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Preface

The system theory for linear time-invariant systems is now mature and offers
a wide range of system theoretic concepts, design methods and solutions to
optimal or suboptimal control problems including the design of state feed-
back controllers and observers, optimal quadratic regulators, Kalman filters,
coprime factorization and Youla-parametrization of stabilizing controllers, Hs
control, differential games, H,, control and robust control. One of the most
important recent developments is, without doubt, Hy, control. Since the be-
ginning of the linear systems theory many researchers have made constant
efforts to extend the theory to time-varying systems and sampled-data sys-
tems as well as to infinite dimensional systems. Although there are many
excellent books on the systems theory of linear time-invariant systems, there
are not many books covering recent developments for time-varying systems.
In this monograph we consider linear optimal regulators, Hy control, differen-
tial games, H,, control and filtering, and develop the theory for time-varying
systems and jump systems. Jump systems arise when impulse controls are
involved. As is well-known sampled-data systems can be written as jump
systems with constant coefficients which are regarded as periodic systems
with period equal to the sampling period. One of our main motivations for
writing this monograph is to develop the Hz and Ho, theory of sampled-data
systems from the jump system point of view. The jump system is a natural
state-space representation of sampled-data systems and original signals and
parameters are maintained in the new system. The Hs; and H,, problems
for jump systems can be treated in a unified manner as for time-invariant
systems. Moreover, they can be directly extended to more general cases of
delayed observation, first-order hold and infinite dimensional systems. Jump
systems are also useful to design stabilizing controllers for certain nonlinear
systems. Since jump systems with constant coefficients are periodic systems
and hence time-varying systems, it is useful to develop the system theory
for time-varying systems. Extension of the system theory to time-varying
systems seems routine, but there are some inherent features of time-varying
systems. For example, frequency domain arguments cannot be extended and
the state-space approach is needed. Some arguments for time-invariant sys-
tems may not have easy extensions to time-varying systems. The H,, theory
based on X and Y Riccati equations is such an example as we see in Chapter
2. Hence the systems theory for time-varying systems itself is important and
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interesting and gives some new points of view or new insights into the system
theory of time-invariant systems.

In Chapter 2 we consider continuous-time systems and consider stabil-
ity, quadratic control, differential games, Ho, control, H,, filtering and Hs
control. In H,, control and filtering we allow for initial uncertainty in the
system and develop the general theory of this case. We give examples and
computer simulations for most of main results. Chapter 3 is concerned with
discrete-time systems and discusses the same topics as in Chapter 2. Chapter
4 introduces the jump system which contains both continuous- and discrete-
time features and discusses the same problems as in earlier chapters. Chapter
5 covers a special case of jump systems which arises from the sampled-data
systems with zero-order hold and applies the main results of Chapter 4 to
them. Finally in Chapter 6 we discuss further developments in the theory of
jump systems. We first give an extension to infinite dimensions and as an
example we consider Hz and H, control for sampled-data systems with first-
order hold. We also introduce sampled-data fuzzy systems which can express
certain nonlinear sampled-data systems and show how to design stabilizing
output feedback controllers using jump systems.

Chapter 2 is an introduction to time-varying continuous-time systems
while Chapter 3 is an introduction to discrete-time systems and either of them
can be read independently of the rest of the monograph. To read Chapter 4
the materials in Chapters 2 and 3 will be very helpful. To read Section 6.1
elements of functional analysis are necessary.
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1. Introduction

The linear system theory offers basic concepts, design methods and opti-
mization problems. The underlying systems it deals with are usually time-
invariant continuous-time systems or discrete-time systems. There are many
excellent books [1, 19, 21, 46, 55, 66, 80, 93] for time-invariant systems which
cover stability theory, quadratic control, Hy control and Ho, control. The
sampled-data system with sampler and zero-order hold is a linear system but
involves both continuous-time and discrete-time signals. The system theory
for it, which covers topics above, is usually developed via the system theory
for discrete-time systems after transforming the original problems to those
for discrete-time systems.

The purpose of this monograph is two fold. We introduce the linear sys-
tem theory for time-varying systems which covers Hy and He, control. There
are some inherent features of time-varying systems, and not all arguments
used for time-invariant systems are easily extended to them. Thus we regard
the extension as important and hope that it gives some new insight into
the linear systems theory. Secondly we develop the H; and Hy, control the-
ory for sampled-data systems from the point of view of jump systems. The
jump system, which contains jumps in the state variable, is a natural state-
space representation of sampled-data systems and has an advantage that the
continuous-time nature and discrete-time signals of the original system are
maintained in the new system. Hence the system theory for jump systems can
be viewed as an extension of the theory of continuous-time or discrete-time
systems. In Hy control the initial conditions are usually taken to be zero, but
in this monograph initial uncertainty is incorporated and a general theory is
developed.

As the jump system may not be familiar to the reader, we shall introduce
below all the systems which appear in this monograph. We also introduce the
jump system which is obtained from a sampled-data system.
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1.1 Continuous-time Systems and Discrete-time Systems

In Chapter 2 we consider continuous-time systems of the form

T = A(t)z + Bi(t)w + Ba(t)u,
z = C](t)I + D12(t)u, (11)
y = Cg(t)I + D21(t)w

where z is the state of the system, w is a disturbance, u is a control input, z
is a controlled output and y is the output to be used for control.
In Chapter 3 we consider discrete-time systems of the form

z(k+1) = A(k)z(k) + By (k)w(k) + Ba(k)u(k),
2(k) = Cy(k)z(k) + Dia(k)u(k), (1.2)
y(k) = Ca(k)x(k) + Da1(k)w(k).

We consider stability, quadratic control, disturbance attenuation problems,
differential games, H,, control and H, control. When we introduce new prob-
lems, we sometimes start with the results for time-invariant systems. More-
over, all the results in the time-invariant case are given as corollaries. How-
ever, we give proofs only for time-varying systems. For proofs typical to time-
invariant systems we refer the reader to other books in the reference.

1.2 Jump Systems

A general form of jump systems is given by

T = Az + Biw+ Bou, kr <t < (k+ )7,
z(kt*t) = Agx(kT)+ Bigwa(k) + Bagug(k),
ze = Ciz+ Djau, (1.3)
z4(k) = Chaz(kT) + Di2qua(k),
Yo = Crz+ Dyw,
yd(k) = ngI(kT) + D21dwd(k)

where the continuous part satisfies (1.1) while the jump part satisfies (1.2).
We assume that all matrices in the system are constant. Then it is a 7-
periodic system and a special case of time-varying systems. We can easily see
the following :

(a) If By =0, B, =0, 43 = I and B4 = 0, then it is a system with impulse
control.

(b) If Ag = I, Big = 0 and Byg = 0, it is a continuous-time system.

(¢)If A= 0 B; =0 and B; = 0, then it can be regarded as a discrete-time
system.
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Hence the jump system is a natural extension of continuous-time and discrete-
time systems [37, 51, 65, 67] and we can expect some potential applications
in the areas of mechanical systems [83], chemical processes [56] and economic
systems [6] where impulsive inputs naturally appear. The system (1.3) is
often too general and for Ha or Hy, control we shall restrict ourselves to the
system of the form

T = Az+ Byw, kT <t < (k+1)T,
z(ktt) = Aaz(kT) + Bau(k), (1.4)
ze = Ciz,
z4(k) = Digu(k),
y(k) = Coz(kT)+ Daywq(k).

This system still keeps the essential features of jump systems and covers
sampled-data systems. In Chapter 4 we consider stability and control prob-
lems for (1.4) as in Chapters 2 and 3.

1.3 Sampled-data Systems

In Chapter 5 we consider the sampled-data system [8, 16]
i = Az(t) + Biw(t) + Bai(t),

2(t) = [g:é(?)], (1.5)
y(k) = Cox(kt)+ Daywy(k)

where 7 > 0 is a sampling period and 4 is the control input realized through
the zero-order hold [18, 85

a(t) = u(k), kr <t < (k+1)7.
We introduce the following state space representation of the control (t):
=0, Z(kt*) = u(k), kr <t < (k+ 1)7.

Then clearly @(t) = Z(t). Let z.(t) = [z’ Z']’ (t) be the new state variable.
Then the system (1.5) is equivalent to the following jump system

T(t) = 'g %z]ze(t)+ [%1]w(t), kr <t < (k+1)7,
To(kTt) = f) g]ze(kr)+ m u(k), i=0,1,2, ...
_ [z ]_[lcs olz®
¢ _zd<k)] [ V7 Dizu(k) ] !

y(k) [C2 O]ze(kT) + Da1wa(k)
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where zy = /T D)su(k) is introduced when we consider

| 1Daa ? Z / | Dizu(k) | th Dizu(k) [

The jump system is a natural state-space representation of sampled-data
systems and original signals and parameters are maintained in the new sys-
tem. The H2 and Hy, problems for jump systems can be treated in a unified
manner as for time-invariant systems.

1.4 Infinite Dimensional Systems and Sampled-data
Fuzzy Systems

The infinite dimensional system in Chapter 6 is written as (1.4) but the
state, inputs and outputs lie in Hilbert spaces. We assume that A is the
infinitesimal generator of a strongly continuous semigroup in a Hilbert space
and other operators are bounded. Thus the system covers partial differential
equations and delay differential equations. It will be shown that the sampled-
data system with first-order hold can be expressed in this form and H; and
H control problems are considered.
The sampled-data fuzzy system in Section 6.2 is given by

(t)

ZA t){Aiz(t) + Bii(t)},

y(k) E:A ))Ciz(kT)

where A\i(z) > 0, 3°7_, Xi(z) = 1 and z is a premise variable in the IF-
THEN rules. It can represents certain nonlinear sampled-data systems. Using
local jump systems we give a design method of stabilizing output feedback
controllers.

1.5 Notation

lz| = Vz'z, z € R"™.

|M| : normof M € R*™ induced by the Euclidean norm.
T
<fig> = | f(He)dt, f, g€ L¥(to, T;R")
to
where T can be finite or T = oo.
Ifllz = V<ff>



<f,g>

I £ ll2

z(s%)

z(s”)

N

3 fi(k)g(k), f, g € P(ko, N;R™)
k=ko
where N can be finite or N = oc.

V< f>.

ltlgl z(t).

ltlTnsl z(t).

1.5. Notation

5



2. Continuous-time Systems

In this chapter we are concerned with time-varying continuous-time systems
and consider stability, quadratic control, disturbance attenuation problems,
differential games, H,, control, Hy, filtering and H2 control. In Hy, control
and filtering we allow for initial uncertainty in the systems and develop the
general theory.

2.1 Stability

2.1.1 Lyapunov Equations

Consider
=AMz, z(to) = zo (2.1)

where £ € R™ and A € R™X" is a piecewise continuous matrix with
| A(t) |< a, ¥t > tq for some a > 0.

Let S(t,7) be the state transition matrix of the system (2.1). Then
ditS(t, s) = A(t)S(t,s), S(s,s)=1.

If
A()A(s) = A(s)A(t) Vt, s

then .
S(t,s) = eJ. Atrdr,

If A is f-periodic, i.e., A(t + 6) = A(t), then
S(t+6,s+6) = S(t,s).
If A(t) = A, then S(t,s) = pAlt—s)

Definition 2.1 The systerﬁ (2.1) (or simply A) is said to be exponentially
stable on [ty, 00) if

| S(t,s) |< Me=*¢%) for anyto < s <t < oo
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for some positive constants M and o independent of to and t. (The system
(2.1) is also called internally stable.)

If A(t) = A, then A is stable if and only if every eigenvalue of A has a negative
real part. The following result is also well-known.

Proposition 2.1 The following statements are equivalent.
(a) A is exponentially stable.
(b) There exists a positive definite matriz X satisfying

AX+XA+I=0. (2.2)
(c) There exists a positive definite matriz Y satisfying
AY + YA +T=0.

The equation (2.2) is called the Lyapunov equation. We generalize this result
to the time-varying system. We need the following lemma.

Lemma 2.1 (a) | S(t,s) |[< e*(t=9) ¢y <s<t.
(b) For a given € € (0,1), there exists a § > 0 such that

S'(t,s)S(t,s) > (1 —€)I forany 0 <t —s < 4.
Proof. Since
S{t,s) =1+ /tA(r)S(r,s)dr
we have 3

t
| S(t,s) |$1+/ a| S(r,s) | dr.
8

Hence by Gronwall’s inequality, we obtain | S(t, s) |< e*(*~*). We also have

t
|/ S{r,s)dr| < /a|S(r,s)|dr
8

t
< / aedT =9 dr — ea(t—5) _ 1
S

Now

z'S'(t,8)S(t, s)x (I + /t A(r)S(r, s)dr) (I + /t A(r)S(r, s)dr)x

v

t
|z |2 +2z’/ A(r)S(r, s)drz
8
> |zl -2t 1) |z |
> (1-glz/”

for any 0 <t — s < 6 where § = %log(l + 5) so that 2(et=9) — 1) < ¢,
0<t-s<6. B
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Proposition 2.2 The following statements are equivalent.
(a) The system (2.1) is exponentially stable.
(b) There exists a symmetric matriz X (t) such that

(i) cl[ < X(t) < c2l, Yt > to for somec; >0,i=1,2.
(i) - X=A"(t)X+XA(t) +1

(c) [71S(t,s)x|2dt<c|z|? Yz, Ys > to and for some ¢ > 0.
If A is 9-periodic, then X is also 0-periodic.

Proof. Suppose (a) holds. Then (c¢) also holds and
X(t) =/ S'(r, t)S(r, t)dr
t

is well-defined and bounded, i.e., X(t) < c2l. Let ¢ € (0,1) be given and
choose 6 > 0 as Lemma 2.1 such that

S'(t,s)S(t,s) >(1—e) I for0<t—s<4.
Then
t+5
X(t) 2/ S'(r,t)S(r, t)dr > (1 — €)d1.
t

Hence (i) of {(b) has been shown. (ii) of (b) follows from differentiating X (t).
Now we assume (b). Then for z(t) = S(¢t, s)zo

LEOX0) = - |20 'S~ OX (00
Which implies
()X (t)z(t) < e~ =V 2'(s)X(s)x(s).
Using the property (i) we have

a1 | z(t) |*°< cze_zlz'(t_s) | zo |?.

| 8(t, s) 1< ,/f?-e-rc%“-s’
1
and (a) follows.

Finally let A(t) be #-periodic. Then

X(t) = [wS'(r,t)S(r,t)dr

Hence

/ S'(r+0,t+0)S(r +6,t+ 0)dr
t

S'(s,t +0)S(s,t + 0)ds
t+6

X(t+6). ]
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Definition 2.2 The equation (i) of (b) is called the Lyapunov equation for
the system (2.1).

If A is exponentially stable, we can show that any solution of the Lyapunov
equation coincides with X (t) given in the proof of Proposition 2.2. Hence the
Lyapunov equation has a unique solution. See also Theorem 2.4.

Example 2.1 Consider the periodic system with period 27:

I'l _ 0 1 T
[iz] N [—1 —0.5cost -1 —cost] [zz] (2.3)

which is exponentially stable. In fact there exists a 27-periodic nonnegative
solution X (t) = ))((112 ))((122] (t) of the condition (b) in Proposition 2.2 (Fig-
ures 2.1 and 2.2).

time (sec)

Figure 2.1: The periodic solution X(t) of the Lyapunov equation

Consider the adjoint equation of (2.1)
—€ = A(t)¢, &(T)= 6. (2.4)
Let £(t; T, €1) be the solution of (2.4).
Definition 2.3 The system (2.4) is said to be exponentially stable if
[T &) |<S Me™T9 | &1 | foranyto <t <T < oo

for some M >0 and a > 0 independent of t, T and &;.
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T ! | T
4} ]
=
=
“ L 4
S
15}
g :
=
g0 7
.20
g 1
rl " o 1
0 4 6

time (sec)

Figure 2.2: Eigenvalues of the periodic solution X (t)

Since £(t; T, €1) = S'(T,t)&1, the system (2.4) is exponentially stable if and
only if the system (2.1) is exponentially stable.

We have a dual result to Proposition 2.2.

Proposition 2.3 The following statements are equivalent.
(a) The system (2.4) (and hence (2.1)) is exponentially stable.
'(b) There erists a symmetric matriz Y (t) and a § > 0 such that

(i) 0<Y(t), Vt>to and a1l <Y (t), Vt > to + & for some ¢; > 0.
(ii) Y (t) < col, to < Yt < oo for some cz > 0.
(iii) Y = A@R)Y + YA'(t) + I, Y(to) = 0.

(c) fsT | S"(T )¢ |2dt <c| &% Vs, T withto < s < T < oo and for some
c>0.

Proof. Suppose (a) holds. Then (c) is true and

Y(t) = /tt S(t,s)S'(t, s)ds

is well-defined, positive for t > t¢ and bounded. Hence (ii) of (b) holds. To
show (i), let € € (0,1) and choose § > 0 such that

S(t,s)S'(t,s) > (1 —e)lfor0<t—s<4.
Now let t > 4, then

Y(t) > /t; S(t,5)S' (t, s)ds > (1 — €)d1.
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Hence (i) follows. The equation (iii) follows from differentiating Y (t).
Now we suppose (b) holds. Then

SEMYOED) =1 £0) 7> SOV (e
2
from which follows
g (s)Y (s)&(s) < e~z T~ (T)Y (T)E(T).
Hence for tg + 8 < s <T < o0

— 1 —
c1 | €(5) 12< cae™ T | ¢y |2

| ST, s) |< ,/j—ze“ﬁi—z”‘”.
1

FOI't[)SSSt[)'f—(sST(OO

which yields

| S'(T,s) | | (S(T,to + 8)S(to + 6,5))" |

| S'(to +,8) || (T, to +9) |

/52_608—7}2-@—:0—5)
9

since | S'(to + 4,8) |< ¢p for tp < s <t < tp + & for some ¢ > 0. Hence

| S'(T, s) |< ,/j—zmeni—z“e—rﬁa”-”.
1

Fortg <s<t<ty+94

IA

IA

| S'(t, 8) 1< co < coeTToe (1),

Choosing
M= max(‘/c—z, ‘lzcoeﬁa, coeTCLia)
Cy Cy
we obtain
| §'(t,s) |< Me 2 (T for any tg < s < T < 0.
Hence (a) holds. ]

Definition 2.4 The equation (iit) of (b) is called the Lyapunov equation of
the backward system (2.4) (or simply the backward Lyapunov equation).

Corollary 2.1 Let A(t) be 0-periodic. Then the system (2.4) is exponentially
stable if and only if there exists a f-periodic solution of the backward Lya-
punov equation with c1I < Y (t) < czI, ¥t for some ¢, ¢; > 0.

Moreover, the 0-periodic solution is unique if A is exponentially stable.
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Proof. We shall show that Y (¢ + n8) is increasing in n and hence converges
to Yp(t) which is #-periodic. In fact

t+nd
Y(it+n8) = / S(t + nb, s)S'(t + nb, s)ds
t

0

t+né
/ St+(n+1)8,s+8)S'(t+ (n+1)8,s+ 0)ds
t

0

t+(n+1)8
/ Sit+(n+1)8,0)S'(t + (n+1)8,0)do
to+6

IA

t+(n+1)8 :
/ S(t + (n+1)8,0)S'(t + (n + 1)8, 0)do
to

= Y(t+(n+1)6).
Let Yp(t) be the limit of Y(t + nf) as n — oco.
Yo(t +6) = nli_.néo Y(t + 6+ nb)
= nan;o Y(t+ (n+1)8) = Ya(t).
For the proof of uniqueness, see the proof of Theorem 2.4. 1
Example 2.2 Consider the system (2.3) in Example 2.1, which is exponen-

tially stable. There exists a bounded nonnegative solution ¥ = [;,,l );}22]
12

satisfying the condition (b} in Proposition 2.3 which converges to a 2n-
periodic solution (Figure 2.3).

Figure 2.3: The bounded solution Y ()
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Consider

i = A@®)z+B(t)u, (2.5)
= C(t)z

where z € R™, u € R™2, y € RP? and A, B, C are bounded piecewise
continuous matrices of appropriate dimensions. Then the solution z(t) with
z(to) = zo is given by '

z(t) = S(t, to)xo +/t S(t,r)B(r)u(r) dr

and
t

y(t) = C(t)S(t, to)xo + C(t) | S(t,r)B(r)u(r) dr.
to
Definition 2.5 The system (2.5) is said to be input-output stable (or simply
I0-stable) on [to, 00) if for z(s) = 0, s > to and any u € L?(s,00; R™?)

y € L*(s,00,R) and ||y [2<c | u |2

for some ¢ > 0 independent of s.

ere erists a bounded piecewise continuous matriz K such that A+ BK 1is
zponentially stable on [tg, 00).
(b) The pair (C, A) is detectable on [to, 00) if there exists a bounded piecewise
continuous matriz J such that A + JC is exponentially stable on [to, 00).
(c) If (a) and (b) hold, the system (2.5) (or (A, B,C)) is said to be stabilizable
and detectable.

E)eﬁnition 2.6 (a) The pair (A, B) is said to be stabilizable on [tg, 0) if
h

Note that (A, I, I) is stabilizable and detectable.

Proposition 2.4 Suppose (A, B, C) is stabilizable and detectable on [tg, 00).
Then the system (2.5) is exponentially stable if and only if it is IO-stable.

Proof. It is enough to show sufficiency. First we shall show
C(t)S(t, s)xo € L%(s,00; RP?).

Since (A, B) is stabilizable, there exists a bounded piecewise continuous ma-
trix K such that the system

i = (A+ BK)(t)z, z(s) = 7o (2.6)
is exponentially stable. Hence z € L?(s,00; R™). Then
i = Alt)c+ B)K(t)z, 2(s) = zo,
2(t) = S(t,s)z0+ / ' S(t, 1) B K (r)z(r)dr
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and

t
C(t)z(t) = C(t)S(t, s)xo + C(t)/ S(t,7)B(r)K(r)z(r)dr.
3
Since (2.5) is IO-stable
t
C(t)/ S(t,7)B(r)K (r)z(r)dr € L*(s, 00; RP?)
s
and hence C(t)S(t,s)zo € L?(s,00; RP?) and || C(¢)S(t, s)zo ||2< ¢ | zo | for
some ¢ > 0 independent of s and zy. Since the system
z(t) = A(t)z, z(s) =xo
is equivalent to
z(t) = (A+ LC)(t)x — L(t)C(t)z, z(s) = zo

where L(t) is a bounded piecewise continuous matrix such that A + LC is
exponentially stable. Then we have

ﬂﬁ:&mg%+/sdmﬂvmvnmm

where Si,(t,7) is the state transition matrix of A + LC. Since
C(t)z(t) = C(t)S(t, s)xo,

z € L%(s,00;R™) and || z ||2€ ¢ | zo | which implies (2.5) is exponentially
stable. (]

Proposition 2.5 (a) Suppose that (C, A) is detectable. The system (2.5) is
exponentially stable if and only if there exists a bounded nonnegative solution
to

X =AB)X + XA{) + C't)C(t). (2.7)

(b) Suppose that (A, B) is stabilizable. Then the system (2.5) is exponentially
stable if and only if there exists a bounded nonnegative solution to

Y = AR)Y + YA'(t) + B(t)B'(t). (2.8)
Proof. We shall show (a) only. If A4 is exponentially stable,
X(t) = / S'(r,t)C'(t)C(t)S(r, t)dr
t
is a bounded nonnegative solution of (2.7). Conversely, let X(¢) be a non-

negative solution of (2.7) and z(t) = S(¢, s)zo. Then differentiating ' Xz we
easily obtain

T
' (T)X(T)z(T) +/ | C(t)x(t) |? dt = z(X (s)zo.
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Hence C(t)S(t, s)zo € L?(s, 00; RP?) with || CS(t, s)zp ||2< ¢ | zp | for some
¢ > 0 independent of s and x¢. As in the last part of the proof of Proposition
2.4, we can show z € L?(s,00; R™) with || z ||2< ¢ | zo | for some ¢ > 0
independent of s and xzo. Y (t) given by

Y(t) = t S(t,7)B(r)B'(r)S'(t,r)dr

to
is a bounded nonnegative solution of (2.8). ]
The equation (2.7) is reduced to
AX+XA+C'C=0, (2.9)

if the system is time-invariant and its solution is called the observability
gramian. The equation (2.8) is reduced to

AY + YA + BB =0 (2.10)
when the system is time-invariant and Y is called the controllability gramian.

Remark 2.1 Proposition 2.1 (b) is a special case of Proposition 2.5 (a) since
(I, A) is detectable.

2.1.2 Performance Measures of Stable Systems

Consider the system G:

i = A(t)z+ B(t)w, (2.11)
= C(t)z

wherez € R™, w e R™ |z € R A, B, C are bounded piecewise continuous
matrices of appropriate dimensions and A is exponentially stable. First we
assume that the system is time-invariant and recall the following definitions.

Definition 2.7 The Hy-norm of the system G, denoted by || G ||2 s

my 00 %
(Z/ | Ce®*Be; |? dt)
i=1 0
oo 3
= (tr. / B'eAtC'CetB dt)
0

where (e;) are unit vectors in R™.

I G ll2
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|| G |2 can be regarded as the total energy of impulse responses. Let G(s) be
the transfer function of the system so that G(s) = C(sI — A)~!B. Then via
Fourier transform we have

1 G = [2—17; / Z tr.G* (jw)G jw) dw] ; (2.12)

where G*(-) is the Hermitian transpose of G(-). We also have the following.

Lemma 2.2
| G ||§= tr.B'XB =tr.CYC'

where X , Y are observability- and controllability gramians respectively of the
system given by (2.9) and (2.10).

Definition 2.8 The Hx,-norm of the system G, denoted by || G || s given
by

z
)G lloo= sup 42102
0#weE L2 | w2

|| G loo is the supremum of the ratio of the energies of the output and input.
As is known
| G llo= sup o[G(jw)] (2.13)
w

where o(M) is the maximum singular value of the matrix M. The Hs- and
Hoo-norms of transfer functions G(s) are denoted by (2.12) and (2.13).

The following result is known as the Bounded Real Lemma.

Lemma 2.3 The following statements are equivalent.
() | G llo< 7.
(b) There erxists a nonnegative solution X to

1
AX+XA+CCH+ TFXBBIX =0

such that A+ -y BB'X is exponentially stable.
(c) There erists a nonnegative solution 'Y to

AY +YA'+ BB' + %YC'CY =0

such that A+ ;‘7}’0’ 'C is exponentially stable.

Now we generalize Definitions 2.7 and 2.8 to time-varying systems.
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Definition 2.9 The Hz-norm of the system G on [tg,00) is defined by

to+T ™1 %
lim — / / | C(t)S(t, s)B(s)e: |2dtds]

1 to+T
/ tr.B'(s)

x / ~ S'(t, s)C'(t)C(t)S(¢, s)dtB(s)ds] '

I1Gllzee =

I
e
g8
M|

For §-periodic systems

to+6 [e39] %
|| G l2,6= [%/ t-r_B'(s)/ S'(t, s)C'(t)C(t)S(t, s)dt B(s) ds] .

to s

Note that two norms are equal for periodic systems.

Remark 2.2 Note that

1 to+T to+T
G J2,= lim ~ tr.B'(s) / S'(t, $)C'()C(£)S(t, s)dt B(s)ds.
’ T—oo T to s ;
dod
2 to+T to+T
_ - ’ '
161 = Jm g [ / C()S(t, s)B(s)B' ()S' (¢, $)C'(t)dtds

- 1 t0+T ’ ! !
lim T tr.C(t) /to S(t,s)B(s)B'(s)S'(t, s)dsC'(t)dt

T—o0 to

where we have used the property of the trace and Fubini’s theorem. From the
last equality || G ||2.¢, can be also interpreted as the Hz-norm of the backward
system G*
T Az + C'(t)w, (2.14)
Z(t) = B'(t)z.

|
1310
I

Let Z(t; s,1) be the impulse response of (2.14) with u(t) = §(t — s)e; where
(es) are unit vectors in RP!. Then

’ " ’ )
H(t:5,0) = { B'(t)S'(s,t)C (s)e(,), z § z,

Definition 2.10 The Hy-norm of the backward system G* is defined by

I G* 113,0= Jim f S /t | (t; s,4) |? dtds.
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Then clearly

2 1 to+T
16" o= Jim 7 [
to

and ” G ”2,to=“ G* ”2,10'

s P

/ S| B(1)S'(5,)C(s)es |2 dsdt
to =)

Lemma 2.4

to+T
|G}, = le.n;o T[ tr.B'(s)X(s)B(s) ds
[

to+T
: - 4
Tjor;o T/to tr.C(s)Y(s)C'(s) ds

where X and Y are the observability and controllability gramians of the sys-
tem G given by (2.7) and (2.8) with Y (to) = 0, respectively. Moreover, for
8-periodic systems X is -periodic and

1

-é/t:ow tr.B'(s)X(s)B(s) ds

IG 36

- % / ot i C(8)Ya(s)C' () ds

where Yy is the 0-periodic solution of (2.8).
Definition 2.11 The Hy,-norm of the system G is that of the map w — z :
L?(tg, 00; R™) — L2(tg, 00; RPY).

To generalize the bounded real lemma we need to consider a quadratic op-
timization problem. But we first introduce the standard quadratic control
problems.

2.1.3 Quadratic Control
Consider
T = A(t)x + B(t)u, z(to) = o
where z € R™, u € R™? and A, B are bounded piecewise continuous matrices
of compatible dimensijon. For this system we introduce the functional

T
Jr(uito,zo) = [ [| C(t)z(t) I + | u(t) |*ldt+ | Fx(T) |?

to
which is minimized where F' € R9*™ and C € RP?*" is bounded piecewise
continuous.
We need the following Riccati equation
-X A ()X + XA@R) + C'(t)C(t) - XB@E)B'(H)X, (2.15)
X(T) = F'F. (2.16)



20 2. Continuous-time Systems

Theorem 2.1 There exists a unigue nonnegative solution X = Xr(t) to the
Riccati eqaution (2.15) and (2.16). Moreover, the state feedback law

u() = —=B'()X()z()
is optimal and

Jr(@;te, zo) = 2o X (to)xo-

We omit the proof of this theorem. Instead we shall give a proof for a similar
problem (2.41). See Lemma 2.8.

Now consider the infinite horizon problem
z = A(t)z + B(t)u, z(s) = zo, s> to,

[ 1ewm 7 + 1w e

J(u; s, 7o)

where u € L?(s,00; R™2) is admissible if its response z € L?(s, 0o; R™) and
limt—;oo I(t) = 0

C: We assume that for each (s, z¢) there exists a control u(-; o) such that
(u(-, zo); s, z0) < ¢(xg) for some constant ¢ independent of s.

If (A, B) is stabilizable, then RC holds.

Lemma 2.5 Assume RC holds. Then there exists a bounded nonnegative
solution to the Riccati equation (2.15).

Proof. By Theorem 2.1 there exists a nonnegative solution to (2.15) on [to, T]
with X (T') = 0. Then for any s > to X7(s) < X¢(s) if s <T < T. In fact let

ﬁT = —B'XT.’L'
then
zoXT(s)ro = Jr(tT;s,zo)
< Jr(ir; s, o)
< Jp(@g; s, 2o) = ToXr(s)To

where we set F =0 in Jr and @ in Jr is the restriction of the feedback law
ap(-) to [s,T]. We note that

zoXT(8)z0 Jr(@r; s, zo)
Jr(u(-; zo); s, Zo)

J(u(-; zo); 8,z0) < 00.

IA A
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Hence 3 XT1(s)xo is monotone increasing and uniformly bounded in s and T'.
Since zg is arbitrary, there exists a nonnegative bounded matrix X such that

X7(s) = X(s) for any s.
Then X satisfies the Riccati equation (2.15). s

Lemma 2.6 Suppose (C, A) is detectable. Then A — BB’ X is ezxponentially
stable.

Proof. The Riccati equation (2.15) can be written as

~X =(A-BB'X)'X + X(A—BB'X) +[C’' XB| [B?X] :

Hence, if x is the solution of the state feedback system
= (A~ BB'X)(t)x, z(s) = zo
then
[B(';’X] x € L?(s, 00; RP2+™2)
with

I [B(’;’X] z ||2<c¢| zo| for some c > 0.

Since (C, A) is detectable, it is easy to see that ([B(']X] ,A— BB'X)} is also
detectable. Hence by Proposition 2.5, A - BB’ X is exponentially stable. g

We say that X is a stabilizing solution of the Riccati equation (2.15) if
A — BB’ X is exponentially stable.

Theorem 2.2 Suppose (C, A) is detectable and RC holds. Then there exists
a nonnegative stabilizing solution of the Riccati equation (2.15). Moreover
the feedback law

() = —B'()X()z()
is optimal and
J(@; 8,20) = 5 X(8)xo. (2.17)

If A, B and C are §-periodic, then X 1is also 8-periodic.

Proof. The first part follows from Lemmas 2.5 and 2.6. Differentiating z' Xz
we obtain

T
' (T)X (T)z(T) + Jr(u; s, o) = 25X (8)xo +/ |u+ B Xz |?dt
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where u is an admissible control and z is its response. Since z'(T) X (T)z(T) —
0 as T — 0o, we obtain

o
J(u; 8, 19) = 2o X (8)zo + / lu+ B' Xz |2 dt.

Hence the optimality of 4 and (2.17) follow immediately.

By Lemma 2.5 the bounded stabilizing solution X of (2.15) is constructed
as lim, o, X7(t) where Xr(t) is the solution of (2.15) with Xp(T) = 0. If
A, B, C are §-periodic, Xr(t + ) = Xr_p(t). Hence

X(t+0) = lirx;o Xr(t+6) = liﬂéo Xr_g(t) = X(t). (]
Corollary 2.2 (A, B) is stabilizable if and only if there exists a control
u(-; 8,Zo) for each s and o such that
Iz 113+ 1l w13 e(zo)
for some constant c(xo).

Proof. We only need to show sufficiency. Consider the regulator problem with
C = I. By Theorem 2.2 A — BB’ X is exponentially stable where X is the
bounded nonnegative solution of the Riccati equation (2.15) with C =1. g

Example 2.3 Consider the periodic system with period 3:

[2] - [—(1 +0.gcos%"t) (1)] [2] + [(1)] u(t) (2.18)

which is called the Mathieu’s equation if u(t) = 0 [26]. This system is unsta-
ble, but by the feedback u = fx with

f(t) =[—-03cos &t —0.5cost —1— cost]
it is stabilized (see Example 2.1). For
c=1[1 0],
the system (2.18) is detectable and there exists a 3-periodic nonnegative
X1 Xu] (t) of the Riccati equation (2.15)

X2 X2
(Figure 2.4). The optimal response of this system with initial condition

stabilizing solution X (t) =

zl] 0) = [1] is given in Figure 2.5.
Iy 0

Consider the backward system
—€ = A1)+ C'(t), &(T) = &1
As in Theorem 2.1 we consider
Y AQR)Y + YA'(t) + Bt)B'(t) - YC'(t)C(t)Y,  (2.19)
Y(to) = HH'. (2.20)
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Figure 2.5: Simulation result



24 2. Continuous-time Systems

Theorem 2.3 (a) There exists a nonnegative solution of the Riccati equation
(2.19) and (2.20) on any [to, T).
(b) Let H = 0 and suppose there exists a control v(-; T,&,) such that

2
| B¢ lliz(:o,T;nmz) + v “L?(:D,T;RM)S c(é1)

for some constant c(£,). Then the solution of the Riccati equation (2.19) with
Y (to) = O is bounded. If, further, (A, B) is stabilizable, then A —YC'C is
exponentially stable.

(c) (C, A) is detectable +f and only if there ezists a control v(~; T, &) such that

Il & ”%2(co,T;R") + v ”%2(to,T;RP2)S c(&1)
for some constant c(£;).
Corollary 2.3 Let A, B and C be 0-periodic. Let Y be a bounded nonnega-
tie solution of (2.19) with Y (to) = 0 such that A — YC'C 1is exponentially

stable. Then lim,_,o0 Y (t + n8) exists (denoted by Yp) and Yy is a O-periodic
nonnegative solution of (2.19) such that A — YoC'C is exponentially stable.

Proof. 1t is enough to show that Y (t + nf) is monotone increasing in n.
Let Y (¢;Y(to)) be the solution of (2.19) with initial condition Y () > 0.
Then Y (t) = Y (¢;0). Since A, B and C are f-periodic, we have Y (t) =
Y(t —nf;Y (n8)) for nf <t < (n+ 1)8. Hence

Y(t+20)=Y(t+6,Y(9) > Y(t+6,0) =Y(t+86).
Similarly, we have
Y(t+(n+1)8) >Y(t+nd)
and Y (t + n#) is monotone increasing in n. Since Y is bounded, there exists
a limit Yp(t) of Y(t + nf) as n — oo. Note that
Yo(t) = lin;oY(t +nf) = lingoY(t +0+ (n—1)0) =Yy(t +6).

Hence Yy (t) is 6-periodic. Let s, t € [0, #). Integrating (2.19) from nf + s to
nf +t and passing to the limit n — oo and then differentiating again, we can
easily show that Yp(t) satisfies (2.19).

Next we shall show that A — Y3C’'C is exponentially stable. Let to < T <
oo be arbitrary but fixed. Let x4 be solution of

T = (A - YgC'C)(t)l‘, l‘(to) = ZTo. (221)
Consider
T = (A - YC'C)(t)l‘, l‘(to) = Ig.
and denote by z,(¢) the solution at t + nf. Then
in(t) = Z(t+nb)
[A(t +n8) ~ Y (t + nb)C'(t + n)C(t + nb)z(t + nh)
= [A(®) - Y(t + n0)C ()C(B)]an(t)
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and we have
lim z,(t) = z4(t), t € [to, T).

Since A — YC'C is stabilizing
T
/ | zn(t) |2 dt <c|zo|? for any n
to

where ¢ > 0 is a constant independent of T. Hence by Fatou’s lemma we
obtain

T T
/ | zg(t) |2 dt = lim inf/ | zp(t) |2 dt <c|xol?.
to n—0o00 to

Since T is arbitrary, the system (2.21) is exponentially stable. Suppose that
Y (t; H' H) is a bounded nonnegative stabilizing solution of (2.19) such that
A-YC'C is exponentially stable. Then by Theorem 2.4 below, lim,, . Y {t+
nf; H'H) = Y (t). 1

We generalize the notion of the stabilizing solution of the Riccati equa-
tions, which will be useful in later sections. Consider the Riccati equations
on [to,0)

-X A ()X + XA(t) + P(t) + XR(t)X, (2.22)
Y = AQY +YA()+Q@t)+YSt)Y (2.23)

where P, @, R and S are bounded piecewise continuous symmetric matrices.

Definition 2.12 Let X (Y ) be the solution of (2.22) (respectively, (2.23)).
(a) X (Y) is bounded if | X(t) |< cI (| Y(t) |< cl) for some ¢ > 0.

(b) A bounded symmetric solution X of (2.22) is called stabilizing if A+ RX
is exponentially stable.

(c) A bounded symmetric solution Y of (2.23) is called stabilizing if A+Y S
is exponentially stable.

These definitions are consistent with those of Theorems 2.2 and 2.3.

Theorem 2.4 (a) A bounded stabilizing solution (2.22), if one ezists, is

unique. _

(b) LetY and Y be two stabilizing solutions of (2.25). Then
Y(t)-Y(t) =0 ast — oo

Proof. (a) Let X and X be two stabilizing solutions of (2.22). Then

—dit(X - X)=(A+RX)({t)(X - X) + (X - X)(A+ RX)(¢).
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Hence ~ _
(X = X)(t) = Sx (T, )[X(T) - X(T)]Sx(T,1)

where Sx is the state transition matrix of A + RX. Hence
I X(t) - X(t) |= Mle_al(T_t)cM2e—az(T—t)

for some_positive constant My, Ma, ¢, a; and az. Letting T' — oo we obtain
X(t) — X(t) =0 for any to < t < oo0.
(b) Since

dit(y - V)=(A+YS(NY -Y)+ (Y - Y)(A+TYS)(t),

we have - -

Y(t) - Y(t) = Sy (t, to)[Y (to) — Y (t0)) Sy (¢, to)
where Sy and Sy are the state transition matrices of A —Y .S and A — Ys,
respectively. Hence Y (t) — Y(t) — 0 as t — oc. 1

Consider the system G:

b = AWz + Bityw + By)u, (te) = o,
z = Ci(t)z + Dia(t)u,
y = CQ(t).’E + D21(t)w

and the controller u = Ky of the form

A(t)z + B(t)y, #(to) =0, (2.24)
C(t)& + D(t)y.

z

Then the closed-loop system G and u = Ky is given by

[;] _ [A+p2b02 BQC](t)[] [BI+AB2DD21](t)w’

BC, BDy
[;} (to) [“”00] , (2.25)
z

[C1 + D12DC, D12C (1) [ ] + (D12D Dyy) (t)w.

Definition 2.13 Consider the system G on [to,o0). A controller u = Ky of
the form (2.24) is said to be 10-stabilizing if the closed-loop system (2.25) is
IO-stable. If, further, the closed-loop system is exponentially stable (or

A+ B,DC, ByC
BC, A

is exponentially stable) then the controller is said to be (internally) stabilizing.
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Proposition 2.6 Consider the system G and the controller w = Ky of the
form (? 2A4);If the controller u = Ky is internally stabilizing, then (A, B2, C3)
and (A, B, C) are stabilizable and detectable.

Proof. Let [;] (t) be the solution of

[;J = [A +]§Béf02 Bjié] (t) [;J [;J (s) = [f)"]. (2.26)

Then by assumption z, £ € L?. Rewriting (2.26) as
& = A(t)z+ Ba(t)(DCaz + ByC2), z(s) = zo,
& = A(t)z+ B(t)(Cez), £(s) =0

and applying Corollary 2.2, we conclude that (A, B2) and (/i, ﬁ) are stabi-
lizable. The detectability of (Co, A} and (C, A) also follow from the adjoint
system of (2.26) and Theorem 2.3. 1

2.1.4 Disturbance Attenuation Problems

Consider the system G:
T = A(t)z+ B(t)w,

= C(t)z, (2.27)
21 = Fz(T) (2.28)

with initial condition
z(to) = Hh (2.29)

wherez € R*, w e R™, z€ RP', z; e R, he R™, H e R**™_ F ¢
R7*™ and other matrices are bounded piecewise continuous of appropriate
dimensions. For each input (h, w) € R™ x L?(tg, T; R™!) we have the output
(z1,2) € RY x L%(to, T; RP!). Thus we can define the input-output operator
Gy, of the system (2.27)-(2.29) by

(2)-en()- () o
2Tto w

T
FS(T,to)Hh + F/t S(T, r)B(r)w(r)dr,

where

Gtho

h
o)

N
g >
N——”’
I

C(t)S(t,to)Hh + C(t) /tt S(t,r)B(r)w(r)dr.
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Let L(R™ x L2(to,T;R™); R x L2%(to, T; RP*)) be the space of bounded
linear operators mapping R™! x L2(to, T; R™!) into R? x L?(ty, T; RP*). Then
Gri, € L(R™ x L2(to, T; R™); R x L2(tg, T; RP1)). We regard (h, w) as the
disturbance and for a given v > 0 we wish to find necessary and sufficient
conditions for || G1y, ||< v, i€,

[z 2+ || z |2< d®(J h |2 + || w ||3) for some 0 < d < 7. (2.31)

In this case the system G is said to fulfil the v-disturbance attenuation.

The adjoint GT,, of Gry, is given by

v

G, <f) = <<<0) , (f,v) € RT x L?(to, T; R™) (2.32)
where

~€ = AME+C (),

¢ = B(t). (2.33)
(1) = F'f,
¢ = H'E(to),

Since || G¥¢, ||=Il G, || by Theorem A.2, (2.31) is equivalent to

[ P+ ¢z f 12+ vli3) (2.34)

To give necessary and sufficient conditions for | Gr¢, ||< v, we need the
Riccati equations

-X = A@®X+XAQR)+C')C@) + ’:-—2XB(t)B’(t)X,(2.35)
X(T) = F'F, (2.36)
H'X(to)H < d°Iforsome0<d<~y (2.37)

and
Y = AQ@)Y +YA'(t)+ B(t)B'(t) + 71—2Yc'(t)0(t)Y, (2.38)
Y(te) = HH', (2.39)
FY(T)F' < d°I forsome 0 <d <~. (2.40)

To give the solution of this problem, we introduce the following functional

T
J(w; to, To) = , [| z(t) |2 =9* | w(t) |*)dt+ | F(T) |? (2.41)
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subject to

A(t)x + B(t)w, z(to) = zo,
= C(t)z

and consider the maximization of J(w;to,Zo) over all w € L%(to, T; R™).

Let
= 0
Griew = Gty ( ) )

8-
Il

w
= 0 .
GiTtow = Gt'Tf,o w )’ = 17 2.

Lemma 2.7 || Gars |<|| Goreo ||, || Gs I<|| Greo || for any to < s < L <
T.

Proof. We shall show only the first inequality. Let 1 be the extension of
w € L%(s,L; R™) to [to, T] by zero, i.e,
0, to<t<s,
wt) =4 w(t), s<t<L,
0, L<t<T.

Then we have

| Gapsw|2

L t
/ |C(t)/ S(t,r)B(r)w(r)dr |2 dt

L t
[ () / S(t,r)B(r)b(r)dr |2 dt

T t
< / 1c@) [ s, r)Bryw(r)dr 2 dt
to to
= ” C_"2Tiow”§
< |l Gareo 1211 95 =l Gareo 1171 w 113 - (]

Consider the optimal control problem (2.27)-(2.29) and (2.41) with to, T
replaced by arbitrary s, L, tg < s <L <T.

Lemma 2.8 Assume | Gr¢, ||< 7. Then the following statements are true.
(a) There exists a unique optimal mazimizing element wr, € L%(s,T; R™)
of J(w; s, xo). Moreover

lwrslly <6120, J(wreis,zo) <8 |zo|? (2.42)

for some 6 = 8(y) > 0 independent of s and x,.
(b) There erists a unique nonnegative solution to (2.35) and (2.36). The
optimal control for (2.41) is given by the feedback law

1 ’
wreo () = 7—23 ()X ()=(:)
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and
J(Wrte, to, To) = ToX (to)xo. (2.43)

Proof. (a) By Lemma 2.7, | Gr, ||< 7 for any to < s < T. Hence v —
C’}sérs > al for some a > 0 and the quadratic functional J(w;s,zo) is
strictly concave and J(w;s,z9) — —00 as || w [|2— oo. Then there exists a
unique optimal wr, for Jr{w; s, zo) which is given by

L GnGrope = Gpom o) ( COS 0
(v*I = G7,Grs)w = G120, 20(t) = ( FS(T,s)xo )~

Hence .
Wrs = (72'[ - G;‘SGTS)_IG;‘SZO‘
Since || G5 ||< d < 7, we have

1
72_d2'

I ("1 - G1,Gra) 7" II<

Hence p
| wrs|l; < & | zo |
from which the assertion follows.

(b) Suppose that there exists a symmetric solution to (2.35) and (2.36) on
some interval [t1,T]. Then for any s,t; <s<T

T
J(wrs; 8,70) = ThX()z0 — 7° / | w(e) [ dt

where 1
v(t) = w(t) — ?B'X(t)z(t)

and z is the response of (2.27) to w € L?(s,T; R™!) with z(s) = xo. This
follows as in the standard quadratic problem. Hence

wrs(t) = %B’X(t)z(t)

and
J(wrs; s, T0) = I:)X(S)IO-

In view of (2.42) the norm of X is bounded, i.e., | X(s) |< § for some ¢ > 0.
Since the Riccati equation (2.35) is locally Lipschitz and its solution is a
priori bounded, there exists a global solution on [tg, T']. The uniqueness and
nonnegativity of X follows from (2.43). 1

We are now ready to give the solution to our original problem.
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Theorem 2.5 The following statements are equivalent.
(a) || Gry, 1< 7.

(b) There exists a nonnegative solution to (2.35)-(2.37).
(c) There ezists a nonnegative solution to (2.38)-(2.40).

Proof. Suppose (a) holds. Then || Gry, |[< 7 and (b) except (2.37) follows
from Lemma 2.8. Moreover for (2.27) and (2.35) the following equality holds:

1
|z 12+ [ 2 [13=~2 | w |3 +h"H' X (to) Hh —* || w - 7—2B'XI I3 (2.44)

Setting w = ;’;B’X:z: and using (2.31) we obtain
(R P+ wl3) 2 | w i} +h'H X (to)Hh.

Hence d2 | h |2> h'H' X (to) Hh which implies (2.37).
Conversely suppose (b) holds. Then by (2.44)

a2+ 1213 < Y lwli+d® R[22 173
< PR+ wl) =2~ (1P +II7]3)

where r = w — ;’,B’Xz. Since there exists a > 0 such that
lR 2+ wli<a(h®+ 713,

we have

72—d2
a

WA+ 1w i)

Lz P+ 1203 < (AP +1wlf) -

72—d2
a

(R +1wl3)

= (-

Hence || G4, ||< 7. The equivalence of (a) and (c) also follows since (c) is
the dual of (b) concerning the adjoint system (2.33) of Gry,. 1

If we assume that initial conditions are known, we can set h = 0.

Corollary 2.4 The following statements are equivalent.

(@) | Greq 1< 7.

(b) There erists a nonnegative solution to (2.35) and (2.56).

(c) There ezists a nonnegative solution to (2.38) and (2.40) with Y (to) = 0.

Now we consider the system G:

i = A({t)z+ Bt)w,
z = C(t)z,
x(to) = Hh
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on [tg, co) and assume that this system is exponentially stable. Then we define
the input-output operator G € L{R™ x L%(tg, co; R™1); L%(to, 0o; RP)) by

e (h).

In this case we wish to find the condition for || G ||< 7. We replace (2.30)
and (2.41) by

()

J(w;to,zo) = /too[l z(t) 12 -2 | w(t) (}dt.

C(8)S(t, to) Hh + C(t) /t " (¢, 7) B(r)w(r)dr,

We also need the functional (2.41) with F =0, i.e.,
T
Ir(wito,z0) = [ [12(0) P = [w(e) Plae.
to

Let Gw = G (3}) Proceeding as in the finite horizon case we have the

following.
Lemma 2.9 || Gory, ||<|| G || for any to < T < oo.

Lemma 2.10 Assume | G ||< 7. Then the following statements are true.
(a) There exists a unique control wry, (wy,) mazimizing Jr(w;te, To)
(J(w;to, zo), respectively). Moreover

” tho”’.) <94 I To l7 9 ” wto“’z <4 | Lo Iv 9 (2‘45)
JT(tho;tO;zO) <é | To | ) J(wto;to'lzo) <é | Lo |

for some § = §(7) > 0 independent of T and zo.

(b) There exists a unique bounded nonnegative stabilizing solution to (2.35).
Moreover if the conditions above are satisfied, the optimal control w,, of
J(w;to, zo) exists and is given by the feedback law

%w=$3omnw

and J(we,; to, o) = X (to)zo.

Proof. (a) Since || G ||<|| G ||< 7, by Lemma 2.9 we have || Gart, [|< 7.
Hence from Lemma 2.8, we have

wre, = (VI = Gy, Gareo) ™  Gorey 20
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and
wy, = (VI - G*G) " 1G* 2.

Since Gartq, (721 — G314, Garto) ™! are uniformly bounded in T, we have the
assertion.

(b) Since || G ||< v implies || G2r¢, ||< 7, we have a nonnegative solution
Xr(t) to (2.35) with X7(T) = 0. Moreover for each t, Xr(t) is monotone
increasing in T'. In fact let L < T and define a control on [to, T] by

. LB X(t)z(t), t€ [to,L],
wT‘°(t)={ 0, te(LO,T].

Then

Jr (Wres; to, To)
Jr(wree; to, To) = o X1 (to)Zo.

o XL (to)xo = JL(WLee; to, To) <
<

The mononicity of Xr(t) also follows from Jr(w;t, zo). Note that Xr(t) is
bounded uniformly in T. This follows from (2.45) and

Jr(wre,; to, To) = o X7 (to)To.

Hence Xp(t) converges to a limit X(t) as T — oo and it satisfies (2.35). Now
it remains to show that A + ;ITBB’X is exponentially stable. Let @wr,, €

L2(to, oo; R™) be given by

1 p/ T
Wreo (t) = { 7B Xz () T(t()): ii [(t:;’{ﬂs

Then by Lemma 2.10, {t1¢,} is bounded in L2(tp,c0; R™). Hence there
exists a subsequence again denoted by {wr,} which is weakly convergent to
W € L?(to, 0o; R™) with || @ ||2< c | zo |, ¢ > 0 (see Theorem A.5). Let Z be
the response to w, i.e, the solution of

i = A(t)Z + B(t)w, i(to) = o

Then for each t, z7(t) — Z(t) as T — o0. On the other hand z7(t) — Z(t)
in any interval, where Z is the solution of equation

z=(A+ %BB’X)(t)i(t), Z(to) = To-

Hence we can identify £ = Z. Since A is exponentially stable and || w |[2<
c | zo |?, we conclude || z ||l2=|| Z ||2< ¢1 | To | for some ¢; > 0. The same
conclusion holds when we replace to by s > t,. Hence by Proposition 2.2
A+ ,Y—ITBB’X is exponentially stable. i
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Theorem 2.6 Assume that the system G is exponentially stable on [tg, 00).
Then the following statements are equivalent:

(a) ]| G lI< 7.

(b) There ezists a bounded nonnegative stabilizing solution of (2.35) on [tg, 00)
satisfying (2.37).

(c) There exists a bounded nonnegative stabilizing solution of (2.38) and
(2.39) on [to, 00).

The solutions in (b} and (c) are unique.

Assume that the initial condition is known so that A = 0.

Corollary 2.5 The following statements are equivalent.

(a) | Gli< -

(b) There erists a nonnegative solution to (2.385).

(c) There exists a nonnegative solution to (2.88) with Y (to) = 0.

Proof of Theorem 2.6. Suppose (a) holds. Then the existence of a stabi-
lizing solution follows from Lemma 2.10. The condition (2.37) follows as in

Theorem 2.5. Hence (a) implies (b). The converse is also similar to Theorem
2.5. We only need to show

[h 12+ |wl3<a(l h|?+ | r|3) for some a > 0.

But this follows from

Iy
Il

(A+ ;IEBB’X)(t)z + B(t)r,

€
il

71—23’(t)X(t)z +r

since A + ;l;-BB'X is exponentially stable.

(c) is the dual of (b) and (a) implies the existence of a bounded nonneg-
ative solution of (2.38) with property (2.39). In fact we consider the adjoint
system

~£ A'(t)E+C'(t)y, &(T) =¢&,
¢ = B(t)¢

and
T
J(v T, &) = t (1¢@) 12 =7 | v(t) [*]dt

and proceed as in Lemma 2.10. To show the exponential stability of A +
;I;YC’C, let vr(t) = ;‘TCY(t)f(t) be the maximizing element of J(v; T, &;),
then

[l vr [L2(to,T;RP1)< o | €1 | for some ¢o > 0.
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We extend vr to [tp, 00) by zero which we denote by o1 € L?(to, 00; RP?).
Then there exists a subsequence again denoted by 91 convergent weakly to

& € L(to, 00; RP') with || ¥ || L2(e9,00;rr1) < 0 | &1 |-
Now let ty < L < oo be a fixed but arbitrary number and consider
~ér = A@)er +C'(t)or, &r(L) =&,
~€ = AWE+C'WS, En(l)=&

and )
—£=A'()E+ ?C'U)C(t)Y(t)E, &L) =& (2.46)

Then as in Lemma 2.10, we can show £r(t) — ér(t) as T — oo for any
te [th L] and f(t) = g(t), te [t07L]' Since “ ] “L2(to,oo;RP1)S Co ‘ 51 \’

L ~
/ |€(t) 2dt <c|& |* for some ¢ >0,
t

(o}

which implies

L
/ [€@) Pdt <c|& 2 forany to <L < co.
t

(o}

Hence by Proposition 2.3, the system (2.46) is exponentially stable and so is

A+ ;’,YC' C.
The converse of (c) follows if we consider the adjoint of the system G and
proceed as the converse of (b). '

Corollary 2.6 Let the system G be 0-periodic, i.e., A(t + 6) = A(t), B(t +
6) = B(t) and C{t + 0) = C(t). Then

(a) The stabilizing solution of (b) in Theorem 2.6 is §-periodic.

(b) There ezists a 0-periodic nonnegative stabilizing solution Y(t) to (2.38)
and Y(t) —Yp(t) — 0 ast — oo where Y is a bounded nonnegative stabilizing
solution of (2.38) and (2.59).

Proof. Proofs of (a) and (b) are similar to those of Theorem 2.2 and Corollary
2.3, respectively. 1

If the system G is time-invariant, then we need the algebraic Riccati
equations:

1
AX+XA+C'C+ 7—2XBB'X =0, (2.47)
H'XH < d?I for some 0 < d < 7, (2.48)
AY +YA' + BB + lZYc'CY =0. (2.49)
Y

We define the stabilizing solutions of (2.47) and (2.49) as above. We can set
to =0.
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Corollary 2.7 Let the system G be time-invartant. Suppose A is exponen-
tially stable. Then the following statements are equivalent:

(a) | G < 7.

(b) There exists a nonnegative stabilizing solution of (2.47) satisfying (2.48).
(c) There exists a bounded nonnegative stabilizing solution of (2.38) with
Y (0) = H'H. Moreover, there erists a unique nonnegative stabilizing solution
of (2.49) and Y (t) — Yoo ast — 0o where Yo is the nonnegative stabilizing
solution of (2.49).

Proof. The last property follows from Theorem 2.4. 1

Corollary 2.8 Let the system G be time-invariant. Suppose A is exponen-
tially stable. Then the following statements are equivalent:

(@) | G ll<.
(b) There exists a nonnegative stabilizing solution of (2.47).
(c) There exists a nonnegative stabilizing solution to (2.49).

Example 2.4 Consider the periodic system with period 27

j:l . 0 1 Il 0 _
[ig] - [—1—0.5cost ——l—cost] [z2]+[1]w’ z(0) = Hh,

Iy
1 o] [zz]
which is exponentially stable (see Example 2.1). For this system we consider
the following two cases

(a) H=0, (b)H = [(2)] _9 [(1)]

z

where 2 in the case (b) can be regarded as weight on the initial uncertainty.
First we consider the case (a). For v > 2.3515, there exists a 2#-periodic
X1 X2
Xiz2 X2
tion (2.35) (Figure 2.6) and there exists a bounded nonnegative stabilizing
}},:12 };};] (t) of the Riccati equation (2.38) with Y (0) =0
which converges to a 2wm—periodic solution (Figure 2.7). Next we consider
the case (b). Then for all v > 2.7751, there exist a 2m—periodic nonnega-
tive stabilizing solution X (¢) of (2.35) and a bounded nonnegative stabilizing
solution Y'(t) of (2.37) and (2.38) which converges to a 2n-periodic solution
(Figure 2.8).

nonnegative stabilizing solution X (t) = ] (t) of the Riccati equa-

solution Y (t) =

2.2 H, Control and Differential Games

In this section we consider the differential games related to the Hy, control
problems. We consider finite and infinite horizon problems.
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1 .
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Figure 2.6: The periodic solution X (¢)
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Figure 2.7: The bounded nonnegative stabilizing solution Y (t): Case (a)
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T M T M T T T T ™ T
N ¥=2.7751

Y(t) : Case (b)
1

1 A 1 A 1 N 1
0 20 40 60
time (sec)

3
-
L LI

-20

Figure 2.8: The bounded nonnegative stabilizing solution Y'(¢): Case (b)

2.2.1 Finite Horizon Problems

Consider the system G:

£ = A(t)z+ Bi(t)w + Ba(t)u, z(to) = zo,

= Ci(t)z + Di2(t)wu, (2.50)
y = Cz(t).’l) + D21(t)‘w,
2y = Fz(T) (2.51)

where r € R"™ is the state, w € R™! is the disturbance, © € R™? is the
control input, (z;,z) € R9 x RP? is the controlled output, y € RP? is the
measurement, F' € R7*" and A, B, etc are bounded and piecewise continu-
ous matrices of appropriate dimensions. For this system we assume

C1: D,(t)[Ci(t) Dy2(t)]=[0 I] for anyt.

The standard Ho-control is to find necessary and sufficient conditions for
the existence of a controller of the form

(t) + B(t)y, #(to) =0,
()& + D(t)y (2.52)

z

A
u ¢

such that || G ||< 7, i.e.,

lz124]21°<d?||w]? for some 0 < d < vy
where A, l§, € and D are bounded piecewise continuous matrices and G is
the input-output operator: w — (221 ) In this case the controller (2.52) is
called y-suboptimal.
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Now we assume that a y-suboptimal controller K of the form (2.52) exists
and study its consequence to the following quadratic game:

T
J(u,w; s, zo) = / [ 2(t) |2 =42 | w(t) |?)dt+ | Fz(T) |? (2.53)

where u is the minimizer and w is the maximizer. The response to (2.50)-
(2.52) can be written

Ti(t) = (P1xTo)(t) + (P2xw)(t),
zk(t) = (Pikzo)(t) + (Y2rxw)(t), (2.54)
u(t) = (Mxzo)(t) + (Maxw)(?),

21K = FQIK(T)IO + F<I)2K(T)’w

where

&1k, Y1k, ik € L(R",L%*(s,T;E))
Ok, Yok, Ibx € L(L*(s,T;R™), L*(s,T; E))

with E = R®, RP!, R™2, respectively and
@1k (T)zo = (P1xT0)(T), P2x(T)w = (P2xw)(T).

Moreover ®;x, Wi and Iox are causal and || G ||< 7 is equivalent to
I &k f=| (FQ;;‘}((T)> II< d for some 0 < d < 7 (2.55)

which implies
| ¥2xw |13 + | Feax(Thw ’< d? | w3 -
Now consider the functional (2.53). Since
| 2(t) 1*=| C1(O)z(t) I + | u(t) |?

by C1, J(u,w; s, To) is strictly convex in u. Hence by Theorem A.4 for any xo
and w € L?(s,T;R™!) there exists a unique u, = u,(w, o) € L?(s, T; R™2)
such that
min J(u, w; s, xo) = J(us,w; s, To).
u
The response of the system G to u, can be written

zs(t) = (P1.70)(t) + (P25w)(2),
2(t) = (¥1szo)(t) + (¥2,w)(t), (2.56)
us(t) (Thszo)(t) + (2sw)(t),

z1s = F®1,(T)zo + FO2(T)w.
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Since
J(us,w; s, zo) < J(uk, w; s, To), (2.57)
we have P
= O, (T

19 1= (75 ) 1< (258)

Now
J{ug,w;8,20) = || 26 ||§ - | w ||§ + | 214 |
Fo,(T _

- ( 1s( ’)xo F T w2

where

Fo,,(T _
I ( 1a( ))zo+\ll,w 22| F®14(T)z0+F®as(T)w |? + || ¥rez0+¥asw |I2 -

By (2.58) v*I — ¥ ¥, is bounded both from below and above. So its inverse
exists (Theorem A.3) and is uniformly bounded in s. Hence there exists a
unique maximizing element of J{u,,w; s, zo) given by

.z F®,,(T
ws = (721 - \ysws) \ys ( \I:lf )) 0 (259)

Next we shall show that w, = w,(zo) and u,(w,, o) are uniformly bounded
in s. Setting w = 0 in (2.57) we have

| us(0, Zo) [|2< J(us(0, 20),0; 5, 20) < J(uk,0;s,20) =|| zx |13 + | 21 |?
or
| Tyazo 3<H ®1azo |13 + | FO15(T)zo *<|| Y1k 20 |7 + | F1x(T)20 |
Hence IT;, and ¥,, are uniformly bounded. From (2.58) and (2.59) we have
Il ws l2< a1 | zo | (2.60)

for some a; > 0 independent of s and wj, is uniformly bounded. Setting o = 0
in (2.57) we also have

” u’8 w 0) ”2 72 “ w ”2 + | 21s | J(u,(w,O),w;s,O)
J(uk,w;s,0)

Iz 2 =7 1w i3 + | 21k |2

IAIA A

and
| ¥2,w (13 4 | FO(T) |

I Yarw |13 + | Fe2(T) |*
@ llwl;.

I Thagw || + | F@24(T) |*

IAN A TA
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This implies that Iz, is uniformly bounded. Now (2.56) and (2.60) yield
| us(ws, Zo) [|2< a2 | Zo | (2.61)
for some a2 > 0 independent of s. Thus we have shown the following.

Lemma 2.11 (a) I;,, ¥, II2s and Yo, are uniformly bounded.
(b) ws(zo) and us{ws, o) are uniformly bounded and

muz)a.xmuin J(u, w; s, 7o) = J(us, ws; s,10) < a| xp |?
for some a > 0 independent of s.
Now consider the Riccati equation
-X A )X + XA®) + C{(t)C1(t)
+X(7—12313; — By B3)(t)X, (2.62)

X(T) = F'F (2.63)

If there exists a symmetric solution to (2.62) on [t;, T], t; > to, then for any
t)<s<T

T
J(u,w;s,30) = zHX(s)T0 — 42 / |w(t)—::5B;X(t)z(t) 12 gt

S

+ / ) | u(t) + ByX(t)z(t) |* dt  (2.64)
s

where z is the solution of (2.50) with ty = s. Define feedback laws
w(-) = 71—2 10X ()=(), a() = -B2 ()X ()z()) (2.65)
and let =* be the solution of (2.50) with to = s corresponding to (2.65). Set
w*(t) = 71—2Bi(t)X(t)x‘(t), u*(t) = —By(t) X (t)z* (t). (2.66)

We shall show the value of the game exists, i.e.,
sup irt}f J(u,w; s, xq) = irt}f s:p J(u, w; s,xg).

Lemma 2.12 Suppose that there ezists a solution X of (2.62) and (2.63) on
[t1,T]. Then it is nonnegative. Moreover

J(ts,w;s,x0) < J(&,W;s,xo) = 2oX(8)xp < J(u,w; s, To), (2.67)

J*, w*s,xo) = z(X(s)xo < J(u,w*;s,zo) (2.68)
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for any (w,u) € L%(s, T;R™) x L?(s,T; R™2). The maz-min of J is attained
by the pair (4, w*) and

J(@m, w*; s, xq)

J(@, @; s, To) (2.69)
J(u*, w*; s, zo)

max min J(u, w; s, Zo)
w u

= zoX(s)xzo = ir&fsup J(u, w; s, zp).
w

Proof. We note that (2.67) follows from (2.64). Setting w = 0 in (2.67), we
have

0 < J(@s,0; 8,z0) < J(iis, Ws; S, To) = 2o X(8)Zo-

Hence X (s) is nonnegative. From (2.64) we have
J(#, w; s,x0) < J(&,W; s,x0) = o X(8)zo

and hence
min J(u, w; s, zo) < J(@, w; 8, Zo) < 2o X (s)Zo
u

for any w € L?(s, T; R™). This implies
sup muin J(u, w; 8, z0) < 2o X(8)xo.
Now we shall show
m&n J{u,w*; s, xo) = J(u*,w*; s, z0) = £ X(8)xo. (2.70)
For this purpose, we consider e = x — z*, where z is the solution of
= Az + %BlB;X(t)I + Bau, z(s) = xo-

Then
é= Ae+ Ba(u—u*), e(s) =0

and
J(u,wiis,z0) =[| Cile+z*) |5+ | wllf =7 | w* I3 + | Fle+z*)(T) |*.

Define

(Hu)(t)

/ S(t, r)Ba(r)u(r) dr,

T
H,u / S(T,7)Ba(r)u(r) dr
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where S(t,7) is the state transition matrix of A. Then

e = H(u-—u"),
e(T)y = Hg(u—u*).

Since J(u,w}; 8, Tg) is strictly convex in u, there exists a unique minimizing
element u given by the solution of

u+H*'C{CiH(u—u")+ H*C{Ciz* + H; F'FH,(u —v*)+ H; F'Fz*(T) = 0.

We shall show that u = u* is the solution. Note that for h € L?(s,T;R"™)
and h € R™

T
By(t) / S'(¢, r)h(r) dr,
B4(t)S' (T, t)h.

(H*h)(t)

(H;h)(®)

It is enough to show that u*(t) = —Bj(t)X (t)z*(t) coincides with
-H*C{Ci1z* —H;F'Fz*(T)
which is equal to
T

—Bé(t)/ S'(t, T)Cy(r)C1(r)X* () dr — B4(t)S' (T, t)F' FX*(T).

But differentiating
T
o(t) = X(t)z* () — / S (t,r)CLC1(r)z* () dr — S/ (T, t)F'Fa*(T)

we obtain
g=-A4A(t)g, 9(T)=0

and hence g = 0. This yields (2.70) and hence (2.68). It remains to show the
last equality in (2.69). From (2.64)

zo X (s)xo < J(u,w; s, xo) < sup J(u,w;s,Zo)
w
for any u and hence

zo X (s)zo < infsup J(u,w; s, xo).
v ow

But
max J (&, w; s, zo) = o X (8)xo
w

and zoX (s)zo = J(@,w*; s, z0) = inf sup J (u, w; s, To). ’
LT
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Lemma 2.13 There exists a unique nonnegative solution of the Riccati equa-
tion (2.62) and (2.63) on [to, T).

Proof. Since the Riccati equation is locally Lipschitz, there exists a local
solution. But by Lemma 2.11 and (2.69) the solution is a priori bounded.
Hence there exists a global solution on {to, T]. 1

Summing up we have the following.

Theorem 2.7 Assume C1 and the controller (2.52) is y-suboptimal for the
system G. Then there exists a unique nonnegative solution X on [s,T] to the
Riccati equation (2.62) and (2.63). Moreover

maxmin J(u,w;s,z0) = J(&,w";s,To)
w u

= J(&,w;s, o)
= J(u*,w*; s, xo)

= xuX(s)xo = inf sup J(u, w; s, o).
U w

Consider the backward system

8

-z = A'(t)Z+Ci(t)w + Ca(t)a,
z B{(t)Z + D, (1), (2.711)
Zy = H':i‘(to)

which is the adjoint of the system G with z(ty) = Hh, h € R"*. For the

system (2.71), we introduce the controller u = Ky of the form

= AWtz +C @), (2.72)
B'(t)i + D'(t)j

8.

[~

which satisfies
21342 2<d? || @)% for some 0 < d < 7.
Now we introduce the functional
T
Ja@sTHD) = [ 120 P = |00 Pldct | B'3(5)
subject to {2.71) and we consider the following Riccati equation
Y A)Y + Y A'(t) + B1(t)B)(t)
1
+Y(’—730101 — CLCo)(1)Y, (2.73)

fi

Y(to) = H'H. (2.74)

Then as in Lemmas 2.11-2.13 we have the following result.
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Corollary 2.9 Assume C2 and that a y-suboptimal controller (2.72) exists
for the system (2.71). Then there ezxists a nonnegative solution Y of (2.73)
and (2.74) and

max min J(#, w; T, (T)) = #'(T)Y (T)%(T).

w u

2.2.2 The Infinite Horizon Problem
Consider the system G:

T = A(t)z + By(t)w + Ba(t)u, z(to) = xo,
z = C)(t)z + Di2(t)u,
y = Cz(t).’t + D21 (t)w

with the assumption C1. We further assume that (A, Bz, C;) is stabilizable
and detectable. As in the finite horizon problem we assume the existence of
a controller K of the form (2.52) with property

| zll2<d || w2 for some 0 <d <~ (2.75)

and study its consequence to the quadratic game defined by the functional
OO
J(u, w; to, o) = [} 2(t) 12 =72 | w(t) [*]dt. (2.76)
to

Such a controller is called IO-stabilizing with disturbance attenuation v (I0-
~-suboptimal) and is called ~-suboptimal if it is internally stabilizing. We
also consider the finite horizon problem associated with

T
Jr(u, w; to, To) = /t [l 2(2) I =7* | w(t) |*])de. (2.77)

Note that if a controller K of the form (2.52) is I0-y-suboptimal, it is also
v-suboptimal on any [to,T]. Since (A, Bz) is stabilizable, ¥,, in (2.56) is
uniformly bounded. Then by Lemmas 2.11, 2.12 and Theorem 2.7 we have
the following.

Lemma 2.14 There exists a unique nonnegative solution Xr of the Riccati
equation (2.62) with X1(T) = 0 on any interval [to, T| such that

| X7(t) |< ¢ independent of to <t < T < oo.
Lemma 2.15 For each t > tg, Xr(t) is monotone increasing in T.
Proof. Let L < T and we shall show X[ (to) < Xr(to). This follows from

20Xy (to)zo = Ji(GL, Wr;to,z0) < Jr(liT,wi;to, To)
< Jr{@r,dr;te, o)
< Jr(tr,r;to, To) = zoXT(to)zo
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where 4 is the restriction of 4r on [to, L] and wr is the extension of Wy, to
[to, T] by zero. The proof of a general ¢ is similar. 1

By Lemmas 2.14 and 2.15 Xr(t) is bounded and monotone increasing
in T. Hence it converges to some X > 0 which is a solution of the Riccati
equation

_X = A(0)X + AB)X + CL)Cilt) + X(%BIB; _BBY()X. (2.78)

Now we show that A + (;;l-;BlB{ — B3B3)X is exponentially stable. Let z7.
be the solution of

1
T = [A + (’—)'EBIB; — BzBé)XT](t)m, :l:(to) = Ig. (2.79)
Then for any fixed interval [to, L] the solution z} converges to the solution
z of
. 1
I= [A + (;EBIBi - BzBé)X](t)_, i(to) = Zg.
We can rewrite (2.79) as
t=(A-JC)z+ JCiz} + Biywy + Baup, z(to) = o (2.80)

where J € R™*? is chosen such that A — JC; is exponentially stable. The
solution of (2.80) coincides with z3.(t) on [to, T]. We extend it to [to, 00) by
the homogenous equation of (2.80). By Lemma 2.12 || C1z} |2, | w7t |2,
|| % |2< a | o | for some a > 0 and C,z%, w} and v} converge weakly to
h, W and @ in L3(tg, o0; E), E = RP*, R™ and R™? respectively, along a
subsequence T — o00. Let £ be the solution of

& = (A~ JC)z + Jh+ Byib + Ba@i, z(to) = o.
Since the restriction of Ciz} etc on any interval [to, L] converge weakly to
those of h, etc, we can identify Z and Z on [to, L]. Since A — JC, is expo-
nentially stable, Z € L?(to, 00; R™). Hence £ € L%(tg, 00; R™) for each z¢ and
| Z |2< ¢ | o | for some ¢ > 0 independent of z¢. Hence by Propostion 2.2
A+ (:;I]'BlBi - ByB4)X is exponentially stable.

