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Preface  

The system theory for linear time-invariant systems is now mature and offers 
a wide range of system theoretic concepts, design methods and solutions to 
optimal or suboptimal control problems including the design of state feed- 
back controllers and observers, optimal quadratic regulators, Kalman filters, 
coprime factorization and Youla-parametrization of stabilizing controllers, H2 
control, differential games, Ho~ control and robust control. One of the most 
important recent developments is, without doubt, Ho~ control. Since the be- 
ginning of the linear systems theory many researchers have made constant 
efforts to extend the theory to time-varying systems and sampled-data sys- 
tems as well as to infinite dimensional systems. Although there are many 
excellent books on the systems theory of linear time-invariant systems, there 
are not many books covering recent developments for time-varying systems. 
In this monograph we consider linear optimal regulators, H2 control, differen- 
tial games, Ho~ control and filtering, and develop the theory for time-varying 
systems and jump systems. Jump systems arise when impulse controls are 
involved. As is well-known sampled-data systems can be written as jump 
systems with constant coefficients which are regarded as periodic systems 
with period equal to the sampling period. One of our main motivations for 
writing this monograph is to develop the H2 and Ho~ theory of sampled-data 
systems from the jump system point of view. The jump system is a natural 
state-space representation of sampled-data systems and original signals and 
parameters are maintained in the new system. The H2 and Hoo problems 
for jump systems can be treated in a unified manner as for time-invariant 
systems. Moreover, they can be directly extended to more general cases of 
delayed observation, first-order hold and infinite dimensional systems. Jump 
systems are also useful to design stabilizing controllers for certain nonlinear 
systems. Since lump systems with constant coefficients are periodic systems 
and hence time-varying systems, it is useful to develop the system theory 
for time-varying systems. Extension of the system theory to time-varying 
systems seems routine, but there are some inherent features of time-varying 
systems. For example, frequency domain arguments cannot be extended and 
the state-space approach is needed. Some arguments for time-invariant sys- 
tems may not have easy extensions to time-varying systems. The Hoo theory 
based on X and Y Riccati equations is such an example as we see in Chapter 
2. Hence the systems theory for time-varying systems itself is important and 
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interesting and gives some new points of view o1" new insights into the system 
theory of time-invariant systems. 

In Chapter 2 we consider continuous-time systems and consider stabil- 
ity, quadratic control, differential games, Ho~ control, H~  filtering and H2 
control. In Ho~ control and filtering we allow for initial uncertainty in the 
system and develop the general theory of this case. We give examples and 
computer simulations for most of main results. Chapter 3 is concerned with 
discrete-time systems and discusses the same topics as in Chapter 2. Chapter 
4 introduces the jump system which contains both continuous- and discrete- 
time features and discusses the same problems as in earlier chapters. Chapter 
5 covers a special case of jump systems which arises from the sampled-data 
systems with zero-order hold and applies the main results of Chapter 4 to 
them. Finally in Chapter 6 we discuss further developments in the theory of 
jump systems. We first give an extension to infinite dimensions and as an 
example we consider H2 and Ho~ control for sampled-data systems with first- 
order hold. We also introduce sampled-data fuzzy systems which can express 
certain nonlinear sampled-data systems and show how to design stabilizing 
output feedback controllers using jump systems. 

Chapter 2 is an introduction to time-varying continuous-time systems 
while Chapter 3 is an introduction to discrete-time systems and either of them 
can be read independently of the rest of the monograph. To read Chapter 4 
the materials in Chapters 2 and 3 will be very helpful. To read Section 6.1 
elements of functional analysis are necessary. 
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1. I n t r o d u c t i o n  

The linear system theory offers basic concepts, design methods and opti- 
mization problems. The underlying systems it deals with are usually time- 
invariant continuous-time systems or discrete-time systems. There are many 
excellent books [1, 19, 21, 46, 55, 66, 80, 93] for time-invariant systems which 
cover stability theory, quadratic control, H2 control and Hoo control. The 
sampled-data system with sampler and zero-order hold is a linear system but 
involves both continuous-time and discrete-time signals. The system theory 
for it, which covers topics above, is usually developed via the system theory 
for discrete-time systems after transforming the original problems to those 
for discrete-time systems. 

The purpose of this monograph is two fold. We introduce the linear sys- 
tem theory for time-varying systems which covers H2 and Hoo control. There 
are some inherent features of time-varying systems, and not all arguments 
used for time-invariant systems are easily extended to them. Thus we regard 
the extension as important and hope that it gives some new insight into 
the linear systems theory. Secondly we develop the H2 and H~  control the- 
ory for sampled-data systems from the point of view of jump systems. The 
jump system, which contains jumps in the state variable, is a natural state- 
space representation of sampled-data systems and has an advantage that the 
continuous-time nature and discrete-time signals of the original system are 
maintained in the new system. Hence the system theory for jump systems can 
be viewed as an extension of the theory of continuous-time or discrete-time 
systems. In Hoo control the initial conditions are usually taken to be zero, but 
in this monograph initial uncertainty is incorporated and a general theory is 
developed. 

As the jump system may not be familiar to the reader, we shall introduce 
below all the systems which appear in this monograph. We also introduce the 
jump system which is obtained from a sampled-data system. 



2 1. Introduct ion 

1 .1  C o n t i n u o u s - t i m e  S y s t e m s  a n d  D i s c r e t e - t i m e  S y s t e m s  

In Chapter  2 we consider continuous-time systems of the form 

= A ( t ) x + B l ( t ) w  + B 2 ( t ) u ,  

z = C l ( t ) x  + D12(t)u, 

y = C2(t)x + D21(t)w 

(1.1) 

where x is the s tate  of the system, w is a disturbance, u is a control input,  z 
is a controlled output  and y is the output  to be used for control. 

In Chapte r  3 we consider discrete-time systems of the form 

x ( k  + 1) = A(k ) x ( k )  + B , ( k ) w ( k )  + B 2 ( k ) u ( k ) ,  

z(k)  = C l ( k ) x ( k )  + D12(k)u(k) ,  

y(k) = C2(k)x(k)  + D21(k)w(k) .  

(1.2) 

We consider stability, quadrat ic  control, disturbance a t tenuat ion problems, 
differential games, H ~  control and H2 control. When we introduce new prob- 
lems, we sometimes s tar t  with the results for t ime-invariant  systems. More- 
over, all the results in the t ime-invariant  case are given as corollaries. How- 
ever, we give proofs only for t ime-varying systems. For proofs typical to time- 
invariant systems we refer the reader to other books in the reference. 

1 . 2  J u m p  S y s t e m s  

A general form of jump systems is given by 

:i: = A x  + B lW + B2u, k r  < t < (k + 1)r, 

x(kT +) = Adx(k~-) + Bldwd(k)  + B2dud(k), 

Zc = C l x  + D12u, (1.3) 

zd(k) = Cldx(k'r)  + D12dUd(k), 

Yc = C2x + D~lw, 

ya(k) = C2ax(kr)  + D21dWd(k ) 

where the continuous par t  satisfies (1.1) while the j ump  par t  satisfies (1.2). 
We assume tha t  all matrices in the system are constant.  Then it is a T- 
periodic system and a special case of t ime-varying systems. We can easily see 
the following : 

(a) If B1 ---- 0, B2 -- 0, Ad : I and Bid ---- 0, then it is a system with impulse 
control. 
(b) If Ad -= I,  Bid ~- 0 and B2d = 0, it is a continuous-t ime system. 
(c) If  A = 0 B1 = 0 and B2 : 0, then it can be regarded as a discrete-t ime 
system. 



1.3. Sampled-data Systems 3 

Hence the jump system is a natural extension of continuous-time and discrete- 
time systems [37, 51, 65, 67] and we can expect some potential applications 
in the areas of mechanical systems [83], chemical processes [56] and economic 
systems [6] where impulsive inputs naturally appear. The system (1.3) is 
often too general and for H2 or H ~  control we shall restrict ourselves to the 
system of the form 

Jc = Ax  n u B lw ,  kT < t <2 (k -t- 1)r, 

x ( kT  +) -= Adx(kr)  + B2u(k), (1.4) 

Zc = 61 x, 

zd(k) = D12u(k), 

y(k) = C2x(kT) + D21wd(k). 

This system still keeps the essential features of jump systems and covers 
sampled-data systems. In Chapter 4 we consider stability and control prob- 
lems for (1.4) as in Chapters 2 and 3. 

1 .3  S a m p l e d - d a t a  S y s t e m s  

In Chapter 5 we consider the sampled-data system [8, 16] 

= Ax( t )  + B lw( t )  + B2fi(t), 

z(t) = F ix ( t )  1 (1.5) 
D12~(t) J ' 

y(k) = C2x(kr)  + D21wd(k) 

where T > 0 is a sampling period and fi is the control input realized through 
the zero-order hold [18, 85] 

(t(t) = u(k), kr  < t < (k + 1)T. 

We introduce the following state space representation of the control ~(t): 

:~ = 0, ff:(kT +) = u(k),  kT < t ~ (k -t- 1)T. 

Then clearly ~i(t) = 2(t). Let xe(t) = [x' 2 '] '  (t) be the new state variable. 
Then the system (1.5) is equivalent to the following jump system 

~e(t) = [A B 2 ] x ~ ( t ) + [ B o 1 ] W ( t ) ,  k T < t < ( k + l ) T ,  

l z = zd(k) = v~D12u(k)  ] '  

y(k) = [ C 2 0 ] x e ( k r ) + D 2 1 w d ( k )  
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where Zd =- v~D12u(k) is introduced when we consider 

/0 i D12~(t) j2= i D12u(k) is= E i  v/-~D12u(k)12 . 
k = 0  0 k = 0  

The jump system is a natural  state-space representation of sampled-data 
systems and original signals and parameters are maintained in the new sys- 
tem. The H2 and Hoo problems for jump systems can be t reated in a unified 
manner ms for time-invariant systems. 

1 . 4  I n f i n i t e  D i m e n s i o n a l  S y s t e m s  a n d  S a m p l e d - d a t a  

F u z z y  S y s t e m s  

The infinite dimensional system in Chapter  6 is writ ten as (1.4) but  the 
state, inputs and outputs  lie in Hilbert spaces. We assume that  A is the 
infinitesimal generator of a strongly continuous semigroup in a Hilbert  space 
and other operators are bounded. Thus the system covers partial differential 
equations and delay differential equations. It will be shown that  the sampled- 
data  system with first-order hold can be expressed in this form and H2 and 
H a  control problems are considered. 

The sampled-data fuzzy system in Section 6.2 is given by 

2(t) = ~ )h(z(t)){A~x(t) + B ~ ( t ) } ,  
i=l 

y ( k )  = 

i=l 

r where ),~(z) > 0 , Ei=l ~ i ( 2 : )  = 1 and z is a premise variable in the IF- 
THEN rules. It  can represents certain nonlinear sampled-data systems. Using 
local jump systems we give a design method of stabilizing output  feedback 
controllers. 

1 . 5  N o t a t i o n  

Ix[ 
IMI 

< f , g >  

Sl f 112 

= xv/~x, x ~ R  n. 

: norm of M E R ~• induced by the Euclidean norm. 

f; = f'(t)g(t)dt, f ,  g ~ L2(to, T; R ~) 

where T can be finite or T -- cx). 

= v f ~ f , f : > .  



< f , g >  

I[/112 
x(s +) 

N 

= ~ f'(k)g(k), f, g e/2(ko, N ; R  '~) 

k=ko 

w h e r e  N can  b e  f in i te  or  N = o0. 

= v / < f , f > .  
= l im x ( t ) .  

tJ.s 

= l im x ( t ) .  
tTs 

1.5. N o t a t i o n  5 



2. Cont inuous-t ime Systems  

In this chapter we are concerned with time-varying continuous-time systems 
and consider stability, quadratic control, disturbance at tenuation problems, 
differential games, Ho~ control, Ho~ filtering and H2 control. In Ho~ control 
and filtering we allow for initial uncertainty in the systems and develop the 
general theory. 

2.1 S t a b i l i t y  

2.1.1 Lyapunov Equations 

Consider 
= A( t ) x ,  x( to)  = xo 

where x E R n and A E R ~• is a piecewise continuous matr ix  with 

I A ( t )  I<_ a, vt  >_ to for some a > 0. 

Let S(t ,  r) be the state transit ion matr ix  of the system (2.1). Then  

d s ( t ,  s) = A ( t ) S ( t ,  s), S(s ,  s) = I.  

If 

then 

(2.1) 

A ( t ) A ( s )  = A ( s ) A ( t )  vt, s 

s( t ,  s) = e l :  a(r)dr 

If A is 0-periodic, i.e., A( t  + O) = A( t ) ,  then 

s ( t  + o, s + o) = s ( t ,  s). 

If A( t )  = A, then S(t ,  s) = e A ( t - s ) .  

D e f i n i t i o n  2.1 The sys tem (2.1) (or simply A )  is said to be exponentially 
stable on [to, co) if 

I S ( t , s )  I<_ M e  -a( t -8)  fo r  any to < s < t < co 
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for some positive constants M and a independent of to and t. (The system 
(2.1) is also called internally stable.) 

If A(t)  = A, then A is stable if and only if every eigenvalue of A has a negative 
real part. The  following result is also well-known. 

P r o p o s i t i o n  2.1 The following statements are equivalent. 
(a) A is exponentially stable. 
(b) There exists a positive definite matrix X satisfying 

A ' X  + X A  + I = 0. (2.2) 

(c) There exists a positive definite matrix Y satisfying 

A Y  + Y A '  + I = O. 

The  equation (2.2) is called the Lyapunov equation. We generalize this result 
to the time-varying system. We need the following lemma. 

L e m m a  2.1 (a) I S ( t , s )  I< e a(t-s), to < s < t. 
(b) For a given e ~ (0, 1), there exists a ~ > 0 such that 

S'(t ,  s)S(t ,  s) > (1 - e)I  for any 0 < t - s < 5. 

proof. Since 

we have 

~s t S(t, s) = I + A(r)S(r ,  s)dr 

~s t I S ( t , s )  I<~ 1 + a I S ( r , s )  I dr. 

Hence by Gronwall's inequality, we obtain I S(t,  s) I< e =(t-s) . We also have 

// // I A(r )S(r ,s)dr  I <- ~ IS ( r ,s )  ldr  

< aea(r-S)dr = e a(t-s) -- 1. 

Now 

z's'(t, s)S(t, s)z 

for a n y 0  < t - s  < 
O < t - s < &  

> 

> 

> 

where ~ = 

x ' ( I  + A(r)S(r ,  s )dr) ' ( I  + A(r)S(r ,  s)dr)x 

I= 12+2x' A(r)S(r,s)drz 

Ix 12 - 2 ( e  a(t-'~ - 1) Ix 15 
(1 - e) ] x I s 

l l~ 1 + 3) so that  2(e a(t-s) - 1) < e, 
| 
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P r o p o s i t i o n  2.2 The following statements are equivalent. 
(a) The system (2.1) is exponentially stable. 
(b) There exists a symmetric matrix X ( t )  such that 

(i) c l i  <_ X ( t )  <_ c2I, vt > to for some c~ > O, i = 1,2. 
(ii) - J ;  = A ' ( t ) X  + X A ( t )  + I. 

(c) f o~ [ S ( t , s ) z  [2 dt < c [ x [ 2 , Vx, Vs > to and for some c > O. 
I f  A is O-periodic, then X is also &periodic. 

Proof. Suppose (a) holds. Then (c) also holds and 

X( t )  = S'(r, t)S(r, t)dr 

is well-defined and bounded, i.e., X ( t )  -< c21. Let e e (0, 1) be given and 
choose 5 > 0 as Lemma 2.1 such that  

S ' ( t , s ) S ( t , s )  >_ (1 - e)I for 0 _< t -  s _< 5. 

Then 
t+6 

X( t )  >_ S'(r, t)S(r, t )dr  >_ (1 - e)5I. 
a t  

Hence (i) of (b) has been shown. (ii) of (b) follows from differentiating X( t ) .  
Now we assume (b). Then for x(t)  = S(t ,  S)Xo 

_d 
dt ( x ' ( t )X ( t ) x ( t )  ) = - [ x( t)  [2< _ l x , ( t ) X ( t ) x ( t  ) 

C2 

Which implies 

- ~ ( t - ~ )  , 
x ' ( t ) x ( t ) x ( t )  < e ~ x ( ~ ) X ( s ) x ( s ) .  

Using the property (i) we have 

^ - ~ ( t - , )  [2 cl I x ( t )  12-<,:=~ , I xo  �9 
Hence 

I s(t, s) I < ,/-~Ae- ~ (~-') 
V Cl 

and (a) follows. 
Finally let A(t)  be &periodic. Then 

X ( t )  = S ' ( r , t )S ( r , t )d r  

S = S' (r + O, t + O)S(r + 0, t + O)dr s 
= S'(s ,  t + O)S(s, t + O)ds 

0 

= x ( t  + o). t 



10 2. Continuous-time Systems 

Definit ion 2.2 7he equation (ii) o] (b) is called the Lyapunov equation ]or 
the system (2.1). 

If A is exponentially stable, we can show that any solution of the Lyapunov 
equation coincides with X(t)  given in the proof of Proposition 2.2. Hence the 
Lyapunov equation has a unique solution. See also Theorem 2.4. 

Example  2.1 Consider the periodic system with period 27r: 

0 1 ] [xi]  ,23, 
52 - 1 - 0 . 5 c o s t  - 1 - c o s t  x2 

which is exponentially stable. In fact there exists a 27r-periodic nonnegative 

solut ionX(t)= [X1 X12] X12 X2 (t) of the condition (b) in Proposition 2.2 (Fig- 

ures 2.1 and 2.2). 

X2 

I " ' " I " ' ' I ' ' ' ! 

X 2 ( ~  

X~(O 

I L I ~ I , , I 0 2 4 6 
time (sec) 

Figure 2.1: The periodic solution X(t)  of the Lyapunov equation 

Consider the adjoint equation of (2.1) 

-4  = A(t)~, ~(T) = 41. 

Let ~(t; T, 41) be the solution of (2.4). 

Defini t ion 2.3 The system (2.4) is said to be exponentially stable if 

I~(t;T,~l) l <_Me-~(T-t) 141 I for any to < t < T < oo 

for some M > 0 and ~ > 0 independent of t, T and 41. 

(2.4) 
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~ 2  

m 

�9 , �9 , , 

I , I , I , I 
0 2 4 6 

time (sec) 

Figure 2.2: Eigenvalues of the periodic solution X ( t )  

Since ~(t; T, El) = St( T, t)~l, the system (2.4) is exponentially stable if and 
only if the system (2.1) is exponentially stable. 

We have a dual result to Proposition 2.2. 

P r o p o s i t i o n  2.3 The following statements are equivalent. 
(a) The system (2.~) (and hence (2.1)) is exponentially stable. 
(b)  There exists a symmetric matrix Y ( t )  and a 5 > 0 such that 

(i) 0 < Y( t ) ,  vt > to and O I  < Y( t ) ,  vt > to + 5 for some cl > O. 
(ii) Y ( t )  <_ c2I, to <_ vt < oo for some c2 > O. 
(iii) Y = A ( t ) Y  + Y A ' ( t )  + I, Y( to)  = O. 

(c) f T  i S ' (T , t )~  I 2 dt <_ c l ~ 12 , Vs, T with to < s < T < o0 and for  some 
c > O .  

Proof. Suppose (a) holds. Then (c) is true and 

Y( t )  = S(t,  s )S ' ( t ,  s)ds 

is well-defined, positive for t > to and bounded. Hence (ii) of (b) holds. To 
show (i), let ~ E (0, 1) and choose 5 > 0 such tha t  

S ( t , s ) S ' ( t , s )  >> (1 - e)I for 0 < t - s _< 5. 

Now let t > 5, then 

Y(t) >_ s( t ,  s)S'(t, s)as >_ (1 - ~)5i. 
5 
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Hence (i) follows. The equation (iii) follows from differentiating Y(t) .  
Now we suppose (b) holds. Then 

d (~'(t)Y(t)~(t)) =1 ~(t)12> l~ ' ( t )Y( t )~( t )  

from which follows 

- ~ ( T - s )  ~'(s)Y(s)~(s) <_ e c2 ~ (T)Y(T)~(T).  

Hence for t o + 5 < s < T < c ~  

-A(T-s) 12 cl I ~(s) I2< c2e 2 I ~1 

which yields 

I S'(T,s)  I < _ , / ~ e - ~  r 
V ci 

Fort0 < s <_ to + 6 < T < oc 

I S'(T,s) I = I (S(T, to + 6)S(to + 6, s))' I 
<- IS ' ( to+6 ,  s) llS'(T, t o + 5 )  l 

< ~ C/~2COe-~(T-to-5) 
V Cl 

since ] S~(to + 5, s) I<_ co for to < s < t < to + 5 for some co > 0. Hence 

C2 i & _ ( T - a )  ] S '(T,s)  I<_ ~/~--2Coe~ e ~ . 
Y cl 

F o r t o <  s < t < to + ~  

] S'(t, s) l< Co < coe ~'z~2*e - '~'2 (t-~). 

Choosing 

we obtain 

M -- max( e~12 cf~ -1 6 

[ S ' ( t , s ) [ < M e - ~  (T ) for any t 0 < s < T < o o .  

Hence (a) holds. I 

Def in i t i on  2.4 The equation (iii) of (b) is called the Lyapunov equation of 
the backward system (2.4) (or simply the backward Lyapunov equation). 

C o r o l l a r y  2.1 Let A(t) be O-periodic. Then the system (2.4) is exponentially 
stable if and only if there exists a O-periodic solution of the backward Lya- 
punov equation with ClI < Y(t)  < c2I, vt for some Cl, c2 > O. 
Moreover, the O-periodic solution is unique if A is exponentially stable. 
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Proof. We shall show that Y ( t  + nS) is increasing in n and hence converges 
to Ye(t) which is 8-periodic. In fact 

i 
t+nO 

Y( t  + nS) = S( t  + nS, s )S ' ( t  + nS, s)ds 
alto 

i 
t+nO 

= S(t  + (n + 1)8, s + O)S'(t + (n + 1)0, s + tg)ds 
,]to 

t+(n+l )O 

= s( t  + (n + 1)8, a)a'(t + (n + 1)8, a)da 
Jto+O 

t+(n+l)O 

< S(t  + ( n +  1)O,a)S'( t  + ( n +  1)8, a )da  
,)to 

= Y ( t  + (n + 1)8). 

Let Yo(t) be the limit of Y( t  + nS) as n -~ oc. 

Yo(t + 8) = lim Y( t  + 8 + nO) 

= lim Y( t  + (n + 1)8) = Ye(t). 
n "--~ Or 

For the proof of uniqueness, see the proof of Theorem 2.4. 

E x a m p l e  2.2 Consider the system (2.3) in Example 2.1, which is exponen- 

stable. There exists a bounded nonnegative solution Y -- [ ]"1 I"121 tially 
L Y12 Y2J 

satisfying the condition (b) in Proposition 2.3 which converges to a 2~r- 
periodic solution (Figure 2.3). 

I ' ' ' ' I ' | ' ' I ' ' 

I , i , , I , , , , ! , , 

0 10 20 
t i m e  ( s e c )  

Figure 2.3: The bounded solution Y( t )  
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Consider 

= A( t ) x  + B ( t ) u ,  (2.5) 

y = c ( t ) x  

where x E R n, u E R m2, y E R p2 and A, B, C are bounded piecewise 
continuous matrices of appropriate dimensions. Then the solution x(t)  with 
x(to) = xo is given by 

f: x(t)  = S(t,  to)xo + S(t,  r ) B ( r ) u ( r )  dr 

and i: y(t) = C( t )S( t ,  to)xo + C(t)  S(t ,  r)B(r)u(r)  dr. 

Def ini t ion 2.5 The system (2. 5) is said to be input-output stable (or simply 
IO-stable) on [t0, c~) i f  for x(s)  = 0, s >_ to and any u ~ L2(s, co; R m~) 

y �9 L2(s, c c ; R  p2) and Il y tl2 <- e ll u ll2 

for some c > 0 independent o] s. 

efini t ion 2.6 (a) The pair (A, B)  is said to be stabilizable on [to, oc) /] 
ere exists a bounded piecewise continuous matrix K such that A + B K  is 

nentially stable on [to, co). 
(b) The pair (C, A) is detectable on [to, c~) / ]  there exists a bounded piecewise 
continuous matrix J such that A + J C  is exponentially stable on [to, cx~). 
(c ) I f  (a ) and (b ) hold, the system (2.5) (or ( A, B, C ) ) is said to be stabilizab le 
and detectable. 

Note that (A, I, I) is stabilizable and detectable. 

P r o p o s i t i o n  2.4 Suppose ( A, B,  C) is stabilizable and detectable on [to, ~ ) .  
Then the system (2. 5) is exponentially stable i f  and only if it is IO-stable. 

Proof. It is enough to show sufficiency. First we shall show 

C(t )S( t ,  s)xo �9 L2(s,  oo; RP~). 

Since (A, B) is stabilizable, there exists a bounded piecewise continuous ma- 
trix K such that the system 

= (A + U K ) ( t ) x ,  x (s)  = xo (2.6) 

is exponentially stable. Hence x E L2(s, oc; Rn). Then 

= A( t ) x  + B ( t ) K ( t ) x ,  x (s)  = Xo, 

�9 (t) = s ( t ,  s)~o + S ( t , r ) B ( r ) g ( , o ~ ( r ) d r  
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and // C(t)x(t) = C(t)S(t,  s)xo + C(t) S(t, r)B(r)K(r)x(r)dr.  

Since (2.5) is IO-stable 

C(t) S(t, r )B(r)K(r)x(r)dr  e L2(s, oc; R p2) 

and hence C(t)S(t, s)xo E L2(s, ~ ;  R p2) and [I C(t)S(t,  s)xo 112<_ c lx0 I for 
some c > 0 independent of s and x0. Since the system 

z(t) = A(t)x, x(s) = z0 

is equivalent to 

x(t) = (A + LC)(t)x  - L(t)C(t)z,  z(s)  = Zo 

where L(t) is a bounded piecewise continuous matr ix  such tha t  A + LC is 
exponentially stable. Then we have 

z(t)  = sL(t ,  s)xo + sL(t ,  r)L(r)C(r)z(r)dr 

where SL(t, r) is the state  transit ion matr ix  of .4 + LC. Since 

c ( t ) x ( t )  = c ( t ) s ( t ,  s)xo, 

x E L2(s, e~; R n) and II x 112_< c I xo I which implies (2.5) is exponentially 
stable. | 

P r o p o s i t i o n  2.5 (a) Suppose that (C, A) is detectable. The system (2.5) is 
exponentially stable if  and only if  there exists a bounded nonnegative solution 
to 

- 2  = A ' ( t )X  + XA( t )  + C'(t)C(t). (2.7) 

(b) Suppose that (A, B) is stabilizable. Then the system (2.5) is exponentially 
stable if and only if  there exists a bounded nonnegative solution to 

~" = A( t )Y  + YA'( t )  + B(t)B'(t) .  (2.8) 

Proof. We shall show (a) only. If A is exponentially stable, 

X(t)  = S'(r, t)C'(t)C(t)S(r, t)dr 

is a bounded nonnegative solution of (2.7). Conversely, let X(t)  be a non- 
negative solution of (2.7) and x(t) = S(t, s)xo. Then  differentiating x ' X x  we 
easily obtain 

T I "  

x ' (T)X(T)x(T)  + / I C(t)x(t) 12 dt = x~oX(s)xo. 
Js 
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Hence C(t)S( t ,  S)Xo �9 L2(s, oe; R v2) with II CS( t ,  s)xo 112<_ c l Xo I for some 
c > 0 independent of s and x0. As in the last par t  of the proof of Proposition 
2.4, we can show z �9 L2(s, oo ;R  n) with II x 112_< c ] x0 I for some c > 0 
independent of s and Xo. Y ( t )  given by 

S2 Y( t )  = S(t,  r )B(r )B ' ( r )S ' ( t ,  v)dr 

is a bounded nonnegative solution of (2.8). | 

The equation (2.7) is reduced to 

A ' X  + X A  + C 'C  = 0, (2.9) 

if the system is time-invariant and its solution is called the observability 
gramian. The equation (2.8) is reduced to 

A Y  + Y A '  + B B '  = 0 (2.10) 

when the system is time-invariant and Y is called the controllability gramian. 

R e m a r k  2.1 Proposition 2.1 (b) is a special case of Proposition 2.5 (a) since 
(I, A) is detectable. 

2.1.2 P e r f o r m a n c e  M e a s u r e s  o f  S t a b l e  S y s t e m s  

Consider the system G: 

~c = A( t )x  + B( t )w,  (2.11) 

z = C ( t ) z  

where x �9 R n, w �9 R TM , z �9 R vl , A, B, C are bounded piecewise continuous 
matrices of appropriate dimensions and A is exponentially stable. First we 
assume that  the system is time-invariant and recall the following definitions. 

D e f i n i t i o n  2.7 The H2-norm of the system G,  denoted by ]1 G H2 is 

II a 112 = I CeAtBe~ dt 

= ( t r . / o ~ 1 7 6  �89 

where (ei) are unit  vectors in R TM . 
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II G PI2 can be regarded as the total energy of impulse responses. Let G(s) be 
the transfer function of the system so tha t  G(s) ~- C(sI  - A ) - IB .  Then via 
Fourier transform we have 

[1 F II a 112= ~ tr.G'(jw)a(jw) dw (2.12) 
O O  

where G*(.) is the Hermitian transpose of G(-). We also have the following. 

L e m m a  2.2 

II G I1~= t r .B 'XB  = tr .CYC' 

where X , Y are observability- and controllability gramians respectively of the 
system given by (2.9) and (2.10). 

D e f i n i t i o n  2.8 
by 

The Hoo-norm of the system G, denoted by II G Iloo is given 

lIG11oo= sup IlzJl~ 
o#~L~ II w I1~" 

II G IIc~ is the supremum of the ratio of the energies of the output  and input. 
As is known 

II G Iloo= supa[G(jw)] (2.13) 
~d 

where a(M) is the maximum singular value of the matr ix M. The Hg.- and 
H~-norms  of transfer functions G(s) are denoted by (2.12) and (2.13). 

The following result is known as the Bounded Real Lemma. 

L e m m a  2.3 The following statements are equivalent. 

(a) II a I1~< % 
(b) There exists a nonnegative solution X to 

AIX + X A  + C'C + ~ X B B ' X  = 0 

such that A + ~3rBB'X is exponentially stable. 
(c) There exists a nonnegative solution Y to 

A Y  + Y A  I + BB '  + ~ Y C ' C Y  = 0 

such that A + 73rYC'C is exponentially stable. 

Now we generalize Definitions 2.7 and 2.8 to time-varying systems. 
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Defini t ion 2.9 The H2-norm of the system G on [to, oc) is defined by 

[ 1 ~ t i ~ 1 7 6 1 7 6  ]�89 II G 112,to = l i m  ~ ,=, �9 I C(t)S( t ,s)B(s)e ,  12 dtds 

[Tlim 1 fto+m : tr.B'(s) 
T Jr o 

x ~ S ' ( t , s ) e ' ( t ) C ( t ) S ( t , s ) d t B ( s ) d s ]  �89 

For 8-periodic systems 

,o+0 ]' 
II G 112,e= tr.B'(s) St(t, s)C'(t)C(t)S(t ,  s)dtB(s) ds 

,]to 

Note that two norms are equal for periodic systems. 

R e m a r k  2.2 Note that 

fto+T f,o+T 
II c ~-L~ ~ .,,o .,, 11~,,o = r 1 t,-.B'(~) S'(t, s)C'(t)C(t)S(t,~)dtB(~)ds. 

;a 
]12,to = lim tr. C( t )S( t , s )B(s)B ' (s )S ' ( t , s )C ' ( t )d tds  

T--*oo -T ,/to J s 

-- l i m l f  t~ 
- tr.C(t) S(t, s)B(s)B'  (s)S'(t, s)dsC'(t)dt 

T--*oo -T J to 

where we have used the property of the trace and Fubini's theorem. From the 
last equality II G l12,to can be also interpreted as the H2-norm of the backward 
system G* 

- x  = A'(t)~ +C ' ( t )~ ,  (2.14) 
2(t) = B'(t)~. 

Let 2(t; s,i) be the impulse response of (2.14) with u(t) = 5(t - s)e, where 
(e~) are unit vectors in R p~ . Then 

2,(t;s,i) = { B'(t)S'(s,t)C'(s)e~,o, t > <_ s, 

Defini t ion 2.10 The H2-norm of the backward system G* is defined by 

1 ~ t o + T  m l  oo 
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Then clearly 

G* 2 T1Lmo T1 fto+T Jto f -  p' II Ih,,o = ~ I B'(t)S '(s ,  t)C'(s)e, 12 dsdt 
J,o i=1  

and II a 112,,o=11 G* 112,,o. 
L e m m a  2.4 

Ih,~o = 
1 fto+T 

lim t r .B ' ( s )X(s )S (s )  ds 

1 [to+T 
lim t r .C(s)Y(s)C'(s)  ds 

19 

2.1.3 Quadrat ic  Contro l  

Consider 
= A( t )x  + B(t)u,  z(to) = xo 

where x E R " ,  u E R m2 and A, B are bounded piecewise continuous matrices 
of compatible dimension. For this system we introduce the functional 

T 

JT(U; to, X0) = ~tl [I C(t)x(t)  12 -~- l u(t) 12]dt+ ]Fx(T)12  

which is minimized where F E R q• and C E R p2 • is bounded piecewise 
continuous. 

We need the following Riccati equation 

- X  = A ' ( t ) X  + X A ( t )  + C'(t)C(t)  - X B ( t ) B ' ( t ) X ,  (2.15) 

X ( T )  = F'F. (2.16) 

where X and Y are the observability and controllability gramians of the sys- 
tem G given by (2.7) and (2.8) with Y(to) = O, respectively. Moreover, for 
O-periodic systems X is O-periodic and 

1 f to+o 
= - t r .B ' ( s )X(s)B(s)  ds II a Illo o .,,o 

I fto+O 
= - t r . c ( s ) y o ( s ) c ' ( ~ )  d s  

0 ,]to 

where Yo is the O-periodic solution of (2.8). 

Def in i t i on  2.11 The Hoo-norm of the system G is that of the map w --* z : 
L~(to, cx~; R 'm) -~ L2(t0, oc; RPl). 

To generalize the bounded real lemma we need to consider a quadratic op- 
timization problem. But we first introduce the standard quadratic control 
problems. 
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T h e o r e m  2.1 There exists a unique nonnegative solution X = XT( t )  to the 
Rieeati eqaution (2.15) and (2.16). Moreover, the state feedback law 

a(.) = - B ' ( . ) X ( . ) x ( . )  

is optimal and 
Jr(a; to, xo ) = x'oX ( to )xo. 

We omit the proof of this theorem. Instead we shall give a proof for a similar 
problem (2.41). See Lemma 2.8. 

Now consider the infinite horizon problem 

= A ( t ) x + B ( t ) u ,  x ( s ) = x o ,  s > t o ,  

J(u;s ,  xo) = [3 C(t)x(t)12 + lu( t ) I~]dt  

where u E L2(s, oe; R m2) is admissible if its response x E L2(s, oe; R n) and 
l i m t ~  x(t)  = O. 

~ C :  We assume tha t  for each (s, x0) there exists a control u(.; x0) such that  

~ (u(., x0); s, Xo) <_ C(Xo) for some constant c independent  of s. 

If (A, B) is stabilizable, then R C  holds. 

L e m m a  2.5 Assume R C  holds. Then there exists a bounded nonnegative 
solution to the Riccati equation (2.15). 

Proof. By Theorem 2.1 there exists a nonnegative solution to (2.15) on [to, T] 
with X ( T )  = O. Then for any s ~ to XT(S) <_ X ~ ( s )  if s < T < T. In fact let 

a T  -~- - B I  X T x  

then 

z'oXr( s )zo = JT(,~T; s, zo) 
< J T ( ~ ' ;  s,:co) 

< J~,(a~,; s, zo) = z'oX~(s)zo 

where we set F = 0 in JT and ,2 T in JT is the restriction of the feedback law 
fi~,(.) to [s, T]. We note tha t  

X~oXT(S)XO = JT(fiT; S, XO) 

< JT(u(.;  zo); s, z0) 
< J(u( ' ;xo);S,  Xo) < 00. 
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Hence XIoXT(S)XO is monotone increasing and uniformly bounded in s and T. 
Since x0 is arbitrary, there exists a nonnegative bounded matr ix  X such tha t  

XT(S) --* X(s)  for any s. 

Then X satisfies the Riccati equation (2.15). | 

L e m m a  2.6 Suppose (C, A) is detectable. Then A - BB~X is exponentially 
stable. 

Proof. The  Pdccati equation (2.15) can be writ ten as 

- X = ( A - B B ' X ) ' X + X ( A - B B ' X ) + [ C '  X B ] [ B C x ] .  

Hence, if x is the solution of the state feedback system 

= ( A -  BB'X) ( t )x ,  z(s) = Zo 

then 

[ BCx J x E L2(s, oo; R ' '+m') 

with 

,, [BCx] x ,,2< C, Xo , f o r s o m e c > 0 .  

Since (C,A) is detectable, it is easy to see that ( [ BCx ] , A -  B B ' X )  is also 

detectable. Hence by Proposit ion 2.5, A - B B ' X  is exponentially stable. | 

We say that  X is a stabilizing solution of the Riccati equation (2.15) if 
A - B B ' X  is exponentially stable. 

T h e o r e m  2.2 Suppose (C, A) is detectable and FtC holds. Then there exists 
a nonnegative stabilizing solution of the Riccati equation (2.15). Moreover 
the feedback law 

~(.) = -B ' ( . )X( . )x( . )  

is optimal and 
J02; s, x0) = z'oX(s)xo. (2.17) 

If  A, B and C are O-periodic, then X is also O-periodic. 

Proof. The first part  follows from Lemmas 2.5 and 2.6. Differentiating x ' X x  
we obtain 

x ' (T)X(T)x(T)  + JT(U; S, XO) = x~oX(s)xo + I u + BIXx  [2 dt 
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where u is an admissible control and x is its response. Since x ' ( T ) X ( T ) x ( T )  --* 
0 as T --* c~, we obtain 

J(u;s ,  xo) = x'oX(s)xo + l u + B ' X x  l2 dt. 

Hence the optimality of fi and (2.17) follow immediately. 
By Lemma 2.5 the bounded stabilizing solution X of (2.15) is constructed 

as l i m , - ~  XT( t )  where XT( t )  is the solution of (2.15) with X T ( T )  = O. If 
A, B, C are 0-periodic, XT( t  + O) = XT-O(t).  Hence 

X(t+O) = lim XT( t+O)=  lim X T - o ( t ) =  X( t ) .  | 

Corol lary  2.2 (A, B) is stabilizable if  and only if  there exists a control 
u(.; s, xo) for each s and xo such that 

II x 115 + II u I1~< c ( x 0 )  

for some constant c(xo). 

Proo]. We only need to show sufficiency. Consider the regulator problem with 
C = I. By Theorem 2.2 A - B B ' X  is exponentially stable where X is the 
bounded nonnegative solution of the Riccati equation (2.15) with C = I. | 

Example  2.3 Consider the periodic system with period 3: 

[ : : ] = I  ,1 0 
+ 0 . 3 c o s ~ t )  10] [ : : ] + [ ~ ] u ( t )  (2.18) 

which is called the Mathieu's equation if u(t) -- 0 [26]. This system is unsta- 
ble, but by the feedback u = f x  with 

21r f(t) = [ - 0 . 3  c o s  ~ - t  - 0 .5  c o s  t - 1  - c o s  t ] 

it is stabilized (see Example 2.1). For 

c--[1 0], 
the system (2.18) is detectable and there exists a 3-periodic nonnegative 

stabilizing solution X(t) = [ X1 X12] X12 X2 (t) of the Riccati equation (2.15) 

(Figure 2.4). The optimal response of this system with initial condition 

I x 1 ] ( 0 ) =  [10] is given in Figure 

Consider the backward system 

-~  = A'(t)~ + C'(t)v,  ~(T) = ~1. 

As in Theorem 2.1 we consider 

= A ( t ) Y  + YA ' ( t )  + B( t )B ' ( t )  - YC ' ( t )C( t )Y ,  (2.19) 

Y(to) = HH' .  (2.20) 
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Figure 2.4: The periodic solution X(t) of the Riccati equation 
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Figure 2.5: Simulation result 
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T h e o r e m  2.3 (a) There exists a nonnegative solution of the Riccati equation 
(2.19) and (2.20) on any [t0,T]. 
(b) Let H = 0 and suppose there exists a control v(-; T,~I) such that 

[I B'~ 2 2 [IL2(to,T;R"~) + II V [[L2(t0,T~R~)< C(~1) 

for some constant C(~l). Then the solution of the Riccati equation (2.19) with 
Y(to) = 0 is bounded. If, further, (A, B)  is stabilizable, then A - Y C ' C  is 
exponentially stable. 
(c) (C, A) is detectable if  and only i f  there exists a control v(-; T, ~1) such that 

I1~ 2 2 NL2(to,T;R.) 4- I[ V IIL2(to,r;Rv2) <~ C(~l) 
for some constant c(~1). 

C o r o l l a r y  2.3 Let A, B and C be O-periodic. Let Y be a bounded nonnega- 
tire solution of (2.19) with Y(to)  = 0 such that A - Y C ' C  is exponentially 
stable. Then limn-,oo Y( t  + nO) exists (denoted by Yo) and Yo is a O-periodic 
nonnegative solution of (2.19) such that A - YoC'C is exponentially stable. 

Proof. It is enough to show that  Y( t  4- nO) is monotone increasing in n. 
Let Y(t; Y(t0)) be the solution of (2.19) with initial condition Y(to) >_ O. 
Then Y( t )  = Y(t ;0) .  Since A, B and C are 0-periodic, we have Y( t )  = 
Y ( t  - nO; Y(nO)) for nO < t < (n 4- 1)0. Hence 

Y ( t  4- 20) = Y ( t  4- O; 9(0))  > Y ( t  + O; O) = Y ( t  + 0). 

Similarly, we have 
Y(t  + (n + 1)o) > Y( t  + ~o) 

and Y( t  4- nO) is monotone increasing in n. Since Y is bounded, there exists 
a limit Yo(t) of Y ( t  4- nO) as n -~ oo. Note tha t  

Yo(t) = lim Y ( t + n O )  = lim Y ( t + O + ( n - 1 ) O )  = Y 0 ( t + 0 ) .  
n ---~ O 0  n - - *  o 0  

Hence Yo(t) is 0-periodic. Let s, t E [0, 0). Integrating (2.19) from nO + s to 
nO 4- t and passing to the limit n --* cx~ and then differentiating again, we can 
easily show tha t  Yo(t) satisfies (2.19). 

Next we shall show tha t  A - YoC'C is exponentially stable. Let to < T < 
oo be arbi t rary but  fixed. Let xo be solution of 

= (A - YoCC) ( t ) x ,  x(to) = xo. (2.21) 

Consider 
~, = (A - Y C ' C ) ( t ) x ,  x(to) = Xo. 

and denote by xn(t) the solution at t + nO. Then  

~ . ( t )  = x( t  + nO) 
= [A(t + nO) - Y ( t  + nO)C'(t + nO)C(t + nO)]x(t + nO) 

= [A(t) - Y(t  + nO)C'( t)C(t)]x,( t )  
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and we have 
lim xn(t) = xo(t), t E [to, T]. 

n - - - * o o  

Since A - Y C ' C  is stabilizing 

T 

Jo [xn(t) [2dt <_c[ [2 for n x0 any 

where c > 0 is a constant independent of T. Hence by Fatou's lemma we 
obtain 

[ I T I xo(t) 12dt= lim inf [xn(t) 12dt <_clxol  2. 
n - - ~  o o  J $o 

Since T is arbitrary, the system (2.21) is exponentially stable. Suppose that  
Y(t; H~H) is a bounded nonnegative stabilizing solution of (2.19) such that  
A - Y C t C  is exponentially stable. Then by Theorem 2.4 below, lim,-~o~ Y(t  + 
nO; H'H) = Yo(t). | 

We generalize the notion of the stabilizing solution of the Riccati equa- 
tions, which will be useful in later sections. Consider the Riccati equations 
on [to, o~) 

- X  = A ' ( t )X  + XA( t )  + P(t) + XR( t )X ,  (2.22) 

= A( t )Y  + YA'(t)  + Q(t) + Y S ( t ) Y  (2.23) 

where P,  Q, R and S are bounded piecewise continuous symmetric matrices. 

Def in i t i on  2.12 Let X (Y) be the solution of (2.22) (respectively, (2.23)). 
(a) X (Y) is bounded ill  X( t )  I< cI (~ Y(t) I<_ cI) for some c > O. 
(b) A bounded symmetric solution X of (2. 22) is called stabilizing if A + R X  
is exponentially stable. 
(c) A bounded symmetric solution Y of (2.23) is called stabilizing if A + Y S  
is exponentially stable. 

These definitions are consistent with those of Theorems 2.2 and 2.3. 

T h e o r e m  2.4 (a) A bounded stabilizing solution (2.22), if one exists, is 
unique. 
(b) Let Y and ~" be two stabilizing solutions of (2.23). Then 

Y(t)  - Y(t)  ~ 0 as t --* c~. 

Proof. (a) Let X and 2 be two stabilizing solutions of (2.22). Then 

~t _ 2 )  = (A + RX) ' ( t ) (X  - 2 )  + (X - f f ) (A  + RX)(t) .  
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Hence 
( X  - f ( ) ( t )  = S ' x ( T , t ) [ X ( T  ) - f~(T)]Sy~(T,t) 

where  S x  is the  s ta te  t rans i t ion  mat r ix  of  A + R X .  Hence 

[ X ( t )  - f ( ( t )  [= M l e - ~ ( T - t ) c M 2 e  - ~ ( T - t )  

for some posit ive cons tant  2141, Ms,  c, a l  and a2. Let t ing  T --~ oo we obta in  
X( t )  - X ( t )  = 0 for any to _< t < cx~. 
(b) Since 

d 
- ~ ( Y  - Y )  = (A + Y S ) ( t ) ( Y  - Y )  + ( Y  - Y ) ( A  + Y S ) ' ( t ) ,  

we have 
Y ( t )  - ? ( t )  = s y ( t ,  t o ) [Y( to )  - ? ( t o ) ] S ~ ( t ,  to) 

where  Sy  and Sp  are the  s ta te  t rans i t ion  matr ices  of  A - Y S  and  A - ]PS, 
respectively. Hence Y( t )  - ]z(t) --* 0 as t -~ oc. | 

Consider  the  sys tem G:  

= A ( t ) x +  B l ( t ) w + B 2 ( t ) u ,  x(to) = x o ,  

z = C l ( t ) x +  D12(t)u, 

y = C2(t)x + D21(t)w 

and  the  controller  u = K y  of  the  form 

x = A ( t ) f c T B ( t ) y ,  ~(t0) = 0, (2.24) 

= ~ ( t ) ~  + b(t)~.  

T h e n  the  closed-loop sys tem G and  u = K y  is given by 

BC2 ( t ) [ x ] + [ B I + B 2 ~ ) D 2 1 ]  

_-[oO], 
Z = [C1-~- D12DC2 D 1 2 0 ] ( t ) l x J - t  - (D12L) D21)(t)w. 

D e f i n i t i o n  2 .13  Consider the system G on [to, oo). A controller u = K y  of 
the form (2.24) is said to be IO-stabilizin 9 if the closed-loop system (2.25) is 
IO-stable. If, further, the closed-loop system is exponentially stable (or 

is exponentially stable) then the controller is said to be (internally) stabilizing. 
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P r o p o s i t i o n  2.6 Consider the system G and the controller u = Ky  of the 
]orm (2.24)-If the controller u = Ky  is internally stabilizing, then (A, B2, 62) 
and (A, B, C) are stabilizable and detectable. 

Proo].Let [ x ] ( t )  be thesolu t ionof  

...ix] [o 0] 
Then by assumption x, k E L 2. Rewriting (2.26) as 

Jc = A(t)x + B2(t)([gC2x + B2C~), x(s) = xo, 

= A( t )~  + [~(t)(c2~) ,  ~(s)  = o 

and applying Corollary 2.2, we conclude tha t  (A, B2) and (.4,/~) are stabi- 
lizable. The detectability of (C2, A) and (C, A) also follow from the adjoint 
system of (2.26) and Theorem 2.3. I 

2.1.4 D i s t u r b a n c e  A t t e n u a t i o n  P r o b l e m s  

Consider the system G: 

with initial condition 

= A ( t ) x +  B(t)w,  

z = C ( t ) x ,  (2.27) 
z l  = F x ( T )  (2.28) 

x(to) = Hh (2.29) 

whe r e x  E R n, w E R ml, z E R pl, zl E R q, h E R n~, H E R n• F E 
R q• and other matrices are bounded piecewise continuous of appropriate 
dimensions. For each input (h, w) E 1~ n~ • L2(t0, T; R m~ ) we have the output  
(zl, z) E R q x L2(to,T; Rm).  Thus we can define the input-output operator 
GTto of the system (2.27)-(2.29) by 

where 

= FS(T, to)Hh + F S(T,r)B(r)w(r)dr, 

= C(t)S(t, to)IIh + C(t) S(t,r)B(r)w(r)dr. 

(2.30) 
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Let / : (R TM x L2(to,T; Rml); R q x L2(to, T; Rm))  be the space of bounded 
linear operators mapping R TM x L 2 (to, T; R TM ) into R q • L 2 (to, T; R p~ ). Then 
GTto $ / : (R n~ x L 2 (to, T; R TM ); R q x L 2 (to, T; R m)). We regard (h, w) as the 
disturbance and for a given ? > 0 we wish to find necessary and sufficient 
conditions for [[ GTto ][< ?, i.e., 

I Zl [2 _{_ II z Ih~-< d2(I h 12 + II w II 2) for some 0 < d < 7. (2.31) 

In this case the system G is said to fulfil the ?-disturbance attenuation. 

where 

The adjoint G* of GTto is given by Tto 

-~ = A'(t)r + C'(t)v, 

= B ' ( t ) ~ .  

~(T) = F 'L  

Co = H'~(to), 

(2.32) 

(2.33) 

1 
= A(t)Y + YA'(t) + B(t)B'(t) + -~YC'(t)C(t)Y, (2.38) 

= HH', (2.39) 

FY(T)F'  -< d2I for some 0 < d < ?. (2.40) 

To give the solution of this problem, we introduce the following functional 

T 

J(w;to,Xo) = f [[ z(t)[~ _?2 [w(t)[2]dt+ IFx(T)I  ~ (2.41) 
J~o 

X(T) 

H'X(to)H 

and 

9 

Y(to) 

Since II G* Tto II----II GTto U by Theorem A.2, (2.31) is equivalent to 

I Co [2 -4- [I ~ 1122- < d2([ f 12 -4- II v 112). (2.34) 

To give necessary and sufficient conditions for II GTto I1< ?, we need the 
Riccati equations 

= A'(t)X + ZA(t) + C'(t)C(t) + -~XB(t)B'(t)X,(2.35) 

= F'F, (2.36) 

-< d2I for some 0 < d < ? (2.37) 
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subject to 

= A ( t ) x +  B(t)w,  x(to) = xo, 

z = C ( t ) z  

and consider the maximization of J(w; to, xo) over all w �9 L2(to, T; Rml) .  
Let 

C,,TtoW = G , T t o ( O ) ,  i - - 1 , 2 .  

i e m m a  2.7 I] V2Ls II~]l G2Tto H, II eTs  I1~11 GTto II for any to < s < L < 
T. 

Proof. We shall show only the first inequality. Let ~ be the extension of 
w �9 L2(s, L; R TM ) to [to, T] by zero, i.e, 

0, to < t < s, 
u~(t)= w(t),  s < t < L ,  

O, L < t < T .  

Then we have 

II-  2 G2Lsw11~ f L f, = I C(t) S(t, r )B(r)w(r)dr  12 dt 

= IV(t)  S(t, r )B(r )~(r )dr  12 dt 

/to Z2 <_ I C(t) S(t, r )B(r )~(r )dr  12 dt 

H - ~ 2 = a2TtoWll2 

< II G2T~o J1211 ~11~ --II G2Tto 11211 w III. * 
Consider the optimal  control problem (2.27)-(2.29) and (2.41) with to, T 

replaced by arbitrary s, L, to < s < L < T. 

L e m m a  2.8 Assume II GTto II< 7. Then the following statements are true. 
(a) There exists a unique optimal maximizing element WTs E L2(s, T; R rnl) 
of J(w; s, xo). Moreover 

IIWTsl12<-~ilx01, J(WTs;s, xo) <_ S I xo [2 (2.42) 

for some ~ = ~(~/) > 0 independent of s and Xo. 
(b) There exists a unique nonnegative solution to (2.35) and (2.36). The 
optimal control for (2.41) is given by the feedback law 

Wr, o(.) = ~B ' ( . )x ( . )x ( . )  
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and 
J(WTto, to, xo) = xtoX(to)xo . (2.43) 

Proof. (a) By Lemma 2.7, H GTs H< ~' for any to ~ s < T. Hence ~2I - 
G~sGTs > aI  for some a > 0 and the quadratic functional J(w; s, xo) is 
strictly concave and J(w; s, xo) -* - o c  as H w [[2-* oo. Then  there exists a 
unique optimal WT8 for JT(W; s, xo) which is given by 

( c( t )s( t ,  s) o 
(~2i _ G~sGT~)W = (~sz0  ' zo(t) = ~ FS (T ,  s)xo ) " 

Hence 
WT s ( 7 2 1  - *  - - 1  - *  : -- G T s G T s  ) GTsZO" 

Since ]] (~T8 ]]--<: d < % we have 

G * G  , - i  1 II ( 7 2 i _  Ts TsJ II < ~y2 _ d 2" 

Hence 
d 

]1 WTs H2 ~ 72 -- d---------~ [ xo [ 

from which the assertion follows. 
(b) Suppose that  there exists a symmetric solution to (2.35) and (2.36) on 
some interval [tl, T]. Then for any s, t l  < s < T 

Z T J (WTs;  S, XO) = x l o X ( s ) x o  - ,./2 [ v ( t )  [2 dt 

where 

v(t) = w(t) -  B'X(t)x(t) 

and x is the response of (2.27) to  w E L 2 ( s , T ; R  ml) with x(s) = xo. This 
follows as in the s tandard quadratic problem. Hence 

WTs( t  ) =- -~2B'X(t)x( t)  

and 
J(wTs; s, zo) = z~oX (s)zo. 

In view of (2.42) the norm of X is bounded, i.e., I X(s)  [< 6 for some ~ > 0. 
Since the Riccati equation (2.35) is locally Lipschitz and its solution is a 
priori bounded, there exists a global solution on [to, T]. The  uniqueness and 
nonnegativity of X follows from (2.43). | 

We are now ready to give the solution to our original problem. 
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T h e o r e m  2.5 The ]ollowing statements are equivalent. 

(a) II C T ,  o II < 7" 
(b) There exists a nonnegative solution to (2.35)-(2.37). 
(e) There exists a nonnegative solution to (2.38)-(2.40). 

Proof. Suppose (a) holds. Then II (~Tto II < Y and (b) except (2.37) follows 
from Lemma 2.8. Moreover for (2.27) and (2.35) the following equality holds: 

I zl  I = + II z I1~--- 7 = II w I1~ + h ' U ' X ( t o ) H h  - 72 II w - -~2B'Xx I1~. (2.44) 

Setting w --- ~]-~B'Xx and using (2.31) we obtain 

d2(I h 12 + [I w [1~) >- 72 [I w [[2 +h 'H 'X( to )Hh .  

Hence d 2 ] h ]2> h ' H ' X ( t o ) H h  which implies (2.37). 
Conversely suppose (b) holds. Then by (2.44) 

I zl 12 + II z I1~ -< 7 2 II w I1~ "l-d2 I h 1 2 - 7  = II r 1122 
-< 72(I h 1 2 + II ~ 115) - (7 2 - d 2 ) ( I  h 1 2 + II r III) 

where r = w - ~I-~B'Xx. Since there exists a > 0 such that  

jh]2+Hwl12_<a([hl 2+]]r j l22) ,  

we have 

I zl 12 + II = 115 _ 72(l h 12 + II '-" Ih =) 7= - d2 12 --(lh +11w1122) a 

72 - d 2 12 = (7 2 --)(lh + l l w l l ~ ) .  
a 

Hence II GTto II < 7. The equivalence of (a) and (c) also follows since (c) is 
the dual of (b) concerning the adjoint system (2.33) of GTto. | 

If we assume that  initial conditions are known, we can set h -- 0. 

C o r o l l a r y  2.4 The following statements are equivalent. 

(a) II ~'Tto I1< 7. 
(b) There exists a nonnegative solution to (2.35) and (2.36). 
(c) There exists a nonnegative solution to (2.38) and (2.40) with Y(to)  = O. 

Now we consider the system G: 

Z 

=(to) 

= A ( t ) x + B ( t ) w ,  

= C(t)x,  

= Hh  



32 2. Continuous-time Systems 

on [to, co) and assume that  this system is exponentially stable. Then we define 
the input-output operator G E s  nl • L2(t0, co; Rm~); L2(t0, co; RP~)) by 

In this case we wish to find the condition for II G I1< % We replace (2.30) 
and (2.41) by 

(:) J2 G = C( t )S( t ,  to)Hh + C(t)  S(t,  r )B( r )w(r )dr ,  

Y(w; to, zo) = [I z(t)12 _~,2 [w(t)  121dt. 

We also need the functional (2.41) with F = 0, i.e., 

s JT(w; to, z o )  -- [I z(t)12 _~,2 Iw(t)I~]dt. 

Let Gw = G ( O ) .  Proceeding a s i n  the finite horizon case we have the 

following. 

L e m m a  2.9 II G2Tto I1--~11 G II for  any to <_ T < co. 

L e m m a  2.10 Assume H G H< 7. Then the following statements are true. 
(a) There exists a unique control WTto (Wto) maximizing JT(W;to,xo)  
(J(w; to, Xo), respectively). Moreover 

II WTtoll2 <-- ~]Xo h II Wtoll2 -< ~ l x o  ], 15 (2.45) 
JT(WTto;tO, Xo) ~_ (~IXO 15, J(wto;to, xo) < ~ I xo 

for  some 5 = ~(~/) > 0 independent of T and Xo. 
(b) There exists a unique bounded nonnegative stabilizing solution to (2. 35). 
Moreover if  the conditions above are satisfied, the optimal control Wto of 
Y(w; to, xo) exists and is given by the feedback law 

W~o(.) = ~B'(.IX(.)z(.) 
and J ( wto ; to, zo ) = xtoX ( to )zo. 

Proof. (a) Since II (~ II-<ll G H< % by Lemma 2.9 we have H G2Tto H< % 
Hence from Lemma 2.8, we have 

WTto (.,/21 -*  - -1  -*  = -- G2TtoG2Tto) G2TtoZO 
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and 
Wto = (721 - G*G)-IG*zo. 

Since G2Tto, (721 - G* G ~-1 2Tto 2Tto) are uni formly bounded  in T,  we have the 
assertion. 
(b) Since II G I1< ~' implies II G2Tto I1< % we have a nonnegat ive  solut ion 
XT(t) to  (2.35) with XT(T) = 0. Moreover  for each t, XT(t) is mono tone  
increasing in T.  In fact let L < T and define a control  on [to, T] by 

~T,o(t  ) = { ~ B ' X ( t ) x ( t ) ,  
O, 

Then  

x'oXL(to)xo = %(WL~o; to, x0) 

t �9 [to, L], 
t �9 (L,T]. 

<- JT(@Tto;tO, XO) 
"( JT(WTto; tO, XO) = X;XT(tO)XO. 

T h e  mononic i ty  of XT(t) also follows from JT(W; t, xo). Note  t h a t  XT(t) is 
hounded uniformly in T. This  follows from (2.45) and 

Yr(wr~o ;to, z0) = z'oXT(to)xo. 

Hence XT(t) converges to  a limit X(t) as T --* cx) and it satisfies (2.35). Now 
it remains to  show tha t  A + 71-~BB'X is exponent ia l ly  stable.  Let  CVTto E 
L2(t0, oo; R m~) be given by 

S ~B 'XT( t )xT( t ) ,  t e [t0, T], 
~Tto ( t ) 

t o, t �9 (T, ~). 

Then  by L e m m a  2.10, {tVTto) is hounded  in La(to, oo; Rml ) .  Hence there  
exists a subsequence again deno ted  by {WTto} which is weakly convergent  to  

�9 L2(t0, oo; R ml) with ]] ~ 112<- c [ x0 I, c > 0 (see T h e o r e m  A.5). Let  ~ he 
the response to  tO, i.e, the  solut ion of 

x = A(t)~ + B(t)ff~, ~(t0) = x0. 

Then  for each t, xT(t) --, ~(t) as T --+ oo. On the  o ther  hand  xT(t) --* ~2(t) 
in any interval, where  �9 is the  solut ion of equat ion  

= (A + @2BB'X)(t)~(t), ~(t0) = x0. 

Hence we can identify ~ = ~. Since A is exponent ia l ly  s table  and ]] ~b 112 < - 
c ]  xo 12 , we conclude H 5:]12--]1 :c ]12- < Cl I xo ] for some Cl > 0. T h e  same 
conclusion holds when we replace to by s _> to. Hence by Propos i t ion  2.2 
A + ~ B B ' X  is exponent ia l ly  stable.  ! 
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T h e o r e m  2.6 Assume that the system G is exponentially stable on [to, co). 
Then the following statements are equivalent: 

(a) II a II < 7. 
(b) There exists a bounded nonnegative stabilizing solution of (2. 35) on [to, oo) 
satisfying (2.37). 
(c) There exists a bounded nonnegative stabilizing solution of (2.38) and 
(2.39) on [t0, ~) .  
The solutions in (b) and (c) are unique. 

Assume that  the initial condition is known so that  h = 0. 

C o r o l l a r y  2.5 The following statements are equivalent. 

(a) II r II < ~. 
(b) There exists a nonnegative solution to (2.35). 
(c) There exists a nonnegative solution to (2.38) with Y( to)  = O. 

P r o o f  o f  T h e o r e m  2.6. Suppose (a) holds. Then the existence of a stabi- 
lizing solution follows from Lemma 2.10. The  condition (2.37) follows as in 
Theorem 2.5. Hence (a) implies (b). The converse is also similar to Theorem 
2.5. We only need to show 

I h 12 + II w 1122< a(I h ]2 + II r II2 2) for some a > O. 

But  this follows from 

W 

1 
= (A + ~-~BB 'X) ( t ) x  + B(t)r ,  

1 B ' ( t ) X ( t ) x  + r 

since A + ~ B B ' X  is exponentially stable. 

(c) is the dual of (b) and (a) implies the existence of a bounded nonneg- 
ative solution of (2.38) with property (2.39). In fact we consider the adjoint 
system 

- ~  = A'(t)~ + C'( t)v ,  ~(T) = ~1, 

= B'( t )~ 

and 
T 

J(v;T,(l) =/to [I r I = _~2 Iv(t) 12]dt 

and proceed as in Lemma 2.10. 2b show the exponential stability of A + 
~A~yc'c, let vT(t)  = ~-~CY(t)~(t) be the maximizing element of J(v; T, ~1), 
then 

II VT IIL2(to,T;RPl)< Co ]El I for some co > O. 
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We extend VT to [to, co) by zero which we denote by VT �9 L2(t0, co; RPl). 
Then there exists a subsequence again denoted by 9T convergent weakly to 

0 �9 L2(t0, c o ; R  p') with [[ 9 ][L2(to,oo;Rp1)__ ~ C O I~1 I" 

Now let to < L < co be a fixed but arbitrary number and consider 

--iT = A'(t)~T + C'(t)gT, ~T(L) = ~1, 

--~ = A ' ( t ) ~ +  C'(t)s ~T(L) = ~1 

and 
1 

-4 = A'(t)~ + ~ C ' ( t ) C ( t ) Y ( t ) ~ ,  ~(L) = ,~,. (2.46) 

Then as in Lemma 2.10, we can show ~T(t) --~ ~T(t) as T --~ co for any 
t �9 [t0, L] and ~(t) = ~(t), t �9 [t0, L]. Since II v IILa(to,oo;RP1) -~ Co I ~1 I, 

L 
to [~(t) ]2dt < c  I~1 ]2 for s o m e c > 0 ,  

which implies 

./•t•" I 12 dt 12 for _< L < ~(t) _< C I~I any to OO. 

Hence by Proposition 2.3, the system (2.46) is exponentially stable and so is 
A + ~ Y C C .  

The converse of (c) follows if we consider the adjoint of the system G and 
proceed as the converse of (b). | 

C o r o l l a r y  2.6 Let the system G be O-periodic, i.e., A( t  + O) = A(t) ,  B ( t  + 
8) = B(t)  and C( t  + 8) = C(t) .  Then 
(a) The stabilizing solution of (b) in Theorem 2. 6 is O-periodic. 
(b) There exists a O-periodic nonnegative stabilizing solution Yo(t) to (2.38) 
and Y( t )  - Yo(t) --* 0 as t -~ co where Y is a bounded nonnegative stabilizing 
solution of (2. 38) and (2.39). 

Proof. Proofs of (a) and (b) are similar to those of Theorem 2.2 and Corollary 
2.3, respectively. | 

If the system G is time-invariant, then we need the algebraic Riccati 
equations: 

A ' X  + X A  + C 'C  + ~ X B B ' X  = O, (2.47) 
$ 

H ' X H  <_ d2I for some 0 < d < 7, (2.48) 

A Y  + Y A '  + B B '  + ~ Y C ' C Y  = O. (2.49) 

We define the stabilizing solutions of (2.47) and (2.49) as above. We can set 
to = O. 
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C o r o l l a r y  2.7 Let the system G be time-invariant. Suppose A is exponen- 
tially stable. Then the following statements are equivalent: 

(a) IIaH<~- 
(b) There exists a nonnegative stabilizing solution of (2.47) satisfying (2.48). 
(c) There exists a bounded nonnegative stabilizing solution of (2.38) with 
Y(O) = H'H. Moreover, there exists a unique nonnegative stabilizing solution 
of (2.49) and Y(t) ~ Yo~ as t ~ oc where Y~ is the nonnegative stabilizing 
solution of (2.49). 

Proof. The last property follows from Theorem 2.4. i 

C o r o l l a r y  2.8 Let the system G be time-invariant. Suppose A is exponen- 
tially stable. Then the following statements are equivalent: 
(a) II 6' II < ~. 
(b) There exists a nonnegative stabilizing solution of (2.47). 
(c) There exists a nonnegative stabilizing solution to (2.49). 

E x a m p l e  2.4 Consider the periodic system with period 2~: 

52 - 1 - 0 . 5 c o s t  - 1 - c o s t  x2 

ix1] z = [1 01 x2 

which is exponentially stable (see Example 2.1). For this system we consider 
the following two cases 

where 2 in the case (b) can be regarded as weight on the initial uncertainty. 
First we consider the case (a). For ~/ >_ 2.3515, there exists a 27r-periodic 

nonnegative stabilizing solution X(t)  = [ X1 X12 ] XI~ Xe ] (t) of the Riccati equa- 

tion (2.35) (Figure 2.6) and there exists a bounded nonnegative stabilizing 

solution Y(t) -= I Y1 Y12 ] 1"12 Y2 ] (t) of the Riccati equation (2.38) with Y(0) = 0 
L 

which converges to a 2r -per iodic  solution (Figure 2.7). Next we consider 
the case (b). Then for all 7 -> 2.7751, there exist a 27r-periodic nonnega- 
tive stabilizing solution X(t)  of (2.35) and a bounded nonnegative stabilizing 
solution Y(t) of (2.37) and (2.38) which converges to a 2rr-periodic solution 
(Figure 2.8). 

2 .2  Ho~ C o n t r o l  a n d  D i f f e r e n t i a l  G a m e s  

In this section we consider the differential games related to the H ~  control 
problems. We consider finite and infinite horizon problems. 
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Figure 2.6: The periodic solution X(t) 
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Figure 2.7: The bounded nonnegative stabilizing solution Y(t): Case (a) 
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Figure 2.8: The bounded nonnegative stabilizing solution Y(t): Case (b) 

2.2.1 F i n i t e  H o r i z o n  P r o b l e m s  

Consider the system G: 

= A ( t ) x  4- Bl( t )w + B2(Qu, x(to)  = x0, 

z = C ] ( t ) = +  Di2( t )u ,  (2.50) 

y = C 2 ( t ) x + D 2 1 ( t ) w ,  

zl = F z ( T )  (2.51) 

where x E 1%'* is the state, w E 1%ml is the disturbance, u e 1%m2 is the 
control input, (zl, z) E 1%q • 1%P~ is the controlled output,  y E 1%p2 is the 
measurement, F E R q• and A, B1, etc are bounded and piecewise continu- 
ous matrices of appropriate dimensions. For this system we assume 

C l :  D~u(t ) [Cl(t)  D12(t)] = [0 I ]  for any t. 

The standard Hoo-control is to find necessary and sufficient conditions for 
the existence of a controller of the form 

" A( t )~  + [3(t)y, :?,(to) O, 

u = ~(t)~+D(t)y (2.52) 

such that  [I 0 II < % i.e., 

[ I z [ ] 2 + ] z l  [2<d 2t]w][22 for s o m e 0 < d < ' y  

where .4, /~, C and /)  are bounded piecewise continuous matrices and G is 

the input-output operator: w --* ( z : ) .  In this case the controller (2.52) is 

called ~/-suboptimal. 
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Now we assume that  a 7-suboptimal controller K of the form (2.52) exists 
and study its consequence to the following quadratic game: 

J(u, w; s, xo) = [I z(t)12 -3, 2 Iw(t)12]dt+ ]Fx(T)}2  (2.53) 

where u is the minimizer and w is the maximizer. The response to (2.50)- 
(2.52) can be written 

XK(t) = ((I)lKXO)(t) + (r 

zK(t) = (q21KXo)(t) -t- (qY2KW)(t), 

u~(t) = ( r I 1 K z o ) ( t ) + ( r I 2 K w ) ( t ) ,  

ZlK = F r  + F(~2K(T)w 

where 

CXK, qZxK, H1K �9 E ( R n , L 2 ( s , T ; E ) )  

(I)2K, @2N, YI2N �9 s  

(2.54) 

Xs(t) = (r + (r 

Zs(t) = (qllsXO)(t) + (q22sW)(t), 

~,( t )  = (n l ,=o ) ( t )  + (n2,w)(t), 
Z l s  = Fr  + F~2s(T)w.  

(2.56) 

with E = R n, R pl , IZt m2 , respectively and 

r  = (r r  = (~2Kw)(T).  

Moreover (I)2K, @2K and YI2K are causal and I[ (~ II < 3" is equivalent to 

{ F ~ 2 K ( T ) ~  i i < d f o r s o m e 0 < d < 3 "  (2.55) 

which implies 

II ~ < ~  112 + I Fr  12< _ d 2 II w 112. 

Now consider the functional (2.53). Since 

I z(t) 12=1 cl(t)x(t)12 + I~(t) 12 

by C1, J(u, w; s, xo) is strictly convex in u. Hence by Theorem A.4 for any x0 
and w E L2(s, T; R TM) there exists a unique Us = us(w, xo) �9 L2(s, T; R m2) 
such that  

min J(u, w; s, xo) = J(us, w; s, xo). 

The response of the system G to Us can be writ ten 
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Since 

we have 

Now 

J(u~, w; s, xo) 

J(us, w; s, xo) < J(uK, w; s, xo), 

f Fr II q'~ I1=11 \ ,I,2s / I1-< d. 

= {~ II z8 II 2 _3"2 II w II 2 + l Z l ~  
f F+ls(T) ) _.y2 

[[ ~ ~ii1 s X 0 "4- +s w 1[ 2 {1 W II 2 

where 

[[ ( Fepl~(T)k~ls Xo+C~s w [[2=[ F(~ls(T)xo+ F~2s(T)w [2 
/ 

(2.57) 

(2.58) 

-4-II ~xs~o+%~w II 2 

By (2.58) 3"21 - ~ *~s  is bounded both  from below and above. So its inverse 
exists (Theorem A.3) and is uniformly bounded in s. Hence there exists a 
unique maximizing element of J(u:, w; s, xo) given by 

ws (3'21 * - -1 -* f F#Pls(T) ) (2.59) 

Next we shall show that  Ws = Ws(Xo) and Us(Ws, xo) are uniformly bounded 
in s. Setting w = 0 in (2.57) we have 

11 us(O, xo)112< J(us(O, xo),O;s, xo) < J(uK,O;s, xo) =11ZK 112 + l zxK 1~ 

o r  

I[ Hl ,xo  112<11 Ol18xo 112 -4- [ F+I:(T)xo 12"<_[[ r [[2 +[ Fr [2. 

Hence Hi:  and @1: are uniformly bounded. From (2.58) and (2.59) we have 

i{ ws 112-< ax {xo I (2.60) 

for some al  > 0 independent of s and Ws is uniformly bounded. Setting x0 = 0 
in (2.57) we also have 

IJ : .(w,0){12 - ~  I{ ,1, 112 +1z1~ 12 < j ( u : ( w , 0 ) , ~ ; s , 0 )  
< J(uK, w; s, O) 

< II zK 112 _~2 II ~ 112 +lzlK 12 

and 

II 1128w 112 -+-I F+2s(T)12 _< [[ ~28w [[2 ~ + [Fr  
_< [[ ~2Kw [[2 + ] F(I)2s(T)]2 

-< d 21Iw112- 
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This implies tha t  YI2s is uniformly bounded. Now (2.56) and (2.60) yield 

I[ us(ws,xo) 112 < _ a21xo [ (2.61) 

for some a2 > 0 independent of s. Thus we have shown the following. 

L e m m a  2.11 (a) l-Ils, kOls, YI2s and ~28 are uniformly bounded. 
(b) ws(xo) and us(ws,xo) are uni]ormly bounded and 

maxmin  J(u, w; s, xo) = J(us,  ws; s, xo) <_ a lxo 12 
W U 

]or some a > 0 independent o] s. 

Now consider the Riccati equation 

- X  = m' ( t )X  + X A ( t )  +C~(t)Cl( t )  

+ X ( - ~ B I B ~  - B2B~)(t)X,  (2.62) 

X ( T )  = F'F. (2.63) 

If there exists a symmetric solution to (2.62) on [Q, T], tl  ~ to, then for any 
tl < s < T  

T P 1 

- -  

T 

+ f,  I u(t) + Bix(t)~(O I ~ dt (2.6a) 

where x is the solution of (2.50) with to = s. Define feedback laws 

~(.) = ~2Bi( . )X( . )x ( . ) ,  s = - B i ( . ) X ( . ) x ( .  ) (2.65) 

and let x* be the solution of (2.50) with to = s corresponding to (2.65). Set 

w*(t) = 1 B ' ( t )X( t )x*( t ) ,  u * ( t ) = - B ~ ( t ) X ( t ) x * ( t ) .  (2.66) .y-~l  

We shall show the value of the game exists, i.e., 

sup inf 3(u, w; s, xo) = inf sup J(u, w; s, xo). 

L e m m a  2.12 Suppose that there exists a solution X of (2.62) and (2.63) on 
[tl, T]. Then it is nonnegative. Moreover 

J(fi~, w; s, xo) <- J(~,  ~; S, Xo) = x~oX(s)xo <_ g(u, ~; s, xo), (2.67) 

J(u*,w*; s, xo) = x~oX(s)xo <- g(u,w*; s, xo) (2.68) 
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for any (w, u) �9 L2(s, T; R m~ ) x L2(s, T; R m2 ). The max-rain of J is attained 
by the pair ( ~, w * ) and 

m a x m i n J ( u , w ; s ,  xo) = J(fi, w*;s, xo) 

= J ( f i , ~ ;  s, x0) (2.69) 

= J(u*,w*;s,  zo) 

= x~oX(s)xo = in f supJ (u ,w;  S, Xo). 
t~ w 

Proof. We note  t h a t  (2.67) follows from (2.64). Set t ing w = 0 in (2.67), we 
have 

0 < J(~s, 0; s, zo) < J(~8, ~ ;  s, zo) = z'oX(s)zo. 

Hence X(s)  is nonnegat ive.  From (2.64) we have 

J(~t, w; s, Xo) < J(ft, ff~; s, xo) = x'oX(s)xo 

and hence 

min J(u, w; s, xo) <_ J(fi, w; s, xo) <_ x'oX(s)xo 

for any w c L2(s,T; R m l ) .  This implies 

s u p m i n  J(u, w; s, xo) <_ xPoX(s)xo. 
~j B 

Now we shall show 

min J(u, w*; s, x0) = J(u*, w*; s, xo) = x~oX(s)zo. u 

For this purpose,  we consider e = x - x*, where x is the  solut ion of  

= Ax  + 1 B 1 B ~ X ( t ) x  + B2u, x(s) = X o .  

7 ~ 

Then  

(2.70) 

jfs t (Hu) ( t )  = S(t ,r)B2(r)u(r)  dr, 

T 

Hsu  = ~ S(T,r)B2(r)u(r)  dr 

Define 

= Ae + B 2 ( u -  u*), e(s) = 0 

and 

J (u ,w; ; s ,  xo) =11Cl(e+x*)I]  2 + II u 112 _.y2 II w* 112 + l F(e + x*)(T)12 . 
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where S(t,  r) is the s ta te  transit ion matr ix  of  A. Then 

e = H ( u - u * ) ,  

e(T) = H s ( u -  u*). 

Since J(u,  Ws; s, xo) is strictly convex in u, there exists a unique minimizing 
element u given by the solution of 

u + H*C~C1H(u - u*) + H*C~Clx* + H * F ' F H s ( u  - u*) + H s F ' F x * ( T )  = O. 

We shall show tha t  u = u* is the solution. Note tha t  for h E L2(s ,T ;  R n) 
and h E R n 

r [ T 
(H*h)( t )  = B2(t) ]. S ' ( t , r )h(r )  dr, 

( H ; h ) ( t )  = B~(t )S ' (T , t )h .  

I t  is enough to show tha t  u*(t) = - B ~ ( t ) X ( t ) z *  (t) coincides with 

- H * C ~ C l X *  - H s F ' F x * ( T )  

which is equal to 

/( -B~( t )  S'(t ,  r )C[(r )Cl ( r )X*(r )  dr - B~(t)S ' (T,  t ) F ' F X * ( T ) .  

But differentiating 

T I "  

g(t) = X( t )x*  (t) - / s  S'( t ,  r)C~Cl(r)x*(r)  dr - S ' (T,  t )F 'Fx* (T )  

we obtain 
= -A ' ( t )g ,  g(T) = 0 

and hence g = 0. This yields (2.70) and hence (2.68). I t  remains to show the 
last equality in (2.69). From (2.64) 

z'oX(s)zo <_ J(u,  if); s, xo) < sup J(u,  w; s, Zo) 
113 

for any u and hence 

But 

x'oX(s)xo <_ in f sup  J(u ,w;  s,xo). 
t t  llJ 

max J ( fi, w; s, xo ) = x'oX ( s )xo 
11J 

and x'oX(s)xo = J(fi ,  w*; s, x0) = inf sup J(u,  w; s, xo). 
u l o  
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L e m m a  2.13 There exists a unique nonnegative solution of the Riccati equa- 
tion (2.62) and (2. 63) on [to, T]. 

Proof. Since the Riccati equation is locally Lipschitz, there exists a local 
solution. But by Lemma 2.11 and (2.69) the solution is a priori bounded. 
Hence there exists a global solution on [to, T]. ! 

Summing up we have the following. 

T h e o r e m  2.7 Assume C1 and the controller (2.52) is 7-suboptimal for the 
system G. Then there exists a unique nonnegative solution X on Is, T] to the 
Riccati equation (2. 62) and (2. 63). Moreover 

maxmin  J(u,w; s,xo) = 

Consider the backward system 

5 = 
# = 

51 = 

Y(~, w*; s, x0) 

y(a, ~; s, x0) 
J(u*, w*; s, x0) 

xtoX(s)xo = inf sup J(u, w; s, xo). 

A'(t)S: + C'l(t)Cv + C~(t)fi, 

B~(t)~ + D'21(t)fi, 

B~(t)~ + Di2(t)@, 

H' fc( to ) 

(2.71) 

which is the adjoint of the system G with x(to) = Hh, h E R nl. For the 
system (2.71), we introduce the controller u = Ky of the form 

2 

- x  = A'(t)~ + C'(t)~), (2.72) 

{t = # ' ( t ) ~  + b ' ( t ) ~  

which satisfies 

[Izll 2 + 1 5 1 1 2 < d  2[1@1] 2 for s o m e 0 < d < %  

Now we introduce the functional 

J(fi, @; T, ~(T)) = [I ~(t) ]2 _~/2 I@(t ) 121dr+ ] H'~(s)  [2 

subject to (2.71) and we consider the following Riccati equation 

= A(t )Y + YA'( t)  + Bl(t)S~ (t) 

§ ~2 C~C, - C~C2)(t)Y, 

Y(to) = HtH. 

Then as in Lemmas 2.11-2.13 we have the following result. 

(2.73) 

(2.74) 
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C o r o l l a r y  2.9 Assume C2 and that a "y-suboptimal controller (2. 72) exists 
for the system (2.71). Then there exists a nonnegative solution Y of (2. 73) 
and (2. 74) and 

max m'_ln J(~, ~; T, ~(T) ) = 2' ( T ) Y  (T)~(T). 

2.2.2 T h e  Inf in i te  H o r i z o n  P r o b l e m  

Consider the system G: 

= A(t )x  + B l ( t )w  + B2(t)u, x(to) = zo, 

z = Cl( t )x  + D12(t)u, 

y = c2(t )x  + D21(t)to 

with the assumption C1. We further assume tha t  (A, B2, e l )  is stabilizable 
and detectable. As in the finite horizon problem we assume the existence of 
a controller K of the form (2.52) with property 

[[ z [[2_< d [I w [[2 for s o m e 0 < d < ~ /  (2.75) 

and study its consequence to the quadratic game defined by the functional 

s J(u, w; to, Xo) = [f z(t) [2 -~2  I w(t)12]dr. (2.76) 

Such a controller is called IO=stabilizing with disturbance attenuation ? (IO- 
n-suboptimal) and is called ~/-suboptimal if it is internally stabilizing. We 
also consider the finite horizon problem associated with 

s; JT(u, to; to, x0) = [I z(t) 12 _~,2 I to(t) 121dr. (2.77) 

Note that  if a controller K of the form (2.52) is IOo~-suboptimal, it is also 
7-suboptimal on any [to,T]. Since (A, B2) is stabilizable, ~1~ in (2.56) is 
uniformly bounded. Then by Lemmas 2.11, 2.12 and Theorem 2.7 we have 
the following. 

L e m m a  2.14 There exists a unique nonnegative solution X T of the Riccati 
equation (2.62) with XT(T)  = 0 on any interval [to, TI such that 

] XT( t )  ]-< c independent o.?to < t < T < oo. 

L e m m a  2.15 For each t > to, XT( t )  is monotone increasing in T. 

Proof. Let L _< T and we shall show XL(to) <_ XT(to). This follows from 

XtoXL(tO)ZO -~ JL(~L, li)L; to, •0) ~-- JL(~T, toL; tO, XO) 

<_ JT(•T, ~VT; to, ZO) 

~_ JT(UT, ~)T; to, XO) ' = XoXT(tO)X 0 
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where ~T is the restriction of fiT on [to, L] and ~)T is the extension of WL to 
[to, T] by zero. The proof of a general t is similar. ! 

By Lemmas 2.14 and 2.15 XT( t )  is bounded and monotone increasing 
in T. Hence it converges to some X > 0 which is a solution of the Riccati 
equation 

- X  = A ' ( t ) X  + A ( t ) X  + C~(t)Cl( t )  + X(~-~2BIB ~ - S2B~) ( t )X .  (2.78) 

r 1 B DI B 2 B ~ ) X  is exponentially stable. Let x~ Now we show tha t  A + ~ ~ 1 ~'1 - 
be the solution of 

= [A + ( - ~ B I B ~  - B2B~)XT]( t )x ,  x(to) = Xo. (2.79) 

Then for any fixed interval [to, L] the solution x~ converges to the solution 
of 

= [A + (-~2B1B'I - B2B~.)X](t)~, ff:(to) = xo. 

We can rewrite (2.79) as 

5c = (A - JCl )X  + JClx~, + B1w?r + B2u~, x(to) = xo (2.80) 

where J E 1R n• is chosen such tha t  A - JC1 is exponentially stable. The 
solution of (2.80) coincides with x~( t )  on [to, T]. We extend it to [to, oo) by 
the homogenous equation of (2.80). By Lemma 2.12 II C l x ~  112, I] W?r 112, 
II u~ 112< a I z0 { for some a > 0 and ClX~r , w~ and u~, converge weakly to 
h, ~ and ~ in L2(t0, oo; E), E = R w, R ml and R m2 respectively, along a 
subsequence T --* oo. Let ~ be the solution of 

Jc = (A - JC1)x  + J h  + B I ~  + B2fi, x(to) = Xo. 

Since the restriction of ClX~ etc on any interval [to, L] converge weakly to 
those of h, etc, we can identify ~ and ~ on [to, L]. Since A - JCI  is expo- 
nentially stable, ~ E L2(t0, oo; Rn).  Hence ~ E L2(to, c~; R'*) for each x0 and 
II x 112<- c I x0 I for some c > 0 independent of x0. Hence by Propostion 2.2 

r  A + ~-~ 1~1 - B2B~)X  is exponentially stable. 

