am exp (−i2mπw)
∣∣ (11.158)

where ai’s are the same as in equation (11.147). Equation (11.158) can be further simplified
as

Ŝ (w) = 1∣∣g0

∣∣2

1 +

m∑
j=1

a2
j + 2

m∑
j=1

aj cos (2π jw) + 2
m∑

j=1

m∑
k>j

ajak cos(2πw |k − j|)



−1

(11.159)

The power spectrum given by equation (11.159) is said to be most unbiased, smoothest,
most random, uniform, and consistent with the given information. Also, an explicit connection
between the power spectrum and Lagrange multipliers is found. If additional constraints are
specified then it turns out that their Lagrange multipliers tend to be zero, and they contribute
little to the structure of the power spectrum as there will be less poles within the unit circle in
equation (11.159).

The assumption underlying equation (11.159) is that n 
 m and equation (11.126) is
approximated by equation (11.135). If the approximation is not good then equation (11.159)
will, in general, not be a maximum entropy estimate. Then an exact solution can be derived
as follows:

rk = − 2

n + 1

(
−1

2

∂

∂λk

ln |
|
)

= − 1

n + 1

∂

∂λk

ln |
| , k = 0, ±1, ±2, . . . , ±m (11.160)

It involves estimating λk directly from equation (11.126) along with equations (11.122) and
(11.138). From equation (11.160), (2m + 1) equations are generated for determining the
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(2m + 1) Lagrange multipliers. Assuming that λk = 0 for (m + 1) ≤ n, equation (11.151), with
the use of equation (11.160), becomes

S (w) = 1

n + 1

n∑
k=−n

exp (−i2πwk)
∂

∂λk

ln |
| , |w| ≤ 1

2
(11.161)

A major drawback here is that the partial derivatives of a finite dimensional Toeplitz matrix
must be calculated. This can be done using the identity:

∂ ln |
|
∂λij

= 1

|
| (−1)i+j
∣∣∣
ij

∣∣∣ (11.162)

where λij is the (i, j) entropy in matrix 
 and its associated co-factor is (−1)i + j|
ij|. Because
λ−k = λk for real time series, 
 is symmetric and Toeplitz. This means that m(m + 1)/2 out of
(m + 1)2 partial derivatives need to be evaluated:

∂ ln |
|
∂λij

= ∂ ln |
|
∂λji

(11.163)

The partial derivatives with respect to λk appear along one diagonal above and one diagonal
below the main diagonal of 
 for real time series, except for k = 0, as shown by equation
(11.122).

Now the appropriate co-factors can be summed up to compute the needed partial derivatives:

∂ ln |
|
∂λk

=




2

|
|
n+1−k∑

i=1

(−1)2i+k
∣∣
i,i+k

∣∣, k > 0

1

|
|
n+1−k∑

i=1

(−1)2i+k
∣∣
i,i+k

∣∣ , k = 0

(11.164)

If equation (11.164) proves to be difficult, then equation (11.162) can be employed.

Example 11.14: Compute the spectral density of the stream flow time series used in Example
11.11.

Solution: The spectrum is given by:

Ŝ (w) = 1∣∣g0

∣∣2 ∣∣1 + a1 exp (−i2πw) + a2 exp (−i4πw) + . . . + am exp (−2mπw)
∣∣

= 1∣∣g0

∣∣2 ∣∣1 + a1 exp (−i2πw) + a2 exp (−i4πw)
∣∣2

From Example 11.10, the parameter a is obtained as a1 = −0.1098 and a2 = 0.2211. From the
results given in the previous example, the spectral density can be expressed as:

Ŝ (w) = 1

11.7079 |1 − 0.1098 exp (−i2πw) + 0.2211 exp (−i4πw)|2

The spectral density is plotted as below:
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11.3.6 Extrapolation of autocovariance functions
Equation (11.139) is valid for m � n for all k, including |k| > m. Solution of this matrix equation
(11.148a) or (11.148b) yields λ. For extrapolating for the expected value of the autocovariance
function beyond lag m, rk, an extra row is added to matrix Rm for each lag beyond m:

Rm+1a = Sm+j, j = 1, 2, . . . , n − m (11.165)

One can then write just the extra equations that need to be evaluated:

rm+1a0 + rma1 + ... + r1am = 0

rm+2a0 + rm+1a1 + ... + r2am = 0

. . .

. . .

. . .

rna0 + rN−1a1 + ... + rn−mam = 0 (11.166)

Equations (11.166) can be solved sequentially, since each would contain only one unknown.
One can indeed write the recursive relation:

rk = −
(

a1rk−1 + a2rk−2 + ... + ajrk−j + aj+1rj+1 + ... + amrk−m

)
(11.167)

for k>m and (k−j) > m. However, knowledge of these extra autocovaraince functions does not
change p(x).

Example 11.15: Extend the autocovariance functions.

Solution: The auto-correlation functions are extended through the equation below:

r3 = − (
a1r2 + a2r1

) = −0.0039

r4 = − (
a1r3 + a2r2

) = 0.0038

From observations, we get r3 = −0.0051 and r4 = 0.0055. It can be seen that the autocovariance
function for lags 3 and 4 from the maximum entropy extrapolation is close to the values
obtained from observations.

11.3.7 Entropy of power spectrum
Using equations (11.122), (11.126), and (11.135), entropy H can be written as

H = Hmax = ln Z(λ) + 1

2
(n + 1) = 1

2
(n + 1) ln(2πe) − n + 1

4π

2π∫
0

ln g
[
exp (iθ)

]
dθ

= 1

2
(n + 1)[ln(2πe) +

1∫
0

ln S (w) dw] (11.168)
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Example 11.16: Compute entropy of the stream flow time series used in Example 11.8.

Solution: The entropy can be computed through the equation below:

Hmax = 1

2
(n + 1) ln (2πe) − 1

2
ln |
|

From Example 11.11,

|
| =
8∏

j=1

wj = 3.5106 × 108

Then the entropy can be obtained as:

Hmax = 1.5133Napier

11.4 Spectral estimation using configurational entropy

For spectral analysis Frieden (1972) suggested using entropy defined as

H (w) =
W∫

−W

S (w) logS (w) dw (11.169)

where W can be equal to π . Equation (11.169) defines what is called configurational (Gull
and Daniell, 1978) or simply spectral entropy (Tzannes and Avgeris, 1981; Wu, 1983) and can
be used in place of the Burg entropy. Of course, S(w) is the (normalized) spectral power or
spectral density (PDF of w). The problem is one of determining S(w) by maximizing H given
by equation (11.169), subject to given constraints. The spectral density so obtained will be
optimum. The constraints can be defined in terms of the autocorrelation function:

rk =
π∫

−π

S (w) exp (jwk) dw, |k| = 0, 1, 2, . . . , m (11.170)

The autocorrelation function rk is the inverse Fourier transform or the characteristic function
of the PDF S(w) of random variable w. Also,

π∫
−π

S (w) dw = 1 (11.171)

The constraints can also be specified differently. Note that r− k = rk and S(w) = S(−w).
S(w), − π ≤ w ≤π , where w = 2π f or f = w/(2π), is to be determined.

For maximization of entropy, the method of Lagrange multipliers is used. The Lagrangean
function L is constructed as

L = −
π∫

−π

S (w) logS (w) dw −
m∑

k=−m

λk


 π∫

−π

S (w) exp (jwk) dw − rk


 (11.172)



484 Entropy Theory and its Application in Environmental and Water Engineering

where λk are the Lagrange multipliers where λ− k = λk, because r− k = rk. Differentiating
equation (11.172) with respect to S(w) and equating the derivative to zero, the result is

∂L

∂S (w)
= 0 =

π∫
−π

{
− [

logS (w) + 1
] −

m∑
k=−m

λk exp (jwk)

}
dw (11.173)

Therefore,

S (w) = exp

[
−1 −

m∑
k=−m

λk exp (jwk)

]
(11.174)

This is the entropy-based spectral density function.
Now the Lagrange multipliers must be determined from the known constraints in terms of

the autocorrelation function. Substitution of equation (11.174) in equation (11.170) yields

π∫
−π

exp (jkw) dw

exp

[
1 +

m∑
k=−m

λk exp (jkw)

] = rk (11.175)

Let x = exp(jw). Then jw = ln x and dw = dx/(jx). With the substitution of these quantities,
equation (11.175) becomes

xu∫
−xL

xk−1dx

(je) exp

[
m∑

k=−m

λkxk

] = rk (11.176)

where xu and xL are, respectively, upper and lower limits of integration. Equation (11.176) is
a system of (m + 1) nonlinear equations wherein the integration is done over the frequency
band of the expected spectral density. The solution can be obtained numerically.

Tzannes and Avgeris (1981) suggested that spectral analysis can be undertaken in a similar
manner as above by specifying constraints in addition to the autocorrelation function given
by equation (11.170). These can be defined as functions of w as gi(w) which are supposed to
be known a priori:

π∫
−π

gi (w) S (w) dw = gi (w), i = 1, 2, . . . , J (11.177)

Then, using the method of Lagrange multipliers, the Lagrangean function becomes

L = −
π∫

−π

S (w) logS (w) dw −
m∑

k=−m

λk


 π∫

−π

S (w) exp (jwk) dw − rk




−
J∑

i=1

ρi


 π∫

−π

gi (w) S (w) dw − gi (w)


 (11.178)
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Then, the entropy-based spectral density will become:

S (w) = exp

[
−1 −

m∑
k=−m

λk exp (jwk) −
J∑

i=1

ρigi (w)

]
(11.179)

in which the Lagrange multipliers λkand ρi can be estimated using equations (11.170) and
(11.177).

Example 11.17: Compute the spectral density of the stream flow monthly data used in
Example 11.11.

Solution: The autocorrelation is known up to lag-2 (m = 2): ρ0 = 1.0000, ρ1 = 0.0899;
ρ2 = −0.2112 as used in Example 11.10. Using equation (11.176), one can form three
nonlinear equations to numerically solve for λ0, λ1 and λ2. Before solving equations formed
from (11.176), according to the method by Wragg and Dowson (1970), let ak denote the
approximation of λk, so that the residual defined by the equation λk = ak + εk is small. Thus,
the left side of equation (11.176) can be linearlized as follows:

xu∫
−xL

xi−1dx

(je) exp

[
m∑

k=−m
λkxk

] =
xu∫

−xL

xi−1dx

(je) exp

[
m∑

k=−m

(
ak + εk

)
xk

]

= 1

je

xu∫
−xL

xi−1 exp

[
−

m∑
k=−m

(
ak + εk

)
xk

]
dx

= 1

je

xu∫
−xL

xi−1 exp

[
−

m∑
k=−m

akxk

]
exp

[
−

m∑
k=−m

εkxk

]
dx

= 1

je

xu∫
−xL

xi−1 exp

[
−

m∑
k=−m

akxk

][
1 −

m∑
k=−m

εkxk

]
dx

Here, we used the property that for small ε, exp(ε) = 1+ε. Therefore,

= 1

je

xu∫
−xL

xi−1 exp

[
−

m∑
k=−m

akxk

]
dx −

m∑
k=−m

εk

xu∫
−xL

xk+i−1 exp

[
−

m∑
k=−m

akxk

]
dx

Let Ci =
xu∫

−xL

xi−1 exp

[
−

m∑
k=−m

akxk

]
dx, solving equation (11.176) is now equivalent to solving

ri = Ci +
m∑

k=−m

εkCi+k

With an initial approximation of ak, one can obtain an acceptable εk and end the iteration.
For given data, applying the above iteration, solution is: λ0 = 1.36, λ1 = −1.67 and λ2 = 1.66.

The spectral density is computed by equation (11.174) and plotted in Figure 11.16, which is
similar to Figure 11.15.
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Figure 11.15 Spectral power density for the monthly data with lag 2.

11.5 Spectral estimation by mutual information principle

If a random process x(t) is observed through a system, linear or nonlinear, which introduces
noise (t), then the output process y(t) can be considered as the noisy quantized form of the
input process x(t). Let the power spectrum of the input process, Sx(w), be estimated, and the
power spectrum of the output process, Sy(ϕ), be observed, and let these spectra be PDFs. Here
w and ϕ are input and output frequencies, respectively, and are random variables. Now the
system spectral function can be represented as a two-dimensional spectral density denoted
as S(w, ϕ). It may be noted that each input frequency w leads to many output frequency
components ϕ given by two-dimensional joint spectral density S(w, ϕ). The joint spectrum of
the input and output processes x(t) and y(t) is a measure of the power falling in each frequency
ϕ for a given frequency w. The mutual information I(w, ϕ) can be formulated as

I (w, ϕ) =
∫ ∫

S (w, ϕ) log
S (w, ϕ)

Sx (w) Sy (ϕ)
dwdϕ (11.180)

In order to ensure compatibility with the joint PDF, S(w, ϕ) must satisfy

∞∫
−∞

S (w, ϕ) dϕ = Sx (w) (11.181)

∞∫
−∞

S (w, ϕ) dw = Sy (ϕ) (11.182)
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Figure 11.16 Spectral density.

Now the conditional spectral density can be defined as

S (w|ϕ) = S (w, ϕ)

Sy (ϕ)
(11.183a)

S (ϕ|w) = S (w, ϕ)

Sx (w)
(11.183b)

The optimum S(w,ϕ) can be determined by minimizing the spectral mutual information
given by equations (11.180).

The mutual spectral information can also be expressed in terms of conditional spectral
density as

I (w, ϕ) =
∞∫

−∞

∞∫
−∞

S (w, ϕ) Sy (ϕ) log
S (w|ϕ) Sy (ϕ)

 ∞∫
−∞

S(w |ϕ) Sy (ϕ) dw


 Sy(ϕ)

dwdϕ (11.184)

The output spectral density Sy(ϕ) is assumed to be known under a constraint of the form:

E [ρ (w, ϕ)] ≤ D (11.185)

where E is the expectation, D is some value, and ρ is an error function of random variables w

and ϕ which depend on the errors introduced by the observation system.
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Figure 11.17 Spectral density.

Tzannes and Avgeris (1981) discuss that given a PDF, Sx(w), minimization of mutual
information between w and ϕ, subject to equation (11.185), leads to a unique conditional PDF
S(ϕ|w). For minimization, the constraint can be defined as

m∑
k=−m

Ck

∣∣∣∣∣∣
∞∫

−∞
S (w) exp (−ikw) dw − rk

∣∣∣∣∣∣
2

≤ σ 2 (11.186)

where Ck are weights accounting for the differing degree of confidence placed in each measured
autocorrelation value. The value of σ 2 is a measure of the mean squared noise introduced by
the system. In accord with equation (11.186), the function to be minimized can be written as

L(t) = I(t) −
∑

j

aj

∑
k

T (k|j) − b
N∑

n=−N

Cn

∣∣∣∣∣∣
∑
j,k

Sx

(
wj

)
T (k, j) exp

(
−inwj

)
− ρn

∣∣∣∣∣∣
2

(11.187)

where T = S(ϕk|wj). Defining coefficients bn, n = 0, ± 1, ± 2, . . . , ± N,

bn = bCn



∑
j,k

Sx

(
wj

)
T (k|j) exp

(
−inwj

)
− ρn


 = b∗

−n (11.188)

and differentiating equation (11.187) with respect to T and letting the derivative go to zero,
the equations based on the spectral mutual information principle are obtained as

∑
k

Sy(ϕk) exp
[
bg (j, k)

] = 1

λj

, j = 1, 2, . . . , M − 1 (11.189)
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∑
j

λjSx(wj) exp
[
bg (j, k)

] =1, j = 1, 2, . . . , N − 1 (11.190)

where

g (j, k) =
N∑

n=−N

b∗
nbn (11.191)

The conditional spectral density T(k|j) is given as

T (k|j) = λjSy

(
ϕk

)
exp

[
bg (j, k)

]
(11.192)

Considering the equality in equation (11.186) and combining with equation (11.188), the
result is the Lagrange multiplier:

b = 1

σ

[
N∑

m=−N

bm

b∗
m

Cm

]1/2

(11.193)

Substituting equation (11.193) into equation (11.188), parameter b can be eliminated and
one obtains

ρn + σbn/Cn

[
N∑

m=−N

bm

b∗
m

Cm

]−1/2

=
∑
j,k

Sx

(
wj

)
T (k|j) exp

(
−inwj

)
(11.194)

Equations (11.189) to (11.194) can be solved following Newman (1977). To start the
solution procedure, it can be assumed that there is no measurement error, that σ = 0 and
bn obtained from equation (11.194), g(j, k) is obtained from equation (11.191). Then, with
given Sy(ϕk) equation (11.189) is solved for λjs. With these values of λjs and Sy(ϕk), equation
(11.190) is solved to obtain the estimated Sx(wj) and T(k|j) is got from equation (11.192).
Substituting Sx(wj) and T(k|j) into equation (11.186), the value of σ is obtained, which then
is used for the next iteration. The procedure is repeated until convergence is achieved.

Example 11.18: Compute the spectral density of the stream flow monthly data used in
Example 11.11.

Solution: Consider the autocorrelation known up to lag 2 (m = 2), which are ρ0 = 1.0000,
ρ1 = 0.0899; ρ2 = −0.2112 as used in Example 11.10. Assuming equal weight for each degree
of confidence in each measured autocorrelation value, the computation of the spectral
density can be obtained through the following iteration, starting with σ = 0. As there is no
measurement error, Sx(wj) is conserved to be equal to Sy(ϕk), and the conditional spectral
T(k|j) can be considered as unity. Thus, bn is computed from equation (11.194) and g(j,k) can
be computed from equation (11.192).

bn = [1.15 0.67 0.28]

g (j, k) = [2.54 0.37 3.12; 0.58 3.67 1.11; 1.15 0.77 1.05]

With given Sy(ϕk), solving for λj from equation (11.189), one obtains: λ1 = 2.576,
λ2 = −0.183, λ3 = 0.105. Now Sx(wj) can be estimated using equation (11.190) with the above
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parameters. Substituting Sx(wj) and T(k|j) in equation (11.186), the error becomes σ = 4.615,
which is used for new iteration. Repeating the above steps, the final result is λ1 = 1.754,
λ2 = −2.589, λ3 = 0.201 for σ = 0.482 and the spectral density is plotted in Figure 11.17.
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12 Minimum Cross Entropy
Spectral Analysis

In the preceding chapter the maximum entropy spectral analysis (MESA) was presented for
analyzing time series of environmental and water engineering variables. In environmental and
water resources, processes, such as streamflow, rainfall, radiation, water quality constituents,
sediment yield, drought, soil moisture, evapotranspiration, temperature, wind velocity, air
pressure, radiation, and so on, have inherent periodicities. This chapter discusses the appli-
cation of the principle of minimum cross entropy (POMCE) (minimum directed divergence,
minimum discrimination information, or minimum relative entropy) for estimating power
spectra. The estimation of power spectra is done in different ways wherein values of auto-
correlation function and a prior estimate of the spectrum are given or the probability density
function underlying the given process is determined or the cross-entropy between the input
and output of linear filters is minimized.

12.1 Cross-entropy

Let X be a random variable. The cross-entropy between any two probability density functions
p(x) and q(x) of the random variable X, H(p, q), can be expressed as

H(p, q) =
∫
D

p(x) log

[
p(x)

q(x)

]
dx (12.1)

where D is domain of X. H(p, q) is a measure of the information divergence or information
dissimilarity between p(x) and q(x). It can be assumed that the probability density function q(x)
reflects the current estimate of the PDF of X and can be called a prior. Then, the probability
density function p(x) is to be determined. It is implied that there can be a set of probability
densities on D to which p(x) belongs but it is not known. Of course,∫

D

p(x)dx = 1 (12.2)

∫
D

q(x)dx = 1 (12.3)
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If new information is obtained about p(x), expressed in the form of constraints, as

∫
D

gj(x)p(x)dx = gj, j = 1, 2, . . . , m (12.4)

where gj(x) is some function of X, ‘‘bar’’ indicates average, and m is the number of constraints.
It may be noted that there may be other distributions satisfying these constraints or these
constraints may not determine p(x) completely. The question then arises: Which single PDF
should be chosen from the subset to be the true p(x) and how should the prior q(x) and
constraints be used to make that choice? POMCE states that of all the densities one should
choose that p(x) that has the minimum cross-entropy with respect to the prior q(x). Thus,
the PDF p(x) can be determined, using the method of Lagrange multipliers, by minimizing
cross-entropy, H(p, q), defined by equation (12.1), subject to the specified constraints defined
by equations (12.2) and (12.4), as:

p(x) = q(x) exp

[
−λ0 −

m∑
k=1

λkgk(x)

]
(12.5)

where λk = 0, 1, 2, . . . , m, are the Lagrange multipliers which are determined using the known
constraints. It may be noted that the above discussion can be extended if X is a vector. Cross-
entropy is now applied to spectral analysis.

12.2 Minimum cross-entropy spectral analysis (MCESA)

The minimum cross-entropy spectral analysis (MCESA) can be undertaken in several ways.
First, the power spectrum is estimated by the minimization of cross-entropy given values of
autocorrelation function and a prior estimate of the power spectrum. Second, cross-entropy
minimization is applied to the input and output of a linear filter. Third, the probability density
function of the process is determined by minimizing the cross-entropy given a prior and
constraints and then determining the power spectrum. The prior probability density function
is usually taken as a uniform or a Gaussian distribution prior. The constraints can be specified as
the total probability law, and the information in terms of moments, autocorrelation functions,
or expected spectral powers. The estimation of power spectra using POMCE does not assume
any specific PDF structure of the random process under consideration.

12.2.1 Power spectrum probability density function
Consider a stationary stochastic process z(t). This process can be obtained as the limit of a
sequence of processes with discrete spectra. Let the time-domain processes be expressed by
Fourier series as

y(t) =
n∑

k=1

ak cos(wkt) + bk sin(wkt) (12.6)

where ak and bk are coefficients, t is time, and wk = 2π fk is frequency that need not to be
equally spaced. It may be noted that w is the frequency in cycles per unit of time, whereas
f is angular frequency in radians per unit of time, and w = 2π/T, T = period in units of time.
The discrepancy between z(t) and y(t), expressed by mean square error E[|z(t) − y(t)|2], can
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be minimized by an appropriate choice of frequencies and random variables. The power xk at
each frequency can be expressed as

xk = a2
k + b2

k (12.7)

If xk are considered random variables, then the stochastic process described by equation (12.6)
can be described in terms of a joint probability density function p(�x), �x : (x1, x2, . . . , xn) is the
vector. Here p(�x) is the spectral power probability density function of the stationary stochastic
process which can simply be called process.

The objective is to derive p(�x) by minimizing cross-entropy. To that end,

∫
D

p(�x)d�x = 1 (12.8)

In order to apply POMCE, a prior estimate of the spectral power PDF, q(�x), of p(�x) is needed.
Of course,∫

D

q(�x)d�x = 1 (12.9)

Since the magnitude of xk will be finite and the domain of �x will be bounded, it is not entirely
unreasonable to assume a uniform prior for the spectral power density function which can be
specified as

q(�x) = 1

b − a
(12.10)

or assume an exponential prior

q(�x) = 1

α
exp

( �x
α

)
(12.11)

Then, a constraint on the spectral power can be specified in terms of the total expected power
per discrete frequency expressed as:

P = 1

n

∫
D

[
n∑

k=1

xk

]
p(�x)d�x (12.12)

where d�x = dx1dx2 . . . dxn; and D is a possible set of system states.
Minimization of cross-entropy, subject to equations (12.8) and (12.12), can be done using

the method of Lagrange multipliers. The Lagrangean function can be written as

L =
∫
D

p(�x) log

[
p(�x)

q(�x)

]
d�x + (λ0 − 1)


∫

D

p(�x)d�x − 1


 + λ


1

n

∫
D

[
n∑

k=1

xk

]
p(�x)d�x − P




(12.13)

where λ0 and λ the Lagrange multipliers associated with equation (12.8) and (12.12),
respectively. Differentiating the Lagrangean function L with respect to p(�x) and equating the
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derivative to zero, one obtains

∂L

∂p(�x)
= 0 = 1 + log

p(�x)

q(�x)
+ (λ0 − 1) + λ

n∑
k=1

xk (12.14)

Equation (12.14) yields

p(�x) = q(�x) exp

[
−λ0 − λ

n∑
k=1

xk

]
(12.15)

Equation (12.15) has two Lagrange multipliers that need to be determined. Substituting
equation (12.15) in equation (12.8) one obtains

∫
D

q(�x) exp

[
−λ0 − λ

n∑
k=1

xk

]
d�x = 1 (12.16)

Equation (12.16) can be written as

exp(λ0) =
∫
D

q(�x) exp

[
−λ

n∑
k=1

xk

]
d�x (12.17)

Substitution of equation (12.17) in equation (12.15) yields

p(�x) =
q(�x) exp

[
−λ

n∑
k=1

xk

]
∫

D q(�x) exp

[
−λ

n∑
k=1

xk

]
d�x

(12.18)

Integration in the denominator of equation (12.18) depends on the form of the prior
distribution q(�x) and will lead to a constant quantity. Recognizing that the prior is assumed as
a uniform distribution, equation (12.15) can be written as

p(�x) = A exp

[
−λ

n∑
k=1

xk

]
(12.19)

in which

A−1 =
∫

dx1

∫
dx2 . . .

∫
dxn exp

(
−λ

n∑
k=1

xk

)
(12.20)

where λ is the Lagrange multiplier corresponding to equation (12.8); and A has absorbed the
uniform prior and the Lagrange multiplier corresponding to equation (12.8).

If P is much less than the maximum value of xk, the integration limits of (0, ∞) can be used
in equation (12.19) which then yields A = λn. Substitution of equation (12.15) in equation
(12.12) yields

P = λn

n

∑
k

∫
dxkxk exp(−λxk)

∏
m�=k

exp(−λxm)dxm = 1

λ
(12.21)
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The posterior, p(�x), in terms of the spectral power, therefore, is:

p(�x) =
n∏

k=1

1

P
exp

(
− xk

P

)
(12.22)

Equation (12.22) for p(�x) is a multivariate exponential distribution where each spectral power
xk is exponentially distributed with mean P.

Example 12.1: Consider annual streamflow at a gaging station (USGS 08201000) on Brazos
River, Texas, given in Table 12.1 Fit the Fourier series to the streamflow time series and specify
the values of ak and bk and xk. Tabulate thevalues of ak and bk at each frequency.

Solution: The Fourier series is fitted to the given annual stream flow as shown in Figure 12.1.
The Fourier coefficients determined by fitting are tabulated in Table 12.2, and power at each
frequency xk is computed using sum of squares of ak and ak. Spectral powers are plotted
against frequency, as shown in Figure 12.2.

Example 12.2: Determine and plot the PDF p(�x) using equation (12.19) and determine
parameters A and λ using the values of xk determined from observations.

Solution: For the given data, the expected value for xk is P = 1
n

∫
D

[
n∑

k=1

xk

]
p(�x)d�x = 0.214,

and λ = 46.645 from equation (12.21). Then, A = λn = 2.598 × 108. The plot of p(x) is shown
in Figure 12.3

Table 12.1 Annual stream flow (cfs) for station USGS 08201000 on Brazos River, Texas.

Year Flow (cfs) Year Flow (cfs) Year Flow (cfs)

1940 96.3 1964 158.6 1988 125.3
1941 733.2 1965 60.2 1989 243.1
1942 364.7 1966 166.1 1990 224.6
1943 172 1967 48.8 1991 302.8
1944 175 1968 276.5 1992 388.4
1945 464.3 1969 251.1 1993 305.6
1946 368.3 1970 61.7 1994 134
1947 437.4 1971 22.8 1995 653
1948 69.7 1972 81.7 1996 89.4
1949 195.3 1973 491.9 1997 236.8
1950 436.6 1974 386.6 1998 378.5
1951 34.6 1975 530.7 1999 515.1
1952 86.1 1976 178.5 2000 47.3
1953 201.6 1977 239.2 2001 322.3
1954 50.3 1978 122.5 2002 205.1
1955 94.5 1979 498.9 2003 363.2
1956 32.2 1980 155 2004 434.8
1957 100.1 1981 74.4 2005 299.6
1958 314.2 1982 189.6 2006 45.8
1959 199.8 1983 451.1 2007 336.4
1960 200.4 1984 240.2 2008 128.1
1961 484.6 1985 244.8 2009 90.3
1962 81.6 1986 320.2 2010 125.1
1963 122.1 1987 265.1
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Figure 12.1 Fitted Fourier series.

Table 12.2 Fourier series coefficients and power.

Frequency ak bk xk

0.0000 239.7986 0.0000 57503.3645
0.0078 130.9574 15.0196 17149.8481
0.0156 45.0139 19.6673 2026.2484
0.0234 47.0654 48.2899 2215.1548
0.0313 37.4613 11.2689 1403.3515
0.0391 36.4513 −15.5981 1328.6972
0.0469 20.5041 18.3882 420.4220
0.0547 25.5351 38.5774 652.0429
0.0625 36.3263 −3.6214 1319.6069
0.0703 26.9672 20.4958 727.2335
0.0781 8.5758 43.9508 73.5505
0.0859 9.5198 −4.0530 90.6346
0.0938 19.9633 31.1986 398.5421
0.1016 5.4451 −18.0767 29.6590

. . .

0.4531 15.0716 4.0530 227.3574
0.4609 15.7400 −43.9508 247.9606
0.4688 16.5653 −20.4958 274.6304
0.4766 9.1356 3.6214 83.6864
0.4844 18.1669 −38.5774 330.2715
0.4922 24.8573 −18.3882 618.1275
0.5000 44.3310 15.5981 1965.4861
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Figure 12.2 Spectral powers at frequencies.

It is benoted that the PDF p(�x), determined using equation (12.22) where parameters A and
λ are determined using the values of xk obtained from observations, would be the same as in
Figure 12.3.

12.2.2 Minimum cross-entropy-based probability density functions given total
expected spectral powers at each frequency

Now consider the case where the expected spectral power Pk at each frequency is known:

Pk = E[xk] =
∫

xkp(�x)d�x (12.23)

Again, a uniform prior is chosen. Then, the maximum cross-entropy-based p(�x) becomes:

p(�x) =
n∏

k=1

1

Pk

exp

(
− xk

Pk

)
(12.24)

If equation (12.22) is used as a prior, then equation (12.24) is still obtained. This shows that
using equation (12.22) or a uniform prior leads to the same result, that is, equation (12.24).

Example 12.3: Determine p(�x) using equation (12.24). Using streamflow values from
Example 12.1, the expected spectral powers at each frequency Pk is obtained as in the
solution of Example 12.1.

Solution: Take frequency = 0.5 as an example, Pk = E[xk] = ∫
xkp(�x)d�x = 100.74. Using

equation (12.24), the posterior power PDF is determined as shown in Figure 12.4.
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Figure 12.3 PDF of spectral power.
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Example 12.4: Consider a uniform prior for variables ak and bk, rather than for variables
xk, in equation (12.7). Then, derive p(�x).

Solution: In this case the constraint takes on the form:

Pk = a2
k + b2

k =
∫

(a2
k + b2

k)p(�a, �b)d�a d�b (12.25)

In a manner similar to the previous discussion, cross-entropy minimization, using the method
of Lagrange multipliers, yields

p(�a, �b) = A exp

[
−

∑
k

λk(a2
k + b2

k)

]
(12.26)

Solving for A using equation (12.8), and for the Lagrange multipliers λk using equation
(12.25), one obtains

p(�a, �b) =
n∏

k=1

1

πPk

exp

[
−a2

k + b2
k

Pk

]
(12.27)

Equation (12.27) shows that variables ak and bk have Gaussian distribution with zero means
and variances Pk/2. Since variances are related to expectations of power a2

k or b2
k , the expected

power Pk is evenly divided between the two quadrature components.
In order to transform equation (12.27) to a probability density function in terms of spectral

power variables xk, and compare the result with equation (12.24), coordinates (ak, bk) are
transformed to (rk, θk) as:

r2
k = a2

k + b2
k (12.28a)

θk = tan−1

(
bk

ak

)
(12.28b)

Then, there is a relation between volume elements in the two coordinate systems:
dakdbk = rkdrkdθk and p(�a, �b)da db = p(�r, �θ)d�r d�θ . Therefore,

p(�r, �θ) =
N∏

k=1

rk

πPk

exp

(
− r2

k

Pk

)
(12.29)

and integrating over the θk coordinates, the result is

p(�r) =
∏

k

2rk

Pk

exp

(
− r2

k

Pk

)
(12.30)

Recalling that rk and xk are related as xk = r2
k , dxk = 2rkdrk, and p(�x)dx = p(�r)dr, then equation

(10.30) becomes

p(�x) =
n∏

k=1

1

Pk

exp

(
− xk

Pk

)
(12.31)

which is the same as equation (12.24).
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Figure 12.5 Prior density of spectral powers.

This shows that if the information is given in terms of expected spectral powers, it is
immaterial if the prior probability density function is taken as uniform in the amplitude
variables ak, bk or in the power variables xk. The posterior probability distribution is a
multivariate exponential distribution in the variables xk or multivariate Gaussian distribution
in the variables ak and bk.

It may be interesting to employ (�r, �θ) coordinates and use a prior q(r, θ) that is uniform
with respect to the volume element drdθ . Then, integrating over θ and transforming to the xk

coordinates result in:

q(�x) = 1

2

n∏
k=1

(xk)−1/2 (12.32)

Equation (12.32) is a nonuniform prior in contrast with a uniform prior q(�a, �b) which leads
to a uniform prior q(�x). This explains rejecting the probability of a uniform prior q(�r, �θ), since
there is no reason to have a nonuniform prior q(�x).

Example 12.5: Determine q(�x) using equation (12.32). Use streamflow data from
Example 12.1.

Solution: For computed spectral powers from Example 12.1, the prior is computed using
equation (12.32) and is plotted in Figure 12.5.

12.2.3 Spectral probability density functions for white noise
The term ‘‘white noise’’ means that the expected spectral powers xk are all equal. There are
two possibilities for representing the probability density function of the white noise. The first
is the uniform prior q(�x) for which xk = xmax/2, where xmax is the maximum value of xk. This



502 Entropy Theory and its Application in Environmental and Water Engineering

can be called the uniform white noise. Second, if the total power per discrete frequency is
given then equation (12.24) would be an appropriate probability density function. This can
be referred to as Gaussian white noise.

It is plausible that the total power per discrete frequency of the stochastic process is not
known but its upper limit is. That also implies that a limit for the quantity is known:

P(x) = P(p) = 1

n

∑
k

xk = 1

n

∫
D

[
n∑
k

xk

]
p(�x)d�x (12.33)

P(p) ≤ Pmax (12.34)

The uniform prior will satisfy equation (12.34) if

xmax

2
≤ Pmax (12.35)

If equation (12.35) is not satisfied then the appropriate PDF from equation (12.24) follows:

p(�x) =
n∏

k=1

(
1

Pmax

)
exp

(
− xk

Pmax

)
(12.36)

Example 12.6: Determine p(�x) using equation (12.36). Use data from Example 12.1.