Define feedback laws
1 _

() = ?Bi(')X(')m('), u() = —Ba() X ()z("). (2.81)

Let z* be the solution of {(2.50) corresponding to (2.81) and let
1
w'(t) = ZBOX () (1), v (0) = ~ByOX (02" (). (2.82)

First we show that the feedback law % is stabilizing.
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Lemma 2.16 Suppose that X is a nonnegative solution of the Riccati equa-
tion (2.78) such that A + (;ITBIB{ — By B}) X is exponentially stable. Then
A — BaBj X is exponentially stable.

Proof. Since A + (,7—15-31 B} — B2B})X is exponentially stable,

C,
i1BIX|,A-B:ByX
By X

is detectable. Rewrite now the Riccati equation (2.78) in the form

a1l a
~X =(A-B:B}X)X + X(A-B:ByX) + | 1BiX | [3iBiX | .
By X By X

Hence by Proposition 2.5 A — B2B5X is exponentially stable. Note that the
detectability of (Ci, A) is not necessary. ]

Let SF be the set of stabilizing feedback laws. As Lemma 2.12 we shall
show

s1:}pu1€nsfF J(u,w; to, T0) = J{@,w*;to,Zo0)
J (4@, w; to, To)
= J(u*,w";to, Zo)
= zoX(to)zo
= ulenSfF Sl:)p J(u, w; to, To)- (2.83)
Note that

inf sup J(u, w; to, Zo) < sup J(&, w;to, T0) = J(&, w*; to, o) = T X (to)zo.
u€ESF w w

It suffices to show

zoX (to)zo < J(@, w*; to, To) = iensfF J{(u, w*; to, To). (2.84)
u

In fact this implies
7 — . *‘ < . .
20X (to)To ulenSfF J{u, w*; to, zp) < sgp ulensfF J{u, w; tg, To)
and (2.83) follows. To show (2.84), we proceed as in the proof of Lemma 2.12.

Consider

T = Az+ Biw*+ Bu
= (A- ByB3X)r + Byw* + Byv
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where v = u + B} Xz. Then e = z — z* satisfies
é= (A - BzB;X)e + Bz’U

and J(u,w*; o, o) can be rewritten as

J(v,w"ito,z0) = || Criz 3+ v - ByXz |3 -7 | w* |13
= [[Ci(Hv+2") |3+ |lv— B3 X(Hv +2*) |3
-2 || w* |13
where

(Hv)(¢t) =/t Sx (t,r)Bz(r)v(r) dr

and Sx(t,r) is the state transition matrix of A — B, B3 X. The unique mini-
mum of J exists and is given by the solution of

H'C|C,Hv + H*C!Cz*
+(I - ByXH - H*XB, + H*XB,B}H)v — (I - H* X B,) B, Xz* = 0.

We shall show that v = 0 is the solution. This follows if
B, Xz* = H*(C{C1 + XB; B, X)z*
which is true if

g(t) = Xz*(t) - /too S% (t,r)(C1C1 + X B2 By X )(r)x*(r) dr

is identically zero. Differentiating g we obtain
§=—(A~ ByB;X)'g, g(c0) = 0.

Hence g(t) = 0 and v = 0 minimizes J which implies @ = —B} Xz mini-
mizes J(u,w"; tp, zo). Thus the value of the game J(u,w;ty, xo) over SF x
L?(tg, 00; R™!) exists.

Summing up we have the following.

Theorem 2.8 Assume C1 and (A, By, C,) is stabilizable and detectable.
Suppose an IO-stabilizing controller with property (2.75) exists. Then there
exists a bounded nonnegative stabilizing solution to the Riccati equation (2.78).
Moreover 4 € SF and

inf J 180, T = J(u,w*;ty, x
sgpuIEHSF (u,w, 09 0) (u w Lo, 0)

= J(@,W; to, Zo)
= J(u",w*;to, Zo)

X (to)zo = inf sup J(u,w;to, To).
u€SF

If G is O-periodic, then X is also 8-periodic.
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Corollary 2.10 Suppose that the conditions of Theorem 2.8 hold. Then there
exists a stabilizing state feedback law such that | G ||< v if and only if

there exists a bounded nonnegative stabilizing solution to the Riccati equation
(2.78).

Proof. @ = —B4 Xz is such a law. ]

Corollary 2.11 Consider the system (2.71) and assume C2 and (A, B;,C2)
ts stabilizable and detectable. Suppose an I10-stabilizing controller of the form
(2.72) with property

NZN2+ 2 |2<d? || @ |2 for some O <d <~

erists. Then there erists a bounded nonnegative stabilizing solution to the
Riccati equation (2.73) and (2.74). Moreover, if (2.71) is 8-periodic, the
lim,, .o Y(t+n8) exists (denoted by Yy(t)) and Yy is a -periodic nonnegative
stabilizng solution of (2.78).

2.3 Hy Control

In this section we consider Hoo-control problems with initial uncertainty as
in Khargonekar et al. [49], but we assume that initial conditions lie in some
subspace. We shall introduce a general framework for H,-control and de-
fine our main problems. Then we consider two special problems called the
full information- and the disturbance feedforward problems, which lead us
eventually to the solutions of our main problems.

2.3.1 Main Results
Consider the system G:

i = A(t)z+Bi(t)w+ Bat)u,
— Cy(t)z + Dialt)u, (2.85)
y = Cat)z+ Da(tw,
5 = Fax(T), (2.86)
z(te) = Hh (2.87)

where z € R™ is the state, w € R™ is the disturbance, « € R™2 is the
control input, (z;,z) € R? x RP! is the controlled output, y € RP? is the
measurement, h € R™ | F € R?**, H € R**™ and A, B,, etc are bounded
and piecewise continuous matrices of appropriate dimensions. For the system
G we assume

C1: 12 [C1(t) Ds2(t)]=[0 I] for anyt,
C2:  Du(t)[Bi(t) Dj(t)]=[0 I] foranyt.



50 2. Continuous-time Systems

Consider the controller u = Ky of the form

i = A&+ B(t)y, (2.88)
u = C(t)z+ D(t)y,
i(t) = 0. (2.89)

where /i, B, € and D are bounded piecewise continuous matrices of appropri-
ate dimensions. Let v > 0 be given. Then the Ho,-control problem on [tg, T
with initial uncertainty is to find necessary and sufficient conditions for the
existence of a y-suboptimal controller, i.e., a controller such that

lzI2+ 21 2<d?*(|h |2+ || w|?2) for some 0 < d < 7.

Without loss of generality we assume that H and F have full column rank
and full row rank, respectively.

To give the solution of this problem, we introduce the following Riccati

equations
—-X = A@®)X+ XA(t)+Cit)Ci(t)

+X(:Y}EBIB{ _B:B)(®)X, (2.90)

X(T) = F'F, (2.91)

H'X(to)H < d*I forsome0 <d <~ (2.92)

and

Y = AQ)Y +YA'(t) + B\ (t)B](t)

1
+Y(?C{CI — CLCL) ()Y, (2.93)
Y(t) = HH'. (2.94)
We also need the following Riccati equation depending on X:
5 1

zZ = (A+ %BIB;X)(t)Z +Z(A+ ﬁBlB;X)’(t) + By (t)B;(t)
+Z($XBQB;X - CyCy) (1) 2, (2.95)
Z{te) = HI- ;liH'X(tg)H)‘lH'. (2.96)

Lemma 2.17 (a) Suppose X, Y and Z are solutions of (2.90), (2.93) and
(2.95), respectively. If Z(s) — Y(s) — ;I;Z(s)X(s)Y(s) = 0 for some s > to,
then Z(t) = Y (t) — xZ(t)X(t)Y () = 0 for allt > s.

(b) If (2.92), (2.94) and (2.96) hold, then

Z(to) - Y(to) = 32(t0)X(t0)Y (t0) =0.



2.3. Ho Control 51
Proof. (a) Let Q = Z -~ Y — 5 ZXY, then by direct calculation
s 1 ! 1 ! /] 1 ! /] !
Q= [A+?B1BlX+Z(7—2XB2B2X—0202)]Q+Q[A+Y(7—2CICl—0202)] .

Hence
Q(t) = Sz(t,5)Q(s)Sy (¢, 5)

where Sz and Sy are state transition matrices of
1 1
A+ ?BxB;X + Z(?XBQB;X — C4Cs)

and A + Y(:5CiCy — C5Ca), respectively. Hence if Q(s)=0, then Q(t) = 0
for all t > to.
(b) By (2.92), Z(to) is well-defined. Moreover

Qlto) = Z(to)u—j—zxyxto)—yuo)

H(I - 7—12H’X(to)H)'1H’(I ~ L X(to)HH") - HE
v

2

1 _ 1
HH'(I—7—2X(to)HH') l(I—;,A;X(to)HH')—HH'
= 0. 1

Lemma 2.18 Let X, Y and Z be matrices of the same order with property
Z-Y - %ZXY =0.
Y

Then
(6) I+ %XZ, I~ 25 XY are nonsingular and

1 _ 1 _
Z=Y(I—7—2XY) Y Y=Z(I+—7—5XZ) 1

(b) X is an eigenvalue of XZ if and only if p = -_1%'2;’\7 is an eigenvalue of XY.
(c) If X and Z are nonnegative, then every eigenvalue of XZ is nonnegative

and
2

YA 2
XY) = —
PXY) AENRZ) 2 + A <7

where A(A) denotes the set of eigenvalues of A and p(-) denotes the spectral
radius of a matriz.

Proof. (a) Since

1 1 1 1
I+ X2 I -5YX)=1+=5X(Z-Y - SZXY)=1,
U+ 5XZ)(I = 5¥YX) =1+ 5 X(Z-Y — ZZXY)
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I+:3XZ and I - ;XY and hence [ + 7 ZX and I - LY X are nonsingular
and

Y

Z{ + 71—2)(2)-1 =(I+ 71—22)()-12,

Z

1 _ 1 -
Y(I - 5XY) 1= (I- ZY%X) ly.

(b) Since XY = XZ(I + 53X Z)"', the assertion readily follows.
(c) The first part is well-known and by (b) XY has only nonnegative eigen-
values. Thus the second part also follows from (b). 1

Lemma 2.19 (a) Let X, Y and Z be the solutions of (2.90), (2.93) and
(2.95), respectively. Suppose I — XY is nonsingular. If z satisfies

1
—i=[A+ Y(;EC{CI - C3Ca)] (t)x (2.97)
then £ = (I — s XY )z satisfies
. 1 1 . .
—-Z=[A+ ?BIB{X + Z(TZXBzB;X - CCL)) (t)Z. (2.98)

(b) Let X, Y and Z be bounded on [to,00) and suppose I — -5 XY is non-
singular and its inverse is uniformly bounded in t. Then Y is a stabilizing
solution of (2.93) if and only if Z is a stabilizing solution of (2.95).

Proof. Differentiating £ we obtain
. 1
- = [A+ %BIBQX + Y(:Y—zXBzBéX - C;C)Y]'x

1 1

1 1

1 1 1
+(?XBzB§X — ChCY (I — :Y-Z-XY)-I(I - :Y—EXY).’I:

1 1 7
[+ 5 BiBIX + 2( 3 XB; By X ~ GO .

(b) If ( — 53 XY)~! is uniformly bounded, then (2.97) and (2.98) are equiv-
alent. B

The following are our main results.
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Theorem 2.9 Assume C1 and C2.

(a) There exists a y-suboptimal controller u = Ky on [to,T] if and only if
the follounng hold:

(i) There exists a nonnegative solution X to (2.90)-(2.92).

(i) There exists a nonnegative solution Z to (2.95) and (2.96).

(b) In this case the set of all v-suboptimal controllers is given by

P o= A+ (’leBlB{ _ B,Bl)X — ZCLCa)(8)&
1
+Z(t)Cy(t)y + [I + 7——2ZX](t)Bz(t)ﬁ,
u = -—-Byt)X(t)Z + D, (2.99)
7 = —Ca(t)E+y,
= Q‘ﬂ “Q”< 0 e
:f}(to) = 0.

Theorem 2.10 Assume C1 and C2.
(a) There exists a y-suboptimal controller u = Ky on [to,T] if and only if
the following hold:
(1) There exists a nonnegative solution X to (2.90)-(2.92).
(1t) There exists a nonnegative solution Y to (2.93) and (2.94).
(i53) p(X ()Y (t)) < d? for any t € [to, T] and for some 0 < d < 7.
(b) In this case the set of all y-suboptimal controllers is given by (2.99) with
Z replaced by (I — Y X)~'Y.
Remark 2.3 The controller (2.99) with Q@ = 0 is called central.
Next we consider the system G:

T = A(t)x + Bl (t)w + Bz(t)u,
z C](t)x + Dlz(t)u,
Yy Ca(t)x + Do (t)w,
z(to) = HhR
on [tg, 00) and the controller u = Ky of the form (2.88) and (2.89). Here we
assume C1, C2 and
C3: (A, By, C,) is stabilizable and detectable,
C4: (A, By, C,) is stabilizable and detectable.

Then the Hy-control problem is to find necessary and sufficient conditions
for the existence of a y-suboptimal controller, i.e., an internally stabilizing
controller such that

| z 13< d*(| b |? + || w ||2) for some 0 < d < 7.

The solution of this problem is given by the following.
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Theorem 2.11 Assume C1-C4.

(a) There exists a y-suboptimal controller w = Ky on [to, 00) if and only if
the following hold:

(i) There ezxists a bounded nonnegative stabilizing solution X to (2.90) and
(2.92).

(i1) There erxists a bounded nonnegative stabilizing solution Z to (2.95) and
(2.96).

(b) In this case the set of all ~y-suboptimal controllers is given by (2.99) with
Q nternally stable.

Theorem 2.12 Assume C1-C4.

(a) There ezists a y-suboptimal controller v = Ky on [tp,00) if and only if
the following hold:

(i) There exists a bounded nonnegative stabilizing solution X to (2.90) and
(2.92).

(ii) There exists a bounded nonnegative stabilizing solution Y to (2.93) and
(2.94).

(5ii) p(X(t)Y (t)) < d? for any t € [to, 00) and for some 0 < d < 7.

(b) In this case the set of all y-suboptimal controllers is given by (2.99) with
Z replaced by (I — Y X)™'Y and Q internally stable.

Now we assume that the system G is 8-periodic and the conditions C1-C4
hold. Then by Theorem 2.8 and Corollary 2.11 the solution X in Theorems
2.11 and 2.12 is #-periodic and there exist #-periodic nonnegative stabilizing
solutions Yy and Zy such that

lim Y(t +nb) = Yy(t), lim Z(t + nb) = Zy(t).

n—o00 n—00

If we further assume h = 0, then we have the following corollaries.

Corollary 2.12 (a) There ezists a y-suboptimal controller if and only if the
following hold:

(i) There exists a 6-periodic nonnegative stabilizing solution to (2.90) and
(2.92).

(1) There exists a 8-periodic nonnegative stabilizing solution to (2.95).

(b) In this case the controllers is given by (2.99) with Q internally stable
is y-suboptimal. If Q is O-periodic, the controller (2.99) is 8-periodic and
~v-suboptimal.

Corollary 2.13 (a) There ezists a y-suboptimal controller if and only if the
following hold:

(i) There exists a 6-periodic nonnegative stabilizing solution to (2.90) and
(2.92).

(i) There exists a 6-periodic nonnegative stabilizing solution to (2.93).

(tii) p(X(£)Y (t)) < d% for any t € [to,to + 6) and for some 0 < d < 7.

(b) In this case the controllers given by (2.99) with Z = (I — %;YX)_‘Y
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and internally stable Q are y-suboptimal. If further Q is 8-periodic, they are
0-periodic.

Let the system G be time-invariant and assume the conditions C1-C4
hold. Then we need the algebraic Riccati equations

1
A'X +XA+CiC + X(5B1B, - B,B)X = 0, (2.100)
Y
AY+YA'+BIB;+Y(lzc;cl—c,;cz)y = 0, (2.101)
g

1 1
(A+ ?BIB;X)Z +Z(A+ ?BlB;X)’ + B1 B

L2 XBByX - CiC)Z = 0. (2.102)
Y
We define the stabilizing solutions of (2.100), (2.101) and (2.102) as in Defi-

nition 2.12. Without loss of generality we can set to = 0. Then we have the
following corollaries.

Corollary 2.14 There exists a y-suboptimal controller if and only if the fol-
lowing hold:

(i) There exists a nonnegative stabilizing solution X, of (2.100) with H' XH
< d?%I for some 0 < d < 7.

(i) There exists a nonnegative stabilizing solution of (2.95) with Z(0) =
H(I - #;H’XH)“H’.

Moreover, there exists a nonnegative stabilizing solution Z, of (2.102) and

Corollary 2.15 There ezists a y-suboptimal controller if and only if the fol-
lowing hold:

(i) There exists a nonnegative stabilizing solution X, of the algebraic Riccati
equation of (2.100) with H'XH < d?I for some 0 < d < 7.

(i) There exists a nonnegative stabilizing solution of (2.93) and (2.94).
Moreover, there exists a nonnegative stabilizing solution Y, of (2.101) and
(i11) p(Xoo Y (1)) < d? for any t € [to, 00) and for some 0 < d < 7.

If we further assume that there is no initial uncertainty, i.e., h = 0, we obtain
the following.

Corollary 2.16 There exists a y-suboptimal controller if and only if the fol-
lowing hold:

(i) There exists a nonnegative stabilizing solution Xoo of (2.100).

(i) There exists a nonnegative stabilizing solution Zn, of (2.102).
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Corollary 2.17 There exists a y-suboptimal controller if and only if the fol-
lowing hold:

(i) There erists a nonnegative stabilizing solution X, of (2.100).

(ii) There exists a nonnegative stabilizing solution Y, of (2.101).

(1it) p(XooYoo) < d? for some 0 < d < 7.

Example 2.5 Consider the Hy,-control problem for the following system

[2] [—(1 +0.gcos 214 (1)] [2] + [(1)] Wyt [(1)] w

(0 = |29 0=
y(t) = xl(t)+w2(t).

This system comes from the Mathieu’s equation and is unstable. Obviously
this system satisfies the assumptions C1-C4. We consider the two cases

(a) H =0, (b)Hz[(l)].

In each case there exist a periodic nonnegative stabilizing solution X =

X1 Xi of (2.90) with period 3 and a nonnegative stabilizing solu-
X2 X2
tion Y = li;,fl };}2] of (2.93) and (2.94) which satisfy p(X(¢)Y (t)) < d?,
12 T2

0 < d < v for all v > 2.01. Moreover both Y(t)'s converge to the same
3-periodic solution solution. Figures 2.9, 2.10 and 2.11 show X (t), Y(t) and
the eigenvalues of X (t)Y (t), respectively in the case (a). Figure 2.12 shows
the simulation results of the closed-loop system with the central controllers
where ¥ = 2.01, the initial conditions are £1{0) = 1, z2(0) = 0 and the dis-
turbances are w(t) = 10e~%sin 10t and w2(t) = 0. The controller of the
case (b) gives a better response.

2.3.2 Full Information Problem

Consider the system G ry:

T = A(t)z+ B (t)w + Bz(t)u,
z = Cl(t)x+D12(t)u, (2.103)
_ z
H
with
z(to) = Hh,

n = Fx(T)
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Figure 2.10: The bounded nonnegative stabilizing solution Y (¢)
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where we have replaced the observation in (2.85) by y = [z’, w’]’. We assume
Cl1, ie,
12()[Ci(t) Di2(t)} =[0 I] for anyt.

The H,-control problem for the system Gpgy is called the full information
(FI) problem and the solution to this problem is needed to solve the Hoo-
problem for the system G. Since the state = is now available, we may allow
for nonzero initial condition for the controller

#(to) = Hh for some H. (2.104)

In this case the controller (2.88) and (2.104) is written as u = K (Z) First
we consider the finite horizon problem. For each controller u = K (

h) define
Y
the input-output operator G by

21 _ h
(2)=2(s)
Let X be the solution of (2.90)-(2.92). Define the set of controllers Q (ﬁ) €
LR™ x L2(to, T; R™); R x L2(to, T; R™2)) of the form (2.88) and (2.104):

h
@ = QI Q) BAKHX RS @ARP+ITID (5 00
for some 0 < d < 7}.
We can now generalize Theorem 3.1 of Khargonekar et al. [49].
Theorem 2.13 Assume C1.
(a) There exists a controlleru = K (Z) of the form (2.88) and (2.104) such

that || G ||< «v if and only if there exists a nonnegative solution of (2.90)-
(2.92).
(b) In this case the set of all ~v-suboptimal controllers is given by

u(t) = —By(t) X (t)z(t) + [Q (_;153&35 4 w)] (), Q@ €Qy  (2.106)

Proof. Suppose u = K (Z) is -suboptimal. Then setting h = 0 and apply-

ing Theorem 2.7 we obtain an X > 0 satisfying (2.90) and (2.91). Moreover
for the system Gp; the following holds:

212+ |21} = Y lwl3+rH X(t)Hh
1
+lu+ B Xz 3 -7 |w-— 7—23in 3
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Setting u = K (Z) and w = ;lfBin we obtain
(1 h 2+ wl3) |21 2+ 11 2 |12

>
> 7 |l wll3 +h'H' X (to)Hh.

Hence
d? | h|?> WH' X (to)Hh

which yields (2.92).
Sufficiency of (a) and the characterization in (b) follow from Lemmas 2.20
and 2.21 below.

To complete the proof we consider

i = (A-ByBjX)z+ Byw+ Bav, _
= (Cl — DlzB;X).’L' + Djov, (2107)
1 !
r = —?BIX:I: + w,
21 = Fz(T),
z(to) = Hh
and
z = (A+ —15BIB;X)£+Blr+Bzu,
Y
v = BXZ 4w, (2.108)
_ T
V= | &BXz+r)
Z(to) = Hh.

Lemma 2.20 Let X be the solution of (2.90)-(2.92).
(a) For (2.107) the following holds:

|21 P+ |z 3= 7% | w3 +HH' X (to)Hh+ | v I3 -~* I r |5 . (2.109)
(b) The system Gp; with controller u = K (Z) is equivalent to the inter-

connection of (2.107) and the feedback system (2.108) with v = K (Z)

Proof. (a) follows from direct calculation. To show (b) we set e = x—Z. Then

1
é = [A + (:y—EBlBi - BzBé)X]e, e(to) =0.
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Moreover (2.107) and (2.108) with u = Ky is written as

¥ = Az + Byw+ Bu— ByB)Xe,
z = Cyz+ Dypu— Dy2BjXe,
y = Caz+ Dayw — Cae,
u = Ky
and hence (b) follows. ]

Now introduce a feedback

zn:Q(f) (2.110)
to (2.107), where Q is of the form (2.88) and (2.104).
Lemma 2.21 Consider the closed-loop system (2.107) and (2.110). Let
o(w)= (%)
w 2
be the input-output operator. Then || G |< «v if and only if Q € Q.

Proof. For each ro € L?(to, T; R™) there exists a w € L?(to, T; R™!) such
that the internal signal r in (2.107) and (2.110) coincides with r¢ and

a(h>+roll) <A+ wl3<ca(lh >+ [0 13) (2.111)

for some ¢; > 0, i = 1,2, It suffices to take wq given by

1
& = (A-B;B)X)z+ By(re+ ?B;Xa:) + Bavyg,
1
we = To+ 7—ZB;X:1:,
x(to) = Hh

where vg = Qro. Now suppose | G ||< « for (2.107) and (2.110). Then for
some 0 < d < 7y

ErP+lwld) > [aP+lz]3

h
= LA X Hn 1Q (1) 1 - 17 1B

by (2.109). Hence

1Q (%) 1 +wa XA

YR+ 1713 - (P =) h* + | w3)
[V e =l h? + 1 r i) by (2.111)

IA A
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which implies @ € Q.
Conversely, let Q € Q.. Then

. . h . o
g WX )R 1Q (1) 15717 13

YR +iiwid) = (0 =d)(h 1P+ {7 13)
2 g2
e (LY S 8

2
a2+ 112 113

IA

IA

Hence || G {j< 7. i
Remark 2.4 If | G ||< 7, then

" h ! l ’ ! ;1) |

1Q(P) I < AP -SHE X0 H |7 B)

i (= d) (R + | wlif)
YIORP+Ir13) - (2 =d)(h 1P+ wl})

il

where h = (I - ;‘,H’X(to)H) * h. Using
TR+ lw i< bR P+ )3)
we can show @ € Q! where
@, ={Q:1Q () B @R+ 1) for some 0 < d < 7).

To conclude the proof of Theorem 2.13, we note that u given by (2.106)
is ¥-suboptimal by Lemma 2.21. Now let u = K (Z be an arbitrary -
suboptimal controller. Let @ be the input-output operator of the closed-loop

system (2.108) with u = K (Z) Then by Lemma 2.21, Q € Q.. Hence

u=K (Z) is equivalent to

v = -—-ByXz+Q (il)
= —-ByXzr+ h
= BRXetO _apxsiw)
which implies (b) of Theorem 2.13. 1

Next we consider the system Gg; on the infinite horizon [to, c0). In this
case we assume

C5: (A, By, C}) is stabilizable and detectable.
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For each IO-stabilizing controller (z € L? for each h and w € L?) we can
define the input-output operator as follows:

~o(!).

The notion of I0-stabilzing controller is needed when we consider the filtering
problem, for which internal stability is not in general expected.

Theorem 2.14 Assume C1 and C5.
(a) There exists an 10-stabilizing controller v = K <Z) on [to, 00) such that

| G |I< v if and only if there exists a bounded nonnegative stabilizing solution
X of (2.90) and (2.92).
(b) In this case the set of all such controllers is given by

w) = ~BOX0)+ @y g, 1y )| 0 Qe 212

where Q C L(R™ x L?(tg, 0o; R™); L%(tg, 00; R™2)) is defined as in (2.105).
In particular the set of all internally stabilizing controllers with || G ||< v is
given by (2.112) with internally stable Q.

Proof of Theorem 2.14. (i) Necessity of (a): Suppose there exists an
IO-stabilizing controller u = K <Z) such that || G ||< v. Consider the

system Gp; with h = 0. Then for each w € L2(t0,oo;Rm1) there exists a
control u € L%(tg, 0o; R™2) such that || z [|2< d || w ||2 for some 0 < d < 7.
Then by Theorem 2.8 this assures, under the assumption C5, the existence
of stabilizing solution of (2.90). To show (2.92) consider the restriction of

u=K <Z) on [to,T]. Then we obtain the solution X7 of (2.90) satisfying

(2.92) and X(T) = 0. Since Xr(t) converges to X(t) on [tg, 00) we conclude
H'X(to)H < d2I.

Sufficiency of (a) and the characterization of controllers will be shown
below. Consider systems (2.107) and (2.108) on [to, 00). Note that A—B; B} X
is exponentially stable by Lemma 2.16 and hence we have as in Lemma 2.20

Iz 3=~ | w3 +h"H' X (to)Hh+ | v |13 =7 NI 7 113 - (2.113)
The system Gp; with controller v« = K <Z) is equivalent to the intercon-

nection of (2.107) and the feedback system (2.108) with u = K <Z)

First we assume h = 0 and consider (2.107) with feedback
v=Qr (2.114)
where @Q is of the form (2.88) and (2.89).
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Lemma 2.22 Consider the closed-loop system (2.107) and (2.114) and let
Gw = z be the input-output operator. Suppose Q is I0-stabilizing. Then
(a) z, v, v are square integrable and

Iz llz, I llz lvll2<alwlz for some a > 0.

(b) If || G ||< v, then the map: w — r is onto and Q is I0-stable.
(c) || G |I< v if and only if Q is I10-stable with | Q ||< 7.
(d) If, further, Q ts internally stabilizing then Q 1is internally stable.

Proof. (a) Since z € L%(tp, 00; RP*), C1 implies C1z and v — B, Xz are L?
and
I Ciz |l2, | v— BXz ||2<a | w2 for some a > 0.

Now we write (2.107) as

z = (A-JC))z+ JCiz+ Byw+ Bx(v— B, X1z),
z(tg) = O
where J is a piecewise continuous bounded matrix such that A — JC; is
exponentially stable. Hence z is L? and || z ||2< a | w ||2 for some a > 0.

The rest is an immediate consequence of this.
(b) We write (2.107) as

z _ P” P12 w
r)  \Pn Px )’
Then P;; are exponentially stable. Moreover P{ll is realized by
r = [A+ (%BlB'l — B2B)X)z + By,
1
w = ?B{Xz +r

which is exponentially stable. For the closed-loop system r and v are the
solutions of

T Pyyw + Payv,
v = Qr.
By (2.113)
1
| Pz ||< po and || v {l2<y |7 2. (2.115)

Now let rg € L%(tp, 00; R™) be arbitrary and define

S = (I — PQQQ)’I‘().
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Then s is locally square integrable. Now let st be the truncation of s at T'
so that sy € L2(tg,00; R™). Now set wr = P;;'st € L%(ty, 00; R™) and
let rr be the internal signal of the closed-loop system corresponding to wr.
Then rr = st + P22Qrr and by (2.115)

| rr — st ll2=|| Pe2@Qrr ll2<|l 77 ll2,
which implies
| 7 — s7 llL2¢to, 7 Rm1) <II 7T 200, TiR™ ) -
Since rr = rg on [tg, T| we conclude
| ro — s7 | L2(to, Timm1) =]} P22@Qro || L2¢t0,7;071) <]} 70 Il L2 (80, TiR™1) < 70 |2 -

Since T is arbitrary, P22Qro is L2. Now set wp = P,_,'II(I — P2Q)rp. Then 1o
is the responce to the input w and the map: w — r is onto. Since || Qr |[2<
Y|l v ||2, for any r, Q is IO-stable.

(c) Now let r be the response to w. Then from (b) we have

|l r|l2<]|w|]2€ ez || 7 ||2 for some ¢; > 0,1 =1,2. (2.116)
Now assume @ is IO-stabilizing and || G ||< <. Then for some d < «y
w3zl z 3=~ lwl3+ vz =13
Hence

2
lvliZ < YPIrl3-(P-d®) w3
< WP-a@?*-d) 3

which implies || Q ||< 7.

The converse follows from (2.113) and (2.116) in a similar manner.

(d) If @ is internally stabilizing, then by Proposition 2.6, Q is stabilizable
and detectable. But @ is IO-stable by (b). This together with Proposition
2.4 implies that @ is exponentially stable. 1

Lemma 2.23 Consider the closed-loop system (2.107) and (2.110). Let

z=G < h)
w
be the input-output operator.
(a) Q is IO-stabilizing and || G ||< v if and only if Q ts 10-stable and
QEQ,.
(b) Q is internally stabilizing and || G ||< v #f and only f Q is internally
stable and Q € Q.
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Proof. (a) Suppose Q is I0-stabilizing and || G || < vy. We write

Q(h) ~ Qoh + Qur-

T

Setting h = 0, Q is IO-stabilizing. Hence by Lemma 2.22, Q; is 10-stable
and || @, ||< - Recall that r and v are written

= Pyoh + Pyw + Pyov,
v = Qoh+Qr (2.117)

where Py is exponentially stable. Since v and Q7 are L2, Qoh is also L? for
any h. Hence Qg is bounded and Q is IO-stable. Since || G ||< 7, for some
d < v we have

PR+ wll3)
h .
2] 2 3= | w I3 +K'H'X (to)Hh+ || Q () 1 =21l I3
Hence

PURE+ 17— (F =d)( A E+ [ w )
> wHXHh Q1) 13-

Since | A 12+ || 7 [|2< a(| A |2 + || w ||3) for some a > 0, we conclude that

2 V-4 2 2 'yt hY\ 2
o - LDy n ) 2 W xR @ (1) 1
Thus Q € Q5.
Conversely let @ be 10-stable and Q € Q. Then for each (h, w) € R™ x
L?(tg, 00; R™) there exists a unique (v,7) € L?(ty, 00; R™2)x L%(tg, 00; R™)
satisfying (2.117) such that

I i3, Hvl2<a( h 2+ | wlI3).

The pair coincides with the signal r, v of the closed-loop system. Hence
and z are in L? and by virtue of (2.113)

=112

h
7wl +H X R [ (1) 1B =2 I 13

Y lwli=d*(h1?+ 1 713) =1 7|3 for some 0 <d <7y
VAR +wld) -2 =dH(h 2+ r2). (2.118)

Now for each (h,ry) € R™! x L2%(tg, oo; R™!) consider

IN

1
r = [A + (,—YEBIB; - B'_)B’Q)X]I + BIT‘() + B'_)U,



Wy
z(to)

v

Then wg € L2(t0,

1
= ?BiXI-FT(),
~ Hh,

- Q(Z).

00; R™1) and
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(2.119)

1
B2+ 1) wo J3< S( A 1% + [ o 13) for some a > 0.

Since (r,w) of the closed-loop system (2.107) and (2.110) is one of (rg, wo)
above we conclude

Iz 1135 [v* = a(¥® =)L h 12 + || w [13).
Hence | G ||< 7. 1

Now the proof of sufficiency of (a) and (b) in Theorem 2.14 follows from
Lemma 2.23 as in the case of Theorem 2.13. 2

2.3.3 Disturbance Feedforward Problem

We consider the Ho-problem for the special system Gpr:

T = A(t)x+ Bi(t)w + B2(t)u,
= Ci(t)x + Di2(t)y, (2.120)
y = Ct)z+w
with
21 = Fz(T),
z(tog) = 0.

This problem needed later to solve the general H.,-problem is called the
disturbance feedforward (DF) problem. As we see below it can be reduced to
the FI problem. In fact consider the observer

& = At + By(y — Cai) + Bau, &(tg) = 0.
Then e = z — £ satisfies
é=(A- B1C2e, e(ty) =0
and hence £ = z. Moreover w is observable since
w=y— Cox =y — Cof.

Thus we can use the controllers of the FI problem with h =0 :

1
u= —BQXI-FQ(—?BiXI"}‘w)v Q<
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21

Theorem 2.15 For each controller define Gw = and assume C1.

(a) There exists a y-suboptimal controller on [tg, T if and only if there exists
a nonnegative solution X satisfying (2.90) and (2.91).
(b) In this case the set of all y-suboptimal controllers is given by

2 = (A-BiC2— ByBjX)(t)¢ + Bi(t)y + Ba(t)v, (te) =0,
= —-Byt)X({)% + v, (2.121)
1
r = —(Co+ ?B;X)(t)f + v,

v o= Qr Q<
where Q 1s a controller of the form (2.88) and (2.89).

Proof. The necessity of (a) follows from Theorem 2.13. The sufficiency and
(b) follow from Theorem 2.13 and the observation

u = —BI2XI + QT = "'BI2X£ + QT’
1 1

We now consider the infinite horizon problem. We assume C5 and
C6: A — B,C; is exponentially stable.

Theorem 2.16 Assume C1, C5 and C6. ,

(a) There ezists a y-suboptimal u = Ky on [tg,00) if and only if there exists
a bounded nonnegative stabilizing solution X for (2.90).

(b) In this case the set of all y-suboptimal controllers is given by (2.121) with
Q internally stable.

Consider the H,,-problem for the system Gog:
z = A(t)x + Bi(t)w + Ba(t)u,

z = Ci(t)x +u, (2.122)
y = Ca2(t)z + Dy (t)w,
I(to) = Hh

which is called the output estimation (OE) problem. The adjoint of (2.122)
is the backward version of the DF problem. Hence we have the following.

Theorem 2.17 For each controller define G (3}) = z and assume C2.

(a) There exists a -y-suboptimal controller u = Ky on [to,T) if and only if
there exists a nonnegative matriz Y satisfying (2.93) and (2.94), i.e.,

Y

I

AQR)Y +YA'(t) + By(t)B,(t) + Y(%C;c1 — CLCH)(VYY,

Y (to) HH'.

It
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(b) In this case the set of all y-suboptimal controllers is given by

8-
]

(A= ByCy — YCL,Co)(8)d + Y(£)Ch(t)y + (B2 + ;12-YC;)(t)v,

Z(to) = O,
v = —Ci(t)T +v, (2.123)
r = —-Cat)+y,
v = Qr ” Q ||< v-
Theorem 2.18 Suppose C2, (A, B, C?) is stabilizable and detectable and
that A — B2C, is exponentially stable.

(a) There exists a y-suboptimal controller u = Ky on [tg,o0) if and only
if there ezists a bounded nonnegative stabilizing solution Y for (2.93) and

(2.94).
(b) In this case the set of all v-suboptimal controllers is given by (2.123) with

Q internally stable.
To give the proofs of Theorems 2.17 and 2.18 we consider the FI- and DF
problems for the backward systems in the next subsection.
2.3.4 Backward Systems
Consider the backward system Ggy:

-z = A(t)z + Bi(t)w+ Ba(t)u,
z = Ci(t)z + Diaft)y, (2.124)
v = [z].

2y = Fz(to)

with z(T) = 0 and a controller u = Ky of the form
-3 A(t)z + B(t)y, £(T) =0, (2.125)
= C(t)&+ D(t)y

where all matrices are piecewise continuous and uniformly bounded. The
H,-control problem for the system Gg; is the FI-problem for the backward
system and the solution to this problem is need to the Hy, filtering problem.
For the system G y; we assume C1. To give the solution of this problem, we
need the following Riccati equation

P = A'(t)P+ PA(t) + C{(t)Ci(t)
+P(%B1B{ _ B;BY)®)P,  (2.126)
P(ty) = F'F. (2.127)

Then we have the following.
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Theorem 2.19 Assume C1.

(a) There exists a y-suboptimal controller u = Ky, t € [to,T] of the form
(2.125) if and only if there exists a nonnegative solution P(t), t € [to,T] of
(2.126) and (2.127).

(b) In this case the set of all y-suboptimal controllers is given by

u(t) = ~By(t)P(t)x(t) + [Q (—7—12B;Pa: + w)} M), Q< (2.128)

Proof. Necessity of (a). Suppose that the controller (2.125) is y-suboptimal.
Then by Corollary 2.9 we obtain a nonnegative solution P(t), t € [to,T] to
(2.126) and (2.127).

Sufficiency of (a) and (b). Now we assume the existence of a nonnegative
solution P(t), t € [to,T] to (2.126) and (2.127). Then as in the previous
subsections, we consider the following systems

~r = (A - BQBQP).’L‘ + Byw + Bav,
z = (Cy- DlzBéP).’L‘ + Djau, (2.129)
r o= —%B;P.’L‘ +w,
Y
z1 = Fz(to),
z(T) = 0
and
. 1
-z = (A+ ?B1BQP)J':+ Bir + Byu,
v = ByPI+u, (2.130)
_ I
y = ;ITBQPE +r|’
Ty = O.

Then as in the proof of Theorem 2.13, we can show the sufficiency of (a) and
the characterization in (b) using the following lemmas. 1

Lemma 2.24 Let P be the solution of (2.126) and (2.127).
(a) For (2.129) the following holds

2o P+ Lz 3= NwlZ + v lZ - Tl (2.131)

(b) The system Gy with a controller u = Ky is equivalent to the intercon-
nection of (2.129) and the feedback system (2.130) with a controller u = Ky.
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Lemma 2.25 Consider the closed-loop system (2.129) and v = Qr of the
form (2.125). Let G be the input-output operator given by (?) = Guw.
Then || G ||< v if and only if | Q ||< 7.

Next we consider the system Gp; on the infinite horizon [to, oc). In this
case we assume C5. For each 1O-stabilizing controller we can define the input-
output operator as follows:

(?) = Gw on [ty, o).

Theorem 2.20 Assume C1 and C5.

(a) There exists an IO-stabilizing controller v = Ky on [to,o0) such that
| G |I< ~ if and only if there exists a bounded nonnegative stabilizing solution
P(t), t € [to,00) of (2.126) and (2.127).

(b) In this case the set of all such controllers is given by

u(t) = —By() P(t)z(t) + [Q (—%B;Pz + w)] ®), 1Qll<y. (2.132)

In particular the set of all internally stabilizing controllers with || G ||< « s
given by (2.132) with internally stable Q.

Proof. Necessity of (a). Suppose that there exists an 10-stabilizing con-
troller v = Ky such that | G ||[< 4. Then by Corollary 2.11 there exists
a bounded nonnegative stabilizing solution P(#), t € [tg, 00) to (2.126) and
(2.127).

Sufficiency of (a) and (b). Consider the system (2.129) and (2.130) on
[to, 00). Note that A — B2Bj P is exponentially stable by Proposition 2.5 and
hence we have as in Lemma 2.24

|z P+l 2 3= w3+ v i3 " hr 2 (2.133)

The system G g7 with a controller © = Ky is equivalent to the interconnection
of (2.129) and the feedback system (2.130) with u = Ky.

As in the proof of Theorem 2.14, we can complete the proof using the
following lemma. 1

Lemma 2.26 Let G be the input-output operator of the closed-loop system
(2.129) and v = Qr of the form (2.125). Then || G ||< v if and only if Q is
internally stable and || Q ||< 7.

Proof. We only need to show necessity. We identify L%(to,T’;-) as the sub-
space L?(tg, 0o;-) with support on [to, T). Let w € L?(to, T; R™). Then the
corresponding 7 and v have the same support. As in Lemma 2.25

| vll2=ll @ ll2<~ 72 -



72 2. Continuous-time Systems

For each r € L%(to,T; R™) there exists a w € L%(to, T; R™) such that r is
the response to w. Hence || Qr ||2< v || 7 ||2 for any r € L%(to, T; R™).

Consider the adjoint of the closed-loop system (2.129) and v = @Qr. Then
it is given by the closed-loop system

. ’ ’ ’ ’ 1
& = (A—B2B2P)§+(Cl -—D12B2P)V—;2-PB”L,

T = Bif+p (2.134)
n = B£7§+D;2V1
£(to) = F'f, feR?

and p = Q*n of the form

£ =

p = Bé+ D (2.135)
Since the closed-loop system (2.134) and (2.135) is internally stable, (2.135)
is stabilizable and detectable. Moreover

| @*n lle2¢to, 7 rm1)< ¥ | @ [ 220, 7;Rm2) for any T

This implies Q*n € L%(to, T; R™) for any n € L%(to, T; R™2) and || Q*n [|2<
¥ || n |l2 for any n € L%(to, T;R™2). Since L%(to,T;-), to < T < oo is
dense in L%(tp, 00;-), Q*n € L?(to, 00; R™) for any n € L%(to, co; R™2) and
| @ ||< v. Hence Q* is IO-stable. Since (2.135) is stabilizable and detectable,
Q" is internally stable by Proposition 2.4 and so is Q. || @ ||< y follows as in
Lemma 2.22. [

Corollary 2.18 Assume that the system Gy is 0-periodic and that the con-
ditions C1 and C5 hold. Let F = 0. Then

(a) There exists an IO-stabilizing controller u = Ky on [to,00) such that
| G |I< v if and only if there exists a §-periodic nonnegative stabilizing solu-
tion P of (2.126).

(b) In this case the controller (2.132) is 10-stabilizing such that || G ||< v. If
Q is B-periodic, such a controller is also 8-periodic.

In particular, if Q is internally stable, the controller (2.132) is internally
stabilizing.

Proof. Necessity of (a) follows from Corollary 2.11. Now we assume the exis-
tence of a f-periodic nonnegative stabilizing solution P of (2.126) and con-
sider the systems (2.129) and (2.130) on [t, c0). Then similarly to the proof
of Lemma 2.24 we obtain

I 2 I3< 2o P(to)zo+ | 2 3= N wlz + [l v Z =" I I3 -

Hence the sufficiency of (a) and (b) follow from Lemma 2.26. (]
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We now consider the H-control problem for the system Gpg:

- = A(t)z+ Bi(t)w+ Ba(t)u,
z = Ci(t)z + Di2(t)u, (2.136)
y = Cot)z+w,
21 = Fz(ty)

with z(T) = 0 and a controller « = Ky of the form (2.125). This problem
is the DF-problem for the backward system. Since it can be reduced to the
FI-problem for the backward system, we have the following result.

2

Theorem 2.21 For each controller define Gw = ( z and assume C1.

(a) There exists a controller u = Ky on [to, T| such that | G ||< 7 if and only
if there exists a nonnegative solution P(t), t € [to, T} to (2.126) and (2.127).
(b) In this case the set of all y-suboptimal controllers is given by

-2 = (A- B1C2 — ByByP)(t)i + By(t)y + Ba(t)v,
u = -—-By(t)P(t)z + v, (2.137)
1
r = —(Co+ ?BiP)(t)i + 9,

vo= Qn Q<Y
where Q is a controller of the form (2.125).
We consider the infinite horizon problem. We further assume C5 and C6.

Theorem 2.22 Assume C1, C5 and C6.

(a) There exists an internally stabilizing controller u = Ky on [tg, 00) such
that || G ||< < if and only if there erists a bounded nonnegative stabilizing
solution P(t), t € [to,00) to (2.126) and (2.127).

(b) In this case the set of all y-suboptimal controllers is given by (2.137) with
Q internally stable.

2.3.5 Proofs of Main Results

Proof of Theorem 2.9: Necessity of (a). Suppose that there exists a
controller u = Ky on [to, T] such that || G ||< . Then by Theorem 2.13 (i)
holds. Now consider (2.107)

r = (A - BQB;X)I + Bl’lU + BQ’U,
= (Cl - DlgBéX)I + D12’U,
1
r = —7—2B’le + w,
2y = Fz(T),

I(to) = Hh
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and
) 1
¥ = (A+ —B1B{X)Z+ Bir + Bau,
Y
v = BLXT +u, (2.138)
y = C2Z + Doy,
Z(ty) = Hh
with a controller
u= Ky. (2.139)

Then e = x — T satisfies
1 v
é= [A + (;B]B; - BQB&)X]G, e(to) =0

and hence the system G with u = Ky is equivalent to the interconnection
of (2.107) and (2.138) with u = Ky. Let @ be the input-output operator

of the closed-loop system (2.138) and (2.139) so that v = Q (ﬁ) Then by

Remark 2.4, Q € Q’, and hence u = Ky is y-suboptimal for the Ho.-problem
defined by (2.138) with H and h replaced by H = H(I — ;l;H’X(tO)H)‘%
and h = (I ;IEH’X(tO)H)’i‘h, respectively. Since this is an OE problem, the
condition (ii) holds by Theorem 2.17.

Sufficiency of (a) and (b). Consider the system (2.138) and (2.99). Then
by Theorem 2.17, the set of the controllers u = Ky given by (2.99) satisfies

Q € Q) where Q is the input-output operator of the closed-loop system

(2.138) and (2.99). By Lemma 2.21 it is enough to show Q € Q- to complete
the proof. To do so, let

e=1I— 1.
Then
1 1
é = (A + ?B1Bix - ZC£C2)C + (Bl - ZC£D21)T‘ - ?ZXB2M,
= BjXe+p,

n = Cie+ Doir,
b = Qn,
v = 0,

e(to) = Eil

and its adjoint is given by

. 1
& = (A+ ?BIB’IX — ZC)C2)'& + X By + Ciji,
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v = (B1-ZC3Dy )&+ Dy,
1
io= - BiXZE+R,
B = Q'
o = H'é(ty),
&T) = 0

where Q* is the adjoint operator of Q. Then it is enough to show
lv2<d®(| 7|2+ | A |?) for some 0 < d < v
which is equivalent to
813+ 10 1P<d® || 715

By direct calculation, we obtain

Ay 2 ’5 12

Gl€2¢) = —|ul"+[(Bi1-2ZCDn)é+ Dyp|

| F P+ F+ %B;xze 2
= —|ulP+1oP |72+ 0.

Integrating this from tg to T we obtain

—&(to)Z(to)é(to) = —[lpul3+ 13015 - UFN3++* I n 113
lolf+1a01> = ulZ+P 1713 1013 (2.140)
Recall that
et Q7 Ml nll2< V2 —€lin Iz (2.141)

for some € > 0. Since 1
rT=n+ —QBQXZé'
Y

the map: n — 7 is given by

. 1 7 1 7 7 7 !~
-¢ = [A+ 753131X+Z(7_2XB2B2X_C2C2)] £+ XBan + Cops,

. 1,

po= Q.

Hence the map: n — 7 is bounded and || 7 ||2< & || 1 |2 for some § > 0.
Combining this with (2.140) and (2.141) we obtain

. ~ € .
1515+ 161 2< (7 = 55) I 713
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and we have the assertion. [

Proof of Theorem 2.10: (a) Suppose a y-suboptimal controller exists. Then
by Theorem 2.7 and Corollary 2.9, there exist nonnegative solutions X, Y
and Z of (2.90)-(2.92), (2.93), (2.94) and (2.95), (2.96). By Lemmas 2.17 and
2.18, 1— %;XY is nonsingular and the eigenvalues of XY have the form :135%,
A € A(XZ). Since X and Z are nonnegative and uniformly bounded in T,
A € A(X Z) are nonnegative and uniformly bounded. Hence p(X (¢)Y (t)) < d?
for some 0 < d < 7. Hence the condition (iii) follows. To show sufficiency of
(a) we note I— =5 X (t)Y (¢) is nonsingular and [I - 7 X ()Y (¢)] 7! is uniformly
bounded in t € [to, T']. Define Z(t) = Y (t)[I - ;lzX(t)Y(t)]"l. Then

1
Z(I - 5XY)-Y =0

. 1
2~ 5XY) = (4+ %B,B;X)Y +Z(A+ =B B XY (I - %XY)
Y

1 1
+B\Bi(I - ZXY)+ Z(?XBzBQX ~ CLCyY.

Hence Z satisfies the Riccati equation (2.95) and (2.96). The rest follows from
Theorem 2.9. 2

Proof of Theorem 2.11: Since (A4, By) is stabilizable and A + (;lfBlB’l -
B3B5)X is exponentially stable, we can easily show that (2.138) satisfies
the assumptions of Theorem 2.18 except for the detectability of (Cz, A +
;lfl\?)iB;X) Since A + ;IEBIB’IX + Z(?IIXBzBéX — C3C32) is exponentially
stable,

(A+ %BIB;X — ZCyCs, -};ZXBz)
is stabilizable and so is
(A + 2 BuBIX - 200y, [ 12Xy 2G4 By ]) .
Since we can rewrite the Riccati equation (2.95) in the form
Z = (A+ 71—2313;)( —ZCyC)Z + Z(A+ 71—23,3;)( - ZCHCy)'
+[2zXB, ZC, B\)[iZXB, ZC; B

b

A+ ;I-IBIB’IX — ZC%C; is exponentially stable by Proposition 2.5 and hence

(C2, A+ ;lzBlB’lX) is detectable. Thus the system (2.138) satisfies the as-
sumptions of Theorem 2.18 and we can complete the proof as for Theorem
2.9. 2
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Proof of Theorem 2.12: The proof is similar to that of Theorem 2.10. We
only need to show Z = Y (I — ;ITXY)‘1 is a stabilizing solution of (2.95).
But this follows from Lemma 2.19 and the stabilizing property of Y. '

Proof of Corollary 2.12: Necessity of (a) follows from Theorem 2.8 and
Corollary 2.11. To complete the proof it is enough to show that the controller

(2.99) is y-suboptimal for the system (2.138). But we can show it as in the
proofs of Theorems 2.9 and 2.11. [

2.4 H, Filtering

In this section we consider the Ho, filtering problem with initial uncertainty
for time-varying systems.

Consider the system Gp:

z = A(t)x+ B(t)w,
z = L(t)z, (2.142)

y = C(t)z+ D(t)w,
z(ts) = Hh, (2.143)
21 = Fx(T) (2.144)

where z € R™ is the state, w € R™ is the disturbance, (z1,2) € R? x RP! is
the state to be estimated, y € RP? is the measurement, h € R™*!, F € R?*"
H ¢ R™*™ and A, B, etc are bounded piecewise continuous matrices of
appropriate dimensions. For this system we assume

CF1: [B(t) D{(t)]D'(t)=[0 I} for anyt.

We wish to estimate z; and z by the causal filter of the form

$ = A(@t)E+B(t)y, £(to) =0,
: = C@t)i+ D@t)y, (2.145)
5 = Fi(T)

and to achieve the following:
lzs—21 2+ z=2|23<d?(| |2 + || w ||2), for some 0 <d <~ (2.146)

where /i, B, é’, D are bounded piecewise continuous matrices and Fisa
constant matrix of appropriate dimension. Such a filter is called y-suboptimal.
We can write (2.142)-(2.145) as

HENEIHE AR
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z(to) _ Hh
ity = | o |’
e = n-n=[F -F %)
1 1 1 fi'(T) ’
e = z—:=[L-DC -C] [i] - DDw.
Define the operator G € L{(R™ x L?(to, T; R™); R x L?(to, T; RP')) by

(Z‘):G(Z). (2.147)

Then (2.146) is equivalent to || G ||< d. The adjoint G* is given by

(©)-+ (1)

: B A CIABI § L'—le'
| =[5 w8

where

¢ = (B fo;f][g]_pfb'u, (2.148)
o - alg]

i) = [

This may be regarded as a closed-loop system

—£ = At +Lv+C'y,
¢ = B¢+ Dy, (2.149)
_ €
"7 - [U]i
o = H'E(to),
§T) = F'f

with controller p = K* (f})

p = BE-[0 D] (2-150)
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The system (2.149) is of the FI type and (2.146) is equivalent to
|G P+ CR< (N FIP+ 1o ll3) (2.151)
The Riccati equation corresponding to this is
Y = AQY +YA(t)+ B(t)B'(t)
+Y(;15L’L - C'0O) (b)Y, (2.152)
Y(ty) = HH', (2.153)
FY(T)F' < d*I for some 0 < d < 7. (2.154)
As Q. in Section 2.3.2 we define the set of controllers of backward type:
Q; = {Q € LRI x L2(to, T;R™); L*(to, T; R™)) :
rEY@F @ (1) B

for some 0 < d < v}. (2.155)

Let Q., be the set of adjoint systems of Q* € Q7. Modifying Theorems 2.13
and 2.19 we have the following.

Theorem 2.23 (a) There exists a y-suboptimal filter if and only if there
exists a nonnegative solution Y to the Riccati equation (2.152)-(2.154).
(b) In this case the set of filters with property (2.146) is given by

i = (A-YC'O)W)E+Y()C'(t)y + :Y%Y(t)L’(t)v, &(to) =0,

3 = L)E—w, (2.156)
r = -C(t)z+y,

v Qr,

5 = F#T)—Qor, Q= (8‘1’) €qQ,. (2.157)

Proof. (a) follows from a modification of Theorem 2.19. To show (b) recall

that the set of all controllers p = K* ({}) with || G* ||< v is given by

#:_CY§+Q*(—;17L{’§+U)’ Q" € Q3. (2.158)
Then the closed-loop system (2.149) with (2.158) is written as
—£ = (A-C'CY)+[0 L|n+C'Q,
p = —-‘:—2LY§ +[0 In, (2.159)

ey o |

§(T) = F'f.
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In view of this we can show that the controller (2.158) is equivalent to
£ = (A-CCY)+[0 L']n+Ch,
p = -CYE+f, (2.160)
1 ~
p = —?LYH" (0 Ilm,

po= o (ﬁ) ,
§T) = F'f.
In fact for (2.149) and (2.160) e = ¢ — £ satisfies
—é=Ae, e(T)=0
and £ satisfies (2.159). Now consider the adjoint of (2.149) and (2.160):

& = Ar+Bw+|[I 0]u,
i = Lz+[0 I|u, (2.161)
y = Cz+ Dw,

z(to) = Hh,

z, = Fz(T)+u, (2.162)

i = (A-YC'C)i+YCly+ —’:—2YL’U, #(to) =0,
0i. 0

u = - [L]z+ [I] v, (2.163)

r = —-Ci+y,
= @17, “ ) “< s
u; = —FIT)+Qer, Q= (g‘;) €qQ,. (2.164)

Then || G* ||< v is equivalent to
P2 P+ 212<d®( R )2 + | w)3) for some d < . (2.165)
Note that (2.161) except Z, Z; coincide with (2.142) and (2.143). Thus (2.163)-
(2.165) can be easily interpreted as the filtering result in (b). 1
Remark 2.5 The filter (2.156) with @ = 0 is called central.
Consider the system Gg:

z = A(t)z+ B(t)w,

z = L(t)x,

y = C(t)xz+ D(thw,

z(to) = Hh
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on [tg, 00) Then the Ho-filtering problem is to find a y-suboptimal filter, i.e.,
a filter of the form

i = A@)Z+ B(t)y, i(to) =0, (2.166)
¢ = C(i+ D)y
such that z — 2 € L2(ty, o0; RP*) and
| z—22<d?(| R |? + || w|2), for some 0 < d < ~. (2.167)

We further assume
CF2: (A, B,Q) is stabilizable and detectable.

Again considering the FI problem for (2.149) on [tp, o) and modifying The-
orem 2.20 we have the following result.

Theorem 2.24 Assume CF1 and CF2. Then

(a) There exists a y-suboptimal filter if and only if there exists a nonnegative
bounded stabilizing solution to the Riccati equation (2.152) and (2.153).

(b) In this case the set of all y-suboptimal filters is given by (2.156), where
Q1 is an [0-stable system with | Q1 ||< . Moreover, the set of all internally
stable filters is given by (2.156) restricting Qi to be internally stable.

We may incorpolate the estimate of 2; on the infinite horizon.
Corollary 2.19 There exists a filter of the form (2.145) such that

sup (| =2+l 2= 2|3 < &( kP + | wld), for somed <y
<40

if and only if there exists a bounded nonnegative stabilizing solution of (2.152)
and (2.153) with

FY(T)F' <d%I, T > T, for some 0 < d < 7.

Modifying Corollary 2.18 we have also the following result.

Corollary 2.20 Let Gr be @-periodic and assume that CF1 and CF2. As-
sume further that the initial conditions are known, i.e., h = 0. Then

(a) There exists a filter of the form (2.166) with property (2.167) if and only
if there exists a 8-periodic nonnegative stabilizing solution to the Riccati equa-
tion (2.152).

(b) In this case the filters given by (2.156) is y-suboptimal where Q1 is an IO-
stable system with || Q1 ||< . If Q1 is 6-periodic, the filter is 8-periodic and
~v-suboptimal. Moreover, the filters given by (2.156) is internally stabilizing
if Q1 is internally stable.
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Corollary 2.21 Let the system GF be time-invariant. Then Y (t) in (o) con-
verges as t — oo to the stabilizing solution Y, of the algebraic Riccati equa-
tion )

AY+YA + BB + Y(7—2L'L - C'C)Y =0.

Moreover the filter (2.156) with Yo gives the set of all y-suboptimal filters
when h = 0.

Remark 2.6 The filtering results with known initial conditions i.e., z(to) =
0 in Nagpal et al. [58] follow from Theorems 4.1 and 4.2 setting F' = 0 and
H=0.

Example 2.6 Consider the Ho,-filtering problem for the following periodic
system with period 3:

[2] N [—(1+0.gcos%"t) (1)] [i;]+[‘1’ 8]111, z(0) = Hh,
z(t) [0 1][2]

o[ 2] +10 1wt

y(t)
which is unstable. We give its solutions both for

(a) H =0, (b)H:Z[(l)].

In the case (a) there exists a bounded nonnegative stabilizing solution Y (t) =
[}},/12 };}:] (t) of the Riccati equation (2.152) and (2.153) for all v > 1.26
1

and in the case (b) there exists a bounded nonnegative stabilizing solution
for all v > 1.3475. Figures 2.13 and 2.14 show the solution Y (¢) of the case
(a) and (b), respectively with v = 2 and Figure 2.15 shows the asymptotic
convergence of the outputs of central filters of (a) and (b) to the estimate
z where 7 = 2, the initial conditions are x,(0) = 1, z2(0) = 0 and the
disturbances w, (t) = 10e~1% sin 10t, wz(t) = 0. The central filter in the case
(b) gives a better estimate, since initial uncertainty is incorporated.

2.5 H,; Control

In this section we consider the H; control problem. The theory of H; control
for a time-invariant system is now well-known {14, 21, 93]. Here we extend
the H, theory to time-varying systems.



2.5. H; Control 83

T v 1t rr 71 1T 1 71

Y(t): Case (a)

time (sec)

Figure 2.13: The bounded nonnegative stabilizing solution Y (¢) of the case

(a)

Y(t): Case (b)

time (sec)

Figure 2.14: The bounded nonnegative stabilizing solution Y () of the case

(b)
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Outputs of filters

time (sec)

Figure 2.15: The outputs of the central fiters

2.5.1 Main Results
Consider the system G:

z = A(t)z+ Bi(t)w + Ba(t)u,
= Ci(t)z + Dya(t)u, (2.168)
y = Cz(t)I + Dzl(t)w

where z € R" is the state, w € R™ is the disturbance, u € R™2? is the
control input, (z1,2) € R? x RP! is the controlled output, y € RP? is the
measurement and A, B, etc are bounded and piecewise continuous of appro-
priate dimensions. For this system we assume C1-C4, i.e.,

C1l: Dij(t)[Ci(t) Di2(t)]=[0 I} for anyt,
C2: Dy(t)[Bi(t) Dy (t)]=[0 I] for anyt,
C3: (A, B,,()) is stabilizable and detectable,
C4: (A, B;,(,) is stabilizable and detectable.

Consider a controller u = Ky of the form:
i = At + B(t)y, (2.169)
C(t)z
for some bounded and piecewise continuous matrices A, Band C.

To formulate the Ha-control problem for the system G, we introduce the
following set of controllers

K = {K : K is of the form (2.169) and internally stabilizes the system G}.
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Then the Hz-norm, | G |2 of the closed-loop system G and a controller
u = Ky is well-defined and our Hz-problem is to find a controller K € K
which minimizes | G ||2. To give the solution of this problem we introduce
the following Riccati equations:

X = A@)X + XA(t) + C|(t)Ci(t) — XBa(t)By(t) X (2.170)

and
Y = AQ)Y +YA'(t)+ Bi(t)B,(t) - YCL,(t)C2(2)Y, (2.171)
Y(t) = O. (2.172)

By Theorems 2.2 and 2.3, we have the following result.

Lemma 2.27 Assume C1-C4. Then

(a) There erists a bounded nonnegative stabilizing solution X(t), t € [to, 00)
to (2.170).

(b) There exists a bounded nonnegative stabilizing solution Y (t), t € [to, c0)
to (2.171) and (2.172).

Remark 2.7 By Lemma 2.5, a bounded nonnegative solution X(¢), t €
[to,00) of (2.170) is obtained as the limit of Xz(t), t € [to, T| where Xt
is a nonnegative solution of (2.170) with Xp(T) = 0.
Consider the stabilizing controller based on the feedback gain

F(t) = -By() X (t)
and the observer gain H(t) = —Y (t)C}(2):

i = A@)E+ Ba(t)u(t) + HR)[C2(t)E — y),

u = F@t)i
or
& = (A+BF+HCy)(t)E - H(t)y, (2.173)
u = F(t)i.

Theorem 2.25 Assume C1-C4 and consider the Ha-problem for the system
G. Then the controller (2.173) is optimal and

] 2 ) 1 to+T ,
i IGIE = pm [ (Bl X()B)

+tr. F(s)Y (s)F'(s)}ds. (2.174)
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Corollary 2.22 Let G be 8-periodic. Then X (t) is 6-periodic and there exists
a 0-pertodic nonnegative stabilizing solution Yg(t) of (2.171). Moreover, the
controller (2.173) with Y replaced by Yy is optimal and

to+6 R R
g 1G 1= [ rBOXBs) + FEY (F ()ds.

Let G be time-invariant. Then there exist nonnegative stabilizing solutions
X and Y, respectively of algebraic Riccati equations

AX +XA+CiC)~—XByByX =0

and
AY + YA + BB} —~ YC,CY =0.

Corollary 2.23 Let G be time-invariant. Then the controller (2.173) with
(X(1),Y (1)) replaced by (X,Y) is optimal and

min || G 2= tr.[BiX By + FY ).

2.5.2 Proofs of Main Results

To prove Theorem 2.25 we need some preliminary results. Consider the sys-
tem G and the controller u = Ky of the form (2.169). Let X be the solution
of (2.170). We introduce

v=u—Fz

and the system G:

I = Az + Byw+ Bou,
v = —Fzr+u, (2.175)
y = Caz+ Dyw.

Then z can be written using v as follows:

& = (A+ ByF)z+ Byw + By,
= (Cy + Dy2F)z + Dypu.

This system is exponentially stable and
z=Gw+Uv
where G, and U are given by

3 (A+ B2F)¢ + Byw,
¢ = (C1+DinF)t
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and

i = (A+ ByF)z + By,
= (Ci+ D12F)z + Dypv
respectively. Then we can easily see the following.
Lemma 2.28 (a) The system G is equivalent to the interconnection of the
system G and (G, U). B
(b) K stabilizes the system G if and only if it stabilizes the system G.
Next we shall show the properties of G, and U.

Lemma 2.29 (a) || Uv |l2=| v ||2 for any v € L%(s, co; R™2).
(b) < Ge(- — s)wp,Uv >= 0 for any wo € R™ and v € L?(s,00; R™2).

Proof. (a) We can rewrite the Riccati equation (2.170) as
~X = (A+ Bo2F)Y X + X(A + BoF) + (C1 + D12 F) (Cy + Di2F).

By direct calculation, we have

d

T OXO®)] = — | 2() [ + | o(t) |7

and integrating it from s to T' we have

T
(T X(T)2(T) - «'(s)X (s)x(s) = / (o(t) |2 ~ | 2(t) [Pt
Since z(s) = 0 and limy_,o 2(T) = 0 we have the assertion.

(b) Consider G. with w(t) = é(t — s)wp. Then £(t) = Sr(t, s)Bi(s)wo where
SF{-,-) is the state transition matrix of A + B F. As in (a) we have

d. ., ’
ZEOXO2(0] = ~(')2()

and integrating it from s to T, we obtain

T
—¢(DXD)D) + €)X (s)a(s) = [ (et
Since limr_.o0 €(T) = lim7 o z(T) = 0 and z(s) = 0, we have shown (b). g

Now we return to the Hj-control problem for the system G. Suppose K
stabilizes the system G and hence the system G. Let G be the input-output
operator of the closed-loop system G with u = Ky, i.e.,

v = Gu.
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Then by Lemma 2.29

IGI3 = |G.+UG|3
= Gz +11UG I3
= IG5+ 1G5 (2.176)

and
min || G ||2=]| G, ||2 + mi G 2.
KeK IG 2=l G ll2 Ke?{ G Iz

Thus our original Hz-problem has been reduced to the one for the system
G. By Remark 2.2, mingek || G ||3 is equivalent to the Hz-problem for the
backward system

—i = A'(t)E - F'(t)w + Cht)a,
? = Bi(t)Z + D5, (t)a, (2.177)
§ = By(t)i+w

with an internally stabilizing controller of the form

A'()E + C'(t)7,
B'(t)&.

8-
Il

&

The Ha-problem for the system {2.177) is the DF problem. Its solution will
be given below.

Backward Systems

We take a general backward system and consider special Hy problems. First
consider the system with full information (denoted by Grr):
- = A(t)r+ Bi(t)w + Ba(t)u,
z = Ci{t)x + Di2{t)u, (2.178)

v = 2]

We take a controller u = Ky of the form

-& = A(@t)&+ B(t)y,
= C)& (2.179)
where all matrices are uniformly bounded and of compatible dimensions.
Let Gy be the input-output operator of the closed-loop system G gy with

u = Ky. To formulate the Hz-problem for the system G gy we introduce the
following set of controllers:

K = {K:K is of the form (2.179)
and internally stabilizes the system G gj}.
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Then the Haz-problem for the system Gg; (FI-problem) is to find a controller
K € K which minimizes || Ggr |2

For the system G gy, we assume C1 and C5, i.e.,
C5 (A, B2, C)) is stabilizable and detectable.
Then as in Lemma, 2.27, we have the following.

Lemma 2.30 Assume C1 and C5. Then there exists a unique bounded non-
negative stabilizing solution P(t), t € [tg, 00) to the Riccati equation

P A'(t)P + PA(t) + C|(t)C\(t) — PBy(t)Bh(t)P, (2.180)
P(ty) = 0.

I

As in the previous subsection, we introduce
v=u— Fpz, Fp(t) = —Bj(t)P(t)
and the system Gb:

i AZ + Byw + Byu,
v = —FpZ+u, (2.181)

y = [w]

Then z can be written using v as follows:

i

-t = (A+ By;Fp)x + Byw+ Byv,

z (Ci1 + D12Fp)z + Diov.

Hence
z=Gbw + Ubv

where G% and U? are given by

—¢ = (A+ ByFp)t + Byw,
¢ = (C1+ Di2Fp)¢
and
- = (A+ ByFp)z+ By,
z = (Cl + Dme).’B + Djv,

respectively. Then we have the following.

(a) The system Gpy is equivalent to the interconnection of the system G*
and (G4, U®). B

(b) K stabilizes the system G gy if and only if it stabilizes GP.

Next we need the following lemma.
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Lemma 2.31 (a) || Ubv ||l2=|| v ||2 for any v € L%(to, 00; R™2).
(b) < G4(- — s)wy, UPv >= 0 for any wo € R™ and v € L?(ty,00; R™?)
with support in [to, s|.

Proof. (a) We can rewrite the Riccati equation (2.180) as

P (A+ ByFp)'P + P(A+ ByFp) + (Cy + D12Fp)'(C, + D12Fp),
P(to) = 0.

Then by direct calculation

PO = - 1 20 P + () P

and integrating it from t; to s, we obtain
z'(s)P(s)z(s) — z'(to) P(to)z(to) / o) |? = | 2(t) |3dt.

Since z(s) = 0 and P(to) = 0, we have the assertion.
(b) Consider the system G® with w(t) = 6(t — s)wo, to < s < oo. Then
£(t) = Sp(s,t)Bi(s)wo and

2O PO) = C02(0), t<s

where Sgp(-, -) is the state transition matrix of (A+B2Fp)’. Moreover z(t) = 0,
t > s and z(st) = 0 where z is the state of the system U®. Integrating
L1 (t)P(t)z(t)] from to to t, we have

/t ¢(r)z(r)dr = £ () P(t)z(t) — €' (to) P(to)z(to) = &' (t) P()x(t).

Letting ¢t 1 s, [, ¢'(r)z(r)dr = 0. Since £(t) = 0 and 2(t) = 0, t > s,
S ¢'(r)z(rydr = 0. i

Let u = Ky be an internally stabilizing controller and G the input-output
operator of the closed-loop system G® with u = Ky given by

v = Gtw.
Then v(t) = G%(- — s)wp has support in [to, s] and by Lemma 2.31, we have
IGe+ UG |13

| GE I3+ 11 U°G° I
| GEIE+11G° 1.

I Grr I3
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Hence we have
: G 21 b 112 . ~b |2
min || Gy li2=ll Ge |2 + min | G° 12
’{‘hus the Ha-problem of the system Gy is reduced to the one for the system
G?*. Since u = Fp(t)z is stabilizing, u = [Fp(t) 0]y internally stabilizes
the system G® and this yields v = 0 or G® = 0. Hence u = [Fp(t) 0]y is

the optimal controller for the system Ggy and

i 2= Gb 2 .
min | Grr llz=ll G¢ Iz

The controllability gramian for the backward system associated with GY is a
unique nonnegative solution and is given by

Lo =(A+ BoFp)'Lo,+ Lo(A+ B2Fp) + (Cy + D12Fp)'(Cy + D12Fp)

which implies L, = P. Hence by Lemma 2.4
1 to+T
I Gt 2= lim = / tr.B,(s)P(s)By (s)ds.
T—oc T to

Summarizing the above we have the following.

Theorem 2.26 Assume C1, C5 and consider the Hy-problem for the system
Grr. Then

(a) mingek | Grr |13=limr_oo % [T tr.B}(s)P(s)B1(s)ds.

(b) K =[Fp(t) 0] is optimal.

Next we consider the Hy-problem for the system (denoted by Gpr):

- = A(t)z + By(t)w+ B2(t)u,
z = Cl(t).’l] + Dlg(t)‘u,, (2182)
y = Ct)z+w

and we take a controller u = Kpry of the form (2.179). Here we assume C1,
C5 and C6, i.e.,

C6: A — B,C; is exponentially stable.
As we see below, this problem is equivalent to the Fl-problem.
Proposition 2.7 A controller Kpp internally stabilizes Gpr if and only
if K = Kpr[C2 Da] internally stabilizes Gpr. In this case Gpr = GFpy

where Gpr is the input-output operator of the closed-loop system Gpr with
u= Kpry defined by z = Gprw.
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Proof. The proof follows from v = Kppy = Kpr [C2 1] [z] 1

Consider the controller Kpg:

i = A@)i+ Bi(t)[y — Ca(t)E] + Ba(t)urs,

= upy, (2.183)
ur; = Kyrr,
YrFr = [y—Cz(t)i] .

Proposition 2.8 The controller K internally stabilizes the system Gpy if
and only if Kpr given by (2.183) internally stabilizes Gpr. In this case
Grr =GprF.

Proof. Let e = £ — £ where z and % are the states of the system Gpr and
(2.183), respectively. Then e satisfies

—é = (A - Blc2)€
which is exponentially stable. Moreover

- = AZ+ Byw + Bsu,

v = umzx[;]zx{

where w = w + Cqe. Hence

|

g> 8>

Py

-z = Ax+ Bl'lfj + Bgu, (2184)
u = K I:I:} .
w

Now suppose K stabilizes G ;. Then & € L?, but e € L? and hence z € L2.
Thus Kpp stabilizes Gpr. Conversely suppose Kpp stabilizes Gpg. Then
(2.184) is exponentially stable. Finally z is given

2 = Cz + Di2u = C1(& + €) + Digurr

subject to (2.184). Hence Grr = GpF. 5

Now it is easy to obtain the solution of DF-problem. Since K = [Fp(t) 0]
is optimal for the system G gy, the optimal controller for GpF is given by

u=[Fp(t) 0) [y - Cj‘z(t)i]
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and (2.183) in this case

~& = A@t)E+ Bi(t)ly — Ca(t)] + Ba(t) [ Fp(t) 0][ i ]

y— Cz(t).’i‘
— (A= BiC, + B;Fp)(8)3 + Bi(t)y, (2.185)
Fp(t).’i‘.

Il

u

Theorem 2.27 Assume C1, C5 and C6 and consider the Ha-problem for
the system Gpp. Then r

(a) minkex || Gpr 3= G2 3= limr 0o 3 [o°7" tr.B}(s)P(s)Bi(s)ds.
(b)The controller (2.185) is optimal.

Proof of Theorem 2.25
Now we return to the Ha-problem for the system G. By (2.176) we have
sl 2_ 2 : ~ (12
min |G 13=Il Ge I3 + mig 1| G I

and the original Hp-problem was reduced to the Hz-problem for the backward
system (2.177), which is a DF-problem. Since the conditions C1, C5 and C6
are satisfied for (2.177), we can apply Theorem 2.27 to obtain

to+T
mm | G |3= Am —/ tr.F(s)Y (s)F'(s)ds

and the optimal controller is given by

~& = (A4 F'B)+CyCY)z — F'y,
i = CYi.