Define feedback laws 

~( . )  = 1 S l ( . ) X ( . ) x ( . ) ,  f i ( . ) = - B ~ ( . ) X ( . ) x ( . ) .  (2.81) 

Let x* be the solution of (2.50) corresponding to (2.81) and let 

w*(t)  = ~2B~( t )X( t ) x* ( t ) ,  u * ( t ) =  - B ~ ( t ) X ( t ) x * ( t ) .  (2.82) 

First we show tha t  the feedback law fi is stabilizing. 
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L e m m a  2.16 Suppose that X is a nonnegative solution of the Riccati equa- 
l I tion (2.78) such that A + ( - ~ B I B  1 - B2B~)X is exponentially stable. Then 

A - B2B~X is exponentially stable. 

1 B B ~ B2B~)X is exponentially stable, Proof. Since A + t~-~ 1 I - 

is detectable. Rewrite now the Riccati equation (2.78) in the form 

- B2 2 X) X + X ( A -  BeB~X)  + B 1 X  ~ B 1 X  . 
k BiX J BiX J 

- B  l Hence by Proposition 2.5 A 2B2X is exponentially stable. Note tha t  the 
detectabili ty of (C1, A) is not necessary. | 

Let  S F  be the set of stabilizing feedback laws. As Lemma 2.12 we shall 
show 

.. sup inf J(u ,w; to ,  xo) = J(fi, w ,to, xo) 
w u E S F  

= J ( f i ,~ ; t o ,  xo) 

= J(u*,w*;to,  xo) 

= x'oX(to)xo 
= inf sup J(u,  w; to, xo). (2.83) 

u E S F  w 

Note tha t  

inf sup J(u,  w; to, xo) -< sup J(fi, w; to, xo) : J(u,  w , to, xo) z~oX(to)zo. 
u E S F  w w 

It suffices to show 

x~oX(to)xo < J(ft, w*; to, xo) : inf J(u,  w*; to, Xo). (2.84) 
- -  u E S F  

In fact this implies 

x~oX(to)xo = inf J(u,w*;to,  xo) _< sup inf J(u ,w; to ,  xo) 
u E S F  w u E S F  

and (2.83) follows. To show (2.84), we proceed as in the proof of Lemma 2.12. 
Consider 

#, = A x  + Blw* + B2u 

= (A - B2B~X)x  + BlW* + B2v 
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where v = u + B~Xx.  T h e n  e = x - x* satisfies 

= (A - B2B~X)e + B2v 

and J(u, w*; to, x0) can be rewri t ten  as 
- -  * 

g(v ,  w ;to, x0) : II c l x  II~ + II v - B ~ X x  112 _~2 II w* II 2 
= ][ C l ( H v  + x*) ][2 + 1] v -  B ~ X ( H v  + x*) 1[2 

- 7  ~ li w* Ill 

where 

(Hv)( t )  = Sx ( t , r )B2( r ) v ( r )  dr 

and S x ( t , r )  is the  s ta te  t rans i t ion  ma t r ix  of  A - B2B'2X. T h e  unique mini- 
m u m  of J exists and is given by the  solut ion of  

H*C~C1Hv + H*C~ClX* 
+(I  - B ~ X H  - H*XB2 + H * X B 2 B ~ H ) v  - (I - H*XB~)B~Xx*  = O. 

We shall show t h a t  v = 0 is the  solution. This  follows if 

S~Xx* = H* (C~C, +" z"S2 S '~''2.,~)x" 

which is t rue  if 

g(t) = Xx*( t )  - S 'x( t ,r ) (CiC1 + XB2B~X)( r )x* ( r )  dr 

is identically zero. Differentiat ing g we ob ta in  

= - ( A  - B2B;X) 'g ,  g(cr = O. 

Hence g(t) = 0 and v = 0 minimizes  J which implies ft = -Br2Xx  mini- 
mizes J(u, w*; to, x0). Thus  the  value of  the  game  J(u,  w; to, xo) over S F  x 
L2(to, oo; R ml ) exists. 

Summing  up we have the  following. 

T h e o r e m  2.8  Assume C 1  and (A, B2, C1) is stabilizable and detectable. 
Suppose an IO-stabilizing controller with property (2. 75) exists. Then there 
exists a bounded nonnegative stabilizing solution to the Riccati equation (2. 78). 
Moreover • 6 S F  and 

* ,  sup inf J(u ,w; to ,  xo) = J(• ,w , to,xo) 
w u E S F  

= J(~2, ~ ;  to, xo) 

= J(u*,w*;to,  xo) 

= x'oX(to)xo = inf supJ(u ,w; to ,  xo). 
u E S F  w 

If  G is O-periodic, then X is also O-periodic. 
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C o r o l l a r y  2.10 Suppose that the conditions of Theorem 2.8 hold. Then there 
exists a stabilizing state feedback law such that [[ G [[< y if  and only if 
there exists a bounded nonnegative stabilizing solution to the Riccati equation 
(2.78). 

Proof. fi = - B ~ X x  is such a law. 

C o r o l l a r y  2.11 Consider the system (2. 71) and assume C2 and (A, B1, C2) 
is stabilizable and detectable. Suppose an IO-stabilizing controller of the form 
(2. 72) with property 

I] ~" II 2 -~- [ Zl [2~ d 2 H ~ H~ for  some 0 < d < "y 

exists. Then there exists a bounded nonnegative stabilizing solution to the 
Riccati equation (2. 73) and (2. 74). Moreover, i f  (2. 71) is O-periodic, the 
limn-.oo Y ( t + nO ) exists (denoted by Yo ( t ) ) and Yo is a O-periodic nonnegative 
stabilizng solution of (2. 73). 

2 . 3  Hor  C o n t r o l  

In this section we consider Ho~-control problems with initial uncertainty as 
in Khargonekar et al. [49], but  we assume tha t  initial conditions lie in some 
subspace. We shall introduce a general framework for H~-cont ro l  and de- 
fine our main problems. Then we consider two special problems called the 
full information- and the disturbance feedforward problems, which lead us 
eventually to the solutions of our main problems. 

2.3.1 M a i n  R e s u l t s  

Consider the system G: 

Z 

Y 

Zl 

 (to) 

= A ( t ) x + B l ( t ) w +  B2(t)u, 

= C l ( t ) x  + D12(t)u, (2.85) 

= C2(t)x + D21(t)w, 

= F x ( T ) ,  (2.86) 

= H h  (2.87) 

where x E R n is the state, w E R TM is the disturbance, u E R ".2 is the 
control input, (Zl, z) E R q • R pl is the controlled output ,  y E R p2 is the 
measurement, h E R m, F E R q• H E R ~• and A, B1, etc are bounded 
and piecewise continuous matrices of appropriate dimensions. For the system 
G we assume 

C l :  D'12(t)[Cl(t ) D 1 2 ( t ) ] = [ 0  I ]  f o r a n y t ,  

C 2 :  D21(t)[B~(t)  D ~ l ( t ) ] = [ 0  I ]  f o r a n y t .  
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Consider the controller u = K y  of the form 

J: = A(t)Yc + [3(t)y, (2.88) 

u = d ( t ) ~  + b ( t ) u ,  

~(t0) = 0. (2.89) 

where A,/3, C a n d / )  are bounded piecewise continuous matrices of appropri- 
ate dimensions. Let 7 > 0 be given. Then the Ho~-control problem on [to, T] 
with initial uncertainty is to find necessary and sufficient conditions for the 
existence of a ~/-suboptimal controller, i.e., a controller such that  

II Z 112 2 -[- I ZI 12~-~ d2([ h 12 + II w II 2) for some 0 < d < 7- 

Without  loss of generality we assume that  H and F have full column rank 
and full row rank, respectively. 

To give the solution of this problem, we introduce the following Riccati 
equations 

- x  

and 

A ' ( t )X  + X A ( t )  + C~(t)Cl(t) 
1 

+ X ( - ~ B 1 B ~  - B2B~)(t)X,  (2.90) 

X ( T )  = F'F,  (2.91) 

H ' X ( t o ) H  < d2I for some 0 < d < 7 (2.92) 

= A ( t ) Y  + YA ' ( t )  + BI(t)B~ (t) 

+y ( -~2C~C1-  ' C2C2)(t)Y , (2.93) 

(2.94) Y(to) = HH' .  

We also need the following Riccati equation depending on X: 

2 = (m + - ~ B 1 B ~ X ) ( t ) Z  + Z ( A  + - ~ B 1 B ~ X ) ' ( t )  + Bl( t)B~(t)  

+ Z ( - ~  X B2B~X - C~C2)(t)Z, (2.95) 
$ 

Z(to) = g ( I -  ~ H ' X ( t o ) H ) - I H  '. (2.96) 

L e m m a  2.17 (a) Suppose X ,  Y and Z are solutions of (2.90), (2.93) and 
(2.95), respectively. I f  Z(s) - Y(s)  - ~ Z ( s ) X ( s ) Y ( s )  = 0 for some s > to, 
then Z(t) - Y( t )  - ~ Z ( t ) X ( t ) Y ( t )  = 0 .for all t > s. 
(b) If  (2.92), (e.94) and (2.96) hold, then 

Z(to) - Y(to) - 1 Z ( t o ) X ( t o ) Y ( t o )  = O. .y- 
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Proof. (a) Let Q = g - Y - ~ Z X Y ,  then by direct calculation 

Q :  [ A + I  B1B~X+Z(  I~xB2B~X-C~C2)IQ+Q[A+ y ( 1 c ~ c 1 - c ~ c 2 ) ]  '. 
7 7 ~ 7 ~ 

Hence 
Q(t) = Sz(t ,  s)Q(s)S~(t ,  s) 

where Sz  and Sv are state transition matrices of 

A+ ~B,B~x + z(~xB2B~x-c~c~) 
and A + Y(~I-~c~C1 - 0~02), respectively. Hence if Q(s)=O, then Q(t) = 0 
for all t _> to. 
(b) By (2.92), Z(to) is well-defined. Moreover 

Q(to) = Z ( t o ) ( I -  + X Y ) ( t o )  - Y(to) 

= ~ ( I -  ~ H ' X ( t o ) m - ' ~ ' ( ~ -  ~X( to)H~') -  nil '  

= g g ' ( I -  - ~ X ( t o ) g g ' ) - i ( I  - - ~ X ( t o ) n a  t) - HH '  

= O. I 

L e m m a  2.18 Let X ,  Y and Z be matrices of the same order with property 

Z -  Y -  ~ s Z X Y  = O. 

Then 
(~) I + 5 x z ,  i -  $ x Y  are nons~ng,,lar and 

z =  r ( I -  ~ x r ) - ~ ,  Y = z(x + - ~ x z ) - ' .  

(b) A is an eigenvalue of X Z  i f  and only i f #  = ~ is an eigenvalue of X Y .  
(c) If  X and Z are nonne9ative , then every eigenvalue of X Z  is nonnegative 
and 

p (XY)  = max 72A 7 ~ 
aea(xz) .~2 +------~ < 

where A(A) denotes the set of eigenvalues of A and p(.) denotes the spectral 
radius of a matrix. 

Proof. (a) Since 
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I + ~ X Z  and I -  5 X Y  and hence I + -~ Z X  and I -  ~ Y X  are nonsingular 
and 

Y : Z( I  + --~XZ) -1 : (I + + Z X ) - I z ,  

Z = Y ( I -  1-~Xy)-I ~-(I - 1 Y X ) - I Y .  
7 = 

1 - 1  (b) Since X Y  = X Z ( I  + 7zXZ)  , the assertion readily follows. 
(c) The first part is well-known and by (b) X Y  has only nonnegative eigen- 
values. Thus the second part  also follows from (b). | 

L e m m a  2.19 (a) Let X ,  Y and Z be the solutions of (2.90), (2.93) and 
(2.95), respectively. Suppose I -  5 X Y  is nonsingular. I f  x satisfies 

- ~  = [A + Y(~2C~C1 - C~C2)]'(t)x (2.97) 

then ~ = (I - ~J~XY)x satisfies 

- x :  [A + - ~ B x B ~ X  + Z(--~XB2B~X-G~C~)] ' ( t )~.  (2.98) 

(b) Let X ,  Y and Z be bounded on [to, 0r and suppose I - + X Y  is non- 
singular and its inverse is uniformly bounded in t. Then Y is a stabilizing 
solution of (2. 93) if and only if Z is a stabilizing solution of (2. 95). 

Proof. Differentiating ~ we obtain 

: ~'~2 2 ) ' l J  -i: [A + BaBIX  + Y(~-~XB2 2X - "~'C ' V " x  

1 (A + ~ B 1 B ~ X ) ~ X Y x  

+ ( ~ X B 2 B ~ . X - C ~ C 2 ) Y ( I - ~ X y ) - I ( I - ~ X Y ) x  

: I A  + + - 

(b) If ( I -  ~ X Y )  -1 is uniformly bounded, then (2.97) and (2.98) are equiv- 
alent. | 

The following are our main results. 
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The or e m 2.9 Assume C1 and C2.  
(a) There exists a "y-suboptimal controller u = K y  on [to, T] i f  and only if  
the following hold: 
(i) There exists a nonnegative solution X to (2.90)-(2.92). 
(ii) There exists a nonnegative solution Z to (2. 95) and (2. 96). 
(b) In this case the set of all ~f-suboptimal controllers is given by 

;, 1 i ^ 
x = [A+ ( B1BI - B 2 B ~ ) X -  ZC~C2](t)x 

r 

+Z(t)C~(t)y  + [I + -~ZX](t)B2(t) fJ ,  

u = - B ~ ( t ) X ( t ) 2  +f~, (2.99) 

= -c2(t)  + y, 

= [ I Q [ l < %  

 (to) = o. 

T h e o r e m  2.10 Assume C1 and C2.  
(a) There exists a 7-suboptimal controller u = K y  on [to, T] i f  and only i f  
the following hold: 
(i) There exists a nonnegative solution X to (2.90)-(2.92). 
(ii) There exists a nonnegative solution Y to (2.93) and (2.94). 
(iii) p( X ( t ) Y ( t ) ) < d 2 for any t E [to, 3"] and for some 0 < d < 7. 
(b) In this case the set of all 7-suboptimal controllers is given by (2. 99) with 
Z replaced by (I  - - ~ Y X ) - I Y .  

R e m a r k  2.3 The controller (2.99) with Q = 0 is called central. 

Next we consider the system G: 

= A ( t ) x + B l ( t ) w + B 2 ( t ) u ,  

z = C l ( t ) x+D12( t )u ,  

y = C~( t )x+D21( t )w,  

x(to) = Hh  

on [to, c~) and the controller u ~- K y  of the form (2.88) and (2.89). Here we 
assume C1,  C2 and 

C3  : (A, B1, C1) is stabili~.able and detectable, 

C4  : (A, B2, C2) is stabilizable and detectable. 

Then the Hc~-control problem is to find necessary and sufficient conditions 
for the existence of a 7-suboptimal controller, i.e., an internally stabilizing 
controller such that  

II z 112< 42([ h ]2 + ][ w 1122) for some 0 < d < 7. 

The solution of this problem is given by the following. 
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T h e o r e m  2.11 Assume C1-C4.  
(a) There exists a "y-suboptimal controller u = K y  on [to, oc) if and only if 
the following hold: 
(i) There exists a bounded nonnegative stabilizing solution X to (2.90) and 
(2.92). 
(ii) There exists a bounded nonnegative stabilizing solution Z to (2.95) and 
(2.96). 
(b) In this case the set of all "y-suboptimal controllers is given by (2. 99) with 
Q internally stable. 

T h e o r e m  2.12 Assume C1-O4. 
(a) There exists a "y-suboptimal controller u = K y  on [to, oc) if  and only i f  
the following hold: 
(i) There exists a bounded nonnegative stabilizing solution X to (2.90) and 
(2.92). 
(ii) There exists a bounded nonnegative stabilizing solution Y to (2. 93) and 

(iii) p ( X ( t ) Y ( t ) )  <_ d 2 for any t E [to, oo) and for some 0 < d < % 
(b) In this case the set of all "y-suboptimal controllers is given by (2. 99) with 
Z replaced by (I  - J ~ Y X ) - I Y  and Q internally stable. 

Now we assume that  the system (R is 0-periodic and the conditions C1-C4 
hold. Then by Theorem 2.8 and Corollary 2.11 the solution X in Theorems 
2.11 and 2.12 is 0-periodic and there exist 0-periodic nonnegative stabilizing 
solutions }I0 and Z0 such that  

lira Y ( t  + nO) =- Yo(t), lim Z( t  + nO) = Zo(t). 
1 2 " 4 0 0  TI -"P O 0  

If we further assume h = 0, then we have the following corollaries. 

C o r o l l a r y  2.12 (a) There exists a "y-suboptimal controller i f  and only i f  the 
following hold: 
(i) There exists a O-periodic nonnegative stabilizing solution to (2.90) and 
(2.92). 
(ii) There exists a O-periodic nonne9ative stabilizin9 solution to (2. 95). 
(b) In this case the controllers is 9iven by (2.99) with Q internally stable 
is "y-suboptimal. I f  Q is O-periodic, the controller (2.99) is O-periodic and 
"y-suboptimal. 

C o r o l l a r y  2.13 (a) There exists a "y-suboptimal controller if and only i f  the 
following hold: 
(i) There exists a O-periodic nonnegative stabilizing solution to (2.90) and 
(2.92). 
(ii) There exists a O-periodic nonnegative stabilizing solution to (2. 93). 
(iii) p ( X ( t ) Y ( t ) )  < 42 for any t E [to, to + 0) and for some 0 < d < % 
(b) In this case the controllers given by (2.99) with Z = (I - 7 - ~ Y X ) - I Y  
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and internally stable Q are 7-suboptimal. I] ]urther Q is O-periodic, they are 
O-periodic. 

Let  the  sys tem G be t ime- invar ian t  and  assume the  condi t ions  C 1 - C 4  
hold. T h e n  we need the  a lgebraic  Riccat i  equat ions  

' ~ ' - B 2 B ; ) X  = 0, (2.100) A ' X  + X A  + CICI + X (  B1B 1 

A Y  + Y A '  + B,B~ + Y ( ~ C ~ C ,  - C~C2)Y = 0, (2.101) 

(A + ~,2BIBVlX)Z § Z(A + ~2.1~IBPIX) ! + B1B" l 

+ Z ( ~ X B 2 B ~ X  - C~C2)Z = O. (2.102) 

We define the  stabi l izing solut ions of  (2.100), (2.101) and  (2.102) as in Deft- 
ni t ion 2.12. W i t h o u t  loss of genera l i ty  we can set  to = 0. T h e n  we have  the  
following corollaries. 

C o r o l l a r y  2 .14  There exists a "7-suboptimal controller if and only if the fol- 
lowing hold: 
(i) There exists a nonnegative stabilizing solution Xor of (2.100) with H ' X H  
< d2I for some 0 < d < ~/. 
(ii) There exists a nonnegative stabilizing solution of (2.95) with Z(O) = 
H ( I -  1-~H'XH)-IH' .  
Moreover, there exists a nonnegative stabilizing solution Z ~  of (2.102) and 
l imt~oo Z(t )  = Zoo. 

C o r o l l a r y  2 .15  There exists a "7-suboptimal controller if and only if the fol- 
lowing hold: 
(i) There exists a nonnegative stabilizing solution Xoo of the algebraic Riccati 
equation of (2.100) with H ' X H  <_ d2I for some 0 < d < 7. 
(ii) There exists a nonnegative stabilizing solution of (2.93) and (2.94). 
Moreover, there exists a nonnegative stabilizing solution Yoo of (2.101) and 
l i m t ~  Y ( t ) = Yoo . 
(iii) p ( X ~ Y ( t )  ) <_ d 2 for any t c [to, co) and ]or some 0 < d < "7. 

If  we fur ther  a s sume  t h a t  the re  is no initial uncer ta in ty ,  i.e., h = 0, we ob ta in  
the  following. 

C o r o l l a r y  2 .16  There exists a ~/-suboptimal controller if and only if the fol- 
lowing hold: 
(i) There exists a nonnegative stabilizing solution Xoo of (2.100). 
(ii) There exists a nonnegative stabilizing solution Zoo of (2.102). 
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Coro l l a ry  2.17 There exists a "r-suboptimal controller if and only if the fol- 
lowing hold: 
(i) There exists a nonnegative stabilizing solution Xoo of (2.100). 
(ii) There exists a nonnegative stabilizing solution Yoo of (2.101). 
(iii) p(XooY~) ~_ d 2 for some 0 < d < 7. 

E x a m p l e  2.5 Consider the Ho~-control problem for the following system 

[:~1 0 Xl 
:~2] = [ - - ( l + 0 . 3 c o s ~ t )  10] Ix2] + [ ~ ] W x +  [O1]u, 

v ( t )  = x (t) + 

This system comes from the Mathieu's equation and is unstable. Obviously 
this system satisfies the assumptions C1-C4. We consider the two cases 

(a) H = O ,  ( b ) H =  [10]. 

In each case there exist a periodic nonnegative stabilizing solution X = 

[X1x12 X12] ~ (2'90) with peri~ 3 and a n~ s ~  

tion Y = [ 111 Y12] I"12 Y2 J of (2.93) and (2.94) which satisfy p(X(t)Y(t))  < d 2, 
L 

0 < d < "r for all 7 >- 2.01. Moreover both Y(t)'s converge to the same 
3-periodic solution solution. Figures 2.9, 2.10 and 2.11 show X(t),  Y(t)  and 
the eigenvalues of X(t )Y( t ) ,  respectively in the case (a). Figure 2.12 shows 
the simulation results of the closed-loop system with the central controllers 
where ~ = 2.01, the initial conditions are Xl(0) = 1, x2(0) = 0 and the dis- 
turbances are w1(t) = 10e -l~ sin 10t and W2(t) = 0. The controller of the 
case (b) gives a better response. 

2 .3 .2  

Consider the system GFI: 

Z = 

Full I n f o r m a t i o n  P r o b l e m  

with 

y = 

A(t)x + Bl(t)w + B2(t)u, 
Cl(t)x + D12(t)u, 

[:] 

x(to) -- Hh, 

zx = Fx(T)  

(2.103) 
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Figure 2.9: The periodic nonnegative stabilizing solution X(t) 
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Figure 2.10: The bounded nonnegative stabilizing solution Y(t) 
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where we have replaced the observation in (2.85) by y = Ix ~, w']'. We assume 
C1, i.e, 

D~2(t ) [e l ( t )  Dx2(t)] = [0 I]  for any t. 

The Ha-control  problem for the system GFI  is called the full information 
(FI) problem and the solution to this problem is needed to solve the H a -  
problem for the system G. Since the state x is now available, we may allow 
for nonzero initial condition for the controller 

~(t0) = / : / h  for some/2/. 

In this case the controller (2.88) and (2.104) is written as u = K 

(2.104) 

( ~ ) .  First 

( ~ )  define we consider the finite horizon problem. For each controller u -- K 

the input-output operator G by 

(z:) 
LetXbethesolutionof(2.90)-(2.92).DefinethesetofcontrollersQ(h) E 

s  TM • L2(to. T; Rm') ;  R q • L2(t0, T; R'n~)) of the form (2.88) and (2.104): 

Q~ = {Q :,, Q ( h ) ,,~ +h,H,X(to)Hh < d2(, h ,2 + ,, r ,,2 ) (2.105) 

for some 0 < d < i} .  

We can now generalize Theorem 3.1 of Khargonekar et al. [49]. 

T h e o r e m  2.13 Assume C1. 
(a) There exists a controller u = K ( : ) of the form (2.88) and (2.104) such 

that II G [1< "7 if and only if there exists a nonnegative solution o] (2.90)- 
(2,.92). 
(b) In this ease the set of all •suboptimal controllers is 9iven by 

Proof. S u p p o s e u = K ( : )  is i-suboptimal.  Then setting h -- 0 and apply- 

ing Theorem 2.7 we obtain an X > 0 satisfying (2.90) and (2.91). Moreover 
for the system GEl the following holds: 

I z 1 [2+]]z] ]2  = 72 Hwl] 2+h'g'X(to)Hh 

+ II u + B h X x  - r  II w - II . 
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Set t ing u = K ( ~ )  

d2(I h 12 + II w 1122) 

Hence 

which yields (2.92). 

and w = ~I-~B[Xx we obta in  

> Iz112 + II z IIN 
> ~2 II w 1122 +h'H'X(to)Hh. 

d2 I h Is> h 'H 'X ( to )Hh  

Sufficiency of  (a) and the charac ter iza t ion  in (b) follow from Lemmas  2.20 
and 2.21 below. 

and 

To complete  the  proof  we consider 

5c = (A - B2B~X)z  + BlW + B2v, 

z = (C1 - D12B~X)x + D12v, 

r - ~ B ' I X X  + w, 
" 1  

Zl = Fx (T ) ,  

x(to) = Hh 

(2.107) 

1 
:~ = (A + -~B~B'~X)~ + B l r  q- B2u, 

v = B~X~ + u ,  (2.108) 

Y = B~X~ + r ' 

~2(to) = g h .  

L e m m a  2 .20  Let X be the solution of (2.90)-(2.92). 
(a) For (2.107) the following holds: 

I Zl [ 2 + t[ z [[22-- ~/2 [I w [I 2 +h 'H 'X ( to )Hh+ [I v [[22 - ' r  2 [[ r [I 2 . (2.109) 

with controller u = K ( h )  is equivalent to the inter- (b) The system G F l 

Proof. (a) follows from direct  calculation.  To show (b) we set e = x -  ~. T h e n  

= [A + (1--~BIB~ - B2B~)X]e, e(to) = O. 
r 
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Moreover (2.107) and (2.108) wi th  u = Ky  is wr i t t en  as 

Z 

y = 

U = 

and hence (b) follows. 

Now introduce a feedback 

Ax + Bzw + B2u - B2B~Xe, 
D ' Czx + D12u-  12B2Xe, 

C2x + D2zw - C2e, 
K y  

v = Q (  h)r (2.110) 

to (2.107), where  Q is of  the  form (2.88) and (2.104). 

L e m m a  2.21 Consider the closed-loop system (2.107) and (2.110). Let 

be the input-output operator. Then ][ G II < 7 if  and only if Q �9 Q~. 

Proof. For each ro �9 L2(to, T ; R  TM) there  exists a w �9 L2(to, T ; R  TM) such 
tha t  the internal signal r in (2.107) and (2.110) coincides with r0 and 

cz([ h [2 + [[ ro l[2 2) _<[ h 12 + [] w ll2< c2(I h [2 + ][ ro [[~) (2.111) 

for some ca > O, i = 1, 2. It suffices to take  wo given by  

gc = ( A -  B2B~X)x + Bz(ro + ~ B ~ X x )  + B2vo, 

wo = ro + ~ B ~ X x ,  
# 

z(to) = Hh 

where v0 : Qro. Now suppose  [I G [[< ~ for (2.107) and (2.110). Then  for 
some 0 < d < 

d2(I h 12 + tl w II ) 

by (2.109). Hence 

< 
< 

> Izll +llzll  

= .,/2 ii w 112 +h'H'X(to)Hh+ II Q (h~]12 _.72 II 
\ r ]  

II Q ( h ) ll2 +h'H'X(to)Hh 

~/2(] h ] 2 + I] r ]12 ) - (.y2 _ d2)(] h 12 + I] w 112 ) 

[~/2 _ cz(72 _ d2)](] h 12 + ][ r II 2) by (2.111) 
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which implies Q E Q~. 
Conversely, let Q c Q~. Then 

< 3'2([ h i s + ii ~ [[~) - (7 2 - d2)(i h 12 + IIr  I1~) 
_ 3 '2  _ d 2 12 

<_ (.y2 )(I h + II ~ I1,~)- 
C2 

Hence [IG Ii < 7- 

R e m a r k  2.4 If II G II < 3', then 

< 3"2(I h i s - ~ h ' H ' X ( t o ) H h +  ii r i[ 2) 
g 

_(3"2 _ d2)(] h 12 + li w 1122) 
--- 3,2([ ]~ ] 2 + [[ r U'~) - (3 '~ - d2)(] h [2 + H w [[.~) 

1 

where h= ( I -  vl-.zH'X(to)H) ~ h. Using 

! h 12 + !! w D~<_ c~(J h j~ + f/r H~) 

we can show Q E Q~ where 

:,, Q (hr) ~<- ~/I ~ I ~ + !s~ !!,~) ~o~ ~o~o0 < ~  .[Q "7}- 

To conclude the proof of Theorem 2.13, we note that  u given by ( 2 . 1 0 6 )  
/ - - x  

is~/-suboptimal by Lemma 2.21. Now let u = K ( ~ ) b e  an arbitrary 3'- 

suboptimal controller. Let Q be the input-output  operator of the closed-loop 

system(2.108) with u = K ( ~ ) .  Then by Lemma 2.21, Q E Q~. Hence 

u = K ( y  h )  is equivalent to 

u _ -  

- B ~ X z + Q  1 , - ~ B 1 X x  + w ' 

which implies (b) of Theorem 2.13. | 

Next we consider the system GF1 on the infinite horizon [to, cx~). In this 
case we assume 

C5 : (A, B2, C1) is stabilizable and detectable. 
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For each IO-stabilizing controller (z E L 2 for each h and w E L 2) we can 
define the input-output  operator ,as follows: 

z = G ( h )  " w  

The notion of IO-stabilzing controller is needed when we consider the filtering 
problem, for which internal stability is not in general expected. 

T h e o r e m  2.14 Assume C1 and C5. 

(a) There exists an IO-stabilizing controUer u = K ( : ) on [to, OC) such that 

[] G ][ < ~, if and only if there exists a bounded nonnegative stabilizing solution 
X of (2.90) and (2.92). 
(b) In this case the set of all such contzvllers is given by 

where Q~ c L:(R nl xL~(t0, oc; Rm') ;  L2(to, oc; Rm~)) is defined as in (2.105). 
In particular the set of all internally stabilizing controllers with ][ G ][< 7 is 
given by (2.112) with internally stable Q. 

P r o o f  o f  T h e o r e m  2.14. (i) N e c e s s i t y  o f  (a):  Suppose there exists an 

IO-stabilizing controller u = K ( ~ ) s u c h  that  ]] G []< 7. Consider the 

system G F /  with tt = 0. Then for each w E L2(to, oc; R m~) there exists a 
control u e L2(t0, oo; R m2) such tha t  [[ z [[2< d [[ w [[2 for some 0 < d < % 
Then by Theorem 2.8 this assures, under the assumption C5, the existence 
of stabilizing solution of (2.90). To show (2.92) consider the restriction of 

u =  K ( ~ ) on [to, T]. Then we obtain thc solution XT of (2.90) satisfying 

(2.92) and X(T) = 0. Since XT(t) converges to X(t) on [to, oc) we conclude 
H'X(to)H < d2I. 

Sufficiency of (a) and the characterization of controllers will be shown 
below. Consider systems (2.107) and (2.108) on [to, oo). Note that  A - B 2 B ~ X  
is exponentially stable by Lemma 2.16 and hence we have as in Lemma 2.20 

]] z I]2= "72 ]] w I]5 +h'H'X(to)Hh+ ]] v I] 2 _,~2 II r II 2 . (2.113) 

The system GEl  with controller u = K ( h ~  is equivalent to the intercon- 
\ Y }  

nection of (2.107) and the feedback system (2.108) with u = K 

First we assume h = 0 and consider (2.107) with feedback 

V ~ Q T  

where Q is of the form (2.88) and (2.89). 

(2.114) 
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L e m m a  2.22 Consider the closed-loop system (2.107) and (2.114) and let 
Gw = z be the input-output  operator. Suppose Q is IO-stabilizing. Then 
(a) x, r, v are square integrable and 

II z I12, IE r II=, II v 112--- a II ~ 112 for  some a > O. 

(bA I f  II G II < % then the ~ap: w - ,  r is onto and Q is 10-stabZe. 
(c) II G II < ~ i f  a~d onZy i / Q  is iO-stabZe ~ t h  II Q II < ~. 
(d) If, further, Q is internally stabilizing then Q is internally stable. 

Proof. (a) Since z E L2(to, ec; Rvl) ,  C1  implies C l x  and v - B ~ X x  are L 2 
and 

II C l x  ll2, II v -  Bt2Xx l12< a ll w112 for s o m e a > 0 .  

Now we write (2.107) as 

~c = (A - J C 1 ) x  + J C l x  + B l w  + B2(v  - B ~ X x ) ,  

x( to )  = o 

where J is a piecewise continuous bounded matr ix  such tha t  A - JC1 is 
exponentially stable. Hence x is L 2 and H x 117_< a II w ]12 for some a > 0. 
The rest is an immediate  consequence of this. 
(b) We write (2.107) as 

( ; )  : (Pll P12 
P21 P 2 2 ) ( w )  " 

Then PIj are exponential ly stable. Moreover P2~ 1 is realized by 

= [A + ( - ~ B I B  i - B 2 B ~ ) X ] x  + Bar,  

1 B ~ X x + r  
w - ,72 

which is exponentially stable. For the closed-loop system r and v are the 
solutions of 

r : P 2 1 w + P 2 2 v ,  

V ~--- Qr. 

By (2.113) 

LL P22 LI<_ 1 and LL v II~< ~ LL r LI2- 

Now let ro E L2(to, oo; R m' )  be arb i t ra ry  and define 

(2.115) 

s = ( I  - P22Q)ro. 
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Then s is locally square integrable. Now let .s T be the t runcat ion of s at T 
so that  ST E L2(t0, co ;Rm' ) .  Now set WT = p ~ l s T  E L2(to, c c ; R  m~) and 
let rT be the internal signal of the closed-loop system corresponding to WT. 
Then rT = ST + P22QrT and by (2.115) 

which implies 

II r r  - ST 112=11 P22QrT 112_<11 rT 112, 

II r T  -- ,-r  IIL~(to,T;R")<I] r T  I I L 2 ( t o , T ; R m ,  ) . 

Since r T = ro on [to, T] we conclude 

[[ ro - -  sT IIL2(to,T;R~,)=I] P22Qro IIL~(to,T;R~,)-<]I r o  IIL2(to,T;R",)<II r o  112- 

Since T is arbitrary, P22Qro is L 2. Now set w0 = P ~ I ( I  - P22Q)ro. Then r0 
is the responce to the input w0 and the map: w --~ r is onto. Since ]1 Qr ]]2< 
7 II r {12, for any r,  Q is IO-stable. 
(c) Now let r be the response to w. Then from (b) we have 

Cl II r 112_<11 w 112< c2 Jl r 112 for some ci > 0, i = 1, 2. (2.116) 

Now assume Q is IO-stabilizing and II G II < 7. Then for some d < 7 

d2 II w 115---II z 115-- 7 2 II w 1122 + II v II~ - 7  2 II r 1122- 

Hence 

II v II N < 7 2 II r 1122 - ( 7  2 - d 2)  II w II 2 
< [7 2 - c , ( 7  2 - d2)] II r II 2, 

which implies II Q II < 7. 
The converse follows from (2.113) and (2.116) in a similar manner. 
(d) If Q is internally stabilizing, then by Proposition 2.6, Q is stabilizable 
and detectable. But Q is IO-stable by (b). This together with Proposition 
2.4 implies tha t  Q is exponentially stable. | 

L e m m a  2.23 Consider the closed-loop system (2.107) and (2.110). Let 

be the input-output operator. 
(a) Q is IO-stabilizing and ]1 G I1< 7 if and only if Q is IO-stable and 
Q ~ Q'r. 
(b) Q is internally stabilizing and II G H < 7 if  and only if Q is internally 
stable and Q E Q'r. 
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Proof. (a) Suppose Q is IO-stabilizing and II G ]l< 7. We write 

Q ( h ) r  =Qoh+Q~r .  

Setting h = 0, Q1 is IO-stabilizing. Hence by L e m m a  2.22, Q1 is IO-stable  
and In QI I]< % Recall t ha t  r and v are wri t ten  

r = P2oh + P21w + P'22v, 

v = Qoh+Q]r  (2.117) 

where Pro is exponential ly stable. Since v and Q~r are L 2, Qoh is also L 2 for 
any h. Hence Q0 is bounded and Q is IO-stable. Since ]1 G ]]< % for some 
d < ~/we have 

42(1 h I ~ + II w 1122) 

>]] Z 2" 
- -  \ r / 

Hence 

72(] h 12 + IIr li~) - (7 2 - d2)(I h 12 + II w I1~) 

>_ h'H'X(to)Hh+ ,, Q ( h ) ,, 2. 

Since I h 12 + II r 112< a(I h 12 + II w 1122) for some a > 0, we conclude t h a t  

(7),2 a d2)(I h + II r II 2) > h 'H'X( to)gh+ II Q ]l~. 

Thus Q c Q~. 
Conversely let Q bc IO-stable and Q E Q~. Then  for each (h, w) �9 R nx • 

L2(to, co; R TM ) there exists a unique (v, r)  �9 L 2 (to, co; R m2) x L 2 (to, co; R mx ) 
satisfying (2.117) such t h a t  

II r tl5, tl v 112< a(I h t 2 + II w 112). 

The  pair coincides with the signal r, v of the closed-loop system. Hence x 
and z are in L 2 and by vir tue of (2.113) 

IIz112 = .y2 I l w l l ~ + h ' H ' X ( t o ) H h +  lIQ r 

___ 7 2 II ~ 1122 - d ~ ( I  h I ~ + II ~ ]1~) - 7 2 II r 1122 for s o m e  0 < d < 7 

= "y2(I h 12 + II w 1122) - (7 2 - d2)(] h I s + ]l r II~)- (2.118) 

Now for each (h, r0) �9 R nl x L2(to, co; R ml) consider 

= [m + (1B1B~ - B2B~)X]x + Blro + S2v, 
7" 
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with 

z,  = F x ( T ) ,  

x ( t o )  = o. 

This  p rob lem needed la ter  to  solve the  general  Ho~-problem is called the  
d i s tu rbance  feedforward (DF)  problem.  As we see below it can be reduced to  
the  FI  problem.  In fact consider the  observer  

~: = A ~  + B I ( y  - C2~) + B 2 u ,  ~ ( t o )  = O. 

T h e n  e = x - ~ satisfies 

= (A - B1C2)e, e(to) ~- 0 

and hence ~ = x. Moreover  w is observable  since 

w = y - C 2 x = y - C 2 2 .  

Thus  we can use the  controllers  of the  FI  p rob l em wi th  h -- 0 : 

= - B ~ X x  + Q ( - 1 B ~ X x  + w), [I Q l[< U 

7" 

1 B ~ X x  + ro, (2.119) w0 - 72 

x(to) = Hh, 

v =  Q ( h ) . r o  

Then  Wo E LZ(to, c ~ ; R  m ' )  and 

[h  [2 + [I w0 [[2_< 1([ h [2 + [[ ro []22) for some a > O. 

Since (r, w) of  the  closed-loop sys t em (2.107) and  (2.110) is one of  (ro, w0) 
above we conclude 

II ~ 1122- < ['v 2 - a('7 2 - d2)]([ h 12 + [] wl l~) .  

Hence II G II < ~. 

Now the  p roof  of  sufficiency of (a) and  (b) in T h e o r e m  2.14 follows f rom 
L e m m a  2.23 as in the  case of T h e o r e m  2.13. | 

2.3.3 D i s t u r b a n c e  Feedforward P r o b l e m  

We consider the  H ~ - p r o b l e m  for the  special  sy s t em (~DF: 

J: = A( t )x  + B l ( t ) w  + B2(t)u, 

z = Cl ( t )x  + Dr~(t)u, (2.120) 

y = C 2 ( t ) x + w  
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U 

r 

V 

where Q is a controller of the form (2. 88) and (2. 89). 

T h e o r e m  2.15 Foreach controller d e f i n e G w =  ( z ;  ) and assume C1.  

(a) There exists a ~/-suboptimal controller on [to, T] if  and only if there exists 
a nonnegative solution X satisfying (2.90) and (2.91). 
(b) In this case the set of all ~/-suboptimal controllers is given by 

x = (A - B1C2 - B2B~X)(t):~ + B l ( t ) y  + B2(t)v,  2(to) = O, 

= - B ~ ( t ) X ( t ) ~  + v, (2.121) 

I__BJ = - ( 6  + x)(t)~: + y, .y2 1 

= Qr, IIQIl<~ 

Proof. The necessity of (a) follows from Theorem 2.13. The sufficiency and 
(b) follow from Theorem 2.13 and the observation 

u = -B~2Xz  + Qr = -B'2XSc + Qr, 

r - I ~ B ~ X x + w = - ( C 2 + ~ 2 B ~ X ) 3 : + y .  | 

We now consider the infinite horizon problem. We assume C5 and 

C6 : A - BIC2 is exponentially stable. 

T h e o r e m  2.16 Assume C1, C5 and C6. 
(a) There exists a 7-suboptimal u = K y  on [to, co) i f  and only i f  there exists 
a bounded nonnegative stabilizing solution X for (2.90). 
(b) In this case the set of all ~/-suboptimal controllers is given by (2.121) with 
Q internally stable. 

Consider the Ho~-problem for the system GOE: 

ic = A(t)X + B l ( t ) w +  B2(t)u,  

z = C l ( t ) x + u ,  

y = C 2 ( t ) x +  D21(t)w, 

x(to) = H h  

(2.122) 

which is called the output estimation (OE) problem. The adjoint of (2.122) 
is the backward version of the DF problem. Hence we have the following. 

T h e o r e m  2.17 Foreachcontrol ler  d e f i n e G ( h )  = z  a n d a s s u m e C 2 .  
\ - - /  

(a) There exists a "y-suboptimal controller u = K y  on [to, T] if  and only i f  
there exists a nonnegative matrix Y satisfying (2.93) and (2.94), i.e., 

~" = A ( t ) Y  + Y A ' ( t )  + S l ( t )B~( t )  + Y ( ~ C ' I C 1  - C~C2)(t)Y, 
$ 

Y(to)  = H H ' .  
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(b) In this case the set of all 7-suboptimal controllers is given by 

x = (A - B2C~ - YC;C2)(t)~? + Y( t )C~( t )y  + (B2 + YC~)( t )v ,  

~ ( t o )  = o, 

u = - C l ( t ) ~  +v ,  (2.123) 

r = - C 2 ( t ) ~ + y ,  

~, = Qr, IIQII<?. 

T h e o r e m  2.18 Suppose C2, (A, B1, C2) is stabilizable and detectable and 
that A - B2C1 is exponentially stable. 
(a) There exists a ?-suboptiraal controller u = K y  on [to, co) if  and only 
if  there exists a bounded nonnegative stabilizing solution Y for (2. 93) and 
(2.94). 
(b) In this case the set of all ?-suboptimal controllers is given by (2.123) with 
Q internally stable. 

To give the proofs of Theorems 2.17 and 2.18 we consider the FI- and DF 
problems for the backward systems in the next subsection. 

2.3.4 Backward  Sys tems  

Consider the backward system GFZ: 

- ~  = A ( t ) x  + B l ( t ) w +  B2(t)u, 

z = C l ( t ) x  + D12(t)u, (2.124) 

Zl = Fx( to)  

with x(T)  = 0 and a controller u = K y  of the form 

-[~ = A( t )~  + B( t )y ,  ~(T) = 0, (2.125) 

u = ~ ( t ) ~  + D ( t ) y  

where all matrices are piecewise continuous and uniformly bounded. The 
Hoo-control problem for the system GFI  is the FI-problem for the backward 
system and the solution to this problem is need to the Hoo filtering problem. 
For the system GFI we assume C1. To give the solution of this problem, we 
need the following Riccati equation 

P = A ' ( t ) P +  P A ( t ) + C ~ ( t ) C l ( t )  

+ P ( ~ B I B ~  - B2B~)(t)P,  

P(to) = F'F.  

Then we have the following. 

(2.126) 

(2.127) 
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T h e o r e m  2.19 Assume C1.  
(a) There exists a 7-suboptimal controller u = Ky ,  t e [t0,T] of the form 
(2.125) if  and only if there exists a nonnegative solution P( t ) ,  t �9 [t0,:/'] of 
(2.126) and (2.127). 
(b) In this case the set of all y-suboptimal controllers is given by 

u ( t ) = - B ~ ( t ) P ( t ) x ( t ) + [ Q ( - ~ U ' ~ P x + w ) ] ( t ) ,  II Q I1< 7. (2.128) 

Proof. N e c e s s i t y  of  (a).  Suppose that  the controller (2.125) is 7-suboptimal. 
Then by Corollary 2.9 we obtain a nonnegative solution P(t) ,  t �9 [to, T] to 
(2.126) and (2.127). 

Suff ic iency of  (a) a n d  (b). Now we assume the existence of a nonnegative 
solution P( t ) ,  t �9 [t0,T] to (2.126) and (2.127). Then as in the previous 
subsections, we consider the following systems 

and 

- 2  = (A - B2B~P)x  + B l w  + B2v, 

z = (C1 - D12B~P)x+  D12v, 

1 B ~ P x  + w, 
r - 72 

zl = Fx(to) ,  

x ( T )  = o 

1 
-2 ,  = (A + ~ s B I B ~ P ) 2  

v = B ~ P 2 + u ,  

Y = B~P~. + r  ' 

~ ( T )  = o. 

+ B l r  § B2u, 

(2.129) 

(2.130) 

Then as in the proof of Theorem 2.13, we can show the sufficiency of (a) and 
the characterization in (b) using the following lemmas. | 

L e m m a  2.24 Let P be the solution of (2.126) and (2.127). 
(a) For (2.129) the following holds 

I z l  12 + II z 113= 72 II w 113 + II v 115 -72  II r 113- (2.131) 

(b) The system GFI  with a controller u = K y  is equivalent to the intercon- 
nection of (2.129) and the feedback system (2.130) with a controller u = Ky .  



2.3. H a  Control 71 

L e m m a  2.25 Consider the closed-loop system (2.129) and v = Qr of the 

f~ (2"125)" Let G be the input-~ ~176 bY ( zx)z = Gw. 

Then I[ G I1< ~ i f  and only i f l l  Q [1< 3". 

Next we consider the system GFI on the infinite horizon [t0, co). In this 
case we assume C5. For each IO-stabilizing controller we can define the input- 
output  operator ms follows: 

T h e o r e m  2.20 Assume C1 and C5. 
(a) There exists an IO-stabilizing controller u = Ky  on [to, cr such that 
H G H < "7 if and only if there exists a bounded nonnegative stabilizing solution 
P(t), t c [to, co) of (2.126) and (2.127). 
(b) In this case the set of all such controllers is given by 

u ( t ) = - B ~ ( t ) P ( t ) x ( t ) +  [Q ( - ~ B ~ P x +  w)] (t), I] Q "< 3"- (2.132) 

In particular the set of all internally stabilizing controllers with [I G [[< 3" is 
given by (2.132) with internally stable Q. 

Proof. Neces s i t y  o f  (a).  Suppose tha t  there exists an IO-stabilizing con- 
troller u = K y  such that  I] G [1< 3". Then by Corollary 2.11 there exists 
a bounded nonnegative stabilizing solution P(t) ,  t c [to, oc) to (2.126) and 
(2.127). 
Suff ic iency  of  (a) a n d  (b). Consider the system (2.129) and (2.130) on 
[to, cx~). Note that  A - B2B~P is exponentially stable by Proposition 2.5 and 
hence we have as in Lemma 2.24 

I zx 12 + II z II~= 3"2 II w II~ + II v 115 _3'2 II r 112- (2.133) 

The system GFI  with a controller u = K y  is equivalent to the interconnection 
of (2.129) and the feedback system (2.130) with u = Ky. 

As in the proof of Theorem 2.14, we can complete the proof using the 
following lemma. II 

L e m m a  2.26 Let G be the input-output operator of the closed-loop system 
(2.129) and v = Qr of the form (2.125). Then II G I1< "7 if and only if Q is 
internally stable and II Q H < 3'. 

Proof. We only need to show necessity. We identify L2(t0, T;-) as the sub- 
space L2(to, er with support on [to, T]. Let w E L2(t0, T; Rm') .  Then the 
corresponding r and v have the same support. As in Lemma 2.25 

II v 1t2=11 Qr 112-< 3' II r 112. 
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7" 

~(to) 

and # = Q'r/ 

For each r �9 L2(t0, T; R TM) there exists a w �9 L2(t0, T; R "u)  such that  r is 
the response to w. Hence II Qr 115_< ~ II r 112 for any r �9 L2( to ,T;Rm') .  

Consider the adjoint of the closed-loop system (2.129) and v -- Qr. Then 
it is given by the closed-loop system 

B2B~P)'~ + (C1 - D12B~P)'v - ~ P B I # ,  (A 

= B ~  + # ,  (2.134) 
! 

= B ~  W D12 v, 

= F' f ,  f �9 R q 

of the form 

= A'~ + &'~, 
= #'~ + b'~. (2.135) 

Since the closed-loop system (2.134) and (2.135) is internally stable, (2.135) 
is stabilizable and detectable. Moreover 

n Q*~'] HL2(to,T;Rml)-< "Y I[ ~ HL2(to,T;R m2) for any T. 

This implies Q*~ E L2(t0, T; R m') for any y E L2(to, T; R m~) and II q*n  115< 
II ~ 112 for any 77 E L~(to,T;Rm2). Since L2(to, T;.) ,  to _< T < oo is 

dense in L2(to, 00;-), Q*y c L2(to, c~; R m') for any ~ �9 L2(to, 00; R m2) and 
II q*  II < ~. Hence Q* is IO-stable. Since (2.135) is stabilizable and detectable, 
Q* is internally stable by Proposition 2.4 and so is Q. [I Q H < "y follows as in 
Lemma 2.22. | 

C o r o l l a r y  2.18 Assume that the system (~FI iS O-periodic and that the con- 
ditions C1 and C5 hold. Let F = O. Then 
(a) There exists an IO-stabilizing controller u = K y  on [to, cx)) such that 
II G II < ~ if  and only if there exists a 8-periodic nonnegative stabilizing solu- 
tion P of (2.126). 
(b) In this case the controller (2.132) is IO-stabilizing such that II G I1< 3'. I f  
Q is 8-periodic, such a controller is also O-periodic. 
In particular, if Q is internally stable, the controller (2.132) is internally 
stabilizing. 

Proof. Necessity of (a) follows from Corollary 2.11. Now we assume the exis- 
tence of a 8-periodic nonnegative stabilizing solution P of (2.126) and con- 
sider the systems (2.129) and (2.130) on [to, oo). Then similarly to the proof 
of Lemma 2.24 we obtain 

II z 112_< x~oP(to)xo+ II z 112= .y2 I[ w 1122 + II v 115 _~2 II r 115- 

Hence the sufficiency of (a) and (b) follow from Lemma 2.26. | 
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We now consider the H~-control  problem for the system G D F :  

- 5  = A( t )x  + B l ( t )w  4- B2(t)u, 

z = Cl ( t ) x  + D12(t)u, (2.136) 

y = c 2 ( t ) x + w ,  

Zl  -~ Fx(to) 

with x(T)  = 0 and a controller u = K y  of the form (2.125). This problem 
is the DF-problem for the backward system. Since it can be reduced to the 
FI-problem for the backward system, we have the following result. 

T h e o r e m  2.21 For each controller define Gw = (Z :  ) and assume C1. 

(a) There exists a controlleru = K y  on [t0, T] such that [[ G [l< 3' i /and  only 
if  there exists a nonnegative solution P(t ) ,  t 6 [t0, T] to (2.126) and (2.127). 
(b) In this case the set of all "y-suboptimal controllers is given by 

- 2  = (A - B1C2 - B2B~P)(t)~ + B l ( t ) y  + B2(t)v, 

u = -B~(t)P(t)Sc +v ,  (2.137) 

+ ~22B~P)(t)~ 4- Y, r 

v = Q r ,  IIQII<7 

where Q is a controller of the form (2.125). 

We consider the infinite horizon problem. We further assume C5 and (36. 

T h e o r e m  2.22 Assume (31, (35 and (36. 
(a) There exists an internally stabilizing controller u = K y  on [to, ~ )  such 
that [[ G 1[ < 7 i f  and only i f  there exists a bounded nonnegative stabilizing 
solution P(t ) ,  t E [to, oc) to (2.126) and (2.127). 
(b) In this case the set of all 7-suboptimal controllers is given by (2.137) with 
Q internally stable. 

2 .3 .5  P r o o f s  o f  M a i n  R e s u l t s  

P r o o f  o f  T h e o r e m  2.9: N e c e s s i t y  o f  (a) .  Suppose tha t  there exists a 
controller u = K y  on [t0, T] such that  II G I1< 7- Then by Theorem 2.13 (i) 
holds. Now consider (2.107) 

5c = ( A -  B2B~X)x  + B l w  + B2v, 

z = (C1 - D12B~X)x 4-D12v, 

1 B ~ X x  + w, r -- "7 2 

Z 1 • F x ( T ) ,  

x(to) = H h  
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and 

1 
= (A + - ~ f f B i B ] X ) ~  + B l r  + B2u,  

v = B ~ X ~  + u, 

y = C2~ + D 2 1 r ,  

~c(to) = H h  

(2.1a8) 

with a controller 
u = g y .  (2.139) 

Then e = x - 2 satisfies 

= [A + (@ffB, B~ - B 2 B ; ) X l e ,  e(to) = 0 

and hence the system G with u = K y  is equivalent to the interconnection 
of (2.107) and (2.138) with u = K y .  Let Q be the input-output  operator  

of the closed-loop system (2.138) and (2.139) so that  v = Q ( h ) .  Then by 
\ r } 

I Remark 2.4, Q �9 Q~ and hence u = K y  is "),-suboptimal for the Ho~-problem 

defined by (2.138) with H and h replaced by / t  = H ( I  - ~ i -~H'X( to)H)- �89  

and h = ( I -  A ~ H ' X ( t o ) H ) � 8 9  respectively. Since this is an OE problem, the 
condition (ii) holds by Theorem 2.17. 

Suf f i c i ency  o f  (a)  a n d  (b) .  Consider the system (2.138) and (2.99). Then  
by Theorem 2.17, the set of the controllers u = K y  given by (2.99) satisfies 
Q E Q~ where ~) is the input-output  operator of the closed-loop system 

(2.138) and (2.99). By Lemma 2.21 it is enough to show ~) �9 Q~ to complete 
the proof. To do so, let 

e = :~ -- :i:. 

Then 

d = (A  + + B i B ~ X  - ZC~C2)e  + (B ,  - Z C ~ D 2 i ) r -  - ~ Z X B 2 # ,  

v = B ~ X e + # ,  

~7 = C2e + D21r, 
# = Q~, 

V 1 = O,  

r  = /:/h 

and its adjoint is given by 

- ~  (A + B 1 B ~ X  ' ' -  X B 2 r  ' - = - ZC2C2 ) e + + C2#, 
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+ (B~ ' ) '~ + ' - = - -  Z C 2 D 2 1  D21P, 

~ B~XZ~ + +, 

~ = /~'e(to) ,  
~(T) = o 

where Q* is the adjoint operator of Q. Then it is enough to show 

JlvlJ2<-d2(H r112+1 ~12 ) for s o m e 0 < d < 7  

which is equivalent to 

][~112+1~1 12- <d21IF] [  2 . 

By direct calculation, we obtain 

d[~ 'Z~]  = - J # [ 2 + I (Ba - Z C 2 0 2 1 ) ' ~  + D~21U 12 

_,~z I ~ I z +'? I ~ + -~B~XZ~ I z 

= - r # l  2 + 1 ~ 1 2 - ' y z l ~ l  2+'y24vl  ~. 

Integrating this from to to T we obtain 

-e( t0)Z(t0)~(t0)  = - II P 112 + II + 112 _~2 II ~ 1122 +~2 II V 1122 

II + I1~ + l  Vl 12 = I[ u I1~ +~2  II ~ [15 _~2  II ~ II~. (2.140) 

Recall that  
II ~ 112<-[I Q* fill v 1[2<__ v ~  - ~ II ~ [12 (2 .141)  

for some r > O. Since 
" I  

+ = 7] + -~2B~XZ~ 
@ 

the map: t/--* F is given by 

- 4  [A + - ~ B , B ~ X  + Z ( - ~ X B 2 B ~ X  ' ' ' -  = - C~C2)] ~ + XB277 + C2p, 
$ $ 

= -~B'~XZ~ + 

= e*O. 

Hence the map: r/ --* F is bounded and ]1 F [I2< 6 I] r/ 112 for some ~ > 0. 
Combining this with (2.140) and (2.141) we obtain 
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and we have the assertion. 

P r o o f  o f  T h e o r e m  2.10: (a) Suppose a "~-suboptimal controller exists. Then 
by Theorem 2.7 and Corollary 2.9, there exist nonnegative solutions X, Y 
and Z of (2.90)-(2.92), (2.93), (2.94) and (2.95), (2.96). By Lemmas 2.17 and 

2). 
2.18, I -  1-rXY is nonsingular and the eigenvalues of XY have the form ~--~+~x, 
A E A(XZ). Since X and Z are nonnegative and uniformly bounded in T, 
A E A(XZ) are nonnegative and uniformly bounded. Hence p(X(t)Y(t)) <_ d 2 
for some 0 < d < "y. Hence the condition (iii) follows. To show sufficiency of 
(a) we note I-~l-}zX(t)Y(t) is nonsingular and [I-1--rX(t)Y(t)]-I is uniformly 

bounded in t E [t0, T]. Define Z(t) = Y(t)[I-  ~X(t)Y(t)] -1. Then 

and 

2(1 - -~XY) 

Z(I - ~ X Y )  - Y = 0 

= (A+ -~B1B'IX)Y+ Z(A+ -~2B1B[X)'(I- -~XY) 

+B,B~(I - ~52xr) + Z ( ~  XB2B~X - C~C2)Y. 

Hence Z satisfies the Riccati equation (2.95) and (2.96). The rest follows from 
Theorem 2.9. | 

I 1 B B ' _  P r o o f  of  T h e o r e m  2.11: Since (A, B1) is stabilizable and A + kT-~ 1 1 
B2B~)X is exponentially stable, we can easily show that (2.138) satisfies 
the assumptions of Theorem 2.18 except for the detectability of (C2, A + 
~-~ B1B~X). Since A + ~I-r B1B~ X + Z( Jr XB2B~X - C~C2) is exponentially 
stable, 

(A + -~2B1B~X - ZC~C2, 1ZXB2)  

is stabilizable and so is 

(A + ~B1B~X C' 1ZXB2 ZC~ ]) 
- -  Z 2C2, [ B1 . 

Since we can rewrite the Riccati equation (2.95) in the form 

2 (A+~-~2BIB~X ' Z ~5 - = - ZC~C2) + Z(A + B1B~X ZC~C2)' 

+[~ZXB2 ZC~ B,][~ZXB2 ZC i B 1 ] ' ,  

A + ~ I  Sl  ~::~ID' X - ZC~C2 is exponentially stable by Proposition 2.5 and hence 

(C2, A + ~JrBIB~X) is detectable. Thus the system (2.138) satisfies the as- 
sumptions of Theorem 2.18 and we can complete the proof as for Theorem 
2.9. | 
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P r o o f  o f  T h e o r e m  2.12: The proof is similar to tha t  of Theorem 2.10. We 
only need to show Z = Y ( I -  1 X y ~ - i  j is a stabilizing solution of (2.95). 
But this follows from Lemma 2.19 and the stabilizing property of Y. I 

P r o o f  o f  C o r o l l a r y  2.12: Necessity of (a) follows from Theorem 2.8 and 
Corollary 2.11. To complete the proof it is enough to show tha t  the controller 
(2.99) is ~/-suboptimal for the system (2.138). But  we can show it as in the 
proofs of Theorems 2.9 and 2.11. I 

2 . 4  H ~  F i l t e r i n g  

In this section we consider the H ~  filtering problem with initial uncertainty 
for time-varying systems. 

Consider the system GF: 

= A ( t ) x + S ( t ) w ,  

z = L ( t ) z ,  

y = C ( t ) x + D ( t ) w ,  

x( to)  = H h ,  

zl = F x ( T )  

(2.142) 

(2.143) 
(2.144) 

where x E R n is the state, w E R 'nl is the disturbance, (zl, z) c R q x R pl is 
the state to be estimated, y E R p2 is the measurement,  h E R nl, F E R q• 
H E R nxnl and A, B, etc are bounded piecewise continuous matrices of 
appropriate dimensions. For this system we assume 

C F I :  [B(t)  D ( t ) ] D ' ( t ) = [ O  I] foranyt. 

We wish to estimate Zl and z by the causal filter of the form 

z = A( t )~  + B( t )y ,  ~(to) = o, 

= r  + b ( t ) y ,  

zl = F k ( T )  

(2.145) 

and to achieve the following: 

I z~ - ~1 [2 + II z - ~ 1122~ d2(I h 12 + II w 112), for some 0 < d < "), ( 2 . 1 4 6 )  

where ,4, ]~, C, D are bounded piecewise continuous matrices and F is a 
constant matr ix of appropriate dimension. Such a filter is called 7-suboptimal. 
We can write (2.142)-(2.145) as 
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[~(,o)] : [.oh, 
~(to) ] 

e, = Zl - ?~, = I F  - F ]  "I x(T) ] 
2(T) J ' 

e 

Define the operator G E s  nl • L2(to, T; I:t ml ); R q • L2(to, T; RPl)) by 

( e : )  = G ( h ) .  (2.147) 

Then (2.146) is equivalent to JJ G H_< d. The adjoint G* is given by 

(io):~.(~) 
where 

[ ~ ] - - P o '  c,,~,~ -~',~'~v, _ ,,, ~ [~]+[~ '_~,  
~ = [B' D ' B ' ] [ ~ ) - D ' b ' v ,  

(:o = [ H '  olin(~ " 
Lr J ' 

[~(T) ] F '  
~(T)J [ ] f "  

This may be regarded as a closed-loop system 

-4  = A'(  + L'v + C'#, 
( = B ' ( + D ' # ,  

r = H ' ( ( t o ) ,  

( (T)  = F'  f 

w,~ ~oot~o~e~ ~-- ~" ( : )  

-~ = 2 ~ - [ o  0'1~, 
# = ~ " , ~ - [ o  D ' ] , I ,  

~(T) -- -.F'f. 

(2.148) 

(2.149) 

(2.150) 
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The system (2.149) is of the FI type and (2.146) is equivalent to 

I ~0 12 + fl ( tl2- < d2(I f 12 + It v ![2). (2.151) 

The Riccati equation corresponding to this is 

= A ( t ) Y  + Y A ' ( t )  + B ( t ) B ' ( t )  

+ Y ( ~ L ' L  - C 'C)( t )Y ,  (2.152) 

Y(to)  = H H ' ,  (2.153) 

F Y ( T ) F '  < d2I for some 0 < d <"r. (2.154) 

As Q~ in Section 2.3.2 we define the set of controllers of backward type: 

Q.~ = {Q* E s  q • L2 ( to ,T ;RP~) ;L2( to ,T ;RPl ) )  : 

for some 0 < d < "r}. (2.155) 

Let ~)~ be the set of adjoint systems of Q* c Q~. Modifying Theorems 2.13 
and 2.19 we have the following. 

T h e o r e m  2.23 (a) There exists a "r-suboptimal filter i f  and only if  there 
exists a nonnegative solution Y to the Riccati equation (2.152)-(2.154). 
(b) In this case the set of filters with property (2.146) is given by 

5 x = (A - YC'C)(t)3c + Y ( t ) C ' ( t ) y  + Y ( t )L ' ( t ) v ,  J:(to) = 0, 

S -- L ( t ) e - v ,  (2.156) 

r = - C ( t ) ~ + y ,  

v = Qlr ,  

~1 = F&(T) - Qor, O = 01 e Q~. (2.157) 

Proof. (a) follows from a modification of Theorem 2.19. To show (b) recall 

that the set of all controllers # -- K* ( f ~) with II G* II < "r is given by 
k / 

( fv ) Q*E Q;. (2.158) 

Then the closed-loop system (2.149) with (2.158) is written as 

- ~  = ( A ' - C ' C Y ) ~ + [ O  L ' ] , l + C ' # ,  
1 

p - "r2LY~+[O I]~?, (2.159) 

~(T) = E'  f .  
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In view of this we can show that  the controller (2.158) is equivalent to 

= 

# = - C Y ~ +  ft, (2.160) 

p = - - ~ L Y ~ +  [0 I ] ~ ,  
F 

= F ' L  

In fact for (2.149) and (2.160) e = ~ - ~ satisfies 

- e  = Ale,  e (T)  = 0 

and ~ satisfies (2.159). Now consider the adjoint of (2.149) and (2.160): 

= A x + B w + [ I  0]u ,  

5 = L x + [ O  I ] u ,  (2.161) 

y = C x  + D w ,  

x( to)  = H h ,  

51 = F x ( T )  + u l ,  (2.162) 

x = ( A -  YC'C)&.  + Y C ' y  + Y L ' v ,  ~(t0) = 0, 

r = - C ~  + y ,  

v = Ql r ,  I[ Q1 I1< % 

Then ]1 G* I1< ~/is equivalent to 

1 5 1 1 2 + l l z l l  2~-42(Ihl  2 + l t w l l  2) for s o m e 4 < %  (2.165) 

Note that  (2.161) except 5, 51 coincide with (2.142) and (2.143). Thus (2.163)- 
(2.165) can be easily interpreted as the filtering result in (b). | 

R e m a r k  2.5 The filter (2.156) with Q = 0 is called central. 

Consider the system (~F: 

= A ( t ) x + B ( t ) w ,  

z = L ( t ) x ,  

y = C ( t ) x + D ( t ) w ,  

x( to)  = H h  
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on [to, co) Then the H~-filtering problem is to find a ~,-suboptimal filter, i.e., 
a filter of the form 

x = ft(t)2 + JB(t)y, 2(to) = O, (2.166) 

~. = ~(t)~: + D(t)y  

such that  z - ~ E L2(t0, oc; R p~) and 

][ z - 2 112~< d2([ h [2 + [[ w [[~), for some 0 < d < % (2.167) 

We further assume 

C F 2  : (A, B, C) is stabilizable and detectable. 

Again considering the FI problem for (2.149) on [to, c~) and modifying The- 
orem 2.20 we have the following result. 

T h e o r e m  2.24 Assume CF1  and CF2 .  Then 
(a) There exists a ~[-suboptimal filter if and only if there exists a nonnegative 
bounded stabilizing solution to the Riccati equation (2.152) and (2.153). 
(b) In this case the set of all "~-suboptimal filters is given by (2.156), where 
Q1 is an IO-stable system with II Q1 [l< % Moreover, the set of aU internally 
stable filters is given by (2.156) restricting Q1 to be internally stable. 

We may incorpolate the estimate of zl on the infinite horizon. 

C o r o l l a r y  2.19 There exists a filter of the form (2.145) such that 

s u p [ ] z l - ~ l  [2 + [[ z _  ~ [[2 ~ ] < d 2 ( [ h [ 2 + [ [ w [ ] 2 ) ,  f o r s o m e d <  
T>_To 

if and only if there exists a bounded nonnegative stabilizing solution of (2.152) 
and (2.153) with 

F Y ( T ) F '  < d2I, T > To ]or some 0 < d < ~. 

Modifying Corollary 2.18 we have also the following result. 

C o r o l l a r y  2.20 Let GF be O-periodic and assume that C F 1  and CF2 .  As- 
sume further that the initial conditions are known, i.e., h = O. Then 
(a) There exists a filter of the form (2.166) with property (2.167) if and only 
if there exists a P-periodic nonnegative stabilizing solution to the Riccati equa- 
tion (2.152) .  
(b) In this case the filters given by (2.156) is ~/-suboptimal where Q1 is an IO- 
stable system with [] Q1 [[< % I f  Q1 is 8-periodic, the filter is 6-periodic and 
~-suboptimal. Moreover, the filters given by (2.156) is internally stabilizing 
if Q1 is internally stable. 
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C o r o l l a r y  2.21 Let the system G F be time-invariant. Then Y (t) in (a) con- 
verges as t --* oc to the stabilizing solution Yoo of the algebraic Riccati equa- 
tion 

A Y  + Y A  ~ + B B  ~ + Y(~2L~L - C ' C ) Y  = O. 

Moreover the filter (2.156) w~th Yo~ gives the set o] all ^/-suboptimal filters 
when h = O. 

R e m a r k  2.6 The filtering results with known initial conditions i.e., x(to) = 
0 in Nagpal et al. [58] follow from Theorems 4.1 and 4.2 setting F = 0 and 
H = 0 .  

E x a m p l e  2.6 Consider the Ho~-filtering problem for the following periodic 
system with period 3: 

[ 0 
~2 -(1 + 0.3 cos ~*) 

z(t) = [0 1][ zl] 
X2 

00]  

which is unstable. We give its solutions both for 

In the case (a) there exists a bounded nonnegative stabilizing solution Y ( t )  = 
[ Y 1 Y x 2 ]  

Y12 112 (t) of the Riccati equation (2.152) and (2.153) for all ~/ > 1.26 

and in the case (b) there exists a bounded nonnegative stabilizing solution 
for all 3' >- 1.3475. Figures 2.13 and 2.14 show the solution Y( t )  of the case 
(a) and (b), respectively with ~/ = 2 and Figure 2.15 shows the asymptotic 
convergence of the outputs  of central filters of (a) and (b) to the estimate 
z where 7 = 2, the initial conditions are xl(0) = 1, x2(O) = 0 and the 
disturbances wl(t) -- 10e - l~  sin 10t, w2(t) = 0. The central filter in the case 
(b) gives a better estimate, since initial uncertainty is incorporated. 

2.5 H2 Control  

In this section we consider the H2 control problem. The theory of H2 control 
for a time-invariant system is now well-known [14, 21, 93]. Here we extend 
the H2 theory to time-varying systems. 
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Figure 2.13: The bounded nonnegative stabilizing solution Y(t) of the case 
(a) 
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Figure 2.14: The bounded nonnegative stabilizing solution Y(t) of the case 
(b) 
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iF= w ~ * , 1 ~ ~ ~ ~ I 

| ....'-'.... 

(a) 

I I 1 , i I I I I I I J I 
0 5 I0 

t i m e  ( sec )  

Figure 2.15: The outputs of the central fiters 

2.5.1 M a i n  R e s u l t s  

Consider the system G: 

5c = A ( t ) x +  B l ( t ) w +  B2( t )u ,  

z = C l ( t ) x  + D12(t)u,  (2.168) 

y = C2(t)x + D21(t)w 

where x E R n is the state, w �9 R TM is the disturbance, u �9 R TM is the 
control input, (Zl, z) �9 R q x R pl is the controlled output,  y �9 R p2 is the 
measurement and A, B1, etc are bounded and piecewise continuous of appro- 
priate dimensions. For this system we assume C1-C4,  i.e., 

C I :  D i 2 ( t ) [ C l ( t  ) D12( t ) ]= [O I ]  f o r a n y t ,  
C 2 :  D21(t)[B~(t) D ~ l ( t ) ] = [ 0  I]  for a n y t ,  
C3 : (A, B1, C1) is stabilizable and detectable, 
C4  : (A, B2, C2) is stabilizable and detectable. 

Consider a controller u = K y  of the form: 

A(t)~ +/~( t )y ,  (2.169) X ~--- 

u = 

for some bounded and piecewise continuous matrices .4,/~ and C. 

To formulate the H2-control problem for the system G, we introduce the 
following set of controllers 

K = {K : K is of the form (2.169) and internally stabilizes the system G}. 
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Then the H2-norm, [] G ][2 of the closed-loop system G and a controller 
u -- K y  is well-defined and our H2-problem is to find a controller K E K 
which minimizes II G [[2. To give the solution of this problem we introduce 
the following Riccati equations: 

- 2  = A ' ( t )X  + XA( t )  + C~(t)Cl(t) - XB2( t )B~( t )X  (2.170) 

and 

= A( t )Y  + YA' ( t )  + Bl(t)B~(t)  - YC~(t)C2(t)Y, (2.171) 

Y(to) = O. (2.172) 

By Theorems 2.2 and 2.3, we have the following result. 

L e m m a  2.27 Assume C1-C4 .  Then 
(a) There exists a bounded nonnegative stabilizing solution X( t ) ,  t E [to, 0o) 
to (2.17o). 
(b) There exists a bounded nonnegative stabilizing solution Y(t) ,  t ~ [to, ~ )  
to (2.171) and (2.172). 

R e m a r k  2.7 By Lemma 2.5, a bounded nonnegative solution X(t) ,  t E 
[to, c~) of (2.170) is obtained as the limit of XT(t) ,  t E [to, T] where XT 
is a nonnegative solution of (2.170) with XT(T)  = O. 

Consider the stabilizing controller based on the feedback gain 

F(t) = - B ~ ( t ) X ( t )  

and the observer gain/: /( t)  = -Y( t )C~(t ) :  

A(t)~ + B2(t)u(t) + ~I(t)[C2(t)~ y], 

= ~(t)~ 

o r  

~: = (A + B2- ~ +/:/C2)(t)~ -/:/(t)y, (2.173) 
u = k ( t ) ~ .  

T h e o r e m  2.25 Assume C 1 - C 4  and consider the H2-problem for the system 
G. Then the controller (2.173) is optimal and 

rain I] G II~ 
K E K  

1 f to+T 
~im~ T J,o {tr.Bi(s)X(s)Bl(s) 

+tr .F(s)Y(s)F ' (s )}ds .  (2.174) 



86 2. Continuous-time Systems 

C o r o l l a r y  2.22 Let G be O-periodic. Then X (t) is O-periodic and there exists 
a O-periodic nonnegative stabilizing solution ]Io (t) of (2.171). Moreover, the 
controller (2.173) with Y replaced by 1Io is optimal and 

[to+O tr.[B~(s)X(s)B1 (s) + F(s)Y(s)F ' (s )]ds .  1 
min I] G I1~= ~ J,,to K E K  

Let G be time-invariant. Then there exist nonnegative stabilizing solutions 
X and Y, respectively of algebraic Riccati equations 

A ' X  + X A  + C~C1 - XB2B'2X = 0 

and 
A Y  + Y A '  + BIBtl - YC~C2Y = O. 

C o r o l l a r y  2.23 Let G be time-invariant. Then the controller (2.173) with 
(X( t ) ,  Y( t ) )  replaced by (X, Y )  is optimal and 

min [[ G I[~= tr.[B~XB1 + ~'YF']. 
KEK 

2.5 .2  P r o o f s  o f  M a i n  R e s u l t s  

To prove Theorem 2.25 we need some preliminary results. Consider the sys- 
tem G and the controller u = K y  of the form (2.169). Let  X be the solution 
of (2.170). We introduce 

V ~ U - -  fi" x 

and the system (~: 

= Ax  + BlW + B2u, 

v = -[2x  + u~ 

y = C2x + D21w. 

Then z can be written using v as follows: 

= (A + B2F)x  + B l w  + B2v, 

z = (C1 + Dx2~')x + D12v. 

This system is exponentially stable and 

z = Gcw + Uv 

where Gc and U are given by 

= ( A +  B2P)~ + Blw,  

= ( e l  + D12/~)~ 

(2.175) 
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and 

= (A + B z F ) x  +B.2v, 

z = (C1 + Da2fi')x + D12v 

respectively. Then we can easily see the following. 

L e m m a  2.28 (a) The system G is equivalent to the interconnection of the 
system (~ and (Ge, U). 
(b) K stabilizes the system G if and only if it stabilizes the system G. 

Next we shall show the properties of Gc and U. 

L e m m a  2.29 (a) [[ Uv [[2=[[ v ][2 for any v 6 L2(s, co; Rm~). 
(b) < Go6(. - S)Wo, Uv >-= 0 for any wo 6 R TM and v 6 L2(s, cx); Rm2). 

Proof. (a) We can rewrite the Riccati equation (2.170) as 

- X  = (A + B 2 P ) ' X  + X ( A  + B2F)  + (C1 + Dn/ ' ) ' (C1 + DI2F) .  

By direct calculation, we have 

d[x ' ( t )X( t )x ( t ) ]  = - [z( t )  [2 + [v( t )  [2 

and integrating it from s to T we have 

x ' ( T ) X ( T ) x ( T )  - x ' ( s )X(s )x(s )  = (I v(t) ]~ - [ z(t) 12)dr. 

Since x(s) = 0 and limT-.oo x(T)  = 0 we have the assertion. 
(b) Consider Gc with w(t) = 6(t - S)Wo. Then ~!t) = SF(t,  s)Bl(s)wo where 
SF(., .) is the s ta te  transit ion matr ix  of A + B2F. As in (a) we have 

d 
d-t W(t)X(t)x( t)]  = - ( ' ( t ) z ( t )  

and integrating it from s to T,  we obtain 

- ~ ' ( T ) X ( T ) x ( T )  + ~'(s)X(s)x(s)  = ( '( t)z(t)dt .  

Since limT-~oo ~(T) -- limT-~oo x(T) = 0 and x(s) = 0, we have shown (b). | 

Now we return to the H2-control problem for the system G.  Suppose K 
stabilizes the system G and hence the system (~. Let G be the input -output  
operator  of the closed-loop system (~ with u = Ky,  i.e., 

v-~-GW. 
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Then by Lemma 2.29 

and 

II a 1122 = I I a c + u O I l ~  

= II a c  II~ + II u 0  115 
= II a c  IL~ + II 0 II~ (2.176) 

rain }} a I1~=11 a ~  I1~ + rain l} 0 lie = . 
K E K  K E K  

Thus our original H2-problem has been reduced to the one for the system 
(~. By Remark 2.2, minKEK [[ G 112 is equivalent to the H2-problem for the 
backward system 

- )  = A ' ( t ) ~ -  ~"(t)Cv + C;(t)f i ,  

= B~(t)~ + D~l(t)~i, (2.177) 

with an internally stabilizing controller of the form 

- x  = A'(t)~ + d:'(t)9, 

= B'( t )~ .  

The He-problem for the system (2.177) is the DF problem. Its solution will 
be given below. 

Backward Systems 

We take a general backward system and consider special H2 problems. First 
consider the system with full information (denoted by I~FI): 

- 5  = A ( t ) z +  B l ( t ) w +  B2(t)u,  

z = C l ( t ) z  + D12(t)u, (2.178) 

[:] 
We take a controller u = K y  of the form 

- x  = ~i(t)~ + B(t )~ ,  
u = r (2.179) 

where all matrices are uniformly bounded and of compatible dimensions, 
Let GFI be the input-output operator of the closed-loop system GFI  with 
u = Ky .  To formulate the H2-problem for the system GFI w e  introduce the 
following set of controllers: 

K = {K : K is of the form (2.179) 

and internally stabilizes the system G F I } .  
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Then the H2-problem for the system G F t  (FI-problem) is to find a controller 
K E K which minimizes [] GFI 1[2. 

For the system GFI,  we assume C1 and C5, i.e., 

C5 (A, B2, C1) is stabilizable and detectable. 

Then as in Lemma 2.27, we have the following. 

L e m m a  2.30 Assume C1 and C5. Then there exists a unique bounded non- 
negative stabilizing solution P( t ) ,  t E [to, oo) to the Riccati equation 

P = A ' ( t ) P +  P A ( t )  + C~(t)Cl(t)  - PB2( t )B~( t )P,  (2.180) 

P(to) = O. 

As in the previous subsection, we introduce 

v = u - F e x ,  Fp( t )  = - B ~ ( t ) P ( t )  

and the system (~b: 

- 2  = A~ + BlW 4- B2u, 

v = - F p 2  + u, 

[:] 
Then z can be writ ten using v as follows: 

-Jc = (A + B2Fp)x  4- Bxw + B2v, 

z = ( e l  q- D12Fp)z 4- D12v. 

Hence 

where G b and U b are given by 

- ~  = 

r = 

and 

Z = Gbw + Ubv 

(A + B:Fp)~  + B lw ,  

(C1 4- D12Fp)~ 

(2.181) 

Next we need the following lemma. 

-gc = ( A + B 2 F p ) x + B : v ,  

Z = (C1 + D12Fp)x T D12v, 

respectively. Then we have the following. 

(a) The system GF1 is equivalent to the interconnection of the system 6 5 
G b and ( c, ub) �9 

(b) K stabilizes the system (~FI if and only if it stabilizes (~b. 
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L e m m a  2.31 (a) II vbv  112=11 y ]12 for any v E L2(to, cx); Rm~). 
(b) < GbS( . -- s)wo, Ubv >-= 0 for any Wo C R T M  and v C L2(to, oo; R m2) 
with support in [to, s]. 

Proof. (a) We can rewrite the Riccati equation (2.180) as 

P = (A + B 2 F p ) ' P  + P ( A  + B2Fp)  + (C1 + D12Fp) ' (CI + D12Fp), 

P(to)  = O. 

Then by direct calculation 

d [ x ' ( t ) P ( t ) x ( t ) ]  = - I z ( t ) 1 2  +Iv( t )  12 

and integrating it from to to s, we obtain 

x ' ( s ) P ( s ) x ( s )  - x ' ( t o )P ( to ) z ( t o )  = [J v(t)  12 - I z(t) 12]dt. 

Since x(s)  = 0 and P(to)  = O, we have the assertion. 
(b) Consider the system a~  with w(t)  = 5(t - s)wo, to < s < oc. Then 
~(t) = S~(s ,  t )B l ( s )wo  and 

d [ ~ ' ( t ) P ( t ) x ( t ) ]  = r  t < s 

where SF(.,  .) is the s ta te  transit ion matr ix  of ( A + B 2 F p ) ' .  Moreover x( t )  = O, 
t > s and x(s  +) = 0 where x is the s tate  of the system U b. Integrat ing 
d ~[~ ' ( t )P( t ) z ( t ) ]  from to to t, we have 

( r  = ~ ' ( t )P ( t ) x ( t )  - ~ ' ( to)P(to)x( to)  = ~ ' ( t )P ( t ) x ( t ) .  

Lett ing t T s, f t:  ~ ' ( r )z (r )dr  = 0. Since ~(t) --- 0 and z( t)  = O, t > s, 

f t 7  r  = O. | 

Let u = K y  be an internally stabilizing controller and ~b the input -output  
operator  of the closed-loop system (~b with u = K y  given by 

V ~ a b w .  

Then v(t) = GbS(. - s)wo has suppor t  in [t0, s] and by L e m m a  2.31, we have 

IIGF, II~ = IIG~+UbO bll~ 

= II G~ I1~ + II ~b 1122" 
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min II GFI ]12=l[ G b 112 + rain II ~b 112. 
KEK KEK 

Thus the H2-problem of the system GFI is reduced to the one for the system 
(~b. Since u = Fp( t )x  is stabilizing, u = [Fp(t) 0] y internally stabilizes 
the system Gb and this yields v = 0 o r  ~b = 0. Henceu  = [Fp(t) 0 ] y i s  
the optimal controller for the system GFI  and 

min I] GEl 112=11 G~ II~" 
KEIK 

The controllability gramian for the backward system associated with G b is a 
unique nonnegative solution and is given by 

Lo = (A + B~Fp)'Lo + Lo(A + B~Fp) + (C1 + D12Fp)'(C1 + D12Fp) 

which implies Lo = P. Hence by Lemma 2.4 

II G~ I1~= lim 1 f t ~  
T---*c~ T ,]to 

Summarizing the above we have the following. 

T h e o r e m  2.26 Assume C1,125 and consider the H2-problem for the system 
GFI.  Then 

f to+T tr .B,  1 (s)P(s)B1 (s)ds. (a) minK~K ][ GEl [[22= limT--,~ 1 Jto 
(b) K = [Fp(t) 0] is optimal. 

Next we consider the H2-problem for the system (denoted by GDF): 

--J: = A( t )x  + B l ( t ) w  + B2(t)u, 

z = Cl ( t )x  + D12(t)u, (2.182) 

y = C 2 ( t ) z + w  

and we take a controller u = KDFY of the form (2.179). Here we assume C l ,  
C5 and C6, i.e., 

C6 : A - BIC2 is exponentially stable. 

As we see below, this problem is equivalent to the FI-problem. 

P r o p o s i t i o n  2.7 A controller KDF internally stabilizes GDF if and only 
if K = KDF[C2 D21] internally stabilizes GF1. In this case GDF = GEl 
where GDF is the input-output operator of the closed-loop system G DF with 
u = KDFY defined by z = GDFW. 
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Proof. The proof follows from u = KDFY = KDF [C2 

Consider the controller KDF: 

- - X  ~ -  

U 

UFI 

YF1 

P r o p o s i t i o n  2.8 

A(t)~, + Bl(t)[y - C2(t)~] + B2(t)UFl, 

uF1, (2.183) 

KyF1, 

The controller K internally stabilizes the system (~FI  i f  

and only if KDF given by (2.183) internally stabilizes GDF. In this case 
G F I  : G D F .  

Proof. Let e = x - ~ where x and k are the states of the system (~DF and 
(2.183), respectively. Then e satisfies 

-~  = ( A -  B1C2)e 

which is exponentially stable. Moreover 

where (v = w + C2e. Hence 

- - X  

A~ + BI~  + B2u, 

= A2, + B1Cv + B2u, (2.184) 

Now suppose K stabilizes GEl. Then & E L 2, but e E L 2 and hence x E L 2. 
Thus KDF stabilizes GDF. Conversely suppose KDF stabilizes GDF. Then 
(2.184) is exponentially stable. Finally z is given 

Z ~- C l x  "~- D12 u = C 1 (:~ ~- e) -~- D12UF1 

subject to (2.184). Hence C, FI = GDF. | 

Now it is easy to obtain the solution of DF-problem. Since K = [Fp(t) 0] 
is optimal for the system GFZ, the optimal controller for GDF is given by 

u = [ F p ( t )  0] [ y _  C2(t)&] 



and (2.183) in this case 

-~: = A(t)Sc + B l ( t ) [ y -  C2(t)~] + B2( t ) [Fp ( t )  

= (A - B1C2 + B2Fp)(t)Sc + Bl( t )y ,  

u = Fp(t)~. 
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01[  
(2.185) 

T h e o r e m  2.27 Assume C1,  C5 and C6 and consider the H2-problem for 
the system (~DF. Then 

k f t0+T tr.Bi1(s)P(s)B1 (s)ds. (a) minKeK 11 GDF [1~----11 G b 112 ~= limT--.oo T Jto 
(b)The controller (2.185) is optimal. 