Solution: From Example 12.1, Pmax = 404.95. Substituting into equation (12.36), one gets
the PDF of spectral powers which is plotted in Figure 12.6.
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Figure 12.6 PDF of spectral power.
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The quantity xmax reflects the knowledge about a physical limit, whereas Pmax reflects the
knowledge about a power limitation. It is likely that equation (12.35) would not be true; in
that case the white noise density given by equation (12.36) should be employed.

12.3 Minimum cross-entropy power spectrum
given auto-correlation

Let an unknown signal p(x) have a power spectrum G(f ) and autocorrelation function r(t).
Now suppose that information about G(f ) is given in terms of a set of samples of autocorrelation
function rk = r(tk):

rk = r(tk) =
W∫

−W

G(f ) exp(2π itkf )df , k = 1, 2, . . . , m (12.37)

where tk can be equally or unequally spaced. If the frequency spectrum S(w) is discrete as in
equation (12.6), the power spectrum G(f ) can be expressed as

G(f ) =
n∑

k=−n

Gkδ(w − fk) (12.38)

where fk = −f−k, Gk = G−k = G(fk), and G0 = 0. Equation (12.37) becomes

rj =
n∑

k=−n

Gk exp(2π itjfk) (12.39)

In the noncomplex form, equation (12.39) becomes

rj =
n∑

k=1

GkCjk (12.40)

where

Cjk = 2 cos (2π tjfk) (12.41)

Since Gk satisfies

Gk = xk =
∫

xkp(�x)d�x (12.42)

one can write

rj =
∫ [∑

k

xkCjk

]
p(�x)d�x (12.43)

Equation (12.43), however, involves unknown p(�x) which can be estimated using the principle
of minimum cross-entropy (POMCE) for which constraints can be given as∫

D

gj(�x)p(�x)d�x = E[gj] = gj (12.44)
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where

gj =
∑

k

xkCjk (12.45)

This minimum cross-entropy-based formulation differs from the preceding one where knowl-
edge of the expected spectral powers in the form of equation (12.42) was assumed, whereas
here all that is available is equation (12.43). Usually m < n, equation (12.43) is less informative
than equation (12.42).

12.3.1 No prior power spectrum estimate is given
If there is no prior information on p(�x), then a uniform prior q(�x) can be used. Using POMCE
subject to equation (12.43) and (12.19),

p(�x) = A exp


−

m∑
j=1

λj

n∑
k=1

xkCjk


 (12.46)

where λj are the m Lagrange multipliers corresponding to the autocorrelation constraints given
by equation (12.43). For simplicity, let

uk =
m∑

j=1

λjCjk (12.47)

Equation (12.46) can be written as

p(�x) = A exp

[
−

n∑
k=1

ukxk

]
(12.48)

Solving for A yields

p(�x) =
n∏

k=1

uk exp(−ukxk) (12.49)

which has the form of a multivariate exponential distribution with parameters uk.

For estimating the power spectrum Gk, equation (12.49) is utilized to compute

Gk = xk = 1/uk (12.50)

or

Gk = 1
m∑

j=1

λjCjk

(12.51)

in which the Lagrange multipliers λj are determined using equations (12.40),

rj =
n∑

k=1




Cjk
m∑

i=1

λiCik


 (12.52)
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Figure 12.7 Spectral density.

The minimum cross-entropy power spectrum given by equation (10.51) is identical to that
for MESA.

Example 12.7: Determine the spectral density from equation (12.49) using observations
from Example 12.1.

Solution: From the given data, r0 = 1.0000, r1 = 0.0184, and r2 = −0.0256. The Lagrange
multipliers computed from equation (12.52) are: λ1 = 1, λ2 = −0.675, and λ3 = 0.483. With
uk computed from equation (12.47), the spectral density computed from equation (12.49) is
plotted in Figure 12.7.

12.3.2 A prior power spectrum estimate is given
In this case we obtain autocorrelation function rk from equation (12.43) with the knowledge
of an estimate of Pk of the power spectrum Gk (equation (12.42)). The prior probability density
function (exponential) may be given by equation (12.24):

q(�x) =
n∏

k=1

1

Pk

exp

(
− xk

Pk

)
(12.53)

Equation (12.53) is the minimum cross-entropy-based probability density function given
expected spectral powers Pk and uniform prior. If the prior estimate Pk is the estimate Qk,
then the appropriate prior density for obtaining a new estimate given the new autocorrelation
function is the posterior given by equation (12.49). Equation (12.53) is equivalent to equation
(12.48), since uk = 1/Qk.
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In order to obtain Gk, given Pk and equation (12.43), we minimize cross-entropy with a
prior given by equation (12.53) and equation (12.12). This yields

p(�x) = q(�x) exp

[
−λ −

∑
k

ukxk

]

= exp(−λ0)
n∏

k=1

1

Pk

exp

[
−

(
uk + 1

Pk

)
xk

]
(12.54)

where uk are defined by equation (12.54), and λ0 is the zeroth Lagrange multiplier. Using the
total probability theorem, equation (12.54) can be written as

p(�x) =
n∏

k=1

(
uk + 1

Pk

)
exp

[
−

(
uk + 1

Pk

)
xk

]
(12.55)

For an estimate of the power spectrum Qk, equation (12.55) is utilized to compute:

Qk = E[xk] = xk = 1

uk + P−1
k

(12.56a)

or

Qk = 1
1

Pk
+

∑
j

λjCjk

(12.56b)

where the Lagrange multipliers are determined by the condition that Qk satisfies equation
(12.40).

Example 12.8: Determine the spectral density from equation (12.55). Use observations from
Example 12.1.

Solution: From the given data, r0 = 1.0000, r1 = 0.0184, and r2 = −0.0256 from Example
12.7. The Lagrange multipliers computed from equation (12.56b) are: λ1 = 1, λ2 = −0.638,
and λ3 = 0.452. With Pk computed in Example 12.3, the spectral density computed from
equation (12.55) is shown in Figure 12.8.

12.3.3 Given spectral powers: Tk = Gj, Gj = Pk
Let the actual spectral powers of p(�x) be given as

Tk =
∫

xkp(�x)d�x (12.57)

and information about p(�x) is obtained in terms of M + 1 values of the autocorrelation function
r(tk) as:

rk = r(tk) =
N∑

k=−N

Tk exp(2π itkfk) (12.58)

where k = 0, 1, . . . , M, and t0 = 0. It is preferable to write in noncomplex form as

rk =
N∑

j=1

TkCkj (12.59)
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Figure 12.8 Spectral density.

where

Ckj = 2 cos(2π tkfj) (12.60)

With the use of equation (12.57), the autocorrelation function can be written as

rk =
∫ 

 N∑
j=1

xjCkj


 p(�x)d�x (12.61)

which has the same form as expected value constraints given by equation (12.43). Now given
the prior by equation (12.53) and new information given by equation (12.61), the minimum
cross-entropy-based posterior estimate of p(�x) becomes

p(�x) = q(�x) exp


−λ0 −

M∑
k=0

λk

N∑
j=1

xjCkj


 (12.62)

where the Lagrange multipliers are determined by equation (12.61) and the normalization
condition. Substitution of equation (12.53) in equation (12.62) and eliminating the zeroth
Lagrange multiplier by equation (12.10), one gets

p(�x) =
N∏

j=1

(
uj + 1

Gj

)
exp

[
−(uj + 1

Gj

)xj

]
(12.63)
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where

uj =
M∑

k=0

λkCkj (12.64)

Hence the posterior distribution is a Gaussian distribution. Now the posterior estimate of the
power spectrum is given as

Tj =
∫

xjp(�x)d�x = Gj

1 + Gkuj

(12.65)

or

Tj = 1
1

Gj

+
∑

k

λkCkj

(12.66)

in which the multipliers λk in uj are chosen such that Tj satisfy the autocorrelation constraints
given by equation (12.59).

Example 12.9: Determine the spectral density from equation (12.63), using observations
from Example 12.1.

Solution: From the given data, r0 = 1.0000, r1 = 0.0184, and r2 = −0.0256 from Example
12.7. The Lagrange multipliers computed from equation (12.66) are: λ1 = 1, λ2 = −0.638,
and λ3 = 0.452. With Gj = Pk computed in Example 12.3, the spectral density is plotted in
Figure 12.9.
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Figure 12.9 Spectral density.
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12.4 Cross-entropy between input and output of linear filter

12.4.1 Given input signal PDF
Consider a linear filter with a characteristic function Y(vk). Suppose a signal with probability
density function q(�x) is passed through the filter. Then the magnitude xk of each power
spectrum component is modified by the factor:

Sk = |Y(vk)|2 (12.67)

where vk = wk/2π . The PDF of the signal output p(�x) and the PDF of the input signal q(�x) are
related as

p(�x) =
q

(
x1

S1

,
x2

S2

, . . . ,
xn

Sn

)
S1S2 . . . Sn

(12.68)

Equation (12.68) shows that the effect of the filter is one of linear coordinate transformation.
The cross-entropy between input and output can be expressed as

H(p; q) =
∫

p(�x) log
p(�x)

q(�x)
d�x

=
∫

q(y1, y2, . . . , yn) log
q(y1, y2, . . . , yn)

q(y1S1, y2S2, . . . , ynSn)
d�y −

∑
k

log(Sk) (12.69)

where yk = xk/Sk. Equation (12.69) holds for any input signal q(�x).

Uniform input PDF
If the input signal has uniform PDF and second the input PDF is exponential. For the uniform
PDF of the filter input, the first term in equation (12.69) vanishes and the cross-entropy
becomes

H(p, q) = −
∑

k

log(Sk) (12.70)

Equation (12.70) is the negative of the Burg entropy. This means that minimizing equation
(12.70) is equivalent to the Burg entropy minimization or cross-entropy minimization reduces
to entropy maximization if the prior is uniform.

Exponential input PDF
The filter input is assumed to have an exponential PDF as equation (12.24) which is Gaussian
in terms of the spectral amplitudes ak and bk. Then, cross-entropy becomes

H(p, q) = −
∫

q(�y)
∑

k

(yk − ykSk)

Pk

d�y −
∑

k

log(Sk) (12.71)

or

H(p, q) = −
∑

k

[1 − Sk + log(Sk)] (12.72)
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because∫
ykq(�y)d�y = Pk (12.73)

Equation (12.72) does not depend on the Pk values.

12.4.2 Given prior power spectrum
No prior power spectrum estimate is given
Equation (12.51) can also be derived using a filtering argument. The power spectrum of
the output signal is given as Qk = |Y(fk)|2, if a white signal q(x) is passed through a linear
filter having a characteristic function Y . If p(�x) is the output signal then Qk must satisfy
equation (12.40):

rk =
n∑

j=1

QjCjk (12.74)

Equation (12.74) suggests that the linear filter is designed with the minimum cross-entropy
between input and output. This change in information from the prior yet is still accounting for
the given information, since cross-entropy is a measure of information required to transform
the prior into the posterior. If the prior q(�x) is white uniform, the cross-entropy between the
input and output of the filter is as equation (12.74).

H(p, q) = −
∑

k

log(Qk) (12.75)

Hence, equation (12.75) is maximized subject to constraints given by equation (12.73).
Cross-entropy maximization results in

− 1

Qk

+
m∑

r=1

λrCrk = 0 (12.76)

Solution in equation (12.76) is the same as equation (12.36). It may be noted that minimization
of equation (12.75), subject to equation (12.74), is equivalent to maximizing the Burg entropy
subject to autocorrelation function samples, indicating the equivalence between MESA and
MCESA for uniform priors.

Example 12.10: Determine the spectral density using observations from Example 12.1.

Solution: The Lagrange multipliers computed from equation (12.76) are the same as those
computed in Example 12.6, which are: λ1 = 1, λ2 = −0.675, and λ3 = 0.483. Thus, the spectral
density is also the same as that in Example 12.6.

A prior power spectrum estimate is given
Equation (12.56b) can also be derived using a filtering argument. Suppose a linear filter with
characteristic function Y(w) is subjected to a signal with power spectrum Pk. The output power
spectrum will be Qk = PkSk, where Sk = |Y(w)|2. If the output power spectrum is the new
estimate then Qk must satisfy equation (12.74). For a previous estimate Pk, we design a filter
with minimum cross-entropy between input and output given that input probability density
function satisfies xk = Pk and the output spectrum satisfies equation (12.60).
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If the input density is of the exponential form given by equation (12.53), the cross-entropy
between input and output is expressed by equation (12.72). Hence Sk is chosen by minimizing
equation (12.72), subject to the constraints given by equation (12.74) re-written as

rj =
n∑

k=1

PkSkCjk (12.77)

Minimization of cross-entropy leads to

1 − 1

Sk

+
m∑

r=1

λkPkCrk = 0 (12.78)

Solution of equation (12.78) for Sk and computation of Qk = PkSk leads to equations (12.56).

Given spectral powers
Equation (12.65) can be interpreted in terms of linear filtering. As discussed before, when a
process with the prior PDF q(�x) is passed through a linear filter with characteristic function Y(f )
then the magnitude of each power spectrum component is modified by the factor Aj = |Y(fj)|2
from Gj to GjAj This suggests that the posterior estimate p(�x) can be produced by passing
the prior estimate q(�x) through the linear filter with Aj = (1 + Gjuj)

−1. Then, choosing the
minimum cross-entropy-based posterior given by equation (12.63) is equivalent to designing
a linear filter output PDF satisfies equation (12.59) and has the smallest cross-entropy given
the prior q(�x). Because the posterior p(�x) has the form:

p(�x) =
N∏
j

1

Tj

exp

(
− 1

Tj

)
(12.79)

and prior is given by equation (12.53), the normalized cross-entropy can be expressed as

H∗(p, q) = H(p, q)

N
= 1

N

∑
j=1

N

(
Tj

Gj

− log
Tj

Gj

− 1

)
(12.80)

Given spectral powers: another way using a filter
The filtering result can be analyzed in another way. When the input process has a Gaussian
PDF with the form given by equation (12.53), then the cross-entropy equation (12.57)
becomes

H(p, q) = −
∑

j

log(Aj) −
∫

q(�y)d�y
∑

j

(yj − yjAj)/Gj (12.81)

or

H(p, q) =
∑

j

[Aj − log(Aj) − 1] (12.82)

Since

Gj = yjq(�y)d�y (12.83)

Equation (12.82) is independent of Gk.
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Figure 12.10 Spectral density.

Now suppose equation (12.82) is to be minimized subject to autocorrelation constraints
given by equation (12.59) which can be re-written as

rk =
N∑

j=1

GjAjCkj (12.84)

This yields

Aj = 1

1 + Gjuj

(12.85)

so that Tj = GjAj yields equation (12.66). Equation (12.82) is another expression of equation
(12.80).

Example 12.11: Determine the spectral density using observations from Example 12.1.

Solution: From equations (12.84) and (12.85), with given r0 = 1.0000, r1 = 0.0184, and
r2 = −0.0256, u1 = 1.025, λ2 = −0.734, and λ3 = 0.366 are obtained. Then the spectral
density through the filter is plotted in Figure 12.10.

12.5 Comparison

When the information is given in the form of autocorrelation functions, the minimum cross-
entropy signal PDF is given by equation (12.53) where Qk are the posterior estimates of the
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signal power spectrum. The form of Qk depends on the form of the prior. If the prior is uniform
white (UW) then Qk is given by equation (12.55) as

Q(1)
k = 1∑

r
λ

(UW)
r Crk

(12.86)

If the prior is Gaussian white (GW) then Qk is given by equation (12.83) with Pk = p for all k:

Q(2)
k = 1

(1/P) +
∑

r

λ(GW)
r Crk

(12.87)

where P is the maximum value of the expected power per unit frequency.
If the prior is Gaussian nonwhite (GNW), then Qk is given by equation (12.83):

Q(3)
k = 1

(1/Pk) +
∑

r

λ(GNW)
r Crk

(12.88)

where Pk are prior estimates of the power spectrum. In equations (12.86) to (12.88), the
m Lagrange multipliers are determined by satisfying the requirement that Q(i)

k satisfy the
autocorrelation constraints:

rj =
n∑

k=1

Q(i)
k Cjk, j = 1, 2, . . . , m; i = 1, 2, 3 (12.89)

First Q(1)
k and Q(2)

k are compared. If it is assumed that one of the sample autocorrelations, say
r1 is for zero lag (t1 = 0), then equation (12.41) yields C1k = 2 for all k. Equation (12.87) can
then be written as

Q(2)
k = 1∑

r

λrCrk

(12.90)

where λr = λ
(i)
k for r = 1, 2, . . . , m, and λ1 = λ

(1)
1 + 1/(2P). Comparison with equation (12.65)

shows that Q(1)
k = Q(2)

k for all k. It is thus concluded that a uniform white prior and a
Gaussian white prior lead to the same posterior power spectrum estimate, provided one of
the autocorrelation samples is for zero lag. This makes sense because the zero lag sample is
nothing but the total expected power per discrete frequency, and the Gaussian white prior
results from the minimization of the cross-entropy with respect to uniform white prior given
the information on the total expected power per unit frequency. However, equations (12.65)
and (12.66) are not equivalent if there is nonzero autocorrelation sample. To visualize this,
assume there is only one correlation sample r1 = ∑

QkC1k with t1 �= 0. If Q(1)
k = Q(2)

k holds for
all k = 1, 2, . . . , n, then

λ
(1)
1 C1k = P−1 + λ

(2)
2 C1k (12.91)

would be true for all k. Here λ
(1)
1 and λ

(2)
2 are constants and C1k varies with k, since t1 �= 0. This

suggests that equation (12.91) and therefore Q(1)
k = Q(2)

k would not hold for all k.
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Now equations (12.76) and (12.78) are compared. Let there be a single autocorrelation
sample r1 = ∑

k
QkC1k that may or may not be a zero-lag sample. If Q(2)

k = Q(3)
k were to hold for

all k = 1, 2, . . . , n, then

P−1 + λ
(2)
1 C1k = P−1

k λ
(3)
1 C1k (12.92)

would have to be satisfied for all k. Here λ
(2)
1 and λ

(3)
1 are constant and P−1

k varies independent
of C1k equation (12.92) cannot be true for all k whether or not C1k is constant (zero lag
sample).

12.6 Towards efficient algorithms

Equations (12.86) to (12.88) yield cross-entropy spectral estimates, based on autocorrelation
samples. First, the Lagrange multipliers λk must be determined, which can be achieved
by substituting any of these equations into equation (12.89), and solving the m resulting
equations. However, there is no mention of the number and spacing of either frequencies or
autocorrelation samples. This, therefore, may not be the best way to obtain the actual power
spectrum values.

It is reasonable to assume that the frequencies wk are equally spaced wk = k�w at the
Nyquist rate, tr = 1/(2n�w) In this case coefficients Crk become

Cik = 2 cos(πrk/n) (12.93)

The Lagrange multipliers are determined by inserting equation (12.93) in equation (12.74)
and solving the resulting system of equations:

rk =
n∑

k=1

PkCrk


1 + Pk

m∑
j=1

λjCjk




−1

(12.94)

Expanding equation (12.94) and neglecting terms of O(λ2
j ) and higher, if λj are close to zero,

the result is

rk =
∑

k


PkCrk − P2

k Crk

∑
j

λjCjk


 (12.95)

Note the prior spectral estimates Pk and the power autocorrelation samples r
′
k are related as

r
′
k = ∑

k
PkCrk. Then equation (12.95) can be written as

m∑
j=1

λjdrj = rr − r
′
r (12.96)

where

drj =
n∑

k=1

P2
k CrkCjk (12.97)

Thus, when the autocorrelation function changes gradually, equation (12.94) reduces to a set
of linear equations (12.96) whether or not equation (12.93) holds.
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12.7 General method for minimum cross-entropy spectral
estimation

Tzannes et al. (1985) introduced a new form of MCESA based on the minimization of a
cross-entropy function entailing spectral densities rather than probability density functions.
Let S(w) be a prior estimate (guess) of spectrum and T(w) the desired spectrum. In order to
determine the optimum T(w), S(w) is normalized to have an area of one and the cross-entropy
is minimized:

H =
∫

T(w) log
T(w)

S(w)
dw (12.98)

The constraints for minimization are

R(τ )

R(0)
=

∞∫
0

T(w) exp(iwτ )dw, τ = 1, 1, 2, . . . , N (12.99)

which in noncomplex form is:

R(τ )

2R(0)
=

∞∫
0

T(w) cos(wτ )dw, τ = 1, 1, 2, . . . , N (12.100)

where factor 2R(0) serves the normalization purpose. This is the autocorrelation function-
power spectrum Fourier transform pair.

Minimization of H, subject to equation (12.100), is done using the method of Lagrange
multipliers, resulting in

T(w) = S(w) exp

[
−1 −

N∑
k=0

λk cos wk

]
(12.101)

The values of the Lagrange multipliers are determined using the known autocorrelation
function values in equation (12.100). If S(w) is uniform white noise then the method reverts
to maximizing

H(w) =
∫

S(w) log S(w)dw (12.102)

and it becomes equivalent to MESA.

References

Burg, J.P. (1967). Maximum entropy spectral analysis. Paper presented at 37th Annual Meeting of Society

of Exploration Geophysicists, Oklahoma City, Oklahoma.
Burg, J.P. (1969). A new analysis technique for time series data. Paper presented at NATO Advanced

Institute on Signal Processing with Emphasis on Underwater Acoustics.
Burg, J.P. (1972a). The relationship maximum entropy spectra and maximum likelihood spectra. Geo-

physics, Vol. 37, No. 2, pp. 375–6.
Burg, J.P. (1972b). The relationship between maximum entropy spectra and maximum likelihood spectra.

in: Modern Spectral Analysis, edited by D.G. Childers, pp. 130–1, M.S.A.



516 Entropy Theory and its Application in Environmental and Water Engineering

Burg, J.P. (1975). Maximum entropy spectral analysis. Unpublished Ph.D. dissertation, Stanford Univer-

sity, Palo Alto, California.

Dalezios, N.R. and Tyraskis, P.A. (1999). Maximum entropy spectra for regional precipitation analysis and

forecasting. Journal of Hydrology, Vol. 109, pp. 25–42.

Fougere, P.F., Zawalick, E.J. and Radoski, H.R. (1976). Spontaneous line splitting in maximum entropy

power spectrum analysis. Physics of the Earth and Planetary Interiors, Vol. 12, pp. 201–7.

Johnson, R.W. and Shore, J.E. (1983). Minimum cross-entropy spectral analysis of multiple signals. IEEE

Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-31, No. 3, pp. 574–82.

Kapur, J.N. (1999). Maximum Entropy Models in Science and Engineering. Wiley Eastern, New Delhi, India.

Kapur, J.N. and Kesavan, H.K. (1997). Generalized Maximum Entropy Principle (with Applications). Sandford

Educational Press, University of Waterloo, Waterloo, Canada.

Kapur, J.N. and Kesavan, H.K. (1992). Entropy Optimization Principles with Applications. 409 p., Academic

Press, New York.

Padmanabhan, G. and Rao, A.R. (1988). Maximum entropy spectral analysis of hydrologic data. Water

Resources Research, Vol. 24, No. 9, pp. 1519–33.

Shore, J.E. (1979). Minimum cross-entropy spectral analysis. NRL Memorandum Report 3921, 32 pp.,

Naval Research Laboratory, Washington, D.C.

Shore, J.E. (1981). Minimum cross-entropy spectral analysis. IEEE Transactions on Acoustics, Speech, and

Signal Processing, Vol. ASSP-291, pp. 230–7.

Shore, J.E. (1983). Axiomatic derivation of the principle of maximum entropy and the principle of

minimum cross entropy. IEEE Transactions on Information Theory, Vol. IT-26, pp. 26–37.

Ulrych, T.J. and Clayton, R.W. (1976). Time series modeling and maximum entropy. Physics of the Earth

and Planetary Interiors, Vol. 12, pp. 189–99.

Additional References

Brockett, P.L., Charnes, A. and Paick, K.H. (1986). Computation of minimum cross-entropy spectral

estimates: An unconstrained dual convex programming method. IEEE Transactions on Information Theory,

Vol. IT-32, No. 2, pp. 236–41.

Burr, R.L. and Lytle, D.W. (1989). Minimum cross-entropy spectral analysis of time-varying biological

signals. IEEE Transactions on Systems, Man, and Cybernetics, Vol. 18, No. 5, pp. 802–7.



13 Evaluation and Design
of Sampling and
Measurement Networks

Hydrometric data are required for efficient planning, design, operation, and management of
virtually all water resources systems, including water supply reservoirs, dams, levees, recre-
ation and fisheries facilities, flood control structures, hydroelectric power plants, irrigation
schemes, urban and rural drainage, and wastewater treatment facilities. Many studies have
applied the entropy theory to assess and optimize data collection networks (e.g., water quality,
rainfall, stream flow, hydrometric, elevation data, landscape, etc.). Decision making in water
resources project design and evaluation is closely linked to the amount of hydrologic infor-
mation available. If enough accurate and relevant information is available, the likelihood of
an under-design or over-design is reduced. Thus, economic losses can be minimized, resulting
in an overall increase in the benefit/cost ratio. However, it is not always easy to quantitatively
define the optimum level of information needed for planning, design, and development of
a specific project in a watershed. This is largely due to the difficulty in developing cost and
benefit functions of hydrologic information. This then leads to the difficulty in achieving
an optimum balance between the economic risk due to inadequate information and the
cost of a network capable of providing the required information. This chapter presents basic
entropy-related considerations needed for the evaluation and design of monitoring networks.

13.1 Design considerations

A methodology for data collection network design must take into account the information
of each gaging station or potential gaging station in the network. A station with a higher
information content would generally be given a higher priority over other stations with lower
information content. The information content of a station must, however, be balanced with
site-specific uses and users of the data collected at a station. For example, a station which is
used by one user might be given a lower priority than a station that has diverse uses. Burn and
Goulter (1991) developed a data collection network design framework considering such issues.

In general, a framework for network design or evaluation considers a range of factors,
including: 1) objectives of sampling, 2) variables to be sampled, 3) locations of measurement

Entropy Theory and its Application in Environmental and Water Engineering, First Edition. Vijay P. Singh.
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stations, 4) frequency of sampling, 5) duration of sampling, 6) uses and users of data, and
7) socio-economic considerations. Effective monitoring is also related to these factors. Evalu-
ation of a network has two modes: 1) number of gages and their location (space evaluation),
and 2) time interval for measurement (time evaluation). The information in one mode may
be supplemented by the other with appropriate transfer mechanisms and by cross-correlation
structure (space-time tradeoff). Space-time evaluation of networks should not be considered
as fixed but should periodically be subject to revision and is evolutionary. Uslu and Tanriover
(1979) analyzed the entropy concept for the delineation of optimum sampling intervals in
data collection systems, both in space and time.

All designs, whether of the network or the monitoring program, must be cost effective in
gathering data and cost efficient in obtaining information from data. These two requirements
call for evaluating the performance of a network. Such an evaluation must consider benefits
of monitoring with respect to the objectives of monitoring and the cost, both marginal and
average, of obtaining those benefits. Sometimes it is the budget that controls the network
and monitoring program design. Then, the network problem reduces to one of obtaining the
greatest benefit (most information) for the available budget.

13.2 Information-related approaches

Besides the entropy theory, there are many approaches that have been used in monitoring
network analysis (Mishra and Coulibaly, 2009). These may include information variance;
transfer function variance; correlation function; simulation; economic-worth of data approach;
decision theory and Bayesian analysis; linear estimation techniques, such as Theissen polygons
and spline surface fitting; kriging; square grid technique; amongst others. The first three
approaches are briefly discussed here.

13.2.1 Information variance
One measure of information is variance denoting the mean of the squared differences between
measured and true values of statistics, of say, for example, mean areal rainfall. The higher the
variance the greater the measurement error; thus, more gages are needed in the area and vice
versa. The information variance approach involves space-time tradeoff explicitly, that is, the
lack of data in one domain (say, time) may be compensated for by extrapolation of similar
data in the other domain (say, space). The decision whether to continue or discontinue a gage
is based on the relative lack of information. Both space and time analyses use some common
measure of information.

To illustrate the use of variance as a measure, consider an estimate of the mean rainfall
depth over the watershed under consideration which is obtained from measurements of rain
gages positioned at specified locations in space. The mean squared error of this estimate and
the mean depth is the variance which decreases with increasing number of rain gages. For a
fixed rain gage in time, variance is the mean squared error between measured rainfall depth
and time-averaged rainfall depth at the same rain gage. Let xit be rainfall depth at rain gage i
for time t, n be the total number of rain gages, and T be the length of record (restricted to the
number of months or years that rainfall network has been in operation). Then, the space-time
mean rainfall depth is defined as

x = 1

nT

n∑
i=1

T∑
t=1

xit (13.1)
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for all rain gages in the watershed and for all available records. The corresponding space–time
variance can be defined as

S2
x = 1

nT

n∑
i=1

T∑
t=1

(xit − x)2 (13.2)

When evaluating a rainfall network by variance it is assumed that 1) the rainfall process is
random in time and space; 2) the rainfall process is weakly stationary; and 3) the covariance
function is separable in both time and space. If the space-time mean rainfall depth, obtained
from equation (13.1) is denoted as x, then the variance of x, as a measure of the network
efficiency, is

var(x) = var

[
1

nT

n∑
i=1

T∑
t=1

xit

]
(13.3a)

This variance can be expressed as the product of the variance of a rainfall record of one rain
gage, σ 2 (point variance), and temporal and spatial reduction factors, F(T) and G(n) depending
only on sampling in time and space, respectively (Rodriguez-Iturbe and Mejia, 1974). The
point variance (σ 2) is equal for all rain gauges because of the assumed stationarity. Then,

var(x) = σ 2F(T)G(n) (13.3b)

where G(n) is the spatial reduction factor, and F(T) is the temporal reduction factor. For
sampling in space, Rodriguez-Iturbe and Mejia (1974) expressed G(n) as

G(n) = 1

n2
{n + n(n − 1)E[r(d)]} (13.4a)

where d is the distance between rain gages and r(d) is the spatial correlation function.
A derivation of equation (13.4), using POME, is given by Krstanovic and Singh (1988); it can
be written as

G (n) = 1

n2

{
n + n (n − 1) exp

(
C2

v

2
− 1

)[
1 − �

(
C2

v − 1√
2Cv

)]}
(13.4b)

where Cv is the coefficient of variation of the distance among existing rain gages and �(.) is
the error function. It is found that for Cv > 5.6, G(n) becomes almost constant regardless of
the value of n. A realistic range of Cv is (0.1, 4.6), virtually covering a broad range of different
values of means and variances of distances.

For sampling in time, Rodriguez-Iturbe and Mejia (1974) described a procedure that was
modified by Krstanovic and Singh (1988) for which the temporal reduction F(T) can be
written as

F(T) = 1

T2


 T∑

k=1

ρ(0) + 2
T−1∑
k=1

T∑
j=k+1

ρ(j − k)


 (13.5a)
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where ρ(k) denotes the autocorrelation function (ACF) at lag k. Equation (13.5a) is rewritten as

F(T) = 1

T
+ 2

T2

[
T−1∑
t=1

(T − t)ρ(t)

]
(13.5b)

Thus, the temporal reduction factor depends on the length of record T and the magnitude
of autocorrelation function (ACF) ρ(t). The shorter the record, the smaller the reduction
[F(T) approaches 1]; the longer the record is the more dependency is within ACF; F(T) differs
for each rainfall record.

Spatial reduction factor G(n), temporal reduction factor F(T), and total reduction in variance
F(T) × G(n) are now computed. For spatial reduction factor, it is sufficient to compute the
coefficient of variation, Cv, of the distances among existing rain gages. If one increases or
decreases the number of rain gages such that Cv does not change, then the corresponding G(n)
is variable. For the temporal reduction factor, equation (13.5b) is used to compute F(T) for
each rain gage. The total reduction in the variance of rainfall record is obtained by multiplying
G(n) with F(T). However, two disadvantages of the variance analysis should be noted. First,
because of nearby values of the total reduction in variance, it is difficult to determine exactly
the number of rain gages necessary for every sampling interval. Second, this analysis does not
consider location of the chosen rain gages in the watershed.

Another way to assess the adequacy of an existing rain gage network is by computing the
assigned percentage of error (ε) in the estimation of mean value which is a function of the
number of gages as:

n =
(

Cv

ε

)2

(13.6)

where n is the optimum number of gages, and Cv is the coefficient of variation of the rainfall
values of the gages. If there are m rain gages in the watershed recording R1, R2, . . . , Rm values
of rainfall for a fixed time interval, then Cv is computed as

Cv = 100S

R
(13.7a)

where

R = 1

m

m∑
i=1

Ri (13.7b)

and S is the standard deviation of R:

S =




m∑
i=1

(Ri − R)2

m − 1




1/2

(13.8)

13.2.2 Transfer function variance
The transfer function variance approach employs spectral density function (SPF) that measures
the distribution of variance of the variable, say rainfall, over the range of its inherent
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frequencies. A higher SPF value at a certain frequency makes a greater contribution to
the variance from the component of that frequency. An advantage of using transfer-function
variance is that it reduces all the information concerning space-time dependence to a functional
form.

13.2.3 Correlation
Another measure of information is cross-correlation amongst records from nearby sites.
Cross-correlation helps with space-time tradeoff and regional data collection. The correlation
coefficient rxy is calculated for each pair of stations as:

rxy = Covxy

SxSy

(13.9a)

where Covxy is the covariance between the random variables X and Y ; Sx and Sy are the
standard deviation of variables X and Y , respectively. Covxy can be obtained as

Covxy =

n∑
i=1

(xi − x)(yi − y)

n − 1
(13.9b)

where x and y are the means of variable X and Y , respectively. Plotting the correlation
coefficient with distance between gages and assuming an acceptable value of the correlation
coefficient, one can determine the location of gages as well as the number of gages. The
correlation coefficient may be expressed as a function of distance using an exponential form:

r(d) = e−d/λ (13.10)

where d is the distance between two gages (or points), and λ is the correlation length (the
inverse of the correlation length is the correlation decay rate).

13.3 Entropy measures

13.3.1 Marginal entropy, joint entropy, conditional entropy
and transinformation

Entropy is used for measuring the information content of observations at a gaging station.
The measures of information are: marginal entropy, conditional entropy, joint entropy, and
transinformation which have been discussed in Chapter 2. The information observed at
different sites (gaging stations) can be inferred, to some extent, from the observations at other
sites. The information transferred among information emitters (predictor stations) and the
information receivers (predicted or predictant stations) can be measured by transinformation
or mutual information.

Mutual information is used for measuring the inferred information or equivalently infor-
mation transmission. Entropy and mutual information have advantages over other measures
of information. They provide a quantitative measure of 1) the information at a station, 2) the
information transferred and information lost during transmission, and 3) a description of the
relationships among stations based on their information transmission characteristics.

Let the data being collected at a station correspond to a random variable X. Then, the
marginal entropy, H(X), can be defined as the potential information of the variable; this is
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also the information of that gaging station. The joint entropy H(X, Y) is the total information
content contained in both X and Y , that is, it is the sum of marginal entropy of one of
the stations and the uncertainty that remains in the other station when a certain amount of
information that it can convey is already present in the first station. The multidimensional joint
entropy for n gages (with measurement record denoted as ij, i = 1, 2, . . . , Ni; j = 1, 2, . . . , n; Ni

is the length of record or the number of values of the i-th station.) in a watershed which
represents the common uncertainty of their measured data sets can be expressed as:

H[X1, X2, . . . , Xn] = −
N1∑
i1

. . .