Hence the forward controller (2.173) is optimal for the system G and hence
for the system G. We also have

1 et R
: 2__ 2 : il /
pin G 3=l Ge 1§ + Jim 7 [ e F@Y (6)F ().

to

Now we express || G || using the observability gramian of G, which is a
unique nonnegative solution of

—~Lo = (A+ ByFYL, + Lo(A+ B2 F) + (C1 + D12, FY(C, + D12 F).

But X satisfies the equation above and hence L, = X. Then by Lemma 2.4,
we have (2.174) and the proof of Theorem 2.25 is complete.
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2.6 Notes and References

The stability results in Section 2.1 are obtained using the basic ideas of {11, 27,
61] which deal with infinite dimensional systems. More results on stability can
be found in [84]. The H; and Hy, norms are defined as in [21]. The formulation
of the quadratic control follows [12, 13]. The disturbance attenuation problem
is discussed in [28, 30, 62]. On finite horizons we allow for initial uncertainty
and an output of the terminal state and obtained symmetric results in X and
Y. We modified [30], whose extension to infinite dimensions is found in [31].

The results on differential games in Section 2.2 are obtained following
[28, 29]. Standard results of differential games are found in [5]. The relation
between H,, control amd differential games is discussed by many authors
[4, 52, 63, 78, 79].

The Hyo control theory in Section 2.3 is based on [30, 38]. Initial uncer-
tainty is considered in the problem formulation and the output of the terminal
state is included in the finite horizon problem. We have given the necessary
and sufficient conditions for the existence of y-suboptimal controllers and the
characterization of all v-suboptimal controllers. The necessary and sufficient
conditions in terms of the solutions of two independent Riccati equations and
a coupling condition were not available for some time and were established
in [38]. The Ho, theory for time-invariant systems is complete and found in
the original papers [14, 20, 69] or in the books [21, 66, 93]. The state space
theory of Hy, control was extended to time-varying systems [49, 52, 62, 70].
The finite horizon problem is considered in [52] via game theoretic approach
and necessary and sufficient conditions and the characterization of all sub-
optimal controllers are given (see also [21]). The infinite horizon problem. is
considered by Ravi et al [62]. A more general setting involving initial uncer-
tainty is given in [49]. These papers give necessary and sufficient conditions
using two coupled Riccati equations and a y-suboptimal controller. The Hy,
theory for infinite dimensional time-varying systems is given in [31, 70].

The H, filtering theory in Section 2.4 is based on [30]. The Ho-filtering
problem was first considered by Nagpal and Khargonekar [58]. They gave
necessary and sufficient conditions for finite and infinite horizon problems
and a suboptimal filter. Limebeer and Shaked [53] give a stochastic interpre-
tation of Hoo-filtering. For time-invariant systems with zero initial condition
they considered the infinite horizon problem and gave the set of all stable
suboptimal filters. The same characterization is also given by Takaba and
Katayama [71] via model matching.

The H2 control theory for time-invariant systems is well-known and can
be found in [14, 21, 93]. No extension to time-varying systems seems to be
available. We have taken the approach in [14].
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In this chapter, we take time-varying discrete-time systems and consider sta-
bility, quadratic games, Ho, control, He, filtering and Hy control.

3.1 Stability

3.1.1 Lyapunov Equations

Consider
z(k+1) = A(k)x(k), z(ko) = zo (3.1)

where £ € R™ and A € R™*" is a bounded matrix of k, i.e.,
| A(k) |< a, Yk > ko for some a > 0.
Let S(k, j) is the state transition matrix of A. Then

S(k.5) ={ A(k—l)A(k—?)---A(j}: 1;>:JJ

and z(k), Yk > ky is given by
z(k) = S(k, ko)xo.
If A is 6-periodic, i.e., A(k + 8) = A(k), then
S(k+ 6,5+ 6) = S(k, 7).
If A(k) = A, then S(k, j) = A*7.

Definition 3.1 The system (3.1) (or simply A) is said to be exponentially
stable on [ko, 00) if

| S(k,5) |1< Ma*=3, for any ko <j <k <oo

for some constants M > 0 and 0 < a < 1 independent of j and k. (The
system (8.1) is also called internally stable.)
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If A(k) = A, then A is stable if and only if the magnitude of every eigenvalue
of A is less than 1. The following result is well-known.

Proposition 3.1 The following statements are equivalent.
(a) A is exponentially stable.
(b) There exists a positive definite matriz X satisfying

X=AXA+1 (3.2)
(c) There exists a positive definite matriz Y satisfying
Y =AYA + 1.

The equation (3.2) is called the Lyapunov equation. We now generalize this
result to the time-varying system.

Proposition 3.2 The following statements are equivalent.
(a) The system (8.1) is exponentially stable.
(b) There exists a symmetric matriz X (k) such that

(1,) C]ISX(k)SCQI, kako fOT some C,’Zl,i=1,2,
(ii) X(k) = A'(k)X(k + 1)A(k) + I.

(c) 352, 1 SG, )z |’ < clz|? Yz, Vs > ko and for some c> 1.
If A is O-periodic, then X 1is also #-periodic.

Proof. Suppose (a) holds. Then (¢) also holds and

oo

X(k) = S'(j,k)S3, k)

j=k
is well-defined and uniformly bounded, i.e., X(k) < cI for some ¢ > 1. Since
X(k) > S'(k,k)S(k,k) =1,

(i) of (b) has been shown. Since

S'(k,k)S(k, k) + i (S(, k+ 1)A(K)) S35, k + 1)A(k)
j=k+1

X(k)

I+ A'(K)] i S'(4,k +1)S(j, k + 1)]A(k)
j=k+1

we have (ii) of (b).
Now assume (b). Then
' (k+1)X(k+ Dz(k +1) — ' (k)X (k)z (k)

=~ | a(b) <~ () X (B)a(k)
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and
2k + D)Xk + a(k+1) < (1 é)z'(k)X(k)z(k)

which implies
2/(B)X (B)2(k) < (1 )52/ (5)X (s)a(s).

2

Using the property (i), we have
1 -3

c1 | z(k) P< ea(1— =)*7* | z(s) 2.

C2

Hence

for any ko < s < k < oo. Since (1 — %)% < 1, (a) holds.
Finally let A(k) be 8-periodic. Then

X(k) = ZS'(j,k)S(j,k)

|
s ¥

S'(G + 6,k +6)S( + 6,k + 6)

“.

s &

S'(5,k+6)S(U, k +6)
j=k+0

97

Definition 3.2 The equation (ii) of (b) is called the Lyapunov equation of

the system (8.1).

If A is exponentially stable, we can show that any solution of the Lyapunov
equation coincides with X (k) given in the proof of Proposition 3.2. Hence the
Lyapunov equation has a unique solution. See Theorem 3.4 for the proof in

a more general case.
Consider the adjoint equation of (3.1)
§(k) = A'(k)§(k +1), &(N)=4&.
Let £(k; N,&1) be the solution of (3.3).
Definition 3.3 The system (38.3) is said to be exponentially stable if
| (ks N, &) [< Ma™ ¥ | &1 |, for any ko <k < N < oo

for some constants M > 0 and 0 < a < 1 independent of k and N.

(3.3)
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Since §(k; N,&1) = S'(N, k)¢, the system (3.3) is exponentially stable if and
only if the system (3.1) is exponentially stable.

We have a dual result to Proposition 3.2.

Proposition 3.3 The following statements are equivalent.
(a) The system (8.3) is exponentially stable.
(b) There exists a symmetric matriz Y (k) such that

(i) ol <Y(k)<cal, Yk > ko for somec; >1,i=1,2,
(6) Y(k+1)= ARY(R)AGK) +1, ¥(ko) =1

(c) Z;.V:s | S'(N,j)¢ 12< c| €12, Yko < s < N < 00 and for some c > 1.

Proof. Suppose (a) holds. Then (c) is true and

k

Y(k)=_ S(k,j)S' (k,j)

Jj=ko

is well-defined and uniformly bounded, i.e., Y (k) < cI, Yk > ko for some
¢ > 1. We also have
Y (k) > S(k,k)S'(k, k) = I.

Hence (i) of (b) holds. Since S’ (ko, ko)S(ko, ko) = I and

k+1

Y(k+1) = Y S(k+1,5)8(k+1,5)
Jj=ko
k
= Sk+1Lk+1)S(k+1,k+1)+ Y AK)S(k,5)S (k,5)A (k)
Jj=ko
= I+ Ak)Y (k)A'(k)

we have (ii) of (b).
Now assume (b). Then

g'(k)Y (k)§(k) — €' (k- 1)Y (k - 1)&(116 -1
=|&(k) 1> a&'(k)Y(k)f(k)

and
€k~ )Y (k- 1)k~ 1) < (1 - f;)&'(k)m)s(k),

from which we have

ERY(REE) < (1~ VMY (MEW).
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Hence
C2 1

|6k) IP< =1 = )V F e |?
C1 C2

and (a) holds. ]

Definition 3.4 The equation (it) of (b) is called the Lyapunov equation of
the backward system (8.8) (or simply the backward Lyapunov equation).

Corollary 3.1 Let A(k) be 8-periodic. The system (3.8) is exponentially sta-
ble if and only if there exists a 6-periodic solution of the backward Lyapunov
equation with c;I <Y (k) < col, Yk > ko for some c1, c2 > 1.

Moreover, the 8-periodic solution is unique if A is exponentially stable.

Proof. We shall show that Y (k + né) is increasing in n and hence converges
to Yg(k) which is #-periodic. In fact

k+né
Y(k+n8) = Y S(k+nb,5)S (k+nb,j)
j=ko
k+4+né
= > S(k+(n+1)8,5+6)S'(k+(n+1)6,j +6)
j=ko
k+(n+1)8
= Y Sk+(n+1)8,5)S(k+(n+1)8,s)
s=ko+8
k+(n+1)8
> S(k+(n+1)8,5)S (k + (n+1)8,s)
s=ko
= Y(k+(n+1)d).
Let Yy (k) be the limit of Y (k + nf) as n — oo. Then
Yo(k+6) = lim Y(k+nb+8)

n—oo

= lim Y(k+(n+1)8) = Ya(k).

IA

For the proof of uniqueness, see the proof of Theorem 3.4. 1
Consider
z(k+1) = A(k)x(k)+ B(k)u(k), (3.4)
y(k) = C(k)z(k) + D(k)u(k)

where £ € R™, u € R™2, y € RP? and A, B, C, D are bounded matrices of
appropriate dimensions. Then z(k) with z(ko) = z¢ is given by

k-1
(k) = S(k,ko)zo + Y _ S(k,j + 1)B(j)u(j)

Jj=ko
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and

y(k) = C(k)S(k, ko)zo + C(k Z S(k,j +1)B()u(s) + D(k)u(k).

j=ko

Definition 3.5 The system (38.4) is said to be input-output stable (or simply
10-stable) on [ko, o) if for z(s) = 0, s > ko and any u € (s, 00; R™2)

y € 1(s,00;R™) and |y ll2<c | ulls
for some ¢ > 0 independent of s.

Definition 3.6 (a) The pair (A, B) is said to be stabilizable on [ko, 00) if
there exists a bounded matriz K(-) such that A+ BK is exponentially stable
on [ko, 00).

(b) The pair (C, A) is detectable on [ko, o0) if there exists a bounded matriz
J(-) such that A+ JC is exponentially stable on [kq, o0)

(c) If (a) and (b) hold, the system (8.4) or (A, B,C) is said to be stabilizable
and detectable.

Proposition 3.4 Suppose that (A, B, C) is stabilizable and detectable on
[ko, 0). Then the system (3.4) is exponentially stable if and only if it s IO-
stable.

Proof. It is enough to show sufficiency. Without loss of generality, let D = 0.
First we shall show C(k)S(k,s)zo € [2(s,00;RP?) for any o € R™. Since
(A, B) is stabilizable, there exists a bounded matrix K(-) such that the system

z(k + 1) = (A + BK)(k)z(k), z(s) = o (3.5)
is exponentially stable and hence z € 12(s, oo; R"™). Now

z(k +1) = A(k)x(k) + B(k)K(k)x(k), z(s) = zo

and we have

k-1

z(k) = S(k,s)xo+ZS(k,j+1)B(j)K(j)x(j),
k—1
C(k)x(k) = C(k)S(k,s)zo + C(k) Z S(k,j + 1)B()K(G)z(H).

Since (3.4) is IO-stable

k—1
k)Y S(k,j +1)BG)K(j)z(j) € 1*(s, 00; RP?)

j=s
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and hence C(k)S(k, s)zo € 12(s, 00; RP?) and || C(k)S(k, s)xo ||2< ¢ | zo | for
some ¢ > 0 independent of s and zo. Since the system

z(k +1) = A(k)x(k), z(s) =1xo
is equivalent to
z(k +1) = (A + LC)(k)z(k) — L(k)C(k)xz(k), (ko) = zo

where L(-) is a bounded matrix such that A + LC is exponentially stable.
Then we have

k—1
z(k) = Sk, s)zo + Y _ Sp(k, 7+ 1)L(5)C(5)z(3)

Jj=s
where Si (k, j) is the state transition matrix of A+ LC. Since
C(k)z(k) = C(k)S(k, s)zo,

z € 1%(s,00;R™) and || z |[2< ¢ | zo |, which implies (3.4) is exponentially
stable. ]

Proposition 3.5 (a) Suppose that (C, A) is detectable. Then the system
(3.4) is exponentially stable if and only if there erists a bounded nonnega-
tive solution to

X (k) = A'(k)X(k + 1)A(k) + C'(k)C(k). (3.6)

(b) Suppose (A, B) is stabilizable. The system (3.4) is exponentially stable if
and only if there erists a bounded nonnegative solution to

Y(k +1) = A(k)Y (k)A'(k) + B(k)B'(k), Y (ko) =0. (3.7)

Proof. We shall show (a) only. If A is exponentially stable,

X (k) = i S'(s,k)C'(s)C(s)S(s, k)

s=k

is a bounded nonnegative solution of (3.6). Conversely, let X (k) be a bounded
nonnegative solution of (3.6) and z(k) = S(k, s)zo. Then

' (k + DXk + Dz(k + 1) — 2/ (k)X (k)z(k) = — | C(k)z(k) |?

and

N
Z'(N+1)X(N + Dz(N +1)+ > _ | Clk)z(k) |*= 25X (s)Zo.
k=s
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Hence C(k)S(k, s)xo € 1%(s,00; RP?) with || C(k)S(k, s)xo [|2< ¢ | x¢ | for
some ¢ > 0 independent of s and zo. As in the last part of the proof of
Proposition 3.4, we can show z € [?(s,00; R™) with || z ||2< ¢ | z¢ | for some
¢ > 0 independent of s and zo. Y(k) given by

k-1
Y(k) =" S(k,s+1)B(s)B'(s)S (k,s + 1)
s=k0
is a bounded nonnegative solution of (3.7). 1

If the system is time-invariant, the equation (3.6) is reduced to
X=AXA+C'C (3.8)

and its solution is called the observability gramian. The equation (3.7) is
reduced to

Y = AYA' + BB’ (3.9)

and Y is called the controllability gramian.

Remark 3.1 Proposition 3.2 is a special case of Proposition 3.5 (a) since
(I,A) is detectable.

3.1.2 Performance Measures of Stable Systems

Consider the system G:

z(k+1) = A(k)z(k) + B(k)w(k), (3.10)

z(k) = C(k)x(k)+ Dk)w(k)
where z € R™, w € R™, 2z € R, A, B, C, D are bounded matrices of
appropriate dimensions and A is exponentially stable. First we assume that

the system is time-invariant and recall the following definitions.

Definition 3.7 The Hy-norm of the system G, denoted by || G ||2 s

G2

mi oo %
(Z[Z | CA¥=1Be; |2 + | De; |2]>

=1 k=1

oo :
= (tr.[z B'(AYk-'C'CA* B + D’D])
k=1

where (e;) are unit vectors in R™1.
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|| G |l2 can be regarded as the total energy of impulse responses. Let G(z) be
the transfer function of the system so that G(z) = C(zI — A)"'B + D. Then
via Fourier transform we have

1
1 27 ] ) z
| G ll2= [—/ tr.[G*(eJ")G(eJ")]da} (3.11)
2w J,
where G*(-) is the Hermitian transpose of G(-). We also have the following.

Lemma 3.1
| G ||3= tr.[B'XB + D'D] = tr.[CYC' + DD’

where X | Y are observability- and controllability gramians respectively of the
system given by (3.8) and (3.9).

Definition 3.8 The Hy-norm of the system G, denoted by || G ||oo is given
by

4
1 G lloa= sup JZl2
0AwEl? || w ||2

|| G ||oo is the supremum of the ratio of the energies of the output and input.

As is known ‘
| G lloo= Sl;pa[G(e”)] (3.12)

where o(M) is the maximum singular value of the matrix M. The Hz- and
Ho-norms of transfer functions G(z) are defined by (3.11) and (3.12).

The following result is known as the Bounded Real Lemma.

Lemma 3.2 The following statements are equivalent.
(@) || G [loo< -
(b) There erxists a nonnegative solution X to

T > 0,

X = AXA+CC+RI['R,

such that A+ BT 'R, is exponentially stable where Ty = ¥y’ I - D'D—-B'XB
and Ry = B’ XA+ D'C.
(¢) There exists a nonnegative solution Y to

Ty > 0,
Y = AYA +BB' +R}yT/Riy

such that A + R}y, T}/ C is exponentially stable where Try = 21 — DD’ —
CYC’' and Ryy =CYA' + DB'.
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Now we generalize Definitions 3.7 and 3.8 to time-varying systems.

Definition 3.9 The Hz-norm of the system G on [s,00) is defined by

my ko+N-—-1 [ o}

Jim _Z[ Z Z {| C(k)S(k,s +1)B(s)e; |?

s=ko k=s+1

I G113k,

I

+ | D(s)e; [*}]
ko+N-—-1
= Jlim_ —-tr[ > {B'(s) Z S'(k,s + 1)(C'C)(k)
s=ko k=s+1

xS(k,s + 1)B(s) + (D' D)(s)}].

For 8-periodic systems

ko+6-1 oo
1
1G15e = 5 D tr(B'(s) 3 S'(k,s+1)(C'C)(k)
s=ko k=s+1

xS(k,s + 1)B(s) + (D' D)(s)]-

Note that two norms above coincide for #-periodic systems.

Remark 3.2 Note that

ko+N 1 ko+N
1G5k = Jim ~tr[ 3" {B'(s) . S'(k,s+1)(C'C)(k)
s=ko k=s+1

xS(k,s + 1)B(s) + (D'D)(s)}.

and

ko+N—1 ko+N

|Gl = Jim —tr[ > { > Ck)S(k,s+1)(BB')(s)

s=ko k=s+1

xS'(k,s + 1)0'(’“) +(DD')(s)}]

ko+ N
= Jlim_ —tr[ 3 {ck) Z S(k,s +1)(BB')(s)
k=ko+1 s=ko

xS'(k,s +1)C'(k) + (DD')(k)}]

where we have used the property of the trace and

ko+N—-1 ko+N ko+N k-1

2 2 =2 >

s=ko k=s+1 k=ko+1 s=ko



3.1. Stability 105

From the last equality, | G ||2,x, is equal to the Hz-norm of the backward
system G*

i) = A'(K)ilk+1)+C'(k)b(k), (3.13)
).

zZ(k) = B'(k)z(k+1)+ D'(kyw(k

Let Z(k;s,1) be the impulse response of (3.13) with @(s) = e; where (e;)
are unit vectors in RP!. Then

D' (s)es, =s,
Z(k;s,i) =< B'(k)S'(s,k+1)C'(s)ei, k<s,
0, k>s.
Definition 3.10 The H;-norm of the backward system G* is defined by

P11 ko+N-1 oo

I G* lI3= Jim —Z{ > Y a0 2.

i=1 k=ko s=ko

Then clearly

p1 ko+N k-1

G2 = Jim —Z Y D I B(9)S' (s, k+1)C(k)es |?

=1 k=ko+1 s=ko
+ | D' (k)es 7]

and || G* llz,ke=l G ll2,ko-

Lemma 3.3

ko+N-1
2 . /
1G 13k = Jim wtr > B()X(s+1)B() + (D'D)(e)
8=Ko
1 ko+N
= Jim Sir > (cYc’ + DD')(s)]
b s=ko+1

where X and Y are the observability and controllability gramians of the sys-
tem (3.10) given by (3.6) and (3.7), ﬂespectwely Moreover, for 8-periodic
systems X is 8-periodic and

1ko+0—1
1G5 = ] > tr[B'(s)X(s + 1)B(s) + (D' D)(s)]
s=ko
ko+6-1
> tr(CYeC’ + DD')(s)

s=ko

1
9

where Yy is the 8-periodic solution of (3.7).
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Definition 3.11 The H.,-norm of the system G is that of the map w — 2 :

lz(ko, oo; R™) — 12(kg, o0; Rr1).

To generalize the bounded real lemma we need to consider a quadratic
optimization problem. But we first introduce the standard quadratic control
problems.

3.1.3 Quadratic Control

Consider the system
z(k + 1) = A(k)z(k) + B(k)u(k), z(ko) = o

where z € R™, u €¢ R™? and A, B are bounded matrices of compatible
dimension. For this system we introduce the functional

N
In(uiko,z0) = 3 (| C(R)a(k) |* + | u(k) [2)+ | Fa(N +1)
k=ko

which is minimized where F' € R9*™ and C € RP2*™ are unifomly bounded.
We need the following Riccati equation

X(k) = A'(k)X(k+1)A(k)+ C'(k)C(k)
— (RT3 'R2)(k), (3.14)
X(N+1) = F'F (3.15)

where Ty (k) = I + B'(k)X (k + 1)B(k) and Ra(k) = B'(k)X (k + 1)A(k).

Theorem 3.1 There exists a unique nonnegative solution X = Xn(k) to
the Riccati eqaution (3.14) and (8.15). Moreover, the state feedback law

() = (T3 'R2)()=(")

is optimal and
Jn(8; ko, Zo) = zo X (ko)Zo.

We omit the proof of this theorem. Instead we shall give a proof for a similar
problem (3.39). See Lemma 3.8.

Now consider the infinite horizon problem

I

z(k+1) = AK)e(k)+ B(kyu(k), z(s) = z0, s ko,

Juis,zo) = Y (ICk)z(k) [ + | u(k) |?]
k=s
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where u € 1%(s,00; R™2) is admissible if its response € I?(s,00; R™) and
limg_,oo (k) = 0. As in the continuous-tiine case we assume the following
condition.

RD: We assume that for each (s, zo) there exists a control u(-; zo) such that
J{u(-, z0); s,x0) < ¢(xp) for some constant ¢ independent of s.

If (A, B) is stabilizable, then RD holds.

Lemma 3.4 Assume that RD holds. Then there erists a bounded nonnega-
tive solution to the Riccali equation (3.14).

Proof. By Theorem 3.1 there exists a nonnegative solution to (3.14) on
ko, N + 1] with X(N + 1) = 0. Then for any s > ko, Xn(s) < Xg(s) if
s§ < N < N. In fact let

an() = —(T; ' Ra) (") (")

then

JN(ﬁNv szo)
JN('&N, 3710)
Jr (i s,z0) = 2o Xy (s)To

IéXN (5)zo

IN A

where we set F = 0 in Jy and 4gx in Jy is the restriction of the feedback
law @5 (-) to [s, N]. We note that

zoXn(s)zo = Jn(GnN;s,To)
Jn (u(; To); 8, Zo)

J(u(+;z0); 5, T0) < 00.

IA A

Hence 25X n(s)zo is monotone increasing and uniformly bounded in s and
N. Since x4 is arbitrary, there exists a bounded nonnegative matrix X such
that

Xn(s) = X(s) for any s.

Then X satisfies the Riccati equation (3.14). 1

Lemma 3.5 Suppose (C, A) is detectable. Then A—BT; ' R, is exponentially
stable.

Proof. The Riccati equation (3.14) can be written as

X(k) = (A-BT;'Ry)'X(k+1)(A- BT, 'Ry) + [T{C;Rz] [T;?Rz] .
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Hence, if z is the solution of the state feedback system
z(k + 1) = (A — BT, ' Ry)(k)x(k), x(s) = zo

then as in the proof of Lemma 2.6 we can show
{T{C;Rz] z € I%(s, 00; RP2T™2)

and that
[ {T_?Rz] z||2€ ¢| zo | for some ¢ > 0.
2

Since (C, A) is detectable, it is easy to see that ({T'CI'R ] ,A— BT;'Ry)
2 2

is also detectable. Hence by Proposition 3.5, A — BT, 'R, is exponentially

stable. 1

We say that X is a stabilizing solution of the Riccati equation (3.14) if
A - BT; 'R, is exponentially stable.

Theorem 3.2 Suppose (C, A) is detectable and that RD holds. Then there
exists a bounded nonnegative stabilizing solution of (3.14). Moreover the feed-
back law

(") = ~(Ty 'Re)(")z(")
is optimal and
J(4; s,z0) = 2o X (8)xo- (3.16)

If A, B and C are 0-periodic, then X is also 8-periodic.
Proof. The first part follows from Lemmas 3.4 and 3.5. Since
z'(k+1)X(k + Dx(k + 1) — 2’ (k) X (k)xz(k)
= —(Ck)a(k) I* + | u(k) )+ | TH (0)[u(k) + (T3 R)(K)a(k)] 2,
we obtain

' (N +1)X(N + Dx(N + 1) + In(u; s, 7o)

N
= zpX(s)zo + 3 | TE(B)[ulk) + (T3 Ro)(K)a (k)] |
k=s

where u is an admissible control and z is its response. Since
(N +1DX(N+1)z(N+1) —>0as N — oo,

we obtain

J(u; 5,20) = X (s)zo + 3 | TE (R)[u(k) + (T Ra) (K (k)] |7
k=s
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Hence the optimality of @ and (3.16) follow immediately.

By Lemma 3.4, the bounded nonnegative stabilizing solution X of (3.14)
is constructed as limy o, Xn (k) where Xn (k) is the solution of (3.14) with
Xn(N+1)=0.If A, B and C are #-periodic, Xn{k +8) = Xn_o(k). Hence

X(k+6) = lim Xn(k+8) = lim Xn_g(k) = X(k). 1
N-ooo N—ooo
Corollary 3.2 (A, B) is stabilizable if and only if there ezists a control
u(-; 8, zo) for each s and xo such that
2113+ 1l u [13< e(o)
for some constant ¢(xo).

Proof. We only need to show sufficiency. Consider the regulator problem with
C = 1. By Theorem 3.2 A — BT2_1R2 is exponentially stable where X is the
bounded nonnegative solution of the Riccati equation (3.14) with C =1.

Consider the backward system
E(k) = A'(k)é(k + 1) + C'(k)v(k), &N +1) =&
and the functional
N
J(u; N+1,60) = D> [| B'(k)E(k + 1) [ + | v(k) [*]+ | H'é(ko) |2
k=ko

which is minimized. As in Theorem 3.1 we consider

Y(k+1) A(k)Y (k)A'(k) + B(k)B' (k) — (Ryy Ty Ray)(k), (3.17)

Y(ko) = HH' (3.18)

where Toy(k) = I + C(k)Y (k)C'(k) and Raoy (k) = C(k)Y{(k)A'(k). Then
similarly to Theorem 3.2 and Corollary 3.2 we have the following result.

Theorem 3.3 (a) There exists a nonnegative solution of the Riccati equation
(8.17) and (3.18) on any [ko, N + 1].
(b) Let H = 0 and suppose there erists a control v(-; N +1,£;) such that

| B'E I ko N4 1,Rm2) + | ¥ ||?2(k0,1v;mz)$ c(&1)
for some constant c(&1). Then the solution of the Riccati equation (8.17) with
Y (ko) = O is bounded. If, further, (A, B) is stabilizable, then A — R, T} C
is exponentially stable.

(c) (C, A) is detectable if and only if there exists a control v(-; N +1,£;) such
that

2
” é ”12(};0,N+1;R") + ” v Illzz(ko,N;sz)S c(él)
for some constant c(£,).
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We say that a bounded nonnegative solution Y of the Riccati equation
(3.17) is stabilizing if A — R,ZYTZ_YlC is exponentially stable.

Corollary 3.3 Let A, B and C be 6-periodic. Let Y be a bounded nonnega-
tive stabilizing solution Y of (3.17) with Y (ko) = 0. Then lim, .o Y (k + nf)
exists (denoted by Yy) and Yy is a 0-periodic nonnegative stabilizing solution

of (3.17).

Proof. It is enough to show that Y{k + nf) is monotone increasing in n.
Let Y(k;Y (ko)) be the solution of (3.17) with initial condition Y (ko) > 0.
Then Y{k) = Y(k;0). Since A, B and C are #-periodic, we have Y{k) =
Y(k—n8,Y(n#)) for nf < k < (n+1). Hence

Y(k+20)=Y(k+6,Y(0)>Y(k+6,0)=Y(k+8).

Similarly, we have
Y{k+(n+1)8) >Y(k+nf)

and Y (k + nf) is monotone increasing in n. Since Y is bounded, there exists
a limit Yy(k) of Y{k + n#) as n — oo. Note that

Yo(k) = lim Y (k+nf) = lim Y (k +6 + (n— 1)) = Ya(k + 6).

Hence Yy(k) is f-periodic. Since
Y(k + 1+ n8) = A(k)Y (k + n8)A’(k) + B(k)B'(k) + (Ryy Ty Roy )(k + nf),

taking the limit n — oo on the both side, Yy (k) satisfies (3.17).
Next we shall show the stabilizing property of Yy. Let kg < N < 0o be
arbitrary but fixed. Let z¢ be solution of

zk+1)=(A- ngaT{YiC)(k)x(k), z(ko) = xp. (3.19)
Consider
z(k + 1) = (A — Roy T} C)(k)z(k), z(ko) = Zo.
and denote by z,(k) the solution at k + nf. Then
ok +1) = z(k+nf+1)
= (A~ RoyT5 C)(k + n8)z(k + nb)
[A(K) = (Ray Ty )k + n8)C(k))|zn(k)
and we have
lim z,(k) = zg¢(k), k € [ko, N].
n—o0
Since Y is stabilizing

N
Z | za(k) |2 dt < c| o |* for any n
k=ko
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where ¢ > 0 is a constant independent of N. Hence we obtain

N N
3" lze(k) Fdt= lim > |za(k) [Pdt<c|zo .
k=Fko T ko

Since N is arbitrary, the system (3.19) is exponentially stable.
Suppose Y (k; H'H) is a bounded nonnegative stabilizing solution of (3.17).
Then lim, .o, Y(k + n8; H'H) = Yy(k) by Theorem 3.4 below. 1

As in the continuous-time case we have the following property for the
stabilizing solutions.

Theorem 3.4 (a) A bounded stabilizing solution of (3.14), if one exists, is
unique. _
(b) Let Y and Y be two stabilizing solutions of (8.17). Then

Y(k) - Y (k) = 0 as k — oo.

Proof. (a) Let X and X be two stabilizing solutions of (3.14). Then by direct
calculation we have

(A— BT, 'Ry)' (k)(X — X)(k + 1)(A ~ BT; ' Ry)(k) = X (k) — X (k)

where To(k) = I + B'(k)X(k + 1)B(k) and R2(k) = B'(k)X(k + 1)A(k).
Hence
X(k) — X (k) = Sx (N, k)(X — X)(N)Sx(N, k)

where Sx and Sx are the state transition matrices of A — BT{IR;; and
A — BT; 'Ry, respectively. Hence
| X(k) — X (k) |< Myod ~*cMaal —F

for some constants _1\/[,- >0,0<ea;<1,i=1,2and ¢ > 0. Letting NV — oo
we obtain X (k) — X (k) =0, Yk > ko.
(b) Since

Y(k+1) - Y(k+1) = (A - Ry Ty C)(k)Y - Y)(k)(A — Ry T3/ C)' (k)
we have
Y (k) — Y (k) = Sy (k, ko)(Y — Y')(ko)Sy (k, ko)

where Tay (k) = I + C(K)V(K)C'(K), Ray (k) = C(K)¥ (k)A'(k) and Sy and
Sy are the state transition matrices of A — R}, T5,'C and A — R, T/ C,
respectively. Hence Y (k) — Y(k) — 0 as k — oo, since A — Ry, T;,'C and
A — R T C are exponentially stable. 1
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Consider the system G:

z(k+1) = A(k)z(k) + Bi(k)w(k) + Ba(k)u(k), z(ko) = zo,
z(k) = Cy(k)z(k) + Dyi(k)w(k) + Dra(k)u(k),
y(k) = Ca(k)z(k) + Doy (k)w(k)

and the controller u = Ky of the form

ik +1) A(K)z(k) + B(k)y(k), #(ko) =0, (3.20)
w(k) = C(k)(k) + D(k)y(k).

Then the closed-loop system G and u = Ky is given by

[’;] (k+1) = [A +L§?é2ﬁ02 BEC‘] [;] ) + [B1 +BBszD21]w(k)’
[T] (ko) = [%0]’ (3.21)
I z(k) = [C1+ DpDC; Dlzé][;](k)+D12ﬁD21w(k).

Definition 3.12 Consider the system G on [kg, ). A controller w = Ky of
the form (8.20) is said to be I0-stabilizing if the closed-loop system (5.21) is
10-stable. If, further, the closed-loop system is exponentially stable (or

A+ ABzﬁCz Baé
BC, A

is exponentially stable) then the controller is said to be internally stabilizing.

Proposition 3.6 Consider the system G and the controller u = Ky of the
form (3.20). If the controller is internally stabilizing, then (A, B2,C2) and
(A, B,C) are stabilizable and detectable.

Proof. Let [;] (k) be the solution of

[;](k+1)= [A+BBC2'?C2 B.fié] [;](k), [i] (ko) = [I(;’] (3.22)

Then by assumption z, £ € I%. Rewriting (3.22) as
z(k+1) = A(k)z(k) + B2(k)(DCaz + B2C)(k), z(ko) = o,
Ek+1) = A(k)i(k) + B(k)(Caz)(k), Z(ko) =0

and applying Corollary 3.2 we conclude that (A, By) and (A, B) are stabiliz-

able. The detectability of (Cy, A) and (C, A) follows from the adjoint system
of (3.22) and Theorem 3.3. 1
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3.1.4 Disturbance Attenuation Problems

Consider the system G:

z(k+1) = A(k)z(k) + Bk)w(k), (3.23)
2(k) = C(k)z(k) + D(k)w(k),
n = Fz(N+1) (3.24)

with initial condition

(ko) = Hh (3.25)
wherez €e R®, we R™, z e R”, 2, e R, he R, He RV™ F ¢
R?*™ and other matrices are uniformly bounded of compatilbe dimensions.
For each input (h,w) € R™ x [%(ko, N;R™) we have the output (21, 2) €
R x [2(kg, N;RP!). Thus we can define the input-output operator Gy, of
the system (3.23)-(3.25)

h
G1Nko (w)

(zzl) =GNk (Z,) = G (3) (3.26)

where

N
G (1) = FSOV+1k)Hh+ F 3 SN +1,5 + DBGuG),
Jj=ko
h k-1

Gawia (1) ) = IS ko)A +C(8) 3 (kv +1)BGwG)

J=ko
+D(kYw(k).

Then Gng, € L(R™ x[2(ko, N;R™); R x 1?(ko, N; RP?)). We regard (h, w)
as the disturbance and for a given v > 0 we wish to find necessary and
sufficient conditions for || Gy, [|< v, i.e.,

lz1 2+ || z13<d?(| R |2 + || w [|3), for some 0 < d < 7. (3.27)
If (3.27) holds, the system G is said to fulfil the y-disturbance attenuation.

The adjoint G, of Gy, is given by

Nko (f) = (CCO) , (f,v) € RY x I?(ko, N;RP*) (3.28)

v
where
£(k) A'(k)E(k + 1) + C'(k)v(k),
(k) = B'(k)¢(k+ 1)+ D'(k)v(k), (3.29)
EN+1) = F'f,

Co = H'€(ko).
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Since || Gy, =]l GNk, || by Theorem A.2, (3.27) is equivalent to

[ o P+ 1 CIE<a®( £ 12 + v l1D). (3.30)

To give necessary and sufficient conditions for | Gnk, [|< 7, we need the
Riccati equations

Ti(k) > al for some a >0, (3.31)
X(k) = A'X(k+1)A+C'C+ (RTT'Ri)(k), (3.32)
X(N +1) = F'F, (3.33)
H'X(ko)H < d*Iforsome0<d<-~y (3.34)
and

Tiy(k) > al for some a > 0, (3.35)
Y(k+1) = AY(k)A'+ BB’ + (RyTy'Riv)(k), (3.36)
Y(ko) = HH', (3.37)
FY(N+1)F" < d°I forsome0<d<7 (3.38)

where

Ty(k) =4I = D'D — B'X(k +1)B, Ri(k)=D'C+ B'X(k+1)4,
Tiy (k) = 421 - DD’ = CY(k)C',  Riy(k) = DB’ + CY (k)A’

and for simplicity we have omitted k in all matrices of (3.23).

To give the solution of this problem, we introduce the following functional

N
J(wiko,zo) = 3 [l 2(k) [2 =* |w(k) |3+ | Fz(N +1) |2 (3.39)
k=ko

subject to

z(k+1) = A(k)z(k)+ B(k)w(k), z(ko) = xo,
2(k) = C(k)x(k)+ D(k)w(k)

and consider the maximization of J(wj; ko, zo) over all w € 1?(ko, N;R™).

Let
. 0
GNkow = GNko (U)) ’

= 0 .
Ginkew = Gink (w) ,1=1,2.

Lemma 3.6

I Gars IS Ganko I, || Ghs ISI Gvio I, for any 0 < ko< s <L <N.
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Proof. We shall show only the first inequality. Let % be the extension of
w € [2(s,L; R™) to [ko, N] by zero, i.e,

k=ko.,s—1, w(k)=0,
k) =4 k=s,.,L, w(k) = wk),
k=L+1,.,N, w(k)=0.

Then we have

L k—1
| Garawll; = Y 1CK)Y " S(k, 5+ 1)B()w() + D(kyw(k) |*
< 3" 1Ck) Y Sk, 5 +1)B(5)i(5) + D(kyi(k) |
k=ko j=t
= ” G_ZNko"D ”g
< | Ganko P11 @ 13=Il Ganvio 171w 113 - I

Consider the maximization problem (3.23)-(3.25) and (3.39) with ko, N
replaced by arbitrary s, L, kg < s < L < N.

Lemma 3.7 Assume || Gk, | <. Then for any ko < s < N, J(w; s,zo) s
strictly concave in w and there ezxists a unique optimal mazimizing element
wns € 2(s, N;R™). Moreover

| wnslly <680, J(wns;s,%0) < 8| zo|”
for some § = 6(7y) > 0 independent of s and zo.

Proof. By Lemma 3.6, | Gns ||< v for any ko < s < N. Hence 21 —
G%,Gns > al for some a > 0 and the quadratic functional J(w; s, o) is
strictly concave and J(w; s, zo) — —oo as || w ||2— oo. Then there exists a
unique optimal wy, for J(w; s, o) which is given by

o s _ ( FS(N +1,8)z0
(vl = GiyGns)w = Gy, 20(k) = ( C(k)S(k, s)zo

Hence
WNs = (’7’21 - é;VséNs)—lé;v.szO-
Thus we have
| wrsllz < 6| 2o

for some 4 independent of s and xo. ]

Lemma 3.8 Suppose || Gny, ||< 7. Then there ezists a nonnegative solution
X(k), k =ko,.., N+1to (3.31)-(3.88). The optimal control for (3.89) is given
by the feedback law
Wik (1) = (T7 ' Ra) () (")
and
J(kao; ko, .’Eo) = IBX(ko)Io.
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Proof. First we set ko = N and z(NN) = 0. Then || Gy w || < 7 is equivalent to

ElwN)? 2 fal®+]2N)
| FB(N)w(N) |* + | D(N)w(N) |?
which implies that
Ti(N) 2 (v* - d)I ,
and we can define X (V) by (3.32). Now we assume that (3.31) and (3.32) are

truefork = N,...,j+1,5 > ko. Then X(k), k = N+1,.., j+1is well-defined.
Furthermore we obtain

Z [} 2(k) |2 =7 | wik) |+ | 21 >= 2'(G + )X + 1)z(G + 1)
k=j+1

N
- > T w - T Raz)](k) |2

k=j+1
Now we consider
z(k+1) = A(k)z(k) + B(k)w(k), z(j) =0, k > j,
z(k) = C(k)z(k)+ D(k)w(k).

Then || Gn; ||< v implies

Zdﬂw(k |2>Z|z )P+ 2 P

and
d* | w(y) 122] 2(5) |* + Z[lz(k 2 _d? | w(k) |A+ |z |
k=j+1

for any w € 1?(j, N;R™). Hence we have

N
& lw@) 2 2 120) 1P +max{ Y [l 2(k) | =7 | w(5) P+ | 21 |}

k=j+1
| z(j) |2 +2'(G + DX (G + 1)z(j + 1)
| D(7)w(j) |* +w' () B (5)X (5 + 1)B(5)w(3)

which implies
Ti(j) > (v* - d*)I

and we caun define X(j). Since

J(w; 5,(s)) —z(s)X(s )z(s) — Z | [T (w — Ty Ruz) (k) 12,

=8
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we have
z'(8) X (s)z(s) = max J(w;s,z(s)) = J(wns; s, 2(s))
where wy(k) = (TT ' Ry)(k)z(k). 1

We are now ready to give the solution of our original problem.

Theorem 3.5 The following statements are equivalent.

(a) | Gk 1< -
(b) There exists a nonnegative solution to (3.31)-(3.84).
(c) There exists a nonnegative solution to (3.35)-(3.38).

Proof. Suppose (a) holds. Then || Gy, ||< v and (b) except (3.34) follows
from Lemma 3.8. Moreover for (3.23) and (3.32) the following equality holds:

202+ 213 = 7wl +h"H' X (ko)Hh
T w - Ty Rio) (3. (3.40)
Setting w = Ty ! Riz and using (3.27) we obtain
(| b+ wl) = | wlif +h'H'X (ko) Hh.

Hence d2 | h |2> h’H' X (ko) Hh which implies (3.34).
Conversely suppose (b) holds. Then by (3.40)

a2+ 112013 < P lwlf+d®[h? =2 |73
< PURP+HIwld) - (P =d)( R+ 1713
where r = T} (w ~ Ty 'Ry ). Since there exists a > 0 such that

| B2+ wli3<a(lh?+ 07 112),

we have
2 2 2 2 2 1 —d? 2 2
lzn [+l zllz < (AP +lwlz) - (RIF+1wl2)
2 _ g2
v —d
= -T=D) Rl 4w,
Hence || Gk, ||< - The equivalence of (a) and (c) also follows since (c) is
the dual of (b) concerning the adjoint (3.29) of Gnx,. 1

If the initial condition is known, we can set h = 0.

Corollary 3.4 The following statements are equivalent.

(a) | Gnko II< .

(b) There exists a nonnegative solution to (3.81)-(5.38).

(c) There ezxists a nonnegative solution to (8.85), (3.36) and (8.88) with
Y (ko) = 0.
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We now consider the system G:
z(k+1) = A(k)z(k) + B(k)w(k),
z(k) = C(k)x(k) + D(k)w(k),
z(ko) = Hh

on [kg, 00) and assume that this system is exponentially stable. Then we can
define the input-output operator G € L(R™! x[?(ko, c0o; R™); 1% (ko, co; RP1))

by
zzG(h>.
w

Again we wish to find the condition for || G |< . We replace (3.26) and
(3.39) by

h —
G(w> = C(k)S(k,ko)Hh
k-1
+C(k) Y S(k, 5+ 1)B()w(j) + D(k)yw(k),
k=ko
J(wiko,zo) = Y[l 2(k) > =77 [w(k) L.
k=ko

We also need the functional (3.39) with F' =0, i.e.,

In (w; ko, To) = z“z 2 =% | w(k) |?].

k=ko
Let Gw = G (g) Proceeding as in the finite horizon case we have the
following.
Lemma 3.9 || Gank, ||I<|| G || for any ko < N < co.

Lemma 3.10 Assume|| G |[< v. Then Jy(w; ko, zo) (J(w; ko, xo)) is strictly
concave and there exists a unique control wy, (Wi, ) mazimizing Jn(w; ko, To)
(J(w; ko, zo), respectively). Moreover

| wNkolly <6 o |, | wiolly <6 | xo |,
IN(WhNko; Ko, Zo) < 8 | zo |2, J(Wie; ko, To) < 6 | zo |2

for some § = 8(7) independent of N and xo.

Proof. Since || G ||<|| G ||< ¥ and Lemma 3.9, we have || Gank, || < 7- Hence
from Lemma 3.7, we have

Wk, = (V21 — GingoGanko) 'Ginko20, 20 = C(k)S(k, ko)xo,
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and o _
Wiy = (721 —G*G)" Gz

where G* is the adjoint of G. Since Gany, and (y21 — G_;NkoégNko)‘l are
uniformly bounded in N, we have the assertion. ]

Definition 3.13 (e) A bounded nonnegative solution X of (3.32) is called
the stabilizing solution if A + BT 'R, is exponentially stable.

(b) A bounded nonnegative solution'Y of (8.36) is called the stabilizing solu-
tion if A+ R'IYTB,IC is exponentially stable.

As in Theorem 3.4, we have the following property for the stabilizing
solutions of the Riccati equations (3.32) and (3.36).

Lemma 3.11 (a) A bounded stabilizing solution of (3.32), if one exists, is
unique.

(b) Let Y and Y be two stabilizing solutions of (3.36). ThenY (k)-Y (k) — 0
as k — oo.

Lemma 3.12 Suppose || G ||< 7. Then there exists a bounded nonnegative
stabilizing solution to (3.31) and (8.32). Moreover if the conditions above are
satisfied, a unique mazximizing element wy, of J(w; ko, xg) exists and is given
by the feedback law

Wi () = (T7 " Ra)(-)x(:)
and J (Wi ; ko, To) = 5 X (ko)zo.

Proof. Since || G ||< v implies || G ||< v and || Gk, ||< 7, we have a non-
negative solution Xy (k) to (3.31) and (3.32) with X (N +1) = 0. Moreover
for each k, X n(k) is monotone increasing in N. In fact let L < N and define
a control on [ko, N] by

- _ [ (T Run)(k)zr(k), k€ [ko, L],
“’N’““(k)‘{ S ke[l +1N]

where R} = Rjj to denote the denpendency on X; and «j, is the response
to the feedback pair wik, = TI'LIRIL:EL in (3.23). Then

IN(WNko; ko, To)
IN(WNko; ko, o) = (X N (ko)Zo-

2o X1 (ko)xo = JL(WLke; ko, To) <
<

The monotonicity of X (k) also follows from Jx (w; k, o). Note that X (ko)
is bounded uniformly in N. This follows from Lemma 3.10 and
IN (wNko; ko, To) = xoX n (ko)zo.

Hence X n (ko) converges to a limitX (ko). Changing the initial time, Xy (k),
k > ko converges to a limit X (k). As we have seen in the proof of Lemma 3.8,
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Ty (k) > (v* ~d?)I in (3.31) independently of N and hence T1(k) > (7* —d?)I
for the limit X (k). So X satisfies (3.31) and (3.32). Now it remains to show
that 4 + BT(IRI is exponentially stable. Let z be the response to wnk,
and let Wk, € 1?(ko, 00; R™!) given by

i (k) = { A

Then
0 < x5 Xn(ko)zo < J(WNkos ko, To) < J(wiy; Koy To)

and {Wnk,} is bounded in {?(kg, co; R™). Hence there exists a subsequence
again denoted by {Wn«,} which is weakly convergent to @ € I%(ko, oo; R™)
with || @ [[2< ¢ | 2o |, ¢ > 0 (see Theorem A.5). Let £ be the response to w,
i.e, the solution of

ik + 1) = A(K)Z(k) + B(k)w(k), (ko) = To.

Since the restriction of 1 yk, on any subinterval converges weakly to that of «,
zn(k) — Z(k) in R™ for each k as N — oo. On the other hand zn (k) — (k)
in any finite interval, where Z is the solution of

z(k +1) = (A+ BT 'Ry)(k)i(k), Z(ko) = za.

Hence we can identify £ = Z. Since A is exponentially stable and w €
12(ko, 00; R™), we conclude £ € {?(kg, 00; R™) and z € [?(ko, o0; R™). This
is true for any zo, which via Proposition 3.2 implies that A + BT, 'R, is
exponentially stable. 1

Theorem 3.6 Assume that the system G is exponentially stable on [kg, 00).
Then the following statements are equivalent:

() G 1< 7.

(b) There exists a bounded nonnegative stabilizing solution of (3.31) and
(8.32) on |ko,00) satisfying (5.34).

(c) There exists a bounded nonnegative stabilizing solution of (8.35)-(3.37)
on [ko, 00).

Proof. Suppose (a) holds. Then the existence of a stabilizing solution follows
from Lemma 3.12. The condition (3.34) follows as in Theorem 3.5. Hence (a)
implies (b). The converse is also similar to Theorem 3.5. We only need to
show

A2+ lwl2<a(lh|?+ | 7 {3) for some a > 0.

But this follows from
o(k+1) = (A+ BT Ry)(k)z(k) + (BT, H(k)r(k),
wk) = (T7R)(R)x(k) + Tp 2 (kyr(k)
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since A+ BT, 'R; is exponentially stable.

(c) is the dual of (b) and (a) implies that there is a bounded nonnegative
solution of (3.36) with properties (3.35) and (3.37). In fact we consider the
adjoint system

§k) = A(k)E(k+1)+C'(ku(k), &N +1) =4,
((k) = B'(k)¢(k+1)+ D' (k)u(k)

and
N

TN +1,6) = Y[ Ck) 277 | w(k) 2+ | HE (ko) |2
k=ko
and proceed as in Lemma 3.12. To show the exponential stability of A +
R;y;.r;ylc, let vy (k) = T} Riy€(k) be the maximizing element of J(v; N +
1,51 y then

H UN HlQ(kO’N;Rpl)S Co i 51 i for some ¢y > 0.

We extend vy to [ko,00) by zero which we denote by on € 12(ko, 0o; RP?).
Then there exists a subsequence again denoted by Uy convergent weakly to
On € 1?(ko, 00; RP*). Now let kg < L < oo be a fixed but arbitrary number
and consider

En(k) = A(k)én(k+1)+C'(k)on(k), En(L+1)=46,

£k) = AKEK+1)+C(R)ok), EL+1)=6&
and
E(k) = A'(k)E(k +1) + C'(k)(TH Riy)(R)E(k), E(L+1)=6&. (3.41)

Then as in Lemma 3.12, we can show {n (k) — é(k) for any k € lko, L + 1]
and (k) = £(k), k € [ko, L + 1]. Since || ¥ |12 (ko,00;rr1) < €0 | &1 |,

L+l
Z |€(k) 12< c) & )? for some ¢ > 0,
k=ko

which implies

L+1
> l€&k)P<cl|& | for any ko < L < oo.
k=ko

Hence by Proposition 3.3, the system (3.41) is exponenetially stable and so
is A+ R}, T}/ C. Thus (a) implies (c).

The converse follws concerning the adjoint of the system G and proceed
as the converse of (b). 1
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Corollary 3.5 Let the system G be 8-periodic, i.e., A(k+0) = A(k), B(k+
6) = B(k), C(k + 0) = C(k) and D(k + 8) = D(k) . Then

(a) The stabilizing solution of (b) in Theorem 3.6 is 6-periodic.

(b) There exists a -periodic nonnegative stabilizing solution Yy (k) to (3.85)
and (3.36) such that Y (k) — Yg(k) — 0 as k — oo where Y is a bounded
nonnegative stabilizing solution of (3.35)-(3.37).

Proof. Proofs of (a) and (b) are similar to those of Theorem 3.2 and Corollary
3.3, respectively. [

If the system G is time-invariant, then we need the algebraic Riccati
equations:

i > O, (3.42)

X = AXA+C'C+R{I{ 'Ry, (3.43)
H'XH < d°I for some 0 < d < 7, (3.44)
Ty > 0, (3.45)

Y = AYA'+ BB’ +R},yT/ Riy. (3.46)

We define the stabilizing solutions of (3.43) and (3.46) as above. We can set
ko =0.

Corollary 3.6 Let the system G be time-invariant. Suppose A is exponen-
tially stable. Then the following statements are equivalent.

(a) || Gli<~.

(b) There exists a nonnegative stabilizing solution Xoo of (3.42)-(3.44).

(c) There exists a bounded nonnegative stabilizing solution Y of (5.45) and
(3.46) with Y (0) = 0. Moreover, there exists a unique nonnegative stabilizing
solution Yoo of (3.45) and (8.46) and Y (k) —» Yoo as k — .

Proof. The last property follows from Lemma 3.11. [

Corollary 3.7 Let the system G be time-invariant. Suppose A is exponen-
tially stable. Then the following statements are equivalent.

() 1| G II< .

(b) There exitsts a nonnegative stabilizing solution X of (3.42) and (3.43).
(¢) There exists a bounded nonnegative stabilizing solution Yoo of (3.45) and

(3.46).

3.2 H, Control and Quadratic Games

As in Section 2.2 we consider the quadratic games related to the H,, control
problems.
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3.2.1 Finite Horizon Problems
Consider the system G:
z(k+1) = A(k)z(k) + By(k)w(k) + Ba(k)u(k), z(ko) = zo,

2(k) = Ci(k)z(k) + Dii(k)w(k) + Dia(k)u(k), (3.47)
y(k) = Ca(k)z(k) + Du(kjw(k)

with
z1 = Fx(N +1) (3.48)

where z € R" is the state, w € R™ is the disturbance, uv € R™? is the
control input, (z1,2) € R? x R?! is the controlled output, y € RP2 is the
measurement, F' € R9*™ and A, B, etc are bounded matrices of appropriate
dimensions. For this system we assume

D1’: D), (k)[Ci(k) Di(k) Dia(k)]=[0 0 I] forany k.

The standard Ho-control is to find necessary and sufficient conditions for
the existence of a controller of the form

#k+1) = A(k)2(k) + B(k)y(k), (ko) =0,
u(k) = C(k)2(k) + D(k)y(k) (3.49)

such that || G ||< v, ie.,
Nz )2+4]2112°<d? || w2 for some 0<d <~y
where G is the input-output operator:w — (Zl ) In this case the controller

(3.49) is called «y-suboptimal.

Now we assume that a y-suboptimal controller exists and study its con-
sequence to the following quadratic game:

N
J(w,w;s,20) = Y[ (k) | =2* | w(k) I+ [ Fx(N+1) 2 (3.50)
k=s

where u is the minimizer and w is the maximizer. The response to (3.47) and
(3.49) can be written

(k) = (Pixzo)(k) + (P2xw)(k),
zx(k) = (‘I’]K:L‘o)(k) + (¥arw)(k), (3.51)
uk(k) = (Mikzo)(k) + (Il2xw)(k),

21k = F®156(N + Dzxo + FO2x(N + Nw
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where
&k € LER"I*s,N+1;RY),
O € L(%s,N;R™), I%(s,N +1;R"™)),
Uk, Ik € LR, (3 N; E)),
Uk, Mox € L(1%(s, N;R™), I%(s, N; E))

with E = RP1, R™2, respectively and ®1x(N + 1)zp = (®1xx0)(N + 1),
<I>2K(N~+ Dw = (Paw)(N + 1). Moreover $3, Voi and Ilzx are causal
and || G ||< 7 is equivalent to

IRZAE] (FQ?I\{I’(QJZ + D) |<d for some 0 <d <7y (3.52)

which implies
| Toxw |3 + | FOox (N + Dw |*<d? || w |} .
Now consider the functional (3.50). Since
I 2 ll2=ll C1z + Duw ||l2 + [l v 2
by D1°, J(u,w; s, xo) is strictly convex in u. Hence by Theorem A .4 for any xg
and w € 1?(s, N;R™) there exists a unique u, = u,(w,zo) € *(s, N;R™2)
such that

min J (u, w; 8, z0) = J(us,w; s, zo).
u

The response of (3.47) and (3.48) to us can be written

zs(k) (@1570) (k) + (P25w) (),
zs(k) = (¥15z0)(K) + (P25w)(k), (3.53)
us(k) = (Msz0)(k) + (M2sw)(k),
Z1s = Fq)ls(N+1):lt0+Fq)23(N+1)w
Since
J(us, w; 8, 20) < J{uk, w; s, o) (3.54)
we have
1= (7PN D) e (3.55)
Now
J(us,wis,x0) = |2z |13 =7 | wllf+ | Fz(N +1)|?

Fo,,(N+1 =
(P ) a7 w1
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where

” (FQIS(N + 1)

v )Io+\I/,’w ”2 = |FQIS(N+1)10+F¢2,(N+1)’U)|2
1s

+ )| Wiszo + Yoow |2 .

By (3.55) v2I — ¥, ¥4, is bounded both from below and above. So its inverse
exists (Theorem A.3) and is uniformly bounded in s. Hence there exists a
unique maximizing element of J(u,, w; s, o) given by

- F<I>13(N+1)>Io

wy = (Y21 = VI,)7 1 ( o (3.56)
1s

Next we shall show that w, = ws(zo) and u,(ws, To) are uniformly bounded
in s. Setting w = 0 in (3.54) we have

” u,(O,zo) "gs J(u,(O, IO)’O; 3710) < J(uK’O’S’IO) :” ZK ”g + | 21K |2
or

I Mhszo 13 I ¥1sz0 17 + | F®15(N + 1)zo |?

<
< || Wikxo |2+ | F®x(N +1)z0 |2 .

Hence I1;, and ¥, are uniformly bounded. By (3.56) we have

| ws l2< a1 | zo | (3.57)

for some a; > 0 independent of s and w; is uniformly bounded. Setting zo = 0
in (3.54) we also have

Il us(w, 0) I3 —* | w I3 J(us(w, 0), w; 5,0)

<
S J(quw;syO)
<

Iz 13 =7 | w I3 + | 21k |?

and
| Meow [13<|| $20w [13<]| orw [I3< d? || w 3.

This implies that I, is uniformly bounded. Now (3.53) and (3.57) yields
| us(ws, zo) l|2< a2 | zo | (3.58)
for some a; > 0 independent of N. Thus we have shown:

Lemma 3.13 (a) I11,, ¥y, Iz, and Yo, are uniformly bounded.
(b) ws(xo) and us(ws, xo) are uniformly bounded and

max min J(u, w; 8, 2o) = J(us, ws; 5, Zo) < a | zo |°
w u

for some a > 0 independent of s.
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Now we consider the Riccati equation

V(k) > al for some a >0, (3.59)
X(k) = A'Xk+1)A+CiC
—(RyTy ' Ro) (k) + (FV Fy)(k), (3.60)
X(N+1) = F'F (3.61)
where
T\(k) =~*1 - D},D\, — BiX(k+1)B,, Ta(k) =1+ ByX(k+1)B,,
Ri(k) = B|X(k+ 1A+ D;,C, Ry(k) = BLX(kE+1)A,
S(k) = BbX(k +1)By, V(k) = (Ty + S'Ty ' S)(k),
Fi(k) = [V7Y(Ry - $'T; ' Ry))(k), Fy(k) = =[T; (R2 + SF1))(k)

and for simplicity we have omitted & in all system matrices of (3.47).

First we assume that there exists a sequence of symmetric matrices X(k),
k € [s, N + 1] satisfying (3.59)-(3.61) and examine the properties of X{k).
By direct calculation, we obtain

N

J(u,wis,z0) = zHX(8)z0 + 3 | [TF {u+ T3 (Sw + Rez)}](k) |2
v
N 2w - B 2 :
Y kgs.wlv (w ~ Fa)](k) | (3.62)

where z is the response of the system (3.47) to the pair (u, w) € I%(s, N; R™?)
x12(s, N;R™1). Define feedback laws

@() = Fi()z("), () = ~[T; ' (Sw + Rox)](") (3.63)
and let z* be the solution of (3.47) with ko = s corresponding to (3.63). Set
w” (k) = Fy(k)x*(k), u*(k) = Fa(k)z™ (k). (3.64)

We shall show that the value of the game exists i.e,

sup inf J(u,w; s, ze) = inf sup J{u,w; s, zo).
w ¥ U w

Lemma 3.14 Suppose that there exists a sequence X (k), k € [s, N + 1] sat-
isfying (3.59)-(3.61). Then X is nonnegative. Moreover

J(@,w;s, o) < J(u,w;s,zxq)
= zoX(s)xo < J(u,w; s, o), (3.65)
J(u*,w*;s,10) = z5X(8)To < J(u,w*;s,xo) (3.66)
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for any (w,u) € 1?(s, N;R™) x 2(s, N;R™2). The maz-min of J(u, w; s, xq)
is attained by the pair (,w*) and

maxminJ(u,w;s,z9) = J(&, w";s,xo)
= J(a,w;s,xo) (3.67)
= Ju*, w';s, zo)

= zuX(8)xo = inf sup J(u, w; s, Tq).
w

Proof. We note that (3.65) follows from (3.62). Setting w = 0 in (3.65), we
have
0 < J(@,0;s,x0) < J(&,W; s,z0) = 23 X(8)To.

Hence X(s) is nonnegative. From (3.62) we have
J(1, w; s, 10) < J(@1,w; s,z0) = 24 X(s)To

and hence
min J(u, w; s, zo) < J(&, w; s, z¢) < 25X (8)Zo
u

for any w € {?(s, N;R™). This implies

sup min J(u, w; s, zg) < 43X (8)zo.

w
Now we shall show

ml;m J(u, w*;s,xo) = J(u*,w*; s,z0) = 2o X(s)xp. (3.68)
For this purpose, we consider e = x — z*, where z is given by

z(k + 1) = Az(k) + BiFiz* (k) + Bau(k), z(s) = zo-

Then
e(k + 1) = Ae(k) + Ba[u(k) — u*(k)], e(s) =0
and
J(u,w*s,z0) = [ Ci(e+x*)+Dnw” 5+ [|u3 -1 w* |3
+ | Fle+z*)(N+1) 2.
Define

k—1
(Hu)(k) = > S(k,j +1)Ba(j)uls),
»
Hyou = Y SN +1,j+1)Ba(5)uly)

j=s
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where S(k, j) is the state transition matrix of A. Then

e(k) = [H(u—u")(k),
e(N+1) = H,(u-~u").
Since J(u,w*; s, zo) is strictly convex in u, there exists a unique minimizing
element u. It is given by the solution of

u+ H*C,CiH(u — u*) + H*C}(C1z” + Dnw*)

VHF'FH,(u—v) + H F'Fe* (N +1) =0, 69

We shall show that u = u” is the solution. Note that for A € I%(s, N;R™) and
heR"

N

(H*h)(k) = Bj(k) > S'(,k+1h@),
J=k+1

(H:h)(K) = By(k)S'(N +1,k+1)h

It is enough to show that u*(k) = Fy(k)xz*(k) coincides with
—H'C|Ciz* — H'C,Dyyw* — H}F'Fz*(N + 1)

which is equal to

N
—By(k) Y S,k +1)[CiCiz" + CiDuw*)(j)
i=k+1
—By(k)S'(N +1,k+ 1)F'Fz*(N +1).
Since
S'(l,k+ D[CiCiz* + CiDnw* () + S'(1+ L,k+ DX+ Dx*(I + 1)
§'(Lk + 1)[CIC1 + C{Du Fi)(D=* (1)
+8'(Lk+ DA DX+ 1)(A+ B Fy + BoF)(Dz* (1)
S'(l,k+ 1[CiC1+ C{DuFi + AX(L +1)(A + B1Fy + B2 Fy)|z*(1)

I

and
CiCy+ CiDuFy + AX(1 +1)(A+ BiFy + By Fy)
= CiC1+A'X(l+1)A+ R\F\ + R,F,
= ClCi+AX(+1)A-R,T; 'Ry + FIVF,
= X,
we have

S'(Lk+1D)[CiCiz* + CiDuw™ () + S 1+ L,k+ )X+ Dz* (1 + 1)
= S'(Lk+1)X()z* ()
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and
N
=By(k)[ Y S'(4,k+1)[C{Crz* + CiDnw*](5)
Fj=k+1
+S'(N+1,k+ 1)F'Fz*(N +1)] = -Bj(k) X (k + 1)z*(k + 1).
On the other hand we have

Fy(k)z* (k)
= —[I 4+ By(k)X(k +1)Ba(k)]"*B,X (k + 1)(A + B1F1)(k)z* (k)
= —By(k)X(k + 1)[I + (B:B3)(k)X (k + 1)]"'(A + By Fy)(k)x" (k)
= —By(k)X(k+1)z*(k+1)

and hence u = u* is the solution of (3.69).
It remains to show the last equality in (3.67). From (3.62)

24X (s)z0 < J(u, @; 5, %0) < sup J(u, w; 5, %)
w

for any u and hence
zgX(s)xo < ir&f S\:)p J(u,w; s, xg).
But
max J(@,w; s,x0) = 4 X (8)xTo
and £ X (s)zo = J (&, w*; s, o) = ir&f s:p J(u,w; s, zg). i
Next we shall show the existence of a solution to the Riccati equation

(3.59)-(3.61). Recall that we are assuming the existence of a y-suboptimal
controller.

Lemma 3.15 There exists a nonnegative solution X(k), k € [s, N +1] to
(5.59)-(3.61) and

max min J(u, w; s, z¢) = 25X (s)zg.
w u

Furthermore the controller
u(-) = —(T7 ' Ra)()z() — (T3 1) (Dw(")

satisfies || G ||< 7
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Proof. We prove it by induction. Consider the functional

J(u, w; N, zo) =| 2(N) 2 —y [ w(N) > + | Fz(N +1)

subject to
(N +1) = A(N)z(N)+ Bi(N)w(N) + B2(N)u(N), z(N) = zo,
Z(N) = C](N)I(N)+ D]](N)’IU(N)+D12(N)U(N)

Then J(u,w; N, xz¢) is rewritten as

J(u,w; N, xp)
= zG[(C{C1)(N) + A(N)X(N + 1)A(N) — (RoT5 ' Ra)(N)]zo

+ | [T {u+ T3 (Sw + Rax) (V) |
—w' (N)V(N)w(N) + 2w'(N)(Ry — S'T; ' Ry)(N)zo

with X (N + 1) = F'F. Since there exists a y-suboptimal controller on [s, N,
it is also y-suboptimal on [N, N] and by Lemma 3.13 we obtain

max min J (u, w; N,z0) < ¢ | zo |* for some ¢ > 0.
w u

Hence V(N) > al for some a > 0 and we can define X(N) by (3.60).
We assume the existence of a solution X (k), k € [j+1, N] to (3.59)-(3.61).
Consider the functional

J (u, w; §, Zo) Z[I 2(k) I* =7 | w(k) P+ | Fo(N + 1) |?

subject to

z(k+1) = A(k)z(k) + Bi(k)w(k) + Ba(k)u(k), z(j) = 2o,
2(k) = C](k)l(k) + D]](k)w(k) + Dy (k)u(k).

Then by (3.62) and the above argument we can rewrite J(u, w; j, Zo) as
J(u,w;j,z0) = |z(4) |2 =7 | w(j) [*

+ Z (| 2(k) 1> =7 | w(k) []+ | Fz(N +1) |2
k=j+1
| 2(3) 12 =7 L w(@) [ +2'(F + DX (G + 1)a(5 +1)

N
+ 3 [T u+ T (Sw + Re) (k) 2
k=j+1
A T
= 3 1S Vi - Rk

k=j+1
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= HUCIC(H) + A'()X (G + 1)Ay) — (RT3 ' R2) (5)]xo

N
+ Y | [T {u+ T (Sw+ Roz)}(K) |
k=j+1
—w' (HV(Gw(j) + 2w (H)(R1 — S'T5 'Ra)(5)zo

N
)
—? > [ Z[Vi(w - Fa)k) |* .
k=j+1 T
By Lemma 3.13 and the above argument
max min J(u, w; j, To) < ¢ | To |? for some ¢ > 0.
w u

and V(j) > al. We can define X(j) by (3.60) and the rest follows from
Lemma 3.14. I

Summing up we have the following.

Theorem 3.7 Assume DY’. Suppose the controller (8.49) is vy-suboptimal
for the system G. Then there erists a nonnegative solution X (k), k € [s, N+
1] to the Riccati equation (8.59)-(3.61). Moreover

maxminJ(u, w; s, zo) = J(&,;s,xo)
w u
= J(u',w';s,zo)

= zuX(s)xp = ir&f sup J(u, w; s, Tp).
w

Consider the backward system

Z(k) = A'(k)E(k+1)+ Ci(k)b(k) + Cy(k)i(k),
i(k) = Bj(k)E(k+ 1)+ Dy (k)i(k) + Dy (k)a(k),  (3.70)
g(k) = Ba(k)Z(k+1)+ Dip(k)i(k),

zy = H'i(ko)

with
I(N+1)=F'f, fe R”

which is the adjoint system of G with z(k¢) = Hh. For the system (3.70) we
introduce the controller of the form

(k) = A'(k)i(k+1)+ C'(k)§(k),
a(k)y = B'(k)z(k+1)+ D'(k)glk (3.71)

which satisfies

211342 |2<d? || @ |2 for some 0 < d < 7.
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Now we introduce the following functional

J(@,w; N + 1, EN +1)) =) [| (k) > =7* | w(k) [*]+ | H'E(s) |?

M=

subject to (3.70) and we consider the following Riccati equation

Ww(k) > al for some a > 0, (3.72)
Y(k+1) AY (k)A' + B, B,

—(Ryy T3y Ray) (k) + (Fiy Vy Fiy)(k),  (3.73)

Y(ke) = HH' (3.74)

where

le(k) = ’)’21 - DllD’ll - CIY(’C)Ci, TQY(’C) =14+ CQY(k)Cé,
Rly(k) = C'lY(’C)A' + BllDll, ng( ) CQY( )A

Sy (k) = C2Y (k)C1, Vy (k) = (Thy + Sy Ty Sy)(k),
Fiy (k) = [Vy ) (Riy — Sy T3y Ray)] (k),

Fpy (k) = = [Ty} (Ray + Sy Fiy)|(k)

and for simplicity we have omitted k in all system matrices of (3.70). Then
as in Lemmas 3.13-3.15, considering the max-min problem for J(@,w; N +
1,Z(N + 1)) and hence we have the following result.

Corollary 3.8 Assume the condition
D2’: Dy (k) [Bj(k) Di,(k) (k)] =[0 0 I] for anyk.

Suppose the controller (3.71) is v-suboptimal for the system (3.70). Then
(a) There ezists a nonnegative solution Y (k), k € [s, N + 1] to the Riccati
equation (3.72)-(3.74) and

max min J (i, %; N + 1, (N 4+ 1)) = (N + 1)Y(N + 1)Z(N + 1).

w u
(b) For e > 0 small, there exists a nonnegative solution Yo_.(k), k € [s, N+1]
of (8.72)-(3.74) with v replaced by v — €.

3.2.2 The Infinite Horizon Problem

Consider the system G:

x(k+1) = A(k)z(k) + Bi(k)w(k) + Ba(k)u(k),
z(k) = Cy(k)x(k) + Dy (k)w(k) + Di2(k)u(k),
y(k) = Ca(k)z(k) + Da1(k)w(k)
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with (ko) = z¢ and the assumption D1’. We further assume that (A4, By, C1)
is stabilizable and detectable. As in the finite horizon case, we assume the
existence of a controller K of the form (3.49) with property

| z[l2€d| w2 forsomeOl<d<- (3.75)

and study its consequence to the quadratic game defined by the functional

J(u, wi ko, z0) = Y _ [ 2(k) |* = | w(k) |?]. (3.76)
k=kgo

Such a controller is called 10-stabilizing with y-disturbance attenuation (10-
~-suboptimal) and is called <y-suboptimal if it is internally stabilizing. We
also consider the finite horizon problem associated with

N
In(u, ws ko, To) = Y _ [| 2(k) [* =72 | w(k) |7]. (3.77)
k=ko

Note that if a controller K of the form (3.49) is I0-y-suboptimal, it is also
y-suboptimal on any [ko, N|. Since (4, By) is stabilizable, ¥, in (3.53) is
uniformly bounded. Then by Lemmas 3.13, 3.14 and Theorem 3.7 we have
the following.

Lemma 3.16 There erists a unique nonnegative solution Xn(k), k € [ko,
N + 1] of the Riccati equation (8.59) and (3.60) with Xn(N +1) = 0 such
that

| Xn(k) |€ ¢ independent of ko <k < N +1 < co.

Lemma 3.17 For each k > ko, Xn{k) of Lemma 3.15 is monotone increas-
ing in N.

Proof. Let L < N and we shall show Xy (ko) < Xn(ko). This follows from

2o X1 (ko)Zo Ji(ar, wr; ko, To)
Jr(n,wr; ko, To)
IN(@N, WN; ko, To)

INn (N, WN; ko, To) = 2o XN (Ko)Zo

ININIA

where iy is the restriction of @y on [ko, L] and Wy is the extension of wp
to [ke, N| by zero. The proof of a general k is similar. ]

Next we shall show that V ~1(k) is uniformly bounded. To do this we first
introduce the following result.
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Lemma 3.18 Let 0 < P € R™"™ | B € R™*™ and define
WI[P]= P[I - B(I+ B'PB)"'B'P]. (3.78)
Then if Py > P, > 0, W[P] > W[P).
Proof. Since I + BB'P is invertible, we can easily show
W([P]= P(I+BB'P)"..

Moreover
W[P|=(P~'+BB)"}
for P > 0 and the assertion follows in this case. Let ¢ > 0 be arbitrary but

fixed. Define
Pic:Pi+€I, i1=1, 2.

Then Pyc > P2 > 0 and hence W[P;] > W|[P;]. Now letting ¢ — 0 we have
W[Pl] > W[Pz] [
Lemma 3.19 V~1(k), k € [ko, N + 1] is uniformly bounded.

Proof. Let K be a y-suboptimal controller, i.e., an internally stabilizing con-
troller such that || G ||< 7. Then || G ||< v — € for some € > 0. Thus we have
two sequences X (k) = 0 and X§ (k) > 0 where X}, is defined as Xy with
~ replaced by v — €. Since

N
' Xn(ko)r = mgxmgnZ[l 2(k) 12 =% | w(k) |?]
k=ko
N
< maxmin Y [l z(k) I (v = &)® | w(k) ]
k=ko
= z'X§(ko)x

we have Xy (ko) < X5 (ko). By Lemma 3.18 we also have
W[Xn] < WIXK]

with W[X] is defined by (3.78) with B, P replaced by Bz, X(k + 1), respec-
tively. We write V[X] to show the dependence of V on X. Since V[X}] > 0,
we have

0<V[X%] = (yv—€?2~Dj D —BW[X§]B)
< (y-€)?* - D},D;; - B{W[Xn]B,

which implies

VIXn] =+*I - D}, D11 — Bi\W[XN|B, > §1
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where § = 2v¢ — €2 and independent of N. Consequently V~![Xy](k) is
uniformly boumded. [

In view of Lemimas 3.16 and 3.17, X (k) is uniformly bounded and mono-
tone increasing in N. So X n (k) converges to a limit X (k). Since V™! (X xn](k)
is uniformly bounded, X satisfies (3.59) and (3.60). Next we shall show that
A + B, F\ + B3 F; is exponentially stable.