P r o o f  o f  T h e o r e m  2.25 

Now we return to the H2-problem for the system G. By (2.176) we have 

min tt G I]2=11 Gc 1[ 2 + min II G 1122 
K 6 K  K6K 

and the original H2-prohlem was reduced to the H2-problem for the backward 
system (2.177), which is a DF-problem. Since the conditions C1,  C5 and C6  
are satisfied for (2.177), we can apply Theorem 2.27 to obtain 

min [[ G 112 = l i m  1 [ t~  
K E K  "T ,]to 

and the optimal controller is given by 

- x  = (A' + P'B~ + C~C2Y)~c - P'~j, 

~t = C2 Yx .  

Hence the forward controller (2.173) is optimal for the system G and hence 
for the system G. We also have 

�9 1 [to+T 
t r .F(s)Y(s)P ' (s )ds .  min II G 115=11Gc 115 + Jimo~ ~ j e o ~ _ ~  

K 6 K  

Now we express 11 Gc 11~ using the  observability gramian of Gc which is a 
unique nonnegative solution of 

-Lo = (A + B2P)'Lo + Lo(A + B2P) + (C1 + DI~P)'(C1 + D~2P). 

But X satisfies the equation above and hence Lo = X .  Then by Lemma 2.4, 
we have (2.174) and the proof o f  Theorem 2.25 is complete. 
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2 . 6  N o t e s  a n d  R e f e r e n c e s  

The stability results in Section 2.1 are obtained using the basic ideas of [11, 27, 
61] which deal with infinite dimensional systems. More results on stability can 
be found in [84]. The H2 and H ~  norms are defined as in [21]. The formulation 
of the quadratic control follows [12, 13]. The disturbance attenuation problem 
is discussed in [28, 30, 62]. On finite horizons we allow for initial uncertainty 
and an output  of the terminal state and obtained symmetric results in X and 
Y. We modified [30], whose extension to infinite dimensions is found in [31]. 

The results on differential games in Section 2.2 are obtained following 
[28, 29]. Standard results of differential games are found in [5]. The relation 
between H ~  control amd differential games is discussed by many authors 
[4, 52, 63, 78, 79]. 

The H ~  control theory in Section 2.3 is based on [30, 38]. Initial uncer- 
tainty is considered in the problem formulation and the output  of the terminal 
state is included in the finite horizon problem. We have given the necessary 
and sufficient conditions for the existence of -/-suboptimal controllers and the 
characterization of all ~-suboptimal controllers. The necessary and sufficient 
conditions in terms of the solutions of two independent Riccati equations and 
a coupling condition were not available for some time and were established 
in [38]. The H ~  theory for time-invariant systems is complete and found in 
the original papers [14, 20, 69] or in the books [21, 66, 93]. The state space 
theory of H ~  control was extended to time-varying systems [49, 52, 62, 70]. 
The finite horizon problem is considered in [52] via game theoretic approach 
and necessary and sufficient conditions and the characterization of all sub- 
optimal controllers are given (see also [21]). The infinite horizon problem is 
considered by Ravi et al [62]. A more general setting involving initial uncer- 
tainty is given in [49]. These papers give necessary and sufficient conditions 
using two coupled Riccati equations and a ~~ controller. The Ho~ 
theory for infinite dimensional time-varying systems is given in [31, 70]. 

The H~o filtering theory in Section 2.4 is based on [30]. The H~-filtering 
problem was first considered by Nagpal and Khargonekar [58 I. They gave 
necessary and sufficient conditions for finite and infinite horizon problems 
and a suboptimal filter. Limebeer and Shaked [53] give a stochastic interpre- 
tat ion of Ho~-filtering. For time-invariant systems with zero initial condition 
they considered the infinite horizon problem and gave the set of all stable 
suboptimal filters. The same characterization is also given by Takaba and 
Katayama [71] via model matching. 

The H2 control theory for time-invariant systems is well-known and can 
be found in [14, 21, 93]. No extension to time-varying systems seems to be 
available. We have taken the approach in [14]. 



3. D i s c r e t e - t i m e  S y s t e m s  

In this chapter, we take t ime-varying discrete-time systems and consider sta- 
bility, quadratic games, H ~  control, H ~  filtering and H2 control. 

3.1 Stability 

3.1.1 L y a p u n o v  E q u a t i o n s  

Consider 
x(k + 1) = A(k)x(k), x(ko) = xo (3.1) 

where x E R n and A c R n• is a bounded matr ix  of k, i.e., 

I A(k) I< a, Vk k ko for some a > 0. 

Let  S(k, j) is the state transit ion matr ix  of A. Then 

f A ( k - 1 ) A ( k - 2 ) - . - A ( j ) ,  k > j ,  
S(k, J) I, k = j  

and x( k ), V k > ko is given by 

z(k)  = S(k, ko)zo. 

If A is/}-periodic, i.e., A(k + 8) = A(k), then 

S(k + 8, j + 8) = S(k, j). 

If A(k) = A, then S(k, j) = A k- j .  

D e f i n i t i o n  3.1 The system (3.1) (or simply A) is said to be exponentially 
stable on [k0, c~) if 

] S(k , j )  ]< M a  k-j ,  ]or any ko < j <_ k < oo 

for some constants M > 0 and O < a < 1 independent of j and k. (The 
system (3.1) is also called internally stable.) 
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If A(k) = A, then A is stable if and only if the magnitude of every eigenvalue 
of A is less than 1. The following result is well-known. 

P r o p o s i t i o n  3.1 The following statements are equivalent. 
(a) A is exponentially stable. 
(b) There exists a positive definite matrix X satisfying 

X = A ' X A  + I. (3.2) 

(c) There exists a positive definite matrix Y satisfying 

Y = A Y A '  + I. 

The equation (3.2) is called the Lyapunov equation. We now generalize this 
result to the time-varying system. 

P r o p o s i t i o n  3.2 The following statements are equivalent. 
(a) The system (3.1) is exponentially stable. 
(b) There exists a symmetric matrix X ( k )  such that 

(i) Cli < X(k )  < c2I, Vk > ko for some ci >_ 1, i = 1,2, 
(ii) X(k )  = A ' ( k ) X ( k  + 1)A(k) + I. 

(c) }-~j~=s I S ( j , s ) x  12< c t x 12 , Vx, Vs > ko and for some c > 1. 
I f  A is O-periodic, then X is also O-periodic. 

Proof. Suppose (a) holds. Then (c) also holds and 

o o  

x(k) = Z s'(j, k)s(j, k) 
j = k  

is well-defined and uniformly bounded, i.e., X(k)  < cI for some c > 1. Since 

X(k)  >_ S'(k,  k)S(k,  k) = I, 

(i) of (b) has been shown. Since 

o o  

X(k )  = S'(k,  k )S(k ,k )  + ~ (S ( j , k  + 1)A(k) ) 'S( j ,k  + 1)A(k) 
j=k+ l  

= I + A ' ( k ) [  ~ S ' ( j , k + l ) S ( j , k + l ) ] A ( k )  
j=k+ l  

we have (ii) of (b). 
Now assume (b). Then 

x'(k + 1)X(k + 1)z(k + 1) - x ' ( k )X(k )x (k )  

= _ Ix(k)12<- - l x ' ( k ) X ( k ) x ( k )  
C2 
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and 

x'(k + 1)X(k + 1)x(k + 1) _< (1 - 1)x ' ( k )X(k )x (k )  
C2 

which implies 

x'(k)X(k)x(k)  <_ (1 - 1)k-~x ' (s )X(s)x(s ) .  

Using the property (i), we have 

Ix(k) f:< c2(1 - ~ ) k - 8  Ix(s) 12 �9 C1 

Hence 

~ c ~  1 . l , k - s  I S(k,s)  [<_ [(1 - ~22) 2] 

for any k0 < s < k < co. Since (1 - ~)�89 < 1, (a) holds. 
Finally let A(k) be 0-periodic. Then 

oo 

x(k) = ~ s %  ~)s(j, k) 
j=k 

oo 

= ~ - ~ S ' ( j + O , k + O ) S ( j + O , k + O )  
j = k  

= ~ S ' ( j , k  + O)S(j,k + O) 
j = k + O  

= X ( k  + 0). 

Def in i t i on  3.2 
the system (3.1). 

If A is exponentially stable, we can show tha t  any solution of the Lyapunov 
equation coincides with X(k) given in the proof of Proposition 3.2. Hence the 
Lyapunov equation has a unique solution. See Theorem 3.4 for the proof in 
a more general case. 

Consider the adjoint equation of (3.1) 

~(k) = A'(k)~(k + 1), ~ (g )  = ~1. (3.3) 

Let ~(k; N,~I) be the solution of (3.3). 

Def in i t i on  3.3 The system (3. 3) is said to be exponentially stable if 

[ ~(k;N,~l)  [< M a  lv-k [~1 I, for any ko < k < N < co 

for some constants M > 0 and 0 < a < 1 independent of k and N.  

I 

The equation (ii) of (b) is called the Lyapunov equation of 
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Since ~(k; N, ~1) = S' (N, k)~l, the system (3.3) is exponentially stable if and 
only if the system (3.1) is exponentially stable. 

We have a dual result to Proposition 3.2. 

P r o p o s i t i o n  3.3 The following statements are equivalent. 
(a) The system (3.3) is exponentially stable. 
(b) There exists a symmetric matrix Y (k ) such that 

(i) c l I  < Y(k )  <<_ c2I, Vk >- ko for some ci > 1, i = 1,2, 
(ii) Y ( k  + 1) = A(k )Y (k )A ' ( k )  + I, Y(ko)  = I. 

N (c) ~-~j=s I S ' (N , j )~  12< c I ~ 12, Vko < s < N < cx~ and for some c >_ 1. 

Proof. Suppose (a) holds. Then (c) is true and 

k 

Y(k )  = E S ( k , j ) S ' ( k , j )  
j=ko 

is well-defined and uniformly bounded, i.e., Y(k )  < cI, Vk >>_ ko for some 
c >- 1. We Mso have 

Y(k )  >- S(k,  k)S '(k ,  k) = I. 

Hence (i) of (b) holds. Since S'(ko, ko)S(ko, ko) = I and 

k + l  

Y ( k + l )  = E S ( k + l , j ) S ' ( k + l , j )  
j=ko 

k 

= S(k + 1 , k +  1)S'(k + 1,k + 1) + E A ( k ) S ( k , j ) S ' ( k , j ) A ' ( k )  
j ~ k o  

= I + A(k )Y (k )A ' ( k )  

we have (ii) of (b). 
Now assume (b). Then 

and 

( ' ( k )Y (k ) ( ( k )  - ( ' (k  - 1)Y(k - 1)((k - 1) 

=1 ((k)12> l ( ' ( k )Y (k ) ( ( k )  
c2 

- 1 ) Y ( k  - 1) (k - 1 )  <_ ( 1  - 

from which we have 

~'(k)Y(k)~(k) < (1 - 1 ) N - k ~ ' ( N ) Y ( N ) ~ ( N ) .  
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Hence 

I~(k) F2< ~(1 - !)N-kc2 I~1 r 2 
and (a) holds. ! 

D e f i n i t i o n  3.4 The equation (ii) of (b) is called the Lyapunov equation of 
the backward system (3. 3) (or simply the backward Lyapunov equation). 

C o r o l l a r y  3.1 Let A(k) be O-periodic. The system (3.3) is exponentially sta- 
ble if and only if there exists a 0-periodic solution of the backward Lyapunov 
equation with c i i  <_ Y(k)  <_ c2I, Vk >_ ko for some Cl, c2 >_ 1. 
Moreover, the O-periodic solution is unique if A is exponentially stable. 

Proof. We shall show tha t  Y(k  + nO) is increasing in n and hence converges 
to Yo(k) which is 0-periodic. In fact 

k+nO 

Y(k  + nO) = E S(k + nO, j )S ' (k  + nO, j) 
j = k o  

k +nO 

= ~ S(k + (n + 1)O,j + O)S'(k + (n + 1)O,j + O) 
j = k o  

k w ( n + l ) 8  

= Z S(k + (n + 1)0, s)S'(k + (n + 1)O, s) 
s=ko+O 

k + ( r t + l ) O  

<_ ~_, S(k+(n+l)O,s)S'(k+(n+l)O,s) 
s-~ko 

= Y ( k  + (n + 1)0). 
Let Yo(k) be the limit of Y(k  + nO) as n ---* c~. Then 

Yo(k+O) = lim Y ( k + n O + O )  
n ""* O0 

= lim Y(k  + (n + 1)0) = Yo(k). 
n -'-* O0 

For the proof of uniqueness, see the proof of Theorem 3.4. | 

Consider 

x(k + 1) = A(k)x(k) + B(k)u(k), (3.4) 

y(k) = C(k)x(k) +D(k)u(k)  

where x E R n, u E R m2, y E R p2 and A, B, C, D are bounded matrices of 
appropriate  dimensions. Then x(k)  with x(ko) = x0 is given by 

k - 1  

x(k) = S(k, ko)xo + E S ( k , j  + 1)B(j)u(j)  
j = k o  
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and 

k - 1  

y(k) = C(k)S(k,  ko)xo + C(k) ~ S ( k , j  + 1)B(j )u( j )  + D(k)u(k).  
j = ko 

Def in i t i on  3.5 The system (3.4) is said to be input-output stable (or simply 
lO-stable) on [ko, co) if for x(s) = O, s > ko and any u �9 12(s, o c ; R  m2) 

y � 9  c o ; R  p2) and [[Yii2_<ci[u[[2 

for some c > 0 independent of s. 

Def in i t i on  3.6 (a) The pair (A, B) is said to be stabilizable on [ko, co) if 
there exists a bounded matrix K(.) such that A + B K  is exponentially stable 
o n  [ko, co). 
(b) The pair (C, A) is detectable on [ko, oc) if there exists a bounded matrix 
J(.) such that A + J C  is exponentially stable on [k0, co). 
(c) I f  (a) and (b) hold, the system (3.4) or (A, B, C) is said to be stabilizable 
and detectable. 

P r o p o s i t i o n  3.4 Suppose that (A, B, C) is stabilizable and detectable on 
[k0, co). Then the system (3.4) is exponentially stable if and only if it is IO- 
stable. 

Proof. It is enough to show sufficiency. Without loss of generality, let D -- 0. 
First we shall show C(k)S(k ,s )xo  �9 12(s, c o ; R  p2) for any xo �9 R n. Since 
(A, B) is stabilizable, there exists a bounded matrix K(-) such that  the system 

x(k + 1) = (A + B g ) ( k ) x ( k ) ,  x(s) = xo (3.5) 

is exponentially stable and hence x �9 12(s, co; Rn). Now 

x(k + 1) = A(k)x(k)  + B ( k ) g ( k ) x ( k ) ,  x(s) = xo 

k - 1  

x(k) = S(k,s)xo + ~-~ S ( k , j  + 1 )B( j )K( j )x ( j ) ,  
j = s  

k--1 

C(k)x(k)  = C(k)S(k ,  s)xo + C(k) Z S (k , j  + 1 )B( j )K( j ) x ( j ) .  
j ~ $  

Since (3.4) is IO-stable 

k - 1  

C(k) ~ S ( k , j  + 1 ) B ( j ) g ( j ) x ( j )  e 12(s, oo; R p2) 
j = s  

and we have 
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and hence C(k)S(k, s)xo E 12(s, oo; R p2) and II C(k)S(k, s)xo 112< c I xo I for 
some c > 0 independent of s and x0. Since the system 

x(k + 1) -- A(k)x(k), x(s) = xo 

is equivalent to 

x(k + 1) = (A + LC)(k)x(k) - L(k)C(k)x(k),  x(ko) = Xo 

where L(.) is a bounded matrix such that  A + LC is exponentially stable. 
Then we have 

k - 1  

x(k) = SL(k, s)xo + ~ SL(k , j  + 1)n(j)C(j)x(j)  

where SL(k, j)  is the state transition matrix of A + LC. Since 

C(k)x(k) = C(k)S(k, s)xo, 

x E 12(s, oo; R n) and II x 112<- c I x0 I, which implies (3.4) is exponentially 
stable. | 

P r o p o s i t i o n  3.5 (a) Suppose that (C,A) is detectable. Then the system 
(3.4) is exponentially stable if and only if there exists a bounded nonnega- 
tire solution to 

X(k)  = A' (k)X(k  + 1)A(k) + C'(k)C(k). (3.6) 

(b) Suppose (A, B) is stabilizable. The system (3.4) is exponentially stable if 
and only if there exists a bounded nonnegative solution to 

Y(k  + 1) = n(k)Y(k)A' (k)  + B(k)B'(k) ,  Y(ko) = O. (3.7) 

Proof. We shall show (a) only. If A is exponentially stable, 

go 

x(k) = ] ~  S'(s, k)c'(s)c(s)S(s, k) 
s-~ k 

is a bounded nonnegative solution of (3.6). Conversely, let X(k)  be a bounded 
nonnegative solution of (3.6) and x(k) = S(k, s)xo. Then 

�9 ' (k  + 1 ) x ( k  + 1 ) ~ ( k  + 1) - ~ ' ( k ) X ( k ) ~ ( k )  - -  - I C ( k ) ~ ( k )  I ~ 

and 

N 

x ' (N  + 1)X(N + 1)x(N + 1) + ~ I C(k)x(k) 12-= x~oX(s)xo . 
k = s  
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Hence C(k )S (k ,  s)xo E 12(s, oc; R p~) with II C(k )S (k ,  s)xo ll2< c I xo t for 
some c > 0 independent of s and x0. As in the last part  of the proof of 
Proposition 3.4, we can show x e 12(s, o0; R n) with II x 112_< c I x0 I for some 
c > 0 independent of s and xo. Y ( k )  given by 

k - 1  

Y ( k )  = E S(k,  s + 1 )B( s )B ' ( s )S ' ( k ,  s + 1) 
s=ko 

is a bounded nonnegative solution of (3.7). 

If the system is time-invariant, the equation (3.6) is reduced to 

X = A I X A  + C C  (3.s) 

and its solution is called the observability gramian. The equation (.3.7) is 
reduced to 

Y = A Y A '  + B B '  (3.9) 

and Y is called the controllability gramian. 

R e m a r k  3.1 Proposition 3.2 is a special case of Proposit ion 3.5 (a) since 
(I, A) is detectable. 

3.1.2 P e r f o r m a n c e  M e a s u r e s  o f  S t a b l e  S y s t e m s  

Consider the system G: 

x(k  + 1) = A(k )x ( k )  + B ( k ) w ( k ) ,  (3.10) 

z(k)  = C ( k ) x ( k )  + D ( k ) w ( k )  

where x E R n, w E R TM, z E R p~, A, B, C, D are bounded matrices of 
appropriate dimensions and A is exponentially stable. First  we assume tha t  
the system is time-invariant and recall the following definitions. 

D e f i n i t i o n  3.7 The H2-norrn of the system G, denoted by II G 112 is 

IIGI12 = [ I C A k - l U e ~ l  2 + I D e a l  2] 

( 1)' = tr. B ' ( A ' ) k - I C ' C A k - I B  + D ' D  
\ k = l  

where (e~) are unit vectors in R TM . 
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II G [[2 can be regarded as the total  energy of impulse responses. Let G(z) be 
the transfer function of the system so that  G(z) = C ( z I  - A ) - I B  + D. Then 
via Fourier transform we have 

[[ G i[2= [ 2 ,  J0 tr'[G*(eJe)G(eJ~ (3.11) 

where G*(-) is the Hermitian transpose of G(.). We also have the following. 

L e m m a  3.1 

I[ G [[22= t r . [ B ' X B  + D'D] = t r . [CYC'  + DO'] 

where X , Y are observability- and controllability gramians respectively of the 
system given by (3.8) and (3. 9). 

Def in i t i on  3.8 The Hoe-norm of the system G, denoted by [[ G [ioo is given 
by 

IIGil r sup llzli  
]l w II " 

[[ G I[o~ is the supremum of the ratio of the energies of the output  and input. 
As is known 

II G supo[G( ~ (3.12) 
0 

where a ( M )  is the maximum singular value of the matrix M. The Hu- and 
H~-norms of transfer functions G(z) are defined by (3.11) and (3.12). 

The following result is known as the Bounded Real Lemma. 

L e m m a  3.2 The following statements are equivalent. 

(a) II G lion< % 
(b) There exists a nonnegative solution X to 

T1 > O, 

X = A ' X A + C ' C + R ~ T ~ I R 1  

such that A + B T ~  I R1 is exponentially stable where T1 = ~I2 I - D~ D - B~ X B 
and R1 = B ~ X A  + D~C. 
(c) There exists a nonnegative solution Y to 

T1y > 0, 

Y = A Y X  + B B '  + R~yTIyXRIv 

! --1 such that A + R i y T i y  C is exponentially stable where T1y = "y2I - D l Y  - 
C Y C  I and R I y  = C Y A  ~ + D B ' .  
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Now we generalize Definitions 3.7 and 3.8 to time-varying systems. 

Definition 3.9 The H2-norm of the system G on [s, oo) is defined by 

[I G 2 1 rn, k o + N - 1  
Ih,ko = g-.oolim ~ E [  E {I C(k)S(k,s + 1)S(s)e, 12 

i=1 s=ko k = s + l  

+ [ D(s)ei 12}1 
k o + N - 1  

= limoo ~tr.[1 ~ {B'(s) ~ S' (k , s+ 1)(C'C)(k) 
s=ko k = s + l  

xS(k, s + 1)B(s) + (D'D)(s)}]. 

For O-periodic systems 

II GIllo 
1 ko+O- 1 

~ tr.[B'(s) S'(k,s + 1)(C'C)(k) 
s=ko k = s + l  

xS(k, s + 1)B(s) + (D'D)(s)]. 

Note that two norms above coincide for 0-periodic systems. 

Remark  3.2 Note that 

II G = II~,ko 
k o + N - 1  k o + N  

E {B,(s) E s,(k,s § 1)(c,c)(k) 
s=ko k = s + l  

xS(k, s + 1)B(s) + (D'D)(s)}. 

and 

II G = Ili~o 
k o + N - 1  k o + N  

li~moo N tr'[ E { ~ C(k)S(k,s + 1)(BB')(s) 
s=ko k = s + l  

xS'(k,  s + 1)C'(k) + (DD')(s)}] 
k o + N  k -  1 

lim Ntr.[ E {C(k) E S(k,s + 1)(BB')(s) 
lq ---* oo 

k=ko+l  s=ko 

xS ' (k ,s  + 1)C'(k) + (DD')(k)}] 

where we have used the property of the trace and 

k o + N - 1  k o + N  k o + N  k - 1  

E E = E E  �9 
s=ko k = s + l  k = k o + l s = k o  
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From the last equality, II G 112,ko is equal to the H2-norm of the backward 
system G* 

it(k) = A'(k)~(k + 1) + C'(k)~(k), (3.13) 

5(k) = B'(k)~2(k + 1) + D'(k)~(k). 

Let 5(k; s, i) be the impulse response of (3.13) with @(s) = ei where (e,) 
are unit vectors in R pl. Then 

D'(s)e,, k : s, 
5(k;s,i) = B'(k)S'(s ,k  + 1)C'(s)ei, k < s, 

O, k > s .  

Def in i t i on  3.10 The H2-norm of the backward system G* is defined by 

[[ G* [12 2= lim 1 pl ko+N-1 oo I s, i)12}: 
i=1  k=ko s=ko 

Then clearly 

1 ~ ko+N k-1 
II a* [[2 : limoo_N ~ E [ Z  I B'(s)S'(s ,k  + l)C'(k)e{ 12 

i=l  k = k o + l  s=ko 

+ [ D'(k)e,  j2] 

k o + N - 1  

H G H2,ko2 = li~moo l t r ' [  E B'(s)X(s + 1)B(s) + (D'D)(s)] 
s=ko 

ko+ N 

s = k o + l  

where X and Y are the observability and controllability gramians of the sys- 
tem (3.10) given by (3.6) and (3.7), respectively. Moreover, for O-periodic 
systems X is O-periodic and 

1 ko+O-  1 

]] G I]~,o = -~ Z tr.[B'(s)X(s + 1)B(s) + (D'D)(s)] 
8=ko 

1 ko+O- 1 

= -0 Z tr.(CYoC' + DD')(s) 
s=ko 

where Yo is the O-periodic solution of (3. 7). 

and II G* }12,ko=ll G ll2,ko- 

L e m m a  3 . 3  
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D e f i n i t i o n  3.11 The Hoe-norm of the system G is that of the map w -~ z : 
12(ko, oc; R ml) --+ 12(k0, co; RPl). 

To generalize the bounded real lemma we need to consider a quadratic 
optimization problem. But we first introduce the standard quadratic control 
problems. 

3.1.3 Q u a d r a t i c  C o n t r o l  

Consider the system 

x(k  + 1) = A(k)x(k)  + B(k)u(k) ,  x(ko) = xo 

where x E R n, u E R T M  and A, B are bounded matrices of compatible 
dimension. For this system we introduce the functional 

N 

JN(u;ko, xo) = E [I C(k)x(k)12 + l u(k)12]+ I F x ( N  + 1)12 
k=ko 

which is minimized where F E R qx'~ and C E R p2• are unifomly bounded. 
We need the following Riccati equation 

X ( k )  = A ' ( k ) X ( k  + 1)A(k) + C'(k)C(k)  

- (R2T~ 1R2)(k), (3.14) 

X ( N  + I) = F'F (3.15) 

where T2(k) ~- I + B ' ( k ) X ( k  + 1)B(k) and R2(k) = B ' ( k ) X ( k  + 1)A(k). 

T h e o r e m  3.1 There exists a unique nonnegative solution X = XN(k )  to 
the Riccati eqaution (3.14) and (3.15). Moreover, the state feedback law 

~(.) = - (T~IR2) ( . ) x ( . )  

is optimal and 

J~(a ;  k0, s0) = x'oX(ko)~o. 

We omit the proof of this theorem. Instead we shall give a proof for a similar 
problem (3.39). See Lemma 3.8. 

Now consider the infinite horizon problem 

x(k + 1) = A(k)~(k) + B(k)u(k) ,  x(s)  = z0, 
oo 

J(u; s, x0) = :~--~[I C(k)~(k)I ~ + lu(k)12] 
k = s  

s >  k0, 
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where u E 12(s, co; R m2) is admissible if its response x E 12(s, co; R " )  and 
l imk_.~ x(k) = O. As in the continuous-t ime case we assume the following 
condition. 

R D :  We assume tha t  for each (s, x0) there exists a control u(.; x0) such tha t  
J(u(., x0); s, xo) < c(xo) for some constant  c independent  of s. 

If  (A, B) is stabilizable, then R D  holds. 

L e m m a  3.4 Assume that R D  holds. Then there exists a bounded nonnega- 
tive solution to the Riccati equation (3.14). 

Proof. By Theorem 3.1 there exists a nonnegative solution to (3.14) on 
[k0, N + 1] with X ( N +  1) = 0. Then for any s > ko, XN(S) <_ X~7(s) if 
s < N < fi/. In fact let 

fiN(') = -(T21R2)( ' )x(")  

then 

z'oXN (s)zo = JN( fN;S ,  Xo) 

JN((t1~; S, ZO) 

_< J ~ ( ~ ;  s, zo)  = z'oX~(s)zo 

where we set F = 0 in JN and f i r  in J ~  is the restriction of the feedback 
law ~iR(') to [s, N]. We note tha t  

xloXN(S)Xo = JN(fiN;S, Xo) 
<_ JN(U(';zo);s, xo) 
< J(u(- ;  zo); s, :co) < co. 

Hence x~oXN(s)xo is monotone increasing and uniformly bounded in s and 
N.  Since x0 is arbitrary,  there exists a bounded nonnegat ive mat r ix  X such 
tha t  

XN(s)  ~ X( s )  for any s. 

Then X satisfies the Riccati equation (3.14). | 

L e m m a  3.5 Suppose ( C, A) is detectable. Then A -  B T~  I R2 is exponentially 
stable. 

Proof. The Riccati equation (3.14) can be wri t ten as 

] X(k) = (A - B r ~ R ~ ) ' X ( k  + 1 ) ( A  - B T ~ R 2 )  + ~_ .u2  I 
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Hence, if x is the solution of the s ta te  feedback system 

x(k + 1) = (A - BT~lR2)(k)x(k), x(s) = xo 

then as in the proof of L e m m a  2.6 we can show 

[ T2CR2 ] x E /2(s, cx~; Rp2+m2) 

and tha t  

,, [ C T~ R2 ] x l'2 <- c ' x~ ' f~ s~ c > O" 

Since (C, A) is detectable,  it is easy to see tha t  ( T~_IR 2 , A - BT~IR2) 

is also detectable. Hence by Proposit ion 3.5, A - BT~IR2 is exponentially 
stable. | 

We say tha t  X is a stabilizing solution of the Riccati equation (3.14) if 
A - BT~ 1R2 is exponentially stable. 

T h e o r e m  3.2 Suppose (C, A) is detectable and that R D  holds. Then there 
exists a bounded nonnegative stabilizing solution of (3.14). Moreover the feed- 
back law 

fi(.) = -(V21R2)(.)x(.) 

is optimal and 
J(~;  s, z0) = x~oX(s)xo . (3.16) 

If A, B and C are O-periodic, then X is also O-periodic. 

Proof. The first par t  follows from Lemmas  3.4 and 3.5. Since 

x'(k + 1)X(k + 1)x(k + 1) - x'(k)X(k)x(k) 
1 

= - ( ]  C(k)x(k)12 + lu(k)12)+ I T2~(k)[u(k) + (T~lR2)(k)x(k)] 12, 

we obtain 

z ' (N + 1 ) X ( N  + 1 )z (N + 1) + JN(u; s,xo) 
N 

= x~oX(s)xo + ~-~[T~(k)[u(k) + (T2'n2)(k)x(k)] ]2 
k = s  

where u is an admissible control and x is its response. Since 

x ' (N + 1 ) X ( N  + 1 )x(N + 1) --* 0 as N --~ oo, 

we obtain 

oo  

g(u; s, xo) = x'oX(s)xo + ~ I T~(k)[u(k) + (TflR2)(k)x(k)] ]2. 
k = s  
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Hence the optimality of fi and (3.16) follow immediately. 
By Lemma 3.4, the bounded nonnegative stabilizing solution X of (3.14) 

is constructed as l i m N _ ~  X g ( k )  where XN(k)  is the solution of (3.14) with 
X N ( N  + 1) : 0. If A, B and C are 0-periodic, XN(k  + O) = XN-o(k) .  Hence 

X ( k  +O) = lim XN(k  +O) = lira XN-o(k)  = X(k) .  I 
N ---* ~v  N ---* or 

C o r o l l a r y  3.2 C A, B) is stabilizable if and only if there exists a control 
u(.; s, xo) for each s and xo such that 

II x IIg + II u II < c(x0)  

for some constant C(Xo). 

Proof. We only need to show sufficiency. Consider the regulator problem with 
C -- I. By  Theorem 3.2 A - BT21R2 is exponentially stable where X is the 
bounded nonnegative solution of the Riccati equation (3.14) with C -- I.  | 

Consider the backward system 

~(k) = A'(k)~(k + 1) + C'(k)v(k),  ~(N + 1) = ~1 

and the functional 

N 

J(u; g + 1, ~I) = ~ [[ B'(k)~(k + 1) [2 + ] v(k) 12]+ I H'~(ko) [2 
k = k o  

which is minimized. As in Theorem 3.1 we consider 

Y ( k  + 1) = A(k )Y(k )A ' (k )  + B(k )B ' (k )  - (R'2yT2~R2y)(k), (3.17) 

Y(ko) = H H '  (3.18) 

where T2y(k) = I + C(k )Y(k )C ' (k )  and R2y(k) = C(k)Y(k)A ' (k ) .  Then 
similarly to Theorem 3.2 and Corollary 3.2 we have the following result. 

T h e o r e m  3.3 (a) There exists a nonnegative solution of the Riccati equation 
(3.17) and (3.18) on any [k0, Y + 1]. 
(b) Let H : 0 and suppose there exists a control v(.; N + 1, ~1) such that 

I[ 2 2 [],2(ko,y+l;Rm2) + II V 

for some constant c(~l ). Then the solution of the Riccati equation (3.17) with 
Y(ko) = 0 is bounded. If, further, (A, B) is stabilizable, then A - R~yT2~C 
is exponentially stable. 
(c) ( C, A) is detectable if and only if there exists a control v(.; N + 1, ~1) such 
that 

I I ~  2 2 <= 

for some constant c(~1). 
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We say tha t  a bounded nonnegative solution Y of the Riccati equation 
(3.17) is stabilizing if A , -1 - R2yT2y C is exponential ly stable. 

C o r o l l a r y  3.3 Let A, B and C be O-periodic. Let Y be a bounded nonnega- 
rive stabilizing solution Y of (3.17) with Y(ko) = O. Then limn--.oo Y(k  + nO) 
exists (denoted by Ya) and Yo is a O-periodic nonnegative stabilizing solution 
of (3.17). 

Proof. I t  is enough to show tha t  Y(k  + nO) is monotone increasing in n. 
Let Y(k; Y(ko)) be the solution of (3.17) with initial condition Y(ko) >_ O. 
Then Y(k)  = Y(k;O). Since A, B and C are 0-periodic, we have Y(k)  = 
Y(k  - nO, Y(nO)) for nO < k < (n + 1)0. Hence 

Y(k  + 20) = Y ( k  + O, 1"(0)) >_ Y (k  + O, O) = Y ( k  + 0). 

Similarly, we have 
r ( k  + (n + 1)0) > Y(k  + nO) 

and Y(k  + nO) is monotone increasing in n. Since Y is bounded,  there exists 
a limit Yo(k) of Y(k  + nO) as n ~ co. Note tha t  

Yo(k)= lim Y(k+nO)  = lira Y ( k + O + ( n - 1 ) O )  = Y 0 ( k + 0 ) .  
glt " " #  O 0  "11,---4" 0~3  

Hence Yo(k) is 0-periodic. Since 

Y(k  + 1 + nO) = A(k)Y(k  + nO)A'(k) + B(k)B'(k)  + (R'2yT2~ R2y)(k + nO), 

taking the limit n --* cr on the bo th  side, Yo(k) satisfies (3.17). 
Next we shall show the stabilizing proper ty  of Yo. Let k0 < N < oo be 

arbi t rary  but  fixed. Let  xo be solution of 

x(k + 1) = (A - R2y~T~,oC)(k)x(k), x(ko) = Xo. (3.19) 

Consider 
x(k + 1) = (A - R2yT2~,C)(k)x(k), x(ko) = xo. 

and denote by xn(k) the solution at  k + nO. Then  

z ,~(k+l)  = x ( k + n O + l )  

= ( A -  R2yT21~C)(k + nO)x(k + nO) 

= [A(k) - (R2yT~.) (k  + nO)C(k)]xn(k) 

and we have 
lira = k e [k0, N] .  

n - - ~ O O  

Since Y is stabilizing 

N 

Ix~(k)  l 2 d t < c i x 0 [ 2  for a n y n  
k=ko 



3.1. Stabil i ty 111 

where c > 0 is a constant  independent  of N.  Hence we obtain 

N N 

I x (k) ? at = 2imoo F_, I x,,(k) 12 at < Ixo ?. 
k : k o  k=ko 

Since N is arbitrary,  the system (3.19) is exponential ly stable. 
Suppose Y(k ;  H ' H )  is a bounded nonnegative stabilizing solution of (3.17). 

Then lim~-~oo Y ( k  + nO; H ' H )  = Yo(k) by Theorem 3.4 below. | 

As in the continuous-t ime case we have the following proper ty  for the 
stabilizing solutions. 

T h e o r e m  3.4 (a) A bounded stabilizing solution of  (3.14), i f  one exists, is 
unique. 
(b) Let Y and Y be two stabilizing solutions of  (3.17). Then 

Y ( k )  - ]Z(k) --* 0 as k --* oo. 

Proof. (a) Let X and .~ be two stabilizing solutions of  (3.14). Then by direct 
calculation we have 

(A - B T 2 1 R 2 ) ' ( k ) ( X  - f ( ) ( k  + 1)(A - BT~-I/~2)(k) = X ( k )  - f ( ( k )  

where T2(k) = I + B ' ( k ) f ( ( k  + 1)B(k) and /~2(k) - B ' ( k ) f ~ ( k  + 1)A(k). 
Hence 

X ( k )  - f ( ( k )  = S ' x (N ,  k ) ( X  - f ( ) ( N ) S c ,  (N,  k) 

where S x  and SR are the s ta te  transit ion matr ices of A - B T 2 1 R 2  and 
A - BT2-1/~2, respectively. Hence 

[ X(k )  X ( k )  I ~  N - k  N - k  -- M l  a I cM20~ 2 

for some constants Mi > 0, 0 < a i  < 1, i = 1, 2 and c > 0. Let t ing N --* oo 
we obtain X ( k )  - f ( ( k )  = O, Vk > ko. 
(b) Since 

Z ( k  + 1) - Y(k + 1) = (A - R ~ 2 y T 2 ~ C ) ( k ) ( Y  - ~ ' ) ( k ) (A  - ft '2yi'2y1C)'(k) 

we have 

Y ( k )  - ~'(k)  = S y ( k ,  k o ) ( Y  - Y ) ( k o ) S ~ ( k ,  ko) 

where T2y(k) : I + C ( k ) Y ( k ) C ' ( k ) ,  /~2y(k) = C(k ) ]Z (k )A ' ( k )  and S y  and 
S?  are the s ta te  transit ion matr ices of A - R~2yT21C and A -/~.~T2-y1C, 
respectively. Hence Y ( k )  - ~ '(k)  --* 0 as k --4 00, since A - R ' 2 y T ~ ) C  and 
A - ,  - - 1  -- R 2 y T 2 y  C are exponential ly stable. | 
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Consider the system G: 

x(k + 1) = A ( H x ( H  + B~(k)w(k) + B2(k)~(k), x(ko) = x0, 

z(k) = Cl(k)x(k) + n l l (k )w(k)  + n,2(k)u(k), 

y(k) = C2(k)x(k) + D21(k)w(k) 

and the controller u = Ky of the form 

~(k + 1) = 4(k)~(k) + B(k)y(k), ~(k0) = 0, (3.20) 

u(k) = d(k)~(k) + b(k)y(k).  

Then the closed-loop system (~ and u = Ky  is given by 

_-[o0], 
z(k) = [Cl + D~2bC~ 

Def in i t ion  3.12 Consider the system G on [ko, ~ ) .  A controller u = Ky  of 
the form (3.20) is said to be IO-stabilizing if the closed-loop system (3.21) is 
IO-stable. If, further, the closed-loop system is exponentially stable (or 

is exponentially stable) then the controller is said to be internally stabilizing. 

(3.21) 

D120] [ ; l  (k) + D12JDD21w(k). 

P r o p o s i t i o n  3.6 Consider the system G and the controller u = Ky  of the 
form (3.20). If the controller is internally stabilizing, then (A, B2, C2) and 
( A, B, C) are stabilizable and detectable. 

Proof. Let [~]  (k)be  the solution of 

Then by assumption x, & E 12. Rewriting (3.22) as 

z(k + 1) = A(k)z(k) + B2(k)(bC2x + B : ~ ) ( k ) ,  z(ko) = xo, 

~(k + 1) = 4(k)~(k) + h(k)(C2x)(k),  ~(k0) = 0 

and applying Corollary 3.2 we conclude that  (A, B2) and (4,/~) are stabiliz- 
able. The detectability of (C2, A) and (C, A) follows from the adjoint system 
of (3.22) and Theorem 3.3, | 
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3.1.4 

Consider the system G: 

x(k  + 1) 

z(k) 
Zl 

with initial condition 

D i s t u r b a n c e  A t t e n u a t i o n  P r o b l e m s  

= A(k )x ( k )  + B(k )w(k ) ,  (3.23) 

= C(k )x (k )  + D(k )w(k ) ,  

= F x ( Y +  1) (3.24) 

x(ko) = H h  (3.25) 

where x E R n, w E R ml, z E R pl, Zl E R q, h E R TM, H E R n •  F E 
R qxn and other matrices are uniformly bounded of compatilbe dimensions. 
For each input (h ,w)  E R TM • 12(ko, N ; R  TM) we have the output  (zi ,z)  E 
R q • N; RP~). Thus we can define the input-output operator GNko of 
the system (3.23)-(3.25) 

(z:) 
G2Nko 

where 

(3.26) 

N 

j =ko 

k-1  

G2Nko 
j=ko 

+ n ( k ) w ( k ) .  

Then GNko E ~.(PL TM • N; Rml);  R q • N; RPl)). We regard (h, w) 
as the disturbance and for a given "y > 0 we wish to find necessary and 
sufficient conditions for ]] GNko ]]< % i.e., 

] Zl ]2 + ]] z I]22< d2(I h ]2 + ]] w t]2), for some 0 < d < % (3.27) 

If (3.27) holds, the system G is said to fulfil the ~/-disturbance attenuation. 

The adjoint G~Cko of GNko is given by 

where 

( (k )  = A ' ( k ) ( ( k  + 1) + C ' ( k ) v ( k ) ,  

~(k) = B ' ( k ) ( ( k + l ) + D ' ( k ) v ( k ) ,  

( ( N + I )  = F ' I ,  

~o = H'~(ko). 

(3.29) 
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Since I] G~ko []=H GNko [[ by Theorem A.2, (3.27) is equivalent to 

I~0 12 + II C liP- d2(I f 12 + [I v liP). (3.30) 

To give necessary and sufficient conditions for II GNko I1< 7, we need the 
Riccati equations 

and 

Tl(k) > aI for some a > 0, (3.31) 

X(k)  = A 'X(k  + 1)A + C'C + (R~T11R1)(k), (3.32) 

X ( N  +1) = F'F, (3.33) 

H'X(ko)H <_ d2I for some 0 < d < ~f (3.34) 

T1v(k) > aI for some a > 0, (3.35) 
! --] 

Y(k  + 1) = AY(k )A '  + BB '  + (R1yTly R1v)(k), (3.36) 

Y(ko) = HH',  (3.37) 

F Y ( N  + I)F'  < d2I for some O < d < ~f (3.38) 

where 

Tl(k) = "721 - D'D - B ' X ( k  + 1)B, Rl(k) = D'C + B ' X ( k  + 1)A, 
T1y(k) = 72I - DD' - CY(k)C' ,  R iy (k )  = DB'  + CY(k)A '  

and for simplicity we have omitted k in all matrices of (3.23). 

To give the solution of this problem, we introduce the following functional 

N 
g(w;ko, xo)= ~ [ I z ( k )  12 ~f2 Iw(k) [ 2 ] + [ F x ( g + l ) ] 2  (3.39) 

k=ko 

subject to 

x(k + 1) = A(k)x(k)  + B(k)w(k) ,  x(ko) = xo, 

z(k) = C(k)x(k)  +D(k)w(k)  

and consider the maximization of J(w; k0, x0) over all w E 12(ko, N; Rml). 
Let 

- -  

(0) 
GiNko w = GiNko ZV 

L e m m a  3 .6  

[[ G2Ls  [[<~[[ V2Nko [[, ]] Ggs [[~[[ GNko H, for any 0 < ko < s < L <_ N. 
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Proof. We shall show only the first inequality. Let @ be the extension of 
w E 12(s,L;R ml) to [k0, N] by zero, i.e, 

k = k o , . . , s - 1 ,  ~ ( k ) = O ,  
@(k) = k = s, .., L, @(k) = w(k), 

k = L +  l , . . , g ,  @(k) = 0. 

Then we have 

G2L,WII2 = 
L k-1 

] C(k) ~ S (k , j  + 1)B(j)w(j) + D(k)w(k) 12 
k=s j= i  

N k - 1  

< ~ [ C(k) ~-~S(k , j  + 1)B(j)@(j) + D(k)@(k) [2 
k=ko j = i  

= II e 2 N k o  ~) I12 
-< II G2gko 11211 ~ II~=ll G2gko 11211 W II~- 

Consider the maximizat ion problem (3.23)-(3.25) and (3.39) with k0, N 
replaced by arbi t rary  s, L, ko < s < L < N.  

L e m m a  3.7 Assume II GNko I1< 7. Then]or any ko < s < N, J(w;s,  xo) is 
strictly concave in w and there exists a unique optimal maximizing element 
WNs E 12(s, N; Rml ) .  Moreover 

II WNsII2 <- ~lxo I, J(WNs;S, XO) <_ g ] x o  [2 
for some 5 = 5(7) > 0 independent of s and xo. 

Proof. By Lemma 3.6, r[ GN~ [l< 7 for any ko < s < N.  Hence 7 2 I -  
G*NsGN~ > aI for some a > 0 and the quadratic functional J(w; s, xo) is 
strictly concave and J(w; s, xo) --* -0o as II w [[2--* oc. Then there exists a 
unique opt imal  WN~ for J(w; s, Xo) which is given by 

F S ( N  + 1, s)xo (721 -* - - GN, GNs)W = G*Nszo, zo(k) = C(k)S(k,s)xo ,] 

Hence 

Thus we have 

W N  s (721 -* - -1 -* = -- GNsGNs ) GNsZO. 

II WNsII2 ~ g lx0 I 
for some g independent of s and x0. | 

L e m m a  3.8 Suppose H GNko ]1 < 7. Then there exists a nonnegative solution 
X (k ), k = ko, .., N + I  to (3.31)-(3.33). The optimal control for (3.39) isgiven 
by the feedback law 

WNko(') = (T~IR1)(')x(") 

and 
J(WNko; k0, x0) -- xloX(ko)xo �9 
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Proof. First  we set k0 = N and x(N)  = 0. Then  It a N N  II < ~[ is equivalent to 

42 { w(N)12 >_ t Zl 12 + I z(N) 12 

= IFB(N)w(N)12  +ID(N)w(N)12  

which implies tha t  
T1 (N) > (../2 _ d2)i 

and we can define X(N)  by (3.32). Now we assume that  (3.31) and (3.32) are 
t rue for k = N, ..., j + 1, j > k0. Then  X(k) ,  k = N + 1,.., j + 1 is well-defined. 
Fur thermore  we obtain 

N 

~_~ [t z(k) 12 -72 I w(k) 12]+ I zl 12= x'( j  + 1)X(j  + 1)x(j + 1) 
k = j + l  

N 
1 

- y ~  I [ T ~ ( w - T c l R l x ) l ( k ) 1 2  �9 
k = j + l  

Now we consider 

x(k + 1) 
z(k) 

= A(k)x(k) + B(k)w(k), x(j) = O, k > j, 
= C(k)x(k) + D(k)w(k). 

Then II GNj II < "Y implies 

N N 

~_,4 2 I w(k)12> ~_, [z(k)12 + l Z l  12 
k=j k=j 

and 
N 

d21w(j)  12>l z(j) 12+ ~ [I z(k)12 - d  2 l w(k) 12]+lzx 12 
k~-j+l 

for any w E 12(j, N ; R m l ) .  Hence we have 

N 

d2 I w(J) 12 > I z(j) 12 + mwaX { ~ [I z(k) 12 _,),2 i w(j  ) ]2]+ I Zl 12} 

k = j + l  

= I z(j) 12 +xt(j + 1)X( j  + 1)x(j  + 1) 

= I D(j)w(j)  12 +w' ( j )B ' ( j )X( j  + 1)B(j)w(j) 

which implies 
TI(j) > (72 - d 2 ) I  

and we can define X(j) .  Since 

N 

J(w; s ,x (s ) )= x'(s)X(s)x(s)  - ~--~ [ [ T # ( w -  Ti-lRlxl](k) {2, 
k~s 
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we have 

x ' ( s )X(s )x (s )  = max J(w; s, x(s)) = J(wgs;  s, x(s)) 

where WNs(k) = (T~lR1)(k)x(k) .  I 

We are now ready  to give the  solut ion of  our  original problem. 

T h e o r e m  3.5 The following statements are equivalent. 
(a) I] aNko [1< 3`. 
(b) There exists a nonnegative solution to (3.31)-(3.34). 
(c) There exists a nonnegative solution to (3.35)-(3.38). 

Proof. Suppose  (a) holds. Then  II ONko II< 3` and (b) except  (3.34) follows 
from L e m m a  3.8. Moreover  for (3.23) and (3.32) the  following equal i ty  holds: 

I zl [ 2 + [ [ z [ I  2 = 3, 2 [ [ w l l  2 + h ' H ' X ( k 0 ) H h  

- 11T[�89 w - TI-IR1 x) 112 . (3.40) 

Set t ing w = T ~ I R l x  and using (3.27) we obta in  

d2(I h [ 2 + [[ w 112) >- 72 [I w I[ 2 +h 'H 'X(ko)Hh .  

Hence d 2 ] h 12> h ' H ' X ( k o ) H h  which implies (3.34). 
Conversely suppose  (b) holds. Then  by  (3.40) 

[z l  [ 2 +  [[z [[2 _< 3,2 [ [ w [ [ 2 + d 2 ]  h [2 - ' } ' 2  [[r [[2 2 

< 3`2(I h [2 + [[ w 112) - (3`2 _ d2)(i h 12 + II r I1~) 

where  r -- T~(w  - T~-IRlX). Since there  exists a > 0 such tha t  

[h  [2 + [[ w [[22_< a([ h [2 + [] r [[2), 

we have 

I zi 12 + II z 112 
3̀ .,/2 _ d 2 ]2 

_< 3`2([ h ]2 + II w Ih 2) - -  (I h + I[ w If 2) 
a 

3`2 _ d 2 [ 2 
= (3`2 - - ) ( $ h  +Jlwl l~)-  

a 

Hence II GNko H < 3`" The  equivalence of  (a) and (c) also follows since (c) is 
the  dual of  (b) concerning the adjoint  (3.29) of Ggko. | 

If the  initial condit ion is known, we can set h = O. 

C o r o l l a r y  3 .4  The following statements are equivalent. 
(aM I1 r IJ < 3`. 
(b) There exists a nonnegative solution to (3.31)-(3.33). 
(e) There exists a nonnegative solution to (3.35), (3.36) and (3.38) with 
Y(ko) = O. 
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We now consider the system G: 

x(k + 1) = A(k)x(k) + B(k)w(k), 

z(k) = C(k)x(k) + n(k)w(k),  

x(ko) = Hh 

on [ko, oc) and assume that  this system is exponentially stable. Then we can 
define the input-output operator G c / : ( R  TM x l 2 (k0, c~; R ml);12 (k0, oc; R p')) 
by 

Again we wish to find the condition for II G I1< "~- We replace (3.26) and 
(3.39) by 

G ( h )  = C(k)S(k, ko)Hh 

k - 1  

+C(k) ~ S (k , j  + 1)B(j)w(j) + D(k)w(k), 
k=ko 

J(w;ko, xo) = ~ [I z(k) 12 _~2 I w(k) I~1. 
k=ko 

We also need the functional (3.39) with F = 0, i.e., 

N 

JN(w; ko,xo)= ~ [I z(k)I s -~21 ~(k)12]. 
k=ko 

Let G w - -  G ( O ) .  Proceeding as in the finite horizon case we have the 
k - - /  

following. 

L e m m a  3.9 ]1G2Nko I1_<]] 6 II for any ko <_ N < oo. 

L e m m a  3.10 Assume II G H< ~. Then JN(W; ko, xo) (J(w; ko, xo) ) is strictly 
concave and there exists a unique control WNko (Wko) maximizing JN(w; ko, Xo) 
(J(w; ko, xo), respectively). Moreover 

II WNkolh < ~ I xo I, II Wkoll2 < ~ I xo I, 
JN(WNko;kO, XO) <_ ~ l Xo I 2, J(Wko;ko, xo) <_ ~ l Xo l 2 

for some ~ = ~(~/) independent of N and xo. 

Proof. Since II 6 II<ll G II< ~ and Lemma 3.9, we have II 62Nko I1< % Hence 
from Lemma 3.7, we have 

= - G* 6 "-16" C(k)S(k, ko)xo, WNko (~/2i 2Nko 2Nko ) 2NkoZO, Zo "-~ 
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and 
Wko = (,721 _ G , G ) - l ~ , Z o  

where (~* is the adjoint of (~. Since e2Nko and ('y2I -- e * 2 N k o e 2 N k o ) ~ - I  are 
uniformly bounded in N,  we have the assertion. | 

D e f i n i t i o n  3.13 (a) A bounded nonnegative solution X of (3.32) is called 
the stabilizing solution if A + BT~- 1 R1 is exponentially stable. 
(b) A bounded nonnegative solution Y of (3. 36) is called the stabilizing solu- 
tion i rA  + R~yT~-~C is exponentially stable. 

As in Theorem 3.4, we have the following property for tile stabilizing 
solutions of the Riccati equations (3.32) and (3.36). 

L e m m a  3.11 (a) A bounded stabilizing solution of ('~.32), if one exists, is 
unique. 
(b ) Let Y and ~z be two stabilizing solutions of (3.36). Then Y ( k ) - Y ( k ) ~ 0 
as k---~ oc. 

L e m m a  3.12 Suppose II G I[< ~. Then there exists a bounded nonnegative 
stabilizing solution to (3. 31) and (3. 32). Moreover if the conditions above are 
satisfied, a unique maximizing element Wko of J(w; ko, Xo) exists and is given 
by the feedback law 

Wko(') = (TI-IR1)(')z(") 

and J (wko ; ko, Xo) = xPoX ( ko )xo . 

Proof. Since II G II< ~ implies II G II < ~/ and II GNk(, I1< Y, we have a non- 
negative solution Xg(k)  t o  (3.31) and (3.32) with X N ( N  + 1) = 0. Moreover 
for each k, XN (k) is monotone increasing in N. In fact let L < N and define 
a control on [k0, N] by 

f (T~IR1L)(k)xL(k) ,  k �9 [k0, L], 
(ggko(k) I 0, k e [ L + I , N ]  

where R1 = R1L to denote the denpendency on XL and XL is the response 
to the feedback pair WLko = T12R1LXL in (3.23). Then 

xloXL(ko)xo = JL(WLko; ko, Xo) <_ JN(~)Nko; k0, x0) 

~_ Jy(WNko; k0, x0) = xloXN(ko)zo . 

The monotonicity of X g ( k )  also follows from JN(W; k, Xo). Note that  Xg(ko) 
is bounded uniformly in N. This follows from Lemma 3.10 and 

JY  (Wgko ; ko, zo) = x~oXN (ko)xo. 

Hence XN (ko) converges to a limitX(k0). Changing the initial time, XN (k), 
k > k0 converges to a limit X(k) .  As we have seen in the proof of Lemma 3.8, 
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Tl(k) >>_ ('y2 -d2) l  in (3.31) independently of N and hence Tl(k) >_ (72 -d2) I  
for the limit X(k). So X satisfies (3.31) and (3.32). Now it remains to show 
that  A + BT~'IR1 is exponentially stable. Let XN be the response to w~cao 
and let @Nko E 12(k0, oc; R ml) given by 

f (T~R1N)(k)xN(k) ,  k e [ko, N], 
(V lV ko ( k ) 0, k e IN + 1,oc). 

Then 
0 -< x'oXzv(ko)xo <_ J(u~Nko; k0, x0) -< J(wko; k0, x0) 

and {uSNko} is bounded in 12(ko, o0; Rm') .  Hence there exists a subsequence 
again denoted by {wNko} which is weakly convergent to O c 12(ko, oo; R TM) 
with II v3 [[2_< c I x0 1, c > 0 (see Theorem A.5). Let ~ be the response to @, 
i.e, the solution of 

~(k + 1) = A(k)~2(k) + B(k)@(k), ~(ko) = xo. 

Since the restriction of WNko on any subinterval converges weakly to tha t  of ~,  
xN(k) --~ ~(k) in R "  for each k as N --+ oc. On the other hand xN(k) --* ~(k) 
in any finite interval, where 2 is the solution of 

~(k + 1) = (A + BT~'Rx)(k)~(k) ,  ~(ko) = xo. 

Hence we can identify ~ = ~. Since A is exponentially stable and ~ E 
l~(ko, oo; Rml),  we conclude ~ E 12(ko, oo; R n) and ~ E 12(ko, oo; Rn). This 
is true for any x0, which via Proposition 3.2 implies tha t  A + BT{IR1  is 
exponentially stable. II 

T h e o r e m  3.6 Assume that the system G is exponentially stable on [k0, oc). 
Then the following statements are equivalent: 
(a) It G II < "~. 
(b) There exists a bounded nonnegative stabilizing solutwn of (3.31) and 
(3.32) on [ko, cr satisfying (3.34). 
(c) There exists a bounded nonnegative stabilizing solution of (3.35)-(3.37) 
o n  [k0, or 

Proof. Suppose (a) holds. Then the existence of a stabilizing solution follows 
from Lemma 3.12. The condition (3.34) follows as in Theorem 3.5. Hence (a) 
implies (b). The converse is also similar to Theorem 3.5. We only need to 
show 

I h [ 2 +  11wl13_<a(lh[2+ [[r[[2 2) for s o m e a > 0 .  

But this follows from 

x(k +1) = (A + BTf lR1)(k)x(k)  + (BT1�89 
-�89 

w(k) = (T~-lR1)(k)x(k) + T 1 (k)r(k) 
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since A + BT~-1 R1 is exponentially stable. 
(c) is the dual of (b) and (a) implies that  there is a bounded nonnegative 

solution of (3.36) with properties (3.35) and (3.37). In fact we consider the 
adjoint system 

and 

~(k) = A ' ( k )~ (k+ l )+C ' ( k ) v ( k ) ,  ~ ( N + I ) = ~ I ,  

r = B ' ( k ) ~ ( k + l ) + D ' ( k ) v ( k )  

N 
J ( v ; N +  1,~1) ---~ ~ [I ~(k)[2 _~2 Iv(k)[2]+ [ H'~(k0)[2 

k=ko 

and proceed as in Lemma 3.12. To show the exponential stability of A + 
R'IyT1])C , let vg(k) = T[~R1y~(k) be the maximizing element of J(v; g + 
1, ~1), then 

{{ VN 1112(ko,N;RPl)<~ CO [ ~1 I for some co > 0. 

We extend vg to [k0, co) by zero which we denote by VN E 12(ko, co; RPl). 
Then there exists a subsequence again denoted by ?~N convergent weakly to 
VN C /2(k0, co; RPl). Now let k0 < L < co be a fixed but arbitrary number 
and consider 

~N(k) = A'(k)~N(k + 1) + C'(k)6g(k),  ~N(L + 1) = ~1, 

~(k) = A'(k)~(k + 1) + C'(k)~(k), ~(n + 1) = ~1 

and 

~(k) = A'(k)~(k + 1) + C'(k)(T~-y1Riy)(k)~(k), ~(L + 1) = ~1- (3.41) 

Then as in Lemma 3.12, we can show ~g(k) ~ ~(k) for any k e [ko, n + 1] 
and ~(k) = ~(k), k e [k0, L + 1]. Since [[ ~ [[12(ko,~;Rpl)< CO [~1 [, 

L+I 
E I~(k) 12-<e}~112 for s o m e c > 0 ,  

k~ko 

which implies 

L+I 

k=ko 
for any k0 < L < co. 

Hence by Proposition 3.3, the system (3.41) is exponenetially stable and so 
is A + R~yT~-])C. Thus (a) implies (c). 

The converse follws concerning the adjoint of the system G and proceed 
as the converse of (b). | 
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Coro l la ry  3.5 Let the system G be O-periodic, i.e., A(k  + O) = A(k),  B(k  + 
O) = B(k) ,  C(k  + O) = C(k) and D(k + O) = D(k) . Then 
(a) The stabilizing solution of (b) in Theorem 3. 6 is O-periodic. 
(b) There exists a O-periodic nonnegative stabilizing solution Yo(k) to (3.35) 
and (3.36) such that Y (k )  - Yo(k) ~ 0 as k ~ cx~ where Y is a bounded 
nonnegative stabilizing solution of (3. 35)- (3.37). 

Proof. Proofs of (a) and (b) are similar to those of Theorem 3.2 and Corollary 
3.3, respectively. | 

If the system G is time-invariant, then we need the algebraic Riccati 
equations: 

T1 > 0, (3.42) 
! - - 1  X = A ' X A +  C'C + R1T ~ R1, (3.43) 

H ' X H  < d2I for some O < d < 7, (3.44) 

T1y > 0, (3.45) 
! - - 1  Y = A Y A '  + B B '  + R1yT1y R1y. (3.46) 

We define the stabilizing solutions of (3.43) and (3.46) as above. We can set 
k0 = 0. 

Coro l la ry  3.6 Let the system G be time-invariant. Suppose A is exponen- 
tially stable. Then the following statements are equivalent. 

(a) II G II < 7. 
(b) There exists a nonnegative stabilizing solution X ~  of (3.42)-(3.44). 
(c) There exists a bounded nonnegative stabilizing solution Y of (3.45) and 
(3.46) with Y (O) = O. Moreover, there exists a unique nonnegative stabilizing 
solution Yoo o.f (3.45) and (3.46) and Y ( k )  --* Yo~ as k --* oo. 

Proof. The last property follows from Lemma 3.11. 

Coro l la ry  3.7 Let the system G be time-invariant. Suppose A is exponen- 
tially stable. Then the following statements are equivalent. 

(a) II G I1< 7. 
(b) There exitsts a nonnegative stabilizing solution Xoo of (3.42) and (3.43). 
(c) There exists a bounded nonnegative stabilizing solution Ycr of (3.45) and 
(3.48). 

3 .2  H ~  C o n t r o l  a n d  Q u a d r a t i c  G a m e s  

As in Section 2.2 we consider the quadratic games related to the Hor control 
problems. 
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3.2.1 F i n i t e  H o r i z o n  P r o b l e m s  

Consider the system G: 

x(k + 1) = A(k)x(k) + Bl(k)w(k) + B2(k)u(k), x(ko) = xo, 

z(k) = Cl(k)x(k) + Dll(k)w(k) + D12(k)u(k), (3.47) 

y(k) = C2(k)x(k) + D21(k)w(k) 

with 
zl = F x ( N  + 1) (3.48) 

where x E R '* is the state, w E R mx is the disturbance, u c R m2 is the 
control input, (zl, z) c R q • R pl is the controlled output ,  y E R p2 is the 
measurement,  F E R q• and A, B1, etc are bounded matrices of appropriate 
dimensions. For this system we assume 

D I ' :  D~2(k ) [Cl(k)  Dl l (k )  D12(k)] = [0 0 I ]  for any k. 

The standard Hoo-control is to find necessary and sufficient conditions for 
the existence of a controller of the form 

k ( k +  1) = A(k)&(k) +B(k)y(k) ,  &(ko) = O, 

u(k) = &(k)~(k) § (3.49) 

such that  II G H < "7, i.e., 

I l z l l S + l z l  12< _ d  2 Ilwl]22 for s o m e 0 < d < ' 7  

where (~ is the input-output  operator:w -~ ( z ; ) .  In this ease the controller 

(3.49) is called "7-suboptimal. 

Now we assume that  a "7-suboptimal controller exists and study its con- 
sequence to the following quadratic game: 

N 

J(u, w; s, x0) = y~[[ z(k) 12 -'72 [ w(k) [2]+ [ F x ( N  + 1) 12 
k = s  

(3.50) 

where u is the minimizer and w is the maximizer. The response to (3.47) and 
(3.49) can be writ ten 

XK(k) = (•IKXO)(k) + (r 
z (k) = 

uK(k) = (1-IiKx0)(k) + (n2Kw)(k),  

ZlN = F r  + 1)x0 + F ~ 2 N ( N +  1)w 

(3.51) 
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where 

(~IK �9 s  + l;Rn)),  

~2K E s + l;Rn)),  

~IK,  H1K �9 s  ~ , / 2 ( s ,N ;E) ) ,  

qZ2K, FI2K �9 s 

with E = R pl, R m2, respectively and ff)IK(N + 1)x0 = (OlKxo)(N + 1), 
~2K(N -~ 1)w = (r + 1). Moreover ~ 2 K ,  q22K and 1-I2K a re  causal 
and II G I1< 7 is equivalent to 

( F~2,~(N + 1)) I1_< d for some 0 < d < 7 (3.52) II ~ u  I1=11 'r2t< 

which implies 

II <I,2uw 1122 + I Fr  + 1)w 12< d 2 II w II 2 . 

Now consider the functional (3.50). Since 

II z 112=11 c~x + DllW 112 + II u 112 

by D1  ~, J(u, w; s, xo) is strictly convex in u. Hence by Theorem A.4 for any Xo 
and w �9 12(s,N;R TM ) there exists a unique us = us(w,xo) �9 12(s,N;R m~) 
such that  

n~n J(u, w; s, xo) = J(us, w; s, xo). 

The response of (3.47) and (3.48) to Us can be writ ten 

Since 

we have 

Now 

x~(k) = (~l~0)(k)  + (~2~)(k) ,  

ms(k) = (@l~xo)(k) + (q22sw)(k), 

us(k ) = (~I lsX0)(k)  -~- (I'~2sw)(k), 
zl~ = F~ l s (N  + 1)x0 + F O 2 ~ ( N +  1)w. 

J(us, w; s, zo) < J(uK, w; s, xo) 

{ FO2s(g + 1) '~ 
II '~, I1=11 t, ,I,2~ ) II < d. 

J(us, w; s, zo) = II zs I1~ _~2  II ~ 115 + I Fx(N + 1) 12 
{ Fd~ls(N + 1) ) _~2 

= II \ ~ , s  xo + ~ 8 ~  II 2 II ~ 115 

(3.53) 

(3.54) 

(3.55) 
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xo + ~ s w  II 2 = I FcbI~(N + 1)Xo + F~?2s(N + 1)w [2 

+ II ~IlsX0 -~- ~2s w I1~. 

By (3.55) 721 - t~s  t~2s is bounded both from below and above. So its inverse 
exists (Theorem A.3) and is uniformly bounded in s. Hence there exists a 
unique maximizing element of J(us, w; s, xo) given by 

ws = (72I - a2:~s)-1~*n ( F~ l s (N  + I) ) ~ls  xo. (3.56) 

Next we shall show that  ws = ws(xo) and us(ws, xo) are uniformly bounded 
in s. Setting w = 0 in (3.54) we have 

II u~(O,~o)1122< J(u~(O, xo),O;s,~o) <_ J(uK,O,s, xo) =[1ZK 112 + { ZxK 12 

or  

11 YIlsXO I1~ -< II ~IJlsX0 1122 + I Fr  + 1)xo 1 2 
11 ~lKxo II 2 + ( F~?IK(N + 1)Xo 12 . 

Hence His and k~ls are uniformly bounded. By (3.56) we have 

II ws 112_< al I xo I (3.57) 

for some al > 0 independent of s and w~ is uniformly bounded. Setting Xo = 0 
in (3.54) we also have 

II us(w, 0) 1122 - 7  2 II w 1122 -< J(u,(w, o), w; s, o) 
<_ J(uK,w;s,O) 

< II ZK 11~--7 2 IIw I1~ +lzaK 12 

and 
II n2~w I1~<1t ~2~w I1~11 ~ w  I1~ d 2 II w 112 2 . 

This implies tha t  H2s is uniformly bounded. Now (3.53) and (3.57) yields 

LI ~ s ( ~ ,  xo) 1{2< ~21 ~01 (3.5s) 

for some a2 > 0 independent of N.  Thus we have shown: 

L e m m a  3.13 (a) IIls, ~as, H2s and k92 s are uniformly bounded. 
(b) ws(xo) and us(ws, xo) are uniformly bounded and 

mwaxrn~n J(u,w; s, xo) = J(us,w~; s, xo) <_ a I xo [2 

for some a > 0 independent of s. 
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Now we consider the  Riccat i  equa t ion  

V(k) > aI for some a > 0, (3.59) 

X(k) =: A'X(k  + 1)A + v i e 1  

- (R~T~IR2)(k)  + (F~VF1)(k), (3.60) 

X ( N  + 1) = F'F (3.61) 

where 

Tl(k) = "/2I - D ~ l D l l  - BIX(k  + 1)B1, 
Rl(k) = B~X(k + 1)A + Di~C~, 
S(k) = B~X(k + 1)B1, 
Fl(k) = [V-I (R,  --S'T~1R2)I(k), 

T2(k) = I + B ~ X ( k  + 1)B2, 
R2(k) = B ~ X ( k  + 1)A, 
Y(k )  = (7"1 + S % - ' S ) ( k ) ,  
F,2(k) = -[T~-I(R2 + SF1)](k) 

and for s impl ic i ty  we have omi t t ed  k in all sys t em mat r ices  of  (3.47). 

First: we a.r t h a t  the re  exists  a sequence  of s y m m e t r i c  ma t r i ces  X(k),  
k �9 [s, N + 1] sat isfying (3.59)-(3.61) and  examine  the  proper t ies  of  X(k).  
By direct  calculat ion,  we ob ta in  

N 

J(u, w; ,, x0) = :c;x(8)x0 + ~ I [T~fu + ~ - l (Sw + ~2x)}l(k) 12 
k = s  

N 
1 1 -'72 E ! -~[V~(w - F,x)](k) !2 (3.62) 

k ~ s  

where x is the  response  of the  sys t em (3.47) to the  pair  (u, w) �9 12(s, N; R m2 ) 
x/2(s,  N;  R m~ ). Define feedback laws 

~( . )  = Fl(-):c(-),  fi(-) = - [ T f l ( S w  + R2x)](-)  (3.63) 

and let :c* be the  solut ion of (3.47) wi th  k0 = s cor responding  to (3.63). Set 

w*(k) = F~(k)x*(k), u*(k) = F2(k)x*(k). (3.64) 

We shall show t h a t  the  value of the  g a m e  exists  i.e, 

sup inf J(u, w; s, :co) = inf sup  J(u, w; s, xo). 
l l J  U ~ tO  

L e m m a  3 .14  Suppose that there exists a sequence X(k) ,  k e Is, N + 1] sat- 
isfying (3.59)-(3.61). Then X is nonncgative. Moreover 

J(~,w; s, x0) _< J(~, ~; s, z0) 
= x~oX(s)xo < J(u,'(v; S, Xo), (3.65) 

J(u*,w*;s, zo) = x~oX(s)zo <_ J(u,w*;s,:co) (3.66) 
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for any (w,u) C 12(s,N;R TM) • 12(s,N;Rm2). The max-min of J(u,w;s ,  xo) 
is attained by the pair (fi, w*) and 

max min J(u, w; s, xo) 
W U 

= J ( ~ , w * ; s ,  x0) 

= g( f i ,@;s ,  xo) 

= J(u*,w*;s, zo) 

= x~oX(s)xo = in f sup  J(u, w; s, xo). 
*~t W 

(3.67) 

Proof. We note  tha t  (3.65) follows from (3.62). Set t ing w = 0 in (3.65), we 
have 

0 _< J(fi ,  0; s, xo) < J(~2, @; s, xo) = x'oX(s)xo. 

Hence X(s) is nonnegat ive.  F rom (3.62) we have 

J(~, w; s, xo) < J(~, ~; s, xo) = z'oX(s)zo 

and hence 
rain J(u, w; s, xo) < J(~t, w; s, xo) < xloX(s)xo 

t t  

for any  w C 12(s, N; R m~ ). This  implies 

sup min J(u, w; s, xo) <_ x'oX(s)xo. 
W I t  

Now we shall show 

minJ(u,w*;s ,  xo) = J(u*,w*;s, xo) = x'oX(s)xo. (3.68) 
I t  

For this purpose,  we consider e = x - x*, where x is given by 

x(k + 1) = Ax(k) + BiFlx*(k)  + B2u(k), x(s) = xo. 

T h e n  
e(k + 1) = Ae(k) + B2[u(k) - u*(k)], e(s) = 0 

and 

J(u, w*; s, x0) 

Define 

= II Cl (e  if- x*) -1- D, lw* 115 + II u III - ~  li w* 115 
+ I F(e + x*)(N + 1) [2. 

(Hu) (k )  

Hsu 

k - 1  

= E S ( k , j  + 1)B2(j)u(j), 
j = s  

N 

= E S ( N  + 1,j + 1)B2(j)u(j) 
j = s  
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where S(k, j) is the state transition matrix of A. Then 

e(k) = I H ( u -  u*)](k), 

e ( N + l )  = H s ( u - u * ) .  

Since J(u, w*; s, x0) is strictly convex in u, there exists a unique minimizing 
element u. It  is given by the solution of 

u + H*C~CIH(u - u*) + H*C[(Clx* + DllW*) (3.69) 
+H*F'FH,(u - u*) + H*~F'Fx*(N + 1) = 0. 

We shall show that  u -- u* is the solution. Note that  for h E 12(s, N; R n) and 
s  n 

N 

(H*h)(k)  = B~(k) E Sr( j 'k+ l)h(J)' 
j=k+l 

(H~h)(k) = B~(k)S'(N + 1,k + 1)h. 

It is enough to show that  u*(k) = F2(k)x*(k) coincides with 

-H*C~Clx* - H*C~Dnw* - H*~F'Fx*(N + 1) 

which is equal to 

N 

-S~(k) E S'(j, k + 1)[C~ClX* + C~Dllw*](j) 
j=k+l 

-B~(k)S ' (N + 1, k + 1)FrEx*(N + 1). 

Since 

and 

S'(l, k + 1)[C~ClX* + C~Dl,w*](l) + S'(l + 1, k + 1 ) X ( / +  1 )x*( /+  1) 

S'(l, k + 1)[C~Cl + C~DllF1](l)x*(l) 

+S'(l, k + 1)A'(l)X(l + 1)(A + B1F, + B2F2)(l)x*(l) 

S'(l, k + 1)[C~C1 + C[DI1F1 + A'X(l + 1)(A + B1F1 + B2F2)]x*(1) 

we have 

C~C1 + C~DllFI + A'X(l + 1)(A + B1F1 + B2F2) 

= C~C1 + A'X(I + 1)A + R'IFI + R'2F2 

= C~C1 + A'X(I + 1)A - R'2T~IR2 + F~VF1 

= x ( t ) ,  

s 'q ,  k + 1)[ClC, x" + CiDllW'lq)  + S 'q  + 1, k + 1)Xq + 1)x*(t + 1) 
S'(l, k + 1)X(l)x*(l) 
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and 

N 

-B~(k)[  ~ S'( j ,  k + 1)[CIClx* + C~Dllw*](j)  
j = k + l  

+ S ' ( N  + 1, k + 1 ) F ' F x * ( N  + 1)] = - B ~ ( k ) X ( k  + 1)x*(k + 1). 

On the other hand we have 

F2(k)x*(k) 

- [I + B ~ ( k ) X ( k  + 1 )Bu(k ) ] - IB~X(k  + 1)(A + B1F1)(k)x*(k)  

- B ~ ( k ) X ( k  + 1)[I + (B2B~) (k )X(k  + 1)]-I(A + B1Fl) (k )x*(k)  

- B ~ ( k ) X ( k  + 1)x*(k + 1) 

and hence u = u* is the solution of (3.69). 
It remains to show the last equality in (3.67). From (3.62) 

x'oX(s)xo <_ J(u, ~; s, xo) ~_ sup J(u, w; s, xo) 

for any u and hence 

x 'oX(s)x  o <_ inf sup J(u,  w; s, xo). 

But  

max J(~, w; s, Xo) = xloX(s)xo 

and x'oX(s)xo = J(u,  w , s, xo) inf sup J(u,  w; s, xo). 
I t  ~ )  

Next we shall show the existence of a solution to the Riccati equation 
(3.59)-(3.61). Recall tha t  we are assuming the existence of a 7-suboptimal 
controller. 

L e m m a  3.15 There exists a nonnegative solution X ( k ) ,  k 6 Is, N + 1] to 
(3. 59)-(3. 61) and 

max min J(u,  w; s, Zo) = x'oX(s)xo. 

Furthermore the controller 

U ( ' )  ---~ - -  ( T 2 - - 1 R 2 ) ( - ) x ( . )  - -  (T21S)(.)w(.) 

satis1~es [[ r [[< ~. 
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Proof. We prove it by induction. Consider the functional 

J (u ,w;g ,  xo) =1 z(g)12 -~/ I w(N)12 + l F x ( g  + 1)12 

subject to 

x(N + 1) 

z(N) 
= A(N)x(N) + BI(N)w(N)  + B2(N)u(N), x(N) = xo, 

= CI(N)x(N) + D11(N)w(N) + D12(N)u(N). 

Then J(u, w; N, xo) is rewritten as 

J(u, w; N, xo) 
= X~o[(C~C1)(N) + A ' ( N ) X ( N  + 1)A(N) - (R2T21R2)(N)]xo 

�89 
+ I [ T ~  {u + T~l(Sw + R2x)}](N) [2 

- w ' ( Y ) V ( Y ) w ( N )  + 2w'(N)(R1 - S'T21R2)(N)xo 

with X ( N  + 1) = F'F. Since there exists a ~/-suboptimal controller on [s, N], 
it is also ~/-suboptimal on IN, N] and by Lemma 3.13 we obtain 

rnwaxrniunJ(u, w; N, xo ) < C lXo ]2 for some c > 0. 

Hence V(N) > aI for some a > 0 and we can define X(N)  by (3.60). 
We assume the existence of a solution X(k),  k E [j + 1, N] to (3.59)-(3.61). 

Consider the functional 

N 

J(u,w;j ,  xo) = E [ I  z(k) ]2 _~p I w(k)12]+ I F x ( N +  1)]2 
k=j 

subject to 

x(k + 1) = A(k)x(k) + Bl(k)w(k) + B2(k)u(k), x(j) = xo, 

z(k) = Cl(k)x(k) -t- Dll(k)w(k) + nl2(k)u(k). 

Then by (3.62) and the above argument we can rewrite J(u, w; j, xo) as 

J(u,w;j ,  xo) = i z(j ) 12_.y2 ] w(j)12 
N 

+ E [I z(k) 12 - 7  2 I w(k) 12]+ I F x ( N  + 1) ] 2 
k = j + l  

= I z(j) 12 _~2 I w(j)  12 +x' ( j  + 1 ) x ( j  + 1)x(j  + 1) 
N 

+ ~ I [r~{u+r2-1(Sw+R2~)}](k) 12 
k = j + l  

N 

_~2 ~ L 1-[v�89 F~x)](k)12 
-y 

k = j + l  
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= Xto[(CiC1)(j) + A ' ( j ) X ( j  + 1)A(j)  - (R2T~-IR2)(j)]xo 
N 

+ Z I [ T ~ { u + T ; i ( S w + R 2 z ) } ] ( k ) 1 2  
k = j + l  

- w ' ( j ) V ( j ) w ( j )  + 2w'(j)(R1 - S'7~-IR2)(j)xo 
N 

_~f2 Z [ifV�89 
7 k=j+l 

By Lemma 3.13 and the above argument  

rnaxmind(u ,w; j ,  xo) <_ c] xo 12 for some c >  O. 
"W IL 

and V(j )  > aI. We can define X ( j )  by (3.60) and the rest follows from 
Lemma 3.14. | 

Summing up we have the following. 

T h e o r e m  3.7 Assume D I ' .  Suppose the controller (3.49) is 7-suboptimal 
for the system G. Then there exists a nonnegative solution X (k), k E [s, N +  
1] to the Riccati equation (3.59)-(3.61). Moreover 

with 

max min J (u, w; s, xo) = J ( f i , 9 ; s ,  x0) 

= J(u*,w*;s,  xo) 

= x~oX(s)xo = in f supJ(u ,w;  S, Xo). 
I~ %9 

Consider the backward system 

~(k) = 

~(k) = 

~(k) = 

Zl = 

A'(k)2.(k + 1) + C~(k)@(k) + C~(k)ft(k), 
B~(k)~c(k + 1) + D~l(k)@(k ) + D'21(k)fi(k), 
B~(k)~(k + 1) + D~2(k)zb(k), 
H'~(ko) 

(3.70) 

which satisfies 

II ~ 112 2 -4- I ~112~ < d 2 II ~ 1122 for some 0 < d < 3'. 

5 : ( N + I ) = F ' / ,  f E N  m 

which is the adjoint system of G with z(k0) = Hh. For the sys tem (3.70) we 
introduce the controller of the form 

~(k) = A ' (k)~(k  + 1) + d ' (k )~ (k ) ,  

~(k) = /~ ' (k)~(k + 1) + b ' ( k ) ~ ( k )  (3.71) 
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Now we introduce the following functional 

N 

J(fi, ~; N + 1, ~(N + 1)) = E [ [  2(k) 12 -72 [ ~(k)  12]+ I H'~2(s) [ 2 
k = $  

subject to (3.70) and we consider the following Riccati equation 

Vy(k) > aI for s o m e a > 0 ,  (3.72) 

Y ( k  + 1) = AY(k )A '  + B1B1 

-(R~2yT2])R2y)(k) + (F[yVyFiy) (k) ,  (3.73) 

Y(ko) = H H '  (3.74) 

where 

T1y(k) = ~2I - D11D~l - C1Y(k)C~, 
R1y(k) = C1Y(k)A'  + B~Dn,  
Sy(k)  = C2Y(k)C[, 
Fly(k)  = [Vy](R1y - S~ T2~) R2y)](k), 
F2y(k) = -[T2~(R2y + SyFiY) l (k)  

T2y(k) = I ~- C2Y(k)C~, 
R2y(k) = C2Y(k)A' ,  
Yy(k)  = (TIy + S~T2])Sy)(k),  

and for simplicity we have omitted k in all system matrices of (3.70). Then 
as in Lemmas 3.13-3.15, considering the max-min problem for J(~, ~; N + 
1, ~(N + 1)) and hence we have the following result. 

Corol lary 3.8 Assume the condition 

D2' :  D21(k)[B~(k) Dil (k  ) D~21(k)]=[O 0 I l f o r a n y k .  

Suppose the controller (3. 71) is ~/-suboptimal for the system (3. 70). Then 
(a) There exists a nonnegative solution Y(k) ,  k c [s, N + 1] to the Riccati 
equation (3. 72)-(3.74) and 

m axm~n j (~ ,  ~; N + 1 ,~(N + 1)) = ~ ' (N  + 1)Y(N + 1)~(N + 1). 

(b ) Fore > 0 small, there exists a nonnegative solution Y.y_,( k ), k E [s, N + I ]  
of (3. 72)-(3. 74) with 7 replaced by "7 - e. 

3.2.2 T h e  Infinite  Hor i zon  P r o b l e m  

Consider the system G: 

x(k  + 1) = A(k)x(k)  + Bl (k )w(k)  + B2(k)u(k), 

z(k) = Cl(k)x(k)  + D n ( k ) w ( k )  + D12(k)u(k), 

y(k) = C2(k)x(k) + D21(k)w(k) 
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with x(ko) = xo and the assumption D I ' .  We further assume that  (A, B2, C1) 
is stabilizable and detectable. As in the finite horizon case, we assume the 
existence of a controller K of the form (3.49) with property 

II z 112~< d II w 112 for some 0 < d < 3' (3.75) 

and study its consequence to the quadratic game defined by the functional 

J(u, w; k0, x0) = ~ [[ z(k) 12 _3"2 I w(k) 12]. 
k=ko 

(3.76) 

Such a controller is called IO-stabilizing with 7-disturbance attenuation (IO- 
y-suboptimal) and is called 3"-suboptimal if it is internally stabilizing. We 
also consider the finite horizon problem associated with 

N 

y~(~, w; k0, x0) = ~ [I z(k) 12 _~2 I w(k) 12]. 
k=ko 

(3.77) 

Note that  if a controller K of the form (3.49) is IO-7-suboptimal, it is also 
V-suboptimal on any [k0, N]. Since (A, B2) is stabilizable, qJls in (3.53) is 
uniformly bounded. Then by Lemmas 3.13, 3.14 and Theorem 3.7 we have 
the following. 

L e m m a  3.16 There exists a unique nonnegative solution XN(k) ,  k E [ko, 
N + 1] of the Riccati equation (3.59) and (3.60) with X N ( N  A- 1) --- 0 such 
that 

] XN(k)  ]<_ c independent of ko < k < N + 1 < cr 

L e m m a  3.17 For each k > ko, XN(k)  o] Lemma 3.15 is monotone increas- 
ing in N.  

Proof. Let L _< N and we shall show XL(ko) < XN(ko). This follows from 

z'oX L ( ko )Zo = JL(aL,  eL ;  k0, z0) 

< JL(fiN,wL;ko, xo) 

< JN(~N,~vN;ko, zo) 

< J N ( ~ N , ~ ; k 0 ,  z0) = z'oXN(kO)zO 

where fin is the restriction of UN on [k0, L] and @N is the extension of @L 
to [ko, N] by zero. The proof of a general k is similar. | 

Next we shall show tha t  v - l ( k )  is uniformly bounded. To do this we first 
introduce the following result. 
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L e m m a  3.18 Let 0 <_ P E R ~• , B c R nxm and define 

W [ P ]  = P[I - B ( I  + B 'PB) - IB 'P] .  (3.78) 

Then if P1 _> t"2 >_ O, W[P1] _> W[P2]. 