Nm∑
in+1

p(i1, i2, . . . , in) log[p(i1, i2, . . . , in)] (13.11)

For two gaging stations, X and Y , the conditional entropy H(X|Y) is a measure of the
information content of X which is not contained in Y , or entropy of X given the knowledge
of Y or the amount of information that still remains in X even if Y is known. The conditional
entropy can be interpreted as the amount of lost information. The amount of uncertainty
left in the central gage when the records of all other gages are known is expressed by the
multivariate conditional entropy of the central gage conditioned on all other records. Similarly,
the uncertainty left in the group of gages (i1, . . . , in) when any new gage is added (i.e., the
expansion of the existing gage network) can be defined as

H[(X1, X2, . . . , Xn)|Xn+1] = −
N1∑
i1

. . .

Nm+1∑
in+1

p(i1, i2, . . . , in) log[p(i1, i2., . . . , in|in+1)]

(13.12a)

or

H[(X1, X2, . . . , Xn)|Xn+1] = H(X1, X2, . . . , Xn, Xn+1) − H(Xn+1) (13.12b)

The mutual entropy (information) between X and Y , also called transinformation T(X, Y),
is interpreted as the reduction in the original uncertainty of X, due to the knowledge of Y .
It can also be defined as the information content of X which is also contained in Y . In other
words, it is the difference between the total entropy and the sum of entropies of two stations.
This is the information repeated in both X and Y , and defines the amount of uncertainty that
can be reduced in one of the stations when the other station is known. Thus, the information
transmitted from station X to station Y is represented by T(X, Y). Corresponding to equations
(13.12a) and (13.12b), the multidimensional transinformation between the n existing gages
and the new (added) gage (n + 1) can be defined as

T[(X1, X2, . . . , Xn), Xn+1] = H(X1, X2, . . . , Xn) − H[(X1, X2, . . . , Xn), Xn+1] (13.13)

T(X, Y) is symmetric, that is, T(X, Y) = T(Y , X), and is non-negative. A zero value occurs
when two stations are statistically independent so that no information is mutually transferred,
that is, T(X, Y) = 0 if X and Y are independent. When two stations are functionally dependent,
the information at one site can be fully transmitted to another site with no loss of information
at all. Subsequently, T(X, Y) = T(X). For any other case, 0 ≤ T(X, Y) ≤ H(X). Larger values
of T correspond to greater amounts of information transferred. Thus, T is an indicator of the
capability of the information transmission and the degree of dependency of two stations.
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13.3.2 Informational correlation coefficient
Transferability of information between hydrologic variables depends on the degree and the
structure of interdependence of variables. The most likely measure of association between
variables is the correlation coefficient. Its use is valid under the assumption of normality of
variables and linearity of relationship between them. If variables are nonlinearly related, then
either the variables have to be transformed to linearize the regression function or nonlinear
regression has to be developed. For both linear and nonlinear types of interdependence, the
correlation coefficient measures the amount of information that is actually transferred by the
assumed regression relationship. If correlation coefficient is zero, it does not necessarily mean
the absence of association between variables but may also be due to the inappropriate choice
of the regression relation. The informational correlation coefficient and transinformation
represent the extent of transferable information without assuming any particular type of
interdependence. They also provide a means of judging the amount of information actually
transferred by regression. The informational correlation coefficient R0 (Linfoot, 1957) is
a dimensionless measure of stochastic interdependence, varies between 0 and 1, and is
expressed in terms of transinformation as

R0 = √
1 − exp(−2T0) (13.14)

It does not assume normality or any type of functional relationship between stations and
therefore has an advantage over ordinary correlation coefficient. It reduces to the classical
correlation coefficient when the normality and linearity assumptions are satisfied.

When the marginal and joint probability distributions of stations X and Y are approximated
by their relative frequency distributions or when no particular probability distribution is
assumed for the stations, then T0 represents the upper limit of transferable information
between stations. The informational correlation coefficient R0 is a dimensionless measure
of stochastic interdependence which varies between 0 and 1, and is a function of mutual
information T0 between stations. It does not assume normality or any type of functional
relationship between stations and therefore has advantages over the ordinary correlation
coefficient. It reduces to the classical correlation coefficient when the normality and linearity
assumptions are satisfied. Although R0 and T0 do not provide any functional relationship
between stations to transfer information, they serve as criteria for checking the validity of
assumed types of dependence and probability distributions of the stations. Since T0 represents
the upper limit of transferable information, it can be used as a criterion for defining the
amount of actually transferred information under the assumptions made. If T1 represents the
transinformation for any assumed type of relation between stations then the ratio

t1 = T0 − T1

T0

= 1 − T1

T0

(13.15)

measures the amount of nontransferred information, and 1 − tl measures the amount of
transferred information. Likewise R0, and t1 can be used as criteria to judge the validity
of assumptions made about the dependence between stations. Entropy or transinformation
does not provide any means of transferring information but provides a means for measuring
transferable information. Thus, it can help improve the transfer of information by regression
analysis.

If the actual amount of information transferred by regression analysis is far below the
transferable information defined by entropy measures, then one can attempt to improve the
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regression analysis. This can be accomplished by 1) selecting marginal and joint distributions
that better fit the data, 2) searching for better relationships between stations, 3) analyzing
the effect of autocorrelation of each station upon interdependence and regression, and 4)
analyzing the effect of lag cross correlation upon interdependence and information transfer.

13.3.3 Isoinformation
The coefficient of nontransferred information, defined by equation (13.14), as a measure
of the non-transferred information as the percentage of the total transferable information
is employed. Here T0 is the total transferable information (not necessarily achieved by the
network), and T1 is the measured transinformation between X1 and X2. To illustrate, assume
that X1 is associated with the rainfall record of the central rain gage in the region, and
X2 = Xi(i = 2, . . . , n) associated with rainfall record of any other rain gage. Then,

T1 = T(X1, Xi) = H(X1) − H(X1|Xi) (i = 2, . . . , n) (13.16a)

The value of T0 can be expressed as

T0 = H(X1) (13.16b)

Thus, the coefficient of nontransferred information is

t1 = H(X1|Xi)

H(X1)
, 0 ≤ t1 ≤ 1 (13.17)

Similarly, 1 − t1 defines the coefficient of transferred information, or transferred information
as a fraction of the total transferable information defined by equation (13.14).

By computing the coefficient of transferred information for all rain gages, the isoinformation
contours can be constructed. These contours will be the lines of equal transfer of information
in the region (Krstanovic and Singh, 1988). The isoinformation contour of the bivariate rainfall
record is the line of equal common information between any rain gage in the watershed and
the other existing rain gages located in the watershed. In the selection process, the first chosen
rain gage has the highest information content and this can be designated as central rain gage.
Thus, it is convenient to choose that rain gage as the reference point in the construction of
all isoinformation contours when choosing rain gages in order of descending importance. It is
true that isoinformation contour can be constructed between any two rain gages, but it may
not benefit the selection process.

13.3.4 Information transfer function
In a given watershed or area there are limited monitoring or gaging stations which define a
discrete field. This field can be extended to a continuous field by considering each point in
the watershed as a gaging station. In the continuous field the information transfer function
is defined. Thus, the transmission of information of a given station changes successively in
any direction. Let X define the central gage (or basic point) and Y another gage (or auxiliary
point) in a certain direction, and let dxy be the geometric distance between X and Y . Then the
information transfer function (ITF) of X about Y can be defined (Zhang et al., 2011) as

ITFX(d) = 1

(1 + ad)b
(13.18)
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where a and b are parameters. If a and b are small, ITFX will be large, indicating greater
transmission of information from X. The values of a and b may vary from watershed to
watershed. It is seen from equation (13.18) that ITFX(0) = 1 and ITFX tends to 0 as d tends
to infinity. Further, the derivative of equation (13.18) will define the information transfer
intensity (ITI) or rate:

ITI = d(ITFX)

dd
≤ 0 (13.19)

13.3.5 Information distance
Let L be the distance of station X to the boundary of the watershed along a given direction.
Then, the information distance (IDX) of X in this direction can be defined as

IDX(L) =

2

L∫
0

sITFXds




2

= 1

a2

[
(1 + aL)2−b − 1

2 − b
− (1 + aL)1−b − 1

1 − b

]
(13.20)

where a and b are parameters. IDX can be regarded as the average information transfer of X

in the given direction. If ITFX = 1, then IDX = 1, implying the transfer of entire information
to the boundary. On the other hand, if L = 0, then ITFX = 0 and IDX = 0. In this case station
X does not transfer any information outward.

13.3.6 Information area
For a station X, information transfer occurs in all directions. It may, therefore, be appropriate
to define the area influenced by X as the information field, abbreviated as IFX of X. To
mathematically formulate IFX requires setting up an appropriate coordinate system. To that
end, let the geometric location of X be a pole and one direction (e.g., the direction may be
from east to west) be a polar axis. In this way, polar coordinates are defined. Let θ be the
polar angle. Then one can relate parameters a and b in ITF to θ , that is, a(θ) and b(θ), and
ITF = ITF(θ). Now the information field of X can be defined as

IFX = {IFX(θ), 0 ≤ θ ≤ 2π} (13.21)

Assuming ITF as a continuous function of θ and d, the information area IAX can be written as

IAX = 1

2

2π∫
0

(IDX)2dθ (13.22)

which measures the total region of influence of X with regard to its nearby region.

13.3.7 Application to rainfall networks
The use of entropy measures is now illustrated by applying to rainfall networks. A rainfall
network should be designed such that the space-time variability of rainfall is sampled optimally
or accurately. The accuracy should be sufficient enough so as to reduce the standard error
of areal average rainfall to a negligible level. The standard error depends on the variability
of the rainfall field, including rainfall variability and intermittency. The main objective of a
rain gage network design is to select an optimum number of rain gages and their locations
such that the desired amount of information on rain through rain data is obtained. Other
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considerations of importance in the network design may include the obtaining of an adequate
record length prior to the utilization of data, the development of a mechanism for transferring
information from gaged to ungaged locations whenever needed, and the estimation of the
probable magnitude of error arising from network density, distribution, and record length.

Krstanovic and Singh (1992a, b) used the marginal entropy measure to draw contour maps
of the rainfall network in Louisiana and evaluated the network according to the entropy
map. Lee and Ellis (1997) compared kriging and the maximum entropy estimator for spatial
interpolation and their subsequent use in optimizing monitoring networks. Husain (1989) and
Bueso et al. (1999) used the entropy theory to illustrate a framework for spatial sampling of a
monitoring network. Ozkul et al. (2000) presented a methodology using the entropy theory
for assessing water quality-monitoring networks. Their study was a follow up of earlier work
by Harmancioglu and Alpaslan (1992).

Evaluation of rainfall networks in time
Let X be a random rainfall variable, such as depth over a time interval (a day, week, month
or year) and has a record length N. X has N different values xi, (i = 1, . . . , N) each with a
probability p(xi) = pi, (i = 1, . . . , N) (i.e., probability of that rainfall depth value to occur).
Then, the marginal entropy of X measures the uncertainty associated with the realization
of xi from X. Here X can take on different duration rainfall depth values. For example,
X1 = {(amount of rainfall during day 1 = x1), (amount of rainfall during day 2 = x2), . . . ,
(amount of rainfall during day N = xn)}; or X2 = {(total rainfall during first two days = x1),
(total rainfall during second two days = x2), . . . , (total rainfall during last two days of the
record N = xn)}; X7 = {(total rainfall in week 1 of the record = x1), (total rainfall in week 2 of
the record = x2), . . . , (total rainfall of the last week in the record = xn)}; X30 = {(total rainfall
in month 1 = x1), . . . , (total rainfall of the last month = xn)}; Xyear = {(total rainfall in year
1 = x1), . . . , (total rainfall in year N = xn)}.

The rainfall depth record of an i-th rain gage is denoted by X1, and its values as time series.
Using a power or log-transformation, these values may be converted to a normal distribution.
The multivariate normal distribution contains autocovariance matrix Sai, whose elements are
autocovariances of i-th rain gage record; and the number of rain gages n is replaced by m + 1
(dimension of the autocovariance matrix where m denotes the number of lags) (Krstanovic
and Singh, 1988). When using the real-world data, each rain gage record Xj(j = 1, . . . , n) is
used to compute H(x0), H(x0|x1), H(x0|x1, x2), and so on, where xi denotes the record with i-th
serial dependency, or the record dependent on the i previous records at t − �t, t − 2�t, t − i�t,
where �t is the sampling interval.

Under the assumption that analysis of each rain gage is independent of all other rain
gages, rainfall record or time series of each rain gage is investigated. The objective is to
determine the variation in entropy for various sampling intervals. For each rain gage,
the conditional entropies are computed: H(x0), H(x0|x1), H(x0|x1, x2), . . . , H(x0|x1, x2, . . . , xm),
where x0 denotes the value at 0-serial dependency (each rainfall record does not know about
its past values), x1 denotes values with first serial dependency (each rainfall record remembers
its immediate predecessor), and so on.

At 0-th lag (m = 0) the value of entropy is the highest, since the rainfall record at each lag
is considered independent of all other lags. With the introduction of information at the first
lag, at the first two lags, and so on, the values of entropy decrease. The conditional entropies
are computed for all rain gages for daily, two-day, weekly, monthly, and yearly time intervals.
Serial dependencies are considered until m = 10 lags except for yearly evaluation. In general,
the greatest entropy reduction occurs at the first lag. For short sampling intervals (daily,
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two-day) this reduction can be significant. For longer sampling intervals, the reduction at the
first lag is even higher. Thus, the lag-dependency decreases in longer sampling intervals, while
it still exists in short intervals. Entropy values for longer sampling intervals are lower than
those for shorter ones, again because of the higher rainfall fluctuations in smaller sampling
intervals. This trend is observed until the annual sample. Because of the short record length,
calculations are usually not made for time intervals greater than one year.

Evaluation of rainfall networks in space
Bivariate Case: Let X1 and X2 be two random variables associated with two different rainfall
records, S1 and S2, respectively, and p(x1, x2) = pi,j be the joint probability of a particular
combination of the rainfall records at rain gages 1 and 2. Then the entropy of that joint
probability of records expresses the total amount of uncertainty associated with realizations
of X1 and X2 of rain gages 1 and 2. The relation between the mutual entropy H(X1, X2) and
marginal entropies H(X1) and H(X2) can be defined on two sets of data, S1 and S2, and it can
be shown that the mutual entropy of the two sets of rainfall depth values will be at most equal
to the sum of the uncertainties or marginal entropies of the individual sets of rainfall depth
values. The completely independent sets of depth values have unrelated uncertainties and the
maximum mutual entropy H(X1, X2). The magnitude of the dependency among sets of depths
is expressed as a difference H(X1, X2) − [H(X1) + H(X2)]. This then depends on the sampling
interval of individual rainfall records (time dependency), distances among rain gages 1 and 2,
and the orographic characteristics of the area (mountainous, plains, etc.). Thus, all of these
external factors should be included within the data.

For evaluation of dependent/independent rainfall records, the following questions must
be addressed: (1) How is the rainfall uncertainty reduced at rain gage 2 when the rainfall
record at rain gage 1 is already known? (2) What is the common information among two rain
gages? (3) Knowing the records of rain gages 1 and 2, how much uncertainty is still left in the
rainfall network? To answer the first question, the conditional entropy H(X2|X1) is defined
as the uncertainty still left in the rainfall depth X2 when the first depth X1 becomes known.
The joint entropy of X1 and X2 [H(X1, X2)], is reduced by the knowledge of X1 expressed by
[H(X1)]. For no reduction in uncertainty, X1 and X2 are independent. To answer the second
question, transinformation of X1 and X2, T(X1, X2), is defined as the amount of information
repeated in both X’s.

Multivariate case: For spatial evaluation, rainfall records of several rain gages in the
watershed are used. Let n be the number of rain gages, each with X1 and record length
Ni(i = 1, . . . , n) and Sc the cross correlation matrix of n × n dimensions. The use of the
multivariate normal PDF yields an expression for multivariate entropy (Harmancioglu and
Yevjevich, 1985; Krstanovic and Singh, 1988). The essential condition for the existence of
H(X) is the positive-definiteness of the cross correlation matrix Sc. This enables nonsingular
determinant |Sc| and the existence of S−1

c .
When applying entropy for univariate, bivariate, and multivariate cases, it is simpler to

use univariate, bivariate, and multivariate normal distributions than other distributions,
such as gamma, Pearson type or Weibull. Normal distributions are chosen because of the
complexity involved in the application of entropy with other distributions. The normal
distribution requires (Guiasu, 1977) replacement of discrete probabilities by a continuous
probability distribution function (PDF); replacement of a system of events by a function space,
where PDFs are defined; and replacement of the summation in the domain by integration
throughout the domain. The multivariate normal distribution has been derived using the
principle of maximum entropy (POME) in Chapter 5. In application of the normal distribution
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to the evaluation of rainfall networks in space, three cases can be distinguished: 1) Rainfall
record measured at a rain gage is time independent, but may depend on other rain gages
whose records are measured simultaneously. This corresponds to space evaluation. 2) Rainfall
record measured at a rain gage is space independent of all other rain gages, but depends on
its own past history. This corresponds to time evaluation. 3) Rainfall record is both space and
time dependent. This corresponds to space-time evaluation. The space and time dependencies
between rainfall records diminish with longer sampling time intervals (for example, daily
rainfall records decrease dependencies among short-term rainfall events) and for rain gages
within the smaller area.

Since the use of entropy involves various multivariate normal distributions, rainfall data
must be normalized. The normalization can be accomplished by employing the Box-Cox trans-
formation (Bras and Rodriguez-Iturbe, 1985). The data are transformed for every sampling
interval and for different seasons (with annual values divided into six-month periods). For
example, let X1A and X1B denote daily records of two rain gages A and B. Their transformed
versions can be denoted as X ′

1A and X ′
1B. Similarly, X2A and X2B denote two-day values and

their transformed versions as X ′
2A and X ′

2B. For a zero value of either X ′
2A or X ′

2B or X ′
2A ∪ X ′

2B,
the appropriate transformed value is used. For example, assume that the rainfall record of
rain gage A contains the storm of July 4th, but that storm is only localized and rain gage B
does not contain the same storm. Since only nonzero values are handled, the expected storm
of July 4th at B is treated as ”transformed zero” (the chosen Box-Cox transformation applied
to zero values).

It is convenient that all rain gages have a common record length, that is, N1 = N2 = . . . =
Nn. This enables easy computation of different covariance matrices Sc. Records associated
with Xj1(j = 1, . . . , n) = for each rain gage are constructed first, then x2 = (Xi, Xj), (i �= j)
for all rain gage pairs, x3 = (Xi, Xj, Xk) for all rain gage triples, and so on, until Xn−1 =
(X1, X2, . . . , Xn−1) and Xn = (X1, X2, . . . , Xn). For every vector, the corresponding joint entropy
[H(X1), H(X2), . . . , H(Xn)] is computed, with Sc varying from Sc1 of 1 × 1 dimensions to Scn−1

of (n − 1) × (n − 1) dimensions. At each stage, for every combination of rain gages, the
corresponding conditional entropies and transinformation are computed. Then, depending on
these entropy values, either an additional rain gage is selected or the procedure is terminated.

To summarize, space evaluation involves the following steps:
1 Compute marginal entropies of all rain gages for every sampling interval. From the com-
puted entropy values, the rain gage (S1) with the highest uncertainty or entropy [i.e., H(X1)]
is found. This is regarded as the most important rain gage, and is designated as the central
rain gage.
2 Compute conditional entropy of rain gage, S1, with respect to all other rain gages (S2 to Sn).
3 Find the rain gage that gives the lowest reduction in uncertainty or transinformation,

or find min[H(X1) − H(X1|X2)] = min[T(X1, X2)]. The rain gage that has the least common
information with the first (central) rain gage is the rain gage of the second highest importance.
Keep rain gages S1 and S2, and compute the conditional entropy of rain gages with respect
to all other rain gages (S3 to Sn) and find the rain gage that gives the minimum reduction in
uncertainty, or min{H(X1, X2) − H[(X1, X2)|X3]} = min{T[(X1, X2), X3]}. The rain gage, S3, is
the third most important rain gage.

Repeat the procedure such that the j-th important rain gage is the one that gives
min[H(X1, X2, . . . , Xj−1) − H[(X1, X2, . . . , Xj−1)|Xj] = min[T(X1, X2, . . . , Xj−1), Xj]. For a mul-
tivariate normal distribution, the transinformation can be expressed as T[(X1, X2, . . . ,
Xj−1), Xj] = −(1/2) ln(1 − R2) where R is multiple correlation coefficient. Thus, the rain
gage having the smaller multiple correlation with other rain gages is always chosen.
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To determine the number of essential rain gages, the coefficient of nontransferred informa-
tion ti is computed. If at step i, ti+1 ≥ ti occurs, then the nontransferred information of the i + 1
rain gages is greater than the non-transferred information of the i-th rain gage. Then, a rain
gage is added. If the worth of keeping ”i” rain gages is higher than the worth of ”i + 1” rain
gages, then the other nonchosen rain gages are discontinued. The discontinuation depends on
the measurement and the sampling interval of the rainfall record. If rain gages collect daily
data, then daily evaluation should be most useful. If rain gages measure only long-term rainfall
depths (monthly or yearly), then monthly and yearly evaluations should be performed.

Two other alternatives may be employed to choose rain gages: 1) maximum joint entropy
H(X1, X2, . . . , Xi), and 2) the maximum weighted entropy: [H(X1|Xi) + H(X2|Xi) + . . . +
H(Xi−1|Xi)]/k. Both alternatives were examined by Krstanovic and Singh (1988) and produced
results comparable to those by the maximum conditional entropy.

For space evaluation of rainfall networks, isocorrelation lines of rain gages with respect to
a central rain gage can be plotted. In a similar vein, isoinformation contours or the lines of
the coefficient of nontransferred information ti can be plotted, where ti is computed. Thus,
1 − ti measures only the information transferred from the central rain gage to any other rain
gage. Contours of isoinformation encompass central rain gages and higher concentration of
isoinformation contours surrounding the central rain gages apparently require more rain gages
in the watershed to transfer that information, as is the case for shorter sampling intervals.
If the sampling interval is longer, the isoinformation contours are less densely concentrated
around the central rain gage. By comparing isoinformation contours of the same season for
various sampling intervals, the effect of sampling interval on the selection of rain gages can be
examined. A possible relationship between consecutively selected rain gages and the distance
among them can also be examined.

Rainfall records of several rain gages: multivariate case
Let X1, X2, . . . , Xn denote rainfall depths corresponding to different rainfall data sets S1, S2, Sn;
p(X1, X2, . . . , Xn) = pi1 . . . , pin the joint probability; p(xm|x1, . . . , xn) = p(im|i1, . . . , in) the
conditional probability record of the m-th rain gage when all other rainfall depth data
sets are known and p[(x1, . . . , xn)|xn+1] = p[(i1, . . . , in)|in+1] the conditional probability of
the n rainfall data sets (of n rain gages) when the rainfall data set of the (n + 1)st rain gage
is added. The multidimensional joint entropy for n rain gages in a watershed represents the
common uncertainty of their measured rainfall data sets. The uncertainty left in the central
rain gage when the records of all other rain gages are known is expressed by the multivariate
conditional entropy of the central rain gage conditioned on all other records. Similarly, the
uncertainty left in the group of rain gages (i1, . . . , in) when any new rain gage is added
(i.e., the expansion of the existing rainfall network) can be defined. Correspondingly, the
multidimensional transinformation between the n existing rain gages and the new (added)
rain gage (n + 1) can be defined.

Now constructing a network by consecutively adding rain gages one by one for a specified
watershed and sampling interval is considered. At any step, this adding can be terminated,
depending upon the consecutive coefficients of transferred information 1−ti. At the first step,
only the central rain gage is chosen and

H(X1) = H(Xcentral) (13.23a)

In choosing the second rain gage,

t1 = H(X1|Xj)

H(X1)
where j �= 1 (13.23b)
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is computed. In choosing the i-th rain gage.

ti−1 = H((X1, . . . , Xi−1)|Xi)

H(X1, . . . , Xi−1)
(13.23c)

is computed.
The maximum possible transformation T0 varies from one step to the other, and is always

equal to the joint entropy of the rain gages already chosen before that step. For example,
in the second step T0 = H(X1), and in the i-th step T0 = H(X1, . . . , Xi−1). The rain gages are
worth adding as long as the transferred information decreases significantly, that is,

1 ≥ t1 > t2 > . . . > ti (13.24)

If at any step ti+1 ≥ ti, then the new rain gage being added at the i + 1 step has repetitive
information and is not worth adding.

If ti > ti+1, the new (i + 1)st rain gage contains new information. The magnitude of the
difference between ti+1 and ti is always in the (0,1) range. The higher the magnitude, the more
new information is added; the lower the magnitude the less new information is added. For
the latter, other considerations (economic, rain gage access, etc.) might terminate the addition
of new rain gages before the ti = ti+1 point is reached. The significance of the magnitude
corresponds to the significance in a multiple correlation coefficient among i and i + 1 variables
(ri and ri+1), assuming a certain functional relationship among these variables. However, it
also depends on the number of existing rain gages. For example, for 10 rain gages in a
watershed, the added information content is significant if ti − ti+1 ≥ 0.10 (or the average
expected information increases from the first rain gage to the tenth rain gage).

At each step during the rain gage selection process, the coefficient of nontransferred informa-
tion ti between the already chosen rain gage and each of the remaining rain gages j(j = i, . . . , n)
is computed. Then, isoinformation contours can be constructed. The isoinformation contour of
the multivariate rainfall record (at i-th step) is the line of equal common information between
already chosen (i) rain gages and any not-chosen existing rain gage (j) located in the region.

13.4 Directional information transfer index

Although transinformation indicates the dependence of two variables, it is not a good index of
dependence, since its upper bound varies from site to site (it varies from 0 to marginal entropy
H). Therefore, the original definition of T can be normalized by dividing by the joint entropy.
Yang and Burn (1994) normalized T as

T

H
= DIT = (H − HLost)

H
= 1 − HLost

H
(13.25)

The ratio of T by H is called directional information transfer (DIT) index. Mogheir and Singh
(2002) called it as Information Transfer Index (ITI). The physical meaning of DIT is the
fraction of information transferred from one site to another. DIT varies from zero to unity
when T varies from zero to H. The zero value of DIT corresponds to the case where sites are
independent and therefore no information is transmitted. A value of unity for DIT corresponds
to the case where sites are fully dependent and no information is lost. Any other value of DIT

between zero and one corresponds to a case between fully dependent and fully independent.
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DIT is not symmetrical, since DITXY = T/H(X) will not, in general, be equal to
DITYX = T/H(Y). DITYX describes the fractional information inferred by station X about
station Y , whereas DITYX describes the fractional information inferred by station Y about
station X. Between two stations, the station with higher DIT should be given higher priority
because of its higher capability of inferring (predicting) the information at other sites.

DIT can be applied to the regionalization of the network. If both DITXY and DITYX are high,
the two related stations can be arranged in the same group, since they are strongly dependent
and information can be mutually transferred between them. If neither of the DIT values is
high, they should be kept in separate groups. If DITXY is high, station Y whose information can
be predicted by X can join station X, if station Y does not belong to another group; otherwise
it stays in its own group. The predictor station X cannot join station Y ’s group, since if it were
discontinued the information at that site would be lost.

DIT can be both a measure of information transmission capability and an indicator of the
dependency of a station. This is an indicator of the information connection. In the station
selection process a predicted station should be removed first, because it recovers information
efficiently but does not predict it efficiently. When all remaining stations in the group have
strong mutual connections with each other (i.e., both DITXY and DITYX are high), they can be
further selected based on a criterion, designated as SDITi, defined as

SDITi =
m∑

j=1,j �=i

DITij (13.26)

where DITij is the information inferred by station i about station j, and m = the number of
stations in the group. The station in each group with the highest value of SDIT, in comparison
with members in the group, should be retained in the network.

13.4.1 Kernel estimation
In order to be able to use transinformation and DIT, the probability density function of the
variable being sampled must be determined. To that end, a nonparametric estimation method
can be employed. Non-parametric estimation does not describe a probability density function
by a formula and parameters but rather by a set of point values everywhere in the domain.
If the values of the density function are known everywhere then the function is known
numerically. This method of describing the density function is known as non-parametric
method. The method can be described as follows:

For a random variable X, let x1, x2, . . . , xN be a sample of observations, independently and
identically distributed with PDF f (x). If f (x) is the derivative of F(x) and is continuous, then at
a given point x, it can be estimated by a kernel estimator as:

fN(x) =
∞∫

−∞

1

h
K

(
x − xj

h

)
dFN

(
x − xj

N

)
≈ 1

Nh

N∑
j=1

K

(
x − xj

h

)
(13.27)

where fN(x) is the kernel estimator of f (x); function K(.) is called kernel; h is a positive number
and is a smoothing factor for the kernel, a function of the sample size and sample values; and
FN(x) is an estimate of CDF of X. Parzen (1962) showed that fN(x) is an unbiased estimate of
f (x) under certain conditions.
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For a multidimensional case where X = X(x1, x2, . . . , xN), Cacoullos (1966) has shown that
at a given point XO = XO(x1, x2, . . . , xN) the kernel estimator has the form:

fN(XO) = 1

N

1

h1 h2 . . . hp

N∑
j=1

K

(
x1 − xj1

h1

,
x2 − xj2

h2

, . . . ,
xp − xjp

hp

)
(13.28)

where Xj = Xj(xj1, xj2, . . . , xjp) is the j-th observation of X which is a p-dimensional variable.
The components of X : {X1, X2, . . . , Xp} could be mutually dependent or independent, but

observations of each component are still assumed to be independent and identically distributed.
A simple approximation of this equation is the product function of the form:

K

(
x1 − xj1

h1

,
x2 − xj2

h2

, . . . ,
xp − xjp

hp

)
=

p∏
i=1

Ki

(
xi − xji

hi

)
(13.29)

For practical purposes, it can be assumed that

h1 = h2 = . . . = hp = h (13.30)

According to Adamowski (1989) the choice of a kernel is not crucial for the estimation.
However, the selection of h is crucial, because it affects both the bias and the mean square
error of the estimator. Some common forms of kernels are presented by Parzen (1962) and
Wertz (1978) and are as follows. h is frequently expressed as a function of f (x) which is not
known. A widely used method is cross-validation maximum likelihood which minimizes the
integral mean square error of fN(x). h is selected to meet

Max L(h) =
N∏

j=1

fN(xj, h) =
N∏

j=1

1

hp

N∑
i=1,i �=j

K(xj, h) (13.31)

where fN(xj, h) is the estimated density value at xj but with xj removed.
In practice, hydrologic variables are non-negative. Therefore, the original variables are

logarithmically transformed and a Gaussian kernel is chosen to form the estimator:

K(x, y) = K1(x)K2(y) = 1

2π

[
exp

(
− x2

2

)][
exp

(
− y2

2

)]

= 1

2π

{
exp

[
− (x2 + y2)

2

]}
(13.32)

where x = (x∗ − xj)/h; y = (y∗ − yj)/h; (xj, yj) is an observation point; and (x∗, y∗) is the coordi-
nate of any point in the field. All x∗ and y∗ (or xj and yj) are logarithmically transformed. The
optimal h-values are derived from equation (13.31). Then fN(x, y) becomes

fN(x, y) = 1

Nh2

N∑
i=1

1

2π

{
exp

[
− (x2 + y2)

2

]}
(13.33)
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Table 13.1 Two-dimensional contingency table (frequency).

y

1 2 3 . . . u Total

1 f11 f12 f13 . . . f1u f1.

2 f21 f22 f23 . . . f2u f2.

x 3 f31 f32 f33 . . . f3u f3.

. . . . . . .

. . . . . . .

. . . . . . .

v fv1 fv2 fv3 . . . fvu fv.

Total f.1 f.2 f.3 . . . f
.u fx or fy

13.4.2 Application to groundwater quality networks
Information measures, including transinformation, information transfer index and correlation
coefficient, have been applied to describe the spatial variability of spatially correlated ground-
water quality data. These measures can be calculated using two types of approaches: discrete
and analytical. The discrete approach employs the contingency table and the analytical
approach employs a functional form of the probability density function, such as normal
probability density function. Most studies have employed the analytical approach which
presumes knowledge of the probability distributions of the random variables under study.
The problem of not knowing the probability distributions can, however, be circumvented if a
discrete approach is adopted. For the discrete approach Transinformation (T) and Information
Transfer Index (ITI) can be employed to describe the spatial variability of data which is spa-
tially correlated and which fits the normal distribution function. The Transinformation Model
(T-Model) is a relation between mutual information measure, specifically T, and the distance
between wells. Transinformation is useful and comparable with correlation to characterize the
spatial variability of data which is correlated with distance. Mogheir and Singh (2002) used
the entropy theory to evaluate and assess a groundwater monitoring network by means of
marginal entropy contour maps.

To calculate information measures, the joint or conditional probability is needed, and one
way is to use a contingency table. An example of a two-dimensional contingency table is
given in Table 13.1 To construct a contingency table, let the random variable X have a range
of values consisting of v categories (class intervals), while the random variable Y is assumed to
have u categories (class intervals). The cell density or the joint frequency for (i, j) is denoted
by fij, i = 1, 2, . . . , v; j = 1, 2, . . . , u, where the first subscript refers to the row and the second
subscript to the column. The marginal frequencies are denoted by fi. and f.j for the row and the
column values of the variables, respectively. Construction of a two-dimensional contingency
table is illustrated using an example.

Example 13.1: The time series of the chloride data measured for two wells (H-9 and H-
8), as shown in Figure 13.1 selected from the Gaza Strip groundwater quality monitoring
network, are presented in Table 13.2 (Mogheir and Singh, 2002). Illustrate the construction
of a two-dimensional contingency table for this field data.

Solution: The construction of a two-dimensional contingency table involves the following
steps:1) Each data set is subdivided into class intervals. 2) To fill the first table (frequency table),
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Figure 13.1 A chloride time series for a two-well combination (H-8, H-9). The wells are selected from groundwater

quality monitoring network in the middle part of Gaza Strip.

Table 13.2 Chloride data for well H-9 and H-8.