Lemma 3.20 A+ B F, + By F; is exponentially stable.
Proof. For this purpose we consider
En(k+1) = (A+ BiF1[XN] + B2 Fo[XN))(k)ENn(K), Zn(ko) = zo- (3.79)
Then for any interval [ko, N] the solution £y converges to the solution Z of
Z(k+ 1) = (A + BiF1[X] + By Fy[X])(k)Z(k), Z(ko) = Zo.

We can rewrite (3.79) as

z(k+1) = Az(k)+ Biin(k) + Bayin(k) (3.80)
= (A-JC)z(k)+ JC1Zn(k) + Biwn (k) + Baiin (k),
.’L‘(ko) = I

where J € R™*?! is chosen such that A — JC) is exponentially stable. The
solution of (3.80) coincides with £y on [ko, N|. We extend it to [ko, 00) by
the homogenous equation of (3.80). By Lemma 3.14 || CiEn 2, || @~ |2,
| 4n l|2< a | zo | for some a > 0 and C,Zy, Wy and @y converges weakly
to h, w, @ in I%(ko,00; E), E = RP', R™ and R™2, respectively along a
subsequence N — oo. Let £ be the solution of
ik+1) = (A—JC)E(k)+ Jh(k) + Byw(k) + Byi(k),
.’i‘(ko) = o

then £, converges to £ and we can identify Z and Z. Since A — JC) is
exponentially stable, & € I2(ko, 00; R™). Hence Z € 1?(ko, 00; R™) for each zo
and || Z ||2< ¢ | zo | for some a > 0 independent of zo. Hence by Proposition
3.2, A + B, F\ + B> F; is exponentially stable. i

Define feedback laws
@) = Fi()a(), 4() = (T ' Ba)()a() — (TIS)(Jw(). (381
Let z* be the solution of (3.47) corresponding to (3.81) and let
w*(k) = Fu(k)x*(k), u*(k) = Fo(k)z* (k). (3.82)

First we show that the feedback law « is stabilizing.
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Lemma 3.21 Suppose there erists a bounded nonnegative solution X (k), k €
[ko, 00) of (8.59) and (8.60) such that A+ B, Fy+ B2 F» is exponentially stable.
Then A — BTy 1R, is exponentially stable.

Proof. Since

A+ BFy + BoF, = (A- Bsz_le) + (By - Bsz_IS)Fl

is exponentially stable, (Fy, A — BoT; ' R;) is detectable and so is

C
T; 'Ry | ,A- BoT; 'R, | .
ViF

Rewrite now the Riccati equation (3.60) in the form

X(k) = (A-BT;'Ra)X(k+1)(A - BT; ' Ry)
a1l a
+ | T 'R, T; 'Ry | .
ViR ViF
Hence by Proposition 3.5, A — B2T2‘1R2 is exponentially stable. 1

Let F1I be the set of stabilizing feedback laws of the form u(-) = Ka(-)z(-)+
K;(-)w(-). As Lemma 3.14 we shall show

Sl:)p uigél J(u,w; ko,zo) = J(&,w";ko,To)
= J(&,w; ko, To)
= J(u',w‘;ko,.’to)
= .’téX(ko).’to
= uigél Slul)p J(u, w; ko, xo). (3.83)

Note that

igélsupJ(u,w; ko, zo) < sup J (&, w; ko, zo) = J (&, w"; ko, To) = xoX (ko)To-

It suffices to show

.’EéX(ko).’to < J(ﬁ, w™; ko, .’Eo) = iélél J(u, w*; ko, .’to). (3.84)

In fact this implies

zoX (ko)zo = uigél J(u, w*; ko, Tp) < Slul)p uigéx J (u, w; ko, zo)
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and (3.83) follows. To show (3.84), we proceed as in the proof of Lemma 3.14.
Consider

z(k+1)

il

Az(k) + Biw" (k) + Bau(k)
(A — ByT; ' Ry)x(k) + (B1 — ByT; ' S)w* (k) + Bau(k)

with z(kg) = zo where v(k) = u(k) + (T; 'Ra)z(k) + (T 'S)w* (k). Then
e = z — z* satisfies

e(k +1) = (A— BT, ' Ry)e(k) + Bau(k), e(ko) =0
and J(u, w*; kg, o) can be written as

J(v,w*; ko, o) = || Ci(e +z) + Duw* |5 =7 || w* |I3
+||v— T2_1R2z - TZ_ISwf ||§
| C1(Hv + z%) + Duw® |15 —7* || w” II3
+||v—- T2_1R2(Hv +z*) - TZ_ISw" ||§

where
k-1

(Ho)(k) = Y Sx(k,j + 1)B2(j)v(j)
Jj=ko

where Sx (k, j) is the state transition matrix of A — BgT{le. The unique
minimizing element of J given by the solution of

H*C|C1Hv + H*C}(C1z* + Dnyw*) + (I - T, 'RH)*(I — T, 'RyH)v
~(I = T; 'RoH)*T; Y (Roz* + Sw*) = 0.

We shall show that v = 0 is the solution. This follows if
H*C{(C1z* + Dyyw*) — (I — T, 'RoH)* T 1 (Rpz* 4 Sw*) = 0.
Since A — B2T2_1R2 is exponentially stable, we have for h € 1?(kg, 00; R™)
o0
(H*h)(k) = B3(k) Y Sk (i, k + 1)h(3).
j=k+1
Then as in the proof of Lemma 3.14,

H'C}(Ciz” + Duw*) — (I — Ty ' RyH)* Ty (Roz® + Suw*)
FQI.(’C) + H*[C{Cl + CiDll - IB;TZ’_IFE].’L‘]'l
By(k)[-X(k +1)z*(k + 1)

+ Y Sx(ik+1)[CiC1 + C{ D11 — RYT; ' Fola* (5)).
j=k+1
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Since

—X(k) + [C{Cl + CiD]] - R’sz_le](k)
(AT BT Ry (WX (k + 1)(A + BuFy + BaFy) (),

we have
H*C|(Ciz* + Dyyw*) — (I — Ty 'RyH)* Ty Y (Roz™ + Sw*)

= Bj(k)[-(A- BT;'Ry)' (k + )X (k + 2)
x(A+ B Fy + By Fy)(k + 1)x*(k + 2)

+ Z Sx (j,k + 1)[CiC1 + C{ D11 — RyT; ' Falz*(5)).
J=k+2

Repeating this argument, we have

H*C,(Ciz* + Dyyw*) — (I = Ty 'RyH)* T Y (Ryx* + Sw*)
BYy(k)[~Sx (N, k + 1)X(N)z*(N +1)

+ E Sx(],k + 1)[0;01 + C;Dll — R'2T2_1F2]I‘(j)]
j=N
= 0as N — oc.

Hence v = 0 minimizes J which implies @ minimizes J(u, w*; ko, z¢). Thus
the value of the game J(u, w; kg, o) over FI x [2(kg, 00; R™) exists.

Summing up we have the following.

Theorem 3.8 Assume D1’ and (A, B2, C)) is stabilizable and detectable.
Suppose an 10-stabilizing controller with property (3.75) exists. Then there
exists a unigue bounded nonnegative solution (A + B1Fy + By F» is exponen-
tially stable) to the Riccati equation (3.59) and (3.60). Moreover i € FI
and

sgpulglglJ(u,w;ko,xo) = J(@,w"; ko, To)

J(4, W; ko, o) = J(u*, w*; ko, To)
= z3X(ko)xzo = uiéllt:‘l sup J(u, w; ko, Zo).
If the system G is 8-periodic, then X 1is also #-periodic.
Corollary 3.9 Consider the system (3.70) and assume D2’ and (A, By, C)
is stabilizable and detectable. Suppose an 10-stabilizing controller of the form

(3.71) with property

[Z0 2+ || Z3< d? || @ ||3 for some 0 < d <~
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erists. Then

(a) There exists a bounded nonnegative solution (A + F|yCi + F},Cy is
exponentially stable) to the Riccati equation (3.72)-(8.74).

(b) For € > 0 small, there exists a bounded nonnegative stabilizing solution
Y, e of (3.72)-(8.74) with v replaced by v — €.

If the system (8.70) is 8-periodic, then there exists a 6-periodic nonnegative
stabilizing solution Yy of (3.72) and (8.73) such that Y (k) — Ye(k) — O as
k — oo.

3.3 H, Control

In this section we consider Hy.-control problems with initial uncertainty as
in Section 2.3. First we shall introduce the general framework for Ho.-control
and define our main problems. Then we consider two special problems called
the full information- and the disturbance feedforward problemnis.

3.3.1 Main Results
Consider the system G:

c(k+1) = A(K)z(k) + Bi(kyw(k) + Ba(k)u(k),
z(k) = Ci(k)z(k) + Diz(k)u(k), (3.85)
y(k) = Ca(k)z(k) + Dz (k)w(k)
with
n = Fz(N+1), (3.86)
(ko) = Hh (3.87)

where £ € R™ is the state, w € R™! is the disturbance, © € R™ is the
control input, (z1,z) € R? x R?! is the controlled output, y € RP? is the
measurement, h € R™, FF € R9*" H ¢ R"*™ and A, B, etc are bounded
matrices of appropriate dimensions. For this system we assume

D1: 12(k)[Ci(k) Dja(k))=[0 I] for any k,
D2: Dy (k) [Bi(k) Dy (k)]=[0 I] for any k.

Consider a controller u = Ky of the form

Ek+1) = A(k)&(k)+ B(k)y(k), (3.88)
u(k) = C(k)i(k) + D(k)y(k),
#(ko) = O (3.89)

for some bounded matrices A, B, € and D. Let ~ > 0 be given. Then the Hqo-
control on [kg, N] with initial uncertainty is to find necessary and sufficient
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conditions for the existence of a -y-suboptimal controller, i.e.,

such that

| = I|§ + ]z 125 d*(| h |2 + | w||?) for some 0 < d < 7.

a controller

Without loss of generality we assume that H and F have full column rank

and full row rank, respectively.

To give the solution of this problem, we introduce the following Riccati

equations
V(k) > al for somea >0, (3.90)
X(k) = AXk+1DA+CCy
—(RyT; ' Ro)(k) + (F{VF1)(k),  (3.91)
X(N+1) = F'F, (3.92)
H'X(ko)H < d*I for some 0 < d < 7 (3.93)
and
Vy (k) > al for some a > 0, (3.94)
Y(k+1) = AY(k)A'+ B1B;
—(Roy Ty Ray) (k) + (Fiy Vy Fiy)(k), (3.95)
Y(ko) = HH' (3.96)
where
Ty(k) =1 — B{X(k +1)B,, Ty(k) = I + ByX(k + 1)B,,
Ry(k) = X(k + 1A, Ry(k) = By X (k + 1)A,

S(k) = (k +1)Bi, V(k) = (Ty + S'T;'S)(k),
Fi(k) = [V — S'T; ' Ry)|(k), Fy(k) = —[T; ' (R2 + SF)|(k),
Ty (k) = 2I Cl (k)C Toy(k) =1 + CY (k)C),

Ryy (k) = C Y(k)A', Ry (k) = CY (k) A,

Sy (k) = (k)Clv W (k) = (le + 83, Tpy Sy )(K),
Fiy(k) = [V (Riy — Sy T3y Ray)|(k)

Fay (k) = _[T2Y Roy + SyFly)}(k)

and we have omitted k in all system matrices of (3.85). We also need the
following Riccati equation depending on X:

Vz(k) >
Z(k+1) =

Z(ko)

al for some a > 0,
AxZ(k)A’X + BlXBiX

Rzsz ! Ryz) (k) +

H(I - ?H 'X(ko)H) 'H'

(FizVzFiz)(k),

(3.97)

(3.98)
(3.99)



where

Ax(k) = (A +1B1Fl)(k)’
Cix(k) = (T3 * Rz + SF)|(K),
Diax (k) = Ty (k),
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Bix (k) = 1(B1V~%)(k),
Diix(k) = v(Ty 2SV-H)(k),
Da1x (k) = v(DnV~1)(k),

le(k) = ’)’21 - DllXD’llX - Cle(k)C;X, Tzz(k) =1+ CzZ(k)Cé,

Riz(k) = CixZ(k)Ax + Dux By,

Ryz (k) = CaZ(k)AY,

Sz(k) = C2Z(k)C x,

Vz(k) = (Tiz + S5 T;5 Sz)(k),

Fiz(k) = [Vz ' (R1z — S5 T35 Raz))(k),
Faz(k) = —[T;; (Raz + Sz F1z))(k)-

We can rewrite (3.91), (3.95) and (3.98) as

X(k) = A’X(k+1)A+C{Cl—<[gf]’[? _il]~l[gf])(k),

Y(k+1) AY (k)A' + BB} — ([g'g]' [?,YY _‘;Yw]_l [gfi]) (k)

N

and
Rz [Tz Sz 17'[R
_ ’ o 2z 22 z 2Z
2(k+1) = AxZ(K) A + Bix Bix ([ el 2] | Rlz]) G
respectively. Here note that the existence and uniform boundedness of

T2 S -1 sz SY - and TZZ SZ -
s -mf '|s -my Sy, -Tiz

are guaranteed by (3.90), (3.94) and (3.97), respectively. We can also rewrite

Axa(k) = (A+ BiFy+ BaFy)(k),

Aya(k) = (A+ F{yCi+ FpyCa)(k)
and

Aza(k) = (Ax + F{;C1x + F3,C3)(k)
as

Axalk) = (A—[Bz Bl g _il]-l[ﬁj])(k),

waw = (a-[E) [ 2] [@])w
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= (- [5] [% 5]"[&])w

respectively. As in the continuous-time case we have the following results.
Lemma 3.22 (a) Suppose X, Y and Z are solutions of (3.91), (3.95) and
(8.98), respectively. If Z(s) ~ Y (s) — ;ITZ(S)X(S)Y(S) = 0 for some s > ko,
then Z(k) - Y (k) — ;ITZ(k)X(k)Y(k) =0, forallk > s.

(b) If (3.93), (3.96) and (3.99) hold, then

and

Z(ko) = ¥ (ko) = 5 2 (ko)X (ko) (ko) = .

Lemma 3.23 (a) Let X, Y and Z be solutions of (3.91), (8.95) and (3.98),
respectively. Suppose x satisfies

z(k) = Ay, (k)x(k + 1) (3.100)
then (k) = (I — ;ITXY)(k)a:(k) satisfies
#(k) = Al (k)E(k + 1). (3.101)

(b) Let X, Y and Z be bounded solutions on [ko,o0) of (8.91), (3.95) and
(3.98), respectively. Assume that I — ;ITXY has a bounded inverse on kg, 0).
Then Az is exponentially stable if and only if so is Ay.

We give the proofs of Lemmas 3.22 and 3.23 in section 3.3.5. The following
are our main results.

Theorem 3.9 Assume D1 and D2.

(a) There exists a y-suboptimal controller uw = Ky on [ko, N] if and only if
the following hold:

(i) There exists a nonnegative solution X (k), k € [ko, N+1] to (3.90)-(3.93).
(i) There exists a nonnegative solution Z(k), k € [ko, N+1] to (3.97)-(3.99).
(b) In this case the set of all y-suboptimal controllers is given by

Fk+1) = A(k)(k) + Bi(k)y(k) + Ba(k)d(k),
u(k) = Ci(k)2(k) + Dy (k)y(k) + Di2(k)(k),  (3.102)
#(k) = Ca(k)i(k) + Day(k)y(k),
o= Qf [Ql<n,
Z(ko) = O

where A(k) = [Axel — (Ryy — BoTy 1S2)T5Col(k) and

Bi(k) = (Ryy — BT S2)TA1K), Ba(k) = L(Fly + BoTy PVE)(k),
Ci(k) = —(Fy + T; 2 SyT2C)(k),  Calk) = —(TRA Co)(k),

Dus(k) = —(T3 * S, TN (k), Dua(k) = 2Ty Tvi)(k),

Dy (k) = Tz_z%(k)-
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Theorem 3.10 Assume D1 and D2.

(a) There exists a y-suboptimal controller u = Ky on |ko, N] if and only if
the following hold:

(i) There exists a nonnegative solution X (k), k € [ko, N+1] to (8.90)-(3.93).
(1) There exists a nonnegative solution Y (k), k € [ko, N+1] to (3.94)-(3.96).
(iii) p(X (k)Y (k)) < d? for any k € [ko, N + 1] and for some 0 < d < 7.

(b) In this case the set of all y-suboptimal controllers is given by (3.102) with
Z replaced by (I — %,YX)“Y.

We now consider the system G:

z(k+1) = A(k)z(k) + Bi(k)w(k) + By(k)u(k),
2k) = Ci(k)z(k) + Diz(k)u(k),
y(k) = Ca(k)z(k) + Da(k)w(k),
z(ko) = Hh

on [k, o0) and the controller u = Ky of the form (3.88) and (3.89). Here we
assume D1, D2 and

D3: (A, B, C)) is stabilizable and detectable,
D4: (A, Bz, C3) is stabilizable and detectable.

Then the Hy.-control is to find necessary and sufficient conditions for the
existence of a y-suboptimal controller, i.e., an internally stabilizing controller
such that

| 212< d?(| A |* + || w]|2) for some 0 < d < 7.

To give the solution of this problem, we need the following definition.

Definition 3.14 (a) The solution X of (3.91) is called a stabilizing solution
if Axq is exponentially stable.

(b) The solution Y of (3.95) is called a stabilizing solution if Ay is expo-
nentially stable.

(a) The solution Z of (3.98) is called a stabilizing solution if Az is expo-
nentially stable.

As in Theorem 3.4, we have the following properties for stabilizing solu-
tions.

Lemma 3.24 (a) A bounded stabilizing solution of (8.91), if one exists, is
unique.

(b) Let Y and Y be two stabilizing solutions of (3.95). Then Y (k)Y (k) — 0
as k — oo.

(c) Let Z and Z be two stabilizing solutions of (3.98). Then Z(k)—Z(k) — 0
as k — oo.
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Theorem 3.11 Assume D1-D4.

(a) There erists a y-suboptimal controller u = Ky on [ko, 00) if and only if
the follouning hold:

(i) There exists a bounded nonnegative stabilizing solution X(k), k € [ko, 00)
to (3.90), (3.91) and (3.93).

(11) There exists a bounded nonnegative stabilizing solution Z(k), k € [ko, 00)
to (3.97)-(5.99).

(b) In this case the set of all y-suboptimal controllers is given by (3.102) with
Q internally stable.

Theorem 3.12 Assume D1-D4.

(a) There exists a y-suboptimal controller u = Ky on [ko, 00) if and only if
the following hold:

(1) There ezists a bounded nonnegative stabilizing solution X(k), k € [ko, 00)
to (3.90), (8.91) and (3.93).

(11) There exists a nonnegative solution Y (k), k € [ko, 00) to (8.94)-(3.96).
(i) p(X (k)Y (k)) < d? for any k € [ko, 00) and for some 0 < d < 7.

(b) In this case the set of all v-suboptimal controllers is given by (3.102) with
Z replaced by (I — —_};YX)“Y and @Q internally stable.

Now we assume that the system G is #-periodic and the conditions D1-
D4 hold. Then by Theorem 3.8 and Corollary 3.9 the solution X in Theorems
3.11 and 3.12 is #-periodic and there exist §-periodic nonnegative stabilizing
solutions Yy and Zg such that

lim Y(k + nf) = Yp(k), lim Z(k+ n8) = Zg(k).
n—oo n--+oo
If we further assume h = 0, then we have the following corollaries.

Corollary 3.10 (a) There exists a y-suboptimal controller if and only if the
following hold:

(i) There erists a 8-periodic nonnegative stabilizing solution to (3.90) and
(3.91).

(i) There erists a 8-periodic nonnegative stabilizing solution to (3.97) and
(3.98).

(b) In this case the controllers given by (8.102) with internally stable Q are
v-suboptimal. If Q is O-periodic, the controllers (3.102) are 8-periodic.

Corollary 3.11 (a) There exists a y-suboptimal controller if and only if the
follounng hold:

(i) There exists a 8-periodic nonnegative stabilizing solution to (3.90) and
(8.91).

(it) There erists a 8-periodic nonnegative stabilizing solution to (3.94) and
(3.95).

(i) p(X (k)Y (k)) < d? for any t € [ko, ko + 8) and for some 0 < d < 7.

(b) In this case the controllers given by (3.102) with Z = (I—-;};YX)'IY and
internally stable Q are v-suboptimal. If Q is 8-periodic, they are 0-periodic.
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Let the system G be time-invariant and assume the conditions D1-D4.
Then we need the algebraic Riccati equations.

vV > 0, (3.103)
X = A'XA+CiC\-RyT;'Ry + FVF, (3.104)
W > 0, (3.105)
Y = AYA'+ B\B| - Ry, T;) Ray + FiyVy Fiy, (3.106)
Vz > 0, (3.107)
Z = AxZA\x +BixByx — Ry;T; /) Roz + F|;VzFiz. (3.108)

We define the stabilizing soutions of (3.104), (3.106) and (3.108) as in Defi-
nition 3.14. Without loss of generality, we can set kg = 0. Then we have the
following corollaries.

Corollary 3.12 There exists a y-suboptimal controller if and only if the fol-
lowing hold:

(i) There exists a nonnegative stabilizing solution X, of (3.103) and (3.104)
with H'XH < d?I for some0 <d < 7.

(ii) There erists a bounded nonnegative stabilizing solution of (3.97) and
(3.98) with Z(0) = H(I — ;I;H’XH)"H’.

Moreover, there exists a nonnegative stabilizing solution Z, of (3.107) and
(3.108) such that limg oo Z(k) = Zoo.

Corollary 3.13 There erists a y-suboptimal controller if and only if the fol-
lowing hold:

(i) There erists a nonnegative stabilizing solution X, of (8.103) and (5.104)
with H'XH < d?I for some 0 < d < 7.

(ii) There exists a bounded nonnegative stabilizing solution of (3.94) and
(3.95).

Moreover, there exists a nonnegative stabilizing solution Y, of (3.105) and
(8.106) such that lim¢ oo Y(t) = Yoo

(#11) p(XoY (k) < d? for any k € [ko,00) and for some 0 < d < .

We further assume that there is no initial uncertainty, i.e., h = 0, we obtain
the following.

Corollary 3.14 There exists a y-suboptimal controller if and only if the fol-
lowing hold:

(1) There exists a nonnegative stabilizing solution X, of (8.103) and (8.104).
(1) There exists a nonnegative stabilizing solution Z, of (8.107) and (3.108).

Corollary 3.15 There exists a y-suboptimal controller if and only if the fol-
lowing hold:

(i) There exists a nonnegative stabilizing solution X, of (8.103) and (3.104).
(it) There exists a nonnegative stabilizing solution Yo, of (8.105) and (3.106).
(#13) p(XooYoo) < d? for some 0 < d < 7.
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3.3.2 Full Information Problem

Consider the system Gp;:

z(k+1) = ( Yz(k) + B1(k)w(k) + Ba(k)u(k),
2(k) = Ci(k)z(k) + Dyy(Kw(k) + Dig(kyu(k),  (3.109)

y(k):[]k

with (3.87) and (3.86)

z(ko) = Hh,
zn = Fzx(N+1)

where we assume D1’. The solution to this problem is needed to solve the
Hoo-problem for the system G. Moreover, the filtering problem in Section 3.4
turns out to be the dual of this problem. Since the state z is now available,
we may allow for nonzero initial condition for the controller

#(ko) = Hh for some H. (3.110)

In this case the controller (3.88) and (3.110) is written as u = K (Z) First
we consider the finite horizon problem. For each controller u = K (

h) define
Y
the input-output operator G by

Define the set of controllers
Q (f}) € L(R™ x 2(ko, N;R™); 1(ko, N; R™))
of the form (3.88) and (3.110):
@ = QI Q(}) I +HE Xk HR< (B P+ I
for some 0 < d < 7}. (3.111)

Then we have the following.

Theorem 3.13 Assume D1’.
(a) There erists a controller u = K (Z) of the form (3.88) and (3.110)

such that || G ||< v if and only if there erists a nonnegative solution X(k),
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k € [ko, N +1] to (3.90)-(5.93).
(b) In this case the set of all v-suboptimal controllers is given by

uk) = —(T3'Ra)(k)z(k) - (T7 ' S)(k)w(k)
h

-4
+T, % (k) [Q (%V%[w ~ Py )} k), Q € Q,. (3.112)
Proof. Suppose u = K (z) is y-suboptimal. Then setting A = 0 and apply-
ing Theorem 3.7 we obtain an X(k)} > 0, k € [ko, N + 1] satisfying (3.90)-
(3.92). Moreover for (3.109) the following holds:
)
202+ 11203 = ~* |l wll +h'H' X (ko)Hh —~* || ;;V’[w - Fiz} |13

+ 1| TH fu + T3 1 (Sw + Rox)] |3 -
. h .
Setting u = K (y) and w = Fiz we obtain

A(h 1P+ wl?) |21 12+ 1l 2113

>
> % || w |13 +h'H'X (ko) Hh.

Hence
d? | h|?> WH'X (ko)Hh

which yields (3.93).
Sufficiency of (a) and the characterization in (b) follow from Lemmas 3.25
and 3.26 below.

To complete the proof we consider

z(k+1) = Arx(k)+ Bijw(k)+ Bzju(k),
z(k) = Cirz(k)+ Dyjw(k) + Di2rv(k), (3.113)
r(k) = Caz(k) + Dajw(k),
z{ko) = Hh

with z; = Fz{N + 1) and

Z(k+1) = Axz(k)+ Bixr(k)+ Bau(k),
v(k) CixZ(k) + D11x7(k) + Dizxu(k), (3.114)

W0 = | pa i ®
F(ko) = Hh
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where
Ar(k) =(A- B2T2 1R2)( )
Bii(k) = (B1 - 18)(k), By (k) = (B2T_ )(K),
Ci(k) = (C1 - D12T2 'Ry)(k), Car(k) = ——(V7F1)( )
Dui(k) = (Dyy — DioT5*S)(k), Diar(k) = (DT *)(k),

Doy (k) = 2V (k).

Lemma 3.25 Let X be the solution of (3.90)-(5.93).
(a) For (3.113) the following holds:

|2 2+ 12 13= " | w3 +F'H' X (ko) Hh+ || v |13 = I r |13 (3.115)
(b) The system Gg; with controller u = K (Z) is equivalent to the inter-

connection of (3.113) and the feedback system (8.114) with u = K (Z)

Proof. (a) follows from direct calculation. Noting that e = x — T satisfies
e(k+1) = Axae(k), e(ko) =0
we can show (b) as in Lemma 2.20. 1

Now introduce a feedback

v=Q (’:) (3.116)
to (3.113), where Q is of the form (3.88) and (3.110).
Lemma 3.26 Consider the closed-loop system (8.113) and (3.116). Let
o(n)-(2)
w z
be the input-output operator. Then || G ||< v if and only if Q € Q.

Proof. For each g € 1?(ko, N;R™1) there exists a w € 1?(ko, N;R™!) such
that the internal signal r in (3.113) and (3.116) coincides with ro and

a(lhl?+1Iroll3) <[k * + | wl3< c2l hI* + I ro II3) (3.117)

for some ¢; > 0, i = 1,2. Now suppose | G ||< «y for (3.113) and (3.116).
Then for some 0 < d < vy

A(h*+ | w )
|z 2+ 1l 2113

h
7 L B+ H X o) HR+ 1Q (1) 13 =7 Il 3 by (3.119),

v
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Hence

1 () 18+ B X ko)

VAR +IrE) = (0 —d) (R PP + | wi3)
[V —a(?® =N h >+ 3) by (3.117)

IANIA

which implies Q € Q.
Conversely, let Q € Q. Then

h
2P 420 = o7 lw BN EX G ER 1@ (1) 1371 1
PARE+ w3 - (02 =L+ 713

2 2
vé —-d
e (LA )

IA

Hence || G || < 7. ]

Remark 3.3 If || G ||< v, then as in Remark 2.4 Q € Q’, where

@ = @1 Q(F)BSPURP+17 1) forsome 0 <d <),
1., 4
ho= (1—7—2HX(ko)H> h.

To conclude the proof of Theorem 3.13, we note that u given by (3.112)
is y-suboptimal by Lemma 3.26. Now let u = K (h> be an arbitrary -
suboptimal controller. Let Q be the input-output ope!r}ator of the closed-loop
system (3.114) with u = K (’;) Then by Lemma 3.26, Q ¢ Q.. Hence

u=K ( Z) is equivalent to

uk) = T3 v —T5 YRy + SF)z — AT Fsvir(k)
- - -1 h
= -T;'Rox(k) — T, 'Sw(k) + T; ’Q (%Vﬂw _ le]>
which implies (b) of Theorem 3.13. 1

Next we consider the system G gy on the infinite horizon [kg, c0). In this
case we assume

D5 : (A, B, () is stabilizable and detectable.
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For each 10-stabilizing controller we can define the input-output operator as

follows:
z=QG ( h) .
w

The notion of IO-stabilizing controller is needed when we consider the filtering
problem, for which internal stability is not in general expected.

Theorem 3.14 Assume D1’ and D5.

(a) There exists an IO-stabilizing controller u = K (z) on |ko, 00) such
that | G ||< v if and only if there ezxists a bounded nonnegative stabilizing
solution X (k), k € [kg,00) to (3.90), (3.91) and (8.93).
(b) In this case the set of all such controllers is given by
u(k) = —(T3'Ra)(k)z(k) — (T3 ' ) (k)w(k)
—1 h
1] (1 pa )| ® Q€@ )

where Q C L(R™ x [2(kg, 0o; R™); [2(kq, 00; R™2)) is defined as in (3.111).
In particular the set of all internally stabilizing controllers with | G ||< 7y is
given by (8.118) with internally stable Q.

Proof. (i) Necessity of (a). Suppose there exists an 10-stabilizing controller
u=K (Z) such that || G |< . Consider the system G gy with k = 0. Then

for each w € 1%(kq,00; R™) there exists a control u € [%(kg, 0o; R™2) such
that || z ||2< d || w ||2 for some 0 < d < ~. Then by Theorem 3.8, there
exists a bounded nonnegative stabilizing solution of (3.90) and (3.91) under
the assumptions D1’ and D5. To show (3.93) consider the restriction of

u=K (Z) on [kg, N]. Then we obtain the solution Xx of (3.90) and (3.91)

satisfying (3.93) and Xy (N + 1) = 0. Since Xn(k) converges to X (k) on
[ko, 00) we conclude H' X (ko)H < d2I.

Sufficiency of (a) and the characterization of all y-suboptimal controllers
will be shown below. Consider systems (3.113) and (3.114) on [kg, o0). Note
that A~ BTy IR, is exponentially stable by Lemma 3.21 and hence we have
as in Lemma 3.25

I 203=~" w3 +KH'X(ko)Hh+ || v I3 —* I 7 13 - (3.119)
The system Gg; with a controller u = K (Z) is equivalent to the intercon-

nection of (3.113) with the feedback system (3.114) with u = K (Z)

First we assume h = 0 and consider (3.113) with feedback

v=Qr (3.120)
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where @ is of the form (3.88) and (3.89).

Lemma 3.27 Consider the closed-loop system (3.118) and (3.120) and let
Gw = z be the input-output operator. Suppose Q is I0-stabilizing. Then
(a) z, v, v are square surnmable and

lzllz, 7 ll2s lvll2<alwllz for somea>0.

(b) If || G |i< vy, then the map: w — r is onto and Q is IO-stable.
(c) || G lI< v if and only if Q is 10-stable with || Q ||< 7.
(d) If, further, @ is internally stabilizing then @ is internally stable.

Proof. (a) Since z € [2(kg, oc; RP'), D1’ implies Cyz and Tz’i’v —~T5Rox are
1?2 and

It Cizx |2, |l Tz%v —T;'Ryx ||l2< a || w ||z for some a > 0.
Now we write (3.113) as
rk41) = (A-JC)z(k)+ JCix(k) + (B1 — BoT,; * S)w(k)

VY By[TEu(k) — Ty ' Roz(k)],
I(ko) = 0

where J is a bounded matrix such that A — JC) is exponentially stable.
Hence z is I and || 2 |[2< a | w |2 for some a > 0. The rest is an immediate
consequence of this.

(b) We write (3.113) as

Z _ P11 P12 w
r o le ng r )
Then P;; are exponentially stable. Moreover Pz_ll is realized by

w(k+1) = Axaz(k)+~v(Bi - BT SV Er(k),
w(k) Fyiz(k) + vV " 3r(k)

which is exponentially stable. For the closed-loop system r and v are the
solutions of

r = Puw+ Py,
v o= Qr
By (3.119)
1
| P || < 5 and v [l2<y 7 l2- (3.121)
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Now let rg € 12(kg, c0; R™) be arbitrary and define
S = (I - P22Q)T‘0.

Then s is locally square summable. Now let sy be the truncation of s at N
so that sy € 1?(ko,00; R™). Now set wy = P{,lsN € 12(ko,00; R™) and
let ry be the internal signal of the closed-loop system corresponding to wy.
Then ry = sy + P22Qry and by (3.121)

| 7~ ~ sn ll2=]l Po2Qrw ll2<] 7w l2,
which implies
N 75 = sv lli2(ko,N;rm1) SH TN Hi2(ko, N;R™1) -
Since ry = 1¢ on |ko, N| we conclude
I 7o — sn lli2(ko, Nirm1 ) =l P22Q70 lli2(ko,v;rm1) <l 70 (|12 (ko, virm1) <l 70 ]2 -

Since N is arbitrary, PyQryg is I2. Now set wg = P{,l(I — Pyo@Q)ro. Then g
is the response to the input wg and the map: w — r is onto. Since || Qr ||2<
Y|l 7 |2, for any r, Q is IO-stable.

(c) Now let r be the response to w. Then from (b) we have

alrlzgflw|2€e2|| ||z for some ¢; >0,i=1, 2. (3.122)
Now assume Q is IO-stabilizing and || G ||< <. Then for some 0 < d < 7
e lwlzzlz 3= lwli+1ol3 1715
Hence
VArl;~(*-d*) w3
[V —ea@? -d) T3

which implies || Q@ ||< 7. The converse follows from (3.119) and (3.122) in a
similar manner.

(d) If Q is internally stabilizing, then by Proposition 3.6 Q is stabilizable
and detectable. But @ is IO-stable by (b). This together with Proposition
3.4 implies that Q is exponentially stable. i

lvlz <
<

Lemma 3.28 Consider the closed-loop system (3.118) and (3.116). Let

-o(2)
w
be the input-output operator.
(a) Q is I0-stabilizing and | G ||< « if and only if Q is IO-stable and
Q€ Q.
(b) Q is internally stabilizing and || G ||< v if and only if Q is internally
stable and Q € Q.
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Proof. (a) Suppose Q is IO-stabilizing and || G ||< v. We write

h
Q (r) = Qoh + Q7.
Setting h = 0, Q; is IO0-stabilizing. Hence by Lemma 3.27, Q, is IO-stable
and || @1 ||< 7. Recall that r and v are written
r = Pyh+ Pyyw + Paav,
v = Qoh+Qr, (3.123)

where Py is exponentially stable. Since v and Q17 are 12, Qoh is also 12 for
any h. Hence @ is bounded and @ is IO-stable. Since || G ||< v, for some
0 < d < v we have

ERE+] w3
> 5 3= o I+ H X 1@ () 1 = D 13
Hence
PARE+ 1718 - (0F =) B2+ 1w )
> wH Xk 1Q (1) 1

Since | h > + || 7 |2< a(| A |? + || w }}2) for some a > 0, we conclude that

’)’2—d2

(v’ -

Thus Q € Q,.

Conversely let @ be I0-stable and Q € Q.. Then for each (h,w) € R™ x
12(ko, 00; R™) there exists a unique (v,7) € 2(ko, 00; R™2) x I2(ko, 00; R™)
satisfying (3.123) such that

713, v li3< a(l h)? + || w li3)-
The pair coincides with the signal r, v of the closed-loop system. Hence x
and z are in {2 and by virtue of (3.119)
h
1218 = ol +WEXGo)HA 1@ (7 ) 1B =7 1 13

< Plwlf-d®(hP+ 7 13) =7 lI7]|3 for some 0 <d <~

= P(rP+ 1wl - =d)( >+ rl3) (3.124)
Now for each (h,rg) € R™ x I2(ko, 00; R™) consider

(8 + 1 18) > WE X o) Hn+ @ () 18-

zk+1) = Axaz(k) +~(Br — BTy 1S)V = dro(k) + BTy Fu(k),
wo(k) = Fiz(k) + vV " ¥re(k), (3.125)
ﬂf(ko) = th

o= o(h).
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Then wp € 12(ko, 00; R™) and
1
| h 12 + || wo II%S E(I hi?+ I ro ]]%) for some a > 0.

Since (r,w) of the closed-loop system (3.113) and (3.116) is one of (rg, wp)
above we conclude

Iz 13< * = a(¥® = d)( 2 + | w 113).
Hence | G ||< 7. [

Now the proof of sufficiency of (a) and (b) in Theorem 3.14 follows from
Lemma 3.28 as in the case of Theorem 3.13. i

Remark 3.4 It follows from Theorems 3.13 and 3.14 that the controllers u
with Q = 0in (3.112) and (3.118) are 7y-suboptimal.
3.3.3 Disturbance Feedforward Problem

We consider the H-problem for the special system Gpp:

z(k+1) = A(k)x(k)+ Bi(k)w(k) + Ba(k)u(k),
z(k) = Cy(k)x{k) + D1 (k)w(k) + Dya(k)ulk), (3.126)
y(k) = Cz(k)z(k) + Da(k)w(k)
with
z1 = Fz(N+1),
x(ko) = 0

where D2, is a nonsingular and its inverse is bounded. The H, control prob-
lem for this system is called the disturbance feedforward (DF') problem and
as in the continuous-time case it can be reduced to the FI problem. In fact
consider the observer

$(k+1) = A(k)z(k)+ [B1D3'(y — C22)](k) + Ba(k)u(k),
(ko) = O.
Then e = x — I satisfies
e(k+1) = (A — BiD3'C2)(k)e(k), e(ko) =0

and hence £ = z. Moreover w is observable since

w(k) = Dy’ (K)[y(k) — Ca(k)x(k)] = Dy, (K)[y(k) — Ca (k)2 (k)].
Thus we can use the controllers of the FI problem with h =0 :

u(k) = —(T7'R2)(k)z(k) — (T3 ' S)(k)w(k)
ARGV - Ralk), 1@ <y
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21

Theorem 3.15 For each controller define = Gw and assume D1’.

(a) There exists a controller u = Ky on [ko, N| such that || G ||< v if and
only if there erists a nonnegative solution X (k), k € ko, N + 1] of (3.90)-
(3.92).

(b) In this case the set of all y-suboptimal controllers is given by

#k+1) = A(k)E(k) + Bi(k)y(k) + Ba(k)v(k), &(ko) =0,

u(k) = Ci(k)2(k) + Dy (k)y(k) + Diz(k)v(k), (3.127)
r(k) = Cay(k)i + Dary(k),
v = Qr [|[Ql<y
where A(k) = [A — ByD;}Cy — BoTy }(Ra — SD3;' Cy)(k) and
Bi(k) = [ (Br = BT $)DM(K), - Ba(k) = (ByT3 k),
Ci(k) = —[T; ' (Ry - SD3' Co)l(k), Ca(k) = ——[Vl Fi + D3 Co))(k),
Dll(k) = _(Tz ISDzll)(k), D12(k) (k)

Dz (k) = 2(VED3')(k)
and Q 1s a controller of the form (3.88) and (5.89).

Proof. The necessity of (a) follows from Theorem 3.13. The sufficiency and
(b) follow from Theorem 3.13 and the observation

u(k) = =Ty Roz(k) — Ty 'Swk) + T, tQr
= _T;Y(Re - SD3!Co)i(k) — Ty 'SD3y(k) + T, 2 Qr,
r(k) = %v% [w(k) — Fiz(k)]
~ ZVH(F + D3 Co)2 (k) + Dy y(k) '

We now consider the infinite horizon problem. We assume D5 and
D6 : A — B, D;;'C, is exponentially stable.

Theorem 3.16 Assume D1°, D5 and D6.

(a) There exists an internally stabilizing controller u = Ky on [k, o) such
that || G |< v if and only if there exists a bounded nonnegative stabilizing
solution X for (3.90) and (3.91).

(b) In this case the set of all y-suboptimal controllers is given by (3.127) with
Q internally stable.

Consider the Hoo-problem for the system Gog:
2(k+1) = AK(k)+ By(kyw(k) + Ba(k)u(k),
z(k) = Ci(k)x(k) + Dui(k)w(k) + Di2(k)u(k), (3.128)
y(k) = Ca(k)x(k) + Dar(k)w(k),
I(ko) = Hh
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where D)5 is invertible and has bounded inverse. This problem is called the
output estimation (OE) problem. The adjoint of (3.128) is the backward
version of the DF problem. Hence modifying Theorems 3.15 and 3.16 we
have the following.

Theorem 3.17 For each controller define z = G :] and assume D2,

(a) There exists a controller u = Ky on [ko, N] such that | G ||< v if and
only if there exists a nonnegative solution Y (k), k € [ko, N + 1] of (3.94)-
(3.96).

(b) In this case the set of all v-suboptimal controllers is given by

Bk+1) = A(k)i(k) + Bu(k)y(k) + Ba(k)u(k), &(ko) =0,
u(k) = Ci(k)&(k) + Di1(k)y(k) + Diz(k)v(k), (3.129)
r(k) = é2(k)i+b21y(k),
v = Qr, |Qli<y

where A(k) = [A — ByD3,!Cy — (Rhy ~ B2Dip' Sy )Tt Co(k) and

Bi(k) = [(Rhy — B2D3 S)TRA(E), Bak) = L(Fiy + BaDRWFI(K),
Ci(k) =~ (D3} (C1 = Sy TR CoI(K),  Calk) = —(T5* Ca) (k)
Dy (k) = (D35 Sy T5y) (k), Duz(k) = 2(Di; W) (k),
Dar (k) = T3/ (k)
and Q is a controller of the form (3.88) and (5.89).

Theorem 3.18 Suppose D2’, (A, By, C2) s stabilizable and detectable and
that A — By D,'Cy is exponentially stable.

(a) Then there exists an internally stabilizing controller u = Ky on [kg, o0)
such that || G ||< « if and only if there exists a bounded nonnegative stabilizing
solution Y for (5.94)-(3.96).

(b) In this case the set of all v-suboptimal controllers is given by (8.129) with
Q internally stable.

To give the proofs of Theorems 3.17 and 3.18, we consider the FI- and DF
problems for the backward systems below.
3.3.4 Backward Systems
Consider the backward system Gpy:

z(k) = A(K)z(k+1) + By(k)w(k) + By(k)u(k),
2(k) = Cy(k)z(k + 1)+ Dy (k)w(k) + Dia(k)u(k),  (3.130)

w = [0
F.’E(ko)

2
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with z(N + 1) = 0 and a controller u = Ky of the form

#(k)y = A(k)i(k+ 1)+ Bk)y(k), Z(N +1) =0, (3.131)
u(k) = C(k)&(k + 1)+ D(k)y(k)

where all matrices are uniformly bounded. The H,-control problem for the
system Gpy is the Fl-problem and the solution to this problem is needed
to the Ho, filtering problem. We assume D1’. To give the solution of this
problem, we need the following Riccati equation

V(k) > al for somea >0, (3.132)
P(k+1) = A'P(k)A+CiCy
~(RTy'Ro)(b) + (FVF)(K),  (3.133)

P(ky) = F'F (3.134)
where

Ti(k) = v*1 — D}, D1y — B{P(k)B:, Tz(k ):1'*‘32 (k)Ba,

Ri(k )=B’P(k)A+D£101, R(k) = B3 P(k)A,

(k) (k)Bl, (k) (Tl + 8'T;18)(k),

Fi(k) = {V YRy - S'T; 'Ro)(k),  Fa(k) = —[T;'(Rz2 + SF1)](k)

and we have omitted k in all system matrices of (3.130). Then we have the
following result.

Theorem 3.19 Assume D1°.

(a) There ezists a y-suboptimal of the form (3.131) if and only if there exists
a nonnegative solution P(k), k € [ko, N + 1] of (8.182)-(3.134).

(b) In this case the set of all y-suboptimal controllers is given by

w(k) = (T Ro)(K)a(k +1) — (T3 S)(kw(k)
‘*(k)[Q( Vi - le)] 1@ 1< 7. (3.135)

Proof. Necessity of (a) follows from Corollary 3.8. Similar to the proof of
Theorems 2.19 and 3.13, we can show the sufficiency of (a) and (b). 1

Next we consider the system Grs on the infinite horizon [ko, 00). In this

case we assume D35. For each IO-stabilizing controller we can define the
input-output operator as follows:

("2) = Gw on [ko, 00).

Theorem 3.20 Assume D1’ and D5.
(a) There exists an IO-stabilizing controller u = Ky on [ko,00) such that
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| G ||< ~ if and only if there exists a bounded nonnegative stabilizing solution
P(k), k € [ko, o0) of (3.132)-(3.134).

(b) In this case the set of all such controllers is given by (3.135). In particular
the set of all internally stabilizing controllers with | G ||< v s given by
(8.135) with internally stable Q.

Proof. Necessity of (a) follows from Corollary 3.9. Proof of sufficiency of (a)
and (b) is similar to the proof of Theorems 2.20, 3.14 and 3.19. ]

Corollary 3.16 Let the system Gp; be 8-periodic and F = 0. Assume D1’
and D5. Then

(a) There exists an 10-stabilizing controller u = Ky on [ko, 00) such that ||
G ||< v if and only if there exists a 6-periodic nonnegative stabilizing solution
P of (3.132) and (8.133).

(b) In this case the controllers (3.135) are 10-stabilizing such that || G || < 7.
If Q is B-periodic, the controllers (5.135) are also 8-periodic.

In particular, if Q is internally stable, the controllers (3.135) are internally
stabilizing.

We now consider the H.-control problem for the system Gpr:

z(k) = A(k)x(k+ 1)+ Bi(k)w(k) + Bz(k)u(k),
z(k) = Ci(k)x(k + 1)+ Dyy(k)w(k) + Dy2(k)u(k), (3.136)
y(k) = Ca(k)z(k+ 1)+ Doy (k)w(k),
zy = Fzx(ko),
z(N+1) = 0

and a controller v = Ky of the form (3.131) where D;,; is a nonsingular and
its inverse is bounded. This problem is the DF-problem for the backward
system. Since it can be reduced to the FI-problem for the backward system,
we have the following result.

Z1

Theorem 3.21 For each controller define = Gw and assume D1°.

(a) There exists a controller v = Ky on |ko, N| such that || G ||< v if and
only if there exists a nonnegative solution P(k), k € ko, N + 1] of (3.132)-

(3.134).

(b) In this case the set of all y-suboptimal controllers is given by

8(k) = A(R)E(k+1)+Bi(k)y(k) + Ba(k)u(k), (N +1) =0,
ulk) = Ci(k)z(k +1) + Dis(k)y(k) + Dia(k)u(k), (3.137)
r(k) = ( Yi(k + 1) + Da1 (k)y(k)

v o= Qr, 1Ql<~
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where A(k) = [A — B1D;!Cy — BoTy '(Ry — SD3, Ca))(k) and

Bi(k) = [(B1 — BoT; ' S)D5H(K),  Ba(k)
Cr(K) = T3 (Rs ~ SDFC)I(R), Calk) =
Dui(k) = —(T; ' SDz)(k), Dlz(k) e
Do (k) = L(V D31) (k)

and Q is a controller of the form (8.131).
We consider the infinite horizon problem. We further assume D5 and D6.

Theorem 3.22 Assume D1’, D5 and D6.

(a) There exists an internally stabilizing controller u = Ky on [ko, 00) such
that || G ||< v if and only if there exists a bounded nonnegative stabilizing
solution P(k), k € [ko,00) of (3.182)-(8.184).

(b) In this case the set of all y-suboptimal controllers is given by (8.137) with
Q internally stable.

3.3.5 Proofs of Main Results

We now give the proofs of our main results using Theorems 3.17 and 3.18.
We first prove Lemmas 3.22 and 3.23. To do so, we first rewrite the Riccati
equations in compact forms. Using the equalities (provided all inverses exist)

E(I+LE)Y! = (I+EL)"'E, EeR™™, Le R™",
I-J+G)!' = GU+G)'=I+G)'G, GeR™™"
we have
Ax(k) = (A4 BF)(k)

I

1
(I + BoByX (k + 1)}[I + (B2Bj — ?BIB;)X(k + 1)) A

Let M(k) = I + B2B,X(k +1) and N(k) = [M(k) — ;lgBlB{X(k + 1)1
Then we can rewrite (3.91) as

X (k) CiC1 + A'X(k + 1)N(k)A

= CiC1+AXk+1)M Y (k)Ax. (3.138)
Similarly we can rewrite (3.95) and (3.98) as follows
Y(k+1) = BB} +AY(k)Ny(k)A', (3.139)
Zk+1) = [I- ———(I>(k)X (k +1)ByTy Y (K)BLX (k + 1))+
x ®(k) (3.140)
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where
Ny(k) = [I+CyCY (k) - %C{CIY(k)]‘l,
®(k) = (MN)(k)B1B,+¥(k),
V(k) = AxZ(k)[I +CyCrZ(k)) 1 AY.
We also have
Aya(k) = ANy (k),
Azak) = [I- ;—2<1>(k)X(k +1)BoT5 M (k)By X (k + 1)) 7!

xAx[I + Z(k)C,C2) 1. (3.141)
By (3.140), we have

®(k) Zk+ DI+ 7—12X(k +1)BoT5 Y (k)By X (k + 1)Z(k + 1)) !

= [T+ %Z(k + 1) X (k + )BT (k)By X (k + 1)1 Z(k + 1)
and hence we can rewrite (3.141) as
Azalk) = [T+ 71—22(1‘: + 1)X(k + 1)BoTy L (k) ByX (k + 1)]
xAx[I + Z(k)C5C] 1. (3.142)
Proof of Lemma 3.22. We shall prove the equality by induction. Set
Q(k) = Z(k) - Y(k) — %ZXY(k).

Let k = ko. Then Q(k) = 0 since Z(ko) = 0 = Y(ko). Now we assume

Q(k) = 0. Then by Lemma 2.18,
2() = YR - 5X¥)7 (),

1

Y(k) = ZK)UI - ?XZ)‘I(k).
Since Q(k + 1) = =Y (k+1) + [Z(I — 2z XY)](k + 1), it is enough to show
Y(k+1) = [2(I - %XY)](IHJ). (3.143)
Now
Y(k+1) = BB, + AYNyA'

B1B) + AZ|I + C,CLZ + %(X -,z A

BB} + AZ[I + C2C4Z + %A’X(k + )M~ 'AxZ] A
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where Y (k) = Z(I + 5, XZ)~" (k) is substituted in the second equality and
the Riccati equation (3.138) is used in the third equality. Since

AZ[I + C,CLZ + ’:—2A’XM“AXZ]“A’
= (MN)'AxZ(I + C2C}Z)
x[I + ;TA’XM—IAXZ(I +C2C32) 7T A
= (MN)TAxZ(I + CaC32) A
x[I+ »yl_?XM_leZ(I +C2CZ)7 1A
= (MN)'AxZ(I + C:C32) "1 Ay

<(MNY + XM AxZ( + CoC32) A

we have

1 .
Y(k+1) (MN)"Y[MNB,B, + ¥(N'M' + 7—2XM-1\1/)—1]
(MN)"{[MNB,B,

I+ ;—QW(N'M')—IXM—I}-lq/(N'M')—l]

(MN)™Y[I + :713\1/(N'M')'1)”(M—1]-1

x[MNB,B, + ¥(N'M")" (I + %XNBIB’I)]

(MN)™Y[I + %\I/(N’M’)'IXM‘I]”(I) (3.144)

where we set X = X(k + 1) and we have used N'M’ = I + ;ITXNBIBQ in
the last equality. On the other hand

Z(k +1)[I - 71—2XY(k +1)]

Il

1 N A
[I- 7—2<I>XBQT;IB;X]—1<I>

1 1 .
x{I — 7—2X(MN)~1[1 + :y;\l/(N’M’)“XM“]“(I)}

1 N N
(I - 7—2<I>XB2T2‘IB§X]‘1

1 1 .
x{I — ?QX(MN)‘I[I + 7—2\I/(N’M’)”1XM‘1]‘1}<I>

1 A N
(I - 7—2<I>XBQT2‘1B§X]‘1
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1 , 1.
x{[I + ?\II(N’M’)‘IXM‘I]MN - ?q)X}Y(k +1)

where we have used (3.140) and (3.144) in the second equality and (3.144)
again in the last equality. By direct calculation we have

1 5 1.5 1. . .
[+ SYN'M) XM MN - ®X =1~ —9XB,T; 'ByX
Y Y Y
which implies (3.143). 1

Proof of Lemma 3.23. We shall show (a) only. Using (3.142) and Z(k) =
Y(I - 5 XY)"' (k) we have

) 1 1 7 — '
balk) = (I- ?XY)(I - 7—2XY + CyCY) Ay
x (I — %XY + XB.T; 'ByXY)(I -
where Y = Y (k + 1). Note
1 cn s .
(I - XY + CjCoY) Ak (I - = XV + X BTy ' BLXY)
Y Y
/ 1 1 v —_ ’
= (I + CQCQY - :y—ZCICIY - 7—2A XNAY) IAX
1 oo o .
x (I — 7—2XY + X BT, 'ByXY)
= Ny(I- LZA’XNAYNY)'IA’N’M’[I - lz(z + XB,B})"'XY]
Y Y
= NyA'(I- —%XNAYNYA’)“IN’[M’ - %XY}
Y Y

where we have used (3.138) in the second equality. By direct calculation, we
have

15 1 R
(I - ?XNAYN}/A’)'INI — [(NI)—I _ ?(N')_IXNAYN}/A']_I
= [M' - %XBIB’ ——XAYN ANt
1 ..
= [M'- 7—2X(BlB; + AY Ny A')] !

= (M'—-=XY)!

‘fal —

where we have used XN = N’X in the third equality and (3.139) in the last
equality. Hence

1 1 o~
Azq(k) = (I- 7—2XY)NyA'(I - 7—2XY)’1
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= (I- ;%XY)(I:)A’YC,(k)(I - ;%XY)—I(k +1)
and we have shown the assertion. [
We now give the proofs of Theorems 3.9-3.12.
Proof of Theorem 3.9: Necessity of (a). Suppose that there exists a

y-suboptimal controller u = Ky on [ko, N + 1] for the system G. Then by
Theorem 3.13 (i} holds. Now consider (3.113)

z(k+1) = Asz(k)+ Biw(k) + Barv(k),
Z(k) = C'l]I(k) + Dllj’l.U(k) + D12]‘U(k), (3145)
r(k) = Caz(k)+ Dayyw(k),
z(ko) = Hh,
Zl = FI(N + 1)
and
F(k+1) = Axi(k)+ Bixr(k)+ Bau(k),
v(k) = CixT(k)+ Duxr(k)+ Diaxu(k), {3.146)
y(k) = Caz(k) + Daxr(k),
Z(ko) = Hh
with a controller
u=Kuy. (3.147)
Note that
DaxBix = +4*DnV™'B

v2 Dy [¥*I — By X B, + B{XB,T; 'B}X B, "' B;
42Dy B{[y*I — XB\By + XB,T; 'B3XB, By}
0

and similarly D2, x D}, x = I and Dy, x D}, x = 0. Hence the condition D2’
for the system (3.146) is satisfied. Then e = z — T satisfies

e(k + 1) = (A + B1F) + ByFy)e(k), e(ko) =0

and hence similar to Lemma 3.25, the system G with u = Ky is equivalent
to the interconnection of (3.145) and (3.146) with u = Ky. Let Q be the
input-output operator of the closed-loop system (3.146) and (3.147) so that

v=0Q (:l) Then by Remark 3.3, Q € QY- Hence u = Ky is y-suboptimal
for the Hyo-problem defined by (3.146) with H and h replaced by H= H(I-
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;ITH’X(kO)H)“% and h = (I — ;ITH'X(kO)H)%h, respectively. Since Dy x =
1
T}, this is an OE problem and hence the condition (ii) holds.

Sufficiency of (a) and (b). Consider the systems (3.145) and (3.146). Then
by Theorem 3.17, the set of the controllers u = Ky given by (3.102) satisfies
Q e Q’, where Q is the input-output operator of the closed-loop system
(3.146) and (3.102). Considering ¢ = Z — # and the adjoint system as in
the proof of Theorem 2.9, we can directly show that the controller (3.102) is

~y-suboptimal, i.e., @ € Q.. Hence sufficiency of (a) and (b) hold. (]

Proof of Theorem 3.10: Necessity of (a). Suppose a y-suboptimal con-
troller exists. Then by Theorem 3.7 and Corollary 3.8, there exist nonnegative
solutions X, Y and Z of (3.90)-(3.93), (3.94)-(3.96) and (3.97)-(3.99), respec-
tively. By Lemmas 2.18 and 3.22, I — ;ITXY is nonsingular and the set of
eigenvalues of XY has the form

Z2
;zﬁ’ Ae MXZ).

Since X and Z are nonnegative and uniformly bounded in N, A € A\(XZ)
are nonnegative and uniformly bounded. Hence p(X (k)Y (k)) < d? for some
0 < d < . Hence the condition (iii) holds.

Sufficiency of (a) and (b). Note that I — ;ng(k)Y(k) is nonsingular and
I - ;I;rX(k)Y(k)]~1 is uniformly bounded in k € [ko, N + 1]. Define

1
2(6) = YT - X(OY (K], k€ ko, N +1]
Then Z(ko) = H(I — 71;H'X(k0)H)_1H' and similar to the proof of Lemma
3.22, we can show

[yu-%xyrl](mn - [I—:}fd)(k)X(k+1)BZT2‘1(k)B§X(k+1)]‘1<I>(k).

Hence Z(k) = Y (k)|I ~ 3z X (k)Y (k)] ™! satisfies the Riccati equation (3.97)-
(3.99). The rest follows from Theorem 3.9. ]

Proof of Theorem 3.11: Since (A, B;) is stabilizable and A+ B Fi+ B2 F; is
exponentially stable, we can easily show that (3.146) satisfies the assumptions
of Theorem 3.18 except for the detectability of (C2, Ax). Since

Ax + F{7Cix + F37Cy = Ax — RozT;, Co + F7(Cix — S2T5 Cz)
is exponentially stable, (Ax — R,,T;, C2, F{,) is stabilizable and so is

(AX - R'zsz_zlczv [F{xV% Bix R’zsz_z1 )
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Since we can rewrite the Riccati equation (3.98) in the form

Z(k+1) = (Ax — Ry;T;; Co)Z(k)(Ax — RozT;7 Ca)
+[FixVi Bix RyT;7)[FixV¥ Bix RyT',
Ax —R,, T, C, is exponentially stable by Proposition 3.5 and hence (C2, Ax)

is stabilizable. Thus the system (3.146) satisfies the assumptions of Theorem
3.18 and we can proceed as in Theorem 3.9. ]

Proof of Theorem 3.12: The proof is similar to that of Theorem 3.10.
We only need to show that Z =Y (I — ;;ITXY)'I is a stabilizing solution of

(3.97)-(3.99). But this follows from Lemma 3.23 and the stabilizing property
of Y. '

Proof of Corollary 3.10: Necessity of (a) follows from Theorem 3.8 and

Corollary 3.9. Proof of the sufficiency of (a) and (b) is similar to that of
Corollary 2.12. 1

3.4 H, Filtering

As in Section 2.4 we consider the H,, filtering problem with initial uncer-
tainty. We consider the problem both on finite and infinite horizons.

Consider the system Gpg:

z(k+1) = A(k)z(k)+ B(k)w(k),
z(k) = L(k)z(k), (3.148)
yk) = C(R)z(k)+ D(k)w(k),
z(ko) = Hh, (3.149)
zy = Fz(N+1) (3.150)

where £ € R" is the state, w € R™ is the disturbance, (z;,2) € R? x R?
is the outputs to be estimated, y € RP? is the measurement, h € R™,
H € R™**™ and A, B, C, D and L are bounded matrices of appropriate
dimensions. Here we assume

DF1: [B(k) D(k)]D'(k)=[0 I} for any k.

We wish to estimate z; and z by the causal filter of the form

Ek+1) = A(k)z(k)+ B(k)y(k), (ko) =0,
3(k) = C(k)z(k) + D(k)y(k), (3.151)
% F#(N +1)
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and to achieve the following:
fzs — 21 2+ |z -2 3<d*(|h P+ | w]3) for some 0 <d <7y (3.152)

where A, B, é, D are bounded matrices of appropriate dimensions and Fis
a constant matrix. Such a filter is called v-suboptimal. We can write (3.148)-
(3.151) as

[;](’““) - [BAC 2 [i] (k>+[,;BD]w(k),

el - [

e, = z1—3 =|F —F][“N“)],

#(N +1)

e(k) = z(k)—3(k)=[L-DC —C] m (k) — DDw(k).

Define the operator G € L(R™ x [?(ko, N;R™); R? x 1?(ko, N; RP")) by

(Z‘):G(Z) (3.153)

Then (3.152) is equivalent to || G ||< d. The adjoint G* is given by
CO _ rvx f
(¢)-<(

Jor - 4 ) Jens[2 757w

(k) = [B D’B’][g (k+1) — D'D'v(k),

where

|

vy

]
G = [H 0][% ] (3.154)

[ﬂ (N+1) = [_Fﬁ’,,]f.

This may be regarded as a closed-loop system

Ek) = A'(k)E(k + 1)+ L'(k)v(k) + C'(k)u(k),

(k) = BRIk +1) + D' (k)u(k), (3.155)
_ &k +1)

aw = [P,

o = H'¢(ko),

¢N+1) = Ff
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with controller 4 = K* ({)) of the form
k) = AWREE+1)-[0 C'(Rpmik),
uk) = B®REK+1) -0 D](kmk),  (3156)
§N+1) = —F'f.

The system (3.155) is of the full information type and (3.152) is equivalent
to

Fo 12+ Cliz<d®( £ 12+ 11 v I13). (3.157)

The Riccati equation corresponding to this is

Vy (k) > al for some a > 0, (3.158)
Y(k+1) = AY(k)A' + BB' — (RyyTyy Ray)(k)
+(Fiy Vv Fiy)(k), (3.159)
Y(ko) = HH', (3.160)
FY(N+1)F' < d*Iforsome0<d<~y (3.161)
where
Tyy (k) = 21 — LY (k) Tay (k) = I + CY (k)C,
Riy (k) = LY(k)A’, ng(k) =CY(k)A',
SY(k) CY(k ) Vy (k) = (Tyy + Sy Tay Sy ) (k),
Fiy(k) = [vy! Rn’ Sy Toy Rav)](k),

F2Y(k) — (T3 (Ray + Sy Fiy)|(k).
As Q. in Section 3.3.2 we define the set of controllers of backward type:
Q, = {Q" € L(R x *(ko, N;R™); 1*(ko, N; R??)) :
FEYW e nE s 1@ (D) B o )
for some 0 < d < ~}. (3.162)

Let Q,, be the set of adjoint system of Q* € Q. Modifying Theorems 3.13
and 3.19 we have the following.

Theorem 3.23 (a) There erists a y-suboptimal filter if and only if there
exists a nonnegative solution Y to the Riccati equation {8.158)-(8.161).
(b) In this case the set of filters with property (8.152) is given by

£(k) + (Roy Ty ) (k)y(k)
+=(Fly Vi) (k)v(k),

2(k+1) = (A-RyTH'C)(k

\./

I
o
-2Ir—‘

z(ko)
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2(k) = (L-—SyTy C)k)E(k)+ (SyTs ) (k)y(k)
—svﬁ(mvwx (3.163)
r(k) = —(THO)k)E(k) + T (R)y(k),
v = Qr,
3, = FiN+1)—Qor, Q= (g‘l’) €Q,. (3.164)

Proof. (a) follows from a modification of Theorem 3.19. To show (b) recall

that the set of all controllers u = K* (‘Tfl) with || G* ||< 7 is given by
k) = —Tp!RavE(k +1) — Tt Syv(k)
—1 f
+T.,.20Q* ( 1 ) , Qe @ 3.165

Then the closed-loop system (3.155) with (3.165) is written as

£(k) = (A —C'Ty'Ray)é(k+1)+[0 L' —C'Ts) Sy In(k)
+C'THA k),
plk) = —%V,wa{(k +1)+ [0 %V,}}] n(k), (3.166)

B o= @(i)

E(N +1) F'f.

In view of this we can show that the controller (3.165) is equivalent to

£(k) = (A'—C'TnRay)é(k+1)+[0 L' — C'TH Sy ]n(k)

-1
2

+C'T, 2 k),
k) = ~Ty'RavE(k+1) - TtSyv(k) + Tl ak),  (3.167)
o) = WPk + 1)+ [0 2] nik)

s = o),

§N+1) = F'f.
In fact for (3.155) and (3.167) e = £ ~ £ satisfies

e(k) = Ale(k + 1), e(N+1)=0
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and £ satisfies (3.166). Now consider the adjoint of (3.155) and (3.167):

z(k+1) = Az(k)+ Bw(k)+[I 0]u(k),
Z(k) = Lx(k)+[0 I]u(k), (3.168)
y(k) = Cxz(k)+ Dw(k),
z(ko) = Hh,
Z7 = F.’L‘(N + 1) + uy, (3169)
1 1
ik+1) = (A= RyTyy C)a(k) - Ry Toy'u(k) — ~FiyWol(k),
#(ko) = 0,
0
k) = e _ . (3.170
W) = (0 syrsornm - Tt + ubotpy | G170
rk) = TRCi(k) + Tpty(k),
v = ery II Ql ||< 7Y
up = —F#(N+1)+Qor, Q= (8?) €qQ,. (3.171)
Then || G* ||< 7 is equivalent to
(2 P+ 2B 0 h 2+ | w 2) ford< 7. (3.172)
Note that (3.168) except Z, Z; coincides with (3.148) and (3.149). Thus
(3.170)-(3.172) can be easily interpreted as the filtering result in (b). 1

Consider the system Gpg:

z(k+1) = A(k)x(k)+ B(k)w(k),
z(k) = L(k)z(k),
y(k) = C(k)x(k) + D(k)w(k),
z(ko) = Hh

on {tg,00). Then the Hy,-filtering problem is to find a y-suboptimal filter,
i.e., a filter of the form

ik +1) = A(k)z(k) + B(k)y(k), #(ko) =0, (3.173)
k) = C(k)2(k)+ D(k)y(k)
such that z — # € [2(kg, co; RP*) and
lz=2]2<d?(|h|? + || w ||2), for some 0 < d < 7. (3.174)

In this case we further assume
DF2: (A, B,C) is stabilizable and detectable.

Again considering the FI problem for (3.155) on [ko, 00) and modifying The-
orem 3.20 we have the following.
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Theorem 3.24 Assume DF1 and DF2.

(a) Then there exists a y-suboptimal filter if and only if there exists a non-
negative bounded stabilizing solution to the Riccati equation (3.158)-(3.160).
(b) In this case the set of all y-suboptimal filters is given by (3.163), where
Q1 is an IO-stable system with || Q1 || < y. Moreover, the set of all internally
stable filters is given by (8.163) restricting Q; to be internally stable.

We may incorporate the estimate of z; on the infinite horizon.
Corollary 3.17 There exists a filter of the form (8.151) such that

sup [[z1 -4 2+ 2= 23] < (| b >+ || w|3) for some d <y
N>Nyp

if and only if there exists a bounded nonnegative stabilizing solution of (3.158)-
(3.160) with

FY(N +1)F' <d?I, N > Nq for some 0 < d < ~.

Modifying Corollary 3.16 we have also the following result.

Corollary 3.18 Let Gy be 8-periodic and assume DF1 and DF2. Assume
further that the initial condition is known, i.e., h = 0. Then

(a) There exists a filter of the form (3.173) with property (3.174) +f and only
if there erists a 8-periodic nonnegative stabilizing solution of (3.158) and
(8.159).

(b) In this case the filters given by (3.163) are y-suboptimal where Q1 is an
IO-stable system with | Q1 ||< . If Q1 is 9-periodic, the filter is 8-periodic
and y-suboptimal. Moreover, the filters are given by (8.168) is internally sta-
bilizing if Q1 is internally stable.

Corollary 3.19 Let the system Gp be time-invariant. Then Y (k) in (a)
converges as t — oo to the stabilizing solution Yo, of the algebraic Riccati
equation

Vy > 0,
Y = AYA' + BB - Ry T,/ Ry + FiyWwFiy.

Moreover the filter (3.163) with Yo gives the set of all y-suboptimal filters
when h = 0.

3.5 H, Control

In this section we consider the Hy control problem. The H; theory for time-
invariant systems is now well-known [21, 93]. Here we give an extension to
time-varying systems.
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3.5.1 Main Results

Consider the system G:

z(k+1) = A(k)z(k) + By(k)w(k) + Ba2(k)u(k),
z(k) = Ci(k)x(k) + Di2(k)u(k), (3.175)
y(k) = Ca(k)x(k)+ Da1(k)w(k)
where z € R" is the state, w € R™! is the disturbance, u € R™2? is the
control input, (21,2) € R? x RP! is the controlled output, y € R?? is the

measurement and A, Bj, etc are bounded matrices of appropriate dimensions.
For this system we assume D1-D4, i.e.,

D1: 12(k) [C1(k) Di2(k)}=1[0 I] for any k,
D2: Do (k)[Bi(k) Dj(k)]=1[0 I] for any k,
D3: (A, B, () is stabilizable and detectable,
D4: (A, B;,C;) is stabilizable and detectable.

Consider a controller u = Ky of the form:
#k+1) = A(k)i(k)+ B(k)y(k), (3.176)
u(k) = C(k)2(k) + D(k)y(k)
for some bounded matrices A, B, C and D

~ To formulate the Ha-control problem for the system G, we introduce the
following set of controllers

K = {K : K is of the form (3.176) and internally stabilizes the system G}.

Then the Hy-norm, || G ||2, of the closed-loop system G and a controller
u = Ky is well-defined and our Hj-problem is to find a controller K € K
which minimizes || G ||2. To give the solution of this problem we introduce
the following Riccati equations:

X(k) = A'(k)X(k + 1)A(k) + C}(k)Cy (k) — (RLT; ' Ra) (k) (3.177)
and
Y(k+1) A(k)Y (k)A'(k) + Bi(k) B, (k)

—(Ryy Tyy Ray )(K), (3.178)
(3.179)

Y (ko)

I
=

where

Ty(k) = I + By(k)X(k + 1)Ba(k), Ra(k) = By(k)X (k + 1)A(k),
Toy (k) = I + Co(k)Y (K)CY(k),  Ray(k) = Ca(k)Y (k)A'(K).
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Definition 3.15 (a) The solution X of (3.177) is called a stabilizing solution
if A+ BoF, F(-) = —(T; 'Ry)(-) is exponentially stable.

(b) The solution Y of (8.178) is called a stabilizing solution if A + HCq,
H(:) = —(Ryy T5})(+) is ezponentially stable.

By Theorems 3.2 and 3.3, we have the following result.

Lemma 3.29 Assume D1-D4. Then

(a) There ezists a bounded nonnegative stabilizing solution X (k), k € [ko, o0)
to (3.177).

(b) There ezxists a bounded nonnegative stabilizing solution Y (k), k € [ko, 00)
to (3.178) and (8.179).

Consider the stabilizing controller
k+1) = A(k)i(k)+ B(k)y(k), (3.180)
u(k) = C(k)&(k) + D(k)y(k)
where '
A(k) = (A+ ByF + HCy — BoLCo)(k),
B(k) = ~(H-ByL)k),
Skt = (F-LCK),
D(k) = L(k)
and L(k) = (FY CLTH) (k).
Theorem 3.25 Assume D1-D4 and consider the Hz-problem for the system
G. Then the controller (8.180) is optimal and

ko+N-—1
. 2 1 _ _ s
min (Gl = Jim <{ > tr(Bi(s)X(s + DBy(s) + (S'T7?S)(s)

s=ko
ko+N R R _
+ Y tr[Ty(CYC' + Dy Dy)))(s)} (3.181)
s=ko+1
where By (k) = (B — B2T; 'S)(k), Day(k) = (T; 'S + LDoy)(k) and S(k) =
By (k)X (k + 1)B, (k).
Corollary 3.20 Let G be -periodic. Then X (k) is §-periodic and there ez-
ists a 0-periodic nonnegative stabilizing solution Yy(k) of (3.178). Moreover,
the controller (8.180) with Y replaced by Yy is optimal and
ko+60—1 _ _
{3 tr[Bi(s)X(s + D)By(s) + (S'T5 28)(s)]

S=k0

1
. 2 _ 2
min |Gl = 3
ko+6 . . _ _
+ Z tr.[T2(CYsC' + D1 Djy)))(s)}-
s=ko+1
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Let G be time-invariant. Then there exist nonnegative stabilizing solutions
X and Y, respectively of algebraic Riccati equations

A'XA+CIC,—RyT; 'Ry =0

and
AY A’ + B\B] — Ry T5' Ryy = 0.

Corollary 3.21 Let G be time-invariant. Then the controller (3.180) with
(X (k), Y(k)) replaced by (X,Y) is optimal and

min || G (2= tr.[B|X By + S'T; %S + To(CYC' + Dqy DY)

3.5.2 Proofs of Main Results

To prove Theorem 3.25 we need some preliminary results. Consider the sys-
tem G and the controller u = Ky of the form (3.176). Let X be the solution
of (3.177). We introduce

(k) = T [u(k) + Ty ' Sw(k) — Fz(k)]

and the following system G:

z(k+1) = Az(k)+ Byw(k) + Bau(k),
wk) = T5 Y Roz(k) + T3 YSw(k) + Thu(k),  (3.182)
y(k) = Caz(k) + Dy w(k).
Then z can be written using v as follows:
2k +1) = (A+ByF)z(k)+ (B — BTy S)w(k) + BT, Tu(k),
2(k) = (Ci+ DuF)z(k) — DTy Sw(k) + DioTy 2u(k).