Proof. Since I + B B ' P  is invertible, we can easily show 

W [ P ]  = P ( I  + BB 'P)  -1. 

Moreover 
W [ P ]  = (p-1 + B B ' ) - '  

for P > 0 and the assertion follows in this case. Let e > 0 be arb i t ra ry  but 
fixed. Define 

P~( = P~ +eI,  i =  l, 2. 

Then PI~ _> P2c > 0 and hence W[PI~] _> W[P2~]. Now letting e --~ 0 we have 
W[PI]  _> W[P2]. | 

L e m m a  3.19 V- l (k ) ,  k c [k0, N + 1] is uniformly bounded. 

Proof. Let K be a y-subopt imal  controller, i.e., an internally stabilizing con- 
troller such tha t  [] G [[< 7. Then ][ G [[< 7 - e for some e > 0. Thus we have 
two sequences Xg(k)  >_ 0 and X~N(k) > 0 where X~v is defined as XN with 
7 replaced by 7 - e. Since 

N 
X'XN(ko)x = m a x m i n  E [] z(k)]2 _72 ]w(k)[2]  

k=ko 

N 
_< m a x m i n  E [[ z(k)]2 - ( 7 -  e) 2 I w(k) 12 ] 

k=ko 

= x'X (ko)x 

we have XN(ko) <_ X~N(ko). By L e m m a  3.18 we also have 

w[x ] _< 

with W [ X ]  is defined by (3.78) with B, P replaced by B2, X(k  + 1), respec- 
tively. We write V[X] to show the dependence of V on X.  Since V[X~N] > O, 
we have 

0 < V[X~] = ( 7 -  e) 2 I -  D l l D l l  - B1W[XN]B1 

-< (7 - e) 2I - D'llDll - B~W[XN]B1 

which implies 

V[XN] = 72I  - D'llDll - B~W[XN]B1 > 5I 
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where 5 -= 2 7 e -  e 2 and independent of N. Consequently V-I[XN](k)  is 
uniformly boumded. | 

In view of Lemmas 3.16 and 3.17, XN(k)  is uniformly bounded and mono- 
tone increasing in N. So X y ( k )  converges to a limit X(k) .  Since V -1 [Xg](k) 
is uniformly bounded, X satisfies (3.59) and (3.60). Next we shall show that  
A + BxF1 + B2F2 is exponentially stable. 

L e m m a  3.20 A + B1F1 + B2 F2 is exponentially stable. 

Proof. For this purpose we consider 

:rN(k + 1) = (A + BIFI[XN] + B2F2[Xg])(k)xg(k) ,  :rg(ko) : xo. (3.79) 

Then for any interval [k0, N] the solution xN converges to the solution ~ of 

�9 (k + 1) = (A + BIFI[X] + B2F2[X])(k)5:(k), ~(ko) = xo. 

We can rewrite (3.79) as 

x(k  + 1) = Ax(k)  + Bl@g(k)  + B2~tu(k) (3.80) 

= (A - JC l ) x (k )  + JCa:~g(k) + B l@y(k )  + B2 fN(k ) ,  

x(ko)  = xo 

where J c R n• is chosen such that  A - J C I  is exponentially stable. The 
solution of (3.80) coincides with &N on [k0, N]. We extend it to [k0, or by 
the homogenous equation of (3.80). By Lemma 3.14 II C l a N  112, II ~ N  112, 
II ~N 112< a I x0 I for some a > 0 and CI:~N, (vN and fiN converges weakly 
to h, @, fi in 12(k0, a~;E),  E = R pl, R T M  and R m2' respectively along a 
subsequence N --~ o0. Let 2 be the solution of 

~(k + 1) = ( A -  JCl )~ (k )  + Jh(k)  + Bl@(k) + B2~(k), 

~(k0) = x0 

then x g  converges to ~ and we can identify ~ and ~. Since A -  JC1 is 
exponentially stable, ~ E 12(ko, ~ ;  R~). Hence �9 E 12(ko, cr R n) for each xo 
and ]1 x 112-< c] xo ] for some a > 0 independent of xo. Hence by Proposition 
3.2, A + BxF1 + B2F2 is exponentially stable. | 

Define feedback laws 

ffJ(.) = Fl(.)x(.) ,  fi(.) = - (T21R2)( . )x ( . )  - (T21S)( .)w(.) .  (3.81) 

Let x* be the solution of (3.47) corresponding to (3.81) and let 

w*(k) = Fl(k)x*(k) ,  u*(k) = F2(k)x*(k). (3.82) 

First we show that  the feedback law fi is stabilizing. 
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L e m m a  3.21 Suppose there exists a bounded nonnegative solution X(k),  k E 
[ko, oo) of (3.59) and (3.60) such that A+ B1F1 + B2F2 is exponentially stable. 
Then A - B2T~I R2 is exponentially stable. 

Proof. Since 

A + B1F1 + B2F2 = (A - B2T21R2) + (B1 - B2T21S)F1 

is exponentially stable, (F1, A - B2T~IR2) is detectable and so is 

| T ~  R2|  , A -  B2T;1R2 . 
tv F,J 

Rewrite now the Riccati equation (3.60) in the form 

X(k)  = ( A -  B2T~IR2) 'X(k  + 1 ) ( A -  B2T2-1R2) 

+/TF -~2/ 
L j L J 

Hence by Proposition 3.5, A - B2T21R2 is exponentially stable. I 

Let F I  be the set of stabilizing feedback laws of the form u(.) -- K2(.)x(-)+ 
Kl(.)w(-) .  As Lemma 3.14 we shall show 

sup inf J(u,w;ko,  xo) = J(ft, w*;ko, xo) 
w u E F I  

= J ( ~ , ~ ;  ko, xo) 

= J(u*,w*;ko, xo) 

= x ' o X ( k o ) x o  

= inf sup J(u, w; ko, xo). (3.83) 
u E F I  w 

Note that  

inf sup J(u, w; ko, xo) <_ sup J(fi, w; ko, xo) = J(fi, w*; ko, xo) = x'oX(ko)xo. 
u E F I  w w 

It suffices to show 

x'oX(ko)xo <_ J(ft, w*; ko, xo) = ~eFIinf J(u, w*', ko, xo). (3.84) 

In fact this implies 

x~oX(ko)xo = inf J(u, w*; ko, xo) < sup inf J(u, w; ko, xo) 
u E F I  - -  w u E F I  
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and (3.83) follows. To show (3.84), we proceed as in the proof of Lemma 3.14. 
Consider 

x(k  + 1) = Ax(k)  + Blw*(k)  + B2u(k) 

= (A - B2T21R2)x(k)  + (B1 - B2T~IS)w*(k)  + B2v(k) 

with x(ko) = xo where v(k) = u(k) + (T~-lR2)x(k) + (T~lS)w*(k) .  Then 
e = x - x* satisfies 

e(k + 1) = (A - B2T~IRe)e(k)  + B2v(k),  

and J(u, w*; k0, x0) can be writ ten as 

J ( v , w  ;ko, xo) = 

where 

e(k0) = 0 

[[ Cl(e + x*) + Dl,w* II 2 - 3  `2 II w* II~ 

[I CI(Hv + x*) + Dllw* II~ _.,/2 II w* 1122 
+ II v - T2aR2(Hv + x*) - Z 2 1 S w  * 1122 

k - 1  

(Hv)(k)  = ~ S x ( k , j  + 1)B2(j)v( j )  
j = k o  

where S x  (k, j )  is the state transition matr ix  of A - B2T21R2. The  unique 
minimizing element of J given by the solution of 

H*C[CII"Iv + H*C[(ClX* + Dl lw*)  + (I  - T~I  R2H)*(I  - T ~ I R 2 H ) v  
- ( I  - T21R2H)*T21(R2x * + Sw*) = O; 

We shall show that  v = 0 is the solution. This follows if 

n * c ~ ( c 1 2 ; *  Jr- D l l W * )  - ( I  - T21R~H)*T21(R2z  * + Sw*) = O. 

Since A - B2T~IR2 is exponentially stable, we have for h E/2(ko, co; R n) 

OO 

(H*h)(k)  = B~_(k) ~ S~x(j,k + 1)h(j).  
3 = k + l  

Then as in the proof of Lemma 3.14, 

H*C[(ClX* + D11w*) - (I  - T ~ I R 2 H ) * T ~ I ( R 2 x  * + Sw*) 

- F2x*(k) + H*[C~C1 + C~Dll " ' T - 1 F  , 'X* - -  --  ~t2 2 2J 

= S ; ( k ) [ - X ( k  + 1)x*(k + 1) 
(20 

+ ~ S x ( j ,  k + 1)[C[C1 + C~D1, - R'2T21F2]x*(j)]. 
j = k + l  
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Since 

- X ( k )  + [C~C1 + C~DlI - R~T~IF2](k) 
-- - ( A  - B 2 T ~ I R 2 ) ' ( k ) X ( k  + 1)(A + BIF1 + B2F2)(k),  

we have 

1 * - 1  * t t*C~(ClX* + D11w*) - (I  - T 2- R2H) T~ (R2x + Sw*) 

S ~ ( k ) [ - ( A  B ~ ' - I R  ~'''- = - -  2~ 2 2) (a + 1)X(k + 2) 

x (A + BIF1 + B2Fu)(k + 1)x*(k + 2) 
O O  

+ ~ S x ( j , k + l ) [ C i C 1  +C1Dl; - RP2T21Fix*21 (J)]. 
j=k+2 

Repeating this argument, we have 

H*C~(CIx* + D11w*) - (I  - T ~ I R 2 H ) * T ~ I ( R 2 x  * + Sw*) 

= B ~ ( k ) [ - S x ( N , k +  1 ) X ( N ) x * ( N  + 1) 
O 0  

+ ~ S x ( j ,  k + 1)[C'1C1 + C~Dll - R~2T21F2]x*(j)] 
j=N 

= OasN-- -*oc .  

Hence v = 0 minimizes j which implies fi minimizes J(u,  w*; ko, xo). Thus 
the value of the game J(u,  w; ko, xo) over F I  • 12(ko, c~; R T M )  exists. 

Summing up we have the following. 

T h e o r e m  3.8 Assume D I '  and (A, B2,C1) is stabilizable and detectable. 
Suppose an IO-stabilizing controller with property (3. 75) exists. Then there 
exists a unique bounded nonnegative solution (A + B1F1 + B2F2 is exponen- 
tially stable) to the Riccati equation (3.59) and (3. 60). Moreover ~ E leI 
and 

sup inf J (u ,w;ko ,  xo) = J(fi, w*;ko,xo) 
w u E F I  

= J (~ ,~ ;ko ,  xo) : J(u*,w*;ko,  xo) 

= x~oX(ko)xo : inf sup J (u ,w;  ko, xo). 
u E F I  w 

I f  the system G is O-periodic, then X is also O-periodic. 

C o r o l l a r y  3.9 Consider the system (3. 70) and assume D 2 '  and (A, B1, C2) 
is stabilizable and detectable. Suppose an IO-stabilizing controller o/ the ]orm 
(3. 71) with property 

I 51 [ 2 + [I 5 Hi2< d 2 In ~ II 2 for some 0 < d < ~/ 
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exists. Then 
(a) There exists a bounded nonnegative solution (A + F~yCl + F~yC2 is 
exponentially stable) to the Riccati equation (3. 72)-(3. 74). 
(b) For e > 0 small, there exists a bounded nonnegative stabilizing solution 
Y~_~ of (3. 72)-(3. 74) with 7 replaced by ~/ - e. 
I f  the system (3. 70) ks O-periodic, then there exists a O-periodic nonnegative 
stabilizing solution Yo of (3. 72) and (3. 73) such that Y (k ) - Yo(k ) ---* 0 as 
k --* ~ .  

3 . 3  H ~  C o n t r o l  

In this section we consider Ha-con t ro l  problems with initial uncertainty as 
in Section 2.3. First  we shall introduce the general framework for Hoo-control 
and define our main problems. Then  we consider two special problems called 
the full information- and the disturbance feedforward problems. 

3.3.1 M a i n  R e s u l t s  

Consider the system G: 

x(k + 1) = 

z ( k )  = 

y ( k )  = 

with 

A(k)x(k)  + B l (k )w(k )  + B2(k)u(k),  

Cl (k )x (k )  + D12 (k)u(k), 

C2(k)x(k) + 021 (k)w(k) 

(3.85) 

zl = F x ( N  + 1), (3.86) 

x(ko) = Hh  (3.87) 

where x E R n is the state, w E R "n is the disturbance, u E R TM is the 
control input, (zl, z) E R q x R pl is the controlled output ,  y E R p2 is the 
measurement,  h E R TM, F E R qxn, H E R nxn~ and A, B1, etc are bounded 
matrices of appropriate dimensions. For this system we assume 

D I :  D~2(k)[Cl(k)  D 1 2 ( k ) ] = [ 0  I ]  for a n y k ,  

D 2 :  D 2 , ( k ) [ B i ( k  ) D ~ l ( k ) ] = [ 0  I ]  for a n y k .  

Consider a controller u -- K y  of the form 

&(k + 1) = A(k)&(k) + JB(k)y(k), (3.88) 

u(k) = d(k)~c(k) +D(k )y ( k ) ,  

&(k0) =- 0 (3.89) 

for some bounded matrices A,/~, C and D. Let  ~/> 0 be given. Then  the Hoe- 
control on [k0, N] with initial uncertainty is to find necessary and sufficient 
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conditions for the existence of a 7-suboptimal controller, i.e., a controller 
such that  

Ilzll 2 + 1 z l  12<d2( ]h ]2+ l lw] ]2 )  for s o m e O < d < 7 .  

Without  loss of generality we assume that  H and F have full column rank 
and full row rank, respectively. 

To give the solution of this problem, we introduce the following Riccati 
equations 

V(k) > aI for some a > 0, (3.90) 

X(k)  = A 'X(k  + 1)A+C~C1 

-(R~2T2aR2)(k) + (F[VFa)(k), (3.91) 

X ( N  + 1) = F'F, (3.92) 

H'X(ko)H < d2I for some 0 < d < 7 (3.93) 

and 

Vy(k) > aI for some a > 0, (3.94) 

Y(k  + 1) = AY(k)A'  + BIB~ 

- (R~yT~)R2y)(k)  + (F~yVyFiy)(k),  (3.95) 

Y(ko) = HH'  (3.96) 

where 

Tl(k) = 72I - B]X(k  + 1)B1, 
Rl(k) --- B~X(k + 1)A, 
S(k) = B~X(k + 1)B1, 
Fx(k) = [V-I(Ra - S'Tf~R2)I(k), 
Tay(k) = 72I - ClY(k)C~, 
Ray(k) = CaY(k)A', 
Sy (k) = C2Y(k)C~, 
Fay(k) = [Vyl(R1y - S~,Tf~. R2y)](k), 
F v(k) = -iT2-)(R2r + Syf ly) ] (k)  

T2(k) = I + B~2X(k + 1)B2, 
R~(k) = B~X(k + 1)A, 
Y(k) = (Ta + S 'T; iS) (k) ,  
F2(k) = -[T2-1(R2 + SFt)l(k), 
T2y(k) = I + C2Y(k)C~, 
R2y(k) = C2Y(k)A', 
Vy(k) = (TIy + S~.T2~.Sy)(k), 

and we have omitted k in all system matrices of (3.85). We also need the 
following Riccati equation depending on X: 

Vz(k) > aI for some a > 0, (3.97) 

Z(k + 1) = AxZ(k)A~x + S i x B [ x  

-(Pd2zT2~R2z)(k ) + (F~zYzFaz)(k), (3.98) 

Z(ko) = H ( I -  1 H ' X ( k o ) H ) - I H '  (3.99) .-,/- 



3.3. Hoc Control 141 

where 

Ax(k)  = (A + B1F1)(k), 
�89 

C~x(k) = [:/"2- (R2 + SF~)I(k), 
1 

Dl2x (k) = 7"] (k), 
Tlz (k )  721 ' - CaxZ(k)C~x = -- m l l X m l l  x 
Rlz(k)  = ClxZ(k)A~x + D l l X B l x ,  
Sz(k) = C ~ Z ( k ) q x ,  
Vz(k) = (T,z + S'zT~)Sz)(k),  
Flz(k)  = [Vz l (R l z  - S'zT2zlR2z)I(k), 
F2z(k) = -[T2~(R2z + SzFlz)](k). 

Blx(k)  = 7(B1V-�89 )(k), 

D n x ( k )  = 7(T~�89 SV-�89 )(k), 

D21x(k) = 7(D21V-�89 )(k), 
T2z (k) = I + C2Z(k)C~, 
R2z(k) = C2Z(k)A~x, 

We can rewrite (3.91), (3.95) and (3.98) as 

R1 St -T1 

LR~w LSl, -T~y 

R1 (k), 

-' ['2"1h 
L R1. J ) (k) 

and 

Z(k+I)=AxZ(k)A' +B, xB'I,  /[R=]'[T2z Sz ]-l[R2z]h 
-ktR,zJ [S'z -T~zJ [n,zJ] (k) 

respectively. Here note tha t  the existence and uniform boundedness of 

S' -T1  ' [ S~ -T1y and [ Sz 
S z  ] - 1 

- T I z  

are guaranteed by (3.90), (3.94) and (3.97), respectively. We can also rewrite 

Axcl(k) = (A + B1F1 + B2F2)(k), 

Avcl(k)  = (A + F~yC1 F; + 2vC2)(k) 

and 
Az~(k) = (Ax + F~zC~x + F,~zC2)(k) 

as 

S ~ -T1 R1 

( R2y ' -1 ) 
A y d ( k )  = A-[Rty ] [T2y S y  
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and 

Az~l(k) = A x  - [R1zJ L SIz - Z l z  C 1 x  

respectively. As in the continuous-time case we have the following results. 

L e m m a  3.22 (a) Suppose X ,  Y and Z are solutions of (3.91), (3.95) and 
(3.98), respectively. I f  Z(s)  - Y(s)  - 1-~ Z ( s ) X ( s ) Y ( s )  = 0 for some s >_ ko, 
then Z(k) - Y (k )  - ~l-~Z(k)X(k)Y(k) = O, for all k > s. 
(b) I f  (3.93), (3.96) and (3.99) hold, then 

Z(ko) - Y(ko)  - ~ Z(ko)X(ko)Y(ko)  = O. 

L e m m a  3.23 (a) Let X ,  Y and Z be solutions of (3. 91), (3. 95) and (3. 98), 
respectively. Suppose x satisfies 

x(k)  = A ~ a ( k ) x ( k  + 1) (3.100) 

then 2(k) = ( I -  ~A~XY)(k)x(k) satisfies 

5:(k) = A~z~t(k)~2(k + 1). (3.101) 

(b) Let X ,  Y and Z be bounded solutions on [k0, co) of (3. 91), (3. 95) and 
(3.98), respectively. Assume that I -  ~-~ X Y  has a bounded inverse on [ko, co). 
Then A z d  is exponentially stable if and only if  so is Aycl. 

We give the proofs of Lemmas 3.22 and 3.23 in section 3.3.5. The following 
are our main results. 

T h e o r e m  3.9 Assume D 1  and D2.  
(a) There exists a "~-suboptimal controller u = K y  on [k0, N] i f  and only if 
the following hold: 
(i) There exists a nonnegative solution X(k ) ,  k e [ko, N +  1] to (3.90)-(3.93). 
(it) There exists a nonnegative solution Z(k) ,  k e [ko, N + I ]  to (3.97)-(3.99). 
(b) In this case the set of all 7-suboptimal controllers is given by 

:~(k + 1) = A(k)gc(k) + [~l(k)y(k) +/)2(k)0(k) ,  

u(k) = Cl(k)~.(k) + [ )n (k )y (k )  +/)12(k)~(k),  (3.102) 

P(k) = C2(k)~.(k) + D21(k)y(k), 
= Q§ I I Q I l < %  

 (ko) = o 

where fl(k) = [Ax~l - (R~2z - B2T2�89 Sz)T2~C2](k) and 

Bl(k)  = [(R~z - B 2 T 2 ) S z ) T 2 ~ I ( k ) ,  /)2(k) = _4(F1 Z 1  , + B2T2 �89  

d (k) = + T;�89 

= - ( r ;  �89 
= 

1 {T-�89189 
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T h e o r e m  3.10 Assume D1 and D2. 
(a) There exists a "y-suboptimal controller u = K y  on [k0, N] if  and only if  
the following hold: 
(i) There exists a nonnegative solution X ( k ) ,  k 6 [k0, N +  1] to (,?.90)-(3.93). 
5i) There exists a nonnegative solution Y(k ) ,  k 6 [k0, N + I ]  to (3.94)-(3.96). 
(iii) p ( X ( k ) Y ( k ) )  < d 2 for any k 6 [k0, N + 1] and for some 0 < d < % 
(b) In this case the set of all ~/-suboptimal controllers is given by (3.102) with 
Z replaced by (I - & z Y X ) - I Y .  

We now consider the system G: 

x(k  + 1) = A(k )x (k )  + B l ( k )w(k )  + B~(k)u(k),  

z(k) = C l ( k ) x (k )  + D12(k)u(k), 

y(k) = C2(k)x(k)  + D21(k)w(k), 

x(ko) = Hh 

on [k0, co) and the controller u = K y  of the form (3.88) and (3.89). Here we 
assume D1, D2 and 

D 3 :  

D4 : 

(A, B1, C1) is stabilizable and detectable, 

(A, B2, C2) is stabilizable and detectable. 

Then the H~-control  is to find necessary and sufficient conditions for the 
existence of a ')'-suboptimal controller, i.e., an internally stabilizing controller 
Such that  

I]zl lS-<42(Ihl  2 +  Hwl]~) for s o m e 0 < d < %  

To give the solution of this problem, we need the following definition. 

De f in i t i on  3.14 (a) The solution X of (3.91) is called a stabilizing solution 
if Axct is exponentially stable. 
(b) The solution Y of (3.95) is called a stabilizing solution i f  A y d  is expo- 
nentially stable. 
(a) The solution Z of (3. 98) is called a stabilizing solution i f  A z d  is expo- 
nentially stable. 

As in Theorem 3.4, we have the following properties for stabilizing solu- 
tions. 

L e m m a  3.24 (a) A bounded stabilizing solution of (3.91), i f  one exists, is 
unique. 
(b) Let Y and Y be two stabilizing solutions o/ (3.95). Then Y (k )  - IZ (k )  --* 0 
as k---* co. 
(c) Let Z and 2 be two stabilizing solutions o] (3. 98). Then Z(k)  - Z (k )  --~ 0 
as k---~ oo. 
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T h e o r e m  3.11 Assume D1-D4.  
(a) There exists a 7-suboptimal controller u = K y  on [k0, oc) if  and only if 
the following hold: 
(i) There exists a bounded nonnegative stabilizing solution X ( k ), k E [k0, oo) 
to (3. 90), (3. 91) and (3. 93). 
(ii) There exists a bounded nonnegative stabilizing solution Z ( k ), k E [k0, oo) 
to (3.97)-(3.99). 
(b) In this case the set of all ?-suboptimal controllers is given by (3.102) with 
Q internally stable. 

T h e o r e m  3.12 Assume D1-D4.  
(a) There exists a ~l-suboptimal controller u = K y  on [ko, oo) if  and only if 
the following hold: 
(i) There exists a bounded nonnegative stabilizing solution X ( k ), k E [ko, c~) 
to (3. 90), (3. 91) and (3. 93). 
(ii) There exists a nonnegative solution Y ( k ) ,  k �9 [k0, co) to (3.94)-(3.96). 
(iii) p ( X ( k ) Y ( k ) )  < d 2 for any k �9 [k0, oo) and for some 0 < d < ?. 
(b) In this case the set of all ?-suboptimal controllers is given by (3.102) with 
Z replaced by ( I  - 7A~YX)-IY  and Q internally stable. 

Now we assume that  the system (~ is 0-periodic and the conditions D1-  
D 4  hold. Then by Theorem 3.8 and Corollary 3.9 the solution X in Theorems 
3.11 and 3.12 is 0-periodic and there exist 0-periodic nonnegative stabilizing 
solutions Yo and Zo such that  

lim Y ( k  + nO) = Yo(k), lira Z(k  + nO) = Zo(k). 
?*t - "+  O 0  n - " *  O 0  

If we further assume h = O, then we have the following corollaries. 

C o r o l l a r y  3.10 (a) There exists a ?-suboptimal controller if and only if the 
following hold: 
(i) There exists a O-periodic nonnegative stabilizing solution to (3.90) and 
(3.91). 
(ii) There exists a O-periodic nonnegative stabilizing solution to (3.97) and 
(3.93). 
(b) In this case the controllers given by (3.102) with internally stable Q are 
",/-suboptimal. I f  Q is O-periodic, the controllers (3.102) are O-periodic. 

C o r o l l a r y  3.11 (a) There exists a ?-suboptimal controller i] and only i] the 
following hold: 
(i) There exists a O-periodic nonnegative stabilizing solution to (3.90) and 
(3.91). 
(ii) There exists a O-periodic nonnegative stabilizing solution to (3. 94) and 
(3.95). 
(iii) p ( X ( k ) Y ( k ) )  <_ d 2 for any t �9 [ko, ko + O) and for some 0 < d < ?. 
(b) In this case the controllers given by (3.102) with Z = ( I - ~ I - ~ Y X ) - I Y  and 
internally stable Q are "l-suboptimal. I f  Q is O-periodic, they are O-periodic. 
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Let the system G be time-invariant and assume the conditions D1-D4.  
Then we need the algebraic Riccati equations. 

V > 0, (3.103) 

X = A ' X A  + C~C1 - RP2T~IR2 + F~VF1, (3.104) 

Vy > 0, (3.105) 

Y A Y A '  + B1B I, , - 1 ! = -- + FiyVyFIy, R2yT2y R2y (3.106) 

Vz > o, (3.107) 
/ / - - I  I Z = A x Z A ~ .  + B l x B z x  - R2zT2z  R2z + F~zVzFzz .  (3.108) 

We define the stabiliTing soutions of (3.104), (3.106) and (3.108) as in Defi- 
nition 3.14. Without  loss of generality, we can set k0 = 0. Then we have the 
following corollaries. 

C o r o l l a r y  3.12 There exists a 7-suboptimal controller if and only if the fol- 
lowing hold: 
(i) There exists a nonnegative stabilizing solution Xoo of (3.103) and (3.104) 
with H ' X H  < d2I for some O < d < ~. 
(ii) There exists a bounded nonnegative stabilizing solution of (3.97) and 
(3.98) with Z(O) = g ( I  - 9 ~ H ' X H ) - Z H  '. 
Moreover, there exists a nonnegative stabilizing solution Zoo of (3.107) and 
(3.108) such that limk-~oo Z(k)  = Zoo. 

C o r o l l a r y  3.13 There exists a ~/-suboptimal controller if and only if the fol- 
lowing hold: 
(i) There exists a nonnegative stabilizing solution Xoo of (3.103) and (3.104) 
with H ' X H  <_ d2I for some 0 < d < ~. 
(ii) There exists a bounded nonnegative stabilizing solution of (3.94) and 
(3.95). 
Moreover, there exists a nonnegative stabilizing solution Yoo of (3.105) and 
(3.106) such that lim~-~oo Y( t )  = Yoo. 
(iii) p (XccY(k ) )  < d 2 for any k E [k0, co) and for  some 0 < d < 7. 

We further assume tha t  there is no initial uncertainty, i.e., h -- 0, we obtain 
the following. 

C o r o l l a r y  3.14 There exists a ~/-suboptimal controller if and only if the fol- 
lowing hold: 
(i) There exists a nonnegative stabilizing solution Xoo of (3.103) and (3.104). 
(ii) There exists a nonnegative stabilizing solution Zoo of (3.107) and (3.108). 

C o r o l l a r y  3.15 There exists a 7-suboptimal controller if and only if the fol- 
lowing hold: 
(i) There exists a nonnegative stabilizing solution Xoo of (3.103) and (3.104). 
(ii) There exists a nonnegative stabilizing solution Yoo of (3.105) and (3.106). 
(iii) p(X~Yoo)  <_ d 2 for  some 0 < d < 7. 
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3.3.2 Full  I n f o r m a t i o n  P r o b l e m  

Consider the system GFZ: 

x(k + 1) = A(k)x(k) + Bl(k)w(k)  + B2(k)u(k), 
z(k) = Cl(k)x(k) + Dll(k)w(k) + D12(k)u(k), 

y(k) = [ : ] (k)  

with (3.87) and (3.86) 

(3.109) 

x(ko) = Hh, 
zl -- F x ( N  + I) 

where we assume D I ' .  The solution to this problem is needed to solve the 
H~-problem for the system G. Moreover, the filtering problem in Section 3.4 
turns out to be the dual of this problem. Since the state x is now available, 
we may allow for nonzero initial condition for the controller 

~(k0) ---/:/h for some/7/. (3.110) 

In this case the controller (3.S8) and (3.110) is written as u = K ( ~ ) .  First 

weconsiderthefinitehorizonproblem. F o r e a c h c o n t r o l l e r u = K ( ~ ) d e f i n e  

the input-output operator G by 

(z:) 
Define the set of controllers 

Q ( h )  E s  n, x l2(ko, N;Rm,);12(ko, N;Rm2) ) 

of the form (3.88) and (3.110): 

= ~q :, q ( ~ )  ,~ +~'. '~(~o).~ ~_ ~( l~ I ~ §  Q~ 
I 

for some 0 < d < "/}. (3.111) 

Then we have the following. 

T h e o r e m  3.13 Assume D I ' .  
/ \ 

(a) 
\ / 

such that I[ G 11< ~/ if and only if there exists a nonnegative solution X(k),  
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k �9 [k0, N + 1] to (3.90)-(3.93). 
(b) In this case the set of all 7-suboptimal controllers is given by 

u(k) = -(T21R2)(k)x(k) - (T21S)(k)w(k) 
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+T2~(k) Q ~V �89  F,x] (k), Q e Q~. (3.112) 

Proof. S u p p o s e u = K ( ~ )  is 7-suboptimal.  Thense t t ingh=Oandapp ly -  

ing Theorem 3.7 we obtain an X(k)  > O, k E [k0, N + 1] satisfying (3.90)- 
(3.92). Moreover for (3.109) the following holds: 

[zl 12+l[z[]~ = 3, 2 I]w n 2 + h ' H ' x ( k o ) H h - 7  2 [{ 1 y � 8 9  
3' 

+ II T~[u + T~l (Sw + R2x)] 112 . 

S e t t i n g u = K ( h )  a n d w :  FlX we obtain 

d2([ h [2 + ]] w n 2) _> ]Zl [2 + ][ Z []2 

> 7 2 II w II~ +h'H'X(ko)Hh. 

Hence 
d2 I h 12> h'H'X(ko)Hh 

which yields (3.93). 
Sufficiency of (a) and the characterization in (b) follow from Lemmas 3.25 

and 3.26 below. 

To complete the proof we consider 

~(k+l) 
z(k) 
r(k) 

z(ko) 

= Aix(k)  + Bllw(k)  + B2lv(k), 

-=- CllX(k) + Dnlw(k)  + Dl21v(k), 

= C2ix(k) + D21lw(k), 
= Hh 

with zl = F x ( N  + 1) and 

~(k+l) 
v(k) 

v(k) 

~(k0) 

= Axe (k )  + Bixr (k )  + B2u(k), 

= C1xx(k) + D11xr(k) + D12xu(k), 

= [ F l ~ + ~ V - � 8 9  

= Hh 

(3.113) 

(3.114) 
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where  

At(k) = (A - B2T21R2)(k), 

Bl l(k)  = (B1 - B2T21S)(k), 
Cll(k) = (C1 - D12T21R2)(k), 

Dil l (k)  = (Dll - D12T21S)(k), 
D21~(k) = �88189 

B21(k) = (B2T2�89 
1 1 

C2l(k ) -= - ~ ( V  ~ F1)(k ), 

D121(k) = (D12T2�89 

L e m m a  3 .25  Let X be the solution of (3.90)-(3.93). 
(a) For (3.113) the following holds: 

I Zl 12 q- ][ Z ][2_ ~2 ]] ~/) ]]2 +h'H'X(ko)Hh+ [] v ]12 _~/2 ][ r [I 2 . (3.115) 

(b) 

ol (~ n s ;  ond the feedbock system (S l l V  with ~ = ~ ( h ~ connection 
\ Y ] 

Proof. (a) follows from direct  calculation. Not ing tha t  e -- x - 2 satisfies 

e(k + 1) = Axcle(k), e(ko) = 0 

we can show (b) as in L e m m a  2.20. | 

Now int roduce a feedback 

v = Q (  h)r (3.116) 

to  (3.113), where  Q is of the  form (3.88) and (3.110). 

L e m m a  3 .26  Consider the closed-loop system (3.113) and (3.116). Let 

be the input-output operator. Then I] G II < "I if and only if Q E Q.y. 

Proof. For each ro �9 12(ko, N ; R  TM) there  exists  a w �9 12(ko, N ; R  TM) such 
tha t  the  internal signal r in (3.113) and (3.116) coincides wi th  r0 and 

c1([ h [2 + [[ r0 [[2) -<1 h [2 + [[ w [[2_< c2([ h 12 + I[ r0 1122) (3.117) 

for some c~ > 0, i -- 1,2. Now suppose  ][ G ][< "y for (3.113) and (3.116). 
Then  for some 0 < d < 7 

42([ h [2 + [[ w ][2) 

I Zl [2-{- I] Z II 2 

~/2 [[w '12 +hIHIX(ko) H h §  ['Q ( h ~  [[2 _~/2 H r 112 by  (3.115). 
k ' /  
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Hence 

< 

< 

][ Q ( h ) H~ 

7 2 ( ] h ] 2 +  I]r H:z z ) - ( 7 2 - d 2 ) ( I h [ 2 +  [[w][22 ) 

[7 2 -- C1(7 2 -- d2)](I  h 12 + [[ r [15) by (3.117) 

which implies Q E Q~. 
Conversely, let Q E Q~. Then 

i z l  }2 + II z }1~ : 7 2 ]lw il2 ~ +h'H'X(ko)Hh+ II Q ( h ) I I ~ - 7  2 l i t  112 

_< 7 2 ( I h [ 2 +  [[ w [122) - (7 2 - d 2 ) ( l h l  2+11rtl22) 

7 2 _ 12 < (7 2 d2)([ h + I1 w ll22)- 
C2 

Hence 11 G II < 7. I 

R e m a r k  3.3 If [I G I]< 7, then as in Remark 2.4 Q E Q~ where 

/ L \  

0~ = {Q :][ Q / r )  ][22-< d2([~t[2 + ]]r ][2) for some O < d  < 7}, 

To conclude the proof of Theorem 3.13, we note that  u given by (3.112) 
/ - - \  

is 7-suboptimal by Lemma3.26.  Nowlet  u - -  K ( : ) b e  an arbitrary 7- 
\ a /  

suboptimal controller. Let Q be the input-output operator of the closed-loop 

system (3.114) w i t h u - -  K ( : ) . T h e n b y L e m m a 3 . 2 6 ,  Q ~ Q~.Hence 

u = K ( : )  is equivalent to 

u(k) = T2�89 T2�89 + SF1)s189 SV�89 
-�89 = -T21R2x(k)-T21Sw(k)+T2 Q(�88189162 

which implies (b) of Theorem 3.13. 

Next we consider the system GFI  on the infinite horizon [k0, oo). In this 
case we assume 

D5 : (A, B2, C1) is stabilizable and detectable. 
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For each IO-stabilizing controller we can define the input-output operator ms 
follows: 

The notion of IO-stabilizing controller is needed when we consider the filtering 
problem, for which internal stability is not in general expected. 

T h e o r e m  3.14 Assume D1 ~ and D5. 
/ - - \  

that II G II < 3' if and only if there exists a bounded nonnegative stabilizing 
solution X(k),  k e [k0, cxz) to (3.90), (3.91) and (3.93). 
(b) In this case the set of all such controllers is given by 

u(k) = -(T21R2)(k)x(k) - (T~l S)(k)w(k) 
1 ~ h 

where Q'r c / Z ( R  '~1 x 12(ko, cx~; Rml); 12(ko, cx~; Rm2)) is defined as in (3.111). 
In particular the set of all internally stabilizing controllers with I[ G II < 3" is 
given by (3.118) with internally stable Q. 

Proof. (i) N e c e s s i t y  of  (a).  Suppose there exists an IO-stabilizing controller 

u = K ( ~ ) such that [I G H< 3". Consider the system GFz With h = O. Then 

for each w e 12(ko, c~; R TM) there exists a control u e 12(k0, cx~; R m2) such 
that  II z 112< d II w 112 for some 0 < d < 7. Then by Theorem 3.8, there 
exists a bounded nonnegative stabilizing solution of (3.90) and (3.91) under 
the assumptions D1 ~ and D5. To show (3.93) consider the restriction of 

u = K ( ~ )  on [ko, N]. Then we obtain the solution XN of (3.90) and (3.91) 

satisfying (3.93) and XN(N q- 1) = 0. Since Xg(k )  converges to X(k) on 
[k0, oo) we conclude H'X(ko)H < d2I. 

Sufficiency of (a) and the characterization of all 3'-suboptimal controllers 
will be shown below. Consider systems (3.113) and (3.114) on [k0, cx~). Note 
that  A -  B2T~ 1R2 is exponentially stable by Lemma 3.21 and hence we have 
as in Lemma 3.25 

II z 112= 3'2 [[ w 112 +h'H'X(ko)Hh+ II v 1122 _3"2 II r 112. (3.119) 

The system GEt with a controller u = K ( h ) is equivalent to the intercon- 
\ Y ] 

nection of (3.113) with the feedback system (3.114) with u = K 

First we assume h = 0 and consider (3.113) with feedback 

v = Q r  (3.12o) 
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where Q is of the  form (3.88) and (3.89). 

L e m m a  3 .27  Consider the closed-loop system (3.113) and (3.120) and let 
Gw = z be the input-output operator. Suppose Q is IO-stabilizing. Then 
(a) x, r, v are square summable and 

[Ix112, l i t  112, I [ v l [ 2 _ < a l l w  112 for s o m e a > O .  

(b) f f  I] G I1< 7, then the map: w -* r is onto and Q is lO-stable. 
(c) II G I1< "~ if and only if Q is IO-stable with [I Q H< 7. 
(d) If, further, Q is internally stabilizing then Q is internally stable. 

Proof. (a) Since z c 12(ko, oci RPl) ,  D I '  implies Clx  and T ~ v - -  T2-1R2x are 
l 2 and 

1 

I[Ctx1[2, 1 1 T ] v - T 2 1 R 2 x [ 1 2 _ < a l l w  [Is for s o m e a > 0 .  

Now we wri te  (3.113) as 

x(k-~ 1) = ( A -  JC1)x(k)  + J C l x ( k )  + (B1 - B2T,;1S)w(k)  

+B2 IT2 ~ v(k) - T;1R2x(k)],  

x ( k o )  = o 

where J is a bounded  mat r ix  such t ha t  A - JC1 is exponent ia l ly  stable.  
Hence x is 12 and H x ]]2_< a II w 112 for some a > 0. The  rest is an immedia te  
consequence of this. 
(b) We write  (3.113) as 

T h e n  Po  are exponent ia l ly  stable. Moreover  P2~ 1 is realized by 

1 1 
x(k  + 1) = A x d x ( k )  + ~/(B1 - B2T 2 S ) V - ~ r ( k ) ,  

w(k)  = Fix(k )  +'~U-�89 

which is exponent ia l ly  stable. For the  closed-loop system r and v are the  
solutions of 

r = P 2 1 w + P 2 2 v ,  

v = Qr. 

By (3.119) 
1 

I]/)2211- <_ : and H v [ [ 2 _ < ~ [ I r l l 2 .  (3.121) 
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Now let ro �9 12(ko, o0; R 'n~) be arbitrary and define 

s = (I  - P22Q)ro. 

Then s is locally square summable. Now let SN be the truncation of s at  N 
so that  SN �9 12(ko, c~; Rm~). Now set WN = P~ISN �9 12(ko, ~ ;  R TM) and 
let rN be the internal signal of the closed-loop system corresponding to WN. 
Then rN = SN + P22QrN and by (3.121) 

II rN  - s~ 112=11 P22QrN 112<_11 r N  112, 

which implies 

II r N  - s N  I h 2 ( k o , ~ ; a ~ , ) _ < l l  r ~  IJl2(ko,N;R~.l) . 

Since rlv = ro on [k0, N] we conclude 

H ro - - S N  [[12(ko,N;R "~1 )=]1 P22Qro ][12(ko,N;R"~I)<~I[ r0 [II2(ko,N;R'~I )~<~[1 ro []2. 

Since N is arbitrary, P22Qro is 12. Now set wo = P ~ I ( I  - P22Q)ro. Then ro 
is the response to the input Wo and the map: w --* r is onto. Since l] Qr ]12<: 
7 I[ r 112, for any r, Q is IO-stable. 
(c) Now let r be the response to w. Then from (b) we have 

Cl[ [ r  [ [2<[]wl[2<c2] l r [ [2  for s o m e c ~ > 0 ,  i = l , 2 .  (3.122) 

Now assume Q is IO-stabilizing and [[ G [[ < 7- Then for some 0 < d < 7 

42 [[ w H2>][ z [12= 72 IIw [122 + [Iv [12 -72  [[r ][22. 

Hence 

I I ,  I1~ ~ ~ II r 112 - ( 7  ~ -d2) II ~ I1~ 
[,),2 _ c 1 ( 7  2 _ d2 ) ]  II r I1~, 

which implies II Q I1< 7. The converse follows from (3.119) and (3.122) in a 
similar manner. 
(d) If Q is internally stabilizing, then by Proposition 3.6 Q is stabilizable 
and detectable. But  Q is IO-stable by (b). This together with Proposit ion 
3.4 implies that  Q is exponentially stable. | 

L e m m a  3.28 Consider the closed-loop system (3.113) and (3.116). Let 

be the input-output operator. 
(a) Q is IO-stabilizing and 1[ G H <: 7 if  and only if  Q is IO-stable and 
Q e Q ~ .  
(b) Q is internally stabilizing and [[ G 1[< 7 if and only if  Q is internally 
stable and Q �9 Q'r. 
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Proof. (a) Suppose Q is IO-stabilizing and It G It < 7- We write 

Q ( hr ) = Qoh + Qlr. 

Setting h = 0, Q1 is IO-stabilizing. Hence by Lemma 3.27, Q] is IO-stable 
and ]1 Q1 I]< % Recall that  r and v are writ ten 

r = P2oh + P21w + P22v, 

v = Qoh+Qlr, (3.123) 

where/)20 is exponentially stable. Since v and Qlr are l 2, Qoh is also l 2 for 
any h. Hence Qo is bounded and Q is IO-stable. Since [] G [[ < % for some 
0 < d < ~/we have 

d2(I h i2 + II w 112) 

r 

Hence 
7 2 ( ] h [ 2 + l ] r l [ 2 2 ) - ( 7 2 - d 2 ) ( [ h ]  2 + ] [ w ] [ ~ )  

>_ h'H'X(ko)Hh+ ]] Q ( h ) ,t2. 

Since ] h 12 + I] r I]2_< a(I h ]2 + I] w ]]2) for some a > 0, we conclude that 

~2-d2 ,2 (h) (./2 - - - 7 - ) (  [ h + ][ r ][2 2) _> h'H'X(ko)Hh+ ][ Q ][~. 

Thus Q c Q~. 
Conversely let Q be IO-stable and Q E Q~. Then for each (h, w) E R TM • 

/2(ko, oc; R ml) there exists a unique (v, r) ~/2(ko,  c~; R m2) x 12(ko, ~ ;  R TM) 

satisfying (3.123) such that  

II r 112, II v 112_< a(I h 12 + II w 112). 

The pair coincides with the signal r, v of the closed-loop system. Hence x 
and z are in 12 and by virtue of (3.119) 

] 

< .y2 II w 112 -d2([ h [2 + II r 115) - .y2 II r 112 for some 0 < d < 9' 
= 9,2(l h 12 + II w I[~) - (~2 _ d 2 ) ( i  h 12 + II r ll~)- (3.124) 

Now for each (h, r0) e R TM x 12(k0, c~; R TM) consider 

1 1 1 x(k + 1) = Axclx(k) + 7(B1 - B2T 2 S)V-~ro(k) + B2T2:v(k), 
1 

wo(k) = Flx(k)+~V-~ro(k),  (3.125) 

x(ko) -- Hh, 

V -~- Q r o  . 



x(k + 1) 
z(k) 

y(k) 

with 
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Then w0 E/2(ko, cr R TM) and 

J h 12 + IJ w0 JJ~< 1(I h J~ + IJ r01122) for some a > 0 a 

Since (r, w) of the closed-loop system (3.113) and (3.116) is one of (r0, w0) 
above we conclude 

II z II~< [72 _ a(72 _ d2)](i h 12 + II w ll~)- 

Hence II C II < ~. 

Now the proof of sufficiency of (a) and (b) in Theorem 3.14 follows from 
Lemma 3.28 as in the case of Theorem 3.13. | 

R e m a r k  3.4 I t  follows from Theorems 3.13 and 3.14 tha t  the controllers u 
with Q = 0 in (3.112) and (3.118) are y-suboptimal .  

3.3.3  D i s t u r b a n c e  F e e d f o r w a r d  P r o b l e m  

We consider the H ~ - p r o b l e m  for the special sys tem GDF:  

= A(k)x(k)  + B l (k )w(k )  + B2(k)u(k),  

= Cl (k )x (k )  + D11(k)w(k) + D12(k)u(k), (3.126) 

= C2(k)x(k) + D2z(k)w(k) 

zl = F x ( N  +1),  

z(ko) = 0 

where D21 is a nonsingular and its inverse is bounded.  The  Hoo control prob- 
lem for this system is called the disturbance feedforward (DF) problem and 
as in the continuous-time case it can be reduced to the FI  problem. In fact 
consider the observer 

~(k + 1) = A(k)&(k) + [B1D~l l (y-  C25:)](k) + Be(k)u(k) ,  

~(ko) = O. 

Then  e = x - ~ satisfies 

e(k + 1) = (A - B1D2~C2)(k)e(k),  e(ko) = 0 

and hence ~ = x. Moreover w is observable since 

w(k) = D~l 1 (k)[y(k) -C2(k )x (k ) ]  = D~ll(k)[y(k) - C~(k)~(k)]. 

Thus we can use the controllers of the FI problem with h -- 0 : 

u(k) = -(T~-l  R2)(k)x(k)  - (T21S)(k)w(k)  

+T2�89189 - Flx])](k), II q I1< 7. 
7 
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T h e o r e m  3 1 ~   oreoc, co trol er  oe(z:)=Cwo  assumeOi' 
(a) There exists a controller u = K y  on [k0, N] such that II G I1< ~ if and 
only if there exists a nonnegative solution X(k ) ,  k ~ [ko, N + 1] of (3.90)- 
(s.92). 
(b) In this case the set of all 7-suboptimal controllers is given by 

2 ( k +  1) -- A(k)~(k)  + B , (k )y (k )  + B2(k)v(k),  &(ko) = O, 

u(k) = Cl(k)&(k) + b l l ( k ) y ( k )  + D12(k)v(k), (3.127) 

r(k) = C2(k):~ +/:)21y(k), 

v = Qr, IIQIl<7 
where A(k) = [A - B1D211C2 - B2T21(R2 - SD211C2)](k) and 

/}l(k) = [(B1 -B2T21S)D211](k),  B2(k) = (B2T2�89 
Cl(k) = - [T~I (R2  - SD~11C2)](k), C2(k) = - I [V �89  + D~l:C2)](k), 

D:: (k) = - (T~- 1 SD~11 )(k), D12 (k) -- T 2- �89 (k), 
JD21 (k) = 1(Y�89 0211)(k) 

and Q is a controller of the form (3.88) and (3.89). 

Proof. The necessity of (a) follows from Theorem 3.13. The sufficiency and 
(b) follow from Theorem 3.13 and the observation 

u(k) = -T~- lR2x(k)  - T21Sw(k)  + T2�89 

= _T2-- 1 (R2 -- SD21: C2):~(k) - T 21SD~I 1 y(k) + T2  �89 Qr, 

r(k) -- l -V �89  Fax(k)] 
7 

= 1 V � 8 9  + D211C2)&(k) + D211Y(k)]. | 
7 

We now consider the infinite horizon problem. We assume D5 and 

D6 : A -BID211C2 is exponentially stable. 

T h e o r e m  3.16 Assume D1 ~, D5 and D6. 
(a) There exists an internally stabilizing controller u ~- K y  on [k0, oc) such 
that ]1 G I1< 7 if  and only if  there exists a bounded nonnegative stabilizing 
solution X for (3. 90) and (3. 91). 
(b) In this case the set of all 7-suboptimal controllers is given by (3.127) with 
Q internally stable. 

Consider the H~-problem for the system GOB: 

x(k  + 1) = A(k)z (k )  + B l (k )w(k )  + B2(k)u(k), 

z(k) = Cl (k )x (k )  + D11(k)w(k) + D12(k)u(k), (3.128) 

y(k) --- C2(k)x(k) + n21(k)w(k),  

x(ko) = Hh  
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where D12 is invertible and has bounded inverse. This problem is called the 
output estimation (OE) problem. The adjoint of (3.128) is the backward 
version of the DF problem. Hence modifying Theorems 3.15 and 3.16 we 
have the following. 

T h e o r e m  3.17 F ~ 1 7 6 1 7 6  h ) w  a n d a s s u m e D 2 ' .  

(a) There exists a controller u = K y  on [k0, N] such that [[ G I[ < ~/ if and 
only if  there exists a nonnegative solution Y(k) ,  k E [k0, N + 1] of (3.94)- 
(396). 
(b) In this case the set of all 7-suboptimal controllers is given by 

~(k + 1) = A(k)~(k) + Bl(k)y(k)  + B2(k),(k) ,  ~(k0) = 0, 

u(k) = Cl(k)~:(k) + D11(k)y(k) + f)12(k)v(k), (3.129) 

r(k) = d2(k)~? + f)2ly(k), 

v = Qr, [[Q[[<7 

where .4( k ) = [A - Be D-~21Cx - ( R'2y - B2 D-[21SV )T~y1C2]( k ) and 

l r ' F '  + B2D1))V~I(k) ,  

G ( k )  = -[Dr)(C~ - S~Tf~C2)I(k), d2(k )  = -(W;~)C2)(k), 
l rD-1V�89  b n ( k ) = - ( D - [ ) S ~ , T ~ ) ( k ) ,  b 1 2 ( k ) = ~ t  12 y)(k) ,  

z)~ (k) = %-~�89 (k) 

and Q is a controller of the form (3.88) and (3.89). 

T h e o r e m  3.18 Suppose D2', (A, B1, C2) is stabilizable and detectable and 
that A - B 2 D ~ C 1  is exponentially stable. 
(a) Then there exists an internally stabilizing controller u = K y  on [k0, c~) 
such that II G II < "Y if and only if there exists a bounded nonnegative stabilizing 
solution Y for (3.94)-(3.96). 
(b) In this case the set of all "I-suboptimal controllers is given by (3.129) with 
Q internally stable. 

To give the proofs of Theorems 3.17 and 3.18, we consider the FI- and DF 
problems for the backward systems below. 

3.3.4 Backward  Sys tems  

Consider the backward system GFI: 

x(k) = A(k)x (k  + 1) + Bl(k )w(k)  + B2(k)u(k),  

z(k) = Cl(k)x(k  + 1) +Dl l (k)w(k)  + D12(k)u(k), [4k+11] 
y(k) = L w(k) ' 

zl = Fx(ko) 

(3.130) 
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with x ( N  + 1) = 0 and a controller u = Ky  of the form 

~(k) = .4(k)~.(k + 1) + JB(k)y(k), 3:(N + 1) = 0, (3.131) 

u(k) = C(k)~(k + 1) + D ( k ) y ( k )  

where all matrices are uniformly bounded. The Hoo-control problem for the 
system GFZ is the FI-problem and the solution to this problem is needed 
to the H ~  filtering problem. We assume D I ' .  To give the solution of this 
problem, we need the following Riccati equation 

V(k) > aI for some a > 0, (3.132) 

P(k + 1) = A'P(k)A + C~C1 

-(R'2T21R2)(k) + (F~VFI)(k), (3.133) 

P(ko) = F 'F  (3.134) 

where 

Tl(k) = "/21 - D~lD11 - B~,P(k)B1, T2(k) = I + B~P(k)B2, 
Rl(k)  -- B'IP(k)A + D~IC1, R2(k) = B~P(k)A, 
S(k) = B'2P(k)B1, Y(k) = (T1 + S'T2-1S)(k), 
Fl(k)  -- [V-I(R~ - S'T2~R2)](k), F2(k) = -[T2--1(R2 + SF~)](k) 

and we have omitted k in all system matrices of (3.130). Then we have the 
following result. 

T h e o r e m  3.19 Assume D I ' .  
(a) There exists a ~/-suboptimal of the form (3.131) if and only if there exists 
a nonnegative solution P(k), k �9 [k0, Y + 1] of (3.132)-(3.134). 
(b) In this case the set of all "~-suboptimal controllers is given by 

u(k) -- - (T21R2)(k)x(k  + 1) - (T21S)(k)w(k) 

+T2�89 [Q ( 1 V � 8 9  Flx])] (k), H Q [ ,<%(3.135)  

Proof. Necessity of (a) follows from Corollary 3.8. Similar to the proof of 
Theorems 2.19 and 3.13, we can show the sufficiency of (a) and (b). | 

Next we consider the system C~F1 o n  the infinite horizon [k0, oo). In this 
case we assume D5. For each IO-stabilizing controller we can define the 
input-output  operator as follows: 

T h e o r e m  3.20 Assume D I '  and D5. 
(a) There exists an IO-stabilizing controller u = K y  on [ko, oo) such that 
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]1 G II < 'r if and only if there exists a bounded nonnegative stabilizing solution 
P(k) ,  k �9 [k0, oc) of (3.132)-(3.13~). 
(b) In this case the set of all such controllers is given by (3.135). In particular 
the set of all internally stabilizing controllers with I[ G I[< 9" is given by 
(3.135) with internally stable Q. 

Proof. Necessity of (a) follows from Corollary 3.9. Proof of sufficiency of (a) 
and (b) is similar to the proof of Theorems 2.20, 3.14 and 3.19. | 

C o r o l l a r y  3.16 Let the system GFI be O-periodic and F = O. Assume D1 ~ 
and D5. Then 
(a) There exists an IO-stabilizing controller u = K y  on [ko, oc) such that [I 
G ][ < "r if and only if there exists a O-periodic nonnegative stabilizing solution 
P of (3.132) and (3.133). 
(b) In this case the controllers (3.135) are IO-stabilizing such that II G I1< % 
I f  Q is O-periodic, the controllers (3.135) are also O-periodic. 
In particular, if Q is internally stable, the controllers (3.135) are internally 
stabilizing. 

We now consider the H~-control  problem for the system (~DF: 

x(k)  = A(k )x (k  + 1) + B l ( k ) w ( k )  + B2(k)u(k) ,  

z(k)  = C , ( k ) x ( k  + 1) + D11(k)w(k)  + D12(k)u(k),  

y(k) = C2(k)x(k  + 1) + D21(k)w(k),  

zl = Fx(ko) ,  

x ( Y  + 1) = 0 

(3.136) 

and a controller u = K y  of the form (3.131) where D21 is a nonsingular and 
its inverse is bounded. This problem is the DF-problem for the backward 
system. Since it can be reduced to the FI-problem for the backward system, 
we have the following result. 

T h e o r e m 3 . 2 1  Foreachcontrol lerdef ine  ( z ; )  = G w  a n d a s s u m e D 1  '. 

(a) There exists a controller u = K y  on [k0, N] such that [[ G I1< "r if and 
only if there exists a nonnegative solution P(k) ,  k E [k0, N + 1] of (3.132)- 
(3.134). 
(b) In this case the set of all "r-suboptimal controllers is given by 

u(k) 
r(k) 

V 

= fi,(k)Jz(k + 1) + B l ( k ) y ( k )  + B2(k)v(k) ,  Jc(N + 1) = O, 

= Cl(k)z?(k + 1) + Dl l ( k )y (k )  + D12(k)v(k),  (3.137) 

= C2(k)~(k + 1) + s 

= Qr, [IQil<'r 
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where A(k) = [A - BID~11C2 - B2T~I(R,2 - SDZ211C2)](k) and 

B l ( k )  -- [(B1 - B2TfIS)D~II](k),  
Cl(k) = -[T~-I(R2 - SD~llC2)](k), 

/~)11 (k)  ---- - ( T  2 1 S D ~ 1 1  )(k), 
1 1 - - 1  [921(k) = ~(V~ D21 )(k) 

B2(k) = (B2T,2~)(k), 
C2(k) = -�88189 + DZellC2)](k), 

bl,~(k ) = "i~ �89 (k ), 

and Q is a controller of the form (3.131). 

We consider the infinite horizon problem. We further assume D5  and D6.  

T h e o r e m  3.22 Assume DI' ,  D 5  and D6.  
(a) There exists an internally stabilizing controller u = K y  on [k0, co) such 
that II G II < "7 if and only if there exists a bounded nonnegative stabilizing 
solution P(k),  k e [k0, co) of (3.132)-(3.13d). 
(b) In this case the set of all 7-suboptimal controllers is given by (3.137) with 
Q internally stable. 

3.3.5 P r o o f s  o f  M a i n  R e s u l t s  

We now give the proofs of our main results using Theorems 3.17 and 3.18. 
We first prove Lemmas 3.22 and 3.23. To do so, we first rewrite the Riccati 
equations in compact forms. Using the equalities (provided all inverses exist) 

E ( I + L E )  -1 = ( I + E L ) - I E ,  E 6 R  "~• L 6 R  mx~, 

I - ( I + G )  -1 = G ( I + G )  - ~ = ( I + G ) - ' G ,  G 6 R  ~• 

we have 

A x ( k )  -- (A § B1F)(k) 

= [I § B2B'uX(k + 1)][I § (B2B~ - ~ B 1 B ~ ) X ( k  1)]-IA. + 

Let M(k)  = I § B2B~X(k § 1) and Y ( k )  = [M(k) - 7A-~BIB~X(k § 1)] -1. 

Then we can rewrite (3.91) as 

X(k )  = C~C1 § A ' X ( k  § 1)N(k)A 

= C~C1 + A 'X (k  § 1 ) M - I ( k ) A x .  (3.138) 

Similarly we can rewrite (3.95) and (3.98) as follows 

Y(k  § 1) -- B1B~ 4- A Y ( k ) Y y ( k ) A ' ,  (3.139) 

1) = [I - ~ e 2 ( k ) X ( k  + 1)B2T21(k)B~X(k + 1)] -1 Z(k  + 

x (I)(k) (3.140) 
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where 

Ny(k)  

r 

We also have 

Aya (k) = 

Azcl (k) = 

By (3.140), we have 

1 
= [I + C;C2Z(k) - +C~ClV(k)] -1, 

= (MN)(k)BIBx + ~(k), 

= AxZ(k)[ I  + C~C2Z(k)J-1Atx . 

AN~(k),  

[ I  - -~#2(k)X(k + 1)B2T21(k)B~X(k + 1)] -1 

Z 'C  - x  x A x [ I +  (k)C2 2] . (3.141) 

1 
O(k) = Z(k + 1)[I + - ~ X ( k  + 1)B2T~a(k)B~X(k + 1)Z(k + 1)] -1 

+ -~Z(k  + 1)X(k + 1)B2T21(k)B~X(k + 1)]- lZ(k  + 1) [I 

and hence we can rewrite (3.141) as 

= [I + -~Z(k  + 1)X(k + 1)B2T2X(k)B~X(k + 1)] Azcz(k) 

•  + Z(k)C~C2] -1. (3.142) 

P r o o f  o f  L e m m a  3.22. We shall prove the equality by induction. Set 

Q(k) = Z(k) - Y(k) - ~-ffZXY(k). 

Let k = k0. Then Q(k) = 0 since Z(ko) = 0 = Y(ko). Now we assume 
Q(k) = O. Then by Lemma 2.18, 

Z(k) = Y ( k ) ( I -  ~ 5 X y ) - l ( k ) ,  

Y(k) = Z ( k ) ( I -  ~2XZ)- I (k ) .  

Since Q(k + 1) - - Y ( k  + 1) + [Z(I - ~I-~xY)](k + 1), it is enough to show 

Y(k  + 1) = [Z(I - ~2XY)](k  + 1). (3.143) 

N o w  

Y(k  + 1) = B1B~ + A Y N y A '  

1 (X - CaC'~)Z]-IA ' = B1B~ + AZ[I + C2C~Z + -fi 

i 'Z  1 1 )M_IAxZ]_ IW = B1B 1 + AZ[I + C 2 C  2 --[- A'X(k  + 
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where Y(k) = Z(I § 1-~XZ)-I(k) is substituted in the second equality and 
the Riccati equation (3.138) is used in the third equality. Since 

AZ[I + C2C~Z + -~A'XM-1AxZ]- IA ' 

= (MN)- IAxZ( I  + C2C;Z)  -1 

-~ C C'Z~-II-IA ' x [ I +  A'XM-1AxZ(I + 2 2 J J 

= C C'Z ~-IA' (MN) - IAxZ( I+  2 2 ) 

• [I + - ~ X M - 1 A x Z ( I  + C2C~Z)-IA'] -1 

= (MN)- IAxZ( I  + C2C~Z)-IA'x 

• [(MN)'  + 1 X M - 1 A x Z ( I  + C2C~Z)-IA'x] -1, 
3'- 

we have 

Y(k + 1) = (MN)-I[MNB1B~ § qd(N'M' § 7fl-sXM-lqd) -1] 

= (MN)-I[MNB1B~ 

+ { I  + - ~ ( N ' M ' ) - 1 2 M - 1 } - l ~ ( N ' M ' )  -1] 

= (MN)-I[I+ -~qd(NtM')-IXM-I] -1 

x[MNB1B i + ~(N'M')-I(I  + -~XNB1BI)] 

= (MN)-I[I+ -~(N'M')-I]gM-1]-I(~ (3.144) 

where we set )(  = X(k + 1) and we have used N'M' = I + 1-~XNB1B'I in 
the last equality. On the other hand 

Z(k + 1)[I - -~2)(Y(k + 1)] 

= [ I -  ~2@2B2T21B~21-lr 

x { I  - 12(MN)-1[I72 + ~2~(N'M')-IXM-1]-Ir  

= [ I -  ~ 2 B ~ T ; ' B ~ 2 ]  -1 

• ~2 ~f((MN)-I[I  § ~2qd(N'M')-l fCM-1]-I}~ 

= [ I - - ~ r  -~ 
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x{[I  + ~2O2(N'M')-IXM-1]MN- ~ ) ~ } Y ( k  + 1) 

where we have used (3.140) and (3.144) in the second equality and (3.144) 
again in the last equality. By direct calculation we have 

[I + ~O2(N'M')-lXAI-1]MN - -~(~f( = I -  @2 ~XB2T21B~X 

which implies (3.143). | 

P r o o f  of  L e m m a  3.23.  We shall show (a) only. Using (3.142) and Z(k) = 
Y(I - ~I-~XY)-I(k) we have 

A~d(k  ) : ( I -  - ~ X Y ) ( I -  -~XY + C~C2y)-IA'x 

• ~2-~Y --{- . X B 2 T 2 1 B ~ X ~ . Z ) ( I  - ~2.~Y)-1 
where 17 = Y(k + 1). Note 

_ , y - X  , _~_~22 ~ 2B2T21B~2#) (I ~2XY + C~C2 ) A x( I  + 

= (I+C~C2Y--~CICIY--~A'.~NAY)-IA~x 

•  - + kB T{IB 2?) 

= Ny(I - A'XNAYNy)-IA'N'M'[I - -~(I + )(B2B~)-IX] ?] 

: N y A ' ( I -  ~2XNAYNyA') - IN'[M ' -  ~ X Y ]  

where we have used (3.138) in the second equality. By direct calculation, we 
have 

~2 1 (N,)_l f(NAYNyA,]_ 1 ( I -  X N A Y N y A ' ) - I N  ' = [ ( N ' ) - '  - 

: 

= [M' - -~/~(B1B~ + AYNyA')] -1 

- ~  ^ _ = ( M ' -  XY)  

where we have used )~N = N ' X  in the third equality and (3.139) in the last 
equMity. Hence 

A'z~z(k ) = ( I -  ~2XY)NvA ' ( I - -~ f ( ] z ) - I  
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= ( I -  - ~ X Y ) ( k ) X y d ( k ) ( I -  ~ X Y ) - ' ( k  + 1) 

and we have shown the assertion. 

We now give the proofs of Theorems 3.9-3.12. 

P r o o f  o f  T h e o r e m  3.9: N e c e s s i t y  o f  (a) .  Suppose that  there exists a 
7-suboptimal controller u = Ky on [k0, N + 1] for the system G. Then by 
Theorem 3.13 (i) holds. Now consider (3.113) 

x(k + 1) = AIx(k) + Bllw(k) + B21v(k), 

z(k) = Clix(k) + DillW(k) + D121v(k), 
r(k) = C2tx(k) + D2,1w(k), 

x(ko) = Hh, 

Zl = F x ( N  + I) 

(3.145) 

and 

�9 (k + 1) = AxE(k) + Blxr(k)  + B2u(k), 

v(k) = Clx~(k)  + Dnxr ( k )  + D12xu(k), 
y(k) = C2~(k) + D2,xr(k),  

2(ko) = Hh 

with a controller 

Note that  

D21x B'Ix = 

(3.146) 

u = Ky. (3.147) 

72 D21V-1B~ 

72 D21 [../21 _ Bi XB1 + Bi X B 2 T  21B~XB1 ] - 1Bi 
2 t - -1  t i - 1  7 D21B1172I- XB1B~ + XB2T~ B2XB1B1] 

0 

and similarly D21xD21Xt = I and D21XDll x '  -- 0. Hence the condition D 2 '  
for the system (3.146) is satisfied. Then e = x - �9 satisfies 

e(k + 1) = (A + B1F1 + B2F2)e(k), e(ko) = 0 

and hence similar to Lemma 3.25, the system G with u = Ky is equivalent 
to the interconnection of (3.145) and (3.146) with u = Ky. Let Q be the 
input-output  operator  of the closed-loop system (3.146) and (3.147) so that  

v = Q ( hr ) .  Then by Remark 3.3, Q E Q~. Hence u = Ky  is T-suboptimal 

for the Hoe-problem defined by (3.146) with H and h replaced by [-I = H ( I -  
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~J~H'X(ko)H)-�89 and h = (I - A~zH'X(ko)H)�89 respectively. Since D12x = 

T2 ~, this is an OE problem and hence the condition (ii) holds. 

Suff ic iency of  (a) a n d  (b).  Consider the systems (3.145) and (3.146). Then 
by Theorem 3.17, the set of the controllers u = Ky given by (3.102) satisfies 
Q �9 Q~ where Q is the input-output operator of the closed-loop system 
(3.146) and (3.102). Considering e = �9 - k and the adjoint system as in 
the proof of Theorem 2.9, we can directly show that  the controller (3.102) is 
~-suboptimal, i.e., Q �9 Q~. Hence sufficiency of (a) and (b) hold. | 

P r o o f  of  T h e o r e m  3.10: N e c e s s i t y  o f  (a).  Suppose a ~/-suboptimal con- 
troller exists. Then by Theorem 3.7 and Corollary 3.8, there exist nonnegative 
solutions X, Y and Z of (3.90)-(3.93), (3.94)-(3.96) and (3.97)-(3.99), respec- 
tively. By Lemmas 2.18 and 3.22, I - J~XY is nonsingular and the set of 
eigenvalues of X Y  has the form 

~/2A 
~2 + A' A �9 A(XZ). 

Since X and Z are nonnegative and uniformly bounded in N, A E A(XZ) 
are nonnegative and uniformly bounded. Hence p(X(k)Y(k))  <_ d 2 for some 
0 < d < 7- Hence the condition (iii) holds. 

Suff ic iency of  (a) and  (b).  Note that  I - -~X(k)Y(k)  is nonsingular and 

[I - ~J~X(k)Y(k)] -1 is uniformly bounded in k e [k0, N q- 1]. Define 

Z(k) ~ Y ( k ) [ I -  ~2X(k)Y(k)]- l ,  k e [k0, N + 1]. 

Then Z(ko) = H ( I -  ~-~-H'X(ko)H)-IH ' and similar to the proof of Lemma 
3.22, we can show 

[ Y ( I - - ~ X Y ) - ' ] ( k +  I) = [ I - - ~ ( k ) X ( k  + l )B2T~l(k)B~X(k+ l)]-l~(k).  

Hence Z(k) = Y(k)[I - ~l-~X(k)Y(k)]-I satisfies the Riccati equation (3.97)- 
(3.99). The rest follows from Theorem 3.9. I 

P r o o f  of  Theorem 3.11: Since (A, B1 ) is stabilizable and A+B1 F1 +B2F2 is 
exponentially stable, we can easily show tha t  (3.146) satisfies the assumptions 
of Theorem 3.18 except for the detectability of (C2, Ax).  Since 

A x  + F f z C I x  + F~zC2 = A x  - R~2zT2~C2 + F; z (CIx  - SzT21C2) 

is exponentially stable, (Ax  - R' T -I"~ ' 2z 2z ~2, F~z) is stabilizable and so is 

(Ax - R~2zT2~C2, [F~x V�89 Blx  R~2zT2~]). 
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Since we can rewrite the Riccati equation (3.98) in the form 

Z(k  + 1) = ( A x  _ R~zT~-~C2)Z(k)(A x _ R2zT~z, -1C2), 
t 1 p - 1  t 1 s - 1  ]l 

+[F~xV~  B l x  R2zT~z ][F~xV~ B1x R2zT~z , 

A x  -R~zT27~C2 is exponentially stable by Proposition 3.5 and hence (C2, A x )  
is stabilizable. Thus the system (3.146) satisfies the assumptions of Theorem 
3.18 and we can proceed as in Theorem 3.9. I 

P r o o f  o f  T h e o r e m  3.12: The proof is similar to that  of Theorem 3.10. 
We only need to show that  Z = Y ( I  - 7x-~zXY) -1 is a stabilizing solution of 

(3.97)-(3.99). But  this follows from Lemma 3.23 and the stabilizing proper ty  
of Y. I 

P r o o f  o f  C o r o l l a r y  3.10: Necessity of (a) follows from Theorem 3.8 and 
Corollary 3.9. Proof  of the sufficiency of (a) and (b) is similar to tha t  of 
Corollary 2.12. I 

3.4 H ~  F i l t e r i n g  

As in Section 2.4 we consider the Ho~ filtering problem with initial uncer- 
tainty. We consider the problem both on finite and infinite horizons. 

Consider the system GF: 

x(k  + 1) = A(k)x (k )  + B(k)w(k) ,  

z(k) = n(k)x (k ) ,  

y(k) = C(k)x (k )  + D(k)w(k) ,  

x(ko) = Hh, 

zl = F x ( N  + I) 

(3.148) 

(3.149) 

(3.150) 

where x E R '~ is the state, w E R m~ is the disturbance, (zl, z) E R q x R p~ 
is the outputs  to be estimated, y E R p2 is the measurement,  h E R ~1, 
H E R ~• and A, B, C, D and L are bounded matrices of appropriate 
dimensions. Here we assume 

D F I :  [B(k)  D ( k ) ] D ' ( k )  = [0 I ]  for any k. 

We wish to estimate z 1 and z by the causal filter of the form 

~(k + 1) = .fi.(k):~(k) + JB(k)y(k), ~,(ko) = O, 

s = C(k)&(k)  + D(k)y(k) ,  

Zl -~- F I~ (g  -~- 1) 

(3.151) 
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and to achieve the following: 

{ Zl - -  2 : 1 1 2  + II z - 5 III_< d2(I h 12 + II w Ilg) for some 0 < d < ~/ (3.152) 

where A, / ) ,  C, b are bounded matrices of appropriate dimensions and F is 
a constant matrix. Such a filter is called 7-suboptimal. We can write (3.148)- 
(3.151) as 

~(ko) J 
rx(N + 1) 1 el = z x - 5 1  = [ F  -_Y] [ 2 ( N + l )  ' 

e(k) = z (k ) -  ~ (k )=[L-  /gC - C ]  [ ; ]  ( k ) -  19 Dw( k ). 

Define the operator G c s TM X /2(ko, N; Rml); R q x/2(ko, N; RPl)) by 

Then (3.152) is equivalent to II G II<_ d. The adjoint G* is given by 

where 

: 

r = [B' 

r = [ H '  

( N + I )  = _/~, f. 

This may be regarded as a closed-loop system 

C'B' -r ft, ] [ } ] ( k + l ) +  [L' C , jr(k), 
D'B'] [}] (k + I ) -  D'D'v(k), 

O] [{(ko) ] (3.154) 
L~(ko)J ' 

f(k) = A'(k)~(k + 1) + L'(k)~(k) + C'(k) . (k) ,  
~(k) = B'(k)((k + 1) +D' (k)p(k) ,  

,7(k) = L ~(k) j '  
(o = H'~(ko), 

( ( N + I )  = F'f  

(3.155) 
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with controller # = K* ( ~ ) o f  the form 

~(k) = A' (k)~(k  + 1) - [o 

. (k)  = [t'(k)~(k+ 1 ) -  [0 

~ ( N + I )  = - F ' f .  

0 ' ] (k )~ (k ) ,  

b ' ] ( k )~ (k ) ,  (3.156) 

The system (3.155) is of the full information type and (3.152) is equivalent 
to 

}r 12 + It (}}~< d2(] f 12 + ]} v }I~)- (3.157) 

The Riccati equation corresponding to this is 

Vy(k) > aI for some a > 0, (3.158) 

R' - 1R  Y ( k  + 1) = AY(k)A '  + BB'  - ( 2yT2y 2y)(k) 

+(F~yVyFlr)(k), (3.159) 
Y(ko) = HH', (3.160) 

F Y ( N  + I)F'  < d2I for some O < d < 7 (3.161) 

where 

Tiy(k)  = 72I  - LY(k)L' ,  T2y(k) = I + CY(k)C' ,  
R1y(k) = LY(k)A' ,  R2y(k) = CY(k)A' ,  
Sy(k)  = CY(k)L' ,  Vy(k) = (T1y + S~ T~)Sy)(k) ,  
Fly(k)  = [VyI(R1y - S ~ T ~  R2y)](k), 
F2y(k) = - [ T ~ ( R 2 y  + SyF1y)](k). 

As Q-y in Section 3.3.2 we define the set of controllers of backward type: 

Q.~ = {Q* E s  q x 12(k0, N;RPl);12(k0,  N;RP2))  : 

for some 0 < d < 3'}. (3.162) 

Let (~7 be the set of adjoint system of Q* c Q~. Modifying Theorems 3.13 
and 3.19 we have the following. 

T h e o r e m  3.23 (a) There exists a "y-suboptimal filter if and only if there 
exists a nonnegative solution Y to the Riccati equation (3.158)-(3.161). 
(b) In this case the set of filters with property (3.152) is given by 

~(k + 1) = (A - R'2yT~C)(k)d:(k ) + (R'2yT~l)(k)y(k) 

~(ko)  = o, 
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~(k) = (L - S~.T~)C)(k)~.(k) + (S~.T~))(k)y(k) 

--~ Y~(k)v(k), (3.163) 

~(k) = - (T~C)(k)~(k)  + Tf~(k)y(k), 
v = Qlr, 

zl = F & ( N + I ) - Q o r ,  Q =  Q1 �9 (3.164) 

Proof. (a) follows from a modification of Theorem 3.19. To show (b) recall 
\ 

that  the set of all controllers # = K* ( ] ] with II G* II < 3" is given by 
\ -i I / 

, ( k )  -T~R2y((k + 1 )  - T~)Syv(k) 

+ T2~ Q* 1V,'5[73 Flv~ ] ' �9 Q'~" "~ y t - -  

(3.165) 

Then the closed-loop system (3.155) with (3.165) is writ ten as 

C ! - 1 f(k) = ( A ' -  T ~ y R 2 v ) f ( k + l ) + [ O  

+C'T~ p( k ), 

: [0 -y ~ Y 

( ( N + I )  = F ' f .  

L' - C'T2~ SY ] ~?(k) 

(3.166) 

In view of this we can show that  the controller (3.165) is equivalent to 

, ( k )  = 

p ( ~ )  - 

~(N + 1) = 

( A' - C'T~) R2y )~ ( k + 1) + [0 L' - C'T2~ SY ] r/(k) 
1 

+ C ' T f ~  p( k ), 

--Tfd n=y~(k + 1) -- Tf)Syv(k)  + Tf~n(k),  

~-y,�89 r ] o(k), 
i , - [ 
7Y~F1y~(k  + I) + 0 

F 'y .  

(3.167) 

In fact for (3.155) and (3.167) e = ~ - ~ satisfies 

e(k) = A'e(k + 1), e(N + 1) = 0 
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and ~ satisfies (3.166). Now consider the adjoint of (3.155) and (3.167): 

z ( k + l )  = A x ( k ) + B w ( k ) + [ I  0]u(k) ,  

5(k) = L x ( k ) + [ O  I ]u (k ) ,  (3.168) 

y(k) = Cx(k)  + Dw(k) ,  

x(ko) = Hh,  

~'1 = F x ( N  + 1) + uz, (3.169) 
1 , �89 

~(k + 1) = (A - R~2yT2~C):~(k) - R~2vT2~)y(k) - -~FIyV ~ v(k), 

 (ko) = O, 

u(k) = [ (L S~T21C)fc(k)  0 ] - - S T; y(k) + �88 ' (3.170) 

r(k) = T f )CS:(k )  + T ; ) y ( k ) ,  

v = Q r, IIO, l l<% 

E(~- r. (3.171) 

Then [I G* [I < 7 is equivalent to 

[zl  [ 2 + [ [ S l [ 2 < d 2 ( [ h [ 2 + l [ w [ [ 2 2 )  f o r d < 7 .  (3.172) 

Note that  (3.168) except 5, 51 coincides with (3.148) and (3.149). Thus 
(3.170)-(3.172) can be easily interpreted as the filtering result in (b). I 

Consider the system G F :  

x(k  + 1) = A(k)x(k)  + B(k)w(k) ,  

z(k) = L(k)x(k) ,  

y(k) = C(k)z (k )  + D(k)w(k) ,  

x(ko) = H h  

on [to, c~). Then the H~-filtering problem is to find a "r-suboptimal filter, 
i.e., a filter of the form 

&(k + 1) = ~t(k)~(k) + B(k)y(k) ,  &(ko) =- O, (3.173) 

~'(k) = (~(k):~(k) + D(k)y(k)  

such that  z - ~ E/2(ko, o~; R pl) and 

I[ z - 5 II~_< d2(I h 12 + II w 1122), for some 0 < d < % (3.174) 

In this case we further assume 

D F 2  : (A, B, C) is stabilizable and detectable. 

Again considering the FI problem for (3.155) on [k0, oc) and modifying The- 
orem 3.20 we have the following. 



170 3. Discrete-time Systems 

T h e o r e m  3.24 Assume D F 1  and DF2.  
(a) Then there exists a 7-suboptimal filter if and only if there exists a non- 
negative bounded stabilizing solution to the Riccati equation (3.158)-(3.160). 
(b) In this case the set of all 7-suboptimal filters is given by (3.163), where 
Q1 is an lO-stable system with II Q1 11< 7. Moreover, the set of all internally 
stable filters is given by (3.163) restricting Q1 to be internally stable. 

We may incorporate the estimate of Zl on the infinite horizon. 

C o r o l l a r y  3.17 There exists a filter of the form (3.151) such that 

sup [1 zl - zl 12 + 11 z - P. II 2] < d2(I h 12 + II w II 2) for some d < 7 
N> No 

if  and only i f  there exists a bounded nonnegative stabilizing solution of (3.158)- 
(3.160) with 

F Y ( N  + 1)F' < d2I, N > No for some 0 < d < 7. 

Modifying Corollary 3.16 we have also the following result. 

C o r o l l a r y  3.18 Let GF be O-periodic and assume D F 1  and DF2.  Assume 
further that the initial condition is known, i.e., h = O. Then 
(a) There exists a filter of the form (3.173) with property (3.174) i f  and only 
if there exists a O-periodic nonnegative stabilizing solution of (3.158) and 
(3.159). 
(b) In this case the filters given by (3.163) are 7-suboptimal where Qx is an 
IO-stable system with ][ Q1 [[< 7. / fQ1 is O-periodic, the filter is 8-periodic 
and 7-suboptimal. Moreover, the filters are given by (3.163) is internally sta- 
bilizing if Qt  is internally stable. 

C o r o l l a r y  3.19 Let the system G F  be time-invariant. Then Y ( k )  in (a) 
converges as t -* cx~ to the stabilizing solution Yoo of the algebraic Riccati 
equation 

Vy > O, 
Y A Y A  I + B B '  i -x = -- R 2 y T 2 y  R 2 y  q- F 1 y Y y F 1 y .  

Moreover the filter (3.163) with Y ~  gives the set of all 7-suboptimal filters 
when h = O. 

3.5 H2 Control 

In this section we consider the H2 control problem. The H2 theory for time- 
invariant systems is now well-known [21, 93]. Here we give an extension to 
time-varying systems. 
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3.5.1 M a i n  R e s u l t s  

Consider the system G: 

+ 1) = 

z ( k )  = 

= 

A(k)x(k) + B1 (k)w(k) + B2(k)u(k), 

C1 (k)x(k) + D12 (k)u(k), 

C2(k)x(k) + D21(k)w(k) 

(3.175) 

where x E R n is the state, w c R ml is the disturbance, u c R m2 is the 
control input, (zl, z) E R q x R m is the controlled output,  y E R p2 is the 
measurement and A, B1, etc are bounded matrices of appropriate dimensions. 
For this system we assume D1-D4,  i.e., 

D I :  D~2(k)[Cl(k ) D 1 2 ( k ) ] = [ 0  I ]  f o r a n y k ,  
D 2 :  021(k) [ B~ (k) D ~ l ( k ) ] = [ 0  I]  for a n y k ,  
D3  : (A, B1, C1) is stabilizable and detectable, 
D4  : ( A, B2, C2) is stabilizable and detectable. 

Consider a controller u = Ky  of the form: 

~:(k + 1) = .4(k):~(k) + B(k)y(k), (3.176) 

u(k) = C'(k)~(k) + JD(k)y(k) 

for some bounded matrices .4, /~, C a n d / )  

To formulate the H2-controlproblem for the system G, we introduce the 
following set of controllers 

K = {K : K is of the form (3.176) and internally stabilizes the system G}. 

Then the H2-norm, [[ G [[2, of the closed-loop system G and a controller 
u = Ky  is well-defined and our H2-problem is to find a controller K E K 
which minimizes [[ G [[2. To give the solution of this problem we introduce 
the following Riccati equations: 

X(k)  = A ' (k)X(k  + 1)A(k) + C~(k)C1 (k) - (R~2T21R2)(k) (3.177) 

and 

Y(k  + 1) 

Y(ko)  = 

where 

T2(k) = I + B~(k)X(k + 1)S2(k), 
T:y(k) = I + C2(k)Y(k)C~(k), 

A(k)Y(k)A'(k)  + B1 (k)B~ (k) 

- (P~yT~lR2y) (k ) ,  (3.178) 

0 (3.179) 

R2(k) = B ~ ( k ) X ( k  + 1)A(k), 
R2y(k) = C2(k)Y(k)A'(k). 
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Def in i t ion  3.15 (a) The solution X o] (3.177) is called a stabilizing solution 
if A + B216, t6(.) = -(T2-1R2)(-) is exponentially stable. 
(b) The solution Y of (3.178) is called a stabilizing solution if A + ~IC2, 
H(.) , -1 = -(R2yT2y )(.) is exponentially stable. 

By Theorems 3.2 and 3.3, we have the following result. 

L e m m a  3.29 Assume D1-D4. Then 
(a) There exists a bounded nonnegative stabilizing solution X(k),  k e [k0, oo) 
to (3.177). 
(b) There exists a bounded nonnegative stabilizing solution Y(k),  k E [ko, cr 
to (3.178) and (3.179). 

Consider the stabilizing controller 

2(k + 1) = .4(k)~(k) + B(k)y(k), (3.180) 

u(k) = C(k)3c(k) + D(k)y(k) 

where 

A(k) = (A + B2T" + Is B2LC2)(k), 

[~(k) = - ( H -  B2L)(k), 

~(k)  = (P - LC2)(k), 
D(k) = L(k) 

and L(k) = (16YC~T2~))(k). 

T h e o r e m  3.25 Assume D1-D4 and consider the H2-problem for the system 
G. Then the controller (3.180) is optimal and 

ko+N-1  

rain '1 a H~ : A ~  N ( ~ tr.[~(s)X(s + 1)~,(s)+ (S'Tr 
K E K  

s~ko  

ko+ N 

+ Z  
s=ko+l  

tr.[T~(~Y~' + D21D'~,)](s)} (3.181) 

where [~l(k) = (B1 -B2T21S)(k) ,  D21(k) = (T~IS + LD21)(k) and S(k) = 
B~(k)X(k + 1)Bl(k). 