Date H-9
(Cl mg/l)

H-8
(Cl mg/l)

Date H-9
(Cl mg/l)

H-8
(Cl mg/l)

Date H-9
(Cl mg/l)

H-8
(Cl mg/l)

01-05-1972 644 427 20-03-1980 721 532 27-01-1990 868 700
28-10-1972 679 413 16-09-1980 749 546 26-07-1990 854 707
26-04-1973 721 483 15-03-1981 756 518 22-01-1991 840 770
23-10-1973 805 497 11-09-1981 861 525 21-07-1991 845 784
21-04-1974 693 483 10-03-1982 840 602 17-01-1992 819 770
18-10-1974 805 497 06-09-1982 861 630 15-07-1992 826 784
16-04-1975 693 504 05-03-1983 959 630 11-01-1993 819 805
13-10-1975 679 518 01-09-1983 882 644 10-07-1993 819 805
10-04-1976 721 511 28-02-1984 854 651 06-01-1994 819 784
07-10-1976 805 553 26-08-1984 868 658 05-07-1994 819 784
05-04-1977 658 630 22-02-1985 854 665 01-01-1995 819 777
02-10-1977 756 497 21-08-1985 868 644 30-06-1995 763 791
31-03-1978 735 504 17-02-1986 833 651 27-12-1995 714 777
27-09-1978 756 497 16-08-1986 868 658 24-06-1996 767 829
26-03-1979 735 504 12-02-1987 770 721 21-12-1996 739 921
22-09-1979 728 525 11-08-1987 868 658 19-06-1997 752 822

07-02-1988 854 721
05-08-1988 819 707
01-02-1989 840 784
31-07-1989 819 707
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Table 13.3 Absolute frequency contingency table for H-8 and H-9 combinations.

410<Cl<495 495<Cl<580 580<Cl<665 665<Cl<750 750<Cl<835 835<Cl<920 Marginal H-9

640<Cl<695 3 1 2 2 0 0 8
695<Cl<750 2 6 1 1 1 0 11
750<Cl<805 1 0 0 4 6 1 12
805<Cl<860 0 0 1 4 1 0 6
860<Cl<915 0 1 3 10 0 0 14
915<Cl<970 0 1 0 0 0 0 1
Marginal H-8 6 9 7 21 8 1 52

Table 13.4 Joint probability (contingency) table for H-8 and H-9 combinations.

410<Cl<495 495<Cl<580 580<Cl<665 665<Cl<750 750<Cl<835 835<Cl<920 Marginal H-9

640<Cl<695 0.058 0.019 0.038 0.038 0.000 0.000 0.154
695<Cl<750 0.038 0.115 0.019 0.019 0.019 0.000 0.212
750<Cl<805 0.019 0.000 0.000 0.077 0.115 0.019 0.231
805<Cl<860 0.000 0.000 0.019 0.077 0.019 0.000 0.115
860<Cl<915 0.000 0.019 0.058 0.192 0.000 0.000 0.269
915<Cl<970 0.000 0.019 0.000 0.000 0.000 0.000 0.019
Marginal H-8 0.115 0.173 0.135 0.404 0.154 0.019 1.000

the rows or the columns are kept constant and the shared data of the other well are counted,
as shown in Table 13.3) The joint probability table is constructed by dividing each count by
the total number of the recorded data of one well, as shown in Table 13.4.

Note that T(x, y) = 0 if X and Y are independent. Transinformation is an indicator of
the capability of information transmission. Normalizing transinformation, an Information
Transfer Index (ITI) is defined [see equation (13.25)], which then indicates the standardized
information transferred from one site to another. For both transinformation and correlation
models, the geometrical distance (d) between two wells can be calculated as

d =
√

(A1 − A2)2 + (B1 − B2)2 (13.34)

where A1 and B1 are the coordinates of well 1, A2 and B2 are the coordinates of well 2, and d
is the distance between wells 1 and 2.

Smoothing of discrete values: Since the discrete T values may exhibit a scatter when
plotted against the distance between wells, a smoothing method, such as axis transformation
(e.g., logarithm transformation), moving average or exponentially weighted moving average
(Berthouex and Brown, 1994), is employed. Mogheir and Singh (2002) employed the moving
average method to smooth the T data using a 100 m distance interval, which is the distance
between wells in the hypothetical network used. For 0 distance, transinformation T0 Is
assumed as the average of the marginal entropies of the wells. They also applied the moving
average method to smooth the lognormal T, ITI and correlation values.

Analytical approach to transinformation: Assuming that the data is reduced such that
the mean of the data is 0 and the data fits the normal probability distribution function, the
marginal entropy, as a measure of information, is computed analytically using the expression
(Lubbe, 1996):

H(x) = ln(Sx) + 1.419 (13.35)
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where Sx is the standard deviation for random variable x, and the values of T(x, y) from the
correlation coefficient (rxy) as (Lubbe, 1996; Kapur and Kesavan, 1992):

T(x, y) = −0.5 ln (1 − r2
xy) (13.36)

Example 13.2: Derive equation (13.36).

Solution: The marginal entropy for a variable X can be computed analytically for the normal
distribution (Lubbe, 1996) as:

H(x) = 1

2
ln σ 2

x + 1

2
ln (2πe)or H(x) = ln σx + 1.419

Similarly, for variable Y the marginal entropy is

H(y) = 1

2
ln σ 2

y + 1

2
ln (2πe)

where σy is the standard deviation of variable Y .
The joint probability density f (x, y) for variable X and Y , where −∞ < x < +∞, −∞ < y <

+∞ and considering two-dimensional Gaussian distribution with mean for both X and Y

equal to 0, can be expressed as (Kapur and Kesavan, 1992):

f (x, y) = 1

2π |C| 1
2

exp

{
−1

2

[
x y

]
C−1

[
x
y

]}

where

C =

 σ 2

x ρxyσxσy

ρyxσxσy σ 2
y




ρxy is the correlation coefficient between variable X and Y and can be calculated as

ρxy = σxy

σxσy

where σxy is the covariance between the variable X and Y .
For continuous variables X and Y with joint probability density f (x, y), the joint entropy is

equal to

H(x, y) = ln (2πe) + 1

2
ln |C|

For computing the transinformation T(x, y) for two random variables, X and Y , the following
expression can be used (e.g., Jessop, 1995):

T(x, y) = 1

2
ln σ 2

x + 1

2
ln (2πe) + 1

2
ln σ 2

y + 1

2
ln (2πe) − ln (2πe) − 1

2
ln |C|



CHAPTER 13 Evaluation and Design of Sampling and Measurement Networks 537

which can be simplified as

T(x, y) = 1

2
ln (σ 2

x σ 2
y ) − 1

2
ln |C| = 1

2
ln (σ 2

x σ 2
y ) − 1

2
ln

(
σ 2

x σ 2
y

∣∣∣∣∣ 1 ρxy

ρyx 1

∣∣∣∣∣
)

= 1

2
ln (σ 2

x σ 2
y ) − 1

2
ln (σ 2

x σ 2
y ) − 1

2
ln

∣∣∣∣∣ 1 ρxy

ρyx 1

∣∣∣∣∣
Therefore, T(x, y) can be obtained as

T(x, y) = −1

2
ln (1 − ρ2

xy)

The use of sample correlation coefficient rxy yields

T(x, y) = −1

2
ln (1 − r2

xy)

The correlation is represented by equation (13.10) and therefore, the analytical T-Model can
be expressed as

T(d) = −0.5 ln [1 − (e−d/λ)2]

One can investigate the sensitivity of the discrete transinformation (T) values to the factors
that influence its behavior. The factors include the size of generated data and the number of
class intervals. Different sizes of data can be used to compute the discrete T-values (200, 300,
400, and 500). The number of class intervals can be the same for all the different data sizes.
It can be shown that the larger the data size the less the difference between discrete T values
and analytically derived T values. This indicates that the discrete T-values are sensitive to the
size of the data available for analysis, as in the case of actual groundwater data where the data
is limited in time or is incomplete. In order to evaluate the importance of the class interval, for
a given data size, different class intervals can be analyzed. Normally, when the class interval
decreases the discrete T values come closer to the analytically derived T-values.

Usually, the correlation method is used to characterize the spatial variability (linear depen-
dency) of many types of data in different fields (e.g., Cressie, 1990). It is noted that the data is
correlated by distance, which means that the smaller the distance the higher the correlation.
The transinformation can also be used to represent the spatial variability of data. It can be
shown that there is a relation between transinformation and distance. The closely spaced wells
have a higher value for T than the ones that are further apart. The T values become essentially
constant as the distance increases. That may be because there is still mutual information that
can be transferred, even for a long distance. Thus, transinformation can be used to represent
the spatial dependency.

13.5 Total correlation

The total correlation can be used to quantify the amount of information shared by all
gages (or variables) at the same time and hence provides an alternative way of examining
multivariate dependency. It provides a direct and effective way of assessing such kind of
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repeated information and can be considered as a measure of general dependence, including
both linear and nonlinear relationship, among multiple variables. The total correlation for N

variables (X1, X2, . . . , XN) can be defined as (McGill, 1954; Watanabe, 1960) as

C(X1, X2, . . . , XN) =
N∑

i=1

H(Xi) − H(X1, X2 , . . . , XN) (13.37)

Equation (13.37) shows that the total correlation is always positive, because the sum of
marginal entropies of the N variables will be greater than their joint entropy. It is symmetric
with respect to its arguments. If these N variables as well as their combinations are independent,
then C will be zero. A large value of C may imply either a strong dependency amongst a few
variables or a relatively small dependency amongst all of them. If N = 2, equation (13.37) will
reduce to the usual transinformation T. equation (13.37) involves two components: marginal
entropies and joint entropy.

The total correlation can be computed without resorting to the computation of multivariate
entropy or multivariate probabilities. This can be accomplished by recalling the grouping
property of total correlation and accordingly a systematic grouping of bivariate entropies.
According to this property, if a new variable is formed by the union of two or more variables
such that the marginal entropy of a new variable is equal to the joint entropy of the two
forming variables, then the total correlation of the original variables is obtained by summing
the marginal entropies of the new variables (Kraskov et al., 2003). It is seen that if the number
of variables is two then transinformation becomes a special case of total correlation. Thus, total
correlation is a multivariate extension of bivariate transinformation. From equation (13.37),
the multivariate joint entropy can be expressed as

H(X1, X2, . . . , Xn) =
n∑

i=1

H(Xi) − C(X1, X2 , . . . , Xn) (13.38)

Although the total correlation concept has been widely used in medicine, neurology,
psychology, clustering, significant feature selection and genetics (Jakulin and Bratko, 2004;
Fass, 2006), there appears to have been limited application of total correlation in hydrology and
water resources. Krstanovic and Singh (2002a, b) used it for evaluating multivariate (N > 2)
dependence, where it has been assumed that the random variables follow normal or lognormal
distribution, which is not always the case for hydrologic variables, such as discharge, rainfall
intensity, and so on. Furthermore, in network design, most analyses about the dependence
of time series belonging to different potential hydrometric stations have been restricted up
to bivariate analysis in terms of transinformation or directional information transfer index
rather than multivariate analysis. A major reason is the difficulty of estimating multivariate
probability distributions and the limited availability of data. However, often there is a need
to evaluate the total amount of information/uncertainty duplicated by several stations under
consideration. Recently Alfonso (2010) used total correlation to evaluate the performance of
different optimal water level monitoring stations.

The total correlation can be computed directly using its grouping property. For
trivariate total correlation C(X1, X2, X3), the grouping property can be expressed as
C(X1, X2, X3) = C(X1, X2) + C(X1:2, X3) (Kraskov et al. 2005).

C(X1, X2, X3) = C(X1, X2) + C(X1:2, X3) (13.39)
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where X1:2 denotes the grouped variable formed by grouping X1 and X2. Using this property
sequentially, the multivariate total correlation can be computed recursively as:

C(X1, X2, X3, . . . , XN) = C(X1, X2, X3→N)

= C(X1, X2) + C(X1:2, X3→N)

= C(X1, X2) + C(X1:2, X3, X4→N)

= C(X1, X2) + C(X1:2, X3) + C(X1:3, X4→N)

. . . . . .

= C(X1, X2) + C(X1:2, X3) + C(X1:3, X4) + . . . C(X1:N−1, XN)

=
N−1∑
i=1

C(X1:i, Xi+1) (13.40)

Notation X1:i represents the merged variable of X1, X2, . . . , Xi. equation (13.40) shows that
the total correlation is finally factorized as a summation of bivariate total correlation which is
just the transinformation. In other words, the grouping property can reduce the dimension of
multivariate total correlation and thus the estimation of multivariate probability distribution
can be avoided.

13.6 Maximum information minimum redundancy (MIMR)

The foregoing discussion is extended to more than two dimensions without assuming any
specific distribution, which means computations are based on a nonparametric method based
on the available data only. This is based on the maximization of the amount of effective
information retained by the selected optimal gaging stations and minimization of the amount
of redundant information due to the dependence among the selected stations. Furthermore,
a mechanism which reflects the preference of different decision makers may be built in the
selection criterion by introducing two weights, effective information weight and redundancy
weight. Importantly, it is easy to extend the criterion to cover more design considerations,
such as cost and benefit of hydraulic information obtained from a network.

Let there be N potential candidate hydrometric stations located in the area of interest,
X1, X2, X3, . . . , XN ; for example, the area may be a watershed, river, canal, estuary, or pipeline.
It is assumed that for each candidate station there are some years of records about the hydro-
metric variable of interest denoted by X, such as discharge, rainfall amount, sediment discharge,
and a water quality constituent. Let S denote the set of hydrometric stations already selected for
the network and its elements are denoted by XS1

, XS2
, XS3

, . . . , XSk
, XS1

, XS2
, . . . , XSk

, where Si

can be 1, 2, . . . , k or only some of them. Similarly, let F denote the set of candidate stations to
be selected and similarly its elements are denoted by XF1

, XF2
, XF3

, . . . , XFm
, XF1

, XF2
, . . . , XFm

,
where Fi can be 1, 2, . . . , m or only some of them. The summation of k and m is equal to N,
the total number of potential candidate stations. The amount of effective information retained
by S can be modeled in terms of joint entropy and transinformation as

H(XS1
, XS2

, . . . , XSk
) +

m∑
i=1

T(XS1:Sk
; XFi

) (13.41)

where XS1:Sk
denotes the merged time series of XS1

, XS2
, XS3

, . . . , XSk
such that its marginal

entropy is the same as the multivariate joint entropy of XS1
, XS2

, XS3
, . . . , XSk

. In other words,
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the merged variable XS1:Sk
contains the same amount of information as that retained by all

of its individual members XS1
, XS2

, XS3
, . . . , XSk

. The same notation will be used to denote
merged variables, for example, XA:B denotes the merged variable of those variables whose
subscripts are A and B.

The effective information contains two parts. The first part is the joint entropy of the selected
stations, measuring the total but not duplicated amount of information which can be obtained
from the selected stations. The second part is the summation of transferred information from
the group of already selected stations to each individual station which is still in the candidate
set, respectively. To illustrate, consider T(XS1:Sk

, XFi
) which is the transinformation of XS1:Sk

and XFi and quantifies the common information shared by these two variables. When doing
network design, it should be kept in mind that the major function of a hydrometric network
is to monitor the hydrometric variables of interest and to make prediction. Therefore, the
predictive ability of the network should not be neglected in the design. T(XS1:Sk

, XFi
) is a

quantitative measure of the amount of information about the unselected station XFi
which

can be inferred from the selected stations. In other words, it is a measure of the predictive
ability of the selected stations.

Husain (1987) and Al-Zahrani and Husain (1998) considered the predictive ability of an
optimal network. However, the effective information equation (13.41) differs from the one
they used in two respects. The first is that the predictive ability is measured in equation
(13.41) considering the selected stations as a whole group containing the same amount of
information as that of all its elements rather than treating them separately. This predictive
ability measure can successfully filter the duplicated information (redundancy) of the selected
stations. Second, the multivariate joint entropy is used to quantify the total information
rather than using the summation of marginal entropies in which the duplicated information
is summed again and again.

The effective information can also be expressed as

H(XS1
, XS2

, . . . , XSk
) + T(XS1:Sk

; XF1:Fm
) (13.42)

It contains two parts: total effective information part and predictive ability part. In this
definition the unselected stations are also treated as a whole group. Transinformation
T(XS1:Sk

, XF1:Fm
) is the amount of information about the unselected group that can be inferred

from the selected group.
Another key point worthy of consideration in network design is the redundant information

among selected stations. Such redundancy means the selected stations are not fully and
effectively used, since a lot of information obtained from the network may be overlapping.
In other words, some of the stations are not necessary and therefore the network is not an
economical one. Even worse, the redundancy may deteriorate the predictive ability of the
network even though the same amount of information can be obtained from a redundant
network as that obtained from a minimum redundant one considering that no redundancy is
impossible in real practice.

The total correlation of the selected stations can measure the redundancy among them, that
is, C(XS1

, XS2
, . . . , XSk

). The total correlation of already selected stations measures the common
information shared by any combination of these stations unlike the interaction which only
measures the information shared by all of these stations. Interaction information is sensitive
to the newly added stations; in other words, it may change significantly from positive to
negative or from a large value to a small value, if a new station is added to the network. To
understand it, there may be a large amount of duplicated information between two stations;
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however, when adding a new station, these three stations may have no simultaneous common
information. In this sense the total correlation is a more reliable measure of redundancy than
interaction information.

13.6.1 Optimization
An informative hydrometric network should provide as much information as possible and
at the same time constrain the redundant information as much as possible. This kind of
maximum information and minimum redundancy network can be determined as:


max : H(XS1

, XS2
, . . . XSk

) +
m∑

i=1
T(XS1:Sk

; XFi
)

min : C(XS1
, XS2

, . . . , XSk
)

(13.43a)

or


max : H(XS1
, XS2

, . . . XSk
) +

m∑
i=1

T(XS1:Sk
; XFi :Fm

)

min : C(XS1
, XS2

, . . . , XSk
)

(13.43b)

This constitutes a multi-objective optimization problem which can be reduced to a single
objective optimization problem by recalling that both the effective information part and the
redundancy part have the same unit. The two objectives can therefore be unified as

Max : w1[H(XS1
, XS2

, . . . , XSk
) +

m∑
i=1

T(XS1:Sk
; XFi

)] − w2C(XS1
, XS2

, . . . , XSk
) (13.44a)

Max : λ1[H(XS1
, XS2

, . . . , XSk
) +

m∑
i=1

T(XS1:Sk
; XFi

)] − λ2C(XS1
, XS2

, . . . , XSk
)

or

Max : w1[H(XS1
, XS2

, . . . , XSk
) + T(XS1:Sk

; XF1:Fm
)] − w2C(XS1

, XS2
, . . . , XSk

) (13.44b)

where w1 and w2, whose summation is 1, are the information weight and redundancy
weight, respectively, since sometimes the decision maker needs a trade-off between the
informativeness and redundancy of the hydrometric network.

One can unify the information and redundancy objectives as

max :

H(XS1
, XS2

, . . . , XSk
) +

m∑
i=11

T(XS1:Sk
; XFi

)

wC(XS1
, XS2

, . . . , XSk
)

(13.45a)

or

max :
H(XS1

, XS2
, . . . , XSk

) + T(XS1:Sk
; XXF1:Fm

)

wC(XS1
, XS2

, . . . , XSk
)

(13.45b)

where w is the coefficient that makes a trade-off between information ability and redundancy
of the network. Any of the two methods unifying information and redundancy objectives can
be adopted in the hydrometric network design.
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13.6.2 Selection procedure
Using the MIMR criterion, the selection procedure for a hydrometric network design entails
the following steps:
1 Collect the hydrometric data for variable(s) of interest, for example, hourly, daily, weekly,

or monthly water levels for each of the potential candidate stations. Then, discretize the
continuous time series in such a way that each of the records is labeled by 1, 2, 3, . . . , b,
where b is the number of bins used in the histogram. Therefore, the continuous time series
will become a discrete time series.
2 Calculate marginal entropies for all candidate stations.
3 Identify the station having the maximum marginal entropy, and designate it as the central

station.
4 Update the S set in which stations already selected are saved and the F set in which all

unselected candidate stations are saved.
5 Select the next station from the F set by the MIMR criterion. In this step scan all

the unselected stations and locate the station which can maximize the unified objective
function [equation (13.44a) or equation (13.44b)]. In order to compare, the multivariate
joint entropy H(XS1, XS2, . . . , XSk), the mutual information between one grouped variable or
station to another single variable or station T(XS1:Sk

, XFi
) or between two grouped variables

T(XS1:Sk
, XF1:Fm

), and the total correlation C(XS1, XS2, . . . , XSk) should be computed. It may be
noted that all of these terms involve multiple variables as soon as the second important station
is selected.
6 Repeat steps 4 and 5 recursively until the expected number of stations has been selected.
The convergence of the selection can be determined by the ratio of joint entropy of selected
stations to that of all potential candidate stations. If the ratio is over a threshold, such as
0.95, or the ratio will not change significantly which means no additional station still in the
candidate set can provide significant amount of new information. These steps show that if no
convergence threshold is provided then all the potential candidate stations will be ranked in
descending order. This may be helpful when determining the station with the least importance
or area or stations with the least degree of importance. These steps illustrate a forward selection
procedure.

A hydrometric network can also be optimized in a backward manner, in which the criterion
should be changed to minimum reduced information and maximum reduced redundancy.
This criterion is also based on the principle of MIMR. The reduced information and redundancy
can be quantified by the difference between joint entropies, total correlations of stations before
and after one station is deleted, respectively. At the same time it should guarantee that the
information of the station to be deleted can be inferred from the left-out station set as much
as possible. A pseudo-code displaying the forward MIMR selection procedure is presented in
Table 13.5. This algorithm is designed for ranking all the potential candidate stations such
that it can provide the decision maker as much information as possible. That is why the
convergence judgment appears outside of the selection loop.

In the selection procedure, one may use the simple histogram method to estimate the
probability distribution of the hydrometric variable of interest. One can also use more
sophisticated methods for probability density estimation, such as kernel density estimation,
cross-entropy density estimation, and so on. However, the histogram method is sufficient if
a proper bin width or number of bins is used (Scott, 1979). Minimizing the integrated mean
square error (IMSE), Scott(1979) proposed an asymptotical optimal choice for bin width hopt as

hopt =
(

6∫
[df (x)/dx]2dx

) 1
3

n
1
3 (13.46)
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Table 13.5 Selection procedure.

1: F ← potential hydrometric station set

S ← empty set

Initialize candidate set F and empty set S

2: optBins ← equation (13.48) Determine the optimal bin number

3: Discretize the continuous time series and re-label them

by 1, 2, . . . optBins

4: Totallnfor ← H(F) Compute the total information of all the

potential stations

5: For i = 1 : N

H(xi ) ← equation(13.1)

End

Compute the marginal entropy of each potential

station

6: s1 ← arg maxi H(xi ) Select the first center station

7: F ← F−s1

S ← S+s1

Update F and S for the first time

8: For i = 2 : N

m ← length(F)

n ← length(S)

For k = 1 : m

infors+sk
← First part of equation (13.43a)

reduns+sk
← Second part of equation (13.43a)

MIMRs+sk
← equation (13.44a) or (13.44b)

End

sk ← arg maxsk
MIMRs+sk

F ← F−sk

S ← S+sk

End

Sequentially select station from the undated

candidate set according to MIMR criterion

Update the candidate set and already selected

set successively

9: For i = 1 : N

partialTotalInfor ← H(S1:i )

pct ← partialTotalInfor/TotalInfor

If |pct − Threshold| < eps

Sfinal ← S1:i

return

End

End

Determine the final optimal station set Sfinal

according to the information fraction of the

selected set to the total information

where f (x) is the true underlying density and n is the random sample size. In practice the
true density is unknown. Tukey (1977) suggested using the Gaussian density as a reference
standard. Substituting the Gaussian density function in the asymptotical optimal bin width
equation (13.46), one can have

hopt = 2

(
1

3

)1/3

π1/6σn−1/3 (13.47)

where σ is the standard deviation of X. Replacing the underlying true variance σ 2 by in
hopt = 2 1

3
1/3

π1/6σn−1/3 the sampling variance s2, Scott’s data-based choice for the optimal bin
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width can be expressed as

h∗
opt = 3.49sn−1/3 (13.48)

Scott (1979) used this equation to estimate the probability density for several heavy-tailed
non-Gaussian distributions and concluded that it produced satisfactory results. Compared
to a kernel estimator, the histogram method, due to its slower convergence speed to the
underlying density, is less sensitive to the choice of the smoothing parameter, such as the
kernel band width and the bin width.

Given a continuous time series, one can compute the optimal bin width, the number of bins
and the endpoints for each discretization interval. For example, if the optimal number of bins
is b, then the empirical i/b quantiles can be computed, where i = 0, 1, 2, . . . , b. These different
i/b quantiles qi/b are just the thresholds used to re-label the continuous time series following
the procedure that all the records of the time series falling in the interval [qk−1, qk/b], where
k = 1, 2, . . . , b, will be labeled as k and this is repeated for each interval.

For the computation of other high dimensional information quantities, the key is to merge
two discrete random samples into a single one such that the marginal entropy of the merged
sample is equal to the joint entropy of the two original samples. In other words, the amount
of information will be invariant before and after agglomeration. Two discrete or categorical
random samples X1 and X2 can be merged in such a way placing a unique value for every
combination of the corresponding records in X1 and X2 (Kraskov, 2003, Alfonso et al. 2010).
For instance, if X1 = [1 2 1 2 1 3 3] and X2 = [1 2 2 2 1 3 2], then one of the options to merge
X1 and X2 is by putting all the corresponding digits of X1 and X2 together, that is, [11 22 12
22 11 33 32]. [11 22 12 22 11 33 32]. However, this option has a serious defect in that it will
cause the problem of ‘‘out of memory’’ as the number of merged samples increases especially
when dealing with large samples. Alfonso (2010) suggested an alternative which can also
accomplish the same purpose.

First, a new sample is created following the previously described method. Then, pick out
the unique values and rank them in ascending order to obtain a new sample called as unique
ranked sequence sample, that is, [11 12 22 32 33]. Denoting the length of this new sample as
l, access the location index for each element of the previously merged sample in the unique
ranked sequence sample. Finally, a new digit is assigned to replace each of the original merged
elements by subtracting its location index from l and then adding 1. Figure 13.2 illustrates
the entire agglomeration method. From this figure it is seen that two steps are involved.
The first step is to weld the corresponding records directly. The second step is to re-label
them according to their categories or classes. Results of computation in Figure 13.2 show
that this agglomeration method keeps the amount of information retained by the composite
samples invariant. However, this conclusion will not hold for continuous random samples.
That is why the histogram method is used to estimate the probability distribution of the
hydrometeorological variable of interest. This data agglomeration method can also be used for
more than two random samples. Further it is symmetric with respect to its composites, which
means one can merge several samples in any sequence one wants.

Using the variable agglomeration method, the joint entropy H(XS1, XS2, . . . , XSk), transinfor-
mation between a grouped variable and a single variable T(XS1:Sk

, XFi
), and the transinforma-

tion between two grouped variables T(XS1:Sk
, XF1:Fm

) can be computed. This requires merging
multiple variables sequentially to form a new variable without changing the information
retained by them first; thus, all computations can be reduced to a univariate or bivariate case.
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H(X1:X2) = − ∑ pX1:X2(X1:X2)log2
pX1:X2(x1,x2)

x1: x2

= 2.2359

= 2.2359
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Figure 13.2 Schematic illustration for agglomeration of discrete samples.

Example 13.3: Considering three random samples, X1 = [1, 2, 1, 2, 1, 3, 3], X2 = [1, 2, 2,
2, 1, 3, 2] and X3 = [1, 1, 2, 2, 1, 3, 3], apply the variable merging approach. Compute entropy
and show that it satisfies the law of association and communication, that is, the information
retained by these samples keeps invariant before and after merging.

Solution: The step by step merging procedure is discussed as follows: Following these steps,
the three random samples can be merged sequentially.

Step 1: Let us first merge X1 and X2 together. Create a new sample X from X1 and X2 by
direct welding approach:

X = [1 2 1 2 1 3 3] ⊕ [1 2 2 2 1 3 2]

= [11 22 12 22 11 33 32]

Step 2: Pick out the unique values in X and rank them in ascending order that results
in a ranked sample Xr. To do this, first we pick out unique values in X. The result is
[11 22 12 33 32]. Then we rank this sample in ascending order and obtain the
ranked sample Xr = [11 12 22 32 33].

Step 3: Access the location index of each element of X in the ranked sample Xr. For
convenience and illustrative purposes, we restate the direct welding sample and the
ranked sample:

X = [11 22 12 22 11 33 32]

Xr = [11 12 22 32 33]
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The location index for the first element of X in Xr is 1. Similarly, the location index for
the second element of X in Xr is 3. Following the same way, we have

X(1) @ Xr = 1

X(2) @ Xr = 3

X(3) @ Xr = 2

X(4) @ Xr = 3

X(5) @ Xr = 1

X(6) @ Xr = 5

X(7) @ Xr = 4

Step 4: Assign each element of X a new label as its location index obtained in step 3.
According to the step by step merging procedure, the new merging sample is:

< X1, X2 > = [1 3 2 3 1 5 4]

Now in order to verify if the information content is invariant before and after merging, the
joint entropy of X1 and X2 is first computed. To do that, the joint contingency table needs to
be constructed first. The joint contingency tables for frequency and relative frequency are

X1

X2

1

2
0

2 3

1
2
3 0

1
2
1

0
0
1

X1

X2

1

2/7
0

2 3

1
2
3 0

1/7
2/7
1/7

0
0

1/7

Then the joint entropy is computed as

H(X1, X2) = −2

7
log2

(
2

7

)
− 1

7
log2

(
1

7

)
− 2

7
log2

(
2

7

)
− 1

7
log2

(
1

7

)
− 1

7
log2

(
1

7

)
= 2.2359 bits

Now for computing the marginal entropy of the merged variable < X1, X2 > , the frequency
and relative frequency tables of this variable are noted:

<X1, X2>

1 2 3 4 5
2 1 2 1 1
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1 2 3 4 5
2/7 1/7 2/7 1/7 1/7

<X1, X2>

The marginal entropy of X is computed as

H(< X1, X2 >) = −2

7
log2

(
2

7

)
− 1

7
log2

(
1

7

)
− 2

7
log2

(
2

7

)
− 1

7
log2

(
1

7

)
− 1

7
log2

(
1

7

)
= 2.2359 bits

It is now apparent that before and after merging the information content keeps invariant.
Now the new variable < X1, X2 > and X3 together are merged. Following the step by step

procedure, < X1, X2 > and X3 are first directly welded element by element as

X ′ = [1 3 2 3 1 5 4] ⊕ [1 1 2 2 1 3 3]

= [11 31 22 32 11 53 43]

Then the unique values of X ′ are picked out and they are sorted in ascending order in order to
obtain the ranked sample as X ′

r = [11 22 31 32 43 53]. Then is accessed the location
index for each element of the direct welding sample X ′ in the ranked sample X ′

r as

X ′(1) @ X ′
r = 1

X ′(2) @ X ′
r = 3

X ′(3) @ X ′
r = 2

X ′(4) @ X ′
r = 4

X ′(5) @ X ′
r = 1

X ′(6) @ X ′
r = 6

X ′(7) @ X ′
r = 5

Finally, the new merged sample is obtained as

<< X1, X2 >, X3 >= [1 3 2 4 1 6 5]

Following what has been done above, it can also be verified that the information retained
by < X1, X2 > and X3 is equal to that retained by << X1, X2 >, X3 > . It can also be verified
that the joint entropy of the original three samples is equal to the marginal entropy of the
merged sample. This same way can be applied to sequentially merge any number of samples
together. Therefore, the estimation of multivariate probability distribution estimation can be
successfully bypassed. The total correlation can also be computed by the aid of its grouping
property and variable merging method.

Example 13.4: Now consider an example explaining how to merge discrete (or categorical)
variables step by step. Consider continuous stream flow observations. For the convenience of
clear exposition, here a very small data set is used, as shown in Table 13.6. The selected data
are monthly stream flow observations in the year of 2009 for three gages located along the
upper main stem of the Brazos River. Address the following: 1) how to discretize a continuous
time series, 2) how to merge discrete variables, 3) important properties of variable merging
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Table 13.6 Observations of monthly stream flow in 2009 at three gages located along the main stem of the Brazos

River.

Gage∗ Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec.

ST01 59.2 123.2 114.2 127.9 121.1 113.9 162.7 237.8 110.6 91.1 104.7 54.9
ST02 56.7 140.7 99.0 113.8 121.1 113.8 162.0 242.3 122.6 147.1 126.0 63.8
ST03 57.0 131.5 133.5 131.2 151.9 121.4 205.6 327.6 311 395.4 251.7 93.5

∗ST01: USGS 08088610, ST02: USGS 08089000, ST03: USGS 08090800
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Figure 13.3 Histogram based partition of the continuous stream flow observations for the selected stations (The

blue rugs indicate the number of observations falling in each interval and the red integers are the interval labels).

operator, 4) how to compute high dimensional joint entropy, and 5) total correlation via
variable merging.

Solution: First, the continuous time series is discretized. The simplest and most commonly
used method is the one of histogram partition. The continuous time series can be discretized
(or labeled) as follows. First, determine the number of bins, assumed as bins. Then, compute
the empirical quantiles q(i/bins), where i = 0, 1, 2, . . . , bins. These empirical quantiles are the
thresholds to label the continuous time series data. Finally, all data falling in the interval
[q((k − 1)/bins), q(k/bins)], where k = 1, 2, . . . , bins., are labeled as k. After discretization, a
continuous random sample becomes as a discrete (or categorical) one. Figure 13.3 illustrates
the histogram based partition of stream flow observations tabulated in Table 13.6. The resulting
discrete (or categorical) samples for each station are listed in Table 13.7.

Taking ST01 as an example, we explain how to obtain Table 13.7 from Table 13.6.
Divide the whole range of the stream flow observations into four intervals, that is,
[50, 100), [100, 150), [150, 200), [200, 250). At station ST01, the monthly stream flow obser-
vation in January is 59.2 m3/s, falling in the first interval. Therefore, it is labeled as 1. The
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Table 13.7 Discretized observations of monthly stream flow in 2009 at three gages located along the main stem of

the Brazos River.

Gage∗ Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec.

ST01 1 2 2 2 2 2 3 4 2 1 2 1
ST02 1 2 1 2 2 2 3 4 2 2 2 1
ST03 1 2 2 2 2 2 3 4 4 4 3 1

∗ST01: USGS 08088610, ST02: USGS 08089000, ST03: USGS 08090800

observation in February is 123.2 m3/s, falling in the second interval and is therefore labeled
as 2. Following this way, the stream flow observations can be discretized. In some cases, it is
possible to work with data which have been discretized or they are categorical variables. In
this case, the data discretization procedure is not necessary.