Note that the above system is exponentially stable. Hence
z=G.w+Uv

where G, and U are given by

ek +1) = (A+ ByF)¢(k) + (B1 — BT ' S)w(k),
(k) = (G + DIZﬁ)é(k) - D12T2_lSw(k)
and
z(k+1) = (A+ ByF)z(k) + BT, fok),
2(k) = (Ci+ DiF)a(k) + DiaT; Fu(k),

respectively. Then we can easily see the following.
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Lemma 3.30 (a) The system G is equivalent to the interconnection of the
system G and (G, U). )

(b) K stabilizes the system G if and only if it stabilizes the system G.

Next we shall show the properties of G, and U.

Lemma 3.31 (a) || Uv |j2=|| v ||2 for any v € I*(s, 00; R™2).
(b) < Geb.swo,Uv >= 0 for any wo € R™ and v € [2(s, 00; R™2) where

_ Wy, k=s,
Skswio = { 0, otherwise.

Proof. (a) We can rewrite the Riccati equation (3.177) as

X(k) = (A+ B2FYX(k + 1)(A+ B2F) + (C1 + D12 F)' (Cy + D12 F).
By direct calculation, we have

o' (k+1)X(k + Dz(k + 1) ~ 2’ (k) X (k)x(k) = — | z(k) |2 + | v(k) |?
where we have used the following equality

By(k)X (k + 1)(A + By F)(k) = —F (k).

Hence we have

' (N + 1)X(N + 1z(N +1) — 2'(s) X (s)z(s) = Zu u(k) |2 — | 2(k) |
Since z(s) = 0 and limy_, o0 (N + 1) = 0 we have the assertion.

(b) Consider G, with w(s) = wg and w(k) =0, s+ 1 < k. Then

k= ’
€0 ={ Gohos + 1B - BTS00 F 3 st

where Sp(-,-) is the state transition matrix of A + By F. Using the equality
(B1 — BoT; 'S) (k)X (k + 1)By(k) = S'(k)T; * (k)
we have

§'(s +1)X(s+ 1)x(s + 1) — &' (s) X (s)x(s)
= wi(By — BoTy'S)(s)X (s + 1)Ba(s)T; ¥ (k)u(s)
= [(DraT5'S)(s)wol [(D12T; ¥)(s)u(s)]
= ~¢()2(s)
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and as in (a) we have
Ek+1)X(k+1Dx(k+1) - (k)X (k)x(k) = - (k)z(k), k>s+1.
Hence
N
E(N +1)X(N + 1)z(N +1) = £(s)X(s)z(s) = Y_ (' (k)z(k)
k=s
and we have the assertion since limy_,oo £(NV + 1) = limyoo (N +1) =0

and z(s) = 0. ]

Now we return to the Hz-control problem for the system G. Suppose K
stabilizes the system G and hence the system G. Let G be the input-output
operator of the closed-loop system G with u = Ky, i.e.,

v =Guw.
By Lemma 3.31

G112 | G.+UG I3

i Ge I3+ 1 UG I
| Ge I3+ 11 G I3 (3.183)

Il

and
- 2__ 2 . ~ (12
min || G [lz=] Gc |z + min || G |3 -

Thus our original Hz-problem has been reduced to the one for the system
G. By Remark 3.2, mingek || G ||? is equivalent to the Ho-problem for the
backward system

_1

Z(k) = A(k)Z(k+1)+ (RyT, *)(k)i(k) + Ca(k)u(k),

1
Bi(k)E(k + 1) + (S'T, *)(k)w(k) + Dy (k)d(k), (3.184)
By(k)&(k +1) + T (k)i(k)

y(k)
with an internally stabilizing controller of the form

()E(k +1) + C'(k)j(k),
(k)&(k + 1) + D' (k)j(k).

8

(k) = A
(k) B

The Ho-problem for the system (3.184) is the DF problem. Its solution will
be given below.
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Backward Systems

We take a general backward system and consider special Hy problems. First
we consider the system with full information (denoted by Grr:)

A(k)z(k + 1) + By (k)w(k) + Bz (k)u(k),

z(k) = Ci(k)z(k+1) + Dy (k)w(k) + Dizo(k)u(k),  (3.185)
(k+1)

o = [*5"]

We take a controller u = Ky of the form

2(k) A(k)z(k + 1) + B(k)y(k),

u(k) C(k)2(k + 1) + D(k)y(k) (3.186)
where all matrices are uniformly bounded and of compatible dimensions.
Let Gp; be the input-output operator of the closed-loop system Gg; with

u = Ky. To formulate the Ha-problem for the system Gy we introduce the
following set of controllers:

K = {K:K is of the form (3.186) and
internally stabilizes the system Gp;}.

8
—~

o
~—

I

I

Then the Hz-problem for the system G gy (FI-problem) is to find a controller
K € K which minimizes | Ggr ||2-

For the system Gy, we assume D1’ and D5, i.e.,
D5 : (A, By, C)) is stabilizable and detectable.
Then as in Lemma 3.29, we have the following.

Lemma 3.32 Assume D1’ and D5. Then there erists a unique bounded
nonnegative stabilizing solution P(k), k € [ko, 00) to the Riccati equation

P(k+1) = A'(K)P(k)A(K) + Ci(k)Ci(k) - (RpT5’ Rp)(k)(3.187)
Plky) = 0

where Tp(k) = I + Bj(k)P(k)Ba(k) and Rp(k) = Bl(k)P(k)A(k).

As in the previous subsection, we introduce

o(k) = TA(R)[u(k) + (T Sp)(k)w(k) — Fp(k)z(k + 1)]
and the system G*:
z(k) A(K)Z(k + 1) + By (k)w(k) + Ba(k)u(k), (3.188)
w(k) = (TpiRp)(R)z(k+1)+ (TpSp)(kyw(k) + TA (Kyu(k),

= 7’|
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where Fp(k) = —(Tp'Rp)(k) and Sp(k) = Bj(k)P(k)Bi(k). Then z can be
written using v as follows:

2(k) = (A+B2Fp)z(k+1)+ (B) — BaT5'Sp)w(k) + BT u(k),
z(k) = (Ci+ DioFp)x(k +1)+ (D11 — D12T5'Sp)w(k) + D12Tp *v(k).
Hence

z=Ghw+4 Ub

where G® and U? are given by

£(k) = (A+ByFp)é(k+1)+ (B1— B2Tp'Sp)w(k),
C(k) = (Ci+ Dy2Fp)é(k+1)+ (D11 — Di2T5Sp)w(k)
and
o(k) = (A+ BaFp)z(k + 1)+ BoT; Yu(k),

2(k) = (Ci+ DwFp)z(k+1)+ DiTs u(k),
respectively. Then we have the following.

(a) The system G gy is equivalent to the interconnection of the system Gt
and (G, U?). ~
(b) K stabilizes the system Gy if and only if it stabilizes G®.

Next we need the following lemma.

Lemma 3.33 (a) || U |l2=]| v ||2 for any v € 1?(ko, 00; R™2).
(b) < G4 .4wo, UPv >= 0 for any wo € R™ and v € *(ko, 00; R™?) with
support in [ko, s].

Proof. (a) We can rewrite the Riccati equation (3.187) as

P(k+1) = (A+ B2Fp)'P(k)(A+ BxFp)
+(Cl + D]QFP)'(C1 + Dy Fp),
P(ko) = 0.

The by direct calculation
o' (k + 1)P(k + D)z(k + 1) — =’ (k) P(k)z(k) =| 2(k) |2 — | v(k) |?

and hence

STHak) = lvk) ] = 2'(s+1)P(s+1)z(s + 1) — 2’ (ko) P(ko)z (ko)
k=ko

z'(s+ 1)P(s+ 1)z(s + 1).
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Since z(s + 1) = 0 and z(k) = 0, Yk > s, we obtain (a).
(b) Consider the system G® with w(s) = wp and w(k) = 0,k # 5, ko < 5 < co.
Then as in the proof of Lemma 3.31 we obtain

> ¢ (k)z(k)

k=kqg

€' (s +1)P(s + 1)z(s + 1) — &' (ko) P (ko)z(ko)

£ (s+1)P(s+ 1)z(s+ 1).
Since £(s + 1) =0, 3¢, &' (k)z(k) = 0. Since &(k) =0 and 2(k) =0 k > s,
we have Y27, &'(k)z(k) = 0. ’
Let u = Ky be an internally stabilizing controller and G® the input-output
operator of the closed-loop system Gp; with u = Ky given by
v = Gbw.
Then v(k) = G%5.,wp has support in [k, s]. and by Lemma 3.33
IGrr I3 = G+ UG |3
= G2+ 1 UG® |13
= IGIE+1C% 13-
Hence we have
. 211 b 2 ; ~b (|2
min | Grr 131 G213 + min | G* 13
Thus the Hz-problem of the system GF; is reduced to the one for the system
G®. Since u(k) = Fp(k)z(k) is stabilizing,
u(k)=[Fp —Tp'Sp](k)y(k)

internally stabilizes the system G? and this yields v = 0 or G® = 0. Hence
this controller is optimal for the system Gpy and

min | Grr [3=1 Ge I3 -
The controllability gramian for the backward system associated with G is a
unique nonnegative solution is given by
Lo(k + 1) = (A + Bsz)’Lo(k)(A + Bsz) + (Ch + Dlep)’(Cl + D12FP)

which implies L, = P. Hence by Lemma 3.3

ko+N
| G% 2= lim 1 OZ tr.[B;PB; + D}, D11](s)
cll2™ vOoo N ‘121 1 11411
s=ko+1

where B, (k) = (B; — BQT;ISP)(’C) and Di; (k) = (D11 — DIQTP'IS,,)(k).

Summarizing the above we have the following.
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Theorem 3.26 Assume D1’ D5 and consider the Hy-problem for the sys-
tem Gpy. Then

ko+N
. . 1 _ _ .
(o) min|G3= lim = > r[BiPB:+ D}, Dul(s).
s=ko+1
(b) K =[Fp —Tp'Sp](k) is optimal.

Next we consider the Hy-problem for the system Gpg:
z(k) = A(k)x(k+ 1)+ Bi(k)w(k) + Ba(k)u(k),
2(k) = Ci(k)elk+ 1)+ Du(kyw(k) + Dia(k)u(k),  (3.189)
y(k) Co(k)z(k + 1) + Doy (k)w(k)

where D! exists and is uniformly bounded and we take a controller u =
Kpry of the form (3.186). Here we assume D1’, D5 and DS, i.e.,

D6 : A — B D;}' C; is exponentially stable.
As we see below, this problem is equivalent to the FI-problem.

Proposition 3.7 A controller Kpr internally stabilizes Gpr if and only
if K = Kpp|C2 Daq;] internally stabilizes Grr. In this case Gpr = Gy
where Gpr is the input-output operator of the closed-loop system Gpr with
u = Kpry defined by 2z = Gprw.

Proof. The proof follows from v = Kpry = Kpr [C2 D21 ] [:]] 1

Consider the controller Kpp:

#(k) = A(K)2(k+1)+(B1D3 ) (k)ly(k) — Ca(k)i(k + 1))

+ B (k)upr(k),
N (3.190)
Upy = KyFIy
_ Bk + 1)
yri(k) = [D;ll(k)[y(k) — Ca(k)2(k + 1)]] '

Proposition 3.8 The controller K internally stabilizes the system Gpy if
and only if Kpr given by (3.190) internally stabilizes Gpr. In this case
Gr1 =Gpr.

Proof. Let e = £ — & where x and Z are the states of the system GpFr and
(3.190), respectively. Then e satisfies

e(k) = (A — B, D3} Co)e(k + 1)
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which is exponentially stable. Moreover

i(k) = Ai(k +1)+ Biw(k) + Bau(k),
) = un) =k [FGA ] x| 7CAD]
where w(k) = w(k) + D3,'Cae(k + 1). Hence
Z(k) = Az(k + 1)+ Byw(k)+ Bau(k), (3.191)
ww = K[7")

Now suppose K stabilizes Gp;. Then € {2, but e € I? and hence x € I2.
Thus Kpr stabilizes Gpp. Conversely suppose Kpp stabilizes the system
Gpr. then (3.191) is exponentially stable. Finally z is given

Z(k) = C].’L‘(k + 1) + D]]‘w(k) + Dlzu(k)
= Ci(&+ e)(k + 1) + Dy1[w(k) — D;;'Cae(k + 1)] + Digups(k)

subject to (3.191). Hence Grr = Gpr. 1
Now it is easy to obtain the solution of DF-problem. Since
K =[Fp -Tp'Sp](k)

is optimal for the system G g, the optimal controller for Gpr is given by

_ Bk +1)
uk) = [Fp ~Tp'Sp] (k) [D;f(k)[y(k) ~ Calk)E(k + 1)1]

and (3.190) in this case

(k) = A(K)EKk+1)+ l:?(k)y(k), (3.192)
u(k) = C(k)z(k +1)+ D(k)y(k)
where
A(k) = [A—(B1— B:Tp'Sp)D3Cy + B2Fp](k),
B(k) [(Br — BoT5 ' Sp) D3y J(K),
C(k)y = (Fp+Tp'SpD3'Ca)(k),
D) = —(Tp'SpDy')(k)

Theorem 3.27 Assume D1’, D5 and D6 and consider the Hp-problem for
the system Gpp. Then

(a) mingex || Gpr |I3=1l G¢ 113

(b) The controller (3.192) is optimal.
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Proof of Theorem 3.25
Now we return to the Ha-problem for the system G. By (3.183) we have
; 2_ 2 : A2
min || G (7=l Ge Il + min || G i3
and the original Ha-problem was reduced to the Hz-problem for the backward

system (3.184), which is a DF-problem. Since the conditions D1’, D5 and
D6 are satisfied for (3.184), we can apply Theorem 3.27 to obtain

. ~ 12
in I Gz
ko+N
— : s i’ - -1 ] t—1 1] 1}
= Jlim = Yt [TFE(I - 3T Y)Y (I — CiT3) CoY ) F'T;
N—oo s=ko+1
1 ' 1
VTF (T3 '8 + LDy )(Ty 1S + LDy ' T )(s)
1 kiN ) )
= lim — tr.[Tz(C'YC' + D21D£1)](s)
N—oo N s—kot1

and the optimal controller is given by
(k) = [A'+ (F' - CyL")By + CLH|(k)i(k + 1)
~(F' ~ C3L")(k)g(k),
(H' — L'BY)(k)Z(k + 1) + L' (k)j(k).

a(k)

Hence the forward controller (3.180) is optimal for the system G and hence
for the system G. We also have

ko+N
min || G 3=1Gc I3 + Jim = kz+ltr.[T2(CYC’ + Da1 Dby)](s)-
$=Ko

Now we express || G, || using the observability gramian of G, which is a
unique nonnegative solution of

Lo(k) = (A+ BoF) Lo(k + 1)(A + BoF) + (Cy + D12 F)' (Cy + D12 F).

But X satisfies the equation above and hence L, = X. Then by Lemma 3.3,
we have

ko+N-1
1Gellf= Jim % > rBi(s)X(s + DBu(s) + (S'T; 8)(s))
s=ko

and we obtain (3.181) and the proof of Theorem 3.25 is complete.
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3.6 Notes and References

This chapter contains a discrete version of the results in Chapter 2.

The stability results in Section 3.1 are obtained as in Section 2.1 and we
can find similar results in [23]. The Hy and Hy, norms are defined as in [21].
The formulation of the quadratic control follows [1, 21]. The results of the
disturbance attenuation problems with initial uncertainty are obtained as in
Section 2.1.4 and part of the results are found in [41, 42].

The results on quadratic games in Section 3.2 are obtained following the
theory in Section 2.2 and part of the results are also found in [42, 44].

The Ho, control theory in Section 3.3 is based on [44, 38]. As in Section 2.3
initial uncertainty is considered in the problem formulation and the output
of the terminal state is included in the finite horizon problem. We have given
the necessary and sufficient conditions for the existence of all 4-suboptimal
controllers. The necessary and sufficient conditions in terms of the solutions
of two independent Riccati equations and a coupling conditions were not
available for some time and were established in [38]. The Ho, theory for
time-invariant systems is complete and found in the original papers [39, 40]
or in the books [21, 66]. The state space theory of Hy, control was extended
to time-varying systems [15, 21, 44]. The finite horizon problem is considered
in [21].

The Hy filtering theory is found in [21], but in Section 3.4 we have in-
troduced initial uncertainty in the problem formulation and included the
output of the terminal state to be estimated for the finite horizon problem.
The H, filtering problem has been considered in [21, 86, 87]. Green and
Limebeer [21] gave necessary and sufficient conditions for the existence of
v-suboptimal filters and its characterization for finite horizon case. For a
time-invariant system they considered the infinite horizon problem.

The Hs control theory for time-invariant systems is complete and can be
found in |21, 93]. As in the continuous-time systems, we extended the Ho
theory to time-varying systems.



4. Jump Systems

In this chapter we consider jumnp systerns which are the mixture of continuous-
and discrete-time systems. We consider the same stability and control prob-
lems as in earlier chapters.

4.1 Stability

4.1.1 Lyapunov Equations

Consider
T = Az, kr<t<(k+1)T (4.1)
z(ktt) = Agx(kT),
.’I,'(to) = x¢, 0Lty <T

where z € R™ and A, A4 are n X n constant matrices. Let S(t, s) be the state
transition matrix of the system (4.1) (or simply (4, A4)). Then

ditS(t,s) = AS(t,s), kr<t<(k+ 1T,
S(ktt,s) = AaS(kT,s),
S(s,s) = I

Let 0 < tg < 7. Then the solution z(t), t > to of (4.1) is continuous except at

t = k7, k = 1,2,.. where the state jumps according to the second equation
and is defined by

z(t)

S(t, to).’l,'o
eAlt=to)z,, to<t<T,
= eAt=T) A eAlT—t0) gy T <t < 27,

<.y

Here z(t) is left-continuous at t = k7. The following properties of S(¢, s) will
be used later

S(krt, k) = Ag,



184 4. Jump Systems

S(t,kr™) = S(t kr*)Ag, t> kr,
S(kr,kr=) = 1.

Definition 4.1 The system (4.1) (or simply (A, Ag)) is said to be exponen-
tially stable on [tg, 00) if

| S(t,s) |< Me—(t—9) foranytg < s <t<oo

for some positive constants M and a independent of s and t. (The system
(4.1) is also called internally stable).

Since z(kT) satisfies the discrete-time system
z(k + 1) = eA" Agz(k), z(0) = A7 to) g,

(4.1) is exponentially stable if and only if the magnitude of every eigenvalue
of eA7 A, is less than 1 and by Proposition 3.1, we have the following result.

Proposition 4.1 The following statements are equivalent.
(a) The system (4.1) is exponentially stable.
(b) There erxists a positive definite matriz X satisfying

X = (eATAd)'XeATAd + 1
(c) There exists a positive definite matriz Y satisfying
Y = AT AY (e Ag) + I

We also give the stability result using the Lyapunov equation of the jump
system (4.1).

Proposition 4.2 The following statements are equivalent.
(a) The system (4.1) is exponentially stable.
(b) There ezists a T-periodic symmetric matriz X (t) such that

(i) al <X(t)<cl, Yt > to for somec; >0,1=1,2.
(i) - X=AX+XA+1I kr<t<(k+1r,
X(kr-) = AUX (kr)Ag + 1.
(c) 18t s)x|>dt<c|z|% Yz, Vs >ty for some c > 0.
Proof. Suppose (a) holds. Then (c) also holds and
X(t) = / S'(r, t)S(r, t)dr + z S'(kT,t)S(kT,1)
kr>t

is well-defined and bounded, i.e., X(t) < col and 7-periodic. Since the first
term is greater than a,I in (0,7 — d) for some a; > 0 and the second term
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is greater than a2l for some a2 > 0 in (7 — 6, 7), we obtain X(t) > ¢;1 and
hence (i) of (b) has been shown. Differentiating X (t) on k7 < t < (k + 1)7,
we obtain (ii) of (b). The 7-periodicity of X(t) follows as in the proof of
Proposition 2.2.

Now we assume (b). Then we have for kT <t < (k+ 1)7

ZEOXW20) = - | 2(0) < - ' O X Oale).

At t = kr, 2’(t) X (t)x(t) has left and right limits and
o' (k)X (kr)z(kTt) — 2’ (kT) X (k7 7)z(kT) = — | z(kT) |*< 0.

Hence
()X ()x(t) < e~ % 07 ()X (s)x(s)

where to < s < t. Using the property (i) we have

1l z(t) P< coe” Gt | zo |?.
Hence
IS(t,S) ,S C2g—5’£;(t S)
C1
and (a) follows. 1

Definition 4.2 The equation (ii) of (b) is called the Lyapunov equation of
the system (4.1).

Example 4.1 Consider the jump system

r = l:—ol (l)]z,k<t<k+1,
z(k*) = [_(1)‘6 _S‘S]I(k). (4.2)

This is exponentially stable. In fact there exists a periodic nonnegative solu-
tion X(t) = X1 Xi

] (t) of the condition (b) in Proposition 4.2 (Figures
X12 X2
4.1 and 4.2).

Consider the adjoint equation of (4.1)

—£ = A% kr<t<(k+ )T,
§(kt™) = Agé(kr), (4.3)
E§T) = &

where N7 < T < (N + 1)7. Let &(¢t; T, &) be the solution of (4.3).
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] T T L T I T 1 k] T T
8 ) 4
% Xa)
6 —
<
4 —3
Xa(t)
2 —
X12(0)
1 1 1 1 1 1 1 1 1 1 1
0 0.5 1
time (sec)

Figure 4.1: The periodic nonnegative solution X(t)

Eigenvalues of X(t)

0 05 ]
time (sec)

Figure 4.2: Eigenvalues of X(t)
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Definition 4.3 The system ({.3) is said to be exponentially stable if
|66, T,61) |< Mem >0 | ¢ | for anyt <T < o0
for some positive constants M and o independent of t, T and &;.
We have a dual result to Proposition 4.2.

Proposition 4.3 The following statements are equivalent.
(a) The system (4.3) (and hence ({.1)) is exponentially stable.
(b) There exists a symmetric matrix Y (t) and a 0 < § < 7 —tg such that

(i) 0<Y(t), Vt>to and a1l <Y (t), "t > to+ & for some ¢; > 0.
(i) Y(t) <col, to < Yt < oo for some cg > 0.
(iti)) Y =AY + YA +1, kr <t < (k+1)r,

Y(krt) = AgY (k7)A, + I,

Y(te) = 0.

(c) fsT | (T, ) |2dt <c| €% Vs, T withto < s <T < oo and for some
c>0.

Proof. Suppose (a) holds. Then (c) is true and

Y(t) = [ S(t,s)S'(t, s)ds + Y S(t,kr*)S' (t,k7t)

kr<t

is well-defined, positive for ¢ > to and bounded. Hence (ii) of (b) holds.
Combining the arguments of the proof of Propositions 2.3 and 4.2, we obtain
Y(t) > 11, ¥t > to+ 6 for some ¢; > 0 and hence (ii) follows. Differentiating
Y(t) on kr <t < (k + 1)7, we obtain (iii) of (b).

Now we suppose (b) holds. Then for kr <t < (k+ 1)7

LIEWYOED) =| €0 P2 —€@Y 06w

Cc2
and at t = k7
¢ (kT)Y (kH)E(kT) — €' (kT7)Y (kT)é(kT™) =| €(kT) |°> 0.

Hence .
£'(s)Y (5)E(s) < e =T (T)Y (T)E(T).

Henceforto+8§ <s<7<T < @

~L(r.
c1 | €(5) IS coe™ =T | g |2

| 8(T,5) 1< o 27T,
a1

which yields
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Similar to the proof of Proposition 2.3

| S'(T,s) |< 110—200672_266"'1:—2@_8) forto <s<ty+d<7<T <00
5]

and
| S'(T,s) |< e < coe"%&e_’é_z(T_s) for to < s <to+ 6.
Choosing
M= max(\/g, \/%C()e}é_?é, 0062225)
we obtain
| §'(t,s) |< Me 77T~ for any to < s < T < c0.
Hence (a) holds. '

Definition 4.4 The equation (ui) of (b) is called the Lyapunov equation of
the backward system (4.8) (or simply the backward Lyapunov equation).

Corollary 4.1 The system (4{.1) is exponentially stable if and only if there
exists a T-periodic solution of the Lyapunov equation with ;I <Y (t) < ¢coI
for some ¢y, co > 0.

Proof. Similar to the proof of Corollary 2.1. (]

Example 4.2 Consider the system (4.2) in Example 4.1 which is exponen-
tially stable. In fact there exists a bounded nonnegative solution Y (t) =
[Yx Y12

Yiz2 Yo
periodic solution with period 1 (Figure 4.3).

} () of the condition (b) in Proposition 4.3 which converges to a

Consider the jump system

T = Az+ Bu, kr <t <(k+1)7,
z(krt) = Agz(kt)+ Bgua(k), (4.4)
y = Cz
ya(k) = Cax(kt)+ Dauq(k)
with initial condition
z(to) = zo

where z € R", u € R™2, ug € R™*, y € R??, y4 € RP2¢4 and all matrices
are of compatible dimensions. Since the system (4.4) is T-periodic, without
loss of generality we can set 0 < to < 7. If Ay = I, B4 =0, Cq4 = 0 and
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T

Yq(t)
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Yia(t)
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Y(t)
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T
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Figure 4.3: The bounded nonnegative solution Y'(t)
Dy = 0, the system (4.4) is a usual continuous-time system. On the other
hand if B =0 and C = 0, then (4.4) is equivalent to a discrete-time system

z(k + 1)
za(k)

/idx(k) + Bdwd(k), z(0) = eAlT=to) .
Cax(kt) + Dawa(k)

where A; = eA" A4 and By = 4" B;. Hence the jump system is a natural
extension of the continuous- and discrete-time systems.

The solution x(t) with z(s) = zg, 0 < s < 7 of (4.4) is defined in a
piecewise manner as follows

z(t) = S(t, kr)x(ktt) + /t S(t,r)Bu(r)dr, kr <t < (k+ 1)7.
kTt

We can express z(t) in terms of S(t, s) as

z(t) = S, to)x0+/ S(t, r)Bu(r)dr+ES(t it HYBaua(j),
i=1
kr<t<(k+1)r.

Definition 4.5 The system (4.4) is said to be input-output stable (or simply
IO-stable) if for (s) = 0, 0 < s < 7 and any (u,uq) € xXL%(s,00; R™?) x
12(1, 0o; R™2d),

(v,y4) € L?(s, 00; RP?) x [2(1, oo; RP24)
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and

2
“ Yy ”%2(tn,oo;R”2) + ” Yd ”12(1,30;15{1’2.1) )
< el u N Z2(s,00,mm2) + 1 Ua Ni2(1,00;R7m24))

for some ¢ independent of s.

Definition 4.6 (a) The system (4.4) (or ([A, A4, [B, Bd])) is said to be sta-
bilizable if there exist matrices K and Ky such that (A+ BK, Aq + BgKg) ts
ezponentially stable.

(b) The system (4.4) (or ([C, C4], [A, A4])) is detectable if there exist matrices
J and Jy such that (A + JC, Ag + JaCy) is exponentially stable.

(c) If (a) and (b) hold, the system (4.4) or ([A, A4, [B, Ba), [C, C4]) is said
to be stabilizable and detectable.

Proposition 4.4 Suppose that the system (4.4) is stabilizable and detectable.
Then it is exponentially stable if and only if it is IO-stable.

Proof. 1t is enough to show sufficiency. Without loss of generality we assume
Dy = 0. First we shall show CS(t, s)ro € L%(s,00; RP2) and C4S(kT,s)z €
I2(1, co; RP24). Since (4.4) is stabilizable, there exist matrices K and K4 such
that the system

T = (A+ BK)z, kr<t<(k+1)T,
z(ktt) = (Aq+ BgKg)z(kT),
z(s) = T, 0<s<T

is exponentially stable. Hence z € L?(s,00; R™). Then

¥ = Az + BKz, z(s) = xo, kT <t < (k+ 1)1,
z(ktt) = Agz(kT) + ByKaz(kT)

and

Cz(t) = CS(t,s)xo +C’/t S(t,r)BKx(r)dr

k
+C’ZS(t,jT+)Bdea:(j'r), kr <t < (k+1)T,
j=1
kTt
Cyx(kt) = C4S(kT,s)xo + C’d/ S(k7,7)BKx(r)dr
8

k-1
+Ca Y S(k7, j77)BaKaz(j7).
i=1

Since (4.4) is 10-stable,

t k
C’[/ S(t,rYBKz(r)dr + Z S(t, jt¥)BaKaz(j7)] € L*(s, 00; RP?)

j=1



4.1. Stability 191

and
kT k
Cd[/ S(t,r)BKz(r)dr + Z S(kt, jht)ByKaz(57)] € 13(1, 00; RP24),
s j=1
Hence
CS(t,s)xo € L?(s,00; RP?), CyS(kT,s)zo € 12(1, 00; RP2)
and

| CS(t, s)xo ll2, || CaS(kr, 8)zo < c| 2o |

for some ¢ > 0 independent of s and zg. Since the system

z = Az, z(s)=xo, kT <t < (k+ 1)1,
z(ktt) = Agx(k7)
is equivalent to
T = (A+LC)xz - LCzx, z(s) =z, kr <t < (k+1)7,
z(kt¥) = (Aq+ LaCq)x(k7) — LyCyx(kT)

where L and Ly are chosen such that (A + LC, Aq + LqCy) is exponentially
stable. Then we have

z(t) = SL(t,s):ro—/ Sg(t,r)LCx(r)dr

k
=Y Sp(t,jTH)LaCaz(jT), kT <t < (k+1)7
j=1

where S (t, s) is the state transition matrix of (A + LC, Aq + LqCy). Since
Cz(t) CS(t,s)zo € L?(s,00; RP?),
Cyz(kT) CaS(kT, s)zo € 12(1, 00; RP),

z € L%(s,00; R™) and || z ||2< ¢ | zo | which implies (4.4) is exponentially
stable. 1
Proposition 4.5 (a) Suppose that ([C, C4], [A, Ad]) is detectable. Then the
system (4.4) is exponentially stable if and only if there exists a 7-periodic
nonnegative solution to
X = AX+XA+CC, kr<t<(k+1)T,
X(kr™) = ALX(kT)Aq4+CiCy.
(b) Suppose that ([A, A4), [B, Bd]) is stabilizable. Then the system (4.4) is ex-

ponentially stable if and only if there exists a T-periodic nonnegative solution
to

~.
il

AY + YA + BB, kr<t<(k+ 17,
AgY (kT)A) + ByB).

i

Y(kr™)
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Proof. We shall show (a) only. Let z(t) = S(t, s)zo. Then for kr < t < (k+1)7
we have

2 X W] = - | Cz(t) I
and at t = k7
o' (k)X (kr)z(kr*) — '(kr) X (k77 )z(k7) = — | Caz(kT) 2.
Integrating 2 [z'(t) X(t)xz(t)] from s to T, we obtain

T N
' (T)X(T)z(T) +/ | Cz(t) |2 dt + Z | Caz(kT) |*= 25X (s)zo

s k=1
where 0 < s < 7 < N7t < T < (N + 1)1 < co. Hence CS(t,s)zo €
L?(s,00; R??) and CgS(kT,s)zo € L?(1,00; RP2¢) with || CS(t,s)zo | L2,
|| CaS(kT,s)zo ||;2< ¢ | zo | for some ¢ > 0 independent of s and zo. As in the
last part of the proof of Proposition 4.4, we can show z € L?(s, co; R™) with
| z|lz2< ¢| zo | for some ¢ > 0 independent of s and zo. The 7-periodicity
of X follows as in the proof of Proposition 4.2. [

4.1.2 Performance Measures of Stable Systems

Consider the system Gj:

i = Az+ Bw, kT <t < (k+ 1)1,
z(kt*t) = Agx(kT) + Bawa(k), (4.5)
2. = Cz,
Zd(k) = Cqazx(kT)+ Dgwg(k)
with initial condition
z(0) =0

where z € R*, w € R™, wyg € R™4, 2, € RP!, z; € RP¥4 and all matrices
are of compatible dimensions. Here we assume that (A, Ag) is exponentially

stable. Let T3, and Ty, be the operators from w and wq to z = ic , given
d
by .
C/ S(t, rYBw(r)dr
= [Zc(t) ] — Tzww — 01'

k
za(k) Cy / S(kr,r)Buw(r)dr
1]

and
k
C> " S(t, 57 )Bawa(3)

= [ZC(t) ] =Tow,Wa = k-1 7=

za(k)
CaY_ S(kr, j7+)Bywa(j) + Dawa(k)
j=0
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respectively, where k7 <t < (k4 1)7. Let (e;) and (f;) be the unit vectors
of R™ and R™4, respectively. As in continuous- and discrete time systems,
we consider the impulse

w(t) =0(t —s)e;, 0<s<7

and
wq(0) = f; and wa(k) =0 Yk > 1.
Then
~_ | CS(t,s)Be;
Tewd(- = s)es = [cdS(kr,s)Be,-]
and ( +)
CS(t,0%)Baf; S
[CdS(k'r,0+)Bdfj] k21,
Tzwd&ofj =
0
k=0
[Ddfj] ’

where kT <t < (k+ 1)7 and 6, is the Kronecker delta. Now we define the
Hz norm of the system G; as follows:

Definition 4.7 The Hy-norm of the system G;, denoted by || G |2 is

mi 1 T Mmid
16 1= 7 [T Tl ~ e Wmin ds+ 3l Towsbofs W -
i=1 j=1

where (e;) and (f;) are unit vectors in R™ and R™4, respectively and

1(E) heowem i & B + T T2

If Ay =1, B4 =0,Cq =0and Dy = 0, then | G ||, is the Hy-norm of
continuous-time systems, while the case A = 0, B = 0 and C = 0 yields the
Hz-norm of discrete-time systems.

Remark 4.1 Using the state transition matrix of (A, A4), we can express
I G ll2 as

NGz = %/OT tr.{B’[/00 S'(t, s)C'CS(t, s)dt
+ i §'(kt, 5)C4CaS(kT, s)|B}ds

k=1

+tr.{B;[/ S'(t,01)C'CS(t,0%)dt
0
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+Y 8 (kr,07)CyCaS(kr,0")|Ba + DyDa}
k=1
1 T oo
= ;/ tr.{C/ S(t,s)BB'S'(t, s)dtC’
0 8
+Cq Y S(kr,s)BB'S'(kr,5)Cy}ds
k=1

+tr.{C/ S(t,0%)ByB,S'(t,07)dtC’
0

o o]
+Cq Y _ S(kt,0%)ByB;S' (k7,0%)Cq + DaDy}.
k=1
Since (A, Aq4) is exponentially stable, by Proposition 4.5 there exist a

unique T-periodic nonnegative solution X called the observability gramian
such that

-X AX+XA+C'C, kr<t<(k+1)T,
X(kt™) = A,X(kT)Aq+ CiCy (4.6)

and a unique T-periodic nonnegative solution Y called the controllability
gramian:

. 1
Yy = AY+YA’+;BB’, kr <t < (k+1)7,
Y(kT+) = AJY(kT) :1 + BdB;. (4.7)
We can express || G ||2 in terms of X or Y. The following lemma is useful.

Lemma 4.1 Let N be a positive integer. Then

T Nt T pNT-§€
(a) /0 S(t, s)dtds = /0 /0 S(Nt —¢&, s)dsdg,

Nt N-1 (N-j)r
(b) S(t,0)dt = Z / S(Nt - &, jr)dE.
0 i=0 J(N-1-j)r
Proof. (a)

Nt (N-j)r

S(t,s)dt = Z S(t,s)dt, 0<s<T
T j"O (N-1-3)r

= Z / S((N —j)T - &,S)dé,
0

i=0

N-2 .7
= Z/ S(Nt — €,j7+ s)dé
: 0

j=0
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where the last equality follows from the T-periodicity of S(-,-). We also have

[ S(t, s)dt = / S(NT -, (N = 1)r + s)de

0
//S(t,s)dtds
0 s

and

I

T 7—§
/ / S(NT — & (N = 1)7 + s)déds
0 0

T 7—§
/ / S(NT — &, (N — 1)1 + s)dsd¢
0 0

T Nr-§
/ / S(NT — ¢, 5)dsde
0 J(N-I)T

where we have used the Fubini’s theorem in the second equality. Hence

7 pN7T T pNT—E
/ S(t, s)dtds = / / S(NT — £, s)dsd¢.
0 Js 0 JO

(b) Similar. ]

Theorem 4.1

Gz

fi

l/ tr.B'X(s)B ds + tr.[B;X(0)Ba + Dy Dy]
0

T

= / tr.CY (s)C’ ds + tr.[C4Y (0)C} + D4Dy]. (4.8)
0
Proof. Consider the system G; with the initial condition z(s) and w = 0,

wq = 0. Then for kT <t < (k+ 1)7

L OXO2(0) = — | Cat) = — | 2() I
and at t = kT
' (kr )X (kT)x(krt) — 2’ (kT) X (k77 )z (kT)
= — | Caz(kr) |P= — | 2a(k) |%.

Integrating the above derivative from s to 00, 0 < s < 7 we have
e o] oxo
/()X (s)z(s) = / | 2e(t) [Pds + 3 | za(k) 12
s k=1

Let z(s*) = Be; which corresponds to the case when wy = 0 and w(t) =
5(t — s)e;. Then

GBX()Be = [ | zled(®) s+ Y | zeled (k) I
s k=1
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and

%/Ortr.B’X(s)B ds = :‘;%/{)T{/swlzc[ei](t) |2 dt

+3 | zalei](k) |2}ds.

k=1
Similarly let z(0%) = B, f; which corresponds to the case when w(t) = 0 and
wg(0) = f; with wg(k) =0, Yk > 0 in (4.5). Then we have
mld
tr.[BYX(0)Ba + DyDy] = / | el )0) 12 dt + Z | zalfR) P

Hence we have obtained the first equality in (4.8).
To show the second equality of (4.8), first assume C = 0 and consider

N
1 T
|GN |2 = - /0 tr.Cq y_ S(kr,s)BB'S'(kr,s)C; ds
k=1

N
+tr.[Cq Y _ S(k7,0%)ByB}S' (k7,0%)C) + DaDj).
k=1

By Remark 4.1
G lz= Aim || G 1% -
—00

Using the 7-periodicity of S(t, s), i.e.,
S(t+ 7,5+ 71)=_3(ts) for any t > s,
|| Gn ||? is rewritten as
1 (7 N
|GN |12 = ;/0 tr.[Cdg:lS(Nr,(N — k)T + s)BB'

xS' (N1, (N — k)T + s)C}jds

+tr.[Cq Y S(Nt,(N —k)r%)ByBj

e

xS'(N7,(N - k)7*)C5 + D4Dy).

This is equivalent to

| G 2= Z{/ | Z5e(t) |2dt+2|zﬂz k) %)



4.1. Stability

where Z;. and 2;4 are the outputs of the system

-z = A% kr<t<(k+1)r,
F(kr™) = ALz(kr) + Cyba(k),
1
ch = ———B’.’i‘,
\/7_,
Za(k) = Bjz(kr)+ Dipba(k)

with the terminal condition
Z(T)=0, Nr <T <(N+1)r

and
wWa(N) = f; and wa(k) =0, 1 <k <N - 1L

As in the first part, we have

| Gn ||?= tr.[C4Y (NT)C} + D4 D)

197

(4.9)

where Y is a unique nonnegative solution of (4.7) with ¥(0) = 0. Since

nliIoIolo Y(t+nr)y=Y(t),
we conclude

| G 3= Nlim tr.[CqY (NT)C) + DyD}y] = tr.[C4Y (0)C} + D4 Dj).
Now we assume Cy = 0 and set

T N~r
1GI2y = % / tr.B’ / S'(t, s)C'CS(t, s)dt Bds
0 3

Nr
+r.B) / S'(t,07)C'CS(t,0+)dtBa.
0

Using Lemma 4.1, we can show
16 3= [ trCY(Nr ~0C a.
0

Hence
1G1P= Jim IIG IBy= [ trCY(C" de

Combining (4.10) and (4.11), we obtain the second equality in (4.8).

(4.10)

(4.11)
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Remark 4.2 As in Chapters 2 and 3 we can define the Ho-norm of the
system (4.9) (denoted by G*) by

mid

I1G° 13 Jim Y GPones [|Taxn
Jj=1

mid

Nt . N
Jn 3 0 Pt 3 5 P

Definition 4.8 The Hy-norm of the system G;, denoted by || G ||o is given

by
z
() hea
Gl s
w,wq)EL2 X ,
I () e

As in the previous chapters we extend the Bounded Real Lemma to jump
systems. To do so, we need to consider a quadratic optimization problem.
First we consider the quadratic control problems for jump systems.

4.1.3 Quadratic Control

Consider the system

T = Azx+ Bu, kr <t <(k+ 1T,
z(ktt) = Agz(k7)+ Bgaug(k),
z(to) = To, O0<tog<T

where r € R™, u € R™2, yy € R™2¢ and all matrices are of compatible
dimensions. For this system we introduce the functional to be minimized

T
Jr(u, v to, 70) = /t (| Cx(t) 2 + | ult) |2dt
N
+3 1| Caz(k) P + | wa(k) [*]+ | F(T) |?
k=1

where tg < N7 < T < (N + 1)1, C € RP2*"* C4 € RP2¢*" and F € R¥*™.

We need the following Riccati equation with jumps

-X = A'X+XA+C'C-XBBX, (4.12)
kr <t < (k+1)r,
X(kt™) = A,X(kt)Aq+ CiCy — (RLTS'Ry)(k), (4.13)

X(T) = F'F (4.14)
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where Ty (k) = I + By X (k7)B; and Rz(k) = B, X (kT)A4. Considering The-
orems 2.1 and 3.1, we obtain the following.

Theorem 4.2 There exists a unique nonnegative solution X = Xr(t) to the
Riccati eqaution (4.12)-(4.14). Moreover, the state feedback law

a(t) = —B'X(t)z(t), kr <t < (k+ ),
aq(k) = —(I37'Ry)(k)x(kT), k=1,.,N
is optimal and

Ié)X(to).’L‘o, ’Lft() # T,

Jr(a, 7g; tg, = _ ;
T(u s to IO) { 3}'6X(T ).’L‘o, ’Lf‘to =T.

We omit the proof of this theorem. Instead we shall give a proof for a similar
problem (4.39). See Lemma 4.6.

Now consider the infinite horizon problem

T = Ax+ Bu, z(to) = o, k7 <t < (k + )T,
z(ktt) = Aaz(k7)+ Baua(k),
J(u,uq;to, x0) = (| Cx(t) |* + | u(t) |P]dt
to

+ >[I Caz(k) [* + | wa(k) |?]

k=1
where (u,uq) € L%(tp, 00; R™2) x [?(1, 00; R™24) is admissible if its response
z € L%(tp, 00; R™) and lim;_, o, z(t) = 0.

RJ: We assume that for each ¢ there exists a control (u(-; zo), u4(; o)) such
that J(u(:, o), ua(:, To); to, zo) < ¢(zo) for some constant c(zo).

If ([A, Adl, [B, B4)) is stabilizable, then RJ holds.

Lemma 4.2 Assume RJ holds. Then there exists a T-periodic nonnegative
solution to the Riccati equation (4.12) and (4.13).

Proof. By Theorem 4.2 there exists a nonnegative solution to (4.12) and (4.13)
on [tg, T] with X(T) = 0. Then Xr(to) < Xg(to) if to <T < T. In fact let

ar(t) = -B'Xr(t)z(t), kr <t < (k+ )7,
tar(k) = —(T;'R2)(k)z(kr)
then
o X7(to)zo = Jr(tr, Gar;te, Zo)
< Jr(tr, @yr; to, Zo)
< Jrp(@r, Ggrs to, Zo) = o X (to)zo
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where we set F = 0 in Jr and 4@, Ggp in Jr is the restriction of the feedback
law @ip, G4y to (s, T]. We note that

JT( T, tar; to, o)
J1(u(:; 20), ud(:; Zo); to, Zo)

J(u("; zo), ud(-; zo); to, o) < 00.

zo X (to)Zo

IN A

Hence 24X (20)xo is monotone increasing and uniformly bounded in T'. Since
xo is arbitrary, there exists a bounded nonnegative matrix X such that

Xr(to) — X(to).
Changing the initial time, we also have
Xr(t) — X(t) for any t.

Then X satisfies the Riccati equation (4.12) and (4.13).
Finally we shall show that X is 7-periodic. Since all system matrices in
(4.5) are constant, we have

Xr4-(t+7) = X7(t) for any t > 0.
Letting T — oo, we have X(t + 7) = X(t) and hence X is 7-periodic. ]

Since X is 7-periodic, Ra(k) and T2(k) are constant matrices and we write
R2 = Rz(k) and T2 = Tz(k).

Lemma 4.3 Suppose that ([C, C4], [A, Ad]) is detectable. Then
(A~ BB'X,A ~ B4T; ' Ry)
is exponentially stable.

Proof. The Riccati equation (4.12) and (4.13) can be written as

-X = (A-BB'X)X+ X(A~BB'X)
c 1l c
+ [B’X] [B’X]’ kr <t < (k+ 1),
X(kt™) = (A4~ BaT, 'R2)' X(kT)(Aa — BaT; 'R2)

n ci 1'[ ¢a
T2_1R2 T2—1R2 )

Hence, if x is the solution of the state feedback system

z = (A-BB'X)z, z(to) = zo, kT <t < (k+ 1)7,
z(kt?) = (Aa— BaT; 'Ro)z(kT)
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then
[B’CX] RS Lz(to, oo; RP212)
and
[ 1.5, | #7) € P2, ooy ot
2 2
with

C C
{ [B’X] z 2, || [Tz_ldRz] z(-7) liz< ¢ zo | for some ¢ > 0.

Since ([C, C4], [A, Aqg]) is detectable, it is easy to see that

(1] L] - s

is also detectable. Hence by Proposition 4.5, (A — BB'X, Aq — B4T; ' Ry) is
exponentially stable. (]

We say that X is a stabilizing solution of the Riccati equation (4.12) and
(4.13) if (A — BB'X, Aq — B4T; ' Ry) is exponentially stable.

Theorem 4.3 Suppose ([C,C4], [A, Aqg]) is detectable and RJI holds. Then
there exists a T-periodic nonnegative stabilizing solution of the Riccati equa-
tion (4.12) and (4.18). Moreover the feedback law

at) = -B'X(t)z(t), kr <t < (k+1)r,
aq(k) = ~T;'Rpx(kT)
is optimal and
T - IaX(tO)ZEO, Zf tO # T,
J(Uy Ug, t07 :EO) - { z’oX(T—)zO, Zf tO - r. (415)

Proof. The first part follows from Lemmas 4.2 and 4.3. Differentiating z' Xz
for kr <t < (k+ 1) we have

%[x'(t)X(t)I(t)] = —[1 Cx(t) | + | u(®) P+ | u(t) + B'X(t)x(t) [

and at t = k71

z'(k‘r+)X(k‘r)z(k‘r+) — z'(kT) X (k7 )x(kT)
= —[| Cax(kr) |2 + | wa(k) |3+ | TF [u(k) + Ty Roz(kr)] |2 .
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Hence
'(T)X(T)z(T) + Jr(u, ug; to, To)

T
= X (to)zo + / | u(t) + B'X(t)z(t) |2 dt

to

N
+ 3 | THu(k) + T5 ' Rox(kr)] |2
k=1

where (u,u4) is an admissible control and z is its response. Since

(X (T)z(T) - 0as T — oo,

we obtain
o0
J(u,ug;to, o) = z5X(to)Zo +/ |u+ B'Xx|?dt
t
0 o l
+ | TF [ulk) + T3 Rex(k7)] |2
k=1
Hence the optimality of  and (4.15) follow immediately. [

Corollary 4.2 ([A, Ag], [B, By)) is stabilizable if and only if there exists a
control (u(-; xo), ua(-; xo)) for each xoy such that

| = ”%mo,m;nn) + | z(-r) ||122(1,oo;nn)
+ |l u “22@0,00;}1"‘2) + || ua ”122(1,00;}1"‘24)3 C(IO)
for some constant c(z¢).
Proof. We only need to show sufficiency. Consider the regulator problem with
C = I and Cy = I. Then by Theorem 4.3 (A — BB'X,Aq — B4T; 'Ry) is
exponentially stable where X is the bounded nonnegative solution of the

Riccati equation (4.12) and (4.13) with C = I and Cy = I. ]

Example 4.3 Consider the system with impulse control
1 O Lhioul ek,
T2 -1 0] |z

[2] () [(1) (1)} [i;] (k) + [(1)] u(k).

This system is unstable, but by setting

u(k) = —0.6x,(k) — 0.5z2(k)
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we can easily show that it is stabilized (see Example 4.1). For this system
we set ¢ = [1 0]. Then the system is detectable and there exists a periodic

nonnegative solution X(t) = X1 Xlz] (t) of the Riccati equation (4.12)

X2 X
and (4.13) with period 1 (Figure 4.4). The simulation result of the system
with z;(0) = 1 and z2(0) = 0 under the optimal input is given in Figure 4.5.

15 ﬁ Ll Ll LA LA j— LS L T T—
4
[ Xi(0)
i Xa(0 T
1+ —
~3 ]
I
+ -
- ~
Xi2(t)
*r ’_\ ]
- -
1 2 S | 1 1 1 L ' 17
0 0.5 1
time (sec)

Figure 4.4: The periodic nonnegative solution X(t)

Consider the backward system

—£ = At+Cv kr<t<(k+1) (4.16)
E(kr™) = Azé(kt) + Cgua(k),
ET) = &, t0<SNT<T<(N+1)r
Then as in Theorem 4.2 we consider
Y = AY 4+YA' +BB —-YC'CY, kr <t< (k+1)7, (4.17)
Y(kt*) = AgY(k7)A} + BaB) — (Roy T5y' Ray)(k), (4.18)
Y(to) = HH' (4.19)

where Toy (k) = I + C3Y (k7)C}; and Ryy (k) = CqY (kT)AL.

Theorem 4.4 (a) There erists a nonnegative solution of the Riccati equation
(4-17)-(4.18) on any [to, T).

(b) Let H = 0 and suppose there exists a control (v(-; T, & ), va(-; T, &1)) such
that

I B'E 1720, 7mma) + 1| Ba o3, vimmas)
+ | v 13200, 7:mp5) + Il va 1% 1, 7;RP2ay < €(€1)
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]

Y | ] 1 1 5 7

L xy(t)

IRV -

x(t)

xx(1)
1 i U N B L 1 1 | S 1 #T

0 5 10
time (sec)

Figure 4.5: Simulation result

for some constant ¢(§1). Then the solution of the Riccati equation (4.17) and
(4.18) with Y(0) = 0 is bounded. If, further, ([A, Aq4], [B, B4]) ts stabilizable,
then (A —YC'C, Aq — Ry T} Ca) is exponentially stable.

(c) ([C, C4), [A, Ad)) is detectable if and only if there exists a control (v(-; T, €1),
va(-; T,€1)) such that

I “2Lz(to,T;R") + 52("’) “122(1,N;R“) )
+|lv ||L2(to,’I‘;RP2) + || va “12(1,1\1;}1:'24)5 c(€1)

for some constant c(£,).

We say that Y is a stabilizing solution if (A — YC'C, Aa ~ R}y Ty Ca)
is exponentially stable. Since the system (4.16) is 7-periodic, we obtain the
following result. The proof is similar to that of Corollary 2.3.

Corollary 4.3 Suppose that there exists a bounded nonnegative stabilizing
solution Y of (4.17)-(4.19). Then the lim, oo Y (¢t + n7) exists (denoted by
Y;(t)) and Y; is a T-periodic nonnegative stabilizing solution of (4.17) and
(4.18).

Similarly to Theorems 2.4 and 3.4, we have the following result.
Theorem 4.5 (a) A T-periodic nonnegative stabilizing solution of (4.12) and
(4.13), if one exists, is unique.

(b) LetY andY be two stabilizing solutions of (4.17) and (4.18). Then

Y(t)-Y({t) =0 ast— oo.



4.1. Stability 205

Proof. (a) Let X and X be two stabilizing solutions of (4.12) and (4.13). As
in the proofs of Theorems 2.4 and 3.4, we have

—dilt(x -X) = (A-BB'X)(X-X)+(X - X)(A-BBX),
kr <t < (k+1)7,
(X - X)(kt™) = (Adq— BaT;'R2) (X — X)(k7)(Ad — BaT; 'Ry)

where T, = I + B, X (k7)B; and R; = B, X(kt)Aq4. Hence
X(t) - X(t) = Sk (T, t)(X — X)(T)Sx(T,t)

where Sx and Sy are thfa state transition matrices of (A-BB'X,Aq —
BdT{le) and (A - BB'X, Aaq — Bde—le), respectively. Thus

| X(t) - X(t) |< Myem T cMpe= 2T~
for some positive constants M;, a;, 1 = 1,2 and c. Letting T' — 0o we obtain

X(t) — X(t) = 0 for any t > to.
(b) Combine the proofs of Theorems 2.4 and 3.4. i

Consider the jump system G;:

& = Az + Byw+ Byu, kv <t < (k+1)7,
I(to) = Zo, 0< to < T,
.’L‘(kT+) =  Aax{k7) + Bigwa(k) + Bzaua(k),
5= [ Ze _ Ciz + Dyau
- zd(k) - Cld.’L‘(kT) + D12dud(k) ’
_ [ Ye _ Cor + Dyyw
Y= Lvalk) Caaz(kr) + Dyrqwa(k)
and the controller u = Ky of the form
i = Af+ By, #(te) =0, kr <t < (k+ 1),
k) = Agi(kt) + Baya(k), (4.20)
u _ X Ci+ D;y
ua(k)| — | Cai(k7)+ Daya(k) |
Then the closed-loop system G; with u = Ky is given by
[i] = A, [;]+Bew, kr <t < (k+1)r,

e - [3]

HLR

T

>

] (k7) + Beawak), (4.21)
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z:[ . } ) ce[”f}+Dew

2alk)] Ced[ ](kmpedwd(k)

where
A = A4 BQbCQ B{é] A, = Ag+ B2dbdc2d ngéd}
€ BC: A}’ ed BiCoq. Ay |’
B = | Bi+ B2DDy B.y— Bia + B2aDaDna
¢ BD2y o ¢ Bg D214 o
Ce=[Ch + D12 DC, D12C), Ceqa=[Cuq + D12¢DaCa4 D124C4],
D, = D12D D+, Dey = Dy2¢DgDa24.

Definition 4.9 Consider the system G; on [to,0). A controller u = Ky of
the form (4.20) is said to be IO-stabilizing if the closed-loop system (4.21)
is IO-stable. If, further, the closed-loop system is exponentially stable (or
(Ae, Aca) is exponentially stable) then the controller is said to be (internally)
stabilizing.

Proposition 4.6 If there exists an internally stabilizing controller u = Ky

of the form (4. 20) then ( [A Ad] [BQ,BQd] [CQ,CQd]) [A Ad] [B Bd] [C Cd])
are stabilizable and detectable.

Proof. Let [Z] (t) be the solution of

["”] - A[i] H(to) [ ] kr <t < (k+ 1)7,(4.22)

z
z +
e (ktt) = A (kT).
Then by assumption z, # € L?. Rewriting (4.22) as
r = Azx+ BQ[DCQI + BQCI] (to) = xo, kT <t < (k+ 1),
r(ktt) = Agz(kT) + B2a[DaCoaz(kT) + BoaCai (k1))
and
i = A&+ BCyz, #(to) = %o, k7 < t < (k+ 1),
E(ktt) = Agk(k7) + BaCaazx(kT)

and applying Corollary 4.2, we conclude that ([A, A4), [B2, B2g)) and
([A Ad] [B Bd]) are stabilizable. The detectability of ([C2,Ca4), [4, Ad),
([C,C4), [A, Ag]) also follows from the adjoint of the system G and Theorem
4.4. 1
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4.1.4 Disturbance Attenuation Problems
The Finite Horizon Problem

Consider the jump system Gj:

& = Az+ Bw, kr <t < (k+ 1),
x(kr+) = Agz(kT) + Bawa(k), (4.23)
ze = Cr,
zq(k) = Cax(kT)+ Dgawy(k),
s = Fz(T), to <NT<T < (N+1)r (4.24)

with initial condition

z(tg) = Hh, 0 <ty <7 (4.25)
wherez € R™, w € R™, wg € R™4, z. € R?, zg € RP4, 2, € R, h € R™
and all matrices are of compatible dimensions. For each input (h,w,wqs) €
R™ x L2(to, T; R™ ) x (2(1, N; R™¢) we have the output (21, zc, za) € R %
L2(to, T; RP) x [?(1, N; RP4). Thus we can define the input-output operator
Gy, of the system G; by

z1 h Gitt, h
Ze = GTtg w = G2Tto w
Zd wq G311y wq

where
h T
Girt, | w = FS(T,to)Hh + F S(T,r)Bw(r)dr
Wq to '
N
+F Y S(N +1,j7+)Bawa(j),
j=ko
h t
Gores | w | = CS(t,te)HR+C / S(t, ) Bw(r)dr
wq to
k
+C Y St i) Bawa(y)
J=ko
and
h kT
Gare, | w = CySlkr, to)Hh + Cq / S(kT, T)Bw(r)dr
wd to

k-1
+Ca Y S(kr, jr+)Bawa(j) + Dawa(k).
J=ko
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Then Gr¢, € L(R™ x L2(tg, T; R™) x 12(1, N; R™14); R9 x L2(to, T; RP1) x
I12(1, N;RP14)). We regard (h, w,wq) as the disturbance and we wish to find
necessary and sufficient conditions for || Gy, || < 7, i-e.,

2c w
2 Pl () Boas Q0P 40 (20) Boxe) (420

for some 0 < d < 7. In this case the system (4.23) and (4.24) is said to fuifil
the y-disturbance attenuation.

The adjoint G7,, of Gy, is given by

f Co
G'}to v = CC
vd Cd

where (f,v,v4) € RI x L2(to, T; RP') x 1?(1, N;RP'4) and

£ = At+Cv kr<t<(k+1)r,
k™) = ALE(kT)+ Chualk), (4.27)
¢ = BY%,
Ca(k) = By€(kT) + Dgva(k),
{(I) = F'f,
¢ = H'E(to).

Since || GT4, ||=Il GTt, || (Theorem A.2), (4.26) is equivalent to

P (E) B Qs P+ (0) B (429

To give necessary and sufficient conditions for || Gr¢, |< 7, we need the
Riccati equations with jumps. For definiteness we assume 0 < tp < 7.

-X = AX+XA+CC+ %XBB’X, (4.29)

kr <t < (k+ 1T,
Ti(k) > al for some a > 0, (4.30)
X(kt™) = A,X(kT)A4+ CiCa+ (RTT'R))(K),  (4.31)
X(T) = F'F, (4.32)
H'X(to)H < d*I for some 0 < d < v (4.33)

and

Y = AY+YA+BB + %YC’CY, (4.34)
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kr <t <(k+1)T,

Tiy(k) > al for some a > 0, (4.35)
Y(krt) = AgY(k7T)AL+ ByB)+ (Ryy T Riv)(k),  (4.36)
Y(to) = HH', (4.37)
FY(T)F' < d*I for some 0 < d < v (4.38)

where

T; (k) = ’)’21 - D::Dd - B‘;X(kT)Bd, R, (k) = D‘IiCd + B‘IiX(kT)Ad,
le(k) = ’)’21 — DdD‘Ii — CdY(kT)C‘Ii, Rly(k) = DdB‘Ii + CdY(kT)A:i.

If we wish to take ty = 7, the condition (4.33) becomes
H'X(t7)H < d’I.

To give the solution of this problem, we introduce the following functional
T
S watozo) = [ 11#0) P - | w(e) e
to

N
+ 31l 2(k) 12 =% | w(k) [+ | F=(T) |* (4.39)

k=1
subject to
z = Az + Bw, kr<t< (k+1)7,
z(ktt) = Agx(k7) + Bawg(k),
zze = Cuz,
za(k) = Cazx(k7)+ Dywga(k)

with initial condition z(tg) = z¢ and consider the maximization J(w, wq; to, Zo)
over all (w,wq) € L?(to, T; R™?) x 12(1, N; R™4). Let

0
é7’!0 (:: ) = GTto w y
d wa

=~ w w .
GiTto (wd) = GiTto (wd) y 1= 172,3-
Lemma 4.4

|| ‘:"2“) < | (GT) ||
Gsrs Gsreo ) "

|Grs |l < [|Grto | forany0<to <s<L<N.

A
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Proof. We shall show only the first inequality. Let (w,wq) be the extension
of (w, wq) € L%(s, L;R™) x {%(ky, kr; R™4) to [t, T] by zero, i.e,

0, to <t <s, 0, ko < k < kg,
w(t) =< w(t), s<t<L, wyk)=< walk), ks <k<kg,
0, L<t<T, 0, kr <k<N

where (ks — 1)1 < s < ky7 and k.7 < L < (kg + 1)7. Then by the proof of

Lemmas 2.7 and 3.6 we have
= w = w
1 Gans (0 ) Wn +1 Gana () 12

” C::2Ls w ” 2
Gaps ) \wg ) "E*xE
_ w ~ w
I Gorey () W+ 1l Garea () 12
” G2Tt0 w | 2
ésTto Wd [zoxia '

Consider the optimal control problem for the system G; with to, T re-
placed by arbitrary s, L, tg < s < L <T, (ks — 1)1 < s < kyT, kT < L <
(kL +1)7.

IA

Lemma 4.5 Assume || Gr¢, ||< . Then for anyto < s < T, J(w,wa; 8, To)
is strictly concave in (w,wq) and there erists a unique optimal marimizing
element (wrs, war,) € L3(s,T;R™) x 12(k,, N;R™4). Moreover

{57 ) 2oy
WdTs

J(wr,win;s,x0) < 8|z |?

IA

6|$0 |21

for some § = () > 0 independent of s and .

Proof. By Lemma 4.4 || Gr, ||< v for any tg < s < T and hence 2T —
G1,Grs > al for some a > 0 and the quadratic functional J(w, wq; 8, x¢) is
strictly concave and J(w,wq;s,z0) — —o0 as || :;d ||L2x12 — ©0. Then
by Theorem A .4 there exists a unique optimal (wr,, w4r,) for J(w, wq; s, zo)
which is given by

* w *
(I - GT1,Grs) (wd) = Gr,20,
CS(t, 8)xo
Zo = CaS(kt, 8)xo
FS(T, S):Bo

Hence

( wr ) = (1 = Cp,Cra)~ G0

WdTs
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Thus we have

n (“’“ ) e <5120

WqTs
for some ¢ independent of s and zy. 2

Lemma 4.6 Suppose || Grt, ||< 7. Then there exists a nonnegative solution
to (4.29)-(4.32). The optimal control for ({.39) is given by the feedback law

wre(t) = ;—;B’X(t)z(t), kr <t < (k+ 1),

war (k) = (T 'Ry)(k)z(kT), k=koko+1,..,N

" (to)zo, 1o #
_ o X (to)To, ifte #T,
J(thovwthovt07I0) it { Iz)X(T_).’L'o, 1f tO = T.
Proof. A brief outline of the proof is as follows. We first establish the existence
of X(t) of (4.29) and (4.32) on the interval [N7,T], i.e., the last interval.
Then using the jump equation, we show the existence of X(N77~) defined
by (4.30) and (4.31). Next we show the existence of X(t) on the interval
[((N = 1)7,N71). The existence of X(t), t € [to,T] will be established by

repeating these arguments.

Step 1. Consider the functional

J(w, wq; S, .’L‘o) = J(w; S, IO)

T
/ [ 2e(t) |2 =4 | wit) [Plde+ | Fx(T) ?

I

subject to

]

I Az + Bw, z(s) = xo,
ze = Crzx

where N7 < s < T. Since | Grt, ||< 7, by Lemma 4.4 || G, ||< . Hence
by Lemma 2.8, there exists a unique nonnegative solution X(t), t € [s, T to
(4.29) and (4.32). We write this solution X to show the dependence of T.
We also have

max_ J(w,wq; s, o) = maxJ(w;s,xo)

(w,wq w

= J(wrs; s, To)

zoXT(s)xo.
Step 2. We introduce the functional
T
HwwaNra) = [ [z 7w
T

+1 2a(N) > =7* | wa(N) |* + | F(T) |?
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subject to (4.23) and (4.24) with z(N7) = zo and consider the maximization
J(w,wg; N7, z0) over all w € L?(N7,T; R™) and waq(N). Since || Grn- ||<
v, we have

T T
& (/ | w(t) | dt+ | wa(N) |2) 2/ | ze(t) | dt+ | za(N) |* + | Fz(T) |?
N~ N~

for any w € L2(N7,T;R™!) and wg(N) and for some 0 < d < . Hence we
have

d* | wa(N) > > | za(N)
T
+ max [ | z(8) 12 =7* | w(t) [*)dt+ | F=(T) |?
w N~

| 2a(N) |? +2'(NT*) X (NT)z(NT*).

i

Using the jump system (4.23) with z{N7) = zo = 0, we have
d* | wa(N) [*>| Dgwa(N) |* +wjy(N)ByX1(N7)Bawa(N).

Hence
Ty(N) = Ty [Xr)(N) > (4 — d®)I

and we can define XT(N77) by (4.31). Since
J(w,wg; N7, z(N1)) = z'(NT)X7(N77)z(NT)
T
—/ | w(t) — %B’XT(t)z(t) |2 dt
Nr 8

— | TE (N)wa(N) = (T7 Ry)(N)z(NT)] 2,

we have
' (NT)Xp(NT7)z(NT) = (gl,if)‘](w’wd;NT’z(NT))
= J(wrNnr, warnr; N7, 2(NT))
where
wrna () = ::EB'XT(t)z(t), N7<t<(N+1)r,
warnr(N) = (T7'Ri)(N)z(N7).

Step 3. Now we assume that Xr(t),t € (N1, T] is well-defined and introduce
the functional

T
Jw, we; $,70) = / [ zet) 12 =2 | w(t) [2ldt
+ 1 2a(N) 2 =1 | wa(N) |2 + | Fa(T) |?
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subject to (4.23) with z(s) = z¢, (N — 1)7 < s < N1. Then
Nr
J(w,wq; s,z0) = / [ ze(t) |? —v? |w(t) |?]dt + ' (N7T)X7(N77)x(NT1)

T 1 ! 2
- /N w0 - B Xr(0)(0) | d
— | T (V) [wa(N) — (T By) (N)a(NT)] 2

and hence

Nr
max J(w, w4 5,70) = max| / [ 2e(t) P = | wlt) 2
w,Wwd w P

+z'(N7) X7 (N7~ )z(NT)].

As in the proof of Step 1, we can show the existence of a unique nonnegative
solution X(t), t € [s, N7) of (4.29) with X(N7) = Xp(N17).

Continuing these arguments we can show the existence of a unique non-
negative solution to (4.29)-(4.32). Since

J(w,wg;to, o) = zoXr(to)To

T 1
_ /¢ |w(®) = -5 B Xr(t)z(t) I d

N
=Y TE(R)walk) — (T Ry (R)z(kr)) 12,
k=1

we have
ToX1(to)To = (ﬂﬁ)J(w,wd;to,zo)
= J(Wrto, WaTte; to, To)
where
wre(t) = %B'XT(t)z(t), kr <t < (k+1)rT,
wart, (k) = (Ty ' Ry)(k)x(kr)
and the proof is complete. ]

We are now ready to give the solution of our original problem.

Theorem 4.6 The following statements are equivalent.

(a) || Gt [I< 7.

(b) There ezxists a nonnegative solution X(t), t € [to, T] to (4.29)-(4.33).
(c) There exists a nonnegative solution Y (t), t € [to, T] to (4.34)-(4.38).
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Proof. Suppose (a) holds. Then (b) except (4.33) follows from Lemma 4.6.
Moreover for the system G; the following equality holds:

z 2 w 2
| 2y |2 + | (;;) ”1,2x12=72 Il (wd> 7212

. w— %;B’X:z ) (4.40)
+h H' X (to)Hh— || 1 7222

Setting w(t) = ;};B’X(t)a:(t), wq(k) = (T7 Ry)(k)z(k7) and using (4.26) we
obtain

a2 n () W) 207 1 () Vhasee +HH'XC00)

Hence d? | h |2> h'H' X (ko)Hh which implies (4.33).
Conversely suppose (b) holds. Then by (4.40)

Pl () e < 7?0 (0) M
,
+ (h =1 () e
w
= P () e
2 2 2 r 2
—? =R (] ) B
where
r(t) = ’:—28’X(t):r(t), kr <t < (k+ )T,
ra(k) = (I7'Ri)(k)z(kT).

Since there exists a > 0 such that

P () Wese otk 20 () B

we have
P () e < 0P+ (2 ) Be)
2 2 w
e A | G TP

(v T2 anren () o

A

i
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Hence || Gy, {|[< 7. The equivalence of (a) and (c) also follows since (c) is
the dual of (b) concerning the adjoint (4.27) of Gy, . (]

If initial conditions are known, we can set h = 0.

Corollary 4.4 The following statements are equivalent.

(a) | Grey 1< 7.

(b) There exists a nonnegative solution X(t), t € (to,T)] to (4.29)-(4.32).

(c) There exists a nonnegative solution Y (t), t € [to, T] to (4.34)-(4.36) and
(4.88) with Y (to) = 0.

The Infinite Horizon Problem

We now consider the system G;

Z = Az + Bw, kr <t < (k+ 1)1,
(k™) = Agz(kT) + Bawg(k),
ze = Cuz,
24(k) = Cyz(kt)+ Dawg(k),
2(te) = Hh, 0<ty<r

on [tp,00) and we assume that (A, Ag) is exponentially stable on [tg, o0).
Then we can define the input-output operator

G € L(R™ xL%(tp, o0; R™)x1%(1, 0o; R™); L?(to, 00; RP')xi%(1, 0o; RP14))
(2)-¢(=)-(&)(
- =G| w | = G w
¢ wy ¥/ \ wa

h k
G2 ( w ) =CS(t, to)Hh+C t S(t,r)Bw(r)dr + C Z S(t, i71)Bawq(j)

wd to =1

by

where

and

h kr
G ( w ) = CyS(kr,to)Hh + Cq4 S(kr,r)Bw(r)dr

to
k—1

+Cq »_ S(k, j7*)Bawa(j) + Dawa(k).
j=1
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In this case we wish to find the condition || G ||< . We replace (4.39) by

S watoz) = | Tl 2t 12— | wle) Plde

to
oo
+D [l za(k) P =7 | wa(k) ).
k=1
We also need the functional (4.39) with F =0, i.e,,

T
Jr(w, wa;to, To) = [l ze(8) 12 =7 | w(t) [*]de

N
+ [l za(k) [ =7 | wa(k) 7).
k=1

Let

= w
6(x)
0
G‘,-(“’) = G|lw],i=23
Wy wyq

Proceeding as in the finite horizon case we have the following

I
Q
N
geo
SN———”

Lemma 4.7 || <gz;'°) LI G || for any to < T < oo.
to

Lemma 4.8 Assume || G ||< v. Then Jr(w,wq;to, o) (J(w,wq;to,xo))
is strictly concave and there erists a unique optimal element (Wr¢,, WaTe,)
(W, War, ) ) mazimizing Jr{w, wa; to, To) (J(w,wq;to, To), respectively).
Moreover

w: w
|| ( e ) loe<blzol, | ( t ) i< | 20,

WdTt, Wdto

Jr(Wrto, WaTto; to, To) < 0| xo |2, J (Wi, Wate; to, To) < 8 | zo |

for some & = §() > 0 independent of T and xo.

to

Proof. Since | G |<|| G ||< 7, |l <gz?°) |< v by Lemma 4.7. Hence by

Lemma 4.5 we have

* -1 *
< W, = lyr- GoTt, <G2Tto GoTt, 2
WdTt, Gare, Gare, GaTt, 0

_ CS(t,to).’Eo
2 =\ CyS(kT, to)To
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and
( Wto ) = (¥*I - G*G)"1G* 2.

W,

Since (g;;:::) and (v21 — (ggx) (g;;zz ))‘l are uniformly bounded

in T, we have the assertion. ]

Definition 4.10 (a) A bounded nonnegative solution X of (4.29)-(4.51) is
called the stabilizing solution if (A+ ;lyBB’X, A+ BT 'Ry) is exponentially
stable.

(b) A bounded nonnegative solution'Y of (4.34)-(4.36) is called the stabilizing
solution if (A + 3y YC'C, A+ R}y T;,/ C) is exponentially stable.

Similarly to Theorem 4.5, we have the following property for the stabiliz-
ing solutions.

Lemma 4.9 (a) A bounded nonnegative stabilizing solution of (4.29)-(4.81),
if exists, is unique.

(b) Let Y and Y be two stabilizing solutions of (4.34)-(4.36). Then Y (t) —
Y(t) -0 ast — oo.

Lemma 4.10 Suppose || G ||< v. Then there exists a T-periodic nonnegative
stabilizing solution to (4.29)-(4.831). Moreover if the conditons above are sat-
isfied, a unique marimizing element (wy,, Way,) of J{(w, wg; To) exists and is
given by the feedback law

weg(t) = ;—QB'X(t)z(t), kr <t < (k+1)T,
Wdto(k) = Tl—lRl.’L'(kT), k= 1,2, .

and J(wq,, Wai,, To) = X (to)xo where Ty = T1(k) and Ry = Ry (k), for any
k>1.

Gart,
Gsr,
nonnegative solution Xr(t) to (4.29)-(4.31) with X¢7(T) = 0. Moreover for
each t, X7(t) is monotone increasing in T'. In fact let L < T and define a
control on [tg, T by

Proof. Since || G ||< «y implies || G ||< 7 and || ( |l< v, we have a

- _ ;ITB’XL(t).’L‘L(t), t € [to, L],
reo(t) = { 0, te(LT,

_ _ [ (TR (k)zL(kr), k€[l kL],
Ware, (k) = { Lok - 0, ke[kLil,N]

where Ti1(-), RiL(+) are defined by T1(-), Ri(-) respectively with X(kT) re-
placed X (k7), kT < L < (kp + 1)7 and zr, is the response to the feed-
back pair (wrto, Ware,) = (;ITB’XLzL, (Ty;'Rip)(-)zL(-7)) in the system G.
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Then

i

I:)XL (tO)IO ’]L (leOY WdLtys tOv IO)
‘]T(leoy wdT!(); t/Oa IO)

Jr(Wrto, WaTeo; to, To) = 2o X1 (to)To.

IA A

The mononicity of Xp(t) also follows from Jr(w,wq;t, zo). Note that Xp(t)
is bounded uniformly in T'. This follows from Lemma 4.8 and

Jr(wre, ware; t, To) = 2o X7 (t) 0.

Hence X7(t) converges to a limit X (t) as T — oo. As we have seen in the
proof of Lemma 4.6, Xt (k7) satisfies T (k) > (v? — d?)I independent of T
and hence X (k7) satisfies T, (k) > (y? —d?)I. So X (k77) is defined by (4.30)
and (4.31). A 7-periodicity of X (t) follows from the proof of Lemma 4.2.