Coro l la ry  3.20 Let G be O-periodic. Then X(k)  is O-periodic and there ex- 
ists a O-periodic nonnegative stabilizing solution Yo( k ) of (3.178). Moreover, 
the controller (3.180) with Y replaced by ]Io is optimal and 

min I]GII~ = 1 k o + 0 - 1  KeK -~{ E tr.[B~(s)X(s + 1)/~l(s) + (S'T~2S)(s)] 
8~k  0 

ko+O 

+ Y~  tr . iT~C~ro~'+ b~abh)]Cs)). 
s=ko+l  
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Let G be time-invariant. Then there exist nonnegative stabilizing solutions 
X and Y, respectively of algebraic Riccati equations 

and 

A ' X A  + C~C1 - R~T~-IR2 = 0 

A Y A '  + B1B~ - R'2yT~)R2y = O. 

C o r o l l a r y  3.21 Let G be time-invariant. Then the controller (3.180) urith 
(X(k), Y(k)) replaced by (X, Y)  is optimal and 

min [[ G [[22= tr.[B~XB1 + S ' T 2 2 S + T 2 ( C Y C ' +  21021)]. 
K E g  

3.5.2 P r o o f s  o f  M a i n  R e s u l t s  

To prove Theorem 3.25 we need some preliminary results. Consider the sys- 
tem G and the controller u = K y  of the form (3.176). Let X be the solution 
of (3.177). We introduce 

v(k) = T~[u(k) + T21Sw(k)  - Fx(k)] 

and the following system (~: 

z(k  + 1) = Ax(k) + Blw(k)  + B2u(k), 

v(k) = T2�89 R2x(k) + T2�89 Sw(k) + T~u(k),  (3.182) 

y(k) = C2x(k) + D21w(k). 

Then z can be written using v as follows: 

z(k + 1) = (A + B2F)z(k)  + (B1 - B2T~IS)w(k)  + B2T2�89 

z(k) = (C1 + D12fi')x(k) - D12T~1Sw(k) + D12T2�89 

Note that  the above system is exponentially stable. Hence 

z = Gcw + Uv 

where Gc and U are given by 

~(k + 1) = (A + B2fi')~(k) + (B1 - B2T~-IS)w(k), 

r = (C1 + D12t@)~(k) - 012T21Sw(k) 

and 

x(k + 1) = (A + B2F)x(k) + B2T2�89 

z(k) = (C1 + D12F)x(k) + D12Tf�89 

respectively. Then we can easily see the following. 
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L e m m a  3.30 (a) The system G is equivalent to the interconnection of the 
system (~ and (Go, U). 
(b) K stabilizes the system G if and only if it stabilizes the system G. 

Next we shall show the properties of Gc and U. 

L e m I n a  a.31 (a) H Uv H2=H v J]2 /or any v e 12(s, oo; R ~ ) .  
(b) < Ge~.swo, Uv > =  0 for any wo c R ml and v c 12(s, oo; R m2) where 

(~ksWo = ~ WO, k = S, 
t O, otherwise. 

Proof. (a) We can rewrite the Riccati equation (3.177) as 

X ( k )  = (A + B 2 F ) ' X ( k  + 1)(A + B2,#) + (C1 + D12zW)'(Cl + D12F). 

By direct calculation, we have 

x ' (k  + 1)X(k + 1)x(k + 1) - x ' ( k ) X ( k ) x ( k )  = - ] z (k)  12 + I v(k) 12 

where we have used the following equality 

B ~ ( k ) X ( k  + 1)(A + S2z~)(k) = - F ( k ) .  

Hence we have 

N 

x ' ( N  + 1)X(N + 1)x(N + 1) - x ' ( s ) X ( s ) x ( s )  = ~-~.[I v(k)  12 - I z(k)  12]. 
k = s  

Since x(s)  -~ 0 and limN-,or x ( N  + 1) = 0 we have the assertion. 
(b) Consider Gc with w(s)  = Wo and w(k)  = O, s + 1 < k. Then 

~(k) = { 0, k = s, 
S F ( k , s  + 1)(B1 - B 2 T - 1 S ) ( s ) w o  k >_ s + 1 

where SF(.,  .) is the state transition matrix of A + B2, ~. Using the equality 

(B1 - B 2 T 2 1 S ) ' ( k ) X ( k  + 1)B2(k) = S ' ( k ) T 2 1 ( k )  

we have 

{'(s + 1)X(s + 1)x(s + 1) - { ' ( s ) X ( s ) x ( s )  
1 

= W'o(B 1 - B 2 T ~ I S ) ( s ) X ( s  + 1)B2(s )T2=(k)v (s )  

= [(D12T21S)(s)wo]'[(D12T2�89 

= - r  
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and as in (a) we have 

~'(k + 1)X(k + 1)x(k + 1) - ~'(k)X(k)x(k) -- -~'(k)z(k),  k >_ s + 1. 

Hcnce 

N 

~'(N + 1)X(N + 1)x(N + 1) - ~'(s)X(s)x(s) = ~ ~'(k)z(k) 
k = s  

and we have the assertion since limN~oo ~(N + 1) = limN-,oo x (N  + 1) = 0 
and x(s) = O. I 

Now we return to the H2-control problem for the system G. Suppose K 
stabilizes the system G and hence the system 8 .  Let G be the input-output 
operator of the closed-loop system G with u = Ky, i.e., 

v=Gw. 

By Lemma 3.31 

II a II~ = II a c +  u c  I1~ 

= II G il~ + II u s ,  112 
= I I G r  2 (3.183) 

and 

rain II a [12=11 ac  112 + min II 4 112- KEN K E K  

Thus our original H2-problem has been reduced to the one for the system 
1~. By Remark 3.2, minKeK II G II 2 is equivalent to the H2-problem for the 
backward system 

~ ( k )  = 

~ ( k )  = 

~ ( k )  = 

A'(k)Sc(k + 1) + (R'2T~�89 + C~(k)f~(k), 
1 

B~(k)&(k + 1) + (S'T2-~)(k)~b(k) + D'~l(k)fi(k ), 
1 

B~(k)Yc(k + 1) + T](k)~(k)  

(3.184) 

with an internally stabilizing controller of the form 

~(k) = A'(k)~(k+ 1) +C'(k)~(k),  

~(k) = B ' (k)~(k+ 1) +/9 ' (k)~(k) .  

The H2-problem for the system (3.184) is the DF problem. Its solution will 
be given below. 
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Backward Systems 

We take a general backward system and consider special H2 problems. First 
we consider the system with full information (denoted by GEl:)  

x(k) : A(k)x(k q- 1) -}- Si(k)w(k ) q- B2(k)u(k), 

z(k) = Cl (k)z (k  + 1) + D n ( k ) w ( k )  + n~2(k)u(k), (3.185) 
[x(k + 11] 

~(k) = l w(k) " 
We take a controller u = Ky of the form 

~(k) = A(k)~(k+  1) + B(a)~(k), 

u(k) = C(k)dc(k + 1) + D(k)y(k) (3.186) 

where all matrices are uniformly bounded and of compatible dimensions. 
Let GFI be the input-output operator of the closed-loop system GFI with 
u -- Ky. To formulate the H2-problem for the system GFI we introduce the 
following set of controllers: 

K = {K : K is of the form (3.186) and 

internally stabilizes the system GFZ}. 

Then the H2-problem for the system C~fl (FI-problem) is to find a controller 
K �9 K which minimizes II GFI 112. 

For the system GEl, w e  assume D I '  and D5, i.e., 

D5  : (A, B2, C1) is stabilizable and detectable. 

Then as in Lemma 3.29, we have the following. 

L e m m a  3.32 Assume D I '  and D5. Then there exists a unique bounded 
nonnegative stabilizing solution P(k),  k �9 [k0, oo) to the Riccati equation 

P(k + 1) = A'(k)P(k)A(k) + Ci(k)Cl(k ) - (R~pTpiRp)(k)~3.187) 

P(ko) = 0 

where Tp(k) = I + B'2(k)P(k)B2(k ) and Rp(k) = B'2(k)P(k)A(k ). 

As in the previous subsection, we introduce 

v(k) = T~(k)[u(k) + (Tp1Sp)(k)w(k) - Fp(k)x(k + 1)] 

and the system (~b: 

x(k) = A(k)~(k + 1) + Bl(k)w(k) + B2(k)u(k), 

v(k) = 

y(k) = 

(3.188) 
(T~inp)(k)x(k + 1) + (T~ �89 + T~ (k)u(k), 
[~Ck + 1) 

wCk) ] 
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where Fp(k)  = - ( T p 1 R p ) ( k )  and Sp(k )  = B~(k )P(k )B l ( k ) .  Then z can bc 
written using v as follows: 

z(k) 

Hence 

= (A + B2Fp)x (k  + 1) + (B1 - B 2 T p I S p ) w ( k )  + B2Tp�89 
1 

= (C1 + D12Fp)x(k  + 1) + (Dll  - D 1 2 T p I S p ) w ( k )  + D12Tp~v(k) .  

z = G~w + Ubv 

where G b and U b are given by 

~(k) = (A + B2Fp)~(k  + 1) + (BI - B2Tp1Sp)w(k ) ,  

~(k) = (61 + D12Fp)~(k + 1) + (Oll - DI~Tp1Sp)w(k )  

and 

x(k)  = (A + B2Fp)x (k  + 1) + B2Tp�89 
1 

z(k)  = (C1 + D12Fp)x(k  + 1) + D12Tp~v(k) ,  

respectively. Then we have the following. 

(a) The system GEl  is equivalent to the interconnection of the system (~b 
G b and ( c ,  u b )  �9 

(b) K stabilizes the system GFI if and only if it stabilizes (~b. 

Next we need the following lemma. 

L e m m a  3.33 (a) II Ubv 112=[I v ]12 .for any v �9  oo; Rm2). 
(b) < Gbj.sWo, Ubv > =  0 f o r  any wo �9 R ml and v �9 /2(ko, cx);R 'n2) with 
support in [k0, s]. 

Proof. (a) We can rewrite the Riccati equation (3.187) as 

P ( k  + 1) = (A + B 2 F p ) ' P ( k ) ( A  + B2Fp)  

+(C1 + D12Fp)'(C1 + D12Fp), 

P(ko) = O. 

The by direct calculation 

x ' (k  + 1)P(k + 1)x(k + 1) - x ' ( k ) P ( k ) x ( k )  =1 z(k)  12 - ] v(k) ]2 

and hence 

[I z(k) I - I v ( k )  [21 
k=ko 

= x ' ( s  + 1)P(s + 1)x(s + 1) - x ' (ko)P(ko)x(ko)  

= x ' (s  + 1)P(s + 1)x(s + 1). 
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Since x(s  + 1) = 0 and x(k)  = O, Vk > s, we obtain (a). 
(b) Consider the system G b with w(s)  = wo and w(k)  = O, k # s, ko < s < o0. 
Then as in the proof of Lemma 3.31 we obtain 

~-[~r = ~'(s + 1)P(s  + 1)z(s + 1) - ~'(ko)P(ko)x(ko) 
k=ko 

= ( ' ( s  + 1)P(s  + 1)x(s + 1). 

Since ( (s  + 1) = 0, ~'~Sk=ko('(k)z(k ) = 0. Since ~(k) = 0 and z(k)  = 0 k > s, 
we have ~ k - k 0  ~'(k)z(k)  = O. | 

Let u = K y  be an internally stabilizing controller and ~b the input-output  
operator  of the closed-loop system (~F1 with u = K y  given by 

V --~ G b W .  

Then v(k) = GbS.swo has support  in [k0, s]. and by Lemma 3.33 

II a r I  1122 = II Gbc + vbGb 1122 
= II G b IIN + II ubGb IIN 
= II G~ 1122 + II ~b 115" 

Hence we have 

rain II G~, It~=11 G b I1~ + rain II ~ I1~. 
KEK KEK 

Thus the H2-problem of the system (~FI is reduced to  the one for the system 
(~b. Since u(k)  = Fp(k ) x ( k )  is stabilizing, 

u(k)  = [ Fp - T p I  Sp  ] (k)y(k)  

internally stabilizes the system (~b and this yields v = 0 or ~b = 0. Hence 
this controller is optimal for the system G F I  and 

rain H GFI I]2=11 Gbc II 2 �9 
KEK 

The  controllability gramian for the backward system associated with G b is a 
unique nonnegative solution is given by 

Lo(k + 1) = (A + B 2 F p ) ' L o ( k ) ( A  + B2Fp)  + (C1 + D12Fp)'(C1 + D12Fp) 

which implies Lo = P .  Hence by Lemma 3.3 

ko+N 
II a~  IIN= lira 1 iv--,= -N E tr.[[~'~PB1 + D~lD11](s) 

s - - k o + l  

where/31(k)  = (Bt  - B 2 T ~ I S p ) ( k )  and D n ( k )  = (Di l  - D12T~lSv) (k) .  

Summarizing the above we have the foUowing. 
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T h e o r e m  3.26 Assume D I ' ,  D 5  and consider the H2-problem for the sys- 
tem GEl. Then 

ko+N 

(a) min ]1 G ][2 2= lirnoo 1 KeK N ~ tr'[[~iPBi + Di1Dli](s)" 
s=ko+ l  

(b) K = [Fp - T p I S p ] ( k )  is optimal. 

Next we consider the H2-problem for thc system (~DF: 

x(k) = A(k)x(k  + 1) + B l ( k ) w ( k )  + B2(k)u(k), 

z(k) = Cl(k)x(k  + 1) + D11(k)w(k) + D12(k)u(k), (3.189) 

y(k) = C2(k)x(k + 1) + D21(k)w(k) 

where D211 exists and is uniformly bounded and we take a controller u ---- 
KDFY of the form (3.186). Here we assume D I ' ,  D 5  and D6,  i.e., 

D 6  : A - B1D211C2 is exponentially stable. 

As we see below, this problem is equivalent to the FI-problem. 

P r o p o s i t i o n  3.7 A controller KDF internally stabilizes GDF if and only 
if K = KDF[C2 D21] internally stabilizes GFI. In this case GDF = GFI 
where GDF iS the input-output operator of the closed-loop system (~DF with 
u = KDFY defined by z = GDFW. 

Proof. T h e p r o o f f o l l o w s f r o m u = K D F y = K D F [ C 2  D21] [ : ] .  | 

Consider the controller KDF: 

~(k) = A(k)~(k + 1) + (B1D2~)(k)[y(k) - C2(k)~(k + 1)] 

+B2(k)UFl(k), 

u(k) = UFl(k), (3.190) 

UFI = K y F I ,  

[ &(k + 1) ] 
YFl(k) = [D211(k)[y(k) _ C2(k):~(k + 1)]. " 

P r o p o s i t i o n  3.8 The controller K internally stabilizes the system GFI if 
and only if KDF given by (3.190) internally stabilizes GDF. In this case 
GFI  : GDF. 

Proof. Let e = x - & where x and ~ are the states of the system GDF and 
(3.190), respectively. Then e satisfies 

e(k) = ( A - BID~llC2)e(k + 1) 
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which is exponentially stable. Moreover 

2(k) = A2(k + 1) + Bl(v(k) + B2u(k), 

rx(k + 1)] _- g [Jc(k + 1)] 
u(k) = u F l ( k ) = K  [ w(k) J [ ~v(k) 

where @(k) = w(k) + D211C2e(k + 1). Hence 

:}(k) = A~(k + 1) + Bl@(k) + B2u(k), (3.191) 

+ 1)] 
u(k) = g [ ~(k) " 

Now suppose K stabilizes GF1. Then & E 12, but e c l 2 and hence x E 12. 
Thus KDF stabilizes GDF. Conversely suppose KDF stabilizes the system 
GDF. then (3.191) is exponentially stable. Finally z is given 

z(k) = Clx(k  + 1) + Dllw(k)  + D12u(k) 

= C1(~ + e)(k + 1) + Dl l [~ (k)  - D~llC2e(k + 1)] + D12uFi(k) 

subject to (3.191). Hence GFI = GDF. | 

Now it is easy to obtain the solution of DF-problem. Since 

g = [Fp - T p 1 S p ]  (k) 

is optimal for the system G F I ,  the optimal controller for (~DF iS given by 

u(k) = [Fp - T p I S p ] ( k )  D;)(k)[y(k) - C2(k)~(k + 1)1 

and (3.190) in this case 

= + 1) + 
u(k) = C(k)3:(k + 1) + D ( k ) y ( k )  

where 

(3.192) 

fi(k) = [A - (B1 - B2TpISp)D2~C2 + B2Fp](k), 

/}(k) = [(B1 - B2TpISp)D~)](k) ,  

C(k) -=- (Fp + Tp1SpD211C2)(k), 

D( k ) = -(TpI Sp D211)( k ) 

The or e m 3.27 Assume D I ' ,  D 5  and D 6  and consider the H2-problem for 
the system GDF. Then 
(a) minKeK I] GDF 112=ll II . 
(b) The controller (3.192) ~ optimal. 
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P r o o f  of  T h e o r e m  3.25 

Now we return to the H2-problem for the system G. By (3.183) we have 

min II G 113=11 Gc 113 + min ]} (~ I}3 
K E K  K E K  

and the original H~-problem was reduced to the H2-problem for the backward 
system (3.184), which is a DF-problem. Since the conditions DI ' ,  D5 and 
D6 are satisfied for (3.184), we can apply Theorem 3.27 to obtain 

min II 0 113 
K E K  

k o + N  
1 1 ^ 

= l im -~ ~_, tr.[T]F(I - CHT;]CzY)'Y(I - CHT;~C2Y)P'T ~ 
s = k o + l  

+T2(T21S + LD21)(T~lS + LD2lyT~](s) 
k o + N  

1 - D' = li~mo o ~ Z tr.[T2(C'YO'+D,21 21)1(s) 
s = k o + l  

and the optimal controller is given by 

2(k) = [A' + (T" -  CHL')B H + C;I2I](k)~c(k + 1) 

- ( ~ " -  cHn')(k)~(k), 
~(k)  = ( H '  - i ' B ; ) ( k ) e ( k  + 1) +/'(k)~(k). 

Hence the forward controller (3.180) is optimal for the system (~ and hence 
for the system G. We also have 

k o + N  1 
min I[ a II~=ll ac 113 + l ~  ~ ~ tr.[T~((~YO' +/)21D~x)](s ). 
K E K  

s = k o + l  

Now we express II Gc 1122 using the observability gramian of G~ which is a 
unique nonnegative solution of 

Lo(k) = (A + B2F)'Lo(k + 1)(A + B2/~) + (C 1 q- D12/~)'(C1 + D~2P). 

But X satisfies the equation above and hence Lo = X. Then by Lemma 3.3, 
we have 

II G~ 113= lim 1 ko+N-1 N-~oo -N Z tr'[Bi(s)X(s + 1)/)l(s) + (S'T~2S)(s)]. 
s=ko  

and we obtain (3.181) and the proof of Theorem 3.25 is complete. 
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3 . 6  N o t e s  a n d  R e f e r e n c e s  

This chapter contains a discrete version of the results in Chapter  2. 
The stability results in Section 3.1 are obtained as in Section 2.1 and we 

can find similar results in [23]. The H2 and H ~  norms are defined as in [21]. 
The formulation of the quadratic control follows [1, 21]. The results of the 
disturbance at tenuation problems with initial uncertainty are obtained as in 
Section 2.1.4 and part of the results are found in [41, 42]. 

The results on quadratic games in Section 3.2 are obtained following the 
theory in Section 2.2 and part  of the results are also found in [42, 44]. 

The H ~  control theory in Section 3.3 is based on [44, 38]. As in Section 2.3 
initial uncertainty is considered in the problem formulation and the output  
of the terminal state is included in the finite horizon problem. We have given 
the necessary and sufficient conditions for the existence of all ~/-suboptimal 
controllers. The necessary and sufficient conditions in terms of the solutions 
of two independent Riccati equations and a coupling conditions were not 
available for some time and were established in I38]. The Hor theory for 
time-invariant systems is complete and found in the original papers [39, 40] 
or in the books [21, 66]. The state space theory of Hm control was extended 
to time-varying systems [15, 21, 44]. The finite horizon problem is considered 
in [211. 

The Hm filtering theory is found in [21], but  in Section 3.4 we have in- 
troduced initial uncertainty in the problem formulation and included the 
output  of the terminal state to be est imated for the finite horizon problem. 
The H ~  filtering problem has been considered in [21, 86, 87]. Green and 
Limebeer [21] gave necessary and sufficient conditions for the existence of 
~/-suboptimal filters and its characterization for finite horizon case. For a 
time-invariant system they considered the infinite horizon problem. 

The H2 control theory for time-invariant systems is complete and can be 
found in [21, 93]. As in the continuous-time systems, we extended the H2 
theory to time-varying systems. 



4. Jump Systems 

In this chapter we consider jump systems which are the mixture of continuous- 
and discret~time systems. We consider the same stability and control prob- 
lems as in earlier chapters. 

4 . 1  S t a b i l i t y  

4.1.1 Lyapunov Equations 

Consider 

= Ax ,  kT < t < (k + 1)% (4.1) 

x(kT +) ~- Adx(kT-), 

x(to) ~ xo, 0 <_ to < 7" 

where x E R n and A, Ad are n x n constant matrices. Let S(t ,  s) be the state 
transition matrix of the system (4.1) (or simply (A, Ad)). Then 

d 
- ~ S ( t , s )  = A S ( t , s ) ,  k r  < t < ( k + 1 ) %  

S(kT +,s)  = AdS(kT,  s), 

S ( s , s )  = I. 

Let 0 < to < 7-. Then the solution x( t ) ,  t >_ to of (4.1) is continuous except at 
t -~ k T ,  k = 1, 2, .. where the state jumps according to the second equation 
and is defined by 

x(t)  = s ( t ,  to)xo 
eA(t--t~ t o ~_ t ~_ T, 

= eA(t-r)AdeA(r- t~ 7- < t <_ 2T, 

Here x( t )  is left-continuous at t = k T  The following properties of S(t ,  s) will 
be used later 

S ( k v  + , k r )  = Ad, 
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S(t,  k r - )  : S(t,  kr+)Ad,  t > kr, 

S(kr ,  k r - )  = I. 

Defini t ion 4.1 The system (4.1) (or simply C A, As ) )  is said to be exponen- 
tially stable on [to, co) if 

I S ( t , s )  I< M e  -a(t-8) for any to < s < t < co 

for some positive constants M and a independent of s and t. (The system 
(4.1) is also called internally stable). 

Since x (k r )  satisfies the discrete-time system 

x(k  + 1) = eArAdx(k) ,  x(O) = eA(r-t~ 

(4.1) is exponentially stable if and only if the magnitude of every eigenvalue 
of eArAd is less than 1 and by Proposition 3.1, we have the following result. 

P ropos i t i on  4.1 The following statements are equivalent. 
(a) The system (4.1) is exponentially stable. 
(b) There exists a positive definite matrix X satisfying 

X : (eArAd) 'XeArAd + I. 

(c) There exists a positive definite matrix Y satisfying 

Y = eArAdY(eArAd)  ' + I. 

We also give the stability result using the Lyapunov equation of the jump 
system (4.1). 

P r o p o s i t i o n  4.2 The following statements are equivalent. 
(a) The system (4.1) is exponentially stable. 
(b) There exists a r-periodic symmetric matrix X ( t )  such that 

(i) c l i  <_ X ( t )  < c2I, vt >_ to for some ci > O, i = 1,2. 
(ii) - ] (  = A ' X  + X A  + I, k r  < t < (k + l )r ,  

X ( k r - )  = A 'dX(kr)Ad + I. 

(c) f~176  I S ( t , s ) x  l 2 d t < c  I x l 2 , v x , v s > t 0 f o r s o m e c > 0 .  

Proof. Suppose (a) holds. Then (c) also holds and 

5 x ( t )  = s'(,-, t)S(r, t)dr + S'(kr, t)S(kr,  t) 
k~'>t 

is well-defined and bounded, i.e., X ( t )  < c2I and r-periodic. Since the first 
term is greater than a l I  in (0, r - 5) for some al > 0 and the second term 
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is greater than a2I for some a2 > 0 in (7 - 5, T), we obtain X(t )  > c l l  and 
hence (i) of (b) has been shown. Differentiating X(t )  on kT < t < (k + 1)T, 
we obtain (ii) of (b). The 7-periodicity of X(t )  follows as in the proof of 
Proposition 2.2. 

Now we assume (b). Then we have for k~" < t < (k + 1)7 

dt [x'(t)Z(t)x(t)] = - I x(t) 12< - l x ' ( t ) X ( t ) x ( t ) .  
C2 

At t = kT, x ' ( t )X( t )x ( t )  has left and right limits and 

x ' (kT+)X(kT)x (k7  +) - x ' ( k v ) X ( k T - ) x ( k T )  = - I x(k7) 12< O. 

Hence 
x ' ( t )X( t )x ( t )  < e - ~ ( t - ' ) x ' ( s ) X ( s ) x ( s )  

where to < s < t. Using the property (i) we have 

-~ ( t - s )  12 c l l x ( t )  l=<c2e ~ Ix0 

Hence 
I S(t,s)[_< ~ / ~ e  - @ ( t - s )  

V cl 

and (a) follows. | 

Def in i t ion  4.2 The equation (ii) of (b) is called the Lyapunov equation o] 
the system (4.1). 

E x a m p l e  4.1 Consider the jump system 

x(k+) = .  [ 1_0.6 -0.50 ] z(k)" (4.2) 

This is exponentially stable. In fact there exists a periodic nonnegative solu- 

tion X( t )  = [ X1 X12] ( t ) o f t h e  condition (b) in  Proposition 4.2 (Figures 
X12 X2 

L J 

4.1 and 4.2). 

Consider the adjoint equation of (4.1) 

-~  = A'~, k T < t <  (k+1)7 ,  

~ ( k 7 - )  ~- A~d~(kT), (4.3) 

~(T) = ~1 

where N 7  <_ T < (N + 1)7. Let ~(t; T,~I) be the solution of (4.3). 
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X 

I ' ' ' ' I ' L ; , I " 
- 

I i i i i I L i , i I 
0 0 . 5  

time (sec) 

Figure 4.1: The periodic nonnegative solution X(t) 

X 

~ 6  

r~  

. ~ I ' ' ' I . 

I i , I , I i i i i I 
0 0 . 3  

time (sec) 

Figure 4.2: Eigenvalues of X(t) 
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D e f i n i t i o n  4.3 The system (4.3) is said to be exponentially stable if 

I ~( t ;T ,~l )  I < Me-C~(T-t) I~l I for any t < T < oo 

for some positive constants M and (~ independent of t, T and ~1. 

We have a dual result to Proposition 4.2. 

P r o p o s i t i o n  4.3 The following statements are equivalent. 
(a) The system (4.3) (and hence (4.1)) is exponentially stable. 
(b) There exists a symmetric matrix Y( t )  and a 0 < 5 < 7- - to such that 

(i) 0 < Y(t),  vt > to and Cli < Y(t) ,  vt > to + ~ for some Cl > O. 
(ii) Y( t )  <<c2I, t o<  vt < oo for some c2 >0 .  
(iii) ? = A Y  + Y A '  + I, kT- < t < (k + 1)7-, 

Y(kT- +) = AdY(kT)A '  d + I, 
Y ( t o )  = o. 

(c) ~ I S ' (T, t )~ 12dt < c l ~ l 2, Vs, T with to < s < T < ~ and for some 
c > 0 .  

Proof. Suppose (a) holds. Then (c) is t rue and 

f2 Y(t)  = S(t, s)S'(t ,  s)ds + E S(t, kT-+)S'(t, kT- +) 
k~'<t 

is well-defined, positive for t > to and bounded. Hence (ii) of (b) holds. 
Combining the arguments of the proof of Propositions 2.3 and 4.2, we obtain 
Y(t)  > c l I ,  vt >_ to + 5 for some Cl > 0 and hence (ii) follows. Differentiating 
Y(t )  on kT- < t < (k + 1)7-, we obtain (iii) of (b). 

Now we suppose (b) holds. Then  for kT- < t < (k + 1)7- 

d w(t)Y(t)~(t)]  =1 ~(t)12> l ~'(t)Y(t)~(t) 

and at t = kT- 

('(kT-)Y(kT +)((kr)  - ( ' (kT-)Y(kT-)((kT--)  = I {(kT-) [2 >_ O. 

Hence 
( ' ( s )Y(s ) ( ( s )  <_ e - ~ ( T - ' ) ( ' ( T ) Y ( T ) ( ( T ) .  

Hence for to + 5 < s < 7- < T < oo 

cl I (s)12_ < c2e I  112 

which yields 

[ S ' (T ,s )  I<_ ~ / -~2e -~ (T- s )  
V Cl 
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Similar to the proof of Proposition 2.3 

L S'(T,s) I <_ ~ ~ -~ ( r -~ )  V ~l cO e .5 e 

and 

Choosing 

we obtain 

forto < _ s < t o + 5  < ~ ' < T  < oc 

I S ' (T , s )  1< co < coe~"2~e - ~ ( T - s )  for to _< s _~ to + 5. 

M=max( C~c ~ ~ ~ ~ ~8 , ~/ ~ C O e ' ~  , coe :~ ) 

I s ' ( t ,  s) I~ Me-~2(T- s )  for any to < s < T < oc. 

Hence (a) holds. | 

D e f i n i t i o n  4.4 The equation (iii) of (b) is called the Lyapunov equation of 
the backward system (4.3) (or simply the backward Lyapunov equation). 

Corollary 4.1 The system (4.1) is exponentially stable if and only if there 
exists a T-periodic solution of the Lyapunov equation with c l I  <_ Y( t )  < c2I 
for some cl, c2 > O. 

Proof. Similar to the proof of Corollary 2.1. 

E x a m p l e  4.2 Consider the system (4.2) in Example 4.1 which is exponen- 
tially stable. In fact there exists a bounded nonnegative solution Y(t )  = 
[ Y 1 Y I ~ ]  

1112 Y2 (t) of the condition (b) in Proposit ion 4.3 which converges to a 

periodic solution with period 1 (Figure 4.3). 

Consider the jump system 

J: = Ax ~- Bu, kT < t < (k -{- 1)% 

x(kr  +) = Adx(kT) + Bdud(k), 

y = Cx, 

yd(k) = Cdx(kT) + Ddud(k) 

with initial condition 

(4.4) 

z ( t 0 )  = x 0  

where x E R n, u E R m2, Ud E R m2~, y E R p2, Yd E R T M  and all matrices 
are of compatible dimensions. Since the system (4.4) is r-periodic, without  
loss of generality we can set 0 < to _< T. If Ad = I, Bd = 0, Cd = 0 and 
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I ' ' Y + ( t "  ) ' I ' ' ' ' I 

I i i i i I i i i i I 
0 1 0  2 0  

t ime (sec)  

Figure 4.3: The bounded nonnegative solution Y( t )  

Dd = 0, the system (4.4) is a usual continuous-time system. On the other 
hand if B = 0 and C = 0, then (4.4) is equivalent to a discrete-time system 

x(k  + 1) -- .4dX(k) + 19dwd(k), X(0) ~- eA(r-t~ 
zd(k) = Cdx(kT) + Ddwd(k) 

where ,ilu = eArAd and Bd -= eArBd �9 Hence the jump system is a natural  
extension of the continuous- and discrete-time systems. 

The solution x(t) with x(s) = xo, 0 < s < T of (4.4) is defined in a 
piecewise manner as follows 

L 
t 

x(t) = S(t,  k~')x(kr +) + S(t,  r )Bu(r)dr ,  kv < t <_ (k + 1)v. 
T 

We can express x(t) in terms of S(t,  s) as 

t k 

S(t,  to)xo + ~'o S(t,  r )Bu(r)dr  + ~ S(t,  jr+)BdUd(j) ,  
j = l  

k r < t <  ( k + l ) T .  

D e f i n i t i o n  4.5 The system (4.4) is said to be input-output stable (or simply 
IO-stable) i] ]or x(s)  = O, 0 < s <_ T and any (u, ud) E xL2(s,  o o ; R  m2) x 
12(1, oo; Rm2d), 

(Y, Yd) E L2(s, 00; R p2) • 12(1, 00; R p2~) 
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and 
2 2 

2 2 
_ c([I u IIL~(s,~;R,,,2) + I1 ud Ilt2(1,~;rt,-~,,)) 

for some c independent of s. 

D e f i n i t i o n  4 .6  (a) The system (4.4) (or ([A, Aa], [B, Be])) is said to be sta- 
bilizable if there exist matrices K and Ka such that (A + BK, Ad + BdKa) is 
exponentially stable. 
(b) The system (4.4) (or ([C, Ca], [A, Aa]) ) is detectable if there exist matrices 
J and Jd such that (A + JC, Ad + JdCd) is exponentially stable. 
(e) If  (a) and (b) hold, the system (4.4) or ([A, Ad], [B, Bd], [C, Ca]) is said 
to be stabilizable and detectable. 

P r o p o s i t i o n  4.4 Suppose that the system (4.4) is stabilizable and detectable. 
Then it is exponentially stable if and only if it is lO-stable. 

Proof. It is enough to show sufficiency. Without  loss of generality we assume 
Dd = 0. First we shall show CS(t, s)xo E L2(s, oe; R p2) and CaS(kr, s)x c 
12(1, (x~; RP2a). Since (4.4) is stabilizable, there exist matrices K and Ka such 
that  the system 

= ( A + B K ) x ,  k r < t < ( k + l ) 7 ,  

x(k7 +) = (Ad + BdKd)x(k7), 

�9 (s) = x0, O < s < 7  

is exponentially stable. Hence x c L2(s, e~; Rn).  Then 

= Ax + B K x ,  x(s) = xo, k7 < t < (k + 1)7, 

x(k7 +) = Aaz(kT) + BaKdx(kT) 

and 

cx(t)  

Cax(k7) 

t 

= CS(t, s)xo + C f~ S( t , r )BKx(r)dr  

k 
+ C E  S(t,jT+)BdKdX(jT), k7 < t < (k + 1)7, 

3=1 

-=- CdS(k% S)Xo q- Cd S(k7, r )BKx(r)dr  

k-1 
nt-Cd E S(k7, jT+)BdKdX(jT). 

j = l  

Since (4.4) is IO-stable, 

t k 
C[ f~ S( t , r )BKx(r)dr  + E S(t ' jr+)BaKdx(j7)] E L2(s, ec; R px) 

j = l  
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attd 
kr k 

Cd[~ S(t, r )BKx(r)dr  + Z S(kT, jh+)BdKdX(jT)] ff 12(1, OCT RR~"). 
�9 j = l  

Hence 

and 

CS(t, s)xo E L2(s, cx3; RP2), CdS(kT, s)xo C 12(1, ~ ;  R v2̀ ~) 

ff c s ( t , s ) z o  IIL~, II CdS(kT, s)xo I[~< ~ [xo f 
for some c > 0 independent of s and Xo. Since the system 

J: = Ax, x(s) = Xo, kv < t < (k + 1)T, 

x(k~ +) = Ad~(k~) 

is equivalent to 

:i: = (A+ L C ) x -  LCx, x ( s )=  xo, k T < t <  ( k + l ) T ,  

x(kT +) = (Ad + LdCd)x(kT) - LdCdX(kT) 

where L and Ld are chosen such tha t  (A + LC, Ad q- LdCd) is exponentially 
stable. Then we have 

x(t) = SL(t,s)xo-- SL(t ,r)LCx(r)dr 

k 

-- ~--~ SL( t , jT+)LaCdX(jT) ,  kv < t < (k + 1)T 
j = l  

where SL(t, s) is the state transition matrix of (A + LC, Ad + LdCd). Since 

Cx(t)  = CS(t ,  s)xo c L'~(s, co; RV2), 
Cdx(kT) = CdS(kT, S)Xo E 12(1,0c;RP2~), 

x E L2(s, cx~;R n) and ]] x ILL2< C [ X0 [ which implies (4.4) is exponentially 
stable. 1 

P r o p o s i t i o n  4.5 (a) Suppose that ([C, Cd], [A, Ad]) is detectable. Then the 
system (4.4) is exponentially stable if and only if there exists a T-periodic 
nonnegative solution to 

- ) (  = A ' X + X A + C ' C ,  k r < t < ( k + l ) %  

X ( k T - )  = XdX(kv)Ad + C'aCa. 

(b) Suppose that ([A, Ad], [B, Bd]) is stabilizable. Then the system (4.4) is ex- 
ponentially stable if and only if there exists a T-periodic nonnegative solution 
to 

~z = A Y  + YA '  + BB' ,  kT < t < (k + l)T, 

Y(kT +) = AdY(kT)Xd + BdB' d. 
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Proof. We shall show (a) only. Let  x(t) = S(t, s)xo. T h e n  for kr < t < ( k + l ) r  
we have 

d 
d-i[x'(t)X(t)x(t)] = - I Cx(t )12 

and at  t = kr 

x '(kr+)X(kr)x(kT +) -- x ' ( k r )X(kr - )x (kr )  = -- [ Cax(kv) t 2 �9 

In tegra t ing  ~ [ x ' ( t ) X ( t ) x ( t ) ]  f rom s to T,  we ob ta in  

T N t "  
x'(T)X(T)x(T) + ] ] Cx(t) 12 dt+ ~_, I Cax(kr) I== x'oX(s)xo 

,Is k = l  

where  0 < s < r < Nr  < T < (N + 1)r  < oc. Hence  CS(t,s)xo E 
L2(s, cx~; R p2) and  CdS(kr, s)xo E L2(1, oc; R TM) with  II CS(t, s)xo ILL2, 
II CdS(kr, S)Xo lit2_ < C I X0 I for some c > 0 i ndependen t  of  s and  x0. As in the  
last  pa r t  of  the  p roo f  of  P ropos i t ion  4.4, we can show x E L2(s, oo; R '~) wi th  
II X I[L~< C I X0 [ for some c > 0 independen t  of  s and  x0. T h e  y-per iod ic i ty  
of  X follows as in the  p roof  of  P ropos i t ion  4.2. I 

4.1.2 

Consider  the  sy s t em G j: 

z ( k r  +) 

Zc 

Zd(k) 

with  initial condi t ion 

Performance  Measures  of  Stable  S y s t e m s  

= A x + B w ,  k r < t < ( k + l ) r ,  
= Adx(kr) + Bawd(k), 
= Cx, 
= Cax(kr) + Dawn(k) 

=(0)  = 0 

(4.5) 

and 

[ z c ( t )  1 _- = 
~ = zd(k) J 

Tz~a wa 

C~--~S(t'JT+)Bawa(J) 1 

k-1 j=o I 

Cd Z S(kr, j r  +)Bawd(j) + Ddwd(k) I 
j = 0  a 

where  x E R n, w E R TM , wu E R re'a,  zc E R m , Zd E R plJ and  all mat r i ces  
are of compa t ib le  dimensions.  Here  we assume  t h a t  (A, Ad) is exponen t ia l ly  

[zc  ] ,  given stable.  Let  Tzw and  Tzwa be the  opera to r s  f rom w and wa to  z = za 

by  

z =  zd(k) J C S(kr, r)Bw(r)dr 
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respectively, where kT < t < (k + 1)T. Let (ei) and ( f j )  be the unit vectors 
of R ml and R ml'~, respectively. As in continuous- and discrete t ime systems, 
we consider the impulse 

w ( t )  = 5 ( t  - s ) e , ,  0 < s < ~- 

and 

Then 

and 

Wd(O) = fj a n d w d ( k ) = 0  Vk >_ 1. 

[ CS(t ,s)Bei ] 
TzwS(" - s)e, = [ CdS(kT, s)Be~ 

cs(t, O+)B.L ] 
CdS(kT, O+)Bdfjj , _> 1, 

k 

T ~ . 5 . o / ~  = [o], 
D d f j  k = 0 

where kT < t "( (k q- 1)T and 5ks is the Kronecker delta. Now we define the 
H2 norm of the system G j  as follows: 

D e f i n i t i o n  4.7 The H2-norm of the system Gj ,  denoted by Ji G ii2 is 

".1 1 / "  
E -  li a 1122= .,- 
i = l  

mid 

II Tz,,,~(- s)e,: 2 - Ir/.,.,• d~ + ~ II T~w~.oL I1~',• �9 
j = l  

where (ei) and (fj) are unit vectors in R m' and R mxd, respectively and 

\ / 

If  Ad = I, Bd = 0, Cd = 0 and Dd -~ 0, then II G 112 is the H2-norm of 
continuous-time systems, while the case A = 0, B -- 0 and C = 0 yields the 
H2-norm of discrete-time systems. 

R e m a r k  4.1 Using the s tate  transit ion matr ix  of (A, Ad), we can express 
Ir G il2 as  

II G 115 
oo 

+ E S'(kr, s)C~CaS(kT-, s)]B}ds 
k=l  

+tr.{B'd[/~176 S'(t, O+)CCS(t, O+)dt 
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oo 

+ Z S'(kv, O+)CdCdS(kv, 0+)]Bd + D'aDd} 
k = l  

_ 1 tr.{C S( t , s )BB 'S ' ( t , s )d tC '  
- -  T 

s(k , s)BB' S'(kv, s)C'dIes 
k = l  

/o +tr.{C S(t, O+)BdB'dS'(t, O+)dtC ' 

0(3 

+Cd E S(kv, 0 + )BdB'dS'(kT, O+)Cd + OdD'd}. 
k = l  

Since (A, Ad) is exponentially stable, by Proposition 4.5 there exist a 
unique v-periodic nonnegative solution X called the observability gramian 
such that 

- X  = A ' X  + X A  + C'C, kv < t < (k + 1)v, 
X ( k r - )  = WaX(kv)Aa + C'dCd (4.6) 

and a unique ~'-periodic nonnegative solution Y called the controllability 
gramian: 

= A Y + Y A ' + I B B ' ,  k v < t < ( k + l ) r ,  
V 

Y(kv  +) = AdY(kv")A~ + BaB~. (4.7) 

We can express ][ G 112 in terms of X or Y. The following lemma is useful. 

L e m m a  4.1 Let N be a positive integer. Then 

(a) f _ S(t, s)dtds = s ( g v  - ~, s)dsd~, 
do dO 

N r  N - 1  f ( N - - j ) T  
fo S(t, O)dt = E S(NT - r jr)d~. 

j = 0  J ( N - - I - j ) T  
(b) 

Proof. (a) 

NT S ( t ,  s)dt 
2 / ( N - j ) r  

= S(t,s)dt,  O < S < T  
j~-O J ( N - l - j ) r  

N - 2  r 

= S(NT - ~, j r  + s)d~ 
j=o 
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where the last equality follows from the r-periodici ty of S(-, -). We also have 

S(t,  s)dt = S ( N T  - ~, (N  - 1)r + s)d~ 

and 

jfor ~s r S(t ,  s)dtds = j f o r j f o r - { S ( N 7  - { , ( N  - 1)r + s)d{ds 

f o ' f o r - ~ s ( N r  ~ , ( N  1 ) r + s ) d s d ~  

a ( N - l ) r  

where we have used the Fubini 's  theorem in the second equality. Hence 

[r[Nr ~rNr - {  
S(t ,  s)dtds = f S ( N r  - {, s)dsd{. 

JO ,18 JO 

(b) Similar. 

T h e o r e m  4.1 

II a Ir~ ~0 T 1 t r . B ' X ( s ) B  ds + tr.[B'dX(O)Bd + D'dDd] T 
= t r .CY(s )C '  ds + tr.[CdY(O)C~ + DdD~d]. (4.8) 

Proof. Consider the system G j  with the initial condition x(s) and w = 0, 
Wd = O. Then for kr  < t <_ (k + 1)7" 

d[x ' ( t )X( t )x ( t ) ]  = - I C x ( t ) ] 2 =  _ ] zc(t) 12 

and at t = kr  

z ' ( k r  + ) X ( k r ) x ( k r  +) - x ' ( k r ) X ( k r -  )x(kr)  
= - [Cdz(kr)  12= - - I zd(k)12  �9 

Integrat ing the above derivative from s to oo, 0 < s < r we have 

x ' ( s ) X ( s ) z ( s )  -- r zc(t) 12 ds + y ~  I zd(k) 12 . 
k=l 

Let x(s +) = Bei which corresponds to the case when Wd = 0 and w(t) = 
5(t - s)ei. Then 

e'iB'X(s)Be~ = I zc[ed(t) 12 ds + I za[ed(k) 12 
k = l  
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and 

1/o* - t r .B 'X(s)B ds 
T fo'f~ ~ 

m~_, _1 { [zc[ei](t) [2 dt 
T 

i = l  

+ ~--~ I zd[e,](k)12}ds. 
k = l  

Similarly let x(0 +) = Bdfj which corresponds to the case when w(t) = 0 and 
Wd(O) = fj  with wd(k) = 0, Vk > 0 in (4.5). Then we have 

~ f 0  ~ tr.[B~dX(O)Bd + D~dDd] = { I zc[fjl(t) 12 dt+ ~ I Zd[fjl(k) 12}. 
y = l  k=0 

Hence we have obtained the first equality in (4.8). 
To show the second equality of (4.8), first assume C = 0 and consider 

1 
II GN II 2 - 

T 

r N 

- - ~o tr.Ca~f'~ S(kr, s)BB'S'(kT, s)C~ ds 
k=l 

N 

+tr.[Cd ~ S(kT, O+ )BdB~S'(kr, O+ )C~ + DaD'd]. 
k = l  

By Remark 4.1 
II a IL~= ~ II a N  II 2 

Using 'the r-periodicity of S(t, s), i.e., 

S ( t + T , S + T )  =S( t , s )  for a n y t  > s ,  

[J GN II 2 is rewritten as 

II a N  LL 2 1/o* = - tr.[Ca S(NT, (N - k)T + s)BB' 
T k = l  

xS'(NT, (N - k)T + S)Cd]dS 
N 

+tr.[Cd ~ S(NT, (N - k)T+)BdB~d 
k = l  

xS'(NT, (Y  - k)r+)C~ + DdD~]. 

This is equivalent to 

f o N t  N II GN I[ 2= { I ~jc(t) 12 d t+ ~ I ~ja(k) 12} 
j = l  o k=O 



where zjc and 5jd are the outputs of the system 

- x  = A'~, kT < t < ( k+1)% 

~ ( k ~ - )  A ~ ( k ~ )  ' - = + Cawa(k), 

2jc = ~ B'  ic, 

5jd(k) = B'd~(kT) + D'd@d(k) 

with the terminal condition 
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s = O, NT <_ T < ( N  + I)T 

and 

@d(N) = f j  and wd(k) = O, 1 < k < N - 1. 

As in the first part, we have 

II GN II 2= tr.[CdY(NT)C~ + Ddn'd] 

where Y is a unique nonnegative solution of (4.7) with 9(0)  = 0. Since 

lira ? ( t  + n~)  = y ( t ) ,  ~ ---aOO 

we conclude 

II G 112= lira tr.[CdY(N~')C~ + OdD'd] = tr.[CdY(O)C~ + OdD'd]. 
N ~ o o  

Now we assume Cd = 0 and set 

1 / r  / N ,  
= - tr .B'  S ' ( t , s ) C ' CS( t , s )d tBds  

fNr  
+tr.B~ 1o S'(t,  O+)C'CS(t, O+)dtBa. 

Using Lemma 4.1, we can show 

i" II G II~N = tr.C]F(NT - t)C' dt. 

Hence 

/ 0  T II G 1 1 2 -  - lim II G 1122N = t r .CY( ( )C '  d~. 
N---*oo 

(4.9) 

(4.10) 

(4.11) 

Combining (4.10) and (4.11), we obtain the second equality in (4.8). | 
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R e m a r k  4.2 As in Chapters 2 and 3 we can define the H2-norm of the 
system (4.9) (denoted by G b) by 

/~tld 

II G b I1,~ = lim E I1 GbS.Nei 1122xl~ 
N ~ c x )  

j=l  
t o ld  / - N r  N 

= lim ~--"{ ! I 5j~(t) I ̀2 dt + E I 5ja(k) 12}. 
N~oc ~ JO k=O 

Def in i t i on  4.8 The H a - n o r m  of the system Gj ,  denoted by ]1 G II0r is given 
by 

I ' ( z c )  ' 'L~•  
II c l l ~=  sup 

0r215 II wa 

As in the previous chapters we extend the Bounded Real Lemma to jump 
systems. To do so, we need to consider a quadratic optimization problem. 
First we consider the quadratic control problems for jump systems. 

4.1.3 Q u a d r a t i c  C o n t r o l  

Consider the system 

= A x + B u ,  k v < t < ( k + l ) T ,  

x(kT +) = Adx(kv)  + Bdud(k), 

x(to) = Zo, O < to <_ r 

where x E R ~, u ~ R m2 , Ud E R m2'* and all matrices are of compatible 
dimensions. For this system we introduce the functional to be minimized 

JT(~ ,~ ; t0 ,~0)  = II C~(t) I ~ + I~(t) I~]dt 

N 

+ ~ [ I  Cox(k)12 + I ua(k)12I+[Fx(T)12  
k=l 

where to _< Nr <_ T < (N + 1)T, C C R p2• Cd E a p2axn and F E R qx~. 

We need the following Riccati equation with jumps 

-J~ = A ' X  + X A  + C ' C -  X B B ' X ,  (4.12) 
k T < t  < ( k + l ) T ,  

X ( k T - )  = A~dX(kT)Ad + C'~Cd - (R'2T~IR2)(k), (4.13) 

X ( T )  = F ' F  (4.14) 
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where T2(k) = I + B'dX(kT)Bd and R2(k ) = B'dX(kT)Ad. Considering The- 
orems 2.1 and 3.1, we obtain tile following. 

T h e o r e m  4.2 There exists a unique nonnegative solution X = XT( t )  to the 
Riccati eqaution (4.12)-(~.14). Moreover, the state feedback law 

~(t) = - B ' X ( t ) x ( t ) ,  kT < t < (k + 1)~', 

ttd(k) = -(T2-XR2)(k)x(kT),  k = 1,.., N 

is optimal and 

{ z'ox(to)~o, ilto r ~, 
JT(~,'a~;to, zo) = X'oX(~-)~o, i f to = T .  

We omit the proof of this theorem. Instead we shall give a proof for a similar 
problem (4.39). See Lemma 4.6. 

Now consider the infinite horizon problem 

= Ax  + Bu,  x(to) = x0, kT < t < (k + 1)T, 

x(kT +) = Adx(kT) + Baud(k), 

E J(u, ud;tO, xo) = [I Cx( t )  ]2 + ]u(t)  12]dt 

O 0  

+ Y:~[I Cdx(k)12 +lud(k) i  ~] 
k = l  

where (u, Ud) �9 L2(t0, co; R m2) x 12(1, co; R m2d) is admissible if its response 
x �9 L2(to, o0; R n) and limt--.oo x(t)  = O. 

R J :  We assume that  for each x0 there exists a control (u(.; x0), Ud('; xo)) such 
that  J(u(. ,  xo), ua(., z0); to, zo) <_ c(zo) for some constant c(xo). 

If ([A, Ad], [B, Bd]) is stabilizable, then R J  holds. 

L e m m a  4.2 Assume l:tJ holds. Then there exists a T-periodic nonnegative 
solution to the Riccati equation (4.12) and (4.13). 

Proof. By Theorem 4.2 there exists a nonnegative solution to (4.12) and (4.13) 
on [to, T] with X ( T )  = 0. Then XT(to)  < XT,(to) if to < T < :F. In fact let 

fiT(t) = - B ' X T ( t ) x ( t ) ,  kr  < t < (k + 1)r, 

~tdT(k) = - (T~ 1 R2)(k)x(kr) 

then 

x;XT(t0)x0 = JT(UT,  ~ldT; t o ,  x0) 
< JT(fi~,fidT;t0, z0) 

< J:~(ftT, ftd~,;to,xo ) = x'oXT(to)xo 
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where we set F -- 0 in JT and fiT, Ud~t in JT is the restriction of the feedback 
law uT, udT to Is, T]. We note tha t  

x'oXT(tO)xO = Jr(~T, ~dr; t0, X0) 
_< Jr(U('; Z0), Ud('; X0); tO, Z0) 
<~ J(?Z('; Z0) , Ud(" ; Z0) ; tO, X0) < OO. 

Hence x~oXT(tO)xo is monotone increasing and uniformly bounded in T. Since 
xo is arbitrary, there exists a bounded nonnegative matr ix  X such tha t  

xr(t0)  -~ X(to) .  

Changing the initial time, we also have 

X T ( t  ) --* X( t )  for any t. 

Then  X satisfies the Riccati equation (4.12) and (4.13). 
Finally we shall show that  X is T-periodic. Since all system matrices in 

(4.5) are constant, we have 

XT+T(t + T) = XT( t )  for any t > 0. 

Letting T --* oo, we have X ( t  + T) = X ( t )  and hence X is T-periodic. | 

Since X is T-periodic, R2(k) and T2(k) are constant matrices and we write 
R2 = R2(k) and T2 = T2(k). 

L e m m a  4.3 Suppose that ([C, Cd], [A, Ad]) is detectable. Then 

(A - B B ' X ,  A - BdT21R2)  

is exponentially stable. 

Proof. The Riccati equation (4.12) and (4.13) can be writ ten as 

- X  = ( A -  B B ' X ) ' X  + X ( A -  B B ' X )  

+ B I X  B I X  ' 

X ( k T - )  = (Ad - B a T 2 1 R 2 ) ' X ( k T ) ( A a  - BdT21R2)  

+[ l 'r 1 
T2-- R2J IT2- R2 J"  

Hence, if x is the solution of the state  feedback system 

: (A - B B ' X ) x ,  x(to) : xo, kr  < t < (k + 1)T, 

x ( k r  +) = (Aa - B d T f l R 2 ) x ( k T )  
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then 

and 

with 

[ B f  X ] x E L2(to, ~176 Rp2+m2 ) 

~d ] X(IT) ~ 12(1,oo;R p~'+m2d) 
T~ R~J 

[B?X ] [ Cd lx(.m),,,2<C,Xo, forsomec>O. II x1152, [I T 2- R2J - 

S i n c e  ([C, Cd], [A, Ad]) is detectable, it is easy to see that  

([[BFX] , [T2[ C_ldR2jj ,ll [A-BBIX, A d - BdT21R2]) 

is also detectable. Hence by Proposition 4.5, (A - BB~X, Ad -- BdT21R2) is 
exponentially stable. | 

We say that  X is a stabilizing solution of the Riccati equation (4.12) and 
(4.13) if (A - BB'X,  Ad - BdT21R2) is exponentially stable. 

T h e o r e m  4.3 Suppose ([C, Cd], [A, AdD is detectable and R J  holds. Then 
there exists a T-periodic nonnegative stabilizing solution of the Riccati equa- 
tion (4.12) and (4.13). Moreover the feedback law 

~(t) = - B ' X ( t ) x ( t ) ,  kT < t < (k +1)% 
,~d(k) = -T~-IR~x(kT)  

is optimal and 

{ x~oX(to)xo, if to ~ T, (4.15) 
J ( ~ , ~ ; t o ,  xo) = x~X0"- )Zo ,  i f t o  = r .  

Proof. The first part follows from Lemmas 4.2 and 4.3. Differentiating x~Xx 
for kT < t < (k + 1)T we have 

d [x'(t)X(t)x(t)] = -[I Cx(t) 12 + I u(t) 12]+ l u(t) + B'X(t)x(t)  12 

and at t = kT 

x ' (kr+)X(kr)x(kr  +) - x '(kT)X(kT- )x(kT) 

-- [I Cdx(k~') 12 + [ ud(k) 12]+ [ T~[U(k) + T21R2x(kr)] ]2. 
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x ' ( T ) X ( T ) x ( T )  + JT(U, ud; to, xo) 

z'oX(to)zo + l u(t) + B'X( t )x ( t )  12 dt 

N 

+ ~-~ [ T2[u(k) + T;1n2x(kr ) l  [2 
k = l  

where (u, Ud) is an admissible control and x is its response. Since 

we obtain 

J(u,  Ud; to, xo) 

x ' ( T ) X ( T ) x ( T )  --* 0 as T --, 0% 

E x'oX(to)xo + [ u + B ' X x  ]2 dt 

oo 

+ ~-~ [ T~[u(k) + T21R2x(kr) l  [2. 
k = l  

Hence the optimality of fi and (4.15) follow immediately. 

C o r o l l a r y  4.2 ([A, Ad], [B, BaD is stabilizable if  and only if  there exists a 
control (u(.; x0), uu(.; x0)) for each xo such that 

2 

2 2 + II u IIL~(~o,~;a~) + II ~d II,~(x,~;R-,~)_ < c(zo) 

for some constant c(xo). 

Proof. We only need to show sufficiency. Consider the regulator problem with 
C = I and Cd = I. Then by Theorem 4.3 (A - B B ' X ,  Ad - BdT21R2) is 
exponentially stable where X is the bounded nonnegative solution of the 
Riccati equation (4.12) and (4.13) with C = I and Cd = I. | 

E x a m p l e  4.3 Consider the system with impulse control 

[~,]~ : [o110] [~1]~ ~<~<~1 
[::] ( ~ )  [1 o 0] [::] (~)~ [01]u(~) 

This system is unstable, but by setting 

u(k) = -0.6Xl(k) - 0.5x2(k) 
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we can easily show that  it is stabilized (see Example 4.1). For this system 
we set c = [ 1 0 ]. Then the system is detectable and there exists a periodic 

solution X( t )  = [ X1 X12 ] nonnegative X12 X2 J (t) of the Riccati equation (4.12) 
I .  

and (4.13) with period 1 (Figure 4.4). The simulation result of the system 
with xl(0) = 1 and x2(0) = 0 under the optimal input is given in Figure 4.5. 

1.5 

0.5 

i | v I i 1 v 1 

X~(t) 

X~2(t) 

l l m J J I I I I l I 
0 0.5 I 

t i m e  (sec)  

1 _  

Figure 4.4: The periodic nonnegative solution X ( t )  

Consider the backward system 

- ~  = A'~ + C v ,  kT < t < (k + 1)% (4.16) 

~(kT- )  = Xd~(kr  ) + C~vd(k), 

~(T) = ~1, t0_<N~'_<T< ( N + I ) r .  

Then as in Theorem 4.2 we consider 

~z = A Y  + Y A '  + B B ' -  Y C ' C Y ,  kr  < t < (k + l)% (4.17) 

Y ( k T  +) = AdY(kv)Atd + BdB~d -- (n2yT~-~n2y)(k) ,  (4.18) 

Y(to)  = H H '  (4.19) 

where T2y(k)  = I + C d Y ( k T ) q  and R2y(k)  = CdY(kT)A '  d. 

T h e o r e m  4.4 (a) There exists a nonnegative solution of the Riccati equation 
(4.17)44.18) on any [t0, T]. 
(b) Let H = 0 and suppose there exists a control (v(-; T, ~1), Vd( ' ;  T ,  E l ) )  such 
that 

2 ,,, 2 
I[ B'~ ]]L~(*o,T;R 2) + II S ~  I[l~(1,N;a,~d) 

2 2 
+ II v IIL~(to,T;R'~) + I] Vd Ill~(1,N;Rp~a) <~ e(~l) 
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*r 
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Figure 4.5: Simulation result 

for some constant c(~1). Then the solution of the Riccati equation (4.17) and 
(4.18) with Y(O) = 0 is bounded. I], further, ([A, Ad], [B, Bd]) is stabilizable, 

! - - I  
then C A - Y C~ C, Ad - R2yT2y Cd) is exponentially stable. 
(c) (IV, Cd], [A, nd]) is detectable if and only if there exists a control iv( . ; T, ~1), 
va(.; T,~I)) such that 

I1~ 2 2 iiL~(to,r;ao) + II ~(.T)II,~r 
2 2 

-t- II V IIL2(to,T;R~2) n u II Vd lil2(l,N;R'2,1)-- < C(~I) 

]or some constant c(~1). 

i - 1  We say that  Y is a stabilizing solution if (A - YC 'C ,  Ad - R2yT2y Cd) 
is exponentially stable. Since the system (4.16) is r-periodic, we obtain the 
following result. The proof is similar to that  of Corollary 2.3. 

Coro l la ry  4.3 Suppose that there exists a bounded nonnegative stabilizing 
solution Y of (~.17)-(~.19). Then the l imn-.~ Y ( t  + nT) exists (denoted by 
Yr(t))  and Yr is a r-periodic nonnegative stabilizing solution of (4.17) and 
(4.18). 

Similarly to Theorems 2.4 and 3.4, we have the following result. 

T h e o r e m  4.5 (a) A T-periodic nonnegative stabilizing solution o.f (4.12) and 
(~.13), if one exists, is unique. 
(b) Let Y and Y be two stabilizing solutions of (4.17) and (4.18). Then 

y ( t )  - ? ( ~ )  ---, o a s  t ~ ~ .  
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Proof. (a) Let  X and ) (  be two s tabi l iz ing solut ions of  (4.12) and  (4.13). As 
in the  proofs  of  T h e o r e m s  2.4 and  3.4, we have  

d ( x _  f ( )  = ( A -  B B ' X ) ' ( x -  f f ) +  ( X -  ) ( ) ( A -  B B ' f ( ) ,  
dt 

kT < t < (k + 1)z, 

(X  - ) ( ) ( k T - )  = (Ad - BdT21R2) ' (X  - f ()(kT)(Ad -- Bd~'~lft2) 

where  :T2 = I + S~df((kv)Sa a n d / ~ 2  = B~df((kr)Ad. Hence 

X( t )  - X( t )  = S~x(T, t ) ( X  - f()(T)S~c(T, t) 

where  S x  and SX are the  s t a t e  t r ans i t ion  mat r ices  of  (A - BBPX, Ad -- 
B d T f  l R2) and  ( A -  B B ' X ,  A d -  Bd:F21ft2), respectively.  T h u s  

I X ( t )  - ) ( ( t )  I_< Mle-~' l (T-t)cM2e -~*(T-O 

for some posi t ive  cons tan t s  Mi,  a~, i = 1, 2 and  c. Le t t ing  T --~ cx~ we ob ta in  
X( t )  - X ( t )  = 0 for any  t _> to. 
(b) C o m b i n e  the  proofs  of  T h e o r e m s  2.4 and  3.4. | 

Consider  the  j u m p  sys t em G j:  

~: = Ax  + B l w  + B2u, kr  < t < (k + l)r ,  

x(to) = xo, O < to <_ r, 

x(kT +) = Adx(kT) + Blawa(k) + B2aua(k), 

z = z d ( k )  = C l d x ( k r )  + D12dud(k )  ' 

Y = yd(k) = C2dz(kr) + D21dWd(k)J 

and the  control ler  u = K y  of the  form 

x -- A& + / ~ y ,  &(to) = 0, kT" < t < (k + 1)7", 
~,(kT" +) = )~d2(kT") + [~dyd(k), (4.20) 

u~(k) = dde(kT") + bdyd(k)  " 

T h e n  the  closed-loop sy s t em G j  wi th  u = K y  is given by  

: [oO] 

(4.21) 
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z=[Zc]= 
zd(k) 

where 

[ A + B2DC2 B2(~ 1 [Ad + B2dDdC2d B2dCd 1 
A e =  L BC2 A J '  Aed= | ]3dC2d Ad J '  

= I B1 +^B2DD21 ] ,  [Bld + B~dL)dV2,a ] ,  
Be L BD21 J Bed = I BaP21d J 
Ce = [C1 + D12DC2 D12~' ]  , Ced : [ C l d  ~- D12dDdC2d D12dCd], 
De = D12DD21, Ded = D12dDdD21d. 

Definit ion 4.9 Consider the system Gj  on [to, o0). A controller u = K y  of 
the form (4.20) is said to be IO-stabilizing if the closed-loop system (4.21) 
is IO-stable. If, further, the closed-loop system is exponentially stable (or 
(Ae, Aed) is exponentially stable) then the controller is said to be (internally) 
stabilizing. 

Propos i t ion  4.6 I f  there exists an internally stabilizing controller u = K y  
of the form (4.20), then ([A, Ad], [B2, B2d], [C2, C2d]), ([A,-4d], [/~,/~/d], [C, Cd]) 
are stabilizable and detectable. 

Proof. Let [x]  (t) be the solution of 

Then by assumption x, ~ E L 2. Rewriting (4.22) as 

z(kr +) 

, kr < t < (k + 1)~,(4.22) 

= Ax  + B2[DC2x + B2C~], x(to) = Xo, kT < t < (k + 1)r, 
= Adx(kv)  + B2d[DdC2dx(kT) + B2dCdY~(kv)] 

and 

.2 x = .4~ + [3C2x, ~(to) = 50, k'r < t < (k + 1)r, 
~(kr +) = Ad~(kr) + [~dV2dx(k~) 

and applying^ Corollary 4.2, we conclude that ([A, Ad], [B2, B2d]) and 
([A,-4d], [B, Bd]) are stabilizable. The detectability of ([C2, C2d], [A, Ad]), 
([C, Ca], [A, Aa]) also follows from the adjoint of the system Gj and Theorem 
4.4. 1 
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4.1.4 Dis turbance  Attenuat ion  Problems  

T h e  Finite  Horizon Problem 

Consider the jump system G j: 

= A x + B w ,  k ' f < t <  ( k + l ) T ,  

x (kr  +) = Adx(kr)  + Bawd(k), 

Z c ~ C x  

z~(k) = Cdx(k~) + Dawd(k), 
z~ = Fx(T),  to < N~- < T < (N + I)~- 

with initial condition 

(4.23) 

(4.24) 

and 

j f t  T = FS(T,  to)Hh + F S (T , r )Bw(r )dr  
o 

N 

+F ~ S (N + 1, j~+)B~wd(j), 
j=ko 

= CS(t ,  to)Hh + C S ( t , r )Bw(r )dr  

k 

+C ~_, S(t, jT-+)BdWd(j) 
j-~ ko 

CdS(kr, to)Hh + Ca S(kr,  r )Bw(r)dr  

k-1 
+Cd ~ S(kr,  jT+)BdWd(j) + Ddwd(k). 

j=ko 

where 

x(to) = Hh, 0 < to <_ T (4.25) 

where x E R n, w E R TM, wa E R mid, zc E R px , Zd G R pla , zl .E R q, h E R nl 
and all matrices are of compatible dimensions. For each input (h, w, wd) E 
R nl • L2(t0, T; R TM) • N;  R mid) we have the output  (zl, zc, zd) E R q • 
L 2 (to, T; R m ) • N; R rod). Thus we can define the input-output  operator  

GTto of the system G j  by 

zc = GTto ~ G2Tto W 

Zd Wd e 3 T t o  Wd 
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Then GTto E s nl x L2(t0, T; R TM) x/2(1,  N; Rm'd); R q x L2(to, T; R m) • 
/2(1, N; Rm~)). We regard (h, w, Wd) as the disturbance and we wish to find 
necessary and sufficient conditions for I] GTto [[ < % i.e., 

zc H22x/~_< d2([ h [2 + I] wa Iz' ]2 + II z~ 

for some 0 < d < ~. In this case the system (4.23) and (4.24) is said to fulfil 
the 3,-disturbance attenuation. 

The adjoint G~t o of GTto is given by 

G~to = ~c 
Ca 

where (f ,  v, Vd) E R q x L2(to, T; R m) x/2(1,  N; R ma) and 

- ~  = A'~ + C'v, kv < t < (k + l )r ,  

~ ( k r - )  = A~d~(kv) + C~avd(k), (4.27) 

r = B'  ~ , 

Cd(k) = B'a~(kr) + D~avd(k), 

~(T) --- F ' f ,  

r = H'~( to) .  

Since II G* Tto I[=[I GTto [I (Theorem A.2), (4.26) is equivalent to 

I C~ 12 + II (r II~• d2(I y 1 2 C d  +ll ( v ) I'~• (4.28) 

To give necessary and sufficient conditions for II GTto I1< 7, we need the 
Riccati equations with jumps. For definiteness we assume 0 < to < v. 

and 

1 

- X  = A ' X  + X A  + C ' C +  ~ 2 X B B ' X ,  (4.29) 
$ 

kr  < t < (k + 1)r, 

Tl(k)  > a l  for some a > O, (4.30) 

X ( k r - )  = A~aX(kr)Ad + C'aCd + (R~IT~IR1)(k),  (4.31) 

X ( T )  = F'F,  (4.32) 

H ' X ( t o ) H  < d2I for some 0 < d < ~/ (4.33) 

~" = A Y  + Y A  + B B '  + ~ Y C ' C Y ,  (4.34) 
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where 

k r  < t < (k + 1)r, 
Tiy (k )  > aI for some a > 0, (4.35) 

Y(kT  +) = A d Y ( k r ) A '  d + BdB'  d + (R' lyT11R1y)(k) ,  (4.36) 

Y(to) = HH' ,  (4.37) 

F Y ( T ) F '  < d2I for some 0 < d < 7 (4.38) 

Tl(k) = 771 - D~:Dd - B'dX(kT)Bd, 
T iy (k )  = 72I - DdD' d - CdY(kr)C~,  

R l (k )  = D~dCd + B'dX(kT)Ad, 
Rxy(k)  = DdB~d + CdY(kT)A'  d. 

If  we wish to take to = T, the condition (4.33) becomes 

H ' X ( T - ) H  <_ dTI. 

To give the solution of this problem, we introduce the following functional 

f; J(w, wd; to, zo) = [I z(t) 17 _,,/7 I w(t) FT]dt 

N 
+ Y~[I z(k) 17 --y~ I~(k) 17]+ I r~(T)17 (4.39) 

k = l  

subject to 

J: = Ax  + Bw,  kr  < t < (k + l)~', 

x ( k r  +) = Adx(kr )  + Bawd(k), 

Z c ~- Cx, 
zd(k) = Cdz(kT) + Ddwa(k) 

with initial condition x(to) = Xo and consider the maximizat ion J(w,  wd; to, xo) 
over all (w, wa) E L2(t0, T; R 'm)  •  N;  Rmld). Let 

(I GTto WWd = Wd 

GiTto Wd Wd 

/ . , emma 4.4 

II \ G3Ls / II <-- II ( G2Tto a3T~o ) II, 
IlaT~/I --< IlaT~oll f o r a n y O < t o < s < L < N .  
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Proof. We shall show only the first inequality. Let (~, Wd) be the extension 
of (w, wd) E L2(s, L; R 'm ) • 12(ks, kL; R mid) to [to, T] by zero, i.e, 

v3(t) = w(t), s < t < L, wd(k)  = Wd(k), ks < k < kL, 
O, L < t <_ T, O, kL < k < N 

where (ks - 1)T < S < k~T and k / j  < L < (kL q- 1)r. Then by the proof of 
Lemmas 2.7 and 3.6 we have 

ILL2• = IIC2Ls Wd [[ G3Ls Wd Wd 

(U) ) H22 "~- H 03Tto ( W ) "22 < l[r176 Wd Wd 

(G2Tt~ ( W ) 2 
= II a 3 T ,  o Wd IlL~• ! 

Consider the optimal control problem for the system G j  with to, T re- 
placed by arbitrary s, L, to < s < L < T, (ks - 1)r < S < ksT, kLT" < L < 
(k L q- 1)T. 
L e m r n a  4.5 Assume II OTto ]l< 7. Then for any to < s < T,  J (w ,  wd;s,  xo) 
is strictly concave in (W,Wd) and there exists a unique optimal maximizing 
element (WTs, WriTs) E L2(s, T; R TM) • 12(ks, N; Rmld). Moreover 

IIL2• < 61X012, WdTs 

J(WT, WdN; S, XO) <~ 6 I XO 12 
for some 6 = 6(7 ) > 0 independent of s and Xo. 

Proof. By Lemma 4.4 I1 GTs [1< 7 for any to < s < T and hence 72I - 
G~.sGTs > aI  for some a > 0 and the quadratic functional J (w ,  Wd; s, xo) is 

/ \ 

strictly concave and J(W, Wd;S, Xo) ---, --c~ as II ( w ~ IIL2• r Then 
\ Wd ] 

by Theorem A.4 there exists a unique optimal (WTs, WdTs) for J (w ,  wd; s, ~co) 
which is given by 

Hence 

(3,21 _ G~sGTs ) Wd 

z0 = 

G~szo, 

CS(t,s)xo ) 
CdS(kr, s)xo �9 
FS(T, s)xo 

( W T s ' ~  ( 'y~I  * - 1  �9 
WdTs,] = -- GTsGTs)  GT'Z~ 
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Thus we have 

]1 ( WTs ) 'lLZxl2 ~ 6 ' Xo 

for some ~ independent of s and xo. | 

L e m m a  4.6 Suppose 1[ GTto ][ < % Then there exists a nonnegative solution 
to (~.29}-(4.32). The optimal control for  (4.39) is given by the feedback law 

1 
WTto(t) -- B 'X( t ) x ( t ) ,  kT < t < (k + 1)r, 

72 

WdTto(k) = (T~lR1)(k)x(kT) ,  k = ko, ko + 1 , . . , N  

and 
{ x'oX(to)zo, i/to r ~, 

J(wTt~176 = XtoX(T-)Xo, if  to -= T. 

Proof. A brief outline of the proof is as follows. We first establish the existence 
of X(t)  of (4.29) and (4.32) on the interval [NT, T], i.e., the last interval. 
Then using the jump equation, we show the existence of X(NT-) defined 
by (4.30) and (4.31). Next we show the existence of X(t )  on the interval 
[(N - 1)r, NT).  The existence of X(t ) ,  t E [to, T] will be established by 
repeating these arguments. 

S t ep  1. Consider the functional 

J(w,  Wd; s, xo) = Y(w; s, z0) 
T 

= f [I z~(t)12 -3, 2 Iw( t )12 ]d t+ lFx (T)12  
J8 

subject to 

ic = A x  + Bw,  z(s)  = Xo, 

Z c ~ -  C x  

where N T  < s < T. Since II OTto I1< 7, by Lemma 4.4 I1 GTs I1 < ~'- Hence 
by Lemma 2.8, there exists a unique nonnegative solution X(t ) ,  t E Is, T] to 
(4.29) and (4.32). We write this solution X T  to show the dependence of T. 
We also have 

max J(w,  Wd; s, xo) 
(~,'~d) 

S t e p  2. We introduce the functional 

J(w, Wd; Nr ,  xo) 

= mwax J(w;  s, Xo) 

= J(WTs;s, xo) 
= x'oXT(S)Zo. 

T 

fN [I zc(t)12 --3 '2 Iw(t)12]dt 
T 

+ l zd(N )12 .~2 ] wd(N) ]2 + ] F x ( T )  I 2 
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subject to (4.23) and (4.24) with x(NT) = Xo and consider the maximization 
J(w, Wd; NT, XO) over all w �9 L2(NT, T; R ml) and wd(N). Since I] GTN'r II< 
7, we have 

(; ) ; d2 I w(t) l 2 dt+ ] wa(N) l 2 >_ I zc(t) l 2 dt+ I zd(N) [ 2 + I F x ( T )  12 
T T 

for any w �9 L2(NT, T ; R  'm) and wa(N) and for some 0 < d < 7. Hence we 
have 

d21wd(N) ]2 > ] za(g) ]2 

[/: ] + max [I zc(t)12 - 7  2 Iw(t)12]dr+ IFx(T)12 
T 

= I z e ( N ) I  ~ + x ' ( g ~ - § 2 4 7  

Using the jump system (4.23) with x(Nr)  = xo = O, we have 

d2 l wd(N) 12>_1 Dawa(N)12 +w'a(N)B~dXT(NT)Bdwd(N). 

Hence 
Tx(N) = TltXT](N) > (7 2 - d2)l 

and we can define XT(N'r-)  by (4.31). Since 

J(w, wd; Nr, x(gT)) = x ' (NT)XT(NT-)x(NT)  

- / N T , w ( t )  - -~B'XT(t)x( t)  ,2 dt 

1 

_ i ~ ( g ) [ w d ( g )  _ (TI-IR1)(N)x(N~.))}2, 

we have 

where 

x' ( Nr)XT(  NT-  )x( Nr)  --= max J(w, Wd; NT, x (NT))  (~,~) 

== J(WTNv, WdTNr ; NT, z (NT) )  

| 
WTN,(t) = -~B'XT(t)x(t) ,  NT < t < (N + 1)T, 

WdTN,(N) = (T~IR1)(N)x(NT). 

S t e p  3. Now we assume tha t  XT(t), t �9 (N~-, T] is well-defined and introduce 
the functional 

J(w, wd; S,Xo) ---- [I zc(t) 12 - 7  2 [ w(t)  [2]dr 

+ I za(g) 12 - 7  2 I Wd(Y) 12 + l  Fx(T)12 
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subject to (4.23) with x(s) = xo, (N  - 1)T < S _< N r .  Then 

y(w,  ~d; s, Xo) = [I zo(t) I ~ - 7  2 I ~ ( t )  I~]at + ~ ' ( N T ) X r ( N , - - ) z ( N T )  

- L T , w ( t )  - -~B 'XT( t ) x ( t )12  dt 

- I T ~ ( N ) [ w d ( N )  - (T{1R , ) (N)x (NT)]  12 

and hence 

max J(w,  Wd; s, Xo) 
(~,Wd) 

m a x [ / N ~  = [I zc(t)12 - 7  2 I w(t) [2]dt 

+ x ' ( N r ) X T ( N r - ) x ( N T ) ] .  

As in the proof of S t e p  1, we can show the existence of a unique nonnegative 
solution X(t) ,  t �9 [s, NT) of (4.29) with X ( N T )  = X T ( N T - ) .  

Continuing these arguments we can show the existence of a unique non- 
negative solution to (4.29)-(4.32). Since 

J ( w ,  Wd; to, XO) -~ x'oXr(to)Xo 

-- ftTo ' w(t) - - ~ B ' X T ( t ) x ( t )  ]2 dt 

N 
- y ~ l T x k ( k ) [ w a ( k ) -  (T{ 'R1) (k )x (kr ) ]  12, 

k=l 

we have 

xloXT(to)~o = m a x  i f(w, Wd; to, X0) 
(~,~'d) 

= J(WTto, WdTto; to, XO) 

where 

Wr,o(t) = 

WdTto(k) = 

and the proof is complete. 

~ B'XT( t )x ( t ) ,  kT < t < (k + 1)7, 

(T]-lR1)(k)x(kv)  

We are now ready to give the solution of our original problem. 

T h e o r e m  4.6 The .following statements are equivalent. 
(a) II cr ,o  JJ< 7. 
(b) There exists a nonnegative solution X( t ) ,  t 6 [to, T] to (4.29}-(4.33}. 
(c) There exists a nonnegative solution Y( t ) ,  t �9 [to, 2"] to (4.34)-(4.38). 
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Proof. Suppose (a) holds. Then (b) except (4.33) follows from Lemma 4.6. 
Moreover for the system Gj  the following equality holds: 

I z~ I ~+IL zd " ~ w ILL• 
[ w - ~ B ' X x  "~ (4.40) 

_ 1 1 J x l 2  " +h'H 'X( to )Hh-1[  ~ T  l ~ ( w d -  TI- R~x) II~ 

Setting w(t) = ~A.zB'X(t)x(t), Wd(k) = (T[qR1)(k)x(kT) and using (4.26) we 
obtain 

w ttL~,~) >--"? tl w~ d2(I h l s +  II Wd 

Hence d 2 I h 12_> h 'H 'X(ko )Hh  which implies (4.33). 
Conversely suppose (b) holds. Then by (4.40) 

Zd 

+ d2 I h [2 _3,5 II rd 

= 72( Ih12+ I1 Wd 

-(~ - d2)(I  h 12 + II rd  

where 

1 
r(t) - ~f fB'X(t)x( t ) ,  kr  < t < (k + 1)T, 

ra(k) = (T~-lR1)(k)x(kT). 

Since there exists a > (} such tha t  

() w [112x12> a({ h [ 2 + II rd i b i s +  II w~ 

we have 

I z l l 2 + l l  zd IIL~• <- ~ 2 ( l h l 2 + [ l  wd 

- -  (1 h + I] II~:•  
a Wd 

= a (I h + If w e  
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Hence II GTto I[ < 7. The equivalence of (a) and (c) also follows since (c) is 
the dual of (b) concerning the adjoint (4.27) of G'l'ta. | 

If initial conditions are known, we can set h = 0. 

C o r o l l a r y  4.4 The following statements are equivalent. 
(a) II a - o  II < ~. 
(b) There exists a nonnegative solution X(t), t E [to, T] to (4.29)-(~.32). 
(c) There exists a nonnegative solution Y(t), t E [to, T] to (~.34)-(4.36) and 
(~.ss) ~ th  r ( t 0 )  = 0. 

T h e  Inf ini te  H o r i z o n  P r o b l e m  

We now consider tile system Gj 

= A x  ~- B w ,  kT < t < (k ~- 1)T, 

x(kr  +) = Adx(kT)  + BdWd(k),  

Zr z C x  

z~(k) = Cdz(k~) + Dried(k), 

x(to) = Hh, O < to <_ T 

on [to, cx~) and we assume that (A, Ad) is exponentially stable on [to, cx~). 
Then we can define the input-output operator 

G E s TM xL2(t0, ~ ;  R ' ~ ) x l 2 ( 1 ,  oo; Rm~'*); L2(to, cx~; RP~) xl2(1, c~; Rm"))  

by 

where 

G2 

and 

/zZ:/: ( 

= CS(t, to)Hh + C S(t, r)Bw(r)dr + C ~ S(t, j7 -+)Bdwd(j) 
Wd j=l 

G3 
kT 

CdS(kr, to)Hh + Cd~o S(kT, r)Bw(r)dr 

k-1 

+Cd ~ S(kT, jT +)Bdwd(j) + DdWd(k). 
j=l  
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In this case we wish to find the condition II G I1< 7. We replace (4.39) by 

J ?  J(w, wa; to, xo) -- [I z~(t)12 -72 [ w(t)12]dt 

+ Y~[I zd(k)12 - 7  2 I wd(k)121 �9 
k = l  

We also need the functional (4.39) with F = 0, i.e., 

s JT(W, Wd; t0, x0) = [I z~(t) [2 _72 L w(t) 12]dt 

N 
+ Y'~jl za(k)12 - 7  2 Iwa(k)121 �9 

k = l  

Let 

Wd Wd ' 

Gi Vg d Wd 

Proceeding as in the finite horizon case we have the following 

( G ~ o  ~ 
L e m m a  4.7 [I \ V3Tto ] II---II c II for any to <_ T < c~. 

L e m m a  4.8 Assume II G I1< 7. Then JT(W, wa;to,xo) (J(w, wd;tO, xo)) 
is strictly concave and there exists a unique optimal element (WTto, WdTto) 
(( wto, Wato) ) maximizing JT(w, Wd; to, Xo) (J (w, Wd; to, Xo), respectively). 
Moreover 

JT(WTto, WdTto; tO, XO) ~ ~ [ X o  12 , 

II X, (wdtow'~ IIL2• ~ l x 0  I, 

J(wto, Wdto; tO, XO) <_ ~ I Xo 12 

for some 5 = 5(7) > 0 independent of T and xo. 

( G2Tt~ 11< 7 by Lemma 4.7. Hence by Proof. Since II G I1-11 C I1< 7, II C3T,o 
Lemma 4.5 we have 

�9 ) 
WdTto ~ G3Tto / 

f CS(t, to)xo ) 
zo = k, CdS(kr, to)xo 

�9 

~3Tto G3Tto 
Zo 
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and 

w t ~  = ( 7 2 I - G * G ) - l G * z  o. 
Wdt o 

S i n c e ( G 2 T t ~ 1 7 6 1 7 6  o G3Tt o G3Tt o 

in T, we have the assertion. | 

De f in i t i on  4.10 (a) A bounded nonnegative solution X of (4.29)-(4.31) is 
called the stabilizing solution if ( A + Az B B' X,  A + BT~- 1R1) is exponentially 
stable. 
(b) A bounded nonnegative solution Y of (~.3~)-(4.36) is called the stabilizing 
solution if (A + ~I-~ YC'C,  A + RIyT~-))C ) is exponentially stable. 

Similarly to Theorem 4.5, we have the following property for the stabiliz- 
ing solutions. 

L e m m a  4.9 (a) A bounded nonnegative stabilizing solution of (4.29)-(4.31), 
if exists, is unique. 
(b) Let Y and ~z be two stabilizing solutions of (4.34)-(4.36). Then Y(t)  - 

~ ( t )  ~ 0 a s  t ~ oc. 

L e m m a  4.10 Suppose [I G [1< 3'- Then there exists a T-periodic nonnegative 
stabilizing solution to (4.29)-(4.31). Moreover if the conditons above are sat- 
isfied, a unique maximizing element (wto, Wdto) of J(w, Wd; xo) exists and is 
given by the feedback law 

wto(t) = ~ B ' X ( t ) x ( t ) ,  kr < t < (k + l)r, 

Wdto(k) = T~lRlx(k~'),  k = 1,2,. .  

and J(wto, Wdto, xo) = x'oX(to)xo where T1 = Tl(k) and R1 = Rl(k) ,  for any 
k > l .  

( G2Tt~ ) 11< 7, we have a Proof. Since H G ]]< 7 implies ]l G ]]< 7 and H \e3Tto 

nonnegative solution XT(t)  to (4.29)-(4.31) with XT(T)  = O. Moreover for 
each t, XT(t) is monotone increasing in T. In fact let L < T and define a 
control on [to, T] by 

f 1--zB'XL(t)xL(t), t �9 [to, L], 
ffJTto ( t ) [ O, t E ( L , T ] ,  

f k e [1, kL], 
(VdTto ( k ) 

I O, k E [kL + I ,N] 

where TIL(-), RIL(') are defined by TI(.), RI(-) respectively with X(kT) re- 
placed XL(kT), kLT < L < (kL + 1)T and XL is the response to the feed- 
back pair (WLto, WdLto) = (~3~B'XLXL, (T~-~RIL)(')XL('T)) in the system (~j. 
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Then 

x'oX L ( to )zo : JL (WLto, WdLto ; tO, XO) 

,lT ( ~f)Tto , (t) dTto ; tO, XO ) 

JT(WWto, ?l)dTto; to, XO) ~ XIoXT(tO)XO. 