Now the basic idea for variable merging lies in creating a new variable X such that the
information retained by it is equal to that retained by the original variables, say X1, X2, . . . , Xn.
The simplest way of discrete variable merging is directly welding the corresponding digits
together. Using < • > to denote the variable merging operator, the merged variable of ST01
and ST02 can be calculated as:

<ST01,ST02>=

< · >

=

ST01

11 22 21 22 

1 2 2 2 2 2 3 4 2 1 2 11

ST02 1 2 1 2 2 2 3 4 2 2 2 1

22 22 33 44 22 12 22 11

One problem is, however, associated with the above direct welding approach. Assume there
are 10 variables (or stations) and assume the first entry in the discretized observation table is
the same value of 1 for each variable, then direct welding would yield 1111111111, which
is a very huge value. The similar thing may happen to other entries. These effects, acting
together, may cause ‘‘out of memory.’’ To avoid this problem, after direct welding we re-label
the results. For example, the merged ST01 and ST02 can be re-labeled as

<ST01,ST02>=

=

1 4 3 4 4 4 5 6 4 2 4 1

11 22 21 22 22 33 44 22 12 22 1122

Actually the re-labeling procedure can be done in many different ways. Here a simple
approach is employed. In the following, we describe the re-label procedure. First, look into
the direct welding sample for the two stations:

11 22 21 22 22 22 33 44 22 12 22 11
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Then pick out the unique values:

11 22 21 33 44 12

Then arrange the unique values in ascending order:

11 12 21 22 33 44

Then use the location index of the sorted unique value sample to re-label the direct welding
sample. For example, the location index of 11 in the sorted sample is 1 then all elements in
the direct welding sample are re-labeled as 1, as will be the case for the first and last elements
in the direct welding sample above. Similarly, integer 12 locates at the second place of the
sorted sample then all elements in the direct welding sample will be labeled as 2.

Now we want to merge <ST01, ST02> and ST03 together. In the following, the above
explained discrete variable merging procedure is displayed step by step.

Step 1: Direct welding

41 42 32 42 

4 5 6 4 2 4 1

2 3 4 4 4 3 1

ST03:

<ST01, ST02>:

<<ST01, ST02>, ST03>=

1 4 3 4 41

1 2 2 2 21

42 42 53 64 44 24 43 11

Step 2: Pick up the unique values in the merged sample
Unique values in the direct merging sample << ST01, ST02 >, ST03 > are:

41 42 32 53 64 44 24 43 11

Step 3: Sort the unique values in ascending order
The sorted unique value sample is

11 24 32 41 42 43 44 53 64

Step 4: Re-label the direct welding sample
The location indices for the elements of the direct welding sample in the sorted unique
value sample are used to re-label the direct welding sample elements. For example,
the first and second elements in the direct welding sample are 41 and 42, respectively,
whose location indices are 4 and 5, respectively. Therefore, the first and second elements
are re-labeled as 4 and 5, respectively. Repeating the same procedure for all the other
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elements, the direct welding sample can be re-labeled by small integers. The final result
<< ST01, ST02 >, ST03 > is

4 5 3 5 5 5 8 9 7 2 6 1

It is easy to verify that the information content keeps invariant before and after merging. In
the following we verify this statement. The joint contingency tables can be constructed using
the data in Table 13.7:

ST02

ST01

[50, 100) 2 1 0 0
1 6 0 0
0 0 1 0
0 0 0 1

[50, 100)

[100, 150)

[100, 150) [150, 200) [200, 250)

[150, 200)
[200, 250)

Then the relative frequency table is obtained by dividing each element in the contingency
table by the summation of its elements:

ST02

ST01

[50,100) 0.167 0.083 0 0
0.083 0.5 0 0

0 0 0.083 0
0 0 0 0.083

[50, 100)

[100,150)

[100, 150) [150, 200) [200, 250)

[150, 200)
[200, 250)

Now the joint entropy, H(ST01, ST02) is calculated as

H(ST01, ST02) = −
4∑

i=1

4∑
j=1

pij ln(pij) = −0.167 ln(0.167) − 0.083 ln(0.083)

− 0.083 ln(0.083) − 0.5 ln(0.5) − 0.083 ln(0.083) − 0.083 ln(0.083)

= 1.4735 nats

On the other hand, the merged variable of ST01 and ST02 is

1 4 3 4 4 4 5 6 4 2 4 1

From this the one-dimensional contingency table is constructed as

Label 1
2

Label 2
1

Label 3
1

Label 4
6

Label 5
1

Label 6
1

<ST01,ST02>

and the relative frequency table is
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Label 1
0.167

Label 2
0.083

Label 3
0.083

Label 4
5

Label 5
0.083

Label 6
0.083

<ST01, ST02>

Using the definition of marginal entropy, H(<ST01, ST02>) can be computed as

H(<ST01, ST02>) = −
6∑

i=1

pi ln(pi) = −0.167 ln(0.167) − 0.083 ln(0.083)

− 0.083 ln(0.083) − 0.5 ln(0.5) − 0.083 ln(0.083) − 0.083 ln(0.083)

= 1.4735 nats

Obviously, before and after merging the information content is invariant.
Now important properties of variable merging are briefly examined. The variable merging

approach satisfies the law of association and commutation in terms of information content.
Considering the merging of three variables as an example, the following equalities are satisfied
according to the law of association and commutation:

H(< ST01, ST02, ST03 >) = H(<< ST01, ST02 >, ST03 >)

= H(< ST01, < ST02, ST03 >>)

= H(<< ST01, ST03 >, ST02 >)

The above equalities can be easily verified using selected data set:

H(<< ST01, ST02 >, ST03 >) = H([1, 6, 3, 6, 6, 6, 7, 8, 4, 2, 5, 1]) = 1.9073 nats

H(< ST01, < ST02, ST03 >>) = H([1, 3, 2, 3, 3, 3, 7, 8, 5, 6, 4, 1]) = 1.9073 nats

H(<< ST01, ST03 >, ST02 >) = H([1, 3, 4, 3, 3, 3, 7, 8, 6, 2, 5, 1]) = 1.9073 nats

Now high dimensional entropy terms are computed. The multivariate joint entropy,
H(X1, X2, . . . , Xn), can be computed by sequentially applying the variable merging approach,
that is,

H(X1, X2, . . . , Xn) = H(< X1, X2 >, X3, . . . , Xn)

= H(<< X1, X2 >, X3 >, . . . , Xn)

= H(< . . . << X1, X2 >, X3 >, . . . Xn−1 >, Xn)

. . . . . .

= H(< . . . < . . . << X1, X2 >, X3 >, . . . , Xn−1 >, Xn >)

Since variable merging operator satisfies the law of association and commutation in terms of
information content, one can neglect the merging sequence.

For the computation of total correlation, two different ways are available. One is the shortcut
formula:

C(X1, X2, . . . , Xn) =
n∑

i=1

H(Xi) − H(X1, X2, . . . , Xn)

First the joint entropy and marginal entropies are computed. Then, the above equation is
directly applied to calculate the total correlation.
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Another one is to exploit the grouping property [Kraskov et al., 2005] and variable merging
as shown in the following:

C(X1, X2, . . . , Xn) = C(X1, X2) + C(< X1, X2 >, X3, X4, . . . , Xn)

= C(X1, X2) + C(< X1, X2 >, X3) + C(< X1, X2, X3 >, X4, X5, . . . , Xn)

. . . . . .

= C(X1, X2) + C(< X1, X2 >, X3) + C(< X1, X2, X3 >, X4)

+ . . . + C(< X1, X2, . . . , Xn−1 >, Xn)

Since total correlation at the bivariate level reduces to transinformation, the above equation
indicates that n-dimensional total correlation is finally factorized as a summation of traditional
transinformation values.

Questions

Q.13.1 Take monthly discharge data for several gaging stations along a river. Compute
marginal entropy of monthly discharge at each gaging station and plot it as function
of distance between gaging stations. What do you conclude from this plot? Discuss it.

Q.13.2 For the discharge data in Q.13.1, compute transinformation of monthly discharge.
Are all gaging stations needed? What is the redundant information? What can be
said about increasing or decreasing the number of gaging stations?

Q.13.3 For the gaging stations in Q.13.1, take daily discharge data and compute transinfor-
mation of daily discharge. Are all stations needed?

Q.13.4 For the gaging stations in Q.13.1, take weekly discharge data and compute transin-
formation of weekly discharge. Are all stations needed?

Q.13.5 For the gaging stations in Q.13.1, take three-month discharge data and compute
transinformation of three-month discharge. Are all stations needed?

Q.13.6 For the gaging stations in Q.13.1, take yearly discharge data and compute transin-
formation of yearly discharge. Are all stations needed?

Q.13.7 Plot transinformation of two gages against different time periods, such as day, week,
month, three-month, and year. Do this for several pairs of stations? What does the
plot tell?

Q.13.8 Plot the number of gages obtained in Q.13.1–13.6 against the time period. What
does the plot tell?

Q.13.9 Consider a drainage basin which has a number of rainfall measuring stations. Obtain
annual rainfall values for each gaging station. Using annual rainfall values, determine
marginal entropy at each station and also compute transinformation amongst stations.
Comment on the adequacy of the rain gage network.

Q.13.10 Consider the same basin and the rain gage network as in Q.13.9. Now obtain monthly
rainfall values and compute marginal entropy as well transinformation. Comment
on the adequacy of the rain gage network. How does the adequacy change with
reduced time interval. Which stations are necessary and which are not?

Q.13.11 For the gaging stations in Q.13.10, take daily rainfall data and compute transinfor-
mation of daily rainfall. Are all stations needed?
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Q.13.12 For the gaging stations in Q.13.10, take weekly rainfall data and compute transin-
formation of weekly rainfall. Are all stations needed?

Q.13.13 For the gaging stations in Q.13.10, take three-month rainfall data and compute
transinformation of three-month rainfall. Are all stations needed?

Q.13.14 For the gaging stations in Q.13.10, take yearly rainfall data and compute transinfor-
mation of yearly rainfall. Are all stations needed?

Q.13.15 Plot transinformation of two gages against different time periods, such as day, week,
month, three-month, and year. Do this for several pairs of stations? What does the
plot tell?

Q.13.16 Plot the number of rain gages obtained in Q.13.10–13.15 against the time period.
What does the lot tell?

Q.13.17 Can entropy be employed for designing a monitoring network? If yes, then how?
Can entropy be employed for evaluating the adequacy of an existing network? If yes,
how?
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14 Selection of Variables
and Models

When investigating a water resources or environmental system experimentally or otherwise,
the question arises: Which variables should be selected for measurement or in modeling?
For example, for conducting experiments on river morphology, variables of flow (depth and
velocity), geometry (cross-section, wetted perimeter and width), slope, sediment size, meander
length, sinuosity, bed forms, and erosion and deposition should be measured. Other variables
can be derived from measurements of these variables. On the other hand, there can be a
situation where measurements on a lot of variables are available. The question then arises:
Which variables are relevant and should be selected to describe the system? For assessing
the hazard potential of debris flow, variables pertaining to different aspects of hydrology,
topography, and geology are incorporated in a geographic information system (Lin et al.,
2002; Rupert et al., 2003; Chen et al., 2007). It is quite possible that different investigators
employ different observed variables, even if there is some consensus on debris flow assessment.
The question arises: Which variables are most important and should be employed in debris
flow assessment?

Another situation frequently encountered is one of selecting a model from amongst different
models. For example, there is a multitude of models for the assessment of suspended sediment
load and bed load of a river. Which model should one select for a particular river or how
can different models be ranked? The same applies to models of flow routing, erosion around
bridge piers, hydraulic geometry, velocity distribution, and so on. This chapter discusses the
principle of minimum entropy for variable or model selection (Tseng, 2006).

14.1 Methods for selection

There exist several methods for model or variable selection, such as P-values, Bayesian, and
Kullback-Leibler distance method. The P-values method (Raftery et al., 1997) is restricted
to two models. For selecting a model it compares the probability of the model, given a null
model and experimental data sets, to a threshold value determined from the same data sets.
Determination of the threshold value is somewhat ad hoc.

The Bayesian method utilizes the Bayes theorem, generates prior distributions based on
some prior modeling rules and updates beliefs and uncertainty about models. Then the Bayes
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factor, defined by the ratio of posterior distributions of different models, is computed for
choosing a model. This is also referred to as the Bayesian Information Criterion (BIC) and
is one of the most popular selection criteria (Forbes and Peyrard, 2003; Weiss, 1995). The
drawback, however, is that it requires prior information to be generated somewhat ad hoc.

14.2 Kullback-Leibler (KL) distance

The Kullback-Leibler (KL) distance, relative entropy or cross-entropy, has also been employed
for model selection (Bollander and Weigend, 1994; Dupuis and Robert, 2003). The KL distance
measures the distance between a model and a reference prior for a system of interest. The
models are ranked based on the KL distance. A model having the largest value of distance
is preferred. Dupuis and Robert (2003) employed the KL distance for variable selection
where the distance between the full model corresponding to the complete set of variables
and sub-models or approximations corresponding to subsets of variables was evaluated. The
information on the full model is given a priori. A sub-model whose KL distance reaches a
threshold is preferred.

Let there be M models given by probability distributions Pm = {pm
j }, m = 1, 2, . . . , M where

m denotes the m-th model. Let there be a reference distribution Q = {qj} of a model P = {pj}
Then, a preference measure can be constructed using the scalar relative or cross-entropy as

H(Pm|Q) =
∑

j

pm
j ln

[
pm

j

qj

]
(14.1)

H(Pm|Q), given by equation (14.1), measures the difference between model pm and the
reference distribution Q (Tseng, 2006). A small value of H(Pm|Q) would imply a small
difference between pm and Q.

Consider, for a moment, that the reference distribution is the true or real distribution of
the system Qreal. Then a model pm yielding the minimum H(Pm|Q) will be the most preferred
distribution. However, in real world Qreal is not known. Therefore, Tseng (2006) proposed
the use of a uniform distribution function Quni, computing H(Pm|Quni) for each model, and
then ranking all candidate models. It may now be noted that a model pm with a minimum
H(Pm|Quni) provides minimum information about the system. This is because the uniform
distribution is the most uncertain distribution carrying little useful information and hence the
minimum H(Pm|Quni) would suggest that the two distributions are identical.

On the other hand, pm is other than a uniform distribution, meaning it is codified with some
information and would lead to a larger H(Pm|Quni). Arranging the values of H(Pm|Quni) in
descending order would indicate the preference of models. The model pm that is farther away
from Quni carries more relevant information about the system and a larger relative entropy is
more preferable.

14.3 Variable selection

Consider a regression model P(X) containing N variables, X1, X2, . . . , XN , that describes the
behavior of a system. These variables may be determined by experimentation and may be
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correlated with each other and may or may not be the crucial characteristics of the system.
One may model the system with various combinations of these variables. The question then
arises: Which combination of the variables best describes the system or which variables are
more important? This question was addressed by Tseng (2006).

For a set of N variables, X = {X1, X2, . . . , XN}, there will be (2N − 2) combinations or
subsets of variables, Xsi

∈ X. Each subset of variables Xsi
leads to a sub-model with Ps(Xsi

).
Then equation (14.1) can be recast as

H(Ps|Quni) =
∑

Ps(Xsi
) ln

[Ps(Xsi
)

Quni

]

= −H(Ps) + ln Quni (14.2)

where sub-model Ps(Xsi
) contains ni variables, and

H(Ps) = −
∑

Xsi ∈X

Ps(Xsi
) ln Ps(Xsi

) (14.3)

Quantity ln Quni is constant. Models or sub-models can be ranked in the decreasing order of
H(Pm|Quni) which is identical to the decreasing order of H(Ps). Then, variables can be selected
in accordance with the preference of sub-models. It may be noted that the maximum entropy
(ME) method can correctly rank variables so long as they can be codified in a sub-model.

14.4 Transitivity

Consider three models 1, 2, and 3, with distributions P1, P2, and P3, respectively. If model P1

is preferred to P2 and model P2 is preferred to model P3, then P1 is preferred to P3. This is
referred to as transitivity property. To each distribution, entropy H(P) can be assigned. If P1

is preferred to P2, then H(P1) < H(P2). The functional form of H(P) can be determined using
POME. Increasing relative entropy H(Pm|Quni) indicates increasing preference of models.

14.5 Logit model

Consider N variables X = {X1, X2, . . . , XN} to which the logistic regression (in short logit)
model (Johnson and Albert, 1999; Dupuis and Robert, 2003) can be applied. This model is a
statistical model that predicts the probability of occurrence. Examples include the probability of
flooding after a heavy rainfall or the probability of wildfire occurring during a drought. Rupert
et al. (2008) have applied the logistic regression to predict the probability of debris flows in
areas burned by wildfires in California. Similar to multiple linear regression, logistic regression
also determines relations between one dependent variable and several independent variables,
but there is one important difference. The logistic regression determines the probability of a
positive binomial outcome, for example, flood did or did not occur after a rainfall or a wildfire
did or did not occur during a drought or beach erosion did or did not occur during a hurricane
or debris flow did or did not occur after a heavy storm or landslide did or did not occur after a
snowstorm. The multiple linear regression determines the dependent variable continuously.
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The logit model can be expressed as

y(x) =
exp

(
N∑

i=1
aixi

)

1 + exp

(
N∑

i=1
aixi

) (14.4)

which relates Y(y is a specific value), the system response or dependent variable to independent
variables or covariates Xi(xi is a specific value); i = 1, 2, . . . , N; x is specific value of X; and
ai are constants. Let a normalizing constant be defined as

Z =
∑

X

exp

(
N∑

i=1
aixi

)

1 + exp

(
N∑

i=1
aixi

) (14.5)

Now the probability distribution of the system response or output of a given subset of the
variables X = {Xi, i = 1, 2, . . . , N} is defined as

P(X) = y(X)

Z
= 1

Z

exp

(
N∑

i=1
aixi

)

1 + exp

(
N∑

i=1
aixi

) (14.6)

Using equation (14.6) the entropy of P(Xsi
) related to the subset of variables can be computed,

which then gives the rank of the sub-model. Constants ai can be determined by fitting
the logit model to experimental measurements by the method of maximum likelihood
estimation (Johnson and Albert, 1999) or any other method, such as the least square method.
Equation (14.6) determines the predictive success of the logit model (Kleinbaum, 1994;
Hosmer and Lemeshow, 2000). For each independent variable, a p-value can be computed
that reflects the statistical significance of that variable for the overall logit model. For example,
a p-value of 0.1 would indicate a significance level of 90% and a p-value of 0.05 would
indicate a significance level of 95%.

Example 14.1: Data on chemical analyses of brine (in ppm) for oil-field waters obtained
from drillstem tests of three carbonate rock units, namely Ellenburger Dolomite and Grayburg
Dolomite = Unit G and Viola Limestone, from Texas and Oklahoma are given in Table 14.1.
These are extracted from Davis (2002). Chen et al. (2007) have also employed these data. Brines
recovered during tests from wells may contain signatures of compositional characteristics that
may provide clues to the origin or depositional environment of their source rocks. Thus, the
first column in Table 14.1 indicates whether or not brine samples belong to a specific carbonate
unit, that is, Grayburg Dolomite (briefly designated here as Unit G) and other columns state
the six chemical ions. Thus, the values in the first column represent the dependent variable
and those in the other columns represent independent variables, with no (meaning 0) and
yes (meaning 1). Clearly the dependent variable in this case is a binary one. The objective
is to determine the number of combinations in which independent variables can be selected
to determine if the associated rock source is unit G or not to which the water belonged.
Each combination leads to one specific model. Compute the relative entropy of each model.
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Table 14.1 Data on chemical analysis of brines (in ppm).

Unit G
(Y)

HCO3

(X1)
SO4

(X2)
Cl

(X3)
Ca

(X4)
Mg
(X5)

Na
(X1)

0 10.4 30 967.1 95.9 53.7 857.7
0 6.2 29.6 1174.9 111.7 43.9 1054.7
0 2.1 11.4 2387.1 348.3 119.3 1932.4
0 8.5 22.5 2186.1 339.6 73.6 1803.4
0 6.7 32.8 2015.5 287.6 75.1 1691.8
0 3.8 18.9 2175.8 340.4 63.8 1793.9
0 1.5 16.5 2367 412 95.8 1872.5
1 25.6 0 134.7 12.7 7.1 134.7
1 12 104.6 3163.8 95.6 90.1 3093.9
1 9 104 1342.6 104.9 160.2 1190.1
1 13.7 103.3 2151.6 103.7 70 2054.6
1 16.6 92.3 905.1 91.5 50.9 871.4
1 14.1 80.1 554.8 118.9 62.3 472.4
0 1.3 10.4 3399.5 532.3 235.6 2642.5
0 3.6 5.2 974.5 147.5 69 768.1
0 0.8 9.8 1430.2 295.7 118.4 1027.1
0 1.8 25.6 183.2 35.4 13.5 161.5
0 8.8 3.4 289.9 32.8 22.4 225.2
0 6.3 16.7 360.9 41.9 24 318.1

Then, select the combinations that have minimum Shannon entropy or maximum relative
entropy values.

Solution: The first column in Table 14.1 means that brine samples belong (denoted as ‘‘1’’)
or do not belong (denoted as ‘‘0’’) to Unit G and defines the values of the dependent variable.
The rest of the columns are the six chemical ions (in ppm) and these constitute values of
the six independent variables. Since the dependent variable Y is binary with outcome as
0 or 1, it is advisable to use the logistic regression. Here Xi, i = 1, 2, . . . , 6, denote the
independent variables representing chemical ions. For six candidate variables, the number of
possible combinations is 26 − 2 = 62, as shown in Table 14.2 (shortened) where ‘‘1’’ denotes

Table 14.2 Sixty-two possible combinations or sub-models.

Sub-model X1 X2 X3 X4 X5 X6

1 0 0 0 0 0 1
2 0 0 0 0 1 0
3 0 0 0 0 1 1
4 0 0 0 1 0 0
5 0 0 0 1 0 1
6 0 0 0 1 1 0
7 0 0 0 1 1 1
– – – – – – –

59 1 1 1 0 1 1
60 1 1 1 1 0 0
61 1 1 1 1 0 1
62 1 1 1 1 1 0
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Table 14.3 Coefficients ai for 62 sub-models.

Sub-model a0 a1 a2 a3 a4 a4 a5

1 −0.8836 0 0 0 0 0 0.0001
2 −0.6608 0 0 0 0 −0.0015 0
3 −0.7821 0 0 0 0 −0.0042 0.0003
4 0.7977 0 0 0 −0.0110 0 0
5 −0.1775 0 0 0 −0.0255 0 0.0028
6 −1.2227 0 0 0 −0.0963 0.1998 0
7 −1.2482 0 0 0 −0.1016 0.2159 −0.0004
– – – – – – – –

60 −43.6896 2.1458 0.3441 −0.0029 0.0366 0 0
61 −46.3787 2.3127 0.3405 0.0874 −0.0688 0 −0.0888
62 −46.6605 2.2533 0.2447 −0.0012 0.0188 0.0906 0

that the variable is included and ‘‘0’’ means that the variable is excluded. Each combination
of variables corresponds to a sub-model.

First, the logit model is applied to relate the response Y to the covariates (Xi) using equation
(14.4). To that end, coefficients ai are determined by fitting the logit model to the data in
Table 14.1 by the maximum likelihood estimation (MLE) which can be done in Matlab by the
mnrfit function and results are shown in Table 14.3.

It is important to check how good these coefficient values are. One way to judge the
goodness is to use each sub-model with the corresponding coefficients determined above and
compute the dependent variable. For example, for sub-model 1, equation (14.4) becomes:

y(x) = exp(−0.8836 + 0.0001x6)

1 + exp(−0.8836 + 0.0001x6)

Then, the correlation coefficient between calculated and observed values of Y is computed for
all 62 sub-models, as shown in Table 14.4.

From Table 14.4, it is seen that the calculated coefficients for each sub-model are satisfactory,
because for some sub-models (such as sub-models 56, 57, etc.), the correlation coefficient
values are 1.00. It may be noted for some sub-models (like sub-model 1) the correlation
coefficient values are very low, pointing to the need for variable selection. Now, in order to
apply equation (14.2), the model-computed y values need to be converted into probabilities,
which is done using equation (14.6). When applying equation (14.2) the prior is selected as a
uniform distribution. For each sub-model, there are ni variables. Since, ln Quni is constant, the
order of ranking given by increasing H [ps|Quni] is identical to ranking by decreasing H [ps].
Now, the relative entropy of each sub-model is calculated as shown in Table 14.5 (shortened).

From Table 14.5, it is seen that the combinations that have minimum entropy values are
as follows:

Sub-model X1 X2 X3 X4 X5 X6 Entropy

59 1 1 1 0 1 1 1.79183823
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Table 14.4 The coefficient of correlation

between calculated and observed values

of Y .

Sub-model Correlation coefficient

1 0.04
2 0.03
3 0.10
4 0.43
5 0.65
6 0.74
7 0.74
8 0.08
9 0.73
– –
– –

56 1.00
57 1.00
58 1.00
59 1.00
60 1.00
61 1.00
62 1.00

Table 14.5 Relative entropy and entropy of each sub-model.

Sub-model X1 X2 X3 X4 X5 X6 Relative entropy Entropy

59 1 1 1 0 1 1 1.15260075 1.79183823
61 1 1 1 1 0 1 1.15260069 1.79183829
55 1 1 0 1 1 1 1.15260062 1.79183836
62 1 1 1 1 1 0 1.15260062 1.79183836
54 1 1 0 1 1 0 1.15259823 1.79184075
51 1 1 0 0 1 1 1.15259721 1.79184177
58 1 1 1 0 1 0 1.15259683 1.79184215
57 1 1 1 0 0 1 1.15259657 1.79184241
50 1 1 0 0 1 0 1.15259502 1.79184396
53 1 1 0 1 0 1 1.15259245 1.79184653
60 1 1 1 1 0 0 1.15259197 1.79184701
47 1 0 1 1 1 1 1.15259010 1.79184888
52 1 1 0 1 0 0 1.15258930 1.79184968
56 1 1 1 0 0 0 1.15258427 1.79185471
49 1 1 0 0 0 1 1.15258230 1.79185668
48 1 1 0 0 0 0 1.15258160 1.79185738
33 1 0 0 0 0 1 0.89989192 2.04454706
40 1 0 1 0 0 0 0.89629479 2.04814419
– – – – – – – – –
– – – – – – – – –

45 1 0 1 1 0 1 0.50137038 2.44306860
46 1 0 1 1 1 0 0.48144050 2.46299847
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Table 14.6 P(x) each sub-model.

y(x) Z = sum[y(x)] P(x)

2.96E − 05 6.00E + 00 4.94E − 06
9.14E − 10 6.00E + 00 1.52E − 10
1.78E − 11 6.00E + 00 2.96E − 12
8.51E − 06 6.00E + 00 1.42E − 06
9.96E − 07 6.00E + 00 1.66E − 07
3.85E − 11 6.00E + 00 6.42E − 12
7.25E − 12 6.00E + 00 1.21E − 12

1.00 6.00E + 00 0.17
1.00 6.00E + 00 0.17
1.00 6.00E + 00 0.17
1.00 6.00E + 00 0.17
1.00 6.00E + 00 0.17
1.00 6.00E + 00 0.17

7.57E − 07 6.00E + 00 1.26E − 07
1.57E − 13 6.00E + 00 2.61E − 14
7.42E − 13 6.00E + 00 1.24E − 13
9.38E − 16 6.00E + 00 1.56E − 16
7.53E − 11 6.00E + 00 1.25E − 11
5.97E − 12 6.00E + 00 9.95E − 13

Example 14.2: For Example 14.1, prepare a matrix (a shortened one) of selected combina-
tions of variables and entropy. Use 1 if the variable is included and 0 if it is not.

Solution: From the calculations in Example 14.1, sub-model 59 is considered as an example.
First, substituting the corresponding model coefficients into equation (14.4), we get:

y(x) = exp(−46.61 + 2.27 × x1 + 0.27 × x2 + 0.02 × x3 + 0.07 × x5 − 0.02 × x6)

1 + exp(−46.61 + 2.27 × x1 + 0.27 × x2 + 0.02 × x3 + 0.07 × x5 − 0.02 × x6)

For each sub-model, y(x) is calculated for each observed dataset and then all the y(x) values
are summed up in order to get Z using equation (14.5). Then, P(x) is computed for each
sub-model using equation (14.6), as shown in Table 14.6.

Then, using equation (14.3), the entropy of each sub-model is computed. For example, for
sub-model 59, it is done as:

H(Ps) = −
∑

Xsi ∈X

Ps(Xsi
) ln Ps(Xsi

)

= −4.94 × 10−6 × ln(4.94 × 10−6) − 1.52 × 10−10 × ln(1.52 × 10−10) − . . .

= 1.79183823 Napier

Finally, the selected combinations of variables and entropy are obtained, as shown in
Table 14.7 (Note: ‘‘1’’ denotes the variable is included and ‘‘0’’ means the variable is excluded.)

Example 14.3: From calculations in Example 14.2, count the number of times each variable
appears and then discuss the significance of the variables and models selected.

Solution: From the entropy value calculated for each sub-model in Table 14.7 in Example
14.2, it is determined that the entropy values of the first 16 sub-models are very close and
very small. Hence, these 16 sub-models are included in Table 14.8.
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Table 14.7 Entropy of each sub-model.

Sub-model X1 X2 X3 X4 X5 X6 Entropy

59 1 1 1 0 1 1 1.79183823
61 1 1 1 1 0 1 1.79183829
55 1 1 0 1 1 1 1.79183836
62 1 1 1 1 1 0 1.79183836
54 1 1 0 1 1 0 1.79184075
51 1 1 0 0 1 1 1.79184177
58 1 1 1 0 1 0 1.79184215
57 1 1 1 0 0 1 1.79184241
50 1 1 0 0 1 0 1.79184396
53 1 1 0 1 0 1 1.79184653
60 1 1 1 1 0 0 1.79184701
47 1 0 1 1 1 1 1.79184888
52 1 1 0 1 0 0 1.79184968
56 1 1 1 0 0 0 1.79185471
49 1 1 0 0 0 1 1.79185668
48 1 1 0 0 0 0 1.79185738
33 1 0 0 0 0 1 2.04454706
40 1 0 1 0 0 0 2.04814419
– – – – – – – –

46 1 0 1 1 1 0 2.46299847

Table 14.8 Entropy of 16 selected sub-models.

Sub-model X1 X2 X3 X4 X5 X6 Entropy

59 1 1 1 0 1 1 1.79183823
61 1 1 1 1 0 1 1.79183829
55 1 1 0 1 1 1 1.79183836
62 1 1 1 1 1 0 1.79183836
54 1 1 0 1 1 0 1.79184075
51 1 1 0 0 1 1 1.79184177
58 1 1 1 0 1 0 1.79184215
57 1 1 1 0 0 1 1.79184241
50 1 1 0 0 1 0 1.79184396
53 1 1 0 1 0 1 1.79184653
60 1 1 1 1 0 0 1.79184701
47 1 0 1 1 1 1 1.79184888
52 1 1 0 1 0 0 1.79184968
56 1 1 1 0 0 0 1.79185471
49 1 1 0 0 0 1 1.79185668
48 1 1 0 0 0 0 1.79185738

Number of times 16 15 8 8 8 8

The last row of Table 14.8 shows the number of times each variable appears. X1 appears
16 times, X2 appears 15 times, X3 appears 8 times, X4 appears 8 times, X5 appears 8 times,
X6 appears 8 times. Based on the number of times each variable appears, X1 and X2 are
more important than the other four variables (i.e., X3, X4, X5 and X6). Therefore, although
sub-model 59’s entropy is minimum, however, if one just chooses X1 and X2 in the model,
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that corresponds to sub-model 48, it can be seen from Table 14.8 that sub-model 48’s entropy
is also very small.

Example 14.4: Using the results from Example 14.3, evaluate if the models can be further
simplified.

Solution: Based on the number of times X1 and X2 appear in Example 14.3, it seems that the
model can be further simplified by just including X1 and X2. This can be shown as follows.
The coefficients for sub-model 48 are:

Sub-model a0 a1 a2 a3 a4 a5 a6

48 −40.2965 2.0083 0.3194 0.0000 0.0000 0.0000 0.0000

For this sub-model, the logit model can be written as

y(x) = exp(−40.2965 + 2.0083 × x1 + 0.3194 × x2)

1 + exp(−40.2965 + 2.0083 × x1 + 0.3194 × x2)

Now, y(x) is calculated and compared with observed y(x). Then, the coefficient of correlation
between calculated and observed y values is calculated, as shown in Table 14.9.

From Table 14.9, the coefficient of correlation of the calculated and observed values of Y is
1.00. Therefore, instead of using sub-model 59 (the entropy of sub-model 59 is minimum),
one can further simplify sub-model 59 by including only variables X1 and X2 in the model
and excluding four other variables. It is already shown that this model (i.e., sub-model 48) is

Table 14.9 Coefficient of correlation between calculated and observed y

values for sub-model 48.

Calculated y by sub-model 48 Observed y Correlation coefficient

5.39E − 05 0
1.03E − 08 0
8.18E − 15 0
1.08E − 07 0
7.82E − 08 0 1.00
2.73E − 12 0
1.25E − 14 0

1.00 1
1.00 1
1.00 1
1.00 1
1.00 1
1.00 1

1.19E − 15 0
2.29E − 14 0
3.60E − 16 0
4.18E − 13 0
4.43E − 10 0
2.05E − 10 0
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accurate enough. Sub-model 48’s entropy is also small and this model’s predicted y values are
basically the same as observed y values.

Example 14.5: Water quality data for Hawkesbury River at Richmond, New South Wales,
Australia, are available as shown in Table 14.9, where Y indicates if the river is suitable for
swimming. Here Y is the dependent variable and water quality constituents are independent
variables. The objective is to determine the number of combinations in which independent
variables can be selected to determine if the river is suitable for swimming. Each combination
leads to one specific model. Compute the relative entropy of each model. Then, select the
combinations that have minimum Shannon entropy or maximum relative entropy values.

Solution: Since the dependent variable Y is a binary outcome as 0 or 1, it is advisable to use
logistic regression. It should be noted that the five independent variables Xi have different
units, and therefore, they are standardized first. In Matlab, the zscore function can be used
to standardize the independent variables. For the five candidate variables, the number of
combinations or models is 25 − 2 = 32 − 2 = 30. These possible combinations are shown in
Table 14.11, where ‘‘1’’ denotes the variable is included and ‘‘0’’ means the variable is excluded.

First, the logit model is applied to relate the response Y to the covariates (Xi) using equation
(14.4). To that end, coefficients ai are determined by fitting the logit model to the data in

Table 14.10 The data I use in this assignment.

EC (mS/cm) DO (%) Temp (Deg.C) NTU pH
Y X1 X2 X3 X4 X5

1 0.34 93.9 24.3 2.16 7.98
0 0.31 126.55 25.7 1.7 9.03
0 0.31 98.62 19.2 2.42 7.91
0 0.24 101.94 17.1 3.18 7.94
0 0.309 111.42 12.9 2.72 7.87
0 0.264 97.22 10.2 5.29 7.89
1 0.178 79.85 12.9 3.1 7.56
0 0.231 101.29 14.3 3.7 7.82
0 0.18 88.19 15 4 7.54
1 0.215 69.19 20.9 5.39 7.18
1 0.277 78.05 22.7 46.3 7.28
1 0.178 67.55 26.4 3.63 7.69
1 0.371 103.93 27.6 1.36 8.49
1 0.318 84.15 24.7 1.23 7.61
0 0.315 98.22 20.8 1.65 9.2
0 0.321 120.84 21.3 1.78 8.12
0 0.28 107.89 14.7 2.15 7.75
0 0.269 100.07 11.1 2.17 7.75
1 0.181 98.72 12.6 2.34 7.54
1 0.165 100.61 15.4 4.03 7.52
1 0.173 100.4 17.9 1.93 8.03
1 0.285 71.96 23.2 3.03 7.4
1 0.367 89.79 30.4 7.78 7.83
1 0.323 91.41 26.5 1.34 8.02
0 0.202 102.26 24.5 3.11 7.73
1 0.212 94.58 24 2 7.51
1 0.248 111.05 21.3 1.94 7.96
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Table 14.11 Thirty possible sub-models.