Now it remains to show that (A4 + ;I;BB'X, A4+ B4T{'R)) is exponen-
tially stable. Let zr be the response (wre,, wdrt,) and let (Wry,, Ware,) €
L2(tg, 00; R™) x 12(1, 00; R™4) be given by

i ~ & B Xr(t)zr(t), t € (to,T],
W, () = { e 0, te (f;‘, ),

) _ [ @'R)(k)zr(kT), ke[1,N],
wdT!o(k) - { ! ! . 0, k € %N +]1,0o)

Then
0 < zu X7 (to)xo < J(Wrte, WdTto; tos To) < J(Wey, Wto; o, To)

and {(Wr+,,Ware,)} is bounded in L%(tg, 00; R™1) x I2(1, 00; R™14). Hence
there exists a subsequence again denoted by {(Wrt,, Ware,)} Wwhich is weakly
convergent to (1, Wq) € L?(ty, 00; R™) x [2(1, co; R™1¢) (Theorem A.5). Let
Z be the response to (w, 1), i.e, the solution of
T = AZ+ Bw, ¥(ty) = xo, kT <t < (k+ 1),
f(kT+) = AgZ(kr)+ Bd'lf}d(k).
Since the restriction of (ry,, W4re,) on any subinterval converges weakly to

that of (w0, Wg), for any ¢, z7(t) — Z(t) in R™ as T — o0o. On the other hand
zr(t) — Z(t) in any interval, where T is the solution of

o= (A4 %BB'X(t))a‘:, %(to) = o, kT < t < (k+ 1),
F(kr*) = (Ag+ ByT{'Ry)z(k7).

Hence we can identify £ = Z. Since (A, Ay4) is exponentially stable and
(@, Wa) € L?(ty, 00; R™) x 12(1, 00; R™4), we conclude

& € L2(tg,00; R™) and & € L*(tg, 00; R™).
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This is true for any zo which implies that (4 + ;lyBB’X, Ag + BdTl_lRl) is
exponentially stable. 2

Theorem 4.7 Assume that (A, Aq) is exponentially stable on [ty,00). Then
the following statements are equivalent.

() 1 G l< 7.

(b) There exists a T-periodic nonnegative stabilizing solution X(t), t € [to, 00)
to (4.29)-(4.831) satisfying (4.33).

(c) There erists a bounded nonnegative stabilizing solution Y (t), t € [to, 00)
to (4.34)-(4.37).

Moreover the lim,_,» Y(t + nt) ezxists (denoted by Y,(t)) and Y, is a 7-
periodic nonnegative stabilizing solution of ({.34)-(4.36).

Proof. Suppose (a) holds. Then the existence of a 7-periodic nonnegative
stabilizing solution follows from Lemma 4.10. The condition (4.33) follows
as in Theorem 4.6. Hence (a) implies (b). The converse is also similar to
Theorem 4.6. We only need to show

w r
hP 4 () B all 0 () ) ) for some a >0

But this follows from

T = [A+ %BB’X(t)]z + Br, kt <t < (k + )T,
z(krt) = (Aq+ BaTy'Ry)z(kr) + BaTy Tra(k),
w = %B'X(t)z +r,
walk) = T Ryz(kr) +T) Fra(k)

since (A + ;IEBB’X, A4 + B4T{ 'Ry) is exponentially stable.
(c) is the dual of (b) and (a) implies the solution of a bounded nonnegative
solution of (4.34)-(4.37). In fact we consider the adjoint system

—€ = At+Cv, kr<t<(k+1)7,
E(kr™) = AGE(kT) + Cgua(k),

¢ = B,
Ca(k) = Bgé(kt)+ Dyua(k),

€T) = &

and

T N
J(v,04T,&1) = / [ ¢e(t) 12 =72 | v(t) 1Pldt + D[ Calk) I* =72 | va(k) 1]
to k=1
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and proceed as in Lemma 4.10.
To show the exponential stability of (A + ;ITYC'C, Ag+ Ry T Cy), let

vr(t) = %CY(t){(t), kr <t < (k+1)r,
var(k) = (T{y Riy)(k)€(kT)

be the maximizing element of Jr(v,vq4; &), then

%
|| (’U:’;“) ||L7(to,T;RP1)xl’(l,N;R”lvl)S Co | {1 | for some ¢y > 0.

We extend (vr,var) to [to, 00) by zero which we denote by
(37, Bar) € L2(to, 00; RPY) x (2(1, 00; RP14).

Then there exists a subsequence again denoted by (91, T4T) convergent weakly
to
(4, 54) € L?(to, 00; RPY) x (1, 00; RP™4)

. v
with || (’f)d) “L’(to,oo;RPl)xl’(l,oo;R”ld)S co | & l Now let tg < L < oo be a

fixed but arbitrary number and consider

—ér = Abr+C'ip, Er(L) =&, kr <t < (k+1)T,
E(kt7) = Agér(kT) + Cyuar(k),
& = AE+C% Er(L) =& kr <t < (k+ 1),
Ekt™) = Aut(kr) + Ciba(k)

and
_E = A+ —%C’CY(t)E, (L) = &1, kr <t < (k+ 1)r, (4.41)
(k™) = Ayg(kr) + Cy(Tyy Ruy) () (k7).
Then as in Lemma 4.10, we can show £7(t) — £7(t) as T — oo for any t €
[thL] and é(t) = é(t)a te [thL]' Since “ f:)d) “L’(to,OO;R'")Xlz(l,oo;R"'d)S
Co | él Ia
L -~
/ | €@) |2dt <c|& |* for some ¢ >0,

to

which implies

L
/ |€@) |2dt <c| & |* foranyty < L < oo.
t

0
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Hence by Proposition 4.3, the system (4.41) is exponenetially stable and so
is (A+ ;I-IYC"C’, Ag+ R\, T} C4). Hence we have shown that (a) implies the
existence of a bounded nonnegative stabilizing solution Y'(¢) of (4.34)-(4.37).
The rest of the proof is similar to that of Corollary 4.3.

The converse follows if we consider the adjoint of (4.23) and proceed as
in the first part. 1

Now we assume that h = 0. Then we have the following.

Corollary 4.5 The following statements are equivalent.

(a) |G <.

(b) There erists a T-periodic nonnegative stabilizing solution to (4.29)-(4.31).
(c) There exists a bounded nonnegative stabilizing solution Y (t), t € [to, 00)
to (4.84)-(4.86) with Y (ty) = 0.

Moreover the lim,_,oo Y (t + n7) exists (denoted by Y.(t)) and Y, is a 7-
periodic nonnegative stabilizing solution of (4.34)-(4.36).

Corollary 4.6 The following statements are equivalent.

(@) I G 1< .

(b) There exists a T-periodic nonnegative stabilizing solution to (4.29)-(4.31).
(c) There exists a T-periodic nonnegative stabilizing solution to (4.34)-(4.36).

Example 4.4 Consider the following jump system

T = [_01 (l)]z+{(l)]w,k<t<k+l,
2) = | g 050 +[}] watk)
z(t) = [1 0]z,
zqa(k) = [0 1]z(k).

For this system we consider the disturbance attenuation problems to the
following two cases

(a) H=0, (b)H=2[(1)].

For all v > 8.3, there exists a periodic nonnegative stabilizing solution X (t) =

{;((12 );12] (t) of the Riccati equation (4.29)-(4.31) to both cases (Figure
1 2

4.6) and there exist bounded nonnegative solutions Y (t) = [}),,1 )},}2] (t) of
12 Y2

the Riccati equation (4.34)-(4.37) which converge to a periodic solution with
period 1 (Figure 4.7).
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Figure 4.6: The periodic nonnegative stabilizing solution X (t)

' T A T T T T T T T T
10 ~ —
[ Ya(t) -
5 -
c - -
> b~ 4
ok -
- J
r Y12 7]
-5 | S T | i 1 1 1 S T i =

0 0.5 1

time (sec)

Figure 4.7: The periodic nonnegative stabilizing solution Y (t)
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4.2 H_ Control

In this section we consider the Ho, control problem for jump systems with
initial uncertainty. The main results will be applied to sampled-data systems
in Chapter 5.

4.2.1 Main Results

Consider the jump system G;:

z = Az + Biw, kr <t < (k+ )7,
z(ktt) = Agz(k7) + Bau(k), (4.42)
_ Ze _ ClI
2= Ld(k)} - {Duu(k)} ’
y(k) = Cox(kt)+ Doywa(k),
z1 = Fz(T), to < NT<T <(N+)r (4.43)

with initial condition
z(to) = Hh, 0<to <1 (4.44)

where T € R” is the state, (w,wy) € R™ x R™4 is the disturbance, u €
R™: is the control input, (z1, z¢, 24) € R? x RP* x RP is the controlled
output, y € R?? is the sampled observation, h € R™* and all matrices are of
compatible dimensions. For the jump system G; we assume

J1: D’12D12 = I,
J2: D21D'21 = 1.

We consider feedback controllers u = Ky of the form:

i = A@)z, kr<t<(k+1)7,
i(krt) = Ad( )& (kT)+AB(k)y(k), (4.45)
u(k) = C(k)2(kr)+ D(k)y(k)

where all matrices are uniformly bounded.

Remark 4.3 As we have mentioned in Section 4.1.1, the feedback controller
of the form (4.45) is equivalent to the following discrete-time controller
Fk+1) = S((k+1)7krT)Aa(k)z(k) + S((k + V)7, kr+)B(k)y(k),
u(k) = C(k)z(k) + D(k)y(k)
where S(-,-) is the state transition matrix of A. If all matrices in (4.45)
are constant, the above discrete-time controller becomes the following time-
invariant controller:
Fk+1) = eATAga(k) + €A By(k),
u(k) Ci(k) + Dy(k).
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On the other hand any discrete-time feedback controller is rewritten as the

jump system of the form (4.45).

Consider the system G; and the controller v = Ky on [tg, T]. Define the

input-output operator of the closed-loop system by

(2)-<(2)

G € L(R™ x L%(ty, T;R™) x [2(1, N;R™4);

Then

RY x L2(to, T;RP') x 12(1, N; RP14)).

The Heo-control problem with initial uncertainty is to find necessary and
sufficient conditions for the existence of a controller u = Ky of the form

(4.45) such that || G ||< v, ie.,

| z1 |2+l (:::) NZ22,2<d2( R |?+ | (1::) 32,;2) for some 0 < d < 7.

Such a controller is called v-suboptimal. Without loss of generality we assume

that H and F have full column rank and full row rank, respectively.

To give the solution of this problem, we introduce the following Riccati

equations with jumps. For definiteness we assume 0 < tg < 7.

: 1
-X = AX+XA+CiCi+ ?XBIB{X,
kr<t<(k+1)7,
X(kt™) = ALX(kT)Aq — (ROT, ' R2)(K),
X(T) F'F,
H'X(to)H < d*I forsome0<d <~y
and
Y = AY +YA' + BB+ Vl—zyc;clx
kr <t < (k+1)7,
Y(kr*) = AdY(k7)Ay — (Royy Ty Roy)(),
Y(to) = H'H
where

To(k) = I+ ByX(kr)Bs, Ra(k) = ByX (kr)Aq,
sz(k) =TI+ CQY(kT)Cé, Rzy(k) = CQY(ICT)A&

If we wish to take to = 7, the condition (4.49) becomes

H'X(t7)H < d*I.

(4.46
(4.47
(4.48
(4.49

(4.50)
(4.51)
(4.52)
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We also neced the following Riccati equation depending on X:

Z = (A+ %BlB'lX)Z +Z(A+ %BlB’lX)’ + BB,
kr <t <(k+1)T, (4.53)
Vz(k) > al for some a > 0, (4.54)
Z(ktt) = AaZ(kT)Ay — (Ry;T;, Raz)(k) + (FizVzFiz)(k), (4.55)
Z(ty) = H{ - %H’X(to)H)_‘H' (4.56)

where

Tyz(k) = 21 — T, *RyZ(kT)RYT 2, Toz(k) = I + CoZ(kT)Cl,
Rlz(k) =T2 7RQZ(]€T)A:1, Rgz(k) :CQZ(kT)A&,

21 _
Sz(k) = C2Z(kT)RLT, 2, Vz(k) = [Tz + Sy T, Sz)(k),
Fiz(k) = [V; ' (Riz — 85 T5; Raz)|(k),
Faz(k) = —[T5; (Raz + Sz F12))(k).
As in the continuous- and discrete-time Hy.-control problems we have the

following relationship between X, Y and Z. Proofs of lemmas below will be
given in Section 4.2.4.

Lemma 4.11 (a) Suppose X, Y and Z are solutions of (4.46), (4.47), (4.50),
(4.51) and (4.53)-(4.55), respectively. If Z(s) — Y (s) — 3 Z(s)X(s)Y (s) = 0
for some s > tg, then Z(t) — Y(t) — ,?l-Z(t)X(t)Y(t) =0 forallt > s.

(b) If (4.52) and (4.56) hold, then Z(to) — Y (to) — -5 Z(to) X (to)Y (to) = 0.
Lemma 4.12 (a) Let X, Y and Z be the solutions of (4.46), (4.47), (4.50),

(4.51) and (4.53)-(4.55), respectively. Suppose I — ,Y%XY is nonsingular. If
x satisfies

1
-z = (A+ ?Ycicl)'(t)x, kr <t < (k+1),
z(kt7) = (Aa— Ry T3 Co) (k)z(k7),

then & = (I — 5z XY)z satisfies

: 1
—i (A+ ZBiBIX) (0F, k7 <t < (k+1)r,

_1
(b) Let X, Y and Z be bounded on [ty, c0) and suppose I — ,qu-XY 1§ nonsingu-
lar and its inverse is uniformly bounded int. (A+ %YC{CI , Ad—R’WT{Yl Cs)

is exponentially stable if and only if (A+ % By B\ X, Aa+F,T; * Ry+ F},Cy)
is exponentially stable.
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The following are our main results.

Theorem 4.8 Assume J1 and J2.

(a) There exists a y-suboptimal controller u = Ky on [to, T] if and only if
the following conditions hold:

(i) There exists a nonnegative solution X to (4.46)-(4.49).

(11) For the solution X in (i), there exists a nonnegative solution Z to (4.53)-
(4.56).

(b) In this case the set of all y-suboptimal controllers is given by

i = A+ -%BIB{X(t)]i', kr <t < (k+ 1),
i(kr*) = Aak)i(kr) + Bi(k)y(k) + Ba(k)o(k), (4.57)
u(k) = C(k)i(kr) + Di(k)y(k) + Da(k)i(k),
k) = Tyt (k)[~Cad(kr) + y(k)),
b o= Qf QEQ,
where .
Aa(k) = [(Aa — BTy ' Rg) W) (k),
Bu(k) = (4 - BoT; Rzg( )Z(kr) T3 (k),
By(k) = L([F{, + BTy FIV)(k),
E(k) = ~T; Ry % (k),
1 (k) = —(T 'Ro) (k) Z(k7)C4 Ty (k),
Dalk) = 2(T; v )(#),
T (k) —I- Z(k7)CLT; (k)C2
and

Q, = {Qe€L(*1,N;RP);1%1,N;R™)):
Q s of the form (4.45) and || Q |I< 7}

Theorem 4.9 Assume J1 and J2.

(a) There exists a ~y-suboptimal controller u = Ky on (to,T) if and only if
the following conditions hold:

(i) There exists a nonnegative solution X to (4.46)-(4.49).

(iz) There erists a nonnegative solution Y to ({.50)-(4.52).

(ii3) p(X ()Y (t)) < d%I for any t € [to, T and for some 0 < d < 7.

(b) In this case the set of all y-suboptimal controllers is given by (4.57) with
Z replaced by (I — ;I;YX)‘IY.

Next we consider the system Gj:

i = Az + Bw, kr <t < (k+1)r,
z(ktt) = Agx(kt) + Bou(k),
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: = L] = o)
y(k) = Cox(kt)+ Dyywqy(k),

l‘(to) = Hh,0<t0ST

on [tg, 00) and the controller © = Ky of the form (4.45). We assume J1, J2
and

J3: ([A4, A4), [B1,0],[C4,0]) is stabilizable and detectable,
Ja: ([4, A4, [0, B2, [0, Cq)) is stabilizable and detectable.

Remark 4.4 (a) As we see in Remark 4.3 the condition J4 is equivalent to
the stabilizability and detectability of (e47 Ag, 4" By, Cy).

(b) Since the condition J3 is equivalent to the stabilizability and detectability
of the system

T = Ar+ Byw, kr <t <(k+ 1)1,
(ktt) = Aaz(kr),
z = Ciz,

J3 is equivalent to the existence of matrices K € R™t*" and J € R"*Ps
such that e(4+B1K)T 4, and e(4+JC1)7T A, are exponentially stable.

If the controller is IO-stabilizing (or internally stabilizing), we define the
input-output map of the closed-loop system

(5)-(x)

G € L(R™ x L*(tg,00; R™) x [3(1, 00; R™14);
L?(to, 00; R*) x I3(1, 00; RPH4)).

Then

The Hoo-control problem with initial uncertainty on [tg, o) is to find neces-
sary and sufficient conditions for the existence of a y-suboptimal controller,
i.e., an internally stabilizing controller v = Ky of the form (4.45) such that
I Gll<n, ie,

Ze w
I (Zd) 32 2< d2(| R |2+ | (wd) |22452) for some 0 < d < 7. (4.58)

To give the solution of this problem, we need the following definition.

Definition 4.11 (a) The solution X of (4.46) and (4.47) is called stabilizing
if (A+ S Bi\Bi X, Ag — BoT; ' Ry) is exponentially stable.
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(b) The solutionY of (4.50) and (4.51) is called stabilizing if (A+ ;%YC{Cl,
Aq — Rhy T3 Ca)) is exponentially stable.
(c) The solution Z of (4.53)-(4.55) is called stabilizing if (A+ ,Yl—zBlBiX, Ag+

F{ZTQ_%RQ + F},C2) is exponentially stable.

Theorem 4.10 Assume J1-J4.

(a) There exists a y-suboptimal controller u = Ky on [to, 00) if and only if
the following conditions hold:

(i) There exists a T-periodic nonnegative stabilizing solution X to (4.46),
(4-47) and (4.49).

(i) For the solution X in (i), there erists a bounded nonnegative stabilizing
solution Z to (4.53)-(4.56).

(b) In this case the set of all y-suboptimal controllers is given by (4.57) with
Q internally stable.

Moreover the lim, .o, Z(t + n1) exists (denoted by Z.(t)) and Z; is a T-
periodic nonnegative stabilizing solution of (4.53)-(4.55).

Theorem 4.11 Assume J1-J4.

(a) There exists a y-suboptimal controller w = Ky on [tp, 00) if and only if
the following conditions hold:

(i) There exists a T-periodic nonnegative stabilizing solution X to (4.46),
(4-47) and (4.49).

(i) There exists a bounded nonnegative stabilizing solution Y of (4.50)-
(4.52).

(iii) p(X ()Y (t)) < d2, for any t € [to,0) and for some 0 < d < 7.

(b) In this case the set of all y-suboptimal controllers is given by (4.57) with
Z replaced by (I — ;%YX)‘IY and Q internally stable.

Moreover the lim,—o Y (t + n7) exists (denoted by Y, (t)) and Y, is a -
periodic nonnegative stabilizing solution of (4.50) and (4.51).

If h = 0 we can construct 7-periodic y-suboptimal controllers. Proofs of
the following corollaries are similar to that of Corollary 2.12.

Corollary 4.7 Consider the system G; with h = 0 and assume J1-J4.

(a) There exists a y-suboptimal controller v = Ky on [to,00) if and only if
the following conditions hold:

(i) There exists a T-periodic nonnegative stabilizing solution X to (4.46),
(4-47) and (4.49).

(11) For the solution X in (i), there exists a T-periodic nonnegative stabilizing
solution Z to (4.53)-(4.55).

(b) In this case the controllers given by (4.57) are y-suboptimal. If Q is T-
periodic, then the controller (4.57) is T-periodic.

Corollary 4.8 Consider the system Gj; with h = 0 and assume J1-J4.
(a) There exists a y-suboptimal controller u = Ky on [to,00) if and only if
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the following conditions hold:

(i) There exists a T-periodic nonnegative stabilizing solution X to (4.46),
(4.47) and (4.49).

(1) There exists a T-periodic nonnegative stabilizing solutionY of (4.50) and
(4.51).

(ii3) p(X(2)Y (t)) < d?, for any t € {to,to + 7) and for some 0 < d < 7.

(b) In this case the controllers given by (4.57) with Z replaced by (I —
_;—,YX)‘IY and Q internally stable are v-suboptimal. If Q is T-periodic, then
the controllers are T-periodic and y-suboptimal.

We consider an example and apply Theorem 4.11.

Example 4.5 Consider the Hoo-control problem for the following system

i = [f_’l é]m mw,k<t<k+1, 2(0) = Hh,
o(k*) = [(1) (1’] x(k)+[(1)] u(k),

0 = O],
y(k) = [1 0]z(k)+ wa(k)

which satisfies the assumptions J1-J4. For this system we consider the fol-
lowing two cases

(a) H=0, (b)H=2L1)].

Then in both cases, the conditions (i)-(iii) of Theorem 4.11 are satisfied for
all v > 1.85. Figure 4.8 shows the periodic nonnegative stabilizing solution

X(t) = [;((112 );22] (t) with v = 1.85 and Figures 4.9 and 4.10 shows the
nonnegative stabilizing solution Y () = {}},;12 };}22] (t) with v+ = 1.85 of

the cases (a) and (b), respectively which converges to the same periodic
solution. Figure 4.11 shows the eigenvalues A;(t) and A2(t) of X(¢)Y(¢) in
the case (b) with v = 1.85 and A (t) < 3.3931 < 1.852. Figures 4.12 and 4.13
show the simulation results of the closed-loop systems with central controllers
of the case (a) and (b), respectively where v = 1.85, the initial conditions
£1(0) = 1, z2(0) = 0 and the disturbances w(t) = e~ 1% sin 10t, wa(k) = 0.
The controller of the case (b) gives a better response.

4.2.2 H,, Riccati Equations

Before proving our main results, we first consider the relationship between
Hoo-problems and quadratic games as in continuous- and discrete-time cases.
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Figure 4.8: The periodic nonnegative stabilizing solution X ()
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Figure 4.9: The bounded nonnegative stabilizing solution Y (t) of the case (a)
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Figure 4.11: Eigenvalues of X (¢)Y (t) of the case (b)
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Figure 4.13: Simulation result: Case (b)
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Then we shall show that the existence of solutions to the Riccati equa-
tions with jumps (4.46)-(4.48) and (4.50)-(4.52) under the existence of a
~-suboptimal controller.

The Finite Horizon Problem

Consider the system which is slightly generalized than the system G;:

@ = Az + Byw, kr<t<(k+1)r,
z(krt) = Aqz(k7) + Biaqwa(k) + Bau(k), (4.59)
2 _ Ciz
2 = [zd(k)] o [CldI(kT) + D12u(k)] '
y(k)y = Cox(kr)+ Dyywg(k)

with
z1 = Fz(T) (4.60)
and the controller u = Ky of the form (4.45). For the system (4.59) we assume
J1’: Di201d =0 and D;2D12 =1.

The Hoo-control problem with no initial uncertainty on [to, T] is to find nec-
essary and sufficient conditions for the existence of a y-suboptimal controller
such that || G }|< v, ie.,

(%) Bearz @ () Wose for some 0 <d <

where G is the input-output operator defined by

(2)=¢(s)

Now we assume the existence of a -y-suboptimal controller and study its
consequence to the following quadratic game

T

I (w,wa)iz0) = [ 1] z(e) =7 wlt) [l
N° (4.61)
+ > 1 za(k) P =72 | wa(k) P14+ | F2(T) |?

k=ka
where.s > tg, u is the minimizer and (w,wq) is the maximizer. We assume
(ks — 1)1 < s < kst < N7 <T < (N +1)r. Then the response to (4.59) can
be written

zk(t) = (Pikxzo)(t) + (P2xw)(t) + (Raxwa)(t),

zex(t) = (¥nkzo)(t) + (Yizrxw)(t) + (V13xwa)(t), (4.62)
zax(k) = (Yakzo)(k)+ (¥22xw)(k) + (¥23xwa)(k),

uk(k) = (ILikzo)(k) + (Il2xw)(k) + (Haxwa)(k),

axg = Fd,gx(T)xo+ FOx(T)w + F®sx (T)wy
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where
®1x, Y1k, Yakx ik € L(R™, E),
ok, Y2k, Y2k Mok € L(L%(s,T;R™),E),
®3k, Visk, Yok Iax € L(I%(ks, N;R™14),E)

E = L?%(s,T;R™), L%(s,T;R?'), I?(ky, N;RP1) and [%(ks, N; R™2), respec-
tively and

®1k(T)x0 = (P1kz0)(T),
(I)ZK(T)’UI = (<I>2Kw)(T),
¢3K(T)wd = ((I)SKwd)(T)'

Moreover ®,x, [I;x and ¥,;x, i = 1,2, j = 2,3 are causal and || G ||< v is
equivalent to

] FO,x(T) F®ax(T)
| Y lI=Il V12 Ui3k < dfor some0<d<~y (4.63)

Yook VYask
which implies

| FO21(T)w + F®3x (T)wy |?
Yioxw + Yizgwy 2 w
< .
* (\I’ZZKW+ Vo3 wy z2xiz < d® || Wy |2 x 2
Now consider the functional (4.61). Since

I za I2=Il Caz Iz + Il w lIf2,

J(u, (w, wy); s, Tp) is strictly convex in u. Hence by Theorem A.4 for any z,
and (w wa) € L2(s T;R™) x [2(k,, N;R™4) there exists a unique u, =
us((w, wq), To) € 1%(ks, N;R™2) such that

min J(u, (w, wq); s,z0) = J(us, (W, wq); s, o).
u

The response of (4.59) to u, is written

Ts(t) = (Prs70)(t) + (P2sw)(t) + (P3swa)(t),
Zes(t) = (P11520)(t) + (P12sw)(t) + (P135wa)(t), (4.64)
zas(k) = (P215%0)(k) + (Poz,w) (k) + (¥23,wa)(k),
us(k) = (Iliszo)(k) + (M2sw)(k) + (Mzswa)(k),
21k = FO,x(T)xo + FOox(T)w + FO3k (T)wy.

Since
J(Us,(W,wd);S,Io) S J(uKy(wawd);vaO)v (465)



4.2. H, Control 235

we have
] F5,(T) Fd3,(T)
%, ii=|l U2 V36 [I< d for some 0 < d < . (4.66)
¥a2s Uo3s
Now

J(us, (w, wq); s, To)

2 2 2 w 2 2
= (2 ) B =1 () B+ 12

Fo,(T) S w s s w )
e a0 ) 1=t () Ve

By (4.66), v2I — U* ¥, is bounded both from below and above. So its inverse
exists (Theorem A.3) and is uniformly bounded in s. Hence.there exists a
unique maximizing element of J(u, (w,wq); s, zo) given by

Fq)ls(T)
( Ws ) = (721 - ‘i’:‘i’s)—l‘i’; ( Uiis ) Zo- (467)

w
ds Wals

Wds s
uniformly bounded in s. Setting w = 0 and wg = 0 in (4.65) we have

| us((0,0);20) T < J(us((0,0); 20), (0,0); 5, Zo)

< Jlux, (0,0); 5,20) —| (2“‘) e+ | 21k 2

Next we shall show that_ ( Ws ) = (;j); ) (ro) and u,((ws,was), To) are

2dK
or
‘I’l ot
IMhazo 1 < 1 (32420 ) Ioses +1 Fo1(T)z0
¥
< | ( ””0) B + | Fo1x(T)zo 2 .

Vo1 To

Hence Il,5, ¥115 and W2y, are uniformly bounded. From (4.66) and (4.67),
we have

I (;j’d) llL2xi2< @] 2o | (4.68)

for some a > 0 independent of s. Setting o = 0 in (4.65), we also have

w
s, wi0) 1 =71 () B

J(us ((w, wa); 0), (w, wa); 5,0)
J(uk, (w,wy); s,0)

() B =0 (1) W

IA A
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and

“ stw + Mz,wy “lz + | F\Ilzs(T)w + F\pgs(T)wd |2

FU,,(T) FY3,(T) w
<0 e wa (2
Wa2s Wazs
FUo(T) FY3x(T) w
< wme wae (210
W2k Waozk
w
< d*| (wd) 13222

for some 0 < d < «. Hence II;, ¥;;5, 4 = 1,2, j = 2, 3 are uniformly bounded.
Now (4.64) and (4.68) yield

Il us((w, wa), zo) le< @ | Zo |
for some a > 0 independent of s. Thus we have shown the following.

Lemma 4.13 (o) IIj,, ¥,j5,, i = 1,2, j = 1,2, 3 are uniformly bounded.
(b) ws(zo), was(xo) and us((ws, wds), To) are uniformly bounded and

max min ‘](u, (wvwd);vaO) = ‘](usv (vawds); saIO) <a ‘ Zo !2
(w,wy) u

for some a > 0 independent of s.

We consider

X = AX+XA+CCi+ 712—XBIB’1X, (4.69)
kr <t<(k+1)7,
V(k) > al for somea >0, (4.70)
X(kt™) = AL}X(kT)Ad+ C14Crd
~(RyT; ' Ro)(k) + (F{VFy)(k),  (4.71)
X(T) = F'F (4.72)
where
Ti(k) = v*I — B{4 X (k7)By4, Tz(k) = I + B3 X (k1)Bs,
Ry(k) = By4 X (k7)Aq, Ry(k) = By X (k7)Aq,
S(k) = By X (k7)Bud, V(k) = [Ty + 8'T; ' S|(k),

Fi(k) = [V} (Ri ~ S'T; 'Ry)|(k),  Fa(k) = ~[T5 ' (Rz + SF)|(K).

First we assume that there exists a nonnegative solution X to (4.69)-(4.72)
and examine the properties of X. By direct calculation, we obtain

J(u, (w,wa)i5,70) = ThX(8)zo+ || Tf [+ Ty (Swa + Rox)] |3

1 ’
w — _TBIXI
2 i 2
- 4.73
el (%V’}(wd —Fla:)) Iz 2 ( )
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where z is the response of the system (4.59) to the pair (u,(w,wq)) €
2(k,, N;R™2) x L%(s, T; R™) x [2(k,, N;R™4). Define feedback laws

at) = BX((),
we(k) = F(k)z(kT), (4.74)
ak) = —(T5 R)(ky(kr) - (T3 S)(k)walk)

and let z* be the solution of (4.59) corresponding to (4.74). Set

1
0 = BiX(),
wy(k) = Fy(k)x*(kT), (4.75)
u*(k) = Fy(k)z*(kT).
We shall show that the value of the game exists, i.e.,

sup inf J(u, (w,wq); 8,Zo) = inf sup J(u, (w,wq); s, zo).
(w,wqa) u U (w,wq)

Lemma 4.14 Suppose that there exists an X satisfying (4.69)-(4.72). Then
X is nonnegative. Moreover

J (@, (w,wq); 8,70) < J(&, (@, Da); s, To)
zoX(8)xo < J(u, (W, wq); s,zo), (4.76)
J(u*, (w*,w});s,z0) = zoX(s)zo < J(u, (w*,w});s,zo) (4.77)

for any (u, (w,wy)) € 2(ks, N;R™2) x L%(s, T;R™) x 1?(ks, N;R™). The
maz-min of J(u, (w, wq); s,zo) is attained by the pair (i, (w;,w},)) and

(ma.x) min J(u, (w, wq); $,20) = J(&, (w*, w});s,To)
w,wd u
J(ﬁ) (’U_), ’U_)d); S, 10) (478)
= J(u*, (w*,w}); s, zo)
= zuX(8)xo
= inf sup J(u,{(w,wy);s,zo).
¥ (w,wq)

Proof. We note that (4.76) follows from (4.73). Setting w = 0, wq = 0 in
(4.76), we have

0 < J(@,(0,0); s,z0) < J(&, (@, Wa); 8, To) = ToX(5)o.

Hence X (s) is nonnegative. Changing the initial time, we also have X(t) > 0.
From (4.76), we have

J (i, (w,wa); s, To) < J(&, (W, @d); 8, To) = ToX (8)Zo
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and hence

min J(u, (w, wq); s, zo) < J(&, (w, wq); s, z0) < o X(8)To

for any (w,wq) € L%(s, T; R™) x {2(ks, N;R™4). This implies

sup min J(u, (w, wq); s,z0) < z4X(s)xo.
(w,awa) ¥

Next we shall show

min J (u, (w*, wg); s, o) = J(u”, (w*, wy); 5, 7o) = X (s)To

For this purpose we consider e =  — z* where z is given by

(4.79)

T = Az + Byw”, z(s) =z, kr <t < (k+ 1)7,
(k) = Agz(kT) + Biawi(k) + Bou(k).

Then

e = Ae e(s)=0, kr <t <(k+ 1),
e(ktt) = Age(kt) + Balu(k) — u* (k)]
and
. % Cile+z*
J(u) (w 7wd);8710) = ” (Clld((€+ l“))> “342)(12 + ” u ”122
() Vi + | Fle+a)D)
d
Define
k
(Hu)(t) = ) St jr*)Bau(y)
Jj=ke
= eAlt=kT) Z eV~ Byu(j), kr <t < (k+ 1),
k~1
(Hyu)(kr) = S(kr, j71)Bau(j)
i=k.
k-1
— eAT (AdeAT)k_l_ngu(j),
j=k.
N
Hu = Y S(T,jr")Baulj)

=

— eA(T—Nr) Z (AdeAT)k—jB2u(j)
J=ks
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where S(t,7) is the state transition matrix of (A4, Az). Then

e(t) = [Hu—u(),
e(kt) = [Hg(u—u")|(kT)
and
e(T) = Hy(u — u*).
Since J(u, (w*,w}); s, zo) is strictly convex in u, there exists a unique mini-

mizing element u. It is given by the solution of

u+ H*C|C\[H(u — v*) + z*] + H;C{,;C1a[Ha(u — u*) + 7]
+H;F'FH,(u —u*) +z*] = 0.

Next we shall show that u = u* is the solution. Note that for (A, h, hq) €
R™ x L%(s,T;R™) x [2(k,, N;R™)

(H*h)(k) = Bg TS'(t,k‘r+)h(t)dt,
kT
N

(Hihg)(k) = By > S'(jr,krH)ha(i7)
j=k+1

and _ _
(H;h)(k) = B,S'(T, krt)h.

As in the proof of Lemma 3.14 we can show
u*(k) = Fy(k)x* (k) = —By X (k7)z*(kT).
It is enough to show
T
X(kr)z*(krt) — . S'(t,krT)C1Crx*(t)dt
N

= 3 S'(r, krt)C1aCraz’ (§7) — S (T, kv )F'Fx* (T) = 0.
j=k+1

For this purpose we define for t # kTt

g(t) = X(t)z* / S'(s,t)CiC1z*(s)ds
- Y 847, 1)C14Craz” (7)) — S'(T, t)F'Fz*(T).

T>jir>t

Then g is continuous except at ¢ = k7 and has right and left limits at t = k7.
We need to show g(k7*) = 0, but we shall show ¢(t)} = 0. First note that

9(T) = X(T)z*(T) — F'Fz *(T) = 0.
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For t # kTt
at) = X(@)z*(t) + X(t)z*(t) + CjC1z*(2)
+A’[/T S'(s,t)C1C1z*(s)ds

+ Y ST t)C14Caz*(j) + S'(T, t)F' Fz*(T)]
T>jr>t

T
= —A'[X(t)x*(t)—/ S'(s,t)C C1x*(s)ds

t
- ) §'(Imit)C14Craz”(47) — S'(T,t)F' Fz* (T)]
T>jr>t

= —A'g(t)

and

T
glkt™) = tl%rl[X(t)x*(t)—/t S'(s,t)C1C1T*(s)ds

- ) 8§, t)C14Craz” (47) — S'(T,t)F' Fz*(T)]

T>j7r>t

T
= X(kT"):z:*(kT)—/k S'(s, k7 )C1C12*(s)ds

N
= 8'(jr, kr7)C14Craz” (j7) — S'(T, k™ ) F'Fz*(T)
j=k
= [A3X(kT)Ad — (RRT; 'Ra)(k)
+(F{VF)(k) + C14C14) X (k7™ )z* (k)

T
—AL| S'(s,krt)C{C1z*(s)ds
kT

N
+ ) S'(jr krt)C14Craz® (j7) + S'(T, kvt )F'Fz*(T)]
j=k+1
—S'(kt, k17 )C14C1ax* (kT)
T
= AYX(kr)z*(krt) — / S (s, kr+)CiCL2* (s)ds
kT
N
- Y S'(jr,kr+)C14Craz* (§T) — S'(T, kr*)F'Fz*(T))]
j=k+1

= Ajg(kr™).

Hence g(t}) = 0 and g(kt*) = g(kt~) = 0. This yields {4.79) and hence
(4.77).
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It remains to show the last equality in (4.78). From (4.76) we have

zo X (s)zo < J(u, (W, Wa); s,%o) < sup J(u,(w,wq);s,zo) for any u
(w,wq)

which implies

20X (s)zo < inf sup J(u,(w,wq);s,zo).

u (w,wq)
But
max J(&, (w, wa); s, 70) = 7h X(s)o
(w,wa)
and
" zoX(s)zo = J(H, (w*, w]); s, z0) = inf sup J(u,(w,waq);s, Zo). 1

¥ (w,wq)

Next we shall show the existence of a solution to the Riccati equation
(4.69)-(4.72) under the assumption that a y-suboptimal controller exists.

Lemma 4.15 There exists a nonnegative solution X to (4.69)-(4.72) and

max_min J(u, (w,wq); s,Zo) = X (s)zo.
w,wy) v

Furthermore for the controller
u(k) = —(T; ' Ro)(k)z(k7) — (T3 ' S)(k)wa(k)
| Gli< v holds.

Proof. As in the proof of Lemma 2.13 we first establish the existence of X on
the interval [N, T}, i.e., the last subinterval. Then using the max-min game
theory to the functional (4.61) and the jump equation in (4.59), we show the
existence of X (N7 ) satisfying (4.70) and (4.71). Next we show the existence
of X on the interval [(N — 1)7, N7). The existence of X(t) for all t € [s,T]

will be established by repeating these arguments.

Step 1: Consider the functional

J(u,(w,wq);5,T0) = J(w;3,x0)

subject to

8
I
>
8
+
o
&
8
)
[
8
e

zze = Cz
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where N7 < § < T. Since u = Ky is y-suboptimal on [s,T], it is also -
suboptimal on [3,T] and by Lemma 2.13 there exists a nonnegative solution
X(t), t € [5,T] to (4.69) and (4.72). We write this solution as Xt to show
the dependence on T. We also have

max min J(u, (w,wq);5,z0) = maxJ(w;35,zo)
(w,wa) © w

= $0XT(§):L'0.

Step 2: We introduce the functional

T
J(u, (w, wa); N7,z0) = /N [ 2e(t) P =2 | w(t) [dt
1 za(N) |2 =7 | wa(N) ? + | F(T) 2

for the system (4.59) on [N7,T] with z(N7) = z¢. Then by (4.73) and the
same arguments in the proof of Lemma 3.15, we have

J{u, (w, wq); N7, xz0)
T
= (Nt )Xr(Nr)e(NTt) — ¥ /N | w(t) - 2 BiXr()a(0) ? d

+ 1 2a(N) |2 =7 | wa(N) |2

zH[(C14C1a)(N) + AgXT(NT)Ag — (RoT5 ' R2)(N)]zo
+ | TE fu + Ty (Swa + Roz)[(N) 2 —wl(N)V (N)wa(N)
+2wd(N)(R1 - S'Tz_le)(N)l'()

T

1

7 [ u® - B Xr @20 | dt.
Nr Y

By Lemma 4.13

max min J(u, (w, wq); NT,z0) < a | 7o |*> for some a >0
(w)wd) u

and we obtain V(N) > al for some a > 0. Hence we can define X(N7~) by
(4.71) and

in J wq); NT,x0) = ThX{NT7)xo.
<w,gg}3§g>> min (u, (w, wa); N7,20) = 2o X (N77 )0
r<t<

Step 3: Now we assume that Xr(t), t € (N7, T} is well-defined and introduce
the functional

T
J(u, (w,wa); 5,20) = / [ 2e(t) P =2 | wit) [Pt
+ | zg(N) |2 =7* | wa(N) |* + | Fz(T) |?
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subject to the system (4.59) with z(8) = zo on [5,T], (N —1)7 < 5§ < N7.
Then

J(uv (U), U)d), S, IO)

Nt
- / [ 26(t) 2 =22 | w(t) [Fdt + o' (N7)Xp (N7~ )z(N7)
T 1
-2 /NT | w(t) — 7—231XT(t)z(t) |2 dt
+| Tf [u+ Ty {(Swa + Rez)](N) |2
ey %{v%(wd ~ Fiz)|(N)

and -
Nt
max min J(u, (w,wq);$,70) = max [/ [ ze(t) |2 =% | w |?dt
(w,wq) u w(t) 5

s<t<Nrt

+z'(NT)X(N77)z(N7).

As in the proof of Step 1 we can show that there exists a nonnegative solution
X(t),tes,N7]to

-X = AX+XA+CC+ ’;—QXBIB{X,
X{(Nt) = Xr{N717).

Continuing in this way we can show the existence of a nonnegative solution
to (4.69)-(4.72). The rest of the proof is similar to that of Lemma 4.14. g

Summing up we have the following result.

Theorem 4.12 Assume J1°. Suppose that there exists a y-suboptimal con-
troller u = Ky on [s,T] for the system (4.59). Then there exists a nonnega-
tive solution X (t), t € [s,T] to the Riccati equation with jumps (4.69)-(4.72).
Moreover

max minJ(u, (w,wg);s,z0) = J(u, (w*,w));s,zo)
(w,wyg) u
= J(&, (w, wq); s, To)
= J(u*, (w*, w)); s, o)

= zX(s)zo = inf sup J(u,w;s, o).
¥ (w,wa)
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Consider the backward system

- = Az+Cpw, kr <t<(k+ 1,
k™) = ALE(kT) + Cyba(k) + Cha(k), (4.80)
. Ze B}z
£ = [Ed(k)] = [B;di:(kr)+D’21a(k)]’
§(k) = ByE(kr)+ Dipa(k),
Zy = H'i(s)

which is the adjoint system of (4.59) with z(s) = Hh. For this system, we
introduce the controller @ = K§ of the form

-2 = Az, kr<t<(k+ 17,
k) = Ad(k)’i(kT)+ACA"(k)gj(k), (4.81)
a(k) = B(k)Z(k7)+ D'(k)j(k)

which is also the adjoint system of (4.45).

Corollary 4.9 Assume
J2% Dleid = 0, D21D,21 =1

Suppose that there exists a y-suboptimal controller @ = K§ on [s,T) for the
system (4.80). Then there erists a nonnegative solution Y (t), t € [s,T] to the
Riccati equation with jumps

Y = AY+YA+ BlBi + ’:—2YC;CIY, (4.82)

kr <t<(k+1)7,
Vy(k) > al for somea > 0, (4.83)
AgY (kT)Al + B14Biy4
— (Ray T3 Ray)(K) + (Fly Vy Fiy)(k), (4.84)
Y(s) = HH' (4.85)

=
<

+

S—r
|

where

Ty (k) = v2I — C14Y (k7)C},, Toy (k) = I + C2Y (k7)C4,

Ryy (k) = C1aY (kT)AY, Ry (k) = CoY (kT)Al,

Sy (k) = CzX(kT)C'w Vy (k) = [Ty + Sy T3y Syl(k),
Fiy (k) = [Vy *(Riy — Sy Ty Roy)|(K)

Fay (k) = — [Ty (Ray + Sy Fiy)](k).
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The Infinite Horizon Problem

Consider the system

t = Az+ Byw, kr<t<(k+1)7,
z(ktt) = Agqz(kT)+ Bigwa(k) + Bou(k), (4.86)
Zc Ciz
2 = [zd(k)] = [Cldx(kr) + Digu(k) |’
y(k) = Caz(kt)+ Dyywgy(k)

with z(s) = zo, (ks — 1)7 < 8 < k,7. We assume J1’ and that
(lA, Ag], [0, Bg], [C1, Ch4)) is stabilizable and detectable.

As in the finite horizon problem we assume the existence of a controller
u = Ky of the form (4.45) with property

z w
(2 ) o @1 () Bwr forsome0<d<y (480

and study its consequence to the quadratic game defined by the functional
I w,waisan) = [ a) P =2 Lu® Plat
S
+ 31l zalk) [2 =22 | walk) [2.
k=k

Note that such a controller is IO-stabilizing with disturbance attenuation ~
(I0-v-suboptimal) and we call it y-suboptimal if it is internally stabilizing.
We also consider the finite horizon problem associated with

’ T
Jr(u, (w, wq); 8,z0) = / [ ze(t) 2 =7* | w(t) |*]at
N
+ ) [l za(k) > =2 | walk) 7).
k=k

Note that if a controller u = Ky of the form (4.45) is IO-y-suboptimal, it
is also y-suboptimal on any [s, T). Since ([A, A4), [0, Ba)) is stabilizable, ¥,;,
and ¥4, in (4.64) are uniformly bounded. Then by Lemma 4.13 and Theorem
4.12 we have the following:

Lemma 4.16 There ezists a unique nonnegative solution X of the Riccati
equation with jumps (4.69)-(4.71) with Xr(T) = 0 on any interval [s, T) such
that

| X7(t) |< c independent of s <t <T < oo.
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Lemma 4.17 For each t > s, Xr(t) is monotone increasing in T.

Proof. Let L < T and we shall show X[ (s) < Xr(s). This follows from

it
o
1
=
g
Iy
£
a
[l
%
8
S

zoXL(s)Zo

INIA A
§ &

where % is the restriction of i on [s, L] and (Wr, War) is the extension of
(WL, WqL) to [s, N| by zero. Changing the initial time, we also show X (t) <
XT(t). ]

Lemma 4.18 There exists a T-periodic nonnegative solution X(t), t € [s, 00)

to (4.69)-(4.71).

Proof. Let X1 be a nonnegative solution to (4.69)-(4.71) with Xp(T) = 0.
In view of Lemmas 4.16 and 4.17, Xr is uniformly bounded and monotone
increasing in T and hence Xr(t) converges to a limit X(t). Then as in the
proof of Lemma 3.19, we can show V (k) > al for some a > 0 and hence X (t)
is a nonnegative solution to (4.69)-(4.71). The 7-periodicity of X(t) follows
from the proof of Lemma 4.2. ]

Next we shall show the stabilizing property of the solution.
Lemma 4.19 (A + %BIB’IX, Aq + B1yF\ + By F,) is exponentially stable.

Proof. Let =% be the solution of

T

1
(A+ ?BlB;XT)I, z(s) = xg, kT <t <k + 1)1,
z(kr*) = (As+ BygFir + B2For)z(kr) (4.88)

where Fi7 and For show the dependency on T of F) and F3, respectively.
Then for any interval (s, L], the solution z% converges to the solution Z of

. 1
z (A+ ?BIBQX)E, ZI(s) =zqg, kr <t < (k+ 1)1,
z(ktt) = (Aq+ B1gF) + By Fy)z(kT).
We can rewrite (4.88) as

T = (A-JC))z+ JC1x7 + Biywy, z(s) = zq, k7 <t < (k + 1)1,
z(ktt) = (Aq— J4Cra)x(kT) + J4Craz’p(kT)
+Biqwyr(k) + Baup(k) (4.89)
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where J, J; are chosen such that (A + JC\, Aq + J4C14) is exponentially
stable. The solution of (4.89) coincides with z3. on [s, T]. We extend it to
[s,00) by the homogenous equation of (4.89). By Lemma 4.14

Cizx?. wh
I (CIZII;‘) lz2xi2, |l (wi) lLzxiz, || wlli2<a|zo]| for somea >0

and (Cizy, Cir4x}), (W5, wip), w} converges weakly to

(h,hg) € L%(s,00; RP?) x 1%(ks, c0; RP1),
('lD,'lI)d) € L2(S,OO;Rm1) X 12(k3500; le.l)’
i@ € (ko0 R™)

respectively along a subsequence 1" — oo. Let £ be the solution of

@ = (A-JC)z+Jh+ By, z(s) =z, kr <t < (k+ 1)7,
z(ktt) = (Ag— JaCra)z(k7) + Jaha(k) + Braa(k) + Bai(k).

Since the restriction of Cyz}, etc on any interval [s, L] converge weakly to
those of h, etc, we can identify Z and Z on [s, L]. Since (A — JC1, Aq— J4C14)
is exponentially stable, Z € L2(s, 00; R™). Hence Z € L?(s, 00; R™) for each zg
and || Z ||z2< a | z | for some a > 0 independent of zo. Hence by Proposition
4.2, (A + _Y_lfBlBiX, Agq + B1gF) + B2 F3y) is exponentially stable. 1

Define feedback laws

o) = ;%B;X(t)z(t),
dalk) = Fz(kr), (4.90)
a(k) = —T5'Rox(kt)— Ty 'Swa(k).

Let z* be the solution of (4.86) corresponding to (4.90) and let

W) = ZEXOT ),
wy(k) = Fiz"(k7), (4.91)
wr(k) = Faz*(kr).

First we show that the feedback law @ is stabilizing.

Lemma 4.20 Suppose X is a T-periodic nonnegative solution to ({.69)-
(4.71) such that (A+ ;ITBIB’IX, Ag + B1gFy + By Fy) is exponentially stable.
Then (A, Ag ~ BzT2_lR2) is exponentially stable.
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Proof. Since (A + ;lyBlBiX, A4+ B1gF) + By F3) is exponentially stable and
1 1,1,
A+—23131X = A+—Bl(—31X),
8 8 8

Ag+ ByyFy + BoF, = (Ad - Bsz—le) + (B]d — BzTZ_IS)Fl,
([A, Ag — BT; *Ry), [%B;X,Fl]) is detectable and so is

1 %432}
([Ay Ad - BZTz_le]a [[ 7Bcl'1‘Xh] ) [Tz—IRZ]}) .
Cua

Since
. gyl [lp
X = AX+XA+ “fB‘X “rB‘X , kT <t < (k+ 1),
C Cy
X(kt™) = (Ad4— BoT5 'Ry) X (k7)(Aq — B2T; 'Ry)
vip ' [ ViR
+ | T, 'R, T, 'R, |,
Cid Cia
(A, Ay — Bsz—le) is exponentially stable by Proposition 4.5. 1

Let FI be the set of stabilizing feedback laws of the form u = K17+ Kowg.
As Lemma 4.14, we shall show

sup inf J(u,(w,wq);s,xo) = J(&, (w*, w});s,xzo)
(w,wa) € 1
J(@, (0, Wq); s, To) (4.92)
= J(u’.a(w*aw;);svl'o)
= zoX(s)zo
inf sup J(u,(w,wy);s,xo).
UEFT (4 wy) (tr ) )
Note that

inf sup J(u,(w,wq);s,To) < sup J(&,(w,wa);s,zo)
UEFT (4 uy) (w,wa)

J(@, (w*, wy); s, zo) = 5 X (8)Zo.

It suffices to show
zoX (s)xo < J(4, (w*, w)); s, x0) = uienﬁf‘I J(u, (w*,wy); s, xo). (4.93)
In fact this implies

o X = inf J(u,(w*, w));s,xo) < sup inf J(u,(w,wg);s,z
X (s)zo o (u, (w*, wg) 0)_.(10,!2)“EFI (u, (w, wq) 0)
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and (4.92) follows. To show (4.93), we proceed as in the proof of Lemma 4.14.
Consider

T = Az + Byw*, z(s) = xo, kT <t < (k +1)T,
z(kt?) = Agx(kT) + Birgwj(k) + Bau(k).

Then e = x — z* satisfies

e = Ae e(s)=0, kr <t<(k+1)r,
e(kr*) = (Aa - B2Ty'Ro)e(kt) + Bau(k)

where v(k) = u(k) +T5 ' Roz(kT) +T5 ' Swy (k) and J(u, (w*, w}); To) can be
rewritten as

= Cyle+ z* w*
Jw, @ wnisze) = 1 SCTTIY e =2 1 () 1
Cirqle +z*) wy
+ || v— T3 Rox — T3 ' Swj ||

_ C(Hv + z*) 2 ) w* ,
= || Cra(Hgv + z*) l£2x2 =7 |l w 12250
+ | v— Ty 'Ro(Hgv + %) — T ' Sw} ||

where

k
(Ho)(t) = Y Se(t,jm%)Bav(j), kr <t < (k+1)7,
j=ks

= A=) Z [(Ad — BoT5 ' Ra)e*1*~9 Byu(j),

Jj=ks
k-1
(Hgv)(kr) = Y Sr(kr,j77)B2v(j)
j=k,
k-1
= e Z (A4 — B2T5 ' Ry)eT)* 179 Byu(j)
j=ks

and Sp (-, -) is the state transition matrix associated with (A4, Aq— B2Ty 'R,).
The unique minimizing element v of J given by the solution of

H*C|{C(Hv + z*) + H3C1,C1a(Hgv + z *)
+(I = T; 'RoHa)*[v — T3 ' Ro(Hgv + 2*) — T; ' Swj] = 0.

We shall show that v = 0 is the solution. This follows if

H*C|Cz* + H3C, Craz® — (I — Ty *RyHy)" (T ' Rox® — T3 ' Sw}) = 0.
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Since (4, Ag—B,T; ' Ry) is exponentially stable, we have for h € L?(s, 00; R™)
and hy € 12(k,, 00; R™)

(H*h)(k) = B, ooS};(t,k'r+)}~z(t)dt,
kr

(Hiha)(k) = By > Sp(jh kr*)ha(y).
j=k+1

Then as the proofs of Lemmas 2.12, 3.14 and 4.14 we have
H*C|C\z* + H;C},Ciaz* — Ty 'Roz* — T, 'Sw} = 0.

Hence we have u = #. Thus the value of the game J(u, (w,wq); s,z¢) over
FI x L%(s,00; R™) x I2(k,, co; R™14) exists.

Summing up we have the following.

Theorem 4.13 Assume J1’ and ([A, Ad), [0, Ba], [C1, C14)) is stabilizable and
detectable. Suppose an IO-stabilizing controller with property (4.87) exists.
Then there exists a T-periodic nonnegative solution to (4.69)-(4.71) such that
(A+ #BIB’IX, Ag+ B1aF\ + B Fy) is exponentially stable. Moreover @ € FI
and

sup inf J(u,(w,waq);s,z0) = J(@, (w*,w});zo)
(wywd)uGFl

= J(&, (@, @q); s, To)

J(uty (w ) w;)a S, IO)
zoX{s)zo

inf sup J{(u, (w,wq);s, o).
u€FI (w,wq) ( ) )

Corollary 4.10 Consider the system (4.80). Assume J2' and
([A, Ag), [B1, B1ag), [0, C2]) is stabilizable and detectable.

Suppose an 10-stabilizing controller of the form (4.81) with property

- Z w
1212 + ) (Z) 12202< d? | (u'zd) 22,2 for some 0 < d < v

exists. Then there exists a bounded nonnegative stabilizing solution ((A +
Y C{C1, Ag + F|y C4 + FyC,) is exponentially stable) to (4.82)-(4.85).
Moreover, the lim,, oo Y (t + n1) exists (denoted by Y,(t)) and Y, is a 7-
periodic nonnegative stabilizing solution of (4.82)-(4.84).
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4.2,.3 Backward Systems

To prove our main results, we use the FI- and DF problems for backward
systems.

Full Information Problem

Consider first the FI problem given by the backward system Grr;

—& = Az, kr <t<(k+1)rT,
z(kt”) = Aqz(k7)+ Byw(k) + Bau(k), (4.94)
Zec Clit
£ = [zd(k)] - [Dnu(k)}’
_ | x(kr)
v = 2]
z1 = Fx(ty), 0<tp <7

with (T) =0, N7 < T < (N 4+ 1)7 and a controller u = Ky of the form

—p = Alt)p, kr <t < (k+1)7,
plkr™) = Ag(R)p(k) + B(k)y(k), (4.95)
u(k) = C(k)p(kr) + D(k)y(k)

where all matrices are uniformly bounded and we assume J1. The solution of
this problem is needed to solve the Hoo-control problems for the system G ;.
Moreover, the filtering problem turns out to be the dual of this problem.

First we consider the finite horizon problem. For each controller, define
the input-output operator G by

(2)-on

To give the solution of this FI-problem, we need the following Riccati equation
with jumps:

P = A'P4+PA+CCy, kT <t< (k+1)T, (4.96)
V(k) > al, for some a > 0, (4.97)
P(kt*) = A4 P(kt)Aq— (RyT; 'Ro)(k) + (F{VF)(k), (4.98)
P(to) = F'F (4.99)
where
Ty (k) = v*I — B,P(kT)B,, Ty (k) = I + B4 P(kT)By,
Ry(k) = By P(kT)Aq, Ra(k) = ByP(kT)Aqg,
S(k) = ByP(kT)B, V(k) = [T1 + S'T; ' S|(k),

Fi(k) = [V7}(R1 =~ STy ' Re)l(k),  Fa(k) = —[Ty ' (Rz + SF1)](k).
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Let P be the solution of (4.96)-(4.99). Define the set of controllers v = Qr of
the form (4.95)

Qy ={Q: Q € LU*(1,N;R™); I*(1, N;R™)) +|| Q [I< 7}
Then we have the following.

Theorem 4.14 Assume J1.

(a) There exists a y-suboptimal controller u = Ky of the form ({.95) if and
only if there exists a nonnegative solution P(t), t € [to,T] to (4.96)-(4.99).
(b) In this case the set of all y-suboptimal controllers is given by

k) = (T3 Ra)(K)z(kr) — (T3 S)(k)w(k)
+T;*(k)[c2(§v%(w _Ro)(k), Q€ Q. (4.100)

Proof. Suppose that u = Ky is «-suboptimal. Then by Corollary 4.9, we
obtain a nonnegative solution of (4.96)-(4.99).

To show the sufficiency of (a) and the characterization of (b), we need two
lemmas below. As in the continuous-time and discrete-time FI problems, we
consider

—& = Az, kr<t<(k+ 1T,
z(kr™) = Aar(k)z(kt) + Bir(k)w(k) + Bar(k)u(k), (4.101)
Ciz
£ = [Cld(k)z(kf) + Dlu(llc)w(k) + D121(k)v(k)} ’
k) = VAR - R,
21 = Fz(t)
and
-z = AZx kr<t<(k+ 17,
E(kt™) = Aax(k)Z(kt)+ Bix(k)r(k) + Bou(k), (4.102)
w(k) = Cix(k)T(kr) + Diix (k)r(k) + T (k)u(k),
z(kT)
v(k) [Fl (k)a(kT) + w—%(k)r(k)]
where
Agr(k) = (Aq —1B2T2’1R2)(k), Bi(k) = (B1 — BT, 18)(k),
Bar(k) = BoT, *(k), Crar(k) = —D12(11‘2“1R2)(k),
Dyyr(k) = —D12(T; ' S)(k)yw(k), Dizr(k) = D12Tz_f(k),
Aax (k) = (Aq + By Fy)(k), Bix(k) = vB1V~2(k),

Cix(k) = [T # (R + SF))(k), Dux(k) = Ty 1SV-¥) (k).

Then we have the following.



4.2. H, Control 253

Lemma 4.21 Let P be the solution of ({.96)-(4.99).
(a) For the system (4.101), the following holds:

z 2 2
o (20) W= e O+ Do I = 7 1

(b) The system Gpyr; with a controller u = Ky is equivalent to the intercon-
nection of (4.101) and the feedback system (4.102) with u = Ky.

Proof. By direct calculation, we have
= (T)P(T)z(T) — z'(to) P(to)z(to)

V4
= (2) Woses = w0 W = 10 o2 0 I

Since z(T) = 0 and P(to) = F'F, we obtain (a). The rest of the proof is
similar to the proof of Lemma 2.24. [

Now introduce the feedback v = Qr to (4.101) where Q is of the form
(4.95).

Lemma 4.22 Let G be the input-output operator of the closed-loop system
(4.101) and v =Qr. Then || G ||< v if and only if || Q ||< 7.

Proof. Similar to the proof of Lemma 2.25. [

We are now ready to complete the proof of Theorem 4.14. We note that
u(k) given by (4.100) is y-suboptimal by Lemma 4.22. Now let u = Ky be
an arbitrary y-suboptimal controller. Let @ be the input-output operator of
the closed-loop system (4.102) with © = Ky. Then Q is of the form (4.95)
and by Lemma 4.22, Q € Q.. Hence u = Ky is equivalent to

u(k) = —[TyY(Re+ SF))E(k) + T3 1SV r(k) + T5 To(k)
= T 'Roz(k) + Ty 'Sw(k) + Tj %Q[%V% (w4 — Fiz)]
which implies (b) and the sufficiency of (a). ]

Next we consider the infinite horizon case. Consider the system Gry; on
[to, 00) with the assumption J1. We further assume

J5: ([4, A4], [0, By, [C1,0]) is stabilizable and detectable.

For each 10-stabilizing controller, we can define the input-output operator

by
(zl> = Guw.
Z
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Theorem 4.15 Assume J1 and J5.

(a) There exists an IO-stabilizing controller u = Ky of the form (4.95) on
[to, o) such that || G ||< 7 if and only if there exists a bounded nonnegative
stabilizing solution to (4.96)-(4.99).

(b) In this case the set of all y-suboptimal controllers is given by

k) = (I Ry)(K)z (k) — (T3 S)(k)w(k)
+11;%(k)[c2(§v%(w “Ro)(k), QEQy  (4103)
where

Q- ={Q:Q € LU*(1, 00, R™); 12(1, 00, R™)) 1| Q ]| < 7}

In particular, the set of all y-suboptimal controller is given by (4.108) wnth
Q internally stable.

Moreover, the limy,_,oo P(t + n7) exists (denoted by P.(t)) and Pr is a 7-
periodic nonnegative stabilizng solution of (4.96)-(4.98).

Proof. (i) Necessity of (a) Suppose that there exists an IO-stabilizing con-
troller u = Ky such that | G ||< 7. Then under the assumptions J1 and J5,
we obtain a nonnegative solution of (4.96)-(4.99) by Corollary 4.10.

To show the sufficiency of (a) and the characterization of (b), we need two
lemmas below. Consider the systems (4.101) and (4.102) on [tg, 00). Note that
(A, Ag— B2T5 * Ry) is exponentially stable by Lemma 4.20. Then as in Lemma
4.21, we have the following results.

Lemma 4.23 Let P be the solution of ({.96)-(4.99).
(a) For the system ({.101), the following holds:

V4 .
a2+ (20) W= N B+ o I = 1
(b) The system Gri; with a controller u = Ky is equivalent to the intercon-
nection of (4.101) and the feedback system (4.102) with u = Ky.

Proof. As in the proof of Lemma 4.21, we have

z'(T)P(T)z(T) — z'(to) P(to)z(to)
T N
= [ 1z Pt Sl zak) = Lwlh) P = k) 497 1K) P
to k=1
Since z(T) = 0, we let T tend to oo to obtain (a). The rest of the proof is

similar to the proof of Lemma 2.24. 1

Now introduce the feedback v = Qr to (4.101) where @ is of the form
(4.95).
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Lemma 4.24 Let G be the input-output operator of the closed-loop system
(4.101) and v = Qr. Then || G ||< v if and only if Q is internally stable and

Q<.
Proof. Similarly to the proof of Lemma 2.26. 3

We are now ready to complete the proof of Theorem 4.15. We note that
u(k) given by (4.100) is y-suboptimal by Lemma 4.24. Now let u = Ky be
an arbitrary «-suboptimal controller. Let @ be the input-output operator of
the closed-loop system (4.102) with «w = Ky. Then Q is of the form (4.95)
and by Lemma 4.24, Q € Q.. Hence u = Ky is equivalent to

uk) = —T5 Ry + SF)I(k) + vI5 SV~ 4r(k) + T 2u(k)
= Ty Roz(k) + Ty Sw(k) + T{%Q(%V%(w — Fiz))

which implies (b) and the sufficiency of (a). 1

Corollary 4.11 Consider the system Gpy; with F =0 and assume J1 and
J5.

(a) There exists an IO-stabilizing controller u = Ky of the form (4.95) on
[to, 00) such that || G || < v if and only if there exists a T-periodic nonnegative
stabilizing solution to (4.96)-(4.98).

(b) In this case the controllers (4.108) is ~y-suboptimal. If Q is T-periodic,
then the controllers (4.103) are also T-periodic.

Proof. Similar to the proof of Corollary 2.18. 1

Disturbance Feedforward Problem

We consider the Ho-problem for the special system Gpr;

-z = Az, kr<t<(k+1)T,
z(kt™) = Agz(kt)+ Byw(k) + Bau(k), (4.104)
R Cll‘
‘T [zd(k)] B [Dmu(k)] ’
y(k) = Caz(kt) + Darw(k),
z1 = F:L‘(t())

with z(T) = 0 where Dy; is nonsingular. Here we assume J1. As in the
continuous-time (or discrete-time) case, it can be reduced to the FI-problem.
In fact consider the observer

- = Az, kT <t < (k+1)
B(kr™) = Agz(kr) + By Dy} y(k) — Cad (k)] + Byu(k),
#T) = o.
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Then e = z — £ satisfies

—é = Ae kr<t<(k+1)r,
e(kt™) = (Aa— ByD3'Co)e(kt),
e(T)y = 0

and hence £ = z. Moreover w is observable since
w(k) = Dy [y(k) — Coz(k7)] = D3y [y(k) — Ca(k)].
Thus we can use the controller (4.100) of the FI problem.

Theorem 4.16 Assume J1.

(a) There exists a y-suboptimal controller u = Ky of the form (4.95) if and
only if there exists a nonnegative solution P of (4.96)-(4.99).

(b) In this case the set of all y-suboptimal controllers is given by

- = A#, kr <t<(k+1)T,
i(kr™) = Aa(k)E(kT) + Bi(k)y(k) + Ba(k)v(k), (4.105)
w(k) = Cilkya(kr) — (T SDRY)(kyy(k) + Ty ¥ (k)w(k),
rk) = Calk)a(kr) + ZVEKIDY(R),
v = Qr, QeQ,

where Ag(k) = [Ag — B1D3'C2 — B2T; ' (R2 — SD3}' Cy)|(k) and
Bi(k) = (B, - BTy 'S)(k)Dy',  Ba(k) = BoT; * (k)
Ci(k) = —[T; '(Ry — SD3 Co))(k),  Ca(k) = = [VH(DL'C; + F1)](k).

Proof. The necessity of {a) follows from Theorem 4.14. The sufficiency and
(b) follow from Theorem 4.14 and the observation

u(k) = —T;'Roz(kt)— Ty Sw(k)+ Tz_%Qr
= Ty Roi(kr) — Ty ' S|D5) (y(k) — Coi(kr)] + T, 2Qr
_T5Y(Re — SD3}Co)é(k7) — Ty \SD; y(k) + T, ¥ Qr,

r(k) = %v%[w(w—wm]

- %v%{D;ﬁ (k) — Cai(kr)] - Fiz(kr)}

1 . 1 _
= —;v%(D,;llc2 + Fy)a(kT) + ;V*Dzlly(k). .

We consider the infinite horizon problem. We assume J1, J5 and

J6: (A, Aq— B, D;;'Cz) is exponentially stable.
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Theorem 4.17 Assume J1, J5 and J6.

(a) There exists a y-suboptimal controller u = Ky of the form (4.95) if and
only if there exists a bounded nonnegative stabilizing solution to ({.96)-(4.99).
(b) In this case the set of all v-suboptimal controllers is given by (4.105) with
Q internally stable.

4.2.4 Proofs of Main Results.

We now give the proofs of our main results using Theorems 4.16 and 4.17.
We first prove Lemmas 4.11 and 4.12. As in the discrete-time H,-control
problem, we can rewrite (4.47), (4.51) and (4.55) as

X(kt™) = A X(kT)N(k)A4, N(k)=[I+ B2B;X(k7)]~', (4.106)
Y(krt) = AsY(kr)Ny (KA, Ny (k) = [+ C4CaY (kr)] !

and
Z(krt) = [I - %@(k)X(kT)BQT;I(k)B;X(kT)]-IQ(k) (4.107)

respectively, where ®(k) = A4Z(kT)[I + C5C2Z (k)71 A). By (4.107) we
have
1
o(k) = Z(kT+)[I+:y—QX(k‘r)BQT{I(k)BéX(k‘r)Z(k‘r*’)]‘1

[+ ::EZ(’“T*)X(kT)BzT{l(k)BQX(kT)]“Z(k¢+).(4.108)

We also have

(Ad - BQTQ_IRQ)(k)
(Ad — Roy T5y Co) (k)

N(k)Aq,
AgNy (k) (4.109)

and
Ag + (FizT, * R2)(k) + Fiz(k)C2
1
= [I- ?q)(k)X(kT)BQT{I(k)BéX(kT)]“l
x Agll + Z(kT)C4C2]™ L. (4.110)
Using (4.108), we can rewrite (4.110) as
Ag + (F{zT, * Ro)(k) + Fiz(k)C2
1
= [I+ :y—QZ(kT*’)X(kT)BgT{l(k)BéX(kT)]

x AglI + Z(kT)C5C2)™ . (4.111)
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Proof of Lemma 4.11: Let Q(¢t) = Z(t) — Y(¢) — ;Ylg-Z(t)X(t
(ks —1)7 < s < ky7. Then as in the proof of Lemma 2.17 for s <t
kT <t < (k+ 1)1, k > k, we have

)Y (t) and
< kg7 and

Q) = [4+ 5 BB X(Q() + QM + Y (CICA).
Since Q(s) = 0,

Moreover, if Q(k7%) =0,
Qt) =0, kr <t < (k + 1)r.

To complete the proof, it is enough to show Q(k7%) = 0 when Q(k7) = 0.
Since

Qktt) = Y(krt) = Z(kr*)[I - ;—QX(kT+)Y(kT+)]

= Y(krt) = Z(krt)[I - ’%X(kT)Y(kT—*_)],

it suffices to show
Y(krt) = Z(kr )T - ;IEX(kT)Y(kTﬂ]. (4.112)

Since Q(k7) =0, by Lemma 2.18 we have

Y (kT)

Y(kT™)
= ZktT)[{ + ::EX(]CT—)Z(]CT_)]

= Z(kT)I + %X(k'r—)Z(kT)]

and using the argument in the proof of Lemma 3.22

Y(ktt) = AgY(k7)[I + CLCLY (k7)1 A

7+ %@(k)X(kT)[I + BBy X (k7)Y @ (k). (4.113)

By (4.106), (4.113) and the argument in the proof of Lemma 3.22, we obtain
(4.112). '

Proof of Lemma 4.12: As in the proof of Lemma 2.19, £ = (I — ;;ITXY):z:
satisfies

= —[A+ ;IEBIBQX(t)]’i:
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for s <t < kyr and k7 <t < (k+ 1)7, k > k;. Using a similar calculation in
the proof of Lemma 3.23 with (4.106), (4.112) and

1 -1
Zkm) =Y(kr)[I - 7—2~X(kT—)Y(kT)] ,

we obtain
(Aa+ FigT; * Ry + FizCa) (k)
= U= X ()Y (kn))(Ad = Roy Tt Go) ()T = — X(kr)Y (k)]
and hence we have the assertion. 1
Proof of Theorem 4.8: Necessity of (a). Suppose that there exists a
~v-suboptimal controller u = Ky on [to, T for the system G given by (4.42)-

(4.44). Then by Theorem 4.12, there exists a nonnegative solution X (t), t €
[to, T] to (4.46)-(4.48). Moreover for the system G; the following holds:

1
o (2) Maaxe = WHX (o) Bt | T 4 757 Ra) I
1
+7* | w e =7 lw - ?BQXQU IZ: -
Setting u = Ky and w = ;lfB’lX:r, we obtain

Ui+ (2 ) i) = 1o P d (2 Lo
RH' X (to)Hh ++% || w |12

v

Y

and
(| h|? + || wa l2) > KH' X(to)Hh

for any wqy- Hence
2\ h|?>> WH'X(to)Hh

which implies (4.49) and (i) holds.
Now consider the systems

T = Arx+ Byw, kr <t < (k+ 17,
(k%) = (Aa— BTy 'Ro)(K)a(kr) + BoT; ¥ (k)u(k), (4.114)
o] = Lmat
z4(k) | T | =Di2(Ty ' Ry)(k)x(kr) + DioTy 2 (k)u(k) ]’
r o= —-’Y%B{X(t)x + w,
21 = F:E(T)»

z(ty) = Hh
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and
o= A+ %BIB{X(t)]i + By, kr <t < (k+ 1)r,
F(ktt) = Aqz(k7) + Bau(k), (4.115)
(k) = (Ty *Rg)(k)Z(kr) + TF (k)u(k),
y(k) = CQ.”Z‘(/CT) + Dzlwd(k)

with a controller
u = Ky. {4.116)

Then we have the following.

Lemmma 4.25 Let X be the solution of (4.46)-(4.49).
(a) For the system (4.114), the following holds:

pA
|2 [P+l (zd) Bexe = 7 Ilwls +RH X (to)Hh
+lvlz =P lrli. (4.117)

(b) The system G; with a controller u = Ky is equivalent to the interconnec-
tion of (4.114) and the feedback system (4.115) with u = Ky.

Proof. By direct calculation, we can show (a). The proof of (b) is similar to
the proof of Lemma, 4.23. B

Now introduce the feedback

h
v=Q ( r ) (4.118)
Wy

P (t)p+ B(t)r, kr <t < (k+1)r,
plkr*) = Ag(k)p(kr) + Ba(k)wa(k), (4.119)
r = Calk)p(kr) + D(k)wa(k).

h
( ZI) =G (zfd) (4.120)

be the input-output operator of the closed-loop system (4.114) and ({.118).
Then || G ||< 7y if and only if Q € Q. where

of the form

Lemma 4.26 Let

Qy = {Q:Q € LR™ x L%(ty, T;R™) x [3(1, N;R™"); (3(1, N; R™));
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Q is of the form (4.119) with
h
1yt T
nQ(r)M+hHXmums¥uM?H(an%m)
wy

for some 0 < d < ~}.