The mononicity of XT(t) also follows from JT(W, wa; t, xo). Note that  XT(t)  
is bounded uniformly in T. This follows from Lemma 4.8 and 

JT (WTt ,  WdTt; t, XO) : XIoXT(t  )XO . 

Hence XT(t) converges to a limit X(t)  as T --* co. As we have seen in the 
proof of Lemma 4.6, XT(kT) satisfies Tl(k) >_ (,,/2 _ d2)i independent of T 
and hence X(kT) satisfies Tl(k) >_ (~/2 _d2)i .  So X ( k T - )  is defined by (4.30) 
and (4.31). A T-periodicity of X(t)  follows from the proof of Lemma 4.2. 

Now it remains to show that  (A + AzBB'X ,  Ad + BdT{IR1) is exponen- 

tially stable. Let XT be the response (WTto,WdTto) and let (WTto,~dTto) E 
L2(to, (x~; R TM) x /2(1, co; R ml~) be given by 

f 1-~B'XT(t)xT(t), t E [t0, T], 
WTto( t )  I O, t E (T, co), 

~ d T , o ( a )  = 
(T f  l n l ) (  k )xT( kT ), k E [1,N], 

0, k E [g  + 1,co). ( 

Then 

0 ~__ XtoXT(tO)XO <~ J(WTto, WdTto; to, XO) ~ J(wto, Wdto; to, Xo) 

and {(WTto, WdTto)} is bounded in L2(t0, co; R TM) x 12(1, co; Rmld). Hence 
there exists a subsequence again denoted by {(WTto, ~)dTto)} which is weakly 
convergent to (~, wd) E L2(t0, co; R m~) x/2(1, co; R 'rod) (Theorem A.5). Let 

be the response to (~, ~d), i.e, the solution of 

x = ASc + B~,  ~(to) = Xo, kT < t < (k + 1)r, 

&(kT +) = Ad~(kT) + Baled(k). 

Since the restriction of (VJTto, ~3dTto) on any subinterval converges weakly to 
that  of (@, Wd), for any t, XT(t) --* ~2(t) in R n as T ---+ co. On the other hand 
xT(t) --+ ~2(t) in any interval, where �9 is the solution of 

= (A + -~BB'X( t ) )~ ,  ~(to) = xo, kT < t < (k + 1)T, 
i 

2(kr +) = (Ad + BdTl lR1)x(kT) .  

Hence we can identify ~ = 4. Since (A, Ad) is exponentially stable and 
(w, Wd) E L2(t0, co; R 'm) x/2(1,  co; Rm'd), we conclude 

C L2(to, co; R '~) and �9 E L2(to, co; Rn).  
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This is true for any x0 which implies that  (A + ~J~BB'X, Ad + BdTl lR1)  is 
exponentially stable. | 

T h e o r e m  4.7 Assume that (A, Ad) is exponentially stable on [to, co). Then 
the following statements are equivalent. 
(a) II a II < ")'. 
(b) There exists a v-periodic nonnegative stabilizing solution X ( t ), t c [to, oc) 
to (4.29)-(4.31) satisfying (4.33). 
(c) There exists a bounded nonnegative stabilizing solution Y(t) ,  t E [to, cx)) 
to (4.34)-(4.37). 
Moreover the limn-~oo Y(t  + nT) exists (denoted by Y~(t)) and Y~ is a T- 
periodic nonnegative stabilizing solution of (4.34)- (4.36). 

Proof. Suppose (a) holds. Then the existence of a T-periodic nonnegative 
stabilizing solution follows from Lemma 4.10. The condition (4.33) follows 
as in Theorem 4.6. Hence (a) implies (b). The converse is also similar to 
Theorem 4.6. We only need to show 

( w )  2 i2 ( r )  H~2xt=)fo r I hi  2+1] Wd HL=xt2<- a(Ih +II rd 

But this follows from 

= 

x(k~+)  = 

W - -  

w~(k) = 

[A + ~ B B ' X ( t ) ] x  + Br, kv < t < (k + 1)% 

1 

(Ad + BdTl lR1)x(kT)  + SdTl~rd(k) ,  

since ( A + ~ B B' X ,  Ad + BdTI- I R1) is exponentially stable. 
(c) is the dual of (b) and (a) implies the solution of a bounded nonnegative 

solution of (4.34)-(4.37). In fact we consider the adjoint system 

-~  = A ' ( + C ' v ,  k T < t <  (k+1)% 

( (kT- )  = A'd((kr ) + C'dvd(k), 

G = B'G 

r = B'd~(kT) + D'dvd(k ), 

~(T) = ~1 

and 

T N 

J(v, vd;T,~]) = ~o [I r - ~  I~(t) 12]dt + ~--'~'[[ ~d(k)12 --~ ]vd(k) I =] 
k = l  

some a > 0. 

1 B 'X( t ) x  + r, 
"72 

T~IRlx(k~) + T1�89 
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and proceed as in Lemma 4.10. 
To show the exponential stability of (A + ~I-~YC'C, A , ,-1 d "~ R1y:I1y Cd), let 

VT(t ) ~- ~ C Y ( t ) ~ ( t ) ,  k~ < t < (k + 1)~', 

VdT(k) = ( T I ) R w ) ( k ) ~ ( k T )  

be the maximizing element of JT(v, Vd; ~1), then 

(VT)IIL2(to,T;Rp,)• I for some c0 > 0. II VdT 

We extend (VT, VaT) to [to, CO) by zero which we denote by 

(OT, OdT) E L2(t0, co; R m) x/2(1,  co; RPx~). 

Then there exists a subsequence again denoted by (VT, VdT) convergent weakly 
to 

(0, 0d) c L2(to, co; R p~) x/2(1,  co; R n'd) 

( v )  ,,52(to,~;R.~)• [ . N o w l e t t o < L < c o b e a  with [[ Vd 

fixed but arbitrary number and consider 

and 

--~T = A'(T + C'OT, ~T(L) = ~,, kr  < t < (k + 1)T, 

~(kr - )  = Xd(T(kr  ) + CdVdT(k), 

--~ = A ' ~ +  C'O, ~T(L) = ~1 kT < t < (k + 1)% 

~(k~'-) = Atd~(k~ ") + C'dOd(k) 

1 
-~  = A' (  + ~2C'CY( t )~ ,  ((L) = ~1, kr  < t < (k + 1)r, (4.41) 

( ( kT- )  = A~d((kr) + C~d(TI~R1y)(k)~(kT). 

Then as in Lemma 4.10, we can show (T(t) --~ ~T(t) as T --* oc for any t E 

( ~) ) [IL2(to,o~;R~)xl2(1,oo;R"a)~ [to, L] and ~(t) = r t E [to, L]. Since ]1 Od 

col l ], 

f , ~  I~(t) < c[ ~1 some c O, dt 12 for 

which implies 

" 12 12 [ ~(t) dt <~ C l ~ l  for any to _< L < co. 
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Hence by Proposition 4.3, the system (4.41) is exponenetially stable and so 
R i y T i y  Cu). Hence we have shown tha t  ~a) implies the is (A+ 1-~YC'C, Ad+ ' -1 

existence of a bounded nonnegative stabilizing solution Y(t)  of ('4.34)-(4.37). 
The rest of the proof is similar to that  of Corollary 4.3. 

The converse follows if we consider the adjoint of (4.23) and proceed as 
in the first part. | 

Now we assume that  h = 0. Then we have the following. 

C o r o l l a r y  4.5 The following statements are equivalent. 
Ca) II a II < 7. 
(b) There exists a T-periodic nonnegative stabilizing solution to (4.29)-(4.31). 
(c) There exists a bounded nonnegative stabilizing solution Y( t ) ,  t c [to, co) 
to (4 .~4)-(4 .36)  with Y( to )  = o. 
Moreover the limn-,c~ Y( t  + nr) exists (denoted by Yr(t))  and Yr is a r- 
periodic nonnegative stabilizing solution of (4.34)-(4.36). 

C o r o l l a r y  4.6 The following statements are equivalent. 
(a) II a Jl < 7- 
(b) There exists a r-periodic nonnegative stabilizing solution to (4.29)-(4.31). 
(c) There exists a r-periodic nonnegative stabilizing solution to (4.34)-(4.36). 

E x a m p l e  4.4 Consider the following jump system 

[01] 
= - 0 x +  w, k < t < k + l ,  

z(t) = [1 0]x,  

zd(k)  = [0 1]x(k) .  

For this system we consider the disturbance attenuation problems to the 
following two cases 

For all 7 -> 8.3, there exists a periodic nonnegative stabilizing solution X( t )  = 
[ xl x12 ] 

X12 X2 (t) of the Riccati equation (4.29)-(4.31) to both cases (Figure 

4.6) and there exist bounded nonnegative solutions Y(t )  = [ Y1 Y12 ] 
YI2 112 J (t) of 

the Riccati equation (4.34)-(4.37) which converge to a periodic solution with 
period 1 (Figure 4.7). 
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4 

~,< 

I ~ ' ' J I ' I 

I i i J i I ~ i i J I 
0 0.5 I 

t i m e  ( s e e )  

Figure 4.6: The periodic nonnegative stabilizing solution X(t) 

I0 

-5  

I ~ T , , I ' ' ~ ' I 

. . . ~ o . J  I 

I i i i , i , i , i I 
0 0.5 

t i m e  ( s e c )  

Figure 4.7: The periodic nonnegative stabilizing solution Y(t) 
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4 . 2  H ~  C o n t r o l  

In this section we consider the Ho~ control problem for j ump  systems with 
initial uncertainty. The main results will be applied to sampled-da ta  systems 
in Chapter  5. 

y(k) 

Zl 

with initial condition 

4.2 .1  M a i n  R e s u l t s  

Consider the j ump  system G j: 

5: = A x  + BlW, k~" < t < (k + 1)T, 
x(k~ "+) = Adx(k~)  + B2u(k),  (4.42) 

z Zd(k) [D12u(k) ' 

= C2x(kT) + D21wd(k), 

= F x ( T ) ,  to <_ N T  <_ T < ( g  + 1)T (4.43) 

x(to) = Hh,  0 < to <_ r (4.44) 

where x E R ~ is the state, (w, wa) E R m~ • R mid is the disturbance,  u E 
R m2 is the control input,  (zl, zc, zd) E R q • R pl • R p~'~ is the controlled 
output ,  y E R p2 is the sampled observation, h E R ~1 and all matrices are of 
compat ible  dimensions. For the jump system G j  we assume 

J 1  : D~2D12 = I, 
J 2  : D21D~l = I.  

We consider feedback controllers u = K y  of the form: 

= < t < (k  + 

~(kr  +) = Aa(k)~(kr )  + B(k )y (k ) ,  (4.45) 

u(k) = + 9(k)y(k)  

where all matrices are uniformly bounded. 

R e m a r k  4.3 As we have mentioned in Section 4.1.1, the feedback controller 
of the form (4.45) is equivalent to the following discrete~time controller 

~(k + 1) = S((k  + 1)T, kT+)ftd(k)~.(k) + S( (k  + 1)v, kT+)JB(k)y(k), 

u(k) = C(k)~(k)  + D(k)y (k )  

where S(. ,-)  is the s tate  transit ion mat r ix  of A. If all matrices in (4.45) 
are constant,  the above discrete-t ime controller becomes the following time- 
invariant controller: 

u(k) = d ~ ( k )  + 9~(k ) .  
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On the other hand any discrete-time feedback controller is rewritten as the 
jump system of the form (4.45). 

Consider the system Gj  and the controller u = K y  on [to, T]. Define the 
input-output operator of the closed-loop system by 

Z c ~ G . 

Zd Wd 

Then 

G E / : (R  TM x L2(to, T ; R  TM) x /2 (1 ,N;Rm'~) ;  
R q • L2(t0, T; R pl) x/2(1,  N; RPld)). 

The H~-control problem with initial uncertainty is to find necessary and 
sufficient conditions for the existence of a controller u = K y  of the form 
(4.45) such that  I[ G ]]< 7, i.e., 

( z c )  2 [ 2 ( w )  [[2L2x12) f o r s o m e O < d < 7 "  I zl I s + II Zd IlL=• d2(] h + H Wd 

Such a controller is called 7-suboptimal. Without loss of generality we assume 
that  H and F have full column rank and full row rank, respectively. 

To give the solution of this problem, we introduce the following Riccati 
equations with jumps. For definiteness we assume 0 < to < T. 

and 

where 

- j ;  = 

X ( k . - )  = 

X ( T )  = 

H ' X ( t o ) H  ~ 

1 
A ' X  + X A  + C~C1 + - ~ X B I B ~ X ,  

kT < t < (k + 1)r, (4.46) 

A~dX(kT)Ad , -1 - (R2T ~ R2)(k), (4.47) 

F'F,  (4.48) 

d2I for some 0 < d < 3' (4.49) 

? 

Y ( k 7  +) 

Y(to) 

1 

= A Y  + Y A '  + BIB~ + + Y C ~ C I Y ,  

kv < t < (k + 1)T, (4.50) 

AdY(kT)AId , -1 = -- (R2yT2y R2y)(k) ,  (4.51) 

= H ' H  (4.52) 

T2(k) = I + B~X(k~)B2,  R2(k) = B~X(kT)Ad,  
T2y(k) = I + C2Y(kT)C~, R2y(k)  = C2Y(kr)A~d . 

If we wish to take to = T, the condition (4.49) becomes 

H ' X ( T - ) H  <_ d2I. 
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We also need the following Riccati equation depending on X: 

2 = 

Y z ( k )  > 

Z ( k ~  +) = 

Z( to)  = 

where 

1 
(A + ~ B , B ; X ) Z  + Z (A  + ~ B , B ~ X ) '  + B,B'I,  

[ 

k~- < t < (k + 1)r, (4.53) 

aI  for some a > 0, (4.54) 

AdZ(kT)Atd , -1 , ~. - (R2zT2z R2z)(k)  + (FIzVzF1z)(k) ,  (4.05) 

H ( I -  4 H ' X ( t o ) H ) - I H  ' (4.56) 

1 1 

T~z(k) = 7~1 - T ; "  R~Z(k~)R'~T; ~, 

R 1 z ( k )  -- Tf�89 

S z  (k) - ~ = C~Z(kr)R'2T~ ' ,  
Fiz(k)  -= [ V z l ( R I z  - S~zT2zl R2z)](k), 
F2z(k) = -[72z 1 (R2z + SzF1z)] (k). 

T2z(k) = I + C2Z(k~)Ci ,  

R2z(k)  = C2Z(k'r)Atd, 

V~(k) = [T~z + S'zTg~S~](k), 

As in the continuous- and discrete-time H~-cont ro l  problems we have the 
following relationship between X,  Y and Z. Proofs of lemmas below will be 
given in Section 4.2.4. 

L e m m a  4.11 (a) Suppose X ,  Y and Z are solutions of(4.46), (4.47), (4.50), 
(4.51)  and (4.5S)-(4.55), respectively. If  Z(s) - Y ( s ) -  ~ Z ( s )X ( s )Y  (~) = 0 
for some s >_ to, then Z(t) - Y( t )  - A~Z( t )X( t )Y( t )  = 0 for all t > s. 

(b) I f  (4.52) and (4.56) hold, then Z(to) - Y(to) - ~A~Z(to)X(to)Y(to) = O. 

L e m m a  4.12 (a) Let X ,  Y and Z be the solutions of (4.46), (4.~7), (~.50), 
(4.51) and (4.53)-(~.55), respectively. Suppose I - ~-~XY is nonsingular. I f  
x satisfies 

- 5  = (A + ~ Y C ~ C l ) ' ( t ) x ,  k7 < t < (k + 1)T, 

x ( k T - )  = (Ad -- R~2yT~]JC~)'(k)x(kv), 

then ~ = (I - 1-~XY)x satisfies 

- ~  = (A + ~B1B~X) ' ( t )5 : ,  kT < t (k + 1)r, 

5:(kT-) = (Ad + F~zT2�89 R2 + F~zC2)'(k)2(k~'). 

(b) Let X ,  Y and Z be bounded on [to, oc) and suppose I -  ~I-~ X Y  is nonsingu- 
1 ! / - 1  lar and its inverse is uniformly bounded in t. ( A + ~ Y C 1 C1, Ad - R2y T2y C2) 

is exponentially stable if and only ff ( A + ~ B1BI X,  Ad + F~z T2 �89 R2 + F~zC2 ) 
is exponentially stable. 
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The  following are our main results. 

T h e o r e m  4.8 Assume J1 and J2.  
(a) There exists a ~/-suboptimal controller u = K y  on [to, T] if  and only i f  
the following conditions hold: 
(i) There exists a nonnegative solution X to (4.46)-(4.49). 
(ii) For the solution X in (i), there exists a nonnegative solution Z to (4.53)- 
(4.56). 
(b) In this case the set of all "y-suboptimal controllers is given by 

[A + ~ B I B ~ X ( t ) ] 2 ,  k r  < t < (k + 1)7-, X z 

~(kr  +) = Ad(k)~(kT)  + [~l(k)y(k) +/~2(k)9(k) ,  (4.57) 

u(k) = C(k)&(kT) + Dt (k )y (k )  +/)2(k) ,5(k) ,  

§ = T 2 2 ( k ) [ - C 2 2 ( k r  ) + y(k)], 
i; = Q§ Q e Q . ~  

where 

and 

Ad(k)  = [(Ad - B2T21R2)~g](k), 
B1 (k) = (Ad - B2T21R2)(k)Z(kr)C~T~-~ (k), 

, ' ' 

~([F1z + B 2 T ; ~ I V ~ ) ( k ) ,  
C(k)  =- - T ~ I R 2 ~ ( k ) ,  
I)I (k) = - (T 2-1R2) (k)Z(kT)C~T~) (k), 

f)2(k) = ~(T2�89  
~(k )  = I - Z(kT)C~T21(k)C2 

Q-r = {Q 6 s N; RP2);12(1, N; Rm2)) : 

Q is of the form (4.45) and [1Q I1< 7}. 

T h e o r e m  4.9 Assume J1  and J2.  
(a) There exists a ~/-suboptimal controller u -= K y  on [t0, T] if and only if 
the following conditions hold: 
(i) There exists a nonnegative solution X to (4.46)-(4.49). 
(ii) There exists a nonnegative solution Y to (4.50)-(4.52). 
(iii) p ( X ( t ) Y ( t ) )  < d2I for any t 6 [to, T] and for some 0 < d < % 
(b) In this case the set of all 7-suboptimal controllers is given by (4.57) with 
Z replaced by ( I -  1-~YX)-IY.  

Next we consider the system G j: 

= A x + B l w ,  k T < t  < ( k + l ) T ,  

x(kT +) = Adx(kr") + B2u(k) ,  
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[ zc ]__r clx ] 
z = zd(k) [D12u(k) ' 

y(k) = C2x(kT) + D21wd(k), 

x(to) = Hh, O < to <_ T 

on [to, oo) and the controller u = K y  of the form (4.45). We assume J1,  J2  
and 

3 3 :  ([A, Ad], [B,, 0], [C1, 0]) is stabilizable and detectable, 
J 4 :  ([A, Ad], [0, B2], [0, C2]) is stabilizable and detectable. 

R e m a r k  4.4 (a) As we see in Remark 4.3 the condition J4  is equivalent to 
the stabilizability and detectability of (eArAd, eArB2, 62). 
(b) Since the condition J3  is equivalent to tile stabilizability and detectability 
of the system 

= Ax  + B l w ,  kT < t < (k + 1)T, 

x ( k T  +) = A a x ( k T ) ,  

z = C l x  , 

J3  is equivMent to the existence of matrices K E R m~• and J E R n• 
such that  e(A+B~K)rAd and e(A+gCl)rAd are exponentially stable. 

If the controller is IO-stabilizing (or internally stabilizing), we define the 
input-output map of the closed-loop system 

Zd Wd 

Then 

G C / : (R  '~ • L2(to, cr R m~) • 12(1, 00; l:tm~d); 

L2(to, cr R p~) • 12(1, oc; RP~)).  

The Ho~-control problem with initial uncertainty on [to, c~) is to find neces- 
sary and sufficient conditions for the existence of a "y-suboptimal controller, 
i.e., an internally stabilizing controller u = K y  of the form (4.45) such that  
I[ G ][< % i.e., 

][ Zd ]]L~xl~<-d2([h +]]  Wd 

To give the solution of this problem, we need the following definition. 

De f in i t i on  4.11 (a) The solution X of (4.46) and (4.47) is called stabilizing 
1 t i] (A + ~-~B1BIX, Ad - B2T~IR2) is exponentially stable. 
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(b) The solution Y of (4.50) and (4.51) is called stabilizing if (A + 1 , -~YC1C1, 

Ad -- R~yT2~C2]) is exponentially stable. 
(c) The solution Z of (4.53)-(4.55) is called stabilizing i f ( A +  1-~ B1B'I X,  Ad+ 

1 

F;zT   n2 + F zC2) is exponentially stable. 

T h e o r e m  4.10 Assume J1 - J4 .  
(a) There exists a "y-suboptimal controller u = K y  on [to, oc) if  and only if 
the following conditions hold: 
(i) There exists a "r-periodic nonnegative stabilizing solution X to (4.46), 
(4.47) and (4.49). 
(ii) For the solution X in (i), there exists a bounded nonnegative stabilizing 
solution Z to (4.53)-(4.56). 
(b) In this case the set of all "y-suboptimal controllers is given by (4.57) with 
Q internally stable. 
Moreover the l imn- .~ Z( t  + nT) exists (denoted by Z~(t ) )  and Z~ is a T- 
periodic nonnegative stabilizing solution of (~.53)-(4.55). 

T h e o r e m  4.11 Assume J1 - J4 .  
(a) There exists a "y-suboptimal controller u = K y  on [to, oc) if  and only i f  
the following conditions hold: 
(i) There exists a T-periodic nonnegative stabilizing solution X to (4.46), 
(4.47) and (4.49). 
(ii) There exists a bounded nonnegative stabilizing solution Y of (4.50)- 
(4.52). 
(iii) p ( X ( t ) Y ( t ) )  <_ d 2, for any t c [to, c~) and for some 0 < d < % 
(b) In this case the set of all "y-suboptimal controllers is given by (4.57) with 
Z replaced by ( I  - ~I-~YX)-IY and Q internally stable. 
Moreover the l i m n - ~  Y ( t  + nT) exists (denoted by Y~(t))  and Y~ is a T- 
periodic nonnegative stabilizing solution of (4.50) and (4.51). 

If h --- 0 we can construct T-periodic "y-suboptimal controllers. Proofs of 
the following corollaries are similar to that  of Corollary 2.12. 

C o r o l l a r y  4.7 Consider the system G j  with h ~ 0 and assume J 1 - J 4 .  
(a) There exists a "y-suboptimal controller u = K y  on [to, c~) if  and only if 
the following conditions hold: 
(i) There exists a T-periodic nonnegative stabilizing solution X to (~.46), 
(4.47) and (4.49). 
(ii) For the solution X in (i), there exists a T-periodic nonnegative stabilizing 
solution z to (4.5s)-(4.55). 
(b) In this case the controllers given by (4.57) are "y-suboptimal. I f  Q is T- 
periodic, then the controller (4.57) is T-periodic. 

C o r o l l a r y  4.8 Consider the system G j  with h = 0 and assume J 1 - J 4 .  
(a) There exists a "y-suboptimal controller u = K y  on [to, c~) /f and only if 
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the following conditions hold: 
(i) There exists a r-periodic nonnegative stabilizing solution X to (~.46), 
(4.47) and (4.49). 
(ii) There exists a T-periodic nonnegative stabilizing solution Y of (4.50) and 
(4.51). 
(iii) p(X(t)Y(t))  < d 2, for any t E [to, to + T) and for some 0 < d < 7. 
(b) In this case the controllers given by (4.57) with Z replaced by ( I -  
J ~ Y X ) - I Y  and Q internally stable are T-suboptimal. If  Q is T-periodic, then 
the controllers are ~-periodic and "y-suboptimal. 

We consider an example and apply Theorem 4.11. 

E x a m p l e  4.5 Consider the H~-control problem for the following system 

[i1 
' 

y(k) = [ 1 0 ] x ( k ) + w d ( k )  

which satisfies the assumptions J1-J4 .  For this system we consider the fol- 
lowing two cases 

(a) H = 0 ,  (b) H = 2 [ 1 0 ]  - 

Then in both cases, the conditions (i)-(iii) of Theorem 4.11 are satisfied for 
all 7 >- 1.85. Figure 4.8 shows the periodic nonnegative stabilizing solution 

x(t) = [ ] X12 X2 ] (t) with 7 -- 1.85 and Figures 4.9 and 4.10 shows the 

nonnegative stabilizing solution Y(t)  = [ Y1 Y12] Y12 Y2 (t) with 7 = 1.85 of 

the cases (a) and (b), respectively which converges to the same periodic 
solution. Figure 4.11 shows the eigenvalues Al(t) and A2(t) of X(t )Y( t )  in 
the case (b) with 7 = 1.85 and At(t) _< 3.3931 < 1.852. Figures 4.12 and 4.13 
show the simulation results of the closed-loop systems with central controllers 
of the case (a) and (b), respectively where 7 = 1.85, the initial conditions 
xl(0) = 1, x2(0) = 0 and the disturbances w(t) = e -l~ sin 10t, wd(k) = O. 
The controller of the case (b) gives a better response. 

4.2.2 H ~  Riccati Equations 

Before proving our main results, we first consider the relationship between 
Ho~-problems and quadratic games as in continuous- and discrete-time cases. 
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Figure 4.8: The periodic nonnegative stabilizing solution X(t) 
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Figure 4.9: The bounded nonnegative stabilizing solution Y(t) of the case (a) 



4.2. Hoo Control 231 

2 

0 

] i J i i , i i r i i | w 

- / YL(t) 

.  17777j/////7 
I I I  g~(0 

] i i i i i i J i i ] , i J , I , 

0 5 10 15 
t i m e  ( s e c )  

Figure 4.10: The bounded nonnegative stabilizing solution Y(t) of the case 
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Figure 4.11: Eigenvalues of X(t)Y(t) of the case (b) 
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Figure 4.12: Simulation result: Case (a) 
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Figure 4.13: Simulation result: Case (b) 
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Then we shall show that  the 
tions with jumps (4.46)-(4.48) 
7-suboptimal controller. 

existence of solutions to the Riccati equa- 
and (4.50)-(4.52) under the existence of a 

T h e  F i n i t e  H o r i z o n  P r o b l e m  

Consider the system which is slightly generalized than the system G j: 

= Ax -4- Blw, kT- < t < (k A- 1)V, 

x(kr +) = Adx(kT) + Bxdwd(k ) + B2u(k), 

] Z ~ ~- Zd(k) Cldx(kT) + D12u(k) ' 
y(k) = C2x(k'r) A- D21wd(k) 

with 

(4.59) 

Z 1 : F x ( T )  ( 4 . 6 0 )  

and the controller u = Ky of the form (4.45). For the system (4.59) we assume 

J l ' :  DI12Cld = 0 and D ~ 2 D 1 2  = I .  

The H~-cont ro l  problem with no initial uncertainty on [to, T] is to find nec- 
essary and sufficient conditions for the existence of a "/-suboptimal controller 
such that  [I (~ [[ < % i.e., 

( ) ( w )  112L2x12 fOrsOmeO<d<'7 zc rl~• d~ ll wd 

.where G is the input-output  operator  defined by 

Now we assume the existence of a "y-suboptimal controller and s tudy its 
consequence to the following quadratic game 

T 

g(u, (w, Wd); S, Xo) = / [I z~(t) 12 --7 5 I w(t) 12]dt 
, is  

N (4.61) 
+ Z [I zd(k) } 2 --3 '2 ] wd(k) 12]+ ] Fx(T) 12 

k=k~, 

where.s > to, u is the minimizer and (w, Wd) is the maximizer. We assume 
(ks - 1)T < S < ksr  < N r  < T < (N + 1)v. Then  the response to (4.59) can 
be writ ten 

x~( t )  = 

~ ( t )  = 

zd~(k) = 

u~(k)  = 

Z l K  

( r  + ( ~ w ) ( t )  + (~3Kwd)(t) ,  

(qJ11KXO)(t) + (~12KW)(t) + (q213KWd)(t), 
(q221KXo)(k) -t- (q222KW)(k) -t- (q223KWd)(k), 
(I l igxo)(k)  + (l-I2KW)(k) + (II3Kwd)(k), 

Fr + Fr + Fr 

(4.62) 
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(I)IK, ~I/llK, x~21K I'I1K �9 s  n , E ) ,  
(I)2K, ~ ,2K,  0222K 1-I2K �9 s 
(I)3K , ~I/13K, ki/23 g I-I3K �9 f..(12(ks, N ; R ~ " ) , E )  

E = L 2 (s, T; R~) ,  L 2 (s, T; R m), l 2 (ks, N; R pl'') and 12 (ks, N;  R TM), respec- 
tively and 

�9 l~ (T)x0  = ( ~ l ~ x o ) ( T ) ,  

O2K(T)w = (O2Kw)(T), 
~3K(T)wd = (~3KWd)(T). 

Moreover r  IIjK and ~j/~-, i = 1,2,  j = 2 ,3  are causal and 11 G 1[< 7 is 
equivalent to  

[ Fr FffP3K(T) ) 
U XI//q II=ll [ ~12K kI/13 K I]<__ d for some 0 < d < 7 (4.63) 

\ ~22K ~2ag  

which implies 

I FO2K(T)w + FO3K(T)Wd 12 
(~12KWt-~I213KWd'~ d 2 ( w ) l l L 2 x U .  

+ II \~22KW+'~2a~:wa)IIL2• II Wd 

Now consider the  funct ional  (4.61). Since 

II zd IIg=ll Cdx IIg + II u IIg, 

J(u, (w, we); s, Xo) is s t r ic t ly  convex in u. Hence by T h e o r e m  A.4 for any x0 
and (w, wd) �9 L2(s ,T;R TM) x 12(ks, N ; R  'm~) there  exists a unique us = 
us((w, Wd), xo) �9 12(ks, N; R TM) such t ha t  

n~nJ(u, (w, we); s, zo) = J (u s ,  (w, we); s, zo). 

The  response of (4.59) to  us is wr i t t en  

Since 

xs(t) 
zcs(t) 
zds(k) 
us(k) 

ZlK 

= (~51sxo)(t) + (~P2sw)(t) + (O3sWd)(t), 
= (k~11sXo)(t) + (q212sw)(t) + (q213swd)(t), 
= (~21sxo)(k) + (~22sw)(k) + ('~2aswa)(k), 
= (II lsx0)(k)  + (II2sw)(k) + (II3swd)(k), 
= FO1K(T)xo + FgP2K(T)w + FO3K(T)wd. 

(4.64) 

J(us, (w, Wd); s, xo) <_ J(ug, (w, Wd); S, XO), (4.65) 
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we have 

[F +~ IJ=rl 

Now 

Fr  F+3s(T) ) 
ll*/12s ~13s 1[< d for some 0 < d < 7. 
~22s ~23s 

(4.66) 

J(u~, (~, ~d); ~, ~o) 

: rl +)Ill: 

/ F(I>ls(T) 
---- II / ~ i l s  

k IIY21S 

xl= II Wd 

By (4.66), ~2I - sqgs is bounded both from below and above. So its inverse 
exists (Theorem A.3) and is uniformly bounded in s. Hence. there  exists a 
unique maximizing element of J(u, (w, Wd); s, xo) given by 

Ws _-- ( ~ 2 i _  @ : ~ s ) - l ~ , :  | q+,ls | xo. (4.67) 

Next we sha[lsh~ that ( W s )  : ( W s )  (x~ and us((ws'wds)'x~ a r e .  =ds Wds 
uniformly bounded in s. Setting w = 0 and Wd = 0 in (4.65) we have 

II~:((o,o);~:o) II~: -< g(~:((o,o);:~o),(o,o);~,xo) 

<_ J(uK,(O,O);s, xo) =11 ( zoK ~ II~ + l z~K 12 
\ ZdK / 

or 

< II \ + 2 , K X 0  ] II~:• +]FO1K(T)xo 12 

Hence H18, q+u: and q+218 are uniformly bounded. From (4.66) and (4.67), 
we have 

( Ws ) ],L2xl~_ a] xo [ (4.68) 

for some a > 0 independent of s. Setting x0 = 0 in (4.65), we also have 

II u~((W, Wd);O) Irg -'Y~ II Wd 

< J(u~((W, Wd);O),(w,~d);s,O) 
< J(uK, (w, Wd); s, o) 

_+ = IIL~• 
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and 

II II2~w + II3~wd Ill~ + I Fg22s(T)w + F ~ a s ( T ) w d  [2 

< II ,I,]~,, ~13~, ] w 112 
~22~ 0223~ ] wd 

-< II ~12K 013K Wd 
'ff~22K '~23K 

<- d2 [I Wd 

for some 0 < d < 3'. Hence His, ~ijs ,  i = 1, 2, j = 2, 3 are uniformly bounded. 
Now (4.64) and (4.68) yield 

II u~((w,~d),~0)ILl~< ~ I~01 

for some a > 0 independent of s. Thus we have shown the following. 

L e m m a  4.13 (a) l-Ijs, g2,js, i = 1, 2, j = 1, 2, 3 are uniformly bounded. 
(b) ws(zo),  Wd~(xo) and us((ws, Wds), XO) are uniformly bounded and 

max m i n J ( u , ( w , w d ) ; S , X o )  = J(us,(Ws,Wds);s,~:o) <_ a I xo 12 
( . . . .  ~) ,, 

for some a > 0 independent of s. 

We consider 

v(k) 

X(k~--) 

X(T) = 

where 

Tl(k)  = "r2I - B~dX(kT)Bla ,  
Rl(k)  = B~dX(kv)Ad,  
S(k)  = S ~ X ( k T ) S l d ,  
Fl(k)  = [V-I(R1 - S 'T~IR2)](k) ,  

' ~ (4.69) = AIX  + X A  + C1C1 + X B 1 B ~ X ,  

k T < t <  ( k + l ) r ,  

> aI  for some a > 0, (4.70) 
I = X d X ( k r ) A d  + CldCld 

- (PJ2T~IR2)(k)  + (F~VFI)(k) ,  (4.71) 

F ' F  (4.72) 

T2(k) = I + B~X(kT)B2 ,  
R2(k) = B&X(kT)Ad,  
V(k) = [T1 + S'T2-1S](k), 
F2(k) = -[T2-1(R2 + SF1)l(k).  

First we assume that  there exists a nonnegative solution X to (4.69)-(4.72) 
and examine the properties of X. By direct calculation, we obtain 

J(u,  (w,wa); s, zo) = x~oX(s)xo+ [I T~[u + T ~ l ( S w d  + R2x)] [[72 

--y2 II 1 V � 8 9  ) [IL2• (4.73) 
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where x is the response of the system (4.59) to the pair (u,(w, wd)) e 
/2(k~, N; R m2) • L2(s, T; R TM ) • 12(k~, N; Rml"). Define feedback laws 

~(t) = -~B~X(t)x( t ) ,  

ff~d(k) = Fl(k)x(kT), (4.74) 

fi(k) = - ( T  2-1R2)(k)x(kT) - (T 21S)(k)wd(k) 

and let x* be the solution of (4.59) corresponding to (4.74). Set 

1 B~X(t)x*(t), w * ( t )  - ~ 

w~(k) = Fl(k)x*(kr), 

u*(k) = F2(k)x*(kr). 

(4.75) 

X is nonnegative. Moreover 

J(ft, (w, Wd); s, xo) 

�9 ~ J(u*, (w , wa), s, Xo) 

<_ J(ft,(ff~,@d);s, xo) 

= x~oX(s)xo <_ J(u, (~, ~d); s, xo), (4.76) 

= x~oX(s)xo <_ J(u, (w ,wa), s, xo) (4.77) 

for any (u, (w, Wd)) E 12(ks, N; R m2) x L2(s, T; R TM) x 12(k8, N; Rmle). The 
max-rain of J(u, (w, Wd); s, xo) is attained by the pair (fts, (w*, w~s)) and 

max n~n g(u, (w, Wd); s, xo) = J(ft, (w , Wd) , s, zo) 
(w,~od) 

= x0) (4 .78)  

= J(u*, (w*,w~); s, xo) 

= x 'oX(s )xo  

= inf sup J(u, (w, wa); s, x0). 

Proof. We note that  (4.76) follows from (4.73). Setting w = O, wa = 0 in 
(4.76), we have 

0 _< J(~2, (0, 0); s, x0) _< J(fi, (~, ~a); s, xo) = x~oX(s)xo. 

Hence X(s)  is nonnegative. Changing the initial time, we also have X(t)  > O. 
From (4.76), we have 

J(~, (W, Wd); s, xo) <_ J(~, (w,~d);  s, xo) = x~oX(s)xo 

We shall show that  the value of the game exists, i.e., 

sup inf J(u, (w, Wd); s, Xo) = inf sup J(u, (w, Wd); S, XO). 

L e m m a  4.14 Suppose that there exists an X satisfying (~.69)-(~.72). Then 
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and hence 

min J(u, (w, Wd) ; 8, XO) ~ J(ft, (w, Wd); 8, xo) ~ xtoX(s)Zo 
i t  

for any (w, Wd) E L2(s, T; R m~) x 12(k~, N; R'~'") .  This implies 

sup min J(u, (w, we); s, xo) <_ x~oX(s)xo. 
(w,~) 

Next we shall show 

min J(u, (w*, w~); s,zo) = J(u *, (w*, w~); s, zo) = xoX(s)xo: 
i t  

For this purpose we consider e = x - x* where x is given by 

= Ax + Blw*, x(s) = xo, kT < t < (k + 1)7, 

x(kT +) = AdX(kT) + Bldw~(k) + S2u(k). 

Then 

and 

i~ = Ae, e(s)=O, kT < t < (k + l)r, 

e(kT +) = Ade(kr) + B2[u(k) - u*(k)] 

J(u, (w*, w~); S, Xo) 

Define 

(Hu)(t) 

(Hdu)(kr) 

Hsu 

(4.79) 

( cl(e + x*) ) 

- 3  ̀ 2 II w~ IIL2xZ2 + I F ( e + x * ) ( T )  12 . 

k 
= E S( t , jT  +)B2u(j) 

j-=k~ 
k 

= ea(t-kr) E (AdeAr)k-JB2u(j)' kr < t <_ (k + 1)T, 
j=k8 

k - 1  

= E S(kT'jr+)B2u(j)  
j=k. 

k-1 
= eAr E (AdeAr )k - l - JB2u(J ) '  

j=k~ 
N 

= E S(T'Jr+)S2u(J) 
j-=k. 

N 
= eA(T-Nr) E ( A d e A ' ) k - J B 2 u ( j )  

j=k~ 
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where S(t, r) is the  s ta te  t rans i t ion  mat r ix  of  (A, Ad). T h e n  

e(t) = [ H ( u -  u*)](t), 

e(kr) = [Hd(U--  u ' ) ] (kT)  

and 
e(T) = H s ( u -  u*). 

Since J(u, (w*, w~); s, Xo) is s t r ic t ly  convex in u, there  exists a unique mini- 
mizing element u. I t  is given by the  solut ion of  

u + H*C[CI[H(u - u*) + x*] + H~C[dCld[Hd(u -- u*) + x*] 
+ H : F ' F [ H , ( u  - u*) + x*] = 0. 

Next we shall show tha t  u = u* is the solution. Note  t h a t  for (/z, h, hal) E 
R ~, • L ~ ( s , T ; R  n) • 12(ks, N ; R  "~) 

[ (H*h)(k)  = B; S'(t ,  kr+)h(t)dt,  
7" 

N 

(H~hd)(k) = B;  ~ S'(jT, kr+)hd(jT) 
j = k + l  

and 
(H*h) (k)  = B~S'(T, kT+)h. 

As in the  p roof  of  L e m m a  3.14 we can show 

u* (k) = F2 (k)x* (k) = - B~ X(kv)x*  (kT +). 

I t  is enough to  show 

S'(t,k<)C Clx'(t)dt 
* l t g T  
N 

- ~ S'(jv, kr+)Ci•Cidx*(jr) - S'(T, kT+)F'Ex*(T)  = O. 
j = k + l  

For this purpose  we define for t ~ k r  

T r 

g(t) = x( t )z*( t )  - [.  S'(s, t)CIC~x*(s)ds 

- ~_. S'(JT, t)Ci.CI.X*(J T) -S ' (T , t )F~Fx*(T) .  
T > j r > t  

Then  g is cont inuous  except  at  t = kr  and has r ight and left l imits at  t = kT. 
We need to  show g(kr +) = 0, bu t  we shall show g(t) -- 0. Firs t  no te  t h a t  

g(T) = X(T )x* (T )  - F ' F x  * (T) = O. 
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For t ~ kr 

g ( t )  = 

and 

g(kr-) 

X(t)x*(t) + X(t):k*(t) + C~Clx*(t) 

+A' [ IT  S t (8, t)C; ClX* (s)ds 

+ E S'(j% t)C~dVldX*(jr ) -~ S'(T, t) f ' fx*(T)] 
T>jv>t 

- -A'[X(t)x* (t) - I T  S'(s, t)C[C,x*(s)ds 

-- E S'(jr't)V~dCldX*(Jr)- S '(T' t) f ' fx*(T)] 
T>jr>t 

A' g(t) 

I 
T 

= lim[X(t)x*(t)- S'(s,t)C~Clx*(s)ds 
tTkr 

-- E S'( jr ,  t)C~dCldX*(jr ) -- S ' (T, t )F'Fx*(T)] 
T>jv>t  

= X ( k T - ) x * ( k r ) -  
T 

N 
- E S' (jr, kr-  )C~aCldx* (jr) -- S' (T, kr-  )F'Fx*(T) 

j=k 

= [A~X(kT)Ad - (R~2T21R2)(k) 
+(F~VF1)(k) + C~dCld]X(kr-)x*(kT ) 

--Xd[ fk:  S'(s, kT+)C~Clx*(s)ds 

N 
+ E S'(jT, kT+)C~dCldX*(jT)T S'(T, k r+) f ' f x* (T ) ]  

j=k+l 

- S '  (kT, kr-)C~dCldX*(kT ) 

= Xd[X(kT)x*(kT +) -- S'(s,k,+)C~Clx*(s)ds 
T 

N 
-- E S'(jT, kT+)ClldCldX*(jT) -- S'(T, kT+)F'Fx*(T)] 

j = k + l  

= A g(kr+). 

Hence g(t) = 0 and g(kT +) 
(4.77). 

= g(kT-) = O. This yields (4.79) and hence 



x~oX(s)xo <_ J(u, (ffJ, wd); s, x0) <__ 

which implies 

But 

and 
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It remains to show the last equality in (4.78). From (4.76) we have 

sup J(u,(w,wa);s,  xo) for any u 

x~oX(s)xo < inf sup J(u, (w, wa); S, Xo). 
'~ (w,~) 

max J(f~, (w, Wd); s, xo) = xloX(s)xo 
(~o,~) 
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subject to 

5c = Ax  + BlW, x(~) = xo, 

Z c ~ C x  

�9 x~oX(s)xo = J(ft,(w*,w~);s, xo) = inf sup J(u,(w,  wd);s, xo). | 

Next we shall show the existence of a solution to the Riccati equation 
(4.69)-(4.72) under the assumption that  a "1-suboptimal controller exists. 

L e m m a  4.15 There exists a nonnegative solution X to (~.69)-(~.72) and 

ma~ rain J(~,  (w, Wd); s, z0) = x~X(s)x0.  
(~,w~) 

Furthermore for the controller 

u( k ) = -(T~- l R2) ( k )x( kr ) - ( T21S)( k )wd( k ) 

kl G I1 < "1 holds. 

Proof. As in the proof of Lemma 2.13 we first establish the existence of X on 
the interval [N~, T], i.e., the last subinterval. Then  using the max-min game 
theory to the functional (4.61) and the jump equation in (4.59), we show the 
existence of X ( N v - )  satisfying (4.70) and (4.71). Next we show the existence 
of X on the interval [(N - 1)~', NT). The existence of X(t) for all t �9 Is, T] 
will be established by repeating these arguments. 

S t e p  1: Consider the functional 

J(u, (w,wd); ~,Xo) = J(w; ~,Xo) 
T 

~ [I Zc(t)12 -'12 Iw(t)12]dt+[Fx(T)]2 
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where N~" < g <_ T. Since u -- Ky is 7-suboptimal on [s, T], it is also 7- 
suboptimal on [g, T] and by Lemma 2.13 there exists a nonnegative solution 
X(t), t E [g,T] to (4.69) and (4.72). We write this solution as XT to show 
the dependence on T. We also have 

max rain J(u, (w, wd); ~, xo) = max J(w; ~, xo) 
(~o,~a) ,, 

= Z o X T ( 8 ) Z  O. 

S t e p  2: We introduce the functional 

/2 J(u, (w, Wd); Nr, xo) = [I z~(t) 12 - 7  2 I ~( t )  12]dt 
T 

+ l Zd(N) I s -72 [ wd(N)12 + I Fx(T) I s 

for the system (4.59) on [Nv, T] with x(NT) = xo. Then by (4.73) and tile 
same arguments in the proof of Lemma 3.15, we have 

J(u, (w, Wd); NT, XO) 

= z , (Nr+)XT(Nr)x(Nr+) _ ~2 I w(t) - B'lXT(t)x(t) 12 dt 
T 

+ } zd(N)I  s --y~ I wd(N)12 

= ~'o[(C~dC~d)(N) + A e X r ( N ~ ) A d  - (n2r2-~R~)(N)]~o 

+ t T}[u + T21(SWd + R2x)I(N) ]2 _w~d(N)V(N)wd(N) 
+ 2wd( N)( Rx - S'T~- I R2)( N)xo 

_72 ~ i w(t ) _ BIXT(t)x( t  ) ]2 dt. 

By Lemma 4.13 

max miun J(u, (w, wd); NT, xo) _< a ] xo ]2 for some a > 0 

and we obtain V(N) > aI for some a > 0. Hence we can define X ( N T - )  by 
(4.71) and 

max min g(u, (w, Wd); Nv, xo) = x'oX(NT- )xo. 
(~(t),~a(N)) u(N) 

N ~ < t ~ T  

Step 3: Now we assume that  XT(t) ,  t E (NT, T] is well-defined and introduce 
the functional 

T 

J(u, (w, wd); ~,xo) = . [  [I zc(t) ]2 _,),2 [ w(t) 12]dt 

+ I zd(N) [ 2 - 7  2 I wd(N) 12 + I F x ( T )  12 
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subject  to the sys tem (4.59) wi th  x($) = x0 on [$, T], (N - 1)T < $ < NT. 
T h e n  

and ' 

J(u, (w, wd); 5, x0) 

~ g~[[ z~(t) [ ~ --~P [ w(t) ]2]dr + x'(NT)XT(N~--)z(NT) 

-~P / f f l  , w(t) - -~B~XT(t)x(t) ,2 dt 

+ [ T~[u + T~I(Swd + R2x)](N) 12 

_~2 I 1-[v�89 - F ,~) ] (Y)I  ~ -y 

max  min J(u, (w, Wd); S, XO) 
(w,~a) ~, 

N T  

+x ' (N~ ' ) x (gv -  )x(NT)]. 

As in the  proof  of  S t e p  1 we can show tha t  there  exists a nonnegat ive  solution 
X(t), t �9 Is, NT] to  

- f (  = A ' X + X A + C I C +  XB1B1X, 

X ( N T )  = XT(NT"-). 

Cont inuing in this way we can show the existence of  a nonnegat ive  solution 
to  (4.69)-(4.72). The  rest of  the  p roof  is similar to  t h a t  of  L e m m a  4.14. ! 

S u m m i n g  up we have the  following result. 

T h e o r e m  4 .12  Assume J 1 L  Suppose that there exists a ~/-suboptimal con- 
troller u = Ky on [s, T] .for the system (4.59). Then there exists a nonnega- 
tire sol~tio~ x ( t ) ,  t e [s, T] to the Ric~ti  equatio~ ~ t h  j~mvs (4.69)-(4.72). 
Moreover 

max min J(u, (w, Wd); s, xo) = J(~, (w*, w~); s, x0) 

: J(~t,(W, Wd);S, XO) 

= J(u',  (w , Wd), S, Xo) 
= x~oX(s)xo = inf sup J(u,w;s,  xo). 
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Consider the backward system 

2. 
- x  = A'2 + C [ ~ ,  kr  < t < (k + l )r ,  

2 ( k T - )  = Xd~(kT ) + C~dCVd(k ) + C~fi(k), 

5 5d(k) = [B~d~2(kr ) + D~l~(k) ' 

~)(k) = S~2(k~ ") + D~2~d(k), 

51 = H'5c(s) 

(4.80) 

k - x  = A'(t)~,  kr  < t < (k + 1)r, 

~(kr  +) = Aa(k ) '~ (kr )  +O ' ( k )~ (k ) ,  

g(k)  = [~(k)~(kT) +~) ' (k )~(k )  

which is also the adjoint system of (4.45). 

C o r o l l a r y  4.9 Assume 

J2 ' :  D21B~d = O, D21D~l = I. 

Suppose that there exists a ~/-suboptimal controller fi = K ~  on [s, T] for the 
system (4.80). Then there exists a nonnegative solution Y( t ) ,  t c [s, T] to the 
Riccati equation with jumps 

1 

~z = A Y  + Y A  + B1B~ + -~YC~C1Y,  (4.82) 

kr  < t < ( k +  1)r, 

Vy(k)  > a I  for some a > 0, (4.83) 

Y(k~ "+) = AdY(kT)A'd + BldB~d 

-(PJ2yT2~) R2y) (k)  + (F~yVyF1y) (k ) ,  (4.84) 

Y(s )  = H H '  (4.85) 

where 

T iy  ( k ) = ~/2 I - C l d Y  ( kT )C[d, 
R1y(k) = C l d Y ( k r ) A '  d, 
sy (k )  = C X(k )C d, 
Fly (k )  = [V~71(RIy - S~T2yIR2v)](k),  
F2y(k)  = -[T2yI(R2y + SyF1Y) l (k) .  

T2y (k) = I + C2Y(kT)C~,  
R2y(k )  = CeY(kT)Atd, 
yy(k)  = [T1y + S .T; Svl(k), 

(4.81) 

which is the adjoint system of (4.59) with x(s)  -- Hh.  For this system, we 
introduce the controller ~ = K~) of the form 
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T h e  In f i n i t e  H o r i z o n  P r o b l e m  

Consider the system 

x (k r  +) 

Z 

= Ax  + B lw ,  kr  < t < (k + 1)r, 

= Adx(kT)  T BldWd(k) -}- B2u(k), (4.86) 

] = zd(k)  = C l d z ( k r )  + D12u(k)  ' 

y (k )  = C 2 x ( k r )  + D21we(k)  

with x(s) = xo, (ks - 1)r < s < ksr. We assume J l '  and that  

([.4, Ae], [0, B2], [C1, Cle]) is stabilizable and detectable. 

As in the finite horizon problem we assume the existence of a controller 
u = K y  of the form (4.45) with proper ty  

1122xl2 for some 0 < d < 7 (4.87) If ze IlL~• II we 

and study its consequence to the quadratic game defined by the functional 

J(u, (w, we); s, xo) = [I zc(t) f2 _r2 I w(t) f2ldt 

4- E [[ Zd(k) 12 - r  2 I Wd(k) 121 . 
k=k~ 

Note that  such a controller is IO-stabilizing with disturbance at tenuat ion r 
(IO-r-suboptimal)  and we call it "/-suboptimal if it is internally stabilizing. 
We also consider the finite horizon problem associated with 

T 
JT(U, (w, we); s, xo) = I [[ zc(t) 12 - r  2 J w(t) 12]dt 

N 
-4- E [ I  Zd(k) 12 -3,  2 I Wd(k) 121. 

k=k, 

Note that  if a controller u = K y  of the form (4.45) is IO-r-suboptimal,  it 
is also "/-suboptimal on any Is, T]. Since ([A, Ae], [0, B2]) is stabilizable, ~ l i s  
and ~I/21 s in (4.64) are uniformly bounded. Then by Lemma 4.13 and Theorem 
4.12 we have the following: 

L e m m a  4.16 There exists a unique nonnegative solution XT  of the Riccati 
equation with jumps (4.69)-(4.71) with XT(T )  = 0 on any interval [s, T] such 
that 

I XT( t )  I< c independent ors  < t < T < oo. 
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L e m i n a  4.17 For each t > s, XT( t )  is monotone increasing in T.  

Proof. Let L _< T and we shall show XL(S  ) "< XT(S  ). This follows from 

�9 'oxL (s)xo = JL(fZL,(~L,~dL);S,  Xo) 

<_ &(~T,(~L,~dL);S,Z0) 
~-- "]T(UT, ('ll)T, ~)dT); S, XO) 

~-- JW(~W, (+:/', ~)dT); 8, Xo) : X;XT(8)3:0 

where UT is the restriction of 72 T on [s, L] and (/bT, ?]SdT ) is the extension of 
(EL, ff~dL) to [S, N] by zero. Changing tile initial time, we also show XL (t) < 
xT(t),  i 

L e m m a  4.18 There exists a T-periodic nonnegative solution X( t ) ,  t E Is, oo) 
to (4.69)-(4.71).  

Proof. Let XT be a nonnegative solution to (4.69)-(4.71) with X T ( T )  = O. 
In view of Lemmas 4.16 and 4.17, XT is uniformly bounded and monotone 
increasing in T and hence XT(t) converges to a limit X( t ) .  Then as in the 
proof of Lemma 3.19, we can show V(k)  > aI  for some a > 0 and hence X( t )  
is a nonnegative solution to (4.69)-(4.71). The T-periodicity of X( t )  follows 
from the proof of Lemma 4.2. | 

Next we shall show the stabilizing property of tile solution. 

L e r a m a  4.19 (A + ~I-rBIB~X, Ad + BldF1 + B2F2) is exponentially stable. 

Proof. Let x~. be the solution of 

= (A q- ~ B 1 B ~ X T ) x ,  x(s)  = xo, kT < t < k q- 1)r, 
g 

X(kT +) = (Ad Jr BldF1T q- B2F2T)x(kT) (4.88) 

where FIT and F2T show the dependency on T of F1 and F2, respectively. 
Then for any interval Is, L], the solution x~ converges to the solution �9 of 

x = (A + ~B1B~X)~2,  ~(s) = xo, kr  < t < (k + 1)T, 

�9 (kv +) = (Ad + BldF1 -b B2F2)~(kT). 

We can rewrite (4.88) as 

gc = ( A -  JC1)x  + J C l x ~  + B lw~ ,  x(s)  = Xo, kT < t < (k + 1)T, 

x(k~ "+) = (Ad - JdCld)X(k~') + JdCldx~(kz)  

+BldW~T(k ) + B2u~(k)  (4.89) 
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where J,  Ja are chosen such that  (A + , lCi ,Ad  + JdCld) is exponentially 
stable. The solution of (4.89) coincides with x~. on Is, T]. We extend it to 
Is, oc) by the homogenous equation of (4.89). By Lemma 4.14 

II C, dx:r,I I IL~• II % I IL~• II u I1~_< a Ixo  l for some ~ > 0 

and (Clx~., Ctdx~ ), (w,},, W~T), w* r converges weakly to 

(h, ]~d) E L2(s, oc; R p~) x 12(ks, oc; RP'"), 

(t~,~d) e L2(s, o c ; R  TM) x 12(k~,oc;Rm~"), 

~t �9 12(ks ,oc;R rn2) 

respectively along a subsequence T --, oc. Let ~ be the solution of 

= (A - JC1)x  + Jh  + Biffs, x (s )  = xo, kT < t < (k + 1)T, 

x ( k r  +) = (Ad -- JdCld)X(kr)  + Jdhd(k) + Bided(k )  + B2fi(k). 

Since the restriction of Clx~., etc on any interval [s, L] converge weakly to 
those of It, etc, we can identify ~ and 2 on Is, L]. Since (A - JC1, Ad -- JdCld) 
is exponentially stable, ~ E L2(s, oc; Rn). Hence 5: E L2(s, oc; R n) for each x0 
and ][ 2 ][L2< a ] x  [ for  s o m e  a > 0 independent of x0. Hence by Proposition 
4.2, (A + ~-~B1B~X, Ad + BldF1 + B2F2) is exponentially stable. 1 

Define feedback laws 

ff~(t) = ~ B ~ X ( t ) x ( t ) ,  

Od(k) = Flx(kr),  
~(k )  = - T ~ t h x ( k r  - T2-Xswd(k). 

(4.90) 

Let x* be the solution of (4.86) corresponding to (4.90) and let 

1 B~X(t)x*(t ) ,  w*(t) - ~ 

w~(k) = Flx*(kT), 
u*(k)  = F : x * ( k r ) .  

(4.91) 

First we show that  the feedback law fi is stabilizing. 

L e m m a  4.20 Suppose X is a T-periodic nonnegative solution to (4.69)- 
1 p (4.71) such that (A + -.zB1B1X, Ad + BldF1 + B2F2) is exponentially stable. 

Then (A, Ad - B2T21R2) is exponentially stable. 
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Proof. Since (A + 1 7x B1B1X, Ad + BldF1 + B2F2) is exponentially stable and 

A +  ~-~2B1B~X = A +  1 B I ( 1 B ~ X ) ,  
7 7 

Ad + BldF1 + B2F2 = (Ad - B2T21R2) + (Bid - B2T21S)F,, 

([A, Ad - B2T{ I R2], T ! B' X t.~ 1 ,F1]) is detectable and so is 

D 

Since 

F ! B I X I ~  [ ! r~IX1 
- ) (  = X X + X A +  [~cl l  J ~C'1 J '  k r < t <  (k+1)% 

X(kT- )  = (Ad -- B2T~IR2)'X(kT)(Ad - B2T~IR2) 

V�89 ] '  [ V�89 ] 
+ T2-1R~/ /T~-IR2/,  

cxa J L via J 

(A, Ad -- B2T2-1R2) is exponentially stable by Proposition 4.5. | 

Let FI  be the set of stabilizing feedback laws of the form u = glx+K2Wd. 
As Lemma 4.14, we shall show 

sup inf J(u,(w, wd);s, xo) 
(w,wa) uEFI 

J(u, (w, Wd); 8, XO) 

Note that 

inf sup 
uEFI (w,wa) 

= J(fi, (w*,w~); S, Xo) 

~- J(CL (~, ff)d); s, xo) 

= J(u*, (w', w~); s,x0) 

= x ' o x ( s ) x o  

= inf sup J(u, (W, Wd);S, XO). 
uEFI (w,wa) 

(4.92) 

sup J(fi, (w, Wd); S, XO) 
(~,~d) 
J(~, (w*, w~); s, zo) = x'oX(s)xo. 

It suffices to show 

xloX(s)xo <_ J(fi, (w*, w~); s, x0) = inf J(u, (w*, w~); s, zo). 
uEFI 

In fact this implies 

x~oX(s)xo = inf J(u, (w*,w~);s ,  xo) ~ sup inf J(u, (W, Wd); S, Xo) 
uEFI -- (w,wa) uEFI 

(4.93) 
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and (4.92) follows. To show (4.93), we proceed as in the proof of Lemma  4.14. 

Consider 

= A x + B l w * ,  x ( s ) = x o ,  k r < t < ( k + l ) r ,  

x (kr  +) = Adx(kr)  + Bldw~(k) + B2u(k). 

Then e = x - x* satisfies 

= Ae, e (s )=O,  k r < t < ( k + l ) T ,  

e(k~ -+) = (Ad - B2T21R2)e(kT) + B2v(k) 

where v(k) = u(k) + T Z 1R2x(kT) + T~lSwd(k)  and J(u, (w*, w~); xo) can be 
rewrit ten as 

J(v,(w ,w~); s ,  x0 )  = [[ Cld(e..}_x. ) [IL2x/2 II W~ I1~• 
+ II v - T ~ - l n ~ x  - T ~ S ~  I1~ 

+ II v - T21R2(Hdv + x*) - T 2 1 S w ~  11if2 

where 

k 
(Hv)( t )  = E SF(t'J~'+)B2v(j)' k~- < t < (k + 1)~, 

j =ks 
k 

= eA(t-kr) E [(Ad -- B2T21R2)eAh]k-JB2v(J),  
j=ks 

k-1 
(ndv)(k~-) = E SF(kT'j~-+)B2v(j) 

j =ks 
k-1 

= ear E [(Ad -- S2T21R2)eAr]k-l-JB2v(j)  
j=k., 

and SF (., .) is the s ta te  transit ion matr ix  associated with (A, A d -  B2T21R2). 
The unique minimizing element v of J given by the solution of 

* I H*C~CI(Hv + x*) + HdCldCld(Hdv  + x*) 
T 2 R2nd)  [v - T21R2(ndv  + x*) - T21Sw~] = O. + ( I  - - 1  . 

We shall show tha t  v = 0 is the solution. This follows if 

H*C~Clz*  + H*aC~dCldx* - (I - T~l  R2Hd)*(T21R2x * - T~I Sw~) = O. 
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Since (A, Ad-B2T~IR2)  is exponentially stable, we have for h E L2(s, oc; R ~) 
and hd C 12(k~, c~; R n) 

(H*/t)(k) = B; S'F(t, kT+)h(t)dt, 
T 

(H~hd)(k) = B~ ~ S'F(jh, kv+)hd(j). 
j=kA-1 

Then as the proofs of Lemmas 2.12, 3.14 and 4.14 we have 

H*C~Clx* + H*dC~dCldx* -- T~IR2x * - T~ISw~ = O. 

Hence we have u = ft. Thus the value of the game J(u, (w, Wd); s, Xo) over 
F I x  L2(s, co; R m~) x 12(ks, oc; R m~') exists. 

Summing up we have the following. 

T h e o r e m  4.13 Assume J r  and ([A, Ad], [0, B2], [C1, Cld]) is stabilizable and 
detectable. Suppose an IO-stabilizing controller with property (4.87) exists. 
Then there exists a T-periodic nonnegative solution to (4.69)-(4.71) such that 
( A + ~-~ BI B'I X,  Ad + Bld F1 + B2F2) is exponentially stable. Moreover ~t e F I  
and 

sup inf J(u,(w,  wd);S, Xo) 
(~tj,~gd) u E F I  

J(~,  (~  , ~d), x0) 

= .](~, (~, ~d); s, x0) 
= J(u*,(w*,w~);s,  xo) 

= ~ ' o X ( s ) x o  

= inf sup J(u, (w,  wd);s, xo). 
u E F I  (w,wd) 

C o r o l l a r y  4 .10 Consider the system (4.80). Assume J2  ~ and 

([A, Ad], [B1, Bid], [0, C2]) is stabilizable and detectable. 

Suppose an IO-stabilizing controller of the form (4.81) with property 

() ~ II~• ~d IIL~• ]orsomeO<d<7 I~1 I ~ + II ~. 

exists. Then there exists a bounded nonnegative stabilizing solution ((A + 
1 y c  lr C1, Ad + F~yCld + F~yC2) is exponentially stable) to (4.82)-(4.85). 

Moreover, the lim,~_.~ Y(t  + n~-) exists (denoted by Y~(t)) and Y~ is a r-  
periodic nonnegative stabilizing solution of (4.82)-(4.84). 
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4.2.3  B a c k w a r d  S y s t e m s  

To prove our main results, we use the FI- and DF problems for backward 
systems. 

Ful l  I n f o r m a t i o n  P r o b l e m  

Consider first the FI problem given by the backward system C~FI j 

- ~  = Ax,  kT < t < (k + l)r,  

x ( k T - )  = Aaz(kT)  + B l w ( k )  + B2u(k),  (4.94) 

z = Zd(k) Dl2u(k)  ' 

y(k)  = [ w ( k )  ' 

zl = Fx( to) ,  0 < to <_ r 

with x(T)  = O, NT  <_ T < (N  + 1)T and a controller u = K y  of the form 

- p  = .4(t)p, kT < t < (k + 1)T, 

p ( k r - )  = Aa(k)p(kv)  + B(k)y (k ) ,  (4.95) 

u(k) = C(k)p(kr )  + L)(k)y(k) 

where all matrices are uniformly bounded and we assume J1.  The solution of 
this problem is needed to solve the Hoo-control problems for the system Gj .  
Moreover, the filtering problem turns out to be the dual of this problem. 

First we consider the finite horizon problem. For each controller, define 
the input-output  operator  G by 

(z:) 
To give the solution of this FI-problem, we need the following Riccati equation 
with jumps: 

P = 

v ( k )  > 

P(k T  +) = 

P(to) = 

where 

Tl(k)  = "y2I - B~P(kr )B1 ,  
R l ( k )  = B~P(kr )Ad ,  
S(k)  = B~P(kr )B1 ,  
F1 (k) = [V- 1 (R1 - S ' T  21R2)] (k), 

A ' P  + P A  + C[CI,  kv < t < (k + 1)r, (4.96) 

aI,  for some a > 0, (4.97) 

A~dP(kT)Aa - (R2T -1R2)(k)  + (F~VF1)(k),  (4.98) 

F ' F  (4.99) 

T2(k) = I + B ~ P ( k r ) B 2 ,  
R2(k) = B ~ P ( k T ) A a ,  

V(k) = IT1 + S'T~lS](k),  
F2(k) -- -[T2-1(R2 + SF1)](k). 
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Let P be the solution of (4.96)-(4.99). Define the set of controllers v = Qr of 
the form (4.95) 

Q~ = {Q: Q c s  :[[ Q ]l < ~/}. 

Then we have the following. 

T h e o r e m  4.14 Assume J1.  
(a) There exists a ",/-suboptimal controller u = K y  of the form (4.95) if and 
only if there exists a nonnegative solution P( t ) ,  t E [to, T] to (4.95)-(4.99). 
(b) In this case the set of all ~/-suboptimal controllers is given by 

u(k ) = - (T2-1R2)(k)x(kT)  - (T~-l S ) ( k )w(k )  
1 1 1 

+ T  2 " ( k ) [ Q ( ~ V ~ ( w  - Flx))](k) ,  Q E Q~. (4.100) 

Proof. Suppose that  u = K y  is ~-suboptimal. Then by Corollary 4.9, we 
obtain a nonnegative solution of (4.96)-(4.99). 

To show the sufficiency of (a) and the characterization of (b), we need two 
lemmas below. As in the continuous-time and discrete-time FI problems, we 
consider 

z(k~-) = 

Z 

r ( k )  = 

Zl  

and 

~(k~-) 
v(k) 

y(k) 

Ax, k r  < t < ( k + l )z, 

Ad~(k)x(kr)  + B11(k)w(k)  + B21(k)v(k),  

C 1  x 

Cld(k)x(k~') + D l l l ( k ) w ( k )  + D121(k)v(k) 
1 
- V ~  (k)[w(k) - Fl(k)x(kT)] ,  "y 

Fx( to)  

= A~2, k r < t < ( k + l ) T ,  

-- Adx(k)2~(k~r) + B l x ( k ) r ( k )  + B2u(k) ,  

= Clx(k)2(k~-)  + O n x ( k ) r ( k )  + T ~ ( k ) u ( k ) ,  

: [ 1 
L g l ( k ) 2 ( k r )  + "~V-~(k)r(k)  ] 

(4.101) 

], 

where 

Adl(k)  = (Ad - B2T~-IR2)(k),  
1 

B2I (k) = B 2 T ; "  (k), 

D111(k) = - D12 (T  21 S ) ( k )w  (k), 
A d x ( k )  = (Ad + B1F1)(k),  

1 
Clx(k) = [T~-~ (R~ + SFI)](k), 

Then we have the following. 

(4.102) 

B11(k) = (B1 - B2T21S) (k ) ,  

Cldl(k)  = -D12 (:/"2-1R2) (k), 
D121(k) = D12T2 �89 (k), 
B l x  (k) = ~ B I V -  ] (k), 

D l l x ( k )  = ~(T f �89  S V - � 8 9  )(k). 
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L e m m a  4.21 Let P be the solution of (4.96)-(4.99). 
(a) For the system (4.101), the following holds: 

II~• = 7 2 II Wd 11~2 + II v I1~2 - 7  2 IV r Ilff~ I z l  1 2 +  II Zd 

(b) The system GFIj with a controller u = K y  is equivalent to the intercon- 
nection of (~.101) and the feedback system (~.I02) with u = Ky.  

Proof. By direct calculation, we have 

x ' (T )P(T )x (T )  - x'(to)P(to)x(to) 

=11 zd 

Since x(T)  = 0 and P(to) = F'F,  we obtain (a). The  rest of the proof is 
similar to the proof of Lemma 2.24. n 

Now introduce the feedback v = Qr  to (4.101) where Q is of the form 
(4.95). 

L e m m a  4.22 Let G be the input-output operator of the closed-loop system 
(4.101) and v = Qr. Then I1 G II < 7 if  and only i/II Q It < 7. 

Proof. Similar to the proof of Lemma 2.25. 

We are now ready to complete the proof of Theorem 4.14. We note that  
u(k) given by (4.100) is y-suboptimM by Lemme~ 4.22. Now let u = Ky  be 
an arbitrary 7-suboptimM controller. Let Q be the input-output  operator of 
the closed-loop system (4.102) with u = Ky. Then Q is of the form (4.95) 
and by Lemma 4.22, Q E Q~. Hence u = K y  is equivalent to 

1 1 1 
u(k) = -[T21(R2 + SF1)]~(k) + 7T~- S V - ~ r ( k )  + T2~v(k)  

�89 1 1 
= -T21R2~(k)  + T21Sw(k)  + T 2 Q[-~Y~(wd - Flz)] 

which implies (b) and the sufficiency of (a). i 

Next we consider the infinite horizon case. Consider the system G F I j  on 
[to, c~) with the assumption J1.  We further assume 

J 5 :  ([A, Ad], [0, B2], [C1, 0]) is stabilizable and detectable. 

For each IO-stabilizing controller, we can define the input-output  operator 
by 

( Z l )  = a w z  
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T h e o r e m  4.15 Assume J1  and d5. 
(a) There exists an IO-stabilizing controller u = Ky of the form (4.95) on 
[to, ~ )  such that II G I1< 7 if and only if there exists a bounded nonnegative 
stabilizing solution to (4.96)-(4.99). 
(b) In this case the set of all V-suboptimal controllers is given by 

u(k) = - (~ - lR2 ) ( k ) x ( k r )  - (T~-lS)(k)w(k) 

§ 1 8 9 1 8 9  - Flz))](k), Q �9 Q~ (4.103) 
7 

where 

= {Q: O �9  (12(1, Rml); 12(1, Rm )):li Q II< 7}. 

In particular, the set of all V-suboptimal controller is given by (4.103) with 
Q internally stable. 
Moreover, the limn--.~ P(t + nT) exists (denoted by Pr(t)) and Pr is a T- 
periodic nonnegative stabilizng solution of (4.96)-(5.98). 

Proof. (i) N e c e s s i t y  o f  (a) Suppose that  there exists an IO-stabilizing con- 
troller u -- Ky such that  II G II< 7- Then under the assumptions J1  and J5 ,  
we obtain a nonnegative solution of (4.96)-(4.99) by Corollary 4.10. 

To show the sufficiency of (a) and the characterization of (b), we need two 
lemmas below. Consider the systems (4.101) and (4.102) on [to, oc). Note that  
(A, Ad-B2T~-IR2) is exponentially stable by Lemma 4.20. Then as in Lemma 
4.21, we have the following results. 

L e m m a  4.23 Let P be the solution of (4.96)-(4.99). 
(a) For the system (~.101), the following holds: 

I z l l   +ll zd 72 

(b) The system GFlj  with a controller u =- Ky  is equivalent to the intercon- 
nection of (4.101) and the feedback system (~.102) with u = Ky. 

Proof. As in the proof of Lemma 4.21, we have 

x ' (T)P(T)x(T)  - x'(to)P(to)x(to) 
T N 

=- [ [ zc(t) 12 dt+ E [ I  zd(k) 12 --72 I w(k) [2 _ I v(k) {2 +72 I r(k) 12]. 
J~o k--1  

Since x(T) = 0, we let T tend to ~ to obtain (a). The  rest of the proof is 
similar to the proof of Lemma 2.24. | 

Now introduce the feedback v = Qr to (4.101) where Q is of the form 
(4.95). 
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L e m m a  4.24 Let G be the input-output operator of the closed-loop system 
(4.101) and v = Qr. Then II G I1< 7 if and only if  Q is internally stable and 

II Q II < ~. 

Proof. Similarly to tile proof of Lemma 2.26. | 

We are now ready to complete the proof of Theorem 4.15. We note tha t  
u(k) given by (4.100) is 3,-suboptimal by Lemma 4.24. Now let u = K y  be 
an arbitrary 3,-suboptimal controller. Let Q be the input-output  operator  of 
the closed-loop system (4.102) with u = Ky.  Then Q is of the form (4.95) 
and by Lemma 4.24, Q E Q~. Hence u = K y  is equivalent to 

u(k) =- - I ; - 1 ( R 2  + SF1)~(k) + 7T2-1SV-�89 + ~1~�89 
�9 - -  1 ] 1 

= - T ~ I R 2 i ( k )  + T21Sw(k )  + T 2 ~ Q ( ~ Y ~ ( w -  Fix) )  

which implies (b) and the sufficiency of (a). | 

C o r o l l a r y  4.11 Consider the system GFlj with F = 0 and assume J1  and 
J5.  
(a) There exists an IO-stabilizing controller u = K y  of the form (4.95) on 
[to, cr such that II G I[ < "7 if and only if  there exists a T-periodic nonnegative 
stabilizing solution to (4.96)-(4.98). 
(b) In this case the controllers (4.103) is ~/-suboptimal. I f  Q is r-periodic, 
then the controllers (4.103) are also r-periodic. 

Proof. Similar to the proof of Corollary 2.18. | 

D i s t u r b a n c e  F e e d f o r w a r d  P r o b l e m  

We consider the Hoe-problem for the special system GDFj  

- ~  = Ax,  kr  < t < (k + l)r,  

x(kT- )  = Adx(kT) + B lw(k )  + B2u(k), (4.104) 

z =- zd(k) = [D12u(k) ' 

y(k) -= C2x(kT) + D21w(k), 

zi = Fx(to)  

with x(T)  = 0 where D21 is nonsingular. Here we assume J1.  As in the 
continuous-time (or discrete-time) case, it can be reduced to the FI-problem. 
In fact consider the observer 

- }  = A~, k r < t < ( k + l ) r ,  

~(kT- )  = Adx(kr )  + B1D211[y(k) - C2~(kr)] + B2u(k), 

i ( T )  = O. 
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T h e n  e = x - ~ satisfies 

- ~  = Ae, kT < t < (k + l)v,  

e ( k T - )  = (Ad -- B1D211C2)e(kT), 

e(T) = 0 

and  hence ~ = x. Moreover w is observable  since 

w(k)  = D~l 1 [y(k) - C2x(kr)] = D~I ~ [y(k) - C2~(kT)]. 

Thus  we can use the  controller (4.100) of  the  FI  problem. 

T h e o r e m  4 .16  Assume J1 .  
(a) There exists a ~/-suboptimal controller u = K y  of the form (4.95) if and 
only if there exists a nonnegative solution P of (4.96)-(4.99). 
(b) In this case the set of all ~/-suboptimal controllers is given by 

. 

- x  = A~, k r < t < ( k + l ) T ,  

~ ( k r - )  = Ad(k)~(kT-) + B l ( k ) y ( k )  + B2(k)v(k) ,  (4.105) 

u(k) = Cl(k)&,(kr) - (T21SDf11)(k)y(k)  + T2�89 

r(k)  = d2(k)~(kv)  § 1V�89 

v = Qr, Q c Q ~  

where l id(k)  = [Ad - B1D211C2 - B2T21(R2 - SD211C2)l(k) and 

S i ( k )  = (BI - B2T21S)(k)D211, /~2(k) = B2T2�89 
Cl (k )  = - [T2-1(R2 - SD211C2)](k), C2(k) -- - l[V�89 + F1)](k). 

Proof. The  necessity of  (a) follows f rom T h e o r e m  4.14. The  sufficiency and 
(b) follow from The o re m  4.14 and  the  observat ion  

u(k)  = - T 2 1 R 2 x ( k r )  - T 2 1 S w ( k )  § T2�89 Qr 

= _ T  2-1R2&(kr) - T~  1 S [ D ~  (y(k) - C22(kv)] + T 2 �89 Qr 
1 

= _T2-- 1 (R2 - $D211C~)~(kT) - T 21SD21 ly(k)  + T 2 ~ Qr, 

r(k)  = I y � 8 9  Flx(kT)] 

= 1V�89 - C2:~(kv)] - Flx(kT)}  
7 

_ 1V�89 2 § F1)2(kv)  + 1 V � 8 9  | 
"1 "Y 

We consider the  infinite horizon problem. We assume J1 ,  J 5  and  

J6 : (A, Ad - BI D211C2) is exponent ia l ly  stable. 
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T h e o r e m  4.17 Assume J1,  J5  and J6.  
(a) There exists a "y-suboptimal controller u = Ky  of the form (4.95) if and 
only if there exists a bounded nonnegative stabilizing solution to (4.96)-(4.99). 
(b) In this case the set of all 7-suboptimal controllers is given by (4.105) with 
Q internally stable. 

4 .2 .4  P r o o f s  o f  M a i n  R e s u l t s .  

We now give the proofs of our main results using Theorems 4.16 and 4.17. 
We first prove Lemmas 4.11 and 4.12. As in the discrete-time H~-control  
problem, we can rewrite (4.47), (4.51) and (4.55) as 

X(kT- )  = #dX(kT)N(k)Ad,  Y(k)  = [I + B2B~X(kT)] -1, (4.106) 

Y(kr  +) = AdY(kT)Yy(k)A'u, Ny(k)  = [I + C~C2Y(kT)] -1 

and 

1 

Z(kT +) = [I - ~r (4.107) 

respectively, where O(k) = gdZ(kT)[I + C~C2Z(kT)]-IA'd . By (4.107) we 
have 

r  = 

We also have 

and 

Z(kT +) [I + @2 X(k~')B2T~ I(k)B~X(kT)Z(k~'+ )]-  1 

[I + ~ Z ( k r + ) X ( k r ) B 2 T ~  1 (k)B;X(kT)]-'Z(kT+).(4.108) 

1 

Ad + (F~zT2~ R2)(k) + F1z(k)C2 

= [ I -  ~ ( k )X(k r )B2T21(k )B '2X(kr ) ]  -1 

xAa[I + Z(kr)C~C2] -1. (4.110) 

Using (4.108), we can rewrite (4.110) as 

1 

Ad + (F;zT2~ R2)(k) + Flz(k)C2 

= [I + ~Z(kT+)X(kr)B2T21(k)B~X(k~')]  

xAa[I + Z(kT)C~C2] -1. (4.111) 

(Aa - B2T~IR2)(k) = N(k)Aa, 

(Aa - R'2yT~)C2)(k) = AdN~(k) (4.109) 



258 4. Jump Systems 

P r o o f  o f  L e m m a  4.11: Lct Q(t) = Z(t)  - Y ( t )  - ~l-~Z(t)X(t)Y(t) and 
(ks - 1)7 < s <_ ksT. Thcn as in the proof of Lemma 2.17 for s < t < ksT and 
kT < t <_ (k + l)r ,  k _> ks we have 

Q,(t) = [A + -~ B1BIX( t )]Q( t  ) + Q(t)[A + -~2Y(t)C;C,]' .  

Since Q(s) = O, 
Q(t) = O, s < t < ksT. 

Moreover, if Q(kr  +) = 0, 

Q(t) = O, k7 < t <_ (k + 1)v. 

To complete the proof, it is enough to show Q(k7 +) = 0 when Q(kT) = O. 
Since 

Q(k7 +) 

it suffices to show 

= Y ( k 7  +) - Z(k7+)[I  - -~X(k7+)Y(k7+)]  

= Y ( k r  +) - Z ( k T + ) [ I -  1-~2X(kT)Y(k7+)] , 

Y ( k 7  +) = Z(kT+)[I - -~X(kT)Y(kT+)] .  (4.112) 

Since Q(kr)  = 0, by Lemma 2.18 we have 

Y(kT)  = Y ( k T - )  

= Z (kT - ) [ I  + -1-~Z(kT-)Z(k7-)]  

= Z(kT)[I  + -~2X(k7-)Z(kT)]  

and using the argument in the proof of Lemma 3.22 

Y ( k 7  +) = AdY(kT)[I  + C~C2Y(kT)]- IA '  d 

= IX + - ~ ( k ) X ( k 7 ) [ I  + B2B~X(kT)] - I ] - I~ (k ) .  (4.113) 

By (4.106), (4.113) and the argument in the proof of Lemma 3.22, we obtain 
(4 112). 

P r o o f  o f  L e m m a  4.12: As in the proof of Lemma 2.19, ~ = (I - I--~XY)x 
satisfies 

x = - [ A  + I~BIB~X(t)] '2  
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for s <_ t < ksT and kr  < t < (k + 1)T, k > ks. Using a similar calculation in 
the proof of Lemma 3.23 with (4.106), (4.112) and 

1 
Z(kT)  = Y (kT) [ I  - -~-sX(kr-)Y(k~-)] -1, 

we obtain 
1 

- -  # I 

(Ad + F;zT~ ~R2 + F~zC2) (k) 

IS-~sX(kr-)Y(kr)](Ad - ' -1 ' -~  = - R 2 y T 2 y C 2  ) ( k ) [ / -  X ( k r ) Y ( k T + ) ]  -1 

and hence we have the assertion. ! 

P r o o f  o f  T h e o r e m  4.8: N e c e s s i t y  o f  (a).  Suppose that  there exists a 
y-suboptimal controller u = K y  on [to, T] for the system G j  given by (4.42)- 
(4.44). Then by Theorem 4.12, there exists a nonnegative solution X ( t ) ,  t E 
[to, T] to (4.46)-(4.48). Moreover for the system Gj  the following holds: 

( z ~ )  "L~• = h ' H ' X ( t o ) H h +  , , T ~ ( u +  T ~ I R 2 x ) , , 2  I z,, 12 + II z<t 

+...,,2 II .,.v IlL: _..,2 II w - - ~ B l X x  I1~.~ i 

Setting u = K y  and w = J-,zB~lXX, we obtain 
1 

d2(l h 12 + I1 ~ lls-.~'• >) >-- I z3. 12 + II z<~ Wd 
> h 'H 'X( to)Hh +'~2 II 'w IIL~ 

and 
d2(I h 12 + II wd IIz~) _> h'H'X( to )Hh 

for any wa. Hence 
d2 I h 12> h ' H ' X ( t o ) H h  

which implies (4.49) and (i) holds. 
Now consider the systems 

x(k~ +) = 

r 
= [_D12(T~- lR2) (k )x (kT)  

T - ~ B i x ( t ) x  + W ~  

i 

zl = F z ( r ) ,  

x(to) = H h  

A x  + B l w ,  kT < t < (k + 1)r, 
1 

(As - B2ZT'R2) (k)~ (k~)  + B27T ~ (k) , (k) ,  

+ D~2T~ ~(k)~(k) ' 

(4.114) 
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and 

2(k r  +) = 

v ( k )  = 

v ( k )  = 

with a controller 

1 
[A + ~2B1B'IX(t )]2 + Blr,  kT < t < (k + 1)v, 

Aa2(kr)  + B2u(k) ,  
1 1 

(T2~ R2)(k)2(kT)  + T2 ~ (k)u(k) ,  

C2x(k'r) q- D21wd(k) 

(4.115) 

Then we have the following. 

u = Ky.  (4.116) 

L e m m a  4.25 Let X be the solution of (4.46)-(4.49). 
(a) For the system (4.114), the following holds: 

= 72 ][ w [[~2 +h'H'X(to)Hh 

+ II v I1~ - 7 2  [[ r 1125. (4.117) 

(zc) flL •  Iz~ I~+ II zd 

(b) The system Gj  with a controller u = K y  is equivalent to the interconnec- 
tion of (4.114) and the feedback system (4.115) with u = Ky .  

Proof. By direct calculation, we can show (a). The proof of (b) is similar to 
the proof of Lemma 4.23. | 

Now introduce the feedback 

of the form 

[9 = A ( t ) p +  l~(t)r, kT < t < (k + 1)r, 

p(kT +) = ,4a(k)p(kr) + [~d(k)wd(k), 

r = Cd(k)p(kv)  + fg(k)wd(k).  

L e m m a  4.26 Let 

(4.118) 

(4.119) 

,4120, 

be the input-output operator of the closed-loop system (4.114) and (4.118). 
Then II G [I < 7 if and only if Q E Q~ where 

Q~ = {Q: Q E s  TM x L2(to, T; R "u) x l~(1, N; Rml'~); 12(1, N; Rm~)); 
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II Q 

Q is of the form (4.119) with 

for  some 0 < d < 7}. 