Sub-model X1 X2 X3 X4 X5

1 0 0 0 0 1
2 0 0 0 1 0
3 0 0 0 1 1
4 0 0 1 0 0
5 0 0 1 0 1
6 0 0 1 1 0
7 0 0 1 1 1
– – – – – –

25 1 1 0 0 1
26 1 1 0 1 0
27 1 1 0 1 1
28 1 1 1 0 0
29 1 1 1 0 1
30 1 1 1 1 0

Table 14.10 by the method of maximum likelihood estimation (MLE) which can be done in
Matlab by the mnrfit function and results are shown in Table 14.12.

It is important to check how good these coefficient values are. One way to judge the
goodness is use each sub-model with the corresponding coefficients determined above and

Table 14.12 Coefficients ai for 30 sub-models.

Sub-model a0 a1 a2 a4 a5 a6

1 0.1916 0 0 0 0 −0.9914
2 0.3139 0 0 0 0.8265 0
3 0.2282 0 0 0 0.3011 −0.9085
– – – – – – –

5 0.4501 0 0 1.7254 0 −1.8814
6 0.5527 0 0 1.0308 1.6895 0
7 0.4323 0 0 1.7407 −0.1245 −1.9194

9 0.4018 0 −1.7148 0 0 −0.2478
10 0.3987 0 −1.8360 0 −0.0263 0
11 0.3966 0 −1.7437 0 −0.0894 −0.2590
12 0.6111 0 −1.8012 1.1004 0 0
13 0.7514 0 −1.3367 1.5285 0 −1.0237
14 0.6080 0 −1.8078 1.1007 −0.0288 0
15 0.7184 0 −1.3901 1.5556 −0.3416 −1.0772
– – – – – – –

21 0.4500 −0.7140 0 2.1195 0 −1.5212
22 0.3540 −1.2520 0 1.8210 0.6436 0
23 0.4431 −0.7128 0 2.1282 −0.0585 −1.5406
– – – – – – –

26 0.3991 0.0188 −1.8371 0 −0.0269 0
27 0.3997 0.1924 −1.7156 0 −0.1289 −0.3880
28 0.5536 −0.9749 −1.6406 1.7927 0 0
29 0.6717 −0.6793 −1.3088 1.8816 0 −0.6984
30 0.5494 −0.9765 −1.6524 1.7954 −0.0446 0
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Table 14.13 Coefficient of correlation (ρ) between calculated and

observed y values for 30 sub-models.

Sub-model ρ Sub-model ρ Sub-model ρ Sub-model ρ

1 0.36 9 0.56 17 0.37 25 0.56
2 0.18 10 0.55 18 0.21 26 0.55
3 0.37 11 0.56 19 0.37 27 0.56
4 0.43 12 0.64 20 0.61 28 0.70
5 0.66 13 0.69 21 0.71 29 0.72
6 0.46 14 0.64 22 0.61 30 0.70
7 0.66 15 0.69 23 0.71
8 0.55 16 0.11 24 0.55

compute the dependent variable. For example, for sub-model 1, equation (14.4) becomes:

y
(�x) = exp(0.1916 − 0.9914x6)

1 + exp(0.1916 − 0.9914x6)

Then, the correlation coefficient between calculated and observed values of Y is computed for
all 30 sub-models, as shown in Table 14.13.

From Table 14.12, it is seen that the calculated a coefficients for sub-models should be good,
because for some sub-models (such as sub-models 29, 21, etc.), the correlation coefficients of
calculated and observed y are greater than 0.7. Now the relative entropy of each sub-model
is calculated, as shown in Table 14.14. For calculating the relative entropy, the following
formula is used: relative entropy = ln 27 − H(Ps), where H(Ps) is the Shannon entropy.

From Table 14.14, it is seen that the combination that has minimum entropy value is:

Sub-model X1 X2 X3 X4 X5 Entropy

29 1 1 1 0 1 3.0441

Example 14.6: For Example 14.5, prepare a matrix (a shortened one) of selected combina-
tions of variables and entropy. Use 1 if the variable is included and 0 if it is not.

Solution: From the calculations in Example 14.5, sub-model 29 is considered as an example.
Substituting the corresponding model coefficients into equation (14.4), we get:

y
(�x) = exp(0.6717 − 0.6793 × x1 − 1.3088 × x2 + 1.8816 × x3 − 0.6984 × x5)

1 + exp(0.6717 − 0.6793 × x1 − 1.3088 × x2 + 1.8816 × x3 − 0.6984 × x5)

For each sub-model, y(x) is calculated for each observation data set and then all y values are
summed up in order to get Z according using equation (14.5). Then, P(x) is computed for each
sub-model, as shown in Table 14.15.

As an example, the entropy of sub-model 29 is calculated as follows:

H(Ps) = −
∑

ps(xsi
) log ps(xsi

)

= −0.05 × log(0.05) − 0.01 × log(0.01) − . . . .

= 3.0441 Napier
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Table 14.14 Relative entropy and entropy of each sub-model.

Sub-model X1 X2 X3 X4 X5 Relative entropy Entropy

29 1 1 1 0 1 0.2517 3.0441
30 1 1 1 1 0 0.2480 3.0478
28 1 1 1 0 0 0.2475 3.0483
15 0 1 1 1 1 0.2350 3.0609
13 0 1 1 0 1 0.2311 3.0648
23 1 0 1 1 1 0.2249 3.0709
21 1 0 1 0 1 0.2244 3.0715
7 0 0 1 1 1 0.2066 3.0892
5 0 0 1 0 1 0.2054 3.0905
14 0 1 1 1 0 0.2049 3.0910
12 0 1 1 0 0 0.2046 3.0912
22 1 0 1 1 0 0.1634 3.1325
20 1 0 1 0 0 0.1597 3.1361
27 1 1 0 1 1 0.1506 3.1452
11 0 1 0 1 1 0.1500 3.1459
25 1 1 0 0 1 0.1493 3.1465
9 0 1 0 0 1 0.1491 3.1468
10 0 1 0 1 0 0.1469 3.1489
26 1 1 0 1 0 0.1468 3.1490
8 0 1 0 0 0 0.1467 3.1492
24 1 1 0 0 0 0.1466 3.1493
6 0 0 1 1 0 0.0888 3.2070
4 0 0 1 0 0 0.0811 3.2147
17 1 0 0 0 1 0.0795 3.2163
19 1 0 0 1 1 0.0778 3.2180
1 0 0 0 0 1 0.0743 3.2215
3 0 0 0 1 1 0.0732 3.2226
18 1 0 0 1 0 0.0168 3.2790
2 0 0 0 1 0 0.0114 3.2844
16 1 0 0 0 0 0.0049 3.2909

Similarly, entropy is calculated for other sub-models. Finally, the selected combinations of
variables and entropy are shown in Table 14.16 (Note: ‘‘1’’ denotes the variable is included
and ‘‘0’’ means the variable is excluded).

Example 14.7: From calculations in Example 14.5, count the number of times each variable
appears and then discuss the significance of the variables and models selected.

Solution: From the already calculated entropy values of sub-models in Example 14.6, it is
found that the entropy values of 11 sub-models are close and are very small. Hence, the
following shortened table including the first 11 sub-models is shown as Table 14.17.

The last row of the table shows the number of times each variable appears. Thus, X1

appears 5 times, X2 appears 7 times, X3 appears 11 times, X4 appears 5 times, and X5 appears
7 times. Based on the number of times each variable appears, X3 is the most important
variable, X2 and X5 are also important variables, while X1 and X4 are not very important in
this sense. Therefore, although sub-model 29’s entropy is minimum, however, if we just
choose X3, X2 and X5 in the model, that corresponds to sub-model 13, it can be seen from
Table 14.16 that sub-model 13’s entropy is also very small.
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Table 14.15 P(x) each sub-model 29.

y(x) Z = sum(y(x)) P(x)

0.78 15.00 0.05
0.08 15.00 0.01
0.40 15.00 0.03
0.33 15.00 0.02
0.03 15.00 0.00
0.06 15.00 0.00
0.76 15.00 0.05
0.21 15.00 0.01
0.75 15.00 0.05
0.99 15.00 0.07
0.98 15.00 0.07
1.00 15.00 0.07
0.59 15.00 0.04
0.96 15.00 0.06
0.13 15.00 0.01
0.10 15.00 0.01
0.10 15.00 0.01
0.07 15.00 0.00
0.34 15.00 0.02
0.57 15.00 0.04
0.57 15.00 0.04
0.99 15.00 0.07
0.97 15.00 0.06
0.91 15.00 0.06
0.92 15.00 0.06
0.96 15.00 0.06
0.44 15.00 0.03

Example 14.8: Using the results from Example 14.7, evaluate if the models can be further
simplified.

Solution: Based on Example 14.7, the model can be further simplified by just including
X3, X2 and X5 variables because of the number of times they appear. This is verified as
follows.

The a coefficients for sub-model 13 are as follows:

Sub-model a0 a1 a2 a3 a4 a5

13 0.7514 0 −1.3367 1.5285 0 −1.0237

Accordingly, this sub-model is expressed as follows:

y
(�x) = exp(0.7514 − 1.3367 × x2 + 1.5285 × x3 − 1.0237 × x5)

1 + exp(0.7514 − 1.3367 × x2 + 1.5285 × x3 − 1.0237 × x5)

Using this formula, the y values are calculated and compared with the observed y values by
calculating the correlation coefficient as shown in Table 14.18.
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Table 14.16 Entropy of each sub-model.

Sub-model X1 X2 X3 X4 X5 Entropy

29 1 1 1 0 1 3.0441
30 1 1 1 1 0 3.0478
28 1 1 1 0 0 3.0483
15 0 1 1 1 1 3.0609
13 0 1 1 0 1 3.0648
23 1 0 1 1 1 3.0709
21 1 0 1 0 1 3.0715
7 0 0 1 1 1 3.0892
5 0 0 1 0 1 3.0905
14 0 1 1 1 0 3.0910
12 0 1 1 0 0 3.0912
22 1 0 1 1 0 3.1325
20 1 0 1 0 0 3.1361
27 1 1 0 1 1 3.1452
11 0 1 0 1 1 3.1459
25 1 1 0 0 1 3.1465
9 0 1 0 0 1 3.1468
10 0 1 0 1 0 3.1489
26 1 1 0 1 0 3.1490
8 0 1 0 0 0 3.1492
24 1 1 0 0 0 3.1493
6 0 0 1 1 0 3.2070
4 0 0 1 0 0 3.2147
17 1 0 0 0 1 3.2163
19 1 0 0 1 1 3.2180
1 0 0 0 0 1 3.2215
3 0 0 0 1 1 3.2226
18 1 0 0 1 0 3.2790
2 0 0 0 1 0 3.2844
16 1 0 0 0 0 3.2909

From Table 14.18, the coefficient of correlation of the calculated and observed y values is
0.69. Therefore, instead of using sub-model 29 (the entropy of sub-model 29 is minimum and
the correlation coefficient of calculated and observed y values for sub-model 29 is 0.72), it
appears that sub-model 29 can be simplified by just including only variable X2, X3 and X5 in
the model and excluding the other two variables.

14.6 Risk and vulnerability assessment

Consider the case of debris flow but the methodology can be extended to other hazard areas
as well, including floods, droughts, groundwater contamination, landslides, earthquakes,
volcanic eruptions, tsunamis, coastal hazards, ecological hazards, and so on. Debris flow
results from interactions between manmade systems and natural processes. Risk assessment
may entail three levels of assessment: 1) hazard assessment: determination of magnitude and
frequency of occurrence of that magnitude; 2) vulnerability assessment: evaluation of exposed
population and property in a given area; and 3) risk assessment incorporating both hazard
and vulnerability.
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Table 14.17 Entropy of 11 sub-models.

Sub-model X1 X2 X3 X4 X5 Entropy

29 1 1 1 0 1 3.0441
30 1 1 1 1 0 3.0478
28 1 1 1 0 0 3.0483
15 0 1 1 1 1 3.0609
13 0 1 1 0 1 3.0648
23 1 0 1 1 1 3.0709
21 1 0 1 0 1 3.0715
7 0 0 1 1 1 3.0892
5 0 0 1 0 1 3.0905
14 0 1 1 1 0 3.0910
12 0 1 1 0 0 3.0912
Counts of times 5 7 11 5 7

Table 14.18 Comparison between calculated and observed values.

Calculated y by sub-model 13 Observed y Correlation coefficient

0.86 1
0.04 0
0.55 0
0.32 0
0.07 0
0.11 0
0.74 1
0.23 0
0.70 0
0.99 1
0.99 1
1.00 1
0.66 1
0.98 1
0.10 0
0.14 0
0.18 0
0.14 0
0.32 1
0.46 1
0.35 1
0.99 1
0.99 1
0.93 1
0.84 0
0.94 1
0.37 1 0.69

Risk defines a measure of the expected loss of lives, damage to property, and disruption in
socio-economic activity in a given area for a reference period of time. Risk entails both hazard
(L) and vulnerability (V) and is scaled from 0 (0%) to 1 (100%) (Alexander, 1991). The hazard
is comprised of two components: magnitude and the associated frequency of occurrence and
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indicates the potential threat. The hazard of an event is measured on a scale of 0 (0%) to 1
(100%) (Deyle et al., 1998). Vulnerability measures the potential total maximum losses due
to a hazardous event in a given area for a reference period of time, and is also measured
on a scale of 0 (0%) to 1 (100%). Thus, it can be noted that vulnerability represents the
potential for maximum loss or harm and risk represents the probability that some or all of
that vulnerability will occur due to the event. This means that risk is always less than or equal
to vulnerability.

14.6.1 Hazard assessment
As mentioned earlier, two components of an event define hazard: magnitude reflecting the
size of the event and frequency reflecting the time period between events of that magnitude.
For modeling purposes, both are considered as random variables. For many processes, such
as debris flow and geologic and geomorphic hazards, there is a general relationship between
magnitude and frequency and this relationship is defined by a probability distribution, such
as Pearson type III distribution or any other standard distribution. In general, the number of
past occurrences in a given time period constitutes the basis for determining the time between
occurrences and hence the expected probability.

For the purpose of simplicity, the relation between magnitude and frequency can be
assumed to follow an exponential function:

F = a exp(−aM) (14.7)

where M is the magnitude of the event, say debris flow, F is the frequency of the event
(say debris flow), and a is parameter to be determined from measurements of M and F. By
definition, parameter a is the reciprocal of the mean of M.

The hazard (L) due to an event (debris flow) can be expressed by the product of magnitude
and frequency as

L = MF (14.8)

Combining equations (14.7) and (14.8) the hazard can be expressed as

L = Ma exp(−aM) (14.9)

Hazard L can be calculated from the area under the M-F curve by noting that

dL = FdM (14.10)

where DL is the incremental hazard or loss and dM is the incremental size or magnitude.
Therefore, integrating equation (14.10) one gets

L =
M∫

0

FdM (14.11)

or

L =
M∫

0

FdM = 1 − exp(aM), a > 0 (14.12)
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where L ranges from 0 to 1 and M varies from 0 to ∞. If parameter a is known from
observations, then equation (14.12) determines hazard L for a given magnitude M.

In many cases empirical approaches are employed to quantify the hazard value. To that
end, the magnitude of an event can be expressed in a multiplicative form as

y = a
N∏

i=1

x
bi
i (14.13)

where y represents the magnitude, xi is the i-th independent variable, N is the number of
independent variables, a is parameter, and bi is i-th exponent associated with xi. This y value
is an estimate of M or another independent variable. Then, this can be transformed to hazard
potential h on a scale of 0 to 1 as

h = 1 − exp(−ky) (14.14)

where k is parameter which can be determined from observations. Combining equations
(14.13) and (14.14), one obtains

h = 1 − Ka exp

(
−

N∏
i=1

x
bi
i

)
(14.15)

14.6.2 Vulnerability assessment
The overall vulnerability depends on four factors: physical, economic, environmental, and
social. The physical vulnerability entails losses due to damage to physical infrastructure and
damage. The economic vulnerability includes losses of individual and collective assets. The
environmental vulnerability entails degradation of water, air, and land resources. Social
vulnerability includes impact on population and social structure (size, density, education,
health, age, and wealth). It may then be assumed that the vulnerability V1, representing the
potential maximum property loss (say in U.S. dollars), can be expressed as the sum of fixed
asset value (P), annual GDP (G), and total value of land resources (E):

V1 = P + G + E (14.16)

where

E =
n∑

i=1

BiAi (14.17)

in which Ai is i-th the land area, Bi is i-th base line price per unit area of land, and n is the
number of land areas. The property value can be made dimensionless on a scale of 0 to 1 as:

FV1 = 1

1 + exp(−c1 log V1 − c2)
(14.18)

where c1 and c2 are constants, and FV1 is the transformed value of V1.
The social vulnerability can be expressed as

V2 = 1

3(d0 + d1 + d2)D
(14.19)
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where V2 is the potential maximum loss of life (person/km2), di, i = 0, 1, and 2, are
constants, and D is the population density. This can be transformed to a scale of 0 to 1 as

FV2 = 1 − exp(−gV2) (14.20)

where g is the reciprocal of the mean value of V2.
The vulnerability can be determined by summing FV1 and FV2. It can be argued that V

increases with increasing FV1 and FV2 but the rate decreases. The regional vulnerability model
can be expressed as

V =
[

1

2
(FV1 + FV2)

]0.5

(14.21)

where V is scaled from 0 to 1. Note both FV1 and FV2 are weighted equally but can be weighted
differently if need be.

14.6.3 Risk assessment and ranking
Risk entails both hazard (L) and vulnerability (V). For practical applications, policy formulation
and decision making, it may be useful to express risk in discrete levels. Liu and Lei (2003)
suggested five classes for both hazard and vulnerability: very low (0–02), low (0.2–0.4),
moderate (0.4–0.6), high (0.6–0.8) and very high (0.8–1.0). Likewise, risk can be expressed
in five classes with the same description but different ranges of values: very low (0.00–0.04),
low (0.04–0.16), moderate (0.16–0.36), high (0.36–0.64), and very high (0.64–1.00).

One can graph hazard versus vulnerability and then construct risk curves. The curves
separating risk classes would be hyperbolas represented by: V = 0.04/L, V = 0.16/L,
V = 0.36/L, and V = 0.64/L. Now the probability of each of the five levels of risk needs to
be computed. This probability is the proportion of area within the region of the L versus V

graph. Lin and Lei (2003) showed that the probability value was: 16.9% for very low, 28.4%
for low, 27.5% for moderate, 19.8% for high, and 7.4% for very high.

Questions

Q.14.1 Select a set of monthly data on pan evaporation, relative humidity, air temperature
(mean, minimum, and maximum), wind speed, number of cloudy days, number of
sunshine hours, and solar radiation for a station. Here monthly evaporation is the
dependent variable, and others are independent variables. Determine the number
of combinations in which variables can be selected. Each combination leads to one
specific model for predicting monthly evaporation. Compute the relative entropy of
each model. Then, select the combinations that have minimum entropy values.

Q.14.2 Prepare a matrix (a shortened one) of selected combinations of variables and entropy
from Q.14.1. You can use 1 if the variable is included and 0 if it is not.

Q.14.3 In the shortened matrix in Q.14.2, count the number of times each variable appears
and then discuss the significance of the variables and models selected.

Q.14.4 Evaluate if the models in Q.14.3 can be further simplified.

Q.14.5 Obtain for a number of watersheds a set of geomorphological data, including
drainage area, density, slope, length, width, compact factor, vegetative cover, and
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soil type. Also obtain data on 50-year peak discharge values for these watersheds.
The objective is to determine a model for predicting 50-year peak discharge using the
geomorphological characteristics. Determine the number of combinations in which
variables can be selected. Each combination leads to one specific model for predicting
monthly evaporation. Compute the relative entropy of each model. Then, select the
combinations that have minimum entropy values.

Q.14.6 Prepare a matrix (a shortened one) of selected combinations of variables and entropy
from Q.14.5. You can use 1 if the variable is included and 0 if it is not.

Q.14.7 In the shortened matrix in Q.14.6, count the number of times each variable appears
and then discuss the significance of the variables and models selected.

Q.14.8 Evaluate if the models in Q.14.7 can be further simplified.

Q.14.9 Obtain a set of data for debris flow, including gully number, gully occurrence,
gully length, drainage basin area, basin slope, form factor, and area of landslide.
The objective is to determine the occurrence of debris flow as a function of these
variables. Determine the number of combinations in which variables can be selected.
Each combination leads to one specific model for predicting monthly evaporation.
Compute the relative entropy of each model. Then, select the combinations that have
minimum entropy values. For debris flow data, refer to Chen et al. (2007) and the
references therein.

Q.14.10 Prepare a matrix (a shortened one) of selected combinations of variables and entropy
from Q.14.9. You can use 1 if the variable is included and 0 if it is not.

Q.14.11 In the shortened matrix in Q.14.10 count the number of times each variable appears
and then discuss the significance of the variables and models selected.

Q.14.12 Evaluate if the models in Q.14.11 can be further simplified.
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15 Neural Networks

A human brain consists of a large number of highly connected elements (approximately 1011),
called neurons. A neuron has three principal components: the dendrites, the cell body, and
the axon, as shown in Figure 15.1. The dendrites are tree-like receptive networks of nerve
filters that carry electrical circuits (or signals) into the cell body. The cell body effectively sums
and thresholds these incoming signals. The axon is a single long fiber that carries the signal
from the cell body to other neurons. The point of contact between the axon of one cell and a
dendrite of another cell is called synapse. The arrangement of neurons and the strengths of
individual synapses determine the function of a neural network.

In implementation of an artificial neural network (ANN) neurons are considered as elements
and are simple abstractions of biological neurons. The principal attribute of an artificial neural
network (ANN) is the distribution of knowledge through connections amongst a large number
of neurons. These neurons are arranged in several distinct layers, including the sensory layer,
hidden layers, and output layer or motor control layer, as shown in Figure 15.2. The sensory
layer represents the interfacing layer on the input side; the output layer is on the output
side; and hidden layers are in between or intermediate. All neurons may perform the same
type of input-output operation or different layers of neurons may perform different kinds
of input-output operation or transfer functions. In this manner ANNs have the ability to
generalize input-output mapping from a limited set of training examples or data.

15.1 Single neuron

Consider a single-input neuron as shown in Figure 15.3, in which input I is multiplied by a
scalar weight w and then wI is sent to the summer. The other input is 1, is multiplied by a bias
b and then sent to the summer. The output from the summer, s, often referred to as the net
input, goes into a transfer function (sometimes called activation function) f which produces
the scalar neuron output O. Relating to the biological jargon, weight w corresponds to the
strength of a synapse, the summer and the transfer function represent the cell body and the
neuron output O represents the signal on the axon. The neuron output is computed as

O = f (s), s = wI + b (15.1)

Entropy Theory and its Application in Environmental and Water Engineering, First Edition. Vijay P. Singh.
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Figure 15.1 A neuron.

Input layer Hidden layer Output layer

Figure 15.2 A simple three-layered neural network architecture.
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O = f (wI+b)

Figure 15.3 A single input neuron.

The actual output depends on the form of f chosen. The bias is like a weight and has a constant
input of 1 (or −1). It can be omitted if it is not desired in a particular neuron. Both w and b

are adjustable parameters of the neuron.
Similarly, one can construct a multiple-input single neuron as shown in Figure 15.4, in

which input is a vector comprising a number of inputs to the neuron: Ii, i = 1, 2, . . . , M, M is
the number of inputs. The weight assigned to each input is expressed as: w1,i, i = 1, 2, . . . , M.
Thus, the net input can be expressed as:

s = w11I1 + w12I2 + . . . + w1MIM + b (15.2)



CHAPTER 15 Neural Networks 583

M
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O = f (∑ wiIi + b)
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Figure 15.4 A multiple input single neuron.

and the neuron output as

O = f

(
M∑

i=1

wiIi + bi

)
(15.3)

In a similar manner one can construct neural network architectures, as shown in Figure 15.5.
In a neural network, a layer is comprised of the weight, the summer, the bias, the transfer
function, and the output. One can have layers of neurons, as shown in Figure 15.5. A single
neuron is capable of only a linear mapping, but a layered network of neurons with multiple
hidden layers yields any desired mapping. This is the principal reason for the popularity of
ANNs. An example is shown in Figure 15.6.

All neurons in a layer are connected to all the neurons in the adjacent layers. The weight
value indicates the connection strength between neurons from adjacent layers and functions as
a signal multiplier on the corresponding link. The input to the neuron is the linear summation
of all the incoming signals on the various connection links. The net summation is compared
to a threshold, often referred to as bias. The difference due to comparison drives the output
function, called activation function which produces an output signal. The most common
output functions (activation functions) are sigmoid and hyperbolic tangent functions.

In pattern recognition, layered networks are also called multilayer perceptron (MLP)
networks. Burr (1988), Lippmann (1987), among others, have shown that two hidden layers
suffice to represent decision boundaries of any complexity in a piecewise linear manner. Two
layers are not always needed for a particular decision region. The first hidden layer is called
the partitioning layer that divides the entire feature space into several regions (The input data
that represent a pattern are referred to as the measurement of feature vector). The function
that a pattern recognition system performs is the mapping of the input feature vector into one
of the various decision classes. The connotation of a linear input-output mapping then is that
the decision boundaries are linear. The second hidden layer is referred to as the ANDing layer
that performs ANDing of partitioned regions to yield convex decision regions for each class.
The output layer is called the ORing layer that logically combines the results of the previous
layer to produce disjoint regions of arbitrary shape with holes and concavities if needed.

Neural networks are self-organizing systems. The information theory offers a way to
determine the efficiency of information representation by tree networks and the limitations
in the reliable transmission of information over a network or a communication channel.
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Figure 15.5 Multiple input multiple neurons.

The theory permits derivation of the principle of maximum information preservation which
represents a principle of self-organization. It also allows us to compute ideal bounds on the
optimal representation and transmission of information bearing signals or neural networks.

Example 15.1: The perceptron, as shown in Figure 15.7, represents feed forward neural
networks and is a classifier that maps its input x to an output value f (x), expressed as:

f (x) =
{

1 if w • x + b > 0.5
0 else

}

where w is a vector of real-valued weights and • is the dot product (which computes a weighted
sum), and b is the ‘bias’, a constant term that does not depend on any input value. Show the
calculations in tabular form?
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Figure 15.6 A multiple hidden layer neural network.

Inputs

f (x)

Output 

x1

x2

Z

b

w1

w2

Figure 15.7 Perceptron configuration.

Solution: A perceptron has a number of external input links, one internal input (called a
bias), a threshold, and one output link. Table 15.1 shows the calculations required to perform
from input layer to output layer. The threshold value is given in the first column as 0.5. A
linear learning rate that is a parameter of learning phase is selected as 0.1 (column 2). The
measured sensor values x1 and x2, and desired output values, Z, are included in columns 3,
4, and 5. Initial weights are assigned, first, arbitrarily as 0.2 and 0.5 in columns 6 and 7.
After the second iteration the initial weight takes on the final weight of the previous iteration.
The C1 and C2 values are calculated by multiplying columns 3 and 6 and columns 4 and 7,
respectively. Column 10 is for the sum of C1 and C2. Column 11 applies the function given
in the example. If the summation is greater than the threshold value of 0.5 then the output
equals 1, otherwise it is 0. The difference between calculated and measured outputs is shown
in column 12. In order to obtain new weights for the next step, a correction factor that is the
multiplication of learning rate and error amount is calculated in column 13. Finally, updated
weights are obtained by adding the correction factor to old weights.

15.2 Neural network training

Training of a single-layer neural network is relatively simple. There are several methods to
train layered networks, such as supervised learning (Sethi, 1990), Boltzmann learning (Ackley
et al. 1985), counter-propagation (Hecht-Nielsen, 1987), and Madaline Rule-II (Widrow et al.
1988). Popular amongst these methods of training of layered networks is supervised learning.
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In this way, the network is provided with examples of input-output mapping pairs from
which the network learns. The learning is reflected through the modification of connection
strengths or weights. This process of learning occurs continuously until the mapping present
in the examples is achieved. One of the key issues in the learning process is one of credit
assignment, that is, what should be the desired output of the neurons in the hidden layers
during training? This issue has been addressed by propagating back the error in the output
layer to the internal layers. This is often referred to as back propagation algorithm (Rumelhart
et al. 1986). It minimizes the error at the output layer and is a gradient descent method. One
of the main drawbacks of these training methods is that they do not specify the number of
neurons needed in the hidden layers. This number significantly affects the learning rate and
the overall classification performance, and is therefore an important parameter.

Back propagation algorithm (BPA) consists of mainly two activities: Forward pass and
backward pass. In the forward pass, the activity is propagated from the input layer to hidden
layers to output layer. In the backward pass, the activity is propagated from the output
layer to hidden layers to input layer. The connection weights vij are adjusted based upon the
following equation:

vnew
ij = vold

ij − η
∂E(vij)

∂vij

(15.4)

where η is the learning rate and E is the error function that is defined as:

E = 1

2

p∑
k=1

q∑
j=1

(ykj − tkj)
2 (15.5)

∂E

∂vij

=
p∑

k=1

q∑
j=1

(tkj − zkj)(−1)f (vij)
[
1 − f (vij)

]
yj (15.6)

where p is the number of training patterns, q is the number of output nodes, yki is the model
output, and tki is the target output.

Example 15.2: Consider the network with two inputs and one output, as shown in
Figure 15.8. Update the weights between hidden and output layers.

Solution: For the forward pass,

net3 = (3)(1) + (4)(0) + (1)(1) = 4

net4 = (1)(6) + (0)(5) + (1)(−6) = 0

w13 = 31

2

3

4

5

b1
b2

x1 = 1

x2 = 0

xb = 1

yb = 1

w14 = 6

w23 = 4

w24 = 5

wb3 = 1

wb4 = −6

v35 = 2

v45 = 4

vb5 = 3.93

yt = 1

Figure 15.8 Network for Example 15.2.
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y3 = 1

1 + e−4
= 0.982

y4 = 1

1 + e−1
= 0.50

net5 = (0.982)(2) + (0.50)(4) + (1)(−3.93) = 0.04

y4 = 1

1 + e−0.04
= 0.51

E = 1 − 0.51 = 0.49

For the backward pass,

Let δoj =
p∑

k=1

q∑
j=1

(tkj − zkj)(−1)f ′(wij)

δ5 = y5(1 − y5)(y5 − yt) = 0.51(1 − 0.51)(−0.49) = −0.1225

vnew
35 = vold

35 − η∂5y3 = 2 − (0.1)(−0.1225)(0.982) = 2.012

vnew
45 = vold

45 − η∂5y4 = 4 − (0.1)(−0.1225)(0.50) = 4.012

vnew
05 = vold

05 − η∂5yb = −3.93 − (0.1)(−0.1225)(1) = −3.9078

Other weights can be obtained in a similar fashion.

15.3 Principle of maximum information preservation

Linsker (1988) proposed a principle of self-organization which states that the development
of synaptic connections of a multilayered neural network occurs by maximizing the amount
of information that is preserved when signals are transformed at each processing stage of
the network, subject to certain constraints. Before formalizing this principle, consider a
two-layer neural network in which the input or source layer has forward connections to
the output (target) layer that can have lateral connections, as shown in Figure 15.9. The
network is required to process incoming signals in a self-organized manner. The input layers
can have a number of activities represented by vector �X whose elements are x1, x2, . . . , xN .
Similarly, the output layer can have a number of resulting activities represented by a vector
�Y whose elements are y1, y2, . . . , yM. Linsker (1987, 1988) stated the principle of maximum
information preservation (POMIP) as: ‘‘The transformation of a vector �X observed in the
input layer of a neural network to a vector �Y produced in the output layer jointly maximizes
information about the activities in the input layer. The parameter to be maximized is the
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Figure 15.9 A two-layered network.

average information between the input vector �X and the output vector �Y , in the presence of
processing noise.’’ This principle can be considered as the neural network counterpart of the
concept of channel capacity which defines the limit on the rate of information transmission
through a communication channel. POMIP is independent of the learning tool employed for
its implementation.

15.4 A single neuron corrupted by processing noise

Consider a simple network of an input layer and an output layer. The input layer comprises N
source nodes from which a single neuron receives input, as shown in Figure 15.10. The output
of this neuron is corrupted by noise during processing and let this processing noise be denoted
as ε. The source nodes are not equal and therefore let the synaptic weight of an i-th source
node in the input layer to the neuron in the output layer be denoted as wi, i = 1, 2, . . . , N.
For simplicity it is assumed that the output Y of the neuron is a Gaussian random variable
with variance σ 2

y ; the processing noise ε is also a Gaussian random variable with zero mean
and variance σ 2

ε ; and the processing noise is not correlated with any of the input components,
that is,

E[εxi] = 0 for all i (15.7)

Let the output of the neuron be written as

Y =
N∑

i=1

wixi + ε (15.8)

The objective here is to derive the transinformation or the average mutual information T( �X, Y)
between the output of the neuron in the output layer, Y , and the input vector, �X. From the
definition of mutual information (or trasninformation),

T(Y , �X) = H(Y) − H(Y | �X) (15.9)

From equation (15.8) it is seen that the PDF of Y , given the input vector �X is equal to the PDF
of w plus the PDF of ε. Therefore, the conditional entropy H(Y | �X) is the information that the
output neuron transmits about processing noise ε, rather than about the input signal vector
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Figure 15.10 A single neuron corrupted by processing noise.

�X. That is,

H(Y | �X) = H(ε) (15.10)

Substituting equation (15.10) in equation (15.9) one obtains

T(Y , �X) = H(Y) − H(ε) (15.11)

Since Y is Gaussian distributed,

H(Y) = 1

2

[
1 + ln

(
2πσ 2

y

)]
(15.12)

Similarly, one can write for ε assuming it to be Gaussian distributed as

H(ε) = 1

2

[
1 + ln

(
2πσ 2

ε

)]
(15.13)

Inserting equations (15.12) and (15.13) in equation (15.11) one gets

T(Y , �X) = 1

2
ln

(
σ 2

y

σ 2
ε

)
(15.14)

where σ 2
y depends on σ 2

ε .
The ratio σ 2

y /σ 2
ε can be regarded as a signal-to-noise ratio. If the noise variance is fixed

then equation (15.14) shows that T(Y , �X) is maximized by maximization of σ 2
y . Thus, it is

concluded that under certain conditions maximizing the output variance of a neural network
maximizes the average mutual information between the output signal of that neuron and its
input. This conclusion however does not always hold.