Proof. For each rg € L?(to, T; R™), there exists a w € L2(to,7; R™) such
that the internal signal r in (4.114) and (4.118) coincides with 7o and

ah P+ ([0) Bawe) < 0241 (%) Bewr
ex(lh 1 (12 Ve

for some ¢; > 0, i = 1, 2. It suffices to take wo given by

IA

£ = Az + Bi[ro+ %Bin], kr <t < (k+1)T,
8
2(kt*) = (Aq— B2y 'Ry)a(kr) + BTy Fuo(k),
1
wg = T9+ ’Y—,_,BiX.’It,
.’It(to) = Hh

where vp = Qro. Now suppose || G ||< « for (4.114) and (4.118). Then for

some 0 < d < v
w z
AP+ () B > 121 (2) B
7 1w s+ X (t0)H

+lvliE =l i,

Vv

v

by (4.117). Hence

h
I Q( r ) |2 +h' H' X (to)Hh

Wq

IA

AU+ () W) = 2 = 41 () W)

< Boa-@lnP () ) e

which implies Q € Q.. Conversely, let Q € Q,. Then by (4.117) we have

z
a1 (%) Pee
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h
= 7wl +hH' X (to)Hh+ || Q ( r ) I =% Il IIEe

Wq

IA

. r
P lwls +2n P+ (] ) ) =2 0 I
b b w w
< AP () W) = 02 =) P () e
2 2

v —d w
< - (2) e

Hence || G ||< 7. ]

Remark 4.5 If || G || < v, then

h
1., ., T
1o{ Vi = AP e C R (] ) e
Wa v
w
—t =)+ () e
= R P+ I+ s 1)
w
=1 () W)
where
~ Y
h= (1 L X(tO)H) .
Using
w AT T
nP el () Bexe R 20 () )
we can show Q € Q’, where

Q) = {Q:Q e L®B™ x L(to, T;R™) x I*(1, N;R™<); I*(1, N;R™));
Q is of the form (4.119) with
h
IQ ( r ) I +h'H'X(to)Hh < d*([ h|* + || (ur,d) 172 x12)
Wd

for some 0 < d < ~v}.

Let Q be the input-output operator of the closed-loop system (4.115) and

u = Ky so that
[ A
v=Q| r |-
Wy
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Then Q has the form (4.119) and by Lemma 4.26 we have Q € Q’,. Hence
u = Ky is y-suboptimal for the Hoo-problem defined by

5 - A+ %BIB'IX(t)]i v Bir, k7 <t < (k+1)7,
z(ktt) = AqaZ(kT) + Bau(k), (4.121)
w(k) = (Ty  Ro)(k)z(kr) + T3 (K)u(k),
y(k) = Cax(kT)+ Dawy(k),
i(te) = H( - 71—2H'X(t0)H)"1’}~z

with h = (I — ;lyH’X(to)H)%h. The adjoint of (4.121) is given by

-z = [A+%B1B1X(t)]'i, kr <t < (k+1)T,
FktT) = ALE(kr) + (RYTy D) (k)da(k) + Chatk),  (4.122)
= = [aito] = [ogion)
— lz(k)] o [ Dyak) ]’
G(k) = Byi(kn) + T (k)a(k),
5 = (I—’:—zH’X(to)H)‘%Hi(to).

Since Tz-21~ is nonsingular and its inverse is uniformly bounded, the Hy,-control
problem for this system is the DF-problem for the backward type and hence
by Theorem 4.16, there exists a nonnegative stabilizing solution Z(t) t €
[to, T) to (4.53)-(4.56).

Sufficiency of (a) and the characterization in (b) of Theorem 4.8.
Consider the systems (4.114) and (4.115). Then by Theorem 4.16, the set of
the controllers given by (4.57) satisfies Q € Q! where Q is the input-output
operator of the closed-loop system (4.115) and (4.116). Similarly to the proof
of Theorem 2.9, we consider e = T — £ and the adjoint system. Then we can
directly show that the controller (4.57) is y-suboptimal, i.e., @ € Q. Hence
sufficiency of (a) and (b) hold. 1

Proof of Theorem 4.9. Necessity of (a): Suppose a vy-suboptimal controller
exists. Then by Theorem 4.12 and Corollary 4.9, there exist nonnegative so-
lutions X, Y and Z of (4.46)-(4.49), (4.50)-(4.52) and (4.53)-(4.56), respec-
tively. By Lemmas 2.18 and 4.11, T — -_;lyX(t)Y(t), t € [to, T] is nonsingular
and the eigenvalues of XY have the form

72
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Since X and Z are nonnegative and uniformly bounded in T', A € A(XZ)
are nonnegative and uniformly bounded. Hence p(X ()Y (t)} < d? for some
0 < d < 7 and the condition (iii) holds.

Sufficiency of (a) and the characterization in (b). Note that I —
;I;X (t)Y (t) is nonsingular and [/ — ;I;X (£)Y(¢)]~?! is uniformly bounded in
t € [to, T|. Define '

Z(t) = Y ()1 - j—QX(wY(t)rl, t € [to, T].

Then Z(to) = H[I — ;‘;H’X(to)H]‘lH’. Similarly to the proof of Lemmas
2.17, 3.22 and 4.11 we can show Z(t) = Y (t)[1 — ;’,X(t)Y(t)]_1 satisfies the

Riccati equation (4.53)-(4.56). The rest of the proof follows from the proof
of Theorem 4.8. [

Proof of Theorem 4.10. Note that if X and Z are the nonnegative stabi-
lizing solutions of (4.46), (4.47), (4.49) and (4.53)-(4.56), respectively. As in
the proofs of Theorems 2.11 and 3.11, we can show that the assumptions of
Theorem 4.17 are satisfied for the system (4.122). Then the proof is similar
to the proof of Theorem 4.8. [

Proof of Theorem 4.11. The proof is similar to that of Theorem 4.9. We
only need to show Z =Y (I — ;‘,X Y)~! is a bounded nonnegative stabilizing
solution of (4.53)-(4.56). But this follows from Lemma 4.12 and the stabilizing
property of Y. [

4.2.5 The General Case

Consider the general jump system G;

Z = Az + Bywc+ Bau,, kr <t < (k+ 1)1,
:L‘(k,T+) = Agz(kt) + Biqwg(k) + Baqug(k), (4.123)
. = [ Zc ] _ [ Ciz + Diau. ]
zq(k) C14z(k7) + Digqua(k) |’

y = [ Ye ] _ [ Caz + Dnw. ]

: yd(k,) ng:l,‘(kT) + Dzld‘wd(k) !
z1 = Fz(T), to N7 <T < (N+ 1),

z(te) = Hh, O0<to<T

where z € R" is the state, (w;,wg) € R™ x R™ ig the disturbance,
(uc, ug) € R™2 x R™24 is the control input, (21, zc, z4) € R? x RP1 x RP14
is the controlled output, (y.,ys) € RP? x RP2 is the sampled observation,
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h € R™ and all matrices are of compatible dimensions. For the jump system
(4.123), we assume

JG1: DIIQ[CI D12]=[0 I], D’ud[Cld Dlgd]:[o I],
JG2: Dy (B} Diyl=[0 I], DalBly Diygl=[0 I,
JG3: ([A, A4, [Bi, Bidl, [C1,Ch4]) is stabilizable and detectable,
JG4: ([A, A4], [B2, Bad], [C2, Ca4)) is stabilizable and detectable.

We assume that any feedback controller u = Ky of the form:

p = A@t)p+B(t)y., kr <t < (k+1)7,
p(kr*) = Aa(k)p(k T)+Bd( Jya(k), (4.124)
Ue = A( ) (t)ym
ua(k) = Ca(k)p(kt)+ Da(k)ya(k)

where all matrices are compatible dimensions and uniformly bounded. Con-
sider the system G and the controller u = Ky of the form (4.124) on [to, T
Define the input-output operator of the closed-loop system by

()< (z)

G € L(R™ x L%(to, T;R™) x [2(1, N;R™14);
R? x L%(to, T; RP*) x I%(1, N; RP14)).

Then

To give the solution of the Hyo-control problem for the system G, we intro-
duce the following Riccati equations with jumps. For definiteness we assume
O<to<T.

-X = AX+XA+ X( BIB’ B;B))X + C1Cy,
kr < t <(k+ 1), (4.125)
V(k) > al for somea >0, . (4.126)
X(kt™) = ALX(kT)Aq — (RyT;'R2)(k)

+(FIV F1)(k) + C14Cha, (4.127)

X(T) = F'F, (4.128)

H'X(to)H < d%I forsome0 <d <7 (4.129)

and
Y = AY +YA' + Y(l?c;cl ~ CYCR)Y + By
¥

kr <t<(k+1)r, (4.130)
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Vy (k) > al for some a > 0, (4.131)
Y(k‘r+) = AdY(kT)A; (RIQYT2 ng)(k)
(FanyFlly)( )+ B]dB;d, (4.132)
Y(t0) = HH (4.133)
where

T1(k) = v*I ~ By4 X (k7)Bg, Ty(k) = I + By X (k7)Bag,
Ri(k) = By, X (kT)Aq, Ra(k) = By, X ( kT)Ad,
S(k) = BédX(kT)Bld, V(k) (1’1 + S’ 5 1S)(k),
Fi(k) = [V7Y(R1 — S'T; ' Ry)](k), Fy(k) = —[T5 ' R2 + SF)|(k),
le(k) = ’)’21 CldY(kT)Cld, Tgy( ) =TI+ CQdY(kT)C2d,
Rly(k) = CldY(kT)Afi, ng( ) ngY(kT)Ad,
Sy (k) = C2dy(kT)C{d7 Vy (k) = (Thy + Sy Ty Sy ) (k)
FIY(’C) Vy (RIY Sy Tay Ray)](k),
Fy (k) = —[Tgy (Ray + SYFly)] (k).

If we wish to take ty = 7, the condition (4.129) becomes
H'X(t7)H < d*I.

We also need the following Riccati equation depending on X:
. 1 1
Z = (A+ 7—2B1B{X)Z+Z(A+?BIBQX)HLBIB{

+Z(%XBzBéX — C3C2)Z, kr <t < (k+1)7, (4.134)
v

Vz(k) > al for some a > 0, (4.135)
Z(ktt) = AaZ(kT)Aj — (RyzT5, Rez)(k)
+(F{zVzF1z)(k) + B1aBi,, (4.136)
Z(t)) = H(I- %H’X(to)H)-lH' (4.137)
where
Ax(k) = (A + BiaF1)(k), Bix (k) = v(B1aV ™~ 7)(k),

Cix(k) = [T, (Rz + SF)|(k),
Dnix(k) =T, tgv- H(k),

pY 1
Dy2x (k) = T (k), Doy x (k) = v(D21aV ~2)(k),
le(k) = ’)’21 — DIIXDIuX - CIXZ(’CT)C;X, ng(k) =1+ CQdZ(kT)Céd,
Rlz(k) = Clxz(kT)AIX + DllXBiX’ Rgz(k) = CQdZ(kT)AIX,

SZ( ) C2dZ(kT)Clxa

Vz(k) = (le+Sz 2 52)(k),
Fiz(k) = [Vz; ' (Raz - s, 2 Toz R2z)l(K),
Faz(k) = —[T5; (Raz + SzF12)](k).

Now generalize the results in the Section 4.2.1.
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Theorem 4.18 Assume JG1 and JG2.

(a) There exists a y-suboptimal controller u = Ky on [to, T} tf and only if
the following conditions hold:

(i) There ezists a nonnegative solution X(t), t € [to,T| to (4.125)-(4.129).
(i) For the solution X in (i), there erists a nonnegative solution Z(t), t €
(to, T| to (4.134)-(4.137).

(b) In this case the set of all y-suboptimal controllers is given by

p = [A+ ;—2BIB;X(t)]p, kr <t < (k+1)7,
plkt™) = {id(k)P(kT) + Bi(K)y(k) +]§2(k)8(k), (4.138)
u(k) = C(k)p(kT) + Dy(k)y(k) + Da(k)s(k),

gk) = T3 Hk)-Caplkr) + y(k)),
s = Qg QEQ,
where
Aq(k) = [(Aq — BT Ry)W)(k),
Bi(k) = (4a - Bsz"Rzg(k)?(kT)CéTE(k),
By(k) = L([F{; + B2T; *1V2)(k),
C(k) = —T; *Ra¥(k),
Dy (k) = —(T; | Ry)(k) Z(k7)C2T35 (k)
Da(k) = L(T; Fv2)(k),
(k) = I ~ Z(kT)CyT5, (k)C2
.and

Qy = {QeL(L*(to, T;R7) x 12(1, N;RP);
L%(to, T; R™) x I3(1, N;R™24)) :

Q is of the form (4.124) and || Q [|[< v}
Theorem 4.19 Assume JG1 and JG2.
(a) There exists a y-suboptimal controller u = Ky on [to, T| if and only if
the following conditions hold:
(i) There exists a nonnegative solution X to (4.125)-(4.129).
(i) There ezists a nonnegative solution 'Y to (4.150)-(4.133).
(i) p(X(t)Y (t)) < d? for any t € [to, T) and for some 0 < d < 7.
(b) In this case the set of all y-suboptimal controllers is given by (4.138) with
Z replaced by (I — ;};YX)“Y.

Next we consider the H-control problem on the infinite horizon [tg, 00).
Then we need the following definition.
Definition 4.12 (a) The solution X of (4.125)-(4.127) is called the stabi-
lizing solution if

1
(A + (;53131 — ByB3)X,Aq — BiaFy + Bzsz)
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s exponentially stable.
(b) The solutionY of (4.130)-(4.132) is called the stabilizing solution if

1
(A + Y(?Cicl —C3C2), Ag + FiyCiq + Fz'yC2d)

s exponentially stable.
(c) The solution Z of (4.134)-(4.186) is called the stabilizing solution if

1 1 ’
(A + ?BIBQX + Z(;Q—XBQBQX - C3C2), Ag + F{;Ci1x + F2202d>

is exponentially stable.

Theorem 4.20 Assume JG1-JGA.

(a) There ezists a y-suboptimal controller u = Ky on [tg, ) if and only if
the following conditions hold:

(i) There erists a T-periodic nonnegative stabilizing solution X to (4.125)-
(4-127) and (4.129).

(i) For the solution X in (i), there erists a bounded nonnegative stabilizing
solution Z to (4.134)-(4.137).

(b) In this case the set of all y-suboptimal controllers is given by (4.138) with
Q internally stable.

Moreover the lim,—.co Z(t + nt) exists (denoted by Z.(t)) and Z, is a 7-
periodic nonnegative stabilizing solution of (4.134)-(4-156).

Theorem 4.21 Assume JG1-JGA4.

(a) There exists a y-suboptimal controller u = Ky on [tg, ) if and only if
the following conditions hold:

(i) There erists a T-periodic nonnegative stabilizing solution X to (4.125)-
(4.127) and (4.129).

(i1) There exists a bounded nonnegative stabilizing solution Y of (4.130)-
(4.183).

(i) p(X(£)Y (t)) < d?, for any t € [tg, 00) and for some 0 < d < 7.

(b) In this case the set of all y-suboptimal controllers is given by ({.138) with
Z replaced by (I — ;lg-YX)_lY and Q internally stable.

Moreover the lim,_.oc Y (t + n1) exists (denoted by Y-(t)) and Y, is a 7-
periodic nonnegative stabilizing solution of ({.130)-(4.132).

4.3 H Filtering

The filtering problem is to find an estimate of the state based on the given ob-
servation. The H, filtering theory is well-known for continuous- and discrete-
time systems as we see in Chapter 2 and 3. Sun et al [67] considered the Hy,
filtering for a time-invariant continuous system with sampled observation. In
this section we consider the H.-filtering problems for jump systems.
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Consider the jump system GFp;:

z = Az + Bw, kr<t<(k+ 1T,
z(kt*) = Agz(kt)+ Bywa(k), (4.139)
z = Lz,
y(k) = Cz(kr)+ Dwa(k),
zz = Fz(T),0 < Nr<T<(N+1)71 (4.140)

with initial condition
z(to) = Hh, 0 <ty <7 (4.141)

where £ € R" is the state, (21, z) € R7 xR is the state to be estimated, y €
RP2 is the sampled measurement, (w, wq) € R™ x R™4 is the disturbances,
h € R™ and all matrices are of compatible dimensions. For this system we
assume

JF1: D[B, D'|=[0 I].
Then the filtering problem on [to, T] is to is to find necessary and sufficient
conditions for the existence of a causal filter based on y of the form

& = A(t)z, 2(to) =0, kT <t < (k+ 1)7,
#(krt) = Ag(k)z(kT) + Bk)y(k), (4.142)
2 = C(t),
£ Fz(T)
such that
a—a et B+ () ) (424)

for some 0 < d < vy where all matrices in (4.142) are uniformly bounded
in t and k and (2, 2) is the estimate of (z;,2) given by the filter. We give
necessary and sufficient conditions for the existence of a filter with property
(4.143) (y-suboptimal filter) and characterize all y-suboptimal filters.

We can rewrite (4.139)-(4. 141) and (4.142) as

[i] B [ HO] [ ]w’k7<t<(k+1)77

o - (il o] oo ]
() = =)-20 =12 -co1|F]®
en = z—5=|F —F) ;](T),

i - [4]
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Define the operator

G € L(L*(to, T;R™) x [2(1, N;R™4); R x L*(to, T; R™))

(2)-e(z)

Then (4.143) is equivalent to || G ||< d. The adjoint G* is given by

()G,

= [gl Af(zt)] [E] + [_C,L,I(t)] v, kT <t < (k+ 1)1,

[ o] [ e
[B;g(kr) +%’§B’(k)é(kr)] ’

o) [§] o

o - (5]

This may be regarded as a closed-loop system

by

&
|

—£ = A¢+Lv kr <t<(k+1)7,
E(kr™) = ALE(kT) + C'u(k), (4.145)
Cc = BI{v

Ca(k) = BYE(kT)+ D' u(k),

T
¢ = H'(to),
§T) = F'f

with controller 4 = K*n

£ = AME+[0 —C'B)]y, kT <t<(k+1)r,
£kr™) = Ay(k)é(kr),

ulk) = B'(k)(kr),

&T) = -Ff.
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The system (4.145) is of full information type and (4.143) is equivalent to
[ o 12+ |l (g:) |3242<d?| v]|2: forsome 0<d < 7.
The Riccati equation with jumps corresponding to this is

Y = AY+YA +BB + %YL’LY, (4.146)

kr <t < (k+1)T,

Y(ktt) = AgY(kt)A)+ ByBj — (Ryy Ty 'Roy)(k), (4.147)
Y(toy) = HH', (4.148)
FY(T)F' < d?I for some 0 < d < v (4.149)
where Roy (k) = CY (k7)A, and Toy (k) = I + CY (k7)C'. As Q7 in Chapter
2, we define the set of controllers of backward type:
Qy = {Q* € L(R?x L%(to, T; R”); I’(1, N;R™)) :

FFY(T)F'f+ | @° (ﬁ) B< (| f 12+ 1 %)
for some 0 < d < 7}.

Let Q7 be the set of adjoint systems of Q* € Q3. Modifying Theorem 4.14
we have the following.

Theorem 4.22 Assume JF1.

{a) There exists a y-suboptimal ﬁlter of the form (4.142) if and only if there
exists a nonnegative solution Y (t), t € [to,T) to (4.146)-(4.148).

(b) In this case the set of ~- suboptzmal filters is given by

i = Ai+ %YL"U, Z0)=0, kr <t < (k+ 1T,
2(kt*) = [Aa~ (RoyTyy )(K)CE(kT) + (Ryy Tpy ) (K)y(k), (4.150)
2 = L& -v,
r(k) = Tpf (k)[-Ca(kr) + y(k)],
v = er;

Fa(r) - Qi @= (&) € @
Proof. The existence of (4.146)-(4.148) follows from Theorem 4.14. The con-
dition (4.149) can be obtained similar to the proofs of Theorems 2.13 and
3.13.

To show (b) recall that the set of all controllers u = K*7n with || G* ||< v
is given by

N>
—
Il

(k) = (T R D) + T 0@ (1 phe )0 (a15)
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where Q € Q.,. Then the closed-loop system (4.145) with (4.151) is equivalent
to

—€£ = A€+[0 L'|n kr<t<(k+1)T,

Ekr) = (A4~ C'(Tp! Ray)(R)IE(kr) + C'T} (R)s(k), (4.152)
¢ = BYg, .
Ca(k) = [Bl— DTy} Ray)(RE(K) + D'Ty (k)s(k),
1
p = —?LYEHO I]n,
_ oo ff
s = o 7).
§T) = F'f.
In view of this we can show that the controller (4.151) is equivalent to
£ = AE+[0 L' kr<t<(k+1)7,
£kr™) = [A} - C'(T! Roy)(R)JE(kT) + C'Ty (k)s(k), (4.153)
k) = —(TptRay)(WEkT) + T (R)s(h),
1 “
p = —7—2LY£+[0 In,
s = Q*p,
&T) = F'f.
In fact for (4.145) and (4.153), e = £ — £ satisfies
—-é = Ae, kr<t<(k+1)r,
e(kt™) = Ale(kr),
e(T) = 0

and § satisfies (4.152). Now consider the adjoint of (4.145) and (4.153) which
is given by the closed-loop system:

t = Az +Bw+ (I 0]y, kr<t<(k+ 17,
z(ktt) = Agz(kt)+ Bawy(k), (4.154)
Z = Lx+[0 I]u,
y(k) = Cz(kt)+ Dwa(k),

z(to) = Hh,
zZ = F.’E(T’)-{-u

and

: 1
z = A.’i:+;2-YL'v, kr <t < (k+ )T,
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2(kt*) = [Ad— (Ray Ty )(K)CIE(kT) + (Ray Ty )(K)y(k), (4.155)
B o]. [o
- [g) -
r(k) = Tyt (B)[-Ca(kr) +y(k),
v = er7 ” Ql “< Y
ur = —Fz(T)+ Qor,
Z(toe) = 0
where
Q= (8;) €Qy. (4.156)

Then || G* ||< v is equivalent to
|21 2+ 2 ]2.<d? | (;U ) 32,2 for some 0 <d < 7. (4.157)
d

Note that the (4.154) except for Z coincides with the system Gpg;. Thus
(4.155) and (4.156) can be easily interpreted as the filtering result in (b). g

Next we consider the filtering problem on the infinite horizon [tq, 00).
Again consider the system Gp;:

z = Azr+ Bw, kr <t < (k+ )7,
z(kr*) = Agz(kr)+ Bywa(k), (4.158)
z = Lz,
y(k) = Cz(kr)+ Dwa(k),
z(te) = Hh, 0<tyo<T.

Then the Hyo-filtering problem on [tg, o0) is to find a y-suboptimal filter, i.e.,
a filter of the form

A(t)&, &(to) =0, kT <t < (k+ )T,

E(ktt) = Ag(k)&(kr) + B(k)y(k), (4.159)
: = Ck)i
such that
2= 1< AP+ 1 (2 ) (4.160)

for some 0 < d < «. For the system (4.158) we assume JF1 and
JF2: ([A, A4), [B, Bd], [C, 0]) is stabilizable and detectable.

Then modifying Theorem 4.15 we have the following.
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Theorem 4.23 Assume JF1 and JF2.

(a) There exists a y-suboptimal filter if and only if there ezists a bounded non-
negative stabilizing solution Y (t), t € [to, c0) ((A + ;IEYL’L, Ag - R;,T;lc)
is exponentially stable) to (4.146)-(4.148).

(b) In this case the set of all y-suboptimal filters is given by (4.150) where
Q~ C L(I%(1, 00; RP2); L?(tg, 00; RPY)) is defined as in Theorem 4.22. More-
over, the set of internally stable filters is given by (4.150) if we restrict Q to:
be internally stable.

Moreover, the lim, .o Y(t + n7) exists (denoted by Y,(t)) and Y, is a 7-
periodic nonnegative stabilizing solution of (4.146) and (4.147).

Proof. Using Y and repeating the same procedure as in the proof of Theorem
4.22 for the system (4.145), we can show (b). ]

Corollary 4.12 There ezists a filter of the form (4.142) such that

~ ~ w
sup (| 21— 51 [2+ | 2= 2 [a] < d( A P + | ( ) i)
T2>To wq

for some 0 < d < 7y if and only if there erists a bounded nonnegative stabiliz-
ing solution of (4.146)-(4.148) with

FY(T)F' < d?I, T > Ty for some 0 < d < 7.

If h = 0, we can construct the 7-periodic y-suboptimal filters.

Corollary 4.13 Consider the system Gp with h = 0 and assume JF1 and
JF2.

(a) There exists a y-suboptimal filter if and only if there exists a T-periodic
nonnegative stabilizing solution Y (t), t € [to,00) to (4.146) and (4.147).

(b) In this case the filters (4.150) is y-suboptimal where

Q. C L(I2(1, 00; RP2); L(tg, 00; RPY))

is defined as in Theorem 4.22. If Q is 7-periodic, then the filter (4.150) is
T-periodic and y-suboptimal

Example 4.6 Consider the H,-filtering problem for the following system
with a sampled observation

i = [_01 (l)]z+[(l)]w, (0) = Hh,
At) = [0 1]s,

y(k) = [1 0]z(k)+ wa(k)
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which satisfies the assumptions JF1 and JF2. We consider the Hoo-filtering
problems for the following two cases

(a) H=0, (b)H:zm.

In the case (a) there exists a bounded nonnegative stabilizing solution Y (t) =
[}),?2 };}22] (t) of (4.146)-(4.148) for any v > 1.317 which converges to a pe-
riodic solution. In the case (b) there exists a bounded nonnegative stabilizing
solution Y (¢) for any v > 1.318 which also converges to a periodic solution.
Figures 4.14 and 4.15 show the bounded nonnegative solutions with v = 2
of the cases (a) and (b), respectively. Figure 4.16 gives the asymptotic con-
vergence of the outputs of central filters in the cases (a) and (b) to z where
v = 2, the initial conditions z;(0) = 1, 2(0) = 0 and the disturbances are
w(t) = e~ 1% 5in10¢, wg = 0. The central filter in the case (b) incorporating
initial uncertainty gives a better estimate.

T

Yar) T

AT

- Yix(t)

: Case (a)

Y(®

T T
1

I

1

1 1 1 | 1 1 1

10

ume (sec)

Figure 4.14: The bounded nonnegative stabilizing soultion Y (t) of the case

(a)

4.4 H, Control

In this section we consider the Hy control problem for jump systems which
covers the sampled-data Hy control problem in Chapter 5.
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Figure 4.15: The bounded nonnegative stabilizing soultion Y (t) of the case

(b)

Outputs of the filters

time (sec)

Figure 4.16: The outputs of the filters with v = 2
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4.4.1 Main Results
Consider the jump system G;:

T = Az+ Byw, kr <t <(k+ 1T,
z(kr*) = Aaz(kT)+ Bau(k), (4.161)

)= [ oo
y(k) = Cax(kt) + Da1wg(k)

with initial condition

z

z(0) =0

where z € R" is the state, (w, wq) € R™ x R™ is the disturbance, u € R™2
is the control input, (z., z4) € R?* x RP¢ js the controlled output, y € RP? is
the sampled observation and all matrices are of compatible dimensions. For
this system we assume '

J1: Dilez =1,

J2: D21D'21 = I,

J3: ([4,Ad],[B1,0],[C1,0]) is stabilizable and detectable,

Ja: ([4,Ad],[0,Bg],[0,Cy) is stabilizable and detectable.

Consider a controller © = Ky of the form:
i = Az, kr <t<(k+1)r,
&(krt) = Agi(kr) + By(k), (4.162)
w(k) = Cz(kr) + Dy(k).

To formulate the Hz-problem for the system G, we introduce the follow-
ing set of controllers

K = {K : K is of the form (4.162) and internally stabilizes the system G;}.

Then the Hz-norm, || G ||2, of the closed-loop system G; and a controller
u = Ky is well-defined and our H;-problem is to find a controller K € K
which minimizes || G ||2. To give the solution of this problem we introduce
the following Riccati equations with jumps:

~X = AX+XA+CC, kr<t<(k+1)T, (4.163)
X(kt™) = A X(kT)A4 — (RyT; Ry)(K) (4.164)
and
Y = AY+YA'+%BI kT <t<(k+1)1, (4.165)
Y(kr*) = AgY(kT)Ay — (Ryy Ty Rav)(k) (4.166)

where Ry(k) = By X (k1)Ag, To(k) = I + ByX (k7)By, Ray (k) = CoY (k1) A,
and Toy (k)= I + C;Y (kr)Cj.
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Definition 4.13 (a) The solution X of (4.163) and (4.164) is called a sta-
bilizing solution if (A, Ag+ B2 F), F = —T2_1 (0)R2(0) is exponentially stable.
(b) The solution Y of (4.165) and (4.166) is called a stabilizing solution if
(A,Aq+ HCy), H = —RYy (0)T51/ (0) is exponentially stable.

By Theorems 4.3 and 4.4, we have the following result.

Lemma 4.27 Assume J1-J4.
(a) There erists a unique T-periodic nonnegative stabilizing solution X to

(4.163) and (4.164).

(b) There exists a unique T-periodic nonnegative stabilizing solution Y to
(4.165) and (4{.166).

Remark 4.6 The 7-periodic solution Y of (4.165) and (4.166) is obtained
as

lim Y (t + nr)

n—oo

where Y is a solution of (4.165) and (4.166) with ¥ (0) = 0.

Consider the stabilizing controller based on the feedback gain F and the
observer gain H:

P = Az, kr<t<(k+1r,
#(ktt) = (Aq+ BoF + HCy — BoLCy)i(kT)
—(H — ByL)y(k),  (4.167)
u(k) = (F — LCy)i(kT) + Ly(k)

where L = FY (0)C,T5 (0)

Theorem 4.24 Assume J1-J4 and consider the Ha-problem for the system
G ;. Then the controller (4.167) is optimal and

1 T
. 2 _ it ’
min IGlz = ‘r/(; tr.B1 X (s)B, ds

+tr. TR F (I + Y(0)ChC2) " Y (0) F (4.168)

where T2 = TQ(O) = Tg(k’r).

4.4.2 Proofs of Main Results

To prove Theorem 4.24 we need some preliminary results. Consider the sys-
tem (4.161) and the controller u = Ky of the form (4.162). Let X be the
solution of (4.163) and (4.164). We introduce

v(k) = T [u(k) — Fz(kr)]
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and the system G;:

T = Az+ Biw, kr <t<(k+1)T,
z(kr*) = Agz(kr)+ Bau(k), (4.169)
w(k) = ~T#Fa(kr) + THu(k),
y(k) = 0237(1‘37') + med(k).

Then z = [f‘] can be written using v as follows:
Zd

& = Ax+ Byw, kr <t <(k+ 1)1,
s(ktt) = (Ag + BoF)a(kr) + BoTy Tu(k),
_ Zc ] _ Cl:L‘
‘= Zd(k) N Dlzﬁ.’L‘(kT) + D12'1'2_7U(k)

This system is exponentially stable and
z = Ggw + Ujv

where G¢; and U; are given by

£ = Af+Bw, kr <t <{k+1r,
Ekrt) = (Aa+ BoF)g(kT),

= ][]

Ca(k) Dy FE(kT)
and
t = Az, kr <t<(k+1)7,
o(kt?) = (Agq+ BoE)z(kr) + BoTy Tulk),
_ 2c N CII . ]

‘= [Zd(k)] - [Dlzﬁ‘:c(kr)+ Dy T, 2v(k)

respectively. Then we can easily see:

Lemma 4.28 (a) The system G; is equivalent to the interconnection of the
system G; and (G;,U;). )
(b) K stabilizes the system G; if and only if it stabilizes the system G;.

Next we shall show the properties of G; and U;.
Lemma 4.29 (a) || U;jv || L2xz=|| v |1z for any v € 1%(0, oc; R™2).

(b) < G¢jb(- — s)wo,Ujv >paxiz= 0 for any we € R™, v € 12(0, 00; R™2)
withv(0) =0 and 0 < s < 7.
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Proof. (a) We can rewrite the Riccati equation (4.163) and (4.164) as

-X AX+ XA+ CiCy, kT <t < (k+1)7,
X(kt™) = (Aa+ B2F)' X(kr)(As+ BoF) + F'F.

By direct calculation we have for k7 <t < (k +1)7

d,, _
3 X020 = — | 2(0)
and at t = k7
' (ktH) X (kr)z(kt+) — 2'(kT) X (k7 7)x(kT) =| v(k) | — | za(k) |?,

where we have used R R
B,X(0)(Aq + B2F) = —F.

Upon integration from 0 to oo we have

00 oo 0 4 ,
S AREXC e+ 32l ok) * = | 2ath) 1Y | G oxome
—2'(0F) X(0)z(0%)

| v(0) I* — | 24(0) [

and we conclude
| vlliz=|l 2c Iz + || za liz=Il Ujv l|L2xsz -
(b) Consider G.; with w(t) = §(t — s)wo, 0 < s < 7. Then

S(t, s)Biwe, s<t,
6(t)={0( B >t

where S(., -) is the state transition matrix of (4, Ag + B2 F). As in the proof
of (a) we have

[o ] d ,
| FEOxO

= —€(sT)X(s)z(sT)

_ / ) zelt)dt — 3 k) zalk)
s k=1

where z 1s the state of the system Uj. Since §(t) = 0, t < s and z4(0) =0,
we have

0 =/ GO ze(t)dt+ 3 Culk)za(k) =< Gesb(-—T)wo, Uv >poxis -
Y k=0
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Now we return to the Hp-control problem for the system Gj;. Suppose K
stabilizes the system G; and hence G;. Let G be the input-output operator
of the closed-loop system G; with u = Ky, i.e.,

v=_G ( w ) .
wd
Note that

G [6(- — s)wo] ~ Gl - sywo + UG [6(. _Os)wo] ’

é[‘s('_s)“")](k) _ 0, fork=0

and by Lemma 4.29

et ~1d(-—s €;
S Gc,-é(-—s)e,-+U,-G[ ( 0 ) } 122

=1

s s ~|6(~s €;
= 1G9 [ + 30106 |7 M
i=1

i=1

Then
IGI3 = |Ge+U;G I3
= |G 5+ 11U;G |13
= |G I+ 1G5
and
: 2_ 2 : ~ 12
win || G 3= Ge; I + min || G I (4.170)

Thus our original Hz-problem has been reduced to the one for the system Gj.
By Theorem 4.1 and the arguments of its proof, minkek || G ||3 is equivalent
to the Ha-problem for the backward system

-z = A% kr<t<(k+1)T,
F(kr™) = ALE(kr) — F'Tda(k) + Chalk), (4.171)
y L B{i
b = c — T 1
o] = [ )
§(k) = Bha(kr) + T wa(k)
with an internally stabilizing controller % = K°j of the form
—p = A'p, kr<t<(k+1r,
plkr™) = Ayplkr) + C'g(k),
a(k) = B'lkr)+ D'j(k).

The H,-problem for the system (4.171) is the DF problem and its solution
will be given in the next subsection.
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Backward Systems

First we consider the FI problem for the backward system Gpy;

—~z Az, kr <t < (k+ 1)1,
z(kt™) Agz(k7) + Bywg(k) + Bou(k), (4.172)

2= [zf(l)] - [Diﬁm] !
w = [50]

We take a controller u = Ky of the form

—p = Ap, kr <t<(k+Dr,
p(kr™) = Agp(kT) + By(k), (4.173)
u(k) = Cp(kr)+ Dy(k).

Let Grr be the input-output operator of the closed-loop system G pr; with
u = Ky. To formulate the Ho-problem for the system G pr; we introduce the
following set of controllers:

K = {K:K is of the form (4.173) and
internally stabilizes the system Gpy;}.

Then the closed-loop system Gpy; with a controller v = Ky of the form
(4.173) is given by

_[f”] B [61 ,(«)i] [;] kr <t < (k+ 1),
Hle = [ [l [B]waw
« = 1a o]

za(k) [0 DiC) [;] (k7)

which is the backward form of (4.5) with B = 0 and Dg = 0 and by Remark
4.2 we can define the Hz-norm || Gpy {i2 as

mid

I Gr1 3= Jim > Il Grrbne: o -
=1

Hence the Hz-problem for the system Gpy; is to find a controller K € K
which minimizes || Gry | 2.
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For the system Ggy; we assume J1 and J5, i.e.,
J5 ([A, Adl, [0, Bo], [C)1,0]) is stabilizable and detectable.
Then as in Lemma 4.27, we have the following.

Lemma 4.30 Assume J1 and J5. Then there exists a unique T-periodic non-
negative stabilizing solution ((A, Aq+ B2 Fp), Fp = —T;lRp is exponentially
stable) to the Riccati equation with jumps:

P AP+ PA+C|Cy, kT <t < (k+ )T, (4.174)
P(krt) = A,P(kt)Aq— (RpT5'Rp)(K) (4.175)

where Tp = I + B} P(0)B; and Rp = B, P(0)Aq.
As in the previous subsection, we introduce

v(k) = TE[u(k) + T5 ' Spwa(k) — Fpa(kr)]

and the system G®:

- = Az, kr <t<(k+ D,
f:(k’r_) = Ada':(k:’r) +B1wd(k) +B2u(k),
v(k) = —T;"I’Rpa‘:(kr) + T;%SPU)d(k) + Téu(k), (4.176)
_ | z(kT)

where S, = B3P(0)B;. Then z = [ic] can be written using v as follows:
d

- = Az, kr<t<(k+1)7,
z(k7™) = (Ag+ ByFp)z(kt) + (Bi — BaT5'Sp)wa(k) + BaTh 2 v(k),
y 7 ]
VA = = | .
z4(k) D12Fpx(kT) — D12Tp ' Spwa(k) + D12Tp 2 v(k)
Hence

— b
z =G wq + Ujv

where G3; and U} are given by

—£ = AL, kr<t<(k+1)r,
§(k7) (Aq + B2Fp)é(kT) + (B — BoT5 ' Sp)wa(k),

]

¢ = [Cf(ck)] = [Dlngg(kr) —CguT;lSPwa(k)]
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and
- = Az, kr<t<(k+ 1T,
2(kr™) = (Aq+ BoFp)z(kr) + BaTo Tu(k),
- Ze _ [ Cl.’t .
o Zd(k) - DIQFPI(’CT) + DlQT;EU(k)

Then we have the following.:

(a) The system Gpgj; is equivalent to the interconnection of the system
(4.176) and (G2, U?).

cj* V3 B
(b) K stabilizes Gy, if and only if it stabilizes G?.

Next we need the following lemma.

Lemma 4.31 (a) | UJ’?U lz2xiz=|| v |z2xiz =2’ (07 )P(0)z(07) for any v €
12(0, 00; R™2).

(b) < G6.nwo,Ulv >p2xp= —€'(07)P(0)z(07) for any wo € R™ and
v € 1?(0, 00; R™3).

Proof. (a) As in the proof of Lemma 4.29, we have

gt-[a:'(t)P(t)a:(t) —ze(t) |2 kr <t < (k+1)r

and
' (kr)P(kr D)z (kT) — 2’ (k77 )P(k7)a(kT™) =| za(k) |* — | v(k) |*.

Then we have

/0 | ze(t) |2dt+Z[|zd 2 = (k) P

/ (&) (t)]dt

O)P(0+) (0)
Iv( ) I = | 2a(0) |* =2"(07)P(0)z(07).

(b) Consider the system G'C’j with wa(N) = wo, we(k) = 0, K # N. Then
£(t) =0, Yt > N7 and as in the proof of Lemma 4.29, we have

LI P@)2(t) = CO)zlt), kr <t < (k+1)r
and att =k7, k#N

¢ (kr)P(krH)z(kT) — &' (k77 )P(kT)z(kT7)
= [D12Fp(k)E(kT)]'za(k) = C3(k)2a(k).
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We also have

g(NT)P(NT)z(NT) - {I(NT_)P(NT):E(NT_)
= —wy(N)Sp(k)Tp " (k)Tp 2 (k)u(N) = (3(N)za(N).

Integrating 4 [¢'(t) P(t)x(t)) from 0 to co, we have

—€'(0)P(07)z(0)

| e + 3 cumzae
k=1

= —(a(0)z4(0) — £'(07)P(0)(07)

where £ and z are the states of G’C’jé. ~wp and U;’v, respectively. !

Let u = Ky be an internally stabilizing controller and G® the input-output
operator of the closed-loop system (4.176) with v = Ky given by

v = Gluwy.
Note that
Gribnes = Gbb.nei+ UGS ne,
(GP%.nei)(k) = O, fork>N
and by Lemma 4.31
| Glidnei + USGPonei iaxe = |l Goidnei | Tax + |l ULGb6.nei |12

~26i(07)P(0)zn4(07)

where £n; and zn; are the states of G%;4.ne; and U]’?C_v'bé.Ne,-, respectively.
Since limy_,o, En:(07) = 0, we have

my
IJl_I.nooZ | G&6.ne: + UG8 nei || T2y
=1

my my
= ,JE“OOZ | G 6.nei l|22yp + Jgnwz | UPGP8.ne; || 2ana -
i=1 i=1

Since imy _,oo G%.ne; = 0, imy o0 Tn:(0”) = 0. By Lemma 4.31
Nli—lonoo ” U;’G"’&.Ne,- ||i2x12= Nll—ronoo || C_v'bé.Ne,- ”ilez .

Hence )
I Grr lI3=11 G5 13 + 1| G° |13

and we have
. Gr 2__ Gb_ 2 - ~b 2.
min || Gy [l3=ll Ge; I2 + min || G° |I2
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Thus the Hz-problem of the system Gpy; is reduced to the one for the sys-
tem GP. Since u(k) = Fpz(kt) is stabilizing, u(k) = [Fp ~T5'Sp ] y(k)
internally stabilizes (4.172) and this yields v = 0 or G® = 0. Hence u(k) =
(Fp —Tp'Sply(k) is the optimal controller for G ry; and
. 2_1 b |2
min || Grr 3= G2 13
The controllability gramian for the forward system associated with Glc’j is a

unique 7-periodic nonnegative solution of

L, = AL, +L,A+C,Cy, kr <t < (k+1)T,
Lo(k‘T+) = (Ad -+ BQFP)/LO(kT)(Ad + BQFP) + F;;Fp

which implies L, = P. Hence by Theorem 4.1,
| G, 3= tr.[ByP(0) By + SpT2Sp]
where By = By — B2T5'Sp.
Summarizing the above we have shown the following result.
Lemma 4.32 Assume J1, J5 and consider the Ha-problem for the system
GFIj- Th,en _ _
(a) minkex || Grr 3= G&; [13= tr.[BiP(0)B1 + SpT52Sp).
(b) K=[Fp -Tp'Sp] is optimal.

Next we consider the Hp-problem for the system Gpr;

-1 = Az, kr <t <(k+ 1),
z(kt™) = Aqz(kT) + Bywa(k) + Bau(k),
_ Zc _ Cl.’lf
z = [Zd(k):l = |:D12u(k):| , (4.177)
y(k) = Cax(kt) + Dyywq(k)

where Dy, is a nonsingular matrix and we take controllers Kpg of the form
(4.173). This is called the DF-problem. Here we assume J1, J5 and J6, i.e.,

J6: (A, Ay — B D2_11 C») is stable.
As we see below, this problem is equivalent to the FI-problem.
Proposition 4.7 A controller Kpr internally stabilizes Gpr; if and only
if K = Kpp|Cs D3] internally stabilizes Grrj. In this case Gpr = Gy

where G pr is the input-output operator of the closed-loop system G pr; with
u = Kpry defined by z = Gprwy.
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Proof. The proof follows from u = Kpry = Kpp|{Cs Dy] [5}“;;3 ] ]
d
Consider the controller Kpp:
-p = Ap, kr<t<(k+ 1),
p(kt™) = Aap(kr)+ B1Dy' [y(k) — Cap(k7)] + Baup;(k),
u(k) = urr(k), (4.178)
upr = Kyry,
kT)
k) = o, M .
vr1 )= | DM (k) - Coplhe))

Proposition 4.8 The controller K internally stabilizes Gry; if and only if
Kpr given by (4.178) internally stabilizes Gpr;. In this case Gpy = Gpr.

Proof. Let e = £ — p where = and p are the states of Gpr; and (4.178)
respectively. Then e satisfies

~é = Ae, kr<t<(k+1)T,
e(kt™) = (A4 — B1D3'Cy)e(kT)

which is exponentially stable. Moreover

plkr™) = Aap(kt) + BID;l1 [y(k) — Caop(kT)] + Boupy(k)
= Agp(kt) + Brwa(k) + Bou(k),

= o= [zg] - x{20)

where 1g(k) = wa(k) + D' Coe(kT). Hence

-p = Ap, kr<t<(k+ )T,
p(kt™) = Aap(kT) + Bywa(k) + Bau(k), (4.179)
_ p(kT)
ulk) = K [md(k)]

Now suppose K stabilizes Gpr;. Then p € L? but e € L? and hence z € L2.
Thus KpF stabilizes Gpr;. Conversely suppose Kpr stabilizes Gpr;. Then
(4.179) is stable and K stabilizes Gry;. Finally z is given by

o= [x]= (o] =[S0

subject to (4.179). Hence Ggy = Gpr. [
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Now it is easy to obtain the solution of DF-problem. Since K = [Fp —
Tp 1Sp] is optimal for G gy, the optimal controller for Gpr; is given by

B _ (k1)
u(k)=[Fp -Tp'Sp] D;I‘[y(lf)—cz’?’(k”]}

and (4.178) in this case

-p = Ap, kr<t<(k+ )T,
p(kt™) = Ap(kr)+ By(k), (4.180)
u(k) = Cp(kr)+ Dy(k)

where

= Aq— (B1 — BoT;'Sp)D31'Ca + Ba Fp,
= (B~ B:T5'Sp)Dyy,

= Fp+Tp'SpD3'Cs,

= -Tp'SpDy}.

U> Q’ > S

Lemma 4.33 AssumeJ1, J5 and J6 and consider the Hy-problem for Gpr;.
Then

(a) minkek || Gor 3= G, II3-

(b)The controller (4.180) is optimal.

Proof of the Main Result

Now we return to the Hy-problem for G;. By (4.170) we have
: 2_ 2 : ~ 2
min || G 13=I Ge I + mip 1| G I3

and the original Ha-problem was reduced to the Ha-problem for the backward
system (4.171), which is a DF-problem. Since the conditions J1, J5 and J6
are satisfied for (4.171), we can apply Lemma 4.33 to obtain

min [| G I} = tr{T{ Pl - CHTRCY O)Y O - C4TR}CaY OF'T]
YT EY (0)CYT5} CoY (0)F'T)
= tr.ToF[I +Y(0)CyCa) 'Y (0)F' (4.181)
and the optimal controller is given by

—p = Ap, kr<t<(k+ 1T,
ph™) = (Aq+ BoF + HCy — BoLCy) plkr) — (F — LCy)'§(k),
i(k) = (H - ByL)'plkr)+ L'j(k).
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Hence the forward controller (4.167) is optimal for the system Gj and hence
for the system G; and

min || G [3=[ Ge |} +tr-TF(I + Y (0)C3C2] 'Y (0)F".

Now we express || G. |2 using the controllability gramian G.; which is a
unique 7-periodic nonnegative solution of

—Ly = ALy+L,A+CiCy, kr <t < (k+1)r,
Lo(kt) = (Ag+ BoE) Lo(ktt)(Aq + BoF) + F'F.

But X in Lemma 4.27 satisfies the equation above and hence L, = X. Then
by Theorem 4.1, we have (4.168) and the proof of Theorem 4.24 is complete.

4.5 Notes and References

Jump systems in the Ho, context were first introduced in [67, 68] and used
to solve Hy, control and filtering problems for sampled-data systems. More
general jump systems were then considered in [65] and the disturbance at-
tenuation problems were solved.

This chapter is based on [37, 43] and is developed parallel to Chapters 2
and 3. Stability of jump systems is discussed within the Hs, theory in [67,
81, 82|, but independent developments as in Section 4.1.1 were not available.
The disturbance attenuation problems for jump systems were studied in [65]
and Section 4.1.4 gives a generalization in that initial and terminal conditions
are allowed and treated symmetrically on finite horizons.

Hy control for jump systems were considered in [36, 37, 64, 68]. Section
4.2 generalizes these papers and allow for initial uncertainty and the output of
the terminal state, gives the characterization of all suboptimal controllers and
discusses the relation of three Riccati equations as in [38]. The differential
game results in Section 4.2.2 are taken from [35]. The jump system (4.42)
is not fully general although it suffices to consider sampled-data systems in
Chapter 5. Section 4.2.5 discuss an extension to a fully general jump system.

The Hy, filtering problem for continuous-time systems with sampled ob-
servation was considered in [67]. Section 4.3 derives H, filtering for jump
systems. We give the set of all suboptimal filters. We allow for nonzero initial
conditions and the estimation of the terminal state.

The H; results in Section 4.4 are taken from [37]. Hz control for jump
systems is not discussed anywhere else. The reason seems to be that Hj
control for sampled-data system can be easily reduced to that of discrete-
time systems.



5. Sampled-data Systems

In this chapter we consider sampled-data systems with zero-order hold. We
first convert them to jump systems and then solve the H,, control problem
with initial uncertainty and the Hy control problem.

5.1 Jump System Approach

We shall show how to transform the sampled-data systems to jump systems.
Then we apply the results in Chapter 4 on stability, H, and H,, norms,
disturbance attenuation problems and quadratic control.

5.1.1 Transformation to Jump Systems

Consider the sampled-data system Gg:
T = Az(t)+ Byw(t) + Baii(t),

2(t) = [g‘:j(tt))] ; (5.1)
y(ky = Cax(kr)+ Dayywy(k),
721 = Fz(T), 0<S Nt <T<(N+Dr

with initial condition
z(0) = Hh, h ¢ R™

where z € R™ is the state, (w, wq) € R™ x R™ is the disturbance, & € R™2
is the control input realized through a zero-order hold,

a(t) = u(k), kr <t < (k+ ),

(z1,2) € RIx RP**™2 jg the controlled output, y € RP? is the sampled obser-
vation, 7 is a sampling period, C; € RP1*™ D;5 € R™2X™2 and other matri-
ces are of compatible dimensions. For the system G, we introduce discrete-
time controllers of the form

ik + 1) A#(k) + By(k), (5.2)
u(k) = Ci(k)+ Dy(k)

]
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where 2 € R™ and all matrices are of compatible dimensions. Since the system
G, is essentially a continuous-time system and the controller is a discrete-
time system, we need two devices, a zero-order hold and a sampler, to connect
these two systems.

We first express this system as a jump system of the form (4.42). Since the
control @(t) is constant between two sampling instants, i.e., k7 < t < (k+1)T,
we can introduce the following state space representation:

=0, (ktt) =u(k), kr <t < (k+1)T.

Then clearly @(t) = Z(t). Let

zo(t) = [;] (t)

be the new state variable. Then the sampled-data system Gy is equivalent to
the following system with jumps (denoted by G.):

Go(t) = [6‘ %z]re(t)+[%l]w(t), kr <t < (k+1)r,
zo(kr?) = [(I) g]re(kf)—#[g]u(k),k=0,1,2,..., (5.3)

. = [zc(t)]z[[cl Olre(t)]

Zd(k) \/’T’Dlzu(k) ’

y(k) [C2 0]z (kT) + Daywa(k),
2 = [F 0]z(T)

and

=1 ol[g].

Here 24 = \/TD)2u(k) comes from
o0 00 T 00
/ | Digii(t) [°=) / | Dizu(k) |°= > | VT Drzu(k) |, u(") € I
0 k=00 k=0

Since the system G, is a jump system, we can solve the H2 and H, control
problems for the sampled-data systems using results in Chapter 4.

For the systems G, and G,, we can easily obtain the following result.

Lemma 5.1 If (A, By, C1) is stabilizable and detectable for the system G,
then the jump system

(s =)L ol 3] o) wer o)

1s stabilizable and detectable.
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Proof. Since (A, B;) is stabilizable, there exists a matrix K such that the
system

£=(A+B:1K)¢

is exponentially stable. Then the system

(18 3] [2] w)eco-[2% 2o
kr <t < (k+ 1),

£ (t)

ey = |3 o] &t

is obviously exponentially stable and hence we have the assertion. We can
show the detectability in a similar manner. 1

However, stabilizability and detectability of (A, Bz, C2) does not imply

Tl B )b e )

under the special sampling period. We shall show this in the next section.

5.1.2 Comments on the Sampling Period
Consider the system
i = Az + Bo1, y(k) = CQ.’IJ(kT) (5.4)

where

u(t) = ulk), kr <t < (k+1)7
and assume that (A4, By, C5) is stabilizable and detectable in the usual sense.
As we see in the previous section, the system (5.4) is equivalent to the fol-
lowing jump system

fe(t) = [‘3 %"]xe(t), kT <t < (k+1)T,
ro(krt) = [{) g]xe(kr)Jr[(I)]u(k),k=0,1,2,..., (5.5)
y(k) = [C2 O]ze(kr)
and moreover
o((k+1)71) = e x(kt)+O(1)Bau(k), (5.6)
y(k) = Caz(kT)

where II(t) = f(: e"dr. Note that (5.5) is stabilizable and detectable if and
only if (5.6) is stabilizable and detectable. We now introduce an important
notion about a sampling period 7.
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Definition 5.1 The sampling period 7 is called pathological (with respect to
A ) if A has two eigenvalues, say A and A, such that

A=0+jw, A=0c+j&

with |w— @ |= kg;’i for some positive integer k. Otherwise T is called non-
pathological.

The following example [8] shows that if the sampling period is patholog-
ical, the stabilizability and detectability of (A, Bg, C2) does not necessarily
imply that of (e4”,II(7) Bz, Ca).

Example 5.1 ([8]) Consider the sampled-data system with sampling period
T.

I

i

Az + byii, A= [_(%_,,)2 (1)} by — m (5.7)

ylk) = cox(kT), c2=[0 1]

(A, bz, cz) is obviously controllable and observable (and hence stabilizable and
detectable). Note that eigenvalues of A are

: - 2T . 2
A=0+jw, 0+ jo, w:—w, o=
T T

Since w —@ = 22T—", the sampling period 7 is pathological. Now
pAt cos(2xt) %sin(i—"t)
—2—} sin(2—T"-t) cos(2—T"—t) ’

o - [, Eme- ).

o]

Hence the discrete-time system obtained from the sampled-data system (5.7)
in neither stabilizable nor detectable.

I(7)b2

However, if the sampling period is nonpathological, stabilizability and
detectability are preserved [8].

Lemma 5.2 Assume that the sampling period T is nonpathological. Then
(A, B2, C,) is stabilizable and detectable if and only if (eA™ ,II(1)B2, C2) is
stabilizable and detectable.

Proof. Note that e7 is an eigenvalue of e”7 if ); is an eigenvalue of A. Using
the Taylor expansion of " — e*:™ we can write

e — eMT = g(s)(s — Mi).
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e e R et

Now we shall show that g(A) is nonsingular. It is enough to show that 0 is
not an eigenvalue of g(A). Since the eigenvalues of g(A) are g(\x), we shall
show g(Ax) # O for any eigenvalue A\¢ of A. If Ax # A;, then g(\) # O since
otherwise

Hence

T — M = g(s)( M — X)) =0

which contradicts the nonpathological assumption of 7. Moreover, by direct
calculation

g(\) = TeNT £0.

AT _ T ).
rank [e Ce I] = rank [A /\’I]

Hence

2 Co

for any eigenvalue \; of A. Since | eNiT |> 1 if and only if ReA; > 0, de-
tectability is preserved. Considering the adjoint of the original system we can
show that stabilizability is also preserved. 1

5.1.3 Stability

Consider the sampled-data system G:

& = Az(t)+ Biw(t) + Bya(t), z(0) = Hh,
_ | Gux(t)
y(k) = Cz.’l:(kT) + Dzlwd(k),
21 = Fz(T), 0SNr<T<(N+1r7

and the discrete-time controllers (5.2)

E(k+1) = Az(k)+ By(k),
u(k) = Ci(k)+ Dy(k)

where we assume that (A, Bz, C?) is stabilizable and detectable and the sam-
pling period is nonpathological. Since the system G; is equivalent to the
jump system G, and the controller (5.2) is equivalent to the following jump
system

= 0, kr<t<(k+1)
#(kr™) Az(kT) + By(k), (5.8)
u(k) = Ciz(kr)+ Dy(k),
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the closed-loop system G, and (5.2) (and hence G, and (5.8)) is given by

Ta = Aaza+ Baw, kr <t < (k+1)7,
.’L‘Cz(k7'+) = Add.’l,‘d(kT) + Bdclwd(k): (5.9)
z(t) = CuZa,
z4(k) = Cgaza(kt)+ Daawa(k), v
21 = Fazxy(T) (5.10)
and
h
za(0) =Hg | 0 (5.11)
0
which is the jump system of the form (4.4) where z,; = [z, '] and

A B, 0 I 0 0
Aa=10 0 0|, A= |DCc; 0 C|,

0 0 0 Bc, 0 A

B 0
By=101, Bya = { DDy |,

0 BDy A
Ca=[C, 0 0], Caa = [/TD12DC; 0 /TDy2C],
Dga = +/TD12Dp,

Fu=[F 0 0], Ha=[H 0 0].

Hence we can consider stability, Hz, H,, norms and the disturbance attenu-
ation problems of the sampled-data feedback systems using the system (5.9)
and the results in Chapter 4.

Lyapunov Equations

By applying Propositions 4.2, 4.3 and Corollary 4.1 to the homogeneous
system of (5.9), we have the following result.

Proposition 5.1 The following statements are equivalent.

(a) The feedback system (5.9) is exponentially stable.

(b) There exists a T-periodic symmetric matriz X (t) € R(M+m2+A)x(n+ma+f)
such that

(i) al <X(@t)<c, “t>0forsomec; >0,i=1,2,

(i) —X=A,X +XAq+1, kr <t<(k+1)7,
X(kt™) = ALy X (kT)Aga + 1.

(c) There exists a symmetric matirz Y (t) € R{(ntmeth)x(ntma+d) gn4 g
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0 < 6 < 7 such that

(i) 0<Y(t), “t>0andciI <Y(t), "t > & for some ¢ >0,
(ii) Y () <coI, 0< Yt < oo for some c2 >0,
(iii)) Y =AqY + YA, +1, kr <t < (k+ 1),

Y(k‘r+) = AddY(kT)A&d +1,

Y(0) = o.

(d) There erists a T-periodic symmetric solution Y. (t) of (ii) in (c) without
Y (0) = 0 such that e1I < Y, (t) < col for some ¢y, c2 > 0.

H,; and H,, Norms

Now we assume that the sampled-data feedback system (5.9) is exponentially
stable and A = 0. Then we can define its Ho-norm as in Definition 4.7 and
calculate it using Theorem 4.1.

Proposition 5.2 Let )| G |2 be the Hz-norm of the system (5.9). Then
1 T
| G 3= ;/ tr.B,,X(s)Bq ds + tr.[By,X(0)Bia + Dy Dyl
0

where X is a T-periodic nonnegative solution of

X = ALX +XAq+ClUCu, kT <t < (k+1)T,
X(k‘r_) A:ich(kT)Add + C,’idCdd.

We can also define the Hoo-norm of the sampled-data feedback system
(5.9) as in Definition 4.8,

Disturbance Attenuation Problems

Let Gt be the input-output operator of the sampled-data feedback system
(5.9)-(5.11) on [0, T]. Then by Theorem 4.6 we have the following result.

Proposition 5.3 The following statements are equivalent.

(@) Gr 1< 7. . .

(b) There ezists a nonnegative solution X(t) € R(P+matn)x(ntmath) 4 o
[0,T] to (4.29)-(4.33) with A, B and etc replaced by Aq, Ba and etc, respec-
tively.

(b) There ezists a nonnegative solution Y (t) € ROvmati)x(ntmata) 4
[0,T] to (4.84)-(4.38) with A, B and etc replaced by A, By and etc, respec-
tively.

Next we consider the system (5.9) and (5.11) on [0, c0). We assume that
(Act, Aaqt) is exponentially stable. Let G be the input-output operator of the
system (5.9) and (5.11). Then by Theorem 4.7 we have the following result.
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Proposition 5.4 The following statements are equivalent.

(a) | GlI< .

(b) There exists a T-periodic nonnegative stabilizing solution X (t), t € [0, 00)
to (4.29)-(4.31) satisfying (4.33) with A, B and etc replaced by Ay, By and
etc, respectively.

(b) There exists a T-periodic nonnegative stabilizing solution Y (t), t € [0, 0o)
to (4.84)-(4.37) with A, B and etc replaced by A, B and etc, respectively.

5.1.4 Quadratic Control
Consider the system
i = Ar+ Ba, i(t) =u(k), kr <t < (k+1)7, (5.12)
z(0) = xo

and the functional to be minimized

T
Irasa) = [ 1020 P+ | i) Pt | P2() 7
O0<Nr<T<(N+D7 (5.13)

where £ € R™, &4 € R™2, C € RP2*™ and other matrices are of compatible
dimensions. Since the system (5.12) and the functional (5.13) are equivalent
to the jump system

(A B

Te = 0 0]18, kr <t < (k+1)T, (5.14)

skt = [§ o]ein+[F]ub w0 =[],

Sl TR W

and the functional

~ T N
Jr (u; Zo) =/0 | ze(t) [P dt + Y | zak) 1 + | [F 0]ze(T) I”

k=0

we can apply Theorems 4.2 and 4.3. Let
] , Xl € Rnxn’ X12 c Rnxm’ X2 € Rmxm

be the solution of the Riccati equation (4.12)-(4.14) with

Ty(k) = I + By X (k7)By
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replaced by
T»(k) = 71+ By X(k7)Bg.

Then we obtain for k7 <t < (k +1)7

-X, = AX,+X,A+CC,
X2 = XA+ B'X, (5.15)
—XQ = B’le_) + Xir_,B
and at t = k7
Xi(kt™) = Xi(k7)— Xio(kT)[7I + X;;(kr)]‘lX{r_,(kT),
Xi2(kt™) = 0, (5.16)
X'_;(kT—) = 0
with
X1 Xi2 _|F'F 0
i X o=[7 ) 7

and by Theorem 4.2 we have the following result.

Theorem 5.1 There exists a unique nonnegative solution X = [ X,l ))((12 ],
12 2

X, € R™*" X, € R**™ X, € R™*™ to the Riccati equation (5.15)-(5.17).
Moreover, the state feedback law

a(t) = a(k), (k) = {71 + Xo(k7)] "' X (kT)x(kT), kT <t < (k+1)T

is optimal and

Jr(8; z0) = Jr(@; z0) = 2 X1(07)zo.

Next we consider the infinite horizon problem
& = Az + Bi, z(0) = z,,
az) = [TUCa®F + la) Flas
0

where @& € L?(0, 00; R™2) is admissible if its response x € L%(0, 0o; R™) and
lim; o, z(¢) = 0. This problem is again equivalent to

J(u; zo) = /0°° | 2e(t) [P dt + > | za(k) |2
k=0

subject to the jump system (5.14) where u € 12(0, c0; R™2) is admissible if
its response z. € L%(0, co; R™"*™2) and lim;_, o Te(t) = 0.
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Now we assume that (A4, B) is stabilizable and the sampling period is
nonpathological for the system (5.12). Then by Lemma 5.2

(s )1e o)1)

is stabilizable and the condition RJ in Section 4.1.3 for the system (5.14) is
satisfied. If we further assume that (C, A) is detectable, then by Lemma 5.1

(e oval[s T].s 5]])

is detectable. Hence we can apply Theorem 4.3 to the system (5.14) (and
X1 X2
hence (5.12)). We that X =
e (512). We say X
(5.15) and (5.16) if

([6 T [-orexwmixmen o)

is exponentially stable, which is equivalent to the stability of the system

] is a stabilizing solution of

& = Az+ Bu(t),
a(t) = —[rI+4 Xo(kT)] ' X p(kT)z(kT), kT <t < (k+1)T

and equivalently that of the discrete-time system
z((k + 1)7) = {eA" = I(7)BlrI + Xa(k7)] "1 X1, (k7)} z(kT).
Summing up we have the following result.

Theorem 5.2 Suppose (C, A, B) is stabilizable and detectable and the sam-

pling period T is nonpathological. Then there exists a T-periodic nonnegative
stabilizing solution X = X X12] to (5.15) and (5.16). Moreover, the

state feedback law

Xz, X2
at) = a(k),
a(k) = -—[rI+ X2(0)]_1X{2(0)z(kr), kr<t<(k+ 1T

is optimal and

Example 5.2 Consider the system

[2] - [—01 (l)] [2] + [?]ﬁ(t)’ W) =u(k), k<t<k+1
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and the functional
J (7o) = / [ za(t) 2 + | (t) [2ldt
0

For this system and the functional the assumptions of Theorem 5.2 are sat-
isfied. Then there exists a periodic nonnegative stabilizing solution X(t) =
[X:;(®)], ¢, 7 =1,2,3 with period 1 of the Riccati equation (5.15) and (5.16).
Figure 5.1 shows the periodic solution X(t). Figure 5.2 shows the response
of the closed-loop system with z;(0) = 1 and z2(0) = 0 to the optimal state
feedback.

Xu®

1= X:s(l)\\ \‘\\ Xa)

---------- 2rzzditse.

e

1 A I 1 s i 1 1 1 i 1
0 0.5 1
time (sec)

Figure 5.1: The periodic nonnegative solution X ()

5.2 H_ Control

Here we consider the H,, control problem initial uncertainty. We apply the
results in Section 4.2 to the jump systems obtained from the sampled-data
systems.

5.2.1 Finite Horizon Problems

Consider the sampled-data system G,:

() = [ gffa((tt))] , (5.18)
y(k) = Cz(l,‘(kT) + D21’UJd(k),
zv = Fz(T), 0 < NT<T<(N+1)7 (5.19)
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0.5

x(t) and u(t)

1|||l|ll’lll[IfT]]

PO S T SN Y TR YO W [N WY SN THNY YO Y U0 WO Y OO

1 i 1 1 ! 1 1 1 X i t i 1
0 5 10
time (sec)

Figure 5.2: Simulation result

with initial condition

z(0) = Hh (5.20)
and a discrete-time controller of the form
#k+1) = Az(k)+ By(k), (5.21)
u(k) = Cz(k)+ Dy(k

For the system G; we assume
Sl . D,12D12 = I, D21D,21 = I.

Consider the sampled-data system G4 and a discrete-time controller u = Ky
of the form (5.21) on [0, T}. Define the input-output operator of the closed-

loop system by
h

z
wa

G € L(R™ x L?(0,T;R™) x 12(0, N; R™a4);
R? x L2(0,T;RP) x 12(0, N; RP1¢)).

Then

The H-problem for the sampled-data system G is to find necessary and
sufficient conditions for the existence of a discrete-time controller such that

IGll<vie,

| 21 12 + | (Z) 22,2< d?(| b 12+ (;:)d) 122,;2) for some 0 < d < 7.
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Such a controller is called y-suboptimal. Since the sampled-data system G
is equivalent to the jump system G. and the assumption S1 implies the
conditions J1 for the system G, we can apply Theorems 4.8 and 4.9 to the
system G, and hence for the system G;.

Remark 5.1 The standard way to solve the Hy, and H, problems for Gg
with Ds; = 01is to use the lifting technique which converts periodic systems to
discrete-time systems with infinite dimensional input and output spaces and
to reduce the original problems to those for ordinary discrete-time systems
[2, 3, 8, 25, 76, 88]. We shall show that their lifted system is directly obtained
from Ge. In fact for kr <t < (k + 1) we have

[A Bz](t—k?) t [A Bz](t—r) B
T (t) =e 0 0 :ce(kr+)+/ et0 0 [Ol]w(r)dr.
kT
Since
A By .
1o % [ mm)
0 I ’

we have for k7 <t < (k+ 1)7

T(t) = [;](t)
[ef‘“—’”’w(kr*) FII(E — kr)Byu(k) + J), eAC-DB ‘"’(r)dr]
u(k)
and
(k+1)7
z((k+1)7) = eAz(krt) +TU(r)Baulk) + /k e+ VT By w(r)dr

I

eA"x(k7) + (1) Bau(k) +/ e Byw(s + kr)ds
0

= e x(kt) 4 II(7)Bau(k) +/ eA(7=9) B (s)ds
0
where Wi (s) = w(s + k). We also have

t—kT—3s
z(t) = C At g(kr) +C / eAt=k7=9) B 4jy (s)ds
0
+C'1H(t - kT)Bzu(k),
Zd(k) = \/;Duu(k).
Hence the system G, is equivalent to the following lifted system (denoted by
G)

#k+1) = e*i(k)+ / eA7=9) By (s)ds + I1(7)Byu(k),
0
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t~kr—s
z(t) = Creft ki) + ¢ / eAt=kT=3) B 1y (s)ds
0

+C1H(t - kT)Bzu(k),
24(k) = +/TDyau(k)
y(k) = Cai(k) + Daywa(k).

Contrary to the discrete-time representation G of the sampled-data sys-
tem Gy, the jump system G, is a natural state space representation of G,
in the following sense.

(a) The genuine control input to Gy is u(k) rather than 4(t).

(b) Original signals and parameters of G are maintained in the system G,
(37, 65].

(c) The Hy and H; problems can be treated in a unified manner as in Chap-
ters 1-3. Hence it is easy to introduce the theory to those who are not familiar
with sampled-data systems.

(d) The jump system approach to sampled-data control can be easily ex-
tended to more general cases of delayed observation [45], a first-order hold
(32, 34] and infinite dimensions [33] (see Chapter 6).

Let

X1 Xi2| Y1 Y
AR
be the solutions of the Riccati equations (4.46)-(4.49) and (4.50)-(4.52), re-
spectively with T2 (k) = I+ B5X (k7)B; replaced by Tz (k) = 71+ B, X (k7)Ba,
where X, Y7 € R™*", X5, Y12 € R*"*™2 and X3, Y5 € R™2*™2 and n and
mgy are the dimensions of £ and u respectively. Then from the Riccati equation
(4.46)-(4.49) we obtain

. 1

-X; = A’Xl +X1A+C;CI + -’Y—leBlB;X;l,
. 1

__X12 = A’Xlz + Xle + ,Y_zXlBlB:lez" (522)
. 1

—X7 = BéXlz + X;sz + ;inllzBlB;X12

forkr<t<(k+1)randatt=kr, k=0,1,,2,..

Xi(kt7) = Xi(kt) — Xao(k7)[rI + Xa(k7)] "1 X1, (kT),
Xia(kt™) = 0, (5.23)
Xa(kt™) = 0

[;’é‘z X”](T) [FF g] (5.24)

with
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and
H'X,(07)H < d?I for some 0 < d < 7. (5.25)
The second equation is written
- 1
Y1 = A1, +Y1A + BB+ ?YIC{CIYI + ByY(, + Y1285,
- 1
Yi2 = AYi2+ BY; + ?chiclylz,
. 1
Y2 = Y120 CiYr2
Y

for kr <t<(k+1)randatt=kr, k=1,2,.

Yitkt) = Yi(kt) = Yi(kT)Co(I + C2Y1(kT)ChH) ™1 C2Yi(kT),
Y12(k7'+) = 0,
Y2(k7t) = 0, k=0,1,.

with
t o ol =" ol

Since Yi2 and Y form a homogeneous system, we conclude Y2 = 0 and
Y2 = 0. Hence Y is of the form l%g 8 , where Y € R™*" is the solution of
. 1
Y = AY+YA+ BB} + ?YC{CIY, (5.26)
kr <t < (k+ 1),
Y(ktt) = Y(k7) = Y(k7)Cy(I + CoY (kT)C5)'C2Y (k7), (5.27)
Y(0) = HH' (5.28)

Replacing Z by (I - ;ITYX)—IY in (4.57), we obtain a y-suboptimal controller

[2] - [%1 %2] ® [2] ) kT <t < (k+ 1), (5.29)
[2] (krt) = [‘éd g] (k) [2] (kT) + [5111] (k)y(k)

+[ 2] wriw,

£
Ey

~—
i

(a6 01[52] (o) + Dusku(8) + Dralhn()

i) = [Ca) 01|31 ] (k) + Das ()
v = QT, QGQ‘Y
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where
A = A+$&mxwx
Aq(t) = Bg+71—2BlB{X12(t),
Ag(k) = (I+W(E)Y (kT)CLCy)t,
Bi(k) = Aak)W(k)Y (kT)Ch, (5.30)
Ba(k) = %/id(k)W(k)Y(kT)Xlz(kT)E‘%(k)E‘%(k)
Ci(k) = —~E'(k)Xiy(kr)Aa(k),
Ca(k) = ~(I+CoW (k)Y (kT)C3)~%Cy,
Di(k) = —E Y k)X|,(kT)Aq(k)W (k)Y (kT)Ch,
Da(k) = ZE-HwEH(h),
Da(k) = (I+CW(k)Y(kr)Ch) 1,
W) = - Yen)Xakr) ™,
E(k) = 71+ Xo(kT),

E(k) = 22— E k)X, (kr)Ag(k)W (k)Y (k1) X,2(kT)E~ % (k)

Qy = {Q € L(*(0,N;RP);12(0, N;R™2)) :
Q is of the form (4.45) and || Q ||< v}.

Since
£, = 0, kr<t< (k+ 1),
Zo(ktt) = Ci(k)E1(kT) + Dii(k)y(k) + Diza(k)u(k),
we can rewrite (5.29) as
i = A ()E+ A2)5(t), kT <t < (k+ 1),
#(ktt) = Ag(k)2(kT) + By (k)y(k) + Ba(k)v(k), (5.31)
u(k) = Ci(k)E(kr) + Da(k)y(k) + Dra(k)u(k),
r(k) = Ca(k)#(kr) + Da(K)y(k),

v = Qr, QeQy
where § is given by
5(t) = u(k), kr <t < (k + 1)1.

Summing up we have the following result.
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Theorem 5.3 Assume S1 and consider the system G,.
(a) There exists a y-suboptimal controller u = Ky of the form (5.21) if and

only if the following hold:

(i) There ezists a nonnegative solution X = [})552 );12] (t), t € [0,T],

X1 € R, X, € R*™™2, X, € R™X™2 {9 the Riccati equation (5.22)-
(5.25).
(i) There ezists a nonnegative solution Y to the Riccati equation (5.26)-

(5.28).
(iit) p( (t)) <d* t €[0,T], for some 0 < d < ~.
X12Y
(b) In this case the set of all y-suboptimal controllers of the form (4.45) is
gtven by (5.31).

We now convert the controller (5.31) to the usual discrete one. Let S(.,-)
be the state transition matrix of A;. Then Z((k + 1)7) in (5.31) is given by

(k+1)T
#((k +1)7) = S((k + V)7, k7)E(kT) + /k S((k + 1)1, 7)A2(r)5(r)dr.

T

Since §(t), k7 <t < (k+ 1) is given by

§(t) = C1(k)2(kr) + D11 (k)y(k) + Dr2(k)v(k),

we have
&((k + 1)7) = Ap(k)Z(kT) + B1p(k)y(k) + B2p(k)s(k)

where

Ap(k) = S((k+1)1,kr)Ag(k) + (6C1)(k),

Bip(k) = S((k+1)7,k7)B;(k) + (6D11)(k),

Bop(k) = S((k+ 1)7,k7)Ba(k) + (©D12) (k)
and

(k+1)7 .
O(k) = / S((k + 1)7, 1) As(r)dr. (5.32)
kT

Hence the controller {5.31) is equivalent to the following discrete-time con-
troller:

#(k+1) = Ap(k)i(k)+ Bip(k)y(k) + Bap(k)s(k),
u(k) = Ci(k)i(k)+ Du(k)y(k) + Di2(k)v(k), (5.33)
r(k) = Ca(k)i(k) + Da1(k)y(k),

v = Qr,QeQ?
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where

QY = {Qe (%0, N;RP);1%(0, N;R™))
Q is of the form (5.21) and || Q [|[< v}.