Proof. For each ro E L2(to, T; R TM), there exists a w c L2(to, T; R ml) such 
that  the internal signal r in (4.114) and (4.118) coincides with ro and 

c l ( th l  ~-+tl wdr~ tlL• < Ihl  s+ t l  wd 

<- c 2 ( ' h t ~ + l i ( r ~  ' ' ~ ' •  

for some c, > 0, i = 1, 2. It suffices to take wo given by 

J: = A x  + Hi[to + ~ Y ~ X x ] ,  kT < t < (k + 1)T, 

x(kT +) = (Ad -- B2T~IR2)x(k~ -) + B2T2�89 

wo = ro + ~2B ~X x ,  
" 1  

x(to) = H h  

where v0 = Qro. Now suppose eL G II< 7 for (4.114) and (4.118). Then for 
some 0 < d < 7 

d2([ h 12 + II wd 

by (4.117). Hence 

/ \ 
> ] x 1 12-{-II [zc} 112L2xl2 
- -  Z d  \ ]  

> 72 ]l w 112L2 + h ' g ' X ( t o ) g h  

+ II v ll~ - 7  5 [i r i l l  

r 1[~2xp ) -- (72 -- d2)(I h 12 + II Wd <-- 72(1 h 12 + II Wd 

< [72 C1(72 _ d2)](i h 12 + ii ( r )  2 - IIL=• 
- -  Wd 

which implies Q E Q~. Conversely, let Q E Q~. Then by (4.117) we have 

I zc I 2 ]z l t  2+11 zd HL2• 
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= ~211wll~=+h'H'X(to)Hh§ 
_< ~ Jl w I1~ +~,~r h i ~ + II(",~ ) f l ~ , ~ / -  -~ ,,~ ,~ 

- L=xl~) - (~2 _ d2)(f h 12 + II wa < ~2( Ih [2+r f  we 

"Y2-d2 12 ( w )  
< (~2 c ~ ) ( I h  + II wd fI~.=x~=)" 

Hence II c ff < ~. 

R e m a r k  4.5 If [I G I]< % then 

where 

- (~=  - d=)(r h 12 + II ~,,~ 

~2(I  ~. L 24-  LI ," IL~.~ + II wd LL~) 

- I IL:•  _(.,/2 d2)( I  h 12 4- II wd 

1 

h= I -  H 'Z ( to )g  h. 

Using 

+,, wd IIz,~• h I" 7" 11~2 

we can show Q �9 Q~ where 

xl2)~ 

Q; 

xt=) 

{Q :Q E s  TM x L2(to,T;R m') x 12(1, N;R'~);12(1,  N;Rm2)); 

Q is of the form (4.119) with 

II Q }122 +h'H'X(to)Hh <_ d2(]/t ] 2 + ]1 wd ]]~2• 
Wd 

for some 0 < d < ~/}. 

Let (~ be the input-output operator of the closed-loop system (4.115) and 
u = Ky so that  
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Then O has the form (4.119) and by Lemma 4.26 we have Q e Q~. Hence 
u = K y  is 2-suboptimal for the Hoo-problem defined by 

x = [A + -~B1B~X(t)]~2 + Blr ,  kw < t "~ (k + 1)% 
f 

2(kT +) = Ad2(k7) + B2u(k),  (4.121) 
1 1 

v(k) = ( 7 ~ R 2 ) ( k ) ~ ( k ~ )  + ' l~ (k )u (k ) ,  

y(k) = C22(kr) + D21wd(k), 

H ( I -  @2H'X( to )H) - �89  2,(to) 

with h = (I - ~A~U'X(to)U)�89 Tile adjoint of (4.121) is given by 

-~: = [A + - ~ B 1 B I X ( t ) ] ' ~ ,  kT < t < (k + l)7, 

~(kT-)  = A'd~(kT ) + (R'2T~�89 + C~t(k) ,  (4.122) 

=  d(k) = [Dh (k)J' 
1 

= + T ] ( k ) e d ( k ) ,  

51 (I - ~ H ' X ( t o ) H ) - '  = - ~HSz(to). 

1 

Since T2 ~ is nonsingular and its inverse is uniformly bounded, the H~-control 
problem for this system is the DF-problem for the backward type and hence 
by Theorem 4.16, there exists a nonnegative stabilizing solution Z(t)  t E 
[to, T] to (4.53)-(4.56). 

Sufficiency of  (a) and  the  cha rac t e r i za t ion  in (b) of  T h e o r e m  4.8. 
Consider the systems (4.114) and (4.1152 . Then by Theorem 4.16, the set of 
the controllers given by (4.57) satisfies Q c Q~ where (~ is the input-output 
operator of the closed-loop system (4.115) and (4.116). Similarly to the proof 
of Theorem 2.9, we consider e -- ~ - ~ and the adjoint system. Then we can 
directly show that the controller (4.57) is ~/-suboptimal, i.e., Q E Q~. Hence 
sufficiency of (a) and (b) hold. 1 

P r o o f  of  T h e o r e m  4.9. Necessity of (a): Suppose a q-suboptimal controller 
exists. Then by Theorem 4.12 and Corollary 4.9, there exist nonnegative so- 
lutions X, Y and Z of (4.46)-(4.49), (4.50)-(4.52) and (4.53)-(4.56), respec- 
tively. By Lemmas 2.18 and 4.11, I -  J~X( t )Y ( t ) ,  t E [t0, T] is nonsingular 
and the eigenvalues of X Y  have the form 

"~2"x ~ E ,~(XZ). 
'7 2 + X '  
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Since X and Z are nonnegative and uniformly bounded in T, A �9 A(XZ) 
are nonnegative and uniformly bounded. Hence p ( X ( t ) Y ( t ) )  <_ d 2 for some 
0 < d < ~/and the condition (iii) holds. 

Su f f i c i e nc y  o f  (a)  a n d  t h e  c h a r a c t e r i z a t i o n  in (b) .  Note tha t  I -  
~A-~X(t)Y(t) is nonsingular and [I - ~I-~x(t)Y(t)]-I is uniformly bounded in 

t �9 [to, T]. Define 

Z( t )  = Y ( t ) [ I -  - ~ X ( t ) Y ( t ) ]  -~, t �9 [to, T]. 

Then  Z(to) = H[I  - ~I-~H'X(to)H]-IH'.  Similarly to the proof of Lemmas 

2.17, 3.22 and 4.11 we can show Z( t )  = Y ( t ) [ I  - ~A~X(t)Y(t)] -1 satisfies the 

Riccati equation (4.53)-(4.56). The  rest of the proof follows from the proof  
of Theorem 4.8. | 

P r o o f  o f  T h e o r e m  4.10. Note tha t  if X and Z are the nonnegative stabi- 
lizing solutions of (4.46), (4.47), (4.49) and (4.53)-(4.56), respectively. As in 
the proofs of Theorems 2.11 and 3.11, we can show that  the assumptions of 
Theorem 4.17 are satisfied for the system (4.122). Then the proof is similar 
to the proof of Theorem 4.8. | 

P r o o f  o f  T h e o r e m  4.11. The proof is similar to tha t  of Theorem 4.9. We 
only need to show Z = Y ( I -  ~A~Xy)-I  is a bounded nonnegative stabilizing 

solution of (4.53)-(4.56). But  this follows from Lemma 4.12 and the stabilizing 
proper ty  of Y. | 

4 .2 .5  T h e  G e n e r a l  Case  

Consider the general jump system G j  

= Ax  + BlWc + B2uc, kT" < t < (k + 1)v, 

x(kT +) = A d z ( k r )  + BldWd(k) + B2dud(k), 

z = zd (k )  = [ C i d x ( k r )  + D12dUd(k) ' 

[ ] 
Y - Yd(~) = C 2 d x ( k r )  + D2~dWd(k)  ' 

Z 1 = F x ( T ) ,  to <_ Nw < T < ( N + 1)r, 

x(to) = Hh,  O < to <_ v 

(4.123) 

where x E R n is the state, (we, Wd) E R TM • R 'rod is the disturbance, 
(Uc, Ud) E R m2 x R m2d is the control input,  (Zl,Zc, Zd) �9 R q x R p' x R pla 
is the controlled output ,  (y~, Yd) �9 R p2 x R p2d is the sampled observation, 
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h E R TM and all matrices are of compatible dimensions. For the jump system 
(4.123), we assume 

J G I :  Di2[C1 D 1 2 ] = [ 0  I ] ,  D~2d[Cld D12d]=[0  11, 
J G 2 :  D21[B i D ~ I ] = [ 0  I ] , D 2 1 d [ B i d  D ~ l d ] = [ 0  I ] ,  
J G 3  : ([A, Aa], [B1, Bla], [C1, Cla]) is stabilizable and detectable, 
J G 4  : ([A, Ad], [B2, B2d], [C2, C2d]) is stabilizable and detectable. 

We assume that any feedback controller u = K y  of the form: 

= A ( t ) p  + B(t)yc, kr  < t < (k + 1)~-, 

p(kT +) = itd(k)p(kT) + Bd(k)yd(k), (4.124) 

uc = C( t )p+  b(t)y~, 

ud(k) = Cd(k)p(kT) + JDd(k)yd(k) 

where all matrices are compatible dimensions and uniformly Bounded. Con- 
sider the system Gj  and the controller u = K y  of the form (4.124) on [to, T]. 
Define the input-output operator of the closed-loop system by 

Then 

G 

Z c = G 

Zd Wd 

C s TM x L 2 ( t o , T ; R  m') x/2(1, N;Rm~d); 
R q x L2(to, T; R p*) x/2(1, N; Rind)). 

To give the solution of the Hoe-control problem for the system G j, we intro- 
duce the following Riccati equations with jumps. For definiteness we assume 
O < t o  < ~ ' .  

- x  A ' X  + X A  + X ( ~ 2 B 1 B  ~ - B2B~2)X + C~C1, 

(4.125) 

(4.126) 

kT < t < (k + l)r,  

V(k) > a l  for some a > O, 

X ( k r - )  = A~dX(kT)Ad - (R~2T21R2)(k) 

+(F~YF1)(k) + C~dCld, (4.127) 

X ( T )  = F'F,  (4.128) 

H ' X ( t o ) H  < d2I for some 0 < d < 7 (4.129) 

and 

= A Y  + Y A '  + Y ( - ~ C ~ C ,  - CiC2)Y  + B1B i, 

kr  < t < (k + 1)T, (4.130) 
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Y y ( k )  > 

y(k7  "+) = 

Y(to)  = 

where 

7'1 (k) = 721 - B~dX(kT)Bld,  
R l (k )  = B' ldX(kT)Ad,  
S(k)  = B~dX(kT)Bld  , 
Fl(k)  = [V-I (R1 - S 'T~IR2)](k) ,  
T ly  (k) = 721 - CldY(k~')C~d, 
R l v ( k )  = C ldY(kT)A '  a, 
S y ( k )  = C2dY(k~)C~d,  
Fly (k )  = [ V y I ( R I y  - S{,T2r R2y)](k),  
F2y(k) = -[T~-~(R2y + SyF1y)](k) .  

aI  for some a > O, 

AdY(k~.)A~d , -1 - (R2vT~y R2v)(k) 
+ ( F ~ y V y F l v ) ( k )  + BldB~d, 

H ' H  

(4.131) 

(4.132) 

(4.133) 

T2(k) = I + B~dX(k~')B2d, 
n2(k )  = B'2dX(kT)Ad, 
V(k)  = (T1 + S ' T ; l S ) ( k ) ,  
F2(k) = -[T2--1(R2 + SF1)](k), 
T2y(k) = I + C2dY(kT)C~d, 
R 2 y ( k )  = C2dY(kT)A' d, 
Vy(k) = (T1y + S~T f ~Sy ) ( k ) ,  

I f  we wish to  t ake  to = r ,  the  condi t ion (4.129) becomes  

H ' X ( r - ) H  <_ d2I. 

We also need the  following Riccat i  equa t ion  depend ing  on X:  

2 = ( A +  ~ B 1 B ' I X ) Z + Z ( A +  - ~ B I B ~ I X ) ' +  B1B~ 

Y z ( k )  > 

Z(kr  +) = 

Z(to)  

1 
+ Z ( ~ X B 2 B ~ X  - C~C2)Z, kT < t < (k + 1)T, (4.134) 

aI  for some a > 0, (4.135) 

AdZ(kr)A'd , -1 - (R2zT2z  R2z ) (k )  

+ ( F ; z V z f l z ) ( k  ) + BldB~d , (4.136) 

= H ( I -  ~ H ' X ( t o ) H ) - I H  ' 

where  

A x ( k )  = (A + BldF1)(k),  

C1x(k )  = [T2 -�89 (R2 + SF1)](k), 

D n x ( k )  = 7(T2�89 S V - � 8 9  )(k), 
t 

D12x (k) = T2 ~ (k), 
T l z ( k )  = 721 - D u x D ~ I  x - C l x Z ( k T ) C ' I x ,  

I 
R1z(k)  = CIxZ (k T )AIx  + D11x B l x ,  
S z ( k )  = C2dZ(kT)CIx ,  
Vz(k)  = (Tlz  + S~zT21Sz)(k) ,  
F l z ( k )  = [Vz I (R1z  - S'zTgzlR2z)](k),  
F2z(k)  = - [ T f ~ ( R 2 z  + S z F l z ) I ( k ) .  

Now generalize the  resul ts  in the  Section 4.2.1. 

(4.137) 

B l x ( k )  = 7 ( B l d V - ] ) ( k ) ,  

D21x(k)  1 = 7(D21dV-~)(k) ,  
T2z(k)  = I + C2dZ(kT)C~d , 
R2z (k  ) = C2dZ(kT)A'x , 
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T h e o r e m  4.18 Assume J G 1  and J G 2 .  
(a) There exists a 7-suboptimal controller" u = K y  on [to, T] if  and only i f  
the following conditions hold: 
(i) There exists a nonnegative solution X( t ) ,  t �9 [t0,T] to (~.125)-(~.129). 
(ii) For the solution X in (i), there exists a nonnegative solution Z( t ) ,  t �9 
[to,T l to (4.1Xr 
(b) In this case the set of all 7-suboptimal controllers is given by 

= [A + 12-B1B~X(t)]p, k r  < t < (k  -b 177", i) 

p(k'r +) = f td(k)p(kr)  + B l ( k ) y ( k )  + Be(k)s (k) ,  (4.138) 

u(k) = C(k )p (kr )  + D l ( k ) y ( k )  + D2(k)s(k) ,  

g(k) = T2 �89  + y(k)], 

s = Qg,  Q e Q - ,  

where 

. and 

~ta(k) = [(Ad -- B2T~IR2)~] (k ) ,  
[~1 (k) = (Ad - B 2 T ~ I R 2 ) ( k ) Z ( k r ) C ~ T ~  (k), 

~([f~z + B~T2-~]Yl)(k), 
C(k)  = -T~IR202(k ) ,  
/)1 (k) = - (T 2-1R2) (k)Z(kr  (k), 

1 
~ 2  , z  )(k), 

q2(k) = I ~ Z(kr )C~T2~(k )C2  

Q~ = {Q e s  T ; R  v2) • 12(1,N;RP2d); 

LU(to,T; R m2) x 12(1, N; Rm2~)) : 

Q is o ] t h e f o r m  (3.124) and II Q I1<'~}. 
T h e o r e m  4.19 Assume J G 1  and J G 2 .  
(a) There exists a ~-suboptimal controller u = K y  on [to, T] i] and only i f  
the following conditions hold: 
(i) There exists a nonnegative solution X to (.~.125)-(~.129). 
(ii) There exists a nonnegative solution Y to (~.130)-(~.133). 
(iii) p ( X ( t ) Y ( t ) )  < d 2 for any t E [to, T] and ]or some 0 < d < "y. 
(b) In this ease the set of all 7-suboptimal controllers is given by (4.138) with 
Z replaced by (I  - A ~ Y X ) - I Y .  

Next we consider the H~-control  problem on the infinite horizon [to, oo). 
Then  we need the following definition. 

D e f i n i t i o n  4.12 (a) The solution X of (~.125)-(~.127) is called the stabi- 
lizing solution if  

B2 2)X, Ad - BldFl  + 
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is exponentially stable. 
(b) The solution Y of (4.130)-(4.132) is called the stabilizing solution if 

( A  + Y ( ~ C ~ C 1 - C ~ C 2 ) , A d  + F~vCtd + F~yC2d) 

is exponentially stable. 
(c) The solution Z of (4.134)-(4.136) is called the stabilizing solution if 

( A  + ~ B 1 B ' I X  + Z ( ~ X B 2 B ' 2 X - C ~ C 2 ) , A d  + F~zC, x + F~zC2d) 

is exponentially stable. 

T h e o r e m  4.20 Assume J G 1 - J G 4 .  
(a) There exists a y-suboptimal controller u = Ky  on [to, oo) if and only if 
the following conditions hold: 
(i) There exists a T-periodic nonnegative stabilizing solution X to (4.125)- 
(4.127) and (4.129). 
(ii) For the solution X in (i), there exists a bounded nonnegative stabilizing 
solution Z to (4.134)-(4.137). 
(b) In this case the set of all ~/-suboptimal controllers is given by (4.138) uath 
Q internally stable. 
Moreover the l imn-,~ Z(t + nT) exists (denoted by Zr(t)) and Z~ is a r- 
periodic nonnegative stabilizing solution of (4.134)-(4.136). 

T h e o r e m  4.21 Assume J G 1 - J G 4 .  
(a) There exists a ~-suboptimal controller u = Ky  on [to, oc) if and only if 
the following conditions hold: 
(i) There exists a T-periodic nonnegative stabilizing solution X to (4.125)- 
(4.127) and (4.129). 
(ii) There exists a bounded nonnegative stabilizing solution Y of (4.130)- 
(4.133). 
(iii) p(X(t)Y(t))  < d 2, for any t c [to, ~ )  and for some 0 < d < % 
(b) In this case the set of all 7-suboptimal controllers is given by (4.138) with 
Z replaced by (I - 1-~YX)-IY and Q internally stable. 
Moreover the limn--,~ Y( t  + nr) exists (denoted by Yr(t)) and Yr is a r- 
periodic nonnegative stabilizing solution of (4.130)-(4.132). 

4.3 H~ Filtering 

The filtering problem is to find an estimate of the state based on the given ob- 
servation. The Ho~ filtering theory is well-known for continuous- and discrete- 
time systems as we see in Chapter 2 and 3. Sun et al [67] considered the H ~  
filtering for a time-invariant continuous system with sampled observation. In 
this section we consider the Hoo-filtering problems for jump systems. 
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Consider the jump system GFj :  

5: = A x  + B w ,  kT < t < (k + l)r ,  

x (kT  +) = Adz(kT)  + Bdwd(k),  (4.139) 

z : Lx ,  

y(k)  = Cx(kT)  + Dwa(k) ,  

zl = F z ( T ) ,  0 <_ N'r < T < ( N  + 1)T (4.140) 

with initial condition 

k 
2;  

+)  

such that  

x(to) = Hh,  0 < to _< T (4.141) 

where x E R n is the state, (zl, z) E R q •  is the state to be estimated, y E 
R p2 is the sampled measurement,  (w, Wd) C R T M  • 1~ mid is the disturbances, 
h E 1~ nl and all matrices are of compatible dimensions. For this system we 
assume 

J F I :  n[B~d D'] = [O I ] .  

Then the filtering problem on [to, T] is to is to find necessary and sufficient 
conditions for the existence of a causal filter based on y of the form 

= A.(t):~, ~(to) = 0, kT < t < (k + 1)T, 

= ftd(k)&(kT) + B(k )y (k ) ,  (4.142) 
= 

-- P k ( T )  

(w)  IlL• (4.143) tzl-zl  t 2 + l l z - ~ l 1 2 2 _ < d 2 ( I h l  2+11 Wd 

for some 0 < d < ~/ where all matrices in (4.142) are uniformly bounded 
in t and k and (zl, z) is the estimate of (zl, z) given by the filter. We give 
necessary and sufficient conditions for the existence of a filter with property 
(4.143) ('y-suboptimal filter) and characterize all "y-suboptimal filters. 

We can rewrite (4.139)-(4.141) and (4.142) as 



270 4. Jump Systems 

Define the operator 

G E/:(L2(t0, T; R m' ) • 12(1, N; Rml'~); R q x L2(to, T; Rm)) 

by 

Then (4.143) is equivalent to ]I G II_< d. The adjoint G* is given by 

(~ 
where 

[i] [A' o_.][~} [ ~' ] - = A ' ( t )  + - C ' ( t )  v,  kT < t < (k + 1)r, 

[~]~.~ : [~0 ~ ~'~,~'~1 

= [H' 0] [~] (to), r 

_p,] S. 
This may be regarded as a closed-loop system 

- 4  = A'~ + L'u, kT < t < (k + l)T, 

~ ( k r - )  = A'd~(kr ) + C'#(k) ,  

~c = B'  ~ , 

~d(k) = B~d~(kT) + D'#(k) ,  

~o = H'~(to), 

~(T) = F ' f  

with controller # = K'r/  

-C ' ( t ) ]  v, kr  < t < (k + 1)r, -r  = A ' ( t ) ~ + [ o  
~ ( k r - )  = &(k)~ (kr ) ,  

a(k) = D'(k)~(k~), 

~(T) = - F f .  

(4.144) 

(4.145) 
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The system (4.145) is of full information type and (4.143) is equivalent to 

(~c)[ ,2L2xl2<d2 [[~2 for some 0 < d < 7. l@ 12 + l[ (d II " 

The Riccati equation with jumps corresponding to this is 

= A Y  + Y A '  + B B '  + -~5YL'LY,  (4.146) 
/ 

k T < t  < ( k + l ) r ,  

Y ( k r  +) = A d Y ( k T ) A '  d + BdB'  d - (n '2yT2~R2v)(k) ,  (4.147) 

Y(to)  = g g ' ,  (4.148) 

F Y ( T ) F '  < d2I for some 0 < d < 7 (4.149) 

where R2y(k) = CY(kT-)A'  d and T2y(k)  = I + C Y ( k r ) C ' .  As Q~ in Chapter 
2, we define the set of controllers of backward type: 

Q~ = {Q* c / Z ( R  q • L2(t0, T; Rpl); 12(1, N; RP2)) : 

), , ' ( i :  r' + ,i.o \ ,o l 
for some 0 < d < ~/}. 

Let Or be the set of adjoint systems of Q* c Q~. Modifying Theorem 4.14 
we have the following. 

T h e o r e m  4.22 Assume JF1. 
(a) There exists a "y-suboptimal filter of the form (4.142) if  and only if  there 
exists a nonnegative solution Y ( t ) ,  t E [to, T] to (4.146)-(4.148). 
(b) In this case the set of 7-suboptimal filters is given by 

x = A~ + Y L ' v ,  ~(0) = O, kr  < t < (k + 1)r, 

3c(kr +) = [Ad - (R'2yT2~)(k)C]k(kT) + (R'2gT2]))(k)y(k), (4.150) 

= L~ - v, 
_ i  

r(k) = T2)2 (k ) [ -C&(kr )  + y(k)], 

v = Qlr, (oo) 
zl = F k ( T )  - Qor, Q =  Q1 �9 Q'r. 

Proof. The existence of (4.146)-(4.148) follows from Theorem 4.14. The con- 
dition (4.149) can be obtained similar to the proofs of Theorems 2.13 and 
3.13. 

To show (b) recall that  the set of all controllers # = K*~ with II G* I1< 7 
is given by 

1 ( f )](k) (4.151) #(k) = - ( T 2 ~ R 2 y ) ( k ) ~ ( k r  ) + T2~(k)[Q* _ l_,zLy~ + t, 
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where Q E Q~. Then the closed-loop system (4.145) with (4.151) is equivalent 
to 

-~  = A ' ~ + [ 0  L']~?, k T < t < ( k + l ) v ,  

~ ( k r - )  [A, d , -1 C 'T;~) (k )s (k ) ,  (4.152) = - C (T2y R2y)(k)]~(kv)  + 

= B'~, 

~d(k) = [B'd -- D ' ( T ~ R 2 y ) ( k ) ] ~ ( k )  + D ' T ~ ) ( k ) s ( k ) ,  
1 

p - 7 2 L Y ~ + [ O  I ]~ ,  

~(T) = F ' f .  

In view of this we can show that the controller (4.151) is equivalent to 

-~  = A ' ~ + [ 0  n']r], k r < t < ( k + l ) r ,  

~ (kT- )  = [A' d - C ' (T f~  R2y)(k)]~(kr)  + C ' T 2 )  (k )s (k  ), (4.153) 

#(k) = -(T2~) R2y) (k )~ (kr  ) + T2-y�89 (k)s(k) ,  

1 LYe+J0 I]~, 
P - .),2 

s = Q'p ,  

~(T) = f '  f .  

In fact for (4.145) and (4.153), e = ~ - ~ satisfies 

- ~  = A' e, kr  < t < (k + l)v,  

e ( kT - )  = A'de(kr), 

e(T) = 0 

and ~ satisfies (4.152). Now consider the adjoint of (4.145) and (4.153) which 
is given by the closed-loop system: 

and 

= A x + B w + [ I  O]u, k T < t < ( k + l ) ~ ,  

x(kT +) = Aax(kT)  + Bawa(k),  

5 = L x + [ 0  I ]u ,  

y(k) = C x ( k r )  + Dwd(k) ,  

x(to) = Hh,  

21 = F x ( T )  + u 

x = A ~ +  YL ' v ,  k r < t < ( k + l ) r ,  

(4.154) 



where 

4.3. Hor Filtcring 273 

~c(k'r +) = lAd - (R~2yT2~. )(k)C]k~(kT) + (R2yT2~)(k)y(k) ,  (4.155) 

1 

r(k) = T 2 ~ ( k ) [ - C ~ ( k T  ) + y(k)], 

v = Q l r ,  I I Q I l I < %  

ul = - F x ( T )  + Qor, 

~(to)  = o 

(Q1) Q =  Q0 e ( ~ , .  (4.156) 

Then II G* II < 3' is equivalent to 

]]L2x~2 for s o m e 0 < d < %  
k Wd / 

Note that  the (4.154) except for 5 coincides with the system GFj .  Thus 
(4.155) and (4.156) can be easily interpreted as the filtering result in (b). | 

Next we consider the filtering problem on the infinite horizon [to, c~). 
Again consider the system GFj :  

= A x + B w ,  k r < t <  ( k + l ) T ,  

x(k~ "+) = Adx(kT) + Bdwd(k), (4.158) 

z = Lx,  

y(k) = C x ( k r )  + Dwd(k), 

x(to) = Hh,  O < to <_ T. 

Then the Hoo-filtering problem on [to, oc) is to find a "y-suboptimal filter, i.e., 
a filter of the form 

such that  

z = A ( t ) e ,  e ( t o )  = o, k ;  < t < (k + 1)~, 

~(kr  +) = Au(k)~(kr)  + B ( k ) y ( k ) ,  

= d ( k ) ~  

- IIL2• II z ~ II~=~ d2(] h ]2 + II Wd 

for some 0 < d < 7. For the system (4.158) we assume J F 1  and 

J F 2  : ([A, Ad], [B, Bu], [C, 0]) is stabilizable and detectable. 

Then modifying Theorem 4.15 we have the following. 

(4.159) 

(4 .16o)  
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T h e o r e m  4.23 Assume JF1 and JF2. 
(a) There exists a ?-suboptimal filter if and only if there exists a bounded non- 
negative stabilizing solution Y( t ) ,  t E [to, co) ((A + 1-rYL'L, Ad - R ' y T y l C )  
is exponentially stable) to (4.146)-(4.148). 
(b) In this case the set of all ?-suboptimal filters is given by (4.150) where 
Q-y c/:(12(1, co; RPb); Lb(to, co; Rm)) is defined as in Theorem 4.22. More- 
over, the set of internally stable filters is given by (4.150) if we restrict Q to 
be internally stable. 
Moreover, the l i m n - ~  Y( t  + nT) exists (denoted by Y~(t))  and Y~- is a 7"- 
periodic nonnegative stabilizing solution of (4.146) and (4.147). 

Proof. Using Y and repeating the same procedure as in the proof of Theorem 
4.22 for the system (4.145), we can show (b). 1 

Corol la ry  4.12 There exists a filter of the form (4.142) such that 

w )  112=• sup [I zl - z,1 12 -]- II z - z. I]22] ~ d2(I h 12 + II w d  
T >> To 

for some 0 < d < ? if and only if there exists a bounded nonnegative stabiliz- 
ing solution of (~.146)-(4.148) ~ t h  

F Y ( T ) F '  <_ d21, T >_ To for some 0 < d < ?. 

If h = 0, we can construct the r-periodic ?-suboptimal filters. 

Coro l la ry  4.13 Consider the system G F  with h = 0 and assume JF1  and 
JF2. 
(a) There exists a ?-suboptimal filter i f  and only i f  there exists a T-periodic 
nonnegative stabilizing solution Y ( t ) ,  t E [to, co) to (4.146) and (4.147). 
(b) In this case the filters (4.150) is ?-suboptimal where 

Q~ C E(12(1, co; RPb); L2(t0, co; RP~)) 

is defined as in Theorem 4.22. I f  Q is r-periodic, then the filter (4.150) is 
r-periodic and ?-suboptimal 

E x a m p l e  4.6 Consider the Hoo-filtering problem for the following system 
with a sampled observation 

[o 1]x [0]w x 0, .h 
z(t) = [0 1]=, 
y(k) = [1 0 ]x(k)+w~(k)  
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which satisfies the assumptions J F 1  and J F 2 .  We consider the Hoo-filtering 
problems for the following two cases 

[10]. 
In the case (a) there exists a bounded nonnegative stabilizing solution Y ( t )  = [y, y12] Y12 ]I2 J (t) of (4.146)-(4.148) for any 7 -> 1.317 which converges to a pe- 

riodic solution. In the case (b) there exists a bounded nonnegative stabilizing 
solution Y ( t )  for any 7 -> 1.318 which also converges to a periodic solution. 
Figures 4.14 and 4.15 show the bounded nonnegative solutions with 7 = 2 
of the cases (a) and (b), respectively. Figure 4.16 gives the asymptotic con- 
vergence of the outputs  of central filters in the cases (a) and (b) to z where 
~, = 2, the initial conditions x1(0) = 1, x2(0) = 0 and the disturbances are 
w(t) = e - l~  sin lOt, we = 0. The central filter in the case (b) incorporating 
initial uncertainty gives a better  estimate. 

�9 - ] 

' I ' , , , I 

T =2 YRt) 

r 
I t , , i I 
0 5 

I 
I I 

t ime  ( s e e )  

iI iI 
YI : , ( 1 )  

, , I 

10 

Figure 4.14: The bounded nonnegative stabilizing soultion Y ( t )  of the case 
(a) 

4 . 4  H 2  C o n t r o l  

In this section we consider the H2 control problem for jump systems which 
covers the sampled-data H2 control problem in Chapter  5. 
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Figure 4.15: The bounded nonnegative stabilizing soultion Y(t) of the case 
(b) 
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Figure 4.16: The  outputs  of the filters with 7 = 2 
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4.4.1 M a i n  R e s u l t s  

Consider the jump system Gj :  

= A x  + B I W ,  kT  < t < (k + 1)T, 

x(kT +) = A d x ( k T )  + B2u(k ) ,  

z = Zd [D12u(k )  ' 

u(k) = c2x(k~) + D2~wd(k) 

with initial condition 

(4.161) 

and 

= A Y  + Y A '  + 1 B 1 B I ,  kT < t < (k + 1)% (4.165) 
T 

Y ( k T  +) A d Y ( k r ) A '  a R '  T -1 = - -  ( 2Y 2Y R 2 y ) ( k )  (4.166) 

where R2(k )  = B ~ X ( k T ) A d ,  T2(k)  = I + S ~ X ( k T ) S 2 ,  R 2 y ( k )  = C 2 Y ( k T ) A '  d 
and T2y(k )  = I + C:Y(k~-)C~.  

x ( 0 )  --  0 

where x E R n is the state, (w, Wd) C R ml • R mla is the disturbance, u E R m2 
is the control input, (zc, Zd) E R w • R via is the controlled output ,  y E R v2 is 
the sampled observation and all matrices are of compatible dimensions. For 
this system we assume 

J1  : D'12D12 = I,  
J 2  : D21D~l = I,  
a s :  ([A, Aa], [B1, 0], [C1, 0]) is stabilizable and detectable,  
J 4 :  ([A, Aa], [0, B2], [0, C2]) is stabilizable and detectable. 

Consider a controller u = K y  of the form: 

" A&, k T < t < ( k + l ) r ,  X 

~(kr +) = Aa~(kr) +/~y(k), (4.162) 
~(k) = 0~(kT) + by(k).  

To formulate the H2-problem for the system G j,  we introduce the follow- 
ing set of controllers 

K = {K : K is of the form (4.162) and internally stabilizes the system Gj} .  

Then  the H2-norm, II G 112, of the closed-loop system C,j and a controller 
u = K y  is well-defined and our H2-problem is to find a controller K E K 
which minimizes II G I]2. To give the solution of this problem we introduce 
the following Riccati equations with jumps: 

- X  A ' X  + X A  + C1C1, k~" < t < (k + I)T, (4.163) 

Z ( k T - )  = X d X ( k r ) A  d - (R '2T~IR2) (k )  (4.164) 
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D e f i n i t i o n  4.13 (a) The solution X of (4.163) and (4.164) is called a sta- 
bilizing solution if (A, Ad + B2 F ), ~" = - T~ ~ (0)R2 (0) is exponentially stable. 
(b) The solution Y of (4.165) and (4.166) is called a stabilizing solution if 
(A, Ad +/2/C2), /:/ , , ,-1 = - R 2 y  (0):/2y (0) is exponentially stable. 

By Theorems 4.3 and 4.4, we have the following result. 

L e m m a  4.27 Assume J1 - J4 .  
(a) There exists a unique T-periodic nonnegative stabilizing solution X to 
(4.163) and (4.164). 
(b) There exists a unique T-periodic nonnegative stabilizing solution Y to 
(4.165) and (4.166). 

R e m a r k  4.6 The v-periodic solution Y of (4.165) and (4.166) is obtained 
a s  

limoo Y ( t  + nT) 

where Y is a solution of (4.165) and (4.166) with ]J(0) -- 0. 

Consider the stabilizing controller based on the feedback gain [2 and the 
observer gain/2/: 

d: = A~, kT < t < (k + l)v, 

~(k~ +) = (Ad + B2P + ~1C2 - B2LC2)~(k~) 

-(I?t - S2L)y(k ) ,  (4.167) 

u(k) = ([2_  LC2)3z(kT) + Ly(k)  

where L = FY(O)C~T2~ (0) 

T h e o r e m  4.24 Assume J 1 - J 4  and consider the H2-problem for the system 
Gj .  Then the controller (4.167) is optimal and 

/o" min II a I1~ - ~ tr.B~X(s)Bx ds 
K C K  - -  T 

+tr.T2[2(I + Y(O)GC~)-~Y(O)P ' (4.168) 

~ h e ~  T2 = T2(0) = T2(kT). 

4 .4 .2  P r o o f s  o f  M a i n  R e s u l t s  

To prove Theorem 4.24 we need some preliminary results. Consider the sys- 
tem (4.161) and the controller u = K y  of the form (4.162). Let X be the 
solution of (4.163) and (4.164). We introduce 

1 

,;(k) = T~ [~(k) - Px(k~)]  



4.4. H2 Control 279 

and the system (~j: 

= A x + B l w ,  k ~ ' < t  < ( k + l ) T ,  

x(k7  +) = ddx(kT)  + B2u(k),  
1_ ^ 1- 

v(k) = - T ~  Fx(kT)  + T, 2u (k ) ,  

y(k) = C2x(kT) + D21wd(k). 

T h e n z =  ( z~]zd can be written using v as follows: 

= A x + B l w ,  k r < t < ( k + l ) ~ - ,  

x(k~ "+) = (Ad + B2[ ' )x(kT)  + B f l ~ � 8 9  

Ezcl [  clx ] 
Z z z 1 . 

zd(k) D12~'x(kT) + D i 2 ~ l ~ v ( k )  

This system is exponentially stable and 

where Gcj and Uj are given by 

z = G~jw + Ujv 

= A ~ + B l w ,  k T < t < ( k + l ) 7 ,  

~(k~ +) = ( &  + B2P)~(k~-), 

z ~d(k) = D12[~(kT)  

and 

= Ax, k T < t < ( k + l ) r ,  

x(k~ -+) = (Ad + B 2 F ) x ( k r )  + B2T2�89 

z = zd(k) = Dl2~ 'x(kr)  + D , 2 T 2 : v ( k ) ]  

respectively. Then we can easily see: 

(4.169) 

L e m m a  4.29 (a) ]] Ujv I]L2• =}I v ]]12 for any v C 12(0, oc; Rm2). 
(b) < GcjS(" - s)wo, Ujv >52• 0 for any wo c R "u, v E 12(0,0c;R m2) 
withy(O) = 0  and O < s < T. 

Next we shall show the properties of Gcj and Uj. 

L e m m a  4.28 (a) The system G j  is equivalent to the interconnection o] the 
system Gj  and (Gcj, Uj). 
(b) K stabilizes the system G)  if and only if it stabilizes the system G) .  
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Proof. (a) We can rewrite the Riccati  equat ion (4.163) and (4.164) as 

- J (  = A ' X  + X A  + C~Cx, kr  < t < (k + l)% 

X ( k T - )  = (Ad -F B2F) 'X ( k r ) ( Ad  Jr B2/~) Jr/~'/~. 

By direct calculation we have for k r  < t < (k + 1)T 

d[x ' ( t )X( t )x ( t ) ]  = - I  z~(t) 

and at  t = kv 

x ' (kr+)X(k~')x(kT +) - x ' ( k r )X(kT- )x (k~ ' )  --I ~(k) [2 _ I zd(k) 12, 

where we have used 
B~X(O)(Ad + S2- f') = --f ' .  

Upon integrat ion from 0 to c~ we have 

ff - I z~(t) I ~ dt + ~--~[I ~(k)  I ~ - I zd(k) 121 
k = l  

= /o 
= - = ' ( o + ) x ( o ) = ( o  + )  

= I v ( O )  12 - I =d(o) I = 

and we conclude 

II v Itl~=ll z ,  IlLs + II zd 11,2=11 Vjv IIL~• 

(b) Consider Gcj with w(t) = 5(t - s)wo, 0 < s < T. Then  

{ ~( t , s )Bxwo,  s < t, 
~(t)  = o, s >_ t 

where S(., .) is the s ta te  t rans i t ion mat r ix  of (A, Ad + B2/W). As in the  proof 
of (a) we have 

oo r ~(k)zd(k)  ' ( t )X(t)x(t)]dt  
k = l  

= - ( ( s + ) X ( s ) ~ ( s  +)  

where x is the s ta te  of the  sys tem Uj. Since ~(t) = 0, t < s and  zd(O) = O, 
we have 

f0 
o o  oo  

0 = ( /c(t)zc(t)dt+E(fd(k)zd(k) = <  Cej&( ' - r )wo,  Uv > L = x t 2  �9 

k=O 
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Now we return to the H2-control problem for the system Gj .  Suppose K 
stabilizes the system Gj  and hence (~j. Let (~ be the input-output  operator 
of the closed-loop system (~j with u = K y ,  i.e., 

v = G  Wd 

Note that  

and by Lemma 4.29 

[ ] Z II a~j~(. ~)~, + u ~  ~( o ~)~' 
i = l  

- IIL,• �9 [I G ~ f i ( . -  s)e, I12 2 - L=• + ~  II u j ~  ~( s)e, 
i : 1  i=1 

Then 

and 

II v II~ = II G~j + u j ~  Il~ 

= II Goj II~ + II u j ~  II~ 

min II G 112--II Go1 112 + min II (~ 112. (4.170) 
K c K  K c K  

Thus our original H2-problem has been reduced to the one for the system (~j. 
By Theorem 4.1 and the arguments of its proof, minKcK II a II~ is equivalent 
to the H2-problem for the backward system 

- x  = A'5c, kT < t < (k + l )r ,  

2 ( k r - )  = A'dYC(kT) - P ' T ~ d ( k )  + C;f i (k) ,  (4.171) 

Vc = ~ 1 / 

= ~d(k) Dh~(k ) ]  ' 
1 

with an internally stabilizing controller fi = Kb~ of the form 

-/~ = A'~, kr < t < (k + 1)r, 

~ ( k ~ - )  : A ~ ( k ~ )  + ~ '9 (k) ,  
~(k) = [~'~(k~) + D'~(k). 

The H2-problem for the system (4.171) is the DF problem and its solution 
will be given in the next subsection. 
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B a c k w a r d  S y s t e m s  

First we consider the FI problem for the backward system G F I j  

- ~  = Ax ,  kT < t < (k + 1)r, 

x ( k r - )  = A d z ( k T )  + B l W d ( k )  + B2u(k ) ,  (4.172) 

z = zd(k)  = D 1 2 u ( k ) J '  

[x(k~)] 
y(k) = [~d(k) " 

We take a controller u = K y  of the form 

- p  = Ap, k T < t < ( k + l ) T ,  

p ( k T - )  = .4dp(kr)  + B y ( k ) ,  (4.173) 

u(k) = dp(k~) + by(k). 

Let GRI be the input-output  operator of the closed-loop system C-FI j with 
u = K y .  To formulate the H2-problem for the system GRId w e  introduce the 
following set of controllers: 

K = {K : K is of the form (4.173) and 

internally stabilizes the system GFIj}. 

Then the closed-loop system GRId with a controller u = K y  of the form 
(4.173) is given by 

0 

B1 

(k~) 

which is the backward form of (4.5) with B = 0 and Dd = 0 and by Remark 
4.2 we can define the H2-norm II GEl  112 as 

r n l d  

II c F I  l,~= aim 5-" tl C R ~ e ,  liL• �9 
g - ~ o o  

i = l  

Hence the H2-problem for the system GFIj is to find a controller K E K 
which minimizes ]1 GEl  ]Is. 
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For the system I~FI j w e  assume J1  and Jb ,  i.e., 

J 5  ([A, Ad], [0, B2], [C1, 0]) is stabilizable and detectable. 

Then as in Lemma 4.27, we have the following. 

L e m m a  4.30 Assume J1  and J5.  Then there exists a unique r-periodic non- 
negative stabilizing solution (( A, Ad + B2 Fp ) , Fp = - Tp 1Rp is exponentially 
stable) to the Riccati equation with jumps: 

! 
P = A ' P  + P A  + C 1 C 1 ,  kT  < t < (k "t- 1)r, (4.174) 

P(kT +) = A~dP(kr)Ad - (RtpTp1Rp)(k)  (4.175) 

where Tp = I + B~P(O)B2 and Rp  = B~P(O)Ad. 

As in the previous subsection, we introduce 

v(k) = Tj [u(k) + T~lSpw~(k) - Fpx(k*)l 

and the system (~b: 

- ~  = A~, kr  < t < (k + l)r,  

e ( k T - )  = Ad~(kl") + Blwd(k)  + B2u(k),  
1 

v(k) = - T p � 8 9  Rp~(kT)  + Tp�89 Spwd(k) + T~u(k) ,  

y(k) = Lwd(k) ] 

where Sp = B~P(O)B1. Then z = 

-5c 

X(kT-)  

zc] be written using v as follows: c a n  
Zd 

= Ax,  k r < t < ( k + l ) z ,  
1 

-- (Ad + S2Fp)x(kT)  + (B1 - B2Tp1Sp)wd(k)  + B2Tp~v(k) ,  

] 
zd(k) Dl~Fpx(k~) - D~2T~Spwd(k) + Di2Tf~v(k)  

(4.176) 

- 4  = A( ,  kr  < t < (k + l)r ,  

~(k~--) = (Ad + B2Fp)~(k'r) + (B1 - B2TpISp)wd(k) ,  

Hence 
b V b v  z = GcjWd + 

where G~bj and Uf are given by 
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--x = Ax,  kT < t < (k + l)7, 

x ( k T - )  = (Ad + B2Fp)z(kT)  + B2Tp�89 

z = z d ( k )  = D 1 2 F p x ( k ~ ) + D 1 2 T [ ~ ' ~ ( k ) J  " 

Then we have the following.: 

(a) The system GFIj is equivalent to the interconnection of the system 
(4.176) and b b (a~,, u~ ). 
(b) K stabilizes GFI j  if and only if it stabilizes (lb. 

Next we need the following lemma. 

L e m m a  4.31 (a) II U~v IIL~• ,, IIL~x*~ -x ' (O-)P(O)x(O-)  for any v �9 
12(0, oo; Rm2). 
(b) < GbjS.NWo, Ubv >L2x12= - ~ ' ( 0 - ) P ( 0 ) x ( 0 - )  for any wo �9 R ml and 
v �9 12(0,  c~;  R m ~ ) .  

Proof. (a) As in the proof of Lemma 4.29, we have 

d [ x ' ( t ) P ( t ) x ( t ) ]  =1 z c ( t )  < < (k  + I F  12 , kT t 

and 

x'(kT)P(kT+)x(k~ -) - x ' ( k T - ) P ( k T ) x ( k r - )  =1 z a ( k )  12 - I v ( k )  15 . 

Then we have 

~000 O0 I z~(t) 12 dt + ~-~[I  ~a(k) I ~ - I v (k )  121 
k = l  

= -x'(O)P(O+)x(O) 

= I v ( 0 )  I s - I z d ( 0 ) I  s -x'(O-)P(O)z(O-). 

(b) Consider the system Gbj with wd(N) = wo, wa(k) = O, k ~ N.  Then 

~(t) = 0, vt > NT and as in the proof of Lemma 4.29, we have 

d w ( t ) P ( t ) x ( t ) ]  = ('c(t)zc(t), < < (k + 1)T kT t 

and at t = kT, k ~ N 

( ' ( kT)P(kT+)x(kr )  -- ( ' ( k r - ) P ( k r ) z ( k T - )  
= [D12Fp(k)((kT)l'zd(k ) = (~(k)za(k). 
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We also have 

~'(Nr)P(NT +)x(NT) - ~'(Nr- )P(NT)x(NT- ) 
= -W~d(N)S~p(k)Tpl(k)Tp �89 (k)v(Y) = ~'d(N)zd(Y). 

In t eg ra t i ng  ~[~'(t)P(t)x(t)] f rom 0 to 0% we have  

fo ~ ~c(t)ze(t)dt + ~(k)zd(k) = - ~ ' ( 0 ) P ( 0 + ) x ( 0 )  Z 
k=l  

= --~(O)zd(O) - ~ ' ( O - ) P ( O ) x ( O - )  

where  ~ and x are the  s ta tes  of Gbi6.NWO and Ubv, respectively.  | 

Le t  u = Ky be an internal ly  s tabi l iz ing control ler  and ~b  the  i n p u t - o u t p u t  
ope ra to r  of  the  closed-loop sys t em (4.176) wi th  u = Ky given by  

Note  t h a t  

GFle~.Nei 
(Ob&N~d(k) 

and  by L e m m a  4.31 

II b C/jtJrrrb~b~.Ne i 2 Gcj~.Ne, + II L= • 

V ~- a b w  d. 

= GbejJ.Nei "t- ubeb~.Nei, 

= 0, for k > N 

II b = a c ) . ~ e ,  ILL• -4-II ubOb&N~' IIL~2 • 

--2~tNi(O-)P(O)XNi(O- ) 

where  ~Ni and XNi are the  s ta tes  of  GbjS.Nei and  UbGb~.Nei, respectively.  
Since l imN~oo ,~Ni ( 0 - )  = 0, we have  

lim Z II G~).Ne, + g~Ob&Ne, 2 
N---*oo 

i = 1  

m l  m l  

= lim Z II Gc)Ne,b II~=• + N-~oolim Z II gbOb~-Nei I1~•  - 
N---*oo 

i = l  i = 1  

Since limN--,oo Clb~.Nei = 0, l i m N ~  XNi(O-) = 0. B y  L e m m a  4.31 

l im II ob6.Nei 2 l im I] ubc'b6.Nei 11~• N - ~  
N-- too  

Hence  

and  we have 

I1 GFZ 112=11 abj  1122 + II 0 5 II 2 

min  II GEl 112=[[ Gbj 1122 + min  II ~b  112. 
K E K  K E K  
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Thus the H2-problem of the system C:~FI j is reduced to the one for the sys- 
tem (~b. Since u(k) = Fpx(kT)  is stabilizing, u(k) = [ Fp - T p a  Sp  ] y(k) 
internally stabilizes (4.172) and this yields v = 0 or ~b = 0. Hence u(k)  = 
[Fp - T p 1 S p ] y ( k )  is the optimal controller for GFIj  and 

min I] GFI I[~=ll G~j II~ . 
KcK 

The controllability gramian for the forward system associated with Gbj is a 
unique ~--periodic nonnegative solution of 

Lo = A'Lo + LoA + C~C1, kT < t < (k + 1)T, 

Lo(kT +) = (Ad + B2Fp) 'Lo(k 'r) (Ad + B2Fp)  + F~Fp  

which implies Lo = P. Hence by Theorem 4.1, 

[[ Gb~j [[2= tr.[BIP(O)[~ 1 + S~pTfl2Sp] 

where B1 = B1 - B2Tp1Sp .  

Summarizing the above we have shown the following result. 

L e m m a  4.32 Assume J1,  J5  and consider the H2-problem for the system 
GFl j .  Then 
(a) minKEK [[ GFI ][2=[[ Gbj [[2= tr.[[~plP(O)~a + StpTp2Sp]. 
(b) K = [ Fp - T f l l S p  ] is optimal. 

Next we consider the H2-problem for the system GDFj 

-5: = Ax,  kw < t < (k + l)T, 

x ( k T - )  = A d x ( k Q  + Bawd(k)  + Buu(k),  

z = zd(k) = Da~u(k ) ] '  

y(k) = C2x(k'r) + DulWd(k) 

(4.177) 

where D21 is a nonsingular matrix and we take controllers KDF Of the form 
(4.173). This is called the DF-problem. Here we assume J1,  J5  and J6,  i.e., 

J6  : (A, Ad -- B1D~llC2) is stable. 

As we see below, this problem is equivalent to the FI-problem. 

P r o p o s i t i o n  4.7 A controller KDF internally stabilizes GDF j if and only 
if K = KDF[C2 D21] internally stabilizes GFI j .  In this case GDF = GFI 
where GDF is the input-output operator of the closed-loop system GDFj with 
u = KDFY defined by z = GDFWd. 
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[ z(k~-) ] 
Pro@ The  proof  follows from u = KDFy = KDF[C2 D'21] [wd(k)  �9 

Consider the  controller  Kr)F: 

- p  = 

p ( k < )  = 

~ ( k )  = 

UF I z 

YFl(k) = 

P r o p o s i t i o n  4 .8  

Ap, kr  < t < (k + l)T, 

Adp(kr) + BxD211 [y(k) - C2p(kr)] + B2UFl(k), 

ug1(k), (4.178) 

KyF1, 
;(k,) ] 

D7211 (y(k) - C2p(kT)) J " 

The controller K internally stabilizes { ~ F I j  i f  and only if  
KDF given by (4.178) internally stabilizes GDFj. In this case GEl = GDF. 

Proof. Let  e = x - p where x and p are the  s ta tes  of  GDFj and (4.178) 
respectively. T h e n  e satisfies 

-~  = Ae, kr  < t < (k + l)T, 

e ( k r - )  = (Ad -- B1D211C2)e(kT) 

which is exponent ia l ly  stable. Moreover 

p ( k r - )  = Adp(kT) + BiD2xl[y(k) - C2p(kT)] + B2u~.z(k) 

= Adp(kr) + B l e d ( k )  + B2u(k), 

[x(k,)]  
u(k) = U F ~ ( k ) = K  [we(k) = g  [~e(k)J 

where ~d(k) = wd(k) + D~a aC2e(kr). Hence 

- p  = Ap, kr  < t < (k + l)r ,  

p ( k r - )  = Adp(kT) + Baird(k) + B2u(k), (4.179) 

u(k) = g [p(kr )~  " 

Now suppose K stabilizes GFIj .  T h e n  p E L 2, bu t  e E L 2 and hence x E L ~. 
Thus  KDF stabilizes GDFj. Conversely suppose KDF stabilizes GDFj. Then  
(4.179) is s table and K stabilizes G F I j .  Final ly  z is given by 

z =  Zd = D12u(k) = DX2UFI(k) 

subject  to (4.179). Hence GFI = G D F .  | 
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Now it is easy to obtain the solution of DF-problem. Since K = [Fp 
T~ISp] is optimal for GFIj, the optimal controller for GDFj is given by 

u(k) = [Fp 

and (4.178) in this case 

where 

[ p(kT) 
--Tp1Sp ] [ D211[y(k ) - C2p(kr)] ] 

= 

b = 

- P  = Ap, kT < t < (k + l)T, 
p ( k r - )  = ftp(kT) + By(k) ,  

~(k)  = ~ p ( k ~ )  + b y ( k )  

Aa - ( B t  - B 2 T p 1 S p ) D ~ C 2  + B2Fp, 

( B  1 _ B2Tp 1Sp)D211 ' 

Fp + Tp1SpD~llC2, 

- T~ I S P D~I 1. 

(4.180) 

L e m m a  4.33 Assume J1 ,  J 5  and J 6  and consider the H2-problem for GDFj. 
Then 
(a) minK~K [[ GDF [[2=[[ Gbj [[2. 
(b)The controller (4.180) is optimal. 

P r o o f  of  t h e  M a i n  R e s u l t  

Now we return to the H2-problem for C.j. By (4.170) we have 

min [[ G [[~=[[ Gc [[22 + min [[ G [[~ 
K E K  K E K  

and the original H2-problem was reduced to the H2-problem for the backward 
system (4.171), which is a DF-problem. Since the conditions J1 ,  J 5  and J 6  
are satisfied for (4.171), we can apply Lemma 4.33 to obtain 

rain [[ (~ II~ = tr .{T2 [2[I - C~TflC2Y(O)I'Y(O)[ I - C~Tf?C2Y(O)]F'T~ 
KEK 

+ T~ F Y  (0)C~T2~ C z Y  (0)[~'T~ } 

= tr.T2F[I + Y(O)C~C2]-IY(O)P ' (4.181) 

and the optimal controller is given by 

- ~  = A'p, k T < t < ( k + l ) T ,  

~( ih-)  = (Ad + B2F + f i e 2  - B2LC2)'~(kT) - (F - LC2)'~)(k), 
fi(k) = (/~r _ B2L)'p(kr) + n'~l(k). 
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Hence the forward controller (4.167) is optimal for the system Gj  and hence 
for the system Gj  and 

min II G 1122--II Gc 115 +tr,Z2-~[I + Y ( o ) c ; c 2 l - l Y ( O ) T  "'. 
K C K  

Now we express II Gc II 2 using the controllability gramian Gcj which is a 
unique 7-periodic nonnegative solution of 

p 
-I-o = A'Lo + LoA + C1C1, kT < t < (k + l)T, 

Lo(kr) = (Ad + B2[2)'no(kT+)(Ad + B2F) + /~@.  

But X in Lemma 4.27 satisfies the equation above and hence Lo = X .  Then 
by Theorem 4.1, we have (4.168) and the proof of Theorem 4.24 is complete. 

4 . 5  N o t e s  a n d  R e f e r e n c e s  

Jump systems in the H ~  context were first introduced in [67, 68] and used 
to solve H ~  control and filtering problems for sampled-data systems. More 
general jump systems were then considered in [65] and the disturbance at- 
tenuation problems were solved. 

This chapter is based on [37, 43] and is developed parallel to Chapters 2 
and 3. Stability of jump systems is discussed within the H ~  theory in [67, 
81, 82], but independent developments as in Section 4.1.1 were not available. 
The disturbance attenuation problems for jump systems were studied in [65] 
and Section 4.1.4 gives a generalization in tha t  initial and terminal conditions 
are allowed and treated symmetrically on finite horizons. 

Hoc control for jump systems were considered in [36, 37, 64, 68]. Section 
4.2 generalizes these papers and allow for initial uncertainty and the output  of 
the terminal state, gives the characterization of all suboptimal controllers and 
discusses the relation of three Riccati equations as in [38]. The differential 
game results in Section 4.2.2 are taken from [35]. The jump system (4.42) 
is not fully general although it suffices to consider sampled-data systems in 
Chapter 5. Section 4.2.5 discuss an extension to a fully general jump system. 

The Ho~ filtering problem for continuous-time systems with sampled ob- 
servation was considered in [67]. Section 4.3 derives H ~  filtering for jump 
systems. We give the set of all suboptimal filters. We allow for nonzero initial 
conditions and the estimation of the terminal state. 

The H2 results in Section 4.4 are taken from [37]. H2 control for jump 
systems is not discussed anywhere else. The reason seems to be that  H2 
control for sampled-data system can be easily reduced to that  of discrete- 
time systems. 



5 .  S a m p l e d - d a t a  S y s t e m s  

In this chapter we consider sampled-data systems with zero-order hold. We 
first convert them to lump systems and then solve the H~o control problem 
with initial uncertainty and the H2 control problem. 

5.1 J u m p  S y s t e m  A p p r o a c h  

We shall show how to transform the sampled-data systems to jump systems. 
Then we apply the results in Chapter 4 on stability, H2 and H~ norms, 
disturbance attenuation problems and quadratic control. 

5.1.1 Transformation to Jump Systems 

Consider the sampled-data system Gs: 

5c = Ax( t )  + B l w ( t )  + B2fi(t), 

z ( t )  = [C~x(t)] 
D12u(t) ' 

y(k) = C2x(kT) + D21wd(k), 

zl = F x ( T ) ,  O < N'r << T < ( N  + I)T 

with initial condition 

(5.1) 

x(O) = Hh,  h E R nl 

where x E R n is the state, (w, Wd) E R TM •  ml"~ is the disturbance, ~ E R m2 
is the control input realized through a zero-order hold, 

a(t) = u(k), k~ < t < (k + 1)~, 

(Zl, z) C a q x a pl+m2 is the controlled output, y E a p2 is the sampled obser- 
vation, T is a sampling period, C1 E R mxn, O12 @ R m2xm2 and other matri- 
ces are of compatible dimensions. For the system Gs we introduce discrete- 
time controllers of the form 

~ (k+  1) = A~(k) + By(k), (5.2) 

u(k) = ~ ( k )  + Dy(k) 
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where ~ c R '~ and all matrices are of compatible dimensions. Since the system 
(~s is essentially a continuous-time system and the controller is a discrete- 
time system, we need two devices, a zero-order hold and a sampler, to connect 
these two systems. 

We first express this system as a jump system of the form (4.42). Since the 
control ~(t) is constant between two sampling instants, i.e., kT < t < (k + 1)T, 
we can introduce the following state space representation: 

= O, 2(kT +) = u(k), kT < t < (k + 1)v. 

Then clearly ~(t) = 2(t). Let 

be the new state variable. Then the sampled-data system Gs is equivalent to 
the following system with jumps (denoted by Ge): 

x~(kv+) = [:  O]x~ (kT )+[~]u (k ) ,  k=0 ,1 ,2 , . . . ,  (5.3) 

~ = za (k )J  = [ ~ D l ~ u ( k )  ' 

y (k )  = [ C 2 0 ] x ~ ( k ~ - ) + D ~ i w a ( k ) ,  

z l  = [ F  O ] x ~ ( T )  

and 

x~(O) = [H  

Here Zd = v/~D12u(k) comes from 

01[ ] 

/0 I Di2~(t)12= I D~2u(k) 12= EIV"-TD12u(k)12, U(') E l 2. 
k=O k=O 

Since the system G~ is a jump system, we can solve the H2 and Ho~ control 
problems for the sampled-data systems using results in Chapter  4. 

For the systems Gs and Ge, we can easily obtain the following result. 

L e m m a  5.1 I] (A, B1, C1) is stabilizable and detectable for the system Gs, 
then the jump system 

([[0 A B02], [/ 00]], [[BoI] ,0] ,[[C 1 0],0]) 
is stabilizable and detectable. 
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Proof. Since (A, BI) is stabilizable, there exists a matrix K such that  the 
system 

= (A + B1K)~ 

is exponentially stable. Then the system 

kT < t < ( k + l )r, 

leo o] (~(k~+) = 0 (~(k~-) 

is obviously exponentially stable and hence we have the assertion. We can 
show the detectability in a similar manner. ! 

However, stabilizability and detectability of (A, B2, C2) does not imply 
tha t  of ([[0 [10 00]] [0 0,,) 
under the special sampling period. We shall show this in the next section. 

5 . 1 . 2  

Consider the system 

where 

C o m m e n t s  o n  t h e  S a m p l i n g  P e r i o d  

ic = Ax  + B2(t, y(k) = C2x(kT) (5.4) 

a(t) = ~(k), k~ < t < (k + 1)7 

and assume tha t  (A, B2, 65) is stabilizable and detectable in the usual sense. 
As we see in the previous section, the system (5.4) is equivalent to the fol- 
lowing jump system 

= [c2 0 1 ~ ( k ~ )  

x~(kr +) 

y(k) 

and moreover 

x((k  + 1)7) =- eArx(kr)  + II(~)B2u(k), (5.6) 

y(k) = c2x(k~)  

where II(t) = fo eArdr" Note that  (5.5) is stabilizable and detectable if and 
only if (5.6) is stabilizable and detectable. We now introduce an important  
notion about a sampling period T. 
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Def in i t ion  5.1 The sampling period 7" is called pathological (with respect to 
A ) if A has two eigenvalues, say A and A, such that 

A = a + j w ,  A = a + j � 9  

with [ w - �9 I= k ~- for some positive integer k. Otherwise T is called non- 
pathological. 

The following example [8] shows that  if tile sampling period is patholog- 
ical, the stabilizability and detectability of (A, B2, C2) does not necessarily 
imply that of (e At, H(T)B2, 6"2). 

E x a m p l e  5.1 ([8]) Consider the sampled-data system with sampling period 
T :  

[0 10] J: = A x + b , ~ ,  A =  _(2~)2 , b 2 =  , (5.7) 

y(k) = c2x(kT"), c2 = [0 1] 

(A, b2, c2) is obviously controllable and observable (and hence stabilizable and 
detectable). Note that  eigenvalucs of A are 

2r  27f 
A = 0 + j w ,  0 + j & ,  w = - - ,  &--  

T T 

Since w - & - 2 ~ ,  the sampling period v is pathological. Now 

[ cos ( 2--~ t) ~-~ s i n ( ~ t )  ] 
eA = cos( t) , 

= [ -  ~ sin(27r) cos(2r) = 

n(~)b~ = [~ 

Hence the discrete-time system obtained from the sampled-data system (5.7) 
in neither stabilizable nor detectable. 

However, if the sampling period is nonpathological, stabilizability and 
detectability are preserved [8]. 

L e m m a  5.2 Assume that the sampling period ~" is nonpathological. Then 
(A, B~, C2) is stabilizable and detectable i f  and only if  (e At, II(T)B2, C2 is 
stabilizable and detectable. 

Proof. Note that  e ;~'" is an eigenvalue of e A7 if Ai is an eigenvalue of A. Using 
the Taylor expansion of e s~ - e ~ we can write 

e ~" - e ~ ' "  = g ( s ) ( ~  - ~,). 
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ttence 

[ eAr-ex'rI]C2 J = [g(A) 011,j [A -~slc2 1 " 

Now we shall show that g(A) is nonsingular. It is enough to show that 0 is 
not an eigenvalue of g(A). Since the eigenvalues of g(A) are g()~k), we shall 
show g(Ak) # 0 for any eigenvalue Ak of A. If Ak # As, then g(Ak) # 0 since 
otherwise 

e ~ ,  - e :''T = g ( s ) ( ;~k  - ;~s) = 0 

which contradicts the nonpathological assumption of r. Moreover, by direct 
calculation 

g()~s) = r e  ~'" r O. 

Hence 
] 

rank rank 
C2 ] C2 ] 

for any eigenvalue )~s of A. Since I e~" I -  > 1 if and only if Re,ks >_ O, de- 
tectability is preserved. Considering the adjoint of the original system we can 
show that stabilizability is also preserved. ! 

5.1 .3  Stabi l i ty  

Consider the sampled-data system Gs: 

5: = Ax(t) + B,w(t) + B2~(t), x(0) = Hh, 

z ( t )  = [ c , ~ ( t )  ] 
[D12~(t)] ' 

y(k) = C2x(kT) + Dilwd(k), 
Zl = Fx(T), 0 < Nr  <_ T < (N + 1)T 

and the discrete-time controllers (5.2) 

5:(k + 1) = As:(k) + By(k), 
~(k) = ds:(k)  + by(k) 

where we assume that (A, B2, C2) is stabilizable and detectable and the sam- 
pling period is nonpathological. Since the system G8 is equivalent to the 
jump system G,  and the controller (5.2) is equivalent to the following jump 
system 

x = O, k r < t < ( k + l ) r ,  
~(k~ +) = A~(k~) + by(k), 

~(k) = d~(k~) + by(k), 
(5.8) 
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the closed-loop system G8 and (5.2) (and hence G~ and (5.8)) is given by 

~d = Adxr + B~tw, kr  < t < (k + 1)T, 

x d ( k T  +) = Addzr + Bddwd(k) ,  (5.9) 

zc(t) = cclxct, 

zd(k) = Cadxd(kT)  + Dddwd(k),  

Z l  : F d x d ( T )  (5.10) 

and 

which is the jump system of the form (4.4) where xd = [x~ ~:']' and 

(5.11) 

A~ Act = 0 0 , 
0 0 

Bd  = 

Cot= C1 0 0], 
Ddd = v~D12D21, 
F c I = [ F  0 0], 

I 0 
Add = DC2 0 

BC2 0 

~ Bdd = L) DR1 , 
/~D21 

Cdd = vf~DI2DC2 

H c l = [ H  0 0]. 

i] 
0 v~D12C ] , 

Hence we can consider stability, H2, Hoo norms and the disturbance attenu- 
ation problems of the sampled-data feedback systems using the system (5.9) 
and the results in Chapter 4. 

Lyapunov  Equa t ions  

By applying Propositions 4.2, 4.3 and Corollary 4.1 to the homogeneous 
system of (5.9), we have the following result. 

P ropos i t i on  5.1 The following statements are equivalent. 
(a) The feedback system (5. 9) is exponentially stable. 
(b) There exists a T-periodic symmetric matrix X ( t )  e R (n+m2+h) • (n+rn:~+fi) 
such that 

(i) ClI < X ( t )  ~ c2I, vt ~_ 0 for some c~ > O, i = 1, 2, 
(ii) - 2  = A 'dX  + X A d  + I,  kT < t < (k + l)r ,  

X ( k v - )  = A~c tX(kr )Add  + I. 

(c) There exists a symmetric matircc Y ( t )  E R (n+m2+'D• and a 
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O < 5 < T such that 

(i) 0 < Y( t ) ,  vt > 0 and c l i  <_ Y( t ) ,  vt >_ 5 for some C 1 ) O, 

(ii) Y ( t )  < c2I, 0<_ vt < co for some c2 > O, 
(iii) ~z = ActY + Y A '  c, + I ,  kT < t < (k + 1)7, 

Y(kT  +) = Ad~lY(kT)A~da + I, 
Y(O) = o. 

(d) There exists a T-periodic symmetric solution Yr(t) of (iii) in (c) without 
Y(O) = 0 such that c l i  <_ Yr(t) < c 2 I / o r  some cl, c2 > O. 

H2 and H a  N o r m s  

Now we assume that  the sampled-data feedback system (5.9) is exponentially 
stable and h = 0. Then we can define its H2-norm as in Definition 4.7 and 
calculate it using Theorem 4.1. 

P r o p o s i t i o n  5.2 Let II G 112 be the H2-norm of the system (5.9). Then 

1 tr.B~aX(s)Ba ds +tr .  ' D~da D da ] -- [BdaX(O)Bda + 

where X is a r-periodic nonnegative solution of 

- 2  = A'clX + XAcl  + C'czCd, kT < t < (k + 1)r, 

X ( k T - )  = A~dclX(kr)Ada + C~aCda. 

We can also define the Ha -no rm of the sampled-data feedback system 
(5.9) as in Definition 4.8. 

Di s tu rb an ce  A t t e n u a t i o n  P r o b l e m s  

Let GT be the input-output operator of the sampled-data feedback system 
(5.9)-(5.11) on [0, T]. Then by Theorem 4.6 we have the following result. 

P r o p o s i t i o n  5.3 The following statements are equivalent. 
(a) II c r  II < 
(b) There exists a nonnegative solution X( t )  6 R ('~+m2+'~)• t 6 
[0, T] to (4.29)-(~.33) with A, B and etc replaced by Acl, Bcl and etc, respec- 
tively. 
(b) There exists a nonnegative solution Y( t )  E R (n+m2+fi)• t E 
[0, T] to (~.3~)-(~.38) with A, B and etc replaced by Act, Bd and etc, respec- 
tively. 

Next we consider the system (5.9) and (5.11) on [0, co). We assume that  
(Acl, Add) is exponentially stable. Let G be the input-output operator of the 
system (5.9) and (5.11). Then by Theorem 4.7 we have the following result. 
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Propos i t ion  5.4 The following statements are equivalent. 
(a) Il C ll< ~. 
(b) There exists a m-periodic nonnegative stabilizing solution X( t ) ,  t c [0, oc) 
to (4.29)-(4.31) satisfying (4.33) with A, B and etc replaced by Ad ,  Bcl and 
etc, respectively. 
(b) There exists a r-periodic nonnegative stabilizing solution Y( t ) ,  t E [0, c~) 
to (~.3~)-(4.37) with A, B and etc replaced by Acz, Bd  and etc, respectively. 

5.1.4 Quadra t i c  Contro l  

Consider the system 

it = Ax  + Bg,  g(t) = u(k),  kr  < t < (k + 1)r, (5.12) 

x ( o )  = xo  

and the functional to be minimized 

Jr (u ;xo )  = [I Cx( t )  12 + I g(t) 12]dt+ I Fx (T )12  , 

0 < Y~ <_ T < (Y + 1)T (5.13) 

where x E R n, g E R m2, C E R p2xn and other matrices are of compatible 
dimensions. Since the system (5.12) and the functional (5.13) are equivalent 
to the jump system 

[I 0 
[zo(t)] 

z = / z d ( k ) J  

and the functional 

Jr(u; x0) = [ ~  
J0 

B ]  x~, < < (k + kr  t 1)r, 

00] + [;] [o0] 
= g - i u ( k )  

N 
Izc(t) l 2 d t + ~ - ~ l z d ( k )  l 2 + [ [ F  0]x~(T)[2 

k = 0  

we can apply Theorems 4.2 and 4.3. Let 

IX1 X12] R~Xn, RnXm, RmXm X =  X[2 X 2 J '  X l e  X12e X2C 

be the solution of the Riccati equation (4.12)-(4.14) with 

T2(k) = I + B~dX(kT)Bd 

(5.14) 
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replaced by 
T2(k) = r I  + B 'dZ(kr)Bd.  

Then we obtain for k r  < t < (k + 1)r 

and at t = kr  

with 

- J Q  = A ' X I + X I A + C C ,  

- ]Q2  = X12A' + B 'X1 ,  

- X 2  = B 'X12  + X ~ 2 B  

= XI ( kT )  - XI2(kT)[r I  + X2(kv)] - iX~2(kT) ,  

z O~ 

= 0 

X 1 (kT-) 

X12(kT-) 

X2 (kr-)  

and by Theorem 4.2 we have the following result. 

299 

(5.15) 

(5.16) 

(5.17) 

Jr (~ ;  Xo) ~-- Jr( 'u; Xo) = xtoXl (O-)xo  �9 

Next we consider the infinite horizon problem 

= A x  + B~, x(O) = Xo, 

J(fi ;xo) -- [I Cx(t)12 + l f i ( t )  12]dt 

where fi c L2(0, 00; R m2) is admissible if its response x E L2(0, 00; R n) and 
limt--.oo x(t)  = 0. This problem is again equivalent to 

ff J(u;  x0) -- I zc(t) 12 at + E I zd(k) 12 
k=O 

subject to the jump system (5.14) where u E 12(0, oo; R 'n2) is admissible if 
its response xe c L2(0, c~; R '~+m2) and limt--.oo xe(t) = O. 

~,(t) = a ( k ) ,  

is optimal and 

~(k) = - [ r I  + X 2 ( k r ) ] - l X { 2 ( k r ) x ( k r ) ,  kr  < t <_ (k + 1)r 

Ix1 T h e o r e m  5.1 There exists a unique nonnegative solution X --- X~ 2 

X1 E R n• X12 E R n• X2 E R m• to the Riccati equation (5.15)-(5.17). 
Moreover, the state feedback law 
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hence (5.12)). We say that X = 

(5.15) and (5.16) if 

Now we assume that (A ,B)  is stabilizable and the sampling pcriod is 
nonpathological for the system (5.12). Then by Lemma 5.2 

( [ [ A  B02],[10 0 0 ] ] , [ 0 , [ 0 ] ]  ) 

is stabilizable and the condition ILl in Section 4.1.3 for the system (5.14) is 
satisfied. If we further assume that (C, A) is detectable, then by Lemma 5.1 

o, o,[[o 
is detectable. Hence we can apply Theorem 4.3 to the system (5.14) (and 

I X1 X12 ] 
X~2 X2 J is a stabilizing solution of 

([0 -:] [ 
is exponentially stable, which is equivalent to the stability of the system 

J= = Ax  + Bg(t) ,  

fi(t) = - [ r I  + X2(kT)]-IxI12(kT)x(kT), kr  < t < (k + 1)r 

and equivalently that of the discrete-time system 

x((k + 1) r )  = {e A" - II(r)B[rI + X2(kr)l-lX~2(kr)} x(kr). 

Summing up we have the following result. 

T h e o r e m  5.2 Suppose (C, A, B) is stabilizable and detectable and the sam- 
pling period v is nonpathological. Then there exists a v-periodic nonnegative 

xl  X121 stabilizing solution X = XI  2 X2 J to (5.15) and (5.16). Moreover, the 

state feedback law 

~ ( t )  = 

~(k) = 

is optimal and 

~(k), 
--[TI + X2(O)]-IX~2(O)x(kT), k~" < t < (k + 1)T 

JT(~;  X0) = 3T(~; XO) = z'oXl (O- )zo. 

Example  5.2 Consider the system 

= u(k), k < t < k + l  
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and the functional 

/? J(fi; x0) = [I xl(t) 12 + I fi(t) 12]dt 

For this system and the functional the assumptions of Theorem 5.2 are sat- 
isfied. Then there exists a periodic nonnegative'stabilizing solution X(t )  = 
[X~j(t)], i , j  = 1, 2, 3 with period 1 of the Riccati equation (5.15) and (5.16). 
Figure 5.1 shows the periodic solution X(t) .  Figure 5.2 shows the response 
of the closed-loop system with Xl(0) = I and x2(0) = 0 to the optimal state 
feedback. 

I ' ' ' ' I ' ' ' I-- 

~!~ "'''~ ..... Nil(t) 

X33(t)"-,. 

"" ' " .  " ' " - ,  X~2(t) 

X~3(t) .......... 

0 0.5 
time (sec) 

Figure 5.1: The periodic nonnegative solution X( t )  

5.2  H ~  C o n t r o l  

Here we consider the H a  control problem initial uncertainty. We apply the 
results in Section 4.2 to the jump systems obtained from the sampled-data 
systems. 

5.2.1 F i n i t e  H o r i z o n  P r o b l e m s  

Consider the sampled-data system Gs: 

= Ax(t )  + B lw( t )  + B2fi(t), 

z(t) = [ Clx( t )  1 
LD12~(t)] ' 

y(k) = C2x(k'r) + D21wd(k), 

zl = F x ( T ) ,  O < _ N ~ < _ T < ( N + I ) ~  

(5.1s) 

(5.~9) 
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0.5 

o 

-0.5 

I ' ~ ; ' I ' ' ' ' I ' 

I i i i i I l i i i I i 

0 5 10 
t i m e  ( sec )  

Figure 5.2: Simulation result 

I 

with initial condition 
x(O) = H h  

and a discrete-time controller of the form 

2 ( k +  1) = A2(k) + JBy(k), 

u(k)  ~ Cfc(k) + Dy(k) .  

For the system Gs we assume 

S1 : D12D12 ~- I ,  21D21 = I. 

(5.20) 

(5.21) 

s TM x L 2 ( O , T ; R  TM) x 12(O,N;Rm'd); 
Rq • L 2 ( O , T ; R  pl) x 12(O,N;RPI~)). 

The Ho~-problem for the sampled-data system (]8 is to find necessary and 
sufficient conditions for the existence of a discrete-time controller such tha t  
I] G ]1< % i.e., 

() (w) 
1122x12) for some 0 < d < % Zc I12:x/2~ d2(I h [ 2 + I] wd I zl +11 zd 

Then 

G 

Consider the sampled-data system G8 and a discrete-time controller u -= K y  
of the form (5.21) on [0, T]. Define the input-output operator of the closed- 
loop system by 
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A 

x~( t )  = e o 

Since 

Such a controller is called "y-suboptimal. Since the sampled-data system Gs 
is equivalent to the jump system Ge and the assumption S1 implies the 
conditions J1 for the system G~, we can apply Theorems 4.8 and 4.9 to the 
system Ge and hence for the system G~. 

R e m a r k  5.1 The standard way to solve the Ho~ and H2 problems for G~ 
with D21 = 0 is to use the lifting technique which converts periodic systems to 
discrete, time systems with infinite dimensional input and output  spaces and 
to reduce the original problems to those for ordinary diseret~time systems 
[2, 3, 8, 25, 76, 88]. We shall show that  their lifted system is directly obtained 
from G~. In fact for kr < t < (k + 1)r we have 

[0 

we have for kr < t < (k + 1)r 

x~( t )  

and 

x((k + 1)T) 

[ eA( t -kT)x(kr+)+II ( t -kT)B2u(k)+fkreA( t - r )Blw(r )dr  

f( 
k+l)~- 

= eArx(kT +) + H(T)B2u(k) n t- eA[(k+l)r-rlBlw(r)dr 
Jkr 

/o" = eA'x(kr) + II(r)B~u(k) + eA('-~)Blw(s + kr)ds 

/0" = eA'x(kr) + II(r)B2u(k) + eA('-~)Blt~k(s)ds 

where t~k(s) = w(s + kr). We also have 

t - k ~ - s  

Zc(t) = CleA(t-kr)x(kT) -~ C1 f eA(t-kf-S)Blt~k(s)d8 
,1o 

+ClI-I(t - kT)B2u(k), 

zd(k) = v~Dl2u(k). 

Hence the system Gs is equivalent to the following lifted system (denoted by 
6) 

/0 ~?(k + 1) = eA'~?(k) + eA('-~)Bl~vk(s)ds + II(r)B2u(k), 
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ft-kr-s 
Zc(t) = C, eA(*-k~)~:(k) + CI_/. eA(t-k~-~)B1tbk(s)ds 

+C1H(t - kr)B2u(k), 

za(k) = v~D12u(k), 
y(k) = C2s + D21wa(k). 

Contrary to the discrete-time representation G of the sampled-data sys- 
tem Gs, the jump system Ge is a natural state space representation of Gs 
in the following sense. 

(a) The genuine control input to G~ is u(k) rather than fi(t). 
(b) Original signals and parameters of Gs are maintained in the system G~ 
[37, 6s]. 
(c) The Hoo and H2 problems can be treated in a unified manner as in Chap- 
ters 1-3. Hence it is easy to introduce the theory to those who are not familiar 
with sampled-data systems. 
(d) The jump system approach to sampled-data control can be easily ex- 
tended to more general cases of delayed observation [45], a first-order hold 
[32, 34] and infinite dimensions [33] (see Chapter 6). 

Let [X1 X12] ~.=[YI Y1~1 
X =  X~ 2 X2 J '  Y~2 Y2J 

be the solutions of the Riccati equations (4.46)-(4.49) and (4.50)-(4.52), re- 
spectively with T2(k) = I + B~X(kr)B2 replaced by T2(k) -- TI + B~X(kr)B2, 
where X1, Y1 E 1~ nxn, X12, Y12 E R nxm2 and X2, Y2 E R m2xrn2 and n and 
m2 are the dimensions of x and u respectively. Then from the Riccati equation 
(4.46)-(4.49) we obtain 

- X I  = A'X1 + X I A  + C~C1 -[- ~X1B1B~X1 ,  

---~12 = A'X12 + XIB2 + -~X1B1B~X12, 

-x2  = B~Xl2 + XhB2 + ~XhB1B~XI~ 

f o r k T < t <  (k + l)r  and at t = kT, k - - 0 , 1 , , 2 , . .  

with 

X1(kw-) = XI(kT) -- Xl2(kw)[rl+ X2(kr)]-IxI2(kr), 

X 1 2 ( k r - )  = O, 

X 2 ( k T - )  = 0 

(5.22) 

(5.23) 

(5.24) 
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and 
H'XI(O-)H <_ d2I for some 0 < d < % 

The second equation is writ ten 

Y, = AY1 + YIA' + BtB~ + 12y1cIC1Y1 + B2Y~2 + Y12B;, 

1"12 = AY12 + B2Y2 + 1y1c~c1Y12, .y 

Y2 = ~,2Y12CIC1Y12 "y 

for kT < t < (k q- 1)T and at t = kT, k = 1, 2, .. 

with 

YI(kT +) = Yl(k~) - Yl(kr)C~(I + C2YI(kr)C~.)-Xc2YI(k~), 
YI~(kT +) = O, 
Y2(kr +) = O, k = O ,  1,.. 

[yl(o) Yl~(o) =[HH' . 
YI'~(O) Y~(O) ] ~ 

(5.25) 

Since Y12 and Y2 form a homogeneous system, we conclude Y12 = 0 and 

[V O] w h e r e g E R n X n i s t h e s o l u t i o n o f  Y2 = 0. Hence 17" is of the form 0 0 ' 

= AY  + Y A  + B1B~ + -~YC~CIY, (5.26) 

kr < t < (k + 1)% 

Y(kT +) = Y(kT) -- Y(kT)C~(I + C2Y(kr)C~)-lc2Y(kT), (5.27) 

Y(O) = HH'. (5.28) 

Replacing Z by ( I -  A ~ y x ) - I Y  in (4.57), we obtain a "r-suboptimal controller 

[d:l]~2 = [A10 A02] (t) [Xl]x2 ' k r < t < ( k + l ) r ,  (5.29) 

[ 11 (k,)+ Z l, ~(k) = [dx(k) 0] e~ 

r(k) = [ G ( k )  o] ~ 
v = Qr, Q e Q ,  
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where 

and 

Since 

1 

.41(t) = A +  ~2B, B~XI(t), 

1 
A2(t) = B2 + -fiB1B1X12(t ), 

Ad(k) = (I + W(k)Y(kT")C~C2) -1, 
Bl(k) = Ad(k)W(k)Y(kT-)C~, 

B2(k) = l f td(k)W(k)Y(kr)Xl2(kT)E-k(k)=- -](k) ,  

Ca(k) = -E-l(k)X~2(kT)fild(k), 

G'2(k) = - ( I  + C2W(k)Y(kT)C~)-�89 
/ ) n ( k )  = --E-I(k)X~2(kT).Ad(k)W(k)Y(kT)C~, 

D12(k) = 1E-�89189 -y 
! 1 

D21(k) = (I + C2W(k)Y(kT)C2)-~ , 

W(k) [ I -  -~2Y(kT)XI(kT-)] -1, 

E(k) = TI + X2(kT), 

~(k) = "/2I - E-�89189 (k ) 

Q.y = {Q �9 s : 

Q is of the form (4.45) and II Q II < ~}. 

x2 = 0, k T < t  < ( k + 1 ) %  

~2(k~ "+) = Cl(k)~l(kT) + Dn(k)y(k)  + [912(k)v(k), 

we can rewrite (5.29) as 

X ~--- 

~(k~ +) = 

u(k) = 
,-(k) = 

V 

where g is given by 

Al(t)~ + A2(t)g(t), kT < t < (k + 1)T, 

,Ad(k)x(kT)  -4- B l ( k ) y ( k )  q- S2(k)v(k),  

G(k)~(k~) + bn(k)y(k) + b~(k)~(k), 
C2(k)~(kr) + D2,(k)y(k), 

Q~, Q e Q~ 

g(t) = u(k), kT < t < (k + 1)T. 

Summing up we have the following result. 

(5.30) 

(5.31) 
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T h e o r e m  5.3 Assume S l  and consider the system Gs. 
(a) There exists a "y-suboptimal controller u = Ky of the form (5.21) i] and 
only if the following hold: 

(i) There exists a nonnegative solution X = [X12 X2 (t), t �9 [0, T], 

X1 �9 R nxn, X12 �9 R nxm2, X2 �9 R m2xm~ to the Riccati equation (5.22)- 
(5.25). 
(ii) There exists a nonnegative solution Y to the Riccati equation (5.26)- 
(5.28). 

(iii) p( X12Y (t)) <_ d 2, t �9 [0, T ] , f o r s o m e 0 < d < 7 .  

(b) In this case the set of all "~-suboptimal controllers of the form (4.45) is 
given by (5.31). 

We now convert the controller (5.31) to the usual discrete one. Let S(., .) 
be the state transition matrix of A1. Then ~((k + 1)T) in (5.31) is given by 

(k+l)r 
J:((k + 1)T) = S((k + 1)r, kr)~(kr +) + S((k + X)T, r)A2(r)~(r)dr. 

d k T  

Since ~(t), kT < t < (k + 1)r is given by 

~(t) = Cl(k)~(kT) + [gn(k)y(k) + b12(k)v(k), 

we have 

where 

and 

~((k + 1)T) = AD(k)&(kr) + BiD(k)y(k) + B2D(k)s(k) 

AD(k)  = S( (k  + 1)r, kT)ftd(k) + (OC1)(k), 
B1D(k) = S((k + 1)r, kT)[~l(k) + (O/911)(k), 
S2D(k ) = S( (k  + 1)T, kr)B2(k) + (OD12)(k) 

(k+l)r 
O(k) = S((k + 1)T, r),42(r)dr. (5.32) 

J k v  

Hence the controller (5.31) is equivalent to the following discrete-time con- 
troller: 

d:(k + 1) = AD(k)~,(k) + B1D(k)y(k) + B2D(k)s(k), 
u(k) = Cx(k)d:(k) + ~)11(k)y(k) + i)12(k)v(k), 
r(k) = (~2(k)&(k) + D21(k)y(k), 

= Qr, Q e q ~  

(5.33) 
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where 

QD = {Q �9 E(12(O,N;Rp2);12(O,N;Rm2)) : 

Q is of the form (5.21) and [I Q I]< v}. 