Example 15.3: The Xinanjiang Rainfall-Runoff Model is a conceptual rainfall-runoff fore-
casting tool that was designed for humid and semi-humid regions and is based on the concept
of runoff formation on repletion of storage, that is, runoff is not produced until the soil
moisture content of the aeration zone reaches field storage capacity and thereafter runoff
equals rainfall excess without further loss. In its simplest form the model comprises a single
equation:

R = P − (Wm − W0) + Wm

[(
1 − W0

Wm

) 1
1+b − p

(1 + b)Wm

]1+b

(15.15)
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in which R = the runoff; P = the effective precipitation; Wm = the maximum field storage
capacity; W0 = the initial field storage capacity; and b is an exponent that represents ‘‘non-
uniform spatial distribution,’’ that is, the nonuniform distribution of surface conditions,
including factors, such as topography, geology, soil type, and vegetation coverage. How do we
establish a neural network model by using the aforementioned variables?

Solution: Following the methodology proposed by Abrahart and See (2007), the question
can be treated as follows:

Dividing by Wm converts equation (15.15) to a nondimensional form as:

R

Wm

= P

Wm

−
(

1 − W0

Wm

)
+

[(
1 − W0

Wm

) 1
1+b − P

(1 + b)Wm

]1+b

(15.16)

Defining C1 = P

Wm

; C2 = W0

Wm

; C3 = R

Wm

and substituting into equation (15.16) lead to:

C3 = C1 + C2 − 1 +
[
(1 − C2)

1
1+b − C1

(1 + b)

]1+b

(15.17)

The input values for the effective precipitation [P], maximum soil water storage [Wm] and
the curve fitting exponent [b] are taken as random samples. A linear scaling is applied to the
input drivers and output responses with each variable standardized to a fixed range [0, 1].
The following steps can be applied to obtain model results:
1 Preparation of input and output data: The model should be tested with a data set that is
independent from the data set for which model parameters are determined. The model is
developed and tested on a dataset of random input variables comprising 5000 records split
into two equal groups: 2500 cases for training purposes; 2500 cases for split sample testing
operations.
2 Configuration of network: The model architecture compromises three layers. There are three
neurons represented by three input variables in the input layer, six hidden units positioned in
one hidden layer and one neuron corresponding to final output in the output layer, as shown
in Figure 15.11.
3 Selection of transfer functions for hidden layer and output layers: Each processing unit in
the hidden layer and output layer contains a logistic transfer function, that is, sigmoid curve.
Each weighted connection and processing unit bias is assigned an initial random setting in the
range of ±1.
4 Training of the system: The neural network (NN) feed forward models are trained using
‘‘back propagation,’’ each run produces a ‘‘Back Propagation Neural Network’’ (BPNN).
Training material is presented in random order and the training program is stopped at 10,000
epochs. Training parameters are set for automatic adjustment over the period; the learning
rate is set to decrease from 0.8 to 0.2.

A strong agreement between expected and predicted runoff values is found when C1, C2 and
b are used to predict C3. However, dropping the C1 input variable leads to poor agreement.
Thus, the precipitation input variable C1 is found to be the main driver in a deterministic
process without which the original model would be illogical and nonsensical. Dropping the
soil moisture condition input variable C2 causes the model to be less accurate, but the model
still retains some physical properties. In the case of dropping the curve fitting exponent input
driver b, the revised model continues to produce a rational output. However the results are
not as good as in the first case.
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Figure 15.11 Neural network configuration for predicting output C3.

15.5 A single neuron corrupted by additive input noise

Consider a simple neural network comprising an input layer consisting of N source nodes
and an output layer, and a single neuron processing the input signals into an output signal.
The noise in the output of the neuron in the output layer originates at the input ends of the
synapses connected to the neuron, as shown in Figure 15.12. The output can be expressed as

y =
N∑

i=1

wi(xi + εi) (15.18)

where each εi is assumed to be an independent Gaussian random variable with zero mean
and common variance σ 2

ε . Equation (15.18) can be expressed as

y =
N∑

i=1

wixi +
N∑

i=1

wiεi =
N∑

i=1

wixi + υ (15.19)

where

υ =
N∑

i=1

wiεi (15.20)

Equation (15.19) is similar to equation (15.8). The quantity υ defines the composite component
noise with variance equal to the sum of variances of individual components:

σ 2
υ =

[
N∑

i=1

wi

]2

σ 2
ε (15.21)

Similar to the preceding case, it is assumed that output Y of the neuron in the output layer
is Gaussian distributed with variance σ 2

y . The conditional entropy H(Y | �X) is given as

H(Y | �X) = H(υ) = 1

2
(1 + 2πσ 2

υ ) = 1

2


1 + 2πσ 2

ε

(
N∑

i=1

wi

)2

 (15.22)
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Figure 15.12 A single neuron corrupted by additive input noise.

Using equations (15.12), (15.21) and (15.22) in equation (15.11), one gets

T(Y , �X) = 1

2
ln




σ 2
y

σ 2
ε

(
N∑

i=1
wi

)2


 (15.23)

Under the constraint that σ 2
ε is constant, T(Y , �X) is maximized by maximizing the ratio of σ 2

y

to

(
N∑

i=1
wi

)2

.

Example 15.4: A rating curve relates sediment discharge or concentration to stream dis-
charge, which can be used to estimate sediment loads from stream flow records. The sediment
rating curve generally represents a functional relationship of the form:

S = aQb + εi

where Q is stream discharge, S is either suspended sediment concentration or yield, and εi is
white noise. Values of a and b for a particular stream are determined from data using a linear
regression between (log S) and (log Q). How can a simple ANN model represent this rating
curve?

Solution: Daily data for a year or 365 days are used to train the ANN models and 365
daily data were used for testing. The input combinations used in this application to estimate
suspended sediment values are (i) Q(t); (ii) Q(t) and Q(t − 1); (iii) Q(t) and S(t − 1); and
(iv) Q(t) and S(t − 1), where Q(t) and S(t) represent, respectively, stream flow and sediment
concentration at day t. To set up the model a MATLAB code is used. An ANN structure ANN(2,
5, 1) that consists of two input nodes, five nodes in hidden layers and one output node is used.
In this case the input layer contains the current and one antecedent sediment [Q(t), S(t − 1)]
and the output layer consists of the unique sediment concentration value at day t. The R2

value for the testing period is 0.876. For the sediment rating curve, it is 0.852.
The weight and bias matrix of the trained network are given in columns 1, 2 and 3 of

Table 15.2 and in Figure 15.13. Assume that Q(t) = x1 = 25.47 and S(t − 1) = x2 = 3.81 is
given. Output of the network can be obtained as follows:
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1 Sum the weighted inputs, that is,

Nodj =
N∑

i=1

(Wijxi) + bj

where Nodj = summation for the j-th hidden node; N = total number of input nodes; Wij =
connection weight of i-th input and j-th hidden node; xi = input at the i-th input node; and
bj = bias value at the j-th hidden node. Calculations are shown in column 4.
2 Transform the weighted input (tansig function is used):

outj = 2/(1 + exp(−2Nodj)) − 1

where outj = output from the j-th hidden node (column 5).
3 Sum the hidden node outputs:

Nodk =
NH∑
J=1

(Wjkoutj) + bk

where Nodk = summation for the k-th output node; NH = total number of hidden nodes;
outj = output from the j-th output node; Wjk = connection weight between the j-th hidden
and k-th output node (column 6); and bk = bias at the k-th output node (column 7). Since
there is a one node in the output layer, summation of hidden node outputs produces one
result which is equal to 3.491.
4 Transform the weighted sum (purelin function is used):

outk = Nodk

where outk = output at the k-th output node. In this manner, the output obtained is 3.491.

Example 15.5: The longitudinal dispersion coefficient (K) in the literature is predicted using
empirical models that relate the coefficient to channel physical characteristics (channel width,
W and channel sinuosity, σ ) and flow characteristics (flow depth, H, flow velocity, U, and
shear velocity, u∗). For example, Seo and Cheong (1998) derived the following equation to

Table 15.2 A sample calculation for given network.

Nodes J W1j W2j bi Nodj outj Wjk bk Nodk

1 2 3 4 5 6 7 8

1 17.705 13.816 −581.888 −660.195 −1.000 1.361 0.589 −0.772
2 −0.437 0.951 13.891 20.282 1.000 1.795 0.589 2.384
3 −71.837 −10.395 1969.257 2069.231 1.000 −0.424 0.589 0.165
4 −11.980 −1.596 307.722 304.232 1.000 −0.770 0.589 −0.181
5 0.076 −0.774 −0.249 −1.524 −0.909 −1.436 0.589 1.895

Sum = 3.491
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x1 = 25.4

O = 3.491

w11 = 17.705

x2 = 3.81

w11 = 1.361

w21 = 1.795
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w41 = −0.770

w51 = −1.436
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b1 = 13.891
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w14 = −11.980
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w22 = 0.951

w23 = −10.395

w24 = −1.596

w25 = −0.774

w15 = 0.076

Figure 15.13 Weights and bias of a trained network.

predict the dispersion coefficient in natural streams:

K = 5.915
(
Hu∗

) (
B

H

)0.62 (
U

u∗

)1.428

where K is the dispersion coefficient, H is flow depth, U is flow velocity, B is channel width, and
u∗ is shear velocity. Tayfur and Singh (2005) compiled 72 sets of data from 30 different rivers.
Outline the steps to predict K using an ANN model and predict K just using discharge data.

Solution:
Step 1: Randomly partition 70% and 30% of data, respectively, for the training and testing

sets, paying attention to make sure that both sets have similar order of magnitude of
mean, maximum and minimum values.

Step 2: Construct a three-layer ANN, the input layer having four neurons for B, H, U, u∗
and output layer with one neuron for K. Start 2N + 1 (where N is number of input layer
neurons) thumb rule for the number of hidden layer neurons. That is nine hidden layer
neurons.

Step 3: Assign random values for the connection weights and bias nodes. As an input,
assign −1 for the bias nodes. Employ the learning rate of 0.1 and choose the sigmoid
activation function.

Step 4: Start the iteration until the error levels off.
Step 5: After training, employ the same network to test the remaining 30% the data.
Step 6: Using several error measures, test the performance of the model.

Yes, K can be predicted using only flow discharge data. We can compute Q = HUB. Then,
we can construct the 1-3-1 network and follow the steps outlined above.
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15.6 Redundancy and diversity

Consider a network of two neurons each receiving inputs from N-source nodes in the input
layer and producing outputs in the output layer. The outputs are corrupted during the
processing of input signals as shown in Figure 15.13. The outputs of the two neurons can be
expressed as

y1 =
N∑

i=1

w1ixi + ε1 (15.24)

and

y2 =
N∑

i=1

w2ixi + ε2 (15.25)

where w1i are the synaptic weights from the input layer to neuron 1 in the output layer, and
w2i are the synaptic weights from the input layer to neuron 2 in the output layer.

In order to determine the average mutual information T(Y , �X) the following assumptions
are invoked:
1 The noise terms ε1 and ε2 are uncorrelated:

E[ε1, ε2] = 0 (15.26)

2 The noise terms ε1 and ε2 are Gaussian distributed with zero mean and common variance σ 2
ε .

3 Each noise term is uncorrelated with the input signals:

E[εi, Xi] = 0, for all i = 1, 2, and j = 1, 2, . . . , N (15.27)

4 The output signals Y1 and Y2 are each Gaussian distributed with zero mean.
The input is a vector defined as: �X = [X1, X2, . . . , XN]T , and output is a vector defined as

Y = [Y1, Y2]T , and the noise vector is defined as [ε1, ε2]T , where T is transpose. For the average
mutual information, equation (15.9) holds for vectorial quantities as well:

T( �X, �Y) = H(�Y) − H(Y | �X) (15.28)

Using the same rationale as before, H(Y | �X) can be expressed as

H(�Y | �X) = H(�ε) (15.29)

H(�ε) can be written as

H(ε) = H(ε1, ε2) = H(ε1) + H(ε2) = 1 + ln(2πσ 2
ε ) (15.30)

because ε1 and ε2 are statistically independent and equation (15.13) is invoked.
The entropy of the output vector Y can be written as

H(�Y) = H(Y1, Y2) = −
∞∫

−∞

∞∫
−∞

f (y1, y2) ln[f (y1, y2)]dy1dy2 (15.31)
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where f (y1, y2) is the joint PDF of Y1 and Y2 which are correlated because each depends on
the same input signals. If R denotes the correlation matrix of the output vector then

R = E
[
YYT

] =
[

r11 r12

r21 r22

]
(15.32)

where

rij = E[YiYj], i, j = 1, 2 (15.33)

Using equations (15.24) and (15.25) and the assumptions in equations (15.26) and (15.27),
individual elements of the correlation matrix can be written as

r11 = σ 2
y1

+ σ 2
ε (15.34)

r12 = r21 = σy1
σy2

ρy1y2
(15.35)

r22 = σ 2
y2

+ σ 2
ε (15.36)

where ρy1y2
is the correlation coefficient of output signals Y1 and Y2, and σ 2

y1
and σ 2

y2
are the

variances of Y1 and Y2. These are all in the absence of noise.
To determine H(Y), one can consider an N-dimensional Gaussian distribution discussed in

Chapter 5, defined as

f (Y) = 1

2π det(R)
exp[−1

2
YT R−1Y] (15.37)

where det(R) is the determinant of matrix R, and R−1 is the inverse of R. H(Y) can be written
as

H(Y) = ln[(2πe)N/2 det(R)] (15.38)

In the present case, N = 2 and Y is composed of Y1 and Y2. Equation (15.38) reduces to

H(Y) = 1 + ln[2π det(R)] (15.39)

Inserting equations (15.30) and (15.39) in equation (15.28), one obtains

T(Y , �X) = ln[
det(R)

σ 2
ε

] (15.40)

For a fixed variance σ 2
ε , maximizing the determinant of R one obtains the maximum T(Y , �X).

From equations (15.34) and (15.36), the determinant of R can be expressed as

det(R) = r11r22 − r12r21

= σ 4
ε + σ 2

ε (σ 2
y1

+ σ 2
y2

) + σ 2
y1

σ 2
y2

+ (1 − ρ2
y1y2

) (15.41)

Depending on the value of noise variance σ 2
ε , two cases can be identified. First, if σ 2

ε is large
then the third term on the right side can be ignored. In this case maximization of det(R)
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depends on the maximization of σ 2
y1

+ σ 2
y2

. This can be got by maximizing either σ 2
y1

or σ 2
y2

separately in the absence of noise.
In the presence of noise, variances become σ 2

y1
+ σ 2

ε and σ 2
y2

+ σ 2
ε . In accordance with the

principle of maximum information preservation, T(Y , �X) can be maximized by maximizing
the variance of either Y1 or Y2 for a fixed noise variance.

Second, if the noise variance is small, then the third term in equation (15.41), σ 2
y1

σ 2
y2

(1 − ρy1y2
), becomes important. T(Y , �X) can then be maximized by doing an optimal trade

off between two options: 1) keeping σ 2
y1

and σ 2
y2

large; or 2) making ρ2
y1y2

small or making
Y1 and Y2 independent.

From the above analysis one concludes: 1) If there is a high noise level, the two output
neurons yield the same linear combination of inputs, provided there is only one such
combination of inputs that produces a response with maximum variance. This then suggests
that this case favors the redundancy of response. 2) If the noise level is low, then the two
output neurons yield different combinations of inputs, even though such an option may
produce a smaller output variance. This means that this case favors the diversity of response.

15.7 Decision trees and entropy nets

A decision tree represents a hierarchy of stages through which a decision in a given situation is
reached. Depending on their construction, decision trees can be classified into what is referred
to as classifiers. Decision tree classifiers are also called hierarchical classifiers. These classifiers
accommodate the underlying distribution of input data whatever that may be, and are capable
of generating arbitrarily complex decision boundaries as learnt from a set of training vectors. In
decision trees, learning is noninteractive or single step. One advantage is that all examples are
considered at the same time to formulate hypotheses. On the other hand, in neural networks
learning is incremental, more akin to human learning, where hypotheses are continuously
improved as a result of more and more training examples.

Decision tree classifiers and layered neural networks have two significant differences. First,
tree classifiers are sequential wherein decisions are made in a sequence of steps, whereas
layered ANNs have massive parallelism. Second, tree classifiers have limited generalization
capabilities, whereas layered ANNs do not suffer from this limitation. Nevertheless, similarities
between tree classifiers and layered networks can be exploited for the development and design
of neural networks for classification.

A decision tree can be described by an order of set nodes which are root, internal, terminal or
leaf. Each of the internal nodes is connected with a decision function of one or more features.
The terminal or leaf nodes of the decision tree are connected with actions or decisions that
the system is expected to perform. Most commonly used tree form is binary, but one can have
an m-ary decision tree where there are m descendants for every node. One can also find an
equivalent binary tree for any m-ary decision tree.

A decision is made within a space called decision space. Indeed this is the solution domain.
A decision tree partitions this space in a hierarchical manner. In the case of a binary decision
tree, beginning with the root node, each successive internal node divides its associated region
into two half spaces where the node decision function defines the dividing hyperplane.
Figure 15.14a shows a binary decision tree and the corresponding hierarchical partitioning
introduced by the tree. Traversing the tree from the root node to one of leaf nodes using
the unknown pattern vector charts the course of classification. The response obtained by the
unknown pattern constitutes the class or label connected to the leaf node that is reached
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(Temp = temperature (0F), R = rainfall (inches), V = wind
velocity (miles/h)

Figure 15.14a An example of a decision tree. (square boxes denote terminal nodes).

x1

Temp

R

V

ANDing
layer

Partioning
layer

ORing
layer

x2

Figure 15.14b Three-layered mapped network for the decision tree.

by the unknown vector. When a particular path is followed from the root node to the leaf
node, it is implied that the conditions along that path are satisfied. Looking at the tree, each
path implements an AND operation on a set of half spaces. It is likely that two or more
leaf nodes lead to the same decision, then the corresponding paths form an OR relationship.
Now comparing a layered neural network for classification, it also implements ANDing of
hyperplanes followed by ORing in the output layer. This leads to the conclusion that a decision
tree and a layered network are equivalent in terms of input-output mapping. In other words,
a decision tree can be re-constructed as a layered network following certain rules, which can
be stated as follows (Sethi, 1990):
1 The number of neurons in the first layer of the layered network, called the partitioning
layer, is the same as the number of internal nodes of the decision tree. Each of these neurons
implements one of the decision functions of internal nodes.
2 All leaf nodes have a corresponding neuron in the second hidden layer, called the ANDing

layer, where the ANDing is implemented.
3 The number of neurons in the output layer is the same as the number of distinct classes or
actions. In other words the ORing of those paths that result in the same decision is implemented
in this layer.
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4 The hierarchy of the tree is implemented by the connections between the neurons from the
partitioning layer and the neurons from the ANDing layer.

This is illustrated by an example.

Example 15.6: Consider a case of a multipurpose reservoir where the water level (WL) is the
primary determinant. The reservoir is used for flood control, hydropower generation, water
supply, irrigation, and recreation. Depending upon the water level the reservoir is used and
operated in different ways. The maximum allowable water level is 30 m. If the water level is
above 30 m, any additional increase in the reservoir level is not accommodated, because the
storage space is needed for flood storage. If the water level is equal to or more than 25 m,
water is released to create space for flood storage. If it is equal to or more than 20 m it is used
for hydropower generation. If the level is equal to or less than below 15 m, water is stored
primarily for domestic water supply. Construct a decision tree and construct a layered mapped
network for the decision tree.

Solution: The decision tree for this example is shown in Figure 15.15. The corresponding
layered mapped network is shown in Figure 15.16. The following steps can be followed to
constitute the decision tree and corresponding layered network:
1 There are four internal nodes of the decision tree which are WL ≥ 30, WL ≥ 25,
WL ≥ 20, and WL ≥ 15. So it should be four nodes in the partitioning layer of the
three-layered network.
2 Five leaf nodes in the decision tree are represented by five nodes in the ANDing layer of the
mapped network. In this layer ANDing operation is implemented.
3 Two distinct decisions whether demand (flood control, hydropower generation, water
supply, irrigation, and recreation) is provided or not should stand for two neurons in the
output (O Ring) layer of the correspondent network. For instance, according to the situation

WL

WL≥30

WL≥25

WL≥20

WL≥15

y n

y n

y n

y n

Discharge for
flood control

Discharge
throughout
spillway

Hydropower
production

Domestic
water supply

WL = Water level (m)

Figure 15.15 Decision tree for Example 15.6.
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ORing
layer

25 m

20 m

15 m

Partioning
layer

Figure 15.16 Three-layered mapped network for the decision tree.

that WL exceeds 30 m level or not, there are two options: discharge throughout the spillway
or accommodate for flood control.
4 Neurons from the partitioning layer and the neurons from the ANDing layer are connected
to each other by the implementation of the hierarchy of the tree.

This example shows a straightforward mapping of a decision tree into a layered network
of neurons. However, the question arises: Is the number of neurons in the partitioning
layer optimum? The mapping rules do not answer this question, although the tree-to-network
mapping does specify the number of neurons in each of the three layers of the neural network.
It may be noted that in the network so obtained except for one neuron in the partitioning
layer that corresponds to the root node of the decision tree, the remainder of the neurons
do not have connections with all the neurons in the adjacent layers. This results in fewer
connections which are an advantage. This network is driven by the mutual information of the
data-driven tree generation scheme, and can therefore be called an entropy net.

When designing a tree there are essentially three steps involved. First, the hierarchical
ordering and the choice of node decision functions need to be defined. This can be accomplished
by defining a goodness measure in terms of mutual information. Consider a variable X and its
measurement defined by x. Let x = y define the partitioning of the one-dimensional feature
space into two outcomes x1 and x2: values of measurement x greater than y as x1 and values of
x less than y as x2. There are two classes here and two outcomes. Then the amount of mutual
information about the pattern classes of event X can be expressed as

H(C; X) =
2∑

i=1

2∑
j=1

p(ci, xj) log2[p(ci|xj)|p(cj)] (15.42)

where C denotes the set of pattern classes and p(.)’s denote the various probabilities. Clearly
the threshold pays a pivotal role here, and therefore the choice of it is critical. One would
want to select the value of y such that X yields the maximum information. This means that
the value of y that maximizes equation (15.42) should be selected over all possible values of y.
Thus, the value of average mutual information gain (AMIG) can serve as a basis for evaluating
the goodness of partitioning. As new data become available and new knowledge is gained, the
neural network can be modified by modifying the connection strengths or weights.
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Second, a decision needs to be made as to when a node is to be labeled as a terminal node.
Third, a decision rule is to be spelled out at each terminal node.

Questions

Q.15.1 An event-based hydrograph can be predicted using the following expression (Mora-
marco et al., 2005):

Qd(t) = α
Ad(t)

Au(t − TL)
Qu(t − TL) + β

where Qu is upstream discharge; Qd is downstream discharge; Ad and Au are effective
downstream and upstream cross sectional flow areas obtained from the observed
stages, respectively; TL are wave travel time depending on the wave celerity, c; and α

and β are model parameters. Given the following events observed in Tiber River basin,
construct an ANN to predict flow rate at a downstream station. Explain step-by-step.
Note that Moramarco et al. (2006) measured data every half an hour, assuming that
you have the data. Main characteristics of observed flood events at stations on the
Tiber River are given as:

Date Santa Lucia Ponte Felcino

Qb

(m3/s)

Qp

(m3/s)
V

(106m3)
Qb

(m3/s)

Qp

(m3/s)
V

(106m3)
TL

(h)

Jan. 1994 35.6 108 19 50.8 241 34.7 3.0
May 1995* 4.2 71.0 10.3 8.8 138.7 19.1 4.0
Jan. 2003 24 58 13.5 50 218 40.9 3.5
Feb. 2004* 22 91 7.4 55 276 27.3 3.5

Qb = base flow; Qp = peak discharge; V = direct runoff volume; TL = travel time
* Used for ANN model training

Q.15.2 For the following network, update weights between output and inner layers and inner
and input layers.

w14 = 6

2

1

4

3

5

12

01

w23 = 4

w24 = 5

v45 = 4

v35 = 2

w13 = 3

1.5 1.2

Q.15.3 In order to monitor an earth-fill dam body in terms of anomaly seepage, piezometers
can be placed on the dam body. The levels in the piezometers show the pressure in
the dam body. Swiatek (2002) monitored the Jaziorsky dam body seepage path using
four piezometers plus the water levels in the upper and lower reservoirs. Swiatek
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monitored levels from 1995 to 2002 every other week. Can you develop ANN to
predict seepage path. Explain step-by-step.

Q.15.4 Obtain stage discharge data for a gaging site on a river. Then develop an ANN model
for the rating curve for this site. Compare this model with the standard rating curve.

Q.15.5 Obtain monthly rainfall and runoff volume data for a small watershed and develop an
ANN model and compare it with a water balance model.

Q.15.6 Obtain data on event basis for rainfall, runoff and erosion. The objective is to predict
sediment yield. Develop an ANN model and compare it with regression model or
another model.

Q.15.7 Using the SCS-CN method, determine curve number for different types of land uses,
soil moisture and soil type. Now develop an ANN model and compare the two.

Q.15.8 Obtain data for monthly pan evaporation and relevant hydrometeorological variables.
Develop an ANN model to predict monthly evaporation and compare it with a standard
evaporation estimation method.

Q.15.9 Obtain data on infiltration capacity rate for a watershed. Develop man ANN model
and compare with a standard infiltration equation.
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16 System Complexity

Hydrology, environmental and ecological sciences, and water engineering entail a range of
systems from simple to complex. Complexity or simplicity is often viewed intuitively in terms
of mathematical structure. The effect of complexity in both artificial and natural systems needs
to be quantified by objective and operationally meaningful measures of system complexity,
and these measures should supplement intuitive and quantitative measures of complexity. In
recent years, entropy has been used to quantify complexity in dynamical systems by Bates
and Shepard (1993), in hydrologic time series by Englehardt et al. (2009), in physics by
Grassberger (1986), in ecosystems by Lange (1999), and in biology by Jimenez-Montano et al.
(2002). The objective of this chapter is to discuss complexity and related aspects using entropy.
Ferdinand (1974) developed a complexity measure for network systems using the principle
of maximum entropy (POME), Cornacchio (1977) extended this measure, and Kapur (1983)
developed additional measures. This chapter draws from the works of these authors.

16.1 Ferdinand’s measure of complexity

Consider a system which has measurable properties. Any measurable property of the system
can be called a system observable, as for example, the values of a function of the number of
system defects or errors. The observable, its values and the function can also be referred to as
a system observable. For example, if there are n defects or errors and f represents a system
observable, then function f (n) represents the value of the observable.

Now consider a system that has a number of defects denoted by n ≥ 0; here the number of
defects n is regarded as a random variable. Let N ≥ 0 denote the maximum number of defects
that can occur. This means that 0 ≤ n ≤ N. The probability that n defects occur in the system is
denoted as 0 ≤ p(n) ≤ 1, that is, p(n) is the probability distribution of n. The Shannon entropy
of p(n) or n can be expressed as

H (n) = −
N∑

n=0

p (n) ln p (n), p (n) ≥ 0, n = 0, 1, 2, . . . , N (16.1)

The objective is to determine the least-biased probability distribution, p(n), in accordance with
the principle of maximum entropy (POME), subject to specified constraints. Determination of
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entropy-based distributions has been discussed in Chapter 4, but it will be revisited for the
sake of completeness.

16.1.1 Specification of constraints
The probability distribution p(n) must satisfy

N∑
n=0

p(n) = 1 (16.2)

Another constraint that p(n) must satisfy can be specified in terms of the mean number of
defects, m, that can occur in the system:

N∑
n=0

np(n) = m (16.3)

Thus, the canonical distribution p(n) is specified by two parameters m and N. For purposes
of simplicity, this distribution forms the basis for the analysis of system complexity in this
chapter. It may, however, be remarked that depending on the system under consideration,
other constraints can be specified that the probability distribution must satisfy.

16.1.2 Maximization of entropy
The Shannon entropy, given by equation (16.1), can be maximized, using the method of
Lagrange multipliers, subject to the constraints expressed by equations (16.2) and (16.3). To
that end, the Lagrangean function L can be expressed as

L = −
N∑

n=0

p(n) ln p(n) − (λ0 − 1
) ( N∑

n=0

p(n) − 1

)
− λ1

(
N∑

n=0

np(n) −m

)
(16.4)

where λ0 and λ1 are the Lagrange multipliers. Differentiating equation (16.4) and recalling
the Euler-Lagrange calculus of variation, one gets

∂L

∂p
= 0 = −ln p(n) − λ0 − λ1n (16.5)

Equation (16.5) yields the least-biased entropy-based probability distribution of n:

p(n) = exp
(−λ0 − λ1n

)
(16.6)

Equation (16.6) describes the probability of n defects occurring in the system. It has two
unknowns, λ0 and λ1, which can be determined using equations (16.2) and (16.3). It goes
without saying that equation (16.6) satisfies constraint equations (16.2) and (16.3).

16.1.3 Determination of Lagrange multipliers
Inserting equation (16.6) in equation (16.2), one obtains

exp
(−λ0

) N∑
n=0

exp
(−λ1n

) = 1 (16.7)
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Similarly, substituting equation (16.6) in equation (16.3), one gets

N∑
n=0

n exp
(−λ0 − λ1n

) = m (16.8)

Equations (16.7) and (16.8) can be solved for λ0 and λ1. Combining equations (16.7) and
(16.8), one obtains

m =

N∑
n=0

n exp
(−λ1n

)
N∑

n=0

exp
(−λ1n

) (16.9)

The only unknown in equation (16.9) is λ1. Equation (16.9) can be solved for λ1 in terms of
m and then substituting it in equation (16.7) one gets λ0.

16.1.4 Partition function
The partition function provides a link between the mechanical properties and thermodynamic
properties of a system. It describes the partitioning of the system among different energy
levels in the equilibrium distribution. Thus, important mechanical properties of the system
are expressed in terms of the derivatives of the logarithm of the partition function. A high
value of entropy is a measure of low degree of information. Thus, POME postulates that an
equilibrium distribution corresponds to the condition of maximum ignorance or lowest degree
of information for a given average number of elements distributed in the system.

Let α = exp(−λ1). Parameter α is used as a measure of complexity and is called the coefficient
of complexity. Then, equation (16.7) can be written in terms of α as

exp
(
λ0

) = Z(α, N) =
N∑

n=0

exp
(−λ1n

) =
N∑

n=0

αn (16.10)

Term Z(α, N) or exp(λ0) is called the partition function and is defined by equation (16.10). It
can be written as

exp
(
λ0

) = Z(α, N) =
N∑

n=0

αn = 1 − αN=1

1 − α
, α < 1 (16.11)

= αN+1 − 1

α − 1
, α ≥ 1 (16.12)

From equation (16.10), α is plotted as a function of λ1 as shown in Figure 16.1.
Figure 16.2 plots the partition function as a function of N.
Equation (16.9) can be written in terms of α as

m =

N∑
n=0

nαn

N∑
n=0

αn

(16.13)
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Taking the logarithm of equation (16.10), one obtains

λ0 = ln Z(α, N) = ln

(
N∑

n=0

αn

)
(16.14)

Differentiating equation (16.14) with respect to α one obtains

dλ0

dα
= d ln Z(α, N)

dα
=

N∑
n=0

nαn−1

N∑
n=0

αn

(16.15a)

Multiplying both sides of equation (16.15a) by α, one gets

α
d ln Z(α, N)

dα
=

N∑
n=0

nαn

N∑
n=0

αn

= m (16.15b)

Now one needs to determine if equation (16.15b) has only one solution and if that solution is
positive.
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Writing equation (16.15b) in terms of λ1 and noting that dα = − exp(−λ1)dλ1 = − αdλ1,
one gets

d ln Z
[
exp

(−λ1

)
, N
]

dλ1

= −

N∑
n=0

n exp
(−λ1n

)
N∑

n=0

exp
(−λ1n

) = −

N∑
n=0

n exp
(−λ0 − λ1n

)
N∑

n=0

exp
(−λ0 − λ1n

) = −m (16.16)

Equation (16.16) states that the derivative of ln Z[exp(−λ1), N)]/dλ1 is always negative
regardless of the value of λ1. Differentiating equation (16.16) again with respect to λ1, one
obtains

d2 ln Z
[
exp

(−λ1

)
, N
]

dλ2
1

=

N∑
n=0

n2exp
(−λ1n

)
N∑

n=0

exp
(−λ1n

) −

[
N∑

n=0

n exp
(−λ1n

)]2

[
N∑

n=0

exp
(−λ1n

)]2 > 0 (16.17)

Equation (16.17) shows that the second derivative is positive if λ1 is positive.
Furthermore, using equation (16.1) it can be shown that

∂2H(p)

∂p(n) ∂p(r)
=



0 if n �= r

− 1

p(n)
if n �= r

(16.18)

Equation (16.18) shows that the matrix of H(p) is negative definite and therefore H(p) is
maximized.

The probability distribution given by equation (16.6) can now be expressed with the use of
equations (16.11) and (16.12) as

p(n) = exp(−λ0)exp(−λ1n)

= αn 1 − α

1 − αN+1
, α < 1 (16.19a)

= αn α − 1

αN+1 − 1
, α ≥ 1 (16.19b)

Equation (16.19) gives the probability of having n defects in a system with the maximum
number of defects defined by N, and maximizes the Shannon entropy. Since p(n) denotes the
probability distribution of n defects in the system, it can be labeled as the defect probability
distribution. Figure 16.3 plots the distribution.

16.1.5 Analysis of complexity
Now consider the mean number of defects in the system as a function of α and N which can
be expressed from equation (16.15b). First, recalling equations (16.11) and (16.12),

N∑
n=0

αn = 1 − αN+1

1 − α
, α < 1 (16.20a)

= αN+1 − 1

α − 1
, α ≥ 1 (16.20b)
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Second,

N∑
n=0

nαn = α
(
1 − αN

)
(1 − α)2 − N

αN+1

1 − α
, α < 1 (16.21a)

= α
(
1 − αN

)
(α − 1)2 − N

αN+1

(α − 1)
, α ≥ 1 (16.21b)

Therefore, using equation (16.16b), and taking advantage of equations (16.20) and (16.21),
the mean number of defects can be expressed as

E(α, N) = α
d

dα
ln Z(α, N)

= α

1 − α
− (N + 1) αN+1

1 − αN+1
, α < 1 (16.22a)

= N −
[

α

α − 1
+ (N + 1) αN+1

αN+1 − 1

]
, α ≥ 1 (16.22b)

= N −
[

β

1 − β
− (N + 1) βN+1

1 − βN+1

]
, β ≤ 1 (16.22c)

where β = 1/α. For purposes of graphical illustration, a definition of β = 1/α comes in handy.
Now consider the behavior of E(α, N) as shown in Figure 16.4. Function E(α, N) is a

monotonic function of α and for α > 0 it is a monotonic function of N. Since quantity α is
characterized as a coefficient of complexity, a system can be considered as simple if α = 0;
in this case E(α, N) = 0. On the other hand, a system can be viewed as perfectly complex
if α → ∞; in this case E(∞, N) = N. Thus, α controls the number of defects expected in the
system or the degree of complexity. It may be stated that it is also possible to define a threshold
value of α, say α0, corresponding to which the system is simple.