Hence we have the following result.

Theorem 5.4 Assume S1 and consider the system G,.

(a) There exists a y-suboptimal controller u = Ky of the form (5.21) if and
only if the conditions (i)-(#t) in Theorem 5.8 hold.

(b) In this case the set of all y-suboptimal controllers of the form (5.21) is
given by (5.33).

5.2.2 The Infinite Horizon Problem

Next we consider the sampled-data system Gj:

& = Az(t) + Biw(t) + Bo(t), z(0) = Hh,
_ | G=®)
) = [Duﬂ(t)]’
y(k) = Coz(kr)+ Dyywa(k)

on [0,00) and a controller u = Ky of the form (5.21) where we assume S1

and
S2: (A, B,,()) is stabilizable and detectable,

S3: (A, B, (C,) is stabilizable and detectable,
S4: The sampling period 7 is nonpathological.

Assumptions S1-S4 imply J1-J4 for G.. If the controller is IO-stabilizing (or
internally stabilizing), then the closed-loop system is defined by

h
z=G| w |.
Wy

G € L(R™ x L*(0,00;R™) x 12(0, 00; R™4);
LQ(O,OO;RP‘) X 12(0,00;RP14))‘

Then

The Ho-problem on [0,00) is to find necessary and sufficient conditions
for the existence of a y-suboptimal controller, i.e., an internally stabilizing
discrete-time controller such that | G || < v, i.e.,

¥4 w
(%) Wornrs EARE 40 (1) Finer) for some 0 < d < .

Such a controller is called y-suboptimal.



5.2. He Control 309

To give the solution of this problem, we first consider the stabilizing so-
lutions of the Riccati equations (5.22), (5.23), (5.26) and (5.27). If X =
[ X1 X2

X2 X2
then

A+ %BlBiXI(t) By + ;lyBlBiXu(t) I 0
0 0 | —E-1(k)X]y(k7) O

] is a stabilizing solution of the Riccati equation (5.22) and (5.23),

is exponentially stable. So the system

. 1 1 -

& = [A + ?BlB,lXI(t)]E + [Bz + ?BlBixlz(t)]’U(t), (5.34)
(k) = —E"YNk)X|,(kT)E(kT), kT <t < (k+ )T

is exponentially stable. Similarly if Y is a stabilizing solution, then

([ A+ ;‘;);(t)C{Cl 132] , [ I-Ykr)CyI +0C'2Y(Ic'r)C§)‘1C'2 8])

is exponentially stable, which is equivalent to the exponential stability of the
system

3
E(kT?) = [I =Y (kT)CH(I 4+ C2Y (kT)C5) "' C2)(kT).

[A+ %Y(t)C{Cl]E, kT <t < (k+ ), (5.35)

X1 X2
X2 X2 .
bilizing solution (5.22) and (5.23), then the exponential stability of the system
(5.34) is equivalent to that of the following discrete-time system

Ek+1) = [S((k+ )7 kr) — O(K)E™" (k) X12(k7)IE(K)
= [S(7,0) — ©(0)E~(0)X12(0)}£ (k)

Remark 5.2 (a) If X(t) = [ ] (t) is a T-periodic nonnegative sta-

where S(-,-) is the state transition matrix of A + JyB1B]X) and (k) is
defined by (5.32).

(b) The exponential stability of the system (5.35) is equivalent to that of the
following time-varying discrete-time system

£k +1) = Sy ((k + 1)1, k7)[I = Y (kr)Co(I + C2Y (kT)Ch) 1 Ca)e (k) (5.36)

where Sy (-, -) is the state transition matrix of A + ;I;YC{CI. IfY(t) is 7-
periodic, then the system (5.36) becomes

£(k +1) = Sy (7, 0)[I - Y(0)C3(I + C2Y (0)C3) ™' CoJ (k)

which is time-invariant.
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Again we define Q. and QY as

o

{Q € L£(1%(0, 00; RP?);1%(0, 00; R™))

Q is of the form (4.45) and internally stable with {| Q || < v},
QY {Q € L(I%(0, 00; R??); 2(0, c0; R™)) :
Q is of the form (5.21) and internally stable with || Q l|< ~}.

Then we have the following results.

Theorem 5.5 Consider the system G, on [0, 00) with the assumptions S1-
S4.

(a) There exists a y-suboptimal controller u = Ky of the form (5.21) if and
only if the following hold:

(i) There exists a T-periodic nonnegative stabilizing solution X = [

to the Riccati equation (5.22), (5.283) and (5.25).

(ii) There exists a bounded nonnegative stabilizing solution Y to the Riccati
equation (5.26)-(5.28).

(1ii) p( [))((11:;,] (1)) < d?, t €[0,00), for some 0 < d < 7.

(b) The set of all y-suboptimal controllers of the form (4.45) is also given by
(5.81) with Q internally stable.

(c) In this case the set of all v-suboptimal controllers of the form (5.21) is
given by (5.33).

Moreover the lim,_, o Y(t + n7) exists (denoted by Y: ) and Y; is a T-periodic
nonnegative stabilizing solution to (5.26) and (5.27).

X1 Xl?.]
12 X2

Since the solution Y in (ii) is not 7-periodic, y-suboptimal controllers
(5.31) and (5.33) are in general time-varying. However applying Corollary
4.8 we also obtain 7-periodic controllers and time-invariant discrete-time con-
trollers.

Theorem 5.6 Consider the system G, with h = 0 on [0,0) and assume
S1-S4.

(a) There exists a y-suboptimal controller v = Ky on [0,00) of the form
(5.21) if and only if the following hold:

(i) There exists a T-periodic nonnegative stabilizing solution X = [ , X
12 2

to the Riccati equation (5.22) and (5.23).

(ii) There exists a T-periodic nonnegative stabilizing solution Y, to the Ric-

cati equation (5.26) and (5.27).

(i13) p( X1¥r (1)) <d?, t€[0,7), for some 0 < d < .
X12Yr

X1 X12]

(b) In this case the following controllers are ~-suboptimal:

& = A(t)+ A(D)5(t), kr <t < (k+ 1),
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(k) = Aa(0)a(kr) + Bi(0)y(k) + Ba(0)u(k), (5.37)
uk) = Ci(0)&(kr) + D1y (0)y(k) + Dia(0)u(k),
r(k) = Ca0)2(kr) + Dua(O)y(k),

v o= Qr, Q€ Qy

where Ag(0), B1(0) are defined by (5.30) with Y replaced by Y,. Moreover,
controllers given by (5.87) with T-periodic Q are T-periodic.

(c) Discrete-time controllers given by (5.833) with Y replaced by Y, are v-
suboptimal. Moreover, if we restrict QQ € Q'Iy) to be time-invariant, the con-
trollers (5.33) are time-invariant.

Remark 5.3 Some comments on the comparison of the lifting technique and
the jump system approach to sampled-data He, control are found in [64, 77].

Example 5.3 Consider the system
0 1 0 ol .
0] T+ [1] w(t) + [1] a(t),

[[1 O]I]
a(t) |’
y(k) = [T 0]xz(k) + wa(k)

5.
I
| —|
|
—

w
i

where 4(t) = u(k), k <t < k+ 1. For this system all the assumptions S1-S4
are satisfied. For all v > 2.1, the conditions (i)-(iii) of Theorems 5.5 and 5.6
are satisfied. Figure 5.3 shows the periodic solution X (t) = [X;;(t)], 1,7 =
1,2,3 of the Riccati equation (5.22) and (5.23) with ¥ = 2.1 and period 1.
Figure 5.4 shows the bounded nonnegative stabilizing solution Y (t) = [Y;;(¢)],
t,j = 1,2 of the Riccati equation (5.26)-(5.28) which converges to a periodic
solution. Figure 5.5 shows that the condition (iii) of both Theorems 5.5 and
5.6 are satisfied. In this case a central discrete-time controller is given by

i _ [-03683 05812] 0.9707
Hk+1) = [—0.0282 0.0313] (k) [—0.7417} (k)
a(k) = [0.4982 —0.7709] (k) — 0.3729y(k).

Figure 5.6 shows the simulation result of the closed-loop system with the
central discrete-time controller where v = 2.1 and the disturbances w(t) =
10e~ 1% sin 10t and wq(k) = 0.

5.3 H, Control

As in the previous section we apply the Hy theory for jump systems to the
sampled-data systems.
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i
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Figure 5.3: The periodic nonnegative solution X (t)
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Figure 5.4: The bounded nonnegative solution Y (¢)
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Consider the sampled-data system Gy:

r = Al‘(t) + B]’w(t) + Bzﬁ(f,),
) = [ 51‘;1(8)] , (5.38)
y(k) = Cz.’l)(k‘l’) + D21'u)d(k)

and a discrete-time controller of the form
#k+1) = Az(k)+ By(k), (5.39)
u(k) = Cz(k) + Dy(k).

We assume S1-S4. To formulate the Hy-problem for G, we introduce the
following set of controllers

K = {K : K is of the form (5.39) and internally stabilizes the system G,}.

The H; control problem for the system G; is to find an internally stabilizing
controller which minimizes || G ||z, where G is the input-output operator of
the closed-loop system defined by

2= G w
= wy .

Since G; is equivalent to the jump system G, and the assumptions S1 — S4
imply the assumptions J1 — J4 for G., we can apply Theorem 4.24 to the
system Ge.

As in the Hy, control problem, let

X1 Xi2 o i1 Y2
X = Y=
o Xr= v

be the solutions of the Riccati equations (4.163)-(4.166) respectively, with
Ta(k) = I + B, X (kt)B; replaced by Tz (k) = 71 + B4X(k7)B;, where X1,
Y1 € R™™, X2, Y12 € R™™2 and X,, Yo € R™2*X™2 and n and mgy are
the dimensions of  and u respectively. Then from the first Riccati equation
(4.163) and (4.164), we obtain for k7 <t < (k+ 1)1

[X Xw]_[4 B A B] [cicr o
[Xiz Xz]_[o O]X+X o oltl o o (5.40)
andatt=k7,k=0,1,2,..

Xi(kt7) = Xy(k7) -—X12(k7')[7'1+X2(k7')]_1X12(k7')v
X12(k7’_) = 0, (5.41)
Xz(k'T_) = 0
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The second Riccati equation (4.165) and (4.166) is written

. 1
Yi. = AV + Y]A’ + ;BlB; + BQY{2 + Y]’2BQ,

Yiz = AYi+ BoYs, (5.42)
Yo = 0

for kt <t < (k+1)7 and at t = kT

Yl(kr+) = Yi(kr) - Y1 (kT)Co{I + CQY](kT)Cé)—ICQ}/](kT),
Yi2(ktt) = 0, (5.43)
Y2(kT+) = 0.

Note that

Y(t) = lim Y(t +nr),
n—oo

Vi Yoo

Y Y2

(5.43) with }7(02 = 0. Since Y2(t), Yg(g) form a homogeneous system with

Y12(0) = 0 and Y>(0) = 0, we conclude Y)2(t) = 0 and Y2(t) =0 for all t > 0

as we see in Remark 4.6 where Y = [ ] is the solution of (5.42) and

and Y has the form [Y 8] where Y € R™"X" is the solution of

0
. 1
Y = AY +YA' + -;BlB;, kr <t < (k+1)T, (5.44)
Y(krt) = Y(k7) =Y (kT)C5(I + C2Y (kT)C3)~'CoY (k7). (5.45)
_ | X Xz o . e
X = \ x| 82 7-periodic nonnegative stabilizing solution,
12 2

(I %]-1% o)
0 O |'|Fs O
is exponentially stable where
Fy = —[1I + X,(0)] 7' X}2(0).
So the system
€ = AE + Byi(t), (t) = Foé(kt), kr <t < (k+ 1)1 (5.46)
is exponentially stable. Similarly if Y is a 7-periodic stabilizing solution,
([A BQ] [1 + H,C; 0])
0 o0}’ 0 0
is exponentially stable where

H, = -Y(0)Cy[I + C.Y (0)C3]7 1,
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which is equivalent to the exponentially stability of the system

£ = AL kr <t<(k+1), (5.47)
Ekrt) = I+ H,Co)é(kT).

Remark 5.4 The exponential stability of the systems (5.46) and (5.47) are
equivalent respectively to that of the following time-invariant discrete-time
systems:

§k+1) = (A+BF)(k),

I
N
+
N
S
m
=
ol X

I
o

b
3
=

Ek+1)

From (4.167) the controller given by

[2] = [61 %] [2] kr <t < (k+ 1),
[2} (kr*) = [Ff(flﬁfég) 8] [2} (k7) — [FHH] y(k)(5.48)
u(k) = [F(I+HCz) 0] [2} (k7) — FHyy(k)
is optimal. Since
Z, = 0, kr <t < (k+1)r,
B2(kt*) = F(I + H,Ca)i1(kt) — F.Hy(k),

we can rewrite (5.48) as

& = A+ Byi(t), kr <t < (k+1)T,
i(ktt) = (I+ H,Co)i(kt)— Hy(k), (5.49)
u(k) = F,(I+ H,Cy)i(kt)— F,H,y(k)

where ¥ is given by 9(t) = Fo(I+ H,C2)Z(kt) — FsHyy(k), k7 <t < (k+1)7.
The controller (5.49) is equivalent to the following discrete-time controller
i(k+1) = Az(k)+ By(k), (5.50)
u(k) = Ci(kr)+ Dy(k)
where
= /i + B2Fs + ﬁsC2 + B2FSHSC27
= _(ﬁs + B’.)FsHs)a

= F3+F5H3027
— _F,H,

b’ & Mles A NS
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Finally the optimal value is given by

mi G ||
Ke?( G 3

- [ 0l FCIHE
I +Y(0)C5C2]~ 1Y (0)

+r 1]+ X5(0)]? [ F, 01[ K

x [’g] (1 + X,(0)]*

1 T
= = / tr.B) X, (s)Bids + tr.[r] + X2(0)]Fs|I + Y (0)C4LCo]) 'Y (0)F.
0

.
Since Y (0%) = [I + Y(0)C4C2]~'Y (0) we can rewrite mingek
. 1 [7
mplGI3 = 1 [ rBiXioBds

I G113 as

+tr.[rI + X2(0))F Y (01)F.. (5.51)

Summing up we have the following.

Theorem 5.7 Assume S1-S4 and consider the Hy-problem for Gs. Then the
controller (5.49) (and hence (5.50)) is optimal and the minimum H; norm

is given by (5.51).

~ We now compare our results with the known results in 2, 8,
for k7 <t < (k+ 1)7 we have

X1 X2
[Xiz Xz](t)

A

50]. By (5.40)

A Bg] [ Bg]
(k+1)r [ (r-t) / (r-t)
- / L0 0 [0101 o]e 0o o],
t

0 0

A B A B,
+e[0 O] ((k+1)7~1) [Xl((k+1)-r‘) 0] 8[0 0
0 0

Since
A B, . ,
L0 0] et [eMdtB, ’
0 I
we have
Xl(t) = eA’((k+l)‘r—t)X1((k+I)T—)eA((k+l)T—t)

(k+1)7 ,
+/ eA (r—t)C;CIeA(r—t)d,r’
t

] ((k+1)7—t)
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, (k+1)7—~1t
X1o(t) = €4 ((k+1)7“)X1((k+1)T_)/ eAdsB,
0

(k+1)7 , r—t
+/ e (T_‘)C{Cl/ e*3dsBodr,
¢ 0

(k+1)7—t , (k+1)7—t
Xo(t) = B;/O e sdle((k+1)T’)/0 e dsB,

(k+1)7 r—t , r—t
+/ B;/ el 3dsC{C’1/ e dsB,dr
t 0 0

and
Xi(kr) = AXi((k+1)r)A+CiC,
Xi2(kt) = A'X\((k+1)77)B2 + €Dy,
T t t
Xo(kr) = B{,Xl((k+1)7_)32+/ Bg/ eA’Sdsc;cl/ e*dsBydt
0 0 0
where

’

G0 by [l 0] 4 2],
[ }[Cl Drz] /Oe [ / ][Cl D2 ]e dt.

ry
D12 12

Hence the Riccati equation (5.40) and (5.41) is equivalent to

(k+1)7
X(t) — eA'((k+1)r—t)X~eA((k+1)T—t) +/ eA'(r—t)CiCICA(r—t)dr’
t

kr<t<(k+ 1),
X = AXA + éié]
~(A’X By + C{D12)(Djy D12 + B4X By) "1 (ByX A + Dj,Ch)
where X = X,(k77) = X,(07). Similarly the Riccati equation (5.44) and
(5.45) is equivalent to

t
Y(t) = et Y (kr)et ¢ 4 / A (LB, Byt t-Nar,
kT T
kr <t <(k+ 1),

AY (kT)A' + BB,
—A'Y (kT)CH(I + CoY (kT)CH)"1CoY (kT)A

Y((k+1)7)

where B; B} = L [T eAtB, Bje*"*dt. We also have
F, = —(Dj;Dv2+ ByXBy) " (ByX A+ Di,C),

H, = AH,=-AY°Cy(I+ C,Y°CH)™! Y° =Y(0).
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Remark 5.5 The optimal controller (5.50) is obtained via the two algebraic
Riccati equations:

X = AXA+C)C
—(A'XBy + C, D12)(D,; D13 + B4X By) Y (ByX A+ Dy,Ch),

Y?° AY®A' + BB, — A'Y°Cy(I + C,Y°Ch) 1 C. Y A

5.4 Notes and References

This chapter is based on (36, 37].

The transformation of sampled-data system into jump systems was intro-
duced in [68]. The notion of pathological sampling periods and its related
results can be found in [8]. The Hy, problem for sampled-data systems is
originally solved using the so-called lifting technique [3, 8, 25, 76, 88]. An
advantage of the jump system approach is that original systems are main-
tained in the formulation and the results are regarded as an extension of
those for continuous- and discrete-time systems. The jump system approach
is adopted in [64, 68, 77]. Necessary and sufficient conditions for the existence
of a ¥-suboptimal controller are given in [68]. The equivalence of the jump
system approach and the lifting technique is discussed in [64].

The H; problem in Section 5.3 can be solved using lifting or FR-operator
approach [2, 8, 24, 50]. The solution using the jump system representation is
found in [37]. The Hy and Hy, problems can be considered within the same
framework if the jump system approach is adopted.



6. Further Developments

In this chapter we give some further developments in the theory of jump sys-
tems. One is an extension to infinite dimensions, which can describe sampled-
data systems with first-order hold and of course sampled-data distributed pa-
rameter systems. We also introduce fuzzy jump systems which can represent
sampled-data nonlinear systems.

6.1 Jump Systems in Infinite Dimensions

Consider the jump system G;:

T = Ax+ Byw, kr<t<(k+1)r, T >0,
z(ktt) = Agx(kt)+ Bau(k), k=0,1,2,..,
« = o) = [oimto]
za(k) Diou(k) |’
y(k) = CzI(kT) + Dzl‘wd(k)

wherez e HueU, we W, wg € Wy, 2. € Z,, 24 € Zgq,y € Y, A is the
infinitesimal generator of a Cy-semigroup S(t) in a separable Hilbert space H,
the input and output spaces W, U, Wy, Z., Z4,and Y are all separable Hilbert
spaces and the operators By, Ag and so on are all bounded linear operators in
appropriate spaces i.e., By € L(W, H), Ag € L(H), etc. The inner products in
Hilbert spaces are denoted by < -, - > and the norm for vectors and operators
are denoted by | - |. The abstract system G; is useful when we consider
parabolic equations, hyperbolic equations, delay differential equations and
neutral equations with sampled-data control or impulse control. The (mild)
solution of G; for a locally Bochner integrable w is defined in a piecewise
manner as follows:

z(t) = St — kr)z(ktt) + /t S(t — ryBiw(r)dr, kr <t < (k+1)7.
kT

It is left-continuous with jumps at k7. Let S(¢, 7) be the fundamental solution
of the homogeneous part of (6.8). Then it is 7-periodic i.e., S(t + 7,5 +7) =
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S(t,s) for any t > s > 0. We can express z(t) with z(0) = z¢ as

¢ k
z(t) = /0 S(t,s)Biw(s)ds + Z S(t, j71)Bau(j) + S(t,0)zo,
j=0
O<kr<t<(k+1)r

We assume

H1: D},Dy =1,
H2: D21 D;l = I,
H3: ([A, A4], [B2,0],[C1,0]) is stabilizable and detectable,
H4: ([A, Ad], [0, B1], [0, Cy)) is stabilizable and detectable.

In this section we give an extension of Theorems 4.10, 4.11 and 4.24 with
Hh = 0 to infinite dimensions. we only give main results and omit their
proofs although they are direct generalizations of those in Section 4.2 but
are beyond the scope of this book. Instead we apply them to sampled-data
systems with first-order hold.

6.1.1 H. Control

Consider the system G; and an internally stabilizing controller u = Ky of
the form

p = AQ)p, kr <t < (k+1)T,
pkt*) = Aa(k)p(kr) + B(k)y(k), (6.1)
u(k) = C(k)p(kr) + D(k)y(k)

where A(t) generates an evolution operator in some Hilbert space H and
all other operators are linear and bounded and their norms are bounded
uniformly in ¢. Then

G € L(L*(0, 00; W) x 13(0, 00; Wy); L%(0, 00; Z,) x 12(0, 00; Za))-

The Hqo-control problem for G is to find necessary and sufficient conditions
for the existence of an internally stabilizing controller such that | G | < v
(y-suboptimal).

As in Section 4.2, we introduce the following Riccati equations:

-X = A'X4+XA+C1C+ 71—2XBIB{‘X,
kr <t<(k+1)r, (6.2)
X(kt™) = AX(k7T)Ad — (R3T; ' Ry)(k),

. 1
Y = AY+YA'+BiBl + 5YCIOWY,
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kT <t < (k+ 1), (6.3)
Y(ktt) = AgY(k7)A] - (R T, ng)(k)
Y(0) = 0 (6.4)
with
Ty(k) =1+ B3X(kT)B2, Rk kT)Aq4,

) = B3 X(
Tyy (k) = I + CoY (k7)C}, Ray(k) = P LY (kT) A

and the Riccati equation depending on X:

. 1 1
zZ = (A+ 7—2BlB;X)Z+Z(A+ ?BIB;X)* + BBy,
kr <t<(k+1)7,
Vz(k) > al for some a > 0, (6.5)
Z(kt™) = AaZ(kr)Aj — (R3zT5; Raz)(k) + (FizVzFiz)(k),
Z(0) = 0 (6.6)

where

Tyz(k) = v2I — T PR, Z(kr)R3Ty Y, Taz(k) = I+ CoZ(kT)C3,
-1
Riz(k) = T, ¥Ry Z(k7) A2, Raz(k) = C2Z(kr) A3,
Sz(k) = CaZ(k)R3T; *, Vz(k) = [Tiz + Sy T S21(k),
Flz (k) = [Vz ' (Riz — §3T5; Raz)](k),
(k) = [T, (Raz + Sz Fi2)|(k).

An operator X is called a mild solution of (6.2) if it is right-continuous and
satisfies

Xtz = /3 S*(r —-t)[CTC1 + %X(T)BlB;X(r)]S(r — t)zdr

t
+5*(s —t)X(s)S(s —t)z, kr <t <s< (k+1)r.

Mild solutions of (6.3) and (6.5) are defined in a similar manner. As in Section
4.2, the solution X of (6.2) (Y of (6.3)) is called stable if (A+ ;Y—erlBl*X, Ag—
B;T;'(0)R2(0)) is exponentially stable (A + 75 Y C;Cy, Aa — Ry Ty Ca) is
exponentially stable, respectively). Similarly the solution Z of (6.5) is called
stable if (A + % B, B} X, Ag + F{T; ? Ry + F; Cs) is exponentially stable.

Theorem 6.1 Consider the system G; and assume H1-H4.

(a) There exists a y-suboptimal controller u = Ky of the form (6.1) if and
only if the following conditions hold:

(i) There erists a T-periodic nonnegative stabilizing mild solution X of (6.2).
(ii) For the solution X in (i), there erists a bounded nonnegative stabilizing
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mild solution Z of (6.5) and (6.6).
(b) In this case the set of all v-suboptimal controllers is given by

p = [A+ %BleX(t)]p, kr <t < (k+ 1T,
p(kr*) = Ax(k)p(kT) + By (K)y(k) + Ba(k)s(k),
u(k) = C(k)p(kT)+ Di(k)y(k) + D2(k)s(k), (6.7)
g(k) = T, (k)[~Cap(kT) + y(k)],
s = ng Q¢ Q'y
where
Aa(k) = (Aq = B,T; R)¥(K),
By(k) = (Ad—BgT‘ Ry)Z(kT)C3T A (k),
By(k) = L([F} + BT, 1V (k), C(k) = —T; 'Ry ¥ (K),
Dy(k) = —T 1Ry Z(kr)C3 T3 (K), Da(k) = 215 VR k),
V(k) = I — Z(kT)C3T; (k)Ca
and
Q, = {Qe€ C(lz(O,oo;Rp’);lZ(O, oo; R™2)) :

Q is of the form (6.1) and internally stable with | Q ||< v}.

Moreover, Z;(t) = lim,, .o Z(t+n7) exists and it is a T-periodic nonnegative
stabilizing mild solution of (6.5).

Theorem 6.2 Consider the system G; and assume H1-H4.

(a) There exists an internally stabilizing controller w = Ky of the form (6.1)
such that || G ||< v if and only if the following conditions hold:

(i) There ezists a T-periodic nonnegative stabilizing solution X of (6.2).

(ii) There erists a bounded nonnegative stabilizing solution Y of (6.3) and
(6.4)

(i) p(XY) < d?, t > 0, for some 0 < d < v, where p is the spectral radius.
(b) In this case the set of all y-suboptimal controllers is given by (6.7) with
Z(kr)=[I- ;‘;Y(kﬂr)X(O‘)]‘lY(kﬂr).

Moreover, Y, (t) = lim,,o Y (t+n7) ezxists and it is a 7-periodic nonnegative
stabilizing mild solution of (6.3).

Note that necessary and sufficient conditions and r-periodic controllers
may be obtained in terms of X, Y, and Z,.

6.1.2 H: Control
Consider the system
T = Az+ Buw, kr <t<(k+ 1)1,
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z(kt?) = Agx(kT)+ Bawa(k), (6.8)
zz. = Cr,
za(k) = Cqx(k7)+ Dywq(k)

where operators except A are linear and bounded. Assume that (A4, Ay) is
exponentially stable. We introduce Ha norm of the system (6.8). Let T}, and
T,., be the operators given by

. [ se.nBucar

kT
Cq / S(kT,m)Bw(r)dr
0

and
k
C > S(t, j77)Bawa(j)
ZC(t) 7=0
z= Zd(k) :Tzwdwdz - O<kr<t< (k+1)‘r s
Ca>_ S(kt, it+)Bawa(3) + Dawa(k)
7=0

respectively. Let (e;) and (f;) be the orthonormal bases in W and Wy re-
spectively. As in Section 4.1.2 we consider the impulse w(t) = 6(t — s)e;,
0 < s < 7. The resulting output will be denoted by T,,,6(t — s)e;. We also
consider the input wq with wg(0) = f; and wq(k) = 0 for all k > 1. We de-
note its output by T}, d.0f;. Then T,,,6(t —s)e; € L?(s, 00; Z,) x 12(0, 00; Zg)
and Ty, 0.0f; € L?(0,00; Z.) x 12(0, 00; Z4) where 12(0, 00; Z4) is the space
of square summable vectors in Zy. Define

P(s)z = / S*(t,s)C*CS(t, s)zds,
]

Py(s)r = S*(kt,8)CiCaS(kT, s)x.
k=1

Then < Be;, [P(s) + Pa(s)|Be; >=|| T;,0(- — s)ei |32, 2 and
< Baf;, [P(0%) + P4(01)|Byf; > + < Dafj, Daf; >=|| Tew,b.0f; I325s2 -

In order to introduce the Hy norm to (6.8) we assume one of the following
conditions:

(i) B, B4 and D, are Hilbert-Schmidt operators.
(ii) C, Cq and Dy are Hilbert-Schmidt operators.
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Then in either case B*[P(s) + P4(s)]B is a trace class operator ([22]) and

tr.B*[P(s) + P4(s)|B = i < Be;, [P(s) + Pa(s)]|Be; ><

=1

where tr. denotes the trace of operators. Now we define the Hz norm of (6.8)
as follows:

[e ] 1 T [e ]
16 1E= 327 [ 1Tl = 9 Wasis ds+ 3 1 Tew Sy W -
=1 j=1
Consider
—L, = A*Ly+ L,A+C*C, kr <t < (k+1)T, (6.9)
Lo(kt™) = A4Lo(k7)Aq+ C;Cy.

Since (A, Aq) is stable, there exists a unique nonnegative 7-periodic mild
solution L,. It is called the observability gramian. Similarly there exists a
unique nonnegative T-periodic mild solution L. of the equation

Le = AL.+L.A*+ %BB‘, kT <t < (k+1)7,
Le(kt*) = AgqLc(kT)A}+ ByBj, (6.10)

which is called the controllability gramian. We can express || G ||z in terms
of L, or L.

Theorem 6.3
1 T
11 = 1 / tr.B*Lo(s)Bds + tr.[B3Lo(0)Ba + D5 Dl
0
= tr.CyL (0)C] + / tr.CL(s)C*ds. (6.11)
0
Recall the jump system G;:
T = Az + Byw, kT <t <(k+ 1)1,
z(ktt) = Agz(kT) + Bau(k),
. = Ze | _ Ciz
24 D]zu(k) !
y(k) = CQI(kT) + D21‘wd(k).

Now we introduce the Ha-control problem. Consider feedback controllers u =
Ky of the form
p = Ap kr<t< (k + 1),
p(kr™) Agp(kT) + By(k), (6.12)
Cp(kT) + Dy(k)

£

Ey

~
]
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where {i is the infinitesimal generator of a Cp-semigroup in a separable Hilbert
space H and other operators are linear and bounded. It is said to be internally
stabilizing if the closed-loop system is exponentially stable. We assume one
of the following:

(i) B; and D3, are Hilbert-Schmidt operators.
(ii) Ch and D)5 are Hilbert-Schmidt operators.

In either case the Hz-norm of the closed-loop system is well-defined. Our
H,-problem is to find an internally stabilizing controller K which minimizes
|| G ||2- Under the assumptions H1-H4 we have the following result:

Lemma 6.1 (a) Suppose H1 and H3 hold. Then there ezists a unique -
periodic nonnegative mild solution of the Riccati equation:

X = A'X+XA+CICy, kr <t<(k+1)T, (6.13)
X(kt™) = A3X(kr)Aq4 — (R3T; ' Ry)(K),
which is stable, i.e., (A, Ag + BoF) with F = T; '(0)R2(0) is exponentially
stable where Ry(k) = B3X(kt)Aq and To(k) = I + B} X(kT)B;. Under the
condition (it) X is a trace class operator and tr.X(-) is uniformly bounded.

(b) Suppose H2 and H4 hold. Then there exists a unique T-periodic nonneg-
ative mild solution of the Riccatli equation:

Y = Av+var+ %BIB;, kr<t<(k+1)r,  (6.14)
Y(ktt) = A4Y(k7)Aj - (RiyTsy Roy)(k),

which is stable, i.e., (A, Ag+HC?) with H = — R}y (0)T,,/ (0) is exponentially
stable where Ray (k) = C2Y (k7)A} and Toy (k) = I+ CRY (k1)C3. Under the
condition (b)Y is a trace class operator and tr.Y (-) is uniformly bounded

Define the stabilizing controller based on the feedback gain F and the
observer gain H:

p = Ap, kr <t<(k+1)7,
p(kt*) = (Aq+ B2F + HC, — BoLCo)p(kT)
—(H - B;L)y(k), (6.15)

u(k) = (F—LC2)p(kr)+ Ly(k)
where L = FY (0)C4T5}(0).

Theorem 6.4 Consider the Hy-problem for G;. Then the controller (6.15)
15 optimal and

min|| G 3 = l/ tr.B?X(s)By ds
T Jo

+tr.To(0)F[I 4+ Y (0)C5C2) Y (0)F*.(6.16)
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6.1.3 Sampled-data Systems with First-order Hold

We apply the main results in Sections 6.1.1 and 6.1.2 to the sampled-data
system G in Chapter 5:

I

I Az(t) + Byw(t) + Bau(t),

o) = [zi’fa(ft))] ’

y(k) = Caz(kt)+ Daywq(k)
where 4 is realized through a first-order hold. Then
a(t) = u(k) + ! _T’” [u(k) — u(k = 1)], kr <t < (k+1)7. (6.17)

Let A be the operator on My = R?™2 x L?(—7,0; R?™2) given by

A[ﬁ(fl)] _ [Aoﬁ(0)+A1ﬁ(—T)]’

p dp/ds
D(fi) = {[];((0))] : p(-) absolutely continuous,
@ e L¥(-r O'Rzm’)
ds 1 )
0 0| ., . . o
where Ag = —A; = i ol Then it is the infinitesimal generator of a

strongly continuous semigroup on M. Setting p(t) = [p1(t),p2(t), ;1 (t +
-), p2(t + )], we can rewrite (6.17) as

p = Ap, p(0) =0, (6.18)
sty = [o 9]t + [B¢]u, B[]

and @(t) = p2(t). Then except for an additional output z4, G, is equivalent
to the system

m = [‘3 Aiio] ["5]+[%‘]w<t) 4:=[0 B],
) - o o o] ]« ]
z(t) = [C1 0 Di 01[223],

<
—_
R-
S
il
Q
[ ]
o
o
re
=1
~—~
R-
h‘
S
—
+
=)
[ ]
Pt
g
a
~—~
R-
S
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We assume the following:

(i) D4yDg =1, Dy Dy, = 1.
(ii) (A, By, C)) is stabilizable and detectable.
(iii) There exists a stabilizing feedback of the form

u(k) = Kyz(kt) + Kou(k — 1) + i Ks(s)a(kr + s)ds.

—T

(iv) ([0, Cq], [A, I]) is detectable.

Then the assumptions H1-H4 are satisfied and we can apply Theorems 6.2-
6.4. If we set DDy = €l and let € -» 0, we obtain the limiting case G, and
(6.17). We now derive Riccati equation for the Hoo-control problem. For this
purpose we set X = [X;;],4,5 = 1,2,3. Then X3 € L(L?(~7,0; R?™2), H)
and we denote by X;3(t, s) the kernel of X,3(t) i.e.,

Q
Xu®p() = [ Xt s)p(s)ds, p() € L3(~7,0;R?™).

-T

Similarly we denote the kernel functions of X23, X33 respectively by X23(t, s),
X33(t, s,7). Using the definition of A and (6.2) we obtain the following Riccati
equation:

) 1
-Xn@t) = AXn@)+Xu@t)A+CC + ?Xu(t)BlB;Xu(t),
X“(k'r_) = X“(k'r) —X12(kT)@(k)X21(kT),
—X12(t) = A’XlQ(t) +X12(t)A0 +X13(t,0) +X11(t)A2

1 /
+?X11(t)BlB;X12(t) + Cl [0 D12] s

Xlg(k’r_) = 0,

—%Xlg(t, s) = —B%Xlz(t,s) + A’ Xis(t,s) + %Xu(t)BlB;Xw(t),
Xi3(t,—7) = Xi2(t)4, (6.19)
Xi3(kt7,8) = Xiz(kt,s) — Xi2(kT)®(k)X23(kT),
~Xo2(t) = ApXz(t) + Xa2(t)Ag + AL X12(2)
+ X1 ()42 + ;IEXm(t)BlB;Xu(t) + [g D,I:’Dm] ,
Xoo(kt™) = 0,
o o , ,
—b—ths(t, s) = —5;X23(t, 8) + ApXas(t, s) + A3 Xq3(t, s)

1
+X33(t, 0, S) + ?Xgl(t)BlB’lea(t),
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Xas(t,-7) = Xn(t)A,
Xos(kt™,s) = 0,

—2X33(t s,r) = —(2 + —8—)X33(t s, Ty + lX31(t s)ByB; X13(t,7)
ot 'S ds ' or T2 P2/ EIEIAN T
X33(t, -7, T‘) = A'1X23(t,r),

X33(t,s,—7') = X32(t,s)A1,
Xs3(kt7,s,7) = Xss(k7,s,7) — Xaz(k7,s)®(k)X23(kT,7)

where Toz(k) = I + By Xa2(k7)Bg and &(k) = ByT,' (k)B). Setting ¥ =
[Yi;], 4,7 = 1,2, 3 we can derive a similar Riccati equation to (6.19). Since Y;;
form a homogeneous system, we seek for a solution with ¥;; =0and Y = ¥y,
satisfying

) 1
Y = AY +YA 4+ BB+ 7—2YC’{C’1Y,
kt <t < (k+ 1), (6.20)
Y(ktt) = Y(k7)[I + CoCY (k7))L

Since ([A4, 1], [0, C4]) is detectable, there exists an unique stabilizing solution
of (6.20). The controller (6.7) is written as

- 1 , . 1 , A
T = [A + ?BlBIXu(t)]I + [A2 + ?BlBIXy‘)(t)]p
0

1
+7—2313{ X13(t, s)p(t + s)ds,

-7

p = Agp(t)+ A1pt —7), kr <t < (k+ )7, (6.21)
ft(kT+) = Mllf:(kT) + Mlzy(k) + M13S(k),
pktt) = My i(kT) + Magy(k) + M2zs(k)
0

—2(0) Xos(kT, s)p(kT + s)ds,

u(k) = MNiz(kt)+ Noy(k) + Nas(k)
0
—T5,' (0)By [ Xa3(kT,s)p(kT + s)ds,

o(k) = T3 H(k)[-Cat(kr) +y(k),
s = Qg, [|Q o<~
where W(k) = (I - ,y—lg-Y(kT)Xu(O‘)]‘1 and
Mu(k)y = I-W(k)Y (kr)CiT; ' (k)Cq,
M12(k) Mll(k)W(k)Y(kT)Cr";,
M) = ~~FVH)

I
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Mo (k) = —®(0)X2(kT)M11(k),
Maa(k) = Mu(k)W(k)Y (k7)C3,
Ma(h) = ~ZBaTphOVi(h),
Ni(k) = —T3'(0)ByXai(kr)Miy(k),
Na(k) = Ni(k)Y(kT)C5,

Nak) = TRV,

(k) = 21 = T5t (0)BLXor (k)W (k)Y (k1) X12(k7)BaTy? (0),
(k) = I+CW(k)Y(kr)C,
(k) = Tp?(0)ByXa (k)W (k)Y (kr),
Rz(k) = CoW(k)Y (kT),
(k) = CoW (k)Y (kr)Xi2(kr)B4T5? (0),
(k) = (Ty+STiS)(k),
(k) = V"R - STy Ry)|(k).

Summing up we have the following.

Theorem 6.5 (a) There exists a y-suboptimal controller for the system G,
if and only if the following hold:

(i) There exists an T-periodic nonnegative stabilizing mild solution X to the
Riccati equation (6.19).

(ii) There exists a bounded nonnegative stabilizing mild solution Y to (6.20)
with Y(0) = 0.

XY

(iii) p | | XaY | (t) | <d? for any t € [0,00) and for some 0 < d < 7.
X31Y

(b) In this case the set of all y-suboptimal controllers is given by (6.21).

We now derive two sets of Riccati equations for the H, problem. Using
the definition of A and (6.13) we obtain the following Riccati equation:

—Xll(t) = A’Xu(t)+X11(t)A+C;CI,
Xnukt™) = Xulkr) — X12(km)®(k)X21(kT),
—X12(t) = A'X12(t) + X12(t) Ao + X13(2,0)
+X11(t)A2 + C; [0 D12] ,
Xi2(kt™) = 0,
—2X13(t s) = ——8-X13(t s) +A'X13(t s)
ot ’ s ' T
Xt -7) = Xi2(t)4,

X13(kT_,S) = X13(kT, S) - Xlz(kT)(I)(k)X23(kT),
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~Xoa(t) = AhXap(t) + Xoa(t)Ag + Ay X12(t)
+X21(t) Az + [8 D’120D12] )
Xnkr™) = 0, (6.22)
—2X23(t s) = —2X23(t s) + ApXas(t, s)
ot ’ Os ’ '
+A5X3(¢, s) + X33(t,0,5),
Xoa(t,—1) = Xoo(t)A1,
Xoz(kt™,s) = 0,
—%X33(t,s,r) = —(a% F %)Xss(t»svr)y
Xss(t,—7,7) = A\ Xa2s(t,7),
X33(t,s,~7) = Xsa(t,s)A,
Xaz(kt7,8,7) = Xaz(k7,8,7) — Xao(kT, s)®(k)Xo3(kT,7)

where Tz (k) = I+ B} X22(kT)Bqa, ®(k) = B4T;,' (k) B);. The Riccati equation
(6.14) is reduced to

Y = AY+YA + %BlB’, (6.23)
Y(krt) = Y(k7)[I + C4CoY (k7))L

Since ([A, I], [0, C2]) is detectable, there exists an unique stabilizing solution
of (6.23). Hence from Theorem 6.4 we conclude that the Riccati equations
(6.22) and (6.23) have unique 7-periodic nonnegative stabilizing solutions.
The optimal controller is given by

E(t) = AZ(t) + Agp(t),
E(ktt) = [I-Y(0)C4y(I + C2Y (0)Cy) "' Co)2(kT)
+Y (0)C3(I + C2Y (0)C3) ™ y(k),
B(t) = Aop(t) + Aip(t — 1),
0
plktt) = —®(0)[X21(0)(kT) +/_ X23(0, s)p(kT + s)ds
+X21(0)Y (0)C3(I + CoY (0)C3) ™ 'y(k)],
0
w(k) = -T5'Bi[Xoa(0)E(kT) + [ X23(0,8)p(kr + s)ds

-7

+X21(0)Y (0)C3(I + C2Y (0)C3) ™ y(k)]

and the optimal value is given by

. 1 /[
min || G,y |15 = ;/0 tr.B1 X (s)Bids
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+tr. Ty B4 X021 (0)(I + Y (0)CHC2) ™'Y (0) X12(0) By

T

1 T
_ ! / tr.B, X (s)By ds + tr.T5 By X1 (0)Y (07) X12(0) By.
0

6.2 Sampled-data Fuzzy Systems

Takagi-Sugeno fuzzy models are nonlinear systems described by a set of IF-
THEN rules which gives a local linear representation of an underlying system.
Such models can approximate a wide class of nonlinear systems. They can
even describe exactly certain nonlinear systems. In this section we consider
a sampled-data fuzzy systems and give a design method of output feedback
controllers.

6.2.1 Sampled-data Fuzzy Systems
Consider the following IF-THEN rules:

IF 21 is My and --- and z, is My,
THEN i(t) = A;z(t) + Bia(t), (6.24)
y(k) = Ciz(k7), k=0,1,2,--, i=1,--,7

where 7 is a sampling period, z(-) € R" is the state, 4(-) € R™ is the control
input realized through zero-order hold, i.e., @(¢) = u(k), k7 <t < (k + 1)1,
y(-) € R7 is the sampled observation, the matrices A;, B; and C; are of
appropriate dimensions, r is the number of IF-THEN rules, M;; are the fuzzy
sets and z1, - - -, 2p are premise variables. M;;(z;) denotes the grade of z; being
in the fuzzy set M;j, 0 < M;;(z;) <1. Weset z =[2; --- 2,] and assume
that 2 is a given function. Then the state equation and the output are defined
as weighted linear systems

() = D M(=(t){Aix(t) + B}, (6.25)
yk) = Zz\i(z(k'r))C,-z(k'r)

where
M) = =20 = T1 M. (z).

Z w;(z) 7=
i=1
We assume

r
wi(z) 2 07 1= 1,"',7', Zw‘i(‘z) > 07 VZ'
i=1
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Hence A;(2) satisfies

r

Ai(2) 20, i=1,--,r, > N(2) =1, "z

i=1

First we consider the stabilization problem by state feedback controllers and
assume that the following rules are given:

IF z1(kt) is M;; and --- and z,(kT) is My,
THEN 4(t) = u(k) = Fix(kr), kr <t <(k+ D1, i =1,---,r1.

This says that the state feedback u(k} = Fyz(k7) is suitable for the i-th
system (6.24). Then the natural choice of the controller is the following:

Z,\ NFix(kr), k1 <t < (k+1)7 (6.26)

where we use the same weights A;(2) as in (6.25). Now consider the closed-
loop system (6.25) with (6.26). As in Chapter 5 we express the closed-loop
system (6.25) with (6.26) by the jump system

e(t) Z,\ NGizc(t), kr <t < (k+1)7, (6.27)

z (k) = Z)\ 7))Gazo(kT)

where z, = [;], G; = [%’ %] and G’l = [FI‘I 8] . Now we give sufficient

conditions for the exponential stability of (6.27) based on Lyapunov functions.

Theorem 6.6 The fuzzy system (6.27) is exponentially stable, if there exists
a bounded right continuous matrix X (t) > a1l, ay > 0, t > 0 that satisfies

X+GX+XG, < -P<0,i=1,---,r, (6.28)
G\ X(kr)Gi— X(kr™) < —Pi<0,i=1,---,r

where P; and P; are positive definite matrices.

Proof. Using the first inequality of (6.28), we obtain

X+ (Zl )\,-(z(t))Gi> X+ X (Zl )\i(z(t))Gi>

i: M(z)[X + GiX + XG,]

IA

IA

—cl
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for some ¢ > 0 with P, > ¢l. At t = kT we have

(ZA 2(k7))G ) (kT) (ZA (k)G ) X(kt7)
Z NGIX(kT)Gi — X (k7))
+ Z Xz (kTN (2(kTYGIX (kT)C; + G X (k1)G, — 2X (kT7))
i<

and by the seiond inequality we also have

G X(kT)G; + G, X (k7)G, — 2X (k7™)
= —(Gi-G)YX(kr)(G: - Gj)
+GIX (kT)Gi + G X (kT)G; — 2X (kr7)]
< —(P, +Pj).

Hence we obtain

(Z Ai(z(kr))é'i) X (k7) (Z A,(z(kr))é’,) — X(kT7) < —él

for some ¢ > 0 with P; > éI. As in the proof of Proposition 4.2, we can show
the assertion. 2

Now consider for (6.25) an observer of the form

Et) = > AE®){Ad®) + Bia(t)}, (6.29)
=1
g(krt) = &(kT) + Kiy(k) — §(k))

where §(k) is given by
=Y Ai(z(k7)Cig(k).
=1

We wish to find K such that e(t) = z(t) - Z(t) ~» 0 exponentially as t — oo.
We assume that the following rules are given concerning an observer of each
subsystem in (6.24):

IF 2 is M;; and - - and z, is My,
THEN z(t) = A:.2(t) + Biu(t), kr <t < (k+ )7,
E(kT*) = (k) + Ki(y(k) - §(k)), i=1,---,7.



336 6. Further Developments

We propose the following observer gain:
K =" X(z(k7)) K. (6.30)
i=1
Substituting (6.30) into (6.29), we have

3t) = i/\.-(z(t)){A.-i(t)+B,;ﬁ(t)}, kr <t < (k+ )7, (6.31)
=1

2(krt)

2(kr) + Y Ai(2(kT)) K;ly(k) — 9(k)).
i=1

Subtracting (6.31) from (6.25) with z(k7*) = z(k7), we have the error system

é(t) = i/\j(z(t))Aje(t), kr <t < (k+ 1), (6.32)
j=1
e(krt) = Y ) N(z(km)As(2(kT))(I — K;Ci)e(kr).
i=1 j=1

We have a result similar to Theorem 6.6.

Theorem 6.7 The error system (6.32) is exponentially stable, if there exists
a bounded right continuous matriz Y (t) > azl, az > 0, t > 0 that satisfies

Y + ALY + Y A,
(I - KJC,)’Y(’CT)(I - KJ'C.‘) hd Y(k'r“)

< —-@Q:i<0,i=1,---,7{6.33)
S _Qij <Oa i,jzl,"‘,’f'
where Q; and Q,-J- are positive definite matrices.

Next we consider the output feedback stabilization of the fuzzy system
(6.25). Consider the controller based on the state feedback controller (6.26)
and the observer (6.31):

it) = XT:/\,-(z(t)){A.-i(t) + Bia(t)}, kr <t < (k+ 1),
=1

Bkrt) = &(kr)+ > N(z(kr))K;ly(k) — §(k)), (6.34)
=1

wk) = > Ni(z(kr))Fid (k7).
=1
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Then the closed-loop system (6.25) with the controller (6.34) is equivalent to

5t = i)\i(z(t))Hi:E(t), kT <t < (k+1)T, (6.35)

g(krt) = D> N(2(kr))A;(2(kT)) HijZ(kT)
i=1 j=1

~ T . G,‘ 0 3 éj F]‘ o
where T = [ },Hz = [0 AJ,Hl = [0 I—K,-C,} and F; =

Now we assume that X(t) and Y (¢) satisfy the conditions of Theorems
6.6 and 6.7, respectively. Then we shall show that

X(t) = [Xét) n}f)(t)] (6.36)

for sufficiently large 1 > 0 is a Lyapunov function for (6.35). In fact

X+HX+XH < —[P" 0],i=1,..,r,
0 Qi

- [ P; ~G' X (kT)F; ]
- —F;X(kT)G] T]Q;‘j —1‘_‘]'X(ICZ’T')1‘_‘_7 !
i, j=1,.,r1

H;X(kT)H; — X(k7™)

Since

My Mp) I 0] [M, 0 I MMy,
M, My |~ |Mi,M™ I|{ 0 M;— MM *M3]||0 I

for any matrices M12, M2 and nonsingular M;,

P; —G' X (kT)F; .
~, N 7, .| >0,4, j=1,.,r
—F/X(k7)G; nQij — FIX(kT)F}

is equivalent to
nQi; — EiX (k7)Ey — FIX (kT)G;(P;) G4 X (k7)E; > 0, 4, j=1,..,7.

This is always satisfied if we choose 7 sufficiently large. Hence if we can find a
stabilizing feedback and an exponentially convergent observer, we can always
construct a stabilizing output feedback controller. This is a generalization of
the separation property in the linear theory.

Theorem 6.8 Suppose there erist bounded right continuous matrices
X(t) > a1l, a; > 0 and Y(t) > axl, az > 0 that satisfy (6.28) and (6.33),
respectively. Then the fuzzy system (6.35) is exponentially stable.
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6.2.2 The Case with Premise Variable y

In Section 6.2.1, the premise variable z for the fuzzy system (6.25) is assumed
given and unspecified. Here we consider the case where the premise variable
z coincides with the observation y of the underlying system. To make the
output (6.25) definite, we assume that C; = C, 1 = 1,2,---,7. Then the
sampled-data fuzzy model is described by the following IF-THEN rules:

IF yi(k) is M ;1 and - - - and y, (k) is M,,
THEN i(t) = A;z(t) + B; u(t)7 kr <t < (k+1)7, (6.37)
y(k) = Czx(kr), i=1,---,r

The state equation and the output are defined as follows:

-

—_
o~

p—
|

ZA (k)){A:z(t) + Bia(t)}, (6.38)
y(k) = Cz (kT)

and the output in (6.38) coincides with the premise variables. Now the ob-
server (6.31) becomes

i(t) = ZA E(t) + Byii(t)}, kr <t < (k+1)7, (6.39)
i(krt) = 2(kr) +ZA k) K;[y(k) — Cz(kT)).

From Theorem 6.7, we have the following.

Theorem 6.9 The error system

ZA (k))Ase(t), kT <t < (k +1)7, (6.40)

ZA (k))(I — K;C)e(kr)

1s exponentially stable, if there ezists a bounded right continuous matric
Y (t) > a3zl, ag > 0, t > 0 that satisfies

Y+AY+YA < -Qi<0, (6.41)
(I-KCYY(kr)I-KC)-Y(kr™) < -Qi<0,i=1,--,7

where Q; and Q; are positive definite matrices.
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Now consider the output stabilization of (6.38). As in Section 6.2.1, we
take the following controller:

() = zr:,\,-(y(k)){Aii(t) + Biu(t)}, kr <t < (k+1)7,

r

#kr*) = (k1) + ) As(y(k)Kily(k) - Ci(kr)), (6.42)

i=1
r

u(k) = Y N(y(k)Fi(kr).

i=1

Then the closed-loop system (6.38) and (6.42) is equivalent to the extended
fuzzy system

i) = ZA i), kr <t < (k+ 17, (6.43)
I(krT) = ZA k))H.;Z(kT)
where 7 = e] H; = [% X] B = [%’ J—F;(,-C] and F; = [_OF]

From Theorem 6.8, we obtain the following.

Theorem 6.10 Suppose there exist bounded right continuous matrices
X(t) > ayl, ay > 0 and Y(t) > azl, a3 > O that satisfy (6.28) and (6.41),
respectively. Then the fuzzy system (6.43) is exponentially stable.

6.2.3 The Case with Premise Variable z

In this section, we consider the sampled-data fuzzy models described by (6.25)
with z = z. Then (6.25) becomes

()

> A=) {Aiz(t) + Bia(t)}, (6.44)
i=1

r
y(k) = Y X(a(kr))Ciz(kr).
i=1
This class is very general and can describe the largest class of nonlinear sys-
tems provided that z is given. However we assume that the only information
available to us is the observation y. Then the design of observers is more
difficult. In fact the observer (6.31) with z = z is no longer feasible. However,
if we replace z by £ in (6.31), then we obtain a candidate of observers

i(t) Z Ai(£(){A:iz(t) + Bidi(t)}, kt <t < (k+ 1)7, (6.45)
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Bkr*) = 2(kT)+ D A(E(kT))K;ly(k) — 9(k)]
ji=1
where g (k) is given by
(k) =D Xi(@(kT))Ciz(kr).
i=1

We can show that (6.45) is an observer for the following fuzzy system, which
can be regarded as an approximation of (6.25):

Z Ai(2(8)){Aiz(t) + Bii(t)}, (6.46)

8.
—

5
~—

I

yk) = Zx\ NCix(kT).

Consider the system (6.46) and the observer (6.45), and let e = z — Z. Then
we have

é(t) = Z/\ ), kT <t < (k+1), (6.47)

e(kr?) = ZZ,\ (#(km))(I — K;Cy)e(k).

i=1 j=1
From Theorem 6.7, we have the following.

Theorem 6.11 The error system (6.47) is exponentially stable, if there ez-
ists a bounded right continuous matriz Y (t) > a2l, az > 0 that satisfies
(6.83).

Now we assume that there exists a bounded right continuous matrix
Y(t) > aol, ay > 0 that satisfies (6.33) and consider the asymptotic con-
vergence of the observer (6.45) for the original fuzzy system (6.44). For this
purpose, we set

flz,u,2) = Zx\i(z){Aiz+Biu},
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Then (6.46) and (6.45) are written respectively as

z(t) = f(z,4,1) (6.48)
and
i(t) = f(&,4,2), (6.49)
E(ktt) = &(k7) + m(z(kr))n(E(kT))e(kT).

Subtracting (6.49) from (6.48) with z(k7%) = z(k7) and settinge =z — 2
we obtain

ety = f(z,4,%)— f(&,a,z), (6.50)

e(ktt)y = {I-m(z(kT))n(z(kT))}e(kT).
Since there exists a bounded right continuous matrix Y (t) > 0 that satisfies
(6.33) and the error system (6.50) coincides with the system (6.47), we have
eYe+ P \Ye+e'Yyy
# Y (kT)p1 — €'Y (kT )e

< -—a|e|2, a>0, (6.51)
< —alel’t, a>0

for any @, £ and % with e = z — &, where ¢, = f(z,4,%) — f(£,4,%), ¢1 =
{I —m(z)n(z£)}e and we have suppressed kT in ¢;, e in the second inequality.

Now consider the fuzzy system (6.44), which is also written as

z(t) = f(z,4,x)

and the observer (6.45). Let € = x — . Then

€ty = flz,u,z) - f(&,5,%)
= ¥ + f(z,4,2) - f(=,4,1),
e(ktt) = (k) — m(E (k7)) {n(z(kT))x(kT) — n(£(k7))E(kT)}
= $1(kT) — m(E(k7)){n(z(kT)) — n(E(k7))}z(kT)

where ¢y = {I — m(z)n(£)}e. Using (6.51) we obtain

eYe+ (1 + 1/)2)'Y6
+eY (1 +92) < —ale]? +yhYe+ Y,
($1 — $2)'Y (kT)(d1 — ¢2)
—€Y(kt7)e < —a|€|*+45Y (k1)
—@yY (kT)dy — $ Y (k)2

where ¥ = f(z,4,z) — f(z,4, %), ¢2 = m(z){n(z) — n(£)}z and we have
suppressed k7 in ¢y, ¢ = 1, 2, € in the second inequality. Hence (6.45) is an
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asymptotically convergent observer if
WYe+e'Yy, < Blel?,  (6.52)
G (k)Y (kT)d2(kT) — ¢4 (kT)Y (kT)$1(KT)
—¢) (kT)Y (k7)$a(kT) < B e(kr) |?
for some 8 < a and § < &

Theorem 6.12 Assume that there exists a bounded right continuous matrix
Y(t) > axl, az; > 0 that satisfies (6.33). Then (6.45) is an observer for the
fuzzy system (6.44) if there exist positive numbers 8 < «a and B < & that
satisfy (6.52).

Now we consider a special case: C; = C,i=1,2,---,7. Then ¢ = 0 and
(6.45) is an asymptotically convergent observer if

YoYe+ €Yy <G el? (6.53)
for some 3 < a.

Corollary 6.1 Suppose C; = C, i = 1,2,---,7. (6.45) is an observer for
the fuzzy system (6.44) if there exists a positive number § < « that satisfies
(6.53).

The condition (6.52) is rather restrictive. Instead, we may assume (6.52)
locally. Then (6.45) becomes a local observer for (6.44).

Next consider the output stabilization of (6.46). We take the following
controller:

i(t) = zr:)\,-(a“;(t)){A,-i(t) + Bii(t)}, kr <t < (k+1)T,
i=1
Bkrt) = &(k7)+ D A(E(kT)) K (y(k) — §(k)), (6.54)
Jj=1

T

a(t) = > M(#(kr))Fix(kr).

i=1

-In view of (6.35), the closed-loop system (6.46) and (6.54) is equivalent to

i(t) = zr:)\,-(a“:(t))H,-i(t),kr<t<(k+1)r, (6.55)
=1
Ekrt) = )Y (k)N (E(kr)) HyE(kr).

i=1 j=1

From Theorem 6.8, we obtain the following.
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Theorem 6.13 Suppose that there exist bounded right continuous matrices
X(t) 2 a1l, ay > 0 and Y(t) > aol, az > O that satisfy (6.28) and (6.33),
respectively. Then the fuzzy system (6.55) is exponentially stable.

Under the assumptions of Theorem 6.13, we obtain similar inequalities to
(6.51):

FXi+V Xz +#X¥, < —v|z|% v>0, (6.56)
O\ (k)X (k7)®, (kT) — &' (k1) X (kt7)i(kT) < —4|&(kr) |, >0

for any 4, r and £ with e = £ — £ where

i=|z|, ¥, = 0 , & = g(2)z
e flz,z,1) — f(, %, %) {I - m(z)n(Z)}e

and g(2) = £1, Ai(2) Fi.

Now we consider the output feedback stabilization of the original fuzzy
system (6.44). The closed-loop system (6.44) with controller (6.54) is equiv-
alent to

NN

_ z flz, %, 1)
(t) = (x| (@)= 0 ,
€ flz,z,z) — f(%,%,%)
z(kT)
Iktt) = |: g(Z(kT))Z(kT)
{I - m(z(kT))n(E(kT))}e(kT)

FXT4 (U 4+ U)X: 4+ X (¥, + Ty)
<=y &P +TX()E+ T X (1) P,
(@1 — ®2)’ X(kT)( - &) — ’X(kT‘)i

(k1)®y — ®LX (k7)®; — O} X (k7)®2
f(Ivivl)—f(Iviv:i) 0
where ¥, = 0 , P = 0 and we
flz,z,z) - f(z,%, 2) m(£){n(z) — n(2)}z
have suppressed k7 in ¢;, 1 = 1, 2, I in the second inequality. Hence the
controller (6.54) stabilizes (6.44) if
VX:i+3 XV, < 6|%|% (657)
OL(k7) X (k7)®2(kT) — & (kT) _'(kT)(I) (k1)
—®, (kr) X (kT)®2(kT) < 6| Z(k7)|?



344 6. Further Developments

for some § < v and §< .

Theorem 6.14 Suppose that the assumptions of Theorem 6.13 are satisfied
5o that (6.56) holds. Then the fuzzy system described by (6.44) and (6.54) is
exponentially stable, if there exist positive numbers and § < v and 5 < 4 that
satisfy (6.57).

Consider the case C; = C, ¢ = 1,2,---,r. Then ®; = 0 and the controller
(6.54) stabilizes (6.44) if

U, X7+ 73XV, <6|7|* for some § < 7. (6.58)

Corollary 6.2 Suppose C; = C, 1 =1,2,---,r and that {6.56) holds. Then
the fuzzy system described by (6.44) and (6.54) is exponentially stable, if there
erists a positive number § < v that satisfies (6.58).

If we assume (6.57) locally in Z, we again obtain local stability.
Example 6.1 [74] Consider a nonlinear mass-spring-damper system

£ = —0.02—0.67€% - 0.16° + u, (6.59)
y = &

The nonlinear terms satisfy the following condition for £ € [-0.3 0.3] and
£€[-03 0.3].

—0.0603¢ < —0.67¢3<0-¢, £2>0,
0-£ < —0.6763 < —0.0603¢, £ <0,

—0.009¢ < —0.13 <0-£, £2>0,
0-£<-0.1£3 < —0.009¢, £ <0.

Hence they can be represented by the convex combination of the upper bound
and the lower bound as

—-0.67¢3 = N}€)-0-&— (1 - NJ(€))-0.0603¢, (6.60)
~01€6% = Nj(€)-0-£— (1 - Nj(€))-0.009
where N1(€) € [0 1], N}(¢) € [0 1]. By solving the above equation,

NL(E), NE(), N3(¢) and NZ(€) representing zero and nonzero are obtained
as follows:

2 2

NI© =1, N2O =1-NHE) = o,
1iéy £ 2,8y _ 1 _ﬁ_
N} O =1-pos, NO=1-N}O) = o5
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Using Ni, N?, N} and NZ, the original nonlinear model (6.59) can be rep-
resented by the following continuous-time fuzzy model:

IF £(t) is My, and £(t) is My,
THEN (t) = A;z(t) + bu(t), (6.61)
y(t) = CI(t)$ 1’ = 1525 354

where My = My = N}, M3y = My = N, M2 = May; = N}, Mo,

_ N2 . _ 1§ _ 0 1 B 0 1 ~
Moz = N2 2 = [5] A= [—0-01 0]’ 42 = [—0.01 —0.009]’ As =
[—0.0703 0]’ As= [—0.0703 —0.009]”’_ [1] and ¢c=[1 0].

In the sampled-data case, we set the sampling period 7 = 0.2, and assume
that the input u = 4 is realized through a zero-order hold and the observation
is taken at k7. Then (6.59) and (6.61) become

£ = —0.026—0.67¢3—0.16% + 4, (6.62)
y(k) = &(k)
and
IF € is My; and € is My,
THEN () = A;z(t) + bi(t), (6.63)

y(k) = cx(kt), k=0,1,2,---, 1 =1,2,3,4,
respectively. This is an example of the fuzzy system (6.44). The simulation
result of (6.62)((6.59)) with @ = 0, z(0) = [0'35
First we design a state feedback controller. We take Q = Izx3, Q = Isx3,

] is given in Figure 6.1.

R=1 A= [1?)1 g], A= [é g] and B = [(I)] Solving the equation
X = AX+XA+Q, kr<t<(k+1)r, (6.64)
X(kr™) = A'X(kr)A+Q,-A'X(kT)B(R + B'X(k7)B) ' B'X(k7)A,

we obtain the 7-periodic solution X (¢) and the feedback gain
fi=[-0.622 —1.289]
where

12.097 10.265 1.812
X(0) = X(kr)=|10.265 19.901 3.754 |,
1.812 3.754 1.913

11.970 7.930 0:|

S
S

S
I

X(kt™)=] 7930 16.062 0
0 0 1
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Similarly we obtain the feedback gains:
f2=[-0619 -1.328], f3 =[-0.661 —1.323], fo=[-0.6568 —1.361].

The 7-periodic solution X(t) satisfies the conditions of Theorem 6.6, the
closed-loop system (6.27) for these f; is exponentially stable.
As for the observer gains, we take

0.4 0.4 0.5
k1 = [0.3]’ ke = [0.4] ks = [0.3]’ ke =

Setting Q = Q = I3« 2 and solving the equation

|
—
oo
= o
| E—

~Y = AYA+YA +Q, kr <t < (k+1)T,
Y(kr™) = (I-kio)'Y(kr)(I — kic) + Q,

we obtain the 7-periodic solution Y () where

3.695 —2.198
Y0 = Y(kr)= [—2.198 3.924 ] ’
_ _ 3475 —2.898
Y = Y= [—2.898 4.745 ]

The 7-periodic solution Y (t) satisfies the conditions of Theorem 6.11 and the
error system (6.47) for these k; is exponentially stable.
We can show that X(t) = [Xét) 'r]YO(t)] with 7 = 12 (and hence n > 12)
assures the exponential stability of the fuzzy system (6.55). Thus we have
obtained an output feedback stabilizing controller for the approximate fuzzy
system. The simulation result of the approximating fuzzy system with z(0) =
0.25
s
the original nonlinear model (6.59). We calculate the left-hand-side of (6.53)
to show that (6.45) is an observer for the original nonlinear system if £ and
Z remain in a neighbourhood of the origin.

Similarly, we calculate the left-hand-saide of (6.58) to show that the
closed-loop system (6.44) and (6.54) is exponentially stable in a neighbour-
hood of the origin. The simulation result of the original nonlinear system
(6.62) with the same controller is given in Figure 6.3.

], z(0) = [g] is given in Figure 6.2. Next we apply the observer to

6.3 Notes and References

The Hy and Ho, results in Section 6.1 are taken from [34] and details of proofs
are found in [33]. The application to sampled-data systems with first-order
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100

time (sec)

50

Figure 6.1: The trajectory of the state without control

15

10

time(sec)

Figure 6.2: The trajectories of the state and control input of the approximat-

ing fuzzy model
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-02}- v —

time(sec)

Figure 6.3: The trajectories of the state and control input of the original
nonlinear model

hold is given in [32] while [33] contains some examples of distributed parame-
ter systems. We have shown that the Ho and H., problems for sampled-data
systems with first-order hold can be solved using an infinite dimensional jump
system. But further works from computational point of view are necessary
to implement the controllers given in this section. The H, theory in infinite
dimensions can be found in [31, 46, 47, 48, 70]. The basic results on semi-
group can be found in [7, 9, 10, 17, 60, 73] and systems theory in infinite
dimensions is given in {7, 9, 10].

Section 6.2 is concerned with the output stabilization of nonlinear sampled-
data systems and is taken from [59]. This problem is very difficult in general
but for a class of nonlinear systems described by fuzzy systems we have given
a design method based on jump systems. The paper [59] is an extension
of [89, 90] to sampled-data systems. Basic materials on Takagi-Sugeno fuzzy
models can be found in [57, 72, 75, 92]. Hy,-control for fuzzy systems is found
in [91].



Appendix A. Basic Results of Functional
Analysis

We shall recall some basic definitions and results in functional analysis 10,
17, 54).

Definition A.1 A nonnegative function, denoted by || - ||, on a linear space
V is a norm if the following properties hold.

(a) || z ||= 0 if and only if z = 0.

) lz+yl<izl+1yl forallzyeV.

(c)laz|=|a|| x| forallz €V and all a € C.

Here we assume that the scalar field is C of complex numbers, but we
may replace it by R of real numbers.

Definition A.2 (a) A sequence {z,} in a normed linear space V is a Cauchy
sequence if | Tm — Tn ||— 0 as m,n — oco.

(b) A normed linear space V is complete if every Cauchy sequence has a limit
V.

(c) A Banach space is a complete normed linear space.

Definition A.3 (a) A subset S of a normed linear space V is closed if every
convergent sequence in S has its imit in S.

(b) Let S be a subset of a normed linear space V. The smallest closed set
containing S is the closure of S.

(c) A subset S of a normed linear space V is dense if its closure coincides
with V.

(d) A normed linear space is separable if it contains a dense set which s
countable.

Definition A.4 An inner product on a linear vector space V is a map
< - >V xV — C with the following properties.

(o) <azx+By,z>=a<z,2>+B<y,z2> foralz,yeV.

) <y,z>=<z,y>.

(c) <z,z>>0and <z,z>=0if and only if X = 0.
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If we set || z ||=< z,z >%, then it is a norm.

Definition A.5 A linear space with inner product is a Hilbert space if it is
complete with respect to the norm induced by the inner product.

Definition A.6 Let (X,| - ||x) and (Y, | - ||y) be two normed linear spaces.
(a¢) Amap T : D(T) C X — Y 1is a linear operator if T(ax, + Bz3) =
al'zy + fTxy for all x1,x9 € D(T) and all scalars a, (.
(b) A linear operator T is bounded if | Tz ||y < c || z ||x for any x € D(T)
for some ¢ > 0.
(c) The set of bounded linear operators mapping X into Y is denoted by
L(X)Y) and L(X) = L(X, X).
(d) The induced norm of a bounded linear operator T € L(X,Y) is defiend
by

IT)= sup LTZIY.

o#zex || T [Ix

Definition A.7 A bounded linear functional on a normed linear space V is
a bounded linear operator mapping V — C.

Theorem A.l1 (Riesz Representaion Theorem) Let X be a Hilbert space.
Then for every bounded linear functional f on X, there exists a unique vector
z € X such that f(z) =< z,z > for all z € X. Moreover, || f ||=| z ||

Let X and Y be two Hilbert spaces and let T € L(X,Y). Then by
Theorem A.l there exists a unique operator T* € L(Y, X) which satisfies
<Tz,y>y=<z,T*y>x forallzr e X andy €Y.

Definition A.8 The operator T* is the adjoint operator of T'.

Theorem A.2 LetT € L(X,Y) for some Hilbert spaces X,Y. Then
1T l=NTI-

Definition A.9 Let X be a Hilbert space.

(a) An operator T € L(X) is self-adjoint if T* =T.

(b) A self-adjoint operator T € L(X) is nonnegative, positive and coercive
respectively, if < Tz, z >> 0 forallz € X, <Tz,z>>0 for all0#z € X,
and <Tz,z>>¢€| z || for all z € X for some € > 0.

Theorem A.3 Let X be a Hilbert space.

(a) Let T € L(X) with || T ||< 1. Then (I —T)~! exists and is in £(X) with
(1)1 1< (= T ).

(b) Let T € L(X) be coercive with < Tx,x >> €| z ||2. Then T~! € L(X)
with | T~ |[< L and it is coercive.
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Theorem A.4 Consider a guadratic form ¢(z) =< Tz,z > + < z,h >
+ < h,z > +c on a Hilbert space X for some h € X andc € R. If T(-T
respectively) is coercive, ¢(z) has the minimum (mazximum)c— < T 'h,h >
atx=—-T"1h

Definition A.10 A sequence {z,} in a Hilbert space converges weakly to x
if<xp—z,y>—>0asn—oo forallye X.

Theorem A.5 (a) If x,, converges weakly to x in a Hilbert space, then {z,}
is bounded and || z ||< liminf || z, ||< oo.

(b) Every bounded sequence in a Hilbert space contains a weakly convergent
subsequence.

If z,, converges weakly to = and if || z,, ||< ¢, then || z ||[< ¢

Definition A.11 A family of bounded linear operators S(t), t > 0 on a
Banach space X is called a strongly continuous semigroup (or Co-semigroup)
if the following holds: :

(a) S(t + s) = S(t)S(s) for any t, s > 0.

(b) S(0) =1.

(c) S(t)x -z in X ast — 0 for allz € X.

There exists real numbers M > 0 and w such that || S(t) |< Me“t, t > 0.

Definition A.12 The infinitesimal generator of a Cy-semigroup S(t) is de-
fined by

.1
Az = %1_1}(1) ;(S(t)x —x)

whenever the limit exists. The domain of A, denoted by D(A), is the set of
allx € X for which the limit exists.

D(A) is dense in X. If zg € D(A), then S(t)x € D(A) and
iS t)xo = AS(t
310 (t)zo = AS(t)zo.

Theorem A.6 (Hille-Yoshida Theorem) A closed linear operator A with
dense domain D(A) in a Banach space X is the infinitesimal generator of

a Co-semigroup S(t) if and only if there exist real numbers M and w such
that for all real A > w, (A — A)~! € L(X) and

M

—A™ < ——, m=1,2,..
| =A™ IS g m=1.2,

In this case || S(t) |< Me*t.
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A linear operator A is closed if z,, € D(A) — z, Az, — y imply that
z € D(A) and Az = y.

When we consider inhomogeneous systems in Banach spaces we need in-
tegration in Banach spaces. The extension of the Lebesgue integral to Ba-
nach spaces is called the Bochner integral {10, 17]. It requires the notions of
strongly measurable functions and simple functions. The space of square in-
tegrable functions f on {a, b] with values in X (strongly measurable functions
such that || f(t) ||? in Lebesgue integrable) is denoted by L%(a, b; X).

Definition A.13 Let T be a bounded linear operator in a complexr Banach
space X. The resolvent set of T is the set of complex numbers A such that
(M —T)~1 € L(X). The complement of the resolvent set, denoted by o(T), is
called the spectrum of T. The spectral radius of T, denoted by p(T), is defined

by p(T) = supjeo(ry | A |-

Definition A.14 Let X and Y be two separable Hilbert spaces. A bounded
linear operator P mapping X into Y is called a Hilbert-Schmidt operator if
Yoo, || Pei||2< oo for some orthonormal basis {e;} in X.

A self-adjoint operator P on X, i.e., P* = P is nonnegative if < Pz,z >>
for any z € X. A nonnegative operator P on X is called a trace class
iperator if 30, < Pey, e; > converges for some orthonormal basis {e;}.
If P is Hilbert-Schmidt, Y o, || Pe; ||> converges for any orthonormal
basis and is independent of {e;}. If P is a nonnegative trace class of operator,
o0, < Pe;, e; > converges for any orthonormal basis and is independent of

{ei}. Its value is denoted by tr.P and is called the trace of P.
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