Hence we have the following result. 

T h e o r e m  5.4 Assume S l  and consider the system Gs. 
(a) There exists a V-suboptimal controller u = K y  of the form (5.21) if and 
only if the conditions (i)-(iii) in Theorem 5.3 hold. 
(b) In this case the set of all V-suboptimal controllers of the form (5.21) is 
given by (5.33). 

5 .2 .2  T h e  I n f i n i t e  H o r i z o n  P r o b l e m  

Next we consider the sampled-data system 68:  

= Ax(t)  + Biw( t )  + B2fi(t), x(0) = Hh, 

z(t) : [ c,x(t) ] 
L D:2~(t) ' 

y(k) = C2x(kT) + D2:w4(k) 

on [0, co) and a controller u = K y  of the form (5.21) where we assume S l  
and 

82  : (A, B1, C1) is stabilizable and detectable, 
$3  : CA, B2, C2) is stabilizable and detectable, 
S4 : The sampling period T is nonpathological. 

Assumptions S I - S 4  imply J 1 - J 4  for Ge. If the controller is IO-stabilizing (or 
internally stabilizing), then the closed-loop system is defined by 

Then 
G e s  x L2(0, c~; R TM) x 12(0, ~ ;  Rmld); 

L2(0, oc; RP')  • 12(0, o~; RP,~)). 

The Hoo-problem on [0, c~) is to find necessary and sufficient conditions 
for the existence of a V-suboptimal controller, i.e., an internally stabilizing 
discrete-time controller such that  ]] G H< 7, i.e., 

Zd IIL2• d2(I h + II Wd 

Such a controller is called V-suboptimal. 
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To give the solution of this problem, we first consider the stabilizing so- 
lutions of the Riccati equations (5.22), (5.23), (5.26) and (5.27). If X = 

[ X1 X12] is a stabilizing solution ofthe Riccati equation (5.22)and (5.23), 
X~2 X2 

L J 

then 

([ A-~- 7 l~ulu~Xl(t) U2-{- 71-'Iulu~xl2(t) 1 [ I ~]) 
o o j '  -E-l(k)Xi2(kv) 

is exponentially stable. So the system 

= [A + -~B1BIXx(t)] ~ + [B2 + -~B1BiX12(t)]~(t), (5.34) 

O(k) = -E-~(k)X~2(kr)~(kr) ,  kv < t <_ (k + 1)V 

is exponentially stable. Similarly if Y is a stabilizing solution, then 

([ A'~-~I-~Y(t)C~CIO B2] , [I- g(kv)C~(I -tCoC2g(kv)C2)-lC2 0]) 

is exponentially stable, which is equivalent to the exponential stability of the 
system 

= [A + +Y(t)C~Cx]~, kv < t < (k -~ 1)v, (5.35) 

~(kv +) = [I - Y(kv)C~(I  + C2Y(kv)C~)-IC2]~(kv). 

�9 [ R e m a r k  5.2 (a) If X(t)  = X1 X12 ] X~2 X2 J (t) is a r-periodic nonnegative sta- 

bilizing solution (5.22) and (5.23), then the exponential stability of the system 
(5.34) is equivalent to that of the following discrete-time system 

~(k + 1) = [S((k + 1)v, kv) - O(k)E-X(k)X12(kv)l~(k) 
= [S(v,0) - O(O)E-l(O)Zl2(O)]~(k) 

1 t where S(-, .) is the state transition matrix of A + 7-TB1BIX1 and O(k) is 
defined by (5.32). 
(b) The exponential stability of the system (5.35) is equivalent to that of the 
following time-varying discrete-time system 

~(k + 1) = Sy((k  + 1)V, kv)[I - Y(kv)C~_(I + C2Y(kv)C~)-Ic2]~(k) (5.36) 

where Sy(.,  .) is the state transition matrix of A + 1-~YC~C1. If Y(t)  is v- 
periodic, then the system (5.36) becomes 

~(k + X) = Sy(v, 0)[I - Y(O)C~(I + C2Y(O)C~)-lC2]~(k) 

which is time-invariant. 
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Again we define Q-~ and QD as 

Q~ = {Q �9 ~ ( ? ( 0 , ~ ;  R'~);l~(0,  ~ ; R m ~ ) )  : 

Q is of the form (4.45) and internally stable with II Q II < 'y}, 
QD = {Q �9 s cc;R,~);12(O,c~;am:))  : 

Q is of the form (5.21) and internally stable with II Q I1< 'y}. 

Then we have the following results. 

T h e o r e m  5.5 Consider the system Gs on [0, oo) with the assumptions $1-  
$4.  
(a) There exists a "y-suboptimal controller u = K y  of the form (5.21) if and 
only if the following hold: 

[Xx X12] (i) There exists a T-periodic nonnegative stabilizing solution X = X '  X2 12 
to the Riccati equation (5.22), (5.23) and (5.25). 
(ii) There exists a bounded nonnegative stabilizing solution Y to the Riecati 
equation (5.26)-(5.28). 

rx1Y] (iii) R(I X12Y I (t)) <_ d 2, t E [0, 00), for some 0 < d < % 
L .J 

(b) The set of all "y-suboptimal controllers of the form (4.45) is also given by 
(5.31) with Q internally stable. 
(c) In this case the set of all "y-suboptimal controllers of the form (5.21) is 
given by (5.33). 
Moreover the limn--,cr Y( t  + nr)  exists (denoted by Yr)  and Yr is a T-periodic 
nonnegative stabilizing solution to (5.26) and (5.27). 

Since the solution Y in (ii) is not v-periodic, ~,-suboptimal controllers 
(5.31) and (5.33) are in general time-varying. However applying Corollary 
4.8 we also obtain v-periodic controllers and time-invariant discrete-time con- 
trollers. 

T h e o r e m  5.6 Consider the system Gs with h = 0 on [0, oc) and assume 
81-84. 
(a) There exists a ~/-suboptimal controller u -= K y  on [0, oc) of the form 
(5.21) if and only if the following hold: 

[ X1 X12 ] (i) There exists a r-periodic nonnegative stabilizing solution X = X~ 2 X2 

to the Riccati equation (5.22) and (5.23). 
(ii) There exists a r-periodic nonnegative stabilizing solution Yr to the Ric- 
cati equation (5.26) and (5.27). 

, [  XiY~ ] 
(iii) PClx l~y~  I (t)) <_ dL t �9 [o, T), for some 0 < d < "y. 

L ..I 

(b) In this case the following controllers are 7-suboptimal: 

x = ,41(t) + A2(t)~(t) ,  kT < t < (k + 1)T, 
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~(kT +) = fia(O)~(kT) + [~l(O)y(k) +/}2(0)v(k), 

n(k) = O, (0)~(k~)  + b . ( 0 ) ~ ( k )  + b ~ ( 0 ) v ( k ) ,  

r(k)  = d~(0)~(k~)  + f l ~ , ( 0 M k ) ,  

v = Qr, Q ~ Q ,  

(5.37) 

where fig(O), BI(O) are defined by (5.30) with Y replaced by YT. Moreover, 
controllers given by (5.37) with T-periodic Q are T-periodic. 
(c) Discrete-time controllers given by (5.33) with Y replaced by Y~ are 7- 
suboptimal. Moreover, if we restrict Q E Q~) to be time-invariant, the con- 
tzvUers (5.33) are time-invariant. 

R e m a r k  5.3 Some comments on the comparison of the lifting technique and 
the jump system approach to sampled-data Ho~ control are found in [64, 77]. 

E x a m p l e  5.3 Consider the system 

= [o 101x  ' 
0,x] 

z = ~(t) ' 

y(k) = [ 1 0 ] x ( k ) + w d ( k )  

where fi(t) -- u(k), k < t < k + 1. For this system all the assumptions S I - S 4  
are satisfied. For all 7 >- 2.1, the conditions (i)-(iii) of Theorems 5.5 and 5.6 
are satisfied. Figure 5.3 shows the periodic solution X(t)  -- [Xij(t)], i , j  = 
1, 2, 3 of the Riccati equation (5.22) and (5.23) with 7 -- 2.1 and period 1. 
Figure 5.4 shows the bounded nonnegative stabilizing solution Y(t) = [Y~j(t)], 
i, j = 1, 2 of the Riccati equation (5.26)-(5.28) which converges to a periodic 
solution. Figure 5.5 shows that  the condition (iii) of both Theorems 5.5 and 
5.6 are satisfied. In this case a central discrete-time controller is given by 

[ -0 .3683  0.5812] [0 .9707  1 ~ ( k + l )  = 
[ -0 .0282  0.0313J ~(k) + LJ-0-7417 y(k), 

fi(k) = [0.4982 -0.7709]&(k) - 0.3729y(k). 

Figure 5.6 shows the simulation result of the closed-loop system with the 
central discrete-time controller where 7 = 2.1 and the disturbances w(t) = 
10e - l~  sin 10t and wd(k) = O. 

5.3 H2 Control 

As in the previous section we apply the H 2 theory for jump systems to the 
sampled-data systems. 
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Figure 5.6: Simulation result 
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Consider the sampled-data system Gs: 

5: = Ax( t )  + B lw( t )  + B2u(t), 

z(t) = [Clx(t)]D,2fi(t) ' (5.38) 

y(k) = C2x(kT) + D21wd(k) 

and a discrete-time controller of the form 

~(k + 1) = f t2(k)  + By(k),  (5.39) 

u(k) = C~(k)  + by(k). 
We assume S l -S4 .  To formulate "the H2-problem for Gs we introduce the 
following set of controllers 

K = {K : K is of the form (5.39) arid internally stabilizes the system G~}. 

The H2 control problem for the system G~ is to find an internally stabilizing 
controller which minimizes I] G ll2, where G is the input-output  operator  of 
the closed-loop system defined by 

z = G ( W )  " w d  

Since (]~ is equivalent to the jump system G~ and the assumptions S l  - 84  
imply the assumptions J1  - J 4  for Ge, we can apply Theorem 4.24 to the 
system Ge. 

As in the Ho~ control problem, let 

X~2 X~ J f" = ' ' Y(2 Y2J 

be the solutions of the Riccati equations (4.163)-(4.166) respectively, with 
T2(k) = I + B~X(kT)B2  replaced by T2(k) = TI -k- B~X(kT)B2 ,  where X1, 
Y1 c R nxn, X12, Y12 G R n• and X2, Y2 E R m2xrn2 and n and m2 are 
the dimensions of x and u respectively. Then from the first Riccati equation 
(4.163) and (4.164), we obtain for kT < t < (k + 1)T 

IX' +,< [ o + (5.40) 

and at t = kT, k = O, 1, 2, .. 

X I ( k T - )  = XI (kT)  -- X12(kT)[TI + X2(kT)]-IX~2(kT) ,  

X12(kT-)  = O, 

X ~ ( k T - )  = O. 

(5.41) 
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The second Riccati equation (4.165) and (4.166) is written 

Y1 = AYI + YIA'  + 1BIB11 + B2Y[2 + Y(2B2, 
T 

Y12 = AY12 + B'2Y~, 

72 = 0 

for kT < t < (k + 1)T and at t = kT 

(5.42) 

Note that  
s  = lira Y( t  + nv), rt ---4 Or 

as we see in Remark 4.6 where 1~= [I)/1)12 1712] I?'2 is the solution of (5.42) and 

(5.43) with 1;'(0) = O. Since f'12(t), 1)2(t) form a homogeneous system with 
Y12(0) = 0 and ]I2(0) = 0, we conclude Y12(t) = 0 and ]~2(t) = 0 for all t > 0 

and ]F has the form [Y00 ~] where Y c RnXn is the solution of 

Y(kT +) = 

[ x l  X12 ] 
If X = X~ 2 X2 

AY + Y A '  + 1BtB'~, kv < t < (k + 1)T, (5.44) 
T 

Y(kr )  - Y(kT)C~(I  + C2Y(kT)C~)- Ic2Y(kT) .  (5.45) 

is a T-periodic nonnegative stabilizing solution, 

([0 0]) 
is exponentially stable where 

F, : --[TZ + X~(0) ] - 'X~(0) .  

So the system 

= A( + B2v(t), ~(t) = Fs~(k~), kT < t <_ (k + 1)T (5.46) 

is exponentially stable. Similarly if Y is a T-periodic stabilizing solution, 

00]) 
is exponentially stable where 

Hs = -Y(O)C~[I + C2Y(O)C~]-', 

Yl(kT +)  = Yl (kT)  -- YI(kT)C~(I + C2Yl(kT)C~)-lC2Yl(kV), 

Y~2(kv +) = 0, (5.43) 
Y2(kr +) = O. 
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which is equivalent to the exponentially stability of the system 

= A~, kr  < t < (k + 1)r, (5.47) 

~(kT +) = (I  + HsC2)~(kr).  

R e m a r k  5.4 The exponential stability of the systems (5.46) and (5.47) are 
equivalent respectively to that  of the following time-invariant discrete-time 
systems: 

/o ~(k + 1) = (/1 + [?2F~)~(k), /1 = e Ar , [?2 = eAtdtB2, 

((k + 1) = (.zi + [tsC2)((k) ,  [Is = eArgs .  

From (4.167) the controller given by 

[0 
[ I + H~C2 0 

u(k) = [F~(I + H~C2) 0] ~2 

is optimal. Since 

X2 

~2(kr +) 

we can rewrite (5.48) as 

X 

~(kr  +) 

= O, k T < t < ( k + l ) r ,  

= F~(I + H~C2)Ycl(kT) - F~Hsy(k),  

= Aa? + B2~(t) ,  kr  < t < (k + 1)r, 

= (I  + HsC2)~.(kT) - Hsy(k) ,  (5.49) 

= Fs(I  + HsC2)Jc(kT) - -  F~Hsy(k) 

where ~ is given by ~(t) = F~(I + HsC2)Yc(k~-)- FsH~y(k),  kr  < t <_ (k + 1)r. 
The controller (5.49) is equivalent to the following discrete-time controller 

~(k + 1) = ~i~(k) + By(k),  (5.50) 

u(k) = d~(k~)  + Dy(k) 

where 

= F. + F,H~C2, 

D = - F s H s .  
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Finally the optimal value is given by 

min II G I[~ KEK 

tr. [B i 01 LX,2 X2 J (.) ] ds 

+tr.[rI + X2(O)]J [F. 0] [ [I + Y(O)C~C2]-iY(O)O ~] 

/; _ 1 tr .B~Xl(s)B~ds+tr.[ri+X2(O)]Fs[l+Y(O)C~C2]_ly(O)F,.  
- -  T 

Since Y(0 +) = [I + Y(O)C;C2]-IY(O) we can rewrite minKeK [I G [[5 as 

/; rain [[ G 1122 _ _1 tr.B~Xl(s)Blds 
KEK T 

+tr.[TI + X2(O)IF, Y(O+)F j. (5.51) 

Summing up we have the following. 

Theo rem 5.7 Assume SI-S4 and consider the H2-problem for Gs. Then the 
controller (5.49) (and hence (5.50)) is optimal and the minimum H2 norm 
is given by (5. 51). 

We now compare our results with the known results in [2, 8, 50]. By (5.40) 
for kT < t <_ (k + 1)r we have 

[ xX12 X12 x~ ] (t) 

__ [o " o]O [o" 

+e[O A BO2]'((k+1)'-t)[x,((k~l)r- ) O0]e[OA 

Since 

we have 

x~(t) 

B2 ] (r- t) 
0 J dr 

[ ] e 0 t = eA t  f o e A t d t B 2  

0 I ' 

eA'((k+l)r-t)Xl((k + 1)T-)e A((k+l)r-O 
r(k+l)r 

. I ~A'(r-t)g-~tr '* ~ A ( r - t ) ~ _  
u- I c v 1 t-~ 1 ~ ~1, Jt 

B2] ( (k + l ) r - t )  
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x,~(t) 

x~(t) 

= eA'((k+l)r-t)Xl((k + 1)r- )  f (k+l)~-~ eA*dsB2 
dO 

i (k+l)r L r-t + eA'(r-t)C~C1 eASdsB2dr, 
Jt 

t f(k+l)r-t i (k+l )r - t  
e dsXl ( (k  + 1)T-) eA'~dsB2 = B2 ]0 A's 

JO _t_/(k+l)rB;Lr-teA'SdsC~C1Lr-f'eASdsB2dr 
and 

Xl (kr)  = 

X12(kr) = 

X2(kr) = 

where 

] t 'Xl( (k  + 1)T-)A + d[dl ,  
7t'Xx((k + 1)r-)/)2 + 01D12, 

r t , t 

[~fi 1 [6"~1 /)12]---- L re[0A r D12 ] [ 0A 
D12j  [D12 ] e 

Hence the Riccati equation (5.40) and (5.41) is equivalent to 

BO tdt" 

St (k+l)r  , X(t) --= eA'((k+l)r-t)Xe A((k+l)T-t) + e A (r-t)C~CleA(r-t)dr, 

kT <_ t < (k + 1)r, 

2 = i i ' 2 ~ + O ~ d l  

- (A'X/)2  + O[D12)(D~2D12 + D;kD2)-I(D;2A + b~2dl) 

where 2 = X x ( k r - )  = X~(0-). Similarly the Riccati equation (5.44) and 
(5.45) is equivalent to 

s (1 Y(t)  = eA( t -kr)y(kr)e  a'(t-kr) + e A(t-r) BaB~)eA'(t-r)dr, 
T 

kr < t <_ (k + l)r, 

Y ( ( k  + 1)r) = A,Y(kr)7t' + [31[~'1 

- f f Y ( k r ) C ; ( I  + C2Y(kr )C~)-XC2Y(kr )A  

where B1[3~ = Lr fo eAt S l  B~ eA' t dt" We also have 

Fs - ( 12D~ + D ; 2 / ) ~ ) - I ( D ; 2 A  + D12Cl), 
-f-Is = A H ,  = - f i Y ~  + C 2 Y ~  -1 yO = Y(O). 
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R e m a r k  5.5 The optimal controller (5.50) is obtained via the two algebraic 
Riccati equations: 

2 = .4 '2.4 + d'~d~ 

- ( . 4 ' 2 h  2 -~- d[/~12)(/~2/~12 -~-/)~2/)2)- 1(/);)?.4 + D~2Cz), 
y0  = / iy0  ~, +/}1/~I - .A'Y~ I + C2Y~ Y~ 

5 . 4  N o t e s  a n d  R e f e r e n c e s  

This chapter is based on [36, 37]. 
The transformation of sampled-data system into jump systems was intro- 

duced in [68]. The notion of pathological sampling periods and its related 
results can be found in [8]. The Hoo problem for sampled-data systems is 
originally solved using the so-called lifting technique [3, 8, 25, 76, 88]. An 
advantage of the jump system approach is that original systems are main- 
tained in the formulation and the results are regarded as an extension of 
those for continuous- and discrete-time systems. The jump system approach 
is adopted in [64, 68, 77]. Necessary and sufficient conditions for the existence 
of a ~/-suboptimal controller are given in [68]. The equivalence of the jump 
system approach and the lifting technique is discussed in [64]. 

The H2 problem in Section 5.3 can be solved using lifting or FR-operator 
approach [2, 8, 24, 50]. The solution using the jump system representation is 
found in [37]. The H2 and Hoo problems can be considered within the same 
framework if the jump system approach is adopted. 



6. Further D e v e l o p m e n t s  

In this chapter we give some further developments in the theory of jump sys- 
tems. One is an extension to infinite dimensions, which can describe sampled- 
data  systems with first-order hold and of course sampled-data distributed pa- 
rameter  systems. We also introduce fuzzy jump systems which can represent 
sampled-data nonlinear systems. 

6 . 1  J u m p  S y s t e m s  i n  I n f i n i t e  D i m e n s i o n s  

Consider the jump system Gj :  

J: = A x  + B l w ,  k7- < t ,~ (k + l)T, • > 0, 

x ( k r  +) = Adx(kT)  + B2u(k) ,  k = O, 1,2, . . ,  

z = zd(k) = LD12u(k )J '  

y(k)  = C2x(kT) + D21wd(k) 

w h e r e x  E H,  u E U, w E W ,  wd E Wd, zc E Zc, Zd E Z4, y E Y ,  A is the 
infinitesimal generator of a Co-semigroup Si t  ) in a separable Hilbert space H,  
the input and output  spaces W ,  U, Wd, Zc, Zd, and Y are all separable Hilbert 
spaces and the operators B1, Ad and so on are all bounded linear operators in 
appropriate spaces i.e., B1 c s  H) ,  Ad E s etc. The inner products  in 
Hilbert spaces are denoted by < . ,  �9 > and the norm for vectors and operators 
are denoted by I �9 1. The abstract  system Gj  is useful when we consider 
parabolic equations, hyperbolic equations, delay differential equations and 
neutral equations with sampled-data control or impulse control. The  (mild) 
solution of G j  for a locally Bochner integrable w is defined in a piecewise 
manner  as follows: 

x( t )  = S( t  - k r ) x ( k r  +) + S( t  - r ) B , w ( r ) d r ,  k r  < t < (k + 1)T. 
T 

It is left-continuous with jumps at kr .  Let S(t,  r)  be the fundamental solution 
of the homogeneous part  of (6.8). Then  it is r-periodic i.e., S(t  + T, S + r)  = 
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S(t, s) for any t > s > 0. We can express x(t) with x(0) = x0 as 

t k 

x(t) = ~o S(t ,s)Blw(s)ds + E S(t ' jT+)S2u(j)  + S(t,O)xo, 
j = 0  

0 < kr  < t <_ ( k +  1)z. 

We assume 

H I :  
H 2 :  
H 3 :  
H 4 :  

D~2D12 = I, 
D21D~1 = I, 
([A, Ad], [B2, 0], [C1, 0]) is stabilizable and detectable, 
([A, Aa], [0, BI], [0, C2]) is stabilizable and detectable. 

In this section we give an extension of Theorems 4.10, 4.11 and 4.24 with 
Hh -- 0 to infinite dimensions, we only give main results and omit their 
proofs although they are direct generalizations of those in Section 4.2 but  
are beyond the scope of this book. Instead we apply them to sampled-data 
systems with first-order hold. 

6.1.1 t t ~  Contro l  

Consider the system G~ and an internally stabilizing controller u = Ky of 
the form 

f~ = ,i(t)p, k~ < t < (k + 1)~, 

p (kr  +) = Ad(k)p(kT) + B(k)y (k ) ,  

u(k) = C(k)p(k~-) + D(k)y(k)  

(6.1) 

where A(t) generates an evolution operator in some Hilbert space /?/ and 
all other operators are linear and bounded and their norms are bounded 
uniformly in t. Then  

G E s oo; W) x /2(0 ,  oo; Wd); L2(0, oo; Zc) x /2(0, oo; Zd)). 

The Hoo-control problem for G j  is to find necessary and sufficient conditions 
for the existence of an internally stabilizing controller such tha t  [[ G [[ < "y 
(7-suboptimal). 

As in Section 4.2, we introduce the following Riccati equations: 

- J (  = A*X + X A  + C[C1 + -~sXBIB~X, 

kT < t < (k + l)r, 
A~X(kr)Ad �9 -1 

- (R2T ~ R2)(k), X ( k ~ - )  = 

? = A Y  + YA* + BIB~ + ~2YC~C1Y, 

(6.2) 
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Y(kT +) = 

Y(O) = 

kT < t < (k + l)r ,  

A d Y ( k r ) A .  d �9 -1 - (R2yT2y R2y) (k ) ,  

0 

(6.3) 

(6.4) 

with 
T2(k) = I + B~X(kT)B2 ,  R2(k) = B ~ X ( k r ) A d ,  
T2y(k)  = I + C2Y(kr )C~,  R2y(k)  = C2Y(kr )A*  d 

and the Riccati equation depending on X: 

2 

Yz(k) 
Z(kr +) 

z(o) 

1 1 
= (A + - ~ B 1 B ; X ) Z  + Z ( A  + - ~ B 1 B ; X ) *  + B1B~, 

kr  < t < ( k + l ) %  

> aI  for some a > 0, (6.5) 

= AdZ(k'r)A~ - (R~zT2zlR2z)(k)  + (F~*zVzFyz)(k), 

---- 0 (6.6) 

where 

Tl z ( k )  = ~/2I - T2�89 R2Z(k~')R~T2 �89 
_ I ~  

R l z ( k )  = T 2 2 R2Z(kT)A.d, 

S z ( k )  = C2Z(k r )R~T~  �89 
F l z ( k )  = [ V z I ( R I z  - S ~ T ~ R 2 z ) ] ( k ) ,  
F2z (k) -- -[T2--z 1 (R2z T S z  Flz)] (k). 

T2z(k) = I + C2Z(k~)Ci, 

R2z(k) = C2Z(kT)A~, 

Yz(k) = [Tlz + S i T ~ & ] ( k ) ,  

An operator X is called a mild solution of  (6.2) if it is right-continuous and 
satisfies 

X ( t ) x  = S*(r - t ) [C~C1 + X ( r ) B 1 B ~ X ( r ) ] S ( r  - t )xdr  

+S*(s  - t ) X ( s ) S ( s  - t)x,  kr  < t < s < (k + 1)7-. 

Mild solutions of (6.3) and (6.5) are defined in a similar manner. As in Section 
4.2, the solution X of (6.2) (Y of (6.3)) is called stable if (A+ ~I-~B1B~X, Ad - 

B2T21(O)R2(O)) is exponentially stable ((A + ~J~YC~C1, Ad -- R~yT2~C2) is 
exponentially stable, respectively). Similarly the solution Z of (6.5) is called 

1 
* C  stable if (A + ~ B 1 B ~ X ,  Ad + F~T2~  R2 + F~ 2) is exponentially stable. 

T h e o r e m  6.1 Consider the system G j  and assume H 1 - H 4 .  

(a) There exists a "y-suboptimal controller u = K y  o] the form (6.1) i f  and 
only if the following conditions hold: 
(i) There exists a r-periodic nonnegative stabilizing mild solution X of (6.2). 
(ii) For the solution X in (i), there exists a bounded nonnegative stabilizing 
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mild solution Z of (6. 5) and (6. 6). 
(b) In this case the set of all y-suboptimal controllers is given by 

= [A + ~ B 1 B ; X ( t ) ] p ,  k?, < t < (k + 1)?', 
[ 

p(k?, +) = Ad(k)p(k?,) + Bl (k)y(k)  + B2(k)s(k),  

u(k) = C(k)p(k?,) + [91(k)y(k) + L)2(k)s(k), 
1 _  

g(k) = T2~ (k)[-C2p(k?,) + y(k)], 

s = Qg, Q � 9  

where 

and 

Ad(k) = (Ad - B2T21R~.)qd(k), 
[t1(k) = (Ad -- B2T~IR~)Z(k?.)C~T~I(k) ,  
B 2 ( k  ) _ 1 * 1 �89 ~([FI + B2T 2 :]V~ )(k), 

Dl(k)  = -T21R2Z(k? . )C~T2 l ( k ) ,  
�9 ( k )  = z - Z(k?.)CiTg (k)C: 

C(k) = -T21R2qd(k),  

D2(k) = 1 T - � 8 9  2 

Q~ = {Q �9 s cc;Rm2)):  

Q is of the form (6.1) and internally stable with ]] Q [] < "y}. 

(6.7) 

Moreover, Zr (t) = limn-.c~ Z(t  +n?.) exists and it is a ?'-periodic nonnegative 
stabilizing mild solution of (6. 5). 

T h e o r e m  6.2 Consider the system Gj  and assume H1-H4. 
(a) There exists an internally stabilizing controller u = K y  of the form (6.1) 
such that I[ G II < y if and only if the following conditions hold: 
(i) There exists a ?'-periodic nonnegative stabilizing solution X of (6. 2). 
(ii) There exists a bounded nonnegative stabilizing solution Y of (6.3) and 
(6.4). 
(iii) p ( X Y )  < d 2, t > O, for some 0 < d < y, where p is the spectral radius. 
(b) In this case the set of all y-suboptimal controllers is given by (6.7) with 
Z(k?,) = [I - ~ Y(k?,)X(O- )]-IY(k?.). 
Moreover, Y~ (t) = limn-.oc Y (t + n?.) exists and it is a ?'-periodic nonnegative 
stabilizing mild solution of (6. 3). 

Note that necessary and sufficient conditions and ?'-periodic controllers 
may be obtained in terms of X, Yr and Z~. 

6.1.2 H2 Con t ro l  

Consider the system 

2, = Ax  + Bw,  kr  < t < (k + l)r,  
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x(kT +) = Adx(kT) + Bdwd(k), (6.8) 

Z c ~ Cx~ 

zd(k) = Cdx(kT) + Ddwd(k) 

where operators except A are linear and bounded. Assume that  (A, Ad) is 
exponentially stable. We introduce H2 norm of the system (6.8). Let Tz~ and 
T ~ ,  be the operators given by 

/o [ z~(t) ] C S(t, r)Bw(r)dr 
z = [zd(k)j = T ~ w  = f k ,  

Cd Jo S(kT, r)Bw(r)dr 

and 

[ zc(t) ] 
z = L z d ( k )  j = T z ~ . w .  = 

C ~ S(t, jT +)Bdwd(j) 

k-1 0 < kT < t ~_ (k + 1)T I 
Cd ~ S(kT, j~'+)SdWd(j) + Ddwd(k) J 

j=O 

respectively. Let (e,) and (f j)  be the orthonormal bases in W and Wd re- 
spectively. As in Section 4.1.2 we consider the impulse w(t) = ~(t - s)ei, 
0 < s < T. The resulting output  will be denoted by Tz~( t  - s)ei. We also 
consider the input Wd with Wd(O) = fj and wd(k) -~ 0 for all k > 1. We de- 
note its output  by Tz~af.o]j. Then Tz~5(t - s)e~ c L2(s, oc; Zc) • 12(O, oc; Zd) 
and TzwdS.ofj C L2(0, c~; Zc) • /2(0, oc; Zd) where 12(0, oo; Zd) is the space 
of square summable vectors in Zd. Define 

i 
O O  

P(s)x = S*(t,s)C*CS(t,s)xds, 

Pd(S)X = ~ S*(kr ,  s)C~CdS(kT,  s )x .  
k=l 

Then < Be,, [P(s) + Pu(s)]Be~ >=11 - s)e, and 

< Bdfj, [P(O +) + Pd(O+)]Bdfj > + < Da.fj, Dd.fj >=H T=~a5.ofj �9 

In order to introduce the H2 norm to (6.8) we assume one of the following 
conditions: 

(i) B, Bd and Dd are Hilbert-Schmidt operators. 
(ii) C, Cd and Dd are Hilbert-Schmidt operators. 
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Then in either case B*[P(s)  + Pd(s)]B is a trace class operator  ([22]) and 

tr .B*[P(s)  + Pd(s)IB = ~ < Bei, [P(s)  + Pd(s)]Be~ > <  oo 
i = 1  

where tr. denotes the tra~e of operators. Now we define the H2 norm of (6.8) 
as follows: 

oo 1 I1 T ~ 5 ( .  - s)ei 2 
- IlL2• ds + II TzwaS.ofj I1~• - II c II = T 

i=l j= l  

Consider 

- L o  = A * L o + L o A + C * C ,  k r < t <  ( k + l ) r ,  (6.9) 

L o ( k T - )  = A*dLo(kz)Ad + C~iCd. 

Since (A, Ad) is stable, there exists a unique nonnegative T-periodic mild 
solution Lo. It  is called the observability gramian. Similarly there exists a 
unique nonnegative T-periodic mild solution Lc of the equation 

Lc = AL~ + L~A* + 1 B B * ,  kT < t < (k + 1)T, 
T 

Lc(kT +) = AdLc(kT)A*d + BdB~, (6.10) 

which is called the controllability gramian. We can express II G 112 in terms 
of Lo or L~. 

T h e o r e m  6.3 

II G 115 lfo  - - t r .B*Lo(s )Bds  + tr.[BdLo(O)Bd + D~Dd] 
T 

L" = tr.CeLc(O)C~ + t r .CL(s)C*ds .  (6.11) 

Recall the jump system Gj :  

~c = Ax  + Bxw, kr  < t < (k + l )r ,  

x (kT +) = Ad x (k r )  + B2u(k) ,  

z Zd = [D12u(k) ' 

y(k) = C2x(kT) + D21wd(k). 

Now we introduce the H2-control problem. Consider feedback controllers u = 
K y  of the form 

p = lip, k T < t < ( k + l ) T ,  

p(kT +) = .~dp(kT) + [3y(k), (6.12) 

u(k) = dp(kT) + by(k) 
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where A is the infinitesimal generator of a C0-semigroup in a separable Hilbert 
space/ : /and other operators are linear and bounded. It is said to be internally 
stabilizing if the closed-loop system is exponentially stable. We assume one 
of the following: 

(i) B1 and D21 are Hilbert-Schmidt operators. 
(ii) C1 and D12 are Hilbert-Schmidt operators. 

In either case the H2-norm of the closed-loop system is well-defined. Our 
H2-problem is to find an internally stabilizing controller K which minimizes 
II G 112. Under the assumptions H1-H4  we have the following result: 

L e m m a  6.1 (a) Suppose H1 and H3 hold. Then there exists a unique 7-- 
periodic nonnegative mild solution of the Riccati equation: 

f~ = A * X  + X A  + C[C1, kr  < t < (k + 1)T, (6.13) 

X ( k T - )  = A~X(kr )Ad  - (R~T~IR2)(k) ,  

which is stable, i.e., (A, Ad + B2F) with F = T21(O)R2(O) is exponentially 
stable where R2(k) = B ~ X ( k r ) A d  and T2(k) = I + B~X(k~-)B2. Under the 
condition (ii) X is a trace class operator and t r .X  (') is uniformly bounded. 
(b) Suppose H2 and H4 hold. Then there exists a unique ~--periodic nonneg- 
ative mild solution of the Riccati equation: 

= A] ~ + YA* + 1 B I B { ,  k7 < t < (k + 1)T, (6.14) 
T 

Y(kT  +) = AdY(k~)A* d - ( R ~ y T ~ R 2 y ) ( k ) ,  

which is stable, i.e., ( A, Act + H C2 ) with H = - R~y ( O ) T ~  (0) is exponentially 
stable where R2y(k)  = C2Y(kT")A* d and T2y (k) = I + C2Y(kT)C~. Under the 
condition (b) Y is a trace class operator and tr.Y(-) is uniformly bounded 

Define the stabilizing controller based on the feedback gain F and the 
observer gain H: 

= Ap, k T < t < ( k + l ) ~ ,  

p(k~ "+) = (Ad + B2F + HC2 - B2LC2)p(kr) 

- ( H  - B2L)y(k),  (6.15) 

u(k) = ( F -  LC2)p(k~-) + Ly(k)  

where L = FY(O)C~T~(O) .  

T h e o r e m  6.4 Consider the H2-problem for (~j. Then the controller (6.15) 
is optimal and 

minll a I1~ _ _1 tr.B~X(s)B~ds 
K T 

+tr.T2(O)F[I + Y(O)C~C2]- 1Y(O)F*. (6.16) 
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6.1.3 Sampled-data Systems w i t h  F i r s t - o r d e r  Hold 

We apply the main results in Sections 6.1.1 and 6.1.2 to the sampled-data 
system (~s in Chapter 5: 

= Ax( t )  + B ,w( t )  + B2O(t), 

z(t) = [ c ~ x ( t ) ]  
Dl'2u(t) ' 

y(k) = C2x(kT) + D21wd(k) 

where fi is realized through a first-order hold. Then 

(t(t) = u(k) + t -  kr  [u(k) - u(k - 1)], kT < t < (k + 1)T. 
T 

Let ,4 be the operator on M2 = R 2m~ x L2(-T, 0 ; R  2m~) given by 

D(~i) = 

(6.17) 

Aoi6(0) + Alp(--T) ] 
d~/ds J ' 

{ [~I0~] : 15(-) absolutely continuous, 

ds ~ L2(-r'0; R2m~) 

(6.18) 

and fi(t) -- p2(t). Then except for an additional output  zd, Gs is equivalent 
to the system 

[ ; ]  [~0 ~ 0 ] [ ; ] ~ [ . ~ 0  ] .w(t), A2=[0  B2], 
J 

~(k~ +) J 

zc(t) 

zd(k) 

y(k) 

o [~(k~lJ + 
0 

[C1 0 915 0 ] I x ( t ) ]  
[~(t) ' 

Ddu(k), 

[c~ o 0] [x(kr)] [15(kr) + D21wa(k). 

u(k), 

-),p2(t + .)], we can rewrite (6.17) as 

= An,  ~(0)  = 0, 

~,~+, [00 ~]~,~,~ [~0~]~,~, ~= [~] 

~heroAo A, [ ~  0] Then it is the in~nitosimal ~ooerator of ~ 
strongly continuous semigroup on M2. Setting i~(t) = [pl(t) ,p2(t) ,pl( t  + 
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We assume the following: 

(i) D'dDd = I, D21D'21 = I. 
(ii) (A, BI,  C1) is stabilizable and detectable. 
(iii) There exists a stabilizing feedback of the form 

f u(k) = Klx(kT) a_ K2u(k - 1) + Ka(s)gz(kr + s)ds. 
T 

(iv) ([0, C2], [A, I]) is detectable. 

Then the assumptions H 1 - H 4  are satisfied and we can apply Theorems 6.2- 
6.4. ]f we set D'dD8 = eI and let e -~ 0, we obtain the limiting case Gs and 
(6.17). We now derive Riccati equation for the Ho~-control problem. For this 
purpose we set X = [Xij], i , j  = 1,2, 3. Then X13 �9 s 0; R2m2), H)  
and we denote by Xla(t, s) the kernel of X13(t) i.e., 

X13(t)p(') = I ~  r X13(t, s)p(s)ds, p(.) �9 L 2 ( - r ,  0; R2m~). 

Similarly we denote the kernel functions of X 2 3  , Xaa respectively by X23 (t, s), 
Xaa(t, s, r). Using the definition of A and (6.2) we obtain the following Riccati 
equation: 

-21~ (t) 

Xn(kr-) 
-Xh2( t )  

X12(k'r-)  

O x~a (t, s) 

Xla(t,  - r )  

Xla (kr- ,  s) 

-P(22(t) 

X22 (kT-) 

-~X2a (t, s) 

1 
A'Xt,( t)  + Xl l ( t )A + C~C1 + -~X11(t)BIB~lXn(t), 

= X l l ( k ~ ) - X 1 2 ( k r ) ~ ( k ) X 2 1 ( k ~ ) ,  

= A'X12(t) + X12(t)Ao + Xla(t,O) + Xn(t)A2 

+~-~2X11(t)BIB~X12(t) + C~ [O D12], 

~-~ 07 

= osC9 X13(t, s) + A'Xla(t, s) + -~Xn(t)BIB~X13(t) ,  

= X12(t)A, (6.19) 

= X13(kr, s) - X12(kr)~(k)X23(kr), 
i t = XoX22(t) + X22(t)Ao + A2X12( ) 

+ + , 0 
+X21(t)A2 ~ X 2 1 ( t ) B I B ~ X l l ( t ) [ ~  D12D12 ] , 

O, 

= 0 X23(t, s) + XoX2a(t, s) + A~X13(t, s) 
Os 

+Xaa(t ,  O, s) + -~X21(t)BIB~Xla(t), 
7" 
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X23(t,--T) = X22(t)A1, 
X 2 3 ( k r - , s )  = o, 

O X33(t,s,r) = _(0__ cO _~ Ot Os + -~)X33(t,s,r) + X31(t,s)BiB'lX13(t,r), 

X33(t,-7-,r) = A'lX23(t,r ), 
X33( t , s , -r )  = X32(t,s)A1, 

X33(kT-, s, r) -- X33(kT", s, r) - X32(k'r, s)~(k)X23(kT, r) 

where T22(k) = I + B'dX22(kr)Bd and (I)(k) = BdT~I(k)B~ d. Setting Y = 
[Y,j], i , j  = 1, 2, 3 we can derive a similar Riccati equation to (6.19). Since Y,j 
form a homogeneous system, we seek for a solution with Yij = 0 and Y -- Yll 
satisfying 

= AY + YA'  + BIB~ + -~YC[C1Y, 

kr  < t < (k + 1)T, (6.20) 

Y(kT +) = Y(kT)[I + C~C2Y(kr)] -1. 

Since ([A, I], [0, (72]) is detectable, there exists an unique stabilizing solution 
of (6.20). The controller (6.7) is written as 

[A +-~B1B~X,,(t)12 + [A2+ ~B,B~X12(t) l  ~ X 

k 
p = Ao~(t) + Al~(t - T), kT < t <_ (k + 1)% (6.21) 

~(kT +) = Mll~(kT) + M12y(k) + M13s(k), 
~(kT +) = M21~(kT) + M22y(k) + M23s(k) 

-~(0)  X23(kT, s)IS(kT + s)ds, 
T 

,4k) = N~,(kr)  + N~y(k) + ga~(k) 

f - T ~  ~ (O)S'd X~3 (k~-, ~)~(k~- + ~)a~, 
T 

1 

g(k) = T2~(k)[-C2~(kr) + y(k)], 

s = Qg, IIQll~< 
where W(k) = [I - ~l-'~Y(kT)Xll(O-)]-I and 

i l l ( k )  = I -  W(k)Y(kT)C~T21(k)C2, 
M12(k) - Mll(k)W(k)Y(kT)C~, 

M13(k) = - 1 F ~ V  �89 
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M21(k) = -(I)(0)X21(kT)M11(k), 

M22(k) = M2, (k )W(k)Y(kT)C~,  

M23(k) 1 1 , - BdT22: (O)V~ (k), 
7 

gl (k)  = - T ~  l(0)B~X21(kT)M11(k), 

N2(k) = Y l (k )Y(kT)C~ ,  
1 _ . t  

N3(k)  = -:r~2~ (0 )V~(k ) ,  

T~(k) = .y~I - T~-2 �89 (O )B 'dX~ (k~ - )W(k )Y (k~ - )X~ (kT )BdT~  �89 (0), 

T2(k) = X + C2W(k )Y (k - , - )CL  
1 

R l ( k )  = r~(O)B'dX~(k~-)W(k)Y(k~-) ,  
R2(k) = C~W(k)Y(k~-), 

1 

S(k) = C~W(k)Y(k~-)X,~(k~)BdT~'(O), 
V(k) = (T, + S'T;~S)(k) ,  

Fl(k) = [V-I(R1 - S'T21R2)](k).  

Summing up we have the following. 

T h e o r e m  6.5 (a) There exists a ^/-suboptimal controller for the system Gs 
if and only if  the following hold: 
(i) There exists an T-periodic nonnegative stabilizing mild solution X to the 
Riecati equation (6.19). 
(ii) There exists a bounded nonnegative stabilizing mild solution Y to (6. 20) 
with Y(O) = O. 

(iii) p /X~lY / (t) 
LXslYJ 

(b) In this case the set 

We now derive two 
the definition of .4 and 

- . r  

X l l ( k V - )  

Xl2(kr-) 

~tX13 (t, s) 
Xls(t, --r) 

X~s(k~'-, s) 

<_ d 2 for any t E [0, ec) and for some 0 < d < 7. 

of all 7-suboptimal controllers is given by (6. 21). 

sets of Riccati equations for the H2 problem. Using 
(6.13) we obtain the following Riccati equation: 

= A 'XI l ( t )  + X l l ( t ) A +  C~C1, 

= X l l ( k ~ )  - X12(kT)~(k)X21(k~), 
= A'X12(t) + Xl2(t)Ao + X13(t,O) 

+ X l l ( t ) A 2 + C  i[O D,2], 

= 0~ 

0--~Os X13(t, s) + A'X13(t, s), 

= X12(t)A, 

= Xl3(kT, s) - Z12(kT)@(k)X2s(kT), 
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-222( t )  = AoX22(t)' + X22(t)Ao + A2X12 ( '  t) 

D I 2  12 ' 

X22(kr-) = O, 

~ X23(t,s) - 0 g-sX23(t, s) + A'oX23(t, s) 

+A~2Xl3(t, s) + Xa3(t, 0, s), 

X23(t, --T) = X22(t)A1, 
X23(kT-, s) = 0, 

~ x~3(t,s,~) = _ ( o  o x i:gs ~- (-~r) 3 3 ( t , s , r ) ,  

X 3 3 ( t , - - T , r )  = A ' l X 2 3 ( t , r  ), 

X33(t,S,--T) = X32(t,s)A1, 
X 3 3 ( k T -  , s ,  r )  = X 3 3 ( k T  , s, r)  -- X32(kT ,  s)ff2(lc)X23(kT, r )  

(6.22) 

where T22(k) = I+ B'dX22(kT)Bd, r = BdT~21 (k)B' d. The Riccati equation 
(6.14) is reduced to 

~" = A Y  + YA'  + 1B1B~, 
T 

Y(kT +) = Y(kT)[I + C;C2Y(kT)] -1 

(6.23) 

Since ([A, I], [0, C2]) is detectable, there exists an unique stabilizing solution 
of (6.23). Hence from Theorem 6.4 we conclude that  tile Riccati equations 
(6.22) and (6.23) have unique v-periodic nonnegative stabilizing solutions. 
The optimal controller is given by 

~:(t) :: A~(t) + A2~(t), 
~(kT +) = [I -- Y(O)C~(I + C2Y(O)C~)-Ic2]~;(k7 -) 

+Y(O)C~(I + C2Y(O)C~)-ly(k), 

/5(t) := Ao~(t) + A l ~ ( t -  T), 

l ~5(kT +) = -O(O)[Xm(O)Y:(kT) + X23(0, s)I~(kT + s)ds 
T 

+x~, (0)Y(0)c~(I + c~Y(0)c~')- ~y(k)], 

u(k) = -T2~IB~[X~I(0)~(kT) + X23(0, s)~(k~ + s)as 
T 

+x21 (o)Y(O)C; (I + C2Y(O)C;)-'y(k)] 

and the optimal value is given by 

/o 1 tr.B~X(s)Blds min II Gz~ II 2 T 
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+tr.T~lBPdX21 (0)(I  + Y(O)C~C2)-1y(o)x12(O)Bd 

lfo" = - t r .B ' lX ( s )B lds  + tr.T2-21B~X21(O)Y(O+)X~2(O)Bd. T 

6.2 S a m p l e d - d a t a  Fuzzy  S y s t e m s  

Takagi-Sugeno fuzzy models are nonlinear systems described by a set of IF- 
T H E N  rules which gives a local linear representation of an underlying system. 
Such models can approximate  a wide class of nonlinear systems. They  can 
even describe exactly certain nonlinear systems. In this section we consider 
a sarapled-data fuzzy systems and give a design method of output  feedback 
controllers. 

6.2.1 S a m p l e d - d a t a  F u z z y  S y s t e m s  

Consider the following I F - T H E N  rules: 

I F  zl is Mil and --- and z v is Mi,  
T H E N  ~(t) = A~x(t) + B~2(t), (6.24) 

y(k) = Cix(kT),  k = 0, 1 , 2 , . - - ,  i = 1 , - - . , r  

where ~- is a sampling period, x(-) E R '~ is the state, fi(.) E R TM is the control 
input realized through zero-order hold, i.e., z2(t) = u(k),  kT < t <_ (k + 1)T, 
y(-) C Rq is the sampled observation, the matrices A~, B~ and C~ are of 
appropriate  dimensions, r is the number  of I F - T H E N  rules, Mij are the fuzzy 
sets and Zl, �9 �9 Zp are premise variables. Mij (zj) denotes the grade of zj being 
in the fuzzy s e t M i j ,  0 < M i j ( z j )  < 1. W e s e t z =  [Zl --- Zp] and assume 
that  z is a given function. Then the s ta te  equation and the output  are defined 
as weighted linear systems 

T 

5c(t) = E A,(z( t)){A~x(t)  + B~z2(t)}, (6.25) 
i = 1  

i = 1  

where 
P 

~, ( z )  - w , ( z )  , w~(z)  = 1-I M~j ( z j ) .  

~-~ Wi(Z) j = l  

i = 1  

We assume 

~ ( z )  _> o, i = 1 , . . .  , r, ~ w~(z) > 0, Vz. 
i = 1  
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Hence hi(z) satisfies 

hi(z)_>0, i =  1 , - . - , r ,  ~ h ~ ( z )  = 1 ,  Vz. 
i = 1  

First we consider the stabilization problem by state feedback controllers and 
assume that  the following rules are given: 

IF  zl(kT) i s  Mil and . . .  and zp(kT) is hlip 
T H E N  f i ( t ) = u ( k ) = F ~ x ( k r ) ,  k r < t < ( k + l ) T ,  i = l , . . - , r .  

This says that  the state feedback u(k) = Fix(k7) is suitable for the i-th 
system (6.24). Then the natural choice of the controller is the following: 

r 

~(t) = E hi(z(kT))F~x(k~-), k~" < t <_ (k + 1)T 
i = 1  

(6.26) 

where we use the same weights hi(z) as in (6.25). Now consider the closed- 
loop system (6.25) with (6.26). As in Chapter 5 we express the closed-loop 
system (6.25) with (6.26) by the jump system 

~(t) = ~-~hi(z(t))G, xc(t), k T < t < ( k + l ) T ,  (6.27) 

Xc(kT + ) 

i = 1  

r 

y~ hi(z(k~))d,xc(kr) 
i = 1  

.,] andS,= [' o F, 
O| ] Now we give sufficient 
0 j " 

conditions for the exponential stability of (6.27) based on Lyapunov functions. 

T h e o r e m  6.6 The fuzzy system (6.27) is exponentially stable, if there exists 
a bounded right continuous matrix X(t)  > a l I ,  al > O, t >_ 0 that satisfies 

J [ + G ~ X + X G i  <_ - P i < O ,  i = l , . . . , r ,  (6.28) 

G~X(k'r)G, - X ( k T - )  _~ -]5i < O, i = 1 , - - - , r  

where Pi and P1 are positive definite matrices. 

Proof. Using the first inequality of (6.28), we obtain 

2 + ,X,(z(t))ai x + x ,~,(z(t))ai 

<< ~--~ hi(z(t))[2 + G~X + Xa, l  
i = 1  

< - c I  
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for some c > 0 with P, >_ cI. At t = kT- we have 

I . 

= ~ ~(z(k~))[d'~X(kr)d~ - X(k , - ) l  

i < j  

and by the second inequality we also have 

+ [ ~ x ( k ~ ) O ,  + a '~x(k~)a~ - 2X(k~--)] 
< - ( P ,  + P j ) .  

Hence we obtain 

A,(z(k~))d, X(k~) ~,(z(k,))d, - X(k~-)  < - d  

for some ~ > 0 with/5~ > dI. As in the proof of Proposit ion 4.2, we can show 
the assertion. | 

Now cor~sider f~r (6.25) an observer of the form 

~(t)  = ~--~ A i ( z ( t ) ) { A i i ( t )  + BiS(t)},  
i = I  

i (k~ -+) = i (k ' r )  + K i y ( k  ) - 9(k)l  

where ~)(k) is given by 

r 

i = l  

(6.29) 

IF 
TH]~N 

zl is M~I and - . -  and zp is M,p 
J:(t) = A,:~(t) + B ~ ( t ) ,  kr  < t < (k + 1)r, 
Sc(kT +) = &(kT) + K , ( y ( k )  - 9(k)) ,  i = 1 , . . . , r .  

We wish to find K such tha t  e(t) = x( t )  - ~(t)  -* 0 exponential ly as t -* ee. 
We assume tha t  the following rules are given concerning an observer of each 
subsystem in (6.24): 
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We propose the following observer gain: 

r 

K = E ~,(z(k~))K,. 
i = 1  

(6.30) 

Substituting (6.30) into (6.29), we have 

r 

~(t) = E A ' ( z ( t ) ) { A ' k ( t )  + B~fi(t)}, kT < t < (k + 1)% (6.31) 
i = l  

3:(kr +) = ~(kr) + ~ Aj(z(kT))Kj[y(k) - ~)(k)]. 
j = l  

Subtracting (6.31) from (6.25) with x (k r  +) = x(kv), we have the error system 

r 

~(t) = ~ Aj(z(t))A3e(t), k'r < t < (k + 1)T, 
j = l  

e(kr +1 = ~ ~ A , ( z (kT l lA j ( z (kv ) ) ( I -  KjCi)e(kr).  
i=1 j=l 

(6.32) 

We have a result similar to Theorem 6.6. 

T h e o r e m  6.7 The error system (6.32) is exponentially stable, i] there exists 
a bounded right continuous matrix Y( t )  >_ a2I, a2 > O, t > 0 that satisfies 

+ A~Y + Y A ,  

(I - K jC/ ) 'Y (kr ) ( I  - KjC/)  - Y(k~--) 

< - Q / <  0, i -- 1 , . . . , r~6.33)  

_< -Q/j <o, i , j  = 1 , . . . , r  

where Qi and Qij are positive definite matrices. 

Next we consider the output  feedback stabilization of the fuzzy system 
(6.25). Consider the controller based on the state feedback controller (6.26) 
and the observer (6.31): 

?- 

}(t) = E A i ( z ( t ) ) { A / ~ ( t )  + B/~(t)}, k r  < t < (k + 1)r, 
i = 1  

~(kr +) = 2(kr) + ~ Aj(z(kv))Kj[y(k) - ~(k)], 
j = l  

~r 

u(k) = ~_:~ , ( z (k , - ) )F ,e (kr ) .  
i = l  

(6.34) 
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Then the closed-loop system (6.25) with the controller (6.34) is equivalent to 

x(t) = ~ Ai(z(t))H,2(t), kT < t < (k + 1)% (6.35) 
i = l  

x(kv +) = ~ A~(z(kT))A d(z(kr))[-I,j~(kT) 
i = 1  j = l  

where 5: = 

[o. -~] 
Now we assume that  X(t) and Y(t) satisfy the conditions of Theorems 

6.6 and 6.7, respectively. Then we shall show that  

) { ( t ) =  [X0(t) T1Y(t)O 1 (6.36) 

for sufficiently large ~/> 0 is a Lyapunov function for (6.35). In fact 

< [~0  ~ ~ ] ~ : 1  ~ 
[ ~G~X~k~F3 Pj ] 

J~ + H~.~ + )~Hi 

[-I'~2(k~)H,~ - 2 ( k ~ - )  

Since 

i, j = l , . . , r .  

[M1, Mi~]= [ , ~] [~01 0 ~ ]I'0 M~I~I~] 
M12 M2 M~2M11 M2 - M12M 1 M12 I 

for any matrices M12, M2 and nonsingular M1, 

[ Pj -G~jX(kT)Fj ] 
- P ; x ( k ~ ) ~  , Q , j  - ~ ; x ( k ~ ) P ~  > o, i, j = 1, .., r 

is equivalent to 

~?Q,j - F;X(kT)Fj - F;X(kz)Gj(Pj)-IG}X(k~-)Fj > O, i, j = 1, .., r. 

This is always satisfied if we choose 7/sufficiently large. Hence if we can find a 
stabilizing feedback and an exponentially convergent observer, we can always 
construct a stabilizing output  feedback controller. This is a generalization of 
the separation property in the linear theory. 

T h e o r e m  6.8 Suppose there exist bounded right continuous matrices 
X(t) > alI, al > 0 and Y(t) >_ a2I, a2 > 0 that satisfy (6.28) and (6.33), 
respectively. Then the fuzzy system (6. 35) is exponentially stable. 
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6.2.2 T h e  Case  w i t h  P r e m i s e  V a r i a b l e  y 

In Section 6.2.1, the premise variable z for the fuzzy system (6.25) is assumed 
given and unspecified. Here we consider the case where the premise variable 
z coincides with the observation y of the underlying system. To make the 
output  (6.25) definite, we assume tha t  C~ = C, i = 1 , 2 , . - - , r .  Then the 
sampled-data fuzzy model is described by the following IF-THEN rules: 

I F  yl(k) is M~I and .- .  and yp(k) is Mip 
T H E N  2(t) = A,x(t) + B, fi(t), kT < t < (k + 1)% (6.37) 

y(k) = Cx(kT), i = 1 , - . - , r .  

The state equation and the output  are defined as follows: 

2(t) = ~ A~(y(k)){Aix(t) + B,~(t)}, 
i= l  

y(k) = Cx(k ) 

(6.38) 

and the output  in (6.38) coincides with the premise variables. Now the ob- 
server (6.31) becomes 

7" 

d:(t) = ~ )~i(y(k)){A,&(t) + B, fi(t)}, kT < t < (k + 1)% (6.39) 
i = 1  

:~(kT +)  = X ( k r )  + ~A~(y(k))Ki[y(k) - C 2 ( k r ) ] .  

i= l  

From Theorem 6.7, we have the following. 

T h e o r e m  6.9 The error system 

~(t) = ~ A,(y(k))A,e(t), kT < t < (k + 1)T, (6.40) 
i = l  

e(kr +) = ~ )~,(y(k))(I - KiC)e(kr) 
i = 1  

is exponentially stable, i] there exists a bounded right continuous matrix 
Y(t) >_ a3I, a3 > O, t >_ 0 that satisfies 

Y + A ~ Y + Y A i  <_ 

(I - K ,C) 'Y(kv) ( I  - K,C) - Y ( k r - )  < 

where Q~ and Q~ are positive definite matrices. 

- Q i  < o, (6.41) 
- ( ~  < 0, i = 1 , . - - , r  
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Now consider the output  stabilization of (6.38). As in Section 6.2.1, we 
take the following controller: 

~c(t) = ~ )~(y(k)){Ai~c(t) + B,~(t)}, kT < t < (k + 1)T, 
i = 1  

r 

J:(kT +) = :~(kT) + E )~J(Y(k))Ki[y(k) - C~(kT)], (6.42) 
i = l  

u(k) = ~ A,(y(k))F,~(kT). 
i = l  

Then the closed-loop system (6.38) and (6.42) is equivalent to the extended 
fuzzy system 

x(t) = ~ A,(y(k))g~2(t), kT < t < (k + 1)r, (6.43) 
i = 1  

x(kT +) = ~ A~(Y(k))I?t,jY=(kr) 
i = l  ] ] [0] 

where ~ = Hi = ~ 0 /:/, = ' ['~ a n d / ~  = -F~ 
' A i  ' I - K , C  " 

From Theorem 6.8, we obtain the following. 

T h e o r e m  6.10 Suppose there exist bounded right continuous matrices 
X(t) >_ alI, al > 0 and Y(t) > a3I, a3 > 0 that satisfy (6.28) and (6.41), 
respectively. Then the fuzzy system (6.43) is exponentially stable. 

6 . 2 . 3  T h e  C a s e  w i t h  P r e m i s e  V a r i a b l e  x 

In this section, we consider the sampled-data fuzzy models described by (6.25) 
with z = x. Then (6.25) becomes 

r 

de(t) = E )~'(x(t)){A'x(t) + B,~(t)},  (6.44) 
4 = 1  

r 

y ( k )  = 
i = l  

This class is very general and can describe the largest class of nonlinear sys- 
tems provided that  x is given. However we assume that  the only information 
available to us is the observation y. Then  the design of observers is more 
difficult. In fact the observer (6.31) with z = x is no longer feasible. However, 
if we replace z by a~ in (6.31), then we obtain a candidate of observers 

5:(t) = ~ A,(~(t)){A,~(t) + S,~(t)} ,  kr < t < (k + 1)T, (6.45) 
i = l  
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r 

~(k.  +) = ~(k.)  + ~-~(~(k~))gj [y(k)  - 9(k)] 
j = l  

where #(k) is given by 

i = l  

We can show tha t  (6.45) is an observer for the following fuzzy system, which 
can be regarded as an approximat ion of (6.25): 

x(t) = ~ A,(3:(t)){Aix(t) + Big(t)},  (6.46) 
i = 1  

y(k) = ~A,(~=(kT))C~x(kT). 
i = l  

Consider the system (6.46) and the observer (6.45), and let e = x - ~. Then 
we have 

r 

~(t) = ~ Ai(~(t))Aie(t), kT < t < (k + 1)T, (6.47) 
i = 1  

i = 1  j = l  

From Theorem 6.7, we have the following. 

T h e o r e m  6.11 The error system (6.47) is exponentially stable, ff there ex- 
ists a bounded right continuous matrix Y( t )  > a2I, a2 > 0 that satisfies 
(6.33). 

Now we assume tha t  there exists a bounded right continuous mat r ix  
Y(t)  > a2I, a2 > 0 tha t  satisfies (6.33) and consider the asymptot ic  con- 
vergence of the observer (6.45) for the original fuzzy system (6.44). For this 
purpose, we set 

?- 

f ( x , u , z )  = ~--~ Ai(z){Aix + Biu}, 
i = l  

r 

re(z) = ~ a,(z)g,, 
i = 1  

n(z) = X~, (z lC , .  
i=l 
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Then  (6.46) and (6.45) are wr i t t en  respec t ive ly  as 

k( t )  = f ( x ,  ~, it) (6.48) 

and 

J:(t) = f ( ~ , f i , ~ ) ,  (6.49) 

~(kr  +) = &(kr) + m(SJ(kT))n(S:(kr))e(kT).  

Subt rac t ing  (6.49) f rom (6.48) wi th  x ( k r  +) = x(kT)  and se t t ing  e = x - 
we obta in  

~(t) = f (x ,~ , ]c )  - f (~ , ,~ ,~) ,  (6.50) 

e(kr  +) = { I  -- m(fc(kT-))n(Sc(kr))}e(kr).  

Since there  exists  a bounded  right  cont inuous  m a t r i x  Y ( t )  > 0 t h a t  satisfies 
(6.33) and the  error  sy s t em (6.50) coincides wi th  the  sy s t em (6.47), we have 

e ' l Z e + r 1 6 2  _< - c t l e l  2, a > 0 ,  (6.51) 

4 ' l Y ( k r ) 4 1 - e ' Y ( k r - ) e  _< - & ] e l  2 , & > 0  

for any  ti, x and  & wi th  e = x - ~, where  ~bl = f ( x ,  f*, &.) - f(:~, ~, 3c), 41 = 
{ I -m(:~)n( :~)}e  and we have suppressed  k r  in 41, e in the  second inequality.  

Now consider  the  fuzzy sy s t em (6.44), which is also wr i t t en  as 

:~(t) = f ( x ,  ~z, x) 

and the  observer  (6.45). Le t  e = x - ~:. T h e n  

~(t)  = f ( ~ ,  ~, ~) - f ( ~ ,  ~, ~) 
= r + f ( x ,  ~, z )  - f ( x ,  ~,, ~), 

e(kr  +) = e(kT) - -  m ( ~ ( k r ) ) { n ( x ( k T ) ) x ( k r )  - n(~(kr) ) :~(kr)}  

= ~bl(kr) - m(&,(kr) ){n(x(kT))  - n(ba(kr))}x(kT) 

where  r = { I  - m(~,)n(~,)}e. Using (6.51) we ob ta in  

etYE + (~)1 -/t- r 
+ e ' Y ( r  + ~/32) 

(41 - 42) 'Y (k r ) (41  - 42) 

- e ' Y ( k r - ) e  

I ! _< - a  [ e [2 +~b2Ye + e Y~)2, 

< - a l e  12 +r162 
- - r 1 6 2  - r  

where  r = f ( x ,  ~, x) - f ( x ,  fz, ~.), ~2 = m(#, ){n(x)  - n ( ~ ) } x  and we have  
suppressed  k~" in 4i, i = 1, 2, e in the  second inequality.  Hence  (6.45) is an  
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asymptotically convergent observer if 

r 162  -< f i l e12  , (6.52) 

r - r162 

- r162  < f l l e (kT)  l 2 

for some /~ < (~ and fl < &. 

T h e o r e m  6.12 Assume that there exists a bounded right continuous matrix 
Y( t )  > a2I, a2 > 0 that satisfies (6.33). Then (6.55) is an observer for the 
fuzzy system ( 6 . ~ )  if there exist positive numbers fl < ~ and fl < & that 
satisfy (6.52). 

Now we consider a special case: Ci = C, i = 1, 2 , . . . ,  r. Then r = 0 and 
(6.45) is an asymptotically convergent observer if 

r  + e'Y~b.2 < t3 e ]2 (6.53) 

for some/3 < a. 

C o r o l l a r y  6.1 Suppose C~ = C, i = 1 , 2 , . . , r .  (6.45) is an observer for 
the fuzzy system ( 6 . ~ )  if there exists a positive number fl < c~ that satisfies 
(6.53). 

The  condition (6.52) is rather restrictive. Instead, we may assume (6,52) 
locally. Then (6.45) becomes a local observer for (6.44). 

Next consider the output  stabilization of (6.46). We take the following 
controller: 

~(t) = ~Ai (&( t ) ) {Aid: ( t )  + B, fi(t)}, kT < t < (k + 1)T, 
i = l  

:~(kT +) -= :~(kT) q- ~-~Aj (2(kr ) )Ki (y (k  ) - ~)(k)), (6.54) 
j = l  

~t(t) = ~ )~i(~(kT))F~x(kT). 
i = l  

I n  view of (6.35), the closed-loop system (6.46) and (6.54) is equivalent to 

x(t) = ~ ) ~ i ( ~ ( t ) ) H , 2 ( t ) , k r  < t < (k + 1)7, (6.55) 
i=1  

1" r 

i = l  j = l  

From Theorem 6.8, we obtain the following. 
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T h e o r e m  6.13 Suppose that there exist bounded right continuous matrices 
X( t )  > a l I ,  at > 0 and Y( t )  > a2I, a2 > 0 that satisfy (6.28) and (6.33), 
respectively. Then the fuzzy system (6.55) is exponentially stable. 

Under the assumptions of Theorem 6.13, we obtain similar inequalities to 
(6.51): 

i ' )?~ + %27~ + ~ ' 2 ~ 1  < - ~  I i 12, ~ > o, (6.56) 

r162 - 5:'(kT)X(kr-)i:(k~') < --~ l i (kT)  I ~, ~/ > 0 

for any ~, x and ~ with e = x - ~? where 

[!] I"Xo ] [ �9 = , ~ = , ~ t  = g(~)~ 

k f ( ~ ,  ~,, ~) - f ( ~ ,  e, ~) 1~ - ~ n ( ~ ) ~ ( ~ ) I e  

and g(z) = Y~i~  Ai(z)Fi. 

Now we consider the output  feedback stabilization of the original fuzzy 
system (6.44). The closed-loop system (6.44) with controller (6.54) is equiv- 
alent to 

~(t) 

~(kr +) 

= (t) = 

= [ { i  - 

Using (6.56) we obtain 

f (z ,  ~, x) ] 
0 

f ( x ,  ~, x) - f(:~, 5:, ~) 

x(kr)  

m( dc( kT ) )n( 2( kT ) ) }e( kT ) 
"1 

--m(:f:(kr) ) {n(x(kT) ) -- n(:f:(k'r) ) }z(k~) J " 

~ '2~ + (~t + ,I,2)'R~ + ~'R(,t,t + ,I,2) 
<- - ~  I ~ 12 + % 2 ( t ) ~  + e ' R ( t ) % ,  

(~t  - ~2 ) '2 (k~ ) ( r  - r - ~ ' 2 ( k ~ - ) ~  
< - ~ 1 ~  I ~ +r - % 2 ( k ~ ) r  - r  

where ~2 = 0 , q)2 = and we 
f ( x , 2 ,  x) f ( x , 2 ,  e ) J  m(.~){n(x) - n(a?)}x 

have suppressed kT in r i = 1, 2, 2 in the second inequality. Hence the 
controller (6.54) stabilizes (6.44) if 

~ 2 7 ~ + ~ ' 2 v 2  < ~1~12  , (6.5~) 

~'2(k-r)f( (k.r),~2(kv) - ~'2(k~-)f( (k-r)g21(kT-) 

-~l(kT-)X(kT)ff22(kT) "~ 5]~(kT)12 
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for some 6 < "y and ~ < "~. 

T h e o r e m  6.14 Suppose that the assumptions of Theorem 6.13 are satisfied 
so that (6.56) holds. Then the fuzzy system described by (6.44) and (6.5,~) is 
exponentially stable, if there exist positive numbers and ~ < "~ and ~ < x/ that 
satisfy (6.57). 

Consider the case C~ = C, i = 1, 2 , - - . ,  r. Then ~2 = 0 and the controller 
(6.54) stabilizes (6.44) if 

q t ~ . ~  + ~'.~'k92 < 6 I x ]2 for some 6 < 3'- (6.58) 

C o r o l l a r y  6.2 Suppose Ci = C, i = 1, 2 , - - - ,  r and that (6.56) holds. Then 
the fuzzy system described by (6.4~) and (6. 5~) is exponentially stable, if there 
exists a positive number 6 < 3" that satisfies (6. 58). 

If we assume (6.57) locally in ~, we again obtain local stability. 

E x a m p l e  6.1 [741 Consider a nonlinear mass-spring-damper system 

4' = - 0 . 0 2 ~ -  0.67~ 3 -  0.143 + u, (6.59) 

y = ~. 

The nonlinear terms satisfy the following condition for ~ 6 [ -0 .3  0.3] and 
e [ -0 .3  0.3]. 

{ - 0 . 0 6 0 3 ~ < - 0 . 6 7 ~  3 < 0 . ~ ,  ~ > 0 ,  
0"~ < - 0 . 6 7 ~  3 < - 0 . 0 6 0 3 ~ ,  ~ < 0 ,  

{ - 0 . 0 0 9 ~ < - 0 . 1 4 3 < _ 0 . 4 ,  ~>-0 ,  
o. _< _< -o.oo9 , < o. 

Hence they can be represented by the convex combination of the upper bound 
and the lower bound as 

-0.67~ 3 = N ~ ( ~ ) . 0 . ~ -  (1 - N~(~)).0.0603~, (6.60) 

-0 .1~ 3 = NI(~)  �9 0.  ~ - (a - N~(~))- 0.009~ 

where N~(~) �9 [0 1], N21(~) �9 [0 1]. By solving the above equation, 
NI(~),  N~(~), N2X(~) and N~(~) representing zero and nonzero are obtained 

N~(~) = 1 0.09' N•(r = 1 - N~(~) - 0.09' 

u l ( ~ )  = 1 - 0.0---9' N22(~) = 1 - u l ( ~ )  - 0.09" 

as follows: 
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Using N~, N~, N21 and N22, the original nonlinear model (6.59) can be rep- 
resented by the following continuous-time fuzzy model: 

IF  ~(t) is M~I and ~(t) is M~2 
T H E N  ~(t)  = A~x(t)  + bu(t) ,  (6.61) 

y( t )  = cx( t ) ,  i = 1,2,  3, 4 

where Mll = M21 = N~, M31 = M41 = N~, M12 = M32 = N 1, M22 = 

-0.01 , A2 = - 01 -0.009 ' 

[ 0 10] o 1 o, 
- 0 . 0 7 0 3  ' - o . o 7 0 3  - 0 . 0 o 9  ' 

In the sampled-data case, we set the sampling period T = 0.2, and assume 
that the input u = ~i is realized through a zero-order hold and the observation 
is taken at kr .  Then (6.59) and (6.61) become 

4" = - 0 . 0 2 ~ -  0.67~ 3 -  0.1~ 3 + 5, (6.62) 

u(k) =  (kr) 

and 

IF  ~ is M~I and ~ is Mi2 
T H E N  ~(t) = A i x ( t )  + b(t(t), (6.63) 

y(k )  = cx (kT) ,  k = O, 1 , 2 , . . . ,  i = 1 , 2 , 3 , 4 ,  

respectively. This is an example of the fuzzy system (6.44). The simulation 

result of (6.62)((6.59))with f i = 0 ,  x (0 )=  /005  ] is given in Figure 6.1. 
F _ _  "1  

L J 

First we design a state feedback controller. We take Q =/3•  (~ =/3• 

R = I , A =  [A1 b0] , ~ =  [I000] a n d B =  [ i ] .  Solving the equation 

- X  = A ' X  + X A  + Q, kT < t < (k + 1)7-, (6.64) 

X ( k T - )  = A ' X ( k T ) , 4  + Q , - ] I ' X ( k T ) B ( R  + B ' X ( k T ) B ) - I B ' X ( k T ) A ,  

we obtain the T-periodic solution X ( t )  and the feedback gain 

where 

fl :--[-0.622 -1.2891 

x(0) 

x(0-) 

12.097 10.265 1.8121 
= X ( k T ) =  1 0 . 2 6 5 1 9 . 9 0 1 3 . 7 5 4 | ,  

1 . 8 1 2 3 . 7 5 4 1 . 9 1 3 J  

[[11"9700 7.930 ! ]  
= X ( k r - )  = | 7.930 16.062 . 

0 
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Similarly we obtain the feedback gains: 

f2 = [ - 0 . 6 1 9  -1.328],  f3 = [-0.661 -1 .323] ,  f4 = [-0.658 -1 .361] .  

The T-periodic solution X(t )  satisfies the conditions of Theorem 6.6, the 
closed-loop system (6.27) for these f ,  is exponentially stable. 

As for tile observer gains, we take 

1  4_r0 1 k l =  0.3 ' 0.4 ' 0.3 ' [0 .4J"  

Setting Q = (~ = I2• and solving the equation 

_]z = A,1Y + y A I  + Q, k~" < t < (k + l)T, 

Y ( k T - )  = ( I -  k lc ) 'Y (kT) ( I  - klC) + d), 

we obtain the w-periodic solution Y(t )  where 

[ 3.695 ~ 2 �9 1 9 8  ~ 
Y ( 0 )  = 

-2.198 3.924 J ' 

[3.475 -2898] 
Y(O-)  = Y ( k T - ) =  [ -2 .898  4.745 J '  

The T-periodic solution Y(t)  satisfies the conditions of Theorem 6.11 and the 
error system (6.47) for these k~ is exponentially stable. 

W e c a n s h o w t h a t  f((t)  = I x ( t )  0 ] 0 71y(t) with 7? = 12 (and hence ~ _> 12) 

assures the exponential stability of the fuzzy system (6.55). Thus we have 
obtained an output  feedback stabilizing controller for the approximate fuzzy 
system. The simulation result of the approximating fuzzy system with x(0) = 

[ 0 ~ 5 ] , ~ ( 0 )  = [0]  is given in Figure 6.2. Next we apply the observer to 

the original nonlinear model (6.59). We calculate the left-hand-side of (6.53) 
to show that  (6.45) is an observer for the original nonlinear system if x and 

remain in a neighbourhood of the origin. 
Similarly, we calculate the left-hand-saide of (6.58) to show tha t  ttle 

closed-loop system (6.44) and (6.54) is exponentially stable in a neighbour- 
hood of the origin. The simulation result of the original nonlinear system 
(6.62) with the same controller is given in Figure 6.3. 

6.3 N o t e s  and  R e f e r e n c e s  

The H2 and Ho~ results in Section 6.1 are taken from [34] and details of proofs 
are found in [33]. The application to sampled-data systems with first-order 



6.3. Notes and References 347 

0.2 

--0.2 

I ' ' ' ' I ' I ' 

! :"' 

I i 
: ' 

i i ] 
, 1 

t l  , l  

i / 
I 
1 

I I I I I I I ] I I 
0 50 100 

t i m e  ( s e c )  

Figure 6.1: The trajectory of the state without control 

0.2 

-0 .2  

l I i I I I I i i i i i i i i I 

0 5 lO 15 
t i m e ( s e c )  

Figure 6.2: The trajectories of the state and control input of the approximat- 
ing fuzzy model 
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Figure 6.3: The trajectories of the state and control input of the original 
nonlinear model 

hold is given in [32] while [33] contains some examples of distributed parame- 
ter systems. We have shown that  the H2 and H ~  problems for sampled-data 
systems with first-order hold can be solved using an infinite dimensional jump 
system. But further works from computational point of view are necessary 
to implement the controllers given in this section. The H ~  theory in infinite 
dimensions can be found in [31, 46, 47, 48, 70]. The basic results on semi- 
group can be found in [7, 9, 10, 17, 60, 73] and systems theory in infinite 
dimensions is given in [7, 9, 10]. 

Section 6.2 is concerned with the output  stabilization of nonlinear sampled- 
data  systems and is taken from [59]. This problem is very difficult in general 
but for a class of nonlinear systems described by fuzzy systems we have given 
a design method based on jump systems. The paper [59] is an extension 
of [89, 90] to sampled-data systems. Basic materials on Takagi-Sugeno fuzzy 
models can be found in [57, 72, 75, 92]. H~-control  for fuzzy systems is found 
in [911. 



A p p e n d i x  A .  B a s i c  R e s u l t s  o f  F u n c t i o n a l  

A n a l y s i s  

We shall recall  some basic defini t ions and  resul ts  in funct ional  analysis  [10, 
17, 54]. 

D e f i n i t i o n  A . 1  A nonnegative funct ion,  denoted by il " l], on a linear space 
V is a n o r m  i f  the -following properties hold. 
(a) II x 11 = 0 i f  and only i f  x = O. 
(b) II x + y I1<11 x II + IE Y II/or all ~, y e Y. 
(c) II c~x ]i = ]c~ I II x II -for all x E V and all c~ E C.  

Here  we assume  t h a t  the  scalar  field is C of complex  numbers ,  bu t  we 
m a y  replace  it by  R of real numbers .  

D e f i n i t i o n  A . 2  (a) A sequence {xn} in a normed  linear space V is a Cauchy 
sequence i l l  I x m  - xn  It --~ 0 as m ,  n --* cx). 
(b) A normed  linear space V is complete i /  every Cauchy sequence has a limit 
in V .  
(c) A Banach  space is a complete normed  linear space. 

D e f i n i t i o n  A . 3  (a) A subset S o f  a normed  linear space V is closed if  every 
convergent sequence in S has its limit in S.  
(b) Let  S be a subset o-f a normed  linear space V .  The smallest  closed set 
containing S is the closure o f  S.  
(c) A subset S o f  a normed  linear space V is dense i f  its closure coincides 
with V.  
(d) A normed  linear space is separable i] it contains a dense set which is 
countable. 

D e f i n i t i o n  A . 4  A n  inner  product on a linear vector space V is a map 
< -,. >:  V • V --* C with the following properties. 
(a) < a x  + /3y, z >= ~ < x , z  > +13 < y , z  > for  all x, y E V .  
(b) < y , x  >= < x , y  >. 
(c) < x,  x > >_ O and < x,  x > = O i f  and only i f  X = O. 
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I f  we set II x ]1=< x , x  >�89 then  it is a norm.  

D e f i n i t i o n  A . 5  A linear space with inner product is a Hilbert space if  it is 
complete with respect to the norm induced by the inner product. 

D e f i n i t i o n  A . 6  Let (X,  II " Ilx) and (Y, II " ]]Y) be two normed linear spaces. 
(a) A map T : D(T)  C X ---* Y is a linear operator if  T ( a x l  +/3x2) = 
a T x l  + t3Tx2 for all xx, x2 E D(T)  and all scalars a, 13. 
(b) A linear operator T is bounded if I] T x  I Iy<  c I] x ]Ix for any x E D(T)  
for some c > O. 
(c) The set of bounded linear operators mapping X into Y is denoted by 
C.(X, Y )  and ~.(X) = ~.(X, X ) .  
(d) The induced norm of a bounded linear operator T E s  Y )  is defiend 
by 

II T x  IIY 
I I T  II = sup 

II x [Ix 

D e f i n i t i o n  A . 7  A bounded linear functional on a normed linear space V is 
a bounded linear operator mapping V --~ C. 

T h e o r e m  A . 1  (Riesz Representaion Theorem) Let X be a Hilbert space. 
Then for every bounded linear functional f on X ,  there exists a unique vector 
z E X such that f ( x )  - - <  x , z  > for all x E X .  Moreover, ]] f ]]--]] z ]]. 

Let  X and Y be two Hi lbe r t  spaces and  let T E E. (X ,Y) .  T h e n  by  
T h e o r e m  A.1 the re  exists a unique ope ra to r  T* E f-(Y, X )  which satisfies 
< Tx,  y > y = <  x , T * y  >x  for all x E X and y E Y. 

D e f i n i t i o n  A . 8  The operator T* is the adjoint operator of T.  

T h e o r e m  A . 2  Let T E F~(X, Y )  for some Hilbert spaces X ,  Y .  Then 

II T* II-II T II. 

D e f i n i t i o n  A . 9  Let X be a Hilbert space. 
(a) An  operator T E s  is self-adjoint i f  T* = T.  
(b) A self-adjoint operator T E L ( X )  is nonnegative, positive and coercive 
respectively, i f  < Tx ,  x >> 0 for all x E X ,  < Tx ,  x > >  0 for all 0 ~ x E X ,  
and < Tx,  x > >  e ]I x [[ 2 for all x E X for some e > O. 

T h e o r e m  A . 3  Let X be a Hilbert space. 
(a) Let T E F-.(X) with II T II< 1. Then ( I - T )  -1 exists and is in f_.(X) with 
I[ (I  - T) -1 II~ ( 1 -  II T II) -1 .  
(b) Let T E E ( X )  be coercive with < Tx ,  x > >  e II x II Then T -x E L ( X )  
with II T - 1  ]]-< 1 and it is coercive. 
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Theorem A . 4  Consider a quadratic form q(x) =< Tx ,  x > + < x , h  > 
+ < h , x  > +c on a Hilbert space X for  some h c X and c E R .  I f T ( - T  
respectively) is coercive, q(x) has the m i n i mum (maximum)  c -  < T - l  h, h > 
at x = - T - l h  

D e f i n i t i o n  A . 1 0  A sequence {x~} in a Hilbert space converges weakly to x 
i f <  Xn - x,  y >--* 0 as n ~ co for  all y c X .  

T h e o r e m  A . 5  (a) I f  xn converges weakly to x in a Hilbert space, then {xn}  
is bounded and II x I[~ lim inf ]I Xn ]]< co. 
(b) Every bounded sequence in a Hilbert space contains a weakly convergent 
subsequence. 

If xn converges weakly to  x and if II xn II-< c, t hen  II x II-< c. 

D e f i n i t i o n  A . 1 1  A family of bounded linear operators S( t) ,  t >_ 0 on a 
Banach space X is called a strongly continuous semigroup (or Co-semigroup) 
i f  the following holds: 
(a) S( t  + s) = S ( t )S ( s )  for  any t, s > O. 
(b) S(o) = I 
(c) S ( t ) x  --* x in X as t --~ 0 for  all x E X .  

There  exists real numbers  M > 0 and w such t ha t  II s ( t )  II-  Me~t ,  t > O. 

D e f i n i t i o n  A . 1 2  The infinitesimal generator of  a Co-semigroup S(t)  is de- 
fined by 

A x  = l im ~ ( S ( t ) x  - x) 
t---*O X 

whenever the limit exists. The domain of A,  denoted by I ) (A) ,  is the set of 
all x E X for which the limit exists. 

/ ) (A)  is dense in X.  If x0 E T)(A), t hen  S( t ) x  E 7)(A) and 

d 
-~ S( t )xo = AS( t )xo .  

T h e o r e m  A . 6  (Hille-Yoshida Theorem) A closed linear operator A with 
dense domain I ) (A)  in a Banach space X is the infinitesimal generator of 
a Co-semigroup S(t)  i f  and only i f  there exist real numbers M and w such 
that for  all real ~ > w, ()~ - A) -1 E s  and 

M 
II (~' - A )  - m  I1-< (~, _ , . , ) . , ,  m = 1,  2 ,  .. 

In this case II s(t) I1-< Me~t .  



352 A. Basic Results of Functional Analysis 

A linear operator  A is closed if xn E :D(A) --+ x, Axn ---* y imply tha t  
x E :D(A) and Ax = y. 

When we consider inhomogeneous systems in Banach spaces we need in- 
tegration in Banach spaces. The extension of the Lebesgue integral to Ba- 
nach spaces is called the Bochner integral [10, 17]. It requires the notions of 
strongly measurable functions and simple functions. The space of square in- 
tegrable functions f on [a, b] with values in X (strongly measurable functions 
such tha t  II f ( t )  II 2 in Lebesgue integrable) is denoted by L2(a, b; X).  

D e f i n i t i o n  A .13  Let T be a bounded linear operator in a complex Banaeh 
space X .  The resolvent set of T is the set of complex numbers )~ such that 
()~I- T) -1 E ~.(X). The complement of the resolvent set, denoted by a(T), is 
called the spectrum ofT.  The spectral radius ofT,  denoted by p(T), is defined 
by p(T) = sup~Ea(T ) ] ~ ]. 

D e f i n i t i o n  A .14  Let X and Y be two separable Hilbert spaces. A bounded 
linear operator P mapping X into Y is called a Hilbert-Schmidt operator if 
)-]~,~1 II Pe, ll2< oo ]or some orthonormal basis {e,} in X .  

A self-adjoint operator  P on X,  i.e., P* = P is nonnegative if < Px, x >>_ 
(~ for any x E X. A nonnegative operator  P on X is called a trace class 

perator  if Z~--I= < Pe~, e, > converges for some or thonormal  basis {e~}. 
If P is Hilbert-Schmidt,  Zi~__I II Pe~ [I 2 converges for any orthonormal  

basis and is independent of {e~}. If P is a nonnegative trace class of operator,  
~-~=1 < Pe~, e~ > converges for any orthonormal  basis and is independent of 
{e~}. Its value is denoted by tr.P and is called the trace of P.  
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