Now consider E(α, N) when N → ∞.

lim
N→∞

E(α, N) =




α

1 − α
, α < 1

1

2N
, α = 1

N − β

1 − β
, β > 1

(16.23)

The point α = 1 corresponds to a critical point in the system and serves to separate the region
where the system is simple from the region where it is complex in which the number of
expected defects tends to approach its ultimate value of N.

Figure 16.5 plots normalized E(α, N)/N against α for α < 1 and α ≥ 1. When N → ∞, the
normalized function becomes a step function. Comparing equation (16.22) and (16.23), the
difference |E(α,∞) − E(α,N)| is exponentially small even for moderately large N, that is, for
all practical purposes:

E(α, N) ≈ E(α, ∞) for small α (16.24)

This is shown in Figure 16.5 which plots E(α, N) against α.
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16.1.6 Maximum entropy
The Shannon entropy of equation (16.6) can be written as

H(n) = λ0 + λ1E[n] = λ0 + λ1m (16.25)

The entropy given by equation (16.25) is a measure of defect in the system and can therefore
be characterized as a defect entropy. The entropy as a function of α and N can be obtained by
substituting equation (16.19) in equation (16.1) as

H(α, N) = −
N∑

n=1

p(n) ln

[
αn 1 − α

1 − αN+1

]

= ln
[
1 − αN+1]− ln(1 − α) −

[
α

1 − α
− (N + 1) αN+1

1 − αN+1

]
ln α, α < 1 (16.26a)

= ln
[
αN+1 − 1

]− ln(α − 1) −
[

N −
(

α

α − 1
+ (N + 1) αN+1

αN+1 − 1

)]
ln α, α ≥ 1

(16.26b)

= ln

[
1 − βN+1

1 − β

]
−
[

β

1 − β
− (N + 1) βN+1

1 − βN+1

]
ln β, β ≤ 1 (16.26c)

Entropy H(α, N) is a positive function, monotonically increasing with N for all values of α ≥ 0.
It is a monotonic increasing function for α < 1, and a monotonic decreasing function of α > 1,
as shown in Figure 16.6.
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In the limit when N → ∞,

H(α, ∞) = −ln(1 − α) − α ln α

1 − α
, 0 ≤ α < 1

= − ln(1 − β) − β ln β

1 − β
, 0 ≤ β < 1 (16.27)

Equation (16.27) exhibits a singularity at the critical α = 1, when it diverges as − ln |1 − α|.
Comparing equations (16.26) and (16.27), it is observed that the difference |H(α,N) − H(α,∞)|
is exponentially small even if N is moderately large. This means that the approximation
H(α,N) ∼ H(α,∞) for small α may be used. Equation (16.22) shows that for α < 1, the
expected number of defects in the system tends to become independent of N, but for α > 1,
the expected number of defects tends to the maximum value N. These two extremes are not
common in hydrology and water engineering. It is plausible that of most practical importance
is the region around the point α = 1 which is the dividing boundary between simplicity and
complexity. The function H(α, N)/ln(N + 1) is plotted against α for α < 1 and against β = 1/α
for α > 1 in Figure 16.7.

16.1.7 Complexity as a function of N
It seems intuitive that large systems are more complex having larger values of N, and vice
versa. Thus, it will be interesting to analyze the system behavior when α depends on N. Let

α = 1 − h = 1 − σ

N
(16.28)

where σ is a parameter, and h = σ /N, such that when h → 0, σ remains finite. Focusing on
the region around the point α = 1, which is of most interest, interesting results are obtained.
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Expanding equation (16.28) in Taylor series at α = 1, one gets

E[σ , N] ≈
1

2
N

(
1 − 1

3
σ

)

1 − 1

2
σ + σ 2

6

(16.29)

H(α, N) ∼= ln(N + 1) (16.30)

This behavior is obtained if the coefficient of complexity is defined as an exponential function:

α = exp(−σ/N) (16.31)

Thus, the system is simple if σ > 0 so that α < 1. The complexity increases with N when σ > 0.
One can now obtain the following for σ > 0:

Z
[
exp(−σ/N) , N

] = N

σ

[
1 − exp(−σ)

] = 1

2

[
1 + exp(−σ)

]+ O
( σ

N

)
(16.32)

E
[
exp(−σ/N) , N

] = NA(σ ) − B(σ ) + O
( σ

N

)
(16.33)

H
[
exp(−σ/N) , N

] = ln N + C (σ ) + O
( σ

N

)
(16.34)

where

A(σ ) = 1

σ
− 1

exp(σ ) − 1
(16.35)

B(σ ) = 1

2
+ 1

exp(σ ) − 1
− σexp(σ )[

exp(σ ) − 1
]2 (16.36)

C (σ ) = σ A(σ ) + ln

{
1

σ

[
1 − exp(−σ)

]}
(16.37)

The mean number of defects becomes an extensive property of the maximum number of
defects N and the tendency of faults is proportional to ln N.

For α ≥ 1,

α = exp(−σ/N) , σ ≥ 0 (16.38)

Then,

E
[
exp(−σ/N, N)

] = N[1 − A(σ )] + B(σ ) + O
( σ

N

)
(16.39)

H
[
exp(−σ/N) , N

] = ln N + C (σ ) + O
( σ

N

)
(16.40)

Because B(σ ) is bounded,

B(0) = 0 ≤ B(σ ) ≤ 1

2
= B(∞) (16.41)

Thus, in the vicinity of the region α = 1 and for large N,

E[exp(−σ/N), N] ≈ NA(σ ), σ > 0
∼= N[1 − A(σ ), σ ≤ 0 (16.42)

Figure 16.8 displays functions A(σ ), 1 − A(σ ), B(σ ), and C(σ ) against σ for σ < 1 and against
1/σ for σ ≥ 1.
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16.2 Kapur’s complexity analysis

Kapur (1983) has given a solution for λ1 as follows. Let

α0 = exp
(−λ0

)
, α1 = exp

(−λ1

)
, and

dα

α
= −dλ1 (16.43)

Then, equations (16.6) to (16.8) become, respectively,

p(n) = α0α
n
1 (16.44)

α0

N∑
n=0

αn
1 = 1 (16.45)

α0

N∑
n=0

nαn
1 = m (16.46)

With the use of equations (16.45) and (16.46), α1 is determined as

f (α) = m + α1 (m − 1) + α2
1 (m − 2) + . . . + αN

1 (m − N) = 0 (16.47a)

so that

f (0) = m > 0, f (1) = (N + 1)

(
m − 1

2
N

)
, f (∞) < 0 (16.47b)

It is assumed that m < N. If m = N, the probability distribution is (0, 0, . . . , 0, 1) which is a
minimum entropy distribution with zero entropy. It then follows that

α1 ≤ 1 as m ≤ 1

2
N

α1 ≥ 1 as m ≥ 1

2
N (16.48)
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This leads to three cases and with the use of equation (16.48), one obtains:
1 If m < N/2, α1 < 1, the probability pn decreases as n increases.
2 If m = N/2, α1 = 1, the probability distribution is uniform, i.e., pi = 1/N, p1 = p2 = . . . = pN.
3 If m > N/2, α1 > 1, the probability pn increases as n increases.

The maximum entropy can be derived from equations (16.1) and (16.43) to (16.46) as:

H = −
N∑

n=0

pn ln
(
α0α

n
1

) = −ln α0 − ln α1

N∑
n=0

npn

= −ln α0 − m ln α1 = ln(1 + α1 + α2
1 + . . . + α1

N) − α2
1 + 2α2

2 + . . . + NαN
1

1 + α1 + . . . + αn
1

(16.49)

When α1 = 1, it can be shown that

dH

dα1

= 0,
d2H

dα2
1

< 0 (16.50)

Hence, H is maximum when α1 = 1 and its maximum value is ln (N = 1).
Kapur (1983) noted that the first maximization is over probability distributions with fixed

number of defects and the second maximization is for variation of number of defects. H is
a defect entropy (DE) and depends on m and is maximum when m = N/2, α1 = 1, and the
probability distribution is uniform. DE is less than ln (N = 1) when σ > 1 or σ < 1. Thus, the
mean number of defects serves as a criterion of system complexity. If the mean is more than
N/2, the system is complex, and it is simple if the mean is less than half. In this sense, it is
more a criterion of system defectiveness than of complexity. Kapur (1983) proposed another
measure of complexity of the system as the degree of departure of the probability distribution
of the number of defects from the uniform distribution. For a uniform distribution the entropy
is ln (N = 1). With increasing information about the system in terms of moments, the system
becomes more structured and more complex and its defect entropy becomes smaller. Let
complexity and simplicity be defined, respectively, as C and SI:

C = 1 − DE

ln(N + 1)
= 1 − Hmax

ln(N + 1)
= 1 − SI (16.51)

such that 0 ≤ C ≤ 1and C = 1 if and only if the system is complex. Likewise, 0 ≤ SI ≤ 1, and
SI = 1, if and only if the system is simple.

If the only constraint is defined as mean, then from equation (16.49),

C = 1

ln(N + 1)

[
ln(N + 1) − ln

(
1 + α1 + . . . + αN

1

)+ α1 + 2α2
1 + . . . + NαN

1

1 + α1 + . . . + αN
1

ln α1

]
(16.52)

If α1 = 1, equation (16.52) yields C = 0 and α1 ≥ 1, equation (16.52) yields C > 0. Hence,
the system is characterized as complex when the mean departs from N/2. In this way, the
measure of simplicity is the normalized defect entropy. This suggests that the system will have
maximum simplicity, subject to the structure imposed by the constraints.
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16.3 Cornacchio’s generalized complexity measures

Complexity measures, formulated above, depend on the specified constraints and are, there-
fore, not absolutely necessary. Cornacchio (1977) introduced the concept of conjugate
coefficients of complexity for determining the effect of additional constraints or a priori
information. The fundamental system characteristic is system error or defect, measured by the
number of defects or errors. This number (n) is assumed to be a random variable.

Relationships amongst the coefficient of complexity, expected number of defects, and
defect entropy are derived from the canonical distribution. Cornacchio (1977) extended these
relationships by specifying additional constraints on the number of defects or errors, such
as the delay time through a large network, execution time in a sequence of statements in a
computer program, the maximal flow in a directed network, half life of drug concentration in
a biological system, and so on. These constraints that encode information may be given in a
form other than the equality constraints or bounds. The existence of these constraints may be
inferred from the discrepancy between predicted and observed values of the expected number
of errors. The enlarged system of constraints represents all the information about the system
properties which can be expressed as functions of the number of system defects or errors.

Let R(1 ≤ R ≤ N − 1) be the equality constraints expressed as

N∑
n=0

p(n) fr (n) = fr = Fr, r = 1, 2, . . . , R (16.53)

and K be additional inequality constraints defined as

N∑
n=0

p(n) gr (n) ≤ Gk, k = 1, 2, . . . , K (16.54)

where f r(n) is the r-th function of n, r = 0, 1, 2, . . . , R; R = the maximum number of constraints;
fr = Fr is the average value of the r-th constraint; gk(n) is the k-th function of n, k = 1, 2, . . . , K;
K = the maximum number of inequality constraints; and Gk represent known bounds on the
expected values of K system attributes g1, g2, . . . , gK whose expected values are defined as

Gk = gk (n) =
N∑

n=0

p(n) gk (n) , k = 1, 2, . . . , K (16.55)

Of course, p(n) ≥ 0, n = 0, 1, 2, . . . , N and
N∑

n=0

p(n) = 1. This formulation has considered

R (equality constraints) and K (inequality constraints) on system observables.
To analyze the effect of additional constraints on system complexity, we first consider the

case where the additional constraints are expressed only in the form of equality constraints,
that is, R �= 1. Thus, the problem of governing the canonical distribution is formulated as

maximize H
(
p0, p1, p2, . . . , pN

) = −
N∑

n=0

p(n) log p(n) (16.56)

subject to equations (16.53) and (16.54). Cornacchio (1977) defined the coefficient of
complexity conjugated to the system observable fr as

αr = exp
(−λr

)
, r = 1, 2, . . . , R (16.57)
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where λr is the Lagrange multiplier associated with the r-th constraint. α1, α2, . . . , αR are
called conjugate coefficients of complexity. In particular, α1 is designed as the characterizing
coefficient of complexity. All these coefficients are functions of α1, α2, . . . , αR. For the total
probability, the constraint given by equation (16.57) is α0 = exp(−λ0).

Let P = (p0, p1, . . . , pN) and λ = (λ0, λ1, . . . λR). The Lagrangean L(P, λ) can be expressed as

L(P, λ) = −
N∑

n=0

p(n) log p(n) − (λ0 − 1
) [ N∑

n=0

p(n) − 1

]
−

R∑
r=1

λr[
N∑

n=0

fr (n) p(n)−fr] (16.58)

For a stationary point of L, P and λ must satisfy

∇λL(P, λ) = 0 (16.59)

∇PL(P, λ) = 0 (16.60)

where ∇λ represents the gradient of L with respect to λ and ∇P represents the gradient of L

with respect to P. Therefore,

∂L(P, λ)

∂P(n)
= 0, n = 1, 2, . . . , N (16.61)

which leads to

ln p(n) = −λ0 −
R∑

r=1

λrfr (n) , n = 0, 1, 2, . . . , N (16.62)

or

p(n) = exp[−λ0 −
R∑

r=1

λrfr (n)], n = 0, 1, 2, . . . , N (16.63)

p(n) = exp
(−λ0

) R∏
r=1

[
exp

(−λr

)]fr(n)
, n = 0, 1, 2, . . . , N (16.64a)

= α0

R∏
r=1

αfr(n)
r (16.64b)

Equation (16.64) represents the canonical distribution P = {p(1), p(2), . . . , p(N)} in terms of
the Lagrange multipliers {λr} and system observables {f r}.

Now we obtain the relationship between the Lagrange multipliers {λr} and system observ-
ables {f r}. To that end, substitution of equation (16.64) in equation (16.1) yields

exp
(−λ0

) N∑
n=0

R∏
r=1

[
exp

(−λr

)]fr(n) = 1 (16.65a)

or

α0

N∑
n=0

R∏
r=1

[
αfr(n)

r

]
= 1 (16.65b)



622 Entropy Theory and its Application in Environmental and Water Engineering

Equation (16.65) yields the partition function:

exp
(−λ0

) = Z−1 (λ1, λ2, . . . , λR

)
(16.66)

where

exp
(
λ0

) = Z
(
λ1, λ2, . . . , λR

) =
N∑

n=0

R∏
r=1

[
exp

(−λr

)]fr(n)
(16.67a)

or

α0 =
N∑

n=0

fr (n)

R∏
r=1

αr
fr(n) = Fr, r = 1, 2, . . . , R (16.67b)

The canonical distribution can be expressed in terms of the partition function as

p(n) = 1

Z
(
λ1, λ2, . . . , λR

) R∏
r=1

[
exp

(−λr

)]fr(n)
, n = 0, 1, 2, . . . , N (16.68)

Substitution of equation (16.68) in equation (16.53) yields

Z−1 (λ1, λ2, . . . , λR

) N∑
n=0

fr (n)

R∏
r=1

[
exp

(−λr

)]fr(n) = Fr, r = 1, 2, 3, . . . , R (16.69)

Equation (16.68) can be expressed in terms of conjugate complexities αr by substituting
αr = exp(−λr) as

p(n) = Z−1 (λ1, λ2, . . . , λR

) R∏
r=1

(
αr

)fr(n)
, n = 0, 1, 2, . . . , N (16.70)

Likewise, equation (16.69) can be expressed as

Z−1 (λ1, λ2, . . . , λR

) N∑
n=0

fr (n)

R∏
r=1

[αr)]
fr(n) = Fr, r = 1, 2, 3, . . . , R (16.71a)

or

Z
(
α1, α2, . . . , αR

) =
N∑

n=0

R∏
r=1

[αr)]
fr(n) (16.71b)

where Z(α1, . . . , α2, . . . ,αR) is in reality Z(−ln α1, − ln α2, . . . , − ln αR). Equation (16.71b)
shows the dependence of the partition function on conjugate complexities.

Equations (16.69) and (16.71b) can be employed in one of two ways. First, given
Fr, r = 1, 2, . . . , R, λ1, λ2, . . . , λR and then α1, α2, . . . , αR can be determined by solving equation
(16.69) or (16.71b), respectively. On the other hand, given λ1, λ2, . . . , λR or α1, α2, . . . , αR,
F1, F2, . . . , FR can be determined by solving equation (16.69) or (16.71b), respectively.
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Differentiating equation (16.67) with respect to λr, one gets

∂Z

∂λr

= −
N∑

n=0

fr (n)

R∏
s=1

exp
[−λsfs (n)

]
exp

[−λrf (n)
]

(16.72a)

or

∂Z

∂λr

= −
N∑

n=0

fr (n)

R∏
r=1

exp
[−λrf (n)

]
, r = 1, 2, . . . , R (16.72b)

From equation (16.72), it is seen that equation (16.71b) can be written as

∂ ln Z
(
λ1, λ2, λR

)
∂λr

= −Fr, r = 1, 2, . . . , R (16.73)

Noting that

∂Z
(
λ1, λ2, λR

)
∂λr

= ∂Z
(
α1, α2, . . . , αR

)
∂αr

∂αr

∂λr

= −αr

∂Z
(
α1, α2, . . . , αR

)
∂αr

(16.74)

one can write

αr

∂Z
(
α1, α2, . . . , αR

)
∂αr

= Fr, r = 1, 2, 3, . . . , R (16.75)

Now the defect entropy H(α1, α2, . . . , αR) can be expressed with the use of equations (16.70)
and (16.71b) as

H
(
α1, α2, . . . , αR

) = ln Z
(
α1, α2, . . . , αR

)−
N∑

r=1

Fr ln αr (16.76)

which is in terms of the expected values of observables and conjugate complexities.
Equation (16.76) shows that if Fr, r = 1, 2, . . . , R, are known then αr, r = 1, 2, . . . , R, are

known and αr can be determined from equation (16.71b) and then H is determined. From
equations (16.71b) and (16.76),

N∑
n=0

fr (n) α
f1(n)
1 α

f2(n)
2 . . . α

fR(n)
R∑

α
f1(n)
1 α

f2(n)
2 . . . α

fR(n)
R

= ar, r = 1, 2 . . . , R (16.77)

Let a1 = N/2. Then

N∑
n=0

nα
f1(n)
1 α

f2(n)
2 . . . α

fR(n)
R∑

α
f1(n)
1 α

f2(n)
2 . . . α

fR(n)
R

= N

2
(16.78)
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Equation (16.77) expresses α1 as a function of α2, α3, . . . , αR. Cornacchio (1977) defined a
µ-transition point, (α1, α2, . . . , αR), in the µ-dimensional Euclidean space, such that

E
[
f1 (n)

] = E[n] = F′ [α1

(
α2, α3, . . . , αR

)
, α2, α3, . . . , αR

] = 1

2
N (16.79)

H = H
[
α1

(
α2, α3, . . . , αR

)
, α2, α3, . . . , αR

] = ln(N = 1) (16.80)

Equations (16.79) and (16.80) yield

E(n) = F′ (α1

) = N

2
(16.81)

H
(
α1

) = ln(N + 1) (16.82)

where α1, that is, the transition point α1, α2, . . . , αR) for R = 1 reduces to α1.

16.3.1 Special case: R = 1
This indicates that the only constraint is the expected number of system errors or defects.
Then the partition function from equation (16.67) reduces to

Z
(
λ1, N

) =
N∑

n=0

exp[−α1)]n =
N∑

n=0

αn
1 = 1 − αN=1

1

1 − α1

(16.83)

From equation (16.64), the canonical distribution becomes

p(n) = 1 − αN+1
1

1 − α1

αn
1, n = 0, 1, 2, . . . , N (16.84)

The expected number of system defects, F′(α1;N) can be obtained using equation (16.69) as

F′ (α1; N
) = Z−1 (α1; N

) N∑
n=0

nαn
1 (16.85)

which reduces to

F′ (α1; N
) = α1

1 − α1

− (N + 1)
αN+1

1

1 − αN+1
1

(16.86)

The defect entropy then is obtained from equation (16.86) as

H
(
α1; N

) = ln

[
1 − αN+1

1

1 − α1

]
−
[

α1

1 − α1

− (N + 1) αN+1
1

1 − αN+1
1

]
ln α1 (16.87)

These results concur with those derived by Ferdinand (1974).

16.3.2 Analysis of complexity: non-unique K-transition points and
conditional complexity

The preceding discussion shows that if the only constraint for the canonical distribution is the
expected number of system errors then with α1 = 1, the mean number of errors F1 and the
defect entropy H take on the values N/2 and ln (N = 1), respectively. Furthermore, α1 = 1
can be considered as a critical point or a transition point. This point separates the region in
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α1-space where the system can be classified as simple from the region where the system can be
classified as complex. This point is also called the characterizing coefficient of complexity, that
is, the coefficient conjugate to the system observable given by the number of defects. When
additional constraints are specified, that is, K > 1, Cornacchio (1977) introduced the concept
of K-transition point. To consider additional constraints, a K-transition point,

(
α1, α2, . . . , αK

)
is defined

F1 (α1, α2, . . . , αK; N
) = 1

2
N (16.88)

H
(
α1, α2, . . . , αK; N

) = ln(N + 1) (16.89)

Noting that any K-transition point
(
α∗

1, α2
∗, . . . , α∗

K

)
defines a one-transition point, the

transition point α∗
1 will be related to α2

∗, . . . , α∗
K with the proviso that F1 = 1

2 N and
H = ln(N + 1). This one-transition point for α1 will depend on the values of α2, . . . , αK ,
i.e., α1 = α1

(
α2, . . . , αK

)
such that

F1 [α1

(
α2, . . . , αK

)
, α2, α3, . . . αK

] = 1

2
N (16.90)

H[α1

(
α2, . . . , αK

)
, α2, . . . , αK) = ln(N + 1) (16.91)

This can be summarized that the one-transition point employed for classifying the system
complexity is conditional upon the values of K − 1 conjugate coefficients of complexity defined
by K-transition points. In other words, the system complexity depends not only on N but also
on the assumed knowledge regarding other system observables.

Consider a set of observables fk and arbitrary M. Then point (1, 1, . . . , 1) satisfies

F1 (1, 1, . . . , 1) = 1

2
N (16.92)

H(1, 1, . . . , 1) = ln(N + 1) (16.93)

From equations (16.67) and (16.71),

Z(1, 1, . . . , 1; N) =
N∑

n=0

R∏
r=1

[αr)
fr(n) =

M∑
n=1

(1) = N = 1 (16.94)

F1 (1, 1, . . . , 1; N) = Z−1 (1, 1, . . . , 1; N)

N∑
n=0

fn (1)

R∏
r=1

[1)fn(1) (16.95)

Inserting f 1
n = n and observing that

N∑
n=0

n
K∏

k=1

(1)fn1 =
N∑

n=0

n =1

2
N (N + 1) (16.96)

it is found that

F1 (1, 1, . . . , 1; N) = 1

2
N (16.97)

The defect entropy can be computed as

H(1, 1, 1, . . . , 1; N) = ln Z(1, 1, . . . , 1; N) −
K∑

k=1

F1 (1, 1, . . . , N) ln(1) (16.98a)
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That is,

H(1, 1, . . . 1; N) = ln(N + 1) (16.98b)

Consider the case K = 2, that is, there is one more constraint besides the mean number of
defects. Let the additional information be expressed as

f 2
n = N − n, n = 0, 1, 2, . . . , N (16.99)

This constraint can represent, for example, the maximal flow in a network, where the maximal
flow may decrease linearly with the number of defects. If there are no defects then n = 0 and
the largest maximal flow f 2 = N is attained. On the other hand, if the maximum number of
defects is n = M, then the maximum flow goes to zero.

In this case, all the points given by α1 = α2 result in

F1 (α1, α2; N
) = 1

2
N (16.100)

H
(
α1, α2; N

) = ln(N + 1) (16.101)

Thus, all points (α1, α2) = (α, α) for arbitrary α are two-transition points.
Using equations (16.77) through (16.71),

Z
(
α1, α2; N

) = α N
2

N∑
n=0

(
α1

α2

)n

(16.102)

F1 (α1, α2; N
) = α N

2 Z−1 (α1, α2; N
) N∑

n=0

n

(
α1

α2

)n

(16.103)

and

F2 (α1, α2; N
) = Nα N

2 Z−1 (α1, α2; N
) N∑

n=0

(
α1

α2

)n

− α N
2 Z−1

N∑
n=0

n

(
α1

α2

)n

(16.104)

Substituting the expression for the partition function, one can express

F2 (α1, α2; N
) = N − F1 (α1, α2; N

)
(16.105)

The defect entropy H(α1,α2;N) can now be expressed as

H
(
α1, α2; N

) = ln Z
(
α1, α2; N

)− F1 (α1, α2; N
)

ln α1 − F2 (α1, α2; N
)

ln α2 (16.106)

Using the expression for the partition function Z as well as for F2 one gets

H
(
α1, α2; N

) = ln
N∑

n=0

(
α1

α2

)n

− F1 (α1, α2; N
)

ln
α1

α2

(16.107)

For any point (α, α), where α is arbitrary,

Z(α, α; N) = (N + 1) αN (16.108)

H(α, α; N) = ln(N + 1) (16.109)
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It can now be stated that all points (α1, α2) in the one-dimensional manifold specified by
α1 = α2 are two-transition points for arbitrary N.

The simplicity can now defined in general terms from equation (16.87) as

C = 1

ln(N + 1)

×




[
ln(N + 1) − ln

N∑
n=0

α
f1(n)
1 α

fR(n)
2 +

R∑
r=1




N∑
n=0

f r(n)α
f1(n)
1 + . . . + α

fR(N)
R

N∑
n=0

α
f1(n)
1 α

f2(n)
2 . . . α

fR(n)
R


 ln αr




(16.110)

16.4 Kapur’s simplification

For handling inequality constraints, Kapur (1983) showed that the programming technique
proposed by Cornacchio (1977) is not necessary. To that end, suppose

ar1 ≤
N∑

n=0

pngr (n) ≤ ar2, r = 1, 2, . . . , K (16.111)

Hmax is a concave function of a1, a2, . . . , aK :

ar1 ≤ ar ≤ ar2, r = 1, 2, . . . , K (16.112)

This can be shown as follows.

∂Hmax

∂αr

= λr = ln
1

αr

(16.113)

so that

∂Hmax

∂ar

≥ 0, αr ≤ 1; ∂Hmax

∂ar

≤ 0, αr ≥ 1 (16.114)

16.5 Kapur’s measure

If

α1 = α2 = . . . = αR = 1 (16.115)

then equations (16.44), (16.45), (16.46) and (16.47) lead to

α0 (N + 1) = 1 (16.116)

α0

N∑
n=0

f1 (n) = α0

N∑
n=0

n = N

2
= α1 (16.117)

α0

N∑
n=0

fr (n) = αr, r = 1, 2, 3, . . . , R (16.118)

Hmax = −ln α0 = ln(N + 1) (16.119)
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Both equations (16.117) and (16.119) are satisfied. Kapur (1983) showed that equation
(16.115) is the only case when that can happen and hence there can at most be one µ-
transition point. This can be shown as follows. Hmax is a concave function of a1, a2, . . . , aR and
its local maximum is a global maximum which occurs when

ar = 1

N + 1

N∑
n=0

fr (n) , r − 1, 2, . . . , R (16.120)

The maximum of H, Hmax = ln(N + 1), occurs when α1 = N/2, and other values of α1, α2, . . . , αR

are given by equation (16.116). If any of α1, α2, . . . , αR is different from that given by equation
(16.120) then Hmax will be less than ln(N + 1) and equation (16.119) will not be satisfied.

16.6 Hypothesis testing

Let a system be satisfactory if m ≤ a1 and the variance of the number of defects ≤ a2. If
p0, p1, . . . , pN is the probability distribution, then in W trials, Wp0, Wp1, . . . , WpN are the
expected frequencies. Consider q0, q1, . . . , qN as observed frequencies. Then

χ2 =
N∑

n=0

(
Wpn − qn

)2
Wqn

(16.121)

For three constraints, the number of degrees of freedom

υ = (N + 1) − 3 = N − 2 (16.122)

P = {p1, p2, . . . , pN} is the maximum entropy-based distribution. From the χ2 tables, one
tests if P is different from Q = {q1, q2, . . . ,qN}. In this case, no special form of the probability
distribution is assumed.

16.7 Other complexity measures

Many time series can be replaced by symbolic strings using a binary alphabet in which the
mean content is taken as normal content, a value higher than normal is represented by 1 and
a value lower than normal by 0. This has been suggested by Lange (1999) and Wolf (1999).
Now the length of a word, L, can be defined as a group or series of L consecutive symbols
and the strings of symbols have 2L possible words. For example, if the word length is 2,
then there are two consecutive symbols and there are 22 = 4 possible words: 00, 11, 10, and
01. Each word characterizes the state of the system. The change in the words starting from
two consecutive observations, say 00 to 01, defines the transition from state 00 to state 01.
Consider a string 11001 and the word length is two. The number of possible words is 25 = 32.
The first word is 11 and the shift from it to the second word 10 represents the transition from
state 11 to state 10, and the shift from the second state 10 to the third state 00 represents the
transition from state 10 to state 00, and so on.

Empirical probabilities can be considered, depending on the word. Let the word be of length
L. There are three possibilities: 1) probability pi for word i to occur in the symbolic string,
i = 1, 2, . . . , 2L; 2) probability pij for the sequence of words i and j to occur, i = 1, 2, . . . , 2L,
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and j = 1, 2, . . . , 2L; and 3) pj|i the conditional probability of word j occurring after word i,
i = 1, 2, . . . , 2L; j = 1, 2, . . . , 2L. Now the Shannon entropy can be defined for words of length
L as

H(L) = −
2L∑
i=1

pilog pi (16.123)

The metric entropy can be defined by dividing the Shannon entropy H(L) by the word length
L, that is, H(L)/L. It indicates the extent of disorder in the sequence of symbols, increasing to
a maximum value of one when the random sequences of words are uniformly distributed.

The mean information content Hm(L) can be defined as

Hm (L) = −
2L∑
i,j

pij log pj|i (16.124)

This is analogous to conditional entropy and is a measure of the (additional) information to
be gained on average for the whole symbol sequence from the knowledge of the next symbol.

Now the complexity measures can be defined. Let the next information gain be defined
as the difference between information gain and loss. Then the fluctuation complexity σ 2

c is
defined as the mean square deviation of the information gain:

σ 2
c =

2L∑
i,j

pij

[
log

(
pi

pj

)]2

(16.125)

A higher value of σ 2
c (i.e., more the net information gain is fluctuating in the string) would

lead to higher fluctuating complexity.
An effective complexity measure Cem measures the total minimum amount of information

that must be stored at any time for the optimal prediction of the next symbol. It can be
calculated as

Cem =
2L∑
i,j

pij log

(
pj|i
pi

)
(16.126)

Bates and Shepard (1993) presented complexity measures for analyzing deterministic dynam-
ical systems using information fluctuation. Their idea is that complex behavior lies between
extremes of order and disorder. Consider a system in state i with probability pi. Conditioning
on this state, the system transits to state j (forward) with transitional probability pi → j which
can be estimated if the system dynamics were known. Let pij denote the probability that a
transition from i to state j occurs. Then one can write

pij = pipi→j (16.127)

If the transition is backward, that is the system is presently in state j and the prior state was
i with probability pi ← j then

pij = pi←jpj (16.128)

It may also be noted that

pj

∑
i

pij =
∑

i

pji (16.129)
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where the summation is over all the states. This leads to

pj =
∑

i

pipi→j (16.130)

From the Shannon entropy, the information needed to specify the state i of the system can
be expressed as

Hi = −log2

(
pi

)
(16.131)

The mean of this information yields the Shannon entropy as

H =
N∑

i=1

piHi = −
N∑

i=1

pilog2

(
pi

)
(16.132)

where N is the number of states.
The information gain Gij due to the transition from state i to state j is expressed as

Gij = −log2pi→j (16.133)

Likewise, the information loss is defined as

Lij = −log2pj→i (16.134)

where the system goes from state j to state i. The difference between equations (16.133) and
(16.135) yields the net information gain:

gij = Gij − Lij = log2

(
pj→i

pi→j

)
= log2

(
pi

pj

)
(16.135)

Averaging over all transition states, equation (16.135) can be written as

g =
∑

ij

pijgij (16.136)

It can be shown that the average gain will equal the average loss and equation (16.130) will
vanish. However, the mean square deviations σ g

2 of gij will not and can be written as

σ 2
g = E

[
g − E(g)

]2 = E
[
g2] =

N∑
i,j

pij

[
log2

pi

pj

]2

(16.137)

This value reflects the fluctuation occurring in the system as it transitions from one state to
another, and is termed fluctuation complexity. The fluctuation can be positive or negative,
where positive would imply a net storage of information. If a system simultaneously gains and
loses information then its net information storage capacity gij = 0. A system with zero entropy
means that Gij = Lij = 0, and σ g = 0. The net information gain can be expressed using equation
(16.135) recast as

gij = log
pi

pj

= Hj − Hi (16.138)
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Equation (16.138) shows that the cumulative net information gain for a sequence of states
depends only on the initial and final states and is independent of the path. For sequences of
transitions, the cumulative net information gain Hin needed to reach from state i to state n can
be expressed as

Hin = gij = gjk = . . . = glm = gmn = log
pi

pn

= Hn − Hi (16.139)

The quantity Hin can be thought of as information potential and Hn-Hi can be construed as a
measure of the rarity of state n relative to state i or information force. It can also be shown
that the variance of Hin is the same as the variance of H. In other words the fluctuation in
Hin is the same as in H. Pachepsky et al. (2006) employed the above concepts to measure
complexity of simulated soil water fluxes.

Questions

Q.16.1 Observations have been made on the leaks in a water supply system on a monthly
basis for a number of years. Each month the number of leaks varies. Consider the
number of leaks or defects in water supply system as a random variable. The number
of leaks is used to describe if the water supply system is complex or simple. Let the
maximum number of leaks or defects be 10 and the average number be 5. Compute
the probability distribution of the number of leaks. Compute the Lagrange multipliers
λ0 and λ1. Plot the probability distribution against the number of leaks.

Q.16.2 What is the probability of the occurrence of 1, 2, 3, 4, 5, 6, and 8 leaks in Q.16.1?

Q.16.3 Compute the coefficient of complexity α and also β in Q.16.1.

Q.16.4 Compute the defect entropy in Q.16.1.

Q.16.5 Compute the simplicity as well as complexity for Q.16.1.

Q.16.6 Consider the number of erroneous or missing values of rainfall in rain gage measure-
ments in a watershed, that is, the number of missing values at a gage is a random
variable. Some gages have more missing values than others. Consider the maximum
number of missing values as 20 and the average number of missing values is 10.
Compute the probability distribution of the number of leaks. Compute the Lagrange
multipliers λ0 and λ1. Plot the probability distribution against the number of leaks.

Q.16.7 What is the probability of the occurrence of 1, 2, 3, 4, 5, 6, and 8 missing values in
Q.16.6?

Q.16.8 Compute the coefficient of complexity α and also β in Q.16.6.

Q.16.9 Compute the defect entropy in Q.16.6.

Q.16.10 Compute the simplicity as well as complexity for Q.16.6.